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ABSTRACT

\
|
| In this thesis we investigate certain linear optimisation

problems,
minimise f(x) subject to gi(x) z 0.y A L R0

where the Kuhn-Tucker conditions

(1) gi(x) 2 0 UL R
(ii) for some u 2z 0 , VE(x) = Zungi(x)
(1ii) wg(x) = 0

comprise a set of simultaneous linear equations.

Chapter 1 introduces the problems, the restricted least
squares (RLS), M-estimator, and least absolute deviations (LAD)

problems, and places them in their context.

In Chapter 2, the RLS problem is examined, and pruning
rules developed which transform a rather inefficient branch and bound
algorithm into an essentially iterative one. The implementation of

the resulting algorithm is considered in Chapter 3 and, by working

with dual variables and using orthogonal transformations, the algorithm
in its final form is at least competitive with existing algorithms for

this problem. An error analysis is also given, showing that the use

of dual variables has led to superior numerical properties.

Chapter 4 considers the structure of the M-estimator

function. Several speculations are raised and these are answered

either negatively by means of a counter example, or positively by
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(iv)

proving a theorem. The broad areas covered by these speculations
include the question of non-uniqueness, the connection between the
M-estimator and the LAD estimator, what might be called the "proper

behaviour" of the function and the function value itself.

Chapter 5 deals with algorithms for calculating the
M-estimator. Existing algorithms are surveyed, and two new ones
developed. One of them, a continuation algorithm, is examined in
detail and numerical results presented. Finiteness is proved for

them both.

Finally, in Chapter 6, the LAD problem is considered.
The existing algorithms are reviewed and a new one presented which,
although proven finite, did not perform competitively on a particular
class of example. The thesis concludes with a discussion of why the
algorithm failed, how it differs from algorithms which succeeded for

that type of example, and how the algorithm may be improved.
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CHAPTER 1

THE PROBLEMS INTRODUCED

For the general mathematical programming problem

(2.1) minimise f(x) subject to gi(x) - 5 | LEE - IS L T

the well-known Kuhn-Tucker conditions for a stationary point at X
are
*
(1.2) gi(x 7z 8 8 BT
* *
{1.3) tor some ' “u 2 0V YRE(x )= Zungi(x )
T *
(1.4) ugkx)-=2~0.

1f (1.2) to'(1.4), which characterise a local optimum,
comprise a set of linear equations, the problem is a linear
optimisation problem (LOP). LOPs have interest and importance in
their own right,.in forms as diverse as standard linear programming,
quadratic programming, and matching problems. Provided (1.2) to
(1.4) provide a bounded set, there is in principle a finite algorithm
to find a feasible pair (f'E) satisfying them, although the number
of points visited may be very large. However, finiteness and, in
general, tractibility are amongst the virtues of LOPs and they are
often used as steps within other algorithms to solve more difficult
problems. Thus lincarly constrained non-lincar optimisation problems
can be solved by feasible conjugate direction methods which solve an

LOP at each step (cg, Best, 1975) and even when the constraints are




non-linear, cutting plane methods still solve an LOP at each step

(eg, Luenberger, 1973).

It is worth noting that although general methods may exist
for a class of problems, it is often the case that a particular
member of the class is so structured that a close examination of the
problem yields a much simpler method of solution. Well-known examples
of this are geometric programming, (Duffin, Peterson and Zener, 1967),
where a particularly vile-looking non-linear optimisation problem can
be transformed into an LOP, and the transportation problem, (eg, Hadley,
1962) where an LOP can be solved simply without recourse to more

general techniques, such as the simplex method.

The problems studied in this thesis, the restricted least
squares (RLS), M-estimator, and least absolute deviation (LAD)
problems all display this feature, where a close examination of the
problem leads to a method of solution which is able to take advantage
of the structure of the problem so that an algorithm can be tailored
to fit it expressly. This is clearly illustrated by the RLS problem,
(Chapter 2) where, starting from a general branch and bound search
algorithm, analysis of the problem leads to a vastly reduced search-
tree, and then further analysis leads to a finite iterative algorithm
far superior to the original search algorithm. Further analysis still
(Chapter 3) then indicates an efficient method of implementation of
the algorithm which test results have shown to be more than
competitive with standard linear programming techniques, and which

has the added advantage of superior numerical properties.

The RLS problem is important both in its own right, and

because it forms a central step in many algorithms for more general



LOPs, and as such has received a great deal of attention. Typical

of the linear-programming based algorithms written specifically for
the RLS problem is that of Lawson and Hanson (1974). The overall
scheme of their algorithm is to start from an initial primal feasible
solution (§==9) , and at each step maintain both primal feasibility
and complimentary slackness, terminating when dual feasibility is also
achieved. The other approach which has been tried on this problem is
to place it in a branch and bound framework. Armstrong and Frome's
algorithm (1976) using this technique is not competitive for large
problems, and does not appear promising, yet successive refinements
of it resulted in a competitive stable algorithm, similar in some
ways to the linear—programming based algorithms, but differing from
them in that only complimentary slackness is preserved at each

iteration, the direction of the algorithm being towards finding a

dual feasible point and then testing it for primal feasibility.

The M-estimator is one of a number of statistical measures
which have been suggested in an effort to minimise the effect of and
identify outlying observations. Although interest in rejection
criteria stems back at least one hundred years (eg, Peirce, 1852), the
current surge of interest in the so-called robust estimators was
catalysed by Tukey in 1960 when he showed that the widely used least

squares estimator was in some ways inferior to the least absolute

*
deviation estimator. Strictly speaking, if x minimises

%x
Zo(Axi-bi) for some function p, then x is a maximum-likeclihood

~

or M-estimator for the linear model b = Ax - € under some appropriate

assumption of distribution of € . The most commonly used function o,

~

and the one under study in this thesis is Huber's (1972) function



(1.5) p(t) = %tz bt i e

One of the thrusts of this thesis has been to examine the
problems carefully in an effort to understand their underlying
structure, and probably the major contribution has been the examination
of the M-estimator when detailed properties of it are given for the
first time. In particular, the relationship between the M-estimator
and the LAD estimator is explored, and the question of uniqueness
thoroughly examined. Although several of the theorems developed do
not have a direct bearing on algorithm development, two algorithms
arise fairly naturally from the study and an understanding of the

structure has facilitated proving finiteness for them.

Another area which has experienced a resurgence of interest
due to the interest in robust estimation has been least absolute
deviation regression. Used in line-fitting models, it predates
the least squares method, being used by Boscovitch in 1757, but it
was not until 1973 that an efficient algorithm was written by Barrodale
and Roberts. Since then several efficient algorithms based on either
the simplex method or a gradient method have been developed. A feature
of all these algorithms is that they have a full basis at each step,
and have been shown by Osborne, 1980, to be in a sense identical. The
algorithm presented in this thesis does not necessarily work with
a full basis. It is not yet clear how the increased freedom in choice
of descent direction should be used, and in its current form the
algorithm is not always competitive, but even the failure of the

algorithm has helped in understanding the structure of the problem.




A final point is that although the nature of this approach,
of studying the structure of the problem, of necessity leads to an
algorithm specifically tailored to a particular problem, the approach
of an algorithm is not necessarily confined to its own problem. Thus
the first algorithm for the M-estimator is the progenitor of that for
the LAD estimator, and the approach developed there can be fairly
directly applied to solving other LOP problems, and the RLS algorithm

bears a close relationship to the second M-estimator algorithm.




CHAPTER 2
AN ALGORITHM FOR THE RESTRICTED LEAST SQUARES PROBLEM

or 1 INTRODUCTION

2.1.1 The Constrained Least Squares Problem

With its wide applicability, the constrained least squares

problem (CLSP)

(2.1) minimise IIAX-E‘
subject to Ex = f
Gx 2 b

~

has received a great deal of attention. In its equivalent form,

{2.2) minimise XX ec'x + d'd
sybjeet to. Ex = f
Gx 2 b

it is a convex quadratic programming problem, and early algorithms to
solve the problem used quadratic programming techniques based on the
simplex algorithm (see, eg, Cottle 1968, Cottle and Danzig 1968,
Lemke 1968, Wolfe 1959). However, these methods, based on pivoting
and inverse basis techniques, have been found to be numerically
unstable (see, eg, Wilkinson 1961, 1965, Golub and Wilkinson 1966).
Moreover, as shown by Golub 1965, and Golub and Saunders 1969, the
problem in its second form (2.2) is always more ill-conditioned than

in its first form (1.2).

For these reasons, a number of algorithms have been developed

using orthogonalisation procedures. Stoer 1971, uses an L-R




decomposition, as do Bartels, Golub and Saunders 1970, whilst Lawson
and Hanson 1974, (cited by Bartels, 1975, as the definitive handbook
on Least Squares problems) use a Q-R decomposition. The numerical
properties of the two decompositions are similar. It should be
emphasised that the chief aim of these methods is to improve the
numerical stability of the algorithm, and that any improved efficiency

(as reported, eg, by Osborne, 1976) is a pleasing side-benefit.

It is instructive to examine the algorithms in an effort to
obtain an overview of what is happening within them, and a useful way
of doing so is via the Kuhn Tucker (K.T.) conditions, which all
algorithms seek to fulfil at the optimum. For the general mathematical

programming problem (MPP)

(2.3) minimise f(x) subject to gi(x) 2 izl 0

* *
the K.T. necessary conditions for x to minimise £4% ). are

~

*
(2.4) gi(x a0 » It b, ¢ uesam
* * *
L Z. 8] du 20 Such that VF(x } = Zungi(x )
*T *
(2.6) u glx. ) = 0

These conditions which, in the case of a convex objective
function with consistent linear constraints are sufficient for global
minimisation, can be described respectively as primal feasibility, dual
feasibility and complimentary slackness. Now the simplex method, at
cach iteration, produces a point which satisfics both primal fecasibility
(or dual feasibility in the case of the dual simplex method) and
complimentary slackness, and proceeds until it also achieves dual
feasibility. This feature is present in those quadratic programming

algorithms based on the simplex method. It is also present, as far as




the author can determine, in all of the algorithms based on
orthogonalisation techniques. Complimentary slackness is ensured by
optimising a subproblem at each iteration, and either primal or dual
feasibility is achieved by careful choice of the subproblem solved,
often with a certain amount of programming difficulty, if not
computational effort. It is in departing from this requirement that

the algorithm below is interestingly, if not significantly, different.

Gl sé The Restricted Least Squares Problem

The restricted least squares problem (RLSP), also referred

to as the non-negative least squares problem

{&.7) minimise HAX-EH

supject to x =2 0

is a rather simple case of the CLSP (2.1). It does have applicability
in its own right, when the model being examined will not permit non-
negative parameters, but its main importance lies in its being used

as a subproblem at an iteration in the solution of more general

problems. Thus, for example, Bartels 1975, and Haskell and Hanson, 1978,

solve an RLSP at each iteration of their CLSP algorithms.

RLS problems can be solved using any of the CLSP algorithms,
but their importance and the simple nature of the constraints have led
to a number of algorithms specifically written for this problem. There
1s reference to an algorithm due to Bard by Bartels, Golub and Saunders
1970, but details are sketchy and therec is no guarantee of finite
termination. Lawson and Hanson 1974, give an algorithm in which
complimentary slackness and primal feasibility are maintained, with
each iteration differing from the previous one by one constraint

changing status. Bartels 1975, uses a similar overall scheme, except




that he permits several constraints to change status at each iteration.

(His method is designed specifically for large sparse matrices.)

An entirely different approach is advocated by Armstrong and
Frome 1976, based on an observation by Waterman 1974. They place the
problem in a branch and bound framework, and give an improved pruning
rule. Due to the tendency of branch and bound solutions to increase
exponentially with problem size, this approach does not appear promising,
and indeed experimental results of the Armstrong and Frome algorithm
Pesar out 'this fear (Table 2.4). However, starting from this point,
successive refinements eventually lead to an algorithm which is
competitive with the algorithms cited above. The final implementation
of the algorithm (Chapter 3) is not dissimilar to the Bard-type
algorithms of Lawson and Hanson, and Bartels, but does have the basic
difference in that at any iteration of the algorithm, neither primal
nor dual feasibility is guaranteed. This is illustrated in the sample

problem given later in this chapter.

The remainder of this chapter follows the development of the
algorithm, starting from the branch and bound approach. The rest of
Section 1 defines notation and introduces the branch and bound method.
In Section 2, the Armstrong and Frome algorithm is presented and an
improved pruning rule is given. Then the K.T. conditions for
optimality are established. A rule is given to find a better feasible
solution should a feasible solution be found to be sub-optimal. The
complexity of the algorithm is considered in Section 3, and under
certain circumstances (always satisfied experimentally), linearity of
subproblems solved against problem dimension is proved. The
experimental results are presented in Section 4. In Section 5, the

extension of the algorithm to similar problems is discussed, including
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10.

the modifications necessary if the K.T. conditions are not readily

available.

o4 B Notation

The following notation will be used in this chapter.

N, " represent the dimensions of the data matrix A (m variables,

n observations)

7 represents an index set 7 e 11,2,.0 0}
Pi represents the problem
minimise L(x) = I A{—Ql]
subject to Xj = Gl 36 Ji
fi represents the optimal solution to Pi
(Note that the index set Ji defines Pi and hence fi)
Zi represents a feasible solution to both P and Pi o that s

y'! 20 and y;:=o,j€Jl

~

(Note that y1 will not necessarily be optimal for P or

~

for Pl)

When the term '"feasible' is used, it will refer to primal

Stavibalasy Tor P . that 15, x is feasible if x 2 0

~ ~

2.1.4 Branch and Bound

The branch and bound method builds up a search tree (each
node being a problem, Pl) by increasing the number of variables set
to zero as a branch is descended. = Thus, if P is a descendant of

i j i ; 1
P°, J° OJ . The root of the tree is the problem P~ where

Jl = @ . An example of a search tree is given in Fig. 2.1.

The main considerations of a branch and bound algorithm are:

(1) Choosing which node to branch on next,




P e 11,

(11) choosing which descendant of this node to consider
(solve) next, and
(iii) making use of any special properties of the problem
to detect early fathoming of a branch, that is,
recognizing when no descendants of a node will yield
a better solution.

All of the above considerations are dealt with in the new algorithm.

2.2 THE NEW ALGORITHM

& htes b The Armstrong and Frome Algorithm

Armstrong and Frome's node choice is to branch on the node
most recently solved until a feasible §i 1s found, and thereafter to
branch on the node, Pj ,», With the smallest L(fi) . Their choice of
the next variable to be set to zero 1s the most negative free
variable if one exists, otherwise the free variable with the largest
| numerical value. Their pruning rule states that if a node differs
from its parent node in that a variable which was negative in the
parent node's optimal solution has been set to zero (for example,
nodes 2, 8, 18, and 26, 30, 32 in Fig. 2.1), and either the optimal

solution of the node is feasible (for example, nodes 4, 6, 10) or has

an L(xl) greater than or equal to the best existing feasible

solution (nodes 6, 7), then no further branches from the present node
need to be considered. In the example of Fig. 2.1 (data in Table v O

BeSuLts A% Table 2.2), 32 of the possible 04 nodes were solved.

o Improved Pruning Rule

The first improvement to the above algorithm is the new

fathoming criterion "at node pt » it is only necessary to branch on



12,
variables Xj for which x; A L
Lemma 2.1
Givett vy = 0. Llet J° ='{j|y;=0} define P' and hence
i ; T i : T i
x~ . Then there exists some descendant, P~ , of P (T8 3 _2 J°)
for which x' = 0 and L(xr) < L(yl)
Proof
q g i ;
R il x emx- v otherwise: let k be such that
Yi Y
k e '
e = i {1od x: <0}
x| 5o L
k J
i+1 i ; 1+1 1+1
et J = J- U {k} define P and x Siilet
) E
i+l Yk i k i
y Bl - X = - iz 0
a AR TR T ) S S
k k k k
Then, from the convexity of L and the optimality of x} and x'*1 ;
1+1 i+l i
L(x™ ") < L(y ) = L(y")
I xl+1 2 By x' = xl+l W Othexwise, theiprocess. is repeated and, -at

each step,

IA
g
T
<
H-
+
i
—
IA
o
—

Llx )

until eventually

R
v
O

The improved pruning rule now follows.

Theorem 2.1

1 Ay .
At any node P~ , it is only necessary to branch on variables

xj for which x; < 0 1in order to find xr, a best feasible solution

~

: |
descendant from x

~



Proof

et J = {jlx; < 0}

Let xr be the best feasible descendant of x1 and assume

~

it could not be reached through a branch in which some xj R Jf 3

was set to zero, that 1is,

1

x§ = for all . j € J

; ; i : : :
Then there will exist y =2 0 , which is a convex linear

~

combination of xr and xl which 1s feasible for Pl As

L(xl) < L(xr) , 1t follows that L(yl) < L(xr)

: S 1
S0, by Lemma 2.1, there exists x~ , a descendant of xt ,

~

for which x> = 0 , and L(xs) < L(yl) = L(xr) . Moreover, the method

used in the proof of Lemma 2.1 only ever set x; < 0 to zero in Pl+1

Hence a best feasible solution descendant from x  can be found by

branching on only negative-valued variables at any node.

