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PREFACE

Dear Reader,

Having woken this volume from its slumber, idly lifted it
from its bed among its colleagues, blown the accumulated dust from its
cover, and curiously opened the same, you will be relieved to learn that
the arrangement of the contents is subject to systematic conventions.

Equations are numbered consecutively in each chapter, where
they are referenced by number, e.g. (123). Elsewhere, they are called
by chapter and number, e.g. (12.345). Figures and tables are numbered
consecutively in each chapter, and are always given by their full names,
e.g. figure 12.345. References are consolidated in one list, located at
the end of this thesis. Authors are cited by name and year, with the
exception of Abramowitz & Stegun (1965) which is abbreviated to A&S.

While I have endeavoured to define all symbols, there may be
isolated occasions of confusion and ambiguity. Since my notation is
consistent with standard mathematical usage, functions are as specifiéd
in A&S, and waveguide parameters are as defined in Snyder & Love (1983)
- with the exception of A, which is discussed in §P.2.1 - such cases

should not present insurmountable difficulties.
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ABSTRACT

The major concern of this thesis is the effects which asymmetry
about the axis of propagation have on the performance of dielectric

waveguides. 1In particular, weakly guiding waveguides are investigated.

A brief Prologue outlines the assumptions and formalism of the weak
guidance approximation, and introduces some of the phenomena seen on
waveguides. Chapter 1 surveys the general methods emploved to solve -
exactly or approximately - for properties of axi-asvmmetric
waveguides. Examples of solutions are included: the clad-parabolic

elliptical fibre and the infinite linéar waveguide.

A general method, to solve exactly for properties of a step fibre
with a cross—-section of arbitrary shape, is developed in chapter 2.
This method is used in chapters 3 and 4 to decsribe the step elliptical
and step retangular waveguides. As well as these exact values,
quantities are estimated using standard and new approximation

techniques. Thus the accuracy of certain methods is established.

Since the exact analysis of single-moded single-polarization fibres
is difficult, these structures are modelled in chapter 5 by the
butterfly profile for which parameters are easily obtained. It is shown

how the observed behaviour of bow-tie fibres is described by this model.

In chapter 6 the effect of a waveguide's core on the radiation loss
caused by a bend is established. This enables the description, using
some model profiles, of the way the loss from an axi-asymmetric
waveguide will vary with the relative orientations of the plane of the

bend and core's axes of symmetry.

Chapter 7 presents an alternative formalism for the weak guidance
approximation. -This is in terms of Fourier optics, and thus an integral
equation rather than a differential equation is obtained. Using this
new method, an attempt is made to relate the structure of the fibre's

far field pattern to the details of the refractive index.

Finally, chapter 8 discusses a mathematical curiosityAsuggested by
the analysis of chapter 7. How are zeroes of the eigenfunctions of an

integral operator related to the structure of the operator's kernel?
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"Yes, Eeyore. He's clever, Rabbit is,” said

Piglet.

"Clever!" said Eeyore scornfully, putting a foot
heavily on his three sticks., "Education!” said
Eeyore bitterly, jumping on his six sticks.
"What is Learning?" asked Eeyore as he kicked
his twelve sticks into the air. "A thing Rabbit
knows! Ha!"

A.AMilne, "The House at Pooh Corner”

This chapter introduces the concepts which are exploited and developed
in the remainder of this thesis. Firstly, the formalism and basic
equation of the weak guiaance approximation are outlined, and then the
way corrections can be incorporated to better describe phenomena in an
axi-asymmetric fibre. These are thé basic materials for part I. A
brief discussion of the physically observable quantities, which motivate
the alternate formalism for the weak guidance approximation presented in

part II, concludes this chapter.

§pr.1 Electromagnetic waves in dielectric waveguides

Comprising both optical fibres and planar integrated optical
coﬁponents, dielectric waveguides are assuming fundamental importance in
modern information gathering and transfer.

The description of an electromagnetic waveguide is.not new, dating
from the work of Thomson (1893) and Rayleigh (1897) who investigated
metallic guides. In 1910 Hondros & Debye described the propagation of
an electromagnetic wave along a cylindrical, dielectric waveguide, but
it was not until after the Second World War that intensive interest
returned to these devices.

A proliferation of results and suggestions climaxed with the

realization (Kao & Hockman, 1966) that newly developed, highly pure



silica could transmit light signals over significant distances. This
telecommunication application provided the motivation for extensive
studies of dielectric waveguides.

Figure P.l is a schematic representation of the main features of
such a device. There is an inner region — the core - and an outgr
region - the cladding - finite in extent and generally with a refractive
index lower than the core's. Throughout this thesis, it is assumed that
the waveguides are translationally invariant, i.e. that the refractive
index structure is independant of z, the axial co-ordinate. Also, it is
assumed that the propagating wave travels along this z-axis.

Most of the results obtained in this subject are restricted to axi-
symmetric waveguides. Frequently even these are approximations. Thg
reason is the mathematical complexity and intractability of the set of
equations modelling the system. In this thesis, non—axisymmetric
waveguides are examined.

An electromagnetic wave's behaviour is described by the Maxwell

equations (e.g. Landau & Lifshitz, 1971, ch.4):

|8

(V.E) =-u

v.(\@) = 0,

VH = e-%% + 4nJ

and

V.(€E) = 4mp ,

where 1 and €, the magnetic permeability and electric permittivity,
respectively, are assumed time-independent but not spatially invariant,
E and H are the electric and magnetic field vectors, respectively, J is

the current density vector, p is the volumetric charge density, and the



Figure P.1

(a) A schematic representation of an axially invariant, dielectric

waveguide.

(b) Motivation of the weak guidance approximation. The heavy line
indicates most of the energy is near the core. Hence the cladding is
assumed infinite, leaving a small total variation in the refractive

index, n.
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gradient operator involves the three Cartesian position co-ordinates.
The solution of these partial differential equations, together with the
appropriate boundary and continuity conditions, is difficult.
Fortunately a telecommunication fibre has only a small variation in its
refractive index, n = /ETEB. This motivated the development of an

approximate theory, that of weak guidance (Snyder, 1969; Gloge, 1971).

§P.2 Weak guidance formalism
§P.2.1 Basic Assumptions

Most of the energy confined to and travelling along the waveguide
is concentrated near the core. Tyﬁically the core's radius is less than
a fifth of the width of the cladding. Thus, to a first approximation,
little difference will appear between the guidance properties of the
physical waveguide and the model produced by extending the cladding to
an infinite distance from the axis. These two forms are indicated by
the solid and broken curves, respectively, of figure 6.1(b).

This unphysical, infinite refractive index profile across the
infinite cross—section of the waveguide is described by the function
n(x,y). It is useful to write this so that the variation from n o the
refractive index of the infinite cladding, is apparent. Also, because

2
e=n €; is the physical quantity, it is more appropriate to describe

n2. Thus,

nXx,y) = n‘§£+ [n4x,y) -nczf,]

where the variation appears in the square brackets. By defining



where ng is the maximum value of n over the infinite cross-section, this

variation can be normalized;

n¥x,y) = n2 = 2802 glx,y), (1)

with the maximum value of g being 1. g(x,y) is termed the profile's

shape—function. This choice of n to normalize the variation in n,

c®

differs from the usual choice njy (e.g. Snyder & Love, 1983). However,

within the weak guidance assumption nclﬁno, so no effective difference
occurs. The base index of the infinite cladding is the more natural
choice. In practical waveguides dopants are added to create a variation

from the refractive index of a uniform substrate.

2
2 from ng is given by 2A,

This definition gives A as the relative difference between N,y and n,,

The maximum relative variation of n

when A& < 1. Typically & is between 107 and 1072, Because of this
small size, it is possible to obtain a series solution in ké of the
Maxwell equations (e.g. Snyder & Love, 1983, ch.32).

This thesis is concerned only with weakly guiding, dielectric

waveguides, i.e. those for which the assumptions outlined above are an

excellent approximation.

$P.2.2 Scalar wave equation
The key feature of the weak guidance theory 1s that the electric

field within a non-axisymmetric waveguide can be approximated as

i - ~
(Bz-ut) »

1
E ~ Ale + 0( A/2>, (2)

where A is a physical amplitude constant, P is a function describing the

variation of E across the infinite cross—section and termed the modal

field, B is the propagation constant of the mode, w the angular



frequency of the electromagnetic wave, and p the direction of the
electric field, ie. the state of polarization of the wave. There are
two natural, orthogonal directions for p. These are the optical axes.
In this thesis these are always taken to be co-incident with the
Cartesian axes. Of course H can be constructed from E, and shows a
similar form. As discussed in §P.2.4, Snyder & Young (1978) showed that
(2) is not a perfect description. In this thesis, Y is assumed to be
real, corresponding to non-absorbing dielectrics.

Rather than the derivation of the solution of the Maxwell equationms
for the vector fields E and H, the problem is reduced to the search for
a scalar field ¢ and its associated propagation constant, B. These

follow from the well-known scalar wave equation:
W2+k%%XJ)_32)w=O,

where V2 is the two-dimensional Laplacean operator defined by the co-
ordinates of the cross-section, and k=27/A is the wavenumber in a

vacuum.Substitution of (1) gives
(V2+ v%(x,y) - W2) v =0, 3)
where V, defined by
V2= pkn2 24, (4)

is the normalized frequency. Modal parameters W and U, defined by

2= p52(g2 - 2
W p2(8 kzncl) (5a)
and
2 2 2 (5b)
U2=V2-uZ= o2k n, - 82), :

are the normalized propagation constants. A length scale, p, is

introduced to normalize quantities, including the derivatives in V2,



Equation (3) can be re-arranged as
(v2+gv2) y=w2,

which is the standard form of the two—dimensional cigenvalue problem for
a differential operator. A given pair V and g uniqqely specifies an
operator, corresponding to a specific profile and operating frequency.
This operator has discrete eigenfunctions, the modes Y, and associated

eigenvalues, W2, which is a normalized form of B2

§P.2.3 Dimensionless parameters

The lengths are normalized with p, a characteristic length of the
waveguide's core. On an axisymmetric structure, the natural dimensicn
is the core's radius. However, for a non-axisymmetric arrangement, an
ambiguity occurs. For example, with an elliptical core, should one
select the semiminor axis, the semimajor axis, or the geometric mean of
the two? This inherent abmiguity has caused some confusion within the
literature, and is explained in more detail in chapters 3 and 4.

Hussey & Pask (1982) showed the utility of the profile volume in
comparing waveguides with differént shape-functions. With this

motivation, the canonical length B, is defined:

521 [ a(x,y) ax dy. (6)
i R2
For a circular step—profile, this returns the value of the radius; for
an elliptical step, it is the geometric mean of the semimajor and
semiminor axes; for a clad parabolic profile divide these expressions

by 3/2.



Employing the canonical length in (4) and (5), the value of V is
defined to be the canonical frequency, and U and W are the canonical

propagation constants.

§P.2.4 Scalar modes and modal nomenclature

The form of E given by (2) is linearly polarized (LP), and the
associated solutions of (3) are termed the LP-modes. It is often
thought that these correspond to the true modes of a waveguide. Snyder
& Young (1978) showed this not to be the case.

The fundamental mode (HE;;) is virtually an LP-mode, LPpy. It is
also interesting that SturmrLouiviiLe theory (e.g. Ince, 1926a, ch.10)
showé that for this mode, which has the lowest value of U (highest value
of W), ¥ has the same sign throughout the infinite cross—section.

On axisymmetric waveguides, higher—order modes are not LP-modes.

Here, solutions of (3) are of the form

&

_ cos
¥, = F(R) {59} (19).

sin

The choice of the trigonometric function does not influence the value of
U and W. Snyder & Young showed that, in this case, the true modes are
radially and azimuthally polarized, rather than polarized along the
optical axes. These true states of polarization are obtained by adding

different, degenerate LP-modes. For example,

A

E = A (alecos 26 x + 32F£31n 26 y)

are real constants
where aj and a2 .

On a non-axisymmetric profile, the degeneracy of the propagation

constants for the two different trigonometric functions is broken.

While the true modes are still the sum of two different LP-modes, even



Figure P.2

A schematic representation of the variation of standard LP-modes as a
waveguide's cross—section varies from circular. Notice how the

degeneracy of the LPIl—mode is broken

10
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for slight non-axisymmetry, one particular LP-mode will dominate.

Thus, on a non—axisymmetric guide, the higher-order modes are also
essentially LP-modes. In this thesis, all analysis of the non-—
axisymetric wavegides will be in terms of LP-modes. (For an explanation
of the numbering of LP-modes, see Gloge, 1971.)

On the axisymmetric waveguide the two trigonometric functions give
two distinct symmetry patterns for the modal field of the LPjj~mode
(refer figure P.2). On the non-axisymmetric waveguide, this degeneracy
is destroyed and modal nomenclature becomes more complicated. The usual
notation (eg. Marcatili, 1969a; Goell, 1969; Eyges et al, 1979) divides
the modal fields into symmetry groups and number from 1 with increasing
value of U, i.e. increasing order of the mode. 1In this thesis, the LPy,
notation is retained, and the superscripts E and 0 are employed to
indicate symmetry or anti-symmetry about thé X-axis.

For the refractive index profiles studied in this thesis, the
fundamental mode and only the first two higher-order modes, the LP?I-
and LP%l-mode are examined in any detail; i.e. interest is primarily in

single-moded waveguides.

§P.2.5 Modal cut—off

As mentioned at the end of §P.2.2, the solution of (3) produces
eigenvalues w2, It is only positive values of Wz, producing real values
of W, that correspond to bound modes on the waveguide. That there is‘
this transition, called cut—off, has a semi-intuitive explanation.

Consideration of (5a) shows that negative w2 means

B < knc'Q

w

=>
B ? C/ncl >
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which is equivalent to claiming the wave's phase velocity exceeds the
speed of light in the medium forming the cladding.

From (3) it is apparent that, for a given function g and a
nominated ¥, a variation in V causes a change in W. As V decreases, so
does W. It may be that W=0 for some special value V., which is termed
the normalized cut-off frequency of the mode. On practical fibre's, all
higher-order modes have non-zero cut—off frequencies; the fundamental
mode may have a non-zero cut-off frequency. For some unphysical
xefractive index profiles no mode is cut-off.

The value V., of a particular mode depends only on the shape
function g. For‘single—moded operation of a fibre, the constant V,
defined in (4) needs to be in the region where the fundamental mode
exists as a bound state, but higher-order modes do not. The first
higher modal cut-off is thus an important pérameter of a fibre, and in
thesis it is evaluated for several non—axisymmetric profiles. 1In
particular it is shown how the degenefacy of the first higher scalar
modal cut-off frequency, that of the LP;;-mode, is destroyed when the
degeneracy of the LP%l— and LP?l-modes is destroyed.

