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Abstract

In this thesis we consider using empirical likelihood method for constructing
nonparametric confidence regions (or intervals) and doing test in wide range of situ-
ations. Empirical likelihood, introduced by Owen (1988, 1990), is a nonparametric
method of inference with sampling properties similar to those of the bootstrap.
However, instead of assigning equal probabilities n~! to all data values, empirical
likelihood places arbitrary probabilities on the data points, say p; on the i’th data
value. The weights p; are chosen by profiling a multinomial likelihood supported
on the sample, and empirical likelihood confidence regions are constructed by con-
touring this multinomial likelihood. An attractive feature of empirical likelihood is
that it produces confidence regions whose shapes and orientations are determined
entirely by the data, and which have coverage accuracy at least comparable with
those of bootstrap confidence regions. In Chapter 1 of this thesis we review the con-
cepts of empirical likelihood and its developments. We also outline the notions of
Edgeworth expansion which is an important tool of studyihg the coverage properties

of empirical likelihood confidence regions.

However, so far all the work done on empirical likelihood is confined to the so
called standard case where the parameter of interest is a smooth function of means
~and the sampleisindependent and identically distributed random vectors. The main
motivation of this thesis is to establish the theory of empirical likelihood for other
cases. In chapter 2 we consider constructing confidence intervals for population
quantiles, which cannot be represented as a smooth function of means. We show
that standard empirical likelihood confidence intervals for quantiles are identical
to sign-test intervals. They have relatively large coverage error, of size n~ ;', even

though they are two-sided intervals. We show that smoothed empirical likelihood

confidence intervals for quantiles have coverage error of order n~', and may be



Bartlett correctioned to produce intervals with an error order of only n~?. Necessary
and sufficient conditions on the smoothing parameter, in order for these sizes of error

to be attained, are derived.

In Chapter 3 we consider the second non-standard case, which is to construct
empirical likelihood confidence region for the regression coefficient vector g of a-
linear regression model Y; = z;8 + ¢;, 1 < i < n. Due to the presence of the fixed
design points, the observed random variables are independent but not identically
distributed. So it is not the standard independent and identically distributed ran-
dom sample case any more. Empirical likelihood methods were proposed by Owen
(1991) for constructing confidence regions for 3 in the model (3.1.1). He derived
a nonparametric version of Wilks’ theorem, ensuring that empirical likelihood con-
fidence regions for § have correct asymptotic coverages. We show that coverage
errors of the empirical likelihood confidence regions for 8 are of order n~'. Bartlett
corrections may be employed to reduce the coverage errors to O(n~?). For practical

implementation of Bartlett correction, we also give an empirical Bartlett correction.

It is not enough to just construct confidence regions for 3 of a linear regression
model. In practice, statisticians are often confronted with problems of constructing
confidence intervals for a particular regression coefficient or for certain linear com-
binations of . In Chapter 4 we address the above problem under the simple linear
regression model: y; = a, + b,z; + ¢;,1 < i < n. Nonparametric versions of Wilks’
theorem are proved for empirical likelihood of the slope parameter b, and mean
parameter y, = a, + b, 2, for any fised z,, which enable us to construct empirical
likelihood confidence intervals for these parameters. We also show that coverage
errors of these confidence intervals are of order n~! and can be reduced to order

n~% by Bartlett correction.

We see that almost all the work done on empirical likelihood concentrate on
constructing confidence regions. After constructing an empirical likelihood confi-

dence region, we can derive an empirical likelihood test about the parameter of



interested by the duality between the confidence region and hypothesis test. How-
ever, so far little has been done on the aspects of power of empirical likelihood test.
Surprisingly, no much has been done for that of a bootstrap test either! The contri-
bution of Chapter 5 is developing high order expansions for the power function of
the empirical likelihood and the bootstrap test for a mean against a series of local
alternatives. A comparison between the empirical likelihood and the bootstrap tests
for a mean parameter against a series of local alternative hypotheses is made. For

univariate and bivariate cases, practical rules are proposed for choosing the more

powerful test.
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The tao that can be said is not the everlasting Tao.
If a name can be named, it is not the everlasting Name.
That which has no name is the origin of heaven and earth;

That which has a name is the Mother of all things..

LAO TZU: “Tao Deh Ching”




CHAPTER 1
CONCEPTS OF EMPIRICAL LIKELIHOOD

AND EDGEWORTH EXPANSIONS

1.1 Introduction

The coming of the computer age in the last a few decades has deeply changed
the shapes and the ways of thinking of the centuries old displine called Statistics.
The most notable event was the birth of the bootstrap method in 1979 by Efron
(1979) and the following works done in 1980s, leading the bootstrap becoming a
mature general statistical procedure with wide range of applications. Hall (1992)
gave a full description of the development and theory of the bootstrap. An impor-
tant feature of the bootstrap is the idea of “resampling”. In the pre-bootstrap era,
statisticians depended heavily on the Central Limit Theorem, which gives a normal
approximation to a statistic of interest. However, this approximation only takes
into account the first two moments without taking care of skewness and kurtosis of
the statistic, causing that the accuracy of the approximation is only of first order. |
By generating a large number of resamples out of the original sample in a computer,
the bootstrap implicitly corrects skewness and kurtosis during the resampling pro-

cedure. This leads to a more accurate approximation to the distribution of the

statistic.

Empirical likelihood is another computer intensive method introduced by Owen
(1988,1990). It constructs a likelihood function for a parameter of interest in a non-
parametric setting, and uses the later to set up confidence regions for that parame-
ter. Empirical likelihood has sampling properties similar to those of the bootstrap.
However, instead of assigning equal probabilities n~! to all data values, it places ar-

bitrary probabilities on the data points, say p; on the ¢’th data value. The weights,



pi, are chosen by profiling a multinomial likelihood supported on the sample. Em-
pirical likelihood confidence regions are constructed by contouring this multinomial
likelihood. As mentioﬁed by Owen (1988), the preliminary idea of empirical likeli-
hood was used by Thomas and Grunkemeier (1975) to construct confidence intervals
for survival probability. Those authors show that the confidence intervals have the
desired property of respecting range, which is not generally held by normal approxi-
mation based methods. However, Owen was the first to systematically demonstrate

that the idea has very wide range of applications.

It has been shown that nonparametric versions of Wilks’ theorem and Bartlett
correction hold true for empirical likelihood in a wide range of situations, akin to
the usual parametric likelihood. However, compared with parametric likelihood,"
empirical likelihood is robust since it is constructed in a way which does not assume
the form of the distribution. Compared with the bootstrap, empirical likelihood

has several advantages. Hall and La Scala (1990) have identified the following

attributes:

(1) Empirical likelihood enable the shape and orientation of a confidence region
to be determined “automatically” by the sample, whereas construction of a mul-
tivariate bootstrap confidence region requires a decision on how the region should
be shaped and oriented since the bootstrap itself cannot provide an answer to any

of these. It can be very hard to decide whether to use an elliptical or rectangular

confidence region.

(2) Empirical likelihood confidence regions are Bartlett correctionable, meaning

that a simple adjustment for scale reduces the order of magnitude of coverage error

2

from n~! to n~%, where n denotes sample size. (See DiCiccio, Hall and Romano

1991.) The bootstrap confidence region can attain the same order of coverage

accuracy. However, the bootstrap achieves this at expensive of enormous computer

hours.

(3) Empirical likelihood implicitly use the true scale parameter to construct



confidence regions, which consequently avoids the problem of estimating the scale.
The bootstrap depends heavily on a stable estimate of the scale parameter, which
can be very hard to be obtained especially for cases like correlation coefficient and

ratio of means.

(4) Empirical likelihood confidence regions are range respecting, as was noticed
by Thomas and Grunkemeier (1975). For example, the empirical likelihood confi-
dence region for a correlation coefficient always lies within interval (—1,1). However,
this property is not necessarily preserved by a bootstrap confidence region; consider

for example confidence regions constructed using the percentile-t method.

The basic concepts éf empirical likelihood are given in Section 1.2, together
with some fundamental formulae and expansions used by empirical likelihood. In
Section 3.1 we display some existing results of Edgeworth expansion, which will be
the basic tool used in this thesis to study coverage accuracy and Bartlett correction

of empirical likelihood confidence region. We provide an outlines of this thesis in

Section 1.4

1.2 Concepts of Empirical likelihood

In this section we describe the basic concept of empirical likelihood. Suppose
X1,-++,X, are p-dimensional independent and identical distributed (i.i.d.) random
vectors from ﬁnknown distribution F'. Let § = 6(F) denote some characteristic of
F, such as mean, variance etc, for which we want to construct a confidence region
(or interval). Write p;,ps,--+,p, for nonnegative numbers adding to unity, and

6(p) for the value of § when the distribution function F is replaced by

Fy(z) = > p I(X; <z),

i=1

where I is the indicator function. We can view F,(z) as weighted empirical distribu-

tion function. For instance if # denote the population mean, that is § = [ zd F(z),

then

o(p)=/xdﬁ,,(x)=2 pi Xi.

i=1



The empirical likelihood for 6, evaluated at § = 6,, is defined to be

L(6,)= max Di.
9(p)=26,, E Pi=1,_,

If we impose only one constraint, 3. p; = 1, while maximizing [I]_, p;, we get
pi = n~! fori=1,---,n, which gives us the bootstrap estimate § = O(F’) for 6,
where

Fz)=Y n ' I(X; <z)

is the empirical distribution function. Thus, we have
L()=n"".
Now the empirical log-likelihood ratio , evaluated at 8 = 6,, is defined as

€(6:) = —2 log{L(6:)/L(8)}

= -2 min Z log(n p;). (1.2.1)
6(p)=01,2 pi=1 i=1

It is well-known that under certain regularity conditions, the usual paramet-
ric log-likelihood ratio has the following properties: (1) it converges in distribution
to xf,, the chi-square distribution with p degrees of freedom, as sample size n ap-
prdaches to infinity; this is Wilks’ theorem (Wilks 1938); (2) it is Bartlett correctable
(Bartlett 1937, Lawley 1956). Wilks’ theorem enable us to construct confidence re-
gions by looking up the x’? tables, and Bartlett correction can be used to improve
the coverage accuracy of the confidence region by simple adjustment to the mean

of the log-likelihood ratio statistic.

Do these two properties hold true for the empirical likelihood 7 Owen (1988,
1990) proved a nonparametric version of Wilks’ theorem for empirical likelihood
of mean. DiCiccio, Hall and Romano (1991) extended it to the case of a smooth
function of means and proved the validity of Bartlett correction for this general
case. Owen (1991) established a nonparametric version of Wilks’ Theorem for the

regression coefficient vector of a linear regression model. In the regression case, the



random vectors involved are independent but not identically distributed. This is
due to the presence of the fixed design points. We should mention here that all
the results except the regression case listed above were proved under the following

regularity conditions:
(i) © = Cov(X,) is positive definite matrix; (ii) E||X.||° < oo;
(iii) for every positive b, the characteristic function g of X, satisfies (1.2.2)

Cramér’s condition sup |g(t)] < 1,
f1el>»

where s = 5 for the mean case and s = 15 for the smooth function of means case.

The regularity conditions assumed for the regression case are described in Chapter

3.

In the rest of this section we give some basic formulae and algorithms for the
case of 8 = p = [ zd F(z), which has been used by previous authors and will be
referenced repeatedly in this thesis for constructing empirical likelihood confidence

regions in other situations.

According to (1.2.1), the empirical log-likelihood ratio for 8 = p, evaluated at
B = Hi, is

K 1 = -2 i l H .
(11) = ox ‘n;lnzp‘_l'zl og(n p;). (1.2.3)

Using the Lagrange multiplier method to solve the above optimalization problem

(1.2.3), it turns out that the optimal p;’s have the following form:

-1 = 1<i<n (1.2.4)
p'—n1+tT(X,-—p,)’ - o

where t = (t;,---,t,)7 satisfies

n1 3 1+tT(X _“) = 0. (1.2.5)

Substituting (1.2.4) into (1.2.1) we obtain

E(p) =2 3 log{1 + 1" (X; — p)}. (1.2.6)

i=1
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Let & = Cov(X,), z = £~ Y/2(X;—p) and 2 be the j’th component of p-dimensional

vector z;. Then using the new standardized variable z;’s, (1.2.5) and (1.2.6) become

p) =22 log{l + A" z}. (1.2.7)

i=1

where A = (Ay,+++,A,)T = £ ¢ satisfies

-1 Zi
_ 0. 1.2.8
n"ly T (1.2.8)

Since analytic solution for A in (1.2.8) is not attainable, we have to resort to expan-

sion. Before doing that, let us first define

Jioik _ Jv .’ik)
a =F (zi z* ),

n (1.2.9)
Adrvie —p-1 Z At i
i=1

We see a?1""I* is a k’th order multivariate moment of Z; and A7*"J* is a k’th order

central multivariate mean of Z;’s.

Owen (1990) set up an one-term Taylor expansion for £(u):

E(p)= nATAT + 0,(n"1?). (1.2.10)

Throughout this thesis we use the summation convention that terms with re-
peated indices are to be summed over. From (1.2.10) we are able to prove the
following nonparametric version of Wilks’ theorem by assuming condition (i) of

(1.2.2),

L(p) 4 X;, as n — 00, (1.2.11)

since \/n A = (A',---,AP) converges to N(0,I,) in distribution by the Central
Limit Theorem, where I, is the p-dimensional identity matrix. An a-level confidence
region for p can be constructed in the following way. First find from the Xf, tables

the value ¢, such that

P (xf, < vca) = a.
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Then I, = {B|4(8) < co} is the a-level confidence region for p, and (1.2.11)
ensures that it has asymptotically correct coverage. To investigate the coverage
accuracy of I,, an Edgeworth expansion for the distribution function of £(x) has

to be developed. After Taylor expansion, as has been shown by DiCiccio, Hall and
Romano (1988), A has the following expansion:
AJ = AJ _ AJ’C Ak + ajkl Ak Al + Ajl Akl Ak + Ajkl Ak Al
—af™ AI™ AR AT — 207 A AR AT 4 20757 o' AR AT AT (1.2.12)
_ajklm Ak Al A1+Op(n_2).
Substituting (1.2.12) into (1.2.13), we obtain
nTle(p)=AA —ATFATAR + 2alFTAT AR AT 4 ATTART AT AX
+ %AjklAjAkA' _2ajkmAlmAjAkAl +ajknalmnAjAkAlAm
—Loikim AT AR ATA™ + 0,(n™5/2). (1.2.13)
A signed root decomposition for £(u) can be derived from (1.2.13), that is,
¢(8) = (n'?RT) (n/?R) + 0,(n=%?), (1.2.14)

where R = Ry + R, + Rj3 is a p-dimensional vector and R; = O, (n"'/"‘) for l =
1, 2, 3. Comparing terms in (1.2.13) with those in (1.2.14) yields,

R} =A%,

Ry= —LAikAk 4y Laikmpgkgm  and

Ry =3AimAkm Ak ¢ Laikm kgl _ 5 gikmglm gk gl

_%akzmAijkAz_l_ %ajknalmnAmAkAl _ _‘li_ajklmAmAkAl,

where R{ is the j’th component of R;. Notice that there exists a smooth function
h, such that R = h,(U,), where U, = (A',---, A% Al ... APP A1 ... APPP)T jg
a mean of i.i.d. random vectors. So, R is a smooth function of i.i.d. means. Thus,
after calculating joint cumulants of R, and using the valid Edgeworth expansion

developed by Bhattacharya and Ghosh (1978) for this case, it can be shown that

under condition (1.2.2) for any z > 0,

P{{(p)y <z} = P(x2<z)=Pozgp(z)n™' +0(n™?),



where g, is the density of the Xf, distribution and
Bo=p t(balimm —Lgikmgikm), (1.2.15)

This implies that

P(ll: € Ia) = —ﬂo Co gp(ca)n_l + O(n-'-z)’

which means that the coverage accuracy of the empirical likelihood confidence region
I, is of order n~!. We know that in the parametric case, part of the coverage error
of a confidence region constructed by the log-likelihood ratio method is due to the
mean of the log-likelihood ratio not being equal to p, which is the mean of the xf,
distribution. Bartlett correction can be used to improve the coverage accuracy by
readjusting the mean of the log-likelihood ratio. For the case of smooth function
of means, DiCiccio, Hall and Romano (1991) showed that the empirical likelihood
confidence region is Bartlett correctable, which implies that a simple adjustment
for the mean can reduce the coverage error from order n~! to order n~?. From

expansion (1.2.13) the above authors showed that
E{¢(B)} = p(1 + Bon™') + O(n™?),
where (3, is the Bartlett factor given by (1.2.15). It can be shown that
P{(p) < ca (14 ¢n~ )} =a4+0(n"?), (1.2.16)

where (, is either 3, or a root-n consistent estimate of §;. From (1.2.16), we can

correct the confidence region I, by defining

IS = {p]l(p) < ca (1 + Gon™ 1)},

where (1.2.16) shows that the corrected confidence region I has coverage error of

order n~2.



1.3 Edgeworth Expansions

From Section 1.2 we see that Edgeworth expansion plays an important role for
determining the coverage accuracy and availability of Bartlett correction for empir-
ical likelihood confidence regions. So it is worthwhile to devote this section on it. In
this section we display some existing results on Edgeworth expansions, for example
as described in Bhattacharya and Rao (1976) and Bhattacharya and Ghosh (1978).
These results will be used repeatedly in this thesis to derive asymptotic expansions
of distributions of the empirical log-likelihood ratio statistics in various situations.
In particular, we are interested in Edgeworth expansions for distributions of smooth
function of a mean, where the mean could be an average of either i.i.d. random
vectors or independent but not identically distributed random vectors. Before doiﬁg

this we give some notation.

Let F be the distribution function of a random vector X € R* with character-

istic function . If [ ||z||?dF(z) < oo, we may have the following Taylor expansion

log{p(1)} = 2 xo(it)’ /o' + o(||t]]*), as t—0, (1.3.1)

lvl<s
where t = (¢1,-+-,t) and v = (v1,---,v:) is a nonnegative vector of integers
with operations |v| = Elev,- and (¢t)” = (ét;)"* -+ (itx)"*. The coefficient x,

appearing in (1.3.1) is called the v’th cumulant of F. For a given set of x,, we

define polynomials
xi(z) = 1! Xo o
v!
lvl=1

for any positive integer I, where 2° = z}'--.z* for z = (21, --,2;) € R¥. More-
over, we define polynomials P, (z : {xv}) by the following formal equation in a real

variable u,

Xs 2(2) s l
1+E P(z: {x.}u’ —1+Z T 2(12), :

Let V = Cov(X), ¢o,v and &,y be the normal density and distribution functions

s=1

in R* with zero mean and covariance matrix V respectively, and put

a: 9"
Dv¢o,v = ¢o V(w) (BX )v

X, o Pov ().
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We define a function P,(—¢o v : {x,}) by formally replacing (i¢)" in the polynomial
P,(z: {x,}) with (=1)!"! D*¢q v, that is

Pr(—¢o,v : {Xv }) = Pr(_D : {Xu})¢o,v-
Furthermore, let P,(—®, v : {Xx,}) be the finite signed measure on R* with density
Pr(—¢o,v : {x})-
1.3.1 Edgeworth Expansions for i.i.d. Case

Suppose Xy,---,X, are ii.d random vectors drawn from distribution F' with
mean p, covariance matrix V and characteristic function ¢. Let
n
W = n~1/? E(X; —1).
i=1

Then we have the following theorem due to Esseen (1945) and Bhattacharya (1968):

Theorem 1.3.1 Assume that F has finite s’th absolute moment for some integer

s > 3, and satisfies the Cramér’s condition supy,»s|p(t)| < 1 for any positive b.

Then,
s—2
sup [P(W € B) = Y n™"/? P,(=®0,v : {x(B)| = o(n™C=P/%),  (1.3.2)
Beb r=0

where B is any class of Borel sets satisfying

sup / dov(v)dv=0(e), €l0, (1.3.3)

BeB Y (8B)¢

and OB and (0B)¢ are the boundary of B and e-neighborhood of @B respectively.

Let f,,---, fn be real-valued Borel measurable functions on R*, h be a smooth
real-valued function on R™, and @; = (f1(X:), -, fm (X;)) for 1 < i < n. Consider
a statistic

To = n'/?{R(Q) — h(nq)},
where Q@ = n~! >:_, Qi and p, = E(Q,). Clearly T, is a smooth function of Q.
Put

diy,...iy = (Diy -+ Di, h)(pg), 1Zd1,-00,0 <m,
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as derivative of h, where D;, denotes differentiation with respect to the i;’th coor-

dinate. Furthermore, we define
ol = (di,- o, di)V (dy, -, de)T .

Consider the following Taylor expansion of T,, around p,,

s—1
T, =030 20 () Mdiys (@ — i) - @ —43),

' E=1idy, ik
where a‘k and u’;“ are the i;’th components of Q and p, respectively. Using the

delta method we may expect that the Edgeworth expansion of the distribution of

T, and T,: generally disagree only in terms of order n~(*=2)/2 or smaller, i.e
P(T, < z)= P(T, <z)+ o(n~ (=212,

since T}, —T,: = 0,(n"*~?/2), Now, the cumulants of T,: are much easier calculated
than those of T,, since T,; is a multivariate polynomial in Q — pe. If @1 has
sufficiently many moments then, as shown by James and Mayne (1962), the j’th

cumulant k; , of T,; is given by
ki = kjn + o(n”C=D/%),

~ 1
where k; , is an “approximate cumulant” of T, having the form

s ={Z':12 w if § # 2;
n ol + :f n~%b, ifj=2,

and b; ;’s depend only on the moments of Z; and on derivatives of A at pu,. The

characteristic function of T,; (or T, ) can be approximated by

- it)? . ~ (it) .
T,.(t) = exp{itks . + %(kz,n -+ > (—l—%— k;j o }exp(—o®t®/2). (1.3.4)
! o I

After expanding the first exponential factor in (1.3.4), we obtain

s—2

T.(t) = exp(—a?t?/2){1 + Z (i)} + o(n‘("2)/2),

r=1
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where 7,’s are polynomials whose coefficients do not depend on n. Then, the formal

Edgeworth expansion ¥, , of the distribution of T, is defined as

Y, n(u)= /_uoo Ps.n(v)dv,

where

Yon = {143 0= 1, (—d/dv)} 643 (v).

r=1

Bhattacharya and Ghosh (1978) proved that ¥, , is a valid Edgeworth expansion

of the distribution of T,,. Part of their results are stated in the following theorem:

Theorem 1.3.2 Assume that (i) h has continous derivatives up to order s > 3 in
a neighborhood of p,; (i) E|Q.|° is finite; (i) Cramér’s condition holds for Q,
that is lim sup, _, ., |[E{exp(i < t,Q; >)}| < 1, where <> denotes the Euclidean

inner product on R*¥. Then,

sup |P(Tn € B) = [ $yn(o)dv] = o(n~= /%)
BebB B

uniformly holds over the class of B satisfying (1.3.3).

1.3.2 Edgeworth Expansion for a non-i.i.d case

In this subsection we display result for setting up Edgeworth expansion for a
non-i.i.d case. The case we consider is that the sample X,,---,X, are indepen-
dent but not necessarily identically distributed random vectors in R¥. This is just
the situation of a linear regression model, where the presence of the fixed design
points makes the response random variables are independent but not identically

distributed.

Let X;,---,X, beindependent random vectors of R*¥, with mean zero and finite
s’th absolute moments for some integer s > 3 for each X; 1 < i < n. Define V,, =

n~' 207, Cov(X;), vk,n be the smallest eigenvalues of V,, and X;n is the average

1/2

j7’th cumulant of V,, """ X; for 1 < ¢ < n where V,.—I/2 is the inverse of the square

root matrix of V,,. Furthermore, put S, = n~1/2 V,._l/2 E?zl X;. The following
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theorem, as an extension of Theorem 1.3.1, is an direct corollary of Theorem 20.6

of Bhattacharya and Rao (1976).

Theorem 1.3.3 Assume that:

(i) v n is uniformly bounded away from zero; (ii) the average s-th absolute

moments n”* Z E(]|X:|])* are bounded away from infinity for s > 3;

i=1

(iii) for each positive e, lim n™' / | X:|I° = 0; (iv) the (1.3.5)

i=1  IXl>ent/?

characteristic functions g, of X,, satisfies Cramér’s condition

lim sup sup |gn(t)| < 1, for every positive b.
n—voo |{t]>b

Then
8—-2
sup |P(Sn (S B) —Z n—r/2 Pr(_QO,V {Yj,n})(B)l - O(n—(s—2)/2),
BeB

r=0

over the class of B satisfying (1.3.3).

1.3.3 Transformation of Edgeworth Expansion

We show in Theorem 1.3.2 that the Edgeworth expansion for the distribution
of an i.i.d. mean can be transformed by a smooth function to yield another valid
Edgeworth expansion. We also show that this expansion may be calculated from
the cumulants obtained by using the delta method, i.e the cumulants formally cal-
culated from a Taylor expansion omitting terms of higher order. Skovgaard (1981)
generalized the above result of Bhattacharya and Ghosh (1978). He demonstrated,
using the delta method, that any (not just for i.i.d. mean) valid Edgeworth ex-
pansion may be transformed by a sequence (not just a single smooth function) of

sufficiently smooth functions to get another valid Edgeworth expansion.

Consider a statistic U, = (U},---,U¥) with zero mean and unit variance on RF,
constructed from a sample of size n. Suppose that for some s > 3, E(||U,||*) < oo,

and that there has been a valid Edgeworth expansion of the distribution of U, of
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the form

P(U, € B) = [ €adut ofBen),
B

uniformly in B € B satisfying (1.3.3), where

£ =S P(=dor i {xom)) (0

r=o

v|— s—2
Bon = [sup{llxo,n [[M1"1"2 3 < Jo| <3777 = o(1),

and {Xu,n, 3 < |v| < s} are the cumulants of U,. Clearly we have x,,, = 0 for
|v| = 1, since E(U,) = 0. When U, is a normalized sum of independent and identical

distributed random vectors, we have 8, , = O(n~C~2/2) a5 y, , = O(n~(*I-2/2),

Let {h,} be a sequence of functions mapping RF into R™ for m < k. For each
n, h, is p-times differentiable at zero (p > 2) and satisfying h,(0) = 0 and the

Jacobian matrix of h, at zero, say Dh,(0), is of rank m. Put
B, = {Dh,(0)}{Dh,(0)}", and f. = B;"hn,

so that f,(U,) has asymptotic variance I,,. We shall show that under certain
conditions on the smoothness of h,, a valid Edgeworth expansion of the distribution
of f,(U,) may be established from the approximate cumulants of f,(U,) obtained

by using the delta method. Let

din,"',il =(D5;"'Di|fn)(0), 1351,"',51Sk-

Taylor expanding f,(U,) around zero, we have

p-1 '
Yo=2, >, (N, ., U U,

I=1 43,4

The moments of Y,, are much easier to calculate than those of f,(U,), since Y, is a
polynomial in U,. Let {n, .}, 1 < |v]| < g, be the first ¢’th order cumulants of Y,,,
computed from the first ¢’th order moments of Y,,. Notice that the computations |

of the first ¢’th order moments of Y, may involve moments of U, of higher orders
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than s, which may not exist. To solve this problem, we define the formal cumulants

of U, , say {x:,n}, such that

x {Xu,rn if |UIS3;
Xom = Lo,  if o] >s.

By the well-known formulae connecting moments and cumulants we are able to
define the formal moments of U,, which will be used to calculate the moments and

the cumulants of Y,,.
Neglecting the terms at smaller order of 8, , in 7, , we obtain %, ,, the ap-

proximate cumulants of Y,,, where

Tyn = ﬁv,n + O(ﬂs,n)-

Let , be the density of the finite signed measure with characteristic function

~

(o = exp(6 < M0 > =500 1E12) X122 Pr(it : {fiu,n})

where 7j; , is an m-dimensional vector consisting of all 4, , with |v| = 1, j2,, is an
m X m matrix with all 7, ,, |[v] = 2 as its elements, and <> denotes the Euclidean

inner product of vectors.

Now the problem becomes how to choose ¢ such that

sup |P{fa(U,) € B} — /B Ca(w)du| = o(Bs 1), (1.3.6)

BeB

where B is defined by (1.3.3). To this end we define, for o > 0,
p(a) = {(2 + @)log(B;,)}'/* and Ha(a) = {t € R*|||t] < p(a)},
and assume the following regularity condition:

(i) fn is p times continously differentiable on H,(a) and
sup{||[D? fo (1)|[ |t € Hn(a)} # o(Bs,n); (ii) with (1.3.7)

A, = sup{(||Djf,,(0)||/j!)1/(j'1) |2 <j<p-—1}, we have A2~ £ o(B, )-
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Now we have the following theorem due to Skovgaard (1981):

Theorem 1.3.4: Assume condition (1.3.7). Then if Ai~' = o(B,,) and ¢ > s,

(1.3.6) is true uniformly over all B € B.

1.4 Motivation and Summary of Thesis

Since Owen’s pioneering papers in 1988 and 1990, empirical likelihood has been
drawing increasing attention as a nonparametric method of constructing confidence
regions and doing tests. However, almost all theoretical developments of empirical
likelihood have focussed on the case where the parameter of interest is a smooth
function of means and the sample is i.i.d. It is only in this case that coverage error
has been shown to be of order n~!, reducible to n~2? by Bartlett correction. Hall and
La Scala (1990) gave a survey of developments in this setting. At the same time, the
majority of published work concentrated on constructing confidence regions, with

little attention being paid to aspects of hypothesis testing and to power properties

of the empirical likelihood test.

The main contributions of this thesis are: (1) developing the high-order theory
of empirical likelihood in new settings, which include the cases of quantiles and

regression; (2) calculating the power of empirical likelihood tests.

The first non-standard case considered in this thesis is that of an empirical like-
lihood confidence interval for a population quantile. Owen (1988) has noted that,
when applied to the problem of constructing confidence intervals for a population
quantile (in particular, for the median), empirical likelihood reproduces precisely the
so-called sign-test or binomial-method interval. This is reassuring, but it does show
that in the context of quantile estimation, straight empirical likelihood has nothing
to offer over existing techniques. One of the disadvantages of the sign test method
is that it is usually unable to deliver confidence intervals with coverage accuracy
better than n~ /2, even for two-sided intervals. The reason of the poor performance

is the discreetness of the binomial distribution, to which the empirical likelihood
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ratio converges. In Chapter 2 we show that by appropriately smoothing the empir-
ical likelihood, coverage accuracy may be improved from order n~ /2 to order n~ 1.
We demonstrate that this improvement is available for a wide range of choices of
the smoothing parameter, so that it is not necessary to accurately determine an
“optimal” value of the parameter. Furthermore, we show that smoothed empirical .
likelihood is Bartlett correctionable. That is, an empirical correction for scale can

reduce the size of coverage error from order n~! to order n~2.

In Chapter 3 we consider constructing a confidence region for the regression
coefficient vector, say (3, of a linear regression model. Due to the presence of the
fixed design points, the responses of the model are independent but not identi-
cally distributed random variables. Owen (1991) proposed using empirical likeli-
hood to construct confidence region for 8. He derived a nonparametric version of
Wilks’ theorem, ensuring that the empirical likelihood confidence regions have cor-
rect asymptotic coverage. However, questions regarding the coverage accuracy and
Bartlett correctability of the confidence region remain to be addressed. We show in
Chapter 3 that the coverage accuracy of an empirical likelihood confidence region
for the regression coefficient vector is of order of n~!, and that Bartlett correction
can be implemented to improve the coverage accuracy from oder of n~! to n™2.

We also give an empirical Bartlett factor for practically implementing the Bartlett

correction.

However, it is not enough to just construct confidence regions for the regression
coefficient vector 3. In practice, statisticians are often confronted with problems of
constructing confidence intervals for a particular regression coefficient or for certain
linear combinations of 5. In Chapter 4 we consider constructing empirical likelihood
confidence intervals for the slope and means parameter of a simple linear regression
model, by proving nonparametric versions of Wilks’ Theorem for these parameters.
We also show that the coverage accuracy of confidence intervals is of order n=!, and

that Bartlett correction can be used to further improve this accuracy.
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After constructing an empirical likelihood confidence region, we can derive an
empirical likelihood test for the parameter of interest by using the duality between
the confidence region and hypothesis test. However, so far little has been done on
aspects of the power of the empirical likelihood test. And, surprisingly, little has
been done for the case of a bootstrap test. The contribution of Chapter 5 is to
develop high-order expansions for the power function of empirical likelihood and
bootstrap tests for a mean against a series of local alternatives. A comparison
between empirical likelihood and bootstrap tests for a mean parameter, against a
series of local alternative hypotheses is made. For univariate and bivariate cases,b

practical rules are proposed for choosing the more powerful test.
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CHAPTER 2
EMPIRICAL LIKELIHOOD CONFIDENCE

INTERVALS FOR QUANTILES

2.1 Introduction

We noted in Chapter 1 that most work on empirical likelihood has concentrated
on the case where the parameter of interest is a smooth function of means. In
this chapter we consider constructing confidence intervals for population quantiles,

which cannot be represented as a smooth function of means.

Owen (1988) has noted that, when applied to the problem of constructing con-
fidence intervals for a population quantile (in particular, for the median), empirical
likelihood reproduces precisely the so-called sign-test or binomial-method interval.
This is reassuring, but it does show that in the context of quantile estimation,
straight empirical likelihood has nothing to offer over existing techniques. One
problem associated with the sign test method is that it is usually unable to creat
confidence intervals with coverage accuracy better than order of n~!/% even for
two-sided intervals. The reason for the poor coverage performance of the sign test
intervals is due to the discreteness of the binomial distribution, which determines

the true coverage probability.

Our aim in this paper is to show that coverage accuracy of an empirical like-
lihood confidence interval for quantiles may be improved from order n~ 7 to order
n~', by appropriately smoothing the empirical likelihood. We demonstrate that
this improvement is available for a wide range of choices of the smoothing param-
eter, so that it is not necessary to accurately determine an “optimal” value of the
parameter. Furthermore, we show that smoothed empirical likelihood is Bartlett

correctable. That is, an empirical correction for scale can reduce the size of coverage

error from order n~! to order n~2.
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We also establish a very general version of Wilks’ theorem in the context of
empirical likelihood for quantiles. This result provides necessary and sufficient con-
ditions on the range within which the smoothing parameter must lie if the asymp-
totic distribution of the empirical log likelihood ratio statistic is to be (central)
chi-squared. Furthermore, we derive necessary and sufficient conditions on the
smoothing parameter for the error in the chi-squared approximation to be O(n~1),
and also for the error after Bartlett correction to be O(n~%). We suggest a partic-
ularly simple version of the Bartlett correction that produces confidence intervals

with coverage error o(n~'), although not quite O(n~2).

