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PREFACT:

This thesis is concerned with a study of some aspects of the
probability generating‘functional (peg.fl) and its application to a
variety of problems in the theory of point processes., Several of
these problems are new, in particular the questions of existence and
nixing for cluster processes. Others have been studied before, but
the present unified approach may have some didactic advantages as well
as giving elegant proofs of individual résults.

The p.g.fl is one of a number of functionals which have been
introduced into probability theory from time to time, The senior member
of the family is the characteristic functional (c.fl), due initially
to Kolmogorov [42] in 1935 for set functions on Banachbspace and
rediscovered simultaneously in 1947 by Bochner {11] and Le Cam [LL];
another form of definition is in Shiryaev [77]. A useful survey of
vork up to 1960 is contained in Prohorov [70] (see also Moran [60]
§6.,16 and Grenander [24] §1.L4 and ch. 6). Recently the c.fl has become
part of general investigations into Fourier transforms on abstract
topological spaces, especially whether analogues of the theorems of
Bochner and Iévy for characteristic functions are valid e.g. Badrikian
[2] and Von Wandenfels [0C].

The idea of a moment generating functional to describe the age-
distribution of a population at a given time is due to D.G. Kendall
(34] in 1949, He also recognised its connection with a set of cumulant

functions or product densities. Further development of this approach
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may be found in Bartlett and Kendall [7] and Bartlett's book [6],
where also the first mention of the p.g.fl occurs. However this is
alwvays assceiated with a population whose size is finite with probability
one, a situation we wish to generalise in this thesis. For the almost
surely finite case, a theory of the p.g.fl is contained in Moyal [61]

and Harris [28] ch. 3.

The remaining menber of the functional class is the Laplace
functional, introduced by Jirina [32] in 1962 for a study of finite
non-negative random measures and subsequently used in [33] and Mecke [5T].
One of his achievements is to derive a characterisation of weak
convergence of these measures in terms of Laplace functionals, a concept
which seems open to generalisation to point processes.

An obvious question now is, why choose the p.g.fl for study in
preference to the other available functionals? The answer is twofold.
Firstly, we shall see in Chapter 1 that there are several classes of
moment measures which we can associate with a point process, each in
turn associated with a particular functional. It turns out that the
class of measures least arfected by diagonal concentrations is the
one associated with the p.g.fl. This aspect is developed in Chapter 2,
Secondly, a principal attraction of the generating functional method is
its potential for facilitating proofs of general limit theorems for
point processes., Many such theorems assert convergence to a Poisson
process, which is most naturally associated with the p.g.fl. This is

further explained in the introduction to Chapter k.
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More difficult to answer is vhether the p.g.fl merits further
intensive study. The applications given in this thesis are certainly
encouraging but in the area where most was expected from it, namely
limit theorems, there are several unsolved problems barring progress
towards a general theory. However it is not at all clear whether these
difficulties are symptomatic of an overall intractability in the method
or merely‘technical matters brought about by the infancy of the subject,
and this is certainly worth consideration in the future. Also, even
if the hopes held for the p.g.fl in the theory of point processes are

|
overoptimistic Dr D. Vere-Jones has stated in his reply to the discussion
of [88] that '... it seemed to me that its [the p.g.fl's] usefulness
had been understated in the past, and that there was a need to redress
the balance', a statement which the author supports and which is the
motivation for this thesis.

We conclude with a brief summary of the contents of the thesis.

Chapter 1 is largely expository and draws together various facts
about point processes needed in the future. The literature in this field
is widely scattered, so that it is easy to miss useful contributions,
but it is hoped that nothing of importance relevant to this thesis has
been overlooked. In this chapter we give a formal definition of & point
process followed by some relevant properties such as stationarity,
ergodicity and mixing, convergence in distribution and infinite
divisibility.‘ The various classes of moment measures are also defined.
A result on the interpretation of an arbitrary stationary point process

as a marked point sequence in the sense of Matthes [55] is proved, and



used to show the existence of a 'batch-size' distribution for multiple
occurrences of events,

Chapter 2 introduces the p.g.fl of an arbitrary point process,
following Vere-Jones [87], and we prove a number of properties analogous
to those of the more cormon probebility generating function. ‘These
include continuity, a theorem specifying which functionals are p.g.fls,
and a characterisation of convergence in distribution by convergence
of p.g.fls. ©OSome examples of p.g.fls are given, in particular that of
the doubly stochastic Poisson process. The connection with the factorial
moment measures is then explained and put on a rigorous basis with the
proof of a finite Taylor-type expansion for the p.g.fl and its logarithm.
We give characterisations of ergodic and mixing poinrt processes in terms
of relations involving their p.g.fls, related to ideas of Leonov-[hT],
and use them to establish mixing for several classes of point processes.

The important class of cluster processes is studied in Chapter 3.
We first state the fundamental p.g.fl equation for a cluster process,
due to Moyal, and give some examples of models introduced for various
purposes. This includes results showing that several apparently distinct
classes of point »rocesses can be identical., Then comes a section on
existence criteria for cluster processes, in the sense of having finite .
numbers of events in bounded sets with probabiiity one. The general
neceésary and sufficient conditions obtained are applied to several of
the examples mentioned above. The results of Chapter 2 are now invoked
to prove a wide-ranging theorem on mixing in cluster processes, with

applications to the class of infinitely divisible point processes.



Asymptotic results for the cumulants and probabilities of a generalised
Bartlett~Lewis model ([L4], [49]) follow, and a neat proof of the form of
the equilibrium distribution is given in a particular case. Finally,
we indicate applications of the p.g.fl to various aspects of infinite-
server queueing systems.

Limit theorems for point processes are the subject of Chapter k,
The introduction explains some of the problems encountered in trying to
set up a general limit theory using the p.g.fl. We establish the
Weak and Strong Lews of Large Nurbers for point processes, under
suitable conditions, using a recent result of Daley [15]. The theory of
Chapter 2 is then used to derive a canonical form for the‘p.g.fl of
an infinitely divisible point process, based on previous work for the
generating functions, and this in turn provides some gharacterisations
of such processes including an equivalent of the 'accompanying laws®
theorem in terms of p.g.fls. Then we establish Poisson convergence for
a variety of operations on point processes, one of which illustrates the
application of the Taylor expansion of Chapter 2, These operations are
superposition, random deletion and random translation.

In Chapter 5 we use the p.g.fl to study the identifisbility of
the two parametric functions ih a doubly stochastic Poisson process
whose mean process is linear. This involves deciding when these functions
are uniquely determined by the process, i.e. by its p.g.fl, although
we never attempt to estimate them. The emphasis throughout is on the

point process although in the author's paper [91], on which this



chapter is based, additional results for the associated linear process
are given in a more general setting. We prove that both functions
are identifiéble, under certain conditions, from quantities which
may in practice provide reasonable estimators,
It is intended to submit the results of this thesis for

publication in the near future.



NOTATION

We invariably use P to denote a probability measure, the space
on which it is defined being clear from the context. P will always be
the univariate or multivariate probability generating function (p.g.f.)
of a discrete probability measure.

E{*} indicates expectation with respect to the appropriate P,
For the variance of a random variable we write D(-).

The letters a.s., p., d., above an arrow, e.g. %QS, indicate
convergence of a sequence of random variables almost surely, in
probability or in distribution respectively (see especially 1.3).
Above an eguality sign, e.g. g, they indicate equality in that mode.
In the text a.s. means almost surely, that is with probability one.

Theorems, lemmas and equations are numbered independently and
consecutively in each chapter., Thus the ordered pair x.y is
expression y in Chapter x.

XA(.) is the indicator function of a set A, namely XA(t) =1
if t e A, O otherwise.

L.H.S., R.H.S. mean the left-hand side and right-hand side of an
equation.

All other notation is explained as it is introduced.

xiii



1. POINT PROCESSES

l.1. Introduction

A general theory of point processes is of comparatively recent
origin, although particular cases have been extensively analysed.
There are two areas of greatest interest, corresponding to processes
with finite or infinite numbers of points. Population processes are
the principel members of the first ciass, and here the theory is due
initially to Bartlett [ 3], being substantially extended and completed
by Moyal [61] (see also Harris [28] chapter 3). The more comprehensive
case of infinitely many points was first discussed by Wold [92].
Then Khintchine [39] published a fundamental monograph on the
general theory of streams of events which has led to a rapid development
(cf. Ryll-Nardzewski [7€¢], Moyal [61] §6, Matthes [55], Beutler and
Leneman [10]). ‘Contemporarily their concepts are being extended to
random measures on topological spaces (Lee [45], Agnew [11], Mbéke [561).
This chapter is mostly expository, and aims to set out the basic
definitions and properties of point processes in one dimension needed
in this thesis. Drawing on many of the above accounts we give a formal
definition énd one useful generalisation to marked point sequences
(Matthes [55]). Then follows a long list of known properties required
later. A new proof for a basic relation is given to illustrate the
potential of the marked point process notion. Finally some special

processes are introduced for future reference.

1



1.2, The Definition of a Point Process

Probability theory is concerned with a space of events {, and
a probability measure P defined on suiteble subsets of the space.
In the theory of stochastic processes, where the events are functions,
the well-known Kolmogorov theorem (Kingman and Taylor [41] p.381)
shows that P can be uniquely defined by extension of a consistent
set of distributions over values of the functions at a finite set of
points in their domain., It turns out that the sawe is true for stochastic
point processes after some extra conditions are imposed.

Let § be the set of all countable sequences of real numbers {ti}
without limit points and let N(A) be the cardinality of the set
{ti € A} for all Borel sets A on the real line. Then (.) is a

counting measure (i.e. a non-negative integer-valued set function

countably additive on the Borel sefs). Since {ti} has no limit
points N(e) is obviously finite on bounded sets. It is known (lioyal
[61]) that there is a one-to-one correspondence between { and the
set of all o-finite counting measures N(.), which we can therefore

also denote by Q.

Consider now a set of functions p(Al,...,Ak; rl,...,rk) where

k,rl,...,rk are non-negative integers and A Ak are Borel sets.,

l’nco’

In order that they be the finite-dimensional distributions of a point
process tﬁey must satisfy the following consistency conditions:

(1) (A seeesh 37 geaesr ) = DA, ,euesA, 3T, see.,r, ) for any
1 1 k 1l 1,773 1.
permutation (il"'°’ik) of (1,..4,k).

o0
(2) p(Al""’Ak;rl""’rk) >0 and X p(Al,...,Ak,A;rl,.,.,rk,r)
) r=0
= p(Al,...,Ak;rl,... ,I‘k) .




(3) p(A1 G oees W Ak;r) = X p(Al""’Ak;rl"“’rk) where

rl+...+rk=r

the Ai are disjoint.
(4) If a sequence of bounded sets A ¥ B, the null set, as X
then %iﬁ p(Ak;O) = 1.

The fundamental result is
Theorem 1.1. (Moyal [61], Harris [28] p.55, Nawrotzki [£3]).
Corresponding to a set of functions p(Al,...,Ak;rl,...,rk) satisfying
(1)-(4) there is a unique probability measure P defined on the
O-algebra F generated by the cylinder sets {H(‘);E(Al) = rl,...,N(Ak) =

rk} for which
P{N(Al) = rl,...,N(Ak) = rk} = p(Al,...,Ak;rl,...,rk).

A point process is specified by the triple (@, F, P). Since

the Borel sets on the real line can be generated by half-open intervals
(Halmos [26] p.62) we may consider the p(+3+) of Theorem 1.1l. only
for disjoint half-open intervals., This is sometimes convenient.

A word on conventions is in order. We use 'point process' and
'random stream' interchangeably, dropping the adjectives if no ambiguity
arises. Notationally, we write N(.) for an arbitrary point process,
because of the 1:1 correspondence between points and counts, though
our outlook may vary between tﬁe two. N(.) is always assumed to be
finite on bounded Borel sets. All our point processes evolve on the
real line, though there is no difficulty in principle in extending the
definitions at least to higher dimensions (Goldmgn [22]) and arbitrary

spaces (Moyal [61]).



We mention one extension of this basic scheme, due to Matthes [55].
With each point ti is associated a mark ki from o fixed measurabie
space [K, K], so that the event space is Q = (=2, ©) x K with
counting measure 1(e) taken over sets I X L, where I is a Borel

i

set and L < K. A marked point process (QK’FK’P) can now be defined
'

as before, and has a variety of applications in theory ([55] and 1.k4)

and practice (energies of earthquakes, velocities of cars or electrons).

1l.3. Some Properties of Point Processes

A point process N(+¢) is stationary if all‘its finite~dimensional
distributions are invarient under translation, This concept occurs
frequently in our work. If we define the translation operator T by
TtA = {x:x+t ¢ A}, for some Borel set A, +then stationarity means

t t
p(T Bisees,T Ak;rl,...,rk) = p(Al,...,Ak;rl,...,rk).
8.5,
We see that if N(e) is stationary, N(-», ©) = 0 or ® and

P{({x}) > 0} = 0 for all singletons {x}; cf. Ryll-Nardzewski [T¢].

A stationary stream is orderly if+

P{nfo,t) > 2} = o(t) as t ¥ O

(Khintchine [39] §1). It has no multiple occurrences if each point of

the stream has multiplicity one., Clearly this is true for orderly
streaus.,
A stationary point process is ergodic if all events invariant under

translation have probability zero or one. A necessary and sufficient

T we write N{a,b) instead of N([a,b)), for typographical convenience.



condition for ergodicity is (Rosenblatt [73] p.110)

t
lim %f P(A A T"TB)dr = P(2).P(B) for all A,B e F. (1.1)
(@]

£

The process is mixing if
1im P(A n T °B) = P(4).P(B) for all AB e ¥, (1.2)
o0

and is weakly nmixing if

%
lin £ [ |P(a » 77"B) - P(4).P(B)|aT = 0 for all 4,8 € F. (1.3)
(o]

L0
Obviously mixing = weak mixing = ergodic (Matthes [55]).

The superposition of n independent point processes Nl(t),...,Nn(o)

is simply the aggregation of all their points, and is written Z?=1Hi(-).
The finite-dimensional distributions are derived by convolution, so
the probability law of the superposition follows from Theorem 1l.1.

A sequence {Nn(-)} of point processes converges in distribution

da
to a point process N(.), in symbols Nn(-) + N(¢), if all the finite-
dimensional distributions converge in the usual sense. For a stronger

conceﬁt, see Jirina [33].

We can define integrals with respect to a point process (counting

measure) by+

[ £(t) an(t) =2 2(t,) (1.1)
i

for such functions f as ensure the integral exists (Moyal [€1]).
Obviously the class of functions which vanish outside some bounded
interval makes the integral finite, and other criteria are considered

later.,

————————— [oo]
t f will always mean f .

-CO



The moment structure of a point process is determined by a set of
moment measures, namely expectations of product counting measures on
QX ... X Q. The first moment measure M(¢) = E{N(+)} (it is easily
shown to actually be a measure) is always assumed to be a Borel
measure, (Halmos [55] p.223). Thus E{l(A)} < » for a bounded set A
which implies N(A) < ® with probability one, an assumption already
made. Tt is easy to see that for a stationary process M(A) = m|4A|,
where |A| is the Lebesgue measure of A and m = E{N[0,1)}
is the intensity of the process.

The higher moment measures are defined like M(g)(A X B) =
E{N(A)N(B)}, and it is obvious that they have concentrations on

subsets of lower dimension. This is inconvenient, and it is more

useful to work with the factorjial moment measures Mh(') defined by

analogy with the usual factorial moments (Moyal [61], Vere-Jones

[88])'I~ . For example
14,(A x B) = E{N(A)N(B)} - E{N(An B)},

vhich equals M(Q)(¢) if AnB=¢ and reduces to the usual
factorial moment if A = B, Under reasonable conditions (N(+)

stationary and orderly for example) the aberrant concentrations now

vanish.,

We can also define factorial cumulant measures Cn(o) by the
usual moment-cumulant formulae. If these measures are absolutely

continuous we may speak of factorial moment and cumulant densities

T Note that the notation of these papers is reversed.



mn(o) and cn(-), which are the product densities of Bartlett [ 6]
pp.83, 122, 'These densities exist for stationary orderly streams
under mild extra conditions. For a stationary stream the covariance
density cz(u, v) = cz(u-v)? and similarly in higher dimensions.

Fubini's theorem now shows that for integrals (1.l4)
E{f £(t) an(t)} = [ £(¢) nM(at) (1.5)

if  [le(t) |M(dt) < «, in which case the integral exists. Similar

considerations apply for higher moments; for instance
p{f £(t) an(+)} = [ £2(¢) m(at) + [f £(t) £(u) c,(at x au) (1.6)

if 02(-) is a Borel measure on the plane and the R.H.S. integrals
converge absolutely. By taking f as an indicator function we get
the moments of N[O, t) in terms of moment measures. These results
are in [87], [88] and Cox and Lewis [1k] chapter L.

A point process is weakly staticnary if its first and second

order moments are invariant under translation. Using the identity
2 Covi{lN[0,t) ,0[t+v,t+v+u)} = D(t+v+u)=D(t+v)-D(u+v)+dD(v), (1.7)
where D(x) = D{N[0,x)}, Daley [15] has proved

Lemma l.,1l. A weekly stationary point process uniquely determines a

o-finite measure u(+) on [0, ©) for which e'lu([o,e]) *,% as

f+o, o= Lim wiD(u) < w, and
uyo
D(u) = v’u({o}) + / (ggg_zgg)2 (ae) (1.8)
(o) 40 H

This has close connections with the spectral analysis of point



processes introduced in Bartlett [ 4 ] for orderly streams., If
v(de) = u(as) - E%Q is totally finite then c2(u) = f:cos Bu y(aé),
and if c2(t) is integrable, as assumed by Bartlett, then vy(+) is
gbsolutely continuous and defines a spectral density function g(©).
Our survey of properties is necessarily brief, and reflects the
requirements of the thesis. Further general results for point
processes may be found in Khintchine [39], Ryll-Nardzewski [761],
Slivnyak [78], Matthes et al. [55], [36], [20], Fieger [19], Cox and

Iewis [14], and Beutler and Leneman [10].

