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PREFACE

This thesis describes a series of experiments designed to
measure the quadrupole moments of the first excited states of the
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Department of Physics and in the Department of Nuclear Physics at
the Australian National University under the supervision of
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of the energy calibration data was performed by myself. The procedure
for making thin, highly uniform,.lead chloride targets was developed
by myself. The lineshape fitting program was written by me and the
extraction of excitation probabilities from the raw data was performed
largely by me, with some assistance from Dr Baxter. The remainder of
the data analysis, including the writing of a least-squares program
for determining B(EA) and QJw values from the measured excitation
probabilities, and modifications to the Coulomb excitation computer |
program, were performed by myself.

Some of the work described in this thesis has appeared or will
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A.M.R. Joye, A.M. Baxter, M.P. Fewell, D.C. Kean, and
R.H. Spear,
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204pp and 206Pb,
A.M.R. Joye, A.M. Baxter, R.H. Spear, and D.C. Kean,
to be published.
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the writing‘of this thesis. I would like to express my sincere thanks
to Dr Spear for his considerable involvement in this work, and to
Professor S. Hinds for the many valuable discussions I have had with
him. Finally, I would like to thank Mr M.P. Fewell and Dr T.H. Zabel
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ABSTRACT

The stgtic quadrupole moments QJ.,r and reduced.excitation
probabilities (BEA) of the first excited states of the nuclei 204pp,
206ph, and 298Pb have been determined using the reorientation effect
in Coulomb excitation. The Coulomb excitation probabilities were
measured by resolving inelastically and elastically backward-scattered
“He, 12c, and 180 projectiles in an annular surface barrier detector.

In the case of 20“Pb and 206pb, safe bombarding energies were determined
for all projectiles.‘ In the case of 208ph, safe bombarding energies were
measured for 160, but were assumed for “He. The small vélues obtained
for Q2+ indicate that 204Pb is only weakly deformed, and that 206pp
approaches sphericity. The measured value of Qy_ for 208pb is much
smaller in magnitude than those obtained in previous measurements,

and is consistent with most theoretical predictions.



CHAPTER 1

INTRODUCTION

Although Coulomb excitation has been used for many years to
study the collective properties of nuclei (A156), it was not until
12 years ago that de Boer et al. (deBo65) used the reorientation
effect in Coulomb excitation to measure the electfic quadrupole
moment of the first 2+ excited‘state of 11%cd. The unexpectedly
large static quadrupole moment (Q2+ = - 0.70 * 0.21 eb) measured
by de Boer et al. aroused considerable interest since such a large
value was contrary to the previousl§ well-established picture of
11%¢cd as a typical vibrational nucleus. In subsequent years, a
number of processes (for example, Coulomb-nuclear interference,
virtual excitétion via the giant dipole resonance, and the
attenuation of gamma-ray angular distributions) which can significantly
affect the results deduced from reorientation measurements have come
to light, and consequently results from early experiments have been
found to be unreliable. However, the elucidation of these processes
and advances in experimental techniques have improved the reliability
of reorientation measurements, and in the last few years the
reorientation effect has become a useful tool to measure the quad-
rupole moment of excited states in nuclei from 180 (Fe77) to 208pp,

The present thesis reports the measurement of the electric
quadrupole moment of the first excited states of the isotopes 204pp,
206ph, and 208pb. The dramatic discrepancy between the experimental
and theoretical values for the quadrupole moment Q3_ of the 2.61 MeV
37 state in 208Pb, has aroused considerable attention in recent years.
While most theoretical calculations give Q3_ betweenv— 0.09eb and

- 0.20 eb (Gu75), Barnett et al. (Ba69) have measured a value



Q- = - 1.3

I+

0.6 eb and, in a subsequent experiment (Ba72), reported
Q- = - 0.9 + 0.4eb or -1.1 £ 0.4 eb, depending on the value
assumed for Q,4 in 206pp, It is therefore of considerable interest to
resolve the large discrepancy between the theoretical values and previous
experimental results.

The problem regarding Q3- in 208py, provided an incentive for
investigating the quadrupole moments Q2+ of the first 2+ states in
204ph and 206Pb.  There have been no previous measurements of Q,+
for 296pb, and only one value Q+ =+ 0.19 * 0.14 eb has been
reported (0174) for 204ph, These two nuclei are of further interest
because they lie between the doubly-magic nucleus 2°8Pb, and the
so-calied transition region A = 192 - 194 where nuclei are known
to change shape from prolate (A < 190) to oblate (A > 196). Moreover,
the quadrupole momentsQ,, for 204pb and 206pb provide a good test for
the shell model which has been found to be particularly successful
in the regions of double closed shells.

In the present chapter, some simple theoretical models are
described with particular emphasis on predictions for QJ-,T and reduced
transition probabilities; more advanced theoretical tfeatménts will
be discussed in chapter 6. Section 1.5 shows how nuclear shapes can
be treated in terms of relatively few collective parameters, and é
model;independent method for determining these parameters from
experimental data is described. However, a precise definition of

electric quadrupole moments will first be given.
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1.1 The Electric Quadrupole Moment

The static electric quadrupole moment is a measure of the
extent to which the nuclear charge distribution deviates from

spherical symmetry. Classically the quadrupole moment of a charge

distribution is defined as

eQ = I (3z2 - r?)p dt (1.1)

where p is the charge density. Clearly for a spherical charge

distribution Q=0. A charge distribution stretched in
the z direction (prolate) will give a positive quadrupole moment
(in the intrinsic frame of reference - see section 1.5), and an
oblate distribution will give a negative quadrupole moment. 1In
a quantum-mechanical treatment the charge depsity p is replaced

by the probability density lIJJ )|2 and the spectroscopic quad-

rupole moment is defined by

eQy = e (33| (322 - r2) |33 : (1.2a)

e (JJI(lGn/S)%rZYp_o(e,q))|JJ). (1.2b)

where Yoo is a spherical harmonic function, (r,0,¢) are the nuclear
céordinates, and the term |J,M==J) represents the wave function of
a nuclear state with spin J and z-component M=J. Equation (1.2) can
be generalized to higher-order moments

e’QJ“ e (J.I|[161r/(2)\-l-l)];ﬁ rXYA°(6,¢)lJJ ) . (1.3)

However, since nuclear states have a definite parity they cannot have



odd-order electric multipole moments; in particular, the dipole moment
is zero. The quadrupole moment is therefore the lowest order deformation
which can occur.

Quantum-mechanically, the only externally detectable quantity
having a definite direction in a nucleus is its total angular momentum
J; the measured spectroscopic quadrupole moment therefore depends on
the ofientation of the charge distribution relative to th#t of J.
When J=0 ﬁo direction can be defined; all directions must
be given equal weight and hence QJ.,, = 0. Hnaulaf momenTum coupim%

ru les “Mf')’ that for JT= VZ (QJ_.H- =0O.

1.2 The Extreme Single-Particle ‘Shell Model

In terms of the extreme single-~particle shell model, the.
ground state quadrupole moment of an odd-proton nucleus can be
éalculated from eq. (1.2) with an appropriate wave function |jj)
for the proton. The result for the quadrupole moment due to a

single proton (sp) is (Ma55),

Q = - zj_:._l (r2)

sp e 21+ 2 (1..4)

where (r2) is the mean square distance of the proton from the centre
of the nucleus. The negative sign in eq. (1.4) reflects the
concentration-of the particle density in the equatorial plane for

the maghetic substate m=j. For a single proton-hole, the quadrupole
moment is -—Qsp. An odd-neutron nucleus has a quadrupole moment due
to the recoil motion of the rest of the nucleus. For a neutron
located at L with respeét to the centre of mass, the rest of the
nucleus represents a charge Z at a distance: rn/(A-l) from the

centre of mass, and the effective quadrupole moment is



(1L0p wWOl13) FOIONU SSEW-PPO JO SIIEIS vﬁ:ouw jo sijuamom a7odnipend *2°1 811

(N 40 Z) SNO319NN QQ0 40 ¥38WNN

oyl O€tl oct 011 001 06 08 0L 09 0s ot (0] 0c (0]
I | 1 I 1 T 1 ) 1 1 | . T ] 4 °
. (€x),N4o1-
[+]
edo -4 8-
3hix £€2 x /
1188 . o a9 ] -19-
o €L | 0
X H 10 N.r
] ] “4v-
y aN A~ “
[+] £6 [} . NI.
\ Yoilgle o
il /\@ 6 x | @. @ ! e 0
[] X 4 ] 1
1 o f) 1 )
! R " 42
i N A Llg Vo 1y
/ oo | " ! ! -V
' X 1 1
H gl i H \ <9
; 4 .
[ -8
X s R
x g JoV o1
Ivo' \
X x4 .
62zt 61 Vo
agx. b 14
ud g
J3x .
€91 3
-{ 81
mumz - 02
o : Z ppo-o L4Z
[o] ¥
" N Ppo=-X ot x) > (44




. Z
Q = —_—— Q . ) (1-5)
sn (A-1)2 sp . '
Fig. 1.2 shows the systematic trends in the ground state
quadrupole moments of nuclei as a function of the number of odd

nucleons; the quantity Q/Z RZ (wvhere R=1 .07A1/3

fm) is a measure

of nuclear deformation. According to the extreme single-particle
model the value of Q/ZR2 should be ~l/Z for an odd-proton nucleus,
and ~1/(A-1)2 for an odd-neutron nucleus. Fig. 1.2 shows that

the change in Q from positive to negative as the nuclear number goes
through closed shells is correctly predicted, and that the magnitude
of Q/ZR2 in these regions roughly agrees. However, in regions away
from closed shells there are a number of major discrepancies:

a) The predicted values are much too small in magnitude.

b) When Q is fairly large, there is no difference in the order

of magnitude of the quadrupole moments of odd-proton and odd-neutron

nuclei.

c) There is a preponderance of positive quadrupole moments.

These discrepancies indicate that the simple single-particle
model is too naive and that a large number of nucleons contribute to

the observed quadrupole moments.

1.3 The Vibrational Model

In the simple vibrational model, it is assumed that the nucleus
performs harmonic vibrations about the spherical shape. The vibrations

of the surface are represented by



R(eyd”t) = RO[1 + E)\u a)\u(t) qu(e,‘?)] (1.6)

through the time dependence of the amplitude aku(t)' The terms with
A=0 and A=1 in eq. (1.6) do not give rise to surface oscillations;
A =0 represents a compression (or dilatation) without change of
shape (bgéause nuclear matter is almost incompressible, these
vibrations have high excitation energies), and the terms with
A=1 are assoclated with a displacement of the centre of mass.
The surface oscillétions of lowest order are therefore the quadrupole
mode with i= 2.

In quantum mechanics, the vibra;ions éan be treated as phonons
with angular momentum A, z-component u, and energy hwx.In the simple

vibrational model, the vibrational states can have excitation energies

AEN = hmA'NA N, = 0,1,2,... (1.7)

where Nk is the number of phonons. Phonons obey Bose-Einstein statistics
(i.e. they afe bosons). For example, two quadrupole (A =2) phonons can
give rise to degenerate states with spins 0+,2+, and 4+. In a real
nucleus, the degeneracy is removed, and the observation in numerous
nuclei (e.g. the even-mass Cd isotopes) of a 0+,2+,4+ triplet at

twice the excitation energy of the one-phonon 2+ state has been taken

as evidence for the occurrence of collective vibrations. Collective

3~ states due to one octupole phonon have also been observed in

several nuclei (for example the even-mass Pb and Cd isotopes). One-
octupole-phonon stétes have higher excitation energies than one-
quadrupole-phonon states and the liquid-drop model (which assumes

an imcompressible charged fluid and irrotational flow) predicts

hws = 2hwy, The sequence of levels expected from the simple vibrational

model is shown in fig. 1.3.
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Fig. 1.3 Energy level scheme predicted by the simple harmonic

vibrational model.



The simple vibrational model predicts the relation

B(EXr; N =2~ Nl = 1) = 2 B(EA; N, = 1> N, = 0) (1.8)

between the reduced transition probébilities for the two- and one-
phonon states. Transitions between vibrational states are governed
by the selection rule AN, =% 1; matrix elements (lelEkllN‘A)
are zero unless this rule is satisfied. As a consequence of the
selection rule "crosé—over" transitions are forbidden and static
electric quadrupole moments are zero. For A =2, both these
predictions have been found to disagree with experiment - ''good
vibrators" such as 11%Cd have non-zero quadrupole moments, and

|l .
2+ > d+ transitions have been observed, although these are much

+' +
weaker than 2 <+ 2. transitions.

1.4 .The RotationalrModei

In the simple rotational model (see for example, Bo75),
the nucleus is assumed to be a spheroid possessing axial symmetry.
Levels composing the ground state rotational band of an even-even
nucleus have spins and parities J" = 0+,2+,4+,6+,... and the energy

spacing between these levels is proportional to J(J+1). For this
rotational band, the reduced transition probabilities are given by
2

. N _ 15 @+1D)I+2) o (i
B(EZ; J+2 ~ J) S I Iy & (Qor) (1.9)

where Qiot is the intrinsic quadrupole moment defined with respect
to the symmetry axis of the nucleus. In the rotational model, the

spectroscopic quadrupole moment QJﬂ of a state J" is related to



rot °Y

_O3RZ-J(I+1) i
Qm = (J+1)(23+3) Aot (1.10)

where K is the projection of J on the nuclear symmetry axis. In the
ground state band of an even-even nucleus, K=0 and.QJn will be negative
for prolate shapes (Qiot> 0). Combining eqs. (1.9) and (1.10), omne

obtains for the 2+ state of the ground state band the relation

lo.x] = 0.9059(B(E2; of » 27)1% (1.11)
J

which defines the so-called "rotational value" for the quadrupole

moment.

1.5 . .Intrinsic Shapes

Since the nuclear shape has a profound influence on the
collective properties of a nucleus, it is clearly desirable to
introduce the concept of an intrinsic quadrupole moment Qi, taken
relative to the principal axis (axis of symmetry) of the nucleus.

The intrinsic quadrupole moment Qi is not only more closely related
to the shape of the nucleus than the spectroscopic quadrupole moment
QJn, but it does not suffer the problem of QJn which becomes zero

for J=0 or %. The intrinsic quadrupole moment is of theoretical
interest because in many theoretical models it is related to
observable quantities such as the reduced excitation probabilities

and QJ“. The concept of én intrinsic quadrupole moment was introduced
in the rotational model but in this simple model the nucleus was
assumed to have a fixed spheroidal shape, which has axial symmetry.

In general, a nucleus is not necessarily axially symmetric

and the nuclear shape is not fixed; instead, the nucleus can spend



a fraction of its time in various shapes. In this section, a scheme
to treat nuclear shapes, in general, in terms of few collective
parameters, is discussed; later, a model-independent method for

determining these parameters from expefimental data, will be described.

1.5.1 Generalized Treatment of Nuclear Shapes

In the present section, the nucleus is treated as an equivalent
ellipsoid (as opposed to a spheroid which is axially symmetric), as
shown in fig. 1.4, with the same charge, volume, and quadrupole.moment.
Higher-order deformations are ignored. The intrinsic coordinate system
is defined by the principal axes of the ellipsoid and because of
reflection symmetry it follows that aj)=as-3=0 and ayys = Qoo
for the azu coefficients in eq. (1.6). Therefore, instead of
characterising a randomly oriented ellipsoid with five a2u coefficients,
its shape is characterised by asp and a5 and its orientation in space

is described by three Eulerian angles. The two deformation variables

opp and ap, are usually (see for example Bo75,p677ff) expressed in

terms of the parameters B and y defined by

aog = Bcosy and ayy = ,2'—15 Bsiny . (1.12)

Using eqs. (1.6), (1.12) and the definition of spherical harmonics,

the length of the three principal axes can be written as

Rk = Ro[l + Scos (y - %‘Hk)] (1.13)

where k=1,2,3 correspfzgnd to the x',y',2' axes in fig. 1.4 and

§ = [5/(4m1%s . (1.14)



Fig. 1.4 Ellipsoidal shape for quadrupole deformation with 8 and ¥y
positive (from Hy64).

~\r

2 .
spherical point

prolate axis

Fig. 1.5 The parameters B and y as polar coordinates in the B-y plane.
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In eq. (1.13) it is sufficient to consider only positive values of
f and values of y in the range 00-600; other values correspond to
a relabelling of the axes. From eq. (1.13), it can be seen that
B=0 corresponds to a spherical shape (Ry=Ry=R3); B>0, y= 0°
to a prolate shape (R} =Ry <Rj3); B> 0, y= 60° to an oblate shape
(R1=R3>Ry); and B>0, 0° < Y < 60° to asymmetric shapes (R; # Ry #R3).
Any ellipsoidal shape can be represented by a point (8,y) on
a two-dimensional polar diagram as in fig. 1.5; the distance of a
point from the origin equals the deformation parameter B and the
polar angle corresponds to the asymmetry parameter y. In figs. 1.6 -
1.8 the potential energy of quadrupole deformation V(B,y) is plotted
on By diagrams for three extreme cases:
a) ~ Fig. 1.6 shows V(B,y) for an anharmonic vibrator. It can be
seen that a minimum occurs at B=0, correspondingvto a spherical
nucleus, and that the potential is almost independent of y. The
potential energy of deformation is obtained as a function of B by
plotting the values of V(B,y) along the Y’=0° and y==60o axes (note
that (B,60°) = (-B,Oo) and this is shown on the left of the figure
(the dashed line represents a harmonic vibrator). The expected
energy level scheme is shown on the right of fig. 1.6; it can be
seen that the two- and three-phonon states are no longer degenerate.
b) Typical prolate and oblate nuclei are represented in fig. 1.7.
These nuclei have very deep minima at B=0.4 and are permanently
deformed. Both nuclei have an identical energy level scheme (shown
on the right of the figure).
c) Fig. 1.8a shows'V(B,y) for a triaxially deformed nucleus
with permanent B and y deformations. The rotational energy level

scheme according to the Davydov-Filippov model (Da58) is shown in

fig. 1.8b.
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1.5.2 The Sum-Rule Method

Kumar (Ku72, Ku75) has suggested a mbdel-independent sum-rule
method using electromagnetic data to determine experimental values of
collective parameters in the intrinsic ffame of reference. An extended
version of this method was used by Cline (C172, Cl72a) to analyse E2
data in several regions of the periodic table. Although the method
has been described in detail by Kumar and by Cline, a brief outline

is given below. The sums

2 -1
e - 1+ = |¢s]z2] ) |2 (1.15)
and
(3) _ 4 eyl 32Jg 5 32 2 2
P 5% (23 + 1) (-1) g;ng 3, Jt§ (s|]|E2| |}

x (r||E2]||t) (t||E2]]|S) (1.16)

(where s, r, and t refer to nuclear states) are evaluated using the
reduced matrix elements obtained from experiment. The intrinsic

guadrupole moment Qi and the asymmetry parameter Yz are obtained

from
Q. = ((6n/5) P;Z)]% (1.17)
and
Gos3y. = - (71/2)% P§3)[P§2))_3/2 : (1.18)

The sums P(Z) and P(3)

s g are the expectation values (multiplied by

a factor of ¥5) of the zero-coupled products of E2 tensor operators
{E2><E2}0 and {[E2><E2]2><E2}0 respectively. These sums are invariant
under rotation of the.coordinate frame and have the same value in both
the laboratory and intrinsic frames. Higher-order sums P§4) and Pé6)

can be used to determine the fluctuations in the magnitude and in the



12

asymmetry of the nuclear deformation, but a larger number of states
must be included in the analysis in order to give meaningful results.
It must be emphasized that the values of Qi and Yi , determined
according to the above method, are completely model independent and
can be treated as bbservables; these parameters are a convenient
way of representing strongly correlated data such as QJ“ and B(E2).
To interpret the results of the sum rule method in terms of
the nuclear shape, the adiabatic approximation must be used and
certain assumptions must be made concerning the charge distribution
(for example, a uniform distribution of charges, and a sharp cut-off)
and, to this extent, the nuclear shapé which is deduced becomes model
dependent. As before, the nucleus is treated as an ellipéoid, and

the parameters (BS,YS) which describe the ellipsoid are related to the

intrinsic observables (Qi ,yi)‘ by YS==Y: and by

4

B, = 9 al @ (s|2|sn . (1.19)

The value of the mean square charge radius (slrzls) can be obtained
directly from electron-scattering or from mu-mesic data. Alternatively,
following the prohedure outlined by Kumar, (slrzis) may be expressed
in terms of the radius R of a sphere of equivalent volume. (In the

1/3

present work R=1.2 A fm.) If the latter procedure is followed,

then in the limit of small deformation, eq. (1.19) reduces to
_ i e |
BS = (5m/3 QS (Z R%) , (1.20)

which is the relation of Bohr and Mottelson (Bo53) for a spheroid. The

effect of this approximation is to change BS by less than 17 for values

of B<0.16.



The sum=rule method will be applied in chapter 6 for a
systematic study of the shapes of nuclei between A = 184 and

A = 206.

13
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CHAPTER 2

THE MEASUREMENT OF QUADRUPOLE MOMENTS

In the present chapter, the different experimental methods
which can be used to measure electric quadrupole moments are briefly
described. Since in the present work quadrupole moments were
determined from the reorientation effect in Coulomb excitation, the
-relevant aspects of Coulomb excitation theory are discussed. Some
important effects which can affect the value of QJTT obtained frqm
reorientation experiments, and which must be taken into account,
are also treated. At the end of this chapter, an outline is also
given of a computer program which was used to calculate excitation

probabilities from Coulomb excitation theory.

2.1 Methods for Measuring Quadrupole Moments of Excited States

The most common method of determining a nuclear quadrupole
moment QJ1T to measure its interaction with an electric field gradient.
Most experiments measure the interaction energy, and this is
proportional to the product of the qqadrupole moment and the electric
field gradient (Ja62 eq. (4.17)). To extract QJ",‘the electric field
gradient must then either be calculated or measured independently.
For an axially symmetric spheroid witﬁ symmetry axis z exposed to a
constant electric field gradient dE/dz, the interaction energy may

be written quantum mechanically as (H#74),

By = 7©Qu(dE/dz) (32 -I(I+1)]/3(23-1) (2.1)

where J is the spin and M is the magnetic quantum number of the
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nuclear state. For states with J=0 or % the interaction energy is
zero; as discussed in section 1.5, this does not imply that the
intrinsic quadrupole moment Qi, which is referred to the symmetry
axis, is necessarily zero. Since the interaction is quadratic in
M, states whose magnetic quantum numbers differ only in sign afe
degenerate. (This degeneracy can be removed by the presence of an

additional magnetic field.) When M=J the interaction energy reaches

a maximum,

. |
Eq = 7 QnldE/dz) M=7J. (2.2)

The various ways of producing an electric field gradient
at the‘nucléar site give rise to the different experimental methods
employed. These methods have been described by dé Boer and Eichler
(deBo68), McGowan and Stelson (McGo74), Hdusser (H#74), Bodenstedt

(Bo75a), and references therein, and are briefly outlined below.

a) External field gradients

The highest electric field gradients that can be produced by
external electrodes in the laboratory are of the order of»lOlL*'ch"2

’

giving rise to a maximum interaction energy E

Q

~ 10~1leV for -
QJn = 1b. This is too small to be measured experimentally.

b) The Mdssbauer Method

In crystalline solids a nucleus situated at a lattice point
can be subject to strong local electric (and magnetic) fields, usually
referred to as hyperfine fields. 1In the MYssbauer method, the
absorber is made by implanting the nucleus being studied in a host
lattice with a low order of symmetry and, in this way, hyperfine fields

up to 1018yem~2 can be obtained at the nuclear site. The source consists
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of the same nuclei embedded in a cubic crystal lattice where, because

of symmetry, the hyperfine fields are zero; (This is sometimes referred
to as an unsplit source.) The absorber nuclei are excited by resonant
gamma-ray absorption and then interact with the hyperfine field causing

a splitting of the magnetic substates of the states taking part in the
transition (providing their spin >%) . The energy shifts are of the
order of 107 -10"6 eV and can be measured from the absorption spectrum.
The source and absorber must be cooled to minimise lattice vibrations

and gamma-rays must have energies low enough (< 200 keV) so that they
are emitted without recoil. The major uncertainty in the values
obtained for quadrupole moments arises from the uhcertainty in the
strength of the hyperfine field at the nuclear site. Theseluncertainties
are usually large, and MYssbauer measurements at present are more useful °

in providing ratios of quadrupole moments for different nuclear states

or for different isotopes.

c) Perturbed angular correlation experiments

As for the M8ssbauer method the nucleus being studied is
implanted in a crystal lattice. The interaction of the quadrupole
moment with the electric hyperfine field causes a precession of the
nucleus which perturbs the angular diétribution of the deexcitation
gamma rays. From the precession frequency w, = E /h‘and knowledge

Q Q
of the hyperfine field, QJ“ can be determined. Two methods have beeu

used to measure w.:

Q

1) A single crystal source or target is prepared and the time-
integrated correlation (or distribution) is observed as a function of
the orientation of the crystal symmetry axis. The precession frequency

is obtained from the measured attenuation coefficients. (These are a
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function of (wQT)Z, where 11 is the lifetime of the state.)
2) A polycrystaline source or target can be used and the angular
correlation (or distribution) is obtained as a function of time
-(differential method) .

