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PREFACE

This thesis describes a series of experiments designed to 

measure the quadrupole moments of the first excited states of the 

stable even-mass lead isotopes. The work was carried out in the 

Department of Physics and in the Department of Nuclear Physics at 

the Australian National University under the supervision of 
Dr A.M. Baxter.

The project was initiated by Dr D.C. Kean, and the work was 

carried out jointly by him, Dr A.M. Baxter, Dr R.H. Spear, and 

myself. The experimental arrangement was designed by Dr M.T. Esat,

Dr Kean^and Dr Spear. The method used to calibrate the 14UD 
Pelletron accelerator was devised largely by Dr Kean and the analysis 
of the energy calibration data was performed by myself. The procedure 

for making thin, highly uniform, lead chloride targets was developed 
by myself. The lineshape fitting program was written by me and the 
extraction of excitation probabilities from the raw data was performed 

largely by me, with some assistance from Dr Baxter. The remainder of 

the data analysis, including the writing of a least-squares program 

for determining B(EA) and values from the measured excitation

probabilities, and modifications to the Coulomb excitation computer 

program, were performed by myself.

Some of the work described in this thesis has appeared or will 
appear in the following publications:

(1) The Quadrupole Moment of the First 3 State in 208Pb,

A.M.R. Joye, A.M. Baxter, M.P. Fewell, D.C. Kean, and 

R.H. Spear,

Phys. Rev. Lett. _38 (1977) 807.
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(2) Static Quadrupole Moments of the First Excited States of 

204Pb and 206Pb,

A.M.R. Joye, A.M. Baxter, R.H. Spear, and D.C. Kean, 

to be published.

(3) Energy Calibration of the A.N.U. 14UD Pelletron Accelerator,

R.H. Spear, D.C. Kean, M.T. Esat, A.M.R. Joye, and M.P. Fewell, 

to be published in Nucl. Instr. Meth.

It has been a pleasure to work with Dr Baxter, and I take this 

opportunity to thank him for his valuable supervision and assistance 
during the course of this work. I am particularly grateful for his 

willingness to read and comment on the preliminary draft of this 

thesis while on sabbatical leave. A special note of thanks is due 

to Dr Kean not only for his great interest and participation at all 

stages of this work, but also for his constructive criticism during 
the writing of this thesis. I would like to express my sincere thanks 
to Dr Spear for his considerable involvement in this work, and to 
Professor S. Hinds for the many valuable discussions I have had with 

him. Finally, I would like to thank Mr M.P. Fewell and Dr T.H. Zabel 

for their willingness to help with data accumulation without hesitation.

I have enjoyed working in the Department of Physics and I am 
grateful to Professor S. Hinds for giving me this opportunity. I would 
also like to thank Professor J.O. Newton for extending to me the use of 

the excellent facilities at the Department of Nuclear Physics.
No part of this thesis has been submitted for a degree at any

other university.

Canberra, 
May 1977.

A. M. R. Joye
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ABSTRACT

The static quadrupole moments and reduced excitation

probabilities (BEX) of the first excited states of the nuclei 20LfPb, 

208Pb, and 208Pb have been determined using the reorientation effect 

in Coulomb excitation. The Coulomb excitation probabilities were 

measured by resolving inelastically and elastically backward-scattered 

^He, 12C, and 180 projectiles in an annular surface barrier detector.

In the case of 204Pb and 208Pb, safe bombarding energies were determined 

for all projectiles. In the case of 208Pb, safe bombarding energies were 

measured for 180, but were assumed for 4He. The small values obtained 

for Q2+ indicate that 201+Pb is only weakly deformed, and that 208Pb 

approaches sphericity. The measured value of Q3_ for 208Pb is much 

smaller in magnitude than those obtained in previous measurements,

and is consistent with most theoretical predictions.
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CHAPTER 1 

INTRODUCTION

Although Coulomb excitation has been used for many years to 

study the collective properties of nuclei (A156), it was not until 
12 years ago that de Boer et al. (deBo65) used the reorientation 

effect in Coulomb excitation to measure the electric quadrupole 

moment of the first 2+ excited state of lll+Cd. The unexpectedly 

large static quadrupole moment (Q2+ = “ 0*70 ± 0.21 eb) measured 
by de Boer et al. aroused considerable interest since such a large 

value was contrary to the previously well-established picture of 

11^Cd as a typical vibrational nucleus. In subsequent years, a 
number of processes (for example, Coulomb-nuclear interference, 

virtual excitation via the giant dipole resonance, and the 

attenuation of gamma-ray angular distributions) which can significantly 
affect the results deduced from reorientation measurements have come 
to light, and consequently results from early experiments have been 
found to be unreliable. However, the elucidation of these processes 

and advances in experimental techniques have improved the reliability 

of reorientation measurements, and in the last few years the 

reorientation effect has become a useful tool to measure the quad­

rupole moment of excited states in nuclei from 180 (Fe77) to 208Pb.

The present thesis reports the measurement of the electric 

quadrupole moment of the first excited states of the isotopes 204Pb, 

206Pb, and 208Pb. The dramatic discrepancy between the experimental 
and theoretical values for the quadrupole moment Q^_ of the 2.61 MeV 

3 state in 208Pb, has aroused considerable attention in recent years. 

While most theoretical calculations give Q^_ between - 0.09eb and 

- 0.20 eb (Gu75), Barnett et al. (Ba69) have measured a value
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Q3_ = - 1.3 ± 0.6 eb and, in a subsequent experiment (Ba72), reported 

Q3_ = - 0 . 9 ± 0 . 4 e b  or - 1.1 ± 0.4 eb, depending on the value 

assumed for Q2+ in 208Pb. It is therefore of considerable interest to 

resolve the large discrepancy between the theoretical values and previous 
experimental results.

The problem regarding Q3_ in 208Pb provided an incentive for 

investigating the quadrupole moments Q2+ of the first 2+ states in 

204Pb and 208Pb. There have been no previous measurements of Q2+ 

for 208Pb, and only one value Q2+ = + 0.19 ± 0.14 eb has been 

reported (0174) for 204Pb. These two nuclei are of further interest 
because they lie between the doubly-magic nucleus 208Pb, and the 
so-called transition region A = 192 - 194 where nuclei are known 

to change shape from prolate (A < 190) to oblate (A > 196). Moreover, 
the quadrupole moments Q2+ for 204Pb and 208Pb provide a good test for 
the shell model which has been found to be particularly successful 
in the regions of double closed shells.

In the present chapter, some simple theoretical models are 

described with particular emphasis on predictions for and reduced 

transition probabilities; more advanced theoretical treatments will 
be discussed in chapter 6. Section 1.5 shows how nuclear shapes can 

be treated in terms of relatively few collective parameters, and a 

model-independent method for determining these parameters from 

experimental data is described. However, a precise definition of 

electric quadrupole moments will first be given.



Me V

4.0
4 . 0 8 6

3 .0 3.017

3 . 7 0 9

3 . 4 7 5

3.1 9 8

2 .0

1.0

(2-1,
3~

9 "  -  

5 + -

<2V
(4*) -

( 4+)- 
(0 * ) .  
4 4’ ‘

im

2.186

2 . 0 6 5

1.932

1.817

I . 6 6 3  
1. 5 8 4  
I . 5 6 3

1.353

1 . 2 7 4

0 . 8 9 9

(9"),
3"

2 * -

( 0 * ) -

lW

2 *  - 
( I * ) .
4 *

2*

3*

2 . 7 8 2

2 6 3 9  
2 . 6 4 8

2 . 4 2 8

2. 314

2 . 2 0 0
2 . 1 4 9

I . 9 9 8

1 . 7 8 4  
I . 7 0 4  
1 . 6 8 4

1 . 4 6 0

1. 341

1 . 1 6 3

0 . 8 0 3

2.615

0.0
2 0 4 2 0 6 ,

0 *

2 0 8 ,

Fig. 1.1 Energy level schemes for the isotopes 204Pb, 208Pb, and 208Pb 
(Data taken from Ma71, Se72, and Le71.)



3

1.1 The Electric Quadrupole Moment

The static electric quadrupole moment is a measure of the 

extent to which the nuclear charge distribution deviates from 

spherical symmetry. Classically the quadrupole moment of a charge 

distribution is defined as

e Q (3z2 - r2)p di (1.1)

where p is the charge density. Clearly for a spherical charge 

distribution Q = 0. A charge distribution stretched in

the z direction (prolate) will give a positive quadrupole moment 

(in the intrinsic frame of reference - see section 1.5), and an 

oblate distribution will give a negative quadrupole moment. In 

a quantum-mechanical treatment the charge density p is replaced 

by the probability density |]JJ ) |2 and the spectroscopic quad­

rupole moment is defined by

e Qj7T = e ( JJ I (3z2 - r2)|jj> (1.2a)

= e < Jj| (1671/5)^ r2 Y 20(B,<J>) |jj> (1.2b)

where Y 2q is a spherical harmonic function, (r,0,<J>) are the nuclear 

coordinates, and the term |j,M = J> represents the wave function of 

a nuclear state with spin J and z-component M = J .  Equation (1.2) can 

be generalized to higher-order moments

e QJ^X) = e < JJ| [16tt/(2 X + 1)]^ rAY Xo(0,4)) |JJ > . (1.3)

However, since nuclear states have a definite parity they cannot have
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odd-order electric multipole moments; in particular, the dipole moment 

is zero. The quadrupole moment is therefore the lowest order deformation 

which can occur.

Quantum-mechanically, the only externally detectable quantity 

having a definite direction in a nucleus is its total angular momentum 

J; the measured spectroscopic quadrupole moment therefore depends on 

the orientation of the charge distribution relative to that of J.

When J = 0 no direction can be defined; all directions must

be given equal weight and hence = 0. ^

ru le-̂  u^ipiy f o r  J~-  Zt~ (Ajfr ^  & •

1.2 The Extreme Single-Particle Shell Model

In terms of the extreme single-particle shell model, the 

ground state quadrupole moment of an odd-proton nucleus can be 

calculated from eq. (1.2) with an appropriate wave function |jj> 

for the proton. The result for the quadrupole moment due to a 

single proton (sp) is (Ma55),

- e 2j - 1 
2 j + 2 <r2 > (1. A)

where <r2 ) is the mean square distance of the proton from the centre 

of the nucleus. The negative sign in eq. (l.A) reflects the 

concentration of the particle density in the equatorial plane for 

the magnetic substate m = j. For a single proton-hole, the quadrupole 

moment is - Q  . An odd-neutron nucleus has a quadrupole moment due 

to the recoil motion of the rest of the nucleus. For a neutron 

located at r^, with respect to the centre of mass, the rest of the 

nucleus represents a charge Z at a distance r^/CA-l) from the 

centre of mass, and the effective quadrupole moment is
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(A- l)2
(1.5)

Fig. 1.2 shows the systematic trends in the ground state

quadrupole moments of nuclei as a function of the number of odd
? 1/3nucleons; the quantity Q/ZR (where R=1.07A fm) is a measure 

of nuclear deformation. According to the extreme single-particle 

model the value of Q/ZR2 should be ~  1/Z for an odd-proton nucleus, 

and ~ 1/(A-1)2 for an odd-neutron nucleus. Fig. 1.2 shows that 

the change in Q from positive to negative as the nuclear number goes 

through closed shells is correctly predicted, and that the magnitude 

of Q/ZR2 in these regions roughly agrees. However, in regions away 

from closed shells there are a number of major discrepancies:

a) The predicted values are much too small in magnitude.

b) When Q is fairly large, there is no difference in the order 

of magnitude of the quadrupole moments of odd-proton and odd-neutron 

nuclei.

c) There is a preponderance of positive quadrupole moments.

These discrepancies indicate that the simple single-particle 

model is too naive and that a large number of nucleons contribute to 

the observed quadrupole moments.

1.3 The Vibrational Model

In the simple vibrational model, it is assumed that the nucleus 

performs harmonic vibrations about the spherical shape. The vibrations 

of the surface are represented by
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R(9,4>»t) = Ro [l + S Xv «Xjl(t) Yx/e.*)] (1.6)

through the time dependence of the amplitude a^(t) . The terms with 

A = 0 and A= 1 in eq. (1.6) do not give rise to surface oscillations;

A = 0 represents a compression (or dilatation) without change of 

shape (because nuclear matter is almost incompressible, these 

vibrations have high excitation energies), and the terms with 

A = 1 are associated with a displacement of the centre of mass.
The surface oscillations of lowest order are therefore the quadrupole 

mode with A = 2.

In quantum mechanics, the vibrations can be treated as phonons 

with angular momentum A, z-component y, and energy hu) .In the simpleA
vibrational model, the vibrational states can have excitation energies

AE^ = = 0,1,2,... (1.7)

where N is the number of phonons. Phonons obey Bose-Einstein statistics A
(i.e. they are bosons). For example, two quadrupole (A=2) phonons can

give rise to degenerate states with spins 0+ ,2+ , and 4+ . In a real
nucleus, the degeneracy is removed, and the observation in numerous

+ + +nuclei (e.g. the even-mass Cd isotopes) of a 0 ,2 ,4 triplet at 
twice the excitation energy of the one-phonon 2+ state has been taken 

as evidence for the occurrence of collective vibrations. Collective 

3 states due to one octupole phonon have also been observed in 

several nuclei (for example the even-mass Pb and Cd isotopes). One- 

octupole-phonon states have higher excitation energies than one- 

quadrupole-phonon states and the liquid-drop model (which assumes 

an imcompressible charged fluid and irrotational flow) predicts 

ho)3 Ä 2ha>2 The sequence of levels expected from the simple vibrational 

model is shown in fig. 1.3.



Harmonie Vibrational Model

3 W 0»2»3M*6; 3 \~2~ 3'4"5'
2

tlCÜ4

2tlCÜ2 0*2*41 tlCü3______31

2*

0 *

Fig. 1.3 Energy level scheme predicted by the simple harmonic 
vibrational model.
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The simple vibrational model predicts the relation

B(EX; N = 2 + N = 1) = 2 B(EX; N = 1 + N = 0) (1.8)A A A A

between the reduced transition probabilities for the two- and one- 

phonon states. Transitions between vibrational states are governed 

by the selection rule AN = ± 1; matrix elements <N | j EX| |N * )A A A
are zero unless this rule is satisfied. As a consequence of the

selection rule "cross-over" transitions are forbidden and static

electric quadrupole moments are zero. For X = 2, both these

predictions have been found to disagree with experiment - "good

vibrators" such as 11 ̂ Cd have non-zero quadrupole moments, and
+ 1 +2 -* 0 transitions have been observed, although these are much

4*1 +weaker than 2 -> 2 transitions.

1.4 The Rotational Model

In the simple rotational model (see for example, Bo75) , 

the nucleus is assumed to be a spheroid possessing axial symmetry. 

Levels composing the ground state rotational band of an even-even 

nucleus have spins and parities J71 = 0+ ,2+ ,4+ ,6+ ,.. . and the energy 

spacing between these levels is proportional to J(J+1). For this 

rotational band, the reduced transition probabilities are given by

B(E2; J + 2 -► J) 15 ( J + 1 H J  + 2) 2 fni 12
32tt (2J + 3 X 2 J  + 5) ^ r o t J (1.9)

where Q is the intrinsic quadrupole moment defined with respect 

to the symmetry axis of the nucleus. In the rotational model, the 

spectroscopic quadrupole moment Q ^ of a state J77 is related to
U



8

Qirot by

V 3K2 - J(J+1) i 
(J + 1)(2J + 3) ^rot (1.10)

where K is the projection of J on the nuclear symmetry axis. In the 

ground state band of an even-even nucleus, K = 0 and will be negative 

for prolate shapes (Q^ot> 0)* Combining eqs. (1.9) and (1.10), one 

obtains for the 2+ state of the ground state band the relation

iQjTrl = 0.9059 [B(E2; 0+ + 2+ ) ] ' 'S (1.11)

which defines the so-called "rotational value" for the quadrupole 

moment.

1.5 Intrinsic Shapes

Since the nuclear shape has a profound influence on the 

collective properties of a nucleus, it is clearly desirable to 

introduce the concept of an intrinsic quadrupole moment Q^, taken 

relative to the principal axis (axis of symmetry) of the nucleus.

The intrinsic quadrupole moment is not only more closely related 

to the shape of the nucleus than the spectroscopic quadrupole moment 

Q t7T, but it does not suffer the problem of Q tt which becomes zero 

for J = 0 or The intrinsic quadrupole moment is of theoretical

interest because in many theoretical models it is related to 

observable quantities such as the reduced excitation probabilities 

and Qj Tt* The concept of an intrinsic quadrupole moment was introduced 

in the rotational model but in this simple model the nucleus was 

assumed to have a fixed spheroidal shape, which has axial symmetry.

In general, a nucleus is not necessarily axially symmetric 

and the nuclear shape is not fixed; instead, the nucleus can spend
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a f r a c t i o n  o f  i t s  t im e  i n  v a r i o u s  s h a p e s .  I n  t h i s  s e c t i o n ,  a scheme 

t o  t r e a t  n u c l e a r  s h a p e s ,  i n  g e n e r a l ,  i n  te rm s  o f  few c o l l e c t i v e  

p a r a m e t e r s ,  i s  d i s c u s s e d ;  l a t e r ,  a m o d e l - in d e p e n d e n t  m ethod f o r  

d e t e r m i n in g  t h e s e  p a r a m e t e r s  from  e x p e r i m e n t a l  d a t a ,  w i l l  b e  d e s c r i b e d .

1 .5 .1  G e n e r a l i zed T r e a tm e n t  o f  N u c le a r  Shapes

I n  t h e  p r e s e n t  s e c t i o n ,  t h e  n u c le u s  i s  t r e a t e d  a s  an  e q u i v a l e n t  

e l l i p s o i d  ( a s  opposed  t o  a s p h e r o i d  w h ich  i s  a x i a l l y  s y m m e t r i c ) , a s  

shown i n  f i g .  1 .4 ,  w i t h  t h e  same c h a r g e ,  v o lum e , and q u a d ru p o le  moment. 

H i g h e r - o r d e r  d e f o r m a t io n s  a r e  i g n o r e d .  The i n t r i n s i c  c o o r d i n a t e  sy s te m  

i s  d e f i n e d  b y  th e  p r i n c i p a l  a x e s  o f  t h e  e l l i p s o i d  and b e c a u s e  o f  

r e f l e c t i o n  symmetry i t  f o l l o w s  t h a t  a 2 1 = o t 2 - l = 0  and a 22 = a 2 - 2

f o r  t h e  a  c o e f f i c i e n t s  i n  e q . ( 1 . 6 ) .  T h e r e f o r e ,  i n s t e a d  o f  

c h a r a c t e r i s i n g  a random ly  o r i e n t e d  e l l i p s o i d  w i t h  f i v e  a 2^ c o e f f i c i e n t s ,  

i t s  sh a p e  i s  c h a r a c t e r i s e d  by  cx2 q  and a 22  and i t s  o r i e n t a t i o n  i n  s p a c e  

i s  d e s c r i b e d  by  t h r e e  E u l e r i a n  a n g l e s .  The two d e f o r m a t io n  v a r i a b l e s  

a 2 Q and a 22 a r e  u s u a l l y  ( s e e  f o r  exam ple B o 7 5 ,p 6 7 7 f f )  e x p r e s s e d  i n  

te rm s  o f  t h e  p a r a m e t e r s  3 and y d e f i n e d  by

CX20 = 3 co s  y and a 22 = 2 2 3 s i n  y ( 1 . 12)

U sing  e q s .  ( 1 . 6 ) ,  ( 1 .1 2 )  and t h e  d e f i n i t i o n  o f  s p h e r i c a l  h a r m o n ic s ,  

t h e  l e n g t h  o f  t h e  t h r e e  p r i n c i p a l  a x e s  can  be  w r i t t e n  a s

R^ = [ 1 + 6 c o s  (y -  — tt k) ] ( 1 .1 3 )

w h ere  k =  1 , 2 , 3  c o r r e s p o n d  t o  t h e  x ' j y ' j Z 1 a x e s  i n  f i g .  1 . 4  and

[5 /  (4 tt) ] 2 ß . ( 1 .1 4 )
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Fig. 1.4 Ellipsoidal shape for quadrupole deformation with ß and y 
positive (from Hy64).

ß - Y_plane

prolate axis

spherical  point

Fig. 1.5 The parameters ß and y as polar coordinates in the ß-y plane.
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In eq. (1.13) it is sufficient to consider only positive values of 

3 and values of y in the range 0° - 60°; other values correspond to 

a relabelling of the axes. From eq. (1.13), it can be seen that 

B = 0 corresponds to a spherical shape (Rj = R2 = R3) ; B>0, y = 0°

to a prolate shape (Rj = R2 < R3) ; 3>0, y = 60° to an oblate shape 

(Rl = R3 > R2) ; and B > 0, 0° < y < 60° to asymmetric shapes (Rj / R2 / R3) .

Any ellipsoidal shape can be represented by a point (B,y) on 

a two-dimensional polar diagram as in fig. 1.5; the distance of a 

point from the origin equals the deformation parameter B and the 

polar angle corresponds to the asymmetry parameter y. In figs. 1.6 - 

1.8 the potential energy of quadrupole deformation V(B,y) is plotted 

on By diagrams for three extreme cases:

a) Fig. 1.6 shows V(3,y) for an anharmonic vibrator. It can be 

seen that a minimum occurs at B = 0, corresponding to a spherical 

nucleus, and that the potential is almost independent of y. The 

potential energy of deformation is obtained as a function of B by 

plotting the values of V(B,y) along the y = 0° and y =60° axes (note 

that (3,60°) = ( - 3,0°) and this is shown on the left of the figure 

(the dashed line represents a harmonic vibrator). The expected 

energy level scheme is shown on the right of fig. 1.6; it can be 

seen that the two- and three-phonon states are no longer degenerate.

b) Typical prolate and oblate nuclei are represented in fig. 1.7. 

These nuclei have very deep minima at 3=0.4 and are permanently 

deformed. Both nuclei have an identical energy level scheme (shown 

on the right of the figure).

c) Fig. 1.8a shows V(B,y) for a triaxially deformed nucleus 

with permanent B and y deformations. The rotational energy level 

scheme according to the Davydov-Filippov model (Da58) is shown in 

fig. 1.8b.



Fig. 1.6. Contour plot of V(ß,y) and energy level scheme of an
anharmonic vibrator (from Be75) .

Fig. 1.7 Contour plots of V(ß,y), and energy level scheme of
a prolate (top) and oblate (bottom) deformed nucleus 
(from Be75).



Fig. 1.8. Triaxially deformed nucleus - (a) contour plot of V(B,y), 
(b) corresponding energy level scheme according to the 
Davydov-Filippov model (from Be75).
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1.5.2 The Sum-Rule Method

Kumar (Ku72, Ku75) has suggested a model-independent sum-rule 

method using electromagnetic data to determine experimental values of 

collective parameters in the intrinsic frame of reference. An extended 

version of this method was used by Cline (C172, C172a) to analyse E2 

data in several regions of the periodic table. Although the method 

has been described in detail by Kumar and by Cline, a brief outline 

is given below. The sums

P (2) = (2J + l)"1 2 |<s||E2||r> I 2 (1.15)S S

and

ps3) - - 5* (2Js + 1)-1(-1)2Js|: ^ 2 | <s|lE2|lr)
' s r t )

x ( r I  IE2I 11 > < 11 IE2I Is > ( 1 . 16 )

(where s, r, and t refer to nuclear states) are evaluated using the 

reduced matrix elements obtained from experiment. The intrinsic 

quadrupole moment and the asymmetry parameter y^ are obtained

from

Q* = (<16ir/5) (1.17)

and
-3/2

Cos 3 y1 = - (7/2)^ P (3) (P(2)) . (1.18)s s K s '

(2) (3)The sums P and P are the expectation values (multiplied by s s
a factor of /If) of the zero-coupled products of E2 tensor operators 

0 _ °{E2xE2} and {[E2xE2]2 xE2} respectively. These sums are invariant 

under rotation of the coordinate frame and have the same value in both 

the laboratory and intrinsic frames. Higher-order sums P^^ and P^^ 

can be used to determine the fluctuations in the magnitude and in the
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asymmetry of the nuclear deformation, but a larger number of states

must be included in the analysis in order to give meaningful results.

