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ABSTRACT 

In this thesis we investigate certain linear optimisation 

problems, 

. . . minimise f(x) subject to 

where the Kuhn-Tucker conditions 

(i) g. (x) ~ 
i -

0 i = 1, ... , n 

(ii) for some u ~ 0 'vf(x) 

(iii) T 
0 u g (x) = - - -

g. (x) ~ 0 , 
i -

= Lu.'vg. (x) 
l i ~ 

comprise a set of simultaneous linear equations. 

i = l, ... ,n 

Chapter 1 introduces the problems, the restricted least 

squares (RLS), M-estimator, and least absolute deviations (LAD) 

problems, and places them in their context. 

(iii) 

In Chapter 2, the RLS problem is examined, and pruning 

rules developed which transfonn a rather inefficient branch and bound 

algorithm into an essentially iterative one. The implementation of 

the resulting algorithm is considered in Chapter 3 and, by working 

with dual variables and using orthogonal transformations, the algorithm -

in its final form is at least competitive with existing algorithms for 

this problem. An error analysis is also given, showing that the use 

of dual variables has led to superior numerical properties. 

Chapter 4 considers the structure of the M-estimator 

function. Several speculations are raised and these are answered 

either negatively by means of a counter example, or positively by 



proving a theorem. The broad areas covered by these speculations 

include the question of non-uniqueness, the connection between the 

M-estimator and the LAD estimator, what might be called the "proper 

behaviour" of the function and the function value itself. 

Chapter 5 deals with algorithms for calculating the 

M-estimator. Existing algorithms are surveyed, and two new ones 

developed. One of them, a continuation algorithm, is examined in 

detail and numerical results presented. Finiteness is proved for 

them both. 

Finally, in Chapter 6, the LAD problem is considered. 

(iv) 

The existing algorithms are reviewed and a new one presented which, 

although proven finite, did not perform competitively on a particular 

class of example . The thesis concludes with a discussion of why the 

algorithm failed, how it differs from algorithms which succeeded for 

that type of example, and how the algorithm may be improved. 
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(1. 1) 

CHAPTER 1 

THE PROBLEMS INTRODUCED 

For the general mathematical programming problem 

. . . minimise f(x) subject to g. (x) ~ 0 
i - ' 

i = l, ... ,n, 

* the well-known Kuhn-Tucker conditions for a stationary point at x 

are 

* (1. 2) g. (x ) ~ 0 
i -

i = 1, ... ,n 

* * (1.3) for some u ~ 0 , 'vf(x) = I:u.'vg. (x ) 
i i -

(1. 4) 
T * 

u g (x ) = 0 . 

If (1.2) to (1.4), which characterise a local optimum, 

comprise a set of linear equations, the problem is a linear 

optimisation problem (LOP). LOPs have interest and importance in 

their own right, in forms as diverse as standard linear programming, 

quadratic programming, and matching problems. Provided (1.2) to 

(1.4) provide a bounded set, there is in principle a finite algorithm 

to find a fe8siblc pair (x,u) satisfying them, although the number 

of points visited may be very large. However, finiteness and, in 

gencral,tr~ctihjlity are amongst the virtues of LOPs and they are 

often used as steps within other algorithms to solve more difficult 

problems. Thus Jjne:-irly constr~inecl non-Jine~r optimisation problems 

can be solved by feasible conjugate direction methods which solve an 

LOP at each step (cg, Best, 1975) and even when the constraints are 

1 . 



non-linear, cutting plane methods still solve an LOP at each step 

(eg, Luenberger, 1973). 

It is worth noting that although general methods may exist 

for a class of problems, it is often the case that a particular 

2 . 

member of the class is so structured that a close examination of the 

problem yields a much simpler method of solution. Well-known examples 

of this are geometric programming, (Duffin, Peterson and Zener, 1967) '· 

where a particularly vile-looking non-linear optimisation problem can 

be transformed into an LOP, and the transportation problem, (eg, Hadley, 

1962) where an LOP can be solved simply without recourse to more 

general techniques, such as the simplex method. 

The problems studied 1n this thesis, the restricted least 

squares (RLS), M-estimator, and least absolute deviation (LAD) 

problems all display this feature, where a close examination of the 

problem leads to a method of solution which is able to take advantage 

of the structure of the problem so that an algorithm can be tailored 

to fit it expressly. This is clearly illustrated by the RLS problem, 

(Chapter 2) where, starting from a general branch and bound search 

algorithm, analysis of the problem leads to a vastly reduced search­

tree, and then further analysis leads to a finite iterative algorithm 

far superior to the original search algorithm. Further analysis still 

(Chapter 3) then in<licatcs an efficient method of implementation of 

the algorithm which test results have shown to be more than 

competitive with standard linear programming techniques, and which 

has the added ~dvontagc of superior numerical properties. 

The RLS problem is important both in its own right, and 

because it forms a central step in many algorithms for more general 

4111 



3 . 

LOPs, and as such has received a great deal of attention~ Typical 

of the linear-programming based algorithms written specifically for 

the RLS problem is that of Lawson and Hanson (1974). The overall 

scheme of their algorithm is to start from an initial primal feasible 

solution (x= 0) , and at each step maintain both primal feasibility 

and complimentary slackness, terminating when dual feasibility is also 

achieved. The other approach which has been tried on this problem is 

to place it in a branch and bound framework. Armstrong and Frome's 

algorithm (1976) using this technique is not competitive for large 

problems, and does not appear promising, yet successive refinements 

of it resulted in a competitive stable algorithm, similar in some 

ways to the linear-programming based algorithms, but differing from 

them in that only complimentary slackness is preserved at each 

iteration, the direction of the algorithm being towards finding a 

dual feasible point and then testing it for primal feasibility. 

The M-estimator is one of a number of statistical measures 

which have been suggested in an effort to minimise the effect of and 

identify outlying observations . Although interest in rejection 

criteria stems back at least one liundred years (eg ). Peirce, 1852), the 

current surge of interest in the so-called robust estimators was 

catalysed by Tukey in 1960 when he showed that the widely used least 

squares estimator was 1n some ways inferior to the least absolute 

* deviation estimator. Strictly speaking, if x . . . minimises 

* Ep(/\x.-b.) for some function p , then x 
-i i 

1s a maximum-likelihoo<l 

or M-estimator for the linear model b = Ax - E under some appropriate 

assumption of distribution of E • The most commonly used function p, 

and the one under study in this thesis is Huber's (1972) function 



(1. 5) p(t) 
2 

= \t 

= cltl 2 
\c 

$ C 

> C • 

4. 

One of the thrusts of this thesis has been to examine the 

problems carefully in an effort to understand their underlying 

structure, and probably the major contribution has been the examination 

of the M-estimator when detailed properties of it are given for the 

first time. In particular, the relationship between the M-estimator 

and the LAD estimator is explored, and the question of uniqueness 

thoroughly examined. Although several of the theorems developed do 

not have a direct bearing on algorithm development, two algorithms 

arise fairly naturally from the study and an understanding of the 

structure has facilitated proving finiteness for them. 

Another area which has experienced a resurgence of interest 

due to the interest in robust estimation has been least absolute 

deviation regression. Used in line-fitting models, it predates 

the least squares method, being used by Boscovitch in 1757, but it 

was not until 1973 that an efficient algorithm was written by Barrodale 

and Roberts. Since then several efficient algorithms based on either 

the simplex method or a gradient method have been developed. A feature 

of all these algorithms is that they have a full basis at each step, 

and have been shown by Osborne, 1980, to be in a sense identical. The 

algorithm presented in this thesis does not necessarily work with 

a full basis. It is not yet clear how the increased freedom in choice 

of descent direction should be used, and in its current form the 

algorithm is not always competitive, but even the failure of the 

algorithm has helped in understanding the structure of the problem. 



5. 

A final point is that although the nature of this approach, 

of studying the structure of the problem, of necessity leads to an 

algorithm specifically tailored to a particular problem, the approach 

of an algorithm is not necessarily confined to its own problem. Thus 

the first algorithm for the M-estimator is the progenitor of that for 

the LAD estimator, and the approach developed there can be fairly 

directly applied to solving other LOP problems, and the RLS algorithm 

bears a close relationship to the second M-estimator algorithm. 



2.1 

2.1.1 

CHAPTER 2 

AN ALGORITHM FOR THE RESTRICTED LEAST SQUARES PROBLEM 

INTRODUCTION 

The Constrained Least Squares Problem 

With its wide applicability, the constrained least squares 

problem (CLSP) 

(2.1) 
. . . m1n1m1se 

subject to Ex= f 

Gx ~ h 

has received a great deal of attention. In its equivalent form, 

(2.2) m1n1m1se 

subject to 

T T T x Cx + c x + d d 

Ex= f 

Gx ~ b 

6. 

it 1s a convex quadratic programming problem, and early algorithms to 

solve the problem used quadratic programming techniques based on the 

simplex algorithm (see, eg, Cottle 1968, Cottle and Danzig 1968, 

Lemke 1968, Wolfe 1959). However, these methods, based on pivoting 

and inverse basis techniques, have been found to be numerically 

unstable (see, eg, Wilkinson 1961, 1965, Golub and Wilkinson 1966). 

Moreover, as shown by Golub 1965, and Golub and Saunders 1969, the 

problem in its second form (2.2) is always more ill-conditioned than 

in its first form (1.2). 

For these reasons, a number of algorithms have been developed 

using orthogonalisation procedures. Stoer 1971, uses an L-R 



7. 

decomposition, as do Bartels, Golub and Saunders 1970, whilst Lawson 

and Hanson 1974, (cited by Bartels, 1975, as the definitive handbook 

on Least Squares problems) use a Q-R decomposition. The numerical 

properties of the two decompositions are similar. It should be 

emphasised that the chief aim of these methods is to improve the 

numerical stability of the algorithm, and that any improved efficiency 

(as reported, eg, by Osborne , 1976) is a pleasing side-benefit. 

It is instructive to examine the algorithms in an effort to 

obtain an overview of what is happening within them, and a useful way 

of doing so is via the Kuhn Tucker (K.T.) conditions, which all 

algorithms seek to fulfil at the optimum. For the general mathematical 

programming problem (MPP) 

( 2. 3) minimise f(x) subject to g. (x) ~ 0 
i "" 

i = 1, ... ,m 

the K.T. necessary conditions for x * . . . to minimise * f(x) are 

* (2.4) g. (x ) ~ 0 i = 1 , ... , m ' i "" 

* * * ~ u ~ 0 such that Vf(x) = Iu.Vg.(x ) 
i l "" 

(2.5) 

*T * (2.6) u g(x ) = 0 

These conditions which, in the case of a convex objective 

function with consistent linear constraints are sufficient for global 

minimisation, can be described respectively as primal feasibility, dual 

feasibility and complimentary slackness. Now the simplex method, at 

c0ch itcr0tion, proclt1ccs n po:int \vhich sl1ti.sfics both primal feasibility 

(or dual feasibility in the case of the dual simplex method) and 

complimentary slackness, and proceeds until it also achieves dual 

feasibility. This feature is present in those quadratic programming 

algorithms based on the simplex method. It is also present, as far as 



8. 

the author can determine, in all of the algorithms based on 

orthogonalisation techniques . Complimentary slackness is ensured by 

optimising a subproblem at each iteration, and either primal or dual 

feasibility is achieved by careful choice of the subproblem solved, 

often with a certain amount of programming difficulty, if not 

computational effort. It is in departing from this requirement that 

the algorithm below is interestingly, if not significantly, different. 

2.1.2 The Restricted Least Squares Problem 

The restricted least squares problem (RLSP), also referred 

to as the non-negative least squares problem 

(2.7) minimise 

subject to X ~ 0 

is a rather simple case of the CLSP (2.1). It does have applicability 

in its own right, when the model being examined will not permit non­

negative parameters, but its main importance lies in its being used 

as a subproblem at an iteration in the solution of more general 

problems. Thus, for example, Bartels 1975, and Haskell and Hanson, 1978, 

solve an RLSP at each iteration of their CLSP algorithms. 

RLS problems can be solved using any of the CLSP algorithms, 

but their importance and the simple nature of the constraints have led 

to a number of algorithms specifically written for this problem. There 

is reference to an algorithm due to Bard by Bartels, Golub and Saunders 

1970, but details are sketchy and there is no guarantee of finite 

termination. Lawson and Hanson 1974, give an algorithm in which 

complimentary slackness nnd primal feasibility arc maintaine<l, with 

each iteration differing from the previous one by one constraint 

changing status. Bartels 1975, uses a similar overall scheme, except 

........ 
I 

I 

I 



9. 

that he pennits several constraints to change status at each iteration. 

(His method is designed specifically for large sparse matrices.) 

An entirely different approach is advocated by Armstrong and 

Frome 1976, based on an observation by Waterman 1974. They place the 

problem in a branch and bound framework, and give an improved pruning 

rule. Due to the tendency of branch and bound solutions to increase 

exponentially with problem size, this approach does not appear promising, 

and indeed experimental results of the Armstrong and Frome algorithm 

bear out this fear (Table 2.4). However, starting from this point, 

successive refinements eventually lead to an algorithm which 1s 

competitive with the algorithms cited above. The final implementation 

of the algorithm (Olapter 3) is not dissimilar to the Bard-type 

algorithms of Lawson and Hanson, and Bartels, but does have the basic 

difference 1n that at any iteration of the algorithm, neither primal 

nor dual feasibility is guaranteed. This is illustrated in the sample 

problem given later in this chapter. 

The remainder of this chapter follows the development of the 

algorithm, starting from the branch and bound approach. The rest" of 

Section 1 defines notation and introduces the branch and bound method. 

In Section 2, the Armstrong and Frome algorithm is presented and an 

improved pruning rule is given. Then the K.T. conditions for 

optimality are established. A rule is given to find a better feasibl e 

solution should a feasible solution be found to be sub-optimal. The 

complexity of the algorithm is considered in Section 3, and under 

certain circumstances (always satisfied experimentally), linearity of 

subproblems solved against problem dimension is proved. The 

experimental results are presented in Section 4. In Section 5, the 

extension of the algorithm to similar probl ems is discussed, including 



the modifications necessary if the K.T. conditions are not readily 

available. 

2.1.3 Notation 

The following notation will be used in this chapter. 

m, n represent the dimensions of the data matrix A (m variables, 

n observations) 

J l · d J 1 C N = {l 2 } represents an in ex set , , ... ,n 

p1 represents the problem 

l 
X 

l y -

L(x) = II ~-~ II . . . 
minimise 

subject to X. = 0 J. E J 1 

J ' 

represents the optimal solution to pl 

(Note that the index set Jl defines 

represents a feasible solution 

y1 ~ 0 and y: = 0 , j E J 1 

J 

to both 

pl and 

p and 

hence xi) 

pl 
' 

that 

(Note that 

for P1
) 

l 
y will not necessarily be optimal for P -

lS 

or 

When the term "feasible" is used, it will refer to primal 

feasibility for P , that is, x is feasible if x ~ 0 

2.1.4 Branch and Bound 

The branch and bound method builds up a search tree (each 

node being a problem, P1
) by increasing the number of variables set 

to zero as a branch 1s descended. Thus, if pJ 1s a descendant of 

P1 
, JJ ::) J

1 
. The root of the tree is the problem P1 where 

J 1 
= 0 . An example of a search tree is given in Fig. 2.1. 

10. 

The main considerations of a branch and bound algorithm are: 

(i) Choosing which node to branch on next, 



(ii) choosing which descendant of this node to consider 

(solve) next, and 

(iii) making use of any special properties of the problem 

to detect early fathoming of a branch, that is, 

recognizing when no descendants of a node will yield 

a better solution. 

All of the above considerations are dealt with 1n the new algorithm. 

2.2 

2. 2. 1 

THE NEW ALGORI11-IM 

The Armstrong and Frome Algorithm 

Armstrong and Frame's node choice 1s to branch on the node 

11. 

most recently solved until a feasible l 
X is found, and thereafter to 

branch on the node, pJ , with the smallest 1 L (x ) . Their choice of 

the next variable to be set to zero is the most negative free 

variable if one exists, otherwise the free variable with the largest 

numerica-1 value. Their pruning rule states that if a node differs 

from its parent node in that a variable which was negative in the 

parent node's optimal solution has been set to zero (for example, 

nodes 2, 8, 18, and 26, 30, 32 in Fig. 2.1), and either the optimal 

solution of the node is feasible (for example, nodes 4, 6, 10) or has 

an L(x
1

) greater than or equal to the best existing feasible 

solution (nodes 6, 7), then no further branches from the present node 

need to be considered. In the example of Fig. 2.1 (data in Table 2.1, 

results 1-11 Table 2. ) , 32 of the possible 64 nodes were solved. 

2.2.2 J 111proveJ Pruning nule 

The first improvement to the above algorithm is the new 

fathoming criterion "at node P1 
, it is only necessary to branch on 



variables x. for which 
J 

Lemma 2.1 

Given l 
y ~ 0 . 

l 
< 0 " . X . . 

J 

Let J 1 =· {j I y~= o} define 
J 

l 
X Then there exists some descendant, 

for which r 
X ~ 0 and 

Proof 

and hence 

If 
l 

X ~ 0 , 
r 1 

X = X · otherwise let 
' 

k be such that 

Let Ji+l 

l 
yk 

Ix~ I 

= Jl 

i+l 
y 

l y. 
{ J = min 

lx~I 
J 

u {k} define 

Then, from the convexity of 

l < 0 } X . . 
J 

pi+l and 

l 
X + 

i+l 
Let X 

l 
y ~ 0 

L and the optimality of l 
X and i+l 

X 

12. 

' 

If 
i+l 

X ~ 0 , 
r i+l 

X = X Otherwise, the process is repeated and, at 

each step, 

W1til eventually x ~ 0 

The improved pruning rule now follows. 

