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Summary

The 'raison d'@tre! of this thesis may fairly be
described as the paucity of useful exact calculations of
the statistical mechanical properties of a gas of particles
with known interaction betwéen pairs. Formally this problem
was solved by J.W. Gibbs in 1902 in terms of the canonical
and grand=canonical partition functions, but it was not till
1936 that L. Tonks obtained explicitly the exact equation of
state of a one;dimensional gas of non~interacting hard rods.
Since then a number of calculations of the thermodynamic
properties and distribution functions of classical
one~dimensional continuum gases with simple interaction
potential have been performed, using either combinatorial
analysis or the techniques of statistical theory (Lenard, 1961;

Edwards and Lenard, 1962; Prager, 1962; Kac, 1959).

Following a re-—-statement in chapter 1 of the relevant
results of Gibbs, it is shown in chapter 2 of this thesis
that the statistical mechanical properties of any classical
one~dimensional gas may be expressed in terms of the
eigenvalues of a functional operator and the corresponding
matrix elements of a related operator, This result is
derived by the simple device of differentiating the canonical
partition function of the gas‘with respect to the !volume’
(i.e. the length of the line on which the particles are

confined).



Although purely formal, this result has three
significant corollaries : firstly, the *fring approximationt,
normally derived by the rather ad hoc procedure of summing
those terms in the virial expansion which correspond to
potential bond diagrams of ring type (Mayer, 1950), can be
obtained by a variational approximation; secondly, the
distribution functions and their derivatives with respect
to the mean particle density satisfy a simple relation;
and finally, when the interaction potential satisfies a
homogeneous linear differential equation of order p (say),
explicit, exact results may be obtained in terms of an

eigenvalue equation involving at most p +wvariables,

The last corollary ensures that the method may be
used to obtain the properties of the one-dimensional plasma.
This gas is considered in chapter 3 and explicit exact results
obtained for both a system of equal and opposite charges and
one of negative charges moving in a uniform neutralizing

¢

background of positive charge.

In chapter 4 it is shown that the method of
differentiating the canonical partition function is also
capable of yielding useful exact results when the interaction
potential consists of a repulsive hard core together with an
interaction satisfying a homogeneous linear differential
equation of finite order. It follows that all the exact
results previously obtained for one~dimensional continuum
gases with particular interactions may be derived by this

technique.
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i
It is also shown in this chapter that the formal
results of chapter 2 are applicable to the simple Tonk's
gas of hard rods, even though the potential function appears
to violate the differentiability condition originally imposed
in the general derivation. It is therefore reasonable to
suppose that the results are valid for any !'physical!®

potentials.

In chapter 5 an attempt is made to consider gases of
higher dimensionality by replacing the continuum by a lattice
and transforming the grand-~canonical partition function by
a method used by S.F. Edwards (1959). It is found that this
technique is particularly appropriate when the interaction
potential satisfies a decaying wave equation (the Coulomb
potential is thereby included as a special case), for then
the problem becomes mathematically equivalent to that of
calculating the canonical partition function of a system with
nearest-neighbour interaction., In one dimension such a
problem may be solved exactly, but in two dimensions it reduces
to one identical with that of calculating the lowest energy
level of a one~=dimensional quantum mechanical system of
particles with Hook's law attraction between first and second,
second and third, third and fourth, etc., and with an applied
external potential. Although this problem remains unsolved,
it appears to be the obvious starting point for any possible
further progress towards the exact calculation of the
thermodynamic properties of two—~ or higher—~dimensional gases,

in particular plasmas.
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The form of the relation derived in chapter 2 between
the distribution functions of a one~dimensional gas and their
derivatives with respect to density suggests that it is
applicable in any number of dimensionse. In chapter 6 it is
shown that this is in fact the case and new funotioﬁs are
defined which satisfy an even simpler relation. As the
twowparticle function of this set is the Ornstein-Zernike
direct correlation function, it seems natural to term them

the direct correlation functionse.

In view of the attractiveness of being able to predict
statistical mechanical properties at one density in terms of
those at an adjacent density, a closure of the relations by
means of a superposition approximation is considered. The
resulting equation for the two-particle direct correlation

function is particularly straightforward to handle numerically,.
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Chqpter 1

THE BASIC EQUATIONS OF STATISTICAL MECHANICS

1. The thermodynamic‘prqperties in terms

The name f*statistical mechanics! was coined by Willard
Gibbs in 1901 toAdescribe that branch 6f physics which is
concerned with the average or most probable behaviour of a
mechanical system (c.f. page 1 of ter Haar, 1955). In the
cases where statistical mechanics is appropriate it is
usually not only impossible to determine exactly the detailed
behaviour of the system, but, more significantly, such
knowledge would be quite redundant. Consider for instance
the gas molecules in a room. For a reasonably sized room
there would be of the order of 1027 such molecules.
Clearly a specification of the exact location and velocity
of each molecule would be an emﬁarrassment to any experimental
investigator, who desires only to know a few average
properties of the gas as a whole; such as its temperature,
density and pressure. What is required is not a detailed
investigation of the equations of motion, but some method of

averaging over all possible states of the system.



The first steps in this direction were taken by
Clausius, Maxwell, Boltzmann and others (c.f. page viii
of Gibbs, 1902), who considered the most likely state of
a system consisting of a large number of elements, each
of which could be assigned its own individual energy
(the microcanonical ensemble). While their results were
extremely uéeful, the method of obtaining them is open to
two very serious criticisms. Firstly, it is sometimes
desirable to apply statistical mechanics to a system of
only a few elements, and secondly most physical systems
cannot be divided into elements which héve independent
energies; rather they interact one with another and it

is only meaningful to consider the energy of the complete

system.

These difficulties were overcome by Gibbs (1902),
who suggested considering not an individual physical system,
but a large collection or 'ensemble! of replicas of the
system, all identical in sé far as their physical
composition and external constraints are the same, but
differing from one another in the particular configurations
or states that they assume. For the purposes of the
present discussion it is convenient to suppose these states
to be discrete, a concept which is easily understood in
terms of the quantum mechanics, but appears inapplicable
to a classical formulation. However, this difficulty may
be overcome by regarding the phase space of the system as

divided into infinitesimal sections of equal extension,

each such section being regarded as a state.



Gibbs obtained his results by assuming the probable
number of systems of the ensemble occupying a certain state
to be inversely proportional to the exponential of the
energy of that state, multiplied by a constant factor,
called the modulus. This distribution of systems Gibbs
called fcanonical!, and Jjustified his use of it by the
physicaily meaningful results obtainede. A slightly more
fundamental procedure which leads to the same equations is
to suppose an individual system is equally likely to assume
any of the states available to it and apply an elementary

probability argument to the total ensemble.

Adopting this latter procedure, the probability of

an ensemble of s systems being arranged so that 'sj are

in the Jj th state is

Y = ——7 . ' (1.1)

Clearly the numbers Sj must satisfy the condition

}:: s; = s ) | (1.2)

and in addition, if the total energy Etotal of the ensemble

is known,

E:: ;B3 = Biotarl 2 (1.3)

J-
where Ej is the energy of the system when it is in the

j th state.



It is now necessary to invoke a theorem which will
not be proved here, namely that the total number of
arrangements (the sum of all Y) is very nearly exhausted
by those wvalues of sj which lie close to the values which
makimise Y (c.f. page 6 of Schrodinger, 1957). In the
limit of s infinitely large this is rigorously true, so
as this is precisely the limit implicit in the present
discussion the theorem may be adopted without the
reservations necessary in the parallel argument for the

microcanonical ensemble,

The values of sj which maximise Y, or more
conveniently log Y, subject to the restrictions (1.2) and
(1.3), are readily determined by the method of Langrange's
undetermined multiplierse. Using this technique it is

required to find the unconditional maximum of
log ¥ « a S, Y s. E., . 1.
g N (21
J J

In the limit of s large it may be supposed that
all the Sj are large, so that the factorials occurring
in the definition (1.1) of Y may be approximated by

Stirlingt!s formula:
logn} ~ n (logn = 1) . (1.5)

Accordingly, if (l.u) is maximized with respect to

each S 53 it is found that



log s; + & + BBy = 0 , (1.6)

or
sy = exp(- o h;ﬁE.) . (1.7)
J
0 may be eliminated by using (1.2), giving
-1 |
s; = s yA exp(aﬁEj) ’ (1.8)
where

Z = E exp(-ﬁEj) . (1.9)
J
The mean system energy U may be determined in

terms of f and the energy levels Ej from (1.3) and

(1.8), giving

v = z°t Z E, exp(-BE,) . (1.10)

-J

In the light of the above procedure the constant
f should be regarded as defined in terms of U by (1.10).
However, f turns out to be a fundamental quantity in its
own right, being proportional to the inverse temperature,
and it is more convenient to regard (1.10) as defining U

in terms of B.

The quantity Z defined by '(1.9) is therefore to
be viewed as a function of § and'the system energy levels
Ej' This is the canonical partition function introduced

by Gibbs, from which the thermodynamic properties of the




system may be derived. In particular, (1.10) may be

written:

2
2B

U = = log Z .

To identify f with the inverse temperature
and derive the other thermodynamic quantities, it is
necessary to consider the effect of external work,
Suppose the energy levels of every system of the
ensemble to be changed by some extermnal agency from

Ej to Ej + dEj. Then the average work done on a

W = Sﬂl S. dE. L]
z;: J J

J

system is

If the quantity F is defined by
F = log E exp(—ﬁEj) s
J

then the resulting increase in F is

which from (1.8) and (1.11) is
dF = =-UGdp =~ f st E" s, dB
- J J
j .

(dﬁ being the corresponding increase in ﬁ).

(1.11)

(1.12)

(1.13)

(1.114)

(1.15)



In view of (1.12), (l.15) may with a slight

re~arrangement be written:
d(F + gU) = B (aUu - W) , (1.16)

but as dU dis the mean increase in energy of a system,
the quantity (dU - W) occurring on the right=hand side
of this relation must be the amount dQ of heat added,

so that

d(F + BU) = B a@ . (1.17)

It is now apparent that f is an integrating
factor of dQ, which from the second law of thermodynamics

can only mean that

g = 1 /x , (1.18)

where T is the absolute temperature and X® 1is a constant,
namely Boltzmann's constant (c.f. page 80 of ter Haar, 1955,

and Pippard, 1957).

(1.16) may now be written:

dU = T dS + W , (1.19)

where

wn
|

x* + U/T |, (1.20)

and this is precisely the second law of thermodynamics,
with U the internal energy and S +the entropy

(to within additive constants) of the system.




In the case of a gas the most usual form of work
done on the system is that of increasing its volume., If
increasing it by an amount dV requires the amount W

of work, the pressure P of the gas is defined by

W = « P dv .

Comparing this expression with (1.12) and using (1.8),

it is readily deduced that

el } _ 2
P = = 7Z exp(-ﬁEj) 3V Ej s
J
-1

F-)
B 3V log Z .

it

Summarising, if Z 4is defined by
Z = :E exp(nEj/xT) s
-J

or in classical mechanics by

Z = .ffdg_QQ exp {“E(Bsé)/ xT} ,

the integrations in (1l.24) being over all available
coordinate (x) and momentum (p) space of the system,

then the internal energy U and the pressure P are

determined in terms of the volume V and the temperature

T by
log Z

and

(1.21)

(1.22)

(1.23)

(1.24)

(1.25)

(1.26)



2. Application to an imperfect gas

2.1 The thermodynamic variables

With the exception of the introduction of the
concept of pressure, the above discussion is perfectly
general and applies to any isolated system, the detailed
internal structure not having been considered at all.

