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ABSTRACT

The diffusion Monte Carlo method for performing quantum calculations on
many body systems is extended and applied to a number of areas of chemical
physics. An ab initio quantum Monte Carlo procedure for simulating wave
functions with nodal surfaces is presented. Some few Fermion problems are

treated using this technique.

A method for using the ground state wave function obtained from a
diffusion Monte Carlo calculation to determine the vibrational spectrum of
a molecular cluster is presented. Very accurate vibrational spectra can be
obtained with this approach. Results of quantum Monte Carlo calculations on
the water dimer and trimer using an improved intramolecular potential and
the intermolecular potential of Reimers, Watts and Klein (1981) have been
used to assign cluster spectra obtained from molecular beam experiments. It
is demonstrated that the vibrational predissociation spectrum of a
molecular cluster 1is sensitive to the details of the intermolecular
potential and different surfaces may be tested by comparing calculated

spectra with experimental results.

The diffusion Monte Carlo method 1is applied to calculate the
thermodynamic and structural properties of liquid Y4e and solid molecular
hydrogen. Importance sampling must be used if efficient bulk phase
calculations are to be performed. When the spherical part of the
interaction potential due to Buck et al. (1983) is used in diffusién Monte
Carlo calculations on solid Hp good agreement with experiment is found.

Anisotropy may be important for this system at higher densities.



(v)

Methods for wusing the diffusion Monte Carlo. method to study the
behaviour of systems at non-zero temperatures are developed. Improved high
temperature approximations must be employed as 1initial conditions when
systems with mixed "classical" and "quantum" degrees of freedom’ are
considered. The properties of neon gas and the water dimer are studied with

this method.

The work presented in Chapter 3 has been published in

"The Infrared Predissociation Spectra of Water Clusters" by D.F. Coker,
R.E. Miller and R.O. Watts (1984), J. Chem. Phys 82, 355..
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2.2

2.3

(viii)

FIGURE CAPTIONS

Results of a basic ground quantum Monte Carlo simulation of a
harmonic oscillator (hw = 70°K). (a) Evolution of the ensemble
distribution from a delta function initial condition to the ground
state wave function. Unit of imaginary time is 10~ 155, “(b)
Logarithm of ensemble population v's imaginary time. Slope of
dashed line is the eigenvalue which may be estimated from the

asymptotic decay rate of the population; PAGE 1l4a

Same as Figure 2.1 except initial condition is orthogonal to
ground state. (a) Positive and negative weighted systems
annihilate producing the first excited state distribution.
(b) Slope of dashed line is first excited state eigenvalue which
may be estimated from the asymptotic decay rate of the total

population. ' ' PAGE 16a

Behaviour of eigenfunction expansion model of Vngr adjusting
algorithm. (a) Solutions of equations (2.18) (2.19) using
harmonic oscillator example. Solid line gives amplitude of ground
state coefficient, long dashes are first excited state and other
dashed curves are higher eigenstate components. (b) Amplitudes of
different eigenfunction components calculated wusing equation
(2.21) during a simulation. Ground state grows out of statistical
noise. (¢) Solutions of (2.18) (2.19) with no initial ground

state components. PAGE 20a



2.4

2.5

2.6

2.7

(ix)

Eigenstate components calculated during a Vper adjusting
simulation which 1includes orthogonalization to ground state.
Higher eigenstates are shown with shorter dashes. First excited

state dominates ensemble distribution asymptotically. PAGE- 22a

Vibrational eigenfunctions of Hp obtained with Vpep adjustment and
orthogonalization procedures. The potential due to Kolos .and

Wolniewicz (1975) is also given. PAGE 24a

Results of simulation of the 2p state of the hydrogen atom.
(a) Eigenvalue estimates as a function of @gaussian width
parameter, a. Squares are the results for ensembles of 500 systems
and triangles are for 1000 systems. (b) Electron density u4mr2y?,
solid line is analytic result. Both dashed curves are simulation
results for ensembles of N = 500 systems. Long dashes are for
a=2 a.u.? ("large volumes") .and short dashes are for

a 10 a.u.”™2 ("small volumes"). (¢c) Both dashed curves are

]

simulation results for a = 10. Short dashes are for N = 500

systems and long dashes are N = 1000. PAGE 30a

Projection of ensemble distribution onto x-y plane showing the two

lobes of the 2py eigenfunction. PAGE 31a



2.9

2.1

2.12

(x)

Development of y? distribution by descendent weighting procedure
for harmonic oscillator example. (a) ¥ distribution multiplied by
descendent weights at different times. Short dashed curve is
analytic y. Long dashed curve is analytic ?. All curves are
normalized to have the same area. (b) Calculation of the average
potential energy using the ? distribution. Dashed curve is

analytic result, hw/l. PAGE 33a

Lobes of the singlet state wave function of the helium atom rq and
ro are the distances of the electrons from the nucleus. The

labeled electrons have different spins in the two lobes. PAGE U49a

(a) Random walk wave function for singlet state of He compared
with (b) best variational wave function using hydrogenlike

orbitals. Coordinates are the same as figure 2.9. PAGE U49b

Triplet state energy of He as a function of ensemble size and
gaussian width parameter. Solid 1line 1is T"exact" vresult of
Pekeris (1959). Squares are results for a = 2 a.u.”2 and triangles

are for a = 5 a.u.”2. PAGE 51a

Triplet state eigenfunction of He. Coordinates are the same as in
figure 2.9. (a) Quantum Monte Carlo result. (b) Analytic

estimate with "screened nuclear change" g = 27/16. PAGE 52a



3.1

3.2

3.3

3.4

3.5

(xi)

Decay of quantum Monte Carlo eigenvalue estimate for lowest energy
doublet state of Lithium. Solid line is experimental result.

' PAGE 5la

Comparison of experimental and calculated water monomer spectra.
The Morse potential with couplings gives an improved
representation of the splitting between the symmetric Vand

antisymmetric modes. PAGE 66a

A is the difference between experimental and calculated vibrationl
frequencies of the Ho0 monomer. * Morse potential and -+ Morse

potential with coupling. PAGE 66D

Atom - Atom pair distribution functions for water dimer. Solid
line is the result of ¢02 averaging with the quantum random walk
calculation. Dashed curve was obtained using classical Monte Carlo

o
calculations at 10 K (Reimers (1982)). PAGE 76a

(a) Minimum energy geometry of water dimer. (b) Minimum energy

geometry of water trimer. PAGE 7T7a

Relaxation of ¢02 distribution for water monomer showing average

of (a) potential and (b) kinetic energies. PAGE 78a



3.6

3.7

3.8

3.9

3.10

(xii)

Solid lines give the projections of the wave function of the water
dimer obtained from the random walk calculation onto the
intramolecular 1local coordinates. Dashed curves are the basis
oscillator wave functions of water monomer. s, and s, are the
bonded and non-bonded local coordinates on the donor molecule.

PAGE 80a

Comparison of basis oscillator frequencies obtained from (a)
random walk projection method and (e¢) "frozen field" local mode
calculations. Spectra (b) and (d) show the influences of including
couplings. Experimental spectrum was obtained by Coker, Miller and

Watts (1985). PAGE 81a

Experimental infrared predissociation spectra for H,0 clusters at
high concentrations. Molecular beam compositions (% Hp0 in He) are

A: 17.5%, B: 24.2%, C: 36.3% and D: 52.14%. PAGE 8la

Low concentration water spectra corresponding to beam conditions;

A: 7.7%, B: 6.5%, C: 5.7% and D: 12.8%. PAGE 85a

Comparison of water dimer frequencies obtained from quantum
simulation projection method with experimental water cluster

spectra. PAGE 85b



3.11

3.12

(xiii)

Stick diagram comparing experimental and theoretical dimer and
trimer IR absorption frequencies. The normal mode and local mode
calculations use the RWKM potential of Reimers and Watts (1984b);
random walk calculations combine the modified monomer surface
described in the text with the RWK2 intermolecular potential of
Reimers, Watts and Klein (1981) (RWKM2) or with the earlier

surface of Watts (1977) (W7TM2). PAGE 90a

Comparison of the RWK2 (solid line) and Watts (dashed line)
intermolecular potential surfaces (a) as a function of 0...0
distance minimizing energy at every separation, (b) as a function
of donor angle for fixed O0...0 distance and intramolecular
geometry and (c¢) as a function of acceptor angle for fixed 0...0

distance and intramolecular geometry. PAGE 91a

Relaxation of the energy estimate for a system of 32 Lennard Jones
helium atoms at a reduced density of p* = 0.4. The basic diffusion
and birth death algorithm was used together with an initial fcc
geometry. Long range corrections have been included. N is the.
number of systems in the ensemble and the dashed and solid lines
are respectively, the variational (Watts and Murphy (1970)) and
Green's function Monte Carlo (Whitlock et al. (1979)) results.

PAGE 106a



4.2

4.3

4.y

4.5

(xiv)

The points with small error bars are the energies of a system of
32 helium atoms calculated with the importance sampling algorithm
using different size time steps. These calculations employed an
ensemble of 200 systems. The point with larger error bars was
obtained using the unbiased random walk algorithm together with an
ensemble of 1000 systems. The solid line gives tge GFMC value.
PAGE 110a

Solid lines are the extrapolated radial distribution functioﬁs for
a system of 32 helium atoms obtained with the importance sampling
algorithm using different size time steps. The points are the

results of GFMC calculations of Whitlock et al. PAGE 111a

Extrapolation of the radial distribution function for He" obtained
from a Diffusion Monte Carlo calculation using 108 particles. The
short dashed 1line gives the distribution obtained from the
variational calculation, sz, the long dashes are the diffusion
Monte Carlo results averaged over the function yry, and the solid
curve is the extrapolation. The points are the results of GFMC

calculations of Whitlock et al. PAGE 112a

Relaxation of the components of the energy of solid H, during
importance sampled diffusion Monte Carlo calculations at various
densities. The initial conditions were variational distributions.
The short dash lines are the kinetic energies obtained by taking
the difference between the total energies (solid lines) and the

extrapolated potential energies (long dashes). PAGE 119a



4.6

(xv)

Extrapolation of the radial distribution function in solid H, at
various densities. Short dashes give the g(r)'s obtained from the
sz distribution; long dashes from yYry and the solid curve is the
extrapolated Y2 result. The potential due to Buck et al. (1983) is
also presented (solid curve) together with the Lennard Jones

(12 6) potential for H, (dashed curve). PAGE 120a

The ring polymers representing a two particle system. The discrete
path shown here has 9 segments and by closing the ring at
different points pro perties at different temperatures can be

calculated. PAGE 150a

Calculated and exact energies of a harmonic oscillator
(hw = 100 K) as a function of temperature. Solid lines are exact
results obtained from equation (6.2). Dashed curves are the
predictions of classical theory. Various coloured symbols are the
results of quantum Monte Carlo calculations wusing different
initial and final temperatures. Classical initial distributions

were used.

Colour Tin(°K) Trin(°K)
black 1000 30
blue 500 30
green 100 30
red 100 10

PAGE 157a



6.2

6.3

6.4

6.5

(xvi)

(a) Solid curves give the position distributions for a harmonic
oscillator obtained at different temperatures along the random
walk trajectory (Tijp = 1000°K). Points are exact results obtained
from equation (6.3). (b) Solid curves are the momentum
distributions calculated at the same points along the trajectory.

Crosses are the predictions of classical theory. PAGE 159a

Upper solid curve gives the temperature dependence of the total
energy of the O-H Morse oscillator obtained by summing over the
analytic bound states. Lower solid and long dashed lines are
respectively the potential and kinetic energies of the oscillator.
Short dashed curves are classical results. Various coloured
symbols are the results of quantum Monte Carlo calculations using

different initial temperatures. Classical initial distributions

were used.
Colour Tin(°K)
black 10000
red 7500
blue 5000

PAGE 160a

Comparison of analytic results for the harmonic oscillator with
values obtained from a quantum simulation using the exact position
and momentum distributions at 100°K as the initial condition.

PAGE 162a

Same as Figure 6.3 except the improved high temperature
approximation in Equation (6.9) is used to give the initial

distributions. PAGE 165a
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6.7

6.8

6.9

6.10

(xvii)

(a) Comparison of the potential energy of low density neon gas at
various temperatures obtained from quantum simulation (squares)
with classical results (triangles). (b) Solid 1line gives the
classical kinetic energy of neon gas and the squares are: the

results of quantum simulation. PAGE 167a

Pair distribution function in neon gas (p* = 0.0093) as a function

‘of temperature. Solid curves are the results of quantum Monte

Carlo simulations. Dashed curves give classical results and the
points are taken from the work of Klemm and Storer (1972).

PAGE 168a

Momentum distributions in neon gas at various temperatures
obtained from quantum simulation (solid curves) and classical

theory (dashed curves). PAGE 168b

Sample intramolecular distribgtions for the water dimer obtained
from the quantum Monte Carlo calculations (solid curves) compared
with the square of the ground state Morse oscillator
eigenfunctions (dashed curves). With our resolution all the
intramolecular distributions such as the bonded and non-bonded O-H

stretches were identical.

PAGE 172a

Intramolecular distributions for the water dimer obtained from
classical Monte Carlo calculations. Again the ground state wave

functions are presented as the dashed curves. PAGE 172b
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(xviii)

Comparison of classical and quantum intermolecular distributions

for the water dimer at various temperatures; PAGE 173a

Comparison of classical and quantum intramolecular potential
energy for the water dimer as a function of temperature. Dashed
line is the ground state potential energy of a pair of isolated

monomers. PAGE 175a

Comparison of <classical and quantum intermolecular potential
energies for the water dimer as a function of temperature. Points
at 100 °K are the results of Wallqvist and Berne (1985).

PAGE 175b



CHAPTER 1 AN OVERVIEW OF QUANTUM SIMULATION

Classical computer simulation methods have been used extensively to
study both equilibrium and non—equilibrium behaviour of many body systems.
The physical behaviour of a assembly of particles, however, is determined
by quantum theory. Recently, a variety of quantum simulations methods have
been developed and applied to studies of many body systems in which quantum‘
effects are important. The algorithms can be divided into two categories:
zero temperature methods for considering the individual quantum states of
many body systems and non-zero temperature procedures in which a thermal
distribution of quantum states is important. In this thesis we explore a
stochastic numerical method which is useful for performing both zero and
finite temperature calculations.

At =zero temperature, quantum Monte Carlo methods have been used to
study bulk systems such as the crystal and 1liquid phases of helium
(Whitlock et al. (1979), (1980); Lee et al. (1981)), the electron gas
(Ceperley and Alder (1980) ), metallic hydrogen (Ceperley and Alder (1981))
and a variety of other important systems (Ceperley and Kalos (1979)). The
zero temperature quantum Monte Carlo methods have also been extended to the
realm of molecular quantum mechanices where they are now becoming
competitive in both speed and accuracy with the more conventional CI
techniques (Ceperley and Alder(198u)]. Quantum Monte Carlo methods provide
numerically exact solutions of the many body Schrddinger equétion. The
results are not dependent on the choice of a basis set and so the answers
are not influenced by the input of '"chemical intuiton". In principle the

quantum Monte Carlo methods can provide completely ab initio results (5ksﬁz



(1984) ).

The basic "diffusion Monte Carlo" method which was first presented by
Anderson (1975) and which is used throughout this thesis is developed and
studied in detail in Chapter 2. The method involves using a "finite time
step" approximation to solve a multidimensional diffusion equation. Results
obtained using this approximation depend on the step size and in the limit
as At > 0 exact values are obtained.

Diffusion Monte Carlo methods have been used mainly in studying -
electronic systems where the particle interactions vary relatively slowly
with distance. Thus the finite time step approximation is expected to be
valid. The most significant problem in using quantum Monte Carlo methods to
study electronic systems is the treatment of identical particle statistics
(Kalos (198”)]. In most of the electronic applications of the =zero
temperature quantum Monte Carlo methods, approximate information about
nodal surfaces in the Fermion wave function is used to provide boundary
conditions for the random walks. Wave functions obtained from variational
calculations are often used for this purpose. With the fixed node
approximate methods (Reynolds et al. (1982)) the random walk results are
dependent on the nodal surfaces used in the calculation. Methods for
"relaxing" the nodes have been developed (Ceperley and Alder (1984)) and
essentially exact solutions which are antisymmetric with respect to
particle inerchange may be obtained.

In Chapter 2 we present an alternative procedure which does not require
any prior knowledge of the nodal surfaces. Results of ab initio random walk
calculations performed on the ground and excited states of small electronic
systems using this approach are presented.

Identical particle statistics are not important in the ground state of



an assembly of Bosons so exact quantum Monte Carlo calculations can be
performed using Boltzmann statistics. This simplification is exploited in
Chapters 3 and 4 where we discuss the application of zero temperature
quantum Monte Carlo methods to the study of the ground state properties of
molecular clusters and Boson solids and liquids. .

Recently there has been a great deal of intebest both theoretically and
experimentally in the study of clusters of atoms and molecules. With
molecular beam techniques, well defined clusters can be prepared in a -
collision free enviroment. The internal degrees of freedom of clusters
produced by these methods are strongly "cooled" so experimental results can
be compared with ground state calculations. In Chapter 3 we describe the
result of some ground state quantum Monte Carlo calculations performed on
small clusters of water molecules. A method for studying the intramolecular
vibrations of molecules in clusters using the wave function obtained from a
ground state quantum Monte Carlo calculation is presented. Calculated
vibrational spectra are compared with molecular béam results. The input to
these calculations is a potential surface and we demonstrate that comparing
the vibrational spectra obtained from ground state quantum Monte Carlo
calculations with the results of molecular beam experiments provides a
sensitive test for the potential surface.

* Comparison of bulk phase thermodynamic data obtained from classical
simulation studies with experimental results provides a further means of
testing intermolecular potential surfaces (Barker, Fisher and Watts
(1971)). However, when quantum behaviour is important in determining the
properties of bulk phase systems quantum simulation methods must be used.
Variational calculations on liquid ”He have been performed to test

different pair potentials for this system (Murphy and Watts (1970), Murphy



(1972) ). These methods provide an upper bound on the energy of the system
and hence approximate ground state thermodynamic properties are obtained.
Thus comparison with experiment is ambiguous. With the quantum Monte Carlo
methods, however, different interaction potentials can be reliably tested
(Whitlock et al. (1980)).

In Chapter 4 we consider applying the diffusion Monte Carlo method to
study bulk phase quantum systems with strongly repulsive interactions.- The
basic algorithm is not useful for these studies and improvements in the
efficiency and accuracy of the method are necessaby. Importance sampling
techniques, in which approximate many body wave functions are used to guide
the diffusion Monte Carlo procedure to sample the more important regions of
configuration space, greatly reduce the statistical fluctuations during the
simulation. With these improvements efficient bulk phase quantum
calculations can be performed.

The finite time step approximation is expected to be most severe in
dense systems with strongly repulsive interactions. By using different time
steps in bulk phase calculations the significance of this approximation is
considered. At higher densities smaller time steps are used and over the
range of step sizes considered in our work, little time step dependence is
observed.

We have used the spherical part of a semiempirical intermolecular pair
potential due to Buck et al. (1983) in diffusion Monte Carlo calculations
on solid Hp. The ground state energies obtained from these calculations are
generally about 10% lower than the results of variational calculations and
are in closer agreement with experiment. Inadequacies in the variational
wave function are highlighted by comparing predicted structural properties

with the results of the full quantum simulation.



As mentioned earlier, the quantum Monte Carlo methods provide a general
means for solving multidimensional diffusion equations. In the case of the
zero temperature methods, stationary solutions of the Schrddinger equation
are obtained. Quantum Monte Carlo methods can also be used to give ";ime"
evolving solutions of diffusion equations. The behaviour of a system at
non-zero temperatures is governed by the density matrix which evolves és a
function of the inverse temperature, R = 1/kBT, according to a diffusion
equation known as the Bloch equation. The non-zero temperature quantum -
Monte Carlo procedure described in Chapter 5 uses the methods employed with
the zero temperature techniques to solve the Bloéh equation. From the
evolution of the solution, information at different temperatures is
obtained.

The formulation of the non-zero temperature method presented here is
different from the path integral Monte Carlo procedures which have been
developed recently but the methods are equivalent. Finite temperature path
integral techniques have been used to study a variety of interesting
problems. The properties of liquid YHe (Pollock and Ceperley (1984)) and
Neon (Thirumalai et al. (1984)) at non-zero temperatures have been
explored. Solvation of electrons in fused salts (Parrinello and Rahman
(1984)), the physical properties of clusters of Argon atoms (Freeman and
Doll (1985)), solvation of H atoms and muonium in classical water [De Raedt
et al. (1984)) as well as the calculation of electronic and vibrational
spectra of molecules (Thirumalai and Berne (1983), (1984)) are some of the
problems which have been explored recently using path integral methods.

The method developed in Chapter 5 uses a classical distribution at some
high temperature as the initial condition for the solution of the Bloch

equation. A diffusion Monte Carlo procedure is then applied to "propagate"



the distribution through B and the Bloch equation 1is simulated. This
approach provides a means of obtaining results at a number of different
temperatures during a single calculation. Information about quantum
position and momentum distributions may be obtained using this approaqh as
well as thermodynamic data.

In Chapter 6 the use of the non-zero temperature diffusién Monte Carlo
method 1is demonstrated by considering some representative problems,
including the one dimensional Morse and harmonic oscillators, quantum -
effects in neon gas and finally the quantum behaviour of the water dimer as
a function of temperature. More accurate high temperature approximations
must be used as the initial condition for the intramolecular vibrations of
the cluster but classical results may be employed to give initial
conditions for the intermolecular degrees of freedom.

Many classical simulations of systems of water molecules have been
performed. It is not obvious that the assumptions of classical mechanics
are valid for systems of light molecules which are able to bond strongly to
one another. The results presented here complement those of Wallquist and
Berne (1985) and we are able to study the onset of quantum behaviour for
the intermolecular degrees of freedom of the water dimer as a function of

temperature.



CHAPTER 2 BASIC QUANTUM MONTE CARLO,

DEVELOPMENT AND SIMPLE APPLICATIONS

Introduction

In this chapter the quantum random walk method is developed and applied
to some simple illustrative problems. The methods described are employed in °
subsequent chapters to study some important many body quantum problems.

Chapter 2 is organised as follows: After a brief description of basic
quantum theory we consider the analogy between the Schrédinger equation and
a diffusion process modified by chemical reaction. The analogy is used to
develop a numerical model of the Schrdédinger equation based on a "short
time" approximation. The method produces an ensemble distributed according
to the wave function and the number of systems in the ensemble decays at a
rate proportional to the eigenvalue.

In Section 2.) the question of symmetry and the generation of nodal
surfaces in the wave function is considered. A feedback mechanism for
maintaining a stable ensemble is discussed. The stabilizing method provides
an efficient means for estimating the eigenvalue but it allows only the
ground state distribution to be sampled. Next, a procedure for forcing the
distribution to remain orthogonal to the ground state is described. With
this technique a stable excited state distribution can be sampled. After
studying the excited vibrational states of molecular hydrogen we consider
extending the approach to many dimensions, using the S and P states of the

hydrogen atom as an example.

In Section 3.) we present a method for calculating expectation values



of various operators from ‘a quantum random walk calculation. We also
consider importance sampling methods which are used to 1improve the
efficiency of quantum Monte Carlo calculations.

Finally in Section 4.) we consider the question of identical particle
statistics. After discussion of some techniques which have been used for
treating Fermi systems we consider generalising the method for generaﬁing
nodal surfaces described in Section 2.) so that an antisymmetric
distribution is obtained. With this procedure systems containing a few -
fermions can be simulated. As examples, different spin states of atomic

helium and lithium are modeled.

1.) The Basic Quantum Monte Carlo Algorithm

a) Formal Preliminaries

In quantum mechanics, the behaviour of a system is determined by the
wave function ¢(r,t). For a non-relativistic system, Y(r,t) obeys the
Schrddinger equation (Merzbacher (1970) ) which takes the following form

iny_ w(r,t) = ¢ (r,t) (2.1)
3t

=

= E _Z—mk Ve W(e,t) + (V(2)=Vper) w(r,t)

Here the ﬁ is the Hamiltonian operator, the vector r describes the position
of the N particles in the system and my are the particle masses. The
function V(r) gives the interaction energy and the quantity Veer is an

arbitrary reference on the energy scale whose introduction will prove

useful in later discussion.



There are an infinite number of solutions to equation (2.1). The set of

solutions which are products of separate functions of time and space
Y(r,t) = £(t) ¢(r) (2.2)

are of particular physical importance. Substituting (2.2) into equation
(2.1) and separating variables we find that
BV
£(t) =e B ref (2.3)
N
-H2

2
and L W )+ (VD) Vpee) 6(r) = (B-Vper) 6(r) (2.4)
21 om,

Where (E~Vpor) is the separation constant.
Equation (2.4), the time independent Schr&dinger equation, is an

eigenvalue equation

i ¢(r) = (E"Vref] ¢(r)

~

Since H is a hermitian operator its eigenvalues, (E‘Vref), are real. Thus
f(t) is a purely oscillatory function of time.

For particular solutions of the form
Y(r,t) = e—lt/ﬁ(E"erf)¢(g) (2.5)

the probability density, w*(g,t)w(g,t), is independent of time. For this
reason such solutions are said to represent "stationary states" of the
system.

In a stationary state the expectation value of a time independent
physical property represented by an operator, A, depends only on the time

independent part of the solution and
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A> = J Ve, Ap(r,t) dr = [ ¥(r) Ae(r) dr (2.6)

General solutions of the Schrédinger equation can be constructed by
superposition of particular stationary solutions. Thus, if the time
independent Schrédinger equation yields a set of eigenfunctions ¢n(£) which
are complete in the sense that any initial state, w(g,O), may be expanded

in terms of them

¥(r,0) =) ap ép(r) (2.7)
n
then the solution for all later times will be of the form
P(r,t) = ) ane” 1t/ En~Vrer) ¢on(r) (2.8)
n

In this chapter we describe a computational method for solving the
eigenvalue problem presented in the time independent Schrédinger equation.
The procedure involves simulating the time dependent Schrddinger equation
by making use of the analogy between (2.1) and an equation which describes
a combined diffusion and chemical reaction process. In this section we
shall present the basic technique used to obtain ground state properties.

The questions of identical particle statistics and wave function symmetry

will be considered in later sections.

b) The Diffusion Equation Analogy, a Numerical Model of the Schrddinger

Equation
Defining the "imaginary time" variable 1t = it/h enables the wave

equation given in (2.1) to be transformed into the following

y(r, n?
e 3 B0 = (V) =Vrer Jule, O (2.9)

Equation (2.9) can be considered in terms of two separate processes. The
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first term on the right hand side has the form of an equation describing
the diffusion of a concentration profile through a fluid. The second term
resembles an equation which models exponential growth and decay or a first
order chemical rate process. Thus the Schrédinger equation in imaginary:
time is analogous to an equation describing diffusion which is modified by
a chemical reaction whose rate changes with position. In this analogy-the
wave function is treated as the density of diffusers.

In the absence of the "birth/death" term, the solution of the diffusion V

part of equation (2.9) with the initial condition
‘J)(E, T=O) = 6(3—20)
is well known

- - 2
(E’_k E_ko) /uDkT

¥(r,1) = I (47D1)"% e (2.10)

~a=

Here ry is the position of particle k in three dimensional space and Dy is

the diffusion coefficient of the particle and depends on its mass
2
Dy = N"/2my

By interpreting the wave function as a density, equation (2.10) is treated
as the distribution function for an ensemble of free particle systems
moving in imaginary time. The evolutioﬁ of the ensemble can be modeled on a
computer. First a set of systems is established at r,. In a time At, each
particle should sample a three dimensional Gaussian distribution centred on
rvo WwWith variance Axy = (ZDKAT)%. The distribution may be sampled
numerically by displacing the particles in every system of the ensemble by
distances Axif in each dimension. Here £ are random variables chosen from a

standard normal distribution. If this procedure is repeated many times the
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ensemble distribution will spread out as the wave function given in
equation (2.10).

A numerical model for simulating the effects of the potential term in
equation (2.9) can be devised using the analogy between this term and a
phenomenological rate equation. The model involves replicating or reméving
systems from an ensemble depending on the potential energy.

Ignoring the diffusion term, equation (2.9) gives that the amplitude of

the wave function at some point r changes in time as follows

(2 (v(r) Vo) w(r)

D-lQ.
A e

Rearranging and integrating for a finite time, At, we have

Y+AY T+AT

dy

= = - |(V-Vpgr)drt
Jw v JT

Thus the change in amplitude of the wave function at r during At is

‘(V(E)‘Vref)AT_1

M(r) = ¥(r)(e )

Consequently at time 1t + At we have
w(T+AT) = w(T) + AV

(2.11)
p(1) o= (V=Vpgp) At

The population of the ensemble can be made to grow or decay according

to equation (2.11) by defining the birth probability as
Pp = e~ (V-Vper) ATy (2.12)

If a particular system is in a configuration for which V < Vn.o¢ then the
system itself, as well as Py replicas, will be continued into the next time

step. In general Py will be a positive number with integer and fractional
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parts.
Pp = int(Py) + frac (Pp)

The necessary births can be accomplished by producing int(Py) replicas
together with an extra replica included with a probability frac(Pyp). When
the energy of a system is such that V > Vner, there is a probabiiity
Pq = -Pp that the system will "die" and be removed from the ensemble.

