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Summary

The ‘raison d'etre1 of this thesis may fairly be 
described as the paucity of useful exact calculations of 
the statistical mechanical properties of a gas of particles 
with known interaction between pairs* Formally this problem 
was solved by J.W. Gibbs in 1902 in terms of the canonical 
and grand-canonical partition functions, but it was not till 
1936 that L* Tonks obtained explicitly the exact equation of 
state of a one—dimensional gas of non-interacting hard rods. 
Since then a number of calculations of the thermodynamic 
properties and distribution functions of classical 
one-dimensional continuum gases with simple interaction 
potential have been performed, using either combinatorial 
analysis or the techniques of statistical theory (Lenard, 19^1; 
Edwards and Lenard, 19^2; Prager, 19^2; Kac, 1959)*

Following a re—statement in chapter 1 of the relevant 
results of Gibbs, it is shown in chapter 2 of this thesis 
that the statistical mechanical properties of any classical 
one—dimensional gas may be expressed in terms of the 
eigenvalues of a functional operator and the corresponding 
matrix elements of a related operator. This result is 
derived by the simple device of differentiating the canonical 
partition function of the gas with respect to the ‘volume*
(i.e, the length of the line on which the particles are 
confined)•
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Although purely formal, this result has three 
significant corollaries : firstly, the fring approximation1, 
normally derived by the rather ad hoc procedure of summing 
those terms in the virial expansion which correspond to 
potential bond diagrams of ring type (Mayer, 1950 )j can be 
obtained by a variational approximation; secondly, the 
distribution functions and their derivatives with respect 
to the mean particle density satisfy a simple relation; 
and finally, when the interaction potential satisfies a 
homogeneous linear differential equation of order p (say), 
explicit, exact results may be obtained in terms of an 
eigenvalue equation involving at most p variables#

The last corollary ensures that the method may be 
used to obtain the properties of the one-dimensional plasma# 
This gas is considered in chapter 3 and explicit exact results 
obtained for both a system of equal and opposite charges and 
one of negative charges moving in a uniform neutralizing 
background of positive charge.

In chapter k it is shown that the method of 
differentiating the canonical partition function is also 
capable of yielding useful exact results when the interaction 
potential consists of a repulsive hard core together with an 
interaction satisfying a homogeneous linear differential 
equation of finite order# It follows that all the exact 
results previously obtained for one—dimensional continuum 
gases with particular interactions may be derived by this 
technique •
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It is also shown in this chapter that the formal 
results of chapter 2 are applicable to the simple Tonk's 
gas of hard rods, even though the potential function appears 
to violate the differentiability condition originally imposed 
in the general derivation. It is therefore reasonable to 
suppose that the results are va4-id for any ’physical1 
potential•

In chapter 5 an attempt is made to consider gases of 
higher dimensionality by replacing the continuum by a lattice 
and transforming the grand—canonical partition function by 
a method used by S,F. Edwards (1959)« It is found that this 
technique is particularly appropriate when the interaction 
potential satisfies a decaying wave equation (the Coulomb 
potential is thereby included as a special case), for then 
the problem becomes mathematically equivalent to that of 
calculating the canonical partition function of a system with 
nearest—neighbour interaction. In one dimension such a 
problem may be solved exactly, but in two dimensions it reduces 
to one identical with that of calculating the lowest energy 
level of a one-dimensional quantum mechanical system of 
particles with Hook’s law attraction between first and second, 
second and third, third and fourth, etc., and with an applied 
external potential. Although this problem remains unsolved, 
it appears to be the obvious starting point for any possible 
further progress towards the exact calculation of the 
thermodynamic properties of two— or higher—dimensional gases, 
in particular plasmas.
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The form of the relation derived In chapter 2 between 
the distribution functions of a one—dimensional gas and their 
derivatives with respect to density suggests that it is 
applicable in any number of dimensions# In chapter 6 it is 
shown that this is in fact the case and new functions are 
defined which satisfy an even simpler relation. As the 
two—particle function of this set is the Ornstein-Zernike 
direct correlation function, it seems natural to term them 
the direct correlation functions#

In view of the attractiveness of being able to predict 
statistical mechanical properties at one density in terms of 
those at an adjacent density, a closure of the relations by 
means of a superposition approximation is considered# The 
resulting equation for the two-particle direct correlation 
function is particularly straightforward to handle numerically.
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Chapter 1

THE BASIC EQUATIONS OF STATISTICAL MECHANICS

1• The thermodynamic properties in terms
of the canonical partition function

The name * statistical mechanics* was coined by Willard
Gibbs in 1901 to describe that branch of physics which is
concerned with the average or most probable behaviour of a
mechanical system (c.f. page 1 of ter Haar, 1955)* In the
cases where statistical mechanics is appropriate it is
usually not only impossible to determine exactly the detailed
behaviour of the system, but, more significantly, such
knowledge would be quite redundant. Consider for instance
the gas molecules in a room. For a reasonably sized room

27there would be of the order of 10 such molecules.
Clearly a specification of the exact location and velocity 
of each molecule would be an embarrassment to any experimental 
investigator, who desires only to know a few average 
properties of the gas as a whole, such as its temperature, 
density and pressure. What is required is not a detailed 
investigation of the equations of motion, but some method of 
averaging over all possible states of the system.
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The first steps in this direction were taken by 
Clausius, Maxwell, Boltzmann and others (c.f. page viii 
of Gibbs, 1902), who considered the most likely state of 
a system consisting of a large number of elements, each 
of which could be assigned its own individual energy 
(the microcanonical ensemble). While their results were 
extremely useful, the method of obtaining them is open to 
two very serious criticisms. Firstly, it is sometimes 
desirable to apply statistical mechanics to a system of 
only a few elements, and secondly most physical systems 
cannot be divided into elements which have independent 
energies; rather they interact one with another and it 
is only meaningful to consider the energy of the complete 
gystem.

These difficulties were overcome by Gibbs (1902), 
who suggested considering not an individual physical system, 
but a large collection or rensemble* of replicas of the 
system, all identical in so far as their physical 
composition and external constraints are the same, but 
differing from one another in the particular configurations 
or states that they assume. For the purposes of the 
present discussion it is convenient to suppose these states 
to be discrete, a concept which is easily understood in 
terms of the quantum mechanics, but appears inapplicable 
to a classical formulation. However, this difficulty may 
be overcome by regarding the phase space of the system as 
divided into infinitesimal sections of equal extension, 
each such section being regarded as a state.



Gibbs obtained his results by assuming the probable 

number of systems of the ensemble occupying a certain state 

to be inversely proportional to the exponential of the 

energy of that state, multiplied by a constant factor, 

called the modulus* This distribution of systems Gibbs 

called Canonical1, and justified his use of it by the 

physically meaningful results obtained* A slightly more 

fundamental procedure which leads to the same equations is 

to suppose an individual system is equally likely to assume 

any of the states available to it and apply an elementary 

probability argument to the total ensemble*

Adopting this latter procedure, the probability of

an ensemble of s systems being arranged so that s . areJ
in the j th state is

Y =
s 2

TT
j

s . 2 J
(l.i)

Clearly the numbers Sj must satisfy the condition

\ ŝ. = s , (1.2)

j

and in addition, if the total energy 

is known,

Etotal of the ensemble

(1-3)

where E .J is the energy of the system when it is in the

j th state
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It is now necessary to invoke a theorem which will
not be proved here, namely that the total number of
arrangements (the sum of all Y) is very nearly exhausted
by those values of s . which lie close to the values which

J

maximise Y (c.f. page 6 of Schrödinger, 1957)* In the 
limit of s infinitely large this is rigorously true, so 
as this is precisely the limit implicit in the present 
discussion the theorem may be adopted without the 
reservations necessary in the parallel argument for the 
microcanonical ensemble.

The values of s . which maximise Y, or more
J

conveniently log Y, subject to the restrictions (l.2) and 
(l.3)> are readily determined by the method of Langrange's 
undetermined multipliers. Using this technique it is 
required to find the unconditional maximum of

log Y a z__
j

(1.4)

In the limit of s
all the s . are large, so J
in the definition (l.l) of 
Stirling*s formula:

large it may be supposed that 
that the factorials occurring 
Y may be approximated by

log nl n (log n — l) (1.5)

Accordingly, if (l.4) is maximized with respect to 
each s ., it is found that
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log Sj + OL 4* p E . ss 0 (1.6)

or

exp(- a - ßE j) (1.7)

a may be eliminated by using (l#2), giving

s . J s exp(-ßE^.) (1.8)

where

Z (1-9)

The mean system energy U 

terms of ß and the energy levels 

(1.8), giving

may be determined in

E. from (1 .3) and 
3 '

U s E.  e x p (— ßEj) (l.lO)

In the light of the above procedure the constant 

ß should be regarded as defined in terms of U by (l.lO). 

However, ß turns out to be a fundamental quantity in its 

own right, being proportional to the inverse temperature, 

and it is more convenient to regard (l.lO) as defining U 

in terms of ß.

be

E . „ 
3

by

The quantity Z defined by (1 ,9 ) is therefore to 

viewed as a function of ß and the system energy levels 

This is the canonical partition function introduced 

Gibbs, from which the thermodynamic properties of the
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system may be derived. In particular, (l.lO) may be 

written:

U = Fp log z
To identify ß with the inverse temperature

and derive the other thermodynamic quantities, it is

necessary to consider the effect of external work.

Suppose the energy levels of every system of the

ensemble to be changed by some external agency from

E. to E. + dE .« Then the average work done on a J J J
system is

W = s“1 \ s . dE .L__  J J
j

If the quantity F is defined by

F = exp(-ßE^) j

then the resulting increase in F is

dF + j

which from (l.8) and (l.ll) is

(dß being the corresponding increase in ß)•

(l.ll)

(1 .12)

(1-13)

(1 .14)

(1.15)
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In view of (l.l2), (1.15) may with a slight 
re-arrangement be written:

d(F + ßü) = ß (dU - W) , (l.l6)

but as dU is the mean increase in energy of a system, 
the quantity (dU — W) occurring on the right-hand side 
of this relation must be the amount dQ of heat added, 
so that

d(F + ßU) = p dQ . (1.17)

It is now apparent that ß is an integrating 
factor of dQ, which from the second law of thermodynamics 
can only mean that

ß = 1 /xT , (1.18)

where T is the absolute temperature and x is a constant, 
namely Boltzmannrs constant (c.f. page 80 of ter Haar, 1955» 
and Pippard, 1957)*

(l.l6) may now be written:

dU = T dS + ¥ , (1.19)

where

S = XF + U / T , (l.20)

and this is precisely the second law of thermodynamics, 
with U the internal energy and S the entropy 
(to within additive constants) of the system.
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In the case of a gas the most usual form of work 
done on the system is that of increasing its volume. If 
increasing it by an amount dV requires the amount ¥ 
of work, the pressure P of the gas is defined by

¥ a ~ P dV

Comparing this expression with (l#12) and using (l.8), 
it is readily deduced that

P = - z“1 Y2 expC-ßEj) |y Ej ,
j

= p_1 ! v iog z

Summarising, if Z is defined by

Z exp(—Ej/xT) j

or in classical mechanics by

J-’Jdp dx exp |-E(£,x )/ XT }

the integrations in (l,24) being over all available 
coordinate (x) and momentum (p) space of the system, 
then the internal energy U and the pressure P are 
determined in terms of the volume V and the temperature 
T by

and
U = XT2 ~  log Z

P = XT ^  log Z

(1.21)

(1.22)

(1.23)

(1.24)

(1 .25) 

(1 .26)
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2, Application to an imperfect gas

2,1 The thermodynamic variables

With the exception of the introduction of the 

concept of pressure, the above discussion is perfectly 

general and applies to any isolated system, the detailed 

internal structure not having been considered at all.

It is now convenient to specialize the results to the 

case when the system consists of a large number N of 

identical particles of mass m, confined within a 

volume V and with an interaction potential b(x,y) 

acting between any pair of particles at points x and 

y (in dimensions higher than one x and y are to be 

interpreted as vectors)• The discussion will be confined 

to particles which have no internal degrees of freedom, 

in which case for any physical gas V(x,y) must be a 

function only of the radial distance between x and y, 

so that it is possible to write

U(x,y) = U(x~y) 

= u(y-x)
(1.27)

Clearly the functions V on either side of (l.27) are 
mathematically different, but there is no possibility 
of confusion and the two forms will be used
int erchangeably
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of* the 

vector 

energy 

parts,

Writing for the position coordinate or vector

j th particle and p . for its momentum (also au
in a two— or three-dimensional system), the total 

E(p»x) °P the system may be divided into two 

the kinetic and the potential, i.e.

where

and

e (p >x ) E1 . + E ,k m  pot

E1 . k m 2m

'pot
1 ̂ j<k<N

(1.28)

(1 .29)

(1.30)

Throughout this thesis classical mechanics will 

be employed. The reasons for this are two-fold, firstly 

in the case of most gases quantum mechanical effects 

could only be observed at very great extremes of temperature 

and pressure, phase transitions and other interesting 

phenomena lying well inside the domain of validity of the 

classical theory, and secondly the mathematical treatment 

of the classical theory is quite complicated enough 

without introducing the even more difficult equations of 

the quantum theory.

There is one very significant exception to the 

first statement, namely that of a plasma, or gas of 

positively and negatively charged particles interacting
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via the Coulomb potential. In two or three dimensions 

this potential diverges at short distances, causing the 

classical partition function to diverge (though whether 

the same is true of the thermodynamic variables is not 

quite clear)• This divergence does not occur in the 

quan t urn th e o ry •

Adopting the classical formulation (1.24)j the 

canonical partition function of the system is

ZN = j j dpl**dpN dxl**dxN expf “ (Ekin+ Epot) 1 X T ’ ’

where the momentum integrations range over all values 

and the coordinate integrations over the volume V.

The suffix N has been attached to Z to indicate 

the number of particles.

Substituting the explicit expression (l.29) for 
Inkin’ the momentum integrations may be performed to 

give :

ZN = (27imxT)ND'/2 Qjj

where is the configuration integral defined by

O f f  =  J  1  d x i * * d x N  e x p ( " E p o l / X T )

and D is the dimensionality of the system.

As it is well-known that the properties of a gas 

of given density are independent of its volume, so long

(1.31)

(1.32)

(1-33)

as this is large enough that surface effects may be ignored,
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for a ^physical* potential function U, must satisfy
certain limit theorems. In particular it must be true 
that

T)(p) = lim N“1 log(v“N Qjj) (1.34)

exists when N and V both tend to infinity, the particle 
density

p = N / v (1.35)

being kept fixed.

In addition to its explicit dependence on p,
T](p) is also a function of the temperature T. Whenever 
the derivative of r](p) with respect to either of these 
occurs it is to be assumed that the other variable is kept 
constant while performing the differentiation. Unless 
otherwise indicated the same is true of the derivatives 
with respect to p and T of any other quantity.

In order that the limit (l.34) should exist some 
care is necessary in choosing the potential function U.
For instance, adding a constant to U, while it does not 
change the equations of motion, introduces a multiplicative 
factor of type exp(—N ) in Q̂ T, which would in general 
lead to a violation of the limit condition. For
potentials which tend to zero sufficiently fast with 
increasing particle distance (1.34) is certainly satisfied, 
but long—range potentials, din particular the Coulomb 
potential, must be handled with some care if physically 
meaningful results are to be obtained.
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The dependence of T](p) on P and 1 completely 
determines the thermodynamic properties of the system.
The pressure P and internal energy U may be shown 
from (l*25)> (1,26), (1.32) and (1.34) to be given by:

p / XT = p - p2 n(p) (1.36)

and
U / NxT «* D/2 + T —  T}(p) (1.37)

Two other thermodynamic variables will be used 
later and are conveniently defined here, namely the 
concentration activity coefficient (Salpeter, 195®)

T = V «N-1 / «N h.38)

(where ^ and Q̂ T both refer to the same volume V
and it is to be supposed that N and V are large, 
but p, given by (l.35)> Is finite) and the quantity p 
which is related to the isothermal compressibility and 
is defined by

p“1 = —  p/ xt . (1.39)

Using (1.34) and (1.36), Y and p may be 
determined in terms of q(p). It is found that

log Y * - h(p) « P h (p) (l.40)
and

p = 1 « 2p T] (p) « p T) (p) (1.41)

(the primes on T)(p) denoting differentiation with 
respect to p, T being kept constant).
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2.2 The distribution functions

In addition to the thermodynamic variables, it is
frequently convenient to consider the functions which
determine the probability that a particle is contained
in each of the j volume elements dx, , ., . ,dx .1 3
situated at the points x^,...,x^. If this probability is

n C x ^ . ^ X j )  dx^ • • dx ̂ ,

then the j-particle distribution function n(x^}..,x^) is 
readily seen to be

(xx ,..,x )
(N-J)» %  V

[j dXj+l” dXN exp(“Epot/XT) ’ (1*42)

where the right-hand side is evaluated in the limit of 
N and V large, but p, given by (l.35)j fixed.

These functions may be shown to have certain 
properties. In particular they are symmetric, invariant 
with respect to equal translation of all variables, and 
satisfy the relation

n(x1 ,..,x.) — p n(x1(..,x ) (1.43)

when x becomes far removed from x.,,..,x. •
1 J ~ 1

addition, if (l,42) is differentiated with respect to 
x^, a recurrence relation between the distribution 
functions may be derived (c.f. page 70 of H.S. Green, 
1952)j namely
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k=2
(1 .44)

f

the primes on the function t) denoting its derivative.
In dimensions higher than one (l.44) is a vector equation 
and the derivatives should be replaced by gradient 
o perators•

The thermodynamic variables are of course 
completely specified by a knowledge of the two—particle 
distribution function. As this is a function only of 
the distance between the two particles, it is possible 
to define a function g(x) by

g(xi~x2) -2P n(xlix2) (1 -45)

This function has the advantage that it exhibits 
the translational invariance explicitly and is normalized 
so as to tend to unity at large particle separations (in 
the absence of interaction between the particles g(x) 
is equal to unity everywhere)•

To obtain the internal energy U and pressure P 
of the gas in terms of the function g(x) it is necessary 
to consider the effects of small variations in the 
temperature and volume on the configuration integral 
defined by (l.30) and (l.33) and then to use the equations 
(1.36) and (l.37)j together with the definitions (l.42) and
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(l045) of g(x)• Applying this procedure it is 
readily found that

pU / NXT = D/2 + ~  dx U(x) g(x)
and

P / pxT P
2xTD I dx |x*V l)(x)]g(x)

(1.46)

(1-47)

(c«f. page 53 of H.S. Green, 1952).

2.3 The grand-canonical partition function
Instead of considering the limiting behaviour 

of the canonical partition function Z it is sometimes 
convenient to define a grand—canonical partition 
function Z* (otherwise called the grand-partition 
function) by

0 0

N=0
(1.48)

where is the N—particle configuration integral
defined by (1.33) and Qq is taken to be unity, and
to consider the asymptotic behaviour of Z in the
limit of V infinitely large. It should be noted
that the definition (1 .48) differs slightly from the
normal one (c.f. page 274 of Rushbrooke, 1949) in that

N /Q̂ . rather than Z^ occurs as the coefficient of w /NJ. 
The effect of this is merely to include a factor

(27lmxT)D//2

in the variable w
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As N is now a dummy suffix it is no longer 
reasonable to regard p as an independent variable.
The appropriate variables for this formulation are 
the temperature T and the quantity w.

The grand—canonical partition function was 
originally obtained by Gibbs (1902) when he considered 
an ensemble of systems, each containing an unspecified 
number of particles. However, the thermodynamic 
properties may be derived from Z by using the known
limiting behaviour (l*34) of • In some ways this
is a retrograde step, but the technique falls naturally 
into the order of this exposition.

Retaining only the most significant terms when 
N and V are large, it follows from (1.34) that

= V® exp N T](N/V)

It is now possible to prove that in the limit of V 
infinitely large the summation (1.48) is dominated by 
its maximum term, i.e.