It is now convenient to specialize the results to the

case when the system consists of a large number N of
identical particles of mass m, confined within a

volume V and with an interaction potential U(x,y)
acting between any pair of particles at points x and

v (in dimensions higher than one x and Yy are to be
interpreted as vectors). The discussion will be confined
to particles which have no internal degrees of freedom,

in which case for any physical gas U(x,y) must be a
function only of the radial distance between x and 7Yy,

so that it is possible to write
V(x,y) = V(x~y)
= U(y-x) .

Clearly the functions V on either side of (1.27) are
mathematically different, but there is no possibility
of confusion and the two forms will be used

interchangeably.:

(1.27)



Writing Xj for the position coordinate or wvector
of the j th particle and pj for its momentum (also a
vector in a two= or three~dimensional system), the total
energy E(B,g) of the system may be divided into two

parts, the kinetic aind the potential, i.e.

B(psx) = By, + B o (1.28)
where
N
E 2
Ekin = Pj / 2m (1.29)
J=
and

Eop = E:: U(xj— xk) . (1.30)

1 <G<kgN

Throughout this thesis classical mechanics will
be employed., The reasons for this are two=fold, firstly
in the case of most gases quantum mechanical effects
could onl& be observed at very great extremes of temperature
and pressure, phase transitioﬁs and other interesting
phenomena lying well inside the domain of wvalidity of the
classical theory, and secondly the mathematical treatment
of the classical theory is quite complicated enough
without introducing the even more difficult equations of

the quantum theory,:

There is one very significant exception to the
first statement, namely that of a plasma, or gas of

positively and negatively charged particles interacting

10



via the Coulomb potential. In two or three dimensions
this potential diverges at short distances, causing the
classical partition function to diverge (though whether
the same is true of the thermodymnamic variables is not

quite clear). This divergence does not occur in the

quantum theory,.

Adopting the classical formulation (1.24), the

canonical partition function of the system is

11

z, = [-fdp ..dpg dx ..dxy exp{= (B, + Eoy) / ¥t} , (1.31)

where the momentum integrations range over all values
and the coordinate integrations over the volume V,
The suffix N has been attached to Z +to indicate

the number of particles,

Substituting the explicit expression (1.29) for

Ekin’ the momentum integrations may be performed to
give:

zZ. = (2nmxT)ND/2

N &

where QN is the configuration integral defined by

It

Uy

J;r dxj e edxy exp(»Epot/%T)
and D  dis the dimensionality of the system.

As it is wellwknown that the properties of a gas

of given density are independent of its volume, so long

as this is large mnough that surface effects may be ignored,

(1.32)

(1.33)



for a f'physical' potential function VU, QN must satisfy
certain limit theorems. In particular it must be true
that

n(p) = 1im N1

Log(v™" Qy)

exists when N and V both tend to infinity, the particle

density

p:N/V
being kept fixed,

In addition to its explicit dependence on p,
n(p) 4is also a function of the temperature T. Whenever
the derivative of n(p) with respect to either of these
occurs it is to be assumed that the other wvariable is kept
constant while performing the differentiation. Unless
otherwise indicated the same is true of the derivatives

with respect to p and T of any other quantity.

In order that the 1limit (1.34) should exist some
care is mnecessary in choosing the potential function V,
For instance, adding a constant to V, while it does not
change the equations of motion, introduces a multiplicative
factor of type exp(nNz) in QN’ which would in general
lead to a violation of the limit conditiomn., For
potentials which tend to zero sufficiently fast with
increasing particle distance (l.3h) is certainly satisfied,
but long=range potentials, in particular the Coulomb
potential, must be handled with some care if physically

meaningful results are to be obtained.

(1.34)

(1.35)

12



The dependence of 7(p) on p and T completely
determines the thermodynamic properties of the system.
The pressure P and intermnal energy U may be shown

from (1.25), (1.26), (1.32) and (1.34) to be given by:

2 3>
P/ AT = pe=op >p n(e) (1.36)
and
>
U/ NxT = D/2 + T3z u(p) . (1.37)

Two other thermodynamic variables will be used
later and are conveniently defined here, namely the

concentration activity coefficient (Salpeter, 1958)
Y o= VQu, /9 (1.38)

(where Qq.; and Qg both refer to the same volume V
and it is to be supposed that N and V are large,
but p, given by (1.35), is finite) and the quantity u
which is related to the isothermal compressibility and
is defined by
pl - 2 p/ur (1.39)
Uéing (1.34) and (1.36), Y and U may be

determined in terms of n(p). It is found that

log ¥ = = n(p) = pn (p) (1.40)
and

- ) T 2 114
vt = 1 - 20n(p) = p° 0 (p) (1.41)

(the primes on n(p) denoting differentiation with

respect to p, T Dbeing kept constant).
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2.2 The distribution functions

In addition to the thermodynamic variables, it is
frequently convenient to consider the functions which
determine the probability that a particle is contained
in each of the Jj volume elements dxl,...,dxj

situated at the points xl,...,xj. If this probability is

n(xl,..,xj) dxl..dxj s

then the Jj=particle distribution function n(xl,..,xj) is

readily seen to be

N!

n(x,,ee3x.) = j“ dx . ;eedxg exp(=E ot/%T) s (Lon2)
1 J J+ b

(N=3)8 @y 'y
where the rightehand side is evaluated in the limit of

N and V large, but p, given by (1.35), fixed.

These functions may be shown to have certain
properties, In particular they are symmetric, invariant
with respect to equal translation of all variables, and

satisfy the relation

n(xl,..,xj) —> 9 n(xl,..,xj_l) (1.43)

‘when x. becomes far removed from x 30e9X . e In
J 1 J=1

addition, if (l.42) is differentiated with respect to

X,» @a recurrence relation between the distribution

functions may be derived (c.f. page 70 of H.S. Green,

1952), namely
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- d 'U' Lt LN ] .
S Xj-i-l (Xl X,j-l-l) n(Xl, ’XJ-I-]_) ?
the primes on the function V denoting its derivative.
In dimensions higher than one (l.uu) is a vector equation
and the derivatives should be replaced by gradient

operators,

The thermodynamic variables are of course
completely specified by a knowledge of the two=particle
distribution function. As this is a function only of
the distance between the two particles, it is possible

to define a function g(x) by
(x,-x,) = p~2 n(x,,x,) (1.45)
E\X=Xp) = P 17%2 y ’

This function has the advantage that it exhibits
the translational invariance explicitly and is mormalized
so as to tend to unity at large particle separations (in
the absence of interaction between the particles g(x)

is equal to unity everywhere).

To obtain the intermnal energy U and pressure P
of the gas in terms of the function g(x) it is necessary
to consider the effects of small variations in the
temperature and volume on the configﬁration integral QN
defined by (1.30) and (1.33) and then to use the equations

(1.36) and (1.37), together with the definitions (1.42) and



16

(l.h5) of g(x). Applying this procedure it is

readily found that

U/ NxT = D/2 4 §§5 _S dx VY(x) g(x) (1.46)
and “)~ms
P/ T = 1 = ZKZD j dx {xﬁv U(x)}g(x) (1.47)

(c.f. page 53 of H.S. Green, 1952).

2.3 The grand~canonical partition function

Inétead of considering the limiting behaviour
of the canonical partition function Z it is sometimes
convenient to define a grande«canonical partition
function Zz¥ (otherwise called the grand-partition

function) by

N
%k
It
e
2,

Qs (1.48)

N

It
©

where QN is the N~particle configuration integral
defined by (1.33) and Q@  is taken to be unity, and

to consider the asymptotic behaviour of z* in the
limit of V infinitely large. It should be noted

that the definition (1.48) differs slightly from the
normal one (c.f. page 274 of Rushbrooke, l9h9) in that
QN rather than ZN occurs as the coefficient of WN/NJ.

The effect of this is merely to include a factor

(ZTEmM.T)D/2

in the variable w.



As N is now a dummy suffix it is no longer
reasonable to regard p as an independent variable.
The appropriate wvariables for this formulation are

the temperature T and the quantity we

The grand~canonical partition function was
originally obtained by Gibbs (1902) when he considered
an ensemble of systems, each containing an unspecified
number of particles. However, the thermodynamic
properties may be derived from Z* by using the known
limiting behaviour (1.34) of Qg. In some ways this
is a retrograde step, but the technique falls naturally

into the order of this exposition,:

Retaining only the most significant terms when

N and V are large, it follows from (1.34) that

v exp N n(N/V) . (1.49)

U

It is now possible to prove that in the limit of V
infinitely large the summation (l.hS) is dominated by

its maximum term, i.e.

NT N (1.50)

where N0 is the value of N which maximizes

17
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Using Stirling's formula (1.5) for the factorial
and differentiating logarithmically with respect to N,

it follows that No is given by

N
log w = log(N_/V) + a(N /V) + 7 a'(y /v) = o (L.51)
(for the moment the temperature T is to be regarded as

constant).

(1.51) is exact in the limit of V infinitely
large, when it determines the limiting value of NO/V.
This value may very naturally be identified with the

density, ie.e.

p o= N/V . (1.52)

Taking the logarithm of both sides of (1.50) and
using (1.49) and (1.51), the asymptotic behaviour of z¥

is given by

B
log z¥ ~ Vpll=op 3o n(e)] . (1.53)
Accordingly,
A = 1im V™' log z* (1.54)
V=

exists and satisfies

A

It

2 D
3

- ) (1.55)

P = ¢
so that from (1.36) A has a very direct thermodynamic

significance, namely

A = P/ xT . (1.56)
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Also, eliminating the derivative of 1(p) between
(1.51) and (1.55) and differentiating the resulting

equation with respect to w, it is found that

o = w1 . (1.57)

W

o/

If the dependence of A on w and T is known,
the equations (1.56) and (1l.57) together give the
equation of state of the gas. In addition the internal
energy U may be obtained by considering the effect of
varying T, keeping p fixed, and using the relation

(1.37). This procedure yields:

- 2
U/ NxT = D/2 4+ T op 1 3T A s (1.58)

where the differentiation of A with respect to T is

to be performed at a constant value of we.

The quantity w has not as yet been given any
thermodynamic significance, but from (1l.51) it may be

written

w o= p exp-{~ n(p) = p %; n(p)} ) (1.59)

so that from the definition (1.40) of the concentration

activity coefficient Y,

w o= pY . (1'60)
w may now be identified with the fugacity of the gas
(salpeter, 1958).