These methods are applicable provided that the mean lifetime
T of the state is greater than the period of precession; 1i.e.

T2 h/EQ ~ 10~2 sec. The main drawback of this technique is that
the accuracy of the measured QJw is limited by the accuracy with
which the electric field gradient can be determined. Furthermore,
because of the M? degeneracy (eq. (2.1)) the sign of the interaction
EQ and hence that of QJTT can only be determined by measuring the
circular polarization of one of the gamma rays, by polarising the
initial state, or by measuring the B-y directional correlation with
an unpolarized source.

In addition to using radioactive nuclei implanted in crystals,
other nuclei can be studied using recoil implantation; mnucleil
following nuclearreactions or Coulomb excitaﬁion recoil to implant
themselves in a suitable garget backing (Gr70,B172). This method,
however, has the additional complication of changes to the electric

field gradient due to radiation damage to the crystal lattice (He7l).
_d) Muonic X-rays
A muon moving in a lower atomic orbit can spend a large
fraction of its time inside the nuclear volume, and this feature
can be used to probe the nuclear charge distribution. The muonic
orbits are mu/me==200 times closer to the nucleus than the corresponding
electronic orbits and electric field gradients are therefore much larger.

The hyperfine interaction can give rise to energy shifts E (U)‘¥IOO keV

Q
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and this is comparable to the excitation energies of low-lying nuclear
levels so that the muonic X-rays and nuclear gamma rays are strongly
mixed. The quadrupole hyperfine splitting is proportional to QJ.,,Z3
and with present Ge(li) detectors the method is limited to nuclei
with Z > 25. The value of QJ“ is obtained by assuming a shape for

the radial nuclear charge distribution and this is model dependent.

e) ‘Inelastic scattering

It is possible to obtain a measure of the nuclear deformation
by measuring cross sections for inelastic scattering of protoms,
deuterons, and helium ions at energies where the nuclear interaction
predominates. (This method then does not rely on the électromagnetic
interaction.) These data are analysed in terms of a model describing
the nuclear surface using a deformed optical potential and the
method.of coupled channels (to include multipole ;xcifations). A

- model-dependent value of QJ“ can then be determined from the set of

parameters giving the best fit to the data.

f) Coulomb excitation

Coulomb excitation refers to the process whereby the close
passage of a charged particle (the projectile) can give rise to
transitions from the ground state to excited states in a target
nucleus. - If the excited nucleus is deformed, it will have a qﬁad—
rupole moment QJ“ which can interact with the time-dependent electric
field gradient produced by the projectile. The interaction between
QJ.,r and the electric field gradient causes the magnetic substates to
be split in energy (see eq. (2.1)) and because of the strong dependence
of the Coulomb excitation probability on excitation energy, the extent

to which the various magnetic substates are populated therefore depends
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on QJw- The change in population of the magnetic substates corresponds
to a reorientation of the nucleér spin axis and this forms the basis
for the term "reorientation effect" (Br55,Br56).

Whether or not the target nucleus (A;,Z;) and the projectile
(A1,Zy) come within the range of nuclear forces, Coulomb excitation
will occur. However, if the initial bombarding energy E of the
projectile is low enough, the distance of closest approach (between

centres and assuming spherical nuclei)
d = 1.44(1 + A1/A5)2,1Z,/E fm (2.3)

will be sufficiently large that Coulomb excitation is essentiaily the
only process taking place. Energies for which this is the case are
referred to as '"'safe energies" and a more quantitative definitionlof
these will be given in chapter 5. The reason for performing
experiments at safe energieé is that the Coulomb interaction is

well understood whereas a model must be assumed for the nuclear
interaction.

The reorientation effect has been used to measure quadrupole
moments of the first excited states of stable even-even nuclei from
189 té 208pp,. The quadrupole moments of higher states can, in
principle, also be measured (see for example 0'Br77) but multiple
excitation via lower excited states is an important effect (in
addition to interference from higher excited states; see subsection
2.2.4) and the relevant matrix elements must be known to a high
accuracy if QJn is to be determined with reasonably small errors.
The theoretical basis of Coulomb excitation is described in detail

in section 2.2 and a survey of experimental techniques is made in

chapter 3.
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2.2 Semiclassical Coulomb Excitation Theory

Coulomb excitation theory is now well established and a number
of excellent treatments of the subject have been given by Alder et al.
(A156), de Boer and Eichler (deBo68), Hiusser (Hd74), McGowan and

Stelson (McGo74), Newton (Ne75), and by Alder and Winther (Al75).
While only a qﬁantum mechanical treatment 1is rigorously correct,

an insight into the physical processes that take place is more

easily gained from semiclassical theory and computations of excitation
probabilities are considerably simplified. In many cases, the two

are in close agreement and as will be shown léter, it is .possible to
modify the results from semiclassical theory to account for quantal

effects. The remainder of this section will therefore deal only

with semiclassical theory.

2.2.1 General Description

The most significant approximation in semiclassical theory
is the treatment of the dynamics of the Coulomb excitation process
in terms of classical Rutherford scattering; that is, particles
are assumed to follow hyperbolic orbits. For this approximatién
to be valid, the following conditions must be satisfied:

1) The ratio of the distance of closest approacp d, to the

de Broglie wavelength A of the projectile must be large; this is

parametrised in terms of
n = d/2x = a/x = Z7,Z, eZ/hvi>> 1 (2.4)

where X% = A/27, a is half the distance of closest approach, and vi

is the initial velocity of the projectile in the centre of mass

system,
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2) ~The energy AE of the excited state must be small compared
to the bombarding energy of the projectile, i.e. AE/E << 1, so that
the energy loss of the projectile does not unduly modify the orbit.
By using the symmetrised velocity v =‘('vivf);5 (where Ve is the
final projectile velocity), the semiclassical treatment can be made
to correspond more closely to the correct quantal solution.

Assuming that conditions 1) and 2) are satisfied, the excitation

cross section for a level f is-given in the centre of mass éysteh by

(do/dR)f = Pif (do/dQ)R (2.5)

where Pif is the probability of excitation from an initial level i

to a final level f, and (dc/dQ)R is the cross section for elastic

scattering given by the Rutherford law,

(dc/dﬁ)R = (1/4) a2 sin™ (8/2) (2.6)

where 6 is the centre of mass scattering angle.

The probability Pif for the excitation is given by

2

P,. = (23,+D™ Z |b| - (@2.D)
1f i v | if

i'f
where M.i and.Mf are the magnetic substate quantum numbers of the
initial and final states and the bif are the transition amplitudes
between the magnetic substates IJiMi) and |Jfo). Note that in
eq. (2.7) it is assumed that the initial state is unpolarized and
that any polarization of the final state is undetected; one

therefore averages over the magnetic substates of the initial state

(giving the (2.]1’-1-1)'1 factor) and sums over the final substates.
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2,2.2 Perturbation Theory

Time-dependent perturbation theory (see Di66 for example)
may be used to evaluate transition amplitudes. To second order,
the transition amplitude from an initial magnetic substate lJiMi>

to a final mégnetic substate |Jfo) is expressed as

2y _ (1)
bigt = by *Z by (2.8)
where bi;) is the first order transition amplitude
b D = [ (I E,  (6) |54 exp(it(E, - E,)/n)dt
if ' f£f' int [ f i

=00

(2.9)

and

_ pann—2
b, o= (ih) r(quflnint(t)lsnnn>exp(it(Ef—En)/h)dt

-=00

t
] t - 1
x J (JnMnIHint(t )|JiMi) exp(it (En Ei)/h)dt

(2.10)
where the subscript n refers to an intermediate state.
In this case, the time-dependent Hamiltonian Hint(t) refers

to the Coulomb interaction and,treating the projectile as a point

charge Ze, it is given classically by

J p(r)zZe

Hint(t) = dav (2.11)

|z -R(t)|

where R(t) is the position of the projectile in the centre of mass
system, p(r) is the charge density of the protons in the nucleus,
dV is a volume element at pasition r, and the integration is over

all the nuclear volume. Equation (2.11) can be expanded in terms
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of multipole moments (Ja62),

> 2 -1 _-a-1 *
H, {(t) = 4nZ2eZ X (2)3+1) " R Y, (6_,¢6.) M (Ex,n)
int A=1 p=-A Aump’ P

(2.12)
where YAu(ep’¢p) is a spherical harmonic and M(EA,u) is the nucleaf
electric multipole operator of order A. The monopole-monopole term
is already accounted for by the prescribed motion along a.Rutherford
orbit and is therefore not included in eq. (2.12). With this latter
expression for Hint(t) it may be shown (see A156 for example) that
the transition amplitude bié) is proportional to the matrix element
(JiMilM(EA,y)lJfo) which in turn is proportional to the reduced
matrix element (JillM(Ek)llJf) H similariy, b, ¢ is proportional
to the product (JillM(EA)IIJn) (Jn||M(Ek)l|Jf) .

By substituting the second-order transition amplitude

(eq. (2.8)) into eq. (2.7), the total excitation probability may

be expressed as

_ oD (12)
Pif = Pif + E Pinf (2.13)
where
11
Pif ) & (JiHM(E)\)HJf)[z (2.14)

represents the first-order excitation probability, and

12
Pgnf) a (3 MEN a0 < [MEN |3y (3] IMEN | |30)

(2.15)

arises from interference between first and second order excitation.

(22)

Higher order terms P are small and have not been included. For

a three level system, the types of processes that may give rise to
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the terms in eq. (2.15) are shown pictorially in fig. 2.1, and are

discussed in more detail in subsections 2.2.3 and 2.2.4,

The first-order excitation probability is given explicitly

Pgl) = F(6,£) B(EA; i) (2.16)

where F(0,£) is an excitation function. The reduced transition

probability
B(EA; 1+6) = (2 3, +D7 |3, [mEn ][5 |2 (2.17)

is related to the partial width FA for decay by a gamma ray of

+ .
mu%épolarity EX from state f to state i by

grO+l) [E_Y] 23+l

” sz e - B(EA; £+1) . (2.18)
Al2x+1) 1! o

(see Sk67 for example) where EY is the energy of the gamma ray. Thé
function F(8,£) is a maximum at 6==180o and decreases slowly with‘
decreasing angle until at forward angles it falls off rapidly. The
function F(6,E) is strongly dependent on the adiabaticity parameter
£ which is the ratio of the collision time a/v and the period of thg

nuclear transition h/AE, i.e.

£ = aAE/Chv) . (2.19)

The excitation will be strong when £ <1 and can be shown to fall off
approximately as exp(-2mE&) when E>>1 (Bi65). Clearly, the higher

the excitation energy of a state, the less strongly it will be excited.



(-
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(12)
izf .

Par P

Fig. 2.1 Schematic representation of first order (double arrow)
and second order (single arrow) processes for cases
where n=f and n=2z. The centre diagram represents
the reorientation effect and the right hand diagram
represents excitation via a higher state.
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2.2.3 The Reorientation Effect

If the intermediate state n is in fact one of the magnetic

substates of f then (2.15) becomes

12 |
Pip = jC3, [ s |2 Gl mEn [y . 220

The observed static electric multipole moments of state f are related
to the reduced matrix element (Jf||M(EA)||Jf) ; for the quadrupole’

moment the relation for a state with spin J is

%
16 J(2J-1 .
Qg = {5“] [(J+1)(.'§_J+1))(2J+3) (il |13y (2.21)
(12) .
The term Piff therefore represents the reorientation effect.

The size of the reorientation effect can be compared to that of first

order excitation by considering the quantity

p2 /D o o(e,0q, (2.22)

where p(6,£) is the sensitivity parameter given by

| A AE

p(6,8) = kJ Z; (1+A/Ay) K(6,£) (2.23)
where

k= (175/32m) 2 ~ 1.32 for J =2

kJ = (21/417)Li ~1,29 for J=3.

The dependence of the function K(8,£) on 6 and £ is shown in fig. 2.2.
Clearly, a large projectile mass and a large scattering angle will
increase the size of the reorientation effect. 'The reorientation effect

is also larger for states with high excitation energies.



K(£,6)

Ol —
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60°
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Fig. 2.2.

The function K(8,E) in eq. (2.23) (from deBo68)
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Considering only first-order excitation and reorientation,

one can then write (from eqs. (2.13), (2.16), and (2.22)) the excitation

probability as

Py = F(6,8) B(EA; 1+£) [+ p(6,6)Qynl . (2.24)

The dependence of Pif on an can be used to determine QJﬂ,

and such experiments are described in detail in section 3.1.

2.2.4 Interference from Higher States

As implied in eq. (2.13), if the intermediate state n is a
higher excited state z in the nucleus, then one must add terms of

the form , ‘

12 _ Lee .
Pie = B(8,E. € ) (I [[MEN]]I) (I | |MED]]I)

x (JZ]]M(EA")llJf) | (2.25)
to the excitation probability in eq. (2.24). The probability of
multiple excitation becomes particularly large when bombarding with
heavy ions.

In reorientation experiments the interference from higher states
must be taken into account because their contribution to the total
excitation probability of state f is of the same order of magnitude
as that from the reorientation effect. It has been found (St67) that
if the quadrupole moment of‘the first 2+ state is being measured,
then interference from the higher 2+ states is the ﬁost important,
however ideally all other states should also be considered.

Although the magnitudes of the matrix elements in eq. (2.25)

are often known from other experiments, most experiments measure the




27

square of a matrix element and its sign is unknown. This means that
the sign of the matrix product in eq. (2.25) is not usually known

and this gives rise to an ambiguity in the measured value of QJw
depending on whether the interference is constructive (the excitation
probability is increased) or destructive (the excitation probability

is decreased) and for this reason, two values of QJﬂ are usually quoted.

The sign of the interference is most conveniently described in terms of

the quantity (Ku69)

Py o= MM MM M MM - (2.26)

where M, . represegts the reduced matrix element (JillM(EA)llJf) .
This quantity has the advantage of being independent of the phase
chosen for the matrix elements.

" Although it is difficult to measure P, experimentally, a
number of techniques have been used to determine the sign of the
interference for !92Ru(Fa76), 106,108,110pq (Be70,Ha76), ll%Cd(La72),
186,1880g (Ba76), and 194pt (Ba76). When considering the first Al
state it was found, for interference from the second 2+ state (i.e.
the‘2+' stéte); that P,=-1 fof all these cases except 13%Pt. A
value Py =-~'1 means that the interference is constructive when
Q2+g<0 ‘and destructive when Q2+_>0. Kumar (Ku69) has made
theoretical calculations based on the pairing-plus-quadrupole model
and predicts P, to be negative for all isotopes of W, Os, and Pt
except 192p¢, Considering the two limits of collective motion,
Kumar has shown that in the vibrational limit Py =-1, and that in the

\}

+
rotational limit Py, =-1 if the 2 state belongs to a y-band
1

+
(K=2) and P, =+1 if the 2 state belongs to a B-band (K=0). The result

+
for 19%Pt remains a problem as the implication that the 2 state belongs
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to a B-band is not consistent with the spectroscopy of l34Pt (Ba76).

2.2.5 Interference from the Giant Dipole Resonance

In addition to the interference from intermediate states with
relatively low excitation energies, it has been found (Ei64) that
virtual excitation of a final state f via'the 1~ states of the giant
dipole resonance (GDR) can have a significant effect on reorientatién
measurement. (The probability of actually populating these 1" states
is, however, vanishingly small because of their high excitation energy.)
In perturbation theory, the interference term has a form similar to

that of eq. (2.25), i.e.

(12) _ . "
Pog o =3 HIM@EN 3.y Zoce,e, L8 ) I M@ [ ) €T M@ |30

(2.27)
where n refers to the states in the GDR.
For a 2+ final state, A'=X"=1 and if we make the aésumption
I(JillM(E1)||Jn) | = I(JHIIM(E1)||Jf) | then Pé;z) becomes proportional

to the minus-two moment of the photoabsorption cross section,

2
[ o® 16n3 o 134 IMED]]I)]
o, = dE = Ohc z TR (2.28)
E2 n n i
which can be experimentally determined. From photoabsorption
measurements it has been found (Le57) that
o, = 3.5k43 yp/mey (2.29)

where k =~ 1 for most nuclei with A > 20.
Classically, the dipole interaction between the projectile and
the target nucleus may be interpreted as a dipole polarization of the

nucleus. For a deformed nucleus the interaction energy VPol between
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the projectile and the induced dipole moment of the target nucleus
is found to be proportional to 0_, (de Bo68, H474). The effect of

the GDR can thus be included by adding Vpo to the Hamiltonian

1

Hint(t)’ and this correction can be cdnveniently incorporated into
the de Boer-Winther computer program discussed in section 2.3.
For final states other than 2+ (and 0+), A" #1 and therefore

p{12)

if in eq. (2.27) is not proportional to o_ The effect of the

2'
GDR may be calculated by treating the GDR as a single intermediate
state. In many cases the values of all the reduced matrix elements

in eq. (2.27) are not knownand some must be estimated.

2.2.6 Quantal Corrections

The quantum mechanically correct form of eq. (2.24) may be

" written as

P,e = F(8,E,n) B(EX; i+f) [1 + 0(8,E,n)Qq] (2.30)

where n is defined in eq. (2.4) and n=« in the semiclassical
approximation. For reorientation experiments, the semiclassical
treatment gives sufficiently accurate (i.e. to better than 1%)
excitation probabilities if n >50 but for smaller values a quantal
correction must bebapplied.

It may be shown (A169) thaﬁ the quantal correction to the
excitation amplitude is of the order of 1/n; this means that the
correctioﬁ to F(0,E,») will be of order 1/n? and that to p(6,E,»)
of order 1/n. The quantal corrections can be conveniently applied

by using the relations (Al69, Ha74),
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F(6,E,m) Moy 2 [F(ezﬁzng) _ ] |

F(esgam) 1+ (!]) F(e’g,w) 1 (2.31)
and

2(8,E,m) Mo [ e€6,&,n0) _

(8,6, ~ 1t T [ p(6,8,%) 1 ] . (2.32)

These equétions imply that it is only necessary to calculate the
functions F(8,£,n) and p(8,E,n) for one value n=ny and results
for other values of n can be extrapolated. Values of these functions
for n=4, 8 and = have been tabulated by Alder et al. (Al172) for E2
excitation but regretably not for E3.

Typical quantal corrections applied in the case of 29“’206Pb
are listéd in table 2.1. It can be seen that although the quantal
correction to F(0,£,») is small (< 0.2%), that to p(6,E,») is as
large as 17%. waever, as will be pointed out iﬁ chapter 3 the value
of Q2+ is, in the present experimegt, proportional to the‘difference
in p for different projectiles; wusing Plge = 0.04 and Pleg = 0.16
(see figs. 5.6 and 5.7), the quantal correction to the value
Ipleo-queI is 0.3%. Quantal corrections are therefore expected to

have a small effect on Q2+ in the present work (see subsection 5.4.2).

Table 2.1 Typical values of quantal corrections applied
in the case of 20%,206py (6=171.6°)

Projectile n F(B,E,ﬂ)/F(e,E,”) D(G,E,ﬂ)/p(e,g,“)
15 MeV “He 13.4 0.9980 1.17
46 Mev 12¢ 39.8 0.9998 1.06

60 Mev 160 53.6 0.9999 1.04
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2.2.7 Corrections to the Rutherford Orbit

A number of processes can give rise to small changes in the
Rutherford orbit., 1If it is assumed that the main effect of these
deviations is associated with a change in the distance of closest

approach, then the effect can be simulated by a small change in the

bombarding energy, i.e.

E, = E+ OE  (2.33)

where 6E is the correction applied to the bombarding energy E (in
the laboratory frame of reference). Calculated values of SE for

the various effects are listed in Table 2.2.

a) Electron screening

The atomic electrons around the target nucleus have the effect
of screening the repulsive potential of the nucleus. The distance of
closest approach is therefore decreased and an expression for the

effective increase in bombarding energy has been given by Saladin

et al. (Sa69),

§E = + 2y (32.65 2,777 - 40 2,215y (1+4,/ay) ev.

(2.34)

b) - Vacuum polarization

In quantum electrodynamics an interesting phenomenon is the
virtual polarization of the vacuum arising from the existence of the
electron-positron field. An important consequence of vacuum
polarization is the increase in the electrostatic interaction between
two charges. At separations between the charges of the order of

10_15nh the correction to the Coulomb law is of the order of 0.5%,
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and increases logarithmically at smaller separations (Fo54). A
manifestation of vacuum polarization is its contribution to the
energy diffefence between the ZP% and ZS% atomic levels in hydrogen
(the Lamb shift). 1In the present work, vacuum polarization is
accounted for by using an effective bombarding energy obtained by

adding to the actual bombarding energy the correction (Al75),

6E = - 1.55 E sin(e/z)111[%lzizi;?Af/ii§ggﬁ?;in(9/2)]kev (2.35)
where 6 is the scattering angle in the centre of masé systeﬁ. (Note
that 6E is in the laboratory system.)

c) Relativistic Effects.

Relativistic effects associated with charges in the Rutherford

orbit can be estimated by the correction (A175),

3 E2 "1 -51in(6/2) ,
8E = - 0.54 A (T+A,7A;) * 1+5in(6/2) [1 + 2Sin (8/2)] kev (2.36)

to the bombarding energy. As can be seen from Table 2.2, relativistic

corrections are negligible in the present work.

Table 2.2 Corrections SE(keV) applied to the bombarding energy to account
for electron screening, vacuum polarization, and re}ativistic
effects (laboratory angle of 171.60). The percentage chénge in
the excitation probability PJw of 204,206py, (E2 excitation) and

of 208pp (E3 excitation) due to these corrections is also listed.

Projectile | Electron | Vacuum | Relati-| Total 20%,206pp 208pp
: Screening| Polari-| vistic | Correc- AP, 4 AP,
zation Effects | tions
15 MeV “He 31 - 42 - 0.1 - 11 - 0.38% - 1.12%
46 MeV 12C 98 -126 -0.3 | - 28 - 0.32% -
60 Mev 80| 133 -161 - 0.4 | -28 - 0.25% - 0.69%
2.3 Computer Calculations

As mentioned previously, when bombarding with heavy ions,
interference due to excitation via higher states becomes important.