Theorem 2 .1 

At any node P1 
, it is only necessary to branch on variables 

X. for which 
J 

descendant from 

l < 0 X. 
J 

l 
X 

in order to find r x, a best feasible solution 



Proof 

Let J 1 
= {j Ix~< O} 

J 

Let xr be the best feasible descendant of l 
X and assume 

it could not be reached through a branch in which some X. ' 
J 

was set to zero , that is, 

r 
x. > 0 

J 
for all J E J

1 

Then there will exist l 
y ~ 0 , which is a convex linear 

combination of r 
X and l 

X which is feasible for pl . As 

So, by Lemma 2.1, there exists xs , a descendant of l 
X , 

13. 

for which xs ~ 0 , and L(xs) s L(y1
) < L(xr) . Moreover, the method 

used in the proof of Lemma 2.1 only ever set 

Hence a best feasible solution descendant from 

l 
x. < 0 

J 
l 

X 

to zero in Pi+l 

can be found by 

branching on only negative-valued variables at any node. 

In the example given in Fig. 2.1 the tree generated using the 

pruning rule is shown by the thickened lines. The number of subproblems 

solved has been reduced from 32 to 11. However, tests done using this 

rule showed that the number of subproblems solved still rose exponentially 

with problem dimension. The main cause of the exponential rise in the 

work done appears to be the need to check all branches until the fathoming 

criteria are satisfied, to ensure the optimum has been found, although in 

' each case tried the actual optimum was found early in the calculation. 
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feasible (i.e . x ~ 0). The whole tree is generated by the 
Armstrong/Frame algorithm. The solid lines represent the 
tree generated using the improved pruning rule of theorem 2.1. 
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TABLE 2.1 

Data for the Sample Problem 

Al A2 A3 A4 AS A6 b 

1.00 4.70 7.89 7.93 3.47 8. 35 6.94 

1.00 3.10 3.46 5.35 2.97 7.11 5.77 

1. 00 · 8.34 6.68 1.75 8.68 8.90 8.04 

1.00 4.62 2.69 9.20 5. 39 1.60 5.12 

1.00 1.03 6.22 6.25 4.75 3.61 7.82 

1.00 3.26 5.64 9.10 6.53 4.70 13.26 

1.00 2.27 5. 34 5.15 7.27 3 .16 13.47 

1.00 7:27 3.64 6.65 7.77 3.78 12.49 

1.00 5.93 6.65 8.65 9.77 0.92 11.06 

1.00 0.47 0.45 1.63 1.90 8.66 14.40 

Column 1 contains 1.00 because the model is: 
6 6 

b. = xl + l X. A .. not b. = l X. A .. 
l J lJ ' 1 J lJ j=2 j=l 

2.2.3 Optimality Conditions 

Once a feasible solution has been found, the K.T. conditions 

can be used to test its optimality. 

Theorem 2.2 

solves then r 
X 

solves P (Note that A is the full data matrix, not that part of 

it used in solving Of necessity = 0 
' 

whe r e 
"' 

A is obtained from A by deleting those columns corresponding to r 

indices in Jr) . 
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TABLE 2.2 

Solutions Obtained on Sample Program using Armstrong/Frame Algorithm 

Node xl x2 x3 x4 XS x6 L(x) -

1 -7.27 -1.89 -1.34 0.92 2.91 1.70 32.09 

2 0 -1.52 -1.05 0.44 2.23 1.08 36.42 

3 0 0 -0.95 0.49 1.21 0.84 102.00 

4 0 0 0 0.25 0.84 0.62 12 7. 18 

5 0 -1.45 0 0.18 1.78 0.84 66.72 

6 0 0.04 0 0.81 0 0.80 184.66 

7 0 0.05 -0.02 0.82 0 0.81 184.65 

8 10.22 0 -0.58 -0.20 0.59 0.04 86.07 

9 13.31 0 0 -0 .53 0.22 -0.30 93.51 

10 7.52 0 0 0 0.33 . 0.08 103.49 

11 8.10 0 -0.70 0 0.69 0.21 87.04 

12 11.96 0 -0.35 0 0 -0.09 102.86 

13 11.49 0 -0.34 0 0 0 103.45 

14 9.73 0 -0.63 0 0.54 0 89.47 

15 15.84 0 -0.17 -0.51 0 -0.40 94.45 

16 12.34 0 -0.26 -0.20 0 0 100. 99. 

17 10.67 0 -0.55 -0.23 0.56 0 86.11 

18 4.43 -1.25 0 -0.07 1.44 0.50 64.25 

19 3.57 -1. 29 0 0 1.49 0.56 64. 39 

20 11.42 -0.29 0 0 0 -0.08 103.42 

21 11.00 -0.28 0 0 0 0 103.91 

22 8.29 -0.90 0 0 0.90 0 78.00 

23 16.34 -0.24 0 -0.55 0 -0.42 92.22 

24 12.39 -0.26 0 -0.24 0 0 99.92 

25 10.11 -0.93 0 -0.37 1.00 0 68.90 

26 16.37 -0.22 -0.08 -0.52 0 -0.41 92.01 

27 12.38 -0.20 -0.26 0 0 -0.09 100.75 

28 11.90 -0.20 -0.25 0 0 0 101.36 

29 12.78 -0.21 -0.17 -0.20 0 0 98 . 82 

30 10.83 -0.88 -0.47 -0.28 1.14 0 61. 56 

31 9.69 -0.85 -0.57 0 1.10 0 66.50 

32 4.05 -1. 34 -0 . 76 0 1.93 0.73 45 .04 



Proof 

The K.T. conditions for the MPP (2.3) are stated 1n (2.4), 

(2.5) and (2.6). Here, we have 

Let 

Also, as 

but 

hence 

g(x) = X 

Vg(x) = I and , 

0 · then 
' ~ 

xr solves 

>.~ r 
0 for = VL(x ) . = 1 ~ l 

r 
0 for E Jr x. = l 

l ' 

Ar T xr = 0 . 

l (ft. Jr 
' 

So (xr,>.r) 1s a K.T. point for P . Hence xr solves P • 

2.2.4 Selection of the Next Node 

17 , 

If the above test for optimality fails, it can still be used 

to determine the next node to branch on, and which branching variable 

should be chosen at that node. 

Theorem 2.3 

If 

k E Jr and 
' 

r > 0 X - solves r VL(x ) , for some 

Jr+l =' {i j x: = 0, i --I k} , then there is some descendant, 
l 

s r+l s r 
x , of x which is feasible and for which L(x ) . < L(x ) . 



Proof 

Using the well-known convex function property 

we have 

But L(xr+l) . < L (xr) , as 

Pr(Jr+l C Jr) 
' 

or else, 

r' r' solves p 
' 

where J 

Hence 

r+l 
~ > 0 • 

1 rT( r+l r) + I\ X -X 

either Pr+l 
lS less restricted than 

if r 
0 for some ~ Jr then X. = l X , 1 

= Jr U Jr+l I {i} 
' 

and again C Jr . 

Ar r+l 
k~ 

r 

Thus 

Hence there exists r+l 
0 y ~ which is a convex linear combination of 

r+l 
X and r x , and so r+l r 

L(y ) < L(x) , and which is feasible for 
r+l 

P . The proof now follows from Lemma 2.1. 

One point worth noting is the definition of Jr+l above. 

18. 

It could not be defined as {j jj EJr, j-/- k} , as it may be that r 
X. = 0 

l 

for some 

r+l 
y of r 

X and 

and, if 

r+l 
X 

r+l 
x < 0 , then no convex linear combination, 

l 

can have r+l 
y. ~ 0 . 

l 

Figure 2.2 shows that portion of the tree generated using 

Theorems 2.2 and 2 . 3 on the test problem of Fig. 2.1. The nodes 

generated are given in Table 2.3. The first four nodes correspond to 

nodes 1 to 4 of the earlier tree, and nodes 5 and 6 correspond to nodes 

9 and 10 respectively . In terms of the primal/dual feasibility 

discussion of Section 2.1.1, nodes 1 and 2 are dual feasible, node 3 is 

neither dual nor primal feasible, node 4 is primal feasible, node 5 is 

dual feasible and node 6, the optimum, is, of course, both. 



It should be mentioned here that the example was chosen for 

its illustrative properties rather than its typicality. In over 90% 

of the test problems solved, the first (primal) feasible solution 

found was the optimum, and in the majority of the remainder, the 

algorithm jumped directly to the optimum. 

1(123456) 

2(23456) 

6*(156) 

19. 

FIG 2 . 2 TI1e solution tree for the sample problem using the new 

algorithm . The numbers in parentheses represent the variables used in 

the solution, those with a-, being negative. An* indicates that 

the solution is feasible (that 1s, x ~ O). 



TABLE 2.3 

Solutions obtained on the Sample Problem using the New Algorithm 

2.2.5 

Node 

1 

2 

3 

4 

5 

6 

1. 

2. 

3. 

xl/:\1 x2f;\2 X3/A3 X4/A4 X5/A5 x6/;\6 L(x) 

-7.27 -1.89 -1. 34 0.92 2.91 1.70 32.09 

0 0 0 0 0 0 

0 -1.52 -1.05 0.44 2.23 1.08 36.42 

1.19 0 0 0 0 0 

0 0 -0.95 0.49 1.21 0.84 102.00 

-3.12 86.03 0 0 0 0 

0 0 0 0.25 0.84 0.62 127.18 

-5.06 82.76 52.83 0 0 0 

13.31 0 0 -0.53 0.22 -0.30 93.51 

0 46.81 25.73 0 0 0 

7.52 0 0 0 0.33 0.08 103.49 

0 60.72 47.08 37.93 0 0 

The Algorithm Summarised 

Solve the unrestricted problem pl with Jl = 0 . If 

1 > 0 stop; otherwise, set i +- 1 and go to 2. X - ' 
Set i +- i + 1 . Use some heuristic to select k from the 

{ I i-1 } j X. < 0 
J 

and 1 et J 1 
= J 1 U { k } . Solve P1 

. If 

1 
x ~ 0, go to 3; otherwise, go to 2. 

Use Theorem 2 .2 to test l 
X for optimality. If the test 

succeeds stop; otherwise, go to 4. 

4. Use some heuristic to choose k from the set {j I:\:< O} 
J . . 

where :\
1 

= VL(x1
) ; set i +- i + 1 , and let - -

20. 

set 

J
1 = { j Ix~ -1 = o, j 1 k} . 

J 
Solve pl . If 

l 
X ~ 0 , go to 3; 
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otherwise, go to 5. 

S. Set 1 + i + 1 . Choose k according to the method used 

1n the proof of Lemma 2 .1. Let Ji ,= Ji-l U {k} Solve 

If l 
x ~ 0 , go to 3; otherwise, go to 5. 

The heuristics used in steps 2 and 4 were to choose the most 

negative variable in each case (but see Section 2.4 for a fuller 

discussion) . 

2 . 3 COMPLEXITY 

It appears difficult to determine any absolute complexity 

bounds f or the algorithm, but if the assumption is made that, at any 

feasible r 
x which fails the optimality test of 'lneorem 2.2, it does 

so for only one variable, then linear bounds can be derived. 

Theorem 2 . 4 

If xr ~ 0 solves Pr ' 'r = nL (xr) d 'r > 0 /\ v , an /\. _ 
l 

for 

iEJr - {k} , then N , the number of subproblems solved, is at most 

2n . 

Proof 

Let 

for all i EJr - {k} . 

Then, by an argument similar to that used 1n proving Theorem 2.3, 

Now 

Let 

r+1 < 0 X. 
l 

for any s 
~ X 0 

J' = {j Ix~ 
J 

for all i EJr - {k} . 

such that L (xs) < L (xr) assume that s 
xk ' 

> 0 ' j E Jr} . 

0 = . 



Then there will exist a convex linear combination, yr~ 0 , of 

r s 
X , X and 

r+1 
X ' l E J' ' which is feasible for and for 

which L(yr) < L(xr) , which contradicts the optimality of 
r 

X 

llence for each subsequent feasible solution, 
s 

x , foun<l after 

r 
X s > 0 'xk . 

Now this applies at each step, so that after each feasible 

solution is found by the algorithm, one more variable must remain 

strictly positive. Thus, if Cl. 
l 

ith feasible solution found, then 

is the number held to zero in the 

a. ~ n + 1 - 1 , and also there 
l 

will be at most n feasible solutions found. 

Let f. be the number of subproblems solved between the 
l 

22. 

(i - l)s~ (exclusive) and ith _(inclusive) feasible subproblems, . and F 

the total number of feasible solutions found. Evidently, for 1 > 1 , 

f. = a. - a. 
1 

+ 2, and if a 0 is defined as 1, the formula is also 
l l l-

correct for f
1 

. 

Thus 

F 
N = l f. 

i=l l 

F 
= l Cl. - Cl. 1 + 2 

i=l l l-

~ 2F + n + 1 - F - 1 

~ 2n . 

Although there are no a priori grounds for supposing that 

the above assumptions are always true, no case has yet been found in 

which the assumption did not hold. Indeed, the example of Fig. 2.1, 
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with N = n , was the only instance of N/n ~ 1 (see Table 2.4). 

2 . 4 RESULTS 

The algorithm was tested against data generated using a 

random number generator . For each problem size, ten sets of data were 

solved. Due to lack of consistency of execution times, N, the 

number of subproblems solved, was taken as the measure of algorithm 

efficiency . (As an indication ., however, solving problems with 40 

variables and SO rows of data took 5 to 10 seconds on a Univac 1110/42.) 

Armstrong and Frome claimed competitiveness for their algorithm, and as 

it was the progenitor of the new algorithm, it was used for comparison 

purposes. The results , given 1n Table 2.4, display the linearity 

predicted 1n Section 2.3. 

Of the several heuristics tested foi choosing the variable 

to be set to zero at step 2 of the algorithm, choosing the most negative 

and choosing the negative variable which had differed least from 

proved best . The former was chosen for its simplicity. No choice 

ever had to be made at step 4, but choosing the most negative 

suggested. 

2 . 5 EXTENSION TO OTHER PROBLEMS 

A. 
1 

1 
X 

lS 

The features of the restricted least squares problem which 

make it suitable for the algorithm as given are: 

(i) the strict convexity of the objective function; 

(ii) the special nature of the constraints; and 

(iii) the ease with which each subproblem P1 can be solved . 



24. 

Any problem which has the above properties 1s suitable for 

solving by the algorithm. One question which arises 1n other 

applications is the optimality test if the Kuhn-Tucker conditions are 

not readily available, as this test 1s central to the algorithm. If 

this is the case, Theorem 2.2 can be replaced by one which requires 

solving no more than n - 1 additional subproblems to test the 

optimality of a feasible solution to a subproblem. 

Theorem 2.5 

Let r > 0 X - solve pr Define Jr+1 = Jr - {i} for all 

E Jr If r+i 
< 0 for al 1 E Jr, then r 

solves p 1 . n . 1 X . 1 

Proof 

Assume the above conditions hold and further assume that 

there exists x' such that Now, for 

x ! ~ 0 
1 ' 

r+1 
x. 

1 

and 

< 0 

r+1 
X 

so that 

and for some . E Jr 
1 ' x! > 0 . 

1 
But, for 

s 
X 

Hence there 1s a convex linear combination, 

for all i E Jr for which 
' 

is feasible for 

s 
X. = 0 

1 
for all 

s 
X 

' 
of 

. E Jr 
1 ' 

x' 

Now L(x
5

) ~ convex linear combination (L(x'), L(xr+i) 

for all i E Jr) . Since L(x') > L(xr) , 

contribution to x' of s 
X 1s non-zero, it follows that 

Hence 

which contradicts the assumption that 

r x solves P . 

r 
X solves 

The only modifications to the algorithm necessary are to 

replace Theorem 2.2 with Theorem 2.5 in step 3, and to omit step 4. 
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Under the asswnptions of Theorem 2.4 (the complexity theorem), 

it is easy to show that the number of subproblems solved is not more 

than ~ (n + 1) . However, testing the modified algorithm on the same 

test data as used before indicated that in practice this algorithm also 

behaves linearly (see Table 2.4). 

2.6 CONCLUSION 

The algorithm presented here appears to be a considerable 

improvement on existing algorithms of branch and bound type for this 

problem, without sacrificing any of the advantages of these algorithms, 

for example, ease of use in an interactive mode, wide availability of 

least squares regression routines, and simple modification to account 

for variable bounds. 

The reason would appear to be that in this problem, as so 

often in branch and bound, the optimum solution is found quickly and 

then much time is spent in the subsequent searching necessary to 

verify it. Thus the biggest advantage of this approach is in the use 

of optimality conditions to improve bounding. Incorporating this into 

the general framework of branch and bound has resulted 1n a very 

efficient algorithm . 



Dimension 
of A 

n m 

6 10 

10 15 

15 20 

20 30 

30 40 

40 50 

- TABLE 2. 4 

Experimental results. Number of subproblems solved 

Armstrong/Frame 
algorithm 

Mean Worst 

10.0 32 

168.2 566 

4097.8 11886 

- -

- -

- -

Armstrong/Frame 
improved 

Mean Worst 

4.4 11 

34.6 96 

668.6 1947 

- -

- -

-

New Algorithm 
Mean Worst 

3.3 6 

5.4 8 

10.0 13 

11.9 14 · 

16.6 19 

24.4 28 

New Algorithm 
modified 

Mean Worst 

4.9 13 

8.8 14 

18.0 24 

21.8 26 

31.2 36 

46.8 54 

N 

°' . 



CHAPTER 3 

AN EFFICIENT IMPLEMENTATION OF THE LEAST SQUARES ALGORITHM 

3.1 INTRODUCTION 

In the previous chapter we presented an algorithm for 

solving the restricted least squares problem 

(3.1) minimise 

subject to X ~ 0 

In the original implementation of that algorithm, standard regression 

routines were used to solve a new subproblem at each iteration. Now 

although the algorithm appeared efficient in terms of the number of 

subproblems solved (i.e. number of nodes of the search tree to be 

visited), the implementation of the algorithm is still not good. In 

this chapter we consider an improved implementation of the algorithm. 

In particular, we want to provide methods which avoid solving each of 

the unconstrained least squares problems ab initio when only one of 

the variables is changed at each step. The key to our approach is 

suggested by tl1e Kuhn-Tucker conditions which characterize the unique 

minimum of (3.1), with uniqueness following from the strict convexity 

of the objective function and the linearity of the constraints. These 

conditions are 

(3. 2a) - AT ( b - Ax) = ~ , 

(3.2b) 

and 

27. 



(3.2c) A.X. =0, 
l l 

28. 