1.4, A Theorem on Stationary Streams

A fundamental result for stationary point processes is that the
parameter )\, defined by ) = %}g thl p{x[o,t) > 1}, always exists
(Khintchihe [39] §7). Obviously ) < m, so that we always have
A < ». Korolyuk's theorer ([39] §11 and Zitek [93]) states that
orderliness is necessary and sufficient for A = m,

As we know, orderliness implies no multiple occurrences. Conversely,
Dobrushin's lemma (Volkonskii [89]) seys that if there are no multiple
occurrences and m < © then the stream is orderly.

Any extension of Korolyuk's theorem to non-orderly streams
requires the notion of a 'batch-size' distribution for the number in
a multiple occurrence, if such a quantity exists. Its existence may
be deduced by the powerful analyticai methods employed in Slivnyak
[78], Beutler and Leneman [10] and Fieger [19] for other purposes.

Recently Milne [58], using a technique of Leadbetter [L43], has given



a neat proof of more general extensions. Ve apply the same technique
to prove Khintchine's result for a marked point process and show

how some theorems for general stationary streams flow from it.
Iemma 1.,2. For a stationary marked point sequence (QK, F.s P)
e —— (2N

. P{N([0,t)xL

) = 1} _ — h
ifg PIN(10,5)5K) > 1} - m(L) L= K

exists and is a probebility measure cver K

. i i+l
1oar w5, =) x1) 21

Proof: Let Xin(L)

0 otherwise

"1 =0,1,000,n=1 and L2 K. A direct imitation of Leadbetter's
proof now gives

1im ™1 P{([0,t)xL) > 1} = E{n([0,1)x1)} = A(L), (1.9)
tto

A(K) = X, the parameter., An identical procedure with > 2
establishes Dobrushin's lemma and hence that (1.9) is still true with

=1 on the L.,H.S. Thus

. P{u([o,t)xL) = 1} _ A(L) _ o
Py 2T GIAEI ) S WA LK

Since A(+) is obviously a finite measure over K the proof is

complete. \

Now for a given stationary stream N(:) we define a new orderly
stream N¥*(¢) by counting multiple events of N(¢) as single events.
Thus N(°*) is a marked point process with K = {1,2,...}, the mark
of an N¥(.) event being its multiplicity. I4 ¥¥(.) is stationary,

then teking L = {k} shows that M k=1,2,... is the desired



10

batch-size distribution, i.e. the probability of k events given
(o]

that at least one has occurred. The mean batch size is & = Zk:lkﬂk

and Aa = A o

(o]
= 1 =
e T

It remains only to shov that ¥¥(e.) is stationary when N(.) is,
Suppose this were not so., If P*(zl,...,zk; Il,...,Ik) are the p.g.fs
of the joint distributions of N#(.), [zil <1 i=1,..4,k, then
for some integer k > 0, some intervals Il""’Ik’ and some t, we

must have

t

: . t
P*(Zl,...,zk; Il,‘a.’lk) # P*(Zl,...,z H T Il,cco,T Ik) (l.lO)

in a neighbourhood of (0,...,0). Otherwise there is a sequence of
points, having (0,...,0) as a limit point, for which equality holds
in (1.10), so that it will hold for all Zyseessly in the unit sphere,
a contradiction. Hence taking (zl,...,zk) = (0,.004,0) in (1.10), as

we may, we get

p%(0,4..,0; I Y1),

T
l,...,Ik) # p#(0,4004,0; T IiseeesT L,
But obviously p*(0,...,0; Il""’Ik) = p(0y444,0;3 Il""’Ik)’ which
is stationary by assumption. This contradiction proves that N¥(.)

is stationary, and so any stationary stream may be regarded as a

stationary marked point process.,

Theorem 1.2. For a stationary point process the batch-size

distribution ﬂk exists and has & mean equal tc %ﬂ
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1.5, gSome Examples of Point Processes

The most important point process is of course the Foisson
rocess, characterised by being the only stationary orderly stream
with independent increments i.e. #(I), N(J) independent if I A J = ¢.
(Knintchine [39] 83). Its finite-dimensional distributions are thus
products of the usual Poisson distributions. If its parameter ( =
intensity) is A, we spezk of a Poisson (A) process.
As is well-known, the Poisson process is a special case of a

renewal process, for which the intervals between events are independent

(Khintchine [39] §13, Smith [791).

Without orderliness we get the compound Poisson process ([35] §8),
which may have multiple occurrences and is a special case of the

situation in 1l.k4. Omitting only stationarity leads to a non-homogeneocus

Poisson process, where the parameter is now a function of tine A(t)
({391 85). %hen both hyvotheses are dropped, the resulting process
is characterised in Khintchine [38] and Fieger [19]. A more general
non-homogeneous Poisson process assumes that the intensity is a
measure A(.), which is obviously the exbectation measure (cf.
Moyal [61]).

Another generalisation is to take the time-dependent parameter
A(t) as a realisation of a stochastic process A(t). This defines

the class of doubly stochastic Poisson processes, with mean process A,

introduced by Cox [13] and studied further by Bartlett [L4 ], Kingman

[40] and Mecke [57]. Of particular interest is a Linear mean process,

defined by
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At) = [ £(t-u)ax(u) (1.11)

=00

where f 1is non—negative, integrable and square-integrable and
X(+) is an additive homogeneous process with non-negative increments
(Bartlett [ 6] p.161). If we assume E{Xz(t)} < @ then (1.11)
exists as a mean square convergent integral (Doob [17]) 89.2). Such

processes will be called linear stochastic Poisson processes. They

are of considerable importance in the spectral analysis of point
processes (Bartlett [4 ]), being a natural generalisation of the
Poisson process for which a tractable theory can be formulated., Also,
as noted by Moran [59], the statistical properties of the process can
be expressed in terms of f, and should be easy to develop.

The properties of doubly stochastic processes are easily uerived
by conditional arguments (Cox and Lewis [14] 8§7.2). ‘They are
stationary if A is stationary. For linear stochastic Poisson
processes we only note at present that the index of dispersion

g(:) is always convergent as t =+ ®, since f is integrable,

I(t) =
and that they are never renewal processes as Kingman's characterisation
[40] for these involves a mean process which is constant over random

intervals, an obvious impossibility for (1.11).

A further class is the infinitely divisible point processes

introduced by Matthes [54] and Lee [L5] and studied in Kersten and
Matthes [36], [37], Lee [4G]. There are several possible definitions :
(A) If a sequence of independent unijommly asyrptotically negﬂigibﬁe
(u.a.in.) point processes {Nn’i(é)} i= 10008 n=1,2,...

s
satisfies ZiE N

lnib)*Md as n > then N(.) is infinitely
- 2
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divisible. A sequence is u.a.n, if for each bounded interval T

lim max P{Nn i(I)>o} = 0,
n->c0 lsifgn ?

(B) If there is a sequence {Nn,i(')} of independent identically
distributed point processes such that N(.) a E?=l Nn’i(-) for all
n=12,... then N(«) is infinitely divisible.
(c) 1If all the finite-dimensional distributions of N(.) are
infinitely divisible then N(+) dis infinitely divisible.

For the equivalence of (A)-(C) see e.g. Goldman [23]. From (C),
the finite-dimensional distributions of an infinitely divisible N(.)
are all compound Poisson with p.g.fs of the form exp(Zm al(m)z™).

In fact we have

Theorem 1.3. (Kersten and Matthes [36], Lee [45]). To each infinitely
divisible point process (f, F, P) there corresponds exactly one
measure P(.) on F with the properties

(1) P{N(Il) = rl,...,N(Ik) = rk} = a(rl,...,rk; 11,...,1k) for all

integers k,rl,...,rP and intervals I

(2) P{g} =o.

l,.c 3 ,Ikl

(3) P{w(I) # 0} < » for all bounded intervals TI.

The KIM (Kersten-lee-Matthes) measure P is stationary if and only

if P is.

We may now define regular and singular infinitely divisible point
processes (Matthes [54]) corresponding to P concentrated on members

of § having finitely and infinitely many points respectively. Regular

processes can be characterised in terms of cluster processes (see 3.2).



1k

As an example of a singular process we introduce the singular Poisson

—

process I, defined as the n-fold superposition of an arbitrary

e o

point process N(+), where n is & Poisson random varieble with

parameter A. If N(¢) is stationary, By u is obviously a singular
i

infinitely divisible point process.

For examples of KLM measures see Lee [45].



2. THE PROBABILITY CENERATING FUNCTIONAL

2.1. Introduction

Tae probability generating functional (p.g.fl) of a point
process N(+) is the principal tool used in this thesis. It originated
in work on population processes (Kendall [34], Bartlett and Kendall [7 ],
Moyal [61]), but has recently been extended from this essentially
Tinite situation to cases where infinitely many points may occur:
(Vere-Jones [87]). This is more difficult, and it is with this case
we are principally concerned.

The basic properties of the p.g.fl are derived, in close analogy
with the p.g.f. it generalises, and some examples givén. We discuss
its relation to the factorial moment measures of N(+). Finally, we
characterise mixing and ergodic properties of a point process by

relations involving the p.g.fl, and give applications.

2.2, Definitions and Properties cof the p.g.fl

We consider throughout a point process N(°*) whose expectation
meesure is a Borel measure. It may or may not be a.s. finite.

Definition. The p.g.fl of N(.) is defined by

c[g] = E{exp [ log £(t) an(t)} (2.1)

for a suitable cless of functions £.
Suitable classes will be discussed shortly. TFirst we give two

alternative statements of (2.1) which are both useful in certain

15
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cases, Clearly equivalent is
Glg] = B0 £(%,)} (2.2)
i

where the {ti} are the times of occurrence of the points. If

the point process is .4, 6Lnii€ and
p, = P(-=,®) = n}

Uh(tl,...,tn) = distribution function of the t, given N(=0,®) = n,

then

8

clgl =

I ™

n Py Jooo B8 00uB())aU (b ,000,t ) - (2.3)

For a.s., finite processes these definitions are due to Moyal [61];

in general, see Vere-Jones [8T].

It is clear that heuristically the p.g.fl is an extension of the
multivariate p.g.f. to the 'generating function' of an infinite set
of 'random variables' dN(t). We expect then that its properties
will be similar to those of the p.g.f. and later we see this is generally
true.

To ensure that the p.g.fl is non-trivial, the exponent in (2.1)

must be finite with probability one. Motivated by the analogy with

the p.g.f. we consider functions & such that for all real <
0<g(t) <1 (2.4)

Definition. If £ is measurable and satisfies (2.4) then
E eV if & vanishes outside a bounded interval
£ e (M) if [|logg(t)|M(at) < .

These are the classes introduced by Vere-Jones [87)]. We must further
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decide what happens in (2.1) at zeros of &(t). Isclated zeros are

HE

no problem, and if &(t) = 0 over some set A the exponential in
(2.1) is taken as zero, unless N(A) = O when it equals one. Now

since M(.) is a Borel measure we have (cf. [8T])

Lemma 2,1, G[£] is non-trivial if

(i) 1w(.) dis a.s. finite
or (ii) 1 - £ ev
or (iii) g ¢ L(N); in this case [[1 -&(t)IM(at) < « also.

We make the convention that if in future we use a p.g. 4Ll without
specific nefenence £o £ we are assuming thal Lt belongs Lo eithern of
ihe above classes.

The next lemma shows the fundamental role that the p.g.fl pleys
in the theory of point processes.

Lerma 2.2. (Moyal [61], Vere-Jones [87]). The p.g.fl is uniquely
determined by N(.) and, conversely, knowledge of the p.g.fl completely
determines the probability structure of ().

An important conseguence for us is that the p.g.fs of the joint
distributions of N(+) are derived from the p.g.fl by setting &(t)
equal to a simple function (Halmos [2€6] p.8L4). Because of a previous
éonvention, expressions such as P{N(A&) = 0} come from putting
£(t) = 0 for t e Al

We now develop further properties of the p.g.fl. Obviously
(a) o<alg]l <1,

(b) G 4is monotonic i.e. gl 5.52 9'G[El]_§ G[EE]
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(¢) Continuity. We might hope that the p.g.fl is always continuous,
in the sense that gn(t) + £(t) pointwise as n -+ o implies G[gn]

-+ G[£]. To see this is in general false, consider
En(t) =1 -(l—Z)X[n,n-l-l)(t)’

.
so that G[Ep] = E{z“[n°n+l)}. Clearly gn(t) + 1 pointwise as n =+
vet G[En] need not tend to one (take 1i(+) stationary for example).

However we do have

Theorem 2,1. The p.g.fl is continuous if one of the following holds

(1)  N(+) is a.é. finite

(ii) the 1-& €V and have a common interval outside which they all
vanish

(111) € (t) > E(t) for ell » and Ee ()

(iv) JlE () - E(¢)[M(at) >0 as n+w

(v) &€ L(N) and given € > 0 there is T(e) such that

{ | 1og gn(t)lM(dt) <g or { {1-gn(t)]m(dt) < e for all n.
[t]>T t]>T '

Proof. In each case we prove that [ log gn(t)dN(t) > [ log g(t)an(t)

in some sense, as then the bounded convergence theorem ensures continuity.
(i) is obvious (see Harris [28] p.58). The assumptions in (ii) effectively
reduce it to (i) and (iii) follows directly from dominated convergence.

To prove (iv) we have the simple identity (Moyal [62])

n n n
mglt)= Mnle) = 5 [6(t )-n(e) () eanle, el ) eazlt),
i=1 i=1 i=1 :

(2.5)

valid for n = 1,2,... and any functions ¢, n. With ¢ = En, n=_g
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we see from (2.2) that

lelg 1 - cle]]

In

s{f]g (v) - €(e)an(e)}

[lE (£) - &(s)|Mlat) + 0 as n >,
Of course, to write down G[E] dimplies that & is suitable in the
sense of Lemma 2,1, Conditions (ii), (iii), (iv) all ensure that
~
the limit is suitably integrable. If now we assume this explicitly
. . f) s
then taking fltlfT + fltl>T and recalling that M(e) is a Borel

measure, (i) and (iv) can be used to establish (v). v

(d) Characterisation. An interesting question is, what functionals

over V are p.g.fls? In the a.s. finite case, Harris [28] p.58
gives a reéult involving those functionals whose arguments are simple
functions; a similar theorem for Lanlace functionals may be found in
Jitina [32]., Moyal [61] has a characterisation in terms of restrictions -
to finite subsets of the population space. Our result is not
essentially new, and draws on all these three theorems.

The basic technique is due to Harris ([28] p.53), namely that
a set of functions po(Al,...,Ak; rl,...,rk) satisfying (1)-(4) for
dis foint sets A (with slight changes in condition (3)) can be uniquely
extended to functions  p(Ajsees,h s rl,...,rk) satisfying (1)-(4)

and agreeing with the po(o;-) whenever the A, are disjoint.

Theorem 2.2, Suppose we have a functional G[g] defined whenever
1 - &€V and continuous for seguences En satisfying Theorem 2,1(ii).
Further, if 1 - & 1is a simple function in V, i.e, 1 - E(t) =

 2$ (1-2.)X, (t) where the Borel sets A, are disjoint, suppose
i=1 i Ai i
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Glg] = P(zl,...,zk; Al""’Ak) is the p.g.f. of an n-dimensional

random variegble. Then G[&] is the p.g.fl of a point process.

Proof. Iet the n-dimensional distributions associated with

P(zl,...,zk; Al,...,Ak) be po(Al,...,Ak; rl,...,rk), for disjoint

Ai. Now in the consistency conditions

(1) holds because po(-;o) is certainly a probability distribution,

(£) nolds by the obvious relation P(zl,...,zk,l; Al""’Ak’Ak+l) =

P(zl,...,zk; Al,...,Ak),

(3) nolds as P(z,z3 Al’AQ) = P(z; A v A2) obviously, and this

can be extended to the disjoinf collections {Aij} making up the

A (for explanation see Harris [28] pp.53-54),

(4) holds by the continuity of G for functions of the form

F,n(t) =1 (l—z)xAn(t), bounded A ¥ @, for which & = 1 pointwise.
So we may extend the po(o;-) uniquely to a consistent set of

functions, in the sense of 1.2, and by Theorem 1.1 there is a unique

point process N(.) whose finite-dimensional distributions over disjoint

Borel sets A ,...,A are po(Al,...,Ak; rl,...,rk). N(+) has a

p.g.f1 G*[E], 1 - £ € V, which must agree with G[E] over simple

functions., But arbitrary 1 - £ € V can be approximated uniformly

by an increasing sequence of simple functions (Halmos [2£] p.85),

and @G, G¥ are continuous for such sequences by hypothesis and

Theorem 2.1(ii) respectively., Therefore they agree for all & such

that 1« & €V, \j
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(e) Convergence. One of the most useful properties of the p.g.f. is
that it provides necessary and sufficient conditions for the convergence
of discrete probability measures, A similar result holds for convergence

in distribution of point processes, namely

lemma 2.3, (Vere-Jones [£7]). A sequence of point processes {Nn(-)}
converges in distribution to a point process N(.) if and only if the
associated p.g.fls converge i.e. Gh[g] +~ @[] for 1-E&¢€ V.

