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ABSTRACT 

This thesis investigates new finite difference methods for 

the numerical solution of Volterra integral equations . 

After a brief discussion of the relevant literature in 

chapter 1, implicit Runge-Kutta methods, based on interpolatory 

quadrature formulae , are derived in chapter 2 for Volterra integral 

equations of the second kind , 

yet) = get) + It K(t , s , y(s))ds , t ~ 0 
o 

with continuous kernels K(t , s , y) Convergence of the schemes is 

examined . The order of convergence is equal to the degree of precision 

of the related quadrature formula plus one . In addition, the methods 

are shown to be numerically stable . For certain choices of quadrature 

formulae they are also A-stable in the sense of Dahlquist . 

In chapter 3 , the implicit Runge- Kutta methods developed in 

chapter 2 are applied to Volterra integral equations of the first 

kind , 

get) = It k(t , s)y(s)ds , t ~ 0 , 
o 

where k(t , s) satisfies certain smoothness conditions and 

k(t , t) i: 0 For the schemes obtained , simple necessary and 

sufficient conditions for convergence and numerical stability are 

derived. From these conditions, schemes which are convergent of 

arbitrarily high order and numerically stable can be constructed . 

Finite difference schemes for the generalized Abel 

equation , 

( ) - It k(t , s) ()d 
gt- a YSS ' 

o (t-s) 
t ~ 0 , o < a < 1 , 

where k(t, s) satisfies appropriate smoothness conditions and 



(iv) 

k(t , t) to, are investigated in chapter 4 . Using product 

integration techniques, the midpoint, Euler and trapezoidal methods 

for Volterra integral equation s of the first kind with continuous 

kernels and the schemes developed in chapter 3 are extended to this 

equation . Convergence results for the product integration analogues 

of the midpoint, Euler and trapezoidal methods are derived . 



CHAPTER 1 

INTRODUCTION 

1.1 Introduction 

Volterra integral equations are usually classified into 

equations of the second kind 

yet) = get) + I
t 

K(t , s , 
o 

y( s)) ds , t ~ 0 

and equations of the first kind 

get) = It K(t , s , y(s))ds 
o 

t ~ 0 . 

1 

In most numerical schemes, the equations are discretized at 

a n umber of distinct points and quadrature rules are used to approx-

imate the integral terms. If such methods are convergent, the order of 

convergence will depend on the accuracy of the quadrature rule used . 

In the construction of efficient quadrature rules the smoothness 

properties of the specific kernel K(t , s , y) under consideration 

are a critical factor. It is therefore useful to distinguish between 

equations with continuous and singular kernels . 

In this thesis , new finite difference methods for Volterra 

integral equations of the first and second kind with continuous 

kernels and for equations of the first kind with kernels having an 

algebraic singularity are examined. 

In the following four sections a short survey of finite 

difference schemes for Volterra integral equations is given . For a 

comprehensive bibliography on approximate methods for Volterra 

integral equations , the reader is referred to Noble (1971 a, b) . 
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1.2 Volterra Equations of the Second Kind with Continuous Kernels 

The general form of a second kind Volterra integral 

equation with a continuous kernel is 

y ( t) = g ( t) + r K ( t , s , Y ( s ) ) ds , t > 0 , 
o 

(1.1) 

where 

(1 . 2 . 1) K(t , s , y) is continuous with respect to t and sand 

uniformly Lipschitz continuous with respect to y for 

o ~ s ~ t ~ T < 00 and all finite y , 

(1.2 . 2) get) is continuous on 0 ~ t ~ T 

Under these conditions, (1.1) has a unique continuous solution on 

o ~ t ~ T (see for instance Davis (1960 ), p . 415) . 

If the kernel does not depend on t , and get) is 

differentiable , then (1 . 1) reduces to an ordinary differential 

equation . This correspondence has made it possible for certain 

classes of methods for ordinary differential equations to be 

extended to (1 . 1) . 

(i) Runge-Kutta methods . The derivation of standard Runge-Kutta 

methods for (1 . 1) has been the subject of extensive investigation 

(see for instance Pouzet (1960, 1962) , Laudet and Oules (1960) and 

Beltjukov (1965)). 

(ii) Linear multistep methods. The extensions of these methods to 

(1 . 1) are sometimes referred to as step by step methods (see Linz 

(1967 a)). Early advocates of these methods include Fox and 

Goodwin (1953) , Jones (1961) and Noble (1964) . A general definition 

of linear multistep methods for (1.1) combined with a rigorous 

theoretical treatment has been provided by Kobayasi (1966) . The 

concept of the repetition factor of a linear multistep method has 

been introduced by Linz (1967 a) who shows that schemes with a 
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repetition factor of one are numerically stable. He also gives 

examples of schemes with a repetition factor greater than one which 

are only weakly stab l e. A more elegant proof of Linz's result is 

given by Noble (1969) . 

A class of methods derived independently of ordinary differ-

enti a l equati ons are t he block by block methods . The characteristic 

feature of these schemes is that a "block" of approximations to y(t) 

is obtained at each step , rather than a single approximation. The 

use of block by block methods was first suggested by Young (1954) in 

the context of Volterra integral equations of the second kind with 

singular kernels . Linz (1967 a) has formulated the methods for 

equations with continuous kernels and established convergence. 

Other finite difference methods not mentioned above 

include the schemes developed by Hung (1970) which produce spline 

approximations to y(t) . 

1 . 3 Volte r ra Equat ions of the Second Kind with Singular 

Kernels 

The general form of second kind Volterra integral 

equations with singular kernels is 

y(t) = g(t) + It p(t , s)K(t , s , y(s»)ds , t > 0 , 
o 

(1. 2) 

where 

(1 . 3 . 1) K(t , s , y) and g(t) satisfy the conditions (1 . 2 . 1) and 

(1 . 2 . 2) respectively , 

(1.3 . 2) (' I p( t , s) Ids -+ 0 as t2 -+ tl ' uniformly in t and tl 

1 

for 0 < tl < t2 ::: t ::: T 
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The conditions (1 . 3 . 1) and (1 . 3 . 2) are sufficient for the existence 

of a unique continuous solution on 0 ~ t ~ T (see Evans (1910)) . 

Some typical forms of pet , s) encountered in practice are 

Young (1954) has suggested the use of product integration 

for the approximate solution of integral equations with singular 

kernels . Using this technique, the linear multistep methods and the 

block by block methods mentioned in §1.2 can be extended to (1 . 2). 

Specific examples of methods of this kind have been considered by 

Noble (1964) and Oules (1964) . The convergence of methods based on 

product integration has been investigated by Linz (1967 a) . 

1 . 4 Volterra Equations of the First Kind with Continuous Kernels 

To date , only linear equations 

get) = Jt k(t , s)y(s)ds 
o 

t ~ 0 , (1 . 3) 

have been considered in the literature . To ensure the existence of 

a unique continuous solution on 0 ~ t ~ T < 00 , the following 

conditions are required (see for instance Tricomi (1957) , pp 15-16): 

(1 . 4 . 1) k(t , s) and ok(t , s)/ot are continuous on 0 ~ s ~ t ~ T , 

(1 . 4 . 2 ) k(t , t) * 0 on 0 ~ t ~ T , 

(1 . 4 . 3) get) is continuously differentiable on 0 ~ t ~ T and 

g(O) = 0 

The linear multistep methods and the block by block 

methods introduced in §1 . 2 can be formulated for (1 . 3) . However , a 

general analysis of these schemes has as yet not been given . Only 

the methods obtained when approximating the integral term in (1 . 3) 

by means of the trapezoidal , midpoint and Euler rules, respectively, 
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have been investigated. 

The trapezoidal method for the case of a convolution 

kernel k(t, s) = k(t-s) has been examined by Jones (1961) who 

established order two convergence. In addition, Jones observed that 

the error incurred when using the trapezoidal method can be highly 

oscillatory . This oscillatory behaviour was explained by Kobayasi 

(1967) who proved that the trapezoidal method is convergent of order 

two for a general k(t , s) but is only weakly stable. Convergence 

for a general k(t , s) was established independently by Linz 

(1967 a) . 

Noble (1964) suggested that the midpoint method would be a 

more suitable numerical procedure. This was verified by Linz 

(1967 a) who established order two convergence and numerical 

stability for this scheme. 

The Euler method has been shown to be convergent of order 

one and numerically stable by Linz (1967 a) . 

Hung (1970) considers variants of the trapezoidal and 

midpoint methods which are based on product integration . The product 

integration analogue of the midpoint method has also been examined by 

Squire (1969) and Linz (1971). 

1 . 5 Volterra Equations of the First Kind with Singular Kernels 

The first kind equations with singular kernels most 

frequently encountered take one of three forms : 

(i) get) o S t S T < 00 • (1.4) 

An analytic inversion formula for (1.4) is known (see for instance 

Minerbo and Levy (1969)) . Under appropriate conditions it is given by 
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o ~ t ~ T . (1 . 5) 

Approximate solutions can be obtained by solving (1 . 4) 

directly by a numerical procedure , or alternatively, by applying 

numerical quadrature to (1.5). In both cases the quadrature 

formulae used are obtained by product integration . 

Direct methods which use piecewise constant and piecewise 

linear approximations to y(t) have been suggested by Schardin 

(1933) and Winckler (1948) respectively . Recently , Einarsson (1971) 

has examined methods where y(t) is approximated by a cubic spline . 

In the procedures based on (1 . 5) , g(t) is approximated 

by piecewise polynomials of low order and the integrals are 

evaluated analytically . Such schemes are given in Olsen (1959) , 

Bockasten (1961), Nestor and Olsen (1962) , Edels , Hearne and Young 

(1962) and Free (1963). 

(ii) g(t) = ft k(t , s)y~s) ds , 0 < a < 1, t ~ 0 , 
o (t-s) 

(1 . 6) 

where k(t , s) is continuous and k(t, t) t o . Eq . (1.6) with 

k~t , s) = 1 and a = ~ is Abel's integral equation . After an 

appropriate transformation of variables (see for instance Minerbo 

and Levy (1969)), (1.4) takes the form (1 . 6) with k(t, s) = 1 and 

a = ~ . For the case k(t, s) = 1 , an analytic inversion formula 

is known (see for instance Tricomi (1957), p . 40) . A class of 

methods for the evaluation of this inversion formula in the case 

a = ~ is considered in Edels, Hearne and Youhg (1962) . 

In general, inversion formulae are not available and 

schemes based on (1.6) must be used . Methods of this type were 

developed by Durbin (1971) for a particular class of equations which 

arise in the analysis of Brownian motion and diffussion processes . 



7 

( iii) get) = It ~(s; k ds , t ~ 0 . 
o (t-S)2 

0 .7) 

This equation was first s tudied by Linz (1967 b) who 

examines a direct method and a method which utilizes 

the known inversion formula. Atkinson (1971 ) h d a as prove convergence 

of a direct method based on a piecewise linear approximation to 

yet) 

1 . 6 Thesis Outline 

Chapter 2 deals with the numerical solution of second kind 

Volterra integral equations with continuous kernels (Eq . (1.1)) . 

Implicit Runge-Kutta methods based on interpolatory quadrature 

formulae are developed for (1.1) and convergence and stability of 

the methods are examined. These schemes contain as a subclass the 

block by block methods given in Linz (1967 a). 

It is shown that the methods are convergent and that the 

order of convergence is equal to the degree of precision of the 

related quadrature formula plus one . This extends a result obtained 

by Axelsson (1969) . 

The asymptotic behaviour of the numerical solution for a 

"small" gridspacing is investigated and the methods are shown to be 

numerically stable . For certain choices of quadrature formulae they 

also have the stronger property of being A-stable in the sense of 

Dahlquist (1963). 

Finally it is concluded that the schemes utilizing Lobatto 

or Radau quadrature display highest possible orders of convergence 

combined with favourable stability properties. 

In chapter 3 , the numerical solution of linear Volterra 

integral equations of the first kind with continuous kernels (Eq . (1 . 3)) 
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is considered . After a comparison of the stability properties of the 

trapezoidal and midpoint methods is made, the implicit Runge-Kutta 

methods developed in chapter 2 are applied to (1.3). The results of 

this chapter show that the implicit Runge-Kutta methods contain 

schemes which are convergent of arbitrarily high order and numerically 

stable. As far as the author is aware these are the first high 

order schemes developed for first kind equations. 

Finite difference methods for a class of first kind Volterra 

equa tions with singular kernels, (Eq. (1.6)), which will be called 

generalized Abel equations, are examined in chapter 4 . The midpoint, 

Euler and trapezoidal methods used for the numerical solution of 

first kind equations with continuous kernels are extended to (1.6) by 

means of product integration . The resulting schemes are examined and 

shown to be convergent under appropriate conditions on k(t, s) and 

y(t) . Finally the i mplicit Runge - Kutta methods of chapter 3 are 

extended to (1 . 6) by product integration and investigated numerically . 
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CHAPTER 2 

IMPLICIT RUNGE-KUTTA METHODS FOR 

VOLTERRA INTEGRAL EQUATIONS OF THE SECOND KIND 

2 . 1 Introduction 

As mentioned in chapter 1, the extension of explicit 

Runge-Kutta methods for ordinary differential equations to Volterra 

integral equations of the second kind with continuous kernels , 

yet) = get) + ft K(t , s , y(s))ds , 
o 

has received considerable attention. 

(2.1) 

Implicit Runge-Kutta methods for the solution of ordinary 

differential equations have been studied by Butcher (1964 a , b) , 

Axelsson (1969) and Wright (1970) and have been shown to possess 

desirable stability properties combined with high order of 

convergence. Butcher shows that to each Runge-Kutta process there 

corresponds a numerical quadrature formula. 

In this chapter , the idea of constructing implicit 

Runge-Kutta methods , based on quadrature formulae, is extended to 

(2 . 1) . The basis of the quadrature formulae under consideration for 

the interval [0 , lJ is Lagrangian interpolation with respect to a 

Two different methods are defined for each set and are shown to be 

convergent of order p + 1 where p is the degree of precision of 

the associated quadrature formula. In addition the methods are 

shown to be numerically stable in the sense of Kobayasi (1966) and 

for special choices of points have the stronger property of being 

A-stable in the sense of Dahlquist (1963). 
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The conditions on get) and K(t , s , y) ensuring the 

existence of a unique continuous solution of (2 . 1) have been given 

in §1. 2 and are restated here for convenience: 

(2 . 1 . 1) K(t , s , y) is continuous with respect to t and s for 

all finite y on 0 S sSt S T , 

(2 . 1 . 2) K(t , s , y) satisfies the Lipschitz condition 

where L is a constant independent of t , s , Yl and 

(2 . 1 . 3) get) is continuous on 0 S t ST . 

However , in the subsequent convergence analysis and in the analysis 

of the asymptotic behaviour of the error, additional smoothness 

conditions will be imposed on K(t , s , y) and get) 

It should be noted that although the analysis is presented 

only for the scalar equation (2 . 1) , the generalization to a system 

of Volterra integral equations of the second kind follows 

immediately . 

2 . 2 Preliminaries 

In this section some notation is introduced and four lemmas 

and two corollaries which will be required in subsequent analysis are 

presented . 

Define 

Let 0 S u
l 

< u
2 

< . . . < un = 1 and 

w(t) 
n 
L 

j=O 

n-j a . t 
] 



k=l , ... , n , 

a' k J r 
j = 1, ... , n r = 0, 1, ... , 

and 

Denote the relation 

r w(s)ds i: 0 
o 

by wet) E Po ' and the relations 

fl srw(s)ds = 0 , r = 0, ... , V-l, V > 0 
o 

11 

(2 . 3) 

(2 . 4) 

and (2 . 5) 

by w( t) E P 
\J 

Let 

R. (f) 
l 

i = 1, ... , n . (2 . 6) 

The following lemmas and corollaries are generalizations of results 

due to Axelsson (1969) . 

Lemma 2 .1. 

If wet) E Pv ' then 

and 

q 
L 

r=l 

R (un+q) = 0 , q ~ \J - 1 . 
n 

q=o, ... , n , 

(2.7) 



Proof . Clearly 

and 

R. (uq)=O . q=O •. . .• n- l. 
l 

Co 
I' 

n-r 
t . 

The result follows from the linearity of the operator R .• 
l 

Remark 2 .1. This result includes the well known fact that 

the degree of precision of the quadrature formula 

is n + V - 1 . 

Lemma 2 . 2 . 

12 

# 

If f (t) is a polynomial of degree less than or equal to 
q 

q • and I' + q S n + V - 2 • then 

f

l l_sr+l 
f (s)ds = 1 f (s)ds . 

q 0 1'+ q 

Proof . Using (2 . 4) • 1 eJJUll a 2 .1 and partial integration. 

n f~ n 1 uk 
L: I' f (s)ds = L: f Lk(x)dx t\ f f (s )ds 

k=l ~ ~ 0 q k=l o 0 
q 

= r xl' r f (s )ds dx 
0 o q 

= t 
o 

1 
1'+1 

-s f (s )ds 
1'+1 q 

# 

Corollary 2 . 1 . 

Proof . Using leJJUllas 2 . 1 . 2 . 2 and Eq . (2 . 5) . 



n f~ L ~ w(s)ds 
k=l 0 

= fl (l-s)w(s)ds 
o 

= 0 

Hence the result is true for r + p = 0 . 

Suppose the result is true for r + p = 0 , 

13 

.. . , £.-1 

£.-1 < \1-2 Let r + p = £.. Then, applying lemmas 2.1 , 2.2 and 

(2 . 5) , 

n n 
((k 

p 
Rk(un+p- j ) ) r Rk (un+p) 

r sPw(s)ds -L ak uk = L a
k ~ 

L Ci. . 

k=l k=l 0 j=l ] 

fl l_sr+l 
sPW(s)ds 0 = = o r+l 

The result follows by induction. # 

Corollary 2 . 2 . 

Proof. The result follows from corollary 2 . 1 and the linearity of 

the operator Rk . # 

Lemma 2 . 3 . 

If r ~ \I , then 

(2 . 8) 

Proof. Us ing (2. 7 ) , 
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n 
u~+l(~_l)rL (u.u

k
) r+l r l: ak 

= u. ( s -1 ) r L ( u . s) ds 
k=l J m J J 0 

m J 

u. 

= f J ( s - u . ) r L (s) ds 
0 J m 

u . r 
(~J (_uj)r-i foJ 

i 
= l: s L (s)ds 

i=o m 

r 
(~J (-Uj ) r-iajrni = l: # 

i=o 

Remark 2.2 . For r = 0 , Eq . (2.8) reduces to 

n 
u. l: akLm (u j uk) = a. (2 . 9) 

J k=l Jm 

This identity will be used repeatedly . 

The following lemma which provides an estimation of the 

growth of the solutions of nonhomogeneous difference equations is 

given in Henrici (1962), p. 313 . 

Lemma 2 . 4. 

i-l 
If I E:. I s A l: Iskl + B , i = 1, 2 , . .. , A, B > 0 and 

1 k =O 

ISol s n , then 

Is.1 S (B+An)e 
(i-l)A i = 1, 2, , ... 

1 

2 . 3 Numerical Schemes 

In this section two implicit Runge - Kutta methods correspond-

ing to a fixed set {ul' u2 ' ... , un} are defined. 

The aim is to obtain an approximation to the solution yet) 

on the grid 

t . ;;; ih, i = 0, ... , I 
1 

h = T/I . 



Let 

t .. = t. + u.h , j = 1 , ... , n 
1J 1 J 

i = 0 , ... , 1-1 . 

Discretizing (2.1) yields 

y(t .. ) = 
1J 

g(t .. ) + 
1J 

t. 

f 1K(t .. , 
° 1J f

t
ij 

s , y( s)) ds + 
t. 

1 

K ( t . ., s , y ( s ) ) ds , 
1J 

15 

j=l, ... , n i = 0, .. . , 1-1 . (2 . 10) 

To approximate K(t . . , s , y(s))ds , the quadrature formula 
1J 

n 
E 

k =l 
.e. = 0 , . . . , i-l , 

is used. An approximation to K ( t . . , s , y ( s ) ) ds 
1J 

is now 

required. A natural extension of the above is to apply the quadrature 

formula 

n 
f(s)ds ~ E h a

J
' k f(t ik) . 

k=l 

This leads to the numerical scheme 

where 

and Y . . 
1J 

j=r , ... ,n i = 0 , ... , 1-1 , (2 . 11) 

denotes the approximation to y (t .. ) 
1J 

If then 

and = Y. 
1n 

i = 0 , ... , 1-2 



16 

For each i , (2 .11) represents a system of n + 1 - r 

simultaneous equations in Y . • 
1.J 

j = r , ... , n . It follows from a 

contraction mapping argument that this system has a unique solution 

if h is s ufficiently small . Also, it may be seen from (2.11) that 

values of K(t , s , y) are required outside the region 0 ~ s < t ~ T 

and this could cause difficulties in practice if the kernel is badly 

behaved outside this region . 

This problem can be overcome by using a different 

approximation for 

K(t .. , s, y(s»)ds 
1.J 

K(t .. , s , y(s»)ds . 
1.J 

J
tij 

K(t .. , s , 
t. 1.J 

1. 

by 

and then apply the quadrature formula 

n 

First approximate 

n 
L 

k=l 

f(s)ds '" L hU
J
. ak f(ti+uJ. ~h) . 

k=l 

This yields the numerical scheme 

j = r , ... , n; i = 0 , ... , 1-1 . (2.12) 

Clearly , in (2 . 12) , K(t , s, y) is not required outside the region 

o ~ s ~ t ~ T. For the special case 

K(t , s, y) = AY , A = const, 

the schemes (2 . 11) and (2 . 12) are the same . This is a consequence of 

(2.9) . 

It should be noted that the scheme (2 . 11) can also be 

considered as arising from a piecewise continuous spline interpolating 



to K(t , s , y(s)) at s = t.. , j = 1, ... , n 
lJ 

17 

i = 0, . . . , 1-1 

Methods based on splines with full continuity have been considered by 

Hung (1970) and have been shown to be divergent for splines with 

degree greater than two . 

Remark 2 . 3 . In the sequel only the schemes with ul > 0 will be 

considered . However with slight notational modifications the 

analysis applies also to the schemes with ul = 0 . 

