IN MEMORY OF MY PARENTS
GAMMA-RAY STUDIES OF SOME LIGHT NUCLEI

by

Frederick Chao-Pang Huang

A Thesis submitted to
the Australian National University
for the Degree of Doctor of Philosophy

Canberra
March, 1968
This thesis describes a series of experiments which were carried out in the Department of Nuclear Physics, the Australian National University.

The study of the $^{13}\text{C}(p,\gamma)$ reaction (Chapter 3) was carried out under the supervision of Dr. D.F. Hebbard. Approximately 50% of the supervised effort was my own.

The study of the $^{14}\text{N}(p,\gamma)$ reaction (Chapter 4) was carried out in collaboration with Mr. C.H. Osman under the supervision of Dr. D.F. Hebbard. In the later stage of the experiment, Dr. T.R. Ophel suggested coincidence measurements and actively engaged in the analysis of data while Dr. Hebbard was on leave. Again 50% of the effort was my own.

The study of the $^{26}\text{Mg}(p,\gamma)$ reaction with a Ge(Li) detector described in Chapter 5 and 6 was carried out under the supervision of Dr. T.R. Ophel. Both the experimental work and analysis were divided evenly between us.

It is a pleasure to thank the many people who have helped in the work described in this thesis. I wish to acknowledge my debt to Dr. D.F. Hebbard for his help and guidance in the early stage of my study and to Dr. T.R.
Ophel for his excellent supervision and helpful comments in all aspects of this thesis.

I would like to express my gratitude to Professor E.W. Titterton for his encouragement and support of the projects and to the Australian National University for the award of a scholarship.

Thanks are also to Mr C.H. Osman for his hospitality shown to me during my stay in Australia and to members of the technical staff for their assistance in operation of accelerators.

No part of this thesis has been submitted for a degree at any other university.

JCP Huang
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER I</th>
<th>GENERAL INTRODUCTION</th>
<th>page</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER II</td>
<td>ANALYSIS OF GAMMA-RAY SCINTILLATION SPECTRA</td>
<td>5</td>
</tr>
<tr>
<td>1. Introduction</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2. Interaction of Gamma-Rays with Matter</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>3. Response of NaI(Tl) Crystal to Gamma-Rays</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>5. Generation of Line Shapes of Energies Other Than Those Measured</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>5.1 Function Fits</td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>5.2 Methods of Interpolation</td>
<td></td>
<td>19</td>
</tr>
<tr>
<td>6. Coincidence Sum Spectrum</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>7. Method of Least Squares Analysis</td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>CHAPTER III</td>
<td>THE 8.49 MeV STATE OF $^{14}_N$</td>
<td>28</td>
</tr>
<tr>
<td>1. Introduction</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>2. Experimental Procedure</td>
<td></td>
<td>35</td>
</tr>
<tr>
<td>3. Results</td>
<td></td>
<td>38</td>
</tr>
<tr>
<td>4. Discussion</td>
<td></td>
<td>44</td>
</tr>
<tr>
<td>5. Summary</td>
<td></td>
<td>51</td>
</tr>
<tr>
<td>CHAPTER IV</td>
<td>THE INVESTIGATION OF THE $^{14}_N(p,\gamma)^{15}_O$ REACTION IN THE PROTON ENERGY RANGE 1.7 TO 3.0 MeV</td>
<td>55</td>
</tr>
<tr>
<td>1. Introduction</td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>2. Specific Problems</td>
<td></td>
<td>57</td>
</tr>
<tr>
<td>3. Experimental Details</td>
<td></td>
<td>59</td>
</tr>
<tr>
<td>4. Measurement of Target Composition</td>
<td></td>
<td>61</td>
</tr>
<tr>
<td>5. Analysis of Data</td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>6. Results</td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>7. Discussion</td>
<td></td>
<td>74</td>
</tr>
</tbody>
</table>
CHAPTER V THE 20 c.c. Ge(Li) DETECTOR

1. Introduction 80
2. Performance of the Spectrometer 82
 2.1 Resolution 83
 2.2 Energy Linearity and Calibration 86
 2.3 Calculation of Detector Efficiencies and Angular Correlation Attenuation Factors 94
 2.4 Photopeak Efficiency 99
 2.5 Double Escape Peak Efficiency 103
3. Line Shape Analysis 105
4. Application 108

CHAPTER VI THE $^{26}\text{Mg}(p,\gamma)^{27}\text{Al}$ REACTION

1. Introduction 113
2. Specific Problems Concerning Levels of ^{27}Al
 2.1 The Spin of the 3.00 MeV Level 117
 2.2 The 3.68 MeV Level 118
 2.3 The 3.96 MeV Level 121
 2.4 The 4.41 MeV Level 122
3. Experimental Methods 123
4. The 662 keV Resonance 128
5. The 719 keV Resonance 130
 5.1 Decay Scheme of the 719 keV Resonance 130
 5.2 Angular Correlation Measurements at the 719 keV Resonance 134
6. The 809 keV Resonance 137
 6.1 Decay Scheme of the 809 keV Resonance 137
 6.2 Decay Scheme of the 4.41 MeV Level 138
 6.3 Angular Correlation Measurements at the 809 keV Resonance 139
7. The 839 keV Resonance 143
8. The 954 keV Resonance 145
 8.1 Decay Scheme of the 954 keV Resonance 145
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2 Angular Correlation</td>
<td>151</td>
</tr>
<tr>
<td>Measurements at the 954 keV Resonance</td>
<td></td>
</tr>
<tr>
<td>9. The 982 keV Resonance</td>
<td>154</td>
</tr>
<tr>
<td>10. Branching Ratios of Bound States</td>
<td>157</td>
</tr>
<tr>
<td>11. Spins</td>
<td>162</td>
</tr>
<tr>
<td>12 Discussion</td>
<td>163</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>167</td>
</tr>
<tr>
<td>APPENDIX</td>
<td>173</td>
</tr>
<tr>
<td>COMPUTER PROGRAMS</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER I

GENERAL INTRODUCTION

A major portion of research in nuclear physics is directed toward systematic identification of the position and properties of energy levels in various light nuclei.

With the existence of a level established, the parameters appropriate to an energy level which can be obtained experimentally are the excitation energy of the level, the transition probability or lifetime, the partial lifetimes or widths for decay via the various energetically possible channels, the total angular momentum or spin, the parity and whenever applicable, the isobaric spin quantum number. Two other ground state level parameters may sometimes be obtained for excited states. These are the magnetic dipole moment and the electric quadrupole moment.

Gamma-ray spectra constitute an essential part of the data required for the derivation of nuclear level schemes. The information obtainable from observations of γ-ray transitions can be classified into three categories:
1. The transition energies of γ-rays determine the energy differences between levels.

2. The geometrical properties of a γ-ray, i.e., the angular distribution of its intensity and polarization determine the multipole character of the radiation and the spin and parity of the levels involved.

3. Gamma-ray branching ratios of bound states and the multipole admixtures of the cascade members provide sensitive tests of predictions based on various nuclear models.

Gamma-ray spectroscopy lacked the precision possible with various methods of particle spectroscopy for many years and was handicapped by the fact that the energy response of detectors is much more complicated than those of charged particle detectors. Furthermore, particle capture reactions, which are potentially the most valuable means of exploiting gamma-ray spectroscopy, are weaker by several orders of magnitude than reactions which proceed by way of particle emission.

Scintillation methods of γ-ray detection with NaI(Tl) crystals, which provided high counting efficiency and moderate resolution to resolve γ-ray energies, greatly extended experimental possibilities especially with regard to $\gamma-\gamma$ coincidence measurements. The recent advent of
Ge(Li) detectors has been a major advance in γ-ray spectroscopy; the high resolution and moderate counting efficiency of the detector enabling γ-ray spectroscopy to be more accurate in many respects than magnetic particle analysis. The high resolution and the corresponding accuracy with which gamma-ray energies may be determined has allowed identification of γ-rays in complex singles spectra with more confidence. Thus pre-measurements of γ-ray spectra with a Ge(Li) detector have become an essential prerequisite to guide in the selection of cascade gamma-rays for γ-γ coincidence correlation measurements with NaI(Tl) detectors.

It is the purpose of this thesis to study the de-excitation process of several capture reactions with NaI(Tl) and Ge(Li) detectors. Studies of 13C(p,γ)14N and 14N(p,γ)15O reactions were made using 5" x 4" NaI(Tl) detectors. Accordingly, the analysis of γ-ray scintillation spectra using the method of least squares line shape fitting is described in Chapter II.

Chapter III describes angular distribution measurements of γ-rays de-exciting from a weakly excited state in 14N. The spin and parity of the level were uniquely determined.

Chapter IV describes the measurements of excitation functions of γ-rays from the reaction 14N(p,γ)15O in the
proton energy range of 1.7 to 3.0 MeV. This reaction is of particular astrophysical importance because its reaction rate at stellar proton energies determines the abundance of 14N in equilibrium in burning stars. The possible effect of resonances at higher proton energies on the cross section at stellar energies is examined.

Chapter V describes the properties of a large volume Ge(Li) detector available in this department and the analysis of γ-ray complex spectra obtained with the detector. Though the method of line shape analysis is similar to that used in the analysis of scintillation detector spectra, it was considered desirable to separate the discussion from Chapter II since many of the techniques appropriate to its use and analysis of data from the detector had to be developed.

In Chapter VI the application of the Ge(Li) detector to the study of $^{26}\text{Mg}(p,\gamma)^{27}\text{Al}$ resonances, in which the decay schemes of resonance levels at 662, 719, 809, 839, 954 and 982 keV were deduced, is described. Angular distribution measurements at 719, 809 and 954 keV resonances have established the spins of a number of excited states.
CHAPTER II

ANALYSIS OF GAMMA-RAY SCINTILLATION SPECTRA

1. Introduction

The analysis of complex γ-ray spectra is complicated by the interaction of γ-rays with the detecting crystal through three different processes, namely, the photoelectric effect, the Compton effect and pair production, which are energy dependent and by the pulse distributions due to these processes which further depend on the crystal dimensions, detector geometry and the angular distribution of the γ-rays. The response function, which is defined as the set of pulse height distributions due to different processes as a function of γ-ray energy, must be known for all γ-rays which exist in the complex spectra before any analysis can be made. Since it is impractical and almost impossible to provide all response functions which have the energies required in the spectra to be analyzed, they were obtained by interpolation procedures.

In the analysis of a complex γ-ray spectrum, the method was the following:
(1) establish the gain (energy/channel) and zero intercept of the spectrum to be analyzed
(2) subtract the room background
(3) identify the energies of all γ-ray components in the spectrum
(4) for each γ-ray component, generate the line shape by interpolation
(5) determine the intensity of each γ-ray component by the method of least squares
(6) correct each intensity by the detector efficiency appropriate to the γ-ray energy.

The method described above was used in the analysis of γ-ray spectra obtained from the reactions $^{13}\text{C(p,γ)}^{14}\text{N}$ and $^{14}\text{N(p,γ)}^{15}\text{O}$. Since 5" x 4" NaI(Tl) crystals were used for measurements of both reactions to detect γ-rays emitted as the result of proton bombardment, the spectrometer assemblies were similar and the techniques involved in the analysis of data were not very different, they are summarized in one chapter.

2. Interaction of gamma-rays with matter

The mechanisms of γ-ray interaction with matter are briefly discussed here, since an understanding of them is important for γ-ray spectroscopy.
Gamma-rays interact with matter by one of the three processes: the photoelectric effect, the Compton effect and pair production.

In the photoelectric process, the γ-ray is absorbed by a bound electron in atom with the result that the electron is ejected from the atom with an energy equal to the incident γ-ray energy less the binding energy of the electron to the atom. The photoelectric absorption cross section in the K-shell is expressed by Heitler \((H\&E\ 54) \) as

\[
\sigma_{\text{photo}} \propto Z^5 E_\gamma^{-3.5}
\]

..... (2.1)

where \(Z \) = atomic number,

\(E_\gamma \) = γ-ray energy.

Thus the photoelectric absorption increases very rapidly with atomic number and decreases very rapidly with γ-ray energy.

In the Compton effect, the γ-ray is inelastically scattered by a virtually free electron; the cross section is given by Klein and Nishima as

\[
\sigma_{\text{Compton}} \propto ZE_\gamma^{-1}[\log(2E_\gamma/mC^2) + 1/2]^{-1}
\]

..... (2.2)

where \(m \) = electron mass,

\(C \) = light velocity.

Thus the Compton cross section increases linearly with \(Z \) and decreases approximately linearly with γ-ray energy.

The energy of the scattered electron ranges from zero to a
maximum value E_c corresponding to γ-rays being scattered through 180°. E_c is calculated from equation (2.3).

$$E_c = E_\gamma / \left(1 + \frac{mC^2}{2E_\gamma}\right) \quad \ldots \quad (2.3)$$

The scattered photon may escape from the absorbing material or may be further absorbed.

In pair production, a γ-ray with energy greater than 1.022 MeV ($2mC^2$), the threshold energy for this process, can lose its energy by creating an electron-positron pair in the field of a nucleus. Any γ-ray energy in excess of 1.022 MeV appears as kinetic energy of the outgoing pair. The pair production cross section is expressed by Heitler (He 54) as

$$\sigma_{\text{pair}} \propto Z^2 \left[\log(2E_\gamma/mC^2) - 218/27\right] \quad \ldots \quad (2.4)$$

Thus the pair production cross-section increases rather rapidly with atomic number and γ-ray energy. Associated with pair production is the subsequent creation of two 511 keV photons from the annihilation of positrons when they come to rest in matter.

3. Response of NaI(Tl) crystal to gamma-rays

When γ-rays interact with a NaI(Tl) crystal, the photon energy is absorbed in the crystal through the three principal processes described previously. The result of the interaction is the transfer of photon energy partially or completely to electrons or electrons and positrons.
depending on the absorption processes which occur. The electrons or positrons in turn produce scintillations in passing through the phosphor; the total light output is proportional to the electron energy and is independent of the processes by which the \(\gamma \)-ray energy is absorbed. The electron energy is in fact transferred back to photons of an energy detectable by a photomultiplier coupled to the phosphor. To conclude, one photon of energy \(E_\gamma \) is transformed into a light pulse of approximately constant wave length but with an intensity directly proportional to the energy deposited in the crystal.

From this complex process, the resultant pulse distribution (or \(\gamma \)-ray line shape) is not only a function of photon energy and crystal dimensions, but also depends on the impinging direction of the \(\gamma \)-ray and the position at which it interacts with the crystal. Thus detector geometry and the \(\gamma \)-ray angular distribution affect the \(\gamma \)-ray line shape.

When a \(\gamma \)-ray impinges on the center of a crystal, the probability of all of the photon energy being absorbed in the crystal is much higher than when it impinges on the edge of the crystal. This is because in the former case, the likelihood of the scattered \(\gamma \)-rays and annihilation \(\gamma \)-rays escaping from the crystal is reduced. The same
result is obtained if a large crystal is used. Edge effects become important when the γ-ray distribution is very anisotropic or when a small detector is used.

For a given experimental arrangement, the γ-ray line shape is mainly determined by photon energy. The γ-ray line shape of NaI(Tl) crystals is discussed below according to the photon energy is greater or smaller than the pair production threshold energy.

When the γ-ray energy is below 1.022 MeV, only the photoelectric and Compton scattering processes can take place. Absorption by the photoelectric process produces a well defined peak of approximately Gaussian distribution corresponding to the incident γ-ray energy due to the absorption of the photoelectron and the iodine K X-ray. Though the X-ray of energy 28 keV may escape from the crystal, the effect is negligible when γ-ray energy is above 250 keV, since the γ-ray penetrates more deeply before most of its energy is absorbed. The Compton scattering shares the incident γ-ray energy between an electron and a scattered photon which may escape from the crystal or may further interact to deposit some or all of its energy in the detector. The pulse distribution which results is a continuum extending from just below the photopeak to zero energy. The Compton edge appears at energy Ec of equation (2.3).
Not all Compton interactions contribute to the Compton distribution, a complete secondary absorption of scattered quanta will lead to light yields equal to that from the direct photoelectric effect. This is true for all cases, namely, if a γ-ray is completely absorbed by any combination of the three processes the resultant pulse will appear in the photopeak, for this reason the photopeak is often referred to as the full energy peak.

For γ-ray energies above 1.022 MeV, production of a positron and electron pair is possible, though in NaI(Tl) crystal this process does not become significant until the photon energy is above about 2.5 MeV. The γ-ray energy in excess of 1.022 MeV appears as kinetic energy shared between electron and positron. The higher energies of the electrons and positrons make the bremsstrahlung losses more significant than in the other two processes which dominate at low photon energies; however, the kinetic energy of the electron-positron pair can be nearly completely absorbed in the crystal, though there is a chance for the bremsstrahlung to escape from the crystal and to contribute a 'tail' in the spectrum.

When the positron comes to rest in the crystal, annihilation with a nearby electron produces two photons of 511 keV γ-ray which may escape from the crystal.
Assuming total absorption of electron and positron energy, peaks appear in the pulse distribution depending on whether both photons are detected in the crystal (full energy), only one is detected (single escape) or both escape from the crystal (double escape).

From the foregoing discussion it follows that the response of NaI(Tl) crystal to a monochromatic γ-ray is to produce a complicated pulse height distribution which is mainly determined by the incident γ-ray energy and the experimental arrangement. To analyze a complex spectrum obtained from the simultaneous detection of several monochromatic γ-rays, the individual γ-ray line shapes or the response function must be known.

4. Measurement of standard gamma-ray line shapes

In principle, the response function of a NaI(Tl) crystal to γ-rays can be calculated by Monte Carlo methods though the procedure is tedious and time consuming. The advantage of experimentally measuring the standard γ-ray line shapes is that the standards can be measured under the conditions which are identical to those under which the collection of the γ-ray spectra are performed.

In choosing sets of standard γ-ray line shapes, the energy range of the γ-rays was chosen according to the γ-ray components in the spectra to be analyzed which
during the present work extended over the energy range of 2.5 to 10.0 MeV. To span this range, five line shapes corresponding to γ-ray energies of 2.367, 4.433, 6.129, 8.060 and 10.540 MeV were measured. Table 2.1 summarizes the reactions and bombarding energies used to obtain the γ-rays. The reactions were chosen on the basis that they provided reasonable γ-ray yields of relatively monochromatic γ-rays with energies dividing the energy range of interest into roughly equal intervals and that the targets were simple and available.

Table 2.1

Reactions used in the measurement of standard γ-ray line shape

<table>
<thead>
<tr>
<th>E (Mev)</th>
<th>Reaction</th>
<th>E_p (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.367</td>
<td>$^{12}\text{C}(p,\gamma)^{13}\text{N}$</td>
<td>459</td>
</tr>
<tr>
<td>4.433</td>
<td>$^{15}\text{N}(p,\alpha\gamma)^{12}\text{C}$</td>
<td>429</td>
</tr>
<tr>
<td>6.129</td>
<td>$^{19}\text{F}(p,\alpha\gamma)^{16}\text{O}$</td>
<td>597</td>
</tr>
<tr>
<td>8.060</td>
<td>$^{13}\text{C}(p,\gamma)^{14}\text{N}$</td>
<td>554</td>
</tr>
<tr>
<td>10.540</td>
<td>$^{27}\text{Al}(p,\gamma)^{28}\text{Si}$</td>
<td>759 (BA 61)</td>
</tr>
</tbody>
</table>

To generate a standard γ-ray line shape from the γ-ray spectrum collected from a nuclear reaction, the room background was subtracted and an estimate of the
continuum made for the low energy portion of the spectrum. The 'tail' was assumed to be flat to the zero channel. This approximation was necessary because of low energy γ-rays existing in the spectra. Figure 2.1 shows the 8.060 MeV γ-ray line shape as measured from the reaction $^{13}C(p,\gamma)^{14}N$ at the $E_p = 554$ keV resonance. The solid line shows the tail. This raw line shape was then divided into a number of intervals and a function fit was used to fit the line shape of each interval. The original line shape was then re-generated from the function, thereby eliminating any statistical fluctuations in the line shape. Due to the initial estimate of the continuum the five line shapes so obtained were not exact. In order to refine the result, least squares fitting to the measured spectra was used to estimate the intensities of low energy γ-rays superposed on the continuum. The low energy γ-ray line shapes were obtained by interpolation between the raw line shapes. The low energy γ-rays were subtracted from the measured spectra to obtain a flat region representing the true continuum. Figure 2.2 shows the flat region as obtained from the method of least squares fit. It can be seen that the first approximation of the continuum was too high.
Figure 2.1
The 8.06 MeV γ-ray line shape as measured from the reaction $^{13}\text{C}(p,\gamma)^{14}\text{N}$ at $E_p = 554$ keV resonance. The solid line shows the first approximation to the tail.
Figure 2.2

The 8.06 MeV γ-ray line shape with the tail estimated from the subtraction of low energy γ-rays, the intensities of which were obtained from least squares analysis. The solid line shows the first approximation to the tail.
Figure 2.3

The standard γ-ray line shapes of energy 2.367, 4.433, 6.129, 8.060 and 10.540 MeV with each line shape normalized to have an integrated intensity of 500,000 counts.
Similar procedures were used to generate the other standard γ-ray line shapes. Figure 2.3 shows the standard γ-ray line shapes with each line shape normalized to an integrated intensity of 500,000 counts. The variations of relative height of the full energy peak, single escape peak, double escape peak and Compton continuum according to γ-ray energy are evident.

5. Generation of line shapes of energies other than those measured

5.1 Function fits

Statistical scatter within the line shapes can be smoothed out by fitting an analytic function to the γ-ray line shapes. A computer program called FUNFIT (see Appendix) was developed to generate a set of coefficients $A, B_1, B_2, \ldots, B_{15}$ such that the analytic function

$$A + B(X - X_0) + \sum_{k=1}^{15} B_k \sin\left(\frac{k\pi}{X_1 - X_0}(X - X_0)\right)$$

is a fit to the spectrum in the range of channels X_0 to X_1 (interval of fit). The total spectrum was divided into a number of intervals and fitted interval by interval. In applying the function fit to a particular interval, the number of coefficients and the magnitude of the sum of the squares of residuals are specified. After
a set of coefficients has been generated, the program regenerates the original spectrum with original gain, zero and intensity from the analytic function. The fits to original data points were examined carefully and the number of coefficients for each interval readjusted until the original line shape was reproduced faithfully from the function. To obtain a smoothing effect, the number of coefficients should be less than the number of data points in that interval. The residuals (FIT - DATA) for each point were calculated in the program and the sum of the squares of residuals (σ_s^2) for each interval was calculated. This value was compared to the value which was specified before the fitting. An exact reproduction of original line shape ($\sigma_s^2 = 0$) will not attain the purpose of smoothing. The statistical nature of the data suggests the best value of σ_s^2 to be specified is of the order of the total counts of spectrum fitted in that interval. The program automatically increases the number of coefficients by one if the value of σ_s^2 is greater than the value specified and re-calculates a set of coefficients.

To obtain a smooth transition between neighbouring intervals, an interval of use is used to define a common boundary. The interval of use nests in the interval of
fit. The coefficients of the standard line shapes were all normalized in the program to have specific values for gain (50 keV/channel), zero (0 channel) and intensity (one). This has the advantage that each γ-ray line shape can be measured with different gains and zeros which could result from gain shifts in the system.

Ferguson (FE 62) used polynomials to fit γ-ray line shapes instead of the Fourier series as described above. Each spectrum was divided into four regions according to (a) full energy peak, (b) single escape peak, (c) double escape peak and (d) Compton distributions. This is different from the method described here where as many intervals as are required can be used allowing the function to converge to the original shape much faster within a small interval with only a few coefficients. A large interval needs more coefficients to represent the line shape, a ninth degree polynomial was used by Ferguson to represent each of the four regions defined above. Since each polynomial has ten coefficients, a total of 40 coefficients represents the entire spectrum. Because of the high degree of polynomial used, the polynomial approximations generally rapidly diverge to ±∞ beyond the range of approximation. To eliminate this rapid fluctuation a variable ξ, given by
was introduced to represent each of the 40 coefficients. E_γ is the γ-ray energy of the line shape and E_0 is an arbitrary energy chosen near the middle of the range of energies to be represented. The 40 coefficients are now represented by polynomials in ξ. The degree of the polynomial to represent the ξ variation is determined by the number of standard line shapes used, for five sets of standard line shapes the degree is four, i.e., five constants. So for five sets of standard line shapes, a total of 200 coefficients are required by Ferguson.

Fourier series use sine functions to represent γ-ray line shapes so that there is no exponentiation of high power which could introduce truncation errors in computer calculations due to the large numbers encountered. The function generated in this way can be used successfully for interpolation as well as for extrapolation.

Another method of line shape fitting has been described by Heath et al. (HE 67), in which a 'modified Gaussian' function of the form

$$y(x) = y_0 \left[1 + \alpha_1 (x-x_0)^4 + \alpha_2 (x-x_0)^{12} \right] \exp \left\{ -\frac{(x-x_0)^2}{b_0} \right\} \ldots \ (2.5)$$
was used to fit the photopeak shapes, while the low energy part of line shape was fitted with a Fourier series similar to the method used in this experiment. For each photopeak, five parameters i.e., \(x_0, y_0, b_0, \alpha_1 \) and \(\alpha_2 \) are required to determine the peak shape. In equation (2.5), \(y \) is the calculated count at channel \(x \), \(x_0 \) and \(y_0 \) is the channel number and counts at the center of the peak, \(b_0 \) is related to the full width at half maximum of the peak, \(\alpha_1 \) and \(\alpha_2 \) are represented by polynomials of the form

\[
\log \alpha = a_0 + a_1 (\log x_0) + a_2 (\log x_0)^2 + a_3 (\log x_0)^3 \ldots \quad (2.6)
\]

The complications introduced by equations (2.5) and (2.6) have not much physical meaning in themselves, the method used in this experiment seems to include the advantages of Ferguson and Heath and retain its simplicity.

5.2 Methods of Interpolation

After five standard line shapes were obtained to comprise the response function, the line shape appropriate to a \(\gamma \)-ray of intermediate energy can be generated by interpolation. The coefficients of each \(\gamma \)-ray line shape was first normalized to the gain and zero of the experimental spectrum to be analyzed and the actual \(\gamma \)-ray line shapes of each standard were reproduced from the function.
To obtain a point in the interpolated spectrum there is a maximum of five points to be used in interpolation. The polynomial interpolation described by Ferguson would use all five points to determine the value of \(\xi \), so for every interpolated \(\gamma \)-ray line shape, \(5 \times 40 \) polynomial constants were calculated. The line shape of required energy was then reproduced from these coefficients. Heath (HE 66) varied the number of points used in the interpolation so as to obtain best fit to the data points. Since the shapes of the various prominent features such as photopeak, Compton shoulder and pair peaks vary very rapidly with energy, only \(\gamma \)-ray line shapes of nearest energy should be used for interpolation. Two points and three points have been used to analyze the present data.

The actual interpolation was carried out channel by channel using Lagrange's interpolation formula (WH 44). If \(y \) is the number of counts of a point in the interpolated spectrum of energy \(E_\gamma \), and three points \(y_1, y_2 \) and \(y_3 \) corresponding to the counts of three standard \(\gamma \)-rays of energies \(E_{\gamma 1}, E_{\gamma 2} \) and \(E_{\gamma 3} \), then \(y \) is expressed as

\[
y = \frac{(E_\gamma - E_{\gamma 2})(E_\gamma - E_{\gamma 3})y_1 + (E_\gamma - E_{\gamma 1})(E_\gamma - E_{\gamma 3})y_2 + (E_\gamma - E_{\gamma 1})(E_\gamma - E_{\gamma 2})y_3}{(E_{\gamma 1} - E_{\gamma 2})(E_{\gamma 1} - E_{\gamma 3}) + (E_{\gamma 2} - E_{\gamma 1})(E_{\gamma 2} - E_{\gamma 3}) + (E_{\gamma 3} - E_{\gamma 1})(E_{\gamma 3} - E_{\gamma 2})}
\]

The interpolation of \(\gamma \)-ray line shapes from an analytic function has the advantage that the gain and zero
Figure 2.4

The standard γ-ray line shapes of energy 2.367, 4.433, 6.129, 8.060 and 10.540 MeV with the full energy peaks of each γ-ray line shape aligned and normalized to the same height.
of interpolated spectrum can be easily adjusted to the experimental spectrum by re-calculating the coefficients. However, this method is subject to hidden errors due to insufficient representation of line shape by analytic functions. To avoid this, interpolation of γ-ray line shape of intermediate energy can be carried out from the smoothed standard line shapes. To achieve this, the full energy peaks of each γ-ray line shape were aligned and normalized to the same height as shown in Figure 2.4. The interpolated spectrum was then re-adjusted to the required gain and zero of the experimental spectrum. Two subroutines called PUSH and PULL were developed to compress or expand the interpolated spectrum if the gain of the experimental spectrum was greater or smaller than the gain of the standard line shapes.

6. Coincidence sum spectrum

The coincidence sum spectrum discussed here is different from random coincidences due to uncorrelated radiations which are detected within the resolving time of detection system. Due to the low yields of γ-rays emitted from the reactions studied random summing was small and not considered in the analysis.

The summing effect, due to true coincidences between two cascading radiations, results in a pulse distribution
from the minimum detectable height to the sum of the maximum pulse height obtainable from the individual γ-rays. The most prominent feature of the spectrum is that it contains sum peaks which result from coincident detection of pulses from full energy peaks and pair peaks of the two coincident γ-rays. The sum spectrum was calculated in the subroutine called SUMSPE. The pulse height spectra for the two coincident γ-rays \(G_1(x) \) and \(G_2(x) \) were first generated from the interpolation between the standard γ-ray line shapes. Let the probability of simultaneously detecting gamma 1 in channel \(x_1 \) and gamma 2 in channel \(x_2 \) be the product \(G_1(x_1)G_2(x_2) \) which is the probability of producing a pulse in the sum spectrum in channel \((x_1+x_2) \). The total contribution to any channel \(x \) of the sum spectrum is equal to the sum of contributions from all pairs of channels for which \(x_1+x_2=x \). This is expressed as

\[
S(x) = \sum_{n=1}^{x} G_1(x_1)G_2(x-x_1)
\]

In principle the summation due to three or four γ-rays in cascade could be calculated. These were actually not considered in the analysis due to low detection efficiencies of the experimental set up. The effect of γ-ray angular distribution was not taken into account in generating the coincidence sum spectrum in the present work.
7. Method of least squares analysis

If the number of γ-ray components present in the spectrum to be analyzed and their energies are known, the least squares method of analysis can be programmed for computer analysis to obtain their intensities. These requirements are not as restrictive as it might seem to be since the result of first estimates may be observed and the second estimates with corrections in these specifications were made until a good fit to the data is obtained. This method was used by Ferguson (FE 62) and Helmer et al. (HE 67a) and proved to be more satisfactory than graphical techniques.

If \(a_{ij} \) is the counts in channel \(i \) of the \(j \) th component which has an intensity of \(X_j \) and if there are \(m \) components contributing to channel \(i \) to make a total counts of \(b_i \) in the experimental spectrum, then

\[
b_i = \sum_{j=1}^{m} a_{ij} X_j + z_i \quad \ldots \ldots \ (2.7)
\]

where \(z_i \) is the random error.

If there are \(n \) data points \((n \geq m)\), the best value of \(X_j \) are obtained by minimizing \(R \), the sum of the squares of \(z_i \):

\[
R = \sum_{i=1}^{n} w_i z_i^2 = \sum_{i=1}^{n} w_i \left[b_i - \sum_{j=1}^{m} a_{ij} X_j \right]^2 \quad \ldots \ldots \ (2.8)
\]

where \(w_i \) is the weighting factor.
R is minimized by differentiating equation (2.8) partially with respect to X_j and equating to zero. A set of m linear simultaneous equations are obtained and may be solved to obtain values for X_j's.

$$\sum_{j=1}^{m} \sum_{i=1}^{n} w_{ai} a_{ij} = \sum_{i=1}^{n} w_{ai} b_i \quad (k=1,2,3,...,m) \quad (2.9)$$

The solution of the normal equations is most conveniently done by matrix techniques, which have the advantage that the mean square deviation of each X_j is equal to the jj th diagonal element of the inverse matrix. If equations (2.9) are written in matrix form

$$CX = Y$$

then the solution is $X = C^{-1}Y$.

The inverse matrix C^{-1} is calculated in a subroutine called MATINV.

Since each data point has statistical distribution, each value of X_j calculated is also accompanied by statistical variation, the mean square deviation for j th component is expressed by Rose (RO 53) as (assuming $w_i = \frac{1}{\sigma_i^2}$)

$$\sigma^2(X_j) = C_{jj}^{-1} \quad \ldots \quad (2.10)$$

where C_{jj}^{-1} is the jj th diagonal matrix element of the inverse matrix C^{-1}. This is a measure of the deviation of X_j to be expected on purely statistical bases. Other
sources of error due to experiment and line shapes may actually occur. The test of the fit is expressed as chi-square, and is defined as

\[\chi^2 = \sum_{i=1}^{n} w_i (FIT_i - b_i)^2 \]

(2.11)

where \(FIT_i = \sum_{j=1}^{m} a_{ij} x_j \)

The value of \(\chi^2 \) should be of the order of \(n - m \), number of degrees of freedom, for an ideal fit. A value of \(\chi^2/(n - m) \) appreciably greater than unity implies that errors other than those due to statistics have been introduced into the system. Wrong energy assignments and an insufficient number of components used in the fit will also increase the value of \(\chi^2 \). The mean error in \(x_j \) has been given by Rose as

\[(x_j) = \sqrt{\frac{\chi^2}{(n - m)c_{jj}^{-1}}} \]

(2.12)

The mean error includes all sources of error and not just the statistical errors.

The weight \(w_i \) for each data point is governed by the equation (2.11) which shows weight is inversely proportional to \(\sigma^2 \). If the normalization constant is ignored, \(w_i \) is expressed as

\[w_i = \frac{1}{\sigma_i^2(b_i)} \]
Since the values of $\sigma_i^2(b_i)$ for each data point will not be known until an actual least squares fit is performed and the residuals calculated for every point; as a first approximation unit weight to every data point could be used and iterative procedures used to correct weights by the value obtained from previous fit until a required precision has been obtained. This elaborate procedure of analysis, however, was not attempted in this work. The reason is that the value of χ^2 which is based on equation (2.11) does not necessarily mean a good fit when it is minimized by iterative procedures; on the other hand a plot of data and fit after first approximation shows the direction to improve the fit.

The Poisson distributions of data points which are true for nuclear disintegration events suggest for the weight the inverse of data as the first approximation, since the standard deviation is equal to the square root of the total counts accumulated in that channel. Ferguson used an inverse of fit as weight, since fit is not available before least squares analysis is performed an iterative program was used for the analysis. In the present work, weight equal to unity and inverse of data for each data point were both used in the analysis.
Figure Captions

Figure 2.1 The 8.06 MeV γ-ray line shape as measured from the reaction $^{13}\text{C}(p,\gamma)^{14}\text{N}$ at $E_p = 554$ keV resonance. The solid line shows the first approximation to the tail.

Figure 2.2 The 8.06 MeV γ-ray line shape with the tail estimated from the subtraction of low energy γ-rays, the intensities of which were obtained from least squares analysis. The solid line shows the first approximation to the tail.

Figure 2.3 The standard γ-ray line shapes of energy 2.367, 4.433, 6.129, 8.060 and 10.540 MeV with each line shape normalized to have an integrated intensity of 500,000 counts.

Figure 2.4 The standard γ-ray line shapes of energy 2.367, 4.433, 6.129, 8.060 and 10.540 MeV with the full energy peaks of each γ-ray line shape aligned and normalized to the same height.
CHAPTER III

THE 8.49 MeV STATE OF $^{14}_{\text{N}}$

1. Introduction

In a recent report (EA 64) on the $^{14}_{\text{N}}$(p,p') reaction, a low energy particle group was observed but its properties were not well determined. If the group was assumed to be inelastic protons from $^{14}_{\text{N}}$, then an excitation energy in $^{14}_{\text{N}}$ of 8.57 ± 0.05 MeV, intermediate between a known level (AJ 59) at 8.63 MeV and the state reported by Miller et al. (MI 56) at 8.45 ± 0.07 MeV, was indicated. No check on the type of particle or on the mass of residual nucleus was made since the particle group was only observed at low energies and a forward angle.

Later measurements at higher incident proton energies have shown that the observed particle group was actually two overlapping groups of comparable intensity. One of these was from the $^{14}_{\text{N}}$(p,d) reaction to the $^{13}_{\text{N}}$ ground state while the other was from the $^{14}_{\text{N}}$(p,p') reaction to a $^{14}_{\text{N}}$ state estimated to be at 8.52 ± 0.05 MeV. The identification was made by varying the gas pressure, by interposition of foils and by kinematic checks for the mass of the target nucleus (HE 64).
The state in ^{14}N at 8.52 \pm 0.05 MeV is certainly the same state as the one seen at 8.45 \pm 0.07 MeV by Miller et al. (MI 56). Comparisons with the more precise determination of 8.49 MeV by Armstrong et al. (AR 61, DE 65), using the $^{13}\text{C}(p,\gamma)^{14}\text{N}$ reaction, show good agreement for both the $^{14}\text{N}(p,p')$ and the $^{14}\text{N}(\alpha,\alpha')$ reactions (EA 64, MI 56). For the remainder of this chapter, the state will be referred to as the 8.49 MeV state. Observation of inelastic α-particle scattering to the 8.49 MeV state establishes its $T = 0$ character.

Following the arousal of interest in 8.49 MeV state, an attempt was made to determine the spin and parity of the state by angular distribution and yield measurements of the $^{13}\text{C}(p,\gamma)$ reaction in the vicinity of 1012 keV resonance. Meanwhile, Detenbeck et al. (DE 65) measured and published yields and angular distributions of gamma-rays from several small resonances in the $^{13}\text{C}(p,\gamma)$ reaction. However, recent correspondence (DE 67) has disclosed an unsatisfactory feature of the angular distribution measurements of these workers.

Because of problems with target uniformity and stability, Detenbeck et al. used a multiple detector array with several runs at interlaced angles. The extracted γ-ray intensities were used as input data for an analysis of the angular distribution curve, with the
Legendre polynomial coefficients and the relative normalizations for the individual runs being adjusted to achieve a least squares fit. In the extraction of the \(\gamma\)-ray intensities, large corrections were needed (DE 67) for \(\gamma\)-ray attenuation in the target and the target chamber. These corrections were uncertain (DE 67) because the attenuator angular structure was smaller than the detector aperture and because the corrections were based on the attenuation of an isotropic distribution in a situation of good geometry.