The sufficiency is obvious, and the necessity is proved by
approximating & above and below by simple functions and using the
monotonicity and continuity (Theorem 2,1(ii) again) of the p.g.fl.

We remark that a stronger assertion, corresponding to the weak
convergence of measures, is given for Laplace functionals by JiZina [33].
Iemma 2.3 can be generalised slightly if we assume only that

the sequence Gn[E] converges to some functional G[E], 1 - & € V,

Specifically, we have

Theorem 2.3. A sequence of point processes {Nn(o)} converges in
distribution to a point process N(.) if and only if the p.g.fls
Gh[E] converge to a functional G[E], 1 - £ € V, which is continuous

for sequences Sm(t) +> 1 pointwise. Then G[{&] is the p.g.fl

of N(+).
Proof. The 'only if' part follows as before. For the sufficiency,

1-
take a simple function &(t) = 1 - Zgz (t). Gh[E] =

101250,

i
Pn(zl,...,zk; Al""’Ak) is therefore the p.g.f. of some joint

distribution of Nn(-) which converges to a function G[E] =
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P(zl,...,zk; Al,...,Ak) that is continuous as (zl,...,zk) > (1,000,1).

8o G[E] is also a p.g.f., by a standard result, and therefore all
the joint p.g.fs of Hn(.) converge to a set of p.g.fs. We must
now prove that these limit p.g.fs are consistent, in the sense of

satisfying (7)-(4). It is easy to see that

(1) P(zl,zegAl,AQ) = iiﬁ Pn(zl,zz;A ,Ag) = iiﬁ Pn(zz,zl;AQ,Al)
= P(zz,zl;Az,Al) ete,

as the P satisfy (1).
(2) Pn(zl’z25Al’A2) - P(zl,zngl,AE) by hypothesis
Pn(zl;Al) by (2)

i.e. P(zl,l; l’A2) = P(zl;Al) ete.

and Pn(zl,l;Al,Az)

(3) Pn(zl,zg,zsgAl,Ae,Al v A) +-P(zl,22,z3;A1,A2,Al v AS)A A A, =

and - Pn(zl,zz,ZB;Al,Ae,Al.J A2) = Pn(zl+z3,z2+z3;Al,A2) by (3)

+7_ 3A

32%% 233008
(4)' Take a sequence of bounded sets A + @ and define a simple

> P
_(zl+z ) ete.
n

function Em(t) = l—(l—z)XAm(t). Then Em(t) + 1 pointwise as m > @
and so G[E ]~ G[1] = 1. But ¢lg ] = P(z34 ).

So the limit distributions form a consistent set, and by Theorem
1.1 there is a unique point process N(.) having them as its finite-
dimensional distributions. If N(.) has p.g.fl G*¥[E], 1 - &€V,
then the ‘only if' part gives Gh[E] + G*[€] whereas Gn{g] > G[E]

by hypothesis. Thus G[E] is the p.g.fl of MN(.). \

(f) Superposition. As we might expect from the p.g.f. analogy,

superposition of independent streams is equivalent to multiplication

¢
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of the p.g.fls, Thus if Nl(n),...,Nk(-) are independent point

. - k .
processes with p.g.fls Gl[&],...,Gk[g], the p.g.fl of 21:1 Ni(-) is
k
elel = 1 G lg] (2.6)
i=1

This is immediately apparent from (2.1) or (2.2).

In view of Lemma 2.2 the p.g.fl is obviously a very powerful aid
in the study of point processes, containing, as it does, information
about all aspects of the process. Its disadvantage, however, is that
it is rarely obtainable in closed form unless the point process involved
is related to théiPoisson process. We give some examples of this below.
Nevertheless it is a valuable tool in a variety of theoretical problems,
such as characterisations of ergodic and mixing properties (Section
2.l4), the theory of cluster processes (Chapter 3) and limit theorems
for point processes (Chapter k).

The fundamental point process is, as we have seen, the Poisson
process, The completely random property of this process makes the
calculation of its p.g.fl particularly simple, ¥e have, for a Poisson

(A(+)) process
ole] = expl- f1 - E()1A(at)} (2.7)

cf. Ryll-Nardzewski [75], Moyal [61], Shiryaev [T7]. In particular,

for the stationary Poisson (A) process
GlE] = exp {-Af[1-£(t)]at}. (2.8)

These results are used repeatedly.
The p.g.fls of many point processes related to the Poisson process

may be readily deduced from (2.7). We do this only for the doubly



stochastic Poisson process with a stationary mean process A(t).

First we need a new concept.

Definition. The Laplace functional of a non-negative stochastic

process Y{(t) is

1 le] = p{e”H(WE(at)} (2.9)

where £(+) is a totally finite measure on the Borel sets of the line.
Clearly, a sufficient condition for (2.9) to be non-trivial is that
Y(t) be stationary with finite mean. This definition is based on
Shiryaev [T7]; for a related idea see Jifina [32], [33].

Now, conditional on a realisation A(t) of A(t), the doubly
stochastic Poisson process is a non~homogeneous Poisson process and

so from (2.7) G[E] = EA{e—fl(t)[l-g(t)]dt}

t
6lel = 1, [f [1 - E(w)]laul, (2.10)

a result due to Bartlett (discussion to Cox [13]; see also [ 4]
and Mecke [57]). This emphasises the close connection between the
statistical prdperties of a doubly stochastic Poisson process and

its mean process.

2,3. The Connection with Moment Measures

We saw in 1.3 that with any point process there is associated
a set of factorial moment measures . We noted thet these measures are
more convenient than the usual moment measures, and it is because they
are so intimately related to the p.g.fl that we prefer to work with
this functional rather than the characteristic or moment generating

functionals,
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Formally, the relationship is very simple. If all relevant
moment measures exist then on expanding the logarithm and exponential

f (2,1) in their power series we have (Moyal [61], Vere~Jones [87])

k
cli-g]l =1+ kz p (= l) foool E(t) 0 B8 M, (aty 5000 a8, ) (2011)
and
. _ 2 (<DE
B{1-g] = log G[1-g] = ¢ ;¥ Jooof g(t)eang(ty) ¢ (aty,e..,dt,)

k=1
(2.12)

To put these relations on a more rigorous footing we first establish
a Taylor-type expansion of the p.g.fl to a finite number of terms, in
analogy with results for characteristic functions (Lukacs [53] p.31).

This requires

Lemma 2.4, If El,.{.,EN are real numbers, O < &i <1 i=1,...,0,

where N is an arbitrary positive integer, and we take

N W N
Q,N = H (l_gi) = 1 - Z gl l Z Z Ei g]‘_ "'a-.+( l) g oanE
i=1 i=1 il=l i2>il 172
=1 =g + gme. .t (=1)V (2.13)
ql f) 00 ql\i .
where gq, = L I & L.t and
okt
S(m) =1- + -t (=1)" (2.1k)
N Ay T dpmee Oy .

m=1l,...,8 (so that s§m) is the mn® partial sum in (2.13)), then

(2m-1) (2n)
®x < Oy < Sy

.i.
for all N and m,n = 1,2,..., [“]

+ [x] is the greatest integer less than or equal to x.
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Proof., A simple direct proof by induction is possible. Howéver we
note that this is a very special case of Bonferroni's inequalities
on the probabilities of combined events (Moran [60] §1.18), if we
interpret the Ei as the probebilities of a set of independent
events A;. Putting m =1 in Theorem 1.5 of i60], 1 - P

becomes equal to QN because of the assumed independence, and the

lemma follows immediately. v
Corollary. (i) 0 <q - gtéml) om < N
R -y T °§ = Yon =

(11) o< - slgzm'l) <ay ,  2melgW

(iii) 0 5‘s§2m) - <y, 2SN

(iv) o 5_s§2m) -0, <o, on < N

Theorem 2.4, For a point process N(.) with p.g.fl G[E] whose nt?

factorial moment measure is a Borel measure,
2
- &
¢l1-eg] = 1-efg(thm(at) + = [fe(e)E(v )1, (at, ,at,)-. .

Il
+(=1)" S L fe(6)) B8 M (00,8 )vo(e™)  (2.15)

vhere & €V and 0 <€ <1,

Proof., Consider the function

I (€,8) = (=1 HNl1-e8(t, ) I-1+efE(t) an(+)-
1

e2

T, [ E(e))E(t ) an(t ) an(t,)
2

f¢t
1

: m
w07 S [ E(s) LB dan(ey) (s )}

tl¢..¢tm
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For a realisation {ti} of N(+) we may rewrite the integrals as

sums so that if N = N(I), I the support of &,

-m _— i _ e2 o € } )
r(e.8) = €7 (-1) {iglu-egi)-mql - o7 agte (-1 a b (2.16)

where Ei E(ti) and the sums are zero for m > N,

Since & € V, N is finite with probability one. Because the

th

=" factorial moment measure is a Borel measure we see from (2,16)
and the Corollary to Lerma 2.4 that rm(e,g) is positive, bounded
by a random variable with finite expectation, namely
1 ...{gu;x £(t )an(t,)..a(t ), and >*3° 0 as e+ 0. So
m! tl¢..¢ o 1’ 1 m’?

by dominated convergence
E{Pm(e,g)} + 0 as €+ 0

for & € V, which proves the theorem. \)

Corollary 1. If the (mw+l)st moment measure is also a Borel measure,

m . . m+l .
the error term o(€") is bounded by € f"I€(°1)"£(tm+l)Mﬁkl(t )

l""tm+l
This follows from (i) and (iii) of the Corollary to Lemma 2.k,
It shows that there is a simple estimate for the remainder term in

(2.15) if we assume the existence of higher-order moment measures.
Corollary 2. Under the conditions of the theorem
€2
Hl1-e€] = - {efe(t)c (at) + Zffe(t (s, )c, (at, ,at )+ .
m
£ £ m
+ = fooJe(e ) E(x ) (aty,00,at )} + ofe™) .

Corollary 2 follows from the well-known expression log(1l-x) =

m
-{x + g—'+..+ %&4 + o(x™). We remark that the remainder o(e") here



is not estimable in the simple manner of Corollary 1. For consequences
of this complication, see Chapter L4,

A result for charccteristic functionals similar to Theorem 2.U4
is givgn by Shiryaev [TT], although he assumes Mm+l(') to exist and

+
has remainder O(E™ l)

. If we have 1-f € L(N), rather than &£ € V,
the proof is still valid provided we also assume that
f..fE(tl)..E(tm)Mm(dtl,..,dtm) < o, wyhich holds automatically when

£E €V and Mﬁ(‘) is a Borel measure,

Equation (2.15) or a direct approach shows that the p.g.fl uniquely

determines all existing factorial moment (and cumulant) measures. In
fact there is a simple method of calculating them directly from the
p«.g.fl, given in the a.s. finite case by Moyal [61]. If we choose non~-
negative constants XyseesXy and functions El""gk suitably then
a8 routine application of differentiation through an expectation
operator gives

k

d

Bxl..Bxk G[l-xlgl-'°-xk€k]

(O,o- ,0)

EB{Z .28 (t, )..6 (¢, ) T [1-x.&. (t,)-.-x & (t.)]
A, T f Tk Fseesd, 1Y (o)l

= f..f&l(tl)..Ek(tk)Mk(dtl,..,dtk),

and now put Ei(t) = X, (t) for Borel sets A,. A suitable class of
i

El""gk is that for which the integrals involved are all finite; as

usual, this is true for Ei €V and Mk(-) a Borel measure,

The converse question is probably more interesting, namely when

do the factorial moment measures uniquely cdetermine the point process?

(0,0:0)
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This is a random process analogue of the problem of moments (Feller
[18] p.u48T, Leonov [47], [L&)). In [L8], Leonov has a comprehensive
discussion of this topic. Our aims are more modest, and we state

only the simplest of results. From (2.15) and the Corollary to Lemma 2.L,
m
- m ,}_(__ " 7
Gl1-xE] = 1-x[E(t)u(at)+. . +(-1)" 2 f..f&(tl)..&(tm)hm(dtl,..,dtm)
xm
+ EI— Rm['g]
where 0 < Rm[g]‘s f..fg(tl)..g(tm)Mh(dtl,..,dtm), if all the integrals

exist. This is certainly true for & e V3 then if the bounded interval

I is the support of &

Rm[g] f_Mh(I X o0 X I)= u[m](I), the m™® factorial moment of N(I).
So when all factorial moment measures exist and %ﬁ-x@ u[m](I) + 0 as
m+oo, for some x >0 and all I, the formal series (2.11)
converges and G 1is uniquely determined by the coefficients

f..fE(tl)..S(tm)Mm(dtl,..,dtm) for all & € V, hence by {B%K')}.

Theorem 2.5. A point process N(.) is uniquely determined by its
moment structure if for all bounded intervals I and some x > OA

m
X
E'!' U[m](I) -> O as m - oo,

A sufficient condition for this is 1lim sup %-uté?(l)

m > o

= a(I) > 0’

all I (Feller [18]) p.u87).

2.4, Characterisations of Ergodicity and Mixing

Leonov [47] has given, without proof, a series of theorems

characterising ergodicity and mixing in a stationary process in terms
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of relatiens involving its characteristic functional. We will now
derive analogous results for point processes and their p.g.fls,
and give some examples. Similar ideas occur throughout general
ergodic theory (e.g. Jacobs [31]).

The concepts of ergodicity and mixing for stationary point
processes were introduced in 1.3, where we saw that both are ecquivalent
to expressions involving limits of probabilities over measurable sets,

i.e. members of F. We first consider ergodic point processes.

Theorem 2.6, A stationary point process N(.) with p.g.fl G[E] is

ergodic if and only if

t
lim %—{) G[ElSTEE,]dT = G[El]G[Eg] (2.17)

1o
T
for 1-E,, 1~E,€V or & ,E, € L(N), where 8 &(u) = E(u-~T).
Proof., Suppose N(+) is ergodic. Then from (1.1)

1 t -T
lim %’f P(a - T B)at = P(A)P(B) (2.18)
o o}

for any 'A, B € F and so certainly for the cylinder sets
{n: N(Il) = nl,..,N(Ik) = nk}, Il,..,Ik any Borel sets and K,n,,..,n,

any integers. Thus

t
lim %i P{N(Il)=nl,..,N(Ik)=nk,N(Jl+T)=m1,.. ,N(J2+‘r)=m£}d“r

10
= P{N(I,)=n,,.. ,N(Ik)=nk}P{N(Jl)=ml, . .,N(J£)=m£}, (2.19)

and it follows that the same relation holds for the corresponding

p.g.fs, namely
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t

.1
t]_;fi :E £ P(Il’..’Ik,Jl’..’JQ,; '\‘[l,o.,yk’zl’..’ZQI;T)dT

= P(Il’"’Ik;yl""yk)P(Jl”"Jlszl""zﬁ) . (2.20)

Finally, since any measurable & can be uniformly approximated by
an increasing sequence of simple functions, for which (2.17) holds

by (2.20), we see that (2.17) is true for arbitrary & in

1 EZ
the appropriate classes.,

Conversely, if (2.17) holds then by taking ’c;l, 52 to be simple
functions we deduce (2.20) and hence (2,19), since the L.,H.S. of
(2.20) is itself a p.g.f. (of the probability measure on the L.H.S.
of (2.19)), and couvergence of p;g.fs implies convergence of
probabilities. So the ergodic relation (2,18) is established for
the cylinder sets of F. To show that it holds for any measurable
sets we use the following lemma, which is almost certainly known from
general ergodic theory. As no specific statement of it has been
found, we include a proof for completeness.

Lemma 2.5. Let R be a ring, with generated O-ring F(R) and an
associated probability space (R, F,P ). Let T be a measure-

preserving transformation of & into itself. Then if

1im P(A n T-tB) = P(A)P(B)

R ]

for any A, B ¢ R, it holds for any A,B e F(P).

Proof, From Halmos [26] p.56 we see that for any € > 0 and each

set E in F(R) there is a set E_ in R such that P(E A EE).< €
Now given € > 0 and arbitrary A, B in F(R) with their

'approxiuating' sets Ae’ B_. in R, consider

€
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W= |P(an T B) - P(A)P(B)]

A

Pa ) - Pla_ T )| + [P(a_~ TR - F(AP(E)]
+ |P(a)P(B.) = P(A)P(B)]|
= W (t,e) + W,(t,e) + Wyltse)  say.
And (i)
Wy (4,€) < [P(An T°B) = P(&_ A 7%8)| + |P(a_n TB) - P(a_" T8

.

€
while for arbitrary sets X, ¥, Z

P(x A z) > PUXA Z)N Y} >P{(x~Y) = (21 1)}

> |P(X A Y) - P(2 7 Y)

so that

P(a~T7%8) - P(a_ A TUB)| < P(AAA) <e
IP(a n T %B) - P(a_~ T8 ) < P(T"Ba T8 )
€ € € - e

= P(B A Be) < €

because T is measure-preserving. Thus
Wl(t,c—:) < 2¢ for all t.
(ii) Since A v A = (A A AE) v (A n AE),
P(A) < P(ana) +Plan A)

<e+ Pla)
€

and similarly for P(B). Therefore

P(A)P(B) < €” + 2¢ + P(A)P(B)

and by symmetry ws(t,e) < 3 for all t.
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(iii) Wg(t,s) <€ for t sufficiently large, by hypothesis.
From (i), (ii), (iii) W < ée 4if +t sufficiently large. As this
is true for arbitrary € > 0 and any A, B € F(R) the lemma is

proved. A

Now the cylinder sets in F form a semi-ring whose generated
ring is the finite union of disjoint cylinders. (Halmos [26] p.26).
Equation (2,18) obviously holds for the generated ring and, as an
easy consequence of Lemma 2.5, it holds also for the O-ring generated
by the semi-ring, that is for all measurable sets. This proves the

converse proposition and hence the theorem. \J

An exactly similar argument proves

Theorem 2,7. A stationary point process N(.) with p.g.fl1 G[E] is

mixing if and only if

lim ¢[£.8%_ ] = o[ la[E.] (2.21)
tif 1° %2 1155

for 1-£,, 1-£, €V or g;5&, ¢ L(N).