Finally it is worth noting that as V*Vco, the mode's energy spreads
further and further into the cladding, thus invalidating the basic
assumption described in §P.2.1. However, this occurs only very, very
close to V.., and the infinite cladding assumption is still useful in

fixing the limiting behaviour of the mode.

§P.2.6 Radiation and bent waveguides
Bends in waveguides arise for various reasons. In itegrated
optics, the bends are a designed feature of the device. On the other

hand, frequently the inherent microbending of optical fibres detracts

from their performance.
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When a dielectric waveguide is bent, energy radiates from the bound
modes. It is important to assess this loss. In chapter 6 it is
examined, with particular interest in how the asymmetry of the cross-
section influences the loss from bends which are sufficiently gradual

that the waveguide locally is axially invariant.

§P3 Axi-asymmetry and polarization

Why study non—axisymmetric waveguides? There is the prosaic reason
that a perfectly axisymetric waveguide can never be constructed.
However, rather than restrict attention to slight imperfections on an
ideal structure, this thesis is coﬁqerned with significant departures
from axisymmetry.

As explained in §P.2.4 and §P.2.5, on a circularly symmetric
waveguide, there is a degeneracy between the LPEli- and LPoll-modes. A
Non—-axisymmetric profile produces distinct behaviour for these, and
other degenerate pairs of modes. But a non-axisymmetric waveguide also
separates a more important degeneracy, that of the two states of

polarization which correspond to the same scalar mode.

§P.3.1 Geometric birefringence

One of the features which exists on a non—circular waveguide is
birefringence. The nature of this is now explained. Within any
dielectric waveguide, there are always two distinct states of
polarization, as mentioned belbw (2). These two directions cause the
appearance of two distinct modes which are identical within the scalar
analysis. The correction term in (2) depends on the direction of 3. It
is emphasized that polarization is a phenomena which can only be

described using vector analysis.
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Furthermore, the distinct polarization states, corresponding to the
same scalar modes, do not have the same propagation constants. The
propagation constant yielded by (3) is not the true propagation constant
of the mode. To correct for the latter, it is necessary to add a
vector—dependent correction term of order A to the scalar value. The
value of this correction term is dependent on the polarization of the
mode. This difference in the propagation constants is entirely due to
the shape of the waveguide, and is not present on axisymmetric fibres.
The corrected propagation constants of the X- and Y-polarized modes
are ﬁx and By, respectively.

As a wave travels along the waveguide, it is scattered by the
microscopic imperfections which inevitably occur in any real
structure. This medns that some energy in one mode is transferred to
another mode. The probability of this transition increases as the
difference between propagation constants of the two modes decreases.
Thus, an investigation of the difference between the corrected
propagation constants of the two polarization states of the same scalar
mode reveals the likelihood of a given state of input poarization being
preserved during transmission. The difference between‘Bx and'By is very
much less than the difference between the values of B for different
scalar, and hence unrelated vector, modes.

The difference Bx-ﬁy is known as the modal birefringence. For the
axisymmetric waveguide, it is caused by the shape of the cross—section
of the fibre, and is termed geometric birefringence to distinguish it
from anisotropic birefringence, discussed in §P.4.

Consideration of the argument of the phase factor in (2), shows
that the difference between Bx and By is

g - B = 21/L,
X y :
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where L, the beat-length, has a simple physical interpretation. It is

the length after which the two modes are again in phase.

§P.3.2 Dimensionless parameters

To facilitate analysis, the birefringence Bx~8y is normalized so

that a dimensionless parameter of order 1 is obtained. For this thesis,

the parameter is chosen to be

B. - B
B =—£—y. (7)
p A%n
cl

Unfortunately within the literature there are several different

measures of birefringence. The simﬁlest (e.g. Rashleigh, 1982) is

merely

B=8 -8 =B A%n .
X y P cl

This remains very small, indicated by the presence of the square

of A, and also retains the inverse-~length measurement. To remove this,

some authors (e.g. Varnham et al, 1983a) divide by k, giving

Qx - By 2
= —_— U= A o
B k Bp cl

However, the presence of A2 shows that this, too, is an exceedingly

2
small number. The nclA factor has its use in the conventional analysis
of anisotropic birefringence, as will be shown in §P.4. Wishing to

recover numbers of order one, other authors (e.g. Dyott et al, 1979)

employ
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§P.3 .3 Calculation of birefringence

The corrections to the scalar propagation constants were obtained
by Snyder & Young (1978) in terms of the scalar modal field, ¥, and the
scalar propagation constant, B. Their expression becomes (see Snyder &

Love, 1983, p.286), with p being x or y,

. 2% »n
P bV et L,

where V is a non-dimensionalized, gradient operator defined with respect

to the cross—section's co-ordinates,

le, 12 - i |et| ? s . (9a)

A

/fi indicates the integrals are over the infinite cross—section, and e,
is the component of E in the plane of the cross-section. As well as
(9), another standard notational device used in this thesis is for two

functions fl and f2 and is defined on the infinite cross—section
KE,fp = [dS £ /f » (9b)

[~

As explained in §P.2.4, for non-axisymmetric profiles,
e, = Ayp,

so that (8) becomes

p 82 o o
B =B-——— [dS V2.
P AT 4 % © o

When this is used in (7), the normalized birefringence is

1
B, = =52 [ a5 (y¥f - exd), (102)

V 251 ..
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where co-ordinate subscripts denote the partial derivative with respect
to that co-ordinate. In (10a) differentiation is with respect to the
Cartesian co-ordinates. In many applications, for example the butterfly
profile of chapter 5, polar co-ordinates are used to define g and {.

Standard formulae for changing co-ordinates produce

B =_—1 fds[ﬂlszz_zﬁ (8q¥2 - R2%,w2) +£in% (g 2+ ggu2)]. (10b)
R

P g2y ,fw
In the special case when the waveguide has a step-profile, i.e.
1 , inside core

g:
0 , outside core,

then (8) simplifies greatly (Snyder & Love, p.287) to become

r 872 -
B =B+———m ¢ fV.et)et.n as,

P p—
pV Hetﬂ C

where C is the core-cladding interface and df is the elemental arclength

on this curve to which a is the outwardly directed unit, normal

vector. Proceeding as before, this can be used in definition (7) to

yield

5, -l §as (yn? - dgad), an

V2ipi2c

A
where ny and ny are the obvious Cartesian components of n.

§P.3 .4 Vector corrections to scalar cut-off frequencies

Snyder & Young (1978) derived vector corrections to the scalar
quantities obtained from the weak guidance approximation. - Similarly,
vector corrections to the scalar cut-off frequencies can be obtained.

This is important because the two polarization states, corresponding to

the same scalar mode, have different cut—off frequencies.



18

On a weakly guiding fibre with shape—function g and profile height
parameter A, a scalar modal field ¢ and a normalized cut—off frequency

Voo &lves a normalized cut-off frequency for the p-polarized mode of

3g 3?2
/{;‘S % Bp
v _y -z‘f > . (12)
co co co [dS g 2

co

A similar argument, to that used to obtain this correction, is outlined

in §1.A.

§P.4  Anisotropic birefringence

As well as the shape of the waveguide, anisotropy of the dielectric
material itself can cause birefringence. If the material is
anisotropic, the distinct, orthogonal otical axes will be defined by'a
combination of material and geometric properties. Again gx and BY will
differ, because the two different polarization states will be guided by
effectively different refractive index profiles, n(x)[x,y] and
2% (x,y) (e.g. Snyder & Rihl, 1983).

The total birefringence consists of geometric and anisotropic
components:

B =B +3B.
1% a g

Kaminow & Ramaswamy (1979) showed that, in general, Ba > B

g

Usualiy it is assumed that

NG I N
cl

which is constant throughout the cladding. If this is so, Black (1984)
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showed that the approximation

E;x - By = kancl

2
=>3B = 8/ A

is very good. This V-independent value of Ba is 30 for the typical
values A= 1/3% and §/A = 1/10. However, on a real

waveguide, n(x) - n(Y) will vary over the cross-section, vanishing at
the boundaries. Under these conditioms, Ba decreases as V-0.

As V20, Yy spreads more ihto the cladding where the anisotropy

decreases. It is useful to define a correction factor

HB = k(én i ’ (13)

which quantifies this change. Here Gnc is taken to be the maximum )

2

difference between n(x) and n(Y).

§P.5 Axi-asymmetry and approximation techniques

Although the analysis of non-axisymmetric waveguides has received
much attention, it is beset by a major problem. As explained in §P.1,
one reason why so much attention has been directed at axisymmetric
waveguides is that the solution of a non-axisymmetric structure is not
easy. Chapter l lists a few profiles for which simple solutions are
available. This general intractability has motivated the development of
several approximation techniques. These are reviewed in chapter 1. -

However, like an experimental result, an approximation method is
only useful if one has an estimate of the error involved. Thus, it is

necessary to assess the accuracy of the standard approximation methods

when applied to several reference profiles, for which exact results are
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available. 1In particular, in chapters 3 and 4, extensive examination of
the accuracy of the standard approximation methods for rectangular and
elliptical step-profiles occurs, and, having evaluated the exact
solution of the butterfly profile in chapter 5, this is compared with a
solution obtained by perturbing an axisymmetric profile.

Also, the form of exact results can suggest a new approximation of
greater accuracy than existing methods. This idea is developed in
chapter 3.

Perhaps the most powerful approximation method for an axi-
axymmetric waveguide is to consider an appropriate measure of the axi-
symmetry as the ggide varies from one solvable form to another. 1In
particular, several classes of waveguides, e.g. elliptical, vary
continuously from a circular to an infinite planar waveguide. Both éf
these forms are very simple to analyze. In chapter 3 it is shown how
the known limiting forms of a family of non-axisymmetric waveguides can
be exploited to give excellent approximation formulae for most

quantities of interest.

§P.6 Fourier fibre optics

In §P.2 the standard formalism of the theory of weak guidance was
presented. This reduced to solving the scalar wave equation - a
differential equation - for the modal field ¢ which describes the energy
distribution over the cross—-section. Is there an alternative way of
formulating weak guidance? This question is answered in detail in
chapter 7.

Experimentalists are interested always in the quantities which are
easiest to measure. Thus, the theoretical analysis incorporating these

is more useful to them. Unfortunately, ¢, which is termed the'near-
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field pattern, is not the easiest quantity to measure. This distinction
belongs to ¥, the far-field pattern, which is the field seen when the
light is projected from the end of the waveguide onto a distant screen.

It is clear (e.g. Born & Wolf, 1970) that ¥ is the Fourier
transform of Y. The Fourier transformation of a differential equation
produces an integral equation. Thus, (3) can be converted to a scalar
wave integral equation which, when solved, gives ¥. This is an
alternate formal structure for the weak guidance approximation.

Whether this new formalism facilitates the analysis of non-
axisymmetric waveguides is difficult to answer. CertainlyAthe problem
again is simpler if g is an axisymmetric distribution. However, the new
formulation is certain to be fruitful, if only because it utilizes the

more easily observed quantity VY.
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Pooh thought for a long time and then added
sadly, "It isn't as easy as I thought. I
suppose that's why Heffalumps hardly ever get
caught.”

"That must be it,"” said Piglet.

They sighed and got up; and when they had taken
a few gorse prickles out of themselves they sat
down again; and all the time Pooh was saying to
himself, "If only I could think of something!"
For he felt sure that a Very Clever Brain could
catch a Heffalump if only he knew the right way
to go about it.

A.A, Milne, "Winnie-the—-Pooh"

This chapter surveys the general methods used to determine guidance
properties of non—axisymmetric waveguides. Some examples of solutions
of the scalar wave equation are mentioned, and some applications of

- approximation methods are given. Comments about the strengths and

weaknesses of each appoach are included.

§1.1 Explicit exact solutions
For circular and planar waveguides, the symmetry and invariance
properties of the refractive index profile allows the reformulation of

the scalar wave equation
(V2+ v% - w2)y=0 (1)

as an ordinary differential equation for the normalized propagation
constant W and modal field ¥ in terms of the profile's shape—-function g
and the waveguide's normalized frequency V. However, for a general;
non-axisymmetric profile, this equation remains a non-separable

differential equation and solution is difficult.
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There are only a few exceptions. For example, if the shape
function is homogeneous (Snyder & Love, §16.5) - i.e., k/aeR, it

satisfies

1 - g(aX,ay) = ol(l - g(X,Y))

for some g-dependent constant q — then analytic expressions exist for
the propagation constant, group velocity and distortion parameter of
each mode. Infinite power—~law profiles with elliptic or hyperbolic
contours are of this form.

Another example requires g to be a separable function (Snyder,&

Love, §16.6) of the Cartesian co-ordinates, i.e.

g(X,Y) = g1 (X) + g (¥)

where g; is independent of Y, and g, of X. 1In this case (1) is
separable in the co-ordinates X and Y, uﬁcoupling to the two ordinary

differential equations for ¥;(X) and ¥ AY¥):

" 2 2
b1+ (Vgl"% + ulyy =

|
o

(2a)

: 2 2
Yo+ (ng'% - vy =

|
o

(2b)

where p is the separation constant. Examples of this form include the
pseudo-rectangular profile (Kumar & Varshney, 1984) and similar
refractive index distributions used to study rectangular waveguides.
Perhaps the simplest non—-axisymmetric profile to solve is the
infinite, parabolic, elliptical waveguide (Snyder & Love, p.355f).
Because of its simplicity, this is useful in understanding the general

properties of non—-circular, refractive index distributions.
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§1.1.E Example: Infinite linear profile
As an example of an exact, explicit solution, consider the profile,

which is both homogeneous and separable, defined on the infinite cross-

section by
g=1- |x/of = |y/ey . 3)

Contours of constant refractive index are shown in figure 1.1(a). The
contour n=n _, is defined by ‘x/gxl + ‘y/pyl =1,

Using the co-ordinate transformation given in Snyder & Love §16-7,
it is straightforward to show that the normalized propagation constant,

U, is given by

Ujk = AjkV2/3 ’ j,k>0 (43)

and the subscripts j and k label the modes. V is the normalized

frequency. The scéling length is

p="Vpo p;
X'y
2 _ 1/3 -1/3,
Ajk = xje + A€ ; (4b)
e=op0/p;
X
= ! >0
A'ZJ aj ’ J ’

>‘2j+1 T a5 i,

h

]
a. and a} are the jt zeroes of Ai and Ai , respectively, where Al is

J J
the Airy function of the first kind (A&S, 10.4). The corresponding

modal field, also labelled by jk, is

j k
by = +A1 (sx) Ai [sY)
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(a) Refractive index contours of the infinite linear profile of (3).