The corrections, if large, cannot be evaluated satisfactorily unless the angular distribution is known or assumed beforehand. In addition, the different detectors in the multi-detector array were not all at the same distance (DE 67) from the target making it difficult to apply accurately the correction to the angular distribution coefficients needed to allow for the finite size of the detectors. Detenbeck et al. chose not to apply this finite size correction but claim (DE 67) to absorb the uncertainty in the errors attached to the angular distribution coefficients.

This claim is unfounded, as can be demonstrated by an application of the correction appropriate to the approximate detector geometry described (DE 65). The corrections so obtained are increases of 8\%, 27\% and 70\%.
respectively for the P_2, P_4 and P_6 coefficients. If one allows for a $\pm 25\%$ uncertainty in estimating the magnitude of these increases, then the corrected experimental angular distribution of Table 2, ref. (DE 65) would become

$$W(\theta) = 1 + (0.59 \pm 0.06)P_2(\cos \theta) - (0.61 \pm 0.08)P_4(\cos \theta) + (0.12 \pm 0.12)P_6(\cos \theta).$$

This is to be compared with the published uncorrected distribution.

$$W(\theta) = 1 + (0.55 \pm 0.05)P_2(\cos \theta) - (0.48 \pm 0.06)P_4(\cos \theta) + (0.07 \pm 0.07)P_6(\cos \theta).$$

It will be noted that the change in the magnitude of the $P_4(\cos \theta)$ coefficient is large compared with the assigned error and that the magnitude of the $P_2(\cos \theta)$ coefficient is also changed significantly.

The extra smearing caused by the γ-ray attenuation is to be combined with the effect already calculated. As a result of the correction not made, the comparisons of the theoretical and smeared experimental angular distributions in Table 2, ref. (DE 65) are meaningless. Table 2 was calculated for those J^π assignments considered possible on the basis of intensity and branching ratio measurements of the three J^π assignments in this Table, the 3^+ assignment is the only one still able to match the revised experimental angular
distribution coefficients. This assignment is discarded because it would require approximately equal E3 and E1 intensities and therefore a very large E3 enhancement ($\approx 10^5$), as already discussed (DE 65). The best fit for a 4^- assignment is still the distribution for pure channel spin 0 given by Detenbeck et al.

$$W(\theta) = 1 + 0.51P_2(\cos \theta) - 0.37 P_4(\cos \theta)$$

The assignment of the quoted theoretical distribution in Table 2, ref. (DE 65), for pure channel spin 1 formation of a 4^- state is in error. It is actually the distribution for pure channel spin 0.

The differences of the theoretical $P_2(\cos \theta)$ and $P_4(\cos \theta)$ coefficients from the revised experimental values are now 2 and 3 times the quoted errors respectively. The disagreement of the revised experimental coefficients with the best fit for a 2^- assignment is similar.

Detenbeck et al. originally rejected a 2^- assignment for the 8.49 MeV state on the basis of the required inhibitions for several E1 and M1 transitions to lower lying levels. The transitions involved are between $T = 0$ levels in a self-conjugate nucleus and hence are expected (WI 60) to be inhibited. The assumed M1 radiations would have strengths of the order of 10^{-3} Weisskopf units, which are typical values (WI 60) for inhibited M1
transitions. When the strengths of the assumed El transitions are compared with the histogram (WI 60) for inhibited El transitions, it is seen that two of the strengths can fall in the known range while two can fall just outside the known range of strengths. The latter strengths (<10^{-5} Weisskopf units to the 3.95 MeV state and <2×10^{-6} Weisskopf units to the ground state) are out of the known range by factors of approximately 2 and 10 respectively. However, the known range of strengths has a wide distribution, covering 3 orders of magnitude. Furthermore, these two strengths are of a magnitude comparable with the strength (NE 65) of the known inhibited El transition between the 5.10 MeV state and ground state. Again, the two strengths in question are both larger than a known uninhibited El transition in a neighbouring nucleus (from the $\frac{1}{2}^+$ state at 7.55 MeV in $^{15}_0$ to the $\frac{1}{2}^-$ ground state, having a strength of approximately 10^{-6} Weisskopf units). Therefore, contrary to the previous assertion (DE 65), a 2^- assignment cannot be ruled out on the basis of intensity measurements alone.

Recently, Gallmann et al. (GA 68) have populated the 8.49 MeV state of $^{14}_N$ by means of the reaction $^{12}_C(3\text{He},p)^{14}_N$. The proton group to the 8.49 MeV state was detected near 180° and the angular correlations of γ-rays in time coincidence were studied. Certain
numerical relationships must hold between the angular
distribution coefficients measured in the $^{13}\text{C}(p,\gamma)$
reaction at 8.49 MeV state and the coefficients measured
for the same transition when the populating reaction is
$^{12}\text{C}(^3\text{He},p)$ with the protons detected close to 180°.

Defining the ratio:

$$R_2 = \frac{\text{(coefficient of } P_2 \text{ in } ^{13}\text{C}(p,\gamma))}{\text{(coefficient of } P_2 \text{ in } ^{12}\text{C}(^3\text{He},p\gamma))}$$

and a similar ratio R_4; it follows that for a J^π
assignment to the 8.49 MeV state:

- $0.50 \leq R_2 \leq 1.00$ for $J^\pi = 2^\pm, 3^\pm, 4^\pm$
- $0.50 \leq R_4 \leq 1.00$ for $J^\pi = 4^\pm$
- $0.17 \leq R_4 \leq 3.00$ for $J^\pi = 3^\pm$
- $-\infty \leq R_4 \leq \infty$ for $J^\pi = 2^\mp$

Gallmann et al., after a small correction for the
finite size of their detector, find, for the 8.49 MeV to
5.10 MeV transition:

$$W(\theta) = 1 + (0.40 \pm 0.13)P_2(\cos \theta) - (0.17 \pm 0.17)P_4(\cos \theta)$$

If this is compared with the revised coefficients of
Detenbeck et al. (with zero $P_6(\cos \theta)$ coefficient), there
is only 5% probability that the ratio R_2 is in the valid
range and only a 2% probability that the R_4 ratio is in
the valid range for a 4^- assignment. These probabilities
reinforce one another, but to an uncertain extent because
the correlations between the errors in the P_2 and P_4
coefficients for these experiments are not known. However, it is clear that either the 4^- assignment (DE 65) to the 8.49 MeV state is incorrect or else that at least one of the angular distributions that have just been compared is incorrect.

In conclusion, no satisfactory spin and parity assignment has yet been made for the 8.49 MeV state of $^{14}_N$.

2. Experimental procedure

The 1.2 MV Cockcroft-Walton accelerator at the Australian National University was used to accelerate protons for the study of the 1012 keV resonance in $^{13}_C(p,\gamma)$. After passing through a 90° magnetic analyzer, the beam incident on the target had approximately a 2 keV energy spread caused by the voltage ripple on the accelerator. The beam current was integrated in order to normalize the spectra taken at the different angles.

The target, approximately 6 keV thick for protons at the resonance energy, was one that had already been used extensively in low energy measurements (HE 60) of the $^{13}_C(p,\gamma)$ cross section. It was made by cracking methyl iodide, enriched to 61% $^{13}_C$, onto a clean 0.5 m.m. thick tantalum disc, so that the carbon layer thickness was approximately 20 μgm cm$^{-2}$. The target was operated at
red heat (> 10 watts dissipation) which prevented the build-up of a residue from vapours in the vacuum system. No deterioration of this target has been observed after approximately 1 coulomb of bombardment.

The target chamber preserved cylindrical symmetry, apart from the target and the beam inlet pipe. The range of detector angles was chosen so that the beam inlet did not produce any appreciable effect on the angular distribution. The maximum angle between the detector axis and the target normal was 45°, so that angles for which the target would have been viewed edge-on were avoided. Absorption effects for the 3.4 MeV γ-rays emerging from the target chamber were 2% in the target chamber walls and a further 3.5% to 5% for those γ-rays which passed through the target backing. The detector, which could be rotated in a horizontal plane around the vertical axis of the target chamber, was an unshielded 12.7 cm diameter x 10.2 cm thick NaI(Tl) crystal located with its front face 15.6 cm from the target. Standard electronics was used to accumulate 200 channel spectra in a pulse height analyzer.

The spectra were analyzed by using the methods described in the previous chapter. The summing effect due to the simultaneous detection of both members of a cascade was not included in the analysis. Though such
double detections may cause the spectrum to be analyzed to contain contributions to the full energy peak from more than one cascade this was neglected because the amount is only approximately 1% at resonance and less off resonance. However, an additional component, being the response of the detector and its surroundings to the neutron flux from a nearby tandem accelerator being operated independently was found to be needed in the analysis. Figures 3.1 and 3.2 show the range and quality of the fits achieved.

In this way, sets of angular distribution measurements for the different gamma rays in the $^{13}\text{C}(p,\gamma)$ reaction were extracted from the complex spectra accumulated just below, on and just above the 1012 keV resonance. In addition, excitation functions for the $^{13}\text{C}(p,\gamma)$ radiations were extracted from data taken over the proton energy range from 785 keV to 1158 keV in order to define more accurately the non-resonant yield underlying the data taken at the 1012 keV resonance. These sets of data affirm the stability of the target and the adequacy of the normalization by beam current integration. The excitation functions showed a smooth dependence with satisfactory repeatability. The angular distribution of the ground state gamma ray was also smooth and repeatable above, on and below the resonance.
Figure 3.1
A gamma-ray spectrum from the 13C(p,γ) reaction, obtained at a proton energy just below the 1012 keV resonance, at an angle of 90° to the beam. The solid line shows the extent and quality of the fit achieved as discussed in the text.
Figure 3.2

A gamma-ray spectrum from the $^{13}\text{C}(p,\gamma)$ reaction, obtained at the 1012 keV resonance, at an angle of 90° to the beam. The solid line shows the extent and quality of the fit achieved as discussed in the text.
However, some difficulty was experienced in keeping the proton beam at the resonance energy, within the limits imposed by the target thickness and the beam energy spread. This was checked by a determination of the intensity of the radiation from the 5.10 MeV state to the ground state. This radiation is negligible off resonance. Because of the uncontrolled radiation from the neutron flux already mentioned, it was not satisfactory to use a single channel analyzer window set to count the 5.10 MeV radiation in a monitor crystal. Instead, after computer analysis, those spectra that showed a reduced intensity of 5.10 MeV radiation were rejected. Those spectra rejected also showed, in approximately the same ratio, a reduction in the intensity of the other resonant gamma rays observed. The spectra remaining were used as the basis for the results given in the next section.

3. Results

The principal means of de-excitation of the 8.49 MeV state is by a cascade through the 5.10 MeV state. Figures 3.3 and 3.4 show the extracted intensities of the transitions from the 8.49 MeV state to the 5.10 MeV state and from the 5.10 MeV state to the ground state respectively at proton energies below, at and above
Figure 3.3

The angular distribution of 3.38 MeV gamma-rays observed above, on and below the 1012 keV resonance in 13C(p,γ) is shown. The curves are the least-squares fits to the data.
INTENSITY (COUNT/10µC)

ON RESONANCE
8.49 → 5.10
5.69 → 2.31

OFF RESONANCE
5.69 → 2.31
Figure 3.4

The angular distribution of 5.10 MeV gamma-rays observed above, on and below the 1012 keV resonance in 13C(p,γ) is shown. The curves are the least squares fits to the data.
INTENSITY (COUNT/10μC)

ON RESONANCE

OFF RESONANCE

5-10 → 0

Θ DEGREE

0° 15° 30° 45° 60° 75° 90°
The angular distribution of 5.69 MeV gamma rays observed above, on and below the 1012 keV resonance in $^{13}\text{C}(p,\gamma)$ is shown.
INTENSITY (COUNT/10 μC)

ON RESONANCE

ABOVE RESONANCE

BELOW RESONANCE

θ DEGREE

0° 15° 30° 45° 60° 75° 90°
resonance. The intensity of 5.10 MeV radiation is negligible off resonance implying that the observed off resonance yield of 3.38 MeV γ-rays (Figure 3.3) is not from a transition populating the 5.10 MeV state. The transition between the 5.69 and 2.31 MeV states has the same energy. Non-resonant transition from the 5.69 MeV state to the ground state was observed (Figure 3.5) with an intensity consistent with the known cascade branching ratio (WA 64) assuming that the observed 3.38 MeV γ-rays are, off resonance, entirely due to the transition from the 5.69 to the 2.31 MeV state. Therefore, Figure 3.3, on resonance, is interpreted as the sum of the resonant transition from the 8.49 to 5.10 MeV state and the non-resonant transition from the 5.69 to the 2.31 MeV state.

In the vicinity of the resonance, a 2.80 MeV γ-ray was observed and its intensity was extracted. This exhibited resonant behavior with an appreciable anisotropic non-resonant component. The resonant part has been interpreted as the transition between the 5.10 and the 2.31 MeV states. The observed intensity is consistent with the known branching ratio (WA 64) of the 5.10 MeV state and the observed intensity of the transition between the 5.10 MeV state and the ground state. The non-resonant part of the observed 2.80 MeV γ-ray intensity is the sum of the transitions from the
continuum to the 5.69 MeV state and from the $^{12}\text{C}(p,\gamma)^{13}\text{N}$ reaction. Radiation from the latter is expected to come from the target with a yield of the same order of magnitude as the other 2.8 MeV γ-rays. It may also originate on nearby collimators which are cooler than the target and thus more likely to build up contamination. This may be the cause of some of the anisotropy of this composite radiation. The uncertainties in composition mean that little information has been extracted from the 2.80 MeV γ-ray intensity.

Detenbeck et al. (DE 65) have found that the 5.83 MeV state is populated in approximately 20% of the decays of the 8.49 MeV state. The decay of the 5.83 MeV state is predominantly (AJ 59) by a transition to the 5.10 MeV state with a small branch to the ground state. No attempt was made to extract intensities for the transitions from the 8.49 MeV state to the 5.83 MeV state or from the 5.83 MeV state to the 5.10 MeV state, but a search for 5.83 MeV radiation showed that no significant amount was present. On the basis of the measurements of Detenbeck et al. and the known branching ratio of the 5.83 MeV state, the intensity expected was comparable with the estimated errors in the extraction. However, there is an excess of γ-rays de-exciting the 5.10 MeV state compared with those populating it directly.
This excess is in good agreement with the measurements of Detenbeck et al. on the strength of the cascade through the 5.83 MeV state. Thus Figure 3.4, on resonance, is interpreted as the sum of two angular distributions in which the 5.10 MeV state is populated by two different transitions. The direct transition should account for approximately 85% of the decays of the 5.10 MeV state.

Small amounts of radiation populating and de-exciting the 4.91 MeV state were found to be needed. These radiations were non-resonant, as was the radiation populating the 3.95 MeV state. The decay of the 3.95 MeV state is known (AJ 59) to proceed predominantly via the 2.31 MeV state. As a simple check on the extracted intensities, the strength of a 3.95 MeV component was estimated and was found to be negligible at all energies and angles. Negligible intensities were also found for assumed transitions from the 6.21, 6.44 and 7.03 MeV states to the ground state (< 1% of the non-resonant transitions and < 3% of the decays of 8.49 MeV state).

Radiation from the continuum to the 2.31 MeV state would have an energy, at the resonance, of 6.18 MeV. This was used as a component in the spectrum fits. However, close inspection of Figure 3.1 shows that a slightly lower component (6.13 MeV) would have provided a better fit. In addition, the yield was lower in the
sequence of runs taken at the resonance than in the sequences taken immediately (± 10 keV) above and below resonance as can be seen immediately in Figures 3.1 and 3.2. This anomalous behaviour has been attributed to \(^{19}F \) contamination, either on the target or on nearby collimators. The nearest \(^{19}F(p,\alpha\gamma)^{16}O \) resonance is at a proton energy of 935 keV (\(\Gamma = 8.6 \) keV) and is predominantly (AJ 59) a transition through the 6.13 MeV state of \(^{16}O \). The level of contamination, if assumed to be on the surface of the target, would be approximately \(5 \times 10^{-9} \) gm cm\(^{-2}\). Such a level of contamination has been found often in low-intensity \(\gamma \)-ray experiments and is likely to vary substantially between sequences of runs. Because of the masking effect of the contamination, only an upper limit of 8\% to the strength of resonant transitions to the 2.31 MeV state can be given.

The remaining transition is from the continuum to the ground state. It is the most intense in the spectrum and is well resolved. The intensities measured above and below are consistent with the excitation function measured over a wider range of energies and allow interpolation to find the non-resonant yield at the resonance energy. When this is done, an excess count rate at the resonance of \(0.18 \pm 0.38 \) count/10 \(\mu \)C is found. This excess count includes the double detection effect in
the resonant 2-step cascade. On the assumption of no angular correlation in the cascade, the estimated effect is 0.15 count/10 \(\mu \)C. If a subtraction of 0.15 ± 0.15 count/10 \(\mu \)C is made to allow for this effect, the resonant ground state transition intensity is 0.0 ± 0.4 count/10 \(\mu \)C corresponding to an upper limit for the resonant ground state transition of 4\% of the decay of the 8.49 MeV state. The present estimate is approximately 40\% of the upper limit set by Detenbeck et al. (DE 65).

The data of Figure 3.3 have been analyzed separately, on and off resonance, into sums of Legendre polynomials which were subtracted to give the angular distribution of the resonant \(\gamma \)-ray. After correction for the finite size of the detector, the angular distribution for the transition from the 8.49 MeV state to \(2^- \) state at 5.10 MeV is

\[
W(\theta) = 1 + (0.47 \pm 0.06)P_2(\cos \theta) - (0.34 \pm 0.08)P_4(\cos \theta)
\]

The angular distribution of the radiation from the 5.10 MeV state to the ground state, from Figure 3.4 after correction for the finite size of the detector, is found to be

\[
W(\theta) = 1 - (0.21 \pm 0.05)P_2(\cos \theta) + (0.02 \pm 0.08)P_4(\cos \theta)
\]
When the analyses included a coefficient for $P_0(\cos \theta)$, this was found to be consistent with zero and the lower order coefficients were unchanged.

4. Discussion

The comparison of the above angular distributions with the theoretical predictions can be limited to those assignments to the 8.49 MeV state with $J \leq 4$. Likewise, only dipole and quadrupole radiation from the 8.49 MeV state to the 5.10 MeV state need be considered. The measured strength of the transition from the 8.49 to the 5.10 MeV state is $\frac{\Gamma_\gamma}{\Gamma_P} = 0.008$ eV, in agreement with the measurement of Detenbeck et al. (DE 65). Any octupole radiation of sufficient strength to affect the angular distribution coefficients would require an unreasonable large enhancement ($\times 10^3$) over the Weisskopf single particle estimate (WI 60).

Of the spin assignments to the 8.49 MeV state with $J \leq 4$, $J = 0^\pm$ and $J = 1^\pm$ can be rejected immediately because of the observed complexity of the distribution of Figure 3.3. The assignment $J = 3^-$ may be rejected because it predicts only a positive P_4 coefficient in Figure 3.3 for any mixture of d and g wave protons and any mixture of M1 and E2 radiation in the first transition.
The assignment $J = 3^+$ is rejected on two grounds. Firstly, to fit the angular distribution for the transition from the 8.49 MeV state to the 5.10 MeV state, the parameters are such that an E3 enhancement of approximately 3×10^4 is required. Secondly, the parameters required to fit the first transition are not consistent with the second transition (5.10 MeV state to the ground state) using the known E3/M2/E1 mixing (NE 65, GO 66, WA 65) of the second transition.

As mentioned in the introduction, a 2^- assignment cannot be rejected on the basis of intensity measurements. A 2^+ assignment can be shown, from intensity measurements, to be unlikely. The f:p wave penetrability ratio is $\approx 1:400$ while the required f:p wave intensity ratio, for a fit to the angular distribution, is $\approx 1:4$. Also the enhancement of the M2 radiation strength required for a fit to the angular distribution data is approximately 30 times the Weisskopf single particle estimate. Both these intensities are improbable. However, using the known parameters (NE 65, GO 66, WA 65) of the transition from the 5.10 MeV state to the ground state, both the 2^- and the 2^+ assignments may be rejected. They both lead to a $P_2(\cos \theta)$ coefficient for the second transition that is close to zero and is significantly different from the experimental value of -0.21 ± 0.05.
An assignment of 4^+ to the 8.49 MeV state allows a fit to the angular distribution for the first transition with pure f-wave formation and pure M2 decay. The same parameters fit the angular distribution of the second transition, using known parameters (NE 65, GO 66, WA 65). However, the M2 enhancement in the first transition is required to be 40 times the Weisskopf estimate. Since this M2 transition would be expected to be inhibited (WA 58) rather than enhanced, it is concluded that the 4^+ assignment can be rejected on the basis of these intensity measurements.

The assignment of 4^- to the 8.49 MeV state allows a fit to the angular distribution for the first transition. The theoretical distribution for formation by pure channel spin 0 is

$$ W(\theta) = 1 + 0.51 P_2(\cos \theta) - 0.37 P_4(\cos \theta) $$

and by pure channel spin 1 is

$$ W(\theta) = 1 + 0.43 P_2(\cos \theta) - 0.18 P_4(\cos \theta) $$

while the experimental distribution is

$$ W(\theta) = 1 + (0.47 \pm 0.06) P_2(\cos \theta) - (0.34 \pm 0.08) P_4(\cos \theta) $$

Agreement with the distribution for pure channel spin 0 is good, but we cannot rule out a considerable contribution from channel spin 1.

The 4^- assignment would require an enhancement of a factor of 5 for E2 radiation to the 5.10 MeV state. It
The relationship between the mixing ratios M_2/E_1 and E_3/E_1 is shown for the transition from the 5.10 MeV state of 14N to the ground state. The limits of the diagram are based approximately on limits given by Warburton et al. (WA 65). The solid curves are based on the angular distribution results, $W(\theta) = 1 + A_2 P_2 (\cos \theta) + A_4 P_4 (\cos \theta)$, of the present experiment. The hatched area (one of four, the others being excluded (WA 65) by Warburton et al.) defines the region of mixing ratios acceptable (\pm standard deviation) to the present experiment. Also shown on the diagram are the regions acceptable to other experiments (NE 65, WA 64, GQ 66, WA 65, BI 64, WA 59).
\[\arctan \left(\frac{E_3}{E_I} \right) \text{ DEGREES.} \]

(a) OVERALL VIEW

(b) EXPANDED VIEW
also requires an inhibition by a factor of 5×10^{-4} for M1 radiation to the 5.83 MeV state and by a factor of at least 10^{-4} for E1 radiation to the 6.44 MeV state. Both enhancements are reasonable (WI 60, WA 60) and the inhibitions required for the dipole radiations are also consistent with experience (WI 60).

For the second transition (from the 5.10 MeV state to the ground state) the coefficients of the angular distribution are insensitive to the channel spin mixture required for formation of a 4^- state at 8.49 MeV. They are also not significantly affected by the population ($\approx 15\%$) of the 5.10 MeV state through a cascade involving the 5.83 MeV state.

The angular distribution coefficients for the second transition may therefore be used to derive values of the E1/M2/E3 mixing ratios for the second transition. The results are shown in Figure 3.6 where a comparison is made with other experiments. It is seen that the early result of Warburton et al. (WA 64, WA 65) defines a region of the diagram which is consistent with all other measurements (NE 65, GO 66, BI 64, WA 59) including the present ones.

A further test may be applied to the present results, viz., a comparison with the $^{12}\text{C}(^3\text{He},p\gamma)$ experiment of Gallmann et al. (GA 68). The ratios R_2 and R_4 already
defined are used. As remarked earlier, the limits to these ratios apply to comparisons of the $^{12}\text{C}({}^3\text{He},p\gamma)$ and $^{13}\text{C}(p,\gamma)$ angular distribution coefficients for the same transition, regardless of the complexity of the path by which that transition is reached. The only restriction is the limitation of the $^{12}\text{C}({}^3\text{He},p\gamma)$ reaction to the population of $M = 0$ and ± 1 substates in the initial state of ^{14}N (with $2 \leq J \leq 4$).

Gallmann et al. quote an angular correlation for the first transition of

$$W(\theta) = 1 + (0.40 \pm 0.13)P_2(\cos \theta) - (0.17 \pm 0.17)P_4(\cos \theta)$$

and for the second transition

$$W(\theta) = 1 + (0.13 \pm 0.10)P_2(\cos \theta) - (0.08 \pm 0.12)P_4(\cos \theta)$$

The first transition gives a satisfactory comparison with ratios R_2 and R_4 of approximately unity indicated, consistent with the hypothesis of a spin and parity assignment of 4^- to the 8.49 MeV state. For the second transition, the ratio R_4 is not well defined and so does not give a useful comparison. The ratio R_2 has a very small probability of being in the valid range and close to unity as suggested by the first transition. This suggests that either one or both of the experimental distributions is in error or that unrealistic estimates of the standard deviations may have been made. It should also be noted that the $P_2(\cos \theta)$ coefficient quoted by
Gallmann et al. is not in good agreement with a 4^- assignment to the 8.49 MeV state. Depending upon the source of information about the mixing ratios in the second transition (NE 65, GO 66, WA 65) the probability lies between 3.5% and 0.5% that the discrepancy observed (between the $P_2(\cos \theta)$ coefficient of Gallman et al. and the coefficient predicted by assuming a 4^- state at 8.49 MeV) is due to chance.

Because of the trouble experienced, during the present experiment, in keeping to the optimum beam energy, the possibility must be considered that the data retained may have been distorted by a drift from the resonance. It is possible that the selection of data has introduced a slight bias in the results by rejecting results which had suffered a statistical fluctuation downward in intensity. There were, however, few ambiguous results. Such a bias could change the angular distribution coefficients slightly and thus affect, to a small degree, the mixing ratios derived from the present experiment. It could not alter the spin and parity assignment itself.

It is believed that a major normalization of the present data may be rejected on two grounds. Firstly, the χ^2 test shows a good fit to the data for both transitions, so that a $P_6(\cos \theta)$ coefficient is not needed. With significantly distorted data, there is a
very high degree of probability that a $P_6(\cos \theta)$
coefficient would be needed to fit four data points.
Secondly, no major renormalization exists that will
simultaneously make probable the validity of the ratio
R_2 for both the first and the second transition in the
comparison of the work of Gallmann et al. with the
present work. The valid range of R_2 is independent of
the possible spin and parity assignments of the 8.49
MeV state.

For instance, a renormalization of the data on the
second transition to an extent that makes it just
probable to have a valid ratio R_2 for the second
transition has already increased the ratio R_2 for the
first transition enough to make its validity improbable.

A renormalization of the data for the first
transition to match the revised coefficients of Detenbeck
et al. (DE 65) would involve the rejection of the 4^-
assignment, leaving only 2^- as a possible assignment that
gives a fit to the first transition and that is not
rejected by intensity arguments. With this
renormalization, a large $P_4(\cos \theta)$ coefficient would be
generated in the second transition distribution,
sufficient to reject the 2^- assignment, leaving no
satisfactory assignment. In addition, with this
renormalization, there is a difficulty with the validity
of R_2 in the comparison of the $^{12}\text{C}(^{3}\text{He},p\gamma)$ and the $^{13}\text{C}(p,\gamma)$ data for the first transition.

5. Summary

It has been shown that the revised data of Detenbeck et al. (DE 65) are inconsistent with the assignment 4^- to the 8.49 MeV state of ^{14}N. In addition, these revised data are inconsistent with the results of Gallmann et al. (GA 68) on the transition from the 8.49 to the 5.10 MeV state. A revision of the data (DE 65) because of the omission of the correction for the finite size of the γ-ray detectors results in systematic changes in the angular distribution coefficients which are inconsistent with the results of Gallmann et al. and with the present results. Accordingly, the $^{13}\text{C}(p,\gamma)$ measurements of Detenbeck et al. are rejected.

The present experiment, measuring both the transition from the 8.49 MeV state to the 5.10 MeV state and from the 5.10 MeV state to the ground state, is consistent with a 4^- assignment and with the mixing parameters already known for the second transition. There is agreement between the results of the present experiment and the results of Gallmann et al. for the first transition. For the second transition, there is disagreement with the results of Gallmann et al., which
are also in marginal disagreement with the assignment 4^-. The disagreement is in the magnitude of the coefficient of $P_2(\cos \theta)$. However, the value of this coefficient predicted by the 4^- assignment lies between the experimental values with the predicted value by increasing slightly the estimate of the standard deviation of the experimental results or by relaxing slightly the standards required for agreement. As they stand at present, a numerical value may be chosen for the $P_2(\cos \theta)$ coefficient which is just on 2 standard deviations from both the experimental values and which is consistent with other knowledge of the second transition.

It would be preferable that both experiments should be repeated in order to resolve the disagreement. However, these relaxations in the standard required for agreement are not such as to allow the assignment 2^- to become a possibility. It is therefore believed that the present measurements establish uniquely the assignment 4^- to the 8.49 MeV state of $^{14}_N$.
FIGURE CAPTIONS

Figure 3.1 A gamma-ray spectrum from the $^{13}\text{C}(p,\gamma)$ reaction, obtained at a proton energy just below the 1012 keV resonance, at an angle of 90° to the beam. The solid line shows the extent and quality of the fit achieved as discussed in the text.

Figure 3.2 A gamma-ray spectrum from the $^{13}\text{C}(p,\gamma)$ reaction, obtained at the 1012 keV resonance, at an angle of 90° to the beam. The solid line shows the extent and quality of the fit achieved as discussed in the text.

Figure 3.3 The angular distribution of 3.38 MeV gamma-rays observed above, on and below the 1012 keV resonance in $^{13}\text{C}(p,\gamma)$ is shown. The curves are the least-squares fits to the data.

Figure 3.4 The angular distribution of 5.10 MeV gamma-rays observed above, on and below the 1012 keV resonance in $^{13}\text{C}(p,\gamma)$ is shown. The curves are the least-squares fits to the data.
Figure 3.5 The angular distribution of 5.69 MeV gamma rays observed above, on and below the 1012 keV resonance in 13C(p,γ) is shown.

Figure 3.6 The relationship between the mixing ratios M_2/E_1 and E_3/E_1 is shown for the transition from the 5.10 MeV state of 14N to the ground state. The limits of the diagram are based approximately on limits given by Warburton et al. (WA 65). The solid curves are based on the angular distribution results,

$$W(\theta) = 1 + A_2 P_2(\cos \theta) + A_4 P_4(\cos \theta),$$

of the present experiment. The hatched area (one of four, the others being excluded (WA 65) by Warburton et al.) defines the region of mixing ratios acceptable (+ standard deviation) to the present experiment. Also shown on the diagram are the regions acceptable to other experiments (NE 65, WA 64, GO 66, WA 65, BI 64, WA 59).
1. Introduction

The rate of the \(^{14}\text{N}(p,\gamma)^{15}\text{O} \) reaction is of interest in the C-N-O cycle of stellar nuclear reactions since the abundance of \(^{14}\text{N} \) in equilibrium is determined by this reaction rate at stellar proton energies. The non-resonant radiation from the \(^{14}\text{N}(p,\gamma) \) reaction has been studied by Hebbard et al. (HE 63) in the proton energy range from 210 to 1070 keV. In order to calculate the cross sections at stellar energies for each of the transitions through bound states in \(^{15}\text{O} \) and the ground state, the experimentally obtained intensities were fitted with theoretical resonant and non resonant curves as a means of extrapolating the calculated cross section factors to the stellar proton energies. Calculations were made using the work of Christy and Duck (CH 61) for the direct capture amplitude and a constant amplitude was included to account for any distant broad s-wave resonances. The two resonances explicitly introduced were the 278 keV \((1^+)\) resonance and the 1060 keV \((2^+)\) resonance. Because of the unknown characteristics of any
distant levels, different extrapolations could be produced by using different components in the fit.

The present work aimed to extend the measurements from 1.7 to 3.0 MeV to obtain information concerning the higher energy resonances in order that the low energy analysis could be performed with more certainty. Furthermore, there is current interest in the mirror nuclei 15O and 15N (WA 65a, EV 66). Comparison of experimental data on level positions provides tests of the assumptions of shell model theory and charge independence of nuclear forces.

The decays of the resonance levels in the incident proton energy range 1.82 to 3.0 MeV have not been well studied. Duncan and Perry (DU 51) measured the yield of positrons from the decay of ground state of 15O for bombarding proton energies between 0.25 and 2.5 MeV. Absolute cross sections were obtained and all of the presently known levels in the region of excitation energy 7.5 to 9.6 MeV were observed. The reaction 14N(p,γ) in the energy range studied has been suggested previously (FE 59, BA 63, EV 66, EV 67) as the combination of non-resonant direct capture and resonant compound nucleus processes. The resonant portion was attributed to a broad level, the width of which is about 300 keV (EV 67, LA 67), centered at 2.40 MeV and two narrow resonances at
Figure 4.1

Energy levels and decay scheme of ^{15}O.
2.35 and 2.48 MeV which correspond to levels at 9.49 and 9.60 MeV in ^{15}O. Ferguson et al. (FE 59) suggested the broad level is most likely to have a J^π of $\frac{1}{2}^+$; however, the recent $^{14}N(p,p')$ experiment of Lambert et al. (LA 67) demonstrates that it is a $\frac{3}{2}^+$ level.

A level at 9.67 MeV was first reported by Olness et al. (OL 58) but not observed in recent work of Evans (EV 67). However, Lambert et al. (LA 67) observed the level and assigned the spin as either $\frac{7}{2}^-$ or $\frac{9}{2}^-$. During the course of investigation of the present work, Evans (EV 67) reported measurements of the $^{14}N(p,\gamma)^{15}O$ reaction for proton energies between 1.85 to 2.60 MeV. He studied the decay schemes of the two narrow resonances at 9.49 MeV ($E_p = 2.352$ MeV) and 9.60 MeV ($E_p = 2.480$ MeV) in some detail. The broad resonance at 9.53 MeV was examined only qualitatively except for the ground state radiation.

Figure 4.1 summarizes the level and decay scheme of the ^{15}O nuclei from the work of Warburton et al. (WA 65a) and Evans (EV 67).

2. Specific problems

Experimental difficulties arise from the measurements of γ-ray spectra of the $^{14}N(p,\gamma)$ reaction with NaI(Tl) detectors since the available resolution is inadequate to
separate transitions to the doublets at 6.857 and 6.789 MeV and at 5.240 and 5.188 MeV, and to resolve the 6.180 MeV (6.180-0) γ-ray from the 6.129 MeV γ-ray due to possible fluorine contamination.

There are also problems associated with choice of target. If natural target material is used, the small proportion of ^{15}N produces a large yield of 4.43 MeV γ-ray from the $^{15}\text{N}(p,\alpha\gamma)^{12}\text{C}$ reaction. Though isotopic targets, made by bombarding tantalum with magnetically analyzed $(^{14}\text{N})_2^+$ ions from a Van de Graaff, can reduce the strong 4.43 MeV radiation, the nitrogen distribution in the targets is not sufficiently uniform to measure reproducible excitation curves because of slight changes in the beam position between runs (EV 67). Thin targets made by sputtering tantalum in an atmosphere of nitrogen onto a tantalum backing were found (EV 67) to have considerable fluorine contamination, resulting in copious amounts of 6.13 to 7.12 MeV radiation. Targets made by diffusing nitrogen into a suitable backing by heating the backing material to red heat in an atmosphere of ammonia have been previously used in this laboratory at low proton energies (BA 63, HE 63). Careful manufacture is necessary to ensure that nitrogen does not diffuse deep into the target, thus smearing the excitation function. Target thicknesses of the order of 40-60 keV at 0.8 MeV
proton energy have been found previously for targets made by this method (BA 63). Targets made by evaporating adenine \((C_5H_5N_5) \) onto a backing material have the advantage of well defined thickness; however, the compound is easily decomposed and introduces carbon as a source of background radiation.

3. Experimental details

The proton beam from the A.N.U. tandem Van de Graaff accelerator was used to provide proton beams of ~ 1 \(\mu \)a over the energy range of 1.7 to 3.0 MeV. Gamma-ray spectra were obtained at 20 keV intervals with an uncollimated 5" x 4" NaI(Tl) crystal, 5.62 cm from the target, at an angle of 55° to the beam direction. Spectra were collected on an RIDL pulse height analyzer in the 200 channel mode.

In the later stage of this work, a 20 c.c. Ge(Li) detector became available and a number of spectra at selected energies were measured with the detector. These spectra were of great value in the accurate determination of the energies of \(\gamma \)-rays present in the spectra and served as a check on the analysis of the NaI(Tl) data.

For most of the measurements, nitrided tantalum targets, made by heating tantalum to a red heat in an
Figure 4.2

Experimental arrangement for the coincidence measurements.
atmosphere of ammonia containing natural nitrogen, were used. Such targets were available and no serious problem with fluorine contamination had been reported previously (BA 63, HE 63). However, after analysis of spectra obtained with the targets, it was found that the effects of fluorine contamination at higher proton energies were serious. Furthermore, nitrogen had diffused deep into the targets as was evident from the contributions to the γ-ray yield from resonances well below the bombarding energy.

To eliminate fluorine contamination and the strong 4.43 MeV γ-ray intensity, some coincidence measurements were performed with a tantalum nitride target and also with an adenine target of well defined thickness. The adenine target was made by evaporating a thin film of adenine on a gold covered copper backing which was screwed onto a water cooled target holder during the bombardment. The target proved to be not stable for beam currents of ~ 1 μA, losing nitrogen at a detectable rate. These spectra were used to check the results obtained from the NaI(Tl) spectra although some uncertainty was introduced by the nitrogen loss.

Figure 4.2 shows the experimental arrangement for the coincidence measurements. Two uncollimated 5" x 4" NaI(Tl) detectors, one inch apart with the target at the
center, were used to obtain coincidence spectra of cascade γ-rays. Timing single channel analyzers (T.S.C.A.) provided logic pulses after energy selection for the fast coincidence unit at the zero cross over point of the double delay line clipped linear pulses. The lower level discriminator of the timing single channel analyzer for detector 2 was set above 511 keV to minimize the contribution of non-cascade radiations in the gated spectra from detector 1.

