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A b s t r a c t

In this thesis we consider using empirical likelihood method for construct ing 

nonparam etr ic  confidence regions (or intervals) and doing test  in wide range of s i tu­

ations. Empirical  likelihood, introduced by Owen (1988, 1990), is a nonparametr ic  

method  of inference with sampling properties  similar to those of the boots trap .  

However, instead of assigning equal probabilities n -1 to all da ta  values, empirical 

likelihood places a rbi t ra ry  probabilities on the da ta  points,  say p, on the i’th da ta  

value. The weights p, are chosen by profiling a mult inomial  likelihood suppor ted  

on the sample,  and empirical likelihood confidence regions are constructed by con­

touring  this mult inomial  likelihood. An at tract ive feature of empirical likelihood is 

t h a t  it produces confidence regions whose shapes and orientations are determined 

entirely by the data,  and which have coverage accuracy at least comparable with 

those of boots trap  confidence regions. In Chapter  1 of this thesis we review the con­

cepts of empirical likelihood and its developments.  We also outl ine the notions of 

Edgeworth  expansion which is an im por tan t  tool of s tudying the coverage properties  

of empirical likelihood confidence regions.

However, so far all the work done on empirical likelihood is confined to the so 

called s tandard  case where the paramete r  of interest is a smooth function of means 

and the sample is independent  and identically distr ibuted random vectors. The  main 

motivat ion of this thesis is to establish the theory of empirical likelihood for other  

cases. In chapter  2 we consider construct ing confidence intervals for populat ion 

quanti les ,  which cannot  be represented as a smooth function of means. We show 

tha t  s tandard  empirical likelihood confidence intervals for quantiles are identical 

to sign-test intervals. They have relatively large coverage error , of size n~ b  even 

though they are two-sided intervals. We show tha t  smoothed empirical likelihood 

confidence intervals for quantiles have coverage error  of order n - 1 , and may be
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Bar t le t t  correct ioned to produce intervals with an error  order of only n ~ 2. Necessary 

and sufficient conditions on the smoothing param eter ,  in order for these sizes of error 

to be at ta ined ,  are derived.

In Chapter  3 we consider the second non-s tandard  case, which is to construct  

empirical  likelihood confidence region for the regression coefficient vector ß  of a 

linear  regression model Y, = X{ß + 6 , , 1 < i < n.  Due to the presence of the fixed 

design points,  the observed random variables are independent  but  not  identically 

d is tr ibu ted.  So it is not the s tandard  independent  and identically distr ibuted  r an ­

dom sample case any more. Empirical likelihood methods  were proposed by Owen 

(1991) for construct ing confidence regions for ß  in the model  (3.1.1). He derived 

a nonparametr ic  version of Wi lks’ theorem, ensuring tha t  empirical likelihood con­

fidence regions for ß  have correct asymptotic  coverages. We show tha t  coverage 

errors  of the empirical likelihood confidence regions for ß  are of order to- 1. Bart let t  

correct ions may be employed to reduce the coverage errors to 0 ( n ~ 2). For pract ical 

implementa t ion  of Bart le t t  correct ion,  we also give an empirical Bar t le t t  correction.

It is not enough to just construct  confidence regions for ß  of a linear regression 

model.  In pract ice,  stat ist icians are often confronted with problems of construct ing 

confidence intervals for a par t icular  regression coefficient or for certain linear com­

binations of ß.  In Chapter  4 we address the above problem under  the simple linear 

regression model: y,- = a0 + b0Xi -f et-, 1 < i < n.  Nonparametr ic  versions of Wilks’ 

theorem are proved for empirical likelihood of the slope param ete r  b0 and mean 

param ete r  y0 = a0 +  b0 x 0 for any Used x 0, which enable us to construct  empirical 

likelihood confidence intervals for these parameters .  We also show tha t  coverage 

errors of these confidence intervals are of order n -1 and can be reduced to order 

n ~ 2 by Bar t let t  correction.

We see tha t  almost  all the work done on empirical likelihood concentrate on 

construct ing confidence regions. After  construct ing an empirical likelihood confi­

dence region, we can derive an empirical likelihood test about  the paramete r  of
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interested by the duali ty between the confidence region and hypothesis  test.  How­

ever, so far little has been done on the aspects of power of empirical likelihood test.  

Surprisingly,  no much has been done for tha t  of a boots trap  test either! The  contr i­

but ion of Chap te r  5 is developing high order expansions for the power function of 

the empirical  likelihood and the boo tst rap  test for a mean against a series of local 

al ternat ives.  A comparison between the empirical likelihood and the boots trap  tests 

for a mean  param ete r  against  a series of local al ternat ive hypotheses is made.  For 

univariate and bivariate cases, pract ical rules are proposed for choosing the more 

powerful test.



7

T ABLES  OF C O N T E N T S

D eclaration 1

Acknowledgements 2

Related publications 3

A b strac t  4

C H A P T E R  O N E
C O N C E P T S  OF E M P I R I C A L  L I KE LI HO O D  

A N D  E D G E W O R T H  E X P A N S I O N S

1.1 In troduction  1

1.2 Concepts of Empirical Likelihood 3

1.3 Edgew orth  Expansions 9

1.3.1 Edgeworth Expansions for i.i.d Case 10

1.3.2 Edgeworth Expansions for a non-i.i.d Case 12

1.3.2 Transform ation of Edgeworth Expansion 13

1.4 Motivation and Sum m ary of Thesis 16

C H A P T E R  T W O
E M P I R I C A L  L IKELI HOOD C O N F I D E N C E  I N T E R VA LS

FOR Q U A N T I L E S

2.1 In troduction  19

2.2 U nsm oothed Empirical Likelihood Confidence Intervals for Q uantiles 20

2.3 Sm oothed Empirical Likelihood Confidence Intervals for Quantiles 23

2.3.1 Notation and Lemmas 24

2.3.2 W ilks’ Theorem and Coverage Accuracy 28

2.3.3 B art le tt  Correction 30

2.4 Simulation Study 33

2.5 Proofs 48

2.5.1 Proof of Lemma 2.3.2 48

2.5.2 Proof of Theorem 2.3.3 49

2.5.3 Proof of Theorem 2.3.4 52



8

2.5.4 P roof of Lem m a 2.3.5 59

2.5.5 P roof of Theorem 2.3.6 61

A ppendix  2 Calculation of C um ulant k t 64

C H A P T E R  T H R E E

O N  T H E  C O V E R A G E  OF E M P I R I C A L  L I K E L I H O O D  

C O N F I D E N C E  R E G I O N S  F O R  L I N E A R  R E G R E S S I O N  M O D E L

3.1 In troduction  66

3.2 W ilks’ Theorem  and Coverage Accuracy 67

3.3 B art le tt  Correction 74

3.4 Simulation Study 77

3.5 Proofs 82

3.5.1 Proof of Lem m a 3.2.1 82

3.5.2 P roof of Theorem 3.3.1 85

3.5.3 Proof of Theorem 3.3.2 85

A ppendix  3 Calculation of cum ulant of n? R  92

C H A P T E R  F O U R
E M P I R I C A L  L I K E L I H O O D  C O N F I D E N C E  I N T E R V A L S  

F O R  L I N E A R  R E G R E S S I O N  C O E F F I C I E N T S

4.1 In troduction  97

4.2 Preliminaries 98

4.3 Em pirical Likelihood Confidence Interval for Slope Param ete r  100

4.3.1 W ilks’ Theorem 101

4.3.2 Coverage Accuracy and B artle tt  Correction 104

4.3 Em pirical Likelihood Confidence Interval for Means 108

4.4.1 W ilks’ Theorem  108

4.4.2 Coverage Accuracy and B art le tt  Correction 112

4.5 Simulation S tudy 114

4.6 Proofs 120

4.6.1 Proof of Theorem 4.3.2 120

4.6.2 Proof of Theorem 4.3.3 121

4.6.3 Proof of Theorem 4.4.2 122



9

Appendix  4 Calculat ions of Cumulants  124

Appendix  4.1 Calculat ion of Cumulants  of n? R b 124

Appendix  4.2 Calculat ion of Cumulants  of n? R Vo 130

C H A P T E R  FI VE
C O M P A R I N G  E M P I R I C A L  LIK E LI HO O D  
A N D  B O O T S T R A P  H Y P O T H E S I S  T E S T S

5.1 In troduct ion 139

5.2 Empirical  Likelihood and Bootstrap Hypothesis  Tests 140

5.2.1 Empirical  Likelihood Tests 141

5.2.2 Bootstrap  Test 142

5.3 Power Expansions 143

5.3.1 Power of (J)ec 144

5.3.2 Power of <f>b 147

5.4 Power Comparisons 150

5.4.1 The  Univariate Case 151

5.4.2 The  Bivariate Case 151

5.5 Simulat ion Study 154

5.6 Proofs 158

Appendix  5 Calculat ions of cumulants  159

Appendix 5.1 Calculat ion of Cumulants  of n? R( t ) 159

Appendix 5.2 Calculat ion of Cumulants  of n? S ( r )  168

R E F E R E N C E S  174



it In Hi Hi

To My Grandmother



ä  rt a, w n Ho
£ « 5  % X , #  fif
ä « ^ tt a *&, 
w & n © £ ®o

The tao that can be said is not the everlasting Tao.

I f  a name can be named, it is not the everlasting Name. 

That which has no name is the origin of heaven and earth 

That which has a name is the Mother of all things

LAO TZU: “Tao Deh Ching”



C H A P T E R  1

C O N C E P T S  OF E M P I R I C A L  LIK E LI HO O D  

A N D  E D G E W O R T H  E X P A N S I O N S

1.1 Introduct ion

The  coming of the computer  age in the last a few decades has deeply changed 

the shapes and the ways of thinking of the centuries old displine called Statistics. 

The  most  notable event was the birth of the boots trap  method  in 1979 by Efron 

(1979) and the following works done in 1980s, leading the boots trap  becoming a 

ma tu re  general stat ist ical  procedure with wide range of applicat ions. Hall (1992) 

gave a full descript ion of the development and theory of the boots trap .  An im por ­

tan t  feature of the boo tst rap  is the idea of “resampl ing” . In the pre-boots trap  era, 

s tat ist icians depended heavily on the Central  Limit Theorem, which gives a normal 

approximation to a stat istic of interest.  However, this approximation only takes 

into account  the first two moments without  taking care of skewness and kurtosis of 

the stat istic,  causing tha t  the accuracy of the approximation is only of first order. 

By generat ing a large number of resamples out  of the original sample in a computer ,  

the boots trap  implicitly corrects skewness and kurtosis during the resampling pro­

cedure. This leads to a more accurate approximation to the distr ibution of the 

statistic.

Empirical likelihood is another  computer  intensive method  int roduced by Owen 

(1988,1990). It constructs  a likelihood function for a paramete r  of interest in a non- 

parametric  sett ing,  and uses the later  to set up confidence regions for tha t  pa ram e­

ter. Empirical  likelihood has sampling properties  s imilar to those of the boots trap.  

However, instead of assigning equal probabilities n~ 1 to all da ta  values, it places ar­

bi t rary probabil it ies on the da ta  points,  say pi on the i ’th da ta  value. The weights,



Pi , are chosen by profiling a mult inomial  likelihood supported on the sample.  E m ­

pirical likelihood confidence regions are constructed by contouring this mult inomial  

likelihood. As mentioned by Owen (1988), the prel iminary idea of empirical likeli­

hood was used by Thom as  and Grunkemeier  (1975) to construct  confidence intervals 

for survival probabil ity.  Those authors  show tha t  the confidence intervals have the 

desired proper ty  of respecting range,  which is not generally held by normal approxi­

mation based methods .  However, Owen was the first to systematically demonst rate 

tha t  the idea has very wide range of applicat ions.

It has been shown tha t  nonparam et r ic  versions of Wilks’ theorem and Bart let t  

correct ion hold true for empirical likelihood in a wide range of s i tuat ions,  akin to 

the usual  param etr ic  likelihood. However, compared with param et r ic  likelihood, 

empirical likelihood is robust  since it is constructed in a way which does not  assume 

the form of the dis tr ibution.  Compared  with the boots trap ,  empirical likelihood 

has several advantages.  Hall and La Scala (1990) have identified the following 

at tr ibu tes:

(1) Empirical  likelihood enable the shape and orientation of a confidence region 

to be determined “automat ica l ly” by the sample,  whereas construct ion of a mul­

t ivariate boots trap  confidence region requires a decision on how the region should 

be shaped and oriented since the bootst rap  itself cannot  provide an answer to any 

of these. It can be very hard to decide whether to use an elliptical or rectangular  

confidence region.

(2) Empirical  likelihood confidence regions are Bar t le t t  correct ionable,  meaning 

tha t  a simple ad jus tm en t  for scale reduces the order of magnitude of coverage error 

from n ~ 1 to n ~ 2, where n denotes sample size. (See DiCiccio, Hall and Romano 

1991.) The boo ts tr ap  confidence region can at ta in  the same order of coverage 

accuracy. However, the boots trap  achieves this at expensive of enormous computer  

hours.

(3) Empirical  likelihood implicitly use the true scale param ete r  to construct
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confidence regions, which consequently avoids the problem of es t imating the scale. 

The  boo ts t rap  depends heavily on a s table est imate of the scale param ete r ,  which 

can be very hard to be obtained especially for cases like correlation coefficient and 

rat io of means.

(4) Empirical  likelihood confidence regions are range respecting,  as was noticed 

by T h o m as  and Grunkemeier (1975). For example,  the empirical likelihood confi­

dence region for a correlation coefficient always lies within interval ( — 1,1). However, 

this proper ty  is not  necessarily preserved by a boots trap  confidence region; consider 

for example  confidence regions constructed using the percentile- t method.

The  basic concepts of empirical likelihood are given in Section 1.2, together 

with some fundamenta l  formulae and expansions used by empirical likelihood. In 

Section 3.1 we display some existing results of Edgeworth expansion,  which will be 

the basic tool used in this thesis to s tudy coverage accuracy and Bar t le t t  correct ion 

of empirical  likelihood confidence region. We provide an outl ines of this thesis in 

Section 1.4

1.2 C o n c e p t s  o f  E m p i r i c a l  l i k e l i h o o d

In this section we describe the basic concept of empirical likelihood. Suppose 

X i , • • •, X n are p-dimensional independent  and identical d ist r ibuted (i.i.d.) random 

vectors from unknown distribution F.  Let 0 = 0(E)  denote some characteris t ic  of 

F , such as mean,  variance etc, for which we want to cons truct  a confidence region 

(or interval) . Write P i , V i  > ’ ' ' -> P n  for nonnegative numbers adding to unity,  and 

6(p)  for the value of 6 when the distribution function F  is replaced by

where I  is the indicator  function.  We can view Fp(x)  as weighted empirical  d is tr ibu­

n

Ep(z)  =  P i  ! { x i <  x ),
i = 1

tion function. For instance if 6 denote the populat ion mean,  tha t  is 9 = f  x d F ( x ) ,

n

i =  1

then
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The empirical likelihood for 9 , evaluated at 9 =  9 i , is defined to be

n

L(9X) = max J J  pt .
0(p)=0i, p .= 1 x

If we impose only one constraint ,  Y  P i = 1, while maximizing n " = 1 P», we get 

Pi = n ~ 1 for i = 1 which gives us the boots trap  est imate 0 = 0 (F )  f° r

where
n

F( x)  = ^_1 /(*,- <  x)
»= l

is the empirical distr ibution function.  Thus ,  we have

L(0) = n ~ n .

Now the empirical log-likelihood ratio , evaluated at 0 = 9X, is defined as

1(6, ) = - 2  log{ 1 ( 9 , ) / ! ( « ) }
n

= - 2  min 5 Z log(n P*)* (1.2.1)
0 ( P ) =  0 i .  I Z  P . =  1 x

It is well-known tha t  under certain regularity conditions, the usual  pa ra m e t ­

ric log-likelihood rat io has the following properties: (1) it converges in distribution 

to Xp5 the chi-square distr ibution with p degrees of freedom, as sample size n ap ­

proaches to infinity; this is Wilks ’ theorem (Wilks 1938); (2) it is Bar t le t t  correctable 

(Bart le t t  1937, Lawley 1956). Wilks’ theorem enable us to construct  confidence re­

gions by looking up the Xp tables, and Bart let t  correct ion can be used to improve 

the coverage accuracy of the confidence region by simple ad jus tment to the mean 

of the log-likelihood rat io statistic.

Do these two properties hold true for the empirical likelihood ? Owen (1988, 

1990) proved a nonparametr ic  version of Wilks’ theorem for empirical likelihood 

of mean.  DiCiccio, Hall and Romano (1991) extended it to the case of a smooth 

function of means and proved the validity of Bar t let t  correction for this general 

case. Owen (1991) established a nonparametric  version of Wilks’ Theorem for the 

regression coefficient vector of a linear regression model.  In the regression case, the
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random vectors involved are independent  but  not identically d istr ibuted.  This is 

due to the presence of the fixed design points.  We should mention here th a t  all 

the results except the regression case listed above were proved under the following 

regulari ty conditions:

(i) E = C o v ( T i ) is positive definite matrix;  (ii) £ | | X 1||a < oo;

(iii) for every positive b, the characterist ic function g of X \  satisfies ^  ^ 2 )

C ra m e r ’s condition sup \g(t)\ < 1, 
ll*ll>*

where 5 = 5 for the mean case and 5 = 15 for the smooth function of means case. 

The  regularity conditions assumed for the regression case are described in Chapter  

3.

In the rest of this section we give some basic formulae and algori thms for the 

case of 0 = /I = f  x d F ( x ) ,  which has been used by previous au thors  and will be 

referenced repeatedly in this thesis for construct ing empirical likelihood confidence 

regions in other situations.

According to (1.2.1), the empirical log-likelihood rat io for 6 = fi, evaluated at

A* = Mi, is
n

^(Mi ) = - 2  min 51  log(n pi).  (1.2.3)
zJ P t x . = ^ 1  > X/ P i = 1 i=1

Using the Lagrange multiplier  method to solve the above optimalizat ion problem 

(1.2.3), it tu rns  out  tha t  the optimal p . ’s have the following form:

1 1 
n 1 -f tT (Xi  — fi) ’

1 <  i <  n,

where t = (C , • • • , tp )T satisfies

(1.2.4)

X j - f i

1 + tT ( X i - p )

Substi tut ing (1.2.4) into (1.2.1) we obtain

n

i ( ß)  -  2 5Z log{l  + tT (Xi  -  jt)}.

(1.2.5)

:= 1
( 1 .2 .6 )



6

Let £  =  C o v (X ! ), Zi — £  1^2( X i — /i) and 2̂  be the j ’th component  of p-dimensional 

vector Zi. Then  using the new standardized variable 2»’s, (1.2.5) and (1.2.6) become

n

% )  = 2 £  /o</{l + A7-^ } .  (1.2.7)
i= 1

where A = (Ax,• • • , Ap)T = £  2 J satisfies

■ £
Zi

1 + AT 2j
=  0 . ( 1 .2 .8 )

Since analyt ic  solution for A in (1.2.8) is not at tainable ,  we have to resort to expan­

sion. Before doing tha t ,  let us first define

a j ' -jk =  E  ( z l 1 • • • z j k ) ,

" (1.2.9)
A*1'"** = n - 1 ^  z \ x • • • z \ k — a j l '"j k .

i= 1

We see a jl "ik is a Ar’th order mult ivariate moment  of Z, and is a A:’th order

central mult ivariate mean of Z j ’s.

Owen (1990) set up an one-term Taylor expansion for l (n):

i{^i) — n A j A j + O p(n 1^2). ( 1 .2 . 10)

Throughout this thesis we use the summation convention th a t  terms with re­

peated indices are to be summed over. From (1.2.10) we are able to prove the 

following nonparametr ic  version of Wi lks’ theorem by assuming condition (i) of 

( 1 .2 .2 ) ,

^ O )  Xp> as n —> 00, (1.2.11)

since y/n A = (A 1, • • •, Ap) converges to A ( 0 , / p ) in distr ibution by the Central  

Limit Theorem, where I p is the p-dimensional identity matrix .  An a-level confidence 

region for fi can be constructed in the following way. First  find from the Xp tables 

the value ca such tha t

P  (Xp < ca) =  o.
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Then  I a = { ß \ £ ( ß )  < ca } is the a-level confidence region for /x, and (1.2.11) 

ensures th a t  it has asymptotical ly correct coverage. To invest igate the coverage 

accuracy of I a , an Edgeworth expansion for the distr ibution function of £(/i) has 

to be developed.  After Taylor expansion,  as has been shown by DiCiccio, Hall and 

Romano (1988), A has the following expansion:

Xj = A j -  A jk A k + a jkl A* A 1 + A jl A kl A k +  A jkl A* A 1

-  a klm A jm A k A 1 -  2 a jkm A,m A k A 1 + 2 a jkn a tmn A k A 1 A m (1.2.12)

- a jk,m Afc A 1 A 1 + 0 p{ n~ 2).

Substi tut ing ( 1.2 .12) into (1.2.13), we obtain

7 i - ^ ( / i )  = A j A j -  A j k A j A k +  § a j k l A j A k A l + A j 1 A k 1 A j A K

+ § A j k l A j A k A l - 2 a j k m A l m A j A kA l + a j k n a , m n A j A k A lA m 

-  ^ a j kl m A j A k A ' A m + Op ( n -  5/ 2). (1.2.13)

A signed root decomposit ion for £(fi) can be derived from (1.2.13), th a t  is,

l ( ß )  = ( n , / 2R T ) ( n 1/2R)  + Op( n - 3/2), (1.2.14)

where R  = R i  + R 2 + R 3 is a p-dimensional vector and Ri = Op (n ^ 2) for l = 

1, 2, 3. Compar ing  terms in (1.2.13) with those in (1.2.14) yields,

R \  = a >,

R i =  - ' - A i k Ak + ± a i k m AkAm and

ß j  _  I  ^ 4 j  m  m k m  _____ —  a  J  k m  A *  m  A k A 1
3  8  3 12

-  a ~ - ’ Aj m A kA l + 1 a j k n a 1 m n A m A k A 1 — ^ a j klm A m A k A 1, 

where R j{ is the j ’th component  of R t . Notice tha t  there exists a smooth  function 

h0 such tha t  R = h 0( U0), where U0 = (A1, • • •, Ap , A 11, • • • App, A 111, • • •, APPP)T is 

a mean of i.i.d. random vectors. So, R  is a smooth function of i.i.d. means. Thus ,  

after calculating joint cumulants  of R,  and using the valid Edgeworth expansion 

developed by Bha t tacha rya  and Ghosh (1978) for this case, it can be shown tha t  

under condition ( 1.2 .2) for any x > 0 ,

P{^(/ i) < x]  = P ( x 2p < x)  -  ß 0 x gp{ x ) n  1 + 0 { n  2),
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where gp is the density of the Xp distr ibution and

ßo = V 1 a j j 1  fy j  k m 
3

j  k m ' j (1.2.15)

This implies tha t

P(/x € I a ) =  a -  ß 0 ca gp(ca ) n  1 +  0 ( n  2),

which means t h a t  the coverage accuracy of the empirical likelihood confidence region 

I Q is of order n ~ 1. We know tha t  in the parametric  case, pa r t  of the coverage error  

of a confidence region constructed by the log-likelihood ratio method is due to the 

mean of the log-likelihood ratio not being equal to p , which is the mean of the Xp 

dis tr ibution.  Bar t le t t  correction can be used to improve the coverage accuracy by 

readjust ing the mean of the log-likelihood ratio. For the case of smooth  function 

of means,  DiCiccio, Hall and Romano (1991) showed tha t  the empirical likelihood 

confidence region is Bar t let t  correctable,  which implies tha t  a simple ad jus tment 

for the mean can reduce the coverage error from order n ~ 1 to order n ~ 2. From 

expansion (1.2.13) the above authors  showed tha t

E { t ( ß ) }  = p ( l  + ß o n - 1) + 0 ( n ~ 2),

where ß 0 is the Bar t let t  factor given by (1.2.15). It can be shown tha t

P { i { p )  < cQ ( l  +  Co«- 1 )} = & + 0 ( n ~  2), (1.2.16)

where Co is ei ther  ß 0 or a root-n consistent est imate of ß 0. From (1.2.16), we can 

correct the confidence region I a by defining

J a  =  { M U M  < Ca ( l  +  Co«"1)},

where (1.2.16) shows tha t  the corrected confidence region I CQ has coverage error  of 

order n~ 2 .
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1.3  E d g e w o r t h  E x p a n s i o n s

From Section 1.2 we see tha t  Edgeworth expansion plays an im por tan t  role for 

determining the coverage accuracy and availability of Bar t le t t  correction for empir ­

ical likelihood confidence regions. So it is worthwhile to devote this section on it. In 

this section we display some existing results on Edgeworth expansions, for example 

as described in Bha t tacha rya  and Rao (1976) and Bha t tacha rya  and Ghosh (1978). 

These results will be used repeatedly in this thesis to derive asymptotic  expansions 

of distr ibutions of the empirical log-likelihood ratio stat istics in various situations. 

In part icula r ,  we are interested in Edgeworth expansions for distr ibutions of smooth 

function of a mean,  where the mean could be an average of ei ther  i.i.d. random 

vectors or independent  but  not  identically distr ibuted  random vectors. Before doing 

this we give some notat ion.

Let F  be the distr ibution function of a random vector X  £ R fc with character ­

istic function p.  If f  | |x| |ad F (x )  < oo, we may have the following Taylor expansion

log{v?(t)} =  X« (*t)v /v! -F o(| | t | |*), as t -> 0, (1.3.1)
M< *

where t = (G,  ••• ,£*) and v = (rq, •••,u*; ) is a nonnegative vector of integers 

with operat ions |v| = X) t v, and ( i t )v = ( i t i ) Vl • • • ( i t k )Vk. The coefficient Xv 

appearing in (1.3.1) is called the u ’th cumulant  of F.  For a given set of Xv •> we 

define polynomials

X/(*) = H
M =  i  V '

for any positive integer /, where z v = z ”1 • • • z vkk for z — (-2q , • • • , z k ) £ R*\ More­

over, we define polynomials Ps(z  : {Xv}) by the following formal equation in a real 

variable u,
OO OO 1 OO ,  v

1 + Ps(z  : {Xt,})u* = 1 + 77 {XZ 7*+;2 -  u } l .
5 = 1

Z! (s +  2)!
/ =  1 *= 1 v '

Let V  = Cov(X) ,  <f>o,v and $ 0,v be the normal density and distr ibution functions

in R fc with zero mean and covariance matr ix  V  respectively, and put  

„ d v1 d Vk
D 4>o,v — (po,v (x) •• * 77777 777“ <t>o,v (x )-( d X ^ (dxky
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We define a function Pr ( —(f)0_v : {xu }) by formally replacing ( i t )v in the polynomial  

Pr (z : {Xt/}) with ( —1 ) ^  D v 4> o,v, tha t  is

Pr(~4>0,v : {Xv}) = P r ( - D  : {Xv})<t>0,V •

Fur thermore ,  let Pr ( — $ 0y  * {Xv }) be the finite signed measure on TLk with density 

Pr(-(f>0>v : {x„})-

1.3.1 E d g e w o r t h  E x p a n s i o n s  for i . i .d.  C ase

Suppose X i , - - * , X n are i.i.d random vectors drawn from distr ibution F  with 

mean p,  covariance matrix V  and characterist ic function <p. Let

n

W  = n - 1/2 £ ( X ,  - m).
* =  1

Then  we have the following theorem due to Esseen (1945) and Bha t tacha rya  (1968):

T h e o r e m  1.3.1 Assume that F  has finite s ’th absolute m om en t  for some integer 

s >  3, and satisfies the C ram er’s condition sup| | t ||>6 |y?(t)| < 1 for any positive b. 

Then,

3 - 2

sup I P(W€ B )  -  £  n - r/2 P r ( -<f o,v : { x ,} ) (B ) |  = o ( r r < ' - 2)/2), (1.3.2)
B6B r=o

where B is any class of  Borel sets satisfying

sup I <f>0tV (v)d v = 0(e ) ,  e I  0, (1.3.3)
B t B  J ( d B ) '

and d B  and  (d B ) e are the boundary o f  B and e-neighborhood o f  d B  respectively.

Let f i , • • •, f m be real-valued Borel measurable functions on R fc , h be a smooth 

real-valued function on R m , and Q, =  ( f i  (X, ), • • • , f m (X,-)) for 1 < i < n.  Consider  

a stat ist ic

T„ = n ' l 2{ h ( Q ) - h ( n q)},

where Q = n ~ l 52 j Qi and p q =  E ( Q i ) .  Clearly Tn is a smooth function of Q. 

Put

dilt...,ik = ( D il • •• D ikh ) ( p q), 1 < * ! , • • • ,  ik < m ,
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as derivative of h, where D ik denotes differentiation with respect to the ’th coor­

dinate.  Furthermore ,  we define

a]  = (<*!,•••, dt ) V ( d l , - - - , d t )T .

Consider the following Taylor expansion of Tn around fiq,

5 — 1

< = n1/2E E (fci ~

k =  1  * 'i

where Q k and [ilqk are the z*fc ’th components of Q and /i? respectively. Using the 

del ta  method we may expect tha t  the Edgeworth expansion of the distr ibution of 

Tn and Tn generally disagree only in terms of order n ~ (-s~ 2^ 2 or smaller, i.e

P(T„ < x )  = P(T„ <  x) +  0(n -< * -2)/2),

since Tn — Tn = op (n~ 2^ 2). Now, the cumulants  of Tn are much easier calculated

than  those of Tn , since Tn is a mult ivariate polynomial in Q — /z9. If Q\  has

sufficiently many moments then,  as shown by James  and Mayne (1962), the j ’th 
/

cumulant  k j n of Tn is given by

kj,n ^ kj,n +  °(n ~^2),

~ / 
where kj n is an “approximate cum ulan t” of Tn , having the form

L _  f  S ’=12 n " /2 bji if j  4- 2;
\<T2, + 1 2 1 : 1  n - ‘' * b 2iif 2,

and bj i ’s depend only on the moments of Z x and on derivatives of h at /i9. The  

characterist ic function of Tn (or Tn ) can be approximated by

T n(t) = exp{«t k1>n +  ^ - ( k 2>n -  er]) +  ~ f "  h.n } e x p ( - o r V / 2 ) .  (1.3.4)
2! v 7!

j = 3

After expanding the first exponential  factor in (1.3.4), we obtain

i  -  2

T n (t) =  exp(—<72^2/2 ){ l  +  n ~r/2 7rr ( ^ ) l  + o(n~{s~ 2)/2),
r =  1
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where 7rr ’s are polynomials whose coefficients do not  depend on n. Then ,  the formal 

Edgeworth expansion n of the distribution of Tn is defined as

V»,n (u)  = J  xl)s<n(v)dv,
— OO

where
«  —  2

1>,,n = {1 + n ~ r/2 wr ( - d / d v ) }  <f>a*(v).
r  =  1

B hat tacha rya  and Ghosh (1978) proved tha t  is a valid Edgeworth expansion

of the distr ibution of Tn . P a r t  of their  results are s tated in the following theorem:

T h e o r e m  1.3.2  Assume that (i) h has continous derivatives up to order s >  3 in 

a neighborhood o f  p q; (ii) E \ Q i \ s is finite; (in) C ram er’s condition holds for Q \ ,  

that is l im su p ^ i^ .^  |E{exp( i  < t ,Q  i > )} |  < 1, where < > denotes the Euclidean 

inner product on R*.  Then,

sup |P (T n € B )  -  f  xfS}n( v ) d v I =  o (n_( ,_2)/2) 
b &b J b

uniformly holds over the class o f  B satisfying (1.3.3).

1.3 .2  E d g e w o r t h  E x p a n s i o n  for a non- i . i .d  case

In this subsection we display result for set t ing up Edgeworth expansion for a 

non-i.i.d case. The  case we consider is tha t  the sample X i , • • ■ , X n are indepen­

dent bu t  not  necessarily identically distr ibuted random vectors in R fc. This is just 

the si tuation of a linear regression model ,  where the presence of the fixed design 

points  makes the response random variables are independent  bu t  not  identically 

distr ibuted.

Let X i , • • •, X n be independent  random vectors of R fc , with mean zero and finite 

s ’th absolute moments  for some integer s >  3 for each X i  1 <  i <  n. Define Vn = 

n ~ l 5D”=1 Cov(Xj) ,  vk<n be the smallest eigenvalues of Vn , and Xj,n average

j ’th cumulan t  of Vn X,- for 1 < i < n where Vn is the inverse of the square 

root matr ix  of Vn . Furthermore ,  pu t  S n = n ~ 1^2 Vn X , .  The following



13

theorem,  as an extension of Theorem 1.3.1, is an direct corollary of Theorem 20.6 

of B ha t tacha rya  and Rao (1976).

T h e o r e m  1.3 .3  Assume that:

(i) V k tn uniformly bounded away from zero; (ii) the average s-th absolute
n

m om ents  n ~ l ^  E(||  X,  ||)* are bounded away from infinity for s >  3;
« =  l

(Hi) for each positive €, lim n -1 ^  /  ||Xi||* = 0; (iv) the (1.3.5)
n_"°° i=i 'V;ll><«1/2

characteristic functions gn o f X n satisfies Cramer’s condition 

lim sup sup \gn (i)|  < 1, for every positive b.
n — oo || <|| > 6

Then

s — 2
sup \P(S„ €  B ) - E  n - r / 2 P r ( - $ 0iv : {xif„} ) (B ) |  =

r=o

over the class o f  B satisfying (1.3.3).

1.3.3  T r a n s fo r m a t io n  o f  E d g e w o r t h  E x p a n s i o n

We show in Theorem 1.3.2 tha t  the Edgeworth expansion for the distribution 

of an i.i.d. mean can be transformed by a smooth function to yield another valid 

Edgeworth expansion.  We also show tha t  this expansion may be calculated from 

the cumulants  obtained by using the del ta me thod,  i.e the cumulants  formally cal­

culated from a Taylor expansion omitt ing terms of higher order.  Skovgaard (1981) 

generalized the above result of Bha t tacha rya  and Ghosh (1978). He demonst rated ,  

using the del ta  method ,  th a t  any (not just  for i.i.d. mean) valid Edgeworth ex­

pansion may be transformed by a sequence (not just  a single smooth function) of 

sufficiently smooth  functions to get another valid Edgeworth expansion.

Consider a stat ist ic Un = (U) , • • • , U*) with zero mean and unit  variance on , 

constructed from a sample of size n. Suppose tha t  for some s > 3, E ( | | f /n ||'’ ) < oo, 

and th a t  there has been a valid Edgeworth expansion of the distr ibution of Un of
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the form

P ( U n E B)  = J  £n du + o(ßStn),

uniformly in B £ B  satisfying (1.3.3), where

5 - 2

 ̂> Pr{ 0̂,/fc • {Xo,n }) (u)) 
r — o

ßs ,n = [sup{ ||Xw ,n ||1/(H_2) | 3 <  |v| <  5 }] '  2 = o( l) ,

and {xv,n •> 3 <  \v\ < s } are the cumulants  of Un . Clearly we have x«,n = 0 for 

|u| =  1, since E ( U n ) = 0. When Un is a normalized sum of independent  and identical 

d ist r ibuted random vectors, we have ß s n = 0 ( n ~ ^ s~ 2^ 2) as Xv,n = 0 ( n ~ ^ v^~2^ 2).

Let {h n } be a sequence of functions mapping into R m for m  <  k.  For each 

n, h n is p-times differentiable at zero (p >  2) and satisfying h n (0) =  0 and the 

Jacobian matr ix  of h n at zero, say D h n (0), is of rank m.  P u t

B n = { D h n (0)} { D h n (0)}T , and f n — B~  1 h n ,

so tha t  f n (Un ) has asymptotic  variance I m . We shall show tha t  under certain 

condit ions on the smoothness of h n , a valid Edgeworth expansion of the distribution 

of f n (Un ) may be established from the approximate  cumulants  of f n (Un ) obtained 

by using the del ta  method.  Let

= ( D il ••• D i , f n ) (0), 1 ii < k.

Taylor expanding f n (Un ) around  zero, we have

p -  l

y . T  E  ( / ! ) - 1 e J j , U'n' ■ ■ ■ U'n‘ .
1 =  1 *1 I

The moments  of Yn are much easier to calculate than those of f n {Un ), since Yn is a 

polynomial  in Un . Let {p^n}, 1 <  \v\ <  q, be the first p’th order cumulants  of Yn , 

computed from the first q ' th order moments of Yn . Notice tha t  the computat ions 

of the first q ' th order moments  of Yn may involve moments  of Un of higher orders



15

than 6, which may not  exist. To solve this problem, we define the formal cumulants  

of Un , say {x*,n}, such tha t

/  X v , n  ) if |v| <  5

L 0 , if \v\ >  s

By the well-known formulae connecting moments and cumulants  we are able to 

define the formal moments  of t/n , which will be used to calculate the moments and 

the cumulan ts  of Yn .

Neglecting the terms at smaller order of ß i>n in r/v n we obta in fjVin, the ap ­

proximate cumulan ts  of Yn , where

V v  ,n  —  i j v  ,n  T

Let Cn be the density of the finite signed measure with characterist ic function 

Cn = exp(i < t , f ) i,n > f)2 tn | |f| |2) E ^ ~ o  Pr(i t  ■ {*/«,*})

where 77! n is an m-dimensional  vector consisting of all f/v n with |u| =  1 , 7)2 ,« is an 

m  X m  ma t r ix  with all fjv n |v| = 2 as its elements,  and < >  denotes the Euclidean 

inner product  of vectors.

Now the problem becomes how to choose q such tha t

sup \ P { f n (Un ) E B }  -  I  ( n (u)du\  = o(/?,,„), (1.3.6)
B € B  b

where B  is defined by (1.3.3). To this end we define, for a > 0,

p(a)  = {(2 + a ) l og ( ß - ' n ) } ' l 2 and € R ‘ | ||t|| <  /.(or)},

and assume the following regularity condition:

(i) f n is p times continously differentiable on H n (a)  and

s u p { | | £ p/ n (f)|| 11 £ H n (a)}  o ( ß , tn)\ (ii) with (1.3.7)

An = sup{( | |D ; / » ( 0 ) | | / j ! ) 1/(j_1) |2 <  j  < p -  1}, we haveAp_1 ± o(ßs<n).
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Now we have the following theorem due to Skovgaard (1981):

T h e o r e m  1.3.4:  Assume condition (1.3.7). Then  = o(ßs n ) and q >  s,

(1.3.6) is true uniformly over all B  £  B.

1.4 M o t i v a t i o n  and S u m m a r y  o f  T h e s i s

Since Owen’s pioneering papers in 1988 and 1990, empirical likelihood has been 

drawing increasing at tention as a nonparametr ic  method of construct ing confidence 

regions and doing tests. However, almost  all theoretical developments of empirical 

likelihood have focussed on the case where the paramete r  of interest is a smooth 

function of means and the sample is i.i.d. It is only in this case tha t  coverage error 

has been shown to be of order n~ 1, reducible to n~ 2 by Bar t let t  correction.  Hall and 

La Scala (1990) gave a survey of developments in this setting.  At the same t ime,  the 

major i ty of published work concentrated on construct ing confidence regions, with 

little at tention being paid to aspects of hypothesis test ing and to power properties  

of the empirical likelihood test.

The  main contributions of this thesis are: (1) developing the high-order theory 

of empirical likelihood in new sett ings,  which include the cases of quantiles and 

regression; (2) calculating the power of empirical likelihood tests.

The  first non-s tandard  case considered in this thesis is tha t  of an empirical like­

lihood confidence interval for a populat ion quantile.  Owen (1988) has noted tha t ,  

when applied to the problem of construct ing confidence intervals for a populat ion 

quanti le (in part icular ,  for the median),  empirical likelihood reproduces precisely the 

so-called sign-test or binomial-method interval.  This  is reassuring,  bu t  it does show 

tha t  in the context of quanti le est imation,  s traight  empirical likelihood has nothing 

to offer over existing techniques.  One of the disadvantages of the sign test method 

is tha t  it is usually unable to deliver confidence intervals with coverage accuracy 

bet ter  than  n~ , even for two-sided intervals. The reason of the poor performance 

is the discreetness of the binomial  distribution,  to which the empirical likelihood
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rat io converges. In Chapter  2 we show tha t  by appropria tely smoothing the em pir ­

ical likelihood, coverage accuracy may be improved from order n ~ lŷ 2 to order n ~ 1. 

We demonst ra te  tha t  this improvement is available for a wide range of choices of 

the smoothing paramete r ,  so tha t  it is not necessary to accurately determine an 

“op t im al” value of the param eter .  Furthermore ,  we show tha t  smoothed empirical 

likelihood is Bar t le t t  correct ionable.  T h a t  is, an empirical correction for scale can 

reduce the size of coverage error  from order n -1 to order n ~ 2.

In Chapte r  3 we consider construct ing a confidence region for the regression 

coefficient vector, say /?, of a linear regression model.  Due to the presence of the 

fixed design points,  the responses of the model are independent  but  not identi­

cally distr ibuted random variables. Owen (1991) proposed using empirical likeli­

hood to construct  confidence region for ß.  He derived a nonparametr ic  version of 

Wilks’ theorem, ensuring th a t  the empirical likelihood confidence regions have cor­

rect asymptot ic  coverage. However, questions regarding the coverage accuracy and 

Bar t le t t  correctabil ity of the confidence region remain to be addressed.  We show in 

Chapte r  3 tha t  the coverage accuracy of an empirical likelihood confidence region 

for the regression coefficient vector is of order of n - 1 , and tha t  Bar t le t t  correction 

can be implemented to improve the coverage accuracy from oder of n -1 to n - 2 . 

We also give an empirical Bar t le t t  factor for pract ical ly implementing  the Bart let t  

correction.

However, it is not  enough to just construct  confidence regions for the regression 

coefficient vector ß.  In pract ice,  stat ist icians are often confronted with problems of 

construct ing confidence intervals for a par t icular  regression coefficient or for certain 

linear combinations of ß . In Chapter  4 we consider construct ing empirical likelihood 

confidence intervals for the slope and means paramete r  of a simple l inear regression 

model,  by proving nonparam et r ic  versions of Wilks’ Theorem for these parameters .  

