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Abstract

While the theory of multiband superconductivity has existed since the work of Suhl
et al. and Moskalenko, it has only been with the discovery of superconductivity in
magnesium diboride that this theory could be applied to real materials. The list of
possible multiband superconductors has steadily grown, and these materials have
attractive properties that warrant further investigation.

In this thesis we look at two theories of multiband superconductivity and the
connection between them. The first theory is the multiband generalisation of the
microscopic theory of Bardeen, Cooper and Schrie�er (BCS). In the case of three
superconducting bands, it is well known that there can exist a phase transition to a
new phase of superconductivity, the time-reversal-symmetry-broken (TRSB) state.
We show that in this state the full multiband theory reduces exactly to solving a
set of independent one-band equations. In addition, this reduction produces a set of
conditions among these one-band solutions which must be satisfied for them to be
solutions of the full multiband equations. These conditions can therefore be used to
find the TRSB transition temperature.

The phenomenological Ginzburg-Landau theory (GL), which can be derived as an
expansion of BCS theory around the critical temperature, has also had a multiband
generalisation which was first derived by Tilley. Peeter’s and co-workers recently
used the Gor’kov technique to find the next order corrections to the theory, extending
the validity to slightly lower temperatures. We restrict ourselves to the field-free case
and find extensions to very high order. We show that in the one-band theory and
most multiband cases the superconducting gap in this extended GL theory converges
to the BCS theory over almost the entire temperature range. However there are some
cases in the multiband theory where the GL expansion diverges. This divergence is
related to the appearance of a second critical temperature in the uncoupled limit.

Finally we apply a range of numerical methods to find vortex and skyrmion states
in multiband superconductors. The skyrmion states are variations of the well-known
vortex states, and only appear when the bulk superconductor is in the TRSB state.
We find that, with the bulk in the TRSB state, the low order skyrmion solutions
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are very robust and are very likely to evolve from a random initial configuration.
However the higher order skyrmion states are instead likely to form a collection of
lower order skyrmions and vortices, and a large amount of control is required to form
them.
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Ľ ǧ≠1 ≠ Ň(0)A
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Chapter one

Introduction

Superconductivity has a long history, with a vast number of contributors to its devel-
opment, theoretical understanding, and applications since its unexpected discovery
in 1911.

In this chapter we highlight some of the key developments in the field, beginning
with the discovery. We look at the reasoning behind the development of the first
theories of superconductivity – the London model, Ginzburg-Landau (GL) theory,
and Bardeen-Cooper-Schrie�er (BCS) theory. We also briefly discuss some other
theories which treat the electron-phonon interaction mechanism more explicitly.

We finish with a look at some recent developments in superconducting materials,
indicating that a large class of the recently discovered superconductors with higher
critical temperatures have multiple superconducting gaps. Some of the established
theories of these multiband materials are also discussed, as well as some additional
aspects which appear in multiband superconductors.

The remainder of this thesis is organised as follows. In chapter 2 we look in more
detail at the foundations of BCS and GL theories, some results that can be found
from these theories, and the connection between the two. In chapter 3 we discuss the
extension to multiband BCS theory. Of particular interest is the result that under
specific conditions, a new superconducting state appears. We show that when this
happens the coupled multiband BCS can be decoupled, and instead form decoupled
one-band BCS equations.

In chapter 4 we look at two extensions to a multiband GL theory. We include
a new expansion to include many corrections in the temperature expansion. We
show that this expansion is very beneficial in some cases, but fails to give much
improvement under certain conditions. In chapter 5 we describe numeric approaches
to solving the multiband GL equations to find magnetic vortex-like structures. We
discuss some vortex solutions as well as some skyrmion solutions.
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CHAPTER 1. INTRODUCTION

The final chapter draws conclusions and highlights further directions and appli-
cations of this work.

1.1 History of Superconductivity

1.1.1 Discovery

The discovery of superconductivity was a remarkable event that was completely
unexpected. The laboratory of Heike Kamerlingh Onnes at the University of Leiden
succeeded in the liquefaction of helium, allowing the investigation of the properties
of materials at lower temperatures than could previously be accessed, due to its
extremely low boiling point. With access to these new low temperatures, one property
to be investigated was how the conductivity of metals behaved at these temperatures.

Before performing the measurement, it was known that with decreasing tempera-
ture, the resistance of metals tended to decrease. However, it was unknown whether
this trend would continue in such a way that the resistance decayed linearly towards
zero, whether it would retain a residual resistance, or if the resistance would increase
at low temperature.

The first experiment was performed by Giles Holst, an assistant of Onnes, on a
sample of mercury, which was used due to its high purity. Contrary to any of the
predictions, the resistance initially fell linearly, but at about 4.2K the resistance
suddenly vanished, dropping by several orders of magnitude below the sensitivity of
the measuring equipment [9, 10].

It was later found that in fact many materials become superconductors at suf-
ficiently low temperatures, including a large number of elemental materials (some
only under pressure), many alloys, and others with di�erent material compositions.

1.1.2 The Meissner E�ect

The original observations of superconductivity showed that superconducting ma-
terials conducted electricity with zero resistivity. While this was a startling and
unexpected e�ect, such a material today would be called a perfect conductor, rather
than a superconductor. In 1933 Meissner and Ochsenfeld [11] showed that in addition
these materials possess a second property which distinguishes this state from any
traditional state: a superconductor expels all magnetic fields regardless of its history
(figure 1.1). This is in contrast to a perfect conductor which would trap any existing
magnetic fields so that there was no change of the magnetic field within the material.

2



§1.1. HISTORY OF SUPERCONDUCTIVITY

Figure 1.1: The Meissner e�ect: All magnetic fields are expelled from the superconductor
whether the superconductor is cooled below the critical temperature before or after the
magnetic field is applied.

This e�ect showed that the superconducting state was very di�erent from any
other observed state and gave the first insight into establishing a theory of supercon-
ductivity.

1.1.3 The London Equation

Since it was observed that superconductors conducted with zero resistivity, the
assumed approach was to replace Ohm’s law with a new law for superconductors:

⁄2

L

ˆj
ˆt

= c2E, (1.1)

where ⁄
L

=
Ò

mc2/n
s

e2 is the London penetration depth which parametrises the
decay of the magnetic field into the bulk of the superconductor. This states the
assumed relation that, due to the lack of resistance, the current inside a superconduc-
tor would continually increase under an applied electric field. Then, using Maxwell’s
equations, this would lead to

Ò2

ˆH
ˆt

= 1
⁄2

L

ˆH
ˆt

. (1.2)

The London brothers, Fritz and Heinz, noted that this did not prove that a super-
conductor obeys the Meissner e�ect [12], but instead shows that any magnetic field
within a superconductor would remain except over a small length scale near the
surface (on the order of nanometres). However the required equation that would
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CHAPTER 1. INTRODUCTION

ensure that a superconductor obeys the Meissner e�ect would be the same equation,
but without the time derivatives. They then showed that this would imply a new
relation for the current within a superconductor, and claimed that this should be
the fundamental relation defining the supercurrent. This relation is

⁄2

L

Ò ◊ j = ≠cH. (1.3)

This leads to the electric field having an exponential decay within the superconductor,
leading to the zero resistance observed. They also show how the existence of a critical
magnetic field leads to a critical current for a superconducting wire of a given cross-
section.

The same expression can be achieved by setting the current proportional to the
vector potential in the Coulomb gauge. Pippard [13, 14] used this form to create
a nonlocal theory, where, instead of the current being proportional to the vector
potential at the same point, the vector potential is averaged of over a small volume
with radius ›

0

(the Pippard coherence length of the material). This length scale
tends towards an intrinsic value for pure superconductors, and approaches the mean
free path in heavily doped materials.

1.1.4 Ginzburg-Landau Theory and Vortex States

The next major theory of superconductivity came from the work of Ginzburg and
Landau. This was based on Landau’s theory of phase transitions [15]. Landau theory
looks at the behaviour of systems near phase transitions, and notes that often the
symmetry of a system will change as it undergoes a phase transition. This change
in symmetry is quantified by using an order parameter, which is zero on one side of
a phase transition and nonzero on the other.

In applying this theory to superconductors, the order parameter was chosen to be
charged with an unknown charge eú, and coupled to the vector potential via minimal
coupling [16]. This theory then predicted a critical magnetic field, above which it is
more favourable for the superconductor to return to the normal state.

In the uniform limit, this theory reproduces the result that the current is propor-
tional to the vector potential, but additional terms are included when the gradient
of the order parameter is nonzero.

In 1957, Abrikosov [17] showed that these equations admitted a new solution. He
assumed that the magnitude of the order parameter could have a doubly periodic
variation, and studied this solution near the upper critical field. In this region the
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Figure 1.2: The Abrikosov vortex lattice (schematic).

order parameter is greatly suppressed and the equations can be linearised, allowing
for an analytic solution of a superconducting vortex lattice. This state was seen
soon after in neutron scattering by Cribier et al. [18] and decoration experiments
by Essmann and Träuble [19, 20]. The vortex lattice is a triangular lattice of flux
lines, each of which is confined by a circulating supercurrent, and is schematically
represented in figure 1.2.

This solution is not stable for all superconductors, and this criteria divides them
into two types: type I, where vortex states are suppressed, and type II, where the
vortex states are stable. The presence of vortices dramatically changes the magnetic
behaviour of a superconductor (figure 1.3). In type I the superconductor is in the
Meissner state until the critical field H

c

, where it returns to the normal state. In type
II the superconductor is initially in the Meissner state. Increasing the field eventually
allows vortices to enter at the field H

c1

, where the magnetisation suddenly drops.
Increasing the applied field further allows more vortices to enter the superconductor,
and the magnetisation continues to fall. This continues until it drops to zero at the
upper critical field H

c2

where the material returns to the normal state.

Much work has gone in to the understanding of vortex states in all parts of
the phase diagram, as they have a large impact on the behaviour in magnetic fields,
including self-induced magnetic fields due to high current applications, and contribute
to the dissipation of energy if they are allowed to move through the material [21,
22]. The movement of the vortices can be controlled by pinning centres, such as
defects, twinning boundaries and dislocations in the crystal structure, as well as
nanostructuring of the surface, especially in the case of thin films.
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Figure 1.3: Magnetisation curve in type I and type II superconductors (schematic).

While GL theory was and still is successful at matching the properties of supercon-
ductors near the transition temperature, it gave no indication as to the mechanism
of superconductivity. The major hint as to the cause of superconductivity came in
1950 with the observation of the isotope e�ect.

1.1.5 The Isotope E�ect and the Electron-Phonon Interaction

Since the discovery of superconductivity, many attempts had been made to discover
the nature of the state. These e�orts focused on finding properties that a�ected the
critical temperature and other observables in a systematic way. In 1950, Maxwell [23]
and Reynolds et al. [24] announced that they had independently observed a systematic
variation of the critical temperature in mercury with various isotopes. The e�ect
is known as the isotope e�ect, and shows that some property of the crystal lattice
vibrations is involved in the formation of the state.

Similar investigations had previously been attempted in other materials (e.g. Pb
[25]), but the e�ect was either nonexistent in these materials, or too weak to be
observed.

The isotope e�ect instigated investigations into the electron-phonon interaction
in metals. Fröhlich [26] studied how the electron-phonon interaction perturbs the
Fermi sea in momentum space at zero temperature. This showed that the electron-
phonon interaction could cause an attraction between electrons near the Fermi
surface, and this could cause an instability which was assumed to be related to
the superconducting state. This attractive interaction was further investigated by
Bardeen [27], and Bardeen and Pines [28].

6



§1.1. HISTORY OF SUPERCONDUCTIVITY

The interaction energy derived in these papers is

~Ê
q

|M
q

|2
(Á

k

≠ Á
k

Õ)2 ≠ (~Ê
q

)2

, (1.4)

where the interaction scatters a pair of electrons with momentum k and kÕ to the
states k + q and kÕ ≠ q, M

q

is the matrix element for the exchange of a phonon of
momentum q, and Ê

q

is the frequency of an exchanged phonon. When the energy
di�erence between the states is smaller than the energy of the exchanged phonon,
the interaction energy becomes negative due to the denominator. This condition
can be achieved by choosing electrons on opposite sides of the Fermi surface, so
that k = ≠kÕ and Á

k

= Á
k

Õ = ‘0

F

. This results in an attractive interaction between
the pair of electrons. If this attraction is large enough, then it can overcome the
Coulomb repulsion. This idea of attraction between electrons was very new and is
the key component of the BCS theory.

Another experimental piece of evidence was provided in 1955 with the observation
of a gap in the electron spectrum in the superconducting state, which was observed
using far infrared absorption [29, 30]. This indicated that a mechanism was needed
where a phonon-mediated interaction causes the electrons to condense into a ground
state, which is separated from the excited states by a gap. This is in contrast to a
normal metal, where a continuum of states near the Fermi level is needed to allow
the electrons to move easily from state to state. Instead it is usually insulators which
have an energy gap at the Fermi level, preventing electrons from escaping the ground
state and therefore inhibiting conduction.

The approach that brought all of this together and produced verifiable predictions
is the BCS theory.

1.1.6 The Microscopic BCS Theory

BCS theory is the combined e�ort of Bardeen, Cooper and Schrie�er, and is outlined
in three papers that appeared in quick succession. In the first paper Cooper shows
that for two electrons sitting above a Fermi sea with a net attractive interaction
between them, no matter how weak, there always exists a bound state as the ground
state [31]. This suggests that the attractive electron-phonon interaction between
electrons would cause them to form pairs, known as Cooper pairs.

In the following two papers, the authors first show how to compose a ground
state of many Cooper pairs [32], and then proceed to examine many properties of the
superconducting state, including the gap, the critical field, specific heat, Meissner
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e�ect, and the penetration depth [33]. A vastly simplified form of the interaction
is used, where the interaction is a constant attractive interaction within ~Ê

D

of the
Fermi surface, with Ê

D

the Debye frequency.

The ground state in the BCS theory consists of a superposition of empty and
filled pairs, and hence is truly a many-body state. At zero temperature, this state
can be written in the form

|�Í =
Ÿ

k

1
u

k

+ v
k

ĉ†
øk

ĉ†
¿≠k

2
|0Í , (1.5)

where ĉ† is the electron creation operator, |0Í is the vacuum state, and u
k

and v
k

are coe�cients to be determined.

Independently, Bogoliubov [34] and Valatin [35] showed how a linear transfor-
mation can be used which diagonalises the Hamiltonian. In this way, the supercon-
ducting state is described as a ground state of paired electrons with an excitation
spectrum of quasiparticles.

Gor’kov reformulated the BCS theory in the language of quantum field theory,
and used this to derive the GL theory as an expansion of the BCS theory around
the critical temperature [36].

1.1.7 Other Theories

Many other theories have been applied to the superconducting state. In this section
we highlight some of these.

Migdal [37] showed how the electron-phonon interaction could be handled more
completely in strong coupling superconductors. This work was extended by Eliash-
berg [38, 39] and Nambu [40]. See [41] for a review. This theory was also extended
to the case of multiple superconducting bands [42] after the multiband BCS theory
was established.

Using this strong coupling theory, McMillan [43] derived a new formula for the
critical temperature

T
c

= ~Ê
D

1.45 exp
A

≠ 1.04(1 + ⁄)
⁄ ≠ µú(1 + 0.62⁄)

B

, (1.6)

where ⁄ is the electron-phonon coupling constant and µú the repulsive Coulomb
pseudopotential coe�cient. Relating the phonon cut-o� to the electron-phonon
coupling constant, this showed that the critical temperature has a maximum, and
that the materials observed to date were likely close to this limit. However several
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approximations were made in this derivation, especially concerning the phonon
spectrum, so a strict upper limit could not be obtained.

Anderson [44], and independently Abrikosov and Gor’kov [45, 46], extended
the BCS theory to treat the case where the mean free path is much shorter than
the coherence length, which occurs especially in samples with a large number of
impurities. Materials in this limit are called dirty superconductors, and are contrasted
to materials with few impurities which are called clean or pure. This theory also
admits a GL type expansion around the critical temperature [47].

The Hubbard model has been applied successfully to a range of materials [48–51].
The Hubbard model is a model of electrons in a lattice. The simplest Hamiltonian
includes two terms: an on-site interaction (usually repulsive due to the Coulomb
interaction) and hopping between sites (usually restricted to include only nearest
neighbours). However many other interactions can be included to form an extended
Hubbard model. This is an e�ective approach for treating the layered superconduc-
tors, such as the cuprates and pnictides. See [52] for a review.

Josephson [53] examined the case of two superconductors, separated by a thin
insulator. In this work, he argued that the Cooper pairs would spill out of the
superconductors, tunnelling through the insulating material, and into the other
superconductor. In this way the two superconductors would become coupled, with
a current between the superconductors which is dependent on the phase di�erence
between the two gaps.

The e�ect is separated into two e�ects – the DC and the AC Josephson e�ect.
The DC e�ect refers to the formation of a current across the insulator in the absence
of any applied potential, which is driven by the di�erence in the phase of the order
parameters. In the AC e�ect, a constant applied voltage causes a sinusoidally varying
current across the insulator. Josephson junctions are a key element in SQUIDS, high
precision magnetic field detectors.

Eilenberger [54] made a semi-classical approximation to the Green function ap-
proach of Gor’kov to find e�ective transport equations. In this theory the Green
functions are taken to be functions of both position and momentum. This was
simplified in the dirty limit by Usadel [55], producing a useful approach to study
transport processes in dirty superconductors.

The GL theory discussed previously is an expansion to lowest order of the gap
around the critical temperature. It is possible to retain higher order terms in this
expansion. Recently Peeters and co-workers [56–58] performed this extension to
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retain the next order term in the expansion. In chapter 4 we examine the expansion
in the absence of a magnetic field to a large order, treating both the one-band
theory and multiband theory. Klimin et al. [59] have also recently performed a
similar expansion in the theory of superconducting Fermi fluids, treating the spatial
variation as a perturbation, while re-summing the terms which contribute to the
magnitude of the order parameter, as defined by the uniform BCS equations.

1.2 Superconducting Materials
In this section we highlight a few families of important superconductors.

1.2.1 Elements

The elemental superconductors were the first family to be discovered. About half of
all elements have a superconducting state, though the critical temperature can be
extremely low, and some only become superconducting under pressure (figure 1.4).
Most of these have been known to be superconducting for a long time [60] while others,
such as lithium [61], have only been discovered to be superconducting recently. It is
likely that as lower temperatures and higher pressures become achievable additional
elements will be found to have a superconducting phase, though these are unlikely
to have practical applications.

Niobium has a critical temperature of 9.25K [62], the highest observed in bulk
for any pure elemental sample. The other main stand-outs, in terms of high critical
temperatures, are Technetium (7.7K) and Lead (7.2K).

A large class of these materials are well explained by the standard BCS theory.
However the transition metals are not adequately explained by BCS theory. No
isotope e�ect has been seen in these materials, and the pairing has a di�erent
symmetry due to the available states originating from d orbitals.

1.2.2 Alloys

Alloys are useful for studying the conditions that allow for superconductivity, as they
can be used to continuously study a region of parameter space. By using two atoms
with a similar atomic radius, but with a di�erent number of conduction electrons,
the chemical potential can be continuously varied. However, since the atomic radius
is never identical, additional substitutions eventually cause the alloys to undergo
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Figure 1.4: The elements which have been found to be superconducting. Some are only
under high pressure (green), and some are not superconducting in bulk (pink). The colour
on the other superconducting elements indicate the critical temperature in the bulk (in
K).

a structural phase transition. This often occurs before the composition achieves a
maximum or minimum in the critical temperature [63].

The use of alloying has been used to successfully enhance the critical temperature
of many elements, as well as improving other properties, such as the critical magnetic
field, and physical properties such as malleability, strength etc.

Niobium based compounds can have very high critical temperatures, for example
NbTi (9.2K), NbN (16K), Nb

3

Sn (18.3K), and Nb
3

Ge (23K). Both NbTi and
Nb

3

Sn are important in practical applications due to their high critical magnetic
fields.

1.2.3 Cuprates and the Increase in Critical Temperature

In 1986 Georg Bednorz and K. Alex Müller [64] announced that they had discovered
a new superconducting material, LaBaCuO (or LBCO). This had a critical temper-
ature of 30K, and later samples of this material have achieved critical temperatures
of 35K. This was an exceptional increase over the highest critical material available
at the time (Nb

3

Ge with a critical temperature of 23K). This generated a lot of
interest in copper oxide ceramics, and soon after the initial announcement, a range
of other copper oxide compounds were found to be superconducting with even higher
critical temperatures. These include YBCO and BSCCO, with the record for the
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phase diagram: the cuprates have an antiferromagnetic parent
material which becomes superconducting after doping (schematic).

highest critical temperature in HgBa
2

Ca
2

Cu
3

O
8

[65], with a critical temperature of
133K under ambient pressure, and higher critical temperatures can be reached by
applying pressure [66].

A full understanding as to the mechanism for superconductivity in these materials
has not been achieved. However it is clear that the superconductivity is mostly
confined to the two-dimensional copper oxide planes, with tunnelling between the
dielectric-like separating material.

These cuprates have an antiferromagnetic parent compound (figure 1.5). Doping
this parent material causes a lowering of the magnetic ordering, and eventually
destroys the magnetic state completely. With additional doping, a superconducting
phase then emerges, reaching a maximum critical temperature with an optimal
doping, and then decaying again with further doping.

Some work was done to treat the cuprates using multiband theory [67, 68],
however, although multiple Fermi surfaces are involved in the superconductivity of
the cuprates, no evidence of multiple superconducting gaps has been found.
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Figure 1.6: The crystal structure of magnesium diboride. The magnesium atoms are
green, the boron atoms are pink.

1.2.4 Magnesium Diboride

Magnesium diboride (MgB
2

) is a well-known material that has been synthesised for
a long time [69], and had even been studied at low temperature (e.g. measurements
of the heat capacity [70]). However, it was only in 2001 that it was found to be
superconducting by Nagamatsu et al. [71]. This material has an extremely simple
composition, yet has a high critical temperature of 39K, which is higher than the
critical temperature of the original cuprate superconductor LBCO.

The crystal structure is layered, with layers of magnesium forming a triangular
lattice, and boron atoms forming a honeycomb lattice (figure 1.6). The isotope
e�ect has been observed by changing the isotope of the boron atoms [72], indicating
that the coupling mechanism is likely to be phonon mediated. However the e�ect is
weaker than expected, and changing the isotope of magnesium does not a�ect the
transition temperature. This could either indicate that there are additional coupling
mechanisms, or that the phonon coupling in this material is more specific than in
most materials, with only some phonon modes coupled strongly.

The band structure of MgB
2

indicates that the Fermi surface consists of four
separate sheets, two of which form a layered cylindrical structure, while the other two
form a tubular network [73]. The planar nature of this network causes the material
to display anisotropic behaviour when the applied fields are parallel or perpendicular
to the boron layers.

Experiments using point contact spectroscopy have provided evidence that there
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are two distinct gaps [74, 75]. The temperature dependence of the specific heat also
confirms the two-band picture of superconductivity in MgB

2

[76], and the two gaps
have been attributed to the two di�erent types of Fermi surfaces, with the largest
gap associated with the atoms in the boron plane [77, 78].

A large amount of additional material on MgB
2

can be found in the review articles
by Xi [79] and Zehetmayer [80].

1.2.5 Pnictides

More recently, a range of new materials have emerged with temperatures that are also
placed in the category of high temperature superconductors, with temperatures above
the original 30K limit [81, 82]. These have di�erent structures to the cuprates, and
could give further insights into the possible mechanisms creating the electron-electron
attraction. However, there are many similarities to the cuprates, indicating some of
the properties that could be the key to this type of unconventional superconductivity.

