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PREFACE
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ABSTRACT

This thesis investigates new finite difference methods for
the numerical solution of Volterra integral equations.

After a brief discussion of the relevant literature in
chapter 1, implicit Runge-Kutta methods, based on interpolatory
quadrature formulae, are derived in chapter 2 for Volterra integral
equations of the second kind,

i

y(t) = g(t) + [ K(t, S5 y(s)]ds g B0
0

with continuous kernels K(t, s, y) . Convergence of the schemes is

examined. The order of convergence is equal to the degree of precision

of the related quadrature formula plus one. In addition, the methods

or certain choices of quadratu

s

are shown to be numerically stable. (=
formulae they are also A-stable in the sense of Dahlquist.

In chapter 3, the implicit Runge-Kutta methods developed in
chapter 2 are applied to Volterra integral equations of the first
kind,

&

g(t) = J kGty s)ylsdds 3 £=0

0
where k(t, s) satisfies certain smoothness conditions and
k(t, t) # 0 . For the schemes obtained, simple necessary and
sufficient conditions for convergence and numerical stability are
derived. From these conditions, schemes which are convergent of
arbitrarily high order and numerically stable can be constructed.

Finite difference schemes for the generalized Abel
equation,

g(t) = Jt EiE—’%-y(s)ds N ol A S [

0 (t-s)

where k(t, s) satisfies appropriate smoothness conditions and
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INTRODUCTION

1.1 Introduction

and equation
g(t) =

In most numerical
a number of distinct points and quadrature rules are used

imate the integral terms.

properties of the specil
are a critical factor. t is therefore
equations with continuous singular
this thesis,
integral equations of the fir 1 second kind with continuou

navi

kernels and for equations of the first kind with kernels having a1

algebraic singularity are examined.
In the following four sections a short survey of fin

a

difference schemes for Volterra integral equations is given.

comprehensive bibliography on approximate methods for Volterra

integral equations, the reader e (197
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162 Volterra Equations of the Second Kind with Continuous Kernels

The general form of a second kind Volterra integral
equation with a continuous kernel is
t
yE) =g () = J K(t, B y(s)}ds QLRSS0 § (L1
0
where
(1.2.1) K(t, s, y) is continuous with respect to t and s and
uniformly Lipschitz continuous with respect to y for
0<s=<t=T<e andall finite y ,

= T

t

(1.2.2) g(t) is continpous ep 0 =
Under these conditions, (1.1) has a unigue continuous solution on

0<t<T (see for instance Davis (1960), p. 415).

(V)]

If the kernel does not depend on t , and gyl
differentiable, then (1.1) reduces to an ordinary differential
equation. This correspondence has made it possible for certain
classes of methods for ordinary differential equations to be
extended to (1.1).

(i) Runge-Kutta methods. The derivation of standard Runge-Kutta

methods for (1.1) has been the subject of extensive investigation
(see for instance Pouzet (1960, 1962), Laudet and Oules (1960) and
Beltjukov (1965)).

(ii) Linear multistep methods. The extensions of these methods to

(1.1) are sometimes referred to as step by step methods (see Linz
(1967 a)). Early advocates of these methods include Fox and
Goodwin (1953), Jones (1961) and Noble (1964). A general definition
of linear multistep methods for (1.1) combined with a rigorous
theoretical treatment has been provided by Kobayasi (1966). The
concept of the repetition factor of a linear multistep method has

been introduced by Linz (1967 a) who shows that schemes with a




ives

repetition factor of one are numerically stable. He als

(o]
0Q

examples of schemes with a repetition factor greater than one which
are only weakly stable. A more elegant proof of Linz's result is
given by Noble (1969).

A class of methods derived independently of ordinary differ-

ential equations are the block by block methods. The characteristic

feature of these schemes is that a "block'" of approximations to y(t)
is obtained at each step, rather than a single approximation. The
use of block by block methods was first suggested by Young (1854) in
the context of Volterra integral equations of the second kind with
singular kernels. Linz (1967 a) has formulated the methods for
equations with continuous kernels and established convergence.

Other finite difference methods not mentioned above
include the schemes developed by Hung (1970) which produce spline

approximations to y(t) .

1.3 Volterra Equations of the Second Kind with Singular

Kernels

The general form of second kind Volterra integral
equations with singular kernels is
G

p )+ J pilt, S)K[t, =l y(s))ds RO [ (1.2)
0

y(t)

where
(1.3.1) K(t, s, y) and g(t) satisfy the conditions (1.2.1) and
(1.2.2) respectively,

t
2
(185 2)) J |p(t, s)|ds + 0 as t, >t uniformly in t and t,
t

1




The conditions (1.3.1) and (1.3.2) are sufficien
of a unique continuous solution on 0 =t = T (see Evans (1910)).

Some typical forms of p(t, s) encountered in practice are

for the approximate solution of integral equations with singular
kernels. Using this technique, the linear multistep methods and the

block by block methods mentioned in §1.2 can be extended

[a¥
t
(0]
=
=
N
~

Specific examples of methods of this kind have been considered by
Noble (1964) and Oules (1964). The convergence of methods based on

product integration has been investigated by Linz (1967 a).

Kind with Continuous Kernels

o)
h
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)
"
b
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1.4 Volterra Equations

To date, only linear equations

g(t) = J R(E, s)y(s)ds ;5 t = 0 (1.3)

0
have been considered in the ]iterature. To ensure the existence of
a unique continuous solution on 0 <t =< T <« , the following

3

conditions are required (see for instance Tpicomi (1957), pp 15-16):
(1.4.1) k(t, s) and O9k(t, s)/dt are continuous on 0 =s =t = T ,

(1.4,2) k(t, t) #0 on 0=t=T,

IA

(1.4.3) g(t) is continuously differentiable on O
g(0) =0 .
The linear multistep methods and the block by block
methods introduced in §1.2 can be formulated for (1.3). However, a
general analysis of these schemes has as yet not been given. Only
the methods obtained when approximating the integral term in i)

by means of the trapezoidal, midpoint and Euler rules, respectively,




have been investigated.

The trapezoidal method for the case of a convolution
kernel k(t, s) = k(t-s) has been examined by Jones (1861) who
established order two convergence. In addition, Jones observed that
the error incurred when using the trapezoidal method can be highly
oscillatory. This oscillatory behaviour was explained by Kobayasi
(1967) who proved that the trapezoidal method is convergent of order
two for a general k(t, s) but is only weakly stable. Convergence
for a general k(t, s) was established independently by Linz
(1967 a).

Noble (1964) suggested that the midpoint method would be a
more suitable numerical procedure. This was verified by Linz
(1967 a) who established order two convergence and numerical
stability for this scheme.

The Euler method has been shown to be convergent of order
one and numerically stable by Linz (1967 a).

Hung (1970) considers variants of the trapezoidal and
midpoint methods which are based on product integration. The product
integration analogue of the midpoint method has also been examined by

Squire (1969) and Linz (1971).

1.5 Volterra Equations of the First Kind with Singular Kernels

The first kind equations with singular kernels most
frequently encountered take one of three forms:
T y(s)s
(1) g(t) = 2 —Lz——Q—gdS, Oasstass TaSsPla (1.4)
t (s = )
An analytic inversion formula for (1.4) is known (see for instance

Minerbo and Levy (1969)). Under appropriate conditions it is given by




L
y(t):'ij %—g%ds,OEth. (1.5)
t (e°-t“)*

Approximate solutions can be obtained by solving (1.4)
directly by a numerical procedure, or alternatively, by applying
numerical quadrature to (1.5). In both cases the quadrature
formulae used are obtained by product integration.

Direct methods which use piecewise constant and piecewise
linear approximations to y(t) have been suggested by Schardin
(1933) and Winckler (1948) respectively. Recently, Einarsson (1971)
has examined methods where y(t) is approximated by a cubic spline.

In the procedures based on (1.5), g(t) is approximated
by piecewise polynomials of low order and the integrals are
evaluated analytically. Such schemes are given in Olsen (1959),
Bockasten (1961), Nestor and Olsen (1962), Edels, Hearne and Young

(1962) and Free (1963).

t _

(i1) g(t)=JMy—(S—)ds,O<a<l,tZO, (1.6)
0 (t-s)

where k(t, s) is continuous and k(t, t) # 0 . Eq. (1.6) with

k(t, s) =1 and o = % is Abel's integral equation. After an
appropriate transformation of variables (see for instance Minerbo
and Levy (1969)), (1l.4) takes the form (1.6) with k(t, s). =t and
o =% . For the case k(t, s) = 1 , an analytic inversion formula
is known (see for instance Tricomi (1957), p. 40). A class of
methods for the evaluation of this inversion formula in the case
o = % is considered in Edels, Hearne and Youhg (1962).

In general, inversion formulae are not available and
schemes based on (1.6) must be used. Methods of this type were
developed by Durbin (1971) for a particular class of equations which

arise in the analysis of Brownian motion and diffussion processes.




t
(1ii) g(t) = J S imy Em O (1.7)

0 (t2—52)2
This equation was first studied by Linz (1867 b) who
examines a direct method and a method which utilizes
the known inversion formula. Atkinson (1971 a) has proved convergence
of a direct method based on a piecewise linear approximation to

vkt

1.6 Thesis Outline

Chapter 2 deals with the numerical solution of second kind

Volterra integral equations with continuous kernels (Eq. (1.1)).
Implicit Runge-Kutta methods based on interpolatory quadrature
formulae are developed for (1.1) and convergence and stability of
the methods are examined. These schemes contain as a subclass the
block by block methods given in Linz (1967 a).

It is shown that the methods are convergent and that the
order of convergence is equal to the degree of precision of the
related quadrature formula plus one. This extends a result obtained
by Axelsson (1969).