We also show tha t  the coverage accuracy of confidence intervals is of order n~ 1, and 

tha t  Bar t le t t  correction can be used to further  improve this accuracy.
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After cons truct ing  an empirical likelihood confidence region, we can derive an 

empirical likelihood test for the paramete r  of interest by using the duali ty between 

the confidence region and hypothesis test.  However, so far little has been done on 

aspects of the power of the empirical likelihood test.  And,  surprisingly, little has 

been done for the case of a boots trap test.  The contribution of Chapter  5 is to 

develop high-order expansions for the power function of empirical likelihood and 

boo ts tr ap  tests for a mean against a series of local al ternat ives. A comparison 

between empirical  likelihood and boots trap tests for a mean paramete r ,  against a 

series of local al ternat ive hypotheses is made.  For univariate and bivariate cases, 

pract ical  rules are proposed for choosing the more powerful test.
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C H A P T E R  2

E M P I R I C A L  L I K E L I H O O D  C O N F I D E N C E  

I N T E R V A L S  F O R  Q U A N T I L E S

2.1 I n t r o d u c t i o n

We noted in Chapter  1 tha t  most  work on empirical likelihood has concentrated 

on the case where the paramete r  of interest is a smooth function of means.  In 

this chap ter  we consider construct ing confidence intervals for populat ion  quantiles,  

which cannot  be represented as a smooth function of means.

Owen (1988) has noted tha t ,  when applied to the problem of construct ing con­

fidence intervals for a populat ion quantile (in part icular ,  for the median),  empirical 

likelihood reproduces precisely the so-called sign-test or binomial-method interval. 

This  is reassuring,  but  it does show tha t  in the context of quanti le estimation,  

s traight  empirical  likelihood has nothing to offer over existing techniques.  One 

problem associated with the sign test method is tha t  it is usually unable to creat 

confidence intervals with coverage accuracy bet ter  than order of n -1//2 even for 

two-sided intervals. The  reason for the poor coverage performance of the sign test 

intervals is due to the discreteness of the binomial  distr ibution,  which determines 

the true coverage probability.

Our  aim in this paper is to show th a t  coverage accuracy of an empirical like­

lihood confidence interval for quantiles may be improved from order n~ ä to order 

n - 1 , by appropr ia tely smoothing the empirical likelihood. We demonst ra te  tha t  

this improvement is available for a wide range of choices of the smoothing p a r a m ­

eter, so th a t  it is not  necessary to accurately determine an “op t im al” value of the 

pa ramete r .  Furthermore ,  we show tha t  smoothed empirical likelihood is Bar t let t  

correctable.  T h a t  is, an empirical correction for scale can reduce the size of coverage 

error  from order n~l to order n - 2 .
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We also establish a very general version of Wi lks’ theorem in the context of 

empirical likelihood for quantiles.  This result provides necessary and sufficient con­

ditions on the range within which the smoothing paramete r  must  lie if the asym p­

totic d ist r ibut ion  of the empirical log likelihood ratio stat ist ic is to be (central) 

chi-squared.  Furthermore,  we derive necessary and sufficient conditions on the 

smoothing param ete r  for the error  in the chi-squared approximation to be 

and also for the error  after Bar t let t  correction to be 0 ( n ~ 2). We suggest a par t ic­

ularly simple version of the Bart let t  correction tha t  produces confidence intervals 

with coverage error  o (n_1), al though not quite 0 ( n ~ 2).

Section 2.2 discusses unsmoothed empirical likelihood confidence intervals for 

quantiles . Section 2.3 describes smoothed empirical likelihood methods  for quan ­

tiles, and proves a nonparametr ic  version of Wilks’ theorem. We also study  in tha t  

section the coverage accuracy and Bar t let t  correctabil ity of the confidence intervals 

. A simulat ion study is presented in Section 2.4. All proofs are deferred to Section 

2.5.

2.2  U n s m o o t h e d  E m p i r i c a l  L i k e l i h o o d  C o n f i d e n c e  I n t e r v a l s  for Q u a n t i l e s

Let X i , '  • - , X n be an i.i.d. sample from an unknown distr ibution F  with 

9q = F ~ 1(q) as its unique q’th quantile.  We wish to construct  a confidence interval 

for 9q. Let p — ( p i , • • • , £„ )  with p , ’s being nonnegative numbers adding to unity. 

We define the weighted empirical distribution function of F  as

n

Fp(x)  = E  Pi I { X i  < * ) ,
» =  1

where I  is the indicator  function.  Then,  empirical likelihood for 6q, evaluated at 9 , 

is defined to be
n

L{9)  = sup n  Pi’ (2.2.1)
p : F p ( 9 ) = q  P i =  1 i =  1

If we drop the constraint  Fp(9) = q in (2.2.1), the profile likelihood is maximised by 

taking p, — n -1 for 1 < i < n.  For this choice of p we have 9(p) = 9, the so-called



boots trap  es t imator  of 9. This implies tha t

L(9)  = n ~ n .

The empirical  likelihood rat io is given by

R(0)  = L( 9) / L( 0)  = sup I I  (nPi)•
p : F p ( 9 ) = q  ,-= 1

( 2 .2 .2 )

Let 9(p) be the q' th quantile of the weighted empirical distribution function Fp(x).  

Then  9(p) = inf { x : Fp ( x ) >  q}.  Let us re-index the sample such th a t  X,  =  X ^) ,  

denoting the i ’th largest da ta  value in the sample.  Clearly the range of 9(p) is the 

set of ordered stat is tics { X ^ ) ,  • • •, X (n)}. According to (2.2.2), we have for any

1 <  i <  7i ,

R { X (i)} = L { X w } / L( 0 )  = sup 11 (2.2.3)sup n  n Pi
p : 8 ( p)  = X  ( t ) , P . =  1 i =  1

It is obvious th a t  (2.2.3) can be reformulated as an optimization problem with the 

following form:
n= sup n (nPi),

i = i

sub iect to
( X j = 1 Pj =  1,

E} = i Pj > q,
Pj < q ,

Pj > 0 ,  for 1 <  j  <  n.

Since the objective function Ü x (^ P*) is a concave function of p , and the feasible set

(2.2.4)

1

of p satisfying (2.2.4) is convex, then any local maximum is also a globe max imum.  

Using the Kuhn-Tucker theorem we may show tha t  the optimal p has the following 

form:

q / h  1 < j  < *;
Pj = (1 -  g ) / (n  -  *), i +  1 <  j  < n.

Thus we have

R { X (i)} =  »” ( q / i y {(1 -  q) / ( n  -  (2.2.5)

Some simple calculation reveals tha t  ß { X (n }  is an unimodal  function satisfying

f Ä { * (j)} <  R ( X (i+l)) if i <  [np]-t 
\  R { X (i)} > R ( X (i+1)) i f i > [ n p ] ,
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where [n p) represents  the largest integer not exceeding np.  This enables us to define 

an empirical  likelihood confidence interval for 9q to be

/ ( c )  = { 0 :  £ ( 0 ) > c }  =

where 7q, r 2 are respectively the smallest,  largest integers such tha t

»" ( 9 / 0 ' { ( 1 - ? ) / ( » - 0 } " " ' > c -

According to David (1981, p.15), if F  has a density, the exact coverage probabil ity 

of the confidence interval / ( c )  is given by

P{0, e i ( c ) } = p { x iri)<8,  < x (ri)}

= E ( " )  « * ( 1 - 9 ) — * (2.2.6)
* =  r i

= P ( r 1 <  M  < r2 -  1),

where M  is a binomial  B i ( n , q ) random variable. Formula (2.2.6) implies tha t  the 

empirical likelihood confidence interval for a quanti le is equivalent to tha t  obtained 

by the so-called “sign te s t” . This coverage probabil i ty cannot  rendered closer than 

order n - 1 ^2 to any predetermined nominial coverage level, such as 0.95, no m a t te r  

how the integers rq , r 2 are selected. To appreciate this point ,  notice tha t  due to the 

discreteness of the binomial distr ibution the coverage probabil i ty of 1(c)  given by 

(2.2.6), can take only a finite number  of values. This means tha t  for any c* between 

0 and 1 it is very likely tha t  you cannot  have an exact a  level confidence interval for 

9q. By the DeMoivre-Laplace theorem, we can approximate  a binomial  distr ibution 

by a normal  distribution. In part icular ,  using Kal in in’s result (Johnson and Kotz, 

1969, p.62f.), we have

OO

P ( n  <  M  < r2 -  1) =  $ ( y 2) - $ ( » i )  + E { « « ( 1  - < i ) Y i l 2 Qi ,  (2-2.7)
j= 1

where $  is the s tandard  normal distr ibution function,  Qj ' s  are known function of

uj, y i and y25 where to is the continuity correction which can be assigned arbitrarily

(usually, we choose u  = 0.5), and

7q — ( 1 — u>) — nq rq + (1 — u )  — nq
V i  =  ---------------7" ""  /  — ,  V i  =  — ,  ,  ■ 7— •

V n q (1 — q) V n q (1 — q)
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Thus ,  for any 0 <  a  <  1, by appropriately choosing r x and r 2, we can let

$(t/2) -  $(?/i) = o.

Then pu t  ca = m a x { Jß ( r i ), R ( r^)}, from (2.2.6) amd (2.2.7) we have

P(0,  £  I CJ  = a + { q ( l  - q ) } - , /2 Q i n - i/2 + 0 ( n ~ ' ) .  (2.2.8)

This means  th a t  the empirical likelihood confidence interval for a quanti le has cov­

erage error  no be t te r  than  0 ( n - 1 / 2).

2.3 S m o o t h e d  E m p ir i c a l  L ik e l ih ood  C o n f id e n c e  In terva ls  for Q u an t i l e s

We showed in the previous section tha t  due to the discreteness of the binomial  

di str ibution,  the coverage of the empirical likelihood confidence interval for a quan­

tiles is in error  by a term of size n - 1 / 2. To improve coverage accuracy we construct  

a smoothed empirical likelihood for a quantile in this section, by smoothing the 

weighted empirical distribution function Fp(x).  We show tha t  this smoothed em­

pirical likelihood admits  a nonparam et r ic  version of Wi lks’ theorem, which allows us 

to cons truc t  a confidence interval for 9q by consult ing the x \  tables. Furthermore ,  

we show th a t  by appropriately choosing the smoothing paramete r ,  the coverage 

error  of the smoothed empirical likelihood confidence interval is of order n -1 and 

can be fur ther  reduced to order of n -2 by employing Bar t let t  correct ion.  These are 

significant improvements over the confidence interval obtained by the “sign te s t” .

We divide this section into three parts.  In subsection 2.3.1 we give some no­

tat ion  and lemmas,  and introduce smoothed empirical likelihood. In subsection 

2.3.2 we prove a nonparametr ic  version of Wilks’ theorem for smoothed empirical 

likelihood. In subsection 2.3.3 we establish an Edgeworth expansion for the d is tr ibu­

tion of the smoothed empirical likelihood, which enables us to derive the coverage 

accuracy and Bar t le t t  correctabil ity of smoothed empirical likelihood confidence 

intervals for 9q.
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2.3 .1  N o t a t i o n  and  L e m m a s

In this subsection we give some notat ion and lemmas,  and int roduce smoothed 

empirical likelihood which will be used in the rest parts  of this section. To define 

smoothed empirical likelihood we have to first give some notat ion and concepts of 

kernel smoothing.

Let K  denote an r ’th order kernel, of the type commonly used in nonparam et r ic  

density est imation or regression (e.g. Silverman 1986, p.66ff; Härdle 1990, p . l d l f ) .  

T h a t  is, for some integer r >  2 and cons tant  k ^  0, K  is a function satisfying

r 1 if j  = 0J  u-' K ( u )  du =  ̂0 if 1 <  ji <  r  — 1 (2.3.1)

I k if j  = r.

The case r =  2 is the most common, and there we take K  to be a symmetric p rob­

ability density. Larger values of r produce curve es t imators with smaller  variance. 

Define G ( x ) = I  <x K (y ) dy. In this notat ion we pu t  Gh{%) = G ( x / h ) .  When r = 2 

and K  is a density, G and G h are proper distribution functions.  The  h appearing 

in Gh{x)  is called the “ban d w id th ” or “smoothing pa ram e te r” and satisfies

h —> 0, as n —> oo. (2.3.2)

Let /  be the density function of F  and the i ’th derivative of / .  We assume

tha t

/  and f G - 1) exist in a neighbourhood of 6q and are continuous
(2.3.3)

at 6q; and f ( 0 q ) > 0.

The moments of Gh{0q — X ) are calculated in the following lemma:

L e m m a  2 .3 .1 .  Assume conditions (2.3.1) - (2.3.3), and that the kernel K  is 

bounded and compactly supported. Then

( 0  E { G h(0, - x ) }  = q +  +  o(h ' ) ,

( ” ) E{G"h, + ' (0 q -  X ) }  = q -  (m + \ ) h  f ( 0 q)bm + o(h),



where m is any positive integer and bm — 1^°^ u G m (u) K  (u)  du.

P roof :  We first prove (i). Using integrat ion by parts ,

E { G h(9q -  X ) }  = J  G h(6q - x ) d F ( x )  = -  J  G( u)  d F( 9 q -  h u)
— OO — OO

r  oo

= J F{9q -  h u ) K ( u ) d u .

By Taylor expansion of F( 9 q — h u)  around 9q, and noticing tha t  K  is an r ’th order

kernel,

£ { G * ( 0 ,  -  X ) }  = F ( 6 , ) + (2.3.4)
r  oo

+ ( -hy / r \ J  Ur {/<’- 1)(0,
— OO

- u h u ) -  f (r~ 1)(9q)} K ( u ) d u ,

where u  =  u ( u )  G (0,1) . Since K  is bounded and compactly supported ,  and f (r ^  

is continous at 9q, it may be shown tha t

lim
/ i— o

Ur {/<’• - ‘H#, —  u h u ) f (r~ l ) (9q)} K ( u ) d u  = 0.

Subs ti tu t ing  this into (2.3.4) and noting tha t  F( 9 q) — q we have proved (i).

To prove (ii), we first notice tha t  the conditions of K  being bounded  and 

compactly suppor ted  imply tha t  bm is finite for each positive integer m.  Again 

using integrat ion by parts,

r oo

E{G™ + ' ( » , - X ) }  = j  G™ + 1( e , - X ) d F ( x )
— OO

r oo= -  J  G™ + 1{ u ) d F ( 9 q - h u )
-  OO

r oo

= - ( m +  1) J  F( 9 q — h u)G™ (u) K ( u )  du.  (2.3.5)
— OO

Based on an one-term Taylor expansion of F( 9q — h u )  around 9q and the continuity 

of /  at 9q, we can show from (2.3.5) tha t

£{G™ + 1(0, - X ) }  = q - ( m  + l ) f c / ( 0 , ) 6 m + o(h).

Thus,  (ii) is proved. □
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We define

Wi(0) = Gh(Q — Xi )  — q for 1 <  i <  n,

and p k =  E {wi(6q)k } for k = 1, 2 • • • . Using Lem ma 2.3.1, we have 

( /Xi = c0 hr 4- o(hr ),
{ ^2 = 9 -  <72 + 0 ( h ) ,  (2.3.6)
l /*« = q + E J l J  ( - 1 ) '  ()) ? '+1 + ( - 1 ) ’ q' + 0 (h ) ,  i >  3,

where c0 = ( — l ) r k f ^ r~ l \ 0 q)/r\.

Now we may construct  smoothed empirical likelihood for 0q. We first smooth 

the weighted empirical distr ibution function Fp by defining

n

Fp,k (0) = £  p i G M - X i ) .
i =  1

We see th a t  the smoothing is achieved by replacing the indicator  function I ( X i  <  

0) in Fp with Gh(0 — X {). Replacing the constraint  Fp(0) — q by its smoothed 

counte rpar t  Fp h(0) = q in (2.2.2), and taking the logari thm, we get the smoothed 

empirical  log likelihood ratio for 0q evaluated at 0q = 0 ,

n
i h{0) = inf - 2  5 1  l °g (npi) .

P-Fp,h(0)=<l-,Y1  P . =  l -  t = 1

Using the Lagrange multipl ier  me thod ,  we may prove tha t  the optimal point  occurs 

with pi = n - 1 {l + A(0) Wi (0)}” 1, whence

n
M « )  = 2 £  iog{i + a(«)»,-(«)},

i =  l

where \ (0)  is determined by

n
£  «?,(<?) {1 +  A(0) w. f » ) } - 1 =  0 . (2.3.7)
» '=  1

The solution of equation (2.3.7), A(0), satisfies the following Lemma 2.3.2, 

whose proof is deferred to Section 2.5.

L e m m a  2.3 .2 :  Assume that K  satisfies (2.3.1), and is bounded and compactly 

supported. Then \ ( 0 q) = 0 p(n~ O 2 + hr), where A(0?) is determined by (2.3.7) with

0 = 0q.
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FIG U R E 2.1: Unsm oothed (step function ) via smoothed empirical likelihood ratio 

functions for median based on sample A,  with various choices of bandw idth h: 

(1) h = n -1 /4, (2) h =  n -1 / 2 . (3) h = n -3 /4 and (4) h = n ~ l .

( 1 ) (2)
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Figure 2.1 shows the unsmoothed empirical likelihood ratio function R { X f i ) }  

graphed against  the smoothed empirical likelihood ratio function th{Qq) for a median 

(q = 1/2) ,  based on a random sample

A = {0 .011,0.024,0.055,0.06,0.068,0.313,0.341,0.496,0.506,0.633,  

0.639,0.689,0.70,0.817,1.251,1.271,1.445,1.662,1.678}

genera ted from the \ \  distr ibution.

2.3 .2  W i l k s ’ T h e o r e m  and C o v e r a g e  A c c u r a c y

As pointed out  in Chapter  1, a fundamenta l  result of empirical likelihood is 

tha t ,  like parametr ic  likelihood, it admits  a nonparametr ic  version of Wilks’ the ­

orem. We have mentioned in Chapter  1 tha t  the Wilks’ theorem holds true for 

the case of smooth function of means,  which enables us to construct  an empirical 

likelihood confidence interval by looking up the chi-square tables. For our current 

problem of cons truct ing confidence intervals for a quantile,  we would like to first 

prove the W ilks’ theorem for ih(6q),  which will give us a smoothed empirical likeli­

hood confidence interval with correct asymptotic  coverage. Then  we would like to 

invest igate coverage accuracy and Bar t le t t  correctabil ity of the confidence interval. 

In par t icu la r ,  we wish the order of magnitude  of coverage error  to be of smaller 

order than  n - 1 / 2, which is the order of the coverage error  of unsmoothed  empirical 

likelihood confidence intervals (as shown in Section 2.2). The aim of this subsection 

is to address these problems by giving three theorems (Theorems 2.3.3 - 2.3.5). The  

proofs of these theorems are deferred to Section 2.5.

Our  first result establishes necessary and sufficient conditions on the choice of 

bandw id th ,  h, such tha t  lh{0q) has an asymptotic  x \  distr ibution.

T h e o r e m  2.3.3:  Assume that

K  satisfies (2.3.1), and is bounded and compactly supported; that 

f  and exis t {n a neighbourhood o f 0 q and are continuous  (2.3.8)

at 9q; that f ( 6 q) > 0; and that for some t > 0, n h l —» 0 as n oo.
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Then th (6q) has an asymptotic x \  distribution i f  n h 2r —* 0, and this condition is 

also necessary i f  f ^ r~ 1\ 9 q) ^  0.

Let us explain the implications of condition (2.3.8). The first pa r t  of (2.3.8) 

asks th a t  K  be a kernel of order r. The  requirements tha t  K  be bounded and 

compactly suppor ted  implies tha t  Gh is bounded,  so as to get the result in Lem ma 

2.3.2 which is used to prove Theorem 2.3.2. However, we could obtain the result 

in Theorem 2.3.2 by imposing other similar conditions on the kernel. The  second 

par t  asks th a t  the distr ibution function F  be sufficiently smooth in a neighbour­

hood of 6q; the condition tha t  r continuous derivatives of the targe t  function (here, 

F ) exist is the usual  smoothness assumption imposed when working with an r ’th 

order kernel. Requiring tha t  f ( 9 q) > 0 ensures tha t  the asymptotic  variance of the 

sample quantile is of order n ~ 1. W ithou t  tha t  assumption the order of magnitude 

of variance is str ictly larger than n - 1 , and the asympto tic  theory is quite different. 

Finally, asking th a t  nh* —> 0 as n —► oo ensures tha t  the bandwid th  does not con­

verge to zero too slowly. This is actually a very weak condition on h, since there is 

no restr iction on t.

If K  is a second-order kernel (i.e. r — 2) and f ' ( 9 q) 0 then th{6q) is asym p­

totically x \  if and only if h = o{n~^) .  Such a bandwid th  is of smaller  order of 

magnitude  than tha t  which is usually appropria te  for minimising error of a curve 

est imator;  the la t te r  h is of size n - ®, as shown for example by Silverman (1986, 

p.40ff). When f ^ r~ 1\ 9 q) = 0, it is possible for lh{&q) to have an asymptotic  x \  

distr ibution yet n h 2r to be bounded away from zero.

If (2.3.8) is t rue and we choose the bandwid th  h such tha t  n h 2r —* 0 , then by 

the theorem we can construct  an o-level smoothed empirical likelihood confidence 

interval for 6q as follows. First  find from the x \  tables the value ca such tha t

P ( x l  < ca ) = a.

Then,  I hCa = {9 : t h (9) <  ca } is a smoothed empirical likelihood confidence interval 

with nominal  coverage level o.  However, our objective of smoothing is not  to get a
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result like this. Instead,  we wish to find a suitable range of h such tha t  the coverage 

error  of I hCa is of smaller order than n - 1 / 2, which would show tha t  I hCa has bet ter  

coverage th a t  the unsmoothed interval I Ca given in Section 2.2.

Based on Theorem 2.3.3, we assume tha t

n h 2r —► 0 as n —> oo. (2.3.9)

Clearly (2.3.9) implies (2.3.2). To establish an expansion of Edgeworth type for the 

dis tr ibut ion  function of i h (9q), we assume tha t

n h / l o g n  —> oo, as n —* oo. (2.3.10)

The coverage accuracy of I hCa is discussed in the following theorem:

T h e o r e m  2.3.4:  Assume conditions (2.3.8) - (2.3.10). Then a sufficient condition 

for

P(S,  € / » . . )  =  a +  0 ( » - ‘ ) (2.3.11)

as n —► oo, is that n h r is bounded. This condition is also necessary i f  f ^ r ~ 1\ 0  q) ^  0.

Theorem 2.3.4 implies tha t  the smoothed empirical likelihood confidence in­

terval I hCa has coverage error  of order n -1 if the bandwid th  h is properly chosen 

as recommended by the theorem. This is a significant improvement over the u n ­

smoothed empirical likelihood confidence interval I Cq given in Section 2.2. Notice 

th a t  the boundness of n h r is sufficient for condition (2.3.9) to be true.  If the order 

of the kernel K  is r >  2, we can choose h = 0 { n ~ l ^r ). It is obvious tha t  for such 

h , n h r is bounded and n h / log n —> oo. Theorem 2.3.4 assures tha t  this choice of h 

leads to coverage accuracy of order n~ 1.

2 .3 .3 .  B a r t l e t t  C o r r e c t io n

From the proof of Theorem 2.3.4, which is deferred to Section 2.5, we see tha t  no 

m a t te r  what  the value of ca > 0, the r ight-hand side of (2.3.11) cannot  be rendered 

equal to a  -f o ( n ~ l ) by appropriately choosing h. This means tha t  smoothing 

cannot  give us be t te r  coverage accuracy than 0 ( n - 1 ). To further  improve coverage



31

accuracy we use Bar t le t t  correction.  It is well-known tha t  par t  of the coverage error 

of I hCa is due to the fact tha t  the mean of £h(9q) is not equal to 1, which is the mean 

of the Xi  dis tr ibution .  Bar t le t t  correction is a way to el iminate the approximat ing 

error by rescaling £h(0q) , so tha t  it has correct means. We s ta r t  with calculating 

the expectat ion  of £h(9q), which is given in the following lemma.

L e m m a  2.3.5:  Assume  conditions (2.3.8) and (2.3.9). Then,

E{£h{dq)} = 1  + n ~ 1 ß  + n + o( nh 2r) -f 0 { h 3r + n ~ l h r + n - 2 ) ,

where ß  =  ̂(3//J 2 /i4 — 2/ig 3 //g) fij = E[G{(9q — X t-)/h] — q]j .

We see from Lem ma 2.3.5 tha t  the difference between the expectat ions of 

£h(9q) and its approximat ing chi-squared distribution is dominated  by term n ~ l ß + 

n n\  / i j  1 . So if we choose bandwid th  h such tha t  n h 2r = 0 ( n ~  2) then we have

E { t h(6q) } - E ( X2l ) = n - 1 ß + 0 ( n ~ 2).

We may reason tha t  the expectat ion of £h{6q)/{ 1 + n ~ l ß)  differs from tha t  of 

the Xi distr ibution only in terms of order n - 2 , by using bandwid th  h such tha t  

n h 2r = 0 ( n ~ 2). However, ß  is usually unknown in pract ice and must  be estimated.  

To this end,  we define

n

fij = n - 1 E  [G{(#, - * , ) / / * } - ? F  
» =  1

and ß = ^(3/*" 2  — 2fi~3 /ig), where 9q is a root-n consistent est imate of 9q. By

the smoothness of G and Taylor expansion, we may show tha t  ß = ß + 0 { n ~ 1̂ 2). 

P u t  d(ca , 7 ) = ca ( l  + n - 1  7 ) where 7 is ei ther  ß  or ß.  We prove in the following 

theorem th a t  by appropriately choosing h, the Bart let t-corrected confidence interval 

£  h , d ( c a  ,7 ) =  {# I £h(&) ^  d(ca , 7 ) }  has smaller coverage error  than  IhCa, no m a t te r  

whether ß  or ß  is used.

T h e o r e m  2 .3 .6 .  Assume conditions  (2.3.8) and (2.3.10). Then a sufficient condi­

tion for

P(0q £ £h,d(cQ,7 )) — a  + 0 ( n  2), (2.3.12)
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for ei ther  7 = ß or 7 = ß , is that n 3h 2r be bounded. I f  f ^ r 1\ O q) ^  0 then the 

boundedness o f n 3h 2r is also necessary for  (2.3.12).

From (2.3.6), we know tha t

1*2 = 9 ( 1 - 9 )  + 0 (h ) ,

V 3 = 9(1 ~  9) (1 -  29) +  0 ( h ) ,

A*4 = 9 (1 -  9) (1 -  39 +  392) + 0 ( h ) .

Define ß Q = ^ q ~ 1( 1 — 9)- 1 ( l  — 9 + 92)- Then we have ß  = /30 + 0 ( h ) .  Since /30 

is known, and if h is small enough,  ß 0 will be a good approximation of ß.  For 

example,  if h satisfies the requirement of Theorem 2.3.6 and K  is a second-order 

kernel then ß = ß 0 + 0 ( n - 3 ^4). Define the “par t i a l” Bart let t-corrected confidence 

interval Ih,d(ca,ß0) =  {# <  ca (1 + ß 0n~ 1) }. It may be shown tha t  the result

in (2.3.12) can be changed to

P (0 q e  I h,d(Ca,0o)) = a + 0 ( n ~  1 h ) . (2.3.13)

Suppose we use a second order kernel and choose the bandwid th  h of order n - 3 / 4, 

as suggested by Theorem 2.3.6. Then  we obtain

P(0,  e / ft,i(c„ , ^ , )  = a  + 0 ( n - 7/4).

So the coverage error  is just  a factor 0 ( n 1/f4) larger than tha t  of the full Bar t let t  

correct ion confidence interval.

From a pract ical  viewpoint,  this simple “par t ia l” Bar t let t  correct ion approach 

is part icularly  at tract ive.  Although it does not enjoy quite the same asymptotic  

performance  as the “full” correction discussed earlier, the simulat ion study in the 

next section shows tha t  it performs commendably well in pract ice.  This is p resum ­

ably because the “full” correction needs to est imate \ij for j  = 1 ,2 ,3 ,  which are 

relatively sensitive to bandwid th  choice, and such es t imators can be rather  variable 

in small samples.
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2.4 S im u l a t i o n  S t u d y

In this section we present a s imulation study designed to invest igate the perfor­

mance of smoothed empirical likelihood confidence intervals for quantiles , by using 

various bandw id th  h when comparing with the unsmoothed  confidence intervals. In 

par t icu la r ,  we wish to give examples of simple rules tha t  are suggested by Theorems

2.3.4 and 2.3.6 for selecting bandwid th .  We want to see if the empirical outcomes 

from our simulat ions are consistent with our theoretical  findings.

T h roughou t  this section we smooth using the so-called Bar t le t t  or Epanech- 

nikov kernel,

—t= ( l  — 7 U2) if |u| <
4 V 5 5 1 1  —

0 otherwise .

Since K  is symmetric  about  the origin, it is a second-order kernel (i.e. r = 2). We 

concentrate  on confidence intervals for quarti les and the median (i.e. q = ^ j  , | ) ,  

and take the pa rent  distr ibution F  to be chi-squared with a variety of different 

degrees of freedom. We choose nominal coverages of a = 0.90, and a  =  0.95, employ 

a variety of different formulae for h, and check on the performance of unsmoothed,  

smoothed and Bar t le t t  correction confidence intervals. In the la t ter  we take two 

different version of Bar t let t  correction confidence intervals. They are the “part ia l ly” 

corrected interval Ih,d(caiß0) and “fullly” corrected interval Ih,d(ca,y) with 7 = ß] 

we do not  t rea t  the interval Ih,d(ca,y) with 7 = ß  since ß  is usually unknown and 

therefore this method is not  of pract ical  interest.  Formulae for />»<., Ih,d(ca , ß 0 )-> 

I h d(c ß y  ßo and ß  are given in Sections 2.3.2 and 2.3.3.

Recall from Theorems 2.3.4 and 2.3.6 tha t  when r = 2, the bounds  h = 0 ( n ~  2 ) 

and h = 0 ( n ~  4) define the largest h for which the uncorrected interval has coverage 

error  0 ( n - 1 ) and the Bart let t-corrected interval with 7 = ß  has coverage error 

0 ( n - 2 ), respectively.

Table 2.1 summarises results for the x l  distr ibutions with m  = 1 ,3 ,5  and 

sample sizes n = 10,15 ,20,30.  Figure 2.2 il lustrates how coverage accuracy varies 

over different degrees of freedom and different sample sizes. Each point  in the
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table and figure is based on 10,000 simulations.  The chi-squared variables were 

produced by adding squares of independent  normal  variables given by the routine 

in Numerical  Recipes (Press et a1. 1989).

The  following broad conclusions may be drawn from those results.  First,  

smoothed empirical likelihood intervals have greater  coverage accuracy than  their 

unsmoothed  counterpar ts ,  and further  improvement is offered by Bar t le t t  correc­

tion. Secondly, the “theoret ical” Bart let t  correction (based on the value ß 0) per ­

forms similarly to the “empirical” Bar t let t  correction (using ß).  Since ß 0 is s impler 

than ß  to implement,  it is to be recommended.  Thirdly,  choices of h in the range 

n~ 2 , n~ T generally provide quite good coverage accuracy. However, when the 

underlying distr ibution is heavily skewed (e.g. Xi)> êss smoothing than  this is 

desirable.
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TABLE 2.1: Estim ated  true coverages, from 10,000 simulations, of a-level smoothed 
empirical likelihood confidence intervals for the g’th quantile of the d is tr ibu ­
tion. Rows headed “uncorr.” , “ß o ” and “ß ” give the uncorrected interval and 
the B artle tt-corrected intervals com puted with 7 = ß 0 and 7 = /?, respectively.

m  =  1, n = 10

Q
0.25 0.50 0.75

h

a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.9239 0.9436 0.9345 0.9345 0.9240 0.9240

uncorr. 0.8788 0.9278 0.8860 0.9430 0.9150 0.9594
n~ 1 ßo 0.8916 0.9351 0.8935 0.9562 0.9491 0.9616

ß 0.8920 0.9353 0.8950 0.9569 0.9501 0.9621

uncorr. 0.8600 0.9266 0.8851 0.9460 0.9086 0.9465
n~

3_
4 ßo 0.8745 0.9349 0.8934 0.9519 0.9296 0.9512

ß 0.8757 0.9358 0.8945 0.9527 0.9307 0.9517

uncorr. 0.8822 0.9377 0.8567 0.9184 0.8944 0.9268
n~

1_
2 ßo 0.8943 0.9459 0.8686 0.9263 0.9068 0.9338

ß 0.8939 0.9454 0.8720 0.9293 0.9088 0.9357

uncorr. 0.8707 0.9306 0.7400 0.8295 0.8592 0.9064
n~

1_
4 ßo 0.8827 0.9405 0.7518 0.8431 0.8695 0.9142

ß 0.8814 0.9388 0.7550 0.8462 0.8717 0.9160
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m = 1, n — 15

q
0.25 0.50 0.75

h

a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.9232 0.9787 0.9300 0.9693 0.9026 0.9694

uncorr. 0.8821 0.9335 0.8844 0.9476 0.8807 0.9697
n~ l

ß o 0.8903 0.9394 0.8892 0.9509 0.8856 0.9701
ß 0.8872 0.9407 0.8899 0.9511 0.8866 0.9710

uncorr. 0.8562 0.9182 0.8890 0.9408 0.8815 0.9623
n~

3_
4 ßo 0.8649 0.9250 0.8947 0.9443 0.8879 0.9645

ß 0.8665 0.9261 0.8957 0.9451 0.8893 0.9651

uncorr. 0.8710 0.9303 0.8701 0.9299 0.8895 0.9497
n~

1_2 ßo 0.8810 0.9357 0.8772 0.9339 0.8994 0.9544
ß 0.8820 0.9365 0.8785 0.9349 0.9011 0.9552

uncorr. 0.8748 0.9320 0.7190 0.8106 0.8740 0.9294
n~

1_
4 ßo 0.8845 0.9384 0.7264 0.8199 0.8824 0.9321

ß 0.8831 0.9378 0.7299 0.8227 0.8843 0.9339
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m = 1, n = 20

q
0.25 0.50 0.75

h

a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.8739 0.9348 0.9217 0.9734 0.9048 0.9718

uncorr. 0.8848 0.9394 0.8921 0.9488 0.8821 0.9559
n l ßo 0.8896 0.9427 0.8966 0.9500 0.8856 0.9566

ß 0.8899 0.9432 0.8972 0.9508 0.8856 0.9566

uncorr. 0.8575 0.9204 0.8925 0.9460 0.8833 0.9488
n~

3_
4 ßo 0.8637 0.9265 0.8976 0.9493 0.8896 0.9510

ß 0.8648 0.9288 0.8980 0.9502 0.8897 0.9509

uncorr. 0.8596 0.9255 0.8849 0.9350 0.8915 0.9440
n~ 1_

2 ßo 0.8676 0.9312 0.8900 0.9376 0.9009 0.9482

ß 0.8673 0.9317 0.8906 0.9382 0.9022 0.9483

uncorr. 0.8894 0.9405 0.6903 0.7967 0.8851 0.9391
n~

1_
4 ßo 0.8950 0.9449 0.6965 0.8030 0.8905 0.9427

ß 0.8945 0.9443 0.6974 0.8047 0.8914 0.9432
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m = 1, n =  30

Q
0.25 0.50 0.75

h

a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.9388 0.9678 0.9292 0.9706 0.8806 0.9544

uncorr. 0.8959 0.9456 0.8930 0.9525 0.9080 0.9417
n~ l ßo 0.9005 0.9490 0.8953 0.9540 0.9093 0.9431

ß 0.9007 0.9492 0.8953 0.9541 0.9094 0.9434

uncorr. 0.8671 0.9285 0.8987 0.9472 0.9024 0.9418
n~

3_
4 ßo 0.8711 0.9317 0.9010 0.9493 0.9050 0.9452

ß 0.8718 0.9324 0.9012 0.9495 0.9056 0.9454

uncorr. 0.8349 0.8972 0.8913 0.9427 0.8924 0.9462
n~ 1_

2 ßo 0.8391 0.9017 0.8940 0.9451 0.8961 0.9489
ß 0.8397 0.9022 0.8948 0.9452 0.8966 0.9496

uncorr. 0.8954 0.9453 0.6616 0.7647 0.8993 0.9431
n~ 1_

4 ßo 0.8993 0.9479 0.6665 0.7703 0.8938 0.9464

ß 0.8989 0.9475 0.6675 0.7714 0.8942 0.9472
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m = 3, n = 10

Q
0.25 0.50 0.75

h

a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.9239 0.9436 0.9345 0.9345 0.9240 0.9240

uncorr. 0.9139 0.9530 0.8885 0.9254 0.9187 0.9697
n - 1 ßo 0.9368 0.9570 0.8924 0.9678 0.9602 0.9712

ß 0.9376 0.9577 0.8930 0.9680 0.9604 0.9716

uncorr. 0.9040 0.9388 0.8871 0.9390 0.9160 0.9571
_  1 .n * ßo 0.9191 0.9436 0.8931 0.9529 0.9468 0.9598

ß 0.9201 0.9442 0.8937 0.9532 0.9472 0.9599

uncorr. 0.8854 0.9246 0.8852 0.9491 0.9057 0.9479
_  Ln 2 ßo 0.8958 0.9309 0.8928 0.9573 0.9250 0.9519

ß 0.8961 0.9317 0.8956 0.9583 0.9262 0.9529

uncorr. 0.8736 0.9206 0.8830 0.9430 0.8965 0.9312
_  JLn 4 ßo 0.8849 0.9284 0.8914 0.9477 0.9068 0.9380

ß 0 . 8 8 6 8 0.9317 0.8941 0.9499 0.9085 0.9394
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m = 3, n = 15

Q
0.25 0.50 0.75

h

a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.9232 0.9787 0.9300 0.9693 0.9026 0.9694

uncorr. 0.8853 0.9672 0.8826 0.9582 0.8802 0.9769
n~ l ßo 0.8899 0.9689 0.8850 0.9599 0.8829 0.9774

ß 0.8912 0.9693 0.8856 0.9599 0.8835 0.9777

uncorr. 0.8920 0.9542 0.8908 0.9517 0.8873 0.9707
n~

3_
4 ßo 0.9002 0.9567 0.8954 0.9537 0.8926 0.9726

ß 0.9025 0.9576 0.8960 0.9540 0.8938 0.9727

uncorr. 0.8880 0.9442 0.8902 0.9443 0.8889 0.9651
n~

1_
2 ßo 0.8956 0.9481 0.8958 0.9476 0.8945 0.9667

ß 0.8926 0.9488 0.8964 0.9477 0.8959 0.9674

uncorr. 0.8852 0.9331 0.8931 0.9472 0.8919 0.9511
n~ 1_

4 ßo 0.8925 0.9382 0.8985 0.9507 0.9001 0.9542
ß 0.8951 0.9397 0.9008 0.9515 0.9027 0.9547
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m — 3, n — 20

Q
0.25 0.50 0.75

h

a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.874 0.935 0.922 0.973 0.905 0.972

uncorr. 0.8844 0.9565 0.8866 0.9559 0.8848 0.9600
n~ l ßo 0.8866 0.9586 0.8881 0.9569 0.8876 0.9610

ß 0.8910 0.9593 0.8888 0.9708 0.8874 0.9610

uncorr. 0.8825 0.9472 0.8903 0.9487 0.8831 0.9408
n~

3_
4 ßo 0.8885 0.9498 0.8938 0.9507 0.8898 0.9422

ß 0.8896 0.9506 0.8939 0.9508 0.8896 0.9427

uncorr. 0.8947 0.9443 0.8985 0.9482 0.8894 0.9467
n~

1_
2 ßo 0.9015 0.9484 0.9029 0.9498 0.8961 0.9489

ß 0.9027 0.9501 0.9032 0.9500 0.8964 0.9491

uncorr. 0.8901 0.9410 0.8931 0.9444 0.8968 0.9466
n~

1_
4 ßo 0.8960 0.9453 0.8971 0.9476 0.9002 0.9507

ß 0.8969 0.9463 0.8986 0.9487 0.9027 0.9509
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m  =  3, n — 30

q
0.25 0.50 0.75

h

a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.9388 0.9678 0.9292 0.9706 0.8806 0.9544

uncorr. 0.9027 0.9397 0.8980 0.9538 0.9076 0.9457
n l ßo 0.9049 0.9409 0.8992 0.9549 0.9082 0.9464

ß 0.9049 0.9410 0.8993 0.9549 0.9083 0.9465

uncorr. 0.8970 0.9462 0.8973 0.9518 0.9066 0.9427
n~

3_
4 ßo 0.9007 0.9487 0.8994 0.9532 0.9076 0.9441

ß 0.9010 0.9490 0.8995 0.9533 0.9076 0.9443

uncorr. 0.8949 0.9465 0.8956 0.9476 0.9039 0.9442
n~

1_
2 ßo 0.8985 0.9494 0.8980 0.9492 0.9072 0.9465

ß 0.8991 0.9501 0.8983 0.9495 0.9073 0.9467

uncorr. 0.8950 0.9487 0.8976 0.9495 0.8980 0.9488
n~

1_
4 ßo 0.8990 0.9506 0.8995 0.9512 0.9002 0.9518

ß 0.8996 0.9512 0.9004 0.9520 0.9030 0.9526
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m = 5, n — 10

Q
0.25 0.50 0.75

h

a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.9239 0.9436 0.9345 0.9345 0.9240 0.9240

uncorr. 0.9138 0.9651 0.8852 0.9219 0.9236 0.9702
n~ l ßo 0.9287 0.9677 0.8884 0.9729 0.9651 0.9721

ß 0.9291 0.9680 0.8889 0.9733 0.9655 0.9723

uncorr. 0.9148 0.9519 0.8866 0.9332 0.9179 0.9648
n~

3_
4 ßo 0.9255 0.9549 0.8918 0.9657 0.9553 0.9676

ß 0.9266 0.9555 0.8924 0.9660 0.9555 0.9681

uncorr. 0.8987 0.9285 0.8929 0.9478 0.9127 0.9558
n~ 1_

2 ßo 0.9108 0.9342 0.8990 0.9627 0.9347 0.9586

ß 0.9118 0.9351 0.9010 0.9636 0.9363 0.9595

uncorr. 0.8755 0.9233 0.8831 0.9480 0.9010 0.9382
n~

1_
4 ßo 0.8860 0.9293 0.8924 0.9547 0.9161 0.9442

ß 0.8876 0.9306 0.8951 0.9554 0.9180 0.9458
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m =  5, n = 15

q
0.25 0.50 0.75

h

a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.9232 0.9787 0.9300 0.9693 0.9026 0.9694

uncorr. 0.8761 0.9617 0.8874 0.9599 0.8790 0.9793
n - 1 ßo 0.8805 0.9632 0.8899 0.9606 0.8812 0.9801

ß 0.8813 0.9633 0.8902 0.9606 0.8817 0.9804

uncorr. 0.8872 0.9526 0.8909 0.9525 0.8844 0.9755
_ in « ßo 0.8941 0.9549 0.8942 0.9543 0.8893 0.9766

ß 0.8955 0.9556 0.8950 0.9544 0.8899 0.9766

uncorr. 0.8873 0.9531 0.8899 0.9504 0.8890 0.9642
_ l n 2 ßo 0.8962 0.9568 0.8942 0.9531 0.8966 0.9660

ß 0.8983 0.9577 0.8949 0.9534 0.8977 0.9664

uncorr. 0.8878 0.9408 0.8961 0.9499 0.8870 0.9543
_ i.n 4 ßo 0.8965 0.9458 0.9022 0.9540 0.8965 0.9580

ß 0.8989 0.9473 0.9040 0.9549 0.8982 0.9585
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m = 5, n = 20

Q
0.25 0.50 0.75

h

a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.8739 0.9348 0.9217 0.9734 0.9048 0.9718

uncorr. 0.8848 0.9394 0.8921 0.9488 0.8821 0.9538
n " 1 ßo 0.8794 0.9567 0.8925 0.9565 0.8796 0.9559

ß 0.8803 0.9571 0.8925 0.9565 0.8772 0.9606

uncorr. 0.8858 0.9479 0.8889 0.9461 0.8797 0.9441
_ In * ßo 0.8922 0.9488 0.8924 0.9471 0.8864 0.9480

ß 0.8933 0.9493 0.8924 0.9473 0.8914 0.9496

uncorr. 0.8947 0.9468 0.8948 0.9466 0.8827 0.9486
_ in 2 ßo 0.9008 0.9493 0.8986 0.9478 0.8913 0.9506

ß 0.9034 0.9504 0.8989 0.9478 0.8932 0.9508

uncorr. 0.8837 0.9422 0.8925 0.9431 0.8916 0.9421
_ in * ßo 0.8998 0.9457 0.8962 0.9447 0.8998 0.9474

ß 0.9022 0.9473 0.8962 0.9446 0.9048 0.9485
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m  = 5, n = 30

Q
0.25 0.50 0.75

h

a
0.90 0.95 0.90 0.95 0.90 0.95

0 0.9388 0.9678 0.9292 0.9706 0.8806 0.9544

uncorr. 0.9073 0.9407 0.9026 0.9544 0.9140 0.9422
n~ l ßo 0.9089 0.9417 0.9034 0.9548 0.9147 0.9428

ß 0.9089 0.9419 0.9034 0.9548 0.9147 0.9428

uncorr. 0.9025 0.9484 0.9008 0.9556 0.9058 0.9428
n~

3_
4 ßo 0.9050 0.9507 0.9031 0.9563 0.9080 0.9443

ß 0.9051 0.9508 0.9032 0.9565 0.9083 0.9444

uncorr. 0.8994 0.9453 0.9013 0.9480 0.9045 0.9472
n~

1_
2 ßo 0.9033 0.9489 0.9039 0.9500 0.9075 0.9494

ß 0.9035 0.9491 0.9040 0.9500 0.9075 0.9495

uncorr. 0.8988 0.9478 0.9009 0.9494 0.8978 0.9489
n~

1_
4 ßo 0.9025 0.9505 0.9041 0.9508 0.9019 0.9514

ß 0.9032 0.9512 0.9050 0.9512 0.9025 0.9518
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FIG U R E 2.2: The graphs depict coverage error, given by e = true  coverage — 0.95,

of sm oothed (-------------) and unsm oothed ( --------------- ) 95% confidence intervals

for the median (i.e. q = | ) .  In the case of the sm oothed confidence interval, 

the bandw idth is h = n ~ « and B artle tt correction is employed with 7 =  ßo. 