A useful relation between w and UL may be

established at this stage, for differentiating (1.59)




logarithmically with respect to p, keeping T constant,

it is found that

&/

: t 2 re
P35 logw = 1-2pm(p) - o nlp) (1.61)

o/

which from (1l.41) is precisely the reciprocal of y,

so that

logw = 1 . (1.62)

Just as it is possible to define distribution
functions in the canonical formalism, it is possible
to do so in the grand~canonical, If the grand-canonical

distribution functions are defined to be

[~
N
* 1 W ‘
n (xl"°’xj) = ;; E =91 S”j dx g, qeedxy exp(~Epot/xT) s

N=j . v (1.63)

where the right-~hand side is to be evaluated in the
limit of V idinfinitely large, it follows in analogy
with the above considerations that the summation is
dominated by the maximum texrm.,! This term is given
by (1.51), so that it is readily seen that the
grand-~canonical and canonical distribution functions
are identical, provided w and p correspond to the

same thermodynamic state of the gas.
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3 Discussion of results

The object of this chapter has been to state as
systemically as possible the basic equations of statistical
mechanics and to present a notation that can be used in the
following chapters without continual rewdefinition.
Naturally many interesting concepts and theorems such as
irreversibility, Boltzmann's H~theorem, and a detailed
discussion of the micro-canonical ensemble have had to be
omitted as not being directly relevant to the subject

matter of this thesis.

One possible criticism that may be made of the
present approach is that it appears to consider a gas of
one species only. However, all the general results
obtained may be readily extended to the case of a gas
containing more than one species of particle (the obvious
example in the present context is the plasma, which must
contain both ions and electrons), while to do so explicitly
in every equation would result in a considerable complication

of notation.
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Chapter »2

A MATRIX FORMULATION OF THE STATISTICAL MECHANICS
OF A ONE~-DIMENSIONAL GAS

L. Introduction

Although the mathematical foundations for the study
of the equilibrium properties of a statistical mechanical
system were laid in 1901 (Gibbs, 1902), it was not till
1936 that Tonks (1936) obtained the exact solution of the
equations for a gas of one~=dimensional hard rods. Since
then a number of exact solutions of onew~dimensional systems
with particular interaction have been obtained (Lenard, 1961;
Edwards and Lenard, 1962; Prager, 1962; XKac, 1959;

Baker, 1961; Baur and Nosanow, 1962). The methods used
to obtain these solutions vary with the particular
interaction under consideration, but in every case the
thermodynamic properties are found to be given by the
behaviour of the greatest eigenvalqe of an operator and
the distribution functions to be the corresponding matrix
elements of related operators., In this chapter a
formalism is set up which exhibits these properties
explicitly when the system under consideration is a
one~dimensional gas of particles with arbitrary two-=particle
interaction.: This form;lism is particularly appropriate

when the interaction potential function satisfies a
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homogeneous linear differential equation of order p (say)
with constant coefficients over the domain (0,oo), as the
operator equations then reduce to difference-differential
equations involving at most p +variables. It is therefore
possible to derive exact solutions for a decaying exponential
potential or, so long as care is taken to avoid the
introduction of redundant wvariables, the one-=dimensional

Coulomb potential,.

The underlying principle used to derive the results
is to note a simple fact which appears to be much neglected,
namely that the partition function is a differentiable
function of the volume of the system. In one dimension
differentiation with respect to the t!volume?!, i.e. the
length of the line on which the particles are confined, may
be interpreted as fixing a particle at one boundary; so
that if an arbitrary extermal potential is introduced,
acting on the particles and centred on this boundary, a
recurrence relation may be obtained between the partition
functions. Such a relation leads immediately to an

equation for the grand~partition function.

For simplicity a system containing only one species
of particle is considered in the derivation, but the
extension to a system of two or more species is quite
straightforward and the appropriate generalisation of the

results is stated in section 8,



2. Derivation of a recurrence relation between configuration

integrals in terms of functional operators J and K.

Consider a gas of N identical particles on the
line segment between x=0 and x=A, interacting one
with another by a force of potential V(x). Then the

total potential energy is

E = Z U(xj- x,.) ) (2.1)

j<k

where xl,..%,xN are the position coordinates of the
particles and the summations over j and k range from

1l to N,

E is of course identical with the total potential

energy Ep introduced in chapter 1. The suffix is

ot
dropped as the contribution to the partition function
from the kinetic energy terms is known from section 2,1
of chapter 1 to be trivial, so that the interest in this
and subsequent chapters is focussed on the configuration

integral, which is the contribution from the potential

energy terms,

Putting

u(x) = v(x) / »T s (2.2)

u(x) must be an even function and the discussion will

be confined to potentials such that wu(x) has continuous
derivatives of all orders in the interval (0500).,
However, it seems that the results derived can be applied

when this condition is violated, for in chapter 4 it will
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be shown that they are true when the system under

consideration is the one~dimensional gas of hard rods.

Derivatives at the origin are to be regarded
as right-derivatives, so that potentials which are

regular functions of mod(x) are permissible.

To obtain the distribution functions it is
necessary to suppose that some of the particles, say
those at Xl""’xr’ are fixed, while the remainder
are free to occupy any position between O and A.

As A is here regarded as a variable with range

[0,<m) it is therefore necessary to consider the
possibility of it being less than some or all of the
fixed particle coordinates, even though the r~particle
distribution function will of course still be‘evaluated
when A is much greater than any of them.!

If
1>X2> to%.j?}c 2 (6] (2.3)

and A lies in the interval

x 2 A2

a ’ (2.4)

Xq+l

it is convenient to define a modified potential energy

B = ) u(xmm) o+ ) elaex) (2.5)

Jj<k J

where the summations are no longer over all particles,

but only over those lying between O and A. Thus j




~and k range from g+l to N, This restriction is
extremely important, for it ensures that the arbitrary
function G(x) that has been introduced need only be

defined over the domain [0,°6).

It is now possible to define the modified

configuration integral
1 A o
Wor = WeT [ Speredmy o (B
o

When G(x) is identically zero QN,o is equal to the
configuration integral Qg defined by (1.33), divided
by Ni. It turns out that it is frequently convenient
to consider QN/NX, rather than QN itself, and the
name !configuration integral! will be applied to either
of thése quantities, it being clear from the equations

which is meant,

Also, when G(x) 4is identically zero and A is
greater than all of the fixed particle coordinates, the
reparticle distribution function defined by (l.h2) can

be seen to be
n(xl,..,xr) = QN,r / QN,O ‘

QN,r is to be regarded as a function of A and
a functional of G(x), so that its functional derivative
with respect to G(x) may be formed. If £ dis any
functional of G(x) and h(x) is an arbitrary function,

the notation

éh

(2.6)

(2.7)
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will be used to represent the linear operator which

acting on f gives the functional derivative

1lim e*l[f{de + ¢ h(x)} - f{G@Qﬂ .
€ —0
On inspecting (2.5) and (2.6) it is apparent

that differentiation of QN,r gives rise to two te?ms,
one corresponding to differentiating the limits of
integration and the other to differentiating the
integrand.,. The first of these is equivalent to
multiplying by Ne~r and setting XN equal to A,

From (2.5), E' is then equal to

E:: u(xj— x.) + E::{G(Aaxj) + u(Aéxjy + G(0)
J

j<k

with the summations ranging from g+l to N1,

Apart from the additive term G(O0) +this is precisely
the modified potential energy of the N«l particle
system with G(x) replaced by G(x)+u(x), so that

the first contribution to the derivative of QN r is
b}

~G(0
e ( ) QN-l,r{ G(x) + u(x)}
(exhibiting the functional dependence explicitly).

As
2 o=G(A-x)

S——

e-G(A-—x)
A

- G (A=x)

o/

S _=G(A=x)
sGr  ©

(2.8)

27



where G!(x) is the derivative of G(x), the second

contribution to the derivative is

8G QN,r °

Accordingly, if f{G(x)} is an arbitrary
functional and the linear operators K and J are

defined by

K f{G(x)} = e;G(Q) £iG(x) + u(x)} (2.9)

and

J = = s (2.10)

the derivative of QN T with respect to A dis given
?

by the equation

3 =
2A QN,r - K QN#-l,r + J QN,r ’ (2.11)
which may be regarded as a recurrence relation between

the configuration integrals.

As the definition of E' depends on the number
of fixed particles with coordinates greater than A,
QN,r’ considered as a function of A, has a step
discontinuity at each fixed particle coordinate.

Inspection of (2.5) and (2.6) reveals that

+

,p = K Qg’r s (2.12)

where the plus and minus signs denote the value just

above and below any fixed particle coordinate.
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Also, when A = O,

QN,r = 6N,r (2’13)

from its definition.

The recurrence relation (2.11), together with
the boundary conditions (2.12) and (2.13), determines
each QN,r uniquely, and so determines all the
statistical mechanical properties of the system. The
remainder of this chapter is devoted to exploiting

these equations.,.

Je The thermodynamic properties and distribution functions

It is advantageous to introduce the generalised

r~particle grand-partition function fr defined by

o0

£, = Z W Q. (2.114)

N=r
(cefe section 2.3 of chapter 1).

Like QN s, f is a function of A and a
functional of G(x). When G(x) is identically zero
fo is the normal grand~partition function and when it
is also true that A is much greater than all the
fixed particle coordinates it follows from (2.7) that

the r-particle distribution function satisfies the

equation

n(xl,..A,Xr) = fr / fo ° (2-15)



(2.11), (2.12) and (2.13) give the following three

equations to define each fr :

between fixed particle positions

across a fixed particle position

i}

B+

K £
r

and at A = 0

where the operator H that has been introduced is

defined by

H = w K 3 J .

Formally these equations may be solved

immediately to yield

AH
fO = e o 1 9
(A=x_)H x. H
fl = W e 1 .K.elol Py
. 2 (A-xl)H (xléxz)H sz
2 = w e [ ) .e .K.e ol
etc.,

when A is greater than all the fixed particle

coordinates and

30

(2.16)

(2.17)

(2.18)

(2.19)

(2.20a)

(2.200)

(2.20c)
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It is apparent from these equations that it is
unnecessary to consider H and K operating on any
functional of G(x) which does not lie in the functional
space {f} spanned by all functionals of the form

m n m n
1 1 2 2 ) Hmk' Kék.

H',K cH .K ¢ e l bl

where k and the m'j ) nj are arbitrary non-negative
integers., All such functionals can be seen to be Taylor
expandable about G(x) = 0, so that {f} is a

sub=space of the space of all Taylor expandable functionals.

Suppose the eigenfunctionals yﬁ{G(x)} of H
which lie in {f} form a basis of {f}. Then there

exist constants cm such that

1 = Z Cn Ym (2-21)

and matrix elements K.m n such that
bl

K ym = E Km,n y].’l . (2022)

If hm is the eigenvalue of H associated
with the eigenfunctional ym{G(x)} , the equations

(2.20) may be written in the more explicit form



1 - Cr © £ym Ym !
Z,m
e . ehzxz . A (xg=x,) My (A=xy )
2 £ Lym m,n
£ym,n
etce.

As fo is the grande~partition function when
G(X) is identically zero, it is to be expected on

thermodynamic grounds that

lim Anl log fo

A—) o0
exists and is real. It then follows from (2.23a) that
there exists an eigenvalue ho which is real and greater
than the real part of any other, so that when A is

large

As H depends on the fugacity w and the
temperature T, ho may be regarded as a function of
these two variables and then from section 2.3 of
chapter 1, the equation of state and intermal energy U

of the Neparticle gas are given by

P/%T:?\o 9
>
Po= v osg
and
U/ T = % o+ ploris M
= 2 P ¥t °

(2.24)

(2.25)

(2.26)

(2.27)
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(p being the mean particle density N/A of the gas).