Obviously, a like result is true for weakly mixing processes.

We now look for exemples of ergodic and mixing point processes.
Such processes are of interest in a variety of applications as the
mixing condition (1.2), or (2.21), is a form of asymptotic independence
of the numbers of points in widely separated intervels., Such a
condition is often what seems required to prove limit theorems for
point processes; similar considerations for mixing sequences of random

variables have been intensively studied in recent years (esg. Ibragimov

(301).
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Since the stationary Poisson process has independent increments
we expect that it is mixing (and hence ergodic cf. 1.3). This is
easily proved on substituting (2.8) in (2.21). Likewise, processes
related to the Poisson process should be mixing, and we prove this

for doubly stochastic Poisson processes.

Theorem 2.8. A doubly stochastic Poisson process with stationary

mean process A(t) is mixing if A is mixing.

Proof. We need a slight modification of Leonov's [47] characterisation
of mixing stochastic processes. Since A(t) is non-negative and
stationary its Laplace functional is‘well—defined, and from [LT]

Theorem 1 we easily deduce that A is mixing if and only if

Lin L [£48%E,] = 1, [£,] T, [£,] (2.22)

T

for all totally finite measures El, 52.

From (2.10) we can transform the mixing condition (2.21) into
an expression involving the Laplace functional of A. We write

L[E] for Lu: g(u)du]. Obviously
6lg s%,] = T,[1-8,5%,)]
6lE,JolE,) = Tyl1-¢, I[1-E, ]
for 1-g,, 1-E, € V, S0 to establish (2.21) we must show
Lin -fA[l-ngtE_‘,z] = lim EA[1-51+1-st5;2] (2.23)

Put n, = 1-§;, so that n,ev is= 1,2, Then

1-5,8%, = 1-g,+£, (1-5°¢,) = np+g 8%,

and



35

- t - t
0 < L,[1-£,87€,] - T,[n;+8™n,]

L ot - t

E{exp{—fk(u)[nl(u)+€1(u)n2(u~t)]du}.

(l-exp{—fk(u)nl(u)ne(u-t)du})}

A

E{1- exp[-fl(u)nl(u)ne(u-t)du}

A

E{fkgu)nl(u)ne(upt)du}

E{A(u)}fnl(u)n2(u-t)du
since A is stationary with finite mean., But the ni are integrable,
so the last expression tends to zero as t + ®, This proves (2.23),

and the theorem follows from (2.22). v

A corresponding result can be proved if A is only ergodic. Because

linear processes are all mixing (Rosemblatt [73] p.112) we have

Corollary. A linear stochastic Poisson process is mixing, and hence

ergodic.

From the ergodic version of Theorem 2.8 it is easy to see that a
mixed Poisson process is ergodic if and only if the mixing distribution
is concentrated at one point, an observation which is clear independently.
(The corollary does not apply because cbviously a process with a.s.
constant realisations is neither mixing nor ergodic).

Kersteﬁ and Matthes [37] give a number of results on mixing and

ergodicity of infinitely divisible point processes. For related

ideas, see section 3.k,



'3, CLUSTER PROCESSES

3.1. Introduction

Cluster processes have developed coincidentally with point
processes both because of their considerable practical application
and because they are one of the few classes of point processes for
which & reasonable theory can be derived. They have their origin in
work on contagion mechanisms in ecology (Thompson [84]), but have
since‘been applied to such diverse questions as the distribution of
galaxies in space (Neyman and Scott [66], [67]), the flow of motor
traffic (Bartlett [ L4 ]), computer failures (Lewis [ko], [50]) and
the occurrence of earthquakes (Vere-Jones [88]). So both one-
dimensional and multi-dimensional cluster processes are of interest,
though as usual we consider only the former. Important theoretical
contributions are due to Moyal, who Tirst pointed out the applicability
of the p.g.fl to cluster processes in the discussiop to [6T] and
subsequently developed a comprehensive theory in [61], [62].

In this chapter we define the general cluster process, indicate
some simple properties and introduce useful special cases, We study
the existence of such processes, in a reasonable sense, and also
their mixing and asymptotic properties. Finally, we derive some

results for two cluster models used in practice.

36
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3.2, Definition, Properties and Examples of Cluster Processes

A cluster process 1I(+) has two components, the process of
cluster centres NC(°) and the process of cluster members Ns(').
Lach point of the cluster centre process is assumed to initiate a
cluster member process, generally cailed a clustfen, independently
for each point. The cluster process consists of the superposition
of all the clusters, and possibly also the cluster centres, In
general we will assume these to be excluded.

If the cluster centre process has p.g.fl Gl[i] and the p.g.fl
of a cluster, given its centre is at t, is GQ[Elt], then the
independent development of clusters shows that conditional on a
realisation {ti} of Nc(-) the p.g.fl of the entire process is
I, G2[€|ti]. Thus the p.g.fl of a cluster process is given by the

fundamental relation
olg] = & (o, [E|t]], (3.1)

a result due to Moyal (discussion to [67]). This compacf formulation
of a cluster process will be very useful in the study of a wide rahge
of its properties.

Equation (3.1) has been further investigated by Moyal [61], [62],
regarding it as the first 'generation' of a generalised branching
process (see also Harris [28] chapter 3), and Vere-Jones [87], [88]
specifically in our context. They derive, in particular, elegant
relations for the factorial moment and cumulant measures of ()

in terms of those for 1\€c(-) and Ns(-), though these do not
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concern us. In [ 4] there is work on the spectral analysis and
interval properties of cluster prccesses.

We next give some examples of particular cluster models,
introduced by various authors, and derive their p.g.fls from (3.1)
vwhere possible,

(a) Compound Poisson process (section 1.5). Here all the cluster

members occur simultaneously at the cluster centre, If {pn} is

the distribution of cluster size, with p.g.f. P(z), then

6l£] = expff (1-P[E(t)1)A(at)} (3.2)

(b) G/Gf° aqueues BEach cluster centre (arrival) produces exactly

one cluster member (departure) after a random time (service time)., In
other words, the cluster process is the output stream, If the service
time distribution is F(x), then Vere-Jones [87] shows
o
GlE] = ¢ [f E(t+x) aF(x)] (3.3)
)

(¢) Neyman-Scott model (Neyman and Scott [66], [67]). A Poisson

() process of cluster centres triggers clusters whose members are
independently and identically distributed about the cluster centre
with distribution F(x). If P(z) is the p.g.f. of the cluster size,
assumed a.s; finite, then

GLE] = exp {~Af(1-P[[e(t+x) aF(x)]) at], (3.4)

as shown by Moyal (see [881).

(d) Bartlett-lewis model (Bartlett [ 4], Lewis [k9]). Agein ¥ ()
is a Poisson (A) process, but nov the cluster members form a finite

renewal process following the cluster centre. The p.g.fl cannot be
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written in closed form here, except as a series of multiple

integrals cf. (2.3).

(e) Earthquake model (Vere-Jones [8T7]). Ns(') is a non-
(s+]
homogeneous Poisson (u(t)) process, t >0 and fo y(t)at < <,

Then

G,le]t] = exp {~[ ulx-t)[1-g(x)lax},
t
so that with a Poisson (A) centre process
GlE] = exp {=Af(1 - exp{-f u(x)[1-&(x+t)]ax})at} (3.5)
o

Models (a), (c¢), (a), (e), and (b) for I/G/e, are special cases
of the general Poisson cluster process where the cluster centres
form a Polsson process and the clusters are arbitrary. Such processes
are studied in Matthes et. al. [3€], [37], [54] and Goldmen [23]
in the context of infinitely divisible point processes, as it turns
out that they are exactly equivalent to the regular infinitely
divieible processes (section 1.5). Our methods enable us to derive
and extend their results for these processes in a simple manner.

Among cluster processes we find several examples of distinet
but equivelent formulations of point processes. One such case is
noted in Bartlett [ 5] and Vere-Jones [88]; they show that with
suitable choice of the parameters the following processes are
identical (i.e. have the same p.g.fl):

Vere-Jones' earthguake model,

A doubly stochastic Poisson process with 'shot-noise' mean,

A Neyman-Scott cluster process with Poisson cluster size.
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We extend these relations in the following theorems.

Theorem 3.1. A linear stochastic Poisson process is equivalent to
a Neyman~Scott process.

Proof. From the linear stochastic Poisson process (1.5 and 5.2),

define
§ o= [ f(x)ax < o
A =-p(2); A >0 as clearly 2 > O
k ©
= Y& & k-1 -xg -
T, =8, =t £ X e dK(x) k =1,2,...

where Sij is the Kronecker delta. Clearly Ty > 0 for all k.
It is finite becuuse K 1is proportional to a distribution function,

so has a Laplace transform with all derivatives finite on (0, ®). And

o) oo x4, -XQ,
[3 (e™"=1)e ,
g, =+ [ VEm=E L gx(x) =1
k=1 k A 5 Ax

by definition of Aj; we can interchange summstion and integral
because all terms are positive.
So {Ek}, k =1,2,... 1is a discrete probability distribution.

Its p.g.f. is

2(w) = L W Ly we [0,1]
k=1
(=] XW -Xf,
= YRw (e "~1)e
S £ __—__X;T—_—'dK(x)

as before.-
1._. -1
Now for 1-& e V, let w'=g fg(v+t)f(v)av. For all t,

w' € [0,1] and so we may substitute in Z(w). After some simplification

Z(fE(vt) L e (v)av) = 1+ 7Y Yl [1-E(v+t) 1£(v)av]
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Therefore

Af[1-2(fE(v+t) S e(v)aviat = [Ylf[1-E(v+t) Ie(v)aviat,  (3.6)

which is the log p.g.fl of a linear stochastic Poisson process
(equation (5.4)). So the L.H.S. of (3.6) exists. But from example
(c), the L.H.3. of (3.6) is the log p.g.fl of a Neyman-Scott process
for which F'(x) = £71f(x) and Z(w) is the cluster size p.g.f.

Hence the two processes are identical. \J

Remarks. 1. In the case of a 'shot-noise' mean, i.e. X(¢) a
Poisson process in (1.11), this result is due to Bartlett [5].

2. If we define Co =0, 0<a <1, and use o in
the previous definition of Ck, k > 1, the resultant process is

unchanged. This reinforces the observation in [E8] that the probability

of no cluster members is unidentifiable.
Theorem 3.2. A doubly stochastic Poisson process with mean
¥(t) = [ £(t-u)ai(u), (3.7)

where f > O is integrable and N(+) is a stationary point process,
is equivalent to a cluster process with Nc(-) g N(+) and an
inhomogeneous Poisson (f£(t))’ ©process for the clusters.

Proof. From (3.7) Y(t) is stationary, non-negative and has finite

mean, so that Y(t) exists with probability one. Its Laplace functional

is

L [€] E{e-fY(t)g(dt)}

- E{e—fff(t—u)g(dt)dm(u)
—ff(t—u)g(dt)]’

Gl[e
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where Gl[E] is the p.g.fl of N(+). Clearly
fllog e-ff(t~u)£(dt)[du = ff(x)dxf&(dt) < ®©

as f 1is integrable and £(+) +totally finite, so by Lemma 2.1 the
P.g.fl exists.

On taking Y(t) for the mean process of a doubly stochastic
Poisson process, (2.,10) shows that its p.g.fl is given by

elg] = g, [/ Flm) [1-Ele) Jat,y (3.8)

Comparison with example (e) shows that the argument of Gl in
(3.8) is the p.g.fl of an inhomogeneous Poisson (f(t)) process.

The result now follows from (3.1). \4

Remarks 1. When N(+) is & Poisson process, this is the result
of Vere-Jones [88]. He also gives an illuminating heuristic derivation
which carries over directly to this case.

2. Putting A = [f(x)ax, glx) = A'lf(x), (3.8) shows that
the clusters are also of Neyman-Scott type with cluster size Poisson

(A) aistributed and F'(x) = g(x).

3.3. Existence Criteria for Cluster Processes

So far we have not considered whether our cluster processes
exist, in the sense that with pr&bability one there are only a
finite number of points in a finite interval. In some cases, such
as population processes, no problems arise as all component processes
of the cluster process are taken to be a.,s. finite so that the entire

process must be a.s. finite, However the examples of 3.2 show that
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in general we can have an a.s. infinite set of cluster centres.

This means that any interval may contain cluster members initiated
by infinitely many centres, and it is apparent that some restriction
on the cluster structure will be needed to ensure existence, Our
results give such restrictions.

Matthes [SU] (see alsoc Goldman [23]) has stated a necessary and
sufficient condition for the existence of Poisson cluster processes,
and Neyman [65] has done work cn the Neyman-Scott model. We derive
a necessary and sufficient condition for existence of a wide class
of cluster processes and deduce some useful sufficient conditions,
giving also an extremely simple proof of Matthes' criterion.

The cluster process exists if for all bounded intervals I,
W(I) <o with probability one. In (3.1) put E(u) = 1-(1—z)x1(u),
0 < z < 1. This reduces (3.1) to a p.g.f. so that existence is

equivalent to
P (z) = GG, [1-(1-2)y [t]] + 1 as z 41 (3.9)

for all bounded intervals 1I.
Write

ar(z3t) = - log Gé[l—(lez)XI|t]

- log PI(z;t),

so that QI(-) is the logarithm of the p.g.f. of ms(x) if the

cluster is centred at t, and

P(z) = Efexpl[-[ qp(z;t)ar (+)]} (3.10)
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Now QI(z;t) ¥ 0 monotonically as z 4+ 1, so (3.9) follows

from the nonotone convergence theorem if with probability one
{7 g
[ alzst)an (¢) (3.11)

is finite for some 2z, 0 < z < 1, If we assume that the clusters

are a.s. finite, with cluster size p.z.f. P(z), then
PI(z;t) > P(z) for ell I, t, z € [0,1) (3.12)

For P(N_(I) > n/ cluster centre at t} < P{_(~,®) > n}

and consequently

l_PI( Zst) < l—P( Z)
1-2z - 1=z 4

which implies (3.12). So PI(z;t) is bounded away from zero as

t varies and (3.11) will converge or diverge with
fl1 - Pr(z3)]am (t) . (3.13)

Define pI(n;t) = P{NS(I) > n/ cluster centre at t},
with generating function

l-PI( z3t)

RI(Z;t) = l—Z .
So (3.13) becomes

(l-z)fRI(z;t)ch(t) = (1-2) niozn fpl(n;t)dmc(t)

by the positivity of the summands, which is
. iy
< fog(ost)ar (¢)
because the {pI(n;t)} form a monotone decreasing sequence. Therefore
pr(O;t)ch(t) finite with probability one is a necessary and
sufficient condition for the finiteness of (3.11), and a sufficient

condition for the existence of the cluster process.
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We now prove it is also necessary. Suppose that pr(O;t)ch(t)
is infinite on a set V< F, P(D) = p > 0. Then as (l~z)fRI(z;t)ch(t)
is both dominated by, and contains as a summand, pr(o;t)dmc(t)
it is infinite precisely for Hc(-) in D independently of 1z € [0,1).
So both of (3.11), (3.13) are infinite precisely for Nc(') in D,

and hence by (3.10)

i

P, (2) (ID‘*Q{D)exP{“fo(z3’°)ch(’°)}”(‘mc)

iP(Q-U):l-p z € [0,1)

If then PI(Z).+ 1 as 2z * 1 we can choose z' € [0,1) such that
PI(z') > 1-p, a contradiction. So (3.9 ) cannot hold in this case,

which proves the necessity and consequently

Theorem 3.3. A cluster vrocess with a.s. finite clusters exists if

and only if for every bounded interval I
ij(o;t)ch(t) < o with probability one (3.1k)

Neyman [65] shows that some such theorem is required by constructing
a Neyman-Scott process with an a.,s. infinite number of points in a
bounded interval.

It will be noticed that we have not specified the mode of convergence
of the stochastic integral in (3.1k). Since the integral is actually
a sum of non-negative random variables-it will always have an a.s.
limit, and moreover under the condition (3.1l4) all modes of convergence
are equivalent.

Unfortunately, (3.14) is still in a stochastic form and is there-

fore of limited value in applications. No non-stochastic if and only
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if results have as yet been proved in general, but there are several

useful sufficient conditions deducible from (3.1k4k).

Corollary 1. If pr(o;t)Mc(dt) < o for all bounded intervals I
then (3.14) is satisfied. If Nc(-) is stationary this becomes

pr(O;t)dt < o for 4ome bounded interval I.

Corollary 2. If the cluster structure depends only on the position
relative to the cluster centre and Nc(-) is stationary, (3.14) is

satisfied when the mean cluster size is finite.

