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ABSTRACT

In this thesis integral equation techniques, developed in liquid
state physics over the last twenty years, are applied to a study of
fluids with angle dependent potentials.

In particular, multipolar fluids and liquid crystals are. studied.
There are many similarities and contrasts in the mathematical
formalism and physical principles used in modelling these two fluids.
These are introduced in Chapters 1 and 2.

In Chapter 3, an isotropic system of dipolar hard spheres is
studied using a non-linear truncation of the hypernetted chain
closure of the Ornstein-Zernike equation. This enables dipolar fluids
with low density to be investigated. The mathematics developed to do
this also enables the Percus-Yevick closure to be used. The effect
of water-like quadrupole moments on dipolar hard spheres is discussed
in Chapter 4. It is shown that schemes developed for axial
quadrupoles are easily adapted to water-like quadrupoles. The results
indicate that the quadrupole moment is an important influence on the
macroscopic properties of water.

Many of the important applications of polar fluids are a result
of their behaviour'in external_fluids. A number of interesting issues
arise when one tries to develop a formalism for describing the effects
of a field on polar fluids. Some of these are discussed in Chapter 5.

In the final two éhapters, the properties of liquid crystals

are determined using an expression for the free energy in which the



molecular properties are included via the direct correlation function.
In a certain limit this expression is the same as that of the
successful Maier-Saupe theory. Using this, one can describe the
isotropic-nematic transition, elastic behaviour and the alignment at

surfaces in terms of the direct correlation function and hence the

molecular properties.
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CHAPTER 1

l.1 Introduction

It is difficult to relate the properties of liquids to the
properties of the individuai molecules. The high density and the
lack of a long-range structure in liquids prevent the techniques
which have been used with reasonable success for either gases or
solids from being used for liquids.

In this thesis, attention is focussed on those liquids in which
the intermolecular interaction depends on the orientations of the
molecules. In particular, polar fluids (i.e. fluids with permanent
electrical moments) and liquid crystals are considered. Because of
the complexities mentioned in the preceding paragraph, the model
system of the liquid needs to be very simple.

The physical principles of the behaviour of polar liquids and
liquid crystals are described in this chapter with the mathematical
formalism being developed in later chapters. The mathematics needed
to describe the anisotropic interactions in these liquids (Chapter 2)
can become quite complex and a reasonable understanding of the
physics of the system is needed to understand the approximations
used. Even though some of the symmetry properties of molecular
interaction can help to simplify the mathematics, the problem of

describing these liquids is still a daunting task.

Chapters 3 to 5 embody the main work on polar liquids while in
Chapters 6 and 7 liquid crystals are studied. 1In these chapters the

approximations are outlined and the calculations performed.



1.2 Modelling Liquids

In most liquids — liquid hydrogen and helium being the major
exceptions — the relationship between the microscopic properties of
the constituent molecules and the macroscopic properties of the
liquid can be described with classical statistical mechanics. The
Hamiltonian used is one in which the effects of intra-molecular
motion has been averaged. (For the liquid crystal work, bending of
the alkyl chains may need to be included but at this stage shall be

ignored.) The Hamiltonian for N molecules can then be written as

2
N bp,

H = I

N + u(1,2,...,N) (1.1)
i

p 2my

where u(1,2,...,N) is the interaction potential of N molecules
situated at I1sLoseeesIy and having orientations 91,92,...,QN and
P; and m; are the absolute value of the momentum and mass of the ith
particle. Here 1 denotes the position r; and the orientation w; .
The properties of the individual molecules are represented by
the term u(l,2,...,N). Our approach is to use an expression for
u(l,2,.;.,N) which involves the properties of the molecule and then
use statistical mechanics with the Hamiltonian (l.1) to calculate the

liquid properties.

For a pair of argon atoms, wu(l,2) can be approximated by
u(1,2) = u_(|r; - r2|) (1.2)

where uo(r) is depicted in Fig. 1l.l.
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Fig. 1.1 Interaction potential uo(r) between two argon

atoms separated by r.

Here o has roughly the same value as the diameter of the argon

atom. There is a short~range repulsion which prevents the separation

of the nuclei of the argon atoms from ever becoming much less than

the molecular diameter. The effect would be similar to bringing two

soft spheres together. Since the repulsive component of interaction

between two argon atoms is similar to the interaction of two soft



spheres, the argon atom will be described in this thesis in terms of
a soft sphere. Superimposed on the repulsion is a longer-ranged van
der Waals attraction.

Liquid argon is a particularly simple example of a fluid since
the interaction between the constituent atoms depends only on the

separation of the atoms.

1.3 Angle-dependent Potential

For the carbon dioxide molecule, the analogy with the sphere is
less appropriate than an ellipsoid or the spherocylinder. To
illustrate the problem of such a shape dependence, a fluid of hard
spherocylinders is considered. Two spherocylinders are depicted in

Fig. 1.2.

Fig. 1.2 Two hard spheré%—

cylinders separted by r.

Whether or not two such particles touch depends not only on the



separation r between the centres of the two particles but also on the
following orientations:

(i)  the orientation w; of molecule 1

(ii) the orientation wy of molecule 2

(iii) the orientation r of the intermolecular axis.

Vip O

oo

(C)

Fig. 1.3 Arrangements of spherocylinders which are in contact even

though the separations are different.



This can be seen by noting that the particles afranged as illustrated
in Fig. 1.3(a-c) are in contact even though their inter—particle
separations are different. Such a point may seem trivial until one
needs to describe the macroscopic properties of a dense system of
these particles. Any statistical mechanical treatment must omit
configurations in which two such bodies overlap and this demands the
knowledge of not only the positions of the particles but also their
orientations. Statistical mechanica\techniques that have been
developed for 'simple' fluids must be adapted to deal with
orientations, yet still remain computationally efficient. This is a
difficult problem.

Similar problems occur for any fluid in which the interactions
depend on the orientations (i)-(iii). For example, fluids in which
the molecules have permanent multipoles would experience similar

problems. In the next section the interactions of such molecules are

discussed.

1.4 Electrostatic interactions

on
The interaction between a pair of argon atoms (argom atom¥ has

no permanent multipole) consists of a short-ranged repulsion and a
longer—-ranged van der Waals attraction. 1In most molecules, however,
there are permanent electrical moments which can interact with the
electrical moments ‘of other molecules. Such a moment is the result
of an asymmetry of the electron distribution. In our idealised
model, we view the electrical moment as being imbedded in the body
representing the-molecule. This added interaction is then given by

the laws of electrostatics.

The electrostatic potential at t due to charges imbedded in a
bohaye,
body (as illustrated in Fig. 1.4) will asgmptete for large t|as



Fig. 1.4 Charges q , q ,q situated atr , r , r .
1 27 '3 ~1  ~2° ~3
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W(t) = et t3 + izj oij —131 + oees (1.3)

This expression uses Cartesian co—ordinates. The terms Q, j, © are
~

respectively given by

N .
Q = I q, (1.4)
. i
i=1
N
po= .2 q; I (1.5)
i=1
0.. = + I q.G3 -1 8,.) (1.6)
ij 2 G39% %5 7T %44 *

T
The N charges q; are situated at r, = (x1,x92,x3) + Also

r = '£| (1.7)
t = |t . (1.8)

Q is the total charge, u is the permanent dipole, and © is the
mom ent;

quadrupolek These electrical moments will be used frequently during
this thesis.

The electrostatic field can then be written as the sum of the
fields due to the various electrical moments. For example the
electric field E (= = ¥ {) due to a dipole is shown in Fig. 1.5.

Here the arrow represents the direction of



Fig. 1.5 Field due to Dipole

For the special case of all the charges lying on a single line

the quadrupole is given by

1
) QL 0 0
1
QL = 0 5 OL 0 (1.9)
0 0 - QL
\ J
N 2
o = - .z qy 2z (1.10)
i=1

Here the z-axis is parallel to the line of charges and hence to the

dipole moment. The field due to such a quadrupole moment is

illustrated in Fig. 1.6 .
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Fig. 1.6 Field due to Linear Quadrupole

To understand the interactions between charge distributions, one not
only needs to know the fields produced by the charges but also their
reaction to an applied electric field. For instance certain
orientations of the charge distribution are energetically less
favourable than others. To calculate favoufable orientations, one

needs to know the electrostatic energy:

2
s ° g l a (O) eece
E=0Q ¥0) +u ¥ w0 +3 Loz eij J—_ax,ax. + (1.11)
i ] i 7]
Here cartesian co—ordinates have been used. P(0) is the

electrostatic potential at the centre of the charge distribution.
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The first term is the energy of a charge Q in an electrostatic
potential V(o) . The second term is the familiar = u'EJ cos® for
the interaction of a dipole with the electric field E = - ¥V ¥(o)
where 0 is the angle between the dipole and the electric field. The
third term is the interaction of the quadrupole with the gradient of
the electric field.

One can see that it is energetically favourable for the dipole
to lie parallel to the electric field and for a linear quadrupole to
lie parallel to the direction in which the field is changing most
rapidly (i.e. perpendicular to the field lines).

By knowing that a dipole produces a field as illustrated in Fig.
1.5 and that it is energetically favourable for another dipole in the
vicinity of the first dipole to lie parallel to the local field, one
can see that the arrangements of dipoles illustrated in Fig. 1.7 will
themselves be energetically favourable. Each of the dipoles lies in
the other's field. This sort of analysis will be useful when

discussing arrangements of molecules in liquids.

®» OO

(a) ( b)

Fig. 1.7 Energetically favourable arrangements of dipoles.
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Finally, since the field produced by a charge distribution and
the reaction of a charge distribution to an applied field can be
written entirely in terms of the electrical moments, we shall
therefore characterize a given charge distribution as the sum of

electrical moments

i.e. total charge + dipole moment + quadrupole moment + ... .
Higher multipoles are only important in the intermolecular
interactions if the molecules are separated by very small

distances. For a fluid it is expected that the effect of the

multipoles higher than quadrupole on the macroscopic properties is

negligible.

1.5 Correlation functions

In section 1-2 to 1-4 the relation between molecular properties
and molecular interactions have been described. The next stage is to
consider the effects of molecular interactions on macroscopic
properties of liquids. To do this, we make use of the pair
correlation function g(1,2) defined by

p(1) g(1,2) p(2) dld2

probability that a molecule can be found in
the volume dr;, about r,, and within an orientation dw; of w; , and
similarly a molecule can be found in a volume dr; about r; and
within an orientation dw; . The notation 1 will denote the co-
ordinate (r;,w;) and dl the infinitesimal dr; dw; . Here p(l) is
the ﬁumber of particles per unit volume with position r; and
orientation w; .

Some of the qualitative features of g(1l,2) are immediately

obvious. Consider the arrangement of particles in Fig. 1.8. TIf the
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Fig. 1.8 Possible arrangements of molecules in a Liquid

spheres are hard, there is no possibility of the centres of the
spheres being closer than the sphere's diameter R. ‘Thus, for

separations less than R

g(l,2) =0 .

The internal pressure of this system results from the tight
packing arrangement. This means that there is a strong possibility
of finding pairs of spheres separated by distances in the range R to'
R', whereas relatively few pairs of spheres are separated by
distances in the range R' to R". The correlation function for such a

fluid is drawn in Fig. 1.9.
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0 1 2 r7F%

Fig. 1.9 Hard sphere correlation function

AF | alr)
3-
2
1

1 2 3 4 /0

Fig. 1.10 Soft Sphere correlation function
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If the spheres are soft, they can be separated by distances less
than R. The correlation function for soft spheres should resemble
that drawn in Fig. 1.10. This is very similar to the correlation
function of 1liquid argon. At the high densities found in liquids, it
seems that the correlation function is mainly determined by the
short-ranged repulsive core rather than the slowly varying components
of the potential such as the van der Waals attraction. This notion,
originally used by van der Waals is the basis of many numerichchemes/
in liquid state physics.

If the spheres are imbedded with dipoles, then the correlation
function has an added complication. The orientation of the dipole
imbedded in one particle can influence the orientation of the
surrounding dipoles. The correlation function must reflect this
orientation dependence. It must depend on the orientation of each
particle as well as the orientation of the intermolecular axis.
Averaging over these orientatioﬁs yields a function similar to those
shown in Figures 1.9 and 1.10 depenéing whether the spheres are hard
or soft. Again, this agrees with van der Waals notion of the liquid
i.e. the number of particles at a distance r from any given particle
is largely determined by the short-ranged repulsive force rather than
the longer—-ranged dipole-dipole interaction. This principle will be
used frequently in this thesis.

Macroscopic properties such as dielectric constant, pressure,
internal energy and free enérgy can be written in terms of the
correlation function. The strategy of liquid state physics is to
calculate the interaction energy from the molecular properties and to
use this to calculate the correlation function which in turn yields

pressure, internal energy etc.
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1.6 Dipolar fluids

Consider a fluid in which the molecules have a permanent dipole
moment. A simple model of the molecule is a hard or soft sphere
imbedded with a dipole. As will be seen in later chapters the effect
of the higher multipolar interaction in liquids can be appreciable.
There are, however, a number of reasons for neglecting higher moments
at this stage. It is of interest to investigate the effects of the
dipole-dipole interaction without the complicating effects of dipole-
quadrupole interactions, quadrupole-quadrupole interactions, etc.
Secondly the long-range nature of the dipole-dipole interaction can
cause problems with numericilschemes, so it is important to develop a
scheme that can handle the interaction. If this can be done, one can
have confidence in applying these schemes to more complicated models.

Recently, a large amount of work has been devoted to the
statistical mechanical study of dipolar fluids. This work has mainly
centred on the calculation of the pair correlation functions and
dielectric properties. While a certain degree of success has been
achieved in modelling most aspects of the correlation functions, the
same cannot be said for those aspects concerned with dielectric
behaviour.

The problem is twofold. The dipole-dipole interaction is both
long-ranged and angle-dependent. The long-ranged nature of the
potential implies that schemes such as computer simulations that
truncate the spheres of influence have difficulty modelling the
dipolar system. The angle dependence is partly offset by the

van der Waals concept of liquids. The fact that the structure is
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mainly determined by the repulsive forces rather than the
dipole-dipole interaction can be used as a basis for perturbation-
like schemes.

However as the density is decreased, the gaps between the
particles become larger and the longer-ranged component of the
potential becomes relatively more important. For a purely dipolar

fluid, the correlation function will approach

g ~ exp(- B UDD) (1.12)

where

B = L1/kT (1.13)

and UDD is the dipole-dipole interaction potential. In Chapter 3 a
numerical scheme will be developed that has this correct low density
limit and yet should be reasonably accurate for higher densities.

The scheme can also be used for investigating the shortcomings of
using a perturbation-like scheme based on van der Waals concept of
liquids. It can then hopefully be used in a robust scheme that gives

reasonable results over a wide range of densities and dipole moments.

1.7 Dipoles in a Field

It is well known that an external field will increase the
alignment of a system of dipoles. For an ideal dipolar gas of

density Pys the average number of dipoles whose dipolar axis makes
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an angle 6 with the external field E will be

p( 8) N exp(- B |§J cos9)

(1.14)

™
il

1/kT

At higher densities there will be a distortion of this due to the
interaction between dipoles. For small fields, p(l) will be given

by
p(1) = p_ exp(= BlE|cost + [ d2 c(1,2) o(2)) (1.15)

where ¢(1,2) is the direct correlation function of the bulk system.
[c(1,2) will be discussed in chapter 2.] Thus the density p(1)
depends on correlations in the liquid and similarly the correlations
depend on the density p(l) . Much of the previous work has been
concerned with the density rather than the correlation. In Chapter
5, the latter is studied.

To gain some understanding of correlations in an external field
consider the effect of an external field on the field lines produced
by a single dipole. The effect of the external field is to distort
the local field lines in such a way to decrease the likelihood of a
dipole opposing the field. As the field becomes stronger the dipole
is much more likely to lie parallel to the external field. One can
see that the other dipoles are likely to lie end to end to any given
dipole and almost none will lie anti-parallel to the field or lie
side by side to a given dipole. For example, dipoles A and B in

Fig. 1.11 will attract each other while A and C will repel each
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other. Because it lies anti-parallel to the external field, dipole D
will be energetically unfavourable. The net effect is the production
of chains that repel each other. This chain formation has been
observed in the so-called 'ferro—fluids' - colloidal dispersions of

ferromagnetic grains.