4. Measurement of target composition

A knowledge on the distribution of nitrogen in the diffused nitrogen targets which were used for most of the experiment was necessary in order to calculate the cross section of the reaction.

The 0.4% concentration of ^{15}N in natural nitrogen enabled the nitrogen distribution to be calculated by measuring the yield of 4.43 MeV radiation from the narrow 429 keV resonance ($\Gamma = 0.9$ keV) in the $^{15}\text{N}(p,\alpha\gamma)^{12}\text{C}$ reaction as a function of energy. Figure 4.3 shows the measured yield curve. The excitation function was extended to 900 keV to allow the estimation of the contribution from the nitrogen deep in the target. The correction for the non-resonant radiation which contributes to the measured yield was estimated by using
Figure 4.3

The excitation function of the 4.43 MeV γ-ray from the $^{15}\text{N}(p,\alpha\gamma)$ reaction in the tantalum nitride target used for the $^{14}\text{N}(p,\gamma)$ measurements (Set 2 and 3).
the excitation function of the 4.43 MeV γ-ray measured by Hebbard (HE 64) between proton energies of 300 to 1000 keV.

The yield is related to the stopping cross section per ^{15}N atom by the following equation:

$$Y = \left[\frac{2\pi^{2}\alpha_{1}^{2}w_{p}\alpha_{1}}{\Gamma} \right] \frac{1}{\epsilon_{N}^{15}} \frac{EWQ}{e} \quad (4.1)$$

where $\epsilon_{N}^{15} =$ the average stopping cross section per ^{15}N atom

$E =$ efficiency of the detector

$W =$ a correction factor for the angular distribution of the resonant radiation at the angle of detection (KR 53)

$\frac{Q}{e} =$ the number of protons incident on the target

A value of 0.260 keV barn was used for the integrated cross section, $2\pi^{2}\alpha_{1}^{2}w_{p}\alpha_{1}/\Gamma$, of the resonance. Hebbard et al. (HE 63) have discussed the corrections involved in obtaining this figure from the data of Schardt et al. (SC 52) and Kraus et al. (KR 53).

The average stopping cross section per ^{15}N atom is also given by

$$\epsilon_{N}^{15} = \frac{\Delta E}{N_{N}^{15}} \quad \text{eV-cm}^{2} \quad (4.2)$$

where ΔE is the energy loss in the target.
Equation 4.1 enabled the calculation of e_{N15} and equation 4.2 the calculation of N_{N15}, the number of ^{15}N atoms/cm2 in the target, which, in turn, determined N_{N14}, the number of ^{14}N atoms/cm2 in the target from the known proportion of ^{14}N and ^{15}N in natural nitrogen.

ΔE can have a value equivalent to total target thickness for a well defined target or can be divided into layers of desired thickness so that the number of nitrogen atoms/cm2 for each layer can be calculated. ΔE is related to N_{N14} and N_{Ta}, which is the number of tantalum atoms/cm2 in the target, by equation 4.3.

$$\Delta E = N_{N14} \cdot e_{N14} + N_{Ta} \cdot e_{Ta} \quad \cdots \cdots (4.3)$$

e_{N14} and e_{Ta} are the stopping cross sections per atom for nitrogen-14 and tantalum at the average proton energy within the target.

An iterative calculation was performed in which the total number of nitrogen-14 and tantalum atoms was calculated layer by layer in 5 keV steps within the target. The composition of the front layer of the target, where the density of nitrogen atoms was greatest, gave a tantalum to nitrogen ratio of 0.62. This is in agreement with the composition of a previous target made by the same method (HE 63).
5. Analysis of data

(a). Singles NaI(Tl) data

The singles spectra obtained with a NaI(Tl) detector comprised the main part of the data of this experiment. The general methods of analysis have been discussed in Chapter 2 but several details are noted.

The coincidence sum spectra from simultaneous detection of cascade γ-rays, which were not included in the analysis of the $^{13}\text{C}(p,\gamma)^{14}\text{N}$ data, were found to be necessary as components in the fits. The transition from the resonance and off resonance level to the ground state constituted about 80% of the total decay in the $^{13}\text{C}(p,\gamma)^{14}\text{N}$ reaction. However, this is not the case for the present study as the spectra were collected over a wide range of proton energies and the relative intensity of each cascade was not known before the analysis. From Figure 4.1, it is observed that the ground state transition ranges from 3 to 93% for resonances observed between $E_p = 275$ to 2480 keV. The coincidence sum spectra included were the cascades from the compound state to the 5.2 and the 6.8 MeV doublets. The cascade through the 6.18 MeV state was found to be very weak throughout the analysis and was not included in final fits.
The 4.43 MeV γ-ray is a particular problem as the yield was found to be an order of magnitude larger than the yields of cascade γ-rays through the bound states. Furthermore, it is strongly broadened; the broadening increases markedly with energy and a resonance for the $^{15}\text{N}(p,\alpha\gamma)$ reaction exists at 3.12 MeV. Thus it was found impossible to fit the data over any part of the 4.43 MeV γ-ray peak without seriously affecting the fit in the region of the 5.2 MeV doublet, except for the spectra taken at lower proton energies.

Another problem was the presence of 6.13, 6.92 and 7.12 MeV γ-rays from $^{19}\text{F}(p,\alpha\gamma)^{16}\text{O}$ reaction which had an intensity of the same order as the $^{14}\text{N}(p,\gamma\gamma)$ gamma-rays in the same energy region. An additional feature of the problem was the considerable Doppler broadening of the 6.92 and 7.12 MeV γ-ray peaks. Calculations of the maximum Doppler shift at the angle of detection for the emission of the intermediate α-particles at different angles indicate a possible broadening of up to 90 keV. This broadening caused the extracted intensity of the 6.79 MeV γ-ray to spread considerably between different runs at the same proton energy. The presence of the 6.13 MeV γ-ray prevented meaningful extraction of the 6.18 MeV γ-ray intensity since the intensity of the latter was found to be much weaker from the Ge(Li) spectra. The
Figure 4.4

NaI(Tl) spectra of the $^14\text{N}(p,\gamma)$ reaction at $E_p = 1.80$, 2.48 and 2.90 MeV. Circles are the data and least squares line shape fit is the solid line.
COUNTS PER CHANNEL

\[E_p = 1.80 \text{ MeV} \]
\[\times 30 \]

\[E_p = 2.48 \text{ MeV} \]
\[\times 7 \]

\[E_p = 2.90 \text{ MeV} \]
\[\times 8.5 \]

GAMMA RAY ENERGY - MeV
extracted intensity of the 6.13 MeV γ-ray provided only an upper limit to the intensity of the 6.18 MeV γ-ray as the NaI(Tl) detector can not resolve these two γ-ray energies.

It was found necessary to include the ground state transition of resonances which were excited deep in the target as components in the fit due to the nitrogen distribution. This was especially important for spectra taken with proton energies above 2.40 MeV, because of the ground state γ-ray corresponding to either or both of the 9.49 and 9.60 MeV resonance levels is several times stronger than that of the compound state formed at the bombarding energy. The exclusion of these two components made the fits unacceptable. The contributions from these two resonances to the 5.24 MeV γ-ray intensity were subtracted in proportion to the extracted ground state γ-ray intensities according to the decay scheme shown in Figure 4.1. The corrections for the 6.79 MeV and the 6.18 MeV γ-ray intensities were not necessary since the contributions from these levels are insignificant and furthermore, the scatter of the data points due to fluorine contamination makes the correction meaningless.

Figure 4.4 shows the fits of NaI(Tl) data taken at $E_p = 1.80, 2.48$ and 2.90 MeV respectively.
Figure 4.5

Ge(Li) spectra of the $^1_4\text{N}(p,\gamma)$ reaction at $E_p = 2.51$ and 2.60 MeV.
(b). Singles Ge(Li) data

The singles Ge(Li) spectra measured at $E_p = 2.36$, 2.51 and 2.60 MeV identified which of the doublet states were excited by the cascade γ-rays and allowed examination of the 6 MeV peak. The 6 MeV peak was determined to be 6.13 MeV and the 6.18 MeV peak was too weak for definite identification. The doublet member associated with the gamma-ray near 6.8 MeV was found to be the 6.79 MeV level in agreement with the observation that the 6.86 MeV state decays 100% to the 5.24 MeV state (WA 65a) and likewise the gamma-ray near 5.2 MeV was identified as being associated with the 5.24 MeV level.

The Ge(Li) spectra justify the inclusion of resonance components from resonances excited deep in the target in the fit for the analysis of NaI(Tl) spectra. Figure 4.5 shows spectra measured at $E_p = 2.51$ and 2.60 MeV. The peak observed at 9.72 MeV is due to interactions of 2.60 MeV protons with the nitrogen in the front layers of the target where the nitrogen concentration is high whereas the peak at 9.60 MeV is due to the ground state transition from the 9.60 MeV state which is excited deep in the target. Thus it was possible to derive the 'thin target' yield of the ground
Figure 4.6

Coincidence spectra measured with an adenine target, (a) $E_p = 2.36$ MeV, (b) $E_p = 2.48$ MeV, (c) $E_p = 2.60$ MeV and a TaN target (d) $E_p = 2.48$ MeV. (a) and (b) were fitted with γ-ray components which cascade through the bound states of ^{15}O and including as a component the background spectrum taken at $E_p = 2.40$ MeV. It is apparent that spectrum (d) corresponds to an energy just off resonance.
state transition at energies where Ge(Li) spectra were recorded and compare the results with the corrected NaI data.

(c). Coincidence spectra

Coincidence spectra were measured with tantalum nitride and adenine target at four proton energies, viz., 2.36 and 2.48 MeV to observe the cascade radiation at the two narrow resonances and 2.40 and 2.60 MeV to observe the underlying contributions. The spectra gave positive identification of the existence of the 6.18 MeV γ-ray which was not possible from the singles spectra. Figure 4.6 shows coincidence spectra at $E_p = 2.36$ MeV (a) and 2.48 MeV (b) fitted with γ-ray components which cascade through the bound states of ^{15}O and including as a component the 'background' spectrum taken at $E_p = 2.40$ MeV. The extracted intensity of 6.18 MeV γ-ray indicates that the 9.49 and 9.60 MeV levels decay through the 6.18 MeV level.

6. Results

Three sequences of runs were made with the NaI(Tl) detector. The first of these, at 20 keV intervals, was rejected because of the large amount of $^{19}F(p,\alpha\gamma)$ contamination which was apparent after line shape analysis of the spectra. The second sequence (Set 2), at
intervals of 100 keV up to \(E_p = 2.4 \) MeV and 20 keV intervals thereafter, was carried out to check the main sources of contamination (believed to be collimators rather than the target) had been removed and Set 3 was subsequently obtained at 20 keV intervals over most of the region using both NaI(Tl) and Ge(Li) detectors.

The excitation functions derived from the NaI(Tl) data of Set 2 and Set 3 were compared with the Ge(Li) detector and coincidence data in two ways. Firstly, the intensities of cascade radiation derived from the Ge(Li) detector measurements and the coincidence measurements with nitrided tantalum targets were compared with the raw NaI data before correction for the target 'tail' was made. Secondly, the ground state yield determined with the Ge(Li) detector and the cascade yields from the coincidence measurements using the adenine target were compared with the corrected NaI data. The cascade yields were extracted by line shape analysis of the coincidence spectra and compared, after appropriate correction for the relative efficiency of the coincidence arrangement, by normalizing to the NaI result for the 5.24 MeV \(\gamma \)-ray yield at 2.36 MeV.
The ground state γ-ray

Figure 4.7 shows the excitation function of the ground state γ-ray. The upper curve is a raw yield curve which includes the contribution due to resonances excited deep in the target and the lower curves show the two results obtained for the 'thin target' yield by subtracting the contribution from the tail of the target. The apparent discrepancy between the Set 2 and Set 3 corrected results in the vicinity of 2.5 MeV is due to the few points recorded in this region for Set 2 and a small energy shift between the two runs. The data of Set 3 are preferred because sufficient points were taken to define the narrow resonance region but the corrected result of Set 2 is included to assess the overall accuracy of the results where Set 2 and 3 can be compared, viz., below and above the narrow resonances. The thin target yield shows significant reduction of intensity above \(E_p = 2.40 \) MeV compared to that of the thick target yield; this is because the 9.49 and 9.60 MeV levels which were excited deep in the target decay mostly to the ground state. The shape of the thin target yield is in agreement with the reference (EV 67) in which only dotted line was shown for proton energies above 2.6 MeV.
Figure 4.7

The excitation function of the ground state and the 5.24 MeV gamma-ray, showing the raw NaI result and the yields corrected for nitrogen distribution.
GROUND STATE YIELD

- RAW SODIUM IODIDE DATA (SET 3)
- CORRECTED SODIUM IODIDE DATA (SET 2)
- CORRECTED SODIUM IODIDE DATA (SET 3)
- Ge(Li) DATA (NORMALIZED AT 2.36 MeV)

5.24 MeV YIELD

○ COINCIDENCE DATA - ADENINE TARGET (NORMALIZED AT 2.36 MeV)
- SODIUM IODIDE DATA CORRECTED FOR TARGET THICKNESS EFFECTS

PROTON ENERGY - MeV
Figure 4.8

The excitation function of the 6.79 MeV gamma-ray.
Figure 4.9

The excitation function for the 6.13 MeV γ-ray (\(^{19}\text{F}\) contamination) is shown giving an upper limit for the 6.18 MeV γ-ray (\(^{15}\text{O}\)).
As shown in the figure, the Ge(Li) data gave reasonable agreement with the corrected result of the NaI data from line shape analysis.

(2). The 6.79 MeV γ-ray

The results obtained for the excitation function of the 6.79 MeV γ-ray are given in Figure 4.8. Although both runs show considerable scatter, it is evident that there is no structure in the 6.79 MeV γ-ray yield and that the yield rises slowly with energy. These results are in accord with the view that the 6.79 MeV γ-ray is mainly due to direct capture (HE 63, EV 67).

The Ge(Li) data are slightly higher than the average cross section, however, the coincidence data taken with both adenine and nitride target agree fairly well with singles NaI data.

(3). The 6.18 MeV γ-ray

The excitation function for the 6.13 MeV γ-ray is shown in Figure 4.9. The extracted cross section gives only an upper limit for the 6.18 MeV γ-ray. The actual cross section of the 6.18 MeV γ-ray can be estimated by using the branching ratios of the γ-rays de-exciting the 9.60 and the 9.49 MeV levels (EV 67) and the measured ground state and the 5.24 MeV γ-ray cross sections. This estimation gives 15 - 40% of the measured 6.13 MeV γ-ray
cross section as attributed to the 6.18 MeV γ-ray. The scattered data points make it impossible to assess any resonance structure. However, the coincidence data obtained from the adenine target clearly show a resonance at $E_p = 2.48$ MeV. The observed cross section obtained from coincidence data and singles Ge(Li) data are in reasonable agreement with that of NaI data.

(4). The 5.24 MeV γ-ray

The excitation function of the 5.24 MeV γ-ray is shown in Figure 4.7. The coincidence data from the adenine target give very good agreement with the results for the NaI data. This fact further indicates that the present line shape analysis of NaI data is a satisfactory one. The observed peaks at $E_p = 2.36$ and 2.48 MeV are in agreement with previous studies (EV 67). The observed peak at $E_p = 1.76$ MeV is mainly the 5.188 MeV γ-ray cross section due to the resonance at $E_p = 1.74$ MeV (WA 65a). The slowly rising yields for proton energies above 2.60 MeV could be partly due to the contributions from the 4.43 MeV γ-ray which increases in intensity as the proton energy approaches the 3.12 MeV proton resonance in 15N(p,αγ) reaction. The non-resonant yield underlying the resonances is about 2.5 μb corresponding to a cross section factor of about 0.5 keV barn in proton energy region of 2.0 to 2.5 MeV.
(5). The resonance levels

The decay of the resonances at 2.36 and 2.48 MeV as derived from the coincidence and NaI measurements of the present work are in reasonable quantitative agreement with Evans (EV 67) with regard to the relative strengths of branches to various $^\text{15}O$ states but differ in some important respects at the lower resonance. In particular, Evans reported 2.75 and 1.62 MeV γ-rays corresponding to excitation and decay of the 6.86 MeV level both at and below the resonance whereas the present work finds no evidence for these low energy γ-rays. Likewise, Evans reported appreciable excitation of the 7.28 MeV level. Both levels (6.86 and 7.28) decay via the 5.24 MeV level but the present coincidence results find no surplus 5.24 MeV intensity in addition to that required by the intensity of the 4.25 MeV gamma-ray which feeds the 5.24 MeV level directly. The low energy gamma-rays, which serve as the most direct indication of whether or not the 6.86 and 7.28 MeV levels are excited, are obscured completely in the NaI spectra by the intense 4.43 MeV radiation and to only a slightly lesser extent in the Ge(Li) spectra since the primary γ-rays are broadened by the target thickness. Some low energy gamma rays were evident in the Ge(Li) spectra but did not appear to be associated with the $^{14}\text{N}(p,\gamma)$ reaction because their
intensities were not correlated with the intensities of the higher energy gamma-rays at the various bombarding energies.

The coincidence measurements made with the adenine target reveal only one gamma-ray at about 2.8 MeV (depending on bombarding energy) which corresponds to the transition feeding the 6.79 MeV level (Figure 4.6.c). A small peak at about 1.6 MeV results from random coincidences and is due to the strong 1.63 MeV radiation from the contaminant 23Na(p,αγ) reaction. On the other hand, the coincidence measurements with the nitrided tantalum (Figure 4.6.d) show many peaks below the 2.8 MeV transition and the energies of these peaks are in close agreement with those observed by Evans. Clearly these gamma-rays are associated with contamination, probably of the tantalum since Evans also used tantalum backings.

The excitation functions of the ground state, 6.79, 6.18 and 5.24 MeV γ-rays of the present measurements indicate that the decay of the broad level centered at $\text{Ep} \approx 2.40$ MeV is mostly direct to the ground state.

7. Discussion

The measured cross section of the ground state γ-ray which comprised the main yield of total γ-ray intensity is comparable to the corrected integrated total cross
section of Duncan et al. (DU 51). The correction to the cross section of Duncan et al. has been discussed by Hebbard et al. (HE 63).

The ground state and the 5.2 MeV γ-ray transitions were found previously (HE 63) to be not as important in the estimation of the total cross section factor at stellar proton energies as the 6.18 and 6.79 MeV γ-ray transitions. The present data obtained for the 6.18 and 6.79 MeV γ-ray cross section are considered too inaccurate to attempt any detailed analysis directed toward corrections of available estimates for the $^{14}\text{N}(p,\gamma)$ reaction rate at stellar proton energies. The cross section factors ($S = \sigma E_{\text{CM}} \exp(2\pi\eta)$ where η is the Coulomb parameter) calculated for the 6.18 MeV transition (regarded as an upper limit only) and the 6.79 MeV transition, using in each case the uncorrected NaI data, are within 20 - 30% of the values found by Hebbard et al. (HE 63) for the proton energy region 700 - 1000 keV. The result of the present work appears to be that only the ground state is excited by the broad level at $E_p = 2.40$ MeV whereas the transitions to 5.24, 6.18 and 6.79 MeV levels arise from a direct capture process between resonances. Indeed resonance excitation of the 6.79 MeV was not observed at all within the energy range of the present work. In a simple approach, this would mean that
the contributions from distant broad resonances are not important in determining methods of extrapolation of the cross section factors to zero proton energy.

Perhaps the most important feature of the present measurements is the positive demonstration of the difficulties introduced by the use of the nitrided tantalum targets. For the present work, strong contributions from the 2.36 MeV resonance were observed at the highest bombarding energy of 3.0 MeV. Thus appreciable nitrogen is present at depth beyond 14 mgm/cm^2. This effect can be observed in the region of E_p between 2.4 and 3.0 MeV since both of the resonances at 2.36 and 2.48 MeV decay strongly to the ground state. The low energy measurements of Hebbard et al. (HE 63) used corrections deduced indirectly from fits to the 6.79 MeV cross section factor. Neither the 278 keV resonance (only 3% to the ground state) nor measurements of the 429 keV resonance of the $^{15}_N(p,\alpha\gamma)$ reaction are sufficiently sensitive to probe the nitrogen distribution deep in the target. The latter reaction is unsuitable because of the uncertainty of the tail of the higher resonance at 900 keV. Comparison of the target distribution measurement of the present work (Figure 4.3) and that of Hebbard et al. (HE 63) shows that their target was thicker so far as the front layer was
concerned and the tail beyond the resonance anomaly higher by 30 - 40%. In so far as the corrections required are large, as much as a factor of 2 (HE 63), and could have applied to a larger energy range than was appreciated, it is felt that re-measurement of the low energy data, using targets other than nitrided tantalum, is necessary to resolve the existing ambiguities of the cross section factor in that region. The depth of 14 mgm/cm² observed in the present target would mean that contributions from the 278 keV resonance would result in all data points up to at least 1100 keV.

In the light of experience from the present work, such a re-measurement would be best made using a coincidence arrangement to eliminate many of the uncertainties introduced by singles spectra and with targets other than nitrided tantalum. Estimates of the coincidence yield show that the count rate would be adequate.
FIGURE CAPTIONS

Figure 4.1 Energy levels and decay scheme of ^{15}O.

Figure 4.2 Experimental arrangement for the coincidence measurements.

Figure 4.3 The excitation function of the 4.43 MeV γ-ray from the $^{15}N(p,\alpha\gamma)$ reaction in the tantalum nitride target used for the $^{14}N(p,\gamma)$ measurements (Set 2 and 3).

Figure 4.4 NaI(Tl) spectra of the $^{14}N(p,\gamma)$ reaction at $E_p = 1.80, 2.48$ and 2.90 MeV. Circles are the data and least squares line shape fit is the solid line.

Figure 4.5 Ge(Li) spectra of the $^{14}N(p,\gamma)$ reaction at $E_p = 2.51$ and 2.60 MeV.

Figure 4.6 Coincidence spectra measured with an adenine target, (a) $E_p = 2.36$ MeV, (b) $E_p = 2.48$ MeV, (c) $E_p = 2.60$ MeV and a TaN target (d) $E_p = 2.48$ MeV.

(a) and (b) were fitted with γ-ray components which cascade through the bound states of ^{15}O and including as a component the background spectrum taken at $E_p = 2.40$ MeV. It is apparent that spectrum (d) corresponds to an energy just off resonance.
Figure 4.7 The excitation function of the ground state and the 5.24 MeV gamma-ray, showing the raw NaI result and the yields corrected for nitrogen distribution.

Figure 4.8 The excitation function of the 6.79 MeV gamma-ray.

Figure 4.9 The excitation function for the 6.13 MeV γ-ray (¹⁹F contamination) is shown giving an upper limit for the 6.18 MeV γ-ray (¹⁵O).
CHAPTER V

THE 20 c.c. Ge(Li) DETECTOR

1. Introduction

Lithium drifted germanium detectors are becoming increasingly important in the field of γ-ray spectroscopy because of their high resolution. Their fabrication, characteristics and applications have been discussed in detail by Goulding (GO 66a), Mayer (MA 66) and Hollander (HO 66).

The lithium drift process produces a region of intrinsic type material which is sensitive to nuclear radiation. To obtain good efficiency, larger active volumes are desirable. The method of coaxial lithium-drift has resulted in the production of germanium γ-ray detectors with many times larger sensitive volumes than that possible by using a planar method of drift.

A low energy γ-ray incident on the sensitive volume may be absorbed by photoelectric effect or be Compton scattered. At higher γ-ray energies, above 1.022 MeV, it is also possible to have γ-ray absorption by pair production. The hole-electron pairs produced by electrons resulting from these processes are separated
and collected by an electric field applied across the detector.

The direct collection of charge is in striking contrast with the method employed by scintillation detectors, in which the scintillation mechanisms, light collection and photoelectron emission result in large statistical fluctuations in the number of photo-electrons emitted from the cathode of photomultiplier for a given amount of γ-ray energy deposited. The inefficiency of the scintillator-photomultiplier systems requires more than 300 eV of energy absorbed in the crystal to release a photo-electron while in average semiconductor detectors, a hole-electron pair is produced for only about 3 eV of photon energy absorbed. For this reason, statistical fluctuations in the charge production process in Ge(Li) detector are small and high resolution is possible.

The high resolution provided by the Ge(Li) detector enables accurate determination of γ-ray energies and thus of level energies. Precise determination of these energies makes it possible to deduce the decay scheme of a capture resonance level from one singles spectrum otherwise many NaI(Tl) coincidence spectra would be required to attain a comparable result. A doublet of energy levels separated by the order of 20 keV can be
Figure 5.1
The A.N.U. 20 c.c. lithium drifted germanium detector is drawn to scale, the shaded part indicates the volume that is not depleted by the coaxial drift process.
well resolved by Ge(Li) detector which can determine level energies with a precision of 1 keV, and the word 'doublet' is hardly applicable to them.

In γ-ray angular correlation measurements with NaI(Tl) crystals it is highly likely that the window set to select the γ-rays of the cascade studied may contain other unsuspected peaks hidden under the main peak. A prior measurement with a Ge(Li) detector will resolve these peaks and allow a more justified choice of γ-rays for angular correlation measurement with NaI(Tl) detectors.

The purpose of the present work was to investigate the performance and characteristics of the newly acquired 20 c.c. coaxially drifted Ge(Li) detector and apply it to the study of nuclear reactions which result in the emission of γ-rays. Figure 5.1 shows the trapezoidal and rectangular cross sections of the detector after being drifted approximately 12 m.m. from the front side and each of the four sides. It was operated with a bias voltage of -1200 volts at liquid nitrogen temperature to reduce the leakage current in germanium.

2. Performance of the spectrometer

The characteristics of the coaxial diode as a γ-ray spectrometer were investigated with the system shown in
Figure 5.2
The experimental set up of the Ge(Li) γ-ray spectrometer.
EXPERIMENTAL SETUP OF Ge(Li) \(\gamma \)-RAY SPECTROMETER

- ORTEC 408 BIAS AMPLIFIER
- ORTEC 411 PULSE STRETCHER
- TC-130 PREAMP
- GeLi DETECTOR
- SPECTRATRAC 1001 H.T.
- RCL-512 P.H.A.
- INTERTECH CA13 A.D.C.
- IBM 1800 COMPUTER
- SIMPUL CONTROL SYSTEM
Figure 5.2. The SIMPUL program was developed in the Nuclear Physics department to control an Intertechnique CA-13 analog to digital converter interfaced to an IBM-1800 digital computer so as to provide a pulse height analyzer of up to 4096 channels. Pulses from the Ge(Li) detector (capacity 17 pf) were amplified by a TC-130 preamplifier which has at the input field effect transistors operating at room temperature. The signal was further amplified by an ORTEC-410 main amplifier and analyzed and stored in either an RCL-512 channel pulse height analyzer or in the IBM-1800 computer. Before the SIMPUL system was available, an ORTEC-408 bias amplifier followed by an ORTEC-411 pulse stretcher enabled expansion of small portions of a spectrum. Investigations of the various characteristics of the detection system are described below.

2.1 Resolution

The energy resolution (full width at half maximum) of the detector system for 60Co γ-rays was investigated using various combinations of preamplifiers and main linear amplifiers available in the laboratory. The widths observed for the full energy peak of the 1.333 MeV γ-ray is summarized in Table 5.1.
Figure 5.3

The 60Co spectrum with optimum resolution of 4.2 keV for the 1.333 MeV γ-ray.
Table 5.1

Resolution

<table>
<thead>
<tr>
<th>Preamplifier</th>
<th>Main amplifier</th>
<th>Resolution (keV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make</td>
<td>Mode</td>
<td>Make</td>
</tr>
<tr>
<td>ORTEC-103</td>
<td>RC (a)</td>
<td>ORTEC-203</td>
</tr>
<tr>
<td>ORTEC-103</td>
<td>DL (b)</td>
<td>ORTEC-410</td>
</tr>
<tr>
<td>ORTEC-103</td>
<td>DL</td>
<td>ORTEC-410</td>
</tr>
<tr>
<td>TC-130</td>
<td></td>
<td>ORTEC-410</td>
</tr>
<tr>
<td>ORTEC-109</td>
<td></td>
<td>ORTEC-410</td>
</tr>
</tbody>
</table>

(a) RC : RC pulse shaping
(b) DL : indicates delay line mode but actually no shaping is done by preamplifier
(c) with pulse stretcher 2 µs.

Figure 5.3 shows the 60Co spectrum corresponding to the best resolution obtained with the TC-130 and ORTEC-410 combination. The main amplifier was found to require integration and differentiation time constants of 2 µs - 2 µs - 1 µs for optimum resolution.

Factors that determine the energy resolution of a germanium detector system have been discussed by Goulding (GO 66a). These include:

(1) statistical spread in the detector signal
(2) noise in the associated electronic system, i.e., preamplifier and main amplifier
(3) noise due to detector leakage current.

For a given system, the latter two factors are constant whereas the first factor depends on the incident
Figure 5.4
Comparison of the line width of the full energy peak of a 10.76 MeV γ-ray to that of a 1.78 MeV γ-ray obtained in the same spectrum.
\(\gamma \)-ray energy. At low energies, the statistical spread due to the electron-hole production mechanism is usually small compared with the amplifier noise, so that the observed line widths (typically 2 to 3 keV) are mainly due to noise associated with electronic system and detector leakage current. At higher energies, the square of the line width increases linearly with energy, as shown in equation (5.1).

\[
(FWHM)^2 = F(E_{\gamma}/\varepsilon)
\]

(5.1)

where \(E_{\gamma} \) = gamma energy absorbed by the detector
\(\varepsilon \) = average energy required to produce a hole-electron pair (~ 2.85 eV for germanium)
\(F \) = Fano factor.

The slope of the plot of \((\text{resolution})^2 \) versus energy establishes the 'Fano factor' which would be zero if there were no statistical fluctuation in the amount of charge produced and collected per unit energy of \(\gamma \)-ray absorbed. Figure 5.4 shows the line widths of the full energy peaks of 10.76 and 1.78 MeV \(\gamma \)-rays after the full energy peaks have been normalized to the same height.

The \(\gamma \)-ray line widths were obtained from a spectrum of the \(^{27}\text{Al}(p,\gamma)^{28}\text{Si} \) resonance at \(E_p = 992 \text{ keV} \) (AZ 66) using a 5 keV thick target. The width of 10.76 MeV \(\gamma \)-ray is 22 keV and is 2.5 times that of 1.78 MeV \(\gamma \)-ray as one would expect from equation (5.1). The line widths
obtained from nuclear reactions are broader than those obtained from sources due to Doppler effect. For a given (p, γ) reaction, the line widths are also affected by the thickness of the target used; a thick target gives broader peaks than a thin target if the resonance width is broader than the resolution of the system. The counting rate of the detection system also affects the resolution. This was particularly so in collecting the 6.129 MeV γ-ray line shape from $^{19}\text{F}(p,\alpha\gamma)^{16}\text{O}$ resonance in which the γ-ray yield was very high. Good resolution was obtained by reducing the bombarding proton beam intensity so that no appreciable dead time loss occurred due to very high counting rate. In general, to obtain an optimum resolution it is necessary to keep the dead time loss to within one per cent.

2.2 Energy linearity and calibration

One of the principal functions of a γ-ray spectrometer is to measure radiation energies. The advantage of the high resolution of a Ge(Li) detector over NaI(Tl) detectors is the possibility of more precise determination of γ-ray energies. In fact level energies can be assigned with comparable or even better accuracy than with high resolution magnets. Magnetic spectrometers are superior only in low energy region
Figure 5.5

The ThC" spectrum collected with SIMPUL 2048 channels. Peak energies are from reference (EM 60).
where the electron conversion efficiency is high.

Principal sources of error which arise in the energy calibration of a germanium detector system are:

1. error in determining the peak positions
2. non-linearity of the pulse height analyzer
3. uncertainties in Doppler shifts corrections due to limited information of the life times of the levels emitting γ-rays
4. for (p,γ) reactions the uncertainty in the incident proton energy which is usually known to within 1 or 2 keV and in the Q-value of a particular reaction which may be known to within 2 or 3 keV
5. gain drifts in the associated electronic amplifier system

To eliminate any possible contribution from the latter three sources of error, a moderately strong γ-ray source of well known γ-ray energies was used to check the linearity of the system. Figure 5.5 shows a spectrum from a 5 mC thorium (B+C'+C") source collected for a period of 20 minutes on SIMPUL system with 2048 channels. The source was also used to check the linearity of the RCL-512 pulse height analyzer and SIMPUL system with 1024 and 4096 channels respectively. The energy calibrations of the two systems were derived with least squares fits
of two parameters (linear: $E = Bx + C$) and three parameters (parabolic: $E = Ax^2 + Bx + C$). The results are shown in Tables 5.2-5.5.

Table 5.2

Linearity of RCL-512 pulse height analyzer (ThC² source)

<table>
<thead>
<tr>
<th>E (KeV)</th>
<th>Peak position</th>
<th>Linear</th>
<th>Parabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FIT</td>
<td>FIT-DATA</td>
</tr>
<tr>
<td>511.01</td>
<td>104.29</td>
<td>508.95</td>
<td>-2.06</td>
</tr>
<tr>
<td>583.14</td>
<td>117.87</td>
<td>583.17</td>
<td>0.03</td>
</tr>
<tr>
<td>1592.45</td>
<td>303.21</td>
<td>1596.12</td>
<td>3.67</td>
</tr>
<tr>
<td>2103.46</td>
<td>396.23</td>
<td>2104.51</td>
<td>1.05</td>
</tr>
<tr>
<td>2614.47</td>
<td>489.04</td>
<td>2611.76</td>
<td>-2.71</td>
</tr>
</tbody>
</table>

A: 2.7716
B: -2.6508
C: 0.15167 x 10^{-3}

Table 5.3

Linearity of SIMPUL system 1024 channels (ThC² source)

<table>
<thead>
<tr>
<th>E (KeV)</th>
<th>Peak position</th>
<th>Linear</th>
<th>Parabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FIT</td>
<td>FIT-DATA</td>
</tr>
<tr>
<td>511.01</td>
<td>185.41</td>
<td>511.24</td>
<td>0.23</td>
</tr>
<tr>
<td>583.14</td>
<td>211.39</td>
<td>583.25</td>
<td>0.11</td>
</tr>
<tr>
<td>1592.45</td>
<td>575.37</td>
<td>1592.08</td>
<td>-0.37</td>
</tr>
<tr>
<td>2103.46</td>
<td>759.63</td>
<td>2102.79</td>
<td>-0.67</td>
</tr>
<tr>
<td>2614.47</td>
<td>944.49</td>
<td>2615.16</td>
<td>0.69</td>
</tr>
</tbody>
</table>

A: 2.7716
B: -2.6508
C: -0.73249 x 10^{-5}

Differential linearity 2.35%
Integral linearity 0.14%
Table 5.4

Linearity of SIMPUL system 2048 channels (ThC\(^{22}\) source)

| E (KeV) | Peak position | Linear | | Parabolic | |
|--------|---------------|---------|-----------------|---------|-----------------|---------|
| 511.01 | 370.30 | 511.18 | 0.17 | 511.02 | 0.01 |
| 583.14 | 422.35 | 583.20 | 0.06 | 583.12 | -0.02 |
| 1592.45| 1151.50 | 1592.12 | -0.33 | 1592.53 | 0.08 |
| 2103.46| 1520.81 | 2103.13 | -0.33 | 2103.32 | -0.14 |
| 2614.47| 1890.65 | 2614.87 | 0.40 | 2614.52 | 0.05 |

A: \(-0.11616 \times 10^{-5}\)
B: 1.3836
C: -1.1961

Differential linearity 0.16%
Integral linearity 0.015%

Table 5.5

Linearity of SIMPUL system 4096 channels (ThC\(^{22}\) source)

| E (KeV) | Peak position | Linear | | Parabolic | |
|--------|---------------|---------|-----------------|---------|-----------------|---------|
| 511.01 | 743.26 | 511.13 | 0.12 | 510.98 | -0.03 |
| 583.14 | 848.25 | 583.21 | 0.07 | 583.13 | -0.01 |
| 1592.45| 2318.24 | 1592.32 | -0.13 | 1592.71 | 0.26 |
| 2103.46| 3062.03 | 2102.91 | -0.55 | 2103.09 | -0.37 |
| 2614.47| 3807.91 | 2614.94 | 0.47 | 2614.61 | 0.14 |

A: \(-0.27067 \times 10^{-6}\)
B: 0.68647
C: 0.90884

Differential linearity 0.19%
Integral linearity 0.021%
The energies of γ-rays were obtained from reference (MU 65), and the peak positions were determined from a parabolic fit to the three highest points comprising the peak. The degree of uncertainty involved in locating the peak position depends on statistics of each point and on the shape of each peak. With an ORTEC-419 precision pulser the 'peaks' often comprised only of two channels in the spectrum; in this case the peak positions were determined by weighted means according to the counts in each channel. In general, it was possible to determine a peak position to within 0.1 of a channel. The linearity obtained from the precision pulser is shown in Table 5.6 and 5.7.

Before the SIMPUL system was available, an ORTEC-408 biased amplifier and an ORTEC-411 pulse stretcher with an RCL-512 pulse height analyzer were used to collect γ-ray spectra in the energy region of 2.5-5.0 MeV from $^{26}\text{Mg}(p,\gamma)^{27}\text{Al}$ resonance at $E_p = 809$ KeV. Table 5.8 shows the linearity of the detection system checked with a pulser.