Z*
i

where N is the value of N which maximizes o
N
SFT % •

(1.49)

(1.50)



Using Stirling*s formula (l#5) for the factorial 
and differentiating logarithmically with respect to N,
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it follows that N q is given by

N
log w - log(No/v) + T}(No/v) + “  Tl'(No/v) = O

(for the moment the temperature T is to be regarded as

(l.5l) is exact in the limit of V infinitely 
large, when it determines the limiting value of N q/V. 
This value may very naturally be identified with the 
density, i.e#

P = No/V .

Taking the logarithm of both sides of (1.50) and 
using (l*49) and (l#5l)j the asymptotic behaviour of Z* 
is given by

log z* ~  V p \ 1 - p ^  n(p)]

Accordingly,
\ *= lim V ^ log Z*

V— > 00
exists and satisfies

X = p “  p2 3 7  Tj( p) »

so that from (1*36) \ has a very direct thermodynamic
significance, namely

\ ~

(1.51)

(1.52)

(1.53)

(1-54)

(1.55)

P / XT (1.56)



(1.57)

Also, eliminating the derivative of T](p) between 

(l*5l) and (1.55) and differentiating the resulting 
equation with respect to w, it is found that

'c) .p = w -—  A. «

If the dependence of \ on w and T is known,

the equations (1.56) and (1*57) together give the 

equation of state of the gas# In addition the internal 

energy U may be obtained by considering the effect of 

varying T, keeping p fixed, and using the relation 

(l#37) • This procedure yields:

u / NXT = D/2 + T p—1 — ; X , (1.58)

where the differentiation of \ with respect to T is 

to be performed at a constant value of w#

The quantity w has not as yet been given any 

thermodynamic significance, but from (1 .51) it may be 

written

w = p exp I — tq(p) - P n( p) i , (1*59)

so that from the definition (1 .40) of the concentration 

activity coefficient Y,

w = p Y , (l.6o)

w may now be identified with the fugacity of the gas 

(Salpeter, 195^)#

A useful relation between w and \i may be 

established at this stage, for differentiating (l#59)



logarithmically with respect to p, keeping T constant, 
it is found that

20

p —  log w 1 -  2 p ^  ( p )  - 2 'V \p n Cp)

which from (l,4l) is precisely the reciprocal of p, 
so that

log w 1

(l.6l)

(1.62)

Just as it is possible to define distribution 
functions in the canonical formalism, it is possible 
to do so in the grand-canonical. If the grand-canonical 
distribution functions are defined to be

oö

n *( 1 ’ • 0
1 *Z *dxN exp(-Epot/XT) >

(I.63)

where the right-hand side is to be evaluated in the 
limit of V infinitely large, it follows in analogy 
with the above considerations that the summation is 
dominated by the maximum term. This term is given 
by (1.51)> so that it is readily seen that the 
grand-canonical and canonical distribution functions 
are identical, provided w and p correspond to the 
same thermodynamic state of the gas.



3 Discussion of results

The object of this chapter has been to state as 
systemically as possible the basic equations of statistical 
mechanics and to present a notation that can be used in the 
following chapters without continual re-definition•
Naturally many interesting concepts and theorems such as 
irreversibility, Boltzmann’s H—theorem, and a detailed 
discussion of the micro—canonical ensemble have had to be 
omitted as not being directly relevant to the subject 
matter of this thesis.

One possible criticism that may be made of the 
present approach is that it appears to consider a gas of 
one species only. However, all the general results 
obtained may be readily extended to the case of a gas 
containing more than one species of particle (the obvious 
example in the present context is the plasma, which must 
contain both ions and electrons), while to do so explicitly 
in every equation would result in a considerable complication
of notation
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Chapter_2

A MATRIX FORMULATION OF THE STATISTICAL MECHANICS 
OF A ONE-DIMENSIONAL GAS

.L <2__ Introduction

Although the mathematical Foundations For the study 
oF the equilibrium properties oF a statistical mechanical 
system were laid in 1901 (Gibbs, 1902), it was not till 
1936 that Tonks (l93^) obtained the exact solution oF the 
equations For a gas oF one—dimensional hard rods. Since 
then a number oF exact solutions oF one—dimensional systems 
with particular interaction have been obtained (Lenard, 1961; 
Edwards and Lenard, 19^2; Prager, 19^2; Kac, 1959J 
Baker, 1961; Baur and Nosanow, 1962)• The methods used 
to obtain these solutions vary with the particular 
interaction under consideration, but in every case the 
thermodynamic properties are Found to be given by the 
behaviour oF the greatest eigenvalue oF an operator and 
the distribution Functions to be the corresponding matrix 
elements oF related operators. In this chapter a 
Formalism is set up which exhibits these properties 
explicitly when the system under consideration is a 
one—dimensional gas oF particles with arbitrary two—particle 
interaction. This Formalism is particularly appropriate 
when the interaction potential Function satisFies a
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homogeneous linear differential equation of order p (say) 
with constant coefficients over the domain (O, oo) , as the 
operator equations then reduce to difference-differential 
equations involving at most p variables. It is therefore 
possible to derive exact solutions for a decaying exponential 
potential or, so long as care is taken to avoid the 
introduction of redundant variables, the one—dimensional 
Coulomb potential.

The underlying principle used to derive the results 
is to note a simple fact which appears to be much neglected, 
namely that the partition function is a differentiable 
function of the volume of the system. In one dimension 
differentiation with respect to the ‘volume1, i.e. the 
length of the line on which the particles are confined, may 
be interpreted as fixing a particle at one boundary; so 
that if an arbitrary external potential is introduced, 
acting on the particles and centred on this boundary, a 
recurrence relation may be obtained between the partition 
functions. Such a relation leads immediately to an 
equation for the grand-partition function.

For simplicity a system containing only one species 
of particle is considered in the derivation, but the 
extension to a system of two or more species is quite 
straightforward and the appropriate generalisation of the 
results is stated in section 8.
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J2.___ Derivation of a recurrence_relation between configuration
integrals in terms of functional operators J and__K.

Consider a gas of N identical particles on the 
line segment between x=0 and x=A, interacting one 
with another by a force of potential u(x)• Then the 
total potential energy is

E = 2_ Xk^ ’ C2 *1)
j<k

where x^,..sx^ are the position coordinates of the 
particles and the summations over j and k range from 
1 to N.

E is of course identical with the total potential 
energy E^q  ̂ introduced in chapter 1. The suffix is 
dropped as the contribution to the partition function 
from the kinetic energy terms is known from section 2.1 
of chapter 1 to be trivial, so that the interest in this 
and subsequent chapters is focussed on the configuration 
integral, which is the contribution from the potential 
energy terms.

Putting
(x) U(x) / XT (2.2)

u(x) must be an even function and the discussion will 
be confined to potentials such that u(x) has continuous 
derivatives of all orders in the interval (0,eo), 
However, it seems that the results derived can be applied 
when this condition is violated, for in chapter 4 it will
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be shown that they are true when the system under 
consideration Is the one—dimensional gas of hard rods.

Derivatives at the origin are to be regarded 
as right—derivatives, so that potentials which are 
regular functions of mod(x) are permissible.

To obtain the distribution functions it is
necessary to suppose that some of the particles, say
those at , are fixed, while the remainder1 r 1

are free to occupy any position between 0 and A.
As A is here regarded as a variable with range 
10, ) it is therefore necessary to consider the
possibility of it being less than some or all of the 
fixed particle coordinates, even though the r—particle 
distribution function will of course still be evaluated 
when A is much greater than any of them.

If
X1 > x2 ^ > xr ̂  0 (2.3)

and A lies in the interval

xq 2 A > xq+1 > (2 -4)

it is convenient to define a modified potential energy

E* = U X̂j~ Xk^ + \__ G (A~xj) > (2.5)
j<k j

where the summations are no longer over all particles, 
but only over those lying between 0 and A. Thus j
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and k range from q+1 to N. This restriction is 

extremely important, for it ensures that the arbitrary 

function G(x) that has been introduced need only be 

defined over the domain 1,0, °o ) ,

It is now possible to define the modified 

configuration integral

1 AV r  = Tn -?J7 11 dxr+1..dxN exp (-E') . (2.6)
0

When G(x) is identically zero q is equal to the

configuration integral defined by (l.33)j divided

by NI. It turns out that it is frequently convenient 

to consider Q^/Ni, rather than QN itself, and the 

name 'configuration integral' will be applied to either 

of these quantities, it being clear from the equations 

which is meant.

Also, when G(x) is identically zero and A is 

greater than all of the fixed particle coordinates, the 

r—particle distribution function defined by (l,42) can 

be seen to be

nix
1 * x )r7 QN,r / StfjO (2.7)

Ssf, r
a functional 

with respect 

functional of

is to be regarded as a function of A and 

of G(x ), so that its functional derivative 

to Gr(x) may be formed. If f is any

G(x ) and h(x) is an arbitrary function,

the notation
6_
6h
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will be used to represent the linear operator which 

acting on f gives the functional derivative

lim € I f I G(x ) + e h(x)j - f G(x)jJ • (2.8)
€. -->0

On inspecting (2*5) and (2.6) it is apparent 

that differentiation of Q̂ . ^ gives rise to two terms, 

one corresponding to differentiating the limits of 

integration and the other to differentiating the 

integrand. The first of these is equivalent to 

multiplying by N—r and setting x^ equal to A,

From (2.5)} E* is then equal to

^  u (x j~ ^  + / fG (A~xj) + u (A~x j)/ + G (°) j
j < k  j

with the summations ranging from q+1 to N—1.

Apart from the additive term G(0) this is precisely 

the modified potential energy of the N—1 particle 

system with G(x) replaced by G(x)+u(x), so that 

the first contribution to the derivative of Q̂ . ^ is

e~G ^  Sj-ljr ̂  + u (x ) 1
(exhibiting the functional dependence explicitly)•

As

 ̂A
e-G(A-x) - G'(A-x) e“G G " x )

6_ -g (a ~x )
6G* 9
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where G'(x) is the derivative of G(x), the second 
contribution to the derivative is

V
Accordingly, if f^G(x)> is an arbitrary 

functional and the linear operators K and J are 
defined by

K f)G(x)| = e f{G(x) + u(x)}

and
J

the derivative of 
by the equation

^ with respect to A is given

7) A Ssi, %-l,r + V
which may be regarded as a recurrence relation between 
the configuration integrals.

As the definition of E* depends on the number 
of fixed particles with coordinates greater than A, 

considered as a function of A, has a step 
discontinuity at each fixed particle coordinate. 
Inspection of (2.5) and (2.6) reveals that

“ K QN,r *

where the plus and minus signs denote the value just

(2.9)

(2.10)

(2.11)

(2.12)

above and below any fixed particle coordinate
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Also, when A = 0,

(2.13)

from its definition.

The recurrence relation (2.1l), together with 
the boundary conditions (2.12) and (2.13)} determines 
each ^ uniquely, and so determines all the
statistical mechanical properties of the system. The 
remainder of this chapter is devoted to exploiting 
these equations.

3. The thermodynamic properties and distribution functions

It is advantageous to introduce the generalised 
r-particle grand-partition function f^ defined by

oc

N=r
(2.14)

(c.fo section 2.3 of chapter l).

Like f^ is a function of A and a
functional of G(x) • When G-(x) is identically zero
f is the normal grand-partition function and when it o
is also true that A is much greater than all the 
fixed particle coordinates it follows from (2.7) that 
the r-particle distribution function satisfies the 
equation

n(xn ,..,x) = f / f •' 1 ’ ’ r ' r 1 o (2.15)
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(2.1l), (2.12) and (2.13) give the following three

equations to define each f :

between fixed particle positions

~  f = H f , (2, l6)öA r r x '

across a fixed particle position

f+ = K f“ (2.17)r r \ j

and at A = 0

fr = wr , (2 .18)

where the operator H that has been introduced is 

defined by

H = w K + J . (2.19)

Formally these equations may be solved 

immediately to yield

AHf = e • 1 j (2,20a)o

(A-x )H x H
f = w e  1 • K . e . 1 , (2.20b)

(A—X-)H (x -x )H x H
f = w e . K . e . K . e  . 1  , (2.20c)

etc . j
when A is greater than all the fixed particle 

coordinates and
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It is apparent from these equations that it is 
unnecessary to consider H and K operating on any 
functional of G(x) which does not lie in the functional 
space {l} spanned by all functionals of the form

where k and the m . , n . are arbitrary non—negative0 J
integers. All such functionals can be seen to be Taylor
expandable about G(x) = 0, so that is a
sub—space of the space of all Taylor expandable functionals.

Suppose the eigenfunctionals ym{G(x)j of H
which lie in ( fj form a basis of { f]. Then there
exist constants c such thatm

m

and matrix elements K such thatm,n

n

(2.21)

(2.22)

If \ is the eigenvalue of H associated m
with the eigenfunctional ym|G(x)| , the equations 
(2.20) may be written in the more explicit form
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\ jtfL
ci e vs, (2 .23a)

fl = °i e K i,m e
A. (A-x  ) m v 1' y.

i,.
A. »X Am (x i-x o)ix2 ' m ^ l “x2' „ An (A-xl)On e K  , e<*' /O, m K e m,n

(2 .23b)

yn , (2.23c)
i,m,.

etc •

As f is the grand-partition function when 

G(x ) is identically zero, it is to be expected on 

thermodynamic grounds that

lim A ^ log fo
A— ^ oo

exists and is real. It then follows from (2.23a) that 

there exists an eigenvalue A.q which is real and greater 

than the real part of any other, so that when A is 

large
\ A

f ~  c e ° y • (2.24)0 0 0  x '

As H depends on the fugacity w and the 

temperature T, A.̂  may be regarded as a function of 

these two variables and then from section 2.3 of 

chapter 1, the equation of state and internal energy U 

of the N~particle gas are given by

and

P / XT =  A.* t

p = w c> W  O

rr, 1L_ \+ P T b T 0

(2.25)

(2 .26)

U / NxT X2
(2 .27)
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(p being the mean particle density N/a  of the gas).

In principle these equations are quite capable 
of describing a phase transition as it is possible to 
imagine a situation in which the two greatest eigenvalues 
cross over at some critical value of the fugacity w, 
so that undergoes a discontinuous change in its
derivative. Unfortunately it has been shown by Landau 
and Lifshitz (l95&) and van Hove (195^) that under 
normal circumstances a one—dimensional system cannot 
exhibit a phase transition, but Kac, Uhlenbeck and 
Hemmer (1963)> Baker (1961) and Baur and Nosanow (1962) 
have constructed systems for which these proofs are 
invalid, and for which a phase transition does occur.
The model of Kac et al. is studied in some detail in 
chapter 4 and it is shown that the transition is in fact 
due to the crossing of two eigenvalues.

To obtain the r—particle distribution function 
it is desirable to suppose that both A—x^ and are
large, so that x ^ ,..,x^ are all far removed from the 
boundaries of the gas and surface effects can be ignored. 
Then from (2.23):

f w c e K y1 o o , o J o j

>

(2.28a)

(2.28b)

etc
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The distribution functions may now be obtained 
from (2*15) and (2.24)* it is found that

n(xx ,,.,xr ) 9 1 « Kmr-1 o

when

r-1
exp (x .-x . )(\ — \ ) lv j j+l' v m o' J

j=l

2 >

(2.29)

As the distribution functions are by definition 
symmetric with respect to interchange of any two x ’s, 
they are completely defined by (2,29)*

4 o Reduction of the functional operators to
difference—differential operators involving 
a finite number of variables

As yet it has been supposed that G(x ) is a 
completely arbitrary function, so that the above operators 
K, J and H act on quite general functionals. However, 
examination of (2.9) and (2 .10) shows that if u(x) and 
its right—derivatives over the domain x^ 0 form a 
function space of finite dimensionality p (say), then 
the recurrence relation (2 ,ll) may be derived using a 
function G(x) which is restricted to this space and so 
may be defined in terms of p arbitrary variables.
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H and K are then difference-differential operators

Involving only these variables, so if p is small the 

equations for \ and the distribution functions may be 

handled by numerical methods#

the function space formed by it and its derivatives is of 

finite dimensionality are the decaying exponential and 

Coulomb potentials.

__Application to a potential which is a sum
of decaying exponentials

5#1 A symmetric representation of the operators

be written more explicitly when the potential function 

is a sum of decaying exponentials, i.e.

The two most obvious choices of u(x) such that

In view of the above remarks, the equations can

a
ex (2.30)

a

for then G-(x) may be restricted to the form

v expl—a x a ^v a (2.31)

a

The functionals of G(x) are then just

functions of the variables va and the operators

K and J are given by:
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K = exp(« 2 va) • exP( ^ a x
\  -tr /2a XT >̂va a (2.32)

and

a v -—a a  ̂v (2.33)

Provided the aa are all distinct, the functional 

space \ f I discussed in section 3 is now the set of 

functions of the v which are Taylor expandable aboutUj
the origin.

It is convenient to apply a similarity 

transformation to the operators by replacing the basis 

functions y(v_^,v^, • . • ) by the functions z ( t t ^ ,•••) 

defined by

__ oo
z(t1 ,t2,..) = exp(-i V aat^) J..j dvx dv2 .. y(v^, Vg, ..)

a" " 1x1

exp ( - y ~ aa(itq + va/2ba) j , (2.34)

where
b = (C / XT)a v a/ ' (2.35)

With respect to this new basis the operators 

K and J are given by:

K = exp( ) b^/4a ) • exp(i \ b t )v _a7 a' _ a a/ (2.36)

and

1 V -  ( L
2 ^ —  ^t2a a

- a2t2 + a ) a a a y (2.37)
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The basic space |fj spanned by all functions 
y(v , v ,..) which are products of powers of the v is 
from (2.34) readily seen to be in this new representation 
spanned by all functions z(t jt^,..) which are of the 
form of a product of powers of the t multiplied by

LL

exp(-

Clearly the integral over all t — space of the product
CL

of any two such functions converges.

The advantage of the present form of the operators 
is that H, which from (2.19) is defined by

H = w K + J (2.38)

is symmetric. Its eigenfunctions therefore are orthogonal 
and form a basis of the space j f j , which provides some 
justification for the assumption that this is the case in 
section 3* As K is complex it does not follow that the 
eigenvalues are real, but using the fact that negating 
every t has the same effect on H as complex conjugation, 
it can be shown that they are either real or occur in pairs 
of complex conjugates.

It is convenient to adopt a vector notation for 
the eigenfunctions z^(t^, t̂ ,, . . ) of ^ which lie in 
( f \ and to represent them as z^. Then the scalar product 
of any two such vectors may be defined as 

00

z— m z— n i-i—  00
(t1 * *2 i • • ) Z (tn 1**2 ...)• • • (2.39)
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5*2 A variational approximation
Unfortunately, unless the number of decaying 

exponential components of (2 .30) is very small, the 
equations are still too complicated to handle numerically.
It is therefore natural to seek an approximate solution, 
and as the operator H is now expressed in an explicitly 
symmetric form the most obvious procedure to obtain its 
maximum eigenvalue \ is to find the turning value of

I = _z f H _z / z_'_z , (2,40)

where z represents some trial function z ( t t  ̂ , . . ) ,

Considering the eigenfunctions when the 
exponential term in K is Taylor expanded to second 
order about some set of values of the t , it seems 
that a very reasonable choice of the trial function is

z (t1 ,t2 ,..) = exp (-4 Ra ,p (ta“ira)(tß“irß) ' > (2<41)
a, ß

where the R 0 may be regarded as elements of an a, ß
arbitrary symmetric matrix R and the r^ as components 
of an arbitrary vector r. It must be clearly understood 
that these and similar matrices and vectors which are 
introduced in this section are purely a convenient way 
of describing the properties of the trial function and 
are quite different from the vector representation of 
the eigenfunctions of H.
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Using this trial function, X may be computed 
from (2.40) and is found to be

I = h i Tr(D R“1)

where the matrix D is defined by

^ 2 cD — a 0 na,ß a a,ß

and

h w
a

1 -1 ^ b*R b

As H is complex it is not quite true to say 
that X is, to this approximation, equal to the 
maximum value of I, rather it is given by I when 
X is maximized with respect to R and minimized with 
respect to r.

Minimizing (2 .42) with respect to each r 
gives the set of equations

r = b h / a2 ,a a J a ’

while maximizing with respect to R gives the matrix 
equation

R 2 = D + h b b*

Strictly, equations (2.44)> (2.45) and (2.46) 
should be regarded as defining h, r and R. However,

(2.42)

(2.43)

(2.44)

(2.45)

(2.46)
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it turns out to be more convenient to regard h as an 
independent variable and to interpret (2.44) as a 
definition of w.