1 = 1,2, ... ,n, 

so that the subset selection problem can be restated as that of 

seeking among all solutions satisfying the system of equations (3.2a) 

and the complementarity condition (3.2c) the unique pair satisfying 

From our point of view the striking feature of this 

formulation is the symmetry between the roles of x an<l A • In 

particular it is possible to interchange the roles of and in 

the algorithm. lbis has the advantage that a certain amount of 

initial processing is avoided. For example, starting with x as the 

unconstrained minimizer of (3.1)~ is equivalent to rewriting (3.2a) 

in the form 

( 3. 3) 

and satisfying (3.2c) by setting A= 0 

By the complementarity condition (3.2c), fixing a particular 

component of x at zero is equivalent to freeing the corresponding 

component of A • Thus we consider at each stage a partition of x, 

(3.4a) X = [
~11 
J with 

~2 
X = 0 ~2 ~' 

and a corresponding partition of A, 

(3.4b) ~ = [t] with .\ = O , ~l ~ 

whjch ensure c1utomatically that (3.2c) is satisfied. If (3.2a) is now 

solved for the variables permitted to be nonzero at the current stage 

then it can be written 

(3.5) ~A - M~l = -q' 



where 

(3 .6) ~A = [ ~~] and ~l = [;~] · 

Each step of the algorithm involves interchanging a component of x 

with the corresponding component of A . This results in a . 

transformation of (3 . 5) which can be represented by multiplication 

by an elementary Jordan matrix followed by appropriate permutations 

to partition the new variables into the form (3.6). We define the 

Jordan matrix J. by 
l 

(3.7) J. K. (M) = ( I - j . e ! ) K. (M) = -e . 
l l -l-l l -l ' 

where 1 is the index of the element of ~l to be exchanged, and 

29. 

K. ( . ) indicates that the ith column is taken. Using a bar to denote 
l 

transformed quantities we have 

so 

(3.8a) 

and 

(3.8b) 

q = q q. J. ' 
l-l 

q.M.k 
- ' l l 
q = q -

k k ~1-. 

q.= 
l 

q. 
l ---

M .. 
ll 

ll 

' 

' 

= (I-j.e!)Kk(M) 
-l-l 

k f: l ' 

k f: l 

When k = i , the i th column of ~1 comes as a result of the interchange 

A. -<-+ x. . This gives 
l l 

(3.8c) K. (~1) = -(I-j .e!)e. 
l - l - l - l 

=Ml ' {K. (M)+e.} - e . 
. . l -l -l 
ll 



This shows that the computations involved in the algorithm can be 

carried out in a manner familiar from stepwise regression (see eg, 

Effroymsom, 1960). However, the problem set-up still involves the 

calculation of the normal matrix which is a significant initial 

computation . 

30. 

An alternative to forming the normal matrix is to apply 

orthogonal transformations to the data matrix. This is known to have 

superior numerical properties (see eg, Golub and Wilkinson, 1966) 

but it is interesting that in the stepwise regression case it is 

known to be more efficient for an important range of values of m 

and n (Osborne, 1976). This approach is considered in the next 

section. It turns out tha t set-up time can be considerably reduced 

by working with the multiplier vector A, and there is an unexpected 

bonus for ~2 turns out to be a numerically better determined 

quantity than ~l . Numerical results, including a comparison with 

the quadratic programming approach, are presented in Section 3.3. 

3 . 2 USE OF ORTHOGONAL TRANSFORMATIONS 

To derive the equations satisfied by ~l and ~2 we assume 

that the orthogonal transformation of the data matrix is given by 

(3.9) I\ = Q [Ou] and 
' 

where Q is orthogonal and U upper triangular. Substituting 1n 

(3.2a) gives 

UTUx = T -UC ~l 



or 

(3.10) Ux = 

We partition U and :i to conform with (3.4) by setting 

(3 . 11) u = and 
~11 

~12 

so that (3 . 10) reduces to the pair of equations 

(3.12) and 

31. 

1ne interchange of a pair A. ' X. 
i l 

destroys the form of U unless the 

last element of becomes the first element of ~2 or vice versa. 

Tilus the upper triangular form of U must be restored following an 

interchange, and this can be done using the now standard techniques 

treated 1n detail by Gill, et al, 1974. For example, to drop the kth 

element of 
~l 

which we assume to be of length p > k, we perform the 

interchanges k + 1 + k, k + 2 + k + 1, . .. ,k + p on the columns of u
1 

and then sweep out the elements introduced ln the sub-diagonal positions 

using plane rotations W{j,j+l,(j+l,j)} , j = k,k + l, ... ,p - 1 where 

W{i,j,(p,q)} is the plane rotation mixing rows 1 and J and making 

zero the element in the (p,q) position. Similarly, to add an element 

to 
~l 

the corresponding column (say k) is moved to column 1 

by the sequence of interchanges 1 + 2 · , 2 + 3, ... , k + 1 , and the upper 

triangular form is restored by the sequence of plane rotations 

W{j,j+l,(j+l,l)} , j = k - 1, ... ,1 . 1nese operations are shown 

schematically in Fig. 3.1. The interchanges are indicated by arrows, 

elements eliminated are circled, and elements introduced are labelled 

by the rotation number. 
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~ 
X X+-X+-X X X X X deletion of variable 

X X X -+ X X X from ~l 1~, X X 1 (matrix shown lS Ul) 

X 2 

~ 
X-+X-+X X 

2(_ 
X X X addition of variables 

X X X -+ ® 2 X X to ~l 
1~ 

X X @ 1 X (matrix shown lS U2) 

X X 

Fig 3.1 Transformations for addition and deletion of variables. 

The algorithm can now proceed as before. However, although it 

appears from the above description that the initial set up time includes 

the factorization (3.9), the observation that it is possible to work 

with A instead of x makes it possible to start the algorithm 

without any pre-processing of the data matrix A. The key point is 

that ~2 can be determined once the transformation necessary for the 

calculation of the complementary set ~l has been carried out, although 

~l need not be computed unless ~2 ~ 0 . The modification to the 

algorithm is explained by considering the first step which 1s typical. 

Note that initially x = ~il) = 0 so that (3.2a) gives 

(3.13) T -UC 
---1 

where the superscript indicates step number. Using a Householder 

t.-r:i ns f o rm:1 ti on (sny) to S\vCCp out the First column of I\ gives 

u11 u12 uln cl 1 
II/\ 

0 X X 
anc.l I1 1~ 

X = = 

0 X X X 



Now, from ( 3. 12) , we have 

I 011 

A ( 1) 
012 cl 

= 0 (2)T (2) -2 :12 2 
01n 

011 
0

12 
0 

= -c + , 1 A(2) 
(3.14) 01n 

-2 

showing that the Lagrange multipliers can be updated and decisions 

made on the order in which the remaining columns of A are swept 

out as the factorization of A proceeds. Essentially no set-up 

computations are required for this form of the algorithm. 

This relation can be given a general form. We partition 

Q so that (3.9) is written 

(3.15) 
Qrl 

A = [ul and QTb = ~l . Q~ J OJ 1~ 

Partitioning A and QT 
1 

1n conformity with X we obtain 

(3.16) T 
[Ul Ul2 J 

T 
A2] [ o u2 J , Qll [Al A2] = and Ql2[Al = 

so that 

33. 
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and, using (3.16), 

-[ ~2] T T 
= A Ql2Ql2~ 

T T ( 3. 17) = A [I-QllQll]b ' 

as 

and 

In particular, the general form for (3.14) is 

(3.18) 

and this confirms that the multiplier vector is available when only 

the transformation of A necessary to compute ~l has been completed. 

Equation (3.18) is useful also as it permits an error analysis 

for this method of computing ·\ to be given. Indicating computed 
-2 

quantities by bars we have 

~2 - ~2 

(3.19) -T 
= {u12 

where E is the evaluation error. This equation can be further 

expanded to give 

(3.20) 

where the prime indicates the exact orthogonal factorization defined 

by the actual numeric data at each stage. The quantities on the 

right-hand side of (3.20) can now be estimated using known i nequalities. 
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The most important terms are those involving Q11 - Q11 , and it was 

shown by Jennings and Osborne (1974) that this can be bounded by an 

expression of the form k1 eps x(A1) where k1 is a constant, eps is 

the machine precision, and x(A1) is the spectral condition number of 

A
1 

. This 1s a result which is more favourable than the corresponding 

result for which Golub and Wilkinson (1966) showed to have a 

dependence also on 

~12 

~2 

However, the bounds quoted 1n the error estimate are for the usual 

form of orthogonal factorization which takes . no account of the 

possibility of the back-tracking which can and does occur in the 

algorithm. If we assume the analysis is valid also in the case of 

back-tracking, then presumably we have to use the largest condition 

number encountered to the present stage rather than the condition 

number of the current partition A1 . 

One further point in favour of this form of the algorithm 

is that it appears rarely to be necessary to compute the complete 

factorization (3.9) in the determination of the optimum subset ~l 

It is conceivable that the full system could be badly conditioned 

while the subproblems leading to the optimal subset could be well 

conditioned. 

3 . 3 NUMERICAL RESULTS 

A subset selection algorithm for (3.1) proceeds essentially in 

two stages: an initial search for a feasible ~l (or ~2) using a 

heuristic to determine at each stage the component to be set to zero, 

and subsequent back-tracking to explore other branches of the search 



tree if the first feasible solution is not optimal. It is in this 

second phase of the computation that the major improvements due to 
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the algorithm are achieved. In the first phase the heuristic commonly 

used is to fix at zero level the most negative of the current solution 

components. This procedure suffers from the disadvantage that it is 

not scale independent. For example, if the data matrix A 1s 

multiplied by a diagonal matrix D to rescale the column norms so that 

(3 . 21a) A+- AD-l 
' 

then it follows from (3.2a) that the solution vectors are transformed 

by 

(3.21b) 

Our numerical experiments have shown that the choice of the first phase 

heuristic 1s important because it can affect the amount of work that 

has to be done 1n the second phase of the computation. It seems 

reasonable that a good heuristic should not be affected by changes 1n 

scale, and for this reason we compare the choice of most negative 

component with a choice which corresponds to the test used in stepwise 

regression to determine the variable to enter the regression at each 

step and which has the property of invariance with respect to column 

scaling . If we consider the data matrix factorized so that at the ith 

step of the first phase of the computation we have 

( 3. 2 2) Ci)= [
0

1 °12] 
A O 13 and 

then the stepwise regression test selects the variable to be introduced 

as that which maximizes 
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I dTK. (B) I! II K. (B) II ' 
- J J 

as this leads to the biggest reduction in the sum of squares of the 

residuals (see Golub, 1965). Here II Kj (B) II is the euclidean length 

of the jth column of B . Now, from (3.18), 

(3.23) 

so that we can use the stepwise test in the form 

(3.24) X + 
-1 

s maximizes 

for all J such that y(j) > 0 . 

y(j) 
(~~i))j 

IIK.(B)II 
J 

However, our implementation actually considers y(j)
2 

II K.(B) 11
2 

is readily updated from step to step. 
J 

as 

We report numerical results for two sets each of ten problems 

with m = 50 
' 

n = 40 . The data are obtained by sampling from a 

normal distribution for the first set and from a uniform distribution 

for the second set , except that in all cases K
1 

(A) j = 1, j = 1,2, ~ .. ,m. 

For each set we give results for each of the selection strategies already 

discussed and for the case in which the most negative strategy is used 

after the columns of A are scaled initially to have unit length. 

Also, for the data drawn from the uniform distribution, we consider 

scaling the columns of A to have unit L1 norm as the most negative 

strategy proved particuL1rly favourable in this case, and definitely 

superior to the corresponding scaling using the euclidean norm. Also, 

for comparison, we give results obtained using a quadratic programming 

subroutine QUADPR, based on the Cottle-Danzig principal pivoting 

algorithm, which was supplied by the 1adison J\cademic Computing Center 

at the University of Wisconsin. 
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The results for the two data sets are given 1n Tables 3.1 

and 3.2 respectively. We report the average time per problem as 

(cumulative time)/10 (recorded most unreliably on the computer used, 

a Univac 1100/42)t, and the total number of nodes visited. It will 

be seen that the variants of this algorithm are superior to the 

quadratic programming algorithm. Also, the most negative heuristic 

is never too bad, while the stepwise heuristic is favoured for the 

data drawn from the normal distribution. · TI1crc is some evidence 

that the statistical origin of the data is not irrelevant to the 

choice of a good heuristic. Starting with A rather than x is 

clearly the superior strategy in terms of elapsed time despite the 

unreliability of the timings (for example, the stepwise and column 

scaling strategies should have returned approximately the same times 

in Tab 1 e 3 . 1) . 

The rather dramatic 10-20 fold reduction in time taken 

for this implementation seems to be partly due to the use of 

orthogonalisation transformation techniques (as opposed to matrix 

inversion in the original implementation), and partly due to working 

with A rather than x - so that if, say, n/2 elements of x were 

non-zero at the optimum, about\ of the elements of U in the QU 

factorisation of A would need to be calculated, as opposed to 3/4 

if working with x . 

t Timings in a multiprogramming environment tend to be unreliable 
because compromises are made between keeping exhaustive records and 
efficiency. Part of the explanation in this case would appear to 
stem from the system executive's practice of continuing the internal 
timing of an interrupted program unless it is actually swapped out 
of core. 
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TABLE 3.1 

Results for data from normal distribution 

Average time 
Method (ms) Number of nodes 

Quadratic programming 1187 404 

Most negative :\. 322 210 
l 

Stepwise 249 204* 

II Kj (A) 112 = 1 437 204* 

Most negative X. 547 202 
l 

*First feasible solution is optimal for each problem. 

TABLE 3.2 

Results for data from uniform distribution 

Average time 
Method (ms) Number of nodes 

Quadratic programming 1340 416 

Most negative :\. 434 196 
l 

Stepwise 390 262 

II Kj (A) 112 385 262 

IIKj(A)ll1 307 168 

Most negative x. 518 240* 
l 

*First feasible solution is optimal for each problem. 



4 . 1 

4.1.1 

CHAPTER 4 

THEM-ESTIMATOR: STRUCTURE 

INTRODUCTION 

Robust Estimation and the Rejection of Outliers 

The problem of rejection of outliers may not be quite as 

old as experimental science, but it has certainly exercised the minds 

of astronomers, chemists, physicists, etc., for a very long time. 

40. 

The great German astronomer, Bessel, remarked in 1838 that he never 

rejected an observation merely because of its large residual. Others 

have not been quite as confident of their equipment and procedures. 

The first attempt at a rejection criterion based on some sort of 

probability reasoning seems to have been given by Peirce in 1852. 

Since then, the topic has become a standard part of least squares 

theory, and from 1925 onwards has received a great deal of attention 

from statisticians. An historical review is given by Anscombe (1960), 

where he also makes the pertinent observation that when a rejection 

rule is applied, a judgement is not being made on the spuriousness or 

otherwise of the observation so much as protection is being sought 

against possible adverse effects - a rejection rule being something 

akin to an insurance policy. 

It is this safeguarding against small deviations from the 

assumptions that lies at the heart of the search for robust estimators, 

and any complacency in the use of classical estimators such as the 

mean square deviation was shattered by Tukey in a rather entertaining 

article in 1960 with the aid of a simple example. He assumed a 

randomly mixed batch of "good" and "bad" observations from 
2 

N(µ , CJ ) 



and 2 
N(µ,30) distributions respectively. 

shown that the mean square deviation 

s = .;1.i L(x.-X) 2 
n n 1 

Now Fisher in 1920 had 

to be 12% more efficient than the mean absolute deviation 

cl = l I:lx.-xl 
n n 1 ' 

where the asymptotic relative efficiency (ARE) 1s given by 

ARE = lim 
n-+oo 

2 var(s )/[E(s ) J 
n n 

2 
var(cl )/[E(d ) ] 

n n 
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The calculations from this example (as corrected by Huber, 1977 {a)) show 

that although ARE is less than .88 for zero (or 100%) contamination, for 

as little as 2 bad observations in 1000, ARE is more than 1.00, reaching 

a maximum of over 2 for 1 bad observation in 20. This is especially 

disturbing when taken in conjunction with statements such as that of 

Hampel (1973) "altogether, 5-10% wrong values in a data set seem to 

be the rule rather than the exception". In that same paper, Hampel 

gives as the main aim of robust estimation: safeguarding against gross 

errors; bounding the influence of hidden contaminators; isolating 

clear outliers; and still being nearly optimal at the strict parameter 

model. 

The search for robust estimators has led to a variety of 

suggestions, each with its own advocates, (see, eg, Ho f fman, 1977; 

Huber 1977(a), (b); Hampel 1974(a), (b); McKean and Hettmansperger, 

1977). Some of these are quite horrendous in the amount of work to be 

done in identifying more than one or two outliers. Thus to identify k 

outliers, Andrews (1971) considers projections of the residua l vector 
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[ nk l onto hyperplanes, and Gentleman and Wilk (1975) perform 

regressions on [ ~] subsets of data. One wonders whether this last 

approach is a sufficient improvement over the suggestion of Mickey, Dunn 

and Clark (1967) who simply do a stepwise regression, using an F-test to 

determine whether the observation dropped was indeed an outlier. The 

main approach with all these methods has been to consider the estimator 

from a statistical point of view, justifying the choice by statistical 

analysis, sometimes bolstered by Monte-Carlo simulations. 

4.1.2 M-estimators 

One type of estimator put forward primarily as being 

distributionally robust (as opposed to model-robust see Hoffman, 1977) 

is the maximum likelihood or M-estimator. 

( 4 .1) 

The classical linear squares estimator is, given a model 

Y = . 
i 

m 

L A .. 
j =l lJ 

x. + u. 
J 1 ' 

1 = l, ... ,n, 

where the u. are independent random errors, to find an m-vector x 
1 

such that 

( 4. 2) 

where the 

( 4. 3) 

n * 2 L (r.) = min, 
. 1 l 1= 

residual, r. 
' 1 

m 
r. = l I\ . . X. 

l 
j=l l] J 

of an observation lS given by 

- y . . 
1 

* 

In an effort to reduce the sensitivity of this estimator to 

occasional gross errors, Huber (1972) suggested replacing the squared 

term in (4.2) by a less rapidly increasing function, p . Thus we 

now require x 

n 
(4.4) l 

i=l 

* such that 

* p(r.) = min 
l 
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The favourite choice of p by Huber (and others) is 

p (t) 
2 for It I (4.5) = \t ~ C 

cit I \c 
2 

for It I = > C , 

and it is this flIDction which is the topic of the next two chapters. 

