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Introduction and Summary
Suppose that a collection of points is randomly

distributed in a subregion A of k-dimensional Euclidean 
kspace IR according to some random process P . For 

technical reasons A is assumed to have strictly positive 
Lebesgue measure. In some systematic fashion, denote the 
location of these points by the random, rectangular 
co-ordinate vectors X1, . Independently of P
produce statistically independent copies S^, Ŝ , ... of
the random shape S . As set out in Matheron (1975), a 
simple axiomatic method of defining random and closed (or 
open) shapes is adopted in this project. This definition 
is useful because it does not lead to difficulties of 
"well definition". The share S. centred at X . isl
denoted by Xi + : set °f points in S. translated
through X (some authors write this as X^Q S^) . The

collection of random sets X± + i > 1 , is denoted by
C and referred to as a stochastic coverage process.

The main aim of this project is to present an historical
review of coverage processes and their applications, and to
construct tests of the hypothesis of uniformity of the
underlying point process controlling C when the exact
locations of the points are unknown.

In many statistical texts a stochastic process {X} ,
• kindexed by a vector x G IR , is called a random field. 
Suppose for all x , X(x) is a non negative integer-valued 
random variable. Then {X} could be referred to as a 
coverage process, which is a more general definition than
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the one adopted here. It is, however, easy to construct 
random fields which do not fit into our definition of a 
coverage process. Naturally, difficulties do arise with 
such a restrictive definition. These shortcomings are 
considered briefly from a practical point of view later.

A special case of C occurs when P is a Poisson 
point process. Although the definition varies somewhat, 
in the applied sciences such a model is sometimes known 
as a mosaic process. The term binary mosaic has been 
used for the derived stochastic process {I} taking the 
values

1 if for all i>l , x X.+S. , andI(x) = ~ i
0 otherwise,

for each x e HR . That is, I(x) is the indicator of 
the event : x is uncovered. Alternatively, theoreticians
commonly use the term Bernoulli Model in place of binary 
mosaic. Serra (1932) has used this term. Several 
applications of coverage processes are now considered.

Suppose a virus, approximately circular in shape, 
enters an organism. To protect itself the organism 
releases "cigar shaped" antibodies, which attach themselves 
end-on to the virus. When attached, each antibody 
physically prevents a circular cap region on the surface 
of the virus from coming in contact with any of the host's 
cells. If enough antibodies are spread over the virus's 
surface, then it becomes impossible for the virus to infect 
any cell. Moran and Fazekas de St Groth (1962) proposed 
the following coverage model for the situation described 
above. On the surface of a sphere, which represents the
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virus, randomly and uniformly distribute n points.
To model the protected areas on the virus's surface, 
centre circular caps of the same radius as the sphere 
at the random points. Protection of the organism from 
the virus corresponds to the complete coverage of the 
sphere by circular caps. The probability of completely 
covering a region A by n random shapes is one of the 
topics of discussion in chapter 1.

Another topic, also discussed in the same chapter, is 
percolation. In particle physics an interaction can take 
place between two particles if they are placed in close 
proximity to each other. Interactions can extend to groups 
of one or more particles, which we call a cluster. In 
particular, the event of an infinite number of interactions 
in at least one cluster is referred to as percolation.
Seager and Pike (1974) have used a Bernoulli model to 
represent impurity conduction in a semiconductor. In the 
simplest situation the impure particles are represented 
by fixed radius spheres. An electron can pass from one 
particle to another only if their associated spheres overlap. 
Conduction in the semiconductor corresponds to percolation 
in this model. Even though a more complex model involving 
dependence between adjacent particle locations would be more 
realistic in this situation, the Bernoulli model has been 
used with a fair degree of success in practical situations.

In a slightly different vein, Diggle (1981) used a 
coverage model, or more specifically a binary mosaic, to 
analyse the growth pattern of heather in a field. Heather 
plants grow from seedlings reaching a maximum radius of 
about 50 cms. The branches of adjacent plants intermingle



4 ♦

if the ground they occupy overlaps. Viewed from above, 

the heather plants may be represented by discs of random 
radii, the centres of which form a Poisson field. Perhaps 
this model is far too simplistic, as the analyses of 
Diggle suggest. In reality, we would expect the sizes of 
adjacent trees to be dependent on each other. However, 
the binary mosaic is advantageous in two respects : it is 
much simpler to define, and theoretically easier to analyse.

Vacancy in the coverage process C is defined to be 
the Lebesgue measure of the subregion of A not covered 
by any random set Xj_ + Si ' i > 1 . In one respect 
vacancy is a geometric mean, for if A is partitioned into 
any countable collection of Lebesgue measurable sets, 
then the vacancy per unit area is just the weighted average 
of the vacancies per unit area within each set. As 
discussed previously, antibody protection from a virus may 
be represented as the complete coverage of a sphere by 
randomly placed spherical caps. It is clear that if any 
region A is completely covered by random sets, then vacancy 
is zero. For all the situations considered in this project 
the converse is also true, except on a set of probability 
zero. In Diggle's application of coverage to heather 
growing in a field, we may be interested in testing the 
hypothesis that the underlying Poisson process is uniform. 
If the original seedling locations are known, then a test 
based on nearest neighbours could be used. However, such 
information is commonly unavailable. In this case a test 
based on vacancy can be constructed. Indeed Hall (1984b) 
has constructed a test by partitioning A into a regular 
lattice of rectangles, measuring vacancies therein and
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using a "chi-squared" approach. Unfortunately, vacancy is 
only a simple summary statistic and can only measure 
certain aspects of a coverage process. The percolation 
example best illustrates this, for percolation may occur 
even when the proportion of covered content is zero (see 
for example the case of random line segments in the plane).

This project has been divided into two chapters. The 
first deals with the history and practical applications of 
stochastic coverage processes. Included in our discussion 
are sections on probabilities of complete coverage, the 
distribution of vacancy and a survey of applications.
As illustrated in an earlier example, many of the applications 
assume that the underlying spatial point process P is 
uniform.

Hall (1984b) has presented a thorough analyses of tests 
of uniformity based on vacancy, in the case where P is a 
Poisson process and the shapes random radius spheres. In 
chapter 2 we present the corresponding theory for the case 
of a fixed number of bounded random shapes independently 
distributed in the region A . The power properties of a 
simple test based on vacancy, against a sequence of 
alternatives converging to the null hypothesis, are presented. 
As previously mentioned, vacancy is not the only statistic 
available. In the one-dimensional situation, where arcs 
of equal length are randomly distributed on the circumference 
of a circle, Hiisler (1982) and Hall (1983) have investigated 
the asymptotic properties of two statistics : the number of 
uncovered spacings, and the length of the largest spacing. 
Tests based on these two statistics are constructed and their 
"local power" is compared with that of the test based on
vacancy.
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Chapter I Historical Review and Applications

In this chapter we review the history and development 
of mathematical theory in stochastic coverage processes.
Due to the large amount of literature, it would be difficult 
to present a comprehensive survey here. Rather, a fairly 
thorough review of a selection of topics is presented.
The later part of this chapter is confined to practical 
applications of coverage processes.

As described in the introduction, a coverage process 
consists of a collection of independently distributed 
random shapes located at points, independently and randomly 
distributed throughout a region A . Thus, work relating to 
the smallest covering convex hull of the random points is 
excluded from our discussion. Research work may be divided 
into several broad topics. The chapter is made up of four 
sections, each section containing different topics.

In section 1 we review work concerned with finding the 
probability of completely covering the region A by a 
collection of random sets. When A is completely covered 
the content of the vacant, or uncovered, region is zero.
The distribution of vacancy is considered in section 2. 
Continuum percolation occurs when the random sets overlap 
to form a connected set of "infinite size". We describe 
the theory of continuum percolation in subsection 3.1.
Rather than derive the probability of complete coverage we 
could attempt to find the distribution of the smallest number 
of random sets required to completely cover A . This and
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related problems are referred to as sequential coverage 
problems in this project. They are the topic of discussion 
in subsection 3.2. In subsection 3.3 we review the history 
of particle counting problems. The theory covered has 
applications in determining the concentration of airborne 
dust particles from a microscope slide sample. The 
overlapping particles may clump resulting in a gross 
underestimate of the concentration. Finally, in section 4 
a more thorough review of practical applications is given, 
including a subsection devoted to the military applications 
of coverage processes.

§1. Probability of Complete Coverage
The present section consists of a review of the 

literature on probabilities of complete coverage in a 
stochastic coverage process. In the first subsection the 
special case where the coverage region is one dimensional 
is dealt with. Being distinct from the one dimensional case, 
at least in the theoretical approach to the subject, 
discussion of the higher dimensional case is deferred until 
the next subsection.

§1.1. The One Dimensional Case
In one dimensional problems we shall sometimes 

take the fixed coverage region A to be the unit interval 
[0,1] . In other cases A is just the perimeter of a 
circle of circumference one. The two are essentially the 
same because the unit interval is obtained by unwrapping 
the perimeter of the circle. Wrapping the interval around 
the circle removes "edge effect" problems, which shall be
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discussed later. The covering shapes are intervals (or 
arcs with the same radius as the circle) each of length a .
A collection of shapes is randomly placed on A and the 
probability of complete coverage is the probability that 
A is contained in the union of random shapes.

Perhaps one of the first authors who attempted to find 
the probability of complete coverage was Stevens (1939).
Taking as evidence the large number of authors who later 
cited his work, it may also be considered as one of the 
most influential in the subject.

The geometrical construction investigated by Stevens 
is as follows. Fix the origin 0 at some point on the 
perimeter of the circle. Place n-1 points on the circle's 
perimeter uniformly and at random. Moving in an anticlockwise 
direction, place the first arc so that it begins at 0 , 
the second arc so that it begins at the first random point, 
and so on until n random arcs are placed on the circle.

Let k be the integer part of 1/a . The number of 
uncovered gaps can range from zero, in the case of complete 
coverage, to at most k . If a < n then it is possible 
for all pairs of distinct arcs to not overlap. If a > n  ̂
then this is impossible.

Stevens found the probability distribution of the number 
of gaps. In particular, he showed that the probability of 
complete coverage is

(1.1) 1 - <") (1 - a)n_1 + . . . + (-l)k (£) (1 - ka)n_1

where
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n! if 0 < k < n
k! (n-1) !

and

otherwise.

We shall prove Stevens' formula for the probability of 
complete coverage, using an argument similar to his.

Let f (1) be the probability that there is a gap after

after the r 'th arc then we can rotate the arcs 
r+1, r+2,...,n clockwise a distance a resulting in a 
legitimate configuration. That is, the order of the arcs 
remains the same. In the new configuration all n-1 random 
points lie in an arc starting at 0 and ending at a point 
measured anticlockwise a distance 1-a from 0 . V7e can
transform the new configuration back into the old by rotating 
the arcs r+1, r+2,....n anticlockwise a distance a . 
Furthermore, the probability density function has the same 
value for the two configurations. Therefore, f(l) equals 
the probability that n-1 random points lie inside a 
proportion 1-a of the perimeter. This probability is :

Using an analogous argument we can show that the 
probability that gaps occur after m specified arcs, where 
1 < m < k , is the same as the probability that all points 
lie inside an arc beginning at 0 and ending at a point 
measured a distance 1 - ma anticlockwise from 0 .

the r 1th a r c , where 1 < r < n If there is a gap

f (1) = (1-a) n-1
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Letting f(m) be this probability we have

(1.2) f (m) = (l-ma)n 1 , 1 < m < k .

Now
Pr (A is completely covered)

= 1 - Pr(A is not completely covered)
(1.3) = 1 - Pr(U^_^ {a gap occurs after the r ' th arc}).

We may use the inclusion-exclusion formula to obtain :

Pr(A is completely covered)
(1.4) = 1 - (?)f (1) + (?)f(2) ... ± (f)f (n) .1 2  n

Stevens' result at (1.1) is obtained by substituting
(1.2) into (1.4) , and noting that f(m) = 0 when
m > k and (n) = 0 when m > n . i — im

Stevens used a similar technique to find the probability 
distribution of the number of gaps. In 1941 Fisher related 
Stevens' formula to a test of significance in harmonic 
analysis. We shall discuss this relationship in greater 
detail in section 4.

As mentioned previously it is possible to unwrap the 
perimeter of a circle to form the unit interval [0,1] .
In covering A = [0,1] by random intervals we must consider 
what to do with those intervals which overlap either 0 or 
1 . We shall call this the problem of "edge effects".
Stevens overcame this problem by introducing the part of the 
interval which overlaped an edge at the other end of the 
unit interval. A similar technique may be employed in 
higher dimensional space as illustrated by Gilbert (1965).
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We shall investigate the technique in greater detail when 
discussing Gilbert's work in the next subsection. There 
is, however, another way of overcoming edge effects.

Let P be a Poisson process of uniform intensity X 
on the real line JR . At each point of P centre an 
interval of length a . Coverage of A will occur if 
sufficiently many points are close to each other in a 
neighbourhood of A . This approach overcomes the problem 
of edge effects by forcing A to be a subset of a larger 
space in which the geometrical process is defined.

Domb (1943) obtained probabilities of complete coverage 
in the set-up described in the previous paragraph. His work 
also involved finding the distribution of the number of non­
overlapping intervals, and the distribution of vacancy which 
we shall discuss in section 2 .

Domb was interested in the coverage of the interval 
[0,y] by random intervals of length a . The number of 
non-overlapping intervals, including no overlap at the 
endpoints, can range from zero up to k , where k is the 
integer part of y/a . Each of these events has positive 
probability. When determining the probability of complete 
coverage there is no loss of generality in assuming y = 1 .
It is clear that the probability of completely covering 
[0,y] is the same as the probability of covering A = [0,1] 
by arcs of length a/y centred according to a Poisson 
process of intensity Xy .

Even though this geometrical problem differs considerably 
from Stevens', there are many similarities. For example, 
there is a positive probability that all the intervals in 
A do not overlap. Furthermore, the number of gaps can range
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from zero in the case of complete coverage, up to at 
most k+1 .

However, the most striking difference between the two 
problems is that the number of intervals intersecting A 
is random. To make explicit the difference between a 
fixed and random number of intervals with centres in A 
we shall use N , in the latter case, to denote the random 
number of points in A .

Let F(x) be the probability that the covered portion 
of [0,1] is less than or equal to x . Now F has 
discontinuities at 0, a, 2a,...,ka . This introduces a 
problem in defining the "density" of F . Domb overcomes 
this problem by using Dirac's 6-function notation. That is, 
if F has a discontinuity of size K at x=k then its 
differential form has a 6-function singularity at x=k 
and contains the term K 6(x-k) . Domb obtained the
probability of complete coverage by inverting the Laplace 
transform of the density of F . Unlike Stevens' proof, 
the technique involved is analytic rather than geometric. 
Domb obtained the following expression for the probability 
of complete coverage :

(1.5) 1 - e“Aa(l+X) + e~2Xa{\(y-a) + X2(y-a)2/2!} - ...

+ (-l)k+1 e" (k4'1)Xa{Xk (y-ka)k/k! + Xk+1(y-ka)k+1/(k+1)!}

Expression (1.5) does bear some resemblance to Stevens' 
probability. There is only one extra term in the series 
and the signs of adjacent terms oscillate.

Consider the situation where X = EN = n . Then 
Stevens' and Domb's results are directly comparable.
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Table 1.1 below gives the two probabilities for a large 
range of n and a .

TABLE 1.1
PS = STEVENS’ PROBABILITY OF COMPLETE COVERAGE.

PD = DCMB'S PROBABILITY OF COMPLETELY COVERING THE UNIT INTERVAL 
FOR COMPARISON PURPOSES LAMBDA HAS BEEN SET TO n.

NOTICE THAT a HAS BEEN CHOSEN SO THAT PS IS FIXED FOR EACH n.
t t n
1 f 5 ! 10 ! 20 ! 30 ! 50 ! 100 !
I_____
! PSt — _

I J
t

t
f

I
t

t
|

»
f

! 0.1 ! PD I 0.142 ! 0.135 ! 0.128! o »-* ro 0.120! 0.114 !
| t____
t ! a » 0.320! 0.205 ! 0.128! 0.096! 0.066! 0.039!
♦ _____
! 0.2 ! PD 1 0.214! 0.216! 0.216! 0.214! 0.213 ! 0.210!
t f___
1 ! a t 0.353! 0.226! 0.141! 0.105! 0.072 ! 0.042 !
! —____
! 0.3 ! PD t 0.280! 0.292! 0.298! 0.300! 0.302! 0.302 !t » _ ___
1 ! a f 0.382 ! 0.244 ! 0.151! 0.112! 0.077! 0.045 !1_____
! 0.4 ! PD t 0.344! 0.366! 0.380! 0.386 ! 0.391 ! 0.395 !
\ 1___
t ! a | 0.409! 0.261 ! 0.161! 0.120! 0.081 ! 0.047!
I_____
! 0.5 ! PD f 0.410! 0.442 ! 0.463! 0.472 ! 0.480! 0.438!f___
| ! a f 0.437! 0.279! 0.171! 0.127! 0.086! 0.050!t_____
! 0.6 ! PD t 0.480 ! 0.521! 0.549 ! 0.561 ! 0.572 ! 0.582 !t )___
| ! a » 0.468! 0.298! 0.183! 0.135 ! 0.091 ! 0.053 !t___ —
! 0.7 ! PD I 0.555 ! 0.606! 0.640! 0.654! 0.667! 0.679!
t t___
1 ! a f 0.505 ! 0.322 ! 0.196! 0.145! 0.097! 0.056 !1___ -------- + _ ------- + _
! 0.8 ! PD » 0.641 ! 0.699 ! 0.737! 0.752! 0.766! 0.779!t 1___
I ! a | 0.553! 0.352 ! 0.214! 0.158! 0.106! 0.060!f -__ -
! 0.9 ! PD t 0.742 ! 0.807! 0.845! 0.860! 0.872 ! 0.383 !t t___ ---- + -
t ! a t 0.624! 0.401 ! 0.243! 0.178 ! 0.119! 0.067!
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It is clear from the values shown in Table 1 that 
Domb's probability is larger than Stevens' when Stevens' 
probability is large, and vice-versa when Stevens' 
probability is small. Also when n is large there is not 
much difference between the two probabilities.

Stevens' and Domb's contributions constitute two 
important but contrasting approaches to finding probabilities 
of complete coverage. One contribution may be more suitable 
than the other in some practical situations. For example, 
it may be more realistic to have a random number of intervals 
intersecting A . In this case Domb's work would apply.

In other situations, n {or N) may be very large, 
and a small. In this case an approximation to Steven's 
probability of complete coverage can be obtained. The 
main issue here is how to define a limit theoretic approach 
because in reality both n and a are fixed. We can, 
however, view the observed event as a realization from a 
sequence of coverage processes, indexed by n . That is, 
the n 'th coverage process consists of n arcs of angular 
radius a^ placed at random on the perimeter of a circle 
of circumference one. Notice that there is no constraint 
upon members of the sequence, such as mutual independence.

In the situation described above, let the vacancy,
, be the proportion of the perimeter remaining uncovered. 

Complete coverage of A occurs if and only if Vr = 0 , 
while the probability of complete coverage is P(Vn = 0) •

Suppose that for each n we fix P(V =0) = y , 
where 0 < y < 1 . Then a^ is determined by y .
Siegel (1979) obtained the following result which allows 
us to approximate a^ for fixed y .
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Theorem 1.1 (Siegel (1979))

Let 3 = logd/y) . Then

a = r- log (§) + o (i) n n p n

as n -* 00 .

Conversely, for fixed n and a^ we may invert 
this result to obtain a first order approximation for y .
The approximation is :

(1.6) y = P(V=0) = exp ( - n e na) ,

where the subscript n has been dropped for convenience.
Table 1.2 below lists the approximation at (1.6) 

for a range of y and n . For fixed y , a was 
obtained using the Newton-Raphson method on Stevens' 
formula for the probability of complete coverage.

We can see that for large values of y the approximation 
tends to underestimate the true probability of complete 
coverage. This may be desirable in practical situations. 
Suppose we wish to find values of n and a that will 
give us a large probability of complete coverage, yq say. 
Using Siegel’s approximation will ensure that P(V=0) > yq . 
In this respect the approximation may be considered as 
conservative. In other situations we may want to ensure 
that the probability of complete coverage is smaller than 
a given small positive constant. Again, Siegel's 
approximation leads to a conservative result.

It is clear, however, that Siegel's approximation is 
fairly crude especially when n is small.
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TABLE 1.2
PS = STEVENS' PROBABILITY OF COMPLETE COVERAGE 

PSL = SIEGEL'S APPROXIMATION
» t n f
1 t 5 ! 10 ! 20 ! 30 ! 50 ! 100 !1_____________

! PS1_____________

f
----------+----

1 1
J

1
1

J
J

1
t

t
1

1
t

! 0.1 ! PSL I 0.365! 0.277! 0.214! 0.187! 0.162! 0.139!t f__________

1 ! a 1 0.320! 0.205 ! 0.128! 0.096! 0.066 ! 0.039 !t_____
!0.2 ! PSL 1 0.426! 0.353! 0.300! 0.277! 0.255 ! 0.234 !1 » _  _  _ --------------------------+ -- --------------------------+ - -

I ! a I 0.353! 0.226! 0.141! 0.105! 0.072! 0.042 !1_____________ ----------------------------+ --
! 0 . 3 ! PSL 1 0.476 ! 0.417! 0.376! 0.358! 0.341! 0.325 !
1 t - ________

I ! a t 0.382! 0.244! 0.151! 0.112! 0.077! 0.045 !
1 _____________

! 0 . 4 ! PSL J 0.523! 0.479! 0 . 448! 0.436! 0.424! 0.414!
t » __________ ---------------------------- +  - -

1 ! a 1 0.409 ! 0.261! 0.161! 0.120! 0.081! 0.047!
| ----------------------

! 0 . 5 ! PSL t 0.570 ! 0.540! 0.521! 0.514! 0.508 ! 0.503!
I 1 _  ___ ---------------------------- +  - -

1 ! a t 0.437! 0.279 ! 0.171! 0.127! 0.086! 0.050!
1 _____________ ----------+ ------------------- -----------------------------+  - -

! 0 . 6 ! PSL » 0.618! 0.602! 0.595 ! 0.594! 0.593! 0.594 !
1 1 __________

1 ! a 1 0.463! 0.298! 0 . 183! 0.135 ! 0.091 ! 0.053!
1 _____________ -----------------------------+

»0.7 ! PSL I 0.670 ! 0.670! 0.674! 0.678! 0.682 ! 0 . 687!
1 t __________ -----------------------------+  - .

1 ! a t 0.505! 0.322! 0 . 196! 0.145! 0.097! 0.056!
1 _____________

!0.8 ! PSL t 0.730! 0.744! 0.759! 0.767! 0.775! 0.734!
I 1 _______

1 ! a » 0.553! 0.352 ! 0.214 ! 0.158! 0 . 106! 0.060!
t _____________ ----------------------------- +  - ----------------------------- +  - ----------------------------- +  -

! 0.9 ! PSL J 0.802 ! 0.833! 0.857! 0.867! 0.876! 0.885 !
I I _______ --------------+ -
1 ! a 1 0.624! 0.401! 0.243! 0.178! 0.119! 0.067!

In the following subsection we investigage the work 
of authors who found probabilities, and approximations 
to probabilities, of complete coverage in the higher
dimensional case



17.

In recent literature on the subject of probabilities 
of complete coverage, several authors have attempted to 
extend the results of Stevens (1939) to the case of random 
arc lengths.

Siegel and Holst (1982) considered the following model. 
Suppose n arcs are uniformly and independently distributed 
on a circle A , of circumference one. The arc lengths 
are assumed to be independently drawn from a distribution 
F on [0,1] . Furthermore, assume that the arc lengths
and the distribution controlling the arcs' locations are 
independent.

We can see that this model contains Stevens' as a
special case. Just allow F to be the step function :

0 when x < a , and
(1.7) F (x) =

1 when x > a ,

where a e [0,1) . In other words, each random arc is
of length a with probability one.

Let 1 < k < n ' Sk -
= 1 and ,

^k = (k-1)!
■ „kI . -I u i=l

u . „ Vk k j n-K
^i=l F(v)dv} du

1}

Siegel and Holst have shown that the probability of complete 
coverage is :

Pr(A is completely covered)

= £ (-1)k (?) 5k •
k=0 K K
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This simplifies to Stevens' result (1.1) when F is 
the step function given at (1.7) . Following Stevens,
Siegel and Holst obtained the probability of exactly m 
gaps occurring on the circle's perimeter. Indeed, if

0 < m < n ,

P(exactly gaps)

0  ? 0 < - n k"mm k-mK=m

Of course, m=0 if and only if the circle is completely 
covered. Let us unwrap the circle onto the interval [0,1). 
Jewell and Romano (1982) have generalized the results of 
Siegel and Holst, on the probability of complete coverage, 
to a situation where the midpoint x and length £ of each 
arc follow a bivariate distribution, F , on [0,1) x [0,1) ,
which is continuous in x .

It is assumed that the n arcs are independently drawn 
from F . However, we do not require that the length and 
location of an arc be independent. Jewell and Romano 
obtained the required probability by showing that the event 
of complete coverage is equivalent to the event that a random 
convex hull of n independent points from a bivariate 
distribution G , determined by F , contains a disc.

The convex hull of a sample of size n is the smallest- 
area convex set containing all n points. Necessarily the 
set is the interior of a convex polygon. The vertices of 
the polygon are a subset of the n points. We shall describe 
in a simple example how a random convex hull may be used to 
determine the probability of complete coverage.



Suppose that Z = h with probability one, so that 
each arc is a semicircle. Then, complete coverage is 
determined by the location of midpoints around the circle. 
Let 0 be the centre of the circle. If all n midpoints 
lie on one side of a line passing through 0 , then the 
circle is not completely covered. Conversely, if the 
circle is not completely covered, then there is a line 
passing through 0 with all midpoints on one side of it. 
Clearly, in this situation, the convex hull of the n 
midpoints does not contain 0 . Therefore, the circle is 
completely covered if and only if the convex hull of the 
n midpoints contains 0 . Without too much difficulty, 
it may be shown that the probability of this event is :

19.

P = 1 n [ {F (u) + 1 - F (u + h) )n-1 du

(F(u) F (u - h) l11”1 du ] ,

where F(u) = F : „ ,‘x=u, Z=h .

In general, however, Jewall and Romano have obtained 
formulae for the probability of complete coverage of the 
circle. The solution is not given here as its form is
very complex.
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§1.2 The Higher Dimensional Case

We shall call the coverage set A k-dimensional 
if there exists a one-to-one topological transformation,
T , such that T(A.) has non-zero content in k-dimensional 
space. It is possible for A to be a subset of a higher 
dimensional space. For example, the perimeter of a circle 
of circumference one is a subset of HR2 . However, by 
unwrapping the perimeter we may map the circumference into 
a subset of IE*} . Therefore, Stevens' (1939) problem is 
one-dimensional. In this project we shall never explicitly 
state the form of T because in most cases the 
dimensionality will be obvious.

A coverage process consists of randomly placed sets on 
A . As in the one-dimensional case, A is completely 
covered if it is contained in the union of the random sets.

To see why probabilities of complete coverage are often 
more difficult to find in the higher dimensional case, 
consider the following argument. Take a 1-dimensional section 
through A . If A is covered then so is any section. 
However, in order that A is completely covered we require 
that all sections through A be completely covered. There 
are uncountably many such sections and even though it may 
be possible to find the probability that any one is covered, 
it would be much more difficult to find the probability 
that all are covered simultaneously. Therefore, it is not 
at all surprising to find that many of the proofs in the 
higher dimensional case involve ingeneous geometric and 
analytic arguments. To illustrate this point we shall 
shortly present a proof from Gilbert (1965) . Gilbert found
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the exact probability that n randomly placed hemispheres 
covered a sphere.

Two early authors to obtain significant results in 
higher dimensional coverage problem were Moran and 
Fazekas de St Groth (1962) . Suppose n points are
independently and uniformly distributed on the surface of 
a sphere. On the surface of the sphere are placed n 
circular caps, each subtending an angle 2a , their poles 
coinciding with the random points. Moran and Fazekas de 
St Groth used this model to solve a problem which arises 
in virology.

