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ABSTRACT

The diffusion Monte Carlo method for performing quantum calculations on 

many body systems is extended and applied to a number of areas of chemical 

physics. An ab initio quantum Monte Carlo procedure for simulating wave 

functions with nodal surfaces is presented. Some few Fermion problems are 

treated using this technique.

A method for using the ground state wave function obtained from a 

diffusion Monte Carlo calculation to determine the vibrational spectrum of 

a molecular cluster is presented. Very accurate vibrational spectra can be 

obtained with this approach. Results of quantum Monte Carlo calculations on 

the water dimer and trimer using an improved intramolecular potential and 

the intermolecular potential of Reimers, Watts and Klein (1981) have been 

used to assign cluster spectra obtained from molecular beam experiments. It 

is demonstrated that the vibrational predissociation spectrum of a 

molecular cluster is sensitive to the details of the intermolecular 

potential and different surfaces may be tested by comparing calculated 

spectra with experimental results.

The diffusion Monte Carlo method is applied to calculate the 

thermodynamic and structural properties of liquid ^He and solid molecular 

hydrogen. Importance sampling must be used if efficient bulk phase 

calculations are to be performed. When the spherical part of the 

interaction potential due to Buck et al. (1983) is used in diffusion Monte 

Carlo calculations on solid H2 good agreement with experiment is found.

Anisotropy may be important for this system at higher densities.
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Methods f o r  us ing  the  d i f f u s i o n  Monte Car lo  method to  s tudy  the  

behav iour  of systems a t  non-zero  t e m p e ra tu re s  a re  developed .  Improved high 

te m p e ra tu r e  approx im at ions  must be employed as i n i t i a l  c o n d i t i o n s  when 

systems with  mixed ’’c l a s s i c a l ” and "quantum” degrees  of freedom' a re  

c o n s id e re d .  The p r o p e r t i e s  of neon gas and the  wate r  dimer a re  s t u d i e d  with  

t h i s  method.

The work p r e s e n t e d  in  Chapter  3 has been p u b l i sh e d  in

"The I n f r a r e d  P r e d i s s o c i a t i o n  S p e c t r a  of  Water C l u s t e r s "  by D.F. Coker,
R.E. M i l l e r  and R.O. Watts  (1984),  J .  Chem. Phys 82, 3554.
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FIGURE CAPTIONS

Results of a basic ground quantum Monte Carlo simulation of a

harmonic oscillator (hw = 70°K). (a) Evolution of the ensemble

distribution from a delta function initial condition to the ground 

state wave function. Unit of imaginary time is 10_15s. (b)

Logarithm of ensemble population v's imaginary time. Slope of 

dashed line is the eigenvalue which may be estimated from the 

asymptotic decay rate of the population. PAGE 1^a

Same as Figure 2.1 except initial condition is orthogonal to 

ground state. (a) Positive and negative weighted systems 

annihilate producing the first excited state distribution,

(b) Slope of dashed line is first excited state eigenvalue which

may be estimated from the asymptotic decay rate of the total 

population. PAGE 16a

Behaviour of eigenfunction expansion model of Vref adjusting 

algorithm. (a) Solutions of equations (2.18) (2.19) using

harmonic oscillator example. Solid line gives amplitude of ground 

state coefficient, long dashes are first excited state and other 

dashed curves are higher eigenstate components. (b) Amplitudes of 

different eigenfunction components calculated using equation 

(2.21) during a simulation. Ground state grows out of statistical 

noise. (c) Solutions of (2.18) (2.19) with no initial ground

PAGE 20astate components.
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2.4 Eigenstate components calculated during a Vrep adjusting

simulation which includes orthogonalization to ground state. 

Higher eigenstates are shown with shorter dashes. First excited 

state dominates ensemble distribution asymptotically. PAGE 22a

2.5 Vibrational eigenfunctions of H2 obtained with Vref adjustment and

orthogonalization procedures. The potential due to Kolos and 

Wolniewicz (1975) is also given. PAGE 24a

2.6 Results of simulation of the 2p state of the hydrogen atom, 

(a) Eigenvalue estimates as a function of gaussian width 

parameter, a. Squares are the results for ensembles of 500 systems 

and triangles are for 1000 systems. (b) Electron density 4irr24j2, 

solid line is analytic result. Both dashed curves are simulation 

results for ensembles of N = 500 systems. Long dashes are for

a = 2 a.u.-2 ("large volumes") and short dashes are for

a = 10 a.u."2 ("small volumes"). (c) Both dashed curves are

simulation results for a = 10. Short dashes are for N = 500

systems and long dashes are N = 1000. PAGE 30a

2.7 Projection of ensemble distribution onto x-y plane showing the two

PAGE 31alobes of the 2px eigenfunction.
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Development of \Jj2 distribution by descendent weighting procedure 

for harmonic oscillator example. (a) ij; distribution multiplied by 

descendent weights at different times. Short dashed curve is 

analytic Long dashed curve is analytic iJj2. All curves' are 

normalized to have the same area. (b) Calculation of the average 

potential energy using the ip2 distribution. Dashed curve is 

analytic result, hco/4. PAGE 33a

Lobes of the singlet state wave function of the helium atom r-| and 

r2 are the distances of the electrons from the nucleus. The 

labeled electrons have different spins in the two lobes. PAGE 49a

(a) Random walk wave function for singlet state of He compared 

with (b) best variational wave function using hydrogenlike 

orbitals. Coordinates are the same as figure 2.9. PAGE *49b

Triplet state energy of He as a function of ensemble size and 

gaussian width parameter. Solid line is "exact" result of 

Pekeris (1959). Squares are results for a = 2 a.u.“2 and triangles 

are for a = 5 a.u.“2. PAGE 51a

Triplet state eigenfunction of He. Coordinates are the same as in 

figure 2.9. (a) Quantum Monte Carlo result. (b) Analytic

estimate with "screened nuclear change" C = 27/16. PAGE 52a
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2.13

3.1

3.2

3.3

3.4

3.5

Decay of quantum Monte Carlo eigenvalue estimate for lowest energy 

doublet state of Lithium. Solid line is experimental result.

PAGE 54a

Comparison of experimental and calculated water monomer spectra. 

The Morse potential with couplings gives an improved 

representation of the splitting between the symmetric and 

antisymmetric modes. PAGE 66a

A is the difference between experimental and calculated vibrationl 

frequencies of the H2O monomer. * Morse potential and • Morse 

potential with coupling. PAGE 66b

Atom - Atom pair distribution functions for water dimer. Solid 

line is the result of 4)02 averaging with the quantum random walk 

calculation. Dashed curve was obtained using classical Monte Carlo 

calculations at 10 K (Reimers (1982)). PAGE 76a

(a) Minimum energy geometry of water dimer, (b) Minimum energy 

geometry of water trimer. PAGE 77a

Relaxation of <})02 distribution for water monomer showing average 

of (a) potential and (b) kinetic energies. PAGE 78a
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3.6 Solid lines give the projections of the wave function of the water 

dimer obtained from the random walk calculation onto the 

intramolecular local coordinates. Dashed curves are the basis 

oscillator wave functions of water monomer. sb and sn are the 

bonded and non-bonded local coordinates on the donor molecule.

PAGE 80a

3.7 Comparison of basis oscillator frequencies obtained from (a)

random walk projection method and (c) "frozen field" local mode 

calculations. Spectra (b) and (d) show the influences of including 

couplings. Experimental spectrum was obtained by Coker, Miller and 

Watts (1985). PAGE 81 a

3.8 Experimental infrared predissociation spectra for H2 O clusters at

high concentrations. Molecular beam compositions (% H2 O in He) are 

A: 17.5%, B: 24.2%, C: 36.3% and D: 52.1%. PAGE 84a

3.9 Low concentration water spectra corresponding to beam conditions;

A: 7.7%, B: 6.5%, C: 5.7% and D: 12.8%. PAGE 85a

3.10 Comparison of water dimer frequencies obtained from quantum

simulation projection method with experimental water cluster 

spectra. PAGE 85b
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3.11 Stick diagram comparing experimental and theoretical dimer and

trimer IR absorption frequencies. The normal mode and local mode 

calculations use the RWKM potential of Reimers and Watts (1984b); 

random walk calculations combine the modified monomer surface 

described in the text with the RWK2 intermolecular potential of 

Reimers, Watts and Klein (1981) (RWKM2) or with the earlier 

surface of Watts (1977) (W77M2). PAGE 90a

3.12 Comparison of the RWK2 (solid line) and Watts (dashed line)

intermolecular potential surfaces (a) as a function of 0...0 

distance minimizing energy at every separation, (b) as a function 

of donor angle for fixed 0...0 distance and intramolecular 

geometry and (c) as a function of acceptor angle for fixed 0...0 

distance and intramolecular geometry. PAGE 91a

4.1 Relaxation of the energy estimate for a system of 32 Lennard Jones

helium atoms at a reduced density of p* = 0.4. The basic diffusion 

and birth death algorithm was used together with an initial fee 

geometry. Long range corrections have been included. N is the 

number of systems in the ensemble and the dashed and solid lines 

are respectively, the variational (Watts and Murphy (1970)) and 

Green’s function Monte Carlo (Whitlock et al. (1979)) results.

PAGE 106a



The points with small error bars are the energies of a system of 

32 helium atoms calculated with the importance sampling algorithm 

using different size time steps. These calculations employed an 

ensemble of 200 systems. The point with larger error bars was 

obtained using the unbiased random walk algorithm together with an 

ensemble of 1000 systems. The solid line gives tge GFMC value.

PAGE 110a

Solid lines are the extrapolated radial distribution functions for 

a system of 32 helium atoms obtained with the importance sampling 

algorithm using different size time steps. The points are the 

results of GFMC calculations of Whitlock et al. PAGE 111a

Extrapolation of the radial distribution function for He4 obtained 

from a Diffusion Monte Carlo calculation using 108 particles. The 

short dashed line gives the distribution obtained from the 

variational calculation, ip-p2, the long dashes are the diffusion 

Monte Carlo results averaged over the function ^7^, and the solid 

curve is the extrapolation. The points are the results of GFMC 

calculations of Whitlock et al♦ PAGE 112a

Relaxation of the components of the energy of solid H2 during 

importance sampled diffusion Monte Carlo calculations at various 

densities. The initial conditions were variational distributions. 

The short dash lines are the kinetic energies obtained by taking 

the difference between the total energies (solid lines) and the 

extrapolated potential energies (long dashes). PAGE 119a
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4.6 E x t r a p o l a t i o n  of  the  r a d i a l  d i s t r i b u t i o n  f u n c t i o n  in  s o l i d  H2 a t

v a r io u s  d e n s i t i e s .  Shor t  dashes  g ive the  g ( r ) ’ s o b ta in e d  from the  

d i s t r i b u t i o n ,  long  dashes  from ip'pxp and the  s o l i d  curve  i s  the  

e x t r a p o l a t e d  ty2 r e s u l t .  The p o t e n t i a l  due to  Buck e t  a l . (1983) i s  

a l s o  p r e s e n t e d  ( s o l i d  curve)  t o g e t h e r  with  the  Lennard Jones 

(12 6) p o t e n t i a l  fo r  H2 (dashed c u rv e ) .  PAGE 120a

5.1 The r i n g  polymers r e p r e s e n t i n g  a two p a r t i c l e  system.  The d i s c r e t e

pa th  shown here has 9 segments and by c l o s i n g  th e  r i n g  a t

d i f f e r e n t p o in t s pro p e r t i e s  a t d i f f e r e n t t e m p e ra tu re s  can be

c a l c u l a t e d • PAGE 150a

C a l c u l a t e d and exac t  e n e rg i e s of a harmonic o s c i l l a t o r

(hco = 100 K) as a f u n c t i o n  of  t e m p e ra tu r e .  S o l id  l i n e s  a re  exac t  

r e s u l t s  o b ta in ed  from equ a t io n  ( 6 . 2 ) .  Dashed curves  a r e  the  

p r e d i c t i o n s  of c l a s s i c a l  t h e o ry .  Various co loured  symbols a r e  the  

r e s u l t s  of quantum Monte Car lo  c a l c u l a t i o n s  us ing  d i f f e r e n t  

i n i t i a l  and f i n a l  t e m p e r a t u r e s .  C l a s s i c a l  i n i t i a l  d i s t r i b u t i o n s  

were used .
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PAGE 157a



(a) Solid curves give the position distributions for a harmonic 

oscillator obtained at different temperatures along the random 

walk trajectory (T^n = 1000°K). Points are exact results obtained 

from equation (6.3). (b) Solid curves are the momentum 

distributions calculated at the same points along the trajectory. 

Crosses are the predictions of classical theory. PAGE 159a

Upper solid curve gives the temperature dependence of the total

energy of the 0-H Morse oscillator obtained by summing over the

analytic bound states. Lower solid and long dashed lines are

respectively the potential and kinetic energies of the oscillator.

Short dashed curves are classical results. Various coloured

symbols are the results of quantum Monte Carlo calculations using

different initial temperatures. Classical initial distributions 
were used.

Colour Tj n(°K)
black 10000
red 7500
blue 5000

PAGE 160a

Comparison of analytic results for the harmonic oscillator with 

values obtained from a quantum simulation using the exact position 

and momentum distributions at 100°K as the initial condition.

PAGE 162a

Same as Figure 6.3 except the improved high temperature

approximation in Equation (6.9) is used to give the initial

PAGE 165adistributions.
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6.6 (a) Comparison of the potential energy of low density neon gas at

various temperatures obtained from quantum simulation (squares) 

with classical results (triangles). (b) Solid line gives the 

classical kinetic energy of neon gas and the squares are- the 

results of quantum simulation. PAGE 167a

6.7 Pair distribution function in neon gas (p* = 0.0093) as a function 

of temperature. Solid curves are the results of quantum Monte 

Carlo simulations. Dashed curves give classical results and the 

points are taken from the work of Klemm and Storer (1972).

PAGE 168a

6.8 Momentum distributions in neon gas at various temperatures

obtained from quantum simulation (solid curves) and classical 

theory (dashed curves). PAGE 168b

6.9 Sample intramolecular distributions for the water dimer obtained

from the quantum Monte Carlo calculations (solid curves) compared 

with the square of the ground state Morse oscillator

eigenfunctions (dashed curves). With our resolution all the 

intramolecular distributions such as the bonded and non-bonded 0-H 

stretches were identical.

PAGE 172a

6.10 Intramolecular distributions for the water dimer obtained from

classical Monte Carlo calculations. Again the ground state wave 

functions are presented as the dashed curves. PAGE 172b
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6.11 Comparison of classical and quantum intermolecular distributions

for the water dimer at various temperatures. PAGE 173a

6.12 Comparison of classical and quantum intramolecular potential

energy for the water dimer as a function of temperature. Dashed

line is the ground state potential energy of a pair of isolated 

monomers. PAGE 175a

6.13 Comparison of classical and quantum intermolecular potential

energies for the water dimer as a function of temperature. Points 

at 100 °K are the results of Wallqvist and Berne (1985).

PAGE 175b
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CHAPTER 1 AN OVERVIEW OF QUANTUM SIMULATION

Classical computer simulation methods have been used extensively to 

study both equilibrium and non-equilibrium behaviour of many body systems. 

The physical behaviour of a assembly of particles, however, is determined 

by quantum theory. Recently, a variety of quantum simulations methods have 

been developed and applied to studies of many body systems in which quantum 

effects are important. The algorithms can be divided into two categories: 

zero temperature methods for considering the individual quantum states of 

many body systems and non-zero temperature procedures in which a thermal 

distribution of quantum states is important. In this thesis we explore a 

stochastic numerical method which is useful for performing both zero and 

finite temperature calculations.

At zero temperature, quantum Monte Carlo methods have been used to

study bulk systems such as the crystal and liquid phases of helium

(Whitlock et al. (1979), (1980); Lee et al. (1981)), the electron gas

(Ceperley and Alder (1980)), metallic hydrogen (Ceperley and Alder (1981)) 

and a variety of other important systems (Ceperley and Kalos (1979)). The 

zero temperature quantum Monte Carlo methods have also been extended to the 

realm of molecular quantum mechanics where they are now becoming 

competitive in both speed and accuracy with the more conventional Cl 

techniques (Ceperley and Alder(1984)). Quantum Monte Carlo methods provide 

numerically exact solutions of the many body Schrödinger equation. The 

results are not dependent on the choice of a basis set and so the answers 

are not influenced by the input of "chemical intuiton". In principle the 

quantum Monte Carlo methods can provide completely ab initio results (Öksüz



2

(1981))).
The basic "diffusion Monte Carlo" method which was first presented by 

Anderson (1975) and which is used throughout this thesis is developed and 

studied in detail in Chapter 2. The method involves using a "finite time 

step" approximation to solve a multidimensional diffusion equation. Results 

obtained using this approximation depend on the step size and in the limit 

as At  ̂0 exact values are obtained.
Diffusion Monte Carlo methods have been used mainly in studying 

electronic systems where the particle interactions vary relatively slowly 

with distance. Thus the finite time step approximation is expected to be 

valid. The most significant problem in using quantum Monte Carlo methods to 

study electronic systems is the treatment of identical particle statistics 

(Kalos (1984)). In most of the electronic applications of the zero 

temperature quantum Monte Carlo methods, approximate information about 

nodal surfaces in the Fermion wave function is used to provide boundary 

conditions for the random walks. Wave functions obtained from variational 

calculations are often used for this purpose. With the fixed node 

approximate methods (Reynolds et al. (1982)) the random walk results are 

dependent on the nodal surfaces used in the calculation. Methods for 

"relaxing" the nodes have been developed (Ceperley and Alder (1984)) and 

essentially exact solutions which are antisymmetric with respect to 

particle inerchange may be obtained.

In Chapter 2 we present an alternative procedure which does not require 

any prior knowledge of the nodal surfaces. Results of ab initio random walk 

calculations performed on the ground and excited states of small electronic 

systems using this approach are presented.

Identical particle statistics are not important in the ground state of
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an assembly of  Bosons so exac t  quantum Monte Car lo  c a l c u l a t i o n s  can be 

performed u s ing  Boltzmann s t a t i s t i c s .  This  s i m p l i f i c a t i o n  i s  e x p l o i t e d  in  

Chapte rs  3 and 4 where we d i s c u s s  the  a p p l i c a t i o n  of  ze ro  te m p e ra tu r e  

quantum Monte Car lo  methods to  the  s tudy  of  the  ground s t a t e  p r o p e r t i e s  of  

m olecu la r  c l u s t e r s  and Boson s o l i d s  and l i q u i d s .

Recen t ly  t h e r e  has been a g r e a t  dea l  of  i n t e r e s t  bo th  t h e o r e t i c a l l y  and 

e x p e r i m e n t a l l y  in  the  s tudy  of  c l u s t e r s  of atoms and m o lecu le s .  With 

m olecu la r  beam t e c h n iq u e s ,  well  d e f in e d  c l u s t e r s  can be p repa red  i n  a 

c o l l i s i o n  f r e e  env i rom ent.  The i n t e r n a l  degrees  of freedom of c l u s t e r s  

produced by th e s e  methods a re  s t r o n g l y  "coo led"  so exper im en ta l  r e s u l t s  can 

be compared with  ground s t a t e  c a l c u l a t i o n s .  In Chapter  3 we d e s c r i b e  th e  

r e s u l t  of some ground s t a t e  quantum Monte C ar lo  c a l c u l a t i o n s  performed on 

small  c l u s t e r s  of wate r  m o lecu le s .  A method f o r  s tu d y in g  the  i n t r a m o l e c u l a r  

v i b r a t i o n s  of molecule s  in  c l u s t e r s  us ing  th e  wave f u n c t i o n  o b ta in e d  from a 

ground s t a t e  quantum Monte Car lo  c a l c u l a t i o n  i s  p r e s e n t e d .  C a l c u l a t e d  

v i b r a t i o n a l  s p e c t r a  a r e  compared with  m o lecu la r  beam r e s u l t s .  The in p u t  t o  

t h e s e  c a l c u l a t i o n s  i s  a p o t e n t i a l  s u r f a c e  and we dem onst ra te  t h a t  comparing 

the  v i b r a t i o n a l  s p e c t r a  o b ta in e d  from ground s t a t e  quantum Monte C a r lo  

c a l c u l a t i o n s  w i th  the  r e s u l t s  of m o lecu la r  beam exper iments  p ro v id e s  a 

s e n s i t i v e  t e s t  f o r  th e  p o t e n t i a l  s u r f a c e .

' Comparison of bulk phase thermodynamic d a t a  o b ta in e d  from c l a s s i c a l  

s im u l a t i o n  s t u d i e s  w i th  ex p e r im en ta l  r e s u l t s  p ro v id es  a f u r t h e r  means of  

t e s t i n g  i n t e r m o l e c u l a r  p o t e n t i a l  s u r f a c e s  (B arke r ,  F i s h e r  and Watts  

(1 9 7 1 ) ] .  However, when quantum behaviour  i s  im por tan t  in  de te rm in ing  the  

p r o p e r t i e s  of bulk phase systems quantum s i m u l a t i o n  methods must be used .  

V a r i a t i o n a l  c a l c u l a t i o n s  on l i q u i d  ^He have been performed to  t e s t  

d i f f e r e n t  p a i r  p o t e n t i a l s  f o r  t h i s  system (Murphy and Watts  (1970),  Murphy
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(1972)). These methods provide an upper bound on the energy of the system 

and hence approximate ground state thermodynamic properties are obtained. 

Thus comparison with experiment is ambiguous. With the quantum Monte Carlo 

methods, however, different interaction potentials can be reliably tested 

(Whitlock et al. (1980)].

In Chapter 4 we consider applying the diffusion Monte Carlo method to 

study bulk phase quantum systems with strongly repulsive interactions. The 

basic algorithm is not useful for these studies and improvements in the 

efficiency and accuracy of the method are necessary. Importance sampling 

techniques, in which approximate many body wave functions are used to guide 

the diffusion Monte Carlo procedure to sample the more important regions of 

configuration space, greatly reduce the statistical fluctuations during the 

simulation. With these improvements efficient bulk phase quantum 

calculations can be performed.

The finite time step approximation is expected to be most severe in 

dense systems with strongly repulsive interactions. By using different time 

steps in bulk phase calculations the significance of this approximation is 

considered. At higher densities smaller time steps are used and over the 

range of step sizes considered in our work, little time step dependence is 

observed.

We have used the spherical part of a semiempirical intermolecular pair 

potential due to Buck et al. (1983) in diffusion Monte Carlo calculations 

on solid H2* The ground state energies obtained from these calculations are 

generally about 10% lower than the results of variational calculations and 

are in closer agreement with experiment. Inadequacies in the variational 

wave function are highlighted by comparing predicted structural properties 

with the results of the full quantum simulation.
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As mentioned e a r l i e r ,  the  quantum Monte Car lo  methods p rov ide  a g e n e ra l  

means f o r  s o l v in g  m u l t id im e n s io n a l  d i f f u s i o n  e q u a t io n s .  In th e  case  of  the  

ze ro  t e m p e ra tu re  methods,  s t a t i o n a r y  s o l u t i o n s  of  the  Sch röd inger  eq u a t io n  

a re  o b t a in e d .  Quantum Monte Car lo  methods can a l s o  be used t o  g ive  "t ime"  

evo lv ing  s o l u t i o n s  of  d i f f u s i o n  e q u a t i o n s .  The behaviour  of  a system a t  

non -ze ro  t e m p e ra tu r e s  i s  governed by th e  d e n s i t y  m a t r ix  which evo lves  as a 

f u n c t i o n  of  the  i n v e r s e  t e m p e ra tu r e ,  ß = VkgT, acc o rd ing  to  a d i f f u s i o n  

e q u a t io n  known as the  Bloch e q u a t io n .  The non-ze ro  t e m p e ra tu r e  quantum 

Monte Car lo  p rocedure  d e s c r ib e d  in  Chapter  5 uses  the  methods employed wi th  

th e  zero  t e m p e ra tu re  te c h n iq u e s  to  so lv e  the  Bloch e q u a t i o n .  From the  

e v o l u t i o n  of  the  s o l u t i o n ,  i n f o r m a t io n  a t  d i f f e r e n t  t e m p e ra t u r e s  i s  

o b t a in e d .

The f o r m u l a t io n  of  the  non-zero  te m p e ra tu r e  method p r e s e n t e d  he re  i s  

d i f f e r e n t  from the  pa th  i n t e g r a l  Monte Car lo  p rocedures  which have been 

deve loped r e c e n t l y  but  th e  methods a r e  e q u i v a l e n t .  F i n i t e  t e m p e ra tu r e  pa th  

i n t e g r a l  t e c h n iq u e s  have been used to  s tudy  a v a r i e t y  of  i n t e r e s t i n g  

problems .  The p r o p e r t i e s  of l i q u i d  ^He ( Pollock  and Ceper ley  (1984) )  and 

Neon (Thirumala i  e t  a l . (1984))  a t  non-zero  te m p e ra tu r e s  have been 

e x p lo re d .  S o lv a t io n  of  e l e c t r o n s  in  fu sed  s a l t s  ( P a r r i n e l l o  and Rahman 

(1 984 ) ) ,  the  p h y s i c a l  p r o p e r t i e s  of c l u s t e r s  of Argon atoms (Freeman and 

Doll  (1 9 8 5 ) ) ,  s o l v a t i o n  of  H atoms and muonium in  c l a s s i c a l  wate r  (öe Raedt 

e t  a l . ( 1 984))  as wel l  as the  c a l c u l a t i o n  of  e l e c t r o n i c  and v i b r a t i o n a l  

s p e c t r a  of molecule s  (Thi rum ala i  and Berne (1983),  (1984) )  a r e  some of the  

problems which have been exp lo red  r e c e n t l y  us ing  pa th  i n t e g r a l  methods.

The method developed  in  Chapter  5 uses  a c l a s s i c a l  d i s t r i b u t i o n  a t  some 

h igh  t e m p e ra tu re  as the  i n i t i a l  c o n d i t i o n  f o r  the  s o l u t i o n  of  the  Bloch 

e q u a t i o n .  A d i f f u s i o n  Monte C ar lo  p rocedure  i s  then a p p l i e d  to  " p ropaga te "
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the distribution through ß and the Bloch equation is simulated. This 

approach provides a means of obtaining results at a number of different 

temperatures during a single calculation. Information about quantum 

position and momentum distributions may be obtained using this approach as 

well as thermodynamic data.

In Chapter 6 the use of the non-zero temperature diffusion Monte Carlo 

method is demonstrated by considering some representative problems, 

including the one dimensional Morse and harmonic oscillators, quantum 

effects in neon gas and finally the quantum behaviour of the water dimer as 

a function of temperature. More accurate high temperature approximations 

must be used as the initial condition for the intramolecular vibrations of 

the cluster but classical results may be employed to give initial 

conditions for the intermolecular degrees of freedom.

Many classical simulations of systems of water molecules have been 

performed. It is not obvious that the assumptions of classical mechanics 

are valid for systems of light molecules which are able to bond strongly to 

one another. The results presented here complement those of Wallquist and 

Berne (1985) and we are able to study the onset of quantum behaviour for 

the intermolecular degrees of freedom of the water dimer as a function of

temperature.
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CHAPTER 2 BASIC QUANTUM MONTE CARLO, 

DEVELOPMENT AND SIMPLE APPLICATIONS

Introduction

In this chapter the quantum random walk method is developed and applied 

to some simple illustrative problems. The methods described are employed in 

subsequent chapters to study some important many body quantum problems.

Chapter 2 is organised as follows: After a brief description of basic 

quantum theory we consider the analogy between the Schrödinger equation and 

a diffusion process modified by chemical reaction. The analogy is used to 

develop a numerical model of the Schrödinger equation based on a "short 

time" approximation. The method produces an ensemble distributed according 

to the wave function and the number of systems in the ensemble decays at a 

rate proportional to the eigenvalue.

In Section 2.) the question of symmetry and the generation of nodal 

surfaces in the wave function is considered. A feedback mechanism for 

maintaining a stable ensemble is discussed. The stabilizing method provides 

an efficient means for estimating the eigenvalue but it allows only the 

ground state distribution to be sampled. Next, a procedure for forcing the 

distribution to remain orthogonal to the ground state is described. With 

this technique a stable excited state distribution can be sampled. After 

studying the excited vibrational states of molecular hydrogen we consider 

extending the approach to many dimensions, using the S and P states of the 

hydrogen atom as an example.

In Section 3.) we present a method for calculating expectation values
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of v a r io u s  o p e r a t o r s  from a quantum random walk c a l c u l a t i o n .  We a l s o  

c o n s id e r  importance  sampl ing  methods which a re  used to  improve the  

e f f i c i e n c y  of  quantum Monte Car lo  c a l c u l a t i o n s .

F i n a l l y  in  S e c t io n  H.) we co n s id e r  the  q u e s t i o n  of  i d e n t i c a l  p a r t i c l e  

s t a t i s t i c s .  A f te r  d i s c u s s i o n  of  some te c h n iq u e s  which have been used f o r  

t r e a t i n g  Fermi systems we c o n s id e r  g e n e r a l i s i n g  th e  method f o r  g e n e r a t i n g  

nodal  s u r f a c e s  d e s c r ib e d  in  S e c t io n  2 . )  so t h a t  an an t i sym m etr ic  

d i s t r i b u t i o n  i s  o b t a in e d .  With t h i s  p rocedure  systems c o n t a in in g  a few 

fe rmions  can be s im u l a te d .  As examples,  d i f f e r e n t  s p in  s t a t e s  of atomic 

hel ium and l i t h i u m  a re  modeled.

1 . )  The Basic Quantum Monte Car lo  Algori thm

a) Formal P r e l i m i n a r i e s

In quantum mechanics,  the  behaviour  of a system i s  de te rmined by the  

wave f u n c t i o n  \Jj(r_, t ) .  For a n o n - r e l a t i  v i s t i  c system,  \ | i ( r , t )  obeys the  

Schröd inger  eq u a t io n  (Merzbacher (1970))  which t a k e s  the  fo l l o w in g  form

ifi3_ \ K r , t )  = H iIj ( r , t ) ( 2 . 1 )
at

N  _  2 2

= I —  vk I| j(r, t)  + ( v ( r ) - V r e f ) ^ ( r , t )
k 2mk

/s

Here the  H i s  the  Hami l ton ian  o p e r a t o r ,  the  v e c to r  r  d e s c r ib e s  the  p o s i t i o n  

of  the N p a r t i c l e s  in  the  system and mk a re  the  p a r t i c l e  masses.  The 

f u n c t i o n  V(r)  g ives  the  i n t e r a c t i o n  energy and the  q u a n t i t y  Vr e f  i s  an 

a r b i t r a r y  r e f e r e n c e  on the  energy s c a l e  whose i n t r o d u c t i o n  w i l l  prove

u s e f u l  in  l a t e r  d i s c u s s i o n .
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There are an infinite number of solutions to equation (2.1). The set of 

solutions which are products of separate functions of time and space

ij;(r,t) = f(t) c|>(r) (2.2)

are of particular physical importance. Substituting (2.2) into equation 

(2.1) and separating variables we find that

and

f (t)
(E V r e f)

Vk <J)(r) + ( v ( r ) - V r e f ) ( E - V r e f ) <)>(r)

(2.3)

(2.H)

Where (E-Vref) is the separation constant.

Equation (2.4), the time independent Schrödinger equation, is an 

eigenvalue equation

H <|>(r) = (E-Vref) (j>(r)

Since H is a hermitian operator its eigenvalues, (E-Vref), are real. Thus 

f(t) is a purely oscillatory function of time.

For particular solutions of the form

\|<(r, t ) = e"it/1,‘(E"Vr’ef)^(r) (2.5)

the probability density, ij;*(r,t ) 14(r,t ), is independent of time. For this 

reason such solutions are said to represent "stationary states" of the 

system.

In a stationary state the expectation value of a time independent 

physical property represented by an operator, A, depends only on the time 

independent part of the solution and
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<A> ijj*(r_,t) Ai[»(r,t) dr J 4>*(r) A<t>(rO d r ( 2 . 6 )

General  s o l u t i o n s  of the  Schröd inger  eq u a t io n  can be c o n s t r u c t e d  by 

s u p e r p o s i t i o n  of  p a r t i c u l a r  s t a t i o n a r y  s o l u t i o n s .  Thus, i f  the  time 

in d e p en d en t  Schröd inger  eq u a t io n  y i e l d s  a s e t  of e i g e n f u n c t i o n s  4>n ( r )  which 

a r e  complete in  th e  sense  t h a t  any i n i t i a l  s t a t e ,  \Jj(r_,0), may be expanded 

in  te rms  of  them

t|j(r,0 )  = I  an c{>n (r)  ( 2 . 7 )
n

the n  th e  s o l u t i o n  f o r  a l l  l a t e r  t imes  w i l l  be of  the  form

i |»(r, t) = Iane~1 (En~vr e f 5 ^ ( r )  ( 2 . 8 ) 
n

In  t h i s  ch a p te r  we d e s c r ib e  a com puta t iona l  method f o r  s o l v in g  the  

e i g e n v a lu e  problem p r e s e n t e d  in  the  t ime independen t  Schröd inger  e q u a t io n .  

The p ro ced u re  in v o lv es  s im u l a t i n g  th e  t ime dependent  S chröd inger  e q u a t io n  

by making use  of  the  analogy between (2 .1 )  and an e q u a t io n  which d e s c r i b e s  

a combined d i f f u s i o n  and chemica l  r e a c t i o n  p r o c e s s .  In t h i s  s e c t i o n  we 

s h a l l  p r e s e n t  the  b a s i c  t e c h n iq u e  used t o  o b t a i n  ground s t a t e  p r o p e r t i e s .  

The q u e s t i o n s  of i d e n t i c a l  p a r t i c l e  s t a t i s t i c s  and wave f u n c t i o n  symmetry 

w i l l  be c o n s id e re d  in  l a t e r  s e c t i o n s .

b ) The D i f f u s i o n  Equat ion  Analogy,  a Numerical  Model of  th e  Schröd inger  

Equa t ion

D ef in ing  the  " im aginary  t ime" v a r i a b l e  x = i t / h  e n ab le s  the  wave 

e q u a t io n  given in  (2 .1 )  t o  be t rans fo rm e d  i n t o  the  f o l l o w in g

| i (L*T) = I  V ^ ( r , x )  -  ( V( r ) - V r e f  )t>( r_, x) ( 2 . 9 )

Equat ion  (2 .9 )  can be c o n s id e re d  in  terms of two s e p a r a t e  p r o c e s s e s .  The



first term on the right hand side has the form of an equation describing 

the diffusion of a concentration profile through a fluid. The second term 

resembles an equation which models exponential growth and decay or a first 

order chemical rate process. Thus the Schrödinger equation in imaginary 

time is analogous to an equation describing diffusion which is modified by 

a chemical reaction whose rate changes with position. In this analogy the 

wave function is treated as the density of diffusers.

In the absence of the "birth/death" term, the solution of the diffusion 

part of equation (2.9) with the initial condition

ijj(r, t=0) = <5(r-r0)

is well known

i |> ( r , x) N , -<D<-iW 2/i,dn 2 e
k

kT (2 .1 0)

Here rk is the position of particle k in three dimensional space and Dk is 

the diffusion coefficient of the particle and depends on its mass

Dk = /2mk

By interpreting the wave function as a density, equation (2.10) is treated 

as the distribution function for an ensemble of free particle systems 

moving in imaginary time. The evolution of the ensemble can be modeled on a 

computer. First a set of systems is established at r0. In a time At , each 

particle should sample a three dimensional Gaussian distribution centred on 

rko with variance Axk = (2DkAx)2. The distribution may be sampled 

numerically by displacing the particles in every system of the ensemble by 

distances Axk£ in each dimension. Here E, are random variables chosen from a 

standard normal distribution. If this procedure is repeated many times the
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ensemble d i s t r i b u t i o n  w i l l  sp read  out  as the  wave f u n c t i o n  given  in  

e q u a t io n  ( 2 .1 0 ) .

A numerica l  model fo r  s i m u l a t i n g  the  e f f e c t s  of the  p o t e n t i a l  term in  

e q u a t io n  (2 .9 )  can be dev ised  us ing  th e  analogy between t h i s  term and a 

phenomenologica l  r a t e  e q u a t io n .  The model in v o lv es  r e p l i c a t i n g  or  removing 

systems from an ensemble depending on the  p o t e n t i a l  energy .

Ig n o r in g  th e  d i f f u s i o n  te rm, e q u a t io n  (2 .9 )  g iv e s  t h a t  the  am pl i tude  of 

th e  wave f u n c t i o n  a t  some p o in t  r  changes in  t ime as fo l low s

- ( V ( r ) - V r e f ) * ( r )

Rear rang ing  and i n t e g r a t i n g  f o r  a f i n i t e  t im e ,  At , we have

ip-*-Aip x+Ax

1 ?  = -J(V-Vr e f )dT
Ip ^  X

Thus the  change in  am pli tude  of  the  wave f u n c t i o n  a t  r  dur ing  Ax i s  

Aip(r) = i p ( r ) ( e " (V(- )_Vref)AT-1)

Consequent ly  a t  t ime x + Ax we have

^(x+Ax) = ^ ( t ) + Alj,

( 2 . 11 )

= e~ (V vr e f ) Ax

The p o p u la t io n  of  the  ensemble can be made to  grow or decay acc o rd ing  

t o  e q u a t io n  (2 .11)  by d e f i n i n g  th e  b i r t h  p r o b a b i l i t y  as

Pb = e' ( v" vr e f ) At-1 (2 .12)

I f  a p a r t i c u l a r  system i s  in  a c o n f i g u r a t i o n  f o r  which V < Vr e f  then  the  

system i t s e l f ,  as well  as Pb r e p l i c a s ,  w i l l  be con t inued  i n t o  th e  nex t  t ime 

s t e p .  In g e n e ra l  Pb w i l l  be a p o s i t i v e  number w i th  i n t e g e r  and f r a c t i o n a l
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parts.

Pb = int(Pb) + frac (Pb)

The necessary births can be accomplished by producing int(Pb) replicas 

together with an extra replica included with a probability frac(Pb). When 

the energy of a system is such that V > Vref, there is a probability

pd = “pb that the system will "die” and be removed from the ensemble.

The numerical methods for treating the separate terms in the 

Schrödinger equation which were discussed above are exact independent of 

the size of the time step. Anderson (1975, 1976) has presented an 

approximate procedure for simulating the Schrödinger equation which 

involves combining the diffusion and birth/death processes by making a 

short time approximation. Thus it is assumed that the potential is 

approximately constant over the short distances through which systems move 

as a result of diffusion for a finite time At .
The idea of studying quantum problems using the analogy between the 

time dependent Schrödinger equation and a diffusion and birth/death process 

has been attributed to Fermi (Metropolis and Ulam (1949)). In the 1950’s 

several workers discussed various Monte Carlo methods based on this idea 

and Anderson (1975) presents a summary of these early references. Most of

the quantum Monte Carlo methods which have been devised involve using a

finite time step approximation. The Green’s function Monte Carlo method 

which was developed by Kalos and his coworkers (Kalos (1970), Kalos 

Levesque and Verlet (1974), Ceperley and Kalos (1979)) is a related 

technique which does not require the short time approximation and is 

essentially exact. In Chapter 4 we present a brief description of this

rather complicated procedure.



The algorithm given by Anderson is particularly simple and is 

summarised as follows:

1) Establish an ensemble of systems in some initial distribution.

2) Increament time by At and allow each ensemble member to diffuse by 

giving its particles random cartesian displacements, the 

components being chosen from Gaussian distributions of appropriate 

width.

3) Calculate the potential energy of each displaced system and, 

depending on this value, allow the system to replicate or "die".

Repeating steps 2) and 3) enables the imaginary time evolution of the 

initial ensemble to be followed and, if a sufficiently small time step is 

used, the ensemble motion models the evolution of the wave function.

The initial distribution can be expanded in terms of the eigenfunctions 

of the Hamiltonian and the time evolution is thus determined by equation 

(2.8), which can be written in imaginary time as

<Kr,x) = I ane (En~vref)t ^(r) (2.13)
n

As t 00 the sum will be dominated by the lowest energy eigenstate

contained in the initial expansion. Thus in the long time limit, the

simulation algorithm summarised above will produce an ensemble of systems 

distributed in space according to the eigenstate, <j)0 and since

<l«(r,T) = a0e'(E°_Vref)T *0(r) <2.1 M)

the asymptotic population decay rate will give an estimate of the 

eigenvalue E0.

To illustrate how the algorithm behaves, in Figure 2.1 we present the

results for a simulation of the Schrödinger equation describing a one
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dimensional harmonic oscillator. Parameters are chosen to model a proton in 

a harmonic well V(x) = £kx2 with force constant k = 100 KA"^. The initial 

condition was an ensemble of 100 systems, all with zero displacement. 

Figure 2.1a shows the evolution of this ensemble in imaginary time. Here, 

histograms of the ensemble displacements have been accumulated at various 

times along the trajectory. The curves are the result of averaging over 100 

such trajectories all having the same initial condition. At short times the 

ensemble distribution undergoes some initial spreading following which a 

stable Gaussian distribution of constant width is obtained. The amplitude 

of the distribution decays along the trajectory. In Figure 2.1b we plot the 

logarithm of the ensemble population as a function of time. After some 

transient behaviour, associated with the spreading of the initial 

distribution, a constant exponential decay rate is established. The 

asymptotic slope of this line gives the ground state energy of the 

oscillator.

There are several problems with the simple minded algorithm described 

in this section. The birth/death step causes exponential growth or decay of 

the ensemble population. Thus at long times, if the population is decaying 

there will be problems with small sample sizes while if population growth 

occurs the available computer storage will be exceeded. Time step 

dependence must also be considered. In the limit as At ■* 0 the separation 
of the diffusion and birth/death processes is justified. For a finite time 

step, however, it is an approximation which can lead to numerical errors. 

Finally, the crude algorithm simulates states for which the wave function 

is everywhere positive so that only the ground state of a system of Bosons 

can be studied. In general, wave functions have regions of both positive

and negative density and a procedure for handling more general problems
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must be developed .

2 . )  E x tens ion  of th e  Bas ic  Algori thm

a) Wave Func t ion  Symmetry

The Monte Car lo  method f o r  modeling the  Schröd inger  e q u a t io n  d i s c u s s e d  

i n  S e c t io n  1 . )  d e a l t  only  wi th  s i m u l a t i n g  terms in  the  H am i l to n ian .  So f a r  

we have s a i d  n o th ing  about  boundary c o n d i t i o n s  or  wave f u n c t i o n  symmetry. 

We c o n f in e  o u r s e lv e s  to  c o n s id e r i n g  only  r e a l  wave f u n c t i o n s .  In  g e n e ra l  

such wave f u n c t i o n s  have p o s i t i v e  and n e g a t iv e  r e g i o n s .  Consequen t ly  a 

t e c h n iq u e  f o r  g e n e r a t i n g  nodal  s u r f a c e s  in  th e  sampled d i s t r i b u t i o n  must be 

d e v i s e d .

Anderson and F r e i h a u t  (1979) d i s c u s s e d  a random walk method f o r  

sampl ing th e  d i f f e r e n c e ,  6 = ip— , between the  ground s t a t e  wave f u n c t i o n  \\> 

and a t r i a l  f u n c t i o n  ipp. In g e n e ra l  the  f u n c t i o n  6 w i l l  have nodes and 

t h e i r  random walk i n v o lv e s  p o s i t i v e  and n e g a t iv e  systems which cance l  when 

o p p o s i t e  s igned  systems e n t e r e d  the  same r e g io n  of  s pace .  The method was 

a p p l i e d  to  s e v e r a l  one d im ens ional  problems and when used i t e r a t i v e l y  gave 

a s e r i e s  of s u c c e s s i v e  c o r r e c t i o n s  to  th e  t r i a l  f u n c t i o n  which improved the  

e f f i c i e n c y  and accu racy  of ground s t a t e  c a l c u l a t i o n s .

We have c o n s id e re d  us ing  t h i s  idea  f o r  t r e a t i n g  wave f u n c t i o n s  with  

nodes .  An ensemble c o n t a i n i n g  p o s i t i v e  and n e g a t iv e  weighted  components i s  

e s t a b l i s h e d .  Members of  the  ensemble d i f f u s e  and r e p l i c a t e  in  t h e  manner 

d e s c r ib e d  in  S e c t io n  1 . ) .  By a l low ing  o p p o s i t e  s igned  systems to  a n n i h i l a t e  

when they  e n t e r  the  same r e g io n  of  s p a c e ,  a node may be g e n e r a t e d .  With th e  

a l g o r i th m  d e s c r ib e d  in  S e c t io n  1. )  " d e a t h ” could  only occur as the  random
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walkers climbed up the walls of the potential surface. When opposite signed 

systems are introduced and annihilation occurs, the boundary conditions on 

the wave function also give the possibility for "death".