This chapter is concerned with the function defined in (4.5), 

(as applied to residuals in · (4.4)), in an effort to understand its 

underlying structure, as opposed to justifying its statistical virtues. 

The resulting algorithm will be defined in Chapter 5. 

4.2 

4.2.1 

DEFINITIONS AND PREAMBLE 

Definitions and Conventions 

A partition p 
a 

-

is a dividing of the set N = {1,2, ... ,n} 

into subsets a and a The function associated with P is 
a a a 

F (x) = \ L 
a - a 

a 

2 
r. (x) + 

i 

x will refer to the minimiser of F (x) and F (x) will 
- a a - a ~a 

be called the value of the partition. Residuals of a partition will be 

measured at its minimum, 

A residual is tight if its absolute value is equal to c . 

A partition is tight if at least one of its residuals is tight. 

"Tightness" will, unless stated otherwise, refer to partitions. 

A partition p is a-feasible if Ir. (x ) I ~ C 
' 

i Ea 
a 1 -a 

I\ partition p is a-feasible if Ir. (x ) I > C 
' 

iEo 
a i - a 

A partition p is feasible if it is a -feasible . and a-feasible. a 



The absolute deviation (AD) of a partition p is the 
a 

value of the absolute deviation function Llr.(x)I, measured at x 
i - -a 
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The least absolute deviation (LAD) is the global minimum of 

the AD function. 

00 

zero at LAD. 

will refer to the set of indexes whose residuals are 

Uniqueness will, unless stated otherwise, refer to the 

number of feasible partitions, rather than to whether a particular 

partition has a unique minimum. 

8. will always be used for the sign of a residual, 
i 

8. = s gn r. ( x) . 
i l -

Adjacent partitions Pa and Pb satisfy the condition 

o a = ob u {k} . 

TI1e examples given in Section 4.3 will always be of the 

form 

' 
or C = 

thus example 4.1, for instance, has 2 variables and 5 observations. 

Example 4.1 is given below for convenience, as well as in Section 

4.3.1. 

Example 4.1 

1 

1 

1 

1 

4 

7 

4 

1 

2 

2 

5 

12 

5 

3 

1 

C = 2 



4.2.2 Preamble 

In order to get a feel for the structure of the problem -

what the function does, what can happen to it, what happens when c 

is varied - a number of questions and areas of speculation are 

considered in the next section. In general, the questions posed 

will be answered in the negative, by a counter example, or will lead 

to a theorem in the following section. Sometimes, however, the 

question posed was too simplistic and then a straight "yes/no" will 

yield to further elaboration. 

One area of interest is the relation of the M-estimator to 

the LAD estimator, where p(t) 1n 4.4 would be 

C 4. 6) p(t) = /t/ . 

It is c~ear that, for large enough c, the M-estimator is simply the 

least squares (LS) estimator. Intuitively, it seems that for small 
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enough c, the M-estimator will be related to the LAD estimator. 

Several speculations (4.3.3, 4.3.8, 4.3.10, 4.3.11) explore this 

relationship. The question of .non-uniqueness, how it is recognised, 

under what circumstances it occurs, is considered in 4.3.1, 4.3.6, 

4.3.9, 4.3.11. What might be termed the "proper behaviour" of the 

function gives rise to several speculations (4.3.4, 4.3.5, 4.3.7, 4.3.8, 

4.3.10, 4.3.11). Basically this is saying "Can nasty things happen?" 

"How nasty?". Finally the function value itself is considered in 4.3.2 

and 4.3.3. 

-As Huber ( 1977, b) observed, once the partitioning CJ , CJ 1s 

known, together with the signs of the residuals 1n -
CJ , the M-es tima tor 

can be calculated very simply. 1nus the search for the M-estimator is 

the search for .a feasible partition. The first six questions (4.3.1 



to 4.3.6) deal with varying partitions whilst keeping c fixed, and 

the remaining five (4.3.7 to 4.3.11) deal only with feasible 

partitions, allowing c to vary. 

4.3 

4.3.1 

SPECULATIONS AND EXAMPLES 

On Tightness and Non-uniqueness 

This area is possible one of the most interesting in the 
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problem. Given a feasible partition whose minimum is tight, must there 

be another feasible partition? And, given two feasible partitions, 

must their respective minima be tight? The answer to this latter 

question, as will be shown in Section 4.4.1, is "yes" so we now look 

more closely at the former question. Clearly, we can answer it 

-trivially by taking the partition 0 = qi and setting C to the 

largest sized residual of the least squares solution. It is also 

true in the more general case (o 1 <Ii) that it is possible to have 

a tight feasible partition which is also the only feasible partition 

for a particular value of c . 

Example 4 .1 

1 

1 

1 

1 

4 

7 

4 

1 

2 

5 

5 

3 

2 12 1 

Here, a= {1,2,3,4} has 

C = 2 

T r = {.67, 1.33, -2, -2, 2.89} , 

with rcsic.hwls 3 an<l 4 being tight. llowcvcr, as tho vectors ~l 

and ~2 , ( corresponding to the non-tight residuals of o) span the 

space, this is the only feasible partition (see Theorem 4.1, corollary). 

This question is pursued a little further in Sections 4.3.9 and 4.3.11. 



4.3.2 On the Function Value of Feasible Partitions 

As was observed earlier, the search for the M-estimator is 

the search for a feasible partition. The question then arises as to 

whether the function value of an infeasible partition can be less 

than that of a feasible partition, for a given value of c. 

Example 4.2 

1 

0 

1 

2 

1 1 

2.5 2.9 C = 1 

Here, the partition 0 = {l} is feasible, and has function value 

2.00. However, the partition 0 = {1,4} is infeasible with function 

value 1.96. This area is explored further in Section 4.4.2 as there 

are some things which can be shown. 

A further question in this area is whether all feasible 

partition have the same function value. This expected, and hoped-for 

result, is also shown in Section 4.4.2. 

4.3.3 On the Value of the AD Punction at Feasible Partitions 

The relationship between the M-estimator and the LAD 

estimator is complex and will be explored further later. Here, we 

simply observe that the AD can increase from infeasible to feasible 

partitions. 

Example 4 .3 

1 

-.2 

1 

2 

1 

2 

1 1 

3.1 3.1 C = 1 

llere, the infcnsLble partition 0 = <P has nn J\D of 4.4 whilst the 

feasible a= {l} has an AD of 4.7. 

47. 



More interestingly, it will be shown (Section 4.4~3) that 

the AD 1s the same for all feasible partitions. 

4.3.4 On the Signs of Residuals at Change of Partition 

48. 

As was observed by Huber (1977,b), if the correct partitioning 

1s known, together with the signs of the residuals in CT , the 

M-estimator can readily be found. However, the signs of residuals can 

change, .even· when partitions are adjacent and one of them is feasible. 

Example 4.4 

1 10 1 

2.5 10 3.9 

0.9 

5 

1 1 1 1 1 1 1 1 1 1 

5 5 5 5 5 5 5 5 5 5 C = 1 

For a= {2,3} , 

for o = {3} 

so that 

T r = (-1.35, 1.47, -2.75, -4.00, -3.85, ... ,-3.85) , 

T r = (1.3, 28, 0.1, -1.58, -1.2, ... ,-1.2) , 

changes sign between the two partitions, the 

second of which is feasible. Note that r 
3 

( 3Eo) also chang~d sign. 

4.3.S On the Feasibility of Residuals at Change of Partition 

Example 4. 5 is illustrative of the "anything can happen 1
' 

property of the problem. 

Example 4.5 

For 

for 

1 

0 

9 

0 

1 

3 

a= {1,2,3} 

a= {2,3} 

1 

1 

3 

C = 1 

rT = (-3,-3,3) 

T 
r = (-7,-1,1) 
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for a= {3} r = (-5, -2, 1) (one solution). 

The first change of partition caused a "bad" observation to 

become "good", without its being involved in the partition change, 

whilst in the second change of partition we have a "good" observation 

going "bad". This latter, however, is only possible through the 

non-uniqueness of the minimum of the partition a= {3} . The limits 

on what can happen are given more exactly in Section 4.4.4. 

4.3.6 On Non-uniqueness and Connectedness 

Thus far, in the examples given when there is more than one 

feasible partition (examples 4.2, 4.5), the feasible partitions have 

been connected, i.e. the graph whose nodes are feasible partitions 

and whose arcs imply adjacency of partitions is connected. This, 

however, need not be the case (this is relevant also in the proof of 

Theorem 4.1). 

Example 4.6 

1 

1 

2 

2 

3 

4 

2 

0 

3 

0 

3 

5 

C = 1 

The feasible partitions here are o = {4} , a= {2,3} and 

a= {2,3,4} . The last two are connected to each other, but the first 

is isolateJ. 

Note: In Sections 4.3.7 to 4.3.11 which follow, c will no longer 

be fixed, and only feasible partitions will be considered. 



4.3.7 On o , as c Varies 

The experience of many randomly-generated examples (see 

Chapter 5) has been that, in general for c1 > c 2 , 

Ilowevcr, this need not be the case. 

Example 4. 7 

For C > 

For .62 

For .54 

but for 

4 

3 

7 

.62 

> C 

> C 

. 5 

' 
~ 

> 

~ 

2 

5 

7 

C 

o 

.54 

.5 

~ 

8 

5 

12 

= 

' 

' 

.24 

4 

6 

11 

{1,2,3,4} . 

o = {1,2,3} 

o = {1,3} 
' 

o = {1,3,4} 
' 

The first example, 4.1, also bears closer scrutiny. For 

2.52 > C > 2 o = {l,2,3} . 

At C = 2 
' 

o = {1,2,3,4} , 

whilst for c < 2 , o = {1,2} , 

so. 

illustrating the lack of predictability in the way in which o varies 

with c . Lemma 4.1 and Section 4.4.4 will, however, place some 

limits on this. 

4.3.8 On o an<l 0 0 C 

The preceding section can be extended to include 00 ' 
the 

basis for the LAD. Again, although in general for C > 0 o co 
' ' 0 - C 

this need not be the case. 



Example 4 . 8 

1 

1 

1 

9.5 

7 

-110 

7 

9 

90 

For -1 . 804 > c > 1 . 776 , 

1 -5 

3 1 

85.6 -59 

2 . 466 

1 . 4 75 

-1 

o = { l, 2 } , the unique feasible 
C 

partition . However o
0 

= { 3,4}, so in this example we have 

o r"'lo =<P 
C 0 

4.3.9 More on Tightness and Non-uniqueness 

In Section 4.3 . 1, an example was given for which the 

feasible partition was tight , but tmique. In point of fact, for 

every example for which n > m and is not completely degenerate, 

as c is decreased there will be values of c at which the feasible 

partition changes (and in general the feasible partitions will be 

unique), an<l at these changes there will be tightness, usually in the 

old partition Clo! decreasing), but sometimes in the new partition 

Clo! increasing, as in example 4.7 with c = 0 . 5). 

In the following example, the feasible partition is tight 

for a range of c , but is the only feasible partition in that range. 

Example 4 . 9 

l 

0 

1 

0 

1 

1 

1 

2 

1 

2 

2 

2 

3 0 

1/6 4 

8 12 

For 3 ~ c < . 417 , o = { 1 , 2, 3, 4 } , and r 
4 

= c . 

51. 
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Note, however, that the non-tight vectors in o, 

~l ' ~2 
and span the space, a sufficient condition for uniqueness, 

though it is not a necessary one - see Section 4.3.11. 

4 . 3.10 On o and o for Small c 
---c----0'-------

As was observed earlier, for large enough c, the 

M-estimator and the L.S. estimator are identical. One would expect 

that, as C -+ 0 the M-estimator -+ the LAD estimator. It will 
' 

be shown, in Section 4.4.7, that this is indeed the case, and that, 

further, a o > 0 such that for C < 0 ' 0 = 00 . 
C 

4.3.11 On Non-uniqueness of LAD and M-estimators 

Clearly, the result alluded to in the preceding section 

sho~s that if the LAD is non-unique~ then so is the M-estimator for a 

range of c The reversed question, whether there can be a non-unique 

M-estimator, but still a unique LAD, is not as clear. The difficulty 

lies in the fact that, as will be shown 1n Section 4.4.1, the non-tight 

vectors 1n o cannot then span the space, and, given that the vectors 

1n 00 must span the space, it turns out that by the time 

small enough for there to be another feasible partition, 

0 
C 

is 

o is getting 
C 

very close to o
0 

. However, the following example is one in which 

o
0 

is unique, but for a range of c , 

Example 4.10 

l 

1 

l 

9.5 

7 

-110 

7 l 3 

9 3 0.5 

90 85.6 58 

For c ~ 115 , o = {1,2,3,4,5 } , 

o is not. 
C 
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for 115 > C 2'. 1.869 a = {l, 2, 3, 4} 
' ' 

for 1.869 > C 2'. 1.803 a = {l, 2, 4} . 
' ' 

for 1.803 > C > 1.775 a = {l, 2} or {l, 4} or {l} ' ' ' ' 
for C = 1.775 

' a = {l, 2, 3} 
' 

or {l, 4} 
' 

or {l} 
' 

for 1.775 > C > 1.6 a = {l, 3} or {l, 4} or {l} . 
' ' ' ' 

for 1. 6 ~ C 2'. • 384 
' a = {1,3,4} 

' 
for .384 > C a = {3, 4} . ' 

A final point on this particular example. At c = 1.803, 

a= {1,2,4} , and T 
r = (-.902, 1.803, -2.007, 1.803, -166.836). 

At C = 1. 6 , a = {l, 3, 4} and T 
r = (-.8, 3.15, -1.6, 1.6, -166.15). 

In each case the partition is the only feasible one, and in each case 

the non-tight residuals of o do not span the space. This again is 

the exception rather than the rule. 

4.4 RESULTS 

In this section we prove a number of theorems arising out 

of the speculations of the previous section, in an attempt to gain 

greater insight into the structure of the defining function of the 

M-estimator. 

There are a few observations and minor results which will 

be used freely in the remainder of this section which will be given 

here rather than repeated each time they are used. 

Firstly, any vector x is feasible for exactly one partition. 

As was pointed out before, a set o defines a function 

2 
F (x) = ~ l r i (~) 

2 
+ b { c Ir i (~) I -T} 

a a 



F(x) , being the sum of convex terms is itself convex. 

Lemma 4.1 

Given F (x) with m1n1m1ser x , then provided that 
a - -a 

r. (x ) -/- 0 , i E o , F is strictly convex iff the vectors 
1 -a a 

a. , iEo , span the space. 
-l 

Proof 

F (x) ~ L r. (x) = 2 
a - l -0 

VF (x) = l r. (x)a. 
a - l - -l 

0 

= I r. (x)a. 
l - -l 

0 

I {cjr.(x)I-+ 
- l -
0 

+ CI e. a. 
' - l-l 

0 

where 8. = 
l 

+ b . -

As VF a (~a) = 0 , l r. (x )a. + b = 0 
1 -a -1 

0 

l r. (x ) a. 
1 - a - 1 

0 

= l r. (xb) a. , 
l - -l 

0 

2 C } 
2 

provided r. (x) 
l -

-/-

sgn r. (x) 
l - ' 

and the vectors a. , i E o , do not span the space . 
- l 

ii) If the vectors a. , iEo 
' 

do not span the space we 
-l 

a vector d orthogonal to the a. iEo 
' 

and small enough 
- l 

0 
' 

can 

so 

sgn r.(x +d) = sgn r. (x ) and then ~b = X + d also minimises ' 1 -a - 1 - a 

Lemma 4.2 

Given adjacent partitions 

then for any vector x satisfying 

-a -

and with 
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i E cr , 

find 

that 

F a 



Proof 

2 

+ c Irk(~) I - T + _l c Ir i (~) 1-
01 

Lemma 4.3 

2 
C 

2 
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} 

Given adjacent partitions 0
1 

and 0 
2 

with 0
1 

= 0 
2 

U { k} 

* * * for which the minimiser x of either has Irk(~) I = c, then x 

also minimises the other partition. 

Proof 

* 
¢> I r. (x ) a. + c I 8. a. = O 

l ~ ~ l - l ~ l 
02 02 



4 . 4 . 1 On Tightness and Non-uniqueness 

Theorem 4 . 1 (a) 

Given two feasible partitions p 
a and Pb such that 

ob = 0 us s = {sl, ... ,sr } f cp then Irie~)! = C a , 
' 

for all iES . 

Proof 

Assume otherwise. 

Now as Ir i (~a) I > c and Ir i (~) I :::; c for i ES , we 

can define points y1 , . . . , y to satisfy 
- -r 

(i) 

(ii) 

(iii) 

(Thus 

y . = 8.x + (1-8.)xb -1 1-a 1 -

Ir Cy . ) I = C 
S. -1 1 

0 :::; e. :::; e. i :::; 1 1 1+ 

y . = a . xb + ( 1-a . ) y . 
1 

, 
-1 1- 1 -1+ 0 :::; a. :::; 1 , 1 = 1, ... , r) 

1 
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Let o. = o U { s. 
1

, ... , s } define F. (x) , i = 1, ... , r -. 1 , 1 a 1+ r 1 -

where S has been re-ordered so that s. 
1 

corresponds to e .. 
1 

Now as 1 t2 :.z 

and from the definition of 

2 
C - -
2 

for 

~ F (x) , 
a -

Y1' ... , y 
- -r 

c ~ 0, it follows that 

and Lemma 4. 2 we have 

1 = l, ... ,r - 2 



Now, 

so 

Again, 

so 

Moreover, from our assumption that Ir i (~b) I < c for at least some 

i ES , at least one "~" in this sequence is strictly " < " , and 

also 8 > 0 . 
r 

We can now write 

Thus 

57 . 

F (xb) 
a -

F (y ) ~ (1-8 ) F (x.) + 8 F (x ) , 
a -r r a -b r a -a 

so 

F ( xb) < F ( x ) , 
a - a -a 

a contrndjction, ns x is the m1n1m1ser of F 
- ~t a 

This completes the proof. 