It must be emphasized that the values of Q* and y^ , determineds s
according to the above method, are completely model independent and 

can be treated as observables; these parameters are a convenient 

way of representing strongly correlated data such as Q -n and B(E2).J

To interpret the results of the sum rule method in terms of

the nuclear shape, the adiabatic approximation must be used and

certain assumptions must be made concerning the charge distribution

(for example, a uniform distribution of charges, and a sharp cut-off)

and, to this extent, the nuclear shape which is deduced becomes model

dependent. As before, the nucleus is treated as an ellipsoid, and

the parameters (ß ,y J which describe the ellipsoid are related to the s s
intrinsic observables (Q^ ,y*) by y = y^ and bys s s s

ßs =  ( tt/ 5 ) ^  Q* (z(s|r2|s>)"1 . (1.19)

The value of the mean square charge radius (s|r2 |s) can be obtained

directly from electron-scattering or from mu-mesic data. Alternatively,

following the procedure outlined by Kumar, (s|r2 |s) may be expressed

in terms of the radius R of a sphere of equivalent volume. (In the
1/3present work R =  1.2 A fm.) If the latter procedure is followed, 

then in the limit of small deformation, eq. (1.19) reduces to

ß = (5-njh Q 1 (Z R 2)“1 , (1.20)s s

which is the relation of Bohr and Mottelson (Bo53) for a spheroid. The 

effect of this approximation is to change ßg by less than 1% for values

of ß < 0.16 .
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The sum-rule method will be applied in chapter 6 for a 

systematic study of the shapes of nuclei between A = 184 and

A = 206.
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CHAPTER 2

THE MEASUREMENT OF QUADRUPOLE MOMENTS

In the present chapter, the different experimental methods 

which can be used to measure electric quadrupole moments are briefly 

described. Since in the present work quadrupole moments were 

determined from the reorientation effect in Coulomb excitation, the 

relevant aspects of Coulomb excitation theory are discussed. Some 

important effects which can affect the value of Q  ̂obtained from
Ü

reorientation experiments, and which must be taken into account, 

are also treated. At the end of this chapter, an outline is also 
given of a computer program which was used to calculate excitation 

probabilities from Coulomb excitation theory.

2.1 Methods for Measuring Quadrupole Moments of Excited States

The most common method of determining a nuclear quadrupole 
moment to measure its interaction with an electric field gradient. 
Most experiments measure the interaction energy, and this is 

proportional to the product of the quadrupole moment and the electric 

field gradient (Ja62 eq. (4.17)). To extract Qj-r* the electric field 
gradient must then either be calculated or measured independently.
For an axially symmetric spheroid with symmetry axis z exposed to a 

constant electric field gradient dE/dz, the interaction energy may 

be written quantum mechanically as (Hä74),

Eq = ^ e Q j7T(dE/dz)[3M2 -J(J+l)]/J(2J-l) (2.1)

where J is the spin and M is the magnetic quantum number of the
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*

nuclear state. For states with J = 0 or % the interaction energy is 

zero; as discussed in section 1.5, this does not imply that the 

intrinsic quadrupole moment Q^, which is referred to the symmetry 
axis, is necessarily zero. Since the interaction is quadratic in 

M, states whose magnetic quantum numbers differ only in sign are 

degenerate. (This degeneracy can be removed by the presence of an 
additional magnetic field.) When M = J  the interaction energy reaches 

a maximum,

E = | e  QjTr(dE/dz) H = J . (2.2)

The various ways of producing an electric field gradient 

at the nuclear site give rise to the different experimental methods 
employed. These methods have been described by de Boer and Eichler 

(deBo68), McGowan and Stelson (McGo74), Häusser (Hä74), Bodenstedt 

(Bo75a), and references therein, and are briefly outlined below.

a) External field gradients
The highest electric field gradients that can be produced by 

external electrodes in the laboratory are of the order of 1014Vcm-2, 
giving rise to a maximum interaction energy E^ « 10_11eV for 

= lb. This is too small to be measured experimentally.

b) The Mössbauer Method

In crystalline solids a nucleus situated at a lattice point 

can be subject to strong local electric (and magnetic) fields, usually 

referred to as hyperfine fields. In the Mössbauer method, the 

absorber is made by implanting the nucleus being studied in a host 

lattice with a low order of symmetry and, in this way, hyperfine fields 

up to 1018Vcm-2 can be obtained at the nuclear site. The source consists
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of the same nuclei embedded in a cubic crystal lattice where, because 

of symmetry, the hyperfine fields are zero. (This is sometimes referred 

to as an unsplit source.) The absorber nuclei are excited by resonant 

gamma-ray absorption and then interact with the hyperfine field causing 

a splitting of the magnetic substates of the states taking part in the 

transition (providing their spin > %) . The energy shifts are of the 

order of 10“7 - 10~6 eV and can be measured from the absorption spectrum. 

The source and absorber must be cooled to minimise lattice vibrations 

and gamma-rays must have energies low enough (< 200 keV) so that they 

are emitted without recoil. The major uncertainty in the values 

obtained for quadrupole moments arises from the uncertainty in the 

strength of the hyperfine field at the nuclear site. These uncertainties 

are usually large, and Mössbauer measurements at present are more useful 

in providing ratios of quadrupole moments for different nuclear states 

or for different isotopes.

c) Perturbed angular correlation experiments

As for the Mössbauer method the nucleus being studied is 

implanted in a crystal lattice. The interaction of the quadrupole 

moment with the electric hyperfine field causes a precession of the 

nucleus which perturbs the angular distribution of the deexcitation 

gamma rays. From the precession frequency = E^/h an<̂  knowledge 

of the hyperfine field, can be determined. Two methods have been

used to measure

1) A single crystal source or target is prepared and the time-

integrated correlation (or distribution) is observed as a function of

the orientation of the crystal symmetry axis. The precession frequency 

is obtained from the measured attenuation coefficients. (These are a
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function of (û t)2, where t is the lifetime of the state.)

2) A polycrystaline source or target can be used and the angular

correlation (or distribution) is obtained as a function of time 

(differential method).

These methods are applicable provided that the mean lifetime 

t of the state is greater than the period of precession; i.e. 

t > h/Eq « 10~9 sec. The main drawback of this technique is that 

the accuracy of the measured is limited by the accuracy with 

which the electric field gradient can be determined. Furthermore, 

because of the M2 degeneracy (eq. (2.1)) the sign of the interaction 

Eq and hence that of can only be determined by measuring the

circular polarization of one of the gamma rays, by polarising the 
initial state, or by measuring the (3-y directional correlation with 

an unpolarized source.
In addition to using radioactive nuclei implanted in crystals, 

other nuclei can be studied using recoil implantation; nuclei 

following nuclear reactions or Coulomb excitation recoil to implant 
themselves in a suitable target backing (Gr70,B172). This method, 

however, has the additional complication of changes to the electric 

field gradient due to radiation damage to the crystal lattice (He71).

d) Muonic X-rays

A muon moving in a lower atomic orbit can spend a large 

fraction of its time inside the nuclear volume, and this feature 

can be used to probe the nuclear charge distribution. The muonic 

orbits are m^/m^ = 200 times closer to the nucleus than the corresponding 

electronic orbits and electric field gradients are therefore much larger. 

The hyperfine interaction can give rise to energy shifts E q ^ ^ Ä 100 keV
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and this is comparable to the excitation energies of low-lying nuclear 

levels so that the muonic X-rays and nuclear gamma rays are strongly 

mixed. The quadrupole hyperfine splitting is proportional to Q -Z3J

and with present Ge(li) detectors the method is limited to nuclei 

with Z > 25. The value of is obtained by assuming a shape for 

the radial nuclear charge distribution and this is model dependent.

e) Inelastic scattering

It is possible to obtain a measure of the nuclear deformation 

by measuring cross sections for inelastic scattering of protons, 

deuterons, and helium ions at energies where the nuclear interaction 

predominates. (This method then does not rely on the electromagnetic 

interaction.) These data are analysed in terms of a model describing 

the nuclear surface using a deformed optical potential and the 

method of coupled channels (to include multipole excitations). A 

model-dependent value of can then be determined from the set of 

parameters giving the best fit to the data.

f) Coulomb excitation

Coulomb excitation refers to the process whereby the close 

passage of a charged particle (the projectile) can give rise to 

transitions from the ground state to excited states in a target 

nucleus. If the excited nucleus is deformed, it will have a quad­

rupole moment Q  ̂which can interact with the time-dependent electric*J

field gradient produced by the projectile. The interaction between 

QjTj and the electric field gradient causes the magnetic substates to 

be split in energy (see eq. (2.1)) and because of the strong dependence 

of the Coulomb excitation probability on excitation energy, the extent 

to which the various magnetic substates are populated therefore depends
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on Qjtt* The change in population of the magnetic substates corresponds 

to a reorientation of the nuclear spin axis and this forms the basis 

for the term "reorientation effect" (Br55,Br56).

Whether or not the target nucleus (A2,Z2) and the projectile 

(Ai,Zi) come within the range of nuclear forces, Coulomb excitation 

will occur. However, if the initial bombarding energy E of the 

projectile is low enough, the distance of closest approach (between 

centres and assuming spherical nuclei)

d = 1.44(1 + A1/A2)Z1Z2/E fm (2.3)

will be sufficiently large that Coulomb excitation is essentially the 

only process taking place. Energies for which this is the case are 
referred to as "safe energies" and a more quantitative definition of 

these will be given in chapter 5. The reason for performing 
experiments at safe energies is that the Coulomb interaction is 
well understood whereas a model must be assumed for the nuclear 
interaction.

The reorientation effect has been used to measure quadrupole 

moments of the first excited states of stable even-even nuclei from 
180 to 208Pb. The quadrupole moments of higher states can, in 

principle, also be measured (see for example 0 ’Br77) but multiple 

excitation via lower excited states is an important effect (in 

addition to interference from higher excited states; see subsection 

2.2.4) and the relevant matrix elements must be known to a high 

accuracy if is to be determined with reasonably small errors.

The theoretical basis of Coulomb excitation is described in detail 

in section 2.2 and a survey of experimental techniques is made in 
chapter 3.
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2.2 Semiclassical Coulomb Excitation Theory

Coulomb excitation theory is now well established and a number 

of excellent treatments of the subject have been given by Alder et al. 

(A156), de Boer and Eichler (deBo68), Häusser (Ha74), McGowan and 

Stelson (McGo74) , Newton (Ne75), and by Alder and Winther (A175).

While only a quantum mechanical treatment is rigorously correct, 

an insight into the physical processes that take place is more 

easily gained from semiclassical theory and computations of excitation 

probabilities are considerably simplified. In many cases, the two 
are in close agreement and as will be shown later, it is possible to 

modify the results from semiclassical theory to account for quantal 

effects. The remainder of this section will therefore deal only 
with semiclassical theory.

2.2.1 General Description
The most significant approximation in semiclassical theory 

is the treatment of the dynamics of the Coulomb excitation process 
in terms of classical Rutherford scattering; that is, particles 

are assumed to follow hyperbolic orbits. For this approximation 

to be valid, the following conditions must be satisfied:

1) The ratio of the distance of closest approach d, to the

de Broglie wavelength X of the projectile must be large; this is 

parametrised in terms of

q = d/2X = a/X = ZjZ2 e2/h v. »  1 (2.4)

where X = X/2tt, a is half the distance of closest approach, and v^ 

is the initial velocity of the projectile in the centre of mass

system.
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2) The energy AE of the excited state must be small compared

to the bombarding energy of the projectile, i.e. AE/E << 1, so that 

the energy loss of the projectile does not unduly modify the orbit.

By using the symmetrised velocity v = (v^v^)2 (where is the 

final projectile velocity), the semiclassical treatment can be made 

to correspond more closely to the correct quantal solution.

Assuming that conditions 1) and 2) are satisfied, the excitation 

cross section for a level f is given in the centre of mass system by

(do/dfi). Pif (do/dfJ)R (2.5)

where P  ̂ is the probability of excitation from an initial level i 

to a final level f, and (da/dft)_ is the cross section for elastic 

scattering given by the Rutherford law,

(do/dft) (1/4) a2 sin”4 (0/2) (2.6)

where 0 is the centre of mass scattering angle.

The probability P ^ for the excitation is given by
( 2

-1 X(2J. + 1 )' (2.7)
M.M_ l f

where and are the magnetic substate quantum numbers of the 

initial and final states and the b  ̂ are the transition amplitudes 

between the magnetic substates |j^M^> and |j^M^>. Note that in 

eq. (2.7) it is assumed that the initial state is unpolarized and 

that any polarization of the final state is undetected; one 

therefore averages over the magnetic substates of the initial state 

(giving the (2J\+1)-1 factor) and sums over the final substates.
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2.2.2 Perturbation Theory

Time-dependent perturbation theory (see Di66 for example) 

may be used to evaluate transition amplitudes. To second order, 

the transition amplitude from an initial magnetic substate 

to a final magnetic substate |j^M^> is expressed as

(2) + 2 b (2.8)

where b ^ ^  is the first order transition amplitude

b (1)if (ih)
(CO

< JfMf lHint(t) lJ;M ; > exp(it(Ef - E i)/h)dt
—00

(2.9)

and

(ih) -2 (J.m J h . (t) IJ M > exp(it(E - E )/h)dt f f int n n f n

x
t
<J M |H. (t')IJ.M > exp(it'(E - E.)/h)dt' n n' int l i n l

— oo (2.10)

where the subscript n refers to an intermediate state.

In this case, the time-dependent Hamiltonian (t) refers

to the Coulomb interaction and,treating the projectile as a point 

charge Ze, it is given classically by

H. (t) int
r p(r)Ze
---------- dV

J |r-R(t)|
(2.11)

where R(t) is the position of the projectile in the centre of mass 

system, p(r) is the charge density of the protons in the nucleus, 

dV is a volume element at position r, and the integration is over 

all the nuclear volume. Equation (2.11) can be expanded in terms
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of multipole moments (Ja62),

H. (t) = 4it Ze £ £ (2X+1) 1 R X 1 Y. (6 ) M*(EX,y)
lnt X-l y ~ X  XtJ P P

(2.12)
where Y, (0 ,d> ) is a spherical harmonic and M(EX,y) is the nuclear Ay P P
electric multipole operator of order X. The monopole-monopole term 

is already accounted for by the prescribed motion along a Rutherford 

orbit and is therefore not included in eq. (2.12). With this latter 

expression for (t) it may be shown (see A156 for example) that

the transition amplitude b ^ ^  is proportional to the matrix element 

< | M ( E X , y ) I ) which in turn is proportional to the reduced 

matrix element < ||M(EX)||Jf ) ; similarly, b^  ̂ is proportional 

to the product <J ||M(EX)||Jn > <Jr ||M(EX)||Jf > .

By substituting the second-order transition amplitude 

(eq. (2.8)) into eq. (2.7), the total excitation probability may 

be expressed as

Pif + I P  
n

(12)
inf

where

cc < J.l |m (e x )| |jf )|2

represents the first-order excitation probability, and

(2.13)

(2.14)

Pinf “ < I |M(EX) ! I Jf > <J.||M(EX)||jn > <Jn ||M(EX)||jf >

(2.15)

arises from interference between first and second order excitation.
(22)Higher order terms P are small and have not been included. For

a three level system, the types of processes that may give rise to
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the terms in eq. (2.15) are shown pictorially in fig. 2.1, and are 

discussed in more detail in subsections 2.2.3 and 2.2.4.

The first-order excitation probability is given explicitly

by

F(0,O B(EA; i + f) (2.16)

where F(0,£) is an excitation function. The reduced transition 

probability

B(EA; i + f) = (2 J.+l) 1 |< Ji | |M(EX) | | Jf > |2 (2.17)

is related to the partial width T for decay by a gamma ray of 
t

mulipolarity EX from state f to state i by

r x 8tt(X+1)
A[(2A+1) ! ! ] 2

(E  ̂2X+1 
Y B(EX; f + i) (2.18)

(see Sk67 for example) where E^ is the energy of the gamma ray. The 

function F(0,£) is a maximum at 0 = 180° and decreases slowly with 

decreasing angle until at forward angles it falls off rapidly. The 

function F(0,£) is strongly dependent on the adiabaticity parameter 

£ which is the ratio of the collision time a/v and the period of the 

nuclear transition h/AE, i.e.

K = aAE/(hv) . (2.19)

The excitation will be strong when £ < 1 and can be shown to fall off 

approximately as exp( - 2tt £) when £ >> 1 (Bi65) . Clearly, the higher 

the excitation energy of a state, the less strongly it will be excited.



z
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zẑc— f

I

Fig. 2.1 Schematic representation of first order (double arrow) 
and second order (single arrow) processes for cases 
where n=f and n=z. The centre diagram represents 
the reorientation effect and the right hand diagram 
represents excitation via a higher state.
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2.2.3 The Reorientation Effect

If the intermediate state n is in fact one of the magnetic 

substates of f then (2.15) becomes

P(12)
iff oc < j ± I|M(EX)I|jf> 2 <j£ I|m (e x)I|jf> (2.20)

The observed static electric multipole moments of state f are related 

to the reduced matrix element ( | | M(EX)| |j^) ; for the quadrupole

moment the relation for a state with spin J is

V (¥)'
J(2J-1)

(J+l)(2J+1)(2J+3)
~k

<j||M(E2)I|J> . (2.21)

(12)The term P ^  therefore represents the reorientation effect. 

The size of the reorientation effect can be compared to that of first 
order excitation by considering the quantity

piff)// p if1) = p(e'5)V  (2-22>

where p(0,£) is the sensitivity parameter given by

Aj AE
p(e>S) = kJ Zl (1 + A i'/A2) K(e>5) (2-23>

where
k = (175/32tt)^ ~ 1.32 for J = 2J

kj = (21/4tt)^ «1.29 for J = 3 .

The dependence of the function K(0,£) on 0 and  ̂ is shown in fig. 2.2. 

Clearly, a large projectile mass and a large scattering angle will
Iincrease the size of the reorientation effect. The reorientation effect

is also larger for states with high excitation energies.



K(f
,0)

1.0 1.2£
Fig. 2.2. The function K(9,£) in eq. (2.23) (from deBo68)
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Considering only first-order excitation and reorientation, 

one can then write (from eqs. (2.13), (2.16), and (2.22)) the excitation 
probability as

Pif = F(0,O B(EX; i + f) [1 + p(6,^)Qj7T] . (2.24)

The dependence of on can be used to determine Qjtt, 

and such experiments are described in detail in section 3.1.

2.2.4 Interference from Higher States

As implied in eq. (2.13), if the intermediate state n is a 
higher excited state z in the nucleus, then one must add terms of 

the form

Piz£) = B(e,£lz,Czf) <Ji ||M(EX)||jf> <J1 ||M(EX’)||JZ>

X < jJ |m (EA") I ] Jf ) (2.25)
to the excitation probability in eq. (2.24). The probability of 
multiple excitation becomes particularly large when bombarding with 
heavy ions.

In reorientation experiments the interference from higher states 

must be taken into account because their contribution to the total 

excitation probability of state f is of the same order of magnitude 

as that from the reorientation effect. It has been found (St67) that 

if the quadrupole moment of the first 2+ state is being measured, 

then interference from the higher 2+ states is the most important, 

however ideally all other states should also be considered.

Although the magnitudes of the matrix elements in eq. (2.25) 
are often known from other experiments, most experiments measure the
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square of a matrix element and its sign is unknown. This means that 

the sign of the matrix product in eq. (2.25) is not usually known 

and this gives rise to an ambiguity in the measured value of Q^tt 

depending on whether the interference is constructive (the excitation 

probability is increased) or destructive (the excitation probability 

is decreased) and for this reason, two values of are usually quoted. 

The sign of the interference is most conveniently described in terms of 

the quantity (Ku69)

P4 MifMizMfzMff /  lMifMizMfzMi (2.26)

where represents the reduced matrix element <J ||M(EX)||) .

This quantity has the advantage of being independent of the phase
chosen for the matrix elements.

Although it is difficult to measure P4 experimentally, a

number of techniques have been used to determine the sign of the
interference for 102Ru(Fa76), 106,108,110p<j (Be70,Ha76), 114Cd(La72),

186,188qs (Ba76), and 194Pt (Ba76). When considering the first 2+

state it was found, for interference from the second 2+ state (i.e.

the 2 state), that P4 = - 1 for all these cases except 194Pt. A

value P4 = - 1 means that the interference is constructive when
Q2+ < 0  and destructive when Q2+>0. Kumar (Ku69) has made

theoretical calculations based on the pairing-plus-quadrupole model

and predicts P4 to be negative for all isotopes of W, Os, and Pt

except 192Pt. Considering the two limits of collective motion,
Kumar has shown that in the vibrational limit P4 = - 1, and that in the

+  'rotational limit P4 = - 1 if the 2 state belongs to a y-band
+ '(K = 2) and P4 =+l if the 2 state belongs to a ß-band (K=0) . The result

4.»
fcr 19l+Pt remains a problem as the implication that the 2 state belongs
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to a ß-band is not consistent with the spectroscopy of 194Pt (Ba76).

2.2.5 Interference from the Giant Dipole Resonance

In addition to the interference from intermediate states with 

relatively low excitation energies, it has been found (Ei64) that 

virtual excitation of a final state f via the 1 states of the giant 

dipole resonance (GDR) can have a significant effect on reorientation 

measurement. (The probability of actually populating these 1 states 

is, however, vanishingly small because of their high excitation energy.)

In perturbation theory, the interference term has a form similar to 

that of eq. (2.25), i.e.

pif2) = <Ji l|M(EX)||jf> z D(e,ein,cnf) < j J  |M(EX’)||jn > <jJ|M(EX")||jf>

(2.27)

where n refers to the states in the GDR.

For a 2+ final state, X ' = X"= 1 and if we make the assumption 

|( JL I |M(El) I IJ^> I = |( I |M(E1) I I Jj.) I then p||^ becomes proportional 

to the minus-two moment of the photoabsorption cross section,

-2
o(E) 16,3 |( j± l lM(ED I |jn >|2

9hc n E - E. n l
(2.28)

which can be experimentally determined. From photoabsorption 

measurements it has been found (Le57) that

5/3a_2 = 3.5 k A yb/MeV (2.29)

where k «s 1 for most nuclei with A >20.

Classically, the dipole interaction between the projectile and 

the target nucleus may be interpreted as a dipole polarization of the 

nucleus. For a deformed nucleus the interaction energy between
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the projectile and the induced dipole moment of the target nucleus 

is found to be proportional to o  ̂ (de B068, Hä74). The effect of 

the GDR can thus be included by adding V  ̂ to the Hamiltonian 

H_̂ nt(t), and this correction can be conveniently incorporated into 

the de Boer-Winther computer program discussed in section 2.3.

For final states other than 2+ (and 0+), X" ̂  1 and therefore
(12)P_ĵ  in eq. (2.27) is not proportional to o T h e  effect of the 

GDR may be calculated by treating the GDR as a single intermediate 

state. In many cases the values of all the reduced matrix elements 

in eq. (2.27) are not known and some must be estimated.

2.2.6 Quantal Corrections

The quantum mechanically correct form of eq. (2.24) may be 

written as

Pif = F ( 6 ’S ’n) B<EX; i + f) U  + P (0 ,£,n)QJ1T] (2.30)

where n is defined in eq. (2.4) and n = 00 in the semiclassical 

approximation. For reorientation experiments, the semiclassical 

treatment gives sufficiently accurate (i.e. to better than 1%) 

excitation probabilities if n > 50 but for smaller values a quantal 

correction must be applied.

It may be shown (A169) that the quantal correction to the 

excitation amplitude is of the order of 1/n; this means that the 

correction to F(0,£,°°) will be of order 1/n2 and that to p(0,£,°°) 

of order 1/n* The quantal corrections can be conveniently applied 

by using the relations (A169, Ha74),
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F(8,c,n) . , , rüi•\2 [ F(e,g,no) _ .
F(0,5,~) ( r \ > L F(e,c,“) ( 2 . 3 1 )

and

p(9 ,C»n)
p ( e , S , ° ° )

ÜQ. r p ( 9 ,C ,n o )  _ ,
n L p ( e ,S , ° ° )

(2.32)

These equations imply that it is only necessary to calculate the 

functions F(0,£,n) and p(0,£,q) for one value q = q0 and results 

for other values of q can be extrapolated. Values of these functions 

for q = 4, 8 and 00 have been tabulated by Alder et al. (A172) for E2 

excitation but regretably not for E3.

Typical quantal corrections applied in the case of 204,206pb 

are listed in table 2.1. It can be seen that although the quantal 

correction to F ( 0 , £ , ° ° )  is small (< 0.2%), that to p ( 0 , £ , ° ° )  is as 

large as 17%. However, as will be pointed out in chapter 3 the value 

of Q2+ is, in the present experiment, proportional to the difference 

in p for different projectiles; using Pi+He = 0.04 and Pi6q = 0*16 

(see figs. 5.6 and 5.7), the quantal correction to the value 

I P 16r» ” P4u I i-s 0*3%. Quantal corrections are therefore expected to 

have a small effect on in the present work (see subsection 5.4.2).