From Tables 5.2-5.8, it can be seen that better energy calibrations are obtained from parabolic fits for both systems. The necessity for parabolic fitting of channel energies to attain accurate measurement of γ-ray energies was also reported by Van der Leun et al. (VA 67)
Table 5.6

Linearity of RCL-512 pulse height analyzer (pulser)

<table>
<thead>
<tr>
<th>Pulser dial</th>
<th>Peak position</th>
<th>Linear</th>
<th>Parabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FIT</td>
<td>FIT-DATA</td>
</tr>
<tr>
<td>540</td>
<td>15.93</td>
<td>536.77</td>
<td>-3.23</td>
</tr>
<tr>
<td>570</td>
<td>50.07</td>
<td>569.09</td>
<td>-0.91</td>
</tr>
<tr>
<td>600</td>
<td>82.73</td>
<td>600.01</td>
<td>0.01</td>
</tr>
<tr>
<td>630</td>
<td>113.90</td>
<td>629.52</td>
<td>-0.48</td>
</tr>
<tr>
<td>660</td>
<td>146.80</td>
<td>660.66</td>
<td>0.66</td>
</tr>
<tr>
<td>690</td>
<td>178.81</td>
<td>690.96</td>
<td>0.96</td>
</tr>
<tr>
<td>720</td>
<td>210.05</td>
<td>720.54</td>
<td>0.54</td>
</tr>
<tr>
<td>750</td>
<td>242.90</td>
<td>751.64</td>
<td>1.64</td>
</tr>
<tr>
<td>780</td>
<td>275.10</td>
<td>782.12</td>
<td>2.12</td>
</tr>
<tr>
<td>810</td>
<td>306.20</td>
<td>811.56</td>
<td>1.56</td>
</tr>
<tr>
<td>840</td>
<td>337.85</td>
<td>841.53</td>
<td>1.53</td>
</tr>
<tr>
<td>870</td>
<td>369.10</td>
<td>871.11</td>
<td>1.11</td>
</tr>
<tr>
<td>900</td>
<td>399.94</td>
<td>900.31</td>
<td>0.31</td>
</tr>
<tr>
<td>930</td>
<td>430.00</td>
<td>928.76</td>
<td>-1.24</td>
</tr>
<tr>
<td>960</td>
<td>460.98</td>
<td>958.09</td>
<td>-1.91</td>
</tr>
<tr>
<td>990</td>
<td>491.78</td>
<td>987.25</td>
<td>-2.75</td>
</tr>
</tbody>
</table>

Differential linearity 7.17%

Integral linearity 0.33%
Table 5.7

Linearity of SIMPUL system 1024 channel (pulser)

<table>
<thead>
<tr>
<th>Pulser dial</th>
<th>Peak position</th>
<th>Linear</th>
<th>Parabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FIT</td>
<td>FIT-DATA</td>
</tr>
<tr>
<td>50</td>
<td>65.01</td>
<td>50.27</td>
<td>0.27</td>
</tr>
<tr>
<td>100</td>
<td>125.98</td>
<td>100.63</td>
<td>0.63</td>
</tr>
<tr>
<td>150</td>
<td>185.42</td>
<td>149.73</td>
<td>-0.27</td>
</tr>
<tr>
<td>200</td>
<td>246.20</td>
<td>199.93</td>
<td>-0.07</td>
</tr>
<tr>
<td>250</td>
<td>306.52</td>
<td>249.75</td>
<td>-0.25</td>
</tr>
<tr>
<td>300</td>
<td>367.29</td>
<td>299.95</td>
<td>-0.05</td>
</tr>
<tr>
<td>350</td>
<td>427.70</td>
<td>349.85</td>
<td>-0.15</td>
</tr>
<tr>
<td>400</td>
<td>488.12</td>
<td>399.75</td>
<td>-0.25</td>
</tr>
<tr>
<td>450</td>
<td>548.71</td>
<td>449.80</td>
<td>-0.20</td>
</tr>
<tr>
<td>500</td>
<td>609.30</td>
<td>499.85</td>
<td>-0.15</td>
</tr>
<tr>
<td>550</td>
<td>669.73</td>
<td>549.76</td>
<td>-0.24</td>
</tr>
<tr>
<td>600</td>
<td>730.78</td>
<td>600.19</td>
<td>0.19</td>
</tr>
<tr>
<td>650</td>
<td>791.00</td>
<td>649.93</td>
<td>-0.07</td>
</tr>
<tr>
<td>700</td>
<td>851.98</td>
<td>700.30</td>
<td>0.30</td>
</tr>
<tr>
<td>750</td>
<td>911.92</td>
<td>749.81</td>
<td>-0.19</td>
</tr>
<tr>
<td>800</td>
<td>973.19</td>
<td>800.42</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Differential linearity 1.85%
Integral linearity 0.079%

Table 5.8

Linearity of RCL-512, ORTEC-411 and ORTEC-408 system (pulser)

<table>
<thead>
<tr>
<th>Pulser dial</th>
<th>Peak position</th>
<th>Linear</th>
<th>Parabolic</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>FIT</td>
<td>FIT-DATA</td>
</tr>
<tr>
<td>290</td>
<td>19.60</td>
<td>288.37</td>
<td>-0.63</td>
</tr>
<tr>
<td>315</td>
<td>65.00</td>
<td>314.36</td>
<td>-0.64</td>
</tr>
<tr>
<td>340</td>
<td>109.70</td>
<td>339.96</td>
<td>-0.04</td>
</tr>
<tr>
<td>365</td>
<td>154.04</td>
<td>365.34</td>
<td>0.34</td>
</tr>
<tr>
<td>390</td>
<td>198.96</td>
<td>391.06</td>
<td>1.06</td>
</tr>
<tr>
<td>415</td>
<td>241.96</td>
<td>415.68</td>
<td>0.68</td>
</tr>
<tr>
<td>440</td>
<td>286.06</td>
<td>440.93</td>
<td>0.93</td>
</tr>
<tr>
<td>465</td>
<td>329.98</td>
<td>466.08</td>
<td>1.08</td>
</tr>
<tr>
<td>490</td>
<td>373.33</td>
<td>490.90</td>
<td>0.90</td>
</tr>
<tr>
<td>515</td>
<td>415.13</td>
<td>514.83</td>
<td>-0.17</td>
</tr>
<tr>
<td>540</td>
<td>457.60</td>
<td>539.15</td>
<td>-0.85</td>
</tr>
<tr>
<td>565</td>
<td>499.70</td>
<td>563.26</td>
<td>-1.74</td>
</tr>
</tbody>
</table>

Differential linearity 4.34%
Integral linearity 0.31%
in their studies of $^{26}\text{Mg}(p,\gamma)^{27}\text{Al}$ reaction. Ewan and Tavendale (EW 64) have shown that the response of a Ge(Li) detector is linear from 0 to 2600 keV to within the $\pm 0.3\%$ accuracy of the precision pulser used for the measurement, so that the non-linearities observed are attributed to the analog to digital converters used in the system. The differential and integral linearity of the Intertechnique CA-13 analog to digital converter used in the SIMPUL system have been investigated in this laboratory by other methods, their values are also listed in the tables.

Unfortunately the thorium source provides only low energy γ-rays. Accordingly, γ-rays from nuclear reactions must be used for high energy calibrations and corrections made for Doppler shifts. In the study of $^{26}\text{Mg}(p,\gamma)^{27}\text{Al}$ resonance at $E_p = 809$ keV, a maximum energy shift of 11 keV is possible for an 8 MeV γ-ray if the detector is at 0° to the beam. Nevertheless two good calibration points were obtained in the spectra from the bombardment of ^{26}Mg target, viz., the 511 keV annihilation of radiation and 6.129 MeV γ-rays due to fluorine contamination of the target via the $^{19}\text{F}(p,\alpha\gamma)^{16}\text{O}$ reaction. The 6.129 MeV level of ^{16}O has a sufficiently long lifetime of about 10^{-11} sec that the energy is not
Doppler shifted since recoiling \(^{16}\)O nuclei have completely stopped before the \(\gamma\)-ray is emitted.

To maintain high resolution during long data runs, more severe requirements in the gain stability of the electronic system are inevitable for Ge(Li) detector systems. Gain shifts in the system cause occasionally broadened peaks or even double peaks for a single \(\gamma\)-ray; these troubles were encountered in the course of study. Adequate gain stability was achieved if the A.D.C. and the associated amplifier system were maintained at a constant room temperature and operated from a well stabilized mains supply.

2.3 Calculation of detector efficiencies and angular correlation attenuation factors

As shown in Figure 5.1, the present detector has an irregular shape and a volume not accurately defined so that calculation of detector efficiencies for given geometries is difficult. In the following calculation, the trapezoidal detector was assumed to be rectangular and to have a completely sensitive volume. These assumptions will naturally result in higher detector efficiencies. The \(\gamma\)-ray mass attenuation coefficients were taken from the tables of Storm, Gilbert and Israel (ST 58) and multiplied by the density of germanium at 77\(^\circ\) K \((5.325 \ \text{g/cm}^3)\) to obtain the linear attenuation
coefficients. In using the table, the total absorption for a given γ-ray energy was taken as the sum of \(\tau, \sigma_\alpha, \sigma_I, \) and \(K_T, \) where

\[\tau = \text{the cross section for the production of photoelectron} \]

\[\sigma_\alpha = \text{the absorption component of the total Compton cross section} \]

\[\sigma_I = \text{the incoherent scatter component for the total Compton cross section} \]

\[K_T = \text{the sum of the cross section for pair production in the field of the nucleus and of the atomic electrons.} \]

The linear attenuation coefficients \(\tau \) and \(K_T \) are tabulated in Table 5.9 and shown in Figure 5.6 since these data are used in the calculation of photopeak efficiency and pair production efficiency for comparison with experimental values.

If detector efficiency is defined as the ratio of the number of events detected to the number of γ-rays emitted, the efficiency \(\varepsilon \) can be expressed in terms of the linear total absorption coefficients \(\mu \) by

\[\varepsilon = \frac{1}{4\pi} \int \left\{ 1 - \exp(-\mu S) \right\} \, d\Omega \quad \ldots \ldots \ (5.2) \]

where \(S \) is the length of path traversed by γ-rays in the detector, and \(d\Omega \) is the solid angle subtended at the
Figure 5.6

The linear attenuation coefficients of γ-rays in germanium.
Table 5.9
Gammaray attenuation coefficients in germanium (cm⁻¹)

<table>
<thead>
<tr>
<th>E (MeV)</th>
<th>Photo-electric τ</th>
<th>Compton σ=σ₁ + σ₁</th>
<th>Pair production Kₜ</th>
<th>Total μ=τ+σ+Kₜ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>160.815</td>
<td>0.916</td>
<td></td>
<td>161.731</td>
</tr>
<tr>
<td>0.015</td>
<td>503.745</td>
<td>0.872</td>
<td></td>
<td>504.617</td>
</tr>
<tr>
<td>0.02</td>
<td>226.313</td>
<td>0.880</td>
<td></td>
<td>227.193</td>
</tr>
<tr>
<td>0.03</td>
<td>71.355</td>
<td>0.840</td>
<td></td>
<td>72.195</td>
</tr>
<tr>
<td>0.04</td>
<td>30.619</td>
<td>0.799</td>
<td></td>
<td>31.418</td>
</tr>
<tr>
<td>0.05</td>
<td>15.815</td>
<td>0.809</td>
<td></td>
<td>16.624</td>
</tr>
<tr>
<td>0.06</td>
<td>9.372</td>
<td>0.767</td>
<td></td>
<td>10.139</td>
</tr>
<tr>
<td>0.08</td>
<td>3.999</td>
<td>0.731</td>
<td></td>
<td>4.730</td>
</tr>
<tr>
<td>0.10</td>
<td>2.066</td>
<td>0.699</td>
<td></td>
<td>2.765</td>
</tr>
<tr>
<td>0.15</td>
<td>0.586</td>
<td>0.627</td>
<td></td>
<td>1.213</td>
</tr>
<tr>
<td>0.20</td>
<td>0.256</td>
<td>0.575</td>
<td></td>
<td>0.831</td>
</tr>
<tr>
<td>0.30</td>
<td>0.075</td>
<td>0.500</td>
<td></td>
<td>0.575</td>
</tr>
<tr>
<td>0.40</td>
<td>0.034</td>
<td>0.448</td>
<td></td>
<td>0.482</td>
</tr>
<tr>
<td>0.50</td>
<td>0.019</td>
<td>0.409</td>
<td></td>
<td>0.428</td>
</tr>
<tr>
<td>0.60</td>
<td>0.011</td>
<td>0.378</td>
<td></td>
<td>0.389</td>
</tr>
<tr>
<td>0.80</td>
<td>0.0053</td>
<td>0.332</td>
<td></td>
<td>0.337</td>
</tr>
<tr>
<td>1.00</td>
<td>0.0037</td>
<td>0.298</td>
<td></td>
<td>0.302</td>
</tr>
<tr>
<td>1.50</td>
<td>0.0016</td>
<td>0.242</td>
<td>0.002</td>
<td>0.246</td>
</tr>
<tr>
<td>2.00</td>
<td>0.0011</td>
<td>0.207</td>
<td>0.009</td>
<td>0.217</td>
</tr>
<tr>
<td>3.00</td>
<td>0.00053</td>
<td>0.162</td>
<td>0.024</td>
<td>0.187</td>
</tr>
<tr>
<td>4.00</td>
<td></td>
<td>0.136</td>
<td>0.038</td>
<td>0.174</td>
</tr>
<tr>
<td>5.00</td>
<td></td>
<td>0.117</td>
<td>0.051</td>
<td>0.168</td>
</tr>
<tr>
<td>6.00</td>
<td></td>
<td>0.104</td>
<td>0.062</td>
<td>0.166</td>
</tr>
<tr>
<td>8.00</td>
<td></td>
<td>0.085</td>
<td>0.079</td>
<td>0.164</td>
</tr>
<tr>
<td>10.00</td>
<td></td>
<td>0.072</td>
<td>0.094</td>
<td>0.166</td>
</tr>
<tr>
<td>15.00</td>
<td></td>
<td>0.053</td>
<td>0.122</td>
<td>0.175</td>
</tr>
<tr>
<td>20.00</td>
<td></td>
<td>0.043</td>
<td>0.143</td>
<td>0.186</td>
</tr>
<tr>
<td>30.00</td>
<td></td>
<td>0.031</td>
<td>0.172</td>
<td>0.203</td>
</tr>
<tr>
<td>40.00</td>
<td></td>
<td>0.025</td>
<td>0.192</td>
<td>0.217</td>
</tr>
<tr>
<td>50.00</td>
<td></td>
<td>0.021</td>
<td>0.207</td>
<td>0.228</td>
</tr>
<tr>
<td>60.00</td>
<td></td>
<td>0.018</td>
<td>0.219</td>
<td>0.237</td>
</tr>
<tr>
<td>80.00</td>
<td></td>
<td>0.014</td>
<td>0.236</td>
<td>0.250</td>
</tr>
<tr>
<td>100.00</td>
<td></td>
<td>0.012</td>
<td>0.248</td>
<td>0.260</td>
</tr>
</tbody>
</table>
Figure 5.7

Geometry of a quarter section of a rectangular detector (HO 65).
source by the detector. The calculation of a planar drifted Ge(Li) detector with rectangular shape has been carried out by Hotz et al. (HO 65). Their method was to divide a quarter section of the crystal into three regions according to the path of γ-ray through the crystal and perform the integration with respect to the solid angle subtended at each region (see Figure 5.7). The same scheme was used here and the calculations of detector efficiencies (equation 5.3) and angular correlation attenuation factors (equation 5.4) were carried out with a program GEEFFANG (see Appendix) using an IBM-360 computer.

The detector efficiency

\[
\varepsilon = \frac{1}{\pi} \left\{ \int_0^{\frac{HW}{H+T}} \int_0^{\frac{HL}{H+T}} \left[1 - \exp\left(-\frac{\mu_{RT}}{H} \right) \right] \frac{H}{R^3} dY dX \right. \\
+ \int_0^{\frac{HW}{H+T}} \int_{\frac{XL}{W}}^{\frac{XL}{W}} \left[1 - \exp\left(-\frac{\mu}{W} \left\{ \frac{W}{X} - 1 \right\} \right) \right] \frac{H}{R^3} dY dX \\
+ \int_{\frac{YW}{L}}^{\frac{YW}{L}} \left(\int_0^{\frac{HL}{H+T}} \left[1 - \exp\left(-\frac{\mu}{Y} \left\{ \frac{L}{Y} - 1 \right\} \right) \right] \frac{H}{R^3} dX dY \right\}
\]

\[\ldots \quad (5.3) \]
The angular correlation attenuation factor

$$Q_l = \frac{1}{\pi \epsilon} \left\{ \int_0^{\frac{HW}{H+T}} \int_0^{\frac{HL}{H+T}} P_l(\cos \theta) \left[1 - \exp\left(-\frac{\mu RT}{H} \right) \right] \frac{H}{R^3} dY dX
ight. $$

$$+ \int_0^{\frac{W}{H+T}} \int_0^{\frac{XL}{W}} P_l(\cos \theta) \left[1 - \exp\left(-\mu R \left\{ \frac{W}{X} - 1 \right\} \right) \right] \frac{H}{R^3} dY dX $$

$$+ \int_0^{\frac{L}{H+T}} \int_0^{\frac{YW}{L}} P_l(\cos \theta) \left[1 - \exp\left(-\mu R \left\{ \frac{L}{Y} - 1 \right\} \right) \right] \frac{H}{R^3} dX dY \right\}$$

..... (5.4)

where $R = \left(x^2 + y^2 + H^2 \right)^{\frac{1}{2}}$

$P_l(\cos \theta) = P_l \left(\frac{H}{R} \right)$ are Legendre polynomials.

In equation (5.3) and (5.4), the first term is for a γ-ray which enters the top face and exits through the bottom face, the second term is for a γ-ray entering the top face and leaving through one side and the third term is for a γ-ray entering the top face and leaving through the other side face. The results of calculations are shown in Table 5.10 for source - detector distance of 2.54 cm and 5.0 cm. Figure 5.8 shows the plots of detector efficiencies.
Figure 5.8

Calculated detector efficiencies at 2.54 and 5.0 cm.
Table 5.10
Detector efficiencies and angular correlation attenuation factors

<table>
<thead>
<tr>
<th>E (MeV)</th>
<th>2.54 cm</th>
<th></th>
<th>5.00 cm</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Eff(%)</td>
<td>J2/J0</td>
<td>J4/J0</td>
<td>Eff(%)</td>
</tr>
<tr>
<td>0.5</td>
<td>3.82</td>
<td>0.8261</td>
<td>0.5073</td>
<td>1.42</td>
</tr>
<tr>
<td>0.6</td>
<td>3.61</td>
<td>0.8275</td>
<td>0.5109</td>
<td>1.35</td>
</tr>
<tr>
<td>0.8</td>
<td>3.30</td>
<td>0.8295</td>
<td>0.5159</td>
<td>1.24</td>
</tr>
<tr>
<td>1.0</td>
<td>3.06</td>
<td>0.8310</td>
<td>0.5194</td>
<td>1.15</td>
</tr>
<tr>
<td>1.5</td>
<td>2.64</td>
<td>0.8332</td>
<td>0.5251</td>
<td>1.00</td>
</tr>
<tr>
<td>2.0</td>
<td>2.40</td>
<td>0.8345</td>
<td>0.5282</td>
<td>0.910</td>
</tr>
<tr>
<td>3.0</td>
<td>2.14</td>
<td>0.8357</td>
<td>0.5313</td>
<td>0.814</td>
</tr>
<tr>
<td>4.0</td>
<td>2.02</td>
<td>0.8363</td>
<td>0.5327</td>
<td>0.770</td>
</tr>
<tr>
<td>5.0</td>
<td>1.96</td>
<td>0.8365</td>
<td>0.5333</td>
<td>0.747</td>
</tr>
<tr>
<td>6.0</td>
<td>1.93</td>
<td>0.8367</td>
<td>0.5336</td>
<td>0.738</td>
</tr>
<tr>
<td>8.0</td>
<td>1.92</td>
<td>0.8367</td>
<td>0.5337</td>
<td>0.734</td>
</tr>
<tr>
<td>10.0</td>
<td>1.94</td>
<td>0.8366</td>
<td>0.5336</td>
<td>0.740</td>
</tr>
<tr>
<td>15.0</td>
<td>2.03</td>
<td>0.8362</td>
<td>0.5325</td>
<td>0.775</td>
</tr>
</tbody>
</table>

2.4 Photopeak efficiency

The intrinsic full energy peak efficiency of the detector was measured with ^{137}Cs and ^{22}Na sources. Since these were not calibrated standard sources, the source strengths were determined with a 3" x 3" NaI(Tl) scintillation counter for which the detector efficiency and peak to total ratio are well known. Each source was mounted on the axis of the two detectors 5 cm from the Ge(Li) crystal and 10 cm from the NaI(Tl) crystal. Figure 5.9 and Figure 5.10 shows the spectra obtained from ^{137}Cs and ^{22}Na sources respectively. Since the
Figure 5.9

The 662 keV γ-ray spectra measured with a 3" x 3" NaI(Tl) detector (A) and the Ge(Li) detector (B).
(137Cs source).
The 511 and 1274 keV γ-ray spectra measured with a 3" x 3" NaI(Tl) detector (A) and the Ge(Li) detector (B).

(22Na source).
results obtained from these measurements, viz., intrinsic full energy peak efficiencies of the 511, 662 and 1274 keV γ-rays, are used to normalize the relative efficiencies of high energy γ-rays, it is important to measure them as accurately as possible. Table 5.11 shows the experimental results and the calculation used to obtain these values.

The observed counts of full energy peak in column 3 and 4 were obtained by summing the counts comprising the peak and subtracting appropriate background and contributions from higher energy γ-rays, if present. The 3" x 3" NaI(Tl) detector efficiencies and peak to total ratios at 10 cm were obtained from reference (MA 60). A check of the results is provided by the ratio of total 511 and 1274 keV γ-rays emitted by the source; the value obtained from Table 5.11 is 9.3106/5.1706 = 1.801 as compared to the theoretical ratio is 1.796 (EN 62).

For higher energy γ-rays, the relative efficiencies were measured for pairs of γ-rays from nuclear reactions and sources in which the relative intensities of the pairs of γ-rays were well known (Table 5.12). Figure 5.11 shows the plots of the full energy peak efficiency as a function of energy. The high energy end of the curve was extended pair by pair by interpolation and extrapolation until a smooth curve was obtained.
Figure 5.11

The intrinsic full energy peak efficiency of the 20 c.c. Ge(Li) detector.
EFFICIENCY - %

NUCLEAR DIODES: 20 CC
SOURCE DISTANCE: 2.5 CM

PHOTOPEAK

GAMMA RAY ENERGY - MEV
Table 5.11

Intrinsic full energy peak efficiencies of 511, 662 and 1274 KeV γ-rays

<table>
<thead>
<tr>
<th>Source</th>
<th>$E_γ$</th>
<th>Observed counts of full energy peak</th>
<th>Detector eff.</th>
<th>Peak to total ratio</th>
<th>γ-ray intensity emitted from source</th>
<th>Intrinsic full energy peak eff. Ge(Li) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{22}_{\text{Na}}$</td>
<td>511</td>
<td>NaI(Tl) 130162, Ge(Li) 13316</td>
<td>0.02167</td>
<td>0.645</td>
<td>9.3106x10^6</td>
<td>0.1430</td>
</tr>
<tr>
<td>$^{137}_{\text{Cs}}$</td>
<td>662</td>
<td>NaI(Tl) 224583, Ge(Li) 26640</td>
<td>0.02016</td>
<td>0.545</td>
<td>20.435 x 10^6</td>
<td>0.1304</td>
</tr>
<tr>
<td>$^{22}_{\text{Na}}$</td>
<td>1274</td>
<td>NaI(Tl) 30633, Ge(Li) 3664</td>
<td>0.01669</td>
<td>0.355</td>
<td>5.1701x10^6</td>
<td>0.0709</td>
</tr>
</tbody>
</table>

Table 5.12

Relative intensities of γ-rays

<table>
<thead>
<tr>
<th>Reaction</th>
<th>E_p(KeV)</th>
<th>$E_γ1$</th>
<th>$E_γ2$</th>
<th>$E_γ1 : E_γ2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{60}_{\text{Co}}$ source</td>
<td></td>
<td>1.17</td>
<td>1.33</td>
<td>1 : 1</td>
</tr>
<tr>
<td>$^{24}_{\text{Na}}$ source</td>
<td></td>
<td>2.75</td>
<td>1.37</td>
<td>1 : 1</td>
</tr>
<tr>
<td>$^{26}{\text{Mg}}(p,γ)^{27}{\text{Al}}$</td>
<td>662</td>
<td>2.75</td>
<td>5.32</td>
<td>1 : 0.7 (VA 67)</td>
</tr>
<tr>
<td>$^{13}{\text{C}}(p,γ)^{14}{\text{N}}$</td>
<td>554</td>
<td>4.11</td>
<td>1.63</td>
<td>1 : 0.96 (AJ 59)</td>
</tr>
<tr>
<td>$^{27}{\text{Al}}(p,γ)^{28}{\text{Si}}$</td>
<td>992</td>
<td>10.76</td>
<td>1.78</td>
<td>1 : 1.22 (AZ 66)</td>
</tr>
</tbody>
</table>
The intrinsic full energy peak efficiency of the 20 c.c. Ge(Li) detector is compared with those of 3" x 3" and $1\frac{3}{4}$" x 2" NaI(Tl) crystals. The dotted line shows the calculated photopeak efficiency using the photoelectric cross section of Table 5.9.
INTRINSIC FULL ENERGY PEAK EFFICIENCY

GAMMA RAY ENERGY (MeV)

3"x3" NaI(Tl)

1\3" DIA. x 2" NaI(Tl)

20 cc Ge(Li)

PHOTO-ELECTRIC CROSS SECTION (Ge)
As the γ-ray energy increases the photoelectric cross section drops very rapidly (Figure 5.6) and the photopeak efficiency drops accordingly. However, because of the photoelectric absorption of Compton scattered γ-rays and of two annihilation gamma quanta simultaneously in the pair production process, the total full energy absorption efficiency exceeds the photoelectric efficiency. Figure 5.12 shows the difference between the experimental efficiency curve and the calculated curve using the photoelectric cross section (Table 5.9). This difference will increase as the sensitive volume of the detector becomes larger. It is important to know the full energy peak efficiency of a particular detector experimentally so that the γ-ray intensities can be extracted accurately. The word 'full energy peak' is preferred to that of 'photopeak', since all the γ-ray energies studied were above 1 MeV, where the full energy peak is not due only to the photoelectric effect. The full energy peak efficiencies of 3" x 3" and 1\(\frac{3}{4} \)" x 2" NaI(Tl) crystals are also shown in Figure 5.12 for comparison with 20 c.c. Ge(Li) detector, they were obtained from reference (MA 60).
2.5 Double escape peak efficiency

A γ-ray with energy greater than 1.022 MeV incident on the detector can produce an electron-positron pair and many of the electrons and positrons deposit most of the energy in the detector. As shown in Figure 5.6, the cross section for pair production rises rapidly above the threshold and at about 1.5 MeV γ-ray energy begins to exceed that of the photoelectric effect. For each electron-positron pair produced, two 511-keV photons are created from positron annihilation. Because of the limited size of the detector most of the annihilation photons escape. If both quanta escape a peak corresponding to an energy of $E_{\gamma} = 1.022$ MeV, the 'double escape peak', results. There is also a weaker peak corresponding to energy of $E_{\gamma} = 0.511$ MeV, since the probability of the energy of one of the 511-keV γ-rays being completely deposited within the detector is much smaller; this is the 'single escape peak'. A full energy peak corresponding to photoelectric absorption of incident and Compton scattered γ-rays and re-absorption of both the annihilation quanta due to pair production is also observed in high energy γ-ray line shapes. Figure 5.13 shows the variation of the ratio of double escape peak to full energy peak with respect to the incident
Figure 5.13

Ratio of double escape peak to full energy peak efficiency and relative double escape peak efficiency of γ-rays of the 20 c.c. Ge(Li) detector.
γ-ray energy. The curve was obtained from the measurement of the ratio of γ-rays listed in Table 5.13.

Table 5.13
Double escape peak to full energy peak ratio of γ-rays

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Ep (KeV)</th>
<th>Eγ (MeV)</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>27Al(p,γ)28Si</td>
<td>992</td>
<td>1.78</td>
<td>0.10</td>
</tr>
<tr>
<td>26Mg(p,γ)27Al</td>
<td>662</td>
<td>2.75</td>
<td>0.50</td>
</tr>
<tr>
<td>13C(p,γ)14N</td>
<td>554</td>
<td>4.11</td>
<td>1.85</td>
</tr>
<tr>
<td>11B(p,γ)12C</td>
<td>600</td>
<td>4.43</td>
<td>1.95</td>
</tr>
<tr>
<td>26Mg(p,γ)27Al</td>
<td>662</td>
<td>5.32</td>
<td>2.57</td>
</tr>
<tr>
<td>19F(p,αγ)16O</td>
<td>597</td>
<td>6.13</td>
<td>4.01</td>
</tr>
<tr>
<td>30Si(p,γ)31P</td>
<td>620</td>
<td>7.89</td>
<td>6.89</td>
</tr>
<tr>
<td>13C(p,γ)14N</td>
<td>554</td>
<td>8.06</td>
<td>7.39</td>
</tr>
<tr>
<td>27Al(p,γ)28Si</td>
<td>992</td>
<td>10.76</td>
<td>11.62</td>
</tr>
</tbody>
</table>

From Figure 5.13, it is seen that above a γ-ray energy of 3.4 MeV, the double escape peak is the most intense peak in the spectrum of a single γ-ray. Thus the double escape peak is used most often for the identification of high energy γ-rays and for the estimation of the full energy peak intensity via the double escape peak to full energy peak ratio. The fact that the double escape peak to full energy peak ratio is greater than 1.0 at 3.4 MeV instead of at 1.5 MeV as would be expected from the photopeak and pair production cross section is further indication that the detector has a large sensitive
Double escape peak efficiency of the 20 c.c. Ge(Li) detector. Curve A is experimentally obtained and curve B is calculated from the pair production cross section.
DOUBLE ESCAPE PEAK EFFICIENCY

GAMMA RAY ENERGY (MeV)

A: EXPERIMENTAL

B: PAIR PRODUCTION
volume and that multiple absorption processes are contributing to the full energy peak.

Figure 5.14 shows the double escape peak efficiencies of the detector. Curve A is obtained by multiplying the values obtained from Figure 12 and Figure 13, and curve B is calculated from pair production cross section. The experimentally obtained curve A has a much smaller efficiency at higher energies as compared to the calculated result and in fact the efficiency decreases as gamma energy increases. Ewan and Tavândale (EW 64) studied this effect for a relatively small crystal of 3.5 m.m. depth and gave as two reasons:

(1) A large number of electrons and positrons created by the pair production process have sufficient energy to escape from the detector before losing all of their energy.

(2) High energy electrons and positrons in slowing down lose energy by emission of bremsstrahlung which can escape from the detector.

3. Line shape analysis

Though the methods described in Chapter 2 for the analysis of scintillation spectra are applicable to Ge(Li) spectra, the increased number of channels which are necessary for high resolution germanium spectra
Figure 5.15

The distributions of the ratio of double escape peak to full energy peak of γ-rays emitted from the 719 (crosses), 809 (dots) and 954 (open circles) keV resonances of \(^{26}\text{Mg}(p,\gamma)^{27}\text{Al}\) reaction along with the measured curve.
presents a problem for computer least squares analysis because of limited number of available core locations. The recent work of Van der Leun et al. (VA 67) derived \(\gamma \)-ray intensities from intrinsic full energy peak or double escape peak efficiencies without any attempt at line shape analysis. The present work, however, found that the line shape analysis was necessary to check the results obtained from the intrinsic full energy peak efficiency and that more accurate results were in fact obtained. This is because the data points comprising peaks in a Ge(Li) spectrum constitute only a small proportion of the total spectrum. Figure 5.15 shows the distributions of the ratio of double escape peak to full energy peak as compared to the measured line of Figure 5.13 for \(\gamma \)-rays emitted from the \(^{26}\text{Mg}(p,\gamma)^{27}\text{Al} \) resonances at \(E_p = 719 \) (crosses), 809 (dots) and 954 (open circles) keV. The considerable scatter of points indicates the inaccuracies of intensities determined in this way (\(\sim \pm 20\% \)) and indicates the necessity of a more accurate method.

The standard \(\gamma \)-ray line shapes of energies 1.780, 2.367, 4.433, 6.129, 8.060 and 10.760 MeV were measured in 2048 channels. Since the storage of these line shapes would occupy 49 kilo bytes of computer core, they were stored on disk and added to the main program only at
The standard γ-ray line shapes of energy 1.780, 2.367, 4.433, 6.129, 8.060 and 10.760 MeV with each normalized to have a unique integrated intensity of 10^6 counts.
The standard γ-ray line shape of energy 1.780, 2.367, 4.433, 6.129, 8.060 and 10.760 MeV with the full energy peaks aligned and normalized to the same height.
The 6.129 MeV γ-ray line shape using the $^{19}_F(p,\alpha\gamma)^{16}O$ resonance at 597 keV. The bump on the low energy side of each of the three peaks indicates that γ-rays were emitted from ^{16}O nuclei recoiling into vacuum in the backward direction.
the time when they were used. A least squares fit program called FITTER (see Appendix) was developed for the IBM-360 computer to analyze complex γ-ray spectra of up to 2048 channels with the number of components (more than 20) adjustable according to the size of the energy interval fitted. Figure 5.16 shows the line shapes each normalized to have a unique integrated intensity of 10^6 counts and Figure 5.17 shows the line shapes with the full energy peaks aligned to the same position and normalized to the same height. The 1.780 and 10.760 MeV γ-ray line shapes were obtained from the 27Al(p,γ)28Si resonance at Ep = 992 keV (AZ 66). The 4.433 MeV γ-ray line shape was obtained from the 11B(p,γ)12C reaction at Ep = 600 keV. This was found necessary to replace the 15N(p,αγ)12C resonance which was used in NaI(Tl) line shapes due to the Doppler broadening of peaks resulting from the recoil of α-particles significantly affects the resolution of the Ge(Li) line shape. This effect became serious in the measurement of 6.129 MeV γ-ray line shape using the 19F(p,αγ)16O resonance at 597 keV. The line shape taken with the detector at 0° to the beam is shown in Figure 5.18. The bump on the low energy side of each of the three peaks indicates that γ-rays were emitted from 16O nuclei recoiling into vacuum in the backward
direction. To prevent this effect, a thin film of gold was evaporated on to the surface of the fluorine target.

The ^{13}C target which was used in the measurement of 8.06 MeV γ-ray line shape for the NaI(Tl) detector was found too thick to use for the line shape of Ge(Li) detector. The resonance width of 33 keV at $E_p = 55^4$ keV is broad compared to the resolution of the detection system. A thin ^{13}C target of about 5 keV thick which was prepared by cracking enriched methyl iodide on a tantalum foil was used instead for the measurement of 8.06 MeV γ-ray line shape.

The quality of the fits and the intensities obtained are discussed in the study of $^{26}\text{Mg}(p,\gamma)^{27}\text{Al}$ reaction at 95^4 keV resonance in which the intensities obtained from the intrinsic full energy peak efficiencies were compared.

4. Application

The high resolution obtainable from a Ge(Li) γ-ray spectrometer enables accurate measurement of γ-ray energies, Doppler shifts and broadenings thus providing accurate assessments of level energies, decay schemes and life times of excited states and the elimination of ambiguities and incorrect assignments of spins which have arisen from measurements made with inadequate resolution.
The application of the 20 c.c. Ge(Li) detector is demonstrated in the study of the $^{26}\text{Mg}(p,\gamma)^{27}\text{Al}$ resonances at $E_p = 662, 719, 809, 839, 954$ and 982 keV.
FIGURE CAPTIONS

Figure 5.1 The A.N.U. 20 c.c. lithium drifted germanium detector is drawn to scale, the shaded part indicates the volume that is not depleted by the coaxial drift process.

Figure 5.2 The experimental set up of the Ge(Li) γ-ray spectrometer.

Figure 5.3 The 60Co spectrum with optimum resolution of 4.2 keV for the 1.333 MeV γ-ray.

Figure 5.4 Comparison of the line width of the full energy peak of a 10.76 MeV γ-ray to that of a 1.78 MeV γ-ray obtained in the same spectrum.

Figure 5.5 The ThC₈ spectrum collected with SIMPUL 2048 channels. Peak energies are from reference (EM 60).

Figure 5.6 The linear attenuation coefficients of γ-rays in germanium.

Figure 5.7 Geometry of a quarter section of a rectangular detector (HO 65).

Figure 5.8 Calculated detector efficiencies at 2.54 and 5.0 cm.
Figure 5.9 The 662 keV γ-ray spectra measured with a 3\" x 3\" NaI(Tl) detector (A) and the Ge(Li) detector (B). (137Cs source).

Figure 5.10 The 511 and 1274 keV γ-ray spectra measured with a 3\" x 3\" NaI(Tl) detector (A) and the Ge(Li) detector (B). (22Na source).

Figure 5.11 The intrinsic full energy peak efficiency of the 20 c.c. Ge(Li) detector.

Figure 5.12 The intrinsic full energy peak efficiency of the 20 c.c. Ge(Li) detector is compared with those of 3\" x 3\" and $1\frac{3}{4}$\" x 2\" NaI(Tl) crystals. The dotted line shows the calculated photopeak efficiency using the photoelectric cross section of Table 5.9.

Figure 5.13 Ratio of double escape peak to full energy peak efficiency and relative double escape peak efficiency of γ-rays of the 20 c.c. Ge(Li) detector.

Figure 5.14 Double escape peak efficiency of the 20 c.c. Ge(Li) detector. Curve A is experimentally obtained and curve B is calculated from the pair production cross section.
Figure 5.15 The distributions of the ratio of double escape peak to full energy peak of γ-rays emitted from the 719 (crosses), 809 (dots) and 954 (open circles) keV resonances of 26Mg(p,γ)27Al reaction along with the measured curve.

Figure 5.16 The standard γ-ray line shapes of energy 1.780, 2.367, 4.433, 6.129, 8.060 and 10.760 MeV with each normalized to have a unique integrated intensity of 10^6 counts.

Figure 5.17 The standard γ-ray line shape of energy 1.780, 2.367, 4.433, 6.129, 8.060 and 10.760 MeV with the full energy peaks aligned and normalized to the same height.