’A
b. {
L)

Fig. 1.11 Dipoles A,B,C,D in an external field

1.8 Tetrahedral Quadrupole

As the density increases the separations between particles
become smaller, and the relative importance of the quadrupole

compared to the dipole increases. At liquid densities it may be



20

expected that the effect of quadrupolar interactions are significant.

Previous calculations have only investigated the linear (axial)
quadrupole i.e. the quadrupole of a series of charges lying on a
single line. The field due to such a quadrupole is shown in
Fig. 1.6. In an applied field, such a quadrupole favours a direction
perpendicular to the field ﬁhereas the dipole favours a direction
parallel to it. If the permanent charge distribution of a particle
is such that it has a dipole moment and a linear quadrupole moment,
then it favours a direction at an angle to the field, the angle
depending on the relative strengths of the dipole and quadrupole.
Since the quadrupole decreases the alignment of the dipoles with the
field, it can be expected that its neglect can lead to an
overestimate of the dielectric constant. Numeric|schemes [1] have
shown that this overestimate can be appreciable even for moderate
values of quadrupole moment.

If in our simple picture of the molecule, the charges do mot lie
on a single line, then the quadrupole is more complicated. This
would be the case with most molecules. For‘example, consider thg
charge distribution in Fig. 1.12. Here, the charges all lie on the
vertices of a regular tetrahedron. The negative charges are lying in
the y-z plane (plane of the page) and the positive charges are lying
equidistant from the y-z plane in the x—z plane. The field due to
the quadrupole moment of such a particle is illustrated in Fig. 1.13.

Such a quadrupole shall be termed a 'tetrahedral' quadrupole.
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Fig. 1.12 Arrangement of charges resulting in a tetrahedral

quadrupole

Fig. 1.13 Field due to Tetrahedral Quadrupole
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Unlike the linear quadrupole it is not cylindrically symmetric, and
S0 an extfa angle is needed to the field due to such a quadrupole
moment.

The effect of an external electric field on such a particle is
also more difficult to describe. Perhaps the simplest expression for
the electrostatic energy in a field E is given in terms of the

molecular frame (see Fig. 1.12)

,  E_ &
E = _3(___3}( __Xay ) e (1.15)

The particle will tend not to align with the field but its
orientation will depend on the overall symmetry of the local field
rather than the gradient in just the one direction, as is the case
with the linear quadrupole.

In Chapter 4 we find that in spite of the decrease in symmetry,
the techniques that have been used for linear quadrupoles can just as
easily be used for 'tetrahedral' quadrupoles and dipoles.

This is an important sﬁep, since the quadrupole moment of water
resembles that of the tetrahedral quadrupole. We can gain some ideas
about the importance of the dipole and quadrupole moments of the
water molecule in determining the properties of water. For example,
we would like to know what extent the quadrupole moment determines
the near tetrahedral packing of the water molecules. The quadrupole

could also be important in determining the dielectric behaviour of

water.
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1.9 Liquid Crystals

Thermotropic liquid crystals do not have an isotropic liquid-
solid transition as the temperature falls but exhibiﬁ a number of
transitions from an isotropic liquid phase through ordered phases to
a solid phase. 1In the ordered phases, there is no lattice structure
as in the solid, but there is considerable rotational order. For
example, in the 'nematic' phase the molecules tend to align with a
certain direction é called the 'director'. Yet, the positions of
the centres of the molecules are disordered as in a liquid. (See

Fig. 1.14)

Fig. 1.14 Arrangement of molecules in a nematic. The director
in n
The isotropic—-nematic transition has a number of interesting
features. It is a first order phase transition yet in many ways
resembles a second order transition. There are discontinuities in

the density, the internal energy and entropy, but these are small.

The change in entropy, for example is only about 0.8 cal/mol °K as
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compared to 25 cal/mol °K in solid-liquid transitions in similar
organic materials.

Liquid crystal display 'pre—transitional' behaviour, in that the
response functions of the isotropic phase (e.g. induced
birefringence) begin to diverge as the critical temperature, Tes is
approached from above. The phase change-occurs before the divergence
is observed. This pre—transitional behaviour is usually not found in
first—-order phase transitions.

It is thought that the small change of entropy means that
fluctuations are much more likely and this leads to pre—transitional

behaviour. The arrangement of the molecules in the isotropic phase

just above Tc does not resemble that in Fig. 1.15 as much as that in

Fig. 1.14 [H.

| \/\/-1-

|\/
/

Fig, 1.15 Arrangement of molecules in an isotropic phase at a

temperature much greater than TC
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The fact that the isotropic phase does not exhibit a preferred
direction over a macroscopic length scale can be explained in terms
of a local director. In Fig. 1.14 this would be é . It is
postulated that in both the isotropic and nematic phases the local
director meanders through the liquid. In the isotropic phase, this
meandering would have no long-range correlation whereas in the
nematic phase it would favour a direction parallel to the bulk
director.

In Chapter 7, a general theory for the isotropic - nematic
transition is developed using the direct correlation function ¢(1,2).
The direct correlation function would include the effects of both the
short ranged repulsions and the longer range attractions. These have
been the centre of attention over recent years. The similérity in
the local structure at Tc is both the isotropic and nematic phases is
used to quantify certain terms in the direct correlation function.

By assuming that the distribution in a small volume (= 20 molecules)
about the local director is the same for both phases, one can
calculate macroscopic properties in terms of the properties in this
small volume.

The theory can be extended to study properties of the nematic
phase. One consequence of the long range director of molecules is
the anisotropy of macroscopic properties. For example, the
refractive index and dielectric tensor are anisotropic. One property
that will be studied using the theory is the elastic behaviour of the
nematic phases. Stresses applied to the nematic phase could result

in splaying, twisting and bending of the director. (See Fig. 1.16).
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(a) Twisting

Distortions of nematic liquid crystal:

Fig. 1.16

(b) Splaying (c) Bending
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This behaviour is characterised by the elastic constantvai. The Ky
are calculated in terms of the direct correlation function.

Moreover, the theory will be used to study the behaviour of the
nematic phase near a wall. The wall can have the effect of ordering
the molecules. In the past this has led to a number of birefringence
studies and theoretical studies for the fluid near the single wall.

The above theory applied to the system of two walls between which

there is a nematic liquid crystal.
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CHAPTER 2

SYMMETRY AND THE ORNSTEIN-ZERNIKE EQUATION

2.1 Rotational Invariant

The main problem in dealing with molecules that interact via
anisotropic potentials is to find an adequate yet simple description
of the angular dependence. 1In general, 3 Euler angles are needed to
specify the orientation of a molecule — to describe the axis of the
molecule (polar and azimuthal angles) and another to specify the
rotation about that axis. The interaction potential depends not only
on the orientation of both molecules but also on the orientation of
the intermolecular axis. To deal with the 3 Euler angles, a
generalised spherical harmonic called the Wigner D-function is
used. It describes the 3 angles in much the same way as a spherical
harmonic does with 2 angles. In the case where there is no
dependence on one of the angles the Wigner D-function is proportional
to the spherical harmonic. The general properties are listed in
Appendix 2-1.

The interaction potential can be written

mnily

mj mny
u(1,2) = i rzl . u mpnply (r) szma (wy) Drlzn (wp)
1nix m3n3ls (2.1)
monofLsy 2 ~

m3n32,3 DO 23(2)
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Fig. 2.1 Euler angles: 1 rotation of angle o about z-axis
II rotation of angle B about y'-axis

IITI rotation of angle Yy about z'-axis

A EOe PSR S0
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where r is the intermolecular separation, w; is the orientation of
molecule 1, wy is the orientation of molecule 2, £ the orientation
of the intermolecular axis, all w;r.t. to some laboratory frame S.
Thus ) represents the 3 Euler angles needed to describe the
rotation of the frame S so that S lies parallel to 1. Translational
invariance has been assumed. Futhermore, the intermolecular
potential has rotational invariance. These two invariance properties
are the result of the intermolecular potential depending only on the
position and orientation of one molecule relative to the other. If
the observer, being the origin of a frame of reference, moves to one
side or cartwheels, he still sees the same separation and relative
orientations and thus the same intermolecular potential. To invoke
rotational invariance one writes the potential as seen from some
reference frame T which results from the original frame S being
rotated. Since the potential as seen from frame S is the same as the
one seen from frame T, the potential is independent of the.rotation

T «S . 1In Appendix 2.2 it is shown that this implies the potential

can be written as

w(1,2) = 3 u"™ ) ™™ wy,w,1) (2.2)
mn 2 i uv
u v
where
mn £ ~ m n £ p'
) (w1,w2,x) = X -
pv b2 % utvt, A -u' v A') =)
*

m n L .2 2.3
Dy @) Doy (@) D7y (p) (2.3)
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is a Wigner 3-J symbol. The important properties of the 3-J symbols
and the manner in which they limit the range of summations in (2.2)
and (2.3) are given in Appendix 2.3 and [l] and [2]. By using the
form (2.2) the angular properties of the potential are separated from
the r—-dependence. Our definition of the so—-called 'rotational

mn 1

invariant' qu is the same as that in [3] while that of Blum [4-6]

(denoted by a caret) is given by

T (u,up,0) = (¥ ((2m D0+ D2 (00,0 . 2

2,2 Other symmetries

There are some further symmetries worth mentioning.

(i) Permutation of molecules

There is no reason why one molecule should be labelled 1 and not

the other; hence
u(1,2) = u(2,1) .

In terms of the rotational invariants

_ mnf mn £ °
u(l,2) = ¢ Uy (r) qu (wy,w2,x) (2.5)
mnf
v
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| lgv \J '2! ~
w(2,1) = & WD) O, (w,w1, - 1) (2.6)
n'n'g’ MV v
ulvl
where = r is the orientation of some frame in which the z-axis is

anti-parallel to the z-axis of r . This implies

u

332 (r) = (_)u + v+ m+n unml (r) . (2.7)

-v -

(ii) Molecular symmetry

Most molecules have obvious symmetry properties and we shall

examine the consequences of some of them.

(a) If the molecular properties are symmetric about the z-axis,

then there 1s no dependence on the rotation Y about that axis. This

implies
£(1,2) =22 24 (0 @ 0 F (om0 (2.8)
(b) If molecules have Cy, symmetry (i.e. a 2 fold rotation about

the z-axis as well as a reflection symmetry in the x-y and y-z

planes) it can be shown [4] that

v o x (r) =¥ 1 L (r) u,v even . (2.9)
H Vv + | irv

There are further molecular symmetries mentioned by Blum [4] but

these shouhitm sufficient for our purposes.



33

(iii) Combined Molecular Symmetry

In (ii), symmetries of the interaction potential arose when
changes in a molecule did not alter the molecule's properties.
However this is a special class of symmetries since some symmetries
involve both molecules. Consider, for example, a particle imbedded
with a tetrahedral quadrupole. A rotation of the particle through an
angle of w/2 about the z-axis is equivalent to changing the sign of
the quadrupole moment. If another particle is similarly rotated, its
quadrupole moment is also changed. Thus, the rotation of both
particles leaves the quadrupole-quadrupole interaction unaltered.

The symmetries involving both particles are more difficult to

find.

2.3 Interaction Potential Involving Ions, Dipoles and Quadrupoles
The electrostatic energy of a system of particles with charges
and permanent (non-polarizable) moments can be rigorously written as

the sum of energies of each pair of particles

™M =2

ice.  u(l,2,e¢¢¢,N) = r u(i,j) . (2.10)

i=1 j>i
The latter energy u(i,j) can be written in terms of the charge,
dipole moment and quadrupole tensor of particles i and j. This could
be done using the equations of Chapter 1 to determine the electrical
field produced by particle i and then calculate the electrostatic
energy of particle 2 lying in this field. Equation (1.3) describing

the field produced by a charge distribution is written with respect to
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a reference frame associated with that charge distribution. A
particularly convenient frame of reference is one in which the
molecular z—axis lies parallel to the dipole. Similarly equation
(1.11) describing the electrostatic energy of a charge distribution
lying in an electric field is written with a frame of reference
associated with that charge distribution. Given that u(l,2) needs to
be calculated for arbitrary separations and orientations, changing
from one frame of reference to the other is not particularly
convenient.

Instead, the interaction of each charge qi in particle 1 with
each charge qj' in particle 2 is summed:
qqu

a(l,2) = £ I ——y . (2.11)
13 1ETE

The dash indicates quantities associated with particle 2. Self-
1 T can be written in
r, - r!
_i _J
terms of the separation of the centres of the particles, r, the

energies have been ignored. The term

orientation wy of each particle, as well as the orientation of the

interparticle axis. The resulting equation [1,2] is

Yy M) V(D)
o(1,2) = 3 G_)m+u ( (2% + 1)!) m n

1
m,n (2m)!(2n)! rl + 1
u,v (2.12)
2 ~

q’]:lu; (‘1’1:92,1”)
_ 5 mn £ mn £ ~ (2.13)
= uy (0@ 7 (w,0,1) .

m,n
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Here £ = m + n and the multipole moment 6; (I) is defined by

Uo7y _ -m .m
Qm (1) = i q, rua Dou (wy) (2.14)
where the co-ordinate of charge a is (Ea, 6a’ Ea) in the molecular

axis system. The relationship between and the multipole moments

£

QS of equations (12.1-18(a)) of [2] is

1
4 (D =l @ ult 2

i e Qi I . (2.15)

These can be related to the total charge, dipole moment and
quadrupole moment using (12.1.16), (12.1.22)-(12.1.24) of [2]. For

example 62 = q is the net charge on the molecule; and if the

molecule has a dipole moment, u , along the z—axis; 6? =

The symmetries discussed in section 2.2 give us information

mnl (r) .

about the coefficients u For dipoles, linear quadrupoles

or any axisymmetric molecule, y = vy =0 . For molecules with Coy
symmetry such as water and tetrahedral quadrupoles, we need only
U, v=-2, 0, 2 and

mnf (

u ) = mn g

- Uls vy (r) . (2.16)

If we are dealing with a linear quadrupole, the only non-zero
multipole moment in (2.12) are 62 = q the net charge, ag = u the
dipole moment and 6% = @ = - 0 the linear quadrupole moment

zz L .
lh+&rachen§
(cf 1-9). Explicit expressions for the multipole#@re
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charge—charge

U..=a %0 000 (Q1:923£> r--l = q2 r ' ,  (2.17)
charge—dipole

Uep = 3 /* qu @00011(Q1,Q2,£) o , (2.18)
dipole-dipole

Upp = ~ 307"y 000112 (w1,82,1) T (2.19)
charge-quadrupole

_ s/ 22 o3

UCQL =5 a8 990 °%2(w1,w2,p) ¢ , (2.20)
dipole—quadrupole

UDQL -~ 10s5/* ug 9q!23 (w1,02,5) o , (2.21)

quadrupole—qﬁadrupole

1/2 A -5
= 3¢70) / 0 2 99022 (w1,92,)  , (2.22)

UQLQL
In (2.18) and (2.20) the position vector r is directed towards the
higher multipole. We note that for this ion—-dipole-linear quadrupole
system the molecules have axial symmetry so we always have
p=0=v.
If instead of a linear quadrupole, the charge distribution has a

tetrahedral quadrupole

o = |0 -9 0 (2.23)
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the non-zero multipole moments are Qg = q, 6? = y and

- -172
12 = ao” N g - )

1/2
b (2.24)

Consequently the charge-charge, charge-dipole and dipole-dipole
interactions for this case is the same as that given by (2.17) -

(2.19). Interactions involving the tetrahedral quadrupole are of the

form

charge-quadrupole

/2 022 -2
UCQT = (10/3) © q0, ¢°°%(w,w,n) r  ,  (2.25)
dipole—quadrupole
1/2 ~ b
UDQT = -70 Moy 8123(w;,wo,1) T , (2.26)
quadrupole—quadrupole
. 172 2 - =5
Uoq. = 2C70) / op 02%% (w10, * (2.27)
T°T
with
022 022 022
o = 05_o + 9po R (2.28)
123 123 123
] = @0_2 + @02 , (2.29)
224 224 224 224 224

® z ¢y + 0 5, + 0y 5 + 0 5 o . (2.30)



38

Thus by comparing (2.20)-(2.22) with (2.25)-(2.27) we see that the
potentials involving the tetrahedral quadrupole can be obtained from
those for the linear quadrupole by the substitution
2\ Y
GL > (:'_3-) 29T ’

2.31
‘1700 mnl - ‘Dmnl . ( )

2.4 Ornstein-Zernike

As yet, the method of calculating the correlation function from
the interaction energy has not been described. In this thesis, this
will be done using integral equation techniques. The development of
the integral equation techniques is not given here, but may be found
in any of the books on the subject [10-12]. For a potential of the

form (2.10) it is found that

h(1,2) = c(1,2) + [ o(3) c(1,3) h(3,2) d3/gr? (2.32)

and
#n(l + h(1,2)) = h(1,2) - e(1,2) - B u(1,2) + B(1,2)

B = 1/kT (2.33)

Here h (1,2) (= g(1,2) = 1) is called the indirect correlation
function; ¢(1,2) the direct correlation function and B(l1,2) the sum

of the bridge diagrams. Both c¢ and B are defined by the sum of
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certain integrals. Equation (2.32) is called the Ornstein-Zernike
(0Z) equation and (2.33) its closure. For hard particles these need
to be supplemented by the equation

h(1,2) = -1 (2.34)

for all separations and orientations in which particles 1 and 2

overlap. For hard spheres of diameter R this becomes
h(1,2) = -1 for r <R . (2.35)

There are a number of well known approximations to the closure

(2.33).
(1) Hypernetted Chain Approximation (HNC):
B(1,2) =0 (2.36)
or
#n(1 + h(1,2)) = h(1,2) - c(1,2) - Bu(l,2) (2.37)

(ii) Percus Yevick (PY):

c(1,2) ==(1 = exp(Bu (1,2)) (1 +h (1,2)) (2.38)
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(iii) Mean Spherical Approximation (MSA):

c(1,2) = - Bu(1,2) (2.39)

The MSA and PY closures may be regarded as linearised forms of the

HNC .