In the example given in Fig. 2.1 the tree generated using the
pruning rule is shown by the thickened lines. The number of subproblems
solved has been reduced from 32 to 11. However, tests done using this
rule showed that the number of subproblems solved still rose exponentially
with problem dimension. The main cause of the exponential rise in the
work done appears to be the need to check all branches until the fathoming
criteria are satisfied, to ensure the optimum has been found, although in

each case tried the actual optimum was found early in the calculation.
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Figure 2:1 - A solution tree for the sample problem. At each node the

numbers indicate which variables were used in the subproblem,
those after the comma being optional. A "-'" indicates that
the variable is negative and a "*'" indicates the solution is
feasible (i.e. x 2 0). The whole tree is generated by the
Armstrong/Frome algorithm. The solid lines represent the
tree generated using the improved pruning rule of theorem 2.1.
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TABLE ‘2.1

Data for the Sample Problem

Al A, i Ag & i 7 -
1.00 4.70 7.89 7.93 3.47 8. 35 6.94
1.00 3.10 3.46 B¢ %5 2.97 7.11 5.77
1.00 8. 34 6.68 1.75 8.68 8.90 8.04
1.00 4.62 2.69 9.20 5.39 1.60 g2
1.00 1.03 6,32 6 .25 4.75 3.61 7.82
1.00 3.26 5.64 9.10 6.53 3.90481 1343
1.00 327 K34 5.15 7.27 216 - 1547
1.00 7.27 3.64 565 7.77 578 32,49
1.00 B8z G 6,65 8.65 5. 77 0. 9221 11806
1.00 0.47 0.45 1.5 1.90 8.66  14.40

Column 1 contains 1.00 because the model 1is:

6 6
B g M # z e o et b, = z . B
1 1 ol g 13 1 o5 34,39

2:2.3 Optimality Conditions

Once a feasible solution has been found, the K.T. conditions

can be used to test its optimality.

Theorem 2.2

it xr =0 ‘solves P , and ATA 5 AT b >0, then x"

~ ~

solves P . (Note that A 1is the full data matrix, not that part of

it used in solving pP* . of necessity AI Ar R AI br = 0 , where

Ar 1s obtained from A by deleting those columns corresponding to

'y : T
indices in. J.) .



Solutions Obtained on Sample Program using Armstrong/Frome Algorithm

TABLE 2.2

Node x X X A Xc X L(x)
P g «-1.8%0.0-1.34 0.92 2.91 1.70 32.09
2 0 .80 -1.95 0.44 2.23 1.08 36.42
3 0 0 -0.95 0.49 1.21 0.84 102.00
4 0 0 0 0.25 0.84 0.62 . 127,18
5 0 ~1.45 0 0.18 1.78 0.84 66.72
6 0 0.04 0 0.81 0 0.80 184.66
7 0 0.05  20.02 0.82 0 0.81 184.65
g . 10.22 0 -0.58 0. 20 0.59 0.04 86.07
B o 0 0 -0.53 §.22  ~0.30 93.51

10 5,52 0 0 0 0.33 0.08 103.49
11 8.10 0 .70 0 0.69 0.21 87.04
12 . 1)x.96 0 -0 .35 0 0 -0.09 '102.86
3 S i el 0 -0.34 0 0 0 103.45
14 9.73 0 -0.63 0 0.54 0 89.47
15 | 15.84 0 “0.17 -0.51 0 -0.40 94.45
16 12.34 0 -0.26 ~)..20 0 0 100.99
Ki A 10,67 0 4.55 -0.23 0.56 0 86.11
18 4. 43 -1,25 0 -0, 07 1.44 0.50 64 .25
19 Lt SR 0 0 1.49 0.56 64 .39
20, Bhrdd 029 0 0 0 ~0.08  103.42
21 AL.00¢ :0,28 0 0 0 0 103.91
s 8.29  -0.90 0 0 0.90 0 78.00
2% 16,33 - -0.24 0 =, 55 0 0,42 92 .22
o4 127397 TA0, 26 0 -0.24 0 0 99.92
e SR 1 IS T AR s < 0 2§57 1.00 0 68.90
g8 L M6 5T D22 - -0.08 .52 0 -0.41 92.01
278 0.2 <0026 0 0 -0, 09 . 100.75
gB 1190 -0.20° "' -0.25 0 0 0 101.36
29, WHE.78° " C-0.21'y -0.27 <0} 20 0 0 98.82
ol - RBIR3 . DB -0.47 <28 1.14 0 61.56
R T T TR S 0 P ReN 66 .50
32 g0 iust . -0.76 0 1.93 0.73 45.04

16.
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Proof

The K.T. conditions for the MPP (2.3) are stated in (2.4),

(2.5) and (2.6). Here, we have

g(x) = x
¥g(x) = 1 - and ,
VL(x) = 2(ATAx - ATh)

Let X =7WL(x) 2 0 ; then

<
=
—
X
H
Nt
I
Q>
=
]
<
oQ
—
b
=
)
>
'-1

T :
Also, as x solves . P,

i

but

xi =0 for i€J’ :
hence

Ar'Fxr -0

b IO 3 ¥ P

30 (X ,A' ) "is 4 K.T. point for ‘P . 'Hence x ' solves P .
2.2.4 Selection of the Next Node

If the above test for optimality fails, it can still be used
to determine the next node to branch on, and which branching variable

should be chosen at that node.

Theorem 2.3

If xr >

1

solves PF X AL = VL(xr) ; AE < 0 for some

'{ilxi = 0, i # k} , then there is some descendant,

b

kK € g5 , and J°°

X e xr+1 which is feasible and for which L(xs) < L(xr)
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Proof

Using the well-known convex function property

£(x,) = £(x,) + VE(X.)  (x.-x. )

il s | ~1 i Lot i

we have L(xr+l) > L(xr) + ArT(xr+l-xr)
But L(xr+1)_ <L(xr) , as either Pr+1 is less restricted than
Pr(Jr+1 & Jr) s orelse, if xi = 0 for some i & i , then xt

' ! '
solves P' |, where J¥ = gfuU {i} , and again L I i

0> ArT(Xr+1 E Xr) 3 ArT Xr+l LR Xr+1

Y E ~ - ~ k "k

Hence

P+l > 0
Hence there exists yr+l 2 0 which is a convex linear combination of
xr+1 and x' , and so L(yr+1) < L(xr) , and which is feasible for
T+l
P . The proof now follows from Lemma 2.1.

One point worth noting is the definition of Jr+1 above.
It could not be defined as {j'jEEJr, j#k} , as it may be that xi =0

A T : T+l ! : .
for some i & J and, if x < 0 , then no convex linear combination,
1

yr+l of x' and xr+1 can have y§+l 2 0

~

Figure 2.2 shows that portion of the tree generated using
Theorems 2.2 and 2.3 on the test problem of Fig. 2.1. The nodes
generated are given in Table 2.3. The first four nodes correspond to
nodes 1 to 4 of the earlier tree, and nodes 5 and 6 correspond to nodes
9 and 10 respectively. In terms of the primal/dual feasibility
discussion of Section 2.1.1, nodes 1 and 2 are dual feasible, node 3 is
neither dual nor primal feasible, node 4 is primal feasible, node 5 is

dual feasible and node 6, the optimum, is, of course, both.
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It should be mentioned here that the example was chosen for
its illustrative properties rather than its typicality. In over 90%
of the test problems solved, the first (primal) feasible solution
found was the optimum, and in the majority of the remainder, the

algorithm jumped directly to the optimum.

1(123456)

2(23456)

5(1456)

6*(156)

4*(456)

FIG 2.2 The solution tree for the sample problem using the new
algorithm. The numbers in parentheses represent the variables used in
the solution, those with a -, being negative. An * indicates that

the solution is feasible (that is, x > 0).

~
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TABLE 2.3
Solutions obtained on the Sample Problem using the New Algorithm
Node xl/kl xz/)\2 x3/>\3 x4/)\4 XS/)\5 x6/)\6 L(§)
1 Bl G ik <89 | =10 34 .92 297 1.78 32.09
0 0 0 0 0 0
2 0 =1:52  <1.05 0.44 2,23 1.08 36.42
.19 0 0 0 0 0
3 0 0 -0.95 0.49 1421 0.84 102.00
-3.12 86.03 0 0 0 0
4 0 0 0 - 0.25 0.84 0,62 112718
+5306° 582,76, V52.83 0 0 0
5 35,58 0 0 «0:53 0,22 74220430 93:51
0 46.81 . 25,73 0 0 0
6 1+92 0 0 0 083 .08 -103.49
0 60.72 ' 47.08 57.95 0 0
i The Algorithm Summarised
1. Solve the unrestricted problem pl with J1 =9 . If
51 > 9 ; stoﬁ; othetwise, set’ 1 + 1 and go to 2.
;& St -4 1% 1 . lUse some heuristic to select k from the set
{jlx;—l U e -0 W (k) L Solve P . If
§i 2 Q 3 go to 3; otherwise, go to 2.
3. Use Theorem 2.2 to test fi for optimality. If the test
succeeds stop; otherwise, go to 4.
4. Use some heuristic to choose k from the set {j|A§ <0}

where A% = VL(xl) s.Bet vl i+l |, ‘and let
Jt o= {j|x;—l=(),j £k} . Solve PY . If x 20 , 20 to 3
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otherwise, go to 5.

5. 9ot '3 + 41 +°1 ., Choose "k according to the method used
in the proof of Lemma 2.1. Let J* = j'~luq) | Solve
pt If xt20 » 80 to 3; otherwise, go to 5.

The heuristics used in steps 2 and 4 were to choose the most
negative variable in each case (but see Section 2.4 for a fuller

discussion).

2:3 COMPLEXITY

It appears difficult to determine any absolute complexity
bounds for the algorithm, but if the assumption is made that, at any
feasible x  which fails the optimality test of Theorem Z2.2; 3t does

~

so for only one variable, then linear bounds can be derived.

Theorem 2.4

If x' >0 solves PT . ;i VL(xr) , and A; 2 0  for

~ ~

a2 gl {k} , then N , the number of subproblems solved, is at most

2n .,

Proof

Let

" ki Lol Sl F P for all i €J% - {x}

Then, by an argument similar to that used in proving Theorem 2.3,

x;+l <0 for all i€gt - {k}

"
D

Now for any x> 2 0 such that L(xS) < L(xr) s assume that x

Let
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- = . - - r
Then there will exist a convex linear combination, y 2 0 , of
r+1 2 : : . T
x* 4 x> and x } 2 & J% ., which 'is feasible for P~ .and for

which L(yr) < L(xr) , which contradicts the optimality of o

; : s
Hence for each subsecquent feasible solution, x , found after

~

T S
e Xk =

Now this applies at each step, so that after each feasible
solution is found by the algorithm, one more variable must remain
sfrictly positive. Thus, if o, is the number held to zero in the
ith feasible solution found, then oy <n+1-1, and also there

will be at most n feasible solutions found.

Let fi be the number of subproblems solved between the
(1-1)st (exclusive) and ith (inclusive) feasible subproblems, and F
the total number of feasible solutions found. Evidently, for i > 1,

+ 2, and if o, 1is defined as 1, the formula is also

F.0 = @, = 0

Q.
1 1 1-1

correct for f1

Thus
F
N= ) )
1=
F
R
1=1
= 2F + uF - uo
£ ZF #n.# lo- . F -1

IA

20 .

Although there are no a priori grounds for supposing that
the above assumptions are always true, no case has yet been found in

which the assumption did not hold. Indeed, the example of Fig. 2.1,
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with N = n , was the only instance of N/n =2 1 (see Table 2.4).

2.4 RESULTS

The algorithm was tested against data generated using a
random number generator. For each problem size, ten sets of data were
solved. Due to lack of consistency of execution times, N, the
number of subproblems solved, was taken as the measure of algorithm
efficiency. (As an indication, however, solving problems with 40
variables and 50 rows of data took 5 to 10 seconds on a Univac 1110/42.)
Armstrong and Frome claimed competitiveness for their algorithm, and as
it was the progenitor of the new algorithm, it was used for comparison
purposes. The results, given in Table 2.4, display the linearity

predicted in Section 2.3.

Of the several heuristics tested for choosing the variable
to be set to zero at step 2 of the algorithm, choosing the most negative
and choosing the negative variable which had differed least from 51
proved best. The former was chosen for its simplicity. No choice

ever had to be made at step 4, but choosing the most negative Ai is

suggested.

25 EXTENSION TO OTHER PROBLEMS

The features of the restricted least squares problem which

make it suitable for the algorithm as given are:

Gh) the strict convexity of the objective function;
(11) the special nature of the constraints; and

(1i1) the ease with which each subproblem P can be solved.
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Any problem which has the above properties is suitable for
solving by the algorithm. One question which arises in other
applications is the optimality test if the Kuhn-Tucker conditions are
not readily available, as this test is central to the algorithm. If
this is the case, Theorem 2.2 can be replaced by one which requires
solving no more than n-1 additional subproblems to test the

optimality of a feasible solution to a subproblem.

Theorem 2.5
P R e P ledine T = Y v {1} For all
i€eJgt . If n§+l €0 for all i€ Jr, then x' solves P

~

Proof
Assume the above conditions hold and further assume that
there exists x'- such that L(x') < L(xr) . Now, for i € J% :
xi >0, and for some i € J' ; xi e 0L hut But « For 1€ g5 .
T+i A : : A S
X, <0 srobencenthere is a convex linear c¢ombination, x~ , of :x!
T+ : 1 i
and x % for all-odpn € &, , for which xi =0 for all i € JF 3
AR ' T
so that x is feasible for P
S : : : T+1
Now L(x7) £ convex linear combination (L(x'), L(x )

for all ‘4 & Jr) o odnce. - L{x*) > L(xr), L(xr+1) < L(xr) and the

~

: : 5 :
¢ontribution to x' of x 1s non-zero, it follows that

R ~

s ! . :
hlx") < L(xr) ,  which contradicts the assumption that x' solves PT

~

T
Hence x solves P

~

The only modifications to the algorithm necessary are to

replace Theorem 2.2 with Theorem 2.5 in step 3, and to omit step 4.
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Under the assumptions of Theorem 2.4 (the complexity theorem),
it is easy to show that the number of subproblems solved is not more
than ’*n(n+1) . However, testing the modified algorithm on the same
test data as used before indicated that in practice this algorithm also

behaves linearly (see Table 2.4).

2.6 CONCLUSION

The algorithm presented here appears to be a considerable
improvement on existing algorithms of branch and bound type for this
problem, without sacrificing any of the advantages of these algorithms,
for example, ease of use in an interactive mode, wide availability of
least squares regression routines, and simple modification to account

for variable bounds.

The reason would appear to be that in this problem, as so
often in branch and bound, the optimum solution is found quickly and
then much time is spent in the subsequent searching necessary to
verify it. Thus the biggest advantage of this approach is in the use
of optimality conditions to improve bounding. Incorporating this into
the general framework of branch and bound has resulted in a very

efficient algorithm.




TABLE 2.4

Experimental results. Number of subproblems solved

Dimension Armstrong/Frome Armstrong/Frome . New Algorithm
af A algorithm improved New Algorithm modified
n m Mean Worst Mean Worst Mean Worst Mean Worst
6 10 10.0 52 4.4 11 5.5 6 4.9 13
10 15 168.2 566 34.6 96 5.4 8 8.8 14
15 20 4097.8 11886 668.6 1947 10.0 13 18.0 24
20 30 — — - - 11.9 14 21.8 26
30 40 — — — — 16.6 19 31.2 36
40 50 — - — — 24 .4 28 46 .8 54

9
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CHAPTER 3

AN EFFICIENT IMPLEMENTATION OF THE LEAST SQUARES ALGORITHM

% | INTRODUCTION

In the previous chapter we presented an algorithm for

solving the restricted least squares problem

(3.1) minimise | Alx-p]

gubject to 'x =2 0 -,

In the original implementation of that algorithm, standard regression
routines were used to solve a new subproblem at each iteration. Now
although the algorithm appeared efficient in terms of the number of
subproblems solved (i.e. number of nodes of the search tree to be
visited), the implementation of the algorithm is still not good. In
this chapter we consider an improved implementation of the algorithm.
In particular, we want to provide methods which avoid solving each of
the unconstrained least squares problems ab initio when only one of
the variables is changed at each step. The key to our approach is
suggested by the Kuhn-Tucker conditions which characterize the unique
minimum of (3.1), with uniqueness following from the strict convexity

of the objective function and the linearity of the constraints. These

conditions are

(3.2a) —AT(E—Af)

I
=

(3.2b) A ¥ EOQ

and




(3..2¢) Aix. =0, A T G

so that the subset selection problem can be restated as that of
seeking among all solutions satisfying the system of equations (3.2a)
and the complementarity condition (3.2c) the unique pair satisfying

RERRGLASyCE ()

From our point of view the striking feature of this
formulation is the symmetry between the folcs of X and 5 ey 4
particular it is possible to interchange the roles of X and A in
the algorithm. This has the advantage that a certain amount of
initial processing is avoided. For example, starting with X as the

unconstrained minimizer of (3.1), is equivalent to rewriting (3.2a)

in the form

(3.3) B L e dTay ! ATy

~

and satisfying (3.2c) by setting X = 0.