2 . 4 Convergence of the Numerical Schemes 

Let w( t ) E P \i In the subsequent analysis it will be 

assumed that 

(2 . 4 . 1) K(t , s, y) is n + \i + 1 times continuously differentiable 

(2 . 4 . 2) 

with respect to t, sand y respectively on 

o s s S t+o , 0 S t S T, \y\ s y , where 0 is a fixed 

positive number for the scheme (2 . 11) , 0 = 0 for the 

scheme (2 . 12) and y = max \y(t)\ , 
OstsT 

dK 
dy (t , s , y) is Lipschitz continuous with respect to y 

on 0 S s S t+o o S t S T , \ y \ S y+T , T > 0 . 

(2 . 4 . 3) g(t) is n + \i + 1 times continuously differentiable on 

o S t S T 

The conditions (2 . 4 . 1) with 0 = 0 and (2 . 4 . 3) ensure that y(t) 

is n + \i + 1 times continuously differentiable on 0 < t ST . 

However , condition (2 . 4 . 3) is not used explicitly in the subsequent 

analysis . 

Define 

y .. = y(t . . ) 
lJ lJ 

j=l , ... , n i = 0, ... , 1-1 , 
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and 

E .. = y .. - Y .. , j = 1, ... , n; i = 0 , ... , 1-1 . 
lJ lJ l J 

First l y , the method (2 . 11) with h < 0 will be considered . 

Subtract i on of (2 . 11) from (2 . 10) yields 

where 

and 

P .. 
lJ 

Qoo 
lJ 

R ..• 
lJ 

n 
+ 1: ha ·k{K(t . . , t l·k , y·k) - K(t . . , t l·k , Yl.k)} + R .. , 

k=l ] lJ l lJ lJ 

= J
tij 

K(t .. , 
t . lJ 

l 

j = l , . .. , n 

R oo = PoO + Qoo 
lJ lJ lJ 

i = 0 , ... , 1-1, (2 . 13) 

The following lemma provides an asymptotic expansion for 

Lemma 2 . 5 . 

and 

Then 

R .. = 
lJ 

Let 

K(t , s) = K(t , s , y(s)) 

j = 1 , ... , n i = 0 , ... , 1-1 , (2 . 14) 



where 

<p . (t) 
PJ 

19 

t 
RJ. ((U-U

J
.)n+

p-11 
= K(n+p-l)(t, ) -- _ 

(n+p-l)! ' 

p = a, ... , V-l; j = 1, ... , n 

R (un+v) 
<p .(t) = n It K(n+V)(t, s)ds + K(n+V-l)(t ,t) RJ.((U-uJ.)n+v-l) 

VJ (n+V)! a (n+V-l)! 

j = 1 , ... , n . 

Proof . By Taylor series expansion, 

t 

I 
£+1 n 

K ( t. ., s) ds - h L 
t£ 1J k=l 

(n+V) ( ) 
l

K t .. , to 2 
= hn+v+ 1J ~ R (un+v) + O(hn+v+) . 

(n+v)! n 

Thus 

Again from Taylor series expansion, 

U. 

Q . . = h Ia
J 

K(t
1
.
J
. , t .. +(S-U.) h)dS - ~ ha

J
.k K(t . . , t . . +(Uk-U.)h) 

1J 1J J k=l 1J 1J J 

t .. ) {I
Uj 

1J a 
n+v-l hr +l (r) 

= L - ,-K (t .. , 
r=a r. 1J 

n 
L 

k=l 
( ) r} ( n+V+ 1) a jk ~-Uj + 0 h 

n+v-l hr+l (r) () v 1 = L -,- K ( t . . , t .. ) R. ( U - U . ) r + 0 (h n + + ) 
r=n r. 1J 1J J J 

The result follows . # 

Corollary 2 . 3 . 

If v > 1 , then 



n 
L 

j=l 

Pr oof . 

r 
a . u. cP . ( t ) = 

] ] p] 
o , r = 0 , ... , v-p-l 

The result follows from corollary 2.1. 

p = 0 , . .. , V-l . 

# 

In the subsequent analysis use will be made of 

Lemma 2 . 6 . 

or 

There exists a constant K such that 

e. = 
l 

max 1 E .. 1 S Kh n , 
. l] 

lS]Sn 
i = 0 , . . . , 1-1 , if 

e. S Khn+l , i = 0, . . . ,1-1 , if V > 0 
l 

v = 0 , 

20 

Proof . Taking absolute values in (2.13) and applying the Lipschitz 

condition (2 . 2) yields 

i-l n n 
1 E . . 1 S L L hL lakl 1 E.t'.k 1 + L hL lajk l 1Eik l + IR. · 1 

l] £.=0 k=l k=l 
l] 

j = 1 , . . . , n i = 0 , .. . , 1- 1 

From lemmas 2 . 1 and 2 . 5 , there exists a constant C such that 

IR . . I S Ch
n 

l] 
j = 1 , ... , n i = 0 , ... , 1-1 ,if V = 0 , 

or 

1 R .. 1 S Ch n + 1 , j = 1 , •• . , n 
l] 

i = 0 , .. . , 1-1 , if V > 0 . 

Hence 

or 

where 

e. < nhL A 
l 

e. S nhL A 
l 

i n 
L e £. + Ch , 

£.=0 
i = 0 , ... , 1-1 , if 

i = 0 , ... , 1-1 , if 

A = max lajk l . 
lSjSn 
lSkSn 

V = 0 , 

V > 0 , 
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The result follovls from lemma 2 . 4 . # 

The above lemma gives a convergence result for the scheme 

(2.11). Generally however , this result is not the best possible and 

in particular a more accurate estimate can be obtained for E. 
In 

i = 0 , ... , 1-1 For this analysis four additional lemmas are 

required. 

Lemma 2.7. 

n 
L 

j=l 

Then 

n 
L 

j=l 

Proof . 

n 

Let the functions e.(t) 
J 

r 
a. u. e. (t) = 0 0 , , r = 

J J J 

n .e 
a. u~ L a' k uk e

k 
(t) = 

J J k=l J m 

Using lemma 2 . 2 , 

n n 

j = 1, ... , n , satisfy 

where 0 < q < \! -l . .. , q , 

0 , p + .e + m = 0 , . .. , q-l 

u. 
n r J 

u~ ek'(t) 
.e 

u~ L L u~ 
J o 

m 
Lk(s)ds L a. L a ' k 

= uk ek(t) a . s 
J J k=l J m J J 

j=l 

By binomial expansion , 

and hence 

Thus, from (2.5), 

= 

r 
= L 

q=O 

k=l j=l 

n .e r sm L uk ek (t) 
k=l 0 

P + m 

(
r) ( .) q r-q 
q s-ukJ uk ' 

= 

(J._sP+l ) 
Lk(s)ds , 

p+l 

0, ... , \!- l (2 . 15) 
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(2.16) 

On substitution of (2 . 16) into (2.15) it follows that 

n n £ 1 
n £+m (l_U~+l ) L a. u~ L a' k uk 8( t) = L ~ uk 8

k 
(t) 

j=l ] ] k=l ] m p+l k=l 

= 0 , m + £ + p = 0, ... , q-l 

Lemma 2.8. 

Let f(t , s) be M + ·1 times continuously differentiable 

in the region 0 S sst STand denote 

Then 

i-l 
h L f(t .. , t.tk) 

£=0 l.] 

t .. 

= fol.] 

ar 
=-f(t n)\ 

r ' . n=s an 

# 

M ~ 0 , 

where 

~l ~l 
1jJ (t) = /m)(t, 0) L C u

k
r + f(m)(t, t) L D (u _u._ l)r 

]'km mr mr k ] 
r=O r=O 

and 

C mr 

are constants. 

D mr 
r = 0, ... , m+l m = 0, .. . , M-l , 

Proof. By the Euler-Maclaurin sum formula, (see for example 

Ralston (1965), p . 133), 



i-l 
h ~ f ( t. ., t ok) 

£.=0 1J -{.. 

where B 
r 

r = 1, 2 , 

Taylor series expansion, 

23 

[M /2] h
2r

B 
t f ( t . . , t. - tukh) J t ~ 2r 

1J 1- 1. (2r) ! 
r=l 

{
/2r-l) (t .. , "\ (2r-1) ( t. ltukh)-f t .. , 

1J 1- 1J 

(2 . 17) 

... , are the Bernoulli numbers . By 

u. h M- l ( m) ( "\ 

J 
k 1 ft .. ,O) 

f(t .. , s)ds = ~ hmt 1J u:nt1 
t O(h

Mt1
"\ , (2 . 18) 

1J (mt l)! k ) o m=O 

f (t .. , s) ds 
1J 

(m) (0 I 
M-l f t . . , t . . ) 
~ hmtl 1J 1J (uk-uJ.- llmtl t O(h Mtll , 

( m+l) ! ) ) 
m=O 

= 

and 

M-2r 
~ 

m=O 

f ( 2r-l tm) (t . . , 0) 
hm 1J 

m! 

f (2r-l) (t .. , hi 1J ti_ltuk ) 

(2r S M) 

(2.19) 

(2 . 20) 

( 2r S M) . (2 . 21 ) 

The result follows by substitution of (2 . 18) , (2 . 19) , (2 . 20) and 

(2 . 21) into (2 . 17). # 
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Lemma 2 . 9 . 

The scheme (2 . 11) is O-stable in the sense of Stetter 

(1965) . 

Proof . The result follows i n the same way as lemma 2 . 6 . # 

Since from lemma 2 . 5 , R . . 
lJ 

has an asymptotic expansion in 

integral powers of h , it follows from the O-stability of the scheme 

(2.11) and Stetter (1965), theorem 1, p . 21 , that £ •. 
lJ 

also possesses 

such an expansion , viz . there exists a unique set of functions 

{ e .(t) E CV-p[O , TJ , j = 1, .•. , n 
PJ 

such that 

£: • • = 
lJ 

v 
~ 

p=O 
hn+p e .(t .. ) + o (hn+V+l) , 

PJ lJ 

p = 0 , ... , v} 

j = 1 , ... , n ; i = 0, ... , 1- 1 . (2 . 22) 

In the following lemma , a recurrence relation for the func t ions 

e . (t) 
PJ 

j = 1 , .. . , n; p = 0 , ... , v , is derived . Using this 

relation, it will be possible to obtain estimates for £ . , , 
lJ 

j = 1, ... , n; i = 0 , ... , 1- 1 , which are sharper than the bound 

given in lemma 2.6 . 

Lemma 2.10 . 

If v > 1 , then the functions 

p = 0 , .. . , v-l , satisfy the relations 

j=l , ... , n , 

e . (t) = cp . (t) 
PJ PJ 

p-l p-m-l 
+ ~ ~ 

m=O q=O 

and 

I«p-m- q-l)(t ,t) 

(p-m-l) ! 

j=l , . .. , n 

e . (t) 
PJ 

j=l , ... , n 

p = 1 , ... , v-l , (2 . 23) 
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n 
L: 

j =1 

r a. u. e .(t) = 
PJ 

o , r = 0, ... , V-p-l p = 0, ... , v-l ,(2.24) 
J J 

where 

k(t ,S)=~K(t,s,n)1 ( on n=y s) , 

em(rk)(t) = d
r 

e (t) 
dtr mk 

Proof. From Taylor ' s theorem, 

K( t, s, y) - K(t, s, y) = k(t, s)(y-Y) + O(y_y)2) . 

Hence (2.13) becomes 

E •. = 
lJ 

Substitution of (2 . 14) and (2.22) and division by h
n 

yields 

v 
L: hP e . (t .. ) 

p=O PJ lJ 

j = 1, ... , n; i = 0, ... , 1-1 (2.25) 

From lemma 2 . 8, with f(t, s) = k(t, s)epk(s) , there exists a set of 

functions {~'k (t) , m = 0, .. . , v-p} such that 
J pm 

J
toij () v-p-l m+l . ) ( V-PH) 

= k t . . , s e k ( s ) ds + L: h ~ . k Lt.. + 0 h , 
lJ P m=O J pm lJ 

j = 1, ... , n k = 1, ... , n p = 0, ... , V . ( 2 . 26 ) 
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Al so, from Taylor series expansion , 

k=l , ... , n p = 0 , ... , v . (2 . 27) 

Substituting (2.26) and (2.27) into (2 . 25) and applying Leibnitz's 

rule gives 

= ~ hP{ ~ a
k 

J
tij 

k(t. 0 ' s)e k(s)ds + <I> 0 (to o)} 
p=O k=l 0 ~J P PJ ~J 

+ P~' h
P :~: k~' {ak <P°

k 
l(t .. ) J r ,p- r - ~J 

p-r- l (p-r-1
J 

(p-r-q-l)( 
+ aJo k ~ k t oo, t oo) 

q=O q ~J ~J 

uk-u j V+l ( ) p- r - l} 
(p-r-l)! + O(h ), 

j=l , ... , n i = 0 , ... , 1- 1 . (2 . 28) 

Clearly, from lemma 2 . 6 , 

eOj(t) = 0 j = 1 , ... , n 

Now consider the case P = 1 Fr om lemma 2 . 8, 

j = 1 , . . . , n ; k = 1 , ... , n . 

Hence , equating coefficients of h in (2 . 28) yields 

el o( t) 
.J 

= r k(t , s) 
o 

j = 1, ... , n , (2 . 29) 

and since 

i t follows that 

n 
~ 

j=l 
a. = 1 , 

J 
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~ a.el . (t) = ft k(t , s) ~ a .el.(s)ds + ~ a.<I'l.(t). (2.30) 
j =1 ] ] 0 j =1 ] ] j =1 ] ] 

From corollary 2 . 3 , 

n 
L a.<Pl.(t) = 0 . 

j=l ] ] 

Thus (2.30) is a homogeneous Volterra integral equation of the 

second kind and so 

n 
L a.el.(t) = 0 • 

j=l ] ] 

It follows from (2 . 29) that 

j = 1, . . . , n , 

and so from corollary 2 . 3, 

n r L a .u. el.(t) = 0 , r = 0 , ... , \>-2 . 
j=l ] ] ] 

The proof proceeds hy induction. Assume the lemma is true for 

p = 1, ... , i-l < \>-1 Then from (2.24) , (2.26) and lemma 2.8, 

n 
L a

k 
~'k 0 let) = 0 , j = 1, ... , n , r = 0 , ... , i -l . 

k=l ] r ,-c-r-

Hence , equating coefficients of hi in (2 . 28), yields 

= r n 

eij(t) k(t , s) L ak eik(s)ds 
0 k=l 

i-l i-r-l 
(i-~-l ) k(i-r-q-U(t ,t) n (q) ( ) i - r-l 

+ L L (l-r-l) ! 
L a jk erk (t) uk-u j 

r=O q=O k=l 

+ <P ij (t) , j = 1, ... , n , (2 . 31) 

and so , 
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J
t n £.-1 £.-r-l ( ) 

= k(t , s) L a ,e£. , (s)ds + L L £.-r-l 
o j =1 J J r=O q=O q 

(£'-r-q-l) k (t,t) 
(£.-r-l) ! 

n n (q) ( "\£'-r-l 
L a, L aJ'kerk (t) Uk-UJ') 

j=l J k=l 

From corollary 2,3, 

n 
L a

J
, cj> £'J' ( t) = 0 , 

j=l 

and from (2,24) and lemma 2,7, 

n n (q) ( "\£'-r-l 
L a , L aJ'kerk (t) Uk-UJ') = 0 , 

j=l J k=l 

+ 
n 
L a

J
, cj> £'J' ( t) . 

j=l 
(2 . 32) 

q = 0, . . " £.-r-l , r = 0, .,., £.-1 . 

It follows that (2 . 32) is a homogeneous Volterra integral equation of 

the second kind and therefore 

n 
L a

J
, e£'J,(t) = 0 . 

j=l 

Thus, from (2.31), 

(£'-r-q-l) 
k (t,t) 

(£.-r-l) ! 

£.-1 £.-r-l 
+ L L 

r=O q=O 

and from (2.24) and lemma 2 . 7, 

n r L a,u, e£. , (t) = 0 
j =1 J J J 

o ::: r ::: v-£.-l . 

j=l, .. . ,n, 

Hence the result is true for p = £. and so the lemma follows. # 

In the following theorem it will be shown that 

e , = O(hn+v"\ . This is the main convergence result for the scheme 
"In ) 



(2 . n) . 

Theorem 2.1 . 

where 

Proof . 

If wet) E P then 
V 

e (t) 
Vn 

i = 0 , .. . ,1-1 , 

s atisfies an equation of the form 

e (t) = l;, (t) + Jt k (t , s) e (s) ds . 
Vn vn 0 vn 

From (4 . 22) , 

E. 
In 

If V = 1 , then, from lemma 2 . 6 , 

e (t) = 0 , 
On 

and if V > 1 , then from lemma 2 .5 and lemma 2 . 10 , 

e (t) = 0 
pn 

p = 0 , . . . , 

This proves the first part of the theorem. 

V-l . 

29 

Equating powers of hV in (2 . 28) yields equations of the 

form 

+ r n 
e . (t) = E::Vj(t) k(t , s) L ak eVk(s)ds , j = 1, ... , n , 

vJ 0 k=l 

and hence 

n n 

+ r n 
L a. e . (t) = L a. E::v/ t) k(t, s) L a . e . (s )ds 

j=l J vJ j=l J 0 j=l J vJ 

n 
= L a . E::Vj(t) - E:: (t) + e (t) 

j=l J Vn Vn 

It follows that 
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+ f
t n 

= ~vn ( t ) k ( t, s) Ea. (~v . ( s ) - ~ ( s ) ) ds + 
o j=l J J Vn 

+ ft k(t, s)e (s)ds 
o vn 

= I'; (t) + f t k (t, s) e (s ) ds # 
Vn 0 vn 

Now the convergence of the scheme (2.12) will be investigated. 

The analysis proceeds as for the scheme (2.11). Subtract ing (2.12) 

from (2.10) yields 

where 

with 

P .. 
lJ 

+ ~ hu.ak{K(t .. , t.+u.~ h, ~ L (u.~ )y. ) 
k=l J lJ l J J< m=l m J J< lm 

- K (t .. , 
lJ 

n 
t .+u.~h, E 

l J m=l 
L (u.~ )Y. )} + m J J< lm 

R .. , 
lJ 

j=l, ... ,n i = 0, ... ,1-1, (2.33) 

R .. = P •. + Q .. + S .. 
lJ lJ lJ lJ 

Q .• 
lJ 

{K ( t. ., s, y ( s ) ) - K ( t. ., s, y ( s ) ) } ds , 
lJ lJ 

S .. 
lJ 

and 

= ft
ij 

K (t .. , 
t. lJ 

l 

y(s) = ~ L (S-ti)y 
L. h. 

m=l m lm 
t. < s ::: t. 1 . l l+ 
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Lemma 2.11 . 

Let K(r )(t. s) and k(r)(t . s) be defined as previously . 

Then 

R . . = 
1J 

where 

cp .( t) 
PJ 

and 

j = 1 ..... n i = O •...• 1-1 • 

= P[l k(p-r-l)(t.t)y(ntr)(t) n~r P-~-l 
r=O (p-r-l) ! (ntr)! q=n .t=0 

u. 

(_u.) ntp-q-.t-l J J .t s jJ (s)w(s)ds 
J 0 q 

p = O. . .. • \>-1 • 

( nt\» ( ) 
Rn u Jt (nt\» \>-1 k(\>-r-l)(t . t)y ntr (t) 

= ( ) ! K (t . s) ds t L (,,_ -l )! ( t )! nt\> . 0 v r . n r . o r= 

jJ (t)w(t) 
q 

Proof. In the same way as in lemma 2 . 5. 

R (unt\» t .. 

P .. = hnt\> n J 1J K(nt\»(t ..• s)ds t O(hnt\>tl) 
1J (nt\»! 0 1J 

From Taylor ' s theorem. 

u. 

Q . . = h J J k(t ..• t .ths){y(t .ths) -y(t .ths)}ds t O(h2ntl) . 
1J 0 1J 1 1 1 

Now 
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y(t.+hs) - ~(t .+hs) = 
1 1 

v-l ( n +r) ( ) 
+ Y t . . { 

1: hn r 1J (S-U
J
.) n+r 

r=O (n+r)! 

n ( ) n+r} ( n+v) 1: Lk(S) uk-u
J
' + 0 h 

k=l 

= 
v-l 

1: 
r=O 

(n+r) ( ) 
y t ij n~r (n+r\ (_u.)n+r-qJsq 

(n+r)! q=n qJ J\ 

and 

k (t .. , t. +hs) = 
1J 1 

= 

V-l 
1: 

r=O 

v-l 
1: 

r=O 

k(r)(t .. ,t .. ) 
h r 1 J 1 J ( s _ u . ) r + 0 (h V) 

r! J 

The result follows, since 

Corollary 2 . 4 . 

If V > 1 , then 

n 
1: 

j=l 

r 
a. u. cP .Ct) = 

J J PJ 
o , r = 0, . . . , V-p-l p = 0 , .. . , V-l . 

Proof. The result follows from lemmas 2 . 11, 2 .2 and Eq . (2 . 5). 

The following two lemmas can be proved in the same way as 

lemmas 2.6 and 2 . 9. 

Lemma 2 . 12. 

There exists a constant K such that 

or 

e. = 
1 

max 1e: .. 1 ~ Kh
n 

, 
. 1J 

~J~n 

i = 0 , ... , 1-1 , if V = 0 , 

# 
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e S Kh
n

+
l 

i = 0 , ... , 1- 1 , if v > 0 . 
i ' 

Lemma 2 . 13 . 

The scheme (2 . 12) is O- stable in the sense of Stetter 

(1965) . 

From lemmas 2 . 11 and 2.13 and Stetter (1965) there exists a 

unique set of functions 

{ e . (t) E Cv-p[O, TJ , j = 1 , ... , n 
PJ 

P=O , ... ,V} 
s uch that 

E •• = 
1J 

v 
L 

p=O 
hn+p () ( n+V+l) e . t .. + 0 h . 

PJ 1J 
(2 . 34 ) 

A recurrence relation for e . (t) , analogous to (2 . 23), is obtained 
PJ 

in 

Lemma 2.14. 

If V > 1 , then the functions e . (t) 
PJ 

j=l , ... ,n 

P = 0 , ... , V-l , satisfy 

e .(t) = 0 , 
OJ 

j=l , ... , n , 

e . (t) 
PJ 

p- l t k(r)(t , t) 
= cp • (t) + L L: r! (l-r) ! 

and 

n 
L 

j=l 

where 

Proof . 