2.5 Correlation functions in an isotropic system

For an isotropic system the correlation functions (g,h,c) will
have the same symmetries as the potential. By appealing to
translational and rotational invariance of the the bulk fluid, we can

use the following expansion
_ mnd mn / >
£(1,2) = ¢ fuv (r) QUV (QI’QZ’E) (2.40)

where £ = g,h,c. For axisymmetric potentials, only f:gl (r) are

non—-zero, whereas in molecules withCzv symmetry, u=v =- 2,0,2
and
mnf mnf
= . 2.41
fuv (r) £, ey (r) ( )

For molecules with tetrahedral symmetry (e.g. tetrahedral

quadrupoles) there is a further symmetry: £(1,2) is invariant under
the rotation of both molecules By m/2 about the z-axis of the
molecular frame. For tetrahedral quadrupoles, this is equivalent to
reversing the sign of each charge. This symmetry implies

(u+ v) ==4, 0, +4 ., The only coefficients in (2.40) to survive
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mnl mnl

are fOo (r) and fi 2+ 2 (r) « Thus, symmetry can reduce the

number of coefficients which we need to solve. The problem is to

. . . . mnl
write the 0-Z equation and associated closures in terms of £ (r)
and solve for these functions. The 0-Z equation takes the form of a

convolution of the variables r; - rp, rp - r3, r3— r; ; so that by

taking the three dimensional Fourier transforms it can be written as

R(1,2) = &1,2) +—15 [ dgg €(1,3) p £(3,2) (2.42)
8
where
~ ~mn £ mn £ ~
h(1,2) = z h (k) o (wy, Wy, k) (2.43)
uv uv ~ ~
m,n, L
v
~mn £ L e 2 mnl
huv (x) = 4mi” [ drr i, (kr) h (r) (2.44)
o

and jz(kr) is a spherical Bessel function of order % (see Appendix
2.4), There is also a similar set of transformations for c. We can
construct a multiplication table for the angular convolution in

(2.24) using the result

1 mn £ “y m'n'R' ~
— [ dus o (@1 w3, k) @ (w3, w2, k)
8w

mntn' (ZL + ].) ( 1' 2 ]6) {;' nl L} (2.45)

Gnm'ﬁfv'c—) 2n + 1 0 ' n

mn'L ~
A (‘;319 w3, I;(_,)

The range of the sum over L is limited by the properties. of the

Wigner 6-J symbol
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{l' L L}

m n' n
summarized in Appendix 2.3. We substitute (2.42) into (2.43) and use
(2.45) together with the orthogonality condition (see Appendix 2.1)

~ % A T.tot A
—Lr [ aw fdw [ ax ¢%32 (o1, w2, ) O™ % (w1020

(81) (DH'V'
(2.46)
. § .8 .8 .68
(2m+1) (2ntl) (2%+1) mm uu'  wv 22
to obtain
-~ Py + L} L 1
S S I O L T o b G
n'l'l"v'
1" 1' 2, 22+ 1y ~mm'1l’' ~n'nl" (2.47)
b o oad Gun) e T ) ehp T ®
o] <n

which is equivaleht to equations (2.18)-(2.21) of [5]. Following

Blum [4] we define the linear combinations (see Appendix 2-4)

0 = @ 00 ) B (2.48)
’ %

and use the properties of the 6-J symbol to get

~mn ~mn ' 1 ~mn' ~n'n
hx’uv(k) = cx,uv(k) + n?v' T T Cx,uv'(k) P hx,v'v (2.49)
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where n' > x and ‘v" < n' ., Equation (2.49) which is equivalent
to equation (2.33) of [4], is a general result which resembles the

0-7Z equation for a simple fluid mixture since all angular variables
have been removed and the functions depend only on the magnitude of
the wave vector.

The transformation in (2.48) is a generalisation of Wertheim's
choice of h' and h~ as a linear combination of hA and P for the
case of dipolar fluids [7]. For each allowed value of x, (2.49)
separates into a series of simpler equations of the usual 0-Z forms
with block matrix structure. The above equations can be generalised

in the usual way for mixtures.

2.6 Cylindrical Symmetry

The correlation functions need not always have the same
symmetries as the interaction potential. While the interaction
potential only depends on the relative positions and orientations of
the molecules, the same is not always true of the correlation
functions. Consider, for example, an 'aligned' fluid (i.e. a fluid
in which the molecules have arpreferred orientation). Two such
fluids would be
(i) a system of dipoles under the influence of an external
field E .
(ii) a nematic liquid crystal.

In (i) the dipoles tend to align parallel to E and in (ii) the

molecules tend to align parallel to the direction r . There is a

major difference between the examples. In (i) almost no particles
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lie anti-parallel to E whereas in (ii) there is no distinction

-~ ~

between r and - n .

The correlation functions of an aligned fluid depend not only on
the orientations of the molecules relative to each other, but also
their position and orientation relative to the preferred direction.
(This direction shall hereafter be referred to as the 'principal
axis'.) Thus these correlation functions still have translational
invariance but the rotational invariance has been replaced by a more
restricting condition. Whereas the interaction potential is
unaffected by the rotation of the frame of reference about any axis,
the correlation functions are generally affected by all rotations
except those about an axis parallel to the principal axis. In
Appendix 2.5 it 1is shown that the correlation functions can be
written (for cylindrically symmetric particles)

~ ~

nf - n n L
Yo (1,2, R, 8) = D0 (wp) D) (wp) D 8, 25D
measured w.r.t. a frame S, in which the z-axis is parallel to the
principle axis. This result is a simple consequence of rotating the
frame of reference about the principle axis. In the case of

rotational symmetry, the coefficient degenerates into the following

form

f (r) = £

mnl mnl (m n 1
uv 00 g v A

) = (2.52)
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where the notation on the r.h.s. is the same as eqn. (2.2).

2.7 Symmetry of dipoles in an external field

A system of dipoles under the influence of an external field

e

is an example of an 'aligned' fluid. Therefore, its correlation

functions f(1,2) (f = g,h,c) can be written
mnnf nf ~on
£(1,2) = £ £77(x) Wﬁv (w1, Wy, I, 2) .

Clearly £(1,2) remains invariant under the permutation of molecules
and so
mn 2 b mn £
h = (— h 2.53)
A = ) e (

There is another symmetry which is not so obvious. Consider the
dipoles in Fig. 2.2. The centres lie in the plane of the page (x-z
plane) and generally their axes lie out of the plane. If both

molecules are reflected about the x—-z plane

(1) i E remains constant

(1) gy * o remains constant

-

remains constant

(iii) p -

Hda
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Fig. 2.2 Two dipoles in an external Field E.

The correlation function should therefore be invariant under this

reflection. Thus

h “(r) =h__ (r) (2.54)
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2.8 0-Z equation for cylindrically symmetric systems

If it exists, the 3—-dimensional Fourier transform f of a

cylindrically invariant function f takes the form

~ ~mn { nd ~on
£= 1, (k) Tﬂ,n,(gl, W, k, 2) (2.55)
where
~mn 2 ® 2 . mn £
£ (k) = 4m(i) fo dr r j(kr) £, (r) (2.56)

In terms of this Fourier transform, the 0-Z equation for a

cylindrically symmetric system becomes

~mnf, | _ ~mnf ~m'2' “m'n:L" AN A A %
hyy (0 = ey () + T o e 7 () h ) (4 )

p=0 r'yP1r VI ~Hw 0 0
(L}
1m (2.57)
1ro1t 2 p n' p n' m'y A+
where the density
o(w) = T p P (cos®) (2.58)
p=0 P P

where 0 is the second Euler angle of w
The expression (2.57) is too complicated to be useful. It is

only for special cases where the density expansion (2.58) is simple

that these equations degenerate into useful forms. For instance, the

equations here must agree with the results. for the isotropic system
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as given by (2.47). 1In Appendix 2-6 it is shown to be true and

hﬁ:z(r) - Y (m n Z) hpni(

—uv A Beo r) (2.59)

p4

where the LHS is the coefficient of wﬁi and the RHS is the
coefficient of @:21.

Another special case is a system of totally aligned molecules.

In Appendix (2.6) it is shown that the equations (2.57) reduce to

~ &) (k) 1" 1% 242 ~1'(k) ~1"(k)
hy' T o=, 13:1" o (O 0 0) c h (22 + 1) (2.60)
where

h(1,2) = 1 h;(‘é')pz(cose)- (2.61)

L

This agrees with another derivation [13].

2.9 Summary

The angular dependence of the interaction potential and the
correlation functions anions can be contained in a set of orthogonal

functions. For all the systems described, the interaction energy can

be written
w(1,2) = £ ™0 ™y, w, B .
Y uv wv W1, ®2, L.
The coefficient depends only on the intermolecular separation and

mn ~
qu only on the orientations w;, wy and r . Similarly, the
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correlation functions £(1,2) (£ = g,h,c) can be written

L L .

£(1,2) = T £07(x) §0%w1, 9y, 1)

for an isotropic system and

A

)/ L. -
£(1,2) = 2 frﬁ: (r) ‘P]Er‘; (W1, W2, L, ,z\,)

for an aligned system.
. L mn¥
The problem is to calculate the coefficients fuv (r) from the
functions uﬁiltr) . This is done with the use of the Ornstein-
Zernike (0-Z) equation. The 0-Z equation has been written in terms

fmnl,

of v {r) in (2.49) for the bulk systems and in (2.57) for the

aligned system. There are an infinite number of coefficients
fmnl(r) and some truncation needs to be made.
The 0-Z equation is supplemented by the closure relation. Apart
from the MSA which is expected to be inaccurate, the closures are
nonlinear functions of the correlation functions and the interaction
potential and hence the orthogonal functions & and ¥ . These need
to be either expanded in the &'s and ¥'s and approximated. The
closure relation will be discussed in detail in the work on dipoles.
The symmetry properties are very useful in reducing the number

of equations. 1In particular, the work on the tetrahedral quadrupole

is simplified by its symmetry properties.
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Appendix 2.1 Wigner-D Functions

w A
The generalized spherical harmonic Dmn(g) can be written as

L

Dmbn(g) = exp(in Y) d:;;(COSB) exp(ima) (A1)

where (a,B,Y) are the Euler angles (cf. Fig. 2.1). (Al) denotes the
index-to-angle convention of [2]. Edmonds [1] has a different
convention but this makes little practical difference. dé m(cose)

can be written as a Jacobi polynomial [1] but the only properties we

need are
L bn Yy m
(1) b (W = Gizg)2Y.C8, 0 (A2)
- i‘ml—m [Eg; E giizgfkcose)

x exp(imo) (A3)

where Q?(cose) is an associated Legendre function and ¥2(8,¢) is a

spherical harmonic.

2* _ ¢ n-m &
@ b (w =" (v (A4)
3) X (w Diinl(g) = L 2L+ D) Dy (W

LMN

(A5)

(4) t X (oD (o (

6LL' L"
T+l DMN(Q) (A6)
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L
28+ 1 % 1 _
(5) 81r2 ] dw Dmn @ Dmlnl(g) - 6mm1 6nnl 6221
) 1 1 13
27 S awDy 0 (9 Dy (9 Dy (0
1, 1, 13 1; 1, 1,4
) (ml m2 m3) (nl nz n3) (A7)
£ _ £ Z
(7) D (w) = L D (w) D7, (uy) (a8)

where w; is the result of the 2 rotations Wy, W3 .

Appendix 2.2 Rotational Invariants

Relative to a frame S the potential u(l,2) can be written

mlnlll ml nl 11 ~
u(l,2) = X u (r) D (wy) D (wy) D (rR) .(B1l)
mpngl, mynply mpmg ~~!” “nang "~ Clply~
. m3n3ls
m3“313

Suppose that relative to a frame T the orientations of molecules, 1,2

and the intermolecular axis are w3, w,, P and that the rotation
S > T is given by ws . Using (A8)

m) my m)

D (wy) = D (wy) D (we) (B2)
npms ~1 my, Il'lzl)'u+ ~3 mum3 ~S
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nl ll ~
Similarly for Dnzns(gz), D1213(§) . Using the multiplication rule

(A5) on all rotations of w5 , one obtains the following equation

mynl, m)
u(l,2) = I I u (r) D (w3)
mlnlll LMF mznzlz mzml,
mznzlz DEF m3n3l3

ny 11 ~ mlv nl L I!ll nl L L 21 D
Dnzm,(g-)“) Dlzlu(‘g) x my ny M 2 nyg N’-N £, E
L 1, D
D M+ N
2L+ 1) (L 15 p) (20 + 1) Do (us) (=) (83)
Since the potential is independent of the rotation T+ - S
D=E=F=0 (B4)
m = 14 N = 13 L = 11 (B5)
By writing
mlnlll mlnlll m2 mlnlll
u = ) u (r) (B6)
monyo m3n313 —m2n212 (m3n313)
m3 n313
one finds that
mnl, minl, ~
u(l,2) = % u (r) o (w3, wy, 1) (B7)
mo n2 m2 nyp ~ ~ ~

min)ly

My 0y
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minil,
my ny

(B8)
m I'll 11

1
szu (wy) Dnzv(gz) Doy (E)

Appendix 2.3 3-J and 6-J Symbols

The Wigner 3-j and 6-j symbols are discussed and tabulated in

Rotenberg et al [8]. The useful properties of the 3—j are the

following:
313233 . .
(1) ( m1m2m3) =0 if m, > 3 for any i (c1)
J1i2is o
(2) ( mmms ) =0 unless m; + my + m3 = 0 (c2)

Ji1iais ] - (JleJn ) if (kln) is an even

(3) (

= 3
mjmoms m o permutation of (123) (c3)

_ s Ad Iy e (kin) 4s an oad ()

m I m permutation of (123)
Jitiotis 313233
T ~m}-my-mj. (€5)
ARRPAE
(4) Qmpn2m3) =0 unless 3 + i > iy > |Jk - Jz‘ (c6)

for any permutation of (kln), i.e. unless (j1j2j3) satisfy the

triangle inequality.
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(5) Orthogonality Conditions

Jidods. Ji1doisz
L (2j3+1)(m )(m )= 8 § (c7)

1M om 3 imom 3 mim}) momb

J3m3

and

Jiiads, ddadh 1

(m1m2m3 mlmzmg) = 2j3+1 6j3j§ 6m3m'3 ° (C8)

mm2
The 6~J symbols have the following properties:

Jidais

mjmpms3

(1)

is invariant under the interchange of columns and under the
interchange of any two numbers in the bottom row with the
corresponding two numbers in the top row.

313233
(2) {m1m2m3}=
tnless the triplets (j1j2j3), (m1j2m3), (m1m2j3), (j1m2m3) all
satisfy the triangle inequality (C6).

g Jitols  1idolsz 1) 1ois

(3) T (=7 ( _ _ _

{n} miny—nsg n) mong nj=nypmg
(c9)
J1d233 313233 ’
mjmomsy 111213

where S = 11+12+13+n1+n2+n3.
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Appendix 2.4 Transformations

The various transformations used in this paper and earlier works
[4-6,7] are summarized in Fig.A.? , and the relation between our
notation and that of Blum [6] is shown on the table.