The asymptotic behaviour of the numerical solution for a
"small" gridspacing is investigated and the methods are shown to be
numerically stable. For certain choices of quadrature formulae they
also have the stronger property of being A-stable in the sense of
Dahlquist (1963).

Finally it is concluded that the schemes utilizing Lobatto
or Radau quadrature display highest possible orders of convergence
combined with favourable stability properties.

In chapter 3, the numerical solution of linear Volterra

integral equations of the first kind with continuous kernels (Eq. (1.3))




is considered. After a comparison of the stabili

trapezoidal and midpoint methods is made, the
methods developed in chapter 2 are applied to
this chapter show that the implicit Runge
schemes which are convergent of

stable. As far as the author

order schemes developed for first kind equa

Finite difference methods for a class

equations with singular kernels, (Eq.

generalized Abel equations, are examined i
Euler and trapezoidal

first kind equations with inuous kernels are

1+

y propertlie

of

ewtend

CSALCLL

means of product integration. The resulting schemes are

shown to be convergent under appropriate conditi
y(t) . Finally the implicit Runge-Kutta

extended to (1.6) by product integration

ons

=




CHAPTER 2

IMPLICIT RUNGE-KUTTA METHODS FOR

VOLTERRA INTEGRAL EQUATIONS OF THE SECOND KIND

2.1 Introduction

As mentioned in chapter 1, the extension of explicit
Runge-Kutta methods for ordinary differential equations to Volterra

integral equations of the second kind with continuous kernels,

has received considerable attention.

Implicit Runge-Kutta methods for the solution of ordinary
differential equations have been studied by Butcher (1964 a, Db),
Axelsson (1969) and Wright (1970) and have been shown to possess
desirable stability properties combined with high order of
convergence. Butcher shows that to each Runge-Kutta process there
corresponds a numerical quadrature formula.

In this chapter, the idea of constructing implicit
Runge-Kutta methods, based on quadrature formulae, is extended to

(2.1). The basis of the quadrature formulae under consideration for

+
»-g
o
()]
el
o
(@]
t
+
(o)
o]

the interval [0, 1] is Lagrangian interpolation wi

set of points U., U T U T e R <A SRR < | A |
P { 6 (L i 3w 1 2 n

Two different methods are defined for each set and are shown to be
convergent of order p + 1 where p is the degree of precision of
the associated quadrature formula. In addition the methods are
shown to be numerically stable in the sense of Kobayasi (1966) and
for special choices of points have the stronger property of being

A-stable in the sense of Dahlquist (1963).




The conditions on g(t) and K(t, s, ¥) ensuring the

existence of a unique continuous solution of (2.1) have been given
in 81.2 and are restated here for convenience:
(2.1.1) K(t, s, y) is continuous with respect to t and s for
allgfinite  y eon @ =8St=T ,
(2.1.2) K(t, s, y) satisfies the Lipschitz condition
‘K(t3 S, yl)‘K(t’ S» YQ)\ = L‘yl_yQ‘ s
0=s=t=T, |yl 1y2\ <o (2.2)
where L is a constant independent of t, s, Yy and
V5
(2.1.3) . g(t)  is continuocus on 0= Et=T
However, in the subsequent convergence analysis and in the analysis
of the asymptotic behaviour of the error, additional smoothness
conditions will be imposed on K(t, s, y) and g(t)

It should be noted that although the analysis is presented

m

0
(0]

only for the scalar equation (2.1), the generalization to a syst

of Volterra integral equations of the second kind follows

immediately.

2.2 Preliminaries

In this section some notation is introduced and four lemmas
and two corollaries which will be required in subsequent analysis are

presented.

Tt 0 = 0. € U S see < u =0 Sand

Define




a

25k T k0

Denote the relation

by w(t) € P/

i n
Ri(f) f(s)ds - I

k

The following lemmas and corollaries
due to Axelsson (1969).

Lemma 2.1.

TE EE) € Pv , then

R.(un+q)

1

and

are generalizations




Proof. Clearly

q
Ri(d ) =5 ' wEUy e BB
and
n+ C 4 n
( S| g| n-r
i q L) =% ¥ Q. T
v
r=l =
The result follows from the linearity of the operator R, i
Remark 2.1. This result includes the well known fact that

the degree of precision of the quadrature formula

1 n
f(s)ds = Z a_ £(u )
0 k=1 © ;

figs T V= L

Lemma 2.2.

If fq(t) is a polynomial of degree less than or equal

g, and ¥+ g=n+V -2, then

n » k (LR e
L @y a J f (s)ds = J — f (s)ds
Eoal K K 0 q 0 s g o1 8 q

Proof. Using (2.4), lemma 2.1 and partial integration,

0 q

0 (0
i 1 el
= J - F (s)ds s B
r+l
O <
Corollary 2.1.
4 r n+p
I & w R =20, 2+£p=0; .05, Ur2
k=1 e Tl e

Proof. Using lemmas 2.1, 2.2 and Eda (2551
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u
n ; n ( k
1 5
z a R ('u' ‘T = L a w(s)d
i k
k=1 =1 0
1
= J (1-s)w(s)ds
0
Hence the result is true for r» + p = 0
Suppose the result is true for r + p = 0, T
£-1 < v-2 Let % p = & Then, applying lemmas 2.1, 2.2 and
(2:5)5
u.
n Y n+p n ( K
- p n+p X D ( ntp-]
Loa Rl ™ Y= L aglond | sPw(s)ds - I a., R (uF77)
k=l k=1 W =1 )
!'¢ r+.l ),
= — JZJ‘,(i)‘_S = U
" |
) 4 1 8
'
The result follows by induction. B
Corollary 2.2.
n \
- r ( n+p
’ d}‘ uk R'r L“_l—dr) J o ] L A ) g
k=1
Proof. The result follows from corollary 2.1 and the linearity of
the operator R, . i

k
Lemma 2.3.

I1f =V 5 then

Proof. Using 25795
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n Al
r+l r s 7 r
kzl a, uj (uk—l) Lm(ujuk) = uy JO (s-1) Lm(ujs)ds
u,
J r
= J (s-u.)"L (s)as
g4
0
r uj
= I (E)(—u.)r_ﬂ J SKL (s)ds
£=0 3 0 3
r
1 r r-£
= KEO (ﬂ}(_uj} ajmﬂ . #
Remark 2.2. For r = 0 , Eq. (2.8) reduces to
n
iy kEl akLm(ujuk} e (2.9)

This identity will be used repeatedly.
The following lemma which provides an estimation of the
growth of the solutions of nonhomogeneous difference equations is

given in Henrici (1962), p. 313.

Lemma 2.4.
1-1
1f |e;| =a 2 le,| +B, i=1,2,..., A, B>0 and
k=0
IEO\ <7 , then
le.| = (B+an)e 114 THY- &

2.3 Numerical Schemes

In this section two implicit Runge-Kutta methods correspond-

ing to a fixed set {ul, Ups vees un} are defined.

The aim is to obtain an approximation to the solution y(t)

on the grid

£, = ih , 150 sravd 3 H=T/T




= cl s I £
ij i 3

Discretizing (2.1) yields

B

o
approximate J K(L..
0

Jt€+l

is used. An approximation to

A

required. A natural extension

formula

where

den

fara® g(0) and Y4141

of

then
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For each i , (2.11) represents a systemof n+ 1 - r

simultaneous equations in Y.. , j=7r, ..., n . It follows from a

2

J

contraction mapping argument that this system has a unique solution
if h is sufficiently small. Also, it may be seen from (2.1}1) that
values of K(t, s, y) are required outside the region 0 =s =t =T
and this could cause difficulties in practice if the kernel is badly
behaved outside this region.

This problem can be overcome by using a different

e

1]

approximation for [ K(tij, s, y(s))ds . First approximate
3

ERE it .

ij ij n S~
J K(t (s))ds b Jvkt s ZL[ =y (t.. ) ]a
wek 2 yia))ds -« by C1Tsees Ss W e 7 (0 s
AL g R

a1t i

i] n
Jt f(s)ds = E hui a f(ti+ujukh)
i

This yields the numerical scheme

i-1 n
Yo, g(tij] + Ezo kzl ha, K(tij, tos YCK)
n n
+ kzl hujak Kt 5 ti+u;ukh, rzl Lr(ujuk)er 5
TS e oy I (0 PSSR o {251:2)

Clearly, in (2.12), K(t, s, y) 1is not required outside the region
0<s=<t=T. For the special case
K(t, s, y) = Ay , A = const,
the schemes (2.11) and (2.12) are the same. This is a consequence of
(20
It should be noted that the scheme (2.11) can also be

considered as arising from a piecewise continuous spline interpolating
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to K(t, Sy y(s)) at s = tij sr R ER b ke =

wig o=
Methods based on splines with full continuity have been considered by
Hung (1970) and have been shown to be divergent for splines with

degree greater than two.

Remark 2.3. In the sequel only the schemes with uy > 0 will be

considered. However with slight notational modifications the

analysis applies also to the schemes with u, = 0

2.4 Convergence of the Numerical Schemes

Let w(t) € Pv . In the subsequent analysis it will be

assumed that
(2.4.1) K(t, s, y) is n + Vv + 1 times continuously differentiable

with respect to t, s and y respectively on

DisS s =tho 5. D=k =T, y| =y , where & is a fixed

positive number for the scheme (2.11), & = 0 for the

scheme (2.12) and y = max ly(o)| ,
0=t=T

oK

(2.4.2) = (t, s, y) is Lipschitz continuous with respect to y

on Q=5 = £H6! 5 OI=ECEEET
(2.4.3) g(t) is n + Vv + 1 times continuously differentiable on

0

1A

(R

The conditions (2.4.1) with 6 = 0 and (2.4.3) ensure that y(t)
is n+ VvV + 1 times continuously differentiable on 0 =t =T
However, condition (2.4.3) is not used explicitly in the subsequent

analysis.
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and

By e e WL SR 0 e R SN0 Gty T

Firstly, the method (2.11) with h < § will be considered.
Subtraction of (2.11) from (2.10) yields

i-1 n

E.5 Sitd = & e 3 -
Hpfite = & ha {K(t; 55 tps vpd kit s 1y, v )3
£=0 k=1
n
+ I Klt -Klt =
oy hajk{ ( | ik jik) ( iy tik? 1%)} i Klj .
g h T T ELL) S50 ST Pk o =00 5 €24 13)
where
= Pog 10
1] 1] 1]
and
i B AT 5 n
Pl = ol J K(t..» 8, y(s))ds - I ha o R ' g
1 g |ds i =1 k g A &) T
L
T
Gy n
Qi = J Klt.es S5 yisllds - % ha.. K\t £, 7. )
ij £ ( Tl ) k=1 ik ( i, il 2
i
The following lemma provides an asymptotic expansion for
Ris
1]

Lemma 2.5.