PJ t=l r=O 

r 
a . u . 

J J 
e .( t ) = 
PJ 

o , 

b ' k J r 
= 

n (t-r) ( )t- r 
Leo 1 k(t) uk-u. b· k , 

k=l P-.{..- , J J r 

j = 1, ... , n P = 0, ... , V- l , 

r = 0 , ... , V- p- l P = 0 , ... , V- l , 

r 
L 

q=O 
[r) (- u .) r-qa ' k . 
q J J q 

The appl i cat i on of Taylor ' s theorem and l emma 2 .12 t o (2 . 33 ) 
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yields 

n n 
+ ~ E . ~ huJ.a

k 
k(t .. , t.+u . ~h)L (u .Q) + R .. + O(h2n) , 

m=l .lm k=l .lJ.l J m J l< .lJ 

j = 1 , . . . , n ; i = 0 , ... , 1 - 1 (2 . 35 ) 

Also by Taylor series expansion and lemma 2 . 3, 

\)-1 r 1 (r) 
= ~ h - , k (t .. , t .. )b . + O(h\)) . 

r=O r. .lJ.lJ Jmr 

Substituting (2 . 34) into (2 . 35) and dividing by h
n 

yields 

\) 

~ hP e . (t . . ) 
PJ .lJ p=O 

n \) 

+ ~ 
p=O 

1 
\)-p-l k(r) (t . . ,t . . ) 

hP+ ~ hr .lJ .lJ 
r! 

~ e k(t .k)b' k + O(h\)+l) 
k=l P .l J r r=O 

j=l, .. . , n i = 0 , ... , 1-1 . 

Proceeding as in lemma 2 .10 , it follows that 

\) 

~ h P e . (t .. ) 
PJ .lJ p=O 

ak 4l ' k l(t .. ) J r ,p- r- .lJ 

+ ~ a
k 

ft
ij 

k(t .. , s)epk(s)ds + 
k=l 0 .lJ 

\) {P-l £. k(r) (t . . ,t . . ) 
P ~ .lJ .lJ 

+ ~ h ~ 0 r ! (l-r) ! 
p=l £.=0 r= 

(£.- r) ( ) } ( \)+1) e 0 1 k t .. b ' k + 0 h P--l.- , .lJ J r 

n 
~ 

k=l 

<P • (t .. )} 
PJ .lJ 

j=l , .. . , n . 

The lemma follows by induction i n a similar way to lemma 2 .10 . # 



The following theorem is proved In a similar manner to 

theorem 2 .1 . 

Theorem 2.2 . 

If w(t) E P ,then v 

i = 0 , ... , 1-1 , 

where e (t) satisfies an equation of the form Vn 

= S" (t) + ft k(t , s)e (s)ds 
vn 0 Vn 

2 . 5 Numerical Stability 

Consider the integral equation (2.1) and suppose that a 
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perturbation og(t) to g(t) causes a change oy(t) to the solution 

y(t) . Then, 

y(t) + oy(t) = g(t) + og(t) + ft K(t, s , y(s)+oy(s))ds . 
o 

Expanding K(t , s, y+oy) by a Taylor series and neglecting the 

o (oy2) term yields 

where 

oy(t) = og(t) + ft k(t, s)oy(s)ds , 
o 

a 
k(t , s) = an K(t , s , n)in=y(s) 

The linearized equation (2.36) characterizes the sensitivity of 

(2 . 36) 

y(t) with respect to a small perturbation in g(t) . It is clear 

that this sensitivity must be reflected in the growth of the 

discretization error and the propagation of rounding errors . Hence , 

the best that can be expected for a finite difference method , is that 

the leading term in the asymptotic expansion of the error satisfies 
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an equation of the same form as (2.36) . In this case, the method 1S 

called numerically stable. This concept was first introduced by 

Kob ayasi (1966) and has been further developed by Linz (1967 a) and 

Noble (1969) . 

From theorems 2 .1 and 2 . 2 it is clear that the pure 

discre~ization error of the schemes (2 . 11) and (2 . 12 ) will grow in a 

stable manner. However, to investigate the numerical stability 

fully, it is necessary to consider the propagation of rounding errors 

which can be characterized by the propagation of perturbations in 

Y
Oj

' j=l, .. . , n . 

First consider the scheme (2 . 11) and suppose that in the 

first step , approximations YOj 
j = 1 , ... , n , which satisfy 

= Y • 
OJ 

O. 
J 

have been calculated instead of YOj 

o = max 

j = 1 , . .. , n , 

j = 1 , ... , n . Denote 

10·1 
j =l, . .. ,n J 

Using the values YOj 
j=l , ... ,n (2.11) will generate a new 

sequence of approximations 

given by 

Y . • 
1J 

j=l , .. . ,n, i = 1, .. . , 1-1 , 

n i-l n 
Y . . = L L hak 

K(t .. , t.tk ' Y.tk) + L hajk 
K(t .. , t ik ' Yik) , 

1J 1J .t=0 k=l 1J k =l 

j = 1 , .. . , n i = 1 , ... , 1-1 (2 . 37) 

Let 

E: •• = y .. - Y .. j = 1 , ... , n i = 0 , . . . , 1- 1 
1J 1J 1J 

Then, 

j = l, .. . , n , (2.38) 

where j = 1, ... , n , are given by (2 . 13) . By an argument 

similar to lemma 2 . 6, it follows that 
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E . • = O(hn) + O(hO) , j = 1 , ... , n; i = 1 , .. . , 1- 1 . (2 . 39 ) 
lJ 

Subtraction of (2 . 37) from (2 . 10) and the use of Taylor ' s theorem, 

(2 . 38) and (2 . 39) yield 

j=l, . . . ,n; i=1 , ... , 1-1. 

Hence , by superposition , 

E •• = E . • + E •• , j = 1, . . . , n 
lJ lJ lJ 

i = 0 , ... , 1-1 , 

where 

" E .. = 
lJ 

O. , 
] 

and E . . 
lJ 

j = 1, . .. , n , 

j=l , ... , n i = 1 , . . . , 1- 1 , (2 . 40) 

j = 0 , .. . , n i = 0 , . . . , 1- 1 , is the pure discret ization 

error given by (2 . 13). By lemma 2 . 4 , 

" ( 2n) E .. = O(hO) + a h , 
lJ 

j = 1, ... , n i = 1, ... , 1- 1 . 

Let 

j = 1 , . . . , n i = 1 , . . . , 1- 1 . 

Then, from (2 . 40) , 
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i - l n n 
e .. = ~ ~ hak k(t . . , t£.kJe£k + ~ ha

J
' k k(t .. , t·k)e ·k 1J £.=1 k=l 1J k=l 1J 1 1 

n 
+ ( ) ( 2n-l) ~ a

k 
k t

iJ
., tok Ok + a h + a(ho) , 

k=l 

j = 1 , . . . , n ; i = 1 , ... , 1- 1 . 

This equation can be interpreted as a finite difference met hod 

applied to the system of integral equations 

e . (t) 
J 

= I: k(t , s) 

n n 
~ akek(s)ds + k(t , 0) ~ akok 

k=l k=l 

j=l , . . . , n . (2 . 41 ) 

Using lemma 2 . 4 , t his method can easily be shown to be convergent of 

order one, and hence 

e .. = e . (t .. ) + a (h 2n-l) + a(ho) j = 1 , n 
1J J 1J 

, . .. , i = 1 , ... , 1-1 . 

From (2 . 41) , 

e . (t) = e(t) , j = 1 , ... , n , 
J 

where 

(t n 
e(t) = J k(t , s)e(s)ds -t- k(t , 0) ~ ako k 

o k=l 

and it follows that 

s . . = he(t .. ) + a(h2n) + a(h2o) , j = 1 , ... , n; i = 1 , .. . , 1- 1 , 
1J 1J 

which implies that the scheme (2 . 11) is numerically stable . 

In the same way , numerical stability can be establi shed for 

the scheme (2 . 12) . 

2 . 6 A- Stability and Stiff A-Stabi l ity 

So far in the analysis of the numerical schemes it has been 

assumed t hat the product of the step size h and the Lipschit z 
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constant L is " small". However it is well knovm from ordinary 

differential equations, which are a special case of (2 . 1) , that such 

a choice of h is unsatisfactory if for instance the solution 

consists of a slowly varying main component over which t here are 

superimposed some rapidly decaying components. This is due to the 

fact that when l:he contribution from the decaying components has died 

out , it is desirable to choose the step size h with respect to the 

rate of variation of the main component rather than the r ate of 

variation of the negligible components . Equat ions of this type are 

called stiff equations and s everal special stability properties for 

numerical methods, in particular A-stability in the sense of 

Dahlquist (1963) and stiff A-stability in the sense ofAxelsson 

(1969) have been introduced to cope with this difficulty. 

A numerical method is called A-stable if , when applied to 

the problem 

y(t) = 1 + A J: y(s)ds Re( A) < 0 , 

with an arbitrary step size h , then 

where Y. 
1. 

addition 

lim 
i~ 

h fixed 

Y. = 0 , 
1. 

denotes the numerical approximation to 

lim 
h--

i fixed 

Y. = 0 
1. 

for all i 

y (t .) . 
1. 

If in 

then the method is called stiffly A- stable. Clearly the same 

difficulties can be expected for the more general problem (2 .1) and 

so A- stability or stiff A-stability is essential for an efficient 

general numerical method . 

In §2 . 7 various choices of points {ul ' ... , un} wh i ch 
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lead to A-stable or stiffly A-stable methods are given . 

Hung (1970) has shovm A-stability for a Hermitian spline 

method which uses the differentiated form of (2.1) and so requires 

aK(t , s , y)/at clnalytir.ally. 

2.7 The Choice of Points 

From the convergence results of theorems 2.1 and 2.2 it is 

clear that the choice of points {ul ' u2 ' ... , u } is impor t ant. 
n 

A natural choice of points would appear to be the equally 

spaced points i-l i 1, n ::: 2 For 2 these u. = 
n-l 

, = . .. , n n = 
1 

, 

methods correspond to the well known trapezoidal method and for n = 3 

to the block by block methods considered by Linz (1967 a) who 

observed their stability in his numerical examples . Also f or n = 5 

the methods correspond to a slight modification of the block by 

block methods considered by Cambell and Day (1971). For thes e points , 

wet) E Po for n = 2r and wet) E Pl for n = 2r + 1 r > 1 , and 

so from theorems 2.1 and 2.2 the methods with n = 2r + 1 and 

n = 2r + 2 have order 2r + 2 convergence . Hence in order to obtain 

order r convergence it is necessary to solve at least r - 2 

simul aneous equations at each step. Also it has been shown 

numerically by Wright (1970) that the methods are A-stable for 

n ~ 9 . 

This situation however is not the best possible . A more 

suitable choice of points are those considered by Axelsson (1969) for 

ordinary differential equations , i . e. , let ui ' i = 1 , . .. , n be 

a , b rea l , b ~ 0 

where P (t) is the n-th degree Legendre polynomial defined on 
n 
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[ 0 , lJ and a , b are chosen so that ~ 0 and u 
n 

= 1 . In this 

case w(t) E P where, v 

v={nn-

2

, 

- 1 , 

b 1- 0 

a j 0 , b = 0 . 

In particular let u. be the zeros of P (t) - P l(t) , 
1 n n-

u = 1) , and P (t) - P 2 (t) , n n n-
u = 1) , so 

n 

that the methods correspond to Radau and Lobatto quadrature respectively . 

Axelsson has shown that these methods are stiffly A-stable and 

A-stable respectively . In addition the methods have the advantage 

that a. 
1 

i = 1, . .. , n , are positive and that for Lobatto 

quadrature only r simultaneous equations have to be solved at each 

step to obtain order 2r convergence . This is best possible . 

2.8 Numerical Results 

In this section the numerical solutions of two simple 

examples are given to illustrate some of the features of the methods. 

The schemes ( 2.11) and (2.12) considered were based on Radau 

quadrature with degree of precision four (v = 2) 

_ l+~( 16-1) 
u 2 - 2 

The fifth order convergence of the methods is illustrated by the 

application to 

y(t) = 1 + t - cos(t) - Jt cos(t-s)y(s)ds , 0 ~ t ~ 2 , 
o 

which has the solution y(t) = t . 

The errors are tabulated in tables 2 . 1 and 2 . 2 . It should 

be noted that the errors for method ( 2 . 11) are appreciably larger 
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than the errors for method (2 .12 ) . Numerical computations show t hat 

this is the case for many examples. 

Table 2 . 1. 

Method (2 . 11) 

t h = 0 . 4 h = 0 . 2 h = 0 . 1 

0 . 4 - 2.396 E- 6 - 7.446 E-8 - 2 . 316 E-9 

0 . 8 -4 . 608 E-6 -1. 446 E- 7 - 4 . 519 E- 9 

1.2 -6.391 E-6 - 2 . 022 E-7 - 6 . 349 E- 9 

1.6 -7 . 638 E-6 - 2 . 437 E- 7 - 7 . 682 E- 9 

2 . 0 -8.347 E-6 - 2 . 685 E-7 -8 . 498 E- 9 

Table 2 . 2. 

Method (2 . 12) 

t h = 0 . 4 h = 0 . 2 h = 0 . 1 

0 . 4 2 . 647 E- 7 7 . 704 E-9 2 . 323 E- 10 

0 . 8 4 . 165 E-7 1. 212 E- 8 3 . 655 E-10 

1.2 4 . 803 E- 7 1. 398 E-8 4 . 220 E- 10 

1.6 4. 843 E- 7 1. 413 E- 8 4. 271 E- 10 

2 . 0 4 . 550 E-7 1. 334 E- 8 4 . 043 E-10 

The advant age of stif f A-stabi l i ty is illus t r at ed by t he 

application of the methods to 



y(t) 
k 

= (ltt)exp(-lOt)tl) 2 t (ltt) ((l-exp(-lOt ))+lOlog(ltt)) 

f
t ltt 2 

- 10 -1-- y(s) ds , 
o +5 

o ::: t ::: 19 , 

which has the solution 

y(t) = (ltt)exp(-lOt)+l)~ . 

The Lipschitz constant for this example is effectively 20 and so 

from the remarks of §2 . 6 , a conventional multistep method will not work 

well for a large step size. The methods were applied with h = 0.1 

on the interval [0, lJ and then the step size was increased on 

(1, 19J . The resulting systems of nonlinear equations were solved 

by Newton- Raphson iteration . The errors are given in tables 2 . 3 and 

2 .4. 

Table 2 . 3 . 

Method (2.11) 

t h = 1.5 h = 3.0 

4 . 0 -1.780 E-3 - 2 . 843 E-2 

7 . 0 -3 . 058 E-4 - 5 . 376 E-3 

10 . 0 -1. 015 E-4 -1. 392 E- 3 

13.0 -4. 577 E-5 -5.430 E-4 

16 . 0 -2.446 E-5 - 2 . 716 E-4 

19 . 0 -1. 458 E-5 -1. 558 E-4 
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Table 2 . 4 . 

Method (2 . 12) 

t h = 1.5 h = 3 . 0 

4 . 0 -3.271 E- 5 - 2.302 E-3 

7.0 -1.717 E-6 -1. 834 E-4 

10.0 -2.69 9 E-7 -1. 952 E- 5 

13 . 0 - 7.191 E-8 - 3 . 757 E-6 

16 . 0 -2 . 452 E-8 - 1.150 E-6 

19 . 0 -1. 077 E-8 - 4 . 554 E-7 

2 . 9 Conclusion 

Since the methods given by (2 .11) require values of the 

kernel K(t , s , y) outside the region 0 ~ s ~ t ~ T , difficulties 

can be expected if the kernel is badly behaved there. As the schemes 

(2.12) avoid this problem , they should be used in these cases . 

As illustrated by a numerical example, a large stepsize h 

is feasible in certain cases . The choice of a large stepsize is a 

particularly desirable feature for finite difference methods for 

Volterra integral equations since the amount of computation required 

is proportional to (T/h)2 . Hence the implicit Runge- Kutta methods 

are s uperior to the conventional multistep methods in certain 

situations. In addition , they have the advantage of being self 

starting . 

If the integral equation (2 . 1) is nonlinear, the schemes 

require the solution of a nonlinear system of equations at each step . 

This can be done by standard methods such as the Newton-Raphson iteration . 
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CHAPTER 3 

HIGH ORDER METHODS FOR VOLTERRA INTEGRAL EQUATIONS 

OF THE FIRST KIND 

3.1 Introduction 

In this chapter, the implicit Runge-Kutta methods developed 

in chapter 2 are extended to Volterra integral equations of the first 

kind with continuous kernels , 

get} = It k(t, s)y(s)ds , 0 ~ t ~ T . 
o 

(3.1) 

For convenience , the conditions ensuring the existence of a 

unique continuous solution are repeated below. 

(3 . 1.1) k(t , s) and ok(t , s)/ot are continuous on 0 ~ s ~ t ~ T , 

(3 . 1. 2) k(t , t) t 0 on 0 ~ t ~ T 

(3.1 . 3) get) is continuously differentiable on 0 ~ t ~ T and 

g(O) = 0 

Under these conditions , (3.1) is equivalent to the second 

kind Volterra integral equation 

J
t ok 

g l( t) = k(t, t)y(t) + at (t, s)y(s)ds , 
o 

o ~ t ~ T , (3.2) 

which is obtained by differentiating (3.1) (see for instance Tricomi 

(1957), pp 15-16) . 

Since (3 . 2) is a Volterra integral equation of the second 

kind, it follows that yet) depends continuously on g l (t) . This 

implies that the problem (3 . 1) is improperly posed . The effect of 

this will be briefly discussed in §3 . 11 . 

Numerical approximations to yet) can be obtained via 

(3.2) by methods for Volterra integral equations of the second kind 
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(cp. §1 . 2 and chapter 2). However , in some situations (for example, 

if get) is given in tabulated form) it is desirable to determine the 

solution directly from (3 . 1) . The derivation and analysis of such 

methods form the basis of this chapter. 

To illustrate some of the features of different numerical 

schemes for (3.1), a comparison between the trapezoidal and midpoint 

methods is made in §3.2. In §3.3 , implicit Runge-Kutta methods for 

(3 . 1) are constructed. It will be shown that the schemes with 

(methods I) and the schemes with u = 0 
1 

(methods II) are 

generalizations of the midpoint and trapezoidal methods respectively. 

The remaining sections of the chapter investigate the convergence and 

stability properties of methods I and II. 

3.2 A Comparison Between the Trapezoidal and Midpoint Methods 

Let t. = ih , i = 0, . . . , I ; h = Til , and discretize 
l 

(3.1) at t . i = 1, .. . , I , to obtain 
l 

t. 

g (t.) = f l k (t . , s)y(s)ds , i = 1, ... , I (3 . 3) 
l l 

0 

Approximating the integrals in (3 . 3) by the trapezoidal rule 

yields the trapezoidal method , 

i = 1 , ... , I , (3 . 4) 

where Y. 
l 

is the numerical approximation to y (t.) The trapezoidal 
l 

method requires a starting value YO which must be determined 

independently (for example from (3 . 2) , YO = g ' (O)/k(O , 0) ) . 
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The application of the midpoint rule to (3 . 3) leads to the 

midpoint method, 

i-l 
g(t.) = h L k(t., to+h/2)YO+k ' i = 1, ... , I , (3.5) 

l i=o l'{" .(.. ~ 

where is the approximation to y(t.+h/2) . 
l 

As suggested by Noble (1964) , pp 25 4-258, it is instructive 

to apply methods for first kind equations to the pr oblem of different-

iation, i. e. 

get) = Jt y(s)ds; yet) = g'(t) . 

° 
For the trapezoidal method, subtraction of (3.4) from 

(3.4) with i replaced by i + 1 yields 

i = 0, ... , 1 - 1 . 

Assuming an exact starting value , it is easy to verify that this 

difference equation has the solution 

(3.6) 

i=l, ... ,I. 

Clearly , this is not a suitable differentiation formula since it does 

not preserve the local behaviour of the operator 
d 
dt 

On the other hand, the same differencing applied to the 

midpoint method yields 

Yi+~ = 

g(t·l)-g(t.) 
l+ l i = 0 , ... , 1-1 , 

h 

which is the standard central difference approximation to 

g ' (t.+h/2) . 
l 

This indicates that the midpoint method will be superior to 

the trapezoidal method . The following results due to Kobayasi (1967) 

and Linz (1967 a) confirm this. For convenience it will be assumed 



that k(t , s) and g(t) are sufficiently smooth . 

Theorem 3.1 (Trapezoidal method, Kobayasi (1967)) . 

Let e(t) be the solution of 

where 

and let q (t) 
r 

It elk 
k(t , t)e(t) + at (t , s)e(s) = 

o 

q,( t) = 

r = 1, 2 be the solutions of 

q, ' (t) 
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k (t, t) q~ (t) + ~~ (t t) qr (t) = 0 , r = 1, 2 , (3 . 7) 

with the initial conditions 

ql(O) = -e(O) 

Then 

Y. = y(t.) + h
2

(e(t.)+( - 1)iql (t.)} 
l . l l l 

where 0 is the starting error y(O) - YO 

From this result the trapezoidal method is convergent of 

order two . To illustrate its stability properties, consider the 

equation 

-1 + t + e- t = It (l+t - s)y(s)ds 
o 

which has the solution 

-t 
y(t) = te 

It can be seen that e(t) satisfies an equation of the same form as 

(3 . 2) and hence grows in a similar way to y(t) . However , from 

(3. 7 ) , 
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ql(t) = - e(O)exp(t), 

and clearly ql(t i ) and q2(t i ) will dominate the numerical solution 

for large t. 
J. 

Hence the trapezoidal method is not numerically 

stable. 

Although the midpoint method does not require a starting 

value it is instructive to examine the propagation of an initial 

perturbation in the numerical solution since this illustrates the 

effect of rounding error . It is therefore convenient to proceed as 

in §2.5 and assume that in the first step an approximation 

Yk = Yk - 0 has been computed . Then (3.5) will generate a new 
2 2 

sequence of approximations i = 1, ... , 1-1 , given by 

i-l 
g(t.) = h ~ k(t ., t o+h/2)Yo k 

J. .t=O J..c .c+2 
i=2, ... ,I. 

Theorem 3 . 2 (Midpoint method). 