Note that 0 
C 

= 0 
a 

US' 
' 

where S' CS 
' 

is not necessarily a 

feasible partition. See, eg, example 4.6 where o = {4} and 
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o = {2,3,4} are feasible partitions, but o = {2,4} and o = {3,4} 

are not. 

Theorem 4.1 (b) 

Given two feasible partitions 

let 0 = 0 no 
a b 

Then Ir. (x ) I = C for iEo no 
i -a a 

Irie~)! = C for i Eo no 
b 

Proof 

Let 0 = 0 nob 
C a 

Let s = 0 nob = 0 no a a a C 

Let s = ob no = ob no b a C 

Then 0 = 0 Us and ob = 0 U Sb a C a ' C 

Let re = 8 X + ( 1-8 ) xb 0 $ 8 C-a C ~ ' C 

such that Ir. Cy ) I $ C 
' 

i Eo 
l - C C 

Moreover, as cannot be feasible for 

p 
a 

= 0 a 

= ob 

$ 1 

0 
a 

and Pb ' 

no 
b 

no 
a 

' 

or (being f eas ib le 

for o ) , 0 -/- 0 antl 8 -/- 1 . Then from the s ame argument as 
C C C 

before, 

F c ( ~b) $ F ( y ) and F ( x ) $ F ( y ) . - c ~c ' c ~a c ~c 
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Hence 8 F (x) + (1-8 )F (xb) $ Fc([c) , 
CC ~a C C ~ -

Now assume that for at least some i Ea no 
a C ' 

/ r. (x ) I < c . 
i ~a Then, 

as before, F (x ) < F (y ) , and, as 8c f O , we have 
C ~a C ~C 

8 F (x ) + (1-8 ) F (x.) < F (y ) . 
CC ~a C C ~b C ~c 

But, from convexity, 

$ 8 F (x) + (1-8 )F (xb) , 
CC ~a C C -

a contradiction. 

Hence 

Similarly 

jr. (x) I = c for all 
i -a 

lri(~b) I = c for all 

i Ea n a 
a C 

-
i Ea n a 

C 

It will be observed that Theorem 4.1 (a) is merely a special 

n -case of Theorem 4.1 (b), with aa ab= qi • The splitting of the 

theorem into two was done in the interests of clarity, in order to 

treat the simpler case first. 

Corollary 

A necessary condition for non-uniqueness of a partition 

is that the non-tight vectors of a 
a 

do not span the space. 

Proof 

Define 

Let Pa and Pb be non-unique partitions. 

a = a n a 
C a b 

Then, from Theorem 4.1 (b) and Lemma 4.3, 

minimises F (x) . 
C ~ 

Moreover as is feasible for 

x minimises F (x) , ~a C ~ 

P and 
a ~b 

p 
a 

and 
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~a/.~, thus from Lemma 4.1, the vectors of oc = oa nob do not 

span the space. And as all vectors of oa nob are tight, a must 
C 

include all non-tight vectors of a 
a 

We now have two necessary conditions for non-uniqueness, 

namely tightness, and that the non-tight vectors of a do not span 

the space. These two conditions, however, are not sufficient to 

ensure non-w11queness (except, of course, when there is only one 

tight residual), see example 4.10. 

4.4.2 On Function Values of Feasible Partitions 

Theorem 4. 2 ( a) 

If Pa 1s a feasible partition, and Pb 1s a-feasible, 

then F (x ) ~ Fb (xb) . a -a ~ 

Proof 

Define Pc by a c = a a n ob . 

TI1en by the same argument as was usec.l 111 Theorem 4. 1,- as 

~-
1s a-feasible and P is a-feasible, 

a 

Fb(~b) ~ F (x) 
C -a 

But as 0 Co 
' C a 

r (x ) 
C ~ ~ I 

r (x ) 
a :..~1 , 

Fb(~b) ~ F (x ) 
a - a 



Theorem 4.2 (b) 

If pa is feasible and Pb is a-feasible, then 

Proof 

Similar to above. 

From the above theorems, we see that the feasible partition 

has a fllllction value smallest of all the a-feasible partitions, and 

largest of all a-feasible ones. 

Corollary 

Note: 

The fllllction values of all feasible partitions are equal. 

This property can also be inferred directly from the 

convexity of F(x) . 

4.4.3 On Signs and Values of Residuals in Non-unique Partitions 

Lemma 4.4 

Given a partition with non-unique minimisers ~l and . ~2 

of F , then 

(i) 

(ii) 

Proof 

r. (x
1

) = r. (x
2

) 
i - i -

i E 0 

i E ;;. sgn r. (x
1

) = sgn r. (x
2

) , v 
i - i -

Let X = 1 ' X + 
- 3 

2
-1 

Then, from the convexity of F 
' 
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i . e . 

Now 

But 

~l r. 
l a 

-a 

2 
{cjr.(x

1
)j+cjr.(x

2
)j-c}. 

1 - 1 -

~r. (x
1

) + ~r . (x
2

) , 
l - 1 -

2 2 2 ~(p+q) ~ p + q 
' 

and I p+q I ~ IP I + I q I , 

so equality can only occur when all corresponding elements are 

equal, 

1.e. r. (x
1

) = r. (x
2

) 
1 - 1 -

1 E o 

sgn r. (x
1

) = sgn r. (x
2

) 
1 - 1 -

1 E o 

Theorem 4.3 

Given non-unique feasible partitions Pa and Pb , let 

a = a n o Then 
a b 

(i) r.(x) = r .( xb) 
1 - a 1 -

1 E o 

(ii) sgn r. (x ) = sgn r. (xb) , 1 E o 
1 - a 1 -
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Proof 

Define Pc by 0 c = 0 a n ab . 

111en, from Lemma 4. 4, and are non-unique m1n1ma of 

F The proof follows. 
C 

Corollary 

The AD function 1s the same at all feasible solutions. 

Proof 

Let and be non-unique solutions. 

Then, from Theorem 4.2 corollary, 

2 2 Ir. (x ) + L {c Ir. (x ) 1-£_
2 

} = 
1 -a 1 -a 

0 -
a 0a 

Then, from Theorem 4.1 and Lemma 4.2 

2 
{c Ir. ( x ) I - c2 } 

1 -a -
0 

C 

But, from Theorem 4.3, r . (x ) = r. (x. ) , i E a 
1 -a 1 -b · C ' 

2 
L {c Ir. (x ) I - £_} = 
_ 1 - a 2 

2 

I {c Ir i (~b) I - T} 
0 0 

C C 

1 Ir i ( ~.) I = 1 Ir i C:b) I 
0c 0c 

Also, as r. ( x ) = r. ( xb) , 
1 - a 1 -

1 E 0 
C 
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hence 

4.4.4 On the Size of Residuals at Change of Partition 

Theorem 4.4 

Let Pa and Pb be adjacent partitions, with unique 

minima :a and ~b , such that o a = ob U { k } , then 

(i) lrk(~a) I > C => lrkc~b) I > C 

(ii) lrkc~)I s C => lrk(~a) I S C 

(iii) lrkC:a) I s C => lrkC:b) I s C 

(iv) lrk(~b) I > c => I r k (~a) I > c . 

Proof 

Define :c = 8~a + (l- 8)~b , 0 s 8 < l , such that 

jrk(:c) I = c . 

Then 

a contradiction. 

F (x ) a .... a s F (x) = Fb(x) s a .... c -c 

8 < l , 

Define ~c = 8~a + (l-8)~b , 0 < 8 s l , such that 
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Then 

so 

m1n1m1ses F 
a 

F (x) 
a - a 

s F (x ) 
a -C 

1n which case 
~b 

In either case there 1s a contradiction. 

also 

Note that Example 4.5 is not a counter example of this theorem as 

that in that example one of the partitions <lid not l1ave a unique 

m1n1mum. 

-
4 . 4 . 5 On the Composition of o and o 

111eorem 4. 5 

If P 1s a feasible partition, and it 1s known that 
a 

F (x ) > F (x ) , then 
c -c a -a 

(i) O a 11 ab s f. qi , where 

-
(ii) o no f. <Ii, a c> where = {i I i E o , I r . ( x ) I > c} . 

C 1 -C 

Proof 

(i) Assume otherwise, i.e . for all i Eaa nob' lri(~b)I >c. 

Then, by an argument, similar to that used 1n Theorem 4.1, we 

have Fa (~a) s Fb (~b) , a contradiction . 

. (ii) Simi. L1 r to ( i ) . 

Note: Pb may be, but does not have to be, a-feasible, 

P may be, but does not have to be, CT-feasible. 
C 
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4.4.6 On the Size of a 

Theorem 4.6 

Providing there are m linear independent (row) vectors 

in A, then there exists a feasible partition for which there are 

at least m linearly independent vectors in 0 . 

Proof 

Assume we have a feasible partition with fewer than m 

linearly independent vectors in a . Then, from Lemma 4.1, there 

will not be a unique minimum for that partition, and the minimum 

will be portion of a hyperplane bounded by hyperplanes defined by 

Ir. (x) I = c, i Ea . At any point of intersection, we have a new 
i -

partition which, from Theorem 4. 3, i _s feasible, and with one more 

linearly independent vector in 0 . As long as the minimum is not 

unique, i.e. there are fewer than m linearly independent vectors 

in a, this process can be repeated. 

4.4.7 On the Connection with LAD for Small c 

Theorem 4. 7 

Proof 

then 

For small enough, but positive, C ' 

Let a = 0 
0 ' 

~ l r. (x) 2 + 
2 

F (x) = 1 {c Ir i (~) I - T} i -a a 

* Let X minimise F . 

0 
C 

= 00 . 
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Hence 

dF * I * I (x) = r. (x ) a. + c8.a. = 0 
dx l"' -1 - 1-1 

0 0 

Thus, 

* dr. (x ) 

I I l "' a. + 8. a. 0 = 
de -1 1-1 

0 -
0 

Now, from the characterization of the LAD optimum, (see, 

eg, Watson, 1980), we have a A such that 

I A. a. + I 8. a. = 0 and I\ I s 1 
1-1 1-1 ' 

0 -
0 

But as the a. 
' 

l Eo 
' 

span the space, 
-l 

* dr. (x ) 
l - A. = 
dx l 

* 
1 . e . 

dr. (x ) 
l - s 1 
dx 

* and, as r. (x ) = 0 when C = 0 for l Eo 
' l -

* ) I Ir. (x s C . 
l -

Thus the residuals within o stay feasible as c is vari-ed. 

* Now r. (x ) -/ 0 , c = 0 , 1 E o . Thus for c < c5 
l -

* Ir. (x ) I > c , 
l -

lri C~o) I 
where c5 = min dr. -

0 l 
1- ~gn r. (x0)J 

l "' C. 

dr. 
and c5 > 0 

l finite. as -- lS 
de 

Thus for the range of c, 

partition. 

dr. 
sgn r. (xo) 

l 
< 1 

l - de 

Osc <cS, 1s a feasible 
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Corollary 

If the LAD is non-W1ique, there is a non-W1ique M-estimator 

for a range of c . 

4.5 SUMMARY 

We have seen that the <lefining function of the M-estimator 

is not a simple one. Odd things can happen (eg, example 4.4), which 

can make the finding of a feasible partition difficult. We do, 

however, know some limits on the behaviour at change of partition, 

and where a partition is tight, the fW1ction is well-behaved. 

We have been able to establish the relationship with the 

LAD estimator, its extent and its limits. 

We have been able to establish necessary conditions for 

recognising non-W1iqueness, and although they are not quite 

sufficient, we can recognise those times that they are. 

Examples such as 4. 7 where cr = { 4 } for one range of 

values of c , and { 2 } for another pose the question "which is 

the outlier?". A final comment from Andrews (1971) is relevant 

here "Such observations should not be rejected, but rather receive 

special attention. · To ignore them would appreciably limit the 

information to be gained from the current and subsequent experiments". 



CHAPTER -5 

AN ALGORITHM FOR THEM-ESTIMATOR 

5.1 VARIOUS APPROACHES 

Along with the rapid development and great _ interest in the 

theory of robust estimators, there has naturally arisen a 

corresponding interest in algorithms to compute, in particular, the 

M-estimator. Several approaches have been suggested, and some of 

these have been developed and extensively tested. Of these, 

approaches which attempt to find a specific number of outliers by 

considering in some manner all possible subsets (eg Andrews; 1971, 

Gentleman and Wilk, 1975) do not appear promising, both because of 

the amount of work to be done and because of possible ambiguity 

in the answer. Example 4.7, when 1n the case of just a single 

outlier, the identity of the outlier can vary for different ranges 

of c, illustrates this. 

A number of iterative methods have been developed, and 

the most popular of these are sununarised below. In some of these a 

scaling factor is estimated by the _algorithm at each iteration 

(eg Huber, 1973, Huber and Dutter, f974), and some just estimate it 

once before computation begins (eg Beaton and Tukey, 1974, Holland 

and Welsch, 1977). For simplicity, scaling will be omitted below. 

( 5 . 1) 

We are concerne<l with the problem 

min [ p ( r.) , 
1 

or, equivalently, if p 1s convex and differentiable 
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(5. 2) 

where tJJ = p' 

(5 . 3) r. = 
l 

and r. is the ith residual 
l 

m 
l A .. x. 

j=l lJ J 
y . . 

l 

Three iterative schemes have been suggested for solving 

(5 . 2) . 

(5. 4) i+l l (AT <lJJ ' (ri) > A) -1 AT tJJ (ri) X = X + 

i+l l (A TA) -1 A TtJJ(ri) X = X + (5.5) 

i+l l (AT< w(ri) >A) - l A l l X = X + < w(r ) > r (5 . 6) 

where <a> denotes a diagonal matrix with diagonal elements 

< > .. = a. , and w is a weighting function. 
ll l 

(5.4) is simply the Newton method and has been applied by 

Huber and Dutter (1974). According to Holland and Welsch (1977). it 

is the fastest, but difficult to implement as it requires lJJ', and 

AT< lJJ ' > A may be negative definite. (5.5) is Huber and Dutter's 

(1974) method, and they describe it as the usual least squares method 

with the residuals being "Winsorised" . It has the desirable property 

that the generalised inverse (ATA)-lAT need be calculated only 

once, but Holland and Welsch report it as being the slowest of the 

three methods and not being easy to use with existing least-squares 

packages . (5.6) is the iteratively reweigh~ed least squares method 

due to Beaton and Tukey (1974) (although Schlossmacher, 1973, does 

use an iteratively reweighted least squares method for the least 

absolute deviation estimator). Detailed examinations of the method 

are given by Holland and Welsch (1977) and Byrd and Pyne (1979). 
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( 5. 7) 

where 

For the M-estimator, 

minl'.p(r.) 
l 

p(t) = ~t
2 

for !ti s c 

= cltl - 2 
~c for It I > C ' 

Huber (Huber, 1973, Dutter, 1977) proposed a method based 

on the idea that if the partitioning o = {i I -c s r . s c } , 
l 

o = {i Ir. > c } , o = { i Ir. < -c} is known at the optimwn, the 
+ l - l 

problem is simple. The algorithm starts at an initial estimate, 

determines the partitions - -
0 , 0 , 0 

+ 
and solves (5.7) on the 

assumption that this partitioning is correct. This process is 

repeated until the partitioning does not change between successive 

iterations. Huber (1973) reports that this method is fast, but can 

run into singularity problems. 

The algorithm presented below uses the result that the 

M-estimator, i.e. the optimiser of (5.7), is a continuous piecewise 
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linear function of c . This means that once the correct partitioning 

has been found for a particular value of c, that partitioning is 

correct for a range of c . Also residuals becoming infeasible 
' 

when the range is exceeded indicate the correct partitioning for 

the next range. Once this is done, the M-estimator for the next 

range can be found with little additional work. The initial step 

is to find the least squares solution, corresponding to taking 

C arbitrarily large, and for which - -
0 = 0 

+ 
= <P • The algorithm 

then proceeds by decreasing c in steps until the correct value of 

c is reached. Thus the algorithm finds the outliers (as defined 

by the M-estimator) for all values of c greater than any desired 
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value, a useful feature given the possible ambiguity of "one outlier". 

The algorithm falls into the category of continuation algorithms 

(Ortega and Rheinholdt, 1970), with c being the continuation 

parameter. 

5.2 

5. 2. 1 

THE ALGORITHM 

Piecewise Linearity 

Theorem 5.1 

The M-estimator 1s a continuous piecewise linear function 

of C • 

Proof 

If we re-write (5.7) as 

(5. 8) minimise F(c,x) =~Ir~+ I {cjr. j-~c
2

}, 
1 i 

a a 

* where CT = { i I I r. (x ) I ~ c } , then, for any c , the condition for 
i "' 

a minimum gives 

Ir. (x * Ice. a. (5. 9) 0 = ) a. + 
' 1 "' ,..,,i _ 1-i 

0 0 

* where 8. = sgn r. (x ) 
1 i "' 

(For the remainder of this chapter, we will only be discussing 

* * 
optimal points, so x will be used for x and r. for r. (x )) . 

i 1 "' 

(5 .10) 

Differentiating (5.9) with respect to c gives 

o = I a. 
"' i 

0 

dr. 
l 

de + Ie.a., 
i,..,,i 

0 



or 

0 l 
T dx l e. a. = a. a. "" + 

-1-1 de - l""l 
0 0 

BTB 
dx 

(5.11) = + l e.a. 
de l-l 

, 
-
0 

where B lS the submatrix of A defined by 0 
' 

i.e. 

b . = a. , i E 0, J = 1, ... , j 0 j , where b . and a. correspond to 
-J -l -J -l 

rows of B and A respectively. 

dr. 
l 

de 

Differentiating(5.ll) we see that 

are piecewise constant , and x and r. 
l 

dx 

dc and 

are piecewise linear 
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in c . Moreover, at the end of a range, where extending it further 

would make lrkl > c for some kEo or lrkl~ c for some kEo , 

Irk! = c and so, by Lemma 4.3, the optimiser of (5.8) also solves 

(5 . 8) for 0' = 0 ± { k } , which is the new partition. Hence x is 

continuous. 

5 . 2.2 Updating at Change of Partition 

. . 
In the previous section, we showed that x was piecewise 

linear in c . When the range changes, there will be a new 

partition. We now show how to carry out the changes so involved 

efficiently. 