Suppose an approximately spherical virus enters an 
organism. Cigar shaped antibodies attach themselves end-on 
to the virus. Each antibody prevents a circular cap area 
on the surface of the virus from attacking the host's cells 
If enough antibodies are spread over the virus then it will 
be impossible for the virus to infect any cell. This 
situation corresponds to complete coverage of the sphere 
by circular caps, each of angular radius a = 53° . We 
shall again refer to this interesting application of 
coverage in section 4 . In the following paragraphs we 
outline the heuristic method used by Moran and Fazekas de
St Groth to find the probability of complete coverage.

- 1/2Suppose the sphere has radius ( 4 tt) and surface
area 1 . The vacancy V is the surface area of the 
uncovered portion of the sphere. Let P = P(V=0) .
When V = 0 we say that the sphere is completely covered. 
The distribution of V , given V > 0 , is continuous with 
first and second moments \i1 and y2 #■ say. The 
probability that the sphere is not completely covered can
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be shown to be

M 2 { E (V) } 2
1 - P = ----------- .

Hi E(V2)

It is possible to derive closed form expressions for the 

first two moments of vacancy. In section 2 we discuss a 

general method of finding moments of vacancy developed by 

Robbins (1945) . Moran and Fazekas de St Groth showed that

E (V) = (1 - a) n

and

E(V2)= %
(* TT

{1 - f (cj>) } sin (4)) d<J> /

where a is the area of a circular cap, and f($) is 

the area of the union of two circular caps separated by 

angle <fi . The moments of the continuous part of V 

are found in the following way.

When a is small n will be large before complete 

coverage occurs. If the sphere is almost completely 

covered, then there will be a number of small uncovered 

regions. The areas of the uncovered regions will be 

approximately independent*random variables. Furthermore, 

it is not unreasonable to assume that their number has an 

approximate Poisson distribution.

Since the uncovered regions are small, their perimeters 

will consist of almost straight lines. The perimeter of a 

given region can be modelled by a random network of lines 

in the plane. This random line network is a special case 

of a Poisson plane process. See, for example, Miles (1970 

a,b, 1971 and 1972) . We shall discuss Miles' work in

greater detail later on in this subsection. Moran and
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Fazekas de St Groth were able to utilize results on the 
expectation and variance of the area of regions generated 
by random line networks to obtain approximations for yi 
and y2 t and hence P .

In the virus example discussed above, this approach 
led to the following approximation to the probability of 
complete coverage :

The analytic techniques used by Moran and Fazekas de 
St Groth differ greatly from the methods employed in the 
one-dimensional case. For example, the possibility of 
ordering the intervals in the one-dimensional case allowed 
Stevens to obtain a simple formula for the exact probability 
of complete coverage. There is no simple way of ordering 
sets in higher dimensional problems.

Perhaps the major concern with Moran and Fazekas de 
St Groth1s work is the heuristic nature of some of their 
proofs. To a great extent Gilbert (1965) overcame these 
problems. He also realized that an exact expression for 
the probability of completely covering a sphere could be 
obtained when a = 90° .

When a = 90° the spherical caps become hemispheres. 
Using an argument similar to Gilbert's we shall prove 
that the probability of complete coverage is

I T 2P ~ exp{- (2 EV(1 + 0.025666 2))

(1.8) 1 -  (n2 - n + 2 ) 2

In an earlier work Wendel (1962) showed that if n
points are randomly scatter ed on the surface of a unit 
sphere in k dimensional space, then the probability that
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all the points lie in some hemisphere is :
k-1 -

(1.9) 2 n 1 Z (n_1) .
j=0 3

The n hemispheres will be randomly and uniformly located 
on the surface of the sphere if the poles of the hemisphere 
are located at independent, uniformly distributed points.
We shall show that the events : n points lying inside some 
hemisphere, and the sphere is not completely covered are 
the same. It will follow that the probability of complete 
coverage is given by (1.9) .

Without loss of generality assume that the spheres 
is centered at the origin 0 . Suppose the n points lie
inside a hemisphere with pole z . Then the point -g , 
also on the surface of the sphere, is not covered. 
Conversely, if there exists a point z which is not 
covered, then the hemisphere with pole at -z covers all 
n points. Therefore, the two events are the same.
In three dimensions k=3 and (1.9) specializes down to
(1.8) . |“ |

A crossing is defined to be the intersection of 
the boundaries of two caps. The crossing is said to be 
covered if any random cap, excluding the two which define 
it, contain the crossing. Let G(n) be the expected 
number of uncovered crossings and U(n) the expected 
number of uncovered crossings when not all crossings are 
covered.

Gilbert showed that G(n) = 4n (n-1)a (1-a)n  ̂ , and 
that G(n) and U(n) are related by
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U (n) = (1 - P) G (n) .
Hence

(1.10) P = 1 - {G(n)/U(n) } .

However, the usefulness of (1.10) lies in the fact 
that U(n) -*■ 4 as n . Gilbert proved this for
a = 90° . Miles (1969) later established this for all 
values of a satisfying 0 < a < 90° . The asymptotic 
approximation derived from this result and expression (1.10) 
is

P ~ 1 “ n(n-1)a (1-a)n  ̂ .

So far we have only considered coverage probabilities 
for circular caps placed at random on the surface of a 
sphere. Miles obtained generalizations of Gilbert's 
results for spherical polygons which are not only randomly 
located on the surface of a sphere, but are also randomly 
rotated according to a uniform distribution. This may be 
defined in strict terms as follows.

Let S be an arbitrary set on the surface of a sphere 
A . Suppose the surface area of A is 1 . A random 
copy of S is made so that

(i) an arbitrary point in S goes to a point which 
is uniformly distributed on the sphere's surface, and 
independently of this
(ii) the orientation of S about this point is uniform.

Let S^,S2#«-«fS be n independent random copies of 
S . For an arbitrary point x on A define H(x) as
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the number of , 1 < i < n , which cover x ,

H = sup , H(x) and H = inf , H(x) . We may
interpret H and H as the number of coverings on the 
least and most covered regions of the sphere's surface, 
respectively. It is clear that the sphere is completely 
covered if and only if H > 0 .

Miles generalized Gilbert's results in two different 
ways. Firstly, as previously mentioned, he obtained 
asymptotic approximations for the probability of complete 
coverage for spherical polygonal shapes. Secondly, he 
obtained approximations for P(H = m) and P(H = n-m) 
for fixed values of m. Miles' result is set out in 
Theorem 1.2 below.

Theorem 1.2 (Miles (1969))

Let the area of S be a , and its perimeter be b . 
Then, as a+°° , both

P(H=m) and P(H<m) (m + 2 ) (m + 1 ) (m + 2)b 2
m , - v n-m-2 a (1-a)
4 TT

while both

P(H>n-m) and P(H=n-m) (m+2) (m+1)(m+2)b2
n-m-2 xma_______(1-a)

4 tt

where m > 0 .

Theorem 1.2 continues to hold for shapes which can be 
approximated by spherical polygons. A circular cap is one 
such shape.

As mentioned in subsection 1.1, it is possible to 
construct a coverage process on the unit interval rather 
than the perimeter of a circle. Likewise, in two dimensions,
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the coverage region could be a rectangle rather than the 
surface of a sphere. However, when the coverage region 
is rectangular, edge effect problems occur. Miles used 
a simple method which overcame edge effects. Essentially 
it converts the rectangle into a "topological torus" .
Since the topological torus is of importance in the 
theoretical section of this project we shall describe it 
in detail here.

Suppose the rectangle, A , has sides of lengths 
and Ü 2 . Orientate A so that its left hand corner 
is at the origin and its sides are parallel to the 
co-ordinate axes. For simplicity, assume the basic shape 
S is bounded by a circle with radius no greater than 
min(£i,£2) • A random copy of S is defined so that

(i) an arbitrary point of S is at a uniform random 
point in A , and
(ii) the orientation of S about this point is uniform.

For illustrative purposes we shall only deal with one random 
copy of S . The generalization to n independent random 
copies shall be obvious.

Let be a random copy of S . Diagram 1.1 shows
a typical for a non-spherical basic shape. Now,
translate to eight different positions by moving it
the width of A left and right, the height of A up and 
down and any other combination of these movements. Diagram 
1.1 also illustrates these translations. The intersection 
of each translated shape, and , with A gives us the
final mutated image of one random copy of S. Diagram 1.2 
illustrates the "topological torus" for a disc in two
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Diagram 1.1:

How the "torus topology" is applied to a shape S1 .



Diagram '1.2;

The Torus topology in 2-dimensions.



Diagram 1.3

The torus topology in 3-dimensions.
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dimensions.
It is possible to extend the topological torus 

technique to higher dimensional space. The method is very- 
similar to the two dimensional case described above, so we 
refer the interested reader to Gilbert's (1965) paper. 
Diagram 1.3 shows the effect of the torus topology on a 
sphere inside a cube.
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In a k-dimensional rectangle, H and H may be 
defined in a similar way to before. Imposing a torus 
topology on the rectangle, Miles obtained results which 
described the asymptotic behaviour of P (H = m) and 
P(H = n-m) as n tends to infinity. These results are in 
essence generalizations of the theory for the spherical 
case. (There are some minor complexities introduced in 
defining a uniform random rotation in greater than two 
dimensions.) For the types of random covering shapes Miles 
considered, the following approximation to the probability 
of completely covering the rectangle was obtained :

where a is the content of S , b its surface area, 
and || A || is the content of A .

Let us now explore the ideas discussed by Moran and 
Fazekas de St Groth (1962) on the size and structure of the 
small vacant regions obtained when a sphere is almost 
completely covered by random caps.

As Miles had done in his 1969 paper we can generalize 
the coverage problem into a k dimensional setting. 
Suppose, however, the sequence of "random shapes" {S^} 
are now centred at the points of a Poisson process of 
uniform intensity, A , on ]R . (In Chapter 2 of this 
project we shall describe in a theoretical manner what is 
meant by the term "random shape".) The structure of the 
uncovered gaps can be approximated by convex regions 
formed by a Poisson field of (k-1)-dimensional planes 
in HR , which we now describe.

TT%2k{ r (3s(k+l) ) }k-1
{r(^K)}k n-k
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Let Ci / £2/... be points of a Poisson process on 
[0,°°) and 01,02/ ... be unit vectors uniformly and 
independently distributed on the surface of the k-dimensional
unit sphere centred at 0 . Let be the k-1
dimensional plane whose normal to the origin has length 
and inclination 0^ . The Poisson field of k-1
dimensional planes in JR is formed by the planes tt̂  ,

Ĵi > 1 . The planes , i > 1 f partition JR into a
sequence of convex polygons, each identically distributed.

Miles (1970 a,b, 1971 and 1972) has investigated in 
detail Poisson plane processes, but in a more general context. 
The random planes, or flats as described by Miles, are 
s-dimensional where 1 < s < k . A stochastic flat process 
of intensity y > 0 in JR is defined so that it is 
stochastically invariant under any translation or rotation.
Let X be an arbitrary (k-s)-dimensional subset in JR 
with (k-s)-dimensional content || x|] . The stochastic 
process is such that the number of s-flats intersecting X 
has a Poisson distribution with mean y  j |  X ]j

When s = k-1 the stochastic flat process of Miles 
reduces to the Poisson plane process used to describe the 
small vacant regions in a coverage process. When s = 0 
the stochastic flat process is just a Poisson point 
process in JR . W e  may therefore view the stochastic 
flat processes as a natural generalization of a Poisson
process.
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§2 Vacancy

In the previous section we spoke of the coverage 
region, A , as a fixed subset of k-dimensional space.
The coverage process consists of randomly placing shapes 
upon A . Let us define an indicator function I as 
follows. For each x E ]R , let

1 if x is not covered by any
random shaoe, and

I(x) =
0 otherwise.

The vacancy, or the content of the uncoverd region in A 
is

(2 .1) I(x) dx

In all situations investigated in this project, the random 
shapes and A are always Lebesgue measurable subsets of 
3R . Thus, if we interpret the right hand side of (2.1) 
as a Lebesgue integral and assume that the content of A 
is finite, then V is well defined as a random variable.

In some situations, it may be more convenient 
to investigate the properties of the Lebesgue measure of 
the covered region in A , defined by

C {1 - I (x)} dx . 
A

Notice that C + V = j |  A 11  , whether the content of A is 
finite or not.
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Suppose that A is completely covered by random 
shapes. Then I(x) = 0 for all x in A , and V = 0 . 
However, the converse is not true; for it is possible 
that a set of Lebesgue measure zero could be left uncovered. 
Such problems do not occur frequently in practice because 
the probability of a zero measure set, except in 
artificial examples, is zero.

A large amount of work on vacancy in stochastic 
coverage processes is concerned with either finding the 
moments of vacancy, the exact distribution of vacancy or 
approximations to the distribution of vacancy through limit 
theoretic methods. Any particular research paper usually 
deals with more than one of these topics because the results 
in one area are quite likely to depend on the results in 
another. Thus, it was decided not to discuss each topic 
in a different subsection, but rather deal with the work 
in a chronological fashion. However, this will tend to 
segregate the topics, as the early work is primarily concerned 
with moments and the exact distribution of vacancy, while 
more recent work has concentrated on the limit theoretic 
approach. As was the case for probabilities of complete 
coverage, exact results for the distribution of vacancy 
are usually confined to the simplest geometrical models.
The reasons for this are made clear by the following.

If the random process controlling the location 
of shapes in A is such that no two shapes can overlap, 
or no shape can intersect the boundary of A, then the 
vacancy is solely determined by the content of A and of 
each shape. On the other hand, if the random shapes 
are allowed, to overlap, then vacancy depends on the location
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of shapes. Thus, in the one dimensional situation, vacancy 
can be described in terms of the starting position of each 
interval and their lengths. However, in the higher 
dimensional situation there is the difficulty of arranging 
the random shapes in order, and hence of simply describing 
vacancy. Domb (1943) was one of the first authors to 
attempt to find the exact distribution of vacancy in a one 
dimensional situation.

The coverage process he studied was described in 
subsection 1.2. We repeat the description here for 
convenience.

Intervals of length a are centred at the points 
of a Poisson process of uniform intensity A . Domb was 
interested in vacancy in the interval [0,y] . As
previously noted, it is sufficient to consider the coverage 
of the unit interval A = [0,1] .

Let F be the distribution function of the 
covered portion, C , in A . Let x > 0 and [x] be 
the integer part of x . It is possible for A to contain 
r non-overlapping intervals none of which overlap the 
endpoints of A , where r = 0,1,2, . ..,[1/a] . Therefore,
F possesses discontinuities at r = o,a,2a,...,[i]a . Using 
a Dirac 6-function notation, Domb wrote down the Laplace 
transform of the "density of F" , which may be expanded 
to find an exact expression for F . Due to the complexity 
of the final result, he never did this. However, Domb 
showed that the size of the r 'th discontinuity to be :

P(C = ra) = 2r (l-ra)r e“X(a+1)/r! 

where r = 0,1,...,[ Va] .
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Even in the one dimensional situation, studied by 

Domb, exact expressions for the distribution of vacancy 

are difficult to obtain. However, there is a simple 

technique available for finding the moments of vacancy, 

which easily generalizes to the higher dimensional case. 

Robbins (1944) expressed the problem in terms of the moments 

of the measure of a random set.

Let ft be the set of all possible Lebesgue 

measurable subset of IR . A  probability distribution 

of random sets, 6 , is defined so that the probability 

that x E ft belongs to a 6-measurable subset, S , of 

ft is :

P r (x e s) x (X) d6(X) ,
'ft s

where y is the characteristic function of S .‘S
Let y be Lebesgue measure in 3R . The measure 

of X may be re-written as :

(2.2) y (X) Iv (x) dy(x) ,
'ft X

where 1 if x E X , and

V x) -
0 if x €  X .

Taking the expectation inside the integral on the right 

hand side of (2.2) gives

E{y(X) } E{ Ix (x ) } dy (x)

P (x G X) dy (x)



as the expected measure of X . Using a similar method 
it is possible to show that

38.

(2.3) E{y™(X) } ' P(xn E X, xn E X,...,x E X) dy(x..) ...1 2  m 1
ay (x̂ )

where m > 1 . We may easily apply Robbins' results 

to vacancy; for vacancy is just the measure of the random 

uncovered region in A . Robbins applied his results to 

find the expectation and variance of vacancy in an interval 

[0,y] covered by n randomly and uniformly located 

intervals of length a . To overcome edge effects he 

extended the distribution controlling the location of 

intervals beyond the endpoints of [0,y] . Bronowski and

Neyman (1945) used a similar method to overcome edge effects 

in a related two dimensional set-up.

Let N be a non-negative integer-valued random 

variable with probability generating function <p , defined 

by :
co n(Ms) = Zn=0 s P (N=n) .

Suppose that the coverage region, A , is rectangular 

with side lengths b and c . Now N points are uniformly 

and independently distributed in a concentric rectangle,

A' , of side lengths b+2y , and c+2y , where y > 0 .

Let rectangles of side lengths a and 3 , where a <2 y 

and 3 <2 y , be centered at the random points. Each random 

rectangle is oreinted in the same direction so that their 

sides are parallel to those of A . Finally, write a = a3 

for the area of each random rectangle and || A11 = be for



the area of A . The conditions a < 2̂  and 3 < 2y 
makes it possible for a random rectangle to not intersect 
A . See diagram 2.1 below. In this sense the edges of 
A' do not affect the coverage of A . This is sufficient 
to remove edge effects from the problem.

Under the above conditions, Bronowski and Neyman 
showed that the first moment of vacancy in A is :

(2.4) E (V) = || A|| (Ml - a/ ||A'|| )

and a much more complex expression holds for the variance of 
V. Expression (2.4) includes the cases where the centres are 
distributed according to a Poisson process in A' , and 
when there is a fixed number of centres in A' .
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Diagram 2.1 :

A rectangle centred close to the boundary 
of A' does not intersect A.

$

I
I
lI
I

I
I
II

Y
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The method of finding the moments of vacancy used 
by Bronowski and Neyman differs from the general methods 
of finding moments of the measure of a random set 
suggested by Robbins (1944). Bronowski and Neyman 
considered vacancy on a sequence of lattice points which, 
if made sufficiently fine, approximated vacancy, and hence 
expected vacancy, in the region of A . However, as was 
previously shown by Robbins, the moments of vacancy can be 
obtained through the integral expression (2.3) .

In a subsequent paper, Robbins (1945) used the 
methods he developed in 1944 to generalize the results 
of Bronowski and Neyman to a k-dimensional situation. 
Essentially, N k-dimensional shapes are independently 
and uniformly distributed over a region, A' , which contains 
the rectangular coverage reion, A . Each random rectangle 
is oriented in the same direction so that their sides are 
parallel to the sides of A . The region A ’ is suitably 
chosen to remove edge effect problems. Again, a probability 
generating function is introduced for N .

In the abovedescribed situation, Robbins obtained 
expressions for mean and variance of vacancy, which- involved 
considerably less technical derivations than used by 
Bronowski and Neyman.

Robbins also found expressions for the mean and 
variance of vacancy when N circles of area a were 
independently and uniformly distributed on A .

For rectangular shapes the expression for variance 
depends on the area of the intersection of two shapes whose 
centres are separated by a vector x . However, for 
circular shapes, the area of intersection depends only on
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the distance that separates the two centres, r = |x| ,
say. Thus, the variance expression for circular shapes 
is somewhat simpler than for rectangular shapes, and, 
indeed, for more general random covering shapes. In the 
later sections of this project we shall develop formulae 
for the variance of vacancy in a very general framework.

The work of Bronowski and Neyman (1945) and 
Robbins (1944, 1945) suggests that formulae for expectation 
and variance can be obtained for a more general class of 
shapes, which have been distributed at random throughout 
a given region, A' . Garwood (1947) proved this to be the 
case for any shape S bounded by a simple closed curve.

The context in which the theory was developed, was in 
application to a bombing problem. The area destroyed by a 
single bomb is represented by a circular region of radius 
r on the ground. A building is represented by a 
rectangular region A . The amount of the building destroyed 
by a cluster of bombs is just the area in A covered by 
n randomly positioned circles. We shall discuss this 
application in greater detail in section 4 of the present 
chapter.

Garwood investigated vacancy for a variety of covering 
shapes and regions. We shall, however, describe the general 
coverage process in which each special case can be represented. 
Let A be the interior of a simple closed curve and S the 
interior of another closed curve. Fix a point c in S 
and call it the centre. Let A' be a region of bounded 
area and f a density function on A 1 x [0,2tt] . Let (X,G)
be a random element from a distribution with density f ,
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and N a non-negative integer-valued random variable 
independent of (X,0) . A random copy of S is obtained 
by rotating S through 0 about c and then translating 

the new set through X . Let ^i'^2'aaa a seciuence °f
independent random copies of S . The coverage process is 
formed by the random shapes S^,...,S^ , and we are 
interested in the vacancy V in A .

According to Robbins (1944) , to obtain the first
moment of vacancy we require the probability that x G A 
is not covered by a single random shape. Let S(v,0) be 
the set S centred at y and rotated through 180° + 6 . 
Conditional on it being inclined at 0 , does not
cover x if its centre does not fall in the region 
A ' \ S(x,0) . Therefore, the probability that does
not cover x is :

If N has probability generating function <J> , the 
probability that x belongs to the vacant region in A 
is 4> (p (x ) ) . Therefore, the expected vacancy is

Garwood also obtained the following formula for the 
second moment of vacancy using an argument similar to 
that above :

p(x) =
0 A ’\ S(x,0)

f(x,0)dx d 0 .

E (V) = <J>{p (x) ) dx
JA

E (V2) = 4>(p(x,y)} dx dy
A 2
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where p(x,y) is the probability that neither x nor y 
is covered by a single random shape.

Garwood applied these results to the following 
problems :

(i) Uniformly and at random, place N disc of area
a on a rectangle. In this case A is a rectangle, 
A' is a region whose boundary is a distance /a/ tt 

outside the sides of A and S is a disc of 
radius /a/2tt .

(ii) Both A and A ’ are as above, but S is
rectangular with sides parallel to the sides 
of A .

(iii) The set S is as in (i), but both A and A' 
are circular.

Cases (i) and (ii) are previously investigated by 
Robbins (1945) .

Garwood (1947) had shown that with some effort it is 
possible to calculate the moments of vacancy for many 
coverage processes. However, it is of considerable interest, 
both practically and theoretically, to know the exact form 
of the distribution of vacancy. In many circumstances 
this was far too difficult to determine, and so a 
compromise had to be reached.

This compromise involved approximating the 
distribution of vacancy using limit theoretic methods. We 
shall consider one of many practical applications of this 
theory when introducing the work of Moran (1973 a,b).
Let us firstly investigate some of the earlier developments 
of Ailam (1966, 1968 and 1970).
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In the three research papers Ailam defined a general 

framework for coverage processes. Under several regularity 

conditions he showed that a standardized version of vacancy 

converged to a normal distribution as the size of the 

"viewing" region increased. Unfortunately, his formulation 

is very difficult to understand and the regularity conditions 

are virtually impossible to check. This forced subsequent 

authors to develop their own limit results.

Moran (1973 a,b) obtained results which have application 

in the theory of vapour-liquid phase transitions. Melnyk 

and Rowlinson (1971) proposed the following coverage process 

to model that situation. In a large region A C 1R3 

n spheres are distributed independently and at random.

Assume that each sphere has radius r and volume a .

The distribution of the coverage C is of considerable 

interest in the theory of thermodynamics. The density of 

the gas is defined to be p = na/|| A11 , which is taken to 

be fixed. Melnyk and Rowlinson conjectured that as jj A|| -> 00 , 

(C-EC)//Var C converged to a standard normal distribution.

Moran proved this to be the case in two different 

situations : when n is fixed, and when the number of spheres 

has a Poisson distribution. Let us consider the latter 

situation first.

Moran assumed that the centres of the spheres formed a 

Poisson process of intensity A in 3R3 . Let A be a

cube and N be the number of centres in A . Then 

EN = A || A || . So the density may be redefined as p = Aa .

We shall prove a central limit result for vacancy, but first 

we must find the mean and variance of V .



As before define

1

Then

I(x) =

if x G A is not covered 
by a sphere,

0 otherwise

E(V) E{ I (x) }dx = || A 11 e = || A|| e P . 
) ~ ~
A

- Let W(t) be the volume of the union of two spheres 

whose centers are separated by a distance t . It is an 

easy matter to show that

W (t) =
when t > 2r and

a + tt (t r 2 -j~2 r 3) when 0 < t < 2r .

Now, if x,y E A , then both x and y are left uncovered 

if no centre occurs in the union of two spheres of radius 

r centered at x and y . Therefore,

Ed(x) i(y>> = e-x w(h-xi> .

Hence, the variance of vacancy is

var(V) = E (I(x) I(y) - [E{I(x)}]2) dx dy
A 2

[E {I (x) I (y) } - e 2 p] dx dy
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We shall now establish the asymptotic normality of 
{V - E (V) }/{Var(V) , as j| A|| 00 and p remains
fixed.

Let A have sides of length D = nd + 2(n-l)r ,
where d is a constant which remains fixed as n -> 00 .
Divide A into n3 smaller cubes, each of volume d3
and each separated by a distance 2r . Let A^ be the
i1th small cube, where the labelling is done in some
systematic fashion. Let be the vacancy in A^ and

n 3R the vacancy in A \ U^=- A^ . Then,

n 3v = ri=1 v± + r .

Since each A^ is separated by a distance of at least 
2r , and the point process controlling the centers of 
spheres is Poisson, then {V.} forms a sequence of 
independent and identically distributed random variables. 
Therefore,

I1?^ {Vi - E(Vi) }//n2VarVi -* °° , N ( 0,1) 

as n -»■ 00 . It is easy to show that
lim supn_̂ro Var(R)/n3 Var(V^) may be made arbitrarily
small by choosing d large.

A lemma of Berstein's (1926-7) says that if
X = Y + Z are random variables with variances V2, V2 n n n x y
and V2 , where VJ and VJ tends to infinity, and
V2/V2 tends to zero, and if Y V  ̂ tends to a standard z y n y
normal distribution, then so does X V  ̂ .n x
result follows on letting

Moran's
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X = V - E (V) n

Y = Z1?3. {V. - E (V. ) } , andn i=l l l

Z = R - E (R) n

Melnyk and Rowlinson posed their vapour-liquid phase 
transition model in terms of a fixed number of centres 
in A . The problem of finding the asymptotic distribution 
of vacancy is much more difficult in this case because the 

's are no longer independent. Thus, the ordinary
central limit theorem does not hold for Z The lacki=l i *
of independence was overcome by Moran (1973b) in the 
following manner.

Suppose Y^,...,Y has a joint multinomial distribution 
with Yi = Y ' and some marginal distribution of each
Y. is the same. Let Z.,...,Z be random variables suchl 1 p
that Z^ depends on Y. , i = l,...,p . Moran proved 
a central limit for Z?_^ Z^ under several mild regularity 
conditions on the moments of the conditional distribution 
of Z^ given Y^ . We now describe how this result
may be applied to the coverage problem described in the 
previous paragraph.

The centres of n spheres of radius r are 
independently and uniformly distributed in a large cube A 
of side length md , where d is a positive constant.
Now divide A into m3 subcubes of side length d . To 
overcome edge effect problems, concentric subsubcubes of 
side length d-r are constructed. The vacancy in the i'th 
subsubcube is denoted by and the number of centres
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it contains is denoted by . The vacancy in the
remaining portion of A , not covered by the subsubcubes, 
is denoted by R . It follows that

V = E,Vi + R .

Now N-,...,N , has a joint multinomial distribution I ' m 3 J
and depends on . Suppose that j| A11 and n
converge to infinity in such a way that n  ̂ || A11 remains
constant. On letting

and p = m3 , i=l,...,p,

Moran showed that these new variables satisfied the 
regularity conditions of his central limit theorem. As 
before, the remainder term becomes insignificant as d - * ■ 0 0 , 
and so the standardized version of V tends to normality.

As can be seen, the methods of obtaining a central 
limit result for vacancy differ considerably when N is 
Poisson, and when N = n is fixed. In chapter 2 we present 
a simpler proof of the second result which relies on the 
Berry-Esseen theorem. According to Davy (1980), it is 
also possible to obtain Moran's (1973b) result by applying 
a theorem obtained by Ailam (1970).