Figure 5.18 The 6.129 MeV γ-ray line shape using the 19F(p,αγ)16O resonance at 597 keV. The bump on the low energy side of each of the three peaks indicates that γ-rays were emitted from 16O nuclei recoiling into vacuum in the backward direction.
CHAPTER VI

THE $^{26}\text{Mg}(p, \gamma)^{27}\text{Al}$ REACTION

1. Introduction

The ^{27}Al nucleus has been widely discussed in terms of a strong coupling collective rotational model (NI 55, GO 60, OP 64) and the excited core model (TH 66, EV 67a). The collective rotational model, which explains with some success the structure of ^{25}Mg, ^{25}Al and other light nuclei in the 2s-1d shell (GO 60, BI 60), has been applied to the decay scheme of ^{27}Al. Figure 6.1 shows the low lying level scheme taken from Ophel and Lawergren (OP 64) and Lawergren (LA 64). The level energies were taken from Van der Leun and Sheppard (VA 67). The level sequence 0.843 MeV ($\frac{1}{2}^+$), 1.013 MeV ($\frac{3}{2}^+$) and 2.732 MeV ($\frac{5}{2}^+$) forms a rotational band on orbit 9 of the Nilson model (NI 55). A rotational band with $K = \frac{5}{2}$ based on the ground state with the 2.209 MeV level ($\frac{7}{2}^+$) as the second member and the 3.000 MeV level ($\frac{9}{2}^+$) as the third member was suggested by Gove (GO 60). The application of this model to the experimentally obtained transition strengths, $E2/M1$ mixing ratios and branching ratios were discussed by Ophel et al. (OP 64) and
Figure 6.1

Decay scheme of the low-lying levels of 27Al.
Lawergren (LA 64). Satisfactory qualitative interpretation of the experimental information is possible but numerous exceptions exist.

The weak coupling core excited model has been applied to heavy and medium weight nuclei and found to be rather successful (LA 57, DE 60, DE 65a). This model suggests that low lying levels of odd mass nuclei could be interpreted as resulting from the coupling of a particle or a hole to the first excited state of a doubly even core. The theoretical calculation of the level structure of 27Al with this model has recently been carried out by Thankappan (TH 66) and applied by Evers et al. (EV 67a) to compare the decay properties such as M1, E2 transition strengths, mixing ratios and branching ratios of low lying levels of 27Al with experimental and theoretical values. The nucleus 27Al is described as a $d_{5/2}$ hole in the ground state of 28Si. The coupling of this hole to the quadrupole excitation $l = 2$ of the surface of the core gives rise to five excited states of angular momentum $\frac{1}{2}^+, \frac{3}{2}^+, \frac{5}{2}^+, \frac{7}{2}^+$ and $\frac{9}{2}^+$. The observed levels at 0.843 MeV ($\frac{1}{2}^+$), 1.013 MeV ($\frac{3}{2}^+$), 2.209 MeV ($\frac{7}{2}^+$), 2.732 MeV ($\frac{5}{2}^+$) and 3.000 MeV ($\frac{9}{2}^+$) have spin and parity as predicted by this model. The transition from strong coupling to weak coupling going from 25Mg to 27Al has been described by Crawley et al. (CR 65) for the (p,p')
scattering at $E_p = 17.5$ MeV. Similar results were obtained by Niewodniczanski (NI 64) for (d,d') scattering at $E_d = 12.8$ MeV and by Kokame (KO 65) for (α,α') scattering at $E_\alpha = 28.5$ MeV. However, Van der Leun et al. (VA 67) from his recent experimental results of $^{26}\text{Mg}(p,\gamma)^{27}\text{Al}$ reaction indicated that the core excited model cannot explain the decay properties of the 2.732 MeV level and the mixing ratio of the 2.980 MeV γ-ray. It also cannot explain the data of Lawergren (LA 67a) for the $^{26}\text{Mg}(d,n)^{27}\text{Al}$ reaction. These experiments favour a description of the ^{27}Al level scheme in terms of the rotational collective model. The theoretical predictions based on different models need systematic studies to gather adequate experimental information of level properties. Due to the narrow separation of levels in ^{27}Al, the previous experimental data obtained from the study of $^{26}\text{Mg}(p,\gamma)^{27}\text{Al}$ reaction with NaI(Tl) detectors are shown by Van der Leun et al. (VA 67) to yield erroneous information as a result of the insufficient resolution of the NaI(Tl) crystals. Systematic studies of ^{27}Al nucleus have been carried out in this department (LA 62, OP 62, OP 62a, OP 63, OP 64, LA 64, OS 65). With the advent of the Ge(Li) detector, measurement of decay schemes using high resolution Ge(Li) detectors is necessary to identify γ-rays which were not possible to
resolve in the previous measurements with NaI(Tl) crystals. This is especially important if high efficiency NaI(Tl) crystals are to be used in angular correlation measurements. The possibility exists that the cascade γ-rays selected for the correlation measurement may contain other peaks hidden under the main peak. A prior measurement with a Ge(Li) detector will allow a more justified choice of γ-rays in cascade for angular correlation measurement with NaI(Tl) detectors. The high resolution of the Ge(Li) detector provides more precise determinations of γ-ray energies and thus of more precise level energies. Accurate information of these energies increases the reliability of decay schemes deduced from them. The theoretical calculation of 27Al model schemes need more correlation measurements to establish branching ratios and quadrupole/dipole mixing ratios of low-lying levels especially. Since the efficiency of the available Ge(Li) detectors is not large enough for $\gamma-\gamma$ correlation measurements, NaI(Tl) detectors are still resorted to for such measurements. Additionally, the systematic survey of the resonance levels may extend information about the group decay properties of two or more neighbouring levels. This was reported by Van der Leun in 27Al (VA 67) for resonance
levels of 2293 and 2323 keV, 662 and 719 keV, and 338 and 454 keV.

2. Specific problems concerning levels of 27Al

2.1 The spin of the 3.00 MeV level

The spin of the 3.00 MeV level is a key property to the success of the prediction of the core excited model which explains better level energies of lower value with a high spin, however, there still remains some uncertainty about the assignment of $\frac{9}{2}$ to this level. The spin $\frac{9}{2}$ has been assigned to this level by Towle and Gilboy (TO 62) from the analysis of the differential cross section for inelastic scattering of neutrons.

Lawergren (LA 64) measured the γ-ray triple correlations of the cascade $3.00 \rightarrow 2.21 \rightarrow 0$ and showed that an assignment of $\frac{9}{2}$ to this level was consistent with the measurements, but analysis for spins other than $\frac{9}{2}$ was not attempted.

Wakatsuki et al. (WA 65b, WA 66) made a firm assignment of $\frac{7}{2}$ from γ-ray correlation measurements for the $(p,p'\gamma)$ reaction leading to this level. The 3.00 MeV level was interpreted by them as the fourth member of a $k = \frac{1}{2}$ rotational band based on the first excited level, i.e., 0.843 MeV ($\frac{1}{2}^+$), 1.013 MeV ($\frac{3}{2}^+$), 2.732 MeV ($\frac{5}{2}^+$), 3.000 MeV ($\frac{7}{2}^+$).
Sheppard et al. (SH 67) studied the $^{26}\text{Mg}(p,\gamma)^{27}\text{Al}$ reaction using a Ge(Li) crystal as γ-ray detector which has no problem in separating the doublet 2.980 and 3.000 MeV γ-rays. The angular correlation measurements at $E_p = 2323$ and 2574 keV resonance both lead to the assignment of $\frac{9}{2}$ or $\frac{5}{2}$ to 3.00 MeV level. However, a unique solution was claimed at $E_p = 1733$ keV resonance where the decay sequence $\frac{7}{2} \rightarrow \frac{9}{2} \rightarrow \frac{5}{2}$ gave a much better fit than that from $\frac{7}{2} \rightarrow \frac{5}{2} \rightarrow \frac{5}{2}$ sequence.

Recently Gove et al. (GO 67) reported a spin of $\frac{3}{2}$ or $\frac{5}{2}$ for this level from the study of $^{28}\text{Si}(d,^3\text{He})^{27}\text{Al}$ reaction using a magnetic spectrograph to resolve the 2.980 and 3.000 MeV levels. Kean et al. (KE 67) found that either $\frac{5}{2}$ or $\frac{9}{2}$ was consistent with measurements of the $^{24}\text{Mg}(\alpha,\gamma)^{27}\text{Al}$ reaction using NaI(Tl) crystals in conjunction with a double focussing magnetic spectrometer where the doublet is adequately separated. From the experimental evidence discussed above, assignments ranging from $\frac{3}{2}$ up to $\frac{9}{2}$ have been assigned to 3.00 MeV level.

2.2 The 3.68 MeV level

The spin of this level was first reported by Van der Leun et al. (VA 56) to be $\frac{1}{2}$ from the measurement of angular distribution of 4.91 MeV γ-ray emitted from
Ep = 339 keV resonance level to 3.68 MeV level. Recently Sheppard and Van der Leun (SH 67) using Ge(Li) \(\gamma \)-ray spectrometer studied \(^{26}\text{Mg}(p,\gamma)^{27}\text{Al} \) reaction and found a number of resonance levels with spin \(\frac{1}{2} \) or \(\frac{3}{2} \) which de-excite through this level; furthermore, they found that the level de-excites 65\% to 0.843 MeV (\(\frac{1}{2} \)) level and 35\% to 1.013 MeV (\(\frac{3}{2} \)) level. They concluded that the spin of 3.68 MeV level is \(\frac{1}{2} \) or \(\frac{3}{2} \); a definite assignment of spin to this level, however, was not made.

Osgood (OS 65) extensively studied the Ep = 721 keV resonance, measuring the angular distributions of the transitions from resonance to the 3.68 MeV level and 3.68 \(\rightarrow \) 0.84 MeV level. The anisotropy of the 2.84 MeV (3.68 \(\rightarrow \) 0.84) \(\gamma \)-ray was regarded as evidence that the 3.68 MeV level could not have a spin of \(\frac{1}{2} \). The analysis of angular correlation measurements of the cascade \(r \rightarrow 3.68 \rightarrow 0.84 \) (\(r \) stands for resonance) was made with spin sequences of \(\frac{5}{2} \rightarrow \frac{3}{2} \rightarrow \frac{1}{2} \) and \(\frac{3}{2} \rightarrow \frac{3}{2} \rightarrow \frac{1}{2} \), since the spin of the resonance level was not known. Osgood concluded that the measurements were consistent with \(\frac{5}{2} \rightarrow \frac{3}{2} \rightarrow \frac{1}{2} \) for geometries I and II, i.e., he proposed the 721 keV resonance level to have spin \(\frac{5}{2} \) and the 3.68 MeV level spin \(\frac{3}{2} \). Osgood also studied the decay scheme of the 3.68 MeV level by measuring the low energy \(\gamma \)-rays in
coincidence with 5.24 MeV (r → 3.68) γ-ray. He found only 2.34 MeV (r → 6.6) and 2.84 MeV (3.68 → 0.84) γ-rays and concluded that 3.68 MeV level decays at least 97% via 0.84 MeV level.

Wakatsuki et al. (WA 66) studied the decay scheme of 3.68 MeV level with (p,p'γ) reaction. They found the 3.68 MeV level decays 50% to 0.84 MeV level and 50% to 1.01 MeV level in contradiction to the result of Osgood, but in a better agreement to that of Van der Leun.

This indicates that the decay scheme of 3.68 MeV level obtained by Osgood is incorrect and the assignment of the spin \(\frac{3}{2} \) to this level is possibly in error since the angular distribution of the 2.84 MeV (3.68 → 0.84) γ-ray measured by Osgood contained also the 2.67 MeV (3.68 → 1.01) γ-ray. In fact, a strong γ-ray from 721 keV resonance decays to 6.16 MeV level with energy 2.80 MeV. The coincidence spectrum failed to distinguish the \(r \rightarrow 3.68 \rightarrow 0.84 \) cascade from \(r \rightarrow 6.16 \rightarrow 0.84 \) cascade due to the fact that 5.32 MeV (6.16 → 0.84) γ-ray is not resolved from 5.24 MeV γ-ray (r → 3.68) which was chosen as the energy window in the coincidence measurement. This fact demonstrates the importance of pre-identification of γ-rays to guide γ-γ angular correlation measurements. Precise determinations of the energies of levels and
γ-rays will reduce the chance of mistakenly inverting the order of two cascading γ-rays. The decay scheme of the 719 keV resonance and the angular correlation measurements of the cascade $r \rightarrow 6.16 \rightarrow 0.84$ and $r \rightarrow 3.68 \rightarrow 0.84$ were re-studied in detail by this work.

Lawergren (LA 67a) using neutron time of flight technique studied the angular distribution of neutron groups from the 26Mg(d,n)27Al reaction, and $l = 0$ result was observed to the 3.68 MeV level corresponding to a spin and parity of 3.68 MeV level of $\frac{1}{2}^+$.

2.3 The 3.96 MeV level

The decay scheme of the 3.96 MeV level was studied by Wakatsuki et al. (WA 66) from (p,p'γ) reaction, the branching ratio of 45 : 18 : 20 : 12 : 5 was reported by them from this level decaying to the ground state ($\frac{5}{2}^+$), 0.843 MeV ($\frac{1}{2}^+$), 1.013 MeV ($\frac{3}{2}^+$), 2.212 MeV ($\frac{7}{2}^+$) and 2.732 MeV ($\frac{5}{2}^+$) states. They suggest a spin of $\frac{3}{2}$ for this level. This result is however in serious disagreement from that of Van der Leun and Sheppard (VA 67), who found that the level decays only to the ground state. The spin of the level was suggested as $\frac{3}{2}$ from the fact that the level was excited by resonance levels which of spin either $\frac{1}{2}$, $\frac{3}{2}$, or $\frac{5}{2}$ and decays only to ground state which has spin of $\frac{5}{2}$.
Valter et al. (VA 65) studied the decay scheme of the 10.48 MeV resonance level corresponding to \(E_p = 2.293 \) MeV with NaI(Tl) detectors. The \(\gamma-\gamma \) triple correlation measurements of \(r \rightarrow 3.96 \rightarrow 0 \) cascade established a spin of \(\frac{7}{2} \) for the 3.96 MeV level. Recent measurement with a Ge(Li) detector by Van der Leun et al. (VA 67), however, shows that the 10.48 MeV level decays to 6.48 MeV level which was not identified by Valter et al., and the 3.96 MeV level was not excited from the decay of 10.48 MeV level. Again, the measurement of Valter et al. with NaI(Tl) detectors could not resolve the 3.96 MeV (3.96 \(\rightarrow 0 \)) and 6.52 MeV (10.48 \(\rightarrow 3.96 \)) \(\gamma \)-rays from 4.00 MeV (10.48 \(\rightarrow 6.48 \)) and 6.48 MeV (6.48 \(\rightarrow 0 \)) \(\gamma \)-rays.

The \(^{26}\text{Mg}(d,n)^{27}\text{Al} \) reaction of Lawergren (LA 67a) seems to indicate the spin and parity of this state is \(\frac{7}{2}^- \).

2.4 The 4.41 MeV level

The decay scheme of the 4.41 MeV level was studied by Metzger (ME 65), Van der Leun (VA 67) and recently by Spear (SP 67). All works indicated that the level decays directly to the ground state and through 1.01 MeV level. However, the intensity of the transition 4.41 \(\rightarrow 2.21 \) (\(\frac{7}{2}^+ \)) was very different between their results, 11\% by Metzger, 25\% by Van der Leun and less than 5\% by Spear. Metzger
also measured the angular distributions of the 4.41 MeV (4.41 → 0) and the 3.40 MeV (4.41 → 1.01) γ-rays, the results being consistent with the assignment of $\frac{5}{2}^+$ to 4.41 MeV level. Sheppard and Van der Leun (SH 67) suggested the spin to be $\frac{5}{2}$ from the combined evidence that the level is excited by decay of resonance levels of spins $\frac{3}{2}$, $\frac{5}{2}$ or $\frac{7}{2}$ and that the decay of this level proceeds via $\frac{3}{2}$, $\frac{5}{2}$ and $\frac{7}{2}$ states. However, Lawergren's $^{26}\text{Mg}(d,n)^{27}\text{Al}$ results suggest that the spin and parity of this level is $\frac{3}{2}^-$ (LA 67a).

3. Experimental Methods

All investigations of $^{26}\text{Mg}(p,\gamma)^{27}\text{Al}$ resonance levels were carried out using the proton beam of the A.N.U. 2 MeV Van de Graaff accelerator. The proton beam was analyzed by a 25° magnet with an energy stability of ± 1 keV. The low detector efficiency of Ge(Li) crystal required beam currents greater than 15 μa for a reasonable running time for each spectrum collected. Depending on the yield of the reaction at different proton energies, spectra were obtained in periods ranging from three to five hours.

The targets were prepared by evaporating ^{26}MgO from a tantalum strip in vacuo onto copper. The heat process reduces the oxide, hence liberating the magnesium. The
^{26}MgO, supplied by A.E.R.E., Harwell, England, was enriched to contain $>98\%$ of ^{26}Mg. Targets prepared in this way were usually about 5 keV thick at 1 MeV proton energy. The copper backings, sand blasted beforehand to remove any contaminants, had a thickness of about 2 mm and were designed to screw onto a water-cooled target holder. The target holder was surrounded by a liquid air trap to prevent deposits of carbon on the target. The method was used previously by Bashkin and Ophel (BA 61). The water cooled target allowed bombardment of the target with greater beam currents (up to 30 W) without deterioration. The target chamber was cylindrical in shape and made of brass. A glass window on the chamber wall at 90° to the beam direction facilitated optical alignment.

The Ge(Li) γ-ray spectrometer as described in Chapter V was used for all of the measurements. The resonance spectra were obtained at 2.54 cm from the target and at $\theta = 55^\circ$ with respect to the proton beam thus averaging out any dipole angular distribution effect. The decay scheme for each resonance level was investigated firstly; the angular distributions of cascade γ-rays were then measured after all γ-rays in the single spectrum had been identified. Though no serious effort was put into establishing level energies with high
precision, internal consistency was obtained between
cascade γ-ray energies. In fact a number of levels were
established more accurately than previous measurements.
In the early stage of investigation before the 4096
channel analyzer provided by the SIMPUL system was
available, spectra were collected with an RCL-512 pulse
height analyzer. Due to the limited number of channels
available, some portions of spectra were remeasured with
expanded gain by a biased amplifier and it was found also
necessary to perform some coincidence measurements between
a 5" x 4" NaI(Tl) crystal and the Ge(Li) detector. The
results of these measurements however agree with the
corresponding single spectra recorded with 2048 channels,
Demonstrating the fact that a high resolution Ge(Li)
detector combined with a multichannel analyzer which
provides enough channels with respect to the resolution
required can eliminate most if not all of the coincidence
measurements usually necessary to achieve identification
of γ-rays.

Initially, the angular distributions were measured
at six equal intervals of $\cos^2 \theta = 0.0(0^\circ), 0.2 (63.45^\circ),
0.4 (50.75^\circ), 0.6 (39.25^\circ), 0.8 (26.55^\circ)$ and 1.0 (90$^\circ$).
Since no appreciable P_4 terms were observed at any of the
resonance levels studied, measurements were reduced to
0°, 45° and 90°, and sometimes only at 0° and 90°. The
alignment of detector assembly with respect to beam spot on the target was checked by measuring at different angles the isotropic 8.07 MeV (r → 1.01) γ-ray from the 839 keV resonance level (OP 62). Any deviations from isotropy were used to correct subsequent measurements.

To check the stability of beam energy which might occasionally drift from the resonance energy, a 5" x 4" NaI(Tl) crystal fixed at 90° to the beam was used as a monitor throughout the angular distribution measurements. In general, the monitor count and the yield/integrated charge agreed to within ± 3%. The angular distributions were analyzed in terms of Legendre Polynomials:

\[W(\theta) = 1 + a_2 P_2(\cos \theta) \]

with the coefficient \(a_2 = A_2 Q_2 \), where \(A_2 \) is the theoretical coefficient and \(Q_2 \) is the attenuation factor due to the finite size of the detector. Where the measurements were made at more than two angles, the value of \(a_2 \) was obtained by the method of least squares as described by Ferguson (FE 65).

Theoretical calculations of angular distributions for various spin sequences were carried out using tables of Sharp et al. (SH 54), and are listed in Table 6.1. The target \(^{26}\text{Mg}\) has \(J^\pi = 0^+ \), simplifies the analysis of angular distribution since a unique \(\ell_p \) value and channel spin is associated with each possible resonance spin.
Table 6.1

Theoretical angular distributions for gamma radiation emitted in transitions between states of definite spin. Compound state J_1 formed by capture of p-wave and d-wave protons with entrance spin $\frac{1}{2}^+$. Case (a) first radiation ($J_1 \rightarrow J_2$) observed; Case (b) first radiation unobserved, second radiation ($J_2 \rightarrow J_3$) observed.

<table>
<thead>
<tr>
<th>J_1</th>
<th>J_2</th>
<th>J_3</th>
<th>Angular Distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A. $\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{1}{2}$</td>
<td>$W(\theta) = P_0 - \frac{0.5 - 1.732X - 0.5X^2}{1 + X^2}$</td>
</tr>
<tr>
<td>B. $\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$W(\theta) = P_0 + \frac{0.4 + 1.55X}{1 + X^2}$</td>
</tr>
<tr>
<td>C. $\frac{5}{2}$</td>
<td>$\frac{5}{2}$</td>
<td>$\frac{5}{2}$</td>
<td>$W(\theta) = P_0 - \frac{0.1 + 1.184X + 0.357X^2}{1 + X^2}$</td>
</tr>
<tr>
<td>D. $\frac{5}{2}$</td>
<td>$\frac{5}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$W(\theta) = P_0 - \frac{0.4 - 2.03X - 0.204X^2}{1 + X^2} + \frac{0.653X^2}{1 + X^2}$</td>
</tr>
<tr>
<td>E. $\frac{5}{2}$</td>
<td>$\frac{5}{2}$</td>
<td>$\frac{5}{2}$</td>
<td>$W(\theta) = P_0 + \frac{0.457 + 1.084X - 0.204X^2}{1 + X^2}$ - $\frac{0.367X^2}{1 + X^2}$</td>
</tr>
<tr>
<td>F. $\frac{5}{2}$</td>
<td>$\frac{5}{2}$</td>
<td>$\frac{7}{2}$</td>
<td>$W(\theta) = P_0 - \frac{0.143 + 1.484X + 0.347X^2}{1 + X^2} + \frac{0.109X^2}{1 + X^2}$</td>
</tr>
<tr>
<td>(b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G. $\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$W(\theta) = P_0$</td>
</tr>
<tr>
<td>H. $\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$W(\theta) = P_0$</td>
</tr>
<tr>
<td>I. $\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$W(\theta) = P_0 - \frac{(0.1 - 0.3t) + (0.346 - 1.04t)X - (0.1 - 0.3t)X^2}{(1 + X^2)(1 + t)}$</td>
</tr>
<tr>
<td>J. $\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$W(\theta) = P_0 + \frac{(0.08 - 0.24t) - (0.31 - 0.432t)X}{(1 + X^2)(1 + t)}$</td>
</tr>
<tr>
<td>K. $\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$W(\theta) = P_0 - \frac{(0.28 - 0.04t) + (1.42 - 0.203t)X - (0.143 - 0.02t)X^2}{(1 + X^2)(1 + t)}$</td>
</tr>
<tr>
<td>L. $\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$\frac{3}{2}$</td>
<td>$W(\theta) = P_0 - \frac{(0.263 + 0.04t) + (1.333 + 0.203t)X - (0.134 + 0.0204t)X^2}{(1 + X^2)(1 + t)}$ - $\frac{(0.093 + 0.3265t)X^2}{(1 + X^2)(1 + t)}$</td>
</tr>
</tbody>
</table>
Transitions with \(\Delta J \geq 3 \) were ignored throughout. In Table 6.1, \(X \) is the mixing ratio (quadrupole/dipole) of the observed \(\gamma \)-ray and \(t \) is that of the unobserved \(\gamma \)-ray.

4. The 662 keV resonance (\(E_x = 8.908 \) MeV)

The decay scheme of the 662 keV resonance level was previously studied by Van der Leun et al. (VA 56) and Ophel et al. (OP 62a) with NaI(Tl) detectors. Both groups assigned the most intense \(\gamma \)-rays with energies of 5.25 and 2.80 MeV to the cascade \(r \rightarrow 3.68 \) (5.23 MeV) and 3.68 \(\rightarrow 0.84 \) (2.84 MeV). The improved resolution of Ge(Li) detectors enabled the present work and that of Van der Leun et al. (VA 67) to identify 2.80 and 5.25 MeV \(\gamma \)-rays with the cascade \(r \rightarrow 6.160 \) (2.748 MeV) and 6.160 \(\rightarrow 0.843 \) (5.317 MeV).

Figure 6.2 shows the spectrum and the decay scheme obtained from the present work and Table 6.2 lists the \(\gamma \)-rays observed with the results of Van der Leun et al. listed in column 5 for comparison. In general the agreement is excellent.

The slight discrepancy in the intensity of the cascade \(r \rightarrow 6.160 \), 36% as compared to 43% of Van der Leun, occurred also at 719 keV resonance level in which the intensity of the cascade \(r \rightarrow 6.160 \) was 34% from the present work while that of Van der Leun was 41%. Since
Figure 6.2

Resonance spectrum and decay scheme of the 662 keV resonance. Circles are data and the least squares line shape fit is the solid line.
the relative intensities of the present work were deduced from intrinsic full energy peak efficiencies as well as line shape analysis and the measurements made at 55° rather than 45° as chosen by Van der Leun et al. (VA 67), more accurate results are expected from the present work.

Table 6.2

Gamma-rays observed at 662 keV resonance

<table>
<thead>
<tr>
<th>E_{γ}(MeV)</th>
<th>Interpretation</th>
<th>Relative intensity</th>
<th>Branching ratio % (resonance level)</th>
<th>(VA 67) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.843</td>
<td>0.843 → 0.</td>
<td>77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.013</td>
<td>1.013 → 0.</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.093</td>
<td>8.908 → 6.815</td>
<td>6</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>2.302</td>
<td>8.908 → 6.606</td>
<td>4</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2.748</td>
<td>8.908 → 6.160</td>
<td>81</td>
<td>36</td>
<td>43</td>
</tr>
<tr>
<td>2.771</td>
<td>5.751 → 2.980</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.826</td>
<td>8.908 → 6.082</td>
<td>4</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>2.980</td>
<td>2.980 → 0.</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.157</td>
<td>8.908 → 5.751</td>
<td>7</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>3.212</td>
<td>4.055 → 0.843</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.428</td>
<td>6.160 → 2.732</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.956</td>
<td>3.956 → 0.</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.853</td>
<td>8.908 → 4.055</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>4.908</td>
<td>5.751 → 0.843</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.952</td>
<td>8.908 → 3.956</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>5.147</td>
<td>6.160 → 1.013</td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.317</td>
<td>6.160 → 0.843</td>
<td>62</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.763</td>
<td>6.606 → 0.843</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.802</td>
<td>6.815 → 1.013</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.082</td>
<td>6.082 → 0.</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.129</td>
<td>19F(p,αγ)160</td>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.160</td>
<td>6.160 → 0.</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.895</td>
<td>8.908 → 1.013</td>
<td>102</td>
<td>45</td>
<td>42</td>
</tr>
<tr>
<td>8.065</td>
<td>8.908 → 0.843</td>
<td>12</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
The cascade $r \rightarrow 6.606 (2.302 \text{ MeV})$ was not reported by Van der Leun et al. The observed peak at 2.302 MeV was further supported by the existence of 5.763 MeV γ-ray from the cascade $6.606 \rightarrow 0.843$ which accounts 75\% of the decay of the 6.606 MeV level (VA 67).

The decay of the 5.751 MeV level has not been reported previously. The decay of this level to the 0.843 and 2.980 MeV levels is consistent with the measurement at the 954 keV resonance in which the 5.751 MeV level was rather strongly excited enabling the observation of the cascade 5.751 \rightarrow 1.013 as well.

The spin of the 6.082 MeV level so far has not been proposed. The observation of the 6.082 MeV ($6.082 \rightarrow 0$) γ-ray suggests the spin of the level is $\frac{3}{2}$, since the level was excited by the resonance level with spin $\frac{1}{2}$ (EN 62) and decays to the ground state ($\frac{5}{2}$). The existence of the cascade 6.082 \rightarrow 0 was also observed at 839 keV resonance which also has a spin of $\frac{1}{2}$ (OP 62).

5. The 719 keV resonance ($E_x = 8.963 \text{ MeV}$)

5.1 Decay scheme of the 719 keV resonance level

The decay scheme of the 719 keV resonance was measured previously by Van der Leun (VA 56), Ophel and Lawergren (OP 62) and Osgood (OS 65) using NaI(Tl) crystals as γ-ray detectors. Each measurement failed to
resolve the γ-rays from the transitions \(r \to 6.16 \) (2.80 MeV) and \(3.68 \to 1.01 \) (2.67 MeV) from the 2.84 MeV \((3.68 \to 0.84) \) γ-ray. Another feature of the previous measurements was the transition from the resonance to the 2.21 MeV \(\left(\frac{7}{2} \right) \) level, reported as 28% and 16% of the total decay by Van der Leun and Ophel and Lawergren respectively. Osgood succeeded in finding an alternate explanation of the cascade \(r \to 2.21 \to 0 \) in terms of a cascade \(r \to 6.6 \to 0 \), however, the coincidence measurement of the unresolved 2.84 MeV γ-ray led him to the incorrect assignments of spin \(\frac{5}{2} \) and \(\frac{3}{2} \) for the resonance level and 3.68 MeV level respectively. During the present investigation, Van der Leun (VA 67) published the decay scheme of this 719 keV resonance, the two results agree within experimental errors. However, the cascade \(r \to 7.00 \) MeV (3% by Van der Leun) was not observed in this work.

Osgood had studied the 719 keV resonance (he reported as 721 keV) in great detail by measuring but not interpreting correctly a number of coincidence spectra (Figure 6.3), which are in good agreement with the decay scheme of present work. The γ-ray spectrum in coincidence with 0.84 MeV γ-ray has prominent 5.3 and 2.8 MeV γ-rays, supporting the cascades \(r \to 6.16 \) (2.80 MeV),
Figure 6.3
The γ-ray spectra observed in coincidence with the energy intervals shown at the 719 keV resonance. All spectra collected for 10^6 monitor counts (OS 65).
6.16 \rightarrow 0.84 (5.32 \text{ MeV}), \quad r \rightarrow 3.68 (5.28 \text{ MeV}), \quad 3.68 \rightarrow 0.84 (2.84 \text{ MeV}).

The \(\gamma \)-ray spectrum in coincidence with 1.01 MeV \(\gamma \)-ray indicates \(\gamma \)-rays at 1.7, 2.3, 2.7, 2.8, 3.4, 3.8, 4.2, 5.3, 5.6, 6.2 MeV, in agreement with the decay of \(r \rightarrow 2.73 (6.23 \text{ MeV}), \quad 2.73 \rightarrow 1.01 (1.72 \text{ MeV}), \quad r \rightarrow 3.68 (5.28 \text{ MeV}), \quad 3.68 \rightarrow 1.01 (2.67 \text{ MeV}), \quad r \rightarrow 6.16 (2.80 \text{ MeV}), \quad 6.16 \rightarrow 2.73 (3.43 \text{ MeV}), \quad 6.16 \rightarrow 1.01 (5.15 \text{ MeV}), \quad r \rightarrow 6.65 (2.31 \text{ MeV}), \quad 6.65 \rightarrow 1.01 (5.64 \text{ MeV}), \quad r \rightarrow 4.81 (4.15 \text{ MeV}), \quad 4.81 \rightarrow 1.01 (3.80 \text{ MeV}).

The \(\gamma \)-ray spectrum in coincidence with \(\gamma \)-rays between 2.8-4.2 MeV region, has prominent peaks at 0.84 and 1.01 MeV and is in accord with the present decay scheme. The prominent peaks at 2.7, 4.2, 5.3 and 6.0 MeV are consistent with the cascades \(r \rightarrow 6.16 (2.80 \text{ MeV}), \quad 6.16 \rightarrow 1.01 (5.15 \text{ MeV}), \quad 6.16 \rightarrow 0 (6.16 \text{ MeV}), \quad r \rightarrow 3.68 (5.28 \text{ MeV}), \quad 3.68 \rightarrow 0.84 (2.84 \text{ MeV}), \quad 3.68 \rightarrow 1.01 (2.67 \text{ MeV}), \quad r \rightarrow 4.81 (4.15 \text{ MeV}), \quad 4.81 \rightarrow 1.01 (3.80 \text{ MeV}), \quad r \rightarrow 5.24 (3.72 \text{ MeV}), \quad 5.24 \rightarrow 1.01 (4.24 \text{ MeV}).

Likewise, the spectrum in coincidence with \(\gamma \)-rays above 4.6 MeV has prominent peaks at 0.84, 1.01 and 2.3 MeV, the latter resulting from the transition of \(r \rightarrow 6.65 (2.31 \text{ MeV}), \quad 6.65 \rightarrow 0 (6.65 \text{ MeV}).

Figure 6.4 shows the 719 keV resonance measured at 55°, the circles are data and the least squares line
Figure 6.4

Resonance spectrum and decay scheme of the 719 keV resonance. Circles are data and the least squares line shape fit is the solid line.
shape fit is the solid line. Table 6.3 lists the relative intensities of γ-rays and the branching ratio of the resonance level. The result of Van der Leun et al. is listed in column 5 for comparison with the present work.

Table 6.3

<table>
<thead>
<tr>
<th>E_γ (MeV)</th>
<th>Interpretation</th>
<th>Relative intensity</th>
<th>Branching ratio % (resonance level)</th>
<th>(VA 67) %</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.843</td>
<td>0.843 → 0.</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.013</td>
<td>1.013 → 0.</td>
<td>54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.720</td>
<td>2.732 → 1.013</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.314</td>
<td>8.963 → 6.653</td>
<td>30</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>2.360</td>
<td>8.963 → 6.606</td>
<td>9</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>2.598</td>
<td>4.812 → 2.209</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.668</td>
<td>3.678 → 1.013</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.806</td>
<td>8.963 → 6.160</td>
<td>75</td>
<td>34</td>
<td>41</td>
</tr>
<tr>
<td>2.839</td>
<td>3.678 → 0.843</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.984</td>
<td>2.980 → 0.</td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.037</td>
<td>5.246 → 2.209</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.427</td>
<td>6.160 → 2.732</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.718</td>
<td>8.963 → 5.246</td>
<td>9</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3.956</td>
<td>3.956 → 0.</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.151</td>
<td>8.963 → 4.812</td>
<td>9</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>4.233</td>
<td>5.245 → 1.013</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.812</td>
<td>4.812 → 0.</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.007</td>
<td>8.963 → 3.956</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>5.148</td>
<td>6.160 → 1.013</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.287</td>
<td>8.963 → 3.678</td>
<td>53</td>
<td>24</td>
<td>20</td>
</tr>
<tr>
<td>5.319</td>
<td>6.160 → 0.843</td>
<td>60</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.640</td>
<td>6.653 → 1.013</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.765</td>
<td>6.606 → 0.843</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.984</td>
<td>8.963 → 2.980</td>
<td>25</td>
<td>11</td>
<td>10</td>
</tr>
<tr>
<td>6.160</td>
<td>6.160 → 0.</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.129</td>
<td>19\text{F(p,αγ)}^{16}</td>
<td>30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.232</td>
<td>8.963 → 2.732</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>6.606</td>
<td>6.606 → 0.</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.653</td>
<td>6.653 → 0.</td>
<td>33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.115</td>
<td>8.963 → 0.843</td>
<td>4</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>-</td>
<td>(8.963 → 7.000)</td>
<td>-</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* (8.963 → 7.000)
5.2 Angular correlation measurements at the 719 keV resonance

The 719 keV resonance level decays 34% to the 6.16 MeV level, 24% to the 3.68 MeV level enabling determinations of the spins of the resonance level, the 6.16 MeV level and the 3.68 MeV level. Preliminary measurements at six angles found no appreciable P_4 terms, consequently spectra were measured at 0° and 90°. Table 6.4 summarizes the results (which assumed no P_4 terms).

<table>
<thead>
<tr>
<th>E_γ (MeV)</th>
<th>Interpretation</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.843</td>
<td>0.843 \rightarrow 0</td>
<td>0.00 \pm 0.01</td>
</tr>
<tr>
<td>1.013</td>
<td>1.013 \rightarrow 0</td>
<td>0.03 \pm 0.02</td>
</tr>
<tr>
<td>2.665</td>
<td>3.678 \rightarrow 1.013</td>
<td>0.00 \pm 0.13</td>
</tr>
<tr>
<td>2.803</td>
<td>$r \rightarrow$ 6.160</td>
<td>0.34 \pm 0.05</td>
</tr>
<tr>
<td>2.835</td>
<td>3.678 \rightarrow 0.843</td>
<td>0.00 \pm 0.06</td>
</tr>
<tr>
<td>5.285</td>
<td>$r \rightarrow$ 3.678</td>
<td>-0.38 \pm 0.03</td>
</tr>
<tr>
<td>5.317</td>
<td>6.160 \rightarrow 0.843</td>
<td>-0.11 \pm 0.03</td>
</tr>
<tr>
<td>5.285+5.317</td>
<td>6.160 \rightarrow 0.843</td>
<td>-0.23 \pm 0.03</td>
</tr>
<tr>
<td>2.665+2.803+2.835</td>
<td>6.160 \rightarrow 0.843</td>
<td>0.21 \pm 0.04</td>
</tr>
</tbody>
</table>

The isotropic distribution obtained for the 0.843 MeV γ-ray shows that the geometrical arrangement of the detector and target is consistent at both angles.

The isotropic distributions of both the 2.665 MeV (3.678 \rightarrow 1.013) and 2.835 MeV (3.678 \rightarrow 0.843) γ-rays and the pure dipole transition ($\frac{3}{2} - \frac{1}{2}$) of the 5.285 MeV
(r \rightarrow 3.678) \gamma\text{-ray are consistent with decay sequences of } \frac{3}{2} \rightarrow \frac{1}{2} \rightarrow \frac{3}{2} \text{ (for 2.665 MeV) and } \frac{3}{2} \rightarrow \frac{1}{2} \rightarrow \frac{1}{2} \text{ (for 2.835 MeV). (See Table 6.1, G & H). The pure dipole nature of the 5.285 MeV \gamma\text{-ray was deduced from Figure 6.5, by assuming that the resonance level has a spin } \frac{3}{2} \text{ and decay to } \frac{1}{2} \text{ state with mixing ratio } X. \text{ The experimental value of the anisotropy } A_2 = -0.38 \pm 0.03 \text{ determines that the value of } X \propto 0. \text{ The isotropic nature of both the 2.665 MeV and 2.835 MeV } \gamma\text{-rays was further confirmed in the study of 954 keV resonance level which decays 16% to 3.678 MeV level. These are considered conclusive evidence that the 3.678 MeV level has } J = \frac{1}{2} \text{ in agreement with the assignment of Lawergren (LA 67a).}

The assumption that the 719 keV resonance has spin \(\frac{3}{2} \) is consistent with the decay scheme; only states with spin of \(\frac{1}{2}, \frac{3}{2} \) and \(\frac{5}{2} \) are found excited by de-excitation of this level. This assignment agrees with previous suggestions (VA 67).