Let 

1 
'''l( t) = 'f' 24 

and let e(t) and d(t) be the solutions of 

It ak 
k(t, t)e(t) + 0 at (t, s)e(s)ds = 

and 

It ak 
k(t , t)d(t) + at (t, s)d(s)ds = 

o 

Then 
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i = 2 , ... , 1-1 

Proof . This theorem with 0 = 0 is given in Linz (1967 a). The 

result for 0 1 0 is established in the s ame way as the corresponding 

result for the implicit Runge - Kutta schemes with ul > 0 vlhich will 

be derived in §3.5. # 

Theorem 3.2 imp~ies that the midpoint method is convergent 

of order two and numerically stable since e(t) and d(t) satisfy 

equations of the same form as (3.2). In addition, a perturbation 0 

propagates as O(h
2 0} This is rather surprising since a perturbation 

o in finite difference methods for (3 . 2) propagates as O(ho) (cp. 

§2.5). It implies that the midpoint method is a very robust scheme. 

3 . 3 Numerical Schemes 

For convenience, some notation introduced in §2.2 and §2 . 3 

will firstly be reiterated . Let 

and 

o < u < u < ... < u = 1 . 
- 1 2 n' 

n 
wet) = IT (t-Uk) 

k=l 

k=l, . .. ,n, 

k = 1, ... , n j = 1, ... , n, 

a
k 

= a
nk 

' k = 1 , ... , n 

t. = ih , i = 0, ... , I 
1 

t .. = t. + u.h 
1J 1 J 

j=l, ... ,n 

h = T/1 

i = 0, . .. ,1-1 . 



51 

The discretized form of (3.1) is 

g(t .. ) 
1.J 

= ft i j k ( t .. , s) y (s ) ds , 
o 1.J 

j=l, ... ,n i = 0 , ... ,1-1. ( 3 .8) 

Approximating k ( t .. , s)y ( s ) ds 
1.J 

as in the derivation 

of method (2.11) yields ~he numerical scheme 

i-l n n 

g (t .. ) = L: L: hak k (t .. , t lk) Y lk + L: ha jk 
k (t .. , t ik) Y ik 

1.J l=o k=l 1.J k=l 1.J 

j=r, ... ,n i = 0, ... , 1-1 , (3 . 9) 

where 

r ~ {: 

if u > 0 
1 

if u = 0 
1 

and Y .. is the approximation to y (t .. ) 
1.J 1.J 

As in (2.11) , if 

u
l 

= 0 , then Y. = Y. 1.+1,1 1.n 
i = 0, .. . ,1-2 , and a starting value 

Y
Ol 

is required. 

For each i 

of linear equations for 

i = 0, .. . ,1-1 , (3.9) represents a system 

Y •• 
1.J 

j=r, ... ,n. From conditions 

(3 . 1.1) and (3.1.2) it follows that these systems are nonsingular if 

h is sufficiently small. 

In (3.9) values of k(t, s) are required in the region 

Although this does not cause 

theoretical difficulties since h can be taken to be arbitrarily 

small, computational difficulties may arise (see §3 . 10, example 

(3.63)). 

This difficulty can be avoided if the scheme (3 . 9) is 

modified in the same way as (2.12) , i . e. 
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g(t .. ) = 
1J 

n n 
+ L h u. L a k(t .. , t.+U.U h)Lk(U.u )Y' k ' 

k=l J m=l m 1J 1 J m J m 1 

j = r, . . . , n . , i = 0, ... , 1-1 . (3 . 10 ) 

For k(t, s) = const the methods (3.9) and (3.10) are identical. 

This is a consequence of (2 . 9). 

Remark 3 . 1. By subtracting (3.9) "lith j = nand i replaced by 

i - 1 from (3.9), it can easily be verified that for k(t, s) = 1 

and u
l 

> 0 , 

j=l, .. . , n i = 0, . . . , 1-1 Y .. = p! (t .. ) 
1J 1 1J 

where p. (t) 
1 

ti < t ~ t
i

+
l

, is the polynomial of degree n 

interpolating to get) at the points t. , t.
l

, . .. , t .. 1 1 1n 
Eq . 

(3.11) is a standard formula for numerical differentiation. 

(3.11) 

On the other hand , for ul = 0 , the same differencing 

yields a relation which is similar to (3.6) and cannot be interpreted 

as a local differentiation formula . 

Hence intuitively it can be expected that schemes with 

u
l 

> 0 will be superior to those with ul = 0 

In the sequel, the schemes with ul > 0 and ul = 0 will 

be denoted by methods I and II respectively. 

Remark 3.2 . Clearly, methods corresponding to (3.9) and (3 . 10) 

can be constructed for u < 1 . 
n 

These schemes can be treated by an 

analysis similar to that presented here . Also , it should be noted 

that all the analysis extends easily to systems of first kind 

Volterra equations. 
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3 . 4 Methods I: Convergence 

For the analysis of methods I the following conditions on 

k(t, s) and get) are required . 

(3.4.1) k(t , s) is n + 2 times continuously differentiable on 

o :::: s :::: t+o o :::: t :::: T , where 0 is a fixed positive 

number for the scheme (3.9) and is equal to zero for the 

scheme (3.10), 

( ) ,)n+3k( t. s)/')tn+3 . . 3.4.2 0 , 0 lS contlnuous on 0:::: s :::: t.:::: T , 

(3 . 4.3) get) is n + 3 ~imes con~inuously differen~iable on 

o :::: t :::: T 

The conditions (3 . 4 . 1) with 0 = 0 , (3.4.2) and (3 . 4 . 3) 

imply that yet) is n + 2 times continuously differentiable on 

o :::: t :::: T 

The main result of this section is 

Theorem 3.3. 

The schemes ( 3.9) and (3 . 10) are convergent of order n 

Subtracting (3.9) with h < 0 and (3.10) from (3.8) yields 

0 = h 

and 

o = h 

where 

n 
L: 

k=l 

n 
L: 

k=l 

i-l n 

a' k k(t .. , tikJ e: ik 
+ h L: L: ak k(t ij , tlkJe:lk + R .. 

] lJ l=o k=l 
lJ 

j = 1, .. . , n i = 0 , .. . ,1-1 , (3 . 12) 

n 
u. L: 

] r=l 
a k(t .. , t.+U .U hJLk(U .U Je:' k r lJ l ] r ] r l 

j=l , ... , n i = 0 , ... ,1-1 (3 . 13) 

e: .. = y(t .. J - Y .. 
lJ lJ lJ 
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t .. n J ~J R .. = k (t .. , s)y(s)ds - h L a jk k(t ij , tik)y(t ik) 
~J o ~J k=l 

i-l n 
- h L L ak k(t ij , ttk)y(ttk) (3.14) 

t=O k=l 

and 

t .. - J~Jk(t .. , s)y(s)ds R .• = 
1J o 1J 

n n 
- h L u. L a k(t .. , t.-tu.u h)L

J 
(u.u )y(t. k) 

1Jr <Jr l 
k=l J 1'=1 r ~J 

(3 . 15) 

Lemma 3 . l. 

There exist continuously differentiable functions ~(t) , 

~(t) with ~(O) = 0 ep(O) = 0 and continuous functions ~ . (t) , 
J 

~. (t) 
J 

j = 1, ... , n , such that 

R.. = - h n ep (t . .) 
~J 1J 

j = 1, ... , n . , i = 0, ... , 1-1 

Proof . The result follows from the Euler Maclaurin sum formula. # 

Proof of theorem 3.3 . First consider the scheme (3.9) . 
, 

Subtraction of (3.12) with i replaced by i - 1 and j = n from 

(~.12) and division by 

n k(t .. ,t. k) 
'\" ~J ~ 
iJ a J' k -k,.......rl ~-t.=..,-J - E: ~ k 

k=l t i ' i ... 

Let 

R .. -R. 1 1J ~- ,n 
hk ( t. ,t. J 

~ ~ 

hk (t., t.) 
1 ~ 

yields 

j=l, .. . ,n i = 1 , ... ,1-1. (3.16) 

M = min 1 k (t, t) I > 0 , 
O:;:t:;:T 



J 

and 

K = max 
O:::s:::t 
O:::t:::T 

a = max 
l:::j:::n 
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la.1 . 
] 

From Taylor's theorem and lemma 3 . 1 , there exists a constant C such 

that 

R .. -R. 1 
lJ l- ,n n . 

( 
::: Ch , ] = 1, ... , n i = 1, ... ,1-1 , 

hk t. , t.) 
l l 

for a sufficiently small h. Taking absolute values in (3.16) and 

applying the above estimates yields 

n k (t .. , t 'k) hKa 
i-l n 

L 
lJ l ::: L L \E: .tl< I t Ch

n 

k=l 
a jk k (t . ,t.) Eik M .t=O k=l l l 

j=l , ... ,n i = 1, ... ,1-1. (3.17) 

Introduce the n dimensional vectors 

and the n x n matrices 

where 

Clearly , 
p:< i) 

Let 

and 

i = 1 , . .. ,1-1 , 

k(t .. , t ·k) 
lJ l 

k(t. ,t.) 
l l 

is nonsingular for sufficiently small h . 

II
.;:-(A i)-lll L = max 

l:::i:::I-l 

e. = 1\ E . II , i = 0 , ... , 1-1 , 
l -l 

where II-II is the usual maximum norm. It follows from (3 . 17) that 

-
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e. i-l 
-2:.. < hKan L: n 
L - M eo + Ch , 

.t=0 -t.. 

i = 1 , . . . , 1-1 . ( 3 . 18 ) 

Also , from Taylor ' s theorem there exists a constant Cl such that 

j=l , ... ,n, 

and hence from (3 . 12), 

The application of lemma 2.4 to (3.18) yields 

Hence the theorem holds for the scheme (3.9). 

Using (2.9), a similar argument establishes the analogous 

result for the scheme (3.10) . # 

3.5 Methods I : Numerical Stability 

From the remark in §3.2, Eq . (3 . 1) can be solved via ( 3 . 2) . 

If a numerically stable method is used to solve this second kind 

equation , it is known (cp . §2 . 5) that the leading term in the 

asymptotic expansion of the error satisfies an equation of the form 

It ak ' 
k(t, t)e(t) + at (t , s)e(s)ds = ~(t) . 

o 
(3 .19) 

If a direct method is to be comparable, the leading term in the 

asymptotic expansion of the error must behave in a similar manner . 

In this case , the method will be called numerically stable . 

The leading term in the asymptotic expansion of methods I 

will now be investigated . As in §2 . 5 , it will be assumed that i n the 

first step, approximations 

have been computed. 

6. 
] 

j=l , .. . , n , 
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First consider the scheme (3.9) . Using ~he values YOj , 

j = 1 , ... , n , (3 . 9) will generate a new sequence of approximations 

Y . . 
lJ 

g (t .. ) 
lJ 

Let 

j = 1 , .. . , n i = 1, . .. ,1-1 , given by 

n i-l n 

= h L: a jk 
k (t .. , t

ik
) Y

ik 
+ h L: L: ~ k(t .. , t tk)Ytk 

, 
k=l 

lJ t =O k=l 
lJ 

j = 1 , ... , n ; i = 1, ... , 1- 1 (3 . 20) 

E. . = Y (t .. ) - Y.. , j = 1 , ... , n 
lJ lJ lJ 

i = 0, ... , 1- 1 . 

Subtracting as previously yields 

j = 1, .. . , n 

and therefore , 

i = 1, . . . , 1- 1 , (3 . 21) 

R
lj 
h 

j = 1, . . . , n . (3 . 22) 

Differencing (3.21) as before and dividing by h yields 

R .. -R. 1 lJ l- ,n 
h 

j=l , ... , n i = 2 , .. . , 1- 1 . (3 . 23) 

Define the n x n matrices 

A = (a .. ) 
lJ 

B = (b .. ) = 
lJ 

(a.) , 
J 

D = (d .. ) = 
lJ 

(u .o .. ) , 
] lJ 

where 0.. is the Kronecker delta , and the n dimensiona l vector s 
lJ 
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and 

where 

BCt) = {;~~s Ct, 0)OB(D-CI+D)A-
1

B] 

wt,O)~O,O) - 1 ok ok } 
+ k( O,O) DB(O+D)A B-DJ ~ . (3 . 24) 

In addition , let d . (t) , j = 1, ... , n , be the solution of the 
] 

system of integral equations 

j = 1, ... , n (3 . 25) 

and let e . (t) 
] 

j = 1, ... , n , be the solution of 

= u.<jl'(t) + 1jJ.(t) - 1jJ (t) 
] ] n 

j = 1, ... , n . ( 3.26 ) 

Define 

z .. 
l] 

= £ •. _ h2d. (t .. J - hne . (t .. J 
l] ] l] ] l] 

j = 1, ... , n i = 2 , ... , 1-1 . 

Then from (3.23) , 



59 

j=l, ... , n; i=2, ... ,I-l. (3 . 27) 

Using (3.22), (3 . 24) and the identity 

a tedious but straightforward computation yields 

2 
n {k(t .. ,tlk)-k (t.,t'k) 

he. (t.) _ h ~ 1. ] 1. .L a h Elk 
J 1. k= 1 J< 

The application of lemma 2 . 4 to (3 . 27) therefore yields : 

Theorem 3 . 4. 

j=l , ... ,n i = 2 , .. . , I-l , where 

by (3.25) and (3.26) respectively . 

d . (t) 
J 

and e. (t) 
J 

are given 

To establish the corresponding result for the scheme (3.10) , 

define the n x n matrix 

and t he n dimensional vector 

where 
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~t,O)fs"<0'O) -1 -1 ok ok 1 
+ k(O ,O) DBA (eA B-BD) ~ 

Let the functions d. ( t ) 
J 

n 
k(t , t) E a

J
' k dk(t) 

k=l 
+ u. 

J 

j = 1, ... , n , satisfy 

I
t 

ok (t 
o ot 

-6. (t) 
J 

j = 1, ... , n, (3.28) 

and e. (t) 
J 

n 
k(t, t) E 

k=l 

j = 1, ... , n • satisfy 

r ok a jk ek(t) + u . at (t , 
J 0 

= u . </>' (t) + ~ .( t) 
J J 

n 
s) E a

k 
ek(s)ds 

k=l 

1jJ (t) j = 1 , ... , n (3 . 29) 
n 

, 

The f ollowing result on the asymptotic behaviour of the 

error, for the scheme (3.10), is obtained in the same way as theorem 

3.4. 

Theorem 3.5. 

= n- () 2- () ( n+ 1) (3) £. . he. t. . + h d. t.. + 0 h + 0 h II~II , 
~J J ~J J ~J 

j = 1, ... , n i = 2 , .. . , 1-1 , ~here 

given by (3. 28) and (3.29) respectively . 

d. (t) 
J 

and e. (t) 
J 

are 

Remark 3 . 3. 
It is clear that the solutions of the systems (3.25), 

(3.26), (3.28) and (3.29) are characterized by the n th equation 

which is of the form (3 . 19) and therefore methods I are numerically 

stable. Also, perturbations of magnitude II~II are propagated with 

magnitude h211~1I. This is the same behaviour as observed in the 

midpoint method (cp. §3.2). 
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3.6 Methods I: Numerical Results 

In order to illustrate convergence and numerical stability , 

the schemes (3.9) and (3 . 10) 

applied to the equation 

-1 + t + 
-t r e = 

0 

where 

with 
1 

ul = "3 ' 

(l+t-s)y(s)ds 

yet) 
-t 

= te 

2 and 1 u
2 

= u = are 
3 3 

, 0 ~ t ~ 20 , 

The errors for various stepsizes h are tabulated in tables 3 . 1 and 

3.2 . 

Table 3 . 1. 

Method (3.9) 

t h = 0 . 4 h = 0 . 2 h = 0.1 

4 . 0 -1. 086 E-4 -1.125 E-5 -1. 290 E-6 

8.0 -1. 563 E-6 -7.202 E- 8 -2 . 613 E-9 

12.0 7.715 E-8 1. 257 E-8 1. 730 E-9 

16.0 5 .137 E-9 6.940 E-10 8 . 964 E-11 

20.0 1. 949 E-10 2.498 E-11 2.932 E-12 

~--~~~ .. --------------------............................ .. 

-, 
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Table 3 . 2. 

Method (3.10) 

t h = 0.4 h = 0 . 2 h = 0 . 1 

4 . 0 - 1.572 E-4 - 1. 817 E-5 -2 . 181 E-6 

8 . 0 -4.016 E-6 - 4 . 343 E-7 -5. 033 E-8 

12 . 0 1.111 E-8 2 . 194 E-9 3 . 194 E-l0 

16.0 3.679 E-9 4 . 460 E-l0 5 . 468 E-11 

20 . 0 1. 661 E- l0 1. 976 E-11 2 . 094 E-12 

3.7 Methods II: Preliminaries 

Let 

n-l 
t k+1 

w(t) = L v
k 

k=O 

n-l 
tk+l w( t+l) = L w

k 
k=O 

and define the (n-l) x (n-l) matrices 

M = (m .. ) = (ai+l , j+l) , 
1J 

B = (b .. ) = (-a. 1 1 o. 1) 
1J 1+ , J ,n-

where O .. 
1J 

is the Kronecker delta , 

D = (d .. ) 
1J 

= (u. 1 0 . . ) 
J+ 1J 

R = (r .. ) = (OJ ,n-l) , 
1J 

C = (c .. ) = DR(A-B) 
1J 

w = (w . . ) = (0. o. 1) , 
1 n-l J n-1J , , 

X = (x .. ) = (0. 1 O. 1 +0. 2 O. ) 
1J 1 n- J n- 1 n- J ,n-, , , 



The foll owing lemmas examine some properties of the above 

matrices . 

Lemma 3 . 2 . 

The nonzero eigenvalue of M-1B 1S 

n-l 
II (l-Uk) 

Wo k=l 
n = = 

Vo n 
II ( -~) 

k=2 

Proof . Consider the differential equation 

y ' = f yeo) = 1 , 0 S t s 1 , A > 0 

and approximate the solution yet) by 

where 

q(t) = 

c = 1 o 

and k = 1 , ... , n , are determined by collocation at the 

points uk ' k = 1 , .. . , n . 

Let 

Wright (1970) shows that 

-S / A 
n- l 

, Ak e w(s+l)ds I (k+l) .wk 
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( 
q (u ) 

k=O 
= = (3 . 30 ) 

r n-l n -S/A (k+l) !VkA
k 

o e w(s)ds I 
k=O 

and remarks that this collocation is equivalent to the implicit 

Runge-Kutta scheme 

(AI-M):t = x 

where 
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x = ... , 

Clearly , since M is nonsingular, AI - M is nonsingular if A 

is sufficiently small, and hence by Cramer ' s rule, 

() 
det(AS-N) 

q un = det(AI - M) , 
(3 . 31) 

where 

S = (s .. ) = 
1J 

(0 .. +0 .-0. o. ) , 
1J n-l , J 1,n-l J ,n-l 

N = (n . . ) = (m .. (1-0. ) -a . o. ) 1J 1J J ,n - l 1+1 ,1 J ,n-l 

Equating (3 . 30) and (3 . 31) and taking the limit as A tends to 

zero , yields 

The result follows since the characteristic equation is 

n-2 
det(nM-B) = n (n det M - det N) = o . # 

Lemma 3 . 3 . 

Let E and Y be the block matrices 

Then , if n t 1 , there exists a nonsingular matrix H such that 

Proof . Since 

E - AI 

the characteristic equation is 

Since it is easily shown that E has a complete set of 

eigenvectors , the result follows. # 



Lemma 3 . 4 . 

If 1l = 1 then 

(i) CM-1B = 0 

(ii) (M-1C) 2 = M-1C 

(iii) there exists a nonsingular matrix G such that 

M-l(B+C) = G-1XG 

Proof . 

(i) CM- 1B = D R (M- B)M-1B 

= D R B ( 1- M -lB ) 

= b D R (I-M-1B) 
n-l ,n-l 

= 0 , since the (n-l)th row of (I_M-1B) is zero . 

(ii) Consider the vector 

where 

Then , 'from (i) , 

Also , since 

i t follows that 

where 

T 
e = (1 , 1 , . .. , 1) . 

n 
L: Lk ( s ) ds = u 

k=l r 

(M-B)e = u 

. . . , u ) T . 
n 

The use of this relation yields 

65 
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M-1D R M (I-M-1B) ~ = M-1D R u -

= M-1D e -

-1 
= M u -

= (I-M -lB) e -

Hence , 

v = v = v 

The result follows since M-1C is of rank 1 and hence has n - 2 

linearly independent eigenvectors corresponding to the zero 

eigenvalue . 

(iii) Since n = 1 , 

M- 1B v = 0 

and it follows from (ii) that 

v = v 

Let 

Then , from (i) , 

and since w
n

_
l 

= n = 1 , therefore 

Hence , 

Since M-l(B+C) has rank two and two independent eigenvectors 

corresponding to the eigenvalue 1 , it is diagonalizable and so the 

result follows . # 

In addition use will be made of the following two lemmas. 

-, 



Lemma 3 . 5 . ( Jones (1961)). 

and let 

Let i = 1, . .. , I , satisfy 

= (1+2hL)q. + h
2

L 
l 

Then , there exists a constant K such that 

L = const > 0 , 

i=O , ... , I . 

Lemma 3 . 6 . 
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Let - 1 S n < 1 and f(t) , OS t S T , be a continuously 

differentiable function. Then 

i-l £. f(O)-nif(tJ 
L n f ( t £.) = 1- + 0 ( h ) , i = 1, ..., I . 

£.=0 n 

Proof . For n = - 1 the result follows from the Euler-Maclaurin 

sum formula . If -1 < n < 1 , partial summation yields 

and since 

the result follows . # 

3.8 Methods II : Convergence 

i 
f(0) l - n + O(h) 

l-n 

In the analysis of methods II it will be assumed that 

conditions (3.4.1) , (3 . 4.2) and (3 . 4 . 3) , with n replaced by 

n + 2 , are satisfied . 

The results of this section can be summarized in 

----~- ~------------------------.......................... ... 

--7 
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Theorem 3 . 6. 

The schemes (3 . 9) and (3 .10) are convergent if and only if 

-1 S n = 

n-l 
IT (l-UkJ 

k=l ----- s 1 
n 
IT 

k=2 

and the order of convergence is n - 1 if n = 1 and n otherwise. 