Section 2.2 discusses unsmoothed empirical likelihood confidence intervals for
quantiles. Section 2.3 describes smoothed empirical likelihood methods for quan-
tiles, and proves a nonparametric version of Wilks’ theorem. We also study in that
section the coverage accuracy and Bartlett correctability of the confidence intervals

. A simulation study is presented in Section 2.4. All proofs are deferred to Section

2.5.

2.2 Unsmoothed Empirical Likelihood Confidence Intervals for Quantiles

Let X;,---,X, be an i.i.d. sample from an unknown distribution F with
8, = F~'(q) as its unique ¢’th quantile. We wish to construct a confidence interval
for 6,. Let p = (p1,--+,pn) With p;’s being nonnegative numbers adding to unity.

We define the weighted empirical distribution function of F as

ﬁ'p(a:) = Z pi I(X; <),

i=1

where I is the indicator function. Then, empirical likelihood for 8,, evaluated at 6,

is defined to be

L(9) = sup H Di. (2.2.1)
pFy(8)=q ), pi=1i=1

If we drop the constraint 17’,, (6) = gin (2.2.1), the profile likelihood is maximised by

taking p; = n~! for 1 < i < n. For this choice of p we have 8(p) = 6, the so-called
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bootstrap estimator of §. This implies that
L(f)=n"".
The empirical likelihood ratio is given by
R(6) = L(®)/L(O) = sup Il (np:). (2.2.2)
pFp(0)=q i=1
Let 8(p) be the ¢’th quantile of the weighted empirical distribution function F, ().
Then 6(p) = inf {z : F,(z) > q}. Let us re-index the sample such that X; = X(;,
denoting the #’th largest data value in the sample. Clearly the range of §(p) is the

set of ordered statistics {X(y), -+,X(a)}. According to (2.2.2), we have for any
1<i<n,

n

R{X@)} = L{X)}/L(8) = sup II np:. (2.2.3)
P:8(p)=X @y, E pi=14=1

It is obvious that (2.2.3) can be reformulated as an optimization problem with the

following form:

R{X(} = sup [[ (npi),

i=1
subject to
( z, 1P =1,
i PP 20

i (2.2.4)
l zjzll p;i <4,
p; 20, forl1<j<n.

Since the ob jective function I[]_, (n p;) is a concave function of p, and the feasible set
of p satisfying (2.2.4) is convex, then any local maximum is also a globe maximum.

Using the Kuhn-Tucker theorem we may show that the optimal p has the following

form:

_lal/s 1<j
Pi —{(l—q)/(n—i), i+1

<7
g<

Thus we have
R{X»} =n" (¢/D) {1 —q)/(n —)}"". (2.2.5)
Some simple calculation reveals that R{X;y} is an unimodal function satisfying

{ R{X5} < R(X(4ny) ifi <[np;
R{X5)} > R(X(i41)) ifi>[np],
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where [n p] represents the largest integer not exceeding np. This enables us to define

an empirical likelihood confidence interval for 8, to be
I(C) = { g: R(o) > ¢ } = [X("l)’X("z)]’
where ry,7, are respectively the smallest, largest integers such that

n" (¢/i) {1 —q)/(n =)}~ 2.

According to David (1981, p.15), if F has a density, the exact coverage probability
of the confidence interval I(c) is given by

P{b, € I(c)} = P{X(;,) <0, £ X(rn}

- (Y ea-o (2.26)

i=r,

=P(ri £M <r;, —1),
where M is a binomial Bi(n,q) random variable. Formula (2.2.6) implies that the
empirical likelihood confidence interval for a quantile is equivalent to that obtained
by the so-called “sign test”. This coverage probability cannot rendered closer than
—1/2

order n to any predetermined nominial coverage level, such as 0.95, no matter

how the integers r,,r, are selected. To appreciate this point, notice that due to the
discreteness of the binomial distribution the coverage probability of I(c) given by

(2.2.6), can take only a finite number of values. This means that for any a between

0Oand 1 i.t is very likely that you cannot have an exact « level confidence interval for

0,. By the DeMoivre-Laplace theorem, we can approximate a binomial distribution

by a normal distribution. In p,a,rticula,r, using Kalinin’s result (Johnson and Kotz,

1969, p.62f.), we have

P(ri SM<r—1)=8(y) —8(w) + 2 {nq(1-9)}7?Q;,  (22.7)

j=1

where @ is the standard normal distribution function, @;’s are known function of
w, y; and y,, where w is the continuity correction which can be assigned arbitrarily

(usually, we choose w = 0.5), and

rn — (1 —w)—mng i+ (l—w)—ng

Vng(l—g) Vng(1-q)

Y =
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Thus, for any 0 < a <1, by appropriately choosing r; and 7,, we can let
®(y2) — ®(n1) = .
Then put ¢, = max{R,,),R(,, }, from (2.2.6) amd (2.2.7) we have
PO, el )=a+{g1 -9} " Qin 2 +0(n™"). (2.2.8)

This means that the empirical likelihood confidence interval for a quantile has cov-

erage error no better than O(n~1/2).

2.3 Smoothed Empirical Likelihood Confidence Intervals for Quantiles

We showed in the previous section that due to the discreteness of the binomial
distribution, the coverage of the empirical likelihood confidence interval for a quan-

tiles is in error by a term of size n~}

/2. To improve coverage accuracy we construct
a smoothed empirical likelihood for a quantile in this section, by smoothing the
weighted empirical distribution function F,(z). We show that this smoothed em-
pirical likelihood admits a nonparametric version of Wilks’ theorem, which allows us
to construct a confidence interval for 6, by consulting the x? tables. Furthermore,
we show that by appropriately choosing the smoothing parameter, the coverage
error of the smoothed empirical likelihood confidence interval is of order n~! and

can be further reduced to order of n~2 by employing Bartlett correction. These are

significant improvements over the confidence interval obtained by the “sign test”.

We divide this section into three parts. In subsection 2.3.1 we give some no-
tation and lemmas, and introduce smoothed empirical likelihood. In subsection
2.3.2 we prove a nonparametric version of Wilks’ theorem for smoothed empirical
likelihood. In subsection 2.3.3 we establish an Edgeworth expansion for the distribu-
tion of the smoothed empirical likelihood, which enables us to derive the coverage

accuracy and Bartlett correctability of smoothed empirical likelihood confidence

intervals for 4,.
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2.3.1 Notation and Lemmas

In this subsection we give some notation and lemmas, and introduce smoothed
empirical likelihood which will be used in the rest parts of this section. To define

smoothed empirical likelihood we have to first give some notation and concepts of

kernel smoothing.

Let K denote an r’th order kernel, of the type commonly used in nonparametric
density estimation or regression (e.g. Silverman 1986, p.66fF; Hirdle 1990, p.141f).

That is, for some integer r > 2 and constant k # 0, K is a function satisfying

(1 ifj=0
/qu(u)duz 0 if1<j<r—1 (2.3.1)
lK, ifj:r.

The case r = 2 is the most common, and there we take K to be a symmetric prob-
ability density. Larger values of r produce curve estimators with smaller variance.

Define G(z) = [

v K (y)dy. In this notation we put G, (z) = G(z/h). When r = 2

and K is a density, G and G} are proper distribution functions. The h appearing

in Gn(z) is called the “bandwidth” or “smoothing parameter” and satisfies

h—0, asn — oo. - (2.3.2)

Let f be the density function of F and f(*) the i’th derivative of f. We assume

that

fand fY exist in a neighbourhood of , and are continuous

(2.3.3)
at 8,;and f(6,) > 0.

The moments of G, (6, — X ) are calculated in the following lemma:

Lemma 2.3.1. Assume conditions (2.3.1) - (2.3.3), and that the kernel K is

bounded and compactly supported. Then

(4) E{Gw(8; — X)} = g+ {(=h) /r1} " (8,) K + o(h"),

(i) E{GyT (0, —X)} = ¢ — (m + 1) h £(6,) bm + o(h),
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where m is any positive integer and b,, = f_oooo uG™(u) K(u)du.

Proof: We first prove (i). Using integration by parts,

E{G,(6, — X))} = /_°° Gn(8, —z)dF(z) = —/_oo G(u)dF (8, — hu)
= /°° F(0, —hu)K(u)du.

By Taylor expansion of F(, —h u) around §,, and noticing that K is an r’th order

kernel,
F{G(0, — X)} =F(8,) + {(=hY [r1} "D (6,)x (2.3.4)
b by /et [ I, —whu) — £ (68,)} K (u) du,

where w = w(u) € (0,1). Since K is bounded and compactly supported, and flr=1
is continous at ,, it may be shown that

[e <]

lim " {fC(0, —whu)— fC(0,)} K (u)du = 0.

h—0 — o0

Substituting this into (2.3.4) and noting that F(,) = ¢ we have proved (i).

To prove (ii), we first notice that the conditions of K being bounded and
compactly supported imply that b,, is finite for each positive integer m. Again

using integration by parts,
PGP0, - X)) = [ Gpri(e, - X)dF(s)
= —f GPt'(u)dF(6, — hu)
=—-(m+1) / F0, —hu)Gy (u)K(u)du. (2.3.5)

Based on an one-term Taylor expansion of F(6, —h u) around 8, and the continuity

of f at 8,, we can show from (2.3.5) that

E{Gy*' (6, — X)} = ¢ — (m + 1) h f(8;) b + o(h).

Thus, (ii) is proved. o
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We define

w;(8) = Gp(0 — X)) —q forl <i<n,

and py = E{w;(0,)¥} for k=1, 2 --.. Using Lemma 2.3.1, we have

( p1 = coh™ + o(h"),
{ m=g—g+0(h), (2.3.6)
v \ Hi = q+2;;i(_1)l (;) ql+l+(_1)i qi+o(h), 7‘237 ‘

Il

where ¢, = (—1)" & f"=1(8,)/!.
Now we may construct smoothed empirical likelihood for 6,. We first smooth
the weighted empirical distribution function ﬁ’p by defining

Fyn(0) = 20 piGi(8 — Xi).

i=1

We see that the smoothing is achieved by replacing the indicator function I(X; <
9) in F, with G,(0 — X;). Replacing the constraint F,(8) = ¢ by its smoothed
counterpart F, ,(8) = ¢ in (2.2.2), and taking the logarithm, we get the smoothed
empirical log likelihood ratio for 6, evaluated at 6, = 0,

t(6)=  inf —2 > log(n p:).
PPy a(8)=¢;0 pi=1. i=1

Using the Lagrange multiplier method, we may prove that the optimal point occurs
with p; = n~ {1 + A(#) w;(8)}~ !, whence
£,(0) = 2 Y log{l + A(6) w;(6)},
i=1
where A(6) is determined by

n

D wi(0) {1+ AB)wi(8)}"F = 0. (2.3.7)

i=1

The solution of equation (2.3.7), A(#), satisfies the following Lemma 2.3.2,

whose proof is deferred to Section 2.5.

Lemma 2.3.2: Assume that K satisfies (2.3.1), and is bounded and compactly

supported. Then A(8,) = O,(n" /% + "), where A(8,) is determined by (2.3.7) with
0=29,.
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FIGURE 2.1: Unsmoothed (step function ) via smoothed empirical likelihood ratio
functions for median based on sample A, with various choices of bandwidth A:

() h=n"14 (2) h=n"12 (3) h=n"%/% and (4) h=n"1.
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Figure 2.1 shows the unsmoothed empirical likelihood ratio function R{X i)}
graphed against the smoothed empirical likelihood ratio function £,(6,) for a median

(¢ = 1/2), based on a random sample

A = {0.011,0.024,0.055,0.06,0.068,0.313,0.341,0.496, 0.506, 0.633,

0.639,0.689,0.70,0.817,1.251,1.271,1.445,1.662,1.678}

generated from the x? distribution.
2.3.2 Wilks’ Theorem and Coverage Accuracy

As pointed out in Chapter 1, a fundamental result of empirical likelihood is
that, like parametric likelihood, it admits a nonparametric version of Wilks’ the-
orem. We have mentioned in Chapter 1 that the Wilks’ theorem holds true for
the case of smooth function of means, which enables us to construct an empirical
likelihood confidence interval by looking up the chi-square tables. For our current
problem of constructing confidence intervals for a quantile, we would like to first
prove the Wilks’ theorem for £,(8,), which will give us a smoothed empirical likeli-
hood confidence interval with correct asymptotic coverage. Then we would like to
investigate coverage accuracy and Bartlett correctability of the confidence interval..

In particular, we wish the order of magnitude of coverage error to be of smaller

1

order than n~!/2, which is the order of the coverage error of unsmoothed empirical

likelihood confidence intervals (as shown in Section 2.2). The aim of this subsection
is to address these problems by giving three theorems (Theorems 2.3.3 - 2.3.5). The

proofs of these theorems are deferred to Section 2.5.

Our first result establishes necessary and sufficient conditions on the choice of

bandwidth, h, such that £;(6,) has an asymptotic x? distribution.
Theorem 2.3.3: Assume that
K satisfies (2.3.1), and is bounded and compactly supported; that
f and fU~1 egist in a neighbourhood of 8, and are continuous (2.3.8)

at 0,; that f(8,) > 0;and that for somet > 0, nh' — 0 as n — oo.
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Then £,(8,) has an asymptotic x? distribution if nh®" — 0, and this condition is

also necessary if f('=1(6,) # 0.

Let us explain the implications of condition (2.3.8). The first part of (2.3.8)
asks that K be a kernel of order r. The requirements that K be bounded and
compactly supported implies that G is bounded, so as to get the result in Lemma
2.3.2 which is used to prove Theorem 2.3.2. However, we could obtain the result
in Theorem 2.3.2 by imposing other similar conditions on the kernel. The second
part asks that the distribution function F be sufficiently smooth in a neighbour-
hood of 8,; the condition that r continuous derivatives of the target function (here,
F) exist is the usual smoothness assumption imposed when working with an r’th
order kernel. Requiring that f(6,) > 0 ensures that the asymptotic variance of the

sample quantile is of order n~!. Without that assumption the order of magnitude

of variance is strictly larger than n~!

, and the asymptotic theory is quite different.
Finally, asking that nh* — 0 as n — oo ensures that the bandwidth does not con-

verge to zero too slowly. This is actually a very weak condition on h, since there is

no restriction on t.

If K is a second-order kernel (i.e. r = 2) and f'(6,) # 0 then £,(6,) is asymp-
totically x? if and only if h = o(n‘i'). Such a bandwidth is of smaller order of
magnitude than that which is usually appropriate for minimising error of a curve
estimator; the latter h is of size n"ls', as shown for example by Silverman (1986,
p.40ff). When fr=1(8,) = 0, it is possible for £,(8,) to have an asymptotic x?

distribution yet nh?" to be bounded away from zero.

If (2.3.8) is true and we choose the bandwidth k such that n A2 — 0, then by
the theorem we can construct an a-level smoothed empirical likelihood confidence

interval for 8, as follows. First find from the x? tables the value ¢, such that
P(x? <e¢y) = a.

Then, In., = {8:£,(8) < o} is a smoothed empirical likelihood confidence interval

with nominal coverage level a. However, our objective of smoothing is not to get a
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result like this. Instead, we wish to find a suitable range of h such that the coverage
error of I, is of smaller order than n~ /2, which would show that I,  has better

coverage that the unsmoothed interval I._ given in Section 2.2.

Based on Theorem 2.3.3, we assume that
nh®* — 0 asn — oo. (2.3.9)

Clearly (2.3.9) implies (2.3.2). To establish an expansion of Edgeworth type for the

distribution function of £,(6,), we assume that
nh/logn — 00, asn — o0. (2.3.10)

The coverage accuracy of I, is discussed in the following theorem:

Theorem 2.3.4: Assume conditions (2.3.8) - (2.8.10). Then a sufficient condition
for

P, €., )=a+0(n"") (2.3.11)
asn — oo, is that nh" is bounded. This condition is also necessary if f("=1(8,) # 0.

Theorem 2.3.4 implies that the smoothed empirical likelihood confidence in-
terval I,  has coverage error of order n~! if the bandwidth h is properly chosen
as recommended by the theorem. This is a significant improvement over the un-
smoothed empirical likelihood confidence interval I, given in Section 2.2. Notice
that the boundness of nh" is sufficient for condition (2.3.9) to be true. If the order
of the kernel K is r > 2, we can choose h = O(n~!/"). It is obvious that for such
h, nh" is bounded and nh/logn — co. Theorem 2.3.4 assures that this choice of A

leads to coverage accuracy of order n™?.

2.3.3. Bartlett Correction

From the proof of Theorem 2.3.4, which is deferred to Section 2.5, we see that no
matter what the value of ¢, > 0, the right-hand side of (2.3.11) cannot be rendered
equal to a + o(n~') by appropriately choosing h. This means that smoothing

cannot give us better coverage accuracy than O(n~'). To further improve coverage
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accuracy we use Bartlett correction. It is well-known that part of the coverage error
of I, is due to the fact that the mean of £,(6,) is not equal to 1, which is the mean
of the x? distribution. Bartlett correction is a way to eliminate the approximating
error by rescaling £,(8,) , so that it has correct means. We start with calculating

the expectation of £,(8,), which is given in the following lemma.

Lemma 2.3.5: Assume conditions (2.3.8) and (2.3.9). Then,
E{t,(8,)} =1+ n B+ npf p,;l + o(nhz") + O(hs" +n R+ n'2),

where f = ¢ (3p;” pa —2p5° p3) and p; = E[G{(6, — X:)/h} — qf’.

We see from Lemma 2.3.5 that the difference between the expectations of
£,(8,) and its approximating chi-squared distribution is dominated by term n~! 8+

npu? p;'. So if we choose bandwidth h such that n k2" = O(n~?) then we have
E{tn(6,)} —E(x})=n""B+0(n7?).

We may reason that the expectation of £,(6,)/(1 + n~' ) differs from that of
the x? distribution only in terms of order n~2, by using bandwidth h such that

nh? = O(n~?). However, 3 is usually unknown in practice and must be estimated.

To this end, we define
py =07t 320 [G{(6, — Xi)/h} — qf
i=1
and 8 = %(3[1;2 g — 2;2;3 p2), where éq is a root-n consistent estimate of 8,. By
the smoothness of G and Taylor expansion, we may show that 3 = 8 + O(n~'/2).
Put d(cq,7) = ca(1l + n~ 1 v) where 7 is either 8 or ﬁ We prove in the following
theorem that by appropriately choosing h, the Bartlett-corrected confidence interval

I acenyy = {01€1(8) < d(ca,v)} has smaller coverage error than I, , no matter

whether G or B is used.

Theorem 2.3.6. Assume conditions (2.3.8) and (2.3.10). Then a sufficient condi-
tion for

P(0, € I} 4¢c.yy) = @+ O(n™2), (2.3.12)
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for either v = B or v = B, is that n3h>" be bounded. If fU"~1(8,) # 0 then the

boundedness of n®h*" is also necessary for (2.3.12).

From (2.3.6), we know that

p2 = q(1—q)+ O(h),
ps = q(1 —¢)(1 —2q)+ O(h),

pa = q(1—¢)(1 -3¢+ 3¢*)+ O(h).

Define 8, = £ ¢ '(1 —¢)"'(1 — ¢+ ¢*). Then we have § = Bo 4+ O(h). Since S,
is known, and if h is small enough, 8, will be a good approximation of 3. For
example, if h satisfies the requirement of Theorem 2.3.6 and K is a second-order
kernel then 3 = B, + O(n~3/*). Define the “partial” Bartlett-corrected confidence

interval Iy 4cc, 5,) = {0 [€s(0) < ca (1 + Bon~')}. It may be shown that the result

in (2.3.12) can be changed to

P(8; € Inageup)) = @+ O(n™"h). (2.3.13)

Suppose we use a second order kernel and choose the bandwidth A of order n=3/4

as suggested by Theorem 2.3.6. Then we obtain
P(Gq‘ € Ih,d(co,,ﬂ.,)) =a+ 0("—7/4)-

So the coverage error is just a factor O(n'/*) larger than that of the full Bartlett

correction confidence interval.

From a practical viewpoint, this simple “partial” Bartlett correction approach
is particularly attractive. Although it does not enjoy quite the same asymptotic
performance as the “full” correction discussed earlier, the simulation study in the
next section shows that it performs commendably well in practice. This is presum-
ably because the “full” correction needs to estimate p; for j = 1,2,3, which are

relatively sensitive to bandwidth choice, and such estimators can be rather variable

in small samples.
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2.4 Simulation Study

In this section we present a simulation study designed to investigate the perfor-
mance of smoothed empirical likelihood confidence intervals for quantiles, by using
various bandwidth A when comparing with the unsmoothed confidence intervals. In
particular, we wish to give examples of simple rules that are suggested by Theorems
2.3.4 and 2.3.6 for selecting bandwidth. We want to see if the empirical outcomes

from our simulations are consistent with our theoretical findings.

Throughout this section we smooth using the so-called Bartlett or Epanech-

nikov kernel,

3 1 R
N SRR,
0

otherwise .

Since K is symmetric about the origin, it is a second-order kernel (i.e. r = 2). We
concentrate on confidence intervals for quartiles and the median (i.e. ¢ = i—, ;— y 3—),
and take the parent distribution F to be chi-squared with a variety of different
degrees of freedom. We choose nominal coverages of a = 0.90, and a = 0.95, employ
a variety of different formulae for h, and check on the performance of unsmoothed,
smoothed and Bartlett correction confidence intervals. In the latter we take two
different version of Bartlett correction confidence intervals. They are the “partially”
corrected interval Iy 4(., 5,) and “fullly” corrected interval I 4., ) With v = B;
we do not treat the interval I, 4, ) With ¥ = ( since § is usually unknown and
therefore this method is not of practical interest. Formulae for Iy, I q4¢c. 5.)>

Ih,d(co,,ﬁ)’ Bo and B are given in Sections 2.3.2 and 2.3.3.

Recall from Theorems 2.3.4 and 2.3.6 that when 7 = 2, the bounds h = O(n~ 7)
and h = O(n~ %) define the largest h for which the uncorrected interval has coverage

error O(n~') and the Bartlett-corrected interval with 7 = 3 has coverage error

O(n~?), respectively.

Table 2.1 summarises results for the x2 distributions with m = 1,3,5 and
sample sizes n = 10,15,20,30. Figure 2.2 illustrates how coverage accuracy varies

over different degrees of freedom and different sample sizes. Each point in the
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table and figure is based on 10,000 simulations. The chi-squared variables were
produced by adding squares of independent normal variables given by the routine

in Numerical Recipes (Press et al. 1989).

The following broad conclusions may be drawn from those results. First,
smoothed empirical likelihood intervals have greater coverage accuracy than their
unsmoothed counterparts, and further improvement is offered by Bartlett correc-
tion. Secondly, the “theoretical” Bartlett correction (based on the value ;) per-
forms similarly to the “empirical” Bartlett correction (using ﬁ) Since B, is simpler
than B to implement, it is to be recommended. Thirdly, choices of h in the range

n~3, n

Q=

-3
4

generally provide quite good coverage accuracy. However, when the
underlying distribution is heavily skewed (e.g. x?), less smoothing than this is-

desirable.
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TABLE 2.1: Estimated true coverages, from 10,000 simulations, of a-level smoothed
empirical likelihood confidence intervals for the ¢’th quantile of the x2, distribu-
tion. Rows headed “uncorr.”, “B,” and “3” give the uncorrected interval and
the Bartlett-corrected intervals computed with v = 8, and v = ﬁ, respectively.

m=1,n=10
q
0.25 0.50 0.75
o
0.90 0.95 0.90 0.95 0.90 0.95
h
0 0.9239 0.9436 0.9345 0.9345 0.9240 0.9240
Uncorr. 0.8788 0.9278 0.8860 0.9430 0.9150 0.9594
n~?! Bo 0.8916 0.9351 0.8935 0.9562 0.9491 0.9616
8 0.8920 0.9353 0.8950 0.9569 0.9501 0.9621
uncorr. 0.8600 0.9266 0.8851 0.9460 0.9086 0.9465
n-% Bo 0.8745 0.9349 0.8934 0.9519 0.9296 0.9512
B 0.8757 0.9358 0.8945 0.9527 0.9307 0.9517
Uncorr. 0.8822 0.9377 0.8567 0.9184 0.8944 0.9268
n-% Bo 0.8943 0.9459 0.8686 0.9263 0.9068 0.9338
Jé] 0.8939 0.9454 0.8720 0.9293 0.9088 0.9357
uncorr. 0.8707 0.9306 0.7400 0.8295 0.8592 0.9064
n- T Bo 0.8827 0.9405 0.7518 0.8431 0.8695 0.9142
B 0.8814 0.9388 0.7550 0.8462 0.8717 0.9160




m=1,n=15
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0.25

0.50

0.75

0.90 0.95

0.90 0.95

0.90 0.95

0.9232 0.9787

0.9300 0.9693

0.9026 0.9694

q
«
uncorr.
Bo
B
uncorr.
Bo
B
uncorr.
Bo
g
uncorr.
Bo
B

0.8821 0.9335
0.8903 0.9394
0.8872  0.9407

0.8562 0.9182
0.8649  0.9250
0.8665 0.9261

0.8710  0.9303
0.8810 0.9357
0.8820 0.9365

0.8748  0.9320
0.8845 0.9384
0.8831  0.9378

0.8844 0.9476
0.8892  0.9509
0.8899 0.9511

0.8890 0.9408
0.8947  0.9443
0.8957  0.9451

0.8701  0.9299
0.8772  0.9339
0.8785 0.9349

0.7190 0.8106
0.7264  0.8199
0.7299  0.8227

0.8807  0.9697
0.8856 0.9701
0.8866 0.9710

0.8815 0.9623
0.8879  0.9645
0.8893  0.9651

0.8895  0.9497
0.8994 0.9544
0.9011° 0.9552

0.8740 0.9294
0.8824 0.9321
0.8843  0.9339
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m=1,n=20
q
0.25 0.50 0.75
o
0.90 0.95 0.90 0.95 0.90 0.95

0 0.8739 0.9348 0.9217 0.9734 0.9048 0.9718
uncorr. 0.8848 0.9394 0.8921 0.9488 0.8821 0.9559
-1 Bo 0.8896 0.9427 0.8966 0.9500 0.8856 0.9566
i 0.8899 0.9432 0.8972 0.9508 0.8856 0.9566
uncorr. 0.8575 0.9204 0.8925 0.9460 0.8833 0.9488
-3 Bo 0.8637 0.9265 0.8976 0.9493 0.8896 0.9510
i 0.8648 0.9288 0.8980 0.9502 0.8897 0.9509
uncorr. 0.8596 0.9255 0.8849 0.9350 0.8915 0.9440
-3 Bo 0.8676 0.9312 0.8900 0.9376 0.9009 0.9482
8 0.8673 0.9317 0.8906 0.9382 0.9022 0.9483
uncorr. 0.8894 0.9405 0.6903 0.7967 0.8851 0.9391
-1 Bo 0.8950 0.9449 0.6965 0.8030 0.8905 0.9427
B 0.8945 0.9443 0.6974 0.8047 0.8914 0.9432
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m=1,n=30
q
0.25 0.50 0.75
[0
0.90 0.95 0.90 0.95 0.90 0.95

0 0.9388 0.9678 0.9292 0.9706 0.8806 0.9544
uncorr. 0.8959  0.9456 0.8930 0.9525 0.9080  0.9417
-1 Bo 0.9005 0.9490 0.8953 0.9540 0.9093 0.9431
B 0.9007 0.9492 0.8953 0.9541 0.9094 0.9434
uncorr. 0.8671 0.9285 0.8987 0.9472 0.9024 0.9418
-1 Bo 0.8711 0.9317 0.9010 0.9493 0.9050 0.9452
B 0.8718 0.9324 0.9012 0.9495 0.9056 0.9454
Uncorr. 0.8349 0.8972 0.8913 0.9427 0.8924 (0.9462
-3 Bo 0.8391 0.9017 0.8940 0.9451 0.8961 0.9489
8 0.8397 0.9022 0.8948 0.9452 0.8966  0.9496
uncorr. 0.8954 0.9453 0.6616 0.7647 0.8993 0.9431
-% Bo 0.8993 0.9479 0.6665 0.7703 0.8938 0.9464
B 0.8989 0.9475 0.6675 0.7714 0.8942 0.9472




m=3,n=10
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0.25

0.50

0.75

0.90 0.95

0.90 0.95

0.90 0.95

0.9239 0.9436

0.9345 0.9345

0.9240 0.9240

|
W

q
(8]
uncorr.
Bo
g
uncorr.
Bo
g
uncorr.
Bo
g
uncorr.
Bo
B

0.9139  0.9530
0.9368 0.9570

0.9376  0.9577

0.9040 0.9388
0.9191 0.9436
0.9201 0.9442

0.8854  0.9246
0.8958  0.9309
0.8961  0.9317

0.8736  0.9206
0.8849  0.9284
0.8868  0.9317

0.8885 0.9254
0.8924 0.9678

0.8930 0.9680

0.8871  0.9390
0.8931 0.9529
0.8937 0.9532

0.8852  0.9491
0.8928 0.9573
0.8956  0.9583

0.8830 0.9430
0.8914  0.9477
0.8941  0.9499

0.9187  0.9697
0.9602 0.9712

0.9604 0.9716

0.9160 0.9571
0.9468 0.9598
0.9472  0.9599

0.9057  0.9479
0.9250 0.9519
0.9262  0.9529

0.8965 0.9312
0.9068 0.9380
0.9085 0.9394




m=3,n=15
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0.25

0.50

0.75

0.90 0.95

0.90 0.95

0.90 0.95

0.9232 0.9787

0.9300 0.9693

0.9026 0.9694

uncorr.
Bo
B

uncorr.
Bo
B

uncorr.

Bo

~

g

uncorr.
Bo
Y

0.8853 0.9672
0.8899  0.9689
0.8912 0.9693

0.8920 0.9542
0.9002 0.9567
0.9025 0.9576

0.8880  0.9442
0.8956  0.9481
0.8926  0.9488

0.8852  0.9331
0.8925 0.9382
0.8951  0.9397

0.8826 0.9582
0.8850  0.9599
0.8856  0.9599

0.8908 0.9517
0.8954  0.9537
0.8960 0.9540

0.8902 0.9443
0.8958 0.9476
0.8964  0.9477

0.8931 0.9472
0.8985 0.9507
0.9008 0.9515

0.8802 0.9769
0.8829 0.9774
0.8835 0.9777

0.8873  0.9707
0.8926 0.9726
0.8938 0.9727

0.8889  0.9651
0.8945 0.9667
0.8959 0.9674

0.8919 0.9511
0.9001  0.9542
0.9027  0.9547




m=3,n=20
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q
0.25 0.50 0.75
a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.874 0.935 0.922 0.973 0.905 0.972
uncorr. 0.8844 0.9565 0.8866 0.9559 0.8848 0.9600
-1 Bo 0.8866 0.9586 0.8881 0.9569 0.8876 0.9610
I 0.8910 0.9593 0.8888 0.9708 0.8874 0.9610
uncorr. 0.8825 0.9472 0.8903 0.9487 0.8831  0.9408
- B 0.8885 0.9498 0.8938 0.9507 0.8898 0.9422
i 0.8896 0.9506 0.8939 0.9508 0.8896  0.9427
UNCOIT. 0.8947 0.9443 0.8985 0.9482 0.8894  0.9467
T B 0.9015 0.9484 0.9029 0.9498  0.8961  0.9489
B 0.9027 0.9501 0.9032 0.9500 0.8964 0.9491
UNCorr. 0.8901 0.9410 0.8931 0.9444 0.8968 0.9466
-t Bo 0.8960 0.9453 0.8971 0.9476 0.9002 0.9507
Ji 0.8969 0.9463 0.8986  0.9487 0.9027 0.9509
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m=3,n =30
q
0.25 0.50 0.75
a
0.90 0.95 0.90 0.95 0.90 0.95
h
0 0.9388 0.9678 0.9292 0.9706 0.8806 0.9544
Uncorr. 0.9027 0.9397 0.8980 0.9538 0.9076 0.9457
n-1 Bo 0.9049 0.9409 0.8992 0.9549 0.9082 0.9464
,3 0.9049 0.9410 0.8993 0.9549 0.9083 0.9465
uncorr. 0.8970 0.9462 0.8973 0.9518 0.9066 0.9427
n~% Bo 0.9007 0.9487 0.8994 0.9532 0.9076 0.9441
ﬁ 0.9010 0.9490 0.8995 0.9533 0.9076 0.9443
uncorr. 0.8949 0.9465 0.8956 0.9476 0.9039  0.9442
n-% Bo 0.8985 0.9494 0.8980 0.9492 0.9072 0.9465
06 0.8991 0.9501 0.8983 0.9495 0.9073 0.9467
Uncorr. 0.8950 0.9487 0.8976 0.9495 0.8980 0.9488
n-% Bo 0.8990 0.9506 0.8995 0.9512 0.9002 0.9518
8 0.8996 0.9512 0.9004 0.9520 0.9030 0.9526
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m=25,n=10
q
0.25 0.50 0.75
o .
0.90 0.95 0.90 0.95 0.90 0.95
0 0.9239 0.9436 0.9345 0.9345 0.9240 0.9240
UnCorrT. 0.9138 0.9651 0.8852 0.9219 0.9236 0.9702
-1 Bo 0.9287 0.9677 0.8884 0.9729 0.9651 0.9721
,3 0.9291 0.9680 0.8889 0.9733 0.9655 0.9723
Uncorr. 0.9148 0.9519 0.8866 0.9332 0.9179 0.9648
-1 Bo 0.9255 0.9549 0.8918 0.9657 0.9553 0.9676
,3 0.9266 0.9555 0.8924 0.9660 0.9555 0.9681
UNCorT. 0.8987 0.9285 0.8929 0.9478 0.9127 0.9558
-3 Bo 0.9108 0.9342 0.8990 0.9627 0.9347 0.9586
ﬁ 0.9118 0.9351 0.9010 0.9636 0.9363 0.9595
UNnCorr. 0.8755 0.9233 0.8831 0.9480 0.9010 0.9382
- Bo 0.8860 0.9293 0.8924 0.9547 0.9161 0.9442
J} 0.8876 0.9306 0.8951 0.9554 0.9180 0.9458
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0.25

0.50

0.75

0.90 0.95

0.90 0.95

0.90 0.95

0.9232 0.9787

0.9300 0.9693

0.9026 0.9694

|
(M

uncorr.
Bo
B

uncorr.
Bo
B

uncorr.
Bo -
B

uncorr.