Like the cuprates, the pnictides are layered, with the superconducting electrons
forming in the iron layers. This enhances the coherence of the electrons in the plane,
and increases the interaction cross-section.

They have an antiferromagnetic parent compound. With doping, the magnetic
phase becomes suppressed. Then, near the point where the magnetic ordering van-
ishes, a superconducting phase appears. The superconducting critical temperature
rises to a maximum at an ideal doping, then decays to zero.

There are four main classes of pnictide superconductors, and these determine the
crystal structure. The classes are known as 11, 111, 122 and 1111, which indicate
the number of each element in the material, and also di�erentiate between di�erent
crystal structures. Examples of the parent materials are 11: FeSe, FeAs, 111: LiFeAs,
122: AFe

2

As
2

(A =Ba, Sr, Ca), and 1111: RFeAsO (R =La, Nd, Sm, Gd, Er, Pr ,Nd,
Ce). In these, As can also be replaced with Se. These are then doped, for example
by substituting O with F, to produce a superconducting compound. Good reviews
about pnictide superconductors have been written by Ishida et al. [83], Mazin and
Schmalian [84], and Wilson [85].

1.2.6 Other Novel Superconductors

Superconductivity has also been seen in doped covalent compounds such as boron,
diamond, silicon and germanium [86, 87]. Superconductivity has also been observed
in carbon nanotubes [88], doped layered graphene structures, such as CaC

6

[89], and
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doped fullerenes, such as Cs
2

RbC
60

[90]. The doped graphene structures have a sim-
ilar structure to MgB

2

, with the superconductivity occurring in the two-dimensional
hexagonal graphene layers, with weak tunnelling between the layers.

Other unconventional properties of novel superconductors include coexistence of
superconductivity with antiferromagnetism (CeCuSi

2

) [91] or with ferromagnetism
(UGe

2

) [92], predominantly in heavy fermion systems, coexistence of superconduc-
tivity with charge/spin ordering (NbSe

2

, Cuprates) [93], and non-centrosymmetric
heavy fermion systems (CePt

3

Si,CeInSi
3

) [94], where lack of inversion symmetry
gives rise to spin-orbit interaction with no definite parity in the ground state.

1.3 Multiband Theories
Soon after the BCS theory was published, Suhl et al. [95] and Moskalenko [96]
investigated an extension to superconductors with two bands crossing the Fermi
surface and included the interband Josephson coupling between the bands. This
work was extended by Peretti [97], Kondo [98], and Geilikman et al. [99].

Tilley [100] applied the Gor’kov technique to find a two-band GL theory as an
expansion of two-band BCS theory. This is used to find the GL approximation to
the upper critical field.

The two interacting electron bands lead to the creation of two superconducting
gaps, with the possibility of the two gaps having very di�erent properties. It was
shown that the interband coupling caused the two critical temperatures to instead
become just one critical temperature, which is enhanced above both of the uncoupled
critical temperatures. This enhancement occurs regardless of the sign of the interband
coupling.

The lowest energy state for a two-band superconductor has the two bands in
phase or out of phase with each other. Leggett [101] examined the possibility of
fluctuations in the phase di�erence, and showed that this causes fluctuations in the
density of Cooper pairs. This leads to collective excitation states, known as Leggett
modes. The energy associated with these modes is usually quite high, but at some
points in the phase diagram, the energy of these modes can become arbitrarily small.
There has been some evidence that this was observed with Raman spectroscopy [102],
but this has not been independently verified.

The initial works on multiband theories were motivated by the fact that the
transition metals were not adequately explained by BCS theory. These materials
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have multiple bands near the Fermi surface, due to the presence of partially filled
d orbitals, and it was conjectured that these should be treated separately. However
Garland [103] argues that transition metals have a large number of impurities, and
therefore the theory of dirty superconductors is more appropriate. In this theory,
the electron basis states are chosen to diagonalise the scattering from the impurities
before the pairing is considered. This diagonalisation mixes the states from all parts
of all the Fermi surfaces, and hence the use of a multiband theory is no longer
appropriate.

Similar reasoning also applies to the high temperature cuprates, and hence interest
in multiband BCS theory dwindled due to the absence of any application to observed
materials, until the discovery of MgB

2

. This material for the first time showed
clear evidence of multiple superconducting gaps and renewed interest in multiband
theories. Some evidence of multiple superconducting gaps has now been observed
in MgB

2

, OsB
2

[104], LiFeAs [105], FeSe
0.94

[106], and other pnictides, so further
development of multiband theories is important.

More recently the theories have been generalised to an arbitrary number of bands,
and investigated by many groups in the context of both BCS [1, 107, 108] and GL
[109–118], as well as hybrid approaches [119]. The multiband GL theory is used
to investigate the behaviour of multiband materials, especially in the presence of
magnetic fields.

1.3.1 Type 1.5 Superconductors

The term type 1.5 superconductivity was created in 2005 by Babaev and Speight [120].
The idea is to look at a two-band superconductor in the weak coupling limit, where,
in the absence of the other band, one of the bands would be type I and the other type
II. The authors claim that this combination can lead to a superconductor which is
neither type I or type II. Using the definition that in type I superconductors vortex
solutions are attractive while in type II they are repulsive, they show that for these
multiband materials the vortex states are repulsive at short distances but attractive
at large distances. This is said to lead to a clustering of vortex states at low fields,
while reverting to a standard Abrikosov lattice at high fields [121].

This work has received considerable attention, however several authors have been
critical of this finding. Brandt and Das [122] point out that long range attraction
in type II materials is also observed in one-band GL models [123–125], so that
this phenomenon is not new and does not warrant the definition of a new type of
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superconductivity. Additionally, they argue that the vortex clustered state does
not constitute a separate thermodynamic state from the Meissner state, and any
transition from a vortex cluster to a vortex lattice would be a crossover rather than
a phase transition.

Kogan and Schmalian [126] argue that the multiband GL model is incomplete.
The theory is an expansion in the reduced temperature, · , about the critical point.
However, some higher order terms are retained in the expansion, but these terms
are not complete. If the incomplete terms are removed from the solution, then the
ratio of the order parameters in the two bands becomes a constant. Therefore it is
not possible to conclusively prove within multiband GL theory whether the di�erent
bands can have separate coherence lengths. These criticisms are rejected by the
original authors [127], but reinforced by Kogan and Schmalian [128].

1.3.2 Time-Reversal-Symmetry-Broken State

In addition to the standard superconducting states considered so far, there is another
configuration that appears in both the multiband BCS and multiband GL theories,
and is only possible in systems with three bands or more.

In clean two-band superconductors, the lowest energy state always has the bands
in phase or out of phase with each other, depending on the sign of the Josephson
interaction, as this configuration lowers the energy of this term without impacting on
any of the other terms. This remains true even when spatial variations are considered,
and in the lowest energy state the bands are always phase-locked.

However, with three bands there is the possibility of frustration between the
relative phases of the bands [107]. This can occur if the interband couplings are all
repulsive, or for the case of two attractive and one repulsive interaction.

When this frustration causes the relative phases of the uniform state to take
on values other than 0 or fi the superconductor is said to be in the Time-Reversal-
Symmetry-Broken (TRSB) state.

This state has been examined within the context of multiband BCS theory [1,
108] as well as multiband GL theory [114, 116]. This state will be discussed later in
more detail in multiband BCS theory in chapter 3 and briefly in multiband GL in
chapter 4.
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1.3.3 Skyrmion States

Skyrmion states are a generalisation of vortex states that have been found theoreti-
cally in the multiband GL when the uniform solution is in the TRSB state.

These states consist of a combination of the domain wall solutions, which separate
regions of the two di�erent ground state solutions, and fractional vortex solutions,
where the phase of one order parameter shifts by 2fi when following a path around
the fractional vortex, while the phase of the remaining bands does not shift.

These states have been studied analytically with various approximations by Yanag-
isawa et al. [114], and numerically by Garaud et al. [129, 130]. Some skyrmion states
will also be discussed in chapter 5.
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Chapter two

Background

In this chapter we examine the fundamental theories of superconductors in more
detail. We consider the two most successful theories – the phenomenological GL
theory and the microscopic BCS theory. We outline the origin of the theories and
outline how to form the fundamental equations. Many details are included here, and
this allows only important di�erences in the multiband theories to be highlighted in
subsequent chapters. A few fundamental results are then derived in each case.

We finish the chapter by exploring the Gor’kov technique, which allows for the
derivation of the GL theory as an expansion of BCS theory about the critical temper-
ature. This connection puts GL theory on a much more rigorous footing and allows
for an analysis of where the theory is applicable. The phenomenological parameters
of GL theory are written in terms of the microscopic parameters, which allows for a
more direct comparison to real materials.

Finally it also allows for corrections which extend the region of applicability of
the theory to lower temperatures and higher fields. This is useful in chapter 4 where
we use this approach to generalise the theory to the multiband case and discuss
corrections away from the critical temperature.

2.1 The Ginzburg-Landau Equations
Landau’s semi-classical mean field theory of continuous second order phase transi-
tions has been qualitatively applied to many critical phenomena [15]. The theory
smooths over the details of the system, and instead looks at the sudden appearance
of order below the critical temperature of the transition. This is assumed to change
some symmetry of the system. To allow for this, Landau created an order param-
eter which has the symmetry of the more ordered system. This order parameter
must then be nonzero below the phase transition, and become zero at the phase
transition. Ginzburg and Landau adapted this approach and developed a systematic
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phenomenological approach which they could apply to superconducting systems.

In GL theory there is assumed to be a phase transition that occurs at a critical
temperature T

c

. Below this temperature, a new state is formed, which is characterised
by a complex order parameter �. � vanishes above T

c

, and increases in magnitude
for T < T

c

. Near T
c

, the order parameter is small, and we can therefore create an
expansion in the free energy density for this parameter about this point. Because
the order parameter is complex, and the free energy is a real quantity, only even
powers of the order parameter enter the expansion. We use this approach to describe
the superconducting state, and therefore express the free energy density of the
superconducting state as

F
s0

= F
n0

+ a(T ) |�|2 + 1
2b |�|4 + . . . , (2.1)

where F
n0

is the free energy density of the normal state and we have truncated the
expansion at fourth order. We assume that the fourth order expansion coe�cient, b,
is large and positive, and that the variation with temperature of this coe�cient is
small enough that we can neglect it close to the transition temperature. If instead b

is negative or zero, then additional terms would have to be retained in order for the
free energy to be bounded from below, and hence have a stable equilibrium.

In the absence of applied fields and/or inhomogeneity, it is expected that the
order parameter will tend towards a uniform value. Therefore, if the order parameter
is allowed to vary in space, the spatial variations should be suppressed when there
are no applied fields. To accomplish this a gauge invariant derivative term is added
to the free energy. This also introduces the coupling of the order parameter to the
vector potential. Finally a term is included to account for the energy density of a
magnetic field. The free energy density of the superconducting state in GL theory
is then given by

F
s

= F
n0

+ 1
2mú

-----

A

≠i~Ò + eúA(r)
c

B

�(r)
-----

2

+a(T ) |�(r)|2+1
2b |�(r)|4+B(r)2

8fi
, (2.2)

where B(r) = Ò ◊ A(r) is the magnetic field, and eú and mú are a phenomenological
e�ective charge and mass respectively.

The usual case we are interested in is when the superconductor is in a uniform
external magnetic field. We write the Gibbs free energy of the system

G
s

= F
s

≠ 1
4fi

B · H, (2.3)

where H is an externally applied magnetic field. Now, any system in thermodynamic
equilibrium will minimise the Gibbs free energy. We therefore make variations of
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the Gibbs free energy with respect to the complex conjugate of the order parameter,
�ú(r), and the vector potential, A(r), and set the result equal to zero.

”G
s

”�ú = 0, (2.4a)
”G

s

”A = 0. (2.4b)

This leads to the GL equations

1
2mú

A

≠i~Ò + eúA(r)
c

B
2

�(r) + a(T )�(r) + b |�(r)|2 �(r) = 0, (2.5a)

c

4fi
Ò ◊ Ò ◊ A(r) = ieú~

2mú (�ú(r)Ò�(r) ≠ �(r)Ò�ú(r)) ≠ eú2

múc
|�(r)|2 A(r). (2.5b)

Since Ampere’s law tells us that j(r) = c

4fi

Ò ◊ Ò ◊ A(r), we can define the super-
current as

j(r) = ieú~
2mú (�ú(r)Ò�(r) ≠ �(r)Ò�ú(r)) ≠ eú2

múc
|�(r)|2 A(r). (2.6)

If the gradient terms are zero, then the supercurrent is proportional to the vector
potential, as predicted by the London model.

2.1.1 Uniform Solutions and Decay Lengths

The uniform solution is the simplest to find. In this case we set the vector potential to
zero, as well as the derivatives of the order parameter. This removes equation (2.5b)
and greatly simplifies equation (2.5a). The resulting equation has the solutions

|�|2 = ≠ a(T )
b

, or, (2.7a)

� = 0. (2.7b)

Since we have assumed that b > 0, the first solution is only acceptable if a(T )
is less than zero. We expect that, near the critical temperature, the parameter
a(T ) ≥ (1 ≠ T/T

c

), and therefore a will change sign at the critical temperature.
Above the critical temperature, the trivial solution is the only solution, while below
the critical temperature, the nonzero solution is the stable solution.

Next we would like to find how � returns to this uniform solution in the absence
of a magnetic field. To find this we again neglect equation (2.5b) and simplify
equation (2.5a) to the form

0 = ≠ ~2

2mú Ò2�(r) + a(T )�(r) + b |�(r)|2 �(r). (2.8)

21



CHAPTER 2. BACKGROUND

We want a solution which smoothly connects the state where the order parameter
is zero to the nonzero uniform state. We therefore restrict our solution to be only
a function of the spatial direction z and scale the order parameter by the uniform
solution, �(z) = Â(z)

Ò
≠a(T )/b. The equation reduces to the form

0 = ≠ ~2

2mú |a(T )|
ˆ2

ˆz2

Â(z) ≠ Â(z) + |Â(z)|2 Â(z). (2.9)

This indicates that the order parameter should vary on a length scale of › =
Ò

~2

2m

ú|a(T )|

since scaling z by › reduces this to a dimensionless form. This length scale, ›, is called
the coherence length, which determines the length over which the order parameter
varies.

Next we would like to find the characteristic length scale on which the magnetic
field varies. To find this length scale, we assume that the order parameter has achieved
the uniform solution and look at the variation of A. In this limit, equation (2.5b)
becomes

c

4fi
Ò ◊ Ò ◊ A(r) = ≠ eú2

múc

|a(T )|
b

A(r), (2.10)

) múc2b

4fieú2 |a(T )|Ò ◊ Ò ◊ A(r) = ≠A(r). (2.11)

This allows us to define the magnetic field penetration depth ⁄ =
Ò

m

ú
c

2

b

4fie

ú2|a(T )| , as
scaling all lengths by this reduces equation (2.11) to a dimensionless form. This
provides an approximation of the length over which the magnetic field varies.

Next we imagine placing a large superconductor in a uniform magnetic field. We
compare the Gibbs free energy of the Meissner state with zero magnetic field in the
core (B = 0) to the Gibbs free energy of the normal state with the uniform magnetic
field penetrating the material (B = H). At a critical magnetic field, H

c

, these two
energies are equal and allow us to find the critical field, H

c

H2

c

8fi
= a2(T )

2b
. (2.12)

This field provides a convenient scale for the magnetic field. Using this and the
length scales defined above, all terms in the free energy may be scaled and the free
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energy can be written in a scaleless form. The complete scaling transformations are:

› =
ı̂ıÙ ~2

2mú |a| , �Õ(rÕ) =
Û

b

|a|�(r),

⁄ =
ı̂ıÙ múc2b

4fieú2 |a| , AÕ(rÕ) = A(r)Ô
2H

c

⁄
,

H2

c

8fi
= a2

2b
, BÕ(rÕ) = B(r)Ô

2H
c

,

rÕ = r
⁄

, FÕ = 4fiF
H2

c

,

Ÿ = ⁄

›
, ‡Õ

ns

= 4fi

⁄H2

c

‡
ns

, (2.13)

where ‡
ns

is the surface free energy to be discussed later.

With these scaling factors, the free energy density may be rewritten as

F
s

= F
n0

+
----

3
≠ i

Ÿ
Ò + A(r)

4
�(r)

----
2

≠ |�(r)|2 + 1
2 |�(r)|4 + B(r)2. (2.14)

In this form, the only remaining parameter is Ÿ, the Ginzburg-Landau parameter.
The value of this is a property of a material and is the main parameter distinguishing
di�erent types of superconductors in this formalism.

With this scaling the GL equations are
3

≠ i
Ÿ

Ò + A(r)
4

2

�(r) ≠ �(r) + |�(r)|2 �(r) = 0, (2.15a)

Ò ◊ Ò ◊ A(r) + |�(r)|2 A(r) + i
2Ÿ

(�ú(r)Ò�(r) ≠ �(r)Ò�ú(r)) = 0, (2.15b)

and the supercurrent becomes

j(r) = 1
2iŸ (�ú(r)Ò�(r) ≠ �(r)Ò�ú(r)) ≠ |�(r)|2 A(r). (2.16)

This completes the justification for the GL equations and the transformation to the
dimensionless form. Next we will look at some specific cases for the application of
these equations.

2.1.2 The Surface Energy

It is possible to define an energy resulting from a surface where a bulk normal
material is in contact with a bulk superconductor. This boundary will only be stable
if the free energy on either side of the boundary is the same. In this case, far from
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the normal-superconductor surface, the Gibbs free energy of the normal material
must equal that of the superconductor. This requires

G
n0

≠ H2

c

8fi
= G

s0

, (2.17)

which is possible if we apply a critical field to create the normal material. We examine
the case of an infinite planar surface between two semi-infinite materials, so that the
problem may be reduced to an e�ective one dimensional problem. We introduce the
ansatz solutions

�(r) = f(z),
A(r) = A(z)ê

x

, (2.18)

where ê
x

is a unit vector in the x direction and we can assume �(r) is real without
loss of generality. Then the GL equations may be reduced to the form

≠ 1
Ÿ2

d2f(z)
dz2

+ A2(z)f(z) ≠ f(z) + f(z)3 = 0, (2.19a)

d2A(z)
dz2

≠ f(z)2A(z) = 0, (2.19b)

along with the boundary conditions

z æ ≠Œ, z æ Œ,

f = 0, f = 1,

B
y

= dA

dz
= 1Ô

2
, A = 0. (2.20)

The supercurrent associated with this interface can also be calculated as

j(r) = ≠ f 2(z)A(z)ê
x

. (2.21)

These equations still cannot be solved analytically, and numeric approaches must
be used. One approach is to use a finite di�erence method. An example solution for
one choice of Ÿ is shown in figure 2.1. At the far left boundary the order parameter
drops to zero and the magnetic field is equal to the critical field, 1/

Ô
2. At the far

right boundary the order parameter is at the bulk value of 1, while the magnetic
field has decayed to zero.

We can associate an energy with this interface solution by comparing the energy
to the energy of a uniform superconductor. The surface free energy is therefore given
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Figure 2.1: A typical interface solution to the GL equations for Ÿ = 0.278

by the integral [131]

‡
ns

=
⁄ Œ

≠Œ
dz

5
G(z) ≠ G

n0

+ 1
2

6
=

⁄ Œ

≠Œ
dz [G(z) ≠ G

s0

]

=
⁄ Œ

≠Œ
dz

C

≠ |�(r)|2 + 1
2 |�(r)|4

+
----

3
≠ i

Ÿ
Ò + A(r)

4
�(r)

----
2

+
A

1Ô
2

≠ B
y

(r)
B

2

D

,

(2.22)

where the half comes from adding the energy associated with the application of the
critical field. This can be simplified by multiplying equation (2.15a) by �ú(r) and
integrating along z to find

⁄ Œ

≠Œ
dz

C

≠ |�(r)|2 + |�(r)|4 +
----

3
≠ i

Ÿ
Ò + A(r)

4
�(r)

----
2

D

= 0. (2.23)

Subtracting this away from equation (2.22), we find the surface free energy may be
expressed as

‡
ns

=
⁄ Œ

≠Œ
dz

S

U≠1
2 |f(z)|4 +

A
1Ô
2

≠ B
y

(z)
B

2

T

V . (2.24)

The surface free energy is a function of the parameter Ÿ through the dependence
of f(z) on Ÿ. Solving the surface equations (equation (2.19)) with varying Ÿ, the
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Figure 2.2: The surface free energy as a function of the GL parameter Ÿ. This shows the
cross-over from type I (‡

ns

> 0) to type II (‡
ns

< 0) when Ÿ = 1/
Ô

2, and the asymptotic
value of ‡

ns

= ≠0.55 for large Ÿ.

surface free energy can be plotted as a function of Ÿ (figure 2.2). This shows that the
critical value of Ÿ = 1/

Ô
2 divides superconductors into two classes, those where the

creation of interfaces between the normal state and the superconducting state costs
energy, and those where including interfaces lowers the energy. This critical value
distinguishes the type I and type II superconductors. However, at this transition
point, another nonuniform solution also changes sign and becomes more stable then
the interface solution. These are the vortex states.

2.1.3 Vortex States

A novel solution to the GL equations was proposed by Alexei Abrikosov [132]. This
new solution is needed to explain the observation that some materials had two critical
magnetic fields. Below the first critical field, H

c1

, these superconductors are in the
Meissner state, and above the second critical field, H

c2

, the material returns to the
normal state. However, in between these two critical fields, the magnetic field slowly
increases within the material. Abrikosov’s explanation was that in this region the
normal state was in equilibrium with the superconducting state, with the creation
of vortex states. The magnetic flux penetrates the material at localised regions
where the material is in the normal state, and these regions are surrounded by a
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superconducting current which confine the magnetic field to individual flux lines.

With increasing applied field, these vortices become closely packed and arrange
themselves into a triangular lattice, known as an Abrikosov lattice. Upon further
increasing the field, the vortices begin to overlap, and eventually the order parameter
is unable to recover between the vortices and the material returns to the normal
state.

Vortices have been studied intensively since their inception, and there are many
good sources which explore these states [22, 133–136].

We first look for a single vortex solution. If a single vortex is placed in a large
superconductor, then the vortex system will have cylindrical symmetry, with the
origin at the centre of the vortex. To allow this we choose the following ansatz
solution in the form

A(r) = A(fl)

= nA(fl)
Ÿfl

ê
◊

, (2.25a)

�(r) = �(fl)
= f(fl)ein◊, (2.25b)

where n is an integer which determines the order of the vortex. This form allows us
to reduce the GL equations to the form

d2f

dfl2

+ 1
fl

df

dfl
≠ n2(A ≠ 1)2

fl2

f ≠ Ÿ2f
1
f 2 ≠ 1

2
= 0, (2.26a)

d2A

dfl2

≠ 1
fl

dA

dfl
+ f 2(1 ≠ A) = 0, (2.26b)

with the boundary conditions

fl æ 0, fl æ Œ,

f = 0, f = 1,

A = 0, A = 1, (2.27)

and the supercurrent around the vortex given by

j(r) = n

Ÿfl
(1 ≠ A(fl))f 2(fl)ê

◊

. (2.28)

The resulting equations still cannot be solved analytically. However asymptotic
results can be obtained. For example, in the limit ⁄ ∫ ›, we can approximate
equation (2.26b) by setting f = 1, where the resulting equation is a modified
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Figure 2.3: A vortex solution to the GL equations for Ÿ = 2.336

Bessel’s equation of order zero. The solution for the resulting magnetic field in this
case is

B
z

(fl) = K
0

(fl), (2.29)

and is a good approximation to the full solution when fl ∫ ›. For a more complete
solution, numerical methods must be used. A numerical solution to the coupled
equations is presented in figure 2.3. This shows how the order parameter returns to
the equilibrium value and the decay of the magnetic field.