From the form (2.4l) of the trial function R 
must be a positive definite matrix, so that (2,46) 
defines it uniquely. Fortunately it is not necessary 
to determine R explicitly, rather it is sufficient 
to evaluate the quantities

Tr (D R“1) , Tr R and b'R-1^ ,

as R contributes to the maximum value of X only 
through these three expressions. Further, a relation 
can be obtained between them by multiplying (2.46) on 
the right by R ^ and taking the trace of each side, 
giving

Tr R = Tr (ü R“1) + h b'R“1^ ,

so that it is only necessary to determine Tr R and 
b 'R^b.

To do this it is desirable to consider the 
eigenvalues and associated eigenvectors Xß
R. From (2*46) these must satisfy the equation

(D + h b b ' ) x 2
P- £

(2.47)

(2.48)

(dropping the suffix ß)
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If x is the a th component of the vector &
x, (2.48) may be written

aa xa + h ba = ^  xc (2.49)

so that

xn = - h (b'x) b / (a2 - (2.50)

Multiplying (2,50) by b and summing over a,CC
the term b lx cancels out, leaving

1 0 (2.51)

Together with the positive—definiteness 

condition that p be greater than zero, (2.51) defines 

the eigenvalues of R and (2.50) the associated 

eigenvectors. One property of each eigenvector that 

will be required is the ratio of the square of b'x 

to x'-Xj this may be determined by squaring each side 

of (2.50) and summing over a, giving:

x 1 x (it's) / 0 2 n- p ) (2.52)

To evaluate b *R~^b 

must be orthogonal, so

note that the eigenvectors 

that

b y (b'£ß) / (*£ Xp)
ß

(2.53)
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and as

Br1 = M-ß1 > (2.54)

it follows immediately that

b'E-1b = 2  ^ß1 *Xp)2/ (x£ Xß) • (2.55)
P

may now be eliminated from this equation

by using the result (2.52), giving:

-1
-1 -2 r "~b * R b = h j s

K  1
2 / / 2 2vb / ( a  - Li.)a 7 v a • (2.56)

P 1 a
The trace of R is trivial to determine,

for it is given by

Tr R = ^  (1 . (2.57)
ß

These expressions may be greatly simplified 

if a function £f(h) is introduced and defined by

*4 *
ß

for clearly

Tr R rs jZf(h) ,

and as it can be shown by differentiating (2,51) 

with respect to h that

k*4 = * h“ 2 { ^ß JZ ba / <aa “ 4)2 ■
a

0(h) (2.58)

(2.59)

j (2.60)
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(2«56) may be written

~1b*R b d
dh

2 0'(h) (2.6l)

Also, inspection of (2,51) reveals that when h is 
small,

= aß + h bß / 2aß + 0(h2)

(with appropriate ordering of the [iß), so 'fc*ia't

0(<>)

and
fi'(o) bß / 2aß

From (2,47), (2.59) and (2.6l),

(2,62)

(2.63)

(2.64)

(2.65)

The expressions Tr(ü R "**) , Tr R and
»1b*R b are thus completely determined by the function 

0(h)• Substituting their values in (2,42) and 
eliminating the r by (2,45) gives the turning 
value of I, which in this approximation is

(S B"1) 0(h) - 2 h 0' (h)
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Using also the relation (2,63)} it follows that

= h + h 2N) b2 / 2 a2 + \ \$(o) - 0(h) + h 0'(h) \ ,
a

and from (2*44)» (2.6l) and (2*64)» w is given by:

h exp j; h ̂ ba / aa +  ̂ ~ ̂ * (0)] I
The equation of state may now be derived 

directly from these equations, for from (2*67),

h dh log w = 1 + h ^  ba / a a  + ^  h
a

but from (2.66) this is precisely the same as the 
derivative with respect to h of X  } i.e.

d
dh X o w

If the temperature is regarded as constant,
so that X is viewed as a function of the single o
variable w, it is known from (2.26) that the mean 
particle density is

P = »

or, as X and w are each functions of h, o

P d
dh X o / dh log w

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)
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Comparing (2.69) and (2.71) it is apparent that

h = p . (2.72)

h may therefore be assigned a direct physical 
significance, namely the density of particles in the 
gas# This result is not surprising when it is noted 
that in view of the form (2,38) of the operator H, 
the effect of an infinitesimal change of w on the 
eigenvalue \ is, by first order perturbation theory, 
given by

w d
dw X o

tw z
— o

K z / z * z— o —o — o (2.73)

for when z is the trial function (2,4l) the 
right-hand side of this equation is precisely the 
definition (2 .44) of h#

As, from (2.25), the pressure P is given by

P / XT = X 
' o (2.74)

the equation of state may now be written in terms of 
the function 0, for using (2.72) and (2.74)> (2.66)
becomes

+ £{jzf(o) - 0 (p ) + p jzf'(p)} . (2.75)

The results of this section are more conveniently 
expressed in terms of the differentiated equation of 
state expressing the derivative of the pressure with
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respect to the density as a function of the density 

and the temperature. Differentiating (2.75) with 

respect to p, this is

1)
7>P P/ XT 1 + P 2 ba / aa + 2 P ^ (p)

a
(2.76)

At this stage it is obviously desirable to 

obtain a more explicit interpretation of the function 

JZf(p) in terms of the potential function D(x) , for 

its definition as the sum of the positive roots of 

(2,51) seems somewhat obscure. To do this it is 

convenient to introduce the Fourier transform v(s) 

of U(x) defined by
oo

U(s) = ( dx U(x) e~1SX . (2.77)
— 00

Substituting the explicit form (2.30) of u(x) , 

the integration in (2.77) may be performed, giving

(̂s) = E 7 (a2 + s2)a

or, using the definition (2.35) of b ,

s) = XT Ŷ_ b a / (aa +
a

Comparing (2.79) and (2,51) it is now apparent that

the ji_ are related to the poles of the function P

”(

(2.78)

(2.79)

t»(s) 1 / (1 + p v(s)/xT) (2.80)
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In fact the poles of £o(s) lie on the imaginary- 
axis of the complex s—plane at the points

s

This suggests investigating the integral
oo

F (p) = ~2=n i ds f-w ( s ) - 1 \ »
mm 06

where the term —1 has been introduced to ensure 
convergence•

—  2As to(s) — 1 tends to zero as s when s 
becomes large, the integration may be extended to 
include the semicircle at infinity in the upper 
half-plane and then by Cauchy’s theorem,

F(p) = i residues of co(s) — 1 at poles on 
the upper imaginary axis.

These residues may be determined in terms of the
u,0 and it is found that P

F(p)
a

Comparing this result with the equation (2.6o), 
it follows that

F(p) SS

P
d
dh f

(2.81)

(2.82)

(2.83)

(2.84)

(2.85)



which in view of the definition (2.58) of ^(h) and 
the equality of p and h implies that

48

F ( p )  =  -  P $ ' ( p )

(2,8o), (2.82) and (2.86) therefore define the
function j#(p) (or rather its derivative) directly 
in terms of u(s). Noting also that, from (2.79)}

"(0) = xT ba / aa
a

the differentiated equation of state (2*76) may be 
written:

I7  p/ XT =
X + ü-üM ___ £___

4H ( XT ) 2
r u (s)
1 ds ----------

-00 L1+pu(s)AtJ

This equation contains no explicit reference to 
the particular form (2.30) of the potential function 
and it seems reasonable to suppose that it is a good 
approximation when t>(x) is any Fourier analysable 
function. Further, its extension to systems of 
dimensionality greater than one is obvious.

Xn view of the fact that it has been derived by 
a variational technique, the result may be regarded 
as a justification of the rather ad hoc procedure 
frequently used to obtain the Debye**Hucke 1 theory, 
namely summing over U-bond diagrams of ring type 
(Mayer, 1950; Abe, 1959)j For it is precisely the

(2.86)

(2.87)

(2.88)

fring approximation’ derived by this method
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6 , The derivatives of the_eigenvalues of H and the
matrix elements of__K with, respect to fugacity

In section 5 it has been shown that a basis 

of the functional space ~j fj may be chosen with 

respect to which both K and J are symmetric 

operators, provided the potential function is a sum 

of decaying exponentials. This form for the 

potential is sufficiently general to suggest that 

such a basis exists for at least a wide class of 

potentials o

Suppose that such a basis has been chosen and 

that with respect to this the eigenfunctionals of H 

are represented by the vectors z^, the associated 

eigenvalues being \ • Then from the definition 

(2.19) of H,

(w K + J) z = \ z • (2.89)x ' —m m —m ' '

As K and J are symmetric operators, the 

eigenvectors are orthogonal, and if they are

normalized so that

then the matrix elements of K occurring in the 

equation (2.29) for the distribution functions may 

be defined by

K = z ' K z— m —n

(2.90)

m , n (2.91)
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It is now desired to consider the effect of
small variations of w on A and K , i,e. tom m,n
evaluate their derivatives with respect to the fugacity
w.

To do this it is first necessary to consider 
the change induced in the eigenvectors. If 82^ -*-s
the increment in induced by incrementing w by
the infinitesimal amount 8w, a matrix L may be 
defined by

8z =— m 6w (2.92)

To determine L consider the effect of such an
increment on the equation (2,89). If 8A^ is the
increment induced in A it is readily seen thatm

(w K + J « \ ) 6z = (8A — 6w k ) z • (2,93)x nr —m m ' —m

Substituting the expression (2,92) for 6z^ and 
noting that

K z— m m,n z— n

it follows that

(2.94)

6w L (A ~ A ) z m , n N n nr —n 8 A z — 8w m —m K z , (2,95)m , n — n N J

which, as the are orthogonal, implies that

6w Km ,m (2.96)
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and

L = K / (\ - 71 )m,n m, n m n' j

provided m ^ n.

The values of L may be determined bym, m J J
considering the effect of incrementing w on the 

normalization condition (2.90), This shows that

zT 6z = 0—m —m

so that from (2,92),

3

L a 0m, m

As, from the symmetry property of the operator

K,
m,n n , m

it follows from (2,97) and (2,99) that L is an 
antisymmetric matrix.

Consider now the effect of incrementing w

on the definition (2.91) of K ; clearly' * m,n

m,n 6z1 K z + zr K 6z—m —n "~m —n

Applying (2.92), ifehis gives

6w  ̂Hn, & ^ &, n

(2.97)

(2.98)

(2.99)

(2.100)

(2.101)

m,n + L n K n )n, 1 sO,m' (2.102)
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Substituting the expressions (2.97) tor the elements 
of L and recalling the definition of a derivative, 
(2.102) implies that

d
dw Km,n

1 Ki
-  \

jlS
i

(2.103)

(using the symmetry property (2.100) ). Also it
follows from (2.96) that

d_
dw \m Km, m (2.IO4)

In principle the equations (2.103) and (2.104)
completely define the statistical mechanical properties
of the system if the values of the \ and K canm m, n
be determined at zero fugacity, but unfortunately there 
appears to be no simple way of evaluating or classifying 
these values for an arbitrary potential. However, the 
equations do enable simple relations between the 
distribution functions and their derivatives with respect 
to fugacity (or density) to be established, as will be 
shown in the following section.



53

7 > The derivatives of the distribution functions 
with respect to fugacity and density

Having established the relations (2,103) and 
(2.104) Tor the derivatives of the matrix elements 
Km n and the eigenvalues with respect to fugacity
(the temperature being regarded as a constant), it is a 
trivial, though cumbersome, matter to obtain from 
(2.29) an expression for the derivative of the r-particle 
distribution function.

Defining the matrices and by

yh) - ) k „ k, / (\ ~ \ ,)m ,n /__ m, 1 1,n N m JC* 0
and

X  2)m,n K g K p / (\ - \ p) m, 1 l,n * x n Jo* 0

the relation (2.103) may be written

“ Kdw m,n Y U )  + y (2)m,n m , n (2

so that dividing each side of (2.29) by wr and 
differentiating with respect to w, it is found that
when x. > x2 > * * ? X ,r

r-1 r-1
d -r —  w n XÄ- dw ' 1(x-! } • • >Xr ) — r

L a j + w-rI _ { Bj1) + b52)}’= w ) A ̂ + w
j=l j —0

.105)

.106)

.107)

(2.108)
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where

K o o)

(x j exp
\ (xk “xk+i) (' (2 .109)

and

B<a> = v r J
m l J **,mr~l

o j m 1 ,m2 Y (a)m. _ , m . m . j m . _J-l J J J+l

[ • • • K expm . _ ,m . _ m _ 1 oJ+l j+2 r—1

r-1

}__(xk"xk + l ^ ?Sn, ~ V  j (2.110) ̂ T T" K.k=l

(interpreting and as O ) .

These equations are obviously far too complicated 

to be either useful or interesting in their present form. 

However, it will now be shown that the right-hand side of 

(2 .108) can be quite simply expressed as

00

w~r~l 1 d x 1 t (x 1) ,
“00

where

t (x  f ) = n(x^, . • , xr , x 1 ) “ p n(x-ĵ , . • , x^) . (2. Ill)

As x JL^  x 2 ^ ••• ^ x r , it is convenient to 

divide this integral into the r+1 components:
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and

d x ! T(x*)

S . J
fX .
I J dx' t (x ') (l $ j < r-1)
V *VXj+1

dx1 ^(x1)
— oo

(2.112a)

(2.112b)

(2.112c)

The ordering of the variables x^, • • , x.^, x f is 

completely specified in each of the integrals Ŝ ., 

so that from (2«29) the function f(xr) is a simple 

exponential less a constant. The integrations are 

therefore trivial to perform, though rather unwieldy, 

and after some re—labelling of dummy suffixes and 

noting that, from (2.26) and (2.104)3

(2.113)

(2.114a) 

(2.114b)

(2.114c)

they yield:

S = w ,o o

S . = w (A . + b W  + B^ij ) (l $ j $ r-l)J J J J"*-1-

and

S = w B^2)
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that
Summing all the components S . It is apparent

OD

I dx 1 TT(x  1 )
— OÖ

rs w
r~_L
V ~z__
j=l

A . J + w
r-1

j=0
+ 9 (2.115)

lJ,rwhich is precisely w times the right-hand side
of (2 .108). Accordingly it follows that

wr+1 cb W~r n (x± ’•'>xr) = )dx' i n (x1>••> xr ,x 1) - p n(x ,..,x ) I
— 00

(2.116)

(using the definition (2.Ill) of T(xf) ).

This is clearly a relation between the 
distribution functions and their derivatives with 
respect to fugacity. In view of the equation (1.62), 
namely

^ P dp l0g w = 1 » (2.117)

where |i is the quantity related to the isothermal 
compressibility defined by (l,39) and the temperature 
is to be regarded as a constant, the fugacity 
derivative may be replaced by a density derivative 
to give:

<XI

(P P ~r) n (x1 ,..,xr) = j dx* [n(x1 ,,.,xr ,xt) - p n(x1?..,xr)I
— 00

(2.118)



Although, this result has been proved only when

xi> x2 > ‘'' * xr

it follows from the known symmetry of the distribution 
functions that it is true for any ordering of the 
variables•

As the relation (2*ll8) contains no explicit 
reference to the potential and is meaningful in any 
number of dimensions, it may be expected to be 
applicable to a gas of arbitrary interaction and 
dimensionality* This point is discussed in chapter 6, 
where the relation is shown to be of general validity 
and is used to derive similar results for the 
Ursell—Mayer cluster functions (Mayer and Montroll, 
1941; page 203 of M* Green, I96I; page 78 of 
Uhlenbeck, 1963) and a new set of functions, termed 
the direct correlation functions*

8* Extension of the results to a many~species system

In statistical mechanics it is frequently 
necessary to consider the behaviour of a gas which is 
a mixture of various types, or species, of particles* 
One obvious example is air, which contains nitrogen, 
oxygen and other gases in known proportions. Another 
is a plasma, or gas of charged particles, where it is
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essential to suppose the existence of both electrons 

and positive ions to ensure that the system as a whole 

be electrically neutral. The above formulation is 

therefore deficient in so far as it considers a system 

containing only one type of particle.

However, the derivation of similar results for 

a many—species system, while involving a considerable 

complication of the equations, follows exactly the 

same logical steps as those used above. For this 

reason it seems sufficient merely to state the 

generalization of the more significant results of this 

chapter, namely those of section 3*

If the gas contains p species of particles, 

with the interaction potential

V p(x “ x,)

(2.119)

between a particle of the a th species at the point 

x and a particle of the ß th species at the point 

x ’, then by the physical requirements of symmetry the 

functions ß(x ) must satisfy the equations:

V ß (x)

and

(x) (2.120)
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As in section 2, it is convenient to incorporate 
the Boltzmann factor into the potential by defining

Ua,p(l) Ua,ß(x) / XT (2.121)

In general it is now necessary to consider
functionals not of one function G(x ) , but of p
functions G (x),...,G (x), and to define the p+1 -L P
functional operators K^,..,K^ and J by

K (x),..,G (x)}
~g l (0)

f{Gi(x)+uia (x),..,G (x)+u (x)}P' # ' pa
(2.122)

and

(Xsl
(2.123)

Further, there must be p fugacities w relatingCL

to each type of particle and the operator H of (2.19) 
is now defined by

J + w Ka a
a=l

If is the greatest eigenvalue of H, then
the thermodynamic properties of the system are 
determined by its dependence on the w^ and the 
temperature T, for the pressure P is given by

(2.124)

\P / XT (2.125)
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the density p^ of particles of the a th species by

wa oa
(2.126)

and if N and p are the total number and density 
respectively of all particles, the internal energy U 
of the system is determined by

U / NxT i.2 (2.127)

Also, the distribution function specifying the 
probability that particles of type , • « , are
situated in the neighbourhoods of the points x^,..,x^ 
respectively is (when x^ ̂ x^ 7> ^ xr)

U ’ x ) r7 V “z_
ml>••»mr_i

0 >m1
(o-2)K  ̂
m1,m2 • •

... K
(a )v r /
m -j , or~l’

- r>»l

exp
k=l

(\n^* \>> (2.128)

where the 
operator

K (^)m,n
K .a

are the matrix elements of the
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9 » Discussion of results

It has been shown that all the statistical mechanical 

properties of a one-dimensional gas are completely 

determined by a knowledge of the eigenvalues of an operator 

H and the matrix elements of a related operator K,

A basis may be chosen with respect to which both H and K 

are symmetric, so that it is possible to apply a variational 

approximation. The most obvious choice of a trial function 

leads to results which are identical with the ‘ring 

approximation* of cluster theory.

The symmetry of the operators is also of consequence 

in that it enables exact expressions to be derived for the 

derivatives of the eigenvalues of H and the matrix 

elements of K with respect to fugacity, from which 

expressions follow relations between the distribution 

functions and their derivatives with respect to either 

fugacity or density.

If the system contains only one species of particles 

and the interaction potential satisfies a homogeneous 

linear differential equation of order p with constant 

coefficients over the domain (0,oo), H and K may be 

reduced to difference—differential operators involving at 

most p variables. If p is small the resulting 

eigenvalue equation may be solved numerically, so that 

potentials such as

exp(—a |x! ) ,

|x| exp(—a IxI )
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and the Coulomb potential

x

are amenable to investigation by this method (the last 
case is slightly more complicated as a two—species system 
containing both positively and negatively charged particles 
must be considered to obtain meaningful results)«

However, it should be emphasized that when considering 
any particular interaction potential it is not always 
desirable to follow the above working blindly. From the 
point of view of obtaining solutions it may be preferable 
to revert to the basic procedure of section 2, namely to 
consider the canonical partition functions of a gas of 
particles constrained to lie on the line segment '0,Aj 
and interacting via the known potential, and to introduce 
as specialized as possible a form of the variable external 
potential G(A—x) such that relations may be established 
between the partition functions (or configuration integrals) 
and their derivatives with respect to A« These relations 
lead to an equation for the grand—partition function, and 
if this can be shown to have solutions of the form

y exp(\ A) ,

where y^ is independent of A, then the thermodynamic 
properties of the system may immediately be investigated.

