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ABSTRACT

We construct differentiable manifolds modelled on locally convex spaces
using Yamamuro's theory of ['-differentiation [81], [82], manifolds which
we term as ['-manifolds.

Then corresponding to the strong notion of BIl-differentiability in
Yamamuro's theory [82] we obtain the subclass of Bl-manifolds. We show
how to extend to these Bl'-manifolds the standard properties of Banach
manifolds: The Smale Density Theorem [4] as well as the Transversality
Theory [4], [31].

As first applications, we give several simple results about genericity
of smooth maps using our I'-technique instead of the usual standard Banach

techniques.
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INTRODUCTION

During the last two decades, there has been considerable development of
the theory of Banach manifolds starting with J. Eells [20] in 1958. He
constructed a smooth manifold from the set of continuous maps between two
manifolds. This was the first example of a non-trivial Banach manifold.
Since then, many authors have contributed to the theory: R. Abraham [2],
F.E. Browder [111, [12], R. Bonic and J. Frampton [8], H.I. Eliasson [26],
K.D. Elworthy and A.J. Tromba [28], [29], N.H. Kuiper and D. Burghelea [41],
e dipianl2sd], R.BunPalaist{58], [69F, [607, 5. Smale (67, {681, [29], A.
Weinstein [77], [78], and many others. Eells' paper [21] is a good survey
of development in this area.

However, it is quickly apparent that, for many purposes, Banach
manifolds are inadequate. In particular, they are not suitable for
applications to mechanics, for instance, to the Cauchy problem of an equation
of evolution, and the space of it diffeomorphisms on a compact manifold.
Marsden's note [48] is a good survey of these and other related matters.

Thus there is an urgent need for a suitable theory of manifolds
modelled on locally convex spaces, or at least on Fréchet spaces. In fact,
several attempts have been made in this direction. We mention the work of
A. Bastiani [7], W.D. Curtis and F.R. Miller [15], H.R. Fischer [30], J.
Kijowski, W. Szczyrba and J. Komorowski [37], [38], [39], N. Krikorian [40],
J. Leslie [u45], H. Omori [54], [55], [56] and F. Sergeraert [70].

| As 1s well-known, there is a previledged notion of differentiation in
the normed case, the so-called Fréchet differentiation, or more up to date,
the bounded differentiation. However, in the case of locally convex spaces,
there is a variety of possible differentiations (see [6], [36], [76], [80]).
For instance, Leslie's work [u45] is based on Bastiani's differentiation,

Sergeraert's [70] on Hyers', Curtis-Miller's [15] on strong differentiation,




and so on. Unfortunately, all these differentiations share a common weakness:
the lack of the Inverse Mapping Theorem, the essential tool for the
investigation of differential results.

Recently, in 1975, in an attempt to overcome this weakness, S.

Yamamuro [81] has given a new differentiation for which the Inverse Mapping
Theorem and all of its equivalent forms hold. However, since this
differentiation is too strong for some purposes, he has found it necessary
to define a weaker notion (see [52],.[82]). He terms this differentiation
[-differentiation whereas the previous notion is referred to as BI-
differentiation. These matters will be taken up in sections 1 to 3 of
Chapter 1 of this thesis. It should be noted that, in the same year of
1975, H.R. Fischer [30] has independently pfoposed a differentiation which
is almost equivalent to the [I'-differentiation.

In this thesis, we shall use Yamamuro's [I'-differentiation to
construct manifolds modelled on locally convex spaces. These manifolds are
called TI'-manifolds. Then corresponding to the strong notion of BI'-
differentiation we have the subclass of Bl'-manifolds. We will show how
to extend the standard properties of Banach manifolds to this class of
Bl'-manifolds. For example, we have been able to define Bl-transversality,
a generalisation of the standard notion of transversality ([4], [31], [75])
and to prove all the standard theorems for this generalised notion.