The shaded region, being inside n=nc£,

measured by the inverse aspect ratio, e=py/px.

indicates the core. The shape is

(b) Refractive index contours of the clad elliptical

profile of (6).

The shape is measured by the inverse aspect ratio, e=p /p .
: vy Tx

xV
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where the sign of ¥ may vary from quadrant to quadrant, and

ij,= x| v O y
and
51; = |y y23 e Aer

From (4), the distortion parameter (e.g. Snyder & Love, p.294) is

D= d b v (5)
which increases and becomes unbounded as V-0.

While unphysical, tﬁis profile shows some of the features of more
realistiéiprofiles; In particular, by considering a family of infinite
linear profiles with identical core-area, it is‘interesting to see how
degeneracies amongst the modes change. A sequence of profiles of equal
area is characterized by constant V and variable e.

As € changes, from (4), Ujk varies through whose dependence

ng,
on € is shown in figure 1.2. As expected from symmetry considerations,
A, =I\.Oj at el. However, if e#1, this degeneracy is broken. Also,

jo
as €30, the cL/6

singularity in (4b) dominates and ngeﬂbk’ ‘/j>0. The
modes are infinitely degenerate in the &0 limit. In particular, an
infinite number of modes have Upp as a limiting value!

Conventionally modes are ordered by increasing values of U. Thus

as € changes, the order of the mode changes, although the (0,0) is

always the first, or fundamental, mode. For example, at 0.9,

Upog S Uj1g< U U< U< U3 < 0ee

whereas at e0.1,
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This reshuffling of modes, as the shape of the cross—section varies, is

characteristic of non-axisymmetric waveguides.

§1.2 Series solutions

If a simple closed form of solufion for the field, ¥, given in (1),
is not possible, sometimes a series solution can be obtained. For a
physically meaningful answer, Yy needs to have no singularities and must
vanish as R+#», Hence a two dimensional analogue of the Frobenius
method can be utilized to solve (1). ¢, a function of the planar
coordinates R and 6, can be constructed as a doubly infinite expansion
in simple functioné of R and 6 (e.g. (9)).

This method is versatile and quasi-analytic, but cumbersome to
implement, ultimately requiring numerical computation. However, if (1)
is separable, the expansion of Y is only singly infinite. This method

is used extensively in this thesis (chapters 2 and 5).

§1.2.E Example: Clad-parabolic elliptical profile
As an example of this method, consider the solution of the clad-

parabolic elliptical profile, defined by the shape—function

1 - R2(e%os 20 + sin20) , inside core (6a)
g(R,0) =

0 , outside core, (6b)

where lengths are scaled by py,
e=p /o,
y X
and pX and py are the ellipse's semimajor and semiminor axes,
respectively. The core's boundary is given by

~-1/2
Ry = (ekos 2 + sin 20) / .
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The contours of constant refractive index, defined by (6), are shown in

figure 1.1(b).

Putting (6) in (1) gives, inside and outside the core,

respectively,

[v2 + RQJZ—?—Z((SZH) + (e%1) cos 28)]p =0 (7a)
and

[v2- R%2]p=0 . (7b)

Since g is symmetric about both the X- and Y-axes, for the fundamental

mode, ¥ will have this property also. Thus, the field in the cladding
is the solution of (7b) and can be written as

s KZn(WR)

g =2 ____
n KZn(w)

o~

V., = cos(2nb), (8)

¢ n=0

since it is required that Y+0 as R+», Here Kz is a modified Hankel
function of the third kind, and the Bn are constants.

To obtain Y inside the core, the expansion is in a more elementary

basis:

[ =]

= 2n
wco = ¢ I Anm(ER) cos(2m6) 9)
=0 n=m

where the A~ are constants. Replacement of this form in (7a) produces
recurrence relations for the elements of the matrix A, which is, as (9)
assumed, lower triangular. With the identification

A = a, nx,

nn n

these relations reduce to
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A = IC . o >0, (10)
prm,m L ppmy 3 p,m

where the Cpmj depend on ¢, V and U, and the a need to be determined

form continuity requirements.

Because Y and 3y/ R are continuous at the core-cladding interface,

(8) - (10) yield

co

. _
) Cpmj aj €2p+2m R}ip 2m( 8) cos 2m®
P,J,m=0
= X, (WRB( 8) ) ~
= n___ZO Bn Kzn(w) cos 2n6 - (11)

and
0

) o a, 62p+2m’2(p+m) R2p+2m-1(6) cos 2m#H

. j B
m,p,j=0 P™
@ Ky (WR (9)) .
= 3 WBﬁE-W—R?W—)— cos 2n#, (12)
n=0 n 2n

where prime denotes differentiation with respect to the argument.
Clearly RB( 8) is an even, mperiodic function so the following Fourier

series exist. For 230,

322, R.ﬁf'( 8) = & a, cos 2mb ; : (13a)
m=0
K, (R (8)) =
% = I me cos 2mb ; (13b)
2877 m=0
2841 281, . o )
€ R_B (9) = mfo cm,m cos 2m9 ; (13¢)
! ©
WKy, (WR,(6)) T - (34)
_K—(-WT_— m COsS <m .
24 m=0
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Substituting (13) into (11) and (12), matching the components of

cos(2j0), and defining the matrices

By = ) ¢ (a (1-8, ) + (1+8 ) a

m,p=0 P™ " mip mti m*'P’lm‘i') ’

F..=b, ., . (-6 ) +b, . (146

i3 3,3t oi il3-1i| 157

G,,6 = C 2 e(p+m) (C 1-6 + (1+8 C

ij m,g;O m]j e(ptm) ( m+p,m+i( io) ( mi) m+p,lm-il) ’
H,,=d, . . (1-8 ) +d ;. 1(1+8 )

ij J,j+i oi JIJ-I‘ ij”

produces the two simultaneous matrix equations
Ea=FB8 (14)
Ga = HB, (15)

where the constants ah and Bn are the components of the vectors
a and 8, respectively.
For a non-trivial solution of this system, the determinant of the

augmented matrix

must vanish. Indeed, det(Q) does vanish for a countable set of values
of U, corresponding to the normalized propagation constants of all bound
modes whose field, Yy, has the postulated symmetry about both Cartesian
axes. The lowest value of U corresponds to the fundamental mode.Having

calculated U, it is straightforward to solve (1l4) and (15) for

the ¢ and B , which fully describe
n n Ve
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Comparison was made between the exact propagation constant, U, of a
clad-parabolic elliptical fibre, and U estimated from the equivalent
step elliptical fibre, defined by the moment method (Black & Pask,
1984). For e2/3 and v=2.828, U is overestimated by 2.7%.

In the limit V2=, the behaviour of this profile is identical to
that of the infinite, parabolic profile, The power, concentrated in the

core, is not influenced by the cladding.

§1.3 Variational methods

The field, Y, of the fundamental mode is relatively insensitive to
the variation of‘the refractive index, n. This observation inspired
several schemes which identify equivalences between wéveguides. Because
of its simplicity, the step—index fibre is frequently used in this
identification, so that Y approximated by ¥y, which, defined in terms of
Bessel functions,‘is the fundamental modal field of a circular, stepﬁed
waveguide., The method of selection of VYo optimizes the matching of some
guidance property of the two different profiles.

Near the axis of proagation for the fundamental mode of most
waveguides, ¢ is approximately Gaussian in shape. Snyder § Sammut
(1979) employed a variational expression to optimize the choice of a

Gaussian function to match :
v~ ¥, = exp (-RZ2RZ)

where RO is the spot—-size, chosen so that-%%o= 0. Subsequently, this
method was extended to both non—axisymmetric profiles (Snyder, 1981),
with two free spot-sizes, and higher-order modes (Love & Hussey,
1984). The Gaussian approximation is a 51mp1er analysis of the

behaviour of a non-axisymmetric waveguide than existing equivalent step-
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index methods. Sometimes it is exceptionally accurate (e.g. §1.3.E).
Its great advantage is that simple expressions can be obtained for
various properties which depend on Y, e.g. birefringence.

However, the Gaussian approximation does have a major deficiency.
While { resembles a Gaussian function in the core, as R+», this
similarity diminishes. As a mode approaches cut-off, more power travels
in the cladding, i.e. ¥ spreads further from the axis, and this
app;oximation's accuracy deteriorates. Physically this can be
appreciated by recognizing that the Gaussian approximation defines an
equivalent waveguide which is based on an infinitely, parabblic,
elliptical fibre. Such a waveguide has an unlimited capacity for
guiding waves; the shape—function, g, does not vanish as R+x,

The Gaussian approximation is extensively used in chapter 3, where

its accuracy for step, elliptical fibres is assessed.

§1.3 .E Example: Infinite linear profile

As a simple example of the application of the Gaussian
approximation, it is used to describe the fundamental mode of the
infinite linear profile (5). Assuming, as an approximate modal field of

the fundamental mode,

v~ expCy (%E’f'}é)] ,

The spot-sizes are (Snyder & Love, §17-2)

1/3

AX2= ™ e7/6
V4/3
and
1T1/3 ~7/6

A2 =
Y BB €
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and the normalized propagation constant is

B (A, S22

Ugg =
/2 1T1/6

Compared with (4), this has the same explicit dependence on € and V, and
the numerical factor differs by a mere 0.6%. Because of the identical
dependence on V, this relative error translates directly to this
dispersion, D. This profile is an example where differentiating an
approximation for U does not introduce large errors in D. In general,
such a procedure is fraught with danger (Sammut, 1979).

Because this profile is infinite, it is not unexpected that the

exact result and the Gaussian approximation agree so well for all V,

§1.4  Perturbation methods

For refractive index profiles which vary slightly from axisymmetry,
it is simplest to treat the variation as a perturbation of the circuiar
profile, and derive an approximate solution of (1). This method is
explained in detail in Snyder & Love (1983, ch.18). The derivation of
the formula is shown in §1.A where the formula for a perturbation
estimate of cut-off is obtained. An application of this method to a
specific profile is given in §5.6.

Of course the accuracy of the perturbation result decreases as the
variation from circularity increases. It is important to obtain an
estimate on this accuracy. For example, in §5.6, it is seen to be very
useful for the butterfly profile whereas results for the ellipse, §3.3 -
§3.5, show it is the limit of very small eccentricities. Even when of
limited accuracy, the perturbation method does provide an exact limiting
form of the way parameters vary with the non—axisymmetry of the

profile. In chapter 3 it is shown how this can be exploited to provide

very good approximation formulae.
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Sometimes, e.g. §3.A.2, it is possible to treat a non-axisymmetric
waveguide as a slight variation of a planar waveguide. In general this
is awkward because a slab has three unconnected regions, a fibre only

two. Within a plane, such figures are topologically distinct.

§1.5 Other approximation methods

The variational and perturbation methods not only estimate
propagation constants and other parameters, but also define an
approximate form of Y. There are other approximation methods which
concentrate on propagation constants.

The moment method (Hussey & Pask, 1981 & 1982; Sammut, 1982a; Black
& Pask, 1984) prescribes an equivalence between waveguides of different
shape or different form of refractive index. It is an efficient metﬁod
of estimating propagation constants to within a few percent, and its
accuracy is extenéively examined in chapters 3 and 4 of this thesis.

The effective index method (eg. Adams, 1981, ch.6) replaces a two
dimensional cross-section with a superposition of two one-dimensional
planar waveguides, whose refractive index profiles are derived from the

original fibre.

1.6 Numerical Methods

Because of the difficulty involved in extracting exact, or even
approximate, analytic results for non-axisymmetric waveguides from (1),
much use is made of numerical methods. Notable here is the finite
element method which, for fibres, is exploited successfully by many
authors.Although it has proved a very powerful technique, fhe finite
element method does have shortcomings. For general application, a large

amount of computer memory is required. In a waveguide this problem
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exacerbated as the mode approaches cut-off, i.e. Uy spreads further into
the cladding. As this occurs, more and more points are required to
achieve a given accuracy. In this thesis, the chosen method is more
accurate as the mode approaches cut-off.

For an axisymmetric waveguide, (1) reduces to an equation in one
variable. Sammut & Pask (1982) developed a simple shooting method to
integrate directly this equatién when the refractive index has a uniform‘
cladding. Attempts to extend this to two-dimensions were
unsuccessful. Not only were there unresolved numerical instabilities,
but the implementation was more cumbersome than the series expansiqn

technique of §1.2.

§1.A Appendix: Perturbation method for cut-off frequencies

Snyder & Love (1983, ch.18) explain how to obtain an estimate éf
the propagation characteristics of one waveguide in terms of those of
another, whose refractive index distribution is similar. This argument
can be extended to provide an estimate of the scalar cut—off frequency
of the first waveguide in terms of the second.

At cut-off, the normalized propagation constants have the values

U=V, and W=0, where V, is the normalized cut-off frequency. Thus (1)

becomes
(15)
L{y] =0
where the differential operator L is
L=V2+chg, (16)

and g, defined in (P.1), is the shape-function of the waveguide and

vanishes as R+®, For another waveguide, characterized by E.and for

which all symbols are barred,
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i=v2+T/CZ§, (17)

and the companion to (15) is obvious.

Proceeding analogously to Snyder & Love, the combination of (15) to

(17) gives

: (18)

where/{; indicates the integrals are evaluated over the infinite cross-

section.

If the second profile differs only slightly from the first, i.e;,
g -g = ef ' (19)
where € € 1, then

v=0+ €¢ (20)

and substituting (19) and (20) into (18) shows

Thus the scalar cut-off frequencies of one profile are estimated from

the scalar cut-off frequencies of another profile.
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"Rabbit's clever,” said Pooh thoughtfully.
"Yes,"” said Piglet, "Rabbit's clever."”

"And he has Brain."

"Yes," said Piglet, "Rabbit has Brain."
There was a long silence.

"I suppose,” said Pooh, "that that's why he
never understands anything."”

A.A. Milne, "The House at Pooh Corner”

In this chapter a new, exact method for solving the scalar problem for a
step waveguide with a non-circular core is developed. It is based upon
the expansion of the modél field, ¥, in terms of circular harmonic
functions, but differs from the methods of both Goell (1969) and Eyges
et al (1979) in the manner in which the continuity requirements are
applied. Both ¥ and 3y/9R are decomposed into Fourier series which are
matched across the éore—cladding interface.. Ultimately, the propagation
constants appear as the roots of a matrix' determinant, and need to be
calculated numerically. The coefficients for the expansion of ¢ are
obtained from the null space of this singular matrix. Also discussed
are techniques to avoid potential difficulties during the inevitable
numerical calculations. Using these scalar field expansions, an
expression is derived for birefringence, and features of the shape of
the intensity of the scalar mode are examined. Finally,vit is shown how

an analogous method can be used to find the modal cut-off frequencies.