If we can find a positive definite matrix P such that 

BTB = PPT , then (5.11) becomes 

(5.12) 
dx 

PT= 
de -

0 

= -I 
0 

e.w. 
l-l 



where -1 Then W. = P a. 
-l -l 

dr. T 
dx 

T 
( 5. 13) _J I 8.w. = a. -- -w. 

de -J de -J l-l -a 

At a change of partition ~+~ + {k} V V ) 

(5.14) 

Now for any orthogonal transformation QQT = I , 

(5.15) I + T 
~k~k 

If we select Q such that 

(5 .16) 

(5 .15) becomes 

( 5. 1 7) I + T 
~k~k 

so, from (5.14), 

(5.18) 
~ 

P' = PQD 2
, 

and from (5.12) 

(5.19) I p I - 1 -- D -!2QT w. = a. w. 
-J -J -J 

The matrix Q can be calculated from the Householder 

transformation (see, eg, Wilkinson and Reinsch, 1971). 

(5.20) 
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(5.21) 

(5.22) 

J\fter the w. 
-J 

have been updated in this manner, the 

can be updated rather efficiently in the following way. 

From (5.13) and (5.19), 

clr ! 
J = 

de 

( 5 . 2 3) = 

Now, from (5.17) 

(5.24) 

-w!T l 8.w! 
- J _ 1-1 

a' 

T -~ , -~ T 
-w. QD l8.D Q w. 
-J - l -J 

a 

II ~k 11

2 ~a:~ 
1 ± II ~k 11

2 

T 
+ w! w' 

- J - k 

and from (5.16) and (5.19) w' 1s parallel to e 
-k -a 

so 

(5.25) 
T w! w' = (w!) (w') . 

-J -k -J a -k a 

Applying (5.24) and (5.25) to (5.23), we have 

dr! 
aj = -I 

-a 

dr. 
- J 

T 8.w.w. 
1-J-l 

- dc 

, T T T + l 8 .w.Qe e Q w. 
_ 1-J -a -a -1 
a 

(w!) (w') 
-J a -k a 

, T T 
l e . ( Q w. ) ( Q w. ) + ( w ! ) ( wk' ) 
_ 1 - J a -1 a -J a - a 
a 

dr. 
_1_ 
de 
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(5. 26) 

and as 

dr. 
= dcJ ± \ e. (w ! ) (w ! ) + (w ! ) (wk') f 1 -J a -1 a -J a ~ a 

a 

<lr . 
= -dcJ ± (w!) l 8.(w!) ' -J a_ 1 -1 a 

a' 

l e. (w!) 
1 -1 a 

1s independent of J ' the updating of 

a' 
only requires a single operation. 
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dr. 
J 

de 

The operations of equations (5.19) to (5.22), and (5.26) describe the 

basic updating at change of partition. In practise, the initial step 

is to find the least squares solution (a=¢) . This is done using a 

Choleski factorization, LLT = ATA, which also provides the initial 

P matrix. L is actually lower triangular, but this does not persist 

beyond the first step. 

5 . 2 . 3 The Choice of the Orthogonal Transformation 

In the updating at a change of partition, an orthogonal 

transformation, Q, was chosen such that 

(5.16) 

without 

II w.11 
-J 

( 5 . 2 7) 

T 
Q ~k = II ~kll e 

-a 

specifying a precisely. 

lS concerned, it does not 

In (5.19) we had 

1 
QT 

1 

w! - Yz -~ = D w. = D V. 
- J - J - J 

T 
where v. = Q- w. 

-J - J 

We will now show that, as far 

matter · which a lS chosen. 

' 

as 



Thus 

(5.28) 

Now, in (5.24), 

-1 -D = I + 
II :':k 112 ~a~: 
1 ± II :-:kll2 

T 
= I - (1 ± cS) e e , -a-a 

where cS = ( 1 ± II :':k 11
2 

) -~ • Hence 

(5.29) w! = v. - (l ±cS )e (v.) . 
- J - J -a -J a 

So, 

II w ! 11
2 

= II V. 11
2 

-J - J 
2 2 2 

2(v .) (1 ± cS) + (v.) (1 ± o) 
- J a - J a 

( 5. 3 0) 

= II V .11
2 

-J 

= II v .11
2 

- J 

= 11 v.11
2 

- J 

2 
(v.) (l±o)(l+o) 
"' J a 

But, from (5.27), and using (5.20), (5.21), (5.22), 

(v.) = (Qw.) 
- J a -J a 

. A -"T 
= { ( I- 2q q ) w. } 

"' "' - J a 

AT A 
= (~J·) a - (2q w.)q - ..... ..... J ..... a 
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(5. 31) 

(5. 32) 

= (w.) + 
- J a 

= 

C~j)a8kll ~kll' { C~k)a - 8kll ~kll} 

II ~k II' { II ~k II - ek c~k) a} 

T 
w. wk ek 
- J -

Substituting (5.31) in (5.30), and using 

II w ~ 11
2 

---J 
= 11 w. IJ 2 

-J 

which 1s independent of a. 
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II V. II = II w. II ' 
-J ---J 

The above result shows that II w.11 lS independent of which 
- 1 

a lS chosen. However, from (5.28), (5.29) and (5.31), 

T 
ek w. wk 

(5.33) (w ! ) = - J "' 
~ ' --- J a II ~k II c 1- II wk II ) 2 

if, as is normal, o ' = o - , { k} . 

Now if the same a 1s chosen at each iteration, and there 

happened to be a huild up of the th 
a element of some of the w. ' 

-1 

there coulJ be ~111 ~1ccclcr~1ting process of the \L becoming parallel 
- 1 

to e and hence to each other. It is therefore suggested that it -a 

may be safer to cycle tl1e a . Both methods were tested in the 

implementation of the a l gorithm without any apparent difference 

being found. 



5.2.4 Behaviour of Derivatives at Change of Partition 

We saw earlier that a change of partition became necessary 

1n order to keep x feasible, i.e. so that the solution of (5.8) 
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also solved (5.7). We have yet to show that we do end up with a 

feasible partition for the next range of c , 1.e. if o + a +' {k} , 

' drk 
ek de ~ 1 , and if 0 + 0 - { k } , 

dr 
8k dck < 1 , for if this is not 

so, then the algorithm could cycle o + a ± · { k } + o + ... , or end up 

in an infeasible partition with x solving (5.8) but not (5.7). This 1s 

not simple to show analytically, but comes as a fairly easy consequence 

of one of the theorems in Chapter 4. 

0 + 

and 

Assume that we have cycling at a change of partition, 

a ' + a + 
dr' 

k 8
k de 

... ' 

< 1 

and let 0 I = 0 U' { k} 

If we now reduce C 

drk 
Then we have 8k de 

slightly and consider the 

kth residual, we have Irk! ~ c and lrkl > c . This, however, 

contradicts Theorem 4.4 which states that, at adjacent partitions 

I r k I > c <=> I r k I > c , and I r k I ~ c <=> I r k I ~ c . 

~ 1 ' 

The above result shows that cycling cannot occur at a simple 

change of partition, when only one residual changes status. As was 

shown in example 4.1, however, (discussed in Section 4.2.9), it 1s 

possible to have more than one residual changing status at a particular 

value of c . In this case it is rather more difficult to show that 

cycling does not occur. This is dealt with in Section 5.3. 

5.2.5 The Algorithm Summarised 

Algorithm 5.1 To find the M-estimator for any value of c . 

Step 1 Perform a Choleski factorisation on the initial matrix and 



find the least squares estimator. 

Step 2 Determine the end of the current range of c and if 

this includes the final c, calculate the M-estimator and stop. 

Step 3 Determine the partition for the next range of c . 

Perform the updating required to enable calculation of 

the M-estimator and residuals within the new partition. 

Go to 2 . 

5.3 FINITENESS 
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In order to demonstrate that the algorithm 1s finite, we have 

to show that 

(i) there are only a finite number of ranges of c, 

(ii) cycling cannot occur at a change of partition. 

Theorem 5.2 

There are only finitely many ranges of c . 

Proof 

If we re-write (5.8) as 

(5 . 34) 
2 

= ~l r. + 
l 

m1n1m1se F(c,x) 
0 -

0 
+ 

* * where o = {i Ir. (x ) > c} , o = {i Ir. (x ) < - c } , 
+ l - - l 

-
0 

we see that as there are only finitely many partitions 
- -

0 , 0 , 0 
+ 

'so 

we need only show that each such partition can only be visited once in 



order to show (i) above . 

Provided B, the submatrix of A defined by o , is of 

full rank (and from Theorem 4 . 6 we know that there is one), the 

solution of 5 . 34 is 

( 5 . 35) X = c(BTB)-l BT(L: a. l a.) 
' - -l - -i 

0 0 + 

and thus 

d~ = (BTB)-1 T -I a.) (5. 36) B (1_. a. 
de - -l - -l 

0 0 + 

- -
Now if the partition o, o+, o 

with corresponding solutions :1 and :2 ' 
is feasible for 

then for any 

C = 
3 

a c1 + (1-a) c2 , 0 <. a < 1 , 

~3 
= a~l + (l-a)~2 lS of the form 

~3 
= ~l (1-a) (c2-cl) (BTB)-1BT(L a. l a.) 

- -l - - l 
0 0 

dx 
+ 

= ~l - cSc 
de 

Moreover, for l Eo,lri(~l)I ~ C and lri(~2)1 ~ c => I ri (~3) 

for l Eo 
' 

r. (x1) > C and r. (x2) > C => r. (x
3

) > C + l - 1 - 1 -

~ 

for l Eo 
' 

r.(x
1

)< -c and r. (x
2

)< -c => r. (x ) < -c, 
l - 1 - 1 -3 

so that no residual would want to change status at ~3 , 

C 
2 

~1 re \vi thin the s.imc r~1ngc of c . 

1.e. 

and 

C · 
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At this point it will be valuable to recall some results from 

the previous chnptcr and strengthen a result shown in passing in one 

of its theorems. 



Lemma 4.2 showed that if 0 = 0 U {k}, 
a b 

then for any 

A partition 

Ir. (x ) I > c , i E o . 

o was · defined as being a-feasible if 
a 

1 -a 

Theorem 4.2(b) showed that the feasible partition had the 

smallest function value of all a-feasible partitions. 

Lemma 5.1 

Proof 

F (x) > Fb(x) ~ Fb(xb) . a -a -a -

F (x) =Yi l r.(x ) 2 
+ L (clr.(x )j - Yzc

2
) a -a 1 - a 1 - a 

0 -a o 

> ~ \ - 2L 
2 

r. (x ) 
1 -a 

+ 

a 

1 2 
- YzC 

= l,~ ri (~al + I (ciri ( i_ca) I - l,c
2

) 

b ob 

+ /__, ( c Ir. (x ) I 
_ 1 -a 
0 

a 

with the " ~ " being strictly " > " unless Irk (~a) I = c . 

Finally, as nnn1nnses 

~ Fb ( x ) ~ F ( x ) . 
- a a -a 
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We now show that when there is more than one residual 

wanting to change status, cycling can be avoided. As in the case of 

just one residual (Section 5.2.4), we do not consider the partition 

but, equivalently, changes using residual derivatives at c0 

residuals at a slightly reduced value of 

c being slight enough so that residuals 

C 
' cl ' 

the reduction 

not equal to co in 

when C = C 
0 

arc still not equal to c1 
1n size when C = cl 

do this basically by giving an algorithm guaranteed to find a 

feasible partition for a given value of c, starting from an 

arbitrary partition. 

Algorithm 5.2 

size 

in 

We 
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To find a feasible partition for any value of c, starting 

from an arbitrary partition and proceeding only by adjacent partition 

changes, 1 . e . o -+ o ± { k } . 

Step 1 Starting from any initial parti t.ion, change partitions 

a -+ a U {k} , where Irk I ~ c , until a partition o1 is reached 

which is 6-feasible. 

Set 1 +- 1 . 

Step 2 If a. lS feasible, stop; 
1 

else for any k such that kEo.,lrk(x.) I > C 
' 1 - 1 

Corm 0 . l = () . - {k} 
1+ l 

Set i +- l + 1 . 

If a . i lS a-feasible, go to 2 
' 

else 



Step 3 Find y. of the form 
-l 

y. = ax. + (l-a) ~i-1 0 < a :::; 1 
' -l -l 

such that Ir. CY.JI 2':c 
' J E o. 

' J -l l 

and Irk (y.) I = c for (at least 

Form 0. 1 1+ 

Set l -+- i 

If 0. lS 
l 

Step 4 

-l 

= 0. u { j 11 r. CY. J I = C 
l J -l 

+ 1 . 
a-feasible, go to 2· 

' 

Find y. of the form 
-1 

} . 

else 

y. = ax. + (l-a)[1._ 1 0 ~a:::; 1 
-l -1 --

such that lr.(y.) I 2': c J E o. 
J -l l 

one) k E o. . 
l 

and lrk(y.) I = c for (at least one) k E o .. 
- l l 

Form o . 1 = CJ • U { j I I r . (y . ) I = c } . 
1+ l J -1 

If 0. 1s CT-feasible, go to 2 ; 
l 

Else go to 4. 

Theorem 5 . 3 

Algorithm 5.2 terminates with a feasible partition. 

Proof 
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As, in steps 3 and 4 of the algorithm, the partition change 

1s of the form oi+l = oi U { } , it is clear that a sequence of 

a-feasible partitions is generated at step 2. 

We will prove that this is a finite sequence by showing 

that the function values of this sequence of a-feasible partitions 

decreases monotonically. We will denote by 

partition found in the sequence. 

0 
a 

the last a-feasible 



At step 2, we have 

so by Lemma 5.1, 

0 . 1 = 0. -{k} , with 
1+ l 

( S. 3 7) F. 1 (x. 1 ) < F.(x.) = F (x), 
1+ - i+ 1 - l a - a 

so that if 0. 1 l+ 
is the next a-feasible partition in the sequence, 

the function value has been decreased. 

( 5. 38) 

At step 3, by Lemma 4.2 and convexity, 

F. 1 (x. 1) ~ F. 1 (y.) = F. (y.) ~ a F. (x.) + (1-a) F. (x. 
1

) ~ 
l+ - l+ l+ - l l - l l -l l - l-

F. (x.-1) 
l - l 

But as, by Lemma 5.1 (remembering that 0. l-+ 0 . 
l- l 

was the partition 

change in step 2 , so that 0. l = 0. U { k} , and 0. 1 = 0) , l- l 1- a 

F. 1 (x. 1) > F. (x. 
1

) ~ F. (x.) , 
l- - l- l - l- l - l 

( S. 39) F. 1 (x. 1) ~ F. 
1

(y.) < F. 
1

(x. 
1

) - F (x) . 
1+ - 1+ 1+ - 1 1- - l- a -a 

Thus, if 0. 1 1+ lS the next a-feasible partition ln the 

sequence, the function value has again been decreased. 

At step 4, by Lemma 4.2 and convexity, 

(5.40) F . l ( x . l) ~ F . l ( y . ) = F . ( y . ) ~ aF . ( x. ) + ( 1-a) F . ( y . l) ~ 
1+ - 1+ 1+ - l l - l l - l l -l-

F.(y. 1). 
l - l-

So, by (5 . 39), (toking into account the incrementing of 

1 that has tak en place) 

cs . 41) - F (x ) . 
a -a 
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At each cycle through step 4, (5.40) and (5.41) still hold 

(each (5.41) now being proved by (5.40) and the previous (5.41)), 
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so then when finally a 6-feasible partition is reached, its function 

value is less than that of the previous 6-feasible partition. 

Finally we observe that as no 6-feasible partition can be 

repeated, and there are only finitely many of them, the sequence must 

terminate, and as the only stop in the algorithm is at a feasible 

partition , the final partition is feasible . 

It is interesting to note here the connection between 

algorithm 5 . 2 and TI1eorem 4 . 2(b). The theorem stated that of all 

6-feasible partitions, the feasible partition has smallest function 

value . The algorithm generates a sequence of 6-feasible partitions 

of monotonically decreasing function value, ending with the feasible 

partition. 

Theorem 5 .4 . 

It is possible to avoid cycling at a change of partition, 

even when there is a possibility of more than one residual being 

involved in changing status. 

Proof 

/\s s umc \vC hnve a feasible parti. ti.on 0 
a 

at C = C 
a 

Let o = { i I I r . ( x ) I = c } and 1 et S be the set of a 11 
= 1 - a a 

partitions defined by 



(i) 

(ii) 

Ir. (x.) I > c , 
i - J 

Ir. (x.) I 
i - J 

< C ' 

Then, with 

be such that 

-
iEo o. ES 

a ' J 

iE o 
a 

- 0 
= ' 

o . ES . 
J 

c = cb , and starting from o , algorithm 5.2 
a 
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shows how to avoid cycling in reaching a feasible partition . Moreover, 

from the definition of only partitions belonging to s are 

involved in the process, i.e . only residuals with indices belonging 

= 
are involved in partition changes . to o 

Now because Ir. I = c at C = C a ' 
i E o 

= ' 
for all 

i a 

partitions belonging to S , and because, from Theorem 5.1, r. is 
i 

a linear function of c within any partition, performing partition 

changes based on residual values at cb is equivalent to performing 

partition changes based on residual Jcr.ivativcs at 

completes the proof. 

c , which 
a 

Note that we have not shown above that cycling cannot occur, 

but rather how it can be avoided. This feature was not built into 

the implementation of algorithm 5.1, and in the rare cases (all 

artificially and deliberately constructed, eg. example 4.1, Section 

4 . 3 . 7) where multiple residual change did occur, a natural treatment 

coped quite adequately. 

Algorithm 5.2 can, of course, be used to calculate the 

M-estimator if c is known, or, with some modification, if c is 

to be estimated at the same time. It may be reasonably efficient, as 

only residual values at "old" partitions were needed to define the 

next partition, never the residuals at the partition so defined. 



88. 

This algorithm has not been implemented, being rather similar to 

Huber's algorithm described earlier. Note, however, that Huber(l973) 

could not guarantee finiteness for his algorithm. 