Before a proof of this theorem can be given, some prelim-

inary results are required. Subtraction of (3 . 9) with h < 8 and 

(3 . 10) from (3.8) yields 

= 2 , .. . , n i = 0 , ... , I -l, (3 . 32) 

and 

n n 
o = h E u. E a k(t .. , t.+U.U h)Lk(U.u )E 'k k=l J r=l r 1J 1 ] r J r 1 

j=2, ... ,n i = 0 , ... , I-l, (3.33) 

respectively , where 

E .. = y(t .. ) - Y .. 
1J 1J 1J 

-and R.. and R. . have the same form as (3 . 14) and (3 . 15) 
1J 1J 

respectively. 

Lemma 3 .7. 

There exist unique functions ~(t) , ~(t) 

1jJ . (t) El . (t) El . (t) j = 2 , ... , n , o S t s , 
J 

, 
] J 

(i) ~(t) , ~(t) are three times continuously 

and ~(o) = 0 , ~(o) = 0 , 

T , 

1jJ . (t) , 
] 

satisfying 

differentiable 
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(ii ) Iji.(t), Iji .( t) 
J J 

j = 2 , ... , n , are two times continuously 

differentiable, 

(iii) e.(t), e . (t) ,j = 2 , . . . , n , are continuously differentiable , 
J J 

such tha 

R .. = _h n cp(t . . ) - hnTl Iji. (t . ) - hnT2 e. (t .. ) T O(hnT3) , 
1J 1J J 1J J 1J 

R .. = _hn Ht .. ) - hn+l ~.(t .. ) - h
n

+2 8.(t .. ) + O(h
n

+
3

) , 
1J 1J J 1J J 1J 

j = 2 , ... , n; i = 0 , ... , 1-1 

Proof . The result follows from the Euler-Maclaurin sum formula . # 

Firstly the scheme (3 . 9) will be considered. To simplify 

the notation, define the (n-l) x (n-l) matrices 

(
i.e.) , 

I Mil = mjk J ' l = 0 , ... , i i = 0 , ... , 1-1 , 

where 

m
J
. k k (t. . l ' t. k 1) 1 , J+ 1 , + 

(i,i-l) 
m

jk 
= 

l = 0 , ... , 1-2 , 

and the n - 1 dimensional vectors 

... , 

R. = (Ri2 ' ... , R. ) T i = 0 , ... , 1-1 , 
- 1 1n 

b. = (b i2 ' 
.. . , b. ) T 

- 1 1n 

where 

b ., = a
l 

k ( t .. , 0) 
1J 1J 

j = 2 , ... , n; i = 1 , ... , 1-1 . 

Then (3.32) can be rewritten in vector form as 
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i 
h L Ml.o£o + h£Olb. + R. = 0, i = 0 , ... ,1-1 . 

l=O.{..-->\" -l-l 
(3.34) 

To establish convergence, bounds on the solutions of difference 

equations of the form (3.34) are required. To obtain these , it is 

necessary to distinguish between two cases . 

Case 1. -1 S n < 1 . 

Lemma 3 . 8. 

satisfy 

h 

where 

and 

Let the n - 1 dimensional vectors z. - l 
i = 0 , ... ,1-1 , 

i = 0 , ... ,1-1, (3 . 35) 

a. = (a ( t . 2), ... , a ( t . )) T , 
- l l In 

13. = (13
2 

( t . 2), ... , 13 (t. )) T , 
- l l n In 

(i) aCt) has a Lipschitz continuous first derivative , 

(ii) 

Then 

Proof. 

13 . (t) , j = 2, ... , n , are Lipschitz continuous . 
] 

i = 1 , ... , 1-1 . 

From (3.35) it follows that 

i-l 
M z + (M. .-(I+R)M .. ) z. + L (M. o-(I+R)M . o+RM ·_ lo)Zo 
i+l , i+l- i+l l+l , l II -l l=o l+l ,.{.. l'{" l , .(..-->\.. 

+ z(b. 1-(I+R)b .+Rb . 1) 
~l+ - l - l-

i = 1 , ... , 1-2 . (3 . 36) 
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Division of (3.36) by k(t i +l • t i +l ) and the applications of 

Taylor ' s theorem yield 

i-l 
(M+hS.)z . 1 - (M+B+hT.)z. + (B+hU.) z . 1 - h

2 
E W,ozo - h

2z x. 
~ -~+ ~ -~ ~ -~- l=o ... -<..--.(.. -~ 

_ hm+l - r.. i = 1 • ...• 1-2. (3.37) 
-~ 

where Sis T
i

• U
i

• W
i1 

and ~i' ~i are matrices and vectors. 

respectively. the norms of which are bounded by a constant independent 

of h . i and l Since M is nonsingular, (M+hS .) is 
~ 

nonsingular if h is sufficiently small and therefore 

(M+hS.)-l = M- l + hN .• 
~ ~ 

where 

liN . 11 ~ D . D = const 
~ 

i = 1 • . ..• 1-2 . 

Multiplication of (3.37) by 
-1 M + hN. yields 

~ 

i-l 2- - m+l-
+ h2 L W.ozo + h z x. + h r. 

l=o ~-<..--.(.. -~ -~ 
i = 1 • ...• 1-2. (3.38) 

where Ti • Ui • Wi1 
and ~i' ::'i are matrices and vectors. 

respectively. which are bounded as above . Define the 2n - 2 

dimensional vectors 

z. = ~.. ~, -1) T 
-~ ~ ... 

i=1 •.. .• 1-1. 

i = 1 •...• 1-2 • 

i = 1 • ...• 1-2 • 

and the block matrices 
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i :: 1 , .. . , 1-2 , 

and 

= [_ W~.e< _0 

_j , 
o : 0 

I 

t = 0 , .. . , i- l i = 1 , .. . , 1 -2 . 

Then (3.38) can be r ewritten as 

i-l 
~i+l = (E+hF .)Z . + h

2 
L G1'o~.o +h

2
;:y . + hm+l 

1 -1 t=O -L L - 1 9..i 

i = 1 , .. . , 1 - 2 . (3 . 39) 

From lemma 3.3 , 

and denoting 

'" Z . = HZ . , 
- 1 -1 

it follows on multiplying (3.39) by H that 

'" z. 
-1+1 

By induction, it can be shown that 

i = 2, . .. ,1-1 , 

where 

i = 2 , ... , 1 - 2 . 

and L is an appropriate constant . The result follows from lemma 

3 . 5 since from (3.35), 



Case 2. n = 1 . 

Lemma 3 . 9 . 

i 

Let z. 
-1 

i = 0, ... , I-l , satisfy 

h L M
1
. 0 z o + hzb. = 

l=o ~~ -1 
h

m+l 
a.. 
-1 

i = 

where 

a. . = ( a. ( t . 2), ..., a. ( t . )) T 
-1 1 1n 

0, ... , I-l , 

and a.(t) has a Lipschitz continuous first derivative. Then 

Proof. 

M .. Z. + 
11-1 

IIz . 11 = O(z) + O(hm) , i = 0 , .. . , I-l . 
-1 

From (3.40) it follows that 

i-l 
L (M . 0-RM . 1 0) z 0 + z ~. -Rb . 1) = l=o 1~ 1-,~ ~ 1. -1-
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(3.40) 

i = 1, ... , I-l . 

Division by k(t., t.) and the application of Taylor's theorem 
1 1 

yield 

. 13k ( ) 
1-1 at ti ' tl 

(M+hS.)~ . - (B+hT')~'_l + hC L k(t t) 
1 1. 1 1. l=O i' i 

= hm+l r. 
-1 

i-l 
+ h2 ~ U + h Zo £., l'o~o zx. 

~ l=o ~ ~ -1 

i = 1, ... , I-l (3.41) 

where S ., T., U. 0 and x., r. are matrices and vectors , 
1 1 1~ -1-1 

respectively, the norms of which are bounded by a constant independent 

of h, i and l. 

Multiplication of (3.41) by M-1CM- l and the application 

of lemma 3.4, (i) and (ii), yield 

? 



. ok ( ) 1-1-at. , tt 
~ t 1 Z = 

R=Q k(t i ,tJ -t [ 
-1 -1 -1 1 - M C+hM CM S. z. 

1 - 1 

i - l 
-1 -1 2 -1-1 

+ hM CM T.z . 1 - h ~ M CM U1· OZ O 
1-1- t=O .(..~ 
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i = 1, ... ,1-1. (3 . 42) 

From Taylor ' s theorem, 

( 3 . 43) 

Substitution of (3 . 43) nd (3 .42) into (3.41) with i replaced by 

i + 1 , yields an eq at ion of the form 

(M+hS. )z. 1 = 1 -1+ 
(B+C+hT. ) Z. 

1 - 1 

- 2 
+ hV.z. 1 + h 

1 - 1-

i m+l
~ U1. oZ o + hz x . + h r. 
t=Q.(..~ - 1 - 1 

i = 1, ... , 1-2 

The result follows in a similar way to lemma 3 . 8, using l emma 3 . 4, 

(iii) , instead of lemma 3 .3. # 

Remark 3.4. It is clear that (3 . 33) can be written in the form 

(3.34) if the M1L are redefined appropriately. Using (2.9) it can 

be shown that lemmas 3.8 and 3.9 hold with these definitions of 

Proof of theorem 3 . 6 . From (3.34) and lemma 3 .7, 

Hence it follows from lemma 3 .7 and lemmas 3.8 and 3 . 9 , respectively 

that 

if n = 1 , and 

-1 
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if -1 S n < 1. This establ~shes sufficiency and order of 

convergence for the scheme (3 9) . The extension to the scheme (3.10) 

follows from remark 3.4. 

If k(t, s) = 1 , then 

equation of the form 

E. 
- l 

E. 
- l 

-1 n 
= M B£:_l + h ~i 

can be shown to satisfy an 

1. = 1, . . . , 1-1 . 

Necessi -ry follows , since the nonzero eigenvalue of t-(lB is n · # 

Remark 3 .5. The fact that for n = 1 the schemes are convergent 

or order n - 1 instead of order n is simi lar to a phenomenon 

associated with weakly stable finite difference operators for initial 

value problems in partial differential equat ions (see Richtmyer and 

Morton (1967), p . 95), since in the equation corresponding to (3.39) 

for n = 1. , 

and hence, 

3 . 9 Methods II: Numerical Stability 

In this section, the leading term in the asymptotic error 

expansion for the schemes (3 . 9) and (3.10) will be investigated . As 

in the convergence proof it is necessary to distinguish between the 

cases -1 S n < 1 and n = 1 . 

Case 1. -1 S n < 1 

First consider the scheme (3 . 9) . 
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Theorem 3.7. 

Let e . (t) , j = 2, ... , n , be the solution of the system 
] 

of second kind Volterra integral equations 

= u.~'(t) + ~ . (t) - ~ (t) 
] J n 

j = 2, . . . , n , ( 3 . 44 ) 

where 

and ~(t), ~.(t) , j = 2, . . . , n are defined by lemma 3.7 . In 
] 

addition, let q (t) , 
r 

r = 1 , 2 , satisfy 

ok k(t, t)q'(t) + -;s- (t, t)q (t) = 0 , r = 1 , 2 , 
r oS r 

(3 . 45 ) 

with the initial conditions 

where m. 
Jk 

Also let 

where 

Then 

Proof . 

( 3 . 44) , 

~. (0) n - l 
n L 

T)k(O,O) 

are the elements of 

k=l 

-1 
M 

-m 
n-l ,k 

and 

e (0) 
n 

( ) T M-1Be W = W
l

, W
2

, . . . , w
n

_
l 

= 

T 
e=(l , l , ... ,l) . 

(3 . 46) 

+ O(hD'tl) + O(hE
01

) , j = 2 , . . . , n; i = 1 , .. . , 1-1 . 

From the Euler Maclaurin sum formula , Taylor's theorem and 



77 

n 
L: ha . k k (t . . , t . k) ek (t . . ) + ha ' lk (t . . , t . ) e (t.) 

k=2 ] lJ l lJ ] lJ l n l 

- hal{k(t .. , t.)e (t . )-k(t .. , O)e (O)} 
lJ l n l lJ n 

= ¢(t . . ) + h{IjI . (t .. ) -1jI (t . . ) -y(t .. )} - h
2

p . (t .. ) + O(h3) 
lJ ] lJ n lJ lJ ] lJ 

j = 2, ... , n; i = 0 , ... , 1-1 , (3.47) 

where y(t) is twice continuously differentiable , y(O) = ° , and 

p . (t) 
] 

that 

and 

j = 2, . . . , n , are continuously differenti?ble. Noting 

= ° j = 2 , .. . , n (3 . 48) 

it follows from Taylor ' s theorem and (3 . 45) that 

r = 1,2; j = 2 , ... , n; i = 0 , ... ,1-1 . (3 . 49) 

By Taylor's theorem, (3 .48) , lemma 3 .6 and (3 . 45), 

r = 1 , 2 j=2 , .. . , n ; i=0 , ... , 1-1 , (3 . 50) 

where ~ (t) , r = 1 , 2 are continuously differentiable . Define 
r 

-
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Z.. = E: •• 
1J 1J 

j=2, ... ,n i = 0 , ... , 1-1 , 

Z. = z . 
1+1,1 1n i = 0, ... , 1-2 , 

Then, from (3 . 32), lemma 3 . 7 , (3.47) , (3.49) and (3 . 50), 

n i - l n 
~ ha'

k 
k(t .. , t ,k)z'k + ~ ~ hak k(t .. , to,JZ01. 

k= l J 1J 1 1 .t=0 k=l 1J ~ ~ 

= hn+l{1jJ (t . . )+y(t .. )} + hn+2{e.(t .. ) +P.(t . . )+f.l (t .. )} 
n 1J 1J J 1J J 1J 1 1J 

j = 2 , . .. , n ; i = 0 , ... ,1-1. (3 . 51) 

Also from (3.51) and (3.46), 

Z = 0 (hn) 
01 

and 

The application of lemma 3.8 to (3 . 51) yields 

j = 2 , ... , n ; i = 1 , ... , 1- 1 , 

and the result follows. # 

A corresponding result will now be derived for the scheme 

(3 . 10). For notational convenience , introduce the n - 1 

dimensional vectors 

and 

where 

-1 



cr. = 
] 

and 

T . = 
] 
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n 2 n n 
~ u,W

k
_

l 
~ a u Lk(U .u ) + u~ ~ a u Ll(u .u ) 

k=2 ] r=2 r r ] r ] r=2 r r ] r 

1 n 
- - ~ u a W j = 2 , ... , n , 

l-n k=2 k k k-l ' 

n n 
1 

n 
~ u'~Wk ' ~ a Lk (u. u ) - - ~ ~~wk_l j = 2 , n 

] -.1- r ] r l - n k=2 
, . .. , , 

k=2 r=l 

and the (n-l) x (n-l) matrix 

Theorem 3 . 8. 

= M- l (I __ !"~.J -1 . 
l - n"j 

Let e.(t) , j = 2 , ... , n , be the solution of the system 
] 

of second kind Volterra integral equations 

where <P(t) and ~. (t) 
] 

~ (t ) , j = 2 , ... , n , ( 3 . 52) 
n 

j = 2 , ... , n , are defined by lemma 3 . 7. 

In addition , let qr(t) , r = 1 , 2 , satisfy 

n- l n- l 
~ P T + ak (t t )q- (t) ~ a = 

n-l ,k k+l as ' r Pn- l ,k k+l 
k=l k=l 

° , 
r = 1 , 2 ( 3 . 53) 

with the initial conditions 

~ (0 ) n- l 
ql(O) = n ~ m - e(O) 

nk(O , O) k=l n- l ,k n 
(3 . 54) 

and 

Then 

-" 
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E:. . = hn(e. (t .. )+niw . lql(t . . )l + E:Oln iw . lq2(t .. ) 1.J J 1.J J - 1.1 J J- 1.J 

j ::: 2 , ... , n; i = 1, .. . , 1-1 . 

Proof. Using (2.9) it follows as previously that 

n n 
E hu. E a I«t .. , t.tu.u h)LI«U.U )~k(t'l<) 

1<=2 J m=l m 1. J 1. J m J m 1. 

n 
+ hu. E a I«t .. , t.tu .U h)Ll(u.u)~ (t.) 

J m=l m 1.J 1. J m J m n 1. 

- ha,{I«t .. , t.)~ (t.)-I«t .. , O)~ (O)} _ 1.J 1. n 1. 1.J n 

= Ht. .. ) t h{~.(t .. )-~ (t .. )-y(t .. )} - h
2

p .(t .. ) t O(h3) , 
1.J J 1.J n 1.J 1.J J 1.J 

j = 2, ... , n; i = 0 , ... , 1-1 , (3 . 55) 

where yet) is twice continuously differentiable, yeo) = 0 and 

p. (t) 
J 

j = 2, .. . , n , are continuously differentiable. 

Introduce the functions 

j = 2, ... , n , where 

!<Ct, t)x .(-r) 
L'] 

= -k(t , t)q '(t) 
r 

and 

x (t) = 0 
rn 

x .(t) , 
rJ 

r = 1, 2 

t)q (t) 
r 

n-l 

E PJ'-l.k'ktl ' 
k=l ' 

r = 1, 2 j = 2 , ... , n-l , (3.56) 

r = 1 , 2 . 

From Taylor's theorem, (2.9) and (3 . 48) it follows that 
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n n 
L hu . L a k(t . . , t.+u .u h)Lk(u .u ) (Wk lq (t·k)+hx (t ·k)) 

k=2 J m=l m lJ 1 J m J m - r 1 rk 1 

n 
+ hu. L a k(t .. , t.+u .u h)Ll(u.U )~(t.) 

J m=l m lJ 1 J m J m 1 

h2{~ (t. , t.)~(t.) ( ~ 2 
n 

= ujWk_l 
L a u Lk (u. u ) dS 1 1 1 k~2 m m J m m=2 

2 
n 

+ u. L au Ll(u.u )) + k (t. , t . )q;,(t.) x 
J m=2 mm Jm 1 1 1 

( ~ u .ukWk_l ~ a Lk(u.u )) + k(t. , t.) ~ a.kx k(t .)} + O(h
3
) , 

k=2 J m=l m J m 1 1 k=2 J r 1 

r = 1 , 2 ; j = 2 , .. . , n i = 0 , ... , 1- 1 . (3 . 57) 

I n the same way as in (3.50) it can be shown that 

:~: nt{k~2 hak k(t ij , ttk) (Wk_l~(ttk) +hxrk(ttk)) 
+ hal k(t ij , tt)~(tt) J 

+ k(t. , t.) 
1 1 

r = 1 , 2; j = 2 , ... , n; i = 1 , ... , 1-1 

where ~ (t) , r = 1 , 2 , are continuously differentiable . It 
r 

follows from (3 . 56) , (3 . 57) and (3.58) that 

+ h u . ~ a k ( t .. , t. +u . u h) Ll ( u . u ) Q (t.)} 
J m lJ 1 J m J m ""r 1 

m=l 

(3 . 58) 

-? 
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r=1 , 2; j= 2 , ... ,n i = 0, . .. , 1-1. (3.59) 

Let 

j=2, ... ,n i = 0 , ... ,1-1 , 

Z. = z. 
l+l,l In 

i = 0, ... , 1-2 , 

It follows from (3.33), lemma 3.7, (3.55) and (3.59) that 

n n 
L hu. L a k(t .. , t.+u.u h)Lk(U . U )z . 

k=l ] m=l m l] l] m ] m lk 

i-l n 
+ L L ha k ( t .. , to) Z 0,-

.t=0 k=l ~ l] ~k ~ 

= hn+l{~n(t .. )+Y(t.].)} + h
n

+
2{e. (t .. )+i5. (t. ·)+i11 (t .. )} 

lJ l ] lJ ] lJ lJ 

j=2, ... ,n i = 0 , ... ,1-1 (3.60) 

Using (3 . 54) and (3 . 60) it follows that 

and 

j=2 , ... , n . 

The result follows from remark 3 .4. # 

Remark 3.6. It can be seen that e .( t) 
] 

j = 2 , ... , n , and 

e.(t) , j = 2, ... , n , are ·characterized by the (n-l)th 
] 

equations of (3 . 44) and (3.52) respectively , which are of the form 

(3 . 1 ). Als o, r = 1 , 2 , decrease rapidly 
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with increasing i if Inl < 1 and hence schemes with Inl < 1 are 

numerically stab le. If n = -1 , the schemes are only weakly stable 

since equations (3 .45) and (3 . 53) can have exponentially increasing 

solutions for decreasing yet) (see for example (3 . 64)) · These 

methods however can be salvaged to a certain extent by the application 

of smoothing procedures. The generalization of a smoothing procedure 

suggested by Jones (1961) for the trapezoidal method can be used , i . e . 

- 1 
Y . . = - (yo 1 .+2Y .. +Y. 1 .) 
l] 4 l- , ] l] l+ , ] 

j = 2 , . .• , n; i = 2 , ... , 1- 2 . 

From theorems 3 . 7 and 3 . 8 , Y •• 
l] 

gives a ' smooth ' approximation to 

y(t .. ) for the schemes (3. 9 ) and (3 . 10). Kobayasi (196 7) has 
l] 

considered a more sophisticated procedure for the trapezoidal method 

and a generalization of this may be more suitable . 

Case 2. n = 1 . 

Only the case k(t , s) = 1 will be briefly discussed. Let 

where 

r .. 
l] 

r. = (r.
2

, r.
3

, ... , r. )T 
- l l l In 

i = 0 , ... , 1-1 , 

From (3 . 33) , 

where 

T 
e = (1, 1, ... , 1) . 

(3 . 61) 

Also , subtracting (3.33) with j = nand i replaced by i - 1 

from (3 . 33) yields 
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£. 
-l 

-1 -1 
= M B£i_1 + M ~i i = 1, ... , 1-1 . (3 . 62) 

Let 

::.ince 

w - n = 1 
n-1 

I t t o l10WS that the (n-l)th equations of (3.61) and (3 . 62) take the 

form 

and 

£. = £. 1 + hn c yen) (t ) + O(hn+l) , i = 1 , . . . , 1-1 , 
In l- ,n In 

respectively, where 

Hence, 

£. = 
lJ 

= 

n-l 
h w. 1 c 

J-

c = 

t . . 

n-l 
L 

k=l 
m 
n-l ,k 

uk+l f w(s)ds. 
o 

f 0 lJ (n) + 0 (hn) Y (s)ds + w. £ 
J-1 01 

n-l c(y(n-l)(tij)_y(n-l)(O») + h w. 1 w. £ 
J- J-l 01 

j=2 , . .. , n 

+ o (hn) 

i = 0 , . .. , 1-1 

The appearance of the term y(n-l)(O) in this expansion 

implies that the method is not a local differentiation formula . This 

is also the reason why the £01 term is propagated throughout . 