By the complementarity condition (3.2c), fixing a particular

component of Xx at zero is equivalent to freeing the corresponding

~

component of A . Thus we consider at each stage a partition of x ,

X, |

(. Ay -y m NIJ with %, =0 ,
> 1(2 ¥ ] £

and a corresponding partition of X ,

A

e L e L
5 52 Sk by

2

which ensure automatically that (3.2c) is satisfied. If (3.2a) is now
solved for the variables permitted to be nonzero at the current stage

then 1t can be written

{5.5) o, - Mo, = -q ,
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where
e A
4 | ok
(3.6) o, = and O, =
Y. 52 EY §2

Each step of the algorithm involves interchanging a component of X
with the corresponding component of A . This results in a
transformation of (3.5) which can be represented by multiplication
by an elementary Jordan matrix followed by appropriate permutations
to partition the new variables into the form (3.6). . We define the

Jordan matrix Ji by
(3.7) 1K (M) = (I-5.e.)K. (M) = -e,
; 103 5 1 A | o

where i is the index of the element of 0o, to be exchanged, and
Ki(') indicates that the ith column is taken. Using a bar to denote

transformed quantities we have

Al

o Behe 0

SO

(3.8a) e —ﬁf;— ) o e B

i q;
e A R
jedl 1
K M) = (1-3 eT)K (M)
k » 1i%i7 Nk
Mk
(3.8b) = Kk(M) % MI; {Ki(M)+§i} il e

When k = i , the ith column of M comes as a result of the interchange

A e TEhis gives

—(I—j.e?)e.

(3.8¢) K. () jie,)e.

o
M. .
i o0 )

K, (M+e } -e;
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This shows that the computations involved in the algorithm can be

carried out in a manner familiar from stepwise regression (see eg,
Effroymsom, 1960). However, the problem set-up still involves the
calculation of the normal matrix which 1s a significant initial

computation.

An alternative to forming the normal matrix is to apply
orthogonal transformations to the data matrix. This is known to have
superior numerical properties (see eg, Golub and Wilkinson, 1966)
but’it is interesting that in the stepwise regression case it is
known to be more efficient for an important range of values of m
and n (Osborne, 1976). This approach is considered in the next
section. It turns out that set-up time can be considerably reduced
by working with the multiplier vector A, and there is an unexpected

~

bonus for AZ turns out to be a numerically better determined

quantity than Xy - Numerical results, including a comparison with

the quadratic programming approach, are presented in Section 3.3.

3.2 USE OF ORTHOGONAL TRANSFORMATIONS

To derive the equations satisfied by X5 and AZ we assume

that the orthogonal transformation of the data matrix is given by

T rcl

(3.9) A g and Qb = L” :

= e

5 ¢
5o

where Q 1is orthogonal and U upper triangular. Substituting in

(3.2a) gives

;A UIUx = —UFCl
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or

(3.10) UM - Ux = -c,

We partition U and c to conform with (3.4) by setting

U c
3.11 The! 1 12 o T R
U

2 i =2

so that (3.10) reduces to the pair of equations

oy TRV B R L

1<1 ~11 ~2 2~.12

The interchange of a pair Ai s Xy destroys the form of U unless the

last element of X becomes the first element of 52 or vice versa.
Thus the upper triangular form of U must be restored following an
interchange, and this can be done using the now standard techniques
treated in detail by Gill, et al, 1974. For example, to drop the kth
element of X, which we assume to be of length p > k , we perform the

interchanges  k+ 1. >k ki + 2 >k +1,...,k*p on the colums of Ul
and then sweep out the elements introduced in the sub-diagonal positions
using plane rotations W{j,j+1,(j+1,j7)} , j =k,k + 1,...,p - 1 where
W{i,j,(p,q)} 1is the plane rotation mixing rows i and j and making
zero the element in the (p,q) position. Similarly, to add an element
to X, the corresponding column (say k) of U2 1s moved to column 1
Dy the sequence of interchanges 1+ 2, 2 > 3,...,k > 1 , and the upper
triangular form is restored by the sequence of plane rotations
wij,j+1,(+1,1)} , j =k - 1,...,1 . These operations are shown
schematically in Fig. 3.1. The interchanges are indicated by arrows,

elements eliminated are circled, and elements introduced are labelled

by the rotation number.
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/‘\ . .
X X+X+«X %X X X deletion of variable
Xk N X % X from x

1 el
R 4 C%:) X 1 (matrix shown is Ul)

¥ oo N b
A»xX+X" X ng p ER { X addition of variables
s (02 x X to x
1§ i
XX (:) 1 X (matrix shown is Uz)
X X

Fig 3.1 Transformations for addition and deletion of variables.

The algorithm can now proceed as before. However, although it
appears from the above description that the initial set up time includes
the factorization (3.9), the observation that it is possible to work
with 5 instead of x makes it possible to start the algorithm
without any pre-processing of the data matrix A . The key point is
that 52 can be determined once the transformation necessary for the

calculation of the complementary set x

1 has been carried out, although

need not be computed unless A, 2 0 . The modification to the

X1 £2

algorithm is explained by considering the first step which is typical.

Note that initially x = xgl) = 0 so that (3.2a) gives
(3.13) Agl) st i

where the superscript indicates step number. Using a Householder

transformation (say) to sweep out the first column of A gives

i1 Yiz e 7
] 0 RSk g | o
”lA — . i : and ng =
0 X X |




Now, from (3.12), we have

)
Uy
(1) Uso b
PR - , = oaky L(2)
i : 2 L4 9,
U
1n
L _
iy
U ~ .
12 ;
o a2 Ly
' /)
A9
(3.14) | i | |

showing that the Lagrange multipliers can be updated and decisions
made on the order in which the remaining columns of A are swept
out as the factorization of A proceeds. Essentially no set-up

computations are required for this form of the algorithm.

This relation can be given a general form. We partition

Qg 80 that (3.9) is written

T
Q

(3.15) % L g
Q,

o e

] and QIb =<

Partitioning A and Q; in conformity with x we obtain

~

e i T

I and Q;,[A A, 2

] =1[u, u

il
(3.16) Qll[Al A R

2

so that
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and, using (3.16),

0
0 T T
i proceiz AQ Qb
), ;
an T
as
T T T Fon
Qo = 1-Q;Q; - QQ, and AQ, =0

In particular, the general form for (3.14) is

i

T
(3.18) Sy @ Aob— lie

Aol

and this confirms that the multiplier vector is available when only

the transformation of A necessary to compute X1 has been completed.

Equation (3.18) is useful also as it permits an error analysis
for this method of computing A, to be given. Indicating computed

quantities by bars we have

s A, o
e s v = DRy - A0 0 b s e

_T T
U, - A0, ke

T Lt
- Alel{c ke

(3.19) A e

where € is the evaluation error. This equation can be further

~

expanded to give

P, =T Tl T ' Py
6% = U ,-A04, ke, + AQY -0, T,

T S | T
(3.20) + A0, 100, - Qb+ A0, 10,-Q b+ e,

where the prime indicates the exact orthogonal factorization defined
by the actual numeric data at each stage. The quantities on the

right-hand side of (3.20) can now be estimated using known inequalities.
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The most important terms are those involving Qil - Q11 , and it was
shown by Jennings and Osborne (1974) that this can be bounded by an

expression of the form kl_eps x(Al) where k1 isiaviconstant, eps is

the machine precision, and X(Al) is the spectral condition number of

Al . This is a result which is more favourable than the corresponding
result for X4 which Golub and Wilkinson (1966) showed to have a

dependence also on

Cc
i st ¥
epsx(A;)
Cc
.

However, the bounds quoted in the error estimate are for the usual
form of orthogonal factorization which takes no account of the
possibility of the back-tracking which can and does occur in the
algorithm. If we assume the analysis is valid also in the case of
back-tracking, then presumably we have to use the largest condition
number encountered to the present stage rather than the condition

number of the current partition Al

One further point in favour of this form of the algorithm
is that it appears rarely to be necessary to compute the complete
factorization (3.9) in the determination of the optimum subset X1
It is conceivable that the full system could be badly conditioned

while the subproblems leading to the optimal subset could be well

conditioned.

9.2 NUMERTCAL RESULTS

A subset selection algorithm for (3.1) proceeds essentially in
two stages: an 1nitial search for a feasible X1 (or A,) wusing a

heuristic to determine at each stage the component to be set to zero,

and subsequent back-tracking to explore other branches of the search
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tree if the first feasible solution is not optimal. It is in this
second phase of the computation that the major improvements due to

the algorithm are achieved. In the first phase the heuristic commonly
used is to fix at zero level the most negative of the current solution
components. This procedure suffers from the disadvantage that it is
not scale independent. For example, if the data matrix A 1s

multiplied by a diagonal matrix D to rescale the column norms so that

{5.218) A+ ap”? g

then it follows from (3.2a) that the solution vectors are transformed

by
(3.21b) X < Dx dnd A+ D—lk

Our numerical experiments have shown that the choice of the first phase
heuristic is important because it can affect the amount of work that
has to be done in the second phase of the computation. It seems
reasonable that a good heuristic should not be affected by changes in
scale, and for this reason we compare the choice of most negative
component with a choice which corresponds to the test used in stepwise
regression to determine the variable to enter the regression at each
step and which has the property of invariance with respect to column
scaling. If we consider the data matrix factorized so that at the ith
step of the first phase of the computation we have

: . ¢
A(l) 5 1 12 g b(l) f 411

0 B  pEERTes W', REE

~

(3.22)

then the stepwise regression test selects the variable to be introduced

as that which maximizes



T
[ a7k ®) /] Ky (B) |

b

as this leads to the biggest reduction in the sum of squares of the
residuals (see Golub, 1965). Here ||Kj(B)|| is the euclidean length

of the jth column of B . Now, from (3.18),

51 4 Ll
R SR S - B

so that we can use the stepwise test in the form

o he et Loy
(3.24) X, * s maximizes Y(j) = - ————
s 1k, (B

for all .  such that ¥(j) > D

However, our implementation actually considers Y(j)2 as

HKJ.(B)H2 is readily updated from step to step.

with m=50 , n= 40 . The data are obtained by sampling from a
normal distribution for the first set and from a uniform distribution

for the second set, except that in all cases Kl(A)j it RS B P

after the columns of A are scaled initially to have unit length.

Also, for the data drawn from the uniform distribution, we consider
scaling the columns of A to have unit Ll norm as the most negative
strategy proved particularly favourable in this case, and definitely
superior to the corresponding scaling using the euclidean norm. Also,
for comparison, we give results obtained using a quadratic programming
subroutine QUADPR, based on the Cottle-Danzig principal pivoting

algorithm, which was supplied by the Madison Academic Computing Center

at the University of Wisconsin.

We report numerical results for two sets each of ten problems

For each set we give results for each of the selection strategies already

discussed and for the case in which the most negative strategy is used
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The results for the two data sets are given in Tables 3.1
and 3.2 respectively. We report the average time per problem as
(cumulative time)/10 (recorded most unreliably on the computer used,
a Univac 1100/42)t, and the total number of nodes visited. It will
be seen that the variants of this algorithm are superior to the
quadratic programming algorithm. Also, the most negative heuristic
is never too bad, while the stepwise heuristic is favoured for the
data drawn from the normal distribution. ' There 1s some evidence
thdt the statistical origin of the data is not irrelevant to the
choice of a good heuristic. Starting with 5 rather than X 1s
clearly the superior strategy in terms of elapsed time despite the
unreliability of the timings (for example, the stepwise and column

scaling strategies should have returned approximately the same times

in Table 3.1).

The rather dramatic 10-20 fold reduction in time taken
for this implementation seems to be partly due to the use of
orthogonalisation transformation techniques (as opposed to matrix
inversion in the original implementation), and partly due to working
with 5 rather than X - SO that if, say, n/2 elements of X were
non-zero at the optimum, about % of the elements of U in the QU
factorisation of A would need to be calculated, as opposed to 3/4

if working with x

~

T Timings in a multiprogramming environment tend to be unreliable
because compromises are made between keeping exhaustive records and
efficiency. Part of the explanation in this case would appear to
stem from the system executive's practice of continuing the internal
timing of an interrupted program unless it is actually swapped out
of core.
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TABLE 3.1

Results for data from normal distribution

Average time

Method (ms) Number of nodes
Quadratic programming 1187 404
Most ncgative Ai 522 210
Stepwise 249 204 *
= *
llKj(A)H2 1 437 204
Most negative X, 547 202

*First feasible solution is optimal for each problem.

TABLE 3.2

Results for data from uniform distribution

Average time

Method (ms) Number of nodes
Quadratic programming 1340 416
Most negative Ai 434 196
Stepwise 390 262
| I\j(A)II2 385 262
I kj(A)IIl 307 168
Most negative X, 518 240*

*First feasible solution is optimal for each problem.
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CHAPTER 4
THE M-ESTIMATOR: STRUCTURE

4.1 INTRODUCTION

4.1.1 Robust Estimation and the Rejection of Outliers

The problem of rejection of outliers may not be quite as
old as experimental science, but it has certainly exercised the minds
of astronomers, chemists, physicists, etc., for a very long time.

The great German astronomer, Bessel, remarked in 1838 that he never
rejected an observation merely because of its large residual. Others
have not been quite as confident of their equipment and procedures.
The first attempt at a rejection criterion based on some sort of
probability reasoning seems to have been given by Peirce in 1852.
Since then, the topic has become a standard part of least squares
theory, and from 1925 onwards has received a great deal of attention
from statisticians. An historical review is given by Anscombe (1960),
where he also makes the pertinent observation that when a rejection
rule is applied, a judgement is not being made on the spuriousness or
otherwise of the observation so much as protection is being sought
against possible adverse effects - a rejection rule being something

akin to an insurance policy.

It is this safeguarding against small deviations from the
assumptions that lies at the heart of the search for robust estimators,
and any complacency in the use of classical estimators such as the
mean square deviation was shattered by Tukey in a rather entertaining
article in 1960 with the aid of a simple example. He assumed a

randomly mixed batch of '"'good" and '"bad'" observations from N(u,OZ)
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and N(u,SOZ) distributions respectively. Now Fisher in 1920 had

shown that the mean square deviation

Lo 1
Bt H—Z(xi-x)

to be 12% more efficient than the mean absolute deviation

e R R
g n 3

where the asymptotic relative efficiency (ARE) 1is given by

var(s_)/[E(s ) 1°
ARE = lim e L 5
n->o var(dn)/[E(dn)]

The calculations from this example (as corrected by Huber, 1977 (a)) show
that although ARE is less than .88 for zero (or 100%) contamination, for
as little as 2 bad observations in 1000, ARE is more than 1.00, reaching
a maximum of over 2 for 1 bad observation in 20. This is especially
disturbing when taken in conjunction with statements such as that of
Hampel (1973) "altogether, 5-10% wrong values in a data set seem to

be the rule rather than the exception'". In that same paper, Hampel

gives as the main aim of robust estimation: safeguarding against gross
errors; bounding the influence of hidden contaminators; isolating

clear outliers; and still being nearly optimal at the strict parameter

model.

The search for robust estimators has led to a variety of
suggestions, each with its own advocates, (see, eg, Hoffman, 1977;
Huber 1977(a), (b); Hampel 1974(a), (b); McKean and Hettmansperger,
1977). Some of these are quite horrendous in the amount of work to be
done in identifying more than one or two outliers. Thus to identify k

outliers, Andrews (1971) considers projections of the residual vector
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n
onto ( k ] hyperplanes, and Gentleman and Wilk (1975) perform

regressions on 2 subsets of data. One wonders whether this last
approach is a sufficient improvement over the suggestion of Mickey, Dunn
and Clark (1967) who simply do a stepwise regression, using an F-test to
determine whether the observation dropped was indeed an outlier. The
main approach with all these methods has been to consider the estimator

from a statistical point of view, justifying the choice by statistical

analysis, sometimes bolstered by Monte-Carlo simulations.