Figure 2.2 again shows results from a quantum simulation of a harmonic 

oscillator. Now however the initial condition was 50 positive random 

walkers placed at +a and an equal number of negative systems at -a. The 

annihilation step was included at the end of each time step after the 

systems had diffused and replicated. Two systems of opposite sign were 

allowed to annihilate if they were separated by a distance less than some 

small value. From the figure we see that the ensemble distribution 

propagates to the first excited state wave function after some transient 

behaviour. Figure 2.2b demonstrates that the asymptotic population decay 

rate gives the first excited state eigenvalue. Later in this section we 

consider extending the annhilation procedure to more than one dimension and 

in Section 4.) we discuss the question of annihilation of systems with many 

identical particles.

b) Producing a Stable Ensemble

From equation (2.14) a stable ground state population may be obtained 

by setting the value of the reference in the energy scale, Vref, equal to 

the ground state energy E0. To use this method requires prior knowledge of 

the ground state energy. We might consider setting Vref to some guess at E0 

and monitoring the population as the simulation proceeds. Adjusting Vref so 

that on average the population neither grows nor decays gives a means of 

estimating E0.

A dynamic adjustment procedure used by Anderson (1975) provides an

effective means of stabilising the population. We require a stable ensemble
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with average population Nc. At the end of each time step a new value for 

Vref is chosen according to the following expression

W t + At - <v>t - “(NT-NC) (2.15)

Here Nx is the instantaneous total number of systems in the ensemble and 

<V>T is the average potential energy. The parameter a is a positive energy 

which controls the size of the population fluctuations. As i->“ the spatial 

distribution will be approximately constant and <V>T will not change 

appreciably with time. Choosing Vrefx+Ax according to (2.15), gives an 

energy reference which is appropriately larger or smaller than <V>T so that 

on average the births or deaths in the next time step will correct any 

discrepancey between NT and Nc. If the parameter a is too large, the feed 

back mechanism may become unstable.

An understanding of the influence of the feed back mechanism described 

above can be obtained by expanding the distribution in terms of the 

eigenfunctions {4>n}

ip(r»x) = 1 an(i) ^n^H) (2.16)
n

Here the exponential decay factors appearing in equation (2.13) have been 

replaced by time varying expansion coefficients an(i). When Vrep is varied 

with time the coefficients no longer exhibit decoupled exponential decay.

To proceed we consider the Schrödinger equation in which the reference 

energy varies

f~(-’ t) - [jjjV - (v(r) - vref (t) ) ] iKr.-t) (2.17)

By substituting the expansion (2.16) into (2.17), using the fact that the 

<}>n are eigenfunctions of H and form an orthonormal set, and integrating
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over a l l  space  we f i n d  t h a t  the  c o e f f i c i e n t s  s a t i s f y  th e  f o l l o w in g  

d i f f e r e n t i a l  eq u a t io n s

-5 7  = - ( E n-Vr e f ( T ) ) a n ( T) (2 . 18)

These e q u a t io n s  a re  coupled th rough  the  f u n c t i o n  Vr e p ( x ) .  The e x p l i c i t  form 

of the  coupl ing  can be found by w r i t i n g  the  e x p re s s io n  f o r  the  Vr e f 

ad ju s tm en t  ( eq u a t io n  ( 2 .1 5 ) )  in  te rms of the  e i g e n f u n c t i o n  expans ion .

When o p p o s i t e  s igned  systems a n n i h i l a t e  one a n o th e r ,  the  t o t a l  number 

of systems in  th e  ensemble a t  t ime t i s  p r o p o r t i o n a l  to  the  a r e a  under the  

f u n c t i o n  |ijj(r, t ) |  thus  we can w r i t e

Nx = { | I  a n ( t ) M i l )  I dL 
n

S i m i l a r l y ,  the  average of  the  p o t e n t i a l  energy a t  t ime t can be w r i t t e n  as

j  1 1  a n ( t) <J>n ( £ )  | V ( r )d r  
<V>T = n_____________________

{ | I a n ( t) cj)n ( r )  | dr 
n

S u b s t i t i n g  t h e s e  r e s u l t s  i n t o  (2 .15)  g iv e s  the  fo l l o w in g  e x p r e s s i o n  f o r  the  

t ime evo lv ing  energy r e f e r e n c e

J I I  a n<T) M i l )  I V (r )d r  (2 .19)
V r e f ( l )  "  — f - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -  “  a  [ J  | I  a n ( t )  ^ n ( £ ) | d H  “  N c ]

J I 5! a n ( t )  <J)n ( r ) | d L  n
n

Equat ions  (2 .18)  and (2 .19)  c o n s t i t u t e  a s e t  of coupled d i f f e r e n t i a l  

e q u a t io n s  which d e s c r i b e  how the  am pl i tudes  of the  d i f f e r e n t  e i g e n f u n c t i o n  

components change when Vr e f i s  a d j u s t e d  acco rd ing  to  ( 2 .1 5 ) .  A q u a l i t a t i v e  

u n d e r s t a n d in g  of  the  e f f e c t s  of a d j u s t i n g  Vr e f can be o b t a in e d  by
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considering the behaviour of the solutions of (2.18) and (2.19) for a 

problem where the eigenvalues and eigenfunctions are known.

Harmonic oscillator eigenvalues and eigenfunctions have been used, and 

equations (2.18) and (2.19) solved numerically to give the solutions shown 

in Figure 2.3a. The initial distribution was dominated by the first excited 

state eigenfunction and contained small components of the ground and other 

excited states. Through the nature of the couplings introduced in Vref(i), 

the lowest lying state contained in the initial distribution is amplified 

at the expense of the other states. Further, at long times the amplitude 

of the lowest energy initial state attains a constant value and the excited 

state contributions decay to zero.

Behaviour similar to this can be observed in a random walk simulation 

using the Vref adjusting algorithm. The wave function is represented by an 

ensemble of positive and negative systems and can be written in the 

following form

4>(H»t) = I 6(r-rp(i)) - I <5 (r-r̂j ( t ) ) (2.20)
p m

Here rp(x) and r^x), respectively, give the positions of positive and 

negative systems at time x. When xp(jn, x) is written in terms eigenfunction 

expansion in (2.16), the expansion coefficients are obtained from the 

overlap between ^ and the eigenfunctions so that

an(x) = j i> (r, x)
~ I n̂̂ -Hp̂ T-)) “ I ^n^Urn^T))

p m

(2.21)

The second equality is obtained by substituting (2.20) and using the 

properties of integrals over 6 distributions.
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Equation (2.21) can be used to resolve the ensemble distribution into 

its eigenfunction components. Figure 2.3b shows the evolution of the first 

five expansion coefficients calculated, using equation (2.21), during a 

simulation of the harmonic oscillator in which Vref was adjusted according 

to equation (2.15). The initial condition was an ensemble of fifty positive 

systems at +a and fifty negative systems at -a. An annihilation step was 

included in the algorithm. The ensemble is dominated by the ground state 

distribution at long times.

It is interesting to note that the initial distribution for the random 

walk calculation considered above contains no component of the ground 

state. If the system of differential equations (2.18) and (2.19) is solved 

with this initial condition the results shown in Figure 2.3c are obtained. 

The first excited state establishes itself with constant amplitude while 

the other excited states decay. Throughout the calculation the ground state 

remains with zero amplitude. The qualitative difference between the 

behaviour of the solutions of equations (2.18), (2.19) and the results of 

the simulation is due to the fact that the equations do not include the 

statistical fluctuations which occur in the simulation algorithm. Thus in 

Figure 2.3b we see a component of the ground state enter the ensemble 

distribution through statistical noise which is amplified and dominates the 

asymptotic ensemble distribution.

We have seen that the Vref adjustment algorithm can produce a stable 

ensemble distributed according to the ground state eigenfunction. The 

algorithm also provides a means of estimating the ground state eigenvalue 

obtained as the average of Vref which holds the population approximately 

constant in the long time limit.
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c) Orthogonal  F i l t e r i n g  and S t a b l e  E x c i ted  S t a t e  D i s t r i b u t i o n s

In  o rd e r  to  use the  Vr e f  a d j u s t i n g  a l g o r i t h m  to  o b t a i n  a s t a b l e  e x c i t e d  

s t a t e  d i s t r i b u t i o n  we need to  d e v i se  a scheme to  remove ground s t a t e  

components which may b u i l d  up as a r e s u l t  of s t a t i s t i c a l  n o i s e .  From 

eq u a t io n  (2 .21)  the  o v e r la p  between the  ensemble d i s t r i b u t i o n  and the  

ground s t a t e  wave f u n c t i o n  i s  g iven by

a0 ( = I 4> o ( r p(x) )  “ I cf>0 ( i j t i ( t ) )  (2 .22)
p m

By f o r c i n g  a0 (x) to  remain app rox im a te ly  z e ro ,  ground s t a t e  components can 

be f i l t e r e d  from the  d i s t r i b u t i o n .  To use  e q u a t io n  ( 2 .2 2 ) ,  th e  ground s t a t e  

wave f u n c t i o n  must be known in  advance .

One p rocedure  t h a t  en su res  o r t h o g o n a l i t y  i s  summarised as fo l l o w s :  At 

the  end of  each t ime s t e p  we c a l c u l a t e  the  o v e r l a p  with  th e  ground s t a t e .  

I f  a0 ( i )  i s  g r e a t e r  than  some t o l e r e n c e  6 then  th e  o v e r l a p  must be reduced .  

By removing a p o s i t i v e  system or i n t r o d u c i n g  a n e g a t iv e  sys tem,  a0 (x) can 

be changed a p p r o p r i a t e l y .  I f  n e c e ss a ry  th e  o v e r l a p  can be i n c r e a s e d  in  a 

s i m i l a r  f a s h i o n .  The t o t a l  number of sys tems shou ld  not  be d i r e c t l y  a l t e r e d  

by th e  o r t h o g o n a l i s a t i o n  s t e p ,  r a t h e r ,  on ly  th e  shape of  the  d i s t r i b u t i o n  

shou ld  be changed.  In t h i s  way th e  r a t e  of change of the  p o p u l a t i o n  i s  not  

d i r e c t l y  i n f l u e n c e d  by the  o r t h o g o n a l i z a t i o n .  By r e p l i c a t i n g  and removing 

o p p o s i t e  s ig n ed  systems the  r e l a t i v e  numbers of p o s i t i v e  and n e g a t iv e  

components can be a d j u s t e d  so t h a t  a0 (x) i s  f o r c e d  to  f l u c t u a t e  around 

z e r o .

F igu re  2.4 shows th e  e i g e n s t a t e  decomposi t ion  of  a harmonic o s c i l l a t o r  

s i m u l a t i o n  which uses  a Vr e f  a d j u s t i n g  a lg o r i th m  t o g e th e r  w i th  th e  ground 

s t a t e  f i l t e r i n g  scheme d e s c r ib e d  above.  The maximum am pl i tude  of  th e  ground 

s t a t e  wave f u n c t i o n  was used as the  t o l e r a n c e  f o r  the  o r t h o g o n a l i s a t i o n .  An
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initial ensemble consisting of fifty negative systems at both +a and -a and 

one hundred positive systems at the origin was used. This condition 

resembles the second excited state of the oscillator. We see from the 

figure that there is also an initial component of the fourth excited state. 

As time is advanced the contributions from <j>2 and $4 decay and the first 

excited state component grows and stabilizes, dominating the asymptotic 

distribution. The ground state noise level does not build up during the 

calculation indicating that the orthogonalization procedure effectively 

filters ground state components from the ensemble. There are, however, 

significant components of the higher excited states which do not decay to 

zero and which perturb the stable excited state distribution.

The procedure discussed above can be used to simulate higher excited 

states. With such calculations, all the lower energy eigenfunctions must be 

known and the ensemble distribution is held orthogonal to these states. As 

an example consider the second excited state so there are two orthogonality 

conditions to be satisfied.

a0(i) = I 4>0 tllp(T)) ~ l o (jjn(T)) = 0 (2.23)
p m

ai ( t) = I <f>i (llp( t)) “ I <h (ijnC t)) = 0 (2.24)

The situation is now complicated because $1 can have both positive and 

negative values. There are a number of possible alternatives which are

summarised in Table 2.1.
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Table 2.1 Procedure for Maintaining Orthogonality to the ground and first 
exited states

Tolerence Condition

a0  ̂<$o a i > <51

ao  ̂̂ o ai < 6i

a0 < <5o a i > 6 i

a0 < <50 ai < 5i

Corrective Action

insert withdraw

+ _ +m p

m~ p~

P

P +

m

In the table, the notation m+ represents a negative system which is in a 

region of space where the value of the first excited state eigenfunction is 

positive. Thus for example, if a0 > 60 and the excited state overlap 

a x > 6 1 , the action which will correct these discrepancies and leave the 

total population unaltered is to introduce an extra negative system and 

withdraw a positive system. Both changes should occur in regions where cj>-| 

is positive. An alternative to the replication and removal of opposite 

signed systems is to change the sign of a single system. We have used this 

alternative in applications only when there are no systems available for 

replication in the appropriate region of space.

The excited state method detailed in this section has been used to 

simulated the first few vibrational eigenstates of the H 2 molecule. The 

vibrational potential surface presented by Kolos and Wolniewicz (1975) was 

used. A ground state calculation was first performed and a histogram of the 

ensemble distribution accumulated. Fitting a piece wise cubic polynomial 

through this data gave a form for the ground state wave function which 

could be used for the orthogonalization step in the excited state 

calculations. Eigenfunctions for the ground, first, and second excited
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vibrational states obtained in this way are presented in Figure 2.5. In 

Table 2.2 we give the corresponding eigenvalues which were calculated from 

the average value of Vref required to hold the population approximately 

constant. The ground state energy agrees with the result of Kolos and 

Wolniewicz and the excited state energies are slightly too high. The 

discrepancy probably results because of higher eigenstate impurities 

(Figure 2.4) which may arise through noise introduced by the 

orthogonalization procedure.

Table 2.2. Vibrational Energies

V Random Walk

0 -5.19

1 -4.58

2 -3.97

of the H2 Molecule (in 10^°K) 

Kolos and Wolniewcz (1975) 

- 5.20 

-4.60 

-4.03

d) System Annihilation in Many Dimensions

For multidimensional systems the annihilation step becomes complicated. 

When the system contains many indistinguishable particles, comparing two 

systems requires all possible permutations of the particle labels to be 

considered. With such systems the problem of identical particle statistics 

becomes important. This question will be discussed in more detail in 

Section 4.). A second problem stems from the difficulty in defining the 

region of space occupied by a member of the ensemble. If a system occupies 

only a single point and is thus represented by a multidimensional delta 

distribution, the probability of two systems annihilating one another is

vanishingly small. In this case an ensemble with an extremely large number
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of members would be required otherwise the opposite signed systems could 

never find one another, no annhilations would occur, and two opposite 

signed ground state distributions would result. If the members of the 

ensemble occupy a non-infinitessimal volume of the configuration space, a 

finite ensemble can be used.

The simplest means for giving the systems a finite size is to use a 3N 

dimensional rectangular grid to define the configuration space. Instead of 

being represented by a multidimensional delta distribution, each system now 

occupies a small hypercube. Results obtained using this procedure will 

depend on the size of grid and on the number of systems in the ensemble. If 

the grid were too fine and the ensemble population to small to fill the 

space then opposite signed systems could easily avoid one another and 

positive and negative ground state distributions would again result. The 

problem can be remedied by increasing the number of systems in the 

ensemble, which increases the computational effort involved with the 

calculation. Alternatively, we may use a coarser spatial grid. Adopting the 

latter measure means that the resolution of the spatial features of the 

wave function, such as the nodal surfaces, will be poorer and the accuracy 

of the eigenvalue effected. Ideally, the number of systems in the ensemble 

may be increased till a particular spatial grid becomes "saturated". Beyond 

this point, any increase in the number of systems will have no effect on 

the calculation and the results will depend only on the spatial resolution.

A more effective scheme for dividing the configuration space is to 

allow systems of opposite sign to penetrate the same regions without 

annhilating one another completely. The positions of the systems are now 

considered as the centres for a local wavefunction density which may take a

Gaussian form for example. In this case the width of the Gaussian is
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analogous to the grid size. The nodes of a wave function are generaly 

curved sufaces in hyperspace. Using a local Gaussian density should provide 

a better representation of these surfaces than the rectangular grid. Thus 

fewer systems occupying larger volumes should give comparable accuracy.

When represented by a Gaussian density profile, the spatial extent of 

system i is given by

When represented as delta distributions the annihilation probability for 

opposite signed systems was zero if their respective infinitessimal volume 

elements did not overlap and one if there was any overlap at all. A 

consistent definition for the annihilation probability is thus

For system with Gaussian density the annihilation probability becomes

An efficient scheme for implementing the annihilation step involves

Pi(r) (ä)3N/2 e-a(r-ri )2 (2.25)

The overlap of the density profiles for systems i and j is then

(2.26)

00

pa(|ri-rj|) = 2 { S(t)dt

I Li I
(2.27)

(2.28)

1-erf(^|ri-rJ | )

first using a coarse rectangular grid to find the systems which are close
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to one another. We then evaluate the probabilities and perform the 

annihilation. If several cancellations are possible we proceed in order of 

probability.

e) The Hydrogen Atom

To demonstrate the use of the techniques described in this section the 

lowest energy S and P states of the hydrogen atom have been considered. 

Despite its analytic solution, this example presents a non-trivial 

numerical problem. Grimm and Storer (1969) developed an iterative method 

for solving the Schrödinger equation which employed a short time 

approximation to the Green’s function. The approach is useful for problems 

which can be reduced to one dimension and as an example they studied the 

S-states of the hydrogen atom. Anderson and Freihaut (1979) studied the 

lowest energy S-state using a diffusing random walk in three dimensions and 

as a starting point we have repeated this calculation.

In atomic units and imaginary time the Schrödinger equation for the 

hydrogen atom is

= |V24, - (v (r)-v ref)\|j

where V(r) = -'/r

The nuclear attraction term gives an infinite birth rate at the nucleus, 

thus sampling small distances may lead to uncontrollable growth of the 

ensemble population. To prevent problems caused by the nuclear attraction 

we have used the method suggested by Anderson (1976). Any electrons 

entering a small sphere of radius rc about the nucleus experience an 

averaged nuclear attraction given by
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^nuc^r<'r c^ “ ^ / 2  Z r c ^

he re  Z i s  the  charge of  the  n u c l e u s .  I f  r c i s  of the  o rde r  of t h e  d i f f u s i o n  

s t e p  s i z e  then  the  e r r o r  in  us ing  the  i n t e g r a t e d  n u c l e a r  a t t r a c t i o n  w i l l  be 

of  s i m i l a r  magnitude to  the  f i n i t e  t ime s t e p  e r r o r .

The i n i t i a l  ensemble i n  our c a l c u l a t i o n  on th e  ground e l e c t r o n i c  s t a t e  

was a s e t  of 200 p o s i t i v e  sys tem s .  In  each system the  e l e c t r o n  was p laced  

randomly w i th in  a cube c e n t e r e d  on the  nuc leus  having a s i d e  l e n g t h  of 

5 a . u . .  We used a t ime s t e p  of  0.01 a . u .  and a l lowed the  systems to  d i f f u s e  

and r e p l i c a t e  th roughout the  t h r e e  d im ens ional  c o n f i g u r a t i o n  space .  

A d ju s t in g  Vr e f  m a in ta ined  a s t a b l e  ensemble.  A f te r  e q u i l i b r a t i o n ,  averages  

were accumula ted  f o r  200 a . u . .  The average  va lue  of  Vr e f  gave an e igenva lue  

e s t i m a t e  of E-|S = - .5 0 4  ± 0.005 a . u .  which i s  in  good agreement with  the  

va lue  o b ta in e d  by Anderson and c l o s e  to  the  a n a l y t i c  r e s u l t  ( - 0 . 5  a . u . ) .

To t e s t  the  methods f o r  s i m u l a t i n g  e x c i t e d  s t a t e s  which have been 

deve loped  in  t h i s  s e c t i o n  we now co n s id e r  m ode l l ing  th e  d eg e n e ra te  2p s t a t e  

of  the hydrogen atom. The d i f f e r e n t  p s t a t e s  have nodes in  t h e i r  angu la r  

d i s t r i b u t i o n s  and an ensemble c o n t a in in g  o p p o s i t e  s igned  members which may 

a n n i h i l a t e  one ano the r  must be used .  In our s t u d i e s  we l e t  each system 

r e p r e s e n t  a c e n t r e  of Gaussian  d e n s i t y  as d e s c r ib e d  in  th e  p rev ious  

s u b s e c t i o n  and the  a n n i h i l a t i o n  p r o b a b i l i t y  f o r  o p p o s i t e  s igned  systems i s  

given  in  eq u a t io n  ( 2 .2 8 ) .

A Vr e f a d j u s t i n g  a lg o r i th m  was used to  m a in ta in  a s t a b l e  ensemble and 

th e  ground s t a t e  components were removed from the  c a l c u l a t i o n  by the  

o r t h o g o n a l i z a t i o n  p rocedure  d e s c r ib e d  e a r l i e r  i n  t h i s  s e c t i o n .  To o b t a i n  a 

s t a b l e  2p s t a t e ,  the  ensemble d i s t r i b u t i o n  must a l s o  be he ld  o r th o g o n a l  to  

th e  d eg en e ra te  2s s t a t e .  Thus a t  the  end of  each t ime s t e p  th e  ove r lap

between the  ensemble d i s t r i b u t i o n  and both  the  1s and 2s wave f u n c t i o n s  was
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e v a l u a t e d  us ing  the  a n a l y t i c  forms f o r  t h e s e  f u n c t i o n s .  The p o s i t i v e  and 

n e g a t iv e  p o p u la t io n s  were a d j u s t e d  as o u t l i n e d  in  Table  2.1 to  keep the

o v e r la p  between the  sampled d i s t r i b u t i o n  and the  1s and 2s s t a t e s  s m a l l .

We have performed c a l c u l a t i o n s  us ing  d i f f e r e n t  va lues  of the  Gaussian  

w id th  paramete r  and a l s o  co n s id e re d  the  e f f e c t s  of changing th e  number of 

systems in  the  ensemble.  A t ime s t e p  of  Ax = 0.01 a . u .  was used in  a l l

t h e s e  c a l c u l a t i o n .  In  F igu re  2 .6a  we p r e s e n t  the  e ig en v a lu e  e s t i m a t e  as a 

f u n c t i o n  of the  width  param ete r  a .  When a i s  i n c r e a s e d  the  Gaussian  p r o f i l e  

nar row s .  For systems which occupy l a r g e r  volumes of c o n f i g u r a t i o n  space  

(low va lues  of a ) ,  we see  t h a t  the  e ig e n v a lu e  i s  over e s t i m a t e d  by th e

quantum Monte C ar lo  c a l c u l a t i o n .  These h ig h e r  e n e rg i e s  r e s u l t  because  th e  

l a r g e r  systems a n n i h i l a t e  one ano the r  too  r a p i d l y  in  the  r e g io n  of  the  

node.  As a i s  i n c r e a s e d ,  th e  c a n c e l l a t i o n  of  o p p o s i t e  s igned  systems i s  

l e s s  e f f e c t i v e  and the  e ig e n v a lu e  e s t i m a t e  f a l l s .  When a f i n i t e  ensemble i s  

used ,  the  e ig e n v a lu e  e s t i m a t e  te nds  to  the  ground s t a t e  r e s u l t  i n  t h e  l i m i t  

as a -> 00.

As d i s c u s s e d  e a r l i e r  in  the  s e c t i o n ,  f i x i n g  the  " s i z e ” of  the  systems 

de te rm ines  the  s p a t i a l  r e s o l u t i o n  of the  c a l c u l a t i o n .  For a g iven  

r e s o l u t i o n ,  we may i n c r e a s e  the  number of systems in  the  ensemble,  N, and 

th e  e ig en v a lu e  e s t i m a t e  i s  seen to  i n c r e a s e .  This  can be unders tood  in

te rms of packing more ensemble members i n t o  the  f i n i t e  volume of 

c o n f i g u r a t i o n  space sampled by the  wave f u n c t i o n .  E v en tu a l ly  the  t o t a l  

volume to  be sampled w i l l  be ad eq u a te ly  f i l l e d  by systems of a g iven s i z e  

and beyond t h i s  p o in t  the  e ig en v a lu e  e s t i m a t e  w i l l  not  change as N i s  

i n c r e a s e d .  The energy o b ta in e d  in  the  l i m i t  as N -*• 00 w i l l  be the  b e s t  

e ig e n v a lu e  e s t i m a t e  f o r  a g iven s p a t i a l  r e s o l u t i o n .  F u r t h e r ,  t h i s

a s y m p to t ic  e s t i m a t e  shou ld  be an upper bound f o r  the  energy s i n c e  poorer
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nodal  r e s o l u t i o n  causes  e x c e s s iv e  a n n i h i l a t i o n  in  th e  r e g io n  of  th e  node.

F ig u re  2.6b  shows how the  c a l c u l a t e d  e l e c t r o n  d i s t r i b u t i o n  f o r  the  

p s t a t e  i s  i n f l u e n c e d  by changes in  th e  nodal  r e s o l u t i o n  w h i l s t  ho ld ing  the  

number of systems f i x e d .  We accumula ted  s e p a r a t e  h i s tog ram s  of th e  d i s t a n c e  

of  the  e l e c t r o n  from the  nuc leus  f o r  th e  p o s i t i v e  and n e g a t iv e  sys tems .  

These two d i s t r i b u t i o n s  were always found to  be i d e n t i c a l  w i th in  the

s t a t i s t i c a l  u n c e r t a i n t y .  In  the  f i g u r e  we p r e s e n t  th e  r a d i a l  e l e c t r o n

d e n s i t y  o b ta in e d  from the  average  of the  p o s i t i v e  and n e g a t iv e

d i s t r i b u t i o n s .  For compar ison,  the  a n a l y t i c  2p e l e c t r o n  d e n s i t y  i s  a l s o

g iv e n .  We see  t h a t  as the  s i z e  of  the  systems i s  i n c r e a s e d  the  maximum in  

th e  e l e c t r o n  d e n s i t y  s h i f t s  to  l a r g e r  r .  E l e c t r o n  d e n s i t y  i s  d e p l e a te d  

w i t h i n  th e  r e g io n  of the  node (r=0) due t o  the  e x c e s s iv e  a n n i h i l a t i o n  of 

the  l a r g e  sys tem s .  When the  systems a re  too  smal l  and t h e r e  a re  

i n s u f f i c i e n t  numbers to  f i l l  the  s p ace ,  th e  e l e c t r o n  d e n s i t y  p e n e t r a t e s  too  

c l o s e  to  the  nuc leus  due to  i n e f f e c t i v e  a n n i h i l a t i o n .  F igu re  2 .6c  shows 

t h a t  i n c r e a s i n g  the  number of systems f o r  a g iven  nodal  r e s o l u t i o n  pushes 

th e  e l e c t r o n  d e n s i t y  out  s i n c e  a n n i h i l a t i o n  becomes more e f f e c t i v e  as the  

space  i s  f i l l e d .

Since the  2p s t a t e  i s  de g e n e ra te  our ensemble d i s t r i b u t i o n  w i l l  be a 

l i n e a r  combination  of  the  2p0 , 2p+i and 2p_i f u n c t i o n s  and th e  d i s t r i b u t i o n  

on average  i s  i s o t r o p i c .  To dem ons t ra te  t h a t  the  o r t h o g o n a l i z a t i o n  and 

a n n i h i l a t i o n  p rocedu res  a r e  e f f e c t i v e  i n  p roducing  a s t a b l e  node in  the  

o r i e n t a t i o n  space  we must c o n s t r u c t  a c o o r d i n a t e  system which r o t a t e s  w ith  

th e  sampled d i s t r i b u t i o n  and p r o j e c t  the  wave f u n c t i o n  onto  t h i s  r e f e r e n c e  

f rame.  We have done t h i s  by us ing  th e  v e c t o r  d e f ine d  by th e  average 

p o s i t i o n  of the  p o s i t i v e  systems as the  x - a x i s  in  a c o o r d in a t e  system which 

i s  now f i x e d  to  the  moving ensemble.  By p r o j e c t i n g  th e  ensemble
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d i s t r i b u t i o n  onto  the  x-y p lane  in  t h i s  c o o r d i n a t e  system and accum ula t ing  

a two d im ens iona l  h i s tog ram ,  th e  a ngu la r  r e s o l v e d  d i s t r i b u t i o n  p r e s e n t e d  in  

F ig u re  2.7 was o b t a in e d .  The two o p p o s i t e  s igned  lobes  of th e  2px wave 

f u n c t i o n  a re  s een ,  i n d i c a t i n g  t h a t  a s t a b l e  e x c i t e d  s t a t e  d i s t r i b u t i o n  can 

be s i m u l a t e d .

Anderson (1976) has performed quantum random walk c a l c u l a t i o n s  on the  

2p s t a t e  of hydrogen but  h i s  method r e q u i r e s  p r i o r  knowledge of  th e  nodal  

s u r f a c e .  I f  a random walker c r o s s e s  the  node then  i t s  walk i s  t e r m in a t e d .  

Anderson r e s t r i c t e d  h i s  random walks by t e r m i n a t i n g  th o s e  which c ro s s e d  the  

p la n e  x = 0 and in  t h i s  way he modeled the  p o s i t i v e  lobe  of  the  2px 

f u n c t i o n .  The f i x e d  node method i s  d i s c u s s e d  in  more d e t a i l  in  S e c t io n  4 . )  

where we c o n s id e r  s im u l a t i n g  wave f u n c t i o n s  d e s c r i b i n g  systems of  i d e n t i c a l  

Fermions .  The nodal  s u r f a c e s  of such wave f u n c t i o n s  a re  not  known e x a c t l y  

so the  f i x e d  node approach can only  be a p p l i e d  app ro x im a te ly .

I t  shou ld  be noted  t h a t  the  2p s t a t e  i s  p a r t i c u l a r l y  d i f f i c u l t  to  

s i m u l a t e  us ing  systems which a n n i h i l a t e  one a n o t h e r .  The r e a s o n  f o r  t h i s  

d i f f i c u l t y  i s  t h a t  the  wave f u n c t i o n  changes very r a p i d l y  i n  t h e  r e g io n  of 

th e  node.  Due to  th e s e  l a r g e  changes in  d e n s i t y  over very s h o r t  d i s t a n c e s ,  

h igh  r e s o l u t i o n  of  the  c o n f i g u r a t i o n  space  i s  r e q u i r e d .  For t h i s  reason  

l a r g e  numbers of systems occupying very  smal l  volumes must be used.  

R e s o lu t io n  of the  wave f u n c t i o n  a t  s h o r t  d i s t a n c e s  i s  very im p o r ta n t  w ith  

an a t t r a c t i v e  coulomb p o t e n t i a l  as the  energy i s  very l a r g e  in  t h i s  r e g io n .  

The e ig e n v a lu e  e s t i m a t e s  p r e s e n t e d  in  F igu re  2 .6a  could  be improved by 

u s in g  many s m a l l e r  systems but  t h e  c a l c u l a t i o n  soon becomes i n t r a c t a b l e .

F o r t u n a t e l y ,  f o r  o th e r  i n t e r e s t i n g  sy s tem s ,  the  wave f u n c t i o n  does not  

change so r a p i d l y  a t  th e  node and the  behav iour  around the  nodal  r e g io n  i s

not  so im por tan t  f o r  de te rm in ing  the  energy .  Consequent ly  c o a r s e r
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r e s o l u t i o n  of the  c o n f i g u r a t i o n  space  can be used and a c c u r a t e  r e s u l t s  

o b t a i n e d .  We s h a l l  see  in  the  f i n a l  s e c t i o n  of  t h i s  c h a p te r  t h a t  th e  nodal  

s u r f a c e s  in  the  wave f u n c t i o n s  of systems c o n t a in in g  a few fe rmions  a re  

a d e q u a te ly  d e s c r ib e d  us ing  r e l a t i v e l y  c o a r s e  r e s o l u t i o n  and e x c e l l e n t  

e s t i m a t e s  of the  e ig e n v a lu e s  a re  o b t a i n e d .

3 . )  E x p e c t a t i o n  Values and Importance  Sampling

a) E x p e c ta t io n  Values

So f a r  we have d e s c r ib e d  a scheme f o r  producing  a s t a b l e  ensemble 

d i s t r i b u t e d  acc o rd ing  t o  a p a r t i c u l a r  e i g e n s t a t e  of  a system.  A method f o r  

e s t i m a t i n g  of the  e ig e n v a lu e  has a l s o  be o b t a i n e d .  E x p ec ta t io n  v a lu es  of 

o t h e r  o p e r a t o r s  may be c a l c u l a t e d  us ing  th e  ensemble.  In t h i s  s e c t i o n  we 

c o n s id e r  c a l c u l a t i n g  the  e x p e c t a t i o n  va lue  of a t ime independen t  

n o n - d i f f e r e n t i a l  o p e r a t o r  A.

I f  the  wave f u n c t i o n  i s  r e a l ,  e q u a t io n  (2 .6 )  g iv e s  t h a t  th e  e x p e c t a t i o n  

va lue  of  A i s

<A> = J <{>2( r )  A(r) dr

I n t e g r a l s  of t h i s  form can be e v a l u a t e d  n u m e r i c a l ly  us ing  a Monte Car lo  

method in  which the  f u n c t i o n  A ( r )  i s  averaged  over an ensemble which 

samples the  d i s t r i b u t i o n  (p2( r ) .  The random walk method,  however, only 

p roduces  an ensemble d i s t r i b u t e d  acc o rd in g  to  $ ( £ ) .  A <t>2(r.) d i s t r i b u t i o n  

may be sampled by a p p r o p r i a t e l y  w e igh t ing  the  c o n t r i b u t i o n s  of each system 

in  th e  ensemble.  Once a s t a b l e  ensemble d i s t r i b u t e d  accord ing  t o  <f>(r) i s  

e s t a b l i s h e d ,  systems r e p l i c a t e  most r a p i d l y  in  th e  r e g io n s  of h i g h e s t  wave
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function density. Due to this feature of the random walk method, the 

asymptotic number of descendents of a particular system is proportional to 

the wave function in the region sampled by the parent. Thus weighting the 

contributions of each system by the number of descendents it produces at 

long times, enables a cj)2(r_) distribution to be sampled. Kalos (1967, 1970) 

has described a similar procedure for calculating expectation values from 

the Green's function Monte Carlo method.

The behaviour described above is demonstrated for the one dimensional 

harmonic oscillator in Figure 2.8. Figure 2.8a shows the ensemble 

distribution weighted by the descendent numbers for different delay times. 

It is seen that the product distribution converges to 4>2(r) in the long 

time limit.

The curves are the result of averaging over many segments of the random 

walk trajectory. Since its distribution is stationary, the ensemble at any 

time can be used as a parent distribution and the history of its 

descendents monitored. An efficient sampling cycle can be devised in which 

each ensemble is used as both a parent distribution and when determining 

the descendent weights for a previous parent ensemble.

Figure 2.8b shows that when the weighted ensemble distribution relaxes 

to cj)2, the expectation value of the potential energy may be estimated. This 

estimate is plotted as a function of delay time to show the asymptotic 

convergence. The cj>2 distribution is more strongly peaked around the minimum 

than cj) so smaller values of the potential energy make more important 

contributions. Consequently the potential energy estimate decays as the <j>

distribution is modified.
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b ) I m p o r t a n c e  S a m p l in g

The Quantum Monte C a r l o  a l g o r i t h m  can  be  made more  e f f i c i e n t  i f  an  

a p p r o x i m a t e  fo rm  f o r  t h e  wave f u n c t i o n  i s  known.  I m p o r t a n c e  s a m p l i n g  

i n v o l v e s  u s i n g  an  a p p r o x i m a t e  wave f u n c t i o n  t o  g u i d e  t h e  random w a lk  i n t o  

t h e  i m p o r t a n t  r e g i o n s  o f  s p a c e .  K a l o s ,  L e v e s q u e  and V e r l e t  (197-4) 

s u c c e s s f u l l y  u s e d  t h e  i d e a  t o  p e r f o r m  G r e e n ’ s f u n c t i o n  Monte  C a r l o  

c a l c u l a t i o n s  on a h a r d  s p h e r e  quan tum f l u i d .  C e p e r l y  d e r i v e d  an  e q u a t i o n  o f  

m o t i o n  f o r  t h e  i m p o r t a n c e  s a m p l e d  d i s t r i b u t i o n  and  A n d e r s o n  (1 9 8 0 )  u s e d  a  

d r i f t i n g  and d i f f u s i n g  random wa lk  m e th o d  t o  s i m u l a t e  i t .  The i m p o r t a n c e  

s a m p l i n g  f u n c t i o n  may be  t h e  wave f u n c t i o n  o b t a i n e d  f rom a  v a r i a t i o n a l  

c a l c u l a t i o n  o r  some f u n c t i o n a l  fo rm  c o n c o c t e d  f r om  p h y s i c a l  i n t u i t i o n .

S u p p o s e  t h e  wave f u n c t i o n ,  ijj ( r , x ) ,  i s  p e a k e d  i n  some r e g i o n  an d  t h a t  

an  a p p r o x i m a t e  fo rm  o r  t r i a l  wave f u n c t i o n  ipp(r )  i s  known.  The f u n c t i o n  

f  = w i l l  be v e r y  s t r o n g l y  p e a k e d  i n  t h e  i m p o r t a n t  r e g i o n s  o f

c o n f i g u r a t i o n  s p a c e .  An e q u a t i o n  o f  m o t i o n  f o r  f  can  be  d e r i v e d  a s  f o l l o w s :  

We u s e  a t r i a l  f u n c t i o n  w h ich  i s  i n d e p e n d e n t  o f  x s o  t h a t

l i  = L_ K
3 x xp-p 3 x ( 2 . 29)

Now c o n s i d e r  t h e  q u a n t i t y  V2f .  By some s i m p l e  m a n i p u l a t i o n s  o f  v e c t o r  

c a l c u l u s  s u m m a r i s e d  b e lo w

V2f  = V. ( Vi|u[)p) = ip'pV2ip + 2 V\p. V\p*p + ipV2ipT

an d  s i n c e  V. ( ^V^p) = + \pV2ip-p

we f i n d  V2f  = ip'p V2 \p + 2V. ( ^Vijjp) -  \p V2 ip'p

R e a r r a n g e i n g  g i v e s

V2ip 1_
^T

[V2f f fVij^n +f V j f c i  1 
<Pt ^t

( 2 . 3 0 )
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Substituting equations (2.29) and (2.30) into (2.9) and multiplying 

throughout by ip-p we obtain the following equation of motion for f

It  ’ I ?k2f - I ^ V k .(fVln*T) - - Vref)f (2.31)
K K

The first term on the right hand side describes the familiar diffusion 

process while the last term resembles a population growth or decay term. 

The second term has a form similar to an equation which describes how the 

density changes due to drift which is induced by an applied velocity field 

v(r).

9_p(r, t) 
9t = - V.(pv)

A finite difference scheme for simulating a drift process involves 

incrementing time by At and moving each system in the ensemble through a 

vector displacement determined by the product of the drift velocity at the 

point sampled by the ensemble member and the time step so that the drift 

displacements are Ar = v(r)Ai.

Assuming the different terms operate indepentently over a small enough 

time step, equation (2.31) is modeled by a diffusion and reaction procedure 

together with a drift step. The drift velocities are determined by the 

importance sampling function and

v^ = h 2/mj< V^ln^T (2.32)

As a result of the drift term, systems move out of regions where ip-p has its 

minima and towards the regions where the function is a maximum.

With the basic quantum Monte Carlo procedure the birth rate was 

determined by the potential function V(r). Generally the potential energy 

is a rapidly varying function of position particularly for systems
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c h a r a c t e r i s e d  by h a r s h  r e p u l s i v e  co re  i n t e r a c t i o n s .  Rapid v a r i a t i o n s  in  th e  

p o t e n t i a l  s u r f a c e  pose two r e l a t e d  problems f o r  the  b a s i c  quantum Monte 

C a r lo  method: F i r s t ,  l a r g e  f l u c t u a t i o n s  in  th e  p o p u la t io n  may occur

r e s u l t i n g  in  poor s t a t i s t i c a l  p r o p e r t i e s .  Secondly,  the  s e p a r a t i o n  of  the  

d i f f u s i o n  and b i r t h / d e a t h  p ro c e s s e s  i s  only  v a l i d  i f  the  p o t e n t i a l  does not  

change s u b s t a n t i a l l y  du r ing  th e  d i f f u s i o n  s t e p .  For t h i s  cond i ton  to  be 

met,  ve ry  small  t ime s t e p s  must o f t e n  be employed.

A u s e f u l  f e a t u r e  of the  impor tance  sampl ing  e q u a t io n  of  motion (2 .31)
/ \  /V

i s  t h a t  the  b i r t h  r a t e  i s  de termined  by th e  q u a n t i t y  where H i s  the

H ami l ton ian  o p e r a t o r .  I f  the  t r i a l  f u n c t i o n  were the  exac t  wave f u n c t i o n ,  

t h e  b i r t h  r a t e  f o r  the  impor tance  sampl ing  a lg o r i th m  would be the  

e ig e n v a lu e  E = Hip/ ^ . In t h i s  case the  b i r t h  r a t e  becomes independent  of 

p o s i t i o n ,  th us  a p e r f e c t l y  s t a b l e  ensemble i s  o b t a in e d .  I f  \p*p approxim ate s  

\p, the  b i r t h  r a t e  i s  no lo n g e r  be a c o n s t a n t  but  w i l l  be a slow vary ing  

f u n c t i o n  of p o s i t i o n .  With a r e a s o n a b l e  cho ice  f o r  (pp the  p o p u la t i o n  

f l u c t u a t i o n s  a r e  thus  reduced .

Use of the s h o r t  t ime approx im at ion  p r e s e n t s  a somewhat d i f f e r e n t  

problem in  th e  impor tance  sampl ing  random walk.  S ince the  b i r t h  r a t e  i s  now 

a slow va ry ing  f u n c t i o n  of  p o s i t i o n ,  the  s e p a r a t i o n  of the  b i r t h / d e a t h  term 

from the  d r i f t  and d i f f u s i o n  p ro c e s s e s  in  th e  l i m i t  as At+0 shou ld  be a 

very good approx im at ion .  However, the  s e p a r a t i o n  of d r i f t  and d i f f u s i o n  may 

p r e s e n t  a s i g n i f i c a n t  source  of e r r o r .  Importance sampling t r i a l  f u n c t i o n s  

o f t e n  in vo lve  p a i r  c o r r e l a t i o n  terms ( j a s t ro w  (1956))  which take  t h e  form

- u ( r ) e

where u ( r )  i s  an e f f e c t i v e  p a i r  p o t e n t i a l .  The d r i f t  v e l o c i t y  w i l l  depend

on the  d e r i v a t i v e  of t h i s  p o t e n t i a l  and may have a r a p i d  v a r i a t i o n  wi th
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position. Consequently using the drift displacement, Ar = vAt, in which the 

drift velocity is assumed constant over the small step may introduce an 

error in the random walk path. Anderson (1985) has recently considered this 
problem and finds that large time steps may be used without introducing 

significant errors by employing an average drift velocity.

The drifting random walk described above gives an ensemble distributed 

according to f = Mf. An estimate of the exact eigenvalue can be obtained 

directly with the f distribution by averaging the ’’local energy"

This result is proved by considering the average

Due to the fact that the Hamiltonian is an hermitian operator, the above 

expression can be written as

The expectation values of other quantities can only be obtained 

approximately using the importance sampled distribution. Averaging 

quantities over the distribution M-p will give approximate expectation 

values accurate to order 6 = (ip—xp-p) . We can improve the estimate of the 

expectation value by noting that

<H^T/^T>f = j ^TH^dr7  { \JjiJ;Tdr
Finally, since Hip = Eip we obtain the result

E = <H^t /ipT>f (2.33)

6 2 — ~ 2 ipip'j' + ip'p2

Thus, to order 62, we can use the following result, to extrapolate
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importance sampled averages

<A>t|j2 ~ 2<A>^t - <A> 2 (2.34)

The quantity <A> ^ 2 can be obtained from variational calculations which 

will be discussed in Chapter 4.