Thus in chapter 3 it is shown that direct application 
of the results of section 8 to a one—dimensional plasma



gives an eigenvalue equation involving four variables, 
whereas a relation may be established between the canonical 
partition functions without explicitly introducing a 
variable external potential at all# Also, in chapter 4 
it is shown that the basic procedure is capable of 
handling potentials which contain a hard core, and that 
eigenvalues \ and matrix elements K may be
defined such that the statistical mechanical properties 
of a gas of hard rods are given by (2.25), (2.26), (2.27) 

and (2.29), even though this potential appears to violate 
the differentiability condition of section 2.
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Chapter 3

THE ONE-DIMENSIONAL PLASMA

-L.___ Introduction

It has been shown in chapter 2 that the statistical 
mechanical properties of a one—dimensional gas with a 
two—particle interaction may be calculated exactly if the 
function space spanned by the potential function and its 
derivatives over the domain (0,c*o) is of finite 
dimensionality. It is fortunate therefore that the 
one—dimensional Coulomb potential, which is proportional 
to mod(x), falls into this class, as the properties of a 
plasma, or gas of charged particles, are of obvious 
physical interest, notably in the field of thermonuclear 
fusion. While the properties of a one—dimensional 
system are obviously not those of a real three-dimensional 
gas, they may be expected to be of some value as a 
qualitative guide.

One problem to which such a guide would seem to 
be relevant is that which arises from the common device 
of representing a three-dimensional plasma as a gas of 
electrons moving, not amongst discrete ions, but in a 
uniform background of positive charge (Salpeter 1958,
Abe 1959)* Although such a device is a convenient means
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oT avoiding the divergences which arise in the classical 
theory from the infinite negative energy of an ion pair in 
contact., it is clearly not an exact description of reality, 
so that it is of interest to determine its accuracy in the 
one—dimensional case, where no divergences occur and the 
thermodynamic properties can be calculated both with this 
approximation and without it.

Accordingly, the aim of this chapter is threefold: 
firstly to obtain the statistical mechanical properties of 
a one—dimensional gas of discrete electrons and ions, paying 
particular attention to the case when their respective 
charges are of equal magnitude but opposite sign; secondly 
to obtain the properties of a one—dimensional gas of 
electrons moving in a uniform neutralising charge background; 
and finally to compare the behaviour of the two systems.

2. The gas of discrete electrons and ions 

2.1 Definition of the problem
Consider a system of positively charged ions of 

charge T}G and electrons of charge — G constrained to lie 
on the line segment [0,A_/. Then as the Coulomb 
interaction potential U(x) between two charges 0^,0^ ma^ 
be defined as the solution, subject to certain boundary 
conditions, of the equation

v 2 V(x) = 6(x) (3-1)
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(6(x) being the Dirac delta function), in one dimension 
it follows that

U(x) = -i a1 o2 |x| (3.2)

so that the interaction potential between two positive 
ions at x,y is f_^(x~y) , between an electron at x 
and an ion at y is ^^(x-y) , and between two 
electrons at x,y is ^^(x-y), where

Uii/X) = -i Tj2 °2 |xj , (3-3a)

Ue±(x) = i T] O |x| (3.3b)

and
\) (x) = -»-g- c (3.3c)

This is clearly a two—species system of the general 
type discussed in section 8 of chapter 2. As the 
function space spanned by the potential functions and their 
derivatives over the domain (O,^ ) consists of all 
linear functions, it would appear to be necessary to 
define two functions G^(x) and Ge(x), each dependent 
on two variable parameters:

G± (x) V  . X  + t 1

G (x) - v x + teN ' e e

and
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The statistical mechanical properties can then
be determined in terms of the eigenvalues and matrix
elements of the differential operators H, K_̂  and
K , which involve all the four variables v. , v , e i e
t. and t • i e

However, this procedure is quite unnecessarily 
complicated and obscures certain simplifications that 
arise from the linearity of the potential function.
Also it is open to objection on more fundamental grounds 
as it appears to determine the intensive thermodynamic 
properties of a mixture of ions and electrons in 
arbitrary proportions when the volume of the system is 
infinitely large, whereas physically such properties 
may be expected to exist only when the proportions are 
such that the gas is electrically neutral.

It is therefore desirable to revert to the 
basic procedure of chapter 2 and to incorporate the 
neutrality of the gas into the original equations, 
rather than attempt to add it as an afterthought.

2,2 Derivation of a recurrence relation 
between configuration integrals

As the method of chapter 2 is based on
differentiation of the limits of integration of the
configuration integral, which is equivalent to setting

a particle at the point A, it is convenient to
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consider a system of M ions and N electrons, 
together with a charge at A. To ensure the neutrality 
of the system, this charge must be (N~Mt)) 0,

If the ions are located at the points ,•••,x
and the electrons at y^,.##,y^, the total potential 
energy of the system is E, where

E — 2_2 2a
j<a’

+ V lx.i~ykl
k < k f

the summations over j and j* being from
and those over k and k 1 from 1 to N.

It is now possible to see the simplifications 
referred to earlier. Setting x^ (or y^T) equal 
to A in (3«4) is equivalent to reducing the value 
of M (or N) by 1, and as (3*4) may be written

2 2E = \ O (N“MT)) A + terms independent of A,

differentiation of the integrand exp(—E/xT) of the 
configuration integral with respect to A is 
equivalent to multiplying it by

2 2 - C (N-Mri) /2 XT

Accordingly, if the configuration integral Q'M, N
is defined by
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Si, N “ MJ N{ H dx1 ..dxM dy1 ..dyN exp(~E/xT) ,

its derivative with respect to A is given by

Qb A ^M,N Sl~l,N + Sl,N-l “ 2 XT (N~Mxl) S i,

Together with the boundary condition that

Si, N " SM,0 SN,0

when A = 0, the recurrence relation (3*6) completely 

determines the ^ and hence the thermodynamic

properties of the system*

2*3 The thermodynamic properties

To investigate the behaviour of the ^ when

A is large it is convenient to define a generalised 

grand partition function by

O O  O Ü

\ wM+N -M e*-it (N-Mt}) Q'M, N
M=0 N=0

for then (3*6) is equivalent to the relation

bf
U

where the operator H is given by

2 2 
2xT u 2

, / i t  1 “lT}t,.+ w(e + — e )v T) 1

(3.5)

(3.6)

(3-7)

(3.8)

(3.9)

(3.10)
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The boundary condition (3*7) becomes that

f = 1 (3.11)

when 0, and if

hTi/ridJ where and T)d

apparent from (3.8) that f 

of t of period 2nr\ •

rational and of the form 

are integers, it is 

is a periodic function

Assuming that it is possible to choose a set

of constants b such that m

1 3

where the z^(t) are the eigenfunctions of the 

operator H subject to the periodicity condition, 

it is apparent from (3*9) and (3»ll) that for any 
value of A,

(3.12)

(3.13)

("A. being the eigenvalue of H associated with 

the eigenfunction z^(t) )•

As negating t in (3*10) is equivalent to 

complex conjugation, the eigenvalues A. of H 

are either real or occur in pairs of complex 

conjugates# On thermodynamic grounds it is to be 

expected that there exists an eigenvalue which is

exp (A. A) b z (t) N m ' m m '



71

real and greater than the real part of any other 
(when w vanishes this is easily seen to be true), 
so choosing this to be , the asymptotic behaviour
of f in the limit of A large is given by

f ^  exp(A A) b z (t)' o '  o o ' '

To determine the thermodynamic properties of 
the real system, i.e. when there is no fixed charge 
at A, it is desirable to evaluate the grand 
partition function Z obtained by summing the 
right-hand side of (3*8) only over those values of 
M and N for which N = Mr). The dependence of f 
upon t is such that this is readily seen to imply 
that

* r21%Z = dt f/2nr] ,
J0 a

so that as
d
dt z (t)

can be shown to be non-zero, the asymptotic behaviour 
of Z when A is large is such that

r 2nn

i 0

lim
A — ? 00

-1 * A log Z

The dependence of on w and T therefore
completely determines the thermodynamic properties of 
the plasma. In particular, the pressure P is given

P/XT — \ fo

(3.14)

(3.15)

(3.16)

by
(3.17)
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the total density p of all the particles by

P = i

and the total internal energy of the system when 
it contains M ions and N electrons by

U/(M+N)XT = i + fr

It is convenient in the following sections 
to consider not only the total particle density p, 
but also the individual ion and electron densities 
p_̂  and p^. Clearly these are given by

pi = p/ ( i + ii)

and

Pe = hp/(l+h)

(3.18)

(3.19)

(3.20a)

(3.20b)

2.4 The_distribution functions
The working of sections 2.2 and 2.3 has been 

concerned only with the configuration integrals over 
all particle coordinates, rather than with those which 
are required for the determination of the distribution 
functions, namely the integrals over all but a finite 
number of coordinates. The generalization of the 
working that is necessary in order to include these 
follows precisely similar lines to that of section 3
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oT chapter 2 , Rather than explicitly perform this 

generalization with its inevitably complicated 

notation, it can be stated that if a fugacity w_̂  

is defined for the ion species and a fugacity 

for the electron species by

Wi = w / t)

and
w = w e

(3.21a)

(3.21b)

and if H is defined not by (3*10), but by the 
equivalent expression

H s

where

and

K.1
—iT]te 4

Ke
ite j

(3.22)

(3.23a)

(3.23b)

so that formally may be regarded as a function

of both w. and w , then the results of section 8 1 e
of chapter 2 may be applied immediately to the present 

case, including the equation (2.128) for the 

distribution functions.

For numerical work it is convenient to consider 

not the two—particle ion-ion, electron—ion and 

electron—electron distribution functions given by (2.128),
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but the related functions g_^(x) , 

defined by
gei(x) and se e ^

and

eü (x-y)

gei(x-y)

geeh-y)

= ni±(x,y) / P 2±

= n ei(x,y) / pe p±

= “ee(X ’y) / Pe

I

t

as these have the advantage of exhibiting the 

translational invariance explicitly and are normalised 

so as to tend to unity at large particle separations*

Applying (2.128) and the definitions of the 

fugacities w_̂  and w , it follows that

gaßb) = (wawß/papß)
27t n

dt zQ (t) Ka exp I (H-\o)|x|}Kß

where a, ß are to be regarded as variable indices,

each assuming either of the two ’values1 i or e, and

z (t) is normalised so that o s '

dt
J 0

1

2.5 The system of equal and opposite charges

When T] s 1 the system is composed of equal 

numbers of ions of charge C and electrons of charge 

~G, An interesting study of this system has been

(3.24a)

(3.24b)

(3.24c)

zo(t) >

(3.25)

(3.26)
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made by Eldridge and Feix (1962), using a high-speed 
computer to follow the motion of the particles; and 
exact results have been derived by Lenard (1961, 1963)} 
Edwards and Lenard (1962), and Prager (1961) by means 
of combinatorial analysis and functional integration, 
so that the results here obtained are identical with 
these, though the method involves more elementary 
mathematical techniques.

This case has the advantage that the operator 
H becomes

H = iff ” 2 + 2w cos(t)dt

which is real and symmetric, so that the eigenvalues 
and eigenfunctions are all real. Further, the 
eigenvalue equation is none other than the Mathieu 
equation, so that the eigenvalues and eigenfunctions 
maybe obtained from tables (N.B.S., 195l)•

Accordingly it is quite a simple matter to 
calculate the thermodynamic properties and two-particle 
functions. It is readily seen from first principles 
that these depend in a non—trivial way only on the 
dimensionless parameter

(g2/ 4pHT)2

(3.27)

TT = j (3.28)
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so the equation of state is plotted in figure 3*1 in 

the form of the dependence of P/pxT on the parameter 

T, and the two-particle functions are plotted in

figures 3*2 and 3.3 for t = 0 .4 and 2. 0 respectively.

The maximum eigenvalue 0 of H may be

expanded in inverse powers of
1

w 2 when w is large,

giving

\ = 2w - (w D2/2xT)2 + ö2/32xT + ... , (3.29a)

and when w is small it may be expanded in powers of 
2w , giving

3
\ q = 4w 2xT / o2 - 28 w^ (xT / O2) + .. . (3.29b)

(c.f. N.B.S., 1951> PP* xvii and xviii).

These two cases correspond to the high- and 

low-temperature expansions of the thermodynamic 

properties. Determining the equation of state from 

(3.17) and (3.18), it is found that

P / pxT = 1 - i T + 0(t 3) (3.30a)

when T << 1, and

p / pxT = i + 7/(64 T2) + o (t”4) (3.30b)

when T >> 1.
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P/pxT

Figure 3,1: The equation of state of a one-dimensional
plasma; curve A corresponds to that of a gas of equal 
and opposite charges, curve B to that of a gas of 
electrons in a uniform neutralizing charge background. 
The dimensionless parameter T is given by 
T = (o2/4pXT)2.



Figure 3*2: Two-particle distribution functions
for a one-dimensional plasma with T = 0,4* 
Curves A and B are the electron-ion and 
electron-electron functions for a gas of equal 
and opposite charges. Curve C is the electron- 
electron function for a gas of electrons in a 
uniform neutralizing charge background.
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Figure 3 • 3 '• Two-particle distribution functions for a 
one-dimensional plasma with. T = 2.0. Curves A and B 
are the electron-ion and electron-electron functions 
for a gas of equal and opposite charges. Curve C is 
the electron-electron function for a gas of electrons 
in a uniform neutralizing charge background.
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Equation (3*30a) is the result of the Debye—Huckel 
theory (Debye and Huckel, 1923) and shows that at high 
temperatures the system behaves as a perfect gas, whereas 
(3 *30b) shows that at low temperatures the behaviour is 
that of a perfect gas, not of density p, but of density 
p/2. This may be explained physically by noting that 
at low temperatures the ions and electrons may be expected 
to arrange themselves in pairs, forming a gas of neutral 
atoms•

3 « _ The gas of electrons moving in a uniform
background of positive charge

3.1 Discussion of possible methods
As has been pointed out in the introduction to 

this chapter, it is of interest to consider not only a 
system of discrete ions and electrons, but also one of 
electrons moving in a uniform neutralising charge 
background. There are no less than three possible 
approaches to such a system and each has its own 
advantages and disadvantages.

Firstly, there is the method used by Bohm 
and Pines (1952), Abe (1959) and others, namely to 
consider a gas of electrons interacting via a potential 
which has the same Fourier transform b(s) as the 
Coulomb potential, except that u(o) is set equal to 
zero. While this procedure is convenient when applying 
the prototype graph expansion of Mayer (l950)> it does



not lend itself to the present techniques and will not 
be considered further.

Secondly, if q is allowed to tend to zero 
in the equations of section 2 relating to the discrete 
charge system, the electrons may be regarded as moving 
in a neutralising cloud of infinitely fine ion ^ust',
It is shown in section 3*2 that in this limit the 
ion-ion and electron—ion distribution functions are 
constant, so that the * dust1 is of uniform density and 
therefore equivalent to a uniform charge background.
This approach yields both the thermodynamic properties 
and the two-electron function.

Thirdly, the charge background may be explicitly 
introduced into the model, causing each electron to move 
in a harmonic potential well centred on the mid-point of 
the line segment. It will be shown in section 3*3 that 
the thermodynamic properties of this system may be 
obtained exactly and are identical with those derived by 
the second approach. However, this method has the 
disadvantage that the distribution functions are not 
translationally invariant.

3.2 The Must-cloud1 approach
Before taking the limit of q zero in the 

equations of section 2, care must be taken to avoid a 
divergence of the canonical partition function arising
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from the integrations over ion coordinates, which are
now physically meaningful only in so far as they are
a means of spreading the ions over all available space*
It is therefore necessary to divide the partition

, \M/2 Mfunction by a factor (̂ TTmxTJ A , m being the mass 
of each ion. In addition a term G A/24 must be 
subtracted from the total potential energy to ensure 
that its minimum value when the ions are uniformly 
spaced be zero. Together these corrections have the 
effect of subtracting a term (p_̂ xT - G /24) from the 
pressure and a term (Mxt/2 + o A/24) from the total 
internal energy, so that using the relations (3»20) to 
express the results in terms of the electron density 
p̂ , the equations (3*17)» (3*l8) and (3»19) for the
thermodynamic properties become:

P / x.T = X - p /r) + C2/24XT ,

?e = ’l W h  \  /<1+T>)
and

U / NxT = i + —  bz ^ - O2/ 24p XT ,' 4 p ö T o / rer e

N being the number of electrons in the system

The equations for the two—particle functions 
remain unchanged,

As T) —  ̂0, it is apparent from (3*10) that 
the operator H satisfies the limiting relation:

lim (H - w/n) = H 1 ,
*1 -» 0

(3.31)

(3-32)

(3.33)

(3.34)
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where
2 2lTt C d / i t  . . v

H = 2KT ~ 2  + W (e ~ Xt>dt

The eigenvalue condition becomes that the 
eigenfunctions z(t) must be Fourier analysable over 
the interval (— oo} oo ) .

It follows that the limit

= 1±m (\, ~ w/tq)

exists for each eigenvalue X of H, and that the 
quantities so defined are the eigenvalues of the
operator H * • Substituting

X = LL + w/n o o

in the equations (j,jl)} (3 *3 2 ) and (3*33) j it is
found that in the limit of T) zero the equations 
become:

P / XT = pe + (l-wf^) + o2/ 24XT ,

Pe "  W

and

U / NXT = i “ °2// 24PeXT

As the ions can no longer be regarded as 
physical particles, the electron density pg is now 
the total particle density of the system, so that

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)
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the suffix e may be ignored and the symbol p used 
synonomously with p^. This is convenient when 
comparing the properties of the charge-background 
gas with those of the gas of discrete ions and 
electrons, as such a comparison should be made when 
the total particle densities of the two systems are 
the same#

Adopting this procedure, it is desirable 
to introduce the dimensionless variables

Sr = ^r/p + ° / 24pxT

and the parameter T defined by (3*28), i.e#

T = (a2/ 4pxT)2 ,

for then it follows from (3*35) and (3*4l) that the
S are the values of S such that the equation r

(2 T2 ~ ~  + eli: - it + ^ ) z(t) = S z(t) 
dt

has a solution z(t) which is a Fourier analysable 
function. Sq , the greatest such value, is therefore 
dependent only on T7 and the equations (3*38),
(3*39) and (3«40) may be written:

P / pxT = 1 + f S0

and

U / NUT = 1 - I “  SQ

(3.41)

(3.42)

(3.43)

(3.44)

(3-45)
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Though the equation (3*43) has the advantage 
of exhibiting Sq as the greatest eigenvalue of a 
symmetric operator, it is desirable from the point of 
view of numerical work to transform it to a 
difference—differential equation by setting

y(v) = exp [ 2 T2(v -J-) "V3 + (S-T2/6)v ]
oo
\

dt exp jit (v— \

—  O O

for then it follows from (3*43) that

y(v) = exp(-S-2T2v 2) y(v+l)

This equation has real regular solutions 
which tend to a limit as v tends to either plus or 
minus infinity, and if the limit at plus infinity is 
known, then the solution is completely specified. 
Normalising y(v) so that this limit is unity, it 
follows that (3*47) may be written in the integral 
form:

00

y(v) = 1 - j dv* exp(—S-2f2v 12) y ( v r+l) •
v

As the Fourier transform of z(t) must be 
bounded, it follows from (3 *4 8) that

lim y(v) = 0 ,
v — ) — 00

z (t) o'

(3.46)

(3-47)

(3.48)

(3.49)
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and this is an eigenvalue condition on the values 
of S, as may be seen from figure 3*4» where 
y(v) is plotted for T = 0.4 and several values 
of S # It can also be seen that the greatest 
eigenvalue Sq is that value of S for which the 
boundary condition (3«49) is satisfied and y(v) 
is everywhere positive. As the equation (3 .48) 
can readily be solved numerically, Sq may be 
determined for each value of TT and the 
thermodynamic properties evaluated by means of

(3*44) and (3*45)-

In figure 3*1 P/pXT is plotted against 
T, together with the corresponding values obtained 
in section 2.5 for a system of discrete ions and 
electrons of equal and opposite charge.