4.3.2 M-estimators

One type of estimator put forward primarily as being
.distributionally robust (as opposed to model-robust see Hoffman , 1977)

is the maximum likelihood or M-estimator.
The classical linear squares estimator is, given a model
m
(4313 y. = z R X % .00 S 1 5T PRRETIT. |

where the ui are independent randomerrors, to find an m-vector x

such that
: 2
(4.2) ) (r;)° = min,
where the residual, roo, of an observation is given by

(4.3) r. =
]

Rew X = ¥,
T i

o
[ =

In an effort to reduce the sensitivity of this estimator to
occasional gross errors, Huber (1972) suggested replacing the squared

term in (4.2) by a less rapidly increasing function, p . Thus we

*
now require x such that

~

n *

(4.4) ) p(r;) = min
i=1
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The favourite choice of p by Huber (and others) is

it 2 for [El =

(4.5) p(t)

\ =

2 for 4 i

clt] -
and it is this function which is the topic of the next two chapters.

This chapter is concerned with the function defined in (4.5),
(as applied to residuals in (4.4)), in an effort to understand its
underlying structure, as opposed to justifying its statistical virtues.

The resulting algorithm will be defined in Chapter 5.

4.2 DEFINITIONS AND PREAMBLE

4.2.1 Definitions and Conventions

A partition P_ is a dividing of the set N = 'S 5 PR

into subsets o, and 6a . The function associated with Pa is

o

1 2 1 2
B ola) = 6(} T (x)" + ; {clri(§)|—éc e
a4 a

X will refer to the minimiser of Fa(x) and Fa(xa) will

be called the value of the partition. Residuals of a partition will be

measured at its minimum, X

~

Sowespdual ds tight if 1ts absolute value is equal to c .

A partition is tight if at least one of its residuals 1is tight.

"Tightness' will, unless stated otherwise, refer to partitions.

A partition P_  is oO-feasible if Iri(xa)l £ &, i1€o
A partition Pa is o-feasible if [ri(xa)l - AR

A partition P_ is feasible if it is o-feasible and o-feasible.




value of the absolute deviation function eri(x)l Jumeasurediats Xx
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The absolute deviation (AD) of a partition Pa is the

~

The least absolute deviation (LAD) is the global minimum of

the AD function.

ZeTro

OO will refer to the set of indexes whose residuals are

at LAD.;

Uniqueness will, unless stated otherwise, refer to the

number of feasible partitions, rather than to whether a particular

partition has a unique minimum.

D
1}

Q
I

form

thus

ei will always be used for the sign of a residual,

sgn ri(§)

Adjacent partitions Pa and Pb satisfy the condition

0, U {k}

The examples given in Section 4.3 will always be of the

example 4.1, for instance, has 2 variables and 5 observations.

Example 4.1 is given below for convenience, as well as in Section

4.3.

[ ¥

Examgle 4.1




~
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4.2.2 Preamble

In order to get a feel for the structure of the problem -
what the function does, what can happen to it, what happens when ¢
1s varied - a number of questions and areas of speculation are
considered in the next section. 1In general, the questions posed
will be answered in the negative, by a counter example, or will lead
to a theorem in the following section. Sometimes, however, the
question posed was too simplistic and then a straight "yes/no" will

yield to further elaboration.

One area of interest is the relation of the M-estimator to

the LAD estimator, where p(t) in 4.4 would be

(4.6) pit) = |t

It is clear that, for large enough ¢ , the M-estimator is simply the
least squares (LS) estimator. Intuitively, it seems that for small
enough ¢ , the M-estimator will be related to the LAD estimator.
Several speculations (4.3.3, 4.3.8, 4.53.10; 4,3.11) explore this
relationship. The question of .non-uniqueness, how it is recognised,
under what circumstances it occurs, is considered in 4.3.1, 4.3.6,
4.5.9, 4.3.,11. , What might be termed the ''proper behaviour'" of the
function gives rise to several speculations (4.3.4, 4.3.5, 4.5.7, 4.3.8,
A0 00, 4. 8:11). Basically this is saying '"Can nasty things happen?"

"How nasty?". Finally the function value itself is considered in 4.3.2

and 4.3.3,

As Huber (1977,b) observed, once the partitioning o, 0 is
known, together with the signs of the residuals in 0, the M-estimator
can be calculated very simply. Thus the search for the M-estimator is

the search for a feasible partition. The first six questions (4.3.1
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to 4.3.6) deal with varying partitions whilst keeping ¢ fixed, and
the remaining five (4.3.7 to 4.3.11) deal only with feasible

partitions, allowing ¢ to vary.

4.3 SPECULATIONS AND EXAMPLES

4.3.1 On Tightness and Non-uniqueness

This area is possible one of the most interesting in the
problem. Given a feasible partition whose minimum is tight, must there
be another feasible partition? And, given two feasible partitions,
must their respective minima be tight? The answer to this latter
question, as will be shown in Section 4.4.1, is "yes'" so we now look
more closely at the former question. Clearly, we can answer it
trivially by taking the partition o0 = & and setting c¢ to the
largest sized residual of the least squares soiution. It is also
true in the more general case (0 # ®) that it is possible to have
a tight feasible partition which is also the only feasible partition

for a particular value of c .

Examgle 4.1

Here, o = {1,2.3,4} has s Lo, 55, 22, =2, 2.89)

~

with residuals 3 and 4 being tight. Illowever, as the vectors a
and a, (corresponding to the non-tight residuals of 0) span the

space, this is the only feasible partition (see Theorem 4.1, corollary).

IBis question is pursued a little further in Sections 4.3.9 and 4.3.11,
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4,35.2 On the Function Value of Feasible Partitions

As was observed earlier, the search for the M-estimator is
the search for a feasible partition. The question then arises as to
whether the function value of an infeasible partition can be less

than that of a feasible partition, for a given value of c¢ .,

Example 4.2

Here, the partition o = {1} 1is feasible, and has function value
2.00. However, the partition o = {1,4} is infeasible with function
value 1.96., This area is explored further in Section 4.4.2 as there

are some things which can be shown.

A further question in this area is whether all feasible
partition have the same function value. This expected, and hoped-for

result, is also shown in Section 4.4.2.

4.%.3 On the Value of the AD Function at Feasible Partitions

The relationship between the M-estimator and the LAD
estimator is complex and will be explored further later. Here, we
simply observe that the AD can increase from infeasible to feasible

partitions.

Example 4.3

licre, the infcasible partition o = ® has an AD of 4.4 whilst the

feasible ‘0 = {1} has an AD of 4.7.
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More interestingly, it will be shown (Section 4.4.3) that

the AD is the same for all feasible partitions.

4.3.4 On the Signs of Residuals at Change of Partition

As was observed by Huber (1977,b), if the correct partitioning
is known, together with the signs of the residuals in 0, the
M-estimator can readily be found. However, the signs of residuals can

change, even when partitions are adjacent and one of them is feasible.

Example 4.4

1 10 1 0.9 Lo A 0 ol (O S00 B IEEE T Sl

- PURRN £ 1 I ¢ ) SRt Dkl B B 5 LR B g =1
PR A Il Jdupigsy TPt s 400, 3,855, . iBies) |
TOPORS Beed nor 8L the cased g s orserant, 2 00, 2y,
so that Ty (1€0) changes sign between the two partitions, the

second of which is feasible. Note that Iy (320) also changed sign.

4,3.5 On the Feasibility of Residuals at Change of Partition

Example 4.5 is illustrative of the '"anything can happen"

property of the problem.

Example 4.5

1 0 i

0 1 1 c =1

9 3 3
For' o = {1,2,3} § aif-3..%.5
for @ = {2,3]} Fo (-7,-1,1)
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for g .= £33} g fon 2. 1) (one solution).

The first change of partition caused a '"bad'" observation to
become ''good", without its being involved in the partition change,
whilst in the second change of partition we have a ''good'" observation
going 'bad'". This latter, however, is only possible through the
non-uniqueness of the minimum of the partition o = {3} . The limits

on what can happen are given more exactly in Section 4.4.4.

4.3.6 On Non-uniqueness and Connectedness

Thus far, in the examples given when there is more than one
feasible partition (examples 4.2, 4.5), the feasible partitions have
been connected, i.e. the graph whose nodes are feasible partitions
and whose arcs imply adjacency of partitions is connected. This,
however, need not be the case (this is relevant also in the proof of

Theorem 4.1).

Examgle 4.6

The feasible partitions here are o = {4} , o = {2,3} and

o = {2,3,4} . The last two are connected to each other, but the first

1s 1solated.

Note: In Sections 4.3.7 to 4.3.11 which follow, ¢ will no longer

be fixed, and only feasible partitions will be considered.
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4.3.7 on o, as ¢ Varies

The experience of many randomly-generated examples (see

Chapter 5) has been that, in general for c, >c, , g s

1 c C

2 1
llowever, this need not be the case.

Examplc 4.7

ot g gy
Sl e ORI

Z 7 12 1]

20277 o 3 S L N

o
\

For
i e e TR R Gt e I S i SR
oy T A e giate 2 {0,535},

but for . g AT, 3,45

\
(@)

v
N
=

The first example, 4.1, also bears closer scrutiny. For
250 e s 2L, o 11,2,3) .
Soie w2y 9= 11,2,5.4) ,
whilst for ¢ < 2 , 0= {1,2} ,
illustrating the lack of predictability in the way in which 0 varies
with ¢ . Lemma 4.1 and Section 4.4.4 will, however, place some

limits on this.

4.35.8 on g and ©
o 0

The preceding section can be extended to include 9y > the
basis for the LAD. Again, although in general for c¢ > 0 , % E_OC :

this need not be the case.
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Examgle 4.8

1 9.5 7 1 -3 2.4660
1 7 9 3 1 1.475
1 -110 90 8h .6 . =59 -1

For -1.804.2 ¢c.> 1.776.., Pt ¥ {1,2} , the unique feasible

partition. However OO =13.4) =50 in.this example we have

g..[)g.= @
C 0

4.3.9 More on Tightness and Non-uniqueness

In Section 4.3.1, an example was given for which the
feasible partition was tight, but unique. In point of fact, for
every example for which n > m and is not completely degenerate,
as ¢ 1s decreased there will be values of ¢ at which the feasible
partition changes (and in general the feasible partitions will be
unique), and at these changes there will be tightness, usually in the
old partition (|o| decreasing), but sometimes in the new partition

(o] increasing, as in example 4.7 with ¢ = 0.5).

In the following example, the feasible partition is tight

for a range of c , but is the only feasible partition in that range.

Example 4.9

fomm s s < 417 , o0 =1{1,2.3.4}, and r, ='¢
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Note, however, that the non-tight vectors in o ,

a;, a, and a, span the space, a sufficient condition for uniqueness,

though it is not a necessary one - see Section 4.3.11.

4.3.10 On OC and OO’ for Small ¢

As was observed earlier, for large enough c, the
M-estimator and the L.S. estimator are identical. One would expect
that, as ¢ > 0, the M-estimator =+ the LAD estimator. It will
be shown, in Section 4.4.7, that this is indeed the case, and that,
furtier, 9 ¢ > 0 such that for ¢ <6, ¢ = ¢

C 0

4.3.11 On Non-uniqueness of LAD and M-estimators

Clearly, the result alluded to in the preceding section
shows that if the LAD is non-unique, then so is the M-estimator for a
range of c . The reversed question, whether there can be a non-unique
M-estimator, but still a unique LAD, is not as clear. The difficulty
lies in the fact that, as will be shown in Section 4.4.1, the non-tight
vectors in ¢ cannot then span the space, and, given that the vectors
in 0, must span the space, it turns out that by the time 0. is

small enough for there to be another feasible partition, 0. is getting

very close to6 o However, the following example is one in which

0

% s mmigue, but for a range of ¢ | 0. 15 mot.

Examgle 4.10

1 -110 90 856 58

For ‘¢ = 5., g = {1,2,3,4,5};




for MBS e 1,869, -0 50 01,2,3,4)

for 1.869 > ¢ =2 1.803, 0 {1,2. 4}

SR s e 5 1775 , 9= {1,2} ; or {1,4}-, or. {1} ;
SR e el s & o {12,300 00 11,4) , o {1}

SR Y RS g L.68, o= ol 3 s oon o A4}, 0 1)
for kb ez 384 . @ =, {1,53,4) ;

for (382 > , g= 3,4}

I

A final point on this particular example. At ¢

o = {1,2,4} , and r' = (-.902, 1.803, -2.007, 1.803, -166.836) .

s aad v e8] 315, a6 1.6 S166.15).

~

1,803

" AT RS O S -
In each case the partition is the only feasible one, and in each case
the non-tight residuals of o do not span the space. This again 1is

the exception rather than the rule.

4.4 RESULTS

In this section we prove a number of theorems arising out
of the speculations of the previous section, in an attempt to gain
greater insight into the structure of the defining function of the

M-estimator.

There are a few observations and minor results which will
be used freely in the remainder of this section which will be given

here rather than repeated each time they are used.
Firstly, any vector x 1is feasible for exactly one partition.

~

As was pointed out before, a set o defines a function

2
F( =% ] 1, 0°+) {e|r,0] -5
o o
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F(x) , being the sum of convex terms is itself convex.

Lemma 4.1

Given Fa(x) with minimiser X, o then provided that

~

rl(xa) £0 , 1€6 | Fa is strictly convex iff the vectors

a. , i€0 , span the space.

~

Proof
C2
S M R LN e R
Y o}
B i i €g
VFa(§) z ri(§)§i + Cz;eigi , provided ri(f) £0 ., i€a,
8]
where Gi = sgn ri(f) s
=l r(0a; +b
o
= = O
A5 VFa(fa) 0, Z r1(§a)%1 : P ~
(1) If also VF (xb)
g I Z Ll

and the vectors a, i€o , do not span the space.

~

11) If the vectors a. , ISEa do not span the space we can find

~

a vector d orthogonal to the a. , i€0 , and small enough so that

~ ~

X, + = 4
sgn 1(53 g) sgn rl(fa) , and then x

= % & d ‘also minimises F
~b R = a

Lemma 4.2

Given adjacent partitions 94 and g, with 0, =0, k),

then for any vector x satisfying

~

) =cy F(x) = F,(x)




S5
Proof
2 c2
Fix=%) r;(0)° + ] {e|r;0]-5}
1 51
2 c2
=5 T, ()T E (07 + ] el (0] -5
- s
2 ¥y
c2 g
=1§Z o X)) » c]rk(x)' = _; clri(f)l— 5 }
02 Ol
2 c2
::%; r. (x) +_§ C,ri(f){- 5 1
2 O,
Lemma 4.3
Given adjacent partitions 0y and 0, with 9,=0, U {k}
* * *
for which the minimiser x of either has ]rk(x IF = ¢, then =x

also minimises the other partition.

Proof
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4.1 On Tightness and Non-uniqueness
Theorem 4.1 (a)

Given two feasible partitions Pa and Pb such that

-— U = -

0 =06, YB 4 5 {sl,...,sr} £ & . ‘then ‘ri(fb)l c
for -dall 4€8 .
Proof

Assume otherwise.

> < =

Now as lri(§a)| c and Iri(gb)l ¢ ‘for AEE8 | We
can define points YyseeesY, to satisfy
(1) o BT SR DL
(ii) |rsi(xi)| = ¢

Thha) = < <

fiii) 0 < Oi < ei+l <1
(Thus e = aifb + (l—ai)zi+l Aabel o Q. S Gl S SRR

B e s -8 ) define F.(x) , 1= 1,...,p-1,

1 a bl r 1~

where S has been re-ordered so that S, corresponds to Gi.

Now as 1§t2 B g %;— oor ¢ = 0., it follows that
Fb(§) > F1(§) = NS Fr—l(f) > Fa(§) »
and from the definition of SERREEY and Lemma 4.2 we have
B = Fr )
Fi(Zi+1) = Fi+1(zi+l) gnt=d s e =2
Fr—l(xr) v Fa(Zr)




Now,
Fix) s Folx) < F(y;) = Fi(y;)
50
Hikay) 3 Filys)
Again,
F (%) = Fy(x) = Fi(y,) = Fyly,)
50

IA

e Ty

(xb) < Fr_l(zr)

a7

SGF(X)"‘(IG)F(Yz):

S 0,F (x ) + (1-0,) Fy(ys)

Moreover, from our assumption that [ri(xb)l < ¢ for at least some

€5, at least one "=" ‘im this Sequence is strictly " <" , and

algse @ >4
r

We can now write

AL E

T- % Fr—l(zr)

Thus

a r-1

SO

Bke’ 8 F Tx T o,

~d

a contradiction, as Xx

~

This completes the proof.