Let
¥(t, s8) = K(t, S y(s)}
and
am
(™ (e, ) = — K(t, ”)Inzs
on
Then
- n+ n+v+1l
B pema bk B ulia(t..) * 0lh P
I =m pd * 13

ST e P o S S 0 F PR i TR (2.14)




where
n y=1
R (u—u JonEpe
(n+p-1) ‘L 3/
(t) = K J
¢P] ) kfe £ (n+p-1)! 2
p=20, =il gif=" 1, ot TG
R (un+v) t \ (n+v-1) :
: _(n+v) : K' =2+ +) ( n+v-1)
) .(t):_E—__J K s)d Lol) {3 I V=11
ij (oo ! ; (t, s)ds + T RjLLL Jf) |
] = 4 » D
Proof. By Taylor series expansion,
tK-fl n 4
Jt K(tij, s)ds - h k§l a KLtij, tﬂk)
) B
(n+Vv) N
e Cagt) ey avery
g (ntv)! L B )
Thus
R (B Lt
5 . h1’1+\) n(u ) 1] ‘K(n-f—\)) [t Q}dc 4 \‘(‘hn+\;+l}
i) - (ntv)! 5 ) gy R

u.
3 n
Qij = h JO k[tl], tl]+(s—uj}h}qs - kzl ha., X tij’ t‘:+(h}_uj\ )
u
nv=1 . o+l j
= % « - K(r)(t. s t.,) J (:—u;)rds
=0 + i@ 0 :
s r n+v+l
& kzl ajk(uk—uj) + u(n )
n+v-1 . r+l
o € b 1 e [(}} + oY
s r! 1] 1] ]
The result follows. #

Corollary 2.3.

It - Ve Stlen




P ) -
aj uj ¢pj(t)

Proof. The result follows from
In the subsequent analysis

Lemma 2.6.

Proof. Taking absolute values

condition (2.2) yields

From lemmas 2.1

| = cn®

IR, Ch
1]

where

max ‘ a.




The above lemma gives a converge
(2.11). Generally however, this result is

in particular a more accurate

| e

functions

Then

By binomial expansion,

and hence

2

Thus, from (2.




I
J s’ Lk(s)ds 2 E DO ey P (2.16)

0 k 'k

On substitution of (2.16) into (2.15) it follows that

n n n

£ 3l L+m +1
% e, w o E s, - = _=D
4l a] uj Yol ajkm uk (t) ptl E ak uk e Yy ek(t)

I
(<
3
-+
&)
-+
e,
"
o
-
a0
b
E=

Lemma 2.8.
Let f(t, s) be M +°'1 times continuously differentiable

in the region 0 =s =t =T and denote

AT
£, 0 = A g(e, W
¥ n=s
Then
t
i-1 ¥y M-1
m+1l M+l
h T £(tss ty) j £l s)as + T nmhy (e )+ 0™,
£=0 d 0 . m=0 4
MzZ0 ,
where
(m) s r (m) e r
Bl £ = £ (6, @) B G wm + £ (e, 2} & D (u, ~u.-1)
jkm _ mr i m ]
r=0 r=0
and
Cmr 5 Dmr 5. il = O , ml ;3 m=0, qi=a 3
are constants.
Proof. By the Euler-Maclaurin sum formula, (see for example

Ralston (1965), p. 133),




where B P, Shile . 21N le Bernoulli numbers.

The result follows by substitution of 2B, (2.18) , (2.

(2.21) inte (2.]




Lemma 2.9.

The scheme (2.11) is O-stable in the sense of Stetter
(1965).

Proof. The result follows in the same way as lemma 2.6. i

Since from lemma 2.5, Piﬁ has an asymptotic expansion in

<

integral powers of h , it follows from the O-stability of the scheme

(2.11) and Stetter (1965), theorem 1, p. 21, that Eij also possesses

such an expansion, viz. there exists a unique set of functions

{epj(t) Bl T S T e s s T B S s v}

\

such that

™
1
<
=)
=)
I
o
s
t
~—
G
o
=
o
o)
+
<
+
7

[

o
(@)
o
e,
('

s Ly udog @il 4588, verg I=1 5 (3.22)

In the following lemma,a recurrence relation for the functions

eDj(t) s 2Ly s B3 BE Oy wohy ¥ 5 daderived. Using this
relation,it will be possible to obtain estimates for Eij )
151, ' i=0, ... IrlF, which' are sharpey’ them the bound

given in lemma 2.6.
Lemma 2.10.

If v > 1 , then the functions epj(t) s P s

B =0, asng V-1, o satisfy the relations

]
—~
+
~
1]
o
o
1"
=)
o]

PJ PJ
S e p-m-1 k(p-m_q—l)(t,t) = (q) _y \P-m-1
B R I age o (e} o -ug) :
m=0 q=0 4 p-m ) k=1
j =1, iy g ik LI RN

and




From Taylor's theorem,

2
K(t, s, y) - K(t, s, ¥) = k(t, s)(y-¥) + 0((y-¥)°)
Hence (2.13) becomes
i-1 n

€0 = Y ha

B T k(55> todep

Substitution of (2.14) and (2.22) and division by

D n i-1
P I {akh E kfegs thden (g

k= £=0

o)

From lemma 2.8, with

functions {®., (%) ..., V-p} such that
jkpm

i-1




Also, from Taylor series expansion,

<

k(tyss thdep (£330
aTﬂ

i

\Y)

i
Substituting (2.26) and (2.27)

rule gives

p-1 n
z z

a, 9. 5 T
sel =l k jke,p-r-1> 1

[p—r-l]k(p-r~q—l)(t.. ¥
q 1] 1]

u _u')p—r—l

(
e(q)(t{.} B, B WO, 1

Clearly, from lemma 2:6,

e .(t)
07

Now consider the case p =

QﬂkOO(t> =i o ] = s

Hence, equating coefficients of h in (2.28) yields

"

G n
elj(t) = JO k(Es =) kzl elk(s)ds + ¢lj(t) M .

and since

it follows that

— (x(t, n)epk(n)} o o o ®) ,

(2127

\)+l)

2

(2.28)




it

1)
-Z ajelj(t) = J ki, &) & ajelj(S)dS + X

Tl 0

From corollary 2.3,

n

n n
a.¢. .(t)
j=1 e 2V

‘ aj¢lj(t) =10

Thus (2.30) is a homogenecus Volterra

integral equation of the

second kind and so

It follows from (2.29) that

L=y e s T s

elj(t) = ¢lj(t) )

and so from corollary 2.3,

N

1e
Sale e s(E) =50 o = LR )
{2353 3 ; :

Hn My

]
The proof proceeds by induction. Assume the lemma is true for

= Ay wisy f=1 € V-1 o Then From (2.24), (2.26) and lemma 2.8

n
E B Tien 3801

k=1

A e Tl .
Hence, equating coefficients of h in (2.28), yields

t n
YR e J k(t, s) I a e (s)ds
£ 5 i k Lk
£-1 £-r-1 ) (£-r-q-1) n
+ L )} Li—r—l} : (ﬂ—p-l)st,t) L oay eif)(t)(uk—u.
r=0 q=0 d i k=1 > ) J
+ ¢€.(t) = SaD

27

(2.30)

2

(£) =0y 3 = Ay eoag B g’ BFE Dy nawg &=L «

)E—P—l

(2.31)
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n t n £-1 L-r-1
.% ajeﬁj(t) = J k(t, s) .§ ajetj(s)ds 4 I 5 [ﬂ-r—l)
e 0 ik r=0 q=0 q
(£-r-q-1) n n
A (F_—r—l)gt,t) jil B ajke;(ﬁ)(t)(uk_uj)z—r_l
n
- jEl a, ¢£j(t) . L2:32)
From corollary 2.3,
n
j§1 a; ¢£j(t) = By
and from (2.24) and lemma 2.7,
; a, g A e(q)(t)(u —u.}ﬂ-r-l =0 ,
521 1 ey jk rk )
g U0 0, Berml B 20, seiy Aok

It follows that (2.32) is a homogeneous Volterra integral equation of

the second kind and therefore

n
I fal e, J0E)r=0
j:l J ’e]
Thus, from (2.31),
eﬂj(t) = ¢Kj(t)
£-1 £-r-1 (p k(z-r_q_l)(t,t) 5 (q) £2-r-1
fe e (Z—r-1)! L oane (£ {ymuy) ’
r=0 g=0 % : k=1, 4 4
N o=y » D
and from (2.24) and lemma 2.7,
x r
T @ty enit)=0 , 0=r=vLLl
‘o i 43
j=1
Hence the result is true for p = £ and so the lemma follows. #

In the following theorem it will be shown that

This is the main convergence result for the scheme

e. =om"™)
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2 oahb
Theorem 2.1.