Up until 1974, most research work had concentrated 
on the cases where the distribution controlling the 
location of shapes is uniform, or where a Poisson process 
of uniform intensity determined their location. Practical 
situations arise where the centres of covering shapes 
are not described by a uniform distribution. For example, 
when a salvo of bombs is fired at a target the spread of
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t h e i r  p o i n t s  o f  i m p a c t  c o u l d  b e  a p p r o x i m a t e d  by  a n o r m a l  

d i s t r i b u t i o n .  M oran  (1 9 7 4 )  h a s  i n v e s t i g a t e d  t h e  t h r e e  

d i m e n s i o n a l  c o u n t e r p a r t  t o  t h i s  p r o b l e m ,  w h e r e  t h e  c e n t r e s  

o f  a c l u s t e r  o f  s p h e r e s  a r e  i n d e p e n d e n t  o b s e r v a t i o n s  f r o m  

a  c i r c u l a r  n o r m a l  d i s t r i b u t i o n ,  w i t h  z e r o  mean a n d  u n i t  

v a r i a n c e .

S u p p o s e  t h a t  e a c h  s p h e r e  h a s  r a d i u s  r  a n d  v o l u m e  a  . 

M oran  c o n s i d e r e d  tw o  s e p a r a t e  s i t u a t i o n s  : when t h e  n u m b e r  

o f  c e n t r e s  N h a s  a  P o i s s o n  d i s t r i b u t i o n  w i t h  mean X , 

a n d  when c o n d i t i o n i n g  on  N = n . I n  b o t h  c a s e s  t h e  t o t a l  

v o l u m e  C c o v e r e d  by  a l l  s p h e r e s ,  a f t e r  s t a n d a r d i z a t i o n ,  

c o n v e r g e s  i n  d i s t r i b u t i o n  t o  n o r m a l i t y .  F o r  t h e  P o i s s o n  

c a s e  a s y m p t o t i c  n o r m a l i t y  i s  o b t a i n e d  a s  X 00 , a n d  a s

n co when t h e  n u m b e r  o f  c e n t r e s  i s  f i x e d .  I t  i s  

i n t e r e s t i n g  t o  c o m p a r e  m e a n s  a n d  v a r i a n c e s  i n  t h e  two 

s i t u a t i o n s .

L e t  B b e  t h e  r e g i o n  c o v e r e d  by  a  s p h e r e  o f  r a d i u s  r  

a n d  c e n t r e  z , a n d  F ( z )  b e  t h e  i n t e g r a l  o f  t h e  c i r c u l a r  

n o r m a l  d e n s i t y  f u n c t i o n  o v e r  B , w h e r e  z = | z  j 

When N h a s  a P o i s s o n  d i s t r i b u t i o n

E(C) {1 -  e - F ( z ) dz  ,

a n d  a  m o re  c o m p l e x  e x p r e s s i o n  h o l d s  f o r  t h e  v a r i a n c e  o f  

C . Now when N = n i s  f i x e d ,

0 00

( 2 . 5 ) E (C) = 4tt z 2 [1 -  {1 -  F ( z ) }n ] dz  .

T h u s ,  i f  we r e p l a c e  n by X i n  ( 2 . 5 )  , t h e  two f o r m u l a e

a r e  a s y m p t o t i c a l l y  e q u i v a l e n t  a s  X -* 00 . The same c a n  b e  

s a i d  o f  t h e  v a r i a n c e s .  I n  f a c t ,  i f  we s e t  n = X  , e i t h e r
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expectations and variance may be used as normalizing 
constants in the central limit results.

Recall the coverage problem investigated by Stevens 
(1939) and discussed in section 1. The process consisted 
of the random and uniform placement of n arcs of length 
a on the perimeter of a circle of circumference one.
Stevens obtained the probability of complete coverage.
Siegel (1978a) derived an exact expression for the 
distribution of vacancy, which includes Stevens' result 
as a special case. Let V be the vacancy on the circle's 
perimeter, and F the distribution function for V . Then,

(2.6)

F(t) = P ( V < t ) = l +  E E (-l)k+1(") l"”1) (n”1)tk (l-2.a-t)"_k_1,
1=1 k=0 * K K

where (x), = x when x > 0 and 

= 0 otherwise.

Now F has a discontinuity of size p, say, at t = (1 - na)_. . 
When t = 0 the size of the discontinuity corresponds to 
Stevens' probability for complete coverage of the circle.
See expression (1.1). When t > 0 , complete coverage 
of the perimeter of the circle is impossible, but it is 
possible for all random arcs to be disjoint. In this case 
p = (1 - na)n 1 .

When t < t , F(t) = 0 , and when t > t , F(t) 
has a derivative. Thus V is a mixture of an absolutely 
continuous and degenerate distributions. The probability 
density function for the continuous part of V is :
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(2.7)

r r , n *1 / n v k+1 ,n-l w n-l w  £-1. k-1 , - n ,.n-k-l
f(t) = T=p „ L  .Z. (-1) L - l 1 ( k > ( k (t i - £a-t) +^ £=1 k=l

Siegel also obtained the following formula for the 
m'th moment of vacancy :

m
Elv”1) = (m+"_1) Z (™) ("”]•) (1 - Aa)

£=1
m+n-1
+

where m < 1 . Using a simpler argument than Siegel,
Holst (1980a) derived the same expressions for the moments 
and distribution of vacancy.

As can be seen, the exact form of the distribution 
of vacancy (2.6) is fairly complex. This led Siegel (1979) 
to search for approximations through limit theoretic 
methods, which could be useful when the exact distribution 
is too difficult to evaluate numerically.

Moran (1973 a,b) looked at limit theory for vacancy 
when the size of the region A increased and everything 
else was held fixed. However, Siegel examined vacancy in 
a coverage process where the number of shapes increased out 
of proportion to the size of the region. Indeed, if n 
arcs are placed uniformly and at random on the perimeter 
of a circle it is always possible to choose the common 
arc length an so that the probability of complete coverage 
remains fixed as n -> 00 .

Suppose for some constant ß > 0 , the probability 
of complete coverage is e  ̂ . Let be the vacancy

_  O
on the circle's perimeter. Then P(Vn = 0) = e implies
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that

(2.8) nan = log(n/ß> + o(l) as n - - .

We saw how (2.8) may be used to approximate the 
probability of complete coverage in section 1 . Siegel 
obtained an interesting limit result for vacancy, which 
is summarized in Theorem 2.1 below.

Theorem 2,1 (Siegel (1979)).

The limiting distribution of vacancy, , where
the arc lengths a^ are chosen so that the coverage

— Rprobability remains fixed at e , is given by

n V  ->^ X 2(B) / as n 00 , n Ao
where

X* (ß) = 0 with probability e  ̂ , and
—  9

-  z with probability 1 - e 

and z is absolutely continuous with density

i .&-1oo K f- —  T(2.9) fp (t) = — —  Z ---------- e .
ß - £=1 £! (£-1)!e -1

A non-central chi-squared distribution with v degrees 
of freedom and non-centrality parameter ß is a Poisson 
mixture of central chi-squares x^ + 2  ̂ ' where 
P(k=£) = e p ßi * * * * * * * * x/£o • See chapter 2.4 of Searle (1971) .
The limiting distribution in theorem 2.1 is obtained by
setting v = 0 . Thus, we may interpret X^(3) as a
non-central chi-squared distribution with zero degrees of
freedom, and non-centrality parameter ß .
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The proof that Siegel used relied on showing that the 
moments of n Vr converge to the moments of a 
distribution. Holst (1981), however, proved that the 
moment generating function converged, which implies 
Siegel's result as well as convergence of all the moments 
of n V . This technique is quite powerful and has since 
been used by Hüsler (1982), and others, to prove limit 
results about vacancy. We shall discuss Hüsler's work 
later on in this section.

Consider, for example, the following application of 
the moment generating function technique. Suppose that n 
points are distributed independently and uniformly on the 
perimeter of a circle of circumference one. Let 
S^j < ... < S ^  be the ordered spacings, as measured 
around the perimeter, so that Z^ S (i) =  ̂
proved that

E(exp(t(n S ^  - Jin n))) f (1 - t)

as n -> 00 . This implies that n “ Jln(n) converges
in distribution to the double exponential distribution,

" " Xwith distribution function F defined by F(x) = exp(e ) ,
as n -* 00 .

In the above described model the vacancy

V = zf - ( S . - a ) , . Thereforen k=l (k) n +

P(Vn = °>= P{£k=l(S(k) - V  + = 0}

P(S, . < a )(n) - n

P{n S, x - £n(n) < n a - £n(n)}in) - n



5 5 .

Thus, if for some constant 3 > 0 ,

(2.10) n a^ = log(n/3) + o(l)

as n + 00 , then

P(V = 0) = P{n n S(n) - £n (n) < n a - £n (n) } - n

(2.11) = P {n S(n) - Zn (n) < -log(3) + 0 (1)}

-3= e + o(l)

as n -> 00 . By the earlier result of Siegel at (2.8) ,
we see that (2.10) and (2.11) are equivalent.

Furthermore, P (V = 0)-> 0 as n + 00 , is equivalent 
to

(2.12) n a  = £n n - X ,n n

where A -► 00 , as n -*■ 00 . n

Holst obtained a limit theorem for vacancy for a 
special case of (2.12) . We state his results below:

Theorem 2.2 (Holst (1981))

Suppose n -*■ 00 and a^ -* 0 in such a way that
n a - £n n -► , and lim inf n a > 0 . Then, whenn --- n ---- ------
n -> 00 ,

E (exp (t (n Vn - n e n ) / a n) ) + et ,

for all sufficiently small |t| , where
-n a -2na

a2 = 2n(e n - e n (1 + na + (n a ) 2 / 2) ) n n n
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-na

Thus, (nV^-ne *A) /Or is asymptotic to a normal 
W(0,1) distribution.

In general Hiisler (1982) has shown that there are 
three cases for which different convergence results hold.
The first (A) was considered by Siegel (1979); see 
Theorem 2.1. A special case of the second was obtained 
by Holst (1981); see Theorem 2.2.

In summary, the cases are :

(A) n a^ = log(n/6) + o(l) , where 0 < ß < 00 ;

(B) n a = log n - A , where A 00 andn  ̂ n n
n2a -* 00 , and n

(C) n2 a -*■ a , where 0 < a < 00 ,n

each as n - + 00 .
It follows from Holst's result (2.10), that if an

converges to zero any slower than in (A) , then the
probability of complete coverage tends to one. Furthermore, 
if n2a^ -> 0 as n -+■ 00 , then the probability that any two 
random arcs intersect tends to zero. Thus, (A) - (C) 
cover the complete spectrum of convergence rates that are of 
theoretical interest.

Hiisler extended Holst's Theorem 2.2 to include all of 
case (B) , and also used a moment generating function
argument to show that an adjusted version of vacancy tends 
in distribution to a compound Poisson distribution. For 
completeness we state Hiisler's result below.
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Theorem 2.3 ( Hüsler (1982)).

In case (C) above, for t > 0

E(exp(t n2 (V^ - 1 + n â ) ) -> ip(t)
where

ip(t) = exp(-a + (eat - l)/t)

is the moment generation function for Y = E,_WTr ,----------------- *---------------------------K— 1 K
K has a Poisson distribution with mean a ,
WTr is uniform on [0,a] , and K, Wn , W^,... arei\ ------------- --- i z ---
independent.

Two other statistics studied by Hüsler (1982) are
the number of gaps or uncovered regions on the perimeter,
which we shall denote by , and the length, , of
the maximum gap. Under suitable scaling and location
changes, the distributions of L and M tend r n n
asymptotically to non-degenerate distributions. Table 2.1 
below gives these limits along with references where exact 
formulations can be found.

Table 2.1 Asymptotic Distributions

Statistic

Case L---- n Mn V

A Poisson.
Darling (1953)

B Normal
Hüsler (1982)

C Poisson.
Darling (1953)

Mixture with 
double exponential 
component.
Levy (1939)

Double exponential. 
Hüsler (1982)

Double Exponential 
Hüsler (1982)

Non-central chi 
squared with 
zero degrees of 
freedom.
Siegel (1979)
Normal.
Siegel (1979), 
Holst (1981)
& Hüsler (1982)
Compound Poisson
Hüsler (1982)
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It can be seen that Hüsler has given a fairly 

complete description of the asymptotic distribution of L , 
and when arcs are randomly and uniformly

distributed on the perimeter of a circle. Hall (1983) has 
extended the scope of these results to non-uniform 
distributions on a unit circle.

Suppose that the endpoints of arcs are independent 
observations from a distribution, F . Furthermore, assume 
that F possesses a unique minimum at m , so that 
1 > f(m) > 0 . As n converges to infinity f remains 
fixed. Clearly, the class of F satisfying f(m) < 1 
does not include the uniform distribution. It seems 
necessary to draw this distinction as one would expect the 
distributions of Ln, and to be very dependent
on the behaviour of F near m . Hall has shown this 
to be the case by obtaining their limiting distributions.
As before the limit depends on the rate of convergence 
of the arc lengths a^ . We replace A, B and C by 
the following convergence rates :

(A1) na f(m) = log(n/B) -  ̂log log n + o(l) ,
where 0 < B < 00 ;

(B') n a^ f (m) = log(n) -  ̂log log n - An ,
where A 00 and n
n2 a -► 00 , andn

(C) n2 a -* a , where 0 < a < 00 , n

each as n -* °° . To give a complete description of the 
possible limits, (B1) must be further subdivided into
three cases :
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(B1) (a) nan = log n - h log log n - A^ ,

where A -> 00 and n a 00 ; n n

(b) n a -> a , where 0 < a < 00 , andn

(c) n a -»■ 0 and n2 a -> 00 .n n

A scale factor o and location factor y aren n
defined so that for a sequence of random variables {X^} •

(X -y )/o has a non-degenerate distribution. In all n n n
the situations we consider y and a are well defined.n n

A brief description of the form of the limiting
distributions of L , V and M is given in Table 2.2n n n r
below. For scale and location parameters see Hall (1983). 
It is interesting to compare Table 2.1 with Table 2.2.
We can see that the limiting distributions in Table 2.1 
and the corresponding limits in the respective cells of 
Table 2.2 are always of the same form. However, the scale 
and location parameters required to obtain these limits 
differ considerably between the uniform and non-uniform 
cases. To illustrate this point, location factors have been 
given in Table 2.3 below for vacancy. Notice that the 
location factors for the uniform case can be obtained by 
putting f = 1 in the non-uniform factors.



Table 2.2 Limiting distributions in the Non-Uniform 
Case

60.

Statistic

Case L----  n

A' Poisson

B '• Normal
(a) - (c)

C  Poisson

Mn
A mixture including 
a relocated and 
truncated double 
exponential 
distribution.

A relocated 
double exponential 
distribution.

Vn

A non-central 
chi-squared 
distribution 
with zero degrees 
of freedom.

Normal

Poisson.

Table 2.3 Location Factors for Vacancy

Cases

Form of the underlying distribution
Uniform Non-uniform

A 0 0

B e
-n an r 1

exp{-n a^ f(x)}dx
0

n n
C 1 n a 1 n a
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When the coverage region A is a proper subset of 
k-dimensional space, and k > 1 , there is no obvious 
analogue of L or M . However, it is possible to 
generalize some of the results for vacancy to higher 
dimensional space.

Following Moran (1973a), Hall (1984b) considered the 
properties of vacancy V in the region A , when 
hyperspheres are centred at the points of a Poisson process 
in 1R . Unlike Moran though, Hall assumed that the radii 
of the spheres were independent observations from a 
predefined distribution, and that the Poisson process was 
inhomogenous.

Hall shows that the variance of vacancy varies inversely 
with E(N) , the expected number of centres in A, if and
only if the content covered by a single random sphere has 
finite second moment. Furthermore, in the case of finite 
second moment, a central limit result holds for V as 
E (N) -* °° and a  ̂ EN -> p , where 0 < p < 00 . Expected 
vacancy reaches a maximum for a homogeneous Poisson process. 
Therefore, tests based solely on V can be constructed.
Hall suggests a sequence of local alternatives to show 
that the test based on V is not very powerful . 
Subsequently, the chi-squared argument is used to construct 
a more powerful vacancy-based test.

It is also possible to obtain limit results for vacancy 
when conditioning on the number of points in A . Suppose 
n points are distributed in the k-dimensional cube A 
according to a distribution with density f . Spheres of 
fixed content a^ are centred at the points and we assume a
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torus topology on A . See section 1.2 and Miles (1969)
for a description of a topological torus.

Hall (1984a) obtained a central limit theorem for V
as n a o / where 0 < p < 00 . Also, when n2 a„ -*■ p n K n
a standardized version of vacancy is asymptotic to a 
compound Poisson distribution. These results represent 
generalizations of the work of Husler (1982) and Moran 
(1973b). Whereas Moran used a characteristic function 
argument and results of Renyi (1962) and Holst (1972), 
Hall applied the Berry-Esseen theorem for sums of 
independent random variables allowing a simpler moment 
argument in his proofs.
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§3 Continuum Percolation, Sequential
Coverage and Counting Problems

§3.1 Continuum Percolation
In particle physics, interaction can take place 

between two particles if they are located in close proximity 
to each other. Interactions may extend to one or more 
particles, which we shall call a cluster. In particular, 
we are interested in an infinite number of interactions 
occurring in at least one cluster. This event is referred 
to as percolation and has important applications in both 
the physical and chemical sciences. As an example, 
percolation may be used to describe the conduction of 
electricity in a crystalline semiconductor. We shall describe 
this and other examples in more detail later. A more vigorous 
definition of percolation in a continuum is presented below.

Let P be a Poisson process of intensity A in 3R . 
Suppose spheres are centred at the points of P . Assume 
that the radii of spheres are independent and identically 
distributed random variables, which are also independent of 
P .

A cluster is a connected region in IR̂  formed by 
overlapping random spheres. The size of a cluster, which 
we shall denote by K , is the number of spheres it contains. 
Notice that K is not observable because a random sphere 
may be obscured by other random spheres in the same cluster. 
Percolation occurs when clusters of infinite size are 
formed. Of much practical importance is the intensity
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at which the probability of percolation becomes positive.
Some of the applications of percolation theory are 
presented below. We have not attempted to be comprehensive 
in our survey of the literature, as percolation is not the 
major topic of this project.

Seager and Pike (1974) have computed the electrical 
conductivity of several model materials, including some 
which simulate impurity conduction in a semiconductor. 
Essentially, impurity particles are represented by points 
of a Poisson process. An electron can pass between two 
particles if they are sufficiently close; that is, if 
two spheres of a fixed radius centred at the points overlap. 
Therefore, conduction in the semiconductor can only occur 
when the concentration of impurity is sufficient to cause 
percolation.

Gawlinski and Stanley (1981) mention another application. 
Percolation theory may be used to model condensation of 
polymers in a chemical solution. In recent years, lattice 
rather than continuum percolation has been used to model 
this type of situation. Since lattice has been used to 
approximate continuum percolation we describe it in more 
detail below.

Unlike continuum percolation, lattice percolation 
models require that the particles be placed at the vertices 
of a regular grid. In the simplest models the grid is 
either a square lattice in two dimensions or a rectangular 
lattice in three dimensional space. Adjacent particles 
are connected with probability p . It is clear that as 
p increases the probability of percolation increases.
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Also, for p = 1 every particle is included in an infinite
clump with probability one. Therefore, there exists a
critical probability pH beyond which infinite clumps can
form, and a probability pT beyond which clumps of infinite
expected size can occur. Now p < p • For a square
lattice in two dimensional space Seymour and Welsch (1978)
have shown that p + pm = 1 , and finally Kesten (1980)hi 1
proved that PH = PT =  ̂ •

Other types of grids are also of practical interest.
For example, there are two ways to optimally pack spheres 
of common fixed radius in three dimensional space. In 
crystallography these structures are referred to as 
hexagonal close packing and body centered cubic packing. 
Corresponding to each of these packings is a lattice which 
we illustrate in diagram 3.1 below. Critical probabilities 
may be computed for these and other crystal structures.
See, for example, table I in Pike and Seager (1974).
We now briefly describe some of the methods used by authors 
to estimate critical intensities of continuum percolation 
in two and three dimensional problems.
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Most work has concentrated on the case where spheres 

of fixed radius are centred at the points of P . Some 
authors have considered other shapes, including rectangles 
and squares in two dimensions and cubes in three dimensional 
space. These departures from the norm shall be mentioned 
as we progress through the literature. For reasons of 
consistency, we assume that the random spheres or circles 
are of radius one.

Gilbert (1961) noted that there were distinct 
similarities between continuum and lattice percolation.
Quite often in lattice percolation the critical 
probabilities at which clumps of infinite size begin to 
form and where expected clump size is infinite correspond. 
Gilbert was able to plot estimated expected clump size 
against intensity, A , and thus estimate the point at 
which the graph diverged. Similar techniques were later 
employed by Roberts (1967) and Domb (1972).

The second method, used by Pike and Seager (1974), 
Gawlinski and Stanley (1981) , and others, was to simulate
continuum percolation in a very large rectangular region.
Of course, clumps of infinite size cannot form in this 
situation. Therefore Pike and Seager identified percolation 
as the occurrence of at least one cluster which extended 
from one side of the rectangle to the other. Pike and 
Seager estimated Ac by starting with subcritical values 
of X and slowly increasing it until percolation occurred. 
Other authors have obtained estimates of A by 
extrapolating functions of the cluster size K . For example, 
Galwinski and Stanley defined the function R (A) as the 
probability that a sphere chosen at random belonged to an
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infinite duster. They suggested that the behaviour of 
R in the vicinity of Ac can be described by

R (A) = B(A - A )3, A > Ac ,

where B and ß are positive constant. Their method of 
estimating Ac was to perform non-linear regression of 
an estimate of R(A) against A . Both papers mentioned 
above consider percolation for non-spherical shapes.

Pike and Seager obtained critical values for squares, 
which are all oriented in the same direction, and for 
sticks which are randomly and uniformly oriented about their 
centres. Galwinski and Stanley have obtained critical 
values for cubes in the three dimensional problem and 
squares in the two dimensional problem.

We summarise the estimates of critical values obtained 
by various authors in table 3.1 below.

We shall now demonstrate that percolation occurs 
whenever the expected content of each k-dimensional sphere 
centred at the points of P is infinite.

Let X^rX^r ••• be the points of P numbered in any 
systematic order and independent random spheres
centred at the origin , 0 . Furthermore, assume that

Sl'^2'-*" are independent of P. The coverage process 
consists of the randomly located spheres :

X, + S = {x E ]Rk : x - X . G S . }~1 1 ~l l
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Table 3.1

Estimates of critical values for 
continuum percolation.

The shapes are chosen to have a volume or area of one. 

Authors Spheres Cubes Circles Squares

Gawlinski and Stanley (1981) 
Vicsek and Kertesz (1981) 
Haan and Zwanzig (1977) 
Fremlin (1976 )
Pike and Seager (1974)
Gayda and Ottavi (1974) 
Ottavi and Gayda (1974) 
Kurkijarvi (1974)
Holcomb et al (1972)
Domb (1972)

0.36
0.37

0.084 0.077 0.37 0.35
0.081 0.35
0.079 0.36
0.079

0.33
0.35

0.082
0.070
0.081 0.36

Roberts (1967) 0.31
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Now for each x E HR ,

P(x is not covered by any set 

= P(0 is not covered by any set 

= exp( - Xa) ,

X . + S . ) 
~ i  l

X . + S . )~ i  l

where a is the expected content of . Therefore,

the expected vacancy in A E ]R is :

E (V) is not covered by any set 
X . + S .) dx~ i  l

= || A || exp ( - Xa)

Thus, P(V = 0) = 1 if and only if a = =° . It follows 

that percolation occurs for all positive X whenever 

a = E ( 11 S 11) = 00 . Hall (1984c) has provided a more complete 

description of when percolation can occur. We describe 

his results below.

Let X be the critical value for the formation o
of infinite clusters with positive probability, and X^ 

the vlaue at which expected cluster size E(K) becomes

Theorems 3.1 and< 00
O

infinite. Clearly 0 < X^ < X

3.2 below give conditions under which both X and X,  ̂ o 1
are strictly positive, and finite.
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Theorem 3.1 (Hall (1984c))

Assume that k > 2 and E(||s|j) < °°. There exists 
Aq > 0 such that the expected number of spheres in an 
arbitrary clump is finite whenever 0 < A < A^ if and 
only if E(]|s|!2) < 00 . Indeed/ if E ( | j S 11 2) = 00 then 
the expected number of spheres which are in the same 
cluster as a given sphere and distant no more than one 
sphere away from that sphere is infinite for all values of 
A .

Furthermore, if k > 1 and E(||s||2 ) < 00 then
for all sufficiently small A , the number of spheres in 
each cluster is finite with probability one.

Theorem 3.2 (Hall (1984c))

Assume: k > 2 . If_ E ( (| S ||) > 0 then for all
sufficiently high intensities, the probability that a given 
random sphere is part of an infinite clump is strictly 
positive.

The case k= 1 is dealt with separately by Hall.
He shows that percolation is then possible only when 
E ( 11 S I! ) = 00 . In other words, if E ( 11 S 11 ) < “ then

In fact, Hall considered random shapes more general 
than spheres in the formulation of theorem 3.2. Indeed, 
he assumed that S^,S?,... are independent copies of a 
random and closed set S , as defined by Matheron (1975).
In order for theorem 3.2 to follow we replace the condition 
E ( 11 S ̂ j j ) > 0 by E(S(S) ) > 0 , where S(S) is the content
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of the largest sphere contained in S , and it is assumed 
that S is connected.

For k = 2 Gilbert showed that 0.13 < Â  < A^ < 1.39. 
Hall improved these bounds to 0.174 < Â  < Aq< 0.843 
when S is a disc of unit radius

Diagram 3.1 : Two ways of optimally packing
spheres of equal radius in 
3-dimensional space.
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§3.2 Sequential Coverage

Suppose that we sequentially and independently 
place arcs of length a on the perimeter of a circle 
of circumference one according to a uniform distribution.
In subsection 1.1 we reveiwed literature concerned with 
the probability of complete coverage when the number of 
arcs in the perimeter is fixed. In this section we review 
literature concerned with the "converse" problem : that 
of finding the minimum number of arcs required to completely 
cover the circle's perimeter. Since the arcs are placed 
sequentially, we shall call this a sequential coverage 
problem.

When exactly n arcs have been placed on the circle's
perimeter we know that, except for a set of probability
zero, complete coverage occurs if and only if the vacancy,
V , is zero. One random variable of concern in this n
section is

N = inf{n : V = 0} . a. n

It is clear from this definition that, except on a set of 
probability zero, the events {N^ < n} and {V^ = 0} 
are equivalent. When a > 0 , is well defined as a
random variable, for

P (N < co) > U m  inf P(N < n) a ~ a -
n ->°°

= lim inf P (V = 0) nn-H=°
= 1 ,
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the final step following, for example, from theorem 2.1 
obtained by Siegel in 1979.

As discussed in subsection 1.1, Stevens (1939) 
obtained an exact expression for the probability of 
completely covering the circle. Using Stevens’ result, 
Flatto and Konheim (1962) obtained the following expression 
for the expectation of :

(3.1) E (N ) = 1 - 1 .(-l)j (1~jaji.|
a 1< jfa-1 <jaP + 1

In the same paper they also proved that, as a 0 ,

(3.2) E(N ) ~ i log(i) .a. a. cl

Subsequently, Steutel (1967) proved that

(3.3) E (N ) = i{log(^) +loglog(^-) + y + o(l)> ,a a a a

as a -> 0 , where y is Euler's constant.
For purposes of comparison we have listed the two

approximations, (3.2) and (3.3) , against the exact value
of E(N ) , for a variety of a . Both approximationsa
are poor when a is large. However, when a is small, 
Steutel's approximation is reasonably good, and certainly 
much better than Flatto's and Konheim's .
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EXPECTED NUMBER OF ARCS REQUIRED 
TO COMPLETELY COVER THE CIRCLE

1
t
1

!
1
! EXACT

t
j

SOLUTION 1
FLATTO'S AND !