This thesis is divided into five chapters. In the first chapter, we
prove two local results on ['-differentiation, namely the TI'-omega lemma and
the BT—differentiability of the evaluation map. These results will be
needed later in the text.

Chapter 2 is devoted to definitions and examples of I'- and Bl'-manifolds
as well as I'- and BI'-bundles. We shall prove that the space Cm(X, Y)

Q0 (e}
of C maps from a compact € manifold X into a (finite-dimensional)

(e8]

C manifold Y is a TI-manifold of class d? . Hence the space Diffm(X)



and Embm(X, Y) introduced in [31] are [I'-manifolds. We will also give
several simple examples of Bl'-manifolds.

From Chapter 3 onward, we will restrict our attention to the subclass
of Bl'-manifolds and will use the full strength of the Inverse Mapping
Theorem. Chapter 3 contains a generalisation of the Smale Density Theorem
[68] to Bl-manifolds followed by a brief discussion of the notion of BI'-
maps between ['-manifolds. This notion cannot be defined in any natural
fashion, however, it yields many interesting results. For example, using
this notion, we can get the results in Chapter III of Omori's Lecture Notes
[54]. With this notion, we have also been able to give a yet more general
[-version of the Smale Density Theorem.

The standard transversality theory ([4], [31], [33]) is generalised to
the Bl-context in Chapter 4 under the name of BI'-transversality. We show
that all the standard transversal theorems remain valid: the BI'-Transversal
Density Theorem and the BI'-Transversal Isotopy Theorem.

Some applications of our BI'-Transversal Density Theorem appear in
Chapter 5 where we give simple '"generic'" results for local smooth maps which
parallel the usual ones. They are local versions of the more general global
results in [31], [33], [43]. The only difference is that here we follow the
[-technique instead of the standard Banach techniques;

Two papers based on the contents of Chapter 3 and Chapter 4 have been
acecepted for publicatien [517, [52].

For the reader's convenience, we include at the end of the thesis a
list of notation as well as an index of terminology.

After this thesis had been completely typed, we discovered two recent

works of H.R. Fischer and J. Gutkecht which are closely related to it. They

are added to the bibliography as additional references [AR1] and [AR2].




CHAPTER 1

I'-DIFFERENTIATION

The purpose of this chapter is to give two local results about
[-differentiation which shall be needed later: the I'-omega lemma and the
BT-differentiability of the evaluation map.

For the sake of completeness, we include in the first three sections,
§1-§3, the T-differentiation theory'of Yamamuro. The main results which
shall be needed are stated without proof. For more details we refer to [52],
[81], [82]. In §4 we give a criterion for TI-differentiability in case T
consists of a family of norms. In §5, we combine the work of Irwin [ 35]
with the criterion in §4 to prove the T'-omega lemma, the main step for
proving that the space Cw(X, Y) is a TI-manifold (see Chapter 2).

The last section, §6, is devoted to the study of BI'-differentiability

of the evaluation map; the results are needed for Chapter 5.

1. Calibration ' |

A calibration for a locally convex space (LCS) is a set of continuous
semi-norms which induces the topology. For a LCS E , the set P(E) of all
continuous semi-norms on FE 1is obviously the biggest calibration for E .

Let E be a family of LCS's. A map p defined on E 1is called a

semi-norm map if, for each F € E , the value pp of p at E belongs to

P(E) . We call a set I of semi-norm maps on E a calibration for E if,

for each E € E ., the set
Do e hp 6.1 (1)
is a calibration for F .

Let E be a family of LCS's and let ' be a calibration for E . Let

E, ¥ €¢E and U be an open subset of E . Thenamap f :UCE~>F is
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S be P-continuous at a € U if, for any. € > 0 and p €T , there
exists & > 0 such that the following condition holds:
(pp(z) < 8 and a+x € U) = (pylflatz)-fla)] < - (2)

In other words, f 1is TI-continuous at a € U if, for each p € T', we have

pFEf(a+mn)—f(a)] - 0 whenever pE(xn) #0 mnd a '+ x € U . Note that the

fact that U is open is not used in this definition; but under this
condition, we can say that a map which is [I'-continuous at one point is
continuous there.