If w(t) € Pv , then

B B Nphge® (t

1 ;
o d S SV WS TR s O

i+l

where e (t) satisfies an equation of the form

vn
rt
- - k ( 1s
evn(t) Cvn(t) . J kit 4 s)evn(s)@
0
Proof. From (4.22),
e n+ n+v+1l
g ivE ¥ 50 F me (ale) + 0lb )
in E pn* i+l
p=0
{ If v=1, then, from lemma 2.6,
e Y=

L and if v > 1 , then from lemma 2.5 and lemma 2.10,

This proves the first part of the theorem.

A 5 YE g et . :
Equating powers of n in (2.28) yields equations of the

form
& n
evj(t) = Evj(t) + J k(e ) % a evk(s)ds e = e T
: 0 k=1
and hence
n n 1% n
LA s I as EnnCE) b [ kGt s) T @i e :(s)ds
V & V
j=1 R j=1 J ] 0 j=1 ]
n
=

aj Evj(t) - &vn(t) + evn(t)

j=1

It follows that




1 n
Eonlt) + JO k(t, s) j§1 aj(Evj(s)—Evn(s))ds +

i )

j g
T Jo k(t; S)evn(S)dS

10
Cvn(t) + Jo et s)evn(s)ds - #

Now the convergence of the scheme (2.12) will be investigated.
The analysis proceeds as for the scheme (2.11). Subtracting (2.12)

from (2.10) yields

-1 . B
B = B T ha lele. ., e Sl kit .ty ¥ )l
s R k 3.2 e 2hle i ote® Ek
n
- kEl hujak{K{tlj, ti+ujukh’ mél Lm(ujuk)yim)
n
g K{tl], £y tusuh, - Lm(ujuk)Yim]} + Ryl
m=1
5 i= 1y s B 5 1 =04 =% (D Ea)
where
R = P.. +t Q0.n* S 3
1] 1] 1] 1]
with
$1 f polad ( ) n ( )
P.x = & J Klt..qsos yle))ds - 2 ha, Kit.., T i Yok >
=0 ty e PR W
i
ij N
Q.. = J L E Nl o y(s))—K(t g y(s))}ds s
iy &
e
& v ; h, ¥(t.+u.u h)
sij = : K[tij, Sls y(s))ds - o hujak K tij’ ti+ujuk » YUE U
L
: and
i n s—ti
| y(s) = n§l Lm[ h ]ylm ¢ tl =8 = t1+l
=




Lemma 2.

Then

v
z
p=0

Ko =
1]

where

T
PJ

vj(t)

and

Proof.

i
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1laEs
(r) G . :
liet K “(t,%=) and %k (t, s) be defined as previously.
n+p n+v+l
h I (6 R 61 o 5
0,4 () + O™
j:la ,n;i=0, 'aI'l,
pil k(p—r—l)(t’t)y(n+r)(t) n;r p-g—l Al (ppl
e (p-r-1)! (n+r)! sen =i q £
%3
(_u.)n+p—q—£—l J sK U (s)u(s)ds & P.= 0, eoey V=1
n+v
Rn(u ) ot K(n+v)(t i vil k(v—r—l)(t,t)y(n+r)(t)
(n+v)! 2 = (v-r-1)! (n+r)!
0 r=0
ek V=p=1 uj
5 5 [n+r){V—E—l}(_u.)n+V-q—£—l J SK u (s)w(s)ds
g=n 4£=0 4 ] 0 d
n
u () = t3 - T oL (g .
s k=1
In the same way as in lemma 2.5,
( n+v) tij
R i (n+Vv) n+v+l
g =B YR Jo K (tij, s)ds + 0(h 1%

From Taylor's theorem,

Now

Wiy
j y 2n+1
h jo k(tij, ti+hs){y(ti+hs)-y(ti+hs)}ds + o(h™™) .
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(t +h ) ~( h = st n+r (n+r)(tij) n+r
ylt,ths) - yit;+ s} E § h Gl (s—uj)
r=0
b n+r +V
S A L B L -u.) }+ O(hn )
k=1 X A
(n+r)
v-1
o ntr Y (tij} oer (n+r n+r- q
—a n ( Y1 z (—U.} s
r=0 i g=n ' 94 3]
x q n+v
= B Lk(s)uk} O 11 e DN
k=1
and
W T k(r)(ti" ij r \V
k(tij, t ths) = I h Ty (s—uj) + 0(h")
r=0
v-1 " k(r)[tl s ) »
e 88 r,j =l 3 r}( w) 4 s+ 0(mhY)
r=0 > q=0 4 ]
The result follows, since
n+v+l
e o(h ) “
Corollary 2.4.
If N >gli. then
. r
e ils <O (RENS=E0 HiE 10k s as VEREL S S0 e U
S 80 s : 2 3
/=L
Proof. The result follows from lemmas 2.11, 2.2 and Eq. (2.5). #

The following two lemmas can be proved in the same way as
lemmas 2.6 and 2.9.

Lemma 2.12.

There exists a constant K such that

e, = max e | = BhE . L By ey TL A NS D,
1<sj=n

or
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Lemma 2.13.

The scheme (2.12) is O-stable in the sense of Stetter
(1965).

From lemmas 2.11 and 2.13 and Stetter (1965) there exists a

unique set of functions
V- y ;
{e LGty et p[O, T 5 o = e a5 P 0 v v}
PJ
such that

(2.34)

A recurrence relation for epj(t) , analogous to (2.23), is obtained

in
Lemma 2.1k4.

If v > 1 , then the functions epj(t) o e (e

P = 0y s =1 5 SatisEy

eoj(t)=0, J = 1, » 0L,
ol B SR
e () =¢ (1) + £ I B
p] pj K:l r=0 1 ( “‘r‘).
n
(L-r) -r
kzl p—ﬂ—l,k(t)(uk—u') ijI‘ s
]:la s 035 sz, :\)_la
and
- r
LA, Uy & . (E) =08 =0l s V-p=1 5 p =0, (g
where
54 r r-q
Jo ) = A [ ) -u B
Jkr q=0 9 ( 3) Jkq

Proof. The application of Taylor's theorem and lemma 2.12 to (2.33)
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yields
i-1 n
rhdor Zio kil % k(tij’ o) S
z I 2n
G mEl €im Kfl hujak k(tij’ ti+ujukh)Lm(ujuk) + Rij + o(r°") ,

] B Sl et S RIS O e L= e (258 5)

Also by Taylor series expansion and lemma 2.3,

n
kzl A k(tij’ ti+ujukh)Lm(ujuk)
V-1
=z b5 2k (e, t..)p,  + 0"
pee? r! 13* "5

Substituting (2.34) into (2.35) and dividing by h" yields

V \Y p i=1 n
EEWORESE { P T e k{tg. tpe (tp) ¢ ¢pj(t..)}

p=0 PRS- £=0 k=1 1]
(0
Y V-p-1 k (t..,t..) n x)
L0z AEH #nglu® 2 1o (£, )b, O ™
p=0 r=0 x k=1 P ]
yr=Ray Shn. HEELe=T0y 5 I=1
Proceeding as in lemma 2.10, it follows that
V D V D p=l I )
Z h Jft,.] =SyECInEcaRl tile & AL e
PR L MR B s
S i Bk ]
+ X a J et seslel le)ds, £ O L k..
p=1 * %g E pk pi* i3
(r)
Vv Bl N s B g
vo B ohBli Toer Buchustanpiocidis )T (uk-u.)Zr
p=l |£=0 r=0 Y kel J
(L-r) v+l _
ep—7-l,k(tij) ]}(I‘ i O(h ) ’ e la » I
The lemma follows by induction in a similar way to lemma 2.10. #




The following.theorem is proved in a similar manner to
theorem 2.1.

Theorem 2.2.

i
e n(t) = Cvr(t) + J k(t, S}evﬁrs)dt

1l

2.5 Numerical Stability

Consider the integral equation (2.1) and suppose that a
perturbation &g(t) to g(t) causes a change Oy(t) to the solution
y(t) . Then,

T
y(t) + Oy(t) = g(t) + Og(t) + J K(t, S y(s)+6y(s)]ds
0

Expanding K(t, s, y+dy) by a Taylor series and neglecting the

O(GyQ) term yields
i
Sy(t) = 8g(t) + J klt, s)8y(s)ds , (2.36)
0

where

|3, |
k(t, s) = an K(ta S, n)ln:y(s)

The linearized equation (2.36) characterizes the sensitivity of

y(t) with respect to a small perturbation in g(t) . It is clear
that this sensitivity must be reflected in the growth of the
discretization error and the propagation of rounding errors. Hence,
the best that can be expected for a finite difference method, is that

the leading term in the asymptotic expansion of the error satisfies
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an equation of the same form as (2.36). In this case, the method is

called numerically stable. This concept was first introduced by

Kobayasi (1966) and has been further developed by Linz (1967 a) and
Noble (1969).