Table 2.1 Typical values of quantal corrections applied 
in the case of 20l+>206pb (0 = 171.6°)

Projectile n F ( e , E , n ) / F ( 9 , e , » ) p ( 9 , S , n ) / p ( 9 , S , ° ° )

15 MeV 4He 13.4 0.9980 1.17
46 MeV 12C 39.8 0.9998 1.06
60 MeV 160 53.6 0.9999 1.04
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2.2.7 Corrections to the Rutherford Orbit

A number of processes can give rise to small changes in the 

Rutherford orbit. If it is assumed that the main effect of these 

deviations is associated with a change in the distance of closest 

approach, then the effect can be simulated by a small change in the 

bombarding energy, i.e.

E = E + 6E (2.33)ef f

where 6E is the correction applied to the bombarding energy E (in 

the laboratory frame of reference). Calculated values of SE for 

the various effects are listed in Table 2.2.

a) Electron screening

The atomic electrons around the target nucleus have the effect 

of screening the repulsive potential of the nucleus. The distance of 

closest approach is therefore decreased and an expression for the 

effective increase in bombarding energy has been given by Saladin 

et al. (Sa69) ,

6E = + Zj (32.65 Z2?/5 - 40 Z22/5) (l+Ai/A2)eV.

(2.34)

b) Vacuum polarization

In quantum electrodynamics an interesting phenomenon is the 

virtual polarization of the vacuum arising from the existence of the 

electron-positron field. An important consequence of vacuum 

polarization is the increase in the electrostatic interaction between 

two charges. At separations between the charges of the order of 

10 ^  m, the correction to the Coulomb law is of the order of 0.5%,
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and increases logarithmically at smaller separations (Fo54). A 

manifestation of vacuum polarization is its contribution to the 

energy difference between the 2p: and 2sl atomic levels in hydrogen 

(the Lamb shift). In the present work, vacuum polarization is 

accounted for by using an effective bombarding energy obtained by 

adding to the actual bombarding energy the correction (A175),

6E 1.55 E sin(0/2) In 134.5 E Sin(6/2)_______
+ A!/A2) (1 + Sin(6/2) keV (2.35)

where 6 is the scattering angle in the centre of mass system. (Note 

that 6E is in the laboratory system.) 

c) Relativistic Effects.

Relativistic effects associated with charges in the Rutherford 

orbit can be estimated by the correction (A175),

6E - - °-54 + W  • i~^Sln(e/f) 11 + 2 Sin (e/2)1 kev (2-36)

to the bombarding energy. As can be seen from Table 2.2, relativistic 

corrections are negligible in the present work.

Table 2.2 Corrections 6E(keV) applied to the bombarding energy to account 
for electron screening, vacuum polarization, and relativistic 
effects (laboratory angle of 171.6°). The percentage change in 
the excitation probability P ^ of 204,206pb (£2 excitation) and 
of 208Pb (E3 excitation) due to these corrections is also listed.

Projectile Electron
Screening

Vacuum
Polari­
zation

Relati­
vistic
Effects

Total
Correc­
tions

2 0 4 , 2 0 6 pb
a p 2+

208Pb
a p 3_

15 MeV 4He 31 - 42 - 0.1 - 11 - 0.38% - 1.12%
46 MeV 12C 98 -126 - 0.3 - 28 - 0.32% -
60 MeV 160 133 -161 - 0.4 - 28 - 0.25% - 0.69%

2.3 Computer Calculations
As mentioned previously, when bombarding with heavy ions,

interference due to excitation via higher states becomes important.

In general, it is difficult to account for these using perturbation
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theory and it is more convenient to use the multiple Coulomb excitation 

program of de Boer and Winther (Wi66).

The nuclear wave function |^(t)> satisfies the Schrödinger

equation

ih |*(t)> = [H0 + H int(01 h(t)> (2.37)

where Hq is the Hamiltonian of the free nucleus. If the eigenstates 

|r) of H are defined by H | r ) =  E |r> , the nuclear wave functionI 0 j o 1 r 1
|ijj(t)> can be expanded in terms of these, i.e.

|^(t)> = 2 b r(t)|r> exp(i t/h) (2.38)

where b^(t) are time-dependent amplitudes. From these definitions, 
it can be seen that the Schrödinger equation is equivalent to the 
following set of coupled linear differential equations

ih b (t) = S(r|H. (t)|s> exp[i(E -E )t/h] b (t) . (2.39)r g it s s

The program performs a numerical integration with respect to t in order 

to obtain the final excitation amplitudes. It must be noted that the 

values obtained from the program are still semiclassical (i.e. they 

assume a semiclassical trajectory) and corrections for quantal effects 
must be applied.

The accuracy to which the integration is performed is specified 

by the accuracy control parameter a^ (Wi66) . At the end of each 

integration step, an estimate of the truncation error F (defined in 

Wi66) is made; if F > the step width is halved, and if F < ac/50 

the step width is doubled. Parameter a^ also controls the range of 

integration; small values of a^ increase the range.
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The accuracy of the computed excitation probabilities PJ r comp
was tested by decreasing a^ in powers of 10 until the results obtained
converged to the same value of P to within 0.1%. For values downcomp

-3to Pcomp Ä 10 this requirement was easily satisfied by setting
a < 10 ^. However, for smaller values P % 10  ̂ (such small c comp
excitation probabilities were encountered for the 3 state in 208Pb,

when bombarding with 15 MeV ^He ions) it was found that setting 
—8a^ < 10 was no longer adequate and computed values fluctuated 

within 1% of a mean value. While the cause for these fluctuations 

is not entirely clear, they may be explained by the following:

a) The expression used to calculate the truncation error may be 

an underestimate when small excitation amplitudes are involved, so 

that the resulting step widths are too large.

b) When very small values of a^ are used, the range of integration 
is unnecesarily increased and the larger number of integration steps 
may give rise to a bigger truncation error.

It was therefore decided to modify the program such that

F ? = 14F was taken as the estimate of the truncation error. This

had the effect of forcing the integration to proceed by smaller steps

without increasing the integration range. The integration steps were

further kept small by requiring that F' < a^/200 before the width

was doubled. Although computation time was approximately doubled
—8these modifications ensured that (for a < 10 ) the values obtainedc

—8 —5for P were accurate to better than 10 , i.e. 0.1% of P = 10comp
The use of this Coulomb excitation program in the data 

analysis will be described in chapter 5.
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CHAPTER 3

EXPERIMENTAL TECHNIQUE IN REORIENTATION MEASUREMENTS

In this chapter, the experimental methods which have been used 

to measure electric quadrupole moments using the reorientation effect 

in Coulomb excitation are briefly described, and the relative merits 

of each method are discussed. The experimental procedure employed in 

the present work is described in detail in section 3.2. The presence 

of certain contaminants in the targets could severely affect the data; 

section 3.3 describes the measures taken to reduce target contamination, 

and the tests performed on the targets to derive upper limits for these 
contaminants. Finally, because the excitation probabilities are very 

sensitive to the bombarding energy (see table 3.5) it was necessary to 

perform an energy calibration for the two accelerators used in the 
present experiment (see section 3.4).

3.1 Experimental Techniques used in Reorientation Measurements

In recent years, a number of different experimental techniques 

have been used to determine the electric quadrupole moment of the first 
excited states of nuclei by means of reorientation effect (Ch72, K175).

In principle, measurement of the excitation probability and knowledge 

of the B(EX) (e.g. from lifetime measurements) should be sufficient 

(see eq. (2.24)). However, the small effect of the quadrupole moment 

on the total excitation probability (for 160 projectiles it is 16% per 
barn for 204,206pb^ and 20% per barn for 208Pb) means that the B(EX) must 

be known to a greater accuracy than is normally available from previous 

work. For this reason, it is usual to measure excitation probabilities Pc
and P for different bombarding conditions so as to vary the size of the

p
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reorientation effect. This procedure yields two or more equations 

(identical to eq. (2.24)),

Pa = Fa B(EX) [1 + pa QjJ (3.1a)

Pg = Fg B(EX) [1 + Pg Qjlt] (3.1b)

where the functions F and p may be evaluated from perturbation theory 

or with the de Boer-Winther program. If absolute values of P^ and P^ 

are measured, then equations (3.1a) and (3.1b) may be solved 

simultaneously to obtain B(EA) and Qjtt* If only relative values are 

measured, then

VPB - VV 1 +fc.-W1 (3-2)
and only can be determined. In both cases, the sensitivity of 

the experiment to the quadrupole moment depends on the quantity 

Ip^-pgl which may be maximised by appropriate choices of the 

parameters Aj, 6, and £ (see eq. (2.23)).

a) Dependence of the reorientation effect on bombarding energy.

As can be seen from fig. 2.2, the function K(0,£) (in eq.

(2.23)) is only weakly dependent on £. This means that in experiments 

which vary the bombarding energy (and hence O  the variation in the 

excitation probability P is relatively insensitive to Qjtt* In addition, 

the need to perform experiments at safe energies and yet still obtain 

reasonable count rates places a severe restriction on the range of 

bombarding energies that may be used. This type of experiment is 

therefore rarely performed.

b) Dependence of the reorientation effect on scattering angle. 

Varying the scattering angle 0 can produce large changes in

the value of K(0,£) (see fig. 2.2) and therefore jp^-p^l can be
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made large, particularly if heavy ions are used. Since the data may be 

collected at several angles simultaneously, this method makes 

economical use of accelerator time. However, at forward angles 

the differential cross section changes rapidly with 0 (see for 

example Bi65, fig. 2.5). Extreme precautions must therefore be 

taken to define the scattering angle precisely(to of the order of 

0.1°).

c) Dependence of the reorientation effect on projectile mass.

Bombarding with projectiles of different mass can produce

large changes in p. The requirement to operate at safe bombarding

energies with each projectile results in similar values of the

value of the function K(0,O is then almost constant and therefore

|p - p I is roughly proportional to the difference in mass of the a p
projectiles. Typical projectiles that have been used are 4He, 12C, 

1&0, and 32S, because the excitation energy of their first excited 

state is sufficiently high that the excitation probability is low 

compared to that of the target nucleus and the respective inelastic 

peaks are well separated in the spectrum. It is advantageous to 

detect the scattered projectiles near 180°, not only because K(0,£) 

attains a maximum, but because then the functions F(0,£) and K(0,£) 

vary only slowly with angle and 0 does not have to be precisely 

defined.

3.1.1 Measurements Involving Gamma Rays

a) Gamma-Ray Singles Experiments.

This method has been fully described by Steadman et al. (St70) 

and consists of measuring the intensities of gamma rays detected in 

singles from a thick natural target bombarded with different
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projectiles. From the relative intensities I^/I^, the relative 

contribution of the reorientation effect in each isotope can be 

determined and the difference in the quadrupole moments between 

the isotopes is obtained,

I (Q a a °>'VQß Q)(1 +’« V W (3.3)

where

IP = (A1/Z2) AE K(0,O/(1 + Aj/A2) (3.4)

and K(0,£) is the function K(9,£) averaged over 0 and £. If the 

value of Q for one isotope is known (from other measurements) then
«J

one may obtain for the others. This technique is experimentally

simple and since the cross section integrated over a large number of 

angles is measured (by placing the Ge(Li) detector close to the 

target) high count rates are obtained. One must, however, make a 

correction for the variation of the detection efficien c y with gamma- 

ray energy. Frequently, a major difficulty in this type of experiment 

is the extraction of accurate intensities from complex singles gamma- 

ray spectra.

Of particular relevance to the present work is the use of 

this technique by Barnett et al. (Ba72) to measure Q3_ for the 3 

state in 208Pb. The value obtained depended on an assumed value 

for the quadrupole moment of the first 2+ state in 208Pb.

b) Particle-gamma ray coincidence experiments.

In this method, coincidences between inelastically scattered

particles (detected in a surface barrier detector) and deexcitation

gamma rays are observed, and the excitation probability is obtained

from the coincidence yield I . and the singles yield (I „ + I. n)come el inel
in the surface barrier detector. In this type of experiment one
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must take into account the efficiency of the gamma-ray detector, the 

gamma-ray angular distribution, and dead time losses in the coincidence 

electronics and in the analog to digital converters (ADC’s).

The gamma-ray angular distribution is attenuated when the 
highly ionised atoms recoil in vacuum; any unpaired atomic electrons 

will produce randomly oriented magnetic fields which interact with 

the magnetic dipole moment of the nucleus causing a precession of the 
nuclear spin axis. For this reason, one must measure the gamma-ray 

angular distribution to determine the hyperfine attenuation coefficients. 

The dependence on the attenuation coefficients can be eliminated by 

using thick targets (or thick target backings) so that the nuclei no 

longer recoil in vacuum.

With this technique, can be determined by using different

projectiles or by detecting particles at different angles; in some 
experiments, B(EX) values have also been obtained. This latter 
method has been used by Olin et al. (0174) to measure the quadrupole 

moment of the first 2+ state in 204Pb.

c) Reorientation precession method
This method differs from those described in parts a) and b) 

in that it does not measure excitation probabilities but determines 

QjTt from its effect on the gamma ray angular distribution, i.e. on 

the magnetic substate populations (see section 2. If) of the excited 

state. Two experimental arrangements to measure this effect have 

been suggested by de Boer and Eichler (de Bo68) and these have been 

applied in experiments performed by Grodzins et al. (Gr73) and by 

Hasselgren et al. (Ha76). The basic principle of the method is to 

measure gamma-ray yields at two angles in coincidence with scattered
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projectiles detected (in a surface barrier detector) at a fixed angle. 

The quadrupole moment is then obtained from the ratio of the two yields.

This type of measurement is difficult because the effect of 

Q 7T on the angular distribution pattern is small. Quantal corrections 

are also more important than in experiments that measure excitation 

probabilities. On the other hand, the value of Q tt obtained is less 
sensitive to multiple excitations through higher excited states; 

such experiments are also distinguished by their ability to determine 

the sign of the interference from higher states (see subsection 2.2.4).

3.1.2 Particle Spectroscopy

The most direct determination of the inelastic cross section 

is the detection of the scattered particles using high resolution 
particle spectrometry; the excitation probabilities are obtained 

directly from the intensity ratio + *inel̂  * maj°r
requirement is the ability to separate the elastic and inelastic 
groups, and for this reason the targets must be made thin 
(< 20 yg/cm2 for 160 ions). The elastic peak is always much larger 

than the inelastic peak and the low energy tail on the elastic peak 
can considerably affect the extraction of the inelastic peak areas.

If the tail height is reduced, then so is the uncertainty in the 

inelastic peak area; it is therefore very important to minimise the 

tailing on the peaks.

a) Magnetic spectrographs

Excellent particle energy resolution can be obtained with the 

new generation of magnetic spectrographs of the split-pole and QD3 

type (Sp67, Mi70). These spectrographs can compensate for kinematic
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broadening, which is particularly a problem for heavy ions. This 

makes it possible to use solid angles up to 7 msr for the split-pole 

and 14 msr for the QD3. The energy resolution is then limited 

primarily by energy loss and straggling in the target. Magnetic 

spectrographs do not suffer from the pulse height defect problems 

of surface barrier detectors (see subsection 3.2.3) with the 

consequent tailing on peaks, and for heavy ions the line shape 

obtained with a magnetic spectrograph should be better than that 

obtained with a surface barrier detector. Nevertheless, tailing 

can still occur due mainly to slit-edge scattering of the beam and 

of the projectiles scattered from the target. For magnetic spectro­
graphs, there is the problem that the scattered ions leaving the 
target can be in different charge states and the elastic and inelastic 
peaks arising from each charge state must be summed to obtain the 
total elastic and inelastic particle yields.

b) Surface barrier detectors
When the excitation energy of the first excited state is 

high, the target thickness can be increased and this then determines 
the energy resolution; the inferior energy resolution of silicon 

surface barrier detectors is then less significant,and little 

advantage in energy resolution is gained by using a magnetic 

spectrograph. While,in general, surface barrier detectors are 

simpler and less expensive than magnetic spectrographs, many added 

benefits derive from the use of annular surface barrier detectors. 

Solid angles of the order of 40 msr can be obtained with an annular 

surface barrier detector and, in view of the small excitation 

probabilities involved in the present work, this is a major advantage
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over the magnetic spectrograph. By using an annular detector near 

180° the amount of kinematic broadening is a minimum (see subsection 

3.2.3) and, as mentioned before, the variation of F(0,O and K(0,O 

with 0 is slow. The axial symmetry provided by an annular detector 

minimises the effect of changes in beam trajectory on the mean 

scattering angle. On the other hand, surface barrier detectors suffer 

from pulse height defect problems which give rise to tailing on peaks 
and these are particularly important when detecting heavy ions (see 

subsection 3.2.3). Tailing is also produced by slit edge scattering. 

It is therefore more difficult to obtain good lineshapes with surface 
barrier detectors than with magnetic spectrographs.

As before, values of B(EA) and can be obtained by varying 

the scattering angle or by using different projectiles. The latter 
is the basis for the present work and is described in detail in the 

next section.

3.2 Experimental Procedure

The experimental procedure consisted of bombarding thin 

isotopically enriched PbCl2 targets with 4He, 12C and 180 ions; 

a summary of bombarding energies at which data were collected for 

each isotope is given in Table 3.1. The scattered projectiles 
were detected with an annular surface barrier detector positioned 

at a mean laboratory scattering angle ^ of 171.6°.

While the 20t+Pb and 206Pb experiments were similar, it 

was necessary to introduce certain changes in the 208Pb experiment 

because of the higher excitation energy of the 3 state and its
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low excitation probability. These changes will be pointed out where 
appropriate.

The amount of tailing in the spectra was measured by the peak- 
to-valley ratio (P/V ratio) obtained by dividing the height of the 
inelastic peak by the minimum height of the background between the 
elastic and inelastic peaks.

Table 3.1 Bombarding energies at which data were collected.

Target Nucleus Projectile Bombarding Energy (MeV)
2 0 4 p b 4He 13.80, 14.45, 14.75, 15.30, 15.90, 

16.30, 16.80, 17.50, 18.00, 18.50
12C 45, 46, 47, 48, 49, 50, 51, 52, 

54, 56, 60
160 59, 60, 61, 62, 63, 64, 65, 67, 

70, 72, 75, 77, 78.5, 80, 85
2°6pb 4He 13.80, 14.45, 14.75, 15.30, 15.90, 

16.30, 16.80, 17.50, 18.00, 18.50
12C 44, 46, 48, 50, 52, 60
16o 60, 61, 62, 63, 64, 65, 67, 70, 

72, 75, 77, 80, 85
20 8pb 4He 15.1, 15.3

160 59, 60, 61, 62, 63, 64

3.2.1 Accelerator Beams
The 160 and 12C beams were obtained from the ANU 14UD Pelletron 

accelerator (Op74) and the 4He beams were obtained from an EN tandem 
accelerator. On both machines, an anti-scatter baffle was placed in 
front of the switching magnet to remove beam scattered from the walls 
of the analysing magnet box. On the EN accelerator it was found 
that beam degradation from slit edge scattering could be reduced by
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maintaining the energy-defining slit in a highly polished condition. 

Beam quality was also improved by using thin stripper foils.

Beam dumps made of aluminium for the 14UD and carbon for the 

EN tandem were used to collect the beams. The use of materials of 
low atomic mass was necessary to ensure that particlesbackscattered 

from the dump and striking the detector had an energy sufficiently 

low not to interfere with the region of interest in the spectra. A 

carbon beam dump was not used on the 14UD because of a general policy 

of maintaining a clean, carbon-free vacuum for this accelerator.

3.2.2 Target Chamber Geometry
Experiments were performed in aluminium scattering chambers 

(Op75) with an inside diameter (ID) of 51 cm. The target chambers, 
and the experimental geometry, were similar on the two accelerators. 

The chamber on the 14UD was nickel plated as part of the clean vacuum 
policy for this accelerator. A schematic drawing of the experimental 
geometry is shown in fig. 3.1.

All collimators were made of tantalum and the edges were 

highly polished. Collimator Cl, placed on a collimator mount CM, 
prevented the beam from striking the back of an annular detector AD.
By employing special-order detectors with a large diameter hole, a 

4.6 mm inside diameter could be used for Cl and this contributed to 

the reduction of slit edge scattering. A 3 mm thick tantalum absorber 

TA reduced the flux of X-rays (generated by the beam intercepted at 

Cl) reaching the detector. Collimator Cl was electrically insulated 

so that by measuring the current, beam focussing could be monitored.

It was necessary to use electron suppression to prevent 

secondary electrons, emitted from target T, producing a large number 

of low energy pulses. Permanent bar magnets BM were placed on either
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side in front of the detector, and a horseshoe magnet HM below. On 

the EN accelerator runs, the target was surrounded by a copper 

shroud CS cooled with liquid nitrogen to inhibit the deposition 

on the target of carbon and other impurities during bombardment.

Collimators C2 and C3, placed in front of the detector, 

prevented particles scattered from the target from reaching the 

detector edges. These collimators define the effective solid 

angle dfi (about 42 msr) and the mean laboratory angle ip (about 

171.6°) at which the particles were detected. The kinematic 

broadening is about 4 keV for 4He, 30 keV for 12C, and 44 kev for 

180. It can be seen that the use of an annular detector gives a 

relatively large solid angle for an acceptable amount of kinematic 

broadening. Moreover, between the minimum and maximum scattering 

angles defined by collimatörs C2 and C3, the excitation probability 
for 204,206pi_) varies only by 0.13% for ^He, 0.34% for 12C, and 

0.40% for 160. In the case of 208Pb, the excitation probability 
varies by 0.41% for 4He, and 1.08% for 160.

3.2.3 Annular Surface Barrier Detectors and Associated Electronics 

Annular surface barrier detectors (supplied by Ortec Inc.) 

used in this series of experiments had an active area of 300 mm2 

and a sensitive thickness of about 200 ym (sufficient to completely 

stop 4He particles up to 19 MeV and 180 up to about 170 MeV). The 

electronics consisted of an Ortec 125 preamplifier and a Tennelec 

203 BLR main amplifier. Evidence of pulse pile-up was particularly 

noticeable in the ^He spectra and this problem was reduced by setting 

the amplifier time constant at 0.25 or 0.5 ys (although these short 

time constantswould be expected to give slightly worse energy resolution).
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Typical values for energy resolution, measured at the FWHM, were 

35 keV for 4He, 110 keV for 12C and 145 keV for 1&0; the principal 

contributions being from detector resolution and from target 
thickness (see table 3.2).

When detecting heavy ions, several processes in the detector 

give rise to low energy tails. A heavy charged particle (e.g. 160 

as distinct from 4He) has large specific energy losses and creates 

a dense cloud of electron-hole pairs along its path. The ionisation 

density is such as to create a region of reduced electric field inside 

this cloud; before the applied external electric field can disperse 

the cloud, significant recombination of charge carriers can take 

place. The statistical fluctuations in the resulting loss of pulse 

amplitude can cause tailing. The recombination of charge carriers 

can be decreased by increasing the applied electric field, and for 
this reason detectors with high collection fields > 104 V/cm were 
employed in the present work. The situation could be further improved 

by cooling the detector and by over-biasing (although the electric 
field only varies as the square root of the applied voltage), but 

these measures were not found to be necessary.

Another important contribution to peak tailing arises from 

nuclear collision processes. Since the probability of a nuclear 

interaction increases with decreasing velocity of the charged 

particle, heavy ions lose a significant fraction of their energy by 

nuclear collision processes, in which the incident energy does not 

give rise to electron-hole creation. The statistical variations in 

this energy loss cause the tailing. These processes are a function 

of the detector material and cannot be avoided. An additional

problem important for heavy ions is the decrease in energy resolution
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caused by fluctuations of the energy loss in the dead layer in 

front of the detector.

Radiation damage by heavy ions can create electrically- 

active defects in the crystal lattice of the detector. These 

defects produce local variations in the electric field and affect 

the recombination rate of the charge carriers with peak tailing as 

a result. Because of the large number of spectra collected and the 

long running times (typically 24 hrs) associated with each, the 

detectors were subjected to large doses of heavy ions, and because 

of their limited life were replaced as necessary. Evidence of 

extensive radiation damage was increased tailing in the spectra and 

a marked increase in leakage current.