In principle these equations are quite capable
of describing a phase transition as it is possible to
imagine a situation in which the two greatest eigenvalues
cross over at some critical value of the fugacity w,
so that ho undergoes a discontinuous change in its
derivative., Unfortunately it has been shown by Landau
and Lifshitz (1958) and van Hove (1950) that under
normal circumstances a one-~dimensional system cannot
exhibit a phase transition, but Kac, Uhlenbeck and
Hemmer (1963), Baker (1961) and Baur and Nosanow (1962)
have constructed systems for which these proofs are
invalid, and for which a phase transition does occur,
The model of Kac et al, is studied in some detail in
chapter 4 and it is shown that the transition is in fact

due to the crossing of two eigenvalues,

To obtain the r«particle distribution function

it is desirable to suppose that both Aéxl and x, are

large, so that xl,.f,xr are all far removed from the
boundaries of the gas and surface effects can be ignored.

Then from (2.23):

KOA
fl ~ W c, © Ko,o Yo ’

Yo o

(2.28a)

(2.28p)
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The distribution functions may now be obtained

from (2.15) and (2.24)., It is found that

r §< :
n(xl,..,xr) = W Ko,m Km ,m . Km

Tel
exp { ) (xj—xj+l)(hm.ého) } s (2.29)
=1 J
when
Xl 2 xz’z ...5? Xr .

As the distribution functions are by definition
symmetric with respect to interchange of any two x's,

they are completely defined by (2.29).

Lo Reduction of the functional operators to

difference=differential operators involving

a finite number of variables

As yvet it has been supposed that G(x) is a
completely arbitrary function, so that the above operators
Ky, J and H act on quite general functionals. However,

examination of (2.9) and (2.10) shows that if wu(x) and

its righte~derivatives over the domain x; O form a
function space of finite dimensionality p (say), then
the recurrence relation (2.11) may be derived using a
function G(x) which is restricted to this space and so

may be defined in terms of p arbitrary variables.




H and K are then difference~differential operators
involving only these variables, so if p dis small the
equations for ko and the distribution functions may be

handled by numerical methods.

The two most obvious choices of u(x) such that
the function space formed by it and its derivatives is of
finite dimensionality are the decaying exponential and

Coulomb potentialse.

De Application to _a potential which is a sum

of decaving exponentials

5.1 A symmetric representation of the operators

In view of the above remarks, the equations can
be written more explicitly when the potential function

is a sum of decaying exponentials, i.ce.

C
v(x) = % E:: fg exp(= aa|x|) ) (2.30)

a

Q

for then G(x) may be restricted to the form

}:: Vo, exp(-aax) . (2.31)

(o8

The functionals of G(x) are then just
functions of the variables Vi and the operators

K and J are given by:
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C
K = exp(- E va) . exp( E ZaGXT (2.32)
Q oh
08 @

4%
<l

and

X d
J = = E a, Vg g;a . (2.33)

Provided the a, are all distinct, the functional
space {fz discussed in section 3 is now the set of
functions of the Va which are Taylor expandable about

the origin.

It is convenient to apply a similarity
transformation to the operators by replacing the basis
functions y(vl,vz,...) by the functions Z(tl’tz"")

defined by

8

3

ey

g E. 2
z(tl,tz,..) = exp(—% aata)

dvl dv2 "3Y(V1’v2"’)

a ey
2
oxp | = E::%a(ita svy/m) ), (2.34)
a
where 1
2
b, = (¢ / »r) . (2.35)

With respect to this new basis the operators

K and J are given by:

K = exp( bi/uaa) . exp(i E:: bata) (2.36)
a a
and
B2
g o= % ( — - a’t? 4 a_ ) . (2.37)
t




The basic space {f} spanned by all functions
y(vl,vz,..) which are products of powers of the Va is
from (2.34) readily seen to be in this new representation

spanned by all functions z(tl,tz,..) which are of the

form of a product of powers of the tOL multiplied by

, z 2
exp(= % aata) .

(o8

Clearly the integral over all taaspace of the product

of any two such functions converges.

The advantage of the present form of the operators

is that H, which from (2.19) is defined by
H = wK + J s (2.38)

is symmetric. Its eigenfunctions therefore are orthogonal
and form a basis of the space {f} s which provides some
justification for the assumption that this is the case in
section 3. As K is complex it does not follow that the
eigenvalues are real, but using the fact that negating
every ta has the same effect on H as complex conjugation,
it can be shown that they are either real or occur in pairs
of complex conjugatese.

It is convenient to adopt a vector notation for
the eigenfunctions Zm(tl’tz"') of H which lie in
{f} and to represent them as Z.e Then the scalar product

of any two such vectors may be defined as

Z'

(=)
zZ, E_‘n. = ..S-ogodtl dtz ceoe Zm(tl,tz,ca) Zn(tl’tZ’..) . (2039)
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52 A variational approximation

Unfortunately, unless the number of decaying
exponential components of (2.30) is very small, the
equations are still too complicated to handle numerically.
It is therefore natural to seek an approximate solution,
and as the operator H is now expressed in an explicitly
symmetric form the most obvious procedure to obtain its

maximum eigenvalue ho is to find the turning wvalue of
I = zHz/z'z )

where 2z represents some trial function Z(tl’tz"')'

Considering the eigenfunctions when the
exponential term in K dis Taylor expanded to second
order about some set of values of the ta’ it seems

that a very reasonable choice of the trial function is

26y tm0) = oxp =k ) Ry (ogming) (ogmizg) |
o

where the may be regarded as elements of an

Ra,ﬁ
arbitrary symmetric matrix R and the r, @as components
of an arbitrary vector x. It must be clearly understood
that these and similar matrices and vectors which are
introduced in this section are purely a convenient way

of describing the properties of the trial function and

are quite different from the vector representation of

the eigenfunctions of H.

(2.40)

(2.41)
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Using this trial function, I may be computed

from (2.40) and is found to be

where the matrix D d4is defined by

2
D = a 6
a,B a “a,B
and
h=wexple ) br & = b*/a = L prr~lp
= XPq- oo CoL ol “a y== =94°
a a

As H is complex it is mnot quite true to say
that ho is, to this approximation, equal to the
maximum value of I, rather it is given by I when
I is maximized with respect to R and minimized with

respect to r.

Minimizing (2.42) with respect to each T,

gives the set of equations

2
r, = bCL h / ag ’

while maximizing with respect to R gives the matrix
equation
2
R® = D + hbb' .
Strictly, equations (2.44), (2.45) and (2.46)

should be regarded as defining h, r and R. However,
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(2.42)

(2.43)

(2.44)

(2.45)

(2.46)



it turns out to be more convenient to regard h as an
independent variable and to interpret (2.44) as a

definition of w.

From the form (2.41) of the trial function R
must be a positive definite matrix, so that (2.46)
defines it uniquely. Fortunately it is mot necessary
to determine R explicitly, rather it is sufficient
to evaluate the quantities

Tr (DR™Y) , Tr R and b'R™'b ,
as R contributes to the maximum value of I only
through these three expressions. Further, a relation
can be obtained between them by multiplying (2.46) on
the right by Bfl and taking the trace of each side,
giving
-1

TrR = Tr (DR™) + nhbrp ,

so that it is only necessary to determine Tr R and

b'R™b.

To do this it is desirable to consider the

eigenvalues and associated eigenvectors ;B of

bg

R. From (2.46) these must satisfy the equation

 + hbb)x = b x

(dropping the suffix 6).

(2.47)

(2.148)

L0



Ir Xq is the o th component of the vector

x, (2.48) may be written

2 2
so that
. 2 . 2
xg = =h () vy / (af - %) .

Multiplying (2.50) by ba and summing over O,

the term Db'x cancels out, leaving

}i: 2 2 2
1 + h be / (aOL -u) = o .

a

Together with the positive~definiteness
condition that P be greater than zero, (2.51) defines
the eigenvalues of R and (2.50) the associated
eigenvectors., One ﬁroperty of each eigenvector that
will be required is the ratio of the square of b'x
to x'x; this may be determined by squaring each side

of (2.50) and summinglover @, giving:

x'x = b (b'x)? E" b2 / (ai - p?) .

(o8

To evaluate Q'g‘%p note that the eigenvectors

Eﬁ must be orthogonal, so that

b = E;: g (gf;B) / (;é zg) )

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)

§1



and as

Rml X = -1

it follows immediately that

=l - N t 2 't x
BE R - Z__“s (Brxg)™/ (=g xg) -

EB may now be eliminated from this equation
by using the result (2.52), giving:

-1

. - 2
pElp = n? ) '{uﬁ I CHEy } .
. . _

The trace of R is trivial to determine,

for it is given by
R o= ) ow :
_ B
B

These expressions may be greatly simplified

if a function @(h) is introduced and defined by

Ba) = )y by
B

for clearlyA

Tr R = @(h) ’
and as it can be shown by differentiating (2.51)
with respect to h that

-1

< bg = % n™= { b Z:: b2 / (a? - pg)z:} ,
a

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

2



(2.56) may be written

-]l E d
t ——

2 g'(n) .

i

Also, inspection of (2.51) reveals that when h is

small,

2
B

+ hbv,/ 2a5 + O(hz)

bg = g

(with appropriate ordering of the “ﬁ)’ so that

g(0)

it
-
o
s

g'(0) = E;: bé / 2aB .
From (2.47), (2.59) and (2.61),

™ REY) = gn) - 2ng'(m) .

The expressions Tr(D gfl), Tr R and
Q‘Bélh are thus completely determined by the function
g(n). Substituting their values in (2.42) and
eliminating the T, by (2.45) gives the turning

value of I, which in this approximation is lo.

(2.61)

(2,62)

(2.63)

(2.64)

(2.65)
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Using also the relation (2.63), it follows that

A =h s hZZbi /2a% s 3{#0) - $(n) +n g 'm)} , (2.66)

(¢h

and from (2.44), (2.61) and (2.64), w is given by:

w = h exp{h Zbi / ai ++[8'(n) ¢"(0)]} . (2.67)

a

The equation of state may now be derived

directly from these equations, for from (2.67),

d 2 2 "t
h o log w = 1+hg b, /a +3+h g (h) ; (2.68)
(69

but from (2.66) this is precisely the same as the

derivative with respect to h of ho’ ieee

d
dh 7\'o

it

h —= log w . (2.69)

gﬁa

If the temperature is regarded as constant,
so that ho is viewed as a function of the single
variable w, dit is known from (2.26) that the mean

particle density is
P = w o= A P (2-70)
or, as 10 and w are each functions of h,

d d
P = G 7\.0/-&?1 log w . (2.71)



Comparing (2.69) and (2.71) it is apparent that

h. = p [}

h may therefore be assigned a direct physical
significance, namely the density of particles in the
gas. This result is not surprising when it is noted
that iﬁ view of the form (2.38) of the operator H,
the effect of an infinitesimal change of w on the

eigenvalue ho is, by first order perturbation theory,

given by
d 1
v aw 7\'o = W Z, K Zo / Z, go 7

for when gz is the trial function (2.41) the
right=hand side of this equation is precisely the

definition (2.44) of h.,

As, from (2.25), the pressure P is given by

P/'M.T = 7\.0 s

the equation of state may now be written in terms of

the function @, for using (2.72) and (2.74), (2.66)

becomes

(2.72)

(2.73)

(2.74)

B/xt = o+ 0% ) vi/202  + {B(0) = 8(o) + o 8'(5)} . (2.75)

a

The results of this section are more conveniently
expressed in terms of the differentiated equation of

state expressing the derivative of the pressure with



respect to the density as a function of the density
and the temperature. Differentiating (2.75) with

respect to p, this is

1— _ 2 2 1 "
5o P/YT = 1 + p Z bo /ag +%p g (p) .
a

i

At this stage‘it is obviously desirable to
obtain a more explicit interpretation of the function
g(p) in terms of the potential function V(x), for
its definition as the sum of the positive roots of
(2,51) seems somewhat obscure. To do this it is
convenient to introduce the Fourier transform E(s)
of U(x) defined by

o0
v(s) = [ dx v(x) o—i8x .
- o0
Substituting the explicit form (2.30) of VU(x),

the integration in (2.77) may be performed, giving

Ws) = Yy 0y / (aF 4R ,

Q

or, using the definition (2.35) of b
- . 2 2 2
O R VA T S I
a
Comparing (2.79) and (2.51) it is now apparent that

the are related to the poles of the function

“g
w(s) = 1/ (1 + p v(s)/xT) .
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(2.77)

(2.78)

(2.79)
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In fact the poles of ®(s) lie on the imaginary

axis of the complex s«plane at the points

s = &3 b . (2.81)

This suggests investigating the integral
o0

F(p) = Eiﬁ j ds [w(s) - l] s (2.82)

where the term «~1 has been introduced to ensure

convergence.