N et SR ) = F(y )

S (1-8)F_(x)) + 6_F (x),

~

is the minimiser of F,1
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Note that s ™50, US' , where S' CS , is not necessarily a
feasible partition. See, eg, example 4.6 where o = {4} and
o = {2,3,4} are feasible partitions, but o = {2,4} and o = {3,4}

are not.,

Theorem 4.1 (b)

Given two feasible partitions Pa and Pb f

2 o, No
let © 3 b

Then bas 1l ¢ for  i€g. NG =g Ng
1 =a a a b
& i Eglin gleig. N
lri(fb)l ea “Ber ela i e PRI
Proof
Let g = g Thg
€ a b
Let SlmE e s . Nig
a a b a C
= fg = N o
Let Sb Ob Oa : Ob OC
Then g e s and'o. =g, WS
a c b ¢ b
= - <
Let ¥ 0 X (1 GC)§ , W0E GL 2511 .a;
; ‘E
such that 'ri(Zc)l Be, 1€e,

Moreover, as y. cannot be feasible for L 9y (being feasible

for OC) 3 OC £ 0 and OC # 1 . Then from the same argument as

before,

Fc(fb) ? Fc(zc) » «and Fc(fa) & FC(ZC)
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0 et B0 F (k). s By

Now assume that for at least some iEEOa N 5C ;i lri(xa)) <c¢ . Then,

, h
as before, Fc(fa) < FC(ZC) , and, as ec # 0 , we have
ecpc(§a) i (1_ec)Fc(§b) > FC(ZC)
But, from convexity,
FC(ZC) i ech(fa) 4 (l—Gc)Fc(§b) ?

a contradiction.

Hence |lr.(x )| = c for all i€0c Ng
i‘on a c

Similarly lri(xb)l ¢. feor all . i&w r)éc

It will be observed that Theorem 4.1 (a) is merely a special
case of Theorem 4.1 (b), with 7, N 6b = & ., The splitting of the

theorem into two was done in the interests of clarity, in order to

treat the simpler case first.

Corollary

A necessary condition for non-uniqueness of a partition Pa

is that the non-tight vectors of 7. do not span the space.

Proof

Let P1 and Pb be non-unique partitions.

Define OC =0 Mo

Then, from Theorem 4.1 (b) and Lemma 4.3, X minimises Fc(x) , and

~

X

minimises F (x
Xy C(N)

Moreover as x is feasible for P and x o S
e a ~b b
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x # , thus from Lemma 4.1, the vectors of o =0 (o, do not
~a *b C a b

span the space. And as all vectors of Galq 6b are tight, 0. must

include all non-tight vectors of Oa

We now have two necessary conditions for non-uniqueness,
namely tightness, and that the non-tight vectors of ¢ do not span
the space. These two conditions, however, are not sufficient to
ensure non-uniqueness (except, of course, when there is only one

tight residual), see example 4.10.

4.:4.2 On Function Values of Feasible Partitions

Theorem 4.2 (a)

it Pa is a feasible partition, and Pb is o-feasible,

then Fa(fa) > Fb(§b)

Proof

Define P by o =g (Yg
C &

Then by the same argument as was used in Theorem 4.1, as

P, is o-feasible and # is o-feasible,

Fb(fb) - Fc(fa)

But.a% oo, .,
. C a

LC(§”) p I‘;1(‘\( )

~d

g g SR )




Theorem 4.2 (b)

If R is feasible and P, is o-feasible, then

b

Fa(fa) 3 Fb(fb)

Proof

Similar to above.

From the above theorems, we see that the feasible partition
has a function value smallest of all the o-feasible partitions, and

largest of all o-feasible ones.

Corollary

The function values of all feasible partitions are equal.
Note: This property can also be inferred directly from the

convexity of F(x)

4.4.3 On Signs and Values of Residuals in Non-unique Partitions

Lemma 4.4

Given a partition with non-unique minimisers x, and X

of F , then

. [ bk
(1) S Bt L6 O B
(ii) spR T () msgn T (x,) , 1€ 9]
Proof

Let X = X, + X,

Then, from the convexity of F ,

F(x;) < %5F(x) + 5F(x,) = F(x)
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SO F(xg) = %F(fl) + 5P (x,)

= .’52 {rl(fl)2+rl(§2)2} o ,‘Z'Z {Clrl(i(l)l+Cirl(§2),_C2} .
a

0]
X X,
OOy 1
Now r, 5 = zri(§1) + zri(§2) .
E SO -£§:{r A L I )}2 * E‘Z ]r (X ) (% )l
V 80’ Rl iy Z -k C e | i
u o

2 2
=]/4Z{Ti(§1) +ri()~()} +§Z {,ri(fl)|+,ri()~(2)'}
Y 9
But !5(1)”])2 S pZ i ({2 , and Il)+q| |1)| i ‘q| ’

so equality can only occur when all corresponding elements are

equal,

i.e. r.(xy) = r5(x,)

sgnr, (xl) = sgnr, (xz) 1 €@

Theorem .5

Given non-unique feasible partitions Pa and Pb 5 et

g =0 Ng . Then

(i) ) = ri(x kxS

1 el

. - ) - . 6 -
f11) S&nlﬁi(fu) sgnxﬁ_(f)) PR | e 1k
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Proof
. = "‘

Define %: by GIRA0) %y

Then, from Lemma 4.4, X, and Xy are non-unique minima of
FC . The proof follows.
Corollary

The AD function is the same at all feasible solutions.
Proof

Let X and X, be non-unique solutions.

Then, from Theorem 4.2 corollary,

2 CZ 2 < c2
gri(fa) e el () [-5) = gri(fb) + el () |-
a Oa b Oh

Petntoc,. =g A g

C a b
Then, from Theorem 4.1 and Lemma 4.2

2 c2 2 cz
) r. (x,) +_2 {c\ri(§a)l— v A i ’ r. (%) +_§ {clri(§b)|— Ak
Oc¢ . Oc I

= C i €
But, from Theorem 4.3, ri(fa) ri(fb)’ L0

2
L lelr () I- %?} =) felr;x i %?&
() (0]

C Cc

L RN

Oc Oc¢

AS . T = P, 1 €
Also, as 1l(§a) Il(fb) Al T

g |, (x| g sl R

c c
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hence

e dad ) = Hvs (3] -
4.4.4 On the Size of Residuals at Change of Partition
Theorem 4.4

Let P and P, be adjacent partitions, with unique

b
minima x. and ‘x. , such that ¢ =0, U{k}, then
il ~b a b
(i) B ] e

(11) Irk(fb)l gig lrk(fa)l = 'c
(iii) |rk(§a)| < g = Irk(fb)l < ¢
(iv) e Gl > e = |r (x )] > c
Proof

For (i) and (ii), assume |rk(§a)|:>c and ]rk(fb)] o

Define x = 6x_ + (1-6)x g =% <1 , such that

c ~a ol

Irk()fc)| Rt
Then

Fb(fa) > Fa(fa) 3 Fa(fc) X Fb()fc) 2 er(§a) i (l-B)Fb(§ )

Fb(fa) < Fb(f)) , as g <3,

a contradiction.
For (iii) and (iv), assume [rk(xa)l £ @0 and Irk(xb)l > C .

befilie % = Ox + (1-0)x,. , O <8 £ 1 , such that
~C ~a ~b




T (x| = e

1

IA

Then Fb(§a) F (x) = Fa(ﬁc)

Ao Fale b & OF (x. ) + (1-0)F (x) ,

- < F, (x nless 0 = 1 in which case al
SO Fb(§a) Ib(~b) PR : h Xy o)
minimises Fa »okn either case there is a contradiction.

Note that Example 4.5 is not a counter example of this theorem as
that in that example one of the partitions did not have a unique

minimum.

4.4.5 On the Composition of ¢ and O

Theorem 4.5

If Pa is a feasible partition, and it 1is known that

Fb(§b) < Fa(fa) , and FC(§C) > Fa(Ea) , then

. {iliéféb,lri(§b)[ Y

(1) o 0Nag,_ # &, where

Q
1l

N
e
e
—
oy
job}
D
Q
%
“th
o
=
=4
o
H
o
Q
l

{iLiEGC,\ri(§6H > o}

Proof

(1) Assume otherwise, i.e. for all i €g 0N 6b g |ri(xb)| >c
Then, by an argument, similar to that used in Theorem 4.1, we

c 3 < e A s
have Ia(fa) < Fb(§b) ; & contradiction.
(i1) Similar to (1)

Note: Pb may be, but does not have to be, o-feasible,

PC may be, but does not have to be, o-feasible.

B e
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4.4.6 On the Size of o©

Theorem 4.6

Providing there are m linear independent (row) vectors
in A , then there exists a feasible partition for which there are

at least m linearly independent vectors in O

Proof

Assume we have a feasible partition with fewer than m
linearly independent vectors in ¢ . Then, from Lemma 4.1, there
will not be a unique minimum for that partition, and the minimum
will be portion of a hyperplane bounded by hyperplanes defined by
|ri(§)| =c¢c, 1€0 . At any point of intersection, we have a new
partition which, from Theorem 4.3, is feasible, and with one more
linearly independent vector in o0 . As long as the minimum 1s not
unique, i.e. there are fewer than m 1linearly independent vectors

N0 %s thistprocess can' be' repeated.

4.4.7 On the Connection with LAD for Small ¢
Theorem 4.7

For 'small emough, but positive, c¢ , OC =0,
Proof

&t "o =0,

0
2 c2
then F(x) =1i2 ri(x) + Z{c'ri(x)l— 7?}
o g o

%
Eet - X minimise F

~
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Hence
dF * i * rt :
i d—x(f)—zri()f)%iJrzcei%i'g
! ] o
[
Thus,
*
dri(x )
dc o b Z 6i%i F Q
0]

Now, from the characterization of the LAD optimum, (see,

eg, Watson, 1980), we have dA such that

Qip—-

) Aiai + ) ei§i =800, thand 5
g o

But as the a. , i &0 , span the space,

*
e X
dx 1
*
} 1.€., dri(§ ) <1
| dx
|

g -when € =0 for 1€o,

*
and, as ri(x )
|
i, {% - LUK o
T, (x)
| Thus the residuals within o stay feasible as ¢ 1is varied.

*
Now ri(x e = . 1 €0, Thus for ¢ <0
*
>
jr, (x )] > ¢,

e (x| dr.

: i
= SEn e <
where ¢ min oy g ri(§ ) I 1

o gt A
Boen ri(fo) de

dr.l
H and 6 > 0 as —— is finite.
| dc
Thus for the range of ¢ , 0s¢ <6, 0o, is a feasible

0

partition.
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Corollary

If the LAD is non-unique, there 1s a non-unique M-estimator

for a range of c

4.5 SUMMARY

We have seen that the defining function of the M-estimator
is not a simple one. 0Odd things can happen (eg, example 4.4), which
can make the finding of a feasible partition difficult. We do,
however, know some limits on the behaviour at change of partition,

and where a partition is tight, the function is well-behaved.

We have been able to establish the relationship with the

LAD estimator, its extent and its limits.

We have been able to establish necessary conditions for
recognising non-uniqueness, and although they are not quite

sufficient, we can recognise those times that they are.

Examples such as 4.7 where o0 = {4} for one range of
values of ¢ , and {2} for another pose the question "which is
the outlier?'". A final comment from Andrews (1971) is relevant
here '"Such observations should not be rejected, but rather receive
special attention. To ignore them would appreciably limit the

information to be gained from the current and subsequent experiments''.




CHAPTER '5

AN ALGORITHM FOR THE M-ESTIMATOR

5.1 VARIOUS APPROACHES

Along with the rapid development and great interest in the
theory of robust estimators, there has naturally arisen a
corresponding interest in algorithms to compute, in particular, the
M-estimator. Several approaches have been suggested, and some of
these have been developed and extensively tested. Of these,
approaches which attempt to find a specific number of outliers by
considering in some manner all possible subsets (eg Andrews, 1971,
Gentleman and Wilk, 1975) do not appear promising, both because of
the amount of work to be done and because of possible ambiguity
in the answer. Example 4.7, when in the case of just a single
outlier, the identity of the outlier can vary for different ranges

gr e Maliustrates thiis'

A number of iterative methods have been developed, and
the most popular of these are summarised below. In some of these a
scaling factor is estimated by the algorithm at each iteration
(eg Huber, 1973, Huber and Dutter, 1974), and some just estimate it
once before computation begins (eg Beaton and Tukey, 1974, Holland

and Welsch, 1977). For simplicity, scaling will be omitted below.
We are concerned with the problem
{5:1) minZ]o(ri) a

or, equivalently, if p 1is convex and differentiable

69.
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(5.2) ) w(ri) =0
: ~th .
where Y = p' and r. 1is the 1 residual
m
(5.3) BitE 2k, xfor yi%

Three iterative schemes have been suggested for solving

(5.2) .

. M ext e wlarah s ATy eh
< §i+1 A >~(i S ATW(Ei)

ki §i+1 ; >~(i Y W(Ei)>’A)—l & Ay 1:i

where <a > denotes a diagonal matrix with diagonal elements

< >ii =2 and w 1is a weighting function.

(5.4) is simply the Newton method and has been applied by
Huber and Dutter (1974). According to Holland and Welsch (19777 it
1s the fastest, but difficult to implement as it requires ', and
AT < Y' > A may be negative definite. (5.5) is Huber and Dutter's
(1974) method, and they describe it as the usual least squares method
with the residuals being "Winsorised'". It has the desirable property
that the generalised inverse (ATA)_IAT need be calculated only
once, but Holland and Welsch report it as being the slowest of the
three methods and not being easy to use with existing least-squares
packages. (5.6) is the iteratively reweighted least squares method
due to Beaton and Tukey (1974) (although Schlossmacher, 1973, does
use an iteratively reweighted least squares method for the least

absolute deviation estimator). Detailed examinations of the method

are given by Holland and Welsch (1977) and Byrd and Pyne (1979).
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For the M-estimator,
(5.7) minZIp(ri)

where p(t)

Il
N
ﬁ
H
(@)
=
(—f
IA
o

ebel o Le® Cfor 1tl 2e

Huber (Huber, 1973, Dutter, 1977) proposed a method based

on the idea that if the partitioning o = {il—c::ri:sc} A

g, = {ilri>'c} i {ilri <-c} is known at the optimum, the
problem is simple. The algorithm starts at an initial estimate,
determines the partitions o, 5+ , 0 and solves (5.7) on the
assumption that this partitioning is correct. This process is
repeated until the partitioning does not change between successive

iterations. Huber (1973) reports that this method is fast, but can

run into singularity problems.

The algorithm presented below uses the result that the

M-estimator, i.e. the optimiser of (5.7), is a continuous piecewise

linear function of ¢ . This means that once the correct partitioning

has been found for a particular value of c¢ , that partitioning 1is
correct for a range of ¢ . Also, residuals becoming infeasible
when the range is exceeded indicate the correct partitioning for
the next range. Once this is done, the M-estimator for the next
range can be found with little additional work. The initial step

is to find the least squares solution, corresponding to taking

¢ arbitrarily large, and for which 5+ 5_ =¢ ., The algorithm
then proceeds by decreasing c¢ 1in steps until the correct value of

¢ 1s reached. Thus the algorithm finds the outliers (as defined

by the M-estimator) for all values of ¢ greater than any desired
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value, a useful feature given the possible ambiguity of 'one outlier'.
The algorithm falls into the category of continuation algorithms
(Ortega and Rheinboldt, 1970), with c¢ being the continuation

parameter.

5.4 THE ALGORITHM

Sl Piecewise Linearity

Theorem 5.1

The M-estimator is a continuous piecewise linear function

ol & .,
Proof
If we re-write (5.7) as
BrS s 2 ez
(5.8) minimise F(c,x) = % Zri +§:{c|ri]—2c e
e : -
*
where 0 = {ill ri(x 1| = ¢}, then, for any ¢ , the condition for

a minimum gives

*
(5.9) Q = gri(§ )ﬁi + ECGi%i $
*
where ei = sgn ri(§ )

(For the remainder of this chapter, we will only be discussing

* *
pptimal points, so x will be used for x and r., for r.(x )).
i it~

~ ~

Difrerentiating (5.9) with respect to c¢ gives

(5.10) 0= Ja —— + }0.a ,
G




or
gk 5 aab E + T 0.2,
2 g 1~1 dec 6 i 4
T dx
(5.11) = BB = * };eiili i
a

where B is the submatrix of A defined by O, 1.8,

bj =a. , 1S9, "'yis 1,...,|0| , wWhexe bj and a. correspond to

rows of B and A respectively.

d2x dx
Differentiating (5.11) we see that — =0, so ~ and
i dc
dr. dc
i) {f 2 3 e . .
g are piecewise constant, and x and r, are piecewise linear
in ¢ . Moreover, at the end of a range, where extending it further
would make |rk| > ¢ for some kE€o or Irkls c for some k€0 ,
|rk| = ¢ and so, by Lemma 4.3, the optimiser of (5.8) also solves
(5.8) for-"o"'"= 0 & {k} , which is the new partition. Hence x 1s
continuous.
S:l.2 Updating at Change of Partition

In the previous section, we showed that x was piecewise

linear in ¢ . When the range changes, there will be a new

partition. We now show how to carry out the changes so involved

efficiently.