We start with the real coefficient functions (f = h or c). On
Fourier transforming in three dimensions we get the transform pair

(u and v are suppressed in this appendix)

-3 ot 2
fmnl(r) = i—l% [ d k jz(kr)fan(k) )

27 o
(D.1)
; @ 2
£y = 4mil [ dr jz(kr)fmnz(r) .
(o]
fmnl(r) D2 > fxm?r)
i O Pt LI L TR 2500

\anz(r) D2 R F];n(r)

'Fig.A,Z. Transformation schemes for the coefficient functions in the
Ornstein-Zernike equation — indices (u,v) have been suppressed.

Notational difference between this work and Blum [1]

Notation of this paper Notation of [4]
hmnl(r) ﬁmnl(r)
5™ (1) 2™ (k)
2™ () ofe 1™ () ole
h (k) H (k)
h(r) o/e N (r) o/e

X X

Hiﬁ(r) o/e No equivalent

mn; e mn; o *mn 3t
H b ol s N h *“(r
X (x) X r X )
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1
We then take the linear combination of Emn (k) which simplifies the

matrix structure of the 0-Z equation.

Emn(k) -1 (- l)x (m n £) ~mn{

_ £,
2 X -x O
(D.2)
cmn Z - _yxm 1 Ay om
£%k) = 24+ 1) i -1 (X -y o) £, .
w j (kr)
“mn/, _ 1 2 J, ~mnt
£ () = 2 dk k _ijl(kr)} £ (k)
(p.3)
i j (kr) .
fmnékk) =47 f dr r2 ° mn

1j 1(kr) £ ’

{even} .

where 2 1is odd

The chief disadvantage of this method is the
need to use different transforms depending on the parity of 1. For a

dipolar fluid, this complication does not arise and Wertheim [7]
~110 ~112
introduced f£ (r) and £ (r) directly, without passing through

Fourier space. (His use of the caret is the origin of our notation

for these functions.) They are related to the original functions by

- 2
fmnl(r) = [ ds s fmnk(s) ez(s,r) ,
o
(D.4)
o 2’\
fmnl(r) = [ ds s fmnz(s) Bl(r,s) R
o
where
o j (ks)
2 .82 2 . Jo(
0,(r,s) = T [ ds k j o (kr) {

o -132(ks)
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{zzzn} . A general expression for 8 (r,s) is given in [6] and

for 2
explicit expressions for £ = 2,4 in [5].

An alternative route is to follow Baxter {9] and take a one

dimensional Fourier transform back to real space

anﬁ(r) ='%; f dk exp(- ikr) Emnl(k) ,

(D.5)
~mn f _ ° mn £
£%k) = [ dr exp(ikr) F (r) .

- 00

The advantage of this method is that the distinction between even 1

and odd 1 does not arise. These new functions are related to the

original ones by

0

2ﬂfmnz(r) =27 lf ds s fmnﬁ(s) P£ fi) s
r
P' (1)
d mnl mnf
= - E;'F (r) +'——;——— F (r)

r

1 F L
-5 | ds Py (—f;) FP %), (D.6)

r o

where Py(x) is a Legendre polynomial.

The two sets of . functions F, f are in turn related by

anz(r) =27 |f| ds {i} Emnl(s) ,
r

d (D.7)

(=, T ™ for £ 8

L

2mrf
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For analytical work (wiz. the MSA), both sets of functions (F
and f) have the necessary properties for solution by Baxter's method
[9]. For numerical work, however, the transforms from fmnl(r) back
to fmnl(r) involves only integrals whereas the transform from anl(r)
to fmnl(r) involves a differentiation. This seems to make the set

fmnl(r) preferable for numerical work.

Appendix 2.5 Cylindrical Invariants

Consider a frame S, in which the z-axis is parallel to the

principal axis. With respect to this frame, £(1,2) may be written

_ nn/f *m n 4,2
£(1,2) = % £v () Dou(gl) D (@) D_,(R)
mnl
Hv A

~

where ), Wy, R have their usual meaning. Now consider another

frame T which originates from S being rotated about the z-axis by and

-

angle o' . If w}, wh, R' , are the new orientations
a'

n P | iv
DOV( 92) = DOV( (1)2) e (E. 1)

Similarly for w), R .

Since f(1,2) should be independent of such rotations
- u+v+Ar=0 (E.2)

Appendix 2.6 Istropic System and Totally Aligned Systems

For aligned fluid, it is shown [eq. (2.57)] that
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1 1 ]
aloy = o™y + 3 T p emm'llay gminl”
v vu p=o "

n
¥m (F.1)

11" 1" 1" 2 p n' my p n' m'y | Iy
o o dlux=)@+D G o o) G o).

The system is characterised by the Legendre expansion of the density
p(w) = I p(cosb) . (F.2)
p=o P

For an isotropic system there is no preferred direction and

p =p § . (F.3)

In a totally aligned fluid

©
n

(2p+ 1) . (F.4)

(a) Isotropic System

Substituting (F3) into (Fl) and using the triangle inequality

(C6) in Appendix 2.3, we obtain

n' =m' (E5)

and
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g 1 ]
Ly = @Gy + o3 R R )
Vi vu _ RN A
p=o n'u'l
" []
o (E6)
+ 1]
patal” (1117 8y @117 4 20+ 1)(—) M
TR 0 0 O AYAT =
The substitution
~mn £ _ .,V @mn %y -mnf
SOOI o G R (F.7)
yields
-mnf -mnf ntmn' m n £
hoo = oo ¥ n§u'( ) o
' ”
1l (F.8)
1' 1" 2y -mn'1l' =n'nl" o
(o 0 o) Svn! Wy (atrn GEF D

Here the properties of the 6—J symbol have been used (See Appendix
2.3). Equation(FE8) is independent of v and u . Thus we may write
~mn¥ ~mn/.

hvu (k) = h T(k) Sv,o 6u,o . (F.9)

However

A ~

mnd " m n mnd

u v A ouv

therefore
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~ '\'ﬂln;e nz ~ PN

2 ¢ ¢, -
z (i t’\:' )\)(_)u }-lmur\; (k) ‘1’23 (91’ w2, I,E,’ ,Z\_)

£ / L ~ e
= I (I:l I:, )\)(_)u ﬁmn (k) \1}33 (,‘f_)la w2, k’ ,%)

pX ﬁmnl(k) @:ZZ(Ql, wp, R) .

Therefore ﬁmnl(k) is equivalent to ﬁzzl(k) in equation (2.47) and

equation (F8) is equivalent to (2.47).

(b) Totally Aligned System

Substituting (E3) into (Fl) and using the orthogonality

condition (C7) in Appendix 2.3, we obtain

' =0 (F.10)

Thus

n'l' 0o .
1"m’ (F.11)
~m'nl" 1' 1" 242
b (k) (0 0 0) (22 + 1)
Using the definition
~% 2
h(k) = I ﬁ‘;‘g (k) (F.12)

we obtain
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Haw =+ z o o o T ey @i

In the limit of w, = (ai, Bi, Bi) approaching (ai, 0, Bi)

n’t Ao
0%, w1, 2) ~ 8 8 P (cos)

!O b

where 6 is the angle between the z-axis of r and the z axis of z.

Therefore

-~ -~

n(1,2) = & ™% (0, wy, 1, 2)
ml M py A~ s = =
uv

~ I hmnl(r) P, (cos®)
00 4
mn/

~ T HL(r) P (cos®6)
L L
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CHAPTER 3

ISOTROPIC SYSTEMS OF DIPOLES

3.1 Introduction

Consider a system of hard or soft spheres imbedded with dipoles.
The van der Waals concept of liquids suggests for high densities, the
angle—averaged component of the pair correlation function gOOO T(r)
should resemble the pair correlation function 8xs ©F 8gg of a hard
sphere or soft sphere fluid. Figure 3.1 illustrates the resemblance
between gyo(r) and gOOO(r) for a hard sphere dipolar fluid.

Numerical schemes, which adequately describe the steric effects,
usually have little difficulty in describing gooo(r).

The main difficulty with dipoles is the description of the
orientation of dipolar particles about any particular particle. As
mentioﬁed in Chapter 1 the dipoles tend to align with local field.
The function (gllz(r) = hllz(r)) describes how closely the particles
lie in the field created by any single particle and, because of this,
is closely related to the electrostatic energy. Again, for high
densities, schemes that deal adequately with the steric effects of

the system usually give a good description of gllz(r) and hence the

energy.

t In dipolar fluids the molecular properties are cylindrically
symmetric' so lower indices are zero, and for this chapter shall be
suppressed.
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Fig. 3.1 A comparison of the correlation functions of the hard

sphere fluid, with that of a dipolar hard sphere fluid.
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110(r) = h'19r)) does cause problems.

The calculation of (g
This measures the average of the cosine between the two dipoles at a
separation r. This function is intrinsically related to the

dielectric constant. The structure and long-range nature of gllo(r)

seems to be very sensitive to the approximations used; and any

110

changes in g ~“(r) strongly affect the dielectric constant.

000 110 112
These three terms, g (r), h (r), n (r) seem to be
important in describing the system. Previous numericsischemes have

nnl's
restricted the ¢ to the subset

so that only these 3 terms are used. However, a recent computer

simulation [1] has suggested that the more appropriate subset is

000 110 112 220 222 224 022

The main problem is not whether these higher terms are needed to
describe g(1,2) accurately but whether they are needed to describe

the physical properties accurately. This will be discussed later.

3.2 Perturbations, Simulations and Integral Equations

It is not possible to give a detailed survey of the literature
on dipolar fluids, but merely an outline of the methodologies of the

most successful schemes.
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(a) Semi-Macroscopic Approach

A considerable amount of work on polar fluids has been based on
an approéch used by Bell [2] and Onsager [3]. In this scheme, a
point dipole in a spherical cavity is immersed in a cqntinuum.of the
polar fluid. The dipole exerts a field on the surrounding continuum,
which in turn exerts a 'reaction field' on the dipole. It is found

that for a permanent (non-polarisable) dipole the reaction field is

given by

1 2e-2
R=— Gewi) e 3.1

where a is the radius of the cavity, € is the dielectric constant of
the bulk fluid and p is the dipole of the particle. If the particle
is meant to be identical to the other particles in the fluid, then
the choice of a seems arbitrary. Bell chose a to be the molecular
radius but it seems that Onsager's choice of half the average
separation of the particles may be more appropriate. Neither
approach is adequate since it is assumed that the surrounding
particles resemble a continuum even at separation of one molecular
diameter. As will be seen, structure persists at large separations,

so the particle nature of the surrounding fluids needs to be used.

(b) Perturbation Schemes

The obvious way to include the effect of individual particles is

to consider the dipole-dipole interaction
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(1,2) 0 112 .
uyp =T ———-%- ® (w1, w2, R) (3.2)
T2
as a perturbation to the steric effects, the behaviour of which is
well known. The 'Pople' expansion is easy to use and quite accurate
for high densities and low dipole moments [4-9]. A more robust scheme
[10-13] is based on a perturbation about a reference system in which
the particles interact via a potential U where
-Bu(ryp) ~ 1 -Buo(rlz) - BUDDCJ’;;D

e - 5~ [ dw [dw e (3.3)
(477)

For a hard sphere

o rio <R
uo (1’.‘]_2) = { (3.4)
o rio >R,

R being the diameter of the particles. For both schemes convergence
can be enhanced by the use of Padé approximants. Nonetheless the
very nature of the scheme means that they cannot be used in cases

where the dipolar interaction is dominant.

(c) Computer Simulations

Because of the long-ranged nature of the dipole~dipole potential
there has not been the same success in simulating polar fluids as in
simulating simple fluids. There are a number of related problems

(a) The system takes much longer to reach equilibrium .
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(b) For liquids; the maximum size of the central cell that can
be simulated is about 3 diameters. Unfortuﬁately, the fluid
is still structured at that separation; so that despite the
methods using reaction field [14-17] and Ewald summation [18-
20], there is a distortion of the correlation functions.

Like Onsager, one wants the fluid to resemble a continuum at
the edge of the cavity. Indications are that a cavity of a
radius of about 10 diameters is needed to achieve this. A

recent paper [21] allows fluctuations at the edge of the

cell.

(c) The dielectric constant seems sensitive to the boundary
conditions.

(da) Integral Equations

Wertheim [22] made the first major step towards solving the 0-Z
equation for multipolar fluids when he used the MSA closure to
describe dipolar fluids. The MSA solution for quadrupolar fluids
described in Chapter 4 is similar to that for dipolar fluids. In
many respects the MSA was worse than the perturbation schemes.

A variant of the MSA that needs to be solved numerically is the
LHNC (or SSCA) introduced independently by Patey [23] and Wertheim
[24]. 1Instead of linearising the HNC closure to the extent of
obtaining the MSA, only the angular components are linearised. This
actual method of linearisation will be described in detail later.

The other approximation the QHNC [23] will also be described.
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3.3 A Mathematical Result

At low densities the correlation function g(1,2) asymptotes as

follows
g(1,2) ~ e-Bu(l,Z) as p >0 . (3.5)
Thus
W~ N, e, B exp(-8U) dup dup - 1 (3.6)

where Up, is given in (3.2). The following (more general) expression

is evaluated in Appendix 3.1:

- 000 110 110 112 112
(wy, wp, R) exp(f +f d +f ] ) (3.7)

anl _ f Qpnl

and.is found to be

-] [+

110 112 112 000
B = I T a(mdé/M)i (f + £ )i (3f ) exp(f (r)) (3.8)
M N
M=0 N=0
where in(Z) is a modified spherical Bessel function of the first kind
[25]. The coefficient a(mn//MN) is given by

Nt+mt 2

a(mng/MN) = (-) 2N+ 1) M+ 1) 2mn+ 1) 2n+1) (22 + 1)

(3.9)
srpeitInt Ay,

Selected values of a(mnl/MN) that are useful in our discussion is
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given in Appendix 3.2.

3.4 The Percus Yevick Closure

The PY closure is given by

c(1,2) = F(1,2) (1 + h(1,2)) (3.10)

where B8 = 1/kT, n =h - ¢ and

F(1,2) = exp(-fu(l,2)) -1
=z F"™Nr ) ™ (e, wp 1)) - (3.11)
mnl

anl(r12) can be calculated using the equation in the previous

section.

In principle, the PY closure can be calculated to arbitrary
accuracy. However there is a limited amount of computing time so
that only a finite number of rotational invariants can be considered.

If the subset of rotational invariants is restricted to the

spherically symmetric component, i.e. (mnl) = (000) the PY closure

becomes

000 000 000
c (ryjp2) =F (ry;p) A +n (ry2) (3.12)

00

- 0
= [exp(-Bulryp)) = 1] (1 + n (r;y) (3.13)
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where u has been defined in equation (3.3).

In other words keeping only t;e spherically symmetric component
is equivalent to solving the PY equation for a simple fluid with the
angle averaged dipole-dipole potential. In éontrast, the spherically
symmetric component of the correlation functions in the MSA or LHNC
approximation does not contain any information about the dipolar
nature of the fluid molecules. It is interesting to note that Monte
Carlo pair distribution functions calculated using u compares very
favourably with the exact angle averaged pair distribution functions.
Also because u already contains information about the dipolar part of
the pair potential, it is a more accurate reference potential for
perturbation theories [10].

Since the PY closure (3.10) is a linear relationship between c
and n it is easy to vary the size of the subset of rotational

invariants we wish to retain. To demonstrate this, we need one

additional result (Appendix 3.3)

(3.14)
= © b(MNL) @m(ggl, Wy, w3)
MNL
where the coefficient b(MNL) is
L} T
bOmL) = M+ D N+ D L+ D G PG 5y
' o om M (3.15)
(2. 1 L) 'oN
o 0o o/ |\ "
2 1' L
m m' M

in which n ' N is a Wigner 9-j symbol [32].
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The coupling matrix which relates the various components of c
and n can now be evaluated with the aid of (3.7)-(3.11), (3.14) and
(3.15). If we choose to represent c¢ and N in terms of the subset S3,

the PY closure condition will have the form

000 000 110/9 11245 000
c (F F F 1+ n \
110 110 11 12 110 ,
c = |F G G n (3.16)
112 112 21 22 112
c F G G n
11 000 -3/2 220
G =TF + 2 x5 F (3.17)
12 1/2 3 222 172 2 202
G =" /5)F -2 " /5)F (3.18)
21 12
G =6 /5 (3.19)
22 000 -5/2 220 5 12 222
G =T + 5 F + (2/5 x 7) F

(3.20)
172 224

3.5 1/2 022
+3(2 /5 x7) F + (22 x 3 /35) F

when a subset larger than S3 is required to represent ¢ and N, a new
coupling matrix analogous to that in (3.16) can be computed in a
similar manner. The new subset must, of course be closed under the

0Z angular convolution.
The PY closure gives the correct low density form

h(1,2) » exp(-Bu(1,2)) - 1

even when truncated as described. Furthermore it will contain the
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correct contribution from the second dielectric virial coefficient.