4.) Identical Particle Statistics

Particle indistinguishability has been ignored in our development of 

the quantum Monte Carlo method. Consequently the procedure is only 

applicable to systems of identical particles obeying Boltzmann statistics, 

that is the particles are distinguished by labels. The ground state wave 

function of a system of labeled, identical particles is symmetric with 

respect to particle interchange and thus identical to the Boson ground 

state. In later chapters we use this feature and employ the basic quantum 

Monte Carlo method together with importance sampling to study the ground 

state properties of assemblies of Bosons including liquid ^He, solid H2 and 

some small clusters of water molecules.

This section, however, considers methods for incorporating Fermi 

statistics in quantum Monte Carlo calculations. Fermion wave functions must 

be antisymmetric under particle exchange. Further, the particles may have 

different spins. We first review some methods for handling Fermi statistics 

in quantum random walk calculations. The method described in Section 2.) 

for generating spatial nodes in the ensemble distribution is then extended, 

enabling systems of indentical particles to be modelled. For systems of 

Fermions the modifications involve including spin variables in the



coordinate space and introducing a Monte Carlo procedure for sampling the 

permutation operators. In principle the method is exact, however practical 

approximations including finite time steps and approximate methods for 

handling the annihilation of opposite signed systems must be used. We 

demonstrate that the method can be employed to model systems of a few 

Fermions by considering the lowest energy spin states of atomic helium and 

lithium.

a) The Fixed Node Approximation

A ground state solution of the Schrödinger equation which is

antisymmetric with respect to particle interchange will result if the

configuration space available to each pair of identical particles is

divided symmetrically by a nodal surface. The spatial distribution on 

either side of the surface will differ by exchange of the two particle

labels. Due to this antisymmetry we need only consider random walks which 

sample one side of each nodal surface. Thus the nodes may be treated as 

boundary conditions which require ip = 0 outside these surfaces.

Consider the example of three identical fermions each moving in three 

dimensions. One choice of nodes which symmetrically divide the space are 

the surfaces

x-| = X2» x-| = X3 and X2 = X3 (2.35)

By restricting our quantum random walk to sample only those regions in 

whi ch

x-| > X2 > X3 (2.36)

we will generate the wave function distribution on one side of each nodal



surface. The nodes are treated as hard absorbing walls thus if a system

diffuses out of the region defined by equation (2.36) it is killed. The

full antisymmetric wave function is constructed by reflecting the random 

walk distribution in the nodal surfaces and changing its sign.

Solutions generated in the manner described above are antisymmetric 

however there is no guarantee that they will be the lowest energy, physical 

solutions. There are an infinite number of possible nodal surfaces which 

could be used to give an antisymmetric distribution, equation (2.35) is but 

one example. In general the nodes of the physical solution are unknown and

they will be complicated by the particle interactions. If the actual nodes

could be used as input to the calculation described above, exact results 

would be obtained. Anderson (1976) suggested that the nodal surfaces of 

wave functions obtained from variational calculations could be used as 

boundary conditions for random walks and this idea provides the basis of 

the fixed node approximation.

The fixed node approximation reduces the problem of treating an 

antisymmetric wave function having regions of both positive and negative 

density to a problem involving a positive definite distribution sampling a 

confined region of space. Positive definite distributions are easily 

interpreted as probability densities for random walks.

Importance sampling methods can be used to improve the efficiency of 

the fixed node random walk procedure. The antisymmetric trial function, 

obtained from variational calculations may involve Slater determinants 

together with electron correlation factors. Ensemble members drift, diffuse 

and replicate in the manner described in Section 3.)* Now, however, the 

random walk of a system is terminated when a move causes vp-p to change sign. 

Consequently the importance sampled, fixed node procedure samples a
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distribution f = where 14 is not the exact Fermion ground state wave

function, , but rather it is best antisymmetric wave function having the 

nodal surfaces of 4)'p.

It can be shown that the energy estimated from an importance sampled, 

fixed node quantum Monte Carlo calculation is an upper bound to the Fermion 

ground state energy (Ceperley (1981) see also Reynolds et al. (1982)). Thus 

a variational approach could be used to improve the fixed node results. In 

principle the trial function could contain variational parameters which 

adjust the positions of the nodal surfaces. In practice, however, nodal 

sufaces in many dimensions are difficult to parameterise. Kalos (1984) has 

considered using an idea of Reatto (1984) to optimise nodal surfaces in 

fixed node calculations.

The basic fixed node approximation has been used by Anderson to study a 

number of small molecular systems (j.B. Anderson (1976), (1979)) and he and 

his coworkers have also used importance sampling methods (j.B. Anderson 

(1980), F. Mentch and J.B. Anderson (1981), J.B. Anderson (1985)). A 

detailed description of the importance sampled, fixed node procedure has 

been given by Reynolds et al. (p .J. Reynolds, D.M. Ceperly, B.J. Alder and 

W.A. Lester, Jr. (1982)) who also considered several small molecules. The 

method has been applied to study the properties of metallic hydrogen 

(d .M. Ceperley and B.J. Alder (1981)) and was used as the starting point in 

a study of the ground state properties of the one component plasma 

(d .M. Ceperley and B.J. Alder (1980)). The fixed node approximation has 

been used in connection with the Green's function Monte Carlo approach to 

calculate the potential energy surface of a small molecule (j.W. Moskowitz, 

K.E. Schmidt, M .A. Lee and M.H. Kalos (1982)).
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b) Nodal Relaxation and Transient Estimation

Ceperley and Alder (1981) devised a means of relaxing the nodal 

surfaces of an importance sampled fixed node distribution. If the diffusion 

process begins in an antisymmetric distribution then in principle the 

antisymmetry should be maintained by an importance sampling random walk 

which permits diffusion across nodes of the trial function. Since the 

initial distribution is antisymmetric, it is orthogonal to all states with 

energy lower than the Fermi ground state and consequently this state should 

dominate the asymptotic distribution. The ensemble members must now carry a 

sign so that systems which diffuse across the nodes of vp-p an even number of 

times have positive weight, while an odd number of nodal crossings result 

in negative weights. Changing the sign in this way antisymmetrises the wave 

function. Asymptotically, the distribution sampled by this process will be 

ip'pipp, with ipp the exact fermion ground state.

There is a serious stability problem with the method described above. 

In Section 2.) it was observed that a component of the lowest energy state 

could enter an excited state distribution through fluctuations. 

Amplification of this noise caused the excited state signal to be buried 

beneath the ground state at long times. In the same way, a fluctuation of 

the Boson ground state will grow, and in the long time limit, dominate the 

distribution sampled by the Fermion random walk outlined above. The rate 

at which the symmetric noise can build up over the antisymmetric signal 

will depend on the difference between the Bose and Fermi ground state 

energies, Eg and Ep respectively. Following Schmidt and Kalos (1984) the 

evolving wave function containing Fermi and Bose components can be written 

as

iKR, t -*-00) = e T[apijjp(R_) + aBipB(R_) e ^Eß EF^T] (2.37)



In Section 3.) we saw that with an importance«! sampling calculation the 

energy estimate is obtained from the following

EF(t) - j i|it (R)H *(R,T)dR f J ^ ( R > T ) d R  (2.38)

Since the antisymmetric trial function, and ^  are orthogonal, the 

Bose component in equation (2.37) will not contribute to the energy 

estimate and EpCi-*“) = Ep. The symmetric components however will contribute 

to the variance (Kalos (1981)) which will grow exponentially as e~^EB"EF^T. 

Provided the inital distribution obtained from the fixed node calculation 

is close to the true fermion ground state, the nodes may have sufficient 

time to relax to their actual positions and give an estimate of the true 

Fermion energy before the noise becomes too severe. For this reason the 

method is refered to as "transient estimation".

As mentioned earlier Ceperley and Alder (1980) obtained an estimate of 

the ground state energy of the electron gas using nodal relaxation from a 

fixed node calculation. Lee, Schmidt, Kalos and Chester (1981), used 

transient estimation with Green’s function Monte Carlo to obtain the ground 

state energy of liquid ^He. With their approach the energy estimate is 

always an upper bound of the Fermion ground state energy.

c) System Annihilation for Identical Particles

In Section 2.) we described a procedure for simulating a wave function 

with nodes. The random walk involved different signed systems which 

annihilate one another if they enter the same region of space. With many 

particles, the problem of determining whether two systems occupy the same 

region of space is complicated if the particles are indistinguishable. For 

distinguishable particles we may allow two systems of opposite sign to
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annihilate if the two sets of labeled coordinates coincide within some 

tolerence. Thus if systems i and j are of opposite sign they annihilate one 

another if

Im 1-niJI < \L2i~L2̂ \ < Ihn1 ~hn^I < 6
which we can summarize as

|r*i--rj| < a (2.39)

When a system of indistinguishable particles is considered however, the 

comparison of two configurations must ignore the particle labels. Thus in 

order to decide whether two systems are in the same region of space we must 

compare a labeled configuration of one system with all possible 

configurations of the other system, obtained by permuting the particle 

labels. Consequently if two systems of indistinguishable particles are of 

opposite sign they can annihilate one another if a permutation ,P, can be 

found so that the following condition is satisfied

I r_i-PrJ I < A (2.40)

Here the permutation operator , P, permutes the particle labels in the 

configuration. The procedure outlined above could in principle be applied 

directly to simulating a system of identical Bosons.

For systems of Fermions the question of annihilation is more 

complicated. Fermions may exist in different spin states and further the 

Fermion wave function must be antisymmetric with respect to the interchange 

of a pair of identical particles. The first of these features of Fermion 

systems may be incorporated into the system annihilation step by extending 

the coordinate space to include spin variables. Spin variables do not



appear in the Hamiltonian so they will be uneffected by the diffusion and 

birth/death processes in the random walk. With the extended coordinate 

space, the comparison of two systems is now based on both the spatial 

configuration and the set of spins of each system. Thus, systems i and j 

will be in the same region of the extended coordinate space if a 

permutation operator can be found which causes both the following 

conditions to be satisfied simultaneously

Iri-PrJI < A

and (2.41)

si - PsJ = 0

With a random walk calculation, the wave function is the distribution 

function for the ensemble of positive and negative systems. Thus the 

antisymmetry of the Fermion wave function requires that an odd permutation 

of the particle labels in a particular system should change the sign of the 

system and an even permutation will leave the sign unchanged. Consequently 

the antisymmetry requirement determines which systems are able to 

annihilate one another. Two opposite signed systems will annihilate if an 

even permutation can be found which causes the conditions in equations 

(2.41) to be satisfied. Systems of the same sign can also annihilate 

provided an odd permutation is found which satisfies these conditions.

Since the wave function is antisymmetric, on average there will be 

equal numbers of positive and negative systems in the ensemble. Suppose 

that the average total number of systems is n. On average the total number 

of like and unlike system comparisons which must be made in order to 

determine all possible system annihilations is thus n(n-1)/2. If there are 

N particles in each system there will be N!/2 even or odd permutations
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which must be considered in each of the above comparisons. The comparison 

with a particular permutation involves only the evaluation of the square of 

a distance in 3N dimensional space. Due to the n2 x N! dependence, there 

will be a very large number of these computations for only a modest number 

of particles.

We have considered a Monte Carlo procedure for sampling the permutation 

operators and in this way we reduce the N! dependence. The method involves 

diffusion and replication in the usual way. At the end of each time step 

all possible cancelations are considered. Spin coordinates are included and 

the particles must be distinguished by labels. Thus opposite signed systems 

i and j can annihilate if

I I < A
and

- £■j = 0

The particle indistinguishability is accounted for by including an 

antisymmetrization procedure at the end of each time step. In this 

procedure a randomly selected permutation operator is applied to each 

system. The labels on both the space and spin coordinates are permutated 

and, depending on the parity of the applied operator, the sign of the 

system is appropriately changed.

The procedure outlined here assumes that the time scale for the 

diffusion and birth/death processes is slow. Thus systems which are capable 

of annihilation remain in the same volume long enough for the necessary 

permutation operator to be sampled by the Monte Carlo method. The 

assumption is very reasonable for systems containing a few particles and

may prove useful with larger systems.
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d) Spin States of Atomic Helium and Lithium

The method for treating systems of Fermions described above has been 

applied to the lowest energy states with different spin multiplicity in 

helium and the ground state of the lithium atom. We assume a nucleus with 

charge Z and infinite mass fixed at the origin so in atomic units the 

Hamiltonian for the N electron system can be written as follows

with

H = -i Vi 2 + V(r)
i=1

N N V
V ( r ) = I 1 - I -

i<j 1-1 ri

i2)i and rij

Xi•fHXii

electrons were allowed to diffuse in 3N dimensional space and each system 

replicated or died depending on its potential energy, V(r). Electrons 

entering a small sphere about the nucleus experienced the averaged nuclear 

attraction discussed in Section 2.). A Vref adjusting procedure was used to 

keep the total number of positive and negative systems approximately 

constant.

The position of each system represented a centre of Gaussian density in 

3N dimensions as described in Section 2.) and the error function 

annihilation probability given in equation (2.28) was used. Pairs of 

opposite signed systems could only annihilate if they also had the same 

sets of labeled spins. At the end of each time step the Monte Carlo 

antisymmetrization process described in the previous subsection was 

implemented. For helium there are only two permutation operators to be 

considered: The identity, an even operator which leaves the particle labels 

unchanged, and the odd operator which exchanges the particle labels. The
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Monte Carlo antisymmetrization for the two electron system thus involves 

exchanging the particle labels in half the systems of the ensemble at the 

end of each time step.

The singlet state of helium involves a pair of identicle particles 

having different spins. Thus the singlet state could be studied by 

considering the particles as distinguished by their spins. This approach is 

equivalent to performing a fixed node calculation. For the singlet state 

the node is in the spin part of coordinate space and its position is known 

exactly, s-| = s2. Rather than using this simplifying feature of the singlet 

state and performing a random walk with only positive systems on one side 

of the node, we have used opposite signed systems as described above.

An equal number of positive and negative systems were used as the 

initial condition for our simulation. The particles in each system were 

positioned at random within a cube centered on the origin. Initially all 

systems had particle 1 with spin up and particle 2 with spin down.

Figure 2.9 shows proj ections of the singlet state wave function

obtained from this calculation. Two dimensional histograms of the

distributions of distances of the two labeled electrons from the nucleus 

are presented. After equilibration, separate histograms for positive and 

negative systems were accumulated and appear as Figures 2.9a and 2.9b 

respectively. The histograms represent the different signed lobes of the 

function

0̂(ri,r2) n 2r22.

An examination of the distribution of labeled spins in several 

instantaneous equilibrated ensembles indicated that all the positive 

systems had particle 1 with spin up and particle 2 with spin down. All the
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negative systems were found to have the permuted set of labeled spins. In 

this way the positive and negative systems could exist in the same region 

of configuration space without annihilating one another. Once this 

situation is established, no more annihilations can occur since a label 

permutation will change the sign of the ensemble member. The result is thus 

the propagation of two independent, opposite signed, ground state 

distributions.

Within the independent electron approximation the antisymmetrized 

singlet state eigenfunction for the helium atom can be written in terms of 

the hydrogenic wave function as follows

1s(1)1s(2) (a(1)ß(2)-ß(1)a(2) )

Here a and ß are the spin eigenfunctions and the 1s wave function has the 

form

1s(r) = e“Zr

The opposite signed terms in the above result approximate the two lobes of 

the ensemble distribution. Effects of electron interaction can be estimated 

within the independent electron approximation by variational calculations 

which use the nuclear charge as a parameter. The best variational wave 

function using hydrogenlike orbitals is compared with the quantum random 

walk result in Figure 2.10. The differences between the variational 

(Figure 2.10b) and quantum Monte Carlo (Figure 2.10a) wave functions result 

from the fact that correlations between the motions of the electrons are 

ignored in the assumed variational form. The quantum Monte Carlo

calculations include the electron correlation exactly.

In Table 2.3 we summarize the singlet state energy predicted by
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d i f f e r e n t  approx im at ions  and compare th e s e  va lues  with  the  b e s t  quantum 

Monte Car lo  r e s u l t .  The e s s e n t i a l l y  exac t  r e s u l t  of P e k e r i s  (1959) was 

o b ta in e d  us ing  a v a r i a t i o n a l  form which al lowed  f o r  e l e c t r o n  c o r r e l a t i o n .  

The quantum Monte Car lo  va lue  i s  lower than  the  r e s u l t s  o b ta in ed  u s ing  the  

independen t  e l e c t r o n  approx im at ion .

Tabel  2 .3  Ground S t a t e  Energ ies  of Helium Atom

Wave f u n c t i o n  Energy (au)

Product  of He+ o r b i t a l s -2.7501 1

Produc t  of h yd rogen l ike  o r b i t a l s  
op t im ized  by SCF method

-2 .8425  1

Best  independent  e l e c t r o n wave f u n c t i o n -2 .8619 1

Random Walk -2 .8770

P e k e r i s  (1959) -2 .9037

JThese va lues  a re  taken  from Lowe (1978)

The t r i p l e t  s t a t e  of  the  hel ium atom may be s im u la te d  in  a s i m i l a r  

f a s h i o n .  Now, however,  bo th  p a r t i c l e s  a re  g iven the  same s p in  and systems 

shou ld  thus  a n n i h i l a t e  more o f t e n .  For the  s i n g l e t  s t a t e  we saw t h a t  the  

a n n i h i l a t i o n  s t e p  was only e f f e c t i v e  in  modifying the  i n i t i a l  c o n d i t i o n  so 

t h a t  two n o n - i n t e r a c t i n g  ground s t a t e  d i s t r i b u t i o n s  could  be e s t a b l i s h e d .  

With the  t r i p l e t  s t a t e ,  however, a n n i h i l a t i o n s  w i l l  con t inue  in the  

e q u i l i b r a t e d  ensemble and the  e x t r a  dea ths  which occur a t  the  s p a t i a l  node 

w i l l  c o n t r i b u t e  to  the  e ig en v a lu e  e s t i m a t e .

In F igu re  2.11 we p r e s e n t  the  e ig e n v a lu e ,  c a l c u l a t e d  from the  average
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of Vr e f , as a f u n c t i o n  of  the  t o t a l  number of systems in  the  ensemble.  The 

two curves  a re  the  r e s u l t s  o b ta in ed  with  d i f f e r e n t  va lues  of the  Gaussian 

wid th  pa ram ete r .  Opposi te  s igned  systems may avo id  one ano the r  when the  

systems occupy only small  volumes of c o n f i g u r a t i o n  space  (a = 5 a . u . “  ̂ f o r  

example)  and t h e r e  a re  too  few systems in  the  ensemble.  Under t h e s e  

c i rc u m s tan c es  a n n i h i l a t i o n  a t  the  nodes w i l l  be i n e f f e c t i v e  and the  

e ig e n v a lu e  o b ta in e d  from the dea th  r a t e  of the p o p u la t i o n ,  i s  

u n d e r e s t i m a t e d .  As the  number of systems in  the  ensemble i s  in c re a s e d  the  

c a l c u l a t e d  e igenva lue  tends  a s y m p t o t i c a l l y  to  an e s t i m a t e  of  the  energy of 

th e  system.

The accuracy  of the  a sym pto t ic  e s t i m a t e  i s  de te rmined by the  s i z e  of 

th e  volume element occupied by each system. With l a r g e r  systems the 

a s y m p to t i c  convergence wi th  i n c r e a s i n g  number of systems i s  f a s t e r .  For 

a = 2 a . u .~ 2  the  energy e s t i m a t e d  i s  converged a t  300 sys tems .  Beyond t h i s  

p o in t  the  e igenva lue  e s t i m a t e s  o b ta in e d  with  d i f f e r e n t  numbers of systems 

a r e  c o n s i s t e n t l y  about  0.5% h ighe r  than  the  va lue  of  -2 .175  a . u .  r e p o r t e d l y  

P e k e r i s  (1959).  This  s y s t e m a t i c  e r r o r  r e s u l t s  from the coa rse  r e s o l u t i o n  of 

th e  c o n f i g u r a t i o n  space due to  the  f i n i t e  volume occupied  by the  sys tems .

The t r i p l e t  s t a t e  wave f u n c t i o n  o b ta in e d  from the  quantum Monte Car lo  

c a l c u l a t i o n  i s  p r e s e n te d  in F igu re  2 .12a .  S epa ra te  two dimensional  

h i s to g ra m s  f o r  the  p o s i t i v e  and n e g a t iv e  ensembles were aga in  accumula ted .  

In the  f i g u r e  we p r e s e n t  the  f u l l  t r i p l e t  s t a t e  wave f u n c t i o n  c o n s t r u c t e d  

as the  sum of the p o s i t i v e  and n e g a t iv e  ensemble d i s t r i b u t i o n s .  From 

F ig u re  2 .12a i t  i s  apparen t  t h a t  the  a n n i h i l a t i o n  procedure  has s u c c e s s f u l y  

e s t a b l i s h e d  a nodal  s u r f a c e  co r respond ing  to  r-] = r 2 -

In  the  independent  e l e c t r o n  approx im at ion  the  t r i p l e t  s t a t e  has the

fo l l o w i n g  form





53

(1 s ( 1 ) 2 s (2) -  1 s (2) 2s (1 ) )a( 1 ) a( 2)

Here th e  2s hydrogen ic  f u n c t i o n  i s

2 s ( r )  = ( 2 - r ) e  Zr,/2

The b e s t  SCF approxim ate t r i p l e t  s t a t e  e i g e n f u n c t i o n  having t h i s  form- i s  

p r e s e n t e d  in  F igu re  2 .12b.  Comparing t h i s  f u n c t i o n  with  the  exac t  quantum 

Monte Car lo  g en e ra ted  d i s t r i b u t i o n  we see  t h a t  the  n e g l e c t  of e l e c t r o n  

c o r r e l a t i o n  g ives  a wave f u n c t i o n  which i s  too  s t r o n g l y  peaked.

As a f i n a l  example which dem ons t ra te s  how the  pe rm uta t ion  o p e r a t o r  

sampl ing  scheme works f o r  more compl ica ted  systems we have co n s id e re d  

s i m u l a t i n g  the  l i t h i u m  atom.

There a re  s i x  d i f f e r e n t  pe rm u ta t ion  o p e r a t o r s  f o r  the  t h r e e  p a r t i c l e  

system which a re  summarized in  Table  2.4

Tab le 2.4

o p e r a t o r  exchange r e s u l t
decomposi t ion

p1 1 123

p2 (12)(13) 31 2

p3 (12)(13) 231

p4 (12) 213

p5 (13) 321

p6 (23) 132

P-| i s  the  u n i t  o p e r a t o r  which le a v e s  the  p a r t i c l e  l a b l e s  unchanged.  The
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parity of a permutation operator is determined by the number of exchanges 

into which the permutation can be decomposed. If there are an even number 

of exchanges the operator is even. Thus in Table 2.4 P-j , P2 and P3 are even 

operators while P4, P5 and P5 are odd. When each of the above operators is 

applied from the left to the ordered triple 123 the result indicated is 

obtained.

The procedure for simulating the lithium atom is identical to that 

described above for helium. Now, however, after the systems of labeled 

particles have diffused, replicated and annihilated, we permute the 

particle labels in each system by applying one of the six operators 

selected at random and change the sign of the system depending on the 

parity of the operator.

In Figure 2.13 we present some preliminary results obtained for the 

lowest energy doublet state of the lithium atom. The figure shows the 

convergence of the eigenvalue estimate as a function of the number of time 

steps. Relaxation from the initial uniform cube of electron density is 

demonstrated. The points are the results of averaging Vref over each block 

of 5000 time steps. Fairly coarse resolution (a = 2 a.u.“2) and an ensemble 

of 1000 systems were used in this calculation the eigenvalue estimate 

obtained by averaging over the last 100 a.u. of the quantum Monte Carlo run 

is -7.488 ± 0.045 a.u. in excellent agreement with the observed value 

-7.4820 a.u. obtained from the sum of the ionization energies (weast 

(1983)).
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Conclus ion

In  t h i s  ch a p te r  we have d e s c r ib e d  the  b a s i c  random walk methods which 

w i l l  be employed in  subsequen t  c h a p t e r s  to  s tudy  the  ground s t a t e  

p r o p e r t i e s  of small  molecu la r  c l u s t e r s  and bulk phase quantum systems 

i n c l u d i n g  s o l i d  H2 and l i q u i d  ^He. The random walk approach d i s c u s s e d  in  

t h i s  c h a p te r  w i l l  a l s o  be ex tended  to  t r e a t  quantum systems a t  f i n i t e  

t e m p e ra t u r e s  in  the  f i n a l  c h a p t e r s  of the  t h e s i s .

The im por tan t  development p r e s e n t e d  i n  t h i s  c h a p te r  i s  the  method f o r  

t r e a t i n g  many body wave f u n c t i o n  having nodal  s u r f a c e s .  We have seen t h a t  

a c c u r a t e  e n e rg i e s  can be c a l c u l a t e d  f o r  systems in v o lv in g  a few Fermions.  

These c a l c u l a t i o n s  a re  com ple te ly  ab i n i t i o  and do not  r e q u i r e  the  in p u t  of  

a t r i a l  wave f u n c t i o n .  Nodal s u r f a c e s  a r e  g e n e ra te d  by the  approach and a 

s t a b l e  Fermion wave f u n c t i o n  may be o b t a in e d .

In the  form p re s e n te d  he re  the  method i s  p robably  r e s t r i c t e d  t o  

t r e a t i n g  on ly  a few Fermions .  When a l a r g e  number of pe rm u ta t ion  o p e r a t o r s  

must be co n s id e re d ,  comparing systems in  o rd e r  t o  de termine  a n n i h i l a t i o n  

p r o b a b i l i t i e s  w i l l  become e x c e s s i v e l y  t ime consuming.  Sampling the  

p e rm u ta t io n  o p e r a t o r s  w ith  a Monte Car lo  p rocedure  may be u s e fu l  f o r  many 

e l e c t r o n  problems.

Wave f u n c t i o n s  having nodal  s u r f a c e s  which r e q u i r e  high r e s o l u t i o n  due 

to  r a p i d  changes in  th e  wave f u n c t i o n  d e n s i t y  in  the  r e g io n  of  the  node 

a l s o  p r e s e n t  s i g n i f i c a n t  problems f o r  our approach .  Systems occupying very  

smal l  volumes of c o n f i g u r a t i o n  space  must be used in  t h e se  c a l c u l a t i o n s  and 

th e  a sy m p to t ic  e ig en v a lu e  e s t i m a t e  can only be o b ta in e d  with  a very l a r g e  

number of small  sys tems .

Arnow, Kalos ,  Lee and Schmidt (1982) have d e s c r ib e d  an e x t e n s io n  to  th e
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Green’s function Monte Carlo method which enables systems of a few Fermions 

to be treated exactly. The method involves sampling from a "pair Green’s 

function" which produces positive and negative components in the ensemble. 

This method also seems to have problems with extension to systems of more 

particles.

Recently Oksüz (1984) has presented a related method which involves 

performing a random walk using an antisymmetrized position basis and this 

approach may over come some of the problems described above.
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CHAPTER 3 VIBRATIONAL SPECTROSCOPY OF MOLECULAR CLUSTERS 

OBTAINED FROM QUANTUM RANDOM WALKS

1.) Conventional Vibrational Spectroscopy of Isolated Molecules, Normal and 

Local Modes

Intramolecular vibrations in general must be studied using quantum 

methods (witson, Decius and Cross (1955)). It should be possible to use the 

quantum Monte Carlo methods described in Chapter 2 to obtain information 

about molecular vibrations. In the later sections of this chapter we 

develop such a method and use it to calculate the intramolecular 

vibrational spectra of the water dimer and trimer. Before considering the 

development of this method, however, it is instructive to outline the more 

conventional techniques for studying the vibrations of molecules.

The most widely used procedures of vibrational analysis are the normal 

and local mode methods (Wilson, Decius and Cross (1955), Reimers and Watts 

(1984a)). These techniques approximate the molecular Hamiltonian by a 

reference system which can be solved analytically. The approximations are 

taken into account by variational or perturbation calculations which use 

the eigenfunctions of the reference state.

The logical starting point for both techniques is the Born Oppenheimer 

approximation. It is assumed that the rapid electronic motions produce an 

average potential surface over which the slower nuclear motions occur and 

the resulting Hamiltonian depends only on nuclear coordinates. 

Translational degrees of freedom are removed by transforming to the 

centre-of-mass frame. The final simplification common to both methods is
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the rigid rotor approximation in which coriolis and centrifugal couplings 

between the vibrations and rotations are ignored. Using this approximation 

the Hamiltonian can be written as a sum of vibrational and rotational 

parts.

H = Hv + Hr (3-D

Hv contains relative coordinates of the atoms, while Hr has only angular 

variables which describe how the rigid rotor tumbles about its principle 

axes. Both methods now proceed by approximating the potential operator and 

it is at this point that the normal and local mode theories begin to 

differ. We shall consider first the approach taken in normal mode analysis.

In normal mode theory the potential is expanded as a Taylor series in 

small cartesian displacements about the minimum energy geometry. Quadratic 

terms in this expansion, together with the kinetic energy terms, are used 

to define a harmonic oscillator reference Hamiltonian for the vibrational 

part of the problem, H^. This Hamiltonian is easily diagonalized; the 

eigenvalues are related to the squares of the normal mode vibrational 

frequencies, , and the eigenvectors define the normal mode coordinates, 

Qk, which give the direction of the vibrational distortion of the molecule. 

In these coordinates the vibrational reference Hamiltonian describes a set 

of 3N-6 decoupled harmonic oscillators

3N-6
h'' = I I (1* + W )  (3.2)
0 k

Here N is the number of atoms in the molecule. The eigenfunctions of this 

Hamiltonian are products of the hermite polynomials in the normal mode 

coordinates and we shall represent these eigenfunctions as |nv> where nv is 

a vector of quantum numbers describing the vibrational excitation of the
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different normal modes.

In a similar fashion, if we assume that the molecule can be represented 

as a rigid symmetric top the reference Hamiltonian for the rotational part 

of the problem, h £, also has analytic eigenvalues and the eigenfunctions 

are the spherical harmonics which we shall represent as |nj>>. The total 

Hamiltonian of the reference problem is now written as

HX HrnO

and the eigenfunctions and eigenvalues of this Hamiltonian are respectively

and

In> = |nv>|nr>

£n “ ev + er

The complete molecular vibration-rotation problem is solved by using the 

analytic solutions of the reference problem as a basis for a variational 

calculation (Whitehead and Handy (1975)). The total Hamiltonian is written 

as a sum of the reference system Hamiltonian and a perturbation operator

H = H0 + AH, AH = Tcc + AV

Here AH contains the terms which were ignored in simplifying the 

Hamiltonian, such as the coriolis and centrifugal couplings, Tcc, and the 

anharmonic terms in the Taylor series expansion of the potential 

AV = V - 2 ^wk2Qk2, An accurate approximation for the coriolis and 

centrifugal coupling terms which was given by Darling and Dennison (1940) 

is often used and the full Hamiltonian matrix in the reference system basis 

is calculated

Hmn = <IülHllL> = ^mn£ni + <m|AH|n>
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and, in principle, may be diagonalized to give the eigenvalues. The 

integrals of the hermites with many different functions are analytic but 

numerical integration procedures for more complicated perturbation 

operators can be devised (whitehead and Handy (1975)).
The major problem with the approach outlined above is that the matrix 

elements of the perturbation operator must be small compared with -the 

eigenvalues of the reference system otherwise the variational calculation 

may not converge. For molecular systems the anharmonic terms in AH are 

often large and convergence problems are encountered.

With local mode theory an attempt is made to include a major part of 

the potential anharmonicity in the reference Hamiltonian so the 

perturbation operator will be small and the variational calculation will 

converge rapidly. To proceed the local coordinates must first be chosen as 

in general there is no unique set of coordinates which will completely 

describe anharmonic vibrations. This is contrasted by the situation in 

normal mode theory where a unique set of normal modes result because of the 

assumed harmonic form of the potential operator. When a molecule vibrates 

it distorts so as to stretch its bonds and bend its bond angles. Thus the 

curvilinear coordinate system consisting of the set of bond lengths and 

bond angles which describe the equilibrium geometry (the valence 

coordinates) is probably the best coordinate system for specifying the 

intramolecular potential surface. The Hamiltonian can be written in a 

curvilinear coordinate system (Wallace (1975)], however the kinetic 

operator becomes very complicated. To alleviate this problem a rectilinear 

coordinate system which approximates the curvilinear coordinates is used. A 

set of rectilinear coordinates which is often used (Wilson, Decius and 

Cross (1955)] is defined by the first term in the multidimensional Taylor
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s e r i e s  expans ion  of the  va lence  c o o r d i n a t e s  R in c a r t e s i a n  d i sp la cem e n ts  

(r_-a) about  some r e f e r e n c e  geometry a.

R = B • ( r - a )  + C : ( r - a )  ( r - a )  + . . .

The r e c t i l i n e a r  c o o r d i n a t e s ,  S, a r e  th us  d e f ine d  by th e  fo l l o w in g  

e x p r e s s io n

S = B • ( r - a )  (3 .5 )

The r e f e r e n c e  c o n f i g u r a t i o n  i s  chosen s u b j e c t  to  the  Ecka r t  c o n d i t i o n s  

(Ecka r t  (1935))  so t h a t  th e  c o o r d in a t e  frame r o t a t e s  w i th  th e  molecu le  and 

i t s  o r i g i n  i s  on the  c e n t r e  of  mass.

In t h e s e  c o o r d in a t e s  the  v i b r a t i o n a l  k i n e t i c  o p e r a t o r  can be exp re s sed  

in  a m a t r ix  form due to  Wilson (1939) and th e  r o t a t i o n a l  k i n e t i c  o p e r a t o r  

in  th e  S c o o r d i n a t e s  may a l s o  be d e r iv e d  (Reimers and Watts  (1984a)J .  The 

f u l l  H amilton ian  i s  thus  w r i t t e n  i n  th e  fo l l o w in g  form

H -  i  1 Gu pi pj  
i . j

+ Tr o t  + TCC + V(R) (3 .6 )

Here the Wilson G m a t r ix  c o n t a in s  the p a r t i c l e  masses and r e f e r e n c e

geometry w hi le  the o p e r a t o r  P i s  the momentum c o n ju g a te to  the  S

c o o r d i n a t e s .

In l o c a l  mode th e o ry  th e  k i n e t i c  o p e r a t o r  i n  th e  above H am i l ton ian  i s  

s i m p l i f i e d  in  two ways: f i r s t ,  the  r i g i d  r o t o r  approx im at ion  i s  made and 

second ,  the  o f f  d ia gona l  e lements  of  the  G m a t r ix  a re  ignored  so t h a t  the  

k i n e t i c  o p e r a t o r  of the  v i b r a t i o n a l  r e f e r e n c e  system i s  d ia g o n a l  in  th e  S 

c o o r d i n a t e s .  Next,  the  p o t e n t i a l  o p e r a t o r  must be s i m p l i f i e d  and t h i s  i s  

done by assuming t h a t  th e  f u l l  p o t e n t i a l  in  t h e  va lence  c o o r d i n a t e s  can be

approx im ated by a s e t  of decoupled anharmonic o s c i l l a t o r s  in  the



62

rectilinear coordinates. Thus local mode theory uses a more accurate, 

anharmonic, functional form for the potential energy and in this way the 

important anharmonic terms may be included in the reference Hamiltonian. 

The potential function due to Morse (1929) (see also ter Haar (1946) ) is a 

very useful form for this purpose as its eigenvalues and eigenfunctions are 

analytic and it models the anharmonic intramolecular interactions rather 

well. The vibrational reference Hamiltonian in local mode theory is thus

3N-6
Ho = I HCjjPj2 + Vj(Sj)) (3.7)

j=1

If the Morse potential is used to approximate anharmonic interactions the 

potential term in equation (3.7) takes the form

vj(sj) = Dj(e"ajSJ-1 )2 (3.8)

The eigenvalues of the vibrational reference Hamiltonian are analytic 

(Morse (1929)) and the vibrational eigenfunctions, |nv>(m), are Pr°ducts of 
generalized Laguerre polynomials in each of the 3N-6 S coordinates. Now the 

vector quantum number, nv, describes the excitation of the local modes of 

the molecule.

The complete reference system is defined by the Hamiltonian

H0 = + Hg

and the eigenfunctions and eigenvalues

|n> = |nv>(m)|np> enm = envm + enr

are used as the basis of a variational calculation. As with normal mode

theory the matrix elements of the full Hamiltonian become
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Hnm = <m|H|n> = <m|H0+AH|n>

= < W em(ni) + <™\AHln>

Now, however, the perturbation operator contains the vibration-rotation 

coupling, the off diagonal elements of the kinetic operator in the

rectilinear coordinates, and the difference between the intramolecular 

potential in the valence coordinates and the assumed diagonal form in the 

rectilinear coordinates so that

AH = Tcc + i I Gij Pj_Pj + V(R)-IVÄ(SÄ) (3.9)
i*j l

To obtain the Hamiltonian matrix it is necessary to evaluate the

integrals of the various terms in the perturbation operator with the Morse 

oscillator basis set. The integrals of the off diagonal terms in the 

kinetic operator are analytic (Watson, Henry and Ross (1981)). In general, 

however, integrals of the coriolious and centrifugal coupling operator and 

other complicated functions of the S coordiantes must be performed 

numerically. Reimers and Watts (1984a) have developed a useful numerical 

procedure for performing these integrals with the Laguerre basis set.

2.) Application of Conventional Vibrational Spectroscopy: An Improved 

Potential Surface for the Water Monomer

Reimers and Watts (1984) have described in detail how local mode 

variational calculations can be used to determine a potential surface for 

the intramolecular interactions of the water monomer. The procedure is 

simple; a parameterised form for the potential surface V(R) is chosen, and
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this is used in a local mode variational calculation to obtain a model 

vibrational spectrum. The potential parameters are adjusted to give good 

agreement between the model spectrum and that obtained from experiment.

Reimers and Watts used this procedure to fit a potential surface which 

was designed to show rapid convergence of the local mode basis for the 

water molecule. Their potential takes the form of a sum of three Mörse 

potentials in the radial and tangential components of the valence 

coordinates of the water molecule so that

3
V(si,s 2 ,s 3) = l Vj(Si) (3.10)

i=1

where the Morse potential Vj_ is the two parameter form given in equation

coordinates and defined as

S i = Ri cos _ 2 (ö“0o)] “ Ro

S 2 = R2 c o s H ( e - o 0 ) ]  -  r 0

s3 rR i + R 2 sin [2(0~0O)]
_  DRo

(3.1D

Here R0 and 0O are equilibrium bond length and bond angle respectively 

while Ri, R2 and 0 are the instantaneous values of these variables. The Si 

and s2 coordinates describe motions resembling stretches of the two 0-H 

bonds in the water molecule. Distortions along the s3 coordinate are 

similar to angle bending motions. As the Si and s2 coordinates are 

equivalent there are two unique Morse potentials and the model potential 

surface contains only four parameters Di = D2, D 3, oti = a2 and a 3. Reimers 

and Watts determined these parameters by fitting to 37 observed vibrational

band origins for H20, 9 for D20 and 10 for HDO. It was found that overall a
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good representation of these levels could be obtained, but that the 

splitting between the symmetric and antisymmetric bond stretching 

vibrations was incorrectly described.

For the reference system, the two decoupled OH stretch motions are 

degenerate. The perturbation operator contains terms which couple the 

stretching coordinates. When the variational calculations are performed 'the 

degeneracy is lifted and it is found (Coker, Reimers and Watts (1982)) that 

the coupled stretching motions are best represented by almost pure 

symmetric and antisymmetric combinations of the local 0-H stretch basis 

functions. Thus the degeneracy in the reference problem is split by the 

perturbations. The situation is analogous to that found in normal mode 

calculations on the water monomer. In this case symmetric and antisymmetric 

normal modes arise naturally as the coordinates in which the kinetic and 

harmonic potential operators are simultaneously diagonalised. The failure 

of the potential form used by Reimers and Watts to reproduce the 

experimentally observed splittings results because the form neglects 

explicit coupling between the local mode oscillators.

As a starting point for the present calculations, a harmonic coupling 

interaction between Si and S2 has been introduced, specifically to account 

for the incorrect splitting of the 0-H stretching modes. Thus the modified 

potential surface takes the form

3
V(s i ,s2 ,s 3) = I Vi(si) + fi2SiS2 (3.12) 

i=1

The coupling term can be easily included in the perturbation operator. 

Integrals of the form <n|sis2|m> are analytic and a general expression for 

these terms has been given by Heaps and Herzberg (1952).

In order that the modified potential has the correct dissociation
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b e h a v i o u r  t h e  c o u p l i n g  term was m u l t i p l i e d  by a s w i t c h i n g  f u n c t i o n  s i m i l a r  

t o  t h a t  used  by Ben-Naim and S t i l l i n g e r  (1972)  which has  t h e  f o l l o w i n g  form

0 r<R-|

S ( r )
( r - R 1 ) 2 (3R2“ R l “ 2 r )  

(Rp~R1 ) 3
R-] ^r<R2

1 R2^r

where r  = (s- |+S2 ) 2 > R-| = 2  a . u .  and R2 = 3 a . u .

The monomer a n a l y s i s  of  Reimers  and W att s  has  been r e p e a t e d ,  and t h e  

Morse p a r a m e t e r s ,  and f i 2 , a d j u s t e d  t o  g i v e  a good f i t  t o  e x p e r i m e n t a l  band 

o r i g i n s  f o r  t h e  H20 and D20 monomers.  A b a s i s  s e t  w i th  120 morse  o s c i l l a t o r  

e i g e n f u n c t i o n s  c o r r e s p o n d i n g  t o  up t o  5 q u a n t a  of  e x c i t a t i o n  i n  t h e  

m o le c u le  was used and gave w e l l  conve rged  e i g e n v a l u e s .  R e s u l t s  f rom t h e  

a n a l y s i s  a r e  compared w i t h  e x p e r i m e n t  and t h e  v a l u e s  o b t a i n e d  by Reimers  

and W at t s  i n  T a b l e  3.1 and F i g u r e s  3*1 and 3 . 2 .  From F i g u r e  3.1 i t  i s  s e en  

t h a t  t h e r e  i s  a much improved r e p r e s e n t a t i o n  o f  t h e  s p l i t t i n g  be tw een  t h e  

sym m etr ic  and a n t i s y m m e t r i c  s t r e t c h i n g  modes when c o u p l i n g  be tw een  t h e  

s t r e t c h e s  i s  i n t r o d u c e d .  I n  F i g u r e  3 .2  we p r e s e n t  t h e  d i f f e r e n c e  be tween  

t h e  c a l c u l a t e d  and o b s e r v e d  f r e q u e n c i e s  as  a f u n c t i o n  o f  f r e q u e n c y  f o r  t h e  

R e im e r s -W a t t s  p o t e n t i a l  and t h e  m o d i f i e d  fo rm .  G e n e r a l l y  as  t h e  f r e q u e n c y  

i s  i n c r e a s e d  t h e  d i v e r g e n c e  between  t h e  c a l c u l a t e d  and o b s e r v e d  r e s u l t s  

becomes l a r g e r .  Th is  i n d i c a t e s  t h a t  t h e  Morse p o t e n t i a l  p r o v i d e s  t h e  b e s t  

r e p r e s e n t a t i o n  a round t h e  minimum. The ran g e  of  d e v i a t i o n s  f o r  t h e  

R e im e r s -W a t t s  s u r f a c e  i s  abou t  100 cm- ”' and t h e  m o d i f i e d  p o t e n t i a l  form 

seems t o  o v e r e s t i m a t e  t h e  f r e q u e n c i e s ,  by a bou t  40 crTr"' a t  w o r s t .

P a r a m e te r s  used  i n  t h e  m o d i f i e d  p o t e n t i a l  a r e
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Di = D2 = 549.5196 kJ mole"1

D3 = 411.4368 kJ mole"1; f 12 = -63.444 kJ mole"1 Ä"2 

cli = a2 = 2.14125 Ä"1 ; a3 = 0.70600

It should be noted that the value for the fi2 constant which couples the Si 

and s2 local modes is similar to the normal mode force constant obtained by 

Kuchitsu and Morino (1965), (1966). Their value for the constant krrt which 

couples the two 0-H bond extensions is -60.8323 kJ mole"1Ä"2.
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Table 3.1 Vibrational frequencies (in cm-1) for the H2O and D2O
monomers predicted by the Reimers-Watts and present potential 
surfaces. Assignment is based on local mode quantum numbers 
described by Reimers and Watts (1984a). The experimental 
values were taken form this paper.

H20 d2o

Assignment Experiment Present R.-W. Experiment Present R.-W.'