Bo
8

0.8761 0.9617
0.8805 0.9632
0.8813 0.9633

0.8872  0.9526
0.8941  0.9549
0.8955 0.9556

0.8873  0.9531
0.8962 0.9568
0.8983 0.9577

0.8878  0.9408
0.8965 0.9458
0.8989  0.9473

0.8874  0.9599
0.8899 0.9606
0.8902 0.9606

0.8909 0.9525
0.8942 0.9543
0.8950 0.9544

0.8899 0.9504
0.8942 0.9531
0.8949  0.9534

0.8961  0.9499
0.9022  0.9540
0.9040 0.9549

0.8790 0.9793
0.8812 0.9801

0.8817 0.9804

0.8844  0.9755
0.8893 0.9766
0.8899 0.9766

0.8890 0.9642
0.8966  0.9660
0.8977 0.9664

0.8870 0.9543
0.8965 0.9580
0.8982  0.9585
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0.25

0.50

0.75

0.90 0.95

0.90 0.95

0.90 0.95

0.8739  0.9348

0.9217 0.9734

0.9048 0.9718

uncorr.

Bo

~

B

uncorr.
Bo
B

uncorr.
Bo
B

uncorr.
Bo
g

0.8848 0.9394
0.8794 0.9567

0.8803 0.9571

0.8858  0.9479
0.8922  0.9488
0.8933  0.9493

0.8947  0.9468
0.9008 0.9493
0.9034 0.9504

0.8837 0.9422
0.8998  0.9457
0.9022 0.9473

0.8921  0.9488
0.8925 0.9565
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FIGURE 2.2: The graphs depict coverage error, given by € = true coverage — 0.95,
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(&) m=3 varyingn

/T~ —
7 —
~~
\\ / ~_
- \ / \\\
12 14 . ~N 15/’ 20 22 24 26

(b} n=20 varyingm

— — — — —a——

— —
— — ——
— — — — —




48

2.5 Proofs

In this section we give detailed proofs of Lemmas 2.3.2 and 2.3.5, and Theorems

2.3.3, 2.3.4 and 2.3.6.
2.5.1 Proof of Lemma 2.3.2

Lemma 2.3.2: Assume that K satisfies (2.3.1), and is bounded and compactly

supported. Then A(8,) = O,(n~'/2 + k"), where A(8,) is determined by (2.3.7) with
6=26,.

Proof: Define w; = w;(0,) = G,(8, — X;) — ¢, and let A = A(6,) denote a solution

of the equation
n

Y wi(1 4+ Aw)"t = 0. (2.5.1)

i=1
Since K is a bounded and compactly supported kernel satisfying (2.3.1), and
6@y =[ Kwa,
y<=z

then G is uniformly bounded on R'. Therefore there exists a positive number d,

such that

|lwi] < d,, forl <i<n. (2.5.2)

From (2.5.1) and (2.5.2),

1+/\w.

-1@1“ - -wZ( a2

> n7HA IZ — ||

|1+Aw,|

P A N T
= 1+d " ?w [o1]
= Pl o~ o,
1+ d,|A|
where @w; = n‘IZ?:l'wf for j = 1,2,---. Therefore, |A|w; < (1 + d,|A])|®:], or

equivalently,

AL (@5 — do]@y]) < |@s]. (2.5.3)



49

Observe that |w;| is average of i.i.d. random variables, so @w; — E(@;) = 0,(n"%).
We know from (2.3.6) that E(w,) = O(h") and E(@,) = ¢(1 —¢)+ o(1). Therefore,
by (2.5.3), h

IM{a(1 =) + 0,(1)} SO, (n™ 7 + 17,

which immediately gives us the result A = A(8,) = O,(n"*/%2 + A"). Hence the

lemma is proved. o

2.5.2 Proof of Theorem 2.3.3

Theorem 2.3.3: Assume that
K satisfies (2.3.1), and is bounded and compactly supported; that
f and f"~Y) ezist in a neighbourhood of 8, and are continuous
at 0,; that f(8,) > 0; and that for somet > 0, nh* — 0 asn — 0.
Then £,(8,) has an asymptotic x3 distribution if nh®" — 0, and this condition is

also necessary if f("=1(8,) # 0.

Proof: We start with developing a Taylor expansion for A which is the solution of

(2.5.1). Using Lemma 2.3.2, for each j > 1 we have

0= n"l zn: 'w,{l - )\w,- + (Aw;)z —_ (Au);):3 + ...}

i=1

=W — AWy + -+ (=AY B0 + (A n ‘1}; &
Inverting the above equation we have for j = 1,
A=o; v + Ty,
where according to Lemma 2.3.2
T, = A w; ' n} Z = 0,{(n " + n")}. (2.5.4)

1+)\

i=1
For 7 = 2,

)\:u').;lu‘)l+w2 W3 \? —11)21/\3 "12

1+)\w,

S -3 _ 2
=W,  W; + W, Wz w; + Ta,



50

where

Using Lemma 2.3.2 again and (2.5.4) we have

T, = 0,{(n" "% + h")?}. (2.5.5)

: w?
—2w2 W3 Wy A® n'lz —A—+w w3T2+w'1/\4 _IZ

i=1 i=1

1+/\'w,

=1 - —=3 = =2 —=5 -2 -3 —=—4 - -3
W + 2w, " w3 Wy — W, W4 W, + T3,

where
Ts =20, ° @20, {20, @, (w0, % 03 ®> + Ty) + (w05 ° w3 0> + Ty)*}

— @y Wy {305 % Wl (0,2 ws w2 + Ta) + 3w, " by (w;° s w: + Tp)’

n 4
-3 _ 2 Y - wy
+ (@, w3w1+T2)3}—2w2 W3 Wy A n 15: m

i=1
T -1 A4 -1
+ @3 @y T + 05 El T
By Lemma 2.3.2, (2.5.4) and (2.5.5) we obtain that

Ts = 0,{(n™ "% + A")*}.

In general we have

A =w;"' ©y + ;> W3 0} + (20, ° D — W, Dg) Dy
J
+ 22 Rix @} + 0, {(n"5 + A7y H}, (2.5.6)
k=4
where R,; denotes u');(u_l) multiplied by a polynomial in @,,..., W4, with con-

stant coefficients. Expansion (2.5.6) is a little longer than are necessary for our
present proof of Theorem 2.3.3. However, the additional details given here will be

needed in the proof of Theorem 2.3.4.
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Substituting the above Taylor expansion for A(8,) into £,(6,),

€,(6,) =2 Y log(1+ Aw;)
=1
it+1
=2n . (m1)** k" A @ + 0, {n(n"7 + ") *?}

k=1

j
+n ) Ry @'+ 0,{n(n"% + ")}, (2.5.7)
k=5

The third identity follows on substituting (2.5.6) into the second identity, and noting

that @; = @, — E(w;) + E(®,) = 0,(n" 7 + k7).

Put Z = ni(w, — ul)u;;_, where p; = E(w;). It is readily proved that
under condition (2.3.8), Z is asymptotically normal N(0,1). Furthermore, @, =
B2+ 0,(1) = g(1 —¢q)+ 0,(1), and w; = O,(1) for j > 3. Hence by (2.5.7) we have

for any j > 3,
_ -1 -2 - L r\3 -L r\j
€ (8y) = npy " {1+ 0,(1)} + Op{n(n™= + £")°} + Op{n(n™> + A7) }.
Since mh' — 0 for some t > 0, we have n(n~7 + k")’ = o(1) for sufficient large
j > 3. Also notice that
n(n” 7+ k") = O(n7h* + nk® ) + o(1) = o(n?h" + nh®") + o(1)
Hence,
6(0) = (0% py " gy + Z)° + 0,(RFR7 + nh?") + 0, (1)

Note that
(3 py 4+ 2)2 =22+ 0(n¥py + np?) + o(n7h” + nh?) + o(1).

Thus, €,(0,) has an asymptotic central chi-squared distribution with one degree
of freedom if and only if ¥ u; — 0. By (2.3.6), u1 = ¢, h” + o(h") where ¢, =
(=1)" & f=1)(8,)/r!. Therefore, n7 p; — 0if nh?" — 0; and if F~1)(0,) £ 0 then

nz g, — 0 implies nh?" — 0. So the theorem proved. o
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2.5.3 Proof of Theorem 2.3.4

Before proving Theorem 2.3.4, we first give the following lemma which estab-
lishes an analogue of Cramér’s condition for the random vector (G, (X —0,),G2(X —

0,),--- ,G;‘ (X —40,)), where j is the interger appeared in (2.5.6) and X is a random

variable with distribution F.

Lemma 2.5.1: Assume conditions (2.3.8), (2.3.9) and (2.3.10). Then for each
€ > 0 there ezists a constant C(€) > 0 such that for all sufficiently small h,

oo i
sup ih/ exp{i 2 1 Gu)* } £(6, — hu)du] <1-C(e)h,
- k=1

ty,..,ti:B|tx]>e€

where i = /—1 and G(z) = fy“ K(y)dy.
Proof: Let u denote a random variable uniformly distributed on the unit interval
[0,1], and U = (u,u?,---,u’). Put t = (¢1,---,t;) and define
1 J
I(t) = / exp (1 Z u*)du.
0 k=1
Clearly I(t) is the characteristic function of U. Thus, by the Riemann-Lebesgue

Lemma

lim I(t) = 0.

[t]]— o0

Since ||t|| — oo if and only if £%_, |tx| — 0o, we obtain that

lim I(t) = 0. (2.5.8)
2 Itkl=oo

From (2.3.8) we may assume that the compact support of kernel K is some interval

[a,b]. Then using (2.5.8) and Lemma 4.2 of Hall (1991), we may show that

b j
lim lim  sup |/ exp{i ) t, G¥(u) f(8, — hu)du| = 0. (2.5.9)

n—+o h—0
2 ltkl>n o k=1

With the above preparation; we define

70 = [ expli ¥ 6 GEw)} (8, — hu)du

a k=1
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and

S(t) = h /m exp{i 2 t GE(u)} £(8, — hu)du
=h /a f(0, —hu)du+ h /°° exp(i }: tx) f(8, —hu)du + h J(t)

k=1

=1— F(0, — ha) + exp(i ZJI tx) F(8, — hb) + h J(2). (2.5.10)

k=1

By (2.5.9), there exists h, and 7, > 0 such that for any 0 < h < h, and 2_ [t¢| > 7o,

(@] < (b —a) £(6,)- (2.5.11)

Since condition (2.3.8) implies that f is continous at 6, and f(8,) > 0, we can

choose h sufficiently small for
F(8, — ha) — F(8, — hb) > 2 (b — a) h £(8,).
From (2.5.10),

sup  |S(t)| <1 — F(8, — ha) + F(8, — hd) + h|J(2)|

“k|>7’o

S1—2(—a)h f(6,)+ 5 (b—a)h f(6,)

<1-—1(b-a)hf(4,). (2.5.12)

To prove the lemma it is sufficient to show that for each ¢ > 0 there exists a

constant B, such that

sup  |S(t)] <1 —-B,hf(0,). (2.5.13)

€<Z Itkls No

Put £(u,t) = Zi:l ty GE(u). By the continuity of f at 6,, we can split J(¢)

as follows:
b
1) = 10,) | expli€(u, 1)} du+ R(),
where sup_ ;oo R(t) = 0 as h — 0. From (2.5.10),

SIS [1— PO, —ha)+ h £(68,) [ expli€(u, 1)} dul + F(8, — hb) + b |R(D).

(2.5.14)
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It can be shown that for any real number v and w, by choosing h sufficiently small

we have

|1 — F(8, —ha) + h(v + iw)|* = {1 — F(8, — ha) + hv}’ + (hw)®

h? (v? 2\ 2
S{l—F(Gq—ha)+hv+ _.M_l} .

1—F(8,)
Thus
1—F(0, —ha)+ h(v+iw)|<1—F(8 —ha)+hv+M (2.5.15)
. < . -7, 5.
Put
5 b
v = f(Oq)/ cos{é(u,t)}du and w = f(Oq)/ sin{é(u,t)} du.
Hence,

f(8,) / exp{it(u,t)}du = v+ iw.

Notice that for the v and w defined above, we have

v? + w? = f2(0q){ (/;b cos{&(u,t)} du) 2 + (fab sin{f(u,t)}du) 2}

<2f%(8,) (b —a)”.

Using the above result, (2.5.14) and (2.5.15), we obtain

IS S 1= F(8, —ha)+ F(8, —hb) + h 7(8,) [ cos{é(u,t)} du

2 h? 9 9
+T—F—(0q)_f (6) (b —a)* + R |R(2)|

By the continuity of f at 6,,
b
F(0, —ha)—F(0, —hbd)= h / f(0, —hu)du = h f(6,)(b—a)+ hon(1).
Now from (2.5.14),

S@OI<1-hf6,) [ 11— cosfe(u,0)}] du

2h?

Ty 0 ¢ - @) + AR + (D}
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By choosing h sufficient small we have from the above eqation that

IS < 1—-Lhf(8,) ] [1 - cos{t(u,1)}] du.

Since G is an increasing function in [a, )], we have

B, =% inf_ 5~ 1<, f: [1 — cos{€(u,t)}] du > 0,

Thus we obtain (2.5.13). Therefore the lemma is readily proved by using (2.5.12)
and (2.5.13). a]

Now we are able to give the proof of Theorerm 2.3.4.

Theorem 2.3.4: Assume conditions (2.3.8) - (2.83.10). Then a sufficient condition
for
PO, €Iic,)=a+0(n™")

asn — 00, is that nh'" is bounded. This condition is also necessary if f("~1)(8,) # 0.

Proof: To prove this theorem, we have to develop an Edgeworth expansion of the

distribution function of £;,(6,). Recall (2.5.7),

6(6,) = {02 + Lay® vy 0? + (5% 02 — Lw

L e -7 .3 8 ——
+ (8w ® w3 wy — 8w; 7 W3 — )

J
+n Z Ry vt 4+ Op{n(n‘é' + ATy
k=5

Taking the signed square root of the right-hand side we may write
ta(8,) = (¥ 57)°
where

1
' =5 1L -2 2 4 -4 -2 -3 _ ) .3
§; = w, {wl+3w2 w3w1+(9w2 W2 — w3 ° w,) B

4

12 1

112 -6 _3 97 -5 - 4 =4 _ _
+(?w2 Wy + 75 W, W3 Wy — 5 W, w5)w

j
+2 T ﬁ’f} + Uiy
k=5

=8; + Uy
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say, where T, denotes w;z(k_l)

multiplied by a polynomial in ®@,,...,®w; with
constant coefficients, and U,; = O,{(n~7 + h")i*'}. Noting that nh' — 0 for
some t > 0, a little additional analysis shows that by choosing j sufficiently large

we may ensure that for £ =1,
P(|Us| > n" %)= 0(n"?). (2.5.16)
Hence using the delta-method we have for z > 0,

P{t4(8,) < &%) = P(—z <n% S} < z)

{s}P(—aFn-?<nis; <otn40@?), (2517)

where the inequalities and plus/minus signs are to be taken respectively, in the

indicated orders.

We see from (2.5.17) that the Edgeworth expansion for the distribution of
£,(0,) can be derived by an Edgeworth expansion for the distribution of na Si. So
our next step is to develop an Edgeworth expansion for the distribution of ny S;.
Observe that S; is a smooth function of @%;,...,w;. Denote that function by s;. Put

He = E(mk)al‘: (l"’lv-'-,ﬂj)’ u = (ulv-“auj)a Vi = @r — pi, V= (Vli"':I/j)a

de, ..k, = (H a/aukz) Sj(ula---’“j)i )
u=p

£=1

p(u) = s;(u) + Y (mh)~* > diy ko Uk, - Uk, -

m=1 kl»"'ykme{ly“-yj}

Then p is a polynomial, and p(V') represents a Taylor approximation to §; with an

error of order n™3:

Si=p(V)+ Uy,

where Uy; = Op(n~%). A little additional analysis shows that (2.5.16) holds for

£ =2, and so

P(n% S; < w){§ }P{n§p(V) <zxn’}+0(n?). (2.5.18)
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By developing Taylor expansion formulae for the quantities dg,. , , and for
the cumulants of V, calculations deferred to Appendix 2 show that the cumulants

ki,ks,... 0f ns p(V') satisfy the following formulae:
ki=ndsi(n)—Ep, P pan T+ 0TI R 407 3),
ky = o +(1u2 s — o b p)n 4+ 0" R 4077, (2.5.19)
ks =0(n"7h"), kyi=0(n"'h"), ke=0n"“D?forL>5,
where
L L - 2r
n7si(p) =n7 py * pa + o(nh™).

and

Jj J
o’ = Z E dkl dkz E{(w::l _/"’kx)(w;c2 _“kz)}
Ey k2

=14 Sy mopa+ (Gugtpg —Turt — Guy® pa) pl + O(R°T).

Let cf(t) be the characteristic function of n=p(V). Then using (2.5.19)

cf(t) = exp(—-——) exp{k, (it) + (ks — 1) + E K, (zt)J

= exp(——t—) exp{k; (it) + (k. ( (zt)

}+ O(n™'h" +n7%).
This allows us to develop a formal Edgeworth expansion for the distribution of p(V'):

assuming nh?" — 0,

P{nip(V) <z} = 8(z) — 5 n  {6u;  (nu1)® +3u5 % pa — 2u;° p3} 26()

+ Q(z) ¢(z) + o(nh*") + O(n™?), (2.5.20)

where ®,¢ denote the standard normal distribution, density functions respectively,

and Q(z) is a even polynomial in z. Hence for z > 0,

P{—g <n¥p(V) <z} =28(z) =1 - Ln {6, " (nm1)’ + 3457 pa — 205 ° p3} 24(x)

+ o(nh* )+ 0(n™?). (2.5.21)
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In view of (2.5.17), (2.5.18), (2.5.21) and the fact that 2®(z)—1 = P(x} < z?),

we obtain

P{ta(8,) <2*} = P(x; <2®)— 7 {6y (n1)” + 33" pa — 203 ° p3} 2% $(2?)
+ o(nkh* ) + O(n"?).

Recall that the a-level empirical likelihood confidence interval Iy., = {8]€x(6) <

co }. And from (2.3.6), p; for j = 2,3,4 have the following forms:
pr=(=h) ()7 R fUTD0,) + o(hT),  p2 = g(1 —q) + o(1),
ps=q—3¢" +2¢° +o(1), ps=q—4¢" +6¢° —3¢" +0(1).

Thus, using the above expansion for the distribution of £;(6,), we have
P(0, € Inc,) = P{tn(6,) < ca}

= a—n ()P K2 FUTV(0,)  (nhT) ¢ (1 = g) 7!

+ 27 (1 =) (1 =g+ ¢" )} cadlea) + o(n + nh®")(2.5.22)
Now if nh" is bounded we see clearly from (2.5.22) that
PO, €l,..)=a+0(n""). (2.5.23)

By (2.5.22),
P(0, € Ine,) = = {(r1)7" &% fO7D(8,)"n b ¢” (1 = 9)7 ")} cap(ca)
+o(nh* )+ 0(n™1).

if (2.5.23) holds and f("~Y)(4,) # 0, then nh?" must be bounded. In fact we can
show that the error term in (2.5.23) cannot be at smaller order of n~' if nh™ — C,

0 € C < oo. To appreciate this we note that from (2.5.22) that
P, €I4.)—a=o0(n"")

if and only if
(r)"2 K2 U002 CT + L (1—g+¢*) = 0.

But, the left-hand side is strictly positive for all 0 < ¢ < 1.
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It remains to check that the formal expansion (2.5.20) is valid. This may

be done by developing an Edgeworth expansion of the multivariate distribution of
nyV = ni(Vl,---,Vj) where V, = @ — pp for 1 <k < j, with the form

P(u3V € B)= 805(B)+ 2 M7 [ pu(e)on(@)de +0(n" ") (2.5.21)

k=1 B

uniformly in j-variate sets B from any class B satisfying

sup ®o5 {(9B)'} = O(e)

BeB

as € | 0. In these formulae, ¥ = Cov(V); &, 5z and ¢o 5 denote the distribution and
density functions of the N(0,X) distributions; p; is a polynomial of degree k + 2
with uniformly bounded coefficients; m > 1 is any integer; and (0B)¢ is the set of
all points distant at most € from the boundary of B. Noting that V is a mean of
a sum of independent and identically distributed random variables, this result may
be proved using techniques from Bhattacharya and Rao (1976, p.192ff), based on
an analogue of Cramér’s condition for V established in Lemma 2.5.1. The methods

used to get (2.5.24) are those given by Hall (1991). This proves the theorem. o

2.5.4 Proof of Lemma 2.3.5
Lemma 2.3.5: Assume conditions (2.3.8) and (2.3.9). Then,
E{t,(0))} =1+ n"'B+npipu;' +o(nh?> )+ O0MR* + 07 A" +n7?),
where B = & (3p;* pa —2p3° p3) and p; = E[G{(8, — Xi)/h} — gl
Proof: From (2.5.7) we know that
6.(0,) = n{w; ' o + 2w;° wy 0% + (0;° @) — L0, * wy) 0}

+ (8w; ® w3 wy — 8w; " w3 — & w;® ws) W}
+n Z Ry w3t + 0, {n(n~ ¥ 4+ RTY Y

To get E{£,(8,)}, we calculate the expectation of each term on the right hand side

of the above equation. The following formulae will be used in the calculations:

E(w, —,Ul)2 = n_l(,uz —Mf), E(w, _N2)2 = "_I(IM _l‘g)7
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E{(w1 — p1) (02 — p2)} = 07 (1 — g pa),
E{(®y — 1) (03 — p3)} = 7" (e — p1 pt3)
E{(w3 — p2) (W — pa)} = n™ " (us — p2 pa)
E{(@: — p1) (Ws ~ pa)} = 07" (ns — p1 pa)

E(®y —p1)® = n7%(ps — 3 p1 pa + 3 43)

E{(@1 = p1) (Ds = p2)’} = 072 (4 — 21 pa + p1 p2 — p3 + 2443 pa).

Now by Taylor expansion we have

oyt o] =pgt D (—p2) 7 (B — )t (81 — pa + p)?
k=0

=yt {nd 20 (=) H (B2 — p2)* + 2pa (01 — 1) Do (—p2) ™ * (@2 — pa)*
k=0 k=0

+ (01 — p1)*} + v,

where E(v,) = O(n~?). Taking expactation we obtain,

E(w; " wy) =pip; " + pip;° E(Dy — p2) —2py p3 * E{(D1 — p1) (@2 — p2)}
+p; E(wy — py)’
=ping +(L=2ppy " pst pipy pa)n” £ 0(r77). (25.25)
For the second term,
0y Wy w) = p;? {1 =37 (W, ~ﬂ2)+ < H(@s — ps) + ps}

X {(@1 = p1)® 4+ 3p1 (®y — p1)? + 34} (01 — 1) + 43}

=y {1 ps + 343 pa (01 — p1) + 3 pa ps (B — pa)’
+3p1 (01— p1) (D3 — pa) —3pi py " (D3 — p2) (W3 — pa)
—9pui py !t s (@1 — p1) (D3 — pa)} + v,

where E(v;) = O(n~' h® + n~?). Hence,

E(0;° w3 wy) =pip;  pa+ 0™t (B py pa+3pd py” pa —9pl py* p

—3ud gt ps + 63 u5% pe) + O(nT Y £ 07?).  (2.5.26)
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Similarly, we can show that

E(@;°w2od)=ptp;%p2+6n  p2ustpd + 0(n~ A% + 07 7%), (2.5.27)

E(wy* 0y wy)=pip; pa+ 60" plus®ps +0(n™ ¥ +07%), (2.5.28)
and the expectations of all other terms on the right hand side of (2.5.7) are at order
of O(n~1 A3 4+ n=?).

Summarizing (2.5.25) - (2.5.33) we have
E{ty(0)}=1+n"'B+npip; +o(nh*)+0MA* +n ' h" +107?),

where f = -(1).-(31152 pa —2p5° p2). So the lemma is proved. 0

2.5.5 Proof of Theorem 2.3.6

Theorem 2.3.6.Assume conditions (2.3.8) and (2.3.10). Then a sufficient condi-
tion for

P(eq € Ik,d(cu,‘y)) =a+ O(n_z) (2’5’29)
for either vy = B or v = B, is that n®h?" be bounded. If fr=1(8,) # 0 then the

boundedness of n®h*" is also necessary for (2.5.29).

Proof: We first prove in the case y = 3, where 8§ = %(3/1;2 Bq — 2;&2"3 p2). Recall

the Edgeworth expansion for the distribution of ¢,(6,) developed in Section 2.5.3,

P{£,(8,) <2} =P(x} <2®)— Ln 1{6p; (np1)? + 3p; % pa — 205 % ui} 22 ¢(2?)
+ o(nh* ) + O(n™?).

Thus

P{ea(8,) <2*(1+ pn~ ")} = P{x} <2*(1 + B ")}
= Lnm {6u;  (npa)? + 3p5 % pa — 205 ° p2} 22 4(2?)

+ o(nh®*") + O(n™?). (2.5.30)
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Let g, denote the density function of the x? distribution. Then
P{xi<2’(1+fn"")} = P(x] <2”)+ B2’ g1(z®)n™" +0(n™"),

and z? g,(z?) = z ¢(z). Substituting the above formulae into (2.5.30), and replacing

z? by c, satisfying P(x? < ¢,) = a, we obtain

P{8, € Iateupr} = PUtA(6,) < ca (14 fn~ 1)}
=a — 0" {6u;  (np1)’} cadlea) + o(nh?) + O(n"?)
=a—tn  {(r) 2k fOD(0,)n kP ¢ (1 — q)" '} cad(ca)

+ o(nh*") + O(n™?). (2.5.31)

Therefore if nh2" is bounded then n h?" = O(n~?). From (2.5.31) we immediately
see that (2.5.29) holds true. If f("=1)(8,) # 0, then (2.5.29) implies that n h*" =

O(n~?), which in turn means that n®h?" is bounded.

For the case of v = 3, the proof of (2.5.31) cam be handed similarly. Since B

is a root-n consistent estimate of 3, we have
,. 1 1 _3
1+48n " =148n"" +0,(n"2).

Using the delta-method we may show in a way similar to that which we used to

derive (2.5.31), that

PO, €1, 4. iy} = =07 {7262 FTD(8,) 0 kT g7 (1 = ¢) 7"} ead(ca)

+ o(nh®* )+ O(n~ %). (2.5.32)

However, by an argument based on the oddness and evenness of polynomials in
the Edgeworth expansion for the distribution of ¢,(8,), for example, by Barndorff-
Nielson and Hall (1988), the O(n~ %) term in (2.5.32) is actually O(n~?). To be
more rigorous, we may apply Edgeworth expansion directly to £;(8,) — z? ,[;n_l

’

which can be fitted into a smooth function of means model, by using the same
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method as that for Edgeworth expansion for £,(8,), although the analysis is far

more tedious. Therefore,

P{8, €1, ;.. s} =a—n" {(r)"? K2 FOD(0,) 0 h¥ ¢ (1 — 9)7 ) cad(ea)

+ o(nh® )+ O(n™?).

Now, the rest of treatment for the case v = § is exactly same with that for the case

v =p. o
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Appendix 2 Calculation of Cumulants k,

In this appendix we calculate the cumulants k,,ks,... of niP(V) which were

used in the proof of Theorem 2.3.4. Let k':*z-*» be the p’th order multivariate

cumulants of V' = (Vi,...,V;). According to results given by James and Mayne

(1962), the k;’s may be expressed as follows,

where

ky =n7{S;(u) + LdikY + L diji k¥ + Ldiju kP RM) + O(nmF) (2.5.33)
ks =n{did; k" + dijdik*7* + (dijude + L dind;) K9 k*} + O(n™?) (2.5.34)
ks =n7 {did;de k"* + 3dind;dok T k* + 2 d;5did, kVH

+ (8dijedidm + 2 dipmd;dy + 3dijdredm + 3digd;mdi) B9 BT

+ 2 dijim deda KV EM K™ + (3dij5demd,

+ 3ditmdjedn + dirdjm din) FT R E™™} 4 O(n 7)), (2.5.35)
ks =n’{did;dyd, k%" + 12d;,d;dyd K95 K

+ (4dixmd;ded, + 12dixdjmdedn KT ¥ E™ ) + O(n™2%),  (2.5.36)

ky =0(n~ =22y, £>5,

4,5 =(II 0/0u;,) S;(ur,.. )], _, -

i=1

It may be shown after some calculations that

dy =p; " + Lpap + O(n™ ¥ 407 F),
dy=—Lps P+ 0@ 3 407y, de=O(RT),  £23
dyy =§l‘;;l‘3+0(hr)’ dl?‘_‘_%”;;"l'o(hr)’

dym =0O(R7), for all other second derivatives,

. - -2 - r
dir=—3p; e+ Sp, u3+ O(R"), dina = —3p, “ps+ O(R7),

di13 =§u2—;+0(hr), dyzy = 2#;-’.‘I'O(hr),

4

dijx =0(h"), for all other third derivatives.
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Moreover, we have

k' =0 (py — p?), A

k' =n" gy —pips),, k¥ =07 (ps —pl),

k' =0T (ps = 3paps + 203), KUV =07 (pa — 2p1ps + 2010 — p3),
B =n (- 2) 4 00 ), K = 07 (s — 2papse) + O(n ™).

Substituting the above derivatives and the multivariate cumulants of V into (2.5.33)-

(2.5.36), we are able to prove that

L -2 _L _ L., -2
ky =n7s;(p) — g hy “pan” T+ O0(n” TR 4+ 07 7)),
ky =0® 4+ (p3°pa — 32p5°ud) 0™ + O(n7 1R +072),

ks =0(n"3h"), ki=O0(n"'R"), k,=0(n"“"D/?) for £>5.
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CHAPTER THREE
ON THE ACCURACY OF EMPIRICAL LIKELIHOOD

CONFIDENCE REGIONS FOR LINEAR REGRESSION MODEL

3.1. Introduction

In Chapter 2 we considered constructing empirical likelihood confidence inter-
vals for a population quantile. We also mentioned there that the quantile case is
non-standard in the sense that the parameter of interest (i.e. quantile) cannot be
represented as a smooth function of means. In this chapter we consider our second
non-standard case, which is to construct empirical likelihood confidence region for
the regression coeflicient vector of a linear regression model. We shall see shortly
that due to the presence of the fixed design points, the observed random variables

are independent but not identically distributed. So it is not the standard i.i.d case

any more.

Let us consider a linear regression model of the form
Yi =28 + ¢, 1<i<n, (3.1.1)

where § is a p X 1 vector of unknown parameters and z; is a 1 X p vector of the
t’th fixed design point, for which scalar Y; is the response. We allow the ¢;’s to be
heteroscedastic, that is, the ¢;’s are independent random variables with mean zero

and variances o? (z;). The data are observed in the form {(z;,Yi)|1 <i<n}.

A classical problem for linear regression model is that of how to construct con-
fidence regions for # when the distribution functions of ¢;’s are unknown. In these
nonparametric settings the bootstrap has been used to construct confidence regions
for #. But one drawback of the bootstrap is that it needs some sub jective instruc-

tions on the shapes and orientations of confidence regions. Empirical likelihood
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methods, as an alternative to the bootstrap method for constructing confidence
regions nonparametrically, were introduced by Owen (1988,1990). An important
feature of empirical likelihood is that it uses only the data to determine the shape
and orientation of a confidence region. Furthermore, in certain regular cases as
pointed out in Chapter 1, empirical likelihood confidence regions are Bartlett cor-
rectable, meaning that éimple empirical adjustments for scale can reduce coverage

error from O(n~') to O(n~?).

Empirical likelihood methods were proposed by Owen (1991) for constructing
confidence regions for § in the model (3.1.1). He derived a nonparametric version
of Wilks’ theorem, ensuring that empirical likelihood confidence regions for § have
correct asymptotic coverages. However, there are still two questions to be answered.
They are, “How accurate are the empirical likelihood confidence regions ?7” and “Are

the empirical likelihood confidence regions Bartlett correctable ?”

This chapter aims to answer these two questions. We demonstrate in Section
3.2 that the coverage errors of empirical likelihood confidence regions for § are of
order n~'. In Section 3.3 we show that Bartlett correction may be used to reduce the
order of magnitude of the coverage errors to n~2? . An empirical Bartlett correction
is given, which allows one to practically implement the Bartlett correction. A
’simulation study is presented in Section 3.4. Detailed proofs and calculations of

cumulants are given in Section 3.5 and Appendix 3, respectively.

We close this section with some notation. Let X be an n Xp matrix with z; as the
. . -1
v’th row, let B.s denote the least squares estimator of 8, Brs = (XxTx)" % z;Y;,

and pllt é,‘ = Y; - xiﬂLS'

3.2 Wilks’ Theorem and Coverage Accuracy

As mentioned in Section 3.1, Owen (1991) proved a nonparametric version
of Wilks’ theorem for the empirical log-likelihood ratio of 8, which enables us to

construct confidence regions with correct asymptotic coverages. In this section we
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investigate the second order property of those confidence regions. We first give a
Taylor expansion for empirical log-likelihood ratio, denoted by £(3). Then we set
up an Edgeworth expansion for the distribution function of £(3), which allows us

to evaluate coverage accuracy of empirical likelihood confidence regions.

For the linear regression model (3.1.1) we know that
E (Yi|z;) = 2:8, E(e&)=0, Var(e)=o0?(z;).

Notice that we assume the variance of ¢; is related to the ¢’th fixed design point
z;, which implies heteroscedascity of the model. We define auxilliary variables

z =z (Y; —2;0), for 1 <i < n,and

V,=n""1 Z Cov(z)=n"" Z z] ;0% (2;),

1=1 i=1

and let v;, and v,, denote the largest and smallest eigenvalues of V,, respectively.