The analysis of the spin of the 6.16 MeV level was based on the resonance level having a definite } J = \frac{3}{2}. \text{ The fact that the 6.16 MeV level is strongly excited at 662 keV resonance (} \frac{1}{2} \text{), limits the spin of this state to } \frac{1}{2}, \text{ or } \frac{3}{2}, \text{ from the criterion that for } \Delta J = 2, \text{ the transition strength is } < 2\% (VA 67). \text{ The first } \gamma\text{-ray 2.803 MeV in the cascade } r \rightarrow 6.160 \rightarrow 0.843 \text{ was analyzed}
Figure 6.5
Plot of the coefficient of $P_2(\cos \theta)$ term versus arctangent of X, the quadrupole/dipole mixing ratio, for the transition $\frac{3}{2} \rightarrow \frac{1}{2}$ (Table 6.1,A).

Figure 6.6
Plot of the coefficient of $P_2(\cos \theta)$ term versus arctangent of X, the quadrupole/dipole mixing ratio, for the transition $\frac{3}{2} \rightarrow \frac{3}{2}$ (Table 6.1,B).
Figure 6.7

The contour plot of the coefficient of $P_2(\cos \theta)$ term for the spin sequence $\frac{3}{2} \rightarrow \frac{3}{2} \rightarrow 1_2$ with first γ-ray unobserved (Table 6.1 I). The hatched area indicates the possible region determined by the experimental value.
for the spin sequence of $\frac{3}{2} \rightarrow \frac{3}{2}$, since the anisotropic
distribution of the second γ-ray of energy 5.317 MeV
(6.16 ± 0.843) shows that the spin of the 6.16 MeV level
is not $\frac{1}{2}$. Figure 6.6 shows the plot of mixing ratio X vs A_2. The experimental value $A_2 = 0.34 \pm 0.05$, again
corresponds to a value of $X \approx 0$, i.e., the 2.803 MeV γ-ray
is a pure dipole transition.

The contour plot of the second γ-ray (5.317 MeV) is
shown in Figure 6.7, assuming the spin sequence of
$\frac{3}{2} \rightarrow \frac{3}{2} \rightarrow \frac{1}{2}$ with first γ-ray not observed. The
experimental value of $A_2 = -0.11 \pm 0.03$ defines three
possible regions (shown as hatched areas). One of these
regions corresponds to both members of the cascade being
pure dipole. One can conclude with fair certainty that
the spin of the 6.160 MeV level is $\frac{3}{2}$. This assignment
supports the tentative assignment of $\frac{3}{2}$ by Sheppard et al.
(SH 67) based only on intensity arguments.

As mentioned by Van der Leun et al. (VA 67), the
6.160 MeV level is excited strongly only at 662 keV and
719 keV resonances. Since the spin of the 662 keV
resonance level is $\frac{1}{2}$, the information obtainable from
angular correlation measurements is severely limited
because the γ-ray distributions are isotropic. The 719
keV resonance level with spin $\frac{3}{2}$ is suitable for the study
of angular correlation but the presence of γ-rays with
energies 2.665, 2.803 and 2.835 MeV means that the use of high resolution Ge(Li) detector is necessary. In consequence, more detailed correlation work was not considered practicable.

It is interesting to compare the results of Osgood (OS 65) with the present work. Osgood measured the angular distribution of the 5.28 MeV (\(r \rightarrow 3.68\)) \(\gamma\)-ray which in fact contained also the 5.32 MeV \(\gamma\)-ray from the transition 6.16 MeV level to 0.84 MeV level, and obtained the value \(A_2 = -0.22 \pm 0.05\), this is in agreement with the angular distribution of the sum of 5.285 and 5.317 MeV \(\gamma\)-ray (Row 8, Table 6.4) obtained from this work. Also the angular distribution of the 2.84 MeV (\(3.68 - 0.84\)) \(\gamma\)-ray was found to be not isotropic \(A_2 = 0.22 \pm 0.01\); in fact the 2.84 MeV \(\gamma\)-ray also contained 2.80 MeV (\(r \rightarrow 6.16\)) and 2.67 MeV (\(3.68 - 1.01\)) \(\gamma\)-rays. His value of \(A_2\) is also in agreement with that of the sum of 2.665, 2.803 and 2.835 MeV \(\gamma\)-rays of this work (Row 9, Table 6.4), providing confirmation of the present measurements.

6. The 809 keV resonance (\(\text{Ex} = 9.052\) MeV)

6.1 Decay scheme of the 809 keV resonance

The decay scheme of the 809 keV resonance level was previously studied with NaI(Tl) detectors by Ophel et al. (OP 62) and the spin determined as \(\frac{5}{2}\) from the analysis of
double and triple correlation measurements of the cascades $r \rightarrow 0$, $r \rightarrow 1.013$ and $r \rightarrow 2.732$.

The resonance spectrum and the decay scheme of the present work is shown in Figure 6.8. The relative intensities of γ-rays were deduced from line shape analysis and peak intensities. Circles are the data and least squares line shape fit is the solid line. Table 6.5 summarizes the γ-rays observed at the 809 keV resonance with the results of Ophel et al. in column 5. The transition $r \rightarrow 4.410$, which was not previously reported (OP 62), was excited rather strongly (8%) enabling further study of the decay scheme of the 4.410 MeV level.

6.2 Decay scheme of the 4.410 MeV level

The discrepancy observed in the decay scheme of the 4.410 MeV level between Metzger (ME 65), Van der Leun (VA 67) and Spear (SP 67) was discussed in section 2.4 of this chapter.

The present measurement found that 4.410 MeV level decays 67% to the ground state and 33% to the 1.013 MeV state with no positive evidence for the transition 4.410 \rightarrow 2.209 MeV state. Since the decay of the resonance level to the 2.209 and 2.732 MeV levels is strong, the first escape peak of the 2.732 MeV (2.732 \rightarrow 0) γ-ray with
energy 2.221 MeV is closely adjacent to the 2.201 MeV (4.410 \rightarrow 2.209) and 2.209 MeV (2.209 \rightarrow 0) peaks. The original decay scheme, which was deduced from a spectrum contained in 2048 channels, was re-measured with 4096 channels in order to investigate the possible γ-ray at 2.201 MeV. Indeed no γ-ray of this energy was observed. It was felt that an upper limit of 5% on this transition could be made, in agreement with the result of Spear. Since Van der Leun also used a Ge(Li) γ-ray spectrometer for studying 26Mg(p,γ)27Al reaction, his claim of 25% cascade from the 4.410 MeV level to the 2.209 MeV level might have been distorted by the first escape peak of the 2.732 MeV γ-ray although it would seem that the energy difference is sufficient to avoid mis-interpretation.

6.3 Angular correlation measurements at the 809 keV resonance

The results of the measurements at three angles 0°, 45° and 90° to the beam direction are summarized in Table 6.6. The angular distributions of the cascades $r \rightarrow 0$, $r \rightarrow 1.013$ and $r \rightarrow 2.732$ of the NaI(Tl) results are from the reference (OP 62).
Table 6.5

Gamma-rays observed at the 809 keV resonance

<table>
<thead>
<tr>
<th>E_γ (MeV)</th>
<th>Interpretation</th>
<th>Relative intensity</th>
<th>Branching ratio % (resonance level)</th>
<th>OP 62</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.843</td>
<td>0.843 \rightarrow 0.</td>
<td>6.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.013</td>
<td>1.013 \rightarrow 0.</td>
<td>150.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.720</td>
<td>2.732 \rightarrow 1.013</td>
<td>52.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.822</td>
<td>9.052 \rightarrow 7.230</td>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.057</td>
<td>9.052 \rightarrow 6.997</td>
<td>1.2</td>
<td></td>
<td><1</td>
</tr>
<tr>
<td>2.211</td>
<td>2.209 \rightarrow 0.</td>
<td>20.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.587</td>
<td>6.997 \rightarrow 4.410</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.732</td>
<td>2.732 \rightarrow 0.</td>
<td>14.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.982</td>
<td>2.980 \rightarrow 0.</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.396</td>
<td>4.410 \rightarrow 1.013</td>
<td>8.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.501</td>
<td>9.052 \rightarrow 5.551</td>
<td>2.7</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3.804</td>
<td>9.052 \rightarrow 5.246</td>
<td>13.2</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>3.957</td>
<td>3.956 \rightarrow 0.</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.236</td>
<td>5.246 \rightarrow 1.013</td>
<td>11.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.411</td>
<td>4.410 \rightarrow 0.</td>
<td>18.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.471</td>
<td>9.052 \rightarrow 4.581</td>
<td>2.9</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>4.581</td>
<td>4.581 \rightarrow 0.</td>
<td>2.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.643</td>
<td>9.052 \rightarrow 4.410</td>
<td>26.0</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>5.021</td>
<td>7.230 \rightarrow 2.209</td>
<td>1.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.099</td>
<td>9.052 \rightarrow 3.956</td>
<td>8.0</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>5.551</td>
<td>5.551 \rightarrow 0.</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.070</td>
<td>9.052 \rightarrow 2.980</td>
<td>4.4</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6.319</td>
<td>9.052 \rightarrow 2.732</td>
<td>72.0</td>
<td></td>
<td>21</td>
</tr>
<tr>
<td>6.840</td>
<td>9.052 \rightarrow 2.209</td>
<td>7.2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>8.040</td>
<td>9.052 \rightarrow 1.013</td>
<td>100.</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>9.053</td>
<td>9.052 \rightarrow 0.</td>
<td>100.</td>
<td></td>
<td>29</td>
</tr>
</tbody>
</table>

Table 6.6

<table>
<thead>
<tr>
<th>E (MeV)</th>
<th>Interpretation</th>
<th>a_2 : Ge(Li)</th>
<th>A_2 : NaI(Tl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.052</td>
<td>$r \rightarrow 0.$</td>
<td>0.25 ± 0.002</td>
<td>0.26 ± 0.02</td>
</tr>
<tr>
<td>8.039</td>
<td>$r \rightarrow 1.013$</td>
<td>-0.39 ± 0.05</td>
<td>-0.37 ± 0.03</td>
</tr>
<tr>
<td>6.320</td>
<td>$r \rightarrow 2.732$</td>
<td>-0.19 ± 0.02</td>
<td>-0.32 ± 0.06</td>
</tr>
<tr>
<td>4.642</td>
<td>$r \rightarrow 4.410$</td>
<td>-0.20 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>3.806</td>
<td>$r \rightarrow 5.246$</td>
<td>0.37 ± 0.02</td>
<td></td>
</tr>
<tr>
<td>4.233</td>
<td>5.246 \rightarrow 1.013</td>
<td>-0.20 ± 0.05</td>
<td></td>
</tr>
</tbody>
</table>
The observed coefficients $a_2 \, (a_2 = A_2 Q_2)$ of the Ge(Li) data for the two strongest cascades $r \rightarrow 0$ and $r \rightarrow 1.013$ are within experimental errors of the corrected values of the coefficients A_2 of the corresponding NaI(Tl) data. This fact indicates that the angular correlation attenuation factor Q_2 is approximately equal to unity. The calculation of the value under various assumptions discussed in previous chapter shows Q_2 is of the order of 0.84, the corrections were actually not made to obtain the value of A_2. This applies to the angular distributions measured at the 719 and 954 keV resonances.

The anisotropy for the cascade $r \rightarrow 1.013$ corresponds to a pure dipole transition (Table 6.1, D), however, significant quadrupole and dipole mixings were observed for the cascades $r \rightarrow 0 \,(X = -0.18)$ and $r \rightarrow 2.732 \,(X = -0.59)$. This is a feature different from the decay observed at the 719 and 954 keV resonances in which strong transitions from the resonance level are of a pure dipole nature.

The spin of the 4.410 MeV level was assigned by Metzger (ME 65) and Sheppard et al. (SH 67) as $\frac{5}{2}$ and by Lawergren (LA 67a) as $\frac{3}{2}$. The present analysis of the angular distribution of the 4.642 MeV ($r \rightarrow 4.410$) γ-ray for the spin sequences of $\frac{5}{2} \rightarrow \frac{3}{2}, \frac{5}{2} \rightarrow \frac{5}{2}$ and $\frac{5}{2} \rightarrow \frac{7}{2}$ shows
quadrupole and dipole mixing ratios of values 0.10, -0.60 and -0.04 is required respectively for the observed anisotropy of $A_2 = -0.20$. The assignment of $J = \frac{7}{2}$ can be excluded from the argument that the 4.410 MeV decays strongly to 1.013 MeV level ($\frac{3}{2}$) since $\Delta J = 2$ is very unlikely. The assignment of $J = \frac{3}{2}$ is most probable as this will give the transition $r \rightarrow 4.410$ a near dipole nature ($X = 0.10$), however, from the strong mixing of quadrupole and dipole radiations evidenced at the 809 keV resonance, the assignment of $J = \frac{5}{2}$ is also possible ($X = -0.60$). The assignment of $J = \frac{3}{2}$ to the 4.410 MeV level is consistent with the observed cascades $4.410 \rightarrow 0$ ($\frac{3}{2} \rightarrow \frac{5}{2}$) and $4.410 \rightarrow 1.013$ ($\frac{3}{2} \rightarrow \frac{3}{2}$) and no cascade of $4.410 \rightarrow 2.209$ ($\frac{3}{2} \rightarrow \frac{7}{2}$). Thus the present work favours an assignment of $J = \frac{3}{2}$ to the 4.410 MeV level; the decay scheme of the 4.410 MeV level derived by Metzger and Sheppard et al. is in error and the disputed cascade essentially determined the assignment of $J = \frac{5}{2}$ made by them.

The spin of the 5.246 MeV level was tentatively proposed by Sheppard et al. (SH 67) to be $\frac{5}{2}$. The present analysis of the anisotropies observed for the cascade $r \rightarrow 5.246$ ($X = -0.08$) and $5.246 \rightarrow 1.013$ ($X = -0.04$) is consistent with the spin sequence of $\frac{5}{2} \rightarrow \frac{5}{2} \rightarrow \frac{3}{2}$ (Table 6.1, E and L).
7. The 839 keV resonance (Ex = 9.081 MeV)

The decay scheme of the 839 keV resonance level was previously studied by Ophel and Lawergren (OP 62) with NaI(Tl) detectors. The relatively simple spectrum at this resonance enabled the accurate measurement of the γ-rays with NaI(Tl) detectors. The spin of the resonance level was deduced to be \(\frac{1}{2} \) from the isotropic distributions of γ-rays from the cascades \(r \rightarrow 1.013 (\frac{1}{2} \rightarrow \frac{3}{2}) \) and \(r \rightarrow 3.68 (\frac{1}{2} \rightarrow \frac{1}{2}) \).

Table 6.7 lists the γ-rays observed at this resonance by the present study with a Ge(Li) detector. Column 4 lists the branching ratio of cascades from the resonance level and column 5 lists the result of Ophel et al. The agreement between the two results is excellent. The γ-rays of weak intensity which were not identified by Ophel et al., however, were assigned by the present work.

The presence of the cascades \(r \rightarrow 5.751 \) and \(r \rightarrow 5.828 \) suggests the spin of the 5.751 and 5.828 MeV levels to either \(\frac{1}{2} \) or \(\frac{3}{2} \). The discussion of the spins of these levels is given in the study of the 954 keV resonance.

The decay to the ground state from the 6.082 MeV level is consistent with the observation at the 662 keV resonance, where the spin of the 6.082 MeV was proposed as \(\frac{3}{2} \).
Figure 6.9

Resonance spectrum and decay scheme of the 839 keV resonance. Circles are data and least squares line shape fit is the solid line.
Figure 6.9 shows the resonance spectra and the decay scheme of the 839 keV resonance level. The peak observed at 1.719 MeV is due to contamination from 809 keV resonance which is also apparent from the presence of the ground state transition of the appropriate energy. The error introduced from the 809 keV resonance is insignificant.

Table 6.7
Gamma-rays observed at the 839 keV resonance

<table>
<thead>
<tr>
<th>E^γ (MeV)</th>
<th>Interpretation</th>
<th>Relative intensity</th>
<th>Branching ratio % (resonance level)</th>
<th>OP 62</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.843</td>
<td>0.843 → 0.</td>
<td>31</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>1.013</td>
<td>1.013 → 0.</td>
<td>100</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.664</td>
<td>3.678 → 1.013</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.835</td>
<td>3.678 → 0.843</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.981</td>
<td>2.980 → 0.</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.998</td>
<td>9.081 → 6.082</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>3.212</td>
<td>4.055 → 0.843</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.325</td>
<td>9.081 → 5.828</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.331</td>
<td>9.081 → 5.751</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3.956</td>
<td>3.956 → 0.</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.026</td>
<td>9.081 → 4.055</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6.129</td>
<td>$F(p,\gamma)^{16}O$</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6.101</td>
<td>9.081 → 2.980</td>
<td>10</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>6.082</td>
<td>6.082 → 0.</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.066</td>
<td>9.081 → 1.013</td>
<td>103</td>
<td>64</td>
<td>71</td>
</tr>
<tr>
<td>8.237</td>
<td>9.081 → 0.843</td>
<td>16</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>others</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
8. The 954 keV resonance ($E_x = 9.191$ MeV)

8.1 The decay scheme of the 954 keV resonance

A previous study of the decay scheme of this resonance level was reported by Ophel and Lawergren (OP 62) from measurements with NaI(Tl) detectors. The recent work by Van der Leun et al. (VA 67) who used a Ge(Li) γ-ray spectrometer to study thirty 26Mg(p,γ)27Al resonances between $E_p = 0.3 - 2.8$ MeV did not include this resonance. The γ-ray studies of Ophel et al. interpreted the 4.73 MeV and 3.41 MeV γ-rays as transitions $r \rightarrow 4.41$ (4.78 MeV) and $4.41 \rightarrow 1.01$ (3.40 MeV); however, the present work re-assigns these γ-rays as transitions $5.828 \rightarrow 1.013$ (4.815 MeV) and $r \rightarrow 5.828$ (3.363 MeV) and $r \rightarrow 5.751$ (3.440 MeV) respectively.

The doublet at 5.751 MeV and 5.821 MeV is of considerable interest, if one searches through the decay scheme of the 30 resonances studied by Van der Leun et al. the 5.751 MeV level was excited only once at 662 keV resonance with intensity of 2%, while the 5.821 MeV level was not excited at all. The existence of the doublet has been confirmed by Browne et al. (BR 54, BR 59) from the studies of 27Al(p,p') and 29Si(d,α)27Al reactions with high resolution magnetic spectrograph to have level energies at 5.745 MeV and 5.820 MeV. The measurement of γ-ray energy by Van der Leun et al. with Ge(Li) detector
gave more accurate level energy of 5.751 MeV to the lower level and the present work found 5.828 MeV for upper level energy which was self consistent with the cascade γ-rays decaying through this level. The doublet was excited fairly strongly at 954 keV resonance; each member with the same intensity of 9%.

Figure 6.10 shows the resonance spectrum and the decay scheme, the solid line is the fit from line shape analysis and the circles are the experimental data recorded in 2048 channels. By examining the fit at each peak, it is obvious that the experimental data had a better resolution than the line shapes, this phenomenon severely affects the Chi-square test of the fit, however, the intensities deduced for γ-rays, except for very weak transitions, were not affected. The accuracy of the intensity so obtained could be checked by comparing the intensity of the γ-ray decaying from the resonance level to a low lying level and the sum of intensities of γ-rays decaying from this low lying level. In general total intensities were conserved to within experimental errors of 10 - 15% for cascade γ-rays in decaying to all low lying levels from the resonance level. In fact, in the first attempt to fit the experimental data, the standard line shape with 4.433 MeV γ-ray obtained from $^{15}N(p,\alpha\gamma)^{12}C$ reaction was used. Due to the α-particle
Figure 6.10

Resonance spectrum and decay scheme of the 954 keV resonance. Circles are data and the least squares line shape fit is the solid line.
recoil, the peaks of the line shape were Doppler broadened and the low energy γ-rays interpolated from the 4.433 MeV γ-ray line shape considerably broadened. The line shape of the 4.433 MeV γ-ray was re-measured using $^{11}\text{B}(p,\gamma)^{12}\text{C}$ reaction providing better resolution, however, the intensities obtained from the two different fits were not significantly different. This is due to the fact that peaks amount to only a small portion of the total line shape in the spectrum thus the total intensity of a γ-ray is defined more by the Compton distributions.

Discrepancies of the fit at the high energy end are mainly due to the non-linearity of the analyzing system. A parabolic fit to energy calibration ($E = ax^2 + bx + c$) was used for all energy assignments but, for fitting, intermediate γ-ray line shapes were interpolated with the gain and zero (b and c) of the experimental spectrum. The coefficient 'a' which has the value of the order of $10^{-4} \sim 10^{-5}$ was ignored. This effect shows up at high energy end of the spectrum due to x^2 term, and was common to all the spectra fitted.

A number of γ-rays of small intensity were not included in the fit. The identification of these γ-rays were not very certain, the energy is marked on those peaks which most strongly support the identification. The γ-rays in this category are: 2.585 MeV (9.191 → 6.606),
3.956 MeV (3.956 → 0), 4.738 MeV (5.751 → 1.013), 5.235 MeV (9.191 → 3.956), 5.763 MeV (6.606 → 0.843) and 5.831 MeV (5.828 → 0). The three peaks for 2.585 MeV γ-ray seems to support the transition r → 6.606, however, the second escape peak of the 5.763 MeV (6.606 → 0.843) γ-ray at 4.741 MeV is difficult to distinguish from 4.738 MeV (5.751 → 1.013) γ-ray. The transition 6.606 MeV level to 0.843 MeV level is 75% (VA 67). The three peaks for 4.738 MeV γ-ray seem to support the assigned transition. The transition r → 3.956 (5.235 MeV) obtained from the double escape peak of the 5.235 MeV γ-ray is supported by the full energy peak of the 3.956 MeV γ-ray. The positive assignment cannot be made because the double escape peak of 3.956 MeV γ-ray at 2.934 MeV is not obvious due to the first escape peak of the 3.439 MeV (r → 5.751) γ-ray at 2.928 MeV which has a rather large peak intensity. The 5.831 MeV γ-ray has a double escape peak at 4.809 MeV, which cannot be identified because of the 4.814 MeV (5.828 → 1.013) γ-ray. An alternative assignment of the first escape peak of the 5.831 MeV γ-ray (5.320 MeV) to the double escape peak of the 6.342 MeV γ-ray was not successful because the identification of the 6.342 MeV γ-ray led to difficulty. The assignment of 5.831 MeV γ-ray to the transition 5.828 → 0 seems to be most probable.
The fit in the region 6.0 - 7.0 MeV is relatively poor because 6.92 MeV and 7.12 MeV γ-rays were not included in the fit. The strong intensity for the 6.129 MeV γ-ray indicates the background due to $^{19}\text{F}(p,\alpha\gamma)^{16}\text{O}$ reaction is strongly present in the spectrum, and the other γ-rays due to the de-excitation of ^{16}O cannot be ignored.

The reasons why some weak γ-ray components were not included in the fit were mainly due to the following:

(1) the limited amount of computer core locations cannot accommodate all components in the fitting program especially in a complicated decay spectrum,

(2) the weak components are usually associated with large errors and even negative intensities.

The relative intensities shown in the decay scheme were derived from line shape analysis and from the estimation of photopeak and double escape peak areas. Table 6.8 shows the results obtained from the two different methods. In general, they agree to within 20% on absolute basis. If the agreement between them was poor, the one considered most reliable was chosen otherwise the two results were averaged. Column 3 lists the intensities obtained from the estimations of photopeak and/or double escape peak areas using absolute photopeak efficiency as experimentally determined.
Table 6.8

<table>
<thead>
<tr>
<th>E (MeV)</th>
<th>Interpretation</th>
<th>Peak Intensity $\times 10^7$</th>
<th>Relative Intensity</th>
<th>Line Shape Fit $\times 10^7$</th>
<th>Relative Intensity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.843</td>
<td>0.843 \rightarrow 0.</td>
<td>1.50</td>
<td>55</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.013</td>
<td>1.013 \rightarrow 0.</td>
<td>4.20</td>
<td>150</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1.719</td>
<td>2.732 \rightarrow 1.103</td>
<td>0.70</td>
<td>25</td>
<td>0.48</td>
<td>17</td>
</tr>
<tr>
<td>2.665</td>
<td>3.678 \rightarrow 1.013</td>
<td>0.58</td>
<td>21</td>
<td>0.29</td>
<td>10</td>
</tr>
<tr>
<td>2.733</td>
<td>2.732 \rightarrow 0.</td>
<td>0.24</td>
<td>10</td>
<td>0.30</td>
<td>10</td>
</tr>
<tr>
<td>2.769</td>
<td>5.751 \rightarrow 2.980</td>
<td>0.22</td>
<td>8</td>
<td>0.80</td>
<td>28</td>
</tr>
<tr>
<td>2.836</td>
<td>3.678 \rightarrow 0.843</td>
<td>0.78</td>
<td>28</td>
<td>0.56</td>
<td>20</td>
</tr>
<tr>
<td>2.982</td>
<td>2.980 \rightarrow 0.</td>
<td>0.64</td>
<td>23</td>
<td>0.74</td>
<td>26</td>
</tr>
<tr>
<td>3.363</td>
<td>9.191 \rightarrow 5.828</td>
<td>0.74</td>
<td>26</td>
<td>0.88</td>
<td>31</td>
</tr>
<tr>
<td>3.439</td>
<td>9.191 \rightarrow 5.751</td>
<td>0.90</td>
<td>32</td>
<td>0.50</td>
<td>18</td>
</tr>
<tr>
<td>3.639</td>
<td>9.191 \rightarrow 5.551</td>
<td>0.34</td>
<td>12</td>
<td>0.74</td>
<td>26</td>
</tr>
<tr>
<td>4.814</td>
<td>5.828 \rightarrow 1.013</td>
<td>0.76</td>
<td>27</td>
<td>0.39</td>
<td>14</td>
</tr>
<tr>
<td>4.911</td>
<td>5.751 \rightarrow 0.843</td>
<td>0.30</td>
<td>11</td>
<td>1.30</td>
<td>45</td>
</tr>
<tr>
<td>5.515</td>
<td>9.191 \rightarrow 3.678</td>
<td>1.20</td>
<td>41</td>
<td>0.22</td>
<td>8</td>
</tr>
<tr>
<td>5.555</td>
<td>5.551 \rightarrow 0.</td>
<td>0.26</td>
<td>9</td>
<td>1.90</td>
<td>67</td>
</tr>
<tr>
<td>6.219</td>
<td>$^{19}_8$F(p,$\alpha\gamma$)16</td>
<td>2.40</td>
<td>90</td>
<td>1.10</td>
<td>39</td>
</tr>
<tr>
<td>6.219</td>
<td>9.191 \rightarrow 2.980</td>
<td>0.32</td>
<td>11</td>
<td>0.24</td>
<td>8</td>
</tr>
<tr>
<td>6.459</td>
<td>9.191 \rightarrow 2.732</td>
<td>1.20</td>
<td>44</td>
<td>1.10</td>
<td>39</td>
</tr>
<tr>
<td>8.180</td>
<td>9.191 \rightarrow 1.013</td>
<td>2.80</td>
<td>100</td>
<td>2.80</td>
<td>100</td>
</tr>
<tr>
<td>8.352</td>
<td>9.191 \rightarrow 0.843</td>
<td>0.32</td>
<td>11</td>
<td>0.34</td>
<td>12</td>
</tr>
<tr>
<td>2.585</td>
<td>9.191 \rightarrow 6.606</td>
<td>0.10</td>
<td>3.6</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.538</td>
<td>5.551 \rightarrow 1.013</td>
<td>0.07</td>
<td>2.5</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4.738</td>
<td>5.751 \rightarrow 1.013</td>
<td>0.12</td>
<td>4.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.235</td>
<td>9.191 \rightarrow 3.956</td>
<td>0.15</td>
<td>5.4</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>5.831</td>
<td>5.828 \rightarrow 0.</td>
<td>0.15</td>
<td>5.4</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Column 5 lists the intensities obtained from the total counts to zero energy deduced from line shape fits divided by the calculated total detector efficiency.

8.2 Angular correlation measurements at the 954 keV resonance

The 954 keV resonance level decays 16% to the 3.678 MeV level, 9% to the 5.828 MeV level and another 9% to the 5.751 MeV level enabling measurement of the spin of the resonance level, the 3.678, 5.751 and 5.828 MeV levels. The spin of the resonance level was previously reported to be $\frac{3}{2}$ (OP 62), while those for 5.751 and 5.828 MeV levels have not been assigned. Since the 3.678 MeV level was assigned by the present work to have $J = \frac{1}{2}$ from the angular distribution measurements at the 719 keV resonance, the angular correlation measurements at 954 keV enable a further check on the assignment of this level. The spectra were measured at $0^\circ, 45^\circ$ and 90°. Table 6.9 summarizes the results.

The anisotropic distributions of the 8.178 MeV ($r \rightarrow 1.013$) and 8.348 MeV ($r \rightarrow 0.843$) γ-rays correspond to pure dipole transitions of the spin sequence $\frac{3}{2} \rightarrow \frac{3}{2}$ and $\frac{3}{2} \rightarrow \frac{1}{2}$ respectively, providing further confirmation that the spin of the resonance level is $\frac{3}{2}$.
Table 6.9

<table>
<thead>
<tr>
<th>E (MeV)</th>
<th>Interpretation</th>
<th>A_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.843</td>
<td>0.843 → 0.</td>
<td>0.00 ± 0.02</td>
</tr>
<tr>
<td>1.013</td>
<td>1.013 → 0.</td>
<td>-0.01 ± 0.03</td>
</tr>
<tr>
<td>1.719</td>
<td>2.732 → 1.013</td>
<td>-0.01 ± 0.05</td>
</tr>
<tr>
<td>2.665</td>
<td>3.678 → 1.013</td>
<td>0.00 ± 0.10</td>
</tr>
<tr>
<td>2.835</td>
<td>3.678 → 0.843</td>
<td>0.01 ± 0.02</td>
</tr>
<tr>
<td>3.363</td>
<td>9.191 → 5.828</td>
<td>0.33 ± 0.14</td>
</tr>
<tr>
<td>3.440</td>
<td>9.191 → 5.751</td>
<td>-0.35 ± 0.04</td>
</tr>
<tr>
<td>3.640</td>
<td>9.191 → 5.551</td>
<td>-0.08 ± 0.05</td>
</tr>
<tr>
<td>5.513</td>
<td>9.191 → 3.678</td>
<td>-0.44 ± 0.03</td>
</tr>
<tr>
<td>6.459</td>
<td>9.191 → 2.732</td>
<td>-0.04 ± 0.06</td>
</tr>
<tr>
<td>8.178</td>
<td>9.191 → 1.013</td>
<td>0.40 ± 0.06</td>
</tr>
<tr>
<td>8.348</td>
<td>9.191 → 0.843</td>
<td>-0.66 ± 0.10</td>
</tr>
</tbody>
</table>

The anisotropy observed for the 5.513 MeV ($r \rightarrow 3.678$) γ-ray corresponds to a pure dipole transition corresponding to $\frac{3}{2} \rightarrow \frac{1}{2}$, which is consistent with the previous assignments of $J = \frac{3}{2}$ to the resonance level and $J = \frac{3}{2}$ to the 3.678 MeV level. Furthermore, the isotropic distributions of the 2.665 MeV ($3.678 \rightarrow 1.013$) and 2.835 MeV ($3.678 \rightarrow 0.843$) γ-rays are consistent with the measurements at the 719 keV resonance.

The spins of the 5.828 and 5.751 MeV levels have been discussed at the 839 keV resonance as $\frac{1}{2}$ or $\frac{3}{2}$. The anisotropy ($A_2 = 0.33 \pm 0.14$) observed for the 3.363 MeV ($r \rightarrow 5.828$) γ-ray corresponds to a pure dipole transition for spin sequence $\frac{3}{2} \rightarrow \frac{3}{2}$, which determines the spin of the 5.828 MeV level to be $\frac{3}{2}$. The observed cascades of the
5.828 → 1.013 \((\frac{2}{2})\) and 5.828 → 0 \((\frac{5}{2})\) are consistent with the assignment.

The anisotropic distribution of the 3.440 MeV \((r → 5.751)\) γ-ray \((A_2 = -0.35 ± 0.04)\) differs significantly from a pure dipole transition \((A_2 = -0.5)\) corresponding to \(\frac{3}{2} → \frac{1}{2}\); however, a positive anisotropy \(A_2 = +0.4\) is required for the spin sequence \(\frac{3}{2} → \frac{3}{2}\); hence it is very unlikely that the 5.751 MeV level is a \(\frac{3}{2}\) state. The argument that the 5.751 MeV level cannot have a spin greater than \(\frac{3}{2}\) leaves \(\frac{1}{2}\) as the only possible assignment. This assignment is consistent with the observed decay of the 5.751 MeV level to the 0.843 \((\frac{1}{2})\), 1.013 \((\frac{2}{2})\) and 2.980 \((\frac{3}{2})\) MeV levels and no decay of this level to the ground state \((\frac{5}{2})\).

The angular distribution of the 3.640 MeV \((r → 5.551)\) γ-ray has \(A_2 = -0.08 ± 0.05\) corresponding to a pure dipole transition for \(\frac{3}{2} → \frac{5}{2}\) (Table 6.1, C). This is in agreement with previous suggestion based on transition strengths (VA 67) that the 5.551 MeV level is a \(\frac{5}{2}\) state. Thus the spin of the 5.551 MeV level can be assigned with fair certainty as \(\frac{5}{2}\).

The observed anisotropy for the 6.459 MeV \((r → 2.732)\) is consistent with a pure dipole transition for the spin sequence \(\frac{3}{2} → \frac{5}{2}\). The angular distribution observed for the 1.719 MeV \((2.732 → 1.013)\) γ-ray \((A_2 = -0.01 ± 0.05)\)
determines the E2/M1 mixing ratio $X = -0.10 \pm 0.04$, which is in agreement with the result of Ophel et al. (OP 64) and is in disagreement with that of Sheppard et al. (SH 67). (See Table 6.1, K).

The angular correlation measurements of Almqvist et al. (EN 62) at the 982 keV resonance indicated either $J^\pi = \frac{7}{2}^+$ or $\frac{3}{2}^+$ for the resonance level and $J^\pi = \frac{5}{2}^+$ for the 2.732 MeV level. Since the transition strength from the resonance level to the 0.843 ($\frac{1}{2}^+$) and 1.013 ($\frac{3}{2}^+$) MeV levels was found at most 3% of the ground state transition, the assignment of $\frac{7}{2}^+$ to the resonance level was favoured by Almqvist et al.

Osgood (OS 65) identified the main cascades at this resonance as $r \rightarrow 0$, $r \rightarrow 2.73$, $r \rightarrow 2.98$, $r \rightarrow 6.15$ and measured angular distributions of the first three gamma rays and the triple correlation for the cascade $r \rightarrow 2.73 \rightarrow 1.01$. The measurements were consistent with either $J = \frac{5}{2}$ or $\frac{7}{2}$ for the resonance level.

A spectrum measured at 55° and the decay scheme deduced from it (Figure 6.11) confirmed all cascades deduced by Osgood; however, the resonance level also decays weakly to higher energy bound states at 6.778, 7.471 and 8.184 MeV. A level at 8.2 MeV was excited in
Resonance spectrum and decay of the 982 keV resonance. Circles are data and the least squares line shape fit is the solid line.
the $^{26}\text{Mg}(d,n)^{27}\text{Al}$ reaction and the spin determined from angular distribution measurements as $\frac{1}{2}^-$ or $\frac{3}{2}^-$ (TR 56). The present measurement establishes the level energy as 8184 ± 4 keV from the γ-ray energies observed in the cascade $r \to 8.184 \to 0$. Clearly the $\frac{3}{2}^-$ assignment is to be preferred.

The 7.471 MeV level was excited in the $^{26}\text{Mg}(p,\gamma)$ reaction at $E_p = 1733$ keV and found to decay partly to the 2.21 MeV level (VA 67) whereas the present spectrum provides evidence for decay to only the 2.98 MeV level.

The level at 6.778 MeV was reported to decay to the ground state (20%), the 0.843 MeV level (55%), the 2.980 MeV level (25%) and the 3.678 MeV level ($\leq 20\%$) (VA 67); of these branches, decay to the 3.678 MeV level was evident in the spectrum at the 982 keV resonance. The reported strong branching from the 6.778 MeV level to the 0.843 MeV level, however, was not observed.

The spin of the resonance level can not be uniquely determined from the transition strengths alone. The decay of the resonance level to the ground state ($\frac{5}{2}$), the 2.732 MeV level ($\frac{5}{2}$), the 2.980 MeV level ($\frac{3}{2}$), the 6.653 MeV level ($\frac{3}{2}$) and the 6.160 MeV level ($\frac{3}{2}$) suggests the resonance level is either $\frac{3}{2}$ or $\frac{5}{2}$. The proposition of $J^\pi = \frac{7}{2}^+$ is rejected conclusively by the strong transition $r \to 2.980$ (19%).
The gamma-rays observed at the 982 keV resonance are listed in Table 6.10. The relative intensity of γ-rays were determined from line shape analysis and intrinsic full energy peak efficiencies.