5. 4 NUMERICAL RESULTS 

Apart from checking the examples in Chapter 4 which were 

small enough to calculate by hand and diverse enough to cover most 

cases, test problems were generated in the following way. An 

(n-m-1) x (m+l) matrix was generated using W1iformly distributed 

random numbers. Then an m x (m+l) matrix was prepended onto it as 

rows 1 to m, this matrix being chosen so that x = 1 solved the 

equations r. = 0 
l ' 

i = l, ... , m. Finally a row was added so that 

A=~ satisfied the least absolute deviation (LAD) criterion 

L A.a. + L 8 . a. = 0 , 
. l l ~ l . l l ~ l 1= ,m 1=m+ ,n 

where the a. are m-vectors corresponding to the rows of A, and 
~ l 

e . = s gn ( l !\ . . -
1 . l J 1 J = ,m 

was run on the test 

!\ . ) 
m+l,1 Thus o

0 
= {l, ... ,m} 

data so generated, allowing c 

Then the program 

to reduce right 

down to zero, and checking to see that the LAO partition was as 

obtained as expected. 

Results are summarised in Table 5.1. Testing was done on a 

1)1 :. c 10 computer, ;111d ti111cs :ire i11tcr11:1l C:PlJ times . In som e case s , 

the final partition had lo! > m 
' 

although in every such case 

{ l J • • • I 1\1 l \v :1 ~ ;1 ~uhsct or 00 . T 11 on e or the (111 =8 ' n=lO O) run s , i1 

residual moved from 0 to -
0 

' 
ba ck to 0 at a reduced l evel of C 

-
am<l th n out to o ogain when c \vas r c <luce<l s till f ur t her . Thi s 

' 



was the only occasion 1n 45 test runs that this happened. The 

time per iteration was calculated excluding setup time (reading 

in data and performing the initial Choleski factorisation), 

which was consistently close to .8n x (iteration time). A facility 

was built into the program to make e of (5.20) ~a either always 

or to cycle There was no discernable 

difference in any run using the two approaches, although it is 

conceivable that with more ill-conditioned data that the cycling 

approach could avoid problems. 

O(nm) 

Table 5.1 demonstrates a time/iteration relationship of 

and an 2 O(n m) relationship of total time 1n solving LAD 

problems. It 1s not, of course, advocated that this algorithm be 

used for solving LAD problems, as there clearly must be at least 

n - m iterations, a complexity greater than that observed elsewhere -

5 runs of 10 x 200 on the LAD algorithm described in Chapter 6, for 

example, took about 3.5 seconds. 

6 

8 

10 

TABLE 5.1 

Total time for 5 Test Runs (Seconds)/ 

Time per iteration (m secs). 

50 

2.41 

10.20 

3.00 

12.80 

3.50 

15.22 

100 

9.75 

20.15 

12.30 

25.27 

14.50 

30.25 

200 

40.32 

41.08 

49.95 

50.60 

59.21 

60.51 
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5.5 

5.5.1 

M-ESTIMATOR DUALITY 

LP Duality 

for an LP problem, 

. . . 
m1n1m1se T 

C X subject to Ax ~ b, 

* the K.T. optimality conditions for x to be optimal are 

* (5.42) Ax ~ b 

(5.43) for some u ~ 0, 

(5.44) T 
u (Ax-b) = 0. 

These are referred to as primal feasibility, dual feasibility, 

and complimentary slackness respectively. Now the complimentary 

slackness condition can be interpreted as an appropriate subproblem 

being optimised. This is rather trivially true in the case of LP 

problems, as the appropriate subproblem is constrained to a single 

point - as indeed it is for every iteration of the simplex algorithm, 

each point being the vertex of a polyhedron defined by the set of 

active constraints. To illustrate this point further, consider the 

RLS algorithm. At each step (including the last) the appropriate 

subproblem has the form 

m1n1m1se \ (Ax-b) 2 
subject to X. = 0 , 

1 

The optimality criteria for this subproblem are 

(5. 45) 

(5 .46) 

x. = 0 , 1 E a 
1 

for some (unsigned)u, ATAx 

1 E a . 
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( 5 . 4 7) T 
U X = 0 • 

The dual variables u in (5.46) are also the dual 

variables for the RLS problem, so (5.47), T 
u x = 0 is also the 

complimentary slackness condition for the RLS problem. 

5.5.2 M-estimator Duality 

In this section we wish to point out some parallels 

between duality as it applies to LP problems and some of the results 

of the last two chapters. 

In LP problems, the optimality criteria are primal 

feasibility, dual feasibility and complimentary slackness. The 

optimality criteria for the M-estimator function are a-feasibility, 

a-feasibility and optimisation of the relevant subproblem (i.e. 

corresponding partition). 

It is well known that the optimal function value for LP 

problems is the smallest primal-feasible value and the largest 

dual-feasible value. Theorems 4.2(a) and (b) showed that the 

optimum value for the M-estimator is the smallest of all a-feasible 

points and the largest of all a-feasible points. 

The algorithm for the restricted least squares problem in 

Chapter 3 had an overall pattern of moving towards dual feasibility, 

keeping compl iment~1ry slackness at e;ich iterat Lon. Primal 

feasibility is ignored until dual feasibility is achieved, when it is 

used for optimality testing. If the optimality test fails, a 

procedure is described for finding another dual feasible point with 
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smaller function value, neither primal nor dual feasibility being 

necessary at intermediate points. In algorithm 5.2, for the · 

M-estimator, the overall pattern is to move towards a-feasibility, 

optimising subproblems at each iteration. a-feasibility is ignored 

until a-feasibility is achieved, when it is used for optimality 

testing. If the optimality test fails, a procedure is described 

for finding another a-feasible point with smaller function value, 

neither 0 - nor a-feasibility being necessary at intermediate points. 

The above observations, whilst in no way constituting 

a duality theory for the M-estimator, at least suggest a close 

parallel between LP duality and 0/0-feasibility for the M-estimator, 

and are tentatively advanced as perhaps the first halting steps 

towards a duality theory for the M-estimator. 
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CHAPTER 6 

AN ALGORITHM FOR THE LEAST ABSOLUTE DEVIATION ESTIMATOR 

6.1 INTRODUCTION 

The least absolute deviation (LAD) estimator is the solution 

to the problem 

( 6. 1) minL Ir. I 
l 

T r. = a. x 
l ~l ~ 

b. 
l 

The problem predates least squares (LS) estimation, being 

proposed by Boscovitch in 1757 to fit a line to points on the plane. 

He also added the constraint that the line should pass through the 

centroid of the points, and gave a method for finding the line. 

Edgeworth, in 1887, dropped the constraint and gave a new method for 

the solution of (6.1). Due, however, to the lack of continuity 

of the derivative of the modulus function, the problem (6.1) is 

difficult and despite continuing interest in it, the relative ease of 

computation of the LS method contributed to that method's greater 

popularity. An historical review of LAD, and LS, regression can be 

found in Harter (1974-1976). 

The renewed interest 1n LAD stems largely from the search 

for robust methods which arose 1n the early 1970's (eg. Hampel, 1971). 

llarter (1977) suggeste<l a two-stage method for calculating regressions, 

using the kurtosis calculated after doing one regression analysis to 

estimate the kurtosis of the data, after which an L
1

, L
2 

or 

L
00 

regression would be done according to whether the data was 



leptokurtic, mesokurtic or platykurtic. Huber (1974) did point 

out that among all LP estimates, only L1 is technically robust. 

He also claims (Huber, 1977,b) that it has a rather low asymptotic 

efficiency in approximately normal situations, and that there are 

better methods. 

Still, the method is extremely robust and over the last 

decade or so there have been several algorithms developed to solve 

the problem. Those which have proved efficient fall into two 

categories; gradient algorithms (Bartels, Conn and Sinclair, 1978, 

Bloomfield and Steiger, 1979); and algorithms based on linear 

programming (LP). 
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Bloomfield and Steiger (1979) attribute to Harris in 1950 

the realisation that the LAD problem could be turned into an LP 

problem. The first practical LP formulation was probably by Barrodale 

and Young (1966), who expressed each residual as the difference 

between two non-negative variables. The LP algorithms solve either 

a primal LP problem using a modified simplex algorithm, (Barrodale 

and Roberts, 1973, Spyropoulos, Kiountouzis and Young, 1973 , 

Armstrong and Frome, 1976,b), or a dual LP problem by a modified dual 

simplex algorithm (Robers and Ben-Israel, 1969, Abdelmalek, 1975). 

The other approach which has proved successful is based on 

a theorem of Usow (1967) where he showed that "the set of best L
1 

approximations is a closed convex set which is the convex hull of 

best L1 ~1pproxjm~1tions to f (x) for which there are at least 

m zeroes''. These methods find a vertex (i.e. m linearly 

independent zero residuals), decide on one residual to allow to 

become non-zero, and perform a line-search in the direction so 

defined. 



In a rather startling result, paralleling that by Dixon 

(1972) for Quasi-Newton algorithms, Osborne (1980) has shown that 

all of the LP and gradient algorithms mentioned above are identical 

in that they produce identical sequences of iterations provided they 

use 

(i) equivalent starting procedures 

(ii) equivalent procedures for entering and leaving the basis. 

The algorithm presented below is essentially a gradient 

method, but differs from those above in that it does not insist 

that there must be m- 1 residuals kept to zero in every descent 

direction, thereby allowing a greater freedom in the choice of such 

directions . 

6.2 

6.2.1 

TIIE /\LGORTTIIM 

General Description 

The approach described below was suggested by the defining 

function of the M-estimator. The algorithm described in the 

previous chapter can, as was observed there, be used to calculate 

LAD, but suffers from the disadvantages of having at least n - m 

iterations, ancl so consequently a lot of clowndating, together with 

starting from a fixed point which may not be a good approximation 

to the LAD estimator. 

Instead of minimising the AD function directly, we consider 

95. 



96. 

(6 . 2) minF(x,c) = ~(x-x )
2 

+ c I:j r. j , 
..., ...,Q l 

where ~o 1s an initial estimate, and C 1s a continuation 

parameter. We shall show below that for large enough, but finite, c, 

the minimiser of (6.2) is the LAD estimator. 

At the starting point, c = 0 , and (6.2) is not very 

difficult to solve. There is still, however, the problem that some 

residuals may be zero, and given that there will be (at least) m 

zero residuals at the optimum~ we will sometimes want to force some 

residuals to stay on zero for a range of c . So we re-write (6.2) 

as 

(6.3) minF(x,c) 
..., = ~(x-x

0
)

2 
+ cI8 .r. + cfv.r. , 

..., ..., CT l l l l 
0 

where CT 1s the set of indices of residuals which are to stay at 

zero whilst c is increased. The optimality conditions- for x to 

solve (6.3) arc 

(6.4) X = XO - cie.a. 
..., 1 - 1 

CT 

Differentiating 

dx 
(6.5) -Is . a. = de 1 -1 

CT 

and so 

dr. 
-a:Ie.a. (6. 6) _ J = de -J l-1 

CT 

civ.a. 
_ 1 - 1 
CT 

(6.4) with 

Iv.a . 
_ 1 - 1 

cia. 
-1 

CT CT 

a:Iv.a. -
- J _ 1-1 

CT 

respect to C 
' 

dv. l 
--
de 

ca:Ia . 
dv. 

1 
0 for -- = 

..., J - - 1 de 
CT 

-Letting B correspond to the subs et of A defined by CT 

J E -
CT 



(6. 7) 

(6.8) 

BTB d 
( C \J) -BTL8 .a. = de 

d 
(C V) = de 

.. C \) = CA 

\J=A+ ~ 
C 

..., l ..., l 
a 

-(BTB)-1 T 
B I e. a. 

l...,l 
a 

+ 1J 

' 

= A 

-where A and 1J are constant vectors, A being defined by a and 
..., 

1J depending on the starting point. Equations (6.3) to (6.6) now ..., 

become 

( 6. 9) 

( 6. 10) 

(6.11) 

(6.12) 

minF(x,c) = ~(x-x 0)
2 

+ cI 8 .a. + cI A .a. + Iw.a. 
..., ..., l ...,l l...,l - l ..., l 

X = XO - cie.a. 
..., l ..., l 

a 

dx 

de - -Is.a. 
l - l a 

dr. T 

()C
J = -a.Ie.a. 

..., J a 1 ..... i 

a a a 

-a 

The above equations indicate that X 1s a linear 

function of c . We now wish to determine for which range of c 

x as defined by (6.10) solves (6.3). 

Theorem 6.1 

If x solves (6.3) so th~t 

(6.4) 
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and i Ea~r.(x) f O, 
l "" 

then x solves (6.2) iff /v/ $ 1, and if it does solve (6.2) it 
"" "" 

is the unique solution. 

Proof 

(i) Assume /v/ $ 1 , but x does not solve (6.2). Then there 
"" "" "" 

exists o such that 

F(x+o,c) - F(x,c) $ 0 

T => (x -x ) o 
""V ""Vo "" 

"" 

+ oTo + cie.a!o 
l--..l--.. 

0 

- civ.a!o + oTo + 
_ 1--..1--.. --.. --.. 
a 

=> cic-v.a!o+/a!o/ ) 
_ 1--..1 --.. --..1--.. $ 0 , 
0 

a contradiction, as V. s 1 . 
1 

(ii) If vk > 1 for some k, we merely choose o such that 
T 

a.o = 0 , 
--..1--.. i E o - { k } , anJ I/ o I/ very small. 

We now see that the range of c for which (6.10) solves 

(6.2) 1s <lcfincd by 

(6 .13) (i) 

(ii) 

8 . r. > 0 
1 1 

I CA. +lJ. I $ C 
l l 

1 E a 

E -l O • 
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The algorithm thus proceeds from range to range of c , 

changing the partition 0-+0 u · {k}if rk violat.es (6.13(i)), or 

a-+a U{k} if Ak and µk violate (6.13(ii)). Updating at 

partition change will be des er ibecl in Section 6.2.2, but it is worth 

if - - U{k} so that noting here that a -+ a , µk is chosen 

CAk + lJ = eek , so that X 
' 

and F(x,c) are continuous in C . k 
dx -

The algorithm stops when a defines a full basis, so that de - 0 
Jr. 

and thus dj = 0, so that (6.13(i)) can never be violated, and 

-
1 . E < , l 0 , so that (6.13(ii))can never be violated. This 

corresponds to the optimality criteria for the LAD, 

method in 

Isa. 
~ i 

a 
l , i E 0 

It will be observed that the method is a steepest descent 
dx 

that the direction of descent 
de is the projection of 

99. 

the derivative of Ie.r. on the hyperplane defined by r. = 0 i Ea 
' i i a i 

We have yet to show that for large enough, but finite, C 
' 

the solution of (6. 2) is also a solution of (6.1). 

Theorem 6.2(a) 

If x ' is the unique solution to the LAD problem (6.1), 
~ . 

then for c ~ c 0 , where c
0 

is finite, x' solves (6.2). 

Proof 

As x' is the LAD estimator, we have 

Ie.a. + LA.a. = 0, ii - i~i a a 



-
and, as a spans the space, we can find µ such that 

~ 

(6.14) x' = ~o - Iµ.a. 
- l~l 
a 

= ~o - cie.a. cIA.a. Iµ.a. l~l - l~l - l~l a a a 

Now as x' solves (6.1) uniquely, I A. I < 1 ' 
l 

1 E a 
' 

we can choose c large enough so that 

(6.15) /cA.+µ . / ~ c , 
l l 

1 E a 
' 

sothatbyTheorem6.l, x' (uniquely) solves (6.2). 

We now extend the above theorem to the case where the LAD 

is not unique. As Theorem 6.1 has shown that (6.2) has a unique 

minimum, not all LAD minima will solve (6.2). 

Theorem 6.2(b) 

If the LAD 1s not unique, and S 1s defined by 

S ={~/~solves (6.1)}, 

and x ' solves 

' X E s ' 

then, for large enough but finite c , x' solves (6.2). 

Proof 

In the proof of Theorem 6. 2 (a), at equation (6.15) we used 
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the fact that I:\ . I < 1 to state that for c large enough 
1 

equation (6.15) could be satisfied. We shall show that for x' if 

I:\. j = 1 , then sgnµ. = -sgn:\., so that again (6.15) can be 
1 1 · 1 

satisfied. 

With S defined as above, it is well known (Usow, 1967) 

that S is a polyhedron with vertices having m zero residuals. 

We shall now parameterise these vertices. Consider any vertex, y. 

Like every other point within S, it satisfies 

(6.16) Ie .a. + LA .a. = 0, 1-1 _ 1-1 
a a 

where a= · {ijr. (y)iO} . 
1 -

Now for any k Ea such that /:\kl = 1 if we move ' 
slightly away from y to y' in a direction such that -
r. (y') = 0 i E o - { k} sgnrk([') = :\ and close enough to 1 - ' ' k ' 
so that sgnr. (y') = sgnr. (y) , i Ea, then we still have, at y' , 

1 - l -

8.a. + L :\.a.= O , 
1-1 1- 1 

0- {k} 

and so y' 1s within S 

r. = 0 
J 

For all other edges away from y, rk = 0, so that the hyperplane 

r = 0 
k supports S with sgnrk([') = sgn:\k for all 

now define 

y' ES . We 
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T
1 

= · {ilAi = 1 at some vertex of S} 

T
2 

= · { ii Ai= -1 at some vertex of S } 

T = { illA. I< 1 at all vertices of S} 
3 1 

It lS clear that Tl' T2 and T3 are discrete sets, their union 

-summing to 0 
' 

and that for all points within s 
' 

where (6 .16) 

holds, if A. = 1 ·E and if A. = -1 i E T
2 ' l Tl, ' 

. 
l l 

With s thus re-defined, WC see that x' solves 

( 6 . 1 7) min~(~-~ 0)
2 

subject to T b. ~ 0 E a.x - l Tl ~1- l 

T 
b. 0 E -a .. X + > l T2 ~1~ l 

T 
b. 0 E T a.x = l 

~1~ 1 3 

From the Kuhn-Tucker conditions we have 2 ~ ~ O,r;: ~ 0, n 

unsigned such that 

(6.18) X - X = l ~.a. l r;:. a. + l n.a. ~0 l~l 1~1 1~1 
T' T' T3 1 2 

where T' 
1 

and T' 
2 

are the active constraints of Tl and T2 . 

