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Abstract

Carbon dots (CDs) as a class of heavy-metal-free fluorescent nanomaterials has drawn 

increasing attention in recent years due to their high optical absorptivity, chemical 

stability, biocompatibility, and low toxicity. Herein, we report a facile method to 

prepare stable CDs by hydrothermal treatment of glucose (glc) in the presence of 

glutathione (GSH). With this approach, the formation and the surface passivation of 

CDs are carried out simultaneously, resulting in intrinsic fluorescence emission. The 

influence of reaction temperature, reaction time and feed ratio of GSH/glc on the 

photoluminescence property of CDs is studied. The as-prepared CDs are characterized 

by UV–Vis, photoluminescence, X–ray photoelectron spectroscopy, Fourier transform 

infrared spectroscopy and transmission electron microscope, from which their 

structural information and property are interpreted. Owning to their pronounced 

temperature dependence of the steady-state fluorescence emission spectra and 

pH-responsive behavior, resultant CDs could work as versatile nanothermometry 

devices by taking advantage of the temperature sensitivity of their emission intensity,

which change considerably over the physiological temperature range (15�60 ºC), as 

well as a sensor for pH.
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1. Introduction

Temperature and pH are fundamental thermodynamic variables which strongly affect 

biochemical and physiological actions and/or processes [1]. The accurate 

measurement of them is of increasing importance due to their widespread applications 

(electronic devices, biology, medical diagnostics) [2]. Up to now, some promising 

materials to local temperature/pH sensing are being designed, including scanning 

probe microscopy, Raman spectroscopy, and fluorescence-based measurements [3�5].

Among them, fluorescence-based nano-sensors are of particular interest because of 

their fast response, high spatial resolution, and safety of remote handling [6]. Indeed, 

several fluorescent nanomaterials, using semiconductor quantum dots (QDs), organic 

dyes, fluorescent polymers have been reported for temperature detection, which 

operates by the temperature-dependant luminescence intensity and/or decay time

[7�9]. Moreover, fluorescent metal nanoclusters have already shown great potential 

for temperature/pH sensor in water or in biological systems, and especially live cells

[10, 11]. However, the drawbacks of these existing methods are low sensitivity, 

systematic errors due to fluctuations in the fluorescence rate, the toxicity and the 

stability of optical properties in the local chemical environment/surrounding medium, 

which limits their further applications. Recently, fluorescent carbon dots (CDs) have 

been applied in ratiometric pH sensing in cells [12], while few CDs thermometers is 

reported.

The development of heavy-metal-free fluorescent nanomaterials as novel probes 

has drawn increasing attention in recent years [13�15]. Carbon nanopartciles or CDs 

as a class of heavy-metal-free fluorescent nanomaterials possess some advantageous, 

such as tunable emission, high optical absorptivity, chemical stability, 

biocompatibility, and low toxicity [16�19]. These superior properties make them 

promising candidates for numerous exciting applications, for example in bioimaging, 

biosensor, catalysis and photovoltaic devices [20�23]. Indeed, fluorescent CDs with a 

diameter less than 10 nm could be prepared produced from bulk graphite materials, 

candle soot, active carbon, pyrolysized polymers or carbohydrates through various 

methods (laser irradiation, electrochemical oxidation, microwave treatment, 
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hydrothermal treatment or strong acid oxidation) [24�28]. Hydrothermal is a facile 

and effective synthesis approach to produce fluorescent CDs from citric acid [29],

glucose [30] and orange peels [31]. On the other hand, the stability of fluorescent 

nanomaterials is an important factor for their applications, and this characteristic 

heavily depended on the chemical nature of the surface ligands and the interface 

between the core and the organic ligands [32]. To achieve a robust stability of 

fluorescent nanomaterials, the most direct and valid method is using capping 

molecules to form strong chemical bonds linking to the surface atoms of the core [33].

Although a large number of researches focus on the preparation of water-soluble 

luminescence CDs, the instability makes them unsuitable for using in the local 

chemical environment. 

Glutathione (GSH), a naturally occurring and readily available tripeptide, is usually 

used as template and protecting in synthesizing fluorescent nanomaterials [34].

Moreover, many functional groups of GSH, including thiols, carboxyl and amino 

groups make fluorescent nanomaterials exhibit good dispersion and photo-stability in 

aqueous solution [35]. For example, Lin group reported fluorescent gold nanodots

with GSH as protecting layer and resultant gold nanodots showed excellent 

photoluminescence properties with high photo-, time-, metal-, and pH-stability [36]. 