The 4He spectra in the 208Pb experiment, because of the 
low excitation probabilities involved, required very long running 
times (100 hrs), thicker targets (100 yg/cm2) and larger beams 
(200 nA). With the resulting high count rate, pulse pile-up peaks 
were clearly observed and in order to improve the spectra, pile-up 

rejection circuitry was introduced. This system consisted principally 

of a pile-up gate which gives a logic output when two pulses from the 
preamp arrive within a specified time interval; the logic signal 

then closes a linear gate to reject these unwanted pulses. This 

system reduced the count rate of pulses into the pulse height 

analyser by 10%. Although the pile-up peaks themselves could not 

be removed, the tail extending on their low energy side (due to 

partial overlap of pulses) was considerably reduced and spectrum

quality thereby improved.
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3.2.4 Target Quality

In the present work, target quality was a crucial factor in 

obtaining adequate peak-to-valley ratios. The first targets made 

consisted of lead metal evaporated on a carbon backing. The enriched 

isotope, supplied in nitrate form, was first converted to the oxide 

by heating in air; when subsequently heated in vacuum the oxide was 

reduced to the metal which then evaporated onto carbon backings. The 

behaviour of these targets was found to be somewhat erratic. While a 

few gave reasonable P/V ratios (typically 20:1 for 15.2 MeV 4He ions 

on 206Pb) most gave very inferior results. Target quality was also 

found to vary from one spot to another on a given target. Visual 

inspection of these targets under a microscope showed that in addition 

to the uniform lead coating, the target was dotted with small lumps of 

material. Examination of "bad" targets showed many such lumps while 
"good" targets were almost devoid of them. These lumps were probably 
caused by spitting from the crucible during the evaporation, even 
though care was taken to heat the crucible slowly.

It was therefore decided to use lead chloride, PbCl2 , which 
is easy to prepare chemically from the nitrate form, and when heated 

appears to sublime. By progressively heating the crucible, the rate 

of evaporation could be easily controlled, and uniform targets 

reliably obtained. The targets could be subjected to 4He beam 

currents up to 300 nA for long periods without any significant 

deterioration. When tested with an ie0 beam the targets were 

found to slowly evaporate, but it was possible to prevent this by 

evaporating a thin layer (1-2 yg/cm2) of carbon onto the front 

surface of the target. A small portion was left uncovered so that 

the thickness of this layer could later be measured. The additional
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carbon layer was also necessary for the relatively thick targets 

used in 4He bombardment of 208Pb. Target requirements for 12C 

beams were similar to those for 180.

By optimising the focussing on the 14UD, it was possible 

to obtain beam spot sizes < 1 mm at the target; this produced a 

rapid deterioration of the target. This problem was overcome by 

deliberately defocussing the beam.

The target thickness employed in the present work are given 

in Table 3.2; as always, these values represent a compromise 
between count rates and spectrum quality.

Table 3.2 Typical target thicknesses

Isotope Proj ectile
Thickness of PbCl2
yg/cm2 keV

204Pb and 206Pb 15 MeV 4He 40 - 65 7-11
46 MeV 12C 22 31
60 MeV 160 10 - 20 24 - 48

20 8pb 15 MeV 4He 97 - 121 16 - 20
60 MeV 160 18 43

3.3 Target Contaminants

With the present experimental technique, it is important 

that no significant contaminant peaks lie beneath the Pb elastic 

or inelastic peaks. Target contaminants can be categorised into
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isotopic contaminants (i.e. other Pb isotopes) and those due to 

other elemental impurities (i.e. isotopes of the elements other 

than lead). Since highly enriched targets were used (see table 

3.3), corrections for isotopic contaminants were small; these 
are treated in sections 4.3 and 4.4. Contaminant peaks which 

would be located underneath the elastic peak of a Pb isotope with 

mass A would arise from impurities in the mass ranges A± 10 for 

4He, A ± 4  for 12C, and A ± 3  for 160. Possible contaminants

Table 3.3 Percentage isotopic compositions of the lead targets
used in the present work. Values quoted were those 
obtained from the suppliers (Oak Ridge Separated 
Isotopes Division)

Isotope
Target

204 206 A 206 B 208

204 99.73 ± .02 < 0.03 < 0.01 < 0.05
206 0.17 ± .01 98.39 ± .05 99.8 ± .02 0.17 ± 0.05
207 0.05 ± .01 0.82 ± .05 0.2 ± .02 0.69 ± 0.05
208 0.06 ± .01 0.77 ± .05 < 0.03 99.14 ± 0.10

Note:- In the 206Pb experiment, target material A was used to obtain 
the 160 data at 60, 61, 62, and 63 MeV. Target material B 
was used to obtain all other data.

which could give rise to elastic peaks unresolved from the Pb inelastic 

peaks are listed in table 3.4. Although relatively large amounts of 

contaminants (say up to 0.5% by weight) can be tolerated for the Pb 

elastic peak, the Pb inelastic cross-section is much lower than that 

of the elastic peak, and only much smaller quantities of contaminants 

can be tolerated; these will be discussed later in this section. In
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Table 3.4 Mass ranges of possible contaminants that could give
rise to elastic peaks unresolved from Pb inelastic 
peaks. Elements associated with these mass ranges 
are also listed.

B e a m
Target

2 0 4pb 2°6pb 2 0 8pb

4He 103 - 120
Ru,Rh,Pd,Ag,Cd,In,Sn

109 - 125
Pd,Ag,Cd,In,Sn,Sb, Te

58, 59 
Ni,Co

12C 180 - 191 
Hf,Ta,W,Re,0s,Ir

183 - 195 
W,Re,0s,Ir,Pt

-

160 188 - 198 
Os,Ir,Pt,Au,Hg

191 - 201 
Os,Ir,Pt,Au,Hg

175 - 180 
Yb,Lu,Hf

order to ensure high target purity, a number of precautions were taken

a) Ultra-high purity hydrochloric acid was used to convert the 

lead nitrate to lead chloride.
b) High purity glucose was used as a release agent for target 
backings. Glucose is composed of H, C, and 0, all of which have a 

low mass. On the other hand, detergents contain elements with higher 

masses, and since they often consist of mixtures of chemicals, their 
chemical composition is not readily known.

c) Evaporator surfaces were sandblasted and washed in alcohol.

A copper shroud, cooled with liquid nitrogen, was placed between the 

evaporator and the vacuum system.

d) The crucible was made of spectrographic-grade carbon and 

prior to the evaporation was heated to white heat to drive off most 

contaminants. Because of the relatively low melting point of PbCl2 

(501° C) it was only necessary to heat the crucible to a dull red 

heat during the evaporation.
e) Since mercury has a mass similar to lead, the problem of
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possible mercury contamination arising from the mercury diffusion 
pumps on the EN-accelerator target chamber was avoided by replacing 

these with oil diffusion pumps. In addition to cold traps placed 

in the vacuum system, a cold shroud surrounded the target, 

f) The vacuum system on the 14UD is built largely of stainless

steel, and is pumped by ion pumps; no problems of target contamination 

from the vacuum system have been experienced.

3.3.1 The 4He Data

The technique used to investigate the possible presence of 

contaminants in the targets consisted of bombarding the targets with 

4He ions (8-10 MeV), detecting the ^He particles scattered near 180°, 

and identifying the elastic peaks in the spectrum. In order to obtain 
reliable estimates of the possible amount of contaminants in the 
target, the bombarding energy was chosen to be below the maximum 
safe bombarding energy (defined in section 5.1) for the possible 

contaminants. For contaminants in the mass range A= 103 - 125 (see 
table 3.4) the maximum safe bombarding energy is about 10 MeV, while 

for A = 58, 59 it is about 8 MeV.
The carbon backings initially used with the targets were 

found to contain appreciable amounts of tin (1.4x 10“2%) and 

iodine (1.0 x 10-2%). Attempts to remove these contaminants by 

using nominally higher purity carbon and by using an evaporator 

with all stainless steel surfaces (the evaporator normally used 

was partly made of brass), proved unsuccessful. Aluminium backings 

showed no such contaminants when tested, and an upper limit of 

2.8x 10“3% by weight, at the two standard deviation level of the
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background, can be placed on the possible amount of contaminants in 

the mass range A= 100 - 130. It was therefore decided to use 

aluminium backings for targets used to acquire the 4He data in the 
2 0 4,206pk experiments. (As will be discussed below, carbon backings 

were used in the 208Pb experiment.)

Further investigation of the aluminium backings showed that 

they produced a significant amount of pulse pile-up due to 4He being 
elastically scattered from 27A1 and 160 in the backings. As can be 

seen from fig. 4.9, the peak of this pile-up occurs between the Pb 

elastic and 2+ inelastic peaks so that the 2+ peak sits on top of a 

pile-up background. Although in the region of the 2+ peak, the pile-up 

background is smooth and does not present serious problems in the 

analysis (see subsection 4.3.3), it will tend to reduce the peak-to- 
valley ratio. The aluminium backings were therefore made as thin as 

possible (20 - 30 yg/cm2). Excitation functions were taken for 4He 
elastic scattering from 27A1 and ie>0 at bombarding energies between 

13.5 MeV and 16.5 MeV. These excitation functions are shown in 
figs. 3.2 and 3.3 and are in good agreement with previous experiments 

(Ij64, Hu67, Iv69, Jo69, Ha73, OR72). With this information, it was 
possible to reduce the pile-up by collecting data at bombarding 

energies where the product of the 27A1 (4He, 4He) 27A1 and 

160(4He, 4He) ie0 elastic cross-sections (fig. 3.4) was a minimum.

In addition to tests on the target backings, the complete 

204,206pbci2 targets were also tested by bombarding with 10 MeV 4He 

ions. At this bombarding energy, the elastic peaks from masses 

A = 100 - 130 are higher in energy relative to the Pb 2+ inelastic 

peak than at energies used for reorientation measurements. The 

spectra obtained are shown in figs. 3.5 and 3.6 for 204Pb and 206Pb
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respectively. At the level of two standard deviations of the background, 

upper limits of 5.3 * 10-t4% and 4.6 x 10-l+% by weight can be placed on 

the amount of A= 100 - 130 contaminants in the 20l+Pb and 208Pb targets 

respectively. If one assumes that the elastic scattering cross section 

for these contaminants in the energy range between 13.8 MeV and 15.3 MeV 

is equal to the Rutherford value, then it can be concluded that these 

contaminants could contribute at most 0.85% to the 20t+Pb 2+ peak at 

13.8 MeV and 0.38% at 15.3 MeV. For 208Pb, the maximum contribution 

of contaminants to the 2+ peak is 0.95% at 13.8 MeV and 0.44% at 15.3 

MeV. However, since the elastic scattering cross section for these 

contaminants is expected, at these energies, to be less than the 

Rutherford value, the above values can be regarded as absolute upper 

limits. In the case of the even-mass cadmium isotopes in the mass 

range A= 106 -116, the elastic scattering cross section at 17.5 MeV 
is between 8.4% and 5.6% (respectively) of the Rutherford value 
(Sp77) ; for 114Cd at 13.5 MeV it is 60% (Es76). No information is 
available on the elastic cross sections, at these energies, for other 

nuclei in the mass range A= 103 - 120.
In the 208Pb experiment, only elastic peaks from 58Ni and 

58Co could lie underneath the 3 inelastic peak. Since no evidence 

of 58Ni or 59Co was observed in the carbon backings (an upper limit 

of 6 x 10-4% can be placed at the two standard deviation level) and 

because of the need to obtain the best possible peak-to-valley ratios 

(in view of the very low excitation probabilities), carbon backings 

were chosen in preference to aluminium which gives rise to substantial 

pile-up. The targets were tested by bombarding with 8 MeV ^He ions, 

and at the two standard deviation level an upper limit of 5.6 x 10-t+%
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can be placed on the presence of 58Ni or 58Co in the target. Taking 

the elastic scattering cross section for 88Ni and 88Co at 15 MeV to 

be 15% (Se73) of the Rutherford value, the total contribution from 

these contaminants would be less than 3% of the 3 peak area; this 

upper limit is tolerable in view of the uncertainties of 5-8% in 

extracting the 3 peak areas (see subsection 4.4.2).

3.3.2 The 12C and 180 Data

It can be seen from table 3.4 that for the 12C and 180 data, 

the contaminants that would be located beneath the 2~*~ peak in 
204,206pb are within the mass range A= 180 - 201. Both tungsten and 

tantalum are included in this mass range and although these materials 

are often used for crucibles in target manufacture, in the present 
work a carbon crucible was used. Mercury contamination, which could 

affect the 180 data, is not expected to be a problem since the targets 
were never exposed to a vacuum system employing mercury diffusion 

pumps. The only other contaminants which could affect the data are 
Pt, Au, and some rare earths; it is unlikely that any of these 
would be present in the targets in view of the precautions which were 

taken to ensure high target purity. (These precautions are discussed 

at the beginning of this section.)

A 208PbCl2 target was tested with 120 MeV 32S ions, and an 

upper limit of 9 * 10“3%, at the two standard deviation level of the 

background, can be placed on the possible amount of contaminants in 

the mass range A= 180 - 196. Since all PbCl2 targets were made in 

the same way (note that carbon backings were used), a similar upper 

limit on these contaminants can be placed for the 204Pb and 208Pb 

targets. Using the above upper limit, and assuming that the elastic
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Scattering cross section for these contaminants is equal to the 
Rutherford value, it is deduced that, for 60 MeV 0, the area of 

the 2+ peak would be affected by at most 1.0% for 204Pb and 1.4% 
for 208Pb. (For 65 MeV 180, the effect of these contaminants is 

reduced by 33%.) In the case of 45 MeV 1ZC, the 2 peak area would 

be affected by at most 1.5% for 2Ql+Pb and 2.0% for 206Pb. Since the 

elastic cross section is expected to be less than the Rutherford value, 

the above values can be regarded as absolute upper limits.

In the 208Pb experiment, contaminants in the mass range 

A= 175 - 180 would lie underneath the 3 peak. Of the elements with 

isotopes between A= 175 and A= 180, all except Hf and Lu have isotopes 
outside this range which would have been detected. An upper limit of 
5 x 10-t+%, at the two standard deviation level, can be placed on the 

intensities of elastic peaks due to heavy contaminants with A< 175, 
or 180< A < 186. It is unlikely that the amount of contaminants with 
masses A= 175 - 180 is more than this, and consequently an upper limit 
of 3% can be placed on contributions of possible contaminants to the 
3 peak area.

3.4 Energy Calibration

Since Coulomb excitation probabilities are a strong function 

of the bombarding energy of the projectile, it is important, in 

reorientation experiments, to determine beam energies precisely.

The effect of changes in the bombarding energy on the excitation 

probability is shown in table 3.5, which shows that beam energies 

must be known to better than 0.1%. The energy calibration of the 

EN tandem had been previously measured (Es76) for Ĥe"*""*" energies
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up to ~  15.93 MeV; during the course of this experiment the 

calibration was periodically checked as described below. The 

newly installed 14UD Pelletron accelerator was calibrated for 

the first time in the course of thiswork;the results are discussed 

in detail by Spear et al. (Sp76) . In both cases, the energy 

calibration consisted of determining the magnet constant K, defined 

in the relativistic relationship (Ov69),

E K B2(Z2/M) 1 MeV (3.5)

where Z is the effective charge of the particle (in units of electronic 

charge), M is its mass (in nuclidic mass units), B is the magnetic 

field (in T), and E/2Mc2 is half the ratio of kinetic energy to 

rest mass energy. The magnet constant K is in units of MeV.u/T2.

Table 3.5 Percentage change in excitation probability for a
0.1% change in bombarding energy

Proj ectile E, (MeV) b
Target Nucleus

204Pb 2 0  6 p b 2 0 8pb

4 He 15.3 0.55 0.52 1.56
1 2 C 46 0.54 0.51 -
1 6 0 60 0.56 0.52 1.47

3.4.1 Calibration of the 14UD Pelletron

The energy calibration of the analysing magnet on the 14UD 

Pelletron consisted of determining the magnet constant K at magnetic
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fields of 0.43, 0.60, and 0.90T (the highest field used in the present 

reorientation experiments was 0.73 T for 56 MeV 12C^+). As the 

differential hysteresis of the magnet could produce energy shifts 

of about 0.2% (Sp76) it was necessary to set the magnetic field by 

a known and reproducible method (i.e. to recycle the magnet) before 

making measurements. The usual procedure (for the EN tandem) of 

increasing the magnet current from zero to 200A three times in 

succession, and then approaching the desired field in the direction 

of increasing field, was found to be adequate. Before taking data, 

the energy defining slits were set with a narrow (0.76 mm) gap in 

the dispersive plane. Calibration points were taken in November 
1975 and in July 1976; the 204,206p^ data were taken within this 

period, and the 208Pb data was taken in September 1976. Each 

calibration point made use of a different reaction (see table 3.6) 
and these are described below.
a) Calibration at B=0.43T.

The resonance in 12C + p  corresponding to the lowest T = 3/2 
state in 13N is at 14.23075± 0.00020 MeV (Hu73, Go75) and the two 

exit channels 12C(p,po)12C and 12C(p,ao)4B were studied. In the 

first case, the protons were detected at a mean laboratory angle 

of 172.6° in a 1000 ym thick annular detector; in the second 

reaction, a 40 ym surface barrier detector detected alpha-particles 
at a laboratory scattering angle of 40° where the resonance has 

an approximately Breit-Wigner shape (deMe73). Results obtained are 

shown in fig. 3.7 and fig. 3.8.

b) Calibration at B = 0.65T.

The method here involved matching the energy of 4He ions
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inelastically scattered from a thin carbon foil with the known energy 

of alpha-particles emitted from a thin 212Pb ("radiothorium,,) radio­

active source; this source emits alpha-particles with energies 

(Wa64) 8.7850 ± 0.0008 MeV (from Po2^2), 6.0496 1 0.0007 Mev 

(Bi212 (04)) , and 6.0889 1 0.0007 MeV (Bi212(a0)). The doublet could 

not be fully resolved, and from the intensity ratio ap/a^ = 2.57 1 0.01 

(Ry51) the energy centroid is calculated to be 6.0606 1 0.0007 MeV.

For this calibration point, the 4He bombarding energy was 32.86 

MeV, so that after populating the 4.439 MeV state in 12C, 4Heprojectiles 

detected at 172.6° in an annular counter had an energy near that of 

the doublet (see fig. 3.9). An advantage of this method is that 

since the 4He ion energy is very close to the alpha-particle energy, 

any non-linearities in the detector and the electronics are negligible. 
Also, since the same type of particle is being detected in both cases, 
there is virtually no difference in pulse height defect when these 
are detected. Detection at backward angles also means that the 
scattering angle does not have to be known to a high accuracy and, 

because of the axial symmetry of the detector about the beam direction, 

movements of the beam spot on the target do not change the mean 

scattering angle. The method is therefore quick and simple. To 

take account of gain drifts in the electronics, a number of source 

spectra and scattered-particle spectra were taken alternatively.

The beam intensity was kept small to avoid gain changes due to count 

rate effects and gains were monitored with a precision pulser. The 

energy dispersion was determined in the source spectra from the 

2.7244± 0.0010 MeV energy separation of the two groups.
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c) Calibration at B = 0.90T.

The method used here was similar to that of calibration b).

In this case, ^He* ions were elastically scattered from an A1 target, 

and for a bombarding energy of — 15-9 MeV the elastic peak was 

compared to the 8.785 MeV group in the source spectra (see fig. 3.10).

To obtain singly-charged 4He ions, gas stripping was used instead of 

foil stripping.

In each case, the thickness of the target was measured.

The carbon targets (~ 15 yg cm-2) had a thin layer of gold (~ 1 yg cm-2) 

evaporated on one surface (Ni was used for the A1 targets because 

of its low diffusion coeffient). These targets were bombarded by 

~ 42.5 MeV 160 ions and the target thickness was determined from 
the shift in the Au (or Ni) elastic peak when the thin layer faced 
upstream or downstream. The energy calibration results are summarised 
in table 3.6 and fig. 3.11. (The values quoted take target thickness 
into account.) It can be seen that there is no significant variation 
in K as a function of magnetic field up to 0.9 T or as a function of 

time, and the value adopted was k = 78.07± 0.04. This determined beam 
energies to better than 0.1%.

Table 3.6 Summary of 14UD Pelletron energy calibration

Reaction Ebomb (MeV) B(T)
K (MeV.u/T2)

Nov. 75 Jul. 76

12C(p,p0) 12C 14.233 0.4303 78.104 ± 0.004
12C(p,a0) 9b 14.233 0.4303 78.105 ± 0.030 78.007 ± 0.030 

78.041 ± 0.030
12C(a,aj) c 32.861 0.6502 78.062 ± 0.010 78.093 ± 0.009
27A1(a,a0) <CM 15.935 0.9046 78.097 ± 0.008
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3.A.2 Calibration of the EN accelerator

The beam from the EN tandem was analysed by a 86 cm radius 

double-focussing magnet with a mass energy product (ME/q2) of 52, 

and a maximum field of 1.2 T. This magnet had been precisely 

calibrated previously through (p,n) reaction threshold measurements 

(Mo69) and by using the 2H(160,n)17F reaction threshold (Es76).

In addition, the calibration had been periodically monitored by 
comparing the energy of back-scattered 4He beams with a-particle 

groups from a thin 212Pb source (Es76). This practice was continued 

during the period of the current series of experiments particularly 

as the analysing magnet had been moved during the course of accelerator 

upgrading work.

The method used was similar to that described in part b) of 

subsection 3.4.1 for the 14UD Pelletron accelerator. Although 

earlier measurements (Mo66) showed that for this magnet differential 
hysteresis effect were negligible, as a precautionary measure the 
magnet was always recycled according to the procedure described for 

the 14UD. The object and image slits were set at 0.127 cm full 
aperture. A low energy calibration point was obtained with 

~ 9.53 MeV 4He scattered from Au and detected at a mean laboratory 

angle of 171.6° in an annular counter. The elastic peak position 

(channel number) was compared with the position of the 6.0606 MeV 

doublet from the 212Pb source. The target consisted of a thin 

(~ 5 yg cm“2) layer of Au on a carbon backing; the Au thickness 

was measured from the shift in the 12C elastic peak when the target 

was rotated 180°. A high energy calibration point was obtained 

with ~ 15.93 MeV scattered from 27A1, with the elastic peak

corresponding in energy to the 6.0606 MeV doublet. The target
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consisted of a carbon backing, half of which was coated with A1; 

the A1 thickness was measured from the shift in the 12C elastic 

peak as the coated and uncoated regions of the target were bombarded. 

The mean value obtained for the magnet constant was 19.967 ±0.005 

keV.u/MHz2 and did not vary significantly between the data taken 
in February and March 1976.
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CHAPTER 4

DATA REDUCTION AND EXCITATION PROBABILITIES

Data reduction consisted of extracting the areas of the 

elastic and inelastic peaks from the data so that experimental 

excitation probabilities defined by

do lab / do lab
+

el
do lab

d fi inel / dft d nV. > inel
(4.1)

could be obtained. Since R is a ratio, it was not necessary toexp
measure absolute cross sections and the areas of the elastic and

lab labinelastic peaks could be substituted for (do/dft) . and (do/dft). ,el inel
respectively. In this chapter, sections 4.1 and 4.2 discuss the 

general methods employed in the extraction of peak areas. Subsequent 

sections consider the specific cases of each target and projectile. 

Data reduction in the 208Pb experiment is treated separately from 

that for the 20t+»20&pb experiments, because the lower excitation 

probabiliities raised problems specific to 208Pb. The measured 

excitation probabilities are also discussed for each particular case, 

and the results are listed in tables 4.4, 4.5 and 4.6.

The accuracy of R^ is determined entirely by the 

uncertainties in the measured peak areas. The statistical uncertainty 

in the peak areas is given by

oa = (A + B)h (A.2)a

where A is the net area of the peak, and B is the total background

under the peak. However, eq. (4.2) assumes that one can obtain a

very precise independent estimate of the background B. In practice,

that is not usually possible and an additional contribution a, mustb
be included to take account of the uncertainty in the estimate of
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the background used in calculating A. The total uncertainty in the 

peak area is then taken as

0 = ( ° a 2 + Gt>2) 2 • (4 *3)

The uncertainties in the measured peak areas will be discussed for 

each particular situation later in this chapter.

4.1 Lineshape Analysis

Peak lineshape analysis was made necessary by the need to 

unfold the inelastic peak from the elastic peak tail. Although the 

same peak lineshapes were eventually used for all projectiles 

( 4 He, 12C, and 160), lineshapes were initially developed for the 
160 data since, for this data, tailing was the strongest. As a 
result, the present section will lay particular emphasis on the 160 
data.

Examples of 1&0 spectra obtained for 2Ql4Pb and 20^Pb are 

shown in figs. 4.1 and 4.2 respectively. Although the situation is 

emphasized by the logarithmic plots, the need to unfold the inelastic 

peak from the elastic peak tail can clearly be seen. The area of the 
elastic tail under the inelastic peak was typically 6.5% of the 

inelastic peak area for 206Pb, and 1.4% for 204Pb. The improvement 

for 204Pb is reflected in the P/V ratios of about 30:1 (compared to 

10:1 for 205Pb) and is ascribed to the increased B(E2) value and, more 

importantly, to the higher excitation energy. To determine inelastic 

peak areas to 1% precision, it was necessary for the worst case 

(206pb) to evaluate the elastic tail area underneath the inelastic 

peak with an error no greater than 15%, and for this reason peak 
lineshapes were investigated.
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The lineshape in all spectra was found to be non-syimnetric. 