The distribution functions
From (3*25), both &qq(x ) and g (x)

depend on the matrix elements of the operator
K. , i .e . of 1

e“iT)t

As T) tends to zero, this operator clearly 
tends to unity, so that

exp { (H-\q) |x|j K± ZQ (t) --* exp < (H-\q) |x| } ZQ (t)

--■> z (t)o x ' .
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v

Figure 3*4: The function y(v) (normalized so as to
tend to unity as v tends to plus infinity) for 
T = 0.4 and S = + oo , 2.0, 1.2, 0.8, 0.4 and 0.0.
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Substituting this result in (3*25)j it follows that

S i d »  — * / Pi

oo

ge±(x) — ^ we w./ pe p. \ dt zQ(t) eXt zQ(t)
-  o O

so that in this limit both the ion—ion and 

electron—ion distribution functions are independent 

of the particle separation, thereby justifying the 

assumption that the ion—cloud represents a uniform 

charge background.

The electron-electron function is of course 

not trivial; using (3*25)> (3»34)> (3-36) and (3*39)j
it may be written

oo

see(x) = j dt zo (t) elt exP|(H,-^0) lx !} elt z0 (t) .
— oo

To determine this function numerically, it is 

convenient to define a function Z(x,t) by

Z(x,t) = exp { (Hr-po) xj e11 zQ (t)

Then in principle &ee(x) niay be obtained by 

evaluating Z(x,t) from the partial differential 

equation

^  Z(x,t) = (H'-p.o) Z(x,t)

together with the boundary condition

it
zo(t) i

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

z(o,t) “ e (3.55)



for then ge0(x), when x is positive, is given by

CXJ
gee(x) = j dt *0 (t) elt z(x,t)

—  £>0

Xn practice it is preferable to first apply 
the transformation (3.46) to Z(x,t), i.e. to define 
a function Y(x,v) by

oO
Y(x ,v ) = expj 2t 2 (v — |-) ̂ /3 + (S~T2/6)v| dt exp[it (v~-§-) j

—  <*j

for then (3*54) and (3*55) become

(" ^  + j~) Y(x,v) = exp(—S—2 r2v2) Y(x,v+l) , (3• 5s)

and
Y(O,v) = exp(—S—2 T2v 2) yQ (v+l) . (3•59)

These two equations completely define Y(x,v) 
and are quite straightforward to solve numerically. 
g^e (x) may then be determined from the transformed 
form of (3.56), only the equation must be presented 
in a form independent of the normalization of y (v) , 
as the condition previously imposed, namely

lim yQ (v) = 1 , (3»6o)
v — ? +00

does not correspond with the normalization of zQ (t) 
required by (3*26). As it can be shown by consideration

Z(x,t)

(3.57)

(3.56)
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oT (3.35) that

dt z2 (t)o N J dt z2(t)o N J

00

-00 - 00

on transforming (3»5^) and the left-hand side of 
(3»^l) gee(x) is found to be given by:

(3.6l)

00

dv y Q (l+v) Y(x,l—v) exp(~2Tr2v2)
g (x) = --- ---------------------------------- . (3 .62)e e 00J dv yo (l+v) yo (l-v) exp(-2o;2v 2)

— 00

The function g (x) obtained in this manneree N '
is plotted in figures 3*2 and 3*3 for TT = 0.4 and 
2,0 respectively# A rather surprising fact emerges 
from these calculations, namely that the function does 
not tend to unity when x, the separation between the 
electrons becomes large; instead it performs undamped 
oscillations about this value# This behaviour is 
particularly noticeable at low temperatures, when the 
amplitude of the oscillations becomes appreciable.

Mathematically this may be understood by a closer 
inspection of the eigenvalue equation (3*43)* If the 
substitution

t — ^ t + 2nTC ,

where n is an integer, is made in (3*43)> an identical 
equation is obtained, except that S is replaced by

S + 2in7i



Accordingly, if Sq is the greatest real eigenvalue, 
S^+2inTC is also an eigenvalue, so that the condition 
that Sq be greater than the real part of any other 
eigenvalue is violated, and it is this fact which 
leads to the oscillatory behaviour of gee(x)# 
Investigation of (3*52) shows that at large particle 
separations the two—electron function is periodic 
(of period l/p) and has maxima at values of x 
which are integral multiples of l/p.

Physically this situation is not so unreasonable 
as it first appears, for the system is no longer a gas 
with only two—particle interactions# The state of 
lowest potential energy is that in which the electrons 
are spaced at equal intervals along the line, and as 
the one—dimensional Coulomb potential is such that the 
force on a particle depends only on the total charge 
on either side of it, the electrons, provided they do 
not pass one another, oscillate independently about 
their respective static equilibrium positions# Once 
one electron is fixed, therefore, all other electrons 
tend to order themselves so as to be separated from it 
by an integral multiple of the inter—particle distance 
i/P.

This situation is quite different from that of 
a gas of discrete charges, where each electron tends 
to coalesce with an ion and then has no effect on any
other particle
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Clearly equations such as (l.43)j which are 

meaningful only when the two—particle function tends 

to a limit for large separations, are not directly 

applicable to this case. The justification for the 

use of statistical mechanical formulae derived for a 

system with only two—particle interaction is that 

whenever such a difficulty is encountered, T] is to 

be regarded as very small, but finite, and only 

allowed to tend to zero when the reversal of limit 

procedures is permissible.

High— and low—temperature approximations

When T is small, an asymptotic expansion for 

Sq may be derived from (3*43) by expanding the 

exponential to second order in t, yielding the 

well-known equation for the parabolic cylinder 

functions, and then applying perturbation theory to 

the remaining terms in the Taylor expansion of the 

exponential. This procedure shows that:

So = 1 - TT + ^  TT2 + 0 (t:3) ,

which from (3.44) implies that

P / pXT = 1 — ir + r2 + o (tt̂ )

When T is large, an expansion for Sq may 

be derived by solving the integral equation (3.48) 

by iteration and choosing S so that the boundary

(3.63)

(3.64)
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condition (3»49) is satisfied# The resulting integrals 
may be simplified and it is found that

Substituting this result in (1,44) it follows that

The first two terms of the expansion (3*64) are 
the same as those derived by the Debye-Huckel theory 
and show that at high temperatures the system behaves 
as a perfect gas# At low temperatures it is evident

same as those of the gas of equal and opposite discrete 
charges. This behaviour is also that of a system of 
simple harmonic oscillators, each possessing the 
1plasma frequency*

The thermodynamic properties and the two-particle 
distribution function of a one—dimensional gas of 
electrons moving in a uniform charge background have 
been obtained exactly in the previous section.
However, the limiting procedure there required is a 
rather delicate one, so that it is of interest to

(3.65)

(3.66)

exp(-S ) = (7) 2TT + — tt2 x o' 'tt' n

from (3,66) that the thermodynamic properties are the

(a2p/m) 2

3*3 The external potential approach

obtain the results by a more explicit physical picture,



94

namely to consider a system of N electrons of charge 
— O free to move on the line segment (jO,a J , together 
with a uniform distribution of positive charge of 
magnitude pC extending from 0 to A, the particle 
density being defined in the usual way by

(3.67)

It is apparent that the system is in toto 
electrically neutral* Also, as the interaction energy 
of two charges <3̂, at x^, x^ is

1“IT i

it is easily verified that the effect of the charge 
background is to cause each electron to move in a 
simple harmonic potential well

i  O 2 p (x-A/2)2

centred on the mid-point of the line segment*

If the N electrons have position coordinates 
x2, . • 0 ,xN , the total potential energy Ê . of the 
system is given by

2 en / X . —xJ k
j<k

+ P ^  (xj-A/2) (3.68)

where the summations run from 1 to N and C is a 
term independent of the particle positions*



95

It is a feature of the statistical mechanics of 
a system with two—particle interactions that an 
arbitrary constant may not in general be added to the 
interaction potential, as this produces a factor of 
type exp(—N ) in the partition function, causing 
the intensive thermodynamic variables to cease to have 
a well-defined limit for large N. Thus care must 
always be taken to choose the additive constant in the 
potential so that physically meaningful results are 
obtained. In this case it transpires that the constant 
C din (3*^8) must be given by

C = (N—l)N(N+1)/l2p . (3.69)

With this choice of C it follows that when

(3.70)

so that the minimum of the total potential energy is 
zero and is attained when the electrons are spaced 
along the line at equal intervals l/p.

As the potential energy does not depend only 
on the relative coordinates of the electrons, this 
model clearly cannot yield translation invariant

X1 $ x2 S

(3,68) may be written
N__

E N  =  i  ° 2 p 2  i x j ~  (2 J “ 1 ) / 2 p )
j=i
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distribution functions. However, it may be expected 

to provide an adequate description of the thermodynamic 

properties of the system, so that it is desirable to 

evaluate the configuration integral

A

%  = "nT j ' J  dxl " * dxN exP(-Er/ KT) ’ (3.71)
0

or rather the function 

by

So of p and T defined

SQ = lira n "1 log(pNQN ) (3-72)

the limit being taken when N and A are large, 

but p, given by (3 *67)? is constant.

To determine Sq it is convenient to generalise 

slightly and define

(N-i+v)/p
= "Yf j dXl....dxN exp(~EN/xT) , (3*73)

0

so that Qn (-J) is the normal configuration integral 

defined by (3*7l)«

It is now possible to apply a technique 

similar to that used in chapter 2, only instead of 

differentiating the generalised configuration 

integral with respect to A, N being constant, it 

is necessary to regard the density p as constant 

and differentiate with respect to v. From (3*73)>
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this is equivalent to multiplying by N/p and setting

xN = (N-J+v)/p

x^ must then be greater than or equal to all the 
other particle coordinates, so substituting (3*74) 
in the expression (3*70) for the total potential 
energy, it follows that

en = en-i + ^ 2/ap

Using this result, it readily follows from 
(3-73) that

f" Q̂ v) = exp(-2T2v2) Qn_1(v+1)
where T is the dimensionless variable defined by 
(3.42), i.e. by

TT (o2/4pxT)2

If the function y(v) is defined by

y(v) =
00

N=0
f

then (3*7^) shows that it satisfies the 
difference-differential equation

§ “ y(v) = exp(-S-2T2v2) y(v+l) ,

which is precisely the equation (3*47) encountered 
when using the dust-cloud approach.

(3.74)

(3-75)

(3-76)

(3-77)

(3.78)

(3.79)
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Xt should be noted that y(v) is not the normal 
grand partition function, for it is obtained by summing 
over configuration integrals with different values of 
N; p, rather than A, being constant.

As has been stated in section 3 *2, the solution 
of (3*79) tends to a finite limit as v tends to 
either plus or minus infinity. If the limit at plus 
infinity is specified, the solution is uniquely 
determined# In particular, it is convenient to define 
the solution which tends to one as v tends to plus 
infinity to be y*(v)• y(v) is then y*(v) multiplied 
by some constant factor.

As v tends to minus infinity, it can be shown 
that each Q^(v) tends to a limit which satisfies the 
inequality

lim pN Q ^ ( v )  

v  — y -  00

< 1
NJ (8tt 2A ) “N//2 (3.80)

so that as y(v) is known to tend to a limit as v 
tends to minus infinity, this limit is given by (3«7^) 
and (3*8o) to be the sum of an absolutely convergent 
series and therefore finite# Hence y(v) is given 
by the equation

y(v) » y*(v) y(-o©)/y*(- 00) . (3.81)

From (3 «72) it follows by the root test for the 
convergence of a series of positive terms that when 
v=-§-, the right-hand side of (3»7^) converges
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if S > , and diverges if S<.Sq , so that y(-J-)
becomes infinite when S is equal to Sq . A s y (-J-) 
and y(~ <**) are always finite, it is apparent from 
(3*8l) that this implies that Sq is the greatest 
value of S for which y 00 j vanishes*

As has been shown in chapter 1, the pressure P 
and the internal energy U of the system are given in 
terms of the configuration integral by

P/pxT = — p (— log Q̂ .) , (3*82)

and

U/NXT = i + T ^  (§ log Q^) , (3.83)

so allowing N to tend to infinity, using the equation 
(3*72), and noting that S q depends only on the 
dimensionless parameter T, it follows that the 
thermodynamic properties are given by:

P/pxT = 1 + f So , (3.84)

and

U/NXT = i - f So . (3.85)

Summarising, the thermodynamic properties of a 
one-dimensional system of electrons moving in a uniform 
charge background are given by (3*84) and (3*85)1 where 
Sq is the greatest value of S such that the solution 
y(v) of (3*79) tends to zero as v tends to minus 
infinity. These are precisely the results obtained in 

section 3*2 and expressed in equations (3*44)j (3*45) 

and (3.47).
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4. Discussion of results

Exact expressions have been obtained in this chapter 

for the thermodynamic properties and distribution functions 

of both a one—dimensional plasma of discrete electrons and 

ions, and also one of electrons moving in a uniform charge 

background. The results for the first case are particularly 

suitable to numerical investigation when the electrons and 

ions are of equal and opposite charge.

The equations of state of the two systems are given 

in figure 3*1 in the form of a plot of P/pxT against the 

dimensionless parameter T. It is apparent that the two 

curves are substantially the same, so that the common 

procedure of representing a three-dimensional plasma as a 

gas of electrons moving in a uniform neutralising background 

of positive charge may be expected to provide a fair 

approximation to the thermodynamic properties of the real 

system.

However, this procedure seems unlikely to provide 

an accurate description of scattering and allied phenomena 

at low temperatures, for the two—particle functions of the 

two one—dimensional systems are plotted in figures 3*2 and 

3*3 for TT = 0 • k and 2,0 respectively, and it is apparent 

that the electron—electron functions are of very different

character din the second case
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Chapter__4
ONE-DIMENSIONAL GASES WITH HARD CORE REPULSION

JL *_ Introduction

As yet the basic procedure of chapter 2, namely 

dillerentiation with respect to A oT the configuration 

integral of the system of particles lying on the line 

segment [0, A \, has been applied only when the 

interaction potential function u(x) has derivatives 

of all orders over the range (o, &o) and is of course 

even. This excludes the possibility that U(x) may 

contain a hard repulsive core, i.e. may be of the form

b(x) tct + , I x| < b

= 0(x) , I x| 5» b
(4.1)

Potentials of this type are clearly extremely 

relevant to the consideration of physical systems which 

contain particles of finite size, particularly when the 

interaction forces are attractive, as then the size of 

the particles plays an essential role in ensuring that 

they do not all coalesce. Further, it is known that 

when
0(x) = 0 (4.2)

or
0(x) = - C exp(—a|x|) , (4.3)
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the properties of the system are amenable to exact 
mathematical analysis, the former possibility having 
been investigated by Tonks (l93^) and the latter by 
Kac (l959)} and later by Kac, Uhlenbeck and Hemmer
(1963).

It is therefore desirable to attempt to apply 
the procedure of chapter 2 to systems such as these*
In section 2 of this chapter it is shown that 
application of the technique to the system with 
interaction potential given by (4«l) and (4«3) leads 
to an eigenvalue equation, the thermodynamic properties 
being given by the dependence of the greatest eigenvalue 
on the fugacity and the temperature. This case is of 
particular interest, as the method used by Kac (1959) 
employs the techniques of the theory of stochastic 
processes and derives the properties in terms of the 
eigenvalues of an integral equation with a rather 
complicated kernel, whereas the present procedure 
involves only the differential calculus and replaces 
the integral equation by a comparatively simple 
difference—differential equation.

The extension of the method to include more 
general forms of the function 0(x) is also briefly 
discussed in this section and it is indicated that when 
0(x) satisfies a homogeneous linear differential 
equation of order p over the range (b,»*>), the
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statistical mechanical properties may be determined in 
terms of partial difference—differential equations 
containing at most p variables.

At this stage a difficulty presents itself, for 
though it remains true that in the limit of A large 
the grand-partition function behaves as

exp(\QA) ,

where is the greatest eigenvalue of a difference-
differential equation, this equation is no longer of 
the form derived in chapter 2, namely

(w K + j) y = \ y (4.4)

(w being the fugacity and K and J linear operators 
independent of \ and w). Together with the fact 
that the general results of chapter 2 were derived on 
the assumption that the potential function u(x) has 
derivatives of all orders over the range (0,oo), this 
appears to suggest that they are not applicable when 
b(x) contains a hard core.

If this were in fact the case the situation 
would be very unsatisfactory, particularly as the general 
results are used to derive the relations (2.118) between 
the distribution functions and their derivatives with 
respect to the mean particle density, which relations 
may be expected to be true for any ‘physical1 potential.
It is therefore instructive to consider the case of a
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gas of hard rods with no other Interaction, as the 
statistical mechanical properties of this system may 
be calculated in a very direct manner and compared 
with the general formalism. in section 3 of this 
chapter it is shown that though they do not occur 
explicitly in this working, nevertheless a diagonal 
matrix H and a symmetric matrix K may be defined 
such that all the relevant results of chapter 2 are 
valid in this case. This suggests that though these 
results may not be the most convenient to use in a 
given example, they are formally applicable to any 
one—dimensional gas with two-particle interaction.

2 ^__ The thermodynamic properties of a gas of
hard rods with exponential attraction

2.1 Derivation of an eigenvalue equation 
Consider a system of N particles constrained 

to lie on the line segment [0,a [ and interacting 
via the potential b(x) given by (4«l) and (4*3)j
i. e.

v(x) = + oo , Ixj <  b

and (4 .5)
U(x) = — C exp(—a|x|) , |xj > b •

In addition, suppose there acts on the particles 
an external potential

- v exp [ -a(A—x )j •
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Then If the particles are situated at x^,..*,x^, 
the total potential energy of the system may be written 
E^(v,A), where

N _

en (v >a ) = ^  U(x j~xk.) ~ v ^ exp{-a(A-Xj)} , (4.6)
l^j<k{N j=l

and the configuration integral may be defined as
A

Qn (v >a ) J-f dxx • • • dx^ exp i“E^ (v > A)/xT j
0

Consider now the effect of differentiating 
Qn (v ,A) with respect to A. The symmetry of the 
integrand of (4*7) ensures that

A
5~Ä q n ^v,a) = "(i-Tyi j*‘| dxi* #dxN-iexp{~ >cf e n (v,a) I Xjjsa]

0

dxx . .dxN|“  e n (v ,A)/x t ] exp I -En (v ,A)/xt]. (4.8)
0

The first term on the right-hand side of this 
equation is effectively the configuration integral of 
a system of (N—l) particles with an N th particle 
fixed at A, As this fixed particle prohibits the 
others from approaching closer to it than a distance 
b, the space available to them is no longer the 
interval [0,A] , but rather |0, A—bj • When all 
the x ^ j .^jX^ lie in this range, it follows from the

(4.7)



definition of u(x) and from the expression (4*6) for 
the total potential energy that
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V V»A)|*n=A = - v + EN - h V+C,A)

= - v + En_x I (v+c)e"ab,A-bj , (4.9)

so that the first term becomes

-EN_1 {( v+c ) e"ab, A-b}/xT ,

which from (4#7) is

®V//XT % - i ( ^ v+C)e~abjAfc-b}

The second term on the right-hand side of (4*8) 
is readily simplified by noting that

ti en(v>a) = - a v ^  en(v*a) > (4.10)

so that it may be written

“avy; V v,A)
Substituting these expressions in (4*7)> it follows 

that the final equation obtained for the derivative of 
the configuration integral is

ÄÄ Sjb>A) = eV/,XT QN_1{(v+C)e“ab,A-b) - ay (^(v.A) , (4.1l)

r/ XT
i s n y i  f-.j dxi--dxN-i exp



which if the generalised grand—partition function 

f(v,A) is defined by

oo
f(v,A) = 2 wN S j(v JA ) »

N=0

leads to the equation

'b

U f (v,A) = w  ev/ f  I (v+C)e ab,A-b] - av f(v,A)—ab
£> V

This equation is of rather similar form to 

the relation (2.l6) derived in chapter 2, namely

^ A f = H f 9

the most significant difference being that the 

derivative of f(v,A) with respect to A is now 

determined not only by its values at A, but also 

by its values at A—b. Fortunately this does not

affect the separability of the equation with respect 

to the variables A and v, for it is possible to 

write the solution in the form

f (v,A) = / b y  (v) exp (A A) __ m m' ' ' m ' 9

where the A and y (v) are the values of A and m m N '
the functions y(v) that simultaneously satisfy the 

equation

-Ab v/xT r / -ab^= w e e ' y j (v+C; e l
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(4.12)

(4.13)

(4.14)

\ y(v) — av 9 (4.15)
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and the b are certain constants determined by the m
boundary conditions.