If we can find a positive definite matrix P such that

BTB = PPT , then (5.11) becomes

o,
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where w. = P_la. .  Then
<3 |
dr. -
PR T
(R 23] dc §j dc Yj 2 ei‘ii

At a change of partition o+ o * {k} ,

{9 T

(5.14) PP > PP + a PIp!

ag = P{I+tw wT} ﬁT

k ~k~k

]
—
-

Now for any orthogonal transformation QQT

(5.15) o = QQ  QQ W QQ

—
I+
=
=
I

Q{r+Qwwqlq .
If we select Q such that

(5.16) Quw =|lwlle, , l=asm
(5.15) becomes

(5.17) I + wow

# S L
Q {IiIIYkH gaga}'Q

Qp? 0y Q]

so, from (5.14),

1

(5.18) P' = PQD? ,
and from (5.12)

5.19 w! = P' "a.=D QO w.
( ) ~J ~J Q =

The matrix Q can be calculated from the Householder

transformation (see, eg, Wilkinson and Reinsch, 1971).

A A T . ;
(5.20) (I -2qq)w =6 llwile, .

~




/\’I‘ A
(5.21)  Qaw)a=w - G llwle,

~T T 15
2w, = L20mon, - 8l wll Gydy? ™ -

~

(5.22)

After the w. have been updated in this manner, the

~

can be updated rather efficiently in the following way.

From (5.13) and (5.19),
drj
____—--Z_'
dc wit ) 6y
O'
Bt O
(5.23) = -w. QD ZeiD Q Wyt witowl
Now, from (5.17)
i (S
el iall ee )
[ Meee
(5.24) =4 1 F = %
7 e

and from (5.16) and (5.19) w,

K is parallel to

(5.25%  wr

~

o= 1 1
Kk (Yj)a (Y )a '
Applying (5.24) and (5.25) to (5.23), we have

NkH : T i oK
ALETEN . e 1 1
1~jQ§a a Q 1 (yj)a (Y )a

¥

) e.(QTy.)a(QTyi)a £ W)y
o]

75,
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dr.
3 J ' ' ! '
ke, P g ei(‘i'j)Ot (W5 d o = (‘fj)a ()
dri
Sl A, - ' !
(5.26) = -ght W), Z'Gi(yi)a :

0]

dr
and as X Gi(yi)a is independent of j , the updating of v

!
only requires a single operation.

The operations of equations (5.19) to (5.22), and (5.26) describe the
basic updating at change of partition. In practise, the initial step
is to find the least squares solution (0=¢) . This is done using a
Choleski factorization, LLT = ATA , which also provides the initial

P matrix. L is actually lower triangular, but this does not persist

beyond the first step.

5,2.35 The Choice of the Orthogonal Transformation

In the updating at a change of partition, an orthogonal

transformation, Q , was chosen such that

T
(5.16) Q w = flwie, l1<as<m,

~

without specifying o precisely. We will now show that, as far as

I ij is concerned, it does not matter which o 1is chosen.

In (5.19) we had

=
1
=
)
=
I
=
<

(5.27) where Vj =Q w




Thus

(5.28)

where

(5.29)

S0

!
H

2

(5.30)

But,

(v.)

Ty

T &

Now, in (5.24),

2 T
-1 - H Yk” Cala
D =1+ 5
1t ||
-5 : 2 -4 T
B =1 - {1i% (1% Yk“ it e

T
5 +
I i S)EQSQ §

1
=3

6=t wl®)7* . Hence

Yj B Yj - (1* é)ga(zj)a g
s 2 2 2
= Hysll” -2y A&+ v, a8
i 2 2 -
= [y l1° - vy area+e
@ 2 2 2
ey (-8 )

1 2 G P S
s i 1+ || w )2

el L
DA e
1+ || wkH
gt 240 cend using [5.20).,245.21), (5.22),
AR

- A AT
o R

/\T AN
W5)a - (297W5)9,




78,
A Con)y = 0l w Y L2ww -0, 1w | ()]
~j a ’
{Z(Y e = Ol well tv b
L W Ol Londy - 0l wll }
s Fw IO w Il - 0w )
e elw, ) <18y (w, )2}
o ~]~ ~k” o k ~k’o
Hwkll{ lw - 8, (w3
T i
w. w, 0 w. w, O
(5.31) = (‘!J)OL - (YJ)OL P ~k "k - l’l-—u
[lw, |l [lw, I
Substituting (5.31) in (5.30), and using || Yj” = yjH d
T 2
(w.w, )
2 2 - ~J~k
g5esd) & ollatl|® =ellmyfld F—ls
i y 1t lwl
which is independent of o .
The above result shows that || wiH 1s independent of which

o 1is chosen. However, from (5.28), (5.29) and (5.31),

Gk wT wk
(5.53)  (ul), = i
ol G-l )7
if, as is normal, ¢' = o0 - {k}

Now if the same o is chosen at each iteration, and there

happened to be a build up of the ath element of some of the w.

~

:

there could be an accelerating process of the w. Dbecoming parallel

~

to S and hence to each other. It is therefore suggested that it
may be safer to cycle the o . Both methods were tested in the

implementation of the algorithm without any apparent difference

being found.




g

5.2.4 Behaviour of Derivatives at Change of Partition

We saw earlier that a change of partition became necessary
in order to keep x feasible, i.e. so that the solution of (5.8)
also solved (5.7). We have yet to show that we do end up with a

feasible partition for the next range of ¢ , i.e. if o +o « {1k},

drg drk
e and if g+0 - {k} , 8 —=— <1, for if this is not
k dc k dc
so, then the algorithm could cycle o > ¢ + {k} 0o~ ..., or end up

in an infeasible partition with x solving (5.8) but not (5.7). This is
not simple to show analytically, but comes as a fairly easy consequence

of one of the theorems in Chapter 4.

Assume that we have cycling at a change of partition,

dr
g+0o'>0> ..., and let o' = o U {k} . Then we have ek agi 2ay
dr!
and Gk-aé& < 1 . If we now reduce c¢ slightly and consider the
kth residual, we have |rk| .0 and |r£| 2, 1 Thas, however,

contradicts Theorem 4.4 which states that, at adjacent partitions

lr, | >'e ¢>|r£| BOF TCand "ir

K K

The above result shows that cycling cannot occur at a simple
change of partition, when only one residual changes status. As was
shown in example 4.1, however, (discussed in Section 4.2.9), it is
possible to have more than one residual changing status at a particular
value of c¢ . In this case it is rather more difficult to show that

cycling does not occur. This is dealt with in Section 5.3.

BeZun The Algorithm Summarised

Algorithm 5.1 To find the M-estimator for any value of ¢

SteE 1 Perform a Choleski factorisation on the initial matrix and
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find the least squares estimator.

Step 2 Determine the end of the current range of ¢ and if

this includes the final ¢ , calculate the M-estimator and stop.

Step 3 Determine the partition for the next range of ¢

Perform the updating required to enable calculation of

the M-estimator and residuals within the new partition.

Go to 2

s FINITENESS

In order to demonstrate that the algorithm is finite, we have

to show that

(i) there are only a finite number of ranges of ¢ ,

(ii) cycling cannot occur at a change of partition.

Theorem 5.2

There are only finitely many ranges of ¢

Proof
If we re-write (5.8) as
LoD o Lyt
(5.34) minimise F(c,x) = 42 r, + X (cri—ac ) - z (cri-ic | "
M L T §)
+ -
i : * ¥ : *
where 0 _ = {1|ri(x | % R {1|ri(x L ETR L
we see that as there are only finitely many partitions O, 5+, 5_ , SO

we need only show that each such partition can only be visited once in




'r----'---'----"ﬁ44_____________________________________________________—__““
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order to show (1) above.

Provided B , the submatrix of A defined by o , is of
full rank (and from Theorem 4.6 we know that there is one), the

solution of 5.34 is

(5.355) X = C(BIB)_l

o

5 (] Ba Lidg) o
& !

and thus

(5.36)

& l&

= (BTB)"l BT(Z a. -} a.)
o o

Now if the partition o, 0, 0 is feasible for c, and c, ,

with corresponding solutions x. and Xx then for any

i | 0k
c3 e (l—oc)c2 g e o K0 g
Xy = 0X) + (1-a)x. is of the form
Fat=1 T
P ey BB (Z s Z il
0 a,
& X, « 6o Eﬁ_
" dc
Moreover, for i € O’Iri(fl)‘ = ¢ apd lri(§2)| £ g = e (x7) < ¢

i €0 > > C =T, >
for 1 G, "n ri(§ ) c and ri(§2) & rl(§3) C

f i €0 ] el 3 < -¢c = 1. %,
or i A rl(f ) c and rl(§ ) C r1(§3) c,

so that no residual would want to change status at x, , 1.e. ¢

and ¢, are within the same range of ¢

At this point it will be valuable to recall some results from
the previous chapter and strengthen a result shown in passing in one

of 1its theorems.
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Lemma 4.2 showed that if o_ = o U {k}, then for any

b

vector x satisfying |rk(x)| = £, Fa(x) = Fb(x)

A partition o was defined as being o-feasible if

|ri(§a)| e L ey

Theorem 4.2(b) showed that the feasible partition had the

smallest function value of all o-feasible partitions.

Lemma 5.1

= U i
1€ s ruils ik} ¢, “then Fa(§a) > Fb(fb) , and if

|rk()~(a)l Fe Fa(fa) | Fb(§a) F Fb(f )

Proof
E {x )::bz i )2 + z (Clr (x )l - %cz)
g Sn o S3iNea Ve
O’ —-—
a o
a
z 2 2
:%§ ri(fa) + %rk(fa) . Z (c[ri(fa)l- 1cT)
b B
2 2 2
zl/zg C R i el R e Z (clr (x )| )
b 9
2 2
=) v (x )" ) (efr, (x )] JcT)
O ~ =3 e
b S
: I‘b()fa)
WLEDR EhRe (2% belng strictly " >" “unless [rk(xa)l A
Finally, as X, minimises Fb 3

Fb(f ).= I:b()fa) 5 Fa(ﬁa)




83.

We now show that when there is more than one residual
wanting to change status, cycling can be avoided. As in the case of
just one residual (Section 5.2.4), we do not consider the partition

changes using residual derivatives at c_  but, equivalently,

0
residuals at a slightly reduced value of c , ¢y the reduction in
¢ being slight enough so that residuals not equal to o in size
when ¢ = ¢, are still not equal to < in size when c = ¢y We

do this basically by giving an algorithm guaranteed to find a
feasible partition for a given valuc of ¢ , starting from an

arbitrary partition.

Algorithm 5.2

To find a feasible partition for any value of ¢ , starting
from an arbitrary partition and proceeding only by adjacent partition

changes, i.e. g=+o0 % {1k} .

Step 1 Starting fromany initial partition, change partitions
o > oU{k} , where |r,.|<c , until a partition 0o, is reached
k P 1

which is o-feasible.

Set 1 « 1

Step 2 If 0, is feasible, stop;
else for any k such that k € oi,\rk(xi) | -

form @ © O, =00, L= (k3
i+l 1

Set 1.+ 1 .+ 1

I1f s is o-feasible, go to 2 ; else
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Step 3 Find y. of the form
y. = ax. + (l-a)x gl < g 5%

~1 1 ~1-1
- E =
such that Irj(Zi)I zc , j€o, ,
and Irk(yi)|==c for (at least one) k € 61
= U {j =
foang. ... = 0, {J||rj(xi)| e }.

Set 1 <1 + 1

If 0. is o-feasible, go to 2; else

Step 4 Find Y3 of the form
X = Oy (l—u)xi_l 0o <1
> 1€
such that Irj(zi)| iy Oi
and |rk(yi)| = ¢ for (at least one) k € Bi
Form o, . = OiL){jllrj(Xi)l = ¢}

If 0. is o-feasible, go to 2 ;

Else go to 4.

Theorem 5.3

Algorithm 5.2 terminates with a feasible partition.

Proof

As, in steps 3 and 4 of the algorithm, the partition change
is of the form Ueyy = 9y U{ } , it is clear that a sequence of

0-feasible partitions is generated at step 2.

We will prove that this is a finite sequence by showing
that the function values of this sequence of 0-feasible partitions
decreases monotonically. We will denote by o, the last o-feasible

partition found in the sequence.
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At step 2, we have Oy iy =il -{k} , with lrk(fi)l £ c

so by Lemma 5.1,

Il

be B ey, FO 1Y $ B () S0F (2775

so that if 041 is the next o-feasible partition in the sequence,

the function value has been decreased.

At step 3, by Lemma 4.2 and convexity,

FeE RO R SR ) = Bl dis o, (x,) + (T-o) Pl 4] =
et

But as, by Lemma 5.1 (remembering that 9 doan T Mas the partition

change in step 2, so that B .5 U {k}, and 0. 1 = Oa) )

e vhe i) 5 B

E X )

B S 0 S F Gy ) S F (x

Thus, if o, , is the next o-feasible partition in the
sequence, the function value has again been decreased.
At step 4, by Lemma 4.2 and convexity,
< = =
B T ) s By < 0B (x) + (1-) Bl ) S

Pyt 1)

S0, by (5.39), (taking into account the incrementing of

1 that has taken place)

R S 0T S Fi(r ) < By s(x; ) SF,(x)
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At each cycle through step 4, (5.40) and (5.41) still hold
(each (5.41) now being proved by (5.40) and the previous (5.41)),
so then when finally a o-feasible partition is reached, its function

value is less than that of the previous o-feasible partition.

Finally we observe that as no O-feasible partition can be
repeated, and there are only finitely many of them, the sequence must
terminate, and as the only stop in the algorithm is at a feasible

partition, the final partition is feasible.

It is interesting to note here the connection between
algorithm 5.2 and Theorem 4.2(b). The theorem stated that of all
o-feasible partitions, the feasible partition has smallest function
value. The algorithm generates a sequence of O-feasible partitions
of monotonically decreasing function value, ending with the feasible

partition.

Theorem 5.4

It is possible to avoid cycling at a change of partition,
even when there 1s a possibility of more than one residual being

involved in changing status.

Proof

Assume we have a feasible partition gatat.ci s 6ok
8 (&

Let o_ = {i||ri(xa)| = ca} and let S be the set of all

partitions defined by

S0 g Sos oSG, Yol
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et €% € be such that
b a

i > n= &
(1) lri(fj)’ SHAEY | Oa . Oj S

11 € j &= - =
(ii) Iri(fj)l En im0, Oj S

Then, with ¢ = ¢, , and starting from G, algorithm 5.2

b
shows how to avoid cycling in reaching a feasible partition. Moreover,

from the definition of ¢

b only partitions belonging to S are

involved in the process, i,e. only residuals with indices belonging

to o0_ are involved in partition changes.

Now because Iril T Cpp) B b B L LE 0 s o for all

pactitions belonging to . S5 ., and because, from Theorem 5.1, r, is
a linear function of ¢ within any partition, performing partition

changes based on residual values at R is equivalent to performing
partition changes based on residual derivatives at A which

completes the proof.

Note that we have not shown above that cycling cannot occur,
but rather how it can be avoided. This feature was not built into
the implementation of algorithm 5.1, and in the rare cases (all
artificially and deliberately constructed, eg. example 4.1, Section
4.3.7) where multiple residual change did occur, a natural treatment

coped quite adequately.

Algorithm 5.2 can, of course, be used to calculate the
M-estimator if ¢ 1is known, or, with some modification, if ¢ 1is
to be estimated at the same time. It may be reasonably efficient, as
only residual values at '"old" partitions were needed to define the

next partition, never the residuals at the partition so defined.
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This algorithm has not been implemented, being rather similar to

Huber's algorithm described earlier. Note, however, that Huber (1973)

could not guarantee finiteness for his algorithm.

5.4 NUMERICAL RESULTS

Apart from checking the examples in Chapter 4 which were
small enough to calculate by hand and diverse enough to cover most
cases, test problems were gencratcd in the following way. An
(n-m-1) x (m+1) matrix was generated using uniformly distributed
random numbers. Then an m X (m+1) matrix was prepended onto it as
TOWS i to m , this matrix being chosen so that x= l solved the
equations r, = 0, ; =1,...,m . Finally a row was added so that

A =1 satisfied the least absolute deviation (LAD) criterion

i=1,m i=m+1,n

~

where the a. are m-vectors corresponding to the rows of A , and

0. = Rl Y ok o Thus = A, AR

i sgn(jzg ;S Am+l,1) Thus I, {1, ,m} Then the program
was run on the test data so generated, allowing c¢ to reduce right

down to zero, and checking to see that the LAD partition was as

obtained as expected.

Results are summarised in Table 5.1. Testing was done on a
DEC 10 computer, and times arc internal CPU times. In somec cascs,
the final partition had |O| > m , although in every such case
Ll W] - was o subset of UO . In onc of the (m=8, n=100) runs, a

residual moved from o to 0O , back to o at a reduced level of c ,

amd then out to o again when ¢ was reduced still further. This
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was the only occasion in 45 test runs that this happened. The

time per iteration was calculated excluding setup time (reading

in data and performing the initial Choleski factorisation),

which was consistently close to .8n x (iteration time). A facility
was built into the program to make e, of (5.20) either always s
or to cycle ey * e, +...-+gm i S IR There was no discernable
difference in any run using the two approaches, although it is
conceivable that with more ill-conditioned data that the cycling

approach could avoid problems.