§2.1 Context

Once the trivial problem, posed by a circular step waveguide, was
solved, scientists referred their attention to other geometrical
shapes. However, departure from the axisymmetric structure destroys any
opportunity for a simple solution, except in certain special cases, e.g.

the planar waveguide.
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Solutions for cross—sections with small variation from circularity
have been obtained using perturbation theory (e.g. Eyges, 1978; Love et
al, 1979). However, this method is obviously of limited usefulness,
being helpful in analysing the consequences of small fluctuations from
an intended circular cross-section, but not accurate for gross
departures from circular symmetry.

Recent optical fibres, designed for special purposes such as the
maintenance of polarization, and developments in integrated optics make
extensive use of profiles which are nowhere near axisymmetric.
Consequently, a method of solution which is valid for the general cross-
section is nécessary.

Such a method was expounded by Eyges et al (1978), who, using a
Green function, inverted the scalar wave differential equation into an
integral equation which was solved using an'eigenfunction expansion.
This method proved satisfactory for a wide variety of geometries.
However, while the Green function for a step profile is readily
evaluated, those for other profiles are not. The method presented below
is easily generalized to graded non—axisymmetric profiles, an example
being provided in chapter 5.

Direct numerical solution of the step profile was pgrformed, using
the finite element method, by Yeh et al (1979). The problem with the
finite element method is that, as a mode approaches cut-off and the
field spreads further into the cladding, many more points are required
to obtain a given accuracy. - Using the eigenfunction expansion below,
the number of components in the expansion needed for a given accuracy
decreases as the cut-off of the mode is approached, because, while the
field is spreading out, it becomes more circular in appearance at large

distances from the fibre's axis.
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Both direct numerical computation and approximation methods suffer
from an inability to retain accuracy when singularities of various types
are approached, notably as the mode comes close to cut—off. Derivation
of an analytic method allows asymptotic forms to be used and accuracy
maintained.,

Of the general approximation methods mentioned in chapter 1, the
Gaussian approximation - §1.3 - is not expected to be especially good
as a mode approaches cut-off. In general, the effective dielectric
constant method is probably better. The most appealing method for
approximating a step fibre is the profile volume approach, which matches
step waveguides whose core's have équal areas.

For specific profile shapes, methods for exact or approximate
solutions have been-derived. Those for elliptical and rectangular

cross~sections will be discussed in chapters 3 and 4, respectively.

§2.2 Series solution for propagating modes
Within the weak guidance formalism, the modal fields are described

by solutions of the scalar wave equation (P.3)

2 2 2
[V -w +veg®R,®] v=0 (1)

2
where V is the two—dimensional Laplacean operator and g defines the
refractive index profile's shape. V is the normalized frequency, (P.4),

defined by
2 2 2 2
A =knc2p2A

where p is some chosen length scale. W is the corresponding

dimensionless propagation constant, (P.5a).
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For the case of a step fibre with a core whose cross—section's

boundary is defined by

R=R-B(e) ’

where (R,0) are plane polar co-ordinates, the shape-function is

1 », RX RB(S)

o0
]

o , R>RB(8)

1-H@R-RJ(O)], (2)
H being the Heaviside step—function. This yields a simple form for (1):
2 2
(v +u)yv=0 , R < Ry(0) (a)

2 2 ‘
(v -w)yv=0 , R > R(6) (3b)

where U is given by (P.5b).

For ¥ to be a physically meaningful modal field, it must satisfy
certain boundary and continuity conditions. It is required
that ¥ vanishes exponentially as R+, and that ¥ and 09y/ 3R are

continuous everywhere, including R=0 and R=RB(6).

§2.2.1 Outline of method of solution

The scalar wave equation (3) has an infinite number of solutions,
not all of which are physically meaningful. For those which are, a
particularly simple basis ofAcircular harmonic functions - a
trigonometric function multiplied by a Bessel function - exists. ¢ can
be expanded in terms of this basis, and this is done below, (4) & (6).
However, only particular sums are valid modes, those sums which exhibit

the continuity conditions outlined above., These modes themselves will

provide a basis for the solution space of (3).
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The idea of expanding the field of a step profile in terms of
trigonometric and Bessel functions is not new. Eyges et al (1979) used
such an expansion to obtain the solution to their integral equation.
Goell (1969), in solving for a rectangular cross-section, developed what
has become known as the point matching method. After expanding V¥ in a
series like (7), he equated ¥ and 3y/9R at a finite number of points on
the boundary, and thus obtained two simultaneous matrix equations.

However, in the point matching method there is no optimal choice
for the points. Goell spaced them at an equal angular separation around
the boundary of the rectangle, an approximation which will converge as
the numbér of such points becomes large. Metaphorically, this is a
piecewise linear approximation to a smooth function.

In the method presented in this chapter, continuity is obtained .by
expanding the inner and outer field and derivatives in terms of Fourier
series, and matching the coefficients. In principle, this method is.
more elegant, being analytic. For any Fourier expansion, after a
certain number of terms, the contribution of the remainder is
insignificant. Thus, once this number is obtained, convergence ought to
be rapid.

The continuity requirements on ¥ and 3y/ R reduce to two infinite
matrix equations. However, as explained, these can be truncated at a
particular size, and an accurate solution retained. Combining these two
equations, an even larger matrix appears, and the propagation constants
U and W(U) are obtained as the values at which this matrix' determinant
vanishes. Numerical routines are needed to find this root, and
consequently approximation methods can be exploited usefully to provide

either an initial guess for U or bounds between which U must be located.



Figure 2.1
A cross—section with two axes of symmetry, along which the Cartesian

axes are aligned.
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§2.2.2 Expansion of the Field
Firstly, consider the modal field within the core. From (3a), one

finds the simplest basis for solutions, which are finite at R=0, to be

wI.Q, = Jl(UR)(a co8 26 + blsinle) (4)

where a, and bl are arbitrary real constants, and Jl is the Bessel

function of the first kind. Because {wll} is a complete, orthogonal set
within the permitted solution space for Y, one can expand the interior

modal field in terms of this basis.

4 = L J (UR) (a cos nb+ b_sin ne) . (5)
n=0 )

Similarly, the solution of (3b) produces, as an expansion of the

exterior modal field,

1% = Kn(WR)(cncos nb + dnsin nB) (6)
n=0

where Kn is the modified Bessel function of the third kind, and ch and

dn are constants.

If one recalls that for waveguides which are symmetric about two
orthogonal axes there are two orthogonal optical axes, about which the
scalar modal field, ¢, is either symmetric or antisymmetric, one can
appreciate the origin of the a_, b,, ¢, and d, in the expansions.

Suppose the Cartesian axes are aligned with these optical axes.
For modes which are symmetric about the X—axis,\7ﬁ1XL bn=0 and d,=0,

and, for those which are antisymmetric, all a_ and Ch vanish . In

n
addition, the symmetry property about the Y—axis ensures that half the

remaining constants vanish; symmetric behaviour means only even cosine

or odd sine harmonics are present, and an antisymmetric pattern produces
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odd cosine or even sine functions. Because the fundamental mode is
symmetric about both axes, for the remainder of this analysis, modal

fields of the form

o]

nggthzn(UR) cos 2n6 , R < Rp(0) (7a)
(ee) -
¥ =
Z QnKzn(WR) cos 2n® , R > RB(G) (7b)
n=0

are examined. The series defined by (7a) gives a real, though

physically meaningless, function for R>RB(6), and similarly for (7b).

§2.2.3 Fourier analysis and continuify

Expansion (7) ;s a general solution of the equation given in (3),
but for ¥ to be a modal field, it must also satisfy continuity
conditions: ¢ and its first partial derivatives are continuous
everywhere, and in particular, across the boundary. Specifically this

means

¥y (Ry(0),0) =y, (R,(0), 0) (8)

and

Ay 3
= ®(9,0) = = (Ry(0),0) . 9)

The boundary function, RB(G), is obviously 2mperiodic.
Consequently, functions of RB(G) are also 2mperiodic in 6. Using

Fourier theory, these functions can be expanded as a series of sine and

cosine harmonics.

If one employs this result in (7), (8) and (9), then



©

) G a fcos 2(n+m) ® + cos Zln-m‘ 8)
n nm .
n,m=0

=n I151:=081_111nbmn(cos 2(ntm) 6 + cos 2 ln-ml 6)
b

and
1 G ac (cos 2(n+m) 6 + cos 2|n—m|8)
n,m=0 ® 0 OB
= 3 Handnm(cos 2(ntm) 6 + cos 2|n-m|6) s
n,m=0
where
JZn(URB(e)) S
——¢g = La,cos 2mb6
n m=0
Ul (URB( 8)) o
—e = ) ¢ nCOS 2m6 ,
n m=0
KZn(WRB(e)) o
= anmcos 2mo
n m=0
and

on R (D)
= ) d_cos 2m6 ,
H & nm
n m=0
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(10)

(11)

(12a)

(12b)

(12¢)

(124)

where the primes denote differentiation with respect to argument and the

constants Gn and H, are introduced so that the matrix defined in (15)

will be well conditioned. Their values depend on U,W and the form

of RB(B).
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§2.2.4 Solution of the system of matrices
If the coefficients of identical harmonics in the left-hand
expressions and right-hand expressions of (10) and (11) are matched,

there is the resulting system of matrix equations

A a=3B B (13a)

Co=D28 . (13b)

Here, the matrix elements are

%51 078%0) TRy g <
= 2—6 + - i = 3 14
Xij XjO( iO) Xj S+ , 1i=73j (14)
%5 amg Y ge 1

with X and x represénting A,B,C or D, and a,b,c or d, respectively. The
vector elements are (thn) and (Ban) in the obvious way.

The matrices of (13) are infinite in size. Thus, one needs to
examine their convergence, if one hopes to use them in meaningful
computation. This is done operationally, ie. by increasing the order of
the truncation and observing the results.

For a non-trivial solution of (13), either a or 8 could be

eliminated to give, for example,

1

(cA™™B-D) B=0 ,

and the determinant of the new matrix must vanish. However, this
involves a matrix inversion operation, and a more satisfactory method is
to form the direct sum of the solution spaces for a and B. Upon this,

define the operator M, corresponding to the augmented matrix
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M= |{—|—— . (15)

Non-trivial solutions of (13) occur when det(M) vanishes. This occurs
for only discrete values of U, which are the propagation constants of
the modes. Thus, an analytic expression to determine the propagation
constants has been obtained. It is stressed that this is valid for an
arbitrary cross—-section, but the above representation is simplest when
the optical axes are apparent from symmetry.

Having found the values of U and W, solving for the element of the

null space of M yields the coefficients in the field expansion (7).

M(Z) =My=20. (16)

§2.2.5 Example: Circular cross—-section
As an indication of how this method proceeds, it will be shown how
the familiar soution of the waveguide with a circular, step profile is

recovered. In this case, the boundary function is

R=RB(6)=1.

and lengths are scaled by the radius of the core.
Thus, in the Fourier series (12), the only non-vanishing

coefficient is the constant term:

- JZn(U)
4h0 G ’
n
1
B UJzn(U) ’
c i ——————————
n0 G
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b _ K2n(w)
n0 H ’
n
4
d _ wK2n(w)
n0 H ’
n

and all the higher values of m are zero. From (l4), these give matrices

which are diagonal:

X.. = 6,.2x,
ij 13730

Finally, the augmented matrix (15) has the determinant

sz(U)WKéj(W) - UJéj(U)sz(W) (17)

’

det(M) = ;I G.H
3

and, since GjHj#O, this vanishes if

UJén(U) . WKin(W)

J2n(v) ) KZn(w) ’

the familiar eigenvalue equation for the modes which are symmetric about
both axes of a circular step—profile.

If a different form of symmetry had been assumed in (7), then the
(2n+1)th order eigenvalue equation would be recovered.

Because A,B,C and D are diagonal, the vector (Z) of (16) will be
given by

PSS, . ) GjnPJzn(U)Hn
. ’ .
| G j Hj GnKZn(W)

where n is the chosen factor from (17). This produces the customary

modal fields
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Jzn(UR) el
J2n(b0 ’
q) =
K, (WR)
———12<n o R > 1
2n

if
P = Gn/JZn(U) .

Using the asymptotic forms for Bessel functions of large orders
(e.g. Watson, 1966, ch.8), it is easy to show the higher-order factors
in (17) vanish, regardless of the choice of normalization, as mentioned
in §2.2.6. This induces confidence that the matrices obtained from the

non-circular cross-sections will also converge.

$2.2.6 Computational details
Because A,B,C and D are all infinite themselves, rather than the
form of M shown in (15), it is better to permute rows and columns to-

give, explicitly, for i,j € N,

A2y o 13 222

y = ) 2t
ij _ ) .
C[i/2][j/2] , 1 ¢2Z2 , 3 €2z

,1e22 ,3 ¢2z

Plijaji/) > B 22
where [x] indicates the integer part of x. The corresponding
description for Y is, ¥i €N,
G, a, , 1 € 2Z

Hg , if22z.

A standard numerical algorithm can be used to find the determinant

of M.



Consideration of (12) shows how an analytic formulation can enhance
numerical evaluation. One problem in solving modal propagation arises
near cut-off. This corresponds to W20 and thus K2n(w) becomes
unbounded. Under this condition, setting Hn=K2n(WS), where S is the
maximum value of RB(S), leads to the following Fourier decomposition of

the asymptotic form (refer A&S, 9.6.8 & 9.6.9):

® o (R, (0)/5)
mzobomcos(Zme) ~1 + m ~ 1,

mEobnmcos(Zme) A’(RB?G)) , n»l,

) domcos(Zme) ~ 0,
n=0

R,(O)(f S+ & W) ~

and

n
), n3l.

e -n S
mz:odnmcos(Zme) ~ RB(S) (RB(G)

If W is large, H=l.

For the fundamental wmode, further complications occur as V+0. On
all fibres, bound modes satisfy UKV, so that U-=0, as V-30.
For n»>l, Jn(z)*O as z30. Under these circumstances, the choice of G,
as Jzn(US) facilitates the numerical work. Again, asymptotic results

are employed (A&S, 9.1.10).

@ R_ 2n 2 2 2
B U
mzoanmCOSZme ~ (g-—) (l + AETSH) (s - RB) ): n>1

and

2
Lot R 2n U o+l 2 2

2cnmcos " N% (S_B) (- 4(2n+1) (R = 5 )), w31

m=0
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Of course, as Jy(0)=1, it suffices that Gop=1l, even when U»0. If U is
sufficiently large, Gn;l for larger values of n.

This use of G and H, avoids the evaluation of a matrix which has
over 40 orders of magnitude difference between the greatest and smallest
elements of its major diagonal. No machine can ensure satisfactory

accuracy under those circumstances.