KONHEIM'S !
APPROXIMATION !

t
STEUTEL'S !

APPROXIMATION !
! a ! ) t i

Hoo j 713.801 460.52! 670.96!
! 0.02 i 316.42 1 195.60! 292.66!
10.025 1 242.611 147.56 ! 222.86!
10.033 i 171.72 1 102.04! 156.08 !
10.05 t 104.801 59.91! 93.40!
10.1 j 44.05! 23.03! 37.14!
10.2 ? 17.84! 8.05 ! 13.31!
10.25 i 13.20! 5.55! 9.16!
10.333 t 8.88! 3.30 ! 5.31!
10.5 t 5.00! 1.39! 1.81!

Since N and V cine so closely related, end 3.3 n
non-degenerate limiting distribution exists for vacancy,
we would expect 3 limit theorem to hold for .
Indeed, allow n to be the integer part ofa

— (log (— ) + leg log (̂ ) + x) , n a a

where x is an arbitrary real number. Then

n = — (log(— ) + log log (— ) + x) + o(l) a a a a

log(t ) + °(n.Ja a

(3 .4)
1
a r as a -»• 0
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Let 3 = e x . From (3.4) it follows that 

an = log(~ log(^-)/3) + o(l)3. 3 3

= log{(n + o(n ))/3) + o(l)3 3

(3.5) = iog(n /3) + o(l) , as a -* 0 .a

Now as a -> 0 , n -> 00 . Thus, by the argument followinga
(2.10), (3.5) is equivalent to

(3.6) P(Vn = 0) -> e"0 as a + 0 .na

However,

P (N < — (log(— ) + log log (— ) + x) ) a a a a

= P (N < n ) a - a

= P^vna = 0) .

Therefore, by (3.6), aN - log(— ) - log log(— ) has aa a a
limiting extreme value distribution with distribution 
function exp(-e* ) . Flatto (1973) has obtained a slightly
more general result.

Allow N to be the minimum number of randomlya ,m
and uniformly distributed arcs of length a required to 
cover the circle m times. Then, as a -► 0 ,

a N - log(— ) + m log log (— ) X , a , m a a

where X has the relocated extreme value distribution :
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P(X < x) = exp { -e x/(m-1)!} .

To prove this result Flatto expressed ^ in terms of
the spacings between n-1 points, independently and 
uniformly distributed on [0,1] . Specifically, let
L ,L L  i o 1 n-1 be the lengths of the successive spacings,
and let L . , =l+n L .l for i>0 . If m < n and
S . — L . + L . , 1 "I- l l l+l • • • +L . ,i+m-1 then

P(N <n) = P(S .a ,m- l<a, 0<i<n-l) = P(S (n) < a) , where

is the largest S .l , 0<i<n-l • The limiting distribution
for N is obtained by finding a limit for the extremea,m
order statistic, S, s . Flatto1s result does not allow us(n)
to find the behaviour of the k'th moment of N asa,m
a 0 . Edens (1975) investigated this problem

Let X = aN - log(i) - m log log (1/a) . Edensa am a
showed that for 0 < t < 1 ,

t IX I t I X I.
E(e a ) -> E(e ' )

as a 0 . One consequence of this result is that the 
k'th moment of X^ converges to the k'th moment of X . 
That is ,

k
lim E (X ) = (— 1)k (exp ( ? (-l)j xj))] , k>l ,
a+0 a dxK j=2 3

where t, is Riemann's C-function. Thus, as a 0 ,

E (N ) = — {log (— ) + m log log — + y - log (m-1) ! + o (1) } a , m a a a

and

(3.7) Var (N ) = - &  + o(D) .a , m , 6a 2



It is interesting to note that the right hand side of 
(3.7) does not depend on m .

In a slightly different vein, Flatto and Newman (1977) 
generalized to k-dimensions the results of Flatto and 
Konheim (1962), on the expected number of random arcs 
required to cover a circle.

Let A be a k-dimensional sphere with surface area 
one. Suppose circular caps of the same radius as A are 
sequentially and uniformly distributed on the surface of 
the sphere. Suppose the surface area of each cap is a . 
We can see that this geometrical situation is similar to 
that studied by Moran and Fazekas de St Groth (1962), 
and Gilbert (1965) . However, in the later cases, the
number of random caps is fixed. In the present situation 
we let ^ be the minimum number of caps required to
cover A m times. Flatto and Newman proved that, as 
a -► 0 ,

E (N ) = — { log(—) + (k+m-1) log log(—) + o(l) } . a,m a a a
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Kaplan (1978) and Holst (1980b) have obtained limit 
results for N_̂  m (p) , the minimum number of arcs required 
to cover a proportion 0 < p < 1 of the circle's perimeter 
m times.

Let p be a fixed real number, k > 1 and p= 1 - ka.
Suppose {n } is a sequence satisfying , as a 0 ,a

n -*■ 00 a
and

-an
(n e a - n a k)

/n a k a
P
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f ̂  ' 4lira P{N . (1 -K ) < K ) < n } = —  \ e-Z dz ' a-0 a>1 a - a - a /4 JP
while Holst showed that for fixed p ,

I

a a N (p) - G 1 (p) } a, m i

converges in distribution to a normal law where
m-1

G (p) = E p-5 e”p/j!
j = 0

In other words, if p converges to 1 fairly slowly,
or remains fixed at a value less than 1 , then N (p)a ,m ^
may be approximated by a normal law.

In subsection 1.1 we discussed the work of Jewell
and Romano (1982) and Siegel and Holst (1982), concerned
with the complete coverage of a circle by randomly and
uniformly distributed arcs of random length. In this
case Janson (1983) investigated the asymptotic properties
of N , the minimum number of arcs required to completely a
cover the circle.

Let L be a positive random variable and a
a positive constant. Assume that the lengths of the random
arcs are independent copies of aL , independent of the
underlying uniform distribution controlling the location
of arcs. Janson established the following limit theorem
for N : a
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Theorem 3.1 (Janson (1983))

Suppose that E(L) = 1 and E(L-t) = 0(l/logt) 
as t -> 00 . Then, as a ■ + 0 ,

1 , f)aN - log ( / ) - log log (1/a) -* Xa. a
—xwhere X has the extreme value distribution exp(-e ) .

Provided the distribution of the tail of L is
sufficiently well behaved, the asymptotic distribution of
N depends only on E(L) , and not on the form of the a
distribution of L . In this sense Janson's results 
represent a generalization of Flatto's (1973) work.

§3.3 Dust Counting Problems

A coverage process consists of shapes placed at 
random on a region A . In many practical situations it is 
useful to determine the concentration of the number of 
shapes per unit area. For example, a sample of dust 
particles may have been taken on a microscope slide, and 
we wish to find the concentration of dust particles per 
unit area. When examined under a microscope, particles 
group together forming clumps. Some clumps may overlap 
the edges of the viewing region. In order to estimate 
the number, and hence concentration of particles, we must 
compensate for the effects of clumping. We shall refer 
to this, and related problems, as dust counting problems. 
Some other practical applications will be discussed in
section 4.
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In the present subsection we shall review literature 
on methods of adjusting for the undercounts.

Irwin, Armitage and Davies (1949) and Armitage (1949) 
ave used the following model to describe the random 
overlapping of dust particles on a microscope slide.
In a large region A , n discs of area a are randomly 
and uniformly distributed. A clump is a connected set of 
overlapping discs, having empty intersection with all 
other discs. The size of a clump is measured by the 
number of discs it contains, C , say. Let m = E(C) 
be the expected clump size, and if; = na/|| A11

Irwin, Armitage and Davies derived the following 
approximate formula for the case where n increases, and 
a/ 11 A || decreases :

(3.8) m ~ 4 i p /  (1 -  e~4^ ) .

The argument used in deriving (3.8) involved the 
assumption that, in every clump, every disc overlaps 
every other one. This is, in fact, not true and leads to 
an underestimate of the true value of m . Armitage (1949), 
later attempted to improve this formula by the following 
means.

Let n^, n^ and n^ be the expected number of clumps 
of size one, two and three, and n^ the expected number 
of clumps of size at least three. Armitage derived formulae 
for n^,n^ and m^ and argued that

n3 = n3 + n O (ip3)

as n -*00 and y 0 . He therefore concluded that the
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expected number of clumps, ignoring edge effects, is :

n l + n 2 + n'

n{ 1 - 2ip + 2 ip2 + 0 (î 3) }

An approximate formula for m is obtained from the 
relationship m ~ {n1 + n^ + n^/n}  ̂ • Armitage also 
extended the result at (3.7) obtained by Irwin, Armitage 
and Davies (1949) to discs of random radii, and rectangular 
particles (or shapes) of random size and random orientation 

Let Ui and y 2 be the first and second moments of the 
square root of the area of a particle. Then, Armitage 
showed that m could be well approximated by :

where
4t|>/ (1 - e~4 '̂) ,

ip = n (y 2 + 2.5 y 2) / 2 11 A

This relationship may be used to estimate the mean clump 
size as follows.

Let K = (y2 + 2.5y2) and N the observed number of 
clumps. Then n ~ mN , and so

m ~ 4if;/ (1 - e ^ )

2K m N,
1 - exp (-2Kmn/ || A

Hence, Armitage suggested that

2 KN £n (1 - 2KN/ || A ||
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be used to estimate the mean clump size.

Various authors have noted that the dust particles 
can vary greatly in their shape and size. The 
approximation to their shape by a disc or rectangle, as 
proposed by Armitage, may indeed be too rough. In light 
of this argument, Mack (1954) has suggested a more general 
model, which we now describe.

In a region A' , n convex shapes (or particles) 
are independently and uniformly distributed with random 
and uniform orientation. Suppose that n^ of the shapes 
have area a^ and perimeter s , 1 < r < k , where 
I ^  n^ = n . Mack was interested in finding the expected 
number of clumps, m , and the expected number of clumps 
of size one (or expected number of isolated shapes), m^ , 
say, in the region ACA'. A' is chosen sufficiently 
large to overcome edge effect problems near the boundary 
of A .

Clearly, Mack's model contains Armitage's as a 
special case, for both discs and rectangles are convex.
As we shall see, Mack chose convex shapes for reasons 
of mathematical convenience.

The essential feature of Mack's model is that all the 
shapes have independently undergone a random uniform 
orientation. In many practical situations this is fairly 
realistic. Of interest in Mack's formulae for m and m^ 
is the fact that they depend on the convex shapes only 
through their mean perimeter and area.

Mack proved that, for large n and || A'||
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(3.9)
ml  -  7 A' r=l

Z n exp (- E.Tn b ) r r u=l u ur

where
b = i I A • I I  ^  (a + a  + s s / 2 tt ) .ur 11 11 u r u r

In 1956 he further showed that

(3.10) m < Mil z n exp ( - h llA'II r=l r bur ) .

The techniques used by Mack in deriving (3.9) and (3.10) 
are very similar. We shall present an heuristic proof of 
(3.9) using a technique similar to his.

Suppose that each shape has a centre. The probability 
that this centre is in A is || A |] / 11A' ||. Let p be 
the probability that a random convex shape of area 
is isolated. Clearly,

A'
k
Z

r=l
k

Now p = II p 
u= 1

a shape of area
area a . To u
for large n^ ,

, where p^u is the probability that 
a is not intersected by any shape of 

complete the proof we need only show that

p ~ exp ( - n b ) £ru ^ u ur

Let S be the shape of area a . For the moment fix
its orientation, and its centre at a point P G A .  Let
•S be one of the random convex shapes of area a , and x r u
centre x. Let A be the set of all points x G 1R2 such
that S intersects Sx r Now S is a convex set whose
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boundary is the set of all points x such that 5^
touches Sr . Let Q be the point x where
Sx just touches at T . See diagram 3.2. Move

S a n  infinitesimal amount along the boundary of S , 
maintaining its orientation. Now T is translated to 
T'/ Q to Q 1 and the new point of contact is U .

Diagram 3.2 Translate of just touching .



85.

Diagram 3.3 Details of the parallelogram
in diagram 3.2

In order to calculate p we need to find || A |jru
This can be done by integrating around the perimeter of 
A , the area of the element PTQQ'U .

It is clear from diagram 3.2 that
(3.11) area (F TQ Q'U) = area (P TU) + area (T Q Q'U) .
Let W divide QQ' in the ratio |TU \ : | TT* | , where 
|XYj is the length of the chord XY . Let p be the
perpendicular distance from TT’ to Q . Refer to 
diagram 3.3. Since the orientation of was maintained
in the infinitesimal translation, TQQ' T* is a 
parallelogram. Therefore ,

(3.12) area (TQQ' U) = area (QWTU)

+ area (UQ'T1) .

Let 3S be an element of the boundary of S r r
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The infinitesimal area (PTU) is an element of the area 
of . and the infinitesimal area (Q'T'U) is an
element of the area of S . Thus on combining (3.11)X
with (3.12) and integrating, we obtain

(3.13)

p ds

a + r

In the argument just given the orientation of S remainedX
fixed. In Mack's set-up it is given a uniform 
orientation on (0,2tt). On integrating the final term 
of (3.13) over (0,2tt) we obtain :

f
> ( 0,2 TT )

p de
> <0,2:0

= Sr su /

the final step following because p d0 is a small element 
on the perimeter of S . Hence, the mean area in which 
shapes of area a^ can intersect Sr is :

( 2tt )
r 2tt

II A(e) || de
J0

(3.14) = a + a + s s /2iv r r u

A ' b 11 ur
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The RHS of (3.14) does not depend on the orientation
of S , so the formula still holds if S is given a r r r
random uniform rotation. It follows from (3.14) , that
the probability of a shape of area a^ not intersecting 
a given shape of area a is 1 - buv_ . Therefore,

n
p = (1 - b ) U ~ exp(-n b )^ru ur u ur

for large n , as required.

Mack's formula may also be deduced from the so-called 
"Fundamental Formula of Integral Geometry", see 
Blaschke (1949), Santalo(1953,1976) and Miles (1974).

Mack (1956) has generalized the expressions for 
expected number of clumps, and expected number of clumps 
of size one, to a three dimensional situation.

Again, convex shapes are randomly and uniformly 
distributed in a region A' c JR3 , and given a random 
and uniform orientation. There are n^ shapes of volume 
a^ and surface area s^ , 1 < r < k . The mean perpendicular
for a convex shape S C 1R3 is defined as follows.

Let r(9,4>) be the distance from a pre-defined centre 
in S , to a point P on the boundary of S , whose tangent 
plane has a normal with spherical angular coordinates 
0, <J> . The mean radius is

R = _1 _
4tt

fn
je o

•2tt
r ( 0 , cf)) sinO d9 d(j>.J

(p =  0

Formulae (3.9) and (3.10) continue to hold in the three 
dimensional case if we replace the previous definition of
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bur by

-1 (a* + u R + r R + a 1 ) u r

where R^ is the mean radius for the random convex shapes 
of area ar

There are two minor shortcomings of the formulae 
obtained by Mack. Firstly, they are only asymptotic 
approximations. However, they become exact if we assume 
that the shapes derive from a coverage process in which 
shapes are centred at points of a Poisson process. In 
this case, the quantities n are means of random variables. 
Secondly, (3.10) only provides an upper bound for the mean 
number of clumps. If some prior knowledge of b^r , and 
the relative proportions of the n^ , l<r<k , is given, 
then (3.9) can be used to estimate the average number of 
shapes per unit area.

By only looking at the number of clumps we are 
ignoring a large amount of information. Extra information 
can be obtained by also counting the number of enclosed, or 
entrapped voids. Kellerer (1983) has obtained an exact 
formula for the expected number of clumps minus enclosed 
voids, when the shapes are distributed in a Poisson field.

Let S be a random shape with mean area a , mean 
perimeter S and mean Euler characteristic x • The 
Euler characteristic of a shape is a - ß , where a is 
the number separate domains and ß the number of enclosed 
voids. Any convex shape has an Euler characteristic of 
one. Let S be obtained from S by giving it a random 
uniform rotation, about a predefined centre. Let 
be independent copies of S . Let S^,S2,... be centred
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at the points of a Poisson process of intensity A .

The mean number of clumps minus voids in a region 
A of area |j a || , perimeter | 3A | and Euler
characteristic X is :

exp (—a A) ( A (x 11 A || + s |3A|/2tt) — A 2 11 A | ] s 2/4tt - 1} + 1

when x = x = 1 . This result is obtained quite easily 
from standard results on the mean curvature of random 
closed circuits.

§ 4. Applications

Thus far, our review has concentrated on the large 
body of literature concerned with theoretical analyses of 
coverage. Research works were divided into various sections, 
according to their theoretical content. In the present 
section we attempt to group research works together on 
the basis of their practical applications.

To review all research works and applications would be 
a monumental task indeed. Rather, we have chosen a subset 
of topics, and shall discuss them in enough detail for 
the reader to appreciate the importance of their application.

§4.1 Military Applications

In the present subsection we shall review some of 
the military applications of coverage processes to the 
destruction of point and area targets. For the interested 
reader, thorough surveys of the literature relating to 
military applications can be found in three excellent review 
papers : Guenther and Terrango (1964), and Eckler (1969).
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In military applications the following model is
commonly used. It is assumed that the bombs' impact points
are statistically independent. The random location of an
impact point is described by the probability density function 

h -j-p : 1R -► HR . Usually we have k = 2 or 3 . The damage 
function d is defined so that the conditional probability 
that a point target at the origin is destroyed by a bomb 
impacing at x , is d(x) .

One of the simplest situations investigated in the 
literature is the case where the target, A , is a fixed 
point. Without any loss in generality assume that 
A = {0} . The probability that a single bomb destroys A 
is

r(4.1) P = d(x)p(x)dx ,V  ~ ~
while the probability that at least one of n > 1 bombs 
destroys A is 1 - (1 - P)n .

In many practical situations the following simplifying 
assumptions are made. In k=2 dimensions, for some value 
R > 0 ,

1 when x2+y2 < R2 ,
(4.2) d(x,y) =

0 otherwise, and

(4.3) p(x,y)
2tt a ax y

(x - x ) 2
r Oexp { - --------

2a2x

(y - yQ)2
2a2y

where (xQ,y ) is the expected point of impact, is

the variance along the x-axis and is the variance
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along the y-axis.
The damage function at (4.2) represents the

situation where a bomb destroys everything within radius R
of its point of impact. A large amount of literature is
concerned with tabulating P against the various parameters :
x , y , c , c and R . For many references see o 2 o x y
Eckler (1969). When x = y = 0  and g = g = g , ao 1 o x y
closed form solution exists for P . In this case

P 1
2ttg2 '' x 2+ y 2<R2

exp (- x 2+y2 ^
2g 2

dx dy

exp ( -
' * x 2+ y 2 <R2,x>0,y>0

x 2+ y 2  ̂
2g 2

dx dy ,

which on substituting r = /(x2+ y 2) and s - x/y 
simplifies to

r exp ( -----) dr
2g 2 1+s

. - exp ( - - ^ )  dr
0 G2 2g 2

= 1 - exp( - R 2/2G2) .

Sometimes it is necessary to represent the target by 
an area rather than a point. In this case it is reasonable 
to determine the expected fraction of the target destroyed 
by a salvo of n bombs.
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The expected fraction of a general target, A , 

destroyed by a single bomb is

•’ r ° °

) J (x^.y.) € A J >
d(x-xt ,y-yt)p(x,y)dxdy dxt dyt ,

‘t ,jrt

where p and d are as previously defined. This may be 

rewritten as

P(x ,y ) dx dy , 
j j (xt ,yt) e A 1 1 1

where

P(xt ,yt ) d(x-x ,y-y ) p(x,y)
J .

dx dy

is the probability that a single bomb destroys a point 

target located at (x ,y ) .

The probability that at least one of n independent 

bombs destroys a point target located at (x ,y ) is 

1 - {1 - P(x /y^) }n . We must integrate this over the 

target area to find the expected proportion destroyed.

That is,

Cn ----  ! [1 — {1 — P(x) }n ] dx ,
II A|| iA

is the expected fraction destroyed.

Most work has concentrated on the case where A is 

a disc of radius K , and d and p are as defined at 

(4.2) and (4.3) , respectively. Again, a large amount 

of literature is concerned with tabulating or graphing 

against the various parameters. As these works are of 

little interest here, we only mention that many references
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can be found in the review papers of Eckler (1969), 

and Guenther and Terrango (1964). There 
does, however, arise one interesting problem.

Suppose that x = y = 0  and a = a = a . r o ^ o  x y
If the precision of the bomb aiming device is perfect then 
a = 0 . In this case the fraction of the target destroyed 
is R 2/K2 , which is less than one when R < K .
However, as a increases, initially increases and
then approaches zero. Therefore, there must be an optimum 
value of c , which maximizes the expected proportion of 
the target destroyed. Knowing the optimum value would 
be of practical use if an aiming device could be designed, 
which allowed us to arbitrarily choose the spread, c , of 
impact points. Walsh (1956) has investigated a more general 
optimization problem, which does not require the assumption 
of normally distributed impact points.

Walsh defines the function D : 3V -> [0,1] as 
follows. The probability that a bomb with impact point y 
destroys a given target A c ®  is D(y). Let p(x-y) 
be the conditional probability density function of the 
hit location, y , from a bomb with expected hit location, 
x , and q(x) the density function of x . The conditional 
probability that a bomb with expected hit location x 
destroys A is

while

H(x) D (y) p (x - y) dy , 
;A  ~ ~ ~

[ 1 - { 1 - H (x) }n] q (x) dxH = n



is the probability that at least one bomb in a salvo of
n bombs destroys the target.

We see that the notation used by Walsh is not quite
the same as that introduced at the beginning of this
section. However, it is convenient in practical situations,
for the function D may be defined arbitrarily. For
example, D could equal one if a predefined proportion
of the target was destroyed. Suppose we also fix the
function q . Then, only depends on the hit location
function p . Walsh described the following procedure for
obtaining the optimum, or maximum, value of .

Let H be the optimum of H and H(x) the n n ~
corresponding optimum for H(x) . Firstly, determine the 
value of c satisfying

{1 - (c/q(x))1/(n"1) } dx 
{x:q(x)>c }

94 .

D(y) dy . 
> A

Then,

H = 1 n dx -
 ̂q(x)>dx

D(y) dy} 
'A

q(x) dx ,Jq(x)<c

while
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for x satisfying 
q(x) > c ,H (x) =

0 otherwise.

Determination of the optimum p is done by an iterative 
'cut and try' method.

In more refined models one part of the target, may 
be more important than another. We could measure the 
importance by a density function A . In this case, the 
expected total value of the target destroyed by a salvo 
of n bombs is

where p(x) is the probability that a single bomb destroys 
a point target at x .

Expression (4.4) is also the probability that a 
point target, placed at random according to the density A , 
is destroyed by a salvo of n bombs. McNolty (1967) 
has obtained simple expresscns for when the bombs’
location density, p , and damage function, d , are as 
defined at (4.3) and (4.2), respectively, and when the 
target's random location is distributed as a circular 
normal distribution. Other related problems, which have 
been the subject of investigation are :

a) the probability of destroying the target exactly
m times, where m < n ;

(4.4) C = A(x) [1 - {1 - P(x) }n ] dx ,
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b) the expected number of bombs required to destroy 

the point target exactly once;
and
c) the probability that n or fewer bombs are required 

to destroy the target exactly once.

Many more complex models exist. However, little 
insight is gained through describing them. In the following 
subsection we investigate physical and biological 
applications of coverage processes.

§4.2 Other Applications

In the present subsection we shall describe several 
applications including : applications in image analysis; 
fibre counting problems; the modelling of a problem in 
virology; vapour to liquid phase transitions, and the 
spatial pattern of heather in a field. For each application 
we describe the coverage model that has been applied and 
state results where necessary.

Serra (1982), in his book titled "Image Analysis and 
Mathematical Morphology", considered the practical 
applications of what he called a Boolean model. As 
described in the introduction, a Boolean model is a coverage 
process consisting of a collection of independently and 
identically distributed random shapes placed at the points 
of either an homogeneous or inhomogenous Poisson process. 
Serra described a method of testing for a Boolean model 
based on the functional Q defined by :
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Q(B) = P(B does not intersect any 
of the random sets) ,

where B is a Lebesgue measureable subset of 3Rv .
Such work has applications in minerology, for example, 
the modelling of ferrite crystals in iron sinter, or 
biological applications such as the random distribution of 
trees in a forest.

In subsection 3.3 we described the mathematical 
techniques used for adjusting undercounts of dust particles 
caused by clumping. We now discuss some important 
applications of this theory.

In some industries airborne asbestos fibres result 
as a product of the manufacturing process. It is important 
to determine whether the concentration of these fibres 
is sufficient to be a health risk. The concentration 
can be estimated by examining an asbestos-laden membrane 
filter under a microscope.

lies and Johnston (1983) described a procedure which 
requires that all fibres less than 3pm in diameter be 
counted. Larger fibres are not respirable and hence do 
not represent a health risk. If a fibre is in contact 
with a particle greater than 3pm in diameter, then it is 
ignored. The problem is to determine the respirable fibre 
concentration from the membrane filter sample. Due to 
overlap, the count of respirable fibres on the membrane 
must be adjusted upwards.

Since asbestos fibres are long and narrow, the model 
which is commonly used, consists of a collection of 
elongated rectangular shapes, which have been independently
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and uniformly thrown on a region, A . Independently of 
this, each rectangle is given an independent and uniform 
rotation around its centre.

lies and Johnston have shown how to calculate the 
concentration of respirable airborne fibres, with 
reasonable accuracy, from counts of the number of 
respirable fibre clumps on the membrane. Their work is 
closely related to the theoretical papers of Irwin, Armitage 
and Davies (1949) , Armitage (1949) and Mack (1954, 1956),
in which approximate formulae are derived for the mean 
number of clumps. See section 3.3.

Mack's work allows for a more general definition 
of the shape distribution of fibres. As only small fibres 
represent a health risk, it is important to be able to 
estimate the distribution. Schneider, Holst and Skottle 
(1983) discuss the relationship between the shape 
distribution and influencing factors such as : the 
manufacturing process which creates the dust clouds, air 
supply and ventilation, and the aerodynamic properties 
of the fibres.

The concentration of airborne fibres is estimated by 
firstly counting the number of fibre clumps on a filter.
In practical situations this is an onerous and time consuming 
task. Attfield and Beckett (1983) described a simple 
technique to ease the task of fibre counting.

Briefly, microscope samples are examined for the 
presence or absence of fibres. If m samples are void 
of fibres, then the estimated density of fibres is 
£n(n/m) . The derivation of this formula, which assumes
a Poisson distribution of fibres, is described in detail
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by Attfield and Beckett.

The presence of dust particles, other than asbestos 
fibres, in the workplace is of major concern. These 
particles can represent a health hazard to the workers.
In some cases the shapes of particles may be better 
represented by convex regions other than rectangles.
Mack (1956) has developed a general theory for adjusting 
for undercounts in such circumstances.

Particle counting is also of importance in the 
biological sciences. For example, we may wish to count 
the number, n , of bacteria colonies on a microscope slide. 
The colonies can overlap and are approximately circular 
in shape. Thus, we could use a model consisting of discs 
spread uniformly and at random throughout the region A .
As discussed in subsection 3.3, Armitage (1949) derived 
a formula for estimating n .

Moran and Fazekas de St Groth (1962) studied the 
following problem in virology, which can be modelled by a 
simple coverage process. The problem arises from the way 
that antibodies prevent a virus from attacking a cell.
The thin cigar-shaped antibodies attach themselves end-on 
to the approximately spherical virus, preventing a circular 
cap region on the surface of the virus from touching any 
cell. If n antibodies randomly attach to the virus, 
then the probability of complete coverage of the virus's 
surface by the associated circular caps is the probability 
that the virus will not infect any cell. In subsection 1.2 
we discussed in seme detail how Moran and Fazekas de St Groth 
and subsequently Miles (1969) derived approximations to 
this probability. The interested reader may refer to the
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discussion in subsection 1.2.