From theorems 2.1 and 2.2 it is clear that the pure
discretization error of the schemes (2.11) and (2.12) will grow in a
stable manner. However, to investigate the numerical stability
fully, it is necessary to consider the propagation of rounding errors
which can be characterized by the propagation of perturbations in

Yos5 s A svee B

First consider the scheme (2.11) and suppose that in the

first step,approximations ?Ej s 3 = Ly wens D Whiteh satisty
Ilj = ij - Oj Rl e i
have been calculated instead of Yb4 s e 1 SR sy B, Sillenote
g = max léj‘
j=1l,...,n
Using the values %04 s 3= 1, sees 0, (2.11) will generate a new
sequence of approximations ?;j R [ = S T O 5 LR
given by
i n o
Yy, 50 & I K(t ¥ h K . - Y.
Yoo =0 5 . Beyha KEE o9 o Tpd + I bag Kt ty, T
©  £=0 k=1 - k=1 2
a1l P o IR P =il (2.37)
Let
By EMp L 550 SR R o I-1
El_] )’1-] ij g0 > s > 5
Then,
.. =&, Fl 0 . (2.38)
O] EOJ ] 2 ] 3 b b
where € S R R B TR C bl given by (2.13). By an argument

0]

similar to lemma 2.6, it follows that
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— n - .
e A2 o™ ¢ BEES) o AL iie B B Ly T . (2.39)

Subtraction of (2.37) from (2.10) and the use of Taylor's theorem,

(2.38) and (2.39) yield

__ i=l n IN n e
€5 gil kzl ha, k(tij, tﬁk)eﬂk + }/El ha, k(tij, th Jeiq
R— }(5xit8:) + R., + 0(n2%) + 0(n28)
+ e 13, ok tox o R; 5 + "
I8 =l o lg et =k Ly g A
Hence, by superposition,
MR R TN el ST A B A A,
where
LTINS LT e
< B=1 m i n b
€15 ~ 221 kzl hay Kk(t; s tyleg * kil hagy k(t;s £l e
O O TR T o
k=1 +J i
£ Al oses Mg 3a= ds erves I-Llos (2.40)
and Eij o A B anes B RE B e B s is the pure discretization

error given by (2.13). By lemma 2.4,

SFARO v T P R B e S

™m>

Let

m>

eij = —ﬁl O e SRRV, - I I e TR I-1 .

Then, from (2.40),
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+ I a lt.. .t ")6}< B O(kIQH_l) + 0(hs) ,

Jhenlaeoies 1 Bagd Saldue ot Tk
This equation can be interpreted as a finite difference method

applied to the system of integral equations

t
e.(t) = [ Telits 15
J 0 k

Il IS

a},e}((‘s)ds + k(t, 0) Z a B -
1 o k=

fos Ly raBrs Lek2543)
Using lemma 2.4, this method can easily be shown to be convergent of
order one, and hence

)+ o(hzn’l)

3 i A SR RS R o Sl ot NP L T

e;s = e.t;

From (2.41),

ej(t) = (B = S i
where
(‘E n
e(t) = } k(t, s)e(s)ds + k(t, 0) X akék
0 k=1
and it follows that
™ 0 G 2n 2l SR &
€55 * he\uij} + o(@“™) + o(r%s) , =1, sinee 2.1 o

which implies that the scheme (2.11) is numerically stable.
In the same way, numerical stability can be established for

the scheme (2.12).

2.6 A-Stability and Stiff A-Stability

So far in the analysis of the numerical schemes it has been

assumed that the product of the step size h and the Lipschitz
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constant L 1is "small". However it is well known from ordinary
differential equations, which are a special case ef (2xl)sathatisuch
a choice of h is unsatisfactory if for instance the solution
consists of a slowly varying main component over which there are
superimposed some rapidly decaying components. This is due to the
fact that when the contribution from the decaying components has died
out, it is desirable to choose the step size h with respect to the
rate of variation of the main component rather than the rate of
variation of the negligible components. Equations of this type are
called stiff equations and several special stability properties for
numerical methods, in particular A-stability in the sense of
Dahlquist (1963) and stiff A-stability in the sense of Axelsson
(1969) have been introduced to cope with this difficulty.

A numerical method is called A-stable if, when applied to
the problem

1%

g(t) = 1'+ A y(s)ds , Re(A) <0 ,
‘0

with an arbitrary step size h , then

lim Y sa =0
i

-0
h fixed
where Y. denotes the numerical approximation to y(ti) e IE T
i
addition
lim Yi =0y For alds i
o
i fixed

then the method is called stiffly A-stable. Clearly the same

difficulties can be expected for the more general problem (2.1) and
so A-stability or stiff A-stability is essential for an efficient

general numerical method.

In §2.7 various choices of points {ul, g un} which
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lead to A-stable or stiffly A-stable methods are given.
Hung (1970) has shown A-stability for a Hermitian spline
method which uses the differentiated form of (2.1) and so requires

oK(t, s, y)/9t analytically.

2.7 The Choice of Points

From the convergence results of theorems 2.1 and 2.2 it is

clear that the choice of points {ul, u oyt b udes dmportants
n

29
A natural choice of points would appear to be the equally
spaced points u, = ==, 1 =21l vy n 4, n=22, For n =2 these

methods correspond to the well known trapezoidal method and for n = 3
to the block by block methods considered by Linz (1967 a) who
observed their stability in his numerical examples. Also for n = 5
the methods correspond to a slight modification of the block by

block methods considered by Cambell and Day (1971). For these points,

w(t) ¢ PO for n = 2r .and w(t) € Pl Fonu Mossg2n +1lo,  inSBel ; and

so from theorems 2.1 and 2.2 the methods with n = 2r + 1 and
n =2r + 2 have order 2r + 2 convergence. Hence in order to obtain
order r convergence it is necessary to solve at least »r - 2
simultaneous equations at each step. Also it has been shown
numerically by Wright (1970) that the methods are A-stable for
L=y

This situation however is not the best possible. A more
suitable choice of points are those considered by Axelsson (1969) for

ordinary differential equations, i.e., let us s 1 =1y weany Ny Do
the zeros of Pn(t) + a Pn_l(t) + b Pn_Q(t) y 2y byl Teall; 1y S0y

where Pn(t) is the n-th degree Legendre polynomial defined on




41

(0, 1] and a, b are chosen so that u, 20 and u =1. In this

12

case Ww(t) € Pv where ,

Ln—l, a0, b=0

In particular let u, be the zeros of Pn(t) - Pn_l(t) -

(ul > 2000 T A l} , and Pn(t) - Pn_z(t) y (ul 0 [ l) L 80

that the methods correspond to Radau and Lobatto quadrature respectively.
Axelsson has shown that these methods are stiffly A-stable and
A-stable respectively. In addition the methods have the advantage

that a i=1; «««3 0 5 are positive and that fop Lebatto

gquadrature only r simultaneous equations have to be solved at each

step to obtain order 2r convergence. This is best possible.

2.8 Numerical Results

In this section the numerical solutions of two simple
examples are given to illustrate some of the features of the methods.
The schemes (2.11) and (2.12) considered were based on Radau

quadrature with degree of precision four (v="2)

o il 2 ? 2 2 A &

The fifth order convergence of the methods is illustrated by the

application to
i

E) = s cos(t) - J con(t=s9y(sddsl 5 0 =L S 2 %
0

which has the solution y(t) =t

The errors are tabulated in tables 2.1 and 2.2. It should

be noted that the errors for method (2.11) are appreciably larger
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than the errors for method (2.12). Numerical computations show that

this is the case for many examples.

o8

d

l’*]

yle 2.1

Method (2.11)

t h = 0.4 he=d0 .2 I3 =40%.L
0.4 -2.396 E-6 -7.446 E-8 -2.316 E-9
0.8 -4,608 E-6 -1.446 E-7 -4,519 E-9
N2 -6.391 E-6 -2.022 E-7 -6.349 E-9
1s6 -7.638 E-6 -2.437 E-7 -7.682 E-9
2.0 -8.347 E-6 -2.685 E-7 -8.498 E-9

[
Table 2.2.
Method (2.12)

t h =004 h =0.2 h = 0.1
0.4 2.647 E-7 7.704 E-9 2,823 E=10
0.8 It 165 E=7 1.212 E=8 3.655 E-10
12 4,803 E-7 1.398 E-8 4,220 E-10
L6 4,843 E-7 1.413 E-8 bh,271 E-10
240 i 550 E=7 1.334 E-8 4.043 E-10

The advantage of stiff A-stability is illustrated by the

application of the methods to

4----IIIIIIIIIIIIIlllII-IIIIIIIIIIIIII------IIII-IIII-.IIIIII
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e

y(t) = ((1+t)exp(-10t)+1)? + (1+t) ((1-exp(-10t))+10log(1+t))

t
e 2
—lOJ’Dm(S)dS, Oftflg,

which has the solution
y(t) = ((l+t)exp(—lOt)+l}%.
The Lipschitz constant for this example is effectively 20 and so
from the remarks of 82.6, a conventional multistep method will not work
well for a large step size. The methods were applied with h = 0.1
on the interval [0, 1] and then the step size was increased on
(1, 191 . The resulting systems of nonlinear equations were solved
by Newton-Raphson iteration. The errors are given in tables 2.3 and

2 bk

Table 2.3.

Method (2.11)

t h = L.% h = 3.0
4.0 =1.. 780 "E~8 -2.843 E-2
748 -3.058 E-4 -5.376 E-3

10.0 -1.015 E-4 -1.392 E-3
1.0 -4.,577 E-5 -5.430 E-Uu
16.0 -2.446 E-5 -2.716 E-4
190 -1.458 E-5 -1.558 E-4




Ly

Table 2.4.

Method (2.12)

i I =S h = 3.0
4.0 -3.271 E-5 -2.302 E-3
7.0 -1.717 E-6 -1.834 E-4

@R -2.699 E-7 -1.952 E-5
1850 -7.191 E-8 -3.757 E-6
16.0 -2.452 E-8 -1.150 E-6
19.0 -1.077 E-8 -4,554 E-7

2.9 Conclusion

Since the methods given by (2.11) require values of the
kernel KX(t, s, y) outside the region 0 <s =t =T , difficulties

can be expected if the kernel is badly behaved there. As the schemes

(1]

(2.12) avoid this problem, they should be used in these cases.

As illustrated by a numerical example, a large stepsize h
is feasible in certain cases. The choice of a large stepsize is a
particularly desirable feature for finite difference methods for

Volterra integral equations since the amount of computation required

: : . 2 . 5k
is proportional to (T/h)” . Hence the implicit Runge-Kutta methods
are superior to the conventional multistep methods in certain

situations. In addition, they have the advantage of being self

starting.
If the integral equation (2.1) is nonlinear, the schemes
require the solution of a nonlinear system of equations at each step.