§2.2.7 Estimate on propagation the constant

In finding the solution of det(M)=0, a suitable numerical, root
finding routine is needed. The best of these, given that derivatiyes‘of
matrix determinants ought to be avoided, require estimates of the root,
preferably a lower and upper bound on the value.

To find these, it is useful to consider the equation (e.g. see

Snyder & Love, p.376)

2
2 2t 2 2 ~

®
where the propagation constants of two profiles, n and ng, are
related. The integrals are over the infinite cross—-section, and the
subscript zeroes distinguish between the quantities related to the two
different fibres. The notation <f,h> is defined in (P.9b).

If ng is the profile of a circular step fibre, and n is the profile
of an arbitrary step fibre with identical values of n,, and 0 os the
core and cladding indices, respectively, then (18) can be rewritten as

(recalling (P.5b))

2 2

v (19)
U =
o= Y <w,wo>/ff

Yov (g g) dS,

where a length scale, p, was introduced to non-dimensionalize quantities

and
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2 2
n. - nc£(1 + 2Agj)-

J
If the circle is contained fully within the other shape, Black & Pask
(1984) observed that the integrand in (19) is positive, whereas, if the
circle fully encloses the other figure, the integrand in (19) is
everywhere non—-positive. This follows since ¥ and yg are everywhere

positive for the fundamental mode. In the former case

2 2
Ug> U,

and in the latter,

2 2
UO(U-

Thus, for some circle, it follows that

This is the ideal équivalent circular guide.

Sammut (1982) suggested the easiest equivalent fibre possessed an
area equal to that of the arbitrary shape. However, in this
case U2 # Us. In fact, observation of results indicates that the
circular waveguide with equal cross-sectional area provides a lower

bound:

2 2

Obviously this is closer to U2 than the previous estimate of a lower

bound. It is suggested that the inequality (20) is valid for any convex

cross—section.

To understand the intuitive motivation for this, consider figure

2.2. The centre of the circle is such that the area of /J: is a



Figure 2.2

A general convex cross—-section and the equal area circle, which is

centred such that the area ole is a minimum. In/q, (go—g)=-l; in Ag,
(go'g)=1-
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minimum. In the regions /Ji, (gg—g)= -1; in the regionms /fz, (gg=g)= 1;

elsewhere gy-g vanishes. Hence, from (19),

2 2

2 \
U-Ug-= TS [f/j;wow ds -/f_@%w ds J. (21)

The factor outside the square brackets is positive. Since the areas of /47

and 4 9 are equal,

de—/fflS=0.

1 2

The fundamental modal field of a circular fibre, yg, is smaller in Af:
than in‘/fz. Further, ¢ decreases exponentially away from R=0, and, in
general, the total weighting function, ¢4y, will satisfy

[,0o9dS > [ wq¥ ds.
4, 1

For a general convex cross-section, y ought to be sufficiently well
behaved, and (20) then follows from (21).
For some profiles, the Gaussian approximation provides a simple

method for calculating an estimate of U. In these cases, examination of

(19) shows
Ug> U

because the approximation corresponds to the the infinite parabolic
profile. However, most step cross-sections do not lead to explicit
solutions within the Gaussian approximation, and thus not always a

simple upper bound on U,
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§2.3 Shape of the modal field

Having obtained the modal propagation constant, the modal field can
be determined. Several facets can be investigated for a general
profile. Notably the series (7) allow an examination of ¢ in limiting
cases.

Firstly, for large z, the asymptotic form of K, (z) (see A&S, 9.7.2)
is independent of n, at a large distance from the guide's axis, and
thus y separates in R and 0. Explicitly

WR,0) ~ e VR 1:2;;1{ ) B cos 2n.

n=0

In general, this remains a transcendental function for the iﬁtensity
contours of the modal field. However, for convex profiles, Black (1984)
showed that the contours do become close to circles in this limit.

For small R, the situation is simﬁler. Using the series expansion

for Jn(z) (A&S, 9.1.10), it follows that
2 2

o 4
WR,0) ~ ag+ —U—Ef—{-— (2—1— cos(26) - 0‘0) + &R ). (22)

Thus, to this order of approximation, the intensity contours

2
where C<{aj,, correspond to ellipses with an inverse aspect ratio, e, and
semiminor axis, b, given by

2 20,

e =1 (B)

B 2(10+ al
and

2
2 4Cag -C)
b =

Z ’
U ap(2agt ay)
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respectively. Implicit in this analysis is the assumption

that 0<ai;<2ag In §3.5.1 and §4.4 this is shown to be true for

elliptical and rectangular cross—sections. An appropriate choice of

normalization ensures that ap0. From (30), it follows that, if o>0,

the major axis of the intensity contour is aligned with the X-axis. If
2:<0, the major axis is along the Y—axis. It is also interesting

that € in (28 ), is independent of C. Thus, at least near the axis, fhe

modal field is a family of concentric ellipses.

With interest concentrated on the fundamental mode, it is natural
to investigate the situation as V+0. Assuming that as V30, the @
remain bounded, the expansion (22) is again valid, except that the
remainder is now 0(V4). Hence, for an arbitrary cross—section, the
step-profile produces elliptical field patterns for small V. This is
expected, since as V-0, the field senses the shape of the core's
boundary less and less, becoming more ﬁearly axi-symmetric. From (23),
as i/ g0, 1.

For large values of V, the field is, of course, confined to the
core, so that as V+», Sn+0. In this limit the shape of the field is
very sensitive to the shape of the core. In general, nothing can be
deduced about the ah. Of course, as V+», the approximation of geometric

optics is applicable.

§$2.4 Birefringence
In §P.3.1 it was explained how birefringence arises on a non-
circular step~fibre. Recalling (P.10), the formula for the normalized

birefringence of a step-profiled fibre is

2
B = —pt 5 [dLD[¥ ] (24a)
P v ¢
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2
where Iyl is defined in (P.9b), C is the boundary defined by RB(S), and

the differential operator D is

= 3 _ 9

(nx,ny) are the components of n, the unit outward normal to C. (While
the subsequent analysis is not new, it is inserted because it is not
available elsewhere and is not trivially straightforward.)

Define a normalized radius, F(R,8), by
F(R,0) = R/RB( ).

F=1 on the core-cladding interface, but more importantly it produces a

simple, useful expression for n:

TN
ST
where
N= V
-~ '
_ T _ RB a
=—-—10,
B Ry
giving

. r-TR' 0
n s B (25a)

- Z 4/
v Y2
RS+ v
=n ;<+ n é , (25b)
T ¢S]

where the components (nr, ne) are defined in the obvious way.
Transformation from Cartesian to plane polar co-ordinates is a

standard result., From (24b), this gives a new form for D:

(n sin 28 + n .cos 29)
_ _ 3 T 9 9 (26)
b= (nrcos 28 nesin 26))-—3E = =5 -
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Figure 2.3

An arc of the boundary function, RB(B), defining the core-cladding

interface in the XY-plane. n is the unit, outward normal vector to this

curve.
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To find an expression for d%, defined above (P.10), consider figure
2.3, in which TP is an arc of the contour C with arclength d£, and
subtends angle d© at the origin. Because ; is normal to this curve,
angle TPQ is m/2. Also, by the construction, angle OPS is 7/2, and

consequently angle ¢ appears in the two places indicated. Using the

formula of trigonometry,
df = ds/cos ¢

and

ds = RB(G) tan(d 0)

~ RB( e) Vd e,

since d8 €1, it is immediate that

~ A
n_ = m.r = cos ¢.

Combining these results yields

(8) do
dR~L. (27)

n
Tr

Replacing (24b) and (27) in (24a) produces, after simpification

2T

2
! [ de {(RBcos 20 + Résin 20) ¥

B =-—7—
Py 0 R

t

- (sin 28 --;3 cos 286) w:} (28)

where (25a) and the definition of C have also been used.

Since RB(G) is 2 mperiodic and, at worst, Ré is discontinuous at a

discrete set of points, {Gj} (This is not true of fractals, but these



are unphysical "shapes" for fibres.), the result (ii) of §2.A can be

applied. This gives

146 (sin 26 - 22 cos 26) 41y, 0)
—/ d0 (sin 26 - =— cos 26) V¥ (9),86
5 R o\%p
2
2w 2 2R! Rf; Ré
= f de v {-ﬁg sin 26 + (2 - — + ”TFJ cos 28}
0 RB RB
["a0 418 (st 20 - -2 cos 20)]
+ [ d6 ¢ {R'(sin 26 = — cos 26
o O RS Rp
N-1 N
+ ’ ) ) 6 .
j=zlw (RgC ), 8,V BCO,)

where H(ej) follows from the details inf§2.A. When substituted into

(28), this yields

2
2T 2 R" R' 2 :
Bp = _TL—‘Z(I ae v (RB(e),e)((z - B +-—%r) cos 26 + 'EE sin 26)
vV iyt O RB RB RB

]

VA 2 '
+ [ de ¢ (R.(8),0)(2R" sin 20 + (R, - ——) cos 286)
J Y% Ry Rp Y

N-1
z

+
j=1

wz(RB( 8,),0;) H(8,) . (29)
This result is valid for all step-profile fibres, regardless of the
shape of the cross-section. However, as it stands, it is not
particularly useful.

Suppose further constraints are imposed on the waveguide, as in
previous work, such as requiring that the shape of the cross—section is
symmetric about two orthogonal axes, which are aligned with the

Cartesian axes. In this case, if the required symmetry conditions are
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satisfied the summation over j in (29) can be removed, using (iv) of
§2.A. Further, both wz and w;, as well as each of the terms inside the
square brackets have the required periodicity property to allow the
evaluation of the integrals over {Q;%].

If expansion (7a), is used for the field on the interface, then

substitution of this in (29), and then massive simplification, produces

B =
p
4 © 7 /2
- _Z _}j (2- snm)an o Jde cos 2n6 cos 2m®6 J, (URy)J, (UR,E_(6)
V iyl n=0 m=0 0
(30a)
where
oy 2y
E (8) = (2 - =2+ -2,) cos 26+ —= sin 26 + (30b)
nm RB R '
B ' 2
Jén(URB) Jim(URB) RrR!

' -_B
U(Jzn(URB) + JZm(URB)) (2R}sin 26 + (R, 2 )cos 26)

In general, the integral in (30) needs numerical evaluation. No

suitable shape for an analytic result has been found.

§2.5 Series solution for modal cut—off
To obtain a solution for the values of modal cut-offs, one can
proceed in an analogous fashion to §2.2, remembering that for cut—off,

W=0. In this case it is necessary to solve

2 2

[v +v ely =0 31)

where V2 is the eigenvalue to be determined. The countable family of
co

these values corresponds to the countable family of cut—off frequencies

for the waveguide.
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Once again, using (2), (31) can be written in distinct form for the
core and the cladding.

2

2
(V.+ Vco) wc =0, R<RB(6) (32a)

2
vy 0 , R>RB(8) . (32b)

The former equation is identical in form to (3a), for which the
eigenfunctions have been obtained and listed in (4). In this case, U is
replaced by V.o- The latter is the Laplace equation, and in plane polar

co-ordinates its solutions are

¥ =1 fa cos 26 + b sin 26) , Qdi+ (33a)
'3 Rl % L

and

Y = constant . (33b)

0

Thus, the modal field can again be expanded in terms of basis functioms,
and then Fourier decomposition of the continuity condition will provide
a matrix whose determinant will vanish at the required values, Veor
§2.5.1 Cut—off and symmetry

As explained in §2.2.2, the waveguide, is symmetric about two
orthogonal axes, which leads to four different symmetry patterns
for Yy, corresponding to four different series expansions for Y. In
seeking the hierarchy of modal cut-offs, it is necessary to examine the
solutions obtained from all four series. This is particularly important
in determining the range of single mode operation of a waveguide.

In §P.2.4 and §P.2.5 it was explained how the first higher-modal

cut—-off frequency of a circular fibre corresponds to the modal cut-off
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of two distinct modes —-- the Lsz— and LP82- modes —— on a non-circular
fibre. Since, subsequently, interest is with the first higher-order
mode's cut-off (On a simple step waveguide the fundamental mode is not
cut-off.) and the waveguides are symmetric about two, orthogonal axes,

the modal field expansions applicable to this analysis is provided. For

these modes,

[o]

ZoanJ2n+l(V SR ent)e R<R £6) (34a)
b, = . .

I == (oo antl)e , PR, (34b)

n=0 R

where cosine and sine refer to the LPEI- and LP?I- modes, respectively.,

$2.5.2 Matrix equations
At cut-off, the continuity of wc and ch/GR needs to be

maintained. Thus,

) a v R, (8 )){°°S}(2n+1)e
n=0 n 2n+l co

Z _ ‘{gzz}(Znﬂ) 8

©

A

oD coJ2é+l( coRB( )){cos}(2n+1)9
n=

© (2n+l) B

Wz_z {Sootant)e .

ORB
These functions of RB(B) are expanded as Fourier series, which, within
the symmetry assumptions, will have only even cosine harmonics.

Matching of the coefficients of {gzi}(2k+1)° again produces two

simultaneous matrix equations, which can be solved using the direct sum,

as explained in §2.2.4.
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§2.6 Comment

Presented above is a method of solution for the general step
profile fibre. It is analytic, in the sense that matrices, albeit
infinite, are obtained and these describe the solution of the scalar
wave equation. The analytic nature of the method permits special steps
being taken to simplify numerical evaluation, notably when singularities
occur,.

Using these eigenfunctions reveals features of the modal field in a
straightforward manner, the plane polar co-ordinates being natural co-
ordinates for the system.

Finally, it is worth noting the little appreciated fact that for
the step-profile fibre, any analytic solution of the scalar wave
equation also provides an analytic solution of the full Maxwell
equations. Then, the equation for the longitudinal component of both
the electfic and magnetic field vector; E, and H,, are given as the
solutions of a partial differential equation, identical to the scalar
wave equation, although the boundary conditions differ. From E, and H,,

complete electric and magnetic fields can be derived.

§2.A Appendix: Partial derivatives integrated by parts

LEMMA:

1 1 2
Suppose I,QCR ; x,y:I+Q ; x,yeC (I) ; £:Q3R ; feC (Q) ; geQ +R ;

’

gsCl(Qz) ; and all the integrals exist, then
Jds £(y(s)) %%;(x(s),y(s) )
I

£(y(s)) gx(s),y(s))

df
B - —y(s)
- dy/ds l Ifds g(x(s),y(s)) dy(y s))
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. dg _dy
PROOF : ==

QL

<=> % dg 1 dx 3g
%y dy/ds ds dy/ds ds ox °’
Substitute this result in the left-hand espression of (35), integrate by

parts, and the lemma follows.