Herein, a facile hydrothermal route is designed to prepare luminescence CDs using 

glucose as C source. As-prepared CDs emit blue luminescence and passivity with 

GSH which makes them exhibit excellent water-soluble and -stable properties. More 

importantly, resultant blue luminescence CDs could be used as nanoprobes for 

temperature and pH sensing in liquids.

2. Experimental
2.1 Materials

Glucose (glc), quinine sulfate and reduced glutathione (GSH) are purchased from 

Aldrich and used as received without further purification. All the salts (analytical 

reagent) are obtained from Sinopharm Chemical Reagent Co., Ltd and used without 

further purification. The solutions of 20 mM of NaCl, KNO3, NH4Cl, ZnCl2,

Ba(NO3)2, FeCl2, Ca(NO3)2, MgSO4, Cu(NO3)2, Ni(NO3)2, (CH3COO)2Mn, Co(NO3)2,
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Cd(NO3)2, PbCl2, (CH3COO)3Cr are prepared, respectively. De–ionized water is used 

in all experiments.

2.2 Preparation of intensively fluorescent carbon dots

0.02 g of glc and 0.1 g of GSH with the molar ratio of glc/GSH of 1/3.5 are dissolved 

in 10 mL of deionized water in a glass beaker. After stirring for 3 min, the mixture is

transferred to a Teflon-lined autoclave chamber. After that, the chamber is sealed and 

put into an oven. Upon completion of hydrothermal reaction in the oven at 180 ºC for 

22 hours, the reaction product is centrifuged at 8500 rpm for 15 minutes to remove the 

black precipitates after cooling to room temperature. The yellow supernatant is

collected and filtered through a PTFE syringe filter with pore size of 0.22 ����Then 

the solution is subjected to dialysis in order to obtained high quality carbon dots

(CDs). Resultant CDs are stored in the dark for future using.

2.3 Quantum Yield Calculations

The quantum yield (QY) of the CDs is found by comparing the integrated 

photoluminescence (PL) intensities (excited at 350 nm) and the absorbance values (at 

350 nm) of the CDs using quinine sulfate as a reference. In order to minimize 

re-absorption effects, absorption in the 10 mm fluorescence cuvette is kept below 0.10 

at 350 nm excitation wavelength. Quinine sulfate with QY=0.54 is dissolved in 0.1 M 

H2SO4 (refractive index of 1.33) while the CDs are dissolved in water (refractive 

index of 1.33). A RF���	
���
�����������������
����������������������
�������������

0.3 nm and an emission slit width of 0.3 nm is used to excite the samples at 350 nm 

and to record their PL spectra. The integrated PL intensity is the area under the PL 

curve in the wavelength range from 370 to 600 nm.

The QY was calculated using the below equation:

�X ���ST(IX/IST) (AST/AX)( //////////// )

Where ���
������ !�"��
��������
#�������egrated PL �����
��$!�%��
�������������&��������

of the solvent, and A is the optical density. The subscript "ST" refers to standard with 

known QY and "X" for the sample.



  

6

2.4 Adjusting the pH of aqueous solution of the obtained carbon dots
HCl (2 M) or NaOH (2 M) is used to adjust the pH of the aqueous solution of 
resultant CDs.
2.5 Ion stability of the obtained carbon dots

To investigate whether this system is stable for some common ions, the effects of 15 

other kinds of cations, including Na+, K+, NH4
+, Zn2+, Ba2+, Fe2+, Ca2+, Mg2+, Cu2+,

Ni2+, Mn2+, Co2+, Cd2+, Pb2+, and Cr3+, on the fluorescence response of as-prepared 

CDs are recorded by fluorescence spectrophotometer. Briefly, 1.0 ml of solutions of 

NaCl, KNO3, NH4Cl, ZnCl2, Ba(NO3)2, FeCl2, Ca(NO3)2, MgSO4, Cu(NO3)2,

Ni(NO3)2, (CH3COO)2Mn, Co(NO3)2, Cd(NO3)2, PbCl2, and (CH3COO)3Cr with the 

concentration of 20 mM are added into 1.0 ml of the as-prepared CDs. The mixture is

stirred for 3 min and then the fluorescence spectra of the mixture are investigated 

under the optimum conditions. 