-«

3.5 The Hypernetted Chain Approximation

The HNC closure is given by

1 + h(1,2) = exp[-Bu(1,2) + h(1,2) - c(1,2)] (3.21)

and the truncation scheme for this equation is as follows. If we
choose to represent ¢ and h in terms of a finite subset of rotational
invariants, S say, we shall only retain the coefficients belonging to
the same subset in an invariant expansion of the right hand size of

(3.21). Using the shorthand n = h - c we write the right hand side
of (3.21) as

E(1,2) = exp[-8u(1,2) + I ™ (ry1) o™ (uy,uw,R)] (3.22)
S
= T Emnl(r]_z) (I’mnl (Ql,gz,&) - (3-23)
S

The subscript S under the summation sign denotes a sum over only the
subset S of chosen rotational invariants. 1In general, an infinite
number of terms is needed to represent even a finite sum in the
exponential function in (3.22), but our truncation scheme only
retains those invariants in (3.23), that are members of the
originally chosen subset. Clearly, the rotational invariants
contained in the subset S must form a closed set under the 0Z angular

convolution. If we only keep the spherically symmetric components of
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¢ and h the truncated HNC closure becomes

000 - 000 000
1 +h (r12) = exp[-Bu(rlz) + h (rlz) - c (rlz)] (3.24)

where u is the angle averaged potential. Analagous to the similar
PY result, this scheme corresponds to the HNC approximation for a
simple fluid interacting with the angle averaged potential, u .

The next obvious subset to consider is S3. In this case the HNC

closure is

000 110 110 112 112
1 +nh + h (0] + h ]
(3.25)
000 000 110 110 112 112 112
= expl[(n - Bu ) +n ® + (n - Bu )% ]
000 110 110 112 112
= Egj (rlz) + E3 (r12) o] + E3 (r12) (o} . (3.26)
Thus the truncated HNC closure becomes
000 000
1 +h (rlz) = Eg3 (rlz) ,
110 110
h (ry2) = E3 (rip) , (3.27)
112 112
h o (ry12) = E3 (r1p) ,

000 110 112
where the functions E3 , E3 , E3 may be obtained using (3.7)-

(3.9). This truncation scheme provides a non-linear coupling between
the three angular components of the correlation function and it is

easy to see that in the low density limit (n > 0) the various



76

mnl

components h will have the correct asymptotic behaviour.

The LHNC approximation is equivalent to linearizing the HNC

closure with respect to the (110) and (112) components, that is,

000 110 110 112 112 000 000
1+h + h ) + h ) = expln - Bu ]
(3.28)
110 110 112 112 112
ft+n @& +(n -8 Yo }.
Thus by equating coefficients in (3.28) we get
000 000 000
1+h = exp(n =-Bu ) ,
110 000 110
h = (1+h )n s (3.29)
112 110 112 112
h = (l+h ) (n - Bu )

which defines the LHNC approximation. The result in (3.29) can also
be obtained from a linearization of (3.27) with respect to the (110)
and (112) components which can be easily verified by using

(3.7) (3.9), and the known small argument expressions of the

modified Bessel functioms, in(x) [25].

The QHNC approximation is derived in a slightly different manner

[23]. Equation (3.25) is rewritten as

000 110 110 112 112 000 000
n(l + h + h ® + h & ) = (n - Bu )

(3.30)
110 110 112 112 112

+n ¢ + (n - Bu ) O .
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The left hand side is then expanded to quadratic order in the (110)
and (112) components, but only those quadratic terms that contribute

to the (000) component are retained. In the present notation, the

QHUNC approximation reads

000 110 110 112 112 000 000
1+ h + h ) + h ) = expl(n - Bu )
110 5 112 112 o 110 110
+ (n )7/18 + (n - Bu  )7/90] (1 + n o) (3.31)
112 112 112
+ (n - Bu )& ) .

It is now clear that by truncating the HNC closure in such a way
as to include all non-linear contributions to the subset Sy we can
recover the expected low density behaviour of the correlation
functions, and in particular include the correct contribution from
the second dielectric virial coefficient to the dielectric constant.

The obvious price is the more complicated coupling conditions between

the various angular components.

3.6 - The work of Gaylor, Isbister, Watts

Recently, another numeric scheme has emerged, which has the
correct low density limit, yet approaches the LHNC at high densities.
Gaylor et al [26] have developed the scheme for soft spheres. In

terms of y(1,2) where
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y(1,2) = exp(Bu(1,2)) (1 + h(1,2)) (3.32)

the HNC can be written

c(1,2) = (1 + F(1,2)) y(1,2) - 1 - log(y(1,2)) (3.33)

where F(1,2) is defined in (3.11). Linearising the final term in the

manner of Patey [23] and equating coefficients yields the final

equations
000 000 000 000 1 110 110
c =(1+F )y ~1=-1logy +3F y
(3.34)
112 112
+E v
45
110 110 000 110 000 i
¢ =F y +y [F  -—5g] (3.35)
y
112 112 000 112 000 1
c =F y +y [F - —ool - (3.36)
y

15
Apart from the log term in (3.34) this g a truncated form of the PY

closure.

3.7 Lado's scheme

An important facet of the LHNC and the QHNC closures is the use
of a numeric scheme developed by Lado [27]. As aiready stated, it is
important to model steric effects properly and yet is is well known

that the HNC does not realistically model repulsive potentials. To
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overcome this, the correlation functions f(= h,c) are separated into

2 components

£(1,2) = fHS(1,2) + A £(1,2). (3.37)

The HNC would then take the form

bh = h (exp(th -~ Ac - SUDD) -1). (3.38)

Instead of using the HNC expression for hhs’ a better approximation
is used. Both Patey and ourselves use the Verlet-Weis [28]
approximation, although a computer simulation can also be used. This

method is not only applicable to hard spheres but to soft spheres and

bodies of general shape.

3.8 Results: Truncated HNC closure

We give some numerical results for a hard sphere dipolar fluid,
calculated using the truncated HNC (THNC) closure as defined by
(3.25) - (3.27). The numerical method is similar to that of Patey
[23] in which the 0Z equation was solved by iteration using the Fast
Fourier Transform method. The set of equations (2.43-49) are solved

together with the THNC closure.

(i) Correlation functions

In figures 3.2 and 3.3 the THNC gOOO are shown. The difference

between this and that obtained by the QHNC is comparable with
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0

Fig. 3.2 The component gs(=g 00) of the pair correlation function

* %2
at p =0.2, u =2.75

r/R

Fig. 3.3 As in Fig. 3.2 but p¥=0.6
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numerical uncertainties. From figure 3.5 we see that the THNC

A .| 110
solution for h = -3 Azh is consistently higher than the QHNC

values. This means that the THNC would predict a higher wvalue for

the dielectric constant.

r/R

110

Fig. 3.4 The component hA(==—h

. * *9
function p =0.6, 4 =2.75

/3%) of the pair correlation

D .l/ 112
The component ~h~ = (30) 2y is given in figures 3.5 and 3.6.

The difference between the THNC and QHNC occurs close to contact and

becomes negligible at high densities.
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6___ 6hD B ] Fig. 3.5 The componen
I 7 hy = (0'2/(30)%) of the

pair correlation functi

at p¥=0.2, u* =2.75 |

_ Fig. 3.6 As for
: Fig. 3.5 but p*=0.6.

T [TRRRRECE IEVE Do)

£ R L LR
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(ii) Energy

The internal energy, U is given by

o]

2 -1 112
U/NKT = =(4mpn /3kT) [ drr h (r) s (3.39a)
R
2 ~112
= (4mpu /9kT) h (1), r<R , (3.39b)
2 ~112 ~112
= (4mpu /9kT)(n (r) +c¢ (r)), r<R , (3.39¢)
where (f = h,c or n)
~112 112 « -1 112
f (o)=f (r)-3 [ de' ' " £ (") . (3.40)
r

Equation (3.39c¢) was used to evaluate U since the right—hand side is
a quantity which occurs naturally in the iterative solution of the 0Z
equation. The results are given in table 3.l1. There is almost no
difference between the THNC and QHNC closures.

(iii) Dielectric constant

The dielectric constant, € is calculated from the Kirkwood

formula

(e - 1322s+ D _ ve , (3.41)

where

2 x k2
y = 4mpu /9KT = 4mp u /9 . (3.42)




Table 3.1
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The internal energy (-U/NkT) of a hard sphere dipolar

*
fluid for various reduced densities, p and dipole

*
moments, U .

o
*Z
u 0.2 0.4 0.6
1.0 0.290 0.540 0.778 QHNC
0.286 0.542 0.777 THNC
2.0 1.14 1.78 2,27 QHNC
1.12 1.77 2,28 THNC
2.75 2.16 2.99 3.62 QHNC
2.13 3.00 3.64 THNC
and the Kirkwood g-factor is
® 2 110
g = 1+ np/3) [ drr n (xr) , (3.43a)
R
~110
= 1+ (p/3) h (o) y (3.43b)
Lo 1 o0y 1
= 1+ (p/3) x§-1 (X . O)hx (o) (3.43¢)
~ 11
1 c
= 1 + (9/3) z (l 1 g X TIT (3.43(1)
x=-1 X X 1 - (0/3)cx (o)
The quantities in (3.43d) occur naturally in the iterative solution
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and when tested on the MSA, it was found to be more accurate than
evaluating the integral in (3.43a).

Values of the dielectric constant aré given in table 3.2. The
larger values of € predicted by the THNC reflects the larger

magnitude of the hllo(r) components of the total correlation

function.
Table 3.2 The dielectric constant, € of a hard sphere dipolar
%
fluid for various reduced densities, p and dipole
%
moments, U .
*
p
*Z
n 0.2 0.4 0.6
1.0 2.07 3.63 5.84 QHNC
2.09 3.71 6.03 THNC
2.0 3.62 8.28 16.9 QHNC
3.93 9.39 19.2 THNC
2.75 5.16 13.5 32.4 QHNC
6.28 16.9 39.3 THNC
3.9 Discussion

We have proposed a method for studying the PY and HNC
approximations for dipolar fluids using a truncated set of rotational
invariants to represent the pair correlation functions. For a given

subset of rotational invariants, this method includes all non-linear
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effects that arise from the closure condition. As a result, all the
correlation functions become exact in the low density limit, and, in
particular, the contributions to the dielectric constant from the
second dielectric virial coefficient are included. By a suitable
linearization procedure our method reduces to the LHNC approximation.
For the PY approximation, it is also particularly easy to vary the
size of the subset of rotational invariants to consider effects due
to subset size.

Preliminary numerical results given here using the THNC based on
the subset S5 suggest that in the range of densities and dipole

moments considered, properties such as the internal energy, gOOO

h112

and
are not particularly sensitive to the non-linear terms, as one
would expect. There is little difference between the QHNC and THNC
values for these quantities. However, the non-linear contributions
do appear to make a difference for the dielectric constant, € and
h110

. This last observation thus raises the possibility that

rotational invariants outside the subset S; may also affect ¢ and
hllo. The next set of low index invariants which is closed with the

0Z angular convolution is

110 112 202 220 222 224
, e , e ,0 } . (3.44)

Patey et al, [29] had used a similar subset by omitting the (202)

projection to study a dipolar fluid. The (202) term was not included
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because they originally considered a hard sphere-dipole-linear
quadrupole fluid and took the subset of rotational invariants that
arises in the Mean Spherical Approximation (MSA). It is difficult to
establish a priori why the (202) term (which arises from the product
@110®112 ) needed to be included, although its inclusion may explain

why the results for a pure dipolar fluid seem to deteriorate when the

MSA dipole-linear quadrupole subset is used.
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Appendix 3.1 Expansion of the Boltzmann Factor and Related Formulae.

We give details of the expansion formula for the Boltzmann

factor

11 11

17. 110 0 - 1/ 112
= exp[—3é? (r)e  (wy,wy,1) +»(120)4% (r)o

(o]
)

2 ~
(w1,w2,0)]  (A.1)

I anl(r) ¢mnl(g1,gz,£) . (A.2)
nnl
The coefficients anl are calculated using a technique that is a

generalization of that used by White [30]. Two steps are involved.

The first is to rewrite B as

110 112
B = explf (r) cosb, + £ (r) (cosby + 3cosa)] (A.3)

where 6, and o will be defined later. The second step is to use the’

identity [8]

o

exp(z cos®) = I (2n+ 1) i (z) P (cos®) (A.4)
n=0 n n
where in(z) is a modified spherical Bessel function and Pn(cose) a
Legendre Polynomial. This will produce a linear combination of terms
of the form Pn(cosez) Pn(cosa) which can then be manipulated to the

required form in (A2). The details are as follows.
A co-ordinate system is chosen so that the z-axis is in the

direction of il(gl) so that EZ(QZ) and r are given by
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Ho = (62, ¢2)  (A.S)

>

= (8, ¢) (A.6)

where 0, ¢ are the polar and azimuthal angles respectively. The

following relations can then be obtained

110

1/, ~ ~ 1
) = - f Uy ¢ My = - 3/2 cos By, (A.7)
112 J_/ ~ ~ A~ ~ ~ ~
e = =(30) 2 [(m w2 - 3w (gD ]
(A.8)
Y
(120) 2(c0392 + 3 cosa)
where
cosa = cosf, cos26 + sin®, sin26 cos¢, . (A.9)
and hence (A.3) follows.
Now using (A.4), we can write (A.3) as
° = 112 110 112
B = I T (2n+l1)(2mt+1)i (3f Yi (£ +f )P_(cos67)P (cosa). (A.10)
n=0 m=0 n " n n

From (A.9) and the addition theorem for Legendre Polynomials [31] we

have



n (n - |v])! v v v,
Pn(cosa) V=En YR Pn(cosez)Pn(cosez) e

n

- V"|V| n n
v=fn (- 1) D_ (0,20,0)D_ (¢2,6,0) .

Using the identities (Appendix 2.1)

n
n _ n n
D, ,(0,20,0) = £ D (0,6,0) D} (0,6,0)
p=-n
n n
D, ,(0,8,0) = D_ (0,6,0)

and the product formula (Appendix 2.1)

2n
n n n n 2
DT (0,6,0) D" (0,8,0) = T £ (2+ 1) ( )
Ao uv 1=0 w',v' Ay ou
n n £ n
x (o y yr) Dpryr(0,8,0)
we obtain
n 2n o n n 2yn n 2y 4L
D, ,(0,28,0) = zfo uf-n (zz+1)(_u " O)(O v _V)DOV(O,G,O)

after invoking some standard properties of the 3-j symbols.
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(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

From

(A.12) we can readily obtain the result for the product of the two

Legendre polynomials in (A.10)
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2n n n n 2yn n £
Pn(cosa)Pm(cosez) = E Z- (2%+1)(_u y 0)(0 v -v)
=0 u,v=-n

(A.16)

L n
X DOV(O’G’O)DOV( ¢2,62,0)Pm(00592) .