In general, it is difficult to account for these using perturbation
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theory and it is more convenient to use the multiple Coulomb excitation

program of de Boer and Winther (Wi66).

The nuclear wave function |¢(t)) satisfies the Schr¥dinger

equation

3 : |
ihgr lw®) = EH +H (O] |ue) (2.37)

where Ho is the Hamiltonian of the free nucleus. 1If the eigenstates

|£) of H  are defined by Holr ) = Erlr) , the nuclear wave function

lw(t)) can be expanded in terms of these, i.e.

l(e)) = Zb(e)|r) exp(LE_t/n) (2.38)

where br(t) are time~dependent amplitudes. From these definitionms,
it can be seen that the Schrddinger equation is equivalent to the

following set of coupled linear differential equations

ih l;r(t) = §<rluint(t)|s> expl[i(E_-E_)t/n] b_(¢) . (2.39)

The prograﬁ performs a numerical infegration with respect to t in order
to obtain the final excitation amplitudes. It must be noted that the
values obtained from the program are still semiclassical (i.e. they
assume a semiclassical trajectory) and corrections for quantal effects
must be applied.

The accuracy to which the integration is performed is specified
by the éccuracy control parameter a, (Wi66). At the end of each
integration step, an estimate of the truncation error F (defined in
Wi66) is made; if F:>ac the step width is halved, and if F'<aC/50
the step width is doubled. Parameter a, also controls the range of

integration; small values of a. increase the range.
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The accuracy of the computed excitation probabilities Pcomp
was tested by decreasing a, in powers of 10 until the results obtained
converged to the same value of Pcomp to within 0.1%Z. For values down

-3

to Pcompﬂvlo this requirement was easily satisfied by setting

a <10 °. However, for smaller values P ~ 10_5 (such small

c comp
excitation probabilities‘were encountered for the 3 state in 208pb,
when bombarding with 15 MeV “He ions) it was found that setting
ac:S.low8 ﬁas no longer adequate and computed values fluctuated

within 17 of a mean value. While the cause for these fluctuations

is not entirely clear, they may be explained by the following:

a) The expression used to calculate the truncation error may be.
an underestimate when small excitation amplitudes are involved, so

that the resulting step widths are too large.

b) When very small values of a, are used, the range of integration
is unnecesarily increased and the larger number of integration steps
may give rise to a bigger truncation error.
It was therefore decided to modify the program such that
F'=14F was taken as the estimate of the truncation error. This
-had the effect of forcing the integration to proceed by smaller steps
without increasing the integration range. The integration steps were
further kept small by requiring that F"'<ac/200 before the width
was doubled. Although computation time was approximately doubled
these modifications ensured that (for ac:slo—s) the values obtained
for Pcomp were accurate to better than 10_8, i.e. 0.17% of P==10_5.
The use of this Coulomb excitation program in the data

analysis will be described in chapter 5.



35

CHAPTER 3

EXPERIMENTAL TECHNIQUE IN REORIENTATION MEASUREMENTS .

In this chapter, the experimental methods which have been used
to measure electric quadrupole moments using the reorientation effect
in Coulomb excitation are briefly described, and the relative merits
of each method are discussed. The experimental procedure empioyed in
the present work is described in detail in section 3.2. The presence
of certain contaminants in the targetscould severely affect the déta;
section 3.3 describes the measures taken to reduce térget contamination,
and the tests performed on the targets to derive upper limits for these
contaminants. Finally, because the excitation probaﬁilities are very
sensitive to the bombarding energy (see table 3.5) it was necessary to
perform an energy calibration for the two accelerators used iﬁ the

present experiment (see section 3.4).

3.1 Experimental Techniques used in Reorientation Measurements

In recent years, a number of different experimental techniques
have been used to determine the electric quadrupole moment of the first
excited states of nuclei by means of reorientation effect (Ch72, K175).
In principlé, measurement of the excitation probability and knowledge

of the B(EA) (e.g. from lifetime measurements) should be sufficient

(see eq.v(2.24)). However, the small effect of the quadrupole moment

on the total excitation probability (for 160 projectiles it is 16% per
barn for 20“"ZO‘GPb, and 207 per barn for 208ph) means that the B(E)) must
be known to a greater accuracy than is normally available from previous
work., For this reason, it is usual to measure excitation probabilities Pa

and PB for different bombarding conditions so as to vary the size of the
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reorientation effect. This procedure yields two or more equations

(identical to eq. (2.24)),

J
I

. = F BEN [L+0o Qul (3.1a)

+J
[

. Fy B(EA) [1+ py Q) | (3.1b)

where the functions F and p may be evaluated from perturbation theory
or. with the de Boer-Winther program. If absolute values of Pa and PB

are measured, then equations (3.1a) and (3.1b) may be solved

simultaneously to obtain B(E)X) and Qyme If only relative values are

measured, then

P /Ry ~ F/FGIL+ (o -0,)Ql (3.2)

and only QJTT can be determined. In both cases, the sensitivity of
the experiment to the quadrupole moment depends on the quantity

Ipa-pB| which may be maximised by appropriate choices of the

parameters A;, 6, and £ (see eq. (2.23)).

a) Dependence of the reorientation effect on bombarding energy.
As can be seen from fig. 2.2, the function K(6,£) (in eq.

(2.23)) 1is only weakly dépendent on £. This means that in experiments

which vary the bombarding energy (and hence £) the variation in the

excitation probability P is relatively insensitive to Q In addition,

Jme
the need to perform experiments at safe energies and yet still obtain
reasonable count rates places a severe restriction on the range of

bombarding energies that may be used. This type of experiment is

therefore rarely performed.

b) Dependence of the reorientation effect on scattering angle.
Varying the scattering angle 6 can produce large changes in

the value of K(6,£) (see fig. 2.2) and therefore |pa-p8l can be
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made large, particularly if heavy ions are used. Since the data may be
collected at several angles simultaneously, this method makes
economical use of accelerator time. However, at forward angles

the differential cross section changes rapidly with 6 (see for
example Bi65, fig. 2.5). Extreme precautions must therefore be

taken to define the scattering angle precisely(to of the order of

0.19).

c) Dependence of tlhie reorientation effect on projectile mass.
Bombarding with projectiles of different mass can produce
large changes in p. The requirement to operate at safe bombarding
energies with each projectile results in similar values of E; the
value of the function K(8,f) is then almost constant and therefore
'pa-p6| is roughly proportional to the difference in mass of the
projectiles. Typicai projectiles that have been used are “He, 12¢C,
160, and 325, because the excitation energy of their first excited
state is sufficiently high that the excitation probability is low
compared to that of the target nucleus and the respective inelastic
peaks are well separated in the spectrum. It is advantageous to
detect the scattered projectilés near 1800, not only because K(8,£)
attains a maximum, but because then the functions F(6,£) and K(8,E)

vary only slowly with angle and 6 does not have to be precisely

defined.

3.1.1 'Measurements Involving Gamma Rays

a) Gamma-Ray Singles Experiments.
This method has been fully described by Steadman et al. (St70)
and consists of measuring the intensities of gamma rays detected in

singles from a thick natural target bombarded with different
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projectiles. From the relative intensities Ia/IB’ the relative
contribution of the reorientation effect in each isotope can be
determined and the difference in the quadrupole moments between

the isotopes is obtained,

1/T, = 1,(Q,=0)/T,(Qqu=0)[1 + 7.0, =50, (3.3)

o
where

p = (A1/Z3) AE K(6,8)/(1 + Ay/Ap) (3.4)

and E?E:ET is the fuﬁction K(8,E) averaged over 6 and g. If the
value of QJ1T for one isotope is known (from other measurements) then
one may obtain QJTT for the others. This technique is experimentally
simple and since the cross section integrated over a large number of
angles is measured (by placing the Ge(Li) detector close to the
target) high count rates are obtained. Oné must, however, make a
correction for the variation of the detection efficiency with gamma-
ray energy. Frequently, a major difficulty in this type of experiment
is the extraction of accurate intensities from complex singles gamma-
ray spectra.

Of particular relevance to the present work is the use of
this technique by Barnett et al. (Ba72) to measure Q3_ for the 3~
state in 298Pb, The value obtained depended on an assumed value

for the quadrupole moment Q2+ of the first 2+ state in 206pb.

b) Particie—gamma ray coincidence experiments.

In this method, coincidences between inelastically scattered
particles (detected in a surface barrier detector) and deexcitation
gamma rays are observed, and the excitation probability is obtained

)

from the coincidence yield Icoinc and the singles yield (Iel + Iinel

in the surface barrier detector. In this type of experiment one
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must take into account the efficiency of the gamma-ray detector, the
gamma-ray angular distribution, and dead time losses in the coincidence
electronics and in the analog to digital converters (ADC's).

The gamma-ray angular distribution is attenuated when thé
highly ionised atoms recoil in vacuum; any unpaired atomic electrons
will produce randomly oriented magnetic fields which interact with
the magnetic dipole moment of the nucleus causing a precession of the
nucledar spin axis. For this reason, one must measure the gamma-ray
angular distribution to determine the hyperfine attenuation coefficients.
The dependence on the attenuation coefficients can be eliminated by
using thick targets (or thick target backings) so that the nuclei no
longer recoil in vacuum.

With this technique, QJ.,T c?n be determined by using different
projectiles or by detecting particles at different angles; in some
experiments, B(EA) values have also been obtained. This latter

method has been used by Olin et al. (0174) to measure the quadrupole

moment of the first 2+ state in 20%pp.

c) Reorientation precession mgthod

This method differs from those described in parts a) and b)
in that it does not measure excitation probabilities but determines
QJTr from its effect on the gamma ray angular distribution, i.e. on
the magnetic substate populations (see section 2.1f) of the excited
state. Two experimental arrangements to measure this effect have
been suggested by de Boer and Eichler (de Bo68) and these have been
applied in experiments performed by Grodzins et al. (Gr73) and by
Hasselgren et al. (Ha76). The basic principle of the method is to

measure gamma-ray yields at two angles in coincidence with scattered
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projectiles detected (in a surface barrier detector) at a fixed angle.

The quadrupole moment is then obtained from the ratio of the two yields.
This type of measurement is difficult because the effect of

QJw on the angular distribution pattern is small. -Quantal corrections

are also more important than in experiments that measure excitation

probabilities. On the other hand, the value of QJﬁ obtaihed is less

sensitive to multiple e#citations through highef excited states;

such experiments are also distinguished by their ability to determine

the sign of the interference from higher states (see subsection 2.2.4).

3.1.2 Particle Spectroscopy

The most direct determination of the inelastic cross section
is the detection of the scattered particles using high resolution
particle spectrometry; the excitation probabilities are obtained
directly from the intensity ratio Iinell(Iel + Iinel)' The major
requireﬁent is the ability to separate the elastic and inelastic
groups, and for this reason the targets must be made thin
(s 20 pg/cm? for 160 ions). The elastic peak is always'much larger
than the inelastic peak and the iow energy tail on the elastic peak
can considerably affect the extraction of the inelastic peak areas.
If the tail height is reduced, then so is the uncertainty in the
inelastic peak area; it is therefore very important to minimise the

tailing on the peaks.

a) Magnetic spectrographs
Excellent particle energy resolution can be obtained with the
new generation of magnetic spectrographs of the split-pole and QD3

type (Sp67, Mi70). These spectrographs can compensate for kinematic
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broadening, which is particularly a problem for heavy ions. This
makes it possible to use solid angles up to 7 msr for the 3plit-p61e
and 14 msr for the QD3. The energy resolution is then limited
primarily by energy loss and straggling in the target. Magnetic
spectrographs do not suffer from the pulse height defect problems

of surface barrier detectors (see subsection 3.2.3) with the
consequent tailing on peaks, and for heavy ions the line shape
obtained with a magnetic spectrograph should be better than that
obtained with a surface barrier detector. Nevertheless, tailing
can still occur due mainly to slit-edge scattering of the beam and
of the projectiles scattered from the target. For magnetic speétro-
gréphs, there is the problem that the scattered ions leaving the
target can be in different charge states and the elastic and inelastic
peaks arising from each charge. state must be summed to obtain the

total elastic and inelastic particle yields.

b) Surface barrier detectors

When the excitation energy of the first excited state is
high, the target thickness can be increased and this then determines
the energy resolution; the inferior energy resolution of silicon
surface barrier detectors is then less significant,and little
advantage in energy resolution is gained by using a magnetic
spectrograph. While,in general, surface barrier detectors are
simpler and less expensive than magnetic spectrographs, many added
benefits derive from the use of annular surface barrier detectors.
Solid angles of the order of 40 msr can be obtained with an annular
surface barrier detector and, in view of the small excitation

probabilities involved in the present work, this is a major advantage
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over the magnetic spectrograph. By using an annular detector near
180° the amount of kinematic broadening is a minimum (see subsection
3.2.3) and, as mentioned before, the variation of F(6,&) and_K(e,E)
with 6 is slow. The axial symmetry provided by an annular detector
minimises the effect of changes in beam ﬁrajectory on the mean
scattering angle. On the other hand, surface barrier detectors suffer
from pulse height defect p?oblems which give rise to tailing on peaks
and these are particularly important when detecting heavy ions (see
subsection 3.2.3). Tailing is also produced by slit edge scattering.
It is therefore more difficult to obtain good lineshapes with surface
barrier detectors than with magnetic spectrographs.

As before, values of B(E)A) and QJW can be obtainéd by varying
the scattering angle or by using different projéctiles. The latter

is thebasis for the present work and is described in detail in the

next section.

3.2 Experimental Procedure

The experimental procedure consisted of bombarding thin
isotopically enriched PbCl, targets with “He, 12¢ and 160 ions;
a summary of bombarding energies at which data were collécted for
each isotope is given in Table 3.1. The scattered projectiles
were detected with an annular surface barrier detector positioned
at a mean laboratory scattering angle wm of 171.6°.

While the 20%Pb and 296Pb experiments were similar, it
was necessary to introduce certain changes in the 208Pb experiment

because of the higher excitation energy of the 3~ state and its
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low excitation probability. These changes will be pointed out where
appropriate.

The amount of tailing in the spectra was measured by the peak-
to-valley ratio (P/V ratio) obtained by dividing the height of the
inelastic peak by the minimum height of the background between the

elastic and inelastic peaks.

Table 3.1 Bombarding energies at which data were collected.

Target Nucleus Projectile _ Bombarding Energy (MeV)
204pp “He 13.80, 14.45, 14.75, 15.30, 15.90,
16.30, 16.80, 17.50, 18.00, 18.50
12¢ 45, 46, 47, 48, 49, 50, 51, 52,
54, 56, 60
169 59, 60, 61, 62, 63, 64, 65, 67,
70, 72, 75, 77, 78.5, 80, 85
206pp YHe 13.80, 14.45, 14.75, 15.30, 15.90,
16.30, 16.80, 17.50, 18.00, 18.50
12¢ 44, 46, 48, 50, 52, 60
169 60, 61, 62, 63, 64, 65, 67, 70,
72, 75, 77, 80, 85
208pp “He 15.1, 15.3
169 59, 60, 61, 62, 63, 64

3.2.1 Accelerator Beams

| The 160 and 12C beams were obtained from the ANU 14UD Pélletron
accelerator (Op74) and the “He beams were obtained from an EN tandem
accelerator. On both machines, an anti-scatter baffle was placed in
front of the switching magnet to remove beam scattered from the walls
of the analysing magnet box. On the EN accelerator it was found

that beam degradation from slit edge scattering could be reduced by
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maintaining the energy-defining slit in a highly polished condition.
Beam quality was also improved by using thin stripper foils.

Beam dumps made of aluminium for the 14UD and carbon for the
EN tandem were used to collect the beams. The use of materials of
low atomic mass was necessary to ensure that particlesbackscattered
from the dump and striking the detector had an energy sufficiently
low not to interfere with the region of interest in the spectra. A
carbon beam dump was not used on the 14UD because of a general policy

of maintaining a clean, carbon-free vacuum for this accelerator.

3.2.2 Target Chamber Geometry

Experiments were performed in aluminium scattering chambers
(0p75) with an inside diameter (ID) of 51 cm. The target chambers,
and the experimental geometry, were similar on the two accelerators.
The chamber on the 14UD was nickel plated as part of the clean vacuum
policy for this accelerator. A schematic drawing of the experimental
geometry is shown in fig. 3.1.

All collimators were made of tantalum and the edges were
highly polished. Collimator Cl, placed on a cpllimator mount CM,
prevented the beam from striking the back of an annular detector AD.
By employing special-order detectors with a large diameter hole, a
4.6 mm inside diameter could be used for Cl and this contributed to
the reduction of slit edge scattering. A 3 mm thick tantalum absorber
TA reduced the flux of X-rays (generated by the beam intercepted at
Cl) reaching the detector. Collimator Cl was electrically insulated
so that by measuring the current, beam focussing could be monitored.

It was necessary to use electron suppression to prevent
secondary electrons, emitted from target T, producing a large number

of low energy pulses. Permanent bar magnets BM were placed on either
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side in front of the detector, and a horseshoe magnet HM below. On
the EN accelerator runs, the target was surrounded by a coppér
shroud CS cooled with liquid nitrogen to inhibit the deposition
on the target of carbon and other impurities during bombardment.
Collimators C2 and C3, placed in front of the detector,
prevented particles scattered from the target from reaching the
detector edges. These collimators define the effective solid
angle dQ (about 42 msr) and the mean laboratory angle wm (about
171.60) at which the particles were detected. The kinematic
broadening is about 4 keV for “He, 30 keV for !2C, and 44 kev for
160, It can be seen that the use of an annular detector gives a
relatively large solid angle for an acceptable amount of kinematic
broadening. Moreover, between the minimum and maximum scattering
angles defined by collimators C2 and C3, the»excitation probability
for 2045206pp yarjes only by 0.13% for “He, 0.34% for 12C, and
0.40% for 160. In the case of 208Pb, the excitation probability

varies by 0.41% for “He, and 1.08% for !60.

3.2.3 Annular Surface Barrier Detectors and Associated Electronics

Annular surface barrier detectors (supplied by Ortec Inc.)
used in this series of experiments had an active area of 300 mm?
and a sensitive thickness of about 200 ym (sufficient to cbmpletely
stop "“He particles up to 19 MeV and 60 up to about 170 MeV). The
electronicsvconsisted of an Ortec 125 preamplifier and a Tennelec
203 BLR main amplifier. Evidence of pulse pile-up was particularly
noticeable in the “He spectra and this problem was reduced by setting
the amplifier time constant at 0.25 or 0.5 us (although these short

time constantswould be expected to give slightly worse energy resolution).
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Typical values for energy resolution, measured at the FWHM, were

35 keV for l+He, 110 keV for !2C and 145 keV for 160; the principal
contributions being from detector resolution and from target
thickness (see table 3.2).

When detecting heavy ions, several processes in the detector
give rise to low energy tails. A heavy charged particle (e.g. 169
as distinct from "“He) has large specific energy losses and creates
a dense cloud of electron-hole pairs along its path. The ionisation
density is such as to create a region of reduced electric field inside
this cloud; before the appiied external electric field can disperse
the cloud, significant recombination of charge carriers can take
place. The statistical fluctuations in the resulting loss of pulse
amplitude can cause tailing. The recombination of charge carriers
can be decreased by increasing the applied electric field, and for
this reason detectors with high collection fields 3 10% V/cm were
employed in the present work. The situation could be further imprqved
by céoling the detector and by over-biasing (although the electric
field only varies as the square root of the applied voltage), but
these measures were not found to be necessary.

Another important contribution to peak tailing arises from
nuclear collision processes. Since the probability of a nuclear
iﬁteraction increases with decreasing velocity of the charged
particle, heavy ions lose a significant fraction of their energy by
nuclear collision processes, in which the incident energy does not
give rise to electron-hole creation. The statistical variations in
this energy loss cause the tailing. These processes are a function
of the detector material and cannot be avoided. An additional

problem important for heavy ions is the decrease in energy resolution
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caused by fluctuations of the energy loss in the dead layer in
front of the detector.

Radiation damage by heavy ions can create electrically-
active defects in the crystal lattice of the detector. These
defects produce local variations in the electric field and affect
the recombination rate of the charge carriers with peak tailing as
a result. Because of the large number of spectra collected and the
long running times (typically 24 hrs) associated with each, the
detectors were subjected to large‘doses of heavy ions, and because
of their limited life were replaced as necessary. Evidence of
extensive radiation damage was increased tailing in the spectra and
a marked increase in leakage current.

The "He spectra in the 208Pb experiment, because of the
low excitation probabilities involved, required very long running
times (100 hrs), thicker targets (100 ug/cm?) and 1argérbbeams
(2601m&). With the resulting high count rate, pulse pile-up peaks
were clearly observed and in order to improve the spectra, pile-up
rejection circuitry was introduced. This system consisted principally
of a pile-up gate which gives a logic output when two pulses from the
preamp arrive within a specified time interval; tﬁe logic signal
then closes a linear gate to reject these unwanted pulses. This
system reduced the count rate of pulses into the pulse height
analyser by 10%Z. Although the pile-up peaks themselves could-not
be removed, the tail extending on their low energy side (due to
partial overlap of pulses) was considerably reduced and spectrum

quality thereby improved.
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3.2.4 Target Quality

Iﬁ the present work, target quality was a crucial factor in
obtaining adequatebpeak—to-valley ratios. The first targets made
consisted of lead metal evaporated on a carbon backing. The enriched
isotope, supplied in nitrate form, was first converted to the oxide
by heating in air; when subsequently heated in vacuum the oxide was
reduced to the metal which then evaporated onto carbon backings. The
behaviour of these targets was found to be somewhat erratic. While a
few gave reasonable P/V ratios (typically 20:1 for 15.2 MeV “He ions
on 206pb) most gave very inferior results. Target quality was also
found to vary from one spot to another on a given target. Visual
inspection of these targets upder a microscope showed that in addition
to the uniform lead coating, the target‘was dotted with small lumps of
material. Examination of "bad" targets showed many such lumps while
"good" targets were alﬁost devoid of them. These lumps were probably
caused by spitting from the crucible during the evaporation, even
though care was taken to heat the crucible slowly.

It was therefore decided to use lead chloride, PbCl,, which
is easy to prepare chemically from the nitrate form, and when heated
appears to sublime. By progressively heating the crucible, fhe rate
of evaporation could be easily controlled, and uniform targets
reliably dbtained. The targets could be subjected to YHe beam
currents up to 300 nA for long periods without any significant
deterioration. When tested with an 60 beam the targéts were
found to slowly evaporate, but it was possible to prevent this by
evaporating a thin layef (1-2 ug/cmz) of carbon onto the front
surface of the target. A small portion was left uncovered so that

the thickness of this layer could later be measured. The additional
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carbon layer was also necessary for the relatively thick targets
used in “He bombardment of 208pp, Target requirements for 12¢
beams were similar to those for 1°0.

By optimising the focussing on the 14UD, it was possible
to obtain beam spot sizes <1 mm at the target; this produced a
rapid deterioration of the target. This problem was overcome by
deliberately defocussing the beam.

The target thickness employed in the present work are given
in Table 3.2; as always, these values represent a compromise

between count rates and spectrum quality.