This can be done by standard methods such as the Newton-Raphson iteration.
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CHAPTER 3

HIGH ORDER METHODS FOR VOLTERRA INTEGRAL EQUATIONS

OF THE FIRST KIND

3.1 Introduction

In this chapter, the implicit Runge-Kutta methods developed
in chapter 2 are extended to Volterra integral equations of the first
kind with continuous kernels,

t
g(t) = J 1P o= D s T R O S U (3.1)
0

For convenience, the conditions ensuring the existence of a

unique continuous solution are repeated below.

(3.1.1) k(t, s) and 9k(t, s)/dt are continuous on 0 =s =t = Jj
(82 TeGE, £ F 0 lon ORSEEE=NT
(3.1.3) g(t) is continuously differentiable on 0 =1t = T and

g(0) =0
Under these conditions, (3.1) is equivalent to the second

kind Volterra integral equation
ok
gl (t) = k(t, Tiy(t) + J §¥-(t 2 B CE I e R S (3.2)
0

which is obtained by differentiating (3.1) (see for instance Tricomi
(1957), pp 15-16).

Since (3.2) is a Volterra integral equation of the second
kind, it follows that y(t) depends continuously on g'(t) . This
implies that the problem (3.1) is improperly posed. The effect of
this will be briefly discussed in §3.11.

Numerical approximations to y(t) can be obtained via

(3.2) by methods for Volterra integral equations of the second kind
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(cp. 81.2 and chapter 2). However, in some situations (for example,
if g(t) 4is given in tabulated form) it is desirable to determine the
solution directly from (3.1). The derivation and analysis of such
methods form the basis of this chapter.

schemes for (2.1), a comparison between the trapezoidal and

nidpoint

=
=
wun

methods is made in 83.2. 3.3, implicit Runge-Kutta methods for

(3.1) are constructed. It will be shown that the schemes with
Uy > 0 (methods I) and the schemes with Uy = 0 (methods II) are

[}

generalizations of the midpoint and trapezoidal
The remaining sections of the chapter investigate the convergence and

methods I and II.

Fh

stability properties o

3.2 A Comparison Between the Trapezoidal and Midpoint Methods

Fell Sk 4= Ty S0, e L he = T/D 5 and! discretaze
(B:2)%8t T3 s SRl SRt BE SN oL ehbain
150
i
g[ti) = k(ti’ s)y(s)ds e iyl S (3.3)
'C\’

Approximating the integrals in (3.3) by the trapezoidal rule

yields the trapezoidal method,

k (ti,u} J k(ti,ti)
g(t } = h{—T— ‘YO an Ki:l k(ti) tﬂ)YC T _T— Yl} )

LS Ly enogil e £3.49

where Yi is the numerical approximation to y(t:} . The trapezoidal
1
method requires a starting value YO which must be determined

independently (for example from 63295 YO = gl (0) (0, 0)L ).




The application of the midpoint rule to (3.3) leads to the

midpoint method,

i-1
g(t;) = n KEO k(ti, t£+h/2)Y£+% . 0%, R R (3.5)

where Yi+L is the approximation to y(t;+h/2)
% i

As suggested by Noble (1964), pp 254-258, it is instructive
to apply methods for first kind equations to the problem of different-
1ation, i:e.

i
g(t) = J yia)ds ¢ wlt) = g'(t)
0

For the trapezoidal method, subtraction of (3.4) from

(3.4) with 1 replaced by i + 1 yields

glt,, ,)-g(t;)
- i 521 L &
U % 2{ " ] =X 5 4 #Hy sy B-1 . (3.6)

Assuming an exact starting value, it is easy to verify that this
difference equation has the solution
ek L i
s {2g(t.) + i B =32l ﬂ)}/h P Gl SR W, TR
1 Al ) 1-L
£2=1
Clearly, this is not a suitable differentiation formula since it does

. d
not preserve the local behaviour of the operator T

On the other hand, the same differencing applied to the

midpoint method yields

Caley,)-ale)

which is the standard central difference approximation to
g' (t,+h/2)

This indicates that the midpoint method will be superior to

the trapezoidal method. The following results due to Kobayasi (1967)

and Linz (1967 a) confirm this. For convenience it will be assumed
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that k(t, s) and g(t) are sufficiently smooth.
Theorem 3.1 (Trapezoidal method, Kobayasi (1967)).

Let e(t) be the solution of

T Ak
k(t, t)e(t) + J §¥-(t, s)e(s) = §'(t)
0
where
£
k) == %? [lﬁ?}(k(t, s)y(s)}]
0
and let qr(t) , =1, 2 be the solutions of
ok
kGt t)q;(t) h = ¢E, t)qr(t) =0 o0 nE L Z2 L3

with the initial conditions

q,(0) = -e(0) ,

1]
|
[

q2(0)

2lefe;)+-1q (£)

- (—l)iéqz(ti} P e G A2 0y s I

where 6 is the starting error y(0) - Y,

From this result the trapezoidal method is convergent of
order two. To illustrate its stability properties, consider the

equation
-t t
-1+t +e = J (1+t-s)y(s)ds

which has the solution
=t
y(t) = te
It can be seen that e(t) satisfies an equation of the same form as
(3.2) and hence grows in a similar way to y(t) . However, from

(BT




ql(t)
qz(t) =
and clearly ql(ti) and qg(ti) will

for large t. Hence the trapezoidal

stable.

Although the midpoint method
value it is instructive to examine the
perturbation in the numerical solution

effect of rounding error.

in §2.5

It is therefo

49

-e(0)exp(t),

- exp(t),

dominate the numerical solution

method is not numerically

does not require a starting
propagation of an initial
since this illustrates the

re convenient to proceed as

and assume that in the first step an approximation

YR =Y = § has been computed. Then (3.5) will generate a new
2 2
sequence of approximations ?i+; St it .5 A= o given by
i-1 : i
g(rl) = E%O kttia t£+h/2) £+;2, - LS 2’ £ i
Theorem 3.2 (Midpoint method).
Let
] 9 %
Wty =g HE} (x(t, S)y(s))] 5
10 Bk 3k 3k
4 bl o s DO 0
by (1) = mrpr o (8,000 50 (0, 0) - gy £, 0)
and let e(t) and d(t) be the solutions of
i k
k(t, tle(t) + —=\(t, s)els)ds = Yh(s)
2 0 ot !
and
t ook
(£, BdlE) * J 5;—(t, s)d(s)ds = wQ(t)
0

Then
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1

e y(t;+h/2) + th(ti+h/2} B h26d(ti+h/2) + o83 + o(x%) ,

T PR B |

Proof. This theorem with 6 = 0 is given in Linz (1967 a). The

result for 6 # 0 is established in the same way as the corresponding

result for the implicit Runge-Kutta schemes with Uy > 0 which will

be derived in 83.5. =
Theorem 3.2 implies that the midpoint method is convergent
of order two and numerically stable since e(t) and d(t) satisfy

P

equations of the same form as (3.2). In addition, a perturbation ¢

propagates as O(hL6) . This is rather surprising since a perturbation
8§ in finite difference methods for (3.2) propagates as 0(hd) (ecp.

§2.5). It implies that the midpoint method is a very robust scheme.

3.3 Numerical Schemes

For convenience, some notation introduced in §2.2 and §2.3

will firstly be reiterate Let

k=1
w(t)
L, (t) = ; oLl s s M g
k t-uk w? (g
u.
]
djk:J Lk(S)dS,}\:l, L SR = Rl >
0
C L S S N
ti = ik s a5 0 o i ise T T AT
and
t S DT ¢ oty s - SR 0B , I-1




s the numerical

T (2 ilot) g T

a starting value

of linear equations

(a0 N andn (80
jie ISaE

are required in the region

l} s G ] Although this dces not cause

= t+h[l'u

theopetical difficulties since h can be taken to be arbitrarily
small, computational difficulties may arise (see §3.10, example
(3.68))-

This difficulty can be avoided if the scheme (3.9) is

modified in the same way as (25 L2 5 Lses




where p.(t)
i

interpolating

differencing

nce intuitively it can be expected that

superior to those with

be denoted

Remark 3.2. Clearly, methods corresponding tc (3.9) and (

can be constructed for un < 1 . These schemes can be treated

analysis similar to that presented here. Also, it should be noted
that all the analysis extends easily to systems oi first kind

Volterra equations.




k(t, s) and g(t) are required.