Remark. With the cluster structure of Corollary 2, and Nc(-)
stationary, the cluster process itself is stationary (Vere-Jones [88]).
In future, any stationary cluster process will be assumed to have

these properties.
Corollary 2 follows from

. = - o = pt . ¢
pI(O,t) 1 PI(O,t) PI(zo,t) 0<z <1

by the mean value theorem, whence pI(O;t) f_Pi(l;t), the mean
nunber of events in I from a cluster centred at t. With our cluster
structure this is E{E;xl(xi+t)}, where v 1is the a.s. finite random
variable Ns(-w,w) and the x, are the times of occurrence of

cluster members. So if |I| is the Lebesgue measure of I

fo(0,t)at < E{v|I|} < =
and apply Corollary 1 to complete the proof;
Corollary 2 was derived by Ileyman [65] in the special case of a
Neyman-Scott process, and in general by Vere-Jones (unpublished). One

can produce examples to show that E(V) < @ is not a necessary condition
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(see [65]), and also that it is not implied by pr(O;t)dt < o,
Tor a stationary Poisson clusier process we may obtain more

satisfying results. Equation (3.9) becomes
P (z) = exp{-Xf[l—PI(z;t)]dt}

and so will 4 1 with =z if and only if f[l-PI(z;t)]dt is convergent
for all =z € [0,1). Arguing as in the proof of Theorem 3.3 we see

this process exists if and only if
pr(O;t)dt < ® for some bounded interval I, (3.15)

which is a very simple proof of the Mattheé-Goldman theorem (cf. [5L],
[23], where the Borel-Cantelli lemmas are used repeatedly).

We can apply these results to somé of the special processes
discussed eafliér. In each case, assume I 1is bounded.

In the compound process,

DI(O;t) 1 if the cluster centre falls in I,

0 otherwise,
So (3.14) equals NC(I), which is always a.s. finite, and we conclude
that such processes always exist.

For a G/G/® queue we see that pI(O;t) =4F{I-t} so that from
Corollary 1 a sufficient condition for existence is fF{I-t}Mc(dt) < @,
But this is Jjust the first moment measure of the output stream
(Vere-Jones [87]), so the result is obvious a priori.

A discu;sion of the Bartlett-Lewis model is deferred until 3.5.

Since the Neyman~Scott model is a special Poisson cluster process

we have (3.15) as a necessary and sufficient condition for its existence.
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From (3.4)

oI(o;t) = 1 - P[1-F{I-%t}].

The process being stationary, take I = [0,x) without loss of generality.

Then (3.15) becomes, for any x > O,

J{1-P[1-F(x+t)+F(t) ]}at < (3.16)
We now remark
(i) by Corollary 2 a finite mean cluster size is sufficient for (3.16),
without any restrictions on ¥,
(ii) if F has finite range then the integrand in (3.16) vanishes for
large t and the integral must be finite (Neyman [65]).
These are both sufficient conditions. As yet no simple necessary and
sufficient conditions have come from (3.16); however we do generalise

(i) by assuming something about F. Write

O(t) = - log[l-F(x+t)+F(t)]
P(z) = f;udB(u) = ; bnzn 0<z<1,
o) n=o

so that b = P{v = n} and B(+) is its distribution function. Then

(3.16) becomes
NI {10 1a¢ an(u) < ®, (3.17)
o = '
where 0O(t) >0, O(t) >0 as t - io and ©(t) integrable over
(=m0 ,).

(a) Suppose F is the exponential distribution with parameter one.

Then (3.17) becomes

=2

e}

[o2]
b [ {1-(1-ce” %) lat < »
n
n=1"o0
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where c = l--e_'X > 0, Changing the variable by y = luCeft we

see that (3.17) is true if and only if

[=] fllyn oo 1
I b (= )y = £ b, ?-.—<m,
=l %o ¥V n=1 % 3=1 ¢

and the well-known result Z§=l %ﬂb logn as n o shows us that

(3.17) holds if and only if E(log V) < ®, C(learly this is unaffected
by F having exponential tails with an arbitrary parameter,
(b) Suppose that F has regularly varying tails with exponent -o,

o> 0 (see Feller [18] p.268) i.e. as s+
-0
1~ F(S) Vo5 L(S),
where L{(s) > O 1is of slow variation. Then as t +

F(x+t) - F(t) vt %n(¢) {1 - L(?+§)(1 7%

L{x+t)  L{x+t) xo
L(t) L{t) "t

v tTo(8) {1 - + ot}

=(a+l)

Vv et L(t) a >0

where c¢ 1is a constant. A similar result holds for the lower tail.
Since the values of u,t around the origin do not affect convergence

in (3.17), we see that (3.17) converges if and only if

o0 o

[ ] (1~ exp{-ut™
c C

(0+1)7 (£1})at aB(u) < e, o> 0,

and similarly for negative t.

~(a+1)

Change the variable by y = ut . As L(sB) n L(s) we

require the convergence of

o u/C" l—exp{—yL(—J}
é [ o dy dB(u).
o

-——-+-'
a+1l Tt

y
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A \i
Write fg/C as fi + fu/C for some & > 0. Clearly the second

I
1/(o+1)

(4]
integral will converge if fl u dB(u) < ®, For the first

integral, take

o0 8 L('I'l‘ ‘”':L"
é ul/(a+l)L(u){f _L,'(%T v OHldy}d_'B(u), (3.18)
o]

which dominates it. The canonical form for a slowly varying function

(Feller [18] p.274) shows that for amy vy > O L%%é%l <y ¥ for

u sufficiently large. Choosing C so that vy + E%I < 1, the

inner integral in (3.18) converges for all u > C and (3.18) converges

1/(a+1) L(u)

if fz u dB(u) < e,

We collect these results as

Theorerr 3.4. Suppose a Neyman-Scott cluster process has an F with

regularly varying tails with exponent -0, o > O. Then 1 1

+
(1) a sufficient condition for its existence is E{max[vl*a,vl L) 1}

finite, 1

(2) if L(s) is bounded, E(vl+a) < © is sufficient for existence,
and if I(s) = constant as s > ® the condition is necessary and

sufficient.

If the tails of F are exponential, the process exists if and

only if E{log v) < =,

3.4, Mixing in Cluster Processes

The general mixing characterisation given in Theorem 2.7, when
combined with (3.1), enables us to prove statements zbout the mixing

(and ergodic) properties of cluster processes. We consider only
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mixing here, though as before all the theorems carry over to weak mixing
and ergodicity with obvious changes.
Suppose we have a stationary cluster process with p.g.fl (3.1).

If it exists, Theorem 3.3 implies that for 1 - & € V
J(1 - cylefthan (£) <« a.S. (3.19)
The principal result is

Theorem 3.5. A stationary cluster process is mixing if it exists
and the cluster centre process is mixing.
Proof. Since NC(-) is mixing, application of Theorem 2,7 for

£ e L(N) gives

lin 6, (6,08, |£18Ta,lE,] 6] = ¢y (6,18, [¢11.6, [GylE, | t1] (3.20)

To0

for 1 - Ei e V.
The R.H.S. of (3.20) equals G[El]G[Ez]. To establish mixing we

must prove that Lim G[£.8'€.] = G[£.1G[E.], so the problem becomes
T 1 ~2 1 2

to prove that

. T s T,
Lim G,[G,[E;S Ezlt]] = lim G, [c, (€, [t]s e €, t]] (3.21)
T3 00
for 1=, €V, vhere the R.H.S. limit exists from (3.20).
— T T [
Let A (%) = G2[£ls 52|t] - Gé[Ellt]S G2[52|t]. We now prove

Lemma 3.1. [ o (B)ar (1) ¥'3° 0 as T

Proof. Define random variables

X(t) = expf log gl(u-t)dl\ls(u), YT(t) = exp f log ga(u—t-'r)st(u).

Then clearly
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1

AT(t) E{X(t)YT(t)} - E{X(t)}E{yT(t)}

il

E{X(t) - E[x(t)]}{YT(t) - E[Yt(t)]}‘

et I, J be the supports of the functions 1ugl, 1-52 eV,
so they are both bounded intervals. Since the clusters NS(-) are
finite with probability 1 we can choose 1T so large that, given
€ > 0, the probability of one or more events at a distance > 4T
from the cluster centre is at most %e. But at least one of I+t,
S+t+T 1is at a distance > 4T from the cluster centre for all t,

so that
min[P{N_(I+t) # 0}, PN (J+t+r) # 0}] < ke (3.22)
Then because |a~b| <1 if 0< a,b < 1 we have
la (0)] < B{|x(¢) - E[x(e)]].]Y (%) - E[Y _(£)]}
< {2 = BIX(£) 141 - E[Y_(£)]P{N (I+t) = 0, (J+t+1) = o}
+ {1 - E[x(t)1} P{NS(I+t) = 0, NS(J+t+T) # 0}
+ {1 - E[Y (£)]} P{NS(IH:) # 0, D?S(J+t+r) = 0}
+P{NS(I+t) ¢0,NS(J+t+T) # 0} .

But 1 - E[X(t)] = B[1-%(%)] _<_P{1\IS(I+t) # 0}, and similarly

for 1 - E[Y (t)], so that from (3.22)
[a ()] < % min [Ply_(1+t) # O}, PLw_(gvtsr) # O}] < e (3.23)

uniformly in t, for large T.
Also |AT(t)[ < Elx(t) - E[x(%)]]

< E{1 - x(¢)} + E{1 - B[x(%)]}
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2{1 - E[x(%)]}

H

ices A ()] <2(1 - G lE [t]) 1-¢& eV. (3.24)

The lemma is now a consequence of (3.19), (3.23), (3.24) and the

dominated convergence theorem.

To complete the proof of the theorem, we use the identity

i g (t,) - i gy(t,) = .E [z, ()= (e ) (e ) e (g () (e,

i=1 i=1 i=1

.. cl(tn), : (3.25)

i

valid for n = 1,2,... and any functions

Cl’ §2-

e 0 V(6) = eyl 8T 6], o V() = o, lg [tlsTe g ],

so that AT(t) = giT)(t) - CéT)(t). The modulus of the
L.H.S. of (3.25) is bounded by 1, while that of the R.H.S. is

bounded by IIAT(t)|dHC(t), if we take {ti} as a realisation

of the cluster centre process. Taking expectations over {ti} in

(3.25), Lemma 3,1 and dominated convergence prove (3.21) and

hence the theorem,

From 2.4 we have the immediate

Corollary.

infinitely divisible point processes, are all mixing.

This was originally proved by Kersten and Matthes [37]. They

deduced it from a necessary and sufficient condition for mixing in

stationary infinitely divisible point processes, which is easily

established by p.g.fl methods as follows.,

The Poisson cluster process, and therefore the regular

1

)..
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In 4.3 we will show that the log p.g.fl of an infinitely divisible

point process N(.) is

mlel = [ {e logg(t)an(t)
o-{0}

Taking logarithms in (2.21) we see that mixing means

- 1} P(an).

H[glsTg2] - H[g;] - H[E,] >0 a5 Tow®, 1-E V.

The L,H.S. becomes, in the stationary case,

Q{{ﬁ}{l“eXP [ 1og El(t)dﬁ(t) - exp f log Ee(t—T)dH(t)

+ exp [ log gl(t)iz(t—r)dN(t)} P(am)

= [ {1-exp [ log g (t)ar(t) {1 ~ exp [ log g (t-T)aN(t)}P(am)
Q-{0} (3.26)
3.2

Suppose that I, J are the supports of 1-gl, 1—52 respectively.
Then the integrand is zero for the events {W(I) = 0} and
{1(J+t) = 0}, so they may be removed from the range of integration.

Otherwise, (3.26) is non-negative and

<P {e-({m(1) = o} v {w(g+1) = O})}
= P{(I) # 0, 1(J+1) # O}

Therefore if this converges to zero as T - « for any bounded I, J,

so does (3.26) and the process is mixing. Conversely, if the process
is mixing then by choosing El, £2 to be zero over I, J respectively
we see from (3.26) that PIN(I) # 0, H(J+T) # 0} > O as T -+ o,

This proves
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Theoren 3.6 (Kersten and Matthes [37]). A stationary infinitely

divisible point process N(+) is mixing if and only if for all bounded

intervals I, J

PLi(T) # 0, W(J+1) # 0} >0 as T » =,

Several of their other results for stationary infinitely divisible
point processes (e.g. that veak mixing is equivalent to ergodicity)

can be proved just as simply in similar fashion.

3.5 Asymptotic Properties of Cluster Processes

We now study the asymptotic properties of a generalised form of
the Bartlett-Lewis model (example (d) of 3.2), in which we assume
only that the cluster members éll follow the cluster centre with a
distribution depending solely on the distance from it. These results
are of two types; the behaviour as T > «» of UN[0,T) when the process
starts at the origin, and work on the stationary equilibrium distribution.
The lattef includes an existence criterion for the stationary Bartlett-
Lewis process, deferred from 3.3, and a direct proof of the form of
its equilibrium p.g.f.

In part, this generalises Lewis [51]. On occasions we take the
cluster structure of the Bartlett-Lewis model for more exact results
(this is particularly true in the eguilibrium situation), but a
surprising amount can be achieved in the more general framework.

From (3.1) the v.g.fl of our process is

¢lg]l = exp {- x fA-¢,[g|t])at) (3.27)
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Set E&(t) = l—(l-z)x[n T)(t), so that as usual the p.g.fl becomes
\J,

the p.g.f. PT(Z). Assume now that the cluster centre process began

at t =0, so that it is no longer stationary. If P(zju) is the

p.g.f. of NS[O,u), with cluster centre at zero, then (3.27) hecomes

-1 -1 ,T
T~ log PT(Z) = =M1 - T~ [ P(z3u)du); (3.28)
(o]

another derivation including the cluster centres is in Lewis [L49].

We first study the behaviour of the R.H.S. as T » «,
0 i

. .7z
j=oPi? *

(u)zi' and the kaléls{

time to the jth event in the cluster as Fj(u), with f}(u) =

Let p; = P(v=i), so that we may write P(zj0) = T
Define the quantities pi(u) by Plzzu) = Z?=opi

1-7%.(u) and R, = Then
j i

00
L. . D..
J=1 pJ
P{Ns[o,u) > 1i, cluster centre at zerol = R; Fi(u),

so by the usual p.g.f. formulae

1-P(z;®)  1-P(z3u)_

-—

1=z l=-z

* i-1
% oz {R.-R.F.(u)}
. 1 1 1
i=1
and

P(zju) - P(z;°) = (1-z) ; i1 R,F. (u) (3.29)
i=1 s

In vievw of (3.28), consider %ig =t fZ{P(z;u)—P(z;w)}du. From
T

(3.29) this equals
fee) e

i-1 1,0 =
lim (1-2z) & 2z R, T [ F.(u)au,
T i=1 o *

the positivity of the summands validating the interchange. DBecause
— — m

Fi(u) is. monotone decreasing in u for all i, T 1 I;Fi(u) + 0 as
T > %, and the summands are dominated by (“—z)zl‘l vhich form a

convergent series., Thus the limit in question is zero, and from (3.28)
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gt log PT(Z) + <A {1-P(z3=)} s T + o (3.30)

This means that the distribution of N[0,T7) is asymptotically
of a compound Poisson form, as one might expect heuristically from
the nature of the process (see Vere-Jones [88]).

We obtain more exact statements as follows. From (3.29) we

conclude, as before, that

T o T
[ {p(z3u) - P(z;»)}du = (1-2) = zl"lRi / Fi(u)du (3.31)
o) i=1 0
and
T ® i1
lin [ {P(z3u) - P(zs»)}du = (1-2z) I = R, My (3.32)
T o i=1

where ui is the expected time to the ith cluster member, though
both'sides of (3.32) may be infinite. When they are finite, this
generalises various moment relations of Lewis [490], [51] and Smith

(discussion to [49]), as follows on differentiatins (3.32) at 2z = 1.

(o]
Theorem 3.7 If Zi=l Ri U; <® then as T »> o

log PT(Z) = = AT{1-P(z;»)} + Afm{P(z;u)-P(z;w)}du + o(1) (3.33)
o

Corollary TFor a Bartlett-Lewis process By = iy and (3.33)

holds if E(V2) <o, U< oo,

The theorem comes directly from (3.32), the corollary from
o _ ® = LIyl - s .
Zi=lRiui =1 Zi=llRi = §u{E(V ) + E(v)}. We note that (3.30) shows
the cumulants of a Poisson cluster process are asymptotically linear,

and, as remarked above, we may obtain further terms in an asymptotic

expansion from (3.33), under suitable conditions.



As a further application, consider the asymptotic distribution
of the random variable

#[0,7) - E{N[O,T)}
(V)

Its characteristic function has logarithm wT(G) given by
-1 T 1 -1
Pp(6) = -AT{1~-P(80" "32)} + Af {P(807 " 3u)-P(80” ;) }du
o

- i60™t z{n[o,T)},

p———

vhere 0 = JXTE(vg) and P(03-) = P(ele;-). From (3.28)
c T
E{W[o,T)} = A Z R, [ F.(uau
J=1 J o
oo T
= ATE(V) = A 2 R, [ F.(u)du,
=1 Yo

so we have, by (3.31),

wT(e) = AT{P(0o T3>) - 1 - 100" E(v)}

. L. T o0 T
+ l{(l—ele/g) T el(J_l)e/oR.f fﬂ(u)du+iec-l T R.[ ¥, (u)du}
| 51 3o =1 Yo 9
= rT(e) + AT(S) say (3.34)

Now FT(G) is the second characteristic function of a standardised

compound Poisson distribution and so if E(va) <

FT(G) > - %92 as T » o (3.35)
And
( ig/o -1 > T
An(8) = A(1-e""P+igo™ ) £ R, [ F.(uw)du
=1 9 J
J o)
. © L. - T
+ M1-62079) 5 (2-D8/0 e 1T F (u)au,
321 jg 3

so that elementary inecualities (Feller [18] p.485) give
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o T
8,(8)] <36%7% 2B [ F.(wau
= o d J
- J=1 o

-1 o -1 T _
+ 0o 2 (3=1)60" " R, [ TF.(u)du

521 gy
62 o T
< 5 2R [ F.(uw)au

M(ve) j=1 Jo I

if E(V?) < ©, But in that case f?=ljRj < o (cf, the Corollary to
Theorem 3.7), and ot fg f&(u)du +0 as T+, so by dominated

convergence

IAT(G)I >0 as T + o (3.36).