Table 6.10
Gamm-rays observed at the 982 keV resonance

<table>
<thead>
<tr>
<th>(E_\gamma) (MeV)</th>
<th>Interpretation</th>
<th>Relative Intensity</th>
<th>Branching ratio (%) (Resonance Level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.843</td>
<td>0.843 (\rightarrow 0)</td>
<td>32.9</td>
<td></td>
</tr>
<tr>
<td>1.013</td>
<td>1.013 (\rightarrow 0)</td>
<td>107</td>
<td></td>
</tr>
<tr>
<td>1.034</td>
<td>9.218 (\rightarrow 8.184)</td>
<td>2.5</td>
<td>0.6</td>
</tr>
<tr>
<td>1.720</td>
<td>2.732 (\rightarrow 1.013)</td>
<td>76.8</td>
<td></td>
</tr>
<tr>
<td>1.747</td>
<td>9.218 (\rightarrow 7.471)</td>
<td>4.0</td>
<td>1</td>
</tr>
<tr>
<td>2.441</td>
<td>9.218 (\rightarrow 6.778)</td>
<td>3.8</td>
<td>1</td>
</tr>
<tr>
<td>2.565</td>
<td>9.218 (\rightarrow 6.653)</td>
<td>38.7</td>
<td>10</td>
</tr>
<tr>
<td>2.665</td>
<td>3.678 (\rightarrow 1.013)</td>
<td>1.7</td>
<td></td>
</tr>
<tr>
<td>2.736</td>
<td>2.732 (\rightarrow 0)</td>
<td>23.2</td>
<td></td>
</tr>
<tr>
<td>2.836</td>
<td>3.678 (\rightarrow 0.843)</td>
<td>3.2</td>
<td></td>
</tr>
<tr>
<td>2.983</td>
<td>2.980 (\rightarrow 0)</td>
<td>72.9</td>
<td></td>
</tr>
<tr>
<td>3.057</td>
<td>9.218 (\rightarrow 6.160)</td>
<td>14.2</td>
<td>4</td>
</tr>
<tr>
<td>3.100</td>
<td>6.778 (\rightarrow 3.678)</td>
<td>3.9</td>
<td></td>
</tr>
<tr>
<td>3.212</td>
<td>4.055 (\rightarrow 0.843)</td>
<td>3.7</td>
<td></td>
</tr>
<tr>
<td>3.788</td>
<td>9.218 (\rightarrow 5.430)</td>
<td>8.0</td>
<td>2</td>
</tr>
<tr>
<td>3.958</td>
<td>3.956 (\rightarrow 0)</td>
<td>11.6</td>
<td></td>
</tr>
<tr>
<td>4.063</td>
<td>9.218 (\rightarrow 5.156)</td>
<td>2.1</td>
<td>0.5</td>
</tr>
<tr>
<td>4.417</td>
<td>5.430 (\rightarrow 1.013)</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>4.492</td>
<td>7.471 (\rightarrow 2.980)</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>5.156</td>
<td>5.156 (\rightarrow 0)</td>
<td>1.5</td>
<td></td>
</tr>
<tr>
<td>5.163</td>
<td>9.218 (\rightarrow 4.055)</td>
<td>4.3</td>
<td>1</td>
</tr>
<tr>
<td>5.262</td>
<td>9.218 (\rightarrow 3.956)</td>
<td>9.7</td>
<td>2</td>
</tr>
<tr>
<td>5.319</td>
<td>6.160 (\rightarrow 0.843)</td>
<td>13.5</td>
<td></td>
</tr>
<tr>
<td>5.417</td>
<td>9.218 (\rightarrow 0)</td>
<td>42.6</td>
<td></td>
</tr>
<tr>
<td>6.129</td>
<td>19 (F(p, \alpha \gamma))</td>
<td>339</td>
<td></td>
</tr>
<tr>
<td>6.238</td>
<td>9.218 (\rightarrow 2.980)</td>
<td>76.8</td>
<td>19</td>
</tr>
<tr>
<td>6.486</td>
<td>9.218 (\rightarrow 2.732)</td>
<td>100</td>
<td>25</td>
</tr>
<tr>
<td>6.653</td>
<td>6.653 (\rightarrow 0)</td>
<td>42.6</td>
<td></td>
</tr>
<tr>
<td>8.184</td>
<td>8.184 (\rightarrow 0)</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>9.218</td>
<td>9.218 (\rightarrow 0)</td>
<td>134</td>
<td>34</td>
</tr>
</tbody>
</table>
10. Branching ratios of bound states

The branching ratios for a number of bound states which are excited by any of the 662, 719, 809, 839, 954 and 982 keV resonances are summarized below. The branchings of levels below 3 MeV are well established (OP 64, LA 64) and are not included.

The 3.678 MeV level was excited by the decay of the 719 (24%), 839 (14%) and 954 (16%) keV resonance levels. The branching ratio of the 3.678 MeV level was obtained by averaging the results of the three resonances giving $3.678 \rightarrow 0.843$ (60%) and $3.678 \rightarrow 1.013$ (40%) in agreement with previous results (VA 67, WA 66).

The 3.956 MeV level was weakly excited (2%) at the 662, 719, 809 and 982 keV resonances and only the ground state transition which had comparable strength to the primary γ-ray was observed. Van der Leun et al. (VA 67) has reported $>80\%$ to the ground state whereas Spear et al. (SP 67) find evidence for weak transitions to the 1.013 and 2.732 MeV levels.

The 4.410 MeV level was excited (8%) at the 809 keV resonance level. The branchings from the 4.410 MeV level are $4.410 \rightarrow 0$ (67%) and $4.410 \rightarrow 1.013$ (33%). No branching to the 2.209 MeV level was observed.

The 4.581 MeV level was observed (1%) at the 809 keV resonance level; only the ground state transition was
identified. A weak transition via the 2.209 MeV level (SP 67) could not be observed due to intense gammarays in the vicinity of the expected transitions.

The 4.812 MeV level was previously reported (VA 67) to decay to the ground state (40%), the 1.013 MeV level (25%) and the 2.209 MeV level (35%). At the 719 keV resonance, the cascades 4.812 → 0 and 4.812 → 2.209 were both observed. The cascade 4.812 → 1.013 (3.799 MeV) was not positively identified. This is because the full energy peak (3.799 MeV) and the double escape peak (2.777 MeV) of the 3.799 MeV γ-ray were obscured by the cascade γ-rays 4.812 MeV (4.812 → 0) which has double escape peak energy 3.790 MeV and the 2.803 MeV (8.963 → 6.160) which is strong (34%). There is surplus γ-ray intensity feeding the 4.812 MeV level compared to that de-exciting the 4.812 MeV level.

The 5.156 MeV level was excited weakly at 982 keV resonance and only the ground state transition was observed.

The 5.246 MeV level has been reported (VA 67) to decay to the ground state (10%), the 1.013 MeV level (70%) and the 2.209 MeV level (20%). The present study could only identify the cascade 5.246 → 1.013 and 5.246 → 2.209 transitions at the 719 and 809 keV resonance levels with a branching ratio 25:75.
The 5.430 MeV level was excited at the 982 keV resonance and only transition to the ground state was observed.

The 5.551 MeV level was excited at the 809 (1%) and 954 (5%) keV resonances. The study at the latter resonance identified the cascades 5.551 → 0 (80%) and 5.551 → 1.013 (20%) whereas a previous report (VA 67) suggested only a ground state transition.

The 5.751 MeV level was excited at the 662 (3%), 839 (1%) and 954 (9%) keV resonances. The study at the 954 keV resonance determined the branchings as 5.751 → 0.843 (50%), 5.751 → 1.013 (14%) and 5.751 → 2.980 (36%). A suggested ground state transition (VA 67) was not observed.

The 5.828 MeV level was excited with intensities of 9% and 1% at the 954 and 839 keV resonances respectively. The branching ratio was determined as 5.828 → 0 (16%) and 5.828 → 1.013 (84%).

The 6.082 MeV level was observed to decay to the ground state from the study at the 662 and 839 keV resonances which both excite the 6.082 MeV level weakly (2%).

The 6.160 MeV level was strongly excited at the 662 (36%), 719 (34%) keV resonances and weakly at the 982 keV resonance (4%). The branchings were determined as
6.160 \rightarrow 0 (8\%), 6.160 \rightarrow 0.843 (74\%), 6.160 \rightarrow 1.013 (12\%) and 6.160 \rightarrow 2.732 (6\%) in accord with (VA 67).

The 6.606 MeV level was previously reported (VA 67) to decay to the ground state (15\%), the 0.843 MeV level (75\%) and the 1.013 MeV level (10\%). The present work found that the 6.606 MeV level was weakly excited at the 662 (2\%), 719 (4\%) and 954 (<1\%) keV resonances. The investigation at the 719 keV resonance could only confirm the cascades 6.606 \rightarrow 0 and 6.606 \rightarrow 0.843 with 1:5 ratio.

The 6.653 MeV level was found previously (VA 67) to have the branchings 6.653 \rightarrow 0 (85\%), 6.653 \rightarrow 0.843 (5\%) and 6.653 \rightarrow 1.013 (10\%). The level was excited rather strongly at the 719 (14\%) and 982 (10\%) keV resonances but the measurement at the 719 keV resonance could only confirm the cascades 6.653 \rightarrow 0 and 6.653 \rightarrow 1.013 with a ratio 88:12. The cascade gamma-ray 6.653 \rightarrow 0.843 (5.810 MeV) has a double escape peak at 4.788 MeV which was obscured by the first escape peaks of two strong \gamma-rays 5.317 MeV (6.160 \rightarrow 0.843) and 5.285 MeV (8.963 \rightarrow 3.678). At the 982 keV resonance, only the ground state transition was identified.

The 6.778 MeV level was reported (VA 67) to have the cascades 6.778 \rightarrow 0 (20\%), 6.778 \rightarrow 0.843 (55\%), 6.778 \rightarrow 2.980 (25\%) and 6.778 \rightarrow 3.678 (\leq 20\%). The present
measurement at the 982 keV resonance, which excites the 6.778 MeV level with 1\% intensity, only revealed the cascade $6.778 \rightarrow 3.678$.

The 6.815 MeV level was reported to decay to the 0.843 MeV level (20\%), 1.013 MeV level (70\%) and the 3.678 MeV level (10\%) (VA 67). The 6.815 MeV level was weakly excited (3\%) at the 662 keV resonance and allowed only the observation of the cascade $6.815 \rightarrow 1.013$.

The 6.997 MeV level was excited at the 809 keV resonance. The cascade from the 6.997 MeV level to the 4.410 MeV level was observed.

The 7.230 MeV level was excited at the 809 keV resonance and was observed to decay to the 2.209 MeV level in agreement with a previous suggestion (VA 67).

The 7.471 MeV level was excited (1\%) at the 982 keV resonance and observed to decay to the 2.980 MeV level. The suggested decay via the 2.209 MeV level (VA 67) was obscured in the present work. The 5.262 MeV ($7.471 \rightarrow 2.209$) γ-ray has the same energy as the γ-ray from the cascade $9.218 \rightarrow 3.956$ (5.262 MeV) while the second γ-ray of the cascade $7.471 \rightarrow 2.209 \rightarrow 0$ was masked by the strong first escape peak of the 2.732 MeV γ-ray at 2.221 MeV.

The 8.184 MeV level was excited <1\% at the 982 keV resonance. The ground state transition from the level was observed.
11. Spins

The present study confirms the previous spin assignments of the 662 (\(\frac{1}{2} \)), 719 (\(\frac{3}{2} \)), 809 (\(\frac{5}{2} \)), 839 (\(\frac{1}{2} \)) and 954 (\(\frac{3}{2} \)) keV resonance levels. The previous assignment $\frac{7}{2}$ to the 982 keV resonance level is conclusively rejected by the present work which favours the assignment $\frac{3}{2}$ or $\frac{5}{2}$.

The angular distribution measurements at the 719, 809 and 954 keV resonance are considered to uniquely determine the spins of the 3.678 (\(\frac{1}{2} \)), 5.246 (\(\frac{5}{2} \)), 5.551 (\(\frac{5}{2} \)), 5.751 (\(\frac{1}{2} \)), 5.828 (\(\frac{3}{2} \)) and 6.160 (\(\frac{3}{2} \)) MeV levels.

The spin of the 6.082 MeV level was proposed as $\frac{3}{2}$ from the intensity measurement alone.

The spin of the 4.410 MeV level was assigned previously as $\frac{5}{2}$ (ME 65, VA 67). The present work suggests $\frac{3}{2}$ is more likely.

The spin of the 3.000 MeV level was discussed in section 2.1 of this chapter. The decay of the resonance levels examined in the present work found no evidence for excitation of the 3.000 MeV level. The decay through the 2.209 MeV level with spin of $\frac{7}{2}$ was the highest spin state observed. This fact alone indicates the 3.000 MeV level is a high spin state consistent with the assignment of $\frac{9}{2}$ which is currently favoured.
12. Discussion

The present investigations, combined with the results of Van der Leun et al. (VA 67) serve as an illustration of the potential features of systematic studies of capture reactions with Ge(Li) detectors.

The question of group properties of resonances requires much more study. While closely spaced levels with the same spin and parity and virtually identical (and simple) decay schemes (e.g. the 2293 and 2323 keV levels) can be understood in a simple approach and similar examples occur in other reactions (ER 66), the case of the 662 and 719 keV resonance levels is less readily accounted for. Both levels decay strongly to the 6.16 MeV level in contrast to all other levels studied (34 in total) but otherwise have dissimilar decay and different spins. Little more information concerning the levels can be derived from gamma-ray measurements - perhaps particle reactions leading to the levels as final states would aid an understanding of them.

The value of Ge(Li) spectra in determining decay schemes is obvious but less so until the measurements are made, is the fact that the spectra serve mainly to only indicate the branchings of the higher levels (i.e. above 4 MeV). Accurate branching ratios are not possible
except at particularly favourable resonances. Thus not only do surveys with Ge(Li) detectors establish resonances at which correlation measurements may be made with NaI detectors but they also serve to locate resonances at which coincidence measurements may be used to establish branching ratios. Such measurements will constitute the next phase of the program.
FIGURE CAPTIONS

Figure 6.1 Decay scheme of the low-lying levels of ^{27}Al.

Figure 6.2 Resonance spectrum and decay scheme of the 662 keV resonance. Circles are data and the least squares line shape fit is the solid line.

Figure 6.3 The γ-ray spectra observed in coincidence with the energy intervals shown at the 719 keV resonance. All spectra collected for 10^6 monitor counts (OS 65).

Figure 6.4 Resonance spectrum and decay scheme of the 719 keV resonance. Circles are data and the least squares line shape fit is the solid line.

Figure 6.5 Plot of the coefficient of $P_2(\cos \theta)$ term versus arctangent of X, the quadrupole/dipole mixing ratio, for the transition $\frac{3}{2} \rightarrow \frac{1}{2}$ (Table 6.1, A).

Figure 6.6 Plot of the coefficient of $P_2(\cos \theta)$ term versus arctangent of X, the quadrupole/dipole mixing ratio, for the transition $\frac{3}{2} \rightarrow \frac{3}{2}$ (Table 6.1, B).
Figure 6.7 The contour plot of the coefficient of $P_2(\cos \theta)$ term for the spin sequence $\frac{3}{2} \rightarrow \frac{3}{2} \rightarrow \frac{1}{2}$ with first γ-ray unobserved (Table 6.1 I). The hatched area indicates the possible region determined by the experimental value.

Figure 6.8 Resonance spectrum and decay scheme of the 809 keV resonance. Circles are data and the least squares line shape fit is the solid line.

Figure 6.9 Resonance spectrum and decay scheme of the 839 keV resonance. Circles are data and the least squares line shape fit is the solid line.

Figure 6.10 Resonance spectrum and decay scheme of the 954 keV resonance. Circles are data and the least squares line shape fit is the solid line.

Figure 6.11 Resonance spectrum and decay of the 982 keV resonance. Circles are data and the least squares line shape fit is the solid line.
REFERENCES

BI 64 : Bishop, Bernheim and Kossanyi-Demay, Nucl. Phys. 54 (1964) 353.

DE 65 : Detenbeck, Armstrong, Figuera and Marion, Nucl. Phys. 72 (1965) 552.

DU 51 : D.B. Duncan and J.E. Perry, Phys. Rev. 82 (1951) 809.

GA 68 : Gallmann, Haas and Heusch, Phys. Rev. to be published.

HE 64 : D.F. Hebbard, private communication.

KE 67 : Kean, Elliott and Spear, ANU-P/396 (1967).

MA 60 : J.B. Marion, 1960 Nuclear Data Tables, Part 3.

SP 67 : R.H. Spear, private communication.

APPENDIX

COMPUTER PROGRAMS

1. FUNFIT (Function Fit) A 1
2. GEEFFANG (Germanium Detector Efficiencies and Angular Correlation Attenuation Factors) A12
3. FITTER
 a. LNESHAPE (Generate Line Shapes and Store on Disk) A16
 b. LEASTFIT (Least Squares Line Shape Fit) A23
 PUSH
 PULL
 PARAB
 MATINV
 SUMSPE
 LSTSQR
 PLTFIT
A

O
O
lU
O
<

to

S

tO LU
H- h—
o

LU

KIO'

rv -

*-

c ry -

- —

>

-U_
X •

I—
Z

—«rr

£ s

-

2

CD »
- X

O
-*

—
—•CT'lL
lL ~ _ j^ ~

V*
U-.X

U
U —>Z'*u
LÜ -tt< Q -

* :u

C___ i U J X y)

X
ox
H ff'

oO3>►
—I—

c c tr

i . a:

CLr-

ccrx

-»—- XUJ<3£

ii

C

• < —'cv:u-

O
O
LLj<

er. -J
tt 3
US'

C 2 *LL c .
X
<NJ
2 ‘- Z i

< ^ > v O
>C LU
i Lu
a.
D 5 —

o a j

X

*h-

Z — CU~

CC

< —

Z t-C U

5,r 5 ►(-a

^ X or. < •*
► - u o r ic

h - z o '
LL'U
- *-*L U —»> - >"
:x o .5:< N fo z z O '
_ j <r in
j o
* < r < 2Too<

cr

<CL »I—
-JESTS' —
«LUX
>
- Z - J - j* - '- '
h- X

x •o
r-fs.

_J

c < j^ r L
•o

>U

-oo
Ä
2 T*
- *O
0
--.—
KZ
ZXI h
—
•—
*
'Z
^3T
Z O F - t f ' „f-rn —>_ XZOCa'XX’ ••►
t - • ——
<—
»—
>Z
—S
T—
•> - x
o aa .- >
> a
cl: >
C L LO «r\jo •
•— • i u i ^ :x i Hl l li lmf '1 ►
x ^—x
•

—

a

»C K O C
CP V O
Z
o L U k- <

—2 < —
<C
-!•-« x in co y ix

x x x < \ i —• x ^ i n r - i r . - - x - i - o x , j . > . x c ; x < ;
« a .x x — x x x u • (\ i » t \ i - * M M f \ j f M (\ : r o u j r \ j “^ r O i r v X C j i - x x u . - - ' O r r \ (\ 1—

Oot^-O —X Q »X » ►» »X —
< » • . » ► • • * * * » »m»
2 d u * ll » in -- om »
si-» » n* » - x *x -4 -<
DOlU->
X - »Xoo
X X X I I X X I — X + ——
.•> 'J-- >r —o

—

—o - o » - m

C

X

x iix io x h

- r n » r n o D—
i—
_
•—
--------------------------«H-- ►
—^
I— H—>— ►
—►
— »— t— ►
—
*— . h~
1— ►
—h- ►
—►
—
►
—K c Q ._ ; x ir < < < < i< i< < < c c .< < < < < < < < < < < < < < < x < x « i< i< < < < r < < '« a <
is x iL T j- j- m : :

» j <\j m

m o N- cc

O' o ru rn
—< x _ i —

5
CL

—
o

o
o

LL

O jp r .^ in ^ P ^ X O 'O
O C o O C U O C —<

c rc c c o c c -i
o co o o cco o

i/> »GO
r - ujuj

•-«
z

fsj

-<*

tO

- J LL tO LO

C

~

—<i — •—

-J
<J
H-

-j
<
• — 3 < <
5"
cl•—«•—• h- q 'Q c

t~

~

^
ii

“ 5

<r

o
— -s t
— X Osj
r^- < i r—«

ä

->
—
>—

u - > c ~ u jtfu c n ~ »o - i- z
x o o z > . n C i u z 2: > - 4- u jc o a lu
I uj - i a i X
i i Ini l h » »
c r«
- “.ixL
x a
r ^ 2 ' 0 i - ' J ’ ' - ,(^ O ' - X u j K < M L L ; '- '

-

O •

lu

—

-

i h

-S- •

- » ►-

cu

o _ ro

cl

M X n a LULL
l
LL.

L_

or

O
(Si

C

7 — ID U J
—LL Q l

<■

h -lK C
U v tG '

e52t

-J L U
< 7
3

O' O
- C k lu C C ty iO C «
-U _
U J U J K - X lO Q . X X V O O l i J — c j n > r o

—
— I------- • (T . f . • •— x
► ~ x m < iH - in - - x W '- -

II ^ ►
—

LUh-

—U U

c o r*

a_

X
> LU - o
—• -LU

IUIJL!
K- U II

a_Li_

- ii

-O
ii vn
lU—
*

Z ~ > -c £

r^rsj

• tu •■o

LUO

2^

O
-*~LU
^O —
■

—

- <r>
u-i»/)(\j

•C

< fC
uO

—•
—
C
OJ

-3
C

^

X
- X u
—
•f'- C

X (NjJJ

H-

_i

^3 -4 ’

<— i f \

—Q. *•——

- o - x •• *-ql •• •’X in xo D o ' —
^
O 'L p O ^ »X m o m
x x ► i n n »>r—

OU

—« X —' r t u - i x —<— m — r f ' —
-------------------- O — — • — » I— r n H - »►— f - - l — l— Z ►
—►
—
- - x — »»
< r » < x < < < i < < x < — x x —-

m -o >- to

t >—i tv ac i j >c
I —i _ i f V M O O —«

^ m o r ^ ^ O ^ C —‘ r s j r o ^ i n
- H—
—« ' ^ r \ , r \ . ^ r \ j ' \ j c\j
C G C c c c c c c r c c c o o
C G O O O G O G C O G O O O C

sC
c\j

CO O ' O
f \ j co
r \j rv, fsj ,-o ro i"0 ro

^ vT.
p«. r o

o
rf

fO

3

OCOOOOO

O

C

o

o o o o o o c

CO
CO

o

c

CC J '
ro m

OO
OO

o ^
>y >r
oo
co

o
>r >r ^
o o cco
o co o o

1


IF(IDENT(I)-=0)GO TO 11
0049
24 WRITE(3,114)(IDENT(J),J=1,20)
0049
107 WRITE(3,9)AGAIN
0050
WRITE(3,10)ZEROI
0051
LINE
0052
L=0
0053
N=0
0054
J=0
0055
N=1
0056
GO TO 25 I=1,25
0057
GO TO 25 J=1,25
0058
25 FIT(I,J)=0.0
0059
ISTOP=0
0060
C READ IN INTERVAL DEFINITION CARDS
0061
INVL=0
0062
IF(LBL=24)27,27,29
0063
C CHECK SPECIFICATION OF INTERVALS
0064
27 INVL=INVL+1
0065
28 WRITE(3,13)
0066
ISTOP=1
0067
29 DO 33 J=2,5
0068
33 FIT(LL,J)=R(J)
0069
FIT(LL,J)=NPAR
0070
FIT(LL+1,J)=R(J)
0071
FIT(25,J)=R(J)
0072
GO TO 26
0073
34 INVL=INVL-1
0074
DO 46 LL=1,INVL
0075
IF(FIT(LL+1,3)=FIT(LL,3))35,35,36
0076
WRITE(3,14)LL
0077
ISTOP=1
0078
35 IF(FIT(LL,2)=FIT(LL,3))38,38,37
0079
36 WRITE(3,15)LL
0080
ISTOP=1
0081
37 IF(FIT(LL,4)=FIT(LL+1,3))39,40,40
0082
38 WRITE(3,15)LL
0083
ISTOP=1
0084
39 DD J=2,4
0085
IF(FIT(LL,J)=2047)42,42,41
0086
40 WRITE(3,16)
0087
ISTOP=1
0088
41 CONTINUE
0089
42 CONTINUE
0090
43 WRITE(3,17)LL
0091
ISTOP=1
0092
44 IF(FIT(LL,1)+FIT(LL,2)=FIT(LL,4)-1,)46,46,45
0093
45 WRITE(3,15)LL
0094
ISTOP=1
0095
46 CONTINUE
0096
47 WRITE(3,8)
0097
DD 48 I=1,INVL
0098
NPAR=FIT(I,1)
0099
NPAR=FIT(I,3)
0100
NPAR=FIT(I,2)
0101
NPAR=FIT(I,4)
0102
NPAR=FIT(I,5)
0103
I=INVL+1
G LEVEL 0, MOD 0

DATE = 68049 22/51/08 PAGE 0003

MAIN

WRITE(3,12)I,NPAR,FIT(I,3)
GAIN=550./GAIN
DL 49 I=1,20
49 PI=0.0
WRITE(3,6)
WRITE(3,7)
C READ IN COEFF DEFN CDS FOR NCN, FITTED INTVLS
50 READ(L1,2)LBL,[P(I),I=1,8]
IF(LBL) 52,52,51
51 WRITE(3,229)LBL,[(P(I),I=1,8)
FIT(LBL),I=1,8]
LAB=BL
NCARD=FIT(LAB,1)
DO 302 J=2,3
302 P(J)=FIT(LAB,J)-ZERO)/GAIN
P(3)=3.1415927/GRAIN/(FIT(LAB,4)-FIT(LAB,2))
P(5)=GAIN*P(5)
DO 303 J=4,20
303 P(J)=P(J)*GAIN
NCARD+1
DO 304 L=1,M
K=L+NN
NN=NN+M
DL 305 J=1,NCARD
A=100.*J+LAB
JJ=J+1
305 LDPIJJ=M
GO TO 50
50 DL 55 J=1,2100
53 DATA(1)=0.0
MAX=FIT(25,4)
NCARD=MAX
K=3, READ DATA IN RIDL FORMAT
C K=2, READ BACKGROUND SOURCE FUNCTIONS
C K=1, USE PREVIOUS BACKGROUND SOURCE FUNCTIONS
C READ IN DATA, READ DATA.
35 IF(K=1) 100,110,10
DO 57 I=1,N
READ(L1,11)K(K),K=1,10
40 DO 57 J=1,10
LBL=I-1)*10+J
56 DATA(LBL)=DATA(LBL)
57 CONTINUE
58 READ(L1,10)
C POSSIBILITY OF ADDING OR SUBTRACTING ANOTHER SPECTRUM
C IF(K=1)121,121,54
121 WRITE(3,239)
DO 123 I=1,N
122 WRITE(3,239)
DO 123 I=1,N
122 L=I-1
123 WRITE(3,239)
WRITE(2,239)EGAM
FORTRAN IV G LEVEL 0, MOD 0

MAIN

DATE = 68049 22/51/08 PAGE 0004

0055 DO 129 J=1,MAXM
0056 K=MAXM+51-J
0057 129 DATA(K)=DATA(K-50)
0058 N=MAXM+50
0059 CALL RDL(DATA,N)
0060 DO 130 J=1,MAXM
0061 130 DATA(J)=DATA(J+50)
0062 GO TO 64
0063 C
0064 READ IN BACKGROUND FUNCTIONS
0065 DO 131 I=1,20
0066 131 FITB(I)=0.0
0067 DO 132 I=1,5
0068 132 READ1(2901M,(FB(I),I=1,5)
0069 NCARD=M/100
0070 LBL=M/100*NCARD
0071 IF(NCARD-9)133,135,136
0072 133 FITB(I,LBL)=NCARD
0073 DO 134 I=1,5
0074 134 FITB(I,LBL)=FB(I)
0075 DO 136 I=1,32
0076 135 FITB(3,LBL)=FB(2)
0077 INTERVAL=9L-1
0078 RUN=FB(I)
0079 COUNT=FB(4)
0080 ANGLE=FB(5)
0081 WRITE(3,139)RUN,TIMER,ANGLE,COUNT
0082 137 I=1,INTVLB
0083 IF(FITB(I),I)=137.136,137
0084 136 WRITE(3,140)
0085 DO 238 I=1,200
0086 137 CONTINUE
0087 GAIN=5000.0
0088 ZER0=0.0
0089 CALL SUB2(FITB,D,GAIN,ZERO,INTVLB,GAINB,ZEROB)
0090 DO 138 I=1,200
0091 138 DATA(I)=DATA(I)+D(I)*SMULT
0092 DO 58 I=1,200
0093 139 WRITE(3,115)
0094 115 READ(11,122)(IDENT(I),B(I),I=1,N)
0095 L=0
0096 124 A=1,8
0097 K=IDENT(I)
0098 IF(K)125,127,125
0099 L=L+1
0100 125 L=4
0101 126 DATA(K+1)=8(I)
0102 120 WRITE(3,120)(IDENT(J),B(J),J=1,8)
0103 124 GO TO 65
0104 127 IF(L)128,116,128
0105 128 WRITE(3,120)(IDENT(J),B(J),J=1,L)
0106 L=L+1
0107 116 WRITE(3,141)
0108 C
0109 POSSIBILITY OF CHANGING INDIVIDUAL CHANNELS
0110 WRITE(3,115)
0111 115 READ(11,122)(IDENT(I),B(I),I=1,N)
0112 L=0
0113 124 A=1,8
0114 K=IDENT(I)
0115 IF(K)125,127,125
0116 L=L+1
0117 125 L=4
0118 126 DATA(K+1)=8(I)
0119 120 WRITE(3,120)(IDENT(J),B(J),J=1,8)
0120 124 GO TO 65
0121 127 IF(L)128,116,128
0122 128 WRITE(3,120)(IDENT(J),B(J),J=1,L)
0123 L=L+1
0124 116 WRITE(3,141)
0125 C
0126 START FITTING
0127 LH=1
0128 DO 67 LBL=1,INTVL
0129 NPAR=IF(LBL,1)
0130 IF(NPAR)67,67,68
MAIN

DATE = 69028 22/51/08 PAGE 0005

FORTRAN IV LEVEL 0, MOD O

0100 68 J=FIT(LBL,2)
0110 69 B(I)=B(I)+1.
0120 70 B(2)=R(I).
0130 71 B(3)=R(2)-FIT(LBL,2).
0140 72 AMX(L,K+2)=AMX(L,K)+B(I)*R(I).
0150 73 MAXX=L
0160 74 K=K+1.
0170 75 IF(K=K) M=1.
0180 76 IF(K=K) M=NM.
0190 77 IF(K=K) M=NM.
0200 78 IF(K=K) M=NM.
0210 79 IF(K=K) M=NM.
0220 80 IF(K=K) M=NM.
0230 81 IF(K=K) M=NM.
0240 82 IF(K=K) M=NM.
0250 83 IF(K=K) M=NM.
0260 84 IF(K=K) M=NM.
0270 85 IF(K=K) M=NM.
0280 86 IF(K=K) M=NM.
0290 87 CONTINUE
0300 88 DO 89 J=1,20
0310 89 P(J)=0.0.
0320 90 M=FIT(LBL,2).
0330 91 B(9)=M.
IF(R(9)-FIT(1,21)) 90,91,91
90 H=M+1
91 DO 92 J=1,MINM
 DO 92 L=1,MAXM
 N=L+M
 DO 93 K=1,MINM
 92 P(J+K)=CMTX(J,K)*AMTX(L,K)*DATA(N)+P(J+K)
 93 FIT(1,1)=(MINM+7)/(5)
 94 B(5)=B(5)+1.
 95 DO 96 K=1,MINM
 96 B(7)=P(K+3)*AMTX(J,K)
 97 B(9)=B(9)+B(7)
 98 B(10)=B(8)*B(8)+B(10)
 99 CONTINUE
 100 R(10)=B(10)/R(5)
 101 WRITE(3,191),B(10)
 102 WRITE(3,192)
 103 N=1
 104 LAB=I
 105 IF(R(10)-FIT(1,5))101,101,106
 106 WRITE(3,193)
 107 DO 108 J=1,3
 108 P(J-1)=(FIT(LAB,J)-ZERO)/GAIN
 109 P(J)=3.1415927*GAIN/(FIT(LAB,4)-FIT(LAB,2))
 110 P(5)=GAIN*P(5)
 111 DO 103 J=4,20
 112 P(J)=P(J-1)*GAIN
 113 CPUTS OUTPUT FUNCTIONS INTO OP(DIM=405).LABELS ARE PUT INTO
 CLOP(DIM=81). FOR ELEMENTS 1-5 IN OP, LOP(1) APPLIES,
 C FOR ELEMENTS 6-10 IN OP, LOP(2) APPLIES, E.T.C.
 C FINAL CARD . (LABEL,EXPRT)*CH,NO.,GAIN,ZERO,SOURCE(42,111)
 C ARE STORED IN DIDENT(1-6)
 114 C
 115 M=NCARD+5
 116 DO 104 J=1,M
 117 K=J+NN
 118 N=NN+M
 119 DO 105 J=1,NCARD
 120 M=100*M+LAB
 121 JJ=J+1
 122 DO 106 J=1,M
 123 104 NP(K)=P(L)
 124 105 LOP(JJ)=M
 125 106 LOP(JJ)=901+INTVL

22/51/08 PAGE 0006
GO TO 212
DO 216 K=1,15
J=22-K
IF (FIT(J,LBL) .GE. 217,216,217)
CONTINUE
217 NSIN=J-6
NS=NS+1
NPAR=NPAR+2
FIT(J,LBL)=B(4)*FIT(4,LBL)
IF (FIT(J,LBL): .GE. R(2)*FIT(2,LBL))
DO 219 K=1,NSIN
B(5)=K
219 COEFFIT(K+1)=DSIN(R(3)*R(4)*B(5))
COEFFIT(2)=R(3)
N=CHAN*51.0
DO 220 J=1,NPAR
220 U(N)=G(N)+COEFFIT(J)*FIT(J,LBL)
CHAN=CHAN+1.0
IF (CHAN=FIT(3,RL+1)) 218,240,222
240 IF (BL=INTVL/2,218,218)
222 LBL=LBL+1
IF (BL=INTVL) 215,215,223
223 TOTAL=0.0
224 TOTAL=TOTAL+D(J)
244 WRITE(3,225) TOTAL
C PRINT OUTPUT SPECTRUM, ORIGINAL GAIN AND ZERO
WRITE(3,110)
227 K=K-1
228 IF (K=1,10)
WRITE(3,211),DL
229 WRITE(3,211),B(K),K=1,10
230 CALL RID(DL)
C PRINT OUTPUT FUNCTIONS, RUN NUMBER, MAX CH, ENERGY, INTENSITY
I=1
WRITE(3,111)
WRITE(3,111),EICAM
OP(KS+4)=TOTAL
L=I+I-1
L=J*(T-1)+5
P=U(J)+P(1)
WRITE(3,290),LRL,(P(J),J=1,5)
WRITE(2,250),LRL,(F(J),J=1,5)
WRITE(2,250),LRL,(F(J),J=1,5)
WRITE(3,246)
RATIO=1000000.0/TOTAL
WRITE(3,246)
RATIO=1000000.0/TOTAL
DO 252 K=1,N
WRITE(3,246)
RATIO=1000000.0/TOTAL
DO 252 K=1,N
252 U(K)=B(K)*RATIO
DO 246 J=51,N,10
DO 247 K=1,10
SUBROUTINE RIDL(A,N)

DIMENSION I(2100), IP(63), IS1(6), IO(12), IC(5)

1 FORMAT(1x,1x,5x9A1)
N=N/10
14 IF(N=M+10)
15 DO 4 I=51,N
16 IF(A(I)=9999.2,3,3)
17 I(A(I))=9999
4 GO TO 4

12 I(A(I))=A(I)
4 CONTINUE

10 DO 10 J=1,10
11 J=11

5 IF(J/I=1A(LBL)/(10**(J-1))
14 DO 6 K=1,5
15 IC(K)=I1(K)-I1(K+1)*10
16 L=5+6*(1-1)
17 M=L+4
18 DO 7 K=L,M
19 I1(K)=I1(K)
20 KK=IC(K)

7 IP(K)=-IO(KK+1)
22 DO 8 IP(41)=IO(11)
23 L=(J-5)/10
24 IF(TE7,1)LBL,(10P(1),I=5,63)
25 RETURN
26 END

SUBRoutines

SUB2

```
DOUBLE PRECISION D057D0
DIMENSION FIT(21,20),R(10),COEFF(17)

FORMAT(*+NORMALISED BACKGROUND TOTAL COUNTS=",E14.7)

FORMAT(*+STOP AT CHANNEL 519 IN INTERVALS)

GAIN=GAINI/GAINB

DO 24 J=1,10
   DP 2A J=1,INTVL
   DO 25 I=1,29
      FIT(I,J)=FIT(I,J)-GAIN
      FIT(I,J)=FIT(I,J)+GAIN
   OD
   DO 24 J=1,2,3
        FIT(I,J)=FIT(I,J)-GAIN
   OD
   FIT(I,J)=FIT(I,J)+GAIN
   K=INTVL+1
   JT 67 JJ=1,K
   FIT(I,J)=FIT(I,J)*GAIN
   CONTINUE
   GO TO 27
   30 RIS=FIT(31.1,2)
   IF (RIS.K=1.35) THEN
      35 CUEFF=23.5
      NE(CUEFF)+D3X3
      N=CHANG+2.2
      DO 32 J=1,3
         CHAN=CHAN+1.0
      OD
      30 IF (CUEFF(31)K+3.5) THEN
         35 CUEFF=23.5
         NE(CUEFF)+D3X3
         30 IF (CUEFF(31)K+3.5) THEN
            35 CUEFF=23.5
            NE(CUEFF)+D3X3
         OD
      32 (N+3)+(CHANG+3)+NAP
      IF (CHAN=FIT(31,4)+LRL+1) THEN
         33 IF (LRL.INTVL+13)+30.2
      OD
      64 WRITE(3,653)
      STOP
      34 LRL=LL+1
      IF (LRL=INTVL)+29.3
      35 TOTAL=0.0
      34 DO 47 J=1,5
      35 TOTAL=TOTAL+O(J)
      36 IF (D1J)+42
      40 D1J=0.0
      41 TOTAL=TOTAL+O(J)
      40 D1J=0.0
      41 TOTAL=TOTAL+O(J)
      34 DO 47 J=1,5
      35 TOTAL=TOTAL+O(J)
```