Table 5.1 demonstrates a time/iteration relationship of
O(nm) and an O(nzm) relationship of total time in solving LAD
problems. It is not, of course, advocated that this algorithm be
used for solving LAD problems, as there clearly must be at least
n-m iterations, a complexity greater than that observed elsewhere -
5> runs of 10 X 200 on the LAD algorithm described in Chapter 6, for

example, took about 3.5 seconds.

TABLE 5.1
Total time for 5 Test Runs (Seconds)/

Time per iteration (msecs).

n

m 50 100 200
6 2.41 9. 75 40.32
10.20 20515 41.08

8 3.00 12.50 49.95
12.80 25 s 50.60

10 Jval 14.50 59.21
15.22 50.25 60.51
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9id M-ESTIMATOR DUALITY

. P LP Duality

For an LP problenm,

W T ;
minimise ¢ X subject to Ax 2 b ,

*
the K.T. optimality conditions for x to be optimal are

~

*

(5.42) AR tah
(5.43) for some u > 0 , cC = AIu
(5.44)  u'(Ax-b) =0 ,

These are referred to as primal feasibility, dual feasibility,

and complimentary slackness respectively. Now the complimentary
slackness condition can be interpreted as an appropriate subproblem
being optimised. This is rather trivially true in the case of LP
problems, as the appropriate subproblem is constrained to a single
point - as indeed it is for every iteration of the simplex algorithm,
each point being the vertex of a polyhedron defined by the set of
active constraints. To illustrate this point further, consider the
RLS algorithm. At each step (including the last) the appropriate

subproblem has the form

i o 2 ; ’
minimise '3(Ax-b) subject to e 3 EEHE B0, < R

The optimality criteria for this subproblem are

(5.45) X2 0., i€

(5.46) for some (unsigned)u , ATAX - ATb = Ju

~
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(5.47)

RUSS

S

I
o

The dual variables u in (5.46) are also the dual
variables for the RLS problem, so (5.47), uTx = 0 1is also the

complimentary slackness condition for the RLS problem.

D 2 M-estimator Duality

In this section we wish to point out some parallels
between duality as it applies to LP problems and some of the results

of the last two chapters.

In LP problems, the optimality criteria are primal
feasibility, dual feasibility and complimentary slackness. The
optimality criteria for the M-estimator function are o-feasibility,
G—feasibility and optimisation of the relevant subproblem (i.e.

corresponding partition).

It is well known that the optimal function value for LP
problems is the smallest primal-feasible value and the largest
dual-feasible value. Theorems 4.2(a) and (b) showed that the
optimum value for the M-estimator is the smallest of all o-feasible

points and the largest of all o-feasible points,

The algorithm for the restricted least squares problem in
Chapter 3 had an overall pattern of moving towards dual feasibility,
keeping complimentary slackness at cach iteration., Primal
feasibility is ignored until dual feasibility is achieved, when it is
used for optimality testing. 'If the optimality test fails, a

procedure is described for finding another dual feasible point with
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smaller function value, neither primal nor dual feasibility being
necessary at intermediate points. In algorithm 5.2, for the
M-estimator, the overall pattern is to move towards G—feasibility,
optimising subproblems at each iteration. o-feasibility is ignored
until o-feasibility is achieved, when it is used for optimality
testing. If the optimality test fails, a procedure is described
for finding another o-feasible point with smaller function value,

neither o - nor o-feasibility being necessary at intermediate points,

The above observations, whilst in no way constituting
a duality theory for the M-estimator, at least suggest a close
parallel between LP duality and o/o-feasibility for the M-estimator,
and are tentatively advanced as perhaps the first halting steps

towards a duality theory for the M-estimator.
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CHAPTER 6

AN ALGORITHM FOR THE LEAST ABSOLUTE DEVIATION ESTIMATOR

6o d INTRODUCT ION

The least absolute deviation (LAD) estimator is the solution

to the problem

Tx - b.

(6.1) mlnilri[ , Fae=la bk

1t 3l

The problem predates least squares (LS) estimation, being
proposed by Boscovitch in 1757 to fit a line to points on the plane.
He also added the constraint that the line should pass through the
centroid of the points, and gave a method for finding the line.
Edgeworth, in 1887, dropped the constraint and gave a new method for
the solution of (6.1). Due, however, to the lack of continuity
of the derivative of the modulus function, the problem (6.1) is
difficult and despite continuing interest in it, the relative ease of
computation of the LS method contributed to that method's greater
popularity. An historical review of LAD, and LS, regression can be

found in Harter (1974-1976).

The renewed interest in LAD stems largely from the search
for robust methods which arose in the early 1970's (eg. Hampel, 1971).
llarter (1977) suggested a two-stage method for calculating regressions,
using the kurtosis calculated after doing one regression analysis to
estimate the kurtosis of the data, after which an Ll’ L2 or

L, regression would be done according to whether the data was
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leptokurtic, mesokurtic or platykurtic. Huber (1974) did point

out that among all L, estimates, only L 1s technically robust.

P 1

He also claims (Huber, 1977,b) that it has a rather low asymptotic
efficiency in approximately normal situations, and that there are

better methods.

Still, the method is extremely robust and over the last
decade or so there have been several algorithms developed to solve
the problem. Those which have proved efficient fall into two
categories; gradient algorithms (Bartels, Conn and Sinclair, 1978,
Bloomfield and Steiger, 1979); and algorithms based on linear

programming (LP).

Bloomfield and Steiger (1979) attribute to Harris in 1950
the realisation that the LAD problem could be turned into an LP
problem. The first practical LP formulation was probably by Barrodale
and Young (1966), who expressed each residual as the difference
between two non-negative variables. The LP algorithms solve either
a primal LP problem using a modified simplex algorithm, (Barrodale
and Roberts, 1973, Spyropoulos, Kiountouzis and Young, 1973,

Armstrong and Frome, 1976,b), or a dual LP problem by a modified dual

simplex algorithm (Robers and Ben-Israel, 1969, Abdelmalek, 1975).

The other approach which has proved successful is based on
a theorem of Usow (1967) where he showed that '"the sect of best L1
approximations is a closed convex set which is the convex hull of
best L1 approximations to f(f) for which there are at least
m zeroes'". These methods find a vertex (i.e. m 1linearly
independent zero residuals), decide on one residual to allow to

become non-zero, and perform a line-search in the direction so

defined.




In a rather startling result, paralleling that by Dixon
(1972) for Quasi-Newton algorithms, Osborne (1980) has shown that
all of the LP and gradient algorithms mentioned above are identical
in that they produce identical séquences of iterations provided they

use

(1) equivalent starting procedures

(ii) equivalent procedures for entering and leaving the basis.

The algorithm presented below is essentially a gradient
method, but differs from those above in that it does not insist
that there must be m-1 residuals kept to zero in every descent

direction, thereby allowing a greater freedom in the choice of such

directions,
6.2 THE ALGORITIIM
P General Description

The approach described below was suggested by the defining
function of the M-estimator. The algorithm described in the
previous chapter can, as was observed there, be used to calculate
LAD, but suffers from the disadvantages of having at least n-m
iterations, and so consequently a lot of downdating, together with
starting from a fixed point which may not be a good approximation

to the LAD estimator.

Instead of minimising the AD function directly, we consider
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(6.2) minF (x,c) = L%(x-x )2 + cZ]riI )

where X 8 @ initidl "estimate, daml ¢ ‘is a continuation
parameter. We shall show below that for large enough, but finite, c,

the minimiser of (6.2) is the LAD estimator.

At the starting point, ¢ = 0, and (6.2) is not very
difficult to solve. There is still, however, the problem that some
residuals may be zero, and given that there will be (at least) m

zero residuals at the optimum, we will sometimes want to force some

residuals to stay on zero for a range of ¢ . So we re-write (6. 2)
as
; y 2
(6.3) minF(x,c} = Hlx-x.)" + CX@.Y. + ch.r. :
~ ~ ~0 g i
o]

where o 1is the set of indices of residuals which are to stay at
zero whilst ¢ is increased. The optimality conditions for x to

~

solve (6.3) are

b X = Xq - cl8a; - clva,
o 5

Differentiating (6.4) with respect to c ,

dx dvi

) e "26131 " Zviﬂi e Cgﬁi dc  °
Y o o

and so

dr. d\).

oy R 3 3 T 3 T Ui llp=rs
LB de ﬁjgeifi ﬁjz\ﬁﬂi C?jZ?' dc S Re R Tl

a 0]

Letting B correspond to the subset of A defined by o ,
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¥ vd r ;s
Sl AR Bl Zei?i
g
d o ToL-1¥iT 3
(6.7) jc (cv) = -(B'B)"" B g eiﬁi =)

Yt

i

e >

+

@N=

(6.8)

where A and u are constant vectors, A\ being defined by ¢ and

~

B depending on the starting point. Equations (6.3) to (6.6) now

become

~ o~ 1~1 1~1

(6.9) minF (x,c) = %(X—XO)Z + Cz 0.a. + CZ A.a, ¥ Zu.a
o o - s

(6.10) X = Xo - cé@igi - sziﬂi - zu a

. i~d
(o) o

dx

e 0 - LAj3;
¢ 0

dr ,
(6.12) J = —arZO,a. - aT?A a

dc o B e s ~]2 1~1

o G

The above equations indicate that X 1s a linear

function of ¢ . We now wish to determine for which range of'v¢

X as defined by (6.10) solves (6.3).

Theorem 6.1

If x solves (6.3) so that

~

~

(6.4) X = X4 - czeigi - szigi
E o
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and 1.€ o @‘ri(x) # 0 ,

PR aives (6.2) " iff vl < 17 'and if it does solve (6.2) it

1s the unique solution.

Proof

(1) Assume Iv, <1, but x does not solve (6.2). Then there

~

exists & such that

~

Fx*dic), «Ffx,c) <0

2 2 T T
S T sl ag ) Cgeiﬁﬁ * CZ’%Q’ =0

~ o~

o
A el AL S cJ6.ai6 clla 8] < o
L = o 15 5 ixi~ i
= _cJ0.a.6 - cv.a s + 815 cJo.als + cTlals| < o
o L ~ 1~ ~ o~ il N B
& o - o
Selivis slalsly » 6%s <
g s 20 P, e B ot
o
a contradiction, as vi = ¥
(i1) Ef vk »11" for 'some "k , we merely choose § such that
azd st = o - TV and | 1| very small.

We now see that the range of ¢ for which (6.10) solves

(6.2) is defined by

(6.13) ki) @ x o i €¢

(1i) [cki+ui] < ¢ g2 F T
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The algorithm thus proceeds from range to range of ¢ ,

changing the partition ¢+ ¢ U {k} if r ~violates (6.13(i)), or

c>oc U{k} if XA and u,_ violate (6.13(ii)). Updating at

k k

partition change will be described in Section 6.2.2, but it is worth

noting here that if ¢ +o U{k}, H, is chosen so that
ckk + uk = c6k 4 Sa that ‘x , and F(x,ec) are continuous in ¢
i 3 dx
The algorithm stops when o0 defines a full basis, so that a%—= 0
dr.

and thus ?E%-= 0 , so that (6.13(i)) can never be violated, and

lki] £1 i€ g 80 that (6.13(ii))can never be violated. This

corresponds to the optimality criteria for the LAD,

= L~

2931 e R T R O B R -
Y 9

It will be observed that the method is a steepest descent
dx
method in that the direction of descent a%— is the projection of

the derivative of Z@iri on the hyperplane defined by B 5 @4 5.
Y

We have yet to show that for large enough, but finite, c¢ ,

the solution of (6.2) is also a solution of (6. 1) .

Theorem 6.2(a)

If x' 1is the unique solution to the LAD problem (6.1),

~

where ¢ T8 Finite; x" ‘selves (6.2).

=
then fott ¢ = o 0 X

Prooﬁ

As x' 1is the LAD estimator, we have




and, as 0 spans the space, we can find u such that

GO 5 xtimig 2 Z“i%i
o
e telfla, - ciA;a; - Iuja;
g o 0

Now as x' solves (6.1) uniquely, ’Ail <1

we can choose c¢ large enough so that
' . < L E ¢
(6.15) ]gAi+uil o R S

b

so that by Theorem 6.1, x' (uniquely) solves (6.2).

We now extend the above theorem to the case where the LAD
1s not unique. As Theorem 6.1 has shown that (6.2) has a unique

minimum, not all LAD minima will solve (6L ).

Theorem 6.2(b)

M the LAD is not unique, and S is defined by
S = {x|x solves (6.1)},

and x' solves

~

3

mink (x-x )2 PR A <

~

then, for large enough but finite ¢, x' solves (6.2,

Proof

In the proof of Theorem 6.2(a), at equation (6.15) we used

100,
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the fact that [Ail < 1 to state that for c¢ large enough

equation (6.15) could be satisfied. We shall show that for x' if

~

Ikil = 1 , ‘then sgny, = —sgn)\i , SO that again (6.15) can be

satisfied.

With S defined as above, it is well known (Usow, 1967)
that S 1is a polyhedron with vertices having m zero residuals.
We shall now parameterise these vertices. Consider any vertex, y .

Like every other point within S , it satisfies
(6.16) Zeiai + ing. =

g
where o ='{i|ri(y)#0}

Now for any k € ¢ such that |A | =1, if we move

|

slightly away from y to y' in a direction such that

~

gisEE s Ao - 1k}, sgnr, (y') = A

i and close enough to vy

k >/
so that sgnri(y') = sgnri(y) p A &s0 . theniwe still have, at %!,

L; eiai + 2 Aiai= 0 .
oU {k} Gadk]

and so y' is within S

4

0
For all other edges away from Wiy T, = 0 , so that the hyperplane
By 0 supports S with sgnrk(y') = sgnkk for all y' €85 ., We

now define




Ty 2 {i)Ai = 1 at some vertex of S }
T, = {ilki = -1 at some vertex of S }
Ty = {:iHXi|< 1 at all vertices of S}

It is clear that Tl, T2 and Ts are discrete sets, their union

summing to 0 , and that for all points within S , where (6.16)

holds, "1if Ai S e = and if Ai S R e

| 2

With S thus re-defined, we see that x' solves

~

(6:17) min%(§-§ )2

i

subject ta . a.x - b, 2 0 i &
ol 1 1
1 b
-a.%x * b, 20 Rl &
per Tk i 2
aTx =tb. = 0 e T
vl i 3

From the Kuhn-Tucker conditions we have a & > 0,7 = 0,

Q)

unsigned such that

L S R S
it T3

where Ti and Té are the active constraints of Tl and T2

If we now compare (6.18) with (6.14), we see that, at x'

Ti U Té U T ol 0 and so the £ , ¢ and n of (6.18) are the u

~

of (6.14)

i.e M, = -Ei <0 = g
W, = g, 2 0 y = Té
P v o e

102
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But we had, for i €1, , A. = +1 , and for i € 1

1 3 27
Ai = -1 . So we see that in either case [cki + ui[ <c¢c, and so
(6.15) can be satisfied even if ]Ai[ = 1 . This completes the
proof.
622 Updating at Change of Partition

Once, for a particular range of c¢ , the correct partitioning
0, O has been determined and the signs of r., i € o known, then

A can be calculated from (6.7)

~

KT e S
s 8 geiﬁi

This then determines M , for in ensuring that x and therefore r.

~

are continuous, we need, for o - o -{k}, that cAi + pi =sgn'r, ,

anid far @ > 0 £{k} , that cA' + pu' = ch + § .

Once A and u are known, we can determine x for any

5 T dx drj s
= from (6.11), i from (6.12) and

the limits of this range from (6.13). The updating of A 1is therefore

value of ¢ from (6.10),

basic and we now describe an efficient and stable method of doing this.