Throughout, the underlying distribution is Xm- Panel (a) illustrates the case 

where m  = 3 is fixed and n varies; panel (b) illustrates n =  20 and varying m.

(a) m=3 varying n
e

q  J
o  I

(b) n = 20 varying m
e
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2.5 P r o o f s

In this section we give detailed proofs of Lemmas 2.3.2 and 2.3.5, and Theorems 

2.3.3, 2.3.4 and 2.3.6.

2.5 .1  P r o o f  o f  L e m m a  2.3.2

L e m m a  2.3.2:  Assume that K  satisfies (2.3.1), and is bounded and compactly 

supported. Then  A(6q) = 0 p( n ~ 1̂ 2 + h r ), where A(0q) is determined by (2.3.7) with

e =  eq .

Proof:  Define Wi = Wi(6q) = Gh{&q ~  X , )  — q , and let A = A(0q) denote a solution 

of the equation
n

E  M>i(l + Auii)'1 = 0. (2.5.1)
»= 1

Since K  is a bounded  and compactly suppor ted  kernel satisfying (2.3.1), and

G(x)  = f  K ( y ) d y ,
y < x

then G is uniformly bounded on R 1. Therefore there exists a positive number  da 

such tha t

|itq I <  d0, for 1 < i < n.  (2.5.2)

From (2.5.1) and (2.5.2),

0 = n - | E
i= 1 1  +  A i t ; , -

: ' =  1

> »_1|a| E ' |l + Awi| K l

> |A|

1 +  d0 IAI

|A|

1 -  b i  I

1 T d01AI

. = l

1̂ 2 I -  |h)i|,

where Wj = n 1 wt  for j  = 1,2,-*- . Therefore,  |A| w 2 <  (1 +  dQ |A|) l^x |, or

equivalently,

IAI ( w2 -  d0\w11) <  \u)i \ . (2.5.3)
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Observe tha t  \wj | is average of i.i.d. random variables, so Wj — E ( wj )  = Op(n 2 ). 

We know from (2.3.6) tha t  E ( w i ) =  0 ( h r ) and £ ( t n 2) =  q(l  — q) + o( l ) .  Therefore,  

by (2.5.3),

IAI {^(1 -  q) +  op( l ) }  < Op{n~ * + hr ) ,

which immediately gives us the result A = A(9q) = Op( n ~ 1^2 +  hr ). Hence the 

lemma is proved.  □

2.5 .2  P r o o f  o f  T h e o r e m  2.3 .3

T h e o r e m  2.3.3:  Assume that

K  satisfies (2.3.1), and is bounded and compactly supported; that 

f  and exist in a neighbourhood o f d q and are continuous

at 9q; that f ( 9 q) > 0; and that for some t > 0, nh l —> 0 as n 0 0 .

Then lh{9q) has an asymptotic  Xi distribution if nh2r —> 0, and this condition is 

also necessary if f^r~ l \ 9 q) 0 .

P roo f :  We s ta r t  with developing a Taylor expansion for A which is the solution of 

(2.5.1). Using Lemma 2.3.2, for each j  >  1 we have

0 = n 1 w,-{l — Atu* + ( \ w i ) 2 — (AWi)3 + . . . }
* =  1

n j + 2
— d) 1 — \ w  2 + ••• + (— \ y  Wj+i + (— A y + 1 n 1 ^  - -L-  .

1 + A W ;
i =  1

Inverting the above equation we have for j  = 1,

A = w~ 1 w 1 + Tx,

where according to Lem ma 2.3.2

n
Tx = A2 w : 1 n ~ l

i = 1 1 -f Auq
= O p { ( « - 1/2 +  V ) 2}. (2.5.4)

For j  = 2,

A = w 2 1 w l -f w~ 1 tD3 A2 -  w ~ 1 A3 n~ 1
i= 1

W2 1 w x + w~° A r 2,-  3
1 + A Wi
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where
n  4

T2 = 2 w ~ 2 w 3 w x T x + w ' 1 w 3 T 2 -  w ; 1 X3 n ~ l Y l  Y ^ X w ~ ’
1 = 1

Using Lemma 2.3.2 again and (2.5.4) we have

T2 = Op {(n - 1 / 2  +  ftr )3}. (2.5.5)

For j  =  3,

A = w ' 1 + w ~ 3 w 3 u)2 + 2 w x A2 -  w~ 1 u)4 A3

— 2 w ~ 3 w3 W\ A3 n -  1 ^  ^  +  w ' 1 w3 T l  +  w ' 1 A4 n _1 J 2  ~r~ \ —
1 +  A Wi  2 1 +  A Wi

l =  1 1 = 1

= n>” 1 Wi + w ~ 3 w3 w\  + 2 n)~5 ü)2 ü>3 -  w ~4 w4 u)3 + T3, 

where

T3 = 2d)“ 3 w\  w l { 2 w ~ l w ^ w ' 3 w3 w\  + T2) + K 3 w3 <i)2 + T2)2}

-  t ö j 1 ü>4 { 3  t ü j  2 ü ) 2 ( u ) ~ 3 ü ) 3 i t )2 +  T 2 ) +  S w ' 1 w i  ( w ~ 3 w 3 w \  +  T 2 ) 2 

+  ( n ) “ 3 ü ) 3 w \  +  r 2 ) 3 } — 2  w ~  3 ü ) 3 t ü i  A3 n _ 1  J 2  \ ~+ \ ~

+ n)~ 1 h)3 T 2 + w ” 1 A4 n"  1 ^ ---- .
2 1 + An;,-

1 = 1

By Lemma 2.3.2, (2.5.4) and (2.5.5) we obtain tha t

r 3 =  0 „ { ( n - 1/2 + V ) 4}.

In general we have

A =n)~ 1 wi  + w ~ 3 w 3 w\  + (2 tÜ2 5 W3 -  ü>2 W4 ) wj 
j

+ E + Op{ ( » - » +  ftr y + I },  (2.5.6)
k =  4

where jßu, denotes w 2 ^~k 11 multiplied by a polynomial  in w 2, . . . ,  n)jfe + 1 , with con­

stant  coefficients. Expansion (2.5.6) is a little longer than are necessary for our 

present proof of Theorem 2.3.3. However, the addit ional details given here will be 

needed in the proof of Theorem 2.3.4.
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Substituting the above Taylor expansion for A(6q) into £h(6q),

n

£ h ( 0 q )  = 2 l°g( l  + AW i )

i= 1
j + 1

= 2n £  ( - l ) ‘ + ‘ k ' 1 \ k w t + O p{ n ( n ~ i  + hT)i + 2}
k= 1

= n { w ~ 1 w\  + I 3 ü>3 w3 + (w~ 5 ü>3 -   ̂Ü>~ 4 Ü>4) wj

+ (8w~ 6 w3 w4 -  8 w ~ 7 wl  -  I  w~ 5 ü>5) rD® } 
j

+ | > E  Ä2Ü f f i p 1 + Op{ n ( n - i  +  fer)j + 1} .  (2.5.7)
fc =  5

The third identity follows on substituting (2.5.6) into the second identity, and noting 

that Wi = Wi — E( wi )  + E( wi )  = Op(n - 2 -f hr).

1 _  L
Put Z = n^(wi  — //!) //2 2, where /z;- = E( wj ) .  It is readily proved that 

under condition (2.3.8), Z is asymptotically normal iV(0, l ) .  Furthermore, w 2 =  

H2 + op( l )  — 9(1 — 9) + op( 1), and tüj = Op( l )  for j  >  3. Hence by (2.5.7) we have 

for any j  > 3,

M # ? )  = 1 + op( l ) }  + Op {n(n~ 7 + hr )3} + Op{ n (n _ 2 + hr )] }.

Since nhl —> 0 for some / > 0, we have n (n-  2 + /ir )J = o( l)  for sufficient large 

j  > 3. Also notice that

n(n~ » + hr )3 = 0 ( n U 2r + nh3r) + o( 1) =  o ( n U r + nh2r) + o(l)

Hence,

4 ( # ?) = (n j  2 //! + Z )2 + op(n2 hr + n h 2r) +  op( l) .

Note that

( n 7 /i2 2 + Z )2 = Z 2 + 0 ( n ^ i j  + n//2) + o( n^hr -j- nh2r) -f o(l) .

Thus, £h{0q) has an asymptotic central chi-squared distribution with one degree 

of freedom if and only if n 2 Hi —> 0. By (2.3.6), / ix = ca hr + o(hr ) where cQ =  

( —l ) r k f (̂r~ 1\ 0 q)/r\ .  Therefore, n* ßi  —> 0 if nh2r —> 0; and if f <̂r~ 1\ 0 q) ^  0 then 

/ i : —> 0 implies nh2r —> 0. So the theorem proved. □
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2 .5 .3  P r o o f  o f  T h e o r e m  2 .3 .4

Before proving Theorem 2.3.4, we first give the following lemma which es tab ­

lishes an analogue of C ra m e r ’s condition for the random vector (Gh (X — 6q), G 2h (X — 

9q ) , • • • ,  G2h (X  — 6q)), where j  is the interger appeared in (2.5.6) and X  is a random 

variable with distr ibution F .

L e m m a  2.5.1:  Assume conditions (2.3.8), (2.3.9) and (2.3.10). Then for each 

e > 0 there exists a constant C(e)  > 0 such that for all sufficiently small  h,

sup \h J  exp { i ^  t k G( u ) k } f ( 6 q — hu)  du\  <  1 — C(e)  h ,
t 1 , . . . , * j : E | t fc| > e  1 -OO k = l

where i = \J — 1 and G( x)  = f y<x K{ y ) d y .

Proof :  Let u denote a random variable uniformly distr ibuted on the unit  interval 

[0,1], and U = (u, u 2, ■ • •, uj ). P u t  t = (<!,••*,  tj ) and define

r 1 j

/ ( f )  = I exp(i  ^  u k )du.
0 * = i

Clearly I ( t ) is the characterist ic function of U . Thus ,  by the Riemann-Lebesgue 

Lemma

lim I ( t )  = 0.
HOI —  oo

Since \\t\\ —> oo if and only if = 1 \tk | —> oo, we obta in tha t

lim I ( t )  =  0.
Y  [ , l <f c | - *oo

(2.5.8)

From (2.3.8) we may assume tha t  the compact  suppor t  of kernel K  is some interval 

[a, 6]. Then  using (2.5.8) and Lem ma 4.2 of Hall (1991), we may show tha t

r b j

lim lim sup \ exp{i ^  t k G kh(u) f ( 0 q — h u ) d u | = 0. (2.5.9)
r? —> oo h —«■ 0 Y  \ tk\>n a k =  1

With the above preparat ion,  we define

r b i

J ( t )  =  J  e x p { i ^ 2  t k G kh(u)} f ( 0 q -  hu) d\
k = l
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and

5 ( ( )

r oo j

= h j  exp{i  t k G kh(u)} f ( 9 q — hu) d'i
k =  l

r a r oo ■?

= h J f ( 9 q — hu) du + h I exp(i ^  t k) f  {9q — hu) du + h J( t )
k ~  1

= 1 — F( 0q — ha) + exp(z t k) F (9q — hb) F h J(t ) . (2.5.10)
k = l

By (2.5.9), there exists h 0 and rj0 > 0 such tha t  for any 0 < h < h 0 and | f̂c| > Vo,

\ J ( t ) \ < ^ ( b - a ) f ( 0 q). (2.5.11)

Since condition (2.3.8) implies tha t  /  is continous at 9q and f ( 9 q) > 0, we can 

choose h sufficiently small for

F(9q — ha)  — F(9q -  hb) > f  (b -  a) h f ( 0 q).

From (2.5.10),

sup \S(t)\ < 1 -  F(0q -  ha) + F(0q -  hb) + h | J ( t ) |
i<ki>»?o

<  1 -  I  (b -  a) h f ( 9 q) + l- ( b  -  a) h f ( 0q)

— 1 — 3 (b ~  a) h f  (9 q). (2.5.12)

To prove the lemma it is sufficient to show tha t  for each e > 0 there exists a 

cons tant  B 0 such tha t

sup \S(t)\ < l -  B 0 h f ( 9 q). (2.5.13)

P u t  £(u, t )  = 5 tk G%(u). By the continuity of /  at 0q, we can split J (t) 

as follows:

J ( t )  = f ( 9 q) J exp{z£(u, t)} du F R(t) ,
a

where s u p _ oc<t<oo R(t)  —> 0 as h —* 0. From (2.5.10),

\S(t)\  <  | l  — F(9q — ha) + h f ( 9 q) J  exp{i t ;(u, t )} d u \ F  F(9q -  hb) F h \R(t)\.
a

(2.5.14)



It can be shown th a t  for any real number v and w,  by choosing h sufficiently small 

we have

|i - m ha)  -f h (v -f i w ) |2 =  {l  — F( 9 q — ha)  +  h u}2 -f (h w) 2

< 1 — F( 9 q — ha)  + h v -f
h 2 (v2 +  w 2) 

1 - F ( 0 q)

2

Thus

h 2 (v 2 T w 2)
| l  — F ( 9 q — ha)  + h (v + iw)\  <  1 — F( 9q — ha)  +  h v + —----- - . (2.5.15)

1 - F ( 0 q)

Put

Hence,

v — f  (ß q) J  cos{£(w, t)} du and w = f ( 0 q) j  sin {£(u, t ) }  du.
a a

[ b
f ( 9 q) / exp{z£(w, t ) )  du = v +  i w.

Notice tha t  for the v and w defined above, we have

v2 + w 2 == /2(V){( /̂ cos { £ ( u , t ) } d u ^  + ( ^ J  sin {£(u , t ) }  du' j  j
< 2  f 2(9q) ( b - a ) 2.

Using the above result ,  (2.5.14) and (2.5.15), we obtain

\S(t)\  <  1 — F ( 9 q — h a) + F( 6 q — h b) + h f ( 9 q) J  cos{£(u , /)} ch

+
2 h :

1 - F ( 0 q)

By the continuity of /  at  9q,

f 2(9q) ( b - a ) 2 + h\ R( t ) \ .

F ( 9 q — h a) — F ( 9 q — h b) = h J  f ( 9 q — h u) du = h f ( 9 q) (b — a) + h oh(l ) .

Now from (2.5.14),

\S(t)\  <  1 -  h f ( 9 q) J  [l -  cos{f(u,<)}]
a

2 h 2
+

1 - F ( 9 q)
f  (Oq){b — a) +  h {R( t )  +  oh (1)}.
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By choosing h sufficient small we have from the above eqation tha t

\S(t)\  <  1 -  \  h f ( 0 q) f ab [l -  cos{f(u,*)}]  du.

Since G is an increasing function in [a, 6], we have

B o = \  infe< £  \tk\<n0 K  I1 ”  cos{£(«,*)}] du > 0,

Thus  we obtain (2.5.13). Therefore the lemma is readily proved by using (2.5.12) 

and (2.5.13). □

Now we are able to give the proof of Theorerm 2.3.4.

T h e o r e m  2 .3 .4 :  Assume conditions (2.3.8) - (2.3.10). Then a sufficient condition 

for

P(8q €  Ihca ) =  o- l -  0 ( n  x)

as n oo, is that n h r is bounded. This condition is also necessary i f  f ^ r~ ^  (9q) 0.

P r o o f :  To prove this theorem, we have to develop an Edgeworth expansion of the 

distr ibution function of f/,(#9). Recall (2.5.7),

th(Oq) = n { w ~ l wl  +  \ w ~ 3 w3 w? +  ( w f 5 w l ~ \  w f 4 w 4) w*

+ (8w f 6 w 3 w4 -  S wf  7 w\  -  f  5 w5) w*}

I n E  Ri kW**1 + Op{n(n-> + hr )j +1}.
k =  5

Taking the signed square root of the r ight-hand side we may write

M M  = ( » » ^ - ) 2 ,

S- = W~ >{m7! + W3 w\  + ( tt>J4 wl  ~  W~3 W 4) WJ

+  ( 7 7 - m>2 6 d ig  +  7 7 ^ 2  5 ^ 3  ^ 4  ~  f  w j 4 Wig) M>J 

j
+ EE Bk w \ } + Uij

fc =  5

= ^  +  U\j

where
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say, where Tk denotes w 2 2('k~ l '> multiplied by a polynomial  in with

constant coefficients, and U\j  — Op {(n~ 3 +  /ir )J + 1}. Noting that  n h l —> 0 for 

some t > 0, a little additional analysis shows that  by choosing j  sufficiently large 

we may ensure that  for i  =  1,

P( \ Ut j \ >  n - i )  =  0 ( n - 2) .  (2.5.16)

Hence using the delta-method we have for x > 0,

P { £ h{eq) <  x 2) =  P ( —x <  n 2 S' <  x)

{ | } p ( - x  n ~ 2 < n *  Sj <  x db n “ 2) +  0 ( n " 2) ,  (2.5.17)

where the inequalities and plus /minus  signs are to be taken respectively, in the 

indicated orders.

We see from (2.5.17) that the Edgeworth expansion for the distribution of  

£h(6q)  can be derived by an Edgeworth expansion for the distribution of n* Sj .  So 

our next  step is to develop an Edgeworth expansion for the distribution of n? Sj .  

Observe that Sj  is a smooth function of  ü>i, . . . ,  Wj . Denote that function by S j . Put  

Vk =  E ( w k), [l =  ( / zi , . . .  , / i j ) ,  u =  ( u u  . . . ,  Uj),  Vk =  w k — /i*, V  =  ( V i , . . . ,  Vj) ,

m

d k,...km ( 11 d / d u k() Sj ( u i , . . . ,  Uj ) I ,
' u =  n

l -  1

6

p(u)  = Sj(fi)  +  u kl . . . u km .

m = 1 i i .... t . £ { i ..... i l

Then p is a polynomial ,  and p ( V )  represents a Taylor approximation to Sj  with an 

error of order n - 3 :

Sj  = p ( V ) +  u 2 j ,

where {/2j =  Op ( n ~ 3). A little additional analysis shows that (2.5.16)  holds for 

i  — 2, and so

P{ n*  Sj  <  z ) { f  } p { n 2 p ( V)  <  x ±  n ~ 2 } +  0 ( n ~ 2) . (2.5.18)
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By developing Taylor expansion formulae for the quantities dkl . . . * m , and for 

the cumulants  of  V , calculations deferred to Appendix  2 show that the cumulants  

k i , k2 , . . .  of  n 2 p( V)  satisfy the following formulae:

ki =  n 2 (/i) — ^ 2 p 3 n~* + 0 ( n~  * hr +  n~ 7 ) ,

fc2 =  a 2 +  ( ^ / i 2- 2 / / 4  -  § f / x j 3 ^ )  n - 1 +  O ^ T 1 /ir +  n ” 2) ,  (2.5.19)

fc3 =  0 ( n "  2 hr ) ,  k4 = 0 { n ~ l hr ) ,  kt =  0 ( n ' (^ - 2)/2) for  ̂ >  5 ,

where

71 2  =

and

j j
S  d k > )(^f2 -***,)}

1 fc 2

= 1 +  ̂k-2 2 Ml ^3 + ( I ^2 4 ^3 “  4 ^2 1 — T5 V2 3 V V i  + O ( h^ ) .

Let c / ( t )  be the characteristic function of n*p( V) .  Then using (2.5.19)

t2 ( i t )2 ^  (i tV .
c / ( t )  =  exp( — — ) exp {&! (it) +  (fc2 -  1) ~ j -  +  X ,  kj ~ f ~ }

3 = 3 J '
t2 ( i t )2 ( i t )3

= exp( — — ) exp {Aq (it) +  (k2 -  1) +  ° ( n 1/l" +  71 2)*

This allows us to develop a formal Edgeworth expansion for the distribution of p(V):  

assuming nh2r —> 0,

P{ n*  p{V)  <  x}  =  $ ( x )  -  n ~ l {6p~ 1 (npi  )2 +  3 / i~ 2 p 4 ~  2 / /J 3 / i3 } z<£(x)

+ £(*)</>(*) + o(7z/i2r) + 0 ( n - 2), (2.5.20)

where denote the standard normal distribution, density functions respectively,  

and Q( x)  is a even polynomial  in x.  Hence for x >  0,

P { —x <  7i 2 p ( y ) <  re) =  2$(a:) — 1 — ^ n “ 1{6t721(72/i i ) 2 +  ^/i 2 2 ^4 — 2 / /J 3 //g} a:^>(x)

+  o ( nh2r) +  0 ( n  2) . (2.5.21)
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In view of (2.5.17), (2.5.18), (2.5.21) and the fact th a t  24>(a:) —1 = P ( x i ^  £ 2), 

we obtain

P{ t h ( Oq) <  x 2} =  P ( x  i <  x 2) -   ̂n~ 1 {6/^2 1 (n//! )2 +  3/ /" 2 /x4 -  2/zJ3 x 2</>(a:2)

+  o( nh2r) +  0 ( n ~ 2) .

Recall th a t  the a-level empirical likelihood confidence interval IhCa = {6\ ih{9) <  

ca }. And from (2.3.6), fij for j  =  2 ,3 ,4  have the following forms:

/ii = (-/0r(r!)_1 * / (r_1)(̂ 9) + o(hr ) ,  /i2 = ?(1 -  q) + o(l),

V3 =  q ~  3q2 + 2q3 + o(l), fiA = q — 4g2 + 6g3 — 3g4 + o(l).

Thus,  using the above expansion for the distribution of £h(0q), we have

p ( 0, € / »«„)=  F{4 (»,) <C„}

= a -  n- ‘ {(r ! ) ' 2 «2 / (r' 1V , ) 2(’*V )2 ? - ‘(l -  ? ) - '

+ - ? ) _1(1 - 7  + 92) } c„ ^ ( c<1) + o ( n - ‘ + 2.5.22)

Now if n/ i r is bounded we see clearly from (2.5.22) tha t

P{0q € IhcQ ) — a + 0 ( n  1). (2.5.23)

By (2.5.22),

P ( 0 q e  IhCa) = a  -  { ( r ! ) - 2 K2 / (r" 1>(0?)2rc/i2r ^ ' ( l  -  q)~ 1)} ca 0 (ca )

+ o(n /Tr ) +  0( n~  1).

if (2.5.23) holds and f ('r~ 1\ 0 q) 0, then nh2r must  be bounded.  In fact we can

show th a t  the error term in (2.5.23) cannot  be at smaller  order of n ~ 1 if nhr —> C,  

0 <  C < oo. To appreciate this we note tha t  from (2.5.22) tha t

P ( 0q £  /fccJ  -  a  =  o (n_ 1)

if and only if

( r ! ) - 2 K2 / (r- ‘>(0,)2 C 2 + ±- (1 -  q +  q2) = 0 .

But ,  the left-hand side is strictly positive for all 0 < q < 1.
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It remains to check tha t  the formal expansion (2.5.20) is valid. This  may 

be done by developing an Edgeworth expansion of the mult ivariate distr ibution of 

n 2 V = n 2 (Vi, • • •, V j ) where Vk =  w k — p k for 1 < k <  j ,  with the form

m

+ E  n ~ i / 2  J  (*)<** + 0 ( n - (m + l) /2) (2.5.24)
Jfc= 1

uniformly in j-var ia te  sets B  from any class #  satisfying

sup $ 0,s { ( # £ ) ' }  =  0 (c )
S  € B

as e I  0. In these formulae,  E =  Cov(P) ;  4>0)e and <f>o,e denote the distr ibution and 

density functions of the N ( 0 , E)  distr ibutions; pk is a polynomial  of degree k + 2 

with uniformly bounded coefficients; m >  1 is any integer; and (d B ) € is the set of 

all points  distant  at most  e from the boundary  of B.  Noting tha t  V  is a mean of 

a sum of independent  and identically distr ibuted random variables, this result may 

be proved using techniques from Bhat tacharya  and Rao (1976, p. l92ff) ,  based on 

an analogue of C ra m e r ’s condition for V  established in Lemma 2.5.1. The methods  

used to get (2.5.24) are those given by Hall (1991). This  proves the theorem. □

2.5 .4  P r o o f  o f  L e m m a  2.3.5

L e m m a  2.3.5:  Assume  condit ions (2.3.8) and (2.3.9).  Then,

£ { / » ( « , ) }  = 1 + n ~ ‘ ß + n ß \ ß - '  + o( nh2r) + 0 ( h 3r + +  n ' 2) ,

where ß  = ^ (3/ /J 2 /i<i — 2/Zj 3 / / p and ß ,  —  E[G{(9q

Proof:  From (2.5.7) we know tha t

lh(Oq) = n { w ~ l w\  +  f w j 3 w3 wl  +  { w~ 5 wl  -  w4) w*

+ (8w ~ 6 w3 w4 -  8w ~ 7 -  I  w ~ 5 w5) }
j

+ n J 2  Ä 2 t ® p l + 0 „ { n ( n - ’ + /ir ), + 2}.
Jfc =  5

To get E { i h  (0q)},  we calculate the expectat ion of each term on the r ight hand side 

of the above equation.  The  following formulae will be used in the calculations:

E{ w i -  t i i f  =  n ~ l ( p 2 -  p \ ) ,  E ( w 2 -  p 2f  = n~ 1 ( p4 —
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E{ ( wi  -  n i ) ( w 2 -  /z2)} = n ~ 1(fi3 -  /ii /z2),

E{( i öi  -  Hi ) ( w3 -  H3 )} = n~ 1 (/z4 — Hi fi3)

E { ( w2 -  /z2)(tD3 -  /z3)} = 7i- 1 (/i5 -  fJ-2 Ha)

E { {wi  -  Hi) { w4 -  /z4)} = n _1(/i5 -  /ii /z4)

E(ü?i - / z i ) 3 =  n _2(/z3 -  3/zx /z2 + 3/z3)

-  Hi) (^2 ~  M2 )2} = n ~ 2 (/z4 -  2/ i i  /z3 + Hi /z2 -  A*2 + 2/z2 /z2).

Now by Taylor expansion we have

OO

w;"1 n)2 = /z" 1 ( - ^ 2 )“ * (w2 -  /z2)fc (wj — /xi + Hi ?
k =  0

2 1

= H2 1 {V\  ( - ^ 2 ) _ f c ( ^ 2  -  /i2)fc + 2 Hi (Wi ~  Hl) (~H2 )~k (ü>2 ~  H2 Y
k  =  0 k =  0

+  ( © 1  —  ^ 1  ) 2 }  +  V \  ,

where =  0 ( n - 2 ). Taking expactation we obtain,

£ ( ™ 2 1 w j )  =  / z2 h~ 1 +  /z2 H2 3 £ ( > 2  - M 2)2 -  2 / i !  / z2 2 £ { O i  -  A * i ) ( w 2 - M 2) }

+ / z j 1 E(t0! -  / i i ) 2

= Hi M2 1 + (1 — 2 Hi M2 2 /z3 + Mi /z j3 /z4) n~ 1 + 0 ( n - 2 ). (2.5.25)

For the second term,

w ~ 3 w3 wl  =  / z ~ 3 { 1  -  3 / z J 1 ( w 2 -  H2 ) +  * • •}  { ( w 3 -  /z3 ) +  Hs}

X {(töi -  /zi)3 + 3 Hi («>i -  Mi)2 + 3/z2 («>! -  Mi) + /z3}

= M2 3 {m? Ms + 3 ^ 3 H3 (Wi ~  Hl) +  3/Zi H3 (®1 -  Mi)2

+ 3/Z2 (tÖ! -  / Z i )  (w3 -  /z3) -  3/z3 h2 1 (w2 -  /z2) (w3 -  H3 )

- V  H i  H i '  H  3 ( «>1  -  M i )  ( ^ 2  ~  H  2 ) }  +  ^ 2 ,  

where E( u2) = 0 ( n ~ l /z3r +  n - 2 ). Hence,

E ( w ~ 3 w3 w3) = /z3 h2 3 H3 + n ~ l (3 Mi /z~2 /z3 + 3/z2 /z j2 /z4 -  9/z2 /z j4 /z2

3 /zj_ /z 2 /Z5 - f  6 Hi H2 M3 ) T 0 (n /z +  n  ) .  (2.5.26)
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Similarly, we can show tha t

E ( w ~ 5 w4) = /ij / i” 5 /ig -(- 6 n -1 /ij / 2̂ 4 /i3 + 0 ( n ~  1 h3r + n ~ 2), (2.5.27)

E ( w f  4 w4 w4) = (i4 n~ 4 4 + 6 n ~ l 3 fi 4 -f O ( n _ 1 h3r -f n~ 2), (2.5.28)

and the expectat ions of all other  terms on the r ight hand side of (2.5.7) are at order 

of 0 (n ~ 1 h3r + n ~ 2).

Summarizing (2.5.25) - (2.5.33) we have 

E { t h(9q)} = 1 +  n~'  0 + n ß l f i ; 1 + o(nh2r) + 0 ( h 3r + n ~ l hr + n ~ 2),  

where ß — t (3^2 2 ß 4 — 2/r J 3 ^ 3). So the lemma is proved. 0

2.5 .5  P r o o f  o f  T h e o r e m  2.3 .6

T h e o r e m  2 . 3 . 6 .Assume conditions (2.3.8) and (2.3.10). Then a sufficient condi­

tion for

P(0,  e  h , « ' . * ) )  = « + 0 ( n ~ 2) (2.5.29)

for either 7 = ß or 7 = ß , is that n3h2r he bounded. I f  0 then the

boundedness of  n3h 2r is also necessary for (2.5.29).

P roof :  We first prove in the case 7 = /?, where ß = (3//7 2 ^4 — 2/^7 3 ^ 3). Recall

the Edgeworth  expansion for the distribution of th(0q) developed in Section 2.5.3,

r{ lh(9q)  <  x 2} = P  (Xi <  X 2 ) -  I  n~ 1 {6/^2 1 + — 2^  3 ^ 3}

+ o(nh2r) + 0 ( n ~ 2 ).

Thus

P {**(*,) <  *20  + Z ^ " 1)} -  P { x l  <  * 2( i  + ß n ~ 1)}

-  \ n ß i ) 2 +  - 2 f i ; 3 fi23} x 2(f)(x2)

+ o(nh2r) +  0 ( n ” 2). (2.5.30)
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Let g i denote the density function of the x \  distr ibution.  Then

P { x \  <  + ß n ~ 1)} = P ( x l  <  a:2) +  ß x 2 g i ( x 2) n~ 1 +  0 ( n ~ 2),

and x 2 gi ( x 2) = x 4>(x). Subst i tut ing the above formulae into (2.5.30), and replacing 

x 2 by ca satisfying P ( x \  < ca ) = a ,  we obtain

P  { Qq  ^  I h , d ( c a , ß ) }  — P  { £ h ( 0  q )  <  Ca  ( 1  +  ß l l  1 ) }

= ot -  1 ( n g i ) 2} ca (f>(ca ) +  o( nh2r) +  0 ( n ~ 2)

= a  -  W_1 {(r -)“ 2 / (r_1)(^9)2^ h 2r 1 (1 -  9)- 1} ca 0(ca )

+ o( nh2r) +  0 { n ~ 2). (2.5.31)

Therefore if n 3h 2r is bounded then n h 2r = 0 ( n ~ 2). From (2.5.31) we immediately 

see th a t  (2.5.29) holds true.  If f ^ r~ 1\ 0 q) ^  0, then (2.5.29) implies tha t  n h 2r = 

0 ( n ~ 2), which in turn  means tha t  n 3h 2r is bounded.

For the case of 7  = /?, the proof of (2.5.31) cam be handed similarly. Since ß 

is a root-n consistent est imate of ß,  we have

1 + ß n 1 = 1 p  ß n 1 +  Op(n 2 ).

Using the de l ta-method we may show in a way similar to tha t  which we used to 

derive (2.5.31), tha t

P{»,  e  h,d(c„,/)} = “  -  n " 1 {(’•O '2 «2 p - 1}(0q)2n h2r -  q)~ 1 }

+ o( nh 2r) + 0 ( n _ f ) .  (2.5.32)

However, by an argument based on the oddness and evenness of polynomials in 

the Edgeworth  expansion for the distr ibution of t h {6q), for example,  by Barndorff-
3

Nielson and Hall (1988), the 0 ( n ~  2 ) term in (2.5.32) is actually 0 ( n ~ 2). To be 

more rigorous, we may apply Edgeworth expansion directly to £h(6q) — x 2 ß n ~ l , 

which can be fitted into a smooth function of means model,  by using the same
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method  as tha t  for Edgeworth expansion for £h(6q), a l though the analysis is far 

more tedious.  Therefore,

P { » ,  €  = a - n - 1 {( r ! ) -2 / < - " ‘>(9, 1 -

+ o( nh2r) + 0 ( n ~ 2).

Now, the rest of t r ea tm en t  for the case 7 = ß  is exactly same with tha t  for the case 

7  =  0 - □
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A p p e n d i x  2 C a lc u la t io n  o f  C u m u l a n t s  kt

In this appendix we calculate the cumulants  k i , k 2, . . .  of n* P( V)  which were 

used in the proof of Theorem 2.3.4. Let &’1’2 ' lp be the p ’th order mult ivariate 

cumulants  of V — (Vi , . . . ,  Vj ). According to results given by James  and Mayne 

(1962), the kj ’s may be expressed as follows,

*i = n ± { S j (u) + ^ d {jk ij +  l-  di j kk i’ k +  l- d i j k tk ^ k k l ) +  0 ( n - » )  (2.5.33) 

k 2 =n{  didj k 1̂ +  dij dk k 1̂ k +  (dijkdi T ~ d{kdji) k 1’’ k k l } + 0 ( n  2) (2.5.34) 

k3 2 { d i d j dk k ijk + 3 dikd j d t k ij k kt +  f  di jdkdt k ijkt

+ (3di j tdkdm -f ~ diim dj dk + 3d,j dki dm + 3 dndjm dk) k1̂ k klm 

+ I  dijkmdl dnki jkklkmn + (3dijkdlrndn

+ 3dikmdj i dn +  dik djm din ) k 1' 'kk i k mn } *f 0 ( n  2) ,  (2.5.35)

k4 = n 2 { d i d j dkdt k l]ki -f- \ 2 d i tdj dk dm k l^k k tm

+ (4 dikmd j d i dn +  \ 2dikdjm d i dn )k 1̂ k kt k mn ) +  0 ( n  2) ,  (2.5.36)

kt = 0 ( n " (' - 2)/2) ,  £ >  5,

where
m

dh ...J» = ( n  ö/9«i , ) 5 j ( u i , . . . , « j )|u = (j .
/ =  1

It may be shown after some calculations tha t  

d\ ~ [i2 2 + 3 [izfLx + 0 ( n  ? h r + n 2 ) ?

d2 = — \  2 ßi  +  0 ( n ~  2 h r -f n~ 2) ? di = 0 ( h 2r) ,  £ > S

d u  = | ^ 2  V s  +  0 ( h r ) ,  d 12 = \l2 2 +  0 ( h r ) ,

Ĝ m = 0 ( h r ) ,  for all other second derivat ives,

d m  =  -  | / i 2 > 4  + § / J2 2//3 + 0 (hr ) , d n2 =  - f  /j 2 2//3 + 0 ( h r ) ,

^ii3 —1^2  2 + d i22 = I  /i2 2 + 0 ( h r ) ,

—0 ( h r ) ,  for all other third derivatives.
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Moreover,  we have

k 11 = n ~ 1(fi2 -  n \ ) ,  k 12 =  ™- 1 (^3 - ^ 1 / ^ 2 ) ,

k 13 = n ~ 1([i 4 fJ-3 )j j k 22 = n~ 1 (/z4 - / 4 ) ,

A?111 = n 2(/ 3̂ — 3/ii /̂ 2 4* 2/i3) ,  A:112 =  n 2(/r4 —2/x1/i3 + 2/ii/^2 —^2)5

A:1111 = n  3(/^4 — 2^2) + 0 (ti 3/^i ) ,  A:1112 = n 3(/x5 — 2/i2/^3) + 0(72 1).

Subst i tu t ing  the above derivatives and the mult ivariate cumulants  of V  into (2 .5 .33)-  

(2 .5 .36 ), we are able to prove tha t

k 1 = n 2 Sj(fi) — -  /z2 2 n 3n 2 + 0(rc 2 h r +  ft 2) ,

A;2 =cr2 -f ( j / i 2 I14 ~  2 3 ̂ 3)  n ! + 0 (n 1 h r + n 2) ,

Ar3 = 0 (n"  2 /ir ) ,  A:4 = 0 (n"  1 hr ) ,  k t = 0 ( n ~ (/_2)/2) for  ̂ >  5 .
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C H A P T E R  T H R E E

ON T H E  A C C U R A C Y  OF E M P I R I C A L  L I K E LI HO O D  

C O N F I D E N C E  R E G I O N S  FOR L I N E A R  R E G R E S S I O N  M O D E L

3.1.  Introduct ion

In Chapter  2 we considered construct ing empirical likelihood confidence inter­

vals for a populat ion quantile.  We also mentioned there tha t  the quanti le case is 

non-s tandard  in the sense tha t  the param eter  of interest (i.e. quantile)  cannot  be 

represented as a smooth function of means.  In this chapter  we consider our second 

non-s tandard  case, which is to construct  empirical likelihood confidence region for 

the regression coefficient vector of a linear regression model. We shall see shortly 

tha t  due to the presence of the fixed design points,  the observed random variables 

are independent  bu t  not  identically distr ibuted.  So it is not the s tandard  i.i.d case 

any more.