001 1595 1595 1595 1178 1173 1173
002 3152 3149 31^9 2324 2324
100s 3657 3656 3669 2672 2679 2688
100a 3756 3755 3719 2788 2785 2758
003 4667 4663 4663 3456 3453
101s 5235 5252 5265 3852 3861
101a 5331 5343 5306 3956 3956 3929
102s 6775 6807 6820 5004 501 3
102a 6872 6889 6850 5105 5106 5076
200s 7201 7201 7213 5292 5307 5322
200a 7250 7250 7228 5374 5380 5363
1 10 7445 7456 7401 5533 5583
201s 8762 8798 8808 6481 6496
201a 8807 8842 8819 6533 6552 5634
1 11 9000 9041 8986 6703 6652
300s 10600 10602 10593 7875 7887
300a 10613 10616 10596 7900 7915 7902
21 0s 10869 10885 10881 8071 8045
210a 11032 11065 10971 8237 8162

With the present potential the zero point energy for H2O is 4623.0 cm and 
f or D2O 3381 .4 cm“! .
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3.) Application of Conventional Vibrational Analysis to the Study of 

Clusters of Molecules

In this section we explore the possibilities of extending the methods 

of normal and local mode analysis to studying the vibrations of small 

clusters of molecules. A detailed account of the application * of 

conventional spectroscopic theory to studying the vibrations of molecular 

clusters has been presented by Reimers and Watts (1984b). This section only 

outlines the approximations that must be made and the difficulties 

encountered when applying conventional methods to studying cluster systems.

The vibrational spectrum of a molecular cluster will differ from that 

of an isolated molecule due to the intermolecular interactions. Vibrational 

frequencies of the individual molecules will change through coupling with 

the rest of the cluster. The major influence of the intermolecular 

interactions is to distort the internal geometry of each molecule. If the 

intramolecular potential is anharmonic, the distorted molecules will 

vibrate on a region of potential surface with different curvature from 

molecules in their equilibrium geometries. The normal mode vibrational 

frequencies are related to the local curvature of the potential so 

intramolecular vibrational frequencies different from those of the isolated 

molecules will result. Another effect of clustering is the formation of 

intermolecular bonds. The entire cluster is able to establish modes of 

vibration in which molecules move relative to one another in a periodic 

fashion. Intermolecular vibrations occur at lower frequencies than the 

intramolecular modes because the intermolecular potential is usually weaker 

and longer ranged.

In principle, normal mode theory is easily applied to studying cluster
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vibrations. The combined inter- and intramolecular potential is used and 

the cluster as a whole is treated in the same fashion as discussed in 

Section 1.). In practice however, this calculation is usually slowly 

convergent (Reimers and Watts (198Mb)) since the intermolecular potential 

allows large zero point motions and the surface is anharmonic.

The procedure to be used when applying local mode analysis to -the 

problem of vibrations in molecular clusters is not so obvious. Generally 

intermolecular bonds are rather loosly defined structures, so there are no 

local coordinates which will give a simple description of the

intermolecular modes. The situation for the intramolecular modes, however, 

is more promising. In a cluster the motions involved in intramolecular 

vibrations are usually localized on the particular molecule. Thus it is 

likely that the local coordinates used in local mode calculations on the 

isolated molecules probably still provide a good representation of the 

intramolecular vibrations of the cluster. This idea forms the basis of an 

effective potential, or "frozen field", local mode method for studying how 

intramolecular motions are perturbed by clustering. The method was 

developed and applied to water clusters by Reimers and Watts (1984b) and 

has since been used by Miller, Watts and Ding (1984) to interpret the 

intramolecular vibrational spectra of nitrous oxide clusters.

We now present a brief description of the frozen field local mode 

method. In this approach the intermolecular potential acts as a 

perturbation which can be included by fitting an effective Morse oscillator 

surface in the intramolecular coordinates to the full inter/intramolecular 

potential. The equilibrium geometry of the molecular cluster is first found 

by minimising the full potential surface. Holding all other molecules fixed 

in this geometry, each molecule in turn is internally distorted along its
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l o c a l  c o o r d i n a t e s .  The c e n t r e  of mass of the  d i s t o r t e d  molecule  i s  

m a in ta in e d .  The t o t a l  p o t e n t i a l  energy f o r  s e v e r a l  d i s t o r t i o n s  of the 

molecule  i s  c a l c u l a t e d  and an e f f e c t i v e  Morse s u r f a c e  in the  l o c a l  

c o o r d in a t e s  i s  f i t t e d  to  the  r e s u l t s .  The e f f e c t i v e  p o t e n t i a l  ob ta in ed  

us ing  t h i s  approach in c lu d e s  the  i n f l u e n c e  of  the  s t a t i o n a r y  i n t e r m o l e c u la r  

f i e l d  p rov ided  by the  r e s t  of the  c l u s t e r .  Each molecule  in  the  c l u s t e r  i s  

co n s id e re d  as an i s o l a t e d  e n t i t y  moving on i t s  own e f f e c t i v e  p o t e n t i a l  

s u r f a c e  which in c lu d e s  the  i n f l u e n c e s  of i t s  environment.  The 

i n t r a m o l e c u l a r  v i b r a t i o n a l  spectrum of the  c l u s t e r  i s  thus  regarded  as a 

s u p e r p o s i t i o n  of  the  s p e c t r a  a s s o c i a t e d  w i th  the  d i f f e r e n t  m o lecu le s .  Local 

mode th e o ry  i s  employed to  c a l c u l a t e  th e  s p e c t r a  of  the  molecule s  and b a s i s  

s e t s  c o n s t r u c t e d  from the  e i g e n f u n c t i o n s  of the  e f f e c t i v e  Morse o s c i l l a t o r s  

a r e  used to  perform the  v a r i a t i o n a l  c a l c u l a t i o n s .

There a re  two major approx im at ions  with  f ro zen  f i e l d  l o c a l  mode 

a n a l y s i s .  F i r s t ,  the  method ig n o re s  c o r r e l a t i o n s  between the  in te i— and 

i n t r a m o l e c u l a r  motions s in c e  i t  i s  assumed t h a t  each molecule  v i b r a t e s  in  

th e  s t a t i o n a r y  f i e l d  of i t s  n e ighbours .  Secondly,  any c o r r e l a t i o n s  between 

th e  i n t r a m o l e c u l a r  motions of d i f f e r e n t  molecu le s  a re  ig n o red .

The e f f e c t s  of the  approx im at ions  d e s c r ib e d  above can be e s t i m a t e d  

us ing  normal mode a n a l y s i s ,  as has been done by Reimers and Watts  (1984) 

f o r  water  c l u s t e r s .  In t h e i r  t r e a t m e n t ,  they  s e t  the  a p p r o p r i a t e  elements  

of  the  normal mode f o r c e  c o n s t a n t  m a t r ix  to  ze ro  and were a b l e  t o  e s t i m a t e  

the  importance  of the  d i f f e r e n t  terms us ing  harmonic app ro x im a t io n s .  As 

no ted  e a r l i e r ,  the  i n t e r m o l e c u l a r  p o t e n t i a l  i s  a p p r e c i a b ly  anharmonic so 

th e  harmonic t r e a tm e n t  can g ive  only  q u a l i t a t i v e  in fo rm a t io n  about the  

magnitudes  of the  c o u p l in g s .  In the  nex t  s e c t i o n  we d e s c r ib e  a procedure  in

which the  many body wave f u n c t i o n  o b ta in e d  from a quantum Monte Car lo
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calculation is used to determine the intramolecular vibrational spectrum of 

a molecular cluster. The couplings and correlations which are ignored in 

the effective potential local mode approach can be treated by the quantum 

simulation method.

M.) Application of the Quantum Monte Carlo Method to Molecular Clusters

The quantum Monte Carlo procedure, which was described in Chapter 2, 

may be used to study the ground state of a molecular cluster. A collection 

of replica systems is established, each member of the ensemble being a 

single molecular cluster. At every time step the simulation algorithm 

consists of the usual Gaussian diffusion step, modelling the kinetic energy 

operator, followed by a birth/death process which accounts for the 

potential term in the Hamiltonian.

The time step used must be sufficiently small to ensure that the 

separation of the diffusion and birth/death processes is an accurate 

approximation. A rapidly varying potential surface demands the use of very 

small time steps. In a cluster of water molecules the intramolecular 

potential varies more rapidly than the intermolecular surface and a time 

step which gives small intramolecular displacements must be used. An 

adequate sample of the distribution of intermolecular geometries can only 

be obtained with very long runs using short time steps.

The different atoms in the molecules have different diffusion 

coefficients, =T\2/2m^. In water for example, the diffusion coefficient 

for the motion of the hydrogen atoms approximately sixteen times greater

than that associated with the motions of the oxygen atoms. Since the width
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of the Gaussian distribution of displacements depends on the square root of 

the diffusion coefficient, in a single time step the oxygen atoms will 

diffuse through distances that are about four times smaller than those of 

the hydrogen atoms. Thus the distribution of intermolecular geometries will 

take a long time to equilibrate.

We now describe the method which has been used to calculate the 

vibrational spectrum of a molecular cluster from a quantum random walk 

calculation. As discussed in Chapter 2, the basic quantum Monte Carlo 

procedure produces an ensemble of systems distributed according to the 

ground state wave function. The ensemble can be used to obtain the 

intramolecular vibrational spectrum of the molecular cluster providing 

certain assumptions are made. The basic idea behind our approach involves 

fitting an analytic form to the "exact” ground state wave function obtained 

from the quantum Monte Carlo calculation. If a convenient form is chosen 

the vibrational frequencies can be obtained using conventional vibrational 

analysis.

The ground state wave function of the cluster is assumed to have the 

form of a product of an intermolecular part and a set of separate 

intramolecular functions, <J>j_(Rj), each of which describes the vibrations of 

a single molecule thus

T = Winter n *i(Rj.)

Analytic functions of this form are fitted to the quantum Monte Carlo wave 

function and provide the basis set for variational calculations.

We restrict ourselves to studying only those motions of the cluster 

which are approximately localised on single molecules. The frozen field 

local mode method of Reimers and Watts (1984b) assumes that the effective
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potential in which a molecule in a cluster vibrates can be constructed as a 

sum of Morse oscillators in the local coordinates of the molecule. 

Following this approach we assume that the intramolecular wave functions 

are written as products of Morse oscillator eigenfunctions in the local 

coordinates and the effective wave function for a molecule takes the 

following model form

<D(R) = H <|>j(sj) (3.13)
j

Here the ground state Morse oscillator eigenfunction is given by

4>j(sj) = N~2 e-X//2 x^_2

where K = A Dj 2 , x = 2K (3*14)

and A is related to the diagonal elements of the G matrix by

A = 2 2 / (ctjhG)

The normalising constant for the ground state wave function is

r(2K)
N = (2K-1)2

An ensemble generated by a quantum Monte Carlo calculation is 

distributed according to the many body ground state wave function. A 

multidimensional distribution obtained in such a form may be projected onto 

the intramolecular coordinates of interest by accumulating histograms of 

these coordinates averaged over all systems in the ensemble. Histograms 

generated as outlined above include the influences of both the 

intermolecular zero point motions and the intramolecular motions of the 

other molecules. By fitting the functional form for the model wave function
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p r o j e c t i o n s  given  in  e q u a t io n  (3.1*0 t o  th e  exac t  wave f u n c t i o n  p r o j e c t i o n s  

we o b t a i n  e f f e c t i v e  independen t  Morse o s c i l l a t o r  e i g e n f u n c t i o n s .  Func t ions  

o b t a in e d  by the  method a re  used as a b a s i s  s e t  f o r  a conv en t io n a l  l o c a l  

mode a n a l y s i s  and e s t i m a t e s  of the  i n t r a m o l e c u l a r  v i b r a t i o n a l  f r e q u e n c i e s  

may be c a l c u l a t e d .  The f i t t i n g  i s  performed by va ry ing  the  param ete rs  D j , 

oij and s j 0 in  e q u a t io n  (3 .1*0 .

The major assumption in  th e  approach co n s id e re d  above i s  t h a t  the  many 

body wave f u n c t i o n s  d e s c r i b i n g  the  i n t r a m o l e c u l a r  v i b r a t i o n a l  s t a t e s  of the  

c l u s t e r  can be w r i t t e n  as p ro d u c ts  of e f f e c t i v e  independent  Morse 

o s c i l l a t o r  e i g e n f u n c t i o n s  in  the  l o c a l  c o o r d i n a t e s .  Any p o s s i b i l i t y  of 

d i r e c t  coup l ing  between the  l o c a l  modes on a p a r t i c u l a r  molecu le  i s  

n e g l e c t e d  by the  assumption .  In  S e c t io n  2 . )  we found t h a t  such coup l ings  

were im p o r tan t  f o r  g iv in g  the  c o r r e c t  s p l i t t i n g  between th e  symmetric and 

a n t i s y m m e t r i c  combina tions  of the  e q u i v a l e n t  0-H s t r e t c h  m ot ions .  The 

c o u p l in g s  a re  p r o p e r t i e s  of the  i s o l a t e d  molecu le s  and as such should  not  

be s t r o n g l y  e f f e c t e d  by c l u s t e r i n g .  Thus i t  i s  r e a s o n a b l e  to  approximate 

t h e s e  terms by the  i s o l a t e d  molecule  v a l u e s .  Couplings of t h i s  form a re  

i n c lu d e d  in  the  v a r i a t i o n a l  c a l c u l a t i o n s  performed w i th  the  e f f e c t i v e  

o s c i l l a t o r  b a s i s  s e t .  The o f f  d iagona l  el emen ts  of the  v i b r a t i o n a l  k i n e t i c  

energy  o p e r a t o r  must a l s o  be in c lu d e d  in  a v a r i a t i o n a l  c a l c u l a t i o n .

When i s o l a t e d  molecule s  a re  b rought t o g e t h e r  to  form a c l u s t e r ,  t h e i r  

r o t a t i o n a l  degrees  of freedom a re  p e r tu r b e d  by b in d ing  with  the  o t h e r  

m o lecu le s  in  th e  c l u s t e r .  Such mot ions m a n i f e s t  themselves  as l i b r a t i o n a l  

modes of the  c l u s t e r .  The in f l u e n c e s  of t h e s e  " h in d e red  r o t a t i o n s "  a re  

i n c lu d e d  in  the  e f f e c t i v e  o s c i l l a t o r s  which were f i t t e d  t o  the  many body 

ground s t a t e  wave f u n c t i o n .  E f f e c t s  of  c o r i o l i s  and c e n t r i f u g a l  coup l ings

which e x i s t  between the  i n t e r -  and in t r a m o l e c u l a r  modes a r e  inc luded  in  th e
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effective oscillators and need not be considered in variational 

calculations.

5.) Quantum Monte Carlo Local Mode Vibrational Analysis of Water Clusters

Procedures discussed in the previous section have been applied to 

intramolecular vibrations of the water dimer and trimer. In these 

calculations we used the improved intramolecular potential presented in 

Section 2.) combined with the RWK2 intermolecular potential of Reimers, 

Watts and Klein (1981).

Quantum random walks were performed for the water dimer with ensembles 

of both 200 and 400 systems and the energies and vibrational frequencies 

obtained from these calculations were found to agree within the statistical 

fluctuations. The results of finite time step calculations converge to the 

true ground state values in the limit as At  ̂0 [Anderson (1976)). To test 

convergence we performed calculations with imaginary time steps of 

At = 0.004 and 0.002 fs and the results obtained were again in agreement 

within the statistical uncertainties. Thus in the range of operating 

conditions considered, time step and ensemble size dependence effects were 

negligible. To test the accuracy of the random walk method under these 

conditions we first performed a simulation of the water monomer. A value of 

4615 ± 15 cm“"' for the ground state energy of the monomer was obtained in 

excellent agreement with the results of the variational calculations 

summarized in Table 3.1. All the results reported in this section were 

obtained from a simulation based on an ensemble of 400 systems and a time 

step of At = 0.004 fs. Runs of 100 000 time steps or more were necessary to
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obtain reasonable convergence of the intermolecular distribution functions.

The expectation values of various quantities including structural 

properties of the ground state cluster were obtained using the descendent 

weighting procedure for generating a t}>02 distribution which was described 

in Chapter 2.

Expectation values of the potential and kinetic operators were obtained 

with the distribution. The average kinetic energy was calculated using 

the quantum virial theorem which gives that, in the absence of external 

forces, the kinetic energy of a system can be obtained from the following 

relation

f ^(r) H v < ) 'J'(r) dr = " k  [ ^*(r) ^(r) VV(r) dr
J —  2m 1  —  —  J —  —  —  —

Thus by averaging the gradient of the potential over the <J>0  ̂ distribution 

we can evaluate the kinetic engery.

As discussed in Chapter 2, the total energy is obtained from the 

average value of the energy reference which holds the population of the 

ensemble approximately fixed. Comparing the ground state energy calculated 

using this approach with the sum of the potential and kinetic energy 

components gives a selfconsistent check of our calculation.

In Figure 3.3 we present the atom-atom pair distributions for the water 

dimer obtained from the (J>02 distribution. For comparision we also present 

the distribution functions obtained by Reimers (1982) who performed a 

classical Monte Carlo calculation on the water dimer at 10 °K. Inadequacy 

of the low temperature classical Boltzman distribution is rather apparent. 

The classical distribution does not allow for zero point motions of the 

cluster and this neglect gives rise to extremely sharp, unphysical

structural features. On the other hand the exact quantum distributions show
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broader structural features due to large amplitude zero point motions.

Figure 3*3 also highlights the differences between the frozen field 

local mode method for calculating the intramolecular vibrational spectrum 

of a cluster and the quantum Monte Carlo projection method. In the latter, 

we obtain an effective wave function for the intramolecular degrees of 

freedom which has been averaged over the full quantum distribution of 

intermolecular enviroments. With the frozen field local mode method 

however, we hold the rest of the cluster in its minimum energy geometry and 

sample only the zero temperature classical distribution of intermolecular 

geometries.

Figure 3.^a presents the minimum energy dimer structure predicted by 

the RWK2 potential, the energy of this geometry is -3093 K. Intermolecular 

distances involving the hydrogen bonded atom give rise to the sharp first 

peaks in both the gQ^ and g^H distributions presented in Figure 3-3. Other 

hydrogens being less strongly bound give more diffuse structural features.

Calculation of the intermolecular distributions is rather noisy for two 

reasons: first, since fairly small time steps are used so that an accurate 

separation of the diffusion and birth/death processes can be made, very 

long runs are necessary to obtain good statistics for the slower 

intermolecular degrees of freedom. Secondly, the procedure for generating 

the (j)02 distribution involves large fluctuations since two fluctuating 

quantities must be folded together.

Figure 3.5 demonstrates how the descendent weighting procedure is used 

to calculate the average kinetic and potential energies in the ground state 

of the water dimer. We plot the potential energy and the virial, both 

averaged over the ensemble distribution and weighted by the descendent 

numbers after a time x. The procedure used here was described in
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Section 3.) of Chapter 2 and the curves presented in Figure 3.5 are the 

results of superimposing many segments of the random walk trajectory. As 

discussed in Chapter 2, estimates of the expectation values of the 

potential and kinetic energy can be obtained from the asymptotic behaviour 

of the curves presented in Figures 3.5. The values of these quantities are 

<V> = 2370 ± 50 K/molecule and <T> = 3400 ± 100 K/molecule giving the total 

ground state energy of the water dimer as <E0> = 5770 ± 100 K/molecule. To 

within the statistical fluctuations inherent in these calculations this 

agrees with the average value of Vref <vref> = 5730 ± 20 K/molecule 

obtained during the run. As discussed earlier, this agreement provides a 

self-consistent check of the quantum Monte Carlo method and indicates that 

the Virial Theorem is satisfied. The eigenvalue estimate calculated from 

the average energy reference has less statistical uncertainty than the 

value obtained from the sum of the potential and kinetic energies since the 

evaluation does not rely on the (j)02 generation procedure.

In Table 3.2 we compare the ground state energies of the water dimer 

predicted by various calculations.

Table 3.2 Comparison of different 

(in cm“"1) of the water dimer.

calculations of the ground state energy

Calculation Eo Intra Inter

Random Walk 10115 9130 985

Local mode (Reimers-Watts (1984b)) 10113 9093 1020

Normal mode (Reimers-Watts (1984b)) 10193 9172 1020

Slania (1981) 10225 9456 769

Curtiss and Pople (1975) 10626 9838 788
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The r e s u l t s  of C u r t i s s  and Pople (1975) were o b ta in e d  by per forming normal 

mode a n a l y s i s  on an ab i n i t i o  p o t e n t i a l  s u r f a c e  c a l c u l a t e d  us ing  LCAO-SCF 

th e o ry  wi th  a l i m i t e d  b a s i s  s e t .  S l a n i a  (1981) a l s o  employed normal mode 

a n a l y s i s  w ith  the  improved ab i n i t i o  p o t e n t i a l  s u r f a c e  of Matsuoka e t  a t .

( 1 976) who used Cl methods.  The r e s u l t s  of Reimers and Watts can be 

compared wi th  the  random walk va lu e s  s in c e  t h e r e  a re  only  s l i g h t  

d i f f e r e n c e s  in  the  p o t e n t i a l s  used in  t h e s e  two c a l c u l a t i o n s .  As d i s c u s s e d  

e a r l i e r  the  major e f f e c t  of the  m o d i f i c a t i o n s  which have been made to  the  

Reimers-Wat ts  s u r f a c e  i s  to  s p l i t  the  de g e n e ra te  s t r e t c h  motions and the  

changes have l i t t l e  i n f l u e n c e  on the  t o t a l  ground s t a t e  energy .  The l o c a l  

mode r e s u l t s  which in c lu d e  normal mode e s t i m a t e s  of the  i n t e r m o l e c u l a r  

energy a re  c l o s e  to  the  ground s t a t e  energy o b ta in e d  from the  random walk 

c a l c u l a t i o n .  Both th e s e  v a lues  a re  lower than the  r e s u l t s  ob ta in ed  from 

normal mode a n a l y s i s .  The t o t a l  energy o b ta in e d  from the  random walk 

c a l c u l a t i o n  has been s e p a r a t e d  i n t o  i n t e r -  and i n t r a m o l e c u l a r  c o n t r i b u t i o n s  

by us ing  the  i n t r a m o l e c u l a r  v i b r a t i o n a l  f r e q u e n c i e s  o b ta in ed  from the  

p r o j e c t i o n  method.

The i n t r a m o l e c u l a r  energy c a l c u l a t e d  from the  random walk i s  s l i g h t l y  

h ig h e r  than the  r e s u l t s  of the  l o c a l  mode c a l c u l a t i o n s  while  the  

i n t e r m o l e c u l a r  component i s  lower th a n ,  but  s u r p r i s i n g l y  c l o s e  to  the  

normal mode r e s u l t .  I t  i s  d i f f i c u l t  to  make more d e t a i l e d  comparisons wi th  

any c e r t a i n t y  due to  the  d i f f e r e n c e s  in  the  p o t e n t i a l  s u r f a c e s  and the  

s t a t i s t i c a l  e r r o r  in  the  random walk r e s u l t s .

We now co n s id e r  u s ing  the  ensemble o b ta in e d  from the  random walk 

c a l c u l a t i o n ,  t o g e t h e r  with  the  p r o j e c t i o n  method d e s c r ib e d  in  the  p rev ious  

s e c t i o n  to  o b t a in  the  i n t r a m o l e c u l a r  v i b r a t i o n a l  spectrum of the  water

dimer.  His tograms of the  l o c a l  mode c o o r d in a t e s  , d e f in e d  in  e q u a t io n
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( 3 .1 1 ) ,  were averaged over the  ensemble d i s t r i b u t i o n  and th e s e  p r o j e c t i o n s  

a re  p r e s e n te d  in  F igu re  3 .6 .  The dashed curves  in  t h e  f i g u r e  a re  th e  ground 

s t a t e  Morse b a s i s  f u n c t i o n s  f o r  the  w ate r  monomer. D i f f e r e n c e s  between the  

dashed and s o l i d  curves  dem ons t ra te  th e  e f f e c t s  of c l u s t e r i n g  on the  

v a r io u s  i n t r a m o l e c u l a r  modes. The s l i g h t  d i s t o r t i o n s  of the  i n t r a m o l e c u l a r  

wave f u n c t i o n s  apparen t  in  F ig u re  3 .6  have a s i g n i f i c a n t  e f f e c t  on -the 

v i b r a t i o n a l  f r e q u e n c i e s .  A f requency  s h i f t  of more than  200 cm“ "' i s  

a s s o c i a t e d  w i th  the  l a r g e s t  d i s t o r t i o n .

For each dimer in  th e  ensemble th e  s h o r t e s t  0-H i n t e r m o l e c u l a r  d i s t a n c e  

was used to  d e f in e  the  bonded hydrogen atom. S ep a ra te  h i s tog ram s  f o r  the  

bonded and non-bonded l o c a l  c o o r d in a t e s  on the  donor and a l s o  f o r  th e  Si 

and s 2 c o o rd in a te s  on the  ac c e p to r  m olecu le  were accumula ted .  The two 

hydrogen atoms on the  ac c e p to r  a re  e q u i v a l e n t  and so t h e i r  motions shou ld  

ta k e  p la ce  in  the  same averaged f i e l d .  From F igu re  3.6 we see  t h a t  the  

p r o j e c t e d  wave f u n c t i o n  d e s c r i b i n g  th e  mot ion  of  the  hydrogen bonded atom 

on th e  donor i s  s i g n i f i c a n t l y  p e r tu r b e d  from the  monomer wave f u n c t i o n .  

A t t r a c t i o n  by the  oxygen atom on th e  a c c e p to r  molecule  d i s t o r t s  the  l o c a l  

c o o r d in a t e  d i s t r i b u t i o n  f o r  the  donor atom. The p r o j e c t i o n s  onto o th e r  

i n t r a m o l e c u la r  s t r e t c h i n g  and bending c o o r d i n a t e s  d i f f e r  only  s l i g h t l y  from 

the  monomer wave f u n c t i o n s  d e s c r i b i n g  t h e s e  m ot ions .

As d i s c u s s e d  in  the  p rev ious  s e c t i o n ,  a l e a s t  s qua res  method was used 

to  f i t  an e f f e c t i v e  Morse o s c i l l a t o r  b a s i s  s e t  to  th e  h is tog ram s  of 

i n t r a m o l e c u l a r  l o c a l  c o o r d i n a t e s .  For t h e  moment we c o n f in e  our a t t e n t i o n  

to  th e  0-H s t r e t c h  motions in  the  d imer .  F igure  3«7a shows the  v = 0->1 

e x c i t a t i o n  e n e rg i e s  of the  v a r io u s  Morse b a s i s  o s c i l l a t o r s  o b ta in e d  by 

f i t t i n g  t o  the  quantum Monte Car lo  g e n e r a t e d  wave f u n c t i o n  p r o j e c t i o n s .  The 

low es t  f requency  cor responds  to  the  p r o j e c t i o n  onto  the  hydrogen bonded 0-H
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Stretch motion while the highest frequency band is associated with the 

non-hydrogen bonded oscillator on the donor molecule (refere to Figure 3.4a 

for the dimer structure). The band in between these two corresponds to the 

two degenerate stretches of the acceptor. Frequencies obtained from the s-j 

and S2 projections of the acceptor molecule differed slightly as a result 

of the fluctuations inherent in the calculation. During the 100 000 time 

steps over which the steady state averages were accumulated these two 

frequencies were never separated by more than 25 cm“"1 . This value gives a 

reasonable estimate of the statistical error for the frequencies predicted 

by our calculation. The degenerate frequency presented in Figure 3.7a was 

obtained by fitting to the average of the s-j and S2 histograms.

Figure 3.7c shows the excitation energies of the basis oscillators 

obtained by Reimers and Watts from fitting to the frozen field potential 

surface. The two bands associated with the non-hydrogen bonded stretch on 

the donor and the degenerate stretches on the acceptor occur at similar 

frequencies to those obtained from the quantum Monte Carlo wave function 

projections. This indicates that these intramolecular motions are not 

strongly influenced by the zero point motion of the rest of the cluster and 

that the approximations made in frozen field local mode analysis are quite 

reasonable for these modes. However, this is not the case for the hydrogen 

bonded stretch. The frozen field basis oscillator representing this mode is 

some 200 cm“"1 lower in frequency than the basis oscillator obtained from 

the quantum Monte Carlo projection method. A reason for the difference is 

that the bonded 0-H stretch is probably strongly coupled to the 

intermolecular mode which represents stretching of the dimer 0-0 bond. 

Since these motions are approximately colinear, any change in dipole moment

associated with one stretch must influence the other. The two oxygens and
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the bridging hydrogen can be thought of as a linear triatomic. Coulson and 

Robertson (1974), (1975) have used this model to perform a theoretical

study of the combination bands expected in strongly hydrogen bonded 

systems.

Figures 3.7b and 3»7d respectively show how the basis oscillators 

obtained from the quantum Monte Carlo projections and the frozen field 

fitted potentials are perturbed when variational calculations are 

performed. In Figure 3*7b we have taken the quantum Monte Carlo Morse basis 

and performed a variational calculation, using excitations up to 5 quanta 

to include the off diagonal elements of the kinetic operator and the 

coupling between the s-j and S2 coordinates. As with the monomer the major 

effect of these terms is to split the degenerate stretches on the acceptor 

giving symmetric and antisymmetric modes. Basis oscillators of the donor 

molecule are only perturbed slightly by these couplings since they are 

already non-degenerate. In Figure 3.7d we present the results obtained by 

Reimers and Watts (1984b) who performed variational calculations to include 

only the off diagonal elements of the G matrix and also approximate 

harmonic couplings between the inter- and intramolecular modes.

As in their monomer calculations, the off-diagonal kinetic energy terms 

result in only a small splitting between the acceptor stretches. The major 

influence of the harmonic couplings between the intramolecular modes and 

the motions of the rest of the cluster is to shift the hydrogen bonded 

stretch to higher frequencies by about 100 cm"1. The predicted band, 

however, still falls well below the frequency obtained from the quantum 

Monte Carlo results.

Also presented in this figure are the results of molecular beam

experiments in the region of the 0-H stretch vibration reported by Coker,



Miller and Watts (1985). The frequencies obtained from the quantum Monte 

Carlo simulation with couplings included by variational calculations are 

seen to agree with the experimental values to within the statistical 

uncertainties of the calculations (± 25 cm-1).

The nature of the enviroment in a molecular beam is such that the 

individual clusters find themselves in collision free conditions. 

Rotational temperatures are extremely low and both the inter- and 

intramolecular degrees of freedom should be very strongly cooled. Due to

the conditions in a molecular beam it is reasonable to expect good

agreement between the results of the ground state calculations and

molecular beam data.

6.) Comparisons of Theories and Experiment

Figures 3.8 and 3.9 present in more detail the experimental findings of 

Coker, Miller and Watts (1985). Molecular beams containing clusters of 

water molecules are formed by expanding mixtures of water vapour in helium 

through a small nozzle and skimmer arrangement into an evacuated chamber. 

By adjusting the conditions of pressure, temperature and composition, the 

dominent size of cluster produced in the beam can be controlled. When 

infrared radiation from a colour centre laser is absorbed by the 

intramolecular vibrations of the cluster, the excitation rapidly migrates 

into the intermolecular modes and causes the cluster to dissociate. The 

dissociation fragments are sent tumbling out of the molecular beam and the 

intramolecular absorption is detected as a decrease in beam intensity. 

Figures 3.8, 3.9 and 3.10 show the attenuation of the energy of the
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m olecu la r  beam, measured by a bo lom ete r ,  as  a f u n c t i o n  of  l a s e r  f requency  

f o r  a range of  d i f f e r e n t  beam c o n d i t i o n s .

F igu re  3.8 i n d i c a t e s  t h a t  as the  w ate r  c o n c e n t r a t i o n  i s  reduced ,  the  

broad  f e a t u r e  r e m i n i s c e n t  of the  spectrum of l i q u i d  wate r  (Rober tson  and 

Will iams (1971 ) ) ,  though s h i f t e d  to  the  b lue  by about a hundred wave 

numbers, g ives  way to  s e v e r a l  s t r o n g  f e a t u r e s  which emerge from -the 

enve lope .  There i s  a l s o  ev idence  of a smal l  band which p e r s i s t s  i n  th e  low 

f requency  t a i l  near  3200 cm- "1. The sha rp  band above 3700 cm“ 1 i s  e v id e n t  in  

a l l  s p e c t r a  and grows in  r e l a t i v e  i n t e n s i t y  as the  c o n c e n t r a t i o n  i s  

reduced .  This  band c o n s i s t s  of a t  l e a s t  two d i s t i n c t  peaks .  F igu re  3.9 

shows t h a t  a t  l e a s t  s i x  s t r o n g  f e a t u r e s  a r e  appa re n t  i n  the  spec trum a t  

very  low c o n c e n t r a t i o n s  and t h a t  the  weak band a t  near  3200 cm“ 1 i s  

p o s s i b l y  r e s o lv e d  i n t o  two peaks .  Examination of  the  p r e s s u r e  dependence of  

t h e s e  a b s o r p t i o n s ,  t o g e t h e r  with  mass s p e c t r o m e t r y ,  i n d i c a t e s  t h a t  t h e s e  

low c o n c e n t r a t i o n  s p e c t r a  a r e  most l i k e l y  a s s o c i a t e d  wi th  the  w ate r  dimer 

and t r i m e r .  F igu re  3-10 compares the  ex p e r im e n ta l  r e s u l t s  with  t h e  va lues  

o b ta in e d  from the  random walk p r o j e c t i o n  method.  The va lues  a r e  in  very

c l o s e  agreement.
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Table 3.3 Absorption bands observed at low H2O concentrations in helium. 

Also given are molecular beam results of Page et al. ( 1984) and matrix 

isolation results of Bentwood et al. (1980) for the dimer and predictions 

of dimer frequencies from quantum simulation theory. All frequencies are 

in cm“”' .

Present
Experiment

Page 
et al. Ar Matrix Np Matrix Theory Dimer Assignment

3730 ± 3 3730 3726 3715 3721 Donor Stretch

3722 ± 3 3714 3709 3699 3714 Acceptor asymmetric 
Stretch

3600 ± 3 3600 3634 3627 3610 Acceptor symmetric 
Stretch

3532 ± 3 3545 3574 3550 3535 Donor Stretch

+100■=rm 5 3430 Trimer

3357 ± 3 3380 Trimer

3215 ± 5 3201 Donor bend 
overtone

3170 ± 5 3186 3130 Acceptor bend 
overtone

In Table 3-3 the f requencies of all the absorptions found in these

lowest concentration spectra are summarised and compared with the results 

obtained from matrix isolation studies (Bentwood et al. (1980)) and another 

molecular beam experiment (Page et al. ( 1984)). Also presented are the 

results of the quantum Monte Carlo calculations which enable a detailed 

assignment of the experimental spectra to be made. As discussed earlier, in 

descending order of frequency, the four sharp bands at higher frequencies 

correspond to the non-hydrogen bonded stretch on the donor, the asymmetric 

stretch on the acceptor, the symmetric stretch on the acceptor and finally
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the hydrogen bonded stretch on the donor. The quantum Monte Carlo wave 

function was also projected onto the bending coordinates of the molecules 

and the calculated bend overtones are close to the two broad, weak 

absorptions observed in the experimental spectrum near 3200 cm“1 . The low 

intensities of these bands are consistent with such an assignment.

The two remaining strong absorptions in the experimental spectrum, 

observed at 3357 cm“1 and 3^00 cm“1, are difficult to assign as vibrations 

of the dimer. It is likely that the broader band at 3^00 cm“1 is in fact 

associated with the trimer. Such an assignment is supported by the beam 

experiments of Vernon et al. (1982) in which a poorly resolved trimer 

spectrum indicates a very broad absorption centred near 3^00 cm“1. Their 

results for the tetramer show a similar feature while for the pentamer they 

find a band at approximately 3350 cm“1. The sharp feature at 3357 cm“1 in 

the molecular beam results of Coker, Miller and Watts is, however, unlikely 

to be associated with such a large cluster for, as stated earlier, the mass 

spectra of the low concentration cluster beams indicates the presence of 

predominently dimers and trimers. Though there are difficulties in 

interpreting the mass spectra due to fragmentation as the clusters are 

detected.

An alternative assignment is that the peak at 3357 cm“1 is associated 

with a dimer difference band. Suppose that the water dimer is formed in the 

beam in an excited intermolecular vibrational state. For example there may 

be significant population in the vibrationally excited 0...0 stretching 

mode. It is thus possible, in principle, to observe the difference 

frequency absorption corresponding to the de-excitation of this mode and 

the simultaneous excitation of the hydrogen bonded 0-H stretch on the donor

molecule. Evidence for the existence of such a mode in hydrogen bonded
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systems has been c ons ide re d  by Coulson and Rober tson  (197-4) , (1975).

The quantum s im u l a t i o n  method has been used to  e s t i m a t e  the  v i b r a t i o n a l  

f requency  of the  0 . . . 0  s t r e t c h  mode. A h is tog ram  of 0 . . . 0  s e p a r a t i o n s  was 

accumula ted  from the ground s t a t e  ensemble.  By f i t t i n g  a Morse o s c i l l a t o r  

e i g e n f u n c t i o n  to  t h i s  p r o j e c t i o n  of  the  dimer wave f u n c t i o n  we o b ta in e d  an 

e f f e c t i v e  Morse f u n c t i o n  whose e ig e n v a lu e s  approximate the  0 . . . 0  s t r e t c h  

v i b r a t i o n a l  f r e q u e n c i e s .  As d i s c u s s e d  e a r l i e r ,  very  small  t ime s t e p s  had to  

be used in  our c a l c u l a t i o n s  to  a c c u r a t e l y  r e p r e s e n t  the  i n t r a m o l e c u l a r  

v i b r a t i o n s .  The in t e r m o l e c u l a r  d i s t r i b u t i o n s  o b ta in e d  from our s t u d i e s  a re  

f a i r l y  n o i s y .  The f requency  of  the  0 . . . 0  s t r e t c h  determined  from t h i s  

c a l c u l a t i o n  i s  150 ± 50 cm“ ”' .  The e r r o r  e s t i m a t e  i s  based on the  s t a n d a r d  

d e v i a t i o n  of a number of independent  d e t e r m in a t io n s  performed dur ing  th e  

ave ra g ing  run .  Microwave s t u d i e s  of the  wate r  dimer (Dyke, Mack and Muenter  

(1977))  have a s s ig n ed  a band a t  150 cm“ *' to  the  0 . . . 0  s t r e t c h i n g  mode.

In p r i n c i p l e  the  p rocedure  d e s c r ib e d  above could  be a p p l i e d  t o  s tu d y  

o t h e r  i n t e r m o l e c u l a r  modes but  in  g e n e ra l  the  cho ice  of c o o r d i n a t e s  f o r  

t h i s  c a l c u l a t i o n  i s  com pl ica ted .  P r o j e c t i o n  onto  the  i n t e r m o l e c u l a r  normal 

modes might  be cons ide red  but  due to  the  anharmoni c i t i e s  in  the  

i n t e r m o l e c u l a r  p o t e n t i a l ,  the  normal c o o r d in a t e s  probab ly  g ive  a poor 

d e s c r i p t i o n  of the  a c t u a l  i n t e r m o l e c u l a r  mot ions of the  c l u s t e r .  For t h i s  

r ea s o n  and because of the  poor s t a t i s t i c s  in  our c a l c u l a t i o n  of the  

i n t e r m o l e c u l a r  d i s t r i b u t i o n s  we have not  persued  th e s e  s t u d i e s .

With the  0 . . . 0  s t r e t c h  f requency  a t  about 150 cm“ *' , the  dimer 

d i f f e r e n c e  f requency  expec ted  i s  approx im ate ly  3380 cm“ 1 , which i s  w i th i n  

50 cm“ 1 of the  dimer band in  q u e s t i o n .  Fur therm ore ,  c a l c u l a t i o n s  s i m i l a r  to  

th o s e  of Coulson and Rober tson  (1974),  (1975) i n d i c a t e  t h a t  i f  the  i n t e r n a l  

t e m p e ra tu re  of the  dimer i s  around 70° K, the  0 . . . 0  s t r e t c h  mode may be
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significant populated. It is unlikely however that a combination band of 

this type would be as intense as the fundamentals.

A much more plausable explaination of the two bands at 3400 cm-1 and 

3357 cm“"' is that they are associated with the trimer. To verify this 

assignment, a quantum simulation calculation on the trimer was performed. 

Details of the simulation were similar to those of the dimer calculations 

and the most stable equilibrium geometry for the RWK2M trimer (Reimers and 

Watts (198Mb)) which is presented in Figure 3*4 b was used as the initial 

condition in our calculations. The three oxygens sit at the corners of an 

approximately isosceles triangle. As seen in Figure 3.4b, molecules B and C 

form definite hydrogen bonds and molecule A is more loosely bound. Thus all 

six hydrogens in the molecular cluster experience different enviroments so 

their intramolecular vibrations should occur at different frequencies.

Generally it is found that bonded hydrogens vibrate at lower 

frequencies than "free” 0-H oscillators. With this in mind, together with 

the geometrical considerations outlined above, we expect that the 

intramolecular vibrational spectrum of the trimer should include two bands 

at lower frequencies characteristic of bonded 0-H oscillators and four 

bonds at higher frequencies. When a vibrational analysis of the wave 

function projections obtained from the quantum simulation is performed the 

general spectral features outlined above are observed. The calculated 0-H 

vibrational frequency associated with atom 1 is 3740 cm“"' , that for atom 2 

is 3630 cm“1, for atom 3 is 3725 cm“1, for atom 4 is 3380 cm“1, for atom 5 

is 3620 cm“1 and for atom 6 is 3430 cm“1. Two of these frequencies, those 

associated with the hydrogen bonded stretches, are close to the observed 

bands at 3357 cm“1 and 3400 cm“1, two more lie near the two lower frequency 

dimer 0-H absorptions, and the other two are consistent with the bands near
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3720 cm“"1 . It is reasonable to suppose that the shoulders observed on the 

two dimer absorptions at 3532 cm“"1 and 3600 cm“1 probably result from 

trimer or larger cluster absorptions while the congestion around the base 

of the peak above 3700 cm“"' is of similar origin.

Figure 3.11 presents a summary of the results obtained from a number of 

different experimental measurements of the intramolecular vibrational 

spectrum of small water clusters and also the frequencies obtained from the 

various calculations which have been discussed in this chapter. The results 

of the matrix isolation studies of the dimer spectrum (Bentwood et al. 

(1980)) reported in the bottom section of the figure are in reasonable 

agreement with the molecular beam results of Page et al. (1984) and those 

of Coker, Miller and Watts (1985) labeled "Present Beam". This agreement 

indicates that the influence of the matrix on the intramolecular vibrations 

of the dimer is not so strong and the results of matrix isolation studies 

are reasonably reliable for this system.

In the top portion of the figure a summary of the normal and local mode 

results obtained by Reimers and Watts (1984b) is presented. The "Normal 

Mode Dimer" results bare little resemblence to experiment indicating that 

the approximate treatment of the potential anharmonicity by the normal mode 

variational method requires making severe approximations which are not 

justified with a realistic model potential for a water cluster. As 

discussed in the previous section, the effective potential local mode 

method takes account of the potential anharmonicity very successfully. 

There are two problems with the "Local Mode Dimer" results of Reimers and 

Watts. Use of an intramolecular potential surface which does not include 

coupling between the local 0-H oscillators causes the splitting of the

symmetric and antisymmetric stretches of the acceptor molecule to be
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u n d e r e s t i m a t e d .  Secondly,  i n c lu d in g  the  co u p l in g s  between th e  i n t e r -  and 

i n t r a m o l e c u l a r  degrees  of freedom by a harmonic approx im at ion  causes  the  

f requency  of the  bonded 0-H s t r e t c h  on th e  donor t o  be und e re s t im a te d  by 

about  100 cm“ "'*

The r e s u l t s  p r e s e n t e d  in  the  c e n t r a l  s e c t i o n  of  the  f i g u r e  dem onst ra te  

th e  good agreement between the  s p e c t r a  of  the  dimer and t r i m e r  c a l c u l a t e d  

us ing  the  quantum Monte Car lo  p r o j e c t i o n  t e c h n iq u e  and th e  m olecu la r  beam 

r e s u l t s  of Coker,  M i l l e r  and Wat ts .