NOTES (i) If x4C’(I), but xeCO(I) and x is only piecewise -continuously

differentiable, then, if I is decomposed into segments Jj such

J

recover (35), since integrals are unaffected if an integrand is

1
that xeC (Jj), the lemma can be used on each J: and the results added to

discontinuous at only a finite number of points.
(ii) What happens if f misbehaves? 1In particular,

suppose fACO(I)' Again, decompose I into segments Kj such

that feC'(Kj). Now apply the lemma to‘each segment.

fas £(y(s)) %}g’-(x(s) ,y(s))
I

N

= z fas £(y(s)) Ex(s),5(s))
h|

£(y(s)) g(x(s),y(s)) | - 2 [as (g(s),y(S)) (Y(S))

dy/ds K. =1 K,
J J

|
Il 2

1

N
- f(y(s)) dx g
j=21 I{ds dy/ds ds 5 (x x(s),y(s) )

j

_ £ly(s)) g(x<s>,y(s))|

; ar
dy/ds Jds g(x(;),y(s)J 5 0()

I I

. f(y(s)) dx dg

ds _ ¥ 277
If dy/ds ds 7 (x(8),y(s) )
Nl g(x(s),y(s)) H(a ) (36)
dy7/ds

j=1
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where T={0.1,...0N_1} divides I into the Kj's and

H(a,) = lim [f(y(o,+ b)) - £(y(e,~ h))]. (37)
7 1o 3 ]

(iii) If y= and I=Q, then expressions (35) - (37) become much

neater.

(iv) Suppose now that I = [O,Zﬂ] and f(s) and g(x(s),s) are

2mperiodic functions. Also, suppose

f(s) = f(ms) = £f(mks) = £(2ms) (38)

everywhere, thus.  showing that
a,, m™a, , moe,, 21Ta,
J J 3. J
are all in T. Symmetry condition (3 8) shows

H(a,) = -H(m™a,) = H(mta,) = -H(2m™a,).
J J J J

Thus, in this case, the symmetry simplifies (36) to

27 27
Jds £(s) —g%(x(s),s) = -fds [£'(s) g(x(s),s) + £(s) x'(s) %{;(x(s),s)] .
0 0
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At first Pooh and Rabbit and Piglet walked
together, and Tigger ran round them in circles,
and then, when the path got narrower, Rabbit,
Piglet and Pooh walked one after another, and
Tigger ran round them in oblongs, and by-and-by,
when the gorse got very prickly on each side of
the path, Tigger ran up and down in front of
them, and sometimes he bounced into Rabbit and
sometimes he didn't.

A.A. Milne, "The House at Pooh Corner"”

In this' chapter, exact results for an elliptical, step waveguide are
obtained, the accuracy of various known approximation methods is
examined, and other approximations are developed. Combining both the
limiting cases of the circula? and the planar waveguides, a new
approximation method is exploited to provide very good estimates of

several quantities of interest.

§3.1 Background

The elliptical waveguide is a simple departure from a circular
fibre. Being one of the easiest non-axisymmetric waveguides to analyse,
it offers a good opportunity to understand such structures.

Classically the eccentricity, e, is used to describe the shape of

an ellipse. Considering figure 3.1(a), this is defined

2 2 2
e =1- py/ p,x)

where px and py are the semimajor and semiminor axes, respectively. As

well as the eccentricity, the shape of aniellipse can be described by

the inverse aspect ratio, €. This is
e=op/0,
y X

the ratio of the minor axis' length to that of the major axis. Clearly,
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e2+ g2=1,

Originally the elliptical dielectric waveguide was examined by Yeh
(1962) who, utilizing elliptical co-ordinates, presented a full solution
of the Maxwell equations. Subsequently (Yeh—Citerne, 1976) this was
simplified to a solution of the weak guidance problem, and then further
simplified to the solution for small eccentricities. Although
elliptical co-ordinates define the core-cladding interface in terms of
one co—ordinate, the description of the modes requires an infinite sum
of the basis functions and the eigenvalues are obtained from the
determinant of an infinite matrix. ‘Consequently no obvious advantage is
gained over the expansion in §2.2. On the other hand, the physical
interpretation of elliptical co-ordinates is not as easy as the (R, 6)
combination of the plane polar description.

Exact results for the propagation constants of an elliptical -cross-
section were obtained by Eyges et al (1978).

Perhaps the most appealinngay to investigate the elliptical Eross-
section is to perturb the corresponding circularly cross—sectioned fibre
(eg. see Adams, 1981, §7.2.5;Snyder & Love, 1983, §18.10). For slight
ellipticity, e €1 a series expansion in e can be constructed. Sammut
et al (1981) derived such an expansion to order e in examining
birefringence, and later Sammut (1982b) calculated terms to order eb in
assessing modal cut—-off frequencies. With the advent of good computer
algebra.systems, this expansion technique, which, in principle, can be
extended to an arbitrary order of accuracy, will become more versatile
in investigating elliptical fibres.

For the elliptical waveguide, the Gaussian approximation for

arbitrary eccentricity was obtained by Snyder & Love (§17.4).



Figure 3.1
(a) An elliptical cross section, showing the semimajor, px, and

semiminor, py, axes.

(b) The family of ellipses with an identical area. Lengths are scaled
by the circle's radius, p. ‘

Y

~
'
)
'
'

(c) The family of ellipses with an identical semiminor axis. Lengths
are scaled with py.

74
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KRumar & Varshney (1984) defined an equivalent pseudo-rectangular
waveguide which was perturbed to estimate the parameters of the

elliptically cross—sectioned fibre.

§3.2 PFamilies of ellipses

Naéurally, there is considerable interest in how certain quantities
vary as the aspect ratio of an ellipse varies. Thus, it is necessary to
characterize families of ellipses. Alas, there is no standardization on
how this is best achieved, and, as a result, some confusion has appeared
in the literature.

Basically there are two families of ellipses, as illustrated in
figure 3.1. 1In the first, ali have the same area. As ¢ decreases from
1, the shape changes form circular to gﬁ infinitely close pair of
parallel lines. These cross-sections describe fibres with identical

profile volume or canonical frequency, V, (P.4), where

-2 2 2
vV =k o, 24 pxpy.

From (P.6) it follows that the canonical length is o= /gxgy. Hence,

the canonical propagation constant, ﬁ, is defined by

U =00 (k n

where B8 is the customary modal propagation constant.
In the other family of ellipses, all possess the same semiminor
axis, py. Here, as € varies from 1 to 0, the cross—section changes from

circular to a slab of finite thickness, 2py. These waveguides are
characterized by a constant value of Vy» defined by

2 2 2 2
Vy-k Ny py 24,
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a different prescription for normalized frequency.. The normalized

propagation constant is

As ‘an example of this confusion between families, Sammut et al
(1981) in their perturbation analysis, used the sequence of waveguides
defined by Vys whereas Snyder et al (1982), using a different
perturbation method, examined the family defined by V.

Most authors have employed the Vy description of ellipses.
However, in this chapter, the family defined by the canonical
frequency, V, is examined. This is'because these profiles of equal

volume are expected to have guidance properties which are approximately

equivalent (e.g. Hussey & Pask, 1981).

$3.3 Details of solution
The solution of the scalar wave equation, (P.3), for the elliptical
step profile proceeds as outlined in §2.2. For such a cross-section,

the boundary. function is

0 2 2
Ry (6) =-3}1 (1 - e cos 8) 1/2 (1)

where p is the length scale. In the numerical computations reported
below, py was employed. In examining the results, the equal area family
was assessed and, hence,.s was utilized.

Estimated bounds on U were evaluated from the equal area circle

(82.7) and Gaussian approximation.
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§3 3.1 Fourier coefficients
The decompositions required in (2.12) can be obtained analytically,
by using Barnes' integral representatin for K,(z) (Watson, §6.5) and the

series expansion in z for J (z) (A & S, 9.1.10). These results require

the evaluation of infinite series. For example, in (2.12c),

(-]

KZn(WRB(e)) = L cos(2m6) bnm

m=0
means
2. ® 2
b = 2 ( e )m 2 ( e . )2p(2p+m)!(n+2p+m‘-l)!
7 VJ
m l+GmO 2(2-e ) p=0 2(2~e ) p!(ptm)!
' Y
XZPEm(—g_)S Komts P
<=0 27 s!(n+s-1)!(2p+m-s)!
where
2 2
Y = 2_W2 .
1+e

Consideration of this expression indicates that the determination
of the Fourier decomposition using explicit formulae for the
coefficients will, in general, be no more accurate than imﬁlementing the
well refined, numerical, fast Fourier routines available on most
computers. This latter method was utilized in obtaining subsequent
results.

It was found that these numerical calculations introduced a
relative error in the results of less than 107 and this was
insignificant when compared with the error introduced by terminating the

infinite determinant of M, defined by (2.15).
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§3 3.2 Convergence and errors

To see details of this dominant form of error, table 3.1 shows the
results obtained by truncating this matrix to various orders. As
expected, the more axi-asymmetric the cross—section, the more components
are required to achieve a nominated standard of accuracy. Calculations
stopped at 20x20 because of the limitations of the available Bessel
function routines.

Also, it is interesting that convergence improved for lower values
of V. This is to be expected, for as V becomes smaller, the field
becomes more nearly circular and fewer components in the expansion (2.7)
are needed to achieve the same level of accuracy. This improved
behaviour at these low V différs from previous approximation and
numerical techniques which have greate;ldifficulty coping with a field
that spreads further into the cladding,ybut is consistent with other
exact expansions of P (Yeh, 1962; Eyges et al, 1979).

It is interesting to compare the rates of convergence, shown in
table 3.1, with such indications as other authors provide of their
success with truncated matrices. Table 1's in both Yeh (1962) and
Rengarajan & Lewis (1980), who sought higher modal cut-offs rather than
U, show the same trends as outlined above. However, both used a Mathieu
function analysis. At e0.87 and V=1.282 (2.477), the former found 0.7%
(0.8%) variation in U as the matrix; dimension increased from four to
six. In a similar increase in the size of the determinant, the method
of chapter 2 produced a variation in U of less than 0.1%. At e=0.20, a
further increase by Yeh of the matrix to eight dimensional caused a

0.50% variation in y at V=0.822, This stability might reflect the

exceptionally low §j or be a manifestation of the same trend as is
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Table 3.1
Demonstration of the convergence of the propagation constants of the

step ‘elliptical waveguide as the order of the truncated matrix is

increased.

- dlmenszion of matri
v | ¢
G 3 1¢ i3 14 16 13 20
2.8 0,92 1.7398 | 1.73% 1.73G8 | 1.7388
0.80 1.7413 | 1.7416 1.7316 | 1.7416
0.70 S 1.7527 1 1.7828 1.7529 | 1.7929
0.60 1.7767 1 1.7717 A LLTF720 | LL7700 1 107720
0.5¢ 1.7990.] 1.6211 1.8020 | 1.8024 | 1.8025 | 1.8026{ 1.8026
Q.40 1.8129 | 1.792% FATIL 1.8532 1 1.8566 | 1.8502 | 1.€8501
0.30 . FAIL 1.9281 1.9157 | 1.9460 | 1.928¢
0.20 2.0209 . FAIL Z2.0788 | 2.0660 | 2.0G602
2.4 0.90 1.64G6 ] 1.6466 1.H466
0.60 1.6511 1 1.6511 1.6311
0.70 1.6598 ] 1.65%99 1.6599 | 1.6899
0.60 1.6740 1.0749 | 1.6749 | 1.6749
0.50 1.6957 | 1.6975 | 1.0983 | 1.69686 | 1.6987 | 1.6987 | 1.6988
0.40 1.7041 1.6596 FAIL 1.7391 1.7364 ] 1.7359{ 1.7358
0.3 FATIL 1.7948 1 1.78%98 FAIL 1.7972
0.20 1.8713 FATL | 1.9188 | 1.9064 | 1.9006
2.0 0.90 1.5291 1.8291
0.80 1.5322 1.8322
0.70 1.5334 1.9384 | 1.3364
0.60 1.5436 1.5489 { 1.5489 | 1.5%489
0.50 1.5629 | 1.98¢69 | 1.5650 | 1.30652 | 1.5693 | 1.9694 | 1.5654
0.40 1.9657 | 1.0138 TAIL 1.5943 ] 1.5891e11.9911 1.5910
0.30 FATL 1.6328 | 1.6245 | 1.6591 | 1.634C
.20 1.6891 FAIL 1.7211 1.7127 1 1.7075
1.6 0.9¢ 1.3675 1.3675
0.890 1.3692 1.3692
0.70 1.3727 1.3727 1 1.3727
0.60 1.3783 1.375% { 1.3785 | 1.37389
0.50 1.3858 1 1.3868 | 1.3872§1.3875]11.2875]1.2875( 1.3876
0.40 1.3835 | 1.3761 1.432 1.4049 | 1.4G24 | 1.4018 | 1.4017
0.30 1.4528 | 1.4341 1.4259 | 1.4191 1.4518 1) 1.427¢
0.20 : 1.466% aAIL EAIL 1.4745 1 1.4731 1.4691
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apparent in the work of Rengarajan & Lewis, where for €>2/3, the cut—off
values are stable to three decimal places as the truncation moves from
five to seven components.

The advantage of the Mathieu function analysis is, unquestionably,
that the degree of ellipticity is absorbed into the Mathieu functions
themselﬁes, rather than requiring more terms in a series or,
equivalently, bigger matrices. It is a question of whether the added
complexity of computing Mathieu functions counteracts the increased
computing resources needed to process the larger matrices. Ultimately,
this choice depends upon the machine used.

There is no general analysis of the error introduced by truncating
an infinite determinant. Onetmust proceed operationally, by increasing

the dimension, to find convergence.

$3.4 Fundamental mode propagation constants

The canonical propagation constant is plotted in figures 3.2 and
3.3.

The limiting value of U, as €+0, is evaluated readily.

Given V, the associated value

V = V/e
y

becomes small as €%. The cross—-section approaches a planar waveguide

of width 2py with normalized propagation constant U For an infinitely

yl
thin slab, as Vy+0, Uy+Vy. The identity

U= u/ve > Vy//e= v

summarizes the argument.
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Figure 3.2

For the elliptical, step fibre, the fundamental mode's canonical
propagation constant, ﬁ, as a function of canonical frequency, V.

Crosses indicate results taken from Kumar & Varshney (1984).
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For the elliptical, step fibre, the fundamental mode's canonical

Figure 3.3

propagation constant, ﬁ, as a function of the inverse aspect

ratio, €, are shown as solid curves. The broken curves are the Gaussian

approximation. The dotted curves are the linear form (2).
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To obtain the variation of U with &, as €30 and V is fixed, the

infinitely thin slab is perturbed (refer §3.A.2). The result is
(2)

which is linear in e. This is shown as the dotted portions in figure

3.3.