Then from (3.34), (3.35), (3.36), if E(vg) < ®,

wT(e) +> = %62 as T + o

which proves

Theorem 3.8 Ir E(vg) < w, the standardised random variable
n{o,T7) - E{Nf0,T)}
ATE (V)

is asymptotically normally distributed.

This is an improvement of a theorem of Lewis [51], who requires
extra assumptions. For the Bartlett-Lewis model, his theorems are
a direct consequence of our result.

Vle now consider the process which begins at a time x after
the initiation of the cluster process. If this is well-defined in

the limit as x -+« it is called the equilibrium process. From (3.27)

it is obvious that an equivalent situation is the cluster process
beginning at ~-x vwvhile we consider only events after time zero, so

that the equilibrium process can be taken to start in the remote past.
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With this interpretation we can readily find existence conditions for
the process and also the form of the equilibrium p.g.f. in the
particulér case of a Bartlett-lewis model. Lewis [49] derived the
transform of this p.g.f. by a lixiting argument but could not prove
it directly; such 2 proof was given by Franken and Richter [21]. It
relied heavily on the infinite divisibility of the process and the
attendant structure developed in an earlier paper [20]. Ve will give
a direct proof without such machinery.

From (3.27) it is clear that the equilibrium process is a
stationary Poisson cluster process and so the necessary and sufficient
condition for its existence is given by (3.15). To calculate the
equilibrium p.g.f. PT(Z) for H[0,T) we let P(zj;a,b) be the p.g.f.
of Ns[a,b) with its centre at zero; if a = 0 we write P(z3b) as

before. Then from (3.27)

T oo
log Pplz) = -A{f [1-P(z3t)]at + [ [1-P(z;t,t+T)]at} (3.37)
[ o]

Note that this implies that the existence criterion (3.15) can
be slightly modified to f: Plo T)(O;t)dt < o, as the first integral
L]
in (3.37) does not affect matters.

Now with our general cluster structure

m

gh 0
[ [1-P(z3t)]at = (1-z)
(o]

k=

.
zL-le f Fk(y)dy, (3.38)
o

by identical reasoning to (3.31). However for the second term in
(3.37) we will assume the Bartlett-Lewis cluster structure, so that
Fk is the k-fold convelution of the interval distribution F and the

intervals between cluster members are independent. Then
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oe (2] [ea]
[ [1-P(23t,6+T) 1dt = (1-2) T 250 [ plu [t,t+7) >k, centre at zero}dt
o k=1 o] s
(3.39)
and using the independence
P{Ns(t,t+T) > k, centre at zerol} =
® t T+t-u
= I R [ ] o Py (Trteveu)ar(v)ar, (u) (3.k0)
i=o0 0o teu
It is easily shown that
o 1t T4+t-u o THx
f 1] F_p(Tre=veu)ar(v)ar (w)at = [ [ B (T+x-v)ar(v)ax
o o0 t-u o X

= £ {F, (T+x)-F (x)}ax + £ {F_y(¥)-F,_, (T+y)}dy  (3.11)

But if B(+) is an arbitrary distribution function on [O,x),

o

o a
[ {B(x+2)-B(x)} = [ {1-B(y)}ay a > 0, (3.42)
o o : :

so finaily, from equations (3.39)-(3.L42),

[ee] o0 o0 T
f [1-P(z;t,t+4T)]dt = (1~2) & % R.zk—lf {F (y)-—Fk(y)}dy
(o] (o]

k=1 i=k k-1
(3.43)
Together with (3.38) this gives an explicit result for PT(Z)‘
After some simplification, if E(v) < =,
(o0} o] T

log Pp(z) = -A(1-2){T.E(v)+(z-1) % & Rizk'2 £ F_1(y)ay}

k=2 i=k
{3.4k)
This differs slightly from the Franken-Richter result [21],

because we do not include the cluster centres in a cluster process.

If they are included, (3.27) becomes

¢lg] = exp{-A[(1-g(t)G, [g]t])at} (3.27a)

and so
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T e
log Pp(z) = -M[ [1-2zP(z5t)]at + [ [1~P(z;t,t+T)]at} (3.37a)
@] o]
Equation (3.43) is still relevant and (3.38) becomes
T © T
[ [-zP(z3t)Jat = (1-2){m+ £ R 2 [ 7 (t)at}. (3.38a)
o k=17 o

Then (3.37a), (3.382) and (3.43) give, after simplification,

o« [+ . T
log P (z) = =A(1-z){P[1+2(V)]+(z-1) £ X R, 2"t [ F (y)ay}
T k=1 i=k * o &

(3.hka)
vhich is equation (1) of [21].

We collect these results in

Theorem 3.9 The equilibrium Poisson cluster process exists if and
only if fzp[O,T)(O;t)dt < ©, For a Bartlett-Lewis process this

is equivalent to E(v) < », in which case the equilibrium p.g.f. is
given by (3.L44) or (3.4ka) and the limiting forward recurrence time

W has distribution

T
log P(V > T) = log Pr(C) = ~A{ME(V) [ [1-F(y)lay}
o
Procof. The only unverified statemznt is the existence criterion for

a Bartlett-Lewis process. From (3.43) we see that
(o] co

£ Plo, ) (0st)at [ [1-P(03t,t+T) Jat

(o]
© T
= IRy [ [3-F(y)lay,
i=1 o
vhich is finite if and only if 5. .R. = E(v) < . v

i=1"1

This theorem shows that the condition E(v) < » is incorporated

into the equilibrium Bartleti-Lewis cluster process and so may be
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dispensed with in statements of results. Also, the equaticns (3.44),
(3.44a) are very useful in deducing moment relations for the equilibrium
process and may be used to prove a theorem, analogous to Theorem 3.8,

giving asymptotic normality for this process.

.t.

3.6 Infinite-server Queueing Systems

Infinite-server gueues, with their alternative interpretation
as a randomly delayed stream of events, have been widely studied in
different contexts. The classical immigration-death process (Moran
[60] p.176) is an M/M/® queue. Smith [79] has used the GI/G/«
system to illustrate infinite products occurring in renewal theory,
and as we see from (2.2) these are closely tied to p.g.fls. In the
discussion to [79], Skellam mentions the 14/G/» queue as a tractable
system; see also Lewis [49] for applications to the number of operative
clusters at a given time. Lewis [52] and Nelsen and Williams [6L]
consider random delays to a deterministic schedule (D/G/o). Recently,
Rao [72] has worked with infinite-server queueing situations arising
in textile research.

An important quantity in sucu systems is n(t), the number of
servers busy (or the number of customers in service) at time t. We
find the Laplace functional of this process n(+) for a G/G/»
queue, which enables us to generalise many earlier results.

The p.g.fl of the output is given by (3.3). To calculate the
Laplace functional Ln[g] of n(t), consider an input {t;}, with

associated service times {xi} where the x, are independently and

T . . R .
These are not strictly queues, since no customer has to wait, but it
is a convenient terminoclogy.
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identically distributed as F, independent of the tj. Then

n(t) = % Gi Gi =1 ti+xi > ¢
t.<t

0 t.+x. < %
i -

i
and

T-n[g] = E{ e"fn(t)g(dt)}

, &(*) a totally finite measure

i}

L ~a(t)E(at),,
E{ti} {E{Xi}(m{e . lti’xi})}

E{E(exp[-ZE(ti,ti+xi)]Iti)}

e{n [ exp[-E(ti,ti+x)]dF(x)}
io

by the independence of the X, This proves

Theorem 3.10 The Laplace functional of n(+) for a G/G/® queue

is given by

L [g] = G1[£ exp{~E(t,t+x) }aF(x) ] (3.45)

If the input is stationary then so is nf(-).

The stationarity assertion generalises Rao [T72], Theorem 3.
comprehensive nature of the Laplace functional now permits us to
deduce many properties of n(-).

Corollery 1. E{%(®)} = G, [1-(1-2) (1-F(a~t))] 0<z<1.
Thus  E{n(a)} = /_> [1-F(a~t) ] (dt), where M (+) is the

expectation measure of the input. For a stationary input

(o]

E{n(a)} = n [ [1-F(t)]lat = mE(S),
(o]

where S is the service time.

For the M/G/« queue starting at time zero
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a
E{zn(a)} = exp{-A(1-z)f [1-F(t)]at},
o

a non-homogeneous Poisson distribution ef. Skellam in [T79].
The second-order properties of n(+) also follow readily from

(3.45). For instance

~6,n(a) -6 n(a+b) o
E{e e } = Gl[j exp{~¢(t,x,a,b,el,62)}dF(X)] 6; >0
o

where

¢(t,x,2,0,0,,8,) =0 if &> téx or & <t < tix < atb

it
@
H
H
o
A
ct
IA
2
o’
N
ct
+
]

0,40, if t < a < a+b < tix

and so

E{zn(a) zn(a+‘b)}

1 o G, Wz ,2,,2,b5t) ] (3.46)

where

w(zl,ze,a,b;t) = F(a~t)+zl{F(a+b-t)-F(apt)}+zlzz{l—F(a+b—t)}t5a

(3.47)
= F(a+b_t)+z2{1-F(a+b-t)} t>a

Corollary 2. The joint distribution of n(a), n(a+b) is given by

(3.46), (3.47). TFor a stationary input

Wz, 52,,b5t) = (1-2,)F(t-b)+z, F(t)+2, 2, {1-F(t)}  t > D

F(t) + z, {1-F(t)} 0O<t <D

ol
For similar results with 2 GI stationary input, see Rao [72],
Theorem 6. From Corollary 2, Cov{n(a),n(a+b)} can be calculated.

The special case of M/G/» leads to more elepant expressions which

we do not state explicitly - for details see [72].
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Corollary 3. The Lanlace transform of the traffic time average

17 _ . ) -1

Ejon(a)da comes from setting §g(da) = T ¢ da 0<ax<T
=0 otherwvise .,

in (3.45). The final result is not stated, though it is easily

calculated just as before.

We remark that this approach can also lead to joint generating
functionals for such quantities as =n(t) and the output, thus

combining the work of this section and Vere-Jones [87].



L, LIMIT THECRIIS FOR POINT PROCESSES

4,1, Introduction

In recent years the sustained interest in limit theorems for
sequences of independent varisates has extended to dependent situations,
particularly random processes. The field of point processes provides
a unique variety of limiting operations which basically involve the
addition, deletion or translation of points, with appropriate changes
of scale. In all cases we consider, the limit process, in the sense
of 1.3, is a Boissoh process, which explains in part its ubiquitous
occurrence as a model,

The first limiting result was for the superposition of a large
number of, in some sense, negligible streams, a point process &efsion
of the Central Limit Problem (Khintchine [39] §16). Many rediscoveries
and generalisations have followed e.g. Ososkov [68], Grigelionis [25],
Goldman [22]. The limit “or the converse notion of randomly deleting
events of an arbitrary stream was given, under general conditions, by
Belyaev [9] (for higher dimensions see [22]). Our third operation,
randomly translating the points of some initial stream, was first
studied by Dobrushin [16], with subsequent extensions from Goldman
[22] and Stone [80]. This idea also arises in work on rocad traffic
flows, for which see Breiman [12] and Thedéen [82], [83].

Because the characteristic function is so useful in proving

limit theorems for random variables it was hoped, in view of Lemma 2.3,
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that the p.g.fl would be of eyual value in the study of limit theorems
for point processes, The difficulties which arise in trying to implement
this idea are worth discussing., 3Basically, we wish to use the asymptotic
expansion of the p.g.fl in Theorem 2.4, with m = 1, imposing
conditions sufficient to mnale the error negligible (cf. the classical
Central Limit Theorem, Feller [18] p. 488), so we require reasonable
bounds or approximations to the error term. The problem is that this
error, written ofg™) in (2.15), is not uniform in g. For super-
position theorems, when we can use G[£] directly, this is not so
serious since Corollary 1 to Theorem 2.4 provides error bounds if

we assume the existence of higher order moment measures. However

the other limiting operations are more naturally associated with H[E],
and here no workable bounds have heen obtained. Consequently, a

unified approach to point process limit theorems via the p.g.fl has

not eventuated as yet, though we do give some results established by

a technique of Vere-Jones [8T].

It is because most limit theorems assert convergence to a Poisson
process that ve prefer the p.g.fl to other notential functionals in
attempting to develop a seneral convergence theory. As the Poisson
process has Cn(°) =0 if n > 2, it seems natural to use the
logarithm of the p.g.fl with which the Cn(-) are associated,
introducing such conditions as ensure they are negligible in the limit.
Asymptotic independence of counts in distant intervals, i.e. a2 mixing
condition, appears to be avpropriate, although little is known about

this in the present context.
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In this chapter we first look at some special ergodic results
which are related to the usual Laws of Large Numbers. We next
establish the canonical form of the p.g.fl of an infinitely divisible
point process and prove some related limit theorems on superpositions
of random streams. Finally we investigate the limit theorems erising

from deletion and translation of point processes.

L,2 Ergodic Theorems for Point Processes

Since there is a wide literature on ergodic theory for stationary
stochastic pfocesses we try to relate ergodic theorems for stationary
point processes N(.) to this wrork. There are two such relations,
corresponding to the discrete and continuous parameter ergodic theory;

we will only consider the latter.

If Xb(t) = N[t-b,t) then for 2b < t
t t u b t=b
[ % (uau= [ [ an(v)au = [ vdD(v)+bf an(v) +f (t=v)am(v)
b b u-b o t-Db
< bi[o,t)

and similarly f Xb(u)du > pi[0,t),

i.e. £+

bt/xb( wau ¢ M8 L j x, (u)au (4.2)
So the behaviour as t + « of t‘lm[o,t) is identical with that of

fOXb(u)du, where Xb(') is a stationary stochastic process.
This idea is used by Goldman [22] and Beutler and Leneman [10] in

similar circumstances.

We deduce from (k4.1) and the ergodic theorem for stationary process
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(Doob [17] p.515) that as t =+ t—lN[O,t) converges a.s. to a
random variable invariant under translation (cf, Beutler and Leneman
[10]). When this limit is a.s. constant we say that the Strong Law
of Large Numbers holds for W(+), and that the Lav of Large Humbers
holds when there is mean square convergence to a constant,

In future we consider only weakly stationary N(.), when Xb(t)
is also weakly stationary. Let Cb(t) = Cov {Xb(r), Xb(t+7)}.

Then from the identity (1.7)
cb(t) = -;— {D(t+b) + D(t-b) - 2D(t)}, (L.2)

and on substituting the spectral representation (1.8) for D(t)

c,(t) = b2u({o}) + 2] cos ot (2222 |(ae) (4.3)
0, e

Since Cb(t) is the covariance function of a real stationary process
it must be the cosine transform of a spectral measure Eb(') ([171,
p.519). Here we can actually express Fb(-) in terms of the spectral
measure for D(t) by

F,(d9) = 2292 0 4 (ap) (4.4)

0
We are interested in Cb(t) because Doob [17] p.530 and

Vefbitskayé [86] have shown how intimately its behaviour is connected
with the validity of the two Laws of Large Numbers., Firstly, we look
for mean square convergence of t_lN[O,t).

From (k4.1), t-lN[O,t) +m = B{N[0,1)} in mean square if and
only if this occurs for (bt)-l fzxg(u)du. But by Doob [17] p.530

-1 ft

this is equivalent to t OCb(T)dT +0 as t -+ i.e. Fb(°) has

no atom at the origin., Then from (L.L4) we deduce
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Theorem 4.1 The Law of Large Nusbers holds for a weakly stationary
point process N(+) if and only if u({0}) = 0. A sufficient

condition for this is that N(+) have an integrable covariance density.

Verbitskaya [86] has stated sufficient conditions for the Strong
Law of Large Numbers to hold for Xb(t) in terms of its covariance
function, related to its behaviour as t - ©, Ve shall express this
in terms of properties of W(+) in one simple case.

Suppose Cb(t) = O(t-u), o >0, as t > ®, Then clearly
6£(t) = t-lf20b(u)du = O(t-a) as t > o which from [86] implies the
Strong Law for Xb(t), and hence HN(+). As Cb(t) is the cosine
transform of a totally finite measure Fb(o) if u({o}) = 0, it is
well known (Lukacs [53] p.27) that its behaviour as t -+ = may be
irregular unless Fb(-) is absolutely continuous with respect to
Lebesgue measure. Assume u(+) has no singular component; then from
(4.4)
Lemma b4.,1 Eb(-) is absolutely continuous with respect to Lebesgue
measure if and only if the atoms of W(.) are concentrated on

{2ﬂnb—l; n=1,2,.0.}, i.e. on a lattice with span omo L,

Under these conditions, if h(@) is the density of the absolutely

continuous part of u(.) (L4.3) becomes

l-cos Ob

C (t) = 2f cos 0t( =) n(6)as (k4.5)

b o) 0

We can now prove
Theorem 4.2 Let N(+) be a weakly stationary point process whose

spectral measure has no singular component, atoms concentrated on
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a lattice, and whose density with respect to Lebesgue measure is of
bounded variation in (§, ») for each & > O and satisfies

n(e) v cd ', O<y<1l, as @+ O; Then the Strong Law of Large
Numbers holds for N(-).