A brief consideration of the definitions of 
(v ,A ) and f(v,A) shows that f(v,A) must be a 

Taylor expandable function of v for all values of 
A, so that the same must be true of each y (v),
It turns out that the solution of (4*15) only 
satisfies this condition for certain values of A, 
so that the A^ form a discrete set of eigenvalues. 
On thermodynamic grounds it is to be expected that 
for given w, one of these eigenvalues will be real 
and greater than the real part of any other.
Choosing this to be Aq , (4*14) shows that when A
is large

f (v,A) ~  b Q yo (v) exp(XQA) (4.16)

As the grand-partition function Z* of the 
system when there is no external potential is simply 
f(0,A), it follows that

lim A ^ log Z* = A (4.17)

(provided b̂  y (o) is non-zero), so the thermodynamic
properties may be derived in the usual way from the

, the pressure Pdependence of Aq on w and T
being given by

P/ XT A (4.18)
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the mean particle density p by

and the total internal energy U by

u/nxt = i * J Xo

(N being the number of particles in the system)•

2,2 The infinite range phase transition 

Kac, Uhlenbeck and Hemmer (1963) have proved 

that when the parameter C in the above equations 

is set equal to ßa (ß being positive) and a 

allowed to tend to zero, the system exhibits a phase 

transition, the equation of state in either phase 

being

P/XT = p/(l - pb) - ß p2A T

which is of the form derived by van der Waals (1873)•

This may also be shown by the present methods, 

for the eigenvalue equation becomes

X y(v) = w e—Xb v/xT y Uv+ßa)e~abj- - av —  y(v) ,d
dv

inspection of which indicates that when a is small 

the solution may be written

y(v) - exp |l (v )/ a j ,

where L(v) is a regular function independent of a*

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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Assuming this to be true, substituting this 
expression in (4*22) and using the differentiability 
of L(v), it is obtained that in the limit of a zero

\ + v L* (v) w exp-;— \b + v/xT + (ß—bv)L*(v) V . (4*24)

This equation may be put in a more convenient 
form by setting

Y (v) = -i \ + v L 1 (v ) > (4.25)

and
X(v) = exp(v/xT ~ \ß/v) , (4.26)

for then it becomes

Y(v) expj-Y(v) j = w X(v) . (4.27)

As X(v) is a known function, Y(v) may in 
principle be determined from (4*27) and then L*(v) 
from (4*25)« However, it is sufficient to consider 
the general properties of such a solution. As the 
maximum eigenvalue must be real, (4*22) shows
that yQ (v) may be normalised so as to be everywhere 
real# In addition to being continuous, L l(v) is 
therefore also real, and these two conditions can now 
be shown to be all that is required to determine 
in the limit of a zero#

Inspection of (4*26) shows that x(v) has the 
form sketched in figure 4*1> where it is apparent
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Figure 4*ls The form of the function X(v).

<\
k
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that it is positive only in the range

o < v < ß/b

and there attains its maximum.

(4*27) shows that this maximum value must 
be e~^/w, for if it is greater there must exist 
a neighbourhood in which the equation has only 
complex solutions for Y(v), and if it is less 
Y(v ) can never attain the value 1, which is 
impossible as, from (4*25),

Y ( v) -- > + go as w +v -- > 0 ,
a 0 when v = ß/b

and must 1oe continuous in between •

The eigenvalue equation is therefore

max x(v ) = -1/ e /w

which if v is the value of vm that maximises
X(v) may be written in the form of the two
equations

s=V = V m
0

and
X(v ) m

«1 r— e /w

The equation of state may now be determined
regarding v^ as the independent variable, for if 
the temperature T is supposed to be constant,

P/xT = \

(4.28)

(4.29)

(4.30)

(4.31)
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and

(4.32)

But differentiating (4*30) logarithmically with
respect to using (4.29) and noting that x(v )
depends on , which is now to be regarded as a
function of v , it follows that m

I It log x b )  |v=v } ÖT = “ W_1 d v ‘ > ^ * 33)m m  m

which from the explicit form (4.26) of X(v) can be 
seen to imply that

£_
Vm

-1w (4.34)

Substituting this result in (4*32)} it is found 
that v^ bears a very simple relation to the particle 
density, namely

P = vm / ß ' (4.35)

The equation of state may now be derived by 
eliminating v^ between (4*35) and the explicit form 
of (4.29). It is a trivial calculation to verify 
that

P/XT = p/(l - bp) - ß p2/ XT , (4.36)
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which is the van der Waals equation (4»2l) obtained 
by Kac, Uhlenbeck and Hemmer (1963)#

Although this equation is exact when it is 
applicable, it clearly needs to be modified, for if

XT <  8ß / 27b , (4.37)

there are values of p between 0 and b ^ for 
which (4*36) gives

|-p P/xT < 0 , (4.38)

which is thermodynamically impossible. This anomaly
may be resolved by consideration of the behaviour of
X as a function of w. When o

XT > 8ß / 27b (4.39)

X increases monotonically with w, but if the
temperature is low enough for the converse inequality
(4»37) 1° hold, the graph takes the form shown in
figure 4*2, where it is apparent that for certain
values of w, X is a three—valued function.o
As it is defined to be the greatest possible value 
for given w, the cusped section of the curve must 
be ignored and the physically significant graph has 
a discontinuity in its derivative at a certain point.
It is this behaviour that leads to the phase transition, 
and the resulting isotherm is plotted in figure 4*3*
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Figure 4*2: The eigenvalue \ as a Function of the
fugacity w for the gas of hard rods with infinite-range
exponential attraction (ß/bxT = 343/72). The broken
curves correspond to real eigenvalues which are less
than \ .o
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bP/xT

Figure 4» 3: A two-phase isotherm for the gas of hard
rods with infinite-range exponential attraction 
(ß/bxT = 343/72). The broken curve is the unphysical 
isotherm obtained by applying (4 *36) in the transition
region
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2.3 The extension to more general potentials 
When the interaction potential is of the form 

(4«l)j i,e, when it contains a hard core of radius 
b together with a potential JZf(x) outside the core, 
and when j$(x) is not necessarily given by (4*3) > 
but satisfies a homogeneous linear differential 
equation of order p, it is quite straightforward 
to generalise the working of section 2.1 of this 
chapter, it merely being necessary to introduce an 
applied external potential of the form

0(x) + v2 0*(x) + . . . . . +  vp / P-l)(x)

and to regard vi ,,,,,Vp as arkitrary parameters,

A recurrence relation between the configuration 
integrals, considered as functions of A and 
v^,,,,,v , may then be established, and this leads 
to an equation for the generalised grand—partition 
function f(A) of the form

(4.40)

(4.41)

~  f(A) = w K* f(A—b) + J* T (A) ,

where K ' and J are linear operators involving 
only the variables v^,,,,,v •

This equation is separable, it being possible 
to write the solution in the form

f(a ) = ) b y  exp(A A) ,' J /___m m N m 7
m
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where the 4 and y are the eigenvalues and m m 0
eigenfunctions respectively of the equation

(4.42)

On thermodynamic grounds one of these 
eigenvalues must be real and greater than the real 
part of any other, so choosing this to be 4^,
(4.4l) shows that when A is large the grand—partition 
function is proportional to exp(4QA) • The
thermodynamic properties are then given by (4*18),
(4»19) and (4«20).

The calculation of the distribution functions 
follows similar lines to those of section 3 of 
chapter 2, but is rather complicated by the fact 
that the eigenfunctions of (4*42) for given w are 
not linearly independent. Nevertheless it is possible 
to define an operator K such that the distribution 
functions are given by (2.29)»

If H is defined as a diagonal matrix with
elements 4 , it follows that the formulae (2.25) m
to (2 .29) for the statistical mechanical properties 
are valid when the interaction contains a hard core.
To complete the identification of the present results 
with those of chapter 2, it is only necessary to 
establish the relations (2.103) and (2,104) between 
the matrix elements of H and K and their

4 -4b *e K y T *J y

derivatives with respect to fugacity
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In general this is a rather difficult problem, 

but in the next section it is shown that when U(x) 

consists of a hard core with no other interaction, 

the matrices H and K may be written down explicitly 

and the relations verified*

3» The gas of non-interacting hard rods

3•1 D erivation of the r—particle grand—partition 
function

The properties of a one—dimensional gas of hard 

rods of length b constrained to lie on the line— segment 

1.0,a ) are of course well-known, the thermodynamic 

properties having been derived by Tonks (l93^) and the 

distribution functions by Salsburg, Zwanzig and 

Kirkwood (1953)• If the r—particle grand—partition 

function Z* is defined by

Z *-

r

oo

N=r
dxN exp(-EN/xT)

where

l.<j<k^N

and

(4.43)

(4.44)

b(x) = + co , |x| < b

= 0 j x I > b
(4.45)

the integral on the right-hand side may be calculated

explicitly
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If

A >  x 1 > . . . . >  x > 0

and particles lie between A and x ^ , p 2

between x^ and x^j etc#, the contribution to 

the integral arising from this configuration can 

be seen to be

Pl ‘i#Pr+l
(a -x  -p b) (Xl-x2-b~p2b) ..##

pr
•'*(xr-l“xr~b“prb ) (xr“pr+lb)

r+1 ( 4 . 4 6 )

provided all the bracketed expressions are positive#

Should one be negative, c vanishes.
Pl'-*Pr+l

As the number of ways in which such an arrangement 

can occur is

(N-r)I

P1 J pr+l'

it follows that

+ rZ s w r P-, • • P 1 r+1

Pl+ *"+Pr+1 w____________
P l * •• *p r +i* Pl* #Pr+l

(4.47)

where the summation, 

N not less than r

of the p . such that J

originally over all values of 

and those non—negative values

'1 • +Pr+1 jN—r (4.48)
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may now be regarded as being over all non-negative
values of the p., (4*48) being a definition of N,

u

rather than a restriction on their values.

As c is factorisable, the same is true
Pl'-Pr+1

of the summation on the right-hand side of (4.47)j so
that may be written

Z* « L(xr+b) L(xr-1~xr).... . L(x jl-x 2) L(A—x^+b) , (4.49)

where

L(x) w
Pi ■jx— (p+l)b j e{x-(p+l)b} , (4.50)

P=0

the function £(x) being defined by

e(x) = 0 , x < 0
1 j x ) 0

The normal grand—partition function is simply

(4.51)

Z = L(A + 2b) (4.52)

3*2 The thermodynamic properties 
and distribution functions

As yet the working appears to be quite different
from the general formulation of chapter 2, The first
clue as to their connection is afforded by an attempt

■fcto derive the thermodynamic properties from Zq , for 
then it is necessary to evaluate
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lim A“1 log Z* o
A oo

The known existence of this limit suggests that 

ZqJ considered as a function of A, may be written 

as a sum of exponentials. If this is so, the same 

must be true of L(x)•

Investigation of the Laplace transform of L(x) 

shows that this is in fact the case, and that

L(x) ) R exp(Ax) / m m (4.53)

where the R and A are defined by the identity m m

(4.54)

The A are therefore the roots of the equation m

 ̂ AbA e — w (4.55)

Consideration of these roots shows that as w 

is positive there is only one real root, and this is 

greater than the real part of any of the complex 

roots. Choosing this to be Aq , it follows that 

when A is large

exp|AQ (A + 2b)} j (4.56)
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so that in the usual way the equation of state is 

given by

P / X T  ss \

and

(4.57)

(4.58)

Using the fact that satisfies the equation

(4*55)> 11 is readily obtained that

P/X T = p/(l - pb) , (4.59)

which is the equation of state derived by Tonks (1936).

The r—particle distribution function is known 

from section 2.3 of chapter 1 to be

n(x1,.«,xr) = zr / Z* > (4.6o )

where the right—hand side is to be evaluated when 

A—x^ and are large, so that surface effects are

neglected. In this limit it follows from (4*49) and 
the asymptotic behaviour of L(x) that

r-1
Zr ~  Ro exp\Xo(A+2b+xr-x1)} L(Xj-xj+1) ,

j=l

so substituting this expression in (4.60) and using 
(4.56), the distribution function is found to be

r-1
n(x1 ,...,xr) = Rq e x p h o O x j . - x p )  ] ~ [  L ( x j - x J + 1 ) *

j=l

(4.61)

(4.62)
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To establish the connection between this result 
and the general formulae of chapter 2, it is only

necessary to substitute the form (4*53) of L(x),

giving

n ^ ,  , . . ,xr )

exp x « Xr 1) +
r~j

Lj=i
m . J

1
J ’ (4.63)

whicha 

by

if a set of matrix elements K are definedm j n

Km,n j (4-̂ 4)

is precisely the equation (2 *29)*

It is now apparent that a diagonal matrix H 

with elements

H = \ 6m , n m m , n (4.65)

and a symmetric matrix K may be defined such that 

the statistical mechanical properties of this system 

are given by the general results of chapter 2, To 

complete the link it only remains to note that the 

identity (4*54) may be used to establish the relations

d
dw \m = Rm

and

R = 2 Rm m

(4.66)

d
dw

n ^ m

(4.67)
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which from the definition (4*64) of the ^ imply
that

and

—  X - K dw m m, m

d
dw Km, n

1 m Jo \ n

(4.68)

(4.69)

These last two relations are precisely the 
equations (2.103) and (2.104) derived in chapter 2 
for the derivatives of the matrix elements with 
respect to the fugacity w, so that all the exact 
general formulae of chapter 2 apply to the gas of 
non-interacting hard rods#

4« Discussion of results

Two distinct conclusions may be drawn from 
the results of this chapter: firstly, that the
procedure of differentiating the configuration 
integral of a one—dimensional gas with respect to 
its ‘volume1 A is capable of yielding exact 
expressions for the statistical mechanical properties 
when the interaction potential consists of a hard 
core with an interaction outside it that satisfies 
a homogeneous linear differential equation of 
finite order; and secondly, that the general formulae
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of chapter 2 expressing the properties in terms of the 
eigenvalues of an operator H and the matrix elements 
of an associated operator K apply even when the 
condition originally imposed, namely that the potential 
function have derivatives of all orders over the range 
(0,q o ), is violated.

The first result implies that the thermodynamic 
properties of systems such as a one—dimensional plasma 
with charges of finite size and a gas of hard rods with 
exponential attraction can be obtained exactly. The 
second of these examples is of particular interest, as 
Kac, Uhlenbeck and Hemmer (1963) have shown that it 
exhibits a phase transition when the range of the 
attraction is allowed to become infinite. In section 
2,2 this transition has been investigated and found to 
be associated with the crossing of the two greatest 
eigenvalues of the operator H at some critical value 
of the fugacity. This behaviour of the eigenvalues 
may be expected to be responsible for any one—dimensional 
phase transition. Unfortunately such transitions must 
always be of an artificial character, as it is known 
that they cannot occur for any ‘physical1 potential 
(Landau and Lifshitz, 195^5 van Hove, 195^)•
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Chapter 5

IATTICE CASES

1, Introduction

It is sometimes convenient when considering the 
statistical mechanics of a gas of particles to suppose 
not that they can occupy any position in a given spatial 
domain, but that they can only lie on a certain discrete 
set of sites in a lattice. Such a procedure is obviously 
relevant to the discussion of a crystalline solid, but 
may also be supposed to include the normal continuum gas 
as a limiting case when the sites are uniformly spaced 
and the density of sites is much greater than the density 
of particles.

The mathematical analysis of the grand-partition 
function of such a gas is of different character to that 
of a continuum gas in so far as attention is necessarily 
diverted from the behaviour of the particles to that of 
the sites. This change of emphasis is illustrated by 
the fact that in section 3 of this chapter it is shown 
that it is possible to transform the grand—partition 
function to an integral over a set of variables associated 
with the sites. This transformation has the property 
that the interaction between the particles no longer occurs
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in the form of a matrix V. with elements V . ,-  J j k

representing the interaction potential between a particle 
at the j th site with one at the k th, but in the 
form of the inverse matrix V

In section 4 it is shown that for a certain class 
of interactions of considerable physical interest the 
inverse matrix is of a much simpler form than the 
original, only the diagonal and one-off diagonal elements 
being non—zero. The calculation of the grand—partition 
function in such a case therefore follows very similar 
lines to that of the partition function of an Ising 
lattice (ising, 1925), where each site interacts only 
with its nearest neighbours. It is possible to determine 
the thermodynamic properties exactly in the one—dimensional 
case, but in two or higher dimensions the problem becomes 
one of calculating the asymptotic behaviour of the maximum 
eigenvalue of an m-fold operator in the limit of m large. 
Unfortunately the resemblance to the Ising model is not 
sufficiently close to enable the methods used by Onsager 
(1944) and Kaufman (1949) to be applicable.

2. The grand—partition function of a lattice gas

When considering a D—dimensional lattice it is 
necessary to use D integers to specify each site. 
Clearly a large number of geometric types of array are 
possible, but the simplest, and the one that will be
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considered here, is the D-■ dimensional analogue of the

rectangular lattice, with sites at thei points

xi = h ui > h 1, • • • , m

x2 =

• • •

U2 ’ ^2

• ••

1, • • • , m^ i

XD = JD "d J JD !,•••, mj-j )

(5-1)

where u^,•••,u^ are constants specifying the spacing 

of the lattice. Such a lattice may be said to have 

sides of length

A 1 = ux

m2 U2 (5.2)

“D UD

and is confined in a volume

A1...Ad = (5-3)

In the following work the symbols j and k 

will be used to represent the ordered sets (j ,•••,j^) 

and (k^,*.*,kp), so that the j th site is that 

which has position coordinates given by (5*l)> and 

similarly the k th site has coordinates

x = k u , a = 1,#*#,D •a a a
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Suppose that N particles are distributed 
that N lie on the j th site. Then as the 
interaction energy between a particle on the j 
site and one on the k th is 
potential energy is

V . , , the total J

so

th

(5-4)

where the summations over j and k in this and all 
subsequent equations of this section range over all 
ordered sets (j^,###,jD ) and such
that

1 ^ j < m* ua v a
and

1  ̂ka  ̂ma * a = 1 ’ • • * ’D

The second term on the right-hand side of (3*4) 
occurs as self—energy terms are to be neglected#

As the probability of such an arrangement of 
the particles is

N 1

TT Vj J

the canonical partition function may be defined as

%  = K - - V
N. U  v  J J

exp(-E/XT) (5.5)
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where the summation Is over all non—negative values

of the N . such that J

= N

and the factor (u^..u_^) is introduced to ensure 

that in the limit of the density of sites becoming 

infinite Q̂ . reduces to the configuration integral 

of the continuum case.

(5-6)

The grand—partition function may now be defined

N=0
(5.7)

w being the fugacity, and the thermodynamic properties 

obtained in the manner indicated in section 2.3 of 

chapter 1, the pressure P being given by

. r I n t ~[ ^
P/xT = (u^..u^) lim (m^..m^) log Z , (5*8)

• • • •
m D — ? 00

the mean particle density p by

w —  P/*T (5-9)
and the total internal energy U of the N-particle 

system by

U/NXT = d/2 + p"1 T ~  P/xT (5.10)
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3 « The transformation of the grandepartition function

To transform the grand-partition function Z 

into a more convenient form it should first be noted 

that from the definition (5*5) Q^} (5*7) may be

written

Z * exp(-E/XT) (5.11)

where the summation is now over all non—negative

values of the N., (5*6) being a definition of N,J
rather than a restriction on their values.

Also, as V. , can for a system with no J
external forces depend only on j—k, i.e. on the 

ordered set ( j —k , • • • , » all the v

equal, so that from (5.4) and (5*6),
3,3

are

\ N V N - i N V .j > 3 (5.12)

where N is an m^...m^ —dimensional vector with

elements N . and an obvious matrix notation has J
been adopted (though no summation convention)•

Substituting this expression for E in (5*ll)j

it follows that

j

N . J

(U1##UD
TT vj J

exp(— N 1 V N / 2XT) , (5*13)
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where
= w exp(V . ./ 2xT)J j J (5.14)

The trick required to transform this equation 
for the grand—partition function into a more useful 
form was noticed by Edwards (1959)j who pointed out 
that as V is a symmetric matrix,

O Üj. jjj (dtj) exp(-|-XT _t fV*"1^ + i N*t) 
exp(—N 1V N/2XT) = — ---------------------------------  (5-15)j. j FT (d t j) exp(-|xT t 'V“ 1 !)
(as may be seen by applying the change of variables

s + i V N / XT (5.16)

in the integral which is the numerator of the 
right-hand side).