The problem of testing whether or not 8 is the true parameter is equivalent
to testing whether E{z;} = 0, for 1 < i < n. Let p;,---,p, be nonnegative
numbers summing to unity. Then the empirical log-likelihood ratio, evaluated at
true parameter value 3, is defined by

£(B) = —2zmin Z log (np;) .

pizi=0

Using the Lagrange multiplier method, the optimal value for p; may be shown to
be given by
1 1

= ———— 1<i<n,.
P nl4 ATz =t=n

This gives
£(B) =22 log (1+A72),

where A is a p X 1 vector satisfying
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L
In terms of studentized variables w; = V, ?2;, for 1 <1 < n, we have

£(B)=22 log(1+ \Tw,), (3.2.1)
where )\ satisfies

-1 Wy
—_ = 0. 3.2.2
nty o (3.2.2)

Since analytic solution of equations (3.2.1) and (3.2.2) can rarely be achieved,
we have to derive an asymptotic expansion for £(8). To this end, we assume the

following regularity condition.

There exist positive constants C; and C5 such that uniformly in n,

n
C1 < vpn <01, < Cy; and 072 Z E||z||* — 0, where || || denotes (3.2.3)

i=1

the Euclidean norm.

Under condition (3.2.3), Owen (1991) showed that the A appearing in (3.2.2) satisfies
A= 0,(n" 7).

We define
i -1 Z E (,wgl _”,wgk) ,

Aj""j" =n-1 E (wf‘ . .w;‘ik _-d-jl...jk ,
where wf is the j’th component of w;. In particular, @ = 0, @ ¥ = §7%, §7 % is the
Kronecker delta. Notice that the @/*"/* is a generalization of a1 7* defined in

(1.2.9) for our current independent but not identically distributed case.

Notice that £(8), given by (3.2.1) and (3.2.2), is similar to the empirical log-
likelihood ratio for means in the independent and identically distributed case. The
only difference is that {@;}?zl are independent but not identically distributed ran-
dom variables due to the presence of the fixed design points. However, by modifying

the expansion (1.2.13) we may obtain the following expansion for £(4) ,
nTH(B) =ATAT — ATPATAR + 2 RTATAR AT + ATTARI AT AK
+ %AjklAjAkAl —2EjkmA1mAjAkAl _l_a—jknalmnAjAkAlAm

—Lgikim AT AR ATA™ 4 0, (n" 7). (3.2.4)
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Based on expansion (3.2.4), we have
08) = (n¥B7) (a¥R) + 0,(n" %), (3.2.5)

where R = R, + R, + R3 is a p-dimensional vector and R; = O, (n=%2) for I =
1, 2, 3. Comparing terms in (3.2.4) with those in (3.2.5) yields,
R, =4,
Ry= —LAikAF { LGikm gk g™ and
Ry=2AImAkm Ak 4 Lgikm gk gl _ S gikm glm gk gl (3.2.6)
— B gkimpgim gk Al 4 Agiknglmn gm gk gl _ Lgikim gm gk gl

12 9

where Rf is the j’th component of R;. In particular,

R, =n"" Z w; = n'lz Vn—%m? (Y; —z:8).
The leading term in (3.2.5) is
nRTR, = n~Y{ E (Y —2:8) =} v, Z z; (Yi —2:8)}
= (Brs —B)" (X" X) { X2 2T 2i0” (2:) } T (X7 X) (Brs — B)-

It is well-known that, for the heteroscedastic linear regression model (3.1.1),

Var (Brs) = (XTX)—I{ Z :z:i.":z:,»a2 (z;) } (XTX)_1 .

Thus,
¢B)=n"{ 2 (Vi —2:8) s} V7 H{ DD 2l (Vi —iB) } + 0p(n73)
= (,31,3 - :B)T {Var (ﬁLs)}_l (ﬁLs - ,3) + OP(n' §). (3.2.7)

Also,

Brs — B = (XTX)—1 Z ] € = (XTX)_1 nZ,
where Z; = z7 (y; — Bz;). By Cramér-Wold device, we have

Z35 N(0,nm1V,).
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Thus Brs — B converges to N {0, Var (8.s)} in distribution under condition (3.2.3).

Therefore,

(Brs — ﬁ)T Var™! (Brs) (Brs — B) b X:, as n — 0.
where —¢ denotes converging in distribution. Hence we obtain
P{e(B) <c}=P(x2<e)+o(1) as n — 00, (3.2.8)
which is a nonparametric version of Wilks’ Theorem, first proved by Owen (1991).

From (3.2.7) we see that £(8) implicitly uses the true variance of 8.5 to con-
struct confidence regions for 8. This is an advantage of empirical likelihood over
other resampling techniques, such as the jackknife and the bootstrap, which depend
on explicit estimates of Var (8) and consequently pose problems resulting from the
quality of these estimators. This point was noted by Wu (1986). Empirical likeli-
hood can avoid this problem, reflecting the feature “let the data themselves decide”.
And also note that the first term on the right of (3.2.7) is different from that given
by Owen (1991), who uses an estimate of Var(8.s). However, the difference has no

first order effect.

Using (3.2.8), a confidence region for 8 with nominal coverage level a can be

constructed as follows. First find from the XZ tables the value ¢, such that
P (xf, < ey) = a.

Then R, = {8 1£(8) < ¢, } is the a-level confidence region for G, and (3.2.8)
ensures that it has correct asymptotic coverage.

Before discussing the coverage accuracy of R,, let us define 7, = (p* + p)/2,
J2 = j1/2 + p(p + 1)(2p + 1)/12, and

U= (A, - AP A oo APP AMLY L. APPP)),

being the p + j; + j»-dimensional vector consisting of all distinct first three order

_L
multivariate central moments of w; = V,, 2 2;’s. Note that there are j; and j, distinct
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second and third order multivariate central moments in U. Let T, = nCov(ﬁ) =

n~ !> Cov(U;) where

T
U; = [:C?Vn_ Te;,(2; ® 2:)BT {2 — E())}, (2; ® z; ®2;)B; {€; — E(ci‘)}] )

L
2

Let S; be the (p — i) X p matrix obtained by removing top i rows of V, *, and V,.*

L
2

be the j-th row of V,,_i. Clearly S, = V,, ? and S,_, = V,.,?. We define j; x p?

and j, X p® matrices B; and B, as follows,

-~ L -1
[ Viieviies. )
1 Vo @V ® S,
[(Vai®s. Vl‘§®vp"3'®; 1
B, =1 . } and B, = n2 n2 2

1’ .
\y-tes L
e VP ®Vi? ®5, 1

\ L iy )
‘/np2 ®Vnp2 ®Sp—1

Then it may be shown that

( I, Ty, I‘w\
T, = \sz | PP an}
I‘Ta Pga L33

where

Ty = Vn_%{n—l > o] (z: @ z:)E(€)} BT,
Ty5 = V,,_%{n'1 E o] (z; @ z; @ z:)E(€;)} B3 ,
Lo = By [0 567 @ 47)(o: @ 2a){B(e) — B} BT,
Ty = By ["—1 Y. (=T ®aT )z @z @) {E(e) — E(G?)E(f?)}] By,
Is3 = B, ["—1 2 (o] ®3] @3] )i ® 2 @2:){E(e]) — EQ(G?)}] B3,
To derive an Edgeworth expansion for the distribution of £(8), we have to use

Theorem 1.3.3. Notice that the first condition of (1.3.5) demands the smallest

eigenvalue of T}, is bounded away from zero.
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We establish an Edgeworth expansion for the distribution of £(3) in the following

theorem.

Theorem 3.2.1: Assume that

(i) there ezist positive constants Cy, C, such that uniformly in n,
Cy S vy Sv1, < Cy; (i) the ||zi)|'s for 1 < i < n are uniformly

n
bounded; (iii) supn~' Z Ele;|'® < o005 (iv) for every positive T,
n j=1

lim n~' ) / N le;|'® = 0; (v) the characteristic function (3.2.9)

n— oo
- j=1 lejI>Tn2

gn Of €, satisties Cramér’s condition, i.e. for every positive b,

lim sup |gn(2)| < 1; (vi) the smallest eigenvalue of T, is bounded
n ~— 00 ltl)b

away from zero.
Then P{f(B) < ca} = a—acygy(ca)n™t + O(n™7),

where g, is the density of xﬁ distribution, P (x;‘ < ¢y) = a, and

a=pt(lgiimm _lgikmgikm), (3.2.10)

Theorem 3.2.1 states that the coverage error of the empirical likelihood confi-

dence region R, is of order n~!, that is
P{t(B) < ca}=a+0(n™1).

In (iii) of condition (3.2.9) we assume the average 15-th moment of ¢;’s is uniformly
bounded. This is to ensure, together with (ii) of condition (3.2.9), that the average
fifth moment of U;’s is uniformly bounded in order to obtain a uniform error term

3
2

at order of n~ % in the Edgeworth expansion for the distribution of U.

From (3.2.10) and the definitions of @’ ™™ and @’*™, we have
a=p! [-;-n'l o E(e}) (:1:.—V,1‘1:1:,.T)2 —in~? Zi’, {E(e?)E(e’,’)(x,-Vn'lm,)a}} )

This reveals that the coverage error depends on a combination of the following five
factors: (1) the moments of ¢;’s, (2) the nominal coverage level, (3) the configuration

of the fixed design points, (4) the sample size n, and (5) dimension, p.
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3.3. Bartlett Correction

In Section 3.2 we showed that the coverage errors of empirical likelihood confi-
dence regions for 8 are of order n~!. It is well-known that part of the coverage error
is due to the fact that the mean of £(3) does not agree with the mean of x2, that is
E{£(B)} # p. The coverage accuracy of empirical likelihood confidence regkion can
be improved by rescaling £(3) to reduce this disagreement. We demonstrate in this
section that the empirical likelihood confidence region for § is Bartlett correctable.

Thus, a simple empirical correction for scale can reduce the size of coverage error

2

from order n~! to order n~%. For practical implementation of Bartlett correction,

we propose an empirical Bartlett correction.

From expansion (3.2.4) we may obtain an expansion for E{{(8)} as follows,
E{e(8)} = p(1 + an™ ') + O(n™?), (3.3.1)

where a is given by (3.2.10). The Bartlett correctability of empirical likelihood

confidence regions for § is discussed in the following theorem.

Theorem 3.3.1: Assume condition (3.2.9). For any c, > 0,

P{t(B) < ca(l+an )} =a+0(n"?).
where P (xz <e¢y) = a.

However, the Bartlett factor @ is usually unknown in practice, because V,, and
the moments of ¢;’s are unknown. Suppose @ is a root-n consistent estimate of a.
We claims that by slightly modifying condition (3.2.9), Theorem 3.3.1 holds true

when a is replaced by its root-n consistent estimate @. To appreciate this, note that
l+an"'=1+an" ' +0,(n 7).
Using the delta-method, we may show that

P{{(B) < cq (1+ dn'l)} = P{£(B) < cq 1+ an—l)}+ O(n"%)

EX

=a+ 0(n”2). (3.3.2)
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To be more rigorous, by slightly modifying condition (3.2.9) we may develop an
Edgeworth expansion directly to £(8) — ¢, @n~', under a smooth function of mean
model although the analysis is far more tedious. By an argument based on the
oddness and evenness of polynomials in the Edgeworth expansion, the O(n‘%)

term in (3.3.2) is actually O(n~2).

In the rest of this section we give a root-n consistent estimate of a. From

(3.2.10) we know that the Bartlett correction is given by

—1(l=—jimm l—jkm—jikm
a=pt(igiimm _lgikmgikm),

where
n
. -1 Y Y
altm = n'lz E (&) an’m?V"k’a:?Vn,,?x?,
i=1
- 2
alimTm = n'lz E(ef) (:c,-Vn"la:?) ,
i=1
-1 ' -1
and V, ;* is the j’th row of V, *. We define

| T .2
Vao=n Zwia:,—e,.,

which is an estimator of covariance matrix V,. Accordingly, we let V7! be the

L
2

inverse matrix of V,, and V, * be the positive definite square root matrix of V1.

Now an estimate of a, @ say, may be defined as follows:

o1 f12aiimm 1-“—1’“"‘—ka)
a=p (;a — 3 , (3.3.3)
where
n 1 1 1
~jkm 4 B~ 7 TV~ 5. T~ 35.T
o =n &V, 2V, 2z Vam g
i=1
and :
) n
~jimm -1 5 -1_T\2
=n Z € (SB,V" xt )
i=1
~ajkm ~jjmm . . -1
We can see that @ and « are established by replacing €;, V, ;* in @’ km
. AL AL
and @??™™ with their corresponding estimates & and V_ .2, where V_ .2 denotes

nj * nj

the j'th row of V, 2.

W=
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We wish to prove that @ is a root-n consistent estimate of a. To this end we

assume that
there exist positive constants C;, C, such that uniformly in n,
Ci < vpn <1, < C5; and there exist constants ¢;,¢; > 0 such that (3.3.4)

g1 <inf||z;]| < sup ||z:]| < g2; and supa~! ) E(&f) < +oo.
n

Theorem 3.3.2: Assume condition (3.3.4). Then,
i =a+ O,,(n'é).

The proof of Theorem 3.3.2 is deferred to Section 3.5.

After some simplification we may show that the empirical Bartlett factor @ has

the following explicit form:
~ PN ~ -1 n-2 23 5
a=7p [—n E é; (a:,-V,, T ) - z {88,V '1y)® }]

In some special cases, @ has a simpler form, as we now indicate.

(1) If €y, ,€, are i.i.d, which implies that model (3.1.1) is a homoscedastic

regression model, then
. _ -1 1 o -1
=50t D (70T Y Gt S e (07 ),

where g =n~' 27 & for k=3,4,6*=n"127_ &

tlt

(2) If €1,---,€, are i.i.d and have a symmetric distribution then the model

implies E(€}) = 0, and we may take
1 -
&:p'ln5ﬂ4€&“42{x,~ (XTX) 1(173‘}2.

Our simulation results in the next section show that & is a reliable estimator of a.
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3.4. Simulation Study

In this section we use Monte Carlo simulation to examine the coverages of
the empirical likelihood confidence regions proposed in previous sections. Under

consideration is the following simple linear regression model:
Yi=142z]+¢, t=1,---,n.

The data set z? for 1 < i < 150 is displayed in Table 3.1. For sample size
n < 150, we use the first n 2! as the fixed design points. Four error patterns
were considered. They are two homoscedastic error patterns ¢; = N(0,1) and
€; = £(1.00) — 1.00, and two heteroscedastic error patterns ¢; = (1/2z7)/? N(0,1)
and ¢ = (1/229)*% {£(1.00) — 1.00}, where N(0,1) and £(1.00) are random vari-
ables with standard normal distribution and exponential distribution with unit
mean, respectively. For each of these four error patterns we chose sample sizes
n = 30,50,100,150, and nominal coverage levels @ = 0.90,0.95. The normal and

exponential random variables were generated by the routines of Press et al. (1989).

We give in Table 3.2 the coverages of the uncorrected confidence regions and
two corrected confidence regions based on 20,000 simulations. One of the corrected
confidence regions uses the theoretical Bartlett correction a, another uses the empir-
ical Bartlett correction @. Since we know the error pattern, sample size and nominal
coverage level a, we can calculate the theoretical coverages up to second order by
using Edgeworth expansion in Theorem 3.2.1. Because the theoretical coverages
can be computed without simulation, we call these “predicted coverages”. We com-
pare the “predicted coverages” with the uncorrected coverages in order to see if
the theoretical results are consistent with the empirical outputs. Also, standard
errors are given for each simulated coverage and these serve as one of the criteria

for comparing accuracies among different kinds of simulated coverages.

The following conclusions may be drawn from the results shown in Table 3.2:

1) The simulated uncorrected coverages converge to the “predicted coverages”
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as n increases. This empirically justifies the Edgeworth expansion developed in

Theorem 3.2.1.

2) Standard errors and absolute coverage errors both show that the Bartlett

corrected confidence regions have more accurate coverage than corresponding un-

corrected ones.

3) The empirically corrected confidence regions perform similarly to their the-
oretically corrected counterparts, except for the cases of skewed error patterns with
sample sizes n=30 and 50. It seems that we need a larger sample size to ensure a

as a good estimator of @ when the errors are skewed,

Comparing Table 3.2(a) with Table 3.2(b), we observe that skewness in the
error patterns reduces the overall coverages. However this has little surprise for
us since it has been foreseen by their corresponding “predicted coverages”. In the
examples considered we see some reduction in coverages caused by heterscedasticity
when 7 is small. Nevertheless there is no clear evidence to say generally that
heterscedasticity reduces coverage accuracy when sample size is large. Our theory
shows that real coverage depends on the configuration of the fixed design points
and the moments of the residuals when sample size, nominal coverage level and

dimensionality are all fixed.



TABLE 3.1: The data set z) for 1 <i < 150.
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1.00
1.40
1.50
1.70
2.00
2.30
2.50
2.67
3.00
3.30
3.46
3.50
4.00

- 4.40

4.50
4.90
5.00
5.20
5.50
6.00
6.30
6.70
6.85
7.00
7.15
7.30
7.70
8.00
8.20
8.50

31
32
33
34
35
36
37
38
39
40

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

41

8.90
9.30
9.70
9.90
10.00
10.30
10.40
10.55
10.70
11.00
11.23
11.47
11.66
11.89
12.09
12.21
12.43
12.64
12.91
13.00
13.23
13.44
13.51
13.66
13.79
13.81
13.81
14.04
14.19
14.34

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90

14.89
15.01
15.67
15.71
15.85
15.97
16.29
16.38
16.71
17.00
17.20
17.35
17.62
18.00
18.50
18.50
19.00
19.33
19.42
19.78
19.98
20.02
20.51
21.00
21.31
21.79
22.69
22.81
23.00
23.40
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92
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95

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

23.80
24.10
24.20
24.70
24.98
25.30
26.00
27.00
29.00
29.50
29.90
30.10
30.60
31.00
31.20
31.70
32.10
32.30
32.80
33.20
33.40
33.90
34.30
34.50
35.00
35.40
35.60
36.10
36.50
36.70

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

37.20
37.60
37.80
38.30
38.70
38.90
39.40
39.80
40.00
40.50
40.90
41.10
41.60
42.00
42.20
42.70
43.10
43.30
43.80
44.20
44.40
44.90
45.30
45.50
46.00
46.40
46.60
47.10
47.50
47.70
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TABLE 3.2: Estimated true coverages, from 20,000 simulations, of a-level

empirical likelihood confidence regions for 3.

“Ka?

Rows headed “predic.”, “uncorr.”,
a” and “a” give the predicted, uncorrected and Bartlett-corrected coverages re-

spectively. The figures in parentheses are 102 times the standard errors associated
with the coverage probabilities.

(a) Normal error patterns

€ N(0,1) (£22)3 N(0,1)
o
0.90 0.95 0.90 0.95
n
30 predic. 0.872 0.931 0.868 0.930
uncorr. | 0.839 (0.26) 0.904 (0.21) | 0.833 (0.26)  0.897 (0.21)
a 0.870 (0.24)  0.924 (0.19) | 0.867 (0.24)  0.921 (0.19)
a 0.867 (0.24)  0.922 (0.19) | 0.858 (0.25) 0.915 (0.20)
50 predic. 0.884 0.939 0.884 0.939
uncorr. | 0.872 (0.24)  0.928 (0.18) | 0.869 (0.24)  0.927 (0.18)
a 0.888 (0.22)  0.939 (0.17) | 0.886 (0.22)  0.940 (0.17)
a 0.887 (0.22)  0.939 (0.17) | 0.883 (0.23) 0.938 (0.17)
100  predic. 0.891 0.944 0.889 0.943
uncorr. | 0.890 (0.22) 0.942 (0.17) | 0.888 (0.22)  0.941 (0.17)
a 0.899 (0.21) 0.948 (0.16) | 0.899 (0.21) 0.948 (0.16)
a 0.899 (0.21)  0.948 (0.16) | 0.897 (0.21)  0.947 (0.16)
150  predic. 0.894 0.946 0.894 0.946
uncorr. | 0.894 (0.22) 0.946 (0.16) | 0.893 (0.22) 0.948 (0.16)
a 0.900 (0.21)  0.949 (0.15) | 0.898 (0.21) 0.951 (0.15)
a 0.900 (0.21)  0.949 (0.15) | 0.898 (0.21)  0.951 (0.15)




(b) Exponential error patterns

81

€ £(1.00) — 1.00 (L22)5 {£(1.00) —1.00}
a
0.90 0.95 0.90 0.95

o ‘

30 predic. 0.835 0.908 0.829 0.904
uncorr. | 0.800 (0.28)  0.864 (0.24) | 0.788 (0.29)  0.854 (0.25)
a 0.863 (0.24)  0.914 (0.20) | 0.847 (0.25)  0.906 (0.21)
a 0.838 (0.26)  0.895 (0.22) | 0.812 (0.28) 0.874 (0.23)

50 predic. 0.863 0.926 0.863 0.926
uncorr. | 0.837 (0.26)  0.900 (0.21) | 0.836 (0.26) 0.898 (0.21)
a 0.872 (0.24)  0.927 (0.18) | 0.872 (0.24)  0.924 (0.18)
a 0.860 (0.25)  0.919 (0.19) | 0.853 (0.25)  0.910 (0.20)

100  predic. 0.880 0.937 0.876 0.934
uncorr. | 0.871(0.24) 0.926 (0.18) | 0.869 (0.24) 0.924 (0.18)
a 0.893 (0.22)  0.942 (0.17) | 0.892 (0.22)  0.942 (0.17)
i 0.888 (0.22)  0.938 (0.17) | 0.880 (0.22)  0.932 (0.17)

150  predic. 0.888 0.942 0.886 0.941
uncorr. | 0.884 (0.23)  0.939 (0.17) | 0.884 (0.23)  0.934 (0.17)
a 0.896 (0.22)  0.947 (0.16) | 0.897 (0.22)  0.945 (0.16)
a 0.895 (0.22)  0.946 (0.16) | 0.895 (0.22)  0.944 (0.16)
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3.5 Proofs

In this section we display proofs Theorems 3.2.1, 3.3.1 and 3.3.2.

3.5.1 Proof of Theorem 3.2.1

Theorem 3.2.1: Assume that

(i) there ezist positive constants Cy, C, such that uniformly in n,
Ci1 S vpn S w1, < Cy; (11) ||2i]|'s for 1 < i < n are uniformly bounded;

n
(iii) supn™' Y Ele;|'® < o0; (iv) for every positive T,
n
j=1
(3.2.9)

n
lim n”'), . l€;]1'® = 0; (v) the characteristic function

n— 0o j=1 lej|>Tn3

gn of €, satisties Cramér’s condition, i.e. for every positive b,

lim sup |g.(2)| < 1.

T > b
Then P{l(ﬂ) < Ca} =Qa—ac, g,,,(co,)n‘1 + O(n'%),

where g, is the density of the x2 distribution, P (xﬁ < ¢cq) = a, and

— p-l(Lyijmm _ l—jkm—=—jkm
a=p (;a“ —za’ "’ ).

Proof: To prove the theorem we first derive an Edgeworth expansion for the dis-
tribution of n7 R. By the expansion R = R; + R, + R3 and expressions for R,
l =1,2,3, calculations deferred to Appendix 3 show that the cumulants k;, ks, --

of n3 R have the following forms:

kq :n';',u+ 0O (n'%) ,
ky=L+n"'A+0(n"?), (3.5.1)

k=0(n"%) >3,

where I, is the p X p identity matrix, u = (ut,---,u?)T, A = (A,-j)pxp and

i . . 1 —iime—
Aij — _;_atjmm _%aakmajkm _ﬁa;;;mamkk.
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Let B be a class of Borel sets satisfying

sup / d(v)dv =0(e¢), €0, (3.5.2)

BeB " (9B)*
where B and (0B)¢ are the boundary of B and e-neighborhood of @B respectively.

A formal Edgeworth expansion for the distribution function of n3 R is given as

follows R

sup |P(n%R € B) —/ m(v)p(v)dv| = O(n~ ), (3.5.3)

BeB B

where
() =1+n" 7570+ L=t {oT (up” + A) v—tr (pp” + A)},

¢(v) is the density function of the standard p-dimensional normal distribution, and

tr is the trace operation for square matrices.

Accepting that the Edgeworth expansion (3.5.3) may be justified, we shall

develop an Edgeworth expansion for the distribution of ¢(8). Put
H = (hy), , = ouT + A
From (3.2.5) and by the symmetry of ¢(v) we have

P{e(B) < ca} =P{(n*R)" (n*R) < ca} + O(n™ %)

= [ r@d) + 0}

loli<el
=P(x2 < ca) + 207! f" " AT hu(0? = 1)+ T, hijvivs Y o(v)dv
v|[<ec2
+0(n™ %)
14
=a— p—l Z hii Ca gp(ca)n_l + O(TL_ ;)- (354)

i=1

After some simple algebra we may show that

P
-1 _ ~1(1—=—jjmm l—jkm-—jkm
P Y hi=p (Laii ~igikmgitm),

i=1

Thus from (3.5.4) we obtain

P{t(B) < ca} = a—acq gy(ca)n™ ! + O(n™ 7).
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It remains to check that the formal expansion (3.5.3) is valid. Since

U = (A, AP AN AP AN qren)T =Y T

T
Ui = [m?V,.' e, (2 @2i)BY {€ — E(e])}, (2: ® 2 ®2:)B] {6 — E(f?)}] ;

we see that U is the mean of independent but not identically distributed random
vectors due to the presence of the fixed design points. However, from Theorem
1.3.3 an Edgeworth expansion for this case may be established. It may be shown
that conditions in (3.2.9) implies the conditions of Theorem 1.3.3. In particular,
(ii) and (iii) of condition (3.2.9) implies that n=* 327_, E(||U;])° is bounded away
from infinity. Thus, we may establish the following Edgeworth expansion for the
distribution of U under condition (3.2.9), |

;121; |P(U € B) — /B Ens(u)du| = O(n™ ?), (3.5.5)

for every class B of Borel sets satisfying (3.5.2). In (3.5.5),

€ns(u) = Z P.(—¢: {Xfo })(u)’

r=0

{xvn},1 < v <5, are the first five cumulants of U, P,(—¢ : {x,n })(%) is the density
of the finite signed measure with characteristic function P, (it-: {x,n })exp(—+171),
and P, is the Edgeworth-Cramér polynomial. From the expression for R we see
that there exists a smooth function f, such that nTR = fa (ﬁ) Hence, using
Theorem 1.3.4 we may show in our case that the Edgeworth expansion (3.5.5)
may be transformed by sufficiently smooth function f,, to yield a valid Edgeworth

expansion (3.5.3) under condition (3.2.9). o
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3.5.2 Proof of Theorem 3.3.1

Theorem 3.3.1.: Assume condition (3.2.9). For any c, > 0,
P{{(B)<ce(1+an"t)}=a+0(n?).

where P (xz <ey) = a.

Proof: According to Theorem 3.2.1, under conditions in (3.2.9),

P{L(B) < ca (1+ an_l)} =P{x: <e, (14 an'l)} —acq gp{ca (1+ an'l)}n'1

+0(n" 7). (3.5.6)
Note that g,(v) is the density of the x;‘; distribution,
P{x2 < cq (1+an 1)} = P(X;‘: <)t acq gp(ca)n ™t +0(n?), (3.5.7)

and that

gp{ca 1+ an 1)} = gp(ce) + 0O(n™1). (3.5.8)

Substituting (3.5.7) and (3.5.8) into (3.5.6) gives
P{t(B) < ca(l4+an"1)} = P(x2 < ca)+ O(n™ 7). (3.5.9)

Moreover, by an argument based on the oddness and evenness of polynomials in
the Edgeworth expansion (see for example Barndorff - Nielsen and Hall 1988), the

O(n~%) term in (3.5.9) is actually O(n~2). a

3.5.3 Proof of Theorem 3.3.2

Theorem 3.3.2: Assume condition (3.3.4). Then,

i=a+ Op(n_i').

In views of (3.3.3), we see that Theorem 3.3.2 is an immediate result of the following

Lemma 3.5.1
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Lemma 3.5.1: Assume condition (3.3.4). Then,

2jkm

'57jjmm=a'jjmm+0p(n_;*) and « =6j’°'"+0,,(n"%).

To prove Lemma 3.5.1 we need the following Lemmas 3.5.2 and 3.5.3.
Lemma 3.5.2: Assume (3.3.4). Then there ezist positive constants q3 and q4 such
that, uniformly for any 1,5, 1 <1, 7 < mn,

(1) |Vn-j;"’ﬂ < gs.

(i) (7 XTX) 7" 2T || < ga.

Proof: (i) Since V,, is positive definite, it has the following orthogonal decomposi-

tion:
p
Vo = Z vlnClCIT’
=1

where vy, 2 -+ > v,, and (;,---,(, are eigenvalues and corresponding orthogonal

unity eigenvectors of V,,. This yields

L _L
Va? = Z ”IHZCICIT'
Hence,
1 1 .
-3 _ =50 T
V.;," = 2 .66 -
Condition (3.3.4) ensures that there exist C;,C; > 0 such that C; < vpp, < v1, <

C5. uniformly in n. Thus, uniformly for any 1 <14,5 < n,
T ,
Vi el 1= 13 on o
< C 7 lall
_1
S Cl 2 qs.

The first part of the lemma is proved by choosing g5 = C, ?¢s.
(ii) Since

1
nTIXTX = —Z el x;
n
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then

1
tr(n 'XTX) = —Z m,x?
n
By (3.3.4) we know that ¢; < |z;2T| < g for 1 <i < n. Thus,
@ < tr(n”'XTX) < go.

This means that all eigenvalues of n~' X7 X are bounded between ¢; and ¢,. Hence
the eigenvalues of (n‘lXTX)_1 are bounded between ¢; ' and q{'l. Suppose

ay,---,0p and &,---,€, are the eigenvalues and corresponding unit orthogonal

eigenvectors of (n‘lXTX)_l, that is
(n-IXTX)—l = Z o &6l
where ¢; ' < @; < ¢! and ||&] =1 for 1 <i < n. Thus,
I X" X) " 2T || = |22 ;€8T aill S pai g

The second part of the lemma is proved by allowing ¢4 = pg; '¢s.

Lemma 3.5.3: Assume condition (3.3.4). Then
Vo = Vo 4 0,(n" 7).
Proof: Put §, = n~' X Z;ZT. Our first step is to prove
Sp = Vo4 0,(n" 7). (3.5.10)
Let V,.(lk) and S,(,Ik) denote the I’th row, k’th column elements of p X p matrices V,
and S, respectively. For any 1 <, k < p, using Chebyshev’s inequality,
P(n%|S{Y = VIR > M) = P[n¥| 3 {2{2} - E(2]2})} > M)
<M EBYo{zl2f - E(zlzh))
= M7 *n™' Y] E{2{z} - B(2{z})Y
- - 2
=M *n" ') {E(2!2F)" - E*(2]z})}

<M *n"Y) ] E|Z*
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Notice that condition (3.3.4) implies that n=* >_ E||Z;||* is uniformly bounded from

1
2

above. Thus for any € > 0, we may choose M, = (e"'n~' Y E||Z;||*) * such that

P(n7|S( —vI®| > M) < e

So we have

SIB = VIR 4 0,(n™F).
Thus, (3.5.10) holds.

It can be shown that for each integer k there exist constants Do such that
|&f —€il < Diolzi (Brs —B) [{le:|*™! + |2: (Bos = B) [F'}- (3.5.11)
Using (3.5.11) and the boundness of the ||z;||’s,

P00 = 500 =t T alet (2 - )
< DsollBrs — Blln~" 22 letef |l (le| + llz: || |1Bzs — B
< Dy||Brs — Bl n~! Z le:] + D2||Brs — B, (3.5.12)

where D; and D, are constants only related to the ¢,, g and D,,. Condition

(3.3.4) enables us to use Chebyshev’s law of large number, which implies that
w2 lel = 0,(1).
Since B s is a root-n consistent estimator of 3, we readily obtain from (3.5.12) that
VIR = 800+ 0,(n" %),
This together with (3.5.10) enables us to show that
Vi = VD + 0y (a7 ).

Thus we have proved the lemma.

Now we are able to prove Lemma 3.5.1.



89

Proof of Lemma 3.5.1. We know from Lemma 3.5.2 that there exist positive .

constants g3 and g4 such that for any 1 <4, j < n,
-1 _ 1
V.72 1<, (7' XTX)" 2] || < qa (3.5.13)

Put
-1
_ka —-1 E 6 V 7 T‘r kng‘rn”? T a'nd

—jjmm_-124 -1,7T)?2
o, =n e (2, v '2T)

i=1

For any M > 0, using (3.5.13) and Chebyshev’s inequality,
Pl{nz(@ ™™ —ai™™y > M}

L

—p [n- 3 Z (et — E()}V, 72TV, 2 e Vi aT M]

SM‘Zn'lE[z_:{e — E(e)}V. k’a:TV,,mx ]

<M~ 2¢¢n"1 ) E{S — E()).

From (3.3.4) we know that n=! 3° E{e? — E(€})}? is uniformly bounded from above.

Therefore for any € > 0, there exists a M, > 0 such that for any M > M,
P{ns(@i ™™ —a’i™™y> M} <e
uniformly in n. Thus,
glimm —giimm 4 0,(n" 7). (3.5.14)
In a similar way we can prove that
@t =a@tm 4 0,(n" ). (3.5.15)
To prove Lemma 3.5.1 it is sufficient to show that

~jkm

& "=t 1 0,(nm 7)), (3.5.16)

ajjimm

=7l i™ "™ 4 0,(n" 7). (3.5.17)
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We give only the proof of (3.5.17) here, since (3.5.16) may be handled similarly. By
Lemma 3.5.3,

Vo = Va + 0,(n™ %),
which implies that
Vil=V ' 4 0,(n7%) and V=V +0,(n"7)1<j<p.  (3.5.18)
By Taylor expansion, (3.5.18) and the Schwarz inequality, we have
(2:V,7 2] ) = (Vi el) = 2@V el oV =V el b0, (n5), (3.5.19)
2V, el | = fes Vi PV el < eV |V Pl | < pd. (3.5.20)

Following (3.5.18) and (3.5.20), we may show that there exist positive constants Cj

and C4 such that for 1 <i < n,

le; V.7 2T | < Cs + |AL), (3.5.21)
l(mi‘}n_lx?)z - (m"Vn_lm?‘ )Zl g C4 ”f/n-l - Vn~1” + lA2|a (35'22)
where |A;| = 0,(n~ %) for i = 1,2 and ||A|| = max;; |a; ;| for any matrix A = (a;;).