Table 3.2 - Typical target thicknesses

Thickness of PbCl,
Isotope Projectile >
ug/cm keV
204ph and 206pb | 15 MeV “He 40 - 65 7-11
46 Mev 12¢ 22 31
60 Mev 160 10 - 20 24 - 48
208pp 15 MeV “He 97 - 121 16 - 20
60 MeV 160 18 43
3.3 Target Contaminants

With the present experimental technique, it is important
that no significant contaminant peaks lie beneath the Pb elastic

or inelastic peaks. Target contaminants can be categorised into



50

isotopic contaminants (i.e. other Pb isotopes) and those due to
other elemental impurities (i.e. isotopes of the elements other
than lead). Since highly enriched targets were used (see table
'3.3), corrections for isotopic contaminants were small; these
are treated in sections 4.3 and 4.4. Céntaminant peaks which
would be located underneath the elastic peak of a Pb isotope with
mass A would arise from impurities in the mass ranges A* 10 for

“He, A+ 4 for 12¢, and A+ 3 for !0, Possible contaminants

Table 3.3 Percentage isotopic compositions of the lead targets
used in the present work. Values quoted were those
obtained from the suppliers (Oak Ridge Separated
Isotopes Division)

. Target
Isotope -
204 206 A 206 B 208
204 99.73+ .02 < 0.03 < 0,01 < 0.05
206 0.17+ .01 98.39 + .05 99.8+ .02 0.17+0.05
207 0.05+% .01 0.82+ .05 0.2+ ,02| 0.69+0.05
208 0.06 .01 0.77 % .05 < 0.03 }99.14%0.10

Note:~ 1In the 2°5Pb-experiment, target material A was used to obtain
the 160 data at 60, 61, 62, and 63 MeV. Target material B
was used to obtain all other data.

which could give rise to elastic peaks unresolved from the Pb inelastic
peaks are listed in table 3.4. Although relatively large amounts of
contaminants (say up to 0.5% by weight) can be tolerated for the Pb
elastic peak, the Pb inelastic cross-section is much lower than that

of the elastic peak, and only much smaller quantities of contaminants

can be tolerated; these will be discussed later in this section. 1In
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Table 3.4 Mass ranges of possible contaminants that could give
rise to elastic peaks unresolved from Pb inelastic
peaks. Elements associated with these mass ranges
are also listed.

Target
Beam
20'-¥Pb ZOGPb 208Pb
“He 103 - 120 109 - 125 58, 59
' Ru,Rh,Pd,Ag,Cd,In,Sn| Pd,Ag,Cd,In,Sn,Sb,Te Ni,Co
12¢ 180 - 191 183 - 195 -
Hf ,Ta,W,Re,0s,Ir W,Re,0s,Ir,Pt
160 188 - 198 191 - 201 175 - 180
0s,Ir,Pt,Au,Hg Os,Ir,Pt,Au,Hg Yb,Lu,Hf

order to ensure high target purity, a number of precautions were taken:

a) Ultra-high purity hydrochloric acid was used to convert the
lead nitrate to lead chloride. |

b) High purity glucose was used as a release agent for target
backings. Glucose is composed of H, C, and O, all of which have a
low mass. On the other hand, detergents contain elements with higher
masses, and since they often consist of mixtureé of chemicals, their
chemical composition is not readily known.

c) Evaporator surfaces were sandblasted and washed in alcohol.
A copper shroud, cooled with liquid nitrogen, was placed between the
evaporator and the vacuum syétem.

d) The crucible was made of spectrographic-grade carbon and
prior to the evaporation was heated to white heat to drive off most
contaminants. Because of the relatively low melting point of PbCl,
(501°(D it was only necessary to heat the crucible to a dull red
heat during the evaporation.

e) Since mercury has a mass similar to lead, the problem of
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possible mercury contamination arising from the mercury diffusion
pumps on the EN-accelerator target chamber was avoided by replacing
these with oil diffusion pumps.. In addition to cold traps placed
in the vacuum system, a cold shroud surrounded the target.

f) The vacuum system on the' 14UD is built largely of stainless

steel, and is pumped by ion pumps; no problems of target contamination

from the vacuum system have been experienced.

3.3.1 The “He Data

The technique used to investigate the possible presence of
contaminants in the targets consisted of bombarding the targets with
“He ions (8 - 10 MeV), detecting the “He particles scattered near 1800,
and identifying the elastic peaks in the spectrum. In order to obtain
reliable estimates of the possible amount of contaminants in the
target, the'bombarding energy was chosen to be below the maximum
safe bombarding energy (defined in section 5.1) for the possible
contaminants. For contaminants in the mass range A=103-125 (see
table 3.4) the maximum safe bombarding energy is about 10 MeV, while
for A=58, 59 it is about 8 MeV,

The carbon backiﬁgs initially used with the targets were
found to contain appreciable amounts of tin (1.4 x 10-2%) and
iodine (1.0 x 1072%). Aftempts to remove these contaminants by
using nominally ﬁigher purity carbon and by using an evaporator
with all stainless steel surfaces (the evaporator normally used
was partly made of brass), proved unsuccessful. Aluminium backings
showed no such contaminants when tested, and an upper limit of

2.8x10-3% by weight, at the two standard deviation level of the
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background, can be placed on the possible amount of contaminants in
the mass range A=100-130. It was therefore decided to use
aluminium backings for targets used to acquire the “He data in the
204 ,206py experiments. (As will be discussed below, carbon backings
were used in the 208pp experiment.)

Further investigation of the aluminium backings showed that
they produced a significant amount of pulse pile-up due to “He being
elastically scattered from 27A1 and !0 in the backings. As can be
seen from fig. 4.9, the peak of this pile-up occurs between the Pb
-elastic and 2+ inelastic peaks so that the ot peak sits on top of a
pile-up background. Although in the region of the 2+ peak, the pile-up
background is smooth and does not pfeSent serious problems in the
analysis (see subsection 4.3.3), it will tend to reduce the peak-to-
valley ratio. The aluminium backings were therefore made as thin as
possible (20 -30 pg/cm?). Excitation functions were téken for “He
elastic scattering from 27A1 and '®0 at bombarding energies between
13.5 MeV and 16.5 MeV. These excitation functions are shown in
figs. 3.2 and 3.3 and are in good agreement with previous experiments
(Ij64, Hu67, Iv69, Jo69, Ha73, OR72). With this information, it was
possible to reduce the pile-up by collecting data at bombarding
energiés where the product of the 27A1 (YHe, “He) 27A1 and
16O(L‘He, YHe) 160 elastic cross-éeqtioné (fig. 3.4) was a minimum.

In addition to tests on the target backings, the complete
201*’ZOGPbClz targets were also tested by bombarding with 10 MeV “He
ions. At this bombarding energy, the elastic peaks from masses.
A=;100-130 are higher in energy relative to the Pb 2+ inelastic
peak than at energies used for reorientation measurements. The

spectra obtained are shown in figs. 3.5 and 3.6 for 204Pb and 206pp
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respectively. At the level of two standard deviations of the background,
upper limits of 5.3 x 10~%% and 4.6 x 19'“% by weight can be placed on
the amount of A=100-130 contaminants in the 20%4Pb and 206pb targets
respectively. 1If one assumes that the elastic scattering cross section
for these contaminants in the energy range between 13.8 MeV and 15.3 MeV
is equal to the Rutherford value, then it can be‘concluded that these
contaminants could contribute at most 0.85% to the 20%4Pb 2+ peak at
13.8 MeV and 0.38% at 15.3 MeV. Fbr 206pp, the maximum contribution
of contaminants to the 2+ peak is 0.95% at 13.8 MeV and 0.44% at 15.3
MeV. However, since the elastic scattering cross section for these
contaminants is expected, at these energies, to be less than the
Rutherford value, the above ﬁalues can be regarded as absolute upper
limits. In the case of the even-mass cadmium isotopes in the mass
range A= 106 - 116, the elastic scattering cross section at 17.5 MeV
is between 8.4% and 5.67% (respectively) of the Rutherford value
(Sp77); for 11%cd at 13.5 MeV it is 60% (Es76). No information is
available on the elastic cross sections, at these energies, for other
nuclei in the mass range A= 103 -120.

In the 298pb experiment, only elastic peaks from 58Ni and
59Co could lie underneath the 3— inelastic peak. Since no evidence
of 58Ni or 59Co was observed in the carbon backings (an upper limit
of 6 x 10~*% can be placed at the two standard deviation level) aﬁd
because of the need to obtain the best possible peak-to-valley ratios
(in view of the very low excitation probabilities), carbon backings
were chosen in preference to aluminium whichgives rise to substantial
pile-up. The targets were tested by bombarding with 8 MeV “He iomns,

and at the two standard deviation level an upper limit of 5.6 x 10~%%
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can be placed on the presence of SBNi or °%Co in the target. Taking
the elastic scattering cross section for 58Ni and 5%Co at 15 MeV to
be 157 (Se73) of the Rutherford value, the total contribution from
these contaminants would be less than 3% of the 3  peak area; this
upper limit is tolerablé in view of the uncertainties of 5-8%Z in

extracting the 3~ peak areas (see subsection 4.4.2).

3.3.2 The }2C and 160 Data

It can be seen from table 3.4 that for the !2C and 160 data,
the contaminants that would be located beneath the 2+ peak in
204,206pp, gre within the mass range A==180;-201. Both tungsten and
tantalum are included in this mass range and although these maﬁerials
are often used for crucibles ih target manufacture, in the present
work a carbon crucible was used. Mercury contamination, which could
affect the 160 data, is not expected to be a problem since the targets
were never exposed to a vacuum system employing mercury diffusion
pumps. The only other contaminants which could affect the data are
Pt, Au, and some rare earths; it is unlikely that any of these
would be present in the targets in view of the precautions which were
taken to ensure high target purity. (These precautions are discussed
at the beginning of this section.)

A 208ppC1, target was tested with 120 MeV 325 ions, and an
upper 1imit of 9x10-3%, at the two standard deviation level of the
background, can be placed on the possible amount of contaminants in
the mass range A=180-196. Since all PbCl, targets were made in
the same way (note that carbon backings were used), a similar upper
limit on these contaminants can be placed, for the 20%Pb and 206pp

targets. Using the above upper limit, and assuming that the elastic
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scattering cross section for these contaminants is equal to the
Rutherford value, it is deduced that, for 60 MeV 160, the area of
the 2+ peak would be affected by at most 1.07 for 204ph and 1.4%

for 206pp, (For 65 MeV 160, the effect of these contaminénts is
reduce& by 33%.) In the case of 45 MeV 12C, the 2+ peak area would
be affected by at most 1.5% for 204ph and 2.0% for 206Pb. Since the
elastic cross section is expected to be less than the Rutherford value,
the above values can be regarded as absoiute upper limits.

In the 208pp experiment, contaminants in thé mass range
A=175-180 would lie underneath the 3 peak. Of the elements with
isotopes between A=175 and A=180, all except Hf and Lu have isotopes
outside this range which would have been detected. An upper limit of
5x 10‘“%, at the two standard deviation level, can be placed on the
intensities of elastic peaks due to heavy contaminants with A< 175,
or 180<A<186. It is unlikely that the amount of contaminants with
masses A=;175-180 is more than this, and consequently an upper'limit

of 37 can be placed on contributions of possible contaminants to the

3 peak area.

3.4 - Energy Calibration

Since Coulomb excitation probabilities are a strong function
of the bombarding energy of the projectile, it is important, in
reorientation experiments, to determine beam energies precisely.

The effect of changes in the bombarding energy on the excitation
probability is shown in table 3.5, which shows that beam energies
must be known to better than 0.1%. The energy calibration of the

EN tandem had been previously measured (Es76) for YHe' T energies
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up to ~ 15.93 MeV; during the course of this experiment the
calibration was periodically checked as described below. The
newly installed 14UD Pelletron accelerator was calibrated for

the first time inthe course of thiswork;the results are discussed
in detail by Spear et al. (Sp76). In both cases, the energy
calibration consisted of determining the magnet‘constaht K, defined

in the relativistic relationship (Ov69),

-1 )
E = K B2(z2/M) [1 + = 2} MeV (3.5)
' 2Mc

where Z is the effective charge of the particle (in units of electronic
charge), M is its mass (in nuclidic mass units), B is the magnetic
field (in T), and E/2Mc? is half the ratio of kinetic energy to

rest mass energy. The magnet constant K is in units of MeV.u/T2.

Table 3.5 Percentage change in excitation probability for a

0.1% change in bombarding energy

Target Nucleus
Projectile Eb(MeV)
20’-+Pb 206Pb 208Pb
YHe 15.3 0.55 0.52 1.56
12¢ 46 0.54 0.51 -
169 60 0.56 0.52 1.47

3.4.1 Calibration of the 14UD Pelletron

The energy calibration of the analysing magnet on the 14UD

Pelletron consisted of determining the magnet constant K at magnetic
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fields of 0.43, 0.60, and 0.90T (the highest field used in the present
reorientation experiments was 0.73 T for 56 MeV 12C[H—). As the
differential hysteresis of the magnetrcduld produce energy shifts
of about 0.27 (Sp76) it was necessary to set the magnetic field by
a known and reproducible method (i.e. to recycle the magnet) before
making measurements. The usual procedure (for the EN tandem) of
increasing the magnet current from zero to 200A three times in
succession, and then approaching the désired field in the direction
of increasing field, was found to be adequate. Before taking data,
the energy defining slits were set with a narrow (0.76 mm) gap in
the dispersive plane. Calibration pdints were taken in November
1975 and in July 1976; the 2045206py data were taken within this
period, and the 208pp gata was taken invSeptember 1976. Each
calibration point made usé of a different reaction (see table 3.6)
and these are described beéelow.

a) Calibration at B=0.43T.

The resonance in 12C+p corresponding to the lowest T=3/2
state in !3N is at 14.23075+* 0.00020 MeV (H{173, Go75) and the two
exit channels 12C(p,po)lzc and 120(§,a0)“B were studied. In the
first case, the proténs ﬁere detected at a mean laboratory angle
of 172.6° in a 1000 um thick annular detector; in the second
reaction, a 40 pm surface barrier detector detected alpha-particles
at a laboratory scattering angle of 40° where the resonance has
an approximately Breit-Wigner shape (deMe73). Results obtained are

shown in fig. 3.7 and fig. 3.8.

b) Calibration at B=0.65T.

The method here involved matching the energy of “He ions
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inelastically scattered from a thin carbon foil with the known energy
of alpha-particles emitted from a thin 212Pb ("radiothorium") radio-
active source; this source emits alpha-particles with energies

(Wa64) 8.7850 + 0.0008 MeV (from Po?!2), 6.0496 +0.0007 Mev

(B1212(a;)), and 6.0889 +0.0007 MeV (Bi212(ay)). The doublet could
not be fully resolved, and from the intensity ratio ap/a; =2.57+0.01
(Ry51) the energy centroid is calculated to be 6.0606 * 0.0007 MeV.

For this calibration point, the‘“ﬁé++ bombarding energy was 32.86

MeV, so that after populating the 4.439 MeV state in l2C, “Heprojectiles‘
detected at 172.6° in an annular counter had an energy near that of
the doublet (see fig. 3.9). An advantage of this method is that

since the “He ion energy is very clése to the alpha-particle energy,
any non-linearities in the detector and the electronics are negligible.
Also, since the;same type of particle is being detected in both cases,
there is virtually no difference in pulse height defect when these

are detected. Detection-at backward angles also means that the
scattering angle does not have to be known to a high accuracy and,
because of the axial symmetry of the detector about the beam direction,
movements of the beam spét on the target do not change the mean
scattering angle. The method is therefore quick and simple. To

take account of gain drifts in the electronics, a number of soufce
spectra and scattered—particle spectra were taken alternatively.

The beam intensity was kept small to avoid gain changes due to count
rate effects and gains were monitored with a precision pulser. The
energy dispersion was determined in the source spectra from the

2.7244:t0.0010vMeV energy separation of the two groups.
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c) Calibration at B=0.90T.
The method used here was similar to that of calibration b).

+
“He ions were elastically scattered from an Al target,

In this case,
and for a bombarding energy of ~ 15.9 MeV the elastic peak was
compared to the 8.785 MeV group in the source spectra (see fig. 3.10).
To obtain singly~charged “He ions, gas stfipping‘was used instead of
foil stripping;

In each case, the thickness of the target was measured.
The carbon targets (~ 15 ug cm~2) had a thin layer of gold (~ 1 ug cm~2)
evaporated on one surface (Ni was used for the Al targets because
of its low diffusion coeffient). These targets were bombarded by
~ 42.5 MeV 180 ions and the target thickness was determined froﬁ
the shift in the Au (or Ni) elastic peak when the thinblayer faced
upstream or downstream. The energy calibration results are summarised
in table 3.6 and fig. 3.11. (The values quoted take target thickness
into account.) It can be seen that there is no significant variation
in K as a function of magnetic field up to 0.9 T or as a function of
time, and the value adopted was k=78.07+0.04. This determined beam

energies to better than 0.1%.

Table 3.6 Summary of 14UD Pelletron energy calibration
K (MeV.u/T?)
Reaction (MeV) B(T)
“bonb | Nov. 75 Jul. 76
1*2c(p,pg) '2Cc | 14.233 0.4303 | 78.104 +0.004
12¢(p,ag) B 14.233 0.4303 78.105+0.030 | 78.007 + 0.030
78.041 +0.030
12¢(a,03) € | 32.861 0.6502 78.062 +0.010 | 78.093 + 0.009
2701 (a,20)27A1 | 15.935 0.9046 78.097 + 0.008




*SUOTIBUTWIIIIP Juelsuod dfiaulem Jo Lxeummg

11°¢ 814

(v1s3L)g
0 6-0 8-0 L0 9-0 S0 -0
o _ ! | I L 8-LL
K
o6l Ainf o | o,
G/6l JaqWaroN ©
o 108. M
%1-0 °
2,08 =) F
% |-0 0O -84
— 282




61

3.4.2 Calibration of the EN accelerator

The beam from the EN tandem was analysed by a 86 cm radius
double-focussing magnet with a mass energy product (ME/q2) of 52,
and a maximum field of 1.2T. This magnet had been preciSely‘
calibrated previously through (p,n) reaction threshold measurements
(Mo69) and by using the 2H(160,n)!7’F reaction threshold (Es76).

In addition, the calibration had been periodically monitored by
comparing the energy of back-scattered “He beams with a-particle

groups from a thin 212Pb source (Es76). This practice was continued
during the period of the current series of experiments particularly

as the analysing magnet had been moved during the course of accelerator
upgrading work.

The method used was similar to that described in part b) of
subsection 3.4.1 for the 14UD Pelletron accelerator. Although
earlier measurements (Mo66) showed that for this magnet differential
hysteresis effect were negligible, as a precautionary measure the
magnet was always recycled according to the procedure described for
the 14UD. The object and image slits were set at 0.127 cm full
aperture. A low energy calibration point was obtained with
~ 9.53 MeV “Hé++ scattered from Au and detected at a mean laboratory
angle of 171.6° in an annular counter. The elastic peak position
(channel number) was compared with fhe position of the 6.0606 MeV
doublet from the 212pp source; The target consisted of a thin
(~ 5ug cm“z) layer of Au on a carbon backing; the Au thickness
was measured from the shift in the !2C elastic peak when the target
was rotated 180°., A hiéh energy calibration point was obtained
with = 15.93 MeV ”He++ scattered from 27A1, with the elastic peak

corresponding in energy to the 6.0606 MeV doublet. The target
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consisted of a carbon backing, half of: which Qas coated with Alj;

the Al thickness was measured from the shift in the 12C elastic

peak as the coated and uncoated regions of the target were bombarded.
The mean value obtained for the magnet constant was 19.967:&0.005
keV.u/MHz? and did not vary significantly between the data taken

in February and March 1976.
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CHAPTER 4

DATA REDUCTION AND EXCITATION PROBABILITIES

Data reduction consisted of extracting the areas of the
elastic and inelastic peaks from the data so that experimental

excitation probabilities defined by

. ) [gg]lab / [ig]lab s [d_a]lab .15
exp dQ inel/ - dQ ol dQ

inel

could be obtained. Since Rexp is a ratio, it was not necessary to
measure absolute cross sections and the areas of the elastic and .

inelastic peaks could be substituted for (do/dQ)lab and (do/dQ)1ab

el inel
respectively. in this chapter, sections 4.1 and 4.2 discuss the
general methods employed in the extraction of peak areas. Subsequent
sections consider the specifié cases of each target and projectile.
Data reduction in the 208pp experimeht is treated separately from
that for the éo"’zost experiments, because the lower excitation
probabiliities raised problems specific to 208ppb, The measured
excitation probabilities are also discussed for each particulér case,
and the results are listed in tables 4.4,(4.5 and 4.6.

The accuracy of Rexp is determined entirely by the

uncertainties in the measured peak areas. The statistical uncertainty

in the peak areas is given by

o, = (A + B);i (4.2)

where A is the net area of the peak, and B is the total background
under the peak. However, eq. (4.2) assumes that one can obtain a
very precise independent estimate of the background B. 1In practice,
that is not usually possible and an additional contribution o, must

b
be included to take account of the uncertainty in the estimate of
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the background used in calculating A. The total uncertainty in the
peak area is then taken as

)*5

o = (02+072)7% . (4.3)

b
The uncertainties in the measured peak areas will be discussed for

each particular situation later in this chapter.

4.1 Lineshape ‘Analysis

Peak lineshape analysis was made necessary by the need to
unfold the inelastic peak from the elastic peak tail. Although the
same peak lineshapes were eventually used for all projectiles
( l*He, 12¢, and 180), lineshapes were initially developed for the
160 data since, for this data, tailing was the strongést. As a
result, the present section will lay particular emphasis on the 160
data.

Examples of 160 spectra obtained for 204Pb and 296Pb are
shown in figs. 4.1 and 4.2 respectively. Although the situation is
emphasized by the logarithmic plots, the need to unfold the inelastic
peak from the elastic peak tail can clearly be seen. The area of the
elastic tail under the inelastic peak was typically 6.5% of the
inelastic peak area for 208Pb, and 1.4% for 20%Pb. The improvement
for 204Pb is reflected in the P/V ratios of about 30:1 (cdmpared to
10:1 for 206pb) and is ascribed to the increased B(E2) value and, more
importantly, to the higher excitation energy. To determine inelastic
peak areas to 17 precision, it was necessary for the worst case
(296Pb) to evaluate the eiastic tail area underneath the inelastic
peak with an error no greater than 15%, and for this reason peak

lineshapes were investigated.
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The lineshape in all spectra was found to be non-symmetric.
The peak shape down to the 107 level of the maximum peak height could

be reproduced closely by a Gaussian function expressed in the form

HT.exp( - z2/202) (4.4)
where
o = FWHM.(21n 2)~% (4.5)
and
HT = opeak height
FWHM = the full width at half maximum of the peak
z = x - POS
x = channel number
POS = peak position.

Better fits were obtained by using a ékewed Gaussian where different
values for FWHM were used to fit the high energy side (FWHM1) and low
energy side (FWHM2) of the peak. (These then give rise to different
values o0y and 0,.)

Below the level of 10%Z of the maximum peak height, a tail
was observed to extend on the low energy side of peaks and this shape
could no longer be adequately represented by the Gaussian function above.
The shape of the elastic tail was determined by studying 208pp gpectra
(see fig. 4J1) since the peak corresponding to the first excited state
at 2.615 MeV is well separated from the elastic peak. The elastic

tail was found to be linear on a logarithmic plot and could be fitted

well with the expression

A, (1 - EXP(-722/202G12)].EXP("Cl.lzl) (4.6)

where parameters C; and G; determine the decay rate of the tail and
parameter A; its height. The term in square brackets makes the tail
contribution very small in the region near the top of the peak which

is well described by the Gaussian function.
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Below the 0.17 level of the maximum peak height, a shallow
"long range'" tail was observed on the low energy side and this tail
was also fitted with expression (4.6) where a different set of
parameters A, Cy, and G, were allowed to vary. This tail was
particularly of relevance in the “He data, and in the 208py, experiment
where the inelastic peak was further away from the elastic peak.