Other properties of superconductors, such as the critical fields for type II super-
conductors, H

c1

and H
c2

, the Abrikosov lattice, the jump in the specific heat at the
critical temperature, the magnetisation as a function of applied field, etc. can also
be obtained from GL theory.

Next we move on from the phenomenological theory of Ginzburg and Landau
and consider the microscopic theory of BCS.

2.2 BCS Theory
The BCS theory of Bardeen, Cooper and Schrie�er is the first microscopic theory of
superconductivity [32]. The electron-phonon interaction was argued earlier to create
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an e�ective attractive interaction between electrons near the Fermi surface [27], with
a cut-o� at the scale of the phonon energy, ~Ê

D

.

In general, the interaction should include a sum over all phonon frequencies
and all initial and final state electron momentum states. The leading contribution
however comes from electrons with opposite momenta pairing up. Only including
interactions between these states, the Hamiltonian becomes much simpler.

There are many treatments of BCS theory [see 137–139]. In the following, we
follow closely the treatment by Fetter and Walecka [140]. Converting to real space,
the interaction becomes a local interaction between electrons with opposite spins.
The BCS grand canonical Hamiltonian is written in real space as

K̂
BCS

=
ÿ

‡

⁄
dr Â̂†

‡

(r)
Q

a 1
2m

A

≠i~Ò + eA(r)
c

B
2

≠ µ

R

b Â̂
‡

(r)

≠ g
⁄

dr Â̂†
ø(r)Â̂

†
¿(r)Â̂¿(r)Â̂ø(r),

(2.30)

where Â̂ (Â̂†) is the electron annihilation (creation) operator, m is the electron mass,
‡ is a spin label (up or down), µ is the chemical potential, and g is the interaction
strength.

Taking a mean-field approximation of this Hamiltonian, and neglecting the Har-
tree-Fock terms (which are expected to be similar in the normal and superconducting
states) to find the e�ective BCS Hamiltonian

K̂
e�

=
ÿ

‡

⁄
dr Â̂†

‡

(r)
Q

a 1
2m

A

≠i~Ò + eA(r)
c

B
2

≠ µ

R

b Â̂
‡

(r)

≠ g
⁄

dr
1e

Â̂†
ø(r)Â̂

†
¿(r)

f
Â̂¿(r)Â̂ø(r) + Â̂†

ø(r)Â̂
†
¿(r)

e
Â̂¿(r)Â̂ø(r)

f2
,

(2.31)

where the angular brackets denote an ensemble average with respect to K̂
e�

e
Ô

f
= Tr[e≠—

ˆ

K

e� Ô]
Tr[e≠—

ˆ

K

e� ]
. (2.32)

We use this to define temperature Heisenberg creation and annihilation operators,
which, in analogy to the time-dependent operators, are defined as

Â̂
Kø(r, t) = e ˆ

K

e�

t/~Â̂ø(r)e≠ ˆ

K

e�

t/~, (2.33a)
Â̂†

K¿(r, t) = e ˆ

K

e�

t/~Â̂†
¿(r)e≠ ˆ

K

e�

t/~. (2.33b)

Note that the imaginary time creation operator is not the Hermitian conjugate of
the annihilation operator. From this it is easy to find the equation of motion of these
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operators from the commutation relation with the Hamiltonian, which states that,
for any operator Ô in the Heisenberg picture, the equation of motion is given by

~dÔ

dt
=

Ë
K̂

e�

, Ô
È

. (2.34)

The equation of motion of the creation and annihilation operators is therefore

~ˆÂ̂
Kø(r, t)
ˆt

= ≠
S

U 1
2m

A

≠i~Ò + eA(r)
c

B
2

≠ µ

T

V Â̂
Kø(r, t)

≠ g
e
Â̂ø(r)Â̂¿(r)

f
Â̂†

K¿(r, t),
(2.35a)

~
ˆÂ̂†

K¿(r, t)
ˆt

=
S

U 1
2m

A

i~Ò + eA(r)
c

B
2

≠ µ

T

V Â̂†
K¿(r, t)

≠ g
e
Â̂†

¿(r)Â̂
†
ø(r)

f
Â̂

Kø(r, t).
(2.35b)

We then define the temperature Green function and the anomalous temperature
Green function in the superconducting state.

G (rt, rÕtÕ) = ≠
e
T

t

Ë
Â̂

Kø(r, t)Â̂†
Kø(rÕ, tÕ)

Èf
, (2.36a)

F (rt, rÕtÕ) = ≠
e
T

t

Ë
Â̂

Kø(r, t)Â̂
K¿(rÕ, tÕ)

Èf
, (2.36b)

F †(rt, rÕtÕ) = ≠
e
T

t

Ë
Â̂†

K¿(r, t)Â̂†
Kø(rÕ, tÕ)

Èf
, (2.36c)

where T
t

indicates the time ordered product of the operators, where operators
acting at earlier times are moved to the right, including the sign change due to any
anticommutation relations, but ignoring the right hand side of the anticommutation
relations. We also define the superconducting gap function, �, implicitly through
the definition of the complex conjugate of the gap function

�ú(r) = ≠ g
e
Â̂†

¿(r)Â̂
†
ø(r)

f
(2.37)

= gF †(rt+, rt), (2.38)

where t+ indicates that this time coordinate is evaluated in the limit that it goes to t

from above, which is needed to fix the ordering of the operators in the time ordered
product.

The existence of the gap function is the main property that determines if a
material is superconducting. The definition shows that this gap is the expectation
value of having an electron pair at the location r. We will see that this function is
called the gap because it is the magnitude of a gap which opens up in the single
particle excitation spectrum.
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Taking the time derivative of the Green functions and using the previously cal-
culated equations of motion for the creation and annihilation operators immediately
allow us to find the equations of motion for these Green functions.

S

U≠~ ˆ

ˆt
≠ 1

2m

A

≠i~Ò + eA(r)
c

B
2

+ µ

T

V G (rt, rÕtÕ)

+�(r)F †(rt, rÕtÕ) = ~”(t ≠ tÕ)”(r ≠ rÕ),
(2.39a)

S

U~ ˆ

ˆt
≠ 1

2m

A

≠i~Ò + eA(r)
c

B
2

≠ µ

T

V F †(rt, rÕtÕ) = �ú(r)G (rt, rÕtÕ). (2.39b)

We therefore have a pair of coupled di�erential equations.

2.2.1 Solutions

To find solutions of these equations, we first note that the Green functions are
antiperiodic with antiperiod —~. To see this, we choose 0 < tÕ < —~ and evaluate
the Green function at t = 0.

G (r0, rÕtÕ) = ≠ e—�Tr
Ó
e≠—

ˆ

K

e�T
t

Ë
Â̂

Kø(r0)Â̂†
Kø(rÕtÕ)

ÈÔ

= e—�Tr
Ó
e≠—

ˆ

K

e� Â̂†
Kø(rÕtÕ)Â̂

Kø(r0)
Ô

= e—�Tr
Ó
Â̂

Kø(r0)e≠—

ˆ

K

e� Â̂†
Kø(rÕtÕ)

Ô

= e—�Tr
Ó
Â̂ø(r)e≠—

ˆ

K

e� Â̂†
Kø(rÕtÕ)

Ô

= e—�Tr
Ó
e≠—

ˆ

K

e�e—

ˆ

K

e� Â̂ø(r)e≠—

ˆ

K

e� Â̂†
Kø(rÕtÕ)

Ô

= e—�Tr
Ó
e≠—

ˆ

K

e� Â̂ø(r(—~))Â̂†
Kø(rÕtÕ)

Ô

= ≠G (r(—~), rÕtÕ). (2.40)

In the case where the Hamiltonian is time-independent (the superconductor is in
a static applied magnetic field), the Green functions only depend on the di�erence
t ≠ tÕ. Using the antiperiodic property, we can then make the Fourier expansion with
odd coe�cients

G (rt, rÕtÕ) = (—~)≠1

ÿ

n

e(≠iÊ

n

(t≠t

Õ
))G

Ê

n

(r, rÕ), (2.41a)

F †(rt, rÕtÕ) = (—~)≠1

ÿ

n

e(≠iÊ

n

(t≠t

Õ
))F †

Ê

n

(r, rÕ), (2.41b)

where Ê
n

= (2n + 1)fi/—~ is the fermionic Matsubara frequency which guarantees
the antiperiodicity. If we also look at the case where there is no applied magnetic
field, then the Green functions are also translation invariant and depend only on the
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di�erence r≠rÕ. We can therefore write these as a function of the di�erence between
these two points, and then perform a Fourier transform.

G
Ê

n

(r) = 1
(2fi)3

⁄
dk eik.rG

Ê

n

(k), (2.42a)

F †
Ê

n

(r) = 1
(2fi)3

⁄
dk eik.rF †

Ê

n

(k). (2.42b)

Defining Á
k

= ~2

k

2

2m

≠ µ, the di�erential equations reduce to algebraic equations

[i~Ê
n

≠ Á
k

] G
Ê

n

(k) + �F †
Ê

n

(k) = ~, (2.43a)
[≠i~Ê

n

≠ Á
k

] F †
Ê

n

(k) ≠ �úG
Ê

n

(k) = 0. (2.43b)

These are easily solved

G
Ê

n

(k) = ≠~(i~Ê
n

+ Á
k

)
~2Ê2

n

+ Á2

k

+ |�|2 , (2.44a)

F †
Ê

n

(k) = ~�ú

~2Ê2

n

+ Á2

k

+ |�|2 . (2.44b)

Using the definition for the gap � (equation (2.38)), we find the self-consistent gap
equation

� = g

—~
ÿ

n

⁄
dk 1

(2fi)3

~�
~2Ê2

n

+ Á2

k

+ |�|2 (2.45)

= g
⁄

dk 1
(2fi)3

�
2

Ò
Á2

k

+ |�|2
tanh

Q

a

Ò
Á2

k

+ |�|2
2k

B

T

R

b (2.46)

¥ gN(0)
⁄ Œ

Œ
dÁ

�
2

Ò
Á2 + |�|2

tanh
Q

a

Ò
Á2 + |�|2
2k

B

T

R

b , (2.47)

where N(0) is the density of states at the Fermi surface. However this integral
diverges logarithmically. To produce a meaningful result, the integral must be cut
o�. We can perform the cut o� by recalling that the interaction is mediated by
an exchange of phonons. This has a maximum energy given by the Debye energy,
~Ê

D

. Therefore only states within this energy of the Fermi surface participate in the
interaction. The integrand is also symmetric in the integration variable, so we can
write this as

� = gN(0)
⁄ ~Ê

D

0

dÁ
�

Ò
Á2 + |�|2

tanh
Q

a

Ò
Á2 + |�|2
2k

B

T

R

b . (2.48)

Alternatively it is possible to perform renormalisation of the interaction strength g

to remove the divergent contribution.
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Two important limits of this equation are T æ 0 and � æ 0. In the first case
we find

�
0

= gN(0)
⁄ ~Ê

D

0

dÁ
�

0Ò
Á2 + |�

0

|2
(2.49)

= �
0

gN(0) ln
Q

a

Ò
�2

0

+ ~Ê2

D

+ ~Ê
D

�
0

R

b , (2.50)

) �
0

= ~Ê
D

sinh
1

1

gN(0)

2 (2.51)

¥ 2~Ê
D

exp
A

≠ 1
gN(0)

B

, ~Ê
D

∫ �. (2.52)

Note that the condition ~Ê
D

∫ � is equivalent to gN(0) π 1. Since BCS theory
only applies to superconductivity in the weak coupling regime, this approximation
is valid. The second limit, � æ 0, allows us to simplify the integral as

1 = gN(0)
⁄ ~Ê

D

0

dÁ
1
Á

tanh
3

Á

2k
B

T
c

4
(2.53)

¥ ln
A

2~Ê
D

e�

k
B

T
c

fi

B

, (2.54)

) k
B

T
c

= 2~Ê
D

e�

fi
exp

A

≠ 1
gN(0)

B

, (2.55)

with � ¥ 0.5772 the Euler-Mascheroni constant. Comparing these two limits we see
that the ratio does not depend on the parameters of the theory, giving the universal
BCS value

�
0

k
B

T
c

= fie≠� ¥ 1.76388. (2.56)

There are many other properties that can be evaluated within the BCS theory.
These include thermodynamic properties, such as the critical field, heat capacity,
entropy and others. The current can also be examined for a weak field, and this can
be used to show that this theory contains the Meissner e�ect. Some of these will be
shown later in chapter 3 in the generalised multiband theory.

2.3 Derivation of Ginzburg-Landau Equations
from BCS

GL theory is a phenomenological theory known for its success for practical applica-
tions. BCS theory is a microscopic theory that can explain the basis of supercon-
ductivity from the formation of Cooper pairs. Therefore there was a need to find
the connection between GL theory and BCS.
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In 1959, Gor’kov [36] showed that the phenomenological GL theory can be derived
from the BCS theory as an expansion near T

c

with � assumed small, and a slowly
varying vector potential. In this way the order parameter of GL theory, �(r), was
directly related to the superconducting gap, �(r), from BCS theory. Since in
chapter 4 we will use this technique to extend the GL theory, we will include the
details of this connection here and omit most of the details later.

To perform the connection, we begin with the equations of motion for the Green
function G and anomalous Green function F †.

S

Ui~Ê
n

+ ~2

2m

A

Ò + ieA(r)
~c

B
2

+ µ

T

VG
Ê

n

(r, rÕ) + �(r)F †
Ê

n

(r, rÕ) = ~”3(r ≠ rÕ),

(2.57a)
S

U≠i~Ê
n

+ ~2

2m

A

Ò + ieA(r)
~c

B
2

+ µ

T

VF †
Ê

n

(r, rÕ) ≠ �ú(r)G
Ê

n

(r, rÕ) = 0. (2.57b)

We also introduce the temperature Green function for electrons in the normal
state, which satisfies the equation of motion

S

Ui~Ê
n

+ ~2

2m

A

Ò + ieA(r)
~c

B
2

+ µ

T

VG
Ê

n

(r, rÕ) = ~”3(r ≠ rÕ), (2.58a)
S

U≠i~Ê
n

+ ~2

2m

A

Ò ≠ ieA(r)
~c

B
2

+ µ

T

V ÂG
Ê

n

(r, rÕ) = ~”3(r ≠ rÕ), (2.58b)

where ÂG
Ê

n

(r, rÕ) = G≠Ê

n

(rÕ, r).

The original di�erential equations can then be written as a pair of coupled integral
equations,

G
Ê

n

(r, rÕ) = G
Ê

n

(r, rÕ) ≠ ~≠1

⁄
dy G

Ê

n

(r, y)�(y)F †
Ê

n

(y, rÕ), (2.59a)

F †
Ê

n

(r, rÕ) = ~≠1

⁄
dy ÂG

Ê

n

(r, y)�ú(y)G
Ê

n

(y, rÕ). (2.59b)

By substituting these equations back into the di�erential equations (equation (2.57))
and using the fact that the normal Green functions satisfy their di�erential equations
(equation (2.58)) we see that these integral equations satisfy the original di�erential
equations.

These linear coupled integral equations can be written as the uncoupled nonlinear

34



§2.3. DERIVATION OF GINZBURG-LANDAU EQUATIONS FROM BCS

integral equations

G
Ê

n

(r, rÕ) = G
Ê

n

(r, rÕ)

≠ ~≠2

⁄
dy

⁄
dz G

Ê

n

(r, y)�(y) ÂG
Ê

n

(y, z)�ú(z)G
Ê

n

(z, rÕ),
(2.60a)

F †
Ê

n

(r, rÕ) = ~≠1

⁄
dy ÂG

Ê

n

(r, y)�ú(y)G
Ê

n

(y, rÕ)

≠ ~≠2

⁄
dy

⁄
dz ÂG

Ê

n

(r, y)�ú(y)G
Ê

n

(y, z)�(z)F †
Ê

n

(z, rÕ).
(2.60b)

To proceed, it is assumed that � π fik
B

T (the factor originates from � π
~Ê

n

, ’n). This assumption holds close to the critical temperature T
c

. With this
assumption, we can perform an expansion in small �, and truncate the resulting
expression at order �3. With this approximation, the Green functions become

G
Ê

n

(r, rÕ) = G
Ê

n

(r, rÕ)

≠ ~≠2

⁄
dy

⁄
dz G

Ê

n

(r, y)�(y) ÂG
Ê

n

(y, z)�ú(z)G
Ê

n

(z, rÕ),
(2.61a)

F †
Ê

n

(r, rÕ) = ~≠1

⁄
dy ÂG

Ê

n

(r, y)�ú(y)G
Ê

n

(y, rÕ)

≠ ~≠3

⁄
dy

⁄
dz

⁄
dw ÂG

Ê

n

(r, y)�ú(y)G
Ê

n

(y, z)

◊ �(z) ÂG
Ê

n

(z, w)�ú(w)G
Ê

n

(w, rÕ).

(2.61b)

Putting equation (2.61b) back into the definition for the superconducting gap
(equation (2.38)) we get the self-consistent gap equation

g≠1�ú(r) =
⁄

dy Q(r, y)�ú(y)

+
⁄

dy
⁄

dz
⁄

dw R(r, y, z, w)�ú(y)�(z)�ú(w),
(2.62)

with the kernels given by

Q(r, y) = 1
—~2

ÿ

n

ÂG
Ê

n

(r, y)G
Ê

n

(y, r), (2.63a)

R(r, y, z, w) = 1
—~4

ÿ

n

ÂG
Ê

n

(r, y)G
Ê

n

(y, z) ÂG
Ê

n

(z, w)G
Ê

n

(w, r). (2.63b)

To bound the behaviour of these kernels we need to assume that T
c

≠ T π T
c

,
since then � and A vary slowly over the range of the kernels. With the additional
assumption that the magnetic field varies with a length scale ⁄(T ) ∫ k

F

≠1, then the
leading contribution from the magnetic field will appear as a slowly varying phase
factor

G
Ê

n

(r, rÕ) = exp(iÏ(r, rÕ))G0

Ê

n

(r ≠ rÕ), (2.64)
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where G0

Ê

n

(r≠rÕ) is the normal Green function in the absence of an applied magnetic
field, which only depends on the di�erence r≠rÕ. The Fourier transform of this Green
function, G0

Ê

n

, can easily be found by taking the Fourier transform of equation (2.58a)
with A(r) = 0, and solving the resulting algebraic equation. The result is the simple
fraction

G0

Ê

n

(k) = ~
i~Ê

n

≠ Á
k

, (2.65)

which can be transformed back to find the real space Green function. The phase
factor in the presence of magnetic field (equation (2.64)) is then chosen so that the
leading order term in ÒÏ(r, rÕ) cancels the leading order term in A(r) when this
is placed in the normal Green function equations (equation (2.58)). Additionally
the interaction with the magnetic field should have no e�ect on the local correlation
function (r = rÕ). These conditions give two equations.

Ï(r, r) = 0, (2.66a)
A

ÒÏ(r, rÕ) + eA(r)
~c

B

· (r ≠ rÕ) = 0. (2.66b)

Finally, Ï should be antisymmetric in r and rÕ. This is enough to find the solution

Ï(r, rÕ) = ≠ e

2~c
(A(r) + A(rÕ)) · (r ≠ rÕ). (2.67)

Since the normal Green function, G, has been split into a phase factor and a
Green function that is independent of the field, the kernel Q can also be separated
into similar terms

Q(r, y) = 1
—~2

ÿ

n

exp (2iÏ(r, y)) ÂG0

Ê

n

(r ≠ y)G0

Ê

n

(r ≠ y)

= exp (2iÏ(r, y)) Q0(y ≠ r). (2.68)

Returning to the full form for the integral (equation (2.62)), we make the change
of coordinates to z = y ≠ r. The exponential is expanded in powers of Ï, and we
perform a Taylor series of the resultant expression around z = 0. This is valid since
Q0(z) decays exponentially such that only within the range of the Pippard coherence
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length (z . ›
0

= ~v
F

/fik
B

T
c

) contributes significantly to the integral.
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≠ ie
~c

A

A(r) + A(r + z)
B

· z
D

�ú(r + z)

=
⁄

dz Q0(z)
C

1 ≠ ie
~c

A

A(r) + A(r + z)
B

· z

≠1
2

3
e

~c

4
2

AA

A(r) + A(r + z)
B

· z
B

2

T

V �ú(r + z)

= �ú(r)
⁄

dz Q0(z)

+ 1
6

C

Ò ≠ 2ieA(r)
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�ú(r)
⁄

dz z2Q0(z).
(2.69)

There are now two remaining integrals to perform for this term. The first term
is equivalent to the BCS integral in the limit � æ 0. This integral diverges logarith-
mically and must be cut o� in momentum space at the Debye frequency.
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ÿ
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(2.70)

¥ N(0)
3
1 ≠ T

T
c

4
+ g≠1, (2.71)

where the defining equation for T
c

from BCS theory, 1 = gN(0) ln(2~Ê
D

e�/fik
B

T
c

)
(equation (2.54)), has been used, and the logarithm has been expanded near T = T

c

.

The second integral in equation (2.69) does not have the divergence issues and
decays su�ciently fast at large k so the integral can be evaluated without a cut-o�.
First, the Green function is evaluated as a function of position

G0

Ê

n

(r) = ~
(2fi)3

⁄
dk exp(ik · r)

i~Ê
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≠ Á
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F

r
exp

C
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F
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v
F

D

. (2.72)
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This form of the Green function is then used to find an explicit form for the
kernel, Q0

Q0(r) = 1
—~2

ÿ

n

ÂG0

Ê

n

(r)G0

Ê

n

(r)
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fiN(0)
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2 1
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r

B
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) . (2.73)

With this, the second integral can be performed directly.
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k
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where we have set T ¥ T
c

in the last line.

We now have everything we need for the first term. For the second term in
equation (2.62), we note that the term is cubic in �, which is a small nonlinear
correction. This term is evaluated to lowest order, setting G ¥ G0, �(y) ¥ �(r),
and T ¥ T

c

.
⁄
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(2.75)

and, concentrating on the remaining integral,
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Finally, putting all of this back together, rearranging terms, and taking the
complex conjugate, the self-consistent equation (equation (2.62)) becomes

0 = N(0)
3
1 ≠ T

T
c

4
�(r) ≠ 7’(3)

6
N(0)‘0
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fi2k2

B

T 2
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1
4m
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c

D
2
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≠ 7’(3)
8fi2k2

B

T 2

c

N(0) |�(r)|2 �(r).
(2.77)

This is very reminiscent of the first equation of GL theory and can in fact be
identified with this equation. Identifying the parameters of the GL theory with these
results in the relations

a(T ) = ≠ 6
7’(3)

fi2(k
B
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c

)2

‘0

F

3
1 ≠ T

T
c

4
, (2.78a)

b = 6
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n
, (2.78b)
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7’(3)n
8fi2(k

B

T
c

)2

B
1/2

�, (2.78c)

mú = 2m, (2.78d)
eú = 2e. (2.78e)

With this identification we find that the e�ective mass and e�ective charge are double
the electron mass and charge. This agrees well with the measured value for the flux
quantum, Ï

0

. In order to make direct comparisons between BCS and GL theory
predictions we will usually undo the scaling of � so that the order parameter and
the gap can be displayed on the same scale.