It is therefore possible to replace the term 

exp(— N* V N / 2xT)

in (5*13) by the right-hand side of (5-15)» and this
has the advantage that the summations over the N .J
may be performed, the final result being

x(w) / X(0) (5.17)
where

j*j ITT (dtj) exp (“ 1 + u i #*up it .
w* > e J) , (5.I8)

J
X(w)
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I being defined by

(5.19)

The above method of transforming the 

grand—partition function is closely related to the 

work of Edwards (1959)» Edwards and Lenard (1962), 
and Kac and Helfand (1963)3 hut has the advantage 

that it requires neither a functional integration 

nor sophisticated statistical techniques.

In general (5*18) is no less difficult to 

evaluate than the original form (5«13) of the 

grand—partition function, but it will be shown that 

for a certain type of potential of considerable 

physical interest the matrix V ^ assumes a very 

simple form, enabling the limit

to be determined explicitly.

4» Application to a * wave-equation* potential 

4.1 Discussion of the potential

One of the gaseous systems of obvious physical 

relevance is the plasma, in which the particles 

interact via the Coulomb potential, which for a 

D-dimensional system is

mD

CO
dv
2 exp (i y • x ) (5.20)
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(x and v being D-dimensional vectors).

Unfortunately the direct analysis of this 

system is complicated by the need to consider particles 

of more than one type (both positively and negatively 

charged), together with the fact that if a lattice gas 

with such an interaction is treated by the above 

methods the quadratic form I is found not to be 

positive definite, so that the integral (5*18) diverges. 

These difficulties may be overcome, but for the present 

purposes it is convenient to generalise the potential 

u(x) and define it not by (5.20), but by

00

u(x) __C __
(27t)D

-  CxD

dv
__ -

a + v
exp(i y • x) (5.21)

u(x) is now a repulsive potential of short range 

and depends only on the radial distance between the 

interacting particles. Quite aside from the question 

of plasmas, this is a very interesting case to study, 

as the probable existence of a phase transition in a 

two- or three-dimensional gas of hard spheres (Alder 

and Wainwright, i960) suggests that a similar transition 

may occur in this system.

The reason for the title of this section is that 

u(x) satisfies the decaying wave equation for a point 

source, namely

( V 2 _ a2) u(x) = - C 6(x) , (5-22)
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where V is the usual div grad operator and 6(x) 
the D—dimensional Dirac delta function# The
simplifications in V  ̂ that will become apparent may 
be ascribed directly to this fact#

As yet the discussion of this potential has been
implicitly concerned with the case when the interacting
particles are free to occupy any position within a given
domain# From the point of view of representing such a
continuum gas of large volume by a lattice it is clearly
not necessary, nor need it be desirable, to suppose that
the interaction energy V . , between two particlesJ
situated on sites j and k a vector distance x apart 
be given exactly by u(x), rather it is sufficient that 
this should be so in the limit of the lattice being of 
dense spacing and large overall dimensions# For the 
lattice previously defined the most suitable choice of 
V . , which satisfies this condition isJ » k

“d
^__ h ^  expjsTTi

Pp = l Pj~j=1 ct=l

where p represents the ordered set of integers 
(p1,.#.,PD) and

D
hp = a2 + 2 y L u~2 j 1 - cos(2Upa/ma ) ;; . (5 *2 4 )

a=l

b a“ka V ma] > (5.23)

This form has the advantage that it incorporates 
explicitly the very natural condition that V be a
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cyclic matrix, Xt is of course a very straightforward 

procedure to invert such a matrix, in fact it can be 

seen that

ml mD
(X“1)^ v = r . . >  h„ exppTti ) Pa(ja-ka)/maJ i k m1..mD C __ P

Pl=1 PD=1 a=l

which from the form (5 *2 4) of h^ implies that

(V“1) U1'*UD ( 2 „ -2 (a)• n = --7:--- {a 0 . ! + /  u R . /J3k C ] j,k I__ a j,k
a=l

where

* • 1 ~ ~  &  • -1 • • • •  &  • 1
J , k  J D , k D

and

(a)
j,k Ji>ki h - l ’̂ a-X 'ia,ka h + l ’ka+l jD ’kD

the W . being elements of the m by m cyclici «1c (X (X°a a
matrix with 2 on the diagonal, —1 on the first 

off-diagonal, and zero on all other positions#

-1V therefore has the remarkable property

that its elements (v ^) . , vanish if any of theJ j k
j 3 k differ by more than 1 (to modulus m )•

(X  OL CL

The quadratic form I given by (5*19) can now be 

evaluated and is found to be

, (5.25)

(5.26)

(5.27)

. (5-28)
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(5-29)
where the cyclic convention is adopted that if any

index appears to become zero it is to be set

equal to m •CL

It is now possible to determine the asymptotic 

behaviour of the integral x(w) defined by (5*18) 

when m^ is large in terms of an integral equation 

in in^..m^ variables. For the sake of clarity 

of presentation it seems best to abandon the 

consideration of a system of arbitrary dimensionality 

at this stage and consider explicitly the one— and 

two-dimensional systems.

4.2 Reduction of the_one—dimensional case
to an eigenvalue problem

When D = 1, the expression (5*^9) reduces to

m

1 = it Liatj + u (trtj-i) j
j=l

(5.30)

and X(w) is, from (5.18), given by
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x(w) —— ± tj *J dti*,dtm exp-- I + u , J  e  ̂l (5*31)
j=l—  co

(dropping the suffix 1 relating to the dimensionality 
of the system)•

To determine the asymptotic behaviour when m 

is large it is convenient to define a function 

K(t,t r;w) by

K(t, t * ; w) = expj — Y(t, t 1 ) + u w r [G(t) +G(t * )j j , (5*32)

where

Y(t.t') = { a2(t2 + t'2) + 2 u“2(t-t' )2 } (5.33)

and
G(t) = eXt/ 2 . (5.34)

(5*3l) may then be written

CO

X(w) = J..J dt2_m*dtm K(tlf t2 ;w) K (t2,t^;w) ... K(tm ,t1 ;w) , (5.35)
—  00

which is essentially the trace of the m th power 

of K(t,t*;w), considered as a matrix with continuous 

indices t and t 1. It must therefore follow that

r-- m
X(w) = 2__ {P'r (w )| » (5.36)

r

where the Jî (w) are the eigenvalues of the integral

equation
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oo
dt* K(t,t‘;w) z (t 1 ) = p-(w) z(t) , (5*37)

—  cxj

subject to the boundary condition that

z(t) — ■f 0 as t — > i 00

While the detailed investigation of* these 
eigenvalues is undoubtedly of interest, it is sufficient 
for the present purposes to note that as the limit 
(5.8) must exist and be positive there is an eigenvalue 
which is real and positive and greater than the 
modulus of any other (when w is zero this is certainly 
true)# Choosing this to be M'Q(W) it follows from 
(5.I7) and (5*36) that when m is large

m
z* ~  h c (w) / > (5.39)

so that the thermodynamic properties are from (5*8) 
given by

P/XT = u“1 I log (iQ(w) - log P'Q(0)j j (5*40)

together with (5*9) and (5*10)# As the solution of 
the integral equation (5*37) is well within the 
capacity of present numerical techniques these 
equations may be regarded as an exact solution of

(5.38)

the problem
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It remains to investigate the case of most 
interest, namely when the spacing u of the lattice 
sites tends to zero, so that the system is essentially 
a continuum gas. To do this it is necessary to 
write the eigenvalue equation in a differential
form by use of the identity 

oo
j dt * K*(t,tl) z(t') = B ^ exp(j*) z(t) ,
— oo

where

K*(tst') = exp]- — -T I |-(l+ß2)(t2+ t'2) - 2ß t t* 
1 i-ß

J* = - i (log ß) I _ b2t2 + i]
I b dt ’

and
B = b 7t(l « ß ) I ,

provided
0 < ß < 1

(This identity may be proved by showing that it is 
true for any eigenfunction of J*4)

As K(t,t*;0) is of the same form as 
K*(t,t*), and as, from (5*32),

K( t , t * ;w) = K ( t , f S0) euw,G(t ’)

it is possible to choose the constants ß and b 
so as to write the equation (5*37) in the form

(5-41)

(5-42)

(5.43)

(5-44)

(5*45)

(5.46)
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eu w rG(t) ^uwrG(t) z(t) B |i(w) z(t) (5-47)

On determining ß and b and supposing u
to be small, a rather interesting fact emerges, namely 

*that J may be written

(5.48)J* = u J + 0 (u4

where

J a XT 2 (5.49)

On substituting this expression in (5*47) it 
becomes apparent that the limit

7l̂ (w) = lim u“1 log|b (5*50)
u -> 0

exists for any value of r and is itself an 
eigenvalue of the equation

(w* e ^  + J) z(t) = A(w) z(t) (5»5l)

(using the definition (5.34) of G(t) )•

\o(w) must then be real and greater than the 
real part of any other A^(w); and as can
be shown to be zero, it follows from (5*40) that the 
thermodynamic properties are in this limit given by

= \ (w)o' 'P/xT (5.52)
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together with (5*9) and (5»10)•

It is gratifying that these are precisely the 
results obtained in section 5*1 of chapter 2 for a 
one—dimensional continuum gas with interaction 
potential

V(x) C
2n [ - - - - -  e xp ( i vx )

J a + v—  oo

2 a exp(- a I x J )

(5-53)

(5*54)

4*3 The two-dimensional system
The working of the previous sub-section may be 

followed through in an exactly analogous manner for 
a two-dimensional system, the main difference being 
the increased complexity of notation, for now to 
determine the asymptotic behaviour when the number 
m^ of rows of the lattice becomes large it is 
necessary to consider not just two single variables 
t and t f, but two m^-fold sets of quantities 
t,,*.,t and t*,**jtl relating to the sites on1 ml 1 mi
adjacent rows*

If the m^—dimensional vectors t_ and t^ 
are used to denote these sets, and the functions
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XT U 1U 2 
4 C

2 / 2  , , 2 \ «- 2 / , j \ 2a (tj + t' ) + 2 u 2 (t -t»)
j=l

(5.55)

G(t)
‘1

1.2
it . J (5.56)

j=i

and

K(t,t';w) = expj- Y(t.t') + u ^ w '  [ö(t) +G(t>)|i (5-57)

defined, it then follows from (5 *1 8 ) and (5»^9) that

X(w) = j - I  clt 1 . . . d_t 2 K(t1 ,t2 ;w) K(t2 ,t^;w) ... K C ^  .t^w)

(5.58)

The asymptotic behaviour of Z is therefore 

again given by

mz*~ {no(w) / Ho(0)j (5.59)

when m^ is large, the p^(w) being in this case 

the eigenvalues of the integral equation 

00- * J djfcT K(_t,jfc 5 ;w) z(t.f) = p(w) z (t.) , (5*6o)
—  O Ö

and (i,Q (w) is chosen to be that eigenvalue which 

is real and greater than the modulus of any other.
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To Investigate the behaviour when the lattice

is of sufficiently dense spacing to represent a

continuum gas, it is convenient at this stage to

consider the behaviour of ll (w) when u„ tendso 2
to zero a This may be done by noting that by an 

extension of the procedure used in section 4«2 the 

eigenvalue equation (5*6o) may be written as

U1U2W G(t) J* U1U2W G(t)
z (jb) = B p(w) z(t) ,

where B is a constant (independent of w ) , and 

J a differential operator# When u^ is small, 

J can be shown to be of the form

J* = m lU lU 2 J + °^U 2^

where

1

2 m_un .1 1 j=l

C I__
XT >̂t2 J

XT
C 0 2u ^ + (tj-tj-i)2]

the constant f being defined by

ll
-1 a2u 2 + 2 (l cos 271 i)}

X
2

j=l

It therefore follows from (5*6l) and (5 *6 2 )

(5.61)

(5.62)

f ] > 

(5.63)

(5-64)

that the limit
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Ar (w) = (m1u1 )"1 lim u“1 1 o g j B ^(w))
u2

exists for any value of r and is an eigenvalue of 

the equation

I J
j=l

= A.(w) z (_t)

(using the definition (5*56) of G(t_) )•

The behaviour of the maximum eigenvalue (w ) 

of (5*66) in the limit of m^ large therefore 

completely determines the thermodynamic properties 

of the system, which is now a gas confined to lie 

on lines parallel to the x^ axis, the spacing 

between which is u n • As A. (o) can be shown to 

be zero, the pressure P is from (5.8), (5*59) and
(5*65) given by

p/xT = Aq (w ) ,

(5*65)

(5.66)

(5.67)

and the particle density and total internal energy 
by (5.9) and (5.IO).
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_2»__Discussion of* results

The form (5«17) °f the grand—partition function is 
clearly extremely useful for considering the statistical 
mechanical properties of a gas with interaction potential 
given by (5«2l). Although in one dimension the method 
appears slightly cumbersome when compared with the 
differentiation with respect to volume1 approach used 
in the previous chapters, it has the advantage of being 
more readily extended to higher dimensions*

In two dimensions the problem becomes one of 
determining the greatest eigenvalue of the equation (5*66). 
It is interesting to note that with suitable choice of 
units the form of the operator J is such that this problem 
is the same as that of determining the lowest energy level 
of a one—dimensional quantum mechanical system of particles 
l,.*.,m^, each moving in a complex potential well of the 
form

XT 2,2 , it2~C a *  - W e

and with an attractive harmonic interaction potential 
between the first and second, second and third, third and 
fourth, etc*, particles*

In particular, it is desired to determine the 
asymptotic behaviour of the greatest eigenvalue when the 
column spacing u^ is small and the extension °-̂
the system in the direction is large. Unfortunately
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there appears to be no obvious way of accomplishing thisj 
though the 'nearest neighbour1 property suggests that if 
further progress towards the exact solution of the problem 
can be made, the equation (5.66), or some equivalent 
expression, is the appropriate starting point.

Various approximation procedures suggest themselves, 
the most obvious being a variational approach with a trial 
function z (tj which is the exponential of an arbitrary 
quadratic and linear form in the t^’s. However, this 
is found to yield the 'ring approximation1 (Mayer, 195 )̂ 
discussed in section 5*2 of chapter 2, which approximation 
may be derived by more elementary means.
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Chapter 6

THE DIRECT CORRELATION FUNCTIONS AND THEIR 
DERIVATIVES WITH RESPECT TO DENSITY

1.__Introduction

In chapter 1 the well-known distribution Functions oF 
a statistical mechanical system oF particles have been 
deFined# The useFulness oF these Functions lies in their 
obvious physical interpretation and explicit mathematical 
deFinition, but From the point oF view oF numerical work 
they suFFer From quite serious disadvantages, notably 
their slow (usually oscillatory) approach to their 
asymptotic values at large particle separations and the 
Fact that as these values are non—zero the Functions cannot 
be Fourier analysed (a device which is Frequently useFul in 
considering the integral equations which relate them)•

The second diFFiculty may be overcome by using the 
Ursell—Mayer or 'cluster1 Functions (Mayer and Montroll, 
1951j page 203 oF M, Green, I9 6 I; page 7 8 oF Uhlenbeck, 
1963)9 which are deFined in terms oF the distribution 
Functions and have the property that they tend to zero 
when the distance between any two particles becomes large. 
However, in general the rate oF convergence is rather poor 
and For this reason alone the prooF in this chapter oF the
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existence of many-particle analogues of the two—particle 
Ornstein—Zernike direct correlation function (Ornstein 
and Zernike, 1914; page 82 of Rosenfeld, 195l) is °f 
particular interest, as it is known that this function 
is considerably more regular and rapidly convergent than 
the corresponding cluster function. It may be expected 
that this is also true of its many—particle analogues 
(the direct correlation functions) and indeed it appears 
that the r—particle direct correlation function of a 
one—dimensional gas of hard rods vanishes exactly when 
the distance between any two of the r particles exceeds 
the range of the interaction potential, which is a 
striking demonstration of this property.

One other interesting point which will be proved in 
this chapter is the existence of relations between the 
distribution, cluster and direct correlation functions 
respectively and their derivatives with respect to the 
mean particle density of the gas. In the last case the 
relation is of a particularly simple form and suggests 
that if some approximate closure of the equations can be 
made by expressing the three—particle direct correlation 
function in terms of the two—particle, the resulting 
equations would be very easy to handle as they would 
predict the behaviour of the gas at one density in terms 
of its behaviour at another. With this end in view a
superposition approximation is suggested
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2 .___Definition of the problem

Consider a system of N identical particles 
confined within a volume V and with an interaction 
potential u(x—y) acting between any pair of 
particles at points x and y (in three dimensions 
x and y are to be interpreted as vectors)* Then 
the total potential energy of the gas is

- - E  "<v
14 j

x^ . (6.1)

As this chapter is concerned throughout with 
the behaviour of a gas at some fixed temperature, 
it is convenient to introduce the function u(x) 
and the quantity E f defined by

u (x ) = U(x) / XT (6.2)

and

E* = E / XT . (6.3)

(6.l) then clearly implies that

(Xj-Xk )
1 $ j<k$N

The equations (l.33) and (l.42) for the 
configuration integral and the j—particle
distribution function n(x-^,..,Xj) of the gas 
can now be written:

(6.4)
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Qn = ( .1 dX;L..dxN exp(-E') (6.5)

and

• , j- t
n(x1,..,xJ) = -(iTj-yy-Q- ] - J  dxj+i*«dxN exp(-E') , (6.6)

where x^ is the position coordinate of the k th 
particle and the integrations range over the domain 
V, (6*6) is to be evaluated in the limit when N 
and V are large, but the particle number density

p = N / V

is finite.

(6.7)

Clearly n(x^,..,x^) and all other statistical 
mechanical quantities are functions of p. It is 
the object of the next four sections to obtain explicit 
expressions for the derivatives of some of these with 
respect to p.

3« The functional formalism
Suppose an arbitrary external potential XT U(x) 

is superimposed on the system described above. Then 
the statistical mechanical quantities of the modified 
system, in addition to being functions of the density 
p, are functionals of the function U(x). In order 
to exhibit this dependence explicitly, all such functionals 
will be represented by underlined symbols.
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It will be found that these functionals can be 
expanded as Taylor series with respect to U(x) or 
other functionals of U(x), the 'coefficients' of the 
series being independent of U(x) and related to the 
distribution functions defined above. These and all 
other quantities which are not dependent on U(x) 
will be represented by symbols which are not underlined#

It is convenient to define the quantities

b(xx,..,Xj) (N-j)i CL j+1 dxN expI—E 1— u (xk )

(6.8)

where the summation in the exponent ranges from 1 to 
N and again it is to be understood that N and V 
are large, but p, given by (6.7), is finite. Clearly 
(6.8) defines a set of one— , two— , three— , etc, 
particle functionals of U(x). In addition, when 
j=0 it is to be regarded as defining a quantity b 
which is independent of all particle positions but is 
still a functional of U(x).

As the following equations will contain many
integrations over functions of position coordinates,
the notation U. will be used to denote U(x.), and J J
similarly for other functions. In the case of 
functions of more than one variable, the number of 
variables will be sufficiently indicated by the number
of suffixes In addition, the notation
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i dj

will be used to denote integration over the variable

x . •J
If F(x ) is defined by

eU) exp{-U(x)j - 1

then separating the factor

exp U(xJ
k=l

from the integrand of (6.8) and eliminating the 

function U(x) from the remainder by (6.9), (6.8)

may be written:

“ (N-j)j Q, f.-f d(j+l)..dN e“E n  U + F  ) 
J J k=j+l

where

b_ = b_ . exp(U1+...+U .)
- 1  j • • j J - 1 ,  . . , j  1 J

Expanding the (N— j) —fold product and using 

the equation (6.6) for the distribution functions, 

it is readily seen from (6.10) that

b j • • 3 J

0 0

y  T k ^ I T T  f ' J  d ( J + 1 ) - * d k  £ j + i - * £ :
k=j

k 1, « . , k

(6-9)

(6.10)

(6.11)

• • , (6.12)
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where the integrations in this and all subsequent 

equations of this chapter range not over V, but 

over all space. The first term of the summation

is defined to be unity when k=j, for any function 

F. This convention will be adhered to in the 

subsequent equations.