Basically we shall use a QU factorisation of B , where
Q 1s orthogonal, QTQ =1, and U 1is upper triangular. (6.7) then
becomes

kg R
(6.19) A=-U"Q geigi

itagt =g V ikl B! = (B,Qk) and in this casc the
orthogonalisation is performed using the Gram-Schmidt process. If

we let




We Tequire q , r and p to satisfy

(6.20) Q' =B,

(6.21) Qq=0,qq=1

Expanding (6.20), we have

(
Eoaed = Gig) - Ll ¥
()l 0
= Q, Qr + Pq
So
(6.22) Qr + pq = a

Multiplying (6.22) by QT s

(6.23) T = Qra

Then from (6.22) and (6.23),

(6.24) nq (I—QQI)ilk '

1-, we also have p and ¢

~

and as || ql|

it @''=g -1kl " 'and k 1is the last colum of B ,
Q' and U' are merely the first k - 1 columms of Q and U. It
k is not the last column of B , we re-order B so that it 1is,
using Givens matrices. A Givens matrix is a symmetrical orthogonal
matrix of the form G = Y $
R

If we had

104.
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(
: = U
el 20 Y S 12 [l
OT P 2 uT
0 9 U2
\ )
then
\ R R
0T uT
0 U
2
\ 3
The matrix R, 1is upper Hessenberg, eg if p = {5{ =5
andrik 203,
( 3
XX aX. X
o o S e S
R =
e X K
g .6 X X
000 X
\ )
If we now choose Givens matrices G Siie $40 so
k,k+1 p-1,p
that
R =G A = !
GR =G ;-G gop R=[ U’ |, then
1
0
Q6 = QG G - (@Q',9)
T R N S L
has orthonormal columns and
(81,82) = B' = Q'U' as required.
The above treatments are given in some detail by Daniel,
Gragg, Kaufman and Stewart (1976). In that same paper, they consider

the possibility that in the Gram-Schmidt process QTq - 0 1 They

suggest a test
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¢
6.25)  [la.ll+ wllQqll <o qll ,

where w and 6 are termination parameters. If the above test

fails, they re-orthogonalise, using the most recently computed q
instead of a both in the Gram-Schmidt process and in the test
(6.25). After some experimentation, they have suggested w = 0 ,

6 = 1.4 for the termination parameters. If the test fails more than
four times consecutively, they initialise re-start procedures. In

the implementation of the algorithm, the re-orthogonalisation procedure
was used, but four failures of the test (6.25) was treated as degeneracy
in the model and the observed value, bk , of that observation

perturbed. This only ever happened with specifically constructed

examples, never in the main testing using randomly generated data.

6.2.3 Progress of the Algorithm

In this section we attempt to give an over-view of what
happens within the algorithm as ¢ 1is increased. Specifically, we
establish three results about the progress of the algorithm: that

PdC) @& concave. in. ¢ ;. that H X-X does not decrease as ¢

|

increases; that eri] does not increase as ¢ increases.

Theorem 6.3

. STy 2 3 :

F(c) = min’ (x-x,.,)" + cZ!ril is copcave, in ¢
Proof

F(e) = 5(x -x )2 + cyO.r. + cyk.r. + yu.r.

RPN o § g g Al A
o o o

d§c

with i —cZGigi - cZAigi = -(g+§)
0]
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g dx dx dx
gF{c]  _ 7 9 % <€ g aC
dc LS e e )83 G * LZAifi dc
o 0] o
dx
T C
+ Zklrl + Zul%i o
a
= e 4 T k.7
s I N ]
0]
(6.26) = Jo.r, = }|r,|
Differentiating (6.26) with respect to c¢ ,
2 s X
0 e = D)
dc o]
drj ~
. 3 &
Now e 8.3 o]
ide. a.(eB) =0 , j €0
: T
al zxigi(g+§) ikl
]
y T
(6.28) j.e. B (o+B) = 0 .
So, from (6.27) and (6.28)
dzﬁ(c) T T
S—52 = - (a+B) - B (o)
dc il L
T
=US(0FB) “w(arB) =70,
4R (c)
So G is piecewise constant, but always < 0 . Thus F{¢). 1is
dc
concave in C .
Corollary
Lipi] = L is non-increasing
dc i
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Theorem 6.4
[Ixc—xoll does not decrease as ¢ 1ncreases.
Proof
Within a range of ¢ , where x_ and rj are linear
fupetions of ¢ |
dx
dF ~C d
e X =X + e — Liri| + Llr.
dc ( ~ G ~0) dc de l 1l l 1l
= eril from (6.26)
dx
X.] — = «c=— ElT
2 s et
.
3 :
= -C 9—5- s o §6.26) .
dc
Hence
J dx
SEI £ i
Ly )
B sz
)
dc
2 0 from Theorem 6.3
So that within a range of c¢ , ||xc—x || does not decrease
a8 ¢ increases, and as x = is continuous, this applies to all c¢
Note that in the above results we had Z|ri| non-increasing,
and lec—xoll non-decreasing, rather than Z[ril decreasing and
H xC—xoll increasing.  Normally the a, , 1€ 6 , will not span the

space and then «

that the ai

~

5 i

+ B#0 , so that ||a+B|| > 0 However, it can occur

€ g , do span the space at a sub-optimal partition,
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dx

when -~ = 0 so that neither ZI|r.| nor |/x -x
dc ~ 1 ~C o

during that range of ¢

Oll will change

Example 6.1

e TR Sl SR BT xz

~

(.999, 1.004) ,

biif the LAD has o = {1,2} ', XZ s (1)

~

6.2:.4 The Algorithm Summarised

Algorithm 6.1 To find the LAD estimator.

Step 1 Find an initial estimate, and the initial derivatives

dx dr.
i i
dge . " de
Step 2 Determine, . s thic end of ‘the lcurrent range of ¢ . If
C.am o L SLOD;
m
else
determine the new partitioning o' , 0o';
dx dr.l
A — =
amend RV S e el
go to 2
6.5 REFINEMENTS TO THE ALGORITIIM
t The limits to a range of c¢ were given 1n (6.13) as
|
!
| i e 2 =
| (1) Olrl 0 L= o]
- . s S - E L
(i1) \cki+ul| c i 9
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Consider now the situation where &' = o U {k} , and
|Ak| > 1 . Provided that intervening adjustments to o0 do not cause
|Ak| to become < 1 , eventually condition (ii) will be violated and

k will move out of © again.

Approaching the same question from
aim of the algorithm is to find a full basis
i €0 . If we consider this final basis and

elements, 3 and k , say,

(
T baag) | UNT, T
T
0 . .
it DJ pjk
T
i !
then
qu
e o
Pk
T ji 1)
@ - NSD 0=~ K. g, a
i - D Aa I gk a0 357 T "kdyx
J oj oj

If now k 1is dropped from 0o ,

T
B ﬂj(g - sgnia)

J Dj

another viewpoint, the
for which \Ai‘ - S5t [l

isolate the last two

and comparing the two Kj 's , we see that, given Ikk‘ £ 1, ‘they

are not too different, so knowing that lkj'

Iat] = 1

: And this applies to all subsets

IA

1.4t is likely that

of G .

There are exceptions to both arguments, of course, but

together they do provide an indication that if l%

kl >l that k 1s

probably not a good candidate for inclusion in the final TR | -

therefore seems a good heuristic not to introduce k into o , merely
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1k,
leaving it in ¢ but changing the sign of r The factorisation
dx dr.
QU will then not have to be performed, and A, W, -a% and Tﬂ%
will only have to be updated once, rather than twice.
The necessary condition for the resulting partitioning
o,, 0_, 0 tobe feasible is that if k is left in o and
6! = -6 (remember r,= 0 at the point in question), then
k i k
dr dr
S n——& - n——k- Now
o S :
!
drk i e
;. it 3 e
i
= -3 (o' - QQa')
= -3, (a-26,2a, -QQ OL+29kQQ a,)
drk
(6'29) ¢ —&E— Sl (ak k ~kQQ ~k) )
drk dr£ dr
and as N ol —Gk s for SgNn -y to equal sgnva— )i We need
dr
k 1 T
oAy W - nt
kit & e T R )
This condition, (6.30), is equivalent to the condition lkkl B b
1f s ae intreduced. into. "0 4 ifor

Al >
| (0-6.a2,)"q
¥ e
Pk
(@-8,a ) (1-00])a
ey kTS < B

T W
e s Sl

B | 5 T . e
dc Rk ~k Rk I °
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drk

and as sgn B —Gk , this condition becomes (6.50).

In terms of what is happening in the algorithm, the above
modification is equivalent to (hypothetically) adjusting the starting

point, for we had

o R N et
2 o o
M K 2 ' 2 il
= (5 2c6k§k) CEGigi CZA a Zuigi
d o 9]
. 0= 1 = =
where Oi ei o K. is Ok Bk

The above modification gave mark II of the algorithm. Mark
dx
IIIcame from not adjusting ag-, the descent direction, when a residual
dx
changed sign, but minimising the function along the line a%— o AR
dx
other words continuing along —— so long as it is a descent direction,

dc
although only until the first residual changes sign will it be the
steepest descent direction. As each residual changes sign, the only

updating necessary is to o , all other vectors can be updated at the

minimum along the line. The minimum along the line is recognised by

dr
condition (6.23), but 75?- will not have been updated. Rather than
dr. dr
amend all Tﬂ%' at cach change of sign of residual, 75?— can be

calculated directly for the test from equation (6.12).

6.4 FINITENESS

As in the case of the M-estimator, in order to establish the
finiteness of the algorithm we need to show
(i) there is only a finite number of ranges of ¢

(ii) cycling cannot occur at partition changes at the end of a range.




Theorem 6.5

If X, and X, solve (6.3)

' 2
min F(x) = L(x-x Se By HEIV.UT.
(%) BB x ) g 1 Z i

0]

for values of ¢ of <, and c, respectively, and have the same

sign pattern, 1.e.
= < =
8 E0em L (Xad = 0
sgn ri(§l) = Son ri(§2) g

and if they also solve (6.2),

i ks vz - 2% [

~

YLoe., al 2% .£ .1

then c. and c¢., are in the same range of ¢

Proof
C = X = a. = .
| X0 Clioizl Clzvlgl
< 0
j e AT 56 a. - C ;v?a.
~2 ~0 2N 75V
% 0
Let X, = 0X) + (1—a)x2 for any. 0 g0 sul
Cp = ac, + (1-u)c2
- N e 2
Y re E% {acly +fi1s8)q, N }
Then ¢ v$ = ol v! + (l-0)c v?
5. 1 i g £ 1
2

But pladeyt- v, =1, S0
i |

3
- (acl+(l—a)c2) < C3vi < aey - (I—OL)C7
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and so by Theorem 6.1, Xz uniquely solves (6.2) for c¢ = c

The above theorem is sufficient to establish the first
condition for finiteness. The second, that cycling cannot occur
(or can be avoided) is more difficult. In the M-estimator case
only two things could happen, a residual could become larger in size
than ¢ without changing sign, or it could become smaller than ¢ in
size. Here, three things can happen. A residual can stay zero, change
sign or remain the same sign, and the problem is correspondingly more
complex. In practise, given the rarity of such an occurrence, no
special provision was made for such a contingency, but largely for
housekeeping reasons whenever a residual was about to become non-zero
it was given a very small value of the appropriate sign, and this 1is

enough to prevent cycling.

On the question of the complexity of the algorithm it 1is
difficult to say much at all. Intuitively, one expects that the number
of iterations remaining would be tied to the sign pattern of the

residuals. Certainly, the behaviour of most residuals is simple,
dr.

i : : : : :
v rarely changing sign, so that their behaviour is or

AN Example 6.1, however, i1llustrates what can happen. The

LAD estimator is xT =l 1 with wesiduals. (0,0,-2,.001,2,-8,1).

~

If we use the LS estimate as our starting point, xg =" (1.50; k. 327 ,

the nitial residuals are (1.53, 1.56, -1.38, .30, 3.28, -4.85, 3.20)
and, apart from ¢ , the sign patterns are identical. However, in
the algorithm r, becomes zero first, stays zero, and then becomes

positive again.
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0. NUMERICAL RESULTS AND DISCUSSION

Initial testing was done on test data generated as described

J in Section 5.4, and initial results were rather encouraging. Mark II
performed better than mark I, and mark III better still, so that a set

of experiments on 10 variable, 900 observation data averaged only 13
iterations and about 3 sec execution time on the DEC 10 computer - and

this without an efficient sorting algorithm being used in the line -

search.

Further testing, however, did not present as rosy a picture.
The algorithm was tested on the same type of data used by Bloomfield and
Steiger (1979) in comparing their algorithm against that of Barrodale
and Roberts. This used Pareto distributions with sometimes infinite
variance, sometimes finite but certainly long-tailed. On this data,
the algorithm fared badly taking over 200 iterations to do a single
10 variable, 900 observation example. One pleasing feature, though,
was that there was no appearance of numerical instability even in

these examples.

In attempting to explain the discrepancy in performance of
the algorithm, we look more closely at the way the test data was
generated. The first set was generated by filling the matrix A with
independent uniformly distributed random numbers in the range -% to
3 , and the vector E with independent uniformly distributed random

m

numbers in the range —m/2 to /2 , followed by minor adjustments

to make the LAD easily identifiable. In fitting a model
‘ b=Ax +¢

B0 B ARt A, it is not clear what the distribution of & would be,

~

but it would certainly be long-tailed, making it a suitable test for
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an L, model. Tt is suggested, however, that the contours of erii
with such data would be roughly circular, whereas the contours of the
Pareto distribution with its very much greater spread of numbers would
be very elliptical. Now 1s is a well-known property of the steepest
descent method in the continuous case that it performs well if the

contours are circular, but given long narrow sloping valleys it tends

to zig-zag across them.

It would appear that allowing more freedom in the choice
of descent direction merely allows zig-zagging to occur, whereas in
algorithms such as Bloomfield-Steiger, only one residual is freed from
zero to define the search direction, so that it is constrained to move
down the valleys. There is confirmation of this in an unpublished
result of M.J.D. Powell where he showed that for deterministic problems
the strategy of moving off just one residual at a time can be shown to

be near-optimal in a certain sense.

Before, however, discarding the freer approach entirely,
a couple of variations should be tried. The first is to keep track of
which residuals have changed sign during a line-search, and if any try
to change sign again in the next line-search to stop at that point and
make the next search direction keep that residual at zero, even where

\A > 1 . The second is to try to do the equivalent of a conjugate

k l
gradient method, working out a direction in the manner of the Fletcher-
Reeves method, and then using a projection of this, rather than the
gradient, on the hyperplane of r. = 0, i€0 . Both of these

variations are left for further investigation.
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page 58, replaces lines -6 to page 59, line 7 with: "Now in the proof of Theorem

4.1(a), the only feasibility assumptions made on X, and
x =~ were that for ieS, |r.(x )| > ¢ and |r.(x)]| <c¢
~ I - | 1 ~b -
Thus as 0, = 0_ us, and, for ie S, |ri(§a)]> ¢ and

: < F . Again, as
lri(fb)l < ¢, we have Fc(§b) < Pc(ga) Ag

g =0 US and, for 1 €8 ; |r.(xt)[>>c and
C ¢ a 1 ~D

a d

]ri(§a)| < c, we have Fc(fa) < FC(§ b) on - Thus

J = P . However, if some 1 € S
}C(fa) H:(ﬁb) However, 1 e 2

lri(fa)f< C, Fc(fu) < Fc(fb)’ a contradiction."

page 59, line 11 : replace '"¢" with "}"
page 60, line 8 _; replace  ''4.10" with "4,10, pS2"

page 61, lime -1 : = replace "F(x)" with "F(x )

Dage by line 2 feplace Y 4 with '"4.35 and Theorem 4.1(b)"

page 63, 11ne 3 " replace '"follows.' with ''follows from Lemma 4.4"
page 67, line 6 replace '"Watson, 1980'" with '"Watson, 1980, pl18"
page 67, lines 9 and 10 : replace 'dx'' with "dc¢"

page 98, line -6: replace '"'small" with '"'small, and ag G G . Then the
positive 616 will be swamped by the negative

(—vk £ aT gt

el
page 98, line -2 : replace  ''o" with -.'e!
page 112, line -9: insert '"When working with a full basis' before 'The"
page 112, line -8 : replace '"6.23" with "6.30"
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page

page

page

page

page

page

page

page

page

page

page

page

page

page

page

page

%, line -4 : ' replace ”Zp(Axi - bi)” with "Zp(Ax - b)."
7, lines -6 and -3 : replace ''complimentary' with '"'complementary'
8, lines 2 and -3 : replace '"complimentary' with ''complementary"
5¢y line ~1 ; replace  "U.. U ... U, " with "u.. u T PR
’ P i In 11512 In
50, liane 2 ¢ | replace "iU [ with " lu 0
11 11
u u X
P 12
U(z)rr -
; 2
U
1n u X
In
42, lines 14 and -6 : replace ”yi” wilth ”bi“
54, line 4 : replace. "L & 4, Fa is strictly convex' with
iy Fa has a unique minimum'
54, line 5 : Treplace '"o'" with '"o"
55, line -4 : replace ”ri(x*)*” with ”ri(x*) ai”
56, line -4 : replace "¢'" with '"}"
56, line -9 ; after '"can'" insert ", after re-ordering S,"
56, after line 13 insert "and o, =1 - 6./6, ,"
i y e
97 after line 9 insert 'Note that if uizl, then Si:O and Ys

and from lemma 4.3 y. minimises Fi ,. S50 that
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Wiy LAne g replace '"o" with "o "
58, line 8 : —replace '"g =0 No "
wigh: Yo =g Mg "

58, line 9 ¢  replace "g =g Ng "

with "o = 0 5
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