As w(s) = 1 tends to zero as 3“2 when s
becomes large, the integration may be extended to
include the semicircle at infinity in the upper

halfwplane and then by Cauchy's theorem,

F(p) = i E residues of m(s) - 1 at poles on

the upper imaginary axis. (2.83)

These residues may be determined in terms of the
uﬁ and it is found that
2, =t
. 1 2 2 . 2 }
F = -\ b a - . 2.8h
(p) p§ {“E’E o / (ag = bg) (2.84)
Q

B

Comparing this result with the equation (2.60),

it follows that

Flp) = = pZ -3—1; be ; (2.85)
B



which in view of the definition (2.58) of @g(h) and

the equality of p and h dimplies that

F(p) = = p 8'(p) .

(2.80), (2.82) and (2.86) therefore define the
function @(p) (or rather its derivative) directly

in terms of E(S). Noting also that, from (2.79),
- 2 2
v(0) = xT E bo / ag s
a

the differentiated equation of state (2.76) may be

written:
=2
5 v=(s)
K -
= P/xT = 142 ;%01 - e— § ds — —5
P / yn(xr)=  Jo, [1+pY(s)/xT]

This equation contains mo explicit reference to
the particular form (2.30) of the potential function
and it seems reasonable to suppose that it is a good
approximation when Q(x) is any Fourier analysable
function., Further, its extension to systems of

dimensionality greater than one is obvious.,.

In view of the fact that it has been derived by
a variational technique, the result may be regarded
as a Jjustification of the rather ad hoc procedure
frequently used to obtain the Debye«Huckel theory,
namely summing over U~bond diagrams of ring type
(Mayer, 1950; Abe, 1959), for it is precisely the

'ring approximation'! derived by this method.

(2.86)

(2.87)

. (2.88)
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6. The derivatives of the eigenvalues of H and the

matrix elements of K with respect to fugacity

In section 5 it has been shown that a basis
of the functional space {f} may be chosen with
respect to which both X and J are symmetric
operators, provided the potential function is a sum
of decaying exponentials, This form for the
potential is sufficiently general to suggest that
such a basis exists for at least a wide class of

potentials.

Suppose that such a basis has been chosen and
that with respect to this the eigenfunctionals of H
are represented by the vectors Z. the associated
eigenvalues being lm. Then frém the definition

(2.19) of H,

(wk + J) z, = hm ;m

As K and J are symmetric operators, the
eigenvectors z, are orthogonal, and if they are

normalized so that

z' z = 1 s
-1;1—111

then the matrix elements of X occurring in the

equation (2.29) for the distribution functions may

be defined by

K o=

1
z K
m,n —m

Z
-1

(2.89)

) (2.90)

(2.91)
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It is now desired to consider the effect of

small variations of w on A and K s, daes to
m m,n

evaluate their derivatives with respect to the fugacity
We

To do this it is first necessary to consider
the change induced in the eigenvectors, If 6gm is
the increment in Zn induced by incrementing w by

the infinitesimal amount &w, a matrix L may be

defined by

égm = &w }:: Lm,n z, . (2.92)
n

To determine I consider the effect of such an
increment on the equation (2.89). If 6lm is the

increment induced in hm it is readily seen that

(WK + J = hm) égm = (6hm ~ 8w K) z, . (2.93)

Substituting the expression (2.92) for 6z, and

noting that

K

Zn = § Kh,n Zn ? (2.94)

n

it follows that

&w }:: Lm,n (hn - hm) z, = 6hm gm - &w E Km,n Z, e (2.95)

n n

which, as the z, are orthogonal, implies that

Sh = bw K_ (2.96)

,m



and

Lm,n- = Km,n/ (hm - 7\'n) !

provided m # ne.

The values of L
m,m

considering the effect of incrementing w on the

normalization condition (2.90). This shows that
t
z Oz = Q0 N
—m ~“m

so that from (2.92),

As, from the symmetry property of the operator

it follows from (2.97) and (2.99) that L is an

antisymmetric matrix.

Consider now the effect of incrementing w

on the definition (2.91) of K_ 3 clearly
?

t ' t
6Km,n = 65m Kz, + Zm K 6En
Applying (2.92), this gives
8Km = OV E (L, 0 Kgpn * Lo, s Koym)
y3

may be determined by

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

(2.102)
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Substituting the expressions (2.97) for the elements
of IL and recalling the definition of a derivative,

(2.102) implies that
a . S Smes S N Hnas faim
dw “m,n A = A A~ A
m £ n £
#m L¥n

(using the symmetry property (2.100) ). Also it

follows from (2.96) that

In principle the equations (2.103) and (2.104)
completely define the statistical mechanical properties

of the system if the values of the km and K can

be determined at zero fugacity, but unfortunately there

appears to be no simple way of evaluating or classifying

these values for an arbitrary potential. However,

equations do enable simple relations between the

distribution functions and their derivatives with respect

to fugacity (or density) to be established, as will be

shown in the following section.

(2.103)

(2.104)
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Ze The derivatives of the distribution functions

with respect to fugacity and density

Having established the relations (2.103) and
(2.104) for the derivatives of the matrix elements
Km,n and the eigenvalues 7\.m with respect to fugacity
(the temperature being regarded as a constant), it is a

trivial, though cumbersome, matter to obtain from

(2.29) an expression for the derivative of the r—particle

distribution function.

Defining the matrices }_(_(l) and _¥_(2) by

() _ \ .
Ym,n Km,ﬁ Kz@,n / (hm = 7"2)
£

and

(2) _ \_ B
Ym,n Km,ﬁ Kz@,n / (7\1'1 - 7\/@) )
n

the relation (2.103) may be written

. x . (1)L y(2)

dw “m,n m,n m,n ?

so that dividing each side of (2.29) by w  and

differentiating with respect to w, it is found that

when xl> x2> ..v; Xr N

re=l Tl

g—‘; wT n(xl,..,xr) e w¥ Z AJ. + wﬂrZ{B‘(jl) + Bgz)]-,(z.lOS)
j=0

J::-l-

(2.105)

(2.106)

(2.107)
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where
r E
A = v Ko m Km m, °*°°*° Km o (Km m. Ko o)
J m - b l l’ 2 T l) .j’ J H
1°° rel
el
(xJ - x,]'+l) exp{z (x.k‘-xk_'_l)(hmk 7\.0)&
k=1
and

(¥ o E K K ... K )
J o,m; “m,,m, M gy MM g

ml’ .o,mr;l J+
r—1
K see K exp{ g (xkaxk )(h - A )}
m, .,m, m 30 +1 o
je12tje2 re1 ) e

(interpreting m and m, as 0).

These equations are obviously far too complicated
to be either useful or interesting in their present form.
However, it will now be shown that the right-hand side of
(2.108) can be quite simply expressed as

0 A
w-r—1 S.dx‘ T(xt) ’
=00

where

T(X') = n(xl,..,x ,X') Ll P n(xl’oo,xr) .

xr

As Xl? x2,>, s > X it is convenient to

divide this integral into the r+l components:
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(2.111)



SO = [ dX‘ T(x') 9
*1
X B

s, = jJ axt w(x') (1< jgrel)
ivl

and

X
r

Sr = S dx!' v(x!') o
- OO

The ordering of the variables xl,..,xr,x' is
completely specified in each of the integrals Sj’
so that from (2.29) the function T(x!) is a simple
exponential less a constant. The integrations are
therefore trivial to perform, though rather unwieldy,
and after some re~labelling of dummy suffixes and

noting that, from (2.26) and (2.104),

P = W Ko,o ’
they yield:
S = W B(l)
o o
S, = W (Aj + B(l) + Bgfi) (L5 gr=l)
and

(2.112a)

(2.112p)

(2.112¢)

(2.113)

(2.114a)

(2.114v)

(2.114¢c)

55



56

Summing all the components Sj it is apparent

that

o® ral rel

5\dx' T(x!) = w E:: Aj + W ) -{Bgl) + B§2)} ’ (2.115)
-0 j=1 j=0

which is precisely w-T¥ times the rightwhand side

of (2.108). Accordingly it follows that

oD
R n(x,,eesx_ ) = gdx' [n(x eesX_3xX') w p n(x, see,x )]
dw 127 . 12°° 27 p? 12
(2.116)
(using the definition (2.111) of =w(x') ).
This is clearly a relation between the
distribution functions arid their derivatives with
respect to fugacitye. In view of the equation (1.62),
namely
d
b op dp log w = 1 , (2.117)

where Y dis the quantity related to the isothermal
compressibility defined by (1.39) and the temperature
is to be regarded as a constant, the fugacity
derivative may be replaced by a density derivative

to give:

o0

d . i -
(IJ' [e] Ep‘ “'r) n(xl, ._.,Xr) = X dx? I_n(xl,..,xr,x') - P n(xl,.-,xr)_l .

_

(2.118)
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Although this result has been proved only when

it follows from the known symmetry of the distribution
functions that it is true for any ordering of the

variables.

As the relation (2,118) contains no explicit
reference to the potential and is meaningful in any
number of dimensions, it may be expected to be
applicable to a gas of arbitrary interaction and
dimensionalitye: This point is discussed in chapter 6,
where the relation is shown to be of general wvalidity
and is used to derive similar results for the
UrsellwMayer cluster functions (Mayer and Montroll,
1941; page 203 of M., Green, 1961; page 78 of
Uhlenbeck, 1963) and a new set of functions, termed

the direct correlation functionse.

8. Extension of the results to a manv~species system

In statistical mechanics it is frequently
necessary to consider the behaviour of a gas which is
a mixture of wvarious types, or species, of particles,
One obvious example is air, which contains nitrogen,
oxygen and other gases in known proportions. Another

is a plasma, or gas of charged particles, where it is



essential to suppose the existence of both electrons
and positive ions to ensure that the system as a whole
be electrically neutral. The above formulation is
therefore deficient in so far as it considers a system

containing only one type of particle.