Yet another application of coverage arises in 
physical chemistry. Widom and Rowlinson (1970) studied the 
applicability of the following coverage model for liquid 
to vapour phase transitions. The model consists of n 
molecules, uniformly and randomly distributed in a large 
region A . Each molecule is represented by a sphere of 
volume a . According to Widom and Rawlinson, the potential 
energy of the system is

U = ( || A !| - V - na) e / a  ,

where V is the vacancy and e > 0 is an energy constant. 
The quantity U can be used to determine the phase state 
of the material. Ultimately, this will depend on the 
distribution of V . However, the exact form of this 
distribution is unknown, so Melynk and Rowlinson searched 
for an approximation . Using Monte Carlo methods, they 
showed that ( || A 11 — V)/|| A 11 was approximately normal in
distribution. As discussed in section 2, this result was 
later justified in a theoretical manner by Moran (1973b).

An early application of Stevens' (1939) work, on the 
complete coverage of a circle by n uniformly distributed 
arcs, arose in harmonic analysis. Suppose that each arc 
is of length a . We proved in section 1.1 that the 
probability of complete coverage is

(4.5) l - n ( l - a ) n_1 + ... + (-1) k (£) (1 - ka) n_1 ,

where k is the integer part of 1/a . Fisher (1940) 
noted a remarkable similarity between Stevens' result
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at (4.5) , and the probability of Type One error in a test
of significance of the largest harmonic component in a series 
of normally distributed observations. This led Fisher to 
the discovery of how his problem in harmonic analysis 
related to Stevens' model in geometrical probability.

In section 3.1 we described in some detail the 
application of coverage theory to continuum percolation.
We shall briefly mention one important application here.

Suppose that impure conducting particles in a
*semiconductor are represented by spheres. An election 

may pass between two impure particles if their associated 
spheres overlap. Thus, conduction occurs when a clump of 
spheres of infinite size forms : that is, when percolation 
of the spheres occurs. Clearly, the concentration of 
impure particles plays an important role in determining 
conduction. Using a Poisson point process to represent 
the spheres' centres, Gilbert (1961) proved that there 
exists a critical concentration above which percolation, 
and hence conduction, occurs.

Diggle (1981) employed a coverage model to model the 
growth pattern of heather in a field. Heather plants grow 
from seedlings reaching a maximum radius of about 50 cms.
The branches of adjacent trees intermingle if the regions 
they occupy overlap. Under these restrictions, Diggle 
proposed the following model. Viewed from above, the heather 
plants may be represented by random radius circles, and 
the centres of the bushes by a Poisson process with 
intensity A . Figure 3 below, which appears in 
Diggle (1983), shows a 1:100 scale map of heather, coded 
as a 100x200 binary matrix. The shaded area represents
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heather, while the light area represents the vacant region.
Diggle’s primary concern was to find a model which 

fitted the data well. This involved estimating the 
parameter A , and the density function , f , for the 
heathers1 radii. One simplifying assumption made by 
Diggle was that f is a relocated Weibull distribution, 
so that

f(r) = kp(r-S)^  ̂ exp{p(r -5)^}, r > 6 ,

where k,p and 6 are positive constants. Let us 
define G(u) as the distribution functions of the distance 
of an arbitrary point in the plane to the nearest heather 
plant , and y(u) as the covariance between points a 
distance u apart , coding 1 for points occupied by 
heather and zero otherwise.

Diggle showed that the fit obtained by using y was 
much better than that obtained by using G . The reason 
y works better than G is that G depends only on the 
first two moments of disc radius, while y depends on all 
properties of disc radius. Hence there is much more 
information contained in y than in G . Even the model 
obtained by using y is not entirely adequate as illustrated 
in diagram 4.2. Comparing diagram 4.1 and 4.2 we see 
that there are distinctly fewer clumps in the raw data 
than the simulated data.
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Map of heather in a lOmx 20m field.
Heather is represented by the shaded region.

Diagram 4.2: Simulated heather pattern from the
model obtained by fitting y .

Diagrams 4.1 and 4.2 were reproduced with the kind permission 
of the Eiometrics Society.
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C h a p t e r  2 .  T e s t i n g  t h e  H y p o t h e s i s  o f  U n i f o r m i t y

R e c a l l  t h e  d e f i n i t i o n  o f  a c o v e r a g e  p r o c e s s  C 

d e s c r i b e d  i n  t h e  I n t r o d u c t i o n  a n d  Summ ary.  I n  a  r e g i o n  

A c  H  p o i n t s  X ^ r X ^ r  • • •  a r e  d i s t r i b u t e d  a c c o r d i n g  t o  

some r a n d o m  p r o c e s s  P . By d e f i n i t i o n  C c o n s i s t s  o f  

i n d e p e n d e n t l y  d i s t r i b u t e d  c o p i e s  S ^ , S ^ r . . .  o f  t h e  r a n d o m  

s e t  S r e l o c a t e d  a t  t h e  p o i n t s  o f  P . I t  i s  a l s o  a s s u m e d  

t h a t  , i > l  , a n d  P a r e  s t a t i s t i c a l l y  i n d e p e n d e n t .

Due t o  o v e r l a p i n g  o f  r a n d o m  s e t s  t h e  l o c a t i o n  o f  a l l  t h e  

p o i n t s  X^, i > l  , i s  i n  g e n e r a l  n o n - o b s e r v a b l e .

I n  t h i s  c h a p t e r  t h e  a im  i s  t o  c o n s t r u c t  t e s t s  o f  t h e  

h y p o t h e s i s  t h a t  t h e  u n d e r l y i n g  p o i n t  p r o c e s s  P i s  

u n i f o r m  on A , a n d  t o  a n a l y s e  t h e  a s y m p t o t i c  p o w e r  

p r o p e r t i e s  o f  t h e s e  t e s t s .

I n  o r d e r  t o  c o n s t r u c t  a  t h e o r y  s e v e r a l  s i m p l i f y i n g  

a s s u m p t i o n s  a r e  m a d e .  A ssum e  t h a t  P c o n s i s t s  o f  e x a c t l y  

n > l  p o i n t s ,  w h i c h  a r e  i n d e p e n d e n t l y  a n d  i d e n t i c a l l y  

d i s t r i b u t e d  on  t h e  r e g i o n  A . To a v o i d  t h e  d i f f i c u l t i e s  

o f  " e d g e  e f f e c t s "  l e t  A b e  a  k - d i m e n s i o n a l  u n i t  c u b e  w h i c h  

i s  a l s o  t o p o l o g i c a l l y  a  t o r u s .  The p r o p e r t i e s  o f  a 

t o p o l o g i c a l  t o r u s  w e r e  d i s c u s s e d  i n  s e c t i o n  2 o f  c h a p t e r  1 .  

E s s e n t i a l l y ,  i f  a  r a n d o m  s h a p e  p r o t r u d e s  b e y o n d  o n e  s i d e  o f  

A. i t  i s  i n t r o d u c e d  a t  t h e  o t h e r  s i d e .  T h i s  t e c h n i q u e  i s  

f r e q u e n t l y  u s e d  i n  g e o m e t r i c a l  p r o b a b i l i t y .  S e e  f o r  e x a m p l e  

M i l e s  ( 1 9 6 9 ) .  To o v e r c o m e  t h e  p r o b l e m s  a s s o c i a t e d  w i t h  a 

r a n d o m  s e t  c o m p l e t e l y  w r a p p i n g  a r o u n d  A a n d  o v e r l a p p i n g  

i t s e l f ,  a s s u m e  t h a t ,  w i t h  p r o b a b i l i t y  o n e ,  S i s  c o n t a i n e d  

i n s i d e  a s p h e r e  o f  d i a m e t e r  o n e .  The n o t a t i o n  j| . jj
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is often used throughout this chapter to denote the 
Lebesgue measure of the argument set.

As was seen in the section on applications in the 
previous chapter, the assumption of uniformity was 
frequently made. Such an assumption could be well justified 
in many situations. For example, one would expect gas 
particles to be uniformly distributed in the vapour-liquid 
phase transition model used by Melnyk and Rowlinson (1971). 
However, in the heather plant application considered by 
Domb (1981) , it would be useful to test the hypothesis of
uniformity in the early stages of model fitting. Hall (1984b) 
constructed a test of uniformity based on vacancy assuming 
that P was a Poisson point process. Some of Hall’s work 
has direct bearing on the ensuing theory. This is clearly 
indicated at appropriate stages throughout the chapter.
In order to obtain limit results for tests of uniformity 
Hall used a "change in perspective" concept which is now 
briefly described.

Initially, let us confine attention to k=2 dimensions 
and uniformly distributed shapes. Suppose a survey camera 
is mounted in a helicopter, which is flying above a forest.
Let A be the square glass plate on the back of the camera. 
The image of the forest projected on the plate may be 
represented by a coverage process. The mean size of a tree 
on the plate is the expected area of a random shape. If the 
helicopter was to increase its altitude by a factor 6  ̂ , 
where 6 < 1 , then the expected area of a random shape 
would decrease by a factor 62 , and the number of shapes 
per unit area would approximately increase by a factor 6""2 . 
Suppose we were to replace the generating shape S in C
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by 5S = {x : 6x^GS} , then the situation described above 
corresponds to letting 6 0 and n -* °° in such a manner
that n6i-̂ p , where 0 < p < 00 . In the k-dimensional 
situation allow <5 -+ 0 and n -*■ 00 so that n6 -* p .
The associated coverage process for uniformly distributed 
shapes is denoted by C(6,n) . When the 's are
distributed according to a distribution with density f 
the coverage process is denoted by C^(6,n) . Under the
above convergence criteria a central limit theorem for 
vacancy in a 3-dimensional cube in which spheres of common 
radius are uniformly distributed was obtained by Moran (1973b).

In section 1 we generalize Moran's result to the case of 
random and bounded shapes in a k-dimensional set-up. From 
this theory an asymptotically consistent test of uniformity 
of the underlying point process based on vacancy is 
constructed in subsection 1.2.

For increasing n a sequence of density functions f , 
which converge to the uniform density, will be defined.
In subsection 2.2 the asymptotic power, or so called 
local power, of the test based on vacancy is determined for 
a variety of convergence rates for f . It will be shown 
that the test can only distinguish differences of order 
0(n 4) from the null hypothesis of uniformity as n -> M .
In the one dimensional situation Hiisler has considered two 
other statistics : the total number of uncovered spacings, 
and the length of the maximum spacing.

Simple tests of uniformity will be constructed from 
these statistics, and their local power derived. The local 
power of the test based on the total number of uncovered 
spacings is comparable to the test based on vacancy.



107.

However, its asymptotic consistency can only be assured 
when P < (E ( || S I! ) } x . As so happens, the test based 
on the length of the maximum spacing is poor in comparison 
and can only detect differences of order 0[{log(n)} 
from the null hypothesis as n -* °° .

§1 Uniformly Distributed Random Shapes.

Throughout this section it is assumed that 
/ .../ are independently and uniformly distributed

on A . Under this hypothesis, in subsection 1 formulae, 
and asymptotic approximations, are obtained for the 
expectation and variance of vacancy. Of practical importance 
in constructing an asymptotically consistent test of the 
hypothesis of uniformity, is a central limit theorem for 
vacancy.

Moran (1973b) proved such a result in the special case 
where n spheres of equal radius are independently and 
uniformly distributed within a 3-dimensional cube. In 
subsection 2 we prove a more general limit theorem for 
random and uniformly bounded shapes in a k-dimensional 
setting. The proof is considerably different to Moran's 
and does not use his characteristic function argument, 
but rather a simple application of the Berry-Esseen theorem.

1.1. Expectation and Variance of Vacancy.

Our first result gives exact formulae for the 
expectation and variance of vacancy. The Lebesgue 
measurable set S rescaled by a factor 6 and translated 
through x is denoted by
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x + 6S = {x + Sy : y G 5}

Theorem 1

For the coverage process C and vacancy as defined 
in the introduction

(1.1) E (V) = {1 - E ( S| S || ) }n 

and

(1.2) Var(V) = ! [{1 - 2E ( II S 11) + E(||S n (S + x.,-x2)|| }
A 2

- { 1 - 2E( || S ||) + (E( || S ||) ) 2)n] dx. dx2 .

Proof
The probability that x E A is covered by

is E ( || S || ) . Thus E (x (x) ) = {1 - E(||s||)}n , where
X(x) is 1 when x is uncovered and zero otherwise, and so

E(V) = {1 - E( || S || ) }n ,

as required.
Since A is topologically a torus , the stochastic 

properties of C are invariant under translations. Thus,

E{x(xx) x(x2)}

P (for l<i<n , £ X . + s . ~1 1 and x 2  ̂  Xi + Sî

P (for l<i<n , xi £ (* r * 2 + Si) U Si)

(1 - 2E( || S I! )+ E(|| s n (s + X 1 - x2) II ) }n .
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Hence

Var(V) [E(x(x 1)x(x2) } 
A2

E(x (x1) }E(x (x 2) }] dx.̂  dx0

[ { 1 - 2E ( II S j] ) + E ( || S n (S + x1-x2) ||) }n 
A 2

-{1 - 2E ( 11 S 11) + (E ( || S ||) ) 2 }n] dx-j dx2

which completes the proof of theorem 1.

In the introduction to this chapter a method of 
obtaining a limit theorem for vacancy was described. The 
method was discussed in terms of a change in perspective. 
Essentially, if n is the number of shapes in A and the 
expected size of a random shape is proportional to 5 , 
we allow n -*■ 00 and 6 -* 0 in such a manner that nö -> p , 
where 0 < p < 00 . The coverage process corresponding to this 
situation is as follows.

Let A be a k-dimensional unit cube and assume that 
A is topologically a torus. As before let S^,S2,... 
be independent and identically distributed copies of the 
random set S , independent of X^,X^r... , which are 
independently and uniformly distributed points on A . 
Furthermore, assume that S is contained inside a sphere 
of diameter one with probability one. For 6 < 1, define 
C(6,n) as the collection of random sets X. + 6S.,~1 l

' c

l<i<n .
The following theorem gives asymptotic approximations 

for the expectation and variance of vacancy.
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Theorem 2.

Let V = V ( 6 , n ) denote the vacancy in the unit cube

A arising from the coverage process C(6,n) If

6 + 0 as n + 00 , in such a manner that o n P /
where 0 < 8VQ. then

E|V - exp{ -pE ( | |s| i) } | + 0

as n -> 00 and

n var(V) + t 2

= p e 2pE ̂ il s H M  [exp{ pE ( 'I S n(S+z)|| )} - 1] dz
j ]R

- p 2{E( II S II ) }2 e"2p E( 's '' '

as n + oo .

Proof

The proof is trivial when E(||s||) = 0 . For the 

rest of the proof assume that E(||s||) > 0 . By replacing

S by 5S in (1.1) we obtain

E (V) = {1 — 6k E ( 11 S 11) }n - exp{- p E ( || S [| ) }

as n + 00 . Furthermore, jv| < 1 , so to prove the

theorem it suffices to show that

var(V) = E{ |V - E(V) | 2 }

= T2 /n + of1/̂ )

(1.3)
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as n 00 . Since S is bounded by a sphere of diameter 

one and 6 < 1 , E{||6sn (6S + x1 -x)!|) = 0  when

|xj - x 2 I > 6  . Thus, to find an asymptotic estimate of 

(1.2) we replace S by 6S and the integrate in two parts: 

ixi— x 2 ' >  ̂ and lxl ~ x 2̂  <  ̂ * Writing a = E(||S|I) ,

the first of these integrals is :

1 (1-2 6ka)n - (1-2 6ka + 62k a2)n } dx2

Xl"”X2 I > 5 ' x2 G A

= || A || 2 (1 + o(l) ) [(1-2 6ka) n — { (1 — 2 6ka)n

+ n 62k a2 (1 - 2 6ka)n-:L + 0(n~2)}]

(1.4) = - n ^p2 a2 e 2a  ̂ + o(n ^) as n 00 .

As for the integral over |x^ - x^l < 6

[{1-2 6Ka + 6k E( || S H (S + ( x ^ x ^  / 6) || ) }n
Ix —x 2 I<6, x^,x2 £ A

- (1 - 26ka + 62ka2}n ] dx^ dx2

[exp{-2nöka + n6k E(||sn (S + (x1 -x?) / 6 ) || ) }
xr x2|<6 ? r ? 2 e

- exp {-2n6 a}] dx^ dx2
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< C n-1
J !?i - ?2 I < 6 ' 5i'?2 e A

d?l d?2

(1.5) = o(n d)

as n -> <® , where C is a constant independent of n .

However,

[ exp{ n6 E ( || S n (S+ (x^-x^)/^))}
Xl"X2 I <(̂ ' xi ,x2 G A

1] dx^dx0

(1 + o(l)) dx
^xxG A ~

[expip E ( || S n (S + (x1~x2) / 6) || ) }-l] dx2
xl”x2 I 'X2 G A

(1.6)

6 (1 + o(l) )
Jx ^  A

x^j [exp{pE(||S D (S + z) || ) } - 1] 
{z : x^-6z E A and |z| < 1 }

The difference between the multiple integral on the RHS 
of (1.6) and the same integral over {x^,z : x^ E A and 
I z I < 1} is bounded by a constant multiple of

Jx E A zI<1, x^ - 6z ^ A

dx ,
A*
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where A* = {x : x E A and x - z  £ A for some |z|<6} .

The measure of this set is bounded by a constant times 5 , 
which converges to zero as n -> 00 . Thus,

[exp{n5kE ( II S n (S + (x1~x2) /6) || ) } - 1] d ^  dx2 
1 xi~x2 I <(5 / x^/x2 e A

-1 p (1 + o ( 1 )  )
E A { z

[exp{pE(||S n (S+z) j| ) } - l]dzI z I < 1}
(1.7)

P [exp{ pE ( !| S H (S+z) || ) } - 1] dz + o(n "*■)

as n -»■ 00 .

Consequently, by (1.2), (1.4), (1.5) and (1.7)

/tt\ -1 -2ap var(V) = n p e [exp{pE(||S n (S+z)||)} - 1] dz

-1 2 -2ap , -1v- n pa e + o(n ) ,

which proves (1.3) and completes the proof of theorem 2.

The special case resulting when E(|| S||) = 0 is 
of little practical importance, and hence is omitted from 
any future discussion. That is, assume throughout the 
rest of this chapter that E(||s||) > 0 .

In the following subsection a central limit theorem 
for vacancy V(6,n) will be obtained.
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1.2 A Central Limit Result.

The technique used to prove a central limit result 
is as follows. Divide A up into a regular lattice of 
subcubes and concentric subsubcubes, so that each 
subsubcube is separated by a distance of at least 6 .
See diagram 1.1 below. Since the random sets + SS^ , 
i > 1 , are bounded they can intersect, at most, one 
subsubcube. However, the vacancies within each subsubcube 
are not statistically independent because the number of 
centres occuring in one subcube depends upon the number 
of centres occuring in all other subcubes. To overcome 
this problem we condition upon the number of centres 
occuring within each subcube. Then it is quite easy to apply 
the Berry-Esseen theorem. The limit result is consequently 
established by showing that the vacancy in A may be 
closely approximated by the sum of vacancies within the 
subsubcubes.

The central limit result is stated next. However, 
the proof is prefaced with two useful lemmas. The techniques 
used in the proof are very similar to those used by 
Hall (1984a) .
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Diagram 1.1 : A bounded random shape can intersect
at most one subsubcube.
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Theorem 3

For 6 < 1 let V = V (6,n) be the vacancy in
the unit cube A resulting from C(o,n) . Assume that
with probability one, S is contained inside a sphere
of diameter 1 . If 6 0 as n -* 00 in such a manner
that 6^n -> p , where 0 < p < 00 , then

vn{V - E (V) } N(0,t 2) , -

that is convergent in distribution to a normal law with 
mean zero and variance t 2 as defined in Theorem 2.

Lemma 1
Let A and 8 be two Lebesgue measurable subsets 

of TR̂  . Then ,

f II (x +A) n 8 II dx = II A II II B II
J* k

Proof

Since A and 8 are Lebesgue measureable,

11 (x + A) n 8 II dx

fdx I dy
J _k ~ J lx + A) n 8 ~iK
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! JS y - A
dx

dx = II A|| . || B ||
y_6

as required.

Lemma 2

Let {Xn } be a sequence of random variables. 

Assume that there exists random variables Y (5) and

Z U )  such that

x = Y U) + Z U) /n n n

where £ > 0 . Suppose that for random variables Y(£) 

and Y ,

n

(1.8) Yn (£) Y(5) as n -* 00 ,

(1.9) VY U )  + Y as £ ->■ 00

and for all z > 0

(1 .10) lim
£ -* o o

lim sup P (IZ U ) I > e) = 0 .
n-K»

Then

as n ■> 00 .



118.

Proof

Let e > 0 be arbitrary. Then,

P(Xn<x) = P(Yn (C) + zn (5)<x)

<  P(Yn (5) - £ < x) + P(Zn U)< -e)

P(Y (5) < X +£) + P(IZ (5) I > e) .- n - n

Hence, by (1.8)

lim sup P(X < x) < lim sup P(Y (£) < x+s)n -  - n -n ->°° n _>0°

+ lim sup P (!Z (£)I > e) nn+°°

< P (Y ( £) x + 2e) + lim sup P (| Z
n->°°

Allow £ -* 00 on the RHS of this expression
Then by (1.9) and (1.10) r

lim sup
n -*°o

P(xn < x) : P (Y < x + 3 £)

Suppose that x is a continuity point Y . Since 
e > 0 is arbitrary ,

(1.11) lim sup P(X < x) < P(Y < x) .n - - -n ->co

The reverse inequality for lim inf may be 
obtained as follows. For e > 0 ,
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P(Xn < x) = P(Yn (C) + Zn (£) < x)

> P (Y + e < x) - P(Z (£) > e)n n

P(Y (£) < x - e) - P( |Z (£) I > e)- n - n —

By taking lim inf on both sides of this expression and
n -*°o

then letting £ 00 we obtain

(1.12) lim inf P(X < x) > P(Y < x)n - - -n-^oo

at every continuity point x of Y . Lemma 2 follows 
from expressions (1.11) and (1.12).

Proof of theorem 3

We partition the unit cube A as follows. Let c 
be a large positive constant and m the largest integer 
less than or equal to [(c + 1)6]  ̂ . Define b by
m = [(b+l)6]  ̂ . Divide A into a lattice of m^
subcubes each of side length (b+l)6 . Within each 
subcube construct a concentric subsubcube of side length 
b6 . Let N. be the number of centres that occur inl
the i'th subcube and VL the vacancy in the corresponding 
subsubcube. Let R be the vacancy in the region remaining 
after removing all subsubcubes from A . Then,

V = Z. V. + Rl l

and so
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v-E(v) = z .{v. - e(v.In.)}1 1  1 1

+ Z^ E(Vi|N ) -E(Vi)} + {R - E (R) } .

The proof is divided into several parts. In step (i) 
we show, using the Berry-Esseen theorem, that

/n Z. {V. - E(V. |N . ) } -yV W(0,x?)l i  l 1 l 1

as n -*00 , while in step (ii) we prove, using a theorem 
of Holst (1972), that

/n Zi(E(Vi |Ni) -E(Vi)} -^W(0,t2) ,

as n->°° , where tJ and are positive constants.
In step (iii) of the proof we show, as a consequence 
of steps (i) and (ii) , that

Jn E.{V. - E(V.) } N(0,t* + t* ) .i l l  1 2

According to lemma 2 it suffices to show

T ̂  + T 2 T 2

as b -► 00 , and

lim lim sup n Var(R) = 0 
b+°° n->°°

to complete the proof of theorem 3 . This is done in 
step (iv) below.
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Step (i)

Let us first show that 

(1.13) n var (Vi |N^) -> t 2

in probability as n -* 00 , where

T2 = (b+l)“k b 2k p e’ 2pE( l l S ^  <exPtP E i II S n (S + 
1 A 2

b (x 1 ~x2) ) II }]

- exp [ p{E ( II S II ) }2 (b+1) k ] ) dx1 dx?

To do this it suffices to show that the expectation of the 

left hand side of (1.13) converges to t 2 and its 

variance converges to zero as n 00 .

Let A_̂  be the region covered by the i 1 th 

subsubcube. Exactly as in the proof of theorem 1 ,

(1.14) Var(Vi |Ni) =
A?1

- v  Nl+ E{ II S n (S+ (x 1-x 2)/6) II }(b+l)~K ] 1 )

, 9V N .
- [ 1 - 2E ( II S (I ) (b+1) + {E ( [I S II ) }2 (b+1) ] 1

dx^ dx2

Now N = (N^,...,N )̂ has a multinomial distribution.
m

Thus, writing p^ = (b+l)k 6k ,

( [1 - 2E( II S ||) (b+1)
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P (N . = r . , N . = r .) = ------- — ----------

1 -1 1 r . ! r . ! (n-r . -r .) !I D  I D

r . +r . n - r .-r .
p 1 3 (l-P ) 1 3n

when i # j . Furthermore, for positive constants ou
and a . , D

(1.15) E(ou j = {1 + (a^-l)pn ) and

N, N .
E (a. x a. -1) = ( l + ( a . + a . - 2 ) p  } .i j  i j

Let a = E ( || S || ) and B(z) = E { 11 S n (S + z) || }

Then by (1.14) and (1.15) ,

E{n Z. var (V\ |lNh ) }

(1.16) n Z± j ([1-26 a + 6kB { (X]_ - x 2) / 6 } ] n
A?l

- {1 - 26 ka + 6ka 2 (b+1) k }n ) dx^ dx^

(l + o(l))n(b+l) k 6 k
A 1

(exp[-2n6ka + n6kB{(^^-x2)/6}]

- exp{-2n6ka + nöka 2 (b+1)-k}) dx1 dx2

(l + o(l) )n(b+l)“k b 2k6+k
A 2

(exp[-2n6ka + n6kB{b(x^ - x 2) }]
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- exp{-2nöka + n6ka^(b+1) k })dx^ dx^

(l + o(l)) (b+l)_kb 2kp e_2pa (exp[pB{b(x1 - x 9) }]
A 2

- exp{pa2 (b+l) k })dx^ dx,

(1.17) = (1 + o (1))t J

Similarly,

E { Z^ var ( |N_̂ ) } 2

Z^ Z j E{var (V\ |N^) var (V_. |N_.) }

Z . Z . i 3
E { ([1 - 25k a p 1

A 2 A 2 i 3

k -1 N i+ 6*B{(x, - x_)/5}p l ] 1 ~ I ~ z n

.k -1 -2k , -2, l.- ( 1 - 2 5  a p  + 5  a 2 p ) )n *n

( [ l - 2 6 k a p   ̂ + 5kB{ (x_ - x . )/5 }p x ] n ~3 ~4
i N  •— 11 3

- ( 1 - 2  5k a p  ̂ a 2 p -1) }dx-dx^dx-dx*n ~1 ~2 ~3
N .
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v

ih
( [ 1  -  4 6k a + 6k B { ( x 1~ x 2 ) / 6 } + 6k B { ( x ^ - x ^ / 5 } ] n

A? A 2 
i  3

-  2 [ 1 -  4 6 k a  + 6 2 k a 2p “ 1 + <5k B{ ( x ^ x ^ / 6  } ] n

+ ( l - 4 6 k a +  2 6 2k a 2 p ^ ) n ) d x . d x ^ d x 0dx~1 ~2 ~3 ~4

+ Z
A?l

{ l + ( [ l - 2  6k a p  1+ p * 6k B { ( x - x ) / ö } ]n n ~ x ~ z

L e t

[1 -  2 5k a p n 1 + p ^  5k B{ ( x 3 ~ x 4 ) /  6}] -  l ) p n ) n

2{1 + ( [1 -  2 6 k a  p 1 + p ^ 6 k B { ( x  - x _ ) / 6 } ]n n ~ 1 ~ 2

( l - 2 6 k a p  1 + 6 2k a 2 p ^ ) - l ) p  }n

+ { l + [ ( l - 2  5k a p  1 + 6 2k a 2 p 2 ) 2 -  1 ] p }n dx-  dx  d x . d x .- n ~1 ~2 ~3 ~4

u = - 2  6k a  + 6k B { ( x .  - x v ) / 6 }  a n d  
j K  ~  3

_ . k . 2k  , - 1v  = - 2  o a  + 6 a 2 p

The n  by  ( 1 . 1 6 )  a n d  ( 1 . 1 8 )
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var{Z_^ var (VjJ N _. ) }

E{Ei var(Vi |Ni)}2 - [ E { E ± var (V i | N ) } ] 2

(1.19)
V {(! + Ui2 + u34) - 2(1 + u12 + v)

A ? A2 i 1

+ (1+ 2v)‘ } dx^dx2dx^dx^

+ Z 
i

-1
{(1 + U12 + U34 + Pn U12U34>

- 2(1 + u12 + v + p'1 u12v)n

+ (1 + 2v + p  ̂ v 2)“ } dx.dx_dx,dx, n ~1 ~2 ~3 ~4

Z Ei j)
A? A 2.