§3.4.1 Comments on approximations
Figure 3.3 shows how slowly U varies as e decreases from 1.

For V=2.8, € decreases to 0.7 before U has increased by 1% ;

for V=l.6, € decfeases to 0.6'before the same increase in U occurs.
That the circular profile with equal area is an accurate approximation
in this region is not surprising. Sammut et al (1981) showed that the
first order correction to ﬁ, which is of order e2, vanishes,

An indicati#n of the utility of the Gaussian approxiation is also
provided by figure 3.3. A detailed analysis of the error is tabulated
in table 3.2(a). The trend of decreasing accuracy with decreasing V is
as anticipated in §1.3. A significant disadvantage with the Gaussian
approximation is its inability to reproduce the correct value
at &1, the circular limit. Another problem is that it does not provide
a simplé, explicit formula for U(V,€).

Results obtained by Kumar & Varshney (1984), who utilized an
equivalent pseudo-rectangular mode, are shown in figure 3.2. This

approximation is seen to be accurate at larger values of V.

§3 .4.2 New approximation
In this section, a new, semi-empirical, explicit approximate

formula for TV, e) is developed. This is found to be exceptionally
b



Figure 3.4

An indication of the accuracy of the approximation developed in
§3.4.2. The circles are exact results; the solid curve is the
hyperbolic approximation (3) and (4) with the best value of o; the
dotted curves are the limiting forms (6) and (7); the broken curve is

the Gaussian approximation.
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Table 3.2

(a) The percentage relative error of the Gaussian approximation for
canonical propagation constants.

(b) The percentage relative error of the hyperbolic approximation, (3)

and (4), for the canonical propagation constants.

(a) (b)

v £ 1.060 0.75 0.50 0.35 V € 0.75 0.50 0.35
1.6 | 1.9z 1.9% 2.1% 2.4% 1.6 | -0.015% | -0.09% -0.07%
2.0 | 1.1% 1.1% 1.4z 1.72 2.0 0.007% 0.006% 0.37%
2.4 | 0.8% 0.8% 1.0% 1.3% 2.4 0.000% 0.06% 0.3%
2.8 | 0.9% 0.9% 0.9% 1.0% 2.8 | -0.03% -0.09% 0.11%
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accurate over practical values of V and all values of €. The form of
the curves in figure 3.3 motivates the approximation. For a

fixed V, each curve has two nearly linear sections near &0 and e=1,
connected by a tightly curved arc. This behaviour is reminiscent of a
hyperbola. In general such a curve is defined by five constants and has

the genéral Cartesian form
ax? - by2+ 2cxy +dx +ey+ 1 =0,

where a>0 and b<0, or, equivalently.

y=px +qXirx‘+sx +t.

Thus, it is proposed that ﬁ(e), defined on [0,1], is of this form, and
the constants need to be determined.
Firstly, at the end &1, the waveggide's cross—section is circular

which provides an easily calculated value:
U(1) = Uy,

where Uy is the propagation constant, well approximated by the Rudolph~
Neumann formula or available from tables (e.g., Snyder & Love, p.317 or
table 14-4 respectively). Further, as €1 (i.e. e»0), the correction of

order (&-1) (i.e. e?) to U, vanishes. Thus,

U'(l) = 0.
At the other end of [0,1], the limit is given in (2):

U(0) =V

and

-3
U'(0) = -V (m2)/4 =G,

defining G.
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Combining these four conditions, only one constant remains unfixed

in the suggegted hyperbolic approximation. Writing the undetermined

constant as 0, the prescription for U is

’

- 2
U=q—p€+(r+se+t€ }/2

where
- G 2
q Uo 2_8(0 Eo),
G
p=ﬂ(0+ T),
G2 2 2
r=— (0+ gy,
hey
G2 2 .
s = (o0 + gp)(o - 1),
480‘1’ )
2 N
2
t=—£—(c+r)(c+iz),
412 o
2
T= go/(1 = 2¢g)
and
V- U,
€0=—G——.

The value of €3 is significant, being the transition point in the
piecewise linear approximation, as shown in figure 3.4.
So long as 0 is positive, it remains arbitrary, and the above

system (3) and (4) defines a family of hyperbolae. If o=0,

V- Ge , e€fgg

UO , 8)60,

which is the piecewise linear curve; the limit o=,

(3)

(4a)

(4b)

(4c)

(4d)

(4c)

(41)

(5)

(6)
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- 2
(V-Up(l - ¢) T
T+ €gg

U=U0+

. (7)

These two cases are shown by the dotted curves in figure 3.4, and
provide bounds on the true values of U.

If the value
o= (0.3754) exp(=(0.6855)V)

is assumed, the relative error in using the hyperbolic approximation is
less than 0.5% over the range of practical values of € and V. A
selection of the errors is shown in table 3.2(b). In figure 3.4, the
exact results are shown as circles, superimposed on the.hyperbolié
approximation, the solid curve. |

It is apparent that this hyperbolic approximation is excellent, and
overcomes the shortfalls of the Gaussién approximation. In particular,
it provides a simple explicit expressioﬁ for U in terms of V, e and Uy,
the normalized propagation constant of the equivalent circular

waveguide.

§3.5 Behaviour of field

The co-efficients ah and Bn from expansion (2.7) were examined
for e .1 or, equivalently, (l-¢) <1, and agreed with the field
expansian obtained using a perturbation method (e.g., Snyder et al,
1982).

Another known limit for the modal field of an elliptical waveguide
is that as V+, Here the solution of the metallic waveguide (Chu, 1938)
is recovered. A célculation of @ and Bn under this condition is

awkward.
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§3.5.1 Slab limit

From expansion (2.7a), it is interesting to. obtain the field of a

planar waveguide's core. If the series representation of J, (z) (A&S,

9.1.10) is substituted, then, after re-ordering the sum,

© 2 2 -1y
UR PP (-1 @

) cos 2n6.
0=0 (ptn) ! (p—n)!

In particular, for &0 or &m —— along the X—axis --

n
(-1) @

G o) T | (8)

T ~UR
Y = Z (- A )
p=0 ) n=0
As the elliptical cross-section becomes increasingly eccentric, the
variation of ¥ along the X-axis becomes'negligible. Thus, from (8), the
coefficient of each higher power of R must vanish independently. This

condition produces recurrence relations for the set {an}, and, using

induction, an explicit solution for an/ao can be found. Notably, V/p>1,

a p=1 (-1)"(a_ /o)
B @D ] T
0 a0 (Prm)i(p+m)!
which yields the solution
a = 2ag (9
P

Returning this to (2.7a), the field of the limiting slab is,

-]

= aonfo[z—éno) Jzn(UR) cos(2n6)

<
|

<]

‘n Tr)
aonjg (2-6n0)(—1) JZn(UR) cos ZnGE

= a, cos(UY),
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as one intuitively expects. In obtaining this form, use was made of a
generating function for J (z) (A&S, 9.1.44) and polar co-ordinates
changed to Cartesians. This formalism is not restricted to the
fundamental mode, but applies to any mode with the same symmetry
property for .

Thus, the modal field pattern of a slab waveguide in its core is
obtained as the limiting form of the field within the core of a highly
eccentric elliptical guide. Unfortunately, a corresponding result in
the cladding is not possible. As R+*®, even a thin ellipse is seen as a
finite cross—section and hence the fieid cannot match that of a slab.
However, close to the core—cladding interface in the middle of the long
sides, ¥ ought to be like the‘field of a planar waveguide.

For modes exhibiting different symﬁetry, ie. described by a
different circular harmonic expansion, other generating functioms and
assumed forms of Y along the X—axis of the cross—section, produce’
different limiting forms of ¢ in the core. These always correspond to a

definite modal pattern of the core of a planar waveguide.

$3.5.2 Numerical bounds

The true utility of this analysis is in (9). If it is assumed

that, Vp>l,

0 < ap (20.0,

then bounds exist on the coefficients. A qualitative indication of the
behaviour of o as €*) is shown in figure 3.5. Why these bounds are
useful is seen from the manner in which {ah} is obtained. 1In §2.2.4,
these are the components of an eigenvector of an infinite matrix.

Truncation of this matrix, together with the inevitable numerical errors



89

S

X
o

Figure 3.5

A qualitative indication of the behaviour of the field expansion

coefficients, @, as the aspect ratio of the elliptical cross—-section
changes.
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introduced by computer solution of matrix equations, means that the

higher-order components of a will be inaccurate. By assuming

’

2a0>a1>a2>a3>...

a test exists for which components can be retained as reliable.

Typically, the sequence becomes monotonic, increasing half way to the

truncation dimension of the matrix.

§3.6 Petermann spot-size

To obtain an estimate on the way in which a field behaves, various
definitions of spot-size are available. The simplest is to fit a
Gaussian function. This is pérticularly useful in determining jointing
- off-set and tilting - losses. Sarkar‘et al (1984) used the Gaussian
field defined by Snyder (1981) to derive such losses for an elliptical,
step profile.

An alternative approach to field behaviour is to assess the way in
which it spreads out. This, in particular, influences the losses caused
by bending. Petermann (1976, 1977) related a root—-mean-square (RMS)
evaluation of Yy to the microbending losé. Intuitively, an RMS
evaluation of the field ought to provide a good indication of the way
power is distributed.

For any axi—asymmetric profile, an obvious generalization of the
spot~size for circular fibres, is to define the angularly

dependent RS(G):

2 3
¥ (R,8) R dR
(10)

2 2 2
oRS(e) = p

b

2
¥ (R,6) R dR

O+— 8| O— 8
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where p is the chosen length scale, making Ry dimensionless. Retaining
the angular dependence, Rs(e) provides an indication of both how the
field is distributed for a given angle, and how this varies with 6. For

example, if ¢ is defined by a Gaussian function

2 2
-1 X Y
iy = e (s + 1)),

then

2 2
2 AX AY
aa) - 70 cos 20)

Aty

2 .
R.(8) =

This elliptical contour represents the position at which the modal
intensity, wz, is 1/e of its maximum v;lue, which occurs at R=0,

In general, if the contours of con;tant Y form a pattern of
concentric ellipses, then RS(G) is an ellipse. For a step fibre, these
contours were shown in §2.3 to vary from elliptical near the core, to
circular as R+*», Nevertheless, for an elliptical cross-section, it is

suggested that RS(G) defines an ellipse:

2
2L

2 -
R (0) = (11)

Z Z
(1+ss) - (1- es,) cos 26

where L 'is the scaled, semiminor—axis and eS the inverse aspect ratio of

this ellipse.

§3.6.1 Spot-size for elliptical step fibre
Using direct substitution of the modal fields into (10),
computation of spot-sizes for an elliptical step fibre shows that RS(B)

is, indeed, nearly elliptical. At worst there is a 2% variation from an
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elliptical shape, and this occurs for combinations of V and ¢ for
which ¢ spreads significantly into the cladding.

The behaviour of the spot—-size is represented pictorially in figure
3.6. As either V decreases or ¢ decreases, power moves into the
cladding. The interesting feature is the insensitivity to the core's
shape; when the core's inverse aspect ratio is 0.5, the field's is
0.85. As V decreases, the field not only spreads out, but becomes more
circular. As V+®, the spot will conform more to the shape of the core.
This slow variation is better seen in figure 3.8, where the ratio

of Rs(n/Z) to RS(O) is plotted. Rs(n/z) is shown in figure 3.7.

§3.6.2 Approximation for the ;pot-size

Direct calculation of spot-sizes ié cumbersome. It is preferable
to have a reasonably accurate expression which gives a usable spot-size
as a simple function of characteristic parameters of the fibre. The
elliptical profile is characgerized by V and e. Thus, approximate,
explicit functions LZ(V,S) and es(v,e) are sought, since L and e give
R, via (11).

To determine these functions, there are several pieces of
information available. Firstly, for the circular, step fibre, the

Petermann spot-size (Gambling & Matsumura, 1977) is

2

- 2 /1 1 1 1
Wo Ug
where
Uod (U p)
Jo(Up)

and Ugp and Wy are the propagation constants of the circular waveguide

with normalized frequency V. Thus,
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V=212_e=1

Figure 3.6
The extent of the fundamental modal field intensity, 2, as indicated by

the Petermann spot-size, (10).

1-44 L
[ -—
V=16
—_— i i
w
>
Bl 14
N
(7]
0-6
o v B4 L] L ovls T T T ¥ 1
Figure 3.7

The variation in the extent of the spot-size along the Y-axis as the
inverse aspect ratio changes. The circles indicate exact results; solid

curves correspond to the approximation (21); broken curves are obtained

from the Gaussian approximation.
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The shape of the Petermann spot as measured by an inverse aspect
ratio. Exact results are shown =——— ; the Gaussian approximation is
shown - - — — ; the approximation developed in $3.6.2 is shown —-—~-
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2 2 _
L(7,1) = Ro(D) (12)

and

es(V,l) = 1. (13)

Also, as €0, the waveguide becomes increasingly like a planar

guide. 1In this case (refer §3.A.3)

2 = 3
R(8,V,8) ~——p
s 2€V sin ©
which indicates that
es(v,O) =0, ' (14)
the result intuitively expected, and
2 _ =4
L (V,e) ~3/(2ev ). (15)

This means that the strongest singularity of L2 is a simple pole
at 0.
Since € is always in [0,1], and has no other points of singularity,

it is appealing to seek 12 of the form

c(V
€

)+ T AT S, (16)
j=0 7

2 _
L (V,e) =

Consideration of (15) immediately shows
- -4
c(V) =3/(2v ). (17)
Similarly, (12) produces

o _ 2 _ _
LA (V) = Ro(V) = C(V). (18)
j=0 1
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This is one condition to determine an infinite number of quantities, the
functions Aj(V). Because € is restricted to [0,1], the series can be
truncated without too much error being produced. The dominant
dependence in this interval is on the 1/e and constant terms.

If only Ay and A; are retained, another condition must be
determined. Snyder et al (1982) gave y for a slightly elliptical step
fibre. Hence, both the conditions used to fix Aj and A) can be
calculated from the behaviour near &1, the end of thé interval where
trouble with the series in (16) is more likely to occur. Using ¥ and

redefining the shape dependence to be the small parameter

t=1=¢g,
produces
2 _ 2 . -
R (8,V,1-0) = Ro(V) (1 +.226(V) cos 28) (19a)
where
2 2
2 2 1 - 'U—2+;2
U oW 0 0
= 8 31 1 2 rl 1
G(V)=—2[—z—z+—(—z"-—2)’72(—2"—z+ - )
6XR0 UW Uo Wo UQ Wo \'4 JO(UO)
2
2 Wo
. ) 2 6 + Wg - ZW
+—X?(3 - =t — -7z )
Uy Wy vV Jo(Up)
2
Wo
2 )
+—X-q(l - ——7—)] (19b)
VvV Jo(Ug

where Uy and W, are the propagation constants of the circular fibre.