Proof. We know the result is true if ¢ (t) = 0(t™), o >0, as t = .
Since h(8) is of bounded variation in (8§, ») so is fb(e) =
l:sg%_ﬁh.. n(e). But alsc £,(6) = 67V[Z=22P | g(s)}, where the
term in brackets is bounded, of bounded vargation on (0, @), and

tends to a non~zero finite constant as 06 - 0, So the conditions of

Titchmarsh [85], Theorem 126, are satisfied and consequently

Cb(t) = O(tY-l) &s t >®, O0<Yy f 1. v

4.3 Infinitely Divisible Point Processes

In 1.5 we introduced the notion of an infinitely divisible point
process. In our further investigations we first derive its p.g.fl in

-~

terms of the KLM measure P, as a minor extension of Kersten and Matthes
[36] and Lee [145].

Consider the functional

ole] = expl [ [ 208 EWIWE)_y134y)) (4.6)
Q-{0}

for 1 - & € V., For simple functions & we see from Theorem 1,3 that
G[E] becomes the p.g.f. of a compound Poisson distribution, which is
obviously a proper p.g.f. Now suppose we have a sequence of functions
1= En € V all vanishing outside a common interval I and that

gn + £ pointwise as n + o, By (3) of 1.5, P{H(I) # 0} < » and as

always N(I) is a.s. finite. Since the integrand in (4.6) venishes
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for 21l WN(+) in @ with N(I) = 0 it is now a simple consequence

of dominated convergence that G[in] + G[E€] as n + «», So by Theorem
2.2 ¢lg€] is a p.g.fl, and obvicusly it is the p.z.fl of the infinitelr
divisible point process. This proves

Theorem 4.3 The p.g.fl of an infinitely divisible point.process

with KL measure P is given by (4.6). Conversely, if P heas the
properties of a KILM measure, (L4.6) is the p.z.fl of an infinitely

divisible point process.

This canonical form for an infinitely divisible p.g.fl has a variety of
applications., In cases where the p.g.fl is expressible in closed form,
(4.6) gives the associated KIM measure directly (e.g. Lee [46]). It
also helps us deduce some characterisation results analogous to those
of Lukacs [53] p.83.

Corollary l. A point process is infinitely divisible if and only if its

p.g.f1l can be expressed as

G[&] = 1lim exp{xn(Gn[g]—l}} (L.T)

nN-oo

where the Gh[g] ere all p.g.fls and the ) are positive real numbers.

This means that a point process is infinitely divisible if and only
if it is the limit in distribution of a sequence of singular Poisson

processes E .
An’Nn

Corollary 2. An infinitely divisible point process has the form EA n
L] ¥

if and only if P is totally finite, Then A = P(R) eand N(-) has

-

probability measure )\ "P.
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Both these results are implicitly stated in [36]. We note that
the 'curiousity' of ILee [46] §4 has a totally finite LM measure and
50 must be a singular Poisson process. It is of course a special case
of the doubly stochastic Poisson process, and (2.10) shows that doubly
stochastic processes are infinitely divisible if their mean processes
have this property. In particular, linear stochastic Poisson processes
are all infinitely divisible (section 5.3).

By definition (A) of 1.5, the limit in distribution of the super-
position of independent u.a.n. point processes {Nn,i(.)} i= l,...sn
n=1,2,,s, 1is an infinitely divisible point process. To exploit

this we express the u.a.n. condition in terms of p.g.fls.

Lemma 4.2 The sequence {Nn i(~)} is u.a.n. if and only if for given
2

€>0 and 1 -E& € V there is no(e) such that if n >n_,

1 -6 .[E] <e  uniformly in i.
n,i

Proof. Suppose the W i(-) are u.a.n. with p.g.fls G, i[F,]. Given

? H]

€ > 0 and arbitrary 1 - £ € V vanishing outside a hounded interval I,

1-06 ,[E]

n,i

1 - E{exp {logg(t)dNn’i(t)}

L= + [[ log g(t)aw_ .(t)1p_ . (aw)
{ {N(I)=O} {N(I)>ofeXp { °& n,i n,i

<1- ‘)n,i{N(I) = 0}

< g uniformly in 1 if n> n,

The converse implication follows on putting £

0 over suitable bounded

intervals. . v
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Lemma th For a sequence of independent u.a.n, point processes
s s
\i . s n i n -G reyo "
{hn,i( )}, %0, log Gn’iLg} and Zixl(l n,i[g]) converge Or
diverge together, 1 - ¢ ¢ V.
Proof. By u.a.n. and Lemma 4.2 log G, i[E] exists if n is
-

sufficiently large. Then the expansion - log x = (l-x) + O(l—x)2

0< 8§ <x< 1 shows that

s, s s
. _ n n 2
- Ellog G [E] = iil(l-Gn’i[E]) + :E 0(l~Gh’i[E]) (4.8)
, 5q
The remainder is positive and < K (l— [E])
1—1
<K (1-c¢_ .[E]) § (1-¢_ .[&
B 1T?§s T a,5l6)
~n
<€ E (1— [E]) 1-Eev
i=1

for large n, by Lemma L.2.

If Zizl(l-ch,i[g]) converges then it is bounded and the remainder
will be o(1), so that the L.H.S. of (4.8) converges. If the L.H.S.
of (4.8) converges then as both terms on the R.H.S. are positive they

must be bounded and again the remainder is o(l). v

This leads to another useful characterisation theorem (Kersten

and Matthes [36])

Theorem 4.4 For a sequence of independent u.a.n. point processes

() +-N «) if and only if Z (.) 3 m(.)

1-1 n,i l 1, H
9
as n » o (by definition HN(:) is infinitely divisible).

Remark. This is a more exact statement of (h.7).
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I - 1 (- n \F . 3 n e
Proof. The logarithm of the p.g.fl of Zi=lkn,i( ) is Zi=llog Gn,its],

s s
vhile for Ziglgl’Nn i(n) it is -zigl(l-Gh,i[gl), so the theorem
follows from Lemmas 5.3 and k4,3, \4
We now illustrate the remarks of 4,1 on the application of the
p.g.fl to limit theorems by proving the convergence of a superposition
to the Poisson process in two different ways.
(a) Suppose the Nn,i(-) are identically distributed, for fixed n,
as a stationary orderly point process N(.) with intensity A, a
Borel second factorial moment measure Mé(-), and its time scale
dilated by a factor n (this is the format of Vere~Jones [8T]).

Because E{Nn i(I)} = n—lAIII the array is u.a.n., and because of
H

orderliness we have, for all I,
n M (.]_:. X !:_) >0 as n > (Mill’le [58])
2'n n

We now apply (2.15) to get

1- ¢, ,[1-¢] n~hafg(t)at + R . [El, EeV

H

where by Corollary 1 to Theorem 2.k

o< r el < -1

=

I I,
Mé(E-x n) = ofn from above.

Therefore as n - «

n

2 (1-0q .[1-g]) = Afe(t)at + o(1)

i=1 el

and by Lemma 4.3 E?_an i(-) converges in distribution to a Poisson
- H]

(A) oprocess.
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This proof is elementary but the conditions imposed are stringent.

In particular we cannot dispense with Mg(-) a Borel measure, which

emphasises the limitations of the expansion (2.15).
(B) For more delicate results we imitate Vere-Jones [87]. By
definition

G[1€] = p(0;I) + E{1-£(t) |W(1)=1}p(1;I) + o[p{N(I)>2}]

where & & V vanishes outside the bounded interval I. Then
Sp Sp Sh

2(1- ;[1-€]) = u{E(t)[N (I)=1}p ; (15T)+0l z Pl ,(1)>2}]
j=1 et Coi=1 j=1 Bt

(4.9)

Theorem 4.5 (Grigelionis [25]). For a sequence of u.a.n. point

3

. Sn - . g . . . .
processes {Nn,i( )}, Zi=lmn,i( ) * Poisson (A(+)) if and only if

for each bounded interval I

S
1lim (1 I) = A(T) (4.10)
n->o 1—1

S
lim z [l—p (o I)-p, l(1 1)] = (4.11)
Nsoo 1=1

Proof. The necessity follows as in [25] and Lemma 4.3 proves the
sufficiency if the L.H.S. of (4.9) converges to [g(t)A(dt) as

n +®, By (4.11) the remainder on the R.H.S. of (L4.9) is o(1).

s _
Choose for & € V a simple function Z =1 JXI . Lszle = I, vwhence

P{E(t)lN . 1}p ((131) = z z pr (D)=1,m (I.)=1}
31 le n,1 n,1 J
k
v oLz (13 I )
j=1 “5° Pn .1

by (L4.11) so that from (L4.10)
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g

5 k
lim gm{g(t)mn {(D=1lp, ;(131) = 1z A1) = fe(t)alat).
Do i=1 ’ : =19 Y

By taking a sequence of simple functions converging monotonely to £

this last result is true for arbvitrary & e V. Y

b, L Deletion and Translation Theorems for Point Processes

Numerous writers have considered 1limit theorems arising from the
operations of deletion and translation and have characterised the
Poisson process as the conly stream invariant under these operations.
We illustrate applications of the p.g.fl in this field, using the
following technique (Vere-Jones [87]); if a sequence of p.g.fls Gn[E]
can be represented as G[En], for some p.g.fl G, then clearly
| 1og En(t)dm(t) converging in any mode to a random variable Y
implies G [E] = c[E ]~ B(e™Y).

Formally, the deletion operation cancels the points of an
arbitrary point process N(+) with probability 1l-q¢ and retains 'thenm
with probability g, independently for each point, thus generating
a nev stream Nq(-). If G is the p.g.fl of N(+) then as Nq(-)
is a very special cluster process, with clusters of size O or 1

occurring at the cluster centre, (3.1) shows that
Gq[E] = G[1-q+qgE] (k.12)
So our general technique is applicable and we have

Theorem 4.6 (Belyaev [9]). Suppose

limP{%L%l-A

| 2]

>¢g} =0 (4.13)
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uniformly over all intervals I of finite length. Then if we
contract the time scale by a factor q, No(o) $ Poisson (A) process
as q - O.

Proof. We shall prove that for g ¢ V

z, = [ logll-gg(qt)Jan(t) Y oafe(t)at  as q 0 (L.1k)
Expanding the logarithm, as q,&(t) < 1, we have

log [1-a€(qt)] = -aE(qt) - B(a,E)a"E(at)
whefe B(*) is uniformly bounded for q < 1, & € V. Then from (4.1k)

Zq = -afe(qt)an(t) - q?fB(q,g)g(qt)dN(t),

so that if qfz(qt)an(t) 13 Afgldt)at as g » 0 sowill zq as
the remainder will be o{(1) in probability. (L4.12) and Lemma 2.3

then complete the proof.

~

When £(t) is a simple function Z?—lziXI (t), elementary
= i

considerations give

K I,
P{lafelat)an(t)-Afe(t)at|>e} < 2 P{lqm(a-l—)-xllill > & (bas)
i=1

as q-> 0 by (L4,13). So our result is true for simple functions £.
For arbitrary £ e V choose a monotone sequence of simple

functions {gn} with gn(t) 4+ E(t) uniformly as n =+ ®, so that
M (t)at > AfE(t)at as n > (4.16)

And given €' > 0 we can choose n so large that for all q

0 < aflglgt) = g (at)]an(t) < e'qN(g:),
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where J 1is the bounded interval outside which £ vanishes. Since

qﬂ(%b is convergent in probability,
P{f[E(at) - En(qt)]dN(t) >e} <e (4.17)

as n >, for fixed g near zero,

Thus for £ eV and € > O,

P{]afE(qt)av(t)-AfE(t)at|>e} 5_P{[qun(qt)dm(t)_xfgn(t)dti>%}

+ Plof(E(at)-€ (ab) Jan(6)>S1+P(A[ [E(+) - (t) Jat>5)
<€

by (4.15)-(4.17), which proves the theorem. /

b simple corollary is that if )\ in (4.13) is a random variable,
a conditional argument proves convergence to a mixed Poisson proceés.
Theorem 4,6 generalises Goldman [22], as he requires a.s. convergence
in (4.13).

The translation operation adds to each point ti of a point
process N(+) a random variable Yi’ where the Yi are independently
and identically distributed and independent of the ti' This is again
a cluster proceés, with cluster size one. If the Yi are non-negative
we have a G/G/® queue (cf. 3.6).

Let N(*) have p.g.fl G[E] and the translations Y(x) have
distribution function Fx(y). Then from (3.3) the p.g.fl of the

translated streanm NX(-) is

¢ [E] = clfg(twy)ar (v)] | (4.18)

= G[Ex] say, as we require.
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Theorem 4,7 If for all bounded intervals I

(4) sup FX(I—y) >0 as x +
¥

(8) [ rF (z-tdan(t) B A|I] as x>

then Nx(-) converges in distribution to a Poisson (A) process.
Proof. Conmsider again the variable Z_ = jlog[l-gx(t)]dﬁ(t),

vhere §& € V. The usual expansion gives

7, = -[ (t)an(t) - fai(t)ini,t]dN(t),

where
0 < R[E,] < 3la-€ ()17,

Let I be the support of &. Then gx(t) S_FX(I-t) and as before
if fgx(t)dN(t) R Afe(t)at as x + = so does Z_, because the
remainder will converge to zero in probability by (A). Then (L.18)

and Lemme 2.3 complete the proof.

When £(t) is a simple function Z?=lziXI_(t) then by (B)
. 1

k
fe (t)an(+) =_i£lzifo(Ii-t)dN(t)

k
2 iilziAlIiI = afe(t)at (4.19)

as x - o, S0 as in Theorem 4.6, taking an increasing sequence of
simple functions converging uniformly to £ ¢ V, we can show that

(4.19) holds for arbitrary £ in V. This proves the theorem. \

Theorem 4.7. can obviously be extended to the case of ) a
random variable, just as before. It generalises similar results of

Goldman [22] and Thedéen [83] by assuming only conveigence in probability
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and not with probability one in (B) and not requiring thatv N(.) ve
well-distributed. However it does not provide a necessary condition
for convergence.

Corollary 1. If Fn(y) is the n-fold convolution of a distribution
function F(y) and N(:) is stationary with intensity ) and an

integrable covariance density, then (A) and (B) are satisfied as n + o,

This is the output through a sequence of G/G/e qucues (Vere-

Jones [871).

Corollary 2. For the D/M/o» queue, with service distribution Fx(y)

= 1 - exp{- %X}, (A) and (B) are satisfied with A =1 as x - o,

This result was asserted by Helsen and Williams [64]. (A) is

obvious, and for (B) let I = [a,b). Then

& (a=y) (b=y)
JF (T-y)an(y) = [ (exp{- LZL'} - expf- g;gzz-})dﬂ(y)

-0 X
b
+ [ F (o-y)an(y) .
a,
Obviously the last term goes to zero, and the first term is

l-exp{- %{b—a)}

o
(1-exp{- %(b—a)}).f exp{%?}dN(z+a) n =
—0 l-exp{~ ;}

+ (b-a) = |I| as x »> =,

Finally, a word on characterisation theorems. Dobrushin [16],
Goldman [22] and Thedéen [83] prove that the mixed Poisson process is
characterised, among various glasses of point processes, by invariance
under translation and Mecke [57] (see also Nawrotzki [63]) establishes

this invariance for doubly stochastic Poisson processes and deletion.,
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A related question is considered by Szasz [81], namely what cluster
mechanisms ensure that a Poisson cluster process is again a Poisson

process? We can easily prove his result from the basic p.g.fl formula;

it shows that only deletion and translation are allowed.

Theorem 4,8 A Poisson cluster process is a stationary Poisson process
if and only if p = P{NS(—w,w)=n} =0, n>2.

Proof, The sufficiency is obvious, and the Poisson cluster process

is then a Poisson (A[l-po}) process. Conversely, if this is true

then taking logarithms in (3.27) we find
M(-c lefthat = A(1-p ) f[2-E(t)]at .

Now NS(-) is a.s. finite so GZ[EIt] has a representation (2.3).

If m, = (l—po)_lpn then
f{l—nilwnf..fg(xl+t)..g(xn+t)dUn(xl,..,xn)}dt = [[1-g(t)]at .

Since 1 - £ € V, choose £(x) = l—(l—z)xI(x) for some interval I.

On equating coefficients of 2z we obtain equations like

0
L JU (I-t,I-t,I-%,...,I-t)dt = O,
n=2n n

where A is the complement of the set A. Since I is arbitrary,

this implies m, 0 for n = 2,3,... .



5., IDENTIFIABILITY IN LINEAR STOCHASTIC POISSON PROCESSES

5.1. Introduction

In 1.5 it was pointed out that the linear stochastic Poisson process
has a great variety of uses in the theory and applications of point
processes. It will be shown that this process is determined by two
parametric functions, hereafter called parameters for brevity, and so
it is important to be able to determine them uniquely from the process.
This is the identifiability problem studied in the present chapter.

We do not attempt to estimate the parameters although we do prove that,
under certain conditions, the parameters are identifiable from gquantities
which should provide reasonable estimates in practice.