However, the derivation of similar results for
a many-species system, while inﬁolving a considerable
complication of the equations, follows exactly the
same logical steps as those used above. For this
reason it seems sufficient merely to state the
generalization of the more significant results of this

chapter, namely those of section 3.

If the gas contains p species of particles,
with the interaction potential
v X = x!
G"B( )
between a particle of the da th species at the point
x and a particle of the g th species at the point

x', +then by the physical requirements of symmetry the

functions Ua 5(x) must satisfy the equations:
b

Ua,g(“x) = Ua’ﬁ(x) , (2.119)

and

vy, 5 (x)

vﬁ’@(x) . (2.120)
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As in section 2, it is convenient to incorporate

the Boltzmann factor into the potential by defining

ua’ﬁ(x) = Ua,ﬁ(x) / ®T .

In general it is now necessary to consider
functionals not of omne function G(x), but of p
functions Gl(x),...,Gp(x), and to define the p+l

functional operators Kl,..,Kp and J by

=64 (0)

[t}

K, f{Gl(x),..,Gp(x)}

and

: o)
J = v .
E ﬁGé

Q=1

Further, there must be p fugacities W relating
to each type of particle and the operator H of (2.19)

is now defined by

If ho is the greatest eigenvalue of H, then
the thermodynamic properties of the system are
determined by its dependence on the W and the

temperature T, for the pressure P 1is given by

P/%T = 7\.0 )

(2.121)

e £{6, (x)+u,  (x), . 0,6 (x)4u_ (x)]

(2.122)

(2.123)

(2.124)

(2.125)
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the density Pa of particles of the o th species by

Po = VYo 3 A ’ (2.126)
and if N and p are the total number and density
respectively of all particles, the internal energy U
of the system is determined by
U/ NT = L+ &+ ot T2 2 . (2.127)
2 3T o

Also, the distribution function specifying the

probability that particles of type G'l""a’r are

situated in the neighbourhoods of the points XyseesX,

respectively is (when X2 Xy y e xr)

) (s

nﬂ,lso-,a‘r(xl,‘i.’xr) = Wﬂal... W(Lr / - O’ml ml,mz °e
B L OO |
 (a) =t ; .
e Kmr-;l’o exp (;ﬁ(-.:?cl{+l) (’}\.mk- 7\.0) 3 (2-12 )
k=1

where the Klgla']:)l are the matrix elements of the
I

operator Ka.
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O, Discussion of results

It has been shown that all the statistical mechanical

properties of a one=dimensional gas are completely
determined by a knowledge of the eigenvalues of an operator
H and the matrix elements of a related operator K.
A basis may be chosen with respect to which both H and K
are symmetric, so that it is possible to apply a variational
approximation.,. The most obvious choice of a trial function
leads to results which are identical with the t!ring

approximation® of cluster theory.:

The symmetry of the operators is also of consequence
in that it enables exact expreésions to be derived for the
derivatives of the eigenvalues of H and the matrix
elements of K with respect to fugacity, from which
expressions follow relations between the distribution
functions and their derivatives with respect to either

fugacity or density.

If the system contains only one species of particles
and the interaction potential satisfies a homogeneous
linear differential equation of order p with constant
coefficients over the domain (0,00), H and K may be
reduced to difference~differential operators involving at
most p <variables. If p 4is small the resulting
eigenvalue equation may be solved numerically, so that

potentials such as
exp(=a |x| ) ,

x| exp(—atxl)



and the Coulomb potential

|=|

are amenable to investigation by this method (the last
case is slightly more complicated as a two~species system
containing both positively and negatively charged particles

must be considered to obtain meaningful results).

However, it should be emphasized that when considering
any particular interaction potential it is mnot always
desirable to follow the above working blindly. From the
point of view of obtaining solutions it may be preferable
to revert to the basic procedure of section 2, namely to
consider the canonical partition functions of a gas of
particles constrained to lie on the line segment [O,AJ
and interacting via the known potential, and to introduce
as specilialized as possible a form of the variable external
potential G(A=x) such that relations may be established
between the partition functions (or configuration integrals)
and their derivatives with respect to A, These relations
lead to an equation for the grande~partition function, and

if this can be shown to have solutions of the form
Y exp(hmA) ,

where Ym is independent of A, then the thermodynamic

properties of the system may immediately be investigated.

Thus in chapter 3 it is shown that direct application

of the results of section 8 to a one~dimensional plasma
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gives an eigenvalue equation involving four wvariables,
whereas a relation may be established between the canonical
partition functions without explicitly introducing a
variable external potential at all., Also, in chapter 4

it is shown that the basic procedure is capable of
handling potentials which contain a hard core, and that
eigenvalues hm and matrix elements Km,n may be

defined such that the statistical mechanical properties

of a gas of hard rods are given by (2.25), (2.26), (2.27)
and (2.29), even though this potential appears to violate

the differentiability condition of section 2.
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Chapter 3

THE ONE~DIMENSIONAL PLASMA

Le Introduction

It has been shown in chapter 2 that the statistical
mechanical properties of a one~dimensional gas with a
two~particle interaction may be calculated exactly if the
function space spanned by the potential function and its
derivatives over the domain (0,c¢) is of finite
dimensionality. It is fortunate therefore that the
one~dimensional Coulomb potential, which is proportional
to mod(x), falls into this class, as the properties of a
plasma, or gas of charged particles, are of obvious
physical interest, notably in the field of thermonuclear
fusion. While the properties of a one~dimensional
system are obvidusly not those of a real three~dimensional
gas, they may be expected to be of some value as a

qualitative guide.

One problem to which such a guide would seem to
be relevant is that which arises from the common device
of representing a three=dimensional plasma as a gas of
electrons moving, not amongst discrete ions, but in a
uniform background of positive charge (Salpeter 1958,

Abe 1959). Although such a device is a convenient means
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of avoiding the divergences which arise in the classical
theory from the infinite negative energy of an ion pair in
contact, it is clearly not an exact description of reality,
so that it is of interest to determine its accuracy in the
one~dimensional case, where no divergences occur and the
thermodynamic properties can be calculated both with this

approximation and without it.:

Accordingly, the aim of this chapter is threefold:
firstly to obtain the statistical mechanical properties of
a one~dimensional gas of discrefe electrons and ions, paying
particular attention to the case when their respective
charges are of equal magnitude but opposite sign; secondly
to obtain the properties of a one~dimensional gas of
electrons moving in a uniform neutralising charge background;

and finally to compare the behaviour of the two systems.,

20 The gas of discrete electrons and ions

2.1 Definition of the problem

Consider a system of positively charged ions of
charge 10 and electrons of charge 0 constrained to lie
on the line segment (Q,A]. Then as the Coulomb
interaction potential V(x) between two charges 01,02 may
be defined as the solution, subject to certain boundary

conditions, of the equation

qz v(x) = = o, o, 8(x) (3.1)

|
|
|
|
|



(é(x) being the Dirac delta function), in one dimension

it follows that

v(x) = ~% o o, |x| ,

so that the interaction potential between two positive
ions at x,y is Uii(x~y), between an electron at x
and an ion at y is Uei(xéy), and between two

electrons at x,y is vee(xéy), where

= ol n?
Ull(x) = z N c le ’
ei 2
and
v o (x) = <% 02 x| .
ee 2
This is clearly a two=species system of the general
type discussed in section 8 of chapter 2, As the

function space spanned by the potential functions and their

derivatives over the domain (0, ) consists of all
linear funcfions, it would appear to be necessary to
define two functions Gi(x) and Ge(x), each dependent

on two variable parameters:

Gi(x) ViE o+ by

and

Ge(x) = V.X 4 te .

(3.2)

(3.3a)

(3.3p)

(3.3c)
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The statistical mechanical properties can then
be determined in terms of the eigenvalues and matrix
elements of the differential operators H, Ki and
Ke, which involve all the four wvariables Vis Vg
ti and te.

However, this procedure is quite unnecessarily
complicated and obscures certain simplifications that
arise from the linearity of the potential function.

Also it is open to objection on more fundamental grounds
as it appears to determine the intensive thermodynamic
properties of a mixture of ions and electrons in
arbitrary proportions when the volume of the system is
infinitely large, whereas physically such properties

may be expected to exist only when the proportions are

such that the gas is electrically neutral.

It is therefore desirable to revert to the
basic procedure of chapter 2 and to incorporate the
neutrality of the gas into the original equations,

rather than attempt to add it as an afterthought.

t

2.2 Derivation of a recurrence relation

between configuration integrals

differentiation of the limits of integration of the

configuration integral, which is equivalent to setting

a particle at the point A, 4it is convenient to



consider a system of M ions and N electrons,
together with a charge at A. To ensure the mneutrality

of the system, this charge must be (N—Mn)o.

If the ions are located at the points xl,...,xM
and the electrons at yl,.,ugyN, the total potential

energy of the system is E, where

21 2\ . .. ‘ - E‘
E=%g0 {“‘"‘1 E lxgmxgal +m) lxgwl - e

J<d?t Jsk k<k'®
S onlem) Y (aexy) ¢ () Y (e | (o)
J k
the summations over jJ and j' being from 1 to M,
and those over k and k' from 1 to N.

It is now possible to see the simplifications
referred to earlier. Setting Xy (or yN) equal
to A in (3.4) is equivalent to reducing the value

of M (or N) by 1, and as (3.4) may be written
E =% OZ(NVM 2 i
= % ~Mn)“A + terms independent of A,

differentiation of the integrand exp(~E/%T) of the
configuration integral with respect to A is

equivalent to multiplying it by

& (N=Mn) 2/ 21T .

Accordingly, if the configuration integral QM N
-9

is defined by
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A
1 ;
QM,N = MI NI 5ﬂ[ dx;esdxy dy;eedyy exp(~E/xT)
(0]

its derivative with respect to A dis given by

2 & .2
32 A,y = Qei,n t Qner ~ T (M0)TQy

Together with the boundary condition that

when A = 0, the recurrence relation (3.6) completely

determines the QM N and hence the thermodynamic
2

properties of the system.!

2¢3 The thermodynamic properties

To investigate the behaviour of the QM N when
I

A is large it is convenient to define a generalised

grand partition function by

for then (3.6) is equivalent to the relation

?f
SA = or s

o/

where the operator H 1is given by

02 32 it 1 int
H = 777 = 4+ w(e" L 1 .
21T 32 ( + 0 )
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(3.7)

(3.8)

(3.9)

(3.10)



The boundary condition (3.7) becomes that

when A = 0, and if 1 4is rational and of the form
nn/nd, where 1n ~ and 1, are integers, it is
apparent from (3.8) that f is a periodic function

of t of period 2nnd.

Assuming that it is possible to choose a set

of constants bm such that

1 = E:: b zm(t) .

m

where the zm(t) are the eigenfunctions of the
operator H subject to the periodicity condition,

it is apparent from (3.9) and (B.ll) that for any

value of A,

f = }:: exp(hmA) b zm(t)

m

(hm being the eigenvalue of H associated with

the eigenfunction zm(t) ).

As negating t in (3.10) is equivalent to
complex conjugation, the eigenvalues hm of H
are either real or occur in pairs of complex

conjugates. On thermodynamic grounds it is to be

expected that there exists an eigenvalue which is

(3.11)

(3.12)

(3.13)
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real and greater than the real part of any other
(when w vanishes this is easily seen to be true),
so choosing this to be ho, the asymptotic behaviour

of f in the limit of A large is given by

f ~ exp(loA) b zo(t) .