As usual, we say that f : UCE > F is T-continuous on U 1if it is
[-continuous at every point of U .

(1.1) PROPOSITION. 4 Zinear map u : E > F 1is T-continuous at one
Poilnt (henee on E ) 1ff, foreach p €T ,

p(E,F)(“) = sup{PF[u(x)] | pE(x) <1} < + o, (3)

We denote the set of all TI-continuous linear maps of FE into F by

LF(E’ F) . It is obvious that LF(E’ F) 1is a linear space and p(E,F)
(defined in (3)) is a semi-norm on LP(E’ #). . for each p € I'. We put

Mz, = P, | P Tl o

and regard LF(E’ F) as a locally convex space calibrated by F(E )
As to the composition, we have the following usual results which also

imply its continuity.

PR PROPOSITION. et E, F, G € E. If u ¢ Lp(E, F) and
vV € LF(F’ G) then v o u € LF(E’ G) and
p(E,G)(U o W) = p(E,F)(”)p(F,G)(U) for all p €T . (5)
Note that Proposition (1.2) does not imply that LF(E’ E) is an algebra

because the first FE and the second FE may have different calibrations.

If they have the identical calibration then we denote it by LF(E) which is

-
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then an algebra with jointly continuous multiplication.
In the sequel, we shall sometimes drop (E, F) from Pp p) 3 for
instance, (3) shall permit us to write
pF[u(x)] : p(u)pE(x) §f g £ F and u € Lo(E, F) . (6)

We shall say that amap f : UCE +*F (where E,F €E , T 1is a
calibration for E , and U C E open) is strongly TI'-continuous at a € U
iFy oy any € > 0 , there exists 6_> @ such - that thg following condition
holds :

(Ewcols pE(x) < § and atx € U) = (pF[f(a+x)—f(a)] el (7)

In this case, unlike the case of the TI'-continuity, & does not depend on
p . It is easy to see that f is strongly [T-continuous at a € U iff the

following condition is satisfied: if (pn)E(xn) -+ 0 for sequences P, el

and x € E such that a # x € U , we have [pn)Ei}Ta+xn)—f(a)] >0

f: UCE>F is strongly T-continuous on U if it is strongly
[-continuous at every point x € U .
(1.3) PROPOSITION. A Zinear map u : E » F is strongly T-continuous
at one point (hence on E ) iff
lullp = sup sup{p,Lu(x)] | pylz) =1} <+ = . (8)

p€l

Such a map will be called a Bl'-bounded linear map as is explained

right now.
e W EvE T . Anjelement 'z 6 F « is said to be - T'-bounded if

lelly, = suplpg(a) | p € T} < 4 = (9)

The set of all TI'-bounded elements of F will be denoted by BI'(E) ,
which will always be regarded as a normed space equipped with the norm

defined by (9).

(1.4) PROPOSITION. If E <is sequentially complete, then BI(E) 1is a

Banach space.




In general, BI'(E) is small as a subset of F .

(1.5) PROPOSITION. Let E be Baire. If BI(E) contains an interior
point with respect to the relative topology from E , then E <s normable.

Now let E be a family of LCS's and I' be a calibration for E . For

E, F € E , we have seen that LF(E’ F) 1is equipped with the calibration

F(E ) (defined in (u)]. Therefore, by extending each p € I' over

LF(E’ F) we may suppose that LF(E’ F) € E . Then, we denote the space
BF[LI,(E, F)] by Eorll, B)
Thus u € LBF(E’ F), . iff HuHF spdefined byi(8), is.finite: jInpother

words, the set of Bl'-bounded linear maps E - F coincides with the set of

strongly [I'-continuous linear maps E - F . Hence, if u € LBF(E’ F) , we

have

pF[u(x)] el () wifsade€ellnand B €.Lqs (10)

r’F
We shall always regard LBF(E’ F) , the space of all BT-bounded linear

maps £ > F , as a normed space equipped with the above norm.