Let us consider a linear regression model of the form

Yi = Xiß + 1 <  z <  n,  (3.1.1)

where ß  is a p X 1 vector of unknown parameters  and x,- is a 1 X p vector of the 

z’th fixed design point ,  for which scalar Y, is the response.  We allow the C;’s to be 

heteroscedastic,  th a t  is, the €,’s are independent  random variables with mean zero 

and variances a 2 (a:*). The  da ta  are observed in the form { (x,-, Y,) | l <  i <  n}.

A classical problem for linear regression model is tha t  of how to cons truct  con­

fidence regions for ß  when the distr ibution functions of Cj’s are unknown. In these 

nonparametr ic  sett ings the boo tst rap  has been used to construct  confidence regions 

for ß.  But  one drawback of the bootstrap  is tha t  it needs some subject ive ins truc­

tions on the shapes and orientat ions of confidence regions. Empirical likelihood



methods ,  as an al ternat ive to the boots trap  method  for construct ing confidence 

regions nonparametrically,  were introduced by Owen (1988,1990). An im por tan t  

feature of empirical likelihood is tha t  it uses only the da ta  to determine the shape 

and orientation of a confidence region. Furthermore ,  in certain regular  cases as 

pointed out  in Chapte r  1, empirical likelihood confidence regions are Bar t le t t  cor­

rectable,  meaning tha t  simple empirical adjustments  for scale can reduce coverage 

error  from 0 ( n - 1 ) to 0 ( n ~ 2).

Empirical likelihood methods were proposed by Owen (1991) for construct ing 

confidence regions for ß in the model  (3.1.1). He derived a nonparametr ic  version 

of W ilks’ theorem, ensuring tha t  empirical likelihood confidence regions for ß  have 

correct asymptotic  coverages. However, there are still two questions to be answered.  

They  are, “How accurate are the empirical likelihood confidence regions ?” and “Are 

the empirical likelihood confidence regions Bar t let t  correctable ?”

This chapter  aims to answer these two questions.  We demonst ra te  in Section 

3.2 th a t  the coverage errors of empirical likelihood confidence regions for ß  are of 

order n~ 1. In Section 3.3 we show tha t  Bart let t  correction may be used to reduce the 

order of magnitude  of the coverage errors to n " 2 . An empirical Bar t le t t  correction 

is given, which allows one to practically implement the Bar t let t  correction.  A 

simulation study is presented in Section 3.4. Detailed proofs and calculations of 

cumulants  are given in Section 3.5 and Appendix 3, respectively.

We close this section with some notat ion.  Let X be an n Xp matr ix  with Xi as the 

i ’th row, let ß LS denote the least squares es t imator of /3, ß LS = ( X T X )  1 a^Y,-,

and pu t  c, = Y, — Xi ßLS.

3.2  W i l k s ’ T h e o r e m  a n d  C o v e r a g e  A c c u r a c y

As mentioned in Section 3.1, Owen (1991) proved a nonparametr ic  version 

of Wilks’ theorem for the empirical log-likelihood ratio of ß,  which enables us to 

cons truct  confidence regions with correct asymptotic  coverages. In this section we
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invest igate the second order property of those confidence regions. We first give a 

Taylor expansion for empirical log-likelihood ratio,  denoted by £(ß) .  Then  we set 

up an Edgeworth expansion for the distribution function of £{ß) ,  which allows us 

to evaluate coverage accuracy of empirical likelihood confidence regions.

For the linear regression model  (3.1.1) we know tha t

E  (Yi| Xi) = Xiß,  E( €i )  =  0, Var (c<) = <r2 (x<) .

Notice tha t  we assume the variance of ct- is related to the i ’th fixed design point  

x , , which implies heteroscedascity of the model.  We define auxilliary variables 

Zi = x j  (Yi — Xiß),  for 1 <  f <  n, and

n n

Vn — n 'y  ̂ Cov(z, ') — TL ^  > xXi ( T  (Xj),
»■=1 » •=  1

and let v ln and vpn denote the largest and smallest eigenvalues of Vn, respectively.

The  problem of test ing whether or not ß is the true param ete r  is equivalent 

to test ing whether  E{ z i ]  =  0, for 1 <  i <  n.  Let P i , - - - , Pn  be nonnegative 

numbers summing to unity. Then the empirical log-likelihood ratio,  evaluated at 

t rue param ete r  value ß,  is defined by

£ (ß)  — ~ 2  min ^  \og(npi )  .
Yl P i * i  =  °

Using the Lagrange multiplier method ,  the optimal value for may be shown to 

be given by

1 1
Pi = ------------—  1 <  i <  n.

n 1 -f AT Zi

This gives

t ( ß )  = 2 £  log ( l  + A ,

where A is a p X 1 vector satisfying

‘E Zi

1 + AT  Zi
=  0.



In te rms of s tudentized variables Wi = Vn 2 2,-, for 1 <  i <  n, we have

n ß )  = 2 E  log (1 + AT w.) , (3.2.1)

where A satisfies

n- E Wj

1 + AT Wi
(3.2.2)

Since analyt ic  solution of equations (3.2.1) and (3.2.2) can rarely be achieved, 

we have to derive an asymptotic  expansion for t ( ß ) -  To this end,  we assume the 

following regularity condition.

There exist positive constants  C\  and C 2 such tha t  uniformly i n n ,
n

C i < vpn < v ln < C 2; and n -2 E\\zj  ||4 —> 0, where || || denotes (3.2.3)
j= i

the Euclidean norm.

Under  condition (3.2.3), Owen (1991) showed tha t  the A appearing in (3.2.2) satisfies

A = 0 „ ( n - > ) .

We define
a j l " jk =n~  1 E ( w i 1 • • • w \ k )  ,

A J r "J* = n ~ 1 ^ 2  ( t t ^ 1 • • • w \ k — ~ÖLi l

where is the j ’th component  of w{. In part icular ,  ct-' = 0 ,  cP k = 6j k , k is the 

Kronecker delta. Notice tha t  the cr7’1"'J’fc is a generalization of a-71 '"J'k defined in 

(1.2.9) for our current  independent  but  not identically distr ibuted  case.

Notice tha t  £(/?), given by (3.2.1) and (3.2.2), is similar to the empirical log- 

likelihood rat io for means in the independent  and identically d ist r ibuted case. The 

only difference is th a t  {«>,•}”_ x are independent  but  not  identically distr ibuted  r a n ­

dom variables due to the presence of the fixed design points.  However, by modifying 

the expansion (1.2.13) we may obtain the following expansion for t ( ß )  ,

n ~ l l ( ß )  = A j A j -  A j k A j A k +  |  a j k l A j A k A l + A j 1 A k 1 A j A K

+ § A j k l A j A k A l - 2  a j k m A I mA j A k A l + a j k n a l m n A j A k A 1 A m 

-  \ a j k l m A i A i A lA m + Op( n - f ) .  (3.2.4)
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Based on expansion (3.2.4), we have

1(0)  =  [ n ' - R r ) ( n * f t )  + Op( n ~ i ) ,  (3.2.5)

where R = Ri  + R 2 + R3 is a p-dimensional  vector and R\ = Op (n l^2) for / = 

1, 2, 3. Comparing terms in (3.2.4) with those in (3.2.5) yields,

R\  = a \

4
4

-  \ A i k A k + 1- ä ] km A k A m and

-  A j m A k m A k + -  A i k m A k A 1  — o'-7 k m A 1 m A k A 18 3 12

-  f ^ ä k, m A j m A kA l +  ± ä j k n ä l m n A rnA kA l -  \

(3.2.6)

where R j is the j ’th component  of R\.  In part icular ,

R\  = n~ 1 ^ 2  Wi = n~ 1 Vn 2 x j  (Yi -  x {ß)  .

The  leading term in (3.2.5) is

n R [  R ,  =  . - ’ ( E  {Yi ~ x i0 ) x i } V - ' {  £  4  (U  - x , ß ) }

= (ßLs - ß f  ( X T X )  { £  xTxi<r3 (Zi)  } _1 ( X T X ) ( ß LS — ß)  ■

It is well-known tha t ,  for the heteroscedastic linear regression model  (3.1.1),

Var(/?i s ) =  ( X T X V '  { £  x j x i ^ i x t )  } ( X T X ) ~ 1 .

Thus ,

t (ß)  = n “ M £  (U - x iß ) x i } V - 1{£  ( Y i - X i ß )} + Op( n ~ i )

= (ßLS - ß f  {Var ( ßLs ) } - 1 (ßLS -ß )  + Op( n~i ) .  (3.2.7)

Also,

ßLS ~ ß  = ( X T X )~'£  x j a : = U TX ) ‘ ‘ n Z ,

where Z* = x j  ( — ßxi ) .  By Cramer-Wold device, we have

Z 4  N  (0, n “ 1 Fn ) .
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Thus  ß LS — ß converges to N  {0, Var ( ß L s )} in distr ibution under  condition (3.2.3). 

Therefore,

(ßLS ~  ß ) T Var-1 (ßL S )(ßLS ~  ß)  Xp, as n -> oo.

where — denotes converging in distribution.  Hence we obtain

P { i  (ß)  < c} = P  (xp < c) + o( 1 ) as n —► oo, (3.2.8)

which is a nonparam et r ic  version of Wilks ’ Theorem, first proved by Owen (1991).

From (3.2.7) we see tha t  t ( ß )  implicitly uses the true variance of ß LS to con­

s truc t  confidence regions for ß.  This is an advantage of empirical likelihood over 

other  resampling techniques,  such as the jackknife and the boo ts tr ap ,  which depend 

on explicit estimates of Var(/3) and consequently pose problems result ing from the 

quali ty of these estimators.  This point  was noted by Wu (1986). Empirical  likeli­

hood can avoid this problem, reflecting the feature “let the da ta  themselves decide” . 

And also note tha t  the first term on the r ight of (3.2.7) is different from tha t  given 

by Owen (1991), who uses an estimate of Var (ß LS )• However, the difference has no 

first order effect.

Using (3.2.8), a confidence region for ß with nominal  coverage level a can be 

construc ted  as follows. First find from the Xp tables the value ca such tha t

P (Xp < c«) = «•

Then  R a = { ß \ £ ( ß )  < ca } is the a-level confidence region for ß,  and (3.2.8) 

ensures tha t  it has correct asymptotic  coverage.

Before discussing the coverage accuracy of R a , let us define j i  =  (p2 + p ) / 2, 

]2  =  j i / 2  +  p(p + 1)(2p +  1)/12,  and

~Ü =  ( A1, - - - , A P, A 11, - - - , A PP, A 111, - - - , A PPP),

being the p + j x -f .7’2-dimensional vector consisting of all distinct first three order
_  1_

multivar iate central moments of Wi  =  Vn 2 z ß s. Note th a t  there are and j 2 distinct
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second and third order mult ivariate central moments  in U. Let Tn = nCov(U)  = 

n -1 Y1 Cov(U{) where

Ui XJ Vn ® Xi )B^  {e2 -  £ (e 2 )},(xt- <g x { ® x ^ B *  {ef -  E(e  f )}

Let Si be the (p — i) X p matr ix obtained by removing top i rows of Vn 3 , and V . 2
_ i_ _ i_ _ jl

be the j - th row of Vn 2 . Clearly S 0 = Vn 2 and S p- \  = Vn p 2 • We define j i X p2 

and j 2 X p3 matrices Bi  and B 2 as follows,

/ ® F n l’ ® S„ ^

Bi I I
l :
' V V  ® 5 P_ , /

and B 2

Vnl5 ®V„P’ ® 5 p_i

v„V ® ® s2

V~2’ ®Vn“ > ® 5P_1

V V n p ’® KTp" ® Sp-i

Then  it may be shown tha t

where

r i2 = Vn 2{n 1 X J  ( x i ® ) } # f  5

r 13 — Vn 2 {n~ 1 51 (*i ® ® Xi  )E(e4 ) } B \  ,

r22 -  -ßi 1» 1 E  ( x 7® x f ) ( X i  ® ij){.E(tJ) -  £ 2(e,2)} b ; ,

r23 - B i ,

r ,3  — b ■ n ® XJ )(x i ® x i ® x i ) {E(e6i ) -  E 2 (e3i )} B T2 ,

To derive an Edgeworth expansion for the distr ibution of £(ß),  we have to use 

Theorem 1.3.3. Notice tha t  the first condition of (1.3.5) demands  the smallest 

eigenvalue of Tn is bounded away from zero.
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We establish an Edgeworth expansion for the distr ibution of t ( ß )  in the following 

th e o re m .

T h e o r e m  3 .2.1:  Assume that

(i) there exist positive constants C \ , C 2 such that uniformly in n, 

C i <  vpn <  v ln < C 2; (ii) the ||ari ||, s for  1 <  i <  n are uniformly
n

bounded; (Hi) s u p n " 1 ^  E \ e j \15 < oo; (/’u,) /o r  every positive r ,  
n i = i

lim n -1 /  I € j 115 = 0; (v) the characteristic function
n —► oo « ' l l -

J =  1 h i  I > t ” 3

gn o f  en satisties Cramer’s condition, i.e. for every positive b, 

lim sup |<7n(0l < 1; (vi) the smallest eigenvalue o f T n is bounded
n ~ * ° °  p | > b

away from zero.

Then P {£(ß) < ca } = a — a ca gp (cQ ) n -1 + 0 ( n - ä),

where gp is the density of  \ 2p distribution, P  ( \p  < ca ) =  o ,  and

_ 1 (  1 — j  j  m  m  1 — j  k m  — j  k m  \a — p J — -  a J a J ) .

(3.2.9)

(3.2.10)

Theorem 3.2.1 states tha t  the coverage error  of the empirical likelihood confi­

dence region R a is of order n - 1 , tha t  is

P { i ( ß )  < cQ } = a +  0 ( n  1).

In (iii) of condition (3.2.9) we assume the average 15-th moment of €j ’s is uniformly 

bounded .  This  is to ensure,  together with (ii) of condition (3.2.9), tha t  the average 

fifth moment of Uj’s is uniformly bounded in order to obtain a uniform error  term 

at order of n~ ä in the Edgeworth expansion for the distribution of U.

From (3.2.10) and the definitions of ; m m and a j k m , we have

K ' E L  £(€?) , {£(e?)£(t?)(;riVn- ‘!c,)3}-  1

This reveals tha t  the coverage error depends on a combination of the following five 

factors: (1) the moments  of c,-’s, (2) the nominal  coverage level, (3) the configuration 

of the fixed design points,  (4) the sample size n, and (5) dimension,  p.
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3.3 .  B a r t l e t t  C o rrec t io n

In Section 3.2 we showed th a t  the coverage errors of empirical likelihood confi­

dence regions for ß  are of order n~ 1. It is well-known th a t  par t  of the coverage error  

is due to the fact tha t  the mean of l {ß)  does not agree with the mean of \ \  > th a t  is 

E{C(ß)}  ^  p. The coverage accuracy of empirical likelihood confidence region can 

be improved by rescaling t ( ß)  to reduce this disagreement.  We demonst ra te  in this 

section tha t  the empirical likelihood confidence region for ß  is Bar t let t  correctable.  

Thus,  a simple empirical correct ion for scale can reduce the size of coverage error 

from order n -1 to order n - 2 . For pract ical implementat ion  of Bar t le t t  correction,  

we propose an empirical Bar t le t t  correction.

From expansion (3.2.4) we may obtain an expansion for E{ £( ß ) }  as follows,

E { l ( ß ) }  = p( l  +« « “ ' ) +  2), (3.3.1)

where a is given by (3.2.10). The  Bart let t  correctabil ity of empirical likelihood 

confidence regions for ß is discussed in the following theorem.

T h e o r e m  3.3.1:  A ssum e condition (3.2.9). For any ca > 0,

P {i{ß)  < cQ ( l  -f a n - 1 )} = a  +  0 ( n - 2 ). 

where P  ( x 2 < ca ) = a.

However, the Bar t let t  factor a is usually unknown in pract ice,  because Vn and 

the moments  of C;’s are unknown. Suppose a is a root-n  consistent est imate of a. 

We claims tha t  by slightly modifying condition (3.2.9), Theorem 3.3.1 holds true 

when a is replaced by its root-n consistent est imate a. To appreciate this,  note tha t

1 - f d n -1 = 1 - f a n -1 -f Op(n~ ?).

Using the del ta-method,  we may show that

P { i ( ß )  < c Q (l  + d n - 1 ) } =  P{£( ß)  < cQ ( l  + a n - 1 )} +  0 ( n - 2 )

= a  + 0 ( n  2 ). (3.3.2)
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To be more rigorous, by slightly modifying condition (3.2.9) we may develop an 

Edgeworth  expansion directly to l ( ß )  — ca a n~ 1, under a smooth function of mean 

model al though the analysis is far more tedious.  By an argument based on the 

oddness and evenness of polynomials in the Edgeworth expansion,  the 0 ( n  2 ) 

term in (3.3.2) is actually 0 ( n ~ 2).

In the rest of this section we give a root-n consistent est imate  of a. From 

(3.2.10) we know tha t  the Bar t let t  correction is given by

a = p - 1 ( L ä j j m m  -  ± ä j k m ä j k m ) ,

where
— j  k ma J = n 1E e  U- )  v ; ? x j v ' J - x j ,

i = 1

't
i — 1

and Vn T is the j ’th row of Vn 2 . We define

_ L

— j  j  m  m  _ -a J J — n

V„ = n - 1Y ,  x j x i t l

which is an es t imator of covariance matr ix  Vn . Accordingly, we let Vn 1 be the
Ä  ̂_ i.

inverse matr ix  of Vn and Vn 2 be the positive definite square root  matr ix  of V~  1. 

Now an est imate of a, a say, may be defined as follows:

-  1 (  1 i - i  j  m  m 1 —  j  k m  —  j  k m }— p  \  j  a  — ~ a  a J )  , (3.3.3)

where

and

. j  k m
1 E V~>x)= n

i = 1

J  j  m  m  _ ! .4
= n E i U x i V - ' z ? ) 1.

i = 1

_ i.
We can see tha t  a '  and a JJ are established by replacing e,-, Vn * in a jkrn

_ 1_  ̂_
,.2 , where Vn ■ j  ’ n  j

. . . . - _ L . _ i.
and a j j m m  with their  corresponding est imates c, and Vn .2 , where Vn 2 denotes

the j ’th row of Vn
_ i.
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We wish to prove that d is a root-n consistent estimate of a. To this end we 

assume that

there exist positive constants  C i ,  C 2 such that uniformly in n,

C 1 <  vpn <  uln <  C2; and there exist constants  q \ , q -2 >  0 such that  (3 .3 .4 ) 

<  inf IIa;,- II <  sup IIxt- II <  g2; and sup n~ 1 ^  jE (c®) <  +00.

T h e o r e m  3 .3 .2 :  Assume condi t ion (3.3.4)- Then,

ä — a +  Op(n~ ~ ).

The  proof of Theorem 3.3.2 is deferred to Section 3.5.

After some simplification we may show that the empirical Bartlett factor d has 

the following explicit form:

a — p 1 l- n ~ '  £  e* ( XiVn- ' x j ) 2 -i „ - £  P ? e ? ( x , l > f ‘ x , ) 3  * *}
* = 1  * , /

In some special cases, d has a simpler form, as we now indicate.

(1) If 61, • • • , €„ are i.i.d, which implies that  model  (3.1.1) is a homoscedastic  

regression model,  then

ä =  p 1 n 1 / i « E p i  Urxr‘ x f } 2 -  1 a L ^ ' 6 E  {Xi ( X T X ) ~ l x j ]
L  ̂ O

i 1

where ß k £ =  n 1 1 c* for A: =  3 ,4 ,  d 2 =  n 1 I ]  x .

(2) If Ci, • •*,€„ are i.i.d and have a symmetric distribution then the model

implies £ ( c f )  =  0 , and we may take

ä -  p ~ x n - ß A {xi  ( X T X )  1 x j  } 2.

Our simulation results in the next section show that  d is a reliable estimator of a.
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3 .4 .  S im u la t io n  S t u d y

In this section we use Monte Carlo simulation to examine the coverages of 

the empirical likelihood confidence regions proposed in previous sections. Under 

considerat ion is the following simple linear regression model:

Y i  =  1 +  x° -I- €,•, i = 1, • • • , n.

The  d a ta  set x ? for 1 <  i <  150 is displayed in Table 3.1. For sample size 

n <  150, we use the first n x° as the fixed design points.  Four error  pat te rns  

were considered.  They are two homoscedast ic error  pa t te rns  e, = iV(0,1)  and 

e* =  £(1.00) — 1.00, and two heteroscedastic error pa t te rns  ct- =  ( l / 2 x ° ) 1//2 iV(0 , l )  

and Ci =  ( 1 /2 £ ° ) 1/2 {£(1.00) — 1.00}, where 7V(0,1) and £(1.00) are random vari­

ables with s tandard  normal distribution and exponential  distr ibution with unit 

mean,  respectively. For each of these four error pa t te rns  we chose sample sizes 

n = 30,50,100,150,  and nominal  coverage levels a  =  0.90,0.95.  The  normal and 

exponential  random variables were generated by the routines of Press et al. (1989).

We give in Table 3.2 the coverages of the uncorrected confidence regions and 

two corrected confidence regions based on 20,000 simulations.  One of the corrected 

confidence regions uses the theoretical Bart let t  correction a, another  uses the em pir ­

ical Bar t let t  correction a. Since we know the error  pa t te rn ,  sample size and nominal  

coverage level a , we can calculate the theoretical coverages up to second order by 

using Edgeworth expansion in Theorem 3.2.1. Because the theoretical  coverages 

can be computed  without  s imulation,  we call these “predicted coverages” . We com­

pare  the “predicted coverages” with the uncorrected coverages in order to see if 

the theoretical  results are consistent with the empirical ou tputs .  Also, s tandard  

errors are given for each simulated coverage and these serve as one of the criteria 

for comparing  accuracies among different kinds of s imulated coverages.

T he  following conclusions may be drawn from the results shown in Table 3.2:

1) The  simulated uncorrected coverages converge to the “predicted coverages”
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as n increases. This empirically justifies the Edgeworth expansion developed in 

Theorem 3.2.1.

2) S tandard  errors and absolute coverage errors both  show th a t  the B art le tt  

corrected confidence regions have more accurate coverage than  corresponding u n ­

corrected ones.

3) T he empirically corrected confidence regions perform similarly to their th e ­

oretically corrected counterparts ,  except for the cases of skewed error pa tte rn s  with 

sample sizes n = 30 and 50. It seems th a t  we need a larger sample size to ensure a 

as a good es tim ator of a when the errors are skewed,

Com paring Table 3.2(a) with Table 3.2(b), we observe th a t  skewness in the 

error p a t te rn s  reduces the overall coverages. However this has little surprise for 

us since it has been foreseen by their corresponding “predicted coverages” . In the 

examples considered we see some reduction in coverages caused by heterscedasticity 

when n is small. Nevertheless there is no clear evidence to say generally th a t  

heterscedasticity reduces coverage accuracy when sample size is large. O ur theory 

shows th a t  real coverage depends on the configuration of the fixed design points 

and the m om ents of the residuals when sample size, nominal coverage level and 

dimensionality are all fixed.



TA BL E  3.1: The  data set x? for 1 <  i <  150.

>
x °i

>
*?

■
*?

>
x °i

■
x °i

1 1.00 31 8.90 61 14.89 91 23.80 121 37.20
2 1.40 32 9.30 62 15.01 92 24.10 122 37.60
3 1.50 33 9.70 63 15.67 93 24.20 123 37.80
4 1.70 34 9.90 64 15.71 94 24.70 124 38.30
5 2.00 35 10.00 65 15.85 95 24.98 125 38.70
6 2.30 36 10.30 66 15.97 96 25.30 126 38.90
7 2.50 37 10.40 67 16.29 97 26.00 127 39.40
8 2.67 38 10.55 68 16.38 98 27.00 128 39.80
9 3.00 39 10.70 69 16.71 99 29.00 129 40.00
10 3.30 40 11.00 70 17.00 100 29.50 130 40.50
11 3.46 41 11.23 71 17.20 101 29.90 131 40.90
12 3.50 42 11.47 72 17.35 102 30.10 132 41.10
13 4.00 43 11.66 73 17.62 103 30.60 133 41.60
14 4.40 44 11.89 74 18.00 104 31.00 134 42.00
15 4.50 45 12.09 75 18.50 105 31.20 135 42.20
16 4.90 46 12.21 76 18.50 106 31.70 136 42.70
17 5.00 47 12.43 77 19.00 107 32.10 137 43.10
18 5.20 48 12.64 78 19.33 108 32.30 138 43.30
19 5.50 49 12.91 79 19.42 109 32.80 139 43.80
20 6.00 50 13.00 80 19.78 110 33.20 140 44.20
21 6.30 51 13.23 81 19.98 111 33.40 141 44.40
22 6.70 52 13.44 82 20.02 112 33.90 142 44.90
23 6.85 53 13.51 83 20.51 113 34.30 143 45.30
24 7.00 54 13.66 84 21.00 114 34.50 144 45.50
25 7.15 55 13.79 85 21.31 115 35.00 145 46.00
26 7.30 56 13.81 86 21.79 116 35.40 146 46.40
27 7.70 57 13.81 87 22.69 117 35.60 147 46.60
28 8.00 58 14.04 88 22.81 118 36.10 148 47.10
29 8.20 59 14.19 89 23.00 119 36.50 149 47.50
30 8.50 60 14.34 90 23.40 120 36.70 150 47.70
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T A B L E  3.2: Estim ated  true coverages, from 20,000 simulations, of a-level 
empirical likelihood confidence regions for ß.  Rows headed “predic .” , “uncorr .” , 
“a ” and “a ” give the predicted, uncorrected and Bartle tt-corrected  coverages re­
spectively. The figures in parentheses are 102 times the s tandard  errors associated 
with the coverage probabilities.

(a) Normal error pa tte rns

C. N (  0 ,1) (K°)= JV(0,1)

n

a
0.90 0.95 0.90 0.95

30 predic. 0.872 0.931 0.868 0.930
uncorr. 0.839 (0.26) 0.904 (0.21) 0.833 (0.26) 0.897 (0.21)
a 0.870 (0.24) 0.924 (0.19) 0.867 (0.24) 0.921 (0.19)
a 0.867 (0.24) 0.922 (0.19) 0.858 (0.25) 0.915 (0.20)

50 predic. 0.884 0.939 0.884 0.939
uncorr. 0.872 (0.24) 0.928 (0.18) 0.869 (0.24) 0.927 (0.18)
a 0.888 (0.22) 0.939 (0.17) 0.886 (0.22) 0.940 (0.17)
ä 0.887 (0.22) 0.939 (0.17) 0.883 (0.23) 0.938 (0.17)

100 predic. 0.891 0.944 0.889 0.943
uncorr. 0.890 (0.22) 0.942 (0.17) 0.888 (0.22) 0.941 (0.17)
a 0.899 (0.21) 0.948 (0.16) 0.899 (0.21) 0.948 (0.16)
ä 0.899 (0.21) 0.948 (0.16) 0.897 (0.21) 0.947 (0.16)

150 predic. 0.894 0.946 0.894 0.946
uncorr. 0.894 (0.22) 0.946 (0.16) 0.893 (0.22) 0.948 (0.16)
a 0.900 (0.21) 0.949 (0.15) 0.898 (0.21) 0.951 (0.15)
ä 0.900 (0.21) 0.949 (0.15) 0.898 (0.21) 0.951 (0.15)
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(b) E x p o n en t ia l  e rro r  p a t te rn s

<4 £(1 .00) -  1.00 ( |x ,° )>  {£(1 .00) -  1.00}

n

a
0.90 0.95 0.90 0.95

30 predic . 0.835 0.908 0.829 0.904
uncorr . 0.800 (0.28) 0.864 (0.24) 0.788 (0.29) 0.854 (0.25)
a 0.863 (0.24) 0.914 (0.20) 0.847 (0.25) 0.906 (0.21)
a 0.838 (0.26) 0.895 (0.22) 0.812 (0.28) 0.874 (0.23)

50 predic . 0.863 0.926 0.863 0.926
uncorr . 0.837 (0.26) 0.900 (0.21) 0.836 (0.26) 0.898 (0.21)
a 0.872 (0.24) 0.927 (0.18) 0.872 (0.24) 0.924 (0.18)
a 0.860 (0.25) 0.919 (0.19) 0.853 (0.25) 0.910 (0.20)

100 predic . 0.880 0.937 0.876 0.934
uncorr . 0.871 (0.24) 0.926 (0.18) 0.869 (0.24) 0.924 (0.18)
a 0.893 (0.22) 0.942 (0.17) 0.892 (0.22) 0.942 (0.17)
a 0.888 (0.22) 0.938 (0.17) 0.880 (0.22) 0.932 (0.17)

150 predic . 0.888 0.942 0.886 0.941
uncorr . 0.884 (0.23) 0.939 (0.17) 0.884 (0.23) 0.934 (0.17)
a 0.896 (0.22) 0.947 (0.16) 0.897 (0.22) 0.945 (0.16)
a 0.895 (0.22) 0.946 (0.16) 0.895 (0.22) 0.944 (0.16)
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3.5 Proofs

In this section we display proofs Theorems 3.2.1, 3.3.1 and 3.3.2.

3.5.1 P r o o f  o f  T heorem  3.2.1 

T h eorem  3.2.1: Assume that

(i) there exist positive constants C i , C 2 such that uniformly in n,

C i <  vpn <  V i n  <  c 2; (H) ||x,-||/5 for 1 <  i <  n are uniformly bounded;
n

(Hi) s u p n -1 ^  £ | e j | 15 < oo; (iv) for every positive r ,
n  ■ ,

j  =  i

n . (3.2.9)
lim n _1 2_  ̂ /  l€i | 15 — Oj fv) the characteristic function

n —► oo t . _ '■7j-=1 I e j I > r n 2

o / c n satisties Cramer’s condition, i.e. for every positive b, 

lim sup |tfn (t)|  < I-
n_+0° \ t \ > b

Then P [t{ß)  < cQ) = a — a cQ gp(cQ) n ~ 1 + 0( n~  2 ),

where <?p is the density of the x p distr ibution,  P ( x p < ca ) =  a ,  and

„ 1/1  — j  j  m m  1 —  j  k m — j  k m \a = p \ -  a J J — -  or1 a J ) .

Proof: To prove the theorem we first derive an Edgeworth expansion for the dis­

tr ibut ion  of n i R .  By the expansion R = R x + R 2 +  R 3 and expressions for Ri,  

l = 1,2,3,  calculations deferred to Appendix 3 show tha t  the cumulants  k i , k 2,---  

of n ? R  have the following forms:

— n ~ ^ p - \ - 0  ,

k 2 = Ip + n ~ 1A + 0  (n ~ 2) , (3.5.1)

kj = 0  (n~  a) j  > 3,

where I p i s t h e p x p i d e n t i t y m a t r i x ,  =  A = (A,  j ) and

p  =  - j & k k , A i j  =  -  l- ä i k m W j k m  -  ± W i i m a m i k .
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Let B be a class of Borel sets satisfying

sup J <f>(v)d v = 0(e ) ,  c I  0, (3.5.2)
B e B  J ( d B y

where d B  and (d B ) £ are the boundary  of B and e-neighborhood of d B  respectively. 

A formal Edgeworth expansion for the distr ibution function of n i R  is given as 

follows,

sup \P(n* R  E B ) — /  7r(v)4>(v)d v\ = 0 ( n ~  »), (3.5.3)
B C B  J B

where

n(v)  = 1 +  n 2 p T v + j n  1 { vT ( y y T + A) v — t r (fip,T + A) } ,

4>(v) is the density function of the s tandard  p-dimensional  normal dis tr ibution,  and 

tr  is the trace operat ion for square matrices.

Accepting tha t  the Edgeworth expansion (3.5.3) may be justified, we shall 

develop an Edgeworth expansion for the distribution of (-(ß). P u t

H  ~  ( ^ i j ) p x p  ~  W T  +  A .

From (3.2.5) and by the symmetry  of 4>(v) we have

P{l ( l3) < ca } = P { ( n ± R ) T (n>R)  < c„ } + 0 ~»)

= / i_ ir(v)(f>(v)dv + 0 ( n ~  2 )
IMKcJ

= P ( x ]  < cQ) + f  i { E f =1 h a ( vi “  1) + ^ i j i j  hijViVj} 4>(v)d v
IMI< Co

+ 0 ( n ~  2 )
p

= a -  p ~ ' Y l  ha c<* 9P(ca ) n ~ x + 0 ( n ~  »). (3.5.4)
»= l

After  some simple algebra we may show tha t

P - ' E  ft« =  p ~ '  .
i -  1

Thus  from (3.5.4) we obtain

P { i ( ß )  < cQ } = a -  a cQ gp(cQ)n~ 1 + 0 ( n ~  » ).
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It remains to check tha t  the formal expansion (3.5.3) is valid. Since

U = ( A 1 ,■ ■ ■, A p, A ' 1, ■ ■ ■, , 111 , A pppy n - '  E U„

where

Ui  =
_ L

vn 2 €i,(xi (g> Xi)B{ {e, -  £(€■)}, (Xi (g) X,- (g> a;,-)!  ̂ {cf -  £(e?)}

we see th a t  £/ is the mean of independent  but  not  identically distr ibuted random 

vectors due to the presence of the fixed design points.  However, from Theorem 

1.3.3 an Edgeworth expansion for this case may be established.  It may be shown 

tha t  conditions in (3.2.9) implies the conditions of Theorem 1.3.3. In part icular ,  

(ii) and (iii) of condition (3.2.9) implies tha t  n ~ l 12™ =1 ^ ' ( l l^ j l l )5 1S bounded away 

from infinity. Thus ,  we may establish the following Edgeworth expansion for the 

distr ibution of U under condition (3.2.9),

sup \P(U € B )  — I £n5(u)du \  =  0 ( n ~  7 ), (3.5.5)
B £ B  J B

for every class B of Borel sets satisfying (3.5.2). In (3.5.5),

3

fns(u) = Pr{~4> : {Xvn })(«)»
r =  0

{Xj/m }>1 <  z' <  5, are the first five cumulants  of U , Pr ( —(j> : {x«/n })(w) 15 the density 

of the finite signed measure with characterist ic function Pr (it : {xvn })exp( —j  2T i), 

and Pr is the Edgeworth -Cramer  polynomial . From the expression for R  we see 

tha t  there exists a smooth function f n such tha t  n * R  = f n (U).  Hence, using 

Theorem 1.3.4 we may show in our case tha t  the Edgeworth expansion (3.5.5) 

may be transformed by sufficiently smooth function f n , to yield a valid Edgeworth 

expansion (3.5.3) under  condition (3.2.9). □
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3.5.2  P r o o f  o f  T h e o r e m  3.3.1

T h e o r e m  3.3.1 .:  Assume condition (3.2.9).  For any cQ > 0,

P { i (ß)  < ca ( l  + a n - 1 )} = a  +  0 ( n - 2 ). 

where P  ( x 2 < ca ) = a.

Proof:  According to Theorem 3.2.1, under  conditions in (3.2.9),

P { t { ß )  < ca ( l  + a n - 1 )} = P  {Xp < ca {l  -\- an~ 1)} -  a cQ gp {ca ( l  + an~ 1)}  n~ 1

+ 0 ( n - >). (3.5.6)

Note tha t  gp( v ) is the density of the Xp distr ibution,

P { X 2P < ca ( l  + a n - 1 )} = P ( x 2 < ca ) + a c a gp(ca ) n ~ l + 0 ( n - 2 ), (3.5.7)

and tha t

9p {cq ( l  +  a n - 1 )} = gp(cQ) + 0 ( n - 1 ). (3.5.8)

Substi tut ing (3.5.7) and (3.5.8) into (3.5.6) gives

P{ t ( ß )  < ca(l  +  a n - 1)} = P( x l  < C „ )  + 0 ( n - * ) .  (3.5.9)

Moreover, by an argument based on the oddness and evenness of polynomials in 

the Edgeworth expansion (see for example Barndorff  - Nielsen and Hall 1988), the 

0 ( n - a) term in (3.5.9) is actual ly 0 ( n - 2 ). □

3 .5 .3  P r o o f  o f  T h e o r e m  3 .3 .2

T h e o r e m  3.3.2:  Assume condition (3.3.4)- Then,

ä — a -f  Op(n~ 7 ).

In views of (3.3.3), we see tha t  Theorem 3.3.2 is an immedia te result of the following 

Lem ma 3.5.1
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L e m m a  3.5.1:  Assume condition (3.3.4)- Then,

_j j  m  m  __— j  j  m  m  . — x  \  A — i   ̂ m  — j  k m  , r \  /  — T \= a J J -\-(Jp{n 2) and a = a J + Up(n 2 ).

To prove Lemma 3.5.1 we need the following Lemmas 3.5.2 and 3.5.3.

L e m m a  3.5 .2:  Assume (3.3.4)- Then there exist positive constants q3 and q4 such 

that, uniformly for any i , j ,  1 < i , j  < n,

(«') \ v ; ) x j \ < q 3.

( i i )  || ( n ~ ' X TX)~'sf|| <

Proof:  (i) Since Vn is positive definite, it has the following orthogonal  decomposi­

tion:
p

V n  =  E V,

1= 1

where Vi n >  • • • >  vp n and Ci, ' ' ' ,  Cp are eigenvalues and corresponding orthogonal  

unity eigenvectors of Vn . This  yields

V»-* = £  »-n»c,cf._ i

Hence,

K)  = E »r.-c/c;
Condit ion (3.3.4) ensures tha t  there exist C \ , C 2 > 0 such tha t  C\  < vpn < v in < 

C 2. uniformly in n. Thus ,  uniformly for any 1 <  i , j  <  n,

k ) '  d \  = i E
_ j.

_ L<cr*n*iii
_ i

< C 1 2 q2 -

_ i
The first pa r t  of the lemma is proved by choosing q3 = C 1 * q2. 

(ii) Since

= iE T
Xi  X {
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then

tr (n~ 1 X T X ) = -  Y ,  Xi xJ - 
n

By (3.3.4) we know tha t  qx <  \ x{xj  | <  q2 for 1 < i < n.  Thus ,

qx < tr ( n ~ 1 X T X )  < q2.

This means tha t  all eigenvalues of n ~ l X T X  are bounded  between qx and q2. Hence 

the eigenvalues of (n ~ l X T X ) 1 are bounded between q~ l and q~ 1. Suppose 

f t i a n d  are the eigenvalues and corresponding unit  orthogonal

eigenvectors of (n~ 1X T X )  1, tha t  is

( n - ' X T X ) ~ l =  E

where q^ 1 <  a,  <  q~ 1 and ||£;|| = 1 for 1 < i < n.  Thus,

|| (n~ 1X TX )  ~ ' x j  \\ =  | | E  < P ? r ‘ ?2

The second par t  of the lemma is proved by allowing qA = p q ± 1q2 -

L e m m a  3 .5 .3 :  Assume condition (3.3.4)- Then

V„ = v„ + 0 p(n~ “ ).

P r o o f :  P u t  S n = n -1 Y1 Z { Z j . Our first step is to prove

S„ = V„ + 0 p( n- >) .  (3.5.10)

Let V n ^  and Sn k> denote the / ’th row, k th column elements o f p x p  matrices Vn

and S n respectively. For any 1 <  /, k <  p,  using Chebyshev’s inequality,

P ( n T | s ( ' ‘ ) >  M ( ) = p M I E K ' Z , 1 - E ( Z ‘Z*)}\  > M t]

<  M ~ 2n~ 1 £  I E  - E ( Z l Z k ) }}2

= A l ~ 2 n * 1 E

= M ; 2n - '

— M ~ 2n ~ lE  £112,11“ .
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Notice that condition (3.3.4) implies that n 1 Y1 .E||Z,-||4 is uniformly bounded from
1_

above. Thus for any c > 0, we may choose M ( =  (c - 1 n -  1 12 £  || Zi ||4) 2 such that

P {n ' i  -  Vn( , t ) | > M . )  < t .

So we have

5<'l) = T„(' 4) + Op(n“ >).

Thus, (3 .5 .10) holds.

It can be shown that for each integer k there exist constants Dko  such that

14 -4 1  < D t o \Xi (0LS - /3 ) |{k .f“‘ + \*i(0LS — >3) I*-1}- (3.5.11)

Using (3.5.11) and the boundness of the | |x j | |’s,

= (<?-«?)
< D2o\\Pls -0|| n~' J2|*J*(*| ||*i||(|«f | + ||x<|| \\0LS -  /5||)

< D , \ \ ß LS - / J | | n - ' E  M  +  (3.5.12)

where and D 2 are constants only related to the q i , q2 and D 20. Condition  

(3.3.4) enables us to use C hebyshev’s law of large number, which implies that

n ~ l  Y  M = OpC1)-

Since ß LS is a root-n consistent estimator of /?, we readily obtain from (3.5.12) that

= 5<'*> + Op(n- i ) .

This together with (3.5.10) enables us to show that

y ( i k )  =  y O t )  +

Thus we have proved the lem m a.

Now we are able to prove Lem ma 3.5.1.
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P r o o f  o f  L e m m a  3 .5 .1 .  We know from Lemma 3.5.2 tha t  there exist positive 

constants  q3 and q4 such tha t  for any 1 <  i, j  <  n,

K / x J \ < q 3 , || _ ' xj11| (3.5.13)

Put

* m = » '  ‘ E  4 V - /  V ; t’ z J  V„-J and
»= 1

i= 1

For any M  > 0, using (3.5.13) and Chebyshev’s inequality,

P {n?  ( qTq > M }

= r  [ n -  i  E  V„-Jxj >
i= 1

<m - 2ii- ' e [e  { 4  -  E u tftv ;;  x j  v ; tK j  v d x j
i — 1

< M - 2?36n - ' E  £ { f ? - £ ( f f ) } 2.

2

From (3.3.4) we know tha t  n 1 E{e?  — £ ( e f ) } 2 is uniformly bounded from above 

Therefore for any € > 0, there exists a M e > 0 such tha t  for any M  > M e,

P{ni(wymm

uniformly in n. Thus ,

_ > j m m  _  j j j i . .  +  0 p(n~i ) .  

In a similar way we can prove tha t

(3.5.14)

— j  k m  — j  k m  , \

a 0 “  a  +  Op(n 2 ) .