To complete the derivation, we require two further results (Appendix

2.1)

n . 1} m
DOV( ¢2, ez,O)Pm(COS 62) = DOV( ¢2, 92,0)])00(0 N 62,0)

(A.17)
_ n m qym m ¢ q
czl: (2q+1) (0 0 0) (V O—V) Do_v(¢2a62’0)
n n n' m' n m ptm'+ntn'
= (-1) I (2r+l)
(0 P —p) (p P 0) ¢ r(
(A.18)
m'r n\ M r mym r m
% (—p 0 p) (0 0 0) {m' n n'}
to give the final result
L o 2n n n .
B = I 3 I I I X £ (-0 (2nt+1)
m=0 n=0 =0 q p==n v=-n r
_ 110 112 112 m n qym n 2
x (2q)(2&+1)(2e+l) 1 (F +E )i (3f )(0 0 0)(_u y O)
n r my m Tr m rq ,~ ° -
G0 ool o T G n . (A.19)
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Next we outline the derivation of (3.15). By choosing a co-
ordinate system in which the z-axis is parallel to the vector w3 we

can write the product of two rotational invariants as [9]

nf m'n'l’'
(wy,wp,w3) @ (w1, wy,w3)

[}

1
z (—s s 0)(—tt 0) (1)D (wl)D (w?_)D (QZ)

s,t
= " n m £ n' m"v/n n' n"yv,m' n' 1'
i SEt m" :i u (Zm™+1) (2o H)( S 0)(0 0 O )(O 0 0 )(_t t o
’ ’ b

o™ O 2 2T (e DY (wp) (A.20)

But with the aid of the identity [32]

£ m nyl'm n'yvym m'" m"yvn n' n"
z (0 s —s)(O t —t)(s t u )(—s -t —u)

] " ’" " " m m
= 3 (22"+1)((’)L é é)(é T MY ia n (A.21)
1" bl A
(A.20) can be written as
1 \] 1
2,008 M (on, 00,09 = I (21"+1)(2m"+1)(2n"+1)

1"m"n" stu

u -u

SR SIS S

op B
—p B
b—:::i_B

X

(ml) D (wz)

1"2" “(21"+1)(2m"+1)(2n"+1)(Ig o 06 o
mnn
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m m' m"” "1
x n n' n"} @ (wy,wy,w3) (A.22)
£ 11"

Appendix 3.2 Expressions for the coefficient a(MNL/mn) in (3.8)

We give explicit expressions for some of the coefficients

a (MNL/mn) (see equation (2.6)) which are useful in deriving results

given in the text.

The following results for the 3-j symbols are needed:-

0 , 2 odd
n n £
(n + P! /o
22 2 (2n - ! L =0.2.4.6
(- 1 (2n + 2+ 1)! ’ T
5!
nt2 n 22 _ 3(n+2)(n+l)
Co o o) 503045) (2033 (20F 1) (8.2)
n n 2.2 _ (n+1)n
b o o) = TEamDEED (8.3)
n-2 n 22 _ 3n(n-1)
(o 0 0) ~ 2(2n+1)(2n~-1)(2n-3) ° (B.4)

The required expressions for. the 6~j symbols are given in [33].

The expressions for the coefficients a(MNL/mn) are:
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a(000 ‘ mn)

= (-1) & (B.5)
m,n
D™ 332 e
a(110|mn) = 5 (D) 8y nm1 ¥ O p) (B.6)
(=™ o1/2 43/2 (12 o1y
a(112|mn) = (2n+1) (2m+l) Gt ¥ 0m? BT
4220 {mm) - (-1)"3+5°" % 2mt1) (wtn) (bnt2)
23 (a3 ) (mn+1 ) (mbn=1)
(B.8)
(s +25 4+
x m,n+2 3 m,n m,n-2
2222 |y = L 2172 3.55/2 (2041) 2utDn(otl)
721 Cekt3) (ot 1) (arn=1) 1 2
(B.9)
CICEE DL (s () 8yt (mD@mD) 8 )
a(224|mn) - (—1)n 21/2-32,53€;+2)! (2m+1)(2n+l)
712 ooyt [(abnt3) (ko1 ) (ko 1) ] 2
(8.10)
(Gm,n+2 + a4 6m,n + Gm,n—Z)
(D" 2.53/2 (1)
a(202|mn) = (3mt3y (2msL) oo | (B.11)

where Gm n is the Kronecker delta function.
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CHAPTER 4

ION, DIPOLE AND QUADRUPOLE MIXTURE

4,1 Introduction

A civilised model of an electrolyte is one in which the
molecular nature of both the ions and solvent are treated on an equal
basis. We take the solvent molecules to be hard spheres containing a
point dipole and tetrahedral quadrupole, and the ions are charged
hard spheres. This very simple model may be regarded as a fairly
unsophisticated representation of an aqueous electrolyte. If the
diameter of the ions and solvent molecules are the same, R say, then
the model is said to be a Restricted Civilised Model.

As explained in Chapter 2, the correlation functions £
describing this system, can be expanded using the set of orthogonal
functions @33 . The coefficients fﬁ:l(r) are calculated using the
0-Z equation with some closure. In this chapter, it is showﬁ that if
the closures chosen are the Mean Spherical Approximation (MSA) or
Linearised Hypernetted Chain Approximation (LHNC), the techniques
used to calculate the coefficients in the linear quadrupole system
[23] can be simply modified to describe the tetrahedral quadrupole
system.

The symmetry properties will also be used to simply modify the

perturbation techniques. The perturbation techniques, being easier to
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use, allow us to calculate properties such as the critical
temperature without the large amount of calculation associated with
integral equation methods.

Suppose there is a mixture of ionic species, of number density

. The

Py i=1,2,...,n and one solvent species of number density DS

correlation functions are described using a matrix £(= g, h, g) in
which the (i,j) component is the correlation function fij’ between
species i and j. The density is described using a matrix p with
elements piéij with ey being the density of the ith species.

In Chapter 2, it was shown that as a consequence of the symmetry

of the interaction potential the coefficients of the correlation

functions £(= g, h, ¢) have the simple form

mnl _ ml
Lv (P = £,.(0) (4.1a)
p+v = =40, 4 (4.1b)
u, v even . (4.1¢)

If we only retain those rotational invariants occurring in the
interaction potential or those needed to form a closed set under 0-Z

closure then the correlation functions g can be written

~

mnl
¢ (wy, wy, )

where S consists of the set of rotational invariants
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000 000

[0} = @00 (4.23.)
101 011 101
202 022 202 202

] (= (] ) = @_20 + @20 (4.2(’.‘.)
123 213 123 123

] (= -9 ) = @0_2 + @02 (4.2(1)
224 224 224 224 224

] = @22 + @_22 + @2__2 + @_2_2 (4.28)
222 222 222 222 222

[0} = @22 + @_22 + @2_2 + @_2_2 (4.2f)
220 220 220 220 220

(] = @22 + @_22 + (1)2_2 + @_22 (A.Zg)
121 211 121 121

@ (=-90 ) =235, + % _, . (4.2h)

Here

mnl mnl
£ = £
(4.3)
_ (0 m,n = 0,1
BV = LtZ m,n =2

1
The problem is to calculate the coefficients gmn (r) . To do this,

the equations of section 2.5 need to be rewritten for mixtures.
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4,2 0-Z equation

For a multicomponent mixture the 0-Z equation has the form
h(1,2) = ¢(1,2) + [d3 ¢(1,3) p(3) 1(3,2) . (4.4)

Generalising the techniques of section 2.5 to mixtures, (4.4) can be

written as

oo |

1 ~mn
SO IR I oy (k)
b4 bl

C
R e

(4.5)

The definition of the transforms is a straightforward generalisation
of those for the single component fluid.

For the ion-dipole-tetrahedral quadrupole mixture, symmetry
allows the lower indices u,v to be suppressed in the style of (4.3).
The set S of rotational invariants [eqn. (4.2)] is used so only the
values m,n can take are 0,1,2.

For x =2, (4.5) becomes

22 22 22 22

hy (k) = cp (k) + q ¢y (k) hy (k)
T
20 (4.6)
where p E-—§§
QT L4

This equation which only describes quadrupole~quadrupole interactions
between the solvent molecules has the appearance of an Ornstein-

Zernike equation for a one-component fluid of density op

Qr
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For x =1, (4.5) becomes

22 22 22 ~22
hy (k) = c1 (k) + pQ c1 (k) h; (k)
T
(4.7a)
~21 ~12
+ pD ci (k) hl (k)
~21 21 22 ~21
h; (k) = ¢y (k) + Py C1 (k) hy; (k)
T
(4.7b)
~21 ~11
+ pD ] (k) h]_ (k)
~11 ~11 ~12 ~21
h1 (k) = (] (k) + pQ c1 (k) h]_ (k)
T
. (4.7¢)
~11 ~1l1
+ pD c1 (k) h; (k)
where
)
= -5
pD = 3 . (4-8)

These equations describe dipole-dipole, dipole—quadrupole and
quadrupole-quadrupole interactions between solvent molecules, and
take the form of the 0-Z equation for a 2-component mixture where the
density of the components are pQT and pD N

x = 0 are similar but too cumbersome to list explicity. The

The equations for

equations for an ion-dipole-linear quadrupole system are identical

provided pQ is replaced by p, =—.
T

Q 3
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Finally we write the closures for the system. The exact hard

-
core condition implies

000
h () =-1, r<R
mnl (4.9)
h "(r) =0 , r <R all other (mnl) .
In the MSA we have
cmnl(r) = - Bumnl(r) , T>R (4.10)
and in the LHNC
000 000 000 000
¢ (r)=Bu (r)+h () - a(l +h (r)) r>R (4.11)
and for (mnl) # (000)
) 000
™ry = - g™ ) + () W) > R. (4.12)
1+h (r)

These equations are the same as for the linear quadrupole. The only
feature distinguishing the two systems is the expression used for

mnl
i . However if the term QT in the expressions for

224 123 022 Y,
u ,u and u  (2.25-2.27) is replaced by (3/2)29L , the
equations for both systems are identical. Consequently existing
programs which solve the LHNC equations for an ion-dipole-linear

quadrupole mixture only require the above minor modification to

handle an ion—-dipole-tetrahedral quadrupole mixture.
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4,3 Tetrahedral Quadrupole Fluid in the MSA

S

As an example of the application of the results of the previous
section we consider the MSA solution for a fluid consisting of hard
spheres (diameter R, density p ) with embedded point tetrahedral

quadrupoles of magnitude ©, . The solution of the Ornstein-Zernike

T
equation for this problem can be written in terms of four rotational
000 220 222 224
invariants: ¢ , @ , @ and ¢ . Hence only four independent
000 221

functions of r are needed: h (r) and h (r), 1 =0,2,4 . From

(4.5) we see that one of these functions obeys the equation (in k-

space) x = 0, m=n=0

~000 ~000 ~000 ~000

h (k) =c (k) +pc (k) h (k) (4.13)
~000 00
h (k) = hg (k) (4.14a)
~000 ~00
¢ (k) =cg (K. (4.14Y)

The boundary conditions for (4.13) are

000

h (r)=-1 , r<R

000 (4.15)
c (r)

]
o

so that (4.13) is just the Percus—Yevick equation for hard spheres,

which has a known solution [1].

222

For the remaining three functions huv (r), £ =0,2,4, we have

from (4.5)
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~ ~ 20 ~ + _ ~
h (k) =c (k) +25 ¢ (k) h (k =0,1,2, 4.16
L0 =S 0 + 28 w0 R, x (4.16)
where
~ 2 2 224
b = DXz “ ‘ﬁ) bk, (4.17)
X 1=0,2,4 XX

with a similar definition for Ex(k) . The boundary conditions for

(4.16)

hzzg(r) =0, r<R, 1=0,2,4, (4.18)
220 222

c (r)=c¢c (r)=0, r > R, (4.19)
224 1 -5

c (r) =-2(70)"2 BQTZ r , r>R. (4.20)

Equations (4.13) and (4.16) can be solved by Baxter's Wiener-

Hopf factorization method [2] in which gx(k) with well defined

analytic properties
~ ~ ~ 20 ~ ~
k) = k) + -k) - — k -k), 4,21)
cx( ) qX( ) qX( ) -3 qX( ) qX( ) (
Bo= a0 +22 8 ) B ). (4.22)
X 5 7 X

X

We proceed as in [3] by defining one dimensional inverse FX(r)



Y

dk exp(-ikr) Ex(k) (f = h, ¢ or q)

8— 8

=L

so that (4.21) and (4.22) become

= _2p
¢ (r) = Q.(r) -5 ({ Q (r + s) Q_X(s) ds,
Hx(r) = Qx(r) ='%B f QX(S) Hx(r - s) ds.

From Appendix 2.4 and (4.23) it follows that (F = H,C or Q)

@ 2
2 2 2 r
F (r) = 2n(-1)X pX ¢ _ ) [ dsspP, ()£ (s),
X 1=0,2,6 XX 07 || s

where PZ(X) is a Legendre polynomial of degree £ .
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(4.23)

(4.24)

(4.25)

(4.26)

The large r behaviour of QX(r) can be found from the boundary

conditions on Cx(r) using (4.18) - (4.20), however, for an ion-

dipole-quadrupole mixture the asymptotic behaviour of Qx(r) at large

r can be obtained by considering the singularity at k = 0 in (4.21).

For a tetrahedral quadrupolar fluid the only contribution to

225y,

for r > R is from ¢ But since

we have from (4.19), (4.20) and (4.26)

Cx(r) =0, r>R (x=0,1,2)

Cx(r)

(4.27)

(4.28)
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and so

Qx(r) =0, r>R (x=0,1,2). (4.29)

For r < R, we see from (4.18) and (4.26) that Hx(r) is of the form

L 2
H(r) =H, r +Hy, r + H r <R = 0,2,4) (4.30)
X( ) '+X 2X OX9 (x 4/,
where the coefficients of this quartic polynomial are

( ) (-1)% 2 (2 _2 4) é dr r h (1),

Hp, = -1)% 27 (32-) (

2
- ( ) (2 2 4) fdr Conl () (4.32)
220
Ho, = -1X 27 (3( -2x 8) 1{ dr th (1)
1 2 2 2y 222
7 (G =y 0)1{dr rh  (r)
3 2 2 4y 224
+3 ( _ ) [dr rh (1) (4.33)
8 ‘x-x O R

for x = 0,2,4, and we have to determine the values of the six
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22
moments of h 2(r) in (4.31) to (4.33). To do so, we use the

inverse transformation of (4.26)

2 P'(1)
228, | _ X (2 2 &y 1., L
2me”“M(x) = (22 + 1) >:= (-1) (x—x O)( rcx(r)+ 5 Cx(r)
'xl 0 T
(4.34)
1 T s
- ? éds P';L(;) Cx(s)), L= 0,2,4
which because of (4.28) becomes, for r > R
224 (22 + 1) 2 2 2 &
2me™" () = =S o DX (T 0)
S ho X
(4.35)

R
g ds P;f%) Cx(s), r > R.

Using the boundary conditions, (4.19) and (4.20) we can equate

coefficients of r © to obtain three equations for the six moments of

h222(r)
R
_ NX 2 2 2
0 ‘Xz=o( 1) (X . o) é ds C (s, (4.36)
R
_ X (2 2 4
0 xf=0( 1) (X_ 0) { ds CX(s), (4.37)
21[2(70)72 go_2] = 9(203) T DX 22 I} ds s € (s). (4.38)
T 2 x-x 0’3 s s . 5). .



109

Three other equations for the six moments can be obtained from the

x
fact that Qx(r) is continuous at r

R, that is

QX(R) =0, x=0,2,4. (4.39)
The remaining task is to relate the constants Hix(i=0,2,4) to the
integrals of CX in (4.36) - (4.38). We observe from (4.25) that
since Hx(r) is a quartic polynomial in r for r < R, Qx(r) must also

be a quartic polynomial for r < R. This polynomial can be specified

in terms of its four moments

R .
- i _
Mix(HL,X,HZX,HOX) = {;ds s Qx(s), i=0,1,2,3, (4.40)

which can in turn be related to the constants Hix(i = 0,2,4) wusing

(4.25) and (4.30). Finally, using (4.24), we have the desired

results
R gl 2
ds C =M, -2 441
é s X(s) 0, ~ 5 Moy ( )
and
Tas s ¢ (e) 20 (y, 2 ) (4.42)
c =M, +2B (M, 2- MM .
gss a 2y ©5 Ly 0y" 2y

for the right hand-side of (4.36) - (4.38).
The MSA solution of a hard sphere tetrahedral quadrupole fluid

has been reduced to solving a set of coupled algebraic equations,
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(4.36) - (4.42) for the three constants H, (i = 0,2,4) . For
;\’\* QMQ!\. & X
instance, the excess free energy per particle over the hard sphere

reference system is

1
ox 16(70)/2 'HBDOTZ L _3 224
BU~" /N = B [ dss h__ (s)
225R R o
1/2 2 (4.43)
_ 64(70) BPQT % X (2 2 4
- 5 COT (G 2y o) Buye
875R | x|=

Also, once Qx(r) is known, the total correlation function can be

determined from .

A comparison between the usefulness of the transfomation given
by (4.23) which was also used in [3] and [4], and that used in [5]

and [6] is given in Appendix 2.4.