(1.6) PROPOSITION. If F <s sequentially complete, L(E, F) is
sequentially complete and LBF(E’ F) 1s a Banach space.

If we denote by L(E, F) the space of all continuous linear maps
E >~ F equipped with the topology of uniform convergence on bounded sets,

then we have the relation

Lpp(Es F) C L (E, F) € L(E, F) . (11)
LBF(E’ F) 1is, in general, a small subset of L(F, F) . However, the
following fact shows that L(E, F) is covered by LBF(E’ F)

(1.7) PROPOSITION. Let E, F be LCS's and u ¢ L(E, F) . Then there

exists a calibration T for E X F such that u € LBT(E’ F)

Note that in Proposition (1.7) the calibration I for which
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y € LBF(E’ F) depends heavily on the given map u . If we specify a

particular calibration on £ or F , then LBF(E’ F) does not cover

L(E, F) . Yamamuro has given several examples of such a character (see
[82]).
2. T-Family

Let E be a family of LCS's and ' be a calibration for E . As we

have seen in §1, the family N of all normed spaces is equipped with a
single calibration A (called the norm calibration). Hence, it is possible
to extend each p € I' to a semi-norm map ﬁ on Nu E by putting

Py s €.k,

Pp = (1)
’ AE i B b

Next, let E, F € E . Then as we have seen in §1, each space LF<E’ F)

is equipped with the calibration which is uniquely determined by

F(E,F)

' . Hence, each p € I' can be extended over LT(E’ F)

Now let £ € E and F be a linear subspace of F . Then, for each

p € I' , the restriction pE'F of Pp oOn F is a semi-norm on F . Then
the pair (F, FEIF) where

e o T R (2)
i1s uniquely determined.
From the above remarks, we can now give a convenient definition:
A family E of LCS's is called a [I-family if T 1is a calibration for
E (see §1) and the following conditions are satisfied:

(i) Nc E and Py 7 AE for every E € N and p €T ;

(1) if E, F € E, then G = Lp(E, F) ¢ E and p, = pg oy

(iii) if E € E and F 1is a linear subspace of E , then the




space F calibrated by FEIF (defined by (2)) belongs to

E and Pp = pEIF :
The members of a [I'-family E are thus the pairs (E, FE) consisting

of E € E and the E-component FE of I . We often call these members

gbjects of € . 1If (F, FF) is another object of E then we define the

morphisms, which we shall call T-morphisms, as TI-continuous linear maps
E > F . Bl-bounded linear maps E > F will be called Bl-morphisms. The
I-isomorphisms and BI-isomorphisms are then naturally defined.

When E is a [@-family we shall frequently write E € E to denote

that ({5, FE) ist anlebject of £ .

We define the TI-products of members of E as follows. Let
E, F € E . Then the product E X F may or may not belong to E . If it
does, and moreover, the projections
Mo E X F~>F and My e L W (3)
and the embeddings:
iE 2 B F K F - and iF 2 F o Bk (u)
are [-morphisms, then we call E X F a T-product and denote it by

E XF F . This definition can be generalised in an obvious way to the

['-products of more than two spaces.
When the projections (3) and embeddings (4) are Bl-morphisms, the

I'-product is called a BT-product and is denoted by & Xpr F . We note that

if E, F € N then the product FE X F 1is always a BI'-product.

A T-family E is said to be a TI-family with T-product iff for all
g e £ & ‘the [-product K A F lexists and belongs to E . A similar
definition holds for a T-family with Bl'-product.

Now let El and E2 be linear subspaces of EF € E and E be a
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direct sum of El and E2 . By the assumption, (Ei’ FElEi) s - PRk S
belong to E and hence the embedding maps

(s FEalel =1, 2
(

are