To prove Lem ma 3.5.1 it is sufficient to show tha t

(3.5.15)

ö ; = ä ’0 km + Op( n - 7 ) , (3.5.16)

— j  i  m  m  — j  j  m  m  . ^  \
o  = « o  +  Op(n 2 ) . (3.5.17)
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We give only the proof of (3.5.17) here, since (3.5.16) may be handled similarly. By 

Lem ma 3.5.3,

Vn = Vn + Op( n - i ) ,

which implies th a t

V~  1 =  V - 1 + 0 , ( n -  i ) and V ' /  = V ' /  + Op( n ‘  ") 1 <  j  <  p. (3.5.18) 

By Taylor expansion, (3.5.18) and the Schwarz inequality, we have

^ i V - ^ J f - ^ i V - ' x J ) 2 =  H * i V „ - 1x J ) { x i ( V - 1 - (3.5.19)

\*iVn- ' x J \  = \XiV n ’ K T ’ x f  I <  ||xiV„"hl UK L f  || <  p 3̂ . (3.5.20)

Following (3.5.18) and (3.5.20), we may show th a t  there exist positive constants  C 3 

and C 4 such th a t  for 1 <  i <  n,

|x,-Vn_ 1xJ' I <  C3 +  IA! I, (3.5.21)

K ^ V - ' x J ) 2 - ( x i V - ' x J ) 2] < C4 WV- 1 -  V„-‘ || +  |A 2|, (3.5.22)

where | A * | = Op(n~ 2) for z = 1,2 and || A || = max,j |a,- j | for any m atrix  A = (a* j ).

From the fact th a t  e, =  (ß — ß L s ) x i  + e*, and using the Binomial Theorem , we

may show th a t  for each integer k there exists a constan t D k such th a t

\ î — €* I <  D k \xi (ßLs — ß)  I { ki |fc 1 + \%i (Pls ~  ß ) \ k 1} • (3.5.23)

Now from (3.5.21) - (3.5.23),

I—j j  m m  _  • j m  m
a  -  a 0

= n te U«? -  «?> («iV-1*?-)
I

< D , \\ßLS - y S H n - ' E  I M  { M 3 + II*. ' f l ints - ß \ \ 3} ( x i V n - ' z j )  2 (3-5.24) 

+ ( c j v - 1 -  V„-1II +  |A2|) » - ' E  cf 

< (?2 D,  WßLS-ßWn - ' E  h l 3 + q 42 C 3 D 4\\ßLS -  ß\\4) (C3 + |A , |)

+ (c, llv;-1 - V - ‘ || + |A2|) n-'E«?-
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Since (3.3.4) implies th a t  both n 1 Y1 |e, |3 and n 1 e* are uniformly bounded 

from above,  (3.5.17) can be proved from (3.5.18), (3.5.24) and the fact tha t  ß Ls = 

ß  + 0 p(n"  3 ). □
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A p p e n d i x  3: C a lc u la t io n s  o f  th e  C u m u l a n t s  o f  na R

In this appendix  we detail the calculations of cumulants  of n? R  as shown in 

(3.5.1), which have been used to derive Theorem 3.2.1. Here we generalize the 

technique used by DiCiccio, Hall and Romano (1988) for i.i.d. case to independent  

b u t  not  identically distr ibuted situation.

We first need some basic formulae for c a l c u l a t i n g  means of moments  of inde­

pendent  bu t  not  identically distr ibuted samples.

Let be independent  but  not identically distr ibuted  random vari­

ables, and h 1, h? , • • • be real-valued functions such tha t  E  {hJ (A, )} = 0, jr = 1,2,--*,  

i = 1,2,  • • • , « .  Let H ’ = h’ (Xi )  and C> = n “ 1 E  Then

E ( C ’ C k) =  n ~ 2 Y  E ( H ’ H^) ,

E(C>CkC' )  = n~3 Y  E ( H j H kH ‘),

E ( C i C “C ' C m ) = n - * Y  E ( H 1i i H ki ) E ( H ‘i H " m  + O i n ' 3), (3.A.1)
* 1  * 2

E ( C i C kC lC mC n) =  n ~ 5 YE(H’u )E(H\ ,  )[10] +  0 { n - 6),
*1 *2

E ( C i C kC ' C m C nC° ) =  n -5 Y E { H 3i t H-t )E(H'iaH ^ ) E ( H ^  t f ”)[15] + 0 ( n ' 6),
»1 «2 *3

where

£ ( <  <  ) E ( H l  )[3] = E ( H l  H i  )E{H\ , H™ ) +  £ ( <  # ) £ ( # , *  )

and a similar rule applies for

E  (H l  H I ) E ( H[, H r  H l )[ 10] an d E  ( /  H ‘ ) E ( H\, H  »  )E  ( H" H  «) [ 15].

We shall use the above formulae very intensively to calculate the joint cumulants  

of n i R ,  denoted by k j , j  = 1 ,2 ,3 , . . . .

According to (3.2.6),

R — R\  + R 2 + R 3
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where

R\ =A>,

R{  = -  j A ’ k Ak + l ö '  tm A 1 Am , 

fti = -  Â  m Ak m Ak A -  Aj k m A k A1 __ — k m A1 m Ak A13  8  3  12

_  f ^ ä klm Aj m A kA l A I ä j k n ä l m n A m A kA l -  ^ ä j k 

The  joint first-order cumulants  of R are given by

1 m A m A k A 1,

cum(i?j ) = E ( R \ )  A E( R{ )  A E ( R j3).

From the definition of R i ,  R 2 and R 3 in (3.2.6), and using the formulae given in 

(3.A.1), we see tha t

E( R{ )  =  0,

E( R{ )  = - \ E  ( A j k A k) A x- ä j km E ( A k A m)

= - l- n ~ l W kk A \■n~10 j k m a km

E ( R i )  = 0 ( n ~ 2).

Thus,

cum(Ä J ) =  — j;n~1<Pkk A 0 ( n ~ 2).

Consequently,  by putt ing  ^  = — jrn 1c P kk we have

ki
1_

n 2 cum(R) n 2 // + 0 ( n  2). (3.A.2)

According to definition, the joint second-order cumulants  of R are defined to be

cum (R j , R k ) = E ( R j R k) — E ( R j ) E ( R k )

= E ( R \ R \ )  + £ ( ä { ä *)[2] + E ( R [ r I)

+ E ( R ’2Rl)[2] + E ( R ’3R \ ) -  +  0 ( n - 3). (3.A.3)

It follows from the formulae in (3.A.1) tha t

E { R [ r \ )  =  E ( A j A k ) =  n ~ 16i k , (3.A.4)
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E ( R \ R \ )  =  - \ E  ( A k m Aj A m) i- 1- a k m l E (Aj A m A 1)

= —\ n ~ 2 ( äj k mm - S j k ) + ^ n ~ 2ä jm ‘ä km ' ,  (3.A.5)

E ( R [ R k3) = I E {Ak m A l mAj A 1) +  \ E  {Ak m 1 A j A m A' ) -  ä k m l E ( A l n A j A m A n) 

+ ( | ä fcm ° ä n l ° -  1- ä km l n) E {Aj A m A lA n) . (3.A.6)

To compute  E ( R \ R ^ )  we use the basic formulae in (3.A.1) again,  obtaining tha t  

E ( A k m A l mA j A l) = n ~ 2 ( äj k mm -  Sj k + ö? m *3* m 1 + c? k mcT  n ) + 0 ( n ~ 3),

E { Ak m l A j A mA l) = 3n ~ 20 j k m m  + 0 ( n " 3),

E {Al n A j A m A n) = 2n ~ 2 ( aj m 1 +  ö T n n 6j I ) +  0 ( n " 3),

E {Aj A m A ' A n) = n " 2 (6j m Sln +  6j 16m n + 6j n 6ml ) + 0 ( n " 3 ).

Substi tut ing the above equations back into the expression for E ( R \ R ^ ) ,  we have

E { R [ R k3) = n ~ 2 ( f c P * mm I6j m 6kl 6ml  -  ^ ä j m l ä kml 1 — j  k m  r r m  I I \— a J a )

+ 0 ( n  3). (3-A.7)

Similarly, since

E {Ajm A k , A m A 1)

E { Ak n A nA m A l)

E ( A m A lA nA°)

then

n~ 2 (c?J m m—i "  + + 0 (n - S ) >

» ' ! ( 5 ‘ " T l + 5'"il”+ö‘"r) +  0 ( n ~ 3),

n-2 (gmtgno + grn n g1 ° +  f ”* »«'**) + (n ‘  3 ),

\ E  (Aj m A k 1 A m A 1) -  l- c P m lE ( Ak n A nA rnA l)

^ ä k m l E (Aj n A nA m A l) + ±äj m l ä k noE {Am A 1 A n A 0) 

n ~ 2 ( \ ä jkmrn  + ^ ä j m m ä kU -  ^ ä j m l ä kml  -  ±6j m 6k i Sm ')

+ 0 ( n ~ 3). (3.A.8)

Subs ti tut ing (3.A.4) - (3.A.8) into (3.A.3) we derive

c um( Rj , R k ) = n ~ 16jk  + n ~ 2 ( ±ä i k m m  -  1- ä j m , ä krn‘ -  ± a i k m crn l ' I 1 — ?’ m  m  — k l l A
+ 0 >

-  ^ n ~ 2ä j rnmä kl1 + 0 ( n ~ 3).

= n ~ 16jk  +  n ~ 2 ( i c P fcmm -  i-cp' ™ l-k m l _  J_ - j k m ^ m l l )  +  Q (n~3).
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Put A = (Aj k ) p x p  where

1  —j  k
k = 2

_  I tP  m la k -  ± 0 * 
36

and let Ip denote the p X p identity matrix. Thus we derive the second order 

cumulant of n ä R to be

= Ip T n *A +  0 ( tz ).

To compute the third-order joint cumulants of R we notice that

cum(Rj , R k , R h) = E( Rj R kR h) -  E( Rj ) E( Rk R h) [3] + 2 E( Rj ) E( Rk ) E( Rh)

= E ( r [ r \ r \ )  + E ( r [ r \ r \ ) {3] -  E( R’2) E ( R \ R \ ) [ 3]

+ 0 ( n ~ 3). (3.A.9)

Again it follows from the formulae in (3.A.1) that 

E ( R{ R\ )  = n~16j k ,

E ( R [ R kRhx) = n~2a j k h ,

E( R{ )  =

E( Rj2R k1R x) = n~2 ( - ± ä j m m 6kh -  ^äj k h ) + 0 ( n “ 3).

Therefore,

E ( R [ r \ R }1) = E ( Ä ' ) .E (Ä f Ä { ) -  Ä f ) +  0 ( n ~ 3). (3.A .10)

Hence from (3.A.9), we obtain

cum(Rj , R k, R h) = 0 ( n ~ 3).

Consequently we have

*3 =  O(n- i ) .

At last we calculate the joint fourth-order cumulants of n 2 R.  By definition,

cum(Rj , R k , R h , Rm ) = E( Rj R k R h Rm ) -  E( Rj R k) E { R h Rm )[3]
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-  E ( R ’ ) E ( R k R h R m )[4] +  2 E (R ‘) E ( R k ) E ( R h R m ) 

- 6  E ( R i ) E ( R k ) E ( R h) E ( R m )

= E(R\R\ R \  A™) + E(R{  R\  R )[4] + E (R ’3 R \  A™ )[4]

+ E(R[  R k R\  Ä7* )[6] -  E(R[  r \ )[3] 

- E ( R [  AD[12]  -  E ( R i3 R k1) E ( R h1 A7)[12]

-  E( R{  R \ ) E ( R l  R"  )[6] -  E (R ’2) R \  )[4]

-  E ( R [ ) E ( R \  R \  A™)[ 12] +  2 E ( R ‘2) E ( R \ )  E ( R \  A™)[6]

+ 0 ( n ~ 4). (3. A.  11)

P u t
t 1 = —j  k h mcr Sj k Sh m ,

 ̂   —j  k h n n _|_ —j  k m — h n n  ^  — ji h m — k n n _|_ —  k h m n n

t i  = cP ‘ " 5* m n +  cP * " S* m n + ä i m n ä k h n .

It may be shown tha t

E(R\  R k R\  A™ ) ~ E ( R \  R k) E ( R k A™ )[3] = r T 3 (f, - t 2),

E (R ’2 R \ R \  A™ )[4] -  E(R[  R \ ) E ( R \  A™)[12] = n ~ 3 ( - 6 < i  + 2 i 2 -  |  (3 + 1 t 4)> 

E (R ’2A* Af A™)[6] — A( Aj A ‘ ) A(Af A™ )[6] =  n ~ 3 (3 <i -  <2 +  |  |  i 4),

£ ( A j  Aj A* A7)[4] -  A(Aj3 R k1) E ( R hl A”  )[12] =  n ~ 3 ( 2 1, -  §■(.,).

Also from (3.A .10),

E ( £ j2) {£ (£ *  ä { Äj*)[4] -  £(Ä* Äj i ^ M 12] + 2 E { R \ ) E { R \  ä 7)[6]} = 0 ( n ~ 4).

Hence, subst i tu t ing the above formulae into (3.A .11), we get

cum (Rj , R k , R h , R m ) = 0 ( n ’ 4),

which means tha t

kA = 0 ( n "  2 ).

Based on the general results given by James and Mayne (1962), we have for j  >  5, 

tha t

kj = 0 ( n - (j' - 2)/2).
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C H A P T E R  4

E M P I R I C A L  LIK E L IH O O D  C O N F I D E N C E  INT E R V A L S  

FO R  L IN E A R  R E G R E S S I O N  C O E F F I C I E N T S

4.1 Introduct ion

In Chapter  3 we considered construct ing confidence region for the linear re­

gression coefficient vector ß.  We showed tha t  the coverage errors of the empirical 

likelihood confidence regions proposed by Owen (1991) are of order n -1 and tha t  

they can be reduced to order n ~ 2 by employing Bar t let t  correction. However, it is 

not enough to just  construct  confidence regions for ß.  In pract ice,  s tat is ticians are 

often confronted with problems of construct ing confidence intervals for a part icular  

regression coefficient or for certain linear combinations of ß.

In this chapter  we address the above problem under the simple linear regression 

model.  A simple linear regression model is

Vi = a0 + b0Xi + €,, 1 <  * <  n, (4.1.1)

where all the variables appearing in (4.1.1) are scalars. Among them, x t- and yi are 

the i ’th fixed design point  and response respectively, the e, ’s are independent  and 

identically distr ibuted random errors with mean zero and variance <r2, and a0 and 

b0 are the unknown intercept  and slope param eters  respectively.

This chapter  has two aims. We first show how to construct  empirical likelihood 

confidence intervals for the slope paramete r  bQ and means y0 = a0 +  b0x 0, for any 

fixed x 0 under model (4.1.1). Obviously the later  case includes the intercept  p a r a m ­

eter a0 when choosing x 0 = 0. Then,  we study the coverage accuracy and Bart le t t  

correctabil ity of empirical likelihood confidence intervals for these parameters .
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We int roduce some basic notat ion and formulae in Section 4.2. In Sections 4.3 

and 4.4 we propose procedures for construct ing confidence intervals for b0 and y0, 

and show th a t  both empirical likelihood confidence intervals have coverage errors 

of order n - 1 . Furthermore ,  we dem onst ra te  tha t  Bar t le t t  correction can be used 

to reduce the coverage error  from order n -1 to order n ~2. A simulat ion study  is 

presented in Section 4.5. All the proofs are deferred to Section 4.6. The calculations 

of cumulants  are presented in Appendix 4.

4.2  P r e l i m i n a r i e s

In this section we introduce some notat ion and basic formulae which will be 

used th roughout  this paper.  We denote by a0 and b0 the least squares est imates of 

a0 and bQ respectively, and use fij for the j ’th moment of cx for j  =  1,2,  and ¥  and 

y for the means of s and y^s  respectively. We define auxilliary variables

Zi (a, b) = (1, Xi)T (yi — a — bx{) l <  i <  n

where a and b are any candidate  values for a0 and ba respectively. Specifically we 

write Zi as Zi(a0,b0). Furthermore ,  we put

=  n ~ l ^ 2  (a;* -  x ) 2, rrij = n ” 1 ^ 2  (xi - x ) 3, j -  3,4 

o ’1 = n ~ x Y l  ct2, ßj = n ~ 1 ^ 2 € Ji , j  = 3,4,

7 = y — a0 — b0¥,  where — ŷ  — ä — bx{.

Let

* )E x\)

be the average covariance matr ix  of auxilliary variables s, let uin and u2rl be the 

largest and smallest eigenvalues of Vn respectively, and let
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be the inverse of the square root  ma trix of Vn . Define

k
9 j 1 j 2 j k (X i) = n  («), + u ) Xi ) ,

1=  1

a 3l3> 3k _  n ~ l Y< E { g j l j 3 (*<)€,•},

A lxl 'i "3k ( a , 6) = n"  1 9jxj * - i u ( x i )(Vi ~  a ~  bxi )k ~  a 3l3*'"3k.

For simplicity of nota t ion,  write

^ i i , i a , _  A 31,3i ,3k (a0 ,b0), and a 31 ’3*’ " ,3k = A 31’3*’ ,3k(a,b).

We assume the following regularity conditions.

There exist positive constants  Ci and C 2 such tha t  uniformly in n,
n

Ci < vpn < v ln < C 2; and n -2 £ | |* j  ||4 —>► 0,
i =  i

(4.2.1)

where || || is the Euclidean norm; and for candidate values a and b of a0 and 60,

_  i_ _  i_
a = aQ + Op(n~ 2 ) and b = b0 + Op(n 2 ). (4.2.2)

Let ^(a, 6) be the empirical log-likelihood ratio evaluated at (a, b). Write p x, • • • , pn 

for nonnegative numbers  adding to unity. Then,  according to the definition of 

empirical likelihood,

l (a,b)  = —2 min ^  l o g (n p , ) .  
Yh p>z>(a>b)=° j

Using the Lagrange multipl ier  method gives us

£(a,b) = 2 X! l°g{ 1 + A (1 ,Xi )T (y{ -  a -  bx{)} ,

and A = (Ax, A2) satisfies

E (1 , X j ) T ( y { -  a -  6a , - )

1 + A (1 , X i ) T (yi -  a -  bxi )
=  0 .

Since the analyt ic solutions for both A and t (a ,b)  are not obta inable,  we have 

to resort to expansions. Using (3.2.4) of Chapter  3, under  conditions (4.2.1) and
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(4.2.2), we have the following Taylor expansion for £(a,b):

n ~ l £(a,  b) = A j A j -  A j k A j A k + f  a j k 1 A j A k A 1 + A j 1 A k 1 A j A k 

+  I  A j k l A j A k A l - 2 ä j k m A I m A j A k A l

+ (ä j k n ä l mn -  \ ä j k l m ) Aj A k A lA m +  Op( n - f ) .  (4.2.3)I /  — J k n —
- f  (a a

Here we use the summat ion  convention according to which, if an index occurs more 

tha t  once in an expression,  summation over tha t  index is unders tood.

4 .3  E m p i r i c a l  L i k e l i h o o d  C o n f i d e n c e  I n t e r v a l  for S l o p e  P a r a m e t e r

tervals for the slope param ete r  b0, and analyse the coverage propert ies  of these 

confidence intervals. We first prove a nonparametr ic  version of Wilks’ theorem 

for the empirical log-likelihood ratio for b0 (Theorem 4.3.1). Then  we develop an 

Edgeworth expansion of the distribution of the empirical log-likelihood ratio for b0 

(Theorem 4.3.2), which is used to show tha t  the coverage errors of the confidence 

intervals are of order n ~ l . Furthermore we demonst ra te  tha t  the empirical likeli­

hood confidence intervals are Bar t let t  correctable (Theorem 4.3.3). This  means tha t  

simple scale ad justmen ts  can reduce the coverage errors from 0 ( n - 1 ) to 0 ( n - 2 ).

The empirical log-likelihood ratio for b0 may be obtained by minimizing £(a, bc ) 

respect to a, which is t rea ted  as a nuisance param ete r  in this section, since we are 

interested only in construct ing confidence intervals for b0. Let ä be the optimal a 

which minimizes £(a,b0). Then

In this section we show how to construct  empirical likelihood confidence in­

£(b0) =  £{a,b0) = min £(a,  60),
a

where

£(a,b0) = 2 ^ 2  l°g{ 1 + A (1 ,x,  )T (yi -  a -  bQXi )} ,

and A = (Aj,  A2) satisfies

1 + A (1 , Xi )T (y{ -  a -  b0Xi )
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4 .3 .1  W i l k s ’ t h e o r e m

We first give an expansion for ä. From (4.2.3) and using the notation given in 

Section 4.2, we know that

n~ ' (a, b„) = A ’ (a, b„)A1 (a,b0) — A1 l (a, b0)A’ (a, bc)At (a, b„)

+ { ^ a i k l Al( a , b , , ) + A ’ l(a,b0) Ak‘(a,bc)} A’ (a, b„)Al (a, b„)

+ { l A ’ t l (a,b0) - 2 ä > t ’n l A l m(a,bc)} A’ (a,b0)Ak (a,b0)A‘ (a,6„)

+ (ä i t n ä ‘mn -  i ö i t ' m)Ai ( a , K ) A k(a,b0)Al(a,b0)Am( a , b , )

+ Op{n~ S'). (4.3.1)

Consider an expansion of

ä =  a -f öj -f Ö2 4  Ö3)

where aj = Op(n~j / 2), j  = 1 ,2,3.  We will determine a i , a 2 , 0 3  successively. Put

7j = n ~X 9j (xi )■> Ijk = n” 1 9jk(xi),

I j k l  n  'y  ̂ 9 j k l  (•£» )i 

7jk, i{a,b) = n~x Y l  9jk(xi)(yi  ~ a -  bxi), 

l j k i A ai h) = n ~ l  9jki(xi)(yi -  a - b x i f .

Under (4.2.2),

n _1^(a,  b0) =  AJ (a,b0)A1 (a,b0) + Op(n~ » ),

=  { ^ J(a,&0) -  7 j (a ~  a)}{-4J(a^o)  -  7 j (a — a)} + Op(n _ a).

Solving for requires minimizing — 2Aj (ä,b0)'yj ai .  Hence we have

ai = A3(a,b0) 7j / 7 j 7j . (4.3.2)

By the definition of AJ(d,&0) and , öx has another form,

fli = * (60 -  60). (4.3.3)
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To find a 2, note tha t  7jk (1 =  Op(n 2) under (4 .2 .2),

n ~ l t ( a ,  b0) = 2 7 j { A k(ä, b0) — 7*«1 } {Ajfc(d ,60) -  a J k \ A \ a , b 0) -  7 ta l ) }a2 

+ I j l j d l  + Ri  + Op(n~ 3),

where Äi denotes term of not  involving a 2. By minimization,

= ~(7 i7 i)~  1 7j { A k (a, b0) -  7*0! } { A j k (ä, b0) -  ä 3 k l( A l (ä, b0) -  7 ,a i)} .

After some algebra we may show tha t

b0) = - 2  {A J (a, ba ) j j  -  7i 7i a 1}a3 + Ä 2 + ö p( n - ^),

where Ä2 denotes a term not  involving a3. Thus ,  (4 .3 .2) implies tha t  a3 will not 

appear in the Op( n ~ 2) or larger terms in the expansion of n - 1£(60), so we need not 

to calculate a3 any more.  In summary  we have

ä = ä +  äT(6 — ba )

~  ( l i l i ) ' l l j { A k {a,b0) -  7*0! } [Aj k (ä, b0) -  a J k ' { A 1 (a,  ba) — 7 i «1)}] *

The above formula suggests using d +  äT(& — b0) as an initial value for a in numerical ly 

searching for ä. In the a u t h o r ’s experience, this works well. Now, subst i tu t ing  a 

into (4 .3 .1), the empirical likelihood ratio stat is tic at b0 is given by

n ~ l l {b0)

= { A] ( ä , b0) -  a 1} { A J (a, b0) -  7jOi} -

-  { A jk (d ,60) -  2'ijki i ( ä , b0)a1 + 7j k a \ } { A 3 (a, b0) -  7 j a i ]  { A k (a, b0) - 7 * 0 1 }

+ * '{A J (a ,6 0) -  7 ^ 1  }{A* (a,  60) -  7* ai }{A'(d, 60) - 7 , 0 1 }

+ AJ , (d ,60)AH (a ,6 0){AJ ( a ,6 0) -  j j d i  }{A* (ä, 60) -  7 fca i} (4 .3 .4 )

+ |{A-?Ä:' ( a , ö 0) -  7jjb/)2(d ,60)ai -  3 a ; * m (a, 60)} {A; (a ,60) -  7 ^ 1 }  

x {A*(ä ,60) -  7jbßi }{A*(d, b0) - 7 1«! }

+ (ä''*"ä,raB -  ^ä^^){A^(ä,ö0)-7 ia1}{Afc(d,&0)-7.ai}

X { A l( ä , b0) -  7 /a 1}{Am(a ,ö 0) -  7m «1} + Op(n"  »).
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For ease of analysis we next express t (b0) in terms of powers of (6 — b0). Define 

rjj = o 2x u 2, where u 2 is the ( j ,  2) element in the matr ix  Un . Notice tha t

A ] ( d , 60) -  7j d i  = n ~ l Y l  9j{x i){Vi -  ä -  ax -  b0Xi)

— 72 (Uj . Uj )  ^  'j ^ ® ® 1 b0 Xi )

= (uj > uj ) ( -  n-i ^  x? ) { (®> &) — (a + «1> M }

= (u] , u])  { - ö l  + x (b  -  b0) , - x a l + 72_1 ^ 2  x t2 (6 -  60)}

=  ^  )(& ~ b 0)

= VjCb ~  M -

From the definition of Un we know tha t  u 2 u 2 = l/(<7 <̂72), so tha t

{ A J ( a , 60) -  7j öl } {AJ ( a , 60) -  7; ai}  = (6 -  b0)2 cr2/ a 2.

Moreover,

Tj fc, l (d ̂  b0) — 7j jb, i 7j fc (d o> o ) 5

Ö2 =  —{ i n i ) ~ 1l j rlk { A J0k - a ] k l rliCb ~  b0)}(b -  b0),

A j k (a,b0) = -  27jjfcil(d -  a 0) +  7 ;* (« “  «o)2,

A j k (a,b0) -  27jfcil(a ,60)a 1 +  7yfc«I = -  2 7i M  ? +  7i*

and

A jkl (ä, b0) — i j k^ i ^äibo)  ai = —3 7jjt/j2 ( a i + d  — «o) + Op(r2 1),

= -  3 7j h ,2 ( y ~  do ~  b0x).

Subst i tu t ing  the above formulae into (4.3.4) it may be shown tha t

n - l i (K)  = ^ - ( 6 - t  o f - m ^ A ^ i b - K f  + §

+  V j V t  hjh,i(-ljke2 +  -  b c ) 2

-  ( v v r ' l i ^ v ^  {A? A™"t7, < " (4  -  6„)

+ ä i ‘ , ä m " ' ’J,,7)p( 6 - t 0)2} ( 6 - 6 <))2

+ k " a lm n -  j a 1 t l m  )r]jr)t r},T)m (b -  bcY  + Op( n ~ i )  (4.3.5).
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The following nonparam et r ic  version of Wi lks’ theorem is a direct consequence of 

expansion (4.3.5).

T h e o r e m  4 .3 .1  (Wilks’ theorem) Assume  condit ions (4-2.1). Then,

P{£(b0) < c] = P ( x \  < c) +  o( l) ,  as n —> oo.

Proof:  Since Var(6 — h0) =  n~ 1 o 2/(J2X, by the Central  Limit Theorem, we know 

tha t  ns (6 — b0) ax /  a has asymptotical ly a s tandard  normal  distr ibution.  Thus  from 

(4.3.5),
2

t (b0) = f~{b — b0)2 +  Op(n 3 ) =  Xi + °p(l)*

Hence the theorem is proved. □

From Theorem 4.3.1 an empirical likelihood confidence interval for bQ with 

nominal  coverage level a  can be constructed as follows. First  find from \ \  tables 

the value ca such tha t  i < ca ) = a.  Then  I a = {b0\t(b0) < ca } is the «-level 

confidence interval for b0. Theorem 4.3.1 ensures th a t  I a has correct asymptotic  

coverage.

4 .3 .2  C o v e r a g e  A c c u r a c y  and  B a r t l e t t  C o r r e c t io n

In this subsection we invest igate coverage accuracy of the empirical likelihood 

confidence interval I a for the slope param ete r  b0. To this end,  we decompose t (b0) 

from (4.3.5) as follows:

t{b0) = n R]  +  Op(n~ ä )? (4.3.6)

where Rf, = R\,\ T Rb2 T Rb3 ^.nd Rbj = Op(n ^Z2) for j  = 1 ,2 ,3 .

P u t
C i = -  7 ° 2ä , i l ä m n p T]i r),T)n r]p ( j j i m + j  o '  2 r), rjm )

+  riiVtViVm C j ä ’ k n ä l m " -
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Comparing (4 .3 .5) with (4 .3 .6) yields

Rb i =  —  ( b - b 0), a

#62 = - \ o ~ x a Tjj Tjk A 30k (6 -  b0) + j  a ~ l a a 3 k 1 r^-77*77, (6 -  60)2,

#63 = c r ; 1 o- Vj Ik ( AJ0k € -  jk ?2 + \ A 30l A k0l)(b -  60) +  Cl a ” 1 cr(6 -  60)3

- ^ J 1 KklnVjVm +  ( j - 2T)jT]k r)m rin ) A{k A ^ n (b — b0) (4 .3 .7)

+  3  1 (71lj'nkr)i Aj0kl (b -  b0f

+ a; 1 a { a 2ä J kl T)kr}mrjl ( 7 ;- 7 n  +  J -  o~ 2 r}j rjn )  -  *  m  rjj r)krjn )}A™n (6  -  & 0 ) 2 .

Before we develop an Edgeworth expansion for the distr ibution of ^(6 0) we 

introduce some notat ion.  From (4.3.7) we see tha t  there exists a smooth  function 

h such th a t  R b = h(U),  where

U = ( b - K J , A l \ A ] \ A l \ A r , A l ' \ A l " , A1 2 2  a 2 2 2

Let

and

(  k C  0  k C  \1 _ 1_ _ i_ 1
B 1 = \ V  3 CR) V 2 I1 1 Knl % 2  I

'  v C  ® V.',* '

_  I I
” 2  —  I _ 1  _  1 1 I

! ® v „'2; ® v „-* I

'  K l 1 ® V T / ® V»",» /
be 3 X 4 and 4 x 8  matrices respectively, where <g) is the Kronecker product  of

_ i. _ 1_
matrices and Vn -2 is the j ’th row of Vn 2 , j  =  1,2. From the definition of and 

A ^ 1, U can be expressed as U = n ~ x Yl Ui where Ui is a vector of 9 dimensions 

having the form

Ui = crx (x,- -  x )€<,€,-, {(1 X i )  <g> (1 X,)} B[  , {(1 x,)  0  (1 x.) <g> (1 x,)} B.

P u t  Tn = n 1 ]C Cov(tfi),  being the average covariance matr ix  of Ui , let <7! be the 

density function of the x \  distribution and

U =
or4 a t

m 4, t 2 =  --7  3 , m 2 and ra; = n 1 ^  (x t- — x )3, for j  -- 3, 4.
(r6a 6
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Then ,  we have the following theorem whose proof is deferred to Section 4.6. 

T h e o r e m  4 .3.2:  Assume that

(i) there exist positive constants C i, C 2 such that uniformly in n 

C i <  v2n <  uln <  C 2; (ii) the |x, - f o r  1 <  i <  n are uniformly bounded;

(in)  E  |ex |15 < 00; (iv) for every positive r ,  lim / | |ci | |15 = 0; (4.3.8)
n  —► 00 J  1 I (rI e 11 > x n 2

(vi) the smallest eigenvalue o f T n is bounded away from zero; (v) the 

characteristic function h o f  e± satisties Cramer condition:

Then,

lim sup |h(f)|  < 1. 
I d —  0 0

P{t{po) < C„] = a -  (1 +  -  ^ t 2) n  1 +  l ) . (4.3.9)

Theorem 4.3.2 states tha t  the empirical likelihood confidence interval I a has 

coverage error  of order n ~ l . By looking at the coefficient of the n ~ l term in the 

Edgeworth expansion of the distribution function of £(b0), we see tha t  the coverage 

error is dominated  by a combination of four factors: the moments  of c , , the “m o­

m en ts” of the fixed design points,  the nominal  coverage level and the sample size 

n.

Based on the expression for R bj, j  = 1 ,2 ,3  in (4.3.7), we may show tha t  

E { t ( b c)} = n { E ( R bl)2 + 2 E ( R hlR l2) + E ( R i2)2 + 2 R b3)} + 0 ( n ' 2)

= 1 +  (1 + j t ,  — ^ t 2) n ~ l + 0 ( n ~ 2).

We see tha t  the difference between the means of i (ba ) and l imit ing x \  distr ibution 

is of order n - 1 . Next we are going to show tha t  Bar t le t t  correct ion can reduce the 

coverage errors of empirical likelihood confidence intervals to order n ~ 2. Let

Pb =  1  +  J  t l  — J  t 2

be the Bart let t  factor for i (b0). We have the following theorem about  the Bar t let t  

correctabil ity of the confidence interval I a :
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T h e o r e m  4 . 3 . 3 -.Assume condition (4-3.8). Then,

P { i ( b 0) < ca ( 1 -f /96n - 1 )} = a + 0 ( n ~ 2).

Define the Bart let t  corrected confidence interval

I aPb = {b0 \t{b0) < cQ( l  + phn )}.

Theorem 4.3.3 maintains tha t  I apb has coverage error  of order n ~ 2, which is one 

order of magnitude  more accurate than I a . However, pb is usually unknown because 

of unknown <r2, p 3 and p 4 in t 4 and t 3, where <j 2, p 3 and p 4 are the second, third 

and fourth moments of C\ . To empirically employ Bar t le t t  correct ion,  we have to 

give a root-n consistent est imate of pb. To this end,  pu t

P a frl  2
11  — T  777.4 , 1 2 — “  777 3 ,

(J4 (J4

where d 2, fi3 and p 4 are the moment  est imators of cr2, p 3 and p 4 respectively, and

r r i j -  n j  =  3,4.

We define a root-n consistent es t imator of pb, denoted by pb, to be

Pb =  1 +  2 h  — J- f2-

We may show tha t  under modera te  conditions,  such as tha t  the joint distr ibution of 

components of the £(b0) and pb admits  mult ivariate Edgeworth expansions, or the 

distr ibution of i (b0) — ca pb n -1 admits  an Edgeworth expansion under  a smooth- 

function-of-means model,  the same order of accuracy holds true if we replace pb by 

pb in Theorem 4.3.3. This implies tha t  the empirical Bart let t-corrected confidence 

interval

Iapb = {b0 \C(b0) < C„(l + pbn ~ 1) }

also has coverage error  of order n - 2 . Our simulation results in Section 4.5 show tha t  

the coverage of I aßb is very close to tha t  of I aph, and tha t  both are more accurate 

than I Q.
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4 .4  E m p i r i c a l  L i k e l i h o o d  C o n f i d e n c e  I n t e r v a l  for  M e a n s

In this section we construct  empirical likelihood confidence intervals for the 

mean  value y0 = E( y \ x  = x 0) = a0 + b0x 0, for any fixed x 0. Since y0 = a0 when 

x 0 = 0, we may confine our at tention to construct ing empirical likelihood confidence 

intervals for a general y0. The  empirical log-likelihood ratio for y„, denoted by 

f(i/0), may be obtained by minimizing £(a,b)  given in (4.2.3), under the constraint  

of a + bx0 = y0; tha t  is,

l ( y 0) =. ^ ( d , 6 ) =  min l ( a , b ),
a +  bx 0 — y o

where

t (a, b)  = 2 log{l + A (1 , X i ) T (y, -  a -  bx{},

and A = (A1? A2) satisfies

y -  (! , Xj )T (y{ -  a -  bxj) _
1 + A (1 ,x, )T (y,- -  a -  bxi)

4 .4 . 1  W i l k s ’ t h e o r e m

To obtain the limit ing distr ibution of f (y0), we have to find out  ä and 6. Suppose 

ä and b have expansions

ä  -  ä  4  d j  - f  a 2 +  0 3 and b — b + b\ -f 62 T 63,

where a,j,bj = Op( n ~ ^ 2), j  = 1,2,3.  Note th a t  we use notat ion  ä and aj again 

here, bu t  with different meanings from those in the Section 3. In the following, a j , 

bj , j  = 1 ,2 ,3  are determined successively. Pu t

ßj = n 9 j ( x i ) x i, ßjk = n 1 9jh(x i ) x i,

ß j k l  ^  ^  1 9 j k l ( x i ) x i i  ß j k 2  —  ^  ^  >  9 j k [ x i ^) X i'>

ßjk, i (a,b)  = n ~ 1 Y l  9j k(x i ) (y* -  a -  bx ^ ,  

ß j ki,2 (a ,b) = n _1 9jki (x i){Vi ~  a -  6a;,)2.
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Under (4.2.2),

n ~ l l ( a ,  b) = A j { a , b ) A j (a,b)  + Op(n~ 2),

=  { A 3 (a,b)  -  7j (a -  a) -  f t  (ö -  b0) } { A J ( a , b ) -  7, (a -  a) -  f t  (6 -  60)}

+ Op(n_ 2).

Solving for a x and 6X requires minimizing

7j 7j a i + f t  f t  f t  - 2  4 J (a, ö) (7jf a i +  f t  f t ) +  2 7j f t  ai öx,

subject  to a +  d] + (ö + &i) £ 0 = y0. By the Langrage mult iplier  me thod,  ax and bx 

satisfy

(7 if t  ~  ßj ßj  x 0) a x + ( f t  f t  -  7 ;f t  x o) bx = AJ(d , 6 ) ( f t  - 7j *o),

«i + 6i x 0 = (f t  -  6) + ( a 0 -  a).

By the definitions of gj (xi ) ,  7j and f t ,  and from (4.4.1), we obtain

(4.4.1)

crl + x (x — x 0) ( x — x 0)
«1 = ------------ =--------—Hft, ft =  ---- V _  ;-----W 0, (4.4.2)

+ (x -  x 0y  a 2x + (x -  x 0y

where W Q = ä + 6 x 0 — y0 = (a — a0) + (6 — b0) x 0. Clearly W 0 = Op(n~ 2).

From the first equation of (4.4.1) we immediately have

{ A3 (a, 6) -  7j- a x -  f t  } (ft  -  7jZ0) = 0. (4.4.3)

To determine a2 and 62, we notice tha t

b) =A> A> -  A ’ k(a, b„)A’ A k + - a ’ A k A 1 + Op(n “ 2)
3

— l j  7 j al  + 2 7 j ß j  a2 b2 + f t  f t  63 -  2 {AJ (a, 6) -  7 j a x -  f t  &i } (7, a 2 +  f t  f t ) 

+  2 A j k (a,b) { A 3 (a, 6) -  7y a x -  f t  ft } (7 * a2 +  ß k b2)

- 2 a 3 kl { A 3 (a, 6) -  7, a x -  f t  6X} {A* (a, 6) -  7* a x -  ßk ft }x

x {T*(a, 6) — 7 / a x — f t  öx} + fft -j- Op(n 2 ),

where if t  denotes a term not  involving a 2 and ö2. Using (4.4.1), (4.4.3) and the

Langrage mult iplier  method to minimize £(a, 6) under  the constraint  of a2-\-b2x 0 = 0, 

we end up with a2 — —ft x 0 where

ft — { ( ßm 7mi o ) ( ßm 7m o ) } { v4 (fl, 6 ) 7i ® 1 ft’ ft }

X ' {A*(d,6) -  7* ai -  f t  6i } (ft -  7/ x0) -  A 3k(a,b)  ( f t  -  7* x0)] .
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It can be shown after some algebra tha t

t ( y 0) -  { A 3 (a ,  6) -  7j a x -  ßj bx } (7j a3 +  ßj b3) +  R A +  Op(n~ *),

where Ä 4 deno te s  a t e rm no t  involving a3 and  b3. Since a3 + b3 x 0 = 0 , and  in view 

of (4 .4 .3 ), we have

l ( y 0) =  R a +  Op(n~ a ).

This means  tha t  a3 and 63 will not appear in the expansion of £(y0) up to the order 

of Op( n ~ 2), so we need not concern with them any further.

P u t  t3 = A 3 (a, 6) — 7j di — ßj  &!. Substi tut ing d = a +  ai + a 2 + 03 and 

6 = b + bi + b2 + ö3 into the formula for n~ 1 £(ä,  6), we obtain tha t

n ~ l l ( y0) = t J tJ +  I  ä 3 kl V t k t l -  (ßj -  7 j X0) (ßj  -  l j X 0)bl

— { A 3k (a,  6) — 2 7jjfc,i a l  — 2 ^ * ,1  61 +  7 ^  a 2 +  2 * «i &i +  *2 ^  t k

+  AJ , ( a , 0 ) A u ( a , 6 ) i J' ** +  | { ^ H (a ,6 )  - 3  7 iH ,2 ai  & i}^  t*

- 2 ä jkrn A , m( ä , b ) t j t k t l +  ( ä j k n ä lrnn \ ä 3 k l m ) t j t k t l tm 

+ Op(n~ 2). (4 .4 .4 )

Define
0 <T2

a  (s<>) = ..9~  7.. *------ r r  and = Uj! + uj2x0 j  = 1,2.
+ (x -  x 0y

Then  we have

t3 = a 2 ( x 0 ) W 2 £ 3 and t3 t3 = a 2 ( x 0) d " 2 W 2.

Since d + ai — a0 = —( 6 + 6 !  — b0 ) x 0 we have

A^k (d, 6) — 2 7y*, 1. ö l  — 2 ßjk, i  61 + 7jik öi + 2 ß j k ai 6X + ßj k 2 

~ ^ 0k ~  2 (ß j k, 1 ~  Tifc, 1 xo) (^ + &i — &o) + (ß j k2 — 2 ßjk x 0 + 7jfc x^) (6 + 61 — 60)2. 