S In ,~E: t he leading t:erm in the expansion varies smoothly with i the 

. r lJ r v i md t i. e n", L: a(lDut be improved by smoothing procedures. These 

t a tur e S l ClJi ciL e thaL meth()d~ \'Jitl1 n = 1 are unsuitable for 

k t, s ) _ 1 dnd should thevet~l'" nu be used in practice, 

-? 
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3.10 Me~hods II: Numerical Results 

The foregoing analysis appears to be contradicted by an 

example given by Linz (1967 a). Linz considers the scheme (3.9) with 

2 = u -= 0 
1 3 3 

and u4 = 1 applied to 

I 1 . -
2 

4 4 ' r 
.. - t 1 -

S J 10 l~2 4 4)J ~ ~ - s y(s)ds , o ::: t ::: T , 

which has the s olution 

yet) = 1 

Linz observes that the me:hod appears to diverge for stepsizes 

(3 . 63) 

h = 0.3 and 0 15 1f T ~ 1.2 The ' explosion' in the error for 

T ~ 1.2 , however is not due to d1vergence of the method but results 

from tak1ng the stepsize too large. The effect of this is two fold. 

Firstly, for T ~ 1.2 , k(t , s) has a zero in the region 

t < S and secondly the derivatives of hk( t , s) become 

too large for the analysis to be valid. It should be noted that the 

scheme (3.10) avoids the first difficulty. In table 3 . 3 on p . 86 the error s 

tabulated for a smaller stepsize indicate that the methods (3 . 9) and 

(3.10) are convergent. 

The order of convergence of various schemes is illustrated 

by applicat10n 0 

1 + t - Sln - cos t = Jt (l+t- s)y(s)ds , 0::: t ::: 1.2 , 
o 

wh ich ha~ he solution 

yet) = sin t . 
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In tables 3.4 and 3.5 the errors are tabulated for the 

schemes (3.9) and (3.10) respectively with u
1 

= 0 , 1 
u2 = 2" and 

U3 = 1 (n = 1) and tables 3.6 and 3.7 contain the errors for the 

schemes (3 . 9) and (3.10) respectively with u
1 

= 0 , 

and (n = -1) . 

Table 3 . 3 . 

Method (3 . 9) Method (3.10) 

t h = 0 . 15 h = 0 . 0375 h = 0 . 15 h = 0 . 0375 

0.3 5 . 062 E-7 2 . 348 E-9 3 . 692 E-7 1. 303 E-9 

0 . 6 9 . 466 E-6 3 . 8:30 E-8 5.022 E-6 1.800 E-8 

0 . 9 6 . 897 E-5 2 . 675 E-7 1. 769 E-5 6 . 481 E-8 

1.2 2 . 032 E-3 5 . 558 E- 6 5 . 823 E-5 2.725 E-7 

1.5 1.173 E 1 2 . 549 E-3 4.889 E-4 4.691 E-6 

Table 3.4 . 

Method (3 . 9) 

t h = 0 . 3 h = 0 . 15 h = 0 . 075 

0 . 3 -3 . 587 E-4 -9.151 E-5 -2 . 299 E-5 

0.6 -2 . 268 E-4 -6 . 076 E-5 -1. 544 E-5 

0 . 9 5 . 450 E-4 1. 295 E-4 3 . 194 E-5 

1.2 2 . 105 E-3 5 .161 E-4 1 . 284 E- 4 



I 
t 

0. 3 

0 . 6 

0.9 

1.2 

t 

0 . 3 

0.6 

0.9 

1.2 

t 

0.3 

0.6 

0 . 9 

1.2 

h = 0 . 3 

- 5 . 759 E-4 

-1.145 E- 3 

- 1.661 E- 3 

-2 . 080 E-3 

h = 0.3 

7.045 E- 5 

-2.842 E- 5 

9.621 t - 5 

-8.581 E- 5 

h = 0.3 

2.488 E-5 

-3 . 951 E-6 

2 . 804 E- 5 

-1. 223 E- 5 
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Table 3 . 5 . 

Method (3.10) 

h = 0 . 15 h = 0 . 075 

-1. 439 E- 4 - 3 . 597 E- 5 

- 2 . 862 E- 4 - 7 . 156 E-5 

- 4 . 152 E-4 - 1. 038 E- 4 

-5 . 201 E- 4 - 1. 300 E- 4 

Table 3 . 6. 

Method (3.9) 

h = 0 . 15 h = 0 . 075 

- 6.855 E- 7 - 4 . 263 E-8 

- 1. 746 E- 6 - 1.086 E-7 

- 3.252 E- 6 -2.025 E-7 

-5.289 E- 6 - 3 . 294 E- 7 

Table 3 . 7. 

Method (3 . 10) 

h = 0 . 15 h = 0 . 075 

- 9.538 E- 8 - 6 . 096 E- 9 

- 2 . 562 E- 7 -1. 639 E-8 

-4 . 892 E- 7 -3 . 133 E- 8 

- 7 . 960 E- 7 -5 . 099 E-8 



To illustrate the weak stability for n = - 1 , the scheme 

(3.10) with and u = 1 
4 

is applied to 
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-1 + t + e- t = ft (l+t-s)y(s)ds 
o 

0~t~9 , (3. 64 ) 

where 

- t 
yet) = te . 

From (3 . 53) , the dominant part of the error behaves like 

t( l)
i 0.52t. 

cons - e l , which agrees with the numerical results given in 

table 3.8. 

The numerical stability of schemes with Inl < 1 is 

demonstrated by applying the scheme (3.10) with ul = 0 , 

and u = 1 
4 

to (3.64). The errors tabulated in 

table 3.8 de crease p.xponentially. 

Table 3.8. 

Method (3.10) , n = - 1 

t h = 0 . 3 

0 . 9 -1. 098 E-4 

1.8 1.495 E- 4 

2 . 7 -2.360 E-4 

3.6 3 . 717 E-4 

4.5 -5 .809 E-4 

5 .4 9.113 E-4 

6.3 -1. 428 E- 3 

7.2 2.238 E-3 

8.1 -3 . 507 E-3 

9.0 5.497 E-3 

Method (3 . 10) , 

h = 0 . 3 

- 4 . 909 E-5 

-1.461 E- 6 

1. 583 E- 6 

1.850 E- 6 

1.077 E- 6 

5 . 378 E-7 

2 . 420 E-7 

1.014 E-7 

3 . 973 E-8 

1. 445 E-8 

n = 
1 
3 



. 

....: 

89 

Table 3.9 contains the errors incurred when applying the 

schemes (3.9) and (3.10) with u
l 

= 0 , 

(n = 1) to ( 3 . 64) . For both methods the error appears to grew 

exponentially . However, the errors for the scheme (3.10) increase 

less rapidly. 

Table 3 . 9. 

Method (3 . 9) , n = 1 Method (3.10), n = 1 

t h = 0 . 3 h = 0 . 3 

0 . 9 1.460 E-2 3 .316 E-3 

1.8 3 . 908 E-2 5 . 038 E-3 

2 . 7 9 .6 28 E-2 6 . 480 E-3 

3 .6 2.354 E-l 8.106 E-3 

4.5 5.812 E-l 1. 011 E-2 

5 . 4 1. 429 E 0 1. 264 E-2 

6 . 3 3 . 515 E 0 1 . 580 E- 2 

7.2 8 .648 E 0 1.978 E-2 

8.1 2 . 127 E 1 2.476 E-2 

9.0 5 . 231 E 1 3 . 099 E-2 

3 . 11 Conclusion 

It has been shown that implicit Runge-Kutta methods applied 

to first kind Volterra equations can lead to high order schemes . If 

then the methods are convergent under appropriate conditions 

on {u
l

' u2 ' .. . , un} and numerically stable under further 

restrictions . In particular , symmetrically spaced points always lead 

to weakly stable schemes . On the other hand, the schemes with u > 0 
1 

1 
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are always convergent and numerically stable. These are the schemes 

which should be used in practice. 

In the analysis so far only the case of exact data, i.e., 

get) is given analytically , has been considered. However , since 

(3.1) l S an improperly posed problem, small perturbations in g can 

cause large perturbations in y. The effect of this in the numerical 

schemes considered is that a perturbation ag
l 

in g results in a 

perturbation aYl in y which is proportional to agl/h . The 

propagation of perturbations of this type has been discussed in §3 . 5 

and §3.9. A rigorous treatment of the effect of a noise 

{ago . , j = 1, . .. , n ; i = 0 , .. . , I -l} in g can be obtained 
lJ 

by considering each perturbation separately and then using superposition . 

The above indicates that when g is given as data, h must 

not be small. On the other hand , h should be small so that the 

discretization error is kept small. The actual h used when 

implementing the methods should be chosen with these two facts in 

mind. 