From the fact that & = (8 — BLs) z; + €;, and using the Binomial Theorem, we

may show that for each integer k there exists a constant D; such that
|€f - €f| < Dy |2i (Bes — B) | { |€ilk-1 + |z: (BLs — B) |k_1}- (3.5.23)

Now from (3.5.21) - (3.5.23),

2 jimm —jjimm
a —a)’

! . 2 . I
=" D [(e =€) (fﬂivn_lst) + et {(z: V2] ) = (2 V] 2] )P Y
| |
1 3 3 3 ") 1.7 2
<D4||Brs — Blln=t D2 ol {l&:® + Nl 11 1Bes — Bl }(xivn— w;) (3.5.24)
+(Callvrt =V + jael) n Y
-1 3 4 4
< (Q2 Dy ||Brs — Blin E le:|> + ¢ C3 D4 ||Brs — B| ) (Cs + |A4])

+(CallVt =V 4+ 180]) nt 3 e
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Since (3.3.4) implies that both n™! X |;|> and n™!' ¥ €/ are uniformly bounded
from above, (3.5.17) can be proved from (3.5.18), (3.5.24) and the fact that 8.5 =

B+ 0,(n%). o
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Appendix 3: Calculations of the Cumulants of n3 R

In this appendix we detail the calculations of cumulants of n3 R as shown in
(3.5.1), which have been used to derive Theorem 3.2.1. Here we generalize the

technique used by DiCiccio, Hall and Romano (1988) for i.i.d. case to independent

but not identically distributed situation.

We first need some basic formulae for calculationg means of moments of inde-

pendent but not identically distributed samples.

Let X;,---,X, be independent but not identically distributed random vari-
ables, and h',h?,- .. be real-valued functions such that E{h/(X;)} =0,j = 1,2,---,
i=1,2,---,n. Let H = h¥(X;)and Ci'= n=' L hi(X;). Then

E(CiC*) =n"" ) E(HIH}),
E(Cickc'y=n") E(H!H}H)),
E(Cic*c'c™)y=n"*) E(H] H})EH] H)[3]+ O(n™?), (3.4.1)

i1

E(Cictcicmcmy=n"" ) E(HL HE)E(H] B H])[10] + O(n”°),

i3

E(cictcicmene®)y=n"" ). E(H] HE)E(H! HP)E(H:HZ)(15]+ O(n”°),
iy 45143
where
E(H] HE)E(H] H)[3] = E(H! H:)E(H] HI)+ E(H! H] )E(H} H]")

+ E(H] HT)E(H] H}),

and a similar rule applies for

E(Hfl Hf)E(H{ HI H})[10] and E(H,."l HY)E(H! HI)E(H} HZ)[15].

We shall use the above formulae very intensively to calculate the joint cumulants
of ni'R, denoted by k;,7 = 1,2,3,....
According to (3.2.6),

R=R, + R; + Rs
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where
R} =A%,
Ry = —LAikpk 4 LGikmghpm,
Ry=3ATmAkm Ak 4 Lgikm gk gl _ Bgikm glm gk gl
— SGEImAIm AR Al Agikngimngm gk Al LGikim gm gk gl

The joint first-order cumulants of R are given by
cum(R?) = E(R}) + E(R}) + E(R)).

From the definition of R;, R, and R3 in (3.2.6), and using the formulae given in
(3.A.1), we see that

E(R}) =0,

E(R}) = —LE(Ai*A*) 4+ Lai*m g (AFA™)
_ _;_n—laj k k + én—la—jkm-a—km
= _lp-lgikk

6 9

E(R)) = 0(n™?).

Thus,
cum(R’) = —-é—n‘lﬁ" kL O(n"2).
Consequently, by putting p/ = —in~'a?** we have
ki =nicum(R) = n"Fp+ O(n~ %). (3.4.2)

According to definition, the joint second-order cumulants of R are defined to be

cum(R’,R*) = E(R’R*) — E(R')E(R")
= E(R|R}) + E(R]R})[2] + E(R]R})[2] + E(R}R})

+ E(RLRE)[2] + E(RLRE) — L@ ™™ %t 4 O(n=?). (3.4.3)
It follows from the formulae in (3.A.1) that

E(R{R}) = E(AA*) =n""5"", (3.4.4)
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E(R,RY)= —1E(A*™ A A™) + L&* ™ E (A7 A™ AY)
= —in-2(gtmm — k) 4 Lp-2gimigkm (3.4.5)
E(R'RY) = 2E(A*™A'm AT A') + LE (AF™147A™A") — B&*™'E (A'" AT A™ A7)
+ (igtmegrle —Lgtmin) E(ATA™ATA™) . (3.4.6)
To compute E(R} R) we use the basic formulae in (3.A.1) again, obtaining that
E(A*™A'™ATAY) = p 2 (@ Fmm —gibp @™ @ mam ) + 0(n7?),
E(A*™'474™A") = 3n~ 2@ ™™ 4 o(n™?),
E(A'mMAA™A™) = 2072 (@™ 4@ "¢ ) + 0(n7?),
E(ATA™A'A™) = o7 2 (67 ™6' + 6716™" + 6776™ ') + O(n™3).

Substituting the above equations back into the expression for E(R‘; R%), we have

E(R';RI;) =n-2 (%ajkmm - %6jm6k16ml _ _?{_%Ejmlakml _ 71_251 kma-mll)
+ 0(n™3). (3.A.7)
Similarly, since
E(AijklAmAl) - n-2 (Ejmmakll_l_ajml-a—kml_l_ajkmm) +O('n,'3),
E(AknAnAmAl) = n—2 (a—knn6ml+aknm61n +Ekn16mn) +O(n'3),
E(AmAIAnAo) — n—2 (6m16no +6mn6la + 6m061n) -I-O(n—3),
then
E(R)Ry) = tE(ATm AR A™ AT) — Lad ™ E (AF™ A" A™ AT)
_ %—km'E (AjnAnAmAl) + %EjmlaknoE (AmAIAnAo)
— n—2 (iajkmm + ;_G-Ejmmakll — %a—jmla-kml _ %&im&kl&ml)
+0(n"3). (3.4.8)
Substituting (3A4) - (3.A.8) into (3.A.3) we derive
j kN _ . =1¢cjk -2 (1l=—jkmm l=—imlil—km i km=—m —imm-——kll
cum(R’,R*) =n""6"" +n (;E’ -3 arm!— Ladkmgn !l 4 LG ak'h
_ ;_Gn—zajm makll + O(n—S)_

ek a1 - . 3
=n"l6E ot (Lgikmm _ Lgimigkml _ Lgikmgnil) 4 O(n?).
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Put A = (A i)pxp Where

Ajkz

Egkmm ;—Jmla—kml_LE]kmam”

N |
w
=3
-

and let I, denote the p X p identity matrix. Thus we derive the second order

cumulant of n5 R to be

k, =1, + n A + O(n'z).
To compute the third-order joint cumulants of R we notice that

cum(R?,R¥ ,R") = E(R R*R*) — E(R?)E(R* R")[3] + 2E(R’)E(R*)E(R")
= E(R] R} R}) + E(R}R; R})[3] — E(R})E(Rf R})[3]
+0(n™?). (3.4.9)
Again it follows from the formulae in (3.A.1) that
E(RIR¥) =n~16/F,
E(RIR*RY)y = n™ 2@ kP,
E(R}))= —itn-t@m™m,
E(RyRYR}) =n"? (i@ mmsth — L7 *?) 4 O(n7?).
Therefore,
E(R,R¥R") = E(R))E(RYR") — LE(R,R*R!) + O(n™?). (3.4.10)
Hence from (3.A.9), we obtain

cum(R’,R* ,R*) = O(n™?).

Consequently we have

ks = O(n” 7).
At last we calculate the joint fourth-order cumulants of ns R. By definition,

cum(R,R* ,R",R™) = E(R’ R* R R™) — E(R’ R*) E(R* R™)[3]
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— E(R’)E(R* R* R™)[4] + 2 E(R’) E(R*) E(R" R™)
—6E(R)E(R*)E(R")E(R™)

= E(R] R} R} RT)+ E(Rj, R} R} RT)[4] + E(R; Bi R} T )[4]
+ E(R} R; R} RT)[6] — E(R RY) E(R} BT)[3]

~ E(R} RY) E(R} RT)12] — E(R; RBY) E(R} BT)[12]

— E(R} R;) E(R} RT)[6] — E(R}) E(R; R} RT)[4]

— E(R}) E(R: R RT)[12] + 2 E(R.) E(R}) E(R! RT)(6]
+0(n™%). (3.4.11)

Put ) -
t1=52’””", t2:65k6hm’

ts:a—jkhamnn+ajkm-d—hnn+(—1-jhm—knn+akhm-—unn

. i N
ty=aramr @ @A

It may be shown that
E(R} R} R RT') — E(R] RY) E(R{ RT)[3] =n"" (t: —t2),
E(R} R* R" RT)[4] — E(R, R¥) E(R! RT)[12] =n™3 (=61, + 215, — 15 + 214),
E(R} R; R} RT)[6] — E(R} R;) E(R} RT)[6] =n™" (31 — t2 + §$ta — $14),

E(Ry R} R{ BT)[4] — B(R; BY) E(R BT )[12] =n7° (241 — 5ta).
Also from (3.A.10),

E(R}){E(R} R} RT)[4] — E(R} R} RT)[12] + 2 E(R;) E(R; RT)[6]} = O(n™").
Hence, substituting the above formulae into (3.A.11), we get

cum(R?,R* ,R" ,R™) = O(n™ "),
which means that
ks = O(n™ 7).

Based on the general results given by James and Mayne (1962), we have for j > 5,
that

k; = O(n—(i—Z)N).
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CHAPTER 4
EMPIRICAL LIKELTHOOD CONFIDENCE INTERVALS

FOR LINEAR REGRESSION COEFFICIENTS

4.1 Introduction

In Chapter 3 we considered constructing confidence region for the linear re-
gression coefficient vector §. We showed that the coverage errors of the empirical
likelihood confidence regions proposed by Owen (1991) are of order n~! and that
they can be reduced to order n~2 by employing Bartlett correction. However, it is
not enough to just construct confidence regions for 3. In practice, statisticians a,r.e
often confronted with problems of constructing conﬁdeﬁce intervals for a particular

regression coefficient or for certain linear combinations of 3.

In this chapter we address the above problem under the simple linear regression

model. A simple linear regression model is
Yi = a, + boz; + €, 1<i<n, (4.1.1)

where all the variables appearing in (4.1.1) are scalars. Among them, z; and y; are
the ’th fixed design point and response respectively, the ¢; ’s are independent and
identically distributed random errors with mean zero and variance o2, and a, and

b, are the unknown intercept and slope parameters respectively.

This chapter has two aims. We first show how to construct empirical likelihood
confidence intervals for the slope parameter b, and means y, = a, + b,z,, for any
fixed z, under model (4.1.1). Obviously the later case includes the intercept param-
eter a, when choosing z, = 0. Then, we study the coverage accuracy and Bartlett

correctability of empirical likelihood confidence intervals for these parameters.
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We introduce some basic notation and formulae in Section 4.2. In Sections 4.3
and 4.4 we propose procedures for constructing confidence intervals for b, and y,,

and show that both empirical likelihood confidence intervals have coverage errors

1

of order n~'. Furthermore, we demonstrate that Bartlett correction can be used

to reduce the coverage error from order n~! to order n~?. A simulation study is
presented in Section 4.5. All the proofs are deferred to Section 4.6. The calculations

of cumulants are presented in Appendix 4.

4.2 Preliminaries

In this section we introduce some notation and basic formulae which will be
used throughout this paper. We denote by &, and b, the least squares estimates of
a, and b, respectively, and use p; for the j’th moment of ¢; for j = 1,2, and 7 and

y for the means of z;’s and y;’s respectively. We define auxilliary variables
zi(a,0) = (1,2)" (s —a —bz;) 1<i<n

where a and b are any candidate values for a, and b, respectively. Specifically we

write z; as 2z;(a,,b,). Furthermore, we put

af:n_lz(m;—'f)z, m,-:n'IZ(z;—E)j, j=3,4
§P=n"tY &, py=nTl)oE, =34,

€=yY—ay —b,T, where ¢& = y; —a — bx;.

Let
_ a1 T )
Va=o0 (E n~!) z?

be the average covariance matrix of auxilliary variables z;’s, let v;, and v, be the

largest and smallest eigenvalues of V,, respectively, and let

I-]n:'-(ui uz)-_-Vn—i_

1
Uy Uy
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be the inverse of the square root matrix of V,,. Define
E
9i1ja-ix (z‘) = H (ujlx + u?lmi)’

=1

Ejlj?mjk = n-l Z ‘E{g.’il.‘iz"'jk (3?;)6?},
Ajlj?"'jk (a,b) — n-—l Z Giviain (xi)(yi —a— b:z:,-)k _ Ejljﬂ‘“jk .
For simplicity of notation, write

Ail,JQ,"';Jk - AJl.J:"',Jk(ao’bo), and Av7dE = AJ!:J?:“')Jk(a,b).

We assume the following regularity conditions.

There exist positive constants C; and C, such that uniformly in n,

n
4.2.1
Ci < vppn <01, < Cy; and n_zz E|z]|* — 0, ( )
i=1
where || || is the Euclidean norm; and for candidate values a and b of a, and b,,
L L
a=a,+0,(n"2) and b=2b,+ Op(n” 2). (4.2.2)

Let £(a,b) be the empirical log-likelihood ratio evaluated at (a,b). Write p;,---,p,

for nonnegative numbers adding to unity. Then, according to the definition of

empirical likelihood,

£(a,b) = -2 min Z log (np;) .

pizi(a,b)=0 i=1

Using the Lagrange multiplier method gives us

£a,b) =2 Y log{1+ A(1,2:)" (y; — a —ba;)},

and A = (A;, Ay) satisfies

Z (1,-’3.')T (yi —a — bz;)

= 0.
L4+ A(1,2:)7 (3 —a — bz;)

Since the analytic solutions for both A and {(a,b) are not obtainable, we have

to resort to expansions. Using (3.2.4) of Chapter 3, under conditions (4.2.1) and
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(4.2.2), we have the following Taylor expansion for £(a,b):

n" e(a, b)= ATAT —ATFATAR ¢ 2EIRTAT AR AT + ATTART AT A
+ ZATRIAT AR AL — 2l Em ATm AT AR A

+(@itra'mn — LEikimyAi AR ATA™ 4 0, (n” 7). (4.2.3)

Here we use the summation convention according to which, if an index occurs more

that once in an expression, summation over that index is understood.

4.3 Empirical Likelihood Confidence Interval for Slope Parameter

In this section we show how to construct empirical likelihood confidence in-
tervals for the slope parameter b,, and analyse the coverage properties of these
confidence intervals. We first prove a nonparametric version of Wilks’ theorem
for the empirical log-likelihood ratio for b, (Theorem 4.3.1). Then we develop an
Edgeworth expansion of the distribution of the empirical log-likelihood ratio for b,

(Theorem 4.3.2), which is used to show that the coverage errors of the confidence

intervals are of order n~!

. Furthermore we demonstrate that the empirical likeli-
hood confidence intervals are Bartlett correctable (Theorem 4.3.3). This means that

simple scale adjustments can reduce the coverage errors from O(n~ ') to O(n~?).

The empirical log-likelihood ratio for b, may be obtained by minimizing ¢(a, b,)
respect to a, which is treated as a nuisance parameter in this section, since we are
interested only in constructing confidence intervals for b,. Let @ be the optimal a

which minimizes £(a,b,). Then
£(b,) = £(a@,b,) = min£(a,b,),

where
€a,b,) =2 log{1+ A(1,2:)T (v: —a —boz;)},

and A = (A, Xy) satisfies

3 (1,2:)" (i —a —boz;) 0
14+ A(1,2)T (yi —a —bozi)
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4.3.1 Wilks’ theorem
We first give an expansion for é. From (4.2.3) and using the notation given in
Section 4.2, we know that
n~ ' (a, b,) =A(a,b,)A% (a,b,) — A7 *(a,b,)A (a,b,)A* (a,b,)

+{2@ Al (a,b,) + A7 *(a,b,)A* (a,b,)} A (a,b,)A* (a,b,)
+ {247 (a,b,) — 2@ E™ 1 A'™ (a,b,)} Ai(a,b,)A*(a,b,)4 (a,b,)
+ @t —Laitim)Ai(a,b,) A% (a,b,)A (a, b, )A™ (a,b,)
+0,(n" %). (4.3.1)

Consider an expansion of

G=a+a;+ a; + as,
where a; = 0,(n"9/?), j = 1,2,3. We will determine a;,a,,as successively. Put
v =n"t Z gi(z:), e =n"! Z gix(z:i),
Ve = 07" D0 gim(ai),

Yika(a,0) = 071 )0 gix(2:)(ys — a — bay),

vik1,2(a,0) = n7* Z giri(2:) (i — a — bz;)?.
Under (4.2.2),

n"'f(a, b,) = A’ (a,b,)4 (a,b,) + 0,(n" ),
= {47 (a,b,) — 7;(a — &) A (4,b,) — 7;(a — &)} + O, (n¥).

Solving for a; requires minimizing v;v;a? — 247(é,b,)y;a,. Hence we have
ay = A(8,5,)7; /7575 - (4.3.2)
By the definition of A7(a,b,) and 7v;, a; has another form,

a; = T (b, —b,). (4.3.3)
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To find a,, note that v, 1 = Op(n~ 7) under (4.2.2),
n~'¢(a, b,) =27;{A*(@,b,) — vra, } {A7* (a,b,) — @’ *(A'(a,b,) — via1)}az
+ 757505 + R1 + Op(n” %),

where R, denotes term of not involving a,. By minimization,
az = —(7v:7:)” i {A%(@,00) — meas AT (a,0,) — &7 F1(4'(a,b,) — ma1)}-

After some algebra we may show that

n‘lf(a, bo) = —2 {Aj(d’b0)7i — 77t }as + Rz + Op(n_%)’

where R, denotes a term not involving az. Thus, (4.3.2) implies that ag will not
appear in the O,(n~?) or larger terms in the expansion of n~4(b,), so we need not

to calculate a3 any more. In summary we have
a=a+z(b—b,)
— (7)1 {A"(@,8,) — vear }A* (a,b,) — @ {4 (a,0,) — mia1)}].
The above formula suggests using d+5(3—bo) as an initial value for a in numerically

searching for @. In the author’s experience, this works well. Now, substituting @

into (4.3.1), the empirical likelihood ratio statistic at b, is given by

n”'4(b,)
={A7(a,b,) — 150 H{A (a,b,) — 101} — ;7505
— {47 (a,5,) = 2751,1 (8,50 )ar + vjeal HA (8,0,) — 7501} {A*(&,b,) — 1 ar}
+ 3@ F {4 (a,b,) — via1 }H{A*(@,b,) — 1x a1 }{A4'(&,b,) — i1}
+ A7 (a,b,)A% (a,b,){A7 (a,b,) — v;a, }{A*(a,b,) — 7r a1} (4.3.4)
+ 2{A*a,b,) — vjr1,2(@,b0)ar — 3T F ™A™ (a,b,)} {47 (a,0,) —vj01}
x {A*(a,b,) — yrar1 }{A'(a,b,) — 1101}
+(@trattt — Lt Fimy {4V (a,0,) — vja1 H{A*(8,0,) — vea1}

x {A"(@,b,) — 7161 H{A™ (8,b,) — Tma1} + 0, (n" 3).
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For ease of analysis we next express £(b,) in terms of powers of (b—b,). Define

nj = 02 u?, where u? is the (j, 2) element in the matrix U,. Notice that
A’ (@,0,) —vja1 = n! Z gi(zi)(yi —@ —ay — b,z;)

= n"l(u},u?)z (zl) (i — & —ay —box;)

s (L k) {@hr - @ anr)
= (uhu?) {—a; +T(d = b,),~Fas + n "' D 2 (b b.)}
= (v},4})(0, 07 ) (b —b,)

= n;(b —b,).

From the definition of U, we know that u? u?} = 1/(020?), so that

{A7(a,b,) —vja:} {47 (a,b,) —vja1} = (b—b,)* 02 /0”.

Moreover,

Yik,1(8,00) = Yk, — Yk (@ — a0),
ar = —(m) yme{Alt — @ F (b - 5,)}(b - b.),
A7*(a,b,) = ATF ~29;5,1(8 — ao) + 75 (2 — a0)’,
A7 (8,0,) = 27j5,1(2,00)ar + Yje0] = ALF = 27501 T+ 11 €
and
A (@,b0) = Yja1,0(8,0,) a1 = A = 37012 (a1 + @ — ao) + Op(n71),
= A% — 34,412 (T —a, — b,7).
Substituting the above formulae into (4.3.4) it may be shown that
P = T =0 — A 6= 0+ EE (b= b)°
+15m (Ve €= v © + AJAL) (b —b,)?
— (1) M Ymmena {ASF AT — 2@ F I AT (B - b,)
+al FEm Py, (b — b,)2 Hb —b,)?
+ Limemi(ATF — 3y~ 2@ EIm Alm (b —b,)?

+ @ kramr - L@y o, (B — 5,)* + Op(n73)  (4.3.5).
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The following nonparametric version of Wilks’ theorem is a direct consequence of

expansion (4.3.5).

Theorem 4.3.1 (Wilks’ theorem) Assume conditions (4.2.1). Then,
P{e(b,) < e} = P(x2 <c)+0(l), as n— oo.

Proof: Since Var(b—b,) = n~'¢?/02, by the Central Limit Theorem, we know

that ni(i) —b,) 0, /0o has asymptotically a standard normal distribution. Thus from

(4.3.5),
no; . 2 -1 2
£(b,) = s (b—bo)" + 0,(n7 %) = x1 + 0,(1).
Hence the theorem is proved. o

From Theorem 4.3.1 an empirical likelihood confidence interval for b, with
nominal coverage level o can be constructed as follows. First find from x? tables
the value ¢, such that P(x? < ¢4) = a. Then I, = {b,|€(b,) < co} is the a-level
confidence interval for b,. Theorem 4.3.1 ensures that I, has correct asymptotic

coverage.

4.3.2 Coverage Accuracy and Bartlett Correction

In this subsection we investigate coverage accuracy of the empirical likelihood
confidence interval I, for the slope parameter b,. To this end, we decompose £(b,)

from (4.3.5) as follows:

£b,)=nR2+0,(n" %), (4.3.6)

where By = Ry; + Ry + Ry, and R,; = Op(n‘j/z) for j = 1,2,3.

Put
Cy=- %Uzajklam"p U I (7j7m + %{052171'77"')

l—jkn—Imn 1l —jklm
+0imemnm (507" @ —3a )-
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Comparing (4.3.5) with (4.3.6) yields
Ry = == (b—b,),
o
Rys= —jo; omm Al (b—b,) + 507t o @ * mymem (b—0,),
Rig= o7  omime (AF € — L9 @ + 24T A) (B —b,) + Cro; o (b —b,)°
— 0t o (20 Ve Yaninm + 507 0720 ) ALE AT (B —b,) (4.3.7)
+ o7t onimem AIF (b —b,)?
ot ot @ e (1570 + ST mine) =@ E ™ mymena ) AT (B - 5,)%
Before we develop an Edgeworth expansion for the distribution of £(b,) we

introduce some notation. From (4.3.7) we see that there exists a smooth function

h such that R, = h(U), where
-l'-]—: (I;_bo,z,A},l,Alz,Azz,Azll,Ailz,Azzz,Az22).

Let

(M wp W=

N——

and

I
<
®
<

2

!
®
<

————

I
[N [N 0= N =

be 3 X 4 and 4 X 8 matrices respectively, where ® is the Kronecker product of

1

matrices and V,;* is the j’th row of V,

L
2

, j = 1,2. From the definition of AJ* and
AI¥' U can be expressed as U = n~'Y U; where U; is a vector of 9 dimensions

having the form

U= |02 - Fese {1 20 @ (1 20} BT {(120) © (1 2 @ (1 2) B] .

Put T, = n=' 2° Cov(U;), being the average covariance matrix of U;, let g; be the

density function of the x? distribution and

2
h=Eom, t=tlml and my=n Y (e —F), for =34
O'UI

656
o%0?
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Then, we have the following theorem whose proof is deferred to Section 4.6.

Theorem 4.3.2: Assume that

(i) there ezist positive constants Cy, Cy such that uniformly in n

Ci S vy, S0y, < Cy; (i) the |z;|'s for 1 < i < n are uniformly boundéd;

(iii) Ele;|*® < 005 (iv) for every positive T, lim / lel*® =0; (4.3.8)
n— 00

ler|>Tn2

(vi) the smallest eigenvalue of T,, is bounded away from zero; (v) the

characteristic function h of €; satisties Cramér condition:

lim sup |A(t)]| < 1.

|t]|— oo

Then,
P{{(b,) < cal=a—(1+ 3t — 2t2)n " cagi(ea) + O(n~%). (4.3.9)

Theorem 4.3.2 states that the empirical likelihood confidence interval I, has

coverage error of order n~1,

By looking at the coefficient of the n~! term in the
Edgeworth expansion of the distribution function of £(b,), we see that the coverage

error is dominated by a combination of four factors: the moments of ¢;, the “mo-

ments” of the fixed design points, the nominal coverage level and the sample size

n.

Based on the expression for Ry;, j = 1,2,3 in (4.3.7), we may show that
E{€(b,)} =n {E(Rs1)> + 2 E(Ry; Ry2) + E(Ry2)* + 2 E(Ryy Rya)} + O(n™?)
=1+ (1+ 3t —3t)n" ' +0(n"2).
We see that the difference between the means of £(b,) and limiting x? distribution

is of order n~!. Next we are going to show that Bartlett correction can reduce the

coverage errors of empirical likelihood confidence intervals to order n~2. Let
py =1+ %tl —§t2

be the Bartlett factor for £(b,). We have the following theorem about the Bartlett

correctability of the confidence interval I,:
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Theorem 4.3.3:Assume condition (4.3.8). Then,

P{e(b,) < ca(1+ pyn™ Y} = a+ 0(n™?).
Define the Bartlett corrected confidence interval

Iop, = {bo If(bO) < ca(l + an.‘l) }

Theorem 4.3.3 maintains that I,,, has coverage error of order n~?

, which is one
order of magnitude more accurate than I,. However, p; is usually unknown because
of unknown o2, p3 and p4 in ¢; and t,, where 02, us and p,4 are the second, third
and fourth moments of ¢;. To empirically employ Bartlett correction, we have to

give a root-n consistent estimate of p,. To this end, put

N ~9

. Ha K3 2

lh = ———my, 1= ———mg,
ool 0°0,

where 6%, i3 and fi4 are the moment estimators of 02, us and p4 respectively, and
m; =n"?! Z(m; —?E)j, for j = 3,4.

We define a root-n consistent estimator of p;, denoted by p;, to be

t,.

pr =1+ f1—

N =
W =

We may show that under moderate conditions, such as that the joint distribution of
components of the £(b,) and p, admits multivariate Edgeworth expansions, or the
distribution of £(b,) — ¢4 p» n~! admits an Edgeworth expansion under a smooth-
function-of-means model, the same order of accuracy holds true if we replace p; by
Py in Theorem 4.3.3. This implies that the empirical Bartlett-corrected confidence

interval

Iop, = {bo [ £(bo) < ca(1+ psn™") }

also has coverage error of order n~%. Our simulation results in Section 4.5 show that
the coverage of I,,, is very close to that of I,,,, and that both are more accurate

than I,.
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4.4 Empirical Likelihood Confidence Interval for Means

In this section we construct empirical likelihood confidence intervals for the
mean value y, = E(y|z = z,) = a, + b,z,, for any fixed z,. Since y, = a, when
z, = 0, we may confine our attention to constructing empirical likelihood confidence
intervals for a general y,. The empirical log-likelihood ratio for y,, denoted by
£(y,), may be obtained by minimizing ¢(a,b) given in (4.2.3), under the constraint
of a + bz, = y,; that is,

£(y,) = £(@,b)= min £(a,b),

atbz,=y,
where
l(a,b) =2 Z log{1 + A (1,2;)" (v —a — ba;},

and A = (A1, Ap) satisfies

(1,2;)7 (y: —a — bz;)
2 1+ A(1,2:)7 (3 —a — bay)

= 0.

4.4.1 Wilks’ theorem

To obtain the limiting distribution of £(y,), we have to find out @ and b. Suppose

@ and b have expansions
&=&+a1+a2+a3 and E=I;+b1+b2+b3,

where a;,b; = O,(n"9/%), j = 1,2,3. Note that we use notation @ and a; again
here, but with different meanings from those in the Section 3. In the following, a;,

b;, j = 1,2,3 are determined successively. Put

B; =n“‘zg,~(we)m.-, Bk =n_lzgjk($i)$i,
:Bjkl =n"! Z gjkl(-’vi)fl?i, ﬂjkz =n"t Z gjk(wi)f”?’
Bika(a,b) = n71 Y gie(z:) (i — a — bay),

Birt2(a,0) = 071 Y giui(zi) (s — @ — bay)?.
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Under (4.2.2),
n~'¢(a, b) = A7 (a,b) A’ (a,b) + O, (n" ),
= {A7(,5) —7;(a — &) — B;(b — b, )H{A(a,8) — 7;(a — @) — B; (b — b,)}
+0,(n"%).
Solving for a; and b; requires minimizing
1575 @3 + B B; b —2 A7 (a,5) (v a1 + B; b1) + 273 B; a1 by,

subject to @ + a; + (13 + b))z, = y,. By the Langrage multiplier method, a; and b,

satisfy
(viB; — BiB; wo) ar + (B; B — 1585 20) by = A7(4,8) (B; —7; =),
(4.4.1)
a; + bl T, = (bo —b)a:,, + (a,, —d).
By the definitions of g;(z;), v; and §;, and from (4.4.1), we obtain
o2 +7T(T—z,) (T —z,)
= —-= w b = W, 4.4.2)
a; Uﬁ-{—(f—.’l)o)z X 1 0'§-|—(5—:B0)2 ’ ( )
where W, = a4+ bz, —y, = (& — a,) + (b — b,) 2,. Clearly W, = OP(n‘i').
From the first equation of (4.4.1) we immediately have
{A7(a,b) = 7; a1 — B; b1} (B; — 71;20) = 0. (4.4.3)

To determine a, and b,, we notice that
n~'¢(a,b) =A’ A’ — A7 *(a,b,) AT AF + %af'“Af AF A"+ 0,(n7?)
=737 @5 + 27;B; az by + B;8; b5 — 2 {A’(a,6) — v; a1 — B; b1} (7; 6z + B; bs)
+2 A% (a,b) {47 (a,0) —vj a1 — B b1} (& @2 + Bi ba)
— 2@ * {47 (a,b) — 75 a1 — B; b1} {A*(a,8) — 1 a1 — B b1 } X

x {4'(@,8) = m1a1 = B b1} + Rs + 0, (n” F),
where Rz denotes a term not involving a; and b;. Using (4.4.1), (4.4.3) and the

Langrage multiplier method to minimize £(a,b) under the constraint of a,+b,z, = 0,
we end up with a; = —by x, where
by ={(Brm — Ym 20) (Bm —¥m )} {A7(8,8) — 7; a1 — B; b1}

X [a—j“{Ak(d,g) — Yk a1 — B bl}(ﬂl —71970) —Ajk(d’a)(ﬂk — Yk mo)]
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It can be shown after some algebra that
€(y0) = {47(a,0) = 7; a1 = B; b1} (7; @ + B; ba) + Ra + 0,(n™ %),

where R, denotes a term not involving a3 and b3. Since a3 + bz 2z, = 0, and in view

of (4.4.3), we have
£(y.) = Ry + Op(n™3).
This means that a3 and b3 will not appear in the expansion of £(y,) up to the order

of O,(n~?), so we need not concern with them any further.

Put t/ = AJ (&,3) — 9j @y — B; by. Substituting @ = @ + a1 + a2 + a3 and

b=>b+ b, + by + by into the formula for n=? f(d,l;), we obtain that

n” (y,) =t ¥ 4+ rai Pt — (B —v;2,) (B —vi2.) b3
~ {A7*(a,b) — 2910 a1 — 28551 b1 + vix a2 + 2Bk a1 by + Bjaa b} 2
+ A% (a,b) A*'(a,0) 7 t* + 2 {A7¥(a,8) — 3vjk12 a1 — 3 Bjrr,z b}t tF
2@t AT @, b)Yt (@t = fad ki) e gt

+0,(n%). (4.4.4)

Define

2 T i .
a‘(z,) = and ¢ = u;; + uj2, j=1,2.

Then we have

t = a’(z,)W2 ¢ and ¥t =a’(z,)0” W2

Since a + a; —a, = -—(I;+ b, —b,)z, we have
Ajk(d,i’) —29ik1al — 2B 1 by + vjk a2 + 2Bk a1 by + Bjra b3
=ATF —2(Bik1 — Vi1 To) (b + by — bo) + (Bixz — 2 Bjr To + Yik w2) (b + by —b,)%.

From the expressions for b, and the fact that (8; —7; z,) (8; —7; z.) = 02 0”2 2™ (z,),

by =a7% a” a*(z, ) {TH (2, ) W2 E & (B —vi2,) — W, AT* ¢ (By — i 2.)}.
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Moreover,
AT (@,0) =3 5012 01 =3 Bjrrn by = AT =307 (Bjki —Vjr1 ©0) (B+ b1 —bo)+ 0, (n7 ).
Substituting the above formulae into (4.4.4), we obtain

n~ €(y,)

=a?(2,) 0 W —a'(,) & € A W) + Saf ()T F LT W)
—o;20?a®(z,){a " a®(2,)E € (B —112) W2 — & (Be — i z,) ALY w,}’
+20%(2,) & € (Bix, — Vi1 o) (b1 + b —b,) W
—a*(z,) & € {(Bja — 2850 @0 + 7jx 23) (b1 + 5 —b,)> — AT AN} W)
+a®(z,) € €8 € {§A£H — 2Bkt — Yk 0% 2,) (by +b—b,) —2&IE™ Alm} W3
—20a%(z,) ¢ £ ¢ W2 + o(z,) (@ F"E' ™" — %a“’”‘)gi greem wi
+0,(n"%). (4.4.5)

The following nonparametric version of Wilks’ theorem is a direct conclusion of

(4.4.5).