The numerical methods for treating the separate terms in the
Schrédinger equation which were discussed above are exact independent of
the size of the time step. Anderson (1975, 1976) has presented an
approximate procedure for simulating the Schrédinger equation which
involves combining the diffusion and birth/death processes by making a
short time approximation. Thus it 1is assumed that the potential Iis
approximately constant over the short distances through which systems move
as a result of diffusion for a finite time Art.

The idea of studying quantum problems using the analogy between the

time dependent Schrédinger equation and a diffusion and birth/death process

~has been attributed to Fermi (Metropolis and Ulam (1949)). In the 1950's

several workers discussed various Monte Carlo methods based on this idea
and Anderson (1975) presents a summary of these early references. Most of
the quantum Monte Carlo methods which have been devised involve using a
finite time step approximation. The Green's function Monte Carlo method
which was developed by Kalos and his coworkers (Kalos (1970), Kalos
Levesque and Verlet (1974), Ceperley and Kalos (1979)) is a related
technique which does not require the short time approximation and is
essentially exact. In Chapter U4 we present a brief description of this

rather complicated procedure.
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The algorithm given by Anderson is particularly simple and is

summarised as follows:

1) Establish an ensemble of systems in some initial distribution.

2) Increament time by At and allow each ensemble member to diffuse by
giving its particles random cartesian displacements, the
components being chosen from Gaussian distributions of appropriate
width.

3) Calculate the Apotential energy of each displaced system and,
depending on this value, allow the system to replicate or "die".

Repeating steps 2) and 3) enables the imaginary time evolution of the
initial ensemble to be followed and, if a sufficigntly small time step is
used, the ensemble motion models the evolution of the wave function.

The initial distribution can be expanded in terms of the eigenfunctions

of the Hamiltonian and the time evolution is thus determined by equation
(2.8), which can be written in imaginary time as

Y(r,1) =} ane~(En—Vr"5‘f)T ¢n(£)‘ _ (2.13)
n

As 1 » © the sum will be dominated by the lowest energy eigenstate
contained in the initial expansion. Thus in the long time 1limit, the
simulation algorithm summarised above will produce an ensemble of systems

distributed in space according to the eigenstate, ¢, and since

lim
'['—)(D

¥(r,1) = aoe'(Eo'Vref)T bo(r) (2.14)

the asymptotic population decay rate will give an estimate of the
eigenvalue Eq.
To illustrate how the algorithm behaves, in Figure 2.1 we present the

results for a simulation of the Schrddinger equation describing a one
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dimensional harmonic oscillator. Parameters are chosen to model a proton in

a harmonic well V(x) = %kx®

with force constant k = 100 KA2. The initial
condition was an ensemble of 100 systems, all with 2zero displacement.
Figure 2.1a shows the evolution of this ensemble in imaginary time. gere,
histograms of the ensemble displacements have been accumulated at various
times along the trajectory. The curves are the result of averaging over-100
such trajectories all having the same initial condition. At short times. the
ensemble distribution undergoes some initial spreading following which a
stable Gaussian distribution of constant width is obtained. The amplitude
of the distribution decays along the trajectory. In Figure 2.1b we plot the
logarithm of the ensemble population as a function of time. After some
transient behaviour, associated with the spreading of the 1initial
distribution, a constant exponential decay rate 1is established. The
asymptotic slope of this 1line gives the ground state energy of the
oscillator.

There are several problems with the simple minded algorithm described
in this section. The birth/death step causes exponential growth or decay of
the ensemble population. Thus at long times, if the population is decaying
there will be problems with small sample sizes while if population growth
occurs the available computer storage will be exceeded. Time step
dependence must also be considered. In the limit as At » 0 the separation
of the diffusion and birth/death processes is justified. For a finite time
step, however, it is an approximation which can lead to numerical errors.
Finally, the crude algorithm simulates states for which the wave function
is everywhere positive so that only the ground state of a system of Bosons
can be studied. In general, wave functions have regions of both positive

and negative density and a procedure for handling more general problems
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must be developed.

2.) Extension of the Basic Algorithm

a) Wave Function Symmetry

The Monte Carlo method for modeling the Schrddinger equation discussed
in Section 1.) dealt only with simulating terms in the Hamiltonian. So far
we have said nothing about boundary conditions or wave function symmetry.
We confine ourselves to considering only real wave functions. in general
such wave functions have positive and negative regions. Consequently a
technique for generating nodal surfaces in the sampled distribution must be
devised.

Anderson and Freihaut (1979) discussed a random walk method for
sampling the difference, § = w;WT; between the ground state wave function ¢
and a trial function yp. In general the function § will have nodes and
their random walk involves positive and negative systems which cancel when
opposite signed systems entered the same region of space. The method was
applied to several one dimensional problems and when used iteratively gave
a series of successive corrections to the trial function which improved the
efficiency and accuracy of ground state calculations.

We have considered using this idea for treating wave functions with
nodes. An ensemble containing positive and negative weighted components is
established. Members of the ensemble diffuse and replicate in the manner
described in Section 1.). By allowing opposite signed systems to annihilate
when they enter the same region of space, a node may be generated. With the

algorithm described in Section 1.) "death" could only occur as the random
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walkers climbed up the walls of the potential surface. When opposite signed
systems are introduced and annihilation occurs, the boundary conditions on
the wave function also give the possibility for "death".

Figure 2.2 again shows results from a quantum simulation of a harmonic
oscillator. Now however the initial condition was 50 positive réndom
walkers placed at +a and an equal number of negative systems at -a. The
annihilafion step was included at the end of each time step after the
systems had diffused and replicated. Two systems of opposite sign were -
allowed to annihilate if they were separated by a distance less than some
small value. From the figure we see that the ensemble distribution
propagates to the first excited state wave function after some transient
behaviour. Figure 2.2b demonstrates that the asymptotic population decay
rate gives the first excited state eigenvalue. Later in this section we
consider extending the annhilation procedure to more than one dimension and
in Section 4.) we discuss the question of annihilation of systems with many

identical particles.

b) Producing a Stable Ensemble

From equation (2.14) a stable ground state population may be obtained
by setting the value of the reference in the energy scale, Vhgp, equal to
the ground state energy E,. To use this method requires prior knowledge of
the ground state energy. We might consider setting V,or to some guess at Ej,
and monitoring the population as the simulation proceeds. Adjusting Vn.r so
that on average the population neither grows nor decays gives a means of
estimating Ej.

A dynamic adjustment procedure used by Anderson (1975) provides an

effective means of stabilising the population. We require a stable ensemble
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with average population N,. At the end of each time step a new value for

Vper is chosen according to the following expression
Vrefr+Ar = <V>. - a(NT~NC) (2.15)

Here N, is the instantaneous total number of systems in the ensemble and
<V>. is the average potential energy. The parameter o is a positive energy
which controls the size of the population fluctuations. As t1+» the spatial
distribution will be approximately constant and <V>, will not change -
appreciably with time. Choosing VrefT+AT according to (2.15), gives an
energy neference which is appropriately larger or smaller than <V>. so that
on average the births or deaths in the next time step will correct any
discrepancey between N. and N,. If the parameter o is too large, the feed
back mechanism may become unstable.

An understanding of the influence of the feed back mechanism descriﬁed
above can be obtained by expanding the distribution in terms of the
eigenfunctions {¢p}

Y(r,1) =} ap(t) én(r) (2.16)
n

Here the exponential decay factors appearing in equation (2.13) have been

replaced by time varying expansion coefficients apj(t). When Vper is varied

with time the coefficients no longer exhibit decoupled exponential decay.
To proceed we consider the Schrddinger equation in which the reference

energy varies

oy(r, n?_,
5%(2 v - [Eﬁ Ve - (V(E) - Vref(T)]] v(r, ) (2.17)

By substituting the expansion (2.16) into (2.17), using the fact that the

¢n are eigenfunctions of H and form an orthonormal set, and integrating
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over all space we find that the coefficients satisfy the following

differential equations

dap (1)
—%% Y L (EgVper( ™)) ap(1) (2.18)

These equations are coupled through the function Vhere(1). The explicit form
of the coupling can be found by writing the expression for the Vp.r
adjustment (equation (2.15)) in terms of the eigenfunction expansion.

When opposite signed systems annihilate one another, the total number
of systems in the ensemble at time t is proportional to the area under the

function |y(r,t)| thus we can write
N, = J |2 an(t) én(r)|dr
n
Similarly, the average of the potential energy at time T can be written as

J |2 ap(t) on(r)|V(r)dr
n

V>, =

J |2 an(1) oénlr)|dr
n

Substiting these results into (2.15) gives the following expression for the

time evolving energy reference

[ 17 an(t) onte)|V(r)ar
Vper(T) = n

[ 17 an(o) ontrmar
n

(2.19)
-a [J |2 an(t) on(r)|dr - Nc]
n

Equations (2.18) and (2.19) constitute a set of coupled differential
equations which describe how the amplitudes of the different eigenfunction
components change when Vnop is adjusted according to (2.15). A qualitative

understanding of the effects of adjusting V.o can be obtained by
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considering the behaviour of the solutions of (2.18) and (2.19) for a
problem where the eigenvalues and eigenfunctions are known.

Harmonic oscillator éigenvalues and eigenfunctions have been used, and
equations (2.18) and (2.19) solved numerically to give the solutions ;hown
in Figure 2.3a. The initial distribution was dominated by the first excited
state eigenfunction and contained small components of the ground and other
excited states. Through the nature of the couplings introduced in Vper(T),
the lowest lying state contained in the initial distribution is amplified -
at the expense of the other states. Further, at long times the amplitude
of the lowest energy initial state attains a constant value and the excited
state contributions decay to zero.

Behaviour similar to this can be observed in a random walk simulation
using the Vpop adjusting algorithm. The wave function is represented by an

ensemble of positive and negative systems and can be written in the

following form

¥, 1) = 1 s(r-rp(0)) = I s(r-rp(0)) (2.20)
P m

Here gp(w) and rp(t), respectively, give the positions of positive and
negative systems at time t. When y(r,t) is written in terms eigenfunction
expansion in (2.16), the expansion coefficients are obtained from the

overlap between Yy and the eigenfunctions so that

u

an(t) = [ ¥ (£,7) ¢n(r)dr

(2.21)

Z ¢n(£p('f)) - 2 ¢n(£‘_m('t))
p m

The second equality is obtained by substituting (2.20) and using the

properties of integrals over § distributions.
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Equation (2.21) can be used to resolve the ensemble distribution into
its eigenfunction components. Figure 2.3b shows the evolution of the first
five expansion coefficients calculated, using equation (2.21), during a
simulation of the harmonic oscillator in which V.o was adjusted acco?ding
to equation (2.15). The initial condition was an ensemble of fifty positive
systems at +a and fifty negative systems at -a. An annihilation step‘was‘
included in the algorithm. The ensemble is dominated by the ground state
distribution at long times.

It is interesting to note that the initial distribution for the random
walk calculation considered above c¢ontains no component of the ground
state. If the system of differential equations (2.18) and (2.19) isvsolved
with this initial condition the results shown in Figure 2.3c are obtained.
The first excited state establishes itself with constant amplitude while
the other excited states decay. Throughout the calculation the ground state
remains with zero amplitude. The qualitative difference between the
behaviour of the solutions of equations (2.18), (2.19) and the results of
the simulation is due to the fact that the equations do not include the
statistical fluctuations which occur in the simulation algorithm. Thus in
Figure 2.3b we see a component of the ground state enter the ensemble
distribution through statistical noise which is amplified and dominates the
asymptotic ensemble distribution.

We have seen that the Vnpgp adjustment algorithm can produce a stable
ensemble distributed according to the ground state eigenfunction. The
algorithm also provides a means of estimating the ground state eigenvalue
obtained as the average of Vngr which holds the population approximately

constant in the long time limit.
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¢) Orthogonal Filtering and Stable Excited State Distributions

In order to use the Vpor adjusting algorithm to obtain a stable excited
state distribution we need to devise a scheme to remove ground state
components which may build up as a result of statistical noise. ‘From
equation (2.21) the overlap between the ensemble distribution and the
ground state wave function is given by

(1) = I ¢ (rp(0)) = I 6o (rp(0) (2.22)
P m

By forcing ao(T) to remain approximately zero, ground state components can
be filtered from the distribution. To use equation (2.22), the ground state
wave function must be known in advance.

One procedure that ensures orthogonality is summarised as follows: At
the end of each time step we calculatevthe overlap with the ground state.
If ao(r) is greater than some tolerence § then the overlap must be reduced.
By removing a positive system or introducing a negative system, ao(r) can
be changed appropriately. If necessary the overlap can be increased in a
similar fashién. The total number of systems should not be directly altered
by the orthogonalisation step, rather, only the shape of the distribution
should be changed. In this way the rate of change of the population is not
directly influenced by the orthogonalization. By replicating and removing
opposite signed systems the relative numbers of positive and negative
components can be adjusted so that ag(t1) is forced to fluctuate around
zero.

Figure 2.4 shows the eigenstate decomposition of a harmonic oscillator
simulation which uses a Vngor adjusting algorithm together with the ground
state filtering scheme described above. The maximum amplitude of the ground

state wave function was used as the tolerance for the orthogonalisation. An
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initial ensemble consisting of fifty negative systems at both +a and —-a and
one hundred positive systems at the origin was used. This condition
resembles the second excited state of the oscillator. We see from the
figure that there is also an initial component of the fourth excited state.
As time is advanced the contributions from ¢, and ¢, decay and the first
excited state component grows and stabilizes; dominating the asymptétic
distribution. The ground state noise level does not build up during.the
calculation indicating that the orthogonalization procedure effectively ~
filters ground state components from the ensemble. There are, however,
significant components of the higher excited states which do not decay to
zero and which perturb the stable excited state distribution.

The procedure discussed above can be used to simulate higher excited
states. With such calculations, all the lower energy eigenfunctions must be
known and the ensemble distribution is held orthogonal to these states. As

an example consider the second excited state so there are two orthogonality

conditions to be satisfied.

ag(1) =) 9o (Ep(T)J -1 ¢ (rp(0)) =0 (2.23)
p m
a1(t) =) ¢4 (Ep(r)) - ) o1 (gm(r)) =0 (2.21)

The situation is now complicated because ¢q can have both positive and

negative values. There are a number of possible alternatives which are

summarised in Table 2.1.
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Table 2.1 Procedure for Maintaining Orthogonality to the ground and first
exited states

Tolerence Condition Corrective Action

insert withdraw

ag > 8o a; > 8, m* p*
a5 > 8o a; < &, - p;
ag < &g a, > 6, p; m;
ag < 8o a; < 8, p* m*

In the table, the notation m* represents a negative system which is in a
region of space where the value of the first excited state eigenfunction is
positive. Thus for example, if a, > 65 and the excited state overlap
a, > 8§;, the action which will correct thesé discrepancies and leave.the
total population unaltered 1is to introduce an extra negative system and
withdraw a positive system. Both changes should occur in regions where ¢4
is positive. An alternative to the replication and removal of opposite
signed systems is to change the sign of a single system. We have used this
alternative in applications only when there are no systems available for
replication in the appropriate region of space.

The excited state method detailed in this section has been used to
simulated the first few vibrational eigenstates of the H, molecule. The
vibrational potential surface presented by Kolos and Wolniewicz (1975) was
used. A ground state calculation was first performed and a histogram of the
ensemble distribution accumulated. Fitting a piece wise cubic polynomial
through this data gave a form for the ground state wave function which
could be wused for the orthogonalization step in the excited state

calculations. Eigenfunctions for the ground, first, and second excited
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vibrational states obtained in this way are presented in Figure 2.5. In
Table 2.2 we give the corresponding eigenvalues which were calculated from
the average value of V,.¢ required to hold the population approximately
constant. The ground state energy agrees with the result of Kolos_ and
Wolniewicz and the excited state energies are slightly too high. The
discrepancy probably results because of higher eigenstate impuriiies
(Figure 2.4) which may arise through ﬁoise introduced Dby . the

orthogonalization procedure.

Table 2.2. Vibrational Energies of the Hp Molecule (in 104°k)

v Random Walk Kolos and Wolniewcz (1975)
0 -5.19 ~5.20
1 -4.,58 ~4.60
2 ~3.97 -4,03

d) System Annihilation in Many Dimensions

For multidimensional systems the annihilation step becomes complicated.
When the system contains many indistinguishable particles, comparing two
systems requires all possible permutations of the particle labels to be
considered. With such systems the problem of identical particle statistics
becomes important. This question will be discussed in more detail in
Section 4.). A second problem stems from the difficulty in defining the
region of space occupied by a member of the ensemble. If a system occupies
only a single point and is thus represented by a multidimensional delta
distribution, the probability of two systems annihilating one another is

vanishingly small. In this case an ensemble with an extremely large number
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of members would be required otherwise the opposite signed systems could
never find one another, no annhilations would occur, and two opposite
signed ground state distributions would result. If the members of the
ensemble occupy a non—-infinitessimal volume of the configuration space, a
finite ensemble can be used.

The simplest means for giving the systems a finite size is to use é 3N
dimensional rectangular grid to define the configuration space. Instead of
being represented by a multidimensional delta distribution, each system now -
occupies a small hypercube. Results obtained using this procedure will
depend on the size of grid and on the number of systems in the ensemble. If
the grid were too fine and the ensemble population to small to fill the
space then opposite signed systems could easily avoid one another and
positive and negative ground state distributions would again result. The
problem can be remedied by increasing the number of systems in the
ensemble, which increases the computational effort involved with the
calculation. Alternatively, we may use a coarser spatial grid. Adopting the
latter measure means that the resolution of the spatial features of the
wave function, such as the nodal surfaces, will be poorer and the accuracy
of the eigenvalue effected. Ideally, the number of systems in the ensemble
may be increased till a particular spatial grid becomes "saturated". Beyond
this point, any increase in the number of systems will have no effect on
the calculation and the results will depend only on the spatial resolution.

A more effective scheme for dividing the configuration space is to
allow systems of opposite sign to penetrate the same regions without
annhilating one another completely. The positions of the systems are now
considered as the centres for a local wavefunction density which may take a

Gaussian form for example. In this case the width of the Gaussian is
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analogous to the grid size. The nodes of a wave function are generaly
curved sufaces in hyperspace. Using a local Gaussian density should provide
a better representation of these surfaces than the rectangular grid. Thus
fewer systems occupying larger volumes should give comparable accuracy.

When represented by a Gaussian density profile, the spatial extent of

system i is given by

ca(pepi)? '
pi(r) = (%]3N/2 omalrrt) (2.25)

The overlap of the density profiles for systems i and j is then

s(|ri-rd]) = fos(r)os(riar
o (2.26)
3Nz -asp(ri-rd)2

When represented as delta distributions the annihilation probability for
opposite signed systems was zero if their respective infinitessimal volume
elements did not overlap and one if there was any overlap -at all. A

consistent definition for the annihilation probability is thus

o]

Pallri-rd]) =2 [ stoya (2.27)

|pi-rd]
For system with Gaussian density the annihilation probability becomes

3N/2
2(52)

1}

_ 2
e ases ds

Pal|ri-ri|) et

(2.28)

1-erf (5|pi-ri|)

An efficient scheme for implementing the annihilation step involves

first using a coarse rectangular grid to find the systems which are close
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to one another. We then evaluate the probabilities and perform the
annihilation. If several cancellations are possible we proceed in order of

probability.

e) The Hydrogen Atom

To demonstrate the use of the techniques described in this section the
lowest energy S and P states of the hydrogen atom have been considered.
Despite its analytic solution, this example presents a non-trivial -
numerical problem. Grimm and Storer (1969) developed an iterative method
for solving the Schrddinger equation which employed a short time
approximation to the Green's function. The approach is useful for problems
which can be reduced to one dimension and as an example they studied the
S-states of the hydrogen atom. Anderson and Freihaut (1979) studied the
lowest energy S—-state using a diffusing random walk in three dimensions and
as a starting point we have repeated this calculation.

In atomic units and imaginary time the Schrddinger equation for the

hydrogen atom is

% = %‘7211’ - (V(r')"vref)\l’

where V(r) = -T/P

The nuclear attraction term gives an infinite birth rate at the nucleus,
thus sampling small distances may lead to uncontrollable growth of the
ensemble population. To prevent problems caused by the nuclear attraction
we have used the method suggested by Anderson (1976). Any electrons
entering a small sphere of radius r, about the nucleus experience an

averaged nuclear attraction given by
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Vpue(r<re) = =375 2 r”1

here Z is the charge of the nucleus. If r, is of the order of the diffusion
step size then the error in using the integrated nuclear attraction will be
of similar magnitude to the finite time step error.

The initial ensemble in our calculation on the ground electronic state
was a set of 200 positive systems. In each system the electron was placed
randomly within a cube centered on the nucleus having a side lengtﬁ of
5 a.u.. We used a time step of 0.01 a.u. and allowed the systems to diffuse
and replicéte throughout the three dimensional configuration space.
Adjusting Vpor maintained a stable ensemble. After equilibration, averages
were accumulated for 200 a.u.. The average value of Vn.or gave an eigenvalue
estimate of Eqg = -.504 + 0.005 a.u. which is in good agreement with the
value obtained by Anderson and close to the analytic result (-0.5 a.u.).

To test the methods for simulating excited states which have Dbeen
developed in this section we now consider modelling the degenerate 2p state
of the hydrogen atom. The different p states have nodes in their angular
distributions and an ensemble containing opposite signed members which may
annihilate one another must be used. In our studies we let each system
represent a centre of Gaussian density as described in the previous
subsection and the annihilation probability for opposite signed systems is
given in equation (2.28).

A Vper adjusting algorithm was used to maintain a stable ensemble and
the ground state components were removed from the calculation by the
orthogonalization procedure described earlier in this section. To obtain a
stable 2p state, the ensemble distribution must also be held orthogonal to
the degenerate 2s state. Thus at the end of each time step the overlap

between the ensemble distribution and both the 1s and 2s wave functions was
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evaluated using the analytic forms for these functions. The positive and
negative populations were adjusted as outlined in Table 2.1 to keep the
overlap between the sampled distribution and the 1s and 2s states small.

We have performed calculations usihg different values of the Gaussian
width parameter and also considered the effects of changing the number of
systems in the ensemble. A time step of At = 0.01 a.u. was used in all
these calculation. In Figure 2.6a we present the eigenvalue estimate as a
function of the width parameter a. When a is increased the Gaussian profile -
narrows. For systems which occupy larger volumes of configuration space
(low values of a), we see that the eigenvalue is over estimated by the
quantum Monte Carlo calculation. These higher energies result because the
larger systems annihilate one another too rapidly in the region of the
node. As a is increased, the cancellation of opposite signed systems is
less effective and the eigenvalue estimate falls. When a finite ensemble is
used, the eigenvalue estimate tends to the ground state result in the limit
as a » o,

As discussed earlier in the section, fixing the "size" of the systems
determines the spatial resolution of the <calculation. For a given
resolution, we may increase phe number of systems in the ensemble, N, and
the eigenvalue estimate is seen to increase. This can be understood in
terms of packing more ensemble members into the finite volume of
configuration space sampled by the wave function. Eventually the total
volume to be sampled will be adequately filled by systems of a given size
and beyond this point the eigenvalue estimate will not change as N is
increased. The energy obtained in the 1limit as N > » will be the best
eigenvalue estimate for a given spatial resolution. Further, this

asymptotic estimate should be an upper bound for the energy since poorer
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nodal resolution causes excessive annihilation in the region of the node.

Figure 2.6b shows how the calculated electron distribution for the
p state is influenced by changes in the nodal resolution whilst holding the
number of systems fixed. We accumulated separate histograms of the distance
of the electron from the nucleus for the positive and negative systems.
These two distributions were always found to be identical within “the
statistical uncertainty. In the figure we present the radial electron
density obtained from the average of the positive and negative -
distributions. For comparison, the analytic 2p electron density is also
given. We see that as the size of the systems is increased the maximum in
the electron density shifts to larger r. Electron density is depleated
within the region of the node (r=0) due to the excessive annihilation of
the large systems. When the systems are too sméll and there are
insufficient numbers to fill the space, the electron density penetrates too
close to the nucleus due to ineffective annihilation. Figure 2.6c shows
that increasing the number of systems for a given nodal resolution pushes
the electron density out since annihilation becomes more effective as the
space is filled.

Since the 2p state is degenerate our ensemble distribution will be a
linear combination of the 2py, 2p+1 and 2p-q functions and the distribution
on average is isotropic. To demonstrate that the orthogonalization and
annihilation procedures are effective in producing a stable node in the
orientation space we must construct a coordinate system which rotates with
the sampled distribution and project the wave function onto this reference
frame. We have done this by using the vector defined by the average
position of the positive systems as the x—axis in a coordinate system which

is now fixed to the moving ensemble. By projecting the ensemble
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distribution onto the x-y plane in this coordinate system and accumulating
a two dimensional histogram, the angular resolved distribution presented in
Figure 2.7 was obtained. The two opposite signed lobes of the 2py wave
function are seen, indicating that a stable excited state distribution can
be simulated. ‘

Anderson (1976) has performed quantum random walk calculations on'thé
2p state of hydrogen but his method requires prior knowledge of the nodal
surface. If a random walker crosses the node then its walk is terminated. -
Anderson restricted his random walks by terminating those which crossed the
plane x = 0 and in this way he modeled the positive lobe of the 2py
function. The fixed node method is discussed in more detail in Section 4.)
where we consider simulating wave functions describing systems of identical
Fermions. The nodal surfaces of such wave functions are not known exactly
so the fixed node approach can only be applied approximately.

It should be noted that the 2p state is particularly difficult to
simulate using systems which annihilate one another. The reason for this
difficulty is that the wave function changes very rapidly in the region of
the node. Due to these large changes in density over very short distances,
high resolution of the configuration space is required. For this reason
large numbers of systems occupying very small volumes must be used.
Resolution of the wave function at short distances is very important with
an attractive coulomb potential as the energy is very large in this region.
The eigenvalue estimates presented in Figure 2.6a could be improved by
using many smaller systems but the calculation soon becomes intractable.

Fortunately, for other interesting systems, the wave function does not
change so rapidly at the node and the behaviour around the nodal region is

not so important for determining the energy. Consequently coarser
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resolution of the configuration space can be used and accurate results
obtained. We shall see in the final section of this chapter that the nodal
surfaces in the wave functions of systems containing a few fermions are
adequately described wusing relatively coarse resolution and exce;lent

estimates of the eigenvalues are obtained.

3.) Expectation Values and Importance Sampling

a) Expectation Values

So far we have described a scheme for producing a stable ensemble
distributed according to a particular eigenstate of a system. A method for
estimating of the eigenvalue has also be obtained. Expectation values of
other operators may be calculated using the ensemble. In this section we
consider calculating the expectation value of a time independent
non-differential operator A.

If the wave function is real, equation (2.6) gives that the expectation

value of A is
> = | 6%(r) A(r) ar

Integrals of this form can be evaluated numerically using a Monte Carlo
method in which ‘the function A(E) is averaged over an ensemble which
samples the distribution ¢2(£). The random walk method, however, only
produces an ensemble distributed according to ¢(r). A ¢2(£) distribution
may be sampled by appropriately weighting the contributions of each system
in the ensemble. Once a stable ensemble distributed according to ¢(£) is

established, systems replicate most rapidly in the regions of highest wave



33a

ZesC¥)1ed

R x 10##-10 m

fig. 2.8 b

0

I |
500 1000
Time x 10*#-15 g

|
1500



34

function density. Due to this feature of the random walk method, the
asymptotic number of descendents of a particular system is proportional to
the wave function in the region sampled by the parent. Thus weighting the
contributions of each system by the number of descendents it produces at
long times, enables a ¢2(£) distribution to be sampled. Kalos (1967, 1970)
has described a similar procedure for calculating expectation vélues from
the Green's function Monte Carlo method.

The behaviour described above is demonstrated for the one dimensional -
harmonic oscillator in Figure 2.8. Figure 2.8a shows the ensemble
distribution weighted by the descendent numbers for different delay times.
It is seen that the product distribution converges to ¢*(r) in the long
time limit.

The curves are the result of averaging over many segments of the random
walk trajectory. Since its distribution is stationary, the ensemble at any
time can be wused as a parent distribution and the history of its
descendents monitored. An efficient sampling .cycle can be devised in which
each ensemble is used as both a parent distribution and when determining
the descendent weights for a previous parent ensemble.

Figure 2.8b shows that when the weighted ensemble distribution relaxes
to ¢2, the expectation value of the potential energy may be estimated. This
estimate is plotted as a function of delay time to show the asymptotic
convergence. The ¢2 distribution is more strongly peaked around the minimum
than ¢ so smaller values of the potential energy make more important
contributions. Consequently the potential energy estimate decays as the ¢

distribution is modified.
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b) Importance Sampling

The Quantum Monte Carlo algorithm can be made more efficient if an
approximate form for the wave function is known. Importance sampling
involves using an approximate wave function to guide the random walk into
the important regions of space. Kalos, Levesque and Verlet (i974)
successfully used the idea to perform Green's function Monte Carlo
calculations on a hard sphere quantum fluid. Ceperly derived an equation of
motion for the importance sampled distribution and Anderson (1980) used a -
drifting and diffusing random walk method to simulate it. The importance
sampling function may be the wave function obtained from a variational
calculation or some functional form concocted from physical intuition.