2.6 Characterization Methods

UV–Vis absorption spectrum is obtained by using a TU�1991 UV–Vis 

spectrophotometer. Photoluminescence (PL) experiments are performed with a 

Shimadzu RF–5301 spectrofluorimeter. X–ray photoelectron spectroscopy (XPS) 

using Mg K' excitation (1253.6 eV) is collected in a VG ESCALAB MKII 

spectrometer. Binding energy calibration is based on C 1s at 284.6 eV. The Fourier 

transform infrared spectroscopy (FTIR) is measured at wavenumbers ranging from 

500 cm(1 to 4000 cm(1 using a Nicolet 6700 FTIR spectrophotometer. The 

morphology and mean diameter of resultant CDs are characterized by JEM�2100 

transmission electron microscope (TEM) operating at 200 kV. 

3. Results and Discussion
3.1 Synthesis of fluorescent carbon dots

The procedure of preparing strongly fluorescent and highly stable carbon dots (CDs)

is simple as shown in Fig. 1. The synthetic approach follows the controlling

hydrothermal treatment (180 ºC) of glucose (glc) in the presence of glutathione (GSH)

for 22 h. With this approach, the formation and the surface passivation of CDs are 

carried out simultaneously, resulting in intrinsic fluorescence emission. Although the 

origins of photoluminescence (PL) are not yet entirely understood in CDs, there is 
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mounting evidence that emission arises from the radiative recombination of excitons 

located at surface energy traps which may or may not require passivation by organic 

molecules to occur [37]. Surface passivation could produce defect sites on the surface 

of CDs and the fluorescence emission arises from the radiative recombination of the 

excitons trapped by the defects [38]. We consider that the formation of CDs and their 

surface passivation take place simultaneously during hydrothermal treatment of glc in 

the presence of GSH. The abundant functional groups, such as carboxyl acids and 

amines identified by X–ray photoelectron spectroscopy (XPS) and Fourier transform 

infrared spectroscopy (FTIR) spectra, can introduce different defects on the surface, 

acting as the excitation energy traps and leading to the different PL properties.

Fig. 1-One-step route to synthesize surface passivated CDs by hydrothermal treatment of glc 

in the presence of GSH.

To find the optimal reaction conditions, we investigate the fluorescence spectra of 

resultant CDs under different molar ratio of GSH and glc, reaction temperature and 

reaction time (Fig. S1). By changing the weight ratio in the process of reaction, we 

obtain fluorescence spectra of resultant CDs under different molar ratio of GSH and 

glc. As shown in Fig. S1a, the emission spectra of CDs with molar ratios of 1:1, 2:1, 

4:1 and 5:1 of GSH and glc were analogous, so we preliminarily conclude that 

reactant ratio have no obvious impacts on the fluorescent properties of the resultant 

CDs in our experiment. Then, the effect of reaction time on the preparation of CDs is

investigated. As shown in Fig. S1b, the increase in heat-up time could make the 

enhancement of fluorescent intensity and narrower the full width at half maximum

(FWHM). In addition, comparing with the reaction temperature of 80 and 120 ºC,
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fluorescence spectra under reaction temperature of 150 and 180 ºC have obvious red 

shift and also a narrower FWHM (Fig. S1c).

Fig. 2-(a) UV�Vis absorption, (ex) excitation and (em) emission spectra of resultant 

fluorescent CDs in aqueous solution; the photographs of fluorescent CDs: (b) under room 

light and (c) under 365 nm UV light illumination. The measurements are performed under 

room temperature with the pH=3.

Fig. 2 depicts the UV�vis and fluorescence spectra of the diluted solution of 

resultant CDs in aqueous solution. In the UV�vis spectrum (Fig. 2a), it is seen that 

there are two UV�vis absorption peaks at 264 and 330 nm, respectively. The peak at 

)*+�����
��$������$��
���,����������---.�����
������������������
�)�������
 [31, 39]. 

The peak at 330 nm is attributed to the n--.�����
�����������/�,��� [40]. As shown, 

an optical absorption peak at 330 nm matches with the maximum fluorescence

�����������0��1��2���3#��#
�
��#����!������4
�����,���,�#����#���
�����������5�������

471 nm and the FWHM around 100 nm (Fig. 2a). The diluted solution of the 

as-prepared CDs in aqueous solution is nearly colorless (or a very slight yellow color) 

under visible light (Fig. 2b), while it emits intense blue fluorescence under 365 nm 

UV light illumination (Fig. 2c). The quantum yield (QY) of the as-prepared CDs in 

aqueous solution at room temperature is found to be 7.2% using quinine sulfate (0.1M 

H2SO4 as solvent; QY=0.54) as a reference.
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Fig. 3-(a) TEM image of resultant fluorescent CDs; (b) size distribution: the average size was 

2.6 ± 0.2 nm; (c) AFM image of resultant fluorescent CDs; (d) the height profile along the 

line of Fig. 3c; XPS survey (e) and XPS C1s (f) spectra of CDs.