The BCS and GL results are compared in (figure 2.4). The agreement near T
c

shows that the coe�cients calculated allow for the connection of these theories in
this limit, and a good agreement between the two theories is found in this region.
However the agreement does not hold over the entire temperature range.

To complete the connection to the GL theory, we also need to find the equation
of motion for the vector potential, A. To find this, we want to use G to find the
current. The current operator in the BCS theory is given by

ĵ(r) =
ÿ
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aÂ̂†
‡

(r)
A
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(r). (2.79)
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Figure 2.4: A comparison of the BCS gap to the GL order parameter as a function of T

after scaling. It is clear that the GL result approximates the BCS result near the critical
temperature T

c

. The GL result fails to be a good approximation below about 0.9T
c

.

We can therefore relate the expectation value of the current operator to the Green
function

e
ĵ(r, t)

f
= ≠ e~

mi (Ò
r

≠ Ò
r

Õ) G (rt+, rÕt)|
r=r

Õ ≠ 2e2

mc
A(r)G (rt+, rt). (2.80)

Using similar methods to the first GL equation calculation, and the expansion of the
Green function (equation (2.61a)), this can be shown to reduce to the GL equation
for the current (equation (2.6)). We omit this derivation since there are no free
parameters in the GL equation for the current. The justification for this equation
can however be found in [36, 140] and many other sources.

2.4 Summary
In this chapter we have given a brief overview of the main features of the two most
successful theories of superconductivity – BCS theory and GL theory.

In GL theory we showed how the theory was created, first suggesting a complex
order parameter, then using symmetry arguments to refine the form of the free
energy. From this we found the GL equations. Looking at these in more detail
we found two important length scales – › and ⁄. After scaling the equations to
dimensionless quantities, we showed that the equations are only dependent on a single
parameter, Ÿ, the Ginzburg-Landau parameter. We then looked at two solutions
of these equations, the interface solution and vortex states. The energy of both
of these solutions changes sign at the critical value of Ÿ = 1/

Ô
2, and this divides
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superconductors into two classes with di�erent magnetic properties. These are type
I and type II superconductors.

Next we looked at BCS theory. We began with the BCS Hamiltonian with
the contact approximation to the electron interaction. Taking a specific mean-
field approximation, we eventually found the self-consistent BCS equations. These
nonlinear integral equations must in general be solved numerically, however two
important limits are found – the critical temperature and the gap at zero temperature.

The Gor’kov connection between the two theories allows for a comparison of the
predictions from the two theories. This shows that the two theories are in agreement
around the critical temperature, and the range where GL theory can be relied upon.
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Chapter three

Multiband BCS Theory

Having examined the BCS case, we now generalise the theory to allow an arbitrary
number of bands. This leads to separate superconducting band gaps, however the
presence of interactions between these bands means that there is only a single critical
temperature, as was shown by Suhl et al. in the two-band case [95].

In the two-band theory we calculate the critical temperature. We also simplify
the equation for the gaps at zero temperature. However, unlike the one-band case,
these cannot be solved in general. Numerical solutions across all temperatures are
shown for a range of interband couplings. We also examine a perturbation in the
interband coupling. This works well in the region between the critical temperatures
of the uncoupled bands.

The three-band case is more interesting due to the presence of the TRSB state.
In this section we derive the intriguing result that, in the TRSB state, the three-band
self-consistent BCS equations reduce to uncoupled one-band BCS equations with
a modified interaction strength. Additionally we derive a set of conditions using
the one-band gap solutions such that the TRSB state exists if and only if these
conditions are satisfied.

We finish the chapter by examining some thermodynamic observables. Plots of
these observables as a function of temperature show additional features which are
not present in one-band materials, and these can therefore be used as evidence of
multiband e�ects in superconductors.

To simplify the notation, we will use an over arrow, Ą, to indicate a band
vector with components A

‹

, and a check mark, Ǎ, to indicate a band matrix with
components A

‹,‹

Õ , where ‹ and ‹ Õ are band indices. This is distinguished from a
vector in position or momentum space, which are set in bold face, r.
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3.1 The Multiband BCS Equations
To generalise the BCS theory to multiband superconductors, a band index ‹ is added
to the electron operators and the bands are coupled by an interband Josephson
coupling term. The Hamiltonian is written in momentum space as [95]

Ĥ =
ÿ

k‹‡

(‘
‹‡

(k) ≠ µ)ĉ†
‹‡

(k)ĉ
‹‡

(k)

+ 1
2

ÿ

kk

Õ
‹‹

Õ
‡‡

Õ
V

‹‹

Õ(k, kÕ)ĉ†
‹

Õ
‡

(k)ĉ†
‹

Õ
‡

Õ(kÕ)ĉ
‹‡

Õ(kÕ)ĉ
‹‡

(k),
(3.1)

where ‘
‹‡

(k) is the energy of the noninteracting state, ‡ =ø, ¿ indicates the spin
state, ‹, ‹ Õ are band indices, ĉ

‹‡

(k) (ĉ†
‹‡

(k)) are the electron annihilation (creation)
operators in momentum space, µ is the chemical potential, V

‹‹

Õ(k, kÕ) is the general
momentum dependent intraband (‹ = ‹ Õ) and interband (‹ ”= ‹ Õ) coupling strengths.
The Hamiltonian can also be written in real space, with the e�ective Hamiltonian
given by

K̂
eff

=
ÿ

‹

ÿ

‡

⁄
dr Â̂†

‹‡

(r)
Y
]

[
1

2m
‹

C

≠i~Ò + eA(r)
c

D
2

≠ µ

Z
^

\ Â̂
‹‡

(r)

≠ 1
2

ÿ

‹‹

Õ

ÿ

‡‡

Õ
g

‹‹

Õ

⁄
dr

Ëe
Â̂†

‹‡

(r)Â̂†
‹‡

Õ(r)
f

Â̂
‹

Õ
‡

Õ(r)Â̂
‹

Õ
‡

(r) + h.c.
È

,

(3.2)

where the usual cut o� in momentum space is assumed.

From this we can find the equations of motion for the creation and annihilation
operators in the imaginary time Heisenberg picture. These equations of motion
couple the operators in the separate bands due to the Josephson coupling. The
temperature Green function and anomalous Green function are defined as averages
of the time ordered product of these operators

G
‹

(rt, rÕtÕ) = ≠
e
T

t

Ë
Â̂

K‹ø(rt)Â̂†
K‹ø(rÕtÕ)

Èf
, (3.3a)

F
‹

(rt, rÕtÕ) = ≠
e
T

t

Ë
Â̂

K‹ø(rt)Â̂
K‹¿(rÕtÕ)

Èf
. (3.3b)

The equation of motion for these Green functions shows that the definition for the
superconducting gap should now be taken to be a sum over the anomalous amplitudes
in the form

�ú
‹

(r) = ≠ ÿ

‹

Õ
g

‹‹

Õ

e
Â̂†

‹

Õ¿(r)Â̂
†
‹

Õø(r)
f

(3.4a)

=
ÿ

‹

Õ
g

‹‹

ÕF †
‹

Õ(rt+, rt), (3.4b)

44



§3.1. THE MULTIBAND BCS EQUATIONS

where t+ indicates that this time coordinate is evaluated in the limit that it goes
to t from above, which is needed to fix the ordering of the operators in the time
ordered product.

Following the methods of section 2.2.1, assuming a uniform solution, we find the
multiband self-consistent equations for the superconducting gaps:

�
‹

=
ÿ

‹

Õ
g

‹‹

ÕN
‹

Õ(0)
⁄ ~Ê

D

0

dÁ
�

‹

Õ
Ò

Á2 + |�
‹

Õ|2
tanh

S

U

Ò
Á2 + |�

‹

Õ|2
2k

B

T

T

V . (3.5)

This form confirms that the quantity defined in equation (3.4) is the gap we are
interested in as it is this quantity that appears as a gap in the excitation spectra in
the energy integrals.

This equation can be written in a more compact form by defining Ň(0) to be
a diagonal matrix with elements N

‹

(0), and Ǐ(�̨, T ) to be another diagonal matrix
with elements

I
‹‹

(�̨, T ) =
⁄ ~Ê

D

0

dÁ
1

Ò
Á2 + |�

‹

|2
tanh

S

U

Ò
Á2 + |�

‹

|2
2k

B

T

T

V . (3.6)

We also define the e�ective coupling matrix, �̌ = ǧŇ(0). With these we may write
the self-consistent equation in matrix form as

�̨ = �̌Ǐ(�̨, T )�̨, (3.7)

which may be solved for any temperature. However, assuming that �̌ is invertible,
it is often simpler to work with the equation

0 =
1
�̌≠1 ≠ Ǐ(�̨, T )

2
�̨, (3.8)

since in this form the integrals only appear on the diagonal.

The critical temperature may be calculated by finding the largest temperature
T

c

which solves the equation

det
1
�̌≠1 ≠ Ǐ (̨0, T

c

)
2

= 0. (3.9)

This is the largest temperature for which there is a nontrivial solution to the matrix
equation. In this limit the integral is the same for all bands and is the same integral
which appears in this limit in the one-band theory. The approximate solution, which
we define to be A, is

A = I
‹‹

(̨0, T
c

) =
⁄ ~Ê

D

0

dÁ

Á
tanh

3
Á

2k
B

T
c

4

= ln
A

2~Ê
D

e�

fik
B

T
c

B

. (3.10)
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Here � ¥ 0.577216 is the Euler-Mascheroni constant and Ê
D

is the Debye frequency.

The equation at T = 0 can also be simplified. In this limit, the integrals can be
performed exactly

I
‹‹

(�̨
0

, 0) = ln
Q

a~Ê
D

+
Ò
~Ê2

D

+ |�
0‹

|2
|�

0‹

|

R

b . (3.11)

However, while in the one-band case we can solve the resulting equation exactly, in
the multiband case the resulting equations must be solved by numerical iteration or
by some other numerical method.

3.2 Two-band BCS
To find explicit solutions, we first restrict ourselves to a two-band BCS system. For
the two-band system, the BCS equations can be written explicitly as

�≠1

11

�
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+ �≠1
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�
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=
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D

0

dÁ
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Ò
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b , (3.12a)
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2k

B

T

R

b , (3.12b)

where again �
ij

= g
ij

N
j

(0). From this, it is evident that in the presence of a nonzero
interband coupling strength, if either �

1

or �
2

is nonzero, then both are nonzero. In
this way, a band can be induced into a superconducting state above its (one band)
critical temperature by the presence of a second superconducting band. Additionally,
we shall see that the critical temperature of both bands is always increased above
the one band values.

The equation for T
c

(equation (3.9)) can be computed explicitly for a two-band
superconductor. The equation can be simplified to the form

k
B

T
c

= 2e�

fi
~Ê

D
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S

U≠�
11
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22

≠
Ò

(�
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)2 + 4�
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= 2e�
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U≠ 2
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Ò
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11
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)2 + 4�
12

�
21
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V (3.14)

¥ T
1c

A

1 + �
12

�
21

�2

11

(�
11

≠ �
22

) + O
1
�2

12

�2

21

2B

, (3.15)

when �
11

> �
22

, where T
1c

is the critical temperature of the uncoupled first band,
which is assumed to be the dominant band.
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In the limit T æ 0 the integral is again simplified since tanh
3Ô

›

2

+�

2

2k

B

T

4
æ 1.

The equations then become
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These cannot be solved exactly. However, writing the ratio of the gaps as ‰, and
making the weak coupling approximation �

10

, �
20

π ~Ê
D

, this can be simplified to
the equations

�≠1
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+ �≠1
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‰ = ln
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+ ln (‰) , (3.17a)
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20
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. (3.17b)

If the gaps are nearly equal, then the ln(‰) term can be expanded around ‰ = 1 to
then obtain the required accuracy. At the lowest order, ‰ = 1 and

�
10

= �
20

= 2~Ê
D

exp
S

U≠ 2
(�

11

+ �
22

) +
Ò

(�
11

≠ �
22

)2 + 4�
12

�
21

T

V . (3.18)

Comparing this to the equation for T
c

(equation (3.14)) shows that the universal
BCS relation between �

0

and T
c

is recovered in this limit. However, as ‰ moves
away from 1, this no longer holds. Corrections for the gap at T = 0 can be found
by keeping more terms in the expansion of the ln term, or by solving the equations
numerically.

We also note that there is a symmetry in the full two-band BCS equations.
Performing the following transformation on the self-consistent equations has the
same solutions

�
2

æ ≠�
2

, g
12

æ ≠g
12

. (3.19)

Therefore changing the sign of the interband coupling does not change the magnitude
of either of the gaps, but changes whether the gaps are in phase or out of phase with
each other. We can therefore consider g

12

to be positive without loss of generality.

In figure 3.1 a numerical two-band solution is plotted for a typical set of parame-
ters and varying interband coupling g

12

. At low interband coupling the first band is
e�ectively unperturbed. However the second band is perturbed significantly near the
uncoupled critical temperature. The smaller band also has its critical temperature
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Figure 3.1: Numerical solutions to the two-band BCS equations with varying interband
coupling constants g

12

. We have used the parameters N
1

(0) = N
2

(0) = 0.3, g
11

= 0.6,
g

22

= 0.5. In the limit of small coupling, the second band is very small above its uncoupled
T

c

, while at large interband coupling, both bands begin to look similar to a one-band BCS
curve.

increased to that of the dominant one. The second band is said to be induced in the
region above its uncoupled critical temperature and below the critical temperature
of the combined system.

3.2.1 Perturbation Expansion

If the interband coupling is small enough, we can perform a perturbation expansion
in g

12

which performs well for some temperatures. This provides an insight into the
leading behaviour of the interband coupling.

Let us assume that band one is the dominant band. Then the region where
this perturbation expansion is possible is in the region between T

2c

, the critical
temperature of the uncoupled second band, and T

c

, the critical temperature of the
combined system. In the uncoupled limit, the T

c

of the combined system is just the
critical temperature of the first band, T

1c

.

We expand the gaps as

�
‹

= �(0)

‹

+ g
12

�(1)

‹

+ O
1
g

12

2

2
. (3.20)

Then we know that in this region �(0)

2

= 0. So that we can solve the system all the
way to T

c

, we scale the temperature by the full critical temperature as t = T/T
c

,
where we are interested in the region T

2c

/T
c

< t < 1. We then expand the critical
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temperature in the same way as the gaps.

T
c

= T (0)

c

+ g
12

T (1)

c

+ O
1
g

12

2

2
. (3.21)

However, we have already computed this expansion (equation (3.15)). We therefore
know that T (0)

c

= T
1c

and T (1)

c

= 0. Putting these into the self-consistent BCS
equations and keeping terms of order 1 results in the one-band equation for the
first band, for which we know how to compute the solution. In the region we are
interested in, the second equation only has the trivial solution, so �(0)

2

= 0 in this
region.

Keeping the terms linear in g
12

we find two equations
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which need to hold for all temperatures. The first of these has �(1)

1

appear only as a
multiplicative factor on both sides. So either the equality holds for all temperatures
and �(1)

1

is not restricted, or the equality does not hold and �(1)

1

= 0. Looking more
closely we find that this equation is distinct from the equation solved by �(0)

1

, so
that we have �(1)

1

= 0.

For the second equation, we see that we know how to compute the integral. We
can therefore immediately solve the equation to find

�(1)

2

= �(0)

1

g
11

3
1 ≠ N

2

(0)g
22
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1
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1
1 ≠ N

2

(0)g
22

Ë
1

g

11

N

1

(0)

≠ ln (t)
È2 . (3.24)

We can immediately see that this approximation fails at t = T
2c

/T (0)

c

since the
denominator goes to zero at this point.

Within the context of GL, Komendová et al. [119] showed that at the point T
2c

the second gap is of order g
12

1/3, so it is unsurprising that this method fails, since
this method assumes that the leading correction is of order g

12

.
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Figure 3.2: A comparison of the perturbation approximation to numerical solutions to
the two-band BCS equations. In all plots we use N

1

(0) = N
2

(0) = 0.3, g
11

= 0.6, g
22

= 0.5.
The interband coupling varies in the plots with a) g

12

= 0., b) g
12

= 0.001, c) g
12

= 0.01,
and d) g

12

= 0.1.

With this expansion, we can calculate the one-band solution once, and then use
this to find the first order correction for the second band for many di�erent parameter
sets.

At the next order, we find that �(2)

2

= 0. To solve the equation for �(2)

1

we would
need to be able to perform the integral

⁄ Œ

a

dx
xsech 2(x) ≠ tanh(x)

x3

,

where the lower limit on the integral, a, depends on the value of �(0)

1

. While this
integral can be performed numerically, this would need to be performed for each
temperature since the integral depends on the temperature through the lower bound.
While this is an added cost that makes this method less applicable, the method
would still be faster than a solution of the full equations, or could be used as a first
approximation for a numerical method.

An example application of this is shown in figure 3.2. The perturbation approx-
imation is compared to numerical solutions of the multiband BCS equations. In
the absence of interband coupling the perturbation simply returns the one-band
solution for the dominant band with no contribution from the second band. At low
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Figure 3.3: A plot showing the perturbation expansion solution for the second band as
a function of the interband coupling. The parameters used here are N

1

(0) = N
2

(0) =
0.3, g

11

= 0.6, g
22

= 0.4. This exploration of parameter space is much faster with the
perturbation expansion than working directly with the full multiband equations.

interband coupling, the approximation works very well until near T
2c

, where the
approximation diverges. At larger interband coupling the approximation no longer
provides a good approximation to the full solution. This is expected since higher
terms in the perturbation expansion become important at higher interband coupling.

We also note that the perturbation converges to the true solution in the limit
that the interband coupling goes to zero, but it does not converge uniformly.

In figure 3.3 the magnitude of the second gap in the perturbation expansion is
shown as a function of the interband coupling. This shows how the second band is
induced above the one-band critical temperature by the coupling to the first band.
For any nonzero coupling, the critical temperature immediately increases.

3.3 Three-band BCS and the TRSB State
We now look at a three-band BCS system. With three bands there is the possibility
of additional physics. The critical temperature is found in the same way as the
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two-band case. The simplest form for the T
c

equation is
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where again A = ln
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fik
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2
is the result of the integral at zero temperature. This

is a cubic in A which can be solved exactly, but the resulting expression is rather
complicated. We can also calculate �

0

, the gap at zero temperature. In this limit,
the integral can be performed exactly with the result
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Then the gap at T = 0 is found by solving the set of equations
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This is most easily done using an iterative method.

For the three-band system, the BCS equations are invariant under the transfor-
mation

�
i

æ ≠�
i

, �
ij

æ ≠�
ij

, �
ik

æ ≠�
ik

, (3.29)

with i ”= j ”= k. There are therefore two independent cases to consider – one with all
�

‹‹

Õ positive and one with all �
‹‹

Õ negative, as we can perform this transformation
to find the solution to the other cases. The case where all interactions are repulsive
is very interesting as this can lead to frustration between the three gaps.

Numerical solutions for a three-band case over all T are shown in figure 3.4.
For this plot we use the parameters: ~Ê

D

= 0.9, g
11

= 0.7, g
22

= 0.75, g
33

= 0.6,
g

12

= g
13

= g
23

= ≠0.1, N
1

(0) = 0.4, N
2

(0) = 0.5, N
3

(0) = 0.6. With these
parameters, a kink appears in the gap at about T/T

c

= 0.45. This kink is more
pronounced in the smallest gap, but is present in all three bands. Above this
temperature, the phase di�erence between the gaps must either be 0 or fi. In
this region the superconductor is in a conventional BCS state. Below this point
(T/T

c

< 0.45) the phase di�erence will be between 0 and fi, and the superconductor
is in the TRSB state (also see [108, 109]).
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Figure 3.4: A numerical solution to the three-band BCS equations. Notice the kink at
T/T

c

¥ 0.45. Below this point the superconductor is in the TRSB state.

In addition to this kink, the gap in band one also vanishes at a single point at
about T/T

c

¥ 0.9. We denote this temperature T 0 and will later show that this
corresponds to a change of phase, where the gaps change from being in phase with
each other to having one out of phase. The conditions required for the existence of
this point are related to the conditions for the TRSB state, and the two are often
(although not always) found on the same plot as a function of temperature.

3.3.1 Calculation of the TRSB State

For a three-band superconductor, most solutions of the self-consistent multiband
BCS equations have the three gaps either in phase or out of phase with each other.
However, for some input parameters and below a critical temperature T ú, there exists
a solution to the BCS self-consistent equations (equation (3.8)) where the three bands
have relative phases other than 0 or fi due to frustration of the interaction between
the three gap functions. These gap functions are therefore described by a complex
amplitude even in the uniform case. When this happens the ground state is doubly
degenerate because the complex conjugate of the gap functions is also a solution to
equation (3.8). The gap functions are therefore in a chiral ground state, and the
time-reversal symmetry is spontaneously broken.

Considering the gap functions as vectors in the complex plane (figure 3.5), we see
that the two possible ground states have di�erent chirality. This induces a breaking
of the mirror symmetry in the phase plane, which also induces the breaking of the
time-reversal-symmetry.

Here we show how to calculate the magnitude of the gap in the TRSB state
in terms of a set of one-band BCS gap equations, and find the condition for the
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HaL HbL HcL

Figure 3.5: (a) For most ground state solutions, all band gaps are in phase or out of phase
with each other. After removing an arbitrary phase, the gap at a point can be described
by a real number. (b)-(c) In the TRSB state, the gaps can have any phase between them.
In this case, after removal of the an arbitrary phase, the gaps are still described by a
complex number. The ground state is thus doubly degenerate, with the ground states
being complex conjugates of each other.

appearance of the TRSB state.

For the three-band case, the self-consistent BCS equations (equation (3.8)) can
be written in matrix form as

S

WWU

I(�
1

, T ) ≠ �≠1

11

≠�≠1

21

≠�≠1

31

≠�≠1

12

I(�
2

, T ) ≠ �≠1

22

≠�≠1

32

≠�≠1

13

≠�≠1

23

I(�
3

, T ) ≠ �≠1

33

T

XXV

S

WWU

�
1

�
2

�
3

T

XXV = 0̨, (3.30)

where there is an arbitrary global phase. We can choose the global phase such that
�

1

= |�
1

|. Then, taking the imaginary part, we find
C

I(�
2

, T ) ≠ �≠1

22

≠�≠1

32

≠�≠1

23

I(�
3

, T ) ≠ �≠1

33

D C
Im(�

2

)
Im(�

3

)

D

= 0̨. (3.31)

If we are interested in the TRSB states, then the imaginary components of these
gaps must be nonzero. Hence the determinant of the matrix must equal zero. We
will denote a magnitude of the gap that satisfies this requirement �

i

. This leads to
the constraint equation

(I(�
2

, T ) ≠ �≠1

22

)(I(�
3

, T ) ≠ �≠1

33

) ≠ �≠1

23

�≠1

32

= 0. (3.32)

We can make similar demands for the other gaps, resulting in two other similar
conditions. These have the solution

I(�
j

, T ) = �≠1

jj

±
Û

�≠1

jk

�≠1

lj

�≠1

lk

Û
�≠1

jl

�≠1

kj

�≠1

kl

(3.33)

= �≠1

jj

± �≠1

jk

�≠1

lj

�≠1

lk

, (3.34)
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HaL HbL HcL

Figure 3.6: The triangle inequality can be viewed as a restriction on the ability to form a
triangle with three vectors of a given length. (a) &(b). If the triangle inequality is satisfied,
then two triangles can be formed which are mirror images of each other. (c) If the triangle
inequality is not satisfied, then it is not possible to form a triangle with the vectors of that
length because one of the vectors is too long.

for all permutations j, k, l = 1, 2, 3 where we have used the definition of � and the
fact that g

ij

= g
ji

. These equations are now decoupled one-band BCS self-consistent
equations for the superconducting gaps with modified interaction strengths.