To determine the thermodynamic properties of
the real system, i.e. when there is no fixed charge
at A, it is desirable to evaluate the grand
partition function Z*‘ obtained by summing the
right~hand side of (3.8) only over those values of
M and N for which N = M1, The dependence of f

upon t dis such that this is readily seen to imply

that
. 2nnd
Z = dt f/znnd ,
(o]
so that as
dt =z (t
\0 o

can be shown to be non~zero, the asymptotic behaviour
of Z* when A is large is such that

- *
lim A 1 log Z = ho .

A —oo

The dependence of ho on. w and T therefore
completely determines the thermodynamic properties of
the plasma. In particular, the pressure P is given

by

P/ AT = 7\.0 ’
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(3.14)

(3.15)

(3.16)

(3.17)
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the total demsity p of all the particles by

p = wo—— A\ ’ (3.18)

and the total intermnal energy of the system when

it contains M dions and N electrons by

R SN A N
U/ (M+N)xT = % + S 5T A . (3.19)
It is convenient in the following sections

to consider not only the total particle density p,
but also the individual ion and electron densities
Py and Poe Clearly these are given by

p; = p/(14m) (3.20a)
and

P, = mnp/(1+n) . (3.20b)

2.4 The distribution functions

The working of sections>2.2 and 2.3 has been
concerned only with the configuration integrals over
all particle coordinates, rather than with those which
are required for the determination of the distribution
functions, namely the integrals over all but a finite
number of coordinates. The generalization of the
working that is necessary in order to include these

follows precisely similar lines to that of section 3



of chapter 2, Rather than explicitly perform this
generalization with its inevitably complicated
notation, it can be stated that if a fugacity W,
is defined for the ion species and a fugacity LR

for the electron species by

w. = W/’l’)

and

and if H 4is defined not by (3.10), but by the

equivalent expression

2 2
g~ 9
H = 37 7 v vy Ko+ W, K ’
9t v
where
K. - e~1nt
i
and
K = elt 3
e

so that formally ko may be regarded as a function
of both Wi and We’ then the results of section 8
of chapter 2 may be applied immediately to the present
case, including the equation (2.128) for the

distribution functions.

For numerical work it is convenient to consider
not the twowparticle ion-~ion, electron-wion and

electronwelectron distribution functions given by (2.128),

73

(3.21a)

(3.21b)
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but the related functions gii(x)’ gei(x) and gée(x)

defined by
- 2
gii(x“Y) = nll(x’Y) / Pl ’ (3‘214&)
g.i(x=y) = n_,(x,5) / e, 0y (3.24b)
and v
8,0 (x=y) = n_ (x,y) / o2 , (3.24c)

as these have the advantage of exhibiting the
translational invariance explicitly and are normalised

so as to tend to unity at large particle separations.

Applying (2,128) and the definitions of the

fugacities W, and W it follows that

2mn
Eqp(x) = (vwg/popg) ] at 2,(6) Ky oxp { (B-),) x|} Ky 2,(t)

0
(3.25)
where @, f are to be regarded as variable indices,
each assuming either of the two 'values! i or e, and
zo(t) is normalised so that
277
d 2
J dt zo(t) = 1 . (3.26)

(]

2¢5 The syvstem of equal and opposite charges
When 1 = 1 +the system is composed of equal
numbers of ions of charge ¢ and electrons of charge

~C, An interesting study of this system has been

7h
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made by Eldridge and Feix (1962), using a high;speed
computer to follow the motion of the particles; and
exact results have been derived by Lenard (1961, 1963),
Edwards and Lenard (1962), and Prager (1961) by means
of combinatorial analysis and functional integration,
so that the results here obtained are identical with
these, though the method involves more elementary

mathematical techniques,

This case has the advantage that the operator

H becomes

o2 d2
H = 5%l ;;E + 2w cos(t) s (3.27)

which is real and symmetric, so that the eigenvalues
and eigenfunctions are all real. Further, the
eigenvalue equation is none other than the Mathieu
equation, so that the eigenvalues and eigenfunctions

maybe obtained from tables (N.B.S., 1951).

Accordingly it is quite a simple matter to
calculate the thermodynamic properties and two=particle
functions. It is readily seen from first principles
that these depend in a nonewtrivial way only on the

dimensionless parameter

N

v = (6°/ LoxT) , (3.28)
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so the equation of state is plotted in figure 3.1 in
the form of the dependence of P/pr on the parameter
T, and the two-=particle functions are plotted in

figures 3.2 and 3.3 for T = 0.4 and 2.0 respectively.

The maximum eigenvalue 7\.0 of H may be

(S

expanded in inverse powers of w© when w is large,
giving
2 1 2
7\.0 = 2W - (WO /Z)f.T) + o /32%,1‘ + e ’ (3-293.)
and when w 1is small it may be expanded in powers of

2 -
w , giving

3
A, = 4w2xm / P - 28 wt (xT / 02) + e o+ (3.29D)

(c.f. N.B.S., 1951, pp. xvii and xviii).

These two cases correspond to the high- and
low=temperature expansions of the thermodymamic
properties., Determining the equation of state from

(3.17) and (3.18), it is found that

P/ oxT = 1-%+17+ O(TB) (3.30a)

when T« 1, and

P/ pxT = % + 7/(64 T2) + o(r‘“) (3.30b)

when T V) 1.




P/pxT
1-0

0-9r

07+

0-6

0-5 -

Figure 3.1: The equation of state of a one~dimensional
plasma; curve A corresponds to that of a gas of equal
and opposite charges, curve B to that of a gas of
electrons in a uniform neutralizing charge background.

The dimensionless parameter T 1is given by

v = (A /upxtT)Z,

77



15

PX

Figure 3.2: Two-partiéle distribution functions
for a one-dimensional plasma with T = O0.k4.
Curves A and B are the electron-ion and
electron-electron functions for a gas of equal
and opposite charges. Curve C is the electron-
electron function for a gas of electrons in a

uniform neutralizing charge background.
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Figure 3.3: Two=particle distribution functions for a
one-dimersional plasma with T = 2,0, Curves A and B.
are the electron~ion and electron-electron functions
for a gas of equal and opposite charges. Curve C is
the electron-—electron function for a gas of electrons

in a uniform neutralizing charge background.
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Equation (3.30a) is the result of the Debye~Huckel
theory (Debye and Huckel, 1923) and shows that at high
temperatures the system behaves as a perfect gas, whereas
(3.30b) shows that at low temperatures the behaviour is
that of a perfect gas, not of density p, but of density
0/ 2 This may be explained physically by noting that
at low temperatures the ions and electrons may be expected
to arrange themselves in pairs, forming a gas of neutral

atoms.

e The gas of electrons moving in a uniform

background of positive charge

3.1 Discussion of possible methods

As has been pointed out in the introduction to
this chapter, it is of interest to consider not only a
system of discrete ions and electrons, but also one of
electrons moving in a uniform neutralising charge
background. There are no less than three possible
approaches to such a system and each has its own

advantages and disadvantages.

Firstly, there is the method used by Bohm
and Pines (1952), Abe (1959) and others, namely to
consider a gas of electrons interacting wvia a potential
which has the same Fourier transform E(S) as the
Coulomb potential, except that B(O) is set equal to
Zeroe. While this procedure is comvenient when applying

the prototype graph expansion of Mayer (1950), it does



not lend itself to the present techniques and will not

be considered further.

Secondly, if 1 is allowed to tend to zero
in the equations of section 2 relating to the discrete
charge system, the electrons may be regarded as moving
in a neutralising cloud of infinitely fine ion 'dust’'e.
It is shown in section 3,2 that in this limit the
ion=ion and electron«~ion distribution functions are
constant, so that the 'dust! is of uniform density and
therefore equivalent to a uniform charge background.
This approach yields both the thermodynamic properties

and the two~electron function.!

Thirdly, the charge background may be explicitly
introduced into the model, causing each electron to move
in a harmonic potential well centred on the mid-=point of
the line segment. It will be shown in sec?ion 3.3 that
the thermodynamic properties of this system:may be
obtained exactly and are identical with those derived by
the second approach, However, this method has the
disadvantage that the distribution functions are not

translationally invariant.

32 The 'dust=cloud! approach

Before taking the limit of 1 =zero in the
equations of section 2, care must be taken to avoid a

divergence of the canonical partition function arising
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from the integrations over ion coordinates, which are
now physically meaningful only in so far as they are

a means of spreading the ions over all available spacee.
It is therefore necessary to divide the partition
function by a factor (2nm%T)M/%AM, m being the mass
of each ion. In addition a term OgA/Qh must be
subtracted from the total potential energy to ensure
that its minimum value when the ions are uniformly
spaced be zero. Together these corrections have the
effect of subtracting a term (pixT - 02/24) from the
pressure and a term (MxT/2 + OgA/Zh) from the total
_ internal energy, so that using the relations (3.20) to
express the results in terms of the electron density

P,» the equations (3.17), (3.18) and (3.19) for the

thermodynamic properties become:

P/wr = A = op /04 /20T , (3.31)
-
P, = mwy=MA /(1+m) (3.32)
and
1,2 .
U/ NxT = %+ o, °F A - 02/ 2up xT (3.33)

N Dbeing the number of electrons in the system

The equations for the twowparticle functions
remain unchanged.
As 1 f% 0, it is apparent from (3.10) that

the operator H satisfies the limiting relation:

lim (H - w/n) = H ’ (3.34)
n-=>0



where
2 .
H':%%+w(elt;it) .
dt

The eigenvalue condition becomes that the

eigenfunctions z(t) must be Fourier analysable over

the interval (= oc0,00),

It follows that the limit
b, = lim (A, - w/m)

exists for each eigenvalue hr of H, and that the

quantities “r so defined are the eigenvalues of the

operator H'. Substituting
A, o= Mo+ W/m

in the equafions (3.31), (3.32) and (3.33), it is

found that in the limit of 1 =zero the equations

become :
P/ xT = + (1$w3’-—) L+ &/ 24%T
= pe dW (o] !
pe = w
and
1, I 2 -
U/ NxT = % + o, 57T o 02/ 24p XT .

As the ions can no longer be regarded as
physical particles, the electron demnsity Pe is now

the tofal particle density of the system, so that
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(3.36)

(3.37)

(3.38)

(3.39)

(3.40)



the suffix e may be ignored and the symbol p used
synonomously with Per This is comvenient when
comparing the properties of the chargeébackground
gas with those of the gas of discrete ions and
electrons, as such a comparison should be made when
the total particle densities of the two systems are

the same,

Adopting this procedure, it is desirable

to introduce the dimensionless wvariables

. 2 ) .
s, = pr/p + o7/ 24pxT
and the parameter T defined by (3.28), i.e.

. 2 %.
T = (0 / L].p%T) N

for then it follows from (3.35) and (3.41) that the

Sr are the values of S such that the equation

has a solution z(t) which is a Fourier analysable

function.: So’ the greatest such value, is therefore

dependent only on T and the equations (3.38),

(3&39) and (B(MO) may be written:

: T d
P/ pxT =1+ 3 3= S s
and
, Td
U/ NxT = 1 =5 =8 .