From the expressions for 62 and the fact tha t  (ßj  —7 x 0) (ßj —7j x 0) =  <r2 <j_ 2 o ” 2 (x0),

62 =  a ; 2 * 2 c / ( * j { ä j f c , a 2( * 0) i y 2 ^  ^  (/J, -  7, z 0) -  W 0 A 3ak ?  (ßk - l k x 0)}.
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Moreover,

A jkl (a, 6) — 3 7 jjfc/ )2 fli ~3ßjki ,2  —3 <72 (/3 ̂ / — 7 jjk/X0)(ö + ö i —60) + Op(n 1).

Substi tu t ing  the above formulae into (4.4.4), we obtain

n ' ( (

= a 2( x 0) a - 2 W 2 - a 4( x 0) e  e  A ik W 2 + % a 6( x , ) ä * k ' ?  f* ?  W 2

- a ; 2 a 2 a \ x . ) { ä i k ' a 2( x 0)et ( 0 , -  -  ( x Q) A ik

+ 2 a 4( x c )eC (ßjkA — 7jjt,i x 0)(6i + b - b 0) W 2

- a 4( x , ) e  ( k { (ß j t 2 - 2 ß j k x 0 + 7 j l xl)(b, + S - 6 « , ) 2 - 4 ' '  A*'} VF,2

+ a 6( ^ o ) f  ( “ - 2  (/?,*, - 7 i U ^ 2 x,,)(61 + 6 -  6„) -  2 1 ”* ,4'™ }

- 2 a e ( i . ) ( '  {*£' tr* + a 8(^<, ) ( ö J ‘ " ö ,m ’, -  f m

+ Op(n~ *). ( A  A ^

The  following nonparametr ic  version of Wilks’ theorem is a direct conclusion of 

(4.4.5).

T h e o r e m  4 .4 .1  (Wilks’ theorem) Assume conditions (4-2.1) and (4-2.2). Then,  

P{L(y0) < c} = P ( x \  < c) + o ( l )  n —> oo.

P r o o f :  From (4.4.5) we know tha t

0 .2

% „ ) =  n a ( x 0)2 <r-2 W 2 + Op( n ~ k ) =  n o ' 2 - ---- - ? ------ -- IV2 + 0 p(n~ i ).
+  (*  -  X o ) 2

Thus  the theorem is proved by the fact tha t  W 0 is asymptotical ly Normal with 

mean zero and variance n _ 1 <72 c r j2 + (aT — x 0)2)}. □

Now an empirical likelihood confidence interval for y0 with asympto tic  coverage 

level a  can be constructed as J a = {y0\^(yo) < ca } where P ( x \  < ca ) — a • 

Theorem 4.4.1 assures tha t  J Q has correct asympototic  coverage.
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4 . 4 . 2  C o v e r a g e  A c c u r a c y  a n d  B a r t l e t t  c o r r e c t i o n

In this subsection we shall invest igate the second-order properties of J a , tha t  

is the coverage accuracy and Bar t let t  correctabil ity of J a . We s ta r t  with a signed 

root decomposit ion of l ( y 0), which can be obtained from (4.4.5) as follows:

l { yQ) =  n R 2yo +  0 p(n *),

where R Vo = R yo\ + R Vo2 + R Vo3, and R Voj = 0 p(n j / 2 ) for j  =  1 ,2 ,3 .  A little 

algebra shows tha t

#,,„1 = o ( x 0) er“ 1 W 0,

r >.2 =  <*3( x 0) < 7 e t k { - k A i k w ° +

Äy„i Äy„3 = « ' (» . ){ '  f* *.)(&! + i - 6<,)VF02 + C2 Vy„4

-  j- (0j t 2 - 2 ß j k  x 0 + -yjk x l ) ( b i  + b -  6<,)2 VK2

-  X K K e  r  2 (ä  - 7. *.)(/?» 4 ?» 2
r  f* f" 4 21 4 " ” VK2

+ a 8(x . ) ( 7 2 ( < r j 2 cfJ 1 ' f m (/?, -  7, !„)(/?„ -  7.  i . )

+ - c - 2(a:<,)<T-2 ä 2 ‘ m ^

+ 42' 4*' iy2 + f ‘ {' 4'*' iy2

- a 6(x0)<r2f  -7iH,2*.)(6i + &-&o)W,?>

where

C2 = - £ a l0(*o) * a *.“ a {«i ‘ , *i efc (A -  7/ * 0)}2 -  *  <*10(*.) ^  {«:' * ' & t k t ' Y
+ <*8( s 0) ( i - ö J * nä ' m " -  £m .

P u t

5 ! =  a 4 ( z 0 ) ( 7  / ^ 4 qi  5 5 2 =  a 6 ( x 0 ) c r -  6
^3 02 and 53 =  a 4(x0) ? 3,

where

0i = 1 + 6
(z -  x 0): (x ^o) (*E ®o)

4 ------- ------ m 3 + -------- ------ m  4 ,
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?2 — 1 "f 3
(x -  x0)2 (x —  x0y

m 3 and

93 =
(x -  a;,)2 (x -  x 0f  (x -  x 0)A f  (x -  x 0)3

1 -  3 ------- -------+  -------- -------m 4 +  -------- :------+  2
(z — x 0)

m 3.

The coverage accuracy of confidence interval J a is discussed in the following theo­

rem, whose proof is deferred to Section 4.6.

T h e o r e m  4.4 .2 :  Assume  condition (4.3.8). Then,

P { t ( y 0) < ca } = a -  S! -  \  s 2 + s3) n  1 ca g i ( ca ) +  0 ( n  I ). (4.4.6)

Theorem 4.4.2 states tha t  the coverage errors of empirical likelihood confidence 

intervals for y0 = a +  h x 0 are of order of n - 1 , provided tha t  x 0 is fixed and inde­

pendent  of sample size n.  From the n ~ l order  term in (4.4.6) and the definitions 

of s 1? s 2 and s3, we see tha t  the coverage error is dominated  by the combination 

of the following five factors: the moments of e,, the “m om ents” of the fixed design 

points,  the nominal  coverage level, the sample size n, and the size of (aT — x 0) / o x 

— i.e. the s tandard  distance between x 0 and the centre,  3F, of the design points.

In analogy with the Bar t let t  correction for the slope param ete r  b0 developed 

in Theorem 4.3.3, we can do the same thing here for y0. Calculat ions reveal tha t

E WVo) }  = n { E ( R Vo )2} + 0 ( n ~ 2) = 1 + (^ s x - j s 2 +  s3) n " 1 + 0 ( n " 2).

Define

Pya -  ( j  5 !  -  J  S 2 +  5 3 ) ,

an ingredient of the Bar t let t  correction for £(y0). The Bar t let t  correct ion property 

for the empirical likelihood confidence interval for y0 is considered by the following 

theorem:

T h e o r e m  4.4.3:  Assume  conditions (4-3.8). For any x > 0 and fixed x 0,

P { l ( y 0) < ca (1 + PVo n 1)} = o + 0 ( n  2).
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We shall not give the proof of Theorem 4.4.3 since it is almost the same as 

tha t  of Theorem 4.3.3. Theorem 4.4.3 states tha t  a simple scale ad jus tment can 

improve the coverage accuracy of empirical likelihood confidence intervals for y0 

from 0 ( n - 1 ) to 0 ( n ~ 2). Define the Bar t let t  corrected confidence interval

J aPyo = { y 0 \ t ( y0) < Ca (l  + P y a n~ 1)}.

Theorem 4.4.3 ensures tha t

P{y0 £ J aPyo) = a + 0 ( n  2).

However, pVo is usually unknown because cr2, p 3 and p 4 are unknown. A root-n 

consistent est imate pVo of pVo can be obtained by replacing <72, p 3 and p 4 by d 2, p 3 

and [l4 repectively in s i and s 2. Hence,

where

P y 0 ~  (2 J h  + s3)

si = a 4( x0)d- 4 p 4 ql s 2 = a 6( x0) a  6 p \ q \ .

P u t

JaPyo = { V o \ i ( y 0) < ca (1 + py0 n 1)}.

It may be shown tha t  under  modera te  conditions,  which ensure th a t  t ( y 0) —ca P y Q n ~  1 

admits  an Edgeworth expansion under a smooth-function-of-means model,  we may 

get same order of accuracy by replacing pVo with pVo in Theorem 4.4.3. Therefore,  

we have

P{y0 £ JaPyo) =  a  + 0 ( n - 2 ).

Our  simulation results in the next section confirm this.

4.5  S im u la t io n  S t u d y

This section describes simulation experiments carried out to examine the cover­

age properties of the empirical likelihood confidence intervals for b0 and y0 proposed
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in the previous sections. The  following simple linear regression model was treated:

= l + x { + c{, i = 1, • • • ,n .

The d a ta  set x, is the one which displayed in Table 3.1 of Chapte r  3. We chose 

sample sizes n = 15,30,50 and nominal  coverage level a = 0.90,0.95.  We assigned 

two error  pa t te rns  for €,. One was e* = iV(0, l ) ,  another  was e* = £(1 .00)  — 

1.00, where iV(0 , l )  and £ (1 .00)  were random variables with the s tandard  normal 

distr ibution and the exponential  distribution with unit  mean,  respectively. The  

normal and exponential  random variables were generated by the routines of Press 

et al.(1989).

For each combination of n, a  and e, we display in Table 4.1 the coverages of 

the uncorrected confidence intervals and two Bar t let t  corrected confidence in te r­

vals based on 10,000 simulations.  One of the corrected confidence intervals uses 

the theoret ical Bar t let t  correct ion,  another  uses the empirical Bar t let t  correction. 

S tandard  errors  are given for each of the simulated coverages. To empirically justify 

the expansions developed in Theorems 4.3.2 and 4.4.2, we also give theoretical  cov­

erages up to the second order in Edgeworth expansions for i{b0) and t ( y0)- Since 

the coverages can be obtained without  s imulation,  they are called “predicted cov­

erages” .

The  following broad conclusions may be drawn from the results summarized in 

Table 4.1. Firstly, the differences between the uncorrected coverages and their corre­

sponding “predicted coverages” converge to zero as n increases. This  gives empirical 

justification for Theorems 4.3.2 and 4.4.2. Secondly, substant ia l  improvements on 

coverage accuracy have been made by implementing Bar t le t t  correct ions.  This can 

be observed by looking at both the s tandard  errors and absolute errors. Thirdly,  the 

empirical Bar t le t t  correction performs similarly to its theoretical  Bar t let t  correction 

counterpar t ,  except for the small sample skewed case.
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T A B L E  4.1: Estim ated  true  coverages, from 10,000 simulations, of a-level 

empirical likelihood confidence regions for b0 and t/0’s. Rows headed “predic .” , “un- 

corr.” , “60” or and “60” or “i/0”give the predicted, uncorrected and Bartle tt-

corrected coverages respectively. The figures in parentheses are 102 times the s ta n ­

dard  errors associated with the simulated coverages.

(1) Coverages for slope param ete r  b0

€ i

n a
N (  0,1)

0.90 0.95
E(1.00)-1.00 

0.90 0.95

15 predic.
uncorr.

0.840
0.803 (0.40)

0.909
0.860 (0.35)

0.750
0.789 (0.41)

0.849
0.858 (0.35)

P b 0 0.859 (0.35) 0.911 (0.28) 0.904 (0.30) 0.950 (0.22)
P b o 0.853 (0.35) 0.906 (0.29) 0.856 (0.35) 0.916 (0.28)

30 predic.
uncorr.

0.878
0.862 (0.35)

0.935
0.919 (0.27)

0.845
0.840 (0.37)

0.913
0.902 (0.30)

P b 0 0.884 (0.32) 0.935 (0.25) 0.880 (0.31) 0.931 (0.24)
P b o 0.883 (0.32) 0.934 (0.25) 0.871 (0.34) 0.928 (0.26)

50 predic.
uncorr.

0.888
0.882 (0.32)

0.939
0.9386 (0.24)

0.870
0.860 (0.35)

0.930
0.926 (0.26)

P b o 0.896 (0.31) 0.948 (0.22) 0.887 (0.32) 0.944 (0.23)

P b o 0.896 (0.31) 0.948 (0.22) 0.880 (0.33) 0.938 (0.24)



(2) Coverages for in te rce p t  p a ra m e te r  a

e. JV(0,1) E(1.00)-1 .00
n a 0.90 0.95 0.90 0.95

15 predic . 0.858 0.921 0.802 0.884
uncorr . 0.822 (0.38) 0.884 (0.32) 0.805 (0.40) 0.868 (0.34)

P V o 0.861 (0.35) 0.918 (0.27) 0.883 (0.32) 0.927 (0.26)

Pya 0.857 (0.35) 0.915 (0.28) 0.848 (0.36) 0.900 (0.30)

30 predic . 0.880 0.937 0.865 0.921
unco rr . 0.864 (0.34) 0.922 (0.27) 0.840 (0.37) 0.901 (0.30)

Py0 0 .8 8 8 (0.32) 0.937 (0.24) 0.874 (0.33) 0.933 (0.25)

P V o 0.884 (0.32) 0.936 (0.24) 0.863 (0.34) 0.922 (0.27)

50 predic . 0.887 0.941 0.871 0.931
unco rr . 0.883 (0.32) 0.933 (0.25) 0.860 (0.35) 0.920 (0.27)

Py0 0.894 (0.31) 0.942 (0.23) 0.884 (0.32) 0.942 (0.23)

Pya 0.894 (0.31) 0.942 (0.23) 0.877 (0.33) 0.933 (0.25)
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(3) Coverages for mean param eter  y0 with x 0 =  5.00

n  a

N (  0,1)
0.90 0.95

E(1.0)-1.00 
0.90 0.95

15 predic.
uncorr.

0.865
0.837 (0.37)

0.926
0.899 (0.30)

0.840
0.815 (0.39)

0.909
0.869 (0.34)

P V o 0.871 (0.34) 0.924 (0.27) 0.868 (0.34) 0.908 (0.29)

P y 0 0.867 (0.34) 0.922 (0.27) 0.846 (0.36) 0.893 (0.31)

30 predic.
uncorr.

0.885
0.882 (0.32)

0.940
0.936 (0.25)

0.875
0.861 (0.35)

0.934
0.922 (0.27)

P y 0 0.897 (0.30) 0.946 (0.23) 0.884 (0.32) 0.938 (0.24)

P y 0 0.897 (0.30) 0.946 (0.23) 0.876 (0.33) 0.932 (0.25)

50 predic.
uncorr.

0.889
0.887 (0.32)

0.943
0.937 (0.24)

0.879
0.871 (0.33)

0.936
0.923 (0.27)

P y 0 0.898 (0.30) 0.945 (0.23) 0.891 (0.31) 0.939 (0.25)

P y 0 0.897 (0.30) 0.944 (0.23) 0.884 (0.32) 0.933 (0.25)
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(4) Coverages for mean param eter  y0 with x 0 =  10.00

<4- JV(0,1) E(0,l)-1.00

n

a

0.90 0.95 0.90 0.95

15 predic. 0.832 0.904 0.744 0.844
uncorr. 0.785 (0.41) 0.849 (0.36) 0.763 (0.39) 0.831 (0.37)

P y a 0.855 (0.35) 0.905 (0.29) 0.884 (0.34) 0.928 (0.26)

P y  o
0.847 (0.36) 0.899 (0.30) 0.833 (0.36) 0.889 (0.31)

30 predic. 0.876 0.934 0.846 0.914
uncorr. 0.860 (0.35) 0.913 (0.28) 0.833 (0.37) 0.892 (0.27)

P y 0 0.885 (0.32) 0.931 (0.25) 0.874 (0.33) 0.933 (0.24)
P y 0 0.882 (0.32) 0.930 (0.26) 0.863 (0.34) 0.919 (0.25)

50 predic. 0.889 0.943 0.877 0.935
uncorr. 0.881 (0.32) 0.939 (0.24) 0.862 (0.35) 0.925 (0.26)
P y 0 0.893 (0.31) 0.948 (0.22) 0.884 (0.32) 0.942 (0.23)

P y 0 0.892 (0.31) 0.947 (0.22) 0.875 (0.33) 0.936 (0.25)
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4.6 P r o o f s

In this section we give proofs of Theorems 4.3.2, 4.3.3, 4.4.2 and 4.4.3.

4.6 .1  P r o o f  o f  T h e o r e m  4 .3 .2

T h e o r e m  4.3.2:  Assume that

(i) there exist positive constants C\,  C2 such that uniformly in n 

C i <  v2n <  nin <  C2; (ii) the |x,|'s for l < i < n are uniformly bounded; 

(Hi) E \ c i  |15 < oo; (iv) for every pos i t iver , lim f  |6i | 15 =  0;

(vi) the smallest eigenvalue o f T n is bounded away from zero; (v) the 

characteristic function h of  satisfies Cramer condition:

lim sup |h(t) | < 1.
Id— °°

Then,

P{t{b0) <  ca } = a  -  (1 + -  \ t 2)n  1 cQg\(cQ) + 0 ( n  5). (4.6.1)

Proof :  Let kbj be the j ' th cumulant  of n ? R b. Calculat ions deferred to Appendix 

4.1 show tha t

kbi = — j  t22 n~ a +  0(n~  a),

^62 = 1 + (1 + — 1 + 0 ( n  “), (4.6.2)

kbj = 0 (n~  a ), j  >  3.

A formal Edgeworth expansion for the distribution function of R b can be con­

structed as follows,

P(n? R b <  x) =  J  'ff(v) <t>{v) dv + 0 (n ~  3), (4.6.3)
— OO

where ^ (u )  =  1 + ^ t 22 v n~ 2 4- -■(]_ 4. _  h t 2)(?;2 — l ) n - 1 . Accepting tha t

expansion (4.6.3) may be justified, we establish an Edgeworth expansion for the
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distr ibution of £(&„), as follows:

P { i ( b 0) < c} = P ( - c >  < n* R b < c 2) + 0 ( n ~  2 )

■/
1

c 7
_ 3t ^  (v) (f)(v) dv + 0 ( n  2 )

= a -  (1 +  \ t ±  -  ^ t 2) n  1cgi(c)  + 0 ( n  a), 

where is the density function of the x \  distr ibution.

It remains to check tha t  expansion (4.6.3) is valid. Remember  tha t  R b = h 0{ U ) 

where h 0 is a sufficient smooth function and

122 ^ 2 2 2

is the mean of independent  bu t  not  identically d is tr ibuted  random variable URs. For 

this case, Theorem 1.3.3 ensures a valid Edgeworth expansion. It may be shown tha t  

condition (4.2.7) implies the conditions of Theorem 1.3.3. Thus ,  a valid Edgeworth 

expansion for U can be obtained.  Consequently,  the Edgeworth  expansion of U may 

be transformed by a smooth function h Q to yield another  valid Edgeworth  expansion 

(4.3.6) for R b by using Theorem 1.3.4. Therefore the theorem is proved.  □

4 .6 .2  P r o o f  o f  T h e o r e m  4 .3 .3

T h e o r e m  4 .3 .3:  Assume  condition (4-3.8). Then,

P { i ( b 0) < ca ( 1 + pbn~ 1)} = a  + 0 ( n ~ 2).

Proof :  The method of proof is similar to tha t  of Theorem 3.3.1. Recalling (4.6.1), 

and noting tha t  pb = 1 -f 7 ti — , we have

P{£(b0) < ca ( 1 + pbn ~ 1)} = P { x \  < ca ( 1 + p&n- 1 )}

-  pb n ~ l cQ (1 +  pbn ~ l ) g i { c a ( l  + p 6n _1 )}

+ 0 ( n ~  2 ). (4.6.4)

Note too tha t

P { x l  < c«( l  + Pbn l )} = P ( x l  < cQ) + pb cQ g1(ca ) n  1 + 0 ( n  2) (4.6.5)
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and

<7i{c«(l +  Pbn~1)} = g i ( ca ) + 0 ( n _ 1 ), (4.6.6)

where g x is the density function of the Xi distr ibution.

Subst i tu t ing  (4.6.5) and (4.6.6) into (4.6.4) yields,

P { t ( b 0) < cQ{ 1 + phn ~ 1)} = a  + 0 ( n ~  2 ). (4.6.7)

By the pari ty property  of the polynomials in the coefficients of the above Edgeworth 

expansion, it can be shown th a t  the 0 ( n ~  a ) term in (4.6.7) is actual ly 0 ( n ” 2). Thus 

the theorem is proved. □

4 .6 .3  P r o o f  o f  T h e o r e m  4 .4 .2

T h e o r e m  4.4.2:  Assume condition (4-3.8). Then,

P { l ( y 0) < ca } = a  -  ( j s j  — 3 ^2 + s3) n ~ l c g x(c) + 0 { n ~  2 ).

Proof:  Let kyoj , j  = 1,2,* •• denote the j ’th cumulants  of n* R yo. Calculat ions 

deferred to Appendix  4.2 show tha t

ky0i = ~  % s^ n~ a + 0 ( n~  a ),

ky0 2 =1 + ( 2"  ̂i — i f  5 2 + s3) n ~ 1 + 0 ( n - 2 ), (4.6.8)

ky0j = 0 ( n _ a), j  >  3.

A formal Edgeworth expansion for the distribution of na JRJ/o can be set up from 

(4.4.4) as follows:

P ( n 2 R b < x)  = j  n(u) (f>(v) dv + 0 ( n  2 ),
— OO

(4.6.9)

where

Il(u) = 1 +  j  5 22 i> n 2 + 7  ( j  5 ! -  j  5 2 + 5 3) (u2 -  1 ) n x.

The  validity of expansion (4.6.9) can be argued in the following way. Notice from 

expressions for R Voj  j  = 1 ,2 ,3  tha t  there is a smooth function Q 1 such tha t  R Vo =  

Q i ( S ) ,  where

S  = ( W ot bt + b - b . , A y , A ? , A l i , A 1. l l , A 1" , A ) ln , A l ” ).
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Since

&! = (x -  x 0) { a 2x + (x -  x 0)2} 1W 0 and W 0 =  e + (x -  x 0) (6 — b0),

there  exists another smooth function Q 2 such th a t  5 =  Q 2{U),  where

2 2 2

Thus  there exists a smooth function Q — Q\  Q 2 such tha t  R Vo = Q(U) .  It can be 

shown tha t  condition (4.2.7) implies the condition of Theorem 1.3.3. Thus ,  using 

Theorems 1.3.3 and 1.3.4, we obtain the validaty of the Edgeworth expansion (4.6.9). 

From (4.6.9) and integrat ing , we immediately get the conclusion of Theorem 4.4.2. 

□
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A p p e n d i x  4 C a lc u la t io n s  o f  C u m u l a n t s

In this appendix  we display the calculation for the cumulants  of n? R b and 

n 2 R Vo ? which were used in the proof of Theorems 4.3.2 and 4.4.2.

A p p e n d i x  4.1 C a lc u la t io n  o f  C u m u l a n t s  o f  n? R b

In this section we calculate the cumulants  of R b which were shown in (4.6.2). 

Recall tha t

R b  — R b  1 +  R b  2 +  R b 3 i

where

Rbi = — ( b - b 0), 
a

Rb2 = VVjVk A ]0k Cb - b 0) +  j c r ; 1 t r ö J kl TjjTjk^ (b -  b0)2,

Rb3 = V r 1 a  Vj Vk  ( K k e -  ^ 7 jk 7 2 +  \ A { l A kl){b -  b0) + Ci  a ; 1 a (b ~  bo) 3  

-  G I k l n V j T l m  +  ^ 2 ^ 2rl j r i kr j mr in ) / i j k  A ™ n (6 -  60 )

+ ( 6  -  b0)2

+ a ' 1 a { a 2 a J k ‘ rjk r]m rji (7 , 7 « + 2 f]j r)n ) -  k m rjj 77* rjn )} A™n (b -  b0)2

and
Cl = -  j t r 2 « - 1 * ' tt"* " P ( i j l m  +  9 V j V m )

+ rl jrt i rilrim C - ä i k ’‘ ä 1"'' '

From the definition of Un we have the following basic formulae:

j Uj —
r ' Z x 2

ff2 f f2
u l. u 2 =

x 1 1 1
— and u, u-  = ———2^ - 2 ’ J J ^- 2^- 2O f f ff *ff‘

(4 .^ .1)

P u t

^1
^4

X

m 4 and t 2 Ms
(7U(T

m 2
3 -

Using (4.A.1) and the facts tha t  rjj = ff2x u 2 and a-’ k 1 =  n 1 gj kl (xi )  fi3 , we have

k ‘ VjVkVi = & 6 m3,
n

VjVk n ~ l 9jk(x i )(x i - x )  -  o ~ A m 3.
i =  1

(4.A.2)
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Since E ( R bi ) = 0, we obtain

E ( R b) = E ( R b2) + 0 { n ~ 2)

= -  \  G a x 1 Vj Vk E { A jok (6 - b 0)} + a ~ l a j kl rjj rjk rji E{b -  b0)2 + 0 ( n~2) 

= ~  2 °  °x 3 VjVk n ~ l £  9jk(xi )(xi  - x ) ^ 3n~1 +  ^ a ; 3 ä j U  VjVkVi n " 1 

+  0 ( n - 2)

=  -  n_1 + 0 ( n - 2).

Thus  we have

k bl = + O ( n - a ) .  (4.A.3)

To calculate notice tha t

£ ( £ » )  =  E ( R n f  + 2 E ( R b l R b2) + + 2  R b3) +  0 ( n ' 3).

Clearly E ( R bl)2 — n l . Since

I j y k n 1 9j k(x i ) ( x i  -  x f - 4 m  4, (4.A.4)

then (4.A.2) and (4.AA) imply

E ( R blR bi) = — j  Tjj rjk E { A { k (b -  b0)2} + ' - a ’ k 1 9 ^ 1  E(b -  ba ) 3 

= -  j ( / i 4 ~ ° 4) ° ~ 4 rjjT}k n~ 1 £  gjk(xi ) (xi  - x ) 2 n ~ 2 

+  | / i 3 c r " 6 a 3 k 1 rjj  Tjk T), m 3 n ~ 2 +  0 ( n ~ 3)

= { - \  -  o 4) a ~ 4 a~ 4 m 4 A j  t 2} n ~ 2 + 0 ( n ~3).

From (4.A.1) we know tha t

V j ^ l k  T ) mVr i ^  ^  > 9 j k m n ( % i ^ )  — & 7724 . (4.A.5)
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Using (4.A.2) - (4.A.5) yields 

E ( R b2)2 = l4 ° 2 o - 2 rh r]k rjm r]n E { A j0k A™n ( b - b 0)2}

“  3 (7x 2 ^ J * ' rjjVkVirimrin E { A ™n (b -  b0)3 }

+ \ ° 2 o ~ 2 ä J k , ä mnp Tjj rjkT]lT]rrir)n r}p E(b -  bQ)4 

= \ ° 4 (/i4 -  a 4) a " 4 rjjijk r]m r]n n “ 1 E  gjkmn ( x {) n~ 2 

+ \ o 2 f i \ a ~x 6 {rjj r)k n ~ l E  gjk{xi ){xi  -  z)} n ~ 2 

+ j  a 6 a ; 6 ( a J kl g jgkg i Y  n - 2

-  a 4 fl 3 a ; 6 a J k 1 g jgk gigm Vn gmn{xi ){xi -  x)  n ~ 2 +  0 ( n ~ 3)

=  { 7  (^4 -  ^ 4 ) < E 4 CT_4 m 4 -  £  *2}  rc- 2  +  0 ( n - 3 ).

To calculate E ( R bi R b3), note tha t

£ ( « . ,  Ä»3) = V i V k E { A ik c(6 -  f>„)2} -  Vi»/» £ { e 2 (6 — &<,)2}

-  ( j < 7 2 J kJ„T]jVm +  JCT2 a^T/jTIt  7)m 7f„ ) £  {A ' 1 A' ""  ( f > - 6 „ ) 2 }

+  ( a 2 a ; 11 7j 7n Vk Vm Vi +  VjVkViVmVn -  a 1 km

x £ { A ” " (6 -  i>„)3} + E { A i ‘A*'  (b -  K ) 2}

+ t  mv„v,  E { A { k' (6 -  6„)2} +  C,  E{(b  -  b„Y}.  (4.A.6)

We shall calculate the r ight-hand side of (4.A.6) term by term. Now, (4.A.1) implies 

tha t

rijVk I jk =

Neglecting terms of order of 0 ( n - 3 ), we see tha t  the sum of the first two terms on 

the r ight -hand side of (4.A.6) is

g jVk E { A J0k ? (6 -  b0)2} -  j  rjj r]k E {  72 (6 -  b0)2}

= 2 gjVk I jk v~ 2 o 4 n ~ 2 = ^ n.” 2. (4.A.7)

From (4.A.1) we know tha t

1 k ~ in  g j ^ m  Tl ^ v g j k l m ^ X i ) —G x O  , 

g j  g k  g m  g n  ^ ^ > $ j  k l m  ( x j ) — 772.4 ^ }

gj l k  n~ 1 = ^ 2 ^ ~ 4 -
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Thus,

-  ( j t f 2 I k l n l j T l m  +  ( r ; 2 T]j r]k T]m TJn )  E { A ]k A™" ( L  ~  b 0 f  }

= “  ( 2  ( j2 I k l n l j T I r n  + ^  G 2 0 ~  2 T]j TJk T)m TJn ) G ~  4 { f l ~  1 9  j  h i m  ( *  i )  g ]  G 2 ( ß  A ~  G 4 )

+ 2 n ~ l Y l  9jk(x i ) (xi  - z ) n _1 #mn (z,-)(x,- - z ) / 4 )  (4.A.8)

=  —  2 ( / A  — CT4 ) ( 7- 4  n~ 2 — ^  ( / i 4 — cr4 ) CT“ 4 CT_ 4 m 4 7l - 2  — nlcr~6 n ~ 2 — 2 f t - 2 .

To calculate the fourth term, observe tha t

‘ UP V k V l V n V p  ( I j l m  + g" G ~  2 Tjj Tjm )

+ Vj  9 k  V i V m (7 fc n a 1 m n -  \  a j  k 1171)

= j  ^ x 2 a ~ 10 m l ~  ^ I^a g ~ 8 m 4.

Therefore,

Ci E(b — b0)4 = — f  //4 cr-4 <r“ 4 ri-  1 E  (z,- -  T)4 n -2 + 1 t 2 n ~ 2. (4. A.9)

Using (4.A.1) again we have

ä J k ' 7 jVkVi  =  A*3 ^  c r - 6

and

 ̂ Vj  Vk  Vn  ̂_> 9  m n i 2- ) — /̂ 3  ̂ A ^3  ) •

So the fifth term is

{ a 2 a j k l  r]kT]rnT]l (7i7n +  \<J~2 i]j r]n ) - a j k m r)jT}k rjn )} E { A ™n (b -  b0)3}

= 3(<r2 a J k 1 7 i7 n r/fcr/m77/ + J- er2 2ä j k 1 rjj rjk rj,rjm rjn - W j k m rjj rjkr)n )

 ̂  ̂  ̂-v 9 m n (A* ) ( 2** 2? ) j l 3 <7r (7 72

= 3 /23  <r-6 72-  2 +  ^ t 2 n~ 2 — 3 ß l  a~ 6 n~ 2 -  3 t 2 n~ 2 = ~ ^ t 2 n ~ 2. (4. A AO)

Observe tha t  (4.AA) implies

V j V k  n~ 1 Y  9 j k i i  =  g ~ 2 a ~ 6 ( a 4 + m4),

Vj  Vk  n _1 5Z 0;/(s< -T )t2_1 - x ) =  (j - 2 ( J ~ 6 (** + m3),
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so th a t  we have the sixth term

S w u E W A i ' i b - b . ) 2}

= \ l j V k  c r ^ i n - 1 £  g j k i i ( x i ) a2x a 2 (/i4 -  a 4)

+ 2 n _1 Y1 9ji (x i ~ x ) n ~ l £* / (z. - * ) / 4  (4.A .11)

= \  (/x4 — o-4) (j_ 4 n ~ 2 + j  (/z4 — cr4) o ~ 4 o ~ 4 m 4 n -2 +  /i2 <7“ 6 n -2 +  t 2 n ~ 2.

Finally, since

Vj Vk Vi n 1 H  ^ / ( z .  -  s )  = m 4 (T 6,

we have

I  rjjTikTji E { A J0kl (6 -  60)3} = rijT}kT), n 1 9jki{x i ~  x ) °  4 V*

— [l4 g  4 o x 4 m 4 n 2 = t\ n 2 . (4.A .12)

Substi tut ing (4.A.7)-(4.A.12) into (4.A.6), we obtain

E ( R bl R b3) = \ n ~ 2 + I  0 4 -  a 4) a ~ 4 a ~ 4 m 4 n ~ 2 -  f ^ t 2 n ~ 2 

+ 4 ti n ~ l E(z,- — x ) 4 n ~ 2 + 0 ( n ~ 3).

In summary ,

E { R 2b) = E ( R bl)2 + 2 E ( R bl R b2) + E ( Rb2f  + 2 E ( R bl R b3) + 0 ( n " 3)

— n 1 + ((1 + y — ^ t 2) n ~ 2 -f 0 ( n ~ 3).

Since k b2 =  n { £ ( Ä fe)2 — 2(Ä*)}, we obtain

k b2 — 1 + (1 +  — t?) n 1 +  2)- (4.A .13)

Next we calculate k b3. By definition,

k b3 = n i { E ( R l )  -  3 E ( R b) E ( R 2b) + 2 £ 3(Ä S)}

= n* { £ ( £ * , )  +  3 £ ( Ä t2, Äi2) -  3 £ ( Ä t2) £ ( £ ’ ,) + 0 ( n ' » ) } -  

Since £■(& — b0)3 = /i3 <j ~ 6 m 3 n ~ 2 + 0 ( n - 3 ), we immediately have

£ « )  = 4  n ~ 2 + 0 ( n - 3). (4.A .14)
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Using (4.A.2),

E ( R 2bl R b2) = -  \ o x a " 1 T]jT]k E { A j0k (b -  b0)3} + ox a j k 1 t]j r)k rjl E{b -  b0)4

=  -  I  a //3 o ~ 3 r]j7]k n ~ l £  gj k (xi)(xi  — x ) n ~ 2 +  \ o 3 a ~ 3 a 3 kl rjjijkVi n ~ 2 

+ 0 ( n ~ 3)

= — |  n ~ 2 4- t 2 n ~2 4- 0 ( n ~ 3)

= -  n ~ 2 4- 0 ( n ” 3). (4.A.15)

From the early calculations of E ( R b) and E ( R 2b),

E ( R b2) E ( R 2bl) =  - J - 4  n " 2 + 0 ( n " 3). (4.A.16)

Now (4.A .14) - (4.A .16) imply tha t

kb3 = 0(n-i).(4.A .17)

From the definition of k b4 and the result tha t  kb3 = 0 ( n~  ä ), 

kb4 = n 2 { E ( R 4b) -  3 E 2( R 2b) -  4 E ( R b) E ( R 3b) +

= n 2 { £ ( Ä p  - 3 £ 2( ä 2)} - 4 n *  E ( R b) k b + 2 k 4, 

= n 2 { E ( R 4b) - 3 E 2( R 2b)} + 0 ( n - 2).

= n 2 { E ( R 4bl ) -3  E \ R h )  +4  E (R 3blR b2) -  12 R b2)

+ 6 E ( R 2b, Ä22) -  6 E ( R 2bl) E ( R 2b2) + 4 £ ( Ä 3, Ä S3)

-  12 E ( R 2bl) E ( R bl R b3)} +  0 ( n ~ 2). (4.A.18)

From (4.A.2) - (4.A.5) we may show tha t

E ( R 4,) - 3 E 2( R2,) = (fi4 -  3 a n~ 3, 

4 £ ( Ä 3, Ä „ )  -  12 E ( R 2bl) E ( R bl R i2) = { - 6(^4 -  ) <r~4 a ' 4 m 4 + f  <2}n- 3 +  0 ( n ~ 4),

6 £ ( Ä 2! f i j , )  - 6 £ ( Ä ^ ) £ ( Ä 22) = { 3 (a<4 -  a4) a - 4 a - 4 m 4 -  + 0 ( n ' 4 ).

Using the same argument which yields E ( R bi R b3), we may show tha t

4E(R*bl R b3) -  12 E ( R 2bl) E ( R bl R b3) = (2«, -  i * 2) n - 3 + 0 ( n ~ 4).
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Subs ti tu t ing  the above four expressions into (4.A .18), we get

k b4 = 0 ( n ~ 2). (4.A .19)

From the results given by James  and Mayne (1964),

k bj = 0 ( n ~  2 ), for any j  >  5. (4.A.20)

In view of (4.A.3), (4.A .13), (4.A .17), (4.A .19) and (4.A.20), we readily derive 

(4.6.2).

A p p e n d i x  4 .2 .  C a lc u la t io n s  o f  C u m u l a n t s  o f  n? R Vo

In this par t  of the appendix we give our derivation of (4.6.8), which was used to 

prove Theorem 4.4.2. It turns  out  tha t  the calculations of the cumulants  of n? R Vo 

given in this section is very similar to tha t  in Appendix 4.1. P u t

[ x  X 0 ) ( x  X o )  , ( X X ° )
9i =  1 + 6 -----------------4 -------- ------ m 3 + -------- ------ m 4,

and

and define

^2  —  1 + 3
(x -  x 0 ) 2 (x -  x 0):

m 3

(x -  x 0y  (x -  x 0y  (x -  x 0y
q3 = 1 - 3 ------- ------ + ----------------------------- m 4 + -------- -------

\3r (x X 0) (x x 0)
+ 2 { ------- ----------------------- }m  3,

6i = o 4(x0)(j fj,4 Qi , S2 = a b( x0) a  s 3 = a q( x 0 )q 3
- 6  . . 2  J2
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Rem ember  th a t  R Vo = R yoi + Ry a2 + R Vo3 where 

R y  o  1 — a ( x 0) a  W  q  ,

= a 3( x 0) a e  +

R , . i R , . s  = + 6 - 6 „ ) W ' 02 +  C 2

-  f l  (ßjk2 -  2 ßjk x c + 7]t x l ) ( b l + 6 -  6 „ ) 2 VK;

- a e ( i . ) < T j ^  r  { k - 2 ( a  - 7 , x „ ) ( / 3 „  - 7» * . )  +  H ‘ r } ^ *

+ a8 (x„)<T2 {<r;2«2‘ , f  f ‘ r  ( ß l  -  I t  X o ) ( ß n  - l n * o )

+ j - ä '  ( , • f* {' f m f" -  a - 2(x 0 ) a ~2 a * k m  ( ’  {‘ £” } A™” W 8

+ jra4(*«)f, £* 4 '  ^ * ' ^ 0  + T«6( ^ ) e  {.' K k,W3

-  a b( x 0) a 2 £k £l (ß j k 1,2 ~  l j k i ,2 x 0) (61 +  b -  b0) W *,

and

C 2 = -  1- a 10( x o) a 2 <r“ 2 {* (ßl — 71 x 0)}2 -  ^ « ‘ " ( x . J a 2 {a* 1 ‘ ?  f ‘  C }2

+ c*8(x 0) ( ± - ö jfcnö ' mn -  ± - ä ' * ' m ) f '  £* £m .

From the early definition in Section 4 .4 , we know tha t

W 0 =  a  +  b x 0 — a0 — b0 x 0 =  ?  — (x — x 0) (6 — b0 ),  

and = Uji + Uj2 z 0 j  = 1,2, which implies the following basic formulae:

¥  t  I j k  =  OL 2 ( X 0 ) ( J  \
{ x - x 0y  ( x - x 0y

a j k l e t k t 1 —^3 <t- 6 {l 4- 3
o i v,x i

\2

m 3}, (4.A.21)

¥  i k n 1 gjk(xi ) (xi  -  x)  = a 4{----- _ 4°-— m 3 -  2 (x -  x 0) j

We s ta r t  with the calculation of kVol. Notice tha t  E ( R Vo) = J5(Ryo2) +  0 ( n  2), 

since E ( R Voi )  = 0. Using (4.A.21),

E ( R y, 2) = - e  E(AikW„) + e  £ ' E ( W 2C),

1  ̂3 — — Oi2 ( x 0) v £ J t  { i j k  -  —— ~ ^ - n  1 SbfcO«)0* -  *)} ^3 W
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I 1 5 /  _  \  _  — i  k I r i  r k  r l  t  A , ( X  X  ° )  ~\ _ 2  _  — 1 ,+ -  a (x0) <r a J 4J 4 4 { 1 +  ------ ------} a n  + 0 (n )

i n - 3 r ( a ^  — £ 0) (x — x 0) yo/ „-2\= — - a ( a r 0)<7 /j3 {1 + 3 -------------------------------- rn3\ n  + 0 { n  )

= -  ^ s l  n “ 1 + 0 ( n - 2 ). (4.A.22)

Thus  we have

k,„i = - 6  *2’ n" ’ + ° ( n ~ ’ )• (4.4.23)

For the convenience of computat ion,  we calculate the third cumulant  kVo3 before 

kVo2. Observe tha t

k Sa3= n ^ { E ( R l J - 3 E ( R yJ E ( R l )  + 2 E 3( R , J }

=» ' { £ ( « ; „ ! )  + ä ,„2) - 3 £ ( f i yo2) £ ( Ä j ol )} + 0 ( n - J ) .

We first have

IPS r>3 \  3  ̂ - 3  J ,  , „ ( * “ * • )  ( 2; —  X 0 ) ^ — 2 , r \  < — 3 \E ( R  . ) = a  ( x 0) a /a3 i 1 + 3 ------- ------------------------- m 3) n + 0 { n  )
° l  ax

= s> n ~ 2 + 0 ( n ~ 3). (4.A.24)

Using the formulae in (4.A.21),

i Ä yo2)

= _  l ^ 5« 5(^o )<r- ‘ f  f ‘ E ( A i “W ? ) + '-aa1 e  a'

3 3
—  —  —  r\a 3( x0) a  fji3 { 7jjk -

( x  -  x 0 )
n 1 îJk( .̂)( î -  z)}* n 2

+ a d{x0) a 3 C  £ n~ + O ^ " 3)

3 /■ „  \  _ - 3  f  1 3 ( ^  — ^ o )  — 2 I 1 ( ^  “ ^ o )  \1 - 7  -  j ------ ------ n + - ------- ------m 3) nö ( \ — Ö= q {x0) a  fl3

s 22 n 2 + 0 ( n  3).