We only need to keep the negative solution because the TRSB state is only stable
when one or all three coupling parameters are negative, �

12

�
13

�
23

< 0, so that the
interactions between the bands are frustrated. We can now substitute equation (3.33)
into equation (3.30) to find

S

WWU

≠�

≠1

12

�

≠1

31

�

≠1

32

≠�≠1

21

≠�≠1

31

≠�≠1

12

≠�

≠1

21

�

≠1

32

�

≠1

31

≠�≠1

32

≠�≠1

13

≠�≠1

23

≠�

≠1

31

�

≠1

23

�

≠1

21

T

XXV

S

WWU

�
1

�
2

�
3

T

XXV = 0, (3.35)

which results in a single condition which must be met for a stable solution. This can
be rewritten in the form

�
1

g≠1

23

+ �
2

g≠1

13

+ �
3

g≠1

12

= 0, (3.36)

where the �
‹

are complex with unknown phase di�erences. The existence of a
solution to this constraint equation is only possible if the triangle inequality

-----
�

j

g≠1

kl

----- Æ
-----

�
k

g≠1

lj

----- +
-----

�
l

g≠1

jk

----- , (3.37)

holds for all permutations of {j, k, l} (figure 3.6). In this way we can find the
existence and position of the time-reversal-symmetry breaking by finding the solution
to equation (3.33), then finding the regions over which equation (3.37) holds.

To the best of our knowledge we were the first to derive this reduction of the
multiband BCS equations to a set of one-band BCS equations, along with the con-
dition for when this is the stable solution [1]. We note that a similar condition has
been derived for a TRSB superconductor in multiband GL by Hu and Wang [141],
and later for a multiband BCS superconductor by Takahashi et al. [142].
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Figure 3.7: a) A direct solution to the three-band BCS equations (solid lines), as well
as solutions to the one-band reduced equations for the TRSB state (dashed lines). In
the TRSB state the multiband solution agrees with a reduced one-band solution, and the
solutions diverge at T ú. b) The triangle inequality for the scaled reduced one-band gaps
is plotted as a function of temperature. The point where the triangle equality fails is the
same location as where the one-band solution departs from the multiband solution in the
previous plot, T ú.

In figure 3.7 we perform this procedure explicitly with the parameters ~Ê
D

= 0.09,
g

11

= g
22

= g
33

= 0.7, g
12

= g
13

= g
23

= ≠0.1, N
1

(0) = 0.35, N
2

(0) = 0.32,
N

3

(0) = 0.3. This set of parameters are arbitrary, yet reasonable for a three-band
case. Similar results are found with other parameters. Figure (a) shows a direct
multiband solution to the BCS equations, �, plotted with the one-band reduced
BCS solutions, �. In figure (b) the triangle inequality for the three permutations are
plotted as a function of temperature. These plots show that in the region where the
inequalities hold, the multiband solution is precisely the solution �. At the point
where the inequality is no longer satisfied there is a kink in the multiband solution
as it ceases to be in the TRSB state. The point where the equality holds is the
critical transition point T ú, and is the point that separates the TRSB state from the
conventional BCS state.

At the point T ú, the full multiband solution separates from the reduced one-band
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Figure 3.8: Phase diagram with equal bands. ~Ê
D

= 0.09, N
i

(0) = 0.2, g
‹‹

= 0.8,
g

12

= g
13

= ≠0.1. (a)-(c) The gaps in bands 1-3, |�
‹

|, respectively. (d)-(f) The phase
di�erence between the gaps. (d) „

1

≠ „
2

. (e) „
2

≠ „
3

. (f) „
3

≠ „
1

.

solution with a discontinuity in the derivative of the gaps. This discontinuity would
lead to a jump in the heat capacity of the superconductor and other experimentally
measurable quantities.

Looking at the TRSB triangle inequality (equation (3.37)), we see that there can
be points above T ú where the permutation below zero changes sign, and another
permutation drops below zero. At the point where they cross, the triangle inequality
holds as an equality for the two permutations, and therefore the solution is again
the reduced one-band BCS solution. As one of the one-band solutions is zero at
this point, this allows the phase of this gap to change relative to the other two. We
denote this point T 0, and note that this point can be seen most readily as a phase
discontinuity.

3.3.2 Results

With the choice of a base set of parameters, we can vary a single parameter and
observe the e�ect on the magnitude and relative phase of the gaps, as well as on the
critical temperature T

c

, the presence of the TRSB state, and the existence of a T 0

point.

We first choose the case where the parameters of all the bands are equal other
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Figure 3.9: Phase diagram with nearly equal bands showing two phase discontinuities.
~Ê

D

= 0.09, N
1

(0) = 0.2, N
2

(0) = 0.21, N
3

(0) = 0.22, g
‹‹

= 0.8, g
12

= ≠0.11, g
13

= ≠0.1.
(a)-(c) The gaps in bands 1-3, |�

‹

|, respectively. (d)-(f) The phase di�erence between the
gaps. (d) „

1

≠ „
2

. (e) „
2

≠ „
3

. (f) „
3

≠ „
1

.

than the parameter g
23

(figure 3.8). We choose the parameters ~Ê
D

= 0.09, g
11

=
g

22

= g
33

= 0.8, g
12

= g
13

= ≠0.1, N
1

(0) = N
2

(0) = N
3

(0) = 0.2. In this case the
parameter space divides into four regimes: at the top is the normal state, on the
right is the simple three-band superconductivity, bottom left is the TRSB state, and
at the top left the first band is identically zero, so that two-band superconductivity
remains here. These four regions are separated by the phase transition lines T

c

and
T ú, which touch at the point g

23

= g
12

= g
13

, which coincides with a minimum in T
c

.

Due to bands 2 and 3 being identical, we see that the TRSB state continues to
exist to g

23

= ≠Œ, since any nonzero value for |�
1

| will satisfy the triangle inequality.
Moreover, when |�

1

| = 0 the triangle inequality is still satisfied as an equality, and
thus the condition for T 0 is satisfied in the entire region above T ú left of the point
T ú = T

c

. Therefore the gap in the first band |�
1

| equals zero in this region, and the
phase di�erence for bands 2 and 3 is flipped to account for the repulsive interaction
between these bands.

Next we look at the case where the parameters in all three bands are nearly equal
(figure 3.9). Here we set ~Ê

D

= 0.09, g
11

= g
22

= g
33

= 0.8, g
12

= ≠0.11, g
13

= ≠0.1,
N

1

(0) = 0.2, N
2

(0) = 0.21, N
3

(0) = 0.22. With these parameters the two-band
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superconductivity regime disappears, the TRSB regime is confined to a finite region,
and a gap opens between the T ú line and the T

c

line.

The two-band superconductivity regime disappears due to the finite di�erence
between the bands �

2

and �
3

. Therefore, as the temperature is increased, the �
1

term eventually becomes too small to satisfy the triangle inequality, and is therefore
no longer forced to zero for the majority of this region. However, it remains heavily
suppressed.

The finite region containing the TRSB state is also a consequence of the finite
di�erence between the bands �

2

and �
3

. As the coupling g
23

is moved to ≠Œ,
it enhances �

2

and �
3

equally, and hence the di�erence between them, while �
1

approaches a constant. Therefore, at some critical value of g
23

, the magnitude of �
1

is too small to satisfy the triangle inequality, even at T = 0, and so the TRSB state
disappears.

The gap opens between the T ú line and the T
c

line because for these two points
to touch there must be a location where all the terms in the triangle inequality are
identical for all temperatures such that the TRSB state can extend all the way to T

c

.
However, the T

c

and T ú lines are connected by two T 0 lines, one where �
1

= 0, and
one where �

2

= 0. These lines are most easily seen in the phase plots as a sudden
jump from a phase di�erence of 0 to fi or vice versa, but the line for �

1

is also visible
in the magnitude plot. We also note that the TRSB state is mainly found near the
minimum in T

c

.

Finally we look for a set of parameters that results in only a single T 0 line. We
find that the parameters ~Ê

D

= 0.09, g
11

= g
22

= g
33

= 0.7, g
12

= ≠0.11, g
13

= ≠0.1,
N

1

(0) = 0.3, N
2

(0) = 0.21, N
3

(0) = 0.22 create this behaviour (figure 3.10). The T 0

line is again most easily seen in the phase plots, which show that in this case it is
�

3

which goes to zero in this case.

The first gap is again suppressed in the upper left region, as was the case in the
previous examples. The TRSB state again appears only near the minimum in T

c

.

3.4 Thermodynamic Critical Field and Other
Thermodynamic Observables

In this section we perform calculations of the thermodynamic critical field, as well
as the entropy and the heat capacity, for a range of multiband BCS parameters.
The form of the equations for the thermodynamic observables are derived from the
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Figure 3.10: Phase diagram with nearly equal bands with one phase discontinuity. ~Ê
D

=
0.09, N

1

(0) = 0.3, N
2

(0) = 0.21, N
3

(0) = 0.22, g
‹‹

= 0.7, g
12

= ≠0.11, g
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= ≠0.1. (a)-(c)
The gaps in bands 1-3, |�
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|, respectively. (d)-(f) The phase di�erence between the gaps.
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formulas given in [143].

3.4.1 Free Energy Density

In the absence of an applied magnetic field, the electronic contribution to the free
energy density of a multiband superconductor can be written as

F
s0

= �̨ú · ǧ≠1 · �̨ + k
B

T
ÿ

‹

⁄
dÁ N

‹

(Á) ln (f
‹

(Á)(1 ≠ f
‹

(Á))) , (3.38)

with f
‹

(Á) the modified Fermi function given by

f
‹

(Á) = 1

1 + exp
3Ô

Á

2

+|�
‹

|2

k

B

T

4 . (3.39)

Note that minimising the free energy with respect to �̨ú with the approximation
N

‹

(Á) ¥ N
‹

(0) recovers the self-consistent BCS equations. This approximation
is appropriate as only states near the Fermi energy contribute appreciably to the
integral at low temperatures. We also see that when the gaps are set to zero, the
result is the normal state free energy. This confirms the form of the free energy
density.
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The free energy density of the normal state can be found in the same way by
setting the gap to zero. Therefore the di�erence in the free energy densities of the
superconducting and normal states is given by

”F
0

= �̨ú · ǧ≠1 · �̨ ≠ k
B

T
ÿ

‹

⁄
dÁ N

‹

(Á) ln

Q

cca
1 + cosh

3Ò
Á2 + |�

‹

|2/k
B

T
4

1 + cosh (Á/k
B

T ) )

R

ddb .

(3.40)

3.4.2 Thermodynamic Critical Field

The thermodynamic critical field H
c

can be found from the condensation energy of the
superconductor, i.e. the di�erence in the free energy between the superconducting
and normal states.

1
8fi

H2

c

= ”F
0

= �̨ · ǧ≠1 · �̨

≠ 2k
B

T
ÿ

‹

N
‹

(0)
⁄ ~Ê

D

0

dÁ ln

Q

cca
1 + cosh

3Ò
Á2 + |�

‹

|2/k
B

T
4

1 + cosh (Á/k
B

T )

R

ddb .
(3.41)

As in the one-band case, the critical field decays linearly to zero near T
c

. However,
due to the sudden increase in the smaller band at a lower temperature, the critical
field in the two-band case can increase above the linear approximation.

At low interband coupling the critical field is the sum of two one-band results, with
a very noticeable sudden increase near the second temperature T

2c

, due to the change
from an induced to an intrinsic gap in the subdominant band. Observation of this
feature provides easily accessible evidence of multiband superconductivity. At large
interband coupling the temperature dependence of the critical field approximates
that of a one-band material with a larger density of states.

3.4.3 Specific Heat Capacity

To find the specific heat it is easiest to first find the entropy. This has the form

S = ≠2T
ÿ

‹

N
‹

(0)
⁄ Œ

≠Œ
dÁ [(1 ≠ f

‹

(Á)) ln (1 ≠ f
‹

(Á)) + f
‹

(Á) ln (f
‹

(Á))] . (3.42)

At T = T
c

the gaps go to zero. This allows the entropy at this point can be calculated
explicitly, with the result

S(T
c

) = 4fi2T
c

q
‹

N
‹

(0)
6 . (3.43)
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The specific heat is related to the entropy in the usual way,

C
v

= T
ˆS

ˆT
. (3.44)

However, since we only have the entropy at discrete temperatures, this needs to be
approximated by a discrete derivative.

While this is useful for calculating the general form of the heat capacity over all
temperatures, it unfortunately does not allow us to resolve the jump discontinuity in
the heat capacity due to the TRSB phase transition. However, we can see from the
definition of the heat capacity and the entropy that a discontinuity in the derivative
of the gap should lead to a jump in the heat capacity, confirming that the TRSB
transition is a phase transition rather than a crossover.

3.4.4 Results

In figure 3.11 these thermodynamic observables are plotted as a function of tem-
perature with changing interband coupling. For these plots we use the parameters
g

11

= 0.6, g
22

= 0.5, N
1

(0) = N
2

(0) = 0.3. Similar plots are also given in figure 3.11,
where instead the density of states of the second band is varied, with the parameters
g

11

= 0.6, g
22

= 0.5, g
12

= 0.01, N
1

(0) = 0.6.

In figure 3.11 (a) the critical magnetic field is plotted. When the bands are
decoupled, the total critical field is just the critical field of two one-band models.
This is seen as a slight anomaly in the slope. However with the second gap being
so much weaker in this case, the deviation is fairly small. At intermediate coupling,
the anomaly is smoothed over the central region. However the critical field at low
temperatures is enhanced over that expected from the behaviour near T

c

. At large
interband coupling, the total critical field approaches that of a one-band model with
a higher density of states.

In figure 3.12 (a) the two-band nature is most evident for N
2

(0) = 0.6, as at this
point the critical temperature of the uncoupled second band is about 0.5T

c

, and the
deviation is strong.

Note that in the last sample, N
2

(0) = 0.8, the second band becomes the dominant
band, causing a sudden increase in the critical temperature. Since the critical
temperature was included in the scaling, this causes this sample to not follow the
general pattern seen in the other plots.

The entropy is shown for typical values in figure 3.11 (b) and figure 3.12 (b).
Other than the discontinuous derivative in the uncoupled case in figure 3.11 this
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Figure 3.11: A selection of thermodynamic functions for a two-band superconductor
showing the dependence on the interband coupling g

12

. a) The thermodynamic critical
field. b) The entropy. c) The specific heat. At large interband couplings, the observables
approach the form of a one-band superconductor with density of states equal to the total
density of states.

shows that the entropy in the two-band model is not vastly di�erent from the one-
band model, and this, combined with the fact that it is di�cult to measure the
entropy of a system, means that it is not possible to use this directly as evidence for
multiband superconductivity.

In figure 3.11 (c) we see that initially there is an additional jump at about
T = 0.33T

c

due to the appearance of the second band. As the interband coupling
is increased, this jump transitions to a peak, then a shoulder. At large interband
coupling, the heat capacity approaches the form of the one-band model.

In figure 3.12 (c) the heat capacity is shown for a weakly interacting system
as the density of states of band 2 is increased. This clearly shows a shoulder in
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Figure 3.12: A selection of thermodynamic functions for two weakly interacting bands
for a range of values of the density of states of the second band. a) The thermodynamic
critical field. b) The entropy. c) The specific heat. A large shoulder is visible in most of
the specific heat plots that is not visible in single band BCS theory. See for example 0.3T

c

for g
12

= 0.5, 0.6T
c

for g
12

= 0.6, and 0.95T
c

for g
12

= 0.7 (which in this case is more of
a peak than a shoulder). These shoulders are most prominent when attempting to fit a
one-band model to the data from a two-band superconductor.

the heat capacity, with only the location of the shoulder changing as the density
of states changes. This feature of the heat capacity for weakly interacting two-
band superconductors is one of the clearest experimental proofs for the existence of
multiband superconductors. This shoulder has been seen in MgB

2

[76].
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3.5 Summary
In this chapter we have generalised the BCS theory to multiband superconductors.
We have shown how the self-consistent BCS equations generalise to the multiband
theory. From this we have shown how to calculate the critical temperature and the
magnitude of the gap at zero temperature.

Numerical solutions to the gap equations were then shown for the two-band case,
showing how the interband interaction induces superconductivity in the smaller
band above the one-band critical temperature. We also presented a perturbation
expansion in this induced region which allows us to explicitly see how the smaller
gap transitions to a lower critical temperature as the interband coupling goes to
zero.

We then considered an application to three-band superconductors. We showed
that in this case there are two additional related phenomena that are not seen in the
two-band case – the gaps can move to the TRSB state where there is a nontrivial
phase between the bands, and the gaps can go to zero below the critical temperature
at the point T 0 as the phase between the bands switches. A method was presented
which determined whether the ground state was the TRSB state, and gave the
magnitude of the gaps in this case. This method reduces the problem of solving the
full multiband BCS equations to the problem of solving three uncoupled one-band
equations. The same approach also determines the existence and location of any T 0

points.

We presented a number of scans of the parameter space of the three-band BCS
model and show that the regions calculated with this approach match the numerical
calculations. This also shows which regions of parameter space are likely to exist in
the TRSB state. The TRSB state only appears in a very small region of parameter
space, where the interactions between the bands are of similar order. This allows the
frustrated repulsive interaction to form the TRSB state. The frustrated repulsion
also results in a lowering of the superconducting critical temperature T

c

, and thus
we expect to find these interesting properties near the minimum of T

c

in parameter
space. This is very useful for experimental searches for the existence of the TRSB
state.

Finally we calculated a number of thermodynamic observables in the multiband
BCS theory. We showed that the clearest observable which confirms the presence
of multiband superconductors is the large shoulder that occurs in the heat capacity
in weakly interacting multiband superconductors. We also argued that there is a
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jump in the heat capacity at the transition to the TRSB state, indicating that this
is indeed a phase transition.
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Chapter four

Multiband Ginzburg-Landau
Theory

Multiband GL theory has existed since the work of Tilley [100] in two-band GL theory,
but interest has been renewed in the theory only recently. The Ginzburg-Landau
theory remains important even after the BCS theory due to its conceptual simplicity,
computational speed, and applications to vortex and other magnetic states, while
the strong connection to the more fundamental BCS theory enhances the reliability
of the results.

In this chapter we look at two formulations of multiband GL theory. First we
look at what we call traditional multiband GL theory. This has the same form as
the theory as originally proposed by Tilley. This form looks very similar to the
one-band model, with the addition of an interband coupling term and a band label
on the order parameters. We also revisit some properties within this theory.

In addition we study an extended version of multiband GL theory, which is
inspired by a series of papers by Peeters and co-workers [56–58], but the extension
we employ goes much further in the order of corrections found. We use this to
investigate the suggestion by Komendová et al. [119] that there exists a hidden
criticality in multiband superconductors below the critical temperature. To the best
of our knowledge this is the first time an investigation of these high order corrections
has been performed in either the one-band or multiband theory.
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4.1 Traditional Multiband Ginzburg-Landau
Theory

4.1.1 The Multiband Ginzburg-Landau Equations

To find the multiband GL equations, the standard approach is to follow the phe-
nomenological approach used to find the one-band equations. To do this, we argue
that the free energy can again be expanded, as before, in a series in the order pa-
rameters. We assign one order parameter to each superconducting band. As in the
one-band case, we truncate the free energy at fourth order.

In addition to the terms that appear in the one-band model, a Josephson in-
terband coupling term is also included. This term is reminiscent of the Josephson
coupling term which arises when two superconductors are separated in real space by
a thin insulating material, where the Josephson coupling term would allow Cooper
pairs to tunnel through the insulator and into the other superconductor. The same
picture is applicable to the multiband superconductors, where the bands are instead
separated in momentum space, and the Cooper pairs tunnel between the Fermi
sheets.

There is also the possibility of including other interband coupling terms, such
as density-density, and gradient-gradient coupling terms. These are not ruled out
by symmetry arguments about the free energy, however we neglect them here as we
shall see that these do not arise in clean multiband superconductors, as confirmed by
the Gor’kov connection to multiband BCS theory. These do need to be considered
in the theory of dirty superconductors, or if other coupling terms are included in the
microscopic Hamiltonian.

With the inclusion of the additional coupling term, the free energy density can
be expanded in an analogous way to the one-band theory, with the form

F
s

= F
n0

+ B(r)2

8fi
+

ÿ
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where
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A

≠i~Ò + eúA(r)
c

B

, (4.2)

B(r) = Ò ◊ A(r), (4.3)
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and we have introduced the band index ‹ on the coe�cients as well as on the order
parameters. “

‹‹

Õ will be termed the interband coupling, and when considering the
two-band case will sometimes be written simply as “.

The Gibbs free energy is found by the usual transformation. Making variations of
the Gibbs free energy with respect to the complex conjugate of the order parameters,
�ú

‹

(r), and the vector potential, A(r), then setting the result equal to zero,

”G
s

”�ú
‹

= 0, (4.4a)

”G
s

”A = 0, (4.4b)

we find the multiband GL equations.
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This also produces the boundary conditions

n̂ ·
3

≠i~Ò + eúA
c

4
�

‹

= 0, (4.6a)

n̂ ◊ (B(r) ≠ H(r)) = 0, (4.6b)

where n̂ is the unit normal to the surface. Note that these boundary conditions are
identical to the boundary conditions found in the one-band case, with the addition
of the subscript ‹ on the order parameters.

Comparing equation (4.5b) with Ampere’s law, we can identify the supercurrents
associated with each of the bands

j
‹

(r) = ≠ ieú~
2mú
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(�ú
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(r) ≠ �
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(r)Ò�ú
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(r)) ≠ eú2

mú
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c
|�

‹

(r)|2 A(r). (4.7)

The problem with this approach to the derivation of multiband GL is that, unlike in
the one-band theory, it is not clear what temperature dependence to assign to the
coe�cients. We expect that the temperature dependence of a should still be linear,
and b should be a constant, but it is not clear what temperature dependence should
be included in “, or the exact temperature dependence of a. To overcome this we
need to connect the multiband GL to the multiband BCS theory.
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4.1.2 Multiband BCS Theory To Multiband GL Theory

It is possible to link the microscopic multiband BCS theory to the multiband GL
theory by repeating the Gor’kov technique. To perform this connection, we begin
with the equations of motion for the superconducting Green function, G

‹,Ê

n

, the
anomalous Green function, F
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, and a normal state Green function, G
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Note that there is no direct coupling of the band gaps in this di�erential form – each
of the equations only contains a single band index ‹. We may rewrite this as a set of
coupled integral equations, which we can interpret as an expansion in �

‹

, which we
truncate at order �3

‹

. The Green function and the anomalous Green function may
then be written as
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Now, all of these integrals are only dependent on individual bands. Therefore we
can compute these integrals in the same way as the one-band theory. There are
two main di�erences with the one-band theory. One occurs when we impose the
self-consistency condition:
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where now the left-hand side of the self-consistency condition couples the gaps in
the separate bands.

The second is in the evaluation of the a term. In the one-band theory we found
a term N(0)A� (equation (2.70)), with A = ln

1
2~Ê

D

e

�

fik

B

T

c

2
, and then used the BCS

result (equation (2.54)) to evaluate this to g≠1�. In the multiband case we also
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have a term N
‹

(0)A�
‹

, however we cannot make the same identification because
the analogous result does not hold. Instead we must retain the full form.