I 

~~~. ~~------------------------------------------------------------------~ .. ~ 



CHAPTER 4 

THE NUMERICAL SOLUTION OF THE GENERALIZED ABEL EQUATION 

4 . 1 Introduction 

I n this chapter, finite difference schemes for the 

gc1cr a l:z ed Abel equation, 

get) = Jt k(t , s~ y(s)ds 
o (t-s) 

t ~ 0 , 0 < a < 1 , 
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(4.1) 

are examined. The motivation for this stuJy is the need for efficient 

methods for equations of the form 

-~ 2) Jt t exp(-~{a(t)} It = 
o 

where aCt) can be any differentiable function with a(O) > 0 . 

Such equations arise in the an~lysis of Brownian motion and diffusion 

processes (see Durbin (1971)) . 

In §4 . 2 some results on the analytic solution of (4 . 1) are 

presented . A short discussion of product integration is given in 

§4.3. In the remainder of the chapter , this technique is used to 

extend the methods for first kind Volterra integral equations with 

continuous kernels to (4.1) . Convergence results for the product 

integration analogues of the midpoint , Euler and trapezoidal methods 

are also given . 

It should be noted that the methods derived and the analysis 

given can be extended to systems of equations. 

4.2 The Analytic Solution 

The question of the existence and uniqueness of a solution 

ot l} . 1) is ~ummarized in the following theorem. 
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Theorem 4.1 . 

If 

(4 . 2.1) k(t , t) # 0 , t E [0, TJ , 

(4.2.2) k(t , s) and ak(t, s)/at are continuous on 0 S sst S T , 

(4.2. 3 ) get) E C[ O, TJ , g(O) = 0 and 

G(t) = d Jt g (s ) ds E C [ 0 , T J , 
dt 0 (t _s)l-CI. 

then (4 . 1) has a unique solution yet) E C[ O, TJ . 

A proof can be found in Kowalewski (1930), pp 80-82 , where 

it is shown that under the conditions (4 . 2 . 1) - (4 . 2 . 3) , Eq . (4 . 1) is 

equivalent to the second kind Volterra equation 

o s sST, (4.3) 

where 

L(t , s) = r o 
k(s+u(t-s) , s) 

1 du . 
uCl.(l - u) - CI. 

From (4.2 . 1) and (4 . 2 . 2) , 

L( ) k( t) TI .J. t , t = t , sinTICI. r 0 , t E [ 0 , TJ , 

and L(t , s) and aL(t, s)/at are continuous on 0 S sSt ST . 

Hence the result follows from the standard theory for second kind 

Volterra integral equations . 

Remark 4.1. It is clear, on differentiating (4 . 3) , that 

yet) E Cm[o , TJ , m ~ 1 , if 

(4 . 2 . 4) k(t , s) has continuous partial derivatives up to order m and 

om+lk(t, s)/atm+l is continuous on 0 S sSt S T , 

and 

(4 . 2 . 5) G(t) E Cm[O , TJ . 

If 
1 get ) E C [ 0 , TJ , then, by partial integration , 
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G(t) = fto g f( si ds . 
(t-s) - a 

(4 . 4) 

If 
m+l 

g(t) E C [ 0 , TJ , then repeated partial integration of (4 . 4) 

yields 

Thus , in general , if g(t) is smooth on [ 0 , TJ , then G(t) , and 

hence y(t) , is smooth on (0, TJ , but not necessarily on [0, TJ 

However , if 

.t = l , ... , m (4 . 5) 

then 

G(t) = (a- l)! ft g(m+l)(s)(t_s)a+m- l ds m[ J 
( a+m-l) ! 0 E CO , T . 

Hence, it follows from theorem 4 . 1 that for Eq . (4 . 2) , 

Remark 4 . 2. From (4 . 3) it is clear that y(t) depends continuously 

on G(t) However , ~(t) does not depend continuously on g(t) 

In fact , G(t)/(a- l) ! is the order 1 - a fractional derivative of 

g(t) . In §4 . 7 it will be discussed how this behaviour is reflected 

in finite difference schemes for (4 . 1) . 

4 . 3 Product Integration 

A common procedure for the numerical evaluation of 

integrals of the form 

Iw(f) = I b w(s)f(s)ds 
a 
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where f(t) is "smooth" and wet) is absolutely integrable on 

[a, b J is product integration. In this technique, I (f) 
w 

is 

approximated by where f(t) is an approximation to f(t) 

The difference between product integration rules and 

standard quadrature formulae is that only an approximation to f(t) 

is used . This is desirable for instance if the weight function 

wet) is highly oscillatory or has singularities on [a , bJ . 

Examples of product integration include weighted Gaussian 

quadrature and the Filon formulae for the evaluation of Fourier 

coefficients (see for instance Squire (1970)). 

As well as being a technique for numerical quadrature , 

product integration is a basis for the derivation of numerical 

schemes for integral equations with singular kernels . Such methods 

were first investigated by You~g (1954) . A survey of the application 

of product integration to Fredholm integral equations is given in 

Atkinson (1971 b) . The use of this technique for Volterra integral 

equations has been briefly discussed in §1.3 and §1.5 . Recently , 

de Hoog and Weiss (1972 d) have derived accurate convergence raTes of 

product integration methods for second kind integral equations with 

kernels having algebraic or logarithmic singularities . 

4.4 The Product Integration Analogues of the Midpoint , Euler and 

Trapezoidal Methods 

In this section, the midpoint , Euler and trapezoidal 

methods for (3.1) are generalized to (4 . 1) . 

Firstly introduce the notation 

t. = ih 
1. 

i = 0 , . .. , I ; h = Til, 
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y. = Y (t.) Yit~ = Y (tit~) ~ ~ 
, 

k . . = k (t . , t .) k. . he = k (t. , t' the) 
~J ~ J ~ , J+ 2 ~ J 2 

As previously , numerical schemes are obtained by approximating 

the integral terms in the discretized form of (4.1), 

g (t.) 
l 

= ft i _k_( t-=i=-'_s_) 
0- y(s)ds 

o (t.-s) 

= 
i-l 

L 
j=O 

l 

f

t j +l _k_( t-=i=-'_s_) 
0- y(s)ds 

t. (t.-s) 
J l 

i = 1 , .. . , I . 

Due to the singularity at s = t. , it is appropriate to use 
l 

formulae based on product integration , with 

w. (t) = (t. -t) -0-
l ~ 

as the weight function. 

In the first method to be derived , k(t. , s)y(s) 
l 

replaced by the piecewise constant function 

(4.6) 

is 

t. S s < t. 
J J+l 

j = 0 , ... , i-l . 

Substitution of this approximation into (4.6) leads to the numerical 

scheme 

g(t.) = 
l 

where 

i-l 
L 

j =0 

i=l , . . . , I, (4.7) 

and Yi+~ is the approximation to Yi+~' This is the analogue of 

the midpoint method. 

The use of the piecewise constant function 

M
h

( l" s) -= k .. y. , t. S s < t.+ l , j = 0 , ... , i-l , 
lJ J J J 



to approximate k(t. ,s)y(s) 
1 

yields Euler ' s method , 

i-I 
g(t.) = L Y. k . . V. 

J 1J 1-j i=l , .. . ,I, 

where Y. 
1 

1 j=O 

is the approximation to 

Finally , approximating 

linear function 

y. 
1 

k(t. , s)y(s) 
1 

by the piecewise 

Nh ( t. , s) = {( t. 1-s) k.. y . -t- (s - t . ) k. . 1 y. } /h , 1 J + 1J J J 1 , J+ J+l 
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(4 . 8) 

t. ::: s ::: j = 0 , . .. , i-I , 
J 

leads to the trapezoidal method , 

i 
g (t.) 

1 
= L Y. k .. W. 

j=l J 1J 1-j 
i=l , .. . ,I, (4 . 9) 

where 

Wo ~r h- s 
(l:a -

2...) hl- a = -- ds = 
h 0 a 2- a ' 

s 

Wi = 
~(f£h s-(i- l)h ds + J(i+l)h (i+l)h- s 

h (i-l)h sa ih sa 
dS) 

= (2... _ 2...) hl - a (i+l)2-a_2i2- a+(i_l)2 - a) i = 1, ... , I - I , 

Wi = 

and 

l-a 2-a 

~ s -( i-l)h ds (h 
h (i-l)h sa 

Y. 
1 

is the approximation to y . 
1 

The trapezoidal method 

requires a starting value YO which can be determined from (4 . 3) , 

i.e. , 

sinTIa . d Jt g(s) 
YO = yo = k(O 0) 11m dt l-a ds . 

TI , t~O 0 (t-s) 
(4 . 10) 

If g '( t) is continuous , it follows immediately from (4.4) that 
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(4.10) reduces to 

From conditions (4.2.1) and (4.2.2) , the triangular systems 

(4.7) , (4 . 8) and (4.9) are nonsingular if h is sufficiently small. 

4.5 Convergence Results 

The convergence of the schemes derived in the preceeding 

section will now be examined . For notational convenience it will be 

assumed that A. , B. , C. , D. , i = 1 , 2 , ... , are positive 
l l l l 

constants . 

The basic lemma used in the convergence proofs is 

Lemma 4 . 1. 

Let 

where 

and 

Then 

i = 0 , 1 , . . . satisfy 

l
i-l 

Ix. I S L 
l . 0 J= 

p . = 1 -
l 

i-l 
L 

j=O 

a .. x .+b.1 ' 
lJ ] l 

la. ·1 
lJ 

> 0 , 

i = 

i = 

1 , 2 , . .. , 

1 , 2 , ... , 

lb. I < Kp. , i = 1 , 2 , .... 
l l 

Ix. Is K , i = 0 , 1 , . . .. 
l 

The proof follows from induction . 

(4.11) 

Firstly , the midpoint method (4 . 7) will be considered . In 

the analysis , the following lemma concerning the s ummation of 



ol-a l-a c.t = ~ - (.t-l) .t = 1 , 2, ... , 0 < a < 1 , 

will be required . 

Lemma 4.2 . 

(i) 

( ii) 

(iii) 

(iv) 

Proof . 

i 
L 

.t=l 

l 

i .l-a 
L c.t = l 

.t=l 

(crc.t+l) = 1 - (<i+l)l- a_il-a) 

::: 1 - (1 ) . -a l-a .-l-a -a l + -- en 
2 

::: 1 - (l-a)(1 a).-a - '2 l , 

00 

L (crc.t+l) = 1 , 
.t=l 

.t=l .t(C.t-C.t+l) = 
.l-a 
l 

::: ail-a + (l- a) . -a - 2- al . 

Parts (i) , (ii) and (iii) follow immediately from the 

definition of Part (iv) follows by partial summation. 

In addition, use will be made of 

Lemma 4 . 3 . 

Let ¢(t) and ~(t) be functions satisfying: 

(a) 1¢(t)1 is integrable over the interval [a, bJ , and 

(b) ~(t) is Lipschitz continuous on [a , bJ , 

then 

It ¢(s)~(s)ds - ~(a;b) t ¢(S)dSI ::: L b;a t 1¢(s)lds , 
a a a 

where L is the Lipschitz constant of ~(t) . 

Proof . As, for s E [a , bJ , 

I ~(s) - ~ (a;b) I ::: L b - a 
2 
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# 
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The res It follows immediately. # 

Since most of the arguments for k(t , s) = 1 generalize, 

this case will be considered f~rst. 

Theo em 4.2. 

If y ' (t) is Lipschitz continuous on [0, TJ , then, for 

k (1.. , s) - 1 , the m~dpoint methcd ~s convergent of order 1 

Proof . The proof consists of three basic steps : 

(1) the construction of the error equation (4.11) , 

(II) the estimation of the jb.j 
~ 

, (i = 0 , 1 , ... ) , and 

(II 1) the estimation of p. 
l 

(i = 1 , 2 , . . . ) , and hence the 

from 

where 

immediate application of lemma 4.1 . 

(I) On subtracting 

g(t.) = 
~ 

i-l 
L: 

j=O 

i-l i-l 
g(t.) = 

~ 
L: y'.L- V • • + L: T .• 

j=O J+~ ~ -J j=O lJ 

T •• 
lJ 

it follows that 

i-l i-l 
L: S. k V. + L: T •• = 0 , i = 1 , ... , 

j=O 
J+2 ~-j 

j =0 
~J 

where 

I , (4.1 

Subtrdction of (4.12) from (4.12) with i replaced by i + 1 yiel 

i-l 

e: . +}2 V 1 + j:O 
S. , (v . . -V. • ) + S. = 
J+~ ~+1-J ~-J ~ 

o , i = 1, ... , 1-1 , 



where 

i-l 
8 . = 1 . - L (T .. -1. 1 .) . 

1. 1. + 1 , 1. 1.J 1. + J 
j=O ' 

Division of (4.13) by Vl and substitution of 

yield 

i-l 
E. k = L 

1. + 2 j =0 
E. k a . 

J+2 1.-j 
l-Ci. - 8 1-Ci. i 
h 

i = 1 , . . . , 1-1 . 

(11) From the Taylor series expansion for y(s) 

y ( s) - y . 1. = y' (t. ,) (s - t . tkJ + r. ( s) , 
J+"2 J+"2 J 2 J 
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(4.14) 

at t. 1 . , 

J +"2 

t. ::: s 
J 

j = 0 , .•. , 1-1 , 

where 

h
2 

!r.(s)1 < - L 
J - 4 

and L is the Lipschitz constant of y '(s) Consequently , 

(4.15) 

where 

= _ 1_ Jtitl y 2-Ci. 
h t. 

1. 

= _1 fh 1 (s - ~\ ds 
h2-Ci. 0 (h_s)Ci. 2) 



8 .. 
1.-J 

= _1_ Jtj+l 
2-0. 

b t. 
J 
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1 1 1(' . 1)1-0. (. . )1-0.) - - - ~ 1.-J+ - 1.-J-l 2 1-0. 

1 (. ')(2(' .)1-0. ( .. )1-0. ( . . )1-0.) (4.16) + 1-0. . 1.-J 1.-J - 1.-J+l - 1.-J-l 

and 

t. 
= f 1.+1 1 8. ----0. r i (s)ds 

1. t. (t. 1-s ) 
1. 1. + 

i-l 
- L 

j =0 

From lemma 4.2 (iii) 

Next) by Taylor series expansion ) 

Hence) 

([+1)2-0. _ 2[2-0. + ([_1 )2-0. = (2-0.)(1-0.)[-0. + 0 ([-2-0.) ) 

([+1)1-0. _ ([_1)1-0. = 2(1-0.)[-0. + 0([-2-0.) ) 

[(2[1-0._([+1)1-0._([_1)1-0.) = 0.(1-0.)[-0. + 0([-2 -0.) 

(4.17) 

(4.18) 

where Al depends on 0.. Furthermore , it can easily be verified 

that 



Iy - ~ etl = 
t =l 

1 
2-a 

h If
h 1 

o (i+l)h-s}a 

By partial summation, 

i-l i 
L y ' (t. k) 0 . . = L y ' (t. 0 k) 0 0 j=o J+2 l-] t=l l-~+ 2 ~ 

i 
= y ' (t l· _k

2
) L 0 

t=l t 

On noting that 

it follows from (4 . 18) that 

Hence , using (4.18) and (4 . 19) , 

I 
i-l I 

y ' (t
l
.+

k2
h - L y ' (t. k }0 .. 

j=o J+2 l-J 

where F = max Iy ' (s) I 
sE [ O,T ] 

Since 

T T 
h=YST' i=l, . . . , I , 

it follows from (4.17) and (4.20) that 

( I II) By (4 . 12) and lemma 4 . 3 , 
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(4.19 ) 

(4 . 20) 

(4 . 21) 

(4 . 22) 
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Also, using ( 4 . 22) , (4.14) and (4 . 21 ), 

i-l 
A

6
hi- l 

(4.23) 

IE. ~ I ::: E IE.-tJ;la . . + 
l+ ] 2 l- ] 

i = 1 , ... , 1-1 . 
j=l 

Since, by lemma 4.2 (ii), 

p . = 1 _ i~l a .. ~ ( 1-0.)(1 _ ~\i -a, 
l j=O l-] iJ 

the application of lemma 4.1 yields the required result 

A6 

::: -( -1--a-)--c(,....l-_-~"rJ h , i = 0 , ... , 1-1 . # 

Corollary 4 . 1 . 

In general the order one convergence of theorem 4 .2 is 

best possible . 

Proof. If yet) = t t E [0 , TJ , then 

l-a\ 
2-a'j # 

The result of theorem 4 . 2 will now be extended t o the cas e 

when k(t , s ) satisfies 

t E [0 , TJ , and 

(4. 5 . 2) k(t, s) and dk(t , S) / dS are Lipschitz continuous with 

respect t o t and s on 0::: s ::: t ::: T· . 

Theorem 4 . 3 . 

If y '( t) is Lipschitz continuous on [ 0 , TJ and k(t, s) 

satisfies (4 . 5 .1) and (4 . 5 . 2) , then the midpoint method is convergent 

of order 1 

Proof . The proof proceeds as for theorem 4 . 2 . 

(I) The error equations corresponding to (4.13) are 

E. L k . 1 . k Vl + l +'1' l + ,l + 2 

i-l 
E E . ,(k. . LV . 1 . - k. . , V. . ) + S. = 0 , 

j=O ]+~ l+l , ]+'1' l+ -] l,]+~ l-] l 

i = 1 , ... ,1-1, (4 . 24) 



where 

S . = T. . 
l l+l , l 

and 

7-

T •• 
lJ 

= (j+l 

t. 
J 

Now, (4 . 24) can be rewritten as 

i-l 

1-1 
L: 

j= 
(T .. -T. 1 . ) 

l] l+ ,J 

s ... k . 1 ... V1 + L: E ... {k. 1 . .. (v . .. -V . . ) 
l+-'2 l+ ,l+-'2 j=O J+-'2 l+ ,J+-'2 H.L-J l-J 
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+ (k. 1 . 7.- k .. ,)V .. } + S. = 0 , i = 1, . . . , 1- 1 . (4 . 25) 
l+ ,J+-'2 l,J+-'2 l-J l 

Division of (4 . 25) by 

i-l { 
E. = L: E:. a .. 
H~ . J+~ l-J 

J =0 

k. 1 . ,V yields 
l+ ,l+-'2 1 

k .. k-k. 1 . } 
(( .. )l-a (. . )l-a) l , J+2 l+ , J+2 A, + l-J - l-] - l - 'j'. , 

k . . 7. l 
l+l,l+-'2 

i = 1, .. . ,1-1 , (4.26) 

where 

<p. 
l-a S. = l k h1 - a l 

i+l,i+~ 

(I I) If 

1 
y(s)k(t. l ' s) y. (s) = l l + 

and 

/(s) = y(s)(k(t . l ' s) - k(t ., s)} , 
l l + l 

then 
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i -l 
L 

j=O 

t. f J+l 

t. 
] 

1 (} (Y~(S)-y~(t. ,))dS]J 
(t )"J 1 1 J +-'2 
\. i+1- S 

i -l 
L 

j=O 

The expression in square brackets can be estimated by the arguments 

of theorem 4.2, (11), and the expression in curly brackets by the 

application of Taylor ' s thecrem and le~a 4 . 3. These argumen s yield 

S [Blhi-1J + {B2hl+o} S B3hi-
a 

, I <p . I 
1 

... , 1-1 (4.27) i = 1, 

(III) from the Lipschitz continuity of k(t , s) , (4 . 26) 

and (4.27) it follows that for sufficiently small h , 

i = 1 , ... , 1-1 . (4 . 28) 

where 

and L is the Lipschitz constant of k(t, s). In general, lemma 

4.1 cannot b e used directly for the estimation of IE . ~I as 
1+'2 

previously. However , if the interval [0, TJ is replaced with the 

finite covering 

[0, f',T), [f',T, 2f',T) , . .. , [(m-l)f',T, mf'.TJ , mf',T = T , 

such that 

( 
1 ) l-a f',T k /2 L(l+a) S - 2- , 
o 

then lemma 4.1 can be applied to each subinterval. 

Let ~ -- rrniJ . ~ . ~ Using the equation corresponding to (4.12) 
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and lemma 4.3 for the estimation of I£~I , (4.28) yields for the 

subinterval [ 0 , ~T) , 

where r = r + 1 
1 

if 

'2 

I (4 . 29) 

i = 1 , ... , rl-l ,r 
) 

otherwise. By 

lemma 4 . 2 (ii) , (iv) and (i) , 

i-l i i 
L Z L oat 

-a l-a . -l-a 
a. = at + ::: 1 - (l-a)i + - 2- al 

j=O 
1-j t-l t=l 

h uT .l-a a( l - a) i M A}( -a) 
+ ~T k

o
/2 L(l+a) 1 + 2(1+a) . 

Since 

T 
h = - -

I 

it follows that 

i-l 
L 

j=O 

Therefore 

a .. 
1-J 

p. = 1 -
1 

i - l 
L 

j=O 

m~T ~T ~T 
-- < -< 

I r - i 
i = 1, ... , r , 

( 
a \.-a 

1 - 2 ( l+a») 1 , 

a . . 
1-J 

The application of lemma 4.1 to (4.29) immediately yields 

which implies order one convergence for the subinterval [0, ~T) . 

For the subinterval [~T, 2~T) , (4.28) yields 

(4 . 30) 
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where r = r + 1 
? 

if otherwise, and 

].1. = 
l 

\ E: • 1 \ a. . 
r -J+"2 l+J 

1 

By lemma 4.3 (iii), (lV) and (i), 

B, r
l 

I ~.\ ~ ~h L a .. ~ B
5
hi-a 

i = 1, ... , r -1 , 
I l B4 j=l l+J 2 

and 

In the same way as for (4.29), the application of lemma 4.1 to (4 . 30) 

yields 

i=0, . . . ,r2-1, 

which implies order one convergence for the subinterval [6T, 26T) . 

Clearly, the process continues inductively, and theorem 4.3 

is an immediate consequence of the finiteness of the covering . # 

Although in general the midpoint method is convergent of 

order 1 , it is possible under certain assumptions on yet) and 

k(t, s) , to obtain higher order convergence. 

Theorem 4.4. 

If 

(4.5.3) y ' (t) is Lipschitz continuous on [ 0 , TJ , 

(4.5.4) yeo) = 0 , y' (0) = 0 , and 

(4 . 5 . 5) k(t, dk( t, s) /dt dk(t, s) Ids 
2 2 

s) , , , d k( t, s) /dS 

and d2k(t, S)/dSdt are Lipschitz continuous with respect 

to t and s on 0 ~ s ~ t ~ T 

then the midpoint method is convergent of order 2 - a . 

Proof. The result can be obtained by a slight modification of the 

proof of theorem 4.3. The only difference is that 
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(4 . 31) 

and that (4 . 27) can be replaced by the estimate 

I ~ I C h2- a .-a 
't'i ::: 2 l , i = 1, .. . , I-l (4.32) 

The estimate (4.31) is obtained by Taylor series expansion 

of k(h , s)y(s) at s - t - ~ 

To derive (4.32), note that from theorem 4 . 3, (II ) , 

where 

t. 

</>~ = J l+l 

l t. 
l 

and 

i-l 
L: 

j =0 
1 al [Y~(S) -y~ (t.+)))dS 

(t. l-S )) l l ] 2 
l+ 

i-l t. 

</>~ f J+l 1 
[/(S)-/(t. )J )dS = L: 

l j=O (t . _S)a l l J +2 t. 

Firstly, 

1 
expansion of y.(s) 

l 

as (4.15), viz. 

where 

</>~ 
l 

at 

J l 

will be considered. The Taylor series 

t. L yields an equation of t he same form 
J+'7! 

i = 1 , . . . , I-l , 

Consequently, the arguments of theorem 4.2 , (II) can be used to 

obtain a result corresponding to (4 . 20), viz . 



d 1 . d 1 y. l-l y. 

ds l ( t. ;J y - L: -d l (t . ;J 8 . . S 
l+2 j=O S J+2 l-J 

By (4.19) and conditions (4 . S. 3), (4 . S. 4) and (4.S.S), 

and hence 

1 

::i (ti+~) (y - 1.~l 81.) ::: Csihi-
l

-
a 

S CSh 

T 
• ,+,2 • o est lmate 't'., wrl te 

l 

vies) - Yi(tj +~) = (Y(S)-Yj+~) (k(ti+l' s) - k(t i , s)) 
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+ C h 
'-+ 

(4.33) 

- Yj +~{ (ki+l , j+~-k(ti+l' s)) - (ki,j+~-k(ti' s))} 

By Taylor series expansion , 

and 

(k. 1 . ,-k(t. l' s)) - (k .. ,-k(t ., s)) l + , J +"2 l + l , J +"2 l 

Hence , 

and since it can easily be verified that 

it follows that 
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i = 1 , ... , 1-1 . (4 . 34) 

Combining (4 . 33) and (4.34) yields 

i = 1 , . . . , 1-1 . 

Using (4 . 31) and (4.32) the theorem can be established in 

the same way as theorem 3 . 4 . # 

j\emt;irk 4 . 3 . As a tends to zero , this result corr~sponds to the 

order two convergence of the midpoint scheme obtained i n §3 . 2 . 

Remark 4.4 . The condition (4 . 5 . 4) is always satisfied for 

Eq . (4. 2) . 

This completes the discussion of the midpoint method . 

The convergence of Euler's method , (4 . 8) , will now be 

considered . Since the weights Vi' i = 1, 2, , for Euler ' s 

method are the same as for the midpoint method , a similar analysis 

applies. In fact, only the arguments used in the derivation of the 

estimate corresponding to (4 . 27) differ slightly . Consequently , the 

following theorem will be stated without proof . 

Theorem 4 . 5 . 

If y ' (t) is Lipschitz continuous on [ 0 , TJ and the 

conditions (4 .5.1) and (4 . 5.2) hold , then Euler ' s method is 

convergent of order 1 

In the remainder of this section , the convergence 

properties of the trapezoidal method (4 . 9) will be investigated . As 

ir the midpoint method, the case k(t , s) = 1 will be considered 

first . 

Theorem 4 . 6 . 

Let k(t , s) = 1 and ytt (t) be Lipschitz continuous on 

[ 0 , TJ . Then , for a E [ao, 1) , where aO ~ 0 . 4150 , the 

trapezoidal method is convergent of order 2 . 
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Proof . The proof consists of the same basic steps as the proof of 

theorem 4 . 2 . 

(I) Let Yh(s) be the piecewise linear function 

interpolating to y(s) at the gridpoints , 

Yh(s) = {(to l-s)y.+(s-t .)y. l}/h , 
J + J J J+ 

t. S 
J 

s S j = a , ... , I - l , 

and 

Then (4. 6) can be rewritten as 

g (t.) 
l 

ds . (4 .35 ) ds -

Subtraction of (4 . 9) from (4 . 35) yields 

i t. 
eh(s) 

Ia 
l 

L: E.W. + E t.T = ds i = 1 , I (4 . 36) 
J l-j a"i (t._s)Ct 

, ... , , 
j=l 

l 

where E. = y. - Y. Subtraction of (4 . 36) from (4 . 36) with i 
l l l 

replaced by i + 1 and division by Wa yie ld the basic error 

equation 

where 

i 
L: 

j=l 

aa 

ai 

b . 
l 

= 

= 

= 

1 , . .. , I - l , i = E .a .. + b . 
J l-J l 

(Wa -w) /Wa = 3 _ 22 - Ct , 

(W rW i+1) /Wa 

[S~+S~1 / Wa , 

(4 . 37) 



s~ " ft i
+

1 
__ e~h~(_s_) ___ ds 

t. (t. l-S)a. 
l l + 

and 

i-l 
L 

j=O 

t. 
J J +l 

t. 
J 

s: = £: 0 (w. -W. 1) • 
l l l+ 

(II) Firstly (3~ will be considered . 
l 

theorem on Lagrangian interpolation, 

(s-t.) (t. l-s) 
e

h 
( s) = J J + y" (t . "I + r . ( s ) , 

2 J) J 

t. ::: 
J 

s ::: j = 

where 

Lh
3 

jr .( s)j < -
J - 8 
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(4 . 38) 

By a standard 

0 , ... , 1-1 , (4.39 ) 

(4 . 40) 

and L is the Lipschitz constant of y"(s) Substitution of (4 . 39) 

into (4.38) yields 

i-l ) 
L y"(t.) 0 .. + o. 

J l-J l 
j=O 

where 

y = 1 Jh l-a. s(h-s) ds, 
2h 3-a. 0 

o = l 

and 

1 

2h 3-a. 

t. 

o. = J Hl 
l t. 

l 

It follows 

(Jh (1 1) s(h - s) - ds 
o (lh_s)a. ((l+l)h-s)a. 

r. (s) i-l (i+l [(t.~s)" l ds - L 
(t·l-s)a. j =0 t. 

l+ J l 

from (4 . 40) that 

i = 1 , ... , I-l , 

1 ] r. (s )ds 
(t. l-s) a. J 

l+ 



Also, it is easy to verify that 

and 

By partial summation, 

i 
+ L 

\)=2 

i = 1 , ... , 1- 1 . 

t = 1, 2 , ... , 

i = 1, 2 , .... 

{y"(t . ) -y"(t. )} 
l-\) l+l-\) 
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(4 . 41) 

(4 . 42) 

(4 . 43) 

(4 . 44) 

From the Lipschitz continuity of y"(t) and (4 . 42) it follows that 

The use of (4.43), (4 . 44) and (4 . 45) yields 

where 

< F D .-a yLh + D
4
hi l - a 