Suppose the wave function, ¥ (g,r), is peaked in some region and that
an approximate form or trial wave function yr(r) is known. The function
f = Yyt will be very strongly peaked in the important régions of
configuration space; An equation of motion for f can be derived as follows:

We use a trial function which is independent of 1 so that
v oL 9 (2.29)

Now consider the quantity V?f. By some simple manipulations of vector

calculus summarised below
VAP = Vo (Vyyp) = wpViy + 2V VY + yViyr
and since C OV (VYT) = VWL Vyp + YV

we find vir

]

YpV2y + 2V, (YVyp) = YVZyr

Rearrangeing gives

2
v2y %; [v2r - 2v.(f%%1] LY $T ] (2.30)
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Substituting equations (2.29) and (2.30) into (2.9) and multiplying

throughout by Yyt we obtain the following equation of motion for f

2 2 A
) lemk Vet - ) [Tn—‘]:vk.(fwnw) - (%"Tﬂ = Vper )f (2.31)
K K

The first term on the right hand side describes the familiar diffusion
process while the last term resembles a population growth or decay térm.
The second term has a form similar to an equation which describes how- the
density changes due to drift which is induced by an applied velocity field A

vir).

2,0 _ V. (pv)
< v

A finite difference scheme for simulating a drift process involves
incrementing time by At and moving each system in the ensemble through a
vector displacement determined by the product of the drift velocity at the
point sampled by the ensemble member and the time step so that the drift
displacements are Ar = v(r)Ar.

Assuming the different terms operate indepentently over a small enough
time step, equation (2.31) is modeled by a diffusion and reaction procedure
together with a drift step. The drift velocities are determined by the

importance sampling function and
vik = B%/my Ve lnyp (2.32)

As a result of the drift term, systems move out of regions where Y1 has its
minima and towards the regions where the function is a maximum.

With the Dbasic quantum Monte Carlo procedure the birth rate was
determined by the potential function V(g). Generally the potential energy

is a rapidly varying function of position particularly for systems
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characterised by harsh repulsive core interactions. Rapid variations in the
potential surface pose two related problems for the basic quantum Monte
Carlo method: First, 1large fluctuations in the population may occur
resulting in poor statistical properties. Secondly, the separation of the
diffusion and birth/death processes is only valid if the potential does not
change substantially during the diffusion step. For this conditon td be
met, very small time steps must often be employed.

A useful feature of the importance sampling equation of motion (2.31)
is that the birth rate is determined by the quantity ﬁwT/wT where ﬁ is the
Hamiltonian operator. If the trial function were the exact wavé function,
the Dbirth rate for the importance sampling algorithm would be the
eigenvalue E = ﬁw/w. In this case the birth rate becomes independent of
position, thus a perfectly stable ensemble is obtained. If yr approximates
Y, the birth rate is no longer be a constant but will be a slow varying
function of position. With a reasonable choice for yr the population
fluctuations are thus reduced.

Use of the short time approximation presents a somewhat different
problem in the importance sampling random walk. Since the birth rate is now
a slow varying function of position, the separation of the birth/death term
from the drift and diffusion processes in the 1limit as At1»0 should be a
ver& good approximation. However, the separation of drift and diffusion may
present a significant source of error. Importance sampling trial functions

often involve pair correlation terms (Jastrow (1956)) which take the form

e—G(r)

where u(r) is an effective pair potential. The drift velocity will depend

on the derivative of this potential and may have a rapid variation with
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position. Consequently using the drift displacement, Ar = vAt, in which the
drift velocity is assumed constant over the small step may introduce an
error in the random walk path. Anderson (1985) has recently considered this
problem and finds that large time steps may be used without introducing
significant errors by employing an average drift velocity. .

The drifting random walk described above gives an ensemble distributed
according to f = wa; An estimate of the exact eigenvalue can be obtained
directly with the f distribution by averaging the "local energy" ﬁwT/wT.

This result is proved by considering the average

CHYT/yp>e f ¢wT%%I dr /J Yypdr

]

[ vhwpar 7 [ vupar

Due to the fact that the Hamiltonian is an hermitian operator, the above

expression can be written as
KHVT/yp>e = j Yrfvdr, j Pyrdr
Finally, since ﬁw = Ey we obtain the result
E = <HVp/yr>r | (2.33)

The expectation values of other quantities can only be obtained
approximately wusing the importance sampled distribution. Averaging
quantities over the distribution Yyr will give approximate expectation
values accurate to order § = (w—wT). We can improve the estimate of the

expectation value by noting that
8% = v* - 2yyr * Y’

Thus, to order 62, we can use the following result, to extrapolate
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importance sampled averages

The quantity <A>yrz can be obtained from variational calculations which

will be discussed in Chapter 4.

4,) Identical Particle Statistics

Particle indistinguishability has been ignored in our development of
the quantum Monte Carlo method. Consequently the procedure 1is only
applicable to systems of identical particles obeying Boltzmann statisties,
that is the particles are distinguished by labels. The ground state wave
function of a system of labeled, identical particles is symmetric with
respect to particle interchange and thus identical to the Boson ground
state. In later chapters we use this feature and employ the basic quantum
Monte Carlo method together with importance sampling to study the ground
state properties of assemblies of Bosons including liquid uHe, solid Ho and
some small clusters of water molecules.

This section, however, considers methods for incorporating Fermi
statistics in quantum Monte Carlo calculations. Fermion wave functions must
be antisymmetric under particle exchange. Further, the particles may have
different spins. We first review some methods for handling Fermi statistics
in quantum random walk calculations. The method described in Section 2.)
for generating spatial nodes in the ensemble distribution is then extended,
enabling systems of indentical particles to be modelled. For systems of

Fermions the modifications involve including spin variables in the
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coordinate space and introducing a Monte Carlo procedure for sampling the
permutation operators. In principle the method is exact, however practical
approximations including finite time steps and approximate methods for
handling the annihilation of opposite signed systems must be usedf We
demonstrate that the method can be employed to model systems of a few

Fermions by considering the lowest energy spin states of atomic helium and

lithium.

a) The Fixed Node Approximation

A ground state solution of the Schrddinger equation which is
antisymmetric with respect to particle interchange will result if the
configuration space available to each pair of identical particles is
divided symmetrically by a nodal surface. The spatial distribution on
either side of the surface will differ by exchange of the two particle
labels. Due to this antisymmetry we need only consider random walks which
sample one side of each nodal surface. Thus. the nodes may be treated as
boundary conditions which require ¢ = 0 outside these surfaces.

Consider the example of three identical fermions each moving in three

dimensions. One choice of nodes which symmetrically divide the space are

the surfaces
Xy = Xp, X1 = x3 and xp = x3 (2.35)

By restricting our quantum random walk to sample only those regions in

which

X1 > X2 > X3 (2.36)

we Will generate the wave function distribution on one side of each nodal



41

surface. The nodes are treated as hard absorbing walls thus if a system
diffuses out of the region defined by equation (2.36) it is killed. The
full antisymmetric wave function is constructed by reflecting the random
walk distribution in the nodal surfaces and changing its sign.

Solutions generated in the manner described above are antisymmetric
however there is no guarantee that they will be the lowest energy, physical
solutions. There are an infinite number of possible nodal surfaces which
could be used to give an antisymmetric distribution, equation (2.35) is but
one example. In general the nodes of the physical solution are unknown and
they will be complicated by the particle interactions. If the actual nodes
could be used as input to the calculation described above, exact results
would be obtained. Anderson (1976) suggested that the nodal surfaces of
wave functions obtained from variational calculations could be used as
boundary conditions for random walks and this idea provides the basis of
the fixed node approximation.

The fixed node approximation reduces ‘the problem of treating an
antisymmetric wave function having regions of both positive and negative
density to a problem involving a positive definite distribution sampling a
confined region of space. Positive definite distributions are easily
interpreted as probability densities for random walks.

Importance sampling methods can be used to improve the efficiency of
the fixed node random walk procedure. The antisymmetric trial function, vy,
obtained from variational calculations may involve Slater determinants
together with electron correlation factors. Ensemble members drift, diffuse
and replicate in the manner described in Section 3.). Now, however, the
random walk of a system is terminated when a move causes Yt to change sign.

Consequently the importance sampled, fixed node procedure samples a



42

distribution f = Y7¢ where ¢ is not the exact Fermion ground state wave
function, Yp, but rather it is best antisymmetric wave function having the
nodal surfaces of VY.

It can be shown that the energy estimated from an importance sampled,
fixed node quantum Monte Carlo calculation is an upper bound to the Fermion
ground state energy (Ceperley (1981) see also‘Reynolds et al. (1982)). Thus
a variational approach could be used to improve the fixed node results. In
principle the trial function could contain variational parameters which
adjust the positions of the nodal surfaces. In practice, however, nodal
sufaces in many dimensions are difficult to parameterise. Kalos (1984) has
considered using an idea of Reatto (1984) to optimise nodal surfaces in
fixed node calculations.

The basic fixed node approximation has been used by Anderson to study a
number of small molecular systems (J.B. Anderson (1976), (1979)) and he and
his coworkers have also used importance sampling methods [J.B. Anderson
(1980), F. Mentch and J.B. Anderson (1981), J.B. Anderson (1985)). A
detailed description of the importance sampled, fixed node procedure has
been given by Reynolds et al. (P.J. Reynolds, D.M. Ceperly, B.J. Alder and
W.A. Lester, Jr. (1982)) who also considered several small molecules. The
method has been applied to study the properties of metallic hydrogen
(D.M. Ceperley and B.J. Alder (1981)) and was used as the starting point in
a study of the ground state properties of the one component plasma
(D.M. Ceperley and B.J. Alder (1980)). The fixed node approximation has
been used in connection with the Green's function Monte Carlo approach to
calculate the potential energy surface of a small molecule [J.w. Moskowitz,

K.E. Schmidt, M.A. Lee and M.H. Kalos (1982)).
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b) Nodal Relaxation and Transient Estimation

Ceperley and Alder (1981) devised a means of relaxing the nodal
surfaces of an importance sampled fixed node distribution. If the diffusion
process begins 1iIn an antisymmetric distribution then in principle‘ the
antisymmetry should be maintained by an importance sampling random walk
which permits diffusion across nodes of the trial function. Since 'the
initial distribution is antisymmetric, it is orthogonal to all states with
energy lower than the Fermi ground state and consequently this state should )
dominate the asymptotic distribution. The ensemble members must now carry a
sign so that systems which diffuse aéross the nodes of Yr an even number of
times have positive weight, while an odd number of nodal crossings result
in negative weights. Changing the sign in this way antisymmetrises the wave
function. Asymptotically, the distribution sampled by this process will be
Y7y, Wwith yp the exact fermion ground state.

There is a serious stability problem with the method described above.
In Section 2.) it was observed that a component of the lowest energy state
could enter an excited state distribution through fluctuations.
Amplification of this noise caused the excited state signal to be buried
beneath the ground state at long times. In the same way, a fluctuation of
the Boson ground state will grow, and in the long time 1limit, dominate the
distribution sampled by the Fermion random walk outlined above. The rate
at which the symmetric noise can build up over the antisymmetric signal
will depend on the difference between the Bose and Fermi ground state
energies, Eg and Ep respectively. Following Schmidt and Kalos (1984) the
evolving wave function containing Fermi and Bose components can be written

as

U}(E’ 1_-—-)00) = e—EFT[aFwF(B) + aBl])B(E) e—(EB—EF)T] (2.37)
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In Section 3.) we saw that with an importanced sampling calculation the

energy estimate is obtained from the following

Bp(0) = [ wp(®F (B, DR [ wr(®) &, o (2.38)

Since YT, the antisymmetric trial function, and yg are orthogonal, the
Bose component in equation (2.37) will not contribute to the energy
estimate and Ep(t»>=) = Ep. The symmetric components however will contribute
to the variance (Kalos (1981) ) which will grow exponentially as e'(EB”EF)T.
Provided the inital distribution obtained from the fixed node calculation
is close to the true fermion ground state, the nodes may have sufficient
time to relax to their actual positions and give an estimate of the true
Fermion energy before the noise becomes too seveﬁe. For this reason the
method is refered to as "transient estimation".

As mentioned earlier Ceperley and Alder (1980) obtained an estimate of
the ground state energy of the electron gas using nodal relaxation from a
fixed node calculation. Lee, Schmidt, Kalos and Chester (1981), used
transient estimation with Green's function Monte Carlo to obtain the ground
state energy of liquid 3He. With their approach the energy estimate is

always an upper bound of the Fermion ground state energy.

c) System Annihilation for Identical Particles

In Section 2.) we described a procedure for simulating a wave function
with nodes. The random walk involved different signed systems which
annihilate one another if they enter the same region of space. With many
particles, the problem of determining whether two systems occupy the same
region of space is complicated if the particles are indistinguishable. For

distinguishable particles we may allow two systems of opposite sign to
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annihilate if the two sets of labeled coordinates coincide within some

tolerence. Thus if systems i and J are of opposite sign they annihilate one

another if
leqi-ri3] <8, |rot-rad| < 6,..e, |ont-ryd] < 6
which we can summarize as
Irterd] < 8 (2.39)

When a system of indistinguishable particles is considered however, the
comparison of two configurations must ignore the particle labels. Thus in
order to decide whether two systems are in the same region of space we must
compare a labeled configuration of one system with all possible
configurations of the other system, obtained by permuting the particle
labels. Consequently if two systems of indistinguishable particles are of
opposite sign they can annihilate one another if a permutation ,P, can be

found so that the following condition is satisfied
|ri-prd| < A (2.40)

Here the pehmutation operator ,P, permutes the particle labels in the
configuration. The procedure outlined above could in principle be applied
directly to simulating a system of identical Bosons.

For systems of Fermions the question of annihilation 1is more
complicated. Fermions may exist in different spin states and further the
Fermion wave function must be antisymmetric with respect to the interchange
of a pair of identical particles. The first of these features of Fermion
systems may be incorporated into the system annihilation step by extending

the coordinate space to include spin variables. Spin variables do not
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appear in the Hamiltonian so they will be uneffected by the diffusion and
birth/death processes in the random walk. With the extended coordinate
space, the comparison of two systems is now based on both the spatial
configuration and the set of spins of each system. Thus, systems i and j
will be 1in the same region of the extended coordinate space if a
permutation operator can be found which causes both the follohing

conditions to be satisfied simultaneously

ri-=prd| < a
and (2.41)

st -psd =0

With a random walk calculation, the wave function is the distribution
function for the ensemble of positive‘ and negative systems. Thus the
antisymmetry of the Fermion wave function requires that an odd permutation
of the particle labels in a particular system should change the sign of the
system and an even permutation will leave the sign unchanged. Consequently
the antisymmetry requirement determines which systems are able to
annihilate one another. Two opposite signed systems will annihilate if an
even permutation can be found which causes the conditions in equations
(2.41) to be satisfied. Systems‘ of the same sign can also annihilate
provided an odd permutation is found which satisfies these conditions.

Since the wave function is antisymmetric, on average there will be
equal numbers of positive and negative systems in the ensemble. Suppose
that the average total number of systems is n. On average the total number
of like and unlike system comparisons which must be made in order to
determine all possible system annihilations is thus n(n-1)/2. If there are

N particles in each system there will be N!/2 even or odd permutations
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which must be considered in each of the above comparisons. The comparison
with a particular permutation involves only the evaluation of the square of
a distance in 3N dimensional space. Due to the n? x N! dependence, there
will be a very large number of these computations for only a modest ngmber
of particles.

We have considered a Monte Carlo procedure for sampling the permutaéion
operators and in this way we reduce the N! dependence. The method involves
diffusion and replication in the usual way. At the end of each time step )
all possible cancelations are considered. Spin coordinates are included and
the particles must be distinguished by labels. Thus opposite signed systems

i and j can annihilate if

|ri-rd] < a
and

st-sd=0

The particle indistinguishability is accounted for by including an
antisymmetrization procedure at the end of each time step. In this
procedure a randomly selected permutation operator is applied to each
system. The labels on both the space and spin coordinates are permutated
and, depending on the parity of the applied operator, the sign of the
system is appropriately changed.

The procedure outlined here assumes that ‘the time scale for the
diffusion and birth/death processes is slow. Thus systems which are capable
of annihilation remain in the same volume long enough for the neceséary
permutation operator to be sampled by the Monte Carlo method. The
assumption is very reasonable for systems containing a few particles and

may prove useful with larger systems.
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d) Spin States of Atomic Helium and Lithium

The method for treating systems of Fermions described above has been
applied to the lowest energy states with different spin multiplicity in
helium and the ground state of the lithium atom. We assume a nucleus with
charge Z and infinite mass fixed at the origin so in atomic unit; the

Hamiltonian for the N electron system can be written as follows

with

2. The

Here rj = (x;2+y;2+2z;2)2 and rij = ((xi—xj)2+(yi—yj)?+(zi~zj)2)
electrons were allowed to diffuse in 3N dimensional space and each system
replicated or died depending on its potential energy, V(g). Electrons
entering a small sphere about the nucleus experienced the averaged nuclear
attraction discussed in Section 2.). A Vper adjusting procedure was used to
keep the total number of positive and negative systems approximately
constant.

The position of each system represented a centre of Gaussian density.in
3N dimensions as described in Section 2.) and the error function
annihilation probability given in equation (2.28) was wused. Pairs of
opposite signed systems could only annihilate if they also had the same
sets of 1labeled spins. At the end of each time step the Monte Carlo
antisymmetrization process described in the previous subsection was
implemented. For helium there are only two permutation operators to be

considered: The identity, an even operator which leaves the particle labels

unchanged, and the odd operator which exchanges the particle labels. The
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Monte Carlo antisymmetrization for the two electron system thus involves
exchanging the particle labels in half the systems of the ensemble at the
end of each time step.

The singlet state of helium involves a pair of identicle particles
having different spins. Thus the singlet state could be studied by
considering the particles as distinguished by their spins. This approach is
equivalent to performing a fixed node calculation. For the singlet state
the node is in the spin part of coordinate space and its position is kﬁown )
exactly, sq1 = sp. Rather than using this simplifying feature of the singlet
state and performing a random walk with only positive systems on one side
of the node, we have used opposite signed systems as described above.

An equal number of positive and negative systems were used as the
initial condition for our simulation. The particles in each system were
positioned at random within a cube centered on the origin. Initially all
systems had particle 1 with spin up and particle 2 with spin down.

Figure 2.9 shows projections of the singlet state wave function
obtained from this calculation. Two dimensional histograms of the
distributions of distances of the two labeled electrons from the nucleus
are presented. After equilibration, separate histograms for positive and
negative systems were accumulated and appear as Figures 2.9a and 2.9b
respectively. The histograms represent the different signed lobes of the

function
Yo(r1,r2) ri’ra.

An examination of the distribution of 1labeled spins in several
instantaneous equilibrated ensembles indicated that all the positive

systems had particle 1 with spin up and particle 2 with spin down. All the
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negative systems were found to have the permuted set of labeled spins. In
this way the positive and negative systems could exist in the same region
of configuration space without annihilating one another. Once this
situation 1s established, no more annihilations can occur since a label
permutation will change the sign of the ensemble member. The result is.thus
the propagation of +two independent, opposite signed, ground state
distributions.

Within the independent electron approximation the antisymmetrized -
singlet state eigenfunction for the helium atom can be written in terms of

the hydrogenic wave function as follows
15(1)1s(2) (a(1)8(2)-8(1)a(2))

Here o and B are the spin eigenfunctions and the 1s wave function has the

form
1s(r) = e~Zr

The opposite signed terms in the above result approximate the two lobes of
the ensemble distribution. Effects of electron interaction can be estimated
within the independent electron approximation by variational calculations
which use the nuclear charge as a parameter. The best variational wave
function using hydrogenlike orbitals is compared with the quantum random
walk result in Figure 2.10. The differences between the variational
(Figure 2.10b) and quantum Monte Carlo (Figure 2.10a) wave functions result
from the fact that correlations between the motions of the electrons are
ignored in the assumed variational form. The quantum Monte Carlo
calculations include the electron correlation exactly.

In Table 2.3 we summarize the singlet state energy predicted by
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different approximations and compare these values with the best quantum
Monte Carlo result. The essentially exact result of Pekeris (1959) was
obtained using a variational form which allowed for electron correlation.
The quantum Monte Carlo value is lower than the results obtained using the

independent electron approximation.

Tabel 2.3 Ground State Energies of Helium Atom

Wave function Energy (au)
Product of He* orbitals -2.75011
Product of hydrogenlike orbitals ~-2.84251

optimized by SCF method

Best independent electron wave function -2.8619!
Random Walk -2.8770
Pekeris (1959) ~2.9037

'These values are taken from Lowe (1978)

The triplet state of the helium atom may be simulated in a similar
fashion; Now, however, both particles are given the same spin and systems
should thus annihilate more often. For the singlet state we saw that the
annihilation step was only effective in modifying the initial condition so
that two non-interacting ground state distributions could be established.
With the triplet state, however, annihilations will continue in the
equilibrated ensemble and the extra deaths which occur at the spatial node
will contribute to the eigenvalue estimate.

In Figure 2.11 we present the eigenvalue, calculated from the average
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of Vper, as a function of the total number of systems in the ensemble. The
two curves are the results obtained with different values of the Gaussian
width parameter. Opposite signed systems may avoid one another when the
systems occupy only small volumes of configuration space (a =5 a.u.‘a for
example) and there are too few systems in the ensemble. Under these
circumstances annihilation at the nodes will be ineffective and the
eigenvalue obtained from the death rate of the population, is
underestimated. As the number of systems in the ensemble is increased the
calculated eigenvalue tends asymptotically to an estimate of the energy of
the system.

The accuracy of the asymptotic estimate is determined by the size of
the volume element occupied by each system. With larger systems the
asymptotic convergence with increasing number of systems is faster. For
a =2 a.u."2 the energy estimated is converged at 300 systems. Beyond this
point the eigenvalue estimates obtained with different numbers of systems
are consistently about 0.5% higher than the value of -2.175 a.u. reportedly
Pekeris (1959). This systematic error results from the coarse resolution of
the configuration space due to the finite volume occupied by the systems.

The_triplet state wave function obtained from the quantum Monte Carlo
calculation 1is presented in Figure 2.12a. Separate two dimensional
histograms for the positive and negative ensembles were again accumulated.
In the figure we present the full triplet state wave function constructed
as the sum of the positive and negative ensemble distributions. From
Figure 2.12a it is apparent that the annihilation procedure has successfuly
established a nodal surface corresponding to rq = ro.

In the independent electron approximation the triplet state has the

following form
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(1s(1)2s(2) - 1s(2)2s(1) Ja(1)a(2)

Here the 2s hydrogenic function is

2s(r) = (2--1r’)e—‘zr‘/2

The best SCF approximate triplet state eigenfunction having this form is
presented in Figure 2.12b. Comparing this function with the exact quantum
Monte Carlo generated distribution we see that the neglect of electron .
correlation gives a wave function which is too strongly peaked.

As a final example which demonstrates how the permutation operator
sampling scheme works for more complicated systems we have considered
simulating the lithium atom.

There are six different permutation operators for the three particle

system which are summarized in Table 2.4

Table 2.4

operator exchange result
decomposition

P 1 123
Py (12)(13) 312
P3 (12)(13) 231
Py (12) 213
Pg (13) 321
Pg (23) 132

Py is the unit operator which leaves the particle lables unchanged. The
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parity of a permutation operator is determined by the number of exchanges
into which the permutation can be decomposed. If there are an even number
of exchanges the operator is even. Thus in Table 2.4 Py, P, and P3 are even
operators while Py, Pg and Pg are odd. When each of the above operators is
applied from the left to the ordered triple 123 the result indicated is
obtained. |

The procedure for simulating the lithium atom is identical to that
described above for helium. Now, however, after the systems of labeled
particles have diffused, replicated and annihilated, we permute the
particle 1labels in each system by applying one of the six operators
selected at random and change the sign of the system depending on the
parity of the operator.

In Figure 2.13 we present some preliminary results obtained for the
lowest energy doublet state of the lithium atom. The figure shows the
convergence of the eigenvalue estimate as a function of the number of time
steps. Relaxation from the initial uniform cube of electron density is
demonstrated. The points are the results of averaging Vpep over each block
of 5000 time steps. Fairly coarse resolution (a = 2 a.u.”2) and an ensemble
of 1OOQ systems were used in this calculation the eigenvalue estimate
obtained by averaging over the last 100 a.u..of the quantum Monte Carlo run
is =7.488 £ 0.045 a.u. in excellent - agreement with the observed value

~7.4820 a.u. obtained from the sum of the ionization energies (Weast

(1983) ).
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Conclusion

In this chapter we have described the basic random walk methods which
will be employed in subsequent chapters to study the ground state
properties of small molecular clusters and bulk phase quantum syétems
including solid Hp and liquid ”He. The random walk approach discussed in
this chapter will also be extended to treat quantum systems at fipite
temperatures in the final chapters of the thesis.

The important development presented in this chapter is the method for
treating many body wave function having nodal surfaces. We have seen that
accurate energies can be calculated for systems involving a few Fermions.
These calculations are completely ab initio and do not require the input of
a trial wave function. Nodal surfaces are generated by the approach and a
stable Fermion wave function may be obtained.

In the form presented here the method is probably restricted to
treating only a few Fermions. When a large number of permutation operators
must be considered, comparing systems in order to determine annihilation
probabilities will Dbecome ‘excessively time consuming. Sampling the
permutation operators with a Monte Carlo procedure may be useful for many
electron problems.

Wave functions having nodal surfaces which require high resolution due
to rapid changes in the wave function density in the region of the node
also present significant problems for our approach. Systems occupying very
small volumes of configuration space must be used in these calculations and
the asymptotic eigenvalue estimate can only be obtained with a very large

number of small systems.

Arnow, Kalos, Lee and Schmidt (1982) have described an extension to the



56

Green's function Monte Carlo method which enables systems of a few Fermions
to be treated exactly. The method involves sampling from a "pair Green's
\
function" which produces positive and negative components in the ensemble.
This method also seems to have problems with extension to systems of more
particles.
Recently Oksiiz (1984) has presented a related method which involves

performing a random walk using an antisymmetrized position basis and this

approach may over come some of the problems described above.
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CHAPTER 3 VIBRATIONAL SPECTROSCOPY OF MOLECULAR CLUSTERS

OBTAINED FROM QUANTUM RANDOM WALKS

1.) Conventional Vibrational Spectroscopy of Isolated Molecules, Normal and

Local Modes

Intramolecular vibrations in general must be studied using quantum '
methods (Witson, Decius and Cross (1955)). It should be possible to use the
quantum Monte Carlo methods described in Chapter 2 to obtain information
about molecular vibrations. In the 1later sections of this chapter we
develop such a Amethod and use it to calculate the intramolecular
vibrational spectra of the water dimer and trimer. Before considering the
development of this method, however, it is instructive to outline the more
conventional techniques for studying the vibrations of molecules.

The most widely used procedures of vibrational analysis are the normal
and local mode methods (Wilson, Decius and Cross (1955), Reimers and Watts
(1984a)). These techniques approximate the molecular Hamiltonian by a
reference system which can be solved analytically. The approximations are
taken into accouht by variational or perturbation calculations which use
the eigenfunctions of the reference state.

The logical starting point for both techniques is the Born Oppenheimer
approximation. It is assumed that the rapid electronic motions produce an
average potential surface over which the slower nuclear motions occur and
the resulting Hamiltonian depends only on nuclear coordinates.
Translational degrees of freedom are removed by transforming to the

centre—-of-mass frame. The final simplification common to both methods is
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the rigid rotor approximation in which coriolis and centrifugal couplings
between the vibrations and rotations are ignored. Using this approximation
the Hamiltonian can be written as a sum of vibrational and rotational

parts.
H = HY + HP (3.1)

HY contains relative coordinates of the atoms, while HI has only angular
variables which describe how the rigid rotor tumbles about its principle
axes. Both methods now proceed by approximating the potential operator and
it is at this point that the normal and local mode theories begin to
differ. We shall consider first the approach taken in normal mode analysis.
In normal mode theory the potential is expanded as a Taylor series in
small cartesian displacements about the minimum energy geometry. Quadratic
terms in this expansion, together with the kinetic energy terms, are used
to define a harmonic oscillator reference Hamiltonian for the vibrational
part of the problem, HY. This Hamiltonian is easily diagonalized; the
eigenvalues are related to the squares of the normal mode vibrational
frequencies, wg, and the eigenvectors define the normal mode coordinates,
Qg, which give the direction of the vibrational distortion of the molecule.
In these coordinates the vibrational reference Hamiltonian describes a set

of 3N-6 decoupled harmonic oscillators

3N-6
v
H =1 ) (3% + wlQ? (3.2)
© K (56§7 )

Here N is the number of atoms in the molecule. The eigenfunctions of this
Hamiltonian are products of the hermite polynomials in the normal mode
coordinates and we shall represent these eigenfunctions as |ny> where n, is

a vector of quantum numbers describing the vibrational excitation of the
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different normal modes.

In a similar fashion, if we assume that the molecule can be represented
as a rigid symmetric top the reference Hamiltonian for the rotational part
of the problem, Hg, also has analytic eigenvalues and the eigenfunctions
are the spherical harmonics which we shall represent as |n,>. The total

Hamiltonian of the reference problem is now written as
Hy = Hg + HY
and the eigenfunctions and eigenvalues of this Hamiltonian are respectively

In> = |ny>|np>
and

+

En = E:v Ern

The complete molecular vibration-rotation problem is solved by using the
analytic solutions of the reference problem as a basis for a variational
calculation (Whitehead and Handy (1975)]. The total Hamiltonian is written

as a sum of the reference system Hamiltonian and a perturbation operator
H = Hy + AH, AH = Tge + AV

Here AH contains the terms which were ignored in simplifying the
Hamiltonian, such as the coriolis and centrifugal couplings, Tye, and the
anharmonic terms in the Taylor series expansion of the potential
AV = V ~ 3Jw?Qe®. An accurate approximation for the coriolis and
centrifugal coupling terms which was given by Darling and Dennison (19140)
is often used and the full Hamiltonian matrix in the reference system basis

is calculated

Hpn = <m|H|n> = éppep + <m|aH[n>
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and, in principle, may be diagonalized to give the eigenvalues. The
integrals of the hermites with many different functions are analytic but
numerical integration procedures for more complicated perturbation
operators can be devised (Whitehead and Handy (1975)).