The results established below for linear processes are of interest
in their own right and may be extendéd to a wider class of linear
processes than those we consider. In particular, we can drop certain
non-negativity assumptions. For details see the author's paper [91],

on which this chapter is based.

5.2 Preliminary Results

The linear stochastic Poisson process was defined in 1.5, where we
assumed f was non-negative, integrable and square~integrable. Ve now
write f g B2, where we say that f ¢ Bn if f is non-negative and
P is integrable for p = l,...,n. A simple criterion for this is given
by
Lemma 5.1 If f is bounded and integrable then f € Bn for all n.

8L



The cumlants of X(t)-X(t-1) are denoted by ‘¢ _, vith «, = 0% <
by assumption.

Since the moments of j 1involve integrals of powers of f, Lemma
5.1 is a convenient way of eunsuring that all these integrals are {inite.
In many cases the boundedness assumption will be reasonable, e.g. the
'shot-noise' process defined in Bartlett [6] p.161, although we do not
use this assumption for general results.

The fundamental relation between the p.g.fl of a doubly stochastic
Poisson process and the Laplace functional of its mean process is given
by (2.10). Vhen the mean is a linear process, as considered here, we

cen evaluate the functionals explicitly. Since X(.) is homogeneous

additive with non-negative increments its Laplace transform is

E{exp(~0[X(t+1)-X(£) 1)} = expl-Ty(8)} | (5.1)
where
* l-emex
Y(e) = v8 + [ —— aK(x), (5.2)
[e]

Y is a non-~negative constant and K a non-decreasing function on

(0, ©») with K(0) = 0 and f:x_ldK(x) < o (Baxter and Shapiro [8],

Zolotarev [O4]; this form is from Feller [18] p.426). Because

E(x2(¢)} < ®, in fact K is bounded and f: xdK(x) < ©, It turns

out that this kernel is mathematically more convenient in our work than
-0x

the usuzl l-e .

It is now easily shown that

LA[g] = exp{~fyl[£(t-u)g(dt)]au} ’ (5.3)

(Bartlett [6], p.161, Shiryaev [77]), and consequently



cle] = exp{-fy(fr(t)[1~g(t+u)lat)au}. (5.4)

From this result we can of course derive any desired property of the
process.,

Equations (5.3), (5.4) show that the parameters f, U determine
the process (linear or linear stochastic). In this chapter we investigate
the converse question of when they are uniquely specified by the process

i.e. when they are identifiable. Clearly the results will be the same

vhichever process we choose to discuss, because of (2.10); in fact we
give a detailed account of the identifiability of Y for linear processes
and of f for the linear stochastic Poisson process.

It is plausible that because of the comprehensive nature of the
two functionals identifiability will always hold, in the sense that
each process is associated with an £ and V¥ unique up to constant
multipliers, However the difficulty of obtaining a sample estimate of
the p.g.fl, say, means that in practice estimators of the parameters
will be quantities derivable from the p.g.fl but not containing all its
information about the process. We are principally concerned with
this problem.

An identifiability theorem for another special class of doubly
stochastic Poisson processes, namely those which are renewal processes,
is given in Kingman [40]. As remarked before, they cannot be linear

stochastic Poisson processes.,

5.3 Identifiability of

Since X(t) is homogeneous and additive it can be expressed as
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n

d . .
X(t) = Zi=lxi,n(t)’ where the Xi,n(t) are independent and

identically distributed homogeneous additive processes. Conseguently

OR: g ff(t-u)dXi
i=1 >

o)

n

for any n, so that A(t) is infinitely divisible (Lee [45]). 1In
view of (2.10) and 4.3, linear stochastic Poisson processes must also
be infinitely divisible. We now calculate the canonical form of its

Laplace transform in

Lemma 5.2 Let X(f,8) be the logarithm of the Laplace transform of

a linear process (1.11) and let
h(y) =m{x : £(x) >y}, ¥>0, -

where m{+} 1is Lebesgue measure, If f ¢ B2 and h has a derivative
h' existing and non-zero at each point, then X(f,e) has the canonical
form given by (5.6), (5.7) below.

Proof. From (5.3)
%(£,8) = -fplo£(u)Jau. (5.5)

Since f is non-negative and integrable we may rearrange it as a
decreasing fﬁnction g on [0, ©) whose inverse exists and equals
h(the technique of rearrangement is described in Hardy, Littlewood
and Palya [27] §10.12). Our hypotheses show that g is uniquely defined
everywhere with finite derivative g', and g'.h' = 1.

Now integrals both of a function and measurasble functions of the

function are invariant under rearrangement. Since ¢ is measurable,

o » l_e-OXg(u)

-x(£,8) = -x(g,0) = Yefmg(u)du + [ K (x)du.
(o} o 0
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Change the variable by v = xg({u), Then

) Xg(O) l_e-Sv

-x(£,8) =y0 + [ [ . X§1h=(§01dv aK (x)
(O] X

v

since clearly g(u) +0 as u -+, Set b = g(0) = sup £u) < w; if
u =

b = o then b T = C. So

. o co l_e_Qv v v
-x(£,8) =8 + [ [ | = . |nt (D) |ak(x)av
o vb b
A ® :]_..e-“ev A
= Y6 + [ = ak(v) (5.6)
o
where
Y=v [ glwau=1v [ f(u)du
° o (5.7)
d 2 ~ v
& &) =k(v) = [ ) Tl (D la(x)
vb T x

cf. (5.2). Since we know A is infinitely divisibleé there is no

need to check the suitability of (5.7).

Lemma 5.3 (Kendall and Lewis [35]). If ¢(8) is the characteristic
function of a non-negative random variable, 6 real, then the set of

zeros of ¢ has Lebesgue measure zero.

We can now vrove an identifiability result for the transform ¥X.
Theorem 5.1 Let X(f£,0), f, and h be defined as in Lemma 5.2,
and in addition let f be bounded. If f is known, then x(f,0)
uniquely determines Y and converseiy.
Proof. The unigqueness of the canonical form (5.6) ensures that Yy, &K
are unique to ¥X. Clearly Yy is uniquely determined by ?, since f

is assumed known, and we show the seame is true for K.,
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As £ is bounded we may assume without loss of generality that

b = 1. Then

@ ©o

R(=) - 2(v) = [ [ L5 |n(D)|axlx)ay
vy x
o 1
=[] .1 z|h'(z)|dzdK(x) . (5.8)
v vx

iow z|h'(z)| is integrable over [0, 1]. For on integration by
parts we see that this assertion is equivalent to lim zh(z) finite.

ot
But

Jf(x)ax > 8 I n(ns)
n=1

for any 6 > 0, and as f is integrable the result follows. Together
vith K bounded this shows that (5.8) is proportional to the upper tail
of the distribution function of a product of two indepéndent random
variables, say W, W,, on [0, ») and [0, 1] respectively. If

U= Wl.W2 the problem becomes, does knowledge of the distributions

of U and W2 determine the distribution of W.?7 Take logarithms

1

to get a sum of independent random variables. Then as -~ log W2 has
range [0, ») Lemma 5.3 shows that its Fourier transform is non-zero
almost everywhere, and we immediately conclude that K is uniquely

determined by R and hence X, As the converse is trivial, the theorem

is proved. 4

Remarks 1. The restrictions on h in Lemma 5.2 exclude functions
£ with intervals of constancy and certain kinds of discontinuities, in
particular simple functions. It is possible to prove a similar result

for simple functions by a different method.
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2. If f is unbounded the theorem is still valid if the
logarithm of a random variable with density function proporticnal +to
z|h'(z)| has a Fourier transform non-zero almost everywhere. Boundedness
ensures in a simple manner that this is so.

3. For a general linear process, with signed f and signed
increments for X(t}, Lemma 5.2 is still true if we revlace Laplace
transforms by characteristic functions and use the canonical form forv
an infinitely divisible distribution with finite variance (Lukacs [53]
p.20). However the uniqueness result of Theorem 5.1 cannot be proved,
at least by the same method, unless f 1is non-negative (for details
see [91]).

All this leads directly to
Theorem 5.2 A linear process (1.11) uniquely determines the Laplace
transform of X(t), and conversely, for known f ¢ B,.
Proof. From (5.3), the Laplace functional of a linear process has the
form (5.5) with a modified f. Since &(+) is an arbitrary measure
we can choose &(+) so that [f(t-u)E£(du) satisfies the conditions of

Theorem 5.1. But LA[E] contains full information about the process. ¥

We note that if f is bounded then 1 is identifiable from the
Laplace transform of A(t) alone, that is from the distribution at a
point.

Since (5.4) shows that the p.g.fl of the linear stochastic Poisson
process is also of the form (5.5), and 1-§ is arbitrary other than

being in V, say, we deduce immediately
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Theorem 5.3 A linear stochastic Poisson process uniquely determines

the Laplace transform of X(t), and conversely, for known f € B2.

5.4  Identifiability of f

In the previous section we established the identifiability of ¥ for
knovn f. Here we investigate the converse question and assume throughout
that VY is known.

As we know, the factorial cumulant measures of a point process are
uniquely determined by the process and may be calculéted, for the

linear stochastic Poisson process, by the use of Theorem 2.4 and (5.h4).

-0x
If K, < and f ¢ Bn’ we expand —— as a Taylor series to n
terms to get
n k
_ (=1) vk
H[l—&] = f{ z K Kk[x(w)] + Rn(x-z)}dx.r (5.9)
k=1
where £ ¢ V and
r(v) = [£(v-w)g(v)dv
n o o]
R () = T o3 )]® e W) 0<s <.
g .

ray

Since [r(w)]® is integrable and IRn(w)l S-E% [r(w)1%, (5.9) and

the Corollary to Theorem 2.4 show that the linear stochastic Poisson

process has factorial cumulant densities ck(-) existing, with

ey (tyseasty) = i JE(t =w) . £t —w)aw (5.10)

k=1,..,n. ce(-) is of course the covariance density.
The uniquely determined functions ck(') are possible estimators
of f, so it is of interest to see whether they provide identifiability.

We first establish this in the important case vhen f - is restricted to
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a half line i.e. f(x) = 0 for x < 0. This means that the linear
process is expressed in terms of past values of X(t) only, which does
not seem unreasonable.

Since the point process is stationary cz(tl’tg) = cg(tl-te),
and 03(tl,t2,t3) = cs(tg-tl,t3-tl). iow take Fourier transforms,

denoted by an asterisk, in (5.10). Ve have

ct(w) = o%6(w)3(w) (5.11)
ctlwy,w,) = kg ¢lwy)o(w,) §lw,*u,), (5.12)

wvhere the bar denotes complex conjugate and ¢ is the Fourier transform
of f which exists because f is integrable, As VY 1is known so are
ae, Ky, SO that (5.11),(5.12) are exactly equivalenf to equations

(5), (6) of Kendall and Lewis [35], with ¢ vreplacing their V¥, because
f vanishes on a half line. From their paper we conclude that f is

identifiable up to a location factor; clearly from the form of (5.10)

we can expect no better than this. Hence

Theorem 5.4 A linear stochastic Poisson process with V¥ known,
Ky < @, and f ¢ B3 venishing identically in (==,0) determines f

uniquely up to a location factor.

Theorem 5.4 of course answers the question completely. However it
involves the khowledge'of both second and third factorial cumulant
densities and in estimation we would like to use Jjust one. This leads
to the investigation of identifiability of f from a single ck(-) of

low order.
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If ve know only c2(~) it is easy to construct instances
where two different functions f give the same ce(‘). For example,
cf(w) = (1+°)"%  earises from a gamma density with two degrees of freedom
and also a bilateral exponential density. However if we again restrict
attention to functions vanishing on (=2, 0) the problem is equivalent
to a much-studied question in the theory of linear prediction of a
stationary process from its past history (Doob [17], chapter 12,
Bartlett [6], chapter 7). The crucial point is to determine a Fourier
transform knowing only its modulus, a topic discussed briefly below,
This is essentially Doob's Theorem 12.5.2.

As £° s integrable and vanishes on (~®, 0) a theorem of Paley
and Wiener (Hoffman [29] p.131) shows that its complex Laplace transform
fe¥(s) = f:e-sxf(x)dx, Re s > 0, is a member of the Hardy class i
in the right half plane. It is known ([29] p.132) that H° functions
are uniquely factorisable into a product of three functions - one
involving only the zeros of f¥¥ in Re s > O, one involving a
singular measure which vanishes for f#% ‘continuous on the imaginary
axis, and one involving only |f¥*(iw)|= |¢(w)]. So if f£*¥(s) # O
for Re s > 0 then £%*¥(s), and hence ¢(w), is uniquely determined

by |¢(w)| wup to a factor e*®®. which proves

Theorem 5,5 A linear stochastic Poisson process with ¢ known, f € BE

vanishing identically on (=o, 0) and f¥#(s) # O for Re s > O

deteridines f uniquely from ce(') up to a location factor.
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We note here that another theorem of Paley and Wiener [69]
shows cg(w) is the squared modulus of the Fourier transform of a
function vanishing on a half line if and only if

Aok
'loglcg(w)ll

2 dw < @ (5o13)
1+

Unfortunately there seems to be no knoﬁn characterisation of the class
of functions for which f£¥¥(s) # 0, Re s > 0, though it contains most
of the common weighting functions.

This covers the case of knowing cz(o) alone. Initially there
seems little interest in working with c3(~) alone, as c2(-) will
generally be easier to estimate and we already have Theorem 5.4,
However we shall see that from c3(') we may identify functions f
with unrestricted range, a situation not previously considered.

By stationarity 03(-) is a non~-negative bivariate function

integrable over the plane., Its transform c%(w

1’w2) is the bispectrum

studied by Rosenblatt and Van Ness [T74], vho discuss estimation for

both c§(-) and c.(¢). DNow take w, = kw, = kw for all real o

3 2

and k # 1. Then (5.12) becomes, neglecting the known Ky < o,

c§(w, k) = ¢p(w)elkw) $[(x+1)w]

and
c2(0) = ¢(8)e(B,0)d(B0)
where
N I =
i -mr P % 8-y ¢

et ®(0) = log ¢(B), which exists in some interval about 6 = 0

because ¢ 1is proportional to a characteristic function. Then
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log cg(e) = ¢(g) + @(sle) + a(g,0),

so to see whether c%(-) uniguely determines & we must find the

solutions of
2(6) + o(B,8) + 2(B,8) =0 (5.14)
in some interval about zero., This is achieved by

Lemma 5.4 (Rao [71]) If &(@) is given, in an irterval of @ about

zero, by
n-1
T oy ®(g;6) + ale) =0
i=1
n-1 .
where .77 a.B; = -1, |[B;] <1, of; <O i=l,...,n=1, and o(p)

has a derivative continuous at zero, then

a(g) = co.

By suitable choice of k(k > O for instance), our Bi satisfy the

conditions of Lemma 5.4 and we get

Theorem 5.6 A linear stochastic Poisson process with ¢ known,

K3 < ©, and

Jlxl£{x)ax < | (5.15)
determines f € B3 uniquely from c3(') up to a location factor.
Proof. Condition (5.15) ensures that & has a continuous derivative
everywhere (Feller [18] p.485). Then Lemma 5.4 shows that the
indeterminacy in f is at most a location factor; for if @l, @2 are
two possible solutions of (5.1L4) we see that @l(e) - @2(6) = ¢ in

an interval about zero and hence, by analytic continuation, over the

whole line, where c¢ 1is a purely imaginary constant. ' A
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We emphasise that Theorem 5.6 applies to functions over the whole
real line. If we consider knowing cu('); cs(')... exactly the same
procedure will produce the functional equation (5.1L) with additional
terms, and under the conditions of the theocrem it will have the same
solution in all these cases. Thus no new identifigbility criteria
emerge., It is striking that the second factorial cumulant density
gives such a different set of conclusions from all the higher order
densities.,

If f in fact vanishes on (-w, 0) then Theorem 5.6 is not as
general as Theorem 5.5. To see this, take f as the symmetric stable
density function of order %— (Feller [18] p.170). It is bounded and
integrable so is certainly in B2 and B3 (Lerma 5.1). Its transform
satisfies (5.13), as it must, and also the condition of Theorem 5.5,
but its mean is infinite so that (5.15) does not hold.

Suppose now that Y is unknown also. Then for two linear

stochastic Poisson processes with parameters (f l’ , (f and

os¥p)

the same p.g.fl we see, on integrption of (5.10), that for m,n = 1,2,...

()P (BN 2 21y (5.16)

Consequently we can use any of the preceding results for f +to show
that, under suitable conditions, fl and f2 differ only in location

and scale {by a factor 0?1)/0?2))' If however at least one of the
cumulant pairs Kgl), Kiz) is equal then all the cumulants are equal
and fl’ f2 differ only in location. We conclude that dropping the

assumption of known Y leads to indeterminacy up to a constant multiple

as well as in location.
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It is easy to apply these results to more general linear processes.
Consider a linear process with non-negative T and signed increments
for X(t). Then by the results of Shiryaev [77] its characteristic
functional has a unique Taylor expansion very like (2.15), iﬁ terms of
a set of cumulant functions sk(tl,...,tk). From the characteristic
functional analogue of (5.3) it is easily shown that sk(tl,...,tk) =
ck(tl,...,tk) and so all the theorems of this section carry over
directly. In particular, Theorem 5;& shows that a linear process

belonging to T(S)

of [T7] uniquely determines f ¢ B3 up to a
location factor for known 1P, Again it is not possible to carry the
theory over directly to signed f as then the result of Kendall and

Lewis [35] used in Theorem 5.4 may not hold and (5.14) may also be

invalidated., Simple additional conditions will remove these difficulties.
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