SUB3

```
DOUBLE PRECISION D057D0
DIMENSION FIT(21,20),R(10),COEFF(17)

FORMAT(*+NORMALISED BACKGROUND TOTAL COUNTS=",E14.7)

FORMAT(*+STOP AT CHANNEL 519 IN INTERVALS)

GAIN=GAINI/GAINB

DO 24 J=1,10
   DP 2A J=1,INTVL
   DO 25 I=1,29
      FIT(I,J)=FIT(I,J)-GAIN
      FIT(I,J)=FIT(I,J)+GAIN
   OD
   DO 24 J=1,2,3
        FIT(I,J)=FIT(I,J)-GAIN
   OD
   FIT(I,J)=FIT(I,J)+GAIN
   K=INTVL+1
   JT 67 JJ=1,K
   FIT(I,J)=FIT(I,J)*GAIN
   CONTINUE
   GO TO 27
   30 RIS=FIT(31.1,2)
   IF (RIS.K=1.35) THEN
      35 CUEFF=23.5
      NE(CUEFF)+D3X3
      N=CHANG+2.2
      DO 32 J=1,3
         CHAN=CHAN+1.0
      OD
      30 IF (CUEFF(31)K+3.5) THEN
         35 CUEFF=23.5
         NE(CUEFF)+D3X3
         30 IF (CUEFF(31)K+3.5) THEN
            35 CUEFF=23.5
            NE(CUEFF)+D3X3
         OD
      32 (N+3)+(CHANG+3)+NAP
      IF (CHAN=FIT(31,4)+LRL+1) THEN
         33 IF (LRL.INTVL+13)+30.2
      OD
      64 WRITE(3,653)
      STOP
      34 LRL=LL+1
      IF (LRL=INTVL)+29.3
      35 TOTAL=0.0
      34 DO 47 J=1,5
      35 TOTAL=TOTAL+O(J)
      36 IF (D1J)+42
      40 D1J=0.0
      41 TOTAL=TOTAL+O(J)
      34 DO 47 J=1,5
      35 TOTAL=TOTAL+O(J)
```
C CALCULATE EFF. AND ANGULAR CORRELATION CORRECTION FACTORS FOR
C RECTANGULAR GERMANIUM DETECTOR
0001 DIMENSION TOTAL(3),EGAMMA(33),TAU(33)
0002 COMMON/COMP/X,Y,FL,T,H,TOR,L,K
0003 COMMON/COMP/X,DI,Y1,Y2,N,SUM
0004 C SPECIFY DIMENSION OF THE DETECTOR IN CM
0005 DATA HEIGHT,WIDTH,THICK/2.8,3.4,3.1/
0006 C SPECIFY RANGE OF GAMMA ENERGY TO BE CALCULATED
0007 DATA NR1,NR2/14,26/
0008 C LIST OF GAMMA ENERGIES AND LINEAR ATTENUATION FACTORS(TAU)
0009 DATA EGAMMA/0.01,0.015,0.02,0.03,0.04,0.05,0.06,0.08,0.1,0.15,
0010 0.2,0.3,0.4,0.5,0.6,0.8,1.0,1.5,2.0,3.0,4.0,5.0,6.0,8.0,10.0,15.0,
0011 20.0,30.0,40.0,50.0,60.0,80.0,100.0/
0012 C DATA TAU/161.731,504.617,227.193,72.105,31.418,16.624,10.139,
0013 14.730,2.765,1.213,0.431,0.242,0.138,0.337,0.202,0.246,
0014 10.217,0.187,0.174,0.168,0.166,0.164,0.166,0.175,0.186,0.203,0.217,
0015 10.228,0.237,0.240,0.250/
0016 31 FORMAT(1X,EGAM,Tau,Det Eff)
0017 1 J2/J0',
0018 32 FORMAT(4X,DETECTOR DIMENSION,HEIGHT='F6.2',CM,WIDTH='F6.2',CM)
0019 1F6.2',CM,THIC='F6.2',CM')
0020 33 FORMAT(1F10.3,IF10.4,E12.5,2F10.4)
0021 34 FORMAT(1F10.3,'SOURCE TO DETECTOR DISTANCE='F6.2',CM')
0022 35 FORMAT(1F,'SOLID ANGLE='F12.5',ST RADIAN')
0023 36 FORMAT(1F20.2)
0024 WRITE(3,32)HEIGHT,WIDTH,THICK
0025 T=HEIGHT/2.0
0026 T=THICK
0027 N=10
0028 C READ IN SOURCE TO DETECTOR DISTANCE
0029 77 READ(1,36)H
0030 179 WRITE(3,34)H
0031 SUM=0.0
0032 DO 78 NG=NR1,NR2
0033 T0K=TAU(NG)
0034 EGAM=EGAM(NG)
0035 DO 4 L=1,3
0036 C CALCULATE FIRST INTEGRAL
0037 SUM=0.0
0038 X1=0.0
0039 X2=H*W/(H+T)
0040 D=(X2-X1)/(2.0*H)
0041 Y1=0.0
0042 Y2=H*FL/(H+T)
0043 DO 1 I=1,L
0044 1 X1=1+(I-1)*D,0.0
0045 CALL DINTEG
0046 SUM=SUM+SUM
0047 14 IF(NG-NR1)>14,1
0048 11 X<4 CALL DINTEG
0049 SUM=SUM+SUM
0050 1 CONTINUE
0051 C CALCULATE SECOND INTEGRAL
FORTRAN IV G LEVEL 0, MOD 0
MAIN
DATE = 68049
22/55/19
PAGE 0002

0044 SUM2=0.0
0045 XL=H*W/(H+T)
0046 X2=W
0047 DH=(X2-X1)/(2.0*M)
0048 Y1=0.0
0049 DO 2 I=1,M
0050 K=2
0051 X=X1+(I-1)*2.0*DH
0052 Y2=X*FL/W
0053 CALL DINTEG
0054 SUM2=SUM2+SUM
0055 IF(NG-NR1)15,15,2
0056 15 IF(L-1)12,12,2
0057 12 K=6
0058 CALL DINTEG
0059 SUM4=SUM4+SUM
0060 2 CONTINUE
0061 CALCULATE THIRD INTEGRAL
0062 SUM3=0.0
0063 XL=FL/(H+T)
0064 X2=FL
0065 DH=(X2-X1)/(2.0*M)
0066 Y1=0.0
0067 DO 3 I=1,M
0068 K=3
0069 X=X1+(I-1)*2.0*DH
0070 Y2=X*FL/FW
0071 CALL DINTEG
0072 SUM3=SUM3+SUM
0073 IF(NG-NR1)16,16,3
0074 16 IF(L-1)13,13,3
0075 13 K=4
0076 CALL DINTEG
0077 SUM4=SUM4+SUM
0078 3 CONTINUE
0079 TOTAL(1)=SUM1+SUM2+SUM3
0080 4 CONTINUE
0081 IF(NG-NR1)17,17,18
0082 17 WRITE(3,35)SUM4
0083 35 WRITE(3,31)
0084 18 EFF=TOTAL(1)/3.14159
0085 Q2=TOTAL(2)/TOTAL(1)
0086 Q4=TOTAL(3)/TOTAL(1)
0087 78 CONTINUE
0088 GO TO 77
0089 END
SUBROUTINE DINTEG

COMMON/COMB/X1, DL-Y1, Y2, N, SUM

DK=(Y2-Y1)/(2.0*N)

G=2.0*OH*(Y2-Y1)/(36.0*N)

SUM=0.0

N1=N+1

DO 7 J=1,3

X=X1+(J-1)*DH

DO 7 J=1,N

Y=Y1+(J-1)*DK*.0

IF(J-1).LT.2

2 IF(J-N1)1,1,1

1 CM=1.0

GO TO 4

3 CY=2.0

4 IF(J-2).LT.5,6

5 CM=6.0*CM

6 CALL ZFUNC

7 CONTINUE

SUM=SUM+Z*CM

8 CM=16.0

GO TO 10

9 CM=4.0

10 CALL ZFUNC

SUM=SUM2+CM*Z

11 CONTINUE

SUM=(SUM1+SUM2)*G

RETURN

END
SUBROUTINE ZFUNC
DOUBLE PRECISION E,R,R3,COSTH1,COSTH2,COSTH4,Z
COMMON/COMA/W,FL,T,H,TOR,L,K
DIMENSION P(3)
E=X*X*Y*Y+H*H
R=DSQRT(E)
R3=R*R*R
COSTH2=COSTH1*COSTH1
COSTH4=COSTH2*COSTH2
P(1)=1.0
P(2)=(3.0*COSTH2-1.0)/2.0
P(3)=(35.0*COSTH4-30.0*COSTH2+3.0)/8.0
GO TO (1,2,3,4),K
1 E=-1.0*TOR*E/T/H
 E=(1.0-DEXP(E))*H/R3
 Z=PL1*E
 RETURN
2 E=-1.0*TOR*E/(W/X-1.0)
 E=(1.0-DEXP(E))*H/R3
 Z=PL1*E
 RETURN
3 E=-1.0*TOR*E/(FL/X-1.0)
 E=(1.0-DEXP(E))*H/R3
 Z=PL1*E
 RETURN
4 Z=H/R3
 RETURN
END
PROGRAM FITTER
C ALIGN PHOTOPeAK OF EACH LINE SHAPE TO THE SAME POSITION AND
C NORMALIZE TO THE SAME HEIGHT
C STORE LINE SHAPES ON DISK
C
DIMENSION A(2048,10),X(10),P(10),Y(10),NX(10),N(2048),T(2048)
COMMON S!1
C READ RUN DESCRIPTION - UP TO 80 CHARACTERS
READ(1,360)TITLE
360 WRITE(3,3645)TITLE
3645 FORMAT(11,204)
C READ IN THE HIGHEST NUMBER OF CHANNEL WHICH CONTAINS ALL LINE
C SHAPES AND PRINT OPTION; KDISK=1 OR GREATER IF THE LINE SHAPES ARE
C TO BE STORED IN THE DISK
READ(1,117),K,P,PRINT,KDISK
K=K+1
C READ IN NUMBER OF LINE SHAPES - MAXIMUM OF TEN
READ(1,11)NUM
11 FORMAT(I5)
DO 22 I=1,10
22 A(I,J)=0.0
C READ IN LINE SHAPES, STARTING FROM LOW ENERGY IN INCREASING ORDER
DO 20 J=1,NUM
20 A(J,I)=0.0
C READ IN THE HIGHEST NUMBER OF CHANNEL OF EACH LINE SHAPE
READ(1,11)NOCH
NOCH=NOCH+1
READ(1,2),A(I,J),I=1,NOCH
2 FORMAT(3X,10P6.0)
C READ IN THREE HIGHEST CHANNELS OF PHOTOPeAK
READ(1,3),K1,K2,K3
3 FORMAT(3I5)
C PK POSITION DETERMINED BY PARABOLIC FIT
CALL PARAB(A(M1,J),A(M2,J),A(M3,J),K1,K2,K3,U,V,W)
C WRITE PHOTOPeAK PARAMETERS,,19 POSITION AND HEIGHT,2F10.2
WRITE(3,4)X(J),P(J)
4 FORMAT(22HPHOTOPeAK PARAMETERS,,19 POSITION AND HEIGHT,2F10.2)
C CONTINUE
C READ IN ENERGIES APPROPRIATE TO LINE SHAPES
READ(1,6),Y(J),J=1,NUM
6 FORMAT(8F10.3)
C ENERGY CALIBRATION DETERMINED BY LEAST SQUARES FIT
CALL LESQ(N,K1,K2,K3,HEIGHT,SLOPE,SSD)
IF(PRINT)471,470,471
471 FORMAT(4I7.4)
C WRITE TRUE SLOPE AND RINT
WRITE(3,7),Y(J),SLOPE,J
7 FORMAT(3,T1SLOPE,J)
C TEST OF ENERGY CALIBRATION
DO 470 J=1,NUM
EN=SLOPE*X(J)+RINT
FORTRAN IV LEVEL 0, MOD 0

0041 10 IF(PRINT)51,50,51
0042 51 WRITE(3,BIEN,YJ)
0043 50 FORMAT(150COMPARISON WITH INPUT ENERGIES,5X,53EN=F10.3,5X,7ACTUA
0044 50 CONTINUE
0045 C GAIN ADJUSTED SO THAT PEAK OCCURS AT INTEGRAL CHANNEL
0046 DO 50 J=1,NUM
0047 NE(J)=XI(J)+0.5
0048 XF=NX(J)
0049 RAY=(XF+SLOPE*RX1/(XI(J)+SLOPE*RX1))
0050 RAY=RAY*RX1/RF
0051 DO 50 L=1,1X
0052 RLL(L)=A1LJX
0053 CALL PULLER,SLOPE,RX1,RAY,RX1,K
0054 GO TO 607
0055 CALL PULLER,SLOPE,RX1,RAY,RX1,K
0056 607 DO 210 L=1,1X
0057 210 A1LJ=RL(LX)
0058 60 CONTINUE
0059 473 WRITE(3,9)(NE(J),J=1,NUM)
0060 9 FORMAT(210,8X,PEAK POSITIONS,10I5)
0061 C SPECTRA NORMALIZED TO SAME PEAK HEIGHT
0062 472 NH=NUM=1
0063 473 J=1+NUM
0064 476 IF(PRINT)473,477,474
0065 474 FACTOR=A(JJ,NUM)/A(JY,J)
0066 IF(PRINT)473,474,470
0067 470 WRITE(3,6)FACTOR
0068 6 5 FORMAT(10E13.6)
0069 50 CONTINUE
0070 40 CONTINUE
0071 C SPECTRA TRANSLATED SO THAT PHOTOPEAKS ALIGNED
0072 DO 70 J=1,NUM
0073 DO 69 L=1,1X
0074 69 R1=J
0075 70 CONTINUE
0076 69 L=1,1X
0077 70 CONTINUE
0078 C NEX=NUM-MAX(J)
0079 IF(NUM-NEX-MAX(J))652,652,651
0080 652 AIN(J)=MAX(J)
0081 651 XJ=AIN
0082 653 IF(XJ-XJ-0.1178,778,80
0083 778 KR=NEX-MAX(J)
0084 C LOW ENERGY TAILS EXTRAPOLATED TO ZERO
0085 90 K=KP=1,0
0086 90 CONTINUE
0087 90 CONTINUE
0088 70 CONTINUE
0089 70 CONTINUE
0090 IF(PRINT)128,77,78
0091 77 WRITE(3,17)
0092 17 FORMAT(310I1(A(1++,J),I=1,K),J=1,NUM)

FORTRAN IV LEVEL 0, MOD 0

0094 10 FORMAT(110F10.11)
0095 77 IF(KO(1))74,74,72
0096 72 IF(REWIND)4
0097 4 WRITE(4,NUM,K,SLOPE,RX1,RAY,NX(NUM),RX(L),L=1,NUM)
0098 4 REWIND 4
0099 40 DO 100 I=1,NUM
0100 100 WRITE(4,I11,J=1,K)
0101 74 IF(PRINT)25,74,72
0102 75 CALL MULTIMAP(A,K)
0103 76 STOP
0104 END
SUBROUTINE LSTSQ(A,B,N,SLOPE,RINT,SSQ)

C LINEAR LEAST SQUARES FIT

DIMENSION A(10),B(10)

XN=N
SUMA=0.
SUMB=0.
SUMAB=0.
SUMAA=0.
DO 1 I=1,N
SUMA=SUMA+A(I)
SUMB=SUMB+B(I)
SUMAB=SUMAB+A(I)*B(I)
SUMAA=SUMAA+A(I)*A(I)
1 CONTINUE
WA=SUMA+SUMB/XN-SUMAB
WN=(SUMA**2)/XN-SUMAA
SLOPE=WA/WB
RINT=SUMB/XN-SLOPE*SUMA/XN
SSD=0.
DO 2 I=1,N
DELTA=SLOPE*A(I)+RINT-B(I)
2 SSD=SSD+DELTA*DELTA
RETURN
END
SUBROUTINE PUSH(A, B, C, D, E, M)

COMMON S, T

DO 1 NX=1, 2048

1 S(NX)=0.

DO 7 NM=1, M

DO 8 R=1, 2048

8 ORD=R*C-B*O.

Y=(ORD-T+0.5*L)/D

IF(Y)<3, 9, 9

J=Y

K=J+1

WIDTH=R/D

H=(D/B)*A(NM)

IF(WIDTH>FLOAT(K)+Y)10, 10, 12

10 IF(J)<3, 11

11 T(J)=A(NM)

12 IA=H*(K-Y)

13 IF(I)<15, 13

T(I)=J+1

15 NI=J+1

14 T(K)=A(NM)-TA

T(K)=A(NM)-TA

DO 4 L=1, 2048

S(L)=S(L)+T(L)

DO 6 L=1, 2048

6 S(L)=S(L)+T(L)

DO 3 L=1, M

3 CONTINUE

DO 5 L=1, M

5 A(L)=S(L)

RETURN

END
FORTRAN IV G LEVEL 0, MOD 0

C SUBROUTINE PULL(A,B,C,D,E,M)
C EXPAND ORIGINAL SPECTRUM
C
C COMMON S, T
C MAXIMUM NUMBER OF OUTPUT CHANNEL IS 2047
C
DO 1 NX=1,2048
T(NX)=0.
1 SNX) = 0.
DO 3 NM=1,M
ORD=B*X+C-B*0.5
Y=(ORD-E+0.5*D)/D
IF(Y),5,9
J=Y
K=J+1
WIDTH=B/D
HT=(D/B)*A(NM)
10 TA = HT*(K-Y)10,10,13
IF(J),19,19,16
19 NI=J+1
GO TO 12
12 TI(J)=TA
11 NI=J
10 IF(K-2048)12,12,6
11 TI(K)=A(NM)-TA
12 N2=K
GO TO 7
13 TA=HT*(K-Y)
14 NI=J
15 TI(J)=TA
16 IF(K-2048)14,14,6
17 NI=J
18 TI(K)=HT
19 IF(K-2048)15,15,6
20 NI=J
21 TI(J)=TA
22 IF(K-2048)18,18,6
23 N2=K+1
GO TO 7
24 N2=2048
7 DO 4 L=N1,N2
S(L)=5*(L)+T(L)
4 (L)=0.
3 CONTINUE
DO 5 L=1,M
5 A(L)=S(L)
RETURN
END
SUBROUTINE PARAB(X,Y,Z,I,J,K,U,V,W)

Determine peak position by parabolic fit to three points

C
XI=I
XJ=J
XK=K
U=((X-Y)/(XI-XJ)-(X-Z)/(XI-XK))/(XJ-XK)
V=(X-Z)/(XI-XK)-U*(XI*XK)
W=X-U*(XI**2)-V*XI
RETURN
END
SUBROUTINE MULPLT (ND, DATA, MUPPER)

C

DIMENSION DATA(2048,10), 10(116)

FORMAT(*9I16A1)

FORMAT(*9I16A1)

DO 2 I=1, ND

IF (OMAX-DATA(I,J)) L,J,2,2

WRITE(3,31)

WRITE(3,31)

DO 3 I=1, 116

IO(I)=1262501952

DO 4 I=1, 12

J=(I-1)*10+1

IO(J)=918536128

WRITE(3,32)(IO(J), J=1, 116)

DO 7 I=1, MUPPER

DO 5 K=1, 116

IO(K)=1077952576

DO 6 J=1, ND

P=DATA(I,J)/SCALE+1.

MP=P+0.5

IO(MP)=1547714624

LBL=1-1

WRITE(3,33) (IO(K),K=1,116)

CONTINUE

RETURN

END
C PROGRAM FITTER
C LEAST SQUARES ANALYSIS OF GAMMA RAY COMPLEX SPECTRA
HUANG

DOUBLE PRECISION EGAM(25),Z
DIMENSION Y(10),NX(10),XP(2048),R(2048),TITLE(20),AI(1340,20),
1 P(25),F(2048,2),MATRIX(25,25),A(25,1),EN(10),S(2048),T(2048),
2 ZA(2048),ZB(2048),B(2048),D(2048)
KAI=1340
K2=20

C READ EXPERIMENTAL SPECTRUM
READ(1,360)TITLE

C READ PARAMETERS APPROPRIATE TO EXPERIMENTAL SPECTRUM
READ(1,362)KW,KST,NOLINE,OPTION,GLOPE,GINT,CHOICE,FMULT,NRAN,KEND

FORMAT(315,5F10.5,215)

C SP EcIFY GAIN AND ZERO OF THE BACKGROUND SPECTRUM
Q1=0.05554
Q2=0.1602

Q4=GLOPE/0B1

IF(QB3-1.0)783,784,784

783 CALL PULL(A,QB1,QB2,GLOPE,GINT,KW,S,T)
784 GO TO 785
785 CALL PULL(R,QB1,QB2,GLOPE,GINT,KW,S,T)
786 IF(NRAN)160,161,160
787 CONTINUE
788 WRITE(3,361)TITLE
789 WRITE(3,366)GLOPE,GINT
790 WRITE(3,712)
791 FORMAT(160HINPUT SPECTRUM,32HRANDOMS OR BACKGROUND SUBTRACTED)
792 WRITE(3,711)(XP(J),J=1,KW)
793 REWIND 4
794 READ(4)NUM,K,SLOPE,RINT,NX(NUM),(Y(L),L=1,NUM)
795 IF(NRAN)161,161,160
796 IF(MA-NOLINE)160,162,160
797 EGAM(NOLINE)=-99.999
798 GO TO 437

C READ ENERGY TO BE FITTED AND IDENTIFY ADJACENT LINE SHAPES
ADD BYPASS IF GAIN ITERATION NOT REQUIRED
READ(1,12)EGAM(MA),J,M,ELIM1,ELIM2,BYPASS,DECIDE,IDENT,IEPEAK
12 FORMAT(F10.3,215,4F10.3,15,F10.2)
E=EGAM(MA)
IF(E-0.001)163,163,165
A FORTRAN IV G LEVEL 0, MOD O

MAIN

DATE = 68049 22/53/21 PAGE 0002

0049 163 DO 164 I=1,4A1
0050 164 ALLI,M=0.00005
0051 0052 PP=E-RINT)/SLOPE
0053 K=PP+0.5
0054 X=NX(NUM)-K+1
0055 C LINE SHAPE OF INTERMEDIATE GAMMA RAY GENERATED BY LINEAR
0056 C INTERPOLATION AND TRANSLATED TO THE APPROPRIATE POSITION
0057 REWIND 6
0058 0059 DO 109 MB=1,J
0060 109 READ(6)F(L,J),L=1,K
0061 0062 DO 111 J=1,2048
0063 111 R(I)=0.0
0064 DO 113 N=KX+K
0065 113 R(I)=F(N)+*F(N+2)-F(N,1))**(E-Y(J))/(Y(M)-Y(J))
0066 110 CONTINUE
0067 J=K-NX(NUM)+K+1
0068 DO 114 MB=1A,K
0069 931 R(MB)=0.0
0070 C COMPUTED LINE SHAPE GAIN ADJUSTED TO CORRECT POSITION
0071 ZINT=KI+PP)*SLOPE+RINT
0072 CALL PUSH(R,SLOPE,RINT,SLOPE,ZINT,K,S,T)
0073 IF(OPTION)=239,245,239
0074 239 RAT=SLOPE/RINT
0075 241 CALL PULL(R,SLOPE,RINT,SLOPE,GINT,K,S,T)
0076 243 CONTINUE
0077 IF(OPTION)=664,245,664
0078 GINT=SLOPE
0079 IF(OPTION)=664,245,664
0080 DO 245 K=1,664
0081 X=IF(OPTION)=664,245,664
0082 WRITE(3,692)XD
0083 692 FORMAT(100X,F10.3)
0084 IF(VXPAS3)=664,662,666
0085 662 NO=XD+1
0086 NDD=NO-7
0087 NOU=NDD+7
0088 677 DO 650 LC=NOU,NDD
0089 650 IF(FLC+1)=FLC+1
0090 IF(FLC+1)=FLC+1
0091 IF(FLC+1)=FLC+1
0092 CONTINUE
0093 WRITE(3,653)
0094 653 FORMAT(100X,'PHOTO PEAK NOT FOUND')
0095 650 CONTINUE
0096 NDD=NOU-5
0097 NOU=NDD+5
0098 677 CONTINUE
0099 652 NPP=LC+1
0100 NP=NPP+1
0101 WRITE(3,691)NP
0102 CALL PARAB(R(NP-1),R(NP),R(NP+1),NP-1,NP,NP+1,U,V,W)
0103 PEAK=-V/(2.*U)
FORTRAN IV LEVEL 0, MOD 0

MAIN

DATE = 68049 22/53/21 PAGE 0003

0104 WRITE(3,692)PEAK
0105 IF(ARS(XD-PEAK)-0.1)666,595,597
0106 957 ZINT=1-PEAK-XD)*GLOPE+GINT
0107 CALL PUSH(R,GLOPE,GINT,GLOPE,ZINT,KW,S,T)
0108 GO TO 677
0109 666 CONTINUE
0110 IF(DECIDE)807,801,807
0111 807 IF(IDENT-1)808,802,808
0112 808 DO 803 LM=1,KW
0113 803 ZL(LM)=R(LM)
0114 ZL=Z1+E
0115 EGAMMA(A)=Z1
0116 GO TO 804
0117 802 DO 805 LM=1,KW
0118 805 ZA(LM)=R(LM)
0119 Z1=E+10.0F+04
0120 GO TO 160
0121 804 CALL SUMPEZ(ZA,ZB,R,KW,GLOPE,GINT,S,T)
0122 801 CONTINUE
0123 PRINT=
0124 IF(PRINT)479,476,479
0125 479 WRITE(3,413)EGAMMA(A)
0126 413 FORMAT(10X,'GAIN ADJUSTED COMPUTED SHAPE, 1, 4.3, 1, MEV')
0127 WRITE(3,133)(R(I),I=1,KW)
0128 13 FORMAT(10,10F10.1)
0129 476 CONTINUE
0130 IF(ELIM1+ELIM2)493,581,493
0131 581 SUM=0.0
0132 DO 494 I=1,KW
0133 494 SUM=SUM+R(I)
0134 DO 495 I=1,KW
0135 495 R(I)=R(I)/SUM
0136 DO 496 I=KST,KM
0137 496 I=I-KST+1
0138 496 A(I,MA)=R(I)
0139 GO TO 437
0140 437 CONTINUE
C LINE SHAPE NORMALIZED BY SUMMING INTERVAL NOMINATED
0141 PS=(ELIM1-GINT)/GLOPE
0142 QS=(ELIM2-GINT)/GLOPE
0143 244 KS=PS+1.5
0144 1.5
0145 ZL=0.0
0146 DO 277 LA=KS,KQ
0147 277 ZL=ZL+R(LA)
0148 ZX=0.0
0149 DO 278 LB=KS,KQ
0150 278 ZX=ZX+XP(LB)
0151 WRITE(3,497)ZX,ZX
0152 497 FORMAT(100X,2F10.3)
0153 FACTOR=ZX/ZL
0154 WRITE(3,113)FACTOR
0155 DO 120 I=1,KW
0156 120 R(I)=FACTOR*R(I)
0157 CONTINUE
0158 WRITE(3,112)
0159 WRITE(3,113)(R(I),I=1,KW)
C RESIDUAL SPECTRUM GENERATED
FORTRAN IV G LEVEL 0, MOD 0 MAIN DATE = 68049 22/53/21 PAGE 0004

0160 DO 150 I=1,K
0161 150 XP(I)=XP(I)-R(I)
0162 DO 152 I=KST+1,K
0163 152 A(I)=-R(I)
0164 WRITE(3,151)EAM
0165 15 FORMAT(I8/8RESIDUAL SPECTRUM,5X,2HE=F14.3,10HSUBTRACTED)
0166 WRITE(3,16)(XP(I),I=1,K)
0167 16 FORMAT(12/F0.1)
0168 C RETURNS TO PEEL OFF THE NEXT GAMMA RAY
0169 437 CONTINUE
0170 IF(RAND)=187,179,180
0171 180 READ(1,19)I=1,KW
0172 187 DO 188 I=1,2
0173 184 R(I)=0.0
0174 DO 186 I=1,KW
0175 186 R(I)=D(I)
0176 C SPECIFY GAIN AND ZERO OF THE RANDOM BACKGROUND
0177 Q2=0.23926
0178 Q1=0.03860
0179 Q3=GLOPE/Q1
0180 IF(Q3<1.0)181,182,182
0181 CALL PUL(R,UL,Q2,GLOPE,GINT,KW,S,T)
0182 GO TO 183
0183 CALL PULH(R,C1,Q2,GLOPE,GINT,KW,S,T)
0184 SUM=0.0
0185 DO 148 I=1,KW
0186 SUM=SUM+R(I)
0187 R(I)=R(I)/SUM
0188 DO 151 I=KST+1
0189 151 A(I)=D(I)
0190 CONTINUE
0191 IF(ELM1)=ELM2,181,498,821
0192 821 DO 946 LX=1,K
0193 946 R(LX)=0
0194 DO 948 JX=1,JL
0195 948 R(LX)=R(LX)*ALX(JC)
0196 CONTINUE
0197 499 DO 948 JL=1,KL
0198 949 CONTINUE
0199 WRITE(3,949)
0200 949 WRITE(3,131)(R(I),I=1,KW)
0201 C RECONSTITUTE THE EXPERIMENTAL SPECTRUM
0202 DO 508 LX=1,K
0203 508 XP(LX)=XP(LX)+R(LX)
0204 WRITE(3,520)
0205 520 WRITE(3,133)(XP(I),I=1,KW)
0206 CONTINUE
0207 CALL LESTOR(A,XP,KST,KM,NOLINE,FATRIX,ATRIX,FINISH,R,KA1,KA2)
0208 WRITE(3,532)
0209 532 WRITE(3,133)(R(I),I=1,KW)
0210 520 DO 948 JL=1,JL
0211 948 CONTINUE
0212 948 WRITE(3,133)(R(I),LJ=1,JL)
0213 948 DO 948 LF=1,LF
0214 948 OF=KM+1-KST+1-NOLINE
0215 WS=SUMA/DF
0216 DO 521 LX=1,NOLINE
0217 FATP(IX,LX)=FATR IX(LX,LX)*WS
0218 CALL PLTRFL(R,XP,KST,KM)
0219 WRITE(3,400)
0220 DO 402 I=41,KW,10
0221 LX=1-I
0222 DO 401 LO=1,10
0223 JC=LC+LO-1
0224 401 EN(LC)=JC*GLOPE+GINT
0225 402 WRITE(3,403)LC,(EN(LD)),LO=1,10
0226 DO 526 LX=1,I
0227 526 R(LX)=ATR IX(LX,1)*A(LX,LO)
0228 WRITE(3,529)EGAM(LL)
0229 WRITE(3,13)(R(LX),LX=1,I)
0230 CONTINUE
0231 525 DO 530 LX=1,NOLINE
0232 ATR IX(LX,1)=ATR IX(LX,1)/CHARGE
0233 530 WRITE(3,366)TITLE
0234 366 WRITE(3,361)TITLE
0235 WRITE(3,361)TITLE
0236 WRITE(3,366)GLOPE,GINT
0237 WRITE(3,519)
0238 DO 523 LX=1,NOLINE
0239 523 P(LX)=SORT(FATR IX(LX,LX))/CHARGE
0240 DO 511 LX=1,NOLINE
0241 511 WRITE(3,518)EGAM(LL),ATR IX(LX,1),P(LX)
0242 518 FORMAT('**F1.4,3X,E12.5,2X,E12.5')
0243 519 RATIO=FINISH/DF
0244 968 FORMAT('O,CHI-SQUARE=',E12.5,' DEGREE OF FREEDOM=',F6.0,
0245 1'RATIO=',E12.5)
0246 969 FORMAT(204)
0247 204 FORMAT(3X,10F6.0)
0248 361 FORMAT('**F1.4,204)
0249 3666 FORMAT('O,'SL OPE=','F10.5,' MEV/CH, INTERCEPT=','F10.5,' MEV')
0250 711 FORMAT('**F10.1')
0251 691 FORMAT('100X,15')
0252 113 FORMAT('2HNORMALIZATION FACTOR=F10.5')
0253 112 FORMAT(20HCOMPUTED LINE SHAPE)
0254 529 FORMAT('O,'FITTED LINE SHAPE ','F14.3,' MEV')
0255 519 FORMAT('O,' GAMMA ENERGY INTENSITY STD DEVIATION')
0256 949 FORMAT(18HCOMPUTED SPECTRUM)
0257 528 FORMAT(15HINPUT SPECTRUM)
0258 522 FORMAT(16HOFITTED SPECTRUM)
0259 400 FORMAT('O,' ENERGY OF EACH CHANNEL IN MEV')
0260 403 FORMAT('**I5,10F10.3')
0261 GO TO 77
0262 END
SUBROUTINE PUSH(A, B, C, D, E, M, S, T)

C COMpress ORIginal SPEctrum

DIMENSION A(2048), S(2048), T(2048)

DO 1 NX=1, 2048
 T(NX)=0.
1 CONTINUE

DO 3 NM=1, M
 X=NM
 Y=ORD=E*X+C-R*0.5
 K=J+1
 WIDTH=R/D
 HT=(D/B)*A(NM)
 IF(WIDTH=FLOAT(K)+Y)10, 10, 12
10 IF(J3, 3, 16
 IF(J-2048)11, 11, 3
 T(J)=A(NM)

GO TO 6

TA=HT*(K-Y)

IF(J15, 15, 17

GO TO 14

IF(J-2048)13, 13, 3

T(J)=TA

GO TO 6

RETURN

END
SUBROUTINE PULL(A,B,C,D,E,M,S,T)
EXPAND ORIGINAL SPECTRUM
DIMENSION A(2048),S(2048),T(2048)
DO 1 NX=1,2048
1 T(NX)=0.
DO 3 NM=1,M
X=NM
ORD=R*X+C-B*0.5
Y=(ORD-E)*0.5*CJ/D
IF(Y<13,9,9)
J=Y
K=J+1
WIDTH=R/D
HT=(D/R)*A(NM)
IF(WIDTH>FLOAT(K+1)+Y)10,10,13
10 TA=HT*(K-Y)
IF(J<19,19,16
16 IF(J<2048)11,11,3
11 T(J)=TA
16 N1=J
11 IF(K<2048)12,12,3
12 T(K)=A(NM)-TA
12 N2=K
13 T(K)=HT
13 GO TO 7
14 T(J)=TA
17 IF(J<2048)14,14,3
17 N1=J
14 IF(K<2048)15,15,3
15 T(K)=HT
15 GO TO 15
18 T(K+1)=A(NM)-TA-HT
18 N2=K+1
7 DO 4 L=N1,N2
4 S(L)=S(L)+T(L)
7 T(L)=0.
4 CONTINUE
DO 5 L=1,2048
5 A(L)=S(L)
END
SUBROUTINE PARAB(X,Y,I,J,K,U,V,W)
 C DETERMINE PEAK POSITION BY PARABOLIC FIT TO THREE POINTS
 XI=I
 XJ=J
 XK=K
 U=(X-XJ)/(XI-XJ)-(X-Z)/(XI-XK)/(XJ-XK)
 V=(X-Z)/(XI-XK)-U*(XI+XK)
 W=X-U*(XI**2)-V*XI
 RETURN
 END
SUBROUTINE SUMSPE(A,B,E,K,D,H,C)
DIMENSION A(2048),B(2048),C(2048)
KY=2*K
CALL PUSH(A,D,E,D,O,,K,H,C)
CALL PUSH(B,D,E,D,O,,K,H,C)
DO 5 M=1,2048
H(M)=0.0
C(M)=0.
DO 1 M=1,K
H=H(A(M)/1000.
DO 2 J=1,K
G(J)=H+H(J)
DO 3 J=1,K
LX=J+M
IF(LX-2048)7,7,3
H(LX)=G(J)
CONTINUE
DO 4 J=1,KY
IF(J-2048)6,6,4
H(J)=0.
CONTINUE
DO 8 J=1,2048
G(J)=C(J)
M=2048
CALL PUSH(G,D,O,,D,E,M,H,C)
RETURN
END
SUBROUTINE LSTSQR(A, XP, KST, KW, NOLINE, MATRX, ATRIX, FINISH, R, KA,
L, KA2)
 C LEAST SQUARES ANALYSIS
 C DIMENSION A(KA, KA), XP(2048), TEMP(25), WEIGHT(2048), R(2048),
 C ATRIX(25, 25), ATRIX(25, 1)
 C INITIALIZE THE RESPONSE MATRIX
 C COMPUTE THE NORMAL MATRIX
 DO 512 L0=1, NOLINE
 SUMA=0.
 DO 516 L0=1, NOLINE
 SUMA=SUMA+A(L0, L0)*A(L0, L0)
 512 CALL MATINV(ATRIX, NOLINE, ATRIX, 1, DETERM)
 516 SUMA=SUMA+XMATR(L0, 1)*XMATR(L0, 1)*XMATR(L0, 1)
 517 CALL MATINV(XMATR, NOLINE, XMATR, 1, DETERM)
 720 L0=L0+1
 721 SUMA=SUMA+XMATR(L0, 1)*XMATR(L0, 1)*XMATR(L0, 1)
 722 CALL MATINV(XMATR, NOLINE, XMATR, 1, DETERM)
 712 R(L0)=SUMA
 714 weight(L0)=1./R(L0)
 716 IF(R(L0)<0.01, GO TO 713)
 724 SUMA=SUMA*WEIGHT(L0)*(XP(L0)-R(L0)**2
 713 CONTINUE
 719 SUMA=0.
 731 SUMA=SUMA*WEIGHT(LT)*(XP(LT)-R(LT))**2
 713 CONTINUE
 719 SUMA=SUMA**2
 724 SUMA=SUMA
 731 END
SUBROUTINE PLTFIT(FIT,OD,MLOWER,MUPPER)

DIMENSION OD(2048),FIT(2048),I0(116)

FORMAT(*0,'SCALE FACTOR'=F7.2,'COUNTS')

FORMAT(*0,'X',*0,'SCALE FACTOR'=F7.2,'COUNTS')

FORMAT(*0,'X',*0,'SCALE FACTOR'=F7.2,'COUNTS')

DO 27 I=MLOWER,MUPPER

I0(I0(111))=28,29

CONTINUE

DO 29 I=MLOWER,MUPPER

IF(BMAX=OD(I1))3,4,4

CONTINUE

WRITE(3,91)I,SCALE

DO 30 I=1,116

DO 31 I=1,112

J=(I-1)/10+1

DO 32 I=1,116

WRITE(3,32)I0(I),J=1,116

DO 23 I=MLOWER,MUPPER

P=OD(I1)/SCALE*1.

IF(P=MP-0.5)8,7,7

MP=MP+1

IF(I-11/10-1(I=11))24,25,25

24 MQ=0

GO TO 10

P=SQRT(I0(I))/SCALE

MQ=P

IF(MQ=0.5)10,9

9 MQ=MQ+1

10 MR=MP+MQ

MQ=MQ+MQ

DO 11 J=1,MR

I0(J)=1077952576

I0(MR)=918536128

IF(MR=13,13,12)

12 I0(MR2)=918536128

13 I0(MP)=700423230

MQ=I-1

WRITE(3,33)MQ,10

GO TO 10