The size and morphology of CDs are characterized using transmission electron 

microscopy (TEM) and atomic force microscopy (AFM) (Figs. 3a and 3c). The TEM 

images reveal that the CDs particles are spherical with an average diameter of 2.6 ± 

0.2 nm (Fig. 3b). In addition, none of lattice fringes is observed in the corresponding 

high resolution TEM (HRTEM) image (inset of Fig. 3a), indicating the amorphous 

nature of the CDs. The AFM image also supports the spherical morphology, with

average heights of 1.8 ± 0.2 nm (Fig. 3d). CDs are characterized using XPS in order 

to explore their elemental composition and chemical bonds. The presence of C, O, N 

and S in the as-prepared CDs is confirmed by XPS (Fig. 3e). The high resolution XPS 

spectra of C 1s (Fig. 3f) are divided into three unit moieties: C=C/C(���������,�����6�

energy at 284.5 eV; C(/78�(/(�����)9��:��;<�����/(��/����)99�+��; [31, 41]. On 

the other hand, the high resolution XPS spectra of N 1s, O 1s and S 2p (Fig. S2)

confirm that C�N, C�O, C=O, N�H, S and oxidized sulfur bonds exist in CDs [42].



  

10

These results indicate that there are apparent hydrophilic functional groups on the 

surface of the as-synthesized CDs. These hydrophilic groups can help CDs disperse 

into aqueous solution. FTIR spectra (Fig. S3) are used to identify the surface 

functional groups present on the CDs’ surface. In the FTIR analysis of CDs, the 

following are observed: stretching vibrations of O�H and N�H at ~3400 cm(1, C(H at 

~2900 cm�1, and =C(H at 3090 cm�1, stretching vibrations of C=O at 1670 cm�1,

bending vibrations of N�H at 1570 cm�1, and the vibrational absorption band of C(N

at 1180 cm�1 and 1030 cm�1 [43]. The results from FTIR spectra agree well with the 

XPS results showing that there are hydrophilic functional groups on the surface of the 

as-prepared CDs due to the surface passivation with GSH.

Fig. 4-PL emission spectra of the surface passivated CDs in water obtained by excitation

wavelengths from 360 to 500 nm. The measurements are performed under room 

temperature with the pH=3

Excitation-dependent PL behavior is observed, which is common for fluorescent 

carbon materials [44]. Fortunately, excitation-dependent PL behavior can be useful in 

multi-color imaging applications [18, 45]. The emission spectra of the as-synthesized 

CDs from 478 nm to 545 nm (Fig. 4) show change in the PL intensity as the excitation 

wavelength varied from 360 nm to 500 nm. CDs achieve the maximum emission 

intensity around 494 nm (a bright blue emission) when it is excited at 420 nm. The 

surface state and size effect affecting the band gap of CDs are considered to be 

reasons for the complexity of the PL behavior [25, 39, 44, 45].
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3.2 High Stability of fluorescent carbon dots

The stability of luminescent nanomaterials is an important factor to assess their 

applications [33, 36]. Herein, as-prepared CDs are exposed under a 450 W xenon (Xe) 

lamp for various time spans to probe their photo-stability. The fluorescence intensity 

of as-prepared CDs decrease only slightly, and preserve ~92% of the initial intensity 

even after 120 min irradiation by 450 W Xe lamp (Fig. 5a), which has been much 

more stable than FITC dye or CdTe QDs [33]. The fluorescence spectra of the 

as-prepared fluorescent CDs irradiated by a 450 W xenon lamp at various time in 

detail are given in Fig. S4a.

Fig. 5-The fluorescent stability of CDs : (a) Photo stability of as-prepared CDs irradiated by 

a 450 W xenon lamp at various time and (b) the metal stability of CDs in various metal ions 

with the concentration of 10-2 M.

In addition to the photo-stability, ions-stability is another factor that we cannot 

ignore in ensuring fluorescent nanomaterials to achieve practical applications [10].