The peak shape down to the 10% level of the maximum peak height could 

be reproduced closely by a Gaussian function expressed in the form

HT.exp( - z2/2g2) (A.4)

where

o = FWHM. (2 In 2)”^ (4.5)

and
HT = peak height

FWHM = the full width at half maximum of the peak 
z = x - POS 
x = channel number 

POS = peak position.

Better fits were obtained by using a skewed Gaussian where different 

values for FWHM were used to fit the high energy side (FWHM1) and low 

energy side (FWHM2) of the peak. (These then give rise to different 
values ai and a2 «)

Below the level of 10% of the maximum peak height, a tail 

was observed to extend on the low energy side of peaks and this shape 

could no longer be adequately represented by the Gaussian function above. 

The shape of the elastic tail was determined by studying 208Pb spectra 

(see fig. 4.12.) since the peak corresponding to the first excited state 

at 2.615 MeV is well separated from the elastic peak. The elastic 
tail was found to be linear on a logarithmic plot and could be fitted 

well with the expression

A 1#[l - exp( - z2/2g2G12)].exp( - Cj.IzI) (4.6)

where parameters and G^ determine the decay rate of the tail and 

parameter Aj its height. The term in square brackets makes the tail 
contribution very small in the region near the top of the peak which 

is well described by the Gaussian function.
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Below the 0.1% level of the maximum peak height, a shallow 

"long range" tail was observed on the low energy side and this tail 

was also fitted with expression (4.6) where a different set of 

parameters A 2 , C2 , and G2 were allowed to vary. This tail was 
particularly of relevance in the 4He data, and in the 208Pb experiment 

where the inelastic peak was further away from the elastic peak.

During computer fitting, a small"lump"(barely visible in 

the region of channel 2980 in fig. 4.2) was always apparent on the 

high energy side of the elastic peak in the 180 and 12Cdata. It 

was found that this"lump"could be accounted for analytically by 

including an extra term

HT. F. exp( - (z - P) 2/2o2) , (4.7)

which is a Gaussian function similar to eq. (4.4). In eq. (4.7),

P is the position of the"lump"relative to the peak position, and F 
is the fractional height of the "lump" relative to the peak height.
In the 180 data, investigations of 20l+Pb, 208Pb, and 208Pb spectra 

showed that the position of the "lump" relative to the peak position 

was approximately constant and its height remained between 1% and 

2% of the elastic peak height, the average being 1.6%. (In the 12C 

data the average height of the "lump" was 0.8%.) In the 204Pb and 

208Pb spectra obtained with 180 projectiles, the "lump" could correspond 

to elastic peaks from contaminants with masses A = 206 and A =208 

respectively. However, in the 208Pb spectra the "lump" would correspond 
to a contaminant with mass A=210; this was not only not observed in 

the 20LfPb and 208Pb spectra, but the longest-lived nucleus of this 

mass is 210Pb (half life of 22 years) and its presence in the target 

is most unlikely. One can only conclude that this"lump"was due 
purely to a detector effect.
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In all spectra, a background was usually observed above 

the elastic peak and below the inelastic peak. The height of this 

background was usually very low (in the worst case the background 

height was 0.45% of the inelastic peak height) but to improve the 

fit to the data a flat background, whose height was determined by 

the parameter BGND, was included in the analytic expression for the 

spectrum.

As a result of the previous discussion, the analytic function 

used to fit the data had the explicit form

f (z) = HT.exp( - z2/2a!2)+HT.F.exp(-(z-P)2/2o12)+BGND

for z > 0 (4.8a)

f(z) = HT.exp( - z2/2o 22) + HT.Aj .[1 - exp( - z2/2a22Gi2)] .exp(-Cj|z|)

+ HT.A2 .[1 - exp( - z2/2a22G22)] . exp( - C2 |z|) + BGND

for z < 0  . (4.8b)

Fits to the data are shown in figs. 4.1 and 4.2.

A computer program was used to fit the above function to the 

data. Provision was made to fit up to 4 peaks each with the same shape 

(a good assumption for a surface barrier detector when detecting 

identical projectiles with similar energies) but with heights and 

positions that could be varied. Using the method of least squares, 

the goodness of the fit was estimated by calculating the weighted 

sum of squares of deviations of the data from the fitted curve, i.e.

x2 = 2 [(yi - f(zi))2/y±] (4.9)

where number of counts in channel x
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The value of X2 was minimised using the subroutine FITTEM, written

by Hay (Ha69a), to optimise up to 19 parameters (P0Si_4, HTj_4 ,

FWHM1, FWHM2, F, P, Aj 2 » Gj 2 » Cl 2 an<̂  BGND). The advantage of
» » »

this subroutine is that the algorithm employed does not require 

the partial derivatives of function (4.8) with respect to each 

variable parameter; this meant that during the course of program 

development modifications to function (4.8) could be tested quickly.
The validity of the analytical function (4.8) and of the 

fitting procedure was verified by fitting 20l+Pb and 208Pb spectra 

with a lineshape obtained from 208Pb data; only peak heights and 

positions were allowed to be adjusted. The result of this test is 

illustrated in fig. 4.3 for the same spectrum as in fig. 4.2, and 
it can be seen that a reasonable fit is obtained. Although the 
shape of the elastic peak tail is well reproduced, this tail is too 

high by about 25% (this is ascribed to the 208Pb target being thicker 
by a factor of 2). Even so, there is only a 2% decrease in the 
inelastic peak area, and this is only twice the statistical error.

4.2 Peak Area Determination

The computer program described previously was used to 
calculate peak areas by integrating function (4.8) channel by channel; 

this will be referred to as the "full fit" method. In addition, a 

"Gaussian area" was calculated for each peak from

A = (2tt)^.g .HT (4.10)

where in this case a = (â  + a2)/2. While there is no reason to 

suppose that the peaks in the spectra should be perfectly Gaussian, 
comparing the "Gaussian area" with the "full fit area" provided a 

measure of the importance of tailing. It was found that, in general,
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tails accounted for about 14% of the total peak area for 160, 12% 
for 12C, and only 5% for 4He.

A second method - the "partial fit" method - was also 

employed to determine peak areas. The inelastic peak area was 

determined by summing the data over a range of channels and then 

subtracting the computed elastic peak tail as obtained from the 

computer fit. The upper and lower channels defining the range of 

summation for the inelastic peak were chosen to be those where the 

number of counts in the channel first showed a significant difference 

from the computed elastic peak tail; the level of significance being
r\X > 10. While the range of summation might visually appear too 

restrictive, it was found that areas obtained by this method were 

at least 99% of those obtained directly from the computer program. 
Moreover, the measured excitation probabilities were not affected 
since they were determined from area ratios.

The elastic peak area was obtained by summing the data over 
a corresponding range of channels, these being deduc ed from 

knowledge of the peak positions (obtained from the computer fit). 

Although this procedure gave rise to summation limits expressed in 

fractions of a channel, for simplicity only integral channels were 
summed. The resulting uncertainty was less than 0.1% of the elastic 
peak area and was therefore negligible.

The excitation probabilities calculated using the areas 

obtained from the "full fit" and "partial fit" methods were found 

to be in good agreement. The average difference, for all spectra, 

between the two methods was about 0.6%, with 1.9% for the worst 

case. Although the results from the two methods agreed well, the
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"partial fit" method was considered preferable for the following 

reasons:

a) The computer fit was essentially used only to estimate 

the background under the inelastic peak; errors arising from poor 

fits to other parts of the spectrum were therefore eliminated.

b) It has been shown (Be69) that if the data follows a Poisson 

distribution (as for a counting experiment) the method of least 

squares consistently underestimates the area under a peak by an amount 

approximately equal to X ^ n (where X ^ n is the minimum value of x2 
obtained from eq. (4.9) after the computer fit), i.e.

X 2 . Ä area (data) - area (fit) . (4.11)mm

(In the computer fits the value of x ^  for a spectrum, divided by 
the number of channels, ranged from 1 to 7.) Taking this effect into 
account reduced the average difference between the "full fit" and 
"partial fit" methods to about 0.4%.

c) By summing only over channels which significantly contribute 
to the peak area, the error in the peak area, arising from the need to 

estimate the background was reduced.

d) The restricted range of summation meant that fewer elastic 

contaminant peaks might be included. Therefore, fewer impurities that 

might affect the data needed to be considered.

For these reasons, all excitation probabilities were calculated 

using peak areas obtained with the "partial fit" method.
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4.3 The 204Pb and 206Pb Experiments

Although the excitation probabilities for 204Pb were about 

40% greater than for 206Pb, the two experiments were very similar 

and they have been treated together in this section. Compared to 

204Pb, the lower excitation probabilities and the lower excitation 

energy of the 2+ state in 20&Pb,gave rise to lower peak-to-valley 

ratios and consequently larger uncertainties in the measured excitation 

probabilities; this will be pointed out where appropriate in this 

section.

4.3.1 The 160 Data

The analysis of the 160 data has already been discussed,

in part, in section 4.1 and examples of fits to the data are shown
in figs. 4.1 and 4.2. The errors in the inelastic peak areas were
calculated from eq. (4.3). The contribution o arising from theb
uncertainty in the height of the elastic tail was estimated by 
observing the effect that raising or lowering the tail had on the 

quality of the fit. Fig. 4.4 shows the result when the elastic peak 
tail in fig. 4.2 is raised or lowered by 20%; the quality of the fit 

is clearly worse. Therefore, the uncertainty in the elastic tail area 

was conservatively estimated at between 15% and 25%,and for most of 

the spectra 20%. When this uncertainty was combined with statistical 

uncertainties (o^) the errors in the measured excitation probabilities 

(listed in tables 4.4a and 4.5a) were, on the average, 1.0% for 204Pb 

and 1.6% for 206Pb.

Fig. 4.5 shows a spectrum for 206Pb taken with 72 MeV 160; 

a very similar spectrum was obtained for 2^4Pb. A number of prominent 

peaks from the 206Pb(160 ,170)205Pb, 205Pb(160,15N)207Bi, and
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208Pb (180, 150)207Pb single nucleon transfer reactions can be observed, 

but these are well below the 2+ and 3 inelastic peaks and do not 

interfere with the extraction of inelastic peak areas. The intensity 

of the single nucleon transfer peaks was observed to decrease rapidly 

as the bombarding energy was decreased. With the exception of the 

1.274 MeV 4+ state in 204Pb, the 3 state near 2.6 MeV in 204Pb and 

208Pb was the only excited state observed to be populated in addition 

to the first 2+ state. The excitation probabilities for the 3 state 

were measured for bombarding energies from 59 MeV to 75 MeV, and these 

are listed in tables 4.4a and 4.5a; the large uncertainties (6-20%) 
are due to the small number of counts in these peaks.

4.3.2 The 12C Data

Typical 12C spectra, including fits to the data, are shown 
in figs. 4.6 and 4.7 for 284Pb and 208Pb respectively. A prominent 
feature of these data is a small shoulder located between the elastic 
and inelastic peaks (at about channel 3280 and 3020 in figs. 4.6 and 
4.7 respectively). This shoulder was studied by treating it as a peak 

in the lineshape fitting program, and it was found that, in both the 

204Pb and 208Pb data, its height was constantly 0.05% of the elastic 

peak height and its position remained 477 keV below the elastic peak. 

When 208Pb S targets (rather than 204»208Pb Cl2) were bombarded with 

12C ions, and later with 180 ions, the shoulder was again observed.

The possibility of a contaminant in the target producing an elastic 

peak is considered unlikely since in each case (12C on 204PbCl2 , 

208PbCl2 , and 208PbS, and 180 on 208PbS) the shoulder would 

correspond to a different contaminant. It is therefore considered 
likely thatthe shoulder was produced by a detector effect, and this 

was later confirmed by its disappearance when the detector was replaced
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Fig. 4.6 Spectrum of 48 MeV 12C projectiles backscattered from 204Pb. 

The solid line represents a fit to the spectrum.
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by another.
Although the presence of this shoulder reduces the visual

quality of the data, its effect on excitation probabilities was small.
It seemed unnecessary to repeat the lengthy 12C measurements with

another detector merely for the sake of appearances. Despite this

shoulder the12C spectra were of better quality than those using 150.

With 12C ions there was a marked decrease in the elastic peak tail

and an improvement in energy resolution. Peak-to-valley ratios for

the spectra shown are 74:1 and 13:1 for 204Pb and 206Pb respectively.

The elastic tail under the inelastic peak is, on average, only 0.75%

of the inelastic peak area for 204Pb and 2.3% for 206Pb; consequently

the uncertainty a, (typically 20%) in the tail area, obtained from the b
lineshape fitting program, contributes much less to the error in the 
measured excitation probabilities than in the 160 data. Results are 
listed in tables 4.4b and 4.5b.

For both 204Pb and 206Pb, the 3 state near 2.6 MeV and single 
nucleon transfer peaks from the reaction 206Pb(12C,13C)205Pb were 

observed; an example is shown in fig. 4.8. Excitation probabilities 

for the 3 state were measured to 7-20% accuracy and these are listed 
in tables 4.4b and 4.5b.

4.3.3 The 4He Data

Representative 4He spectra are shown in figs. 4.9 and 4.10 

for 204Pb and 20&Pb respectively. As can be seen, the spectra show 

evidence of pulse pile-up giving rise to a tail on the high energy 

side of the elastic peak. This pile-up, which is the result of the 

high count rates in the Pb elastic peak and in other elastic scattering
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The solid line represents a fit to the spectrum.
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peaks (for example 160, 27A1 and 35C1) in the spectra, is more 

prominent in the 4He data than in the 12C and 160 data because 

of the need to use thicker targets and larger beam currents (particle 

nanoamps), in view of the lower excitation probabilities. This pile- 

up is estimated to have a negligible (< 0.1%) effect on the measured 

elastic peak areas.
An additional feature of the 4He data for 204,206p^ that 

the background in the region of the inelastic peak is produced, in 

the main, by pulse pile-up arising from projectiles elastically 

scattered from 27A1 and 160 in the target (see subsection 3.3.1).

The peak of this pile-up (due to particles scattered from 27A1 and 

150 arriving simultaneously at the detector) can be observed merged 

with the low energy tail of the elastic peak (as indicated in figs.
4.9 and 4.10), but by virtue of the "partial fit" method, described 
in section 4.2, it is excluded from the summation range used for 
the elastic peak and has no effect on the measured area. However, 

the pile-up tail in the region of the 2+ peak contributes to the 
reduction of the peak-to-valley ratios; these are 21:1 and 11:1 

for figs. 4.9 and 4.10 respectively.
On a logarithmic scale, the background near the inelastic 

peak is seen to be sloping approximately linearly, and this suggests 

that the best fit may be obtained with an exponential function. This 

was accomplished by using the lineshape fitting program described in 

section 4.1 since when sufficiently far below the elastic peak, eq.

(4.8b)reduces to

f(z) = HT.A2.exp( - C2 |z |) + BGND z » l  . (4.12)

The uncertainty o. in the height of the background f(z) was estimated, b
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as before, by raising and lowering the background until the fit was 

clearly worse. An example of this procedure is shown in fig. 4.11 

for the same spectrum as in fig. 4.9. Uncertainties obtained in this 
way range from 5% to 15% with 10% being the more usual value. Since 

on a linear scale the background does not depart greatly from linearity, 

the background under the inelastic peak was estimated by also performing 

a linear least squares fit to the data above and below the peak. This 

method provided an additional check for the exponential fit and the 

background obtained with the two methods agreed within 5-20%. When 

statistical uncertainties o are also taken into account, the 

excitation probabilities, listed in tables 4.4c and 4.5c, are 

determined with accuracies between 1% and 2%.
In the 4He data, the 3 state in 204Pb and 206Pb was weakly 

excited and excitation probabilities for this state have been 
determined to 7-30% (see tables 4.4c and 4.5c).

4.3.4 Corrections for Isotopic Impurities

Since the elastic peaks of the different lead isotopes present 
in the targets are not resolved, a correction was applied to the 

elastic peak area. This correction was based on the abundances quoted 

by the supplier (these are listed in table 3.3) . The reliability of 

the supplier’s assay was checked for 204Pb and 205Pb isotopic 

impurities; by observing the region of the respective inelastic 

peaks it was possible to place (at the two standard deviation level) 

upper limits of 0.4% 204Pb in the target material enriched in 206Pb, 

and 0.6% 206Pb in the target material enriched in 204Pb. Although 

the presence of other isotopes could not be checked with the same 

accuracy, the high degree of enrichment means that the supplier’s
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assay (specified to an accuracy of better than 0.1%) would need to be 

in considerable error (say 1%) to affect the results of the present 

work.

The inelastic peak areas were also corrected for inelastic 

peaks arising from the other isotopes. Subtraction of inelastic peaks 

arising from 204Pb or 206Pb contaminants could easily be done from the 

already measured excitation probabilities (tables 4.4 and 4.5) and 

from the isotopic abundances (table 3.3). For 207Pb, the only state 

which can affect the data is the 0.898 MeV J11 =3/2 state which is 

excited from the 1/2 ground state by an E2 transition. For this 

level the reduced transition probability has been measured to be 

b (e 2; 1/2+ 3/2”) = 0.0121 ± 0.0005 e2b2 (Ha72, see also Gr71).
Overall, the corrections applied to inelastic peak areas were very 
small and these are listed in table 4.2.

Table 4.2 Corrections applied to inelastic peak
areas due to isotopic impurities. The 
numbers quoted are percentages of peak 
area subtracted.

Beam

Target

204 206A 206B

4He 0.004 - 0.0

12C 0.03 - 0.03
1 6 0

.
0.06 0.12 0.03

Note:- Targets 206A and 206B are explained in table 3.3.
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4.3.5 Corrections for Target Thickness and Carbon Layer Thickness

The bombarding energy was corrected for energy loss of incident 

projectiles in the target and in the thin carbon layer evaporated on the 

surface of some targets (to prevent evaporation of PbCl2 ; see subsection 

3.2.4). Target thicknesses were obtained by measuring the Pb elastic 

yield at bombarding energies where Rutherford scattering applies. The 

chemical form of the target was assumed to be PbCl2 , and stopping powers 

for PbCl2 were obtained from Northcliffe and Schilling (No70). Target 

thickness corrections applied to the bombarding energies are listed in 

table 4.3. The possibility of decomposition of the target under 

bombardment must also be taken into account; if the PbCl2 had completely 

decomposed to Pb then the target thickness corrections in table 4.3 

would need to be reduced by 43% but the resulting effect on excitation 

probabilities (for 4He, 12C, and 160 beams) would be at most only 0.08%.
Since only one half of the surface of the target was covered 

with a thin carbon layer, the thickness of the layer was easily 
determined by observing the shift in the Pb elastic peak when the 

covered and uncovered parts of the target were bombarded. The thickness 

of this layer was typically 2pg/cm2 and the corresponding bombarding 

energy corrections are listed in table 4.3.

Table 4.3 Corrections applied to bombarding energy (typical values)

Beam Target thickness 
correction (keV)

Carbon thickness 
correction (keV)

Total (keV)

15 MeV 4He 4 0 4
46 MeV 12C 15 6 21
60 MeV 160 20 14 34
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Table 4.4 Measured excitation probabilities R2+ and
R3_ for the 204Pb 0.899 MeV 2+ and 
2.634 MeV 3 states respectively

(a) 160 ions

Bombarding Energy (MeV) R2+x io3 r 3_ x 104
58.955 8.39 ± 0.08 1.26 ± 0.23
59.971 9.20 ± 0.09 1.71 ± 0.19
60.971 10.16 ± 0.10 2.08 ± 0.19
61.956 11.07 ± 0.10 2.48 ± 0.22
61.971 10.91 ± 0.10 2.42 ± 0.22
62.957 11.84 ± 0.13 2.95 ± 0.32
62.957 11.85 ± 0.17 3.33 ± 0.37
62.971 11.61 ± 0.15 3.25 ± 0.36
63.957 12.60 ± 0.11 3.69 ± 0.30
64.958 13.82 ± 0.11 4.00 ± 0.32
66.958 15.58 ± 0.16 5.78 ± 0.52
69.959 18.13 ± 0.15 6.76 ± 0.54
71.960 19.84 ± 0.18 8.01 ± 0.56
74.961 18.79 ± 0.20 4.05 ± 0.53
76.956 14.84 ± 0.67
76.961 14.79 ± 0.22
78.968 16.22 ± 0.57
79.968 32.04 ± 1.35
84.970 136.6 ± 15.4



( b )  12C i o n s

B o m b a r d i n g  E n e r g y  (MeV) R , x 1 0 3 
2+

R x 104 
3"

4 4 . 9 7 8 5 . 4 9  ± 0 . 1 3 1 . 3 5  ± 0 . 2 2

4 5 . 9 7 8 6 . 1 7  ± 0 . 1 5 1 . 3 2  ± 0 . 2 4

4 6 . 9 7 9 7 . 0 9  ± 0 . 1 6 1 . 3 5  ± 0 . 2 4

4 7 . 9 7 9 7 . 6 4  ± 0 . 1 8 2 . 5 3  ± 0 . 3 3

4 7 . 9 7 9 7 . 9 6  ± 0 . 0 7 2 . 1 3  ± 0 . 1 7

4 8 . 9 7 9 8 . 7 9  ± 0 . 2 0 3 . 5 3  ± 0 . 4 6

4 9 . 9 7 9 9 . 8 7  ± 0 . 2 1 3 . 5 0  ± 0 . 4 6

4 9 . 9 7 9 9 . 5 7  ± 0 . 0 8 3 . 3 5  ± 0 . 2 4

5 0 . 9 8 0 1 0 . 4 2  ± 0 . 2 4 4 . 3 3  ± 0 . 5 6

5 1 . 9 8 0 1 1 . 4 0  ± 0 . 2 6 5 . 8 2  ± 0 . 7 0

5 3 . 9 8 1 1 2 .5 9  ± 0 . 2 8 5 . 2 0  ± 0 . 6 8

5 5 . 9 8 1 1 3 .1 7  ± 0 . 3 0 1 2 . 3  ± 1 . 2

5 9 . 9 8 2 1 3 . 3 7  ± 0 . 3 5

( c )  4He i o n s

B o m b a r d i n g  E n e r g y  (MeV) R2+ X 1 0 4 R x 1 0 5
3“

1 3 . 7 9 6 4 . 2 4  ± 0 . 0 9

1 4 . 4 4 7 5 . 6 6  ± 0 . 0 8

1 4 . 7 4 7 6 . 3 9  ± 0 . 1 0

1 5 . 2 9 7 7 . 7 2  ± 0 . 1 0 1 . 1 0  ± 0 . 2 0

1 5 . 8 9 7 9 . 7 6  ± 0 . 1 6 1 .5 9  ± 0 . 4 5

1 5 . 8 9 7 9 . 7 7  ± 0 . 1 3 1 .7 1  ± 0 . 2 6

1 6 . 2 9 7 1 0 . 7 1  ± 0 . 1 3 2 . 9 2  ± 0 . 2 9

1 6 . 7 9 7 1 2 . 5 3  ± 0 . 1 4 4 . 0 9  ± 0 . 2 9

1 7 . 4 9 7 1 4 . 9 8  ± 0 . 1 8 6 . 7 1  ± 0 . 4 7

1 7 . 9 9 7 1 6 . 5 2  ± 0 . 2 1 7 . 1 7  ± 0 . 5 0

1 8 . 4 9 7 1 8 . 1 8  ± 0 . 2 8 1 0 . 8 5  ± 0 . 6 5
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Table A.5 Measured excitation probabilities R2+ and
R3_ for the 206Pb 0.803 MeV 2+ and 
2.648 MeV 3 states respectively

(a) 160 ions

Bombarding Energy (MeV) r 2+ x io3 r 3_ x io4

59.978 6.62 ± 0.09 1.63 ± 0.22
60.979 7.27 ± 0.11 2.01 ± 0.25
61.965 8.09 ± 0.15 2.50 ± 0.18
61.979 7.86 ± 0.17 2.71 ± 0.30
62.965 8.76 ± 0.13 2.70 ± 0.14
62.979 8.37 ± 0.11 2.74 ± 0.27
63.968 9.26 ± 0.09 3.24 ± 0.18
63.968 9.26 ± 0.13 4.05 ± 0.54
64.965 10.17 ± 0.12 3.75 ± 0.21
66.965 11.21 ± 0.19 6.36 ± 0.41
69.967 13.07 ± 0.21 6.45 ± 0.51
71.967 13.86 ± 0.29 6.43 ± 0.59
74.968 11.85 ± 0.27
76.968 9.54 ± 0.21
79.969 28.74 ± 0.63

(b) 12C ions
Bombarding Energy (Mev) R2+x 10 3 r 3_ x io4

43.978 3.59 ± 0.05 0.79 ± 0.06
45.979 4.61 ± 0.04 1.21 ± 0.10
47.979 5.42 ± 0.13 2.08 ± 0.29
49.979 6.56 ± 0.16 3.50 ± 0.39
51.980 7.53 ± 0.18 3.95 ± 0.47
59.982 10.44 ± 0.43
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(c)  4He io n s

Bombarding Energy (MeV) R2+ x 104 R3_ x 105

13.795 3.32  ± 0 .04

14.445 4.29 ± 0 .05

14.745 4 .73  ± 0 .05

15.295 5 .78  ± 0 .09 0.99  ± 0 .2 2

15.895 6 .60  ± 0.09 1.62 ± 0 .16

15.896 6 .84  ± 0 .07 1.68 ± 0 .21

16.296 7.69 ± 0 .11 1.81 ± 0 .35

16.796 8.56 ± 0 .15 3 .48  ± 0 .47

17.496 9 .87  ± 0 .15 5 .65  ± 0 .67

17.996 12.07 ± 0.21 10.39 ± 1.12

18.496 11.10 ± 0 .17 7 .33  ± 1.08
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4.4 The 208Pb Experiment

Data reduction in the 208Pb experiment was similar to that 

for 204Pb and 208Pb. However because of the higher excitation energy 

of the 3 state, the higher multipolarity of the transition, and the 

lower safe energies (see chapter 5), the excitation probabilities 

were much lower and this gave rise to difficulties not encountered 

in the 204Pb and 208Pb experiments. On the other hand, the higher 

excitation energy of the 3 state (compared to 204»20ePb) increased 

the size of the reorientation effect to 20% per beam (see eq. (2.23)).