During computer fitting, a small'lump'(barely visible in
the region of channel 2980 in fig. 4.2) was always apparent on thé
high energy side of the elastic peak in the 160 and 12c data. It
was found that this'lump'could be accounted for analytically by

including an extra term

HT. F. exp( ~ (z -P)2/202) , 4.7)

which is a Gaussian function similar to eq. (4.4). In eq. (4.7),

P is the position of the'"lump''relative to the peak positién, and F

is the fractional height of the "lump" relative to the peak ﬁeight.

In the 160 data, inﬁestigations of 2ol+Pb, 2°6Pb, and 208pp spectra
showed that the position of the "lump" relative to the peak position
was approximately constant and its height remained between 17 and

2% of the elastic peak height, the average béing 1.6Z2. (In the !2¢

data the average height of the "lump" was 0.8%.) In the 20%Pb and

206pp spectra obtained with 180 projectiles, the "lump" could correspond
to elastic peaks from contaminants with masses A=206 and A= 208
respectively. However, in the 208py, spectra the "lump" would correspond
to a contaminant with mass A=210; this was not only not observed in
the 204pb and 206pp spectra, but the longest-lived nucleus of this

mass is 210Pb (half 1ife of 22 years) and its presence in the target

is most unlikely. One can only conclude that this"lump'was due

purely to a detector effect.
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In all spectra, a background was usually observed above
the elastic peak and below the inelastic peak. The height of this
background was usually very low (in the worst case the background
height was 0.457 of the inelastic peak height) but #o improve the
fit to the data a flat background, whose height was determined by
the parameter BGND, was included in the analytic expression for the
spectrum.

As a result of the previous discussion, the analytic function

used to fit the data had the explicit form

£(z) = HT.exp( - z2/20,2) + HT.F.exp(-(z-P)2/20,2) + BGND
' for z=20 (4.8a)
£(z) = HT.exp( - 22/2052) +HT.A;.[1 - exp( - 22/2052%G12)] .exp(-Cy |z])

+ HT.Ap.[1 -exp( -22/2022G52)] . exp(-Cy|z|) + BGND
for z<0 . (4.8b)

Fits to the data are shown in figs. 4.1 and 4.2.

A computer program was used to fit the above function to the
data. Provision was made to fit up to 4 peaks each with the same shape
(a good assumption for a surface barrier detector when.detecting
identical projectiles with similar energies) but with heights and
positiéns that could be varied. Using the method of least squares,
the goodness of the fit was estimated by calculating the weighted

sum of squares of deviations of the data from the fitted curve, i.e.

x> =2 [y - £(z))?/y,] (4.9)

where vy = number of counts in channel X
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The value of X? was minimised using the subroutine FITTEM, written
by Hay (Ha69a), to optimise up to 19 parameters (POSy_y, HTy_y,
FWHM1, FWHMZ,vF, P, A1’2, Gy 2, C1,2 and BGND). The advantage of
this subroutine is that the algorithm employed does not require
the partial derivatives of function (4.8) with respect to each
variable parameter; this meant that during the course of program
development modifications to function (4.8) could be tested quickly.
The validity of the analytical function (4.8) and of the
fitting procedure was verified by fifting 204pp and 206pp spectra
with a lineshape obtained from 208pb data; only peak heights andA
positions were allowed to be adjusted. The result of this test is
illustrated in fig. 4.3 for the same spectrum as in fig. 4.2, and
it can be seen that a reasonable fit is obtained. Although the
shape of the elastic peak tail is well reproduced, this tail is too
high by about 25% (this is ascribed to the 208pPb target being thicker
by a factor of 2). Even so, there is only a 2% decrease in the

inelastic peak area, and this is only twice the statistical error.

4.2 Peak Area Determination

The computer program described previously was used to
calculate peak areas by integrating function (4.8) channel by channel;
this will be referred to as the "full fit" method. 1In addition, a

"Gaussian area" was calculated for each peak from

A = (2m)%.c.HT (4.10)

where in this case o = (0j;+0;)/2. While there is no reason to
suppose that the peaks in the spectra should be perfectly Gaussian,
comparing the "Gaussian area'" with the "full fit area" provided a

measure of the importance of tailing. It was found that, in general,
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tails accounted for about 14% of the total peak area for 10, 12%
for 12¢, and only 5% for “He.

A second method - the "partial fit" method'-bwas also
employed to determine peak areas. The inelastic peak’area was
determined by summing the data over a range of channels and then
subtracting the computed elastic peak tail as obtained from the
computer fit. The upper and lower channels defining the range of
summation for the inelastic peak were choseﬁ to be those where the
number of counts in the channel firstvshowed a significant difference
from the computed elastic peak tail; the level of significance being
X2 2 10. While the range of summation might visually. appear too‘
restrictive, it was found that areas obtained by this method were
at least 99%76f those obtained directly from the computer program.
Moreover, the measured excitation probabilities were not affected
since they were determined from area ratios.

The elastic peak area was obtained by summing the data over
a corresponding range of channels, these being deduc ed from
knowledge of the peak positions (obtained from the‘computer fit).
Although this procedure gave rise to suﬁmation limits expressed in
fractions of a channel, for simplicity only integral channels were
summed. The resulting uncertainty was 1ess than 0.1% of the elastic

peak area and was therefore negligible.

The excitation probabilities calculated using the areas
obtained from the "full fit" and "partial fit" methods were found
to be in good agreement. The average difference, for all spectra,
between the two methods was about 0.6%, with 1.97 for the worst

case. Although the results from the two methods agreed well, the
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"partial fit" method was considered preferable for the following

reasons:

a) The computer fit was essentially used only to estimate
the background under the inelastic peak; errors arising from poor

fits to other parts of the spectrum were therefore eliminated.

b) It has been shown (Be69) that if the data follows a Poisson
distribution (as for a counting experiment) the method of least
squares consistently underestimates the area under a peak by an amount
2 2 2
approximately equal to Xmin (where Xmin is the minimum value of X,

obtained from eq. (4.9) after the computer fit), i.e.

2 ~ -
XoinS area (data) area (fit) . (4.11)

(In the computer fits the value of X;in for a spectrum, divided by
the number of channels, ranged from 1 to 7.) Taking this effect into
account reduced the average difference between the "full fit" and

"partial fit" methods to about 0.4%.

c) By summing only over channels which significantly contribute
to the peak area, the error in the peak area, arising from the need to

estimate the background was reduced.

d) The restricted range of summation meant that fewer elastic
contaminant peaks might be included. Therefore, fewer impurities that
might affect the data needed to be considered.

For these reasons, all excitation probabilities were calculated

using peak areas obtained with the "partial fit" method.
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4.3 * The 204Pb and 206Pb Experiments

Although the excitation probabilities for 204pp were about
407 greater than for 206pp, the two experiments were very similar
and they have been treated together in this section. Compared to
204ph, the lower excitation probabilities and the lower excitation
energy of the 2+ state in 206Pb,gave rise to lower peak~to-valley
ratios and.consequently larger uncertainties in the measured excitation

probabilities; this will be pointed out where appropriate in this

section.

4.3.1 The 10 Data

The analysis of the 160 data has already been discussed,
in part, in section 4.1 and examples of fits to the data are shown
in figs. 4.1 and 4.2. The errors in the inelastic peak areas were
calculated from eq. (4.3). The contribution O arising from the
uncertainty in the height of the elastic tail was estimated by
observing the effect that raising or lowering the tail had on the
quality of the fit. Fig. 4.4 shows the result when the elastic peak
tail in fig. 4.2 is raised or lowered by 207%; the quality‘of the fit
is clearly worse. Therefore, the uncertainty in the elastic tail area
was conserﬁatively estimated at between 157 and 257%,and fér most of
the spectra 207%. When this uncertainty was combinéd with statistical
uncertainties (ca) the errors in the measured excitation probabilities
(listed in tables 4.4a and 4.5a) were, on the average, 1.0% for 204pp
and 1.6% for 206ppb,

Fig. 4.5 shows a spectrum for 206‘Pb taken with 72 Mev !60;
a very similar spectrum was obtained for 20%Pb. A number of prominent

peaks from the 206pb(160,170)205pp, 206pp (160,15N)207B1, and



1 [) EE | 1] 1 i i
= 206pp 4 16, -
B o+ i
i 6l MeV
5 |71.6°
10 E =
- ) -
- ] i
- ‘1 _
4 {7
10 k& Y o
- /] =
— L =
| (] _
B . A B
e - 2 }' a
=, .3 4
S10 E 7 -
o — j {/ -
O — f A -
N / ff ]

N
|
.
Q;;
]

10 — i - I
- o’_'
L «
| " .\. -}'- v/, %
1 -» -. -. « '. ° [ . \.
1 [] o——dls =
—* o
1 L 1 1 T
2860 2888 2816 2944 2972 3000
CHANNEL
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the effect of raising or lowering the elastic peak tail by
207%.
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20st(160,150)207Pb single nucleon transfer reactions can be observed,
but these are well below the 2+ and 3~ inelastic peaks and do not
interfere with the extraction of inelastic peak areas. The intengity
of the single nucleon transfer peaks was observed to decrease répidly
as the bombarding energy was decreased. With the exception of the
1.274 MeV 5t state in 20%Pb, the 3  state near 2.6 MeVin 20%Pb and
206Pb was the only excited state observed to be populated in addition
to the first 2+ state. The excitation probabilitiés for the 3~ state
were measured for bombarding energies from-59 MeV to 75 MeV, and these
are listed in tables 4.4a and 4.5a; the large uncertainties (6-20%)

are due to the small number of counts in these peaks.

4,3.2 The 12C Data

Typical 12¢ spectra, including fits to the data, are sﬁown
in figs. 4.6 and 4.7 for 20%Pb and 206pp respectively. A prominent
feature of these dat; is a small shoulder located between the elastic
and inelastic peaks (at about channel 3280 and 3020 in figs. 4.6 and
4.7 respectivély). This shoulder was studied by treating it as a peak

:in the linéshape fitting program, and it was found fhat, in both the
204ph and 206pb data, its height was constantly 0.05% of the elastic
: peak.height and its position remained 477 keV below the elastic peak.
When 208pp s targets (rather than 204,206pp Cly) were bombarded with
?ZC ions, and later with 180 ions, the shoulder was again observed.
The possibilitﬁ of a contaminant in the target producing an elastic
peak is considered unlikely since in each case (12C on 2Ol*PbCIZ,
2OSPbCIZ, and 208PbS, and 180 on 208pbS) the shoulder would
correspond to a different contaminant. It is therefore considered
likely thatthe shoulder was produced by a detecéor effect, and this

was later confirmed by its disappearance when the detector was replaced



10 — I I T | -
= 204py o 120 -
i 48 MeV o* A
5 171.6°
10 E =
4
10 E =
o n 2% i
3
510 _
(i) — -
O = -
2
10 E =
- + .
- 4" ) Y
1 . ) " f N
10 E. ..-f.-. Py E
3166 3%01 ;2[37 32173 33109 3;45
CHANNEL

Fig. 4.6 Spectrum of 48 MeV 12¢ projectiles backscattered from 20%Pb.
The solid line represents a fit to the spectrum.
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by another.

Although the presence of this shouldér reduces the visual
quality of the data, its effect on excitation probabilities was small.
It seemed unnecessary to repeat the lengthy 12¢ measurements with
another detector merely for the sake of appearances. Despite this
shoulder thel?c sﬁectra were of better quality than those using 169,
With 12C ions there was a marked decrease in the elastic peak tail
and an improvement in energy resolution. Peak-to-valley ratios for
the spectra shown are 74:1 and 13:1 for 204pp and 2096pb respectively.
The elastic tail under the inelastic peak is, on average, only 0.75%
of the inelaétic peak area for 29%4Pb and 2.3% for 206Pb; consequently
the uncertainty o (typically 26%) in the tail area, obtained from the
lineshape fitting program, contributes much less to the error in the-
measufed excitation probabilities than in the 166 data. Results are
listed in tables 4.4b and 4.5b.

For both 20%Pb and 206pp, the 3~ state near 2.6 MeV and single
nucleon transfer peaks from the reaction 296pb(12c,13¢)205pb were
observed; an example is shown in fig. 4.8. Excitation probabilities

for the 3~ state were measured to 7-20% accuracy and these are listed

in tables 4.4b and 4.5b.

4.3.3 " The “He Data

Representative “He spectra are shown in figs. 4.9 and 4.10
for 204Pb and 206Pb respectively. As can be seen, the spectra show
evidence of pulse pile-up giving rise to a tail on the high energy
side of the elastic peak. This pile-up, which is the result of the

high count rates in the Pb elastic peak and in other elastic scattering
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peaks (for example 160, 27A1 and 3°Cl) in the spectra, is more
prominent in the “He data than in the 12C and 160 data because

of the need to use thicker targets and larger beam currents (particle
nanéamps), in view of the lower excitation probabilities. This pile-
up is estimated to have a negligible‘(< 0.1%) effect on the measured
elastic peak areas.

. An additional feature of the “He data for 20%,206pp is that
the background in the region of the inelastic peak is pfoduced, in
the main, by pulse pile—up arising from projectiles elastically
séattered from 27A1 and 160 in the target (see subsection 3.3.1).

The peak of this pile-up (due to particles.scattered from 27A1 and
160 arriving simultaneously at the detector) can be observed metged
with the low energy tail of the elastic peak (as indicated in figs.
4.9 and 4.10), but by virtue of the "partial fit" method, described
in section 4.2, it is excluded from the summation range used for~
the elastic peak and has no effect on the measured area. However,
the .pile—~up tail in the region of the 2+ peak contributes to the
reduction of the peak-to-valley ratios; these are 21:1 and 11l:1
‘for figs. 4.9 and 4.10 respectively.

On a logarithmic scale, the background near the inelastic
peak is seen to be sloping approximately linearly, and this suggests
that the best fit may be obtained with an exponential function. This
was accomplished by using the lineshape fitting program described in

section 4.1 since when sufficiently far below the elastic peak, eq.

(4.8b)reduces to

£(z) = HT.Aj.exp(-Cy|z|) +BGND z>>1 . (4.12)

The uncertainty oy in the height of the background f(z) was estimated,
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as before, by raising and lowering the background until the fit was
clearly worse. An example of this procedure is shéwn in fig. 4.11
for the same spectrum as in fig. 4.9. Uncertainties obtained in this
way range from 5% to 15% with 107 being the more usual value. Sinée
on a linear scale the background does not depart greatly from linearity,
the background under ﬁhe inelastic peak was estimated by also performing
a linear least squares fit to the data above and below the peak. This
method provided an additional check for the exponentialbfit and the
background obtained with the two methods agreed within 5-207. When
statistical unce;tainties o, are also taken into account, the
excitation probabilities, listed in tables 4.4c and 4.5c, are
determined with accuracies between lZ:and 27.

| In the “He data, the 3" state in 20%Pb and 206Pb was weakly
excited ana excitation probabilities for this state h;ve been

determined to 7-30% (see tables 4.4c and 4.5c).

4.3.4 Corrections for Isotopic Impurities

Since the elastic peaks of the different lead isotOpgs present
in the targets are not resolved, a correction was applied to the |
elastic peak area. This correction was based on the abundances quoted
by the supplier (these are listed in table 3.3). The reliability of
the supplier's assay was checked for 204pph and 206pb isotopic
impurities; by observing the region of the respective inelastic
peaks it was possible to place (at the two standard deviation level)
upper limits of 0.4% 29%Pb in the target material enriched in 206ppb,
and 0.6% 206Pb in the target material enriched in 20Pb. Although
the presence of other isotopes could not be checked with fhe same

accuracy, the high degree of enrichment means that the supplier's
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'assay (specified to an accuracy of better than O.IZ)Vwould need to be
in considerable error (say 1%Z) to affect the results of thevpresent
work.,

The inelastic peak areas were also corrected for inelastic
peaks arising from the other isotopgs. Subtraction of inelastic peaks
arising from 204%pp or 206pp contaminants could easily be done from the
already measured excitation probabilities (tables 4.4 and 4.5) and
from the isotopic abundances (table 3.3). For 2°7Pb, the only state
which can affect the data is the 0.898 MeV J" =3/2-ﬁstate which is
excited from thel/2 ground state by an E2 transition. For this
level the reduced transition probabiiity has been measured to be
B(E2; 1/2>3/27} = 0.0121 % 0.0005 e?b? (Ha72, see also Gr7l).
Overall, the corrections applied to inelastic peak areas were very

small and these are listed in table 4.2.

Table 4.2 Corrections applied to inelastic peak
areas due to isotopic impurities. The
numbers quoted are percentages of peak
area subtracted.

Target
Beam . 204 . ..206A . . .} . 206B. . .
“He 0.004 - 0.0
12¢ .- 0.03 - 0.03
16¢ 0.06 0.12 0.03

Note:- Targets 206A and 206B are explained in table 3.3.
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4.3.5 Corrections for Target Thickness and Carbon Layer Thickness

The bombarding energy was corrected for energy loss of incident
projectiles in the target and in the thin carbon layer evaporated on the
surface of some targets (to prevent evaporation of PbCly;; see subsection
3.2.4). Target thicknesses were obtained by measuring the Pb elastic
yield at bombarding energies where Rutherford scattering applies. The
chemical form of the target was assumed to be ?bClz, and stopping powers
for PbCl, weré obtained from Northcliffe and Schilling (No70). Target
thickness corrections applied to the bombarding energies are listed in
table 4.3. The possibility of decomposition of the target under
bombardment must also be taken into account; if the PbCl; had completely
decomposed to Pb then the target thickness corrections in table 4.3
would need to be reduced by 43% but the resulting effect on excitation
probabilities (for “He, !2C, and 10 beams) would be at most only 0.08%.

Since only one half of the surface of the target was covered

with a thin carbon layer, the thickness of the layer was easily
determined by observing the shift in the Pb elastic peak when the
covered and uncovered parts of the target were bombarded. The thickness

of this layer was typically Zug/cm2 and the corresponding bombarding

energy corrections are listed in table 4.3.

Table 4.3 Corrections applied to bombarding energy (typical values)

Beam Target thickness Carbon thickness Total (keV)
correction (keV) correction (keV)
15 MeV “He 4 0 4
46 Mev 12¢ 15 6 21
60 Mev 160 20 14 34




Table 4.4 Measured excitation probabilities R,; and
R,_ for the 204Pb 0.899 Mev 2" and
2.634 MeV 3 states respectively

(a) 160 ions

Bombarding Energy (MeV) R2+ x 103 ‘Rs_ x 10t
58.955 8.39 + 0.08 1.26 + 0.23
59.971 9.20 + 0.09 1.71 + 0.19
60.971 10.16 + 0.10 2.08 + 0.19
61.956 11.07 + 0.10 2.48 + 0.22
61.971 10.91 + 0.10 2.42 + 0,22
62.957 11.84 + 0.13 2.95 + 0.32
62.957 11.85 + 0.17 3.33 + 0.37
62.971 11.61 + 0.15 3.25 + 0.36
63.957 12.60 + 0.11 3.69 + 0.30
64.958 13.82 + 0.11 4.00 * 0.32
66.958 15.58 + 0.16 5.78 + 0.52
69.959 18.13 + 0.15 6.76 * 0.54
71.960 19.84 + 0.18 8.01 + 0.56
74.961 18.79 + 0.20 4.05 + 0.53
76.956 14.84 + 0.67
76.961 14.79 + 0.22
78.968 16.22 + 0.57
79.968 32.04 £ 1.35
84.970 136.6 + 15.4
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(b) 12¢ jons

Bombarding Energy (MeV) R2+x 103 R3_><10“
44,978 5.49 £ 0.13 1.35 £ 0.22
45.978 6.17 = 0.15 1.32 £ 0.24
46.979 7.09 £ 0.16 1.35 + 0.24
47.979 7.64 + 0.18 2.53 £ 0.33
47.979 7.96 + 0.07 2.13 *+ 0.17
48.979 8.79 + 0.20 3.53 + 0.46
49.979 9.87 * 0.21 3.50 + 0.46
49.979 9.57 *+ 0.08 3.35 £ 0.24
50.980 10.42 + 0.24 4.33 £ 0.56
51.980 11.40 *+ 0.26 5.82 + 0.70
53.981 12,59 + 0.28 5.20 * 0.68
55.981 13.17 + 0.30 12.3 * 1.2
59.982 13.37 + 0.35

(c) YHe ions

Bombarding Energy (MeV) R2+><10“ R3_><105
13.796 4.24 + 0,09
14.447 5.66 * 0.08
14.747 6.39 £ 0.10
15.297 7.72 * 0.10 1.10 £ 0.20
15.897 9.76 * 0.16 1.59 + 0.45
15.897 9.77 £ 0.13 1.71 = 0.26
16.297 10.71 + 0.13 2.92 + 0.29
16.797 12.53 = 0.14 4.09 + 0.29
17.497 14,98 + 0.18 | 6.71 + 0.47
17.997 16.52 £ 0.21 7.17 £ 0.50
18.497 18.18 + 0.28 10.85 * 0.65
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Table 4.5 Measured excitation probabilities R,+ and
R, for the 206Pb 0.803 MeV 2" and
2.648 MeV 3 states respectively

(a) 160 ions

Bombarding Energy (MeV) R, 4 X 10° R3_><10“
59.978 6.62 + 0.09 1.63 + 0.22
60.979 7.27 + 0.11 2.01 % 0.25
61.965 8.09 *+ 0.15 2.50 £ 0.18
61.979 7.86 * 0.17 2.71 * 0.30
62.965 8.76 * 0.13 2.70 £ 0.14
62.979 8.37 + 0.11 2.74 £ 0,27
63.968 9.26 + 0.09 3.24 *+ 0.18
63.968 9.26 * 0.13 4,05 + 0.54
64.965 10.17 + 0.12 3.75 £ 0.21
66.965 11.21 = 0.19 6.36 * 0.41
69.967 13.07 + 0.21 6.45 + 0.51
71.967 13.86 * 0.29 6.43 * 0.59
74.968 11.85 * 0.27
76.968 9.54 * 0.21
79.969 28.74 + 0.63

(b) 12¢ jons

Bombarding Energy (Mev) R2+><103 R3_><10“
43.978 3.59 £ 0.05 0.79 = 0.06
45.979 4.61 + 0.04 1.21 £ 0.10
47.979 5.42 £ 0.13 2.08 * 0.29
49.979 6.56 + 0.16 3.50 + 0.39
51.980 7.53 + 0.18 3.95 * 0.47
59.982 10.44 * 0.43

80
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(c) “He ions

Bombarding Energy (MeV) R, % 104 R,_x 10°
13.795 3.32 + 0.04
14.445 4.29 + 0.05
14.745 4.73 + 0.05
15.295 5.78 + 0.09 0.99 + 0.22
15.895 6.60 + 0.09 1.62 * 0.16
15.896 6.84 + 0.07 1.68 + 0.21
16.296 7.69 + 0.11 1.81 * 0.35
16.796 8.56 * 0.15 3.48 + 0,47
17.496 9.87 + 0.15 5.65 % 0.67
17.996 12.07 + 0.21 10.39 * 1.12
18.496 11.10 * 0.17 7.33 + 1.08
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4.4 The 298Pb Experiment

Data reduction in the 208pb experiment was similar to that
for 20%pp and 206pp, However because of the higher excitation energy
of the 3 state, the higher multipolarity of the transition, and the
lower safe energies (see chapter 5), the excitation probabilities
were much lower and this gave rise to difficulties not encountered
in the 2%%pb and 206pb experiments. On the other hand, the higher
excitation energy of the 3 state (compared to 20“’2063b) increased

‘the size of the reorientation effect to 20% per beam (see eq. (2.23)).