4.4 Thermodynamic Perturbation Theory

Perturbation techniques have been applied to molecular fluids,
ionic, dipolar fluids, linear quadrupoles and polarizable fluids as
well as combinations of these [7-20]. Perturbation techniques based
on the Pople expansion and the Padé approximants thereof, are
relatively easy to use and provide{ good results for the free energy
and details of the phase diagram. It is difficult and time-consuming
to use the integral equation methods to calculate phase diagrams and
even then the results seem disappointing compared to the perturbation
schemes [9,21]. For this reason it is useful to extend the
perturbation techniques so they can describe systems of hard spheres

imbedded with dipoles and tetrahedral quadrupoles. We briefly
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outline the derivation.

5

Consider a system for which the Hamiltonian is of the form

Hy = Hg+ N, (4.44)

where H is the hamiltonian of a suitably chosen reference system, V
is the perturbation éotential and the coupling constant X provides a
means by which we can keep track of the order of the perturbation.
The excess free energy of the system at state X relative to the
reference state A = 0 is given by the identity due to Pauli

A
e o o , SF(A")
F,© 2F, - F _(f)d)\ s (4.45)

where

BE(X) = In {§7 [ dle+- 4N exp(~BH) exp(-ABV) .  (4.46)

The result we want is obtained by setting A = 1 . Combining (4.45)

and (4.46) we obtain the general expansion

1 .2 2
Fyo = AW+ 52 BI<KV> (2 = <V > ¢l

(4.47)
3 2 1

1 2 3 3 L
+3 A B(<v>03—5<v>0<v >o + 5 <V ) + 0(X ),

where
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[ dL.dN V" exp(-gig)

n - =
<V >0 = jdl.,dN exp(—BHO) N n = 1,2,3 (4-48)

is the expectation value taken with respect to the reference
Hamiltonian.

If the intermolecular potential in the reference system is
independent of the molecular orientations and the perturbation

potential V is a pair wise sum of multipolar potentials, we have

<V =0 (4.49)

because of the angular integrations. Consequently (4.47) simplifies

to

ex T 22 ;] 3 2 3 n
For most reasonable values of the multipole moments (4.50) shows no
sign of convergence. However, it has been found that a Padé

approximant formed by treating the right-hand side of (4.50) as the

first two terms of a geometric series in A

1 2 2

—'2—)\ BV >y

1 3 Z
1+ 5 AB(KV >0/<V > )

F)\,Padé = (4.51)
provides remarkably good descriptions of the properties of dipolar
hard spheres [22] and dipole-linear quadrupolar hard sphere fluids

[23]. This serendipitous construction is motivated by intuitions
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based upon a study of the MSA result for dipolar fluids and upon
CY
Onsager's observation that the ground state energy must be linear in

the coupling constant [10,24,25].

The remaining task is to obtain expressions for the expectation
values of the perturbation potential <V2>O and <V3>O. For a fluid of
hard spheres with embedded dipoles and linear quadrupoles the

perturbation potential is of the form

Vo= 2T UL
i,]
1%
1 (4.52)
= 5 z (U (i’j) + U (i,j) +U (iyj)),
2 4,3 DO DQ,, .9,
1#5

where the dipole—dipole Upp» dipole—-quadrupole UDQL and quadrupole-
quadrupole UQLQL potentials are given by (2.19), (2.21) and (2.22).

Combining (4.48), (4.52) and the expressions for the pair potentials

we find

2 1 o 2 (2) 2 2 2
KV >g =75 () [dl a2 gg (1,2){UDD(1,2)+2UDQ (1,2)+U

(1,2)}
8w Q

L Q9
(4.53)

1 p,? (2) 2
VU >p =7 (8“2) [ dl 42 gy (1,2){3UDD(1,2)UQLQL(1,2)

<+

2 2
6UDD(1,2)U (1,2) + 6U Q (1,2)UDQ (1,2) + UDD(2,3)UDD(3,1)

DQL QL L L
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3 3 3 '
+ Z—(;ig) [ d1 42 43 g% )(1,2,3){UDD(1,2)UDD(2,3)UDD(3,1)

+ 3UDD(1,2)UD

(2,3)u, (3,1)
Q; QD

+ 3UDQL(1,Z)UQLQL(Z,B)UQLD(3,1)

v, . (1,2)u (2,3)U 3,0}
Ry, Ay, Yy,

*x2 x4 %2 *2 xh

N 12 36 %6
e (2w g I;p+=—w § Ij3+375 6 Is)

]
—
()]
w

b %2
+ b OL I
54 DDD 480 DDQ

*2 %4 %6
u 0 e
+ L 1 L )

660  Ipoq Y 6400 Tqqq (4.54)

2 3
In the above results gg ) %

and gy °~ are respectively, the pair and
triplet distribution function of the reference system. We see that
to order A there are two and three body contributions to <V3>0.

The dimensionless quantities have the following definitions

* 3

p = PR ,

%2 2 3 '

u = Bp /R (4.55)
% 2 2 .5

o, = B%;/R ,

where R is the hard sphere diameter and p is the number density.



are defined by

EY

T iti I I
he quantities a and aBY

> - 2
I = 4n [ dr r2 n gg )(r) R
n o
_ ' (3
IGBY = [ dr ds gp "(x,s) WGBY(r’S

where Wa is the three body potential function

BY
of dispersion forces [26].

We now give the results for <V2>0 and <V3>0
spheres plus dipoles and tehrahedral quadrupoles

dipole—quadrupole UDQT and quadrupole—quadrupole

given by (2.25)-(2.27). Using these expressions
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(4.56)

) (4.57)
found in the theory

for the case of hard
for which the
UQTQT potentials are

in (4.48) and (4.52)

we get
2 1 o 2 (2) 2 2 2

&V >g=5 (%) [da1d2 gg '(1,2){u_(1,2) + 20__ (1,2) + U (1,2)}

2 452 DD DQ, QpQy
4 2 %2 4 (4.58)
2N 1 % *2 % 56 *
= —"‘382) o} (E p Ig+ 2u OT 18 +‘i—5‘ OT I].O)
and

3

3 3 3 :
KV >g=7 C—Eg) [ dl d2 d3 g% )(1,2,3){UDD(I,2)UDD(2,3)UDD(3,1)

8

+ 3UDD(1,2)UDQ (2,3)UQ D(3,1)
T T
+
(1,2)UQ

3UDQ TQT(2,3)UQTD(3,1)

T

(1,2)UQ (2,3)U 3,1}

U
QTQT TQT QTQT
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, 6 u*h@;Z
- () 0 G Tyt I
83 54 DDD 360 DDQ
H (€}
T T
* 360 Ipgo T 2700 Lqqq)

On comparing (4.54) and (4.59) we see that only three body terms
contribute to <V3>0 for the dipole—tetrahedral quadrupole system.

To obtain numerical results we must specify the reference
system. A fluid of hard spheres at the same density and diameter is
the obvious candidate. For the hard sphere reference system, the
integrals In and IGBY are only functions of the density and simple
accurate representations of these functions have been compiled [25].
We now proceed to study two cases: a pure tetrahedral quadrupolar
fluid and a dipole-tetrahedral quadrupolar fluid.

Consider first a pure tetrahedral quadrupolar fluid for which
the results from thermodynamic perturbation theory can be obtained
setting u* =0 in (4.58) and (4.59). 1In figure 4.1 we compare the

ex

excess free energy, F ~, obtained from the series expansion,

3
including terms of order A , (4.50) with that obtained from using

the Padé approximant, FEZdé’ (4.51). The close agreement between
*2
the two results in the range 0 < Qr < 1 indicates that in this
3
regime terms of order A and higher are relatively unimportant. We

*2
note that OT for water at room temperature is 0.62., 1In figure

4.2 we compare the internal energy obtained from the MSA, (4.43),
with that obtained from the perturbation theory by differentiating

the Padé free energy, Fszdé , (4.51). The disagreement between the

two theories is not unexpected since the MSA is essentially



117

2 3
equivalent to replacing the distribution functions gg ) and g% )

¥

required in the perturbation theory by unit step functions [10]. It
3 %6
is interesting to note that the two body term of order (A QT ) in

<V3>O which is omitted in the MSA, turns out to be zero for

Fig. 4.1 Excess Free Energy per molecule at p*==0.8 from

ex (left-hand scale),
ex Ex . hand 1e)

(B) The ratio (FSeries / Pade ) (right-hand scale).

perturbation theory (A) FPAD
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tetrahedral quadrupoles. In the MSA the internal energy per unit

2
volume is only a function of the product (p*sz) . This is not true
in general. In figure 4.3 we compare the universal curve from the
MSA with the Padé internal energy at different densities. The Padé
and MSA results coincide only: for p*( 1.

We now turn to the case of a dipole-tetrahedral quadrupolar hard

sphere fluid. We have chosen for our input data

-18
p = 1.84 x 10 e.s.u.~cm

-26 2
Qr = 2.5 x 10 e.s.u.~cm |, (4.60)
R = 3 A ,

which to a good approximation, are the dipole and tetrahedral
quadrupole moments of water. Unlike the case of pure tetrahedral
quadrupoles, there is considerable difference between the Padé (4.51)
and series expansion (4.50) of the free energy (figuré 4.4), 1t is
obvious that this is due to the presence of the dipolar contribution.
Hereafter we shall use the Padé version of the perturbation theory
because it gives quite reasonable agreement with Monte Carlo results
for the dipole-linear quadrupole hard sphere fluid [23]. In figures
(4.5) = (4.7) we show the excess free energy, excess internal energy
and the excess compressibility factor (BPex/p) as a function of
temperature. The latter two properties are obtained by appropriate
differentiations of the Padé free energy. By comparison with the*

*

*
curves obtained by setting u = 0 or QT = 0 we can see that the

dipole~quadrupole interaction gives an important contribution to the



Fig. 4.3 Excess internal energy

per molecule. Pade version of

perturbation theory at (A) p*= .8, (B) .5,
(C) MSA - independent of p*.

o .{*‘ i

e Ch AP

BT
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Fig. 4.4

Excess Free Energy per molecule for a dipole-quadrupolar
%
hard sphere fluid at p =0.8 (water parameters),obtained

from perturbation theory.
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X

Fig. 4.5 Excess Free Energy per molecule of a dipole-tetrahedral
quadrupolar fluid at p*= .8. (water parameters used)
Pure tetrahedral quadrupolar fluid (u*=0) and a pure dipolar

fluid (6* =0) also shown.
T



DANLN

Fig. 4.6 Excess internal energy per molecule (A) dipole +quadrupole

(B) dipole only (C) tetrahedral quadrupole.
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PRV INKT

109K/ T

Fig. 4.7 -~ Excess compressibility factor for dipole-tetrahedral

quadrupolar hard sphere fluid at p*==0.8. (water parameters

used) Results for pure dipolar and pure quadrupolar fluid shown.
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thermodynamic properties of such fluids. We note that at

p* = 0.8 (8P*/p) for water-like values of u* and O; is - 6.6 at
room temperature. This almost cancels the reference value

(BPg/p) = 7.74 for a hard sphere system and gives a fairly low
pressure at room temperature. The water molecule is not 'hard' and
not a sphere. Thus, the choice of the diameter becomes somewhat
arbitrary, with 3 A usually being considered too high. For the
purposes of showing the significance of the quadrupole on
thermodynamic quantities it was a convenient size. For our
calculation of the phase diagram we have chosen a diameter of

2.7 A, The hard-sphere reference system is assumed to be given by
Carnahan—Starling equation of state. In table 4.1 we have listed
some thermodynamic properties at the critical point for a pure
dipolar and dipolar-quadrupolar fluid. While our simple model is not
intended to reproduce the properties of water, we have nonetheless
included water value in table 4.1 for comparison.

It must be said that Pople expansion and its extensions are
theories applicable at "high" temperatures and densities and are
therefore not expected to be accurate near the critical point. For a
dipolar hard-sphere fluid, the thermodynamic perturbation theory
yielded a reasonable value for the critical temperature but the
critical densities and pressures were in error when compared with
Monte Carlo results [9]. Thus our results for the critical behaviour
for a dipole-tetrahedral quadrupole fluid can only be used to
illustrate the relative importance of the dipole-quadrupole -and

quadrupole-quadrupole interaction in a water-like system.
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TABLE 1
Properties of a dipole-tetrahedral quadrupole and a pure dipole

hard-sphere fluid at the critical point (see eq. (18) for data)

T (k) P. P (p/ pKT)
,(1022<:m-3 (108dyne/cm2)
dipole—quadrupole 609 1.27 3.86 0.362
dipole 358 0.83 1.31 0.324
water 647 1.09 2,20 0.226

Independently, Gubbins, Gray and Machado [19,20] developed TPT for
general non-linear quadrupoles. The TPT for the tetrahedral

quadrupole can be considered a special case, in which the symmetries

reduce the amount of work.

4.5 Conclusion

In this chapter, we have examined the statistical mechanics and
thermodynamic préperties of a system of molecules that contain a
tetrahedral quadrupole moment. We have shown that in the MSA or LHNC
treatment for ion—dipole—tetrahedral quadrupole systems, the solution
to the Ornstein-Zernike equation can be obtained by trivial changes

to existing programs [23] which have been designed to study similar
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systems with linear quadrupoles. Preliminary studies using the
thermodynamic perturbation theory suggest that dipole-quadrupole
interactions in a water—like hard sphere dipole—tetrahedral
quadrupolar fluid can be important.

Recently Carnie and Patey [27] have performed a number of
calculations with the LHNC and QHNC closures for the polarizable ion-
dipole—-tetrahedral quadrupole system. For the QHNC closure, the

simple transformation

1
o * (%)/2 °
is no longer sufficient, but the necessary modifications are not
difficult. In a polarizable molecule, the local.electric field
distorts the molecular charge distribution and so changes its dipole
moment. The molecule is said to have an 'effective' dipole Bogg
which can be written as the sum of the permanent dipole j and the
induced dipole Biog * Polarizability is included in a 'mean field'
sense, i.e. each molecule has the same induced dipole moment and so
the same effective dipole moment Mosg *

The results are encouraging. When a moderate tetrahedral

quadrupole is included the dielectric constant becomes independent of
the closure (LHNC, QHNC and MSA). When water parameters are used,

agreement is found with experimental values for the dielectric

constant over a temperature range 25 C-300 C.
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Since a hard sphere core is used, it is difficult to compare the
calculated structure with experimental values. However, it is worth
000

noting that the first minimum in g (r) occurs at 1.2 diameters

(compares well with experimental results) and the second maximum
occurs at 2 diameters (cf. 1.7 in experimental results).

These results justify the study of a system of hard spheres
imbedded with dipoles and tetrahedral quadrupoles. If polarizability
is included via an effective dipole moment, reasonable results are

obtained for properties of water.
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CHAPTER 5

DIPOLES IN A FLUID

5.1 Introduction

Recently, Hayter and Pynn [l] used the Ornstein-Zernike (0-Z)
equation to describe polar fluids in a very strong field. There are
some problems associated with using the 0~Z equation for such a
system that are not adequately resolved by [1].

de Gennes and Pincus [2] have noted that for a system of dipoles
in an external field, the second virial coefficient must be dependent
on the shape of the total volume. In an isotropic system, the fluid
is not aligned and such a system cannot exhibit sample shape
dependent properties. However, if a field is applied, certain
properties depend on the shape of the system as a result of the long-
ranged nature of the dipole - dipole interaction. Such sample
dependence was not included in the work of [1]. 1In section 5.3, an
ideal gas of dipolar particles is used to investigate shape -
dependence.

In [1], the field is considered to be so strong that the dipoles
are totally aligned. For this, the 0-Z equation takes a particulafly
simple form. It does not, however, allow the effects of field

strength to be studied. To do this, movement of the dipole axis with
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respect to external field must be included in the model. The theory
of Chapter 2 should, in principlét describe the effects due to
external fields of all strengths. It is only in the limit of very
weak fields, and very strong fields, that these equations degenerate
into simple forms. The former is useful for modelling
electrostriction and the latter for induced coagulation. Attention

will be directed to the latter case. As an example, the so-called

'ferro-fluid' is introduced in section 5.2.

5.2 Ferrofluids

Ferrofluids are colloidal dispersions of ferromagnetic grains.
The gréins are roughly spherical particles with radii > 100 A and
coated with a surfactant (e.g. oleic acid) to keep the system
dispersed. The permanent magnetic moment is large

(Buz/a3 L 0(10)) and so in a strong external magnetic field, the

grains combine to form chains that repel each other.