Theorem 4.4.1 (Wilks’ theorem) Assume conditions (4.2.1) and (4.2.2). Then,
P{l(y,) <c}=P(xi <c)+o(l) n— oco.

Proof: From (4.4.5) we know that

02

- _1 - p _1
Ly,) = na(z,)? e W2 +0,(n"?)= no 2012:_1_(5_%)2 Wi+ 0,(n~ 7).

Thus the theorem is proved by the fact that W, is asymptotically Normal with

mean zero and variance n~'o?0;? {02 + (T — 7,)?)}. o

Now an empirical likelihood confidence interval for y, with asymptotic coverage
level a can be constructed as J, = {y,[€(y,) < co} where P(x? < ¢,) = e.

Theorem 4.4.1 assures that J, has correct asympototic coverage.
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4.4.2 Coverage Accuracy and Bartlett correction

In this subsection we shall investigate the second-order properties of J,, that
is the coverage accuracy and Bartlett correctability of J,. We start with a signed

root decomposition of £(y,), which can be obtained from (4.4.5) as follows:
U(y) = n By, + O0p(n™ %),

where R,, = Ry,1 + Ry,» + R,,3, and R,,; = O,(n"9/2) for j = 1,2,3. A little

algebra shows that
Ry, = Oz(.'z:(,)a‘1 Ww,,
Ry2= o®(z,)o & " {2 A* W, + La¥(z,)a’ M € W2},
Ry, Rys = o*(2,) & & (Biks — ik %0) (b + b — b)) W2 + Co W)
— 2a'(2,) & € (Bixa — 2Bjx 3o + Yk ©2) (by + b —b,)2 W
—5a%(2,) 0 E E™ 072 (B — 1120) (Bn — Tn 7o) AT AT W
—sa’(z,)or gl EmEr e AT AP W
+o*(z,) 0 {o;za"“e" € €™ (B — 7120) (Bn — 7n o)
+eatlgeh e em e —am(a,)o @i gl g E"} AT W
+5at(zo)E XA AN W+ Lab(a,) € R AP WY
—a®(z,) 0" & € & (Birr,z — Vinr,2 o) (by + b — bo)Wf,
where
Co=—5az,)o? o {@i* € ¢* (B —m ﬂvo)}k2 —fgat(z,) o {ai i gk ')
+ai(z) (zaltrEimt - pa iyl g gt

Put

8y = 014(:1;0)0'4 taq1, 8o = as(:l:o)a'6 ,ug q;‘,’ and 83 = a4(mo)q3,

where

(T —z,)? . (T -=z,) ma 4 (T —z,)*

3
2
017

g1 =1+6

my,
6 8
Oy o
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(F -2, (F—z.)°

gs = 1+3 e prs ms and
@ —2,)"  (F—-2.) (Z —2,)° {('97—%)3 (f—fvo)}
gy = 13— w2 e — T [ s
z z z T z

The coverage accuracy of confidence interval J, is discussed in the following theo-

rem, whose proof is deferred to Section 4.6.

Theorem 4.4.2: Assume condition (4.3.8). Then,
P{{(yo)< ca}=a— (;-31 - -:1;32 +383)n ey gi(ca) +O(n~ %) (4.4.6)

Theorem 4.4.2 states that the coverage errors of empirical likelihood confidence
intervals for y, = a 4+ bz, are of order of n™!, provided that z, is fixed and inde-
pendent of sample size n. From the n~' order term in (4.4.6) and the definitions
of s;, s, and s3, we see that the coverage error is dominated by the combination
of the following five factors: the moments of ¢;, the “moments” of the fixed design
points, the nominal coverage level, the sample size n, and the size of (T — z,)/0,

—i.e. the standard distance between z, and the centre, 7, of the design points.

In analogy with the Bartlett correction for the slope parameter b, developed

in Theorem 4.3.3, we can do the same thing here for y,. Calculations reveal that

E{l(y,)} = n{E(R,,)’}+0(n"?) =14 (81— 552+ 83)n" ' + O(n"?).
Define
Py, = (‘;‘31 - %32 + s3),

an ingredient of the Bartlett correction for £(y,). The Bartlett correction property
for the empirical likelihood confidence interval for y, is considered by the following

theorem:

Theorem 4.4.3: Assume conditions (4.3.8). For any z > 0 and fized z,,

P{U(y.) < ca (L4 py, ™"} = a+ O(n™?).
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We shall not give the proof of Theorem 4.4.3 since it is almost the same as
that of Theorem 4.3.3. Theorem 4.4.3 states that a simple scale adjustment can
improve the coverage accuracy of empirical likelihood confidence intervals for y,

from O(n~ ') to O(n~?). Define the Bartlett corrected confidence interval

Jap,,o = {yo |£(yo) < Ca (1 + Py, n—'l)}'

Theorem 4.4.3 ensures that
P(yo € Jap,,o) =a+ O(n_z)'

However, p,_ is usually unknown because o, u3 and p4 are unknown. A root-n
consistent estimate j,, of p,, can be obtained by replacing o, us and ps by 62, fis

and ji4 repectively in s; and s;. Hence,
Py. = (581 — 582+ s3)
where
3 =a*(2,)6 7 flaqy 8y =0a%(z,)67°% plql.
Put
Jap,, = { %o 1€(y0) < €a (1 4 By, n—l)}-
It may be shown that under moderate conditions, which ensure that £(y,)—cq py, n™*

admits an Edgeworth expansion under a smooth-function-of-means model, we may

get same order of accuracy by replacing p, with p, in Theorem 4.4.3. Therefore,

we have

P(yo € Jap,,) = @+ O(n"?).

Our simulation results in the next section confirm this.

4.5 Simulation Study

This section describes simulation experiments carried out to examine the cover-

age properties of the empirical likelihood confidence intervals for b, and y, proposed



115

in the previous sections. The following simple linear regression model was treated:
vi=1l+zi+¢, t=1,---,n.

The data set z; is the one which displayed in Table 3.1 of Chapter 3. We chose
sample sizes n = 15,30,50 and nominal coverage level a = 0.90,0.95. We assigned
two error patterns for ¢;. One was ¢, = N(0,1), another was ¢ = E(1.00) —
1.00, where N(0,1) and E(1.00) were random variables with the standard normal
distribution and the exponential distribution with unit mean, respectively. The

normal and exponential random variables were generated by the routines of Press v

et al.(1989).

For each combination of n, a and ¢; we display in Table 4.1 the coverages of
the uncorrected confidence intervals and two Bartlett corrected confidence inter-
vals based on 10,000 simulations. One of the corrected confidence intervals uses
the theoretical Bartlett correction, another uses the empirical Bartlett correction.
Standard errors are given for each of the simulated coverages. To empirically justify
the expansions developed in Theorems 4.3.2 and 4.4.2, we also give theoretical cov-
erages up to the second order in Edgeworth expansions for £(b,) and £(y,). Since
the coverages can be obtained without simulation, they are called “predicted cov-

erages”.

The following broad conclusions may be drawn from the results summarized in -
Table 4.1. Firstly, the differences between the uncorrected coverages and their corre-
sponding “predicted coverages” converge to zero as n increases. This gives empirical
justification for Theorems 4.3.2 and 4.4.2. Secondly, substantial improvements on
coverage accuracy have been made by implementing Bartlett corrections. This can
be observed by looking at both the standard errors and absolute errors. Thirdly, the
empirical Bartlett correction performs similarly to its theoretical Bartlett correction

counterpart, except for the small sample skewed case.



116

TABLE 4.1: Estimated true coverages, from 10,000 simulations, of a-level

empirical likelihood confidence regions for b, and y,’s. Rows headed “predic.

’

” W«

un-

corr.”, “b,” or “y,” and “30 ” or “j,”give the predicted, uncorrected and Bartlett-

corrected coverages respectively. The figures in parentheses are 102 times the stan-

dard errors associated with the simulated coverages.

(1) Coverages for slope parameter b,

€ N(0,1) E(1.00)-1.00

n o 0.90 0.95 0.90 0.95

15  predic. | 0.840 0.909 0.750 0.849
uncorr. | 0.803 (0.40)  0.860 (0.35) | 0.789 (0.41)  0.858 (0.35)
po, 0.859 (0.35)  0.911 (0.28) | 0.904 (0.30)  0.950 (0.22)
ps, 0.853 (0.35)  0.906 (0.29) [ 0.856 (0.35)  0.916 (0.28)

30 predic. | 0.878 0.935 0.845 0.913
uncorr. | 0.862 (0.35) 0.919 (0.27) | 0.840 (0.37)  0.902 (0.30)
P, 0.884 (0.32)  0.935 (0.25) | 0.880 (0.31)  0.931 (0.24)
po, 0.883 (0.32)  0.934 (0.25) | 0.871 (0.34)  0.928 (0.26)

50 predic. | 0.888 0.939 0.870 0.930
uncorr. | 0.882 (0.32)  0.9386 (0.24) | 0.860 (0.35)  0.926 (0.26)
ps, 0.896 (0.31)  0.948 (0.22) | 0.887 (0.32)  0.944 (0.23)
po, 0.896 (0.31)  0.948 (0.22) | 0.880 (0.33)  0.938 (0.24)




(2) Coverages for intercept parameter a,
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€ N(0,1) E(1.00)-1.00
n a 0.90 0.95 0.90 0.95
15  predic. 0.858 0.921 0.802 0.884
uncorr. | 0.822 (0.38)  0.884 (0.32) | 0.805 (0.40) 0.868 (0.34)
Py, 0.861 (0.35)  0.918 (0.27) | 0.883 (0.32)  0.927 (0.26)
By, 0.857 (0.35)  0.915 (0.28) | 0.848 (0.36)  0.900 (0.30)
30 predic. 0.880 0.937 0.865 0.921
uncorr. | 0.864 (0.34)  0.922 (0.27) | 0.840 (0.37) 0.901 (0.30)
Py. 0.888 (0.32)  0.937 (0.24) | 0.874 (0.33)  0.933 (0.25)
By, 0.884 (0.32)  0.936 (0.24) | 0.863 (0.34)  0.922 (0.27)
50  predic. 0.887 0.941 0.871 0.931
uncorr. | 0.883 (0.32) 0.933 (0.25) | 0.860 (0.35)  0.920 (0.27)
Py. 0.894 (0.31)  0.942 (0.23) | 0.884 (0.32)  0.942 (0.23)
By, 0.894 (0.31)  0.942 (0.23) | 0.877 (0.33)  0.933 (0.25)




(3) Coverages for mean parameter y, with z, = 5.00
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€ N(0,1) E(1.0)-1.00

n o 0.90 0.95 0.90 0.95

15 predic. | 0.865 0.926 0.840 0.909
uncorr. | 0.837 (0.37)  0.899 (0.30) | 0.815 (0.39)  0.869 (0.34)
Py. 0.871 (0.34)  0.924 (0.27) | 0.868 (0.34)  0.908 (0.29)
By. 0.867 (0.34)  0.922 (0.27) | 0.846 (0.36)  0.893 (0.31)

30 predic. | 0.885 0.940 0.875 0.934
uncorr. | 0.882 (0.32) 0.936 (0.25) | 0.861 (0.35)  0.922 (0.27)
Py. 0.897 (0.30)  0.946 (0.23) | 0.884 (0.32)  0.938 (0.24)
py. 0.897 (0.30)  0.946 (0.23) | 0.876 (0.33)  0.932 (0.25)

50 predic. | 0.889 0.943 0.879 0.936
uncorr. | 0.887 (0.32) 0.937 (0.24) | 0.871 (0.33)  0.923 (0.27)
py. 0.898 (0.30)  0.945 (0.23) | 0.891 (0.31)  0.939 (0.25)
By, 0.897 (0.30)  0.944 (0.23) | 0.884 (0.32)  0.933 (0.25)




(4) Coverages for mean parameter y, with z, = 10.00
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€ N(0,1) E(0,1)-1.00
[
0.90 0.95 0.90 0.95
n
15  predic. | 0.832 0.904 0.744 0.844
uncorr. | 0.785 (0.41)  0.849 (0.36) | 0.763 (0.39)  0.831 (0.37)
Py. 0.855 (0.35)  0.905 (0.29) | 0.884 (0.34)  0.928 (0.26)
By. 0.847 (0.36)  0.899 (0.30) | 0.833 (0.36)  0.889 (0.31)
30 predic. | 0.876 0.934 0.846 0.914
uncorr. | 0.860 (0.35)  0.913 (0.28) | 0.833 (0.37)  0.892 (0.27)
py. 0.885 (0.32)  0.931 (0.25) | 0.874 (0.33)  0.933 (0.24)
Py. 0.882 (0.32)  0.930 (0.26) | 0.863 (0.34)  0.919 (0.25)
50 predic. | 0.889 0.943 0.877 0.935
uncorr. | 0.881 (0.32)  0.939 (0.24) | 0.862 (0.35)  0.925 (0.26)
Py. 0.893 (0.31)  0.948 (0.22) | 0.884 (0.32)  0.942 (0.23)
By, 0.892 (0.31)  0.947 (0.22) | 0.875 (0.33)  0.936 (0.25)
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4.6 Proofs

In this section we give proofs of Theorems 4.3.2, 4.3.3, 4.4.2 and 4.4.3.

4.6.1 Proof of Theorem 4.3.2

Theorem 4.3.2: Assume that
(i) there exist positive constants Cy, C; such that uniformly in n
Ci1 < vgn < vy, < Cy; (ii) the |z;|'s for 1 < i < n are uniformly bounded;
(iii) Ele;|'® < oo; (iv) for every positive T, lim / lex|*® = 05

PO N eall>rn

(vi) the smallest eigenvalue of T, is bounded away from zero; (v) the

L
2

characteristic function h of €; satisties Cramér condition:

lim sup |h(t)| < 1.

|t]— o

Then,
P{f(b) < cal=a—(1+ Lt — Lt;)n " teagi(ea) + O(n™ 3). - (4.6.1)

Proof: Let k;; be the j'th cumulant of n3 Ry. Calculations deferred to Appendix

4.1 show that

1 ',L -1 -3
kyn = —5tin~ 7+ 0(n™3),
ko =141+ 3t —2t)n ' +0(n™?), (4.6.2)

kyj =0(n~%), j>3.

A formal Edgeworth expansion for the distribution function of R; can be con-
structed as follows,
P(ni Ry, <z)= / U (v)p(v)dv + O(n~ ), (4.6.3)
— o0

where U(v) = 1 4 %tjvn'§ + 3(1+ 2t — $t2) (02 — 1)n~'. Accepting that

expansion (4.6.3) may be justified, we establish an Edgeworth expansion for the
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distribution of £(b,), as follows:
P{e(b,) < ¢} =P(—c* < n¥ Ry < c¥) + O(n™7)

-[

-C

[N] 1o

U(v)(v)dv + O(n™3)

=a—(1+1t; —Lt)n"tegi(e) + O(n™7),

where g, is the density function of the x? distribution.

It remains to check that expansion (4.6.3) is valid. Remember that Ry = h,(U)

where h, is a sufficient smooth function and
T _ (i — 411 412 422 4111 4112 4122 4222
U=(b—0b,,6A, A" A", A, A “,A°,A°").

is the mean of independent but not identically distributed random variable U;’s. For
this case, Theorem 1.3.3 ensures a valid Edgeworth expansion. It may be shown that
condition (4.2.7) implies the conditions of Theorem 1.3.3. Thus, a valid Edgeworth
expansion for U can be obtained. Consequently, the Edgeworth expansion of U may
be transformed by a smooth function h, to yield another valid Edgeworth expansion

(4.3.6) for R, by using Theorem 1.3.4. Therefore the theorem is proved. o

4.6.2 Proof of Theorem 4.3.3

Theorem 4.3.3: Assume condition (4.3.8). Then,
P{(b,) < ca(1+ ppn~ 1)} = a + O(n™?).

Proof: The method of proof is similar to that of Theorem 3.3.1. Recalling (4.6.1),

and noting that py = 1+ L¢; — >1,, we have

PLL(b.) < call+ pn~h)} = P{ < ca(l+ pyn™ 1))
—pn e (L4 pen™ ) gi{ea(1 4 pon™ )}

+0(n"%). (4.6.4)

Note too that

P{xi < ca(l+psn™")} = P(x] < ca) + prcagi(ca)n™ +0(n™%)  (4.6.5)
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and
gi{ca(l + pin™ 1)} = gi(ea) + O(n71), | (4.6.6)
where g; is the density function of the x? distribution.

Substituting (4.6.5) and (4.6.6) into (4.6.4) yields,
P{£(b,) < ca(1 + ppn~ ")} = . + O(n™ 7). (4.6.7)

By the parity property of the polynomials in the coefficients of the above Edgeworth
expansion, it can be shown that the O(n~ ¥) term in (4.6.7) is actually O(n~?). Thus

the theorem is proved. o

4.6.3 Proof of Theorem 4.4.2

Theorem 4.4.2: Assume condition (4.3.8). Then,
P{t(yo) < cat=a—(tsi —Lss+s3)n"tegi(e) + O(n%).
Proof: lLet ky.;, 7 = 1,2,--- denote the j’th cumulants of ns R, . Calculations
deferred to Appendix 4.2 show that
kya == FsinE+0(d),
ky,o =1+ (381 — 28+ s3)n"' +0(n™?), (4.6.8)
ky.j =O(n'%), Jjz3.

A formal Edgeworth expansion for the distribution of n3 R,, can be set up from

(4.4.4) as follows:

P(n? Ry < z) = / I(v)$(v)dv + O(n~ %), (4.6.9)

— 00

where
Ov)=1+1s7vn" 74 s(3si—3s2+s3)(v? —1)n"t.
The validity of expansion (4.6.9) can be argued in the following way. Notice from

expressions for R, ; j = 1,2,3 that there is a smooth function @; such that R, =

Q. (§), where

S = (Wo,by +b—b,, AL, AL, 422 41N 4112 4122 4222))
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Since
by = (F—z,){o2 + (T —2,)"}'W, and W, =¢+ (T —z,)(b—b,),
there exists another smooth function Q, such that S = Qz(ﬁ), where
T = (b= b, AL AT AT, AL AL, 412, A22),

Thus there exists a smooth function @ = @, @, such that R, = Q(U). Tt can be
shown that condition (4.2.7) implies the condition of Theorem 1.3.3. Thus, using
Theorems 1.3.3 and 1.3.4, we obtain the validaty of the Edgeworth expansion (4.6.9).

From (4.6.9) and integrating , we immediately get the conclusion of Theorem 4.4.2.

8]
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Appendix 4 Calculations of Cumulants

In this appendix we display the calculation for the cumulants of n3 R, and

n%Ryo , which were used in the proof of Theorems 4.3.2 and 4.4.2.

Appendix 4.1 Calculation of Cumulants of n3 R,

In this section we calculate the cumulants of n7 R, which were shown in (4.6.2).
Recall that

Ry, = R4y + Ry2 + Rys,

Op -
Rbl = —(b_bo),
g
Ryy = =507 omme A(b =)+ Fostoa* gymem (b —0,)7,
Riz= o  omm (A€ =37 @ + 344 (b—b,) + Cro;t o (b—b,)°
Lo (302 T Valinm + 2020720 Minim na) AT A" (B —b,)
+ Loz onimem ASF (b —b,)?
+ ‘7;1 ‘7{‘72 a"jk"nknmm ('Yj'Yn + 2-0;2"%’77") —gikm "7j7lk77n)} AT" (3—60)2

and
—jikl amne

Cy =—Lto’a My (ViTm + £05 21 m)

+7]J77k77177m(2 Jkna-lmn__%ajklm).

From the definition of U, we have the following basic formulae:

n~tY z? T 1
1,1
u;u; = ——2—2—'—L, u;uf = ———, and wu; 'u,; == (4.A4.1)
oo o?o? o%o?
Put

Ha 3

3 2

t, = myg and t, = = M.
oto? %o

Using (4.A.1) and the facts that n; = azu? and @’ *!' = n=' Y g;11(2i) us, we have

—jikl - -6
a MM = 3o M3,

i 4.A.2
mime ™t Y gie(zi)(ei —F) = 0~ % ms. ( )

i=1
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Since E(R;,) = 0, we obtain

E(Ry) =E(Ryz) + O(n™?)

= — %aa;l njne E{AF (13 —b,)} + %aa;la"“njnkmE(E—bo)z + 0(n~?)
== %Uo;aﬂjﬂk n~12 gik (i) (z; —T)psn~t + %00;35jk177j77k771 n~!
+0(n™?)

LiZn=1 4 0(n2).

Il
|

Thus we have

k= —Ltin-% +0(n 3. (4.A.3)
To calculate k;,, notice that
E(R}) = E(Ry1)> + 2 E(Rs1 Ry2) + E(Ry2)” + 2 E(Ry1 Ria) + O(n™2).
Clearly E(R;;)? = n~'. Since
i Mk n”! Z gir(zi)(z; — 5)2 = 07" my, (4.A.4)

then (4.A.2) and (4.A.4) imply

E(Ry1Ry) = — 5myme E{AS* (b —0,)*} + 2@ * nymem E(b — b,)°
=—2(pa—o)o  pimn ' T gir(zi)(zs —T)* n7?
+3ms 0 @ ey manT? + 0 (n™?)

= {—%([14 —o*)o o7 my + étz} n~% 4+ 0(n"3).

From (4.A.1) we know that

N5 Mk NMm Nn n—l Z gjkmn(zi) = 0'_8 my. (4.A.5)
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Using (4.A.2) - (4.A.5) yields

E(Rb2)2 = 1_02 0;2 M5 Mk Tim nnE{Aik A'onn(a - b0)2}

ora @ i meminn, E{A™™ (b —b,)%}

[N L

+Lo2o 2@ FI @™ e nap E(b —b,)?

Lot (pa — Yo7 0 e 071 Gikmn (7)) n72

+ 2o plo;® {nimen ' T gi(ei)(z —F)}n?

6 —6 (—jkl 2 _2
o®o;® (@ * nimem)” o

+

w =

— ot s o T e T D Gmn(@) (@i —F) 0”2 + O(n7?)
={;(pa—0*)o; 07 my — t 12} n"? + O(n"?).

x

To calculate E(Ry; Rp3), note that

E(Ryy Rys) = myme E{ALF €(b —b,)"} — Lvjx myme E{@ (b —1,)*}
— (L0? 19an; T + L 02 0T M) E{AI AT (b —5,)")
+ (@@ Yivamenmm + Lot o2 @ gy — @7 F ™ nimemn)
x E{AT™ (b—b,)>} + Lnyme E{AI' A% (b —b,)’}
+ Smimem E{AIF (b —5,)2} + C1 E{(b—b,)*}. (4.A.6)

We shall calculate the right-hand side of (4.A.6) term by term. Now, (4.A.1) implies

that
nime Yixk = o0t

Neglecting terms of order of O(n~?), we see that the sum of the first two terms on

the right-hand side of (4.A.6) is

nime E{ALF €(b—b.)"} — 3750 myme E{& (b—b,)*}
=50iMm Yk oy 0tn™? = Lot (4.4.7)
From (4.A.1) we know that
VeVn NN 01 Z Gikim (zi) =02 078,
DMl a0 D Gikim (2:) =m0,

7Yk n?! Z gix(zi)(z; —7) :cr: o,
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Thus,

~

— (202 e Yunjtm + L0 07 niminmn,) E{ATF AT (b —b,)?}
== (302 1V 0m + L 0% 0720 0) 07T D gikim (2:) 0207 (14 — 0*)
R 30 g5k (2:)(2i —F) 07t Y g (2)(zi — T) pd) (4.A.8)

L 4y .—4 -2 1 4\ _—4_—4 -2 _ 2 -6,-2 _ 1 -2
—5(pa—0*)o™%n s (pa—0*)o o7 myn P30~ °n stan™%.

To calculate the fourth term, observe that

Ci=—5a?@ @™ pemnan, (Yi%m + 50520 0m )

+77,1"7km77m (__ ]knalmn _ i_-a—jklm)

= ‘;—,ug o720 0 ml — 3”4 o~ % my,.
Therefore,
C, E(IA) — bo)4 = —%IM o o n (2, —T) 0" + %tg n2. (4.A.9)

Using (4.A.1) again we have

—i ki _ 2 -6
« YiMe™ = 30, 0

and
ka"hnknn Egmn(mi)(xi _E):/L3U;2a~8(ag +m§)

So the fifth term is

{o* @ e (757 + + 2o min) =@ ET imena) Y E{A™" (b —b,)%}
=3 i vamtmm + Lo 0] DM M e — @™ 1 k)
n! Z gmn(xi)(-’t.' '—?L'—)[.l:;; 0;4 o’n?

=3pio"%n"? ¢ %tz n~?—3ulo%n"?-3¢,n" %= —%tg n=2. (4.4.10)
Observe that (4.A.1) implies

D™ Y gien = 072078 (0F + my),

;i Nk n~t Z gjl(l‘f -7) n! Z gri(z; —5) = %—2 o~ ® (‘7: + mg),
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so that we have the sixth term

ymime E{A]'AY (b —b,)*}
=smime o {n" 1 L gjru(zi) 02 0? (pg —o*)
+2n71 )0 g (m ~B)n 7t 2 g (2 — F) i (4.4.11)

=t(pa—0*)o ' n 2+ L(ps—0*)o o mun Tt + plo nTE H 0T

Finally, since
nimemn! > giri(zi —T) = myo”°,

we have

Losmem E{AIF (b= 0,2} = nymemn™' D gini(zi —F) o™ * 0? pg

=l 0_40;4m4 n~%=t;n"2. (4.4.12)

Substituting (4.A.7)-(4.A.12) into (4.A.6), we obtain
E(RyyRyz)=2n"2+ 3 (py—0*)o o myn™2 — L tyn~?
+i:tn Y (m —T) e+ 0(n70).
In summary,
E(R}) = E(Ry1)* + 2E(Ryy Ryz) + E(Ry2)? + 2 E(Ryy Rys) + O(n™?)
=n" '+ ((1+ 3t —st2)n" 2+ 0(n73).

Since ky2 = n{E(Ry)* — E*(R;)}, we obtain
koo =14 (1+ 3t —32t,)n™' + O(n™?). (4.4.13)

Next we calculate ky3. By definition,
kys =n3{E(R}) — 3 E(R,) E(R}) + 2 E*(Rs)}
=n5{E(R}) + 3 E(R?, Ryz) — 3 E(Ry;) E(RZ) + O(n™ 7)}.

Since E(b—b,)® = pso;%msn=2 + O(n~?), we immediately have

E(R})=1tin"2 +0(n"?). (4.A.14)
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Using (4.A.2),
E(R%, Ryp) = — Lo, o7 mym E{A3* (b —b,)°} + Lot o, @ " pymem E(b — b,)*
=—32opsoymn ' X gi(zi) (@ —F)n " + Fot o 2@ e n?

+0(n™?)

N

n~% 4 t.? n~ 24+ 0(n"?)

|
™)

t

N =

t2 072 + 0(n=3). (4.A.15)

From the early calculations of E(R;) and E(R?),

E(Ry) E(R2) = =15 n=2 + 0(n"?). (4.4.16)
Now (4.A.14) - (4.A.16) imply that
kys = O(n™%). (4.A.17)

From the definition of k34, and the result that ky3 = O(n~ ),

kya =n® {E(R}) —3E*(R})—4E(R;)E(R}) + 12 E*(R;) E(R}) — 6 E*(R;)}
=n?{E(R}) —3E*(R})} —4n% E(Ry) kss + 2k,
=n’{E(R;) —3E*(R})} + O(n™?).
=n’ {E(R;,) —3 E*(R},) + 4 E(R}; Ryz) — 12 E(R},) E(Rs1 Res) -
+ 6 E(R;, R;,) — 6 E(R},) E(R},) + 4 E(Rj, Ris)
— 12 E(R},) E(Ry1 Res)} + O(n™2). (4.A4.18)
From (4.A.2) - (4.A.5) we may show that
E(R}) —3E*(R};) =(pa—30") o o7 myn”?,
4 E(R}, Ry3) — 12 E(R}) E(Ry1 Ryz) ={—6(ps — 0*)o " 0™ ms+ 28,}n"2 + O(n™*),
6 E(R:, R},) —6 E(R},)E(R,) ={8(psa — 0*)0 " 0™ *my — t3}n"° + O(n™*).

Using the same argument which yields E(R;; Ry3), we may show that

4 E(R}, Rys) — 12 E(R}))E(Ryy Ry3) = (2t — £ 42)n™2 + O(n™*).
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Substituting the above four expressions into (4.A.18), we get

kya = O(n™?%). (4.A4.19)

From the results given by James and Mayne (1964),

ky; = O(n~ %),for any j > 5. (4.4.20)

In view of (4.A.3), (4.A.13), (4.A.17), (4.A.19) and (4.A.20), we readily derive
(4.6.2).

Appendix 4.2. Calculations of Cumulants of n% R,

In this part of the appendix we give our derivation of (4.6.8), which was used to
prove Theorem 4.4.2. It turns out that the calculations of the cumulants of n¥ R,,

given in this section is very similar to that in Appendix 4.1. Put

werpeEorlEonl iy Eorln,
¢ =1+3 (5_;;0)2 (z -;;o)s 3
and
gz =1—3 (‘5;;0)2 (5;;0)2 Y+ (T ;;04
+ 2{(3: 0_;0 (z ;;o)}m:;,
and define

s1=a*(z)0 ™ paqu, 82 =0%(z,)0 % pulql, s3=a'(z,)gs.
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Remember that R,, = R, + R, » + R, ,3 where
Ry, = a(z,)o” W,
R, .= a%(z,)o & ¢* {—%Af," W, + §a2(x,,)af“§' w2},
RByx Ryvs = a* ()6 € (Byen — Tien@0) (by + b — b)Y W2 4+ Co W
— 0% (2,) & € (Bjxa — 285k @0 + Yjx T5) (b1 + b —b,)* W,
—a’(z,) o’ € €™ {%a;2 (Be = 7126) (Ba — Y zo) + § €* 5"} AlF AT W]
+ a®(z,) 0 {a;za"“e' £ 6™ (B —7120) (Bn — 70 T0)
+raitlg e —at(z,)o @t g f"} AT W2
+rat(e) € € AT AY W+ Lat(a,) € € € AN W
- "‘G(f'?o)ff2 ¢ fk ¢ (Bikr,2 — Yirr,2 o) (by + b— bo)Wf,
and
Co=—1ta'®(z,)0 072 {a’* e ¢* (B — m2.)} — 5 at(z,) o {@* g7 e* ¢’}
+a®(z,) (FaitrEimr — falkim e et gem,

From the early definition in Section 4.4, we know that
W,=éa+bz, —a, —b, z, = E—(E’—zo)(ﬂ—bo),
and ¢ = ujr + uj2 €, j = 1,2, which implies the following basic formulae:

I Yik = a ?(z,)0 %,
(T —=,) _ (7 —=,)°

2 6
al 03

g &7t Y gie(ei)(zi —7) = 0—4{Lj")__m3 —2(% —z,)}

z

-a—-jklgj gk §I =/t3 0—6 {1 + 3 m3}) (4A21)

We start with the calculation of k,_;. Notice that E(R,,) = E(Ry,2)+0(n™?),
since E(R,, ;1) = 0. Using (4.A.21),

E(Ryﬂ)

—20%(z,)0 & P E(AF W) + Lab(z,)o@? F g EF € E(W]),

(z

=—La®(z,)0 8 & {7jx - ;_2%)""1 2 gin(e) (@i — )} psn”t
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+ %a5(xo)o,a—jk1§j £k 51 {1 + (E—zo)z}az nl ot O(n"z)

3
=—ta’(g,)o  us {1+3 = ;:")2 _@ ;:")3 ms}n~t + O(n”?)
= - gsé n~t+0(n”?). (4.A4.22)
Thus we have
ky,1 = —;1;-32% n"F 4+ 0(n” 7). (4.4.23)

For the convenience of computation, we calculate the third cumulant k,_ 3 before

ky,2. Observe that
kys = n3{E(R] ) —3E(R,,) E(R] )+ 2E*(R,,)}
=n3{E(R] ;) + 3 E(R] , Ry,;) — 3 E(Ry,2) E(R] ;)} + O(n™%).
We first have

(T-2) (@-g)

2 6
oy O

=sin"? +0(n"?). | (4.4.24)

E(Rzol) :aa(zo)a_3ua {1 + 3 m3} n—2 + O(n—a)

Using the formulae in (4.A.21),

E(Riol Ryo2)

=—30%(z,) 0 EEEAS W)+ Sal(s) o7 T M E EE E(WY)
(z—;;a-:-ezn_l Z gjk(xi)(xi _5‘)} n=?

tat(z,) ot @i Fl gl gk gl 4 0(n~?)
3

_ T—2,) _ T—z
=a3(xo)0, 3“3{_%_%( 20) n 2+%( 60)
o2 o

T

=—2a%(z,)opus & € {7 -

ma}n”?+ O(n_3)

= — -;-s;;. n~% 4+ 0(n"3). (4.4.25)

Moreover from (4.A.22), (4.A.24) , (4.A.25) and the fact that E(R] ,) = n™!, we

obtain
E(R:,,l) +3 E(Riol Ryoz) =3 E(Ryo2) E(RZOJ-
Therefore,

kys = O(n 7). (4.A.26)
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Next we compute k, ,. Note that k, .o = n {E(R?) — E*(R;)} and

E(Rzo) = E(Ryol)2 + 2‘E(Ry01 Ryo2) + E(Ry02)2 + 2 E(Ryol Ryoa) + O(n_s)'
(4.A.27)
We are going to compute each term appearing on the right-hand side of (4.A.27).

Obviously E(R,,1)> = n™'. Since

E(Ry,1 Ry,2) = — 30%(z,) & " E(AF W2) + Saf(z,)a’ g P E E(W))
=—Ja*(z) (na —0*) € € {70 — 2 (5;_2%)“-1 > gix(z:)(z: —7)

+ (E;—fo)n_l Z gie(zi)(z: -“'5)2} n~?