4.4.1 The 160 Data

An example of data obtained with a 60 MeV 160 beam is shown
in fig. 4.12. It can be seen that the single nucleon transfer'peaks
- from the reactions 208ph (160,170)207pp and 208pp (160, 15N)20981 are
well below the 3~ inelastic peak and so do not present a problem for
the extraction of the 3 peak area. Although the 3~ peak is well
separated from the elastic peak, the excitation probability is so
low that the elastic peak tail is still very significant (peak-;o-
valley ratios were 4:1>at 59 MeV and 8:1 at 60 MeV and at 61 MeV).
The lineshape fitting program described in section 4.1 was ﬁsed to
estimate the elastic tail area underneath the 3~ peak, and the peak
areas were determined according to the procedure outlined in section
4,2, The systematic uncertainty o in the elastic peak tail height
was estimated, as before (section 4.3.1), by observing the effect of
raising and lowering the elastic tail, and ranges between 6% and 15%;
the resulting unéertainty in the inelastic peak area is about 3.5%.

When statistical uncertainties in the elastic and 3~ peaks are
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included, the accuracy of the measured excitation probabilities is
about 4.5%; this relatively large value is in spite of the iong
data accumulation times involved (56 hrs for the worst casej. In
the case of data taken above 61 MeV, data accumulation times were
much shorter but the uncertainties in the excitation probabilities
are about 107%.

Isotopic impurities in the target are listed in table 3.3
and these were subtracted from the elastic peak. The area of the
inelastic peak was corrected for peaks, arisiﬁg from the 2.624 MeV 5/2+
and 2.662 MeV 7/2+ states in 297Pb and from the 2.648 MeV 3 state in
206pp, located underneath. The corre;tions for the 20%b inelastic
peaks were applied using the B(E3) values measured by Hausser et al.
(H472) and corrections for 206Pb used the B(E3) measured in the present
work (Table 5.1). Tﬁe total effect of these corrections was to‘redﬁce
the 3~ peak area by 0.6%. The inelastic peak from the 2.634 MeV 3~
level in 294Pb was located outside the summation range for the 208py,
37 peak and no correction for it was applied.

The target thickneés (PbCl,) was measured (as described inr
subsection 4.3.5) as 18yug/cm?, and the carbon layer thickness was
0.2 pug/cm?. The total correction to the bombarding energy, due to
target thickness, was 22 keV;  if the PbCl, target had completely
decomposed to PB (see subsection 4.3.5) this corréction would need
to be reduced by 437 and the resulting effect on the excitation

probability would be 0.237. The measured excitation probabilities

are listed in table 4.6.
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4.4,2 The “He Data

Excitation probabilities for this data are lower than in
the 20%pb and 206pp experiments by a factor of about 50. Data
collection times were about 100 hrs and even then the 3-_peak
contained only about 1600 counts. An example of data obtained
at 15.3 MeV is shown in figs. 4.13 and 4.14., The peak labelled
n28gyn _corresponds to *He ions elastically scattered from 208pp
in the targét then inducing the reaction 28Si('*He,”He)ZBSi*(IJB MeV)
in the detector silicon, with the de-excitation gamma-ray escaping
from the détector (for a description of this effect see Kraushaar
et al. (Kr67)). The unlabelled afrows indicate the position of
similar peaks arising from 29Si and 39Si in the detector. 1In
this data, the 3~ peak was sufficiently well separated from the
elastic peak that the elastic tail no longer contributed to the
background. However, a large fraction of the background in the
region of the 3 peak was produced by pulse pile-up. A peak,
due to pafticles scattered from 12C and 35Cl1 in the target and
arriving simultaneously at the detector, was clearly observed
between the "288i" peak and the elastic peak, and this pile-up
produced a tail which extended below the 3~ peak. A peak produced
by triple pulse pile-up arising from elastic scattering from ¥2C
was observed just below the 3 peak and this restricted the number
of channels which could be used to estimate the background height
on the low energy side of the 3  peak. The cross-section at backward
angles for elastic scattering of “He ions by !2C appears to have a
minimum near 15.2 MeV (Ca64) and this was confirmed by measﬁring an
excitation function. In view of this, and because on the basis of

the optical model calculations of Feng et al. (Fe76) the maximum
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safe energy is expected to be neaf 15.3 MeV (this is discussed further
in chapter 5), the data were collected at 15,1 MeV and 15.3 MeV. Pile-
up rejection circuitry was employed and this effectively reduced the
pile-up background, although the pile-up peaks themselves couldvnot be
removed. The carbon backings in the targets were made as thin as
possible (= 10 pg/cm?). However, even with tﬁese precautions, the
peak-to-valley ratios obtained ﬁere 1.4:1 at 15.1 MeV and 1.8:1

for the two spectra 6ﬁtaiﬁed at 15.3 MeV.

Thé area of the 3~ peak was obtained by interpolating a
linear background underneath. The height of this background was
determined by a least squares fit to the data on either side of the
peak; Since the choice of data region used in calculating the background
would affect the background height and hence the peak area obtained,
least squares fits were made to sevéral different data regions on
either side of the peak. At the one standard deviation level, the
3™ peak areas obtained were within 2.5% of that obtained using what
'was judge& to be the most reasonable background. The small size of
the 3~ peak and the relatively high background combine to give larger
uncertainties than in the 160 data. The overall uncertainties in
the measured excitation probabilities are 5.67% and 8.27 for the two
15.3 MeV spectra obtained, and 7.97Z for the 15.1 MeV spectrum.

Corrections for isotopic impurities (abundances are listed
in table 3.3) were applied to the elastic peak area. The inelastic
peak area was corrected for inelastic peaks arising frqm the excited
states in 296Pb and 207 Pb mentioned in subsection 4.4.1. 1In this
case, it was also necessary to correct for the inelastic peak due
to the 2.634 MeV 3  state in 20%Pb and the B(E3) measured in the

present work (table 5.1) were used. The total of these corrections
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was 0.6% of the 3~ peak area. Measured target thicknesses were found
to be 97 pg/cm? and 121 pg/cm? and the carbon layer thickness was

1-2 ug/cmz. The resulting corrections to the bombarding energies
were 8 keV and 10 keV respectively; if the PbCl, targets had
completely decomposed to Pb the thickness corrections would need to
be reduced by 437% with a corresponding 0.40% effect on the excitation

probability. The measured excitation probabilities are listed in

table 4.6.



Table 4.6 Measured excitation probabilities Rex
for the 2.615 MeV 3~ state of 298pp
Beam Bombarding Energy (MeV) Rexpxlo5
“He 15.092 1.028 * 0.081
15.290 1.270 + 0.071
15.290 1.147 = 0.094
169 58.978 14.36 * 0.62
59.978 18.43 + 0.88
60.978 21.29 = 0.90
61.978 26.8 + 3.7
62.978 30.7 % 3.0
63.978 41,0 * 3.8

87



88

CHAPTER 5

DATA ANALYSIS AND RESULTS

The measured excitation probabilities obtained in chapter 4
from the raw data, are analysed in the present chapter to obtain
results for the reduced excitation probabilities B(EA) and quadrupole
moments QJﬂ. As before, the 20%Pb and 206pb experiments are discussed
together and .the 208py experiment, where in some cases the analysis
had to be modified, is treated separately. The method used to obtain
values of B(EX) and Qm from the excitation probabilitieé is described
in section 5.3. However, before the data are analysed assuming pure
Coulomb excitation, it is important to éhow that the data used in the

analysis are free from Coulomb-nuclear interference effects.

5.1 Safe Bombarding Energies

In order to analyse the results in terms of pure Coulomb
excitation theory (chapter 2) it was essential to determine the
maximum "safe' bombarding energy (or equivalently the minimum ,
"safe'" distance of separation of the nuclear surfaces) at which
the effects of the nuclear force can be neglected.

The process of Coulomb-nuclear interference in inelastic
scattering may be understood, in general, by conéidering the Coulomb
and nuclear excitation amplitudes. Fig. 5.1 shows the variation of
the Coulomb amplitude a, and the real and imaginary nuclear
amplitudes ag and a§ as a function of the distance D between the
centres of the two nuclei. The amplitudes a, and a§ are of opposite
sign because the Coulomb potential is repulsive while the nuclear
potential is attractive (aé has the same sign as ag and is generally

much smaller). The total excitation amplitude may be written as



' R 2 I 2
\ o 10c+ay| " +]ay]

Fig. 5.1 Amplitudes a_s ag, aé, and excitation probability eq. (5.2)
as a function of the distance D between the centres of two

nuclei (from Po76).
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(aC + aE) +1 ali , (5.1)

-

and the excitation probability (for a particular magnetic substate)

is proportional to

la, + okl + () . (5.2)

Since the Coulomb force is long range while the nuclear force is
short range, at large distances D the Coulomb interaction dominates.
As D decreases, . a point is reached where,ac and ag have similar
‘magnitudes; they interfere destructively to give a minimum in the
e§citation probability. At yet smaller values of D, ag dominates .
a_- The observed excitation probability does not go through a sharp
minimum because the excitation probabilities for different magnetic
substates do not reach their minimum at the same D, and because of
the contribution from (a;)z.

In the present work, safe energies were determined for both
204ph and 296pb and for each of the projectiles “He, 12C, and 16,

by observing for the 2+ state the behaviour of the double ratio

/R as the bombarding energy was increased; here R
exp comp ‘ , comp

the excitation probability of the 2+ state assuming pure Coulomb
excitation, Compared to looking for deviations from Rutherford

scattering, studying Rexp/Rcomp has the advantage of being independent

of any normalisation (e.g. beam current integration, target thickness)
and is more relevant to the present work since Rex was used to
determine Q_.. Values obtained for R /R are plotted in figs.

Jm exp comp

5.2 and 5.3 as a function of the separation S between the two nuclear

surfaces; S is defined by
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Z1Z2(A) +A) 1/3 . .1/3
S = 0.72 (1+Cosec(6/2)) -1.128 (A" "+A3 ") fm
Elab A2

(5.3)

where the subscripts 1 and 2 refer to the projectile and the target
nucleus respectively, Elﬁb is in MeV,and 6 is the scattering angle
in the centre of mass. The equivalent sharp radius (ESR), equal to
1.128Ap6fm and described by Myers (My73), is used here (rather than
the more commoﬁ 1.25KV3fmfso that comparison can be made with the
results of Feng et al. (Fe76) who used the distorted-wave Born
approximation (DWBA) method to calculate nuclear interference effects.
A striking feature of the data in figs. 5.2 and 5.3 is the
pronounced depth of the Coulomb-nuclear interference minimum. It
appears that the net effect of this strong interference is to lower
the maximum safe energy. Since the excitation pFobabilities in the
204pp and 2°6Pb experiments were determined to about 1%, the safe
energies are taken to be those for which the excitation probability
deviates by less than 17 from that for pure Coulomb excitation; in
the 208pb experiment the uncertainties in the excitation probabilities
were much larger (5.6 - 8.2% for “He, and 4.5% for 160) and these set
the lower limit on the size of deviations, from pure Coulomb excitation,
which could be detected. The different values between projectiles
obtained for the safe distance (indicated in figs. 5.2 and 5.3) may
be due in part to the conservative approach adopted in determining
safe energies. There appears to be no consistent trend between the
different projectiles and the two lead isotopes. The mean value of
the safe distance for all projectile-target combinations is 6.7 fm.
Thié result aggees with the value of 6.6 fm (or equivalently 5.5 fm
1/3

taking the nuclear radius to be 1.25 A fm) obtained by Olin et al.
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(0174) for 32S scattering from 204,206ph, The present result also
compares well with the calculations of Feng et al. who, for “He

inelastic scattering, predict a 1% deviation from the pure Coulomb

cross section at 6.7 fm for 152Sm and at 6.5 fm for 23%y.

5.2 The First 3 State in 20%pb and 206pp

The 3  state near 2.6 MeV in 204,206pp has been observed
in data obtained over a wide range of bombarding energies (see
chapter 4).‘ This state is of interest because from the excitation
probabilities obtained at different bombarding energies, information
may bé gained regarding safe energies to be used in the 208py,
experiment. (The excitation of the 3  state in 20%5206ph consists
mainly of direct E3 excitation from the ground state; multiple
excitations of the type 0+-*2+-*3— are comparatively small. The
assumption that the maximum safe energies for the 3 state‘in
204,206,208pp are the same, is supported in part by the results for
the 2+ state in 20%,206py.)  As for the 2+ state, the double ratio

/R is plotted as a function of bombarding energy (figs. 5.4

R * :
exp ~comp

and 5.5). However, the large error bars on the data makes the

identification of safe energies difficult. For 160, there is a

definite decrease in R___/R at energies above 63 MeV, and it
exp ~ comp

appears that below 61 MeV R__ /R assumes a constant value; one
exp’ comp

may then take the maximum safe distance to be 7.2 fm. For “He,
/R appears to be slowly increasing even down to the lowest
exp’ comp ,

energy; mno data is available below 15.3 MeV since at those energies

the 3~ peak in the spectrum was indistinguishable from the background.
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One can only conclude that the maximum safe distance for “He is at
least 7.3 fm, this being consistent with the value 7.4 fm calculated
by Feng et al. for 208py,, Although the present data are insufficient
to validate Feng's prediction that the safe distance should increase
as the multipolarity of the excitation increases, they do indicate
that the safe distances for E3 excitation are greater than those
for E2 excitation.

The reduced transition probability B(E3; 0+-*3—) can be

obtained from (see eq. (2.16)),

.o _
B(E3; 0 »3 ) = Rexp/F(e,E) (5.4)

where Rexp refers to the excitation probabilities listed in tables

4.4 and 4;5, and F(6,E) is obtained from the de Boer-Winther program
(see section 2.3). The results obtained, using “He, 12C, and 160 data
taken at safe energies (a safe distance of 7.3 fm was assumed for 12C),
are listed in table 5.1 and agree with values from other experiments.
It must be noted that these results are calculated neglecting second

Table 5.1 Measured B(E3; 0+-*3—) values for the 2.6 MeV 3~ state

in 20%pp and 206pp

B(E3; 01 +37)

Nucleus " (e2b3) Method Reference
204pp 0.609 +0.035 this work
0.618+0.097 (o,a') inelastic Al67
scattering
206
Pb 0.605*0.035 this work
0.50 *0.03 Coulomb excitation, Ha72
thick target yield
0.66 *0.07 Coulomb excitation, Gr71
thick target yield
0.64 *0.04 (e,e") 2i68
0.722+0.095 (a,a') inelastic Al67

scattering
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order effects; it is estimated that a quadrupole moment of - 0.42 eb
(as in 298Pb) would increase the B(E3) (for both 20%Pb and 206pyp) , by
about 0.044 e?b3, and the effect of multiple excitation via the 2+
state (using matrix elements in section 5.4) would change the B(E3)

by + 0.001e2b3 (depending on the sign of the interference).

5.3 Extraction of B(EA) and Qn from the Data

In principle, the Coulomb excitation analysis can be carried
out with tﬁe de Boer-Winther program by fitting the computed excitation
probabilities Rcomp to the experimental values Rexp’ letting the B(EA)
and QJﬂ vary as free parameters. However, the analysis can be made
considerably simpler and faster by expressing the excitation

probabilities, on the basis of eq. (2.24), as

Reomp(Qm) = F B(EA) [1+ o Qur) (5.5)

where F and p are functions whose values depend on the projectile
and the bombarding energy (in the present work the scattering angle
was kept constant). It is convenient to rearrange eq. (5.5) in the

form

cc)mp/]a* = B(EM) + [B(EA)QJH] P, (5.6)

which is linear in p. If Rcomp/F is plotted against p, then eq. (5.6)
represenﬁs a straight line whose intercept on the vertical axis is
equal to B(EA) and whose slope is equal to the product B(EA)QJ".
Experimental values of QJTr and B(E)X) can therefore be determined by

expressing the experimental excitation probabilities in the form

Rexp/F and performing a linear least-squares fit.
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The values of functions F and p are obtained from

v
i

R omp (O /B(EV) | (5.7)

and

©
]

[R (QJ")/RCOEP(O) - 1] /QJ-;[ (5-8)

comp

with Rcomp(o) and Rcomp(QJﬂ) c&ﬁputed,‘at each energy and for each

| projectile, with the de Boer-Winther program using estimated values
of B(E\) and QJﬂ. If the estimated QJ1r and B(E)A) values differed
" significantly from the ones obtained after a fit to the experimental
data, F and p were recomputed using ﬁhe values of B(E)A) and QJﬂ
obtained on the first iterafion. It must be emphasized that although
the parametrization in eq. (5.5) is similar to the perturbation
expansion (eq. (2.24)) ,this does not imply that perturbation theory
is being used, since both F and p can contain contributions fromf
higher order processes.

The method of linear least squares, described in detail
by Bevington (Be69), gives analytical expressions for direct evaluation
of uncertainties in the intercept and the slope of the fitted line.
The uncertainty in B(EA) is equal to. the uncertainty in the intercept

and the uncertainty in QJn is calculated from

8Qnr = Qn [(aslope/slope)? + (B(EV/BED)I2E . (5.9) |

In the present analysis, each data point was weighted by a factor
l/oiz, where ci is the statistical error in the ith value of Rexp/F'

The goodness of the fit was determined from the chi-square test by
evaluating

y.(exp.) - y.(fit)]2
2 o 1 i i
X N7 2 - (5.10)

i
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where y=R/F and N is the number of data points. For a good fit

X2 ~ 1.

5.4 Results for Q2+ and B(E2) in 20%Pb and 206pp

Following the above procedure, and using experimental
excitation probabilities (tables 4.4 and 4.5) at safe bombardihg
energies (indicated in figs. 5.2 and 5.3), the partially corrected
results obtained are B(E2; 0 +2') = 0.1665%0.0017 e?b2  and
Q4 = + 0.213 £ 0.076 eb for 20Pb, and B(E2; 0 »2') =
0.1030 + 0.0009 e?b? and Q,y =+ 0.033 * 0.079 eb  for 206pb
(uncertainties will be discussed in‘subsection 5.4.7). Fits to
the data are shown in figs. 5.6 and 5;7 for 20%pp and 206pp
respéctively. In the above results only two states (the ground
staté and the first 2+ state) are considered in the de Boer-Winther
program, but electron screening, vacuum pdlarization, and quantal
corrections (see subsections 2.2.6 and 2.2.7) are included together
with the effect of the giant dipole resonance. Processes affecting
the results, including interference from higher states, are discussed
separately below (with particular emphasis on their effect on Q2+).

A summary of these effects on the values of Q.+ and B(E2) is given

in table 5.2.

5.4.1 Electron Screening and Vacuum Polarization Corrections

These corrections were treated by making small changes to
the bombarding energy (see table 2.2). Since the signs of these
corfections are opposite, the combined correction for electron
screening and vacuum polarization is very small. Changes in the

magnitude of Q,4 are A|Q2+| =+ 0.003 eb for 20Pb and

alQ 4| =+ 0.004 eb for 206pp.
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5.4.2 Quantal Corrections

The quantal corrections discussed in chapter 2 were applied
to the values of F(0,£) and p(06,£) obtained from the de Boer-Winther
program. For both 204Pb and 206Pb the changes due to these corrections
were A|Q2+|‘= - 0.019 eb and AB(E2) = + 0.0003 e?b?. The smaller
fractional change in B(E2) ié due to the correction to F(0,&) being
.préportional to 1/n2, whereas that to p(8,£) is proportional to 1/n
(see table 2.1). The uncertainty introduced, in the value of Q2+,
by the application of the quantal corrections is estimated to be.
negligible since the only source of uncertainty is from second order-

terms ignored in the extrapolatidn used to calculate the correctioms.

5.4.3 Effect of the Giant Dipole Resonance

The effect of the giant dipole resonance was included in tﬁe.
de Boer-Winther program as a modification to the Hamiltonian; this
modification being proportional to the minus-two moment 0_2 of the
photoabsorption cross section (see subsection 2.2.5). A number of
measurements of o, have been reported for 208pb (Mi62, Ha64, To68,
Ve70, Bu72) and the mean of these is G, = 18.3 + 1.8 mb/MeV, which
corresponds to a value of k = 0.72 * 0.07 in eq. (2.29). Harvey
et al. (Hab64) also obtained‘the values 0, = 15.6 * 1.6 mb/MeV
(k = 0.62 * 0.06) for 20Pb and o_, = 14.5 * 1.5 mb/Mev
(k = 0.57 * 0.06) for 207Pb. It therefore appears that the Levinger
(Le57) estimate (k=1) is consistently high for the Pb isot opes.
Although 0_q has not been measured for 20%Pb, its value is expected

to be very similar to that of the other Pb isotopes, since k should

be approximately constant (Le57). Using the same value k=0.62 for
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both 20%Pb and 2%6Pb the change to the quadrupole moment obtained

is A|Q2+| =+ 0.038 eb for 204Pb and A|Q2+| =+ 0.035 eb for

206php, If a value k=0.72 is used, then the above changes are

greater by 0.007 eb.

5.4.4  Effect of the 1.274 MeV 41 State in 20%Pb

In the case of 20%Pb, a peak corresponding to the 1.274 MeV
4+ state was observed in both !2C and 180 spectra. Therefore, this
state was included in the analysis. A value B(E2; 4+-+2+) =
(2.8 £ 0.2) X10‘5e2b2~(4x10‘3 W.u.) was deduced from the partial
half-life T%-= 0.29'1 0.02 us which is the (unweighted) average
of reported half-life measurements (Be60 ,Li67,5a63). Signorini
and Morinaga (Si72) have observed the 4+-*0+ Cross—-over gamma-ray
decay and from their measured branching ratio of (0.012 * 0.002)%
(somewhat larger than the previous upper limit of 0.005% (Ta62))

a value B(E4; 47+0%) = (2.1 + 0.4) x10-3 e2b" is obtained. Using
the above value;, it was found that including the 4+ state produced
the changes AlQ2+| = - 0.0006 eb for constructive interference
(P, =+1) and A[Q2+| = + 0.0018 eb for destructive interference
(P, =~-1). Clearly, inferference from the 4+ state has a very

small effect on Q2+.

5.4.5 Effect of the First 3 State

As mentioned in chapter 4, the 3 state near 2.6 MeV in
both 204Pb and 206pb is the most strongly excited state after the
. + . . ‘
first 2 state. This octupole state is therefore expected to have

a significant effect on the excitation probability of the 2+ state,
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particularly since the two states are connected by an El transition.
For the 3 state in 206Pb, the mean lifetime for the transition to
the first 2+ state has been measured to be 0.125 % 0.030 ps by
Hiusser et al. (H472), while Grosse et al. (Gr71) obtain a value of
0.4 * 0.2 ps; taking HHusser's result (in view of the smaller error)
one obtains a value B(El; 3--+2+)'= (8.0 + 1.9) x 1076 e2pb. Althoﬁgh
no information is available regarding the strength of the 3.-+2+
transition in 2OL‘Pb, this octupole state is of very similar nature
to that in 206Pb and therefore the same B(El) value as for 206pb
was used in the analysis. The values used for B(E3; 0+—+3_) were
those measured in the ﬁresent work (see table 5.1). The changes
A|Q2+| due to including the 3 state are + 0.021 eb (P, =-1)

and + 0.002 eb (Py =+1) for 20%Pb, and + 0.026 eb (P, =-1) and
+ 0.003 eb (P, =+1) for 206pp,

If the 3~ state is included in the analysis, together with
the already mentioned corrections (includ;ng the 5+ state), then the
quadrupole moment obtained for 204Pb is Q+ =40.215 * 0.078 eb for
constructive interference (P, =+1) and Q2+ =+0.236 * 0.078 eb for
destructive interference (P, =-1). For 206Pb, the results are
Q2+ =+ 0.035 + 0.081 eb (P, = + 1) and Q2+ = + 0.059 * 0.081 eb

(P, =-1). The errors quoted above include an error =+ 0.002 eb

arising from uncertainties in the matrix elements connecting the

3~ state.