With the same approximations as in the one-band method, the self-consistent
gap equation may be written as
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In one-band GL, the term g≠1� cancels o� exactly with the term N(0)A�. We
then remove the overall scale N(0), and identify the resulting equation with the GL
equation for the order parameter. In the multiband case however, this term does
not cancel o� exactly. To maintain the same units as the one-band GL theory, we
could divide through by N

‹

(0). However, this prevents the interband coupling from
being symmetric. Instead we divide the resulting equations by N

T

(0) = q
‹

N
‹

(0).

Comparing this to the GL equations, we identify the following values with the
GL parameters:
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Similar identification of the multiband GL with the BCS coe�cients has been made
by other authors [110, 144].

We see that the temperature dependence of “
‹‹

Õ is a constant, and unlike the
one-band case, the parameters a

‹

do not disappear at the critical temperature due
to the remaining terms not cancelling o�. Instead, at the critical temperature, the
remaining linear terms are equivalent to the equation for T

c

in BCS,
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The determinant of the term in brackets was shown to go to zero at the critical
temperature. This is therefore the highest temperature for which there is a nontrivial
solution for the order parameters, and the order parameters go to zero at this point
as expected.

The procedure for the derivation of the GL equation for the vector potential
follows through in exactly the same way as for the one-band theory. The Green
functions are each related to a supercurrent. These are then summed over to find
the total current, and then this is related to the vector potential through Ampere’s
law.

This connection to the BCS theory gives multiband GL microscopic support.
The range of validity of the theory can be assessed correctly, and the assumptions
implicit in the theory are now clear. The explicit form of the coe�cients also allows
the theory to be applied to real world parameters.

4.1.3 Bulk Solutions

Now that we have a correct form for the multiband GL equations, we wish to study
their properties. We first look for uniform solutions. Setting A to zero, as well as
all derivatives of �, we get the bulk GL equations
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Writing the order parameters as a magnitude, f
‹

, and phase factor, ei„

‹ , we get
two sets of equations by taking real and imaginary parts
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For the two-band case, the second equation only has a solution if the bands are
entirely in phase or out of phase. Considering the free energy, we see that the most
stable state is the one where “

12

cos(„
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) < 0.

We then have two equations to solve
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Figure 4.1: A solution to the two-band GL equations compared to the solution of the
equivalent two-band BCS equations. The GL solution for the dominant band is only
accurate very close to T

c

, and is only reliable above about 0.95T
c

.
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resulting in a quartic equation for ‰, which can be solved exactly. Having found ‰,
we find the magnitude of the order parameters
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An example of a two-band solution is shown in figure 4.1, and is compared to a BCS
solution. The dominant band is largely unperturbed by the second band, and the
region where the two theories agree is similar for this band. The second band seems
to have a larger region of validity, but this is mostly coincidental. The di�erence
between the two solutions oscillates around zero, with the GL solution passing above,
below, and then above again before substantially diverging. The solution is only
truly valid close to T

c

.

With three or more bands, solutions can exist where the sin terms are not zero,
but merely add up to zero (equation (4.15)). Therefore, with three or more bands,
the relative phases of the gaps are not necessarily fixed to be 0 or fi, but instead can
take on any value that satisfies equation (4.15).

In cases where the gaps are not phase-locked, there exists at least two degenerate
ground states. Changing the sign of all phase di�erences in equation (4.15) creates
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Figure 4.2: (a) A comparison of the three-band GL solution and a solution to the equiva-
lent three-band BCS equations. (b) The phase of the gaps relative to the phase of the first
gap in the BCS and GL models. In the standard superconducting state the phases are
locked at fi. At the TRSB phase transition the phases evolve to other values. While the
GL solution is only valid very close to T

c

, the GL solution correctly predicts the emergence
of the TRSB state, though it disagrees with the precise location of the transition.

another solution to these equations due to the symmetric (antisymmetric) nature
of cos (sin). These are the GL states corresponding to the TRSB states we saw in
multiband BCS theory.

This configuration is seen in figure 4.2 where a three-band GL solution with a
TRSB transition is compared to the BCS solution. The GL solution again only
agrees quantitatively with the BCS result near T

c

. However both show a TRSB
transition near 0.5T

c

, where a discontinuity in the derivative is visible. This is also
visible in the relative phase plots in b). But the precise location of the transition in
the GL theory does not match the location in the BCS theory.

4.1.4 Interface Solution, Decay Lengths and Surface Energy

The simplest nonuniform solution of the multiband GL equations is a semi-infinite
superconductor in equilibrium with a semi-infinite normal metal, where an applied
magnetic field suppresses superconductivity in the normal metal.

We can again find a surface free energy of such a solution. To do so we introduce
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the ansatz solutions
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Putting these into the GL equations, we find
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We examine these equations in two limits in order to find the coherence length and
the penetration depth. First we consider equation (4.20b) for the case where the
order parameters are fixed at their equilibrium values, �

‹0

. We immediately see that
the length scale of interest is
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This can be written in the simpler form
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In this form it is evident how the penetration depths from the individual bands
combine to produce a single penetration depth for the material. Note however that
the multiband nature has an e�ect on the individual penetration depths through the
dependence on the bulk values of the order parameters, �

‹0

.

The method to find the coherence length is more procedural. We will again
assume that the superconductor is not in the TRSB state and that the relative
phases of the order parameters are fixed to be in phase or out of phase. We then
make an ansatz for the long range behaviour of the order parameters

�
‹

(z) = �
‹0

+ c
‹

exp
AÔ

2z

›

B

, (4.24)

where �
‹0

are chosen to satisfy the uniform GL equations, and the factor of
Ô

2
is chosen so that the one-band result reproduces the standard one-band coherence
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length. Putting this into equation (4.20a) and retaining only the leading order terms
results in the equations

≠ ~2
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1
2 |�
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|2 c
‹

+ �2
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2
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ÿ
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Õ ”=‹
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Õc
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Õ = 0. (4.25)

If the phase of c
‹

is the same as �
‹0

, then this reduces to the simpler form
A

≠ ~2

mú
‹

›2

+ a
‹

+ 3b
‹

|�
‹0

|2
B

c
‹

+
ÿ

‹

Õ ”=‹

“
‹‹

Õc
‹

Õ = 0, (4.26)

which then needs to be solved for the coherence length ›. Defining the c̨ to be a
vector with components c

‹

and M̌ to be a matrix with the components

M
‹‹

Õ =

Y
_]

_[

≠ ~2

m

ú
‹

›

2

+ a
‹

+ 3b
‹

|�
‹0

|2 , ‹ = ‹ Õ,

“
‹‹

Õ , ‹ ”= ‹ Õ,
(4.27)

we can rewrite this simply as
M̌ · c̨ = 0. (4.28)

Since we require nontrivial solutions, we therefore choose › to be the largest solution
such that

det(M̌) = 0. (4.29)

In the two-band case, the resulting equation for the coherence length can be
written as

A

a
1

+ 3b
1

|�
10

|2 ≠ ~2

mú
1

›2

B A

a
2

+ 3b
2

|�
20

|2 ≠ ~2

mú
2

›2

B

≠ “2

12

= 0. (4.30)

This has two positive solutions, and we identify the largest of these with the coherence
length.

As in the one-band case, we can define the surface free energy per unit area
by a line integral of the Gibbs free energy minus the Gibbs free energy of the
superconducting state [131, 145]
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=
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This can be simplified by multiplying equation (4.5a) by �ú
‹

(r), summing over ‹ and
integrating over all z to find
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(4.32)

Then, subtracting this from equation (4.31), we find the surface free energy may be
written as

‡
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=
⁄ Œ
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dz

C

≠1
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ÿ

‹

b
‹

|f
‹

(z)|4 + 1
8fi

(H
c

≠ B(z))2

D

. (4.33)

Then, deep in the normal material, we know that the order parameters go to
zero. To calculate the field strength, we note that deep in the normal material, there
is no contribution to the surface free energy. This gives us the boundary condition

B(≠Œ) = H
c

. (4.34)

Similarly, there is no contribution to the surface deep in the superconductor.
This allows us to calculate the critical field H

c

H2

c

8fi
= 1

2
ÿ

‹

b
‹

|f
‹0

|4 . (4.35)

The supercurrent at the multiband superconductor-normal material interface is

j
‹

(r) = ≠ 1
2mú

‹

|�
‹

|2 (z)A(z)ê
x

. (4.36)

As in the one-band case, the multiband GL equations can be solved numerically
in one-dimension with appropriate boundary conditions to find the behaviour of the
order parameters in a magnetic field induced normal-superconductor interface. One
such solution is shown in figure 4.3. While we have shown that deep within the
superconducting state there exists a single coherence length and penetration depth,
it is clear that in the interface region a number of di�erent length scales can exist,
and these interact in a complex way.

Varying the various parameters can a�ect the stability of the interface solution.
An example of the dependence of the surface free energy, ‡

ns

, on the interband
coupling strength, “, for one set of parameters is shown in figure 4.4. In this example,
creating additional interfaces is favoured over a uniform solution at low interband
coupling, but the absence of interfaces is favoured at high interband coupling.
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Figure 4.3: An interface solution to the two-band GL equations. This shows the super-
current in each band flowing along the interface, the decay of the magnetic field into the
bulk of the superconductor and the decay of the order parameters. The interface is the
region where these variables are changing. Note that the locations of the peaks in the
supercurrents occur at separate locations due to the di�erent e�ective length scales in this
region.
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Figure 4.4: A plot of the surface free energy as a function of the interband Josephson
coupling strength “ for two-band GL. This shows that a change in the interband coupling
strength can change the stability of domain walls.
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4.1.5 Summary

So far we have outlined the key aspects of traditional multiband GL theory. This
theory has many advantages – it is conceptually simple, has the same qualitative
features as multiband BCS theory, including the TRSB state, and is able to describe
vortex states, which will be discussed in chapter 5.

The parameter space is far more diverse than the one-band theory. In one-band,
the theory can be scaled in a simple way, revealing that there is only one fundamental
parameter, the Ginzburg-Landau parameter, Ÿ. No such scaling exists in the general
multiband theory, and in the two-band theory four parameters remain after scaling.

The disadvantages of this theory are that it is only valid near T
c

and usually
overestimates the gaps at low temperature. For an arbitrary number of bands, even
in the uniform limit, we must resort to numerics to solve for the order parameter, and
this must be done separately for each temperature. Additionally, while it predicts
the TRSB transition, the precise location of the transition does not agree with the
multiband BCS prediction.

The other main issue with traditional multiband GL theory is that it includes
some contributions to the gap function which are of order greater than · 1/2, which
is what the theory claims to be accurate to. This is clear from the plots of the gaps
as a function of temperature – the gaps are more complex than in the one-band
case. This was pointed out by Kogan and Schmalian [126], where the authors showed
that by neglecting the higher order corrections (which should be done since these
corrections are not complete) the multiband equations reduce to a single equation
which is identical to one-band GL.

4.2 Extended Ginzburg-Landau Theory
To achieve better agreement between multiband BCS and GL theories we would
like to look for an extended GL theory. Extending traditional multiband GL theory
to include higher orders in · is di�cult and must be calculated from scratch. The
resulting equations cannot be solved analytically and must be solved numerically for
each temperature.

An alternative approach proposed in a series of papers [56–58] re-derives the
multiband GL theory from the BCS theory, keeping terms of order · 3/2 and dropping
all higher order contributions. The approach outlined in the papers suggest that this
method should be able to be extended to arbitrary order.
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Inspired by this approach, we investigated this extension of multiband GL theory
[2]. We performed this procedure for the uniform GL case and retained terms to very
high order. This is the first time that these high order corrections to the expansion
have been obtained.

4.2.1 Derivation of Extended Ginzburg-Landau Theory

To find a theory which can be extended to arbitrary order, we return to the equations
of motion for the Green function, G

‹,Ê

n

(r, rÕ), anomalous Green function, F †
‹,Ê

n

(r, rÕ)
and the normal state Green function, G

‹,Ê

n

(r, rÕ). We again use the Gor’kov technique
to rewrite these as a pair of coupled integral equations [36, 138]:

G
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n
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(4.37a)
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(y, rÕ), (4.37b)

where ÂG
‹,Ê

n

(r, y) = G
‹,≠Ê

n

(y, r), �
‹

(r) is the superconducting gap function in band
‹, and the fermionic Matsubara frequency Ê

n

= (2n + 1) fi

—~ , with — = 1/k
B

T . The
normal Green functions satisfy the equations
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Using substitution, we can transform equations (4.37a) and (4.37b) into decoupled
nonlinear integral equations, and by continued substitution we can write the anoma-
lous Green function as a series expansion in the gap and the normal Green function
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The gap is defined in terms of the anomalous Green function by
ÿ

‹

Õ
g≠1

‹‹

Õ�ú
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Õ(r) = lim
÷æ0

+

ÿ

n

e≠iÊ
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÷

1
—~F †

‹,Ê

n

(r, r). (4.40)

By requiring the gap to satisfy equation (4.40), and taking the complex conjugate,
we obtain the self-consistent gap equation in matrix form

ǧ≠1 · �̨(r) = R̨(r), (4.41)
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where ǧ is the interband coupling matrix with elements g
‹,‹

Õ , �̨ is a column vector
with elements �

‹

, and R̨ is a column vector with elements given by
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with {y}
m

= {y
0

, y
1

. . . , y
m

}. Equation (4.41) is a coupled equation involving the
gaps from all bands, ‹. These equations must be solved simultaneously.

These expressions can be viewed as an expansion in small �. It is permissible to
truncate the sum over m in R

‹

(equation (4.42)) if the gaps, �
‹

, are small enough,
as originally argued by Gor’kov [36]. Traditional GL corresponds to a truncation at
m = 1 with additional approximations about the field and the spatial variation of
the gaps, and extended GL can be achieved by retaining higher order terms.

4.2.2 Uniform Field Free Case

In this section we are interested in finding a better approximation for the mean value
of the gaps, so we will consider the case where the magnetic field is zero and the gap
does not depend on r. This is the uniform limit of the equations.

In the absence of a magnetic field, the equation for the normal Green function
can be solved by performing a Fourier transform. The result is
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with Á
‹,k

= ~2

k

2
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≠ µ
‹

. Performing each of the real space integrals in equation (4.44)
produces a delta function, and these can be used to compute all but one of the k

-space integrals, resulting in the simplified expression
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with N
‹

(0) is the density of states in band ‹. When m = 0 this integral diverges
logarithmically, and so must be cut o� at the Debye energy, ~Ê

D

. In this case we
find
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A = ln
A

2~Ê
D

e�

fik
B

T
c

B

, (4.48)
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where � ¥ 0.5772 is the Euler-Mascheroni constant and · = 1 ≠ T/T
c

with T
c

to be
found later. The remaining terms with m Ø 1 may be computed directly
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where ’(z) is the Riemann zeta function. Putting this back together we find
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We then regroup terms to rewrite equation (4.41) in the form

0 = Ľ · �̨ + W̨ , (4.53)
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with Ľ = ǧ≠1 ≠ Ň(0)A, and Ň(0) is a diagonal matrix with elements N
‹

(0) on the
diagonal.

4.2.3 Expansion in Small ·

Near the transition temperature, · is a small parameter, so we will expand equa-
tion (4.53) in powers of · . To truncate this expansion, keeping only terms up to
O

1
· (2n+1)/2

2
, we first make the scaling

�
‹

= · 1/2 Â�
‹

. (4.55)
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After scaling and then dividing through by · 1/2 we find

0 = Ľ. Ą̂� + Ę̂W, (4.56)
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Then the gap is expanded in powers of · , as is all the other dependence on · in ÊW
‹

.
The Â�

‹

and ÊW
‹

expansions are given by
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We recover a set of equations for the coe�cients �(n)

‹

by collecting powers of ·

in equation (4.56) and requiring that the equality holds for all · . The leading order
behaviour is a constant. Collecting these constant terms leads to the lowest order
equation

0 = Ľ · �̨(0). (4.60)

This has a nontrivial solution if det Ľ = 0. We recognise that this is just the
BCS equation for the critical temperature T

c

. We therefore satisfy this equation by
choosing T

c

to be the largest solution to this equation.

Now, since det Ľ = 0, there is at least one eigenvector of Ľ with a zero eigenvalue.
We shall assume that this is nondegenerate, so that there is only one zero eigenvalue.
We choose the base eigenvector to have the form
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where c
ijk...,lmn...

is the cofactor of the matrix Ľ, and M
ijk...,lmn...

is the minor of Ľ,
defined as the determinant of the matrix obtained by removing the rows i, j, k, . . .

and columns l, m, n, . . . from Ľ. Assuming all fl
i

are finite and nonzero, we can then
obtain a complete basis with the remaining vectors

÷̨
i

= [fl
1

, fl
2

, . . . , ≠fl
i

, . . . , fl
N

]T . (4.64)

The superconducting gaps can be written with this basis as

�̨(n) =
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. (4.65)
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Putting this back into equation (4.60) and using the fact that Ľ.÷̨
1

= 0 and Ľ.÷̨
j

”= 0,
j ”= 1, we find
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where Â(0)

1

is yet to be determined. The term linear in · gives the equation

0 = Ľ.�̨(1) + W̨ (1), (4.68)
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This mixes �̨(0) with �̨(1), however, as pointed out by Vagov et al. [58], we can
remove the �̨(1) dependence using the fact that ÷̨T

1

.Ľ = 0. Projecting this equation
on to ÷̨
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and using the solution for �̨(0) we find
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with a = q
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1,‹

and b
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= q
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1,‹

. This has the same form as the one-band
uniform GL equation. Kogan and Schmalian [126] pointed out that the gradient term
is also the same as the one-band GL equation, and thus there is only one coherence
length near T

c

, and the order parameters are proportional to each other.

Projecting equation (4.68) onto the other basis vectors, ÷̨
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, results in a further
set of equations for the higher components, Â(1)
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. The indices i and j refer to the basis vectors, ÷̨
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, not the band indices, ‹.

This process can be continued recursively to find the GL approximation to any
order. We provide the form for the terms W (2)

‹

and W (3)

‹

.
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Figure 4.5: (a) The extended GL expansion is compared to a numerical calculation of the
full BCS result. The extended GL converges to the true solution on the region · < 1 and
for moderate · it converges quickly to the BCS solution. Inset: A close up of the region
near · = 1. There are singularities in the BCS function infinitesimally close to · = 1 which
prevent the extended GL from converging at this point. (b) The magnitude of individual
terms in the GL expansion are shown on a log plot. The magnitude of the higher terms
decays quickly except near the point · = 1 where it remains finite. This shows that the
expansion is converging on the region · < 1.
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All higher order terms can similarly be produced from the full definition of ÊW
‹

.
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Figure 4.6: This plot shows the magnitude of each term in the one-band series as a
function of n for a range of temperatures. The circles (diamonds) indicate that the sign of
the term is positive (negative). As · æ 1, the convergence rate slows down and at · = 1
the terms no longer decay.

4.2.4 One-Band Ginzburg-Landau Theory

Applying this procedure to a one-band superconductor is fairly straight forward. The
matrix Ľ becomes a number, and the equation for T

c

becomes trivial to solve. The
basis vector ÷

1

= 1 so that �(n) = Â(n)

1

in equation (4.65).

This procedure has been performed for the one-band case to high order, with
the results shown in figure 4.5. The BCS solution is given by the bold black dots
in the top plot. The thin red line that overshoots this is the conventional · 1/2 GL
theory, while a selection of plots with higher order corrections up to · (2n+1)/2 with
n = 50 are also shown. The first correction, · 3/2 is seen as the dashed line just above
the BCS solution [57], while higher order corrections are almost indistinguishable
except near · = 1. Including a larger number of corrections increases the range of
convergence, and it is presumed that the infinite sum will converge for all · < 1.
However, for any large finite sum, the deviation near · = 1 is expected to remain
large.

On the bottom plot of figure 4.5 we show the magnitude of each term in the
sum. The error of any finite sum is approximately given by the magnitude of the
next term in the sum, and so this plot can be viewed as an estimation of the error in
any given finite sum. The magnitude of each term decreases in general except near
· = 1, where, after the first few terms, it remains approximately constant.

For the one-band case, an exact form for each term in the expansion can be
computed, though the number of terms needed increases rapidly. We show here the
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c

3.06326
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1
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c

≠1.25438

�(2)

1

/k
B

T
c

≠0.191748

�(3)

1

/k
B

T
c

≠0.0360503

�(4)

1

/k
B

T
c

0.014773

�(5)

1

/k
B

T
c

0.0353042

�(6)

1

/k
B

T
c

0.0431866

�(7)

1

/k
B

T
c

0.0444931

�(8)

1

/k
B

T
c

0.0418668

�(9)

1

/k
B

T
c

0.0366943

Table 4.1: Numeric values for the first ten terms in the one-band extended GL expansion.

exact result for the first three terms in the expansion.

�(0)

1

= k
B

T
c

ı̂ıÙ 8fi2

7’(3) , (4.76)

�(1)

1

= �(0)

1

A

≠3
4 + 93’(5)

196’(3)2

B

, (4.77)

�(2)

1

= �(0)

1

A

≠11
96 ≠ 93’(5)

784’(3)2

+ 8649’(5)2

10976’(3)4

≠ 635’(7)
1372’(3)3

B

. (4.78)

The higher terms in the expansion quickly increase in complexity. We also show the
numerical result for the first 10 terms scaled to k

B

T
c

in table 4.1. During calculation
these were retained to very high precision, since each higher term is dependent on
the previous, causing the precision of the higher terms to degrade.

In figure 4.6 the magnitude of the terms �(n)

1

· (2n+1)/2 are shown as a function of
n for various values of · . This shows that as · increases, the convergence decreases
considerably, and near · , the terms no longer decay. There is also a very noticeable
oscillation in the sign of the terms, with the sign changing after 10 ≠ 14 terms. The
sign change is indicated in the plot by the switch from circles to diamonds. For large
n the terms seem to be bounded from above by an approximately linear envelope.

4.2.5 Two-Band Ginzburg-Landau Theory

In two-band GL, things progress in much the same way. However, there is now a
larger range of possibilities due to three parameters in the interband coupling matrix,
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Figure 4.7: Numerical calculations of the BCS gap is compared to the high expansion in
the extended GL theory. We use the parameters g

11

= 0.6, g
22

= 0.5, N
1

(0) = N
2

(0) = 0.3,
~Ê

D

= 0.09. a) BCS solution band 1. b) BCS Solution band 2. c) GL solution band 1. d)
GL solution band 2. The GL plots are calculated to order ·n+1/2 where n = 50.

g
‹‹

Õ , especially the role of the interband interaction, g
12

.

We know from BCS theory that in the limit that the interband coupling goes
to zero, the two gaps are independent and each has their own critical temperatures,
which we label T

1c

and T
2c

respectively. When the interband coupling is small but
nonzero, there is still a large change in the behaviour of the smaller gap near the
temperature T

2c

. However the critical temperature of the combined system is an
enhancement of the dominant band’s critical temperature.

The exact lowest order solution can easily be calculated, with the result
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The higher order terms become increasingly complicated, however the results for
specific parameters are calculated numerically to high order.

In figure 4.7 we show plots of the BCS solution for a range of values for the
interband coupling, g

12

. In a) the first gap is plotted, and it is seen that the
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interband coupling only has a weak e�ect on the behaviour of this band, while in
b), the second gap shows a drastic change as g

12

increases, especially near T
2c

. With
the increase of the coupling strength, the large up-swell of the second band near
this critical temperature gets washed out, so that at large coupling the plot looks
reminiscent of a one-band BCS plot.