The major problem with the approach outlined above is that the métrix
elements of the perturbation operator must be small compared with -the
eigenvalues of the reference system otherwise the variational calculation
may not converge. For molecular systems the anharmonic terms in AH.are,
often large and convergence problems are encountered.

With local mode theory an attempt is made to include a major part of
the potential Vahharmonicity in the reference Hamiltonian so the
perturbation operator will be small and the variational calculation will
converge rapidly. To proceed the local coordinates must first be chosen as
in general there is no unique set of coordinates which will completely
describe anharmonic vibrations. This is contrasted by the situation in
normal mode theory where a unique set of normal modes result because of the
assumed harmonic form of the potential operator. When a molecule vibrates
it distorts so as to stretch its bonds and bend its bond angles; Thus the
curvilinear coordinate system consisting of the set of bond lengths and
bond angles which describe the equilibrium geometry (the vélence
coordinates) is probably the best coordinate system for specifying the
intramolecular potential surface. The Hamiltonian can be written in a
curvilinear coordinate system (Wallace (1975)), however the kinetic
operator becomes very complicated. To alleviate this problem a rectilinear
coordinate system which approximates the curvilinear coordinates is used. A
set of rectilinear coordinates which is often used (Wilson, Decius and

Cross (1955)) is defined by the first term in the multidimensional Taylor

»
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series expansion of the valence coordinates R in cartesian displacements

(Efg) about some reference geometry a.
R=B - (r-a) + C: (r-a) (r-a) + ...

The rectilinear coordinates, S, are thus defined by the follbwing

expression
S =B " (r-a) (3.5)-

The reference configuration is chosen subject to the Eckart conditions
(Eckart (1935)) so that the coordinate frame rotates with the molecule and
its origin is on the centre of mass.

In these coordinates the vibrational kinetic operator can be expressed
in a matrix form due to Wilson (1939) and the rotational kinetic operator
in the S coordinates may also be derived (Reimers and Watts (1984a)). The
full Hamiltonian is thus written in the following form

H =41 GijPiPy + Trot * Toe + V(R) (3.6)
i,]

Here the Wilson G matrix contains the particle masses and reference
geometry while the operator P is the momentum conjugate to the S
coordinates.

In local mode theory the kinetic operator in the above Hamiltonian is
simplified in two ways: first, the rigid rotor approximation is made and
second, the off diagonal elements of the G matrix are ignored so that the
kinetic operator of the vibrational reference system is diagonal in the S
coordinates. Next, the potential operator must be simplified and this is
done by assuming that the full potential in the valence coordinates can be

approximated by a set of decoupled anharmonic oscillators 1in the
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rectilinear coordinates. Thus 1local mode theory uses a more accurate,
anharmonic, functional form for the potential energy and in this way the
important anharmonic terms may be included in the reference Hamiltonian.
The potential function due to Morse (1929) (see also ter Haar (19“6)]”13 a
very useful form for this purpose as its eigenvalues and eigenfunctions are
analytic and it models the anharmonic intramolecular interactions raéher

well. The vibrational reference Hamiltonian in local mode theory is thus

v 3N-6
HO =‘z (%G‘JJPJZ + VJ(SJ)) (3.7)

J=1
If the Morse potential is used to approximate anharmonic interactions the

potential term in equation (3.7) takes the form
V.(S;) = Di(e %55-1)" (3.8)
N J :

The eigenvalues of the vibrational reference Hamiltonian are analytic
(Morse (1929)) and the vibrational eigenfunctions, |ny>(m), are products of
generalized Laguerre polynomials in each of the 3N-6 S coordinates. Now the
vector quantum number, n,, describes the excitation of the local modes of

the molecule.

The complete reference system is defined by the Hamiltonian
Hy = HE(M) + HE
and the eigenfunctions and eigenvalues

o> = |ny> ™ | S M

€En < Iy

are used as the basis of a variational calculation. As with normal mode

theory the matrix elements of the full Hamiltonian become
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E.’.IZ'.

= <m[H[n> = <m|Hg+sH|n>

Sunen(™) + <m|AH|n>

Now, however, the perturbation operator contains the vibration—rotgtion
coupling, the off diagonal elements of the kinetic operator in the
rectilinear coordinates, and the difference between the intramolecﬁlar
potential in the valence coordinates and the assumed diagonal form in. the
rectilinear coordinates so that
MH = Toe *+ 3 ] GijPiP; + V(R)-1Vy(Sy) (3.9)
i=j [

To obtain the Hamiltonian matrix it is necessary to evaluate the
integrals of the various terms in the perturbation operator with the Morse
oscillator basis set. The integralé of the off diagonal terms in the
kinetic operator are analytic (Watson, Henry and Ross (1981)). In general,
however, integrals of the coriolious and centrifugal coupling operator and
other complicated functions of the S coordiantes must be performed
numerically. Reimers and Watts (1984a) have developed a useful numerical

procedure for performing these integrals with the Laguerre basis set.

2.) Application of Conventional Vibrational Spectroscopy: An Improved

Potential Surface for the Water Monomer

Reimers and Watts (1984) have described in detail how 1local mode
variational calculations can be used to determine a potential surface for
the intramolecular interactions of the water monomer. The procedure is

simple; a parameterised form for the potential surface V(R) is chosen, and
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this is used in a local mode variational calculation to obtain a model
vibrational spectrum. The potential parameters are adjusted to give good
agreement between the model spectrum and that obtained from experiment.
Reimers and Watts used this procedure to fit a potential surface which
was designed to show rapid convergence of the local mode basis fof the
water molecule. Their potential takes the form of a sum of three Morse
potentials in the radial and tangential components of the va;ence

coordinates of the water molecule so that

V(51;SZ,SB) = Vi(si) (3-10)

1

I o~1 W

i

where the Morse potential Vj is the two parameter form given in equation

(3.8) and the s coordinates and defined as

s1 = Ry cos [4(8-0,)] - Rg
sz = Ra cos [4(6-84)] - Rg (3.11)
R,+R,

ss = ( ) sin [%(6-80)]

Ro

Here Ry and 8o are equilibrium bond length and bond angle respectively
while Ri1, R2 and 8 are the instantaneous values of these variables. The s,
and s, coordinates describe motions resembling stretches of the two O-H
bonds in the water molecule. Distortions along the s; coordinate are
similar to angle bending motions. As the s, and s, coordinates are
equivalent there are two unique Morse potentials and the model potential
surface contains only four parameters D, = D,, D3, a3 = a2 and os. Reimers
and Watts determined these parameters by fitting to 37 observed vibrational

band origins for H,0, 9 for D,0 and 10 for HDO. It was found that overall a
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good representation of these 1levels could be obtained, but that the
splitting Dbetween the symmetric and antisymmetric bond stretching
vibrations was incorrectly described.

For the reference system, the two decoupled OH stretch motions are
degenerate. The perturbation operator contains terms which couple‘ the
stretching coordinates. When the variational calculations are performed ‘the
degeneracy is lifted and it is found (Coker, Reimers and Watts (1982)) that
the coupled stretching motions are best represented by almost pure
symmetric and antisymmetric combinations of the local O-H stretch basis
functions. Thus the degeneracy in the reference problem is split by the
perturbations. The situation is analogous to that found in normal mode
calculations on the water monomer. In this case symmetric and antisymmetric
normal modes arise naturally as the coordinates in which the kinetic and
harmonic potential operators are simultaneously diagonalised. The failure
of the potential form used by Reimers and Watts to reproduce the
experimentally observed splittings results because the form neglects
explicit coupling between the local mode oscillators.

As a starting point for the present calculations, a harmonic coupling
interaction between s, and s. has been introduced, specifically to account
for the incorrect splitting of the O0-H stretching modes. Thus the modified

potential surface takes the form

w

V(s1,52,83) = Z Vi(si) + £128:8; (3.12)
i=1

The coupling term can be easily included in the perturbation operator.
Integrals of the form <n|s;s.|m> are analytic and a general expression for
these terms has been given by Heaps and Herzberg (1952).

In order that the modified potential has the correct dissociation
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behaviour the coupling term was multiplied by a switching function similar

to that used by Ben-Naim and Stillinger (1972) which has the following form

0 r<Rj

(P—R1)2(3R2*R1~2P)

S(r‘) = 1 - (R2~R1)T

R12r<Rp

1 Rosr

-

where r = (s1+32)§, Ry = 2 a.u. and Ry = 3 a.u.

The monomer analysis of Reimers and Watts has been repeated,\and the
Morse parameters, and f,.,, adjusted to give a good fit to experimental band
origins for the H,0 and D,0 monomers. A basis set with 120 morse oscillator
eigenfunctions corresponding to up to 5 quanta of excitation in the
molecule was used and gave well converged eigenvalues. Results from the
analysis are compared with experiment and the values obtained by Reimers
and Watts in Table 3.1 and Figures 3.1 and 3.2. From Figure 3.1 it is seen
that there is a much improved representation of the splitting between the
symmetric and antisymmetric stretching modes when coupling between the
stretches is introduced. In Figure 3.2 we present the difference between
the calculated and observed frequencies as a function of frequency for the
Reimers—Watts potential and the modified form. Generally as the frequency
is increased the divergence between the calculated and observed results
becomes larger. This indicates that the Morse potential provides the best
representation around the minimum. The range of deviations for the
Reimers—-Watts surface is about 100 em™! and the modified potential form
seems to overestimate the frequencies, by about 40 em™! at worst.

Parameters used in the modified potential are
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i

D, = D, = 549.5196 kJ mole™!

D, = 411.4368 kJ mole™'; f£,, = -63.444 kJ mole™! §-2

a1 = as = 2.14125 &1, a5 = 0.70600

It should be noted that the value for the f,, constant which couples the s,
and s; local modes is similar to the normal mode force constant obtained by
Kuchitsu and Morino (1965), (1966). Their value for the constant kppr which

couples the two O-H bond extensions is =60.8323 kJ mole” 18-2.
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Table 3.1 Vibrational frequencies (in cm™!) for the Hp0 and Dy0
monomers predicted by the Reimers-Watts and present potential
surfaces. Assignment is based on local mode quantum numbers
described by Reimers and Watts (198L4a). The experimental
values were taken form this paper.

H,0 D0

Assignment Experiment Present R.-W. Experiment Present R.-W.

001 1595 1595 1595 178 173 1173
002 3152 3149 3149 2324 2324
100s 3657 3656 3669 2672 2679 2688
100a 3756 3755 3719 2788 2785 2758
003 4667 4663 4663 3456 3453
101s 5235 5252 5265 3852 3861
101a 5331 5343 5306 3956 3956 3929
102s 6775 6807 6820 5004 5013
102a 6872 688; 6850 5105 5106 5076
200s 7201 7201 7213 . 5292 5307 5322
200a 7250 7250 7228 5374 5380 5363
110 THES THS6 MO 5533 5583
201s 8762 8798 8808 6481 6496
201a 8807 8842 8819 6533 6552 5634
111 9000 9041 8986 6703 6652
300s 10600 10602 10593 7875 7887
300a 10613 10616 10596 7900 7915 7902
210s 10869 10885 10881 8071 8045
210a 11032 11065 10971 : 8237 8162

With the present potential the zero point energy for Ho0 is U4623.0 em™! and
for D0 3381.4 cm™'.
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3.) Application of Conventional Vibrational Analysis to the Study of

Clusters of Molecules

In this section we explore the possibilities of extending the methods
of normal and local mode analysis to studying the vibrations of émall
clusters of - molecules. A detailed account of the application - of
conventional spectroscopic theory to studying the vibrations of molecular
clusters has been presented by Reimers and Watts (1984b). This section only .
outlines the approximations that must be made and the difficulties
encountered when applying conventional methods to studying cluster systems.

The vibrational spectrum of a molecular cluster will differ from that
of an isolated molecule due to the intermolecular interactions. Vibrational
frequencies of the individual molecules will change through coupling with
the rest of the cluster. The major influence of the intermolecular
interactions is to distort the internal geometry of each molecule. If the
intramolecular potential 1is anharmonic, the distorted molecules will
vibrate on a region of potential surface with different curvature from
molecules in their equilibrium geometries. The normal mode vibrational
frequencies are related to the 1local curvature of the potential so
intramolecular vibrational frequencies different from those of the isolated
molecules will result. Another effect of clustering is the formation of
intermolecular bonds. The entire cluster is able to establish modes of
vibration in which molecules move relative to one another in a periodic
fashion. Intermolecular vibrations occur at lower frequencies than the
intramolecular modes because the intermolecular potential is usually weaker

and longer ranged.

In principle, normal mode theory is easily applied to stddying cluster
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vibrations. The combined inter— and intramolecular potential is used and
the cluster as a whole is treated in the same fashion as discussed in
Section 1.). In practice however, this calculation is wusually slowly
convergent (Reimers and Watts (1984b)) since the intermolecular potential
allows large zero point motions and the surface is anharmonic.

The procedure to be used when applying local mode analysis to -the
problem of vibrations in molecular clusters is not so obvious. Generally
intermolecular bonds are rather loosly defined structures, so there are no .
local coordinates which will give a simple description of the
intermolecular modes. The situation for the intramolecular modes, however,
is more promising. In a cluster the motions involved in intramolecular
vibrations are usually localized on the particular molecule. Thus it is
likely that the local coordinates used in local mode calculations on the
isolated molecules probably still provide a good represéntation of the
intramolecular vibrations of the cluster. This idea forms the basis of an
effective potential, or "frozen field", local mode method for studying how
intramolecular motions are perturbed by clustering. The method was
developed and applied to water clusters by Reimers and Watts (1984b) and
has since been used by Miller, Watts and Ding (71984) to interpret the
intramolecular vibrational spectra of nitrous oxide clusters.

We now present a brief description of the frozen field local mode
method. In this approach the intermolecular potential acts as a
perturbation which can be included by fitting an effective Morse oscillator
surface in the intramolecular coordinates to the full inter/intramolecular
potential. The equilibrium geometry of the molecular cluster is first found
by minimising the full potential surface. Holding all other molecules fixed

in this geometry, each molecule in turn is internally distorted along its
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local coordinates. The <centre of mass of the distorted molecule is
maintained. The total potential energy for several distortions of the
molecule 1is calculated and an effective Morse surface in the 1local
coordinates is fitted to the results. The effective potential obtained
using this approach includes the influence of the stationary intermolecular
field provided by the rest of the cluster. Each molecule in the clustegris
considered as an isolated entity moving on its own effective potential
surface which includes the influences of its enviromment. The l
intramolecular vibrational spectrum of the cluster is thus regarded as a
superposition of the spectra associated with the different molecules. Local
mode theory is employed to calculate the spectra of the molecules and basis
sets constructed from the eigenfunctions of the effective Morse oscillators
are used to perform the variational calculations. |

There are two major approximations with frozen field 1local mode
analysis. First, the method ignores correlations between the inter- and
intramolecular motions since it is assumed that each molecule vibrates in

the stationary field of its neighbours. Secondly, any correlations between

the intramolecular motions of different molecules are ignored.

The effects of the approximations described above can be estimated
using normal mode analysis, as has been done by Reimers and Watts (1984)
for water clusters. In their treatment, they set the appropriate elements
of the normal mode force constant matrix to zero and were able to estimate
the importance of the different terms using harmonic approximations. As
noted earlier, the intermolecular potential 1is appreciably anharmonic so
the harmonic treatment can give only qualitative information about the
magnitudes of the couplings. In the next section we describe a procedure in

which the many body wave function obtained from a quantum Monte Carlo
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calculation is used to determine the intramolecular vibrational spectrum of
a molecular cluster. The couplings and correlations which are ignored in
the effective potential local mode approach can be treated by the quantum

simulation method.

4,) Application of the Quantum Monte Carlo Method to Molecular Clusters

The quantum Monte Carlo procedure, which was described in Chapter 2,
may be used to study the ground state of a molecular cluster. A collection
of replica systems is established, each member of the ensemble being a
single molecular cluster. At every time step the simulation algorithm
consists of the usual Gaussian diffusion step, modelling the kinetic energy
operator, followed by a birth/death process which accounts for the
potential term in the Hamiltonian.

The time step used must be sufficiently small to ensure that the
separation of the diffusion and. birth/death processes is an accurate
approximation. A rapidly varying potential surface demands the use of very
small time steps. In a cluster of water molecules the intramolecular
potential varies more rapidly than the intermolecular surface and a time
step which gives small intramolecular displacements must be used. An‘
adequate sample of the distribution of intermolecular geometries can only
be obtained with very long runs using short time steps.

The different atoms in the molecules have different diffusion
coefficients, Dj = h2/2mi. In water for example, the diffusion coefficient
for the motion of the hydrogen atoms approximately sixteen times greater

than that associated with the motions of the oxygen atoms. Since the width
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of the Gaussian distribution of displacements depends on the square root of
the diffusion coefficient, in a single time step the oxygen atoms will
diffuse through distances that are about four times smaller than those of
the hydrogen atoms. Thus the distribution of intermolecular geometries will
take a long time to equilibrate.

We now describe the method which has been used to calculate -the
vibrational spectrum of a molecular cluster from a quantum random walk
calculation. As discussed in Chapter 2, the basic quantum Monte Cérlo
procedure produces an ensemble of systems distributed according to the
ground state wave function. The ensemble can be used to obtain the
intramolecular vibrational spectrum of the molecular cluster providing
certain assumptions are made. The basic idea behind our approach involves
fitting an analytic form to the "exact" ground state wave function obtained
from the quantum Monte Carlo calculation. If a convenient form is chosen
the vibrational frequencies can be obtained using conventional vibrational
analysis.

The ground state wave function of the cluster is assumed to have the
form of a product of an intermolecular part and a set of separate
intramolecular functions, ¢;(Rj), each of which describes the vibrations of

a single molecule thus

¥ = Yinter I <I’i(Bi)
i

Analytic functions of this form are fitted to the quantum Monte Carlo wave
function and provide the basis set for variational calculations.
We restrict ourselves to studying only those motions of the cluster

which are approximately localised on single molecules. The frozen field

local mode method of Reimers and Watts (1984b) assumes that the effective
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potential in which a molecule in a cluster vibrates can be constructed as a
sum of Morse oscillators in the 1local coordinates of the molecule.
Following this approach we assume that the intramolecular wave functions
are written as products of Morse oscillator eigenfunctions in the local
coordinates and the effective wave function for a molecule takes the
following model form

o(R) = T ¢3(s3) (3.13)
3

Here the ground state Morse oscillator eigenfunction is given by
¢5(sj) = N} emx/2 yK-3%
where K = ADj2 s x = 2k o %i(857850) (3.14)
and A is related to the diagonal elements of the G matrix by
/ (ajhG)
The normalising constant for the ground state wave function is

r'(2K)
N = (2K-1) 7
An ensemble generated by a quantum Monte Carlo calculation is
distributed according to the many body ground state wave function. A
multidimensional distribution obtained in such a form may be projected onto
the intramolecular coordinates of interest by accumulating histograms of
these coordinates averaged over all systems in the ensemble. Histograms
generated as outlined above 1include the influences of both the
intermolecular zero point motions and the intramolecular motions of the

other molecules. By fitting the functional form for the model wave function
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projections given in equation (3.14) to the exact wave function projections
we obtain effective independent Morse oscillator eigenfunctions. Functions
obtained by the method are used as a basis set for a conventional local
mode analysis and estimates of the intramolecular vibrational frequencies
may be calculated. The fitting is performed by varying the parameteré Dj,
aj and sjo in equation (3.14).

The major assumption in the approach considered above is that the many
body wave functions describing the intramolecular vibrational states of the
cluster can be written as products of effective independent Morse
oscillator eigenfunctions in the local coordinates. Any possibility of
direct coupling between the 1local modes on a particular molecule is
neglected by the assumption. In Section 2.) we found that such couplings
were important for giving the correct splitting between the symmetric and
antisymmetric combinations of the equivalent O-H stretch motions. The
couplings are properties of the isolated molecules and as such should not
be strongly effected by clustering. Thus it is reasonable to approximate
these terms by the isolated molecule values. Couplings of this form are
included in the variational calculations performed with the effective
oscillator basis set. The off diagonal eleménts of the vibrational kinetic
energy operator must also be included in a variational calculation.

When isolated molecules are brought together to form a cluster, their
rotational degrees of freedom are perturbed by binding with the other
molecules in the cluster. Such motions manifest themselves as librational
modes of the cluster. The influences of these "hindered rotations" are
included in the effective oscillators which were fitted to the many body
ground state wave function. Effects of coriolis and centrifugal couplings

which exist between the inter—- and intramolecular modes are included in the
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effective oscillators and need not be considered in variational

calculations.

5.) Quantum Monte Carlo Local Mode Vibrational Analysis of Water Clusters

Procedures discussed in the previous section have been applieq to
intramolecular vibrations of the water dimer and trimer. 1In these -
calculations we used the improved intramolecular potential presented in
Section 2.) combined with the RWK2 intermolecular potential of Reimers,
Watts and Klein (1981).

Quantum random walks were performed for the water dimer with ensembles
of both 200 and 400 systems and the energies and viﬁrational frequencies
obtained from these calculations were found to agree within the statistical
fluctuations. The results of finite time step calculations converge to the
true ground state values in the limit as At » O (Anderson (1976)). To test
convergence we performed calculations with imaginary time steps of
At = 0.004 and 0.002 fs and the results obtained were again in agreement
within the statistical uncertainties. Thus in the range of operating
conditions considered, time step and ensemble size dependence effects were
negligible. To test the accuracy of the random walk method under these
conditions we first performed a simulation of the water monomer. A value of
4615 + 15 cm~! for the ground state energy of the monomer was obtained in
excellent agreement with the results of the variational calculations
summarized in Table 3.1. All the results reported in this section were
obtained from a simulation based on an ensemble of U400 systems and a time

step of At = 0.004 fs. Runs of 100 000 time steps or more were necessary to
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obtain reasonable convergence of the intermolecular distribution functions.

The expectation values of various quantities 1including structural
properties of the ground state cluster were obtained using the descendent
weighting procedure for generating a ¢02 distribution which was described
in Chapter 2.

Expectation values of the potential and kinetic operators were obtained
with the ¢02 distribution. The average kinetic energy was calculated using
the quantum virial theorem which gives that, in the absence of external

forces, the kinetic energy of a system can be obtained from the following

relation

[ TFD 95 vy ap == & [ Vo) ¥ Wi ar
1 1

Thus by averaging the gradient of the potential over the ¢02 distribution
we can evaluate the kinetic engery.

As discussed in Chapter 2, the total energy is obtained from the
average value of the energy reference which holds the population of the
ensemble approximately fixed. Comparing the ground state energy calculated
using this approach with the sum of the potential and kinetic energy
components gives a selfconsistent check of our calculation.

In Figure 3.3 we present the atom—atom pair distributions for the water
dimer obtained from the ¢02 distribution. For comparision we also present
the distribution functions obtained by Reimers (1982) who performed a
classical Monte Carlo calculation on the water dimer at 10 °K. Inadequacy
of the low temperature classical Boltzman distribution is rather apparent.
The classical distribution does not allow for 2zero point motions of the
cluster and this neglect gives rise to extremely sharp, unphysical

structural features. On the other hand the exact quantum distributions show
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broader structural features due to large amplitude zero point motions.

Figure - 3.3 also highlights the differences between the frozen field
local mode method for calculating the intramolecular vibrational spectrum
of a cluster and the quantum Monte Carlo projection method. In the latter,
we obtain an effective wave function for the intramolecular degrees of
freedom which has been averaged over the full quantum distribution. of
intermolecular enviroments. With the frozen field 1local mode method
however, we hold the rest of the cluster in its minimum energy geometry and‘
sample only the zero temperature classical distribution of intermolecular
geometries.

Figure 3.4a presents the minimum energy dimer structure predicted by
the RWK2 potential, the energy of this geometry is -3093 K. Intermolecular
distances involving the hydrogen bonded atom give rise to the sharp first
peaks in both the ggy and gyy distributions presented in Figure 3.3. Other
hydrogens being less strongly bound give more diffuse structural features.

Calculation of the intermolecular distributions is rather noisy for two
reasons: first, since fairly small time steps are used so that an accurate
separation of the diffusion and birth/death processes can be made, very
long runs are necessary to obtain good statistics for the slower
intermolecular degrees of freedom. Secondly, the procedure for generating
the ¢02 distribution involves 1large fluctuations since two fluctuating
quantities must be folded together.

Figure 3.5 demonstrates how the descendent weighting procedure is used
to calculate the average kinetic and potential energies in the ground state
of the water dimer. We plot the potential energy and the virial, both
averaged over. the ensemble distribution and weighted by the descendent

numbers after a time 1. The procedure used here was described in
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Section 3.) of Chapter 2 and the curves presented in Figure 3.5 are the
results of superimposing many segments of the random walk trajectory. As
discussed in Chapter 2, estimates of the expectation values of the
potential and kinetic energy can be obtained from the asymptotic behaviour
of the curves presented in Figures 3.5. The values of these quantitieé are
<V> = 2370 + 50 K/molecule and <T> = 3400 + 100 K/molecule giving the total
ground state energy of the water dimer as <E,> = 5770 + 100 K/molecule. To
within the statistical fluctuations inherent in these calculations this
agrees with the average value of Vpgr <Vpee> = 5730 = 20 K/molecule
obtained during the run. As discussed earlier, this agreement provides a
self-consistent check of the quantum Monte Carlo method and indicates that
the Virial Theorem is satisfied. The eigenvalue estimate calculated from
the average energy reference has less statistical uncertainty than the
value obtained from the sum of the potential and kinetic energies since the
evaluation does not rely on the ¢02 generation procedure.

In Table 3.2 we compare the ground state energies of the water dimer

predicted by various calculations.

Table 3.2 Comparison of different calculations of the ground state energy

(in em™1) of the water dimer.

Calculation Eo Intra Inter
Random Walk 10115 9130 985
Local mode (Reimers-Watts (1984b)) 10113 9093 1020
Normal mode (Reimers~Watts (1984b)) 10193 9172 1020
Slania (1981) 10225 9u56 769

Curtiss and Pople (1975) 10626 9838 788
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The results of Curtiss and Pople (1975) were obtained by performing normal
mode analysis on an ab initio potential surface calculated using LCAO-SCF
theory with a limited basis set. Slania (1981) also employed normal mode
analysis with the improved ab initio potential surface of Matsuoka et at.
(1976) who used CI methods. The results of Reimers and Watts can be
compared with the random walk values since there are only slight
differences in the potentials used in these two calculations. As discussed
earlier the major effect of the modifications which have been made to the
Reimers-Watts surface is to split the degenerate stretch motions and the
changes have little influence on the total ground state energy. The local
mode results which include normal mode estimates of the intermolecular
energy are close to the ground state energy obtained from the random walk
calculation. Both these values are lower than the results obtained from
normal mode analysis. The total energy obtained from the random walk
calculation has been separated into inter- and intramolecular contributions
by using the intramolecular vibrational frequencies obtained from the
projection method.

The intramolecular energy calculated from the random walk is slightly
higher than the results of the 1local mode calculations while the
intermolecular component 1is lower than, but surprisingly close to the
normal mode result. It is difficult to make more detailed comparisons with
any certainty due to the differences in the potential surfaces and the
statistical error in the random walk results.

We now consider using the ensemble obtained from the random walk
calculation, together with the projection method described in the previous
section to obtain the intramolecular vibrational spectrum of the water

dimer. Histograms of the local mode coordinates , defined in equation
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(3.11), were averaged over the ensemble distribution and these projections
are presented in Figure 3.6. The dashed curves in the figure are the ground
state Morse basis functions for the water monomer. Differences between the
dashed and solid curves demonstrate the effects of clustering on the
various intramolecular modes. The slight distortions of the intramoleéular
wave functions apparent in Figure 3.6 have a significant effect on -the
vibrational frequencies. A frequency shift of more than 200 em™1 is
associated with the largest distortion. ‘

For each dimer in the ensemble the shortest O-H intermolecular distance
was used to define the bonded hydrogen atom. Separate histograms for the
bonded and non-bonded local coordinates on the donor and also for the s,
and s, coordinates on the acceptor molecule were accumulated. The two
hydrogen atoms on the acceptor are equivalent and so their motions should
take place in the same averaged field. From Figure 3.6 we see that the
projected wave function describing the motion of the hydrogen bonded atom
on the donor 1is significantly perturbed from thé monomer wave function.
Attraction by the oxygen atom on the acceptor molecule distorts the local
coordinate distribution for the donor atom. The projections onto other
intramolecular stretching and bending coordinates differ only slightly from
the monomer wave functions describing these motions.