5.4.6 Effect of Higher 2+ States

It has been found (St67) that, in general, interference

from higher 2+ states can have a significant effect on the excitation
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probability of the first 2+ state. Higher 2+ states have been
observed at 1.46 MeV and 1.75 MeV in 206Pb (Se72), and at 1.93
MeV in 20%pPb (Ma71). Although no experimental information is

) . + .+ + _+
available regarding the strength of the 2, +2; and 2, >0,
transitions a number of theoretical calculations have been made
for 206pb (but not for 20Pb). Shell model calculations have been

performed at Basel (Ha69, G870b) and the values B(E2; 22++ 21+) =

4 %103 e2b2, B(E2; 2,  +0;7) = 1.7x10-2 e2b2, and

*y0.F -3 o232
B(E2; 27 +0; ) = 9%x107° e“b” were obtained. There appears to be
a number of inconsistencies in these calculations:
a) The strength predicted for the 22++01+ transition is about
the same as that measured experimentally for the 21++01+ transition.
In a 60 MeV 160 spectrum, such a 2+ state at 1.75 MeV should give

rise to a peak-with an intensity 1/10 that of the 241+ peak. In the

..|.
present work, the 22 intensity was estimated to be less than 1/100

that of the 2_1+ peak.

b) The predicted 21++01+_ strength is only half the experimental
value.

. + .+
c) In collective models one would expect that B(E2; 2, +2; ) >>

B(E2; 2,7 +011).

Sorensen (S070) has_ used the pairing-plus-quadrupole model
to predict that for a 22+ state near 2 MeV B(E2; 22++ 21+) =
2x1072 e2b2, and B(EZ; 01++22+) = 1x10-3 e2b2 (also
B(E2; 01+—> 21+) = 0.12 ézbz). Since these values are more consistent
with experiment, they have been adopted here (the same values are
assumed for 20%Pb). The effect obtained by including the 1.93 MeV

state in 20%Pb is to change the measured Q2+ by A|Q2+l =+ 0.02 eb,
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Table 5.2 Effect on |Q2+| and B(E2; O+-*2+) of corrections applied

for various processes.

20|+Pb 206Pb
P
rocess ]Qu4l AB(E2) 8] Q,+ AB(E2)
(eb) ~ (e?p?) (eb) (e2b2)
electron screening plus
vacuum polarization +0.003 -0.0005 +0.004 -0.0003
quantal correction -0.019 +0.0003 -0.019 +0.0003
giant dipole resonance +0.038 +0.0003 +0.035 +0.0003
1.27 MeV 4 state Py =+1 | -0.0006 | -0.00004 - -
P,=-1 | +0.0018 | -0.00005 - -
2.6 MeV 3 state P, =+1 | +0.002 -0.00004 | +0.003 -0.00005
Py,=-1 1| +0.021 -0.00008 +0.026 -0.00012
2.0 Mev 27 state P, =+1 | -0.022 | +0.00006 | -0.031 +0.00006
Py =-1 | +0.020 -0.00004 +0.030 -0.00008

while the effect of the 1.75 MeV state in 208Pb is A|Q,4| = + 0.03 eb
(see table 5.2). 1If Soremsen's calculations refer to the 1.46 MeV
state, in 206Pb, instead of the 1.75 MeV state, then the above value

of A|Q2+[ becomes about 157 larger.

5.4.7 .Adopted Values

It can be concluded that the total correction to Q2+ arising
from electron screening, vacuum polarization, the quantal approximation
and the GDR is smaller than the error arising from the uncertainties
in the intensity extraction. The higher states observed to be

populated also have relatively little effect on the value of Qot+
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\ Since the values of Q2+ obtained for the different signs of the
interference (from the 4+ and 3~ states) are very similar, the
average of the two values can be adopted and the uncertainty as
to the sign of the interference can be included in the total error.
The adopted values are Qy+ =+ 0.23 + 0.09 eb and B(E2; 0+:+2+) =
0.166 * 0.002 e2b2 for 2%%ph, and Q,+ =+ 0.05 £ 0.09 eb and
B(E2; 0°+2%) = 0.103 * 0.001 e2b2 for 296pb. The uncertainties
in the above values take into account statistical and systematic
errors in the extraction of peak areas (see chapter 4), target-
thickness uncertainties, uncertainties in beam energy, and the
uncertainty as to the sign of the interference from the 3~ (and
4+ for 20%pp) state; uncertainties arising from the possible presence
of contaminants under elastic and inelastic peaks are not included.

The results obtained in this section will be compared with those of
previous measurements in'chap;er 6.

For 20%phb it can be seen from figure 5.6 that the 12¢ gata points

are consistently below the line representing the best fit to all the
data. If only the “He and !2c daté are used to calculate Q a value
of Q2+ = +0.09 * 0.09 e.b. is obtained, whereas if the “He and 160
data are used Q becomes Q2+ = +0.27 % Q.OS e.b. (The errors quoted
are purely statistical). It is clear that the errors quoted are too
small indicating a possible systematic error. The error in the final
value has been increased to accommodate this discrepancy and the

+ .+
results for 204pb become Q + = +0.23 * 0.14 eb and B(E2;0 =2 )
2

= 0.166 + 0.002 e2b2.

‘ ~— AL S 4 T
caAp  coup

nevertheless appears to be a decrease at energies above 60 MeV. 1If a
conservative approach is adopted, then the maximum safe energy is

taken to be 60 MeV. This bombarding energy corresponds to a
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separation of equivalent sharp radii (ESR) of about 7.5 fm and is
consistent with the conclusions reached for the 3  state in
204,206p (gection 5.2).

For "He, excitation probabilities were about 15 times
smaller than for 160 and it was not feasible to obtain an excitation
function similar to that shown in fig. 5.8 for 160. It was therefore
necessary to ﬁse the calculations of Feng et al. (Fe76), which predict
a 17 deviation from pure Coulomb excitation at a separation distance
of about 7.4 fm, and the *He data for the 3  state in 204,206pp .‘
(section 5.2} as an indication of maximum safe energies. 1In view of
the above considerations, the data were taken at bombarding energies
of 15.1 MeV and 15.3 MeV; these energies correspond to separation
distances of 7.5 fm and 7.3 fm respectively.

Values of B(E3) and Qs were determined from the experimental
excitation probabilities (table 4.6) according to the procedure
outlined in subsection 5.3. The fit to the data is shown in fig. 5.9
where Rexp/F(é,E) is plotted against the sensitivity parameter p(6,£).
The results obtained are B(E3; 0+->3-) = 0.665 *+ 0.035 e2b3 and
Q3_ = - 0.42 *+ 0.32 eb. The uncertainties in these results take into
account statistical and systematic errors in the extraction of peak
areas, target-thickness uncertainties, and uncertainties in beam
energy. However, uncertainties arising from the possible presence
of contaminants under elastic and inelastic peaks are not included.

Only corrections for electron screening and vacuum polarization
are included in the above results and their combined effect is to
increase |Q3_1 by 0.03 eb. Quantal corrections were not applied
since no information is available regarding quantum mechanical

calculations for E3 excitation. However, if quantal corrections
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are assumed to be the same as for E2 excitation, then the result
would be to increase lQ3-| by 0.006 eb. (Such a small correction
compared to that in 2045206py 35 a consequence of the fact that
quantal corrections are smaller for large values of the adiabaticity
parameter £; for 208Pb(3-) £E ~1.3 while for 20’*’ZO‘SI’b(Zn'-) £ a{0.4.)
The likely size of the quantum mechanical correction is therefore
estimated to be much smaller than the uncertainty in Q3--

The effect of the giant dipole resonance (GDR) was simulated
by including a single 1~ level at 14 MeV in the Winther-de Boer
program (the reason for this procedure is explained in subsection
2.2.5). For the GDR a reduced transition probability B(El; 0+-*1-):=
10 W.u. has been found ekperiﬁentélly (Bu72, Pi74). Since there is
no strong theoretical basis for assuming the 1 +3~ (E2) transition
to be either inhibited or enhanced, a value B(E2; 1  +37) = 1 W.u.
was adopted (Barnetf and Phillips (Ba69) considered that even 0.1 W.u.
was probably an overestimate). The results of this calculation show
that the GDR would reduce |Q3_| by 0.16 eb; if a value
B(E2; 17 +37) = 0.1 W.u. is used, then |Q,_| is reduced by 0.11 eb.
The isoscalar giant quadruﬁole resonance near 10 MeV (Bu72, Na73,
Pi74, Ma75) is not expected to héve any effect on the present results
since an El transition to the 3f state is forbidden by selection rules
(Ko76) .

The possibility of interference from the 4.09 MeV 2+ state
was also investigated. The value B(E2; 0+->2+) = 0.30 + 0.02 e2b?
has been determined experimentally from electron scattering (Na7l,
Zi68). The strength of the 2+-+3- transition has not been measured

but the value B(El; 2+3*3_) = 8x10~° e?b assumed by Hausser (H472)

has been adopted (this is somewhat larger than the value B(El; 2+-*3-) =
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2.3%x 107 e?b assumed by Barnett and Phillips (Ba69), and the value
B(El; 27 +37) = 1.12x10-5 e?b determined for 206pb (Hu72)).
Calculations show that the effect of the 2+ state is to change |Q3_|
by +0.01 eb for constructive interference (P, =-1) and by -0.07 eb
for destructive interference (P, =+1). |

The 3.20 MeV 5 state has been observed to decay to the 3~
state by a pure E2 transition (Ja72). The half-life for this

transition is T% = 0.298 * 0.017 ns (We62) from which a value

1

B(E2; 5 +3 ) = .(2.76 * 0.16) x 10~3 e2b? is deduced. A value
B(E5; O  +57) = 0.05 * 0.01 e2b5 4is obtained from the average of
experimental daia (A167, Fr72, Na7l, Zi68). 'Interference from this
state would change Q,. by AIQa_i = + 0.009 eb (P, =-1) or
A|Q3_| = - 0.010 eb (P, =+1). The 3.71 MeV 5 state is expected
to have very little effect since its decay is mainly to the 3.20
MeV 5 state with only a weak branch to the 3~ state (Pa69).

Finally one must also consider the process of virtual
nucleon tunnelling whereby a nucleon can tunnel through the
Coulomb barrier twice and leave the 298Pb nucleus in its 3 state.
This problem is also present in E2 reorientation experiments but
since it is likely to have a small cross section compared to that
of E2 Coulomb excitation, it has been ignored. 1In the present case
the E3 Coulomb excitation cross section is 40 times smaller than the
E2 excitation cross section in 2045206pp and therefofe virtual nucleon
tunnelling may be a significant process. This problem was also
considered to be important by Barnett and Phillips (Ba69).particu1ar1y
since at 69.1 MeV they oBserved (Ba71) single nucleon transfer peaks,

from the 298pb(1%0,170)207pp and 208pp (160, 15N)20981 reactions, whose

intensities were comparable to the 3~ peak (particularly at backward
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angles). 1In the present data eaken near 60 MeV (see fig. 4.12) the
peaks from the 208pb(160,170)207pb(g.s) and 208pb(1€0,15N)209B1i(0.897)
reactions (these have beep observed to be the strongest peaks (Ba7l))
are 6 and 20 times smaller (respectively) than the 3~ peak. It is
therefore concluded that in the present work the effect of virtual

nucleon tunnelling is likely to be small.
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CHAPTER 6

DISCUSSION OF RESULTS AND CONCLUSION

In the present chapter, the results obtained in chapter 5
for quadrupole moments and reduced excitation probabilities are
compared with thdse_of other experiments and with the predictions
of theoretical calculations. For 208pp, arguments are presented
against a large value of Q;- in terms of its consequences on certain
features of nuclear structure. In the case of 20%Pb and 206Pb,
intrinsic shape paraméters are deduced according to the sum rule
method described in chapter 1. Systematic trends in the intrinsic

shapesof nuclei in the mass region A = 184 -206 are presented.

6.1 The Nuclei 204Pb and 206pp

6.1.1 Comparison of Present and Previous Experimental Results

The value Q,4 = 0.23 + 0.09 eb obtained for 204pp in the
present measurement is in excellent agreement with the value
Q2+ = 0.19 * 0.14 eb obtained by Olin et al. (0174), who also used
the reorientation effect in Coulomb excitation. The experimental
technique employed by Olin et al. consisted of bombarding an enriched
204pp target with 100 - 125 MeV 32g ions, and aetecting the 32s particles
scattered at 70° and 180° in coincidence with the de-excitation gamma
rays. The gamma-ray coincidence served to select the inelastic events
in the particle spectrum»(a general outline of this experimental
technique is given in subsection 3.1.1b). The determination of Q2+

made use of the dependence of the reorientation effect on the scattering
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angle (see section 3.1). Coulomb-nuclear interference was investigated
and Olin et al. found that the minimum safe distance (as defined in
section 5.1) for 328 projectiles was about 6.6 fm; this is in géod
agreement with the minimum safe distance of about 6.7 fm determined

in the present work for “He,lzc, andrlGO projectiles. 1In their analysis,
O0lin et al. included interference effects from the 1.274 MeV 4+ state
but did not include the effect of the 3 state near 2.6 Mev; if the

37 state is excluded from the present analysis, then a value

Qo+ = 0.21 ¢ 0;08 eb 1is obtained and the agreement with Olin et al.

is improved. Olin et-al. do not state whether corrections for the
giant dipole resonance, electron screening, vacuum polarization, and
quantal effects were included in their analysis; 1if these corrections
are excluded from thé present analysis, then the value Q2+ = 0.19 #
0.08 eb .is obtained, which agrees exactly with the value of Olin et
al. |

No previous measurement of Q2+ has been made for 206Pb.. The
present value Q,, = 0.05 + 0.09 eb is smaller than that of 204pp, as
would be expected as one approaches a double closed shell. The present
result is also not inconsistent with the value Q2+ = 0 predicted for a
harmonic vibrator.

The values of B(E2; 0+-+2+) for 204ph and 296pb obtained in
the present work are compared to those from previous measurements in
table 6.1; !H and “He inelastic scattering measurements give results
which differ substantially from the present results and have not been
included. Some of the bombarding energies used by Hrynkiewicz (Hr66)

- were above the maximum safe energy and only the result taken at a safe

bombarding energy is quoted in table 6.1. In the experimental method
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used by Hdusser et al. (H470a, H472) and by Grosse et al. (Gr71)

the gamma-ray yield measured is the result of Coulomb excitation
over all projectile scattering angles and over projectile energies
ranging from the bombarding energy to zero enérgy as thé projectile
slows down in the thick target. In this situation, the minimum
value of the distance of separation S between nuclear surfaées (as
defined in section 5.1) is that arising from a projectile with an
energy edual to the bombarding enérgy and which is scattered at 180°.
In the experiments of HHusser et al. and Grosse et al. the minimum
values of S were 5.7 fm (17 Mev “He) and 4.9 fm (18 MeV “He)
respectively, and since these values are less than ;hevminimum safe
distance of 6.7 fm (as determined in the present work) it is evident
that the data obtained by these authors wés not entirely free from
muclear effects. Coulomb-nuclear interference ﬁay therefore be the
reason for the B(E2) of HHusser et al. and Grosse et al. being lower
(with one exception) than those of the present work. Nevertheless,
the values in table 6.1 are in good agreement with each other and all

are within two standard deviations of the present results.

6.1.2 Theoretical Calculations of Q,4 and B(E2)

The lead region, especially those nuclei close té the doubly
magic 298Pb nucleus has been a popular region for shell model
calculations. It is also a region where new models, and modifications
and extensions to the shell model can be tested. Although there have
been numerous calculations for 20%Pb and 206pp, many are concerned
with reproducing energy level schemes only, while others use the

experimental B(E2)'s as a basis to derive the neutron and proton
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Table 6.1 Comparison of present and previous experimental values
of B(E2; 0' +2") (e2b?) for 20Pb and 206pb
204py 206py, Ref Comments
0.166 +0.002 {0.103+0.001 |this work
0.166 *0.009 0174
0.151+0.015 | 0.095+0.005 H472 Coul.ex.; thick target yield
0.146 £0.015 | 0.103 £0.008 Gr71 "
0.156 £0.018 | 0.094+0.006 | Hi70a "
0.091 +0.006 Qu70 recoil-distance Doppler shift
0.118:tg:g§g Hr66 Coul.ex.; paiticlé—y ray coinci-
dence

effective charges and to determine transition probabilities for higher

states.

Therefore, only theoretical treatments which calculate

quadrupole moments or which do not treat the effective charges as free

parameters to reproduce the B(E2) values, will be discussed;

listed in table 6.2.

these are

Shell model calculations in which nuclear structure is

described in terms of neutron holes occupying orbitals within an

otherwise inert 298Pb case can be characterised in terms of the effective

residual force which is assumed for the interaction between two neutron

" holes. An early‘calculation by Hadermann et al. (Ha67) employed a delta

force for the residual interaction, and numerical calculations were

performed using the quasi-boson approximation. It can be seen that

the large negative value predicted for the quadrupole moment is in

strong disagreement with experiments.

Nevertheless, this simple

effective residual interaction is able to give a reasonable value
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Table 6.2 Comparison between experimental and theoretical values of
B(E2; 0+-+2+) and Q2+ for the first 2+ state in 20%Pb and
206pp, Dpetails of calculétions are explainéd in the text.

Nucleus Q4 B(E2;0++2+) Reference Description
(eb) (e?b?)
206pp | +0.05%0.09 | 0.103+0.001 | this work experiment
*0.29 - eq. (1.11) rotational model
-0.51 0.128 Ha67 shell model
~-0.04 0.047 Ha68 shell model
0.042 Ha69 shell model
0.046 G870 shell model
0.122 Ma72(Tr68) shell model
0.122 Ma72 (Ru71) shell model
0.083 McGr75 shell model
0.101-0.123 Va7l shell model
0.107-0.130 Va7l random‘phase approximation
(RPA)
+0.33 Za7Z(Tp68) (shell model)
+0.32 So70 pairing plus quadrupole
0.084 Sp73(RPA) finite Fermi systems
0.109 Sp73(Fr69) |finite Fermi systems
0.120 K173(Ku71) |finite Fermi systems
+0.08 Sp72 finite Fermi systems
+0.02 Br72 particle vibration coupling
204pp | 40.2320.09 | 0.166%0.002 this work experiment
+0.37 - eq. (1.11) rotational model
0.256 Hab67 shell model
+0.04 Br72 particle vibration coupling
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for the B(E2) in 20Pb, (However, the prediction of this theory that
the B(E2) for 20Pb should be twice as large as for 206pb clearly
disagrees with experiment.) Hadermann (Ha68) subsequently used a
residual interaction with a Gaussian radial dependence and with an
angular dependence which was assumed to be a delta function. The
quadrupole moment obtained in this calculation is considerably
smaller in magnitude than the previous prediction and agrees with
experiment. However the B(E2) is now too small by a factor of two.
'AddingAspin—spin and tensor terms (Ha69) to the residual interaction
produced little change to the theoretical B(E2) although better agree—
ment with experiment was obtained for the energy level scheme of
206pp, Including four-particle core excitation (Go70) (note that
only core spins O were considered) only marginally increased the
predicted B(E2), although further improvements were obtained for the
energy level scheme.

A number of more recent shell model calculations make
reasonable predictions for the B(E2) in 296Pb. Manthuruthil et al.
(Ma72) have calculated the B(E2) from the wave functions of True
(Tr68), who added a weak-coupling force to an effective interaction
with a Gaussian radial dependence, and Kuo and Herling‘(Ku71), who
used a "realis%f" effective interaction based on the Hamada-Johnston
'potenfial. The same ''realistic'" interaction was recently employed
in the shell model calculation of McGrory and Kuo (McGr75). Vary
and Ginocchio (Va7l) have compared a shell model calculation with a
two-nucleon random phase approximation (RPA) calculation, and
obtained similar results for both. True's wave functions were also
used by Zamick (Za72) to calculate thé quadrupole moment in 206Pb;

the result obtained is in poor agreement with experiment.
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A pairing-plus—quadrupole interaction was used by Sorensen
(So70) to approximate the residual interaction and a fourth order
boson expansion calculation was performed. Since the effective
charge was chosen to match approximately the experimental B(E2) for
206ph, only the quadrupole moment is compared to e#periment in
table 6.2; clearly the predicted value of Q2+ is too large in
magnitude. Nevertheless, an interestingvfeature of Sorensen's
calculation is that the potential energy of quadrﬁpole deformation
V(B,Y) (see section 1.5) was calculated; this is shown for 206pp
in fig. 6.1 where, for comparison, that for 208pb is also shown.

Speth et al. (Sp73, K173) have extended the theory of finite
Fermi systems of Migdal (Mi67) to cover the case of even-mass nuclei.
The advantage of this theory is that no effective chargesbare assumed.
Theoretical B(E2) values for 206Pb were calculated using results
from a RPA calculation, from the wave functions of Freed and Rhodes
(Fr69), and from the wave functions of Kuo and Herling (Ku71). All
the predicted B(E2)'s are in reasonable agreement with experiment.
This theory has also been used to calculate the quadrupole moment
of 206pp (Sp72) and is in good agreement with the present experimental
value.

In the particle-vibration model the motion of the neutron
holes is ;oupled to the vibrational modes of the 298Pb core via
oscillations in the one-body potential. Broglia (Br72) has used the
particle-vibration model to calculate the quadrupole moment of all
the even-mass lead isotopes from 196pp to 206pp, A1l the values
of Q2+ are predicted to be small and although the theoretical value

of 206pp agrees with experiment, the agreement is not as good in the

case of 204pp.



V =14 MeV 208pyp

Fig. 6.1 Contour plots of the potential energy of quadrupole deformation
V(B,Y) calculated by Sorensen (So70). In this figure, Q is the
intrinsic mass quadrupole moment, and Bm is the mass deformation
parameter,
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In conclusion, there is a definite need for further
theoretical investigations in order to develop a theory that can
simultaneously explain the observed quadrupole moment in both
204pp and 206Pb. The present experimental results for Q2+ agree>

of

with the theoretical valuesABroglia and Speth, but disagree with

those of Zamick and Sorenmsen.