F i n a l l y  i n  F ig u re  3.11 we p r e s e n t  th e  r e s u l t s  of a quantum s im u l a t i o n  

c a l c u l a t i o n  in  which a d i f f e r e n t  i n t e r m o l e c u l a r  p o t e n t i a l  was used .  The 

spec trum l a b e l l e d  "Random Walk W77M2 dimer" r e p o r t s  a dimer s im u l a t i o n  

which used the  i n t e r m o l e c u l a r  p o t e n t i a l  f o r  wate r  proposed by Watts  (1977) 

t o g e t h e r  w ith  the  coupled  Morse i n t r a m o l e c u l a r  p o t e n t i a l  s u r f a c e  d i s c u s s e d  

i n  S e c t io n  2 . ) .  The 0-H s t r e t c h  f r e q u e n c i e s  c a l c u l a t e d  with  t h i s  model 

p o t e n t i a l  a r e  a l l  s h i f t e d  to  h ig h e r  f r e q u e n c i e s  by about  50 cm“ 1 when 

compared with  the  m olecu la r  beam r e s u l t s .  On th e  o th e r  hand the  bend 

o v e r to n e s  p r e d i c t e d  by the  W77M2 p o t e n t i a l  occur a t  f r e q u e n c i e s  which a r e  

too  low. This r e s u l t  su g g e s t s  t h a t  th e  shape of  the  RWK2 p a i r  p o t e n t i a l  in 

t h e  r e g io n  of  i t s  minimum g ives  an a c c u r a t e  r e p r e s e n t a t i o n  of the  t r u e  

w ate r  p o t e n t i a l  s u r f a c e .  F ur therm ore ,  as the  two model p o t e n t i a l s  a re  q u i t e  

s i m i l a r  (Reimers,  Watts  and K le in  ( 1 9 8 1 ) ) ,  th e  i n f r a r e d  spectrum of the  

dimer p rov ides  a s e n s i t i v e  t e s t  of the  i n t e r m o l e c u l a r  p o t e n t i a l  s u r f a c e ,  a t  

l e a s t  in  the  r e g io n  of  the  p o t e n t i a l  minimum.

In  F ig u re s  3.12 the  two p o t e n t i a l  s u r f a c e s  used in  t h e  c a l c u l a t i o n s  

d e s c r ib e d  above a re  compared.  F igu re  3.12  a shows the  p o t e n t i a l  energy of 

the  dimer as a f u n c t i o n  of  0 . . . 0  d i s t a n c e .  For each s e p a r a t i o n  the  energy

was minimised as a f u n c t i o n  of r e l a t i v e  o r i e n t a t i o n  and i n t e r n a l  geometry.
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Figure 3.12 b shows how the potential energy varies as a function of "donor 

angle", with the 0...0 separation and intramolecular geometry fixed to 

those values giving the most stable dimer. Figure 3.12 c shows the 

corresponding dependence of the potential energy on the "acceptor angle". 

These two angles are defined as the angle between the symmetry axes on the 

two molecules and the 0...0 axis (Reimers and Watts (198Mb)). It is clear 

that the two surfaces are quite similar.

7.) Conclusions

In this chapter we have demonstrated that wave functions obtained from 

quantum simulation studies can be used to calculate very accurate 

vibrational spectra of model molecular systems. When realistic potentials 

are used, the normal mode variational approach has significant problems due 

to the large anharmonicities and local mode methods are more useful. The 

approximations concerning correlations between the inter- and

intramolecular degrees of freedom, which must be made to implement local 

mode methods, can be significant, particularly for systems like the 

hydrogen bonded molecular cluster. Quantum simulation calculations include 

the effects of these couplings exactly and when the projection technique 

described in this chapter is used very accurate intramolecular vibrational 

frequencies of complicated molecular systems may be obtained. The general 

approach may also be applied to study intermolecular motions but 

statistical fluctuations and specification of coordinates present 

significant problems in more complicated systems.

Due to the accuracy of the quantum simulation and projection approach,
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c a l c u l a t e d  v i b r a t i o n a l  s p e c t r a  of Van der Waals c l u s t e r s  can be r e l i a b l y  

compared with  exper im en ta l  r e s u l t s .  D i f f e r e n c e s  between s p e c t r a  c a l c u l a t e d  

u s in g  our p rocedure  and those  o b ta in e d  from exper iment a re  l a r g e l y  due to  

th e  in a d eq u ac ie s  of the  model i n t e r a c t i o n  p o t e n t i a l  used in  the  

c a l c u l a t i o n .  We have shown t h a t  th e  i n t r a m o l e c u l a r  v i b r a t i o n a l  spectrum of 

a m o lecu la r  c l u s t e r  i s  q u i t e  s e n s i t i v e  to  th e  d e t a i l s  of the  i n t e r m o l e c u l a r  

p o t e n t i a l  and w i th  the  c u r r e n t  l e v e l  of s t a t i s t i c a l  accuracy  our approach 

can d e t e c t  the  d i f f e r e n c e s  between two re a s o n a b l y  s i m i l a r  i n t e r m o l e c u l a r  

p o t e n t i a l  forms.

Importance sampling p rocedures  d i s c u s s e d  in  Chapter  2 p rov ide  a means 

of  performing quantum random walk c a l c u l a t i o n s  with g r e a t l y  reduced 

s t a t i s t i c a l  u n c e r t a i n t y .  We s p e c u l a t e  t h a t  th e  use of importance sampl ing  

t o g e t h e r  w i th  p r o j e c t i o n  methods s i m i l a r  t o  t h a t  d e s c r ib e d  in  t h i s  c h a p te r  

may prov ide  a very powerful  to o l  fo r  de te rm in ing  a c c u r a t e  emper ical

p o t e n t i a l  s u r f a c e s  from v i b r a t i o n a l  s p e c t ro s c o p y  of Van der Waals c l u s t e r s .
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CHAPTER 4 SOLID H? AND LIQUID ^He

Introduction

In the previous chapter we saw that the diffusion Monte Carlo method 

developed in Chapter 2 could be applied succesfully to studying the ground 

state properties of small molecular clusters. In this chapter the method is 

used to study the ground states of bulk phase systems. The quantum Monte 

Carlo method, together with variational quantum techniques, will be 

employed to consider the ground state theromodynamic and structural 

properties of liquid ^He and solid molecular hydrogen.

In the first two sections of this chapter we describe the variational 

and Green's function Monte Carlo techniques which have been used 

extensively in the study of bulk phase quantum systems. Variational 

calculations give only approximate solutions but the Green's function Monte 

Carlo method is essentially exact. Comparing the results of diffusion Monte 

Carlo calculations with Green's function Monte Carlo results gives a means 

of testing the finite time step approximation for bulk phase systems with 

harsh repulsive core interactions. We find that there are serious problems 

with the unbiased diffusion Monte Carlo method when applied to a system of 

32 helium atoms in a periodic box interacting with Lennard-Jones forces. 

Large fluctuations are observed and the results obtained depend on the 

average ensemble size. Kalos (1970) found that the unbiased Green's 

function Monte Carlo iteration procedure could give useful results for 

liquid ^He. Our studies indicate that this is not the case with the

unbiased diffusion Monte Carlo method.
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The problem o u t l i n e d  above can be overcome by us ing  knowledge of the  

ground s t a t e  wave f u n c t i o n  which i s  o b ta in e d  from approxim ate v a r i a t i o n a l  

c a l c u l a t i o n s .  Impor tance sampl ing  methods were f i r s t  used with  the  G reen’ s 

f u n c t i o n  Monte C ar lo  method in  bulk phase c a l c u l a t i o n s  by Kalos ,  Levesque 

and V e r l e t  (197-4) - When impor tance  sampling  was used a g r e a t  enhancement i n  

t h e  e f f i c i e n c y  of the  Green’ s f u n c t i o n  Monte Car lo  method was r e p o r t e d .  

For th e  d i f f u s i o n  Monte Car lo  method im por tance  sampling in v o lv es  i n c lu d in g  

a d r i f t  term which f o r c e s  the  random walk i n t o  the  r e g io n s  of space  which 

a r e  more im p o r t a n t .  The approxim ate  v a r i a t i o n a l  wave f u n c t i o n  de te rmines  

th e  im por tan t  r e g i o n s .  We f i n d  t h a t  th e  r e s u l t s  of impor tance  sampled 

d i f f u s i o n  Monte Car lo  c a l c u l a t i o n s  on a system of 32 Lennard-Jones  ^He 

atoms a re  r a t h e r  independen t  of t ime s t e p  and when a system of 108 

p a r t i c l e s  i s  c o n s id e re d  q u a n t i t a t i v e  agreement with  the  Greens f u n c t i o n  

Monte C ar lo  c a l c u l a t i o n s  of Whi t lock e t  a l . (1979) i s  o b t a in e d .

The d r i f t i n g  random walk p rocedure  has been a p p l i e d  to  s tudy  the  ground 

s t a t e  p r o p e r t i e s  of s o l i d  H2 . A d i f f e r e n t  form of importance  sampling or  

t r i a l  wave f u n c t i o n  must be used w i th  s o l i d  s t a t e  c a l c u l a t i o n s .  We have 

co n s id e re d  s o l i d  H2  over a range  of  d e n s i t i e s .  An a c c u r a t e  s p h e r i c a l  p a i r  

p o t e n t i a l  due t o  Buck e t  a l . (1983) has been used in  t h i s  work. Reasonable 

agreement w i th  exper iment i s  found when t h i s  p o t e n t i a l  i s  used .  G e n e ra l ly ,  

t h e  ground s t a t e  e n e r g i e s  o b ta in e d  from the  d i f f u s i o n  Monte Car lo  

c a l c u l a t i o n s  a re  on the  o rd e r  of 1055 lower than  th e  v a r i a t i o n a l  r e s u l t s  

i n d i c a t i n g  t h a t  v a r i a t i o n a l  c a l c u l a t i o n s  a re  u s e f u l  only f o r  o b t a i n i n g  

q u a l i t a t i v e  i n f o rm a t io n  about  quantum s o l i d s .  The q u a n t i t a t i v e  d e t a i l  

n e c e s s a ry  to  t e s t  the  accuracy  of  an i n t e r a c t i o n  p o t e n t i a l  can only  be

o b ta in e d  from a f u l l  quantum c a l c u l a t i o n .
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1.) Variational Calculations

The variational principle gives that the expectation of the total 

ground state energy is a minimum with respect to variations in the wave 

function so

Variational calculations involve assuming a parameterised form for ip and 

calculating the total energy as a function of the parameters. The set of 

parameters for which the total energy is a minimum give the best ground 

state wave function having the assumed form and the minimum energy is an 

upper bound for the ground state energy.

The variational procedure outlined above has been applied to bulk phase 

systems by many workers and the systems most often studied are the liquid 

and solid phases of ^He where quantum effects dominate the behaviour. A 

variational form proposed by Mott (1949) and employed by Dingle (1949) and 

Jastrow (1955) has been widely used in these variational calculations. With 

the so-called Bijl-Jastrow form, the many body wave function is written as 

a product of pair functions

The function f contains the variational parameters and it depends only on 

the distance r^j = |r^-rj| between particles i and j. With this form ip has 

the correct symmetry to describe the ground state of a system of 

interacting Bosons. The pair function f(r) can be chosen to vanish rapidly 

as r -> 0. This is an important property for systems with strongly repulsive

(4.1)

i|> = n f ( r i j )
i<j

(4.2)

core interactions.



97

The Lennard-Jones  p o t e n t i a l

VLj ( r )  -  M t p l M ; : ) 6 ] 0 . 3 )

w i th  th e  deBoer, Michels  (1938) pa ram ete rs

e / k B = 1 0 . 22°K 

a = 2.556 A

has been used in  v a r i a t i o n a l  c a l c u l a t i o n  t o  model the  hel ium i n t e r a c t i o n .  A 

p a i r  f u n c t i o n  which has proved p a r t i c u l a r l y  u s e f u l  f o r  the  Lennard-Jones  

system i s  based on the  WKB approxim ate  s o l u t i o n  f o r  the  r e p u l s i v e  p a r t  of 

the  p o t e n t i a l .  The p a i r  f u n c t i o n  thus  t a k e s  the  f o l l o w in g  form

f  ( r)  = e ^ a / r ^  (it. il)

and a i s  used as the  v a r i a t i o n a l  pa ra m e te r .  A v a r i e t y  of  a l t e r n a t i v e  

f u n c t i o n s  have been proposed (R ea t to  and C hes te r  (1966) ,  Murphy (1972),  

McGee and Murphy (1972) and De M ich e l i s  and R e a t to  (197*0 a r e  a few 

examples) but  eq u a t io n  (4 .4 )  p ro v id e s  the  s i m p l e s t ,  r e a l i s t i c  s i n g l e  

param ete r  v a r i a t i o n a l  form.

A number of d i f f e r e n t  methods may be used to  e v a l u a t e  t h e  

m u l t id im e n s io n a l  i n t e g r a l s  which must be performed in  o rd e r  to  de te rm ine  

the  energy  e x p e c t a t i o n  v a l u e .  The p r o b a b i l i t y  d i s t r i b u t i o n  which must be 

sampled in  o rd e r  to  c a l c u l a t e  the  energy of  the  N body system i s

Pn( t ) = ^ 2(£) = 11̂ f 2( r i j ) / |  n f2 (4 .5 )

Since  the  form of Pjyj(r) i s  i d e n t i c a l  to  th e  p r o b a b i l i t y  d i s t r i b u t i o n  f o r  a 

c l a s s i c a l  f l u i d  of p a r t i c l e s  i n t e r a c t i n g  w i th  p a i r  wise a d d i t i v e  f o r c e s ,  

( f 2 ( r - j j )  r e p l a c i n g  the  c l a s s i c a l  Boltzmann f a c t o r  e“ ^v ^r i j ^ ) ,  the  methods
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of classical statistical mechanics may be applied to evaluate the 

multidimensional integral.

In their work on the quantum hard sphere gas Jastow (1955) and later 

Aviles (1958) partially summed the Ursell-Mayer cluster development 

(Hirschfelder, Curtiss and Bird (1964)) of the energy expectation integral 

in powers of the density. Their results were only valid at low densities 

due to the slow convergence of the cluster expansion. Murphy and Watts 

(1970) used the Percus-Yevick and Hypernetted Chain integral equation 

theories (Watts and McGee (1976)) to perform variational calculations on 

^He modeled with the Lennard-Jones potential. They compared the results of 

the approximate theories with Monte Carlo calculations.

The Monte Carlo method of Metropolis et al. (1953) provides a 

numerically exact means of evaluating the energy expectation integral. 

McMillan (1965) first used this method in a variational study of 

Lennard-Jones ^He. When the pair product wave function of equation (4.2) is 

used, the energy expectation integral appearing in equation (4.1) can be 

written as

j 4j*Hijjdr = J [ I y-  2 In f (rjj )+V(rj j  ) ] ^2(r)dr (4.6)
i< j m

Equation (4.6) can be rewritten in terms of the probability distribution 

defined in equation (4.5).

<F> = j F(r)PN(r)dr (4.7)

Here F(r) is the quantity in square brackets in equation (4.6). The Monte 

Carlo method relies on the fact that the distribution, P^, has the

following properties
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PN(r) > 0 ¥ r

I P N ( r ) d r  = 1
(4.8)

With the Monte Carlo method, the integral in equation (4.7) is estimated by- 

interpreting it as an average of the function F(r_) over the distribution 

P^(r). The integral is evaluated by performing an ensemble average over a 

finite sample of configurations of the N particles. Thus, after n 

configurations, {r*}, have been sampled from the distribution the 

integral is approximated as

<Fn> - £ l Ftü1)
i=1

and (4.9)

<F> = lim <Fn>
n ^ ° °

The Monte Carlo scheme of Metropolis et al. (1953) involves generating

configurations sampled from P^ by using a Markov chain. Each successive 

configuration, r ^  , is generated from the previous configuration r_i by 

accepting or rejecting a uniform random displacement of one of the 

particles. By choosing the transition probability appropriately (watts and 

McGee (1976)) the limiting distribution of the chain can be made to equal 

PN(r).

McMillan used the pair function given in equation (4.4) in his Monte 

Carlo calculations so the classical Boltzmann factor was replaced as 

follows

e-V(r)/kBT + e-2(“/r )s

Once a value of a is found for which the quantity in equation (4.6) is a
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minimum the  quantum c a l c u l a t i o n  becomes e q u i v a l e n t  to  a c l a s s i c a l  

c a l c u l a t i o n  wi th  a f i c t i t i o u s  p o t e n t i a l  and t e m p era tu re  which de te rmine  the  

d i s t r i b u t i o n  f u n c t i o n .  When e v a l u a t i n g  th e  energy th e  a c t u a l  i n t e r p a r t i c l e  

p o t e n t i a l  must be averaged over th e  d i s t r i b u t i o n .

C l a s s i c a l  molecu la r  dynamics p ro v id es  an a l t e r n a t i v e  method f o r  

sampl ing a d i s t r i b u t i o n .  S c h i f f  and V e r l e t  (1967) used the  e q u i l i b r i u m  

m o lecu la r  dynamics method to  perform v a r i a t i o n a l  c a l c u l a t i o n s  on l i q u i d  ^He 

and ^He. With t h i s  approach the  f i c t i t i o u s  p o t e n t i a l  d e s c r ib e d  above 

de te rm ines  pseudo f o r c e s  which a r e  used ,  t o g e t h e r  w i th  c l a s s i c a l  e q u a t io n s  

of  motion to  move the  p a r t i c l e s  in  such a way as to  sample th e  approximate 

quantum d i s t r i b u t i o n .  Systems of Fermions such as 3ne can be s t u d i e d  wi th  

v a r i a t i o n a l  methods by use  of  an a n t i s y m m e tr ic  t r i a l  f u n c t i o n .  A Jas t row  

form m u l t i p l i e d  by a S l a t e r  d e te rm inen t  i s  o f t e n  used .  Ceper ley  (1978) has 

c o n s id e re d  such a form in  v a r i a t i o n a l  c a l c u l a t i o n s  on the  e l e c t r o n  gas .

V a r i a t i o n a l  p rocedures  p rov ide  only  an upper bound f o r  the  energy .  The 

quantum Monte Car lo  method in  p r i n c i p l e ,  however,  does not  have t h i s  

c o n s t r a i n t .  In th e  next  s e c t i o n  we d i s c u s s  an exac t  method known as Greens 

F u n c t io n  Monte Car lo  which i s  c l o s e l y  r e l a t e d  t o  the  d i f f u s i o n  Monte C ar lo  

method d e s c r ib e d  in  Chapter  2.

2 . )  Greens F unc t ion  Monte Car lo

The Greens F unc t ion  Monte Car lo  method i s  an e s s e n t i a l l y  exac t  

numerica l  p rocedure  f o r  s o l v in g  d i f f u s i o n  e q u a t i o n s .  I t  was developed by 

Kalos and h i s  co-workers  (Kalos (1970),  Kalos ,  Levesque and V e r le t  (197-4) 

and Ceper ley  and Kalos (1979))  and in v o lv e s  i t e r a t i n g  an e q u i v a l e n t
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i n t e g r a l  e q u a t io n  many t im es .  Unlike th e  d i f f u s i o n  quantum Monte Car lo  

method d e s c r ib e d  in  Chapter  2, the  G re e n ' s  Func tion  Monte Car lo  (GFMC) 

p ro ced u re  does not  r e q u i r e  the  f i n i t e  t ime s t e p  approx im at ion .  The GFMC 

method however i s  s i g n i f i c a n t l y  more com pl ica ted .

In  t h i s  s e c t i o n  we p r e s e n t  a b r i e f  d e s c r i p t i o n  of  the  GFMC method.  Most 

of the  p u b l i sh e d  n o n - v a r i a t i o n a l  quantum c a l c u l a t i o n s  performed on bulk 

phase systems have used the  GFMC method and r e l a t i v e l y  l i t t l e  bulk phase 

work has been done with  t h e  d i f f u s i o n  Monte Car lo  p rocedu re .

The GFMC method i s  u s e f u l  f o r  s o lv in g  th e  Schröd inger  e q u a t io n

~ f i 2
H4> = [ " I  2^ .  Vi2 + V(r)  ]ijj = Exp (4 .10)

t o  o b t a i n  the  low es t  energy s o l u t i o n ,  ^0 , and th e  co r respond ing  e ig en v a lu e  

E0 . The Green’ s f u n c t i o n ,  G ( r , r ’ ) ,  f o r  the  H amilton ian  i s  de f ined  as the  

s o l u t i o n  of the  fo l l o w in g  eq u a t io n

H G ( r , r ' )  = 6( r - r ' )  (4.11)

Boundary c o n d i t i o n s  f o r  G must be a p p r o p r i a t l y  s p e c i f i e d  f o r  the  

problem of i n t e r e s t  (Ceper ley and Kalos (1 9 7 9 ) ) .  Using (4 .11)  in  (4 .10)  we 

f i n d  t h a t  the  wave f u n c t i o n  i s  r e l a t e d  to  the  G re e n ' s  f u n c t i o n  by the  

fo l l o w i n g  i n t e g r a l  e q u a t io n

ip(r) = E I G ( r , r ’ ) i4 ( r ’ ) d r '  (4.12)

An equ a t io n  of  t h i s  form can be s o lv ed  i t e r a t i v e l y  s t a r t i n g  with  a 

t r i a l  s o l u t i o n ,  4̂ ° ) ,  i n  th e  fo l l o w in g  r e c u r r e n c e  r e l a t i o n

^ ( n +1 ) ( r )  = E J G ( r , r ' )  4̂ n ) ( r ’ ) dr  ’ (4 .13)

When 4/ ° )  i s  s u b s t i t u t e d  in  (4 .13) and the  i n t e g r a l  performed a new
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s o l u t i o n  ) r e s u l t s .  The f u n c t i o n  i j /^ ) may be used to  s t a r t  t h e  nex t  

i n t e r a t i o n  and the  procedure  i s  r e p e a t e d  t i l l  convergence .

For a m u l t id im en s io n a l  system the  i n t e g r a l  in  (4 .13)  i s  most 

e f f i c i e n t l y  performed by a Monte Car lo  t e c h n iq u e .  For the  ground s t a t e  of  a 

system of Bosons both  G ( r , r ’ ) and ip( r^T) a re  everywhere p o s i t i v e .

Consequent ly  \Kr_’ ) can be t r e a t e d  as a p r o b a b i l i t y  d e n s i t y  f u n c t i o n  -for 

sampl ing a system in  a c o n f i g u r a t i o n  r ’ . S i m i l a r l y ,  E G ( r , r ' ) ,  can be 

c o n s id e re d  as a c o n d i t i o n a l  p r o b a b i l i t y  d e n s i t y  f o r  g e n e r a t i n g  a s e t  of new 

sys tems {r} g iven  an o ld  system a t  r ' .  Thus the  b a s i c  i t e r a t i o n  f o r  the  

GFMC method proceeds  as f o l lo w s :  A p o p u l a t i o n  of  p o in t s  { r '} i s  sampled 

from a d i s t r i b u t i o n  \ j j ( ° ) ( r ’ ) = \Jj-p(r’ ) where ip-p i s  some t r i a l  f u n c t i o n  and 

E-p i s  a t r i a l  e ig e n v a lu e .  A new s e t  of p o i n t s  {r_} must now be s e l e c t e d  from 

the  c o n d i t i o n a l  p r o b a b i l i t y  d e n s i t y  E'pGCr.r ' ) f o r  each r ’ . According t o  

e q u a t io n  (4 .13) the  new s e t  of p o i n t s  o b ta in e d  from t h i s  i t e r a t i o n  w i l l  be 

d i s t r i b u t e d  as i p ^ ^ ( r ) .  The new " g e n e r a t i o n "  of systems may be used 

d i r e c t l y  to  i t e r a t e  the  p rocess  ag a in .

By w r i t i n g  the  d i s t r i b u t i o n  a f t e r  each i t e r a t i o n  in  terms of an 

e i g e n f u n c t i o n  expansion Kalos (1962) showed t h a t  the  i t e r a t i o n  p rocedure  

would converge to  the  low es t  energy e i g e n s t a t e  c o n ta in ed  in  the  i n i t i a l  

g u es s .  In a s i m i l a r  f a s h i o n  to  the  d i f f u s i o n  Monte Car lo  method the  r a t e  of 

charge  of  the  ensemble p o p u la t i o n  wi th  i t e r a t i o n  g ives  an e s t i m a t e  of the  

e i g e n v a lu e .

The major requ i rem en t  of the  b a s i c  GFMC i t e r a t i o n  d e s c r ib e d  above i s  

th e  a b i l i t y  to  produce a new g e n e r a t i o n  of  systems from the  o ld  by t r e a t i n g  

t h e  G reen ' s  f u n c t i o n  as a c o n d i t i o n a l  p r o b a b i l i t y  d e n s i t y .  Consequent ly  

t h e  Greens f u n c t i o n  f o r  t h e  problem must be known in  advance.  G e n e ra l ly ,

t h e  Greens f u n c t i o n  i s  unknown and the  s uccess  of the  GFMC method depends
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on a procedure for sampling G(r_,r’) without knowing its form explicitly.

With the diffusion Monte Carlo method an approximate Greens function is 

used. Systems are established in an initial distribution and an iteration 

procedure similar to that described above is employed to alter the 

distribution. As discussed in Chapter 2, each system is allowed to undergo 

free diffusion, followed by replication or death. An iteration consisting 

of these steps is equivalent to using the following "short time" 

approximation for the Green’s function

- m (r-r')
G(r,r ’;Ax) 2h A x --- ~V(r’)Axe — (4.14)

Thus the time steps of diffusion Monte Carlo are equivalent in a sence to 

the iterations of GFMC.

We now present a brief description of the elaborate procedure which 

Kalos and his co-workers have devised for sampling the exact Green’s 

function. For our purposes, only a qualitative understanding of the 

approach is necessary. A more detailed description of the method can be 

found in the following references: Kalos, Leversque and Verlet (1974) and 

Ceperley and Kalos (1979).

The sampling scheme involves using another iteration process to solve 

an integral equation which relates the Green's function on the full domain 

of configuration space, D, to a known "partial" Green's function, Gy, 

defined on a subdomain, D0 (r°) e D by the following

(-V2+U0) Gu(r1,r°) = 6(r1-r°) V r'.r0 e D0 (4.15)

Here we use atomic units and U0 is chosen so that U0  ̂V(r_) V r e D0. The 

boundary condition for Gy is
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Gu(r\r°) = 0 ¥ r\r° t D0

It can be shown (ceperley and Kalos (1979)) that the full Green's function 

is related to this partial Green’s function by the following integral 

equation

G(r,r°) = Gy(r,r°) + j [~Vn-| Gutr^r0)] GCr.r1) dr1
8D0(r°)

(4.16)

+ [ 1U° U0 Gu(r1,r°) G(r,r1) dr1
j u0

D0(rO)

Here 3D0(r°) is the boundary of the subdomain and n̂-| Gu(n1,r°) is the 

normal derivative of Gy on the boundary. When equation (4.15) is integrated 

over D0(r°) we find that

-Vn, Gu(r’,r°) dr' + UQ f Gu(r’,r°) dr' = 1 
3D0(r°) D0(r°)

and since Uo^U^r.’ ,r°) and Gy (£1* ,r°) non-negative they are

interpreted as probability densities for moves in a random walk which 

sample either the interior of the subdomain or its boundary respectively. 

Equation (4.16) can be iterated in the same way as equation (4.13) and a 

new generation of points distributed around r° acording to G(r_,r_°) may be 

produced. The iteration involves a random walk which includes moves from 

rn-1 to rn chosen either on the boundary of D0 (r_n“1) or in its interior. 

Moves to points on the boundary are chosen with a density "VnGu(r_n,rn_"1 ) 

while points in the interior are sampled according to Gy (rn, r_n_1) and 

accepted with a probability (u0-V(_rn))/U0 . According to equation (4.16) 

G(r,r°) is the expected value of the sum of all the Gu(r_,rn) for the _rn 

sampled by the random walk outlined above.
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Importance sampling can also be incorporated in the GFMC method and the 

algorithm must be modified to sample ^(n) G ( r , r ° ) r ° ) . As with the 

diffusion quantum Monte Carlo method, these modifications greatly improve 

the sampling efficiency and reduce the fluctuations in the algorithm.

The Green's Function Monte Carlo method has been used to perform bulk 

phase calculations on solid and liquid ^He using the Lennard-Jones 

potential (Whitlock et al. (1979), (1980)) and more accurate model

potentials have been tested by comparing GFMC results with experiment

(Kalos, Lee, Whitlock and Chester (1981)). Variational calculations can 

only be used to set a bound on the potential well depth (Murphy (1972)).

Since GFMC provides the exact ground state energy for a given potential,

comparison with experiment gives an unambiguous test of the model 

interaction.

In the next section we demonstrate that when the importance sampled 

diffusion Monte Carlo method is used accurate results for systems with 

repulsive forces may also be obtained.

3.) The Diffusion Monte Carlo Method and Condensed Phase Calculations

As discussed in Chapter 2, the diffusion Monte Carlo method has been 

widely used in electronic calculations where the particle interactions, 

governed by the Coulomb potential, vary relatively slowly as a function of 

distance compared with typical intermolecular interactions. The only bulk 

phase calculations which have been reported using the diffusion Monte Carlo 

method have involved particles interacting with Coulomb forces (Ceperley 

and Alder (1980), (1981)). In this section we present the results of some
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d i f f u s i o n  Monte Car lo  c a l c u l a t i o n s  s tu d y in g  th e  l i q u i d  ^He system modeled 

w i th  hard co re Lennard-Jones  f o r c e s .  As d i s c u s s e d  in  th e  p rev ious  s e c t i o n s  

t h i s  system i s  well  c h a r a c t e r i s e d  by both  v a r i a t i o n a l  and G reen’ s f u n c t i o n  

Monte Car lo  r e s u l t s  so the  s i g n i f i c a n c e  of the  f i n i t e  t ime s t e p  

approx im at ion  f o r  dense systems with  ha r sh  r e p u l s i v e  i n t e r a c t i o n s  may be 

t e s t e d .

I n f i n i t e  systems a re  u s u a l l y  modelled us ing  a f i n i t e  number of 

p a r t i c l e s  in  a cube of s id e  L t o g e t h e r  w i th  p e r i o d i c  boundary c o n d i t i o n s  

(w a t t s  and McGee (1976))  and the  wave f u n c t i o n  d e s c r i b i n g  the  bulk  phase  

system i s  thus  rega rded  as m u l t i p l y  p e r i o d i c .  The i n t e r a c t i o n s  must be 

t r u n c a t e d  a t  some d i s t a n c e  r c ^ L/2 .  McMillan (1965) found,  w ith  

v a r i a t i o n a l  c a l c u l a t i o n s  on l i q u i d  ^He, t h a t  us ing  as few as 32 p a r t i c l e s  

i n  the  b a s i c  c e l l  gave good q u a l i t a t i v e  i n f o r m a t io n .  We have employed a 32 

p a r t i c l e  system to  s tudy  the  c h a r a c t e r i s t i c s  of the  f i n i t e  t ime s t e p  

method.  The s i z e  of  the  c e l l  was chosen so t h a t  the  reduced d e n s i t y  in  a l l  

our c a l c u l a t i o n s  was pa3 = 0 .4  which i s  about  10% h ig h e r  than  th e  

e q u i l i b r i u m  d e n s i t y  of  the  f l u i d  (p0 o3 = 0 .3 6 4 8 ) .

The b a s i c  d i f f u s i o n  Monte Car lo  method which was s u c c e s s f u l l y  employed 

i n  the  p rev ious  c h a p te r  to  s tudy  the  ground s t a t e  p r o p e r t i e s  of smal l  

m o lecu la r  c l u s t e r s  was used in  our e a r l y  bulk phase c a l c u l a t i o n s .  Thus only  

d i f f u s i o n  and r e p l i c a t i o n  s t e p s  were in c lu d ed  in  th e  a lg o r i th m .  We chose  a 

t ime s t e p  of 0.1 x 10—15s which gave d i f f u s i o n  d i sp la cem e n ts  of th e  o r d e r  

of  t y p i c a l  d i s t a n c e  s t e p s  used in  c l a s s i c a l  m olecu la r  dynamics s i m u l a t i o n  

s t u d i e s  of f l u i d s  a t  t r i p l e  p o in t  d e n s i t i e s .  F igure  4.1 shows th e  

i n s t a n t a n e o u s  v a lues  of the  r e f e r e n c e  energy as a f u n c t i o n  of t ime d u r ing  

s e v e r a l  c a l c u l a t i o n s  in  which d i f f e r e n t  s i z e  ensembles were c o n s id e r e d .  A

f a c e  c e n t r e d  cub ic  l a t t i c e  was used as the  i n i t i a l  c o n d i t i o n  in  each
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calculation. The values have been approximately corrected for long range 

interactions by assuming the radial distribution function , g(r), is unity 

beyond the cut off and integrating the potential. For the Lennard-Jones 

interaction the long range potential correction is approximately

Vir. = '8/3 " P* e (-1)1rc

The asymptotic behaviour of the calculations using small ensembles give 

energies which are too high compared with either the variational or Green’s 

function Monte Carlo results and large fluctuations are observed. By 

increasing the ensemble size the fluctuations are reduced and the 

eigenvalue estimate is lowered but the calculation becomes extreamly time 

consuming. These rather severe problems, of over estimating the eigenvalue 

and very large fluctuations, probably result from several related factors:

First, the finite time step approximation may be partly responsible for 

the problems described above. If the time step used was not short enough 

for the separation of the diffusion and birth-death processes to be 

accurate, a systematic error in the eigenvalue estimate would be expected. 

However, the fact that the asymptotic energies presented in Figure 4.1 tend 

to the GFMC result as the ensemble size is increased indicates that use of 

a finite step is not the major cause of the difficulties we have observed. 

With a purely diffusive random walk through a high dimensional space, very 

large ensembles are necessary to give an adequate sample of the 

configurations. The over-estimation of the eigenvalue may be related to 

poor sampling of the multidimensional space. As the initial fee lattice 

relaxes systems may diffuse into higher energy geometries. With a small 

ensemble, the average potential energy will be dominated by these high 

energy fluctuations. Since the Vref adjustment scheme uses the average
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potential energy of the ensemble to set the energy reference for the next 

time step, such fluctuations may cause the energy estimate to drift.

Another related problem with the free diffusion algorithm is that 

barriers between potential wells may cause the random walkers to be trapped 

in a metastable geometry. Trapping can be understood by considering the 

double square well potential. When the two wells are separated by a long or 

high potential barrier, an ensemble distribution which starts out on one 

side of the barrier may rarely sample the other well due to the termination 

of random walks which enter the barrier. Thus a calculation of finite 

duration and ensemble size may result in an inadequate sampling of 

configuration space and incorrect ground state behaviour will be predicted.

In summary, the basic diffusive random walk method is not useful for 

treating dense systems of many particles which interact with harsh 

repulsive forces. Importance sampling methods can be used to alleviate the 

problems discussed above. The drift term included in the importance sampled 

random walk forces the important regions of configuration space to be 

sampled so smaller ensembles may be used. Further, as described in 

Chapter 2, the birth-death process in the importance sampled random walk is 

no longer governed by the rapidly varying potential function. Rather, the 

"local energy", Hip-p/ip-j-, now controls the population growth rate. If 

approximates the actual wave function the ensemble growth rate will be a 

slowly varying function of position and the population fluctuations are 

substantially reduced. Consequently treating the birth-death process as 

independent of drift or diffusion for small time steps should be a good 

approximation. In Chapter 2 we also noted that since the drift velocities 

depend on position there will be an error introduced in the drift path by

making the finite time step approximation but the consequences of this
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error should be much less severe than the problems described above.

We have performed importance sampled diffusion Monte Carlo calculations 

for the liquid helium system using the variational Jastrow form given in 

equation (4.2) together with equation (4.4) as the trial function for 

guiding the drifting random walk. This trial function has been used by 

Whitlock et al. (1979) in their Green's function Monte Carlo studies of

liquid helium.

First, several 32 particle simulations were conducted using different 

time steps in order to study the influence of the short time approximation 

on the importance sampled random walk calculation. A Monte Carlo run 

sampling the trial distribution was performed and after equilibration,

every 5000th Monte Carlo configuration was used as a member of the initial 

ensemble for the importance sampled random walks. Each iteration of the 

quantum Monte Carlo run involved first calculating the drift velocities, 

v^, of the particles and evaluating the local energy of each system. The 

particles in a system were moved with a Gaussian displacement in each 

direction and a drift displacement v^At . Finally the systems were allowed 

to replicate or die depending on their local energy. A Vrep adjusting 

procedure was used to keep the total number of ensemble members fixed at 

approximately 200 systems.

Time steps used in these calculations were At = 0.1, 0.05 and

0.02 x10~^5s which correspond to standard deviations for the Gaussian 

distribution of displacements of Ax = 0.013, 0.0089 and 0.0056 A

respectively. These displacements are on the order of a half to a quarter 

the size of typical displacements used in molecular dynamics simulations at 

triple point densities in classical liquids (d .J. Evans (1985)). For each 

calculation the initial variational wave function distribution was relaxed
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for 500x10--' 5S# Following the equilibration, averages were accumulated for 

at least 600x1 0“”'5S #

The eigenvalues calculated from the average local energy are presented 

as a function of time step size in Figure M.2. The errors were estimated by 

breaking the averaging run into blocks of 100x10-l5s anc[ evaluating the 

average for each block. The standard deviation from the mean of these 

averages has been used as the error. The fluctuations are substantially 

reduced by the use of the importance sampling algorithm. For comparison we 

have included the result obtained from the unbiased random walk calculation 

using an ensemble of 1000 systems.
We also see from the figure that the importance sampled energy 

estimates are reasonably independent of time step size. Reducing the time 

step by a factor of 5 causes the energy estimate to increase by only a few 

percent. The statistical fluctuations for runs of this duration are of a 

similar order to these systematic time step errors.

The values presented in this figure have been approximately corrected 

for long range interactions. In our calculations the potential 

discontinuously became zero at the cut off. With the classical molecular 

dynamics method this discontinuity introduces an impulsive force which 

perturbs the equations of motion. In the classical Monte Carlo method the 

discontinuity causes a "pile up" in the distribution in the region of the 

cut off. The wave function sampled by the basic quantum Monte Carlo method 

will be effected by the cut off in a similar fashion. The birth-death rate 

becomes discontinuous at the cut off. When importance sampling is used, 

however, these truncation problems may be more significant since the drift 

velocities and the local kinetic energy are dependent on the derivatives of 

the trial wave function. The boundary conditions require that the trial
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function goes to one discontinuously at rc. Consequently the drift paths 

will be influenced by impulsive forces in a similar way to the classical 

trajectories in molecular dynamics. The effect is most significant with 

small systems where the discontinuity in the trial function is larger. 

Differences between the eigenvalues predicted by our importance sampled 32 

particle simulations and the GFMC value which are apparent in Figure 4.2 

are possibly due to the influences of these impulsive "quantum" forces. 

Wave function density will be "reflected off" the boundaries causing 

excessive sampling of lower energy configurations and the eigenvalue is 

underestimated.

In Chapter 2 we noted that averages of other quantities over the i 

distribution could be obtained by extrapolating the results of importance 

sampling calculations by using variational results. Equation 2.34 gave an 

approximate means for performing this extrapolation. Figure 4.3 presents 

the extrapolated radial distribution functions obtained from our 32 

particle calculations and compares them with similar results obtained with 

108 particle GFMC calculations (Whitlock et al. (1979)). The radial

distribution functions predicted by the shorter time step runs agree 

reasonably well with the GFMC results. However, the run which used a time 

step of At = 0.1 x 10-^ s shows stronger structural features, the nearest 

neighbour peak is more pronounced and the portion of the second neighbour 

peak which is sampled by the calculation is shifted to smaller distances.

The most likely explaination for this behaviour is that with a longer 

time step the drift paths are more strongly perturbed by the discontinuity 

in the drift velocity caused by the boundary conditions. Consequently the 

effects of reflections off the boundaries are more pronounced with longer 

time steps. It is evident that the distributions obtained with the shorter
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time steps (At = 0.05 and 0.02 x 10“"'5S) are also perturbed by the boundary 
conditions.

To examine the boundary condition problems discussed above we have 

performed importance sampled calculation with a system of 108 particles. A 

time step of At = 0.05 x 10“*'5S Was used and the initial ensemble contained 
100 systems distributed according to the variational wave function.. In 

Figure 4.4 we show the effects of extrapolating the radial distribution 

function obtained from this run by using the variational distribution. 

Again the results are compared with GFMC values. Good agreement between the 

diffusion Monte Carlo and GFMC results is generally observed. The two 

simulations were performed at slightly different densities, p p^C =0.4 and 

p GFMC = 0*^01» so the small variations in the results are probably 

associated with this density difference. Agreement between the predicated 

eigenvalues (including only long range corrections) is also good, 

eDMC = “6.78 ± 0.06 and Eq^^q = -6.743 ± 0.033 K/molecule. Whitlock et al. 

(1979) have obtained a perturbation estimate of the three body correction, 

and at this density they give <V^b> = 0.206 ± 0.002 K/molecule or about 3l 

of the two body values given above. When the three body correction is made 

both the quantum Monte Carlo calculations give ground state energies which 

are approximately 0.5 K/molecule higher than the experimental value 

EeXp = -7.00 K/molecule (Roach, Ketterson and Woo (1970)). This discrepency 

is a result of the inadequacy of the Lennard-Jones potential (Whitlock 

et al. (1981) ).

The total energy is obtained directly from the importance sampling 

calculation but the potential and kinetic components must be extrapolated 

from variational results. By taking the difference between the total and

extrapolated potential energies, an estimate of the kinetic energy is
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o b t a i n e d .  The p o t e n t i a l  and k i n e t i c  components c a l c u l a t e d  from our 

d i f f u s i o n  Monte Car lo  run agree  wi th  the  G reen’ s f u n c t i o n  Monte Car lo  

v a lu e s  and ^V̂ DMC = -22 .27  ± 0 .15 ,  ^^^GFME = "22.554 ± 0.182 and 

<t>DMC = 15.51 ± 0 .15 ,  <t>GFMC = 15.811 ± 0 .185 .  The major d i f f i c u l t y  w i th  

c a l c u l a t i o n s  on l i q u i d  hel ium i s  t h a t  the  t o t a l  energy i s  a small  

d i f f e r e n c e  between two r a t h e r  l a r g e  numbers so in  o rd e r  to  o b t a in  

r e a s o n a b l y  a c c u r a t e  t o t a l  e n e rg i e s  very a c c u r a t e  va lues  of the  s e p a r a t e  

k i n e t i c  and p o t e n t i a l  components must be c a l c u l a t e d .

The e x t r a p o l a t e d  f u l l  quantum r a d i a l  d i s t r i b u t i o n  f u n c t i o n  p r e s e n t e d  in  

F ig u re  4.4 shows a more pronounced n e a r e s t  neighbour peak than the  

v a r i a t i o n a l  r e s u l t .  Whi t lock e t  a l . (1979) have argued t h a t  t h i s  s t r u c t u r a l  

d i f f e r e n c e  i s  a consequence of inadequacy of the  v a r i a t i o n a l  J a s t ro w  form 

which does not  co n s id e r  t h r e e  body c o r r e l a t i o n s .  Many body c o r r e l a t i o n s  a re  

i n c lu d e d  by the  quantum Monte Car lo  methods and th e s e  h ig h e r  c o r r e l a t i o n s  

shou ld  r e s u l t  in  more pronounced s t r u c t u r e .  Chang and Campbell (1977) have 

performed v a r i a t i o n a l  c a l c u l a t i o n s  us ing  i n t e g r a l  e q u a t io n  methods t o g e th e r  

w i th  a v a r i a t i o n a l  form which in c lu d e d  t h r e e  body c o r r e l a t i o n s  e x p l i c i t l y .  

They o b ta in e d  ground s t a t e  energy e s t i m a t e s  f o r  hel ium which a r e  much lower 

than  those  p r e d i c t e d  wi th  th e  b e s t  J a s t ro w  forms,  and only  s l i g h t l y  h ig h e r  

than  the  GFMC or our d i f f u s i o n  Monte Car lo  r e s u l t s ,  i n d i c a t i n g  t h a t  th e s e  

arguments about the  im por tance  of t h r e e  body c o r r e l a t i o n s  in  quantum 

l i q u i d s  a re  q u i t e  r e a s o n a b l e .