4.4.1 The 180 Data

An example of data obtained with a 60 MeV 180 beam is shown

in fig. 4.12. It can be seen that the single nucleon transfer peaks
from the reactions 20 8Pb (180 ,170) 20 7Pb and 208Pb(180,15N)208Bi are
well below the 3 inelastic peak and so do not present a problem for
the extraction of the 3 peak area. Although the 3 peak is well

separated from the elastic peak, the excitation probability is so
low that the elastic peak tail is still very significant (peak-to-
valley ratios were 4:1 at 59 MeV and 8:1 at 60 MeV and at 61 MeV).

The lineshape fitting program described in section 4.1 was used to

estimate the elastic tail area underneath the 3 peak, and the peak

areas were determined according to the procedure outlined in section

4.2. The systematic uncertainty o, in the elastic peak tail heightb
was estimated, as before (section 4.3.1), by observing the effect of 

raising and lowering the elastic tail, and ranges between 6% and 15%; 

the resulting uncertainty in the inelastic peak area is about 3.5%. 

When statistical uncertainties in the elastic and 3 peaks are
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included, the accuracy of the measured excitation probabilities is 

about A.5%; this relatively large value is in spite of the long 

data accumulation times involved (56 hrs for the worst case). In 

the case of data taken above 61 MeV, data accumulation times were 

much shorter but the uncertainties in the excitation probabilities 

are about 10%.
Isotopic impurities in the target are listed in table 3.3 

and these were subtracted from the elastic peak. The area of the 

inelastic peak was corrected for peaks, arising from the 2.624 MeV 5/2+ 

and 2.662 MeV 7/2+ states in 207Pb and from the 2.648 MeV 3 state in 

206Pb, located underneath. The corrections for the 20^b inelastic 
peaks were applied using the B(E3) values measured by Häusser et al. 

(Hä72) and corrections for 206Pb used the B(E3) measured in the present 

work (Table 5.1)* The total effect of these corrections was to reduce 
the 3 peak area by 0.6%. The inelastic peak from the 2.634 MeV 3 
level in 204Pb was located outside the summation range for the 208Pb 

3 peak and no correction for it was applied.

The target thickness (PbCl2) was measured (as described in 
subsection 4.3.5) as 18pg/cm2, and the carbon layer thickness was 

0.2yg/cm2. The total correction to the bombarding energy, due to 

target thickness, was 22 keV; if the PbCl2 target had completely 

decomposed to Pb (see subsection 4.3.5) this correction would need 

to be reduced by 43% and the resulting effect on the excitation 

probability would be 0.23%. The measured excitation probabilities

are listed in table 4.6.
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4.4.2 The 4He Data

Excitation probabilities for this data are lower than in 

the 20t+Pb and 208Pb experiments by a factor of about 50. Data 

collection times were about 100 hrs and even then the 3 peak 

contained only about 1600 counts. An example of data obtained 

at 15.3 MeV is shown in figs. 4.13 and 4.14. The peak labelled 

,,28Si" corresponds to 4He ions elastically scattered from 208Pb 

in the target then inducing the reaction 28Si(4He,4He)28Si (1.78 MeV) 

in the detector silicon, with the de-excitation gamma-ray escaping 

from the detector (for a description of this effect see Kraushaar 

et al. (Kr67)). The unlabelled arrows indicate the position of 

similar peaks arising from 29Si and 30Si in the detector. In 
this data, the 3 peak was sufficiently well separated from the 

elastic peak that the elastic tail no longer contributed to the 
background. However, a large fraction of the background in the 

region of the 3 peak was produced by pulse pile-up. A peak, 
due to particles scattered from 12C and 35C1 in the target and 

arriving simultaneously at the detector, was clearly observed 
between the "28Si" peak and the elastic peak, and this pile-up 

produced a tail which extended below the 3 peak. A peak produced 

by triple pulse pile-up arising from elastic scattering from 12C 

was observed just below the 3 peak and this restricted the number 

of channels which could be used to estimate the background height 

on the low energy side of the 3 peak. The cross-section at backward 

angles for elastic scattering of 4He ions by 12C appears to have a 

minimum near 15.2 MeV (Ca64) and this was confirmed by measuring an 

excitation function. In view of this, and because on the basis of 

the optical model calculations of Feng et al. (Fe76) the maximum
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85

safe energy is expected to be near 15.3 MeV (this is discussed further 

in chapter 5), the data were collected at 15.1 MeV and 15.3 MeV. Pile- 

up rejection circuitry was employed and this effectively reduced the 

pile-up background, although the pile-up peaks themselves could not be 

removed. The carbon backings in the targets were made as thin as 

possible (% 10 yg/cm2). However, even with these precautions, the 

peak-to-valley ratios obtained were 1.4:1 at 15.1 MeV and 1.8:1 

for the two spectra obtained at 15.3 MeV.

The area of the 3 peak was obtained by interpolating a 

linear background underneath. The height of this background was 

determined by a least squares fit to the data on either side of the 

peak. Since the choice of data region used in calculating the background 
would affect the background height and hence the peak area obtained, 

least squares fits were made to several different data regions on 
either side of the peak. At the one standard deviation level, the 
3 peak areas obtained were within 2.5% of that obtained using what 
was judged to be the most reasonable background. The small size of 

the 3 peak and the relatively high background combine to give larger 
uncertainties than in the 150 data. The overall uncertainties in 

the measured excitation probabilities are 5.6% and 8.2% for the two 

15.3 MeV spectra obtained, and 7.9% for the 15.1 MeV spectrum.

Corrections for isotopic impurities (abundances are listed 

in table 3.3) were applied to the elastic peak area. The inelastic 

peak area was corrected for inelastic peaks arising from the excited 

states in 206Pb and 207 Pb mentioned in subsection 4.4.1. In this 
case, it was also necessary to correct for the inelastic peak due 

to the 2.634 MeV 3 state in 204Pb and the B(E3) measured in the 

present work (table 5.1) were used. The total of these corrections
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was 0.6% of the 3 peak area. Measured target thicknesses were found 

to be 97 yg/cm2 and 121 yg/cm2 and the carbon layer thickness was 

1-2 yg/cm2. The resulting corrections to the bombarding energies 

were 8 keV and 10 keV respectively; if the PbCl2 targets had 

completely decomposed to Pb the thickness corrections would need to 

be reduced by 43% with a corresponding 0.40% effect on the excitation 

probability. The measured excitation probabilities are listed in

table 4.6.



Table 4.6 Measured excitation probabilities Rexp
for the 2.615 MeV 3 state of 208Pb

Beam Bombarding Energy (MeV) R x 105exp

4He 15.092 1.028 ± 0.081
15.290 1.270 ± 0.071
15.290 1.147 ± 0.094

160 58.978 14.36 ± 0.62
59.978 18.43 ± 0.88
60.978 21.29 ± 0.90
61.978 26.8 ± 3.7
62.978 30.7 ± 3.0
63.978 41.0 ± 3.8
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CHAPTER 5

DATA ANALYSIS AND RESULTS

The measured excitation probabilities obtained in chapter 4 

from the raw data, are analysed in the present chapter to obtain 

results for the reduced excitation probabilities B(EA) and quadrupole 

moments Qjtt* As before, the 20LtPb and 205Pb experiments are discussed 

together and the 208Pb experiment, where in some cases the analysis 

had to be modified, is treated separately. The method used to obtain 

values of B(EX) and from the excitation probabilities is described

in section 5.3. However, before the data are analysed assuming pure 

Coulomb excitation, it is important to show that the data used in the 
analysis are free from Coulomb-nuclear interference effects.

5.1 Safe Bombarding Energies

In order to analyse the results in terms of pure Coulomb
excitation theory (chapter 2) it was essential to determine the

maximum "safe" bombarding energy (or equivalently the minimum

"safe" distance of separation of the nuclear surfaces) at which

the effects of the nuclear force can be neglected.

The process of Coulomb-nuclear interference in inelastic

scattering may be understood, in general, by considering the Coulomb

and nuclear excitation amplitudes. Fig. 5.1 shows the variation of

the Coulomb amplitude a^ and the real and imaginary nuclear 
R Xamplitudes a^ and a^ as a function of the distance D between the

centres of the two nuclei. The amplitudes a^ and a^ are of opposite

sign because the Coulomb potential is repulsive while the nuclear
X Rpotential is attractive (a^ has the same sign as a^ and is generally 

much smaller). The total excitation amplitude may be written as



lac + q n I2 +IqnI2
\
\
\
\
\

a 1, x 10

Fig. 5.1 Amplitudes a^, a^, a^, and excitation probability eq. (5.2) 
as a function of the distance D between the centres of two
nuclei (from Po76).
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+ 4) + i
I

aN ’ (5.1)

and the excitation probability (for a particular magnetic substate) 

is proportional to

ac (5.2)

Since the Coulomb force is long range while the nuclear force is

short range, at large distances D the Coulomb interaction dominates.
£As D decreases, a point is reached where a and a, have similarc N

magnitudes; they interfere destructively to give a minimum in the
£excitation probability. At yet smaller values of D, a^ dominates

a . The observed excitation probability does not go through a sharp c
minimum because the excitation probabilities for different magnetic

substates do not reach their minimum at the same D, and because of
r I\2the contribution from la I .

In the present work, safe energies were determined for both

204Pb and 206Pb and for each of the projectiles 4He, 12C, and 160,

by observing for the 2+ state the behaviour of the double ratio

R /R as the bombarding energy was increased; here R isexp comp comp
the excitation probability of the 2+ state assuming pure Coulomb

excitation. Compared to looking for deviations from Rutherford

scattering, studying R /R has the advantage of being independentexp comp
of any normalisation (e.g. beam current integration, target thickness)

and is more relevant to the present work since R was used toexp
determine Q t7T. Values obtained for R /R are plotted in figs.J7T exp comp
5.2 and 5.3 as a function of the separation S between the two nuclear 

surfaces; S is defined by



65 MeV

I • • •

0 6

0 4
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O
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CLEooer
Q.
X
0 3er

♦ *

6 0  5 8  5 6  5 4  5 2  5 0  4 8  4 6  4 4  MeV

t  *
1 1 1 *\ ’ * *

2 0  19 18 17 15 MeV

• I * i
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Fig. 5.2 The double ratio R /R for 204Pb (2+) as a function ofexp comp
the distance of separation S (eq. (5.3)). The unlabelled
arrows indicate adopted safe energies.
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Fig. 5.3 The double ratio R /R for 206Pb (2+) as a function ofexp comp
the distance of separation S (eq. (5.3)). The unlabelled 
arrows indicate adopted safe energies.
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0.72
Z i Z2(Aj + A2)
E. , A lab 2

1/3 1/3(1 + Cosec(0/2)) - 1.128 (Aj +A2 ) fm

(5.3)

where the subscripts 1 and 2 refer to the projectile and the target 

nucleus respectively, E ^ is in MeV,and 0 is the scattering angle 

in the centre of mass. The equivalent sharp radius (ESR), equal to

1.128A/̂ fm and described by Myers (My73) , is used here (rather than
1/3the more common 1.25 A fm) so that comparison can be made with the

results of Feng et al. (Fe76) who used the distorted-wave Born

approximation (DWBA) method to calculate nuclear interference effects.

A striking feature of the data in figs. 5.2 and 5.3 is the

pronounced depth of the Coulomb-nuclear interference minimum. It
appears that the net effect of this strong interference is to lower
the maximum safe energy. Since the excitation probabilities in the

2Ql+Pb and 206Pb experiments were determined to about 1%, the safe

energies are taken to be those for which the excitation probability
deviates by less than 1% from that for pure Coulomb excitation; in

the 208Pb experiment the uncertainties in the excitation probabilities

were much larger (5.6 - 8.2% for 4He, and 4.5% for 180) and these set
the lower limit on the size of deviations, from pure Coulomb excitation,

which could be detected. The different values between projectiles

obtained for the safe distance (indicated in figs. 5.2 and 5.3) may

be due in part to the conservative approach adopted in determining

safe energies. There appears to be no consistent trend between the

different projectiles and the two lead isotopes. The mean value of

the safe distance for all projectile-target combinations is 6.7 fm.

This result agrees with the value of 6.6 fm (or equivalently 5.5 fm
1/3taking the nuclear radius to be 1.25 A fm) obtained by Olin et al.
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(0174) for 32S scattering from 204,206pb< The present result also 

compares well with the calculations of Feng et al. who, for 4He 

inelastic scattering, predict a 1% deviation from the pure Coulomb 

cross section at 6.7 fm for 152Sm and at 6.5 fm for 234U.

5.2 The First 3 State in 204Pb and 208Pb

The 3 state near 2.6 MeV in 204,206p^ has been observed

in data obtained over a wide range of bombarding energies (see

chapter 4). This state is of interest because from the excitation

probabilities obtained at different bombarding energies, information
may be gained regarding safe energies to be used in the 208Pb
experiment. (The excitation of the 3 state in 204,206p^ consists

mainly of direct E3 excitation from the ground state; multiple

excitations of the type 0+ +2+ ->-3 are comparatively small. The
assumption that the maximum safe energies for the 3 state in
204,206,208pb are the same, is supported in part by the results for

the 2+ state in 204>208Pb.) As for the 2+ state, the double ratio

^exp^comp Pl°tt:ed as a function of bombarding energy (figs. 5.4
and 5.5). However, the large error bars on the data makes the

identification of safe energies difficult. For ie0, there is a

definite decrease in R /R at energies above 63 MeV, and itexp comp
appears that below 61 MeV R /R assumes a constant value; oneexp comp
may then take the maximum safe distance to be 7.2 fm. For 4He,

R /R appears to be slowly increasing even down to the lowestexp comp J 0
energy; no data is available below 15.3 MeV since at those energies 

the 3 peak in the spectrum was indistinguishable from the background.
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Fig. 5.A The double ratio R /R for 204Pb (3 ) as a function ofexp comp
the distance of separation S (eq. (5.3)). The unlabelled 
arrows indicate adopted safe energies.
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arrows indicate adopted safe energies.
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One can only conclude that the maximum safe distance for 4He is at 

least 7.3 fm, this being consistent with the value 7.4 fm calculated 

by Feng et al. for 208Pb. Although the present data are insufficient 

to validate Feng’s prediction that the safe distance should increase 

as the multipolarity of the excitation increases, they do indicate 

that the safe distances for E3 excitation are greater than those 

for E2 excitation.

The reduced transition probability B(E3; 0+ -* 3 ) can be 

obtained from (see eq. (2.16)),

B(E3; 0+ ->-3~) = R /F(6,£) (5.4)exp

where R refers to the excitation probabilities listed in tables exp
4.4 and 4.5, and F(0,£) is obtained from the de Boer-Winther program 
(see section 2.3). The results obtained, using 4He, 12C, and 160 data 
taken at safe energies (a safe distance of 7.3 fm was assumed for 12C), 
are listed in table 5.1 and agree with values from other experiments.

It must be noted that these results are calculated neglecting second

Table 5.1 Measured B(E3; 0+ ->-3 ) values for the 2.6 MeV 3 state 
in 204Pb and 206Pb

Nucleus B(E3; 0+ +3 ) 
(e2b3) Method Reference

204Pb 0.609 ± 0.035 this work

206Pb

0.618 ± 0.097 (a,a’) inelastic 
scattering

A167

0.605 ± 0.035 this work
0.50 ±0.03 Coulomb excitation, 

thick target yield
Ha72

0.66 ±0.07 Coulomb excitation, 
thick target yield

Gr71

0.64 ±0.04 (e,e’) Zi68
0.722 ± 0.095 (a,a') inelastic 

scattering
A167
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order effects; it is estimated that a quadrupole moment of -0.42 eb 

(as in 208Pb) would increase the B(E3) (for both 204Pb and 208Pb), by 

about 0.044 e2b3, and the effect of multiple excitation via the 2+ 

state (using matrix elements in section 5.4) would change the B(E3) 

by ± 0.001 e2b 3 (depending on the sign of the interference).

5.3 Extraction of B(EA) and Qj7r from the Data

In principle, the Coulomb excitation analysis can be carried 

out with the de Boer-Winther program by fitting the computed excitation 

probabilities Rcomp to the experimental values , letting the B(EX)

and Qj-̂  vary as free parameters. However, the analysis can be made 

considerably simpler and faster by expressing the excitation 

probabilities, on the basis of eq. (2.24), as

Rcomp(V ) " F B(EX) 11 + p V I  (5‘5>

where F and p are functions whose values depend on the projectile 

and the bombarding energy (in the present work the scattering angle 

was kept constant). It is convenient to rearrange eq. (5.5) in the 

form

R /F = B<EX) + [B(EA)QT7I] p , (5.6)comp J"

which is linear in p. If Rcomp/R is plotted against p, then eq. (5.6) 

represents a straight line whose intercept on the vertical axis is 

equal to B(EA) and whose slope is equal to the product B(EX)Qj7T. 

Experimental values of Qj^ and B(EA) can therefore be determined by 

expressing the experimental excitation probabilities in the form 

Rexp/F and performing a linear least-squares fit.
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The values of functions F and p are obtained from

and

F = R (0)/B(EX) comp

P = [R (QT„)/R (0) - l]/QTlrcomp J comp J"

(5.7)

(5.8)

with R (0) and R (Q^tt) computed, at each energy and for each comp comp J" .
projectile, with the de Boer-Winther program using estimated values 

of B(EA) and Qj Tt* If the estimated and B(EA) values differed 

significantly from the ones obtained after a fit to the experimental 

data, F and p were recomputed using the values of B(EA) and 

obtained on the first iteration. It must be emphasized that although

the parametrization in eq. (5.5) is similar to the perturbation 

expansion (eq. (2.24)),this does not imply that perturbation theory 

is being used, since both F and p can contain contributions from 

higher order processes.

The method of linear least squares, described in detail 

by Bevington (Be69), gives analytical expressions for direct evaluation 

of uncertainties in the intercept and the slope of the fitted line.

The uncertainty in B(EA) is equal to the uncertainty in the intercept 

and the uncertainty in is calculated from

AQj7T = Qj 7t [(Aslope/slope)2 + (AB(EA)/B(EA))2]h . (5.9)

In the present analysis, each data point was weighted by a factor

l/o.2 , where g . is the statistical error in the i ^  value of R /F. l l exp
The goodness of the fit was determined from the chi-square test by 

evaluating

v2 _ Y
N-2 i

y i(exp.) - y^(fit)'1 2
(5.10)
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where y = R/F and N is the number of data points. For a good fit 

X 2 «  1.

5.4 Results for Q2+ and B(E2) in 204Pb and 20&Pb

Following the above procedure, and using experimental 

excitation probabilities (tables 4.4 and 4.5) at safe bombarding 

energies (indicated in figs. 5.2 and 5.3), the partially corrected 

results obtained are B(E2; 0+ 2+) = 0.1665 ± 0.0017 e2b2 and

Q2+ = + 0.213 ± 0.076 eb for 204Pb, and B(E2; 0+ +2+) =
0.1030 ± 0.0009 e2b2 and Q2+ = + 0.033 ± 0.079 eb for 206Pb 

(uncertainties will be discussed in subsection 5.4.7). Fits to 

the data are shown in figs. 5.6 and 5.7 for 204Pb and 205Pb 
respectively. In the above results only two states (the ground 
state and the first 2+ state) are considered in the de Boer-Winther 
program, but electron screening, vacuum polarization, and quantal 
corrections (see subsections 2.2.6 and 2.2.7) are included together 

with the effect of the giant dipole resonance. Processes affecting 

the results, including interference from higher states, are discussed 

separately below (with particular emphasis on their effect on Q2+) •

A summary of these effects on the values of Q2+ and B(E2) is given 

in table 5.2.

5.4.1 Electron Screening and Vacuum Polarization Corrections

These corrections were treated by making small changes to 

the bombarding energy (see table 2.2). Since the signs of these 

corrections are opposite, the combined correction for electron 
screening and vacuum polarization is very small. Changes in the 

magnitude of Q2+ are a |Q2+| = + 0.003 eb for 204Pb and 

AIQ + | = + 0.004 eb for 206Pb.
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5.4.2 Quantal Corrections

The quantal corrections discussed in chapter 2 were applied 
to the values of F(0,£) and p(0,£) obtained from the de Boer-Winther 

program. For both 204Pb and 208Pb the changes due to these corrections 

were a |Q2+| = - 0.019 eb and AB(E2) = + 0.0003 e2b2. The smaller 

fractional change in B(E2) is due to the correction to F(0,£) being 

proportional to 1/r)2, whereas that to p(0,£) is proportional to 1/n 

(see table 2.1). The uncertainty introduced, in the value of Q2+, 

by the application of the quantal corrections is estimated to be 

negligible since the only source of uncertainty is from second order 
terms ignored in the extrapolation used to calculate the corrections.

5.4.3 Effect of the Giant Dipole Resonance

The effect of the giant dipole resonance was included in the 
de Boer-Winther program as a modification to the Hamiltonian; this 
modification being proportional to the minus-two moment o  ̂of the 
photoabsorption cross section (see subsection 2.2.5). A number of 

measurements of o  ̂have been reported for 208Pb (Mi62, Ha64, To68, 
Ve70, Bu72) and the mean of these is a  ̂= 18.3 ± 1.8 mb/MeV, which 

corresponds to a value of k = 0.72 ± 0.07 in eq. (2.29). Harvey 

et al. (Ha64) also obtained the values o = 15.6 ± 1.6 mb/MeV 

(k = 0.62 ± 0.06) for 208Pb and o  ̂= 14.5 ± 1.5 mb/Mev 

(k = 0.57 ± 0.06) for 207Pb. It therefore appears that the Levinger 

(Le57) estimate (k= 1) is consistently high for the Pb isot opes. 

Although a  ̂has not been measured for 2Q1+Pb, its value is expected 

to be very similar to that of the other Pb isotopes, since k should 

be approximately constant (Le57). Using the same value k=0.62 for
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both 204Pb and 206Pb the change to the quadrupole moment obtained 

is A 1 I = + 0*038 eb for 204Pb and A ( 1 = + 0.035 eb for 
206Pb. If a value k=0.72 is used, then the above changes are 

greater by 0.007 eb.

5.4.4 Effect of the 1.274 MeV 4~*~ State in 204Pb

In the case of 204Pb, a peak corresponding to the 1.274 MeV

4+ state was observed in both 12C and 150 spectra. Therefore, this
+ +state was included in the analysis. A value B(E2; 4 2 ) =

(2.8 ± 0.2) x 10-5e2b2 (4><10-3 W.u.) was deduced from the partial 

half-life = 0.29 ± 0.02 ys which is the (unweighted) average 

of reported half-life measurements (Be60 ,Li67,Sa63). Signorini 
and Morinaga (Si72) have observed the 4+ -*0+ cross-over gamma-ray 
decay and from their measured branching ratio of (0.012 ± 0.002)% 

(somewhat larger than the previous upper limit of 0.005% (Ta62)) 
a value B(E4; 4+ -+■0+) = (2.1 ± 0.4) x 10“3 e2b4 is obtained. Using

I ^
the above values, it was found that including the 4 state produced
the changes a |Q2+| = - 0.0006 eb for constructive interference

(P4 =+l) and a |Q2+| = + 0.0018 eb for destructive interference

(P4 = - 1). Clearly, interference from the 4+ state has a very

small effect on Q +.2

5.4.5 Effect of the First 3 State

As mentioned in chapter 4, the 3 state near 2.6 MeV in 

both 204Pb and 206Pb is the most strongly excited state after the 

first 2+ state. This octupole state is therefore expected to have
-j-a significant effect on the excitation probability of the 2 state,
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particularly since the two states are connected by an El transition. 