Examination of (11) indicates

L%F,¢) = R:(_“’;,, ). | (20)
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Suppose g, rather than €, is used in (16), and only Ay and A; are

retained. Recalling (19) and (20), (14) is satisfied, and

2
-A; = -C - 2GR,

which is a second equation for Ag and Aj. Thus, an approximation for L

is
2 2 2 2
L = —:ér + (R - §:4 - 26Rg) + (—i'br" 2GR g ) €. (21)
2V € \') 2V

Using this as an approxiﬁation in (20) produces the curves shown in
figure 3.7.
To find an expression for eS(V;s), observe that an ellipse
satisfies
2 .
2 ZRS(n/Z)

e, =—2——= 1,
RS( m/4)

2
where RS(W/Z) has been approximated already. An analogous method

2
gives RS(H/4) and

., R
eRo(V) (1 = G(V)(1-¢))

2 .
eS(V,e) = v
Ro(V)e + 2C(1~-¢)

For this definition to be meaningful, it is necessary that
[ > 46(V)(1-¢),

which has not been proven, but extensively tested numerically. This

approximation for € is plotted in figure 3.8.
s
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§3.6.3 Accuracy of approximation

Figures 3.7 and 3.8 indicate the accuracy of the above
approximations. The dotted curves corréspond to the Gaussian
approximation.

For an improved approximation, more terms could be retained from
(16). If the perturbation of the circular fibre proceeded to another
term, there would be a further term in (19), corresponding to the
retention of Ape The form for L would see the point at which the
"rising” occurs, move closer to e0. The e1 end requires higher-order
terms to retain relative accuracy; the singularity at &0 dramatically
swamps other effects.

This method of expressing parametric variation in € by simple
functions could be extended to other quantities of interest. It is"
stressed that (21) is not a Taylor series, the coefficients of the
orders of € are found from both ends oé the interval, not just one. The
ease with which slab limits are evaluated for constant V shows, once

again, the value of the equal area families.

§$3.7 Birefringence
§3.7.1 Exact results

Using the condition on the components of the field explained in
§3.5.2, the birefringence of the elliptical, step fibre was
calculated. Using the boundary function (1) in (2.31), it follows that,
for the ellipse,

J! (UR)) J."(UR)) 2
2 (6 = 2ecos 20- 4 (2P T )((1+n Yeos 26 - 21),

nm B
Tpn(URg)  Jpq (URp)

(22a)
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where
2 2
_ e _1 -
n= 2 2
2 - ¢ 1+ ¢
giving
© /2
B =% I (26 Ja o fde°°3(2ne)°°s(2me) 2 Iy (ORI, (URDE__(6).
P vyl n=0 m=0 0 (1 ~-ncos26)

(22b)

Computing Bp produced the solid curves shown in figure 3.9.

As € decreases, the peak value of Bp increases and the value of V for

which this is attained increases.

Also shown in figure 3.9 are vélues taken from the curves of Dyott
et al (1979). It is curious that these agree with the computed values
for moderate eccentricity, but as the aspect ratio declines — notably
at e0.5 - the sets of values diverge. The source of this discrepency
could be in one of two places. The field truncation mentioned above may
retain too few components. Typically, for analysis involving matrices
which were 10x10, up to a3 or a, were used. It can be seen from figure
3.9 that no dramatic change in the form of the curves exists to indicate
the shift form 4 to 5 field components.

The other possibility is an error in the calcultions of Dyott et
al. They claimed to employ the full vector solution of the Maxwell
equations (Yeh, 1962). This means that the.propagation constants for
the two polarizaion states were independently obtained. The analysis of
§2.4 assumes the weak guidance formalism. However, it is surprising if
the two methods give such significantly different answers. When Cozens
& Dyott (- Citerme) (1979) evaluated the higher modal cut—off

frequencies, they erred in employing the assumptions of Yeh (- Citerne)
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Figure 3.9 \/

For the elliptical step fibre, normalized birefringence, B_, as a

function of canonical frequencv, v. The solid curves are Zxact results;
the broken curves are Gaussian approximations; the dotted curve is
obtained from the e? perturbation (Snyaer & Love, 1983, (18-25)). o are
taken from Dyott et al (1979); are taken from Rumar & Varshney

(1984); A are obtained from a series correct to b (Sammut et al, 1981).

L ' ' ' -

cO
1F .
0 L i 2 A
0 02 04 06 08 10
Figure 3.10 E;

Values of higher-mode cut—off on an elliptical step fibre. The solid
curves are exact; A are values from Rengarajan & Lewis (1980); o are

values from Cozens & Dyott (~Citerme) (1979).
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(1976) whose results Citerne showed to be relevant only to small
eccentricities. This will be explained in §3.8. If Dyott et al

employed the same assumptions in calculating Bp, then the disagreement

for e=0.5 is resolved.

§3.7.2 Approximate results

The broken curves shown in figure 3.9 are the birefringence values
calculated using the exact Gaussian approximation for the elliptical
fibre (defined by Snyder & Love, eq.(17-20)). These curves are seen to
reproduce the correct qualitative form. However, their value as an
estimate is doubtful. They remain gpproximately 20%Z below the true
values with V>2, but below this point, they decrease rapidly, to vanish
much too soon at V=1, The true curves peak at a lower value of V than
the Gaussian approximation does.

Selected values from Kumar et al &1984) are shown. It is apparent
that their pseudo-rectangular approximations agree much better with the
results obtained here, than with the results of Dyott et al (1979).
Thus, as a simple approximation, the pseudo—rectangular profile is more
useful than the Gaussian, at least for higher eccentricities.

For only slightly eccentric cross—sections, the series solution in
e? is the most reliable approximation. At this point it is interesting
to mention yet another birefringence parameter used in the literature.

2

For a small e series, it is customary (eg. Adams et al, 1979; Love et

al, 1979; Sammut, 1980a & 1980b) to divide by e2, defining
~ 2
B =VB /e.
p y P
A further numerical factor may involve a power of two. The series

solution in e2 (pove et al) was employed to produce an approximate
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solution at &0.9, a curve which follows the exact result very well.

2

After much tedium, the e“ result can also be obtained from (2.29).

For 0.5, results from Sammut (1982a) indicate that the series in
e4 does require extension to higher—order terms before its accuracy
improves sufficiently to be useful. However, with the aid of computer
algebra packages, this should be possible. As Sammut mentioned,
birefringence is a small quantity and, rather than subtract two numbers
which are almost identical and thus introduce an error of comprable
2

order to the difference, it is preferable to obtain a series in e

which, in principle, can be derived to arbitrary accuracy.

§3.8 Cut-off frequencies

Figure 3.10 shows the scalar cut-off frequencies, V for the-

co?’
first two higher-order modes, the LP%I; and LP?l—modes. These were
calculated by the method explained in 62.5, using the boundary function
(1). It is clear that the LP%l—modes, corresponding to a cosine
expansion in §2.5, delineates the limit of single-mode operation. For
this mode, the results agree with those of Rengarajan & Lewis (1980).
Subsequently Sammut (1982b), employing a series correct to order e6, and
Kumar & Varshney (1984), utilizing an equivalent pseudo-rectangular
profile, matched the same results.

Cozens & Dyott (-Citerne) (1979) claimed to evaluate the first
higher-modal cut-of frequency. However, their results do not agree with
others. Black (1984) suggested their solution corresponded to the LP?I—
mode, not the LP%l-mode, but this is not the case, as figure 3.10
shows. Rather, the explanation of the Cozens & Dyott results was

provided by Citerne. Cozens & Dyott employed the analysis of Yeh (-

Citerne) (1976). This is only valid as e+l. An approximation was used,

but its limitations were unrecognized.
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Approaching the planar structure, ie. €*0, more and more modes
approach the cut-off value VCO=O. Thus it becomes difficult to resolve
the first higher-order mode from the second. Black (1984, ch.6) provided
a qualitiative discussion of this behaviour. This degeneracy of higher-
order modes is similar to that discussed in §1.1.E for the infinite

linear profile.

§$3.9 Summary

Within the weak guidance approximation, the method for solving step
profiles, as explained in chapter 2, was employed to obtain exact values
of some parameters for the waveguide with an elliptical cross-seétion.
In particular, the propagation constant of the fundamental mode, the
normalized birefringence, the cut-off frequency of the first higher-
order modes of two different symmetry éatterns, and, after generalizing
the Petermann spot—-size to a non—axisyémetric fibre, an angularly
dependent spot-size.

Since the exact solution is cumbersome, examination was made of
various approximation methods - both new and existing. Special emphasis
was placed on the variation of parameters as the aspect ratio of the
cross—-section changes.

In such examinations, it was found the the family of ellipses with
constant area was the most useful characterization. While the slab is
the limiting form of the elliptical cross~section, for this family the
planar guide has zero thickness. It is possible to obtain simple,
analytical expressions for the limiting values of the parameters.

Combined with the known simple expressions for the circular cross-—

section, these provide conditions at &0 and &1 for simple functions
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of € which well approximate the waveguide parameters. Good
approximating functions of € and V were given for the fundamental mode's

propagation constant and for the angularly dependent spot-size.

§3 .A.1 Appendix: Properties of ellipses
One of the familiar descriptions of an ellipse is in terms of

Cartesian co—ordinates

i er N
+
«® rJ% N
]
‘:—‘

where P, and py,'shown in figure 3.1(a) are the semimajor— and
semiminor-axes, respectively. The eccentricity, e, and inverse aspect
ratio, €, are given by

2 2" 2
e —l--oy/px
and

e=1p/p .
y X

€ is more sensitive to changes in the shape of the ellipse. For
example, if pX=2py, but e=0.866. Thus the eccentricity is close to 1,
even for considerably elliptical shapes.
An alternative description of the ellipse can be obtained in terms

of polar co-ordinates:
2 2 2 2 2 2
PR =1 = py (1 - e cos (6)) (3)

where p is a normalizing length scale. Rearranging (23) gives

P 2 2 -
RB(G) =-BZ (1 - e cos (6))yz (24)
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which defines the boundary, i.e. normalized distance from the origin, as
a function of polar angle.

As e?0, perturbation methods applied to elliptical waveguides, give
series expansions for various parameters in bowers of e2. To see that
this should be so, expand (24) into a Fourier series. The process
proceeds tediously, but exactly:

P 3/2 ® 2 r
R (0) = (p_Y) 2 cos(2r8) (e )%

I Z
/r (2-e22pm0 L F 80 e T

where

. o 2
Q=) =, 2p'I'(Zp'+ r + 1) .
T p=0 2(2-e ) p!(ptr)!

2

Thus, the series is in e“, which is equivalent, for perturbation

purposes, to a series in (l-g).

83 .A.2 Appendix: Slab limit of propagation constant -
Consider the exact expression (Snyder & Love, (18-4))

2
\

2 2 y
Y Ve Ty B0 e T8 et 25)

(2]

which compares the propagation constant of an elliptical waveguide with
that of a slab with the same value of Vy. Uas 8o wé refer to the
elliptical guide and Ug, gs,ws to the slab.

By symmetry, the integrals, evaluated over the infinite cross-

section, can be restricted to the first quadrant. Here,
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cos USY
cos U ,» X1
s
v = -0 Y (26)
— , DI,
s
e

The modal field of an elliptical waveguide decays away from the axis,
and at a sufficiently large distance is effectively zero. For a highlyk
eccentric ellipse, the modal field near the centre of the cross-section
is almost identical to that of a slab. For a particularly narrow slab,
the difference should be even less significant. Also, beyond the ends

of the elliptical cross—section, the field will be negligible (§3.6.1),

since €+0. Thus, for very small ¢,

ws + 0(¢) P XK1l/e

0(¢) ., X>0 .
Uéing this expression, the integrals in (25) simplify to

/e 1 2
fax fay v
2 2 2 0 o

U, - U =vy 71 ol (27)
[ax [ dy v,
0 0

since away from the indicated domain of integration either 8e=8g
or we=0 to dominant order. For a finite value of V, Vy is exceptionally

small:

(28)
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which is small, and, from (26),

2 2 2
A ¢
1452 - =2— , Wl
w ~s
S W (1-1)
e , YO1 .

Thus, evaluating the integrals in (27) and using these limiting forms,

produces

recalling the transformation from v to'Vy

, etc.
§3 .A.3 Appendix: Petermann spot-size of slab

The field of a planar wavegide is expressed in (26). If this is

substituted into (10), the angular spot-size is obtained:

1 (VB (1) "™+ 2(WH1) + UMH(WHD) (WH3) = 3U W S(W+2) + 3WS6) (29)
20 % %sin 20 (U*(1+w) 2 + UA3(2+W) - wH)

Here the normalizing length scale is the slab's half-width, py. This,
as expected, gives contours which are parallel to the sides of the
planar guide. These can be considered as ellipses with eccentricity

e=l. Of particular interest is the case when 6= 4q/2,
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As explained in §3 .A.2, when the slab is considered to be the

limiting case of a family of ellipses characterized by V, then
U2 +V2 - V42 ; w > U2

Using these asymptotic expressions in (29), with 6= %mn/2, gives the

result
-2
R (7)) ~ 2o, G0

and the difference in length scale - py in (29) and p in (15) - explains
the factor of € in the left—hand-expression of (30). The conversion

between notations is
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You remember how Pooh discovered the North
Pole; well, he was so proud of this that he
asked Christopher Robin if there were any other
poles such as a Bear of Little Brain might
discover.

"There's a South Pole", said Christopher
Robin, "and I expect there's an East Pole and a
West Pole, although people don't like talking
about them.”

Pooh was very excited when he heard this,
and suggested that they should have an
Expotition to discover the East Pole.

A.A. Milne, "Winnie-the-Pooh"

In this chapter, the method outlined in chapter 2 is used to calculate
the scalar propagation constahts, birefringence, and cut-off frequencies
of a dielectric waveguide with a rectapéular cross—section. These are
then compared with various approximatiops. In particular, the equal-
area elliptical waveguide is shown to be a useful first approximation.
The variation of guidance parameters for a sequence of equal-area

rectangular cross—sections is examined.

$4.1 Background

As well as the elliptical cross—section, waveguides with a
rectangular cross—section have attracted considerable interest.
Although the rectangle is a simple shape, the fascination has a genuine
application in view: the rectangular cross—section appears in
integraﬁed optical structures and in the guidance mechanisms of some
solid state, lasing devices.

Alas, no analytic solution, comparable with Yeh's (1962) early
resﬁlt for the ellipse, exists. Even within the weak guidance

approximation, separated solutions of the scalar wave equation do not
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