We employed the  v i r i a l  theorem to  c a l c u l a t e  th e  p r e s s u r e  in  our sample 

of  l i q u i d  ^He thus

<p> = p [ 2/3 <T> -  1/3 <E r i -Vi V> ]

These va lues  must aga in  be e x t r a p o l a t e d  us ing  the  p r e s s u r e s  o b ta in ed  from



variational calculations. Variational energies are generally within 5 to 

10% of the extrapolated full quantum values. Consequently the extrapolation 

of these quantities is reliable. The pressure obtained from the variational 

calculation using the virial theorem, <P>^02 = 25.3 ± 0.4 atm, differs 

substantially from the result calculated from the importance sampled 

distribution <P>^o = 18.8 ± 3. atm. Thus the extrapolated value, 

<p> ^ 2 = 12.3 ± 2. atm, is not a reliable estimate of the pressure. Whitlock 

et al. have reported similar difficulties when extrapolating their 

importance sampled Green’s function Monte Carlo pressures. They find that 

better estimates of the pressure can be obtained by differentiating the 

energy v’s density relation which was fitted to their results. For 

comparison the pressure they calculate using this procedure is 

<P>GFMC = 10-388 ± 1.22 atm. Roach et al. (1970) have measured the pressure 

at this density and obtained 10.667 atm.

In the next section we discuss our diffusion Monte Carlo calculations 

on solid H2 . We will see that there are also significant differences 

between the variational description of this system and the true quantum 

solid.

4.) Diffusion Monte Carlo Study of the Ground State of Solid Hp

In this section we apply the importance sampled diffusion Monte Carlo 

method to study the ground state properties of solid molecular hydrogen. 

The basic algorithm is very similar to that used in the liquid ^He studies 

discussed in the previous section. However the importance sampling trial 

function which guides the random walk is somewhat different for the quantum
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s o l i d .  The t r i a l  f u n c t i o n  which we have used was proposed by Nosanow (1964)

c l u s t e r  expansion  methods.  Each p a r t i c l e  i s  a s s o c i a t e d  wi th  a l a t t i c e  s i t e  

a t  a p o s i t i o n  Rj_ and the  v a r i a t i o n a l  wave f u n c t i o n  t a k e s  the  form of a 

p roduc t  of s i n g l e  p a r t i c l e  f u n c t i o n s  which depend on the  d i s p la c e m e n ts  of 

the  p a r t i c l e s  from t h e i r  l a t t i c e  s i t e s ,  t o g e t h e r  w i th  a p roduc t  of  p a i r  

J a s t ro w  f u n c t i o n s  which c o r r e l a t e  th e  motions of d i f f e r e n t  p a r t i c l e s .  Thus 

th e  t r i a l  f u n c t i o n  can be w r i t t e n  as fo l l o w s

In  t h i s  form the  s i n g l e  p a r t i c l e  f u n c t i o n s  model the  long range  o rd e r  

a s s o c i a t e d  with  phonons in  th e  s o l i d  and th e  J a s t ro w  f u n c t i o n s  t a k e  i n t o  

account  the  s h o r t  range  c o r r e l a t i o n s  which r e s u l t  from the  ze ro  p o i n t  

mot ions  t o g e t h e r  w i th  th e  s t r o n g l y  r e p u l s i v e  i n t e r a c t i o n .

The p a i r  f u n c t i o n  given in  e q u a t a t i o n  (4 .4 )  t o g e t h e r  w i th  a G auss ian  

form f o r  the  s i n g l e  p a r t i c l e  f u n c t i o n  has been employed by Krumhansl and Wu 

(1972) who s t u d i e d  s o l i d  H2  us ing  v a r i a t i o n a l  c l u s t e r  expans ion  methods .  

Bruce (1972) and Pollock  e t  a l . (1972) performed Monte C ar lo  v a r i a t i o n a l

c a l c u l a t i o n s  on s o l i d  H2  u s ing  th e  above t r i a l  form.

There have a l s o  been many v a r i a t i o n a l  s t u d i e s  on s o l i d  hel ium which 

have used t h i s  t r i a l  f u n c t i o n .  Hansen and Levesque (1968) c o n s id e r e d  3ne 

and ^He in  a f e e  geometry and Hansen (1969) (1970) s t u d i e d  th e  hep and bcc 

l a t t i c e s .  Hansen and Pollock  (1972) c o n s id e re d  d i f f e r e n t  s i n g l e  p a r t i c l e  

f u n c t i o n s  but  no s i g n i f i c a n t  improvements over the  Gaussian form

(1966) who performed v a r i a t i o n a l  c a l c u l a t i o n s  on s o l i d  3ne and ^He u s ing

\4T( r )  = n 4>(Li“R i )  n f ( r i j ) (4 .17 )
i i<j

(4 .18 )

cou ld  be found.
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The trial function described above has also been incorporated in a 

useful, approximate expansion method known as the self consistent phonon 

theory which was developed and used in computations by Koehler (1966 a,b) 

(1967) (1968). Gillis et al. (1968 a,b) have discussed a variety of related 

theories and have used the approach to consider the crystalline rare gases 

including the hep phase of ^He. H2 and D2 have been studied using these 

methods by Klein and Koehler (1970 a,b).

Whitlock et al. (1979), (1980) have used the trial form discussed above 

in importance sampled GFMC calculations on the fee and hep crystal phases 

of ^He. Comparisons between our studies and this work will highlight some 

interesting differences between solid H2 and solid ^He.

The major difference between the solid state importance sampled 

diffusion Monte Carlo algorithm and the method used in our liquid state 

calculations is that the phonon term in the trial function introduces both 

an extra kinetic term in the local energy and the drift velocity is 

modified. A drift component is introduced which pulls the particles towards 

their lattice sites. Thus if systems wander away from the crystalline 

structure they either die or drift back towards the lattice.

The hydrogen molecules in our calculations interacted through the 

spherical part of an effective pair potential presented by Buck et al. 

(1983) which was derived emperically from total differential scattering 

cross section measurements. Recently, the potential surface been 

recommended by Norman et al. (1984) who tested a variety of proposed 

spherical potentials for the H2 interaction by comparing the results of 

both scattering calculations and solid state calculations, using the Monte 

Carlo variational method, with experimental data.

We have performed importance sampled diffusion Monte Carlo calculations
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on s o l i d  H2  a t  t h r e e  d i f f e r e n t  molar  volumes: 23 .08 ,  11.39 and 

8.34  cm3 mole“ "'. The system c on ta ined  108 p a r t i c l e s  in  a p e r i o d i c  cube and 

an i n i t i a l  ensemble of 100 systems taken  from a v a r i a t i o n a l  d i s t r i b u t i o n  

was used .  As the  importance  sampl ing  f u n c t i o n  f o r  our c a l c u l a t i o n s  we 

employed the  s o l i d  s t a t e  v a r i a t i o n a l  wave f u n c t i o n  d e s c r ib e d  above t o g e t h e r  

w i th  the  v a r i a t i o n a l  param ete rs  determined  by Bruce (1972) f o r  the  

Lennard-Jones  p o t e n t i a l .  These param ete rs  a re  very s i m i l a r  to  t h o s e  used by 

Norman e t  a l . (1984) in  t h e i r  v a r i a t i o n a l  s t u d i e s  on v a r io u s  i n t e r a c t i o n  

p o t e n t i a l s  f o r  H2 .

A d e t a i l e d  s tudy  of the  t ime s t e p  s i z e  dependence has not  been 

conduc ted ,  r a t h e r ,  the  t ime s t e p s  were chosen with  two c o n s i d e r a t i o n s  in  

mind.  F i r s t ,  we wanted the  p o p u la t i o n  f l u c t u a t i o n s  to  have a maximum 

am pl i tude  of one or  two systems us ing  a Vr e f  ad jus tm en t  pa ra m e te r ,  a 

( e q u a t io n  2 . 1 5 ) ,  which was of the  o rd e r  of 10$ of the  ground s t a t e  energy 

per  system. Secondly,  f o r  r e a s o n a b l e  computat ion t im es ,  At was chosen so 

t h a t  the  r e l a x a t i o n  from the  i n i t i a l  v a r i a t i o n a l  d i s t r i b u t i o n  took s e v e r a l  

thousand t ime s t e p s  and q u a n t i t i e s  were averaged  f o r  a f u r t h e r  few thousand 

s t e p s .  In o rd e r  to  meet t h e s e  c r i t e r i a  we found t h a t  s m a l l e r  t ime s t e p s  

were n e c e ss a ry  a t  h ighe r  d e n s i t i e s .  The s t e p s  which we used a t  th e  v a r io u s  

d e n s i t i e s  were At = 0 . 01 ,  0.005 and 0.002 x 10_15s a t  molar  volumes 23.08,  

11.39 and 8.34 cm3 mole“  ̂ r e s p e c t i v e l y .  These t ime s t e p s  a r e  s m a l l e r  than  

th o s e  used in  our hel ium s t u d i e s  due to  the  d i f f e r e n c e  in  d e n s i t y  ( the  

molar  volume in  our hel ium work, f o r  compar ison,  was 25.144 cm3 mole“ 1).

The ground s t a t e  e n e rg i e s  and the  k i n e t i c  and p o t e n t i a l  components,  a r e  

compared with  the  r e s u l t s  of v a r i a t i o n a l  c a l c u l a t i o n s  in  t a b l e  4.1



Table 4.1 Calculated Energies (in Kelvin/molecule) for Solid H2 Obtained

from Diffusion Monte Carlo and Variational Studies.

Vmol <H> 1 < v 2>2 <T> <H> 1 v <V2> \ <T> v <V3B>v po3

23.08 —9 6.5 ±1.2 -162±1 65.5±1.5 -84.6 -1 68. 76.6 6.8 0.676

11.39 358±4 46.3±0.5 262±3 385. 4.4 331 . 49.6 T. 37

8.34 1 4 45 ±15 849±4 469 ±4 1525. 787. 610. 127. 1.87

subscript v indicates variational results.

^otal energy includes the variational estimate of the three body 
Axilrod-Teller interaction (Norman and Watts (1985)).

2Long range correction to the potential energy is included.

Dispersion terms were integrated beyond the cut off, as discussed 

earlier, to give an estimate of the long range correction to the potential. 

The three body energies given in Table 4.1 were taken from Norman and Watts 

(1985) who averaged the triple dipole term of Axilrod and Teller (1943) in 

a 500 particle Monte Carlo variational calculation. These values have been 

used to approximately correct the diffusion Monte Carlo results.

In Table 4.2 the total energies and pressures obtained from variational 

and diffusion Monte Carlo calculations on solid H2 , modelled using the Buck 

potential, are compared with experimental results.
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Table 4 .2  Comparison w i th  exper iment of Energ ies  and p r e s s u r e s  o b ta in e d  

from v a r i a t i o n a l  and d i f f u s i o n  Monte Car lo  c a l c u l a t i o n s .

Vmol exp <H> <H> v exp <P> < P > v

23.08 - 9 3 .5 -9 6 .5 -84 .6 1 10±5 5.2

11 .39 3 . 1 9x102 3.58x10 2 3.85x10 2 1 .30x104 1 .36x10 4 1 .47x10

8.34 1 .29x103 1 .45x103 1.53x10 2 4.78x10 4 5.12x10 4 5.30x10

E x p e r i m e n t a l  va lues  a re  taken  from the  work of  Norman e t  a l . (1984)

At each d e n s i t y  the  t o t a l  energy o b ta in e d  from the  d i f f u s i o n  Monte 

C a r lo  c a l c u l a t i o n  i s  of the  o rd e r  of 5 t o  10% lower than  the  v a r i a t i o n a l  

energy .  Lower p r e s s u r e s  a re  a l s o  found when the  d i f f u s i o n  Monte Car lo  

method i s  used .  The d i f f e r e n c e s  f o r  bo th  th e  energy and p r e s s u r e  b r in g  th e  

r e s u l t s  of our d i f f u s i o n  Monte Car lo  c a l c u l a t i o n s  i n t o  c l o s e r  agreement 

with  exper iment than the  v a r i a t i o n a l  v a l u e s .  At the  h ighe r  d e n s i t i e s  the  

e x t r a p o l a t i o n  of  the p r e s s u r e s  i s  q u i t e  r e l i a b l e .  However, t h e r e  a re  

c o n s i d e r a b l e  f l u c t u a t i o n s  i n  th e  p r e s s u r e  a t  the  low es t  d e n s i t y  and the  

v a r i a t i o n a l  and DMC r e s u l t s  d i f f e r  s u b s t a n t i a l l y .

The most s i g n i f i c a n t  d i f f e r e n c e  between th e  v a r i a t i o n a l  and d i f f u s i o n  

Monte Car lo  r e s u l t s  p r e s e n t e d  in  Tab les  4.1 and 4.2  i s  the  change i n  th e  

break up of  the  energy i n t o  i t s  p o t e n t i a l  and k i n e t i c  components.  In F igu re  

4.5 we p l o t  the  components of the  t o t a l  energy as a f u n c t i o n  t ime dur ing  

th e  im por tance sampled random walks.  The f i g u r e  dem onst ra tes  how the  

e n e r g i e s  change as the  i n i t i a l  v a r i a t i o n a l  d i s t r i b u t i o n s  a re  m odi f ied  by 

th e  quantum Monte Car lo  c a l c u l a t i o n .  The p o t e n t i a l  e n e rg i e s  p r e s e n te d  in  

th e  f i g u r e  were c a l c u l a t e d  by e x t r a p o l a t i o n  and the  k i n e t i c  component was

o b ta in e d  by d i f f e r e n c e .
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G e n e ra l ly  the  p o t e n t i a l  energy in c r e a s e s  as the  v a r i a t i o n a l  

d i s t r i b u t i o n  r e l a x e s  and the  r e d u c t i o n  in  th e  t o t a l  e n e rg i e s  a r e  the  r e s u l t  

of l a r g e  d e c re ase s  in  th e  k i n e t i c  components.  There i s  more than 20% 

r e d u c t i o n  in  the  v a r i a t i o n a l  k i n e t i c  energy a t  the  h ig h e s t  d e n s i t y .  These 

e n e r g e t i c  changes a re  the  r e s u l t  of s t r u c t u r a l  m o d i f i c a t i o n s  in  the  c r y s t a l  

as dem onst ra ted  in  F igu re  4 .6 .  In t h i s  f i g u r e  we p l o t  the  r a d i a l  

d i s t r i b u t i o n  f u n c t i o n s  o b ta in e d  from the  and e x t r a p o l a t e d  \Jj2 

d i s t r i b u t i o n s .  The changes in  th e  p o t e n t i a l  energy can be unders tood  in  

te rms of the  r a d i a l  d i s t r i b u t i o n  f u n c t i o n s .  The p a i r  p o t e n t i a l  used in  our 

c a l c u l a t i o n s  i s  p l o t t e d  in  th e  f i g u r e  to  show th e  r e g io n s  of the  s u r f a c e  

sampled a t  the  d i f f e r e n t  d e n s i t i e s .  For comparison,  the  Lennard-Jones  

p o t e n t i a l  f o r  H2 i s  a l s o  shown in  t h i s  f i g u r e .  All  the  peaks in  the  r a d i a l  

d i s t r i b u t i o n  f u n c t i o n s  a re  b roader  with  the  e x t r a p o l a t e d  wave f u n c t i o n  than  

w i th  the  v a r i a t i o n a l  form. The broadening  of the n e a r e s t  neighbour  peak 

causes  the  r e p u l s i v e  wal l  of the  p o t e n t i a l  to  be more s t r o n g l y  sampled and 

a h ig h e r  p o t e n t i a l  energy r e s u l t s .

The members of our ensemble which tu n n e l  i n t o  the  r e p u l s i v e  w a l l s  of 

the  p o t e n t i a l  have n e g a t iv e  k i n e t i c  e n e r g i e s .  On average the  k i n e t i c  energy 

can never be n e g a t iv e  but  components of the  ensemble which sample 

" tu n n e l in g "  c o n f i g u r a t i o n s  w i l l  make n e g a t iv e  c o n t r i b u t i o n s  to  the  k i n e t i c  

energy as a r e s u l t  of the  c u r v a t u r e  of the  t r i a l  f u n c t i o n  in  t h i s  r e g i o n .  

From the  d i s c u s s i o n  in  Chapter  2, the  k i n e t i c  energy w i l l  depend on the  

q u a n t i t y  —"Ti2/ 2mV2 . The ensemble d e s c r i b i n g  th e  wave f u n c t i o n  in  our 

s o l i d  s t a t e  c a l c u l a t i o n s  i s  thus  ab le  to  o b t a in  a lower average  t o t a l  

energy by a l low ing  more systems to  tunne l  i n t o  the  r e p u l s i v e  wall  so t h a t  

the  dec re a se  in  th e  average k i n e t i c  energy of the  ensemble d i s t r i b u t i o n s  i s

l a r g e r  than th e  r e s u l t i n g  i n c r e a s e  in  th e  p o t e n t i a l  energy .
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The inadequacies of the solid state variational wave function which we

have used are different from those of the trial form for the liquid state. 

Earlier we saw that with liquid ^He the Jastrow form gave a fluid which was

not sufficiently structured, possibly due to the neglect of many body

correlations. The trial form used in the variational calculations of Norman 

et al. (1984) and in our variational work gives a solid which is too

strongly structured. A possible reason for this problem is that the pair

form, u(r) = (a/r)5, used in the trial wave function does not allow 

sufficient penetration into the repulsive wall of the potential. As 

discussed in Section 1.), the pair function is based on the WKB approximate 

solution for the r~^ 2 hard wall problem. In Figure 4.6 we also show the 

Lennard-Jones potential for H2 . It is apparent that the r“^2 wall of this 

potential rises more steeply than the potential due to Buck et al. (1983). 

Hence, using the variational form based on the more rapidly rising 

potential does not seem to allow sufficient tunneling into the softer Buck 

potential. It would be useful to consider different variational forms based 

on softer analytic potentials. Use of such forms should give better 

variational results and provide more efficient importance sampling trial 

functions.

The differences between the diffusion Monte Carlo results and the 

experimental values apparent in Table 4.2 are most likely due to the 

inadequacies of the spherical pair potential which was used in the 

calculations. In general the energies calculated using this potential are 

on the order of only 10% too high so the form provides a better description 

of the interaction than the variational results would have us believe. The 

discrepancy may result in part due to the assumption of a spherical 

interaction. Hydrogen molecules deviate from a spherical shape by about 8%



(Kolos and Roothan (I960)) so their interaction should be anisotropic. The 

potential which we have used in our calculations is only the spherical part 

of the interaction given by Buck et al. who have presented a full 

anisotropic form written in terms of a spherical harmonic expansion (see 

also Norman et al.).

Explaination in terms of the neglect of anisotropy is consistent with 

the way the discrepancy between the experimental and calculated results 

changes with density. At the lowest density the difference is only 3%, 

whereas at higher densities the spherical potential gives energies which 

are about 12% too high. Large zero point motions which characterise the low 

density quantum solid will average out the effects of a weakly anisotropic 

potential but at high densities the anisotropy may have a significant 

effect.

An alternative explaination for the differences between the calculated 

and experimental results may be the use of the finite time step 

approximation. Since the rapidly varying parts of the potential are most 

often sampled at high densities, very small time steps are required for 

accurate results. As mentioned earlier we have used smaller time steps with 

the high density runs but it may be possible that the finite time step 

approximation is still inaccurate.

Conclusion

In this chapter we have seen that the diffusion Monte Carlo method may 

be applied successfully to study bulk phase quantum systems with harsh 

repulsive forces provided importance sampling methods are used. Without
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im por tance  sampling the  d i f f u s i v e  random walk g iv e s  very l a r g e  f l u c t u a t i o n s  

and the  method i s  not  u s e f u l .  When impor tance  sampling i s  i n c o rp o r a t e d  

however, the  p rocedure  i s  a b l e  t o  g ive  r e s u l t s  which a r e  s u f f i c i e n t l y  

a c c u r a t e  to  p rov ide  a s e n s i t i v e  t e s t  f o r  i n t e r m o l e c u l a r  p o t e n t i a l s .  Since 

v a r i a t i o n a l  methods can only  g ive  an upper bound f o r  the  energy the  r e s u l t s  

of t h e s e  c a l c u l a t i o n s  can p rov ide  only  a q u a l i t a t i v e  u n d e r s tan d in g  of  a 

quantum system.

The major problem with both  the  d i f f u s i o n  Monte C ar lo  and Green’ s 

f u n c t i o n  Monte Car lo  methods i s  the  enormous expense of the  c a l c u l a t i o n s .  

T y p i c a l l y  th e s e  p rocedures  r e q u i r e  on the  o rd e r  of 50 t o  100 t imes more 

computer  r e s o u r c e s  than e q u i v a l e n t  v a r i a t i o n a l  com puta t ions .  G ene ra l ly  the  

improvements a re  s i g n i f i c a n t ,  bu t  on the  o rd e r  of only  10%. A p r o f i t a b l e  

approach f o r  f u t u r e  developments may be t o  use th e  r e s u l t s  of f u l l  quantum 

c a l c u l a t i o n s  to  s tudy  the  per formance of  d i f f e r e n t  v a r i a t i o n a l  forms.  By 

m o n i to r in g  the  r e l a x a t i o n  of the  v a r i a t i o n a l  d i s t r i b u t i o n  as the  f u l l  

quantum c a l c u l a t i o n  proceeds  u s e f u l  in fo rm a t io n  about  th e  in a d eq u ac ie s  of

the  v a r i a t i o n a l  form can be o b t a i n e d .
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CHAPTER 5 QUANTUM MONTE CARLO AT NON-ZERO TEMPERATURES

1 . )  Fo rm a l  P r e l i m i n a r i e s

I n  t h i s  c h a p t e r  we c o n c e r n  o u r s e l v e s  w i t h  e x t e n d i n g  t h e  b a s i c  quan tum 

Mon te  C a r l o  method  d e s c r i b e d  i n  C h a p t e r  2 t o  t r e a t i n g  s y s t e m s  i n  t h e r m a l  

e q u i l i b r i u m  a t  n o n - z e r o  t e m p e r a t u r e s .  The quan tum o p e r a t o r  o f  i n t e r e s t  f o r  

s u c h  s y s t e m s  i s  t h e  d e n s i t y  o p e r a t o r  w h i c h ,  i n  t h e  c a n o n i c a l  e n s e m b l e  t a k e s  

t h e  f o l l o w i n g  fo rm

H e re  ß = 1/k g T  and H i s  t h e  H a m i l t o n i a n  o p e r a t o r  g i v e n  by

N 2 2
H = _ l  _Ü_ v i  + V(L) ( 5 . 2 )

i =1 2m i

f o r  a s y s t e m  o f  N p a r t i c l e s  i n t e r a c t i n g  w i t h  one  a n o t h e r  t h r o u g h  a 

p o t e n t i a l  V ( r ) .  We w i l l  r e s t r i c t  o u r s e l v e s  t o  d e a l i n g  w i t h  t h e  c a n o n i c a l  

e n s e m b l e .  Only  B o l tz m a n n  s t a t i s t i c s  i s  c o n s i d e r e d  i n  o u r  d i s c u s s i o n .

I n  t h e  c o o r d i n a t e  r e p r e s e n t a t i o n  t h e  d e n s i t y  o p e r a t o r  becomes a 

c o n t i n u o u s  m a t r i x  whose e l e m e n t s  a r e  d e f i n e d  as

-  * - OH
p ( r , r '  ; ß)  = I  \Jjn ( r ' ) e   ̂ ijjn ( r )  

n

= l  e ßEn ijjn ( r f ) 
n

( 5 . 3 a )

( 5 . 3 b )

H e re  En and a r e  t h e  e n e r g y  e i g e n v a l u e s  and n o r m a l i s e d  p o s i t i o n

e i g e n f u n c t i o n s  o f  t h e  H a m i l t o n i a n .

The d i a g o n a l  e l e m e n t s  o f  t h i s  m a t r i x
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P(r;ß) = p(r,r;ß) (5.4)

represent the probability of finding a system which is in thermal 

equilibrium at a temperature 3, at a point r in the configuration space.

In the momentum representation the density matrix takes a form 

analogous to equation (5.3)

p(p,p’;ß) = I e BEn$n(p’) $n(p) 
n

(5.5)
=  j p(r,r' ;ß)e — 2- *2.  ̂dr_ dr’

p(p,p’;ß) is the complete Fourier transform of the density matrix in the 

coordinate representation.

In the above $n(p) are the energy eigenfunctions in the momentum 

representation and <I>n(p_) and ^n^L^ are related by Fourier transformation.

i|; (r) = \ $n(p_') — *— dp_’ (5.6)

$ (p’) = (2tt)“3N J" ^ (rn) e ^ ^  — *— dr" (5.7)n — j n — —

The components, Pj[ of the vector p are the eigenvalues of the momentum 

operators p-[ = ^  ^/3r^ and satisfy the following

^  ^7- |P> = Pi|P>

Here the momentum eigenfunctions are

|p> = e-1/* £-c.

The correspondence principle gives that in the high temperature limit 

the momentum eigenvalues become the classical momenta of the particles and



(5.8)

1 26

lim pj_= 
ß+0

The quantum mechanical probability of finding a system with a momentum 

vector p at a temperature ß is related to the diagonal elements of the 

density operator in the momentum representation. Thus in a similar fashion 

to equation (5.4) we have that

If the functions P(p_;ß) and P(r_;ß) are known then integrations over p 

or r would yield average values of various quantities in the same way as 

classical averages are calculated from the Gibbs phase space distribution 

function. The position and momentum probability densities can be obtained 

from the function F(p,r_;ß) which is defined as the partial Fourier 

transform of the density matrix

An alternative form for F can be obtained by the following manipulations. 

Substituting equation (5.3a) into (5.10) we find

P(p;ß) = p(p,p;ß) (5.9)

F(p,r; ß) (5.10))

F(p,r;ß)
n

Now by using equation (5.6) the above expression is written as

$n(p’)e ei//-fr — *— dp'dr^'
n

Employing equation (5.7) to eliminate the functions $n we find

F(p,r;ß) ^(r")e i/f] P’-H"e“ ßH gi/fi £' •£. dp» dr’dr"
n

Using the completeness relation
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I i M r ’) \\> (r ”) = 5(r’-r") (5.11)
n

and the properties of integrals of <5(r_'-r"), the integral over r" can be 

performed to give

F(p,r; ß) = \\ e1/« (E.“R ’) e~ßfi e1«  £'-L dE ' dr •

The r ’ integration can now be done using the relation

J eVTi  ̂*— dr’ = 6(p-p’) (5.12)

Finally by integrating over p_' we obtain the following form for F

F(p,r;ß) = e~ß” e1/Ti £*- (5.13)

The functions P(r;B) and P(p;ß) are related to F by the following 

results which were first given by Kirkwood (1933)

P(r;ß) = j e"1/fl £*- F(p,r;ß) dp (5.14)

P(p;ß) = J e“1/fl £ *- F(p,r;ß) dr (5.15)

Equation (5.14) is easily proved by substituting the definition for F given 

in equation (5.10)

P(r;ß) - J J  ei/Afi — ’  ̂ p(r,r';ß) dr ’ dp

The p integral gives a 6(r_'~r) factor and performing the r’ integration 

gives the required diagonal elements. (5.15) can be justified by again 

substituting (5.10), using (5.3b) and rearranging to obtain

P(p_; ß) = £ e ßEn J e^^1 — 4)n(r.’) dr ’ J e ^ ^  ^n(r) dr
n

Using equation (5.7) in this result completes the proof of (5.15).
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The function F satisfies the Bloch equation (Hill (1956))

3F(p,r;ß) = -H F(p,r;ß)
3ß

N , 2 (5'16)
= £ Vj_F - V(r)F
i=1 2m^

This can be shown by differentiating (5.13) with respect to ß. The initial 

condition for the solution of equation (5.16) is obtained from equation 

(5.13) as

F(p,r;ß=0) = ^  — * —

The Bloch equation is isomorphic with the time dependent Schrödinger 

equation, the reciprocal temperature, ß, replacing the imaginary time, 

it/ft. By considering this isomorphism further it should be possible to 

extend the quantum random walk method, described in Chapter 2 and so solve 

(5.16) to obtain F(p_,r;ß).

In this section then we have seen that there exists a function F(p,r;ß) 

whose spatial Fourier transform gives the momentum probability density and 

whose momentum Fourier transform gives the spatial probability density. The 

function can be obtained at different temperatures by solving the Bloch

equation.



2.) The Non Zero Temperature Quantum Monte Carlo Method

At high temperatures, an approximation for F is

lim F(p,r;ß) 
ß+0

e belass eVh R*L 

e J J e  e

(5.17a)

(5.17b)

As discussed earlier, pj are the components of the classical momenta.

Following Kirkwood (1933) the classical form given in 5.17 provides an 

initial condition for solution of the Bloch equation. In Chapter 2 we saw 

that the quantum Monte Carlo method may be used to propagate an ensemble 

from some initial distribution through imaginary time. The details of the 

motion were determined by the time dependent Schrödinger equation. In the 

non zero temperature quantum Monte Carlo method which we shall now 

describe, the random walk procedure is used to solve the Bloch equation to 

give a distribution which evolves as a function of the inverse temperature 

variable 3.

At some high initial temperature, B0 , an ensemble distributed 

according to equation (5.17b) must first be established. We use the 

classical Monte Carlo method of Metropolis et al. ( 1953) to generate an 

ensemble distributed according to the factor. In order to sample 

the initial distribution given in (5.17b), the ensemble must be modified to 

include the factors which contain momenta. A procedure for sampling the 

classical momentum distribution involves giving each particle a momentum 

chosen from a Gaussian density. In this way a classical distribution of 

points in phase space is produced. Weighting each system by a phase factor, 

e V h  P*̂ _, gives an ensemble distributed according to the high temperature
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approximation for F which we use as the initial condition for our solution 

of the Bloch equation.

Momentum variables do not appear explicitly in the Bloch equation, 

consequently the particle momenta in a given ensemble member do not change 

as the Bloch equation is solved. Rather, the momenta can be considered as 

parameterising each random walker and determining its contribution to the 

ensemble. The procedure outlined above is used to average over the initial 

position and momentum distributions. We shall see shortly that due to the 

simple form of the classical momentum distribution the momentum average may 

be performed analytically. To proceed with our development, however, it is 

more convenient to consider propagating a set of systems which are weighted 

by the factors eVft P*̂ _.

A diffusion and birth-death algorithm similar to that described in 

Chapter 2 is used to evolve the ensemble according to the Bloch equation. 

Briefly, as the reciprocal temperature is incremented by Aß, the particles 

in each system are moved through small displacements chosen from a normal 

distribution with variance Ax = (ft Aß/m)2 . Diffusion of the ensemble 

members models the effect of the kinetic operator on the distribution 

F(p,r;ß) and a birth-death procedure models the potential operator.

There are differences between the physical nature of the solutions of 

the Schrödinger and Bloch equations and special consideration must be given 

to the method for modelling the potential term. When solving the 

Schrödinger equation we have an additional requirement that the physical 

solutions should be time independent and an eigenvalue problem results. 

Consequently, the details of the transient behaviour of the ensemble are of 

no concern. The energy scale can be arbitarily adjusted to slow the 

population growth or decay and give a stable ensemble in the long time
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l i m i t .  In  Chapter  2 we saw t h a t  us ing  a Vr e f  a d j u s t i n g  a lg o r i th m  f o r c e s  the  

ensemble d i s t r i b u t i o n  towards the  ground s t a t e .  With t h i s  p rocedu re ,  

i n f o r m a t io n  about  th e  t r a n s i e n t  e v o l u t i o n  i s  l o s t  but  a s t a b l e  ensemble 

w i th  th e  c o r r e c t  a sy m p to t ic  d i s t r i b u t i o n  i s  o b t a in e d .

The Bloch e q u a t io n  has the  same form as the  t ime dependent  Schröd inger  

e q u a t io n  but  we a re  no longe r  i n t e r e s t e d  in  s t a t i o n a r y  s o l u t i o n s  and th e  

e q u a t io n  can not  be w r i t t e n  as an e ig e n v a lu e  p rob lem . In fo rm a t io n  about  the  

system a t  d i f f e r e n t  t e m p era tu re s  w i l l  be o b ta in e d  by m on i to r ing  the  

t r a n s i e n t  behav iour  of  the  ensemble.  Consequent ly  th e  Vr e f  a d j u s t i n g  method 

cannot  be used in  i t s  c u r r e n t  form s in c e  i t  p e r t u r b s  the  t r a n s i e n t  

e v o l u t i o n .

I f  the  Vr e f ad jus tm en t  p rocedure  i s  removed from the  b i r t h - d e a t h  

a lg o r i t h m ,  the  growing or decaying ensemble which r e s u l t s  w i l l  evolve as 

the  s o l u t i o n  of th e  Bloch eq u a t io n  but  t h i s  method i s  u n s t a b l e  and has poor 

s t a t i s t i c a l  p r o p e r t i e s .  E q u i v a l e n t ly ,  th e  i n f l u e n c e  of the  p o t e n t i a l  term 

may be i n c lu d e d  as an accumula ted weight  which i s  the  produc t  of the  

b i r t h - d e a t h  p r o b a b i l i t i e s .  Thus, i f  a system samples a s e t  of n p o i n t s  

(r-| »E.2» • • • »Ln) as i t  evolves  th rough  n s t e p s  in  r e c i p r o c a l  t e m p e ra tu r e ,  i t  

i s  g iven  a weight

n
-  I  Aß V(r_i)

w = e i — 1 (5 .18)

The approach o u t l i n e d  above g ives  the c o r r e c t  t r a n s i e n t  behav iou r ,  bu t  

s i n c e  th e  ensemble d i f f u s e s  f r e e l y  t h e r e  i s  no th ing  to  p reven t  systems from 

wandering i n t o  " u n p h y s ica l "  r e g io n s  of th e  c o n f i g u r a t i o n  s pace .  The lo n g e r  

systems d i f f u s e ,  th e  g r e a t e r  th e  chance of sampl ing  a r e g io n  of  high 

p o t e n t i a l  energy which r e s u l t s  e i t h e r  i n  dea th  or  e q u i v a l e n t l y ,  a zero  

weight  a c c o rd in g  to  equ a t io n  ( 5 .1 8 ) .  Consequen t ly  the  s t a t i s t i c s  f o r



sampling low temperature distributions with the method discussed above are

very poor.

There are two alternatives which may be used to improve the statistical 

properties of the algorithm. First an importance sampling scheme may be 

implemented. In this approach we use quantum Monte Carlo methods to solve 

the equation of motion for a function f related to F(p,r;ß) by the 

following expression

f = F(p,r;ß) FT(p,r;ß)

The function F-p is some known analytic form which resembles F. Proceeding 

in the manner described in Chapter 2 the following equation of motion for f 

may be obtained

3f
3ß

With a well chosen F-p, the drift term modifies the free diffusive motion so 

that the ensemble members are forced away from the unphysical regions of 

configuration space and into the more important regions. By choosing the ß 

dependence of F-p appropriately, a slowly varying birth rate may be obtained 

and accurate calculations with larger ß steps are possible.

As described in Chapter 2, when importance sampling is used to solve 

the Schrödinger equation an ensemble distributed according to ijjip-p is 

generated. If ip-p approximates \J>, the importance sampled ensemble 

distribution will approximate the probability density. Expectation values 

were evaluated by averaging quantities over the ip\p-p distribution and 

extrapolating to give a ijj2 distribution. The ensemble generated by 

importance sampling the Bloch equation, however, cannot be used directly

since the importance sampling function must be divided out in order that
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av e ra g es  may be e v a l u a t e d .

An a l t e r n a t i v e  means of improving th e  s t a t i s t i c a l  p r o p e r t i e s  of the  

b a s i c  random walk p rocedure  i s  to  use a Vr e f  a d j u s t i n g  approach but  t o  keep 

t r a c k  of the  va lu e s  which Vr e p takes  as the  ensemble evo lves .  I f  th e  pth  

ensemble member samples the  n p o i n t s  (£1 P >£2 ^ »• • • >Ln^^ as i t  d i f f u s e s  th e n ,  

w i th  a Vr e f  a d j u s t i n g  a l g o r i th m ,  the  systems c o n t r i b u t i o n s  a re  weigh ted  by

n -I ( V ( r b  -  Vpe f ) Aß
Wp = e i=1 (5 .1 9 a )n

n n
-I V(r?) Aß l  Vpe f 4ß 

= e i»1 e i=1 (5 .19b)

Here v£ef  i s  the  va lue  of the  energy r e f e r e n c e  which i s  s e t  by the  Vr e f 

a d ju s tm en t  mechanism a t  the  i th  s t e p  in  th e  t r a j e c t o r y .  The va lue  of  Vjkef 

i s  the  same f o r  a l l  systems in  the  ensemble.

As o u t l i n e d  above,  the  c o r r e c t  t r a n s i e n t  behaviour  may be o b t a i n e d  i f  a 

weigh t  of the  form given  in  e q u a t io n  (5 .18 )  i s  used .  Equat ion (5 .19b)  

d i f f e r s  from (5 .18 )  only in  the  term i n v o l v in g  Vr e f .  Consequent ly  a Vr e f  

a d j u s t i n g  a l g o r i t h m  may be used t o  evolve an ensemble having th e  c o r r e c t  

t r a n s i e n t  behav iour  p rov ided  the  c o n t r i b u t i o n s  of the  ensemble t o  v a r io u s  

ave ra ges  a r e  weighted  by the  f a c t o r

n
-I vJ.efAß

e i = 1

We have chosen th e  Vr e f  ad jus tm en t  scheme o u t l i n e d  above to  improve th e  

s t a t i s t i c a l  p r o p e r t i e s  of the  random walk tech n iq u e  r a t h e r  than  use 

im por tance  sampling methods.  An im por tance  sampling scheme has been 

employed by P o l lock  and Ceper ly  (1984) t o  c a l c u l a t e  the  p a i r  d e n s i t y  m a t r ix

f o r  th e  Lennard Jones  system.
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The d i s c u s s i o n  so f a r  in  t h i s  s e c t i o n  has d e s c r ib e d  a s t a b l e  quantum 

random walk method which can be used to  evolve an i n i t i a l  ensemble sampled 

from a c l a s s i c a l  high te m p era tu re  d i s t r i b u t i o n .  The motion of  the  

d i s t r i b u t i o n  models the  s o l u t i o n  of  the  Bloch e q u a t io n .  To proceed ,  a 

method f o r  us ing  the  evo lv ing  ensemble to  o b t a in  averages  of va r io u s

q u a n t i t i e s  a t  d i f f e r e n t  t e m p e ra tu re s  must now be dev i sed .

In S e c t io n  1 .)  i t  was shown t h a t  the  p o s i t i o n  and momentum p r o b a b i l i t y  

d e n s i t i e s  a re  r e l a t e d  to  the  F o u r i e r  t r a n s fo rm s  of F(p_,r;ß) by e q u a t io n s  

(5 .14)  and ( 5 .1 5 ) .  Averages can be c a l c u l a t e d  by i n t e g r a t i n g  over th e s e  

p r o b a b i l i t y  d e n s i t y  f u n c t i o n s .  Let us now c o n s id e r  us ing  the  evo lv ing  

ensemble to  o b t a in  the  p o s i t i o n  p r o b a b i l i t y  d e n s i t y  a t  d i f f e r e n t  

t e m p e r a t u r e s .

With the  approach we have d e s c r ib e d ,  each ensemble member has a weight 

eVft P*^ which depends on th e  p o in t  in  the  c l a s s i c a l  phase space where i t  

commences i t s  random walk.  As ß i s  inc remented ,  the  system d i f f u s e s  away 

from the  i n i t i a l  p o i n t ,  r_. A f te r  a number of inc rem en ts ,  the  r e c i p r o c a l  

t e m p e ra tu r e  has reached  a va lue  ß* say ,  and the  system may have d i f f u s e d  to  

a p o in t  r 1 . As d i s c u s s e d  e a r l i e r  the  p a r t i c l e  momenta a re  unchanged dur ing  

th e  random walk.  Equa tion (5.14) g ives  t h a t  the  p o s i t i o n  p r o b a b i l i t y

d e n s i t y  a t  ß ’ i s  o b ta in ed  by m u l t i p l y i n g  the  d i s t r i b u t i o n  F ( p , r ' ; ß ' )  by the  

f a c t o r  e“ i / f t  P*£* and i n t e g r a t i n g  over £.  Thus the  p o s i t i o n  p r o b a b i l i t y

d e n s i t y  may be o b ta in e d  from the ensemble by w eigh t ing  each system with

a n o th e r  phase f a c t o r  which depends on the  p o in t  in  c o n f i g u r a t i o n  space 

sampled by each system a f t e r  i t  has been p ropaga ted .  The random walkers  

c a r r y  t h e i r  i n i t i a l  weights  eVfi P*^ u n t i l  t h e i r  t r a j e c t o r y  t e r m i a n t e s .  

Consequen t ly ,  a system having momentum p which d i f f u s e s  from a p o in t  r  a t  

ß0 to  a p o in t  r ’ a t  ß ’ s h a l l  r e c e i v e  a t o t a l  weight
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gi/fi P-(r-r')

The momenta which parameterise the random walkers are chosen from a 

classical distribution at the initial temperature ß0 . The terms appearing 

in equation (5.1M) containing momenta may thus be combined to give a 

multiplicative factor as follows

r Vfi P.(r-r’)J e ~ßn£ £j/2r dp (5.20)

Integrating equation (5.20) gives

3N
n

j=1 lh 2ß0 J
e~mj /260fi2 (rj“rj')2 (5.21)

An ensemble distributed according to the full quantum position

distribution at different temperatures is obtained by weighting the

contributions of the ensemble members by Gaussian factors which depend on 

the distance between the initial and final configurations in the random 

walk. Thus as a system diffuses away from its starting configuration, its 

contribution to the ensemble changes according to equation (5.21). The 

weight given in equation (5.21) is an approximation and its accuracy 

depends on how well the quantum position and momentum distributions are 

approximated by the classical results at the initial temperature. Using the 

classical position distribution, e~BoV(-^, is an approximation which 

becomes more accurate as the initial temperature is increased. The use of 

these approximations and more accurate results will be considered in detail 

in Chapter 6.

A summary of the method which we have used to calculate averages over 

the quantum position distribution can now be presented:

(1) A classical Monte Carlo method is used to sample configurations at some
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h igh  i n i t i a l  t e m p era tu re .  Severa l  hundred systems s e l e c t e d  from the  

Markov chain  a re  used to  c o n s t r u c t  an i n i t i a l  ensemble.

(2) The quantum Monte Car lo  method i s  employed to  p ropaga te  the  ensemble 

along a " t r a j e c t o r y "  in  ß. Systems a re  al lowed  to  d i f f u s e ,  r e p l i c a t e  

and d i e .

(3) Vr e f  i s  a d j u s t e d  a t  the  end of each ß s t e p  so as to  keep the  ensemble 

p o p u la t i o n  approx im ate ly  c o n s t a n t .  A s i m i l a r  s t a b i l i s a t i o n  p rocedu re  to  

t h a t  d e s c r ib e d  in  Chapter  2 i s  used to  a d j u s t  the  energy r e f e r e n c e  a t  

each t ime s t e p .

(4) At p a r t i c u l a r  t e m pera tu re s  va r io u s  p o s i t i o n  dependent  p r o p e r t i e s  a re  

e v a l u a t e d  and averages  a re  accumula ted .  The c o n t r i b u t i o n  of each system 

i s  de termined  by the  d isp lacem ent  from i t s  i n i t i a l  c o n f i g u r a t i o n  as 

d e s c r i b e d  by e q u a t io n  ( 5 .2 1 ) .

(5)  The c o n t r i b u t i o n  which each ensemble of  systems makes to  the  f i n a l  

av e ra g es  must be weighed by the  f a c t o r

? 1- I VrefAß 
e i=1

In t h i s  way the  c o r r e c t  t e m p era tu re  e v o l u t i o n  may be o b ta in e d  t o g e t h e r  

w i th  a s t a b l e  ensemble.

(6) Once th e  t r a j e c t o r y  has reached  i t s  f i n a l  t e m p era tu re  we r e t u r n  to  

s t e p  (1) to  e s t a b l i s h  and p ropaga te  a no the r  ensemble.

With th e  a lgo r i thm  o u t l i n e d  above,  ave rages  over a very l a r g e  ensemble 

a r e  c o n s t r u c t e d  by accumula t ing  p r o p e r t i e s  from much s m a l l e r  ensembles .  The 

c o r r e c t  c o n t r i b u t i o n s  from the  s m a l l e r  ensembles a re  ensured  by u s ing  th e  

w e ig h t in g  scheme o u t l i n e d  in  s t e p  (5 ) .