2 + 0 ( n " 3)

(4.A.25)

Moreover from (4.A.22), (4.A.24) , (4.A.25) and the fact tha t  E ( R 2ol ) = n 1, we 

obtain

E ( R 3yol) + 3 E ( R 2yol R yo2) = 3 £ ( Ä yo2) £ ( £ 2o l ).

Therefore,

k,„3 = 0 ( n - i ) .  (4 .4.26)
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Next we compute  kVo2. Note tha t  kVo2 = n {E ( R 2b) — E 2(Rb)}  and

E { R l J  =  E ( R Vol)2 + 2  E ( R y<ii Ry. t )  + 2)2 +  2 Ä y„3) + 0 ( n ' 3).

(4.A.27)

We are going to compute  each term appearing on the r ight-hand side of (4.A.27). 

Obviously E ( R Vol)2 = n _1 . Since

£(Ä „„ ,  f* 4F„2) + ‘ ' e  f* ( '  E ( W ? )

= -  j a 4(x<,)(/<4 -  <r4) ( J {* {~ljt -  2 1-----7 ——‘ n" 1 9ik(Xi){xi  ~ x )
oi

+ -------9 jk{xi )(xi  -  x ) 2} n ' 2
cr„

+ ^ a 6(x0) a J kl Zk f V s  q2 n~2 + 0 ( n - 3 ), 

then using (4.A .21) and the fact tha t

£’ n _1 E  Si k(Xi)(xi  -  x f  — o ~ 4 ct2 {1 -  2 ------- ^ d  m3 + !------- d -  m 4 } )
a \

we get

E ( R y aiKy„2) = _ 1 °  (x0)(M4-<T4) ^  n _ ,  + n -2 + 0 ( „ - 3 ) .  (4.A.28)

To calculate E ( R yo2)2, noticing tha t

/■ ?  / - k  / ‘ TTl / - n  —  8£ £ £ S ~fjkmn — ^ #1 )

and using (4.A .21) again, we obtain

E ( R y„2 )2 = \ a 6( x „ ) a 2 ( i  { ‘ {"• C  A " "  W 2)

-  i  « 8(x„) <r2 a 2 ‘ ' f  f ‘ e1 r  r e(ar  w 3)

+ i « 10(a:<))<72 C ) 2 * ^ 4)

=  (M 4 -  <J'4 ) ^  ? m C" T j t m n  n ' 2

+ i « 6(x„)<T2 M2 [2f2 j ‘ r  {»

- 4 c r ; 2 ( x - x „ ) t } J j k ( m C  n~'  E  9 i t ( x i ) (x i -  x )
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+ 2 {r C n - ' Y ,  9».(*i)(*. -?)}2] n~2CZX

- a . \ x 0)o* f i i ä j k i e e  e r  r

X {7mn -  r  -  x o) n~ 1 X] 9jk(x i ) (xi  -  z)} n ~ 2

+ ^ a 6( x 0) a 6 ( ä j k i e  e  e ?  n ~ 2 +  0 ( n ~ 3)

= a 4( x 0) — —    qi n ~ 2 -  |  s 2 n ~ 2 + 0 ( n ~ 3). (4.A.29)
cr4 D

Furthermore ,

E(Ry. l  Ry.z) = <*A( * o ) e  t k E { ( 0 ik, 1 - 7jM x0) ( 6 +  6, - t , , ) ^ 2}

-  7 « “(*<.)C f ‘ ( f t i2  - 2 ß j t  *„ + 7j t  x 2) £ { ( 6  + f>i -  to )2 w 2}

- a 6(*„)<r2 { i < r ; 2 e r  (/?* - 7» ® . ) +  f* f ro f")

y .E( A[ k A?" W?) + C2 E(WZ)

+ a s ( x 0) a 2 { a~ 2 a 1 11 £J f 1 £m (/3, -  7l x c )(0„ -  7n x„)

+ j a *  * ' e  f ‘ f'C" {" -  o ” 2(x0) (T-2 5'j l m f* £* f" } £(A™" W 3)

+ e  A{ ‘ A*'Wl + f* C £ ( A i 1' W 3)

- a * ( x 0) a 2 £  £  ( ' ( 0 j t l ,2 - b 0) W 30 }. (4.A.30)

Each term on the r ight-hand side of (4.A.30) is computed below. Firstly, since

e  e  n 1 Y1 9jk(xi )  (Xi -  x)(xi  -  x 0) = a 4 a 2 [l -  2
(x -  x 0 ) 2 (x -  x 0 ) 2 
------- :----- + -------- ~------1714

°* °x
, r « (* -*< > )  , (x - x 0)3 x 1+ { - 2 ------ ------+ -------- ------ } m 3J

and

e  e  n 1 J 2  9j k ( x i ) { x i  -  x 0) = a 4 { - ( z  -  x 0) +  —----
a-; (JZX  X

then we find the first term on the r ight-hand side of (4.A.30) to be

a 4( x 0) e  e  E { ( ß jkt 1 -  ljk>1 x 0)(b + 61 -  b0) W 2}

= a 4( x 0) a 2 (j~ 2 Z3 Zk {n~ 1 J 2  9j k ( x i ) ( x i  -  x ) ( x { -  z 0)

+ (* -  x 0) n~ 1 9j k { x i ) ( x i  -  x 0) } n ~ 2 + 0 ( n - 3 )

^ 3} ,

= a 4( x0)q3n 2 + 0 ( n  3). (4.A.31)
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Since

t 1 Zk J 2  9j k ( x i ) ( x i  -  x 0f  = a ~ A a\  q3, 

then the second term has the form

- i  a4 (ßjk2 - 2 ß jMx 0 + i j k x l ) E{ ( b  + bl - b 0f  W 2}

= -  ^ a 4( x 0) a 4 <t~ 2 £j £k n " 1 E  gjk(*<) (*< -  z*)2 ™-2 + 0 ( n - 3 )

= - j ö 4( i ö)(j3 n ' 2 t O ( n " 3). (4.A.32)

To calculate the third term on the r ight-hand side of (4.A.30), note tha t

Z 3 ( ß k  -  7 /  x o ) l j k  =  o ,

£ £ (/̂ A: l l  x o )  { ß n  ' ) n x o ^ ) ' l j k m n  — & ® x  9 3  ?

f i  t-k t-m t~n _  — 8
£  £  £  £  I j k m n  0" *7l 5

and

i 3 { ß k ~ l i x o)n  1 ff jk(x i ) (x i ~  x ) = cr 4 er3 { l
(x — x 0)2 (x — x 0)

m 3

Using (4.A.21) again,  we have

« 6( z o ) * M K ' 2 e  r  (& " 7 i  *<,)(&. - 7 » * . )  + f " } £ ( A { ‘ A ™ " ^ 2)

«6(x„)<72 {̂ <7;2e r  (ßt — 7ixo)(ßn - 7» *.)+ le r  c}

& ( ^ 4  @ ^  ( x 0 ) 7 j f c m f i ‘̂ ” 2 7 j j t 7 m n M 3  4  T M3  Tj  it ^  ^  > 3 m n  ( ^ i  K ^ i  X )

( T  -  x 0 ) 2
+ 2 /i3 n 1 ^2 9j k{x i ) {x i ~  x ) n  1 £mnOi)(z,- -  a;) f n 2 + 0 ( n  3 )

a 4O o)  (/^4 -  ^ 4) ^ 4(i-<73+^tfi)rc 2 + ^ 2 n 2 + a 6( x 0) n l  a 6 -----
X

w f i  ( x  ~  x o )  (x — x  o )  _ 1 ^ /  —\3l - 2  , ,->/ -  3 \
X { 1 --------------- ; ------------------------ ; ------ n 2 ^ \ x i - x ) ] n  + 0 { n  ) . (4.A.33)

Moreover,  because

ö j kl t 3 £k (ßi ~  l i  x o) = - 6  /  l 3' ^ o )  / — \ , ( X ^ o )  \A*3 <7 I - - - - - - - ; - - - - - - - - - ( a r - x 0 ) +  --- - - - - - - ----- m 3 )
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and

a 3 k m gm n 1 X  gmn(Xi ) (Xi ~  x)  = ^ 3  <? % ~  X0 ) { - 2  -  C*2 (x 0 )

+ 3
(x -  x 0) (x -  x 0y

m 3 } ,

the fourth term becomes

a 8( *„) a 2 k  2«j ‘ 1 e  e  r (a  -  i ,*„) (a . - 7» * „ * 1 e  e  r c
- a - 2(x0)<?-2 a i t m  e  f l £” } E(A™" W*)

=3 a6(x„) <7-Vs {<2 ‘ {* r (a - 7, ) (a - 7„ ) + & *' e e r c
- a  2(x„)<x 2 a 1 k m {̂"} {7mn -   -—d-n  ‘ E f a n l ' i K 1 . - 1 ) ) 1-  2

+ 0 ( n " 3)

= — !  s 2 n 2 +  0 ( n  3). (4.A.34)

To get the next term, notice tha t

2 ck----------------~ 6

( ’ £k l i ku  = °  6 {2 +

£ £ i j i  iki  -  v  
(x -  x 0)2 o  (X X ° ) , (X X o)  \2 ------ ------m 3 +  -------------- m 4 ] ,

£3 £k Ij i  n 1 X  9ki (xi ) (xi  -  x)  =  (T 6 { - 2  (x -  z 0) + —— m 3 } ,

and

£] £k n 1 ^ 2  g j i ( x i ) ( x i —x ) n  1 X  9ki(x i )(x i ~ x )  =  a 6 [ ( x—x 0 )2 + { o x — ( x —x 0) m 3 } 2]

Thus we have

2 <*4( x0)£j A{1 A k0l W 2 + §■a 6( x0) e  £(A{*' W3)

= 2 a 4( z o) (/14 ~  ^ 4)<72 £* 7j ifc/I + « 4( ^ o)/^3 ^  ^  {Ij i  Ikl

_  2  i  ^ ~ l k i  n ~ l X  9j i (x i)(xi  -  x)  +   ------—1—  n " 1 X! flfi/(ar<)(«* ~  x )

X ™ 1 X  9ki (xi ) (xi  -  x)  n 2 + 0 ( n  3)

l 2 / \ (^4 — ° A) fn (x — x 0)2 (x — x 0) _ 9 , 9 , os
— 2 & ( x 0) { 2 +  2 — 2 ~ m 3 n ~h ^ 2  } ̂  +  0 ( n  )<7b a 1 a 4

a \x _ 0) l i l  (x - x 0)2 (x - x 0)2 { x - x 0)
_ 6  _ 9  t 1 0 4 m 3}2 n “ 2 + 0 ( n “ 3).(4.A.35)
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To calculate the seventh term in (4.A.30), note tha t

E{ A[ kl W 30 )

= a 4 (x 0) a 2 {7 jki ~   ------ n~ 1 ^  gj k i (xi ) ( x i -  x)} n~ ‘
al

Since

n _ 1 X]  («<)(*» -  *)

-6 ; o /— \ , 0 (^ — x o) ( x —x 0) _ 1 ^= <j 1— 3 (x — x 0) +  3 ------------- m 3 ------------------ n 2 ^ \ x i ~

then using (4.A.21), we have

I  <*6(z„)C’ f* E  1 = a, n - 2 +

Because

£ { ( 6 + 6! — 6„) } = 0 ( n - 3),

we immediately have

- V ( x 0)<x2 e «‘ « ' ( f t u .2 - 7 i u , 2 x „ ) £ { ( 6  + 61 - 6 „ ) W 7 }  = 0 ( n “ 

Final ly it can be shown tha t

C 2 = a 4( x 0)cr~4 ( | s 2 -  7 « ! ) 2 +  0 ( n ~ 3).

Thus ,

C 2 E ( W * )  = ( t « 2 -  f  + 0 { n ~ 3)-  2

Substi tut ing (4.A.31)-(4.A.38) into (4.A.30), we end up with

E(Ry,I Ä , . , )  = \ a \ x 0) q3 n~2 + _  j

1 a 4( x0)/X4 
+ 7 ----------:------- qi n 2 +  0 (n J ).-  3

Again subst i tu t ing  (4.A.28), (4.A.29) and (4.A.39) into (4.A.27), we

+  0 ( n - 3 ) .

x)4}

(4.A.36)

3). (4.A.37)

(4.A.38)

7 52 n

(4.A.39) 

obtain tha t

E { R 2y0) ~ E(Rya 1 ) 2 + 2 E(Ryol R Vo2) + E ( R Vo2)2 + 2 E ( R yoi RVo3)

1 "b( j 'S i  — 352 + 53) 77. 2 + 0 (n 3).
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Therefore,

kyo 2 = 1 T (^r5i ~~ 3t -5 2 + -§3 ) 7i 1 -f 0 ( n  2). (4.A.40)

Finally, we derive the fourth cumulant  of n? R Vo. By definition,

ky„4 = n 2 { E ( R l ) - 3 E 2( R l ) - 4 E ( R yJ E ( R l )

+ 12 E \ R yJ E ( R l ) - 6 E \ R yJ }

= n~2 { £ « )  - 3 E 2( R l J ]  -  4 n i  E ( R y, ) k Sa3 +  2 * ^ ,

=  n~ 2 { E ( R l )  -  3 E 2( R l ) }  + 0 ( n ~ 2).

= n ~ 2 { £ « . )  - 3  E 2( R 2yol) + 4 E ( R l t -  1 2 £ « , )  £ (Ä „„ ,

+ 6 E ( R l 1 R l 2) - 6 E ( R l 1) E ( R l 2) + 4 E ( R l i

-  12 E ( R y^1) E ( R y<>1 R y, 3).

Using these formulae in (4.A.21) and neglecting terms of order of n - 4 , we may show 

tha t

E ( R 4yol) - 3 E 2( R 2yol) = a \ x 0) ^ 4 - 3  a4) a ~ 4 qx n ' \

4 E ( R l ' t R y, 2) -  12 E ( R 2y^ ) E ( R „ ^  R , . , )  =  { - 6  a A(xy)(f i4 - a A) a ~ A q, +

e E (R l> < 2) - 6 £ ( < 1) £ « 2) = { 3  « ' ( » . H e ,  -  aA) a - Aqi -  3.

By the early formulae used to derive E ( R Voi R yo3), we may show tha t

4 £ , . 3 ) -  12 £ ( « , „ ,  Ä , . 3) = (23,  -  4-32) n ' 3 + 0 ( n “ 4).

Thus  we have

kyo4 = 0 ( n ~ 2). (4.A.41)

Based on the results given by James and Mayne (1964), we have

fc»„j = O ( n - i ) ,  j  >  5. (4.A.42)

Hence, in summary  of (4.A.23), (4.A.26), (4.A.40) and (4.A.41), we have proved 

(4.6.8).
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C H A P T E R  5

C O M P A R I N G  E M P I R I C A L  LIK E LI HO O D  

A N D  B O O T S T R A P  H Y P O T H E S I S  T E S T S

5.1 Introduct ion

From the reviews on developments of empirical likelihood given in Chapter  1 

and the work discussed in Chapter  2, 3 and 4, we see tha t  almost all the research 

done on empirical likelihood concentrate on construct ing confidence regions. After 

construct ing an empirical likelihood confidence region, we can derive an em pir ­

ical likelihood test abou t  the paramete r  of interested by using the duali ty between 

confidence regions and hypothesis tests.  However, so far little has been done on 

the aspect  of power of empirical likelihood tests. Surprisingly, little has been done 

on tha t  of a boots trap  test either! The contr ibution of this chapter  is to develope 

high-order expansions for the power function of empirical likelihood and boots trap  

tests for a mean against a series of local al ternat ives. A comparison between em pi­

rical likelihood and boots trap  tests for a mean param ete r  against a series of local 

al ternat ive hypotheses is made.  For univariate and bivariate cases, pract ical  rules 

are proposed for choosing the more powerful test.

Let X i ,  - • - , X n be an independent  and identically distr ibuted  (i.i.d.) random 

sample of p-dimensions from an unknown distr ibution with mean param ete r  p and 

covariance matr ix  E. We consider using empirical likelihood and boots trap  methods  

to test the null hypothesis H 0 : p = p 0 against  a series of local al ternat ives H n : 

p = p 0 + n ' ä E ^ r ,  ,where both p 0 and r  are constant  p dimensional vectors. The 

empirical likelihood and the boots trap hypothesis tests for H 0 can be formulated 

from the well-known duality between confidence regions and hypothesis tests.

Owen (1990) showed in the i.i.d. sample mean case tha t  the power of an o-level
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empirical log-likelihood ratio test is asymptotically P  {y2 ( | | r  ||2) > Xp i _ a }, where 

Xp(||r ||2) is the noncentral  chi-squared random variable with p degrees of freedom 

and noncentral i ty pa ramete r  ||t ||2, and y 2 i _ a is the 1 — a  upper percentile of the 

central  chi-squared distr ibution y 2 • However, it is not  difficult to show tha t  the 

corresponding boo ts trap test also achieves the same asymptotic  power.  Thus,  to 

really compare powers of the empirical likelihood and the boots trap  tests,  we have 

to develop higher-order expansions for the powers of these two tests,  which will give 

us some insight into the problem.

In Section 5.2 we define the empirical likelihood and the boo ts tr ap  tests. Af­

ter developing higher-order expansions for the power functions in Section 5.3, we 

propose in Section 5.4 two rules for practically choosing between the empirical like­

lihood and the boots trap  tests for univariate and bivariate cases. In the univariate 

case, the rule says tha t  the empirical likelihood test is more powerful than the cor­

responding boots trap test when r a 3 > 0, and vice versa when r a 3 < 0, where a 3 

is the populat ion skewness parameter .  For higher dimensional  cases, similar rules 

may be developed. In Section 5.5 we present s imulation studies.  We display our 

calculations of cumulants  in Appendix 5.

5 .2 .  E m p i r i c a l  L i k e l i h o o d  a n d  B o o t s t r a p  H y p o t h e s i s  T e s t s

Let X i , - - ' , A n be a p dimension i.i.d. sample from unknown distr ibution F  

with mean p and covariance matr ix  E. We want to test null hypothesis  H 0 : p — p 0 

against a series of local al ternat ives H n : p = p 0 + n~ ä E 2 r , where p 0 and r are p 

dimension constant  vectors.

P u t  Z, = E ~ ? ( X i  — p)  and let Z\  be the j ' th component  of Z,. We define 

a j d2 j k = E  . . . Z j k) ,

A jl j2' jk = n ~ 1 J 2  Zj '  - Zi" - a j l j2' j k ,

as the standardized mult ivariate moments of X 1, - - - , X n . Note th a t  a j = 0 and 

a j k — fijk where Sjk is the Kronecker delta. Throughout  this paper  we assume the



following regularity condition:

(i) E =  C o v ( X i )  is a positive definite matrix;  (ii) E | | X i | | 15 < oo;

(iii) the characterist ic function gx of X x satisfies C ra m e r ’s condition, 

for every positive 6, sup |<7i(f)| < 1.
11*11 >b

5 .2 .1  E m p i r i c a l  L i k e l i h o o d  T e s t s

Write Pi , P 2 , - • • , p n for nonnegative numbers adding to unity. Then ,  the em ­

pirical log-likelihood ratio for g  is defined to be

Based on the nonparametr ic  version of Wilks’ theorem given by Owen (1990), a 1— a 

level confidence region for g is defined as I i _ a = {g\£(g) < ca }, where ca is chosen 

from the Xp tables such tha t  P(Xp > ca ) =  a.  According to the duali ty between 

confidence regions and hypothesis tests,  we define an o-level empirical likelihood 

test for the null hypothesis H 0 to be

By Wilks’ theorem the asymptotic  significant level of 4>e is a.  Let us define “type 

I accuracy” as the difference between the actual  and nominal  significant levels of a 

test.  Using the results given by Hall and La Scala (1990), we may show tha t

which means tha t  type I accuracy of empirical likelihood test </>e is of order n~ . 

Since empirical likelihood confidence regions are Bar t le t t  correctable in this case, as 

shown by DiCiccio, Hall and Romano  (1991), we may define the Bart let t-corrected 

empirical likelihood test to be

n

t ( g )  = —2 min l°9 i n Pi) •
2̂ p i X i =  n x

1, if i ( g 0) > ca ; 
0, otherwise.

P ( 0 e = 1\H0) = a  + 0 ( 0 ,

1, if £(g0) > ca (1 + ß / n ) \  
0, otherwise,
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where

ß  = v ~ l (ctj j k k / 2  - ä j k , ä j k l /S)

is the empirical  Bar t le t t  factor, and a ^ kk and o.jkl are the usual  moment est imates 

of a ^ kk and a ikl respectively. Let

ß = p~1 {aj ikk/ 2 - a jkla ik, /3)

be the theoret ical  Bar t le t t  factor. Clearly we have ß = ß -\- 0 p(n~ 2 ). Since

P(4>ec = l | ^ o )  = Ö + 0 ( n - 2),

type I accuracy of the corrected empirical likelihood test (f>ec is of order n - 2 , which 

is the same order as tha t  of bootst rap  test as will be shown shortly.

5 .2 .2  B o o t s t r a p  T e s t

Let 5T = n ~ 1 Xi  and £  = n ~ 1 Y l ( X i  — 5T)(X,- — 5T)t be the sample mean 

and sample covariance matr ix  respectively. To give an a-level boo ts tr ap  test  of H c, 

let aT* and £* be the boots trap version of ~x and £  respectively, computed from a 

resample x* instead of the entire sample x = { X \ , • • • , X n }. P u t

5 ( r )  -  n * t ~ ’ { x - p  + n _ 2 £  27-).

We define a boo ts tr ap  test of H 0 to be

fa  _  I  !, if S T {t ) S ( t ) > ca ; 
f 0 , otherwise,

where ca is determined by

P { n  (x* — af)T £* “ 1 (aT* — aT) > ca |x }  = ol

and can be empirically calculated by Monte Carlo simulations.  It has been pointed 

out  by Hall (1992) tha t

P(4>i = 1\H0) = a  +  0 ( n - 2),
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which means type I accuracy of the bootst rap  test <f>b is of order n 2

Owen (1990) showed tha t  for our current null and al ternat ive hypothesis  set­

ting, the power of the uncorrected empirical likelihood test </>e (also the corrected 

empirical  likelihood test <f>ec as shown in Section 5.3) converges to P{Xp(llr  ID  > 

Xp i _ a }, where Xp(||r ||2) ls the noncentral  chi-squared random variable with non­

central  term | | r | | 2 . It is not difficult to show tha t  the boots trap  test achieves the 

same asymptotic  power as well. In order to compare the power performances of 

these tests we have to find higher-order expansions for the power functions of the 

empirical likelihood and boots trap  tests. To make the comparison fairly, we should 

only compare the corrected empirical likelihood test (f)ec with the boo ts tr ap  test <f>b, 

since bo th  have the same type I accuracy of order n - 2 . In theory we could adjust  

the t e s t ’s level so tha t  they are exactly equal. However, from a pract ical  point of 

view a difference of order n~ 2 between the levels of the tests is fair enough to make 

our comparison.  In the rest of this paper,  when we say the empirical likelihood test 

we mean the Bart let t-corrected test 4>ec.

Before we finish this section, we should mention th a t  the shape of the rejection 

region of the empirical likelihood test is determined automat ical ly by the sample 

itself, whereas th a t  of the boots trap  test is subjectively given by us as the comple­

ment of an elliptical region. This is an advantage of empirical likelihood over the 

boo ts trap.

5.3  P o w e r  E x p a n s i o n s

In this section we calculate the powers of the empirical likelihood and boots trap  

tests of null hypothesis  H 0 : fi = p 0 against  H n : p, = p a + n~ 2 £  2 r . Since analyt ic 

expressions for these power functions are difficult to obtain,  we have to develop 

expansions for them.

Let pow((f)ec; r )  and pow(<f>b; r )  denote the powers of the o-level empirical like­

lihood tests (f)ec and the boots trap  test 4>b respectively, under the al ternat ive hy-
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pothesis H n . We shall calculate them one by one.

5 .3 .1  P o w e r  o f  ( f ) e c

According to the definition of power of a test ,  we have

pow(<f>ec; t ) =P((f>ec = 1|H n )

= P{£{p  o) > cQ \fi = p 0 +  n ~ 3E 3r}

= P{£(p  - n " 3E 3T) > ca }

where cQ — ca ( l  +  ß / n).  To calculate pow((f>ec; r )  we first set up a Taylor expansion 

for l ( p  — n ' ä S ä r ) ,  from which an Edgeworth expansion of pow(4>ec',r) will be 

derived. By the definition of empirical likelihood,

t (p  — n~ 2E 7 T ) — — 2 min log (nvA
r  P > X  x =  n — n ~ 2 E 2 r

= — 2 min  ̂ 5 I log ( n^ )
P t Z x = ~ n ~ 3 r

where Z, = E 2(Xi — /i). Slightly modifying (3.7) of DiCiccio, Hall and Romano 

(1988), we have

n~ 1 £(p — n~ 2 E 2r )

= (A + n~ 2 r ) J (A +  n~ 3 r ) J

— {A7* + n~ ” r j A k [2] 4- n~ 1 r ; }(A 4- n~ 3 r ) J (A 4- n~ 3 r)*

4- | ( a - 7H 4- AjA:/ 4- n~ 2 — 2 o jfcmA,m)(A 4- n ” 3 r ) J (A 4- n - 2 r ) fc (A 4- n ' ^ r )

4- ( a ; kn a lmn — klm )(A +  n _ 7 r ) ; (A 4- n"  2 r )* (A  4- n~ * t )1 (A  +  n~ ~ r ) m 

4- AJ/ A kl{A 4  n _ 3 r ) J' (A 4  n~ 3 r)* 4  0 p(n~ 3 ), (5.3.1)

with t * A k [2] = r J’Afc +  r fcAJ and the same rule applies for r J £u [3]. From (5.3.1) 

we can derive the following signed root decomposit ion for £(p — n~ 3 E 2 r ) :

£(p — n * t ) = ti{ R i (t ) R 2(t ) R 3(t )}t { R i (t ) + R i ^t ) R 3(t )} + 0 p(n 2 ),

where Ä , ( r )  =  0 p( n ~ , /2) for / = 1,2 ,3 ,  and

R[  ( r )  = (A 4- n~ 3 r ) J ,
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R{ ( t ) = — \ A jk (A 4  n 2 r)* 4  ^ajkl(A + n 2 r ) k (A n 2 r ) ;,

R3(t ) = ( - ^ r 1« - 1 4  ^Ajl Akl -  ^rj Ak [2]n~ 2  )(A 4  n '^r)*  (5.3.2)

+ {±-(AiH + n" >t^*'[3]) -  A,m}(A 4 n" *r)'(A + n" ^r)*

4- ( | a J'fcr,c*'mri ^aJ'fc'm)(A + n~27-)fc(A + n ^ r ) ' ( 4  4  n~2T)m.

P u t

Ä ( r )  = Ä 1( r )  + Ä2( r ) + Ä 3(r ) .

Let fcj1’ ,J' denote the joint / ’th order cumulant  of ?i2 Ä (r ) .  Calculat ions deferred 

to Appendix 5 show tha t

4  k[ xn 2 -j. k[2n 1 +  0 ( n  2),

k2k = 6jk 4 k2\n~ * + ^ 2  2 n_1  4 0(ft~ 7),

_ i
3 = k 32 n + 0 ( n  2 ),

j  h i m
fcj“"“ = 0 ( n -  >)>

= 0 ( n  3 ), for 5,

where

fcn = ( } a i ‘mTlTm -  ^a’ kk), k{\ =

fcJ12 =  k Ti Tt T* +  2 - T*a i m  +  ( i Qj t n a lmn _  i Qj *'”• ) r  * T' T">

+  (~ 6  -  Ä-)7-'  -  4<»7tma ml' r ‘ +

k{* = -  2-a’ km a mU + |^*r'r' +

§ . r v i  k m  r v l m n  —  L n i m n  r * k l m ___Z I r ' y "+ ( f a ^ m a a Jkln)TlTn,

kJ3k2l = - ± a jklmTm 4 V « imnafclm[3],

(5.3.3)

(5.3.4)

Note tha t  the last result in (5.3.3) is obtained from the general results given by 

James  and Mayne (1962).

Let cf) be the density of A(0 ,  Ip ), Hi ( v j 1, • • • , Vj, ) be the / ’th order multivariate 

Chebyshev-Hermite polynomials defined by Barndorff-Nielson and Cox (1989), and

T)t ( x ) = {1?I IIv + r | |  > a:}.
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Then ,  we define

E 2 ( x , t ) = J  {^n  Vj +  vk ~  Sj k )}<f>(v)dv (5.3.5)
V T{ x )

and Es(x, r) = J  {k[2Vj + * +  M i fci i ) ( vi v* -  <^)}</>(v)dv
P r ( x )

+ /  (^32* + j ^ 1fc*J)Ä'3(ui ,t;fc,t;/)^(i;)du,
V  T( x )

+ /  k ‘™ H 4(vj , v k ,vi ,  vm )<f>(v)dv.
V T{ x )

P u t  17 =  (A 1, - - - , A P, A 11, - - - , A PP, A 111, - - - , A PPP)T . Note tha t  only A jk and A jkl 

with j  <  A; <  l appear in U. With above preparat ions we are able to prove the 

following theorem which will lead to an Edgeworth expansion for pow((j)e<.’ T). The  

proof of Theorem 5.3.1 is deferred to Section 5.6.

T h e o r e m  5.3.1 Assume  condition (5.2.1). Then,  for any x > 0,

P { l ( p - n ~  ’ £ 1/2r) > x]  = P  (XpOMI) > x}  + E 2( x , r ) n ~  >+E3( x , T ) n ~ l + 0 ( n ~  *).

From Theorem 5.3.1 and using the del ta method  we have

pow(4>ec] t ) = P { i ( p  -  n~ ^ E ^ r )  > ca ( l  + ß / n ) }

= P { i ( p - n ~ ^ ^ r )  > ca ( l  + ß / n ) } + 0 ( n ~ $ )

= p {Xp(IMI) > ca ] + E 2(ca , r ) n ~  =

+ { E 3(ca , r )  -  ß gpT{ca )} n~ 1 +  0 ( n ~  » ), (5.3.7)

where gpT is the density of the Xp( II"r II) distr ibution and

ß = p~'  ( a i i kk / 2 - a i

is the Bar t let t  factor.

Substi tut ing k{ 1 and k 21 in (5.3.4) into the expression for E 2, we obtain

E 2(ca , r )  =  J  ( ^ a jlm Tlr m -  ^ a j k k )vj  + ^ a jk lTl(vjVk — 6j k )}4>(v)dv. (5.3.8) 
v r ( ca )
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Thus the second order term of the power of the empirical likelihood test depends  

on population skewness parameter a jlm , on r and on sample size n.

R e m a r k :  If X i , - - - , X n are independent but not identically distributed with the 

same mean parameter //, we can modify the definitions of E and a Ji;a"'•** by 

E =  n - 1 X̂  C o v (X ,)  and a41-,2" Jk =  n - 1 ]C E  ( Z and replace condition  

(5.2.1) with the following condition:

(i) Let vpn and v iTl be the smallest and largest eigenvalues of E. 

There exist positive constants C i ,  C 2 such that, uniformly in n,
n

C\  <  Vp n <  v ln <  C 2. (ii) sup n 1 ^  ^  11 1115 < (id) for every
j  =  1

p o s i t iv e r ,  lim n 1 ^  t | |X j | |15 =  0. ( v)  The characteristic
j = i  II x  j  II > r « 2

function gj of X , satisfies the Cramer’s condition, for every positive 6,

lim sup sup |#j(2)l < 1. 
i — 00 ll«ll>*

Then, we may have Theorem 5.3.1 and (5.3.7) for this non-i.i.d. case by developing  

Edgeworth expansions using Theorems 1.3.3 and 1.3.4. This means that we can 

calculate higher-order expansions of the power of empirical likelihood test for the 

regression coefficient vector ß  considered in Chapter 3, and for the slope parameter  

b0 and means y 0 of a simple linear regression model considered in Chapter 4.

5 .3 .2  P o w e r  o f  (f)h

In this subsection we give an expansion for the power of the bootstrap test </>& 

as we have done for the empirical likelihood test in Subsection 3.1. According to 

our definition,
pow(4>b\ T ) =  P((f)b =  1| H n )

=  P { S t (t ) S ( t ) > ca },
(5.3.9)

where cQ is determined by equation

P { n  (x* — x )t E* 1 ( x * — x) > ca |x} =  o
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and S ( t ) = n 3 Yi ? (x — p + n 2 £  2 r ) .  Since

n

t  = n ~ l Y ,  x i X J  - X X T = £  2 ( /  4- A x — A 2) E »
: =  1

where A! = ( A j t )pxp = ( Al l )pxp and A 2 = ( A f t )pxp = ( A1 A k )px p , we have 

XT1 = E - l  { /  + A ,  - A 2 - ( A 2 -  A 2 )2 } S “ 1 + A 3,

3
where A 3 =  ( A ^ ) pxp is a p x  p ma tr ix  with each of its elements A^fc =  0 p(n~ 2 ). 

It can be show tha t

{7 +  A i  — A 2 — ( A j -  A 2)“} 3 =  7 — Y A j  4 - h A 2 +  §■ Aj +  Op(n 2 ).

P u t

S 0{r) = ( J - i A j  +  ^ A 2 + f  A ’ ) ( n * A  + r ) .  (5.3.10)

Thus

S T ( r ) S ( r )  = n ( X  -  p + n~ > £ 2  r )T XT1 ( X  -  p + n~ 2 £ 7  T )

— ( n 2 A 4* r  )^ {7 4- Aj — A 2 — (Ai — A 2 )2 } ( n 2A + T ) - p O p(n 2 )

= S o (t ) S 0(t ) 4- Op(n~ 2 )

where A =  (A 1, • • •, Ap )T = £  -  2 (A — /x). Using the del ta method,

pow(<f)b; t ) = P { S T ( r ) S ( r )  > c«},

= P { S * ( t ) S0(t ) > co } + 0 ( n - a ) .  (5.3.11)

Let denote the joint / ’th order cumulant  of 5,0 ( r ) .  Calculat ions p re­

sented in Appendix  5 reveal tha t

= T1 + + £i2n- 1 + 0(n~i),

d* = + d l » ' ” +««»"’ +0(n-J) ,

d “ = dJ'»"“+d2,»~1 + o(»->), 

d ‘,m = d*'m»_1 +0(n-f),
d " - Jl =  0 ( » - J ) ,  for / >  5.

(5.3.12)
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where

(i, = (i2 = \T> + Ii-V “ ' -  a").
6 l  = -<Xikm T™,

f J2* = (j> + 2)6’ k + a ’lm a tlm + f a Jkma + j ( a ’ Um - S > 1)t ', (5.3.13)

{*{' = —2aJkl, ( i kl = ^ « * '[3 ]+  f r ’V tm a 'm"[3],

f j* ,m = —2 a ’ klm + 4 a imna kln[3] + 4Sim6k‘.

Let gp be the density function of the x 2p dis tr ibution,  T> =  {u | ||u|| >  ca } where 

v = (ux, • • • , vn ), and R \  = c ~ l g ~ l (ca ). Moreover we define ^ 2  (0) f° be the value of
• r.

^ 2 2  when t =  0. It tu rns  out  th a t  we have the following Cornish -Fisher expansion 

for ca :

ca = ca ( l  + ß \n~  1) 4- Op(n~ =),

where

/j. =*iU(di(o) + d id i)J  H2(Vi)4>{v)dv
V

+ ( h e i “ 1 + & & ' )  f v

+ ( i d ' “  + /
V j j t k

+ 7 H 6(Vj)<t>(v)dv 
J  V

+ /  * , ( « , ) * « ( « * ) * ( « > ) * } .
V j * k

To develop an Edgeworth expansion for the power of the boots trap  test ,  we 

define

F2(rr,r)= J  Vj + ^ ^ ( v j V k  -  6j k) + j  H3(vj , v k ,vi)}(f>(v)dv (5.3.14)
*M*)

F3( x , r )  = J  U J12Vj + ^(^22 + t i i t f i ) (vjVk - S j k ) }4>(v)dv
V r { x )

+ J  (Hi** + i Z i i k2i)Ha(v j , vk l vi)<f>(v)dv
V T{ x )

and
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v r(x)

V r ( x )

Now we are able to give an Edgeworth expansion for the distr ibution of 5 j  ( r )  5 0( r ) ,  

in the following theorem.

T h e o r e m  5 .3 .2  Assume  condition (5.2.1). Then for  any real x,

P { S T ( r )  S ( t ) > x}  = P{x l ( \ \ r \ \ )  > x}  + F2( x , r ) n ~  ^ + F3( x , r ) n ~ 1 + 0 ( n ~ >) .

We do not  give the proof of Theorem 5.3.2 here, since it may be derived straight  

forwardly from (5.3.12), (5.3.13) and Theorem 1.3.1.

From Theorem 5.3.2 and using the del ta me thod,  we obtain the following ex­

pansion for the power of the boo tst rap  test 4>b:

pow((f)b;T) = P ( S T S  > ca ) (5.3.15)

From the above formula and (5.3.8) we see tha t  the powers of the empirical likeli­

hood and boo ts tr ap  tests have different second-order terms.

5.4.  P o w e r  C o m p a r i s o n s

In this section we use the power expansions of the empirical likelihood and 

boots trap  tests developed in the previous section, to compare the powers of these 

two tests. Two rules are proposed for choosing pract ical ly the more powerful test.  

One is for the univariate case, another  is for the bivariate case.

= p {xl( \ \T \\) > cQ} + F2(ca ] r ) n  ' + {F3(ca , r )  -  ß l gpT(ca ) } n  1 + 0 ( n  =).

From (5.3.13) and (5.3.14)

(vjVk - 6 j k ) +  ^ a jkl H 3( v j , v k ,vi)}(f)(v)dv.

(5.3.16)
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From (5.3.7) and (5.3.15) we know tha t  both 4>ec and (fib have the same first 

order term F>{Xp(||/r | | )  > ca } in their  power functions.  Thus ,  a comparison should 

be made of higher-order terms. However, we shall only compare  the second-order 

terms.  The  reason is th a t  when the sample size n is large enough,  the difference in 

the power of the two tests is dominated by the difference between the second order 

terms E 2(ca ; r )  and F2(ca ;r) .  From (5.3.8) and (5.3.16) we have

E 2(ca ; r )  = J  t ' t ™ - j a j k k )vj  + \  a jk] t '(vjVk -  6jk )}<fi(v)dv,
V T( c a )

F2(cq ; t ) -  -  j  { \ a jkk Vj + \ a j kl r \ v j V k -  6j k ) + ~ a jkl H 3( v j , vk , v,)} (f>(y)dv.
V T{ c a )

5 .4 .1  T h e  U n i v a r i a t e  C a s e

For the univariate case (i.e. p = 1), put  w x =  yJcZ — r ,  w 2 = y fc ^  -f r  and 

a 3 = a 111. Then ,  (5.3.8) and (5.3.16) have the following forms:

E 2(ca 5 r ) = ^ q 3 [ ( 2 r 2 -  1 ){<fi(wx) -  <fi{w2)} + r { w x<fi(wx) + w 2<f>(w2) }] , 

E2(ca -, r )  = ^ a 3 [ — {<^(wx) -  <fi(w2)} -  3 r { w ^ ( u ) i )  + w 2(fi(w2)}

-  2 {w\(fi{wx) -  w22<fi(w2)}\.

Thus we obta in,

E 2(ca ;r )  -  F 2(ca ; r )  = | a 3 [ 2 r 2 {<fi(wx) -  (fi(w2)} + 4 r  { w ^ w x )  + w 2(fi(w2)}

+ 2 {w\<fi(wx) -  w 22<fi(w2)}\

= { ( r  + Wi)2 <fi(wi ) -  ( r  -  w 2)2 <fi(w2)}

= I a 3ca {<fi(wx) -  0 (w 2)}.

Since (fi{wx) — <fi(u>2) is positive when r  > 0, and negative when r  < 0, we obtain

E 2{ca ; r )  -  F2(ca ; r )
>  0, if o 3 t  > 0; 
< 0, otherwise.

(5.4.1)

From (5.4.1) we see th a t  in the univariate case the relative powerfulness of the two 

tests depends on whether  the skewness parameters  a  and r  have identical sign. If 

a  and r  have identical sign, the empirical likelihood test is more powerful; and vice
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visa if a  and r have different signs. Since a 3 is usually unknown, we may est imate  

it by its sample version &3. Now we establish the following rule for the univariate  

case, which suggests  when to use the empirical likelihood test and when to use the 

bootstrap test.

T h e  U n i v a r i a t e  R u l e  When the sample size is reasonably large, we may choose 

the more powerful test between the empirical likelihood and bootstrap tests by the 

following rule:

( use the empirical likelihood test , if a 3 r  > 0;
) use any of the two tests , i f a 3 r  =  0;

use the bootstrap test , i fct3 r  < 0.