(3.41)

(3.42)

(3.43)

(3e4l)

(3.45)
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Though the equation (3.&3) has the advantage

of exhibiting SO as the greatest eigenvalue of a

symmetric operator, it is desirable from the point of

view of numerical work to transform it to a

difference=differential equation by setting

o0

v(v) = exp{ 2 Tz(vé%)B/B + (S¥T2/6)v} .[dt exp{it(vé%)} z

- o0
for then it follows from (3.43) that
s 2
%; y(v) = exp(~S~2T2v ) y(v+1) .

This equation has real regular solutions
which tend to a limit as v tends to either plus or
minus infinity, and if the limit at plus infinity is
known, then the solution is completely specified.
Normalising y(v) so that this limit is unity, it
follows that (3.47) may be written in the integral

form:

o0
N .

As the Fourier transform of z(t) must be

bounded, it follows from (3.46) that

1im y(v) = 0 s
vV —P =00
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(3.46)

(3.47)

(3.148)

(3.49)



and this is an eigenvalue condition on the wvalues
of S, as may be seen from figure 3.4, where

yv(v) 4is plotted for T = 0.4 and several values
of S. It can also be seen that the greatest
eigenvalue S0 is that value of S for which the
boundary condition (3.49) is satisfied and y(v)
is everywhere positive. As the equation (3.48)
can readily be solved numerically, S0 may be
determined for each value of T and the
thermodynamic properties evaluated by means of

(3e44) and (3.45).

In figure 3.1 P/p%T is plotted against
T, together with the corresponding values obtained
in section 2.5 for a system of discrete ions and

electrons of equal and opposite charge.

The distribution functions

From (3.25), both gii(x) and gei(x)
depend on the matrix elements of the operator

K., i.ee OFf
i )

eulnt

As 1 +tends to zero, this operator clearly

tends to unity, so that

exp { (50 ) |x1} K, z_(8) —> exp { (51)) |xI) z,(¢)

;—% zo(t)
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Figure 3.4: The function v(v) (normalized so as to
tend to unity as v tends to plus infinity) for

T = O.Ll. a.nd S = +m 9 210, 102, 008, O.Ll- a.nd 0.01



Substituting this result in (3.25), it follows that

g5 (x) —> i / o} | (3.50)
6o (x) —>w v/ el by | ab z(6) Xz (v) L, (3.31)

so that in this 1limit both the ion-~ion and
electron~ion distribution functions are independent
of the particle separation, thereby justifying the
assumption that the ion~cloud represents a uniform

charge background.

The electron~electron function is of course

not trivial; wusing (3.25), (3.34), (3.36) and (3.39),

it may be written

Boolx) = [ at z(6) &% exp{(iap ) Ixl} o* 2 (6) . (3.52)

-0

To determine this function numerically, it is

convenient to define a function Z(x,t) by
N " . t
Z(x,t) = exp {(H'““o) x} et zo(t) . (3.53)

Then in principle gee(x) may be obtained by
evaluating Z(x,t) from the partial differential

equation

2 y

3= Z(x,t) = (HI“NO) z(x,t) s (3.54)
together with the boundary condition

Z2(0,t) = o1t zo(t) y (3.55)
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for then gee(x), when x is positive, is given by

o0

e (x) = |at z_(8) ot z(x,t) ) (3.56)

-0

In practice it is preferable to first apply
the transformation (3.46) to Z(x,t), i.e. to define

a function Y(x,v) by

[= o}

Y(x,v) = exp{2¢2(v;%)3/3 + (SAT2/6)V} Idt exp{it(vé%)} Z(x,t) ’
= o0
(3457)
for then (3.54) and (3.55) become
(i S + 2—) Y(x,v) = exp(;S;Z T2v2) Y(x,v+l) (3458)
pOx DV i - ’ ? ¢
and
e 2.2
Y(0,v) = exp(-s5-2 v°v7) y_(v+1) i (3.59)
These two equations completely define Y(x,v)
and are quite straightforward to soive numerically.
gee(x) may then be determined from the transformed
form of (3.56), only the equation must be presented
in a form independent of the normaligation of yo(v),
as the condition previously imposed, namely
lim yo(v) = 1 , (3.60)

v =3 +oo

does not correspond with the normalization of zo(t)

required by (3;26). As it can be shown by consideration




of (3.35) that

R o0
§§dt oLt zi(t) = .fdt zi(t) ,
-0 -c0

on transforming (3.56) and the left~hand side of

(3.61) gee(x) is found to be given by:

dv v (1+v) Y(x,lsv exp(;zrczv2
(o}

§°
—~ o0
ee o
n 2 2
dv yo(l+v) yo(l—v) exp(-ZT v )
-0
The function gee(x) obtained in this manner
is plotted in figures 3.2 and 3.3 for T = 0.4 and
2.0 respectively.’ A rather surprising fact emerges
from these calculations, namely that the function does
not tend to unity when x, the separation between the
electrons becomes large; instead it performs undamped
oscillations about this value. This behaviour is
particularly noticeable at low temperatures, when the

amplitude of the oscillations becomes appreciable.

Mathematically this may be understood by a closer
inspection of the eigenvalue equation (3.43). If the
substitution

t —>t + 2n7m ,

where n is an integer, is made in (3.&3), an identical

equation is obtained, except that S 4is replaced by

S + 2inT o

(3.61)

(3.62)
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Accordingly, 4if So is the greétest real eigenvalue,
SO+21nn is also an eigenvalue, so that the condition
that So be greater than the real part of any other
eigenvalue is violated, and it is this fact which
leads to the oscillatory behaviour of gee(x).
Investigation of (3.52) shows that at large particle
separations the two-=electron function is periodic

(of period 1/p) and has maxima at values of x

which are integral multiples of l/p.

Physically this situation is not so unreasonable
as it first appears, for the system is no longer a gas
with only two-particle interactions,: The state of
lowest potential energy is that in which the electrons
are spaced at equal intervals along the line, and as
the one-dimensional Coulomb potential is.such that the
force on a particle depends only on the total charge
on either side of it, the electrons, provided they do
not pass one another, oscillate independently about
their respective static equilibrium positions, Once
one electron is fixed, therefore, all other electrons
tend to order themselves so as to be separated from it
by an integral multiple of the inter~particle distance

1/pe

This situation is quite different from that of
a gas of discrete charges, where each electron tends
to coalesce with an ion and then has no effect on any

other particle.
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Clearly equations such as (l.hB), which are
meaningful only when the two=particle function tends
to a limit for large separations, are not directly
applicable to this case.s The Jjustification for the
use of statistical mechanical formulae derived for a
system with only two~particle interaction is that
whenever such a difficulty is encountered, 1 dis to
be regarded as very small, but finite, and only
allowed to tend to zero when the reversal of limit

procedures is permissible,

High— and low~temperature approximations

When T is small, an asymptotic expansion for
S0 may be derived from (3.&3) by expanding the
exponential to second order in t, vyielding the
well=known equation for the parabolic cylinder
functions, and then applying perturbation theory to
the remaining terms in the Taylor expansiqn of the
exponential. This procedure shows that:

S =1=7T + gg %2‘+ O(TB) s

o

which from (3.44) implies that

L 2 .
P/p%T:l-%'v+§56-'r +0('r:3) .
When T is large, an expansion for s, may

be derived by solving the integral equation (3.48)

by iteration and choosing S so that the boundary

(3463)

(3.64)
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condition (3.49) is satisfied. The resulting integrals

may be simplified and it is found that

0o

1 .

exp(éso) = (%)2T + % ° j dv exp(QZTzvz) + O{exp(42T2)}
1
272

Substituting this result in (1,44) it follows that

. - 1 .
P/ o xT =%+ 7 exp(’-’-m‘z)/zn2 + O{exp(ész)} .

The first two terms of the expansion (3.64) are
the same as those derived by the Debyew~Huckel theory
and show that at high temperatures the system behaves
as a perfect gas,. At low temperatures it is evident
from (3.66) that the thermodynamic properties are the
same as those of the gas of equal and opposite discrete
chargese. This behaviour is also that of a system of
simple harmonic oscillators, each possessing the

'plasma frequency!

(Po/m)¥ :

3¢3 The external potential approach

The thermodynamic properties and the two-particle
distribution function of a one-~dimensional gas of
electrons moving in a uniform charge background have
been obtained exactly in the previous section.

However, the limiting procedure there required is a
rather delicate one, so that it is of interest to

obtain the results by a more explicit physical picture,

(3.65)

(3.66)
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namely to consider a system of N electrons of charge
=0 free to move on the line segment [baA], together
with a uniform distribution of positive charge of

magnitude pC extending from O to A, the particle

density being defined in the usual way by
[9] = N/A .

It is apparent that the system is in toto

electrically neutral,: Also, as the interaction energy
of two charges Oi’ 02 at Xl’ X, 1is
~% o, 0, |x;=x,]
2 "1 2 12 !

it is easily verified that the effect of the charge
background is to cause each electron to move in a

simple harmonic potential well
- 2
3 o® p (x=a/2)
centred on the mid~point of the line segment.
If the N electrons have position coordinates

xl,..ngN, the total potential energy EN of the

system is given by

2 By / o = %E::'Xj;xk' + p }:: (xJ.Q-'-A/Z)2 + C ’

i<k 3

where the summations run from 1 to N and C is a

term independent of the particle positionse.

(3.67)

(3.68)

9L



It is a feature of the statistical mechanics of
a system with twoeparticle interactions that an
arbitrary constant may not in general be added to the
interaction potential,; as this produces a factor of
type exp(;Nz) in the partition function, causing
the intensive thermodynamic variables to cease to have
a well=defined limit for large N, Thus care must
always be taken to choose the additive constant in the
potential so that physically meaningful results are
obtained. In this case it transpires that the constant

C in (3.68) must be given by
C = (N=1)N(N+1)/12p .
With this choice of C it follows that when
xl < X5 g cevee ¢ XN ’

(3.68) may be written

N
’ 2
2 : : . .
1 .
EN =35 0 p E -{xj- (23~1)/2p}
j=1
so that the minimum of the total potential energy is

zero and is attained when the electrons are spaced

along the line at equal intervals l/p.

As the potential energy does not depend only
on the relative coordinates of the electrons, this

model clearly cannot yield tramslation invariant

(3.69)

(3.70)
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distribution functions. However, it may be expected
to provide an adequate description of the thermodynamic
properties of the system, so that it is desirable to
evaluate the configuration integral

A

QN = —%T 31[ dxl..wde exp(éEN/%T) ’
o

or rather the function So of p and T defined

by

. -1 N
So = 1im N log(p QN) : ’

the limit being taken when N and A are large,

but p, given by (3.67), is constant.

To determine S0 it is convenient to generalise
QN slightly anrd define
. (N=%+v)/p
0o

so that QN(%) is the normal configuration integral

defined by (3.71).

It is now possible to apply a technique
similar to that used in chapter 2, oniy instead of
differentiating the generalised configuration
integral with respect to A, N being constant, it
is necessary to regard the density p as constant

and differentiate with respect to wv. From (3.73),

(3.71)

(3.72)

(3.73)
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this is equivalent to multiplying by N/p and setting
x - (ebw)/e

XN must then be greater than or equal to all the
other particle coordinates, so substituting (3.74)
in the expression (3.70) for the total potential

energy, it follows that

Ey = Byq *+ v /2p .
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