+3a%(@)a’  E E psgen? + O(n7?),

then using (4.A.21) and the fact that

- - 2
€€ 0 Y gulen)(os ~7) =0t o2 (1 -2 E 2, Bo2)

we get

4 _ 4
E(Ry,\ Ry,2) = “';" o (z) (1s = 07) an?+ %82 n~2 4+ 0(n3%). (4.A4.28)

i
To calculate E(R,,,)?, noticing that

EEEE™ " Yjkmn = 0 %,
and using (4.A.21) again, we obtain

E(Ry,2)" = fo’(z,) 0 € € €™ " E(AF AT W)
—5et(e) ot @ e ¢ B(AT W)
+ 5 at(z,)o” (@ ¢ €k € E(W)
= 5a"(20) 0" (ks — ") € £ €™ €7 Yjamn n77
+ a(e,)o? pd [287 €5 €™ € i1 Y

— 4072 (T —2,) 8 ™ € a7 Y g (ei)(zi — F)
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+2 (—E;—;g-)-z (6" " 0™t Y ] gmn(zi)(zi —F)}] 02
—a®(z,) ot piTiF gl gl gn

X {Ymn — 072 (T —2o) 07" D gin(zi)(zi —F)} 0>
+5ef(z) ot (@ ) 0T+ 0(n7?)

)(M—U)

_ 4
=a’(z, —

Gn?—Lsn"24+0(n"3). (4.4.29)
Furthermore,
E(Ry,1 Ry,5) = a*(2,) € & E{(Bje.n — vix1 o) (b+ by —b,) W2}

— 3 at(2,) & € (Bjea —2Bjx 3o + 151 @2) E{(b+ b1 — 5,)* W}
—a®(2,) 0 {5072 € €™ (B —112) (B — Yn wo) + €7 £ €™ €7}
X E(AF AT W)+ C2 E(W,)
+a®(z,) o {a 2@ * e F ™ (B —112,) (Bn — 7n T0)
+Lraitighgemen —am(z,)o Al M L gh g} E(ATT WD)
+50%(z) & & AT AT W + 3a%(e,) ¢ £F € E(AT WD)
—0®(2,) 0 & € € (Bjrrz — Yir12 7o) E{(b + by — b,) W3}, (4.4.30)

Each term on the right-hand side of (4.A.30) is computed below. Firstly, since

T—-12,) (T—1z,)°

& n1 Y ginl(z) (e —F)(zi —z,) =0 02 [1 -2

and

6]' fk n—l Z gjk(xi)(mi —xo) — 0_—4{_(5_:':0)_*_ (5-_0‘21'0)3 n (E—(Uo)2 ma}’

then we find the first term on the right-hand side of (4.A.30) to be
a*(2,) € € E{(Bjr,n — 1521 %0) (b+ by — b)) W2}
=a*(2,)0% 077 & € {n7" D gju(w) (30 —F)(2i — 2,)
+E—zo)nt 2 gie(wi) (30 —20)}n? + O(n)

=a*(z,)gzan" % + O(n™?). (4.4.31)
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Since
e n Y] gin(zi) (2 —2,) =0 ol g,

then the second term has the form

1 . )
- 50!4(%)5’ & (Bixa —2Bjk w0 + ik o) E{(b+ b1 — b,)* W)}
== %0‘4(“’0)‘74 ‘7;2 SRR DY gik(z:) (zi — z,) n 2+ 0(n"3)

=—za*(z,)gsn"? 4+ 0(n7?). (4.A.32)

To calculate the third term on the right-hand side of (4.A.30), note that

fj (:Bk N mo)7jk = 07
§j é‘m (/Bk - T xo)(ﬂn ~ Tn xo)’)’jkmn = 0_8 0: q3,
€j fk fm gn Yikmn = 0_8 q,
and

§j (Be — ™ :L'o)'n—1 Z gie(zi)(z; — ) = o-to? {1 — ('f—:o) _ T —z,)

z

m3}.

7z
Using (4.A.21) again, we have

a®(2,) 02 {5072 € €™ (B —1130) (Ba —1n 30) + 58 € €™ €7} E(ASF AT WD)
=a®(z,) 0’ {-;-0;25" E™ (Br —7120) (B — 10 ®o) + 5 & EF €T E“}

- (5—270) - —_—
X {02(N4 —04)a 2($o)7jkmn + 29k Ymn ug _47—”3 Yik M ! E Imn(zi)(z; —T)

(T — $0)2 2

p2n"t Y gin(2) (2 —F) 0T Y g (2a) (e —5)}71_2 +0(n7?)

_e (T — z,)’

2
Oz

+ 2

4
a:l;

=a®(€,) (e —0") o™ (s + 5q)n"  + Lsan? + af(z,) o

_Emm)  Eor) oy o 7P ) e 4 00, (4.4.33)

X 11
t o} o2

Moreover, because

- _ 3 - 2
6 (g —yim) = w2 @ oa B0l

T T
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and
Ejkm €j fk fm n—lz gmn(xz')(zi ——5) =p,30_8 ('5;‘_:,;0){—2—a2(:co)
= - 2
P Gl 20 S ok 20 i 1
o, O

the fourth term becomes

a®(z,) o {072 @ F T € ™ (B — 7130) (Bn —Tm o) + 2T/ E F g Em g
—a ¥ (z,)o @t R Y E(AT W3

=8a°(2,) 0" ps {0 @ E € (B —yi2,) (Bn —m o) + bEIFI L EE e g
—a M 2) 0T L oy ~ (L;ﬂln‘l 2 gmn(2:)(2; = B)}n~?

- +0(n7?) ]

=—25n"240(n"3). (4.A.34)
To get the next term, notice that

g ¢k Yii v = o % a”?(z,),

E ¢ yuu=0"°{2+ (F= o) -2 (&~ =) ma + Mm.:},

2 4
Ux UI

ek ynty gz, —7) =0 {-2(F —z,) + E—;{f"—)ma},

and

getnt E gi1(z;)(z;—T)n~? E gri(zi)(z;—F) = o~ ° [(5—930)2-’:-{% —(5—930)777/3}2]-

Thus we have

Lat(z,) ¢ € A) AH W2 4 Lab(a,) € ¢F ¢ B(AM WD)
= 70" (20) (na — 0*) 0 & €8 yjxu + 0*(z,) 3 € € {7171
(E;x :) n=t 22 gi(z)(zs —5)+( — °) "12.‘_71‘1(9%)(93:'—5)
?:wwxa—ﬂn +0(n7%)

1, @)(4—¢HI+@-%V_2@—%LMR

a (mo)ll'S (E_xo) {1___ (5’:_1:0) _ (E_xo)ms}zn

z
6 2 2 4
g o o, O,

P45 0T 4 O(n™?)

2+ 0(n"?)(4.4.35)




137
To calculate the seventh term in (4.A.30), note that
La®(z,)€ € € B4 W)

(T

=a*(z,) 0% pa & €8 € {700 — _—;::_O)n—l > gini(zi)(zi =)} 0"+ 0(n7?).

Since
ger e nTt Y gini(z) (2 — F)

co S {37z, +3 ) EB) i oy

4 6
O Oy

then using (4.A.21), we have
Lal(z)E EEEAMNWE) =507+ 0(n7?). (4.4.36)

Because

E{(b+ b1 ~b,) W)} = 0(n™?),
we immediately have
—a®(2,)0? € £ & (Birrz — Virt2 o) E{(b+ by —b,) W2} = 0(n"%). (4.4.37)
Finally it can be shown that
Cy=a(z,)o7 (2sy —2s1)n™ % + o(n~?).

Thus,

C,EWE) = (ts,—25)n 2 + 0(n™?). (4.A.38)

Substituting (4.A.31)-(4.A.38) into (4.A.30), we end up with

_ a*(z,) (g — o _ _
E(Ry,,1 Ry 3)=%a*(z,)gsn >+ 2 ( )5744 )qln P Esyn?

1 a*(z,) pa

+ an ?+0(n"%). (4.A4.39)
4 )

Again substituting (4.A.28), (4.A.29) and (4.A.39) into (4.A.27), we obtain that
E(Ry,) = E(R,,1)" + 2E(Ry,1 Ry,2) + E(R,,2)" + 2E(Ry,1 Ry, 3)

=n"t4 (;—sl — %sz + 33)17,"2 + O(n's).
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Therefore,

ky,o =14 (581 —;—2'324'53)"_1 +0(n™?). (4.4.40)

Finally, we derive the fourth cumulant of ns R,,. By definition,

ky,a =n’ {E(R; ) —3E*(R; )~ 4E(R,,)E(R}))
+12E*(R,,)E(R2 ) -6 E*(R,,)}
=n"2{E(R}) —3E*(R2)} —4n? E(R,, ) ky,s + 2k} |
=n"?{E(R,,)—3E*(R:)}+0(n™?).
=n"2{E(R; ,)—3E*(R} |)+4E(R | R,,,)—12E(R} ,)E(Ry,1 Ry,>)
+6E(R2 | R} ,)—6E(R. \)E(R. ,)+4E(R] | R,,3)
— 12 E(R} |)E(Ry,1 Ry,s).

Using these formulae in (4.A.21) and neglecting terms of order of n~*, we may show

that
E(R; ) —3E*(R] ;) =a*(z,) (ns —30%) 0™ " g n”°,
4E(R3,1 Ry,2)— 12E(R301)E(Ryol Ry,») = {6 0‘4(3’0)(”4 - ‘74)‘7_4 q + ;’32}"7'_3’

6 B(R2,, B2,,) — 6 E(R], ) E(R] ;) ={3 0 (2,) (s — 0*)o™* s — s}n™°.
By the early formulae used to derive E(R, 1 R, 3), we may show that
4E(Ry,; Ry,s) —12E(R] ;) E(Ry,1 Ry,3) = (251 —582)n"° + O(n™"%).

Thus we have

ky.s = O(n™?). (4.A4.41)

Based on the results given by James and Mayne (1964), we have
ky,; = 0(n™%), j>5. (4.4.42)

Hence, in summary of (4.A.23), (4.A.26), (4.A.40) and (4.A.41), we have proved
(4.6.8).
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CHAPTER 5
COMPARING EMPIRICAL LIKELIHOOD

AND BOOTSTRAP HYPOTHESIS TESTS

5.1 Introduction

From the reviews on developments of empirical likelihood given in Chapter 1
and the work discussed in Chapter 2, 3 and 4, we see that almost all the research
done on empirical likelihood concentrate on constructing confidence regions. After
constructing an empirical likelihood confidence region, we can derive an empir-
ical likelihood test about the parameter of interested by using the duality between
confidence regions and hypothesis tests. However, so far little has been done on
the aspect of power of empirical likelihood tests. Surprisingly, little has been done
on that of a bootstrap test either! The contribution of this chapter is to develope
high-order expansions for the power function of empirical likelihood and bootstrap
tests for a mean against a series of local alternatives. A comparison between empi-
rical likelihood and bootstrap tests for a mean parameter against a series of local
alternative hypotheses is made. For univariate and bivariate cases, practical rules

are proposed for choosing the more powerful test.

Let X;,---,X, be an independent and identically distributed (i.i.d.) random
sample of p-dimensions from an unknown distribution with mean parameter g and
covariance matrix ¥. We consider using empirical likelihood and bootstrap methods
to test the null hypothesis H, : p = p, against a series of local alternatives H, :
L= po+n” ED) i"r, ,where both p, and 7 are constant p dimensional vectors. The
empirical likelihood and the bootstrap hypothesis tests for H, can be formulated

from the well-known duality between confidence regions and hypothesis tests.

Owen (1990) showed in the i.i.d. sample mean case that the power of an a-level
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empirical log-likelihood ratio test is asymptotically P{x2(||7]|*) > x2 ,_,}, where
X2(|I7||?) is the noncentral chi-squared random variable with p degrees of freedom
and noncentrality parameter ||7||?, and xJ ,_, is the 1 — a upper percentile of the
central chi-squared distribution xz . However, it is not difficult to show that the
corresponding bootstrap test also achieves the same asymptotic power. Thus, to
really compare powers of the empirical likelihood and the bootstrap tests, we have

to develop higher-order expansions for the powers of these two tests, which will give

us some insight into the problem.

In Section 5.2 we define the empirical likelihood and the bootstrap tests. Af-
ter developing higher-order expansions for the power functions in Section 5.3, we
propose in Section 5.4 two rules for practically choosing between the empirical like-
lihood and the bootstrap tests for univariate and bivariate cases. In the univariate
case, the rule says that the empirical likelihood test is more powerful than the cor-
responding bootstrap test when Taz > 0, and vice versa when Taz; < 0, where a3
is the population skewness parameter. For higher dimensional cases, similar rules
may be developed. In Section 5.5 we present simulation studies. We display our

calculations of cumulants in Appendix 5.

5.2. Empirical Likelihood and Bootstrap Hypothesis Tests

Let X,,:-+,X, be a p dimension i.i.d. sample from unknown distribution F'
with mean g and covariance matrix ¥. We want to test null hypothesis H, : p = y,
against a series of local alternatives H, : p = po, + n~ ;_Eir, where p, and 7 are p

dimension constant vectors.

Put Z; = £~ 3(X; — p) and let Zf be the j’th component of Z;. We define
oitiziv — p (Z‘h Z:k) ,
Ajljn"'jk =n;1 E Z,‘Jl e Z;”‘ _ ajljﬂ‘“jk,

as the standardized multivariate moments of X;,---,X,. Note that o = 0 and

a’* = §7% where 7% is the Kronecker delta. Throughout this paper we assume the



141
following regularity condition:
(i) T = Cov(X,) is a positive definite matrix; (i) E]|X;||'® < oo;
(iii) the characteristic function g, of X, satisties Cramér’s condition, (5.2.1)

for every positive b, sup |g:(t)| < 1.
fel>e

5.2.1 Empirical Likelihood Tests

Write p;,p2,---,pn for nonnegative numbers adding to unity. Then, the em-
pirical log-likelihood ratio for p is defined to be

fp)=—2_min D log(np;).

piXi=

A F |

Based on the nonparametric version of Wilks’ theorem given by Owen (1990),a 1—a
level confidence region for u is defined as I;_ o, = {¢|€(r) < co }, where ¢, is chosen
from the x2 tables such that P(x2 > ¢,) = @. According to the duality between

confidence regions and hypothesis tests, we define an a-level empirical likelihood

test for the null hypothesis Hy to be

b = { 1, if K(HO) > Ca;

0, otherwise.

By Wilks’ theorem the asymptotic significant level of ¢, is a. Let us define “type
I accuracy” as the difference between the actual and nominal significant levels of a

test. Using the results given by Hall and La Scala (1990), we may show that
P(¢. = 1IH0) =a+ O(n_l),

which means that type I accuracy of empirical likelihood test ¢. is of order n~1'.
Since empirical likelihood confidence regions are Bartlett correctable in this case, as
shown by DiCiccio, Hall and Romano (1991), we may define the Bartlett-corrected
empirical likelihood test to be

6. = { 1, if £(po) > call + B/n);

0, otherwise,
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where

,B — p-—l (&ijk/2 _djk'&]k‘/g)

is the empirical Bartlett factor, and &’/**¥ and &’*' are the usual moment estimates

of a??** and af*' respectively. Let
B = p~1 (aFi¥k j2 — oF¥1 i /3)
be the theoretical Bartlett factor. Clearly we have § = 8+ O,(n~ 7). Since
P(¢ec = 1|Hy) = a + O(n™?),
type I accuracy of the corrected empirical likelihood test ¢.. is of order n=2, which
is the same order as that of bootstrap test as will be shown shortly.
5.2.2 Bootstrap Test

Let 7 = n~!'Y X; and £ = n~! > (X; —7)(X; —7)T be the sample mean
and sample covariance matrix respectively. To give an a-level bootstrap test of H,,
let * and 3* be the bootstrap version of T and ¥ respectively, computed from a

resample x* instead of the entire sample x = {X;,---,X,}. Put
S(r)=n?8 5T —p+n 3 857).

We define a bootstrap test of H, to be

4y = { 1, if ST(T)8(r) > &q;

0, otherwise,

where é, is determined by
P{n (@ —=3)"E 1T —7) > éa|x} = @

and can be empirically calculated by Monte Carlo simulations. It has been pointed

out by Hall (1992) that

P(¢y = 1|Ho) = a + O(n™?),
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which means type I accuracy of the bootstrap test ¢, is of order n=?2

Owen (1990) showed that for our current null and alternative hypothesis set-
ting, the power of the uncorrected empirical likelihood test ¢, (also the corrected
empirical likelihood test ¢.. as shown in Section 5.3) converges to P{x2(||r|[*) >
X2 1_o)> where x2(||7]|?) is the noncentral chi-squared random variable with non-
central term ||7||> . It is not difficult to show that the bootstrap test achieves the
same asymptotic power as well. In order to compare the power performances of
these tests we have to find higher-order expansions for the power functions of the
empirical likelihood and bootstrap tests. To make the comparison fairly, we should
only compare the corrected empirical likelihood test ¢.. with the bootstrap test ¢;,
since both have the same type I accuracy of order n~2. In theory we could adjust
the test’s level so that they are exactly equal. However, from a practical point of
view a difference of order n~2? between the levels of the tests is fair enough to make
our comparison. In the rest of this paper, when we say the empirical likelihood test

we mean the Bartlett-corrected test ¢...

Before we finish this section, we should mention that the shape of the rejection
region of the empirical likelihood test is determined automatically by the sample
itself, whereas that of the bootstrap test is subjectively given by us as the comple-
ment of an elliptical region. This is an advantage of empirical likelihood over the

bootstrap.

5.3 Power Expansions

In this section we calculate the powers of the empirical likelihood and bootstrap
tests of null hypothesis H, : p = p, against H, : p = p, + n~ L3 7. Since analytic
expressions for these power functions are difficult to obtain, we have to develop

expansions for them.

Let pow(..;7) and pow(¢;; ) denote the powers of the a-level empirical like-

lihood tests ¢.. and the bootstrap test ¢, respectively, under the alternative hy-
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pothesis H,. We shall calculate them one by one.
5.3.1 Power of ¢,

According to the definition of power of a test, we have
pow($ec;7) =P(dec = 1|H)
=P{l(po) > Ealpp = po + n~ 337}
=P{{(p—n~ ;'E';"r) > Co}
where ¢, = ¢o(1+ B/n) To calculate pow(¢,..;T) we first set up a Taylor expansion

for £(p — n’§2;"r), from which an Edgeworth expansion of pow(é..;7) will be

derived. By the definition of empirical likelihood,

Lp — n'};E%‘r) =-2 min Z log (np;)
Y piXi=p-n"3T3r

=—2 min Zlog(np,-)
EP.'Z.'=-"_;T

where Z; = £3(X; — u). Slightly modifying (3.7) of DiCiccio, Hall and Romano
(1988), we have
n’lﬁ(u —n” ;—2%7')
=(A + n‘%r)j(A + n“';"r)j
— {4 4T A2 T T A TR (A 4 TR
+ Z(afF 4 ATF 4 T 3rigH (3] — 208 A Y (A 4+ STV (A4 0T IR (A4 T ET)
+ (o™ — %ajk'm YA+ n- 57y (A+n T A+ n i) (A+ i)
+ ATAM A 4 n” ';"r)j(A +n” 57')’c + O0,(n~ ':'), (5.3.1)
with 77 A¥[2] = 79 A¥ + 7¥ A7 and the same rule applies for 776*'[3]. From (5.3.1)

we can derive the following signed root decomposition for £(y —n~ §2§1'):
€p—n"32%7) = n{R1(r) + Ra(7) + Ra(7)}" {R1(7) + Ra(7) + Ra(r)} + 0p(n™ %),
where R;(7) = O,(n""/?) for I = 1,2,3, and

Ri(r)=(A+n 77,
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Ry(r)= —2A* (A4 n~ir)k + Lo/ (A4 n=ir)F (A + 07 37),
R 2(m)=(—iririn1 + 2ATTAM — 2riAF[2]n" )A+ T (5.3.2)
+ {é(Af“ +n737I6H[3]) — et m A YA+ nTETY (A n7 i)

+ (2afknalmn — Lodkimy (A + nm (A4 nm i) (A + i),

Put

R(T) = R1(T) + RQ(T) + R3(T).

Let ki 7' denote the joint I’th order cumulant of n7 R(7). Calculations deferred

to Appendix 5 show that

k{ =7 ¢ k{ln'}f + Ic‘bn'1 + O(n'%),

B = 6 EinT ket + 0(n” ),

B = kRl Lo, (5.3.3)
BT = 0(n”3),

k{l’”"j‘ : O(n_%), for [ Z 5,

where
k{l = (?;a””‘r"r"’ — %a"""), k;'; = —a”"r'
kiz — T]Tka+ Tka,kn_l_(«; aikngimn i_ajklm)TleTm
+ (_1;_ — 55.4.) ri— Lajkmamll,rh + 4 ajlcmaklm,rl
5.3.4
K = Laftmm — Loimigmi _ Loibmgmil g Lgikrirl 4 Srizk 534
+ (%ajkm almn _ %ajmnaklm _ 1_72__‘1_“:1" )TIT
kg;z _ __%ajklmrm + 35_67_ aimn gkim (3],

Note that the last result in (5.3.3) is obtained from the general results given by

James and Mayne (1962).

Let ¢ be the density of N(0,1,), Hi(vj,,--,v;,) be the I’th order multivariate

Chebyshev-Hermite polynomials defined by Barndorff-Nielson and Cox (1989), and

Dr(2) = {v]llv + || > =}
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Then, we define

Exoor)= [ (K v+ k(00 — 67)}g(0)dv (5.3.5)
D.(z)
and

Baoyr)= [ {klyo; + H(E + KL, kE ) (oy0k — 67%)}g(0)do
D,(z)

tf R LD E (00090,
D.(z)

+ / ékgfk;TH‘;('Dj,'vk,'Uhvm )¢(’U)d’l)
D,(x)

Put U = (A!,.--, AP A ... APP A1 ... APPP)T Note that only A% and A%
with j < k < | appear in U. With above preparations we are able to prove the
following theorem which will lead to an Edgeworth expansion for pow(¢..;7). The

proof of Theorem 5.3.1 is deferred to Section 5.6.

Theorem 5.3.1 Assume condition (5.2.1). Then, for any = > 0,
P{e(p—n"52'7r) > o} = P{x;(Irll) > e}4 Ea(z,7)n" "+ Bs(z,7)n" ' +0(n" 7).
From Theorem 5.3.1 and using the delta method we have

pow(dec;T) :P{Ii(y — n';'E;-T) > co(1+ ﬁ/n)}
=P{t(u —n 7 S¥7) > cu(1+ B/n)} + O(n"3)
=P{x;(Irl) > ca} + Ea(ca,m)n"

+ {E3(CG7T)_ﬁgpr(ca)} n_l + O(n_%), (5.3.7) ‘
where g,, is the density of the x2(||r||) distribution and
ﬂ —_ p—l (aJJkk/z _ajklajk1/3)

is the Bartlett factor.

Substituting k{l and k£1 in (5.3.4) into the expression for E,, we obtain

Es(ca,7) = / (3o rlrm — Ladfkky g, 4 Ladklrl(yiv, — §7%)}o(v)dv. (5.3.8)
D,(ca)



147

Thus the second order term of the power of the empirical likelihood test depends

on population skewness parameter a’'™, on 7 and on sample size n.

Remark: If X,;,---,X, are independent but not identically distributed with the
same mean parameter g, we can modify the definitions of £ and afiz"i* by
L =n"1'3Y Cov(X;) and aftizix = =1} F (Zij‘ Zf*) , and replace condition

(5.2.1) with the following condition:

(i) Let vy, and vy, be the smallest and largest eigenvalues of .

There exist positive constants C;, C; such that, uniformly in n,

C1 < vpn <vin < Cy. (i) supn™t Y. E|X;||*® < oo. (iii) for every

i=1

positive 7, lim n™' ) / |X;|I*® = 0.(v) The characteristic

L
e NX;ll>7n3

ji=1

function g; of X; satisties the Cramér’s condition, for every positive b,

lim sup sup |g;(t)| < 1.
j—oo >0

Then, we may have Theorem 5.3.1 and (5.3.7) for this non-i.i.d. case by developing
Edgeworth expansions using Theorems 1.3.3 and 1.3.4. This means that we can
calculate higher-order expansions of the power of empirical likelihood test for the
regression coefficient vector § considered in Chapter 3, and for the slope parameter

b, and means y, of a simple linear regression model considered in Chapter 4.

5.3.2 Power of ¢,

In this subsection we give an expansion for the power of the bootstrap test ¢,
as we have done for the empirical likelihood test in Subsection 3.1. According to

our definition,

pow(¢y;7) = Py = 1|H,)
(5.3.9)
= P{$7(1)S(1) > &},

where é, is determined by equation

P{n (z* —_)Tﬁ)'_l(T ~T) > éo|x} = @
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and §(r) = n3%"3(FT —p+ n~7T37). Since
$=n! 2": X XT XX =3S5(I+A,—-A,)%5

where Ay = (Al )pxp = (A7 )pxp and Ay = (A} )pxp = (47 A%),,, we have
Bl =N {I+ A —Ay— (A —A,)’}T75 4 Ag,

3
where Aj = (A?k Jpxp 18 @ p X p matrix with each of its elements A?k =0,(n"2).

It can be show that

3
T2

{(T4+A, =B, — (A1 = A} T =T—LA + LA, + 2A240,(n"2).

Put
So(r)=(I— LA+ 1A, + 2AY)(n7A + 7). (5.3.10)
Thus
ST(r)S(r)=n(X —p + n"i'Elz"r)T 2NX —p+ n'g'E';"r)
=m3A+ T {IT+ A, =By — (A, — A2} (nFA+7) + O, (0~ %)
=57 (r)S.(r) + 0y (n”%)
where A = (A!,---,A?)T = -5 (X — p). Using the delta method,
pow(¢s;7) = P{ST(1)S(1) > &a},

=P{ST(1)8,(7) > éa} + O(n"%). (5.3.11)

Let .ff””"j' denote the joint I’th order cumulant of S,(7). Calculations pre-

sented in Appendix 5 reveal that

g=ritdn 40 +0n %),

g = 6 4 gt pEinT £ 0(n T,

g’kl _ gl;l —;+§JH ‘1+O(n—% , (5.3.12)
iklm — iklmn—l +O(n_%),

gt = O(nm %), for 135,



where
J oo _1_jkk Y | 3¢ ikkl _ g5l
n= =37, &, = 5T +87'(0-’ 6%),

jkm _m
€21 = =" 1™,

6;126 (p+ 2)61'1: + ajlm aklm + %ajkm a”m + i(ajklm _6jk),rl,

gllcl — _2ajk1 6,11:1 - j6k1[3] + %Tnajkmalmn[:ﬂ’
iklm — _2ajklm + 4ajmnakln[3]+46jm6kl.
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' (5.3.13)

Let g, be the density function of the x2 distribution, D = {v||[v|| > co } where

v = (v, -,0,),and K; = c;lg‘l(ca). Moreover we define fjk(O) to be the value of

2'2 when 7 = 0. It turns out that we have the following Cornish -Fisher expansion

for é,:
o = (L4 Bin~ )+ 0,(n" %),
where
B =K1{ L(&55(0) + 511611)/ H,(v;)¢(v)dv
+ (el 1 3 [ Haw)oo)ds
+ (567 + ;5 &) / Hy(v; ) Hz(vi )p(v)dv

Dji#k

72§”J ]“/ He(v;)¢(v)dv

+ (12‘$“k 0+ Jkk J“)/ Hz(”j)H4(vk)¢(v)dv}.

Ditk

To develop an Edgeworth expansion for the power of the bootstrap test, we

define
Fy(z,7) = / {511 v; + L&¥(vjvp — %) + L LM Ha(vy, v, 01)}p(v)dv (5.3.14)
o,
and

Fy(z,7) = / {snm + 56z + 6.8 (v v — 874)}$(v)dv

D,

+/D( (5635 + 5€1. k51 Ha(vs, v, v1)(v)dv
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+/ 1 kaIm + = k“cklm+ 5 SImYH 4 (05, vk, 1,V )(v)dv,
+ / 112 g'kE:ISTpHgHmP(”j,”k,vz,’vm , Vp)d(v)dv

1‘

1 Jkl mpq yiklmp d

+ 631 Hﬁ (vj,vk’vl’vm’vp’vq)¢(v) v.
(f-)

Now we are able to give an Edgeworth expansion for the distribution of S7(7)S,(7),

in the following theorem.

Theorem 5.3.2 Assume condition (5.2.1). Then for any real z,
P{ST(r)5(r) > 2} = PG (Il > 2} + Fa(z,7) 0™ ¥ + Fy(z,7)n™" + O(n™ %),

We do not give the proof of Theorem 5.3.2 here, since it may be derived straight

forwardly from (5.3.12), (5.3.13) and Theorem 1.3.1.

From Theorem 5.3.2 and using the delta method, we obtain the following ex-

pansion for the power of the bootstrap test ¢,:

pow(ds;7) = P(STS > é,) (5.3.15)

= P{x;(I7l) > ea} + FaleaiT)n™ % + {Fa(ca,7) = rgpr (ea)}n™ ! + O(n™ ).

From (5.3.13) and (5.3.14)

Fy(cq;T) = —/ { Zalkk gy + —a’“ "(vjvp —867%) + %a"“Hg,('oj,vk,v,)}qS(v)d'v.
Dr(ca)

(5.3.16)

From the above formula and (5.3.8) we see that the powers of the empirical likeli-

hood and bootstrap tests have different second-order terms.

5.4. Power Comparisons

In this section we use the power expansions of the empirical likelihood and
bootstrap tests developed in the previous section, to compare the powers of these
two tests. Two rules are proposed for choosing practically the more powerful test.

One is for the univariate case, another is for the bivariate case.
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From (5.3.7) and (5.3.15) we know that both ¢.. and ¢, have the same first
order term P{x2(||7||) > ca} in their power functions. Thus, a comparison should
be made of higher-order terms. However, we shall only compare the second-order
terms. The reason is that when the sample size n is large enough, the difference in
the power of the two tests is dominated by the difference between the second order

terms E3(cqa;7) and F3(cq;7). From (5.3.8) and (5.3.16) we have

Ej(ca;T) = / {Gad'™rlr™ — 2o %) v; + £ o F ! (vjve — 67 ) }B(v)do,
D,(ca)

FylcasT) = — {2ai* v; + Lai¥ir!(v;0, — 67%) + %aj“H3(vj,vk,v,)}¢(v)dv.
Dr(cu)

5.4.1 The Univariate Case

For the univariate case (i.e. p = 1), put w; = \/co — T, w2 = /o + T and

az = a'''. Then, (5.3.8) and (5.3.16) have the following forms:

Ey(ca;T) = $as[(2r? — 1){¢(w1) — $(w32)} + m{wid(w:1) + wad(ws)}],
Fi(ca;T) = sas—{g(w1) — ¢(w3)} = 37{wi(w1) + wad(w2)}
-2 {wig(wi) — wig(ws)}].
Thus we obtain,
Es(ca;T) = Falca;7) = paa[27? {$(w1) — ¢(w3)} + 47 {wid(w1) + wadp(w2)}
+ 2 {wig(w1) — wi¢(ws)}]
= 3as {(T + w1)? $(w1) — (1 — w;)” $(w2)}
= asea {#(w1) — $(w2)}.
Since ¢(w;) — ¢p(w,) is positive when 7 > 0, and negative when 7 < 0, we obtain

>0, ifazt > 0;

Ey(ca;T) — Fa(ca;T) { < 0, otherwise
, .

(5.4.1)

From (5.4.1) we see that in the univariate case the relative powerfulness of the two
tests depends on whether the skewness parameters @ and 7 have identical sign. If

a and 7 have identical sign, the empirical likelihood test is more powerful; and vice
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visa if @ and 7 have different signs. Since a3 is usually unknown, we may estimate
it by its sample version é&3. Now we establish the following rule for the univariate

case, which suggests when to use the empirical likelihood test and when to use the

bootstrap test.

The Univariate Rule When the sample size is reasonably large, we may choose

the more powerful test between the empirical likelihood and bootstrap tests by the

following rule:
use the empirical likelihood test, if Gz > 0;
use any of the two tests, if asT = 0;
use the bootstrap test, if a3 T < 0.

5.4.2 The Bivariate Case

For the bivariate case (i.e. p = 2) we write 7 = (71,72) and define

Li(7) :/ v ¢(v)dv, L(T) =/ vap(v)dv, I;,(7) =/ v1v2¢(v)dv,

D,(z) D,.(z) D, (z)
Li(r) = / (v — 1) p(v)dv, Ly(r) = / (v —1)¢(v)dv,
: D,(z) D,(z)
hii(r) = /D ) )(”f —3v1)¢(v)dv, Liz(r) = /v ( )("’f — 1)vy¢(v)dv,
Lay(7) = ‘/1; ( )'vl(vg — 1D)¢(v)dv, Laa(r) = /D ( )(vg — 3v2)é(v)dv.

We have from (5.3.8) and (5.3.16) that
Eg(ca;’r) = 0!111 {%(2 7'12 —_ 1)J1 (T) + %TIJll(T)} + 0222 {%(2 7'22 - l)Jz(T) + é—Tszz(T)
+ a't? {§T1T2J1(7‘) + (31;7'12 - %)Jz(T) + %Tan(T) + é‘ﬁ J12(7')}

+ a'?? {é(2 Ty —1)J1(r) + %TszJz(T) + %T1J22(7') + %Tz Ji2(7)}

and
Fy(ca;) =o' {=2Ji(7) — 27 J1a(7) = 3 J111(7)}

+a®? {=L Uy (1) — L1y Jaa(7) = L Jaaa(7)}
+ all? {—%Jz(T) — %72 Jir(r) =1 Jia(7) — J112(T)}

+ al?? {-%J1(T) - ;_7-1 Jaa(T) — 72 J12(T) — J122(7)}
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Therefore,

Ey(ca;T) — Fa(ca;7) = o't Jin () + a't? Ji2(7) + a'?? Ji22(7) + a??? Ja22(T),

(5.4.2)
where
Ji11(7) =§(Tf + 1) I(m)+ %7'1 Li(m) + %Inl(T),
J222(7) ‘_‘i("'z2 + 1) L(7) + %7'2 Ly(T) + %Izzz("), (5.4.3)

Ji12(7) =§T17'2 L(T)+ %(7’12 +1)L(r)+ %7'2 Liy(m)+ %TI Lo(7) + Lao(7),

J12a(T) =:1,‘(T22 + 1) L(r)+ §T17'2 L + %Tl DLy(7) + %Tz Lio(7) + Liaa(7).