For fluids with a small concentration of colloidal particles,
linear chains of up to 10 particles are expected. The chains are
constantly breaking up and reforming under the action of thermal
agitation. As the number density of the ferromagnetic particles
increases and the chains become longer, they could easily deform into
more complicated structures [1,2,14]. 1If the overall interaction
between the two particles becomes too attractive, they will coagulate

to form large agglomerdtes, the sizes of which are determined by

Here, y is the permanent dipole moment, a the diameter of the
particle and R = 1/kT.
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mechanical shears, rather than thermal motion [4,5].

The ability to coagulate and*disperse ferromagnetic materials by
merely increasing or decreasing an external magnetic field has
applications [7,8] in laboratory and medical work as well as
flocculation of minerals [6].

For most ferrofluids, van der Waals attractions are expected to
be negligible compared to magnetic attractions. The ferromagnetic
grains can be considered to be hard spheres with permanent magnetic
dipoles. If the external field H is strong enough the field
fluctuations caused by the presence of other particles become
insignificant and so the effective dipole moment (permanent +
induced) remains relatively constant.

The principal theory describing agglomeration is due to Jordan
[13]. Jordan treats chain formation by analogy to polymerisation and
chemical reaction. With this analogy Jordan calculates the

dissociation energy for the reaction

2 monomers = 1 dimer .

Given that the parameters of the system all are such that only chains
of 1 or 2 particles can exist, then, by using the dissociation energy,
one can calculate the number of each type of chain.
This notion is extended to longer chains after making certain
assumptions :
(i) The chains remain simple linear chains

(ii) There are no chain-chain interactions
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(iii) Dipole-dipole interactions are limited to nearest neighbours

S

and next nearest neighbours. Experiments [7-12] generally

show more agglomeration than predicted by Jordan's theory.

In principle, the techniques of Liquid State Physics can be
applied to the system without the aforementioned assumptions. This
is discussed in section 5.4.

5.3 Shape Dependence

The dependence of macroscopic properties on the shape of the
sample is best illustrated by an ideal gas of totally aligned
dipoles. If the shape of the system is either a sphere or a
rectangular prism its electrostatic properties are equivalent to the
systems shown in Fig. 5.1.

+
+£'."..’. + + 3
+ + + +
+ 4 =+-+ +
P S
I /— - _-
/ pu— -
P R
) e
Fig. 5.1 Sphere (a) and Prism (b) with surface charge. For the

sphere the charge is proportional to cosf where 6 is the

angle as measured for the dipole axis.

charge distribution is uniform.

For the prism the
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The electrostatic properties of these systems can be treated
a
exactly. For example, in Appendix 1, the free energy of the two

systems of aligned'dipoles are

2
2
Fo = 2%2; u V (sphere) (5.1a)
4 3
vV = Efﬁ p a (5.1b)
2 2
F = 2mnp Vu (prism) V = Ad (5.2)

where a is the radius of the sphere, p the density, u the dipole
moment, A the area of the top surface of the prism and d the depth of
the prism.

Thus the free energy depends on the shape of the sample. One
may ask what this implies about the pressure and compressibility.
For example, it is not clear whether the expressions for the pressure
and compressibility as obtained by differentiating these expressions
for the free energy are the same as those obtained from the virial
and compressibility equations. Nor is it obvious that the stress
tensor is homogeneous or isotropic. To highlight these issues, the
retangular prism-shaped sample of an ideal gas of total aligned
dipoles will be used.

To investigate the pressure we will consider a prism sample to
put under the stresses depicted in Fig. 5.2. The pressures Py and

pp are chosen so that the system remains in equilibrium.
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Fig. 5.2 Stresses applied normally to surface of prism as shown.

For a system of particles interacting via a short~ranged

spherically symmetric potential or an isotropic system of dipolar

particles

P, = P2(= p, say) (5.3)

and the stress tensor ¢ at any point in the sample is given by

g =-»rl (5.4)

It is not clear whether this is the case with the aligned dipolar
fluid. For the described prism system, the stress tensor can be
determined at all points in the body by calculating the force one ~

part of the body exerts on the other across a plane. It is found

(Appendix 1) that
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(5.5)

| [e}
]

]
e
[

where

P1=92=P=‘('5,—)N (5.6)

Thus for this simple system, the two methods of calculating the
pressure are consistent. Is the same true for compressibility?

The compressibility for this system is given by (Appendix 1)

2

NKT
(3P 8"8_‘1} u o+ ...) (5.7)

wh = "7 Uty

K =
This agrees with that calculated from the compressibility equation

Kp kT =1 + p f h(r) dr (5.8)
\
It is worth noting that the integral in the compressibility equation
is only conditionally convergent and hence shape dependent. Because
of the conditional convergence the derivation of (5.8) needs to be
modified. |
Another result of the shape dependence is the problem of

relating the integral in equation (5.8) to a Fourier transform. It
is only for a spherical shaped system that one can use the transform
(2.61) (provided such transforms are well defined) and only for this

system can one equate the integral (5.8) to the transform
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~000

[ n(p) dr 00

il
=y

(0) (5.9

~000
where hoo (k) is defined in (2.44).

Thus for the ideal gas of totally aligned dipoles the various
expressions for the pressure are consistent. While the results for a
general system are unknown, the simple example given here illustrates

some of the problems associated with shape dependence.

5.4 Totally Aligned Particles

In Chapter 2, it was shown that the correlation function

f(f = g,h,c) of a system of totally aligned dipoles can be written as

£(1,2) = = f“‘i“(r) \1’“32(91,
mng M H
uv

Qz, ’E,rz\') (5.10)
where gi is the orientation of molecule i, r the orientation of the
intermolecular axis, 2z a frame in which the z-axis is parallel to

E , r is the intermolecular separation . In the limit of the angles
8y, 8, (see. Fig. 5.3) going to zero, the functions

mn £

wuv > Gu,o 6v,o Pz (cos®) , (5.11)

and the expansion (5.11) degenerates to

£ = E fz(r) Pz(cose) , (5.12)
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Fig. 5.3 Two dipoles in an external field E.
where
£(n) = = £2%0 . (5.13)
L Hv
m,n
The angles 6,;, 0, going to zero is equivalent to the orientational

distribution function p(B) approaching a.delta function

Po
i.e. p( 0) =7 §(8) (5.14)

where pg is the density of the isotropic system. In this limit the
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0-Z equation approaches (2.60)

~ o~ ~ ~ A 2
hy(k) = c, (k) + 2"52" Py ¢yi(k) (k) (0 o 0 ) 22+ 1)  (5.15)
where
~ _ .2 ® 2, mn £
hz(k) = 4mi fo dr r Jz(kr) huv (r) (5.16)
and
m n &£
v V)

is a Wigner 3-J symbol (Appendix 3 of Chapter 2). Equations (5.13),
(5.14) - (5.16) were obtained in [1].

In [1] the series (5.13) was truncated at 2 =2 . Such a
scheme would be appropriate for a system containing a concentrated
dispersion. For thié system, the steric effects become dominant and
the distribution of particles about any given particle is spherically
symmetrical. For low concentrations, the dipolar interactions become
dominant and chaining occurs. The choice of £ = 0,2 would be
inadequate to describe chaining. Another choice of £ will be
discussed later.

In [1], the equations, obtained from discarding all terms for
which & > 2 in the invariant expansion, were solved using the MSA
closure. They found that the lim hy(k) did not approach zero.

k >0
It was claimed that this 'implies an unphysical angular behaviour'
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for the structure factor. To overcome this, Hayter and Pynn
&
developed a scheme in which hz(k) was forced to zero.
It was explained in section 5.3 that the Fourier transform of

the indirect correlation function is conditionally convergent and for

this reason

lim hy(k) # 0
k »0
Thus this scheme has no physical basis. Moreover, this scheme is
unnecessary. Such modifications have little influence on the
correlation functions for separations of less than four diameters.
This is the range which interests us.

The results of [1] seem to suggest chaining. The correlation
functions gllr) and gl(r) are shown in Fig. 5. The function gll(r)
is the correlation function of particles parallel to the field and is
g1(r) the correlation function of those perpendicuiar to the field.
the function gl'(r)is more structured than gl(r) .This is what

would be expected if chaining occurs.

5.5 Imperfect alignment

Perfect alignment only occurs for infinite fields. Normally
there is some favourable range of orientations of the axes of the
dipoles with respect to the fields. By allowing this in the model,
one can incorporate the effects of field strength and its effect on
agglomeration. However one must know the relationship between

angular density distribution p(8) with field strength E and the
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correlations of the other particles. This may be obtained either
EY
theoretically or from experimental data.

The term p(6) is even in the angle 6 and so for small 6

can be written

Po
p(8) = - & (cos® - 1) + p; §' (cosb - 1) (5.17)

where pg, p; depend on field strength. In the limit of infinite
field strength p; is zero and p( becomes the bulk density. Our
interest at this stage is not the calculation of pg, p; but rather
the inclusion of a density of the form (5.17) into the 0-Z equation.
The equation (5.16) relies on the angle 6 in Fig. 5.3 being small
whereas ¢ takes any value. In this limit the cylindrical invariants

2
Wt: as defined in Chapter 2 asymptote as follows

2 2
(m(m+1) 6y + n(nt+l) 8, "
ke (- : e, (R) +0Ce% . (5.18)
. My o, & T2
Yop1 = 1 5 } Dg,1 (R) + 0(83) (5.19)

- 2 i "
Jnd [ /(n 1)n(g+l)(n+2) 6, oL 12¢ } D%;z (R) + 0(6%) (5.20)

W?nl - vm(m+1)n(n+l) i(é2-¢1)

4 6102 e } Djo(é) + 0(6%) (5.21)
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Fig. 5.4 The correlation functions gll(—) and g (-—-) for totally
aligned dipolar fluid.

A o mDaGl) g g, (22D} ph @) 4 0 (5.22)

The calculation of the indirect correlation function

n(1,2) = @ W) ¥™1,2,8,8)
mnf i o ~T
Y
2 .
to order © requires a knowledge of the following quantities

(1) hie) = o ™o (5.23)
m,n ©°
. 2 mn £
(ii) hij(r) = I n(n+1) hoo (r) (5.24)

m,n
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(1i1) b = I va@+D 24 (5.25)
m,n

(iv) h%(r) - /m(m+1;n(n+l) h??z(r) (5.26)
m,n

(v) h&(r) = I vYn(n+l)(nt2)(n-1) h‘;“?{“(r) (5.27)
m,n

(vi)  nip = g ool b, (5.28)
m,n

These quantities must come from the 0-Z equation. The temm
§'(cos® - 1) is not difficult to use. Integration by parts can be

used in the angular intergration to give

. m n
[ 8" (@) Dy (wg) D, (w3) dug

3 m n
= Beose; Pox, (43 Doy (89)) [g.c0; apta,m0

m
. aDzo aDO'.El
= {— GAI,)\z,O 8(c0303) (¢,0,3) - 5)\2,0 a(COSG3) (q)’O’Y)} ‘

Using the relation

"
00 _ m(m+1)
3C0$63 (¢a0,Y) = '—2'—'" (5-29)

the 0-Z equation becomes



~mn % _ ~mnf FARE AN AN AN A
Rl (k) = (k) + L ( ) (

2, 2",m' ,m"

~mn' ! ~m'nl"
cuo (k) hOv (k)

N { 00 = (n'(;'+1) + m'(m;+1) ) } )

~mn £ ~mn £ FAE A A2 ~mn' L'
h k) =c (k) + I 0 o) (20#41) ¢ 7 (k)

] 2" ] |+1 | !+1
Bt 0 oo - oy (G 4 BLEEL )

Summation over m,n implies

~ ~8 L' 242
(1) h (k) = c (k) + I 0 0) (22+1)

x {pg 2 RY () = py &1 () nf (O}

- . v ogw g2 "
1) B =S+ F 5 @ pe”

~ot ~Oo'
x & (o) B ®) .

(5.32) and (5.33) can be solved together with a closure to give
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50 o) Gy y) GrenE’

(5.30)

(5.31)

(5.32)

(5.33)



hi(r) and h%(r).

For u =0, v =
~mn £ ~mn 2 F AN A NS A
ho1 (k) = cop (k) = L 0 0)(0
~mn' Q' ~m'ng"
x e (k) hg, (k) po
)

and so
~2 ~% [ANEE AN NS A
hy = cp - L (0 0 0)(0

Thus if ﬁj(k) and gj(k) have been calculated,

together with a closure.

similarly calculated to give

-1

-1
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1 the 0-Z equation becomes

&

”'f)(zﬁq)
(5.34)
o 2) (29+1) c MR (5.35)

(5.35) can be solved

Equations for the other quantities can be

" " T 0" +

hy = C3 + I (0 . 2 _f (2)') (22+1) C% hg po( ) 1 (5.36)
~2 ! z A} R AR A

hy = 5 +z (0 0 5 2) (22+1) ¢ hs pg (5.37)
~f ' AR} '] ~L' ~g"

e = ce+1 (0 | —p) (2841) ) ey hy pp . (5.38)

Apart from (5.32) and (5.33) there is no coupling between the

quantities

by one.

ﬁ; and so the equations (5.34 - 5.38) can be solved one

There are also many similarities between the equations, so
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special treatment is not required for the various equations.

)
Therefore despite the proliferation of equations the system is not
much more difficult to solve than the original case with the totally

aligned dipoles.

5.6 Discussion

The main aim of this chapter has been to write the 0-Z equation
in a useful form for cylindrically symmetric systems. This is
possible in the limits of very weak and very strong fields. The 0-Z
equation in the latter limit has particular relevance to the
agglomeration of ferro-fluids [1]. The equations to do this have
been developed in section 5.5.

A discussion of ferro-fluids necessitates a discussion of
aligned dipoles which in turn necessitates an understanding of shape
dependence of the sample. Such shape dependence is not understood
properly and some work needs to be done to resolve a number of
issues. In section 5.3, the simple case of an ideal gas was discussed
as an example to highlight these issues.

The work of [1] suggests chaining but whether the results are
quantitatively better than can be produced by physical intuition is
questionable. There are many reasons for this.

: The MSA closure is not expected to be very accurate (as

shown in the isotropic case).
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¢ The actual process of chaining itself suggests a process
in which the distribution*of inter—-grain axes is anything but
spherical. Undef these circumstances it is expected that the
consideration of only 2 harmonics would be inaccurate.
Perhaps an expansion similar to the §,8'.. expansion
described in the later sections would yield some interesting

results on the extent of chaining. This may be more

appropriate at lower densities.

: The imperfect alignment of particles could have a large

influence on correlation functions.

Nevertheless the model of [1] is useful in that because the

particles are nearly aligned it is possible without being

overburdened with computer work to calculate correlation functions

for this system. Relating this system with the work in Chapter 2 on

cylindrically symmetric systems allows effects such as non—alignment

of particles to be included in the model. Once problems such as

shape dependence are resolved (and these are not trivial) there is a

wealth of interesting properties to investigate.
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Appendix 5.1

-
Consider a rectangular prism shaped sample containing an ideal

gas of hard spheres imbedded with very weak dipoles. Since we are

dealing with an ideal gas, we assume

g(r)

It
o

if r < R
= 1 if r > R (A.1)

where R is the hard sphere diameter. Using (A.l) in the equation for

the internal energy, U gives

2.
U = % p [ dl fa2 g(1,2) u(1,2) (A.2)

= -% p [dl p - [a2 EQ1,2) (A.3)
|zy - x| > R

where E(1,2) is the electric field at 1 due to the dipole at 2. The

integral

o [ dr + B(1,2) = p [ dS - E(1,2) = - S¥P (A.4)
|£1' £2|> R S

Here S is the surface shown in Fig. A.l. The sphere is centred at

position 1 and the prism is considered large enough that edge effects
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can be ignored. In the approximation of an ideal gas of totally

- a

Fig. A.1l

aligned dipoles, the energy is the same as the free energy and equals

2 2

_in N

Here N is the number of dipoles in the sample, and V is the volume of
the sample. One expression for the pressure P is given by

oF 4 N p
- 3 2 (A-6)

now, suppose the prism is divided into two smaller bodies as shown in
Fig. A.2. There is now a possibility of part of a sphere being in
oné prism while its centre 1s in another as shown in Fig. A.3. The
electrostatics of that system is equivalent to that shown in

Fig. A.4. The pressure can be calculated by first determining the

potential at a height z above the plane, and then determining the
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