Plots c) and d) depict the order parameters of band 1 and 2 respectively as
calculated using the extended GL formalism derived earlier. For 1 ≠ · & 0.3 the
behaviour shown in the GL plots is similar to that of the BCS plots above. However,
for 1 ≠ · . 0.3 the behaviour of the GL plots is drastically di�erent from the BCS
plots, with the di�erence appearing sooner for smaller g

12

. The point where the
solutions begin to disagree is very close to the location of T

2c

, which in the small
coupling limit is T

2c

¥ 0.33T
c

. While this finite summation approach does not
prove that the series is divergent, it is clear that the sum has not converged in
this range for the large number of terms computed. We expect that in general the
sum will converge for all T & T

2c

, but converge very slowly or diverge for T . T
2c

.
Komendova et al. [119] argue that there is a possibility of hidden criticality near T

2c

which becomes critical in the limit that the coupling goes to zero. This feature is
likely to be associated with the anomalous behaviour of the GL gaps near this point,
and is expected to prevent the series from converging below this point.

Surprisingly, while the BCS solution for the first band showed only a weak
perturbation with the interband coupling, the nonconvergent behaviour seen in
the GL solution of the smaller band also a�ects the dominant band. This occurs for
any small nonzero interband coupling, even though the solution converges for all ·

if the interband coupling is zero.

In figure 4.8 the first two columns compare the BCS solution to the extended GL
expansion for band 1 and band 2 respectively as a function of 1 ≠ · for various g

12

.
The second two columns show the magnitude of the individual terms for the two
bands. We can see that as the number of terms included in the expansion is increased,
the GL solution departs from the BCS solution, shown as dots, in the region T . T

2c

,
and increasing the number of terms increases this di�erence. Therefore, with this
number of terms, the expansion is not converging to the true solution in this range.

As g
12

increases the location of the nonconvergent point seems to move towards
T = 0. However we know that T

2c

is a constant. A possible reason for this behaviour
of the pivot point is that as g

12

increases, T
2c

does indeed remain constant, but T
c

increases, so that T
2c

/T
c

should move towards 0 as g
12

increases. It is this increase
in T

c

that makes the nonconvergent point move towards zero as g
12

increases.
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Figure 4.8: The extended GL expansion is compared to a numerical calculation of the full
BCS result. In all plots we use the parameters g

11

= 0.6, g
22

= 0.5, N
1

(0) = N
2

(0) = 0.3,
~Ê

D

= 0.09. a) g
12

= 0.001, b) g
12

= 0.01, c) g
12

= 0.1, d) g
12

= 0.55. Columns one
and two show the comparison of the GL expansion to the BCS theory for bands one and
two respectively. Columns three and four show the magnitude of individual terms in the
expansion on a log plot for bands one and two respectively. In all plots the vertical black
lines are located at what would be the critical point of the second band in the uncoupled
limit, T

2c

/T
c

. We see that for 1 ≠ · & T
2c

/T
c

the trend is for additional terms to decrease
in magnitude, and the series seem to be converging, while for 1 ≠ · . T

2c

/T
c

, the terms
tend to grow and the series seem to be diverging. This is confirmed by looking at the
individual terms in the log plot.

The plot of the magnitude of the terms in the expansion (figure 4.9) shows similar
behaviour to the one-band plot (figure 4.6) for small · . However the decay in the
terms ceases at a much higher temperature (about · 0.6), confirming the previous
analysis.

4.2.6 Application to Real Two-band Materials

In figure 4.10 we present calculations for a range of real materials, FeSe
0.94

[106],
OsB

2

[104], LiFeAs [105], and MgB
2

[146]. The parameters used are representative of
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Figure 4.9: This plot shows the magnitude of each term in the two-band series as a
function of n for a range of temperatures. The circles (diamonds) indicate that the sign of
the term is positive (negative).
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c) LiFeAs, d) MgB

2

.
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the behaviour of the materials, though the exact choice of parameters is not unique.
For each set of parameters we plot the BCS and extended GL gaps, with the terms
in the GL calculation retained to order · (2n+1)/2 with n = 50.

In a) the parameters were chosen in [106] to match data from a µSR experiment
of FeSe

0.94

. These are g
11

= 0.241, g
22

= 0.195, g
12

= 0.0005, N
2

(0)/N
1

(0) = 1. We
choose to set N

1

(0) = 1, but note that in reality this should be chosen such that T
c

matches the experimental result. However in the weak coupling limit the resulting
scaled plot is independent of the critical temperature, so we are free to choose an
overall scale for the interaction strength.

This material is dominated by band 1, which is largely unperturbed. The inter-
band coupling is weak, and therefore we see that the extended GL curve performs
well until the second band becomes important (at about 0.4T

c

). However, below this
point, the extended GL fails to match with the BCS result.

In b) the parameters are chosen to be representative of OsB
2

. The parameters
used are g

11

= 0.387, g
22

= 0.291, g
12

= 0.0084, N
2

(0)/N
1

(0) = 1.22, N
1

(0) = 1. In
this case the critical temperature of the two uncoupled bands are very close, and
since the interband coupling is rather weak, the extended GL theory is only valid in
the range · . 0.2. This is still a large improvement on the first order result, which
only matches over a very limited region.

Parameters for LiFeAs are used for plot c). Although the coupling strengths in
this case are very close and the interband coupling is quite small, the di�erence in
the density of states causes the critical temperatures of the uncoupled bands to be
separated in temperature, and so the extended GL solution performs well here in
the range · . 0.8. The parameters used are g

11

= 0.63, g
22

= 0.64, g
12

= 0.061,
N

2

(0)/N
1

(0) = 0.722.

d) MgB
2

is dominated by band 1, with the interband coupling of the same order
as the intraband coupling in band 2. The parameters used here are g

11

= 1.02,
g

22

= 0.37, g
12

= 0.18, N
2

(0)/N
1

(0) = 1.33. The extended GL for this system
performs extremely well until very close to T = 0.

We see that in the two-band case, where the two gaps are close to degenerate
and the interband coupling is very weak, the GL approximation is only valid in a
very small temperature region near T

c

, and the theory should be applied with care.
However, for the case where one band is very dominant, or where the interband
coupling is very large, the GL theory performs very well, and converges quickly to
the BCS result over a fairly large temperature range.
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FeSe
0.94

OsB
2

LiFeAs MgB
2

�
10

/k
B

T
c

This Work 1.77 1.85 1.90 2.01
Ref 1.77 [106] 1.90 [104] 1.89 [105] 2.25 [146]

�
20

/k
B

T
c

This Work 0.68 1.48 0.92 0.77
Ref 0.68 [106] 1.25 [104] 1.11 [105] 0.55 [146]

Table 4.2: This table displays the BCS ratio �
0

/k
B

T
c

for the gaps in the two-band
materials considered here. For a one-band BCS material, this should give the universal
result 1.76. The values obtained from the fitted parameters agree reasonably with the
experimental results.

Table 4.2 compares the two-band BCS ratio to experimental values. The values
compare favourably with experimental results, although there is some discrepancy.
However the experimental values obtained with di�erent experiments also vary con-
siderably.

4.2.7 Summary

In this section we have reconstructed the relationship of the BCS theory with the GL
theory with the limitations developed by Gor’kov in his groundbreaking work. The
theory has been restricted to the case of a uniform system, but has been extended to
allow multiple bands and large order in · . This extends the work of ref [58] where the
authors calculated a similar expansion keeping terms of order · 3/2 in the presence
of a magnetic field.

We have shown that in a one-band superconductor the · 3/2 correction improves
the magnitude of order parameter closer to the BCS value. Higher order corrections
for n Ø 1 in · (2n+1)/2 improve the agreement with the BCS result except at T = 0,
where the series for the gap appears to be nonconvergent.

In the two-band situation, the interband coupling plays a pivotal role in enhancing
the smaller order parameter above the T

2c

value in the BCS model. As the interband
coupling increases, the point of inflection around T

c2

heals gradually. At large
interband coupling both gaps look similar to a one-band solution. The critical
temperature of the system evolves smoothly out of the largest critical temperature,
T

1c

, and is enhanced by the interband coupling.

In the GL model there are significant di�erences for both the gaps below T .
T

2c

. The large deviation persists for weaker interband couplings despite including
larger · (2n+1)/2 corrections. This issue is significant when T

2c

is close to the critical
temperature T

c

. In this case the range of validity of the GL solution can be extremely
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small. The GL solution to the gaps below T
2c

is unreliable, and therefore care must
be taken when applying the GL model to multiband superconductors.

When the interband coupling is larger or when one of the gaps is very dominant,
the GL solution performs much better and including higher order terms can make
the solution close to the BCS value over a large temperature range. Similar to the
one-band case, the point T = 0 is nonconvergent in the multiband solution regardless
of interband coupling.

We have applied this extended GL theory to a range of two-band superconductors.
We find that in some cases the extended theory performs extremely well over almost
the entire temperature range, while for other materials the location of the second
critical temperature limits the applicability of GL theory at lower temperatures.

In summary we have clearly demonstrated the importance of · (2n+1)/2 expansion
for large n for multiband GL superconductors. This point emphasises the weaker
validity of the GL theory for lower temperatures for some materials, and especially
for applications with small interband coupling. We are of the opinion that any
use or misuse of GL theory has to be carefully examined considering its domain of
applicability.
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Chapter five

Multiband Superconductors in a
Magnetic Field: Vortex States

Having looked at the extended form of multiband GL theory, we now return to the
traditional multiband GL theory description and look for nonuniform solutions.

We begin by investigating vortex states. One example of a vortex solution in the
one-band case was shown earlier in section 2.1.3. We look at these for the multiband
theory with a range of numeric methods in both one- and two-dimensions. After
formulating the two-dimensional method, we also examine some skyrmion solutions.
These are magnetic states which appear above a TRSB background.

5.1 Vortex States
As in the one-band vortices, the flux in a multiband vortex is quantised, with the
quantum of flux Ï

0

= hc

2e

. This is a direct result of the requirement that the order
parameter be single valued, so that the phase around a vortex can only change by
an integer multiple of 2fi.

5.1.1 Single Vortex Equations

A single vortex in a superconductor has cylindrical symmetry. We can look for
solutions of this form by choosing an ansatz with this symmetry. We choose an
ansatz where the magnitude of the order parameter only depends on the distance
from the centre of the vortex. The order parameter picks up a phase of 2nfi when
following a contour around the vortex, where n is the order of the vortex. With
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these assumptions, we can write an ansatz in the form

�
‹

(r) = f
‹

(fl) exp (i(n◊ + „
‹0

)) , (5.1a)

A(r) = nÏ
0

2fifl
A(fl)ê

◊

, (5.1b)

where f is the magnitude of the order parameters, n is an integer which determines
the order of the vortex, fl is the radial coordinate and ◊ is the polar angle around
the vortex, „

‹0

is the relative phases of the order parameters in the bulk, ê
◊

is a
unit vector in the angular direction, and Ï

0

= hc

2e

is the flux quantum . The relative
phase of the order parameters are assumed to be locked to their equilibrium values.
This is a good approximation unless the superconductor is in the TRSB state. A
more general form for a single vortex in the TRSB state would allow „

‹0

to vary
away from the equilibrium value for small fl. However we will see later that there are
other collective states that appear in TRSB superconductors, so we will not consider
that case here.

Putting the ansatz into the GL equations, we find the one-dimensional equations

a
‹

f
‹

(fl) + b
‹

f
‹

(fl)3 +
ÿ

‹

Õ ”=‹

“
‹‹

Õf
‹

Õ(fl) cos(„
‹0

≠ „
‹

Õ
0

)

+ ~2

2mú
‹

A
d2f

‹

dfl2

+ 1
fl

df
‹

dfl
+ n2(A(fl) + 1)2

fl2

f
‹

B

= 0,
(5.2a)

ÿ

‹

Õ ”=‹

“
‹‹

Õf
‹

Õ(fl) sin(„
‹0

≠ „
‹

Õ
0

) = 0, (5.2b)

d2A

dfl2

≠ 1
fl

dA

dfl
+

ÿ

‹

4fieú2

mú
‹

c2

f 2

‹

(1 + A(fl)) = 0, (5.2c)

along with the boundary conditions

A(0) = 0, A(Œ) = ≠1, (5.3a)
f

‹

(0) = 0, f
‹

(Œ) = f
‹0

. (5.3b)

Note that equation (5.2b) can only have a nontrivial solution for all fl if sin(„
‹0

≠
„

‹

Õ
0

) = 0 for all ‹, ‹ Õ, i.e. all the phase di�erences are locked at either 0 or fi, so the
material is in the standard superconducting state.

The supercurrent circulating around the vortex for the band ‹ can be found by
returning to the full form for the current equation. The supercurrent associated with
each band is found to be

j
‹

(r) = nÏ
0

2fifl
(A(fl) + 1) f 2

‹

(fl)ê
◊

. (5.4)
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We will first apply a finite di�erence method and a variational method to the
single vortex problem. We will then extend the variational method to a two vortex
problem. Finally we will use time-dependent Ginzburg-Landau theory (TDGL) with
a forward-time central-space (FTCS) discretisation method to find the configuration
of many vortices, as well as other magnetic states.

5.1.2 Finite Di�erence Method

The finite di�erence method is one of the simplest methods to implement and is
applied to equation (5.2). We use central di�erence and quasi-linearisation, and
iterate the solution until convergence is reached.

The finite di�erence method in one-dimension is used to solve a general second-
order di�erential equation of the form [147, 148]

A
d2

dx2

+ p(x) d
dx

+ q(x)
B

u(x) = r(x), (5.5)

with the Dirichlet boundary conditions

u(x
L

) = u
L

, (5.6a)
u(x

R

) = u
R

, (5.6b)

where the subscripts L and R denote the left and right boundaries respectively. A
uniform mesh of N + 2 points is chosen. The mesh points are at the points

x
j

= x
L

+ jh
x

, j = 0, 1, . . . , N + 1, h
x

= x
R

≠ x
L

N + 1 . (5.7)

Defining the coe�cients at the mesh points in the obvious way

p
j

= p(x
j

), q
j

= q(x
j

), r
j

= r(x
j

), (5.8)

then converting the derivatives to central finite di�erences, the di�erential equation
can be written as a matrix equation

Ǩ · ų = f̨ , (5.9)

where we have borrowed the notation that Ǎ represents a matrix and Ą represents a
vector. The Ǩ matrix is tridiagonal and is created by approximating the derivatives
as central di�erences. It is given in matrix form as

Ǩ = 1
h

x

2

Q

cccccccca

≠2 + h
x

2q
1

1 + 1

2

h
x

p
1

0 · · · 0
1 ≠ 1

2

h
x

p
2

≠2 + h
x

2q
2

1 + 1

2

h
x

p
2

· · · 0
0 1 ≠ 1

2

h
x

p
3

≠2 + h
x

2q
3

· · · 0
... ... ... . . . ...
0 0 0 · · · ≠2 + h

x

2q
N

R

ddddddddb

. (5.10)
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The f̨ vector is a combination of the homogeneous part of the original equations,
plus terms which come from applying the Robin boundary conditions. It is explicitly
given as

f̨ =

Q

cccccccca

r
1

≠ u
0

1

h

x

2

(1 ≠ 1

2

h
x

p
1

)
r

2

r
3

...
r

N

≠ u
N+1

1

h

x

2

(1 + 1

2

h
x

p
N

)

R

ddddddddb

. (5.11)

The vector ų is a vector of the unknown node values

ų =

Q

cccccccca

u
1

u
2

u
3

...
u

N

R

ddddddddb

. (5.12)

The advantage of this approach is that the matrix equation can be solved very quickly
by using the fact that the matrix is tridiagonal. However, this approach can only
directly solve linear equations.

We use quasi-linearisation to convert the equation to a linear equation that is
solved iteratively [148]. To perform this the nonlinear terms, f 3

‹

, are Taylor expanded
to first order about an initial solution, f (0)

‹

. The resulting equation is linear and can
be solved for a new function f (1)

‹

. This can then be used as a new initial solution,
and this iteration procedure can be repeated until convergence is reached, and at
that point we have an approximate solution to the original nonlinear equation. Since
we are only interested in the stationary states, we combine this iteration procedure
with the time evolution, so that only one iteration is computed at each time step. In
the long time limit the calculated solution will approximately solve the full nonlinear
equation. The coe�cients required for updating the order parameters after quasi-
linearisation are

p
j

= 1
fl

j

, (5.13a)

q
j

= ≠ 2m
‹

~2

1
≠a + 3bf (i)2

‹j

2
≠ n2

1
A(i)

j

+ 1
2

2

fl2

j

, (5.13b)

r
j

= ≠ 2m
‹

~2

A
ÿ

‹

Õ
“

‹‹

Õf (i)

‹

Õ
j

cos(„
‹0

≠ „
‹

Õ
0

) + 2bf (i)3

‹j

B

, (5.13c)

where i here is an iteration index. The coe�cients for the vector potential are easier
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Figure 5.1: Flowchart for iterative solution of the finite di�erence equations.

to find and are immediately written as

p
j

= ≠ 1
fl

j

, (5.14a)

q
j

=
ÿ

‹

4fieú2

mú
‹

c2

f (i+1)2

‹

, (5.14b)

r
j

= ≠ ÿ

‹

4fieú2

mú
‹

c2

f (i+1)2

‹

. (5.14c)

The full method to solve this equation is therefore to choose an initial guess for
the order parameters and the vector potential, then use this to find a new solution for
the order parameters, then find a new solution for the vector potential, and repeat
until the solution converges (figure 5.1).

A typical two-band solution is shown in figure 5.2. In general, although the
coherence length in the bulk is the same for all bands, near the core each band can
have a di�erent e�ective coherence length. If these e�ective coherence lengths are
very di�erent, then the vortex will have a composite core, and one of the bands could
temporarily saturate near its noninteracting uniform value. The return to the full
uniform solution would then occur on the length scale of the larger coherence length.

Additionally, the e�ective penetration depth of the magnetic field near the centre
of the vortex can be much lower than the penetration depth in the bulk due to the
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Figure 5.2: A vortex solution to the two-band GL equations computed using the finite
di�erence method. The magnetic field, B, peaks at the centre of the vortex, and the
exponential decay far from the core is visible. The smaller order parameter ,f

1

, approaches
the bulk value faster than the dominant order parameter, f

2

. The supercurrent, j
tot

, peaks
quite close to the centre of the vortex.

suppression of the order parameters. As fl increases, the e�ective penetration depth,
asymptotically approaching the calculated value and the asymptotic solution.

Next we will use a variational method to find a single vortex, giant vortex (n = 2)
and double vortex solution.

5.1.3 Variational Method

One Vortex

A variational approach to the vortex problem is to give an ansatz to the form of the
order parameters and vector potential as a function of distance, and then choose the
parameters such that the energy of the vortex is minimised. If the ansatz captures
the main physical aspects of the problem, then the form of the final function should
approximate the true solution, and the energy of the vortex will give an upper bound
to the true energy of the vortex state.

The appropriate ansatz to choose needs to return to the bulk superconducting
solution far from the vortex core, and the order parameter (vector potential) must
return to this value over a length scale of the coherence length (penetration depth)
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respectively. These requirements are met by choosing an ansatz of the form [112,
134]

f
‹

(fl) = f
‹0

+ exp
A

≠
Ô

2fl

›

B
m

maxÿ

m=0

f (m)

‹

flm

m! , (5.15a)

A(fl) = ≠ 1 + exp
3

≠fl

⁄

4
m

maxÿ

m=0

A(m)flm

m! , (5.15b)

where f (m)

‹

and A(m) are the variational parameters to be determined, and m
max

is
a cut-o� to be chosen. Including more terms will improve the approximation at the
cost of computational time.

The boundary conditions in the limit fl æ Œ are automatically satisfied. To
satisfy the boundary conditions as fl æ 0, we require

f (0)

‹

= ≠ f
‹0

, A(0) = 1, A(1) = 1. (5.16)

Additionally, for a giant vortex solution, we require f (0)

‹

= ≠Ô
2f

‹0

/› which ensures
that f

‹

= O(fl2) as fl æ 0.

With the variational ansatz created, this is then put back into the free energy
of the system, so that the free energy is a quartic in the variational parameters.
An approximate solution is one that minimises the free energy. This minimum is
approached using Newton’s method, which locally treats the potential as a quadratic
in the variational parameters. This approach finds an accurate approximation to the
ground state after relatively few steps, but is rather costly per step, which limits the
number of free parameters in the ansatz.

An example of a single vortex for a two-band model is shown in figure 5.3, and
an example of a giant vortex is shown in figure 5.4. These solutions capture the
main features of the two-band vortex.

Two Interacting Vortices

Having found the single vortex solution, Jacobs and Rebbi [134] show that a conformal
transformation can be used to map this onto an approximate two vortex solution.
Choosing an ansatz with additional variational parameters, we can again find values
which minimise the free energy of the two vortex solution.

This method has the advantage that the distance between the two vortices can be
chosen by hand. The energy profile of the solution can then be plotted as a function
of the separation, and from this we can find the vortex-vortex interaction force.
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Figure 5.3: Single vortex solution (n = 1) computed using variational method. The
parameters have been scaled to parameters of the uncoupled first band (setting “
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= 0): the
penetration depth, ⁄
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, the bulk value of the order parameter, f
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Figure 5.4: Giant vortex solution (n = 2) computed using variational method. The order
parameters, f

1

and f
2

, now behave as O !
fl2

"
as fl æ 0. The peak in the magnetic field, B,

is also much wider and slightly higher compared to the single vortex solutions.

To perform the transformation, we first note that if we convert the two dimen-
sional plane to the complex plane, z = x + iy, then the phase factor of the order
parameter of the single vortex solution can be written as

exp(i„) =
Ò

(z/zú). (5.17)

The plane with a two vortex solution is then mapped back onto a one vortex
solution using the conformal transformation

z = zÕ2 ≠ (d/2)2. (5.18)
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Then we can write the full wave function as

�
‹

(z, zú) = exp (i„
‹0

)
ı̂ıÙ z2 ≠ (d/2)2

zú2 ≠ (d/2)2

f
‹

(z, zú), (5.19)

where we have now formulated the phase factor for the two vortex ansatz, and f
‹

is again the magnitude of the order parameter. We require the order parameter to
have the following behaviour

z æ ± d/2, f
‹

(z, zú) æ0, (5.20a)
|z| æŒ, f

‹

(z, zú) æf
‹0

, (5.20b)
d ∫ ›, ⁄ > |z| , f

‹

(z ± d/2, zú ± d/2) æf (1)

‹

(|z ± d/2|), (5.20c)
d æ0, f

‹

(z, zú) æf (2)

‹

(|z|). (5.20d)

This behaviour can be achieved by choosing an ansatz that interpolates between the
single vortex and giant vortex solutions, plus an interaction term with variational
parameters that are to be determined. The ansatz is chosen to be of the form

f
‹

(z, zú) = wf (1)

‹

(|z ≠ d/2|) f (1)

‹

(|z + d/2|)
f

‹0

+
(1 ≠ w)

---z2 ≠ (d/2)2

---

|z2| f (2)

‹

(|z|) + ”f
‹

(z, zú),
(5.21)

where f (1)

‹

,(f (2)

‹

) are the single (giant) vortex solutions respectively, and w is a
parameter that interpolates between the two solutions.