{(1 + U12 + u34 + u12u34)n

- 2 ( 1 +  u12 + v + u x 2v )

+ (l+2v + v 2)n) dx^dx2dx^dx^ .
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Now each of the terms

|(l + u12 + v )n - (1 + u12 + v + u12v ^n 

|(l+2v)n - (1 + 2v + v 2)n | and

|(1 + u12 + u34)n - (1 + u12 + u34 + u

f

12U34
n

is uniformly bounded on A? A? by a term of order 

0(n ■*") as n -> 00 . Furthermore,

U  + u12 + u34 + ux2U34  ̂ (1 + ui2 + u34 + Pn U12U34) ' '

(1 + u.0 + v + u.0v)n - (1 + u-0 + v + p 1 uin v)n ' and 12 12 12 n 12

I (1 + 2v + v 2)n - (1 + 2v + p  ̂ v 2)n |

are of the order 0(1) uniformly in A? as n -* 00 .

Also, II A^ II and ||A?||. || A? || are of order 0(n 

the number of terms in is of order 0(n) and the

number of terms in °f order 0(n2) as n

Hence by (1.19),

)

OO

Var{S^ var(VjjN^)} = 0(n )̂

as n . This result and (1.17) prove (1.13).

To complete the proof of part (i) we use the 

Berry-Esseen theorem, which asserts that for any sequence 

{X^} of independent random variables with finite third 

moment, and for any m > 1 ,
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sup
— 0 0 < t < °°

m
P( E (X. - EX. ) 

i=l 1 1
m

t{ E var(X 
i=l

) }k) <Mt)

m
< C { E E|X. -  E(X. ) j 3} 
- i-i 1

m
/  ( E

i=l
var(X ̂ /

where C is a positive constant not dependent on m , 
and $ denotes the standard normal distribution function 
(See Petrov (1975), p 111).

Let be the sigma field generated by N . B y

the Berry-Esseen theorem,

sup
.co  <  <  00

P(Ei{Vi “ E(Vi lN i) * - t^Zi var (v j_ lN  ̂) ^  I Fn ) -<Mt)

(1 .20)

< C E i E{|Vi - E ( V i l i b ) !  3 |Ni >/{Ei var(V. |N ) } 7 2

= Rn r say.

Following from result (1.13) , E^ v a r (VjKL )= Op(n ^)

as n -> 0 0 . Also, since < || Â || ,

E . 1 e { |vi - E(Vi |Ni) 13 1 N i >

< 11 II E± E{|Vi - E(V± |N±) 12 1 N i }

= bk 6k E^ v a r (V\|NJ

2 v— °p(n' )



as n -* 00 . Consequently, is of order 0(n 2) in
probability. Clearly, Rn does not exceed one and so
by the Dominated Convergence theorem, and (1.20)

I I . {V. - E (V .IN.)}
sup |P( —   -----------— ^ < t) - <Mt)

_oo<t<oc I {Z^ var (V^ |N̂ ) 1

= E{P(Z.{V. - E(V.|N.) } < {Z. var(V. |N.) }^IF ) l i  l i - i  l 1 l 1 n

(1.21) - <Mt) }

< E{min (R , 1) } 0n

as n -> a» . Therefore, by (1.13) and (1.21) ,

(1.22) /n Zi(V, - E(V± |N±}) W(0,t J)

as n , which completes step (i) of the proof. 

Step (ii)

In this part it is our intention to show that

(1.23) vn Zi (E(Vi |Ni) - E(Vi)} -+V W(0,t |) ,

where

x* = (gbg.) 21c pe-2pE ( || S||) {_{E( „ S|1 )}» +

(b+1)k [ep{E(||s||)}Mb+l)-k_1])_

As in step (i) of the proof, write p^ = (b+1)^ 6^ for
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the content of any subcube and a = E(|| s| |) . Let

f (Ni) = n E(V±| KL) - E(V±)

N .
= n{ (b<5)k (l - 6kapl1) 1 - (b6)k (1 - 6ka)n } .

xi

Now N has a multinomial distribution. Furthermore, 
the regularity conditions of theorem 1 of Holst (1972)
are met so if we define

(1.24) o^ var{f(X^)} - n ^ c o v { X ., f(X^)}]2

where X. has a Poisson distribution with mean np ,l
then

(1.25) a“1 Z. f (N.) ,V(0,1)n i l

as n .
If X has a Poisson distribution with mean y

then
E(ax) = e ^ 3'1’ ,

Var (ax ) = e ^ 32’1* - e2^ 3"11 and

Cov(X,ax ) = y(a-l) e ^ a ^  .

Thus,

(1.26) Var{f(X.)} = n 2 ( b 6 ) 2 ^  Var( (1 - 6^ a p ^)  ̂}l n

. 2/K «V2k, -2n6ka + n62 k a 2p 1= n 2(bo) (e rn

-2n6K ax e )
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2/, r*2k -2n6ka, n 6 ^ ka 2pn 1 n 2 (bö) e (e

and

(1.27) Cov (X^, f (X^) ) = n(b6)kcov{X^, (1 - 5k a p ^ )

n(b6)k (-n6ka) e n6 a

Hence by (1.24), (1.26) and (1.27) ,

2 / U j , v - k  ~ - k  2 / , x . 2 k  -2n6ka, n o2 k a2 pn1a = i b-f-1) 6 n 2(bö) e (en

- n 1 { (b+1) k S k n(b6)k (-n6ka)e nc a }=

n(b+1)-k b2k p e-2oa{ep a M b + l)-k _ 1}

2 ,, , , v-2k , 2k , -2pa , , ,- n p (b+1) d a 2 e + o ( n )

, b v 2k - 2 p a r 2 , ,, , , v k r  pa2 (b+l)nlbTT^ p e  a 2p +  (b+1) ie
-k

+ o(n) as

Result (1.23) follows from this expression and (1

Step (iii)

The results (1.22) and (1.23) suggest that 

(1.28) /n i M V .  - E(Vi)} -V(0,T2 + t 2)

as n 00 . To prove this, as before, let F be 

sigma field generated by N . Then for any t G K

1 )

i }

- 1 )

- 1)3

n ■> “ .

.25) .

the
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P t
P (n 2 Z. {V . - E (V . ) } < t) - ( = = = = )i /f i + vi

/n Z . {V. - E (v . In .) }
E [ P (---- ------------- ■ <

v/iT{ Z . var v v . .l l 1 l(V. |N. ) } %

t - n ^ Z .{E(V. IN.)-E(V.)} 1______1 1 1 1
{Zi var(V ± |Ni) Fn )]

- $(■
t - n^Z . {E(Vi |Ni) - E(V. ) } t-n^Z . {E(V. |N.) - E(V. ) }

n^{Z . v a r ( |N^)}XT
) + <H-

i 1 1
n 2{ Z . var (V\ |N . ). }

- $>(■
/T1 + T2

(1.29)

< E{min(Rn ,l)}+
t - n^Z.{E {V . |N.)-E(V.) } 

E[*(— r---^----- -1 - ±  ■ , -1 ■ ) - » (
n'MZ.varCV. |N . ) } 2 A l+T2

:> 1 U

where R is as defined in step (i) of the proof, n
As was shown in step (i) , the first term on the

RHS of (1.29) converges to zero as n -> 00 . According 
to the results (1.13) and (1.23) , and since $ is
bounded,

t - n^Z.{E(V. |N.) - E(V.) }
E[<M-- p— -̂--- —  ----- p—  ̂ ) 3

n 2{Zi var (V± |N ) } 2

t - T 2 Z 2 
E{$(--- r----- ) } ,Ti n ■> 00 ,

(1.30) = E{P(Z1 <
t - T 2 Z 

T 1 zx)} ,
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where and are independent standard normal

random variables. The RHS of (1.30) equals

Consequently, the second term on the RHS of (1.29) 

converges to zero as n 00 . Thus, (1.28) follows 

from (1.29) and the argument given above.

Step (iv)

Our next task is to show that

E{P(t1Z1 + t 2Z2 < tIZ )}

= P(t 1Z1 + t 2Z2 < t)

as b 00 .

Using the notation of step (i) ,

(exp[pB{b(x1“X2)}]
J A 2

- exp{pa2 (b+1) ^})dx^dx2

+ (b+1) _2pa[-a2p + (b+l)k {epa2(b+1)

(exp[pB{b(x^ - x2) }] - l)dx1dx2

+ o(l)
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P e-2pa (exp{pB(z) } - 1) dz

- p2 a 2 e 2pa + o(l)

P e-2pa
j ÜR

(exp{pB(z) } -1) dz

—  r\ 2- ^ 2 -2 pap ̂ a2 e ' +o(l)

t 2 + o (1)

as b -*■ °° , as required.

Finally, we shall show that

(1.31) lim lim supn var(R) = 0 
b->°o n̂ °°

Let A be the subregion of A not covered by any of 

the subsubcubes. Clearly R is the vacancy within A 

The variance of R may be shown to be bounded above as 

follows :

Var(R) A 2
([l-25ka + 6kB{ (x1-x,)/$ }]n

- ( l - 2 6 ka + S2ka 2)ndx dx2

< Ci dx^ dx^
{x^,x2 G A :  Ix^ — x 2 1 < 6}

s ci dx1
~  1 rJ {x2 : Ix^ - x2 I < 6}

-1< c, II A II n
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where and are positive constants independent
of n . Hence,

n Var(R) < C ̂ (1 - (bo)^ (b+1) ^5 ^ }

(1.32)
= C2{1 - bk (b + l)-k} .

The result at (1.31) is an immediate consequence of 
expression (1.32). This completes the proof of 
Theorem 3.

§2. A test of Uniformity Based on Vacancy

Suppose that X , . . . ,X are independently distributed ~ _L ~n
on A according to a distribution with density f .
For 6 < 1 , the coverage process Cf(6,n) is defined to 
be the collection of random sets X_̂  + 6S^ , i > 1 , 
where, as in the introduction, are
independent copies of the random shape S . Recall that 
S is bounded by a sphere of diameter one, and A is 
topologically a torus.

In this section it is our aim to construct and 
analyse a test of the null hypothesis of uniformity :

H : f = f E l  against H_ : f ^ f ,o o r A o

when the locations of X-,X_,...,X are unknown.
Included in the null hypothesis are density functions 
which only differ from f on a set of Lebesgue measure 
zero. In general the variable n is not observable, 
however, we shall assume throughout the rest of this
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chapter that it is known a priori .
The statistic which is considered in this section is 

the total vacancy V within A . In subsection 1 a 
simple test based on V is constructed, and in subsection 2 
the power of this test is found, against a sequence of 
alternatives converging to the null hypothesis as n -> « .

2.1 Constructing a Test.
The following theorem justifies the use of vacancy 

to test the null hypothesis Hq . The second part of 
the proof is due to Hall (1984d).

Theorem 1
Let V = V^(6,n) be the vacancy in A resulting

from the coverage process 0^(6,n) defined just above.
Let f* be the vector of first derivatives of f and 
assume that for some finite constant C , and all x , 
f (x) < C and | f ' (x) | < C . Suppose 6 -+ 0 and

n in such a manner that 6 n p , where 0 < p < 00 .
Then ,

(2 .1) E V exp{ — pE( 11S11 ) f (x ) }d xI + 0 
' A ~

as n -> . Also, for any density f not in the null
hypothesis,

y (f) exp{ - p E ( II S II ) f (x) } dx
JA ~

exp{ - p E ( !| S II ) }

U(fo> •

>
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Proof.

Let the random vector X be independent of S and 

have density f . The probability that x is not covered 

by the random set X + 6S , conditional on S , is :

P(x 0 X + 6S I S) = P(X £ x - 6S I S)

1 - f (x - y ) dy

Hence, the expected vacancy in A is :

E(V) n{P(x g X + 6S) } dx
J A

[1 - E{ f (x - y ) dy }] dx

Let us expand f(x-y) in a Taylor series to the second 

term :

f(x-y) = f (x ) + yTf ,(xQ) ,

Twhere jx - x q | < |x — y| , and y is the transpose

of y . Since S is contained in a sphere of diameter 

one,
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E { y T f '(xQ ) d y }

< E [ f r  Tty y 1 y
— 21---  f' (x >5s ~ ~

}dy ]

< 6 E( c dy)

c 6 k + 1  E (|| S II ) = o (n 1 )

as n -► 0 0 , uniformly in x . Thus ,

E (V) [ 1 - E { f(x)dy} + o(n ^) ] n dx

{1 - 6 k f(x) E ( I j S 11 ) + o(n 1)}n dx

(2 .2 ) exp{- p f(x) E ( 11 S 11 ) } dx + o(l)

In view of the fact that V < 1 and result (2.2) , 
we need to show that var(V) -* 0 as n 00 in order 
to prove (2.1) .

Let B( x ^,X 2 ) be the set (x^ + 6S) n ( ^ 2 + öS) 

Then for x^,x9 e A ,



p ( Xi

=  1 '

Hence,

E (V 2) =

Consequently 

V a r (V)

and x 2 ä X + 6S |S)

- P ( X e x ^ - 6 S  or X e x 2 ~ 6 S j S )

2
Z

i=l
f(xi - y)dy + 

5S
f(y) dy

Jb (x 1 ,x2)

[P(x1 and x 2 £ X +  5S)]n dx^ dx2 
A 2

[ [E {1 
A 2

2
Z

i=l
f (xi~y) dy

, i f (y ) d y } ] n dx dx
^B(x1,x2)

[ U -  Z E (
Ja 2 i=l

f (x± - y) dy 
J6S ~ ~  ~  ~

+ E (
j

f (y)dy) }n
B (x1,x2)
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- (1

(2 .3 )

Ja

' A

2 r 2 f nE E ( I  f(x.-y)dy) + II E ( f(x.-y)dy)} ]
i=l JSS ~ ~ i=1 J 6S ~ ~

dx^dx2 .

dx^ [{1-E? ,E(f f(x.-y)dy)}- 
{x2 G A:|x ^-x 2 |> 6} J6S

2
{1 - Z E ( 

i=l
f(xi-y)dy)

+ 11 E( J f(x^-y)dy)} ]dx^dx0
1=1 6S

dx j [ {1 2 E.(
J{x2 E A : |xx—x 2 | < 6}

f(x1~y)dy)

+ E (
B(xx ,x9)

f(y)dy) }n

- U  - £ E ( f (x . -y) dy) 
i=l J6S ~ ~

+ n e( 
i=l 6S

f(x^-y)dy)} ]dx^dx9



Since

2n e ( 
i=l > 6S

f(xi - y)dy) ; C2 &2\ e { 1!s !!)}2

, -l.= o (n )

as n 00 , uniformly in x^,x^ E A , the first term on 

the RHS of (2.3) converges to zero as n -* 00 . 

Likewise

E (
B(xx,x2)

f (y)dy) < C 5k E( ||S || )

= 0(n 1) ,

as n -* 00 , uniformly in x^,x2 . Hence the second term 

on the RHS of (2.3) is bounded by a constant multiple 

of

fJa dx2 = o(l)

as n -► 00 . We conclude that var(V) ->0 as n 00 , 

which proves (2.1) as required.

Let a = E ( I!S11 ) . The final part of the proof 

consists of showing that the minimum of

(2.4)
f 0-paf(x) dx
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subject to the constraint f(x)dx 
' A

1 is achieved

f = f almost everywhere. Using Lagrange 
multipliers we search for a turning point in f of the 
functional equation

e_pa f dx + X ( f(x)dx - 1 )

Using the calculus of variation and differentiating with 
respect to f we obtain

-paf , ,ape + X 0 ,

which implies f = constant. Thus f = f gives a 
minimum of (2.4).

Allow T 2 = n var(V,_ (6,n)) . According ton f o
theorems 2 and 3 of section 1

/n{V - E(Vfo )}
Tn

N(0,1)

as n -*■ 00 , under the null hypothesis. It follows from
Theorem 1 that for any f e satisfying the regularity
conditions of that theorem, {Vf - E(Vf )} converges in

1 ro
probability to y(f) -y(fo) > 0  as n -* °° .
Thus t

Sn{V - E(Vf )}
Tn

(2.5) ->  +  00



142.

in probability as n -*■ 00 , under . Let

z = $ ^(1-a) be the 1 - a point from the inverse 
normal cumulative density function. Thus, the test 
which rejects Hq in favour of when

(2.6) V > E (V-. ) + T z //nfo n a

is asymptotically of level a .

It follows from (2.5) that the test (2.6) 
is consistent in the sense that for all f G H , 
satisfying the regularity conditions of theorem 1 , 
the power is asymptotically equal to one. In the following 
subsection we shall investigate the power of the test
(2.6) against a sequence of "local alternatives" ,

—  C*which converge to the null hypothesis at the rate 0(n )
as n -* 00 , where e > 0 .

2.2 The Power Against Local Alternatives

Pitman efficiency is a measure of the asymptotic
power of a test against a sequence of local alternatives
from the alternative hypothesis, which converge to the
null hypothesis. See for example Bickel and Doksum (1977).

In the present chapter we shall investigate the
power of various test statistics against local alternatives.
For example, consider a sequence of independent and
i/identically distributed random variables {Y^} with
common distribution F. , where 6 £ 3R . Let {5 }0 n
be a sequence of tests of the null hypothesis 8 = 6^ .



143 .

Let £q be the supremum over all e > 0 for which the 
asymptotic power of 6̂  is one against the local 
alternatives 0 = 0q + n £c , c e HR . The discriminating 
power of the test statistic 6̂  increases with 
increasing £q . The concept of a local alternative 
is now extended to testing the hypothesis of uniformity 
described in subsection 2.1.

Let £ be a function defined on A satisfying

(2.7) I £ (x)I < 1

for all x e A , and

(2.8) £(x) = 0  . 
J A ~

For e > 0 and n > 1 define the local alternative 
density function f by

(2.9) f (x) = 1 + n e £(x) , x G A .n ~ ~ ~

The constraints (2.7) and (2.8) ensure that fn
satisfies the usual conditions of a probability density 
function.

In the situation of testing for uniformity of the
coverage process Cf(6,n) , the "best" tests available
when the central locations of shapes X ,...,X are~ -L ~ n
known give a critical value of £ = £q = % . That is, 
they can detect differences of order 0(n 2) away from 
the null hypothesis . In the present subsection we shall
show that the test described at (2.6) can only distinguish

-hdifferences of order 0 (n ) away from
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the null hypothesis. However, in the later situation
the location of X-,...,X need not be known.~1 ~n

Hall (1984b) has described how to construct a more 
intricate test, based on vacancies within a regular grid 
of squares, which has a critical value = % . His
theory, however, is developed for random radii spherical 
shapes centred at the points of a Poisson process; 
whereas our theory is for arbitrary, but bounded, random 
shapes centred at a fixed number of points within A .

In its ability to detect differences of order 
0(n 4) the test of (2.6) has power comparable to several 
popular spacings-based tests for uniformity of n random 
points on a unit interval. See for example Cressie (1978), 
Seuthuraman and Rao (1970) and Weiss (1957) . The theory
which allows us to say that for the test based on V , 
eQ = h , is given in theorems 2 and 3 below.

Theorem 2

Let V be the vacancy within the unit cube A
resulting from the coverage process Cf (6,n) , where
f is defined at (2.9) . As well as the conditions (2.7)n ------------- -------------------------
and (2.8) assume that for some constant C > 0 and 
for all x G A the vector of first derivatives £' 
of £ exists, |£'(x)| < C, and

£2 (x) dx < 00 
J A

kIf 6 -> 0 and n -* 00 in such a manner that n6 -* p ,
0 < p < 00 , then for 0 < e < 1 ,
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E (V) = U -6 E ( |'|s||) }n [l +
“2 £ 

n  /2 {p E(||S||)} £ 2(x )dx

t o(n 2e)]

as n •> 00 .

Proof.

As in the proof of theorem 1 , and since A is 

topologically a torus,

E (V) [1 - E{ 
' A

f (x - y) dy} ] n dx 
6S

(2 .10)
[1 - 6kE( 11 S 11 ) 

' A
E { Z (x-y)d y }]n dx . 

6S ~ ~ -

The condition that |£(x) | < 1 for all x £ A

implies

[E{ My) dy}]r 
6S

0 (n r ) for any r > 0

as n . Therefore, writing a = E(||s||) , and

since 0 < £ < 1 ,

[1 - 6ka - n £E{ Z (x-y) dy}]

(2.11) /i rK  ̂n , n (1 - 6 a) ( 1 -----
l - £
p—  E{ Z (x-y) dy} 

(1-6 a)  ̂6S

,a (l-e)
+ [ E { —  2 ££ (x - y ) dy}!2 + o(n 0) )2
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where the small order terms hold uniformly on x E A . 

On interchanging integrals, and by (2.8)

JA E { £ (x - y ) dy} dx
hs  ~  ~

E{ £ (y) dy 
' A ~

dx }
y+6S

(2.12)

£ (y ) dy 6 a = 0

and so by (2.10), (2.11) and (2.12)

(2.13)
, 2(1-e)

E (V) = (1 - 6 a)n (1 + ~ -

[ E {
A ;

£(x-y)dy}]2 dx + o(n ^e))

Let C(z) = E{ || n (S2 + z) || } . The integral within 

the large curved brackets on the RHS of (2.13) equals

dx . E{
J A x - 6S.

£ (y 1) dy } . E {
x-6S £(?2)d?2}
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E{

' A My^) d?l d?2 * dx}
 ̂(y1+6s1) n (y2  + 6s 2 )

6 Ä(y1) Ä(y2) C{(y1 -y 2)/6} dy^ dy2
A 2

(2.14)

^(yx) dyx ^2 (y2 ) e((y1-y2)/6} dy0 ,

{Y2 G A : kl " X2 l-6}

the final step following because C(z) = 0  when |z| > 6 . 

Expansion of £(y2) in a Taylor series around y^ gives

M y 2) = M y ^  + (y2 -yi)T £,(yQ)

where |y^ — y | < |y^ - y 2 | • Under the regularity
1

conditions imposed upon £ and £ ,

£(yi) dy.
{?2 G A : \y 1 - y 2 \i 6

{i 2 ~ h ) * <y0>

c{(Xi - y2* dX2

< C 6 a o (n 1)

as n -> 00 . Hence by (2.14) ,
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dx [E { £ (x - y) dy}]2
' A  J6S ~ ~

A 2
£2(y1) (̂ 1 " X2]/6} d?l dY2

(2.15) x2ko *2(yJ
' A ~X {z 1 y x

C (z) dz
6z~e A~and I z I <1}

(2.16) = 6^{ 1 + o (1)} A 2 (Yt ) 
'A ~X

dz ,

where (2.16) follows from (2.15) in precisely the 

same way that (1.7) follows from (1.6) . However, 

by lemma 2 of section 1 ,

j , C (z) dz n (s2 + z) || dz }

= E( II S1 II II S2 II )

(2.17)

= a 2 .

Combining the estimate (2.17) with (2.16) we see 

that

(2.18) dx [ E{ £ (x-y) dy }] 2

2 2P a
£2 (x) dx + o(n ^) ,
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as n -* 00 . Hence by the results (2.13) and (2.18) ,

for 0 < e < 1 /

E(V) (1 - 6k a) n U
-2s

p 2a Z 2 (x) dx + o (n 2c) }

as n -* 00 , as required.

Theorem 3

Let, as in theorem 2, V be the vacancy within the

unit cube A resulting from the coverage process

Cf (6,n) , and assume that 6 -> 0 and n -* 00 in
n

such manner that 6 n -* p , where 0 < p < 00 . Then, for 

all £ > 0 ,

/n{V- E (V) } M (  0,t 2)

as n -* 00 , where t 2 is as defined in theorem 2 

of section 1 .

Proof

In some parts, the proof is identical to the proof 

of the central limit result in subsection 1.2 and so we 

make reference to it as necessary. In other parts the 

present proof is analogous and so we only give an 

abbreviated argument. The central limit result in 

subsection 1.2 is referred to as theorem 1.3 .

Define c, b and m as in the proof of theorem 1.3, 

and partition A in exactly the same way : that is, 

into a lattice of subcubes of side length (b+1)6 and 

concentric subsubcubes of side length b6 . Let Nh
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be the number of centres that occur in the i 'th subcube 
and V  ̂ the vacancy within the corresponding subsubcube. 
Let R be the vacancy in the region remaining after 
removing all subsubcubes from A . Then

V-E(V) = £i(Vni - E(Vn .|Ni)}

+ I^ { E (vn INi) - E (vni) } + { R - E (R) } .

The proof is divided into several parts. In step (i) 
we show that

(2.19) /ii Z. {Vni - E (Vn i |Ni)} ^  N(0,t J) 

as n 00 , while in step (ii) we show that

(2.20) /n Ii (E (vn i |Ni) - E (Vni)} W ( 0 t I) ,

as n -* 00 , where t 1 and t \ are as defined in the 
proof of theorem 1.3. The result

/n E± v̂n i - E (vni>> *  M(0,t? + TI)

as n •+ 00 follows in exactly the same manner as (1.28) 
does in part (iii) of the proof of theorem 1.3. 
Consequently, its proof is omitted here. Likewise 
justification of the fact that

t i + t 2 T2

as b -* 00 is omitted. To complete the proof, we show
in step (iii) that
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lim lim sup n var(R) = 0 .
b-x» n -*00

Step (i)

Firstly, let us show that 

(2.22) n var(VnjjN_̂ ) + t J

in probability as n -> » .

Let Cy be the region covered by the i 'th cube 

and the region covered by the corresponding subsubcube.

Let

pi f (y) dy
>C. n  ~1

and

8(x.,x, ) = (x. + <5S) n (x, + 6S) .
~  J ~ K

It may be shown, without much trouble, that

(2.23)

var(Vn i |N±)
A ?

([1 - P^1 ! fn (x -y) dy}l j 6 s  n  ~-l

- pT1 E{ j f (x -y) dy} + P •1 E{i j6S ~ 3 ( x , x 2 )
fR (y)dy}]

- [l - pi1E{ f (x -y) dy} - p . 1 E { I f (x - y) dy} 
J 5S 1 ~ ~ ' 6S Z ~

+ p.2 E{
r n

fn (xi “  Y ) dy} E {  j f^x^-y) dy}] ±) 6x^ dx2
' r\ s!
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Now N = (N^,..,N has a multinomial distribution
m

with

P(N. =r.)
, r . n - r .n ! l , _ v i

------  p i (1 ~ Pi'
r^I(n-r^)!

Thus, for positive constants a. and a. ,1 3

1 ) = {1 + (a. - l)p.}

and

N . N .
E(ot. 1a. -*) = (l + (a. + a. - 2) p . } . i j 1 3  * 1

Hence, by (2.23)

E{n T^ var (V^jN^) }
(2.24)

n E ( [1 - E{ f n ^ l  “ V d W  ”
A?l

6 S fn (̂ 2 _ y )dX }

+ E { f (y ) d y } ] - [ 1 - E {  f (x -y)dy}B(x 1 ,x 2 ) n ~ ~ j6s n ~ ~

- E { fn (? 2 " X )dX } + pi1;EM  fn (2l"?i)dX' 6S

E {
6 S

fn (x2 - y)dy}]n)dx1dx.