For the 3 state in 206Pb, the mean lifetime for the transition to 

the first 2+ state has been measured to be 0.125 ± 0.030 ps by 

Häusser et al. (Hä72), while Grosse et al. (Gr71) obtain a value of 

0.4 ± 0.2 ps; taking Häusser's result (in view of the smaller error) 

one obtains a value B(El; 3 -»■ 2+) = (8.0 ± 1.9) x 10-6 e2b. Although 

no information is available regarding the strength of the 3 -► 2+ 

transition in 204Pb, this octupole state is of very similar nature 
to that in 206Pb and therefore the same B(E1) value as for 206Pb 

was used in the analysis. The values used for B(E3; 0+ -*■ 3 ) were 

those measured in the present work (see table 5.1). The changes 
a |Q2+| due to including the 3 state are + 0.021 eb (P4 = -1) 
and + 0.002 eb (P4 = +l) for 20l+Pb, and + 0.026 eb (P4 = - 1) and 
+ 0.003 eb (P4 = +l) for 206Pb.

If the 3 state is included in the analysis, together with 
the already mentioned corrections (including the 4+ state), then the 

quadrupole moment obtained for 20L+Pb is Q2+ =+0.215 ± 0.078 eb for 
constructive interference (P4 =+l) and =+0.236 ± 0.078 eb for

destructive interference (P4 =-l). For 206Pb, the results are

Q . = + 0.035 ± 0.081 eb (P4 = + 1) and Q . = + 0.059 ± 0.081 eb2 2
(P4 =-l). The errors quoted above include an error ± 0.002 eb 

arising from uncertainties in the matrix elements connecting the 

3 state.

5.4.6 Effect of Higher 2+ States

It has been found (St67) that, in general, interference 

from higher 2+ states can have a significant effect on the excitation
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■f “fprobability of the first 2 state. Higher 2 states have been

observed at 1.46 MeV and 1.75 MeV in 206Pb (Se72), and at 1.93

MeV in 20t+Pb (Ma71). Although no experimental information is
■4* 4" +  +available regarding the strength of the 22 +2j and 22 -*0i

transitions a number of theoretical calculations have been made

for 206Pb (but not for 20LfPb). Shell model calculations have been

performed at Basel (Ha69, Gö70b) and the values B(E2; 22 -*2i ) =

4 * 10-3 e2b2, B(E2; 22+ -*0!+) = 1.7 * 10"2 e2b2, and

B(E2; 2i+ ->0i+) = 9 * 10-3 e2b2 were obtained. There appears to be

a number of inconsistencies in these calculations:
+  "4*a) The strength predicted for the 22 -*0i transition is about 

the same as that measured experimentally for the 2i+ -*0i+ transition. 

In a 60 MeV 160 spectrum, such a 2+ state at 1.75 MeV should give 

rise to a peak with an intensity 1/10 that of the 2i+ peak. In the 

present work, the 22+ intensity was estimated to be less than 1/100 

that of the 2i+ peak.

b) The predicted 2i+ -*0i+ strength is only half the experimental 

value.

c) In collective models one would expect that B(E2; 22+ -*2]+) >> 

B(E2; 22+ ^0!+).

Sorensen (So70) has used the pairing-plus-quadrupole model 

to predict that for a 22+ state near 2 MeV B(E2; 22+ ->2j+) =

2 x 10“2 e2b2, and B(E2; 0i+ ->22+) = 1 x 10-3 e2b2 (also 

B(E2; 0i+ ->-2i+) = 0.12 e2b2). Since these values are more consistent 

with experiment, they have been adopted here (the same values are 

assumed for 20LfPb) . The effect obtained by including the 1.93 MeV 

state in 20LfPb is to change the measured by a |Q2+| = ± 0.02 eb,
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Table 5.2 Effect on Iq +̂I and B(E2; 0+ 2+ ) of corrections applied
for various processes.

2 0 4 p b 2 °6pb

Process
a | q 2 + I
(eb)

AB(E2)
(e2 b2)

a | q 2 + I
(eb)

AB(E2)
(e2 b2)

electron screening plus 
vacuum polarization +0.003 -0.0005 +0.004 -0.0003
quantal correction -0.019 +0.0003 -0.019 +0.0003
giant dipole resonance +0.038 +0.0003 +0.035 +0.0003
1.27 MeV 4+ state P4 =+1 -0.0006 -0.00004 - -

P 4 - - I +0.0018 -0.00005 - -
2.6 MeV 3 state P4 =+1 + 0 . 0 0 2 -0.00004 +0.003 -0.00005

P 4 - - 1 +0 . 0 2 1 -0.00008 +0.026 -0 . 0 0 0 1 2

2.0 Mev 2+ state P4 = 4-1 -0 . 0 2 2 +0.00006 -0.031 +0.00006
P 4 - - 1 +0 . 0 2 0 -0.00004 +0.030 -0.00008

while the effect of the 1.75 MeV state in 205Pb is A | Q2 -4-1 = - 0*03 eb 
(see table 5.2). If Sorensen’s calculations refer to the 1.46 MeV 

state, in 2 0 &Pb, instead of the 1.75 MeV state, then the above value 

of A|Q2+| becomes about 15% larger.

5.4.7 Adopted Values

It can be concluded that the total correction to arising 

from electron screening, vacuum polarization, the quantal approximation 

and the GDR is smaller than the error arising from the uncertainties 

in the intensity extraction. The higher states observed to be 

populated also have relatively little effect on the value of Q2+*
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v Since the values of Q2+ obtained for the different signs of the 

interference (from the 4 and 3 states) are very similar, the 

average of the two values can be adopted and the uncertainty as 

to the sign of the interference can be included in the total error.

The adopted values are Q2+ = + 0.23 ± 0.09 eb and B(E2; 0+ +2+) = 
0.166 ± 0.002 e2b2 for 204Pb, and Q2+ = + 0.05 ± 0.09 eb and 

B(E2; 0 -+2 ) = 0.103 ± 0.001 e2b2 for 206Pb. The uncertainties 

in the above values take into account statistical and systematic 

errors in the extraction of peak areas (see chapter 4), target­

thickness uncertainties, uncertainties in beam energy, and the 

uncertainty as to the sign of the interference from the 3~ (and 

4 for 204Pb) state; uncertainties arising from the possible presence 

of contaminants under elastic and inelastic peaks are not included.
The results obtained in this section will be compared with those of 
previous measurements in chapter 6.
For 2®4Pb it can be seen from figure 5.6 that the *2C data points
are consistently below the line representing the best fit to all the

data. If only the 4He and 12C data are used to calculate Q a value

of Q = +0.09 ± 0.09 e.b. is obtained, whereas if the 4He and 1&02+
data are used Q becomes Q = +0.27 ± 0.05 e.b. (The errors quoted2+
are purely statistical). It is clear that the errors quoted are too

small indicating a possible systematic error. The error in the final

value has been increased to accommodate this discrepancy and the

results for 204Pb become Q = +0.23 ± 0.14 eb and B (E2; 0+->2+)2+
= 0.166 ± 0.002 e2b2.

C A j J  t_ULUJJ ^  •» --------

nevertheless appears to be a decrease at energies above 60 MeV. If a 

conservative approach is adopted, then the maximum safe energy is 
taken to be 60 MeV. This bombarding energy corresponds to a
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Separation of equivalent sharp radii (ESR) of about 7.5 fm and is 

consistent with the conclusions reached for the 3 state in 
2 0 4,206pk (section 5.2).

For ^He, excitation probabilities were about 15 times 

smaller than for 1&0 and it was not feasible to obtain an excitation 

function similar to that shown in fig. 5.8 for 160. It was therefore 

necessary to use the calculations of Feng et al. (Fe76), which predict 

a 1% deviation from pure Coulomb excitation at a separation distance 
of about 7.4 fm, and the 4He data for the 3 state in 204,206p^

(section 5.2) as an indication of maximum safe energies. In view of 

the above considerations, the data were taken at bombarding energies 

of 15.1 MeV and 15.3 MeV; these energies correspond to separation 
distances of 7.5 fm and 7.3 fm respectively.

Values of B(E3) and Q3_ were determined from the experimental

excitation probabilities (table 4.6) according to the procedure
outlined in subsection 5.3. The fit to the data is shown in fig. 5.9

where R^x^/F(6,C) is plotted against the sensitivity parameter p(0,£).
The results obtained are B(E3; 0+ -* 3 ) = 0.665 ± 0.035 e2b3 and
Q _ = - 0.42 ± 0.32 eb. The uncertainties in these results take into 3
account statistical and systematic errors in the extraction of peak 

areas, target-thickness uncertainties, and uncertainties in beam 

energy. However, uncertainties arising from the possible presence 

of contaminants under elastic and inelastic peaks are not included.

Only corrections for electron screening and vacuum polarization 

are included in the above results and their combined effect is to 

increase |Q3-| by 0.03 eb. Quantal corrections were not applied 
since no information is available regarding quantum mechanical 

calculations for E3 excitation. However, if quantal corrections
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are assumed to be the same as for E2 excitation, then the result 

would be to increase |Q3-| by 0.006 eb. (Such a small correction 
compared to that in 204,206p^ a consequence of the fact that 

quantal corrections are smaller for large values of the adiabaticity 
parameter for 208Pb(3 ) 6 « 1.3 while for 204»206pb(2+) £ « 0.4.) 

The likely size of the quantum mechanical correction is therefore 

estimated to be much smaller than the uncertainty in Q3_.
The effect of the giant dipole resonance (GDR) was simulated 

by including a single 1 level at 14 MeV in the Winther-de Boer 

program (the reason for this procedure is explained in subsection 

2.2.5). For the GDR a reduced transition probability B(El; 0+ ->-l )«

10 W.u. has been found experimentally (Bu72, Pi74). Since there is 

no strong theoretical basis for assuming the 1 -+3 (E2) transition

to be either inhibited or enhanced, a value B(E2; 1 -+ 3 ) = 1 W.u. 

was adopted (Barnett and Phillips (Ba69) considered that even 0.1 W.u. 

was probably an overestimate). The results of this calculation show 

that the GDR would reduce IQ3-I by 0.16 eb; if a value 

B(E2; 1 ->3 ) = 0.1 W.u. is used, then |Q3-| is reduced by 0.11 eb.

The isoscalar giant quadrupole resonance near 10 MeV (Bu72, Na73,

Pi74, Ma75) is not expected to have any effect on the present results 

since an El transition to the 3 state is forbidden by selection rules 

(Ko76).

The possibility of interference from the 4.09 MeV 2+ state 

was also investigated. The value B(E2; 0+ ->2+) = 0.30 ± 0.02 e2b2 

has been determined experimentally from electron scattering (Na71, 

Zi68) . The strength of the 2+ +3 transition has not been measured 

but the value B(E1; 2+ -*3 ) = 8* 10-5 e2b assumed by Häusser (Hä72) 

has been adopted (this is somewhat larger than the value B(E1; 2+ -> 3 )
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2.3x 10“5 e2b assumed by Barnett and Phillips (Ba69), and the value 

B(E1; 2+ -*3 ) = 1.12xl0-5 e2b determined for 208Pb (Hä72)), 

Calculations show that the effect of the 2+ state is to change Jpg-! 

by +0.01 eb for constructive interference (P4 = -1) and by -0.07 eb 

for destructive interference (P4 =+l).

The 3.20 MeV 5 state has been observed to decay to the 3

state by a pure E2 transition (Ja72). The half-life for this

transition is T^ = 0.298 ± 0.017 ns (We62) from which a value

B(E2; 5 -*■ 3 ) = (2.76 ± 0.16) x 10-3 e2b2 is deduced. A value

B(E5; 0+ +5 ) = 0.05 ± 0.01 e2b5 is obtained from the average of
experimental data (A167, Fr72, Na71, Zi68). Interference from this

state would change Q by A ]Q _| = + 0.009 eb (P4 = -1) or3 3
AI Q3_ I = - 0.010 eb (P4 =+l). The 3.71 MeV 5 state is expected 
to have very little effect since its decay is mainly to the 3.20 

MeV 5 state with only a weak branch to the 3 state (Pa69).
Finally one must also consider the process of virtual 

nucleon tunnelling whereby a nucleon can tunnel through the 
Coulomb barrier twice and leave the 208Pb nucleus in its 3 state.
This problem is also present in E2 reorientation experiments but 

since it is likely to have a small cross section compared to that 

of E2 Coulomb excitation, it has been ignored. In the present case 

the E3 Coulomb excitation cross section is 40 times smaller than the 
E2 excitation cross section in 204,206p^ ancj therefore virtual nucleon 

tunnelling may be a significant process. This problem was also 

considered to be important by Barnett and Phillips (Ba69) particularly 

since at 69.1 MeV they observed (Ba71) single nucleon transfer peaks, 

from the 208Pb(18O,17O)207Pb and 208Pb(180,15N)209Bi reactions, whose 

intensities were comparable to the 3 peak (particularly at backward
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angles). In the present data taken near 60 MeV (see fig. A.12) the 

peaks from the 208Pb(180,170)207Pb(g.s) and 208Pb(180,15N)208Bi(0.897) 

reactions (these have been observed to be the strongest peaks (Ba71)) 

are 6 and 20 times smaller (respectively) than the 3 peak. It is 

therefore concluded that in the present work the effect of virtual 

nucleon tunnelling is likely to be small.
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CHAPTER 6

DISCUSSION OF RESULTS AND CONCLUSION

In the present chapter, the results obtained in chapter 5 

for quadrupole moments and reduced excitation probabilities are 

compared with those of other experiments and with the predictions 

of theoretical calculations. For 208Pb, arguments are presented 

against a large value of Q3_ in terms of its consequences on certain 

features of nuclear structure. In the case of 2Ql+Pb and 208Pb, 

intrinsic shape parameters are deduced according to the sum rule 
method described in chapter 1. Systematic trends in the intrinsic 

shapes of nuclei in the mass region A = 184 - 206 are presented.

6.1 The Nuclei 2Qt*Pb and 208Pb

6.1.1 Comparison of Present and Previous Experimental Results 

The value Q2+ = 0.23 ± 0.09 eb obtained for 204Pb in the
present measurement is in excellent agreement with the value 

Q2+ = 0.19 ± 0.14 eb obtained by Olin et al. (0174), who also used 

the reorientation effect in Coulomb excitation. The experimental 

technique employed by Olin et al. consisted of bombarding an enriched 

204Pb target with 100 - 125 MeV 32S ions, and detecting the 32S particles 

scattered at 70° and 180° in coincidence with the de-excitation gamma 

rays. The gamma-ray coincidence served to select the inelastic events 

in the particle spectrum (a general outline of this experimental 

technique is given in subsection 3.1.1b). The determination of Q2+ 

made use of the dependence of the reorientation effect on the scattering
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angle (see section 3.1). Coulomb-nuclear interference was investigated 

and Olin et al. found that the minimum safe distance (as defined in 

section 5.1) for 32S projectiles was about 6.6 fm; this is in good 
agreement with the minimum safe distance of about 6.7 fm determined 

in the present work for 4He,12C, and 150 projectiles. In their analysis, 

Olin et al. included interference effects from the 1.274 MeV 4+ state 

but did not include the effect of the 3 state near 2.6 MeV; if the 

3 state is excluded from the present analysis, then a value 

Q^+ = 0.21 ± 0.08 eb is obtained and the agreement with Olin et al. 

is improved. Olin et al. do not state whether corrections for the 
giant dipole resonance, electron screening, vacuum polarization, and 

quantal effects were included in their analysis; if these corrections 

are excluded from the present analysis, then the value Q^+ = 0.19 ±
0.08 eb is obtained, which agrees exactly with the value of Olin et 

al.
Mo previous measurement of Q2+ has been made for 206Pb. The 

present value Q2+ = 0.05 ± 0.09 eb is smaller than that of 204Pb, as 

would be expected as one approaches a double closed shell. The present 
result is also not inconsistent with the value = 0 predicted for a

harmonic vibrator.

The values of B(E2; 0+ -> 2+) for 204Pb and 206Pb obtained in 

the present work are compared to those from previous measurements in 

table 6.1; *11 and 4He inelastic scattering measurements give results

which differ substantially from the present results and have not been 

included. Some of the bombarding energies used by Hrynkiewicz (Hr66) 

were above the maximum safe energy and only the result taken at a safe 

bombarding energy is quoted in table 6.1. In the experimental method
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used by Häusser et al. (Hä70a, Hä72) and by Grosse et al. (Gr71) 

the gamma-ray yield measured is the result of Coulomb excitation 

over all projectile scattering angles and over projectile energies 

ranging from the bombarding energy to zero energy as the projectile 

slows down in the thick target. In this situation, the minimum 

value of the distance of separation S between nuclear surfaces (as 

defined in section 5.1) is that arising from a projectile with an 

energy equal to the bombarding energy and which is scattered at 180°. 

In the experiments of Häusser et al. and Grosse et al. the minimum 

values of S were 5.7 fm (17 Mev 4He) and 4.9 fm (18 MeV 4He) 
respectively, and since these values are less than the minimum safe 

distance of 6.7 fm (as determined in the present work) it is evident 

that the data obtained by these authors was not entirely free from 
nuclear effects. Coulomb-nuclear interference may therefore be the 

reason for the B(E2) of Häusser et al. and Grosse et al. being lower 
(with one exception) than those of the present work. Nevertheless, 
the values in table 6.1 are in good agreement with each other and all 
are within two standard deviations of the present results.

6.1.2 Theoretical Calculations of Q2+ and B(E2)

The lead region, especially those nuclei close to the doubly 

magic 208Pb nucleus has been a popular region for shell model 

calculations. It is also a region where new models, and modifications 

and extensions to the shell model can be tested. Although there have 

been numerous calculations for 204Pb and 208Pb, many are concerned 

with reproducing energy level schemes only, while others use the 

experimental B(E2)’s as a basis to derive the neutron and proton
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Table 6.1 Comparison of present and previous experimental values 
of B(E2; 0+ -+ 2+) (e2b2) for 20LfPb and 208Pb

2 0 4 p b 2 ° 6 p b Ref Comments

0.166 ± 0.002 0.103 1 0.001 this work
0.166 ± 0.009 0174
0.151± 0.015 0.095 ± 0.005 Hä72 Coul.ex.; thick target yield
0.146 ± 0.015 0.103 1 0.008 Gr71 it

0.156 ± 0.018 0.094 ± 0.006 HM70a It

0.091± 0.006 Qu70 recoil-distance Doppler shift
0 118 + °-020 °*118 ” 0.023 Hr66 Coul.ex.; particle-y ray coinci-

dence

effective charges and to determine transition probabilities for higher 

states. Therefore, only theoretical treatments which calculate 

quadrupole moments or which do not treat the effective charges as free 
parameters to reproduce the B(E2) values, will be discussed; these are 
listed in table 6.2.

Shell model calculations in which nuclear structure is 

described in terms of neutron holes occupying orbitals within an 

otherwise inert 208Pb case can be characterised in terms of the effective 
residual force which is assumed for the interaction between two neutron 

holes. An early calculation by Hadermann et al. (Ha67) employed a delta 

force for the residual interaction, and numerical calculations were 

performed using the quasi-boson approximation. It can be seen that 

the large negative value predicted for the quadrupole moment is in 

strong disagreement with experiments. Nevertheless, this simple 

effective residual interaction is able to give a reasonable value
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Table 6.2 Comparison between experimental and theoretical values of 
B(E2; 0+ ->2+) and Q^+ for the first 2+ state in 20LlPb and 
206Pb. Details of calculations are explained in the text

Nucleus v B(E2;0+-*2+) Reference Description
(eb) (e2b2)

20 6pb +0.05±0.09 0.103±0.001 this work experiment
±0.29 - eq. (1.11) rotational model
-0.51 0.128 Ha67 shell model
-0.04 0.047 Ha68 shell model

0.042 Ha69 shell model
0.046 GÖ70 shell model
0.122 Ma72(Tr68) shell model
0.122 Ma72(Ku71) shell model
0.083 McGr75 shell model
0.101-0.123 Va71 shell model
0.107-0.130 Va71 random phase approximation 

(RPA)
+0.33 Za7Z(Tr68) (shell model)
+0.32 So70 pairing plus quadrupole

0.084 Sp73(RPA) finite Fermi systems
0.109 Sp73(Fr69) finite Fermi systems
0.120 K173(Ku71) finite Fermi systems

+0.08 Sp72 finite Fermi systems
+0.02 Br72 particle vibration coupling

2 04pb +0.23±0.09 0.166±0.002 this work experiment
±0.37 - eq. (1.11) rotational model

0.256 Ha67 shell model
40.04 Br72 particle vibration coupling
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for the B(E2) in 206Pb. (However, the prediction of this theory that 

the B(E2) for 20LfPb should be twice as large as for 20&Pb clearly 

disagrees with experiment.) Hadermann (Ha68) subsequently used a 
residual interaction with a Gaussian radial dependence and with an 

angular dependence which was assumed to be a delta function. The 

quadrupole moment obtained in this calculation is considerably 

smaller in magnitude than the previous prediction and agrees with 

experiment. However the B(E2) is now too small by a factor of two. 

Adding spin-spin and tensor terms (Ha69) to the residual interaction 
produced little change to the theoretical B(E2) although better agree­

ment with experiment was obtained for the energy level scheme of 
206Pb. Including four-particle core excitation (Go70) (note that 

only core spins 0 were considered) only marginally increased the 

predicted B(E2), although further improvements were obtained for the 

energy level scheme.
A number of more recent shell model calculations make 

reasonable predictions for the B(E2) in 206Pb. Manthuruthil et al. 
(Ma72) have calculated the B(E2) from the wave functions of True 

(Tr68), who added a weak-coupling force to an effective interaction 

with a Gaussian radial dependence, and Kuo and Herling (Ku71), who

used a "realistc" effective interaction based on the Hamada-JohnstonA
potential. The same "realistic" interaction was recently employed 

in the shell model calculation of McGrory and Kuo (McGr75). Vary 

and Ginocchio (Va71) have compared a shell model calculation with a 

two-nucleon random phase approximation (RPA) calculation, and 

obtained similar results for both. True’s wave functions were also 

used by Zamick (Za72) to calculate the quadrupole moment in 206Pb; 

the result obtained is in poor agreement with experiment.
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A pairing-plus-quadrupole interaction was used by Sorensen 

(So70) to approximate the residual interaction and a fourth order 
boson expansion calculation was performed. Since the effective 

charge was chosen to match approximately the experimental B(E2) for 

208Pb, only the quadrupole moment is compared to experiment in 
table 6.2; clearly the predicted value of Q2+ is too large in 

magnitude. Nevertheless, an interesting feature of Sorensen's 

calculation is that the potential energy of quadrupole deformation 

V(B,y) (see section 1.5) was calculated; this is shown for 208Pb 

in fig. 6.1 where, for comparison, that for 208Pb is also shown.

Speth et al. (Sp73, K173) have extended the theory of finite 
Fermi systems of Migdal (Mi67) to cover the case of even-mass nuclei. 
The advantage of this theory is that no effective charges are assumed. 

Theoretical B(E2) values for 208Pb were calculated using results 
from a RPA calculation, from the wave functions of Freed and Rhodes 
(Fr69), and from the wave functions of Kuo and Herling (Ku71). All 
the predicted B(E2)'s are in reasonable agreement with experiment.

This theory has also been used to calculate the quadrupole moment
of 208Pb (Sp72) and is in good agreement with the present experimental
value.

In the particle-vibration model the motion of the neutron 

holes is coupled to the vibrational modes of the 208Pb core via 

oscillations in the one-body potential. Broglia (Br72) has used the 

particle-vibration model to calculate the quadrupole moment of all 

the even-mass lead isotopes from 188Pb to 208Pb. All the values 

of Q2+ are predicted to be small and although the theoretical value 

of 208Pb agrees with experiment, the agreement is not as good in the 
case of 20LfPb.
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Contour plots of the potential energy of quadrupole deformation 
V(B,y) calculated by Sorensen (So70). In this figure, Q is the 
intrinsic mass quadrupole moment, and ß is the mass deformation 
parameter.
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In conclusion, there is a definite need for further 

theoretical investigations in order to develop a theory that can 

simultaneously explain the observed quadrupole moment in both 

204Pb and 205Pb. The present experimental results for Q + agree
cf 2with the theoretical values^Broglia and Speth, but disagree with 

those of Zamick and Sorensen.