It is now evident that the distribution functions 

occur as 'coefficients' in the Taylor expansions of the 

functionals b* . with respect to F(x)• It is in

fact possible to adopt this rather than (l,42) as their 

definition, and this general technique of functional 

Taylor expansions will be employed to define the direct 

correlation functions.

When

it is possible to give an explicit definition of the

is n as follows if the operator1 9 • • J J

j“ d(j+l) • . dk F . . . Fn-j+1 -k

U(x) = u(x—y1 ) + + u (6.13)

b(x1,..,x.) in terms of the distribution functions

for the negative exponent

N

in the definition (6,8) becomes
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u (x i“xm )
1 < Am< N+k

0

where

xN + i = Y l (X < 1 « k )

and

(6.14)

(6,8) is therefore reminiscent of the definition 

of the (j+k) —particle distribution function in terms 
of an (N+k) —particle system. In fact it can be 

shown from (6,6) to imply that

0 u(yr-ym )
I S  ̂ <m$k

b(x1?..,x.)
N 1 QN+k / v
N+k)l Qn n x̂l»* *,xj,yl* * *,yk̂ ß (6.15)

As it can be shown from the definition (1.38) of the 
concentration activity coefficient and the relation 
(l,60) between that and the fugacity w that when 
N and V are large

w = N QN-1 / qn

(Qn_i and %  

of volume V) ,

both being evaluated for a system 
it follows from (6,15) that

*(:U.’ , X . ) n(: 1* • •jx . ,yj’̂ l5
ß (6,l6)

when U(x) is given by (6,13),
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it2__ _The_derivatives of the distribution
functions with respect to density

Xt has been shown in section 7 of' chapter 2 that 
the distribution functions of a general one«dimensional 
gas satisfy the relations

where ji is the quantity defined by (1.39)j i.e.

Xt is reasonable to suppose that this is the case 
in any number of dimensions and in fact it is not difficult 
to produce a convincing, if not rigorous, proof by the 
present methods, for if k is set equal to 1, 2, 3» etc.

doubly infinite set of equations for the singly infinite 
set of distribution functions is obtained. Not surprisingly, 
these equations completely determine the distribution

suppose that if the equations are differentiated with 
respect to the mean particle density they then completely 
determine the derivatives of the distribution functions, 
so that if they are satisfied by the values given by

-1 (6.18)

in (6.13) and these values of U(x) substituted into the 
set of equations (6.12), then using (6.1l) and (6,l6) a

functions (and the fugacity), as may be seen by solving 
them in the form of a virial expansion (expansion in 
powers of the density)• It is therefore reasonable to

(6.17), this relation is thereby proved correct.
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Adopting this procedure and differentiating 
(6,12) with respect to p, multiplying by \x p, 
and using (6.17), it is found that

^  p h  ■ J)

(k-j-i): H  d(j+D..dk FJ+1..Fk n1)>4(
k=j+l

+ 7 Tk
k= j

-ITT {•-Jd(j+i)..d(k+i) £j+1 • •—k(nx t,, ,k+i-P ni,..,i3
(6.19)

Each of the series on the right-hand side of 
this equation may be manipulated into a form where 
it is the integral of a series of the type occurring 
in (6 .12). Summing these series by (6 .12),
expressing the functionals b . in terms of the1 » • • » J
b . by (6.1l) and using the definition (6.9) of1 j 0 ° > J
F(x ), all the exponential terms cancel out, leaving

p Fp - J) ‘1  j • • » j Idb +1) ~ p
(6.20)

The simplicity of this equation and its formal 
resemblance to (6.17) are quite gratifying. It is 
now sufficient to show that when U(x) is given by 
(6.13), (6.20) is equivalent to (6.17).
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To show this, suppose all the b . are
1 j • • j J

given by (6,l6) for some fixed value of k. Then 
substituting these values into (6.20) , the terms 
e^ cancel out, giving

k /  ^  N — k
w nl j+k = j+k+1 ~ p nl,..,j+k^

(6 .21)
As

k  ̂ —kw p p ~  w k p \i log w)

using the relation (1.62), i.e.

(6,22)

p p (-- log

it follows that

kw

Substituting this result in (6.2l), the relation 
(6,17) is obtained, only with j replaced by 
j+k. Accordingly the values of the derivatives 
given by (6,17) satisfy the equations obtained 
from (6,12) and (6,l6) and so must be correct.

When k=l, using the definition (l,45) 
of g(x) and the fact that

(6.23)

(6.24)

n(x) P j (6.25)
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equation (6.17) yields

\l - 1 + p dx { g(x) (6,26)

which, is a well-known relation expressing the isothermal 

compressibility in terms of the two-particle distribution 

function (page 67 of H.S. Green, i960).

5a The cluster functions

The technique of considering the properties of a 

gas acted on by an arbitrary external potential u(x) 
as functionals of U(x) has been used by Percus (1962) 

to obtain a very elegant derivation of the Percus—Yevick 

approximation. As yet the formalism of this chapter 

has differed slightly from that of Percus, in so far 

as the functionals b(x^,..,x^) and b*(x^,..,Xj) 

have been considered, rather than the distribution 

functions n(x^,..,x^) of the modified system, which 

may be defined by:

nCx-^.-jX ) = bCxj^.-.jX ) / b (6.27)

The reason for this is that a Taylor expansion of

the functionals n(x ,,.,x.) with respect to F(x)
-L J

inevitably leads to a consideration of the cluster 

functions and functionals h(x^,..,Xj) and 

h(x^,..jXj) defined by
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1,2

s= n.

“ 111,2 nin 2

hl 3233 “ nl 32,3 “ nln 2,3 ~ n2n3,l

etc .

(6.28a) 

(6.28b)

n 3ni 2 + 2 nin 2n 3 j (^'28c)

and (similarly)

Ü1 Sl >

-1,2 sr 2 - s x s 2

etc •

(c.f. references quoted in section l), for which

the relation (6.l6) has no simple counterpart.

(6.29a)

(6.29b)

However, having established the relations 

(6,17) between the distribution functions and their 

derivatives with respect to density it is now 

convenient to abandon the functionals b(x^,..,Xj) 

and h*(x^,..3Xj) and to consider instead the 

cluster functionals h(x^3..,Xj) and the related 

quantities h*(x^3.*3Xj) defined by

i*h
-L > • • i J

h exp (U +..+U ) ,
-L 3 .  • 3 J -L J

(6.30)

Tor by a method similar to that of H.S. Green (1961) 

it may be shown that

h*J-, • • j J L _  F i y i H d(j+i)" d k £ j+1**£k k • t6 *31)



Also, it can be shown from (6,17) and the definitions 

(6,28) of the cluster functions that

• • j j +1 }

so that differentiating (6.31) with respect to p and 

using (6.32) it follows in a manner analogous to the 

derivation of (6.20) that

(H P I7 - 0) = J d(j+l) ,+1

(which obviously reduces to (6.32) when the function 

u(x) is identically zero).

In addition to the effect of differentiating 

h(x^,»*,x ) with respect to density, it will be 

necessary in the next section to consider the increments 

6h(x^,..,Xj) induced in the cluster functionals by 

changing U(x) to U(x) + 6U(x), the density being 

kept constant. Using (6.30), (6.31) and the

definition (6.9) of F(x), these are found to be:

6h-L } • • j J h . (6U +..+6U . )
“ 1 , • • , J 1  J

|d(j+l) b\J.j +1 1 j

162

(6.32)

(6.33)

j+i

(6.34)
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6. The direct correlation functions

6.1 Definition and proof of symmetry

Percus (1962) showed that the two—particle 
Ornstein^Zernike direct correlation function c(x,y)
(Ornstein and Zernike, 1914)» which may be regarded 
as defined by

p2 c(x,y) = h(x,y) - p | dz h(x,z) c(z,y) , (6.35)

occurs as the first coefficient in the Taylor expansion 
of Y(x)—1, where

Y(x ) = p“1 h(x) expju(x)I , (6.36)

considered as a functional, not of U(x) or F(x), 
but of

s(x) = h (x) - p • (6.37)

It was on precisely this observation that the 
derivation of the P.Y. equation rested.

It should be emphasized here that Y(x) is 
to be regarded as both a functional of s.(x) and a 
function of p. For given p, _s(x) is arbitrary 
only in so far as it is free to assume any of the 
values obtained by varying U(x).

Though the dependence of Y(x) on js(x) may 
be suitable for obtaining approximations, it is 
equally true that c(x,y) occurs as the first



coefficient in a Taylor expansion of log y (x ) with 
respect to _s(x) , and it seems that this expansion 
is of greater fundamental interest, for if
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l°g I x = JZZiyiJ~Jd2..dk s2 ..sk
k=2

(6.38)

it will be shown that the functions c(x1,..,x1 )
may be chosen to be symmetric with respect to all
the variables x^,*.,x^# There is no a priori
reason why this should be so, and it is certainly
not true of the coefficients obtained by expanding
Y(x )• To prove this symmetry property, note that
each c(x , ..,x, ) may be chosen to be symmetric -L -K.
with respect to all but the first variable, and that 
when this is done it is uniquely defined by (6.38).
Xt is then convenient to introduce a functional 
c^(x,y) defined by

co

-1.2 = I"id 3 , , d k - 3 ” -k ci,..,k • (6 -39>
k= 2

In the limit of U(x) zero .s(x) vanishes, so that 
c.(x9y) reduces to the direct correlation function 
c(x,y) .

Incrementing U(x) by 6U(x) in (6.38), if 
ölog Y(x ) and 6s(x) are the corresponding increments 
of log Y(x ) and ŝ (x) , it follows from (6,39) that

S d2 —̂ 2 — 1,2Slog Yx (6.40)
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As

6s 2 = S h 2

substituting the value of öh^ given by (6,34) in 
(6,40) and re—arranging the orders of integration:

6log Y. d2 6U (h c1,2 d3 -1,3 “3,2^

But the increment of log Y(x) may be obtained 

directly from the definition (6,36) together with 

(6,34)i in fact

6log d2 6U2 h i

so that comparing (6,42) and (6,43)j as 6u(x) is 
an arbitrary function

- 1,2 / ho £.1,2 1d3 -1,3 -3,2

This equation may be regarded as defining the 

functional c.(x,y), It is readily seen by solving 

by iteration and noting that

h(x,y) = h(y,x)

that c.(x,y) is also a symmetric function, i,e.

(6,41)

(6,42)

(6.43)

(6.44)

(6.45)

c(x,y) c(y>x) (6.46)



166

As this property holds for all values of the 

function U(x), (6.39) shows that is

symmetric with respect to interchange of x^ and x^*

As it has been defined to be symmetric with respect to 

the variables x^,..,x^, it follows that it is symmetric 

with respect to all the variables. The set of functions 

c(x^,..,x^) is therefore a physically useful set for 

considering a system of identical particles3 and in 

analogy with the two—particle function it is convenient 

to term them the direct correlation functions.

6.2 The derivatives with respect to density 

Using the equations (6.32) previously obtained 

for the derivatives of the cluster functions with respect 

to density, it is possible to establish similar, but 

simpler, relations for the derivatives of the direct 

correlation functions.

To do this, first note that from (6.32) and

(6.37).

M- P (|^ s2 + l) = h2 + I d3 h 2)3 , (6.47)

so that multiplying by c^ integrating over x^

and re—arranging the order of integration in the 

second term on the right-hand side:

^ P ! d2 (ST -2 + -1,2 = ld2 (-2 -1,2 + \ d3 %,3 ~3> 2̂
•J ' v*

(6,48)
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which from (6.44) clearly leads to

d2 ( + l) c1,2 S7 I, d2 hP'Pily J 1,2

The derivative of log Y(x) with respect to 

density is given by (6.33) and (6.36) to be

‘dp log X-l 1 m |1 1 
P P + d2 — 1,2 »

and it is a standard result (Percus and Yevick, 195^)» 
obtainable from (6.26) and (6.35)» that

Jl and h(x,y) may now be eliminated from (6.49)» 

(6.50) and (6.51) to yield:

H 106 S1 = J d2 -1.2 Tp -2 + ] d2 (% , 2  " Cl,2> •

This relation, together with the expansions 

(6.38) and (6.39)» enables the derivatives of the 

direct correlation functions with respect to density 

to be determined, for differentiating (6.38) with 

respect to p and using (6.39)» it is found that

—  log Y± = j d2 clj2 —  s2 
00

/ r ^ ^ j r  I"id2,*dk ci,..,k *
k=2

-1 1 - P d2 c1,2

(6.49)

(6.50)

(6.51)

(6.52)

+ (6.53)
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Expanding the second term in the right-hand side of 
(6„52) by (6.39) and subtracting (6.53)1 it follows 
that

DO

k= 2
(k-1Jl ' jd2##dk ^2**~k Cl,..,k“ j d(k+1) ci}..,k+l^

= 0 . (6,54)

As U(x) and hence ŝ (x) are arbitrary functions, 
this equation can only be satisfied if

'dp • • k j k+1 (6- 55)

for all integral values of k greater than one.

The simplicity of this relation is striking.
The rather annoying term p which occurs din the 
analogous formulae for the distribution and cluster 
functions has disappeared. In principle (6.55) 
should give a very direct method of obtaining the 
virial expansion if the functions c(x^,,.,x^) can 
be determined at infinite dilution. However, the 
lack of an explicit definition is a weakness here, 
as each direct correlation function must be obtained 
in terms of the cluster functions by Taylor expanding 
ŝ (x) and log Y(x) with respect to f(x) , 
substituting the expansions in (6.38) and equating 
coefficients. Such a procedure is impractical for 
all but very small values of k.



6.3 The one—particle direct correlation function 
By analogy with the distribution and cluster
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functions it is reasonable to suppose that a one—particle 
direct correlation function c(x) may be meaningfully 
defined. In view of the translational invariance of 
all functions relating to the behaviour of a gas of 
particles with interaction dependent only on the distance 
between interacting particles, such a function must in 
fact be a constant and may be expected to have some 
thermodynamic significance.

From (6,55)j c(x) must satisfy the equation

~  c(x) = j dy c(x,y) , (6.56)

which from (6.51) implies that

7- c(x) = (n-1) / u p  . (6.57)

However, it is known from (l.6o) and (1.62) that the 
quantity p and the concentration activity coefficient 
Y, considered as functions of the density p at 
constant temperature, satisfy the relation

 ̂ P ^  lo&(pY) = 1 > (6*58)

which may be written

““ logY = (l-p) / P p . (6* 59)

Comparing (6.57) and (6.59), it is apparent that 
suitable choice of c(x) isa
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(6.6o)

so the one—particle direct correlation function is 
the negative logarithm of the concentration activity 
coefficient•

c(x) = — log Y

7« A superposition approximation

The above results are in a sense purely formal, 
since they do not provide a closed system of equations 
for determining the thermodynamic properties of the 
gas. However, this is by no means a new situation, 
and as the direct correlation functions tend to zero 
very rapidly when the distance between any two 
particles becomes greater than the range of the 
interaction potential it seems reasonable to suppose 
they should prove useful in numerical work. Further,
if a closure can be made of the equations for the 
derivatives of either the distribution, cluster or 
direct correlation functions with respect to density, 
notably by some approximate relation expressing one 
of the three-particle functions in terms of the 
two-particle, the resulting equations would be quite 
simple to handle, as the values of the two—particle 
functions at one density would predict their values 
at an adjacent density. This situation is quite 
different from that encountered when using one of
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th.e Percus«Yevick (Percus, 1962) , hypernetted chain 
(Meeron, i960) and Born-Green—Kirkwood (Born and Green, 
1946) approximations, each of which has to be solved by 
some sort of iterative procedure for each value of the 
density*

One obvious procedure is to use the Kirkwood 
superposition approximation (Kirkwood, 1935) lor the 
three—particle distribution function, together with the 
equations obtained by setting j=l and 2 in (6*17). 
However, in view of the known regularity of the direct 
correlation functions and the simplicity of the 
equations (6.55) compared with (6.17) and (6,32), it 
seems more desirable to seek a relation between

°1,2,3 and Cl,2*
For a one—dimensional gas of hard rods it can be 

shown that c(x_,..,x, ) vanishes exactly when the 
distance between any two of the position coordinates 
x^,..,x^ exceeds the range of the interaction potential, 
so that the superposition approximation

cl,2,3 “ Cl,2 c2,3 °3,1 (6.61)

may be expected to be accurate at moderately large 
particle separations for any short-range potential. 
Further, (6.6l) is exactly true everywhere when the 
gas is infinitely dilute.

In the context of the present procedure the 
approximation (6,6l) is very attractive, for on
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eliminating °1,2,3 between it and the exact relation

ap °i,2 “ j d3 ci,2,3

(obtained by setting k=2 in (6*55) ), the equation

h log cl,2 = J d3 C1,3 c3,2
is obtained# Together with the boundary condition 

that

c(x,y) ss expj~u(x~y)/xTj - 1

when p=0, this equation completely determines the 

two-particle direct correlation function and is 

extremely simple to solve numerically.

If c(x,y) is calculated in this manner, the 

thermodynamic properties of the gas, in particular 

its equation of state, may be derived from it by any 

one of a number of exact relations# Clearly the 

most straightforward is simply (6.51), which from the 

definition (6.18) of |l may be written

h p/kt = 1 - p Jd2 ci,2
Alternatively, if the function g(x) defined by

(l# 45)j i•e•
P-2 n(x,y)

(6.62)

(6.63)

(6.64)

(6.65)

g(x-y) J (6.66)
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Is obtained from c(x,y) by the relation

g(x~y) - 1 = c(x,y) + p I dz c(x,z) [g(z-y) - lj (6.67)

(which is equivalent to (6.35) )> then the pressure

P may be derived from it by the relation (l.47)j i • e.

dx ( X« V  ^(x) j g(x) (6.68)

(D being the dimensionality of the space).

Both these procedures yield the first three 

virial coefficients correctly, but the second, though 

considerably more complicated, has the advantage that 

it is capable of giving the 'ring approximation*

(c.f. section 5*2 of chapter 2) which is the basis of 

the Debye—Huckel theory.

It should be noticed that the arguments which 

lead to the superposition approximation (6.6l) equally 

suggest the more general equation

Cl,2,3 = °1,2 °2,3 C3,l

where ö(p) is independent of the particle positions 

but may depend on the density p (and also on the 

temperature T ) , subject to the condition that

ö(0) = 1

If c is regarded as depending not on p, but on
-L 2 ̂

the related parameter

(6.69)

(6.70)

P / pXT _ 1 - 2x-D
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P

P* = f dp' c(p') , (6.71)
o

then the equation for c „ obtained from (6.62) and
J- j ^

(6.69) is simply

I p *  log cl,2 = f d3 cl,3 °3,2 > 6̂*72)

so that the evaluation of the direct correlation 
function is no more difficult than formerly.

It should then be possible to determine the function 
o(p) by requiring that the pressure P determined from 
both (6.65) and (6.68) be the same. Admittedly this 
amounts to an increase in the complexity of the approximation 
procedure, but the numerical analysis is well within the 
scope of present computing techniques and may be expected 
to yield quite accurate results.

8.__ Discussion of results

The sets of relations (6.17) and (6.32) between the 
distribution and cluster functions and their derivatives 
with respect to particle density have been established.
On defining the direct correlation functions by (6.38) they 
are found to satisfy similar, but simpler, relations. The 
possibility of a closure of these equations by means of a 
superposition approximation for the three—particle direct
correlation function has been discussed
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It should be stressed that the aim of this 
approximation is not to obtain a correction to the 
Percus-Yevick or hypernetted chain approximations (though 
this may be done, resulting in quite unmanageable 
equations), but to utilize the procedural simplicity of 
directly calculating statistical mechanical properties 
at one density in terms of those at an adjacent density.
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