- 2 3 l + 

max 
O:::=s:::=T 

I y" (s) I . Since 

i = 2 , ... , 1-1. (4 . 45) 

i = 1 , ... , 1- 1 , (4 . 46) 

T h:::=y , i=l , ... , I , 

it follows from (4 . 41) and (4 . 46) that 

(4 . 47) 

From the asymptotic expansion of (w. -W. 1) 
l l+ 

it is clear 



that 

Hence , from (4 . 47) and (4 . 48) 

Ibil ~ D7(h2+IEol)i-a 

(III) From (4 . 36), 

i = 1 , . .. , 1-1 . 

IEll ~ D8(h2+IEol) 

and from (4 . 37) and (4.49), 

By the definition of at, 

1 - W. , 
1 

i = 

i = 1 , ... , 1- 1 . 

1, 2, ... , 

t = 1, 2, ... , 
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(4 . 48) 

(4 . 49) 

(4 . 50) 

(4 . 51) 

(4 . 52) 

(4 . 53) 

in3 } . (4 . 54) 
aO = 2 - in2 ~ 0 . 4150 

It can easily be verified that 

i = 1 , 2 , .... 

Hence , from (4.52) , 

i-l 
" 1 D

9
1· -

a 
L.. at ~ -

t=O 
i = 1 , 2 , ... (4 . 55) 

It is now possible to apply lemma 4.1 to (4 . 51) . From (4 . 50) , 

(4.53) , (4 . 54) and (4 . 55) the hypotheses of the lemma are satisfied 

for a E [a
o

' 1} and hence 

i=l , ... , I . # 
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Remark 4 . 5 . The restriction a E [ao' 1) in theorem 4 . 6 is 

only introduced for t he analysis of the proof and has no natural 

meaning in connection with the trapezoidal method . In fact , 

convergence of order 2 has been established for the slightly larger 

interval Cal ' 1) where a l ~ 0 . 2117 (cp . Weiss (1972)) . This is 

obtained by subs tituting (4.37) with i replaced by i - 1 into 

(4 . 37). Extensive numerical computations indicate that the 

trapezoidal method is convergent of order 2 for all a E (0 , 1) , 

(cp. § 4 . 6) . 

Since the extension of theorem 4 . 6 to a general k(t , s) 

follows in a similar way to theorem 4.3 , the following result is 

stated without proof. 

Theorem 4 . 7. 

If k( t , s) satisfies (4 . 5 . 1) and 

(4 . 5 . 6) y" (t) is Lipschitz continuous on [ 0 , T] , and 

(4.5.7) k(t , s) , Clk(t , s)/Clt , Clk(t , s)/Cls and Cl
2
k( t , s)/Cls 

2 

are Lipschitz continuous with respect to t and s on 

o s sst S T 

then , for a E [ao' 1) the trapezoidal method is convergent of 

order 2 . 

4 . 6 Numerical Results 

The methods in §4 . 4 have been applied to the following 

equations : 

l-a I: yes ) 
(i) c1-a)2i {lFl(l ; 2-a; it) lFl(l ; 2-a ; - it )} = ds - a 

, 
(t - s) 

0 S t s 1T , (4 . 56) 
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where lFl is Kummer ' s hypergeometric function and i = ~ . The 

solution is yet) = sin t (see Erdelyi (1954) , p . 189) . 

o :=: t :=: 1 , (4 . 57) 

where 

yet ) 
(21Tt) - J.i 

{exp (- 1 2J (1 
lJ = ~l+t} - -

2 2t t 

+ eXP ( - 2) expl- ~t{1- t}2J (~+ lj} . 

This is an equation of the form (4.2), (cp . Durbin (19 71)) . 

The errors incurred when applying the midpoint method to 

(4 . 56) with a = 0 . 5 and (4.57) are listed in tables 4 . 1 and 4 . 2 

respectively. In the row headed "max" in these tables ,the value of 

max 
O:=:i:=:I-l 

is given . 

In table 4 . 1 the errors for fixed t decrease by 

approximately 5.2 when h is divided by three , which would correspond 

to convergence of order 1 . 5 . However , the maximum error , which 

occurs at the first gridpoint , is of order one , as predicted by 

corollary 4 . 1 . In table 4.2 it is clear that convergence of order 

1 . 5 is obtained. This agrees with the order predicted by theorem 

4. 4 . 
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Tab le 4 . 1. 

t h = 'IT/l0 h = 'IT/30 h = 'IT/90 h = 'IT/270 

3'IT/20 -2 . 631 E-2 - 4 . 992 E-3 -9.292 E- 4 -1. 755 E-4 

7'IT/20 4 . 303 E- 3 1.211 E-3 2 . 770 E-4 5 . 784 E-5 

11'IT/20 2 . 634 E- 2 5 . 534 E-3 1 .112 E-3 2 . 186 E- 4 

15'IT/20 3 . 630 E-2 7 . 366 E-3 1. 451 E- 3 2 . 824 E-4 

19'IT/20 3 . 149 E- 2 6 . 219 E-3 1. 204 E-3 2 . 323 E-4 

max 5 . 065 E- 2 1. 739 E- 2 5.815 E- 3 1. 939 E-3 

Table 4 . 2. 

t h = 1/10 h = 1/30 h = 1/90 h = 1/270 

3/20 - 1.068 E-2 -2.377 E-3 - 4 . 465 E- 4 - 8 . 234 E- 5 

7/20 5 . 037 E-3 1.135 E- 3 2 . 282 E- 4 4 . 466 E- 5 

11/20 2 . 381 E-3 4 . 695 E-4 8 . 998 E-5 1. 726 E- 5 

15/20 9 . 689 E- 4 1. 813 E-4 3 . 409 E- 5 6 . 486 E-6 

19/20 4 . 066 E-4 7 . 379 E-5 1 . 369 E-5 2 . 586 E- 6 

max 1.151 E-2 5 . 228 E- 3 1.184 E- 3 2 . 387 E-4 

I n tables 4 . 3 and 4 . 4 the errors obtained when using Euler ' s 

method for the solution of (4 . 56) with a = 0 . 5 and (4 . 57) , 

respectively , are given . These results verify the order 1 

convergence predicted by theorem 4 . 5 . 
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Table 4 . 3 . 

t h = TI/20 h = TI/40 h = TI/80 h = TI/160 

TI/5 -7. 610 E-2 - 3.539 E-2 -1. 696 E-2 - 8 . 275 E- 3 

2TI/5 -2 . 970 E-2 -1. 285 E- 2 - 6 . 031 E- 3 - 2 . 951 E- 3 

3TI/5 2 . 594 E- 2 1. 392 E-2 6 . 983 E- 3 3 . 426 E- 3 

4TI/5 7 . 105 E- 2 3 . 518 E- 2 1 . 726 E-2 8 . 470 E- 3 

TI 8 . 874 E-2 4 . 290 E- 2 2 . 091 E-2 1. 027 E-2 

Table 4.4 . 

t h = 0 . 1 h = 0 . 05 h = 0 . 025 h = 0 . 0125 

0 . 2 - 6 . 693 E-2 -2 . 496 E- 2 - 9.753 E-3 -4. 262 E-3 

0 . 4 4 . 164 E-3 3 . 057 E- 3 1 . 516 E- 3 7 . 132 E- 4 

0 . 6 8 . 474 E-3 3 . 725 E- 3 1. 701 E- 3 8 . 016 E- 4 

0 . 8 5 . 691 E- 3 2 . 482 E- 3 1 .146 E-3 5 .465 E-4 

1.0 3 . 595 E-3 1. 590 E- 3 7 . 433 E- 4 3 . 579 E-4 

Finally , the trapezoidal method was applied to (4 . 56) 

(a = 0 . 5 a = 0 . 05) and (4 . 57) . The errors tabulated in tables 

4 . 5 , 4.6 and 4 . 7 respectively, demonstrate the order 2 convergence. 

In particular, the result for (4 . 56) with a = 0 . 05 illustrates the 

order 2 convergence for a f [0.0 , l} . 
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Table 4 . 5 . 

t h = TT/20 h = TT/40 h = TT/80 h = TT/16 0 

TT/5 -1. 056 E-3 -2.753 E- 4 -7. 081 E- 5 _.1. 805 E-5 

2TT/5 -1. 814 E-3 - 4 . 634 E- 4 - 1.177 E-4 - 2 . 975 E-5 

3TT/5 -1. 894 E-3 - 4 . 771 E-4 -1. 201 E-4 - 3 . 017 E- 5 

4TT/5 -1. 259 E- 3 -3.100 E- 4 -7. 684 E-5 -1. 911 E-5 

TT -1. 476 E-4 - 2 . 541 E- 5 -4.4 36 E- 6 -7.794 E-7 

Table 4 . 6 . 

t h = TT/20 h = TT/40 h = TT/80 h = TT/160 

TT/5 -1. 213 E- 3 - 3 . 023 E-4 - 7.552 E- 5 -1. 888 E-5 

2TT/5 -1. 963 E- 3 -4. 892 E- 4 -1. 222 E-4 - 3 . 055 E-5 

3TT/5 -1. 964 E- 3 -4. 894 E-4 -1. 223 E- 4 - 3 . 056 E-5 

4TT/5 -1. 216 E- 3 - 3 . 028 E- 4 -7. 560 E-5 -1. 889 E-5 

TT -4. 883 E-6 - 5 . 015 E- 7 - 6 . 097 E-8 - 7 . 815 E-9 

Table 4 . 7 . 

t h = 0.1 h = 0 . 05 h = 0 . 025 h = 0 . 0125 

0 . 2 - 9 .098 E- 3 -1. 333 E- 3 - 3 . 671 E- 4 - 9 . 285 E- 5 

0.4 -1. 032 E-3 -1. 909 E-4 -4. 679 E-5 -1. 134 E- 5 

0 . 6 -2.146 E-5 5.912 E-6 2 . 026 E-6 6 . 468 E-7 

0.8 6 .771 E-5 2 . 065 E-5 5 . 353 E-6 1. 389 E- 6 
! 

1. 0 5 . 447 E-5 1. 550 E-5 3 . 939 E-6 1 . 00 4 E-6 
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Remark 4.6 . Numerical instability has not been observed in any 

of the above examples. 

4.7 Error Propagation in the Midpoint Method 

In the application to practical problems it is necessary to 

examine the case when values 

g. = g(t . ) + eg . 
l l l 

are used in the numerical schemes instead of the exact values 

g(t.) . Only the midpoint method will be considered . However , 
l 

similar results can be obtained for the Euler and trapezoidal 

methods . 

Using g. 
l 

given by (4 . 58) , the midpoint method will 

generate approximations i = 0 , ... , 1-1 , satisfying 

Let 

Then 

g(t.) + eg. = 
l l 

eg. = 
l 

i-l 
L 

j=O 

i - l 
L 

j =0 
i = 1 , ... , I . 

i = 0 , . .. , 1-1 . 

i = 1 , .. . , 1-1 . 

(4 . 58) 

(4 . 59) 

Assume that k(t , s) = 1 and first consider the effect of a single 

perturbation egt 
From (4.59) , 

j = 0 , ... , I-t , 

where X. , j = 0 , 1 , . . . , are given by 
] 

Xo = 1 , 



i 
L 

j=O 
x. v. . = 

J Hl-J 
o , i = 1 , 2 , ... . 

For the general case , s uperposition yields 

l - a. i+l 
oY. k = --1-- LOg . X

l
. +l -

J
. , i = 0 , ... , 1-1 . 

l +2 h - a. j=l J 
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(4 . 60) 

An accurate estimate for X. could not be obtained analytically and 
J 

so its behaviour was investigated numerically . From table 4 . 8 it can 

be seen that X. = 0 (j - 2+a.) 
J 

On the basis of this numerical result 

it follows from (4 . 60) that 

loY . ,I S - lC max 
l +-1? h - a. j=l , .. . , i+l 

log. I , 
J 

i = 0 , ... , 1-1 , C = const . (4 . 61) 

Numerical comp utation indicates that this bound remains val id f or a 

general k(t , s) . It should be noted that (4 . 61) has an 

amplification factor of l/hl- a. compared with an amplification 

f actor of l /h in the numerical schemes for (3 . 1) (cp . §3 . 11 ) . For 

the important case a. = ~ this represents a considerab l e improvement 

over a. = 0 and indicates that these equations are more amenable to 

a numerical solution. 

Table 4 . 8. 

a. = 0 . 1 a. = 0 . 5 a. = 0 . 9 

X10/X100 106 . 62 39 . 39 13 . 64 

X100/X1000 87.53 32 . 26 12 . 71 

10 
2- a. 

79 . 43 31. 62 12 . 59 



4 . 8 High Order Methods 

High order schemes for (4 . 1) can be constructed by 

extending the methods of §3.3. Discretizing (4 . 1) at the points 

t .. , j = 1, ... , n ; i = ° , ... , 1J 

t . . k(t .. ,s ) 
g (t .. ) = 

J0

1J 
1J yes )ds 

1J (t . . _s) Ci 
1J 

i- l JtR.+l k(t .. ,s) 
= L 1J y(s)ds + 

R.=o to (t . . _s)Ci 
-<- 1J 

1-1 , yields 

k(t .. ,s) 
1J 

I y(s)ds , 
(t .. - s)Ci 

1J 
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j=l, ... ,n i = 0, ... ,1- 1 . (4 . 62) 

The application of product integration base d on the approximation 

< to; -<-+1 R. = 0, .. . , i-l i = 0, ... , 1-1 , 

to (4 . 62) leads to the numerical scheme 

g(t . . ) = 
1J 

i n ( ) (i -R.) 
L L YR.k k~tiJ" t,tk WJ' k R.=O k=l 

j=r, ... ,n i = 0, ... ,1-1, (4.63) 

where 

J
l Lk (s) 

= h
l

-
Ci ° 

(m+u.-s) Ci 
J 

ds , j = r, ... , n 

ds , 

j = r, ... , n , k = 1, ... , n 

and Y . • is the approximation to y (t . . ) The 
1J 1J 

product integration analogue of (3 . 9) . For each 

(4.63) is a linear system in the unknowns Y .• 
1J 

k = 1, ... , n , 

m = 1, ... , 1-1 , 

scheme (4. 63) is the 

i , i = ° , ... , 1-1 

, j = r, ... , n 

, 
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Since k(t , s) is continuous and k(t, t) t o, these systems are 

nonsingular if h is sufficiently small . In (4.63), values of 

k(t, s) are required in the region t S s S t+(l- ul)h o S t ST . 

This can be avoided if (4 . 63) is modified in a similar way to (3 . 10) . 

While convergence results for (4 . 63) have not been 

obtained , numerical computations carried out and the results of 

chapter 3 indicate that 

(i) if u
l 

> 0 , then the scheme is convergent of order 

n , and 

(ii) if u
l 

= 0 , a sufficient condition for convergence of 

order n is 

-1 S n = 

n-l 
IT (l-~ ) 

k=l 
----- S 1 

Some numerical results supporting this conjecture will now 

be given. The schemes (4.63) with and 

and (n = 1) and 

and u = 1 
4 

(n = -1) have been applied to Eq . (4 . 57) . 

The errors y(t .. ) - Y . . listed in tables 4 . 9 , 4 . 10 and 4.11 
1J 1 J 

respectively, indicate convergence of order 3, 3 and 4 . Although 

the errors are only given for the interval 0 S t S 1 , the methods 

have been used to calculate approximations on 0 S t S 10. Numerical 

instability has not been observed . 
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Table 4 . 9 . 

t h = 0 .1 h = 0 . 05 h = 0 . 025 h = 0 . 0125 

0 . 2 -1. 948 E-4 - 2 . 455 E- 6 1.040 E-6 1. 990 E-7 

0 . 4 7 . 064 E-4 6 . 423 E- 6 7 . 723 E-7 9 .326 E-8 

0 . 6 1. 085 E-5 5 . 842 E-7 7.642 E-8 8 . 903 E- 9 

0 . 8 2 . 554 E-6 - 5 . 810 E-8 -1. 632 E-9 -3. 443 E-l0 

1. 0 1. 070 E- 6 - 9 . 572 E- 8 -7.615 E-9 - 9 .871 E-l0 

Table 4 .10. 

t h = 0 .1 h = 0 . 05 h = 0 . 025 h = 0 . 0125 

0 . 2 -4. 727 E-4 -1.026 E-4 -1.107 E-6 5 . 345- E...!Y 

0 . 4 2 . 520 E- 4 2 . 562 E- 5 2 . 646 E-6 2 . 972 E-7 

0 . 6 4 . 316 E-5 2 . 524 E-6 2 . 438 E-7 2 . 655 E-8 

0 . 8 4 . 789 E- 6 - 5 . 242 E- 8 - 9 . 088 E-8 -1. 584 E-9 

1.0 -4.6 97 E-8 -2.348 E-7 - 2 . 562 E-8 - 3.229 E-9 

Table 4 .11 

t h = 0 . 1 h = 0 . 05 h = 0 . 025 h = 0 . 0125 

0 . 2 5 . 862 E-4 1. 854 E-6 3.810 E-7 2 . 056 E-8 

0 . 4 2 . 308 E-6 -6 . 011 E- 7 - 3 . 312 E-8 -2.020 E-9 

0 . 6 -5.651 E-7 -7. 394 E- 8 -3.482 E-9 -2.185 E- l 0 

0 . 8 3 .715 E-8 -1. 261 E- 8 -2 . 653 E-l0 -2 .112 E-11 

1.0 9 .11 3 E-8 -3.813 E-9 7 . 390 E-ll 1.232 E-12 
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4 . 9 Conclusion 

In the preceeding sections a variety of finite difference 

schemes for the generalized Abel equation has been constructed . As a 

general purpose method, the scheme (4 . 63) with ul = ° , 
and u = 1 

3 
appears to be suitable since it combines high order 

accuracy with simplicity of implementation. 

In this chapter, a number of problems remain unsolved . In 

particular, the c,onvergen ce proof for the trapezoidal method for all 

a E (0, 1) , the convergence of the high order methods and the 

derivation of asymptotic error estimates still require examination . 

Such problems could provide a fruitful avenue for further research . 



REFERENCES 

Anderssen , R. S., de Hoog , F . R. and Weiss , R. (1972) . On the 

numerical solution of Brown ian motion processes . J . Appl . 

Prob . , to appear . 

126 

Atkinson, K. E. (1971 a). The numerical solution of an Abel integral 

eq~ation by a proQuct trapezoidal method . Report , Computer 

Centre , The Australian Nat ional University . 

Atkinson , K. E. (1971 b) . A survey of numerical methods for the 

solution of Fredholm integral equations of the second kind . To 

appear in the proceedings of the symposium "Numerical Solution 

of Integral Equations with Physical Applications" , 1971 Fall 

National Meeting of SIAM. 

Axelsson , O. (1969) . A class of A- stable methods . BIT , 9 , 

pp 185-199 . 

Beltjukov , B. A. (1965) . An analogue of the Runge-Kutta method for 

the solution of a nonlinear integral equation of the Volterra 

type . Differential Equations, 1 , pp 417 - 433 . 

Bockasten , K. (1961) . Transformation of observed radiances into 

radial distribution of the emission of a plasma . J . Opt . Soc . 

Amer ., 51 , pp 943- 947 . 

Butcher , J . C. (1964 a) . Implicit Runge - Kutta processes . Math . Comp ., 

18 , pp 50-64 . 

Butcher , J . C. (1964 b) . Integration processes based on Radau 

quadrature formulas . Math. Comp . , 18 , pp 233-244 . 

Cambell , G. M. and Day , J . T. (1971) . A block by block method for the 

numerical solution of Volterra integral equations . BIT , 11 , 

pp 120-124. 

Dahlquist, G. (1963). A special 5t bility problem for linear 

multistep methods. BIT, 3, pp 27-43 . 



127 

.Davis, H.T. (1960) . Introduction to Nonlinear Differential and 

Integral Equations. United States Atomic Energy Commission. 

de ·Hoog, F.R. and Weiss, R. (1972 a). Implicit Runge-Kutta methods 

for second kind Volterra integral equations. Submitted for 

publication. 

de Hoog, F.R. and Weiss, R. (1972 b). On the solution of Volterra 

integral equations of the first kind. Submitted for publication. 

de Hoog, F.R. and Weiss, R. (1972 c). High order methods for Volterra 

integral equations of the first kind . SIAM J. Numer . Anal., to 

appear. 

de Hoog, F.R. and Weiss, R. (1972 d). Asymptotic expansions for 

product integration. Math . Comp ., to appear. 

Durbin, J. (1971). Boundary-crossing probabilities for the Brownian 

motion and Poisson processes and techniques for computing the 

power of the Kolmogorov-Smirnov test. J. Appl. Prob., 8, 

pp 431-453. 

Edels, H., Hearne, K. and Young, A. (1962). Numerical solutions of 

the Abel integral equation. J. Math . and Phys., 41, pp 62-75. 

Einarsson, B. (1971) . Numerical solution of Abel's integral equation 

with spline functions. FOA 2 Rapport, C2455-11(25) . Forsvarets 

Forskningsanstalt, Avdelning 2, Stockholm. 

Erdelyi, A. (Ed.) (1954). Tables of Integral Transforms, Vol. II. 

McGraw-Hill. 

Evans, G.C. (1910) . Volterra's integral equation of the second kin~, 

with discontinuous kernel. Trans. Amer. Math . Soc ., 11, 

pp 393-413. 

Fox, L. and Goodwin, E.T. (1953) . The numerical solution of 

nonsingular linear integral equations. Phil. Trans. Roy . Soc., 

245, pp 501-534. 



Frie, W. (1963). Zur Auswertung der Abelschen Integralgleichung. 

Ann . Physik ., 10, pp 332-339 . 

Henrici, P. (1962) . Discrete Variable Methods in Ordinary 

Differential equations. John Wiley, New York . 

128 

Hung, H.S. (1970) . The numerical solution of differential and 

integral equations by spline functions. MRC Technical Summary 

Report #1053, University of Wisconsin, Madison . 

Jones, J . G. (1961) . On the numerical solution of convolution 

integral equations and systems of such equations. Math . Comp ., 

15, pp 131-142 . 

Kobayasi, M. (1966). On numerical solution of the Volterra 

integral equations of the second kind by linear multistep 

methods. Rep . Stat. Appl. Res ., JUSE, 13, pp 1-21 . 

Kobayasi, M. (1967). On numerical solution of the Volterra 

integral equations of the first kind by trapezoidal rule. Rep. 

Stat . Appl. Res ., JUSE , 14, pp 1-14 . 

Kowalewski, G. (1930 ). Integralgleichungen . Walter de Gruyter & 

Co . , Berlin W und Leipzig. 

Linz, P. (1967 a) . The numerical solution of Volterra integral 

equations by finite difference methods . MRC Technical Summary 

Report #825 . The University of Wisconsin, Madison . 

Linz, P. (1967 b) . Applications of Abel transforms to the numerical 

solution of problems in electrostatics and elasticity . MRC 

Technical Summary Report #826, The University of Wisconsin, 

Madison . 

Linz, P . (1971) . Product integration methods for Volterra integral 

equations of the first kind . BIT , 11, pp 413-421 . 



129 

Loudet, M. and Oules , H. (1960) . Sur l ' integration numerique des 

equations integrales du type de Volterra; in "Symposium on the 

Numerical Treatment of Ordinary Differential Equations, Integral 

and Integro-differential Equations". Birkhauser Verlag , Basel , 

pp 117- 12l. 

Minerbo , G. N. and Levy, M. E. (1969). Inversion of Abel ' s integral 

equation by means of orthogonal polynomials . SIAM J. Numer . 

Anal., 6 , pp 598- 616 . 

Nestor, O. H. and Olsen, H. N. (196 0) . Numerical methods for reducing 

line and surface probe data . SIAM Rev . , 2, pp 200-207 . 

Noble, B. (1964) . The numerical solution of nonlinear integral 

equations and related topics; in "Nonlinear Integral Equations", 

ed . P . M. Anselone . University of Wiscons in Press, Madison, 

pp 215-318 . 

Noble, B. (1969). Instability when solving Volterra integral 

equations of the second kind by multistep methods; in "Lecture 

Notes in Mathematics" , 109 . Springer Verlag, pp 23- 39 . 

Noble, B. (1971 a). A bibliography on : "Methods for solving 

integral equations" - Author listing . MRC Technical Summary 

Report #1176, The University of Wisconsin, Madison . 

Noble, B. (1971 b) . A bibliography on : "Methods for solving 

integral equations" - Subject listing . MRC Technical Summary 

Report #1177 , The University of Wisconsin , Madison . 

Olsen, H. N. (1959) . Thermal and electrical properties of an argon 

plasma . Physics of Fluids, 2, pp 614- 623 . 

Oules, H. (1964) . Resolution numerique d ' une equation integrale 

singuliere . Re v. Franc . de Traitm . de l'Inf . , 7 , pp 117-124 . 



130 

Pouzet, P . (1960). Methode d'integration numerique des equations 

integrales et integro-differentielles du type de Volterra de 

seconde espece, Formules de Runge-Kutta; in "Symposium on the 

Numerical Treatment of Ordinary Differential Equations , Integral 

and Integro- differential Equations" . Birkhauser Verlag, Basel , 

pp 362-368 . 

Pouzet, P. (1962) . Etude, en vue de leur traitment numerique 

d'equations integrales et integro- differentielles du type de 

Volterra pour des problemes de conditions initiales . Thesis , 

University of Strassbourg . 

Ralston, A. (1965) . A First Course in Numerical Analysis . McGraw 

Hill, New York . 

Richtmyer, R. D. and Morton , K. W. (1967) . Difference Methods for 

Initial Value Problems; Second Edition . Interscience 

Publishers. 

Schardin, H. (1933) . Theorie und Anwendungen des Mach-Zehnderschen 

Interferenz-Refractrometers. Zeits . f . Instrumentenk . , 53, 

pp 396 - 403 . 

Squire, W. (1969) . Numerical solution of linear Volterra equations 

of the first kind. Aerospace Engineering TR-15. West Virginia 

University . 

Squire, W. (1970). Integration for Engineers and Scientists . 

American Elsevier, New York. 

Stetter, H.J . (1965) . Asymptotic expansions for the error of 

discretization algorithms for non-linear functional equat i ons . 

Num. Math ., 7, pp 18- 31 . 

Tricomi, F . G. (1957). Integral Equations . Interscience Publishers, 

Inc . , New York . 



Weiss, R. (1972). Product integration for the generalized Abel 

equation . Math. Comp . , 26, pp 177-190. 

131 

Weiss, R. and Anderssen, R. S. (1972) . A product integration method 

for a class of singular first kind Volterra equations . Num . 

Math . , 18, pp 442- 456. 

Winckler, J . (1948) . The Mach interferometer applied to studying an 

axially symmetric supersonic air jet . Rev . Sci . Instr . , 19, 

pp 307-322. 

Wright, K. (1970) . Some relationships between implicit Runge-Kutta, 

collocation and Lanczos t methods, and their stability 

properties . BIT, 10, pp 217-227 . 

Young, A. (1954). The application of approximate product 

integration to the numerical solution of integral equations. 

Proc . Roy . Soc. London (A), 224, pp 561- 573 . 


	00000
	00001
	00002
	00003
	00004
	00005
	00006
	00007
	00008
	00009
	00010
	00011
	00012
	00013
	00014
	00015
	00016
	00017
	00018
	00019
	00020
	00021
	00022
	00023
	00024
	00025
	00026
	00027
	00028
	00029
	00030
	00031
	00032
	00033
	00034
	00035
	00036
	00037
	00038
	00039
	00040
	00041
	00042
	00043
	00044
	00045
	00046
	00047
	00048
	00049
	00050
	00051
	00052
	00053
	00054
	00055
	00056
	00057
	00058
	00059
	00060
	00061
	00062
	00063
	00064
	00065
	00066
	00067
	00068
	00069
	00070
	00071
	00072
	00073
	00074
	00075
	00076
	00077
	00078
	00079
	00080
	00081
	00082
	00083
	00084
	00085
	00086
	00087
	00088
	00089
	00090
	00091
	00092
	00093
	00094
	00095
	00096
	00097
	00098
	00099
	00100
	00101
	00102
	00103
	00104
	00105
	00106
	00107
	00108
	00109
	00110
	00111
	00112
	00113
	00114
	00115
	00116
	00117
	00118
	00119
	00120
	00121
	00122
	00123
	00124
	00125
	00126
	00127
	00128
	00129
	00130
	00131
	00132
	00133
	00134
	00135
	00136
	00137
	00138
	00139