As before, let a = E(|| s||) and

B ( z ) - E { | | s n ( s + z ) | | }  . Also define
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u .. = - E{Dk f (x . “ y) dy } - E{ 
6S n ~ ~ fn<^-y'd?}

+ E{ [ f (y) d y }ß̂(Xj,xk)

and

v jk =-E{j fn (x j - y ) dy } - E{ 
SS 6S fn (? k " X )dX }

+ p” 1 E{ f (x. - y ) d y } E {  f (x -y)dy} . 1 J AQ n ~3 ~ ~ Jxc n ~ K

Since f (y) 1 uniformly in y e A as n

n log (1 - u 12) = ~n E{ f n (x1 - y ) d y } - n { fn(?2_y)dX
6S

+ n E{ f (y ) dy }

(2.25) - 2 p a  + p B{ (x1 - x 2)/S} + o(l)

as n -*■ 00 , where the small order term holds uniformly

in x,,x^ E A . Likewise,~ 1 ~ z

(2.26) n l o g d - v ^ )  = “ 2 p a  + (b+1) ^ p a 2 + o(l)
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as n -* 00 , uniformly in E A . Placing the
estimates (2.25) and (2.26) in (2.24) gives

E{nZi var(Vn i |Ni)} = (1+ o (1))n(b+1)“k S~k

A (exp[-2pa + pB{(x^-x)/6}]

—" k- exp{- 2pa+ p a 2 (b+1) ))dx^ dx9

(2.27) = (1+ o(l))t 1 ,

the final step following from (1.16) down to (1.17) .
In an analogous fashion to the way (1.19) was 

derived,

var{E^ var(

E
A? A 2 1 3

{ ( ! + u12 + u34 ) (1 + U 1 2+ V 34}

- (1 + U 3 4  + v i2) n + (1 + v 12 + v 34^n d̂xidx2d^3d^4

+ E 
i J

{ (! + u12 + u34 + pi u12 u34)

-1
- ( 1 + U 12 + V 34 + Pi U 12 V 34}

- <1 + u 34 + v 12 + Pi1 u 34 V 121 n

-1
+ U + v 12+ v 34 + Pi v ! 2 V 34 > }d?l d?2 d?3 d?4
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- I . Z . i J { (1 + u
)A?A2 1 1

12 + u + U 12 U 34
n

- d  + u 12 + v 34 + u 12 v 34)

- d  + u 34 + v 12 + u 34 v 12)

+ (1 + V 12 + V 34 + V 12 V 34)R} d?l d?2 d?3 d?4

The term |(1 + u^2 + u34)n - (1 + u^2 + u34 + ui2u34^n 

may be bounded by a constant multiple of

n[E( || 6S || ) + E( || 6 S 11 ) + E{ || 6S + x ^  n (5S + x2) || } ] 

x [ E ( 11 6S || ) + E(|| 6 S IJ ) + E {JI <$S + x3) n (6S + x4)||} ] 

< 9 n 6^  a^ = 0(n ^)

as n -*■ 00 , uniformly for x^, x 0, x3 , x4 e A • Likewise, 
each of the terms

(1 + U 1 2 + V 34>n - ( 1 + u 1 2 + V 3 4 + U 12V 34>n | '

(1+U34+ V 12>n - (1 + U34+ V 12 + u34V 12)n! and

( 1 + V 1 2 + V 34>n - ( 1 + V 12+ V 3 4 + V12V34>n

-1is of order 0(n ) as n -> 00 uniformly for x1,..,x4 G A

Similarly
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X n
( 1 +  u 12 + u 34 + u 12 u 34>n "  (1 + u 1 2 + U34 + Pi U1 2 U34>

(1 + U12 + V34 + U12 V34>n -  (1 + u 1 2 + V34 + P i 1 u 12 v 3 4 )n

(1 + U34 + V12 + U34 V1 2 , n "  ‘ 1 + u 34 + v 12 + PiX u 34 v 1 2 , n

a n d

(1 + V 12 + V34 + V12 V3 4 , n  -  (1 + V12 + V34 + P I 1 v 12 ^ 4 » "

a r e  u n i f o r m l y  b o u n d e d  b y  a t e r m  o f  o r d e r  0 ( 1 )  a s  n -* °° . 

T h u s  ( a s  i n  t h e  p r o o f  o f  t h e o r e m  1 . 3 ) ,

( 2 . 2 8 ) v a r  { v a r  (V ^ j N ^ )  } 0 ( n  3 )

a s  n  -► 00 . The  r e s u l t s  ( 2 . 2 7 )  a n d  ( 2 . 2 8 )  i m p l y

( 2 . 2 2 ) .

L e t  F b e  t h e  s i g m a  f i e l d  g e n e r a t e d  b y  N a n d
IT ~

d e f i n e

s u p
— co< t < c o P ( E i {Vn i " E(V-  |N’ )}n i  1 i

< t {  Z± v a r  (Vn i  |N . ) l '1 ! Fn ) -  $ ( t )

I t  may b e  s h o w n ,  i n  p e r c i s e l y  t h e  same m a n n e r  a s  ( 1 . 2 0 )  

down t o  ( 1 . 2 1 )  , t h a t

s u p
— c o <  t  < ° °

P(
I . {V . -  E(V . l  n i  n i N i ) }

{ Z i  v a r ( V n i |Ni )}3 h
< t ) -  $ ( t )

( 2 . 2 9 )  < E{min  (R , 1 ) }-  n

a n d
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as n ■> 00 . The result (2.19) follows from (2.29) 

(2.30) and the probability estimate (2.22).

Step (ii)

Define

f(Ni) 5 n{E(Vn i |Ni) - E(Vn i )}

[i - p ” 1 e {
6S

f n (x — y ) dy}] dx

- n [1 - E{
' A .

f (x - y ) d y } ] n dx . n ~ ~ ~ ~öS

Then, according to theorem 1 of Holst (1972) ,

(2.31) a” 1 Z . f(N . ) N (0,1)n l l

as n -* 00 , where

c 2 = Z. var{f(X.)} - n  ̂[ Z . c o v { X .,f ( X .)}] n l l i l l

and X. has a Poisson distribution with meanl

"Pi = " Jc fn (X> •
i

If X has a Poisson distribution with mean y , 

for any a > 0 ,

E(aX ) = exp{y(a-l)} and

Cov(X,aX ) = y (a-1)exp{y(a-1)} .

2

then
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Thus,

E{f(Xi) + n E(V ±) } = n exp[-nE{ f (x-y)dy}]dx
A. •* 6 S n1

nf exp[-n 6^a - n~ £E{ 1 £{x-y)dy}]dx
x̂5 S ~ ~

(2.32) p e pa + o (1)

as n 00 , uniformly in i . Likewise,

E [ {f (X . ) +nE(V .)}2] = n 2 exp[- n E{
1 nl ' A . A .

1 J
fn^i_y)dŶ

- n E{
> 6S fn^2~l)dV

+ n p 2  E{ f (x -y) dy} E { I f (x -y) d y }] dx dx <5S n ~1 ~ j 5S n ~2 ~ ~L

(2.33)

p2 b ^  exp{- 2 pa + pa2 (b+l) + o(l)

as n -> 00 , again uniformly in i . Consequently, by 

(2.32) and (2.33) ,

-k
var{f(Xi)} = [p 2 b 2k e 2pa{epa2(b+1) -1} +o(l)]

-k/u,ix-k ,2 k -2par pa2(b+l) - ,  ,n(b+l) b pe {e - 1} + o (n )

as n ■> co . Also, using an argument very similar to that 

above,
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cov{X_^, f (X±) } = n cov(X^, 1  ^  •[ 1 - p . E{ f (x-y)dy}] "dx)
A. 1  ̂6S n ~ ~l

(-nE{ f (x-y)dy)
A. ) öSl

- exp[-n E{ f (x-y)dy}]) dx n ~ ~ ~

2 „ u k  „ “ P S- pz ab e K + o(l)

uniformly in i . Consequently,

a* = var{f(X,) } - n  ̂[ Z.. cov(X.,f(X.)]i i

n (b+1) ~k b 2 k pe"2pa {epa2(b+1)
-k

-  1

/u. n “2k , 2k 2 -> -2pa , , .- n(b+l) b p a2 e +o(n)

n{1 + o (1) }T 2 /

as n -> oo . This result and (2.31) imply (2.20)
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Step (iii)

For a general subregion A of A , the variance 
of vacancy within A is

var {V (A)} = I cov{l(xJ , I(x0)} dx dx n 1^2 ~ 1 ~ l ~ 1 ~ 2

(2.34)
A2

([1- ZE{ f (x . - y) dy }
i=l >&s 1  ~  ~

+ e {
B(x1,x2) fn (y} dy}]

- [1 - l E{ 
i=l ^

f (x.-y)dy) n ~i i. i

+ II E{ f f (x .-y) dy }] n) dx. dx 
i=l U s  ~

When lxi”x2| > 6 , B(x^-x2) = 0 with probability one,
and so the integrand on the RHS of (2.34) is negative. 
When jx^-x2 |< 6 the integrand is bounded by some constant 
C , independent of n . Therefore,

var{V (A)} < C n

(2.35) < Cx || A || n 1 ,

where does not depend on n .
Let A be the subregion of A not covered by thA^ • 

Then, R = V (A) and by (2.35)
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n var(R) < C^{1 + b^/(b+l)k } ,

which converges to zero as b -► 00 . This proves (2.21) 

and completes the proof of theorem 3.

Recall from (2.6) that our test statistic 

rejects the null hypothesis of uniformity (H : f = fQ ) , 

when

{V - E(Vf ) }
(2.36) /n --------------  > z ,t an

where E(VfQ ) = {1 - 6^ E( || S||)}n and n are

respectively the expectation and variance of vacancy under

H . In theorem 2 of section 1 we saw that t 2 -* t 2 o n
as n -* 00 , and so by theorems 2 and 3 above

/n{V - E(Vfo) }
Tn

vlT{V- E ( V fn) }
Tn

/nx. t {1- 
n

6kE }n [S {PE( ||S || ) }

X i2 (x) dx + o(n 2c-) ]

(2.37)

= Zn + (l + o(l))x_1 e-pE ( 11 s N > in

P 2(E( IIS |i) } Ä 2(x )dx , 
'A
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where Zn converges in distribution to the standard normal 
law as n -> 00 . From (2.37) we may deduce that :

(a) if e < h , then the power of the test at (2.36)
tends to 1 as n -> ;

(b) if £ > h , then the power tends to the significance 
level, a , and

(c) if £ = h then the power tends to a value lying 
strictly between a and 1 .

Indeed, in case (c) , the asymptotic power is

1 - $ (z - t  ̂ e pE( '!S 'I p 2 { E (11 S| 1 ) } 2 i & 2(x)dx) ,a J A

where $ is the standard normal distribution function.
In the one-dimensional case, where n arcs of equal 

length are randomly distributed on the perimeter of a 
circle, several others statistics are available, which do 
not have obvious counterparts in the higher dimensional 
situation. These include the total number of spacings and 
the arc length of the maximum spacing. In the following 
sections we shall investigate the asymptotic power 
properties of simple tests based on these two statistics.
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§3. Other Tests in the One-Dimensional Case

For the coverage process C^(6,n) , defined in
the previous section, let the dimension be k=l and 
assume that the random shape S is an interval of 
length 1 > a > 0 . Then A is the unit interval and 
also topologically a torus, so if a random interval 
protrudes beyond one end of A , it is introduced at 
the other. Thus our model is equivalent to one in 
which n arcs of radial length 6a are randomly 
placed around the perimeter of a circle of circumference 
one. When f = 1 this model has been the subject of 
considerable attention in the literature. For example, 
Stevens (1939) obtained a formula for the probability 
of complete coverage. The theory in this section 
will always be presented in terms of A being the unit 
interval [0,1] .

Our aim is to construct tests based on two statistics 
the number of uncovered spacings in A , and the length 
of the largest uncovered spacing. The first is denoted 
by L and the second by M . The two spacings at the 
endpoints of A are treated as one, if they appear.
Both L and M do not easily generalise to the 
k-dimensional case.

Hüsler (1982) has summarized the range of asymptotic 
distributions for L and M when the intervals are 
uniformly distributed on A , for a wide variety of 
convergence rates for a . See the discussion in
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section 2 of chapter 1 . Hall (1983) has extended 
these limit results to the case where the arcs are 
independently distributed on A according to a 
non-uniform distribution. Much of the ensuing theory 
employs techniques similar to those of Hall. We shall 
also quote some of Hüsler's results where necessary.

3.1 A Test Based on the Number of Uncovered Spacings 
Let X^r-'/X be n points independently 

distributed on A = [0,1] according to a distribution 
with density f . Let 0 < a < 1 and 6 < 1 . For 
1 < i < n construct the interval (shape) [X^,X^ + 6a]. 
If the i'th interval extends beyond the endpoint 1 
introduce it at the other end so that it consists of 
the union of the two intervals [X^,l] and
[ 0 ,  x i - 1 + 5a] . We shall denote this coverage process
by (6,n) . In the subsequent theory we allow
6 + 0 and n + 00 in such a manner that 6 n + p ,
where 8V Q.Vo

Let X ^  < . . . < X^n be the order statistics
corresponding to X^,..,Xn , = Xn i+i “ xni for
1 < i < n-1 and D = X - + (1 -X ) . We define - no nl nn
L by

n-1
(3.1) L = Z I(D . > 6a) ,

i=0 ni

where I is the indicator function .
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The following adaptation of Renyi's representation 

is fundamental to the proof of our theorems.

Let H(x) = F (e ) and {Z., j > 1} be a sequence 

of independent identically distributed exponential 

random variables with mean 1 . Then,

n,n-i+l H { I Z ./(n-j + 1) }
j=i 3

1 < i < n .

If f is continuous and bounded away from zero, and H' 

is the first derivative of H , then for some 0 < 6^ < 1,

n,n-i H { E Z ./(n-j + 1) } 
j = l 3

i+1
H { I Z ./(n-j + 1) } 

j = l -

(3.2)
-Z i+1
n- i { E

j = l
3

(n-j+1)
+  e i+1 

1 (n-i)

where 1 < i < n-1 . Furthermore, if f* is 

continuous, then for some 0 < 02 < 1 ,

-Z i+1
(3.3) >n,n-i (n-i) (H ’ {

i

j=l
(n-j+1) 1 }

+ { Z
i <z -l) z

J----- + e, }
j=l n-j+1 1 (n-i)

x H " [ Z (n-j+1)
j = l

-1

i Z.-l Z
+ 0 _ { Z T n J'.^T : + 0. ]) ,2 j=1(n-3+1) 1 (n_i}
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where H" is the second derivative of H .
Our next result ensures that it is possible to 

construct a test based on L of the null hypothesis

H : f = f = 1 , o o

at least when pa < 1 . However, the counterexample 
following the theorem shows that it is not always 
possible to construct a test of under all
circumstances.

Theorem 1
Let L = L^(6,n) be the number of spacings in 

[0,1] resulting from the coverage process C^^(6,n) 
defined just above. Assume that f is continuous on 
[0,1] , and bounded away from zero. Suppose that
6 0 and n -*■ 00 in such a manner that 6n -* p ,
where 0 < p < 00 . Then,

(3.4) E -1n L j f(x) e-paf(x) dx 0

as n -> 00 
density f

If a > 0 and pa < 1 , then for any 
not in the null hypothesis H ,

y( f) f(x) e-paf(x) dx

< -pa U(f0) •
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The proof is prefaced with three useful lemmas.
It is necessary to describe a notational form used 
henceforth. If {Y^} is a sequence of random variables 
and {£ } a sequence of non-negative constants such 
that

lim lim sup P( |Y I > A £ ) = 0 ,
n - ^ ° °

then we say that is of order 0 (£n ) in
probability as n 00 . If, for all A > 0 ,
P( |y ! > A £ ) -»- 0 as n 00 , then we say Y is of n n n
order ° p ^ n  ̂ in Probability.

Lemma 1

Let (Zj, j > 1} be a sequence of independent and 
identically distributed random variables with mean 1 . 
Given 0 < y < 1 ,

sup
l<i<(1 - y ) n

Z (Z .-1)/(n-j + 1)
j=i 3

°p(n + t

as n -* 00 .

Proof
The result follows if we note that for A > 0 ,

P ( sup 
l<i< ( 1 - y ) n

I (Z.-l)/(n-j+1)
j=i 3

> X n~h)

< X  ̂ n E E{(Z .-1)2}/(n-j + 1)2 
l<j<(l-y)n J
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<
J ny

1
x2 dx

< C A- 2
t

where C does not depend on n .

Lemma 2

Let {Zj, j>l} be a sequence of independent 
and identically distributed exponential random variables 
with mean 1 . Then, for 0 < y < 1 ,

sup Z. /(n-1) = 0 tn 1 log(n)} ,
l<i<(1—y )n *

as n 00 .

Proof.
For A > y  ̂ ,

P( sup Z. - / (n-i) < An 1 loa(n) )
l<i<(1-y)n 1 1

> P (for all 1 < i < n , Z^ < Ay log(n))

,, “Xy^n = (1 - n )

as n -> 00 . Lemma 2 follows.
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Lemma 3

Given 0 < y < 1 ,

I 1 -isup I (n-j+1) +log(l-i/n)
l<i<(1-y)n 1 j=l

as n 00 .

Proof

The result follows from the inequality ,

Z (n-j+1) + log(l-i/n)
j=l

i _! fn -i= Z (n-j+1) - I x dx j

n
Z

j=n-i+l
1
j

<
n
Z

j=n-i+l
( 1
j-1

1
j)

< J_ _ 1
yn n 0 (n X)

= 0 (n 1)

as n .
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Proof of theorem 1

Let F be the distribution function corresponding 

to f and suppose 0 < y < 1 is given. Now

H'(x) = e /f{H(x)} and since f is continuous on 

[0,1] and bounded away from zero, both f and H* 

are uniformly continuous. Thus, by the representation 

at (3.2) , the fact that f is bounded, and lemmas

1 - 3 ,

/ • n , n-i
i+1
(n-i)

Z . 3H . { £ --------
j=l (n-j+1)

+  e i+i 
1 (n-i)

i+1
(n-i)

H 1[log(1 - i/n) + { Z (n-j + 1)
j = l

- log(1-i/n) }

i (Z.-l)
+ 2 -- J-----  +
j=l (n-j+1)

e i+1
1 (n-i) ]

(3.5)

H 1{log(1 - i/n) } + op (n 1)

[f {F 1 (1 — i/n) }] 1 + o^(n 1)

as n ■> 00 , uniformly in 1 < i < (l-y)n . According

to (3.5)
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1<i<(1-y)n P(Dn,n-i > 6a)

£ P(Z. - > n6af{F ^(1-i/n)}) + o(n)
l<i<(l-y)n 1+1

£ exp[-n6af{F ^(1-i/n)}] + o(n)
l<i<n(1-y)

rnd-y) ,
= I exp[-n6af{F (l-x/n)}]dx + o(n)

j
1

(3.6)
= n f(y) e pa" ^  dy + o(n)J - IF 1 (y)

as n ■ + 00 , the second last step following by virtue 
of the fact that f is uniformly continuous.
It follows from (3.6) , on letting y -► 0 , that

n-1
E(L) = E P (D . > 6a). _n n / n i

= n j f(y) e paf^  dy + o(n)

as n -► 00 . Thus, to prove (3.4) we need to show 
that var(L) = o(n2) as n 00 .
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For 0 < y < 1 ,

> nöaf{F ^(1-i/n)})

+ Z P(Z. ->n6af{F ^(1-i/n)}) + o(n2)
l<i<(1-y)n 1

(3.7)

f ( y ) e - p a f ( Y> dy} 2 + o (n 2) , as n + ° °

Hence, by (3.7) and (3.6) ,

(3.8) Z cov{I(D . > 6a) ,
l<i,j<(l-y)n '

I(D . > 6s) } = o(n2) n ,n~ 3

as n -* 00 . The left hand side of (3.8) converges 
to var(L) as y •* 0 . Consequently, we have proved 
(3.4) .

It remains to show that the unique minimum of 
y(f) is achieved when f = f = 1 almost everywhere, 
provided pa < 1 . Since y e  ^ is maximised
uniquely at y = 1 , the result is clear if pa = 1 .
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Now assume 0 
a density f

i
(3.9)

< pa < 1 . Suppose that there exists 
not in the null hypothesis, such that

f (x) -paf(x) _ e dx > e-pa
o

Let E = {x : f(x) > p ^a ^ } and E C E' C (0,1) be 
such that

(3.10) f(x) dx .
'E'

Define
(pa)  ̂ on E'

g(x) ={
f(x) on ( 0,1) v E ' .

Then by (3.10) , g is also a density. Notice
that if E* has measure zero, then g = f 
everywhere. Hence, g is not essentially equal to 1 . 
Furthermore, g e paa > f e and so

(3.11) g(x) e‘pag(x) dx > e”pa

That is, if g leads to a contradiction in (3.11) ,
then f leads to a contradiction in (3.9) . Thus,
we assume without any loss in generality that f is 
bounded above by (pa)  ̂ .

Let X be a random variable with density f . The 
function h(x) = e pa//x is convex on (pa,°°) . It 
follows from Jensen's inequality, and the fact that
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f is bounded by (pa)  ̂ , 

non-constant, that

f(x) e'paf(x) dx f(x)h{1/f(x) }dx

E(h[{.f (X) I“ 1 I{f (X) > 0}] )

< h ( E [{f(X)I“ 1 I{f(X) > 0}])

= h [ {f(x)>0 } dx]

< h (1) e-pa

But this contradicts (3.9) and consequently proves 
the result.

Theorem 2

If pa > 1 then there exist densities f 1 , f 0 

and , not essentially constant, such that

U(f1) > y(fQ ) /

U(f2) = p(fo> and

y(f3) < p (f o > •

We may choose f^, and f so they are continuous

and differentiable on [0,1] .
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Proof
Let ß be fixed and define the function f

by

f(x) = b on [ 0 ,  y 2  ) ,

ß  ̂ on [Y 2 'y 2' and
ß on [Y2' 1] '

where Y2 < Y2 and b are chosen so that f is a
density . That is, by 2 + 3 1 (Y2“Yi) + ß (1”Y2) = 1 .
Then,

(3.12) ~  . v -ßf (x)f (x) e dx = by2 e
Jo

+ ß"1 (Y 2~Y 2 ̂ G 1 + ^(1"Y 2>e-^ .

If we allow y = 1 , and Y 2 0 the right hand
side of (3.12) converges to ß“1 e"1 > e"3 for all
ß > 1 . Thus f- may be constructed by choosing

N> II h-* and y 1= Y^ , where Y* is small and positive.

H hh however, we allow 1 o-lY 2 = Yi = 1 - ß , then the
right hand side of (3.12) - ß 2equals e < e 6 for all
ß > 1 . Thus f2 nay be constructed by choosing

Y2 = Yi = 1 “ S”1.

in
Since the right hand side of (3.12) is continuous 
Y ]_ and y2 , there must exist a yj < Yi < 1 " B ^

” 3 ^ < Y 2 < 1 such that the left hand side ofand a 1
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— p(3.12) equals e We have therefore constructed

a function satisfying the properties of f .

Finally, by "rounding the corners" of f^ , f^ 

and f^ we may ensure that the smoothness criteria 

are met. |_|

Allow v2 = n  ̂ var{L (6,n)} . It follows n f 'o
from corollary 2.3 of Hiisler (1982) that 

n~^{L - E(Lf )} n---- --- J w (o, i >
n

as n -> 00 , under the null hypothesis. Provided 

0 < pa < 1 , it follows from theorem 1 that for 

any density f in the alternative hypothesis, 

satisfying the conditions of that theorem 

n - E (Lfo )} converges in probability to

y(f) -y(f ) < 0 . Also, is order 0(1) as n -+ «> ,

and so

n ML-EfLc )}
(3.13) ------ -----2-- ■+ - »

n

in probability as n -* 00 , under H . If Z is
CL

the 1-a point from the standard normal distribution 

function, the test which rejects Hq when

(3.14) L < E(Lp ) - v Z /n ” o n a
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is asymptotically level a . As for vacancy (3.13) 
implies that the test at (3.14) is 

asymptotically consistent.
When pa > 1 , theorem 2 shows that the test 

at (3.14) is not asymptotically consistent for all 
distributions in the alternative hypothesis.

The local alternative density function is defined 
as the one-dimensional counterpart of (2.9). That 
is, for e > 0 and n > 1

(3.15) f (x) = 1 + n £ £(x) n

where Z is a function satisfying

(3.16) |Mx) I < 1 and Z(x) dx
-A

0

whenever x E A = [0,1] .
Our next two results are the counterparts of theorems 

2 and 3 of section 2 . They allow us to precisely 
quantify the powrer of the test (3.13) , based on L , 
against local alternatives.

Theorem 3

Let L be the number of uncovered spacings in
A = [0,1] resulting from the coverage process
C.£^ (6,n), where f_ is defined at (3.15) .rn n
As well as the conditions at (3.16) assume

Z 2 (x) dx < 00 .
-A
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If 6 -* 0 and n -* °° in such a manner that 

n5 p , 0 < p < c o , then

r: / v -nöafr,(x) - -n6a;i , pa . -2ef (x)e n' dx = n e {1 + (pa-2)njo n z

£2 (x)dx + o(n ^ ) }

as n

Proof

By expansion it may be shown that

f (x) e n
-n6afn (x) -n6a - £1 + n £ (x) (1 - nfia)

+ n 2c£2 ( x ) ( n 6 a - 2) + o(n 2c) ,

uniformly in 0 < x < 1 , as n -* °°. Theorem 3 
easily follows from this expansion.

Theorem 4

As in theorem 3 let L be the number of uncovered

spacings in A resulting from cj.^(6,n) . Assume
n

that the first derivative £' of £ exists and is 

continuous on A . I_f 6 -> 0 and n =° in such a

manner that 5n -*■ p , where 0 < p < 00 , then for all 
£ > 0 ,

-jj rn [L - n j fn (x)exp{-noa f (x) }dx]
'o
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converges in distribution to a normal law with mean zero 

and variance given by

v 2 = e Pci{l- (l + p2a 2)e ^a }

Proof

Let 0 < y < 1 be given. Using the notation 

introduced earlier in this subsection, and the definition 

(3.1) ,

L = I I (D . > 6a) + I (D >6a)i < /. \ ni no1 < i < (1 - y )n

+ Z I (D . > 6a) .
(l-y)n<i<n-l ni

To prove the limit theorem we divide the argument 

up into three steps. Fundamental to the proof is 

the estimate:

(3.17) n , n-i n'lzi+ i [fn {Fn1(1- 7 n )}

(1 +
i ( Z . — 1)
y -- 1---  }

ĵ -L (n-j + 1) ' (1 + U -1

for 1 < i < (l-y)n , where F is the distribution- n
function corresponding to fn and is a random

variable satisfying

sup
1<i<(1-y)n

o p (n )

as n 00 . The result (3.17) is established in

step (i)



Using (3.17) and the martingale central limit 

theorem we show in step (ii) for some constants
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v(y) and

(3.18)

as n -* °° .

According to lemma 2 of section 1 we need only 

show that

(3.19) lim v 2 ( y ) = v 2 ,
Y+0

cn<Y) ,

- H r  n {
l<i< (1-Y) n 1 D̂n ,n-l> 6a>

- cr (y ) > -► W{ 0 , v 2 ( y ) )

(3.20) lim sup 
Y^O c (y) - n n

-n6afn (y) . . . i . hs 11 1 f (y) dy = o (n

as n -*■ 00 , and for all z, > 0 ,

lim lim sup P{n ,2 I I(D -> 6a)
y-̂ 0 n->°° (1-Y)n<i<n-1 n,n

+ cn (Y) n f e-n«afn (y) f n ,y)dy
' C\

>

to complete the proof. This is done in step (iii) .
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S t e p  ( i )

L e t  H (x) = F ^ ( e  X) , a n d  H'  a n d  H" b e  t h e  n  n  n n
f i r s t  a n d  s e c o n d  d e r i v a t i v e s  o f  H . Thenn

H ^ (x )  = - e  x / f n {Hn (x)}  a n d

H " ( x )  = [ e ~ X -  f ' { H ( x { } { H ' ( x ) } 2 ] / f  { H ( x )  }.  n n n n n n

S i n c e  t h e  f i r s t  d e r i v a t i v e  o f  £ i s  b o u n d e d ,  H" i sn

u n i f o r m l y  b o u n d e d  on  [0,°°) f o r  a l l  n s u f f i c i e n t l y  

l a r g e .  A l s o  H ^ (x )  c o n v e r g e s  u n i f o r m l y  t o  - e  “ on  

[0 ,°°)  a s  n -* 00 . T h u s ,  b y  lemma 3

f T U 1 ( n - j  + 1 ) - 1 } = H ^ t - l o g ( l  -  2/n ) } 
j = l

+ {Z^=1 ( n - j  + 1) _1 -  l o g ( l  -  Vjj) }

x [ - l o g ( 1 -  \ )  

i  ,
+ e U .  = 1 ( n - j + 1 )  1 -  l o g ( l  -  7n ) }]

( 3 . 2 1 )  = f T { - l o g ( l  -  x/n ) } + 0 ( n _ 1 )

( 3 . 2 2 )  = - ( 1  -  Vjj) + o ( l )  

u n i f o r m l y  i n  l < i < ( l - y ) n  , a s  n ■> 00 , w h e r e

0  <  9 < 1  .