The stability is investigated by the interference of some common cations (0.01 M) 

with the as-prepared fluorescent CDs. The relative fluorescence intensity is

determined by calculating the ratio of the fluorescence intensities of CDs solution in 

the presence and absence of the interference ions as shown in Fig. 5b. The results

revealed that most of these ions show either no or slight interference proving that 

these common cations did not play a part in impairing the fluorescence intensity of the 

as-prepared CDs. The fluorescence spectra of the as-prepared CDs in some common 
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cations (0.01 M) in detail are given in Fig. S4b. Moreover, there is no obvious change 

in the fluorescence intensity for as-prepared CDs after storing for one month under 

normal condition (Fig. S5). In a word, the as-prepared CDs with good photo-, time-

and ions-stability in this article are particular appropriate for practical applications.

We argue the high stability of the resultant CDs caused by surface passivation of GSH.

GSH, an abundant triamino acid peptide in nature, containing free thiol, carboxyl and 

amine groups which have been confirmed by XPS and FTIR results, could form a 

protective shell around the CDs [48].

3.3 Optical responses of fluorescent carbon dots to pH

When the stability of the fluorescent CDs at different pH values is assessed, 

surprisingly strong optical responses to changes in pH are observed. A series of 

fluorescent CDs solutions with pH ranging systematically from 1 to 13.5 are prepared, 

and the fluorescence intensity of fluorescent CDs in different pH values is monitored 

with a spectrofluorimeter. Significant changes in emission intensity are observed as 

the pH is varied, as depicted in Fig. 6a. It is obvious that the emission intensity 

reaches the maximum value at pH=3 but it decreases dramatically from pH=3 to 

pH=10 and changes a little at higher pH values (10�13). Meanwhile, a blue-shift in 

the emission peak from 487 to 472 nm is observed as pH decreases from 4 to 1 (Fig. 

S6a).

Fig. 6-(a) PL intensity of CDs at various pH values; (b) PL intensity upon the 

cyclic switching of CDs under alternating conditions of pH=3 and pH=9.

To evaluate the reversibility of the switching operation upon variation of pH, the 

as-prepared CDs are subjected to pH cycling between pH=3 and pH=9 using acid and 

base as modulators. As shown in Fig. 6b, the luminescence switching operation can be 
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repeated for six consecutive cycles without fatigue, indicative of good reversibility of 

the two-way switching processes. The fluorescence spectra of the as-prepared 

fluorescent CDs upon the cyclic switching of CDs under pH=3 and pH=9 in detail are

given in Fig. S6b.

Fig. 7-(a) UV–Vis absorption spectra of CDs in aqueous solution under pH=3 and pH=9, 

inset display the photographs of CDs under room light at pH=3 and pH=9; (b) the TEM 

image of CDs in aqueous solution at pH=9 and the size increases up to 4.6 ± 0.2 nm.

To gain more insight into the origin of the PL behavior, and explain strong optical 

responses to changes in pH of CDs, TEM and UV�vis spectra are performed. As 

shown in Fig. 7a, the as-prepared CDs display a obvious change in the UV(&�
�

spectra upon increasing the pH value from pH=3 to pH=9. In the aqueous solution 

with high pH value of 9.0, the absorption peak at 405 nm exhibits an obvious red-shift 

by comparison with the CDs of pH=3. Upon raising the pH value, CDs are

transformed to a electronegative form resulting in red shift of the absorption peak due 

to the electronic effect of the surface groups, which is correspond to the fluorescence 

spectra (Fig. S6). We attribute the observed red shift of the absorption peak to both of 

the formation of larger particles and the incensement of pH value. It is found that the 

average diameter of CDs under pH=9 is 4.6 ± 0.2 nm (Fig. 7b), while the average 

diameter of CDs under pH=3 is 2.6 ± 0.2 nm (Fig. 3a). Obviously, the increase in 

diameter of CDs between pH=3 and pH=9 is detected. Correspondingly, the color of 

the solutions changed from light yellow to dark yellow as the pH value increased from 

3 to 9 (the set of Fig. 7a). The results confirmed that under low pH values, the CDs 

were dissolved as isolated species in the aqueous; in contrary, the aggregation CDs 
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appeared with increasing the pH value because of noncovalent molecular interactions,

such as hydrogen bonds between the carboxyl groups [49]. Hence, pH-induced 

aggregations of the as-prepared CDs result in an obvious fluorescence quenching at 

high pH values.