As discussed in the previous section, a least squares method was used
to fit an effective Morse oscillator basis set to the histograms of
intramolecular local coordinates. For the moment we confine our attention
to the O-H stretch motions in the dimer. Figure 3.7a shows the v = 0-1
excitation energies of the various Morse basis oscillators obtained by
fitting to the quantum Monte Carlo generated wave function projections. The

lowest frequency corresponds to the projection onto the hydrogen bonded O-H
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stretch motion while the highest frequency band is associated with the
non—-hydrogen bonded oscillator on the donor molecule (refere to Figure 3.l4a
for the dimer structure). The band in between these two corresponds to the
two degenerate stretches of the acceptor. Frequencies obtained from the S1q
and sp projections of the acceptor molecule differed slightly as a result
of the fluctuations inherent in the calculation. During the 100 000 time
steps over which the steady state averages were accumulated these two
frequencies were never separated by more than 25 em™'. This value gives a »
reasonable estimate of the statistical error for the frequencies predicted
by our calculation. The degenerate frequency presented in Figure 3.7a was
obtained by fitting to the average of the sy and s, histograms.

Figure 3.7c shows the excitation energies of the basis oscillators
obtained by Reimers and Watts from fitting to the frozen field potential
surface. The two bands associated with the non-hydrogen bonded stretch on
the donor and the degenerate stretches on the acceptor occur at similar
frequencies to those obtained from the quantum Monte Carlo wave function
projections. This 1indicates that these intramolecular motions are not
strongly influenced by the zero point motion of the rest of the cluster and
that the approximations made in frozen field local mode analysis are quite
reasonaple for these modes. However, this is not the case for the hydrogen
bonded stretch. The frozen field basis-oscillator representing this mode is
some 200 cm™! lower in frequency than the basis oscillator obtained from
the quantum Monte Carlo projection method. A reason for the difference is
that the bonded O0O-H stretch is probably strongly coupled to the
intermolecular mode which represents stretching of the dimer 0-0 bond.
Since these motions are approximately colinear, any change in dipole moment

associated with one stretch must influence the other. The two oxygens and
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the bridging hydrogen can be thought of as a linear triatomic. Coulson and
Robertson (1974), (1975) have used this model to perform a theoretical
study of the combination bands expected in strongly hydrogen Dbonded
systems.

Figures 3.7b and 3.7d respectively show how the basis oscillators
obtained from the quantum Monte Carlo projections and the frozen field
fitted potentials are perturbed when variational <calculations are
performed. In Figure 3.7b we have taken the quantum Monte Carlo Morse bésis
and performed a variational calculation, using excitations up to 5 quanta
to include the off diagonal elements of the kinetic operator and the
coupling between the sq and s, coordinates. As with the monomer the major
effect of these terms is to split the degenerate stretches on the acceptor
giving symmetric and antisymmetric modes. Basis oscillators of the donor
molecule are only perturbed slightly by these couplings since they are
already non—-degenerate. In Figure 3.7d we present the results obtained by
Reimers and Watts (1984b) who performed variational calculations to include
only the off diagonal elements of the G matrix and also approximate
harmonic couplings between the inter—- and intramolecular modes.

As in their monomer calculations, the off-diagonal kinetic energy terms
result in only a small splitting between the acceptor stretches. The major
influence of the harmonic couplings between the intramolecular modes and
the motions of the rest of the clusﬁer is to shift the hydrogen bonded
stretch to higher frequencies by about 100 em™1. The predicted band,
however, still falls well below the frequency obtained from the quantum
Monte Carlo results.

Also presented in this figure are the results of molecular beam

experiments in the region of the O-H stretch vibration reported by Coker,
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Miller and Watts (1985). The frequencies obtained from the quantum Monte
Carlo simulation with couplings included by variational calculations are
seen to agree with the experimental values to within the statistical
uncertainties of the calculations (+ 25 em™!).

The nature of the enviroment in a molecular beam is such that the
individual clusters find themselves 1in collision free conditions.
Rotational temperatures are extremely 1low and both the inter— and
intramolecular degrees of freedom should be very strongly cooled. Due to
the conditions in a molecular beam it 1is reasonable to expect good

agreement between the results of the ground state calculations and

molecular beam data.

6.) Comparisons of Theories and Experiment

Figures 3.8 and 3.9 present in more detail the experimental findings of
Coker, Miller and Watts (1985). Molecular beams containing clusters of
water molecules are formed by expanding mixtures of water vapour in helium
through a small nozzle and skimmer arrangement into an evacuated chamber.
By adjusting the conditions of pressure, temperature and composition, the
dominent size of cluster produced in the beam can be controlled. When
infrared radiation from a colour éentre laser 1is absorbed by the
intramolecular vibrations of the cluster, the excitation rapidly migrates
into the intermolecular modes and causes the cluster to dissociate. The
dissociation fragments are sent tumbling out of the molecular beam and the
intramolecular absorption is detected as a decrease in beam intensity.

Figures 3.8, 3.9 and 3.10 show the attenuation of the energy of the
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molecular beam, measured by a bolometer, as a function of laser frequency
for a range of different beam conditions.

Figure 3.8 indicates that as the water concentration is reduced, the
broad feature reminiscent of the spectrum of liquid water (Robertson and
Williams (1971)), though shifted to the blue by about a hundred wave
numbers, gives way to several strong features which emerge from .the
envelope. There is also evidence of a small band which persists in the low
frequency tail near 3200 em™1. The sharp band above 3700 em™1 is evidenf in
all spectra and grows in relative intensity as the concentration is
reduced. This band consists of at least two distinct peaks. Figure 3.9
shows that at least six strong features are apparent in the spectrum at
very low concentrations and that the weak band at near 3200 em~! is
possibly resolved into two peaks. Examination of the pressure dependence of
these absorptions, together with mass spectrometry, indicates that these
low concentration spectra are most likely associated with thelwater dimer
and trimer. Figure 3.10 compares the experimental results with the values
obtained from the random walk projection mefhod. The values are in very

close agreement.
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Table 3.3 Absorption bands observed at low HpO concentrations in helium.
Also given are molecular beam results of Page et al. (1984) and matrix
isolation results of Bentwood et al. (1980) for the dimer and predictions
of dimer frequencies from quantum simulation theory. All frequencies are
in em™ 1.

Present Page
Experiment et al. Ar Matrix No Matrix Theory Dimer Assignment

3730 + 3 3730 3726 3715 3721 Donor Stretch

3722 + 3 3714 3709 3699 3714 Acceptor asymmetric
Stretch

3600 + 3 3600 3634 3627 3610 Acceptor symmetric
Stretch

3532 + 3 3545 3574 3550 3535 Donor Stretch

3400 + 5 3430 Trimer

3357 + 3 3380 Trimer

3215 = 5 3201 Donor bend
overtone

3170 + 5 3186 3130 Acceptor bend
overtone

In Table 3.3 the frequencies of all the absorptions found in these
lowest concentration spectra are summarised and compared with the results
obtained from matrix isolation studies (Bentwood et al. (1980)) and another
molecular beam experiment (Page et al. (198”)). Also presented are the
results of the quantum Monte Carlo calculations which enable a detailed
assignment of the experimental spectra to be made. As discussed earlier, in
descending order of frequency, the four sharp bands at higher frequencies
correspond to the non—-hydrogen bonded stretch on the donor, the asymmetric

stretch on the acceptor, the symmetric stretch on the acceptor and finally
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the hydrogen bonded stretch on the donor. The quantum Monte Carlo wave
function was also projected onto the bending coordinates of the molecules
and the calculated bend overtones are close to the two broad, weak
absorptions observed in the experimental spectrum near 3200 em™1. The low
intensities of these bands are consistent with such an assignment.

The two remaining strong absorptions in the experimental spectrum,
observed at 3357 cm™! and 3400 cm'1, are difficult to assign as vibrations
of the dimer. It is likely that the broader band at 3400 em™! is in fact
associated with the trimer. Such an assignment is supported by the beam
experiments of Vernon et al. (1982) in which a poorly resolved trimer
spectrum indicates a very broad absorption centred near 3400 em~1. Their
results for the tetramer show a similar feature while for the pentamer they
find a band at approximately 3350 cm™!. The sharp feature at 3357 em~1 in
the molecular beam results of Coker, Miller and Watts is, however, unlikely
to be associated with such a large cluster for, as stated earlier, the mass
spectra of the low concentration cluster beams indicates the presence of
predominently dimers and trimers. Though there are difficulties in
interpreting the mass spectra due to fragmentation as the clusters are
detected.

An alternative assignment is that the peak at 3357 em™! is associated
with a dimer difference band. Suppose that the water dimer is formed in the
beam in an excited intermolecular vibrational state. For example there may
be significant population in the vibrationally excited 0...0 stretching
mode. It 1is thus possible, in principle, to observe the difference
frequency absorption corresponding to the de-excitation of this mode and
the simultaneous excitation of the hydrogen bonded O-H stretch on the donor

molecule. Evidence for the existence of such a mode in hydrogen bonded
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systems has been considered by Coulson and Robertson (1974), (1975).

The quantum simulation method has been uSed to estimate the vibrational
frequency of the 0...0 stretch mode. A histogram of 0...0 separations was
accumulated from the ground state ensemble. By fitting a Morse oscillator
eigenfunction to this projection of the dimer wave function we obtainéd an
effective Morse function whos; eigenvalues approximate the 0...0 stretch
vibrational frequencies. As discussed earlier, very small time steps haq to
be used in our calculations to accurately represent >the intramolecular
vibfations. The intermolecular distributions obtained from our studies are
fairly noisy. The frequency of the 0...0 stretch determined from this
calculation is 150 + 50 cm™!. The error estimate is based on the standard
deviation of a qumber of independent determinations performed during the
averaging run. Microwave studies of the water dimer (Dyke, Mack and Muenter
(1977)) have assigned a band at 150 em™! to the 0...0 stretching mode.

In principle the procedure described above could be applied to study
other intermolecular modes but in general the choice of coordinates for
this calculation is complicated. Projection onto the intermolecular normal
modes might be considered but due to the anharmonicities in the
intermolecular potential, ¢the normal coordinates probably give a poor
description of the actual intermolecular motions of the cluster. For this
reason and because of the poor statisties in our calculation of the
intermolecular distributions we have not persued these studies.

With the 0...0 stretch frequency at about 150 cm‘1, the dimer
difference frequency expected is approximately 3380 em™!, which is within
50 em™! of the dimer band in question. Furthermore, calculations similar to
those of Coulson and Robertson (1974), (1975) indicate that if the internal

temperature of the dimer is around T70° K, the 0...0 stretch mode may be
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significant populated. It is unlikely however that a combination band of
this type would be as intense as the fundamentals.

A much more plausable explaination of the two bands at 3400 em™! and
3357 em™! is that they are associated with the trimer. To verify this
assignment, a quantum simulation calculation on the trimer was perfoémed.
Details of the simulation were similar to those of the dimer calculations
and the most stable equilibrium geometry for the RWK2M trimer (Reimers and
Watts (1984b)) which is presented in Figure 3.4 b was used as the initial
condition in our calculations. The three oxygens sit at the corners of an
approximately isosceles triangle. As seen in Figure 3.4b, molecules B and C
form definite hydrogen bonds and molecule A is more loosely bound. Thus all
six hydrogens in the molecular cluster experience different enviroments so
their intramolecular vibrations should occur at different frequencies.

Generally it 1is found that bonded hydrogens vibrate at lower
frequencies than "free" 0-H oscillators. With this in mind, together with
the geometrical considerations outlined above, we expect that the
intramolecular vibrational spectrum of the trimer should include two bands
at lower frequencies characteristic of bonded 0-H oscillators and four
bonds at higher frequencies. When a vibrational analysis of the wave
function projections obtained from the quantum simulation is performed the
general spectral features outlined above are observed. The calculated O-H
vibrational frequency associated with étom 1 is 3740 om"1, that for atom 2
is 3630 cm”1, for atom 3 is 3725 cm™!, for atom 4 is 3380 em™!, for atom 5
is 3620 cm~! and for atom 6 is 3430 em™'. Two of these frequencies, those
associated with the hydrogen bonded stretches, are close to the observed
bands at 3357 cm™! and 3400 em™1, two more lie near the two lower frequency

dimer O-H absorptions, and the other two are consistent with the bands near
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3720 em™!. It is reasonable to suppose that the shoulders observed on the
two dimer absorptions at 3532 em™! and 3600 cm™! probably result from
trimer or larger cluster absorptions while the congestion around the base
of the peak above 3700 em™! is of similar origin.

Figure 3.11 presents a summary of the results obtained from a numbér of
different experimental measurements of the intramolecular vibrational
spectrum of small water clusters and also the frequencies obtainéd from the
various calculations which have been discussed in this chapter. The results
of the matrix isolation studies of the dimer spectrum (Bentwood et al.
(1980)) reported in the bottom section of the figure are in reasonable
agreement with the molecular beam results of Page et al. (1984) and those
of Coker, Miller and Watts (1985) labeled "Present Beam". This agreement
indicates that the influence of the matrix on the intramolecular vibrations
of the dimer is not so strong and the results of matrix isolation studies
are reasonably reliable for this system. .

In the top portion of the figure a summary of the normal and local mode
results obtained by Reimers and Watts (1984b) is presented. The "Normal
Mode Dimer" results bare little resemblence to experiment indicating that
the approximate treatment of the potential anharmonicity by the normal mode
variational method requires making severe approximations which are not
Justified with a realistic model potential for a water cluster. As
discussed in the previous section, fhe effective potential 1local mode
method takes account of the potential anharmonicity very successfully.
There are two problems with the "Local Mode Dimer" results of Reimers and
Watts. Use of an intramolecular potential surface which does not include
coupling between the local O-H oscillators causes the splitting of the

symmetric and antisymmetric stretches of the acceptor molecule to be
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underestimated. Secondly, including the couplings between the inter- and
intramolecular degrees of freedom by a harmonic approximation causes the
frequency of the bonded O-H stretch on the donor to be underestimated by
about 100 cm™1-

The results presehted in the central section of the figure demonstrate
the good agreement between the spectra of the dimer and trimer calculated

using the quantum Monte Carlo projection technique and the molecular beam

_results of Coker, Miller and Watts.

Finally in Figure 3.11 we present the resultsvof\a ﬁuantum simulation
calculation in which a different intermolecular potential was used. The
spectrum labelled "Random Walk w77M2 dimer" reports a dimer simulation
which used the intermolecular potential for water proposed by Watts (1977)
together with the coupled Morse intramolecular potential surface discussed
in Section 2.). The O-H stretch frequencies calculated with thié model

potential are all shifted to higher frequencies by ‘about 50 cm~' when

~ compared with the molecular beam results. On the other hand the bend

overtones predicted by the W77TM2 potential occur at frequencies which are

too low. This result suggests that the shape of the RWK2 pair potential in
the region of its minimum gives an accurate representation of the true
water potential surface. Furthermore, as the two model potentials are quite
similar (Reimers, Watts and Klein (1981)), the infrared spectrum of the
dimer provides a sensitive test of the intermolecular potential surface, at
least in the region of the potential minimum.

In Figures 3.12 the two potential surfaces used in the calculations
described above are compared. Figure 3.12 a shows the potential energy of
the dimer as a function of 0...9 distance. For each separation the energy

was minimised as a function of relative orientation and internal geometry.
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Figure 3.12 b shows how the potential energy varies as a function of "donor
angle", with the 0...0 separation and intrémolecular geometry fixed to
those values giving the most stable dimer. Figure 3.12 ¢ shows the
corresponding dependence of the potential energy on the "acceptor angle".
These two aﬁgles are defined as the angle between the symmetry axes oﬁ the
two molecules and the 0...0 axis (Reimers and Watts (1984b)). It is clear

that the two surfaces are quite similar.

7.) Conclusions

In this chapter we have demonstrated that wave functions obtained from
quantum simulation studies can be wused to calculate very accurate
vibrational spectra of model molecular systems. When realistic potentials
are used, the normal mode variational approach has significant problems due
to the large anharmonicities and local mode methods are more useful. The
approximations concerning correlations between the inter- and
intramolecular degrees of freedom, wﬁich must be made to implement 1local
mode methods, can be significant, particularly for systems 1like the
hydrogen bonded molecular cluster. Quantum simulation calculations include
the effects of these couplings exactly and when the projection technique
described in this chapter is used veryraccurate intramolecular vibrational
frequencies of complicated molecular systems may be obtained. The general
approach may also be applied to study intermolecular motions bﬁt
statistical fluctuations and specification of coordinates present
significant problems in more complicated systems.

Due to the accuracy of the quantum simulation and projection approach,
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calculated vibrational spectra of Van der Waals clusters can be reliably
compared with experimental results. Differences between spectra calculated
using our procedure and those obtained from experiment are largely due to
the inadequacies of the model interaction potential wused in the
calculation. We have shown that the intramolecular vibrational spectrdm of
a molecular cluster is quite sensitive to the details of the intermolecular
potential and with the current level of statistical accuracy our approach
can detect the differences between two reasonably similar intermolecﬁlar
potential forms. |

Importance sampling procedures discussed in Chapter 2 provide a means
of performing quantum random walk calculations with greatly reduced
statistical uncertainty. We speculate that the use of importance sampling
together with projection methods similar to that described in this chapter
may provide a very powerful tool for determining accurate emperical

potential surfaces from vibrational spectroscopy of Van der Waals clusters.
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CHAPTER 4 SOLID Ho AND LIQUID 4e

Introduction

In the previous chapter we saw that the diffusion Monte Carlo meghod
developed in Chapter 2 could be applied succesfully to studying the ground
state properties of small molecular clusters. In this chapter the method is
used to study the ground states of bulk phase systems. The quantum Monte
Carlo method, together with variational quantum techniques, will be
employed to consider the ground state theromodynamic and structural
properties of liquid ”He and solid moleculér hydrogen.

In the first two sections of this chapter we describe the variational
and Green's function Monte Carlo techniques which have been wused
extensively in the study of bulk phase quantum systems. Variational
calculations give only approximate solutions but the Green's function Monte
Carlo method is essentially exact. Comparing the results of diffusion Monte
Carlo calculations with Green's function Monte Carlo results gives a means
of testing the finite time step approximation for bulk phase systems with
harsh repulsive core interactions. We find that there are serious problems
with the unbiased diffusion Monte Carlo method when applied to a system of
32 helium atoms in a periodic box interacting with Lennard-Jones forces.
Large fluctuations are observed and the results obtained depend on the
average ensemble size. Kalos (1970) found that .the unbiased Green's
function Monte Carlo iteration procedure could give useful results for
liquid uHe. Our studies indicate that this is not the case with the

unbiased diffusion Monte Carlo method.
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The problem outlined above can be overcome by using knowledge of the
ground state wave function which is obtained from approximate variational
calculations. Importance sampling methods were first used with the Green's
function Monte Carlo methed in bulk phase calculations by Kalos, Levesque
and Verlet (1974). When importance sampling was used a great enhancemeﬁt in
the efficiency of the Green's function Monte Carlo method was reported.
For the diffusion Monte Carlo method importance sampling involves including
a drift term which forces the random walk into the regions of space which )
are more important. The approximate variational wave function determines
the important regions. We find that the results of importance sampled
diffusion Monte Carlo calculations on a system of 32 Lennard-Jones “He
atoms are rather independent of time step and when a system of 108
particles is considered quantitative agreement with the Greens function
Monte Carlo calculations of Whitlock et al. (1979) is obtained.

The drifting random walk procedure has been applied to study the ground
state properties of solid Hp. A different form of importance sampling or
trial wave function must be used with solid state calculations. We have
considered solid Hp over a range of densities. An accurate spherical pair
potential due to Buck et al. (1983) has been used in this work. Reasonable
agreement with experiment is found when this potential is used. Generally,
the ground state energies obtained from the diffusion Monte Carlo
calculations are on the order of 10% lower than the variational results
indicating that variational calculations are useful only for obtaining
qualitative information about quantum solids. The quantitative detail
necessary to test the accuracy of an interaction potential can only be

obtained from a full quantum calculation.
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1.) Variational Calculations

The variational principle gives that the expectation of the total
ground state energy is a minimum with respect to variations in the wave

function so

%$ [...] v*fivar = o (4.1)

Variational calculations involve assuming a parameterised form for ¢ and
calculating the total energy as a function of the parameters. The set of
parameters for which the total energy is a minimum give the best ground
state wave function having the assumed form and the minimum energy is an
upper bound for the ground state energy.

The variational procedure outlined above has been applied to bulk phase
systems by many workers and the systems most often studied are the liquid
and solid phases of YHe where quantum effects dominate the behaviour. A
variational form proposed by Mott (1949) and employed by Dingle (1949) and
Jastrow (1955) has been widely used in these variational calculations. With
the so—-called Bijl-Jastrow form, the many body wave function is written as
a product of pair functions

= I ..f(r’ij) (4.2)
1<

The function f contains the variational parameters and it depends only on
the distance rij = |rj-rj| between particles i and j. With this form ¥ has
the correct symmetry to describe the ground state of a system of
interacting Bosons. The pair function f(r) can be chosen to vanish rapidly

as r » 0. This is an important property for systems with strongly repulsive

core interactions.
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The Lennard-Jones potential

VLg(r) = 4e[(2)*2-(1)°] (4.3)

with the deBoer, Michels (1938) parameters

e/kp = 10.22°K

o]
2.556 A

Q
]

has been used in variational calculation to model the helium interaction. A
pair function which has proved particularly useful for the Lennard-Jones
system is based on the WKB approximate solution for the repulsive part of

the potential. The pair function thus takes the following form
o e 2 5
£ir) = & (/r) (4.4)

and o is used as the variational parameter. A variety of alternative
functions have been proposed (Reatto and Chester (1966), Murphy (1972),
McGee and Murphy (1972) and De Michelis and Reatto (1974) are a few
examples) but equation (4.4) provides the simplest, realistic single
parameter variational form.

A number of different methods may be wused to -evaluate the
multidimensional integrals which must be performed in order to determine
the energy expectation value. The probability distribution which must be
sampled in order to calculate the energy of the N body system is

Py(r) = v*(r) = RS fz(rij)/J I £2 (4.5)
i<J
Since the form of Py(r) is identical to the probability distribution for a
classical fluid of particles interacting with pair wise additive forces,

(fz(rij) replacing the classical Boltzmann factor e BV(rij)), the methods
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of classical statistical mechanics may be applied to evaluate the
multidimensional integral.

In their work on the quantum hard sphere gas Jastow (1955) and later
Aviles (1958) partially summed the Ursell-Mayer cluster development
[Hirschfelder, Curtiss and Bird (196&)) of the energy expectation intégral
in powers of the density. Their resultsvwere only valid at low densities
due to the slow convergence of the cluster expansion. Murphy and Watts
(1970) used the Percus-Yevick and Hypernetted Chain integral equation .
theories (Watts and McGee (1976)) to perform variational calculations on
”He modeled with the Lennard-Jones potential. They compared the results of
the approximate theories with Monte Carlo calculations.

The Monte Carlo method of Metropolis et al. (1953) provides a
numerically exact means of evaluating the energy expectation integral.
McMillan (1965) first wused this method in a variational study of
Lennard-Jones “He. When the pair product wave function of equation (4.2) is

used, the energy expectation integral appearing in equation (4.1) can be

written as

[ vivar = | [E_ 2= V% In f(ryg)*V(ryp)] v ()dr (4.6)
i<J

Equation (4.6) can be rewritten in terms of the probability distribution
defined in equation (4.5).

<F> = [ F(r)Py(p)ar (4.7)

Here F(r) is the quantity in square brackets in equation (4.6). The Monte
Carlo method relies on the fact that the distribution, Py, has the

following properties
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Py(r) 2 0 ¥r
(4.8)

j Py(r)dr = 1

With the Monte Carlo method, the integral in equation (4.7) is estimated by
interpreting it as an average of the function F(r) over the distribution
PN(E)- The integral is evaluated by performing an ensemble average over a
finite sample of configurations of the N particles. Thus, after n
configurations, {rl}, have been sampled from the distribution Py(rl), the

integral is approximated as

<Fp> = F(rl)

1
I_..:
W o~13

i

and (4.9)

]

<F> lim <Fp>

n->e

The Monte Carlo scheme of Metropolis et al. (1953) involves generating
configurations sampled from Py by using a Markov chain. Each successive
configuration, £i+1, is generated from the previous configuration gi by
accepting or rejecting a uniform random displacement of one of the
particles. By choosing the transition probability appropriately (Watts and
McGee (1976)) the limiting distribution of the chain can be made to equal
Py(r).

McMillan used the pair function given in equation (4.4) in his Monte
Carlo calculations so the classical Boltzmann factor was replaced as

follows

o~V(r)/kpT e~2(a/r)5

Once a value of o is found for which the quantity in equation (4.6) is a
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minimum the quantum calculation becomes equivalent to a classical
calculation with a fictitious potential and temperature which determine the
distribution function. When evaluating the energy the actual interparticle
potential must be averaged over the distribution.

Classical molecular dynamics provides an alternative methodl for
sampling a distribution. Schiff and Verlet (1967) used the equilibrium
molecular dynamics method to perform variational calculations on liquid 3He
and uHe. With this approach the fictitious potential described above
determines pseudo forces which are used, together with classical equations
of motion to move the particles in such a way as to sample the approximate
quantum distribution. Systems of Fermions such as 3He can be studied with
variational methods by use of an antisymmetric trial funqtion. A Jastrow
form multiplied by a Slater determinent is often used. Ceperley (1978) has
considered such a form in variational calculations on the electron gas.

Variational procedures provide only an upper bound for the energy. The
quantum Monte Carlo method in principle, however, does not have this
constraint. In the next section we discuss an exact method known as Greens
Function Monte Carlo which is closely related to the diffusion Monte Carlo

method described in Chapter 2.

2.) Greens Function Monte Carlo

The Greens Function Monte Carlo method is an essentially exact
numerical procedure for solving diffusion equations. It was developed by
Kalos and his co-workers (Kalos (1970), Kalos, Levesque and Verlet (1974)

and Ceperley and Kalos (1979)) and involves 1iterating an equivalent
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integral equation many times. Unlike the diffusion quantum Monte Carlo
method described in Chapter 2, the Green's Function Monte Carlo (GFMC)
procedure does not require the finite time step approximation. The GFMC
method however is significantly more complicated. '

In this section we present a brief description of the GFMC method.;Most
of the published non-variational quantum calculations performed on bulk
phase systems have used the GFMC method and relatively little bulk phase

work has been done with the diffusion Monte Carlo procedure.

The GFMC method is useful for solving the Schrddinger equation
~ - hz
Hy = [-Y 5= V32 + v(r) ]y = Ey (4.10)
i 2my -

to obtain the lowest energy solution, wo» and the corresponding eigenvalue
Eg. The Green's function, G(r,r'), for the Hamiltonian is defined as the

solution of the following equation
H G(r,r') = &(r-r") (4.11)

Boundary conditions for G must be appropriatly specified for the
problem of interest (Ceperley and Kalos (1979)). Using (4.11) in (4.10) we
find that the wave function is related to the Green's function by the

following integral equation
W) = E [ 6le,r)ule)ar (4.12)

An equation of this form can be solved iteratively starting with a

trial solution, w(o), in the following recurrence relation
v () = E [ atr,rn)e™ (p)ar? (4.13)

When w(o) is substituted in (4.13) and the integral performed a new



102

solution w(1) results. The function ¢(1) may be used to start the next
interation and the procedure is repeated till convergence.

For a multidimensional system the integral in (4.13) is most
efficiently performed by a Monte Carlo technique. For the ground state of a
system of Bosons both G(r,r') and y(r') are everywhere posiéive.
Consequently w(g') can be treated as a probability density function for
sampling a system in a configuration r'. Similarly, EG(E,Q'), can be
considered as a conditional probability density for generating a set of new
systems {r} given an old syste@ at r'. Thus the basic iteration for the
GFMC method proceeds as follows: A population of points {r'} is sampled
from a distribution w(O)(g') = yr(r') where yr is some trial function and
Er is a trial eigenvalue. A new set of points {g} must now be selected from
the conditional probability density ErG(r,r') for each r'. According to
equation (4.13) the new set of points obtained from this iteration will be
distributed as ¢(1)(£)- The new "generation" of systems may be used
directly to iterate the process again.

By writing the distribution after each iteration in terms of an
eigenfunctibn expansion Kalos (1962) showed that the iteration procedure
would converge to the lowest energy eigenstate contained in the initial
guess. In a similar fashion to the diffusion Monte Carlo method the rate of
charge of the ensemble population with iteration gives an estimate of the
eigenvalue. |

The major requirement of the basic GFMC iteration described above is
the ability to produce a new generation of systems from the old by treating
the Green's function as a conditional probability density. Consequently
the Greens function for the problem must be known in advance. Generally,

the Greens function is unknown and the success of the GFMC method depends
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on a procedure for sampling G(r,r') without knowing its form explicitly.

With the diffusion Monte Carlo method an approximate Greens function is
used. Systems are established in an initial distribution and an iteration
procedure similar to that described above 1is employed to alter the
distribution. As discussed in Chapter 2, each system is allowed to unéergo
free diffusion, followed by replication or death. An iteration consisting
of these steps 1is equivalent to wusing the following "short time"
approximation for the Green's function
=7—(r-r') ‘

Glr,r';a1) = G2hiaT == ' (4.14)
Thus the time steps of diffusion Monte Carlo are equivalent in a sence to
the iterations of GFMC.

We now present a brief description of the elaborate procedure which
Kalos and his co-workers have devised for sampling the exact Green's
function. For our purposes, only a qualitative understanding of the
approach is necessary. A more detailed description of the method can be
found in the following references: Kalos, Leversque and Verlet (1974) and
Ceperley and Kalos (1979).