Notice from (5.4.3) that Ji31(7), J112(7), J122(7) and Jz22(7) only depend on 7

and not otherwise on the underlying distributions. All of them can be calculated

numerically for each given 7 = (1, 73).

To find out the sign of Ey(cq;7) — Fa(ca;7) given in (5.4.2), we also estimate

111 112 12 A122

o'l all? o122 3nd a??? by their sample versions a''!, &''?, 4'?2 and 42?2, re-

spectively. Then we define an estimator of E3(cq;7) — Fa(cy;7), which is

{Es(ca;T) — Fa(ca; T)}A= ettt Ji11(T) + a't? Ji2(7) + a'?? Jiz22(T) + a??? J222(7).

Now we are able to give the following rule for choosing a test for the bivariate case.

The Bivariate Rule When the sample size is reasonably large, we may choose
the more powerful test between the empirical likelihood and bootstrap tests by the

following rule:

use any of the two tests, if {Es(co;T) — Fz(ca;‘r)}’\z 0;

{{ use the empirical likelihood test, if {E3(cq;T) — Fz(ca;r)}'\> 0;
U use the bootstrap test, if {E2(ca;T) —Fz(ca;r)f< 0.

Remark 1 For the sake of conciseness, we shall not develop rules for cases where

p = 3 in this thesis. However, one may develop some rules in the same way as for

N
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the case p = 2 by employing general formulae for E;(c,;7) and Fa(cq;7) given in

(5.3.8) and (5.3.16).

Remark 2 We must emphasise that the above rules are based on the large sample
properties of the tests. However, they do give us some indication of what is really

going on even when the sample size is not too large.

5.5 Simulation Study

In this section we run simulations to see if the theoretical rules developed in
Section 5.4 are consistent with empirical outcomes. We considere two univariate
cases and one bivariate case. The first univariate case is that where the samples are
drawn from N(0,1), the standard normal distribution; we want to test H, : p = 0
against H, : p = n~ Y27, In the second univariate case we drew samples from
Ezp(1.0), the exponential distribution with unit mean, and we tested the hypotheses
H, : p =1 against H, : p = 1 + n~'/27, In the bivariate case, we took random
vectors X; = (X}, X?)fori=1,---,n,

{X«1=yé’+y},
X2=yl+y2,

where y7, y;,y? were drawn independently from the exponential distribution Ezp(1.0).
We chose sample size n = 15 and 30 for each of the univariate case, and n = 30
for the bivariate case. We fixed the level of the tests to be 0.90 in all the cases

considered. The normal and exponential random variables were generated by the

routines of Press el al. (1989).

The power curves of the empirical likelihood and bootstrap tests appearing in
Figure 5.1 were obtained by running 5000 simulations at each of 19 values of 7,
equally spaced within the interval (-4.5, 4.5). When calculating the power of the
bootstrap test, we generated 499 resamples for each of the 5000 simulated samples.
For the bivariate case, we calculated the powers of the two tests at 225 points of
7 = (11,T2) within the rectangular area (—3.5,3.5) x (—3.5,3.5), based on 5000

simulations and 999 resamples for each simulated sample. A contour plot of the
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difference between power functions of the empirical likelihood and the bootstrap

tests is shown in Figure 5.2.

In the first univariate case we have as = 0 since the random variables were
drawn from N(0,1). According to the Univariate Rule, we can use any one of
the two tests since the powers of the tests should be very same regardless of the
value of 7. ri‘his is just what we see from parts (a) and (b) of Figure 5.1. The
underlying reason for this similarity is that a3 = 0 makes both E, and F, vanish. |

Consequently, the difference between the powers of the empirical likelihood and the

bootstrap tests is of order n~! -1/2 For the second univariate case

, rather than n
we know that a3 = 2. So the Univariate Rule predicts that the empiriéal likeli-
hood test is more (less) powerful than the bootstrap test if 7 < 0 (7 > 0). This
is again just what parts (c¢) and (d) of Figure 5.1 try to tell us. Notice that when
T € (0.5,3.5), the empirical likelihood test is about 20 per cents more powerful than
the bootstrap test. However, when sample size is n = 15, which is srﬁall, we observe
in the normal case that the empirical likelihood test is marginally more powerful
than the bootstrap test over all values of 7. At meanwhile, in the exponential case
the empirical likelihood performs similarly with the bootstrap test in the range of
T < 0, where the bootstrap tests should perform better. This may be due to the
fact that the bootstrap test has to use to an explicit variance estimate, which can
be very unreliable when the sample size is small, whereas the empirical likelihood

test implicitly uses the true variance.

For the bivariate case, it can be shown that a!!! = a??? = 2(a+b)® +2(a® +b%)
and a''? = a!?? = 2ab(a + b) + 2(a + b), where @ = 0.5(1 + 1/1/3) and b =
0.5(—1+ 1/\/5) . After numerically calculating Jy11,J112, J122 and Jaz2, it can be

shown that

20 ifr 4+ 71 20

Ez(c“;T)"F’(c“;T){ <0 if7+m<0.

So the Bivariate Rule would suggest using the empirical likelihood test when 7; +

T, > 0, using the bootstrap test when 7, + 72 < 0, and using either of the two tests -
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if 1 + 72 = 0. In Figure 5.2, we give a contour plot of pow(dec) — pow(¢s), which

is very consistent with the prediction made from the Bivariate Rule.

Figure 5.1: The graphs depict powers curves of empirical likelihood test (solid
curves) and Bootstrap test (dashed curves) as functions of 7. In case (a) and (b) the

samples were generated from N(0,1), we tested H, : u = 0; against Hy, : p=n'/2 7.
In case (c) and (d) the sample were generated from Exzp(1.00), we tested H, : p = 1;

against H, : p =1+ n~'/2 7, The level of the test was 0.90 and the sample size
n=151n (a) (c¢) and n = 30 in (b) (d).

(@) N(0,1), n=15 (b) N(0,1), n=30

POWER
06 08 1.0

0.4

0.2

(e) Exp(1 .OO), n=15 (d) Exp(1.00), n=30

1.0

POWER
04 06 08

‘0.2
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Figure 5.2: Contour plot of the difference between the powers of empirical
likelihood and bootstrap tests from 5,000 simulation. The random samples were
(v? + y},y? + y?) where y! 1 <1 < 3 were drawn independently from Ezp(1.0).
We tested H, : u = (2,2)7 against H,, : u = (2,2)7 + n"1/22Y2(1,12)7, where
£(1,1) = £(2,2) = 2 and ¥(1,2) = £(2,1) = 1. The level of the test was 0.90 and
the sample size n = 30.

T
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5.6 Proof
In this section we give the proof of Theorem 5.3.1.

Theorem 5.3.1 Assume condition (5.2.1). Then, for any z > 0,
P{t(p—n"38Y27) >z} = P{XC(ITIl) > z}+ Ex(2,7) 0"~ T4+ Es(z,7)n"1+0(n” 7).

Proof: Define
Ov)=14+n"> -{kn v; + l"’11(”.1 v —85)}+ "‘—l{kn"’J
+ (k35 + K kE ) (vioe — 87F) + (GRIG + SR RS Ha(v;, 00, 01)
+ k;';k Hay(vj,v5,v1,0m)},

where the k’s are given by (5.3.4). From (5.3.3) and (5.3.4), a formal Edgeworth

expansion for the distribution function of n¥ R() can be constructed as follows,

P(n*? R(t) < z) = / I(v) p(v)dv + O(n—%

- 00

). (5.3.6)

Accepting that expansion (5.3.6) may be justified, we establish an Edgeworth ex-
pansion for the distribution of £(u — n~F£'/27) as follows,
P{t(p —n~33Y%7r) > 2}
=P(nRTR>z)+0(n" %) = / ( )H(v)¢(v)dv +0(n"7)
, D, (z
= P{;(I7) > &} + Ea(e,m)n ¥ + Ea(z,m)n™" + 0(n” %),

where E,(z,7) and E;(z,7) are given in (5.3.5).

It remains to check that expansion (5.3.6) is valid. Since
ﬁ: (Al,"',AP,All,"‘,APP,Alll’---,APPP)T’

We see that U is the mean of i.i.d. random vectors with mean 0, and there exists
a smooth function h such that R(r) = h(U). Thus, we can justify the expansion

(5.3.6) by using Theorem 1.3.2 under condition (5.2.1). Therefore the theorem is

proved. o
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Appendix 5 Calculations of Cumulants

In this appendix we present our calculations of cumulants of n¥ R(7) and

n¥ §(7) respectively.
Appendix 5.1 Cumulants of n% R(7)

Let k"7 denote the joint I’th order cumulant of n¥ R(7). In this part of the

appendix, we present the calculations of k{"""j’ ’s. Recall that
R(7) = R1(7) + Ra(7) + Rs(7),
where
Ri(r) =(A+n"37),
Ri(r) = — FAR(A+ n=air)F 4 Ladt(A+ i) (A + na7),
R‘;(‘r) = (—%‘r"rkn_1 + g—AﬂA“ — ;—Tj AF[2]n~ %)(A +n- %‘r)'B (5.4.1)
+ {;—(Aj“ +n” ;"rjﬁ“[3]) - %ajk’" Alm WA+ n~ ir)j(A 4+ n- %T)k

+ (2aikrgimn — Lofkimy(A 4 n=3r)F (A4 n”57) (A + n™5T)™.

Put
R} = A,
Ri(r)= — LA (A 4+ n37)F 4 Lad¥ (AP AT 4 n 578 AN2)), (5.4.2)
Ri(r)= - gt AR 4 2AT AR (A4 nT i)Y — i AF[2) (A + n=37r)nTT)
+ L(AF 4 - T 6R3]) (A AT+ iR AN[2]n ) + LA rhplpod
— SaikmAlm (A 4 07 37) (A + nm37)
+ (3ai*malmn — ia"“”‘ YA+ n~ %T)"(A +n” §T)'(A +n” fr)'",
and

Al = tip=3 + %aj“ rErin-1t 4 {—;—Tj rkrk 4 ;—(Tj 6’”)[3]1"c T'}n" 2,

It is clear that

Ri(t) = A + RI(r),
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where

B (r) = B} + Ry(7) + Ry(7).
Let I::f"""j’ denote the joint I’th order cumulants of n3R. Since

it _ { ny A + Z:{x,n.,jl, ifl=1;
: =

nre 5.A.3
kv, if1>2, (5.4.9)

and I‘;:{"""j' are more easily calculated than k{"’"’j', we shall directly calculate
IE{""""" and get k{""”j' via (5.A.3). For the cases I > 5, using the results given by

James and Mayne (1962), we have
o 3
Kot = 0(n” ), forl > 5. (5.4.4)

So in the following we only give calculations of I::{"""j' for 1 =1,2,3 and 4.

We start by computing the first order cumulants I::i of n R(T) for j =1,---,p.

Since

E(Afim Y = 0,

E(Ai'm’."‘l Ail"‘jMa All“'l'ns) _ O(n_g)
for any integers m, m;, m, and ms larger than 1, we have from (5.A.2) that
E(R) =0,

E{R}(r)}

— %E(Ajk AF 4 ;_ajklE(Ak AY)

- ;_ajkk nt 4 %ajklé‘kln—l

P %ajkk n-!
and
E{Ri(r)} = SE(AT'A*)r* n=5 — LE{(r7AF)[2] A*}n" %
+ LE{ATF (r* AY[2]} n3 + LrigH 3] E(AF A')nm
— %a”‘"‘E{A’”‘ (A% )[2] n-%

+ (%a”"a'"‘" — ia-"""’")E(A'c At r™[3]) n=% + O(n~?)
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3
~ 2

. 3
= 3(aH — ity Tk T2 — L (7 §kE 4 rE §ikYnT 2

3
T2

3
+ L(af*t ok 4 ad¥k plyp= 2 4 L(rd §41)[3] 64 0”2

— %ajkm (amll Tk + akl‘m Tl)n- Y

. . 3
+ (%ajknalmn - %ajklm)(,rk 6lm[3]) n- 2
+0(n™?)

3
T ikl K 1l 5\, i —3
_24a T +( Gp 24)7' n
4 7 1 5kl I 3
+ (2ai*ralmn — Lod*myrk pl e T

3
2

+ 0(n™?).

_ 2 jkm oml k1 _jkm _klm _Iy, -
+(—Fa"™ma™ L S et )N

Thus,

EH=Ains 4+ = Ala¥ + E{RI(r)}n3

1

Lo kb p=d 4 T Gkl k =1 (L, 5\iip-1
st nms 4+ Zaltlirtg + ( s P 24)1'71,

—+

(%a;’knalmn — iaﬂclm)rk ,rI rm n—l

+ (=& aftm qmll pk o L gikm gEim plyp=1 1 O(n=2), (5.4.5)

Next we calculate l::gk for any 1 < j,k < p. Notice that
k" =n (BRI} + E{RI B} (n)}(2] + E{R\ B3 (n)}2]
+ E{R}(r)R}(r)} + E{R}(r)R}(r)}(2] + E{R}(r)R5(7)}

— E{R]} E{R}}]. (5.4.6)

In the following we compute each term on the right-hand side of (5.A.6), ob-
taining
E(R] R¥) = E(A7 A*) = 6% n™1,
E{R RY(1)} = —LE{A/ A*" (A+n"37)
+La*™ E{ATATA™ + AT (r' A [2])n" 7}
= — L+ {(*" = §*)n2 4 oIH! T'n—%}

+ 2ok {4 (r1 6™ 4§}

W

] -

_ L ikl _L gkl | Lgik 4 L jim o kimy, -2
=za® a2 4 (=5 + S+ 3T @),
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E{R,Ri(T)} = —Lr* T E(A AYn "2 + 2E{AT AM A™ (A 4+ n~77)"}

—LE{AT (rFARD(A+ 0 7))+ Lamtrirm E(AT AR

+ L E[A7 {AM™ 403 (6 BD}{AIA™ 4 (77 A2]))]

— 3oitm E{AT A™ (A+n~37) (A+n~57))

+ (Lakingmen — Lokimp)

X E{AV (A4 n"5r) (A+n 5 1)" (A+n 5 7)P} + O(n"%)

- (%ajkmm _ g_ajm Sl gml %ajmlakml _ 71_2ajkm a"‘”)n“2

+ (%Tj r* 4+ %6” il — %aj“m ‘r'r"‘)n"2

) X 1
+ (%ajmn afin Fln + %alk" almn ! 7-"')17,"2 + O(n‘ 2)

and

E{R)(T)RE(r)} = LE{A" (A+n 5r) A" (A4 n F1)"} = Labmn

X

E{A"(A+n 57) A™ A" + o~ 5 (+™ A[2]) A7 (A + n~ 3 7)'}
+ Lai? abmr E[{A AP + 0= 3 (11 AP[2])} {A™ A" + 05 (7™ A [2])}]

1 jkmm A _imm kU 7 _iml kml _ 1 gim gkl ¢ml -2
(3@ + 55 a 3™ a $8m & ™)

+ (:_ajklm . . i_Tj ko %ajln ofmn 1 Tm)n—2 + O(n'%).
Also it is easy to show that
E{Ry(1)R;(r)} = O(n™%) and E{R}(r)R5(r)} = O(n™ 7).
Thus, substituting the above formulae into (5.A.6), and using the earlier result of
. ) 3
E(R)= —za** n=1 + O(n™ 2)
and (5.A.3), we end up with

ik _ ¢jk L gkl 1, -1 Lgik 001 4 5 _jk)y,—1
ky =8% + ;0 1t'n i+ (38 T T ST )R

1 jkmm _ 1 _jml _kml _ 1 _jikm _mll -1
+ (70 ;0™ s ™ a™)n

+ (_éa]mn aklm TI ™+ %a;’kn almn ! Tm),n—l

s

- %a"""‘ rhrma~! 4 0(n”

). (5.4.7)
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By the definition,

KM =03 [E{ (1) B*(r) B'(r)} — B{R (1)} E{R* () R'()}[3]
+ 2 E{R (1)} E{R*(r)} E{&'(")}]
=n2 [B(R] B B)) + E{R)(r) B} B)i3)
+ E{R}(r) R} R{}[3] + E{R] R5(r) Ry(n)[3]}
— E{R}(r)} E{R} R{}(3] — E{R}(7)} E{R} R{}3]
— B{Ry(r)} E{R} By}l + O(n™ ).  (5.48)
After some algebra we may show that
E(RSRFR)) = E(AT AF A" = o2
and
E{R)(T)R* R} = — LE{A’™ (A+ n 3 7)™ A* A}}
+Laimn E{A™ A™ AF A 4 05 (7™ A”[2]) A* A"}
=(=faimm 68 — fad*)n?
+ {—L(ad¥m —§im §H)rm 4 Lgimn qkin pm Y= §
+0(n™°).
Notice that

E(Ai‘mi"‘l Ajl"'jmg All""ma Ah,...h,,.4 Aql..-qms)___o(n—s)

for any integers m; > 1,1 =1,---,5. Hence,
E{R}(r) R} R}
=3 E(AI" A" AF A1~ 5 — LE{(rF A™[2]) A* A A™ Y03
+ L(r7 6™ [3]) E(A* A'A™ A™)n~ 7 + LE{AI™ AR AT (™ AR[2]) )" s
— Laimn E{A™P A A (P A™[2))}
+ (2aitralmn — Loikimy BAE Al (A™ A" 7P[3])}n" 5

+ (g_ajknalmn _ i_ajklm)ékl B ] + O(n"3)
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5 -3

= L gimnn gkl .m 'I‘I,_F—(&-I- 13 .j gkl -%_i_ %(6jk1.l+6jl7.k)n—;

24
. . 5
%aﬂclm ™ n —— T+ __(a]km Imn + aJlm akmn)Tn n- 3
3 i -
_ _lzs_ajmn aPfPn 6kl -3 _ %a]mn aklm P no 3

+ Ilga""" aP™n §kl P gy -3 + O(n'a).
Moreover,
E{R] R5(r) Ry(7)}
=LE{A A AT (A+n )" (A+n3T)"
—Lamn BlAT AFP (A + nm5T)P{A™ A" + 05 (7™ An[2])}]
—Lakmn B[AT AP (A4 n7r)P{A™ A" + n~ 7 (™ A™[2])}]
+ Laktr oimn B[AT{A" AP 4 0~ 5 (72 AP[2])} {A™ A" + o7 (7™ AR [2])}]
=LE{A7 A A A™ )T 5 4 LE{AT ARr A AR ot d
— Latmn E{AF A*P (17 A™ A”[3])} — o*™ [E{4T AP (rP A™ A3} no}
+ Lakhe gimn [E{AF A™ A" (vh AP[2])} + E{AT AP AP (r™ A"[2])} n™ 5
+0(n"?%)
— (%aj-klp _ i,rk 6,1'1 _ i_,,.l 6jk _ 31_6ajkp almm P — 5%0."“? akmm P
— ;—éaj"'" alrm™ P %a””‘ akerm T”)n‘% + 0(n~3).

Furthermore, from the earlier calculation we have

E{Ri(T)}E(R* R}) = Laim™m g+ n-2
E{Ry(n)} E(R} R}) = szod™ ¥ rmn 5 4 (=fp—gp) 7/ 64 0%

+ (_Laj@n a™PP Tn%ajmn a™nP Tp)6“ n- % + O(n—3)

and

E{Ry(1)} E{R} RY(r)} = —L oP? a*'™ 7™ n=% 4+ O(n"2).
Substituting the above results into (5.A.8), we have

jkl _ 1 _jkim _m 5 _jkm . Imn _n
ky =(—7a ™+ a a T

3
5 . 5 . _ _2
+ 3 a]lm akmn " + gaklm almn T")’n 1 + O(n 2

). (5.4.9)
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To calculate k3*'™, we split RI(7) and R}(r) as follows:
By(r) = By + RBo(r) and Bo(r) = By, + Ria(7), (5.4.10)

where

Ry = Rj(0), Ry, (1) = =LA rhn-% 4 Lad* (7F A'[2))n 3, R), = R}(0)
and

ﬁéz(r) = —{%Tj F A% 4 %Aj"‘ - %aj'"" Alm pE i} gl
+ 5 (7 M2 (rF A2 a4 S {(rF 6H[3]) A% AT 4 ATM (7F A'2])}nm 3
+ {2 Ak ARk — L (i AF[2]) (A + nm 3 T)E 4 LA (rk AT[2]) 0 %
+ ($atralmn — Laltim) (ot A A 3n=F 4 78 1 AR [3]nt 4l e 0T )

— L qikm Alm (rk Al2])n~ 5. (5.A.11)

Noticing that
. 3
ni E{R (1)} k5™ = O(n"2),

we have

K™ =2 {E(R RF R'R™) - E(R RY) E(R' B™)[3]
— E(R)E(R* R"R™)[4] + 2 E(R') E(R*)E(R' R™)
— 6 E(R’) E(R*) E(R') E(R™)}
=n®[E(R] R} R} RT) + E{R}(7) R} R RT }{4] + E{Ri(r) R} R} RT }[4]
+ E{R}(r) R (r) R} RT }[6] — E(R] R}) E(R; RT)[3]
— E{Rj(r) R}) E(R} R }[12] — E{R(r) R}) E(R} R} }[12]
— E{R}(r) R5(7)} E(R} RT)I6] — E{R] R}(r)} E{R} R} (r)}]

3
+ O0(n™2). (5.4.12)
It may be shown that

(R RY B, RY) — B(R] ) B(RL BY B = (2*'™ — 6 6™ )n™2,  (5.4.13)
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E(R,, RY R\ RT) — E(R3, RY)E(R| RT)[3]

— (_6ajklm + 26]1: 6lm _ %ajkl amnn[4] + %ajkn almn[3])n—3 + O(n—‘l),

and using the third formula in (3.A.1) of Chapter 3,
BURL () B B RD )~ B{R(r) B} GRS 27 )0
= — L{E(A'" 4* A' A™) — E(AI" AV E(A' A™)[8]} " = 3
+ ;ai"? {E(AF A" AT A”)r” — E(A* A" E(A™ A™)r?
+ E(A* A'A™ AP) " — E(A* A")E(A™ AP)m"}n" %
=0(n"%).

Thus

B{R)(r) B} B, R} — E{R}(r) B} B(RL BT )[3) (5.4.14)

= (—G(Ijklm + 26ik 61m _ ;—a"“a"‘""[él] + %ajkn almn[3])n—3 + O(n—§ .

From (5.A.11), we can write

3

Riy(r) = H, n"F 4+ Hyn '+ Hyn™ 2,
where
H, = Z ail‘”imlyjl“'jmz(T)Ail.“iml Adrim, ,
Hy = Z b;l...;ms(T)Al,...Imn and Hj; = Z Cayonm, (7))

and @i, ...i, jyoim, (T)s b1y, (7) and ¢,,...5,, (7) are non-random terms only re-

lated to T.

Using the formulae given in (3.A.1) and noting that R* = A*, we see that

B(H, n™ R Ry D) - B(T ™8 B B(R] A7) = 0(n™H),

E(Hyn™ 'R} Ry RT") — E(Hyn™" RY) E(R; RT)[8] = O(n™")

and

3
2

3 n o~ o~ ~ .y o~
E(Hsn 2R} RY RT)— E(Hsn™ 2 R})E(R} RT)[3] = O(n™*).
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Therefore
E{R},(r) B} B} RY} — B{R},(r) RY} E(R, R7)8] = O(n™%).  (5.4.15)
Thus

E{Ri(r) R} R} R} — E{Ri(r) R*} E(R} RT)[3]
= E(R}, R* R RT") — E(R}, RY) E(R| RT)[3]

={20*" — L(af®" o'™"[3])n"% + O(n™*). (5.4.16)
Notice that

E{R}(r)Ry(r) R} RT} — E{R(r) R5 ()} E(R} RT)
+ E{R}, R5,(7)[2| R} RT} — E{R}, R, (r)}2] E(R} RT)

+ E{R],(r) B3, (r)[2] R} RT } — E{R],(r) R5,(r)}[2] E(R} BT ).(5.4.17)
Using the arguments employed to derive (5.A.15), we may show that
E{R}, RS, (r)[2) By BT} — E{R), B}, (r)}[2] E(R, BT) = O(n™ %),
Note that

E{R},(7) R3,(7)[2] Ry BT} — E{R},(7) B3, (r)}2] E(R) RY)

= L{E(AI™ A*? AT A™) — E(AI" APP)E(A! A™)} 7" 7P n™ !
— Lakre [B{(A7" (77 AT [2]) A A™} — E{(4T" (7 A9 [2])} B(A' A™)] 77 0™
— Ladre [E{(AF (17 A7[2]) A' A} — E{(A*" (17 A7 [2])} E(A' A™)] 77 o™
+ Ladnr gk [E{(r" A7 [2]) (¢ A% [2]) A" A}
— B{(r" A7 [2]) (r* 4" [2))} B(4' 4™)] 0™

= L(ai!n akmp 4 aimn o) on o =3

_ %akpq {(ajln 6mq + ajmn 6lq)1_p + (ajln §me + ajmn 61p)7_q}1.n n—3
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— s (a6 4 ok 61 7P 4 (oMM 67 ot §P) ) e
+ Falrr ke (77 8 4 7P §10) (79 6™ 4 70 6™)
+ (TP 4 TP §mY (1187 4 70 6')} + O(n” )

= %(a""‘ a*mP 4 oimn QFP) 1 P =3 4 O(n” ';L).
Substituting the above results into (5.A.17), obtain that
E{R(r) R5(r) R BT} — E{R}(r) R} (1)} E(R, BT")
= E(R], R}, R} RT) — E(R}, R;,) E(R, RT)
+ 51_6_(ajln akmp + ajmn aklp)Tn TP n-—s + O(n—%)
= (3 ajklm _ 6jk 6lm + ‘ls_ajkl a™nn [3] — g_ajkn almn [3])n—3
+ ;—s(aj'“ afmP 4 aimn k) P =3 4 O(n” 7). (5.A4.18)
Moreover
E{RI RE(}E{R RP (1)} = L a*ma™P P n=3 £ O(n" 7).  (5.4.19)

Substituting (5.A.13), (5.A.14), (5.A.16), (5.A.18) and (5.A.19) into (5.A.12), we

finally obtain that

KE™ = 0(n” 3). (5.4.20)

Thus we see that the results in (5.3.3) follow from (5.A.4), (5.A.5), (5.A.7), (5.A.9)
and (5.A.20).

Appendix 5.2 Cumulants of n7 §(r)

Let f{""j' denote the joint I’th order cumulants of ns S,(7). In this part of

appendix 5 we give calculations of f{""j' ’s. By (5.3.10),
So(r)=(I—LA, + 1A, +2A%)(n7A+ 7). (5.4.21)

where

Ay = (A7F),,, and A, = (47 A%),4,,
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and A = (AY,---, AP).

From (5.A.21), the j’th component of §,(7) has form
§i(r) = n3 {77 ¢ S+ Si(r)+ 8i(m)} (5.4.22)
where

Si=A, Si(r)=-LA*(AF + -5 1F),

Si(r)y=2AT A* (A% + n~ 578y + 2ATF AM (A + 03 7").  (5.4.23)
To calculate {{, we note that

E(§{)=0, E{Sj(r)}=—-}o’** and (5.4.24)

E{Si(m)}=38% " n"2 + (/¥ —7iYri 0~ 4+ O(n” 2).
Thus

€& =n7 E{8i(r)}

=7l —Laitk -3 4 (577 + 2% Yn=1 + O(n™ 2). (5.4.25)
Notice that

&' =nlE(S]ST) + E{S] S5(n)}21+ E{S] S5(r)}2] + E{S}(r) S5(r)}
— E{S? + Si(r) + SI(r)YE{S! + $k(r) + SE(m)}]. (5.A4.26)
Observe that
E(S! 8%y = §Fn-t,
E{$]5;(r)} = —; E{47 A¥ (A + n=5 1)}
3
= —-;—{aj“ t'nT2 4 (afk — §ik)p-2},
E{S]S¥(r)} =L E{A" A* A" (A" + n=5 )} + 2E{A7 A¥ A (A™ 4 n~ % ™)}
— {;_(p_*_ 2)6,71:) + %(ajkll _6jlc + ajlclalmm + ajlm aklm)}n—z

+0(n™ %),
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and ) .
B{Sj(r) $5(r)} = L E{A7 (4 4 n~F 7)) A¥™ (47 + 0=} ™)}

— %(a;’k” _6]k + a]” akmm + a]lm aklm

+ QKM phem i Tk)n—z + O(n"'g)

Substituting the above formulae and (5.A.24) into (5.A.26), we obtain that
€8 = 5t _ ot g1yt
+ {(p+ 2) 6.1"‘ + %ajkl almm + ajlm aklm}n-l

3
+ L@t —ri ) In 4 O(n7 2). (5.4.27)

To calculate &*' we observe that
g4 =n3 [B(S] 5t S1)+ B{S)(r) S} S1}[3] + E{Si(r) 5} 51}(3]
+ E{5] S5(7) S5()}[3] — E{S}(r)} E(S} S})38] — E{S3(r)} E(S] 51)13]
— B{S3(r)} E(s 51)l6]] + O(n™ 2). (5.4.28)
Using (3.A.1) we may show that
E(5] 81 57) = o*'n77,
E{Sj(r)Sf 8} = —LE{AI™ A A" (A™ +u~ 5 ™)}
= —L{(@™™ ¥ 4 207 )02 4 (™ ™ — 79 ¥~} + O(n™?),
E{Si(r)St 5} =L E{4’ A*¥ A" A™ (A™ + n~ 5 1™)}
+ 2E{Ai™ AF AT A (A + 05 )}
=L(ri 6" 38])n % 4 L(aimmn §F o — 1 gk n- 3

+ %(ajkm almn + ajlm akmn)Tn n—% + O(n—S)
and
E{S] $5(r) S}(r)} = L E{47 4™ A (A™ 4 0=} £m) (4" 4 n=F 7))
= L{E(A7 AF™ A™ A™) 1" 4 E(AT AF™ A" A")r™ 0T
+0(n"?)
- ;_{2 ajlclm o Tk 6_7'1 _ Tl&jk + ajkm alﬂn rm

+ a]lm aknn Tm + aJkn almn Tm +a]ln akmn ,,_m},n—2

+ 0(n™?).
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Moreover, using the formulae given in the calculations of E{ and 6:1;" we know that

E{S3(1)} E(S §1) = —} /™™ 6" n"? 4 O(n™?),

B{S3(r)} B(S{ $1) = (577 8" + fodmm 64 r")n~5 4 O(n™?)

and

E{S;(N)}E{S;(r)5; 2]} = ;™™ a*" r" =% 4+ O(n™?).
Substituting the above formulae into (5.A.28), we have

jkl

. 1 . . i
= =20 T 4 (7T 6F 3] + Laikmaimr rm 3 n=t + O(n”2).  (5.4.29)
By our definition,

&5 = n® [E(S] S} S1ST) + E{S{(r) S} S1 ST} (4] + E{Si(r) S} 5157} 4]
+ E{53(7) S5 51 ST }16] — E(S{ S}) E(S1 S7)[3] — E{S}(7) St} E(S; ST)[12]
— E{5}(r) S{} E(S; ST")[12] — E{S}(r) S5 (r)} E(S{ ST")[6]
— E{5}() $1} E{Sa(r)* ST" }[12] — E{S}(r)} E(S} 51 5T) (4]
— E{S53(r)} E(55(7) 81 ST") [12] + 2 E{S](7)} E{S5(7)} E(S] 5T") [6]]

3
+0(n”2). (5.4.30)
Using (3.A.1) agian, we have
E(S] Sy 81 87)— E(S1 S5 E(S! ST)3] = (o™ — 7% 6'™ [3])n~2,

E{5y(r) 5} 5157} — E{S] SY} E(S] S7")[3]
= —;[E{A" (A» + n=31") A* A" A™} — E{47" (A" + n~ 3 ") A*} E(A' A™) [3]]
= —L{E(A" A" A* A" A™} — E(A7" A" AY)E(A'A™)[3]} + O(n~ %

= — 7 (127%™ — 4§75 §'™ [3] + o o*'™ [4] + 40757 o™ [3])n% 4+ O(n™ 7),
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E{S3(r) St $1 57"} — E{S3(7) ST} E(S, 57)[3]

=L[E{A A" (A" + n~F7")AF AT A7}

2

1

—E{A7 A" (A" + n= 7 t") A} E(A' A™)[3]]
+ 2 [E{47? A" (A» + n~ T ") A% AT A™}
— E{A7" A" (A" + n~ 7 ") AR} E(A" A™) [3]}]
=1 {E(47 A" A" A* A" A™) — E(47 A" A A¥) E(A' A™)[3]}
+ 2{E{A4%? A"? A" A*)E(A' A™) — E(A7? A™? A® AP} E(A' A™)[3]}}
+0(n"7)

=(46F ™ 8]+ 30" '™ [3])n 7% + O(n'§
and

E{5}(r) S5 S1 57"} 6] = E{S}(r) 5 (r)} E(5; 57)I6]
— E{S}(r) S} E{S;(7) ST (r)}{12]
= L[E{Ai" A¥ (A" + n= 517 (AP + n” T 7P) AT A}
— E{AT™ A¥ (A® + 0”5 77) (AP + 075 rP)} E(AT A™)] [6]
- iaj’"‘» a'mP P (12)n3
= (3a*!m — §7% 6™ [3] 4 L™ aFm [4] 4 304" o™ [3])n 3 4 O(n” F).
Furthermore, from the calculation of 55’;“ displayed earlier we know that

E{S3(r)} E(Sy S; ST )[4] + E{S3(r)} E{S5(r) §1 ST }[12]

_ ;_ajnn {aklm _ ;_(akpp §im + 2aklm)[3]}[4] n-3 + O(n-§

— (ajnn aklm [4] + _;_ajnn akpp 6Im [6]) n—3 + O('n,'f

and

E{S)(r)} E{S5(r)} E(§{ ST') = L ai"" akrr §m n-3,
Substituting the above results into (5.A.30), we obtain that

3
2

EF™ = (—2a/F1™ 4 4§75 '™ 4] + 47 ™ [3) 0 + O(n72). (5.A.31)
Finally using the results given by James and Mayne (1962),

o 3
&7 =0(Mn"2) for 12>5. (5.4.32)
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In summary of (5.A.25), (5.A.27), (5.A.29), (5.A.31) and (5.A.32), we obtain
(5.3.12) and (5.3.13).
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