I (3.9) and is eq to
scheme (3 bes
( ' \ n+3 ( e T L ; e g LR
I8 2 o] je(ta 8ot 1s continuous O ORI i e et B
( 3) g(t) 31is n 4 38 Eimes con on
st =1
The C“xf‘i‘v..“ (532
imply that y(t) is n + 2
) I
The esult of this section 1s
Theorem 3 .3.
The sche (3.9) and (3.10) are rgent of n
ubtra ng (3.9) with h <o and (3.10) from (3.8) yield
1-1 n
A o a. Khi L \ + h & % d‘r\ k L*,\.‘ 5 ’C}BECK + R. ’




1 \ © ( \ ( \ -
u i} % L a r,([,,‘, Cpv) "'“_',',‘) (3.14)
[ . 1 S
{ K |
and
i
- | ( i G pateg
LFL T j (t:ss s)yls)ds
I r
S 5 ( \ \
o 4 1 L L& U 1)1 1.8 Y UC;
: ] 3 14 1k 1 A'r‘ K y 4 ’,L ik’
1 r=l 3 e i
1-1 Nl
5 4 | Y 1 E
1 & L a St Eise 8 S 1,:7,%} . G 4O)
K 1 ALK~ LK

Lemme S o ils
There ist continuously differentiable I pLt) o
d(t) with ¢(0) =0 , ¢(0) = 0 and continuous functions VY.(t) ,
/ ’ 4

R e =il g s T 4 SUSH“that

J
- T
Riw = 1 it ®

17 1

5 h n+l ( n+2
£ . =0 ‘»I[u ) 9 ; e 2 31 Y )

i

L] 1 J

=1, ML o - i 0 IS oy L

Proof. The result from the Buler Maclaurin sum formula. ¥
Proo theorem 3.3. irst consider the scheme (3.9)

( 12) and division by hkl\t., R /
. ' ‘
n =1 n K\ t..stp, J-kit: L) )
D s " Wansy ¢ 1 LK i
(- B L L d — = . >
il } xAKL* j’ L
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ok
K = max |= (t, s)
ot
0}y U
0=t=T
and
a = max \a4|
1<j=n =

From Taylor's theorem and lemma 3.1, there exists a constant C such

that
RiiRi-1.n n
L =, Rty B i ey (5 WP L T
Sl sl
for a sufficiently small h . Taking absolute values in (3.16) and

applying the above estimates yields

(eing -
; : k(tl], » . | < ha 121 s e, | + cn®
3 —r———‘j—- vl S == L ; C 5
k=] JK klt,»t, ik M e Be Lk
$ =1, R I AR L

Introduce the n dimensional vectors
iy ;
= [gil, v SOERRNY | sEal ER D% wauny Heley

and the n X n matrices

ﬁi):{ﬁiq, R RN - I

jk
where
. Pl s i
5{1) =3 ( ij 1k)
jk jk  k ti,ti
<033 p LT
Clearly, A is nonsingular for sufficiently small h
Let
ene=il.
L = max HK(l) u
I=aSl=i
and
el:HE_lH s L = 0% wang Leds s

where |l*ll is the usual maximum norm. It follows from (3.17) that
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ey t P B R = (3.18)

Also, from Taylor's theorem there exists a constant C, such that

1)
n+l
lROjl = C)h . D
and hence from (3.12),
n
< = s
ey = Czh 5 C2 const
The application of lemma 2.4 to (3.18) yields
g, = C h" i =au I-1 C, = const
i— 3 b BB " Sy > 3

Hence the theorem holds for the scheme (3.9).
Using (2.9), a similar argument establishes the analogous

pesult for the scheme (3.10). #

3.5 Methods I: Numerical Stability

From the remark in §3.2, Eq. (3.1) can be solved via (3,2).
If a numerically stable method is used to solve this second kind
equation, it is known (ecp. §2.5) that the leading term in the

asymptotic expansion of the error satisfies an equation of the form

E e
k(tant)e(ty + J ET (t, s)e(s)ds = &E(t) . (3.19)
0

If a direct method is to be comparable, the leading term in the
asymptotic expansion of the error must behave in a similar manner.
In this case, the method will be called numerically stable.

The leading term in the asymptotic expansion of methods I
will now be investigated. As in §2.5, it will be assumed that in the

fipst step, approximations

¥ o= o = O j = e
YOj YO] 3 ) J 1, s I o

have been computed.
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Fipst consider the scheme (3.9). Using the values Y

IuE Ly samg B 5 (B:9) will generate a new sequence of approximations

{ij o (R ER ey | SAE sks SSTIS P T s Tl ElVEnRDY

] 1 ) - ne=18Sun
gtt‘;,} =\ @3 L k.., T )Y + h X %A, WlEs s Eﬂk):@ -

2 k=1 - : & £=0 k=1 & P
= deo X o e L g L=l (3.20)

Let

o g = ( \ Ty y)- . ’ =

B = Ftusl) F e 3 Sl = Do S — o R

1] 15| o7

Subtracting as previously yields

U= et e a2 kltsed t )E +h X X a_ kK [t o Ep )E} + 5
k=1 R N £=0 k=1 Sy e A ]
5 =1, (5 e o =iy 48.21)
and therefore,
n n F:l,
= j
AR PRI 3 1 NP - 1B == F & kit £ JE.o -l =
Lk I ) k 13* “0k* ok s
k=1 * ¢ k=1 J 2 J
e i , n (3.22)
Differencing (3.21) as before and dividing by h yields
n 1=l N }x(1 ,Tq_)—k (t “RE }
X & s 5 1 Lyf_ L}\ =
) FE Lt ’ Y 5 +h X & a = s €p
k=1 j iy = ik 0=2 k=1 k h k

. ij° 1k 1 = ij° 0k 3 —
= =h 3 = b/ T = - E
1%1 dl\\ h 1 ol
Roooy 4
—__.J__hi—~ Sl S A2y il el (B23)

Define the n X n matrices

>
1
s
o}
—

ij
B = iDl]) = (a]) >
D = (dij] - [ujélj) )

where ©&.. 1is the Kpronecker delta, and the n dimensional vectors
1]




and
' . i
8(t) = (8,(t), .0 «jn(t))
where
B(t = l_)r + ) {Y‘_(\ D) Sy
6(t) \5t5s (t, 0)DB\D -+ }
ok ok
==(t,0)75:(0,0) 2
+ s DB ((I+D)A” "B-D) }S (3.24)
k(0,0 —
In addition, let d.(t) , J =1, «..5 1 , be the solution of the
system of integral equations
n e 3] n
(e, t) 5L a & (%) + . ’d‘{ (t, s) I ad(s)ds = -0.(¢) ,
k=1 < J 0 k=1 —° J
38 L, vaey iy (5:28)
and let e.(t) 5 J = lyjecny B o be the solution of
J
n 1 3 n
kit, £) ¥ 2 e, (t) + u — (t, s) I a e (s)ds
i ) 5 } ot o K
k=1 e k=1
= . aNeYy B Y0y SUECE) Ty T = ol o) (3.26)
] J n
Define
— 2 n
Zy s = E - hd {t..} - h'e [t ) >
1] 1] ] 1] ] 1]
3= 1, I B 2 |

Then from (3.23),




ol

o n kit, . st ;S DY
' 1 /AP, \ *-p
L . a 1<{t._, T, }L'L + DR = 1] o — 1) 5
k=1 JK 1] Anles L 13 k 7 Pk
n k(. .ot .. ) klE, ot k )
= -h % aJ i 5 "1k’ — s \ li, 'J“') (t_‘, C)n)
v K\ “19 - paglll 2™
=1 d 1
< (3 1T il TR
126, (c) + o™ + oG8l
=y sass HG IEE I-1 (3:27)

Using (3.22), (3.24) and the identity

Theorem U
= n_ 2 141 iy
By. = h e.\t ) + h%a, (t,.) + o(a" ) + o7l
: B \t: ) un ) Oth licll) »
1] J L] 3 & —
T e SR Sl S LA where d.(t) and e.(t) are given
|

by (3.25) and (3.26) respectively.
To establish the corresponding result for the scheme (3.10),

define the n X n matrix

and the n dimensional vector
8(t) = (8,(t), «evs 6. (t)) .

where




£ 2
8(t) = %‘t%? (s o)DB(D-(D»rI)A'lB)

%%(t,O)%Z;(0,0) BY. Vg
+ (55 pBA™ (CA

i,

B-BD) (8

Let the functions aj(u) o o satisfy

t
dk(t) + dj J a dk(s)ds E -Gj(t) "

n
klt, £) & @
= 0 k

kel oF
oy B (3.28)
and ;j(t) "ol Ll U S A satisfy
n t oo n
kit €3 B M. #lt). uj [ — . ) &

il jk 'k 0 ot Sy

= uyd'() V() - B(6) , 321, .0sm . (3.29)
The following result on the asymptotic behaviour of the
error, for the scheme (3.10), is obtained in the same way as theorem
3.4,

Theorem 3.5.

sk T o n+l 3
€54 ° h ej(tij) + h7d, (tij) + o™ + o(x’l8l) »

2, «.ss I-1 , where aj(t) and 5j(t) are

given by (3.28) and (3.29) respectively.

Remark 3.3. It is clear that the solutions of the systems (3.25),
(3.26), (3.28) and (3.29) are characterized by the n th equation
which is of the form (3.19) and therefore methods I are numerically

stable. Also, perturbations of magnitude ||§]| are propagated with

magnitude h2H6H . This is the same behaviour as observed in the

midpoint method (cp. §3.2).
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3.6 Methods I: Numerical Results

In order to illustrate convergence and numerical stability,

2

]
the schemes (3.9) and (3.10) with Uy = % - u2 = — and Uy = 1 are
applied to the equation
(T
T # A e (I+t-s)yls)ds o+ O 5 € =204,
0
where
y(t) = te

The errors for various stepsizes h are tabulated in tables 3.1 and

Table 3.l
Method (3.9)

t h = 0% h = 0.2 h= 0.1
4.0 -1.086 E-4 =1.,325 E=5 -1.290 E-6
8.0 -1.563 E-6 -7.202 E-8 -2.613 E=9

1250 7.715 E-8 1.257 E-8 1.730 E-9
16.0 5.137 E-9 6.940 E-10 8.964 E-11
20.0 1.949 E-10 2.498 E-11 2.932 E-12




Method (3.10)

G h = 0.4 H =000 = 051

4.0 -1.572 E-4 -1.817 E-5 -2.181 E-6

8.0 -4,016 E-6 -4,343 E-7 -5.033 E-8
12.0 1,111 E-8 2.1%4 E-9 3.194 E-10
16 .0 3.679 E-9 4,460 E-10 5.468 E-11
20,0 1.661 E-10 1.976 E-11 2.094 E-12

1

3.7 Methods II: Preliminaries

Let
n-1 o
wit) = I vkth+l 5
k=0
n-1 )
w(ttl) = Z whth+l
}. _Q K

and define the (n-1) X (n-1) matrices

=
1
—
3
~—
|

i3 ~ (ai+l,j+l) d
i4) (2141, 6j,n—l) ’
where 6'j is the Kronecker delta,

i

= (43) = (agy 853 »

R = (r..) = (Sj,n-l) >

DR(A-B) ,

(@]
"
~~
(@]
=
L
1}
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The following lemmas examine some properties of th

o
.
(0]
<
()

matrices.