6.1.3 Intrinsic Shape

It is interesting to apply the sum rule method, described

in section 1.5, to calculate the intrinsic shape parameters for

204Pb and 206Pb. The result for 20l+»206pb will later be compared

with those for other nuclei in the mass range A= 184 to A = 198.

Table 6.3 shows the results of a sum rule analysis of the available
E2 information for 204Pb and 206Pb; the second column indicates the
state s for which Q* . y^ and 8 are calculated, and the thirds * s s
column shows the states included in the analysis. It can be seen

that for the 0+ ground state of 204Pb and 206Pb the deformation 80+
is very small - there is only a 3-4% deviation from sphericity -
and follows the expected trend of increasing as one moves away from

a double closed shell. Although the values of y1̂ imnly that the0+
ground states of 204Pb and 206Pb are asymmetric (see fig. 1.5), this

asymmetry is of little consequence in view of the uncertainties in

y^ and in view of the small magnitude of the deformation 8 ,.O-1- 0+
Furthermore, nuclei are not rigid but can spend a fraction of their 

time in various shapes; in particular, nuclei near double closed 

shells are expected to have a potential energy of deformation V(8,y)
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Table 6.3 Intrinsic shape parameters obtained from the sum
+  *rule method. When a 2 state is included in the 

analysis, the uncertainty in the sign P4 of the 
interference gives rise to two values for y^ .

Nucleus State Intermediate
States Qs

(eb) ßs •Ys
(deg)

2°6pb 0+ 0+ ,2+ 1.01810.005 0.032610.0002 3316
0+ 0+ ,2+ ,2+ ’ 1.023 0.0330 30(P4 = -1) 

36(P4 = +1)
2+ 0+ ,2+

+ + +*
0.46510.034 0.01̂ 910.0011 45126

2 0 ,2 ,2 0.646 0.0207 33(P4 = -1) 
39 (P4 = +l)

204pb 0+
+

+ +0 ,2+
+ + +'

1.29210.008 0.041710.0003 4318
0 0 ,2 ,2 1.296 0.0420 41(P4 = -1) 

44(P4 =+l)
2+ 0+ ,2+ 0.72010.101 0.023310.0033 60i?6
2+ 0+ ,2+ ,4+ 0.72110.101 0.023310.0033 60-16
2 0 ,2 ,4,2 0.849 0.0274 44(P4 =-1) 

49(P4 = +1)

similar to that shown in fig. 1.6, and are therefore expected to 
experience large fluctuations in the y direction (i.e. they are "soft" 

in the y direction).

An additional feature of the values in table 6.3 is the

striking difference in Q1 and y1 between the 0 ground state ands s
the 2 first excited state. Although the values Qg and yg are 

allowed to change from one state to another, one would expect only 

a gradual change for a rigid nucleus near a double closed shell. In
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the case of 204Pb and 208Pb, only a few matrix elements are known

from experiment and in addition to the errors for and y^ (theses s
errors being derived from the errors associated with the matrix

elements) one must consider an additional uncertainty arising from

E2 strength not included in the sums and • To test the
+ ’convergence of these sums, a 2 state was also included in the

analysis; following the practice initiated in subsection 5.4.6,

the matrix elements for this state were obtained from the pairing-

plus-quadrupole calculation of Sorensen (So70) (with the matrix

elements for 204Pb assumed to be the same as for 208Pb). It can
+  ’be seen from table 6.3 that including the 2 state has little effect 

on the values of and y^+ for the ground state. On the other

hand, there is a marked change in the values Q^+ and y^+ when the
+ »2 state is included, and these new values are much closer to those

+  *of the ground state. Including a 2 state also gives a "sensible"

value of ŷ -f for the 2+ state in 204Pb and resolves the problem of

a value greater than one being obtained for the right-hand side of

eq.(1.18), with a consequent y^+ = 60° assignment. It may therefore

be concluded that while the values Q^+ and y^+ already show a good
“4” "4“convergence when only two states (0 and 2 ) are included, the values 

Q^+ and y^+ in table 6.3 are unreliable due to some missing E2 

strength.

The systematics of nuclei in the region of the periodic 

table between A =184 and A =206 are shown in fig. 6.2; the values 

for Q2+ and B(E2; 0+ +2+) are taken from Christy and Häusser (Ch72) 

for all nuclei except 204Pb and 206Pb where the values from the present 

work are used, and except 198Hg where the values are those from a
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Fig. 6.2 Systematics of nuclei in the region of the periodic table 
between A= 184 and A= 206. Features of this figure are 
discussed in the text.
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recent measurement in this laboratory (Fe77a). Fig. 6.2a shows the 

gradual increase in deformation as one moves away from the double 

closed shell. The well known oblate-prolate transition near 1920s 

can clearly be seen in fig. 6.2b where cos 3 =-l corresponds

to an oblate shape and cos 3 =+l corresponds to a prolate shape.

The information in figs. 6.2a and 6.2b is combined in fig. 6.2c which 

is a plot of the values (Bo+,yo_|_).

6.2 The Nucleus 208Pb

6.2.1 Comparison of Present and Previous Experimental Results 
The present experimental results for Q^_ and B(E3; 0+ -*3 )

are compared to previous measurements in table 6.4. It can be seen 
that the present value of Q^_ is smaller than both previous measure­
ments of Barnett et al. (Ba69, Ba72) by a factor of about three.

The first measurement of Q3_ by Barnett and Phillips (Ba69) 
employed the reorientation effect in Coulomb excitation and used an 
experimental technique similar to that used in the present work. An 

enriched target was bombarded with 17.5 MeV and 18 MeV 4He and with
69.1 MeV 180 projectiles, and the scattered particles were detected 

with silicon surface barrier detectors placed at laboratory scattering 

angles from about 85° to about 170°. Data were also taken with

19 MeV ^He ions but at this energy, the effects of Coulomb-nuclear 

interference were observed and these data were not included in the 

analysis. Although Barnett and Phillips assumed that nuclear effects 

at the above energies were negligible, it appears that the majority 

of these data were in fact taken at energies where the distance of
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Table 6.4 Comparison of present and previous experimental
values of Q3_ and B(E3; 0+ ->■ 3 ) for 208Pb.

V
(eb)

B(E3; 0+ +3 ) 
(e2b3)

Reference Comments

-0.42 ± 0.32 0.665 ± 0.035 this work
-1.1 ±0.4 Ba72 reorientation
-1.3 ±0.6 0.58 ±0.04 Ba69 reorientation

0.54 ±0.03 Hä72 Coul.exc.; thick target yield
0.60 ±0.07 Gr71 Coul.exc.; thick target yield
0.69 ±0.05 Ro74 (e,e')
0.624 ± 0.04 Fr72 (e,ef)
n fiq +0.06
°-69 -0.03 Na72 (e, ef)

0.77 ±0.09 Na71 (e,e’)
0.72 ±0.04 Zi68 (e,e')

separation S between the nuclear surfaces is less than the minimum safe 
distance of about 7.4 fm as established in the present work (see 

chapter 5). If it is assumed that there is no angular dependence for 

the minimum safe distance, eq. (5.3) can be used to calculate the 

surface to surface separation at each angle and energy, and for each 

projectile. Table 6.5 gives the number of data points which satisfy 

the conditions S>7.4 fm (safe) and S<7.4 fm (unsafe) for each of 

the data sets 17.5 MeV 4He, 18 MeV ^He, and 69.1 MeV 1&0; the smallest 

value of S, which corresponds to the most backward scattering angle 

used, is also given. The fact that most of the data contained nuclear 

effects has been recognised by Barnett (Fe76), and optical model



118

calculations (Fe76) indicate that for S«5 fm, Coulomb-nuclear 

interference in 4He scattering can cause the excitation probability 

to decrease by about 10% from that of pure Coulomb excitation. This 

decrease in excitation probability may explain the lower (by about 

13%) B(E3) of Barnett and Phillips compared with the present result.

Table 6.5 Number of data points in the work of Barnett and Phillips 
(Ba69) for which nuclear effects are expected to be small 
(S > 7.4 fm) and where nuclear effects are expected to be 
more than 1% (S<7.4 fm) . It is assumed that the 
minimum safe distance (7.4 fm) is independent of the 
scattering angle. For each data set, the smallest 
value of S is also indicated.

Data Set S > 7.4 f m S < 7.4 fm smallest S (fm)

17.5 MeV 4He 1 6 5.4
18.0 MeV 4He 1 8 5.0
69.1 MeV 160 2 8 5.2

I
A subsequent experiment by Barnett et al. (Ba72) employed an 

experimental technique similar to that described in subsection 3.1.1a. 

A thick natural lead target was bombarded with 12C, 20Ne, 32S, and 

40Ar ions with energies 4.15 MeV/A, and decay gamma rays, following 

Coulomb excitation, were measured with a Ge(Li) detector. The value 

of Q3_ was determined by comparing the total gamma-ray yields from 
the decay of the ^^®Pb 3 and 2 states. The result obtained

was slightly dependent on the quadrupole moment Q2+ of the 2 state
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in 206Pb, and since the value of Q^+ had not previously been measured, 

Barnett et al. quoted the values Q^_ = - 1.1 ±0.4 eb assuming Q2+=0, 

and Q3_ = - 0.9 ± 0.4 eb assuming Q2+ = + 0.29 eb (which is the 

value predicted by the rotational model; see eq. (1.11)). It is now 

possible to remove this ambiguity and, from the present measured value 

= + 0.05 ± 0.08 eb for 205Pb, it is deduced that the quadrupole 

moment measured by Barnett et al. is Q3_ = - 1.1 ± 0.4 eb. The 

discrepancy between this value of Q3_ and the value obtained in 

the present work is possibly explained by the fact that the bombarding 

energies used by Barnett et al. were above the maximum safe energy. 

Table 6.6 shows the distance S of separation between nuclear surfaces 

(for a scattering angle of 180°) for each projectile and bombarding 

energy; it can be seen that all the values of S in this table are 

less than the minimum safe distance of 7.4 fm in the present work 
(see chapter 5). An additional reason for the discrepancy in the 
values of Q3_ is that since heavier projectiles were used in the 

later work of Barnett et al, their result is likely to be more strongly 
affected by virtual excitation via the giant dipole resonance, than in

Table 6.6 Distance S of separation between nuclear surfaces in
the work of Barnett et al. (Ba72). The values quoted 
are for a scattering angle of 180°.

Projectile Bombarding Energy (MeV) S (fm)

12C 49.8 5.78
20Ne 83 5.85
32S 132.8 6.15
40Ar 166 6.42
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the present work where the heaviest projectile used was 150.

The comparison of B(E3) values in table 6.4 shows that the 

present value B(E3; o"*'-*-3 ) = 0.665 ± 0.035 e2b 3 is in reasonable 
agreement with previous measurements. While most inelastic electron 

scattering measurements tend to give results higher than the present 

value, the results from previous Coulomb excitation measurements are 

all lower. However, as was pointed out before, the latter may be 

affected by Coulomb-nuclear interference.

6.2.2 Consequence of a Large Value for Q^_

The large values for Q^_ obtained by Barnett et al. (Ba69, 

Ba72) are rendered even more unlikely when the effects of such a 
large quadrupole moment on other features of nuclear structure are 

considered.

a) Energy splitting of the ( h ) septuplet.

The coupling of an octupole phonon to the h , ground9/2
state of 209Bi is expected to give rise to a septuplet of states 

with spins J77 = 3/2+ ,5/2+ ,...,15/2+ . The experimentally observed 

(Un71) energy splitting is given in table 6.7. Hamamoto (Ha75) has 

been able to obtain good agreement with experiment for most members 

of the septuplet with the particle-vibration coupling model (The 3/2
-1state is believed to contain about equal mixtures of the (d^ 2  ® )

and (hg/2  ̂) configurations (Bo75,p.570) and an additional coupling 
term was included in the calculations.); the results of this 

calculation are listed in table 6.7. In addition to the energy shifts

calculated by Hamamoto, one must also consider the energy splitting 

(Bo75,Ha75) ,
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Table 6.7 Energy splitting of the 3) septuplet in 209Bi.
Column 3 refers to the values calculated by 
Hamamoto (Ha75) as discussed in the text. Columns 4 
and 5 are values calculated from eq. (6.1). All values 
quoted are in MeV.

j" Expt Ha75 Q3_ = - 0.42 eb Q3_ = - 1.0 eb

3/2+ - 0.121 - 0.190 - 0.215 - 0.512
5/2+ + 0.003 + 0.007 + 0.117 + 0.279
7/2+ - 0.030 - 0.006 - 0.008 - 0.019
9/2+ - 0.050 - 0.089 - 0.086 - 0.205
ll/2+ - 0.015 - 0.031 + 0.129 + 0.307
13/2+ - 0.015 - 0.063 - 0.078 - 0.186
15/2+ + 0.129 + 0.156 - 0.117 - 0.279

\ 3 9/2 J )
SE((h9/2 3~)j) = H Q ( n 3-l) Q(hg/2 ) (-l)J+!5 9/2 3 2 MeV b~2

(6.1)
arising from the interaction of the quadrupole moment of the octupole 

phonon with the quadrupole moment associated with the ^9/2 proton.

In eq. (6.1) Q(h^^) is the quadrupole moment of the ground state

of 209Bi which has been measured to be - 0.35 eb (Fu69). The values 

calculated from eq. (6.1), assuming Q3_ = - 0.42 eb and Q^_ =-1.0 eb 

are listed in table 6.7. It can be seen that the energy shifts 

obtained assuming Q3_ = - 1.0 eb are unreasonably large and make 

such a large value for Q3_ unlikely. Even for Q3_ = - 0.42 eb the 

energy splitting is larger than experiment; the disagreement is even 

worse when these values are added to those of column 3 in table 6.7.
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Better agreement with experiment would be obtained by reducing the 

size of the coupling constant (which is incorporated in the factor 

14 in eq. (6.1)).

b) Energy splitting of the (3 x 3 ) quartet in 208Pb
The simple vibrational model predicts a two-octupole-phonon

7T + + + +quartet of degenerate states with spins J = 0 ,2 ,4 , and 6 and 

with excitation energy 2hu)3 = 5.23 MeV. A large static quadrupole 

moment for the 3 state would imply strong coupling between octupole 

and quadrupole motions and would give rise to a substantial splitting 

of the quartet. Blomqvist (B170) has calculated the amount of splitting 
and showed that the 0+ member of the quartet was shifted most from the 
unperturbed position; if Q3_ = - 0.7 eb (corresponding to the lower 

bound set by the errors in Ba69 and Ba72), then the 0+ state is 
depressed 1.5 MeV in energy. The particle-vibration coupling model 
can be used to obtain an expression for the energy shift of a member 
J of the quartet; using a self-consistent value for the quadrupole 
coupling constant, Bohr and Mottelson (Bo75, p.570) obtained for 

208Pb,

2 (3 3 2)
6E(n3 = 2,J) % - 16 (q (n3 = 1)) < > MeV b-2 (6.2)

(3 3 j)

where n3 refers to the number of octupole phonons. The calculated

excitation energies of the members of the quartet are listed in

table 6.8 for the values Q = - 0.42 ± 0.32 eb and3“
Q3_ = - 1.1 ± 0.4 eb. The lowest 0+ excited states that have been 

observed in 208Pb are at 4.87 MeV (Bj66) and at 5.26 MeV (Ig70) , and 

the fact that no 0+ excited state has been observed at a lower energy
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is an argument against a large value of Q3_, although there are 

large uncertainties in the calculated excitation energies in 

table 6.8.

Table 6.8 Calculated excitation energies of the members of the
two-octupole-phonon quartet in 208Pb. Results (in 
Mev) are given for the values Q^_ obtained in the 
present work, and obtained by Barnett et al. (Ba72).

J* Q3_ = - 0.42 ± 0.32 eb Q3- = - 1.1 ± 0.4 eb

0+ 4.83 ± 0.61 2.46 ± 2.01
6+ 5.06 ± 0.26 4.08 ± 0.84
2+ 5.10 ± 0.20 4.35 ± 0.64
4+ 5.42 ± 0.29 6.55 ± 0.96

6.2.3 Theoretical Calculations of Q3_ and B(E3)

The surprisingly large experimental result for Q3_ obtained 

by Barnett and Phillips (Ba69) has prompted a large number of theoretical 

investigations. The results of these theoretical studies are listed in 

table 6.9. It can be seen that the present value Q3_ = - 0.42 + 0.32 eb 
iS in agreement with most theoretical calculations, although these tend 

to be consistently lower (with the exception of Krainov (Kr68)). If the 

effect of the giant dipole resonance (GDR), estimated in section 5.5, 

is taken into account, then the experimental value becomes 

Q3_ = - 0.26 eb and excellent agreement is obtained with theory. If 

one further includes the estimated effect of interference from the
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Table 6.9 Comparison of experimental and theoretical values for Q3_
and B(E3) for the 2.6 MeV 3 state in208 Pb. The 
abbreviations in column 3 are explained in the text.

V B(E3;0+-*3 ) Model Ref. Comments
(eb) (e2b 3)

-0.42 ± 0.32 0.665 ± 0.035 thiswork experiment
0.149 TDA Le66 surface delta interaction
0.349 RPA Le66
0.11 - 0.13 TDA Gi66 value depends on
0.23 - 0.55 RPA Gi66 interaction

-0.09 B170 Gi66 wave function
-0.10 B170 Kuo wave function

0.372,0.709,
0.682

RPA B168 separable interaction

-0.12 coupled So71 separable interaction
0.58 RPAphonons So71 '

-0.52,-0.79 FFS Kr68
-0.21 FFS Sp72
-0.17 0.55 FFS Sp73
-0.20 PVC Ha70
-0.14 PVC Ha75

0r-H

01 PVC Bo75

4.09 Mev 2+ state (see section 5.5), then one obtains Q3_ = - 0.27 eb 

for constructive interference (P4 = - 1) and Q3_ = - 0.19 eb for 

destructive interference (P4 =+l). It can therefore be concluded 

that the present experimental result has resolved the discrepancy 

between theory and experiment, and that including the effects of 

the GDR and of the 4.09 MeV 2+ state would further improve the agreement. 

Nevertheless, it is instructive to investigate the possible reasons
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which, so far, have prevented theoretical calculations from predicting 

large values of Q3_.

The original discrepancy between theory and the experimental

results of Barnett et al. (Ba69, Ba72, Ba72a) led Guidetti et al.

(Gu75) to find lower and upper bounds for the values of Q^_ and B(E3)

which could be predicted by calculations based on the particle-hole

model or on models where particle-hole excitations are coupled to a

quadrupole phonon. The results of the investigation by Guidetti et al.,

which are independent of the Hamiltonian used in the models, are shown

in fig. 6.3. Although both neutron and proton particle-hole

configurations can make up a nuclear state, Guidetti et al. did not

assume an effective charge for the neutron, and only proton particle-

hole configurations were considered to calculate lower and upper

bounds for Q3_ and B(E3). Consequently, points located on the

"extremum curves'* in fig. 6.3 correspond to a state with pure proton

particle-hole configurations; such a state would be physically unlikely.

Fig. 6.3a shows that in the particle-hole model, Tamm-Dancoff

approximation (TDA) calculations with a small particle-hole space are

inadequate to describe the experimental B(E3). This observation is

substantiated by the TDA results of Letourneux and Eisenberg (Le66)

and Gillet et al. (Gi66). For TDA calculations to successfully

reproduce the observed Q3_ and B(E3), particle-hole configurations 
*

up to 3hw excitation would be required. The results from the random-

* Each major shell can loosely be considered to be separated from its 
neighbours by an energy hm, which is the case for the pure harmonic 
oscillator shell model. Thus, particle-hole excitations up to 3hw 
would consider all single-particle orbits of the 3 major shells above 
and below the Fermi surface.
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Fig. 6.3 Extremum curves for the particle-hole model (a), and for
the particle-hole 2+ phonon model (b)(c)(d), as calculated 
by Guidetti et al. (Gu75). The curves are labelled by the 
dimensions of the particle-hole space and according to whether 
it is treated in TDA or RPA. Circles indicate the results of 
Barnett et al. (Ba72) and crosses indicate the present results.
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phase approximation (RPA) calculations of Gillet et al.(Gi66) and

Kuo have been used by Blomqvist (B170) to deduce theoretical

quadrupole moment values of - 0.09 eb and - 0.10 eb respectively;

to predict larger values for Q3-, more particle-hole configurations

would need to be included. The results of RPA calculations by

Letourneux et al. and by Gillet et al. for B(E3) are also too small,

and Blomqvist (B168) has shown that the inclusion of 3hm excitations
can substantially increase the B(E3) so that it is brought into good agreement

with experiment (including 5hw excitations has relatively little

effect).

Sorensen (So71) has predicted a value - 0.121 ± 0.024 eb

for Q3_, using a model where particle-hole states are coupled to a

quadrupole phonon. The analysis of Guidetti et al., for this model,
requires the knowledge of the values of the B(E2) and quadrupole
moment of the 4.09 MeV 2+ state in 208Pb. Although the value
B(E2; 0+ + 2+) = 0.30 ± 0.02 e2b2 has been measured (Zi68) , the value
of the quadrupole moment has not and therefore Guidetti et al.

performed calculations for the value Q^+ = 0 eb predicted by the
vibrational model, and for the two values Q2+ = ± 0.5 eb predicted

by the rotational model; the results of these calculations are shown
in figs. 6.3b, c, and d. The true quadrupole moment is expected to

be somewhere between the rotational limits, but in view of the

experimental results for Q . in 20l+Pb and 206Pb, and in view of
'V

theoretical calculations which predict Q2+ = + 0.09 eb (Sp73, Ri74,

So70) , Q2-|_ in 208Pb is more likely to have a small positive value.

Therefore fig. 6.3c is more likely to represent the real situation.

It can be concluded that RPA calculations which include coupling of 

particle-hole excitations with a quadrupole phonon should be able to
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reproduce the experimental values of Q _ and B(E3) even with few
3

particle-hole configurations.
The theory of finite Fermi systems (FFS) (Mi67) has been 

used by Krainov (Kr68) to calculate Q 3_ but the units employed are 

not defined; the calculated value is either - 0.52 eb (see So71) 

or - 0.79 eb (see Ba72). Krainov’s predicted value(s), which 

is(are) the only one(s) to agree with both the present experimental 

result and that of Barnett et al. (Ba69, Ba72), is(are) surprisingly 
large. Other calculations, performed by Speth, with the theory of 
finite Fermi systems predict the smaller values Q3_ = - 0.21 eb (Sp72) 

and Q3_ = - 0.17 eb (Sp73, Ri74). Both the work of Krainov and 

Speth included particle-hole configurations up to 2hu) excitation. 

However, the selection rules suggested by Bohr and Mottelson (Bo75, 

p.470) indicate that including 3hw excitations could have a
significant effect on the calculated values of Q _ and B(E3).3

Finally, Hamamoto has predicted the values Q3_ = - 2.0 eb 
(Ha70) and Q3_ = - 0.14 eb (Ha75) (the reason for the differing 

values is not stated) using the particle-vibration coupling (PVC) 

model. With the same model, Bohr and Mottelson (Bo.75, P.569) 
estimate a value Q3_ « - 0.10 eb.

6.3 Conclusion

The present work has considerably improved the knowledge of 

the static and transition moments of the even-mass lead isotopes.

The previously unknown quadrupole moment Q2+ of 206Pb has now been 

measured. The quadrupole moment of 204Pb has been determined with

a smaller uncertainty and with the inclusion of more excited states in
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the analysis, than the previous measurement of Olin et al. (0174).
For both 20l4Pb and 206Pb, the reduced excitation probabilities 

B(E2; 0+ +2+) measured in the present work have been found to agree 
with previous Coulomb excitation measurements. Up to now, no single 

theoretical calculation has correctly predicted for both 201+Pb

and 205Pb; now that both these quadrupole moments have been 

measured, renewed theoretical interest in these nuclei may be expected.

The controversy regarding the quadrupole moment of the first 

3 state of 208Pb has been resolved by the present experimental result 
which is a factor of three smaller than the values from previous 

measurements. The present value of Q^_ now agrees with theoretical 

calculations. It has been suggested that the previous experiments 

of Barnett et al. may have been subject to Coulomb-nuclear interference 
effects, which would also explain the low value of B(E3; 0+ ->-3 ) which 
was obtained. Most theoretical calculations give values of Q^_ which 
are consistently lower in magnitude than the experimental values; to 
obtain larger values, more particle-hole configurations need to be 

included. On the other hand, it has been shown that including the 

effect of virtual excitation via the giant dipole resonance would bring 

the present value of Q3_ in yet closer agreement with theory. Some 

remaining uncertainties in the present experimental results are the 
size of the quantum-mechanical correction to be applied, the effect of 

the giant dipole resonance, the effect of virtual nucleon tunnelling, 

and the maximum safe bombarding energy for the 4He data. These questions 

remain a challenge for further theoretical and experimental investigations.
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