5 .4 .2  T h e  B i v a r i a t e  C a s e

For the bivariate case (i.e. p =  2) we write r =  (t i , t2) and define 

h ( r )  = j  v l (f>{v)dv, / 2(r)  =  J  v2(f>(v)dv, / 12( r )  =  J  v 1v2(f>(v)dv,
V T{ x )  V r ( x )  V r ( x )

h i ( r )  =  J  (v\ -  \)<f>(v)dv, / 22(r)  =  J  (v2 -  1 )<f>(v)dv,
V T{ x )  V T( x )

h n ( r )  = J  ( v f - 3 v x)<t>(v)dv, /u2(r) =  J (vj -  l ) v 2<f>(v)dv,
V T{ X)  V r ( x )

7i22( r )  =  J vx{yl -  l)<f>(v)dv, / 222 (r)  = J  (v$ -  3v2)(J)(v)dv.
V T( x )  V r ( x )

We have from (5.3.8) and (5.3.16) that

E 2(ca ; r ) =  a 111 {±- (2r2 -  l ) J i ( r )  +  x-tx J n ( r ) }  +  a 222 { ^ ( 2 r 2 -  l ) J 2(r)  +  \ t2J22( t ) 

+  a 112 { | +  ( i - r2 -  j )J2(t ) +  \ t2J ix{t ) +  ±Tl J i 2( r ) }

+  a 122 { <K2 r 2 ~  1)J i ( r ) +  | u ' r 2J2( r )  +  J22( r )  +  \ t2 J i 2( r ) }

^ ( C a j r )  = a i n  { - J J i ( r )  -  J T! J n ( r )  -  |  J l u ( r ) }

+  a 222 { - j  J2(r)  -  j  r2 J22(r)  -  j  J 222 ( r ) }

+  q112 I - 2 ^ ( t ) -  j  r2 Jn (r)  -  T! J i 2( r )  -  J u 2( r ) }

+  ö 122 { - 7  7 i ( r )  -  j  ri J22(r)  -  r2 J i 2(r)  -  J i 22( r ) }

and
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Therefore,

E 2 (ca ; t ) — F2(cq ',t ) — a 111 J m ( r )  + a 11“ J \ \ 2(r)  +  o 122 +  o 2““ ^ 2 2 2  ( r )>

(5.4.2)

where

^11 1 (r ) =  3 (r i2 +  l ) ^ l ( r ) +  f  r l A l ( r ) +  3 1̂11 (r )5

^22 2(r ) =  3 ( r 2 +  l )  ^ ( O  +  f  ^22(r ) +  3 J222(r )> ( 5 .4 .3 )

^ 1 1 2 (r ) = f ' rl r 2 A(r ) +  3 (T12 + l ) ^ 2 (r ) +  | r 2 1̂ l('r ) +  | r l 1̂ 2 (r ) + Al 2 (r )> 

J \ 22 ( t ) = 3 (l"22 + l)-^l('r ) +  z T\ T2 h  + f  r l f2 2 (r ) +  f ' r2 1̂ 2 (r ) +  A 2 2 (7")-

Notice from (5.4.3) th a t  J m ( r ) ,  Jrn 2( r ) ,  J 122( r )  and ^ 2 2 2 ( 1") only depend on r  

and not  otherwise on the underlying distributions.  All of them can be calculated 

numerical ly for each given r  = (t i , t2).

To find out  the sign of E 2(ca ; r ) — F 2(ca ; r )  given in (5.4.2), we also estimate 

a 111, a 112, a 122 and a 222 by their  sample versions a 111, a 112, a 122 and a 222 , re­

spectively. Then  we define an est imator  of E 2(cq -,t ) — F 2(ca ; r ) ,  which is

{ E 2(ca ] t ) — T2(ca ; r)} = d 111 J m ( r )  + d 112 J u 2 ( t ) + d 122 J 122 (r ) + d 222 J 2 2 2 (r )•

Now we are able to give the following rule for choosing a test for the bivariate case.

T h e  B iv a r ia t e  R u l e  When the sample size is reasonably large, we may choose 

the more powerful test between the empirical likelihood and bootstrap tests by the 

following rule:

{ use the empirical likelihood test , i f  { E 2 (ca ; r ) — F 2 (ca ; r )} > 0;

\ use any o f  the two tests , i f  { E 2(ca ; r )  — T 2(ca ; r )}  =  0;
l use the bootstrap test , i f  { E 2(ca ; r )  — F2 (ca ; r )}  < 0.

R e m a r k  1 For the sake of conciseness, we shall not develop rules for cases where 

p >  3 in this thesis. However, one may develop some rules in the same way as for
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the case p = 2 by employing general formulae for E 2(ca ; r ) and F2(cq ; t ) given in 

(5.3.8) and (5.3.16).

R e m a r k  2 We must  emphasise tha t  the above rules are based on the large sample 

propert ies  of the tests.  However, they do give us some indication of what  is really 

going on even when the sample size is not too large.

5.5 S im u la t io n  S t u d y

In this section we run simulations to see if the theoret ical  rules developed in 

Section 5.4 are consistent  with empirical outcomes.  We considere two univariate 

cases and one bivariate case. The  first univariate case is tha t  where the samples are 

drawn from iV(0 ,l ) ,  the s tandard  normal distribution;  we want to test H 0 : p = 0 

against H n : p  =  n -1//2r .  In the second univariate case we drew samples from 

Ex p (  1.0), the exponent ial  distribution with unit mean,  and we tested the hypotheses 

H 0 : p = 1 against  H n : p  = 1 -f n - 1 / 2r .  In the bivariate case, we took random 

vectors X, = (X^1 , X 2 ) for i = 1, • • •, n,

where y ° , y] , yf  were drawn independently from the exponential  distr ibution E x p (  1.0). 

We chose sample size n = 15 and 30 for each of the univariate case, and n = 30 

for the bivariate case. We fixed the level of the tests to be 0.90 in all the cases

routines of Press el al. (1989).

The power curves of the empirical likelihood and boo ts tr ap  tests appearing in 

Figure 5.1 were obtained  by running 5000 simulations at each of 19 values of r ,  

equally spaced within the interval (-4.5, 4.5). When calculating the power of the 

boots trap  test,  we generated 499 resamples for each of the 5000 simulated samples.  

For the bivariate case, we calculated the powers of the two tests at  225 points of 

t  = (7"!, r 2) within the rectangular  area ( —3.5, 3.5) X ( —3.5, 3.5), based on 5000 

simulations and 999 resamples for each simulated sample.  A contour plot of the

considered.  The  normal and exponential  random variables were generated by the
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difference between power functions of the empirical likelihood and the bootst rap  

tests is shown in Figure 5.2.

In the first univariate case we have c*3 = 0 since the random variables were 

drawn from iV(0,l ) .  According to the Univariate Rule, we can use any one of 

the two tests since the powers of the tests should be very same regardless of the

value of t . This is just what  we see from parts  (a) and (b) of Figure 5.1. The

underlying reason for this similarity is tha t  c*3 = 0 makes both E 2 and F2 vanish. 

Consequently,  the difference between the powers of the empirical likelihood and the 

boo ts t rap  tests is of order n _1 , ra ther  than n ~ 1̂ 2. For the second univariate case 

we know th a t  a 3 = 2. So the Univariate Rule predicts  tha t  the empirical likeli­

hood test  is more (less) powerful than  the boots trap  test if r  < 0 ( r  > 0). This

is again just  what  parts  (c) and (d) of Figure 5.1 try to tell us. Notice tha t  when

r  G (0.5, 3.5), the empirical likelihood test is about  20 per  cents more powerful than 

the boo ts t rap  test .  However, when sample size is n — 15, which is small,  we observe 

in the normal  case tha t  the empirical likelihood test is marginally more powerful 

than  the boo ts t rap  test over all values of r .  At meanwhile,  in the exponential case 

the empirical  likelihood performs similarly with the boots trap  test  in the range of 

t  < 0, where the bootstrap  tests should perform bet ter .  This may be due to the 

fact th a t  the boots trap  test has to use to an explicit variance est imate,  which can 

be very unreliable when the sample size is small, whereas the empirical likelihood 

test  implicitly uses the true variance.

For the bivariate case, it can be shown tha t  c*111 = a 222 = 2(a-f  b)3 + 2(a3 + b3) 

and a 112 = a 122 = 2ab(a -f b) -f 2(a -f b)3, where a = 0.5(1 + 1 / \ /3)  and b = 

0.5 ( — 1 + l / \ / 3 )  . After numerical ly calculating J m , J n 2 » J 122 and J 2 2 2 ? if can be

shown tha t

E 2{ca \ t ) -  F2 ( c q ; r )
>  0 if Ti +  r 2 >  0;
< 0 if Ti + r 2 < 0.

So the Bivariate Rule would suggest using the empirical likelihood test when r x + 

t2 > 0, using the boots trap  test when r x + r 2 < 0, and using ei ther  of the two tests
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if T\ +  T2 =  0. In Figure 5.2, we give a contour plot of pow((pec) — pow((f>b), which 

is very consistent w ith the prediction made from the Bivariate Ride.

F igure 5.1: The graphs depict powers curves of empirical likelihood test (solid 
curves) and B ootstrap test (dashed curves) as functions of r .  In case (a) and (b) the
samples were generated from iV (0.1), we tested H 0 : p =  0; against H n : p = n */2 r .  
In case (c) and (d) the sample were generated from Fxp(l.OO), we tested H 0 : p =  1;
against H n : p = 1 +  n -1 /2 r .  The level of the test was 0.90 and the sample size 
n = 15 in (a) (c.) and n  =  30 in (b) (d).

(a) N(0,1), n=15 (b) N(0,1), n=30

r r
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Figure 5.2: Contour plot of the difference between the powers of empirical 
likelihood and bootstrap tests from 5,000 simulation. The random samples were 
(y? +  ViiVi +  yj)  where y\ 1 < / < 3 were drawn independently from Exp(  1.0). 
We tested Ha : p = (2,2)r  against Hn : fi = (2,2)T -f 7i-1/2 S 1/2( r i , T2 )t , where 
E (l, 1) =  E(2,2) =  2 and E (l,2) = E (2 ,1) =  1. The level of the test was 0.90 and 
the sample size n = 30.

T \
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5 .6 P r o o f

In this section we give the proof of Theorem 5.3.1.

T h e o r e m  5 .3 .1  As s ume  condit ion (5.2.1).  Then,  for any x > 0,

P { e ( ß - n - i z 1/2T) > x]  = P{xj! ( |M |)  > x}  + E 2( x , T ) n - ’ + E 3( x , T ) n - 1 + 0 ( n ~ i ) .

P ro o f :  Define

n(n) = 1 + n" ä { k { x Vj  + \ k ]2 \ ( v j V k — S j k ) }  + n~ 1 { k [ 2 Vj  +

+ + -* '* )  + (?*« + »*,*,)

+ 1^21*2? #4  (vj , V* , Vf, vm )},

where the A:’s are given by (5.3.4). From (5.3.3) and (5.3.4), a formal Edgeworth 

expansion for the distr ibution function of n? R ( t ) can be constructed as follows,

P ( n 1/2 R ( t ) < x)  = J  H(v)  (j)(v) dv + 0 { n ~ i ) .  (5.3.6)
— OO

Accepting tha t  expansion (5.3.6) may be justified, we establish an Edgeworth ex­

pansion for the distr ibution of £(fi — n~ 2 E 1//2r )  as follows,

P { i ( V  -  n~ 2 S 1/2r )  > x}

= P ( n R T R > x)  + 0 ( n ~  2 ) = J II (v)<f>(v)dv + 0 ( n ~  *)
J  V r ( x )

= p {Xp(lkl|) > z} + E 2( x , r ) n ~  2 + E 3(x,  r )  n~ 1 +  0 ( n ~  *), 

where E 2(x , t ) and E 3( x , t ) are given in (5.3.5).

It remains to check tha t  expansion (5.3.6) is valid. Since

U =  ( A 1, - . . , A p , A 11, . . . , A pp, A 111, . . - , A ppp)T ,

We see tha t  U is the mean of i.i.d. random vectors with mean 0, and there exists 

a smooth  function h such tha t  R ( t ) = h{U).  Thus ,  we can justify the expansion 

(5.3.6) by using Theorem 1.3.2 under condition (5.2.1). Therefore the theorem is 

proved.  □
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A p p e n d i x  5 C a lc u la t io n s  o f  C u m u l a n t s

In this appendix we present our calculations of cumulants of n? R{ r )  and 

ns S( t ) respectively.

A p p e n d i x  5.1 C u m u l a n t s  o f  n 2 R ( t )

Let denote the joint / ’th order cumulant of n? R ( t ). In this part of the

appendix, we present the calculations of k3l,'",3,is. Recall that

R{ t ) = R i (t ) + R2(t ) + Ä3 M ,

where

R \ ( t ) =  (A + n~ > t )3 ,

R [ ( t ) = — j A J'fc (A + n~ * r ) k + ^ajkl (A + n~ ? r ) k (A + n~ ? t )1 ,

R33(t ) = { — ^r j r k n~ 1 + I Ajl A kl — ^r j A k [2]n~ 2 )(A +  n~ 3 r)* (5.A.1)

+ { | ( A J'U + n~ a rJ£fc,[3]) -  f  A,m }(A + n~ 2 T)j (A + n ~ * T)k 

+ (§■a j kna lmn -  \ a ik, m)(A +  n ~ ^ r ) k(A + n ~ ^ r ) \ A  + n" 2 T)m.

Put

R[ =  A j ,

Rj2(r)  = — ^Aj k (A + n ~ i r ) k + ^ajkl ( AkA l +  n~ 2 r k A 1 [2]), (5.A.2)

Rj3(r)  =  — j r J r fc A* 1 -f | A J , Afc,(A + n~ ? r ) k — j r j A k [2] (A + n~ ? r ) k n~ a ) 

+ |(A-?fc/ -f n~ 3 rJ£fc,[3]) (A* A' + ra_ 2 r fc A'[2] n -  3 ) 4- i-A-7 r kr l n~ 1 

-  | a '*m A,m (A + n - 7 r ) fc (A + n" 3 7-)'

+ (%aj kna lmn -  ±a jk, m)(A + W a r )*  (A + n ~ ^ r ) \ A  + n~ 2 T)m,

and

1 3

A j = r j n~ ä -f r k T l n ~ l + { — r k + ^(t7 <ÜU )[3] r k r*} n~ 2”.

It is clear that

Rj (r) = + # ( r ) ,
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where

Rj

Let k i i , - , i i Ldenote the joint / ’th order cumulants  of n ? R .  Since

A j + , if l =  1;
if / >  2,

(5.>1.3)

and

li i . - . i i

ii.---.ii are more easily calculated than ki i, -,ii , we shall directly calculate

and get A;,j i . - - • >i * via (5.A.3). For the cases / >  5, using the results given by

James  and Mayne (1962), we have

k j 1’- Jl = 0 ( n ~  2 ), for / >  5. (5.A.4)

So in the following we only give calculations of for / = 1 ,2 ,3  and 4.

We s ta r t  by comput ing the first order cumulants  k "j of n ä  Ä ( r )  for j  = 1, • • • ,p.  

Since

E ( A j l "'jm ) = 0,

F/(A*1 *mi A*1 "*”*3) = 0 ( n ~ 2)

for any integers m, m l5 ra2 and ra3 larger than 1, we have from (5.A.2) tha t

e (r [)  = 0,

£ { Ä J2(r)}  = -  ^ E ( A jk A k + ^ a jkl E ( A k A 1)

= -  n " 1 +  ^ctjkl Skl n~ 1

= -  n ” 1

and

E { R j3( r ) }  = l E ( A j l A kl ) r k n~ » -  ^ { ( r M l ) [2 ]4 l ) n ^

+ | £ { A J' fc' (r* A')[2]}n> +  | - r J‘£**[3] £7(A* A l) n ~ *

-  ^ a jkm E { A lm ( A k r ' ) [ 2 ] n - 2

+ -  *■a j k l m) E { A k A ‘ Tm [3})n~i  + 0 ( n " 2)
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= !(«>*"  — Sj t ) r kn - l  -  \ ( t> + ) n ” 2 

+ Tk + a ’ kkl r ‘) n~ 2 + j ( r '  «*')[3] 6kl n~ I
3

-  I a jkm ( a m 11 r k + a klm r ' ) n ~  2

+ ( | a jkna lmn -  1-otjkIrn) (Tk <5,m[ 3 ] ) n ~ l  

+  0 ( n " 2)

= ^ o > ‘ " r *  + ( - L p - i ) r U -  t

+ ( | a J<:rl£*'mrl -  ^ a jA:,m) r*  r ' r m n “ 2 

+ ( ~ - ^ a jkm a mU r k + ^ a jkm a klm r l)n~  2 +  0 ( n ~ 2).

Thus ,

fcj = A J n> + jfej = A j n » + ^ { ^ ( r ) } ™ *

= £■<*'** n" 3 + r* n ” 1 + ( - J - p  -  j ^ ) r j n ~ l

+ (§-a>'*na ,mn -  ±-aJ‘fc,m)r* t 1 r m n “ 1

+ ( “ I T aJfcm am,/ r * + I 7 a;fcm a ^,m + 0 ( n ~ 2). (5.A.5)

Next we calculate k^k for any 1 <  j , k  <  p. Notice tha t

H k =  n [ E { R [ R il } +  E { R { R k2(r)}[2] +

+ E{R{(T)Rk(r)} + E{Ri(T)R2] + £ { Ä ' ( r ) Ä *  ( r )}  

- £ { ä { } £ { ä {}]. (5.A.6)

In the following we compute each term on the r ight-hand side of (5.A.6), ob-

E(R\ R\ )  = E(A’ Ak) = «’S r 1,

£ { ä ( ä *(t ) } =  - ± - £ { A >  Al , (A + n - T r ) '

+ j  a i,m £ { A ’ AlAm + Aj ( t ' Am [2]) 1}

= - i  {(<*>*''- S ’ k) n - 2 + a ’ k , T‘n - i }

+ ^ a k,m { a ‘ ,m n - 2 + + r m £■>')}

= ± - a ' * V n ~  2 +  ( - ' - a > ku + \6>k +  j  2,

taining
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E{R\ Rk3(r)} = -\rk t1 E(Aj Al)n~2 + | E{Aj Akl Aml (A + n~ * r)m }

- \E{Aj (rk Al[2])(A 4-n-'r)')+^-1 t1 rm E(Aj Ak,m)

+ \E[Aj {Aklm + n~ * {rk <$,m[3])} {A1 Am + n" > (rm Al[2])}]

- Iajkm E{Aj Amn (A + n~ * r)' {A + n~ > T)n }

+ (fa klna mpn -  ^ a klmp)

X E{Aj (A + n~ * t)1 (A + n~ » r)m (A + n~ * r)p} + 0(n~3)

=  ( i a j k m m  -  ^ 8 jm 6kl 6ml -  a kml -  a jkm a m U ) n ~ 28 72 72 '

+  (3 rJ r * +  r ' T ' -  T l T m ) n ~ 2

+ (^Ctjmn akln t 1 r" + ±ajkn almn TlTm )n~2 + 0(n~*)
and

£{£ j2(t ) £*(r)} = \E{Ajl {A + n~ > r)' A*m (A + n" > r)m } -

x £{Aj' (A + n“ * r)' A m An + n~ 3 (rm A n[2]) (A + n"’r)'}

+ ±-oJ,p ofcmn £[{A' A p + n- 2  (rl Ap[2])} {Am A n + n~ * (rm An[2])}]

= (7 a ^ k m m  + c**" -  ̂ a jm' a*m/ - 6jrn 6kl 8m l ) n ~ 2
v 4  00 00 4  7

+ (1-ajklm Tl rm - l-ri rk - I ajln akmn t1 Tm)n~2 + 0{n~ *).

Also it is easy to show that

E{Ri2(T)Rk3(r)} = 0(n~i)and £{ÄJ3(r)Ä*(r)} = 0(n~

Thus, substituting the above formulae into (5.A.6), and using the earlier result of

E(Rj) = ~^ajkk n~l + 0(n” 2 )

and (5.A.3), we end up with

kj2k = 8jk + j a jkl t‘ n~ 2 + (j t‘ t‘ + r-7 T k) n ~ l

+ a*m ' - ± a jkm a m,l) n ~ 1

+ (-^öimn afc,m Tl T n + I a jkn a lmn t 1 T m ) n ~ 1 

- ̂ a jk,m Tl Tm n~l + 0(n~ 2 ). (5.A.7)
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By the definition,

I tj *1 = n 2 [ £ { # ’' ( r ) Ä ‘ ( r ) Ä ' ( T ) }  -  £ { £ J (r )}  £ { £ l ( r )  f i ' ( r)}[3]

+ 2 £ { i £ ( r ) } £ { Ä t ( r ) } £ { Ä l (r)}]
3

= 712 [E(R{ R\  R [ ) +  E { r [{t ) R \  R[ }[3]

+ E i R ^ R *  R\  }[3] +  E{R{  R \ ( t ) R [ { t )[ 3]}

- E { r [ ( t ) } E { R \  fl\ } [3] -  £ { j j ' ( r ) } £ { £ ‘ &[}[3]

-  E { R { ( t )} E { R k R[(r)}[6]] + 0 ( n ~  I). (5-4.8)

After some algebra we may show tha t

E(R[  R\  R[) = E ( A j A k A 1) = a jkl n " 2

and

E { R [ ( r ) R \  R[]  = -  \ E { A ’m (A + n~T T)m A k A 1}

+ \ a jmn E { A m A n A k A 1 + n~ > ( r m A n [2])Ak A 1}

= 6kl -  ^ a jkl) n ~ 2

+ { - \ (a jklm -  6jm 6kl) r m + § a jmn a kln r m } n~ f  

+ 0 ( n " 3).

Notice tha t

£ ( A ‘1" ‘m1 A i l '"jm* A ll "lm3 A hl " hm* A qi "qm*) = 0(77- 3 )

for any integers mi  > 1  , / = 1, • • •, 5. Hence,

£ { Ä J3( r ) ^  «',}

= I  E ( A jn Amn A k A l) r m n~ * -  \ E { ( r j A m [2]) A* A' Am } n~ *

+ j ( r j 8mn[3])E{Ak A 1 Am A n )n~*  +  -  £ { A jm/ A k A 1 {rm An [2])}n"

-  I a jmn E { A mp A k A 1 (t p A” [2])}

+ ( ±ajkna ,mn -  j a jklm ) E { A k A 1 (Am An r p [3])}n- =

+ ( ^ a jkna lmn ±ajklm) 8 kl r m r n t p n '  f  + 0 ( n “ 3)

»0
 |M
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_L a j m n  a p p n  f i k l  n ~ f  _  I  a i «  r " 7

+ ^ a jmn a pmn Skl r p n - f  + 0 ( n " 3).

Moreover,

E { R { r I { t )R' 2(t )}

= \ E { A j A kn A ,m (A + n~ > r ) m (A + n"  * r ) n

-  ±-a'mn £ [ A J' Afcp (A + n - 2T)p{ Am An + n~ 2 ( r m An [2])}]

-  ^ tmn £ [ A J' A/p (A + n~ iT)p{ Am An + n" 2 ( r m An [2])}]

+ ^ a khp a lmn E[ Aj { Ah Ap + n~ » ( r h Ap[2])} {Am A" + n" a ( r m A" [2])}] 

= ' - E{ A j A kn Alm Am) r n n _ 2 + ±-£{AJ' A*n A,m An ) r m n" »

-  J- [o ,mn £ { A J' A*p ( r p Am An [3])} -  c**mn [£{A J' A,p ( r p Am An [3])}] n~ a 

+ f-a*'*p a ,mn [£{A J Am An ( r h Ap[2])} + £ { A J' A'1 Ap ( r m An [2])}] n~ *

4- 0 ( n ~ 3)

-  ( 1 r y i k l P _  i  T k _  L  T > f j j k ___ L ryi  k P f y l r n m  p ____ 1_  n j  Ip k m m  p
V 2 4 4 36 36

-  §J-aifcm a lpm r p -  ^ a jlm a kpm Tp) n~i  + 0 ( n ~ 3).

Fur thermore ,  from the earlier calculation we have

E { R { ( t )} E( R\  R[)  = ± a j m m 6kl n - 2,

E { R ’3(t )} E( R\  R[)  = «“ r"* n ’ t  + ( - J - p -  £ ) r >  **'

iran a mnp r p) 6 kl n - 2  + 0 ( n ~ 3)

and

£ { ß J2( r ) } £ { ß f  R ‘2(t )} + 0 ( n - 3).

Substi tut ing the above results into (5.A.8), we have

+ ^ a j,m a kmn r n +  ^ c t k,m a jmn Tn ) n ~ 1 + 0 ( n ~  2 ). (5.A.9)



165

To calculate k34klm, we split R 32(t ) and R 3(t ) as follows:

ÄJ2( r )  =  R 321 + R 22(t ) and R 33(t ) =  R 33l + R 332{t ),

where

=  ki(0), R { 2( t ) =  l-  Ä’ i = J

and

R332{t ) =  - { j r '  Tk Ak +  t 1 -  I a jkm A lm r k r*} n -  1

+ r j 6k,[2])(rk A l[2])n~l +  *■ { ( r J‘ <$*'[3]) A* A' + Ajkl ( r k A l[ 2])} 

+ { f  A jk A kl r k -  ± ( r j A* [2]) (A + n~ * r ) k + x- A jkl (r k A l[2])}n~ \ 

+ (±a jkna ,mn -  *■a jklrn) ( r k A 1 Am [3]n" > + r k r l Am [3]n_1 + r k r l 

-  I  a jkm A lm ( r k A ‘[2])n- ».

Noticing tha t

n * E { R j (t )} k klm = 0 ( n " l ) ,

we have

kj4klm = n 2 { E ( R j R k R l R m ) — E ( R j R k ) E ( R l R m )[3]

-  E ( R j ) E ( R k R l R m )[ 4] + 2 E ( R j ) E ( R k) E ( R l R m )

-  6 E ( R j )  E ( R k )  E ( R l )  E ( R m ) }

= n 2[E(R\  R\  R[ Ä™) + E { R [ ( t ) R \  R\  R™ }[4] + E { r [{t ) R \  R[ 

+  E { R 2(t ) R 2(t ) A[ ä ™}[6] -  E ( R \  R \ ) E ( R \  A ? )  [3]

-  E { r { ( t ) Rl) E(R[R? }[12] — ) R™ }[12]

-  E { A { ( t ) R \ ( r )}  E(R[  R™)[6] -  R k2( r ) } E { R [  Ä "  (r)}]

+ 0(n~  2 ).

It may be shown tha t

E(A{  R j A[ R™ ) -  E ( R \  k \ ) E ( k \  R™ )[3] = (a iklm -  S’* S l m  ) n ~ 3,

(5.A.10)

H(o)

r m n 2 ) 

(5.A.11)

K ) l  4]

(5.A .12) 

(5.A.13)
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E( RU Ri  R\  Ä” ) -  E ( R j2l R \ ) E { R \  R?)[3]

= ( ~ 6 a jklm +  2S jk Slm -  ± a jkl a mr,r,[4] +  § a jkn a ,mn [3]) n " 3 +  0 ( n " 4),

and using the third formula in (3.A.1) of Chapter  3,

E{RU t) R\  R[R? } -  E { R ‘„ ( t ) } }[3]

= { E ( A in A k A 1 Am) — E(A>n A k) E ( A ' / lm )[3 ]} rn n ~ i  

+ l- a jnp { E ( A k A 1 A m A n ) r p — E ( A k A 1) E ( A m A n ) r p 

+ E ( A k A 1 A m A p) r n -  E ( A k A 1) E ( A m A p) r n } n ~ 2 

= 0 (n~  2).

Thus

E { R j2( r ) R \  R\  R™} -  E { R [ ( t ) R \ }  E( R\  R? ) [ 3] (5.A.14)

= ( - 6  a jklm +  26 jk Slm a jkl a mnn[4] + § a jkn a ,mn[3])n“ 3 +  0( n~  2 ).

From (5.A.11), we can write

R 32(t ) = H 1 n 2  + H 2 n +  H 3  n 2  ?

where

H l = E S '" A s '

H-i = fri, • u s ( r ) A 1' and ffs =  E c»> » , , ( T)i

and ßjj t j-j ...jm2 ( r ) ,  ( t ) and cn i ...n ( r )  are non-random terms only re­

lated to r .

Using the formulae given in (3.A.1) and noting tha t  R\  — A k , we see tha t

E ( H l n~ 2  R\  R\  R ? ) -  E ( H l n"  2 R \ ) E ( R \  ä ^)[3]  = 0( n ~  2 ),

E ( H 2 n ~ l R\  R[ R ? ) -  E ( H 2 n ~ 1 ä {)£7(ä 1 ä ™)[3] = 0 ( n " 4)

3 -
E ( H 3 n ~ 2 R k1 R[ R™ ) — E ( H 3 n~ 2  R le1) E( R[  R™ )[3] = 0 ( n ~ 4)

and
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Therefore

E { R j32( r ) R \  R[ R 7 }  -  E { R ’32(t ) R \ } E ( R \  R™ )[3] = 0 ( n~  >). (5.A .15)

Thus

E { R i ( r )  R\R\ R ?  } -  £ { f i ' ( r )  R* } R ?  )[3]

= E ( R i ,  R\  R\ RT) -  E ( R ’31 *) E(Ä[  ™ )[3]

= { 2 ö iHm -  ^ ( a jkn a lmn [3]) n~3 +  0 ( n ~ 4). (5.A. 16)

Notice tha t

E { R { ( r )  f i ‘ ( r )  R\  RT} -  E { R [ ( t ) f i ‘ ( r )}  R ™)

= E i R i ,  ä; fir) -  E ( R { tR k2l ) E ( R \  fir)

+ E { R ’21 f i ^ ( r ) [2 ]  fi', f i r  } -  fi{Ä'21 ä 22(t )}[2] E(R[ )

+ E { R 22(t ) f i22(r)[2] Ä1, f i r } - f i { f i ' 2( r ) f i ‘2(r)}[2]£:(fii ^  ).(5./1.17)

Using the arguments employed to derive (5.A .15), we may show tha t

E { R -21 f i 22(r)[2] fi', f i r  } -  f i{ f iJ21 fi^2(r)}[2] E(R[ ) = ‘

Note tha t

£ { f i J22( r )  f i ‘ 2(r)[2] fi', ^  } -  £ { f i i 2( r )  fi‘ 2(r)}[2] £(f i ' ,  f i f  )

=  \  { E ( A jn A kp A 1 A m ) — E ( A jn A kp) E ( A l Am ) } r n t p n ~ l

-  ^ a kpq [E{ (Ajn ( r p A9 [2]) A' Am } -  E { ( A jn ( r p A9 [2])} E ( A l A m )] r n n ~ l

-  \ a ipq [E{{Akn ( r p A9 [2]) A' Am } -  £ { ( A fcn ( r p A9 [2])}£(A* Am )] r n n ~ l 

+ \  a jnp a kqs [E{ ( rn A p [2]) ( r 9 A* [2]) A 1 A m }

- E { { T n A p [2] ) ( r 9 A" [2 ] )} £ (A ? Am )] n " 1 

=  j ( a i/n a * mp + a jmn a klp) r n r p n ~ 3

-  a kpq {(a jln 6mq + a jmn 6lq) r p + (a jln Smp +  o jmri <5/p) r 9} r n n ~ 3
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-  i- a jpq { ( akln 6mq +  a kmn 6lq) r p +  (a kln 6mp +  a kmn Slp) r q} r n n ~ 3 

+ a jnp a kqs { ( r n 6lp + t p 6,n) ( Tq Sms + r s 6mq)

+  (r " smp + t p Smn) ( r q 6ls +  r* 6,q)} +  0 ( n " ’ )

=  A - ( a j ln a kmp +  a j mn a klp) r n t p n ~ 3 + 0 ( n ~  i ) .

Substi tu t ing  the above results into (5.A .17), obtain tha t

E { R { ( t ) R k(r) R[ R ™} -  E { R { ( t ) R \ (r)} E ( R\  R™ )

= E ( R { t R k2lR[ K  ) -  E ( R {, £*,) £ (« ', )

+ J t ( a ’ln a kmp + a ’mn a i,p) Tn t p n ~ 3 + 0 ( n _ »)

= (3 o , ‘ ,m -  «>* 6lm + i  a ' “  a m" n [3] -  I  a j ‘ " a ' m" [3]) n ~ 3

+ j j K ' ” a ‘ mp + a jmn a klp) r n t’’ n ' 3 + O ( n ' l ) .  (5.A.18)

Moreover

E { ä ( Ä ^ ( r ) } JE{Äi R™(t )} = ^ a jkn a lmp r n r p n ~ 3 + 0 { n ~ = ). (5.A .19)

Substi tut ing (5.A .13), (5.A .14), (5.A .16), (5.A .18) and (5.A .19) into (5.A .12), we 

finally obtain tha t

k \ tlm = O ( n - i ) .  (5.A.20)

Thus we see tha t  the results in (5.3.3) follow from (5.A.4), (5.A.5), (5.A.7), (5.A.9) 

and (5.A.20).

A p p e n d i x  5.2 C u m u l a n t s  o f  n? S ( t )

Let t f 1'"*1 denote the joint / ’th order cumulants  of n i  S 0(r) .  In this par t  of 

appendix  5 we give calculations of ^ 1” J,,s. By (5.3.10),

S 0(t ) = ( /  -  \  A ,  + \  A 2 + I  A D ( n U  +  r ) .  (5.A.21)

where

A 1 = ( Aj k )pxp and A 2 = ( AJ A k )px p ,
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and A = (A 1, - - - , A P).

From (5.A .21), the j ’th component of S0(r)  has form

S30(r) = n* {n~i  t j + S[ + SJ2(r)  + Sj 3(t )} (5.A.22)

where

S{ = Aj , S2( r ) = - ± A jk (Ak + n~ a r * ),

5g(r)  =  i- AJ' A* (Afc + n ~ > T k ) + |  Ajk A kl (A' + n ~ ^ Tl). (5.A.23)

To calculate ^ , we note that

E( S( )  = 0, F { S j 2(t )} = - \ o t ikk and (5.A.24)

E { S 33{t )} = \ V k Tk n~ 2 + I  (ajkkl — r j l ) T l n~ 1 + 0 ( n ” I) .

Thus

Cl = n l £ { 5 j ( r ) }

= r J -  F a >** + ( i r i + |  <*'**' r ' ) n _1 + 0(n~  2 ). (5.A.25)

Notice that

d *  = » [£ (^ j  5,*) + 5 ‘ (r)}[2] + E{S{  5 ‘ (r)}[2] + £ { S ' ( r )  S 2‘ (r)}

- £ { 5 ;  + S ’ (r) + 5 ' ( r ) } £ { 5 f  +  S ‘ (r)  + 5 ‘ ( r ) } ] . (5.A.26)

Observe that

E(S{  S,*) = S’k It- 1 ,

£ { 5 ; S i  (r)} = A

= - i { a > l ' r ' n - t  + ( a ^ ' 1 - ^ ‘ ) n - 2},

£{5;  S£(t)} = i E  {A’ A k A'  (A1 + n - t T 1)} + |  A lm ( + n-> rm)}

= {±-(p +  2 )6>k) + I  ( a ' 1" -  f)ik + a'*' a 'mm + otj,m a ‘ 'm) } n “ 2 

+  O ( n ' i ) ,
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and
E { S j 2(t ) S ^ ( t )} = j  E { A jI ( A1 + n ” a Tl) A km ( Am +  n "  2 r m )}

= \  (ajkU -  + a jU a kmm + a jlm a klm

+ a jklm r l Tm - r j r k) n ~ 2 + 0 (n"  »).

Substi tut ing the above formulae and (5.A.24) into (5.A.26), we obtain tha t

e2k =  6ik — ajkl Tl n~ 3

+ {(p + 2 )^  + I a'*' a,mm + otjlm a klm } n~ 1

+ ^ ( a jklm Tl r m -  r j r k)} n -1 + 0 ( n~  2 ). (5.A.27)

To calculate £3** we observe tha t

d “  =  » ’ S[) + E { S ’2(t ) S* S \ }[3] + E { S i3( T ) S t1 5j}[3]

+ E{S{  5 ‘ ( r ) 5 ' ( r ) } [ 3 ]  -  £ { 5 ’ ( r )}  £ ( S f  Sj)[3] -  £ { S ’ ( r )}  £ ( S f

- £ { 5 j ( r ) } £ ( Ä 2‘ s;)[6]] + 0(n'I). (5.A.28)

Using (3.A.1) we may show tha t  

E(S{  S i  5{) = a jkl n ~ \

E { S 2(t ) S \  5}} = - \ E { A ’m A k A 1 (A m +  n~ 2 r m )}

= -* ■ {(ajrnm 6kl +  2 a jkl ) n ~ 2 +  (a jk,m r m -  r j 6kI) n ~ i }  + 0 ( n " 3), 

E { S J3( r ) S k S’!} =  \  E { A j A k A 1 A m (A m + n~ 2 r m)}

+ I  E { A jm A k A 1 A mn ( An + n"  2 r n )}

=  \  (rJ 6kl [3]) n~ 2 + h r n -  rJ‘ <$*') n~ f

+ ±-(ajfcm a lmn +  a J,m a* mri) r n 7i" 2 + 0 ( n ~ 3)

and

S k( r ) S l2{T)} = ^ E { A j A km A ,n ( Am + n "  2 r m ) ( A n + n~ 2 r " ) }

= J  { E( A j A km A ln A m ) r n +  E ( A j A km A ln An ) r m } n~ >

+  0 ( n - 3)

^ 1 {2 a jk,m r m -  r k 6jl -  Tl 6jk + a jkm a lnn r m

1 „ j / r n   ̂ k n n  _ m  , „ j  k n  „ / m n _ m  , „ j i n  „ k m n  _ m  'I ^  4+ a  r  + a '  a  r + a - ' a  r  } n 2

+  0 ( n - 3).
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Moreover, using the formulae given in the calculations of and we know tha t

£ { S ' ( r ) }  E ( S  f S[)  = 6kl n~ 2 + 0 ( n ~ 3),

£ { 5 | ( r ) } £ ( 5 f  Sj)  =  ( ' - t > 6kl + l a > mmn Sk , Tn ) n ~ i  + 0 ( n ~ 3)

and

£ { 5 ^ ( r ) }  £ { 5 ‘ ( r )  Si [2]} = a imm a t,n r n n~ i  + 0 ( n ~ 3). 

Substi tut ing the above formulae into (5.A.28), we have

t i kl = - 2  a jkl + ( t j [3] + o /mri r m [3] )7i_1 + 0 ( n "  I ) .  (5.A.29)

By our definition,

= n 2 [£ (5 j  5 f 5 | 5™) + £ { 5 2(r )  S k S[ S r  } [4] + £ { S 2(r )  S k S[ S ”  } [4]

+ E { S i ( r ) S k S[ S["}[6] -  E(S{St) E(S[  5D [3 ] -  {S' ( r )  S *} 5D [12]

-  E { S i ( r )  S k } E(S[  SJ” )[12] -  E{ S{ ( r )  S *(r)}  E(S[  S J” )[6]

-  £ { S '( r )  S[ } E { S 2(r ) k S™ }[12] -  £ { S '( r ) }  S ?  ) [4]

-  £ { S 2(r)}  E ( S k(T) S\  S,m) [12] + 2 £ { S '( r ) }  £ { S ‘ (r)}  E(S[  SJ“ ) [6]]
3

+ 0 (n~  2 ). (5.A.30)

Using (3.A.1) agian,  we have

E ( S i  S k S\ S ? )  -  E(S{  S k ) E(S[  S?)[  3] = (aiklm - S i k ( ‘m [ 3 ] ) n ' 3,

£ { S ' ( r )  S k5} S j" } -  E{ S{  S k} E(S I S “ ) [3]

= -  7 [ E { A ’n( A " + n~ i  t " )  A k A 1 A m ] — (An + » r " ) } Am)[3]]

= -  7 { E ( A in A n A k A 1 A m } — E(A>n A" A k ) E ( A ‘ Am)[3]} + 0 ( n ~ i )

= -  7 (12 a ,klm - 4  6’ k 6,m [3] + a ’"" a klm [4] + 4 a ’kn a lmn [3])n~3 +  0 ( n ‘ T),
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E { S i ( r ) S i  S[ S ? }  -  E { S i ( r ) S i } E ( S [  ST)[3]

= \  [E { A j An {An + n-2 Tn) A k A1 Am}

-  E { A j A" (A" + n~> Tn) A k} E( Al Am ) [3]]

+ § [ E{ Ajp Anp (An + n~2 r n) A k A1 Am }

-  E { A jp Anp (An 4- n~> Tn) A k] E( Al Am) [3]}]

= \  { E( Aj An An Ak A1 Am) — E( Aj An An A*) E ( Al Am) [3]}

+  § { E { A jp Anp An Ak) E ( A l Am) -  E( Ajp A np An Ak} E ( A l Am)[3]}}

+ 0( n~  >)

= (4 6jk 6lm [3] + 3 a jkn a lmn [3])n"3 + 0 ( n ~ a)

and

£{S^(r)  5 ‘ S[ ST } [6] -  E{ S i ( r )  S*(r)} E(S\  SD [6] 

- £ { S ' ( r ) < ? ; } £ { S * ( r ) S ” (r)}[12]

= [E { A jn A kp (An + n~ 3- r " ) (A p + n" > r p) A l Am }

-  E { A jn A kp (A n + n ” 2 r n ) (Ap + n~ » r p)} E ( A ‘ A m )] [6]

-  \ a jkn a ,mp r n tp [12] n " 3

= (3 a jk,m -  Sjk Slm [3] + f  a klm [4] + 3 a jkn a lmn [3])n"3 + 0 ( n ~  »).
* L. I

Furthermore, from the calculation of £3 displayed earlier we know that

£ { S ’ (r)} £ ( 5 f  S[ ST ) [4] + £ { S ' ( r ) }  £ { S 2‘ (r) S[ ST } [12]

= -  l a ' "  { a ktrn-  j ( a tpr S'm + 2 a * 'm)[3]} [4] + 0( n~ i )

= ( a ' nn a t,m[4] + 1 « ' "  a * "  6lm [6])n “ 3 + 0 ( n “ l )

and

E { S J2( r ) } E { S k( r ) } E( S [  S ? )  = \ cc jnn a kpp Slm n~3.

Substituting the above results into (5.A.30), we obtain that

f ' ‘ ,m = ( - 2 a ' “ " + 4 « ' * 6,m [4] + 4 a ' 1" a ,mn [3 ])rTl + 0 ( n ‘ l ) .  (5.A.31)

Finally using the results given by James and Mayne (1962),

S’ 1 "jl = 0 ( n ” 2) for / >  5. (5.A.32)
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In summary  of (5.A.25), (5.A.27), (5.A.29), (5.A.31) and (5.A.32), we obtain 

(5.3.12) and (5.3.13).
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