Lemma 3.2.

The nonzero eigenvalue of M "B is

n-1
e
'l‘w k=l
Y‘I = — =
VO n
Il (—uk)
k=2
Proof. Consider the differential equation

y'=%’\-, y0) = 1 , =it = L., A>0

and approximate the solution y(t) Dby

n K
Q(t) = X CKL
k=0

where

¢ =1

0
and o k =1, , n , are determined by collocation at the
points W o k =1, 5 T

Let

Wright (1970) shows that

R L n-1 i
( e /Tw(s+l)ds 2 (k+l)!wyk'
.70 _ k=0 3§ ’
gha s —ates o - (3.30)
J el wls)ds z (k+l)!vkk
0 k=0

and remarks that this collocation is equivalent to the implicit

Runge-Kutta scheme

(AI-M)q

"
| %

where




oY

i 1l
X = (A+a21, X+a3l, Ao k+anl)
Clearly, since M is nonsingular, AI - M is nonsingular if A

is sufficiently small, and hence by Cramer's rule,

y _ det(AS-N)
q(un) det(AI-M) ° (3.31)
where
= o = e e 5 5 :
S (sl]) ( 13+0n—1,] 6l,n—luj,n—l) :

N = (o) = [mij(l‘éj,n-l)’aiﬂ,ldj,n—l)

Equating (3.30) and (3.31) and taking the limit as A tends to

zero, yields

The presult follows since the characteristic equation is

det(nM-B) = nn_z(n det M - det N) = 0 . #

Lemma 3.3.

s

Let and Y be the block matrices

| _ y =

hies M lB nw
E = e L SIS el Y = - -

! 0 0

0

1
1
|
1
'
]

r

Then, if n # 1 , there exists a nonsingular matrix H such that

Proof. Since

the characteristic equation is

S E-ATY = R A ) = D

Since it is easily shown that E has a complete set of

eigenvectors, the result follows. #




Lemma 3.4.

&= =il g Ehen

(1) e "B =0 ,

~
—
|
[
@]
, A
N
|
I
i,

(13

(iii) there exists a nonsingular matrix

M L(B+C) = e 1xe

Proof.

1 -
(i) CcM "B =D R (M-B)M lB

-1
1 )y R (I-M °B
Dn—l,n—lL R (1-17B)

= 0 , since the (n-1)th row of

Gttt Consider the vector

where

|®
1"
—~
=
-
b
-
i._.
=

Then, from (i),

Also, since

u
r n

J ) Lp(s)ds = u

O k=l
it follows that

(M-B)e = u
where
u = [u?, Ugs voes un)

The use of this relation yields

w

[e)]

Zero.




il 1

M D RM (I-M "B)

Hence,

=l =15

ME v s M SELR

The result follows since M_lC dis. of

e

"
=
o
el
e

(M-B) v = ¥

rank 1 and hence has n - 2

linearly independent eigenvectors corresponding to the zero

eigenvalue.
Cadiy Since n =1,
M 1B v =
and it follows from (ii) that
ML (B+C) v
Let
-1
w=MB
Then, from (i),
-1
M CW=
and since W _q =n = 1 , therefore
-1
M B W=
Hence,
ML (B+C) w
Since M_l(B+C) has rank two and two

corresponding to the eigenvalue 1 ,

result follows. B

[o
-

|
<

| @

e

1"

W .

independent eigenvectors

it is diagonalizable and so the

In addition use will be made of the following two lemmas.
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Lemma a8, 5. (Jones (1861)).

Let q; > Td=atd e, I sisabisty

2 : T
Q5 = (l+2hL)qi + hil L qp * Lhm+l s Iy = const 2.0 5

i+
£=0

and let

(@]
IA
Nal

Then, there exists a constant K such that

D Fy S K{q0+hm} ol = e oY

Lemma 3.6.

Liet -=l= <1 and EEE) 8 0=t = 1, be d continuously
differentiable function. Then
10 S £(0)-n"£(t,)
E n f[tﬂ) s 7 AT 8 SN A (PRI
£=0
Proof: For N = -1 the result follows from the Euler-Maclaurin

sum formula. If -1<n<1, partial summation yields

et i
z an[tK) = £(0) =1

+ 0(h)
£=0 Al

and since
ni(f(ti)-f(o)) = glh) 4

the result follows. #

3.8 Methods II: Convergence

In the analysis of methods II it will be assumed that
conditions (3.4.1), (3.4.2) and (3.4.3), with n replaced by

n+ 2 ., are satisfied.

The results of this section can be summarized in
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Theorem 3.6.

The schemes (3.9) and (3.10) are convergent if and only if

n-1
L
-1 =1 = ‘n =
T (-u)
k=2 k

and the order of convergence is n -1 1if n =1 and n otherwise.
Before a proof of this theorem can be given, some prelim-
inary results are required. Subtraction of (3.9) with h < & and

(3.10) from (3.8) yields

n i-1 n
0=h kzl 3y k(tij, tyles +h Ezo kzl a, k(tij, o 8y * Ris
sTaM i TR RN LY, (3.82)
and
n n
Q=1 kEl uy rzl a k(tij, ti+u'uthLk(ujurngk
i-1 n by
+ h KEO kzl a k(tij, tﬁk)eﬁk + Rij 5
A= As o e G ORET il (8,38
respectively, where
Sy =l = Ty

and R.j and i'j have the same form as (3.14#) and (3:15)
i al

respectively.
Lemma 3.7.

There exist unique functions dlt) d(t) , wj(t) .
ij(t) . Oj(t) . éj(t) W SR TR S - satisfying

GO ol &(t) are three times continuously differentiable

and @(0) =0 5 90) =0




N

, +e+» N , are two times continuously

(i1) (1), Vo(t) , 5 =
J )

differentiable,

(Gt ) jrana O R i @W(t) .3 =2, ..., n , are continuously differentiable,
J ] ;
such that
BT 4 n+l + n+3y
D N o \ Z \ LN+
i 5 \ b - ) L& b Jihe B )
lrl ;] ] ) j\ 1 { J 3
¥ n ntl = 5 5 s n+3
e N Y, (t..) - T O.(t..) +om""
ij ij e e ( )
= 2R s e R GRS R S
Proof. The result follows from the Euler-Maclaurin sum formula. #
Firstly the scheme (3.9) will be considered. To simplify
the notation, define the (n-1) X (n-1) matrices
f ]
M., = m(‘/t) e = U oo 1 1 = alem -1
ll jf‘; b b b 2 2 - - >
where
m<li) m k(* t )
Jk jk it i 5
i, =1,
(, )—a_\"“(T» A,‘_]j + & ‘(1 e 1\39
jk gl ey B g g R Yol B k+1 b it i-1,k+1
il) ;
m = ar e s t eyl SR anic WG e GET
ik 1 ( Sl o L0 8+l} n-1,j k+1 ( T i L+l} :
D s Ty A
=R R o LA A
and the n - 1 dimensional vectors
T
= == b~
S €4 o 2R
—i e 2 LD)
- ol [l cos Roo A ¢ (TIN5, I
T
L;i — [bl;}’ anm Lwin)
where
) = kit ( = 2 e n ;
L"J djl k‘_\, \ ) 3 )
Lij = a kktij’ o) PR, (A R SN S M i TR TR

Then (3.32) can be rewritten in vector form as




5l
h [Eo Miﬂiﬁ - nEOl-L%i + R, . (3.34)

To establish convergence, bounds on the solutions of difference
equations of the form (3.34) are required. To obtain these, gl
necessary to distinguish between two cases.

Cage Jo =1L =T

Lemma 3.

Let the n - 1 dimensional vectors

satisfy

it
s
h KEO Mi£z£ +hz b,

a(t) has a Lipschitz continuous fipst derivative,

Bj(t) %) 2, «ssy N , are Lipschitz continuous.

= 0(zh) + O[Hil“) R

From (3.35) it follows that

i-1

go (Mi+l,’g—(I+R)Mi£+RMi_l’E}E¥

(M

- +
M - (I+ROM, ) 2,

s . Z. ¥ .
141, 141=1+1 i I o

+ 2,y (THRD+RD; )

A (Ml
k hm-l(9§+l—(l+R)9i+Rgd—l} - hm(§i+l_(I+R)§i+R§d—l) +om ) ,

Ty vins I=2 « (3.86)




Division of (3.36) by k(t and the applications of

b 3l ti+l)
Taylor's theorem yield

i-1
- [r-wﬂfri)g_i + (thui)ﬁ, < Be 8 W.pZp - WE R,

(Mns, )z, i-1 P =

14, 2

33 2275 *18.37)

where Si {1 . Yi and X: s r. are matrices and vectors,

respectively, the norms of which are bounded by a constant independent

of h, i and £ . Since M is nonsingular, (M+h8i) is

nonsingular if h is sufficiently small and therefore

(M+hsi)"l 2 W+ bN,

HNi” <. D D= const

Multiplication of (3.37) by 0 hN,

z = 1+M“lB+hTZ]z. - |M-lB+hU.}z: y
L T J==L \ X my

—i+1

—

where T, s W, : . are matrices and vectors,
i — i

respectively, which bounded as above. Define the 2n - 2

dimensional vectors

Vi

the block matrices




72

and

Then (3.38) can be rewritten as

il ol m+1
)1(,2‘_( *hils AVt h Qs i

gzl i B

~J
]
—
(53]
o
=5
s |
D
N
-}
>

2141 i/ 23 L
il o = ,e:::“)
IR e U8 RN i R e o)

From lemma 3.3,

and denoting
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