3.4 Optical responses of fluorescent carbon dots to temperature

Fig. 8a shows the pronounced temperature dependence of emission spectra of the 

as-prepared CDs. The intensity decreases by 52% upon raising the temperature from 

15 to 90 ºC. The emission spectra of the as-prepared CDs do not shift within the 

investigated temperature window. As shown in Fig. 8b, with increasing the 

temperature from 15 to 60 ºC, the PL intensity of the as-prepared CDs changes close 

to linearly. Given this temperature range is larger than the physiological temperature, 

which suggests as-prepared CDs have promising applications in vivo temperature 

sensing. Moreover, the thermal response of CDs is reversible upon temperature 

cycling, and there is slight thermal hysteresis during heating and cooling cycles, as 

shown for four cycles between 20 and 80 ºC in Fig. S7b.

Fig. 8-(a) Fluorescence emission spectra (excitation 400 nm) for various temperatures 

in the range 15 -90 ºC (top to bottom); (b) the intensity at 500 nm is plotted versus 

temperature.

Herein, we developed one model to simulate fluorescence change of the various 

temperatures in the range 15�90 ºC (the set of Fig. 8a). A color change pattern of the 

temperature gradient is observed. The bottom is strong blue fluorescence and the top 

is slight blue fluorescence, while the color of the middle part continuously changes 

from dark blue to light blue as the temperature increases. According to the observation 

of fluorescence color, the temperature can be readily estimated or measured by 
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comparison with the temperature-dependent CDs chromaticity diagram. This 

visualization technique provides a useful tool for the detection of temperature. As 

illustrated in Fig. 9, TEM and UV�vis spectra are used to study the 

temperature-responsive PL behavior of CDs. As shown in Fig. 9a, the as-prepared 

CDs display no change in the UV(&�
�
�������#���� ������
��6��� e temperature from 

20 to 80 ºC. It is found that the average diameter of CDs at 80 ºC increased up to 4.4 ± 

0.2 nm (Fig. 9b), while the average diameter of CDs at room temperature is 2.6 ± 0.2 

nm (Fig. 3a). Hence, increasing the temperature, the aggregation of as-prepared CDs 

occurred which caused the obvious fluorescence quenching.

Fig. 9-(a) UV–Vis absorption spectra of CDs in aqueous solution under 20 and 80 ºC; (b) the 

TEM image of CDs in aqueous solution at 80 ºC and the size increased up to 4.4 ± 0.2 nm.

4. Conclusion

In conclusion, carbon dots (CDs) are prepared by hydrothermal treatment of glucose 

(glc) in the presence of glutathione (GSH). With this approach, the formation and the 

surface passivation of CDs are carried out. The chemical structure and PL mechanism 

are investigated in detail. The as-prepared CDs with good photo-, ions- and 

time-stability in this article are particular appropriate for practical application. 

Owning to their pronounced temperature dependence of the fluorescence emission 

spectra and pH-responsive behavior attribute to temperature-induced and pH-induced 

aggregation of CDs result in an obvious fluorescence quenching, the obtained CDs

have great potential as a novel luminescent thermometer and pH sensor, especially, 

the photoluminescence intensity is sensitive to temperature and approximately linear 

in the physiological temperature range which makes the as-prepared CDs be

promising candidate in cellular temperature sensing.
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TOC
A facile hydrothermal route is designed to prepare water-stable luminescence carbon 
dots (CDs). As-prepared CDs exhibit blue luminescence and could be used as 
nanoprobes for temperature and pH sensing in liquids.
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Fig. S1-The fluorescence spectra of resultant CDs under different conditions: (a) 
molar ratio of GSH and glc; (b) the reaction time; (c) the reaction temperature.

Fig. S2-XPS spectra of resultant CDs: (a) N 1s; (b) O 1s; (c) S 2p.
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Fig. S3-The FT-IR spectra of (a) as-prepared CDs, (b) pure glc and (c) pure GSH
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Fig. S4-The fluorescence spectra of CDs: (a) exposed under a 450 W xenon lamp 
for various time spans and (b) the presence of various metal ions

Fig. S5-The fluorescence spectra of (1) as-prepared CDs and (2) storing under 
normal condition for one months, inset display the photographs of fluorescent 
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CDs under 365 nm UV light illumination.

Fig. S6-(a) fluorescence spectra of CDs responses to pH ranging systematically 
from 1 to 13.5; (b) fluorescence spectra of CDs under pH=3 and pH=9

Fig. S7-(a) fluorescence spectra of CDs under 20 and 80 ºC; (b) PL intensity upon 
the cyclic switching of CDs under alternating conditions of 20 and 80 ºC.