The s t a t i s t i c a l  convergence of the  a lg o r i th m  w i l l  be i n f l u e n c e d  by the  

number of systems in  th e  component ensembles .  I f  r e l a t i v e l y  few systems a re
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p ro p a g a t e d  in  each c y c l e ,  the s t a t i s t i c a l  f l u c t u a t i o n s  w i l l  be l a r g e .  The 

va lu e  of  the  energy r e f e r e n c e  a t  each 3 s t e p  i s  r e l a t e d  to  the  average 

p o t e n t i a l  energy of  the  ensemble. C onsequen t ly ,  the  s e t  of v£ef  va lu e s  

which i s  sampled as small  ensembles a r e  p ropaga ted  may d i f f e r  s u b s t a n t i a l l y  

from one ensemble t o  th e  n e x t .  Thus the  e x p o n e n t i a l  weights  inc luded  in  

s t e p  (5) may be very d i f f e r e n t  f o r  each smal l  ensemble.  With a l a r g e r  

ensemble and a b e t t e r  sampling of  the  c o n f i g u r a t i o n  space  the  va lues  of 

Vjke f  w i l l  be s i m i l a r  f o r  a l l  the  ensembles and b e t t e r  s t a t i s t i c a l  

p r o p e r t i e s  w i l l  r e s u l t .  The f l u c t u a t i o n s  in  th e  a lg o r i th m  d i s c u s s e d  above 

t h e r e f o r e  depend on the  e x p o n e n t i a l  of th e  f l u c t u a t i o n s  in  th e  q u a n t i t y

F i n a l l y  in  t h i s  s e c t i o n  we c o n s id e r  c a l c u l a t i n g  p r o p e r t i e s  which depend 

on th e  momenta. I t  can be shown (Feynman (1972))  t h a t  th e  average  k i n e t i c  

energy  of a system a t  a te m pera tu re  3 may be c a l c u l a t e d  from the  momentum 

p r o b a b i l i t y  d e n s i t y  g iven  in  e q u a t io n  (5 .15)  u s ing  the  fo l l o w in g  e x p re s s io n

3N 2

< j  PJ/2mj>3
f 3N 2"  J ( ]  PJ/2mj  ) P(^ ;ß) d£

( 5 . 22 )

3N ,
= 11 (  ̂ P j / 2 m J  e" 1/fl - - F( P ’L’ ;ß) d r ’ dp

j  J

Here e q u a t io n  (5.15) has been s u b s t i t u t e d .  C o l l e c t i n g  f a c t o r s  c o n t a in in g  

th e  momenta we f i n d  t h a t  the  momentum i n t e g r a l s  in  (5 .22)  can be w r i t t e n  in  

a s i m i l a r  f a s h i o n  to  eq u a t io n  (5 .20)

i/fi E-(n-n')
e ~ß°? ^/2m1 

e J J dp (5 .23)

and t h i s  r e s u l t  reduces  to  the  fo l l o w in g  form
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3N
II (2 Trm ^ k e - mj / 2 R 0‘h z <rr rj ' ) 2

(5 .24)
3N

* 1  1 / 2ß0 t 1 -  mj / f i 2ß0 <t' j  " r j ' ) 2 ]

The s p a t i a l  i n t e g r a t i o n s  in  (5 .22)  a re  performed as b e fo re  by ave rag ing  

over the  ensemble and in c lu d i n g  the  Gaussian  w e ig h t s .  Thus to  o b t a in  the  

k i n e t i c  energy we average the  summation appea r ing  in  (5.2*0 in  the  same way 

as averages  of p o s i t i o n  dependent  p r o p e r t i e s  were c a l c u l a t e d .  Equat ion 

(5 .24)  i s  an approx im at ion  and aga in  i t s  accuracy  depends on the  assumed 

c l a s s i c a l  d i s t r i b u t i o n s  a t  the  i n i t i a l  t e m p e ra tu r e .

More d e t a i l e d  i n fo rm a t io n  about  the  quantum momentum d i s t r i b u t i o n  can 

be o b ta in e d  from the  non -ze ro  t e m p e ra tu re  quantum Monte Car lo  p rocedu re .  

Cons ider  the  s i n g l e  p a r t i c l e  momentum d i s t r i b u t i o n ,  d e f in e d  as f o l low s

S u b s t i t u t i n g  (5 .15)  we f i n d  t h a t  t h i s  r e s u l t  may be w r i t t e n  in  th e  form

N

Here the  f u n c t i o n  E,(r+r_' ;ß0 ->ß) r e p r e s e n t s  the  p o s i t i o n  d i s t r i b u t i o n  

p ropaga ted  by the  quantum Monte Car lo  p ro ced u re .  As d i s c u s s e d  e a r l i e r ,  the  

i n t e g r a t i o n s  over the  3N~3 momentum v a r i a b l e s  reduce  the  above e q u a t io n  to

p ( P i ; ß )  = j - - j  P (P 1>••> RN 5 $) dp2 . . . d p N

- i / t i  Pi-tnrur) - i / f i  l pj• C r j - r j * )
• e j  =2

x 5(r ^r ' ; Bq^ )  e
- ß 0P i 2 / 2mi - ß 0 I Pj/2mj

e j=2

x d r ’d£2 . .dpjj

th e  form
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P(P1;ß) \  -m-s/ofi f i 2 ( r - p r - i ’ ) 2 II r 2 Trmj  ^ 2 e J / ^Pon J J
j =4 lf i2ß o J

x 5 ( r . r . ; ß 0*B) e- 1 ^  Hi ’ ) e- ß 0Pl "/2m,

(5 .25 )  

dr ’

The p r o b a b i l i t y  of  f i n d i n g  a p a r t i c l e  w i th  v e c to r  momentum in  a 

momentum space  volume element dpj about  pj i s

P( Pj ; ß ) dp_i = P(p_i ; ß ) p 1 2s i n 0 d p 1 dedcj)

For an i s o t r o p i c  system, a l l  o r i e n t a t i o n s  of the  momentum v e c t o r  a re  

e q u i v a l e n t  so we can i n t e g r a t e  over the  ang le  v a r i a b l e s  to  o b t a i n  a 

d i s t r i b u t i o n  of  momentum m agni tudes .  C ons ide r ing  the  terms in  e q u a t io n  

(5 .25)  which depend only  on p_-|, t r a n s f o r m i n g  to  s p h e r i c a l  p o la r  c o o r d i n a t e s  

and l e t t i n g  the  z - a x i s  l i e  along the  v e c to r  r-|-r-| ’ we can w r i t e  the  

i n t e g r a l  over o r i e n t a t i o n s  as

2ir 1

( d* J p 1 l ü l - m ’ I 0030 e“ S° p 12/2m1 dcose

0 -1

1

= 2 it e ^°P1 /' ^ m] J (cos(p- | / f i  |H i“H1 T | X) + i s i n ( p ‘| / f i  |£li“Hi ' I x )  ) dX 

- 1

= 4tt e ^°p 1 /2ml s inc(p- | / f i  

where s i n e  x = s i n  x / x .

Using t h i s  r e s u l t  i n  eq u a t io n  (5 .25)  we f i n d  t h a t  the  o r i e n t a t i o n  

averaged s i n g l e  p a r t i c l e  momentum d i s t r i b u t i o n  can be w r i t t e n  as

P ( p , ; ß )  = [ 3 n (2 X124. f  e ' mJ / 2 ß 01i2 ’ > 2
J ~ fl ßQ

x £,(r^r  ’ ; ß0->ß) e ^°Pl s inc(p- ]/f i  | £11 ~H1 ’ | ) d£ '

( 5 . 26 )



Equation (5.26) is used to obtain the momentum distribution from a 

quantum Monte Carlo calculation as follows: At certain points along the

temperature trajectory a histogram of the sine function in the displacement 

of the particle is accumulated. Each added function must be weighted by a 

product of Gaussians in the displacements of the other particles. Averaging 

over many trajectories performs the spatial integrations in equation 

(5.26). Finally, each histogram must be multiplied by the high temperature 

Gaussian momentum distribution to give the distribution at the different 

temperatures along the trajectory.

In this section we have described a random walk procedure which may be 

applied to calculate the properties of systems at non zero temperatures. 

The method involves propagating classical high temperature initial 

ensembles to lower temperatures by performing random walks which simulate 

the Bloch equation. Position and momentum dependent properties may be 

obtained from these calculations. The ensemble developed at each step in 

the random walk contains systems whose configurations are typical of the 

equilibrium at the temperature associated with the step. Averages at the 

various temperatures sampled during the random walk are obtained by 

accumulating the results of many random walks having different initial 

conditions sampled from the high temperature distribution.

In the next section we give a brief summary of some related methods 

which have been developed for performing quantum calculations at non-zero 

temperatures and compare these with the procedure described in this

section.



3.) A review of other Quantum Methods for Treating Systems at Non-Zero

Temperatures

Most of the methods which have been considered for performing quantum 

calculations at non-zero temperatures are based on the path integral 

formulation of quantum statistical mechanics due to Feynman (Feynman and 

Hibbs (1965)]. With the path integral method the density operator is 

developed incremently by dividing 3 up into M small segments of length e so 

that ß = eM. Thus the density operator for some low temperature ß may be 

written as a product of M high temperature factors

p( ß) = p( e) p( e ) . . . p( e)

In the coordinate representation the above expression gives the following 

form for the density matrix

p(r,r’;ß) = j...j p(r, rj ; e) p(r-| ;r.2; e)... p(r^_i ,r* ; e)dr-| dr^... dr̂ --] (5.27)

By considering the analogy between the solution of the Bloch equation and 

the idea of a "classical trajectory", a useful interpretation of equation 

(5.27) can be obtained. A series of intermediate configurations 

H1 »L2> • • •»Di-1 defines a path along which the system travels as it moves 

between r and r’. Equation (5.27) thus states that the total amplitude 

p(r_,r’;ß) for the system to begin at r and end at r* is obtained as the sum 

over all possible paths of M segments which connect the configurations r_ 

and r’ . In the limit as e->0 the number of intermediate points in the paths 

becomes infinite and each path may be represented as a function r_(t) where 

the variable t is defined on the interval 0  ̂t  ̂ ß. The multidimensional 

Riemann integral in equation (5.27) becomes a functional or Wiener integral



in the limit as e-»0 and, using the notation of Feynman, the density matrix

is written as follows

p(r,r’;ß) = j \ $[r(t)] Dr(t) (5.28)

Here the functional $ is defined by

$[r(t)] = lim p(r ,r] ; e) p(r-| ,r2 ; e). . . pCr^--] ,r' ; e) (5.29)
£+0

:Me=t

and Dr(t) = lim dr-| dr2 ...dr^j- (5.30)

The random walk procedure for solving the Bloch equation described in the 

previous section assumes that in a small ß interval we may model the 

kinetic and potential terms by seperate, independent processes. In the same 

way, Feynman assumes that for an infinitessimal increment, e, the system 

may be considered as a collection of free particles with a small correction 

due to the potential. A perturbation approach is used to obtain the 

following high temperature approximation for the density matrix

The first exponential term, together with the normalization factor, gives 

the density matrix for a collection of N free particles at a temperature e. 

The final exponential is the perturbation correction due to the influence 

of the potential.

Substituting the high temperature approximation for the density matrix 

given in equation (5.31) into (5.29), the following expression for the

functional $ is obtained
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$ [ r ( t )  ] l im exp{-e(  [m/2fi2 (i= —1 p  + V(r) ] + 
e+0 e

:Me=t

[">/2h2(XlI£2.)2 + V ( r p ]  

(5 .32 )

♦ . . .  -  [m/2f1z (£M-1~C')2 + v C r u - , ) ] ) }

Taking the  i n d i c a t e d  l i m i t  we f i n d  t h a t  the  q u a n t i t y  ( r j  _ - | - r j  ) /  £ becomes 

th e  d e r i v a t i v e  ( d r ( s ) / cjs )g = j e and f u r t h e r  t h a t  the  sum of terms in  the  

exponent  can be w r i t t e n  as an i n t e g r a l  in  the  fo l l o w in g  manner

f m/ 2 h 2 £ ( s ) 2 ds + f v ( r ( s ) )  ds (5 .33)
J o J o

Thus the  fo l l o w in g  f u n c t i o n a l  i n t e g r a l  e x p re s s io n  f o r  the  d e n s i t y  m a t r ix  i s  

o b t a in e d

r  ( 3 )= r ’ ß

p ( r , r ’ ;B) = J |  exp{-J  (m/ 2 h 2 r ( s ) 2 + V ( r ( s ) ) ) d s }  Dr(s)  (5-34) 

r ( 0 ) =r

The exac t  m u l t id im en s io n a l  Riemann i n t e g r a l  form f o r  the  d e n s i t y  m a t r ix  

ymgae in  e qua t ion  (5 .27)  t o g e t h e r  w ith  the  high te m p era tu re  approx im at ion  

p r e s e n t e d  in ( 5 .3 1 ) ,  or  v a r i a t i o n s  on t h i s  form, p rov ide  th e  b a s i s  of  most 

of the  pa th  i n t e g r a l  methods f o r  e v a l u a t i n g  the  d e n s i t y  m a t r ix .  Monte Car lo  

t e c h n iq u e s  a re  powerful  methods f o r  performing m u l t id im en s io n a l  Riemann 

i n t e g r a l s .  The idea  of us ing  Monte Car lo  methods to  c a l c u l a t e  the  d e n s i t y  

m a t r ix  was sugges ted  in  the  e a r l y  50'  s by Kac and Cohen (1952) .  An 

e x c e l l e n t  review of the e a r l y  id e as  f o r  e v a l u a t i n g  f u n c t i o n a l  i n t e g r a l s  i s  

p r e s e n t e d  by Brush (1961).

A number of d i f f e r e n t  Monte Car lo  c a l c u l a t i o n s  of d e n s i t y  m a t r i c e s  and 

r e l a t e d  q u a n t i t i e s  have been r e p o r t e d .  An unde r s tan d in g  of the  pa th  

i n t e g r a l  approach can be o b ta in e d  by s u b s t i t u t i n g  the  " p r i m i t i v e "  high 

t e m p e r a t u r e  approx im at ion ,  ( 5 . 3 1 ) ,  i n t o  e q u a t io n  ( 5 .2 7 ) .  I f  the  r  v e c t o r s  

r e p r e s e n t  c o n f i g u r a t i o n s  of an N p a r t i c l e  system, e q u a t io n  (5 .27)  i n v o lv e s
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a 3N x (M-1) d im ens ional  i n t e g r a l .  The in t e g r a n d  in (5 .27)  i s  everywhere 

p o s i t i v e  and i s  t r e a t e d  as a p r o b a b i l i t y  d e n s i t y  which has the  same form as 

the  e x p re s s io n  f o r  the  f u n c t i o n a l  g iven  in  ( 5 .3 2 ) .  The p o i n t s  r  and r '  a r e  

c o n s t a n t s  which p a r a m e te r i s e  the  p r o b a b i l i t y  d e n s i t y  and by us ing  a Markov 

p rocess  to  sample the  p o in t s  (r-| , r ? , . . . , r M- i  ) from the  3N x (M-1) 

d im ens ional  d i s t r i b u t i o n ,  the  o f f  d iagona l  el ements  of the  d e n s i t y  m a t r ix  

may be c a l c u l a t e d .  By e q u a t in g  the  end p o i n t s  r  = r '  and drawing p o in t s  

from the  3N x M dimensional  p r o b a b i l i t y  d e n s i t y ,  c o n f i g u r a t i o n s  d i s t r i b u t e d  

accord ing  t o  the  d iagona l  elements  of the  d e n s i t y  m a t r ix  may be sampled and 

p r o p e r t i e s  of the  system a r e  c a l c u l a t e d  as averages  over t h i s  d i s t r i b u t i o n .  

Thus the  quantum p a r t i t i o n  f u n c t i o n  f o r  N p a r t i c l e s  i s  mapped onto  a 

c l a s s i c a l  p a r t i t i o n  f u n c t i o n  f o r  N x M p a r t i c l e s  and the  c l a s s i c a l  Monte 

C ar lo  method of M e t ro p o l i s  e t  a l . i s  used .

There a re  a number of v a r i a t i o n s  on th e  method d e s c r ib e d  above.  Fosdick 

and Jordan  (1966) used a d i s c r e t e  pa th  i n t e g r a l  method to  e v a l u a t e  th e  two 

body S l a t e r  sum f o r  Lennard-Jones  ^He over a range  of t e m p era tu re s  between 

2°K and 273°K. Rather than  us ing  a Markov cha in  f o r  s e l e c t i n g  p o i n t s  to  

c o n s t r u c t  t h e i r  p a t h s ,  they  employed c o n d i t i o n a l  Brownian mot ion  pa ths  

us ing  an i n t e r p o l a t i o n  fo rmula  due t o  Levy (1954).  With t h i s  approach,  the  

i n t e r m e d i a t e  p o in t s  a re  chosen accord ing  to  the  f r e e  p a r t i c l e  Gaussian  

terms and the  end p o i n t s  of the  d i f f u s i n g  random walks a re  c o n s t r a i n e d .  

When the  p r i m i t i v e  high t e m p era tu re  approx im at ion  i s  used the  p o t e n t i a l  

i n t e g r a l  in  e q u a t io n  (5 .33)  may be e v a l u a t e d  us ing  the  t r a p e z o i d a l  r u l e  and 

th e  va lues  of the  p o t e n t i a l  a t  the  p o i n t s  along each Brownian motion pa th  

a r e  summed. Averaging th e  e x p o n e n t i a l  of t h i s  sum and r e l a t e d  q u a n t i t i e s  

over many Brownian pa ths  p rov ides  a means f o r  e s t i m a t in g  the  d i r e c t  and 

exchange c o n t r i b u t i o n s  t o  the  d e n s i t y  m a t r ix .  An i d e n t i c a l  approach has



been used by Jacucci and Omerti (1983) to test the usefulness of different 

high temperature approximations.

There are two major differences between the method used by Fosdick and 

Jordan and the approach we described in Section 2.). First, with their 

procedure the diagonal elements of the density matrix are calculated by 

considering paths which are constrained to start and finish at the same 

point in configuration space. The method described in Section 2.), however, 

uses diffusing paths with free end points. The contribution each path makes 

to the diagonal elements of the density matrix is determined by the 

Gaussian weight. Secondly, as discussed in Section 2.), the birth-death 

procedure has an implicit importance sampling character since systems give 

"birth" in the right regions of configuration space and die in the 

unfavourable regions.

The Markov chain Monte Carlo method outlined earlier is an alternative 

importance sampling method since the rapidly varying potential terms are 

included in the sampling probability density. Jordan and Fosdick (1968) 

recognised this and used Brownian motion paths in which the points were 

accepted or rejected on the basis of a transition probability chosen to 

include the parts of their integrands which varied rapidly. They used the 

first few terms in the Wigner-Kirkwood expansion to give a more accurate 

high temperature approximation for the density matrix and with this 

approach were able to explore in some detail the influence of three body 

effects on the pair distribution function for ^He gas.

Barker (1979) showed that employing the Metropolis sampling method was 

not sufficient to give an efficient Monte Carlo scheme for studying many 

body systems with hard core interactions when the primitive high 

temperature approximation of equation (5.31) is used. More accurate high



temperature approximations must be considered. The reason for the problem 

is related to the difference in distance scale between the Gaussian 

(kinetic) term and the short range repulsive part of the potential. The 

primitive high temperature approximation given in equation (5.31) is only- 

valid if V(r) is slowly varying compared with the quadratic term arising 

from the free particle Gaussian. Increasing the number of intermediate 

points in the path reduces the width of the Gaussian factor. Thus in the 

limit as M -> 00 the approximation in (5.31) becomes valid. Barker found that 

for systems with hard cores the convergence with increasing M was slow. The 

early ^He calculations of Fosdick and Jordan in which a Lennard-Jones 

interaction was assumed indicated that reasonable accuracy could be 

obtained with the primitive approximation using on the order of 102 - 103 

intermediate points. The tests performed by Jacucci and Omerti (1983) 

showed that the convergence with the primitive high temperature

approximation is even slower for a system of hard spheres.

Barker presented more accurate forms for the high temperature 

approximation. Using an "image approximation" for a system with infinite 

hard core repulsions, he obtained a dramatic improvement in the convergance 

of the discrete path integral Monte Carlo method. Jacucci and Omerti

studied the radial distribution function for a system of quantum hard

spheres over a wide range of temperatures. They found that with the image

approximation well converged results could be obtained using as few as 20 

path segments.

Barker also presented a more accurate high temperature approximation 

applicable to many body systems with pair additive potentials. His 

suggested approximation takes the following form
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p(r,r’; e) f2j*1 ef 3N/2 e“m/2h2£ (r-r’)2
 ̂ m  '

(5.35)
N

x n |- 
l<n (27Tfl2m £ )

P2 (£l >Hn:m ' >Hn'i£) ,
; m/2 f i2e U £ i - n ' ) 2+( i i n - r : n ' ) ;!]

The factor e~G^(r) in equation (5.31) is thus replaced by a product of 

pair density matrices p2. The denominators in the product divide out the 

free particle contributions contained in p2 which are already included in 

the first many body Gaussian factor.

Pollock and Ceperley (1984) used equation (5.35) to perform non-zero 

temperature quantum calculations on the bulk phases of ^He. In their work 

the terms appearing in the pair product in equation (5.35) were 

approximated by the following form

e~2[P(r;e)+P(r’;e) ] (5.36)

Here the function P(r;e) is the logarithm of the diagonal elements of the 

pair density matrix and depends only on the distance r = |£i“£nl* Pollock 

and Ceperley have presented a summary of a number of different methods for 

calculating the pair density matrix. Some of these approaches will be 

considered in more detail shortly.

The connection between the various path integral Monte Carlo methods 

described above and the quantum random walk approach which was detailed in 

the previous section can be discussed in terms of the isomorphism between 

the path integral formulation of quantum statistical mechanics and the 

classical statistical mechanics of polyatomic fluids. The isomorphism has 

been considered by Chandler and Wolynes (1981), and with their coworkers 

(Schweizer et al. (1981)) they have applied the perturbation techniques of

classical fluid theory to develop improved discrete path integral methods.
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The isomorphism can be appreciated if one again considers substituting 

the primitive high temperature approximation presented in equation (5.31) 

into equation (5.27). We may write the result in a slightly different form

r r U
p(r,r;ß) = J . . . J  n B( r-3, r  ̂3 , r2J , . . . ,  j ; e) 

j=1

Here

(5.37)
N M-1

-e I (v(|ri-r3|)+ I V(|£ti-rtJ|)) 
x e i<j t=1 dr i dr2 ... drĵ _-|

Mr 2
“m/2h2e[ (rJ-riJ)2+ I (ft^Tlt+l ̂ 2 + ̂£M-1 ̂ ~ü )̂ 2 ] 

ß(rJ,riJ,r2J ,..,£m _ iJ ;e) = e  t=1 (5.38)

In the above the superscripted indices i and j label the particles in the 

system and the subscripted values of t specify the different configurations 

sampled as the system wanders along a path. The function B contains all the 

Gaussian factors which represent the free motion of particle j.

Chandler and Wolnyes noted that the factor B was isomorphic with the 

classical Boltzmann factor for a ring polymer molecule. Each "atom" in the 

ring molecule is connected to only two neighbours by a harmonic interaction 

potential. The constituent "atoms” of the polymer are actually the same 

particle, j, but sampled from different configurations of the path. 

Consequently, the product of B factors appearing in equation (5.37) is 

related to the partition function for a classical fluid of non-interacting 

polymer molecules. The term containing the potential in equation (5.37) 

describes how the polymers interact with one another. Due to the form of 

the potential term, two polymers interact through a site-site potential. 

Thus site t on polymer i interacts only with the sites labeled by t on the 

other polymers in the fluid.

From the isomorphism discussed above the diagonal elements of the



density matrix are proportional to the partition function of a particular 

classical fluid of polymers. For an N particle system there will be N 

polymers in the classical fluid and if the discrete path integral is 

written in terms of M high temperature factors, there will be M "atoms” in 

each polymer. The polymers must have closed ring structures since the path 

integral expression for the diagonal elements of the density matrix 

involves paths which start and finish at the same points.

With the quantum random walk method described in the previous section, 

the terms in the integrand of equation (5.27) are simulated by the random 

walk procedure rather than using a Metropolis Monte Carlo sampling scheme. 

Each system in the propagating ensemble is selected from the high 

temperature distribution

e-B0V(r)

The recriprocal temperature increment, A3, is chosen so that there are M 

steps in the random walk which ends at a temperature 3 thus

As 3 is incremented, the systems diffuse according to the Gaussian 

distribution

e_In/2fi2Aß(i:“£l)2

Births and deaths occur so that after k increments in 3 each system is 

effectively weighted by the factor

k
~l V(ri)A3. 

e i=1

Finally to obtain the diagonal elements of the density matrix each path is



weighted  by a n o th e r  Gaussian  f a c t o r

e-m/2ftß0 (!l- £ k )2

The t o t a l  weight  of a d i f f u s i n g  system a f t e r  k inc rements  in  r e c i p r o c a l  

t e m p e ra t u r e  i s  thus

e“ m/2 f i 2A ß [ ( L - £ l ) 2 + ( l l1 - i :2 )2 + - - - +(D<-1-D<)2 ]e “m/2 f i3o (^ < )2

k
-I V ( r i )A3 - 3 0 V(r) 

x e i = 1 e

This form i s  an a l t e r n a t i v e  way of  s p l i t t i n g  up the  i n t e g r a n d  when the  

p r i m i t i v e  h igh  te m p e ra tu r e  approx im at ion  i s  used in  the  d i s c r e t e  pa th  

i n t e g r a l  e x p r e s s i o n  f o r  th e  d e n s i t y  m a t r i x .

The i n t e g r a t i o n  over t h e  momentum v a r i a b l e s  which g ives  r i s e  t o  the  

e x t r a  Gauss ian  f a c t o r  in  th e  d i sp lacem en t  r - r ^  can th us  be c o n s id e re d  as a 

mechanism f o r  c l o s i n g  each r i n g  polymer a t  any t e m p e ra tu re  along th e  random 

walk t r a j e c t o r y .  The method f o r  c l o s i n g  th e  polymer r i n g s  i s  i l l u s t r a t e d  in  

F ig u re  5.1 where t h e  9 segment r i n g s  f o r  a p a i r  of i n t e r a c t i n g  p a r t i c l e s  

have been c lo s e d  w i th  Gaussian  bonds a t  th e  3r d , 6th  and 9td  segments .

From th e  above d i s c u s s i o n ,  the  method d i s c r i b e d  in  S e c t io n  2 . )  p r e s e n t s  

an e f f i c i e n t  means f o r  e x t r a c t i n g  a l l  th e  i n fo rm a t io n  from a pa th  i n t e g r a l  

c a l c u l a t i o n .  High and low te m p e ra tu re  r e s u l t s  a re  o b ta in e d  from a s i n g l e  

run by assuming t h a t  t h e r e  i s  a l i n e a r  r e l a t i o n s h i p  between 3 and the  

number of pa th  segments needed to  a c c u r a t e l y  e v a l u a t e  the  d i s c r e t e  pa th  

i n t e g r a l .  Thus a t  h ighe r  t e m p e ra tu r e s  we assume t h a t  s i m i l a r  accuracy  can 

be o b t a in e d  u s ing  fewer pa th  segments.  The accuracy  w i l l  be de te rm ined  by 

the  h igh  te m p e ra tu r e  approx im at ion  used .  In S e c t io n  2 . ) ,  the  a l g o r i th m  was 

developed  u s ing  the  p r i m i t i v e  high te m p e ra tu r e  app rox im at ion .  From the
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d i s c u s s i o n  p r e s e n t e d  above,  however, i t  i s  l i k e l y  t h a t  th e  accuracy  of  the  

random walk approach w i l l  be improved by us ing  h igh t e m p era tu re  

app rox im at ions  of the  forms s ugges ted  by Barker and by Pollock  and 

Ceper ley  t o  r e p l a c e  th e  p o t e n t i a l  in  th e  b i r t h - d e a t h  s t e p .  We could  a l s o  

fo l l o w  Jo rd an  and Fosdick and use the  Wigner-Kirwood quantum c o r r e c t i o n s .

The i n e f f i c i e n c y  of  the  co n v e n t io n a l  M e t ro p o l i s  Monte Car lo  method -for 

sampling  th e  c o n f i g u r a t i o n  space of  polymer systems was noted  by Pollock  

and C e p e r l ey .  Due to  the  s t r e n g t h  of  the  h igh  t e m p era tu re  in t r ap o ly m er  

i n t e r a c t i o n ,  very  few moves a r e  a c c e p te d .  With th e  random walk approach ,  

th e  d i f f u s i o n  p rocess  d i r e c t l y  samples the  i n t r a p o ly m e r  geo m e t r i e s .  The 

b i r t h - d e a t h  p rocess  shou ld  a l s o  p rov ide  an e f f i c i e n t  means of sampl ing  th e  

i n t e r p o ly m e r  i n t e r a c t i o n .

The s t a t i s t i c a l  methods f o r  c a l c u l a t i n g  the  d e n s i t y  m a t r ix  which have 

been d i s c u s s e d  in  t h i s  c h a p te r  a r e  im p o r ta n t  f o r  s tu d y in g  systems with  many 

d im ens ions .  For problems wi th  few dimens ions much more p r e c i s e  t e c h n iq u e s  

a re  a v a i l a b l e .  The p a r t i a l  wave expans ion  may be used to  reduce  the  t h r e e  

d im ens iona l  two body problem to  a s i n g l e  d im ension.  For a one d im ens ional  

problem s t a n d a r d  numerica l  methods may be used t o  c a l c u l a t e  the  e ig e n v a lu e s  

and e i g e n f u n c t i o n s  and th e  d e n s i t y  m a t r ix  i s  o b ta in e d  by d i r e c t l y  summing 

over a l l  the  s t a t e s  as in  eq u a t io n  ( 5 . 3 ) .  Larsen ,  W i t te  and K i l p a t r i c k  

(1966) used t h i s  approach to  c a l c u l a t e  the  d i r e c t  and exchange 

c o n t r i b u t i o n s  to  the  d iagona l  el ements  of the  d e n s i t y  m a t r ix  f o r  a p a i r  of 

hel ium atoms i n t e r a c t i n g  w i th  Lennard-Jones  f o r c e s .

A powerfu l  i t e r a t i v e  p rocedure  f o r  e v a l u a t i n g  pa th  i n t e g r a l s  in  low 

d im ens iona l  problems was developed  by S t o r e r  (1968).  The method makes use 

of  the  fo l l o w i n g  r e s u l t

p ( r _ , r ' ; 2 e )  = j  p( r  , r "  ; e) p ( r "  , r ' ; e )d r" (5 .39)
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which is a particular case of equation (5.27). A high temperature 

approximation for p(r.,r' ;e) is used to commence the iteration and when the 

integral in (5.39) is performed, the density matrix at half the 

temperature, 2e, is obtained.

For problems which can be reduced to one dimension the high temperature 

density matrix is set up as a square grid in r and r'. Using numerical 

quadratures the integral in equation (5.39) is replaced by a matrix 

multiplication. Repeating the matrix multiplication procedure n times is 

equivalent to performing an M = 2n-1 segment discrete path integral and the 

temperature obtained after these iterations corresponds to ß = 2ne.

Storer first used the approach to determine the quantum radial 

distribution function for a plasma at small ion-electron separations. Later 

Klemm and Storer (1973) applied the procedure to evaluate the direct and 

exchange contributions to the pair correlation function for helium and neon 

over a range of temperatures.

Berne and his coworkers (Thirumalai and Berne (1983), Thirumalai, 

Bruskin and Berne (1983)) have used the iterative procedure to treat a 

number of chemical problems. Due to the speed and efficiency of the 

technique for low dimensional applications, many iterations could be 

performed and consequently they found that the primitive high temperature 

approximation was adequate.

All the path integral methods which have been discussed in this chapter 

involve representing the integration paths in terms of a set of discrete 

configurations. An alternative approach, however, is to represent the paths 

in terms of a complete set of orthogonal functions. By varying the 

coefficients of the functions in the expansion one runs through all the 

paths. The idea was used by a number of workers in the late 1950's when
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a n a l y t i c  methods f o r  e v a l u a t i n g  f u n c t i o n a l  i n t e g r a l s  were be ing  deve loped .  

The rev iew  a r t i c l e  of  Brush (1961) summarises much of t h i s  work.

Fosd ick  (1962) p r e s e n t e d  a Monte C ar lo  method f o r  e v a l u a t i n g  g e n e ra l  

Wiener i n t e g r a l s  us ing  pa ths  which were r e p r e s e n t e d  in  terms of an 

o th ogona l  expans ion .  By t r u n c a t i n g  the  i n f i n i t e  expansion a t  some f i n i t e  

va lue  n th e  i n f i n i t e  d im ens ional  Wiener i n t e g r a l  was reduced t o  ah n 

d im ens iona l  Riemann i n t e g r a l  in  a s i m i l a r  f a s h io n  to  the  d i s c r e t e  pa th  

i n t e g r a l  methods.  Now, however, the  i n t e g r a t i o n  v a r i a b l e s  were the  

expans ion  c o e f f i c i e n t s  r a t h e r  than  the  i n t e r m e d i a t e  c o n f i g u r a t i o n s  in  the  

d i s c r e t e  p a th .

R ece n t ly  Freeman and Doll  (1984),  (1985) have developed a quantum Monte 

C ar lo  method which i s  based on a F o u r i e r  s e r i e s  r e p r e s e n t a t i o n  of  the  

p a t h s .  T h e i r  approach i s  s i m i l a r  to  the  work of  Fosd ick .  The pa th  t r a c e d  

ou t  by p a r t i c l e  i as the  system moves from r_ to  r '  i s  expanded about  a 

f i x e d  l i n e a r  pa th  connec t ing  r  and r ’ . Thus as t  i s  v a r i e d  between 0 and ß 

p a r t i c l e  i moves along a pa th  d e s c r ib e d  as f o l low s

£ i  ( t ) = r i  + ( ’” r i ) t  /  g + I  aj< is i n ( k i r t / g ) (5 .40)
k=1

When th e  above r e s u l t  i s  in t ro d u c e d  i n t o  the  f u n c t i o n a l  i n t e g r a l  

e x p r e s s io n  given in  e q u a t io n  (5 .34)  a form f o r  the  d e n s i t y  m a t r ix  i n v o lv in g  

i n t e g r a l s  over the  F o u r i e r  c o e f f i c i e n t s ,  f_k, i s  o b ta in e d .  Freeman and Doll 

used t h i s  form t o g e th e r  w i th  th e  fo l l o w in g  r e s u l t

< 3 > = I g  (5 .42)

t o  d e r iv e  e x p re s s io n s  f o r  the  average v a lues  of va r io u s  o p e r a t o r s .  These

r e s u l t s  in vo lve  i n t e g r a l s  over the  p a r t i c l e  c o o r d in a t e s  and F o u r i er
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coefficients and by truncating the Fourier series at some value kmax the 

finite dimensional integral obtained may be evaluated by the Metropolis 

Monte Carlo method.

The amount of computational effort involved in a Fourier path integral 

Monte Carlo calculation depends on kmax in much the same way as the 

computational effort in a discrete path integral calculation depends on the 

number of path segments M. From their studies using the Fourier path 

integral method Freeman and Doll have found that the convergence with 

increasing kmax is quite repid even at low temperatures. Further the 

convergence properties of the Fourier path integral method are not strongly 

dependent on the form of the potential and there seem to be no significant 

problems in applying the method to systems with harsh repulsive core 

interactions. The approach has so for been applied to some simple one 

dimensional oscillator problems and a rather extensive theoretical study of 

the properties of argon clusters has been conducted.

In the next chapter we present the results of some calculations which 

use the discrete path integral method described in Section 2.). First the 

properties of the method are exployed using some simple one dimensional 

problems and finally the method is used to study the properties of some

atomic and molecular clusters.
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CHAPTER 6 APPLICATION OF THE NON-ZERO TEMPERATURE 

QUANTUM MONTE CARLO METHOD

Introduction

In this chapter the methods described in Chapter 5 are applied to a 

variety of quantum problems. To study the behaviour of the algorithm we 

first calculate the properties of the one dimensional harmonic and Morse 

oscillators as functions of temperature. Analytic results for these 

oscillators are available so comparisons can be made and the algorithm 

tested.

To demonstrate its application to multidimensional problems we next use 

the non-zero temperature quantum Monte Carlo procedure to study the 

properties of a low density gas at low temperatures. We have simulated Neon 

gas using a Lennard-Jones potential. The results of this study are compared 

with classical theory and also with the earlier matrix squaring 

calculations performed by Klemm and Storer (1972). Excellent agreement 

between the two quantum methods is found.

Finally the results of some calculations on the water dimer are 

presented. The cluster has been modelled over a range of temperatures 

between 2000°K and 200°K. The aim of this study is to determine the 

significance of quantum behaviour in molecular clusters at finite 

temperatures. In Chapter 3 we saw that the classical description of the 

intermolecular degrees of freedom in this cluster at very low temperatures 

was rather poor. Here we shall study the differences between the classical

and quantum descriptions of the motions of molecules at higher
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temperatures. Many simulations of molecular liquids have been perfomed 

recently in which the validity of classical mechanics has been assumed. For 

systems of light molecules which interact with strong forces such as the 

hydrogen bonding interactions in water, the assumptions of classical theory 

are questionable. In the final section of this chapter we test these 

assumptions by comparing the results of classical and full quantum 

calculations over a range of temperatures.

1.) One Dimensional Oscillators

To study the general properties of the non-zero temperature quantum 

Monte Carlo algorithm we have used the method described in Chapter 5 to 

solve the 3loch equation for the one dimensional harmonic and Morse 

oscillators. The Hamiltonians for these problems can be summarised as 

follows

where

and

H -h2 d2 
2p dx2 + V(x)

VH (X) = j uw2x2 

VM(x) = De(l-e WX)2

(6.1)

We first consider a harmonic oscillator having the reduced mass of a 

neon atom and a frequency ftoj = 100 K. This problem models the 

intermolecular interactions of light molecules.

All the Bloch equation trajectories in our studies involved propagating 

ensembles with average populations of 5000 systems through 100 steps in

reciprocal temperature. The behaviour of the oscillator was studied down to
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a t e m p e r a t u r e  of  10°K and t im e  s t e p  s i z e  dependence  was m o n i t o re d  by- 

compar ing  w i th  c a l c u l a t i o n s  which t e r m i n a t e d  a t  30°K. I n i t i a l  c o n d i t i o n  

dependence  has been c o n s i d e r e d  by s t a r t i n g  t h e  t r a j e c t o r i e s  a t  100, 500 and 

1000°K. The r e s u l t s  of  t h e s e  s t u d i e s  a r e  summarised i n  F i g u r e  6.1 where we 

show t h e  p o t e n t i a l ,  k i n e t i c  and t o t a l  e n e r g i e s  of  t h e  o s c i l l a t o r  a t  v a r i o u s  

t e m p e r a t u r e s  a lo n g  t h e  random walk t r a j e c t o r y .  The p o t e n t i a l  ene rgy  was 

o b t a i n e d  by a v e r a g i n g  V^(x) ove r  t h e  ensemble  d i s t r i b u t i o n  i n c l u d i n g  t h e  

G a u s s ia n  w e i g h t s  which depend on t h e  d i s p l a c e m e n t  f rom the  i n i t i a l  

c o n f i g u r a t i o n  as g iv en  i n  e q u a t i o n  ( 5 . 2 1 ) .  In  a s i m i l a r  manner ,  e q u a t i o n  

( 5 .2 4 )  was used  t o  c a l c u l a t e  t h e  k i n e t i c  e ne rgy  and t h e  t o t a l  ene rgy  was 

o b t a i n e d  from t h e  sum of  t h e  p o t e n t i a l  and k i n e t i c  components .  The v a lu e s  

p r e s e n t e d  i n  t h e  f i g u r e s  a r e  t h e  r e s u l t s  of  a v e r a g i n g  ove r  more th a n  10 

i n d e p e n d e n t  t r a j e c t o r i e s  each  h a v in g  an a v e ra g e  p o p u l a t i o n  o f  5000 s y s t e m s .  

The c o n t r i b u t i o n  of  each t r a j e c t o r y  must  be w e i g h te d  by t h e  v a l u e s  of  Vr e f  

a s  d i s c u s s e d  i n  S e c t i o n  2 . )  o f  C h a p te r  5.

The Bloch e q u a t i o n  f o r  t h e  harm onic  o s c i l l a t o r  can be s o l v e d  

a n a l y t i c a l l y  (Feynman ( 1 9 7 2 ) )  and t h e  p o t e n t i a l  and k i n e t i c  e n e r g i e s  a r e  

g i v e n  by t h e  f o l l o w i n g

<V> hm r 1+exp( fiqjß) 
4 M-exp(-fiooß)

( 6 . 2 )

S o l i d  l i n e s  a p p e a r i n g  i n  F i g u r e  6.1 were o b t a i n e d  u s in g  t h i s  r e s u l t  w h i l e  

t h e  dashed  c u rv e s  a r e  t h e  p r e d i c t i o n s  of  c l a s s i c a l  e q u i p a r t i t i o n  t h e o r y .  In  

t h e  f i g u r e  we s t u d y  t h e  i n i t i a l  c o n d i t i o n  dependence  of  t h e  random walk 

r e s u l t s .  The lower  group o f  c u r v e s  g iv e  t h e  p o t e n t i a l  and k i n e t i c  e n e r g i e s .  

When a c l a s s i c a l  i n i t i a l  d i s t r i b u t i o n  a t  100°K i s  used  t h e  k i n e t i c  and 

p o t e n t i a l  e ne rgy  c u rv e s  o b t a i n e d  from t h e  quantum random walk c a l c u l a t i o n  

d i f f e r  s i g n i f i c a n t l y  from t h e  e x a c t  r e s u l t s .  The k i n e t i c  e ne rgy  i s  unde r
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estimated along the length of the trajectory while the potential energy 

starts lower than the exact result and ends too high. Similar behaviour is 

observed to a lesser extent with higher temperature initial conditions. The 

points clustering around the exact potential-kinetic curve were obtained 

from calculations sampling classical initial distributions at 500 and 

1000°K. The results seem independent of step size since the values obtained 

from calculations using final temperatures of 10°K and 30°K are identical. 

Despite the initial condition dependence of the breakup of the energy into 

potential and kinetic components, the total energies at the lower 

temperatures considered in our calculations are all within \% of the exact 

result irrespective of the initial distribution.

The initial condition dependence which was described above can be 

understood by examining the expressions used to calculate the components of 

the energy. If we consider equation (5.24) for a single dimension, the 

kinetic energy is obtained by performing the following average over the 

weighted ensemble members

T(ß) = <1/2ß0 [l-u /fi'ßo (x“x'} ]>3

Initially ß = ß0 and x = x’ so the kinetic energy in the initial 

distribution is the classical result V 2 ß 0. At a temperature of 100°K the 

exact kinetic energy of our oscillator is 54.1 K so the classical initial 

condition gives a kinetic energy which is about 4 K too low. From Figure 

6.1 we see that this initial discrepancy is propagated along the 

traj ectory.

The behaviour of the kinetic energy discussed above and differences 

between the potential energies obtained from the simulation and the exact

values is due to assuming classical behaviour at the initial temperature.
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When low initial temperatures are used the deviations are large because the 

classical results provide a poor approximation to the true quantum 

behaviour. With higher initial temperatures more accurate calculations can 

be performed. We shall see shortly that this initial condition dependence 

causes severe problems when the approach is applied to oscillators with 

widely spaced energy levels such as the Morse oscillator which describes 

the 0-H stretching motion of a water molecule.

The energies obtained from simulations using the higher initial 

temperatures are in good agreement with the analytic results. Similar 

accuracy is found with the various distributions which were calculated 

during the simulation which used a classical initial distribution at 

1000°K. The position distributions obtained from this calculation are 

compared with the exact quantum distributions in Figure 6.2a. Feynman 

(1972) gives that the diagonal elements of the harmonic oscillator density 

matrix take the following form

P(r;ß) = exp tanh(-hwB/2)^2) (6.3)

Excellent agreement between the distributions obtained from the quantum 

simulation and the above analytic result is observed.

Figure 6.2b compares the calculated momentum distributions with 

classical results. The one dimensional case of equation (5.25), (5.26) was 

used to obtain these curves. As a self consistency check, we numerically 

integrated the momentum distributions presented in Figure 6.2b and averaged 

the kinetic operator p2/2m* The kinetic energies obtained with this 

approach agreed with the results obtained by averaging equation (5.24) over 

the ensemble distribution.

The classical momentum distributions are sharper than the quantum
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results. In the limit of zero temperature the classical oscillator is 

stationary so its momentum distribution will be a delta function at k = 0. 

Quantum mechanically, the zero point motion will give the zero temperature 

momentum distribution a finite width.