182 .

— xLikewise H^(x) converges uniformly to e and 
H^(x) is uniformly continuous on [0,«) . It follows
by lemmas 1 - 3  that for arbitrary O<0i,02 < 1 ,

i _i i (Z.-l)
H "[ Z (n-j + 1) x + 02{ Z --J---

j=l j=l(n-j+1)
+ 0 i+1

(n-i) }]

= H"[- log(1 - \ )  + Op (n_Js)]

(3.23)

= (1 - \ ) + o  (l) n p

as n -> °° , uniformly in 1 < i <(l-y)n .

On substituting the estimates at (3.21), (3.22)
and (3.23) into (3.3), and applying lemmas 2 and 3 , 
we obtain :

— Z
Dn,n-i = — ' H - f - l o g d - ^ ) }  + OlrT1)]

n-i

> » ‘- y  * 0 p 111 ’i
J (n-j + 1) (n-i) {-(l-1/̂ ) + oU)}

% t l t f n {Pn1(1- i/n,}{1 + U + ün i > I
3=1(n-j+1)



where sup
l<i<(1—y )n

Ini °p (n""*5) which is

(3.17) .

Step (ii)

If {Xn > is a sequence of random variables 

satisfying 0 in probability as n ■* 00 then there

exists constants e , n > 1 such that P ( ! X I > e ) 0

and en -* 0 as n . Choose the sequence e^,e^r . . .

so that

P(n' sup
1 <i<(1-y)

| U ni e ) n

as n -> 00 and set

n en

For i > 1 , define

h + l - I[Zi+ l > n6a(l + Sn)fn {F;1 ( l - i/n )}

1 (Zk_1)U  + £ — -- } ] ,
k=l(n-k+1)

and

{I (D
1<i<(1-y)n n ,n-i < 6a) -
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Hence,

P(An = 0) >P{ sup I K D  - l >6a) - ri+1l ■ 0}l^i^d-yjn '

> 1 P { for some

P { for some

l<i<(i-y)n ,

I (D . > 5a) - In , n-1

l<i<(l-y)n ,

i+1 1 }

I • , -I ~ I(D„ n • > 6a) = 1} l+i n,n-i

> 1 - 2P(
l<i<{1-y)n

|U . I >n '5e ) 1 ni 1 n

- >  1

as n -► 00 . Thus,

(3.24)
l<i<(1-y)n

1 • . + Al+l n l<i<(i-y)n
I (D .> 6a) n , n-i

and

(3.25) P (A = 0) -> 1n

as n -*■ 00 .

Notice that if is conditioned on Z^,...,Z^ ,

a sequence of independent random variables is obtained 

for i > 1 . By appropriate choice of constants a
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martingale can be constructed . We eventually use the 

martingale central limit theorem to prove (3.18) .

For 0 < k < (l-y)n let

Pi+1 " E(Ii+l 1 >

b . = n6a f (f “1 (1 - V  >> , m  n n n

(l-Y)n _b _
a: = (n-k) E p a e and

i=k+l

-b
c (y ) = E e
n 1 < i < (1—y ) n

ni

Since = o(n 2) and b ^ -► pa uniformly in

l<i<(l-y)n as n -* 00 ,

P . , = exp [-n6a(1 + £ ) f (F 1 (1 - V_ ) } i+l ^ n n n n

i (2,-1)
{1 + E 

k=l (n-k+1)

-b • i (2k-l)
e exp[- Cn bRi{ 1 + E ------- }

k=l (n-k+1)

i (Z -1)
- b . E — ---- ]

111 k=l (n-k+1)

(3.26)

-b . i (Z.-l) ,
e {1 - pa E -------} + o_(n )

k=l(n-k+1)
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uniformly in l<i<(l-y)n as n -* 00 , where the last 

step follows from lemma 1 . Thus by (3.26) ,

i • m  Ii+1 ” Cn (Y) = \  ̂Ji+1 ” Pi+1 ̂1<i<(1-y)n 1<i<(1-y)n

1<i<(1-y)n

-b . i (Z, -1) ,v ni v k , .Z e pa Z ------- + o (n )
k=l (n-k+1) P

l<i<(l-y)n (Ii+l - Pi+1}

Z ^Zk ^  v ^ni L f_ . . ------- pa Z e + o (n )
1.,k_^1-i)n (n_k+1) k<i< (1-y) n p

(3.27)

l<i<(1-y)n {(Ii+ l - pi+ l)- (Zi + r 1) “ni}

+ °p (n 2) .

The series on the right hand side of (3.27) forms a 

martingale because

(3.28) E { (Ii+l~P i+l)+(Zi+l-1)ani ' zi'---'zp  = 0

almost surely for l<i<(l-y)n . Next we derive the 

asymptotic conditional variance of the sequence in (3.28). 

According to (3.26) ,

(3.29) Z
1 <i< (1-y) n { (I - P  ) 2 1 ' l+l l+l V ,zi >

= n (1-y)e Ha(l-e pa) + o (n) ,P
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as n -* 00 . Likewise,

l<i<(1-y)n E[{<Zi+l 1)an i }2 Zi]

l<i<(l-Y)n
a 2 . ni

{ (1-y)n-i}
Z [ , . v p ae p ]2 + o(n)

l<i<(l-y)n 1 lj
(1-y)n

(pa)2 e-2pa [{(1-y)n-x)j 2 dx + o(n) 
(n-x)

(3 .30)
(pa)2 e-2pa

Y
(— — L) 2 dx + o (n)X

(pa)2 e “pa{ l - y 2 + 2y£n(y)} + o(n)

as n °° . In a fashion very similar to the way 

was derived,

1<i<(1-y)n ni (y-l)e ^[l{y>pa+o (1)P
-pa + o (1)P i- e

= p a e-pa
l<i<(1-y)n

» • ni + °p (n)

= (pa) 2e ^pa n{ 1 - y +Y!n(y)l + o (n) .P

(3.30)

}

dy

(3.31)
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Combining the estimates (3.29) , (3.30) and (3.31)
we have

n‘\ . * . var[{(1i+l"pi+l) " (Zi+l"1)ani}lZi.... V1 <i<(1-y)n

(3.32)

+ e pa {1 - e pa) (1-y) - (pa)2e 2pa(l-y)2 = v2(y), say,

in probability as n 00 . Also the conditional fourth

moment of n 2 M   ̂" ( Zi+1~^ ̂ ani ̂ ' 9̂ -ven Z^,...,Z.,
is bounded by a constant multiple of

_ n
Z n (Z. ,-,+1) 4 ■+ 0 in probability as n -> 00 ,

l<i<(1-y)n 1 1

by Markov's inequality. Thus by the results (3.27) and
(3.32) , and corollary 3.1 of Hall and Heyde (1980),

n 5 { E I • ,-i - c (y) } (0,1)
1 <i<(1-y)n 1+1 n

as n -> 00 . The result (3.18) follows from (3.24) 
and the above expression.

Step (iii)

The result (3.19) follows simply from expression
(3.32) .

Now
-b

c (y) = I e
1<i<(1-y)n

ni

-nSaf {F 1 (1 - X ) } n n n
1<i<(1-y)n

e
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f(l-y)n -r*5 a f F 1 (1 - x/n)n n i
e dx + o(n2)

Jo

(3.33)
f1 -n6af (y) ^

n l  .. f(y)e dy + o(n2)

as n , where the small order term holds uniformly

in y . Result (3.20) follows.

To complete the proof we need to show that for all 

C > 0  ,

(3.34) lim lim sup P(n ^ { £ I(d . >6a)
y-̂ 0 n-*00 (l-y)n<i<n-l n '

+ Cn (Y)
1

fn (y)
-n6a f (y) 

e n dy} > C )

Let D*. be the distance between the i 'th and (i+1)'th ni
order statistics resulting from randomly distributing points 

on the unit interval according to a distribution with 

density gn defined by :

f (1 - x - 6a) when 0<x<l-6an - -
f (2 - x - 6a) otherwise, n

establishing (3.34) is the same 

as proving for all c > 0 ,

g (x)

In view of (3.33),

(3.35) rlim lim sup P ( n { £ I(D* . > 6a)
y->0 n+<« l<i<n n,n 1

cn ( 1  —  Y )  }  i 0 .> C + 0(1))
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Now gn (x) = fn (l~x ) + o(n c) as n -> °° , where the 

small order term holds uniformly in x E [0,1] . One may

proceed precisely as in steps (i) and (ii) to prove 

that

n-*5 {v (1-y) }-1{ E I (D* . > 6a)1<i<ny n,n-i

- cn U - Y) } W ( 0,1) .

The result (3.35) follows from this and the fact that 

v(l-y) = e ^a (l-e pa)y - (pa)2 e ^pay2 -> 0 

as y 0 . This completes the proof of theorem 3 .

Recall that our test statistic based on L rejects 

the null hypothesis H q when

(3.36) „ - h r t -n6a,n. “HL - ne } < - Z

It is clear that v -* v as n -*■ 00 , and so byn 2
theorems 3 and 4 ,

- hr -n6a, ,n 1L - ne } / v

-hn [L - n f (x)exp{-n<5a f (x) }dx]/v n n n

+ rT^v"1 ne”nSa{-y( pa - 2)n-2£ j £2(x) dx + o(n 2£)}

(3.37)



Z + (l+o(l))v-1 -pa pa
2 (pa-2)n i h )-2e £2(x)dx

where Z^ converges to the standard normal law as n 00 . 
From (3.37) we may deduce that for 0 < pa < 1 :

(a) if e < % , then the power of the test at (3.36) 
tends to 1 as n -> 00 ;

(b) if e > h , then the power of the test tends to 
the significance level a , and

(c) if £ = h then the power tends to a value lying 
strictly between a and 1 .

As was shown in theorem 2 , the test at (2.36) is not 
always consistent when pa > 1

3.2 A Test Based on the Length of the Largest 
Uncovered Spacing.

As in subsection 3.1, define D . as the length 
of the i'th ordered spacing. The length of the largest 
uncovered spacing M is defined by :

M = sup (D . - oa) ,
0<i<n-l nl

where (x) = x if the argument is positive, and zero
otherwise.

The following theorem is used to construct a test 
of the null hypothesis against the alternative ,
consisting of all essentially non constant densities on 
[0,1] possessing a unique, non zero minimum. The result 
follows via a theorem of Hall (1933) .



Theorem 5

Let M be the length of the largest uncovered 
spacing in A = [0,1] resulting from C^^ (6,n ) .
Suppose that f is essentially non-constant on A and 
possesses a unigue non-zero minimum at m E A . Îf 
6^-0 and n -► 00 in such a manner that 6n -* p , where 
0 < p < 00 , then

n M  + n6a - log(n) -* +°°

in probability as n -* 00 .

Proof
Since f is not constant, 0 < f(m) < 1 . Now 

nM + n6a - log n
(3,38)

= f(m)[nM + 6na - (log(n)

- H log log (n) }/f (m) ]

+ [ {f (m) } 1 - 1] log (n)

+ {f (m) } 1 log log(n) .

According to theorem M , page 7 of Hall (1983), the 
first term on the right hand side of (3.38) converges 
to a proper distribution as n 00 . The second and
third terms converge to +00 as n 00 . Theorem 5
follows.
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A consequence of corollary 3.2 of Hüsler (1982) 
is that under the null hypothesis

VnM + nSa - log(n) -* X

as n , where X has the extreme value distribution
P(X<x) = exp(-e x) . Thus, by theorem 5 , the test which 
rejects Hq in favour of when

(3.39) M > n 1log(N) - n *log{-log(1-a)} - 6a

is asymptotically level a , where 0 < a < 1 . It also 
follows from theorem 5 that as n -* 00 the test at (3.39) 
is asymptotically consistent. We shall now examine the 
"local power" of this simple test based on M .

In subsection 1 the local alternative density
—  0function was defined by f^(x) = 1 + n £(x) , where 

e > 0 is fixed and the funtion £ satisfies the two 
conditions set out at (3.16) . The simple tests based
on V and L , investigated in section 2 and subsection 
3.1 respectively, can distinguish differences of order 
0(n 4) from the null hypothesis. It so happens that 
the test based on M performs poorly in comparison 
to these tests. Its asymptotic power against the sequence 
of local alternatives equals the significance level for 
all e > 0 . To analyse its power properties in more 
detail we construct a new local alternative density 
function that converges to f = 1 much more slowly 
than fn

Let £ be a function satisfying the conditions at 
(3.16) . For each e > 0 define
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( 3 . 4 0 )  g n ( x ) = 1 + { l o g  (n) } £ £(x) ,

w h e r e  x e  A . I n  o r d e r  t o  e s t a b l i s h  o u r  t h e o r y  we 

n e e d  t o  i m p o s e  s e v e r a l  r e g u l a r i t y  c o n d i t i o n s  u p o n  t h e  

£ . N am ely  :

£ i s  e s s e n t i a l l y  n o n c o n s t a n t  on  A ;

t h e  f i r s t  d e r i v a t i v e ,  £ '  o f  £ ,

e x i s t s  a n d  i s  b o u n d e d ,  a n d

t h e r e  e x i s t s  a n  m e  ( 0 , 1 )  s u c h  t h a t  t h e  

s e c o n d  d e r i v a t i v e ,  £" o f  £ , e x i s t s

w i t h i n  a  n e i g h b o u r h o o d  o f  m , i s  c o n t i n u o u s  

a t  m , £"(m) > 0 a n d  £ ' (m) = 0 .

F u r t h e r m o r e ,  a s s u m e  t h a t  f o r  e a c h  n > 0 ,

i n f  I I £ (x)  > £ (m) .Ix-m j >n

The  f o l l o w i n g  t h e o r e m  a l l o w s  u s  t o  d e s c r i b e  t h e  

a s y m p t o t i c  p o w e r  p r o p e r t i e s  o f  t h e  t e s t  a t  ( 3 . 3 9 )  

a g a i n s t  t h e  l o c a l  a l t e r n a t i v e s  a t  ( 3 . 4 0 ) .

T h e o r e m  6

L e t  M b e  t h e  l e n g t h  o f  t h e  l a r g e s t  u n c o v e r e d

s p a c i n g  i n  A = [ 0 , 1 ]  r e s u l t i n g  f r o m  C ^ ^ ( 6 , n )  .
^n

As w e l l  a s  t h e  c o n d i t i o n s  a t  ( 3 . 1 6 ) ,  a s s u m e  t h a t  £ 

s a t i s f i e s  ( 3 . 4 1 )  a n d  ( 3 . 4 2 )  . If_ 6 -> 0 a n d  n °°

i n  s u c h  a m a n n e r  t h a t  6n -► p , w h e r e  0 < p < °°

f u n c t i o n

( 3 . 4 1 )

( 3 . 4 2 )

( 3 . 4 3 )

t h e n  f o r  e > 1
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(3.44) VnM + n6a - log(n) X ,

where X has the extreme value distribution

— yP (X < x) = exp(-e , and when e = 1 ,

l
(3.45)

Furthermore, if we assume the conditions at (3.43) hold, 

when 0 < e < 1

The proof is prefaced with the following useful 

lemma.

Lemma 4

Let n be a fixed positive constant and suppose 

£(y) is a positive function on [ — ri, n ] which converges 

to one as y -> 0 . I_f is a sequence of constants

which converges to infinity as n -* 00 , then

(3.46) nM + n6a - - [ ( m) }  ̂{log (n) - (1-e) log log (n) / 2 }

V X + ^log{ 2tt/ £" (m) }
as n .

n

as n -► 00 .



196

Proof
0 < T) 1 < n , and n 2 such
, £(y) > n 2 . Then ,

•n r h 3.
J J ) e x p { y 2 An 5 (y)}
-n H i

rn
< 2 exp(-h n 2 y 2 A ) dy

H i

“ *2< 2 (n—ni) e x p { n 2niXn ) = o(xn )

as n -> 00 . Hence, n i may be chosen arbitrarily small. 
Given n 3 > 0 , there exists a n 1 > 0 such that 
£(y) > 1 — n 3 for - n1< y < ni. Thus,

■Hi
exp{-^ y 2 An C(y)} dy 

- n 1

fn< I exp{-% y 2 A (1 - ri 3 ) } dy - j n
-ni

/ 2 7T

as n 00 . The asymptotic lower bound j2t\/ { A^ (1 + n  3 ) }

can be obtained in a similar way. Since n 3 > 0 
is arbitrary, lemma 4 follows.
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Proof of Theorem 6

Let 0 < y < 1 be given. Following from (3.17) 

and lemma 1 ,

(3.47) Dn,n- a - 1/ >) (i + u .) ]n no­

where

to g ̂n

Gn
/

is the distribution function corresponding 

and

sup ' U
l<i<(l-y)n ni

0P ) .

The representation at (3.47) forms the basis of 

our proof. For clarity the proof is divided into 

three steps : the limit result at (3.44) is

proved in step (i); (3.45) is proved in step (ii);

and (3.46) in step (iii).

Step (i)

In this step e > 1 . According to (3.47) we 

may choose 1 < n < £ such that, with probability 

approaching one as n 00 ,

n Dn,n-i - Zi+lU  + U o g l n j r V 1 

uniformly in 1 < i < (l-y)n . Therefore, for each

P{n Dn n_^-log(n) < log(ß) for all 1 < i < (1

< P(for all 1 < i < (l-y)n ,

Z±+1 < [l + tlog(n)} r']log(n/ß))

ß > 0, 

y) n}

+ 0 (1 )



198

= { 1 - exp (-[l + { log (n) } n ] log(n/ß))}n *1 ^  + o(l)

= {1 - ßn“ 1 + o(n_1 )}n(1”Y) + o(l)

= exp{-(l-y)ßl + o (1)

as n -* °° . It follows that

lim sup P{ for all 1 < i < (l-y)n, nD.^ n_^-log(n)
n-*°° 1 '

< -log (ß) }

; exp{- (1—Y )ß }

The same lower bound for 

using the inequality

lim inf may be obtained by
n ->oo

n , n-i < -1n Zi+1[l~ {log(n)} n] 1 ,

with probability approaching one as n -* 00 , uniformly 

in 1 < i < (l-y)n .

Thus, for - 0 0 < x < 00 ,

(3.48) lim P{for all 1 < i < (l-y)n ,
n^oo

n Dn n- i ~ l o g *n  ̂ - = exP^e X ) •

Let

A = max {n D 
l<i<n n 'n_1

-log(n)} max
1<i< (1-y)

{n Dn, n-i - log(n)
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Then, for any fixed A ,

P ( A r O )  < P{ max nD _. - log(n) < A , or
l<i< (1—Y) n n-R_1

max nD . - log(n) > A}\ • ri w r*i i(l-y)n<i<n

(3.49)
< P{ max nD . - log(n) < A}

l<i<(1-y)n n 'n_1

+ P{ max n D . - log(n) > A}/I \ - • n a n*- 1(l-y)n<i<n

The first term on the RHS of (3.49) converges to 
exp{-(l-y)e ^} as n -> 00 . Using a reflection argument 
similar to the one in step (iii) of the proof of 
theorem 4, the second term on the RHS of (3.49) converges 
to 1 - exp{-ye as n -* 00 . Consequently,

lim lim sup P(A £ 0) < exp(-e ^) -► 0
y-*0 n->°°

as A - 00 . Thus, by (3.48) and lemma 2 of section 1 , 
we see that

(3.50) lim P{for all l<i<n , nDn - log(n) < x}
n-> 00 ~ '

= exp (e X ) .

Note, however, that

n M = max[ max 
l<i<n

{n D^ - log(n)} + log(n) - noa,
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and log(n) - n6a -► 00 as n 00 . Result (3.44) follows 

from this and (3.50) .

Step (ii)

From the estimate at (3.47) , with probability 
approaching one as n -> °° ,

n Dn,n-i ^ + ^ H " 1

uniformly in 1 < i < (l-y)n . Let 
f 1

c = log[I exp{-£(x)}dx] .

For any S > 0 ,

P {for all 1 < i < (l-y)n , n D . -log(n)n,n-i ^ ’

c < - l o g (3) }

< P [for all i < i < (l-y)n , Zi+1 < (1 + n ^) g

Cg “ 1 (1 - x/ )} n n

x {log(n/3) + c }] + o(l)

1 <i< (1-y)n
TT (1 - exp[-(l+n“’ )gn {G”1 (1 - ^  } {log (n/8) +c}] )

+ o(l)
(3.51)

exp(- Z
1<i< (1-y)n

exp[-(l+n“’)gn{Gn1 (l-;l7n) } {log (n/ß ) +c} ] )

+ 0 (1 ) .
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The summation may be approximated to a term of order 
o(l) by the integral expression :

• (l-y)n
>o exp [ - (1 + n gn {Gn1 (i-x/n) } {log (n/3) + c}]dx

= n{1 + o (1) } exp[- (1+n ^){log(n/ß) + c}]

l
exp[-(1 + n ^ ){log(n)} 1

Y

x £ (y){log(n/B) + c}] g^(y) dY
(3.52)

l
= {1 + o(l)} ße c j exp[-(1+n ^)£(y)

Y

{log (n) } 1{log(n/ß) + c}]

x gp(y) dy, as n ■> 00 .

Let n > 0 be arbitrary. For n sufficiently large 
1

, exp[-(1+n S £ (y){log(n)} 1{log(n/ß) + c}]gp (y)dy
Y

1

Y

A similar lower bound may be found with n replaced by 
-n . But n > 0 is arbitrary and so by (3.52) and 
the argument just proceeding (3.51) ,
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lim sup P{for all 1 < i < (l-y)n
n+ ° °

n D n n - i “ l o g (n) - c < -log (B ) }
i i

exp [-B {

Using an analogous argument, the same lower bound can be 

found for lim inf. Consequently,

Result (2.45) may be derived in a manner similar to 
the way (2.4 4) was derived from (2.48) .

Step (iii)
A more intricate bounding argument is required to 

prove (3.46) . Suppose that for some n > 0 , £" exists
and is bounded away from zero in the interval 

[m - 3n, m + 3n 1 C (0,1) . Restrict y to the range 
0 < y < m - 3n and set

lim p{for all 1 < i < (l-y)n
n-*-°°

n D . - log(n) n,n-i  ̂ '
c < x

= exp [ - B {

i n = i n f { i  : 1 - V < m - 2 r | }  1 n - and

Then i^ > i^ and
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inf G 1 (1 - l )  > inf (1 - V  ) - {log(n)} 6 
i-i2 i^i2

> m  + n

for some constant c > 0 and n sufficiently large.
Likewise,

sup G  ̂(1 - "V ) < m-n • ^  n n -
* 1^2

for sufficiently large n . Following from (3.47) there 
exists a £ > 0 such that with probability approaching 
one as n -* 00 ,

n Dn n-i - Zi+l[1 + f iog(n) }-£ (1-25)4 (m) ] _1

whenever l < i < i ^  or i ^ < i < n .  Now 0 < e < 1 , 
and so for each fixed x ,

P[for all 1 < i < i2 and i^ < i < (l-y)n ,

"Dr ,n-i " i“W {1°g(n) ■ J1r 1 l0g l0g(n)} <

> P(for all 1 < i < n, Z < [1 + (log(n)} C (1-2 £) £ (m) ]

x fx + g ̂ 7 (log ( n )--(.L-rj.'iog log (n) } ] )

+ 0 (1 )

> P(for all 1 < i < n , zi + i 5 d  (m) log (n) } £] log (n) )

+  o  (1)
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= (1 + n ^  ^  t l o g ( n ) }  ] ) n + o ( 1 )

- >  1

a s  n -> °° . T h e r e f o r e

P [ f o r  a l l  1 < i  < (1 - y ) n ,

n  Dn , n - i  ”  ^ ^ { l o g ( n ) - t T £ i lo<?  l o g ( n >} < XJ

( 3 . 5 3 )

P [ f o r  a l l  i 2 < i  < i-. ,

a s  n

n Dn , n - i  "  i - 13TT{ l o g ( n )  l o g  l o g ( n ) }  < x]
n

+  o  ( 1 )

L e t  = { g n (m)} 1 { l o g ( n )  -  2 1 ( l - e ) l o g l o g  (n)  }

A c c o r d i n g  t o  ( 3 . 4 7 )  , f o r  a n y  ß > 0 ,

P ( f o r  a l l  i 2 < i  < i 1 , n Dn ^n ^ i  “ t>n < -  l o g ( ß ) / g n (m)

< P [ f o r  a l l  i 2 < i  < i 1 , Zi + 1  < (1+n ^  g ^ G ^  ( l - 1/^) }

{ b n -  l o g  ( ß ) / g n (m) } ] + o ( l )

e x p  ( -  Z e x p  [ -  (1+n * )  g {G 1 ( l - 1/  ) } {b -  l o g  (ß) 
i 2 < i < i ! n n n n

/ g n (m) }] ) + o ( l )

( 3 . 5 4 )

e x p  ( -  f  e x p  [ - ( 1 + n  4) g n ^Gn (1 -  x / n )  }

{ b n -  l o g  ( ß ) / g n (m) }] d x  + o ( l )
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A l s o  ,

f i  l
e xp  [ -  (1+n ^ ) <? n ^Gn 1 "  X/n ) } { b n -  l o g ( 3 ) / g n (m) } ] d x

( 3 . 5 5 )

n{ 1 + o ( l ) }
2n

- 2 n

g n (y+m) 
e x p  [ -  (1+n 4)T li r

{ l o g  (~) -  (~2̂ -) l o g  l o g ( n ) } ]

x g n (y+m) dy,

S i n c e  g" i s  c o n t i n u o u s  a t  m a n d  V  (m) = 0 , n

g n (m+y) -  g R (m) = y 2 ( l - t ) g ^ ( m + t y )  d t

h  y 2 [g!!1(ni) + ( l o g ( n ) }  £h ( y ) ] ,

w h e r e  h i s  a  f u n c t i o n  s a t i s f y i n g  h ( y )  -+ 0 a s  y -* 0 

T h u s ,  by  lemma 4 , t h e  i n t e g r a l  i n  e x p r e s s i o n  ( 3 . 5 5 )  

e q u a l s

e x p  [ -  (1 + n ") { l o g  (-p) -  ( i ~ ) l o g  l o g ( n ) } ]

e x p  [ - ( 1 + n  —  U " ( m )  + h ( y ) }

- 2 n  n

x { l o g  (—) -  (-— ) l o g  l o g  (n) }] g n (y+m)dy

ß -i / V,\ ( l - e ) / 2  / 2 tt _  1  / _ 2 tt_

'  n 9 y  £" ( m H l o g t n ) } 1" 6 "  V  *" <” >
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By this result, (3.54) and (3.55), for any $ > 0,

lim sup P{ for all i,<i<i-i, n D . - b <^ 2 1 ' n,n-i n -n-* 00
log(ß)/ (m)}

r / 2 TT *
^ exp{ - ß/rnsr1 •

The same lower bound can'be found for lim inf using ann-j-eo
analogous argument. Hence by (3.53) , 
for -oo < x < oo ,

lim P{for all 1 < i < (l-v)n , g (m)(n.D .-b ) < x}n-*°° - - ' ^n ' n,n-i n -

=  e _ x i  ■

Results (3.46) now follows using a very similar argument 
to the way result (3.44) was derived from (3.48) .
This completes the proof of theorem 6.

The following conclusions may be drawn from 
theorem 6 :
(a) if e < 1 in gn , then the power of the test 

at (3.3 9) converges to 1 as n + °° ?

(b) if e > 1 , then the power of the test tends 
to the significance level a , and

(c) if £ = 1 then the power tends to a value lying 
strictly between a and 1 .
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