If we now compare (6.18) with (6.14), we see that, at x' 

T' 
1 

UT' UT = 6 and so the c r 2 3 s ' s and n of (6.18) are the µ 
~ -

of (6.14) 

1.e. µ. = -~. ~ 0 l E T' 
l l 1 

µ. = r;: . ~ 0 1 E T' 
l l 2 

µ . = n. ] E T3 . 
1 l 
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But we had, for i E T A. = +l and for l E '[ 2 1 
, 

l 
, , 

A. = -1 So we see that in either case I CA. + µ. j ~ C and so ' i i i 

(6 .15) can be satisfied even if I A. I = 1 This completes the . i 

proof. 

6 . 2.2 Updating at Change of Partition 

Once, for a particular range of c, the correct partitioning 

-
0, 0 has been determined and the signs of 

A can be calculated from (6 . 7) 

T -1 T, 
A= -(BB) B le.a .. 
- i-i 

0 

r. , 
l 

i E o known, then 

This then determines µ 
' 

for in ensuring that X and therefore r. 

are continuous, we need, for 0 -+ 0 - { k } , 

and for 

value of 

o-+o ±{k} , that 

Once A and µ 

c from (6.10), 

CA' + µ' = CA + 

are known, we can 
dx . 

de 
from (6.11), 

that CA' + µ' = sgn rk k k 

µ 

determine x for any 
dr. 
dj from (6.12) and 

i 

' 

the limits of this range from (6.13). The updating of A is . therefore 

basic and we now describe an efficient and stable method of doing this. 

Basically we shall use a QU factorisation of B, where 

Q h 1 QTQ -- I , and U t · 1 is ort ogona, 1s upper r1angu ar. (6.7) then 

becomes 

(6 . 19) -1 T , 
A = -U Q l e .a. 

i - i 
0 

If o' = CJ U {k} , 11' = (B,~k) ~ncl in thi s case the 

orthogonalisation 1s performed using the Gram-Schmidt process. If 

WC let 

Q' = (Q,q) U' = U , r 



we require q, r and p to satisfy 

(6 . 20) Q'U' = B', 

(6 . 21) T T 
Q q = 0 , 1 q q = . 

~xpnnding (6 . 20), \ve have 

( 

(B,~k) = (Q,q) 

l 
u r 

T 
0 p 

= QU , Qr+ Pg 

So 

(6.22) 

Mult iplying (6.22) by QT, 

(6.23) 
T 

r = Q ~k 

Then from l6 . 22) J 11<l (6.23), 

(6.24) 

and as 11 q II = 1 , we a 1 so have p and q 

If o' = o { k } , and k is the last column of B , 

Q' an<l U' arc merely the first k - 1 columns of Q and U . If 

k is not the last column of B , we re-order B so that it is, 

using Civens matrices. /\ Givens matrix .1.s a symmetrical orthogonal 

matrix of the form G = y cS 

cS -y 

If we had 
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r 

p t 
0 

then 

I'. 

(81,132) = Q u1 u12 = Q(Rl 'R2) = QR 

OT T 
u 

0 u2 

The matrix R lS upper Hessenberg, eg if p = iol = 5 

and k = 3 
' 

X X X X 

I'. 0 X X X 
R = 

0 0 X X 

0 0 X X 

0 0 0 X 

If we now choose Givens matrices Gk k 
1

, ... ,G 
1 

so 
' + ·P- ,p 

that 

GR G G 
= p-1,p' .. 1k,k+l then 

QGk k 1' .. G -1 ' + p ,p 
= (Q' ,q) 

has orthonormal columns and 

(B 1 ,B 2) = B' = Q'U' as required. 

The above treatments are given in some detail by Daniel, 

Gragg, Kaufman and Stewart (1976). In that same paper, they consider 

the possibility that in the Gram-Schmidt process QTq i O . They 

suggest a test 



(6.25) < e ll qll ' 

where w and 8 are termination parameters. If the above test 

fails, they re-orthogonalise, using the most recently computed q 
"' 

instead of ~k' both in the Gram-Schmidt process and in the test 

(6.25). After some experimentation, they have suggested w = 0 
' 

8 = 1.4 for the termination parameters. If the test fails more than 

four times consecutively, they initialise re-start procedures. In 

106. 

the implementation of the algorithm, the re-orthogonalisation procedure 

was used, but four failures of the test (6.25) was treated as degeneracy 

in the model and the observed value, bk , of that observation 

perturbed. This only ever happened with specifically constructed 

exan~les, never in the main test ing using randomly generated data. 

6.2.3 Progress of the Algorithm 

In this section we attempt to give an over-view of what 

happens within the algorithm as c is increased. Specifically, we 

establish three results about the progress of the algorithm: that 

F(c) is concave in c ; that II ~-~
0

11 does not decrease as c 

increases; that II r. I 
l 

does not increase as c increases. 

Theorem 6.3 

F ( c) = min Yi (~-~0) 
2 

+ cI Ir. j lS concave in C . 
l 

Proof 

r ( c) 2 
c;.G.r. c;.>-.r. = \ (x -x ) + + + ;.ii.r. - - C __, Q , J I ' L I L l 

0 - -a 0 
dx 

with - c 
-c ie .ci. CLA.a. -(a +B) = = 

de ~ l-1 - l-l 
0 0 



(6. 26 ) 

(6.27) 

(6. 2 8) 

<lF(c) 
de 

T dx T 
= ex -x) _:_£ + Io.r. + cie.a. 

~c -0 <le 1 1. 1-1 a a 

dx 
+ LA .r . + Iµ.a! -c 

_ 1 1 _ 1~ 1 de 
a a 

= '8.r. + '\.r. 
l 1 1 ~ 1 1 
a a 

= Ie .r. = Ilr. I 
1 1 l 

a 

Differentiating (6.26) with respect to 

d2F( c) Ie. a~ 
dx T ~ 

= = - Cl ( Cl+ s ) 
dc 2 1~1 de a 

dr. 
Now _] = 0 J Eo 

de ' 

T 
0 Eo i . e. a. (a+S) = J 

#'VJ "" "" ' 

IA.a~ (a+S) = 0 
1-1 - -

a 

T 
i.e. S (a+S) = 0 . 

So, from (6 . 27) and (6.28) 

T -a (a+S) 
T S (a+S) 

= -(a+S)T (a+S) $ O 

2 
So d F(c) 

dc 2 
1s piecewise constant, but always 

concave 1n c . 

Corollary 

= 
dF 
de 

. . 
1s non-1ncrcas1ng. 

dx 
-c 
de 

C 
' 

$ 0 . 

-a 

Thus 

dx 
-c 

<le 

F (c) 
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Theorem 6.4 

does not decrease as c increases. 

Proof 

W.i.th.i.n a range of c, 

functions of c, 

dF 
de 

= I Ir. I i 

dx 

dx 
-c 

de 

from 

+ C 

(6. 26) 

where x and r. 
-C J 

cl 
C~-:o) I Ir. j = -c-de de i 

d
2

F 
from (6.26). = -c 

dc
2 ' 

Hence, 

d 
!z(x -x )

2 dx 
= C~-~o) de de -C -0 

d2
F 

= -c -2 
de 

2: 0 from Theorem 6.3 . 

are linear 
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So that within a range of c , II ~c-~
0

11 does not decrease 

as c increases, and as x is continuous, 
-C 

this applies to all C • 

Note that .i.n the above rcsul ts we had I: Ir. I 
i 

. . 
non-increasing, 

and II ~c-~0 11 non-decreasing, rather than I Ir. I decreasing and 
l 

II ~c -:0 11 
. . 

Normally the E 0 w.i.11 not s p;in the 1ncrcas1ng. a. 
' 

1 
' -i 

space and then a + S,fO 
' 

so that II a+SII > 0 . However, it can occur 

E o-that the a. , 1 , do span the space at a sub-optimal partition, 
-1 



when 
dx 

de 
= 0 so that neither [jr. I 

l 

during that range of c . 

Example 6.1 

4 

1 

5 

2 

3 

5 

1 

1 

4 

1 0 

0 4 

. 999 2 

3 

7 

18 

2 

5 

6 

For .063 ~ c ~ .064, o = {1,4} T 
X = (.999, 1.004) , 
-C 

but the LAD has o = {1,2} , 
T 

X = (1,1) . 
-C 

6.2.4 The Algorithm Summarised 

Algorithm 6.1 To find the LAD estimator. 

Step 1 Find an initial estimate, and the initial derivatives 
dx dr. 

l 

de ' de 

Step 2 

else 

Determine, c , the cn<l of the current range of c . 
m 

C = oo 
m 

stop; 

determine the new partitioning 
dx dr. 

amend A 
1 

· 
' µ ' de ' de ' 

go to 2 . 

-
a' ' 

O '. 
' 

6 . 3 REFI E IENTS TO THE ALGORITIIM 

(i) 

(ii) 

The limits to a range of c were given 111 (6.13) as 

O.r . - 0 
l l 

lcA.+µ. I ~ c 
l l 

1 E o 

1 E o 
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Consider now the situation where 0 1 = 0 U {k} , and 

-
Provided that intervening adjustments to o do not cause 

IAkl to become ~ 1 , eventually condition (ii) will be violated and 

-k will move out of o again. 

Approaching the same question from another viewpoint, the 

aim of the algorithm is to find a full basis for which 

-i E o . If we consider this final basis and isolate the last two 

elements, J and k, say, 

(B, a. , ak) = 
~J -

then 

T 

Ak 
~k~ 

= --
pk 

T q. a -
A. = 

- J ~ 
J p . 

J 

If now k is dropped 

T q. (a -
:\ ! = ~J -

J 

and comparing the two 

(Q,3j ,gk) u r. :k ~J ' 
OT p. pj k - J 
OT 0 pk 

;\kpjk 
T T 

q . a - ;\k q . ak 
= ~J - - J -

p. 
J 

-from 0 
' 

sgn;\k~k) 
, 

p. 
J 

A. 's , we see that, given 
J 

they 

arc not too <lLffcrcnt, so knowing th~t I\. I ~ 1 it 1s likely that 
J 

-And thLs applies to all subsets of o . 

There are exceptions to both arguments, of course, but 

together they do provide an indication that if l;\kl > 1 that k is 

-
probably not a good candidate for inclusion in the final o . It 

-
therefore seems a good heuristic not to introduce k into o , merely 



leaving it in o but changing the sign of rk . 

QU will then not have to be performed, and A, 

The factorisation 
dx dr. 

µ ' de 
and __ J 

de 

will only have to be updated once, rather than twice. 

The necessary condition for the resulting partitioning 

-o , o , o t o b c f ca s i b 1 c is that i f k is l cf t in o and 
+ 

8 1 = -8 
k d I k 

rk 

( rernernb er 
drk 

sgn-­dc 

r = 0 
k 

at the point in question), then 

sgn-- = de 

dr' 
k -- -

de 

T 
= -a (a' ~k ~ 

Now, 

T T T 
= -~kC::-28k~k-QQ a+ 2ekQQ ~k) 

(6. 29) 

and as 

(6. 30) 

Jrk 
= -- + 

drk 
sgn-­dc 

de 

= -8 for 
k ' 

dr I 

k sgn-­dc 
to equal 

drk 
sgn-­dc ' we need 

This condition, (6.30), is equivalent to the condition !Aki > 1 

if k is introduced into 6, for 

=> 

=> 
-dr 

k 
<le 

> 1 

> 1 

> ,1T,1 T QQT 
~k~k - ~k ~k' 
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and as 
drk 

sgn de 

112. 

= - 8k , this condition becomes (6.30). 

In terms of what is happening in the algorithm, the above 

modification is equivalent to (hypothetically) adjusting the starting 

point , for we had 

X = ~o - cI 8. a. cI>. . a. I1-1.a. 
i-i - i-i - i-i 

a a a 

= c~0 -2c ek~k) - cI 8!a. cI>..a. I1-1.a. 
i-i i-i i-i 

a a a 

where 8! = 8. i = k 8 ' = - 8k 
i i ' ' k 

The above modification gave mark II of the algorithm . Mark 
dx 

IIIcame from not adjusting de, the descent direction, when a residual 
dx 

changed sign, but minimising the function along the line 
dx 

de 
in 

other words continuing along de so long as it is a descent direction, 

a l though only until the first residual changes sign will it be the 

steepest descent direction. As each residual changes sign, the only 

updating necessary is to a, all other vectors can be updated at the 

minimum along the line. The minimum 
drk 

along the line is recognised by 

condition 

amend all 

(6 . 23), 
dr. 

but ~ will not have been updated. 

i 

de 
at each change of sign of residual, 

drk 

de 

calculated directly for the test from equation (6 .12). 

6.4 

Rather than 

can be 

As in the case of th~ M-estimator, in order to establish the 

finiteness of the algorithm we need to show 

(i) there is only a finite number of ranges of c 

(ii) cycling cannot occur at partition changes at the end of a range. 



Theorem 6.5 

If 
~l 

and solve (6.3) 

min F(x) ci e .r. + civ.r. i i i i 
0 -0 

for values of c of and respectively, and have the same 

sign pattern, i.e. 

and if 

i.e. 

then 

Proof 

Then 

But 

r. (x
1

) = 0 <=> r. (x ) = O 
i - i -2 

sgn r. (x
1

) = sgn r. (x
2

) 
i - i - ' 

they also solve (6 . 2), 

-1 v' 1 -1 ::;; 2 ::;; 1 ::;; ::;; 
' 

V 
' 

and are in the same range of c . 

~l = ~o - c
1
Ie.a. c

1
Iv!a. 

1-1 , i-J_ 
0 0 

~2 
= ~o - c

2
Ie.a. c

2
Iv~a. 

1-i 1-i 
0 0 

c3 = O'.Cl + (l-a)c 2 

3 1 
{ac 1~ ' (l-a)c2 

v2} V = + 
c3 

~ 
a c 1vj 

2 
c3Vi = + Ll- a )c 2vi 

2 
-1 _ \)! , v. ~ l , 

i I 
so 

-1 ::;; \)~ ~ 1 , 
l 
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and so by Theorem 6.1, ~3 uniquely solves (6.2) for c = c
3 

. 

The above theorem is sufficient to establish the first 

condition for finiteness. The second, that cycling cannot occur 

(or can be avoided) is more difficult . In the M-estimator case 

114. 

only two things could happen, a residual could become larger in size 

than c without changing sign, or it could become smaller than c in 

size. Here, three things can happen. A residual can stay zero, change 

sign or remain the same sign, and the problem is correspondingly more 

complex . In practise , given the rarity of such an occurrence, no 

special provision was made for such a contingency, but largely for 

housekeeping reasons whenever a residual was about to become non-zero 

it was given a very small value of the appropriate sign, and this is 

enough to prevent cycling. 

On the question of the complexity of the algorithm it is 

difficult to say much at all . Intuitively, one expects that the number 

of iterations remaining would be tied to the sign pattern of the 

residuals. 
dr. 

Certainly, the behaviour of most residuals is simple, 

i 

de rarely changing sign, so that their behaviour is or 

~ Example 6.1, however, illustrates what can happen. The 

LAD estimator is xT = (1,1), with residuals (0,0,-2,.001,2,-8,1). 

If we use the LS estimate as our starting point, T ~o = c 1. 30, 1. 32) , 

the initial residuals are (1.53, 1.56, -1.38, .30, 3.28, -4.85, 3 .20 ) 

;:ind, apart from -
a , the sign patterns arc identical . Ilowcver, in 

the algorithm r
4 

becomes zero first, stays zero, and then becomes 

posit i vc c1g~11.n. 
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6.5 NUMERICAL RESULTS AND DISCUSSION 

Initial testing was done on test data generated as described 

in Section 5.4, and initial results were rather encouraging. Mark II 

performed better than mark I, and mark III better still, so that a set 

of experiments on 10 variable, 900 observation data averaged only 13 

iterations and about 3 sec execution time on the DEC 10 computer - and 

this without an efficient sorting algorithm being used in the line -

search. 

Further testing, however, did not present as rosy a picture. 

The algorithm was tested on the same type of data used by Bloomfield and 

Steiger (1979) in comparing their algorithm against that of Barrodale 

and Roberts. This used Pareto distributions with sometimes infinite 

variance, sometimes finite but certainly long-tailed. On this data, 

the algorithm fared badly taking over 200 iterations to do a single 

10 variable, 900 observation example . One pleasing feature, though, 

was that there was no appearance of numerical instability even in 

these examples . 

In attempting to explain the Jiscrcpancy in performance of 

the algorithm, we look more closely at the way the test data was 

generated. The first set was generated by filling the matrix A with 

independent uniformly distributed random numbers in the range -\ to 

\ , and the vector b with independent uniformly distributed random 

b . I _m/2 num ers in t1e range to m/2 , followed by minor adjustments 

to make the LAD easily identifiable. In fitting a model 

b = /\x + E 

to b and A, it is not clear what the distribution of s would be, 

but it would certainly be long-tailed, making it a suitable test for 



116. 

an L
1 

model. It is suggested, however, that the contours of 

with such data would be roughly circular, whereas the contours of the 

Pareto distribution with its very much greater spread of numbers would 

be very elliptical. Now is is a well-known property of the steepes t 

descent method in the continuous case that it performs well if the 

contours arc circular, but g_1_ven long narrow sloping valleys it tends 

to zig-zag across them . 

It would appear that allowing more freedom in the choice 

of descent direction merely allows zig-zagging to occur, whereas in 

algorithms such as Bloomfield-Steiger, only one residual is freed from 

zero to define the search direction, so that it is constrained to move 

down the valleys. There is confirmation of this in an unpublished 

result of M.J.D. Powell where he showed that for deterministic problems 

the strategy of moving off just one residual at a time can be shown to 

be near-optimal in a certain sense. 

Before, however, discarding the freer approach entirely, 

a couple of variations should be tried. The first is to keep track of 

which residuals have changed sign during a line-search, and if any try 

to change sign again in the next line-search to stop at that point and 

make the next search direction keep that residual at zero, even where 

l~kl > 1 . The second is to try to do the equivalent of a conjugate 

gradient method, working out a direction in the manner of the Fletcher­

Reeves method, and then using a projection of this, rather than the 

grad i cnt, on the hY11erplane of r. = 0 , 
i 

i E o . 

variations ar left for further investigation. 

Both of these 
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