The sampling scheme involves using another iteration process to solve
an integral equation which relates the Green's function on the full domain
of configuration space, D, to a known "partial" Green's function, Gy,

defined on a subdomain, DO(EO) e D by the following

]

(-V2+Ug) Gy(r',r9 = &(r'~r® & r',ro e D, (4.15)

Here we use atomic units and U, is chosen so that Uy 2 V(r) ¥ r € Dy. The

boundary condition for Gy is
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Gy(r',r®) =0 ¥ r',r® £ Dg

It can be shown (Ceperley and Kalos (1979)) that the full Green's function
is related to this partial Green's function by the following integral

equation

6r,r®) = (e + [ [n eutr®] olr,rt) ar?
aDo(EO)

Uy-V(r'
- {—Q_ﬁé_*l} Uo Gylr',
Do (r©)

Here 3Do(r®) is the boundary of the subdomain and Vny Gy(r',r®) is the

normal derivative of Gy on the boundary. When equation (4.15) is integrated

over Do(r®) we find that

=Vnt Gylr',r% dr' + Ug Gy(r',r% dr' =1

aDO{EO) DO{EO)

and since UyGy(r',r® and =~V;1Gy(r',r® are non-negative they are
interpreted as probability densities for moves in a random walk which
sample either the interior of the subdomain or its boundary respectively.
Equation (4.16) can be iterated in the same way as équation (4.13) and a
new generation of points distributed around 39 acording to G(z,go) may be
produced. The iteration involves a random walk which includes moves from
r071 to rP chosen either on the boundary of Do(r™1) or in its interior.
Moves to points on the boundary are chosen with a density ~-V,Gy(r?,rn=1)
while points in the interior are sampled according to GU(Eﬁ,zn"1) and
accepted with a probability (UO—V(gn))/UO. According to equation (4.16)
G(r,r®) is the expected value of the sum of all the Gy(r,r™) for the rh

sampled by the random walk outlined above.
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Importance sampling can also be incorporated in the GFMC method and the
algorithm must be modified to sample yr(r) G(r,r9)/yr(r®). As with the
diffusion quantum Monte Carlo method, these modifications greatly improve
the sampling efficiency and reduce the fluctuations in the algorithm.

The Green's Function Monte Carlo method has been used to perform;bulk
phase calculations on solid and 1liquid ”He using the Lennard-Jones
potential (Whitlock et al. (1979), (1980)) and more accurate model
potentials have been tested by comparing GFMC results with experiment
[Kalos, Lee, Whitlock and Chester (1981)). Variational calculations can
only be used to set a bound on the potential well depth (Murphy (1972)).
Since GFMC provides the exact ground state energy for a given potential,
comparison with experiment gives an unambiguous test of the model
interaction.

In the next section we demonstrate that when the importance sampled
diffusion Monte Carlo method is used accurate results for systems with

repulsive forces may also be obtained.

3.) The Diffusion Monte Carlo Method and Condensed Phase Calculations

As discussed in Chapter 2, the diffusion Monte Carlo method has been
widely used in electronic calculatioﬁs where the particle interactions,
governed by the Coulomb potential, vary relatively slowly as a function of
distance compared with typical intermolecular interactions. The only bulk
phase calculations which have been reported using the diffusion Monte Carlo
method have involved particles interacting with Coulomb forces [Ceperley

and Alder (1980), (1981)). In this section we present the results of some
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diffusion Monte Carlo calculations studying the liquid e system modeled
with hard core Lennard-Jones forces. As discussed in the previous sections
this system is well characterised by both variational and Green's function
Monte Carlo results so the significance of the finite time step
approximation for dense systems with harsh repulsive interactions méy be
tested.

Infinite systems are usually modelled using a finite numberv of
particles in a cube of side L together with periodic boundary conditions
(Watts and McGee (1976)) and the wave function describing the bulk phase
system is thus regarded as multiply periodic. The interactions must be
truncated at some distance r, £ L/2. McMillan (1965) found, with
variational calculations on liquid l‘I—Ie, that using as few as 32 particles
in the basic cell gave good qualitative information. We have employed a 32
particle system to study the characteristics of the finite time step
method. The size of the cell was chosen so that the reduced density in all
our calculations was po® = 0.4 which is about 10% higher than the
equilibrium density of the fluid (pgy0® = 0.3648).

The basic diffusion Monte Carlo method which was successfully employed
in the previous chapter to study the ground state properties of small
molecular clusters was used in our early bulk phase calculations. Thus only
diffusion and replication steps were included in the algorithm. We chose a
time step of 0.1 x 10~15s which gave diffusion displacements of the order
of typical distance steps used in classical molecular dynamics simulation
studies of fluids at triple point densities. Figure 4.1 shows the
instantaneous values of the reference energy as a function of time during
several calculations in which different size ensembles were considered. A

face centred cubic lattice was used as the initial condition in each
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calculation. The values have been approximately corrected for long range
interactions by assuming the radial distribution function , g(r), is unity
beyond the cut off and integrating the potential. For the Lennard-Jones

interaction the long range potential correction is approximately

Vip = _8/3 mo¥ e (;%)3

The asymptotic behaviour of the calculations using small ensembles give
energies which are too high compared with either the variational or Green's '
function Monte Carlo results and large fluctuations are observed. By
increasing the -ensemble size the fluctuations are reduced and the
eigenvalue estimate is lowered but the calculation becomes extreamly time
consuming. These rather severe problems, of over estimating the eigenvalue
and very large fluctuations, probably result from several related factors:

First, the finite time step approximation may be partly responsible for
the problems described above. If the time step used was not short enough
for thé separation of the diffusion and birth-death processes to be
accurate, a systematic error in the eigenvalue estimate would be expected.
However, the fact that the asymptotic energies presented in Figure 4.1 tend
to the GFMC result as the ensemble size is increased indicates that use of
a finite step is not the major cause of the difficulties we have observed.
With a purely diffusive random walk through a high dimensional space, very
large ensembles are necessary to give an adequate sample of the
configurations. The over—-estimation of the eigenvalue may be related to
poor sampling of the multidimensional space. As the initial fcc lattice
relaxes systems may diffuse into higher energy geometries. With a small
ensemble, the average potential energy will be dominated by these high

energy fluctuations. Since the Vpor adjustment scheme uses the average
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potential energy of the ensemble to set the energy reference for the next
time step, such fluctuations may cause the energy estimate to drift.
Another related problem with the free diffusion algorithm is that
barriers between potential wells may cause the random walkers to be trapped
in a metastable geometry. Trapping can be understood by consideriné the
double square well potential. When the two wells are separated by a long or
high potential barrier, an ensemble distribution which starts out on one
side of the barrier may rarely sample the other well due to the termination
of random walks which enter the barrier. Thus a calculation of finite
duration and ensemble size may result in an inadequate sampling of
configuration space and incorrect ground state behaviour will be predicted.
In summary, the basic diffusive random walk method is not useful for
treating dense systems of many particles which interact with harsh
repulsive forces. Importance sampling methods can be used to alleviate the
problems discussed above. The drift term included in the importance sampled
random walk forces the important regions of configuration space to be
sampled so smaller ensembles may be used. Further, as described 1in
Chapter 2, the birth-death process in the importance sampled random walk is
no longer governed by the rapidly varying potential function. Rather, the
"iocal energy", ﬁwT/wT, now controls the population growth rate. If Y7
approximates the actual wave function the ensemble growth rate will be a
slowly varying function of position and the population fluctuations are
substahtially reduced. Consequently treating the birth-death process as
independent of drift or diffusion for small time steps should be a good
approximation. In Chapter 2 we also noted that since the drift velocities
depend on position there will be an error introduced in the drift path by

making the finite time step approximation but the consequences of this
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error should be much less severe than the problems described above.

We have performed importance sampled diffusion Monte Carlo calculations
for the liquid helium system using the variational Jastrow form given in
equation (4.2) together with equation (4.4) as the trial function for
guiding the drifting random walk. This trial function has been used by
Whitlock et al. (1979) in their Green's function Monte Carlo studies of
liquid helium.

First, several 32 particle simulations were conducted using different -
time steps in order to study the influgnce of the short time approximation
on the importance sampled random walk calculation. A Monte Carlo run
sampling the trial distribution wTZ was performed and after equilibration,
every 5000th Monte Carlo configuration was used as a member of the initial
ensemble for the importance sampled random walks. Each iteration of the
quantum Monte Carlo run involved first calculating the drift velocities,
Vi, of the particles and evaluating the local energy of each system. The
particles in a system were moved with a Gaussian displacement in each
direction and a drift displacement vpAt. Finally the systems were allowed
to replicate or die depending on their 1local energy. A Vnpor adjusting
procedure was used to keep the total number of ensemble members fixed at
approximately 200 systems.

Time steps wused in these calculations were At = 0.1, 0.05 and
0.02 x10™15s which correspond to standard deviations for the Gaussian
distribution of displacements of Ax = 0.013, 0.0089 and 0.0056 K
respectively. These displacements are on the order of a half to a quarter
the size of typical displacements used in molecular dynamics simulations at
triple point densities in classical liquids (D.J. Evans (1985)). For each

calculation the initial variational wave function distribution was relaxed
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for 500x10~15s, Following the equilibration, averages were accumulated for
at least 600x10™15s,

The eigenvalues calculated from the average local energy are presented
as a function of time step size in Figure 4.2. The errors were estimated by
breaking the averaging run into blocks of 100x10~15s and evaluating the
average for each block. The standard deviation from the mean of these
averages has been used as the error. The fluctuations are substantially
reduced by the use of the importance sampling algorithm. For comparison we -
have included the result obtained from the unbiased random walk calculation
using an ensemble of 1000 systems.

We also see from the figure that the importance sampled energy
estimates are reasonably independent of time step size. Reducing the time
step by a factor of 5 causes the energy estimate to increase by only a few
percent. The statistical fluctuations for runs of this duration are of a
similar order to these systematic time step errors.

The values presented in this figure have been approximately corrected
for 1long range interactions. In our calculations the potential
discontinuously became zero at the cut off. With the classical molecular
dynamics method this discontinuity introduces an impulsive force which
perturbs the equations of motion. In the classical Monte Carlo method the
discontinuity causes a "pile up" in the distribution in the region of the
cut off. The wave function sampled by the basic quantum Monte Carlo method
will be effected by the cut off in a similar fashion. The birth-death rate
becomes discontinuous at the cut off. When importance sampling is used,
however, these truncation problems may be more significant since the drift
velocities and the local kinetic energy are dependent on the derivatives of

the trial wave function. The boundary conditions require that the trial
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function goes to one discontinuously at r,. Consequently the drift paths
will be influenced by impulsive forces in a similar way to the classical
trajectories in molecular dynamics. The effect is most significant with
small systems where the discontinuity in the trial function is larger.
Differences between the eigenvalues predicted by our importance sampled 32
particle simulations and the GFMC value which are apparent in Figureih.z
are possibly due to the influences of these impulsive "quantum" forces.
Wave function density will be "reflected off" the boundaries causing
excessive sampling of lower energy configurations and the eigenvalue is
underestimated.

In Chapter 2 we noted that averages of other quantities over the w2
distribution could be obtained by extrapolating the results of importance
sampling calculations by using variational results. Equation 2.34 gave an
approximate means for performing this extrapolation. Figure 4.3 presents
the extrapolated radial distribution functions obtained from our 32
particle calculations and compares them with similar results obtained with
108 particle GFMC calculations (Whitlock et al. (1979)). The radial
distribution functions predicted by the shorter time step runs agree
reasonably well with the GFMC results. However, the run which used a time
step of At = 0.1 x 10"15s shows stronger structural features, the nearest
neighbour peak is more pronounced and.the portion of the second neighbour
peak which is sampled by the calculation is shifted to smaller distances.

The most 1likely explaination for this behaviour is that with a longer
time step the drift paths are more strongly perturbed by the discontinuity
in the drift velocity caused by the boundary conditions. Consequently the
effects of reflections off the boundaries are more pronounced with longer

time steps. It is evident that the distributions obtained with the shorter



llla

1.0 -~ fig-4.3
L
@ 0.50 — .02 fs
0 I
6
1.0 1.0~ oo..oo.ll
L <
2 0.50 - AT = .10 fs @ 0.50- .05 fs
6

n
N &
(=]




112

time steps (AT = 0.05 and 0.02 x 10~'5s) are also perturbed by the boundary
conditions.

To examine the boundary condition problems discussed above we have
performed importance sampled calculation with a system of 108 particles. A
time step of At = 0.05 x 10~15s was used and the initial ensemble contdined
100 systems distributed according to the variational wave function.. In
Figure 4.4 we show the effects of extrapolating the radial distribution
function obtained from this run by using the variational distribution.
Again the results are compared with GFMC values. Good agreement between the
diffusion Monte Carlo and GFMC results is generally observed. The two
simulations were performed at slightly different densities, P*DMC = 0.4 and
p*GFMC = 0.401, so the small variations in the results are probably
associated with this density difference. Agreement between the predicated
eigenvalues (including only 1long range corrections) 1is also good,
Epmc = —6.78 + 0.06 and Egpmc = -6.743 + 0.033 K/molecule. Whitlock et al.
(1979) have obtained a perturbation estimate of the three body correction,
and at this density they give <V3p> = 0.206 + 0.002 K/molecule or about 3%
of the two body values given above. When the three body correction is made
both the quantum Monte Carlo calculations give ground state energies which
are approximately 0.5 K/molecule higher than the experimental value
Eexp = =7.00 K/molecule (Roach, Ketterson and Woo (1970)). This discrepency
is a result of the inadequacy of thé Lennard-Jones potential (Whitlock
et al. (1981)).

The total energy is obtained directly from the importance sampling
calculation but the potential and kinetic components must be extrapolated
from variational results. By taking the difference between the total and

extrapolated potential energies, an estimate of the kinetic energy is
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obtained. The potential and kinetic components calculated from our
diffusion Monte Carlo run agree with the Green's function Monte Carlo
values and Wpme = ~22.27 + 0.15, <V>grMe = -22.554 + 0.182 and
<T>pMc = 15.51 + 0.15, <T>gFMc = 15.811 * 0.185. The major difficulty with
calculations on 1liquid helium is that the total energy is a émall
difference between two rather large numbers so in order to obtain
reasonably accurate total energies very accurate values of the separate
kinetic and potential components must be calculated.

The extrapolated full quantum radial distribution function presented in
Figure 4.4 shows a more pronounced nearest neighbour peak than the
variational result. Whitlock et al. (1979) have argued that this structural
difference is a consequence of inadequacy of the variational Jastrow form
which does not consider three body correlations. Many body correlations are
included by the quantum Monte Carlo methods and these higher correlations
should result in more pronounced structure. Chang and Campbell (1977) have
performed variational calculations using integral equation methods together
with a variational form which included three body correlations explicitly.
They obtained ground state energy estimates for helium which are much lower
than those predicted with the best Jastrow forms, and only slightly higher
than the GFMC or our diffusion Monte Carlo results, indicating that these
arguments about the importance of three body correlations in quantum
liquids are quite reasonable.

We employed the virial theorem to calculate the pressure in our sample

of liquid uHe thus
<p> =p [ 273 <T> = 13 <Z rj-VijV> ]

These values must again be extrapolated using the pressures obtained from
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variational calculations. Variational energies are generally within 5 to
10% of the extrapolated full quantum values. Consequently the extrapolation
of these quantities is reliable. The pressure obtained from the variational
calculation wusing the virial theoren, <p>woz = 25.3 + 0.4 atm, differs
substantially from the result calculated from thé importance sampled
distribution <p>¢¢o = 18.8 + 3. atm. Thus the extrapolated vaiue,
<p>¢2 = 12.3 + 2. atm, is not a reliable estimate of the pressure. Whitlock
et al. have reported similar difficulties when extrapolating their
importance sampled Green's function Monte Carlo pressures. They find that
better estimates of the pressure can be obtained by differentiating the
energy Vv's density relation which was fitted to their results. For
comparison the pressure they calculate using this procedure is
<p>gFMc = 10.388 * 1.22 atm. Roach et al. (1970) have measured the pressure
at this density and obtained 10.667 atm.

In the next section we discuss our diffusion Monte Carlo calculations
on solid Hp. We will see that there are also significant differences
between the variational description of this system and the true quantum

solid.

4,) Diffusion Monte Carlo Study of the Ground State of Solid H»

In this section we apply the importance sampled diffusion Monte Carlo
method to study the ground state properties of solid molecular hydrogen.
The basic algorithm is very similar to that used in the liquid ”He studies
discussed in the previous section. However the importance sampling trial

function which guides the random walk is somewhat different for the quantum
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solid. The trial function which we have used was proposed by Nosanow (1964)
(1966) who performed variational calculations on solid 3He and YHe using
cluster expansion methods. Each particle is associated with a lattice site
at a position R; and the variational wave function takes the form of a
product of single particle functions which depend on the displacementﬁ of
the particles from their lattice sites, together with a product of pair
Jastrow functions which correlate the motions of different particles. Thus
the trial function can be written as follows
Yp(r) =1 ¢(rj-R;) T f(rij) (4.17)
i i<

In this form the single particle functions model the long range order
associated with phonons in the solid and the Jastrow functions take into
account the short range correlations which result from the zero point
motions together with the strongly repuisive interaction.

The pair function given in equatation (4.4) together with a Gaussian
form for the single particle function has been employed by Krumhansl and Wu
(1972) who studied solid Hp using variational cluster expansion methods.
Bruce (1972) and Pollock et al. (1972) performed Monte Carlo variational
calculations on solid Ho using the above trial form.

There have also been many variational studies on solid helium which
have used this trial function. Hansen and Levesque (1968) considered 3He
and “He in a fce geometry and Hansen (1969) (1970) studied the hcp and bece
lattices. Hansen and Pollock (1972) considered different single particle

functions but no significant improvements over the Gaussian form

¢ (4.18)

could be found.
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The trial function described above has also been incorporated in a
useful, approximate expansion method known as the self consistent phonon
theory which was developed and used in computations by Koehler (1966 a,b)
(1967) (1968). Gillis et al. (1968 a,b) have discussed a variety of related
theories and have used the approach to consider the crystalline rare gases
including the hcp phase of “He. Ho and Do have been studied using tﬂese
methods by Klein and Koehler (1970 a,b).

Whitlock et al. (1979), (1980) have used the trial form discussed above
in importance sampled GFMC calculations on the fecc and hep crystal phases
of ”He. Comparisons between our studies and this work will highlight some
interesting differences between solid Hp and solid “He.

The major difference between the solid state importance sampled
diffusion Monte Carlo algorithm and the method used in our liquid state
calculations is that the phonon term in the trial function introduces both
an extra kinetic term in the 1local energy and the drift velocity is
modified. A drift component is introduced which pulls the pafticles towards
their lattice sites. Thus if systems wander away from the crystalline
structure they either die or drift back towards the lattice.

The hydrogen molecules in our calculations interacted through the
spherical part of an effective pair potential presented by Buck et al.
(1983) which was derived emperically from total differential scattering
cross section measurements. Recently, the potential surface Dbeen
recommended by Norman et al. (1984) who tested a variety of proposed
spherical potentials for the H, interaction by comparing the results of
both scattering calculations and solid state calculations, using the Monte
Carlo variational method, with experimental data.

We have performed importance sampled diffusion Monte Carlo calculations
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on solid Ho at three different molar volumes: 23.08, 11.39 and
8.34 cm3 mole™!. The system contained 108 particles in a periodic cube and
an initial ensemble of 100 systems taken from a variational distribution
was used. As the importance sampling function for our calculations we
employed the solid state variational wave funétion described above together
with the variational parameters determined by Bruce (1972) for ‘the
Lennard-Jones potential. These parameters are very similar to those used by
Norman et al. (1984) in their variational studies on various interaction
potentials for Ho.

A detailed study of the time step size dependence has not been
conducted, rather, the time steps were chosen with two considerations in
mind. First, we wanted the population fluctuations to have a maximum
amplitude of one or two systems using a Veer adjustment parameter, a
(equation 2.15), which was of the ordér of 10% of the ground state energy
per system. Secondly, for reasonable computation times, At was chosen so
that the relaxation from the initial variational distribution took several
thousand time steps and quantities were averaged for a further few thousand
steps. In order to meet these criteria we found that smaller time stéps
were necessary at higher densities. The steps which we used at the various
densities were At = 0.01, 0.005 and 0.002 x 107155 at molar volumes 23.08,
11.39 and 8.34 cm3 mole™! respectively. These time steps are smaller than
those used in our helium studies due to the difference in density (the
molar volume in our helium work, for comparison, was 25.14l cm3 mole~!).

The ground state energies and the kinetic and potential components, are

compared with the results of variational calculations in table 4.1
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Table 4.1 Calculated Energies (in Kelvin/molecule) for Solid Hp, Obtained

from Diffusion Monte Carlo and Variational Studies.

Vmol <H>? <Vp>* <T> KH>', <Up>®,  (T>, <U3p>,  po3
23.08 -96.5+1.2 -162x1 65.5+1.5 -84.6 -168. T76.6 6.8 0.676
11.39 358+4 46.3+0.5 26243 385. 4.4 331. 49.6 1.37
8.34 1445415 8494 469 +4 1525. 787.  610. 127. 1.87

subscript v indicates variational results.

'Total energy includes the variational estimate of the three body
Axilrod-Teller interaction (Norman and Watts (1985)).

2Long range correction to the potential energy is included.

Dispersion terms were integrated beyond the cut off, as discussed
earlier, to give an estimate of the long range correction to the potential.
The three body energies given in Table 4.1 were taken from Norman and Watts
(1985) who averaged the triple dipole term of Axilrod and Teller (1943) in
a 500 particle Monte Carlo variational calculation. These values have been
used to approximately correct the diffusion Monte Carlo results.

In Table 4.2 the total energies and pressures obtained from variational
and diffusion Monte Carlo calculations on solid Ho, modelled using the Buck

potential, are compared with experimental results.
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Table 4.2 Comparison with experiment of Energies and pressures obtained

from variational and diffusion Monte Carlo calculations.

Vmol <H>'exp <H> <H>,, <P>exp <P> <P>
23.08 -93.5 -96.5 -84.6 1 1045 5.2
11.39 3.19x10%  3.58x10%  3.85x102  1.30x10*  1.36x10*  1.47x10"

8.34 1.29x10%  1.45x10° 1.53x10%  L4,78x10* 5.12x10* 5.30x10*

'Experimental values are taken from the work of Norman et al. (1984)

At each density the total energy obtained from the diffusion Monte
Carlo calculation is of the order of 5 to 10% lower than the variational
energy. Lower pressures are also found when the diffusion Monte Carlo
method is used. The differences for both the energy and pressure bring the
results of our diffusion Monte Carlo calculations into closer agreement
with experiment than the variational values. At the higher densities the
extrapolation of the pressures is quite reliable. However, there are
considerable fluctuations in the pressure at the lowest density and the
variational and DMC results differ substantially.

The most significant difference between the variational and diffusion
Monte Carlo results presented in Tables 4.1 and 4.2 is the change in the
break up of the energy into its potential and kinetic components. In Figure
4.5 we plot the components of the total energy as a function time during
the importance sampled random walks. The figure demonstrates how the
energies change as the initial variational distributions are modified by
the quantum Monte Carlo calculation. The potential energies presented in
the figure were calculated by extrapolation and the kinetic component was

obtained by difference.
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Generally the potential energy increases as the variational
distribution relaxes and the reduction in the total energies are the result
of large decreases in the kinetic components. There is more than 20%
reduction in the variational kinetic energy at the highest density. These
energetic changes are the result of structural modifications in the cr}stal
as demonstrated in Figure U4.6. In this figure we plot the radial
distribution functions obtained from the sz, yrv and extrapolated ¢2
distributions. The changes in the potential energy can be understood in
terms of the radial distribution functions. The pair potential used in our
calculations is plotted in the figure to show the regions of the surface
sampled at the different densities. For comparison, the Lennard-Jones
potential for Ho is also shown in this figure. All the peaks in the radial
distribution functions are broader with the extrapolated wave function than
with the variational form. The broadening of the nearest neighbour peak
causes the repulsive wall of the potential to be more strongly sampled and
a higher potential energy results.

The members of our ensemble which tunnel into the repulsive walls of
the potential have negative kinetic energies. On average the kinetic energy
can never be negative but components of the ensemble which sa@ple
"tunneling" configurations will make negative contributions to the kinetic
energy as a result of the curvature of the trial function in this region.
From the discussion in Chapter 2, the kinetic energy will‘depend on the
quantity ~ﬁ2/2mV2W/wT. The ensemble describing the wave function in our
solid state calculations is thus able to obtain a lower average total
energy by allowing more systems to tunnel into the repulsive wall so that
the decrease in the average kinetic energy of the ensemble distributions is

larger than the resulting increase in the potential energy.
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The inadequacies of the solid state variational wave function which we
have used are different from those of the trial form for the liquid state.
Earlier we saw that with liquid Y4e the Jastrow form gave a fluid which was
not sufficiently structured, possibly due to the neglect of many body
correlations. The trial form used in the variational calculations of Norman
et al. (1984) and in our variational work gives a solid which is +too
strongly structured. A possible reason for this problem is that the pair
form, u(r) = (“/p)5, used in the trial wave function does not allow
sufficient penetration into the repulsive wall of the potential. As
discussed in Section 1.), the pair function is based on the WKB approximate
solution for the r~12 hard wall problem: In Figure 4.6 we also show the
Lennard-Jones potential for Hp. It is apparent that the r~12 wall of this
potential rises more steeply than the potential due to Buck et al. (1983).
Hence, using -the variational form based on the more rapidly rising
potential does not seem to allow sufficient tunneling into the softer Buck
potential. It would be useful to consider different variational forms based
on softer analytic potentials. Use of such forms should give better
variational results and provide more effiéient importance sampling trial
functions.

The differences between the diffusion Monte Carlo results and the
experimental values apparent in Table 4.2 are most 1likely due to the
inadequacies of ‘the spherical pair ‘potential which was wused in the
calculations. In general the energies calculated using this potential are
on the order of only 10% too high so the form provides a better description
of the interaction than the variational results would have us believe. The
discrepancy may result in part due to the assumption of a spherical

interaction. Hydrogen molecules deviate from a spherical shape by about 8%
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[Kolos and Roothan (1960)] so their interaction should be anisotropic. The
potential which we have used in our calculations is only the spherical part
of the interaction given by Buck et al. who have presented a full
anisotropic form written in terms of a spherical harmonic expansion (see
also Norman et al.).

Explaination in terms of the neglect of anisotropy is consistent with
the way the discrepancy between the experimental and calculated results
changes with density. At the lowest density the difference is only 3%,
whereas at higher densities the spherical potential gives energies which
are about 12% too high. Large zero point motions which characterise the low
density quantum solid will average out the effects of a weakly anisotropic
potential but at high densities the anisotropy may have a significant
effect. |

An alternative explaination for the differences between the calculated
and experimental results may be the use of the finite time step
approximation. Since the rapidly varying parts of the potential are most
often sampled at high densities, very small time steps are required for
accurate results. As mentioned earlier we have used smaller time steps with
the high density runs but it may be possible that the finite time step

approximation is still inaccurate.

Conclusion

In this chapter we have seen that the diffusion Monte Carlo method may
be applied successfully to study bulk phase quantum systems with harsh

repulsive forces provided importance sampling methods are used. Without
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importance sampling the diffusive random walk gives very large fluctuations
and the method is not useful. When importance sampling is incorporated
however, the procedure is able to give results which are sufficiently
accurate to provide a sensitive test for intermolecular potentials. Since
variational methods can only give an upper bound for the energy the reéults
of these calculations can provide only a qualitative understanding of a
quantum system.

The major problem with both the diffusion Monte Carlo and Green's
function Monte Carlo methods is the enormous expense of the calculations.
Typically these procedures require on the order of 50 to 100 times more
computer resources than equivalent variational computations. Generally the
improvements are significant, but on the order of only 10%. A profitable
approach for future developments may be to use the results of full quantum
calculations to study the performance of different variational forms. By
monitoring the relaxation of the variational distribution as the full
quantum calculation proceeds useful information about the inadequacies of

the variational form can be obtained.
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CHAPTER 5 QUANTUM MONTE CARLO AT NON-ZERO TEMPERATURES

1.) Formal Preliminaries

In this chapter we concern ourselves with extending the basic quaﬁtum
Monte Carlo method described in Chapter 2 to treating systems in thermal
equilibrium at non-zero temperatures. The quantum operator of interest for ‘
such systems is the density operator which, in the canonical ensemble takes

the following form

b =e (5.1)

Here B = 1/kgT and ﬁ is the Hamiltonian operator given by

N
A-_y B9+ um (5.2)
i=1 Zmi

for a system of N particles interacting with one another through a
potential V(g). We will restrict ourselves to dealing with the canonical
ensemble. Only Boltzmann statistics is considered in our discussion.

In the coordinate representation the density operator becomes a

continuous matrix whose elements are defined as

p(r,r58) = 3 un(ene By () (5.3a)
n

= 1 P ynten) wn(o) (5.3b)
n

Here E, and wn(g) are the energy eigenvalues and normalised position

eigenfunctions of the Hamiltonian.

The diagonal elements of this matrix



P(r;B) = p(r,r;s) (5.4)

represent the probability of finding a system which 1is 1in thermal
equilibrium at a temperature 8, at a point r in the configuration space.
In the momentum representation the density matrix takes a ;form
analogous to equation (5.3)
o(p,p';8) = } euBE%;(p_') o (p)

n
(5.5)

- —py ! |
= [ oterrspde L/nR-ZR -2 g g

p(p,p';B) is the complete Fourier transform of the density matrix in the
coordinate representation.
In the above @n(g) are the energy eigenfunctions in the momentum

representation and ¢,(p) and yn(r) are related by Fourier transformation.
~3N i/mp'-r
v (r) - h f o (p') e dp' (5.6)
o (p") - (2m73N [y (pm) e H/A R -Eigpn (5.7)

The components, pj of the vector p are the eigenvalues of the momentum

operators ﬁi = ih 3/ari and satisfy the following

3y |22 = pilp>

Here the momentum eigenfunctions are

Ip) = e_i/fl B.E

The correspondence principle gives that in the high temperature limit

the momentum eigenvalues become the classical momenta of the particles and
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lim pj= mif'i (5.8)
g-0

The quantum mechanical probability of finding a system with a momentum
vector p at a temperature B is related to the diagonal elements of the
density operator in the momentum representation. Thus in a similar fashion

to equation (5.4) we have that

P(p;B) = p(p,p;B) (5.9)

If the functions P(p;B) and P(r;B) are known then integrations over p
or r would yield average values of various quantities in the same way as
classical averages are calculated from the Gibbs phase space distribution
function. The position and momentum probability densities can be obtained
from the function F(p,r;B) which is defined as the partial Fourier

transform of the density matrix
3 1
F(p,r;8) = [ /B BLip(r,riig) ar (5.10))

An alternative form for F can be obtained by the following manipulations.

Substituting equation (5.3a) into (5.10) we find

~

F(E,Q;B) = f ei/Tl E w n(Lre ~BH wn(g) dr!

Now by using equation (5.6) the above expression is written as

~

i,g por'c ¥ -gH
F(p,r;B) = “ et/ BT er v (r') o (pe BHo1/m RT-L gprgps

Employing equation (5.7) to eliminate the functions ¢, we find

- \ -—
F(p,r;8) = f” bra Ry r") v (rme/n B ‘L' 8 Ji/m R'er = dp'dr'dr"
n

Using the completeness relation
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Lo e v (e") = 8(r'-r") (5.11)
n

and the properties of integrals of &(r'-r"), the integral over r" can be
performed to give

i ~p! v Rl 3 '
F(p,r;B8) = J’J’ el/ﬁ (RE )'r- e BH el/fl D .r d_p_'df_'

The r' integration can now be done using the relation

J olrm (emp")er' v §(p-p") (5.12)

Finally by integrating over p' we obtain the following form for F
F(p,r;8) = e o0 gl/n R:L (5.13)

The functions P(r;B) and P(p;B) are related to F by the following

results which were first given by Kirkwood (1933)

P(r;g)

f e 1/ 2L p(p,r;p) dp (5.14)

]

P(p;B) f e i/n L F(p,r;8) dr (5.15)

Equation (5.14) is easily proved by substituting the definition for F given

in equation (5.10)
P(r;g) = ” et/n R-(2'"T) p(r,r';8) dr'dp

The p integral gives a 6(5'—5) factor and performing the r' integration
gives the required diagonal elements. (5.15) can be justified by again
substituting (5.10), using (5.3b) and rearranging to obtain

P(_D_;B) = E e—BEn I ei/ﬁ B.E'\P;(_I:') dﬁ'I e~i/fl R‘.I:wn(z) d-r:
n

Using equation (5.7) in this result completes the proof of (5.15).
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The function F satisfies the Bloch equation (Hill (1956))

oF(p,r;8) = -H F(p,r;s)

B
N (5.16)

2 2
=y B WF - V(p)F
i=1 2mg

This can be shown by differentiating (5.13) with respect to B. The initial

condition for the solution of equation (5.16) is obtained from equation

(5.13) as
F(p,r;g=0) = e /h 2L

The Bloch equation is isomorphic with the time dependent Schrddinger
equation, the reciprocal temperature, B, replacing the imaginary time,
it/p. By considering this isomorphism further it should be possible to
extend the quantum random walk method, described in Chapter 2 and so solve
(5.16) to obtain F(p,r;g).

In this section then we have seen that there exists a function F(p,r;8)
whose spatial Fourier transform gives the momentum probability density and
whose momentum Fourier transform gives the spatial probability density. The

function can be obtained at different temperatures by solving the Bloch

equation.
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2.) The- Non Zero Temperature Quantum Monte Carlo Method

At high temperatures, an approximation for F is

lim F(p,r;s) = o BHelass Ji/n B¢ (5.17a)

g0
8% p; -gV(r) i
e Bj pJ/zmj e iz el/h o (5.17b)
As discussed earlier, pj are the components of the classical momenta.

Following Kirkwood (1933) the classical form given in 5.17 provides an

initial condikion for solution of the Bloch equation. In Chapter 2 we saw
that the quantum Monte Carlo method may be used to propagate an ensemble
from some initial distribution through imaginary time. The details of the
motion were determined by the time dependent Schrdédinger equation. In the
non zero temperature quantum Monte Carlo method which we shall now
describe, the random walk procedure is used to solve the Bloch equation to
give a distribution which evolves as a function of the inverse temperature
variable B.

At some high initial temperature, B85, an ensemble distributed
according to equation (5.17b) must first be established. We use the
classical Monte Carlo method of Metropolis et al. (1953) to generate an
ensemble distributed according to the e‘BV(i) factor. In order to sample
the initial distribution given in (5.17b), the ensemble must be modified to
include the factors which contain momenta. A procedure for sampling the
classical momentum distribution involves giving each particle a momentum
chosen from a Gaussian density. In this way a classical distribution of
points in phase space is produced. Weighting each system by a phase factor,

el/n P.I', gives an ensemble distributed according to the high temperature
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approximation for F which we use as the initial condition for our solution
of the Bloch equation.

Momentum variables do not appear explicitly in the Bloch equation,
consequently the particle momenta in a given ensemble member do not change
as the Bloch equation is solved. Rather, the momenta can be considered as
parameterising each random walker and detefmining its contribution to the
ensemble. The procedure outlined above is used to average over the initial
position and momentum distributions. We shall see shortly that due to the
simple form of the classical momentum distribution the momentum average may
be performed analytically. To proceed with our development, however, it is
more convenient to consider propagating a set of systems which are weighted
by the factors el/n p.r,

A diffusion and birth-death algorithm similar to that described in
Chapter 2 is used to evolve the ensemble according to the Bloch equation.
Briefly, as the reciprocal temperature is incremented by AR, the particles
in each system are moved through small displacements chosen from a normal
distribution with variance Ax = (hZAB/m)%. Diffusion of the ensemble
members models the effect of the kinetic operator on the distribution
F(E,E;B) and a birth-death procedure models the potential operator.

There are differences between the physical nature of the solutions of
the Schrdédinger and Bloch equations and special consideration must be given
to the method for modelling the potential term. When solving the
Schrddinger equation we have an additional requirement that the physical
solutions should be time independent and an eigenvalue problem results.
Consequently, the details of the transient behaviour of the ensemble are of
no concern. The energy scale can be arbitarily adjusted to slow the

population growth or decay and give a stable ensemble in the long time
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limit. In Chapter 2 we saw that using a Vnor adjusting algorithm forces the
ensemble distribution towards the ground state. With this procedure,
information about the transient evolution is lost but a stable ensemble
with the correct asymptotic distribution is obtained.

The Bloch equation has the same form as the time dependent Schrédinger
equation but we are no longer interested in stationary solutions and -the
equation can not be written as an eigenvalue problem.Information about the
system at different temperatures will be obtained by monitoring .the
transient behaviour of the ensemble. Consequently the Vnor adjusting method
cannot be wused in its current form since it perturbs the transient
evolution.

If the Vpgp adjustment procedure is removed from the birth-death
algorithm, the growing or decaying ensemble which results will evolve as
the solution of the Bloch equation but this method is unstable and has poor
statistical properties. Equivalently, the influence of the potential term
may be included as an accumulated weight which is the product of the
birth-death probabilities. Thus, if a system samples a set of n points
(ri,ro,...,ry) as it evolves through n steps in reciprocal temperature, it

is given a weight

n
- 1 8B V(rj)
W= e i=1 (5.18)

The -approach outlined above gives the correct transient behaviour, but
since the ensemble diffuses freely there is nothing to prevent systems from
wandering into "unphysical' regions of the configuration space. The longer
systems diffuse, the greater the chance of sampling a region of high
potential energy which results either in death or equivalently, a zero

weight according to equation (5.18). Consequently the statistics for
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sampling low temperature distributions with the method discussed above are
very poor.

There are two alternatives which may be used to improve fhe statistical
properties of the algorithm. First an importance sampling scheme may be
implemented. In this approach we use quantum Monte Carlo methods to éolve
the equation of motion for a function f related to F(p,r;B) by ‘the

following expression

f = F(p,r;B) Fr(p,r;g)

The function Fr is some known analytic form which resembles F. Proceeding
in the manner described in Chapter 2 the following equation of motion for f

may be obtained

1 A oF
V, - (EV1pFT) - T (H Fp - =5 ) £
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With a well chosen Fpr, the drift term modifies the free diffusive motion so
that the ensemble members are forced away from the unphysical regions of
configuration space and into the more important regions. By choosing the B
dependence of F7 appropriately, a slowly varying birth rate may be obtained
and accurate calculations with larger B steps are possible.

As described in Chapter 2, when importance sampling is used to solve
the Schrddinger equation an ensemble distributed according to Yyr is
generated. If Y approximates 1, the 1importance sampled ensemble
distribution will approximate the probability density. Expectation values
were evaluated by averaging quantities over the Yy distribution and
extrapolating to give a y? distribution. The ensemble generated by
importance sampling the Bloch equation, however, cannot be used directly

since the importance sampling function must be divided out in order that
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averages may be evaluated.

An alternative means of improving.the statistical properties of the
basic random walk procedure is to use a Vpor adjusting approach but to keep
track of the values which Vpgor takes as the ensemble evolves. If the pth
ensemble member samples the n points (r1P,roP,...,r,P) as it diffuses ﬁhen,

with a Vper adjusting algorithm, the systems contributions are weighted by

n .
=3 (V(r]) = Vper)as
e i=1 (5.19a)

wP
n

n n i
~L V(P8 T Vrephs
e i=1 e i=1 (5.19b)

]

Here V%ef is the value of the energy reference which is set by the Vper
adjustment mechanism at the ith step in the trajectory. The value of V%ef
is the same for all systems in the ensemble.

As outlined above, the correct transient behaviour may be obtained if a
weight of the form given in equation (5.18) is used. Equation (5.19b)
differs from (5.18) only in the term involving Vnor. Consequently a Vper
adjusting algorithm may be used to evolve an ensemble having the correct
transient behaviour provided the contributions of the ensemble to various

averages are weighted by the factor

T
=) VperAB
e i=1
We have chosen the Vpor adjustment scheme outlined above to improve the
statistical properties of the random walk technique rather than use
importance sampling methods. An importance ' sampling scheme has been
employed by Pollock and Ceperly (1984) to calculate the pair density matrix

for the Lennard Jones system.
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The discussion so far in this section has described a stable quantum
- random walk method which can be used to evolve an initial ensemble sampled
from a <classical high temperature distribution. The motion of the
distribution models the solution of the Bloch equation. To proceed, a
method for wusing the evolving ensemble to obtain averages of various
quantities at different temperatures must now be devised. ‘

In Section 1.) it was shown that the position and momentum probability
densities are related to the Fourier transforms of F(p,r;8) by equations
(5.14) and (5.15). Averages can be calculated by integrating over these
probability density functions. Let us now consider using the evolving
ensemble to obtain the position probability density at different
temperatures.

With the approach we have described, each ensemble member has a weight
el/n P:I' which depends on the point in the classical phase space where it
commences its random walk. As B is incremented, the system diffuses away
from the initial point, r. After a number of increments, the Qeciprocal
temperature has reached a value 8' say, and the system may have diffused to
a point r'. As discussed earlier the particle momenta are unchanged during
the random walk. Equation (5.%H) gives that the position probability
density at B' is obtained by multiplying the distribution F(R,g';B') by the
factor e i/n E~£' and integrating over p. Thus the position probability
density may be obtained from the ensemble by weighting each system with
another phase factor which depends on the point in configuration space
sampled by each system after it has Dbeen propagated. The random walkers
carry their initial weights el/a P.I' until their trajectory termiantes.
Consequently, a system having momentum p which diffuses from a point r at

Bo to a point r' at B' shall receive a total weight



135
oirn pe(rort)

The momenta which parameterise the random walkers are chosen from a
classical distribution at the initial temperature B,. The terms appearing
in equation (5.14) containing momenta may thus be combined to give a

multiplicative factor as follows

2

i/p p-(27r') =Bol Pj on .
J e J dp

e J (5.20)
Integrating equation (5.20) gives
3% 21mms : e Mj/2BgR® (rj—rj')z (5.21)
3= gy

An ensemble distributed according to the full quantum position
distribution at different temperatures is obtained by weighting the
contributions of the ensemble members by Gaussian factors which depend on
the distance between the initial and final configurations in the random
walk. Thus as a system diffuses away from its starting configuration, its
contribution to the ensemble changes according to equation (5.21). The
weight given in equation (5.21) is an approximation and its accuracy
depends on how well the quantum position and momentum distributiéns are
approximated by the classical results at the initial temperature. Using the
classical position distribution, e“sov(z), is an approximation which
becomes more accurate as the initial temperature is increased. The use of
these approximations and more accurate results will be considered in detail
in Chapter 6.

A summary of the method which we have used to calculate averages over
the quantum position distribution can now be presented:

(1) A classical Monte Carlo method is used to sample configurations at some



(2)

(3)

(")

(5)

(6)
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high initial temperature. Several hundred systems selected from the
Markov chain are used to construct an initial ensemble.

The quantum Monte Carlo method is employed to propagate the ensemble
along a "trajectory" in B. Systems are allowed to diffuse, replicate
and die. .
Vper is adjusted at the end of each B step so as to keep the ensemble
population approximately constant. A similar stabilisation procedure to
that described in Chapter 2 is used to adjust the energy reference at
each time step.

At particular temperatures various position dependent properties are
evaluated and averages are accumulated. The contribution of each system
is determined by the displacement from its initial configuration as
described by equation (5.21).

The contribution which each ensemble of systems makes to the final

averages must be weighed by the factor

noj
e i=1

In this way the correct temperature evolution may be obtained together
with a stable ensemble.

Once the trajectory has reached its final temperature we return to
step (1) to establish and propagaté another ensemble.

With the algorithm outlined above, averages over a very large ensemble

are constructed by accumulating properties from much smaller ensembles.
correct contributions from the smaller ensembles are ensured by using
weighting scheme outlined in step (5).

The statistical convergence of the algorithm will be influenced by

number of systems in the component ensembles. If relatively few systems

The

the

the

are
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propagated in each cycle, the statistical fluctuations will be large. The
value of the energy reference at each B step is related to the average
potential energy of the ensemble. Consequently, the set of V}ef values
which is sampled as small ensembles are propagated may differ substantially
from one ensemble to the next. Thus the exponential weights includea in
step (5) may be very different for each small ensemble. With a larger
ensemble and a better sampling of the configuration space the values of
V%ef will be similar for all the ensembles and better statistical
properties will result. The fluctuations in the algorithm discussed above
therefore depend on the exponential of the fluctuations in the quantity
§ V%ef'

Finally in this section we consider calculating properties which depend
on the momenta. It can be shown (Feynman (1972)) that the average Kinetic
energy of a system at a temperature B may be calculated from the momentum

probability density given in equation (5.15) using the following expression

3N 2 3N 2
<L Piomp " J( 1 03/,) P(Ri8) dp
’ ’ (5.22)
3N

]

N J

Here equation (5.15) has been substituted. Collecting factors containing
the momenta we find that the momentum integrals in (5.22) can be written in

a similar fashion to equation (5.20)

i - - 2
J [3N ) i/ p.(r-r") BOZ I_)\]/ij

% pj/ij e e J dp (5.23)

and this result reduces to the following form
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M ommg 3 o Mi/28gn% (ryry")?
j=1(57§i)
(5.2L)
3N
X_z11/280[1 - mj/hzgo(r’j - I"j')z]
J:

The spatial integrations in (5.22) are performed as before by averaging
over the ensemble and including the Gaussian weights. Thus to obtain.the
kinetic energy we average the summation appearing in (5.24) in the same. way
as averages of position dependent properties were calculated. Equation
(5.24) is an approximation and again its accuracy depends on the assumed
classical distributions at the initial temperature.

More detailed information about the quantum momentum distribution can
be obtained from the non-zero temperature quantum Monte Carlo procedure.

Consider the single particle momentum distribution, defined as follows

P (p1:8) = |..] P (p1,..,pN:B) dpp...dpy

Substituting (5.15) we find that this result may be written in the form

N
~i/p p1-(2y-r1") =iy L pj.(rjy-rs")
P (p1;8) = [..]e -

N
-BoP1 2/2m1 -Bo z 23/2mj
x £(r>r';B,>8) e e j=

X dr'dpo..dpy
Here the function g(g»z';80+8) represents the position distribution

propagated by the quantum Monte Carlo procedure. As discussed earlier, the

integrations over the 3N-3 momentum variables reduce the above equation to

the form
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3N 1 —m s impat)2
P(py;8) = f I (2ﬁm-)2 e Mi/28gh* (rg7ry')
(5.25)
X g(£+£';30->3) e—i/'f’l 21’(51—21') e—8021 2/2m1 dr'

The probability of finding a particle with vector momentum in a

momentum space volume element dpy about pg is
P(pq1;8)dpy = P(pq;B)pq2sinedpydeds

For an isotropic system, all orientations of the momentum vector are
equivalent so we can integrate over the angle variables to obtain a
distribution of momentum magnitudes. Considering the terms in equation
(5.25) which depend only on p1, transforming to spherical polar coordinates
and letting the z-axis 1lie along the vector ri-ri' we can write the

integral over orientations as

2 1

- - [ - 2
j a6 f o~isn Prlra-ryt| cose  -8opy*/2my o
0 -1

1
- 2 .
- o o BoP17/2m I(cos(p1/ﬁ |ri-ri']x) + isin(py/h |rq-ry'|x)) dx
-1

- 2
= ur ¢ BOPT /2™ gino(py/a |ry-ry'])

where sinc x = sin Xx/y.
Using this result in equation (5.25) we find that the orientation

averaged single particle momentum distribution can be written as

3N Py -m 2 (r,,_r‘")Z
P(p1;8) = | "I (2mmy 2 e /2B iTrj
jJ=“[f_1’_§é')
(5.26)
_ 2
X E(£+£|;BO+B) e Bop1 /2m1 sinc(p1/ﬁ |£1_£1||) dE'



140

Equation (5.26) is used to obtain the momentum distribution from a
quantum Monte Carlo calculation as follows: At certain points along the
temperature trajectory a histogram of the sinc function in the displacement
of the particle is accumulated. Each added function must be weighted by a
product of Gaussians in the displacements of the other particles. Averéging
over many trajectories performs the spatial 1integrations in equation
(5.26). Finally, each histogram must be multiplied by the high temperature
Gaussian momentum distribution to give the distribution at the different
temperafures along the trajectory.

In this section we have described a random walk procedure which may be
applied to calculate the properties of systems at non zero temperatures.
The method 1involves propagating classical high temperature initial
ensembles to lower temperatures by performing random walks which simulate
the Bloch equation. Position and momentum dependent properties may be
obtained from these calculations. The ensemble developed at each step in
the random walk contains systems whose configurations are typical of the
equilibrium at the temperature associated with the step. Averages at the
various temperatures sampled during the random walk are obtained by
accumulating the results of many random walks having different initial
conditions sampled from the high temperature distribution. .

In the next section we give a brief summary of some related methods
which have been developed for performing quantum calculations at non-zero
temperatures and compare these with the procedure described in this

section.
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3.) A review of other Quantum Methods for Treating Systems at Non-Zero

Temperatures

Most of the methods which have been considered for performing quantum
calculations at non-zero temperatures are based on the path intégral
formulation of quantum statistical mechanics due to Feynman (Feynman'and
Hibbs (1965)). With the path integral method the density operator is
developed incremently by dividing B up into M small segments of length e so
that B = eM. Thus the density operator for some low temperature B may be

written as a product of M high temperature factors

p(B) = pl(e)p(e)...ple)

In the coordinate representation the above expression gives the following

form for the density matrix
p(r,r';B) = J...I plr,rise)p(rysrose)...p(rm—q,r'se)dridro. .. dry-1 (5.27)

By considering the analogy between the solution of the Bloch equation and
the idea of a "classical trajectory", a useful interpretation of equation
(5.27) <can Dbe obtained. A series of intermediate configurations
risrs,...,ry-1 defines a path along which the system travels as it moves
between r and r'. Equation (5.27) thus_states that the total amplitude
p(g.g';ﬁ) for the system to begin at r and end at r' is obtained as the sum
over all possible paths of M ségments which connect the configurations r
and r'. In the limit as e»0 the number of intermediate points in the paths
becomes infinite and each path may be represented as a function r(t) where
the variable t is defined on the interval 0 £ t £ B. The multidimensional

Riemann integral in equation (5.27) becomes a functional or Wiener integral
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in the limit as €»0 and, using the notation of Feynman, the density matrix

is written as follows

pr,rts8) = [ [ o[r(t)] prct) (5.28)

Here the functional ¢ is defined by

o[r(t)] = 1im plr,ry;e)p(ry,rose)...plry=-1,r'se) (5.29)
e>0
:Me=t
and Dr(t) = 1lim drqdro...dry-q (5.30)
M-

The random walk procedure for solving the Bloch equation described in the
previous section assumes that in a small B interval we may model the
kinetic and potential terms by seperate, independent processes. In the same
way, Feynman assumes that for an infinitessimal increment, e, the system
may be considered as a collection of free particles with a small correction
due to the potential. A perturbation approach 1is used to obtain the

following high temperature approximation for the density matrix

r = (25325]—3N/2 e M/2n%e (=r')* e—ev(z)

(5.31)

The first exponential term, together with the normalization factor, gives
the density matrix for a collection of N free particles at a temperature e.
The final exponential is the perturbation correction due to the influence
of the potential.

Substituting the high temperature approximation for the density matrix
given in equation (5.31) into (5.29), the following expression for the

functional ¢ is obtained
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Q[g(t)] = lim exp{-e([m/thﬂgggiJz + V(E)] + [m/ZhZ(éﬂ%EEQZ +.V(£1)]
>0
:Me=t (5.32)

oo+ [M/2n? (E-M‘_l’i

+ )2 + V(ry-p) 1)}

Taking the indicated limit we find that the quantity (33_1-§J)/€ becomes
the derivative (dﬁ(s)/ds)s = je and further that the sum of terms in the

exponent can be written as an integral in the following manner

t t
[“mjonz 2(s)% as + [ v(x(s)) as (5.33)
(o] [¢]

Thus the following functional integral expression for the density matrix is

obtained

- 8
[ exp{—jo(m/zﬁ2 £(s)? + V(r(s)))ds} Dr(s) (5.3

The exact multidimensional Riemann integral form for the density matrix
ymgae in equation (5.27) together with the high temperature approximation
presented in (5.31), or variations on this form, provide the basis of most
of the path integral methods for evaluating the density matrix. Monte Carlo
techniques are powerful methods for performing multidimensional Riemann
integrals. The idea of using Monte Carlo methods to calculate the density
matrix was suggested in the early 50's by Kac and Cohen (1952). An
excellent review of the early ideas for evaluating functional integrals is
presented by Brush (1961).

A number of different Monte Carlo calculations of density matrices and
related quantities have been reported. An understanding of the path
integral approach can be obtained by substituting the "primitive"™ high
temperature approximation, (5.31), into equation (5.27). If the r vectors

represent configurations of an N particle system, equation (5.27) involves
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a 3N x (M-1) dimensional integral. The integrand in (5.27) is everywhere
positive and is treated as a probability density which has the same form as
the expression for the functional given in (5.32). The points r and r' are
constants which parameterise the probability density and by using a Markov
process to sample the points (ry,ro,...,rm-1) from the 3N x (M—1)
dimensional distribution, the off diagonal elements of the density matrix
may be calculated. By equating the end points r = r' and drawing points
from the 3N x M dimensional probability density, configurations distributed
according to the diagonal elements of the density matrix may be sampled and
properties of the system are calculated as averages over this distribution.
Thus the quantum partition function for N particles is mapped onto a
classical partition function for N x M particles and the classical Monte
Carlo method of Metropolis et al. is used.

There are a number of variations on the method described above. Fosdick
and Jordan (1966) used a discrete path integral method to evaluate the two
body Slater sum for Lennard-dJones ”He over a range of temperatures between
2°K and 273°K. Rather than using a Markov chain for selecting points to
construct their paths, they employed conditional Brownian motion paths
using an interpolation formula due to Levy (1954). With this approach, the
intermediate points are chosen according to the free particle Gaussian
terms and the end points of the diffusing random walks are constrained.
Wheh the primitive high temperature épproximation is used the potential
integral in equation (5.33) may be evaluated using the trapezoidal rulerand
the values of the potential at the points along each Brownian motion path
are summed. Averaging the exponential of this sum and related quantities
over many Brownian paths provides a means for estimating the direct and

exchange contributions to the density matrix. An identical approach has
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been used by Jacucci and Omerti (1983) to test the usefulness of different
high temperature approximations;

There are two major differences between the method used by Fosdick and
Jordan and the approach we described in Section 2.). First, with their
procedure the diagonal elements of the density matrix are calculated by
considering paths which are constrained to start and finish at the same
point in configuration space. The method described in Section 2.), however,
uses diffusing paths with free end points; The contribution each path mékes
to the diagonal elements of the density matrix is determined by the
Gaussian weight. Secondly, as discussed in Section 2.), the birth-death
procedure has an implicit importance sampling character since systems give
"birth" in the right regions of configuration space and die 1in the
unfavourable regions.

The Markov chain Monte Carlo method outlined earlier is an alternative
importance sampling method since the rapidly varying potential terms are
included in the sampling probability density. Jordan and Fosdick (1968)
recognised this and used Brownian motion paths in which the points were
accepted or rejected on the basis of a transition probability chosen to
include the parts of their integrands which varied rapidly. They used the
first few terms in the Wigner-Kirkwood expansion to give a more accurate
high temperature approximation for the density matrix and with this
approach were able to explore in some‘detail the influence of three body
effects on the pair distribution function for YHe gas.

Barker (1979) showed that employing the Metropolis sampling method was
not sufficient to give an efficient Monte Carlo scheme for studying many
body systems with hard core interactions when the primitive high

temperature approximation of equation (5.31) is used. More accurate high
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temperature approximations must be considered. The reason for the problem
is related to the difference in distance scale between the Gaussian
(kinetic) term and the short range repulsive part of the potential. The
primitive high temperature approximation given in equation (5.31) is only
valid if V(r) is slowly varying coﬁpared with the quadratic term arfsing
from the free particle Gaussian. Increasing the number of intermediate
points in the path reduces the width of the Gaussian factor. Thus in the
limit as M » « the approximation in (5.31) becomes valid. Barker found £hat
for systems with hard cores the convergence with increasing M was slow. The
early uHe calculations of Fosdick and Jordan in which a Lennard-Jones
interaction was assumed indicated that reasonable accuracy could be
obtained with the primitive approximation using on the order of 102 - 103
intermediate points. The tests performed by Jacucei and Omerti (1983)
showed that the convergence with the primitive high temperature
approximation is even slower for a system of hard spheres.

Barker presented more accurate forms for the high temperature
approximation. Using an "image approximation" for a system with infinite
hard core repulsions, he obtained a dramatic improvement in the convergance
of the discrete path integral Monte Carlo method. Jacucci and Omerti
studied the radial distribution function for a system of quantum hard
spheres over a wide range of temperatures. They found that with the image
approximation well converged results éould be obtained using as few as 20
path segments.

Barker also presented a more accurate high temperature approximation
applicable to many body systems with pair additive potentials. His

suggested approximation takes the following form
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2 —3N —- —_—nt )2
olr,rrie) = (B ) /2 Mente (oorh)
(5.35)
N { p2(ry,rpsry',rn'se) }
x I o
1<n (gﬂﬁie) ’ Em/zﬁzel(fl—zl')2+(En‘£n')fj

m

The factor e~eV(£) in equation (5.31) is thus replaced by a product of
pair density matrices p.. The denominators in the product divide out the
free particle contributions contained in p, which are already included in .
the first many body Gaussian factor.

Pollock and Ceperley (1984) used equation (5.35) to perform non-zero
temperature quantum calculations on the bulk phases of ”He. In their work

the terms appearing in the pair product in equation (5.35) were

approximated by the following form

o~3[P(r;e)+P(rt;e) ] (5.36)

Here the function P(r;e) is the logarithm of the diagonal elements of the
pair density matrix and depends only on the distance r = lEl—_nl' Pollock
and Ceperley have presented a summary of a number of different methods for
calculating the pair density matrix. Some of these approaches will be
considered in more detail shortly.

The connection between the various path integral Monte Carlo methods
described above and the quantum random walk approach which was detailed in
the previous section can be discussed in terms of the isomorphism between
the path integral formulation of quantum statistical mechanics and the
classical statistical mechanics of polyatomic fluids. The isomorphism has
been considered by Chandler and Wolynes (1981), and with their coworkers
(Schweizer et al. (1981)) they have applied the perturbation techniques of

classical fluid theory to develop improved discrete path integral methods.
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The isomorphism can be appreciated if one again considers substituting
the primitive high temperature approximation presented in equation (5.31)

into equation (5.27). We may write the result in a slightly different form

N
p(r.rsg) = [ T B(d,rd,rod, .. ruagdie)
J=1
(5.37)
N 3 K3 M—1 s 3
—e J (v(]ret-riD+ § v(|rgl-rgd D)
x e 1<J t=1 dridro...drm-1
Here
C. Ly o M=2 . i\ 2 . 5o
L . “m/onzel (£3-r13)2+ ] (rgd-rped)2+(zy-13-r)2]
B(rd,rydirod, . iru-qdie) = e t=1

(5.38)

In the above the superscripted indices i and j label the particles in the
system and the subscripted values of t specify the different configurations
sampled as the system wanders along a path. The function B contains all the
Gaussian factors which represent the free motion of particle j.

Chandler and Wolnyes noted that the factor B was isomorphic with the
classical Boltzmann factor for a ring polymer molecule. Each "atom" in the
ring molecule is connected to only two neighbours by a harmonic interaction
potential. The constituent "atoms" of the polymer are actually the same
particle, j, but sampled from different configurations' of the path.
Consequently, the product of B factors appearing in equation (5.37) is
related to the partition function for a classical fluid of non-interacting
polymer molecules. The term containing the potential in equation (5.37)
describes how the polymers interact with one another. Due to the form of
the potential term, two polymers interact through a site-site potential.
Thus site t on polymer i interacts only with>the sites labeled by t on the
other polymers in the fluid.

From the isomorphism discussed above the diagonal elements of the
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density matrix are proportional to the partition function of a particular
classical fluid of polymers. For an N particle system there wili be N
polymers in the classical fluid and if the discrete path integral is
written in terms of M high temperature factors, there will be M "atoms" in
each polymer. The polymers must have closed ring structures since the"path
integral expression for the diagonal elements of the density matrix
involves paths which start and finish at~the same points.

With the quantum random walk method described in the previous section,
the terms in the integrand of equation (5.27) are simulated by the random
walk procedure rather than using a Metropolis Monte Carlo sampling scheme.
Each system 1in the propagating ensemble is selected from the high

temperature distribution
e—BOV(E)

The recriprocal temperature increment, AB, is chosen so that there are M

steps in the random walk which ends at a temperature 8 thus

8—80

AB = M

As B 1is incremented, the systems diffuse according to the Gaussian

distribution

~m/on2 pg(rry)2

e pia
Births and deaths occur so that after k increments in B each system is
effectively weighted by the factor

K
-1 V(rj)as.
e i=1

Finally to obtain the diagonal elements of the density matrix each path is
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weighted by another Gaussian factor

o /208, (rrK) 2

The total weight of a diffusing system after k increments in reciprocal

temperature is thus

~m/onzag [ (rmr))2+(rq-rp) 4. Lo+ (g1 2] -myopg (rmry)?
e

-LZ( V(ri)AB -BoV(r)
x e i=1 e
This form is an alternative way of splitting up the integrand when the
primitive high temperature approximation is wused in the discrete path
integral expression for the density matrix.

The integration over the momentum variables which gives rise to the
extra Gaussian factor in the displacement r-ryp can thus be consihered as a
mechanism for closing each ring polymer at any temperature along the random
walk trajectory. The method for closing the polymer rings is illustrated in
Figure 5.1 where the 9 segment rings for a pair of interacting particles
have been closed with Gaussian bonds at the 3rd, 6th and 9th gsegments.

From the above discussion, the method discribed in Section 2.) presents
an efficient means for extracting all the information from a path integral
calculation. High and low temperature results are obtained from a single
run by aséuming that there is a linear relationship between B and the
number of path segments needed to accurately evaluate the discrete path
integral. Thué at higher temperatures we assume that similar accuracy can
be obtained using fewer path segments. The accuracy will be determined by
the high temperature approximation used. In Section 2.), the algorithm was

developed using the primitive high temperature approximation. From the
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discussion presented above, however, it is likely that the accuracy of the
random walk approach will be improved by using high temperature
approximations of the forms suggested by Barker and by Pollock and
Ceperley to replace the potential in the birth-death step. We could also
follow Jordan and Fosdick and use the Wigner-Kirwood quantum correctioﬁs.

The inefficiency of the conventional Metropolis Monte Carlo method for
sampling the configuration space of polymer systems was noted by Pollock
and Ceperley. Due to the strength of the high temperature intrapolymer
interaction, very few moves are accepted. With the random walk approach,
the diffusion process directly samples the intrapolymer geometries. The
birth—-death process should also provide an efficient means of sampling the
interpolymer interaction.

The statistical methods for calculating the density matrix which have
been discussed in this chapter are important for studying systems with many
dimensions. For problems with few dimensions much more precise techniques
are available. The partial wave expansion may be used to reduce the three
dimensional two body problem to a single dimension. For a one dimensional
problem standard numerical methods may be used to calculate the eigenvalues
and eigenfunctions and the density matrix is obtained by directly summing
over all the states as in equation (5.3). Larsen, Witte and Kilpatrick
(1966) wused this approach to —calculate the direct and exchange
contributions to the diagonal elements ofbthe density matrix for a pair of
helium atoms interacting with Lennard-Jdones forces.

A powerful iterative procedure for evaluating path integrals in low
dimensional problems was developed by Storer (1968). The method makes use

of the following result

p(r,r';2e) = f p(r,r";e)p(r",r';e)dr" (5.39)
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which is a particular case of equation (5.27). A high temperature
approximation for p(g,g';e) is used to commence the iteration and when the
integral in (5.39) is performed, the density matrix at half the
temperature, 2e¢, is obtained.

For problems which can be reduced to one dimension the high temperéture
density matrix is set up as a square grid in r and r'. Using numerical
quadratures the integral in equation (5.39) is replaced by a matrix
multiplication. Repeating the matrix multiplication procedure n times is
equivalent to perfprming an M = 2N=-1 segment discrete path integral and the
temperature obtained after these iterations corresponds to 8 = 2hg,

Storer first used the approach to determine the quantum radial
distribution function for a plasma at small ion—electron separations. Later
Klemm and Storer (1973) applied the procedure to evaluate the direct and

exchange contributions to the pair correlation function for helium and neon
over a range of temperatures.

Berne and his coworkers ‘(Thirumalai and Berne (1983), Thirumalai,
Bruskin and Berne (1983)) have used the iterative procedure to treat a
number of chemical problems. Due to the speed and efficiency of the
technique for 1low dimensional applications, many iterations could be
performed and consequently they found that the primitive high temperature
approximation was adequate.

All the path integral methods which have been discussed in this chapter
involve representing the integration paths in terms of a set of discrete
configurations. An alternative approach, however, is to represent the paths
in terms of a complete set of orthogonal functions. By varying the

coefficients of the functions in the expansion one runs through all the

paths. The idea was used by a number of workers in the late 1950's when
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analytic methods for evaluating functional integrals were being developed.
The review article of Brush (1961) summarises much of this work.

Fosdick (1962) presented a Monte Carlo method for evaluating general
Wiener integrals using paths which were represented in terms of an
othogonal expansion. By truncating the infinite expansion at some finite
value n the infinite dimensional Wiener integral was reduced to an n
dimensional Riemann integral in a similar fashion to the discrete path
integral methods. Now, however, the integration variables were the
expansion coefficients rather than the intermediate configurations in the
discrete path.

Recently Freeman and Doll (1984), (1985) have developed a quantum Monte
Carlo method which is based on a Fourier series representation of the
paths. Their approach is similar to the work of Fosdick. The path traced
out by particle i1 as the system moves from r to r' is expanded about a
fixed linear path connecting r and r'. Thus as t is varied between O and B

particle i moves along a path described as follows

El(t) =r; + (Ei"zi)t/g + gkisin(kwrt/s) (5.40)

1

I o~18

k

When the above result is introduced into the functional integral
expression given in equation (5.34) a form for the density matrix involving
integrals over the Fourier coefficients, 2k, is obtained. Freeman and Doll

used this form together with the following result

(5.42)

to derive expressions for the average values of various operators. These

results involve 1integrals over the particle coordinates and Fourier
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coefficients and by truncating the Fourier series at some value kpgx the
finite dimensional integral obtained may be evaluated by the Metropolis
Monte Carlo method.

The amount of computational effort involved in a Fourier path integral
Monte Carlo calculation depends on Kkpay in much the same way as- the
computational effort in a discrete path integral calculation depends on the
number of path segments M. From their studies wusing the Fourier path
integral method Freeman and Doll have found that the convergence with
increasing kpay is quite repid even at low temperatures. Further the
convergence properties of the Fourier path integral method are not strongly
dependent on the form of the potential and there seem to be no significant
problems in applying the method to systems with harsh repulsive core
interactions. The approach has so for been applied to some simple one
dimensional oscillator problems and a rather extensive theoretical study of
the properties of argon clusters has been conducted.

In the next chapter we present the results of some calculations which
use the discrete path integral method described in Section 2.). First the
properties of the method are exployed using some simple one dimensional
problems and finally the method is used to study the properties of some

atomic and molecular clusters.
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CHAPTER 6 APPLICATION OF THE NON-ZERO TEMPERATURE

QUANTUM MONTE CARLO METHOD

Introduction

In this chapter the methods described in Chapter 5 are applied fo a
variety of quantum problems. To study the behaviour of the algorithm we
first calculate the properties of the one dimensional harmonic and Morse
oscillators as functions of temperature. Analytic results for these
oscillators are available so comparisons can be made and the algorithm
tested.

To demonstrate its application to multidimensional problems we next use
thg non—-zero temperature quantum Monte Carlo procedure to spudy the
properties of a low density gas at low temperatures. We have simulated Neon
gas using a Lennard-Jones potential. The results of this study are compared
with classical theory and also with the earlier matrix squaring
calculations performed by Klemm and Storer (1972). Excellent agreement
between the two quantum methods is found.

Finally the results of some calculations on the water dimer are
‘presented. The cluster has been modelled over a range of temperatures
between 2000°K and 200°K. The aim of this study is to determine the
significance of quantum behaviour in molecular clusters at finite
temperatures. In Chapter 3 we saw that the classical description of the
intermolecular degrees of freedom in this cluster at very low temperatures
was rather poor..Here we shall study the differences between the classical

and quantum descriptions of the motions of molecules at higher
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temperatures. Many simulations of molecular liquids have been perfomed
recently in which the validity of classical mechanics has been assumed. For
systems of light molecules which interact with strong forces such as the
hydrogen bonding interactions in water, the assumptions of classical ﬁheory
are questionable. In the final section of this chapter we test these
assumptions by comparing the results of classical and full quantum

calculations over a range of temperatures.

1.) One Dimensional Oscillators

To study the general properties of the non-zero temperature quantum
Monte Carlo algorithm we have used the method described in Chapter 5 to
solve the Bloch equation for the one dimensional harmonic and Morse

oscillators. The Hamiltonians for these problems can be summarised as

follows

~ _-h% 4d?

fo= 2ud_xz Ay
where Vy(x) = % pw?x® (6.1)
and Uy(x) = Dg(1-e )2

We first consider a harmonic oscillator having the reduced mass of a
neon atom and a frequency thw = 100 K. This problem models the
intermolecular interactions of 1light molecules.

All the Bloch equation trajectories in our studies involved propagating
ensembles with average populations of 5000 systems through 100 steps in

reciprocal temperature. The behaviour of the oscillator was studied down to
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a temperature of 10°K and time step size dependence was monitored by
comparing with calculations which terminated at 30°K. Initial condition
dependence has been considered by starting the trajectories at 100, 500 and
1000°K. The results of these studies are summarised in Figure 6.1 where we
show the potential, kinetic and total energies of the oscillator at various
‘temperatures along the random walk trajectory. The potential energy was
obtained by averaging Vy(x) over the ensemble distribution including the
Gaussian weights which depend on the displacement from the initial
configuration as given in equation (5.21). In a similar manner, equation
(5.24) was used to calculate the kinetic energy and the total energy was
obtained from the sum of the potential and kinetic components. The values
presented in the figures are the results of averaging over more than 10
independent trajectories each having an average population of 5000 systems.
The contribution of each trajectory must be weighted by the values of Vper
as discussed in Section 2.) of Chapter 5.

The Bloch equation for the harmonic oscillator can Dbe solved
analytically (Feynman (1972)] and the potential and kinetic energies are

given by the following

U> = <T> = D@ (

1 +exp ("hLOB)
m )

1=exp (~RAwB) (6.2)

Solid lines appearing in Figure 6.1 were obtained using this result while
the dashed curves are the predictions of classical equipartition theory. In
the figure we study the initial condition dependence of the random walk
results. The lower group of curves give the potential and kinetic energies.
When a classical initial distribution at 100°K is used the kinetic and
potential energy curves obtained from the quantum random walk calculation

differ significaﬁtly from the exact results. The kinetic energy is under
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estimated along the length of the trajectory while the potential energy
starts lower than the exact result and ends too high. Similar behaviour 1is
observed to a lesser extent with higher temperaturg initial conditions. The
points clustering around the exact potential-kinetic curve were obtained
from calculations sampling classical initial ‘distributions at 500  and
1000°K. The results seem independent of step size since the values obtained
from calculations using final temperatures of 10°K and 30°K are identiéal.
Despite the initial condition dependence of the breakup of the energy into
potential and kinetic components, the total energies at the lower
temperatures considered in our calculations are all within 1% of the exact
result irrespective of the initial distribution.

The initial condition dependence which was described above can be
understood by examining the expressions used to calculate the components of
the energy. If we consider equation (5.24) for a single dimension, the

kinetic energy is obtained by performing the following average over the

weighted ensemble members

(X‘X‘)z]

T() = <1/2[1-" /n%g, >g

Initially B8 = By and x = x' so the kinetic energy in the 1initial
distribution is the classical result 1/280. At a temperature of 100°K the
exact kinetic energy of our oscillator is 54.1 K so the classical initial
condition gives a kinetic energy which is about 4 K too low. From Figure
6.1 we see that this 1initial discrepancy 1is propagated along the
trajectory.

The behaviour of the kinetic energy discussed above and differences
between the potential energies obtained from the simulation and the exact

values is due to assuming classical behaviour at the initial temperature.
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When low initial temperatures are used the deviations are large because the
classical results provide a poor approximation to the true quantum
behaviour. With higher initial temperatures more accurate calculations can
be performed. We shall see shortly that this initial condition dependence
Acauses severe problems when the approach is applied to oscillators with
'widely spaced energy levels such as the Morse oscillator which describes
the 0-H stretching motion of a water molecule.

The energies obtained from simulations using the higher initial
temperatures are in good agreement with the analytic results. Similar
accuracy is found with the various distributions which were calculated
during the simulation which used a classical initial distribution at
1000°K. The position distributions obtained from this calculation are
compared with the exact quantum distributions in Figure 6.2a. Feynman

(1972) gives that the diagonal elements of the harmonic oscillator density

matrix take the following form
P(r;g8) = exp ("Mw/y tanh(fiwB/o)r?) (6.3)

Excellent agreement between the distributions obtained from the quantum
simulation and the above analytic result is observed.

Figure 6.2b compares the calculated momentum distributions with
classical results. The one dimensional case of equation (5.25), (5.26) was
used to obtain these curves. As a self consistency check, we numerically
integrated the momeﬁtum distributions presented in Figure 6.2b and averaged
the kinetic operator pz/gm. The kinetic energies obtained with this
approach agreed with the results obtained by averaging equation (5.24) over

the ensemble distribution.

The classical momentum distributions are sharper than the quantum
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results. In the 1limit of 2zero temperature the classical oscillator is
stationary so its momentum distribution will be a delta function at k = O.
Quantum mechanically, the zero point motion will give the zero temperature
momentum distribution a finite width.

Later in this chapter we will use the non-zero temperature quantum
-Monte Carlo method to study the behaviour of a cluster of water molecules
at elevated temperatures. The most quantum mechanical degrees of freedom in
such a cluster are the intramolecular vibrations. We now consider
application of our non-zero temperature quantum Monte Carlo method to the
Morse oscillator describing the OH stretch motions in the water monomer.’
Our aim here is to explore the initial condition dependence of the random
walk algqrithm for this oscillator so as to determine the range of
operating conditions for which reliable results can be obtained.

As discussed in Chapter 3 the bound state eigenfunctions of the Morse
oscillator are analytic so the diagonal elements of the density matrix for
temperatures well below dissociation can be obtained by performing a
Boltzmann weighted sum over the bound eigenstates. For higher temperatures
continuum states will also be important.

In Figure 6.3 we compare the energies calculated during a number of
quantum Monte Carlo simulations of the Morse oscillator with the results
obtained by explicitly summing over the states as outlined above. Classical
distributions at initial temperatures of 5000, 7500 and 10,000°K were used.
The dissociation energy of the OH Morse oscillator is about 66,000°K. As
with the harmonic oscillator, the potential energy obtained from the
quantum simulation is too high and the kinetic energy too low due to the
assumed classical initial distributions. With higher initial temperatures

the classical forms are more accurate approximations and the quantum Monte
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Carlo estimates of the potential and kinetic energies tend to the exact
results as the initial temperature is increased. As with the harmonic
oscillator we see that the offsets in the potential and kinetic components
which occur due to the use of the classical initial distributions almost
exactly cancel giving total energies which are in excellent agreement with
the exact results. The reason fbr this behaviour is not fully understood.

We can conclude from . our studies of the Morse oscillator that an
accurate representation of the intramolecular vibrations in a water
moledule can only be obtained if initial temperatures of the order of tens
of thousands of degrees are employed. There are significént problems with
using such high temperatures. The major difficulty is due to the form of
the Gaussian weights which are used to obtain the diagonal elements of the
density matrix. From equation (5.21) the width of the Gaussian weight
distribution decreases as the initial temperature is 1ncfeased. If high
initial temperatures are necessary for the classical results to be
accurate, very narrow Gaussian distributions result. As systems diffusé
away from their initial geometries they Pecieye very small weights.
Consequently the statistical properties 6f the algorithm deteriorate
rapidly as the initial temperature fs increased.

The problems with using the classical distributions as initial
conditions for the Bloch equation simulation which were noted above can be
overcome by starting at lower temperatures and employing more accurate high
temperature approximations. This may be demonstrated for the harmonic
oscillator by using exact results for the initial condition at some
moderate temperature where employing the classical initial condition would
otherwise give problems. Feynman (1972) ‘shows that the off diagonai

elements of the harmonic oscillator density matrix have the form
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_ e—a(r2+r'2) + brr!

p(r,r';g) (6.4)

where a = coth(Bhw) and b o

mw e Mw
2h " f sinh(Bhw)

When equation (6.4) is used in equation (5.10) the following expression for

F(p,r;B) may be derived

-mw tanh(hw) r® -~tanh(ghw) p* i/n pr

Fp,r;8) = e o 2hmo o " cosh(8hw)

e (6.5)

It is easily shown that this result reduces to the classical form given in
equation (5.17b) in the 1limit as B8 » 0. We may perform a non-zero
temperature quantum Monte Carlo calculation using the result in equation
(6.5) evaluated at some temperature B, as the initial conditon. As with the
case where a classical initial conditions is used, points (r,p) in phase
space are sampled according to the first two terms in equation (6.5) and
each ensemble member 1is weighted by the final term in the equation. The
ensemble may be propagated to lower temperatﬁres using the usual diffusion
and birth—-death processes. When a system diffuses from a point r at By to
r' at B', we can use equation (5.14) to obtain weights which will give the
full quantum position distribution in the same manner as equation (5.21)

was derived. The following expression for the weight is found

—mw(r'~r/cosh(85hw)]
2h tanh(Bghw)

w(r,r') = exp [ (6.6)

Proceding in the same way as equation (5.24) was obtained, the kinetic
energy can be calculated by averaging over the weighted ensemble

distribution as follows

2
P, Do - mo - 2
Cmgr T <2 tanh(B8shw) (1 h tanh(Bghw) (r r‘/cosh(Bohm)) > (6.7
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Equation (6.6) and (6.7) have been employed in a simulation of the
harmonic oscillator using an initial temperature of 100°K. The results of
this study are presented in Figure 6.4 and are found to be in excellent
agreement with the exact values.

The approach used above to improve the accuracy of the harmonic
oscillator calculation can be generalized to other problems. More accurate
high temperature approximations for the density matrix are required.rThe

development presented in Chapter 5 assumed the following high temperature

form for the initial condition

- m
_ (1 -r)2
p(r_s_r_‘;eo) = e BOV(K) e 2Boﬁ

In our applications, the classical Boltzmann factor is sampled with the
Monte Carlo method and the Gaussian is included as a weight. As 8, » 0 the
Gaussian gives weight to systems which sample the near diagonal region so
the above form is only useful in the high temperature limit. At lower

temperatures a more accurate form

~Bos2V(r) —BosoV(r')  =m/pg p2(r'-r)2

p(r,r';By) = e (6.8)

may be used.
When information about the diagonal elements of the density matrix,

p(r,r,By,), is available an improved form, based on equation (6.8) can be

considered.

L "myogpz(r'or)2
X - -

o(r,r';85) = [p(r,r;gg) olr',r';g) ]z e (6.9)

This result is the same as the "end point" approximation used by Pollock

deh Ceperley (1984) and presented in equation (5.36).

Equation (6.9) has been used to perform more accurate calculations on
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the Morse oscillator. The diagonal elements of the density matrix at the
initial temperature were obtained by summing over the analytic bound state
eigenfunctions as discussed earlier. A Monte Carlo calculation was used to
sample configurations drawn from the distribution p(z,g;eo)%. These systems
were « propagated with the random walk method and at a temperature. B’
configurations r' were obtained. By weighting the contributions of these
configurations with the factor
(6.10)

the polymer rings are closed and averages of various quantities are
evaluated. |

An expression for the kinetic energy is obtained in the same way as
equation (5.24) was derived. In the discussion above F(p,r;B,) was sampled

by weighting the configurations generated by the Monte Carlo calculation

with the momentum factor

-_m Meepnt1) 2
Zn7

: "
I el/‘h b.r p(En’En;BO)‘zL e d{‘_"

After propagation,each system must be weighted by the final phase factor
e"1/n P.r', As with equation (5.24), a function, K(r,r'), which may be
averaged over the spacial distribution of the ensemble to give the kinetic

energy, may be obtained by integrating p2/2m over the momentum distribution

Cm
2T L

K(eor') = [ & /AR p2ppr [l /mRIY opn i)t e dr"dp
| (6.11)

By making use of the following property of the Fourier transform

€ [ s ™l ar = - [ vir(r) ™ ar



165

equation (6.11) is reduced to the form

2 L (r'-r)2
K(r,r') = 272, [p(rt,r';80)% e 2P0 7 =

r o T ] (6.12)

Setting g = p(g',g';so)%, we find after some algebra that the kinetic
energy can be obtained from the following average over the ensemble whi ch

is weighted as in equation (6.10)

<§> - <M2g [0 - 8—‘;;:(5'—5)2 + 2(r'-r).Ving - f%a {v21ng+(Ving)2}]>
(6.13)

The more accurate high temperature results presented above were used to
simulate the OH Morse oscillator. Energies obtained from these calculations
are compared with the exact values in Figure 6.5. We see from this figure
that there is a great improvement in the accuracy of the results obtained
from our calculations. The most important feature evident in this figure is
that the results are not strongly dependent on the initial temperature.
Energies calculated using initial temperatures as low as 1000°K are within
a few percent of the exact results. This is in marked contrast to the
values obtained when classical initial distributions are used. In Figure
6.3 we observed differences between the exact and calculate potential and
kinetic components on the order of 10-20% when the highest initial
temperature of 10,000°K was used. At 5000°K discrepencies as large as 50%
were found.

The substantial improvements in accuracy obtained when the high
temperature approximation presented in equation (6.9) is employed make it
possible to use our method to perform non-zero temperature quantum
calculations on systems with mixed "quantum" and "classical" degrees of

freedom. In Section 3.) the high temperature approximation of equation
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(6.9) is used to provide the initial condition for the intramolecular
vibrations of the molecules in the water dimer. With this calculation the
classical initial distribution in equation (6.8) will be used for the
intermolecular motions of the cluster. In the next section we demonstrate
that the primitive classical approximation is wuseful for performing

calculations on systems with weak interactions such as the rare gases.

2.) Neon Gas at low temperatures

To test the non-zero temperature quantum Monte Carlo method on .a more
complicated problem we have calculated the pair'distribution function for
neon gas over a range of temperatures. Klemm and Storer (1972) used the
matrix squaring method described in the previous chapter to calculate this
function in helium and neon. As mentioned earlier their approach involved
using a spherical harmonic expansion to reduce the three dimensional two
body problem to a series of one dimensional equations. Each equation was
solved using the numerical matrix multiplication method and by summing the
truncated series to large & a converged estimate of the pair distribution
function was obtained.

The advantages of the method outlined above are that the nummerical
matrix multiplication is very rapid (Thirumalai, Bruskin and Berne (1983) )
and further the results obtained are free from the statistical noise which
characterises Monte Carlo methods. A disadvantage of the procedure is that
only problems with a few dimensions can be studied. The multichannel
expansions employed in atom-molecule scattering theory could in principle

be wused to perform matrix squaring calculations on more complicated
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systems. In most applications of scatting theory single energy calculations
are performed and a thermal average of the results of calculations at
different energies must be conducted. Using matrix squaring, the same
information may in principle be obtained from a single calculation. It may
prove useful to consider the matrix multiplication method or a related
iterative scheme in future developments of scatting theory. However, for
problems with more dimensions stochastic methods are essential.

To demonstrate the generality of the random walk method described in
Chapter 5 we have considered the two body problem in terms of a system with
6 periodic dimensions. A pair of Lennard-Jones neon atoms were placed in a
Monte Carlo cell with side length 30. Periodic boundary conditions and
minimum imaging were employed so that the periodic system modelled a low
density gas with a reduced density p* = 0.0093. A classical Monte Carlo
calculation at 100°K was used to provide configurations for the initial
ensemble. Random walks with 100 steps were performed and the AR step‘was
chosen so that the final temperature was 10°K. Ensembles containing 2500
systems were propagated along the trajectory using the diffusion and
birth-death procedure and Vpor was adjusted to keep the average population
approximately constant. At certain temperatures along the trajectory the
values of various properties were calculated and averaged as described
earlier. The results presented below were obtained by averaging over 500
trajectories each using a different initial ensemble sampled from the high
temperature classical distribution.

In Figure 6.6 we present the components of -the energy of the periodic,
two particle system obtained from our calculations. The figure also gives
the results of classical calculations. As expected, the classical and

quantum results are in reasonable agreement at higher temperatures but as
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the temperature is reduced the true quantum behaviour of the gas gives
results which deviate from the classical values. The potential component
shows the most significant deviation of the classicai from the quantum
results while the value of the kinetic energy differs only slightly.from
the classical form, 3/o kpgT per particle.

Figures 6.7 and 6.8 show our calculations of the position and momentum
distributions for the quantum gas at a variety of temperatures and compares
these results with the prediotions of classical theory. As expected from
the discussion above our quantum postion distributions show 1large
deviations from the classical results at 1lower temperatues while the
quantum momentum distributions déviate only slightly from the classical
form. At the 1lowest temperatures the classical position distribution
functions are much more strongly peaked than the quantum distributions. The
most important difference between the two distributions occurs in the
region of the repulsive wall. Quantum tunnelling allows the particles to
penetrate the classically forbidden hard core region of the potential.
Slight changes to the distribution in this region substantially effect the
average potential energy. Due to the increased sampling of the repulsive
core with the quantum distribution, higher potential energies result. In
the limit as T » 0O the classical distribution should become infintely
peaked in the minimum of the well so classically the asymptotic potential
energy should be €. Due to the zero point motion, however, the asymptotic
energies trend to their ground state values.

Figure 6.7 also compares our quantum position distributions with the
results obtained by Klemm and Storer who used the matrix squaring procedure
described earlier. The agreement between the two sets of quantum results is

very good and demonstrates that the diffusion Monte Carlo method is able to
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give accurate pair distribution functions for more complicated quantum
systems.

The momentum distributions, P(k), are presented in Figure 6.8. The
classical and quantum curves are very similar at all the temperatures
considered in our calculations. Classically, in the limit as T » 0O the
particles will be stationary and a delta distribution at zero momentum will
result. Quantum zero point motions, however, give a momentum distribution
with non-zero width. The onset of these differences is observed in momentum
distributions presented in Figure 6.8.

The random walk calculations described above use the primitive high
temperature approximation as the basis of the diffusion and birth-death
steps but since the "time" step used corresponds to a temperature in excess
of 1000°K this primitive form is quite accurate. Thirumalai et al. (1983)
have reported similar accuracy using the primitive high temperature form
with the numerical matrix multiplication procedure. The most significant
approximation in these studies is employing the classical distributions at
100°K as the initial condition for the quantum random walk. As discussed
earlier more accurate approximations like equation (6.9) could have been
employed but the agreement between the pair distributions obtained from
matrix squaring and our results indicates that the classical approximation
is reasonably accurate at 100°K in this system characterised by weak
interactions.

In the next section we describe the results of non—-zero temperature
quantum Monte Carlo calculations on a higher dimensional problem. The onset

of quantum behaviour as a function of temperature is explored for the water

dimer.
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3.) Quantum Behaviour of the Water Dimer at Non-Zero Temperatures

In Chapter 3 we investigated the properties of the water dimer in its
ground state. It was noted that due to the neglect of 2zero point motions
classical mechanics was not useful for studying this system at very low
temperatures. The ground state of the molecular cluster is characterised by
large amplitude zero point motions and the sharp intermolecul<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>