The interaction term, ”f
‹

(z, zú), must be chosen to vanish at the vortex locations,
and must decay su�ciently fast far from the vortex cores. A suitable choice for this
is

”f
‹

(z, zú) = |z2 ≠ (d/2)2|
cosh(

Ô
2 |z| /›)

i

maxÿ

i=0

iÿ

j=≠i

f
‹,ij

Ë
zi+j(zú)i≠j

È
. (5.22)

An approximation for the vector potential can likewise be constructed from
an interpolation of the single vortex and giant vortex solutions, plus a variational
interaction term.

The free energy is again found by placing the ansatz in the equation (4.1) and
integrating over the plane. The resulting free energy is again a quartic polynomial in
the remaining variational parameters, and can therefore be minimised using Newton’s
method. A typical solution with two bands and two vortices is shown in figure 5.5.
We note that following a contour enclosing one of the vortices, the phase of the order
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Figure 5.5: Double vortex solution computed using variational method. The phase
di�erence of 2fi around each of the individual vortices, and the total phase di�erence of
4fi around both vortices can be seen in the phase plot. In this case there is some overlap
of both the first order parameter and the magnetic field (here denoted by h), while the
vortices in the second order parameter are well separated.

parameter changes by 2fi, while following a large contour that enclose both vortices,
the phase of the order parameter shifts by 4fi.

In figure 5.6 line scans are shown for a range of vortex separations, d. As expected
from the ansatz used to create these solutions, the solutions at large separation
approach the form of two independent vortices, and as the separation goes to zero
the solution approaches the giant vortex solution. The solution for these two extremes
looks as expected. However the intermediate case shown in b) seems to perform far
worse, and the behaviour of the order parameter near the origin looks too sharp. This
behaviour could improve if more terms were included in the interaction correction,
but it is likely that a large number of terms would be needed, since it is in this
region that the ansatz is the poorest. It is therefore di�cult to rely on results in
this intermediate separation with this method.

The double vortex solution can be found for an arbitrary separation distance.
Performing this for a large number of separations, we find the free energy for each
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Figure 5.6: Line scan of a series of double vortex solutions computed using the variational
method. The vortex separation, d, used for these plots is a) 0.1, b) 1, c) 3, d) 4.

0 1 2 3 4 5 6

10.2

10.4

10.6

10.8

11.0

d / λ1

4π
F
/λ

2
H
c
2

Figure 5.7: Interacting double vortex energy as a function of the distance of separation,
d, computed using the variational method. There is a minimum in the free energy when
the vortices are at a separation of about 2.7 units.
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solution. One such result is shown in figure 5.7. At small separation the free
energy is the same as the double vortex solution. With increasing separation, this
decreases, reaching a minimum before increasing to the free energy of two essentially
noninteracting single vortex states. This shows that for these parameters there is an
attraction between vortices at large separation, and a repulsive interaction at small
distances. We note that the minimum in the free energy is very shallow, and could
be washed out by thermal e�ects, as well as e�ects from pinning centres and other
imperfections in any real sample.

5.1.4 Time-Dependent Ginzburg-Landau Theory

In GL theory, the aim is to find solutions such that the GL equations are satisfied.
These solutions correspond to minima of the free energy. In TDGL an additional
time parameter is added such that an initial state evolves towards a minimum of
the free energy. After evolving an initial state for a long time, the state should
approximately solve the original GL equations.

To evolve the solutions towards a minimum of the free energy, we introduce the
phenomenological TDGL equations [112, 149]

~2

2m
‹

D
‹

ˆ�
‹

ˆt
= ≠ ”F

s

”�ú
‹

+ ’
‹

(r, t), (5.23a)

‡

c2

ˆA
ˆt

= ≠”F
s

”A + ’
A

(r, t), (5.23b)

where we have introduced a set of phenomenological parameters. D
‹

and ‡ control
how quickly the solution evolves, and ’

‹

and ’
A

are thermal noise terms to prevent
the solution becoming stuck in metastable states. If we take lim

tæŒ ’
‹

(t) = 0,
lim

tæŒ ’
A

(t) = 0, then this should produce the time-independent solutions in the
limit t æ Œ.

Performing the variational derivatives, we can write the full equations as
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= ≠
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Figure 5.8: The discretisation cell used in TDGL. The four mesh points in the lower
left make up a unit cell, and the full mesh is made by repeating this unit cell. The order
parameters, �

‹

, are located at the vertices, the current, j, and link variables, U, are located
on the edges, and the magnetic field, B

z

, is located at the centre of the faces.

These equations are very general and can be applied to arbitrary geometries and
for a variety of spatial discretisation and time evolution methods. The simplest
scheme is a FTCS discretisation scheme for a 2D domain [112, 150, 151]. This
method is conditionally stable, and the time step must be chosen small enough.
However, the computational cost of each time step is very small with this method.

Before the equations are discretised, the link variables U
x

and U
y

are introduced.
These variables hold the same degrees of freedom as the vector potential and allow
the equations to remain gauge-invariant after discretisation.

U
x

(x, y) = exp
3

≠iÏ0

2fi

⁄
x

x

0

d› A
x

(›, y)
4

, (5.25a)

U
y

(x, y) = exp
3

≠iÏ0

2fi

⁄
y

y

0

d› A
y

(x, ›)
4

, (5.25b)

where x
0

, y
0

is some reference point.

To actually implement this, a rectangular domain is chosen with side lengths L
x

and L
y

respectively. This domain is discretised uniformly with a mesh of n
x

◊ n
y
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grid points, so that the step sizes are given by h
x

= L
x

/n
x

and h
y

= L
y

/n
y

. A time
discretisation with time step k

t

is also chosen. For the spatial discretisation, the
variables themselves are evaluated at displaced grid points (figure 5.8) [151]. After
discretisation the time-step equations using the FTCS scheme become
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These are evolved iteratively from initial conditions until the solution converges
su�ciently.

After the computation, we can recover the magnetic field
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Ï
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zij

ih
x

h
y

, (5.27)

which is obtained by considering the exponential of the contour integral of the vector
potential along the edges surrounding the magnetic field variable B

zij

and using
Stokes theorem to relate this to the integral of the field.

In addition, we can recover the supercurrent
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Figure 5.9: Line scan of a single vortex created using TDGL. Only the magnitude of the
order parameter �

1

is shown.

The final piece that is needed to allow this to be performed is to include boundary
conditions that allow vortices to be included. Periodic boundary conditions are used
in the y direction, while quasi-periodic boundary conditions are imposed in the
x direction. The quasi-periodic boundary conditions impose a phase shift of the
order parameters and a shift in the vector potential, while observables quantities –
the magnitude of the order parameters and the magnetic field – are periodic. The
quasi-periodic relations are

�
‹n

x

j

= �
‹0j

exp (2fiin
V

j/n
y

) , (5.29a)

A
yn

x

j

= A
y0j

+ n
V

Ï
0

L
y

, (5.29b)

U
yn

x

j

= U
y0j

exp (2fiih
y

n
V

/L
y

) , (5.29c)

where n
V

is the vortex number to be induced in the sample. When the simulations
are initially run, the number of vortices that initially form can be larger than this
due to the formation of vortex-antivortex pairs. However these pairs cost energy and
eventually annihilate each other.

With this formalism in place, simulations can be run for a superconducting
sample. We choose a square computation domain and begin with random initial
conditions, then evolve the solution until a stable solution is found.

As a first example, a single vortex is placed in a three-band superconductor. A
line scan near the centre of the vortex is shown in figure 5.9, and the full solution is
shown in figure 5.10. The vortex was moved to the centre of the domain after the
simulation was complete.

In this example, the superconductor is in a trivial case of the TRSB state. All
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Figure 5.10: Single vortex created using TDGL. a) Magnetic field, b)-d) the magnitude
of the order parameters, |�

‹

|, scaled to the maximum values, e) the supercurrent, j, f) the
sum of the phases of the order parameters,

q
‹

„
‹

, g)-h) the phase di�erences, „
1

≠ „
2

,
„

2

≠ „
3

.

three bands are identical with identical repulsive interactions, and so the relative
phases between the bands always stays at 4fi/3 (the relative phases in g) and h) are
constant), and there is an equivalent ground state where the phase di�erences are
instead 2fi/3. The line scan shows the linear decay of the order parameters near
the centre of the vortex, and the exponential approach to the uniform solution. It
can also be seen that the magnetic field is approximately quadratic near the core,
and decays exponentially to the bulk. This has good qualitative agreement with the
form of the single vortex solution obtained by the previous methods.

Next we consider a two vortex solution (figure 5.12). Decreasing the mass of the
first band allows for a bound state between the vortices to form without the solution
collapsing to a giant vortex. A line scan is shown in figure 5.11 passing through the
centre of one of the vortices and near the centre of the second. The order parameters
again behave linearly near the vortex core. In between the two vortices, the order
parameters �

2

and �
3

almost reach their bulk values, while �
1

remains far below the
bulk value. The distance between the vortices is also small enough that the magnetic
field is not able to decay to the bulk value. This confirms the interpretation that
there can be a minimum in the energy of a two vortex solution, which was seen in
the variational method earlier.

There is a slight perturbation of the phase di�erence between the bands near
the vortex core, and this can especially be seen in (g) but is also visible in (h).
Therefore the approximation used earlier that the phase di�erence between the
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Figure 5.11: Line scan of a double vortex created using TDGL with three order parameters.
The order parameters �

2

and �
3

almost obtain their bulk values in between the two vortices,
while the order parameter �

1

remains greatly suppressed. The magnetic field also does not
decay to zero in this intermediate region, and it is this overlap that prevents the vortices
from collapsing further.
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Figure 5.12: Double vortex created using TDGL. a) Magnetic field, b)-d) the magnitude
of the order parameters, |�
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|, scaled to the maximum values, e) the supercurrent, j, f) the
sum of the phases of the order parameters,
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bands is constant for the vortex solution is a reasonable approximation, but not
exact.

As a final example of vortex states in multiband superconductors we produce
an Abrikosov lattice (figure 5.13). In this case we include 8 vortices. We choose
parameters such that the bulk material is not a TRSB state, and the first band is
stronger than the other two bands. However the longest length scale is the penetration
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Figure 5.13: Abrikosov lattice of vortices with n
V

= 8 created using TDGL. a) Magnetic
field, b)-d) the magnitude of the order parameters, |�
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|, scaled to the maximum values,
e) the supercurrent, j, f) the sum of the phases of the order parameters,
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depth so that the vortices are repulsive and a stable lattice can form. To allow for
the expected triangular lattice ground state, we choose L

x

= L
y

/
Ô

2.

As expected, the vortices arrange themselves in an equilateral triangle lattice
with uniform spacing. At this density the variation in the magnetic field is quite
small. There is also some overlap of the cores in the order parameters so that they
do not quite reach the bulk value before they begin to decrease again due to the
next vortex.

Increasing the magnetic field further eventually suppresses the order parameters
completely, and the magnetic field becomes a constant. The magnetic field can be
increased by either decreasing the area of the computational domain or by increasing
the number of vortices. The magnetic field where this occurs gives an approximation
of H

c2

.
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5.2 Kink Solutions
When a superconductor is in the TRSB state, the ground state is degenerate. In the
three-band case, there exist two ground states, corresponding to whether the phases
of the gaps are arranged clockwise or anticlockwise (recall figure 3.5). It is possible
for the chosen ground state to be di�erent in separate parts of the superconductor.
A kink solution connects these ground states.

The kink solution asymptotically approaches the uniform ground states, and
evolves from one ground state to the other over a fairly narrow region. This can be
viewed as a domain wall separating the two ground states.

At the domain wall, the phases are not in the lowest energy state, so the amplitude
of the order parameters is depressed. This depression is also quite localised, occurring
over a length of about 2›.

Tanaka [109, 152] and later Yanagisawa et al. [114] examined the behaviour
of the relative phase along a kink. They show that with the approximation that
the magnitude of the gaps remains constant, the relative phases obey the double
sine-Gordon equation.

The kink solution always costs energy, so the domain wall will evolve towards
a state where the surface area is minimised. This can be viewed as the domains
having a surface tension. Garaud and Babaev [153] show that these domain walls can
be stabilised by changing the geometry of the boundary or with the use of pinning
centres. The idea is that, once the domain wall has formed, it would have to increase
in length in order to be removed from the system, and hence is in a meta-stable
state. Even more interestingly, the domains can be stabilised by an interaction with
vortex states. This can produce a new type of solution, the skyrmion states.

5.3 Skyrmion States
The slight depression along the domain wall can attract and interact with the vortex
solutions discussed previously. Considering the fractional vortices in each band
separately, a lower energy state can be formed by placing these along the domain
wall, rather than having the core of the fractional vortices located at the same
point[114, 130]. This allows the magnetic flux associated with the state to spread
over a larger area, lowering the energy contribution from the magnetic field.

The simplest skyrmion state contains two quanta of magnetic flux, as a single
flux quantum always collapses to a vortex in the absence of any other pinning forces.
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Figure 5.14: Two-quanta skyrmion. a) Magnetic field, b)-d) the magnitude of the order
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An example of a two-quanta skyrmion is given in figure 5.14. For this simulation the
bands are all equal with equal repulsive interactions and equal masses. The magnetic
field (a) contains six peaks arranged in a hexagon, creating a large structure due to the
penetration depth being large compared to the separation of the peaks. Associated
with each of these peaks is a fractional vortex where one of the order parameters
(b)-(d) is in a vortex-like state, with a zero at the centre and a phase di�erence of 2fi

around the zero. However, unlike the vortex states we looked at earlier, the location
of these fractional vortices in the three bands do not coincide. The phase di�erences
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(g) and (h) show that, outside the skyrmion, the superconductor is in the TRSB
state while in the centre of the skyrmion the superconductor is also in the TRSB
state, but with the other handedness for the order of the phases.

This is the simplest of the skyrmion states. There exist a hierarchy of states with
more quanta of flux. The simplest family of solutions adds additional units of flux
quanta along the domain boundary. Examples of these higher order states are given
in figure 5.15, which shows a four-quanta skyrmion, and figure 5.16, which shows a
five-quanta skyrmion plus a single vortex.

These skyrmion states are very robust and appear spontaneously with a large
variety of GL parameters. An example with unequal masses in the di�erent bands is
given in figure 5.17. In this case the individual peaks in the magnetic field are harder
to identify, and instead two main peaks are visible. Hence this type of skyrmion
state would be hard to distinguish experimentally from a double vortex bound state
like that seen in figure 5.12.

Other solutions which sometimes appear in these computations develop two
horizontal domain walls. This can occur even in the case when only a single flux
is placed in the domain. These solutions are unphysical and are only stable in the
computations since, in order to remove these domain walls smoothly, the length of
the domain walls would initially have to increase. Therefore, when these form in
a computation they need to be removed, usually by restarting with a new random
initial configuration.

There are two ways to generate these higher order solutions. One is to start from
random initial conditions as before, choose the number of flux quanta to put into
the system, and then evolve and see which state the system evolves to. The system
could evolve to a state where the flux quanta are isolated and form a collection of
individual vortices, or they could form one or more skyrmions, or some combination
of the two. This method is capable of producing skyrmions with six or so flux quanta,
but in larger domains it becomes increasingly likely that some of the flux quanta
will instead form isolated vortices (figure 5.16).

Instead, more complicated skyrmions are produced using lower order solutions as
a starting point. These solutions are then multiplied together. This creates the main
topological structure of a solution. This is used as a new initial configuration, which
is evolved as normal to find a new stable solution. This method was used to produce
the complicated layered skyrmion shown in figure 5.18, which has an eight-quanta
skyrmion surrounding a four-quanta skyrmion.
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Figure 5.16: Five-quanta skyrmion plus a single vortex. a) Magnetic field, b)-d) the
magnitude of the order parameters, |�
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Figure 5.17: Two-quanta skyrmion state with unequal masses. a) Magnetic field, b)-
d) the magnitude of the order parameters, |�
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|, scaled to the maximum values, e) the
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It is quite clear, however, that while these higher skyrmion solutions are at
least metastable, they are unlikely to be produced by chance from a random initial
condition, and therefore they are unlikely to be seen in practice unless similar control
on the formation of these skyrmions can be achieved experimentally. They are also
unlikely to remain stable in the presence of large fluctuations, and are expected to
break up to form simpler skyrmion and vortex structures unless further techniques
are developed to stabilise them.
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Figure 5.18: Layered skyrmion. An eight-quanta skyrmion surrounds a four-quanta
skyrmion. In f) only the phase of the first band is shown for clarity. a) Magnetic field,
b)-d) the magnitude of the order parameters, |�
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5.4 Summary
In this section we have discussed a selection of numerical methods and applied them
to the case of multiband vortex and skyrmion states. We have recovered the vortex
states seen in one-band superconductors. It is seen that while the order parameters
only have one e�ective length scale deep inside the superconductor, near a vortex
core they can approach their bulk values over di�erent length scales.

The advantages of the variational method is the ability to examine the double
vortex state, and to look at the vortex-vortex interaction. This includes the ability
to look at the energy of the pair as a function of the distance between them. This
shows that for a multiband vortex pair there can be a minimum at a finite distance.

The TDGL method is especially useful for examining a variety of magnetic struc-
tures. This method is able to examine single vortex states, vortex pairs and the
vortex lattice, as well as a range of skyrmion states. Examples were shown where
two vortices formed a bound state (figure 5.12), confirming that there is a minimum
in the free energy at a finite separation. At higher magnetic fields the vortex-vortex
separation becomes smaller than this length scale and the usual Abrikosov triangular
lattice is recovered (figure 5.13).

Finally we used the TDGL method to examine skyrmion states. We found a
series of these solutions, and found that they are very robust, appearing often from
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random initial conditions. We noted however that the more complex solutions did not
arise from random initial conditions, but instead had to be composed from simpler
solutions. We expect that the same will be true when looking for skyrmion states in
TRSB materials, if and when a TRSB superconductor is found.
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Chapter six

Conclusion

To conclude this thesis, we highlight the key results that we obtained in the study
of multiband superconductors, and look at the further developments that could be
made following on from this work. Even though the field has been around for a long
time there are still many unresolved questions and directions for future research.

6.1 Summary of Results
The main results from our thesis were published in our two papers, and are asso-
ciated with the TRSB state in three-band BCS theory and with the extension of
multiband GL theory to high order in powers of · (= 1≠T/T

c

). Additionally we have
studied multiband GL theory in the presence of a magnetic field by using numerical
approaches to vortex structures.

6.1.1 Multiband BCS

The key result we found in multiband BCS was that, in the TRSB state, the coupled
multiband BCS equations can be reduced to a set of one-band BCS equations with
a modified coupling strength. In the process of calculating this, we also found a
condition on this state and showed that when this condition was satisfied the gaps
were always found in the TRSB state. Therefore the TRSB state is more favourable
than the state with frustrated phases, but is only a solution to the multiband
equations when the triangle inequality condition is satisfied.

Even when the superconductor is not in the TRSB state, the triangle inequality
and the reduced one-band solutions still have an e�ect on the full solutions. One way
this occurs is through the location of the T 0 points, where one of the gaps becomes
zero below the critical temperature. These points occur when the triangle inequality
is satisfied as an equality above the transition from the TRSB state to the standard
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superconducting state. The inequality is also satisfied as an equality when two of the
bands are degenerate. This leads to a large region of two-band superconductivity,
where one of the gaps is identically zero.

The requirement that the gap be a continuous function of the temperature causes
these solutions to impact on the gap in a large region of parameter space.

6.1.2 Multiband Ginzburg-Landau

In multiband GL, we extended the theory to include corrections in the expansion,
allowing for the theory to be applied further away from the critical temperature. We
showed that this works extremely well in one-band. After calculating a large number
of terms, we showed that the solution was converging up to 0.9· , and including
additional terms would increase the region of convergence further.

In two-band GL, the expansion can work extremely well, but does not do so
in all cases. The expansion performs well when the interband coupling is large, or
when the critical temperatures of the uncoupled bands are very di�erent. However,
when the critical temperatures of the uncoupled bands are close together and the
interband coupling is small, the additional terms in the expansion fail to improve
the region of convergence appreciably. It is possible that increasing the number of
terms significantly more could overcome this. However the plots of the magnitude
of the terms in this region suggests that the expansion is divergent in this case, and
that this divergence is related to the appearance of a second critical temperature in
the limit that the interband coupling goes to zero.

6.1.3 Multiband Ginzburg-Landau in the Presence of a Magnetic
Field

In the last chapter we examined a number of di�erent approaches for finding pla-
nar vortex structures in multiband GL theory, including (i) a finite di�erence and
variational approach to solve the one-dimensional vortex equations, (ii) a conformal
transformation and variational approach to find a two vortex solution, and (iii) a
finite di�erence approach to solving the TDGL equations on a two-dimensional do-
main with quasi-periodic boundary conditions. These approaches allowed us to find
a number of vortex solutions, and additionally to find skyrmion solutions. These
solutions included vortex bound states, indicating that there can exist a minimum in
the vortex-vortex interaction, the Abrikosov triangular vortex lattice, and a variety
of skyrmions including a layered skyrmion.
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6.2 Directions for Future Research

6.2.1 Multiband BCS

There are three main generalisations to be looked at for the multiband BCS result.
First, it would be interesting to look at four- and five-bands and see if a similar
reduction can occur. The result examined here is only at the mean-field theory
level. It would be very exciting if a similar result was found to hold when including
quantum fluctuations, either as an expansion or with a full quantum treatment.
Finally we would like to perform this approach in a similar manner to another
model, such as multiband Eliashberg theory, or a multiband Hubbard model. If this
could be performed, it would show that these reduced one-band solutions have a
deeper relation with the TRSB state, and give the reduced gaps solutions a more
fundamental position in the theory of TRSB superconductors.

6.2.2 Multiband Ginzburg-Landau

The extended GL theory we have presented only contains terms which provide
corrections in the expansion of the magnitude of the order parameters. It has been
shown by Peeters and co-workers how to include the first order correction to the
gradient and magnetic terms. We would like to include similar terms in the higher
expansion in a systematic way. This would likely involve a diagrammatic approach
to track these terms correctly. This extended expansion could then be applied to
find better approximations to the critical fields of multiband superconductors.

In the multiband expansion we showed that the expansion failed in some cases.
This is likely due to singularities or branch cuts that are near the critical temperature
of the second band in the uncoupled limit. We would like to be able to find and
characterise these singularities and see how they move in the complex plane as the
interband coupling is varied. We would like to investigate this both within the
extended multiband GL theory and multiband BCS theory.

Additionally, we would like to find an expansion that could be applied to lower
temperatures for all multiband superconductors. This is of significant interest as this
could then be used to confirm whether skyrmion states remain as stable solutions
within the extended model, or whether they are artefacts of the truncation and
only exist in traditional multiband GL theory. The extended GL model is currently
unable to address this issue as it is unable to be applied below the transition to the
TRSB state, since the gap is not analytic at this point. Since the skyrmion states
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have only been found above the TRSB background, this is a significant obstacle for
applications of the extended GL model.

6.2.3 Vortex and Skyrmion States

More work could also be performed on the vortex and skyrmion states with traditional
GL theory. We would like to look at these states in nanoscopic sized samples and
investigate how edge e�ects modify these solutions. As highlighted in our review
article [3], other aspects of interest in nanoscale superconductivity include e�ects
due to the breakdown of the band structure, the resulting discrete quantum states
(parametrised by the Kubo gap), and the influence on pairing when there are an
even or odd number of available electrons.

We would also like to develop additional methods for finding vortices, such as a
finite element method which could be applied to both two- and three-dimensional
samples, as well as improving the speed of convergence of the methods investigated
so far.
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