6.1.3 Intrinsic Shape

It is interesting to apply the sum rule method, described
in section 1.5, to calculate the intrinsic shape parameters for
20%pp and ZQGPB. The result for 20%>206pp will later be compared
with those for other nuclei in the mass range A= 184 to A=198.
Table 6.3 shows the results of a sum rule anaiysis of the available
E2 infofmation for 204%ph and 206Pb; the second coiumn indicates the
state s for which Qi , Yi and BS are calculated, and the tﬁird
column shows the states included in the analysis. It can be seen
that for the 0+ grourd state of 204%ph and 296pp the deformation.80+
is very small - there is only a 3-47Z deviation from sphericity - |
and follows fhe expected trend of increasing as one moves aw;y frém

a double closed shell. Although the values of yi+ imply that the
0

ground states of 20%4Pb and 206Pb are asymmetric (see fig. 1.5), this
asymmetry is of little consequence in view of the uncertainties in
y§+ and in view of the small magnitude of the deformation B 3
Furthermore, nuclei are not rigid but can spend a fraction of their

time in various shapes; in particular, nuclei near double closed

shells are expected to have a potential energy of deformation V(B,Yy)
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Table 6.3 Intrinsic shape parameters obtained from the sum
t
rule method. When a 2+ state is included in the
analysis, the uncertainty in the sign P, of the
interference gives rise to two values for yi .
Nucleus |State| Intermediate Qé BS Y;
States (eb) (deg)
206pp o" | of,2" 1.018+0.005| 0.0326+0.0002 | 33%6
, : ,
ot | o, 2%, 2% 1.023 0.0330 30(Py, = -1)
) 36(Py =+1)
2+ | ot 2t 0.465£0.034 | 0.0149+0.0011| 45+26
+ | + 4+ + :
2 »2 ,2 0.646 0.0207 33(Py =-1)
39 (P, = +1)
204py, ot | ot,2" 1.292+0.008 | 0.0417+0.0003| 4328
+ | + 4+ .+
0 »2 ,2 1.296 0.0420 41(Py =-1)
44(P4=+1)
+ | + .+ ¥
2 0,2 0.720+0.101| 0.0233+0.0033 60i?6
ot | ot 2t 4t 0.721+0.101| 0.02330.0033 '6o+gﬁj
+ | + .+ 4+ +
20 1 0,27,47,2° | 0.849 0.0274 44(Py = -1)
49 (P, =+1)

similar to that shown in fig. 1.6, and are therefore expected to

experience large fluctuations in the y direction (i.e. they are "soft"

in the y direction).

An additional feature of the values in table 6.3 is the

striking difference in Qi and Yi between the 0+ ground state and

+ - .
the 2 first excited state. Although the values Q: and y; are

allowed to change from one state to another, one would expect only

a gradual change for a rigid nucleus near a double closed shell.

In
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the case of 204Pb and 206pp,, only a few matrix elements are known
from experiment and in addition to the errors for Qé and Yi (these
errors being derived from the errors associated with the matrix
elementss one must consider an additional uncertainty arising from
E2 strength‘not included in the sums pgz) and ﬁés) . To test the
convergence of these sums, a 2+' sfate was also included in the
analysis; folloﬁing the practice initiated in subsectibn 5.4.6,

the matrix elements for this state were obtained from the‘pairing—
plus-quadrupole calculation of Sorensen (So70) (with the matrix
elements for 204Pb assumed to be the same as for 206Pb). It can

be seen from table 6.3 that.inéluding the 2+' state has little effect
on the values of Q§+ and Yg+ for the ground staﬁe. On the other
hand, there is a ﬁarked change in the values Q§+ and Y;+ when»the>

' . N
2 state is included, and these new values are much closer to those

of the ground state. Inclu&ing a 2+' state also gives a “'sensible"
value of y%+ for the 2+ state in 29%Pb and resolves the problem of
a value greater than one being obtained for the right-hand side of
eq.(l;iS), with a consequent Y;+ = 60° ‘assignment. It may therefore
be concluded'that while the values Qt+ and Y§+ already show a good
convergence when only two states (0+ and 2+) are included, the values
Qi+ and Y§+ in table 6.3‘are unreliable due to some missing E2
strength. |

The systematics of nuclei in the region of the periodic
table between A=184 and A=206 are shown in fig. 6.2; the values
for Q2+ and B(E2; 0+-+2+) are taken from Christy and H#usser (Ch72)

for all nuclei except 204ph and 206pPb where the values from the present

work are used, and except !98Hg where the values are those from a
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Fig. 6.2 Systematics of nuclei in the region of the periodic table
between A= 184 and A=206. Features of this figure are
discussed in the text.
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recent measurement in this laboratory (Fe77a). Fig. 6.2a shows the
gradual increase in deformation as one moves away from the double
closed shell. The well known oblate-prolate fransition near 1%20s

can clearly be seen in fig. 6.2b where @ cos 37%+_ =~-1 corresponds
to an oblate shape and cosiBy%+j =+1 corresponds to a prdlate shape.
The information in figs. 6.2a and 6.2b is combined in fig. 6.2c which

is a plot of the values (Bo+,yo+).

6.2 The Nucleus 208ppb

6.2.1 Comparison of Present and Previous Experimental Results

The present experimental results for Q3_ and B(E3; 0+-*3~)
are compared to previous measurements in table 6.4. It can be seen
that the pre;ent value of Q3_ is smaller than both previous measure-
ments of Barnett et al. (Ba69, Ba72) by a factor of abqut three.

The first measurement of Q3_ by Barnett and Phillips (Ba69)
employed the réorientation effect in Coulomb excitation and used an
experimental technique'similar to that used in the present work. An
enriched target was bombarded with 17.5 MeV and 18 MeV “He and with
69.1 MeV 156 projectiles, and thg scattered particles were detectea
with silicon surface barrier detectors placed at laboratory scattering
angles from about 85° to about 170°. Data were also taken with
19 MeV “He ions but at this energy, the effects of Coulomb-nuclear
interference were observed and these data were not included in the
analysis. Although Barnett and Phillips assumed that nuclear effects
at the above energies were negligiﬁle, it appears that the majority

of these data were in fact taken at energies where the distance of
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Table 6.4 Comparison of present and previous experimental

values of Q3__and B(E3; 0+A-> 37) for 208pp,

Q3_ B(E3; O+->3-) Reference Comments
(eb) (e?b3)
-0.42+0.32) 0.665%0.035 this work
-1.1 *0.4 Ba72 reorientation
-1.3 *0.6 0.58 *0.04 Ba69 reorientation
0.54 +0.03 HY472 Coul.exc.; thick target yield
0.60 *0.07 Gr71 Coul.exc.; thick target yield
0.69 *0.05 Ro74 (e,e')
0.624+0.04 Fr72 (e,e'")
0.69 tggg Na72 (e,e")
0.77 *0.09 Na7l (e,e")
0.72 *+0.04 2i68 | (e,e")

separation S between the nuclear surfaces is less than the minimum safe
distance of about 7.4 fm as established in the present work (see
chapter 5). If it is assumed that there is no angular dependence for
the minimum safe distance, eq. (5.3) can be used to calculate the
surface to surface separation at each angle and energy, and for each
projectile. Table 6.5 gives the number of data points which satisfy
the conditions S27.4 fm (safe)and S<7.4 fm (unsafe) for each of

the data sets 17.5 MeV “He, 18 MeV “He, and 69.1 MeV 160; the smallest
value of S, which corresponds to the most backward scattering angle
used, is also given. The fact that most of the data contained nuclear

effects has been recognised by Barnett (Fe76), and optical model
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[

calculations (Fe76) indicate that for S=5 fm, Coulomb-nuclear
interference in “He scattering can cause th; excitation probability
to decrease by about 107 from that of pure Coulomb excitation. Thié
decrease in excitation probability may expiain the lower (by about

13%) B(E3) of Barnett and Phillips compared with the present result.

Table 6.5 Number of data points in the work of Barnett and Phillips
(Ba69) for which nuclear effects are expected to be small
(S27.4 fm) and where nuclear effects are expected to be
more than 1% (S<7.4 fm). It is assumed that the
minimum safe distance (7.4 fm) is independent of the

scattering angle. TFor each data set, the smallest

value of § is also indicated.

Data Set $27.4 fm . $<7.4 fm smallest S (fm)
17.5 MeV Y“He ' 1 6 5.4
18.0 MeV Lpe 1 8 5.0
69.1 MeV 160 2 8 5.2

\
A subsequent experiment by Barnett et al. (Ba72) employed an

experimental techhique similar to that describgd in subsection 3.1.1a.
A thick natural lead target was bombarded with 120, 2°Ne, 325, and
“0Ar jons with energies 4.15 MeV/A, and decay gamma rays, following
Coulomb excitation, were measured with a Ge(Li) detector. The value
of Q3_ was determined by comparing the total gamma-ray yields from
the decay of the 208pb 3~ and 206pp 2+ states. The result obtained

was slightly dependent on the quadrupole moment Q2+ of the 2+ state
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in 206pb, and since the value of Q2+ had not previously been measured,
Barnett et al. quoted the values Q3_ =-.1.1%0.4 eb assuming Q2+==0,
and Q3_ =~ 0.9 *+ 0.4 eb assuming Q,4 =+ 0.29 eb (which is thg
value predicted'by the rotational model; see eq. (1.11)). It is now
possibl; to remove this ambiguity and, frém‘the present measured value
Q4 =+ 0.05 £ 0.08 eb for 206ph . it is deduced that the quadrupole
moment measured by Barnett et al. is Q3- =~ 1.1 * 0.4 eb. The
‘discrepancy between this value of Qa, and the value obtained in

the present work is possibly explained by the fact that the bombarding
energies used by Barnett et al. were above the maximum safe energy.
Table 6.6 shows the distance S of separation between nuclear surfaces
(for a scattering angle of 1800) for each projectile and bomBarding
energy; it can be seen that all the vaiues of S in this table are
less than the minimum safe distance of 7.4 fm in the present work

(see chapter 5). An additional reason for the discrepancy in the
values of Q- is that since heavier projectiles were used in the

later work of Barnett et al, their result is likely to be more strongly

affected by virtual excitation via the giant dipole resonance, than in

Table 6.6 Distance S of separation between nuclear surfaces in
the work of Barnett et al. (Ba72). The values quoted

are for a scattering angle of 180°.

Projectile Bombarding Energy (MeV) S (fm)
12¢ 49.8 5.78
20Ne 83 5.85
32g 132.8 6.15
4O0Ar 166 6.42
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the present work where the heaviest projectile used was 160._

The comparison of B(E3) values in table 6.4 shows that the
present value B(E3; O+->3-) = 0.665 * 0.035 e2b3 is in reasonable
agreement with previous measurements. While most inelastic.electron
scattering measurements tendAto give results higher than the present
value,vthe results from previous Coulomb excitation measurements are
all lower. However, as was pointed out before, the latter may be

affected by Coulomb-nuclear interference.

6.2.2 Consequence of a Large Value for QB'

The large values for Qa_ obtained by Barnett et al. (Ba69,
Ba72) are rendered even more unlikely when the effects of such a

large quadrupole moment on other features of nuclear structure are

considered.

a) Energy splitting of the (h9/2)(3_) septuplet.
The coupling of an octupole phonon to the h9/2 ground
state of 20%Bi is expected to give rise to a septuplet of states
. w + + + .
with spins J = 3/2 ,5/2,...,15/2 . The experimentally observed
(Un71) energy splitting is given in table 6.7. Hamamoto (Ha75) has
been able to obtain good agreement with experiment for most members

of the septuplet with the particle-vibration coupling model (The 3/2+

-1
3/2
and (hg/z 37) configurations (Bo75,p.570) and an additional coupling

' +
state is believed to contain about equal mixtures of the (d 0)
term was included in the calculations.); the results of this
calculation are listed in table 6.7. In addition to the energy shifts

calculated by Hamamoto, one must also consider the energy splitting

(Bo75,Ha75) ,
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Table 6.7 Energy splitting of the (h9/2 3) septuplet in 209Bi.
Column 3 refers to the values calculated by

Hamamoto (Ha75) as discussed in the text. Columns 4
and 5 are values calculated frpm eq. (6.1). All values

quoted are in MeV.

J" Expt Ha75 Q- =-0.42 eb| Q,_ =-1.0 eb
3727 - 0.121 | - 0.190 - 0.215 - 0.512
s5/2F +0.003 | + 0.007 +0.117 + 0.279
7/2% - 0.030 | - 0.006 - 0.008 - 0.019
9/2% - 0.050 | - 0.089 - 0.086 - 0.205
11/72% - 0.015 | - 0.031 +0.129 + 0.307
13727 - 0.015 | - 0.063 - 0.078 - 0.186
15/2% +0.129 | + 0.156 - 0.117 - 0.279

: 3 9/2 J
- _ - J'i'lfﬁ -2
SE(( hg,, 37)3) = 14 Qnz=1) Qlhg/, ) (-1) 39/2 3 o MeVb
(6.1)

.arising from the interaction of the quadrupole moment of the octupole
phonoﬁ with the quadrupole moment associated with the h9/2 proton.
In eq. (6.1) Q(h9/2) is the quadrupole moment of the ground state

of 209Bi which has been measured to be - 0.35 eb (Fu69). The values
calculated from eq. (6.1), assuming Q3_ = - 0.42 eb and Qs_ =-1.0 eb
are listed in table 6.7. It can be seen that the energy shifts
obtained assuming Q3_ = - 1.0 eb are unreasonably large and make

such a large value for Q3_ unlikely. Even for Q3_ = - 0.42 eb the
energy splitting is larger than experiment; the disagreement is éven

worse when these values are added to those of column 3 in table 6.7.



122

Better agreement with experiment would be obtained by reducing the

size of the coupling constant (which is incorporated in the factor

14 in eq. (6.1)).

b) Energy splitting of the (3 x3 ) quartet in 208pp

The simple vibrational model predicts a two-octupole-phonon
quartet of degenerate states with spins Jﬁ = 0+,2+,4+, and 6+ and
-with excitation energy 2hws = 5.23 MeV. A large static quadrupéle
moment for the 3  state ﬁould imply strong coupling between octupole
and quadrupole motions and would give riseAto a substantial splitting
of the quartet. Blomqvist (B170) has calculated the amount of éplitting
and showed that the 0+ member of the quartet was shifted most from thé
unperturbed position; if Q3- = - 0.7 eb (corresponding to the lower
bound set by the errors in Ba69 and Ba72), then the d+ state is
depressed 1.5 MeV in energy. The particle-vibration coupiing model
can be used to obtain an expression for the energy shift of a member

J of the quartet; using a self-consistent value for the quadrupole

coupling constant, Bohr and Mottelson (Bo75, p.570) obtained for

208Pb ,

3 3 2

2 .
§E(ng = 2,J) =~ - 16 (Q(nz=1)) { }MeV b2 (6.2)

3 33

where n3 refers to the number of octupole phonons. The calculated
excitation energies of the members of the quértet are listed in |
table 6.8 for the values Qa_ = -0.42 £+ 0.32 eb and

Qa_ =.- 1.1 *+ 0.4 eb. The lowest 0+ excited states that have been
observed in 298Pb are at 4.87 MeV (Bj66) and at 5.26 MeV (Ig70), and

+
the fact that no O excited state has been observed at a lower energy
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is an argument against a large value of Q3_, although there are

large uncertainties in the calculated excitation energies in

table 6.8.
Table 6.8 Calculated excitation energies of the members of the
two-octupole-phonon quartet in 298Pb. Results (in
Mev) are given for the values Qs_ obtained in the
present work, and obtained by Barnett et al. (Ba72).
J" Qa— = - 0.42 * 0.32 eb Q3- = - 1.1 + 0.4 eb
+ .
0 4,83 + 0.61 2.46 * 2,01
6" 5.06 * 0.26 4.08 * 0.84
ot 5.10 * 0.20 4.35 * 0.64
4* 5.42 * 0.29 6.55 * 0.96

6.2.3 Theoreticél Calculations of Q;3- and B(E3)

The surprisihgly large experimental result for Q3- obtained
by Barnett’and Phillips (Ba69) has prompted a large number of theorétical
investigations. The resulis of these theoretical studies are listed in
table 6.9. 1It.can be seen that.the present value Q3_ = -~ 0.42 + 0.32 eb
is in agreement with most theoretical calculations, although these tend
to be consistently lower (with the exception of Krainov (Kr68)). If the
effect of the giant dipole resonance (GDR), estimated in section 5.5,
is taken into account, then the experimental value becomes
Q3_ = - 0.26 eb and excellent agreement is théined‘with theory. If

one further includes the estimated effect of interference from the
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Table 6.9 Comparison of experimental and theoretical values for Q3-
and B(E3) for the 2.6 MeV 3~ state in?98 Pb. The

abbreviations in column 3 are explained in the text.

Q3_- B(E3;0++3—) Model Ref. N Comments
(eb) (e?b3)

-0.42+0.32| 0.665 +0.035 this experiment
0.149 TDA Leb66 - surface delta interaction
0.349 RPA Le66
0.11-0.13 TDA Gi66 value depends on

1 0.23-0.55 RPA Gi66 interaction

-0.09 , B170 Gi66 wave function

-0.10 | B170 Kuo wave funétion 
0.372,0.709, RPA B168 ‘separable interaction

0.682

-0.12 coupled So71 separable interaction
0.58 : RPAphonons| So71

-0.52,-0.79 FFS Kr68

-0.21 FFS Sp72

-0.17 0.55 FFS Sp73

-0.20 PVC Ha70

-0.14 : PVC - | Ha75

~0.10 PVC Bo75

4.09 Mev 2+ state (see section 5.5), then one obtains Qs_ = - 0.27 eb

for constructive interference (P, =-1) and Qé_ = - 0.19 eb for

destructive interference (P, =+1). It can therefore be concluded

that the present experimental result has resolved the discrepancy
between theory and experiment, and that including the effects of

the GDR and of the 4.09 MeV 2+ state would further improve the agreement.

Nevertheless, it is instructive to investigate the possible reasons
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which, so far, have prevented theoretical calculations from predicting
large values of Q3-.

The original discrepancy between theory and the experimental
results of Barnett et al. (Ba69, Ba72, Ba72a) led Guidetti et al.
(Gu75) to find lower and upper bounds for the values of Q,- and B(E3)
which could be predicted by calculations based on the particle-hole
model or on models where particle-hole excitations are coupled to é
quadrupole phonon. The results of the investigation by Guidetti et al.,
which are independent of the Hamiltonian used in the models, are shown
in'fig. 6.3. Although both neutron and proton particle-hole
configurations can make up a nuclear state, Guidetti et al. did not
assume an effective.charge for the neutron, and only proton particle-
hole configurations were considered to calculate lower and upper
bounds for Q3_ and B(E3). Consequently, points located on the
"extremuh curves" in fig. 6.3 correspond to a state with.pure proton
particle-hole configurations; such a state would be physically unlikely.

Fig. 6.3a shows that in the particle-hole model, Tamm-Dancoff
approximation (TDA) calculations with a small particle-hole space are
inadequate to describe the experimental B(E3). This observation is
substantiated by the TDA results of Letourneux and Eisenberg (Le66)
and Gillet et al. (Gi66). For TDA calculations to successfully
reproduce the observed Q;- and B(E3), particle-hole éonfigurations

N .
up to 3hw excitation would be required. The results from the random-

* Each major shell can loosely be considered to be separated from its
neighbours by an energy hw, which is the case for the pure harmonic
oscillator shell model. Thus, particle-hole excitations up to 3hw

would consider all single-particle orbits of the 3 major shells above
and below the Fermi surface.
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Fig. 6.3 Extremum curves for the particle-hole model (a), and for
the particle-hole 2t phonon model (b)(c)(d), as calculated
by Guidetti et al. (Gu75). The curves are labelled by the
dimensions of the particle-hole space and according to whether
it is treated in TDA or RPA. Circles indicate the results of
Barnett et al. (Ba72) and crosses indicate the present results.
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phase approximation (RPA) calculations of Gillet et al.(Gi66) and
~Kuo have been used by Blomqvist (B170) to deduce theoretical
quadrupole moment values of - 0.09 eb and - 0.10 eb respectively;
to predict larger values for Q3_, more particle-hole configurations
would need to be included. The results of RPA calculations by
Letourneux et al. and by Gillet et al. for B(E3) are also too small,
and Blomqvist (B168) has shown that the inclusion of 3hw excitations
can substantially incfease the B(E3) so that it is brought into good'agreement
with experiment (including S5hw excitations has relatively little
effect).

Sorensen (So71) has predicted a value - 0.121 % 0.024 eb
for Q3_, usingAa model where particle~hole states are coupled to a
quadrupole phonon. The analysis of Guidetti et al., for this model,
reqﬁires the knowledge of the values of the B(E2) and quadrupole
moment of the 4.09 MeV 27 state in 208pb, Although the value
B(E2; O+-*2+) = 0.30 + 0.02 e2b? has been measured (Zi68), the value
of the quadrupole moment has not and therefore Cuidetti et al.
performed calculations for the value Q2+ = 0 eb predicted by the
vibrational model, and for the two values Q2+ =+ 0.5 eb predicted
by the rotational-model; the results of these calculations are shown
in figs. 6.3b, c, and d. The true quadrupole moment is expected to
bé éomewhere between the rotational limits, but in view of the
experimenfal results for Q2+ in 204pb and 206Pb, and in view of
theoretical calculations which predict Q+ =+ 0.09 eb (Sp73, Ri74,
So70), Q2+ in 298pp is more likely to have a small positive wvalue.
Therefore fig. 6.3c is mére likely to represent the real situation.
It can be concluded that RPA calculations which include coupling of

particle-hole excitations with a quadrupole phonon should be able to
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reproduce the experimental values of Qa_ and B(E3) even with few
particle-hole configurations.

The theory of finite Fermi systems (FFS) (Mi67) has been
used by Krainov (Kr68) to calculate Q- but the units employed are
not defined; the calculated value is'either - 0.52 eb (see So71)
or - 0.79 eb (see Ba72). Krainov'é predicted value(s), which
is(are) the only one(s) to agree with both the present experimental
result and that of Barnett et al. (Ba69, Ba72), is(are) surprisingly
large. Other calculations, performed by Speth, with the theory of
finite Fermi systems predict the smaller values Q;_=- 0.21 eb (Sp72)
and Qa_ = - 0.17 eb (Sp73, Ri74). Both the work of Krainov and
Speth included particle-hole configurations up to 2hw excitation.
However, the selection rules suggested by Bohr and Mottelson (Bo75,
p.470) indicate that including 3hw excitations could have a |
significant effect on the calculated values of Qs_ and B(E3).

Finally, Hamamoto has predicted the values Q3_ =~ 2.0 eb
(Ha70) and Q3_ = - 0.14 eb (Ha75) (the reason for the differing
values is not stated) using the particle-vibration coupling (PVC)
model. With the same model, Bohr and Mottelson (Bo.75, P.569)

estimate a value Q3_ ~ - 0.10 eb.

6.3 Conclusion

The present work has considerably improved the knowledge of
the static and transition moments of the even-mass lead isotopes.
The previously unknown quadrupole moment Q2+ of 206pp has now been
measured. The quadrupole moment Q2+ of 204pp has been deterﬁined with

a smaller uncertainty and with the inclusion of more excited states in
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the analysis, than the previous measurement of Olin et al. (0174).
For both 204Pb and 206Pb, the reduced excitation probabilities
B(E2; 0+-*2+) measured in the present work have been found to agree
with pre§ious Coulomb excitation measurements. Up to now, no single
theoretical calculation has correctly.predicted Q2+ for both 204pp
and 206Pb; now that both these quadrupole moments have been
measured, renewed theoretical interest in these nuclei may be expected.
The controversy regarding the quadrupole moment of the first
3~ state of 208pp has been resolved by the present experimental result
which is a factor of three smaller than the values from previous
measugements. The present value of Qé‘ now agrees with fheoretical
calculations. It has been suggested that the previous experiments
of Barnmett et al. may have been subject to Coulomb-nuclear interference
effects, which would also explain the low value of B(E3; 0+-*3_) which
was obtained. Most theoretical calculations give values of Q3_ which
are consistently lower in magnitude than the experimental values; to
obtain larger values, more particle~hole configurations need to be
included. On the other hand, it has been shown that including the
effect of virtual excitation via the giant dipole resonance would bring
the present value of Q3. in yet closer agreement with theqry. Some
remaining uncertainties in the present experimental results are the
size of the quantum—mechanical correction to be applied, the effect of
the giant dipole resonance, the effect of virtual nucleon tunnelling,
and the maximum safe bombarding energy for the “He data. These questions

remain a challenge for further theoretical and experimental investigations.
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