Later in this chapter we will use the non-zero temperature quantum 

Monte Carlo method to study the behaviour of a cluster of water molecules 

at elevated temperatures. The most quantum mechanical degrees of freedom in 

such a cluster are the intramolecular vibrations. We now consider 

application of our non-zero temperature quantum Monte Carlo method to the 

Morse oscillator describing the OH stretch motions in the water monomer. 

Our aim here is to explore the initial condition dependence of the random 

walk algorithm for this oscillator so as to determine the range of 

operating conditions for which reliable results can be obtained.

As discussed in Chapter 3 the bound state eigenfunctions of the Morse 

oscillator are analytic so the diagonal elements of the density matrix for 

temperatures well below dissociation can be obtained by performing a 

Boltzmann weighted sum over the bound eigenstates. For higher temperatures 

continuum states will also be important.

In Figure 6.3 we compare the energies calculated during a number of 

quantum Monte Carlo simulations of the Morse oscillator with the results 

obtained by explicitly summing over the states as outlined above. Classical 

distributions at initial temperatures of 5000, 7500 and 10,000°K were used. 

The dissociation energy of the OH Morse oscillator is about 66,000°K. As 

with the harmonic oscillator, the potential energy obtained from the 

quantum simulation is too high and the kinetic energy too low due to the 

assumed classical initial distributions. With higher initial temperatures

the classical forms are more accurate approximations and the quantum Monte
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C ar lo  e s t i m a t e s  of the  p o t e n t i a l  and k i n e t i c  e n e rg i e s  tend  to  the  exac t  

r e s u l t s  as the  i n i t i a l  t e m p era tu re  i s  i n c r e a s e d .  As with  the  harmonic 

o s c i l l a t o r  we see  t h a t  the  o f f s e t s  in  th e  p o t e n t i a l  and k i n e t i c  components 

which occur  due to  th e  use of  the  c l a s s i c a l  i n i t i a l  d i s t r i b u t i o n s  almost  

e x a c t l y  canc e l  g iv in g  t o t a l  e n e r g i e s  which a re  in  e x c e l l e n t  agreement wi th 

the  exac t  r e s u l t s .  The r ea son  f o r  t h i s  behaviour  i s  not  f u l l y  und e r s to o d .

We can conclude from our s t u d i e s  of the  Morse o s c i l l a t o r  t h a t  an 

a c c u r a t e  r e p r e s e n t a t i o n  of the  i n t r a m o l e c u l a r  v i b r a t i o n s  in a water  

m olecu le  can only  be o b ta in e d  i f  i n i t i a l  t e m p era tu re s  of the  o rde r  of  t en s  

of thousands  of degrees  a re  employed.  There a re  s i g n i f i c a n t  problems with  

u s ing  such high t e m p e r a t u r e s .  The major d i f f i c u l t y  i s  due to  the  form of 

the  Gaussian  weights  which a re  used to  o b t a in  the  d iagona l  elements  of the 

d e n s i t y  m a t r i x .  From e q u a t io n  (5 .21)  the  width  of  the  Gaussian weight  

d i s t r i b u t i o n  d e c re a se s  as the  i n i t i a l  t e m pera tu re  i s  i n c r e a s e d .  I f  h igh  

i n i t i a l  t e m p era tu re s  a re  n e c e s s a ry  f o r  the  c l a s s i c a l  r e s u l t s  to  be 

a c c u r a t e ,  ve ry narrow Gaussian  d i s t r i b u t i o n s  r e s u l t .  As systems d i f f u s e  

away from t h e i r  i n i t i a l  geom etr ie s  they r e c i e v e  very small  w e igh t s .  

Consequen t ly  the  s t a t i s t i c a l  p r o p e r t i e s  of the  a lg o r i th m  d e t e r i o r a t e  

r a p i d l y  as the i n i t i a l  t e m p e ra tu r e  i s  i n c r e a s e d .

The problems with  us ing  the  c l a s s i c a l  d i s t r i b u t i o n s  as i n i t i a l  

c o n d i t i o n s  f o r  the  Bloch e q u a t io n  s i m u l a t i o n  which were no ted  above can be 

overcome by s t a r t i n g  a t  lower t e m p e ra tu r e s  and employing more a c c u r a t e  h igh 

t e m p e ra t u r e  ap p ro x im a t io n s .  This  may be demonst ra ted  f o r  the  harmonic 

o s c i l l a t o r  by us ing  ex a c t  r e s u l t s  f o r  the  i n i t i a l  c o n d i t i o n  a t  some 

modera te  t e m p era tu re  where employing the  c l a s s i c a l  i n i t i a l  c o n d i t i o n  would 

o th e rw is e  give problems.  Feynman (1972) shows t h a t  the  o f f  d iagona l  

e lements  of  the  harmonic o s c i l l a t o r  d e n s i t y  m a t r ix  have the  form
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p(r,r’;ß) -a(r2+r’2) + brr’ e (6.4)

where a = ^  coth(ßfiü)) and b = -“7 Q- v2fi n sinh(Bfioo)

When equation (6.4) is used in equation (5.10) the following expression for 

F(p,r;B) may be derived

F(p,r;B)
-mto tanh(ßfico) 
2h

r2 ~tanh( ßhoo) p 2 
2ft mw i/h

e cosh( Bfico) (6.5)

It is easily shown that this result reduces to the classical form given in 

equation (5.17b) in the limit as ß 0. We may perform a non-zero 

temperature quantum Monte Carlo calculation using the result in equation 

(6.5) evaluated at some temperature B0 as the initial conditon. As with the 

case where a classical initial conditions is used, points (r,p) in phase 

space are sampled according to the first two terms in equation (6.5) and 

each ensemble member is weighted by the final term in the equation. The 

ensemble may be propagated to lower temperatures using the usual diffusion 

and birth-death processes. When a system diffuses from a point r at B0 to 

r ’ at B’, we can use equation (5.14) to obtain weights which will give the 

full quantum position distribution in the same manner as equation (5.21) 

was derived. The following expression for the weight is found

w(r,r’) r-mu)( r * -r/cosh( Bnfî ) 
6Xp 2h tanh(B0tico) (6.6)

Proceding in the same way as equation (5.24) was obtained, the kinetic 

energy can be calculated by averaging over the weighted ensemble 

distribution as follows

<2m> B f <
-ha)

2 tanh(Bnhw) (1  "
moo

ti tanh(B0hw) (r’"r/oosh(Bnha,))2)> (6‘7)
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Equation (6.6) and (6.7) have been employed in a simulation of the 

harmonic oscillator using an initial temperature of 100°K. The results of 

this study are presented in Figure 6.4 and are found to be in excellent 

agreement with the exact values.

The approach used above to improve the accuracy of the harmonic 

oscillator calculation can be generalized to other problems. More accurate 

high temperature approximations for the density matrix are required. The 

development presented in Chapter 5 assumed the following high temperature 

form for the initial condition

p(r,r';B0 ) e - ß 0 V(r)
m

e 2ß°fi
T (r *-r)2

In our applications, the classical Boltzmann factor is sampled with the 

Monte Carlo method and the Gaussian is included as a weight. As ß0 -* 0 the 

Gaussian gives weight to systems which sample the near diagonal region so 

the above form is only useful in the high temperature limit. At lower 

temperatures a more accurate form

p ( r , r ’ ;ß0 ) - ß 0 / 2 v (r ) - B 0 / 2 v (r ' ) “m / 2 ß 0fi2 (i°' _ r ) 2e —  e — e o _ _ (6.8)

may be used.

When information about the diagonal elements of the density matrix, 

p(r_,r, ß0 ), is available an improved form, based on equation (6.8) can be 

considered.

p(r,r';ß0 ) - [p(r,r;ß0 ) p(r1,r';B0 )]z e 'o11 _  _ (6.9)

This result is the same as the "end point" approximation used by Pollock 

deh Ceperley (1984) and presented in equation (5.36).

Equation (6.9) has been used to perform more accurate calculations on
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the Morse oscillator. The diagonal elements of the density matrix at the 

initial temperature were obtained by summing over the analytic bound state 

eigenfunctions as discussed earlier. A Monte Carlo calculation was used to 

sample configurations drawn from the distribution p(r,r;ß0 ) 2 . These systems 

were propagated with the random walk method and at a temperature. 8* 

configurations r ’ were obtained. By weighting the contributions of these 

configurations with the factor

m -^2
p(r',r ?;ß0 ) 2 e (6.10)

the polymer rings are closed and averages of various quantities are 

evaluated.

An expression for the kinetic energy is obtained in the same way as 

equation (5.24) was derived. In the discussion above F(p,r;ß0 ) was sampled 

by weighting the configurations generated by the Monte Carlo calculation 

with the momentum factor

~ ^ W ( r " - r ")2
p(r",r";ß0 ) 2 e 0 dr”

After propagation;each system must be weighted by the final phase factor 

e-i/ft P*^’. As with equation (5.24), a function, K(r,r'), which may be 

averaged over the spacial distribution of the ensemble to give the kinetic 

energy, may be obtained by integrating p 2/2m over the momentum distribution

m
K(r,r ’) e-1/f> p V 2m { e1^  p(r" ,r"; ß0 ) 2 e

■( r"-r) 2
2ßnfi "  ~ dr" dp

(6.11)
By making use of the following property of the Fourier transform 

k 2 J f(r) e^— dr = - I V 2f(r) e ^— *— dr



equation (6.11) is reduced to the form

2 _Ü!_
K(r.r') = V*, [p(r',r';60) e 28°n (6.12)

Setting g = p(r’,r ';ß0)2> we find after some algebra that the kinetic 

energy can be obtained from the following average over the ensemble which 

is weighted as in equation (6.10)

<|^> = <1/2e0 [1 ~ j ^ ( r / - r ) 2 + 2(r’-r). Vlng - (V2lng+( Vlng)2 } ]>
(6.13)

The more accurate high temperature results presented above were used to 

simulate the OH Morse oscillator. Energies obtained from these calculations 

are compared with the exact values in Figure 6.5. We see from this figure

that there is a great improvement in the accuracy of the results obtained

from our calculations. The most important feature evident in this figure is 

that the results are not strongly dependent on the initial temperature. 

Energies calculated using initial temperatures as low as 1000°K are within 

a few percent of the exact results. This is in marked contrast to the

values obtained when classical initial distributions are used. In Figure 

6.3 we observed differences between the exact and calculate potential and 

kinetic components on the order of 10-20$ when the highest initial

temperature of 10,000°K was used. At 5000°K discrepencies as large as 50$ 

were found.

The substantial improvements in accuracy obtained when the high 

temperature approximation presented in equation (6.9) is employed make it 

possible to use our method to perform non-zero temperature quantum 

calculations on systems with mixed "quantum" and "classical" degrees of 

freedom. In Section 3.) the high temperature approximation of equation
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(6.9) is used to provide the initial condition for the intramolecular 

vibrations of the molecules in the water dimer. With this calculation the 

classical initial distribution in equation (6.8) will be used for the 

intermolecular motions of the cluster. In the next section we demonstrate 

that the primitive classical approximation is useful for performing 

calculations on systems with weak interactions such as the rare gases.

2.) Neon Gas at low temperatures

To test the non-zero temperature quantum Monte Carlo method on a more 

complicated problem we have calculated the pair distribution function for 

neon gas over a range of temperatures. Klemm and Storer (1972) used the 

matrix squaring method described in the previous chapter to calculate this 

function in helium and neon. As mentioned earlier their approach involved 

using a spherical harmonic expansion to reduce the three dimensional two 

body problem to a series of one dimensional equations. Each equation was 

solved using the numerical matrix multiplication method and by summing the 

truncated series to large i a converged estimate of the pair distribution 

function was obtained.

The advantages of the method outlined above are that the nummerical 

matrix multiplication is very rapid (Thirumalai, Bruskin and Berne (1983)) 

and further the results obtained are free from the statistical noise which 

characterises Monte Carlo methods. A disadvantage of the procedure is that 

only problems with a few dimensions can be studied. The multichannel 

expansions employed in atom-molecule scattering theory could in principle 

be used to perform matrix squaring calculations on more complicated
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systems. In most applications of scatting theory single energy calculations 

are performed and a thermal average of the results of calculations at 

different energies must be conducted. Using matrix squaring, the same 

information may in principle be obtained from a single calculation. It may 

prove useful to consider the matrix multiplication method or a related 

iterative scheme in future developments of scatting theory. However, for 

problems with more dimensions stochastic methods are essential.

To demonstrate the generality of the random walk method described in 

Chapter 5 we have considered the two body problem in terms of a system with 

6 periodic dimensions. A pair of Lennard-Jones neon atoms were placed in a 

Monte Carlo cell with side length 3a. Periodic boundary conditions and 

minimum imaging were employed so that the periodic system modelled a low 

density gas with a reduced density p = 0.0093. A classical Monte Carlo 

calculation at 100°K was used to provide configurations for the initial 

ensemble. Random walks with 100 steps were performed and the Aß step was 

chosen so that the final temperature was 10°K. Ensembles containing 2500 

systems were propagated along the trajectory using the diffusion and 

birth-death procedure and Vref was adjusted to keep the average population 

approximately constant. At certain temperatures along the trajectory the 

values of various properties were calculated and averaged as described 

earlier. The results presented below were obtained by averaging over 500 

trajectories each using a different initial ensemble sampled from the high 

temperature classical distribution.

In Figure 6.6 we present the components of the energy of the periodic, 

two particle system obtained from our calculations. The figure also gives 

the results of classical calculations. As expected, the classical and

quantum results are in reasonable agreement at higher temperatures but as
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the temperature is reduced the true quantum behaviour of the gas gives 

results which deviate from the classical values. The potential component 

shows the most significant deviation of the classical from the quantum 

results while the value of the kinetic energy differs only slightly from 

the classical form, 3/2 kgT Per particle.

Figures 6.7 and 6.8 show our calculations of the position and momentum 

distributions for the quantum gas at a variety of temperatures and compares 

these results with the predictions of classical theory. As expected from 

the discussion above our quantum postion distributions show large 

deviations from the classical results at lower temperatues while the 

quantum momentum distributions deviate only slightly from the classical 

form. At the lowest temperatures the classical position distribution 

functions are much more strongly peaked than the quantum distributions. The 

most important difference between the two distributions occurs in the 

region of the repulsive wall. Quantum tunnelling allows the particles to 

penetrate the classically forbidden hard core region of the potential. 

Slight changes to the distribution in this region substantially effect the 

average potential energy. Due to the increased sampling of the repulsive 

core with the quantum distribution, higher potential energies result. In 

the limit as T -* 0 the classical distribution should become infintely 

peaked in the minimum of the well so classically the asymptotic potential 

energy should be e. Due to the zero point motion, however, the asymptotic 

energies trend to their ground state values.

Figure 6.7 also compares our quantum position distributions with the 

results obtained by Klemm and Storer who used the matrix squaring procedure 

described earlier. The agreement between the two sets of quantum results is

very good and demonstrates that the diffusion Monte Carlo method is able to
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g iv e  a c c u r a t e  p a i r  d i s t r i b u t i o n  f u n c t i o n s  f o r  more com pl ica ted  quantum 

s y s t e m s .

The momentum d i s t r i b u t i o n s ,  P (k ) ,  a r e  p r e s e n t e d  in  F igure  6 .8 .  The 

c l a s s i c a l  and quantum curves  a re  very s i m i l a r  a t  a l l  the  t e m p e ra tu re s  

co n s id e re d  in  our c a l c u l a t i o n s .  C l a s s i c a l l y ,  in  the  l i m i t  as T ■> 0 th e  

p a r t i c l e s  w i l l  be s t a t i o n a r y  and a d e l t a  d i s t r i b u t i o n  a t  ze ro  momentum w i l l  

r e s u l t .  Quantum zero  p o in t  mot ions ,  however, g ive  a momentum d i s t r i b u t i o n  

wi th  non -ze ro  w id th .  The onse t  of  t h e s e  d i f f e r e n c e s  i s  observed in  momentum 

d i s t r i b u t i o n s  p r e s e n t e d  in  F ig u re  6 .8 .

The random walk c a l c u l a t i o n s  d e s c r ib e d  above use the  p r i m i t i v e  high 

t e m p e ra t u r e  approx im at ion  as the  b a s i s  of the  d i f f u s i o n  and b i r t h - d e a t h  

s t e p s  but  s i n c e  the  " t ime"  s t e p  used co r responds  to  a t e m p era tu re  in  excess  

of 1000°K t h i s  p r i m i t i v e  form i s  q u i t e  a c c u r a t e .  Th i rumala i  e t  a l . ( 1983)  

have r e p o r t e d  s i m i l a r  accuracy  u s ing  the  p r i m i t i v e  h igh  t e m p era tu re  form 

with  the  numerica l  m a t r ix  m u l t i p l i c a t i o n  p roced u re .  The most s i g n i f i c a n t  

approx im at ion  in  th e s e  s t u d i e s  i s  employing the  c l a s s i c a l  d i s t r i b u t i o n s  a t  

100°K as the  i n i t i a l  c o n d i t i o n  f o r  the  quantum random walk.  As d i s c u s s e d  

e a r l i e r  more a c c u r a t e  approx im at ions  l i k e  e q u a t io n  (6 .9 )  could  have been 

employed but  the  agreement between the  p a i r  d i s t r i b u t i o n s  o b ta in e d  from 

m a t r ix  s q u a r in g  and our r e s u l t s  i n d i c a t e s  t h a t  the  c l a s s i c a l  approx im at ion  

i s  r e a s o n a b ly  a c c u r a t e  a t  100°K in  t h i s  system c h a r a c t e r i s e d  by weak 

i n t e r a c t i o n s .

In  t h e  nex t  s e c t i o n  we d e s c r ib e  the  r e s u l t s  of non-zero  t e m p era tu re  

quantum Monte Car lo  c a l c u l a t i o n s  on a h ighe r  d im ens ional  problem. The onse t  

of  quantum behaviour  as a f u n c t i o n  of  t e m p era tu re  i s  exp lo red  f o r  the  water

d im e r .
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3 . )  Quantum Behaviour of  th e  Water Dimer a t  Non-Zero Temperatures

In Chapter  3 we i n v e s t i g a t e d  the  p r o p e r t i e s  of the  water  dimer in  i t s

ground s t a t e .  I t  was noted t h a t  due to  the  n e g l e c t  of ze ro  p o in t  motions

c l a s s i c a l  mechanics was not  u s e f u l  f o r  s tu d y in g  t h i s  system a t  very  low 

t e m p e r a t u r e s .  The ground s t a t e  of  the  m olecu la r  c l u s t e r  i s  c h a r a c t e r i s e d  by 

l a r g e  am p l i tude  ze ro  p o in t  mot ions and the  sha rp  i n t e r m o l e c u l a r  p o s i t i o n  

d i s t r i b u t i o n s  p r e d i c t e d  by c l a s s i c a l  th e o ry  a r e  u n p h y s i c a l .  In t h i s  s e c t i o n  

we s h a l l  add res s  the  q u e s t i o n  of  the  impor tance  of  quantum behav iour  in  

wate r  a t  h ig h e r  t e m p e r a t u r e s .  The wate r  molecule  has a p a r t i c u l a r l y  small  

mass and i t  binds  s t r o n g l y  to  o th e r  molecu le s  th rough hydrogen bonding.  

Thus quantum e f f e c t s  a re  expec ted  to  be im por tan t  but  how t h e i r  

s i g n i f i c a n c e  changes wi th t e m p e ra tu re  i s  not  f u l l y  u nde r s tood .  Many 

c a l c u l a t i o n s  us ing  both  th e  c l a s s i c a l  m olecu la r  dynamics and Monte Car lo  

methods have been performed on the  d i f f e r e n t  phases  of water  and aqueous 

s o l u t i o n s  (Watts  and McGee (1976),  Reimers and Watts (1984 ) ) .  The aim of

t h i s  s e c t i o n  i s  to  employ the  non-zero  t e m p era tu re  quantum Monte Car lo

method to  co n s id e r  the  accuracy  of  the  c l a s s i c a l  approx im at ion  f o r  a system 

of water  molecule s  and to  o b t a in  some in f o rm a t io n  about  the  o n s e t  of 

quantum behav iour  in  such sys tem s .

The problem which we s h a l l  s tudy  he re  i s  aga in  th e  wate r  dimer.  

Non-zero te m p e ra tu r e  quantum c a l c u l a t i o n s  on t h i s  18 d im ens iona l  system a re  

f e a s i b l e  g iven  a few hours of CYBER 205 t im e .  Due to  the  lower d e n s i t y  of 

s t a t e s ,  quantum behav iour  i s  expec ted  to  be more im por tan t  with  t h i s  smal l  

system than  f o r  l a r g e r  polymers .  F u r t h e r ,  the  u n d e r s t a n d in g  of  the  ground 

s t a t e  p r o p e r t i e s  of the  dimer which was o b ta in e d  in  Chapter  3 w i l l  be 

u s e f u l  in  i n t e r p r e t i n g  our f i n i t e  t e m p era tu re  r e s u l t s .
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From the discussion of the Morse oscillator in Section 1.) the 

intramolecular vibrations of the cluster will be best represented if the 

high temperature approximation in equation (6.9) is used to describe these 

motions. The intermolecular degrees of freedom will probably be well 

represented by the classical form of equation (6.8) at a temperature of .one 

or two thousand degrees. Thus we used the Monte Carlo method to sample 

configurations of the dimer drawn from the distribution

Here the functions p^(s^;B0) are the diagonal elements of the Morse 

oscillator density matrix in the local coordinates of the molecules. At the 

initial temperature, ß0 , we constructed the intramolecular density matrix 

as a product of independent Morse oscillator factors. As in Section 1.) 

these functions were obtained by performing the Boltzmann weighted sum over 

the analytic eigenfunctions of the independent oscillators.

The initial distribution was propagated to lower temperatures with the 

diffusion and birth-death processes which were implemented in the same way 

as with our ground state calculations described in Chapter 3. At various 

temperatures along the trajectory averages were accumulated by weighting 

the contributions of each system in a similar fashion to equation (6.10)

In our finite temperature water dimer calculations the cluster was 

prevented from dissociating by a rapidly rising potential wall positioned 

about its centre of mass. This idea has been employed by Lee, Barker and 

Abraham, (1973) and we have followed Freeman and Doll (1985) who used the

6
T P i ( s i ;ß0 )

i = 1

6
w(r ,r*) = II Pi(si’ ; ß0) e 

i=1
^o/2Vinter  ̂ g 2ßofi2^ ^

j=1
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following constraining potental

Vc(r_) = ( | r _  -  Rcml^c^ (6.14)

together with the Fourier path integral Monte Carlo method to calculate the 

thermodynamic properties of argon clusters. Here the vector r describes the 

positions of the atoms in the cluster and Rcm is the position of its centre 

of mass. Confining the clusters in this way improves the sampling of 

configuration space. The diameter of the cluster Rc must be chosen 

sufficiently large so that the boundary conditions do not effect the final 

results. The calculations of Lee, Barker and Abraham indicated that the 

results were fairly insensitive to Rc except for small clusters at high 

temperatures. The systems they considered were weakly bound clusters of 

argon atoms. For a water cluster, where the binding is much stronger, the 

boundary which confines the cluster is expected to have less effect though 

at the highest temperatures we consider it may be significant.

Calculations using ensembles with 2500 systems and trajectories of 100 

steps starting at both 1000 and 2000°K were performed. Final temperatures 

of 200 and 300°K were used. Averages of various energetic and structural 

properties were accumulated at different temperatures along the 

trajectories. As well as these quantum calculations we have also performed 

classical Monte Carlo calculations on the water dimer at different 

temperatures so that the results of classical and quantum theories may be 

compared.

The distributions of intramolecular local coordinates obtained from our 

quantum and classical calculations are presented in Figures 6.9 and 6.10 

respectively. As expected the classical distributions are substantially 

narrower than the quantum results due to the neglect of zero point motions
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and quantum tunnelling. Distributions for the various intramolecular local 

coordinates in the cluster were accumulated but all showed very similar 

forms within the statistical uncertainties. The bonded 0-H stretch and bend 

coordinates for the donor are shown. In the figure we also present the 

square of ground state, independent Morse oscillator eigenfunctions of the 

monomer. The close agreement between the distributions of bond stretching 

coordinates obtained at the various temperatures and the ground state 

distribution indicates that over the temperature range considered, ground 

state behaviour dominates these motions. This is not the case, however, for 

the distribution of angle bending coordinates. Here the higher temperature 

distributions are significantly broader than the ground state result 

indicating that at these temperatures there is significant excitation of 

the bending vibration. At the lower temperatures, however, ground state 

behaviour dominates the bending vibrations.

The distributions of intermolecular distances obtained from our quantum 

simulations are compared with classical results in Figure 6.11. Here we 

observe close agreement between the classical and quantum pair 

distributions down to temperatures as low as 500°K. At 300 and 200°K we see 

evidence of the growing importance of quantum effects. Again tunneling and 

zero point motions make the quantum distributions broader and more diffuse 

than the classical results.

Above about 750°K both the classical and quantum g ^  and gQH 

distributions show broad, structurless features as though hydrogen bonding 

is not important at these elevated temperatures. By about 500°K, however, 

the double peaked gQH and g ^  distributions which characterise the hydrogen 

bonded structure become evident. The final box in the histograms which were

used to accumulate the intermolecular distributions recorded the number of
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systems which moved beyond the  c l u s t e r  c o n f in in g  r a d i u s .  We no te  t h a t  a t  

the  h ig h e r  t e m p e ra tu r e s  s t u d i e d  a s i g n i f i c a n t  number of systems a re  a b l e  to  

reach  the  b a r r i e r  so t h a t  the  boundary c o n d i t i o n s  may in f l u e n c e  the 

s o l u t i o n s  a t  t h e se  h ighe r  t e m p e r a t u r e s .  The energy a s s o c i a t e d  with  the  

b a r r i e r  does not c o n t r i b u t e  to  the  t o t a l  energy of  the  c l u s t e r ;  r a t h e r  i t  

only e f f e c t s  the b i r t h - d e a t h  p rocess  in  the  random walk.  F u r th e r ,  s i n c e  

the  i n t e r m o l e c u l a r  i n t e r a c t i o n  i s  very smal l  a t  th e  b a r r i e r  r a d i u s  used in  

our c a l c u l a t i o n s  (Rc = 20 a . u . )  t h e s e  d i s s o c i a t i n g  c l u s t e r s  a re  expec ted  to  

have l i t t l e  i n f l u e n c e  on our f i n a l  r e s u l t s .

The f a c t  t h a t  the  i n t e r m o l e c u l a r  mot ions of a p a i r  of water  molecu le s  

a re  well  approximated by c l a s s i c a l  mechanics a t  t e m p era tu re s  as low as 

500°K i s  an im por tan t  r e s u l t  which i s  not  n e c e s s a r i l y  exp ec ted .  Reimers and 

Watts  (1 984) have r e p o r t e d  the  r e s u l t s  of  normal mode c a l c u l a t i o n s  on the  

water  dimer.  The 6 low es t  f requency  modes a re  a s s o c i a t e d  with  

i n t e r m o l e c u l a r  v i b r a t i o n s  and they  range in  f requency  between 115 cm“ 1 and 

782 cm“ 1 (165-1 125°K). Thus a t  500°K i t  i s  expec ted  t h a t  r e l a t i v e l y  few 

v i b r a t i o n a l  l e v e l s  of t h e s e  o s c i l l a t o r s  w i l l  be p o p u la te d .  Consequent ly  a t  

t h i s  t e m p e ra tu re  quantum behaviour  shou ld  in p r i n c i p l e  be im por tan t  f o r  

t h e s e  modes. The f a c t  t h a t  our f u l l  quantum d i s t r i b u t i o n s  do not  show 

s i g n i f i c a n t  d e v i a t i o n  from c l a s s i c a l  behaviour  a t  500°K h i g h l i g h t s  the  

inadequacy  of  normal mode th e o ry  f o r  t r e a t i n g  anharmonic motions such as 

the  i n t e r m o l e c u l a r  v i b r a t i o n s  of the  w ate r  dimer.  In Chapter  3 we found 

t h a t  quantum s im u l a t i o n  gave a f requency  of  150 cm“ 1 f o r  the  0 . . . 0  s t r e t c h  

i n t e r m o l e c u l a r  v i b r a t i o n ,  in  agreement wi th ex p e r im en ta l  r e s u l t s .  Normal 

mode a n a l y s i s  g ives  almost  double t h i s  f requency  (272 cm“ 1 ).  The l a r g e  

an h a rm o n ic i ty  of the  i n t e r m o l e c u l a r  p o t e n t i a l  causes  s e r i o u s  convergence 

problems f o r  normal mode a n a l y s i s  and the  f r e q u e n c i e s  p r e d i c t e d  f o r  t h i s



175

system a re  u n r e l i a b l e .  The anharm onic i ty  a l s o  g ives  a h igh  d e n s i t y  of 

i n t e r m o l e c u l a r  v i b r a t i o n a l  s t a t e s  and t h i s  i s  p robab ly  why c l a s s i c a l  th e o ry  

p rov ides  a r e a s o n a b l e  d e s c r i p t i o n  of  the  i n t e r m o l e c u l a r  modes a t  modera te  

t e m p e r a t u r e s .

We have a l s o  c a l c u l a t e d  the  i n t e r -  and in t r a m o l e c u l a r  components of  the 

p o t e n t i a l  energy of  the  dimer as a f u n c t i o n  of  t e m p e ra tu r e .  C l a s s i c a l  and 

quantum r e s u l t s  a re  compared in  F ig u re s  6.12  and 6.13« As e x p ec ted ,  in  

F igu re  6.12 we see very s i g n i f i c a n t  d i f f e r e n c e s  between the  c l a s s i c a l  and 

quantum i n t r a m o l e c u l a r  p o t e n t i a l  e n e r g i e s .  The va lues  o b ta in ed  from 

c l a s s i c a l  Monte Car lo  c a l c u l a t i o n s  a re  in  c l o s e  agreement w i th  the  

p r e d i c t i o n s  of  c l a s s i c a l  e q u i p a r t i t i o n  t h e o ry  ( V 2 kgT per  i n t r a m o l e c u l a r  

o s c i l l a t o r ) .  On the  o th e r  hand,  the  i n t r a m o l e c u l a r  e n e r g i e s  o b ta in e d  from 

the  quantum c a l c u l a t i o n s  a re  n e a r l y  independen t  of  t e m p e ra tu r e .  The dashed 

l i n e  in  t h i s  f i g u r e  i s  the  i n t r a m o l e c u l a r  p o t e n t i a l  energy of a p a i r  of 

monomers in  t h e i r  ground s t a t e s .  Agreement between t h i s  va lue  and th e  f u l l  

quantum r e s u l t s  f o r  the  dimer i s  c o n s i s t e n t  with  our d i s c u s s i o n  of  the  

i n t r a m o l e c u l a r  d i s t r i b u t i o n s  and i n d i c a t e s  t h a t  a t  the  low es t  t e m p e ra tu r e s  

the  i n t r a m o l e c u l a r  mot ions a re  dominated by the  ground s t a t e  beh av io u r .  The 

d e v i a t i o n  between the  ground s t a t e  va lue  and the  non-zero  t e m p e ra tu r e  

quantum r e s u l t s  a t  the  h ighe r  t e m p e ra tu r e s  i s  a l s o  c o n s i s t e n t  w i th  the  

e x c i t a t i o n  of  the  bending modes as d i s c u s s e d  e a r l i e r .

The c l a s s i c a l  and quantum i n t e r m o l e c u l a r  p o t e n t i a l  e n e rg i e s  p r e s e n t e d  

in  F igu re  6.13 show c l o s e  agreement down to  a t e m p era tu re  of  about  500°K 

and below t h i s  t e m p era tu re  quantum e f f e c t s  become im por tan t  as expec ted  

from the  d i s c u s s i o n  of  the  i n t e r m o l e c u l a r  d i s t r i b u t i o n s  p r e s e n te d  e a r l i e r .  

At 200°K t h e r e  i s  a d e v i a t i o n  between the  c l a s s i c a l  and quantum 

in t e r m o l e c u l a r  e n e r g i e s  of  about  5$.
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Recently Wallquist and Berne (1985) have reported the results of path 

integral Monte Carlo and molecular dynamics calculations on the water dimer 

and trimer at 100°K and liquid water at 300°K. Their classical and quantum 

values for the intermolecular potential energy of the water dimer are also 

presented in Figure 6.13. We have extended our classical calculations down 

to 100°K and the differences between the classical results of Wallquist and 

Berne and our value result from the differences in the intermolecular 

potentials used in these calculations. Wallquist and Berne observe 

differences between the classical and quantum intermolecular energy on the 

order of 10$ at 100 K and their values are consistent with the 5$ 

differences which we see at 200°K.

Conclusion

In this chapter we have seen that the primitive high temperature 

approximation used in the development of our non-zero temperature quantum 

Monte Carlo algorithm in Chapter 5 can be useful provided the system 

considered is well described by classical theory at moderate temperatures. 

Thus we have been able to successfully simulate low density neon gas and 

observe the onset of quantum behaviour at low temperatures using this 

approximation.

For systems with degrees of freedom which are dominated by quantum 

behaviour there are problems with using the classical distributions as 

initial conditions. The difficulty arises because the Gaussian weight 

distribution is very narrow when high initial temperatures are employed and

the statistics of the calculations become poor.
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Lower initial temperatures can be used, giving improved statistics, if 

more accurate initial distributions are employed. It has been shown that 

the end point approximation presented in equation (6.9) can be used to give 

accurate high temperature initial distributions for the Morse oscillator. 

We have constructed the high temperature density matrix for a molecular 

cluster using the above form to describe the intramolecular motions of the

molecules together wi th classical distributions to describe the

intermolecular modes. When this initial distribution is employed in a

quantum simulation of the water dimer we find that the intramolecular

vibrations are dominated by ground state behaviour over a range of 

temperatures between 1500°K and 200°K. Excitation of the bending vibrations 

have been observed at the higher temperatures. On the other hand the 

intermolecular motions of the water dimer are well represented by classical 

theory at temperatures as low as 500°K but we find that quantum behaviour 

is reasonably important for intermolecular motions at temperatures around 

300°K.

The diffusing random walk method which we have used to solve the Bloch 

equation provides an alternative to the path integral Monte Carlo methods 

which recently become important in statistical physics. The major problem 

with the algorithm which has been used in our work is the need to include 

weights in order to sample the diagonal elements of the density matrix. It 

may be possible in future developments to include these weights in the 

equation of motion of the distribution. Importance sampling methods may be 

useful for this purpose (Whitlock and Kalos (1979), Pollock and Ceperley 

(19811)).
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CHAPTER 7 CONCLUSIONS

The diffusion Monte Carlo method has been extended in a variety of ways 

in this thesis. With zero temperature applications we have demonstrated 

that a simple scheme employing an ensemble consisting of opposite signed 

systems which are capable of annihilation can be used to model excited 

quantum states as well as antisymmetrized states of Fermion systems. The 

method can be used to perform completely ab initio calculations on systems 

of a few fermions and reasonably accurate results are obtained. There are 

difficulties in extending the method to problems with more dimensions which 

have yet to be resolved. The annihilation step requires a discrete 

representation of the multidimensional configuration space. For problems in 

which the wave function density changes sign rapidly in regions of high 

potential energy, using a discrete representation of the configuration 

space may cause errors. Nodal surfaces in ground state fermion wave 

functions which result from antisymmetry do not seem to have these problems 

and reasonably accurate results can be obtained using the discrete space. 

The accuracy of the technique improves when systems occupying smaller 

regions of configuration space are used. Larger ensembles are necessary and 

excessive amounts of computer time are required for very accurate 

calculations using this method. Fermion systems with more particles require 

consideration of many permutations and a Monte Carlo procedure may be 

useful for sampling the possible operators.

The diffusion Monte Carlo method has been applied to study the ground 

state of some interesting Boson problems. We have calculated the ground 

state properties of the water dimer and trimer using effective pair
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p o t e n t i a l s .  A method f o r  c a l c u l a t i n g  the  i n t r a m o l e c u l a r  v i b r a t i o n a l  

spec trum of a m olecu la r  c l u s t e r  from the  ground s t a t e  wave f u n c t i o n  

g e n e ra te d  by a d i f f u s i o n  Monte Car lo  c a l c u l a t i o n  has been p r e s e n t e d .  The 

te c h n iq u e  p ro v id es  an a c c u r a t e  means of i n c lu d in g  th e  coup l ings  between the  

i n t e r  and i n t r a m o l e c u l a r  zero  p o in t  m ot ions .  For hydrogen bonded systems 

th e s e  co u p l in g s  have s i g n i f i c a n t  e f f e c t s  on the  i n t r a m o l e c u l a r  v i b r a t i o n a l  

spec trum of the  c l u s t e r .  We have shown t h a t  comparing the  i n t r a m o l e c u l a r  

v i b r a t i o n a l  s p e c t r a  o b ta in e d  us ing  t h i s  method wi th the  r e s u l t s  of 

m olecu la r  beam exper iments  p ro v id es  a s e n s i t i v e  t e s t  of the e f f e c t i v e  

p o t e n t i a l  s u r f a c e  used in  the  c a l c u l a t i o n s .  When the  i n t e r m o l e c u l a r  

p o t e n t i a l  s u r f a c e  p r e s e n t e d  by Reimer,  Watts  and K le in  (1981) i s  combined 

wi th  a s l i g h t l y  m odi f ied  v e r s i o n  of  the  monomer p o t e n t i a l  r e p o r t e d  by 

Reimers and Watts  (1984) ,  almost  q u a n t i t a t i v e  agreement betweeen c a l c u l a t e d  

and e x p e r im en ta l  s p e c t r a  i s  o b t a in e d .  This  approach p ro v id es  v a l u a b le  

i n f o r m a t io n  which has been used in  the  ass ignment of v i b r a t i o n a l  bands in  

th e  c l u s t e r  spec trum.

The p rocedure  f o r  pe r fo rming  c l u s t e r  v i b r a t i o n a l  a n a l y s i s  r e l i e s  on the  

assumpt ion t h a t  the  e x c i t e d  i n t r a m o l e c u l a r  v i b r a t i o n a l  s t a t e s  of the  

molecu le s  can be w ell  r e p r e s e n t e d  in  terms of a Morse o s c i l l a t o r  b a s i s  s e t  

o b ta in e d  by f i t t i n g  to  the  n u m e r i c a l l y  exac t  ground s t a t e  wave f u n c t i o n .  An 

a l t e r n a t i v e  approach ,  which does not  r e q u i r e  t h i s  as sumption ,  would be to  

employ the  e x c i t e d  s t a t e  methods developed in  Chapter  2 to  d i r e c t l y  

s im u l a t e  th e  e x c i t e d  i n t r a m o l e c u l a r  v i b r a t i o n a l  s t a t e s  of the  c l u s t e r .  Such 

a c a l c u l a t i o n  i s  f e a s i b l e  and would r e q u i r e  a random walk in which the  

ensemble d i s t r i b u t i o n  was h e ld  o r th o g o n a l  to  the  i n t r a m o l e c u l a r  p r o j e c t i o n s  

of  the  ground s t a t e  wave f u n c t i o n .

The b a s i c  d i f f u s i o n  Monte Car lo  a lg o r i th m ,  which in c lu d e s  both  s im ple
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diffusion and birth-death steps, can be used to simulate bulk phase systems 

with strongly repulsive interactions. However, small time steps and large 

ensembles are required. The method is prone to substantial fluctuations and 

is generally inefficient. Importance sampling procedures give great 

enhancements in the efficiency and accuracy of the algorithm but care must 

be taken with effects that depend strongly on the size of the system. If 

small systems with periodic boundaries are used, discontinuities in the 

drift velocity at the cut off in the potential surface may cause problems. 

In helium these boundary condition effects seem to be reasonably large when 

a 32 particle system is employed. With 108 particles, however, the effects 

are much reduced. Good agreement between the results of importance sampled 

diffusion Monte Carlo calculations and Green's function Monte Carlo results 

is observed. When importance sampled methods are used the finite time step 

approximation seems reasonably unimportant with the step sizes considered 

in our studies.

Diffusion Monte Carlo can be used to accurately calculate the 

thermodynamic and structural properties of solid molecular hydrogen over a 

range of densities. When the spherical part of the potential due to Buck 

et al. (1983) is used, the calculated ground state energy of the zero 

pressure solid is within 3% of the experimental value while at higher 

pressures agreement to within 10% is obtained. The ground state energies 

calculated using the diffusion Monte Carlo method are generally about 10% 

lower than the results of variational calculations performed using a 

Jastrow trial function together with a Gaussian single particle correlation 

function. The Jastrow part of this wave function, which is based on an r-^  

repulsion, does not seem to allow sufficient penetration into the softer

repulsive wall of the Buck potential. Consequently the kinetic energy is
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o v e r e s t i m a t e d  when t h i s  v a r i a t i o n a l  form i s  used .

The d i f f e r e n c e s  between the  ex p e r im en ta l  thermodynamic p r o p e r t i e s  and 

the  d i f f u s i o n  Monte Car lo  r e s u l t s  o b ta in e d  us ing  th e  s p h e r i c a l  p a r t  of  the  

Buck p o t e n t i a l  a r e  p o s s i b l y  due to  the  n e g l e c t  of a n i s o t r o p y .  I t  may be 

p o s s i b l e  t o  perfom d i f f u s i o n  Monte Car lo  c a l c u l a t i o n s  us ing  a n g le  dependent  

p o t e n t i a l s .  The k i n e t i c  term becomes com pl ica ted  when angu la r  c o o r d i n a t e s  

a re  in t ro d u c e d  and the  o p e r a t o r  can no lo n g e r  be modelled us ing  a s im ple  

Gaussian  d i f f u s i o n  p r o c e s s .  The r o t a t i o n a l  d i f f u s i o n  e q u a t io n  has a n a l y t i c  

s o l u t i o n s  ( C a r r in g to n  and McLachlan (1979 ) ) .  Using th e s e  r e s u l t s  i t  may be 

p o s s i b l e  t o  perform random walk s im u l a t i o n s  with  ang le  dependent  p o t e n t i a l s  

such as the  f u l l  a n i s o t r o p i c  i n t e r a c t i o n  f o r  H2 which has been p r e s e n t e d  by 

Buck e t  a l . (1983) .

We have s u c c e s s f u l l y  a p p l i e d  the  d i f f u s i o n  Monte Car lo  method to  s o lv e  

t h e  Bloch e q u a t io n .  An i n i t i a l  d i s t r i b u t i o n  may be p ropaga ted  i n  £ u s ing  

t h i s  approach and t e m p era tu re  dependent  p r o p e r t i e s  of quantum systems 

c a l c u l a t e d .  I n i t i a l  c o n d i t i o n s  f o r  th e s e  c a l c u l a t i o n s  must be c a r e f u l l y  

chosen .  For systems of h e a v i e r  p a r t i c l e s  with  weak i n t e r a c t i o n s  c l a s s i c a l  

r e s u l t s  may be employed a t  f a i r l y  low i n i t i a l  t e m p e ra tu re s  w i th  r e a s o n a b l e  

a cc u racy .  When c o n s id e r i n g  degrees  of freedom f o r  which quantum e f f e c t s  

dominate,  however, more a c c u r a t e  h igh te m p era tu re  app rox im at ions  must be 

used as i n i t i a l  c o n d i t i o n s  i f  e f f i c i e n t  c a l c u l a t i o n s  a r e  to  be 

p e r f  ormed.

The method d e s c r ib e d  he re  i s  e q u i v a l e n t  to  the  d i s c r e t e  p a th  i n t e g r a l  

Monte C ar lo  p rocedu re .  By assuming t h a t  a t  h ighe r  t e m p e ra tu r e s  fewer pa th  

segments a r e  r e q u i r e d  to  o b t a i n  a c c u r a t e  r e s u l t s ,  the  non-ze ro  te m p e ra tu r e  

d i f f u s i o n  Monte Car lo  method may be used to  c a l c u l a t e  p r o p e r t i e s  a t  many 

d i f f e r e n t  t e m p era tu re s  du r ing  a s i n g l e  c a l c u l a t i o n .  The method has been
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used to study the onset of quantum behaviour in neon gas and the

temperature dependence of quantum effects for the water dimer have been 

considered. Quantum behaviour does not seem to be important for the

intermolecular motions of the water dimer at 500°K but by about 200°K the 

intermolecular energy obtained from our quantum calculations differ from 

the results of classical calculations by about 5%. The pair distribution 

functions obtained from quantum simulation are broader than the results of 

classical calculations. At these temperatures the most significant 

differences occur with the intramolecular degrees of freedom. Quantum 

calculations show intramolecular distributions which are dominated by the 

zero point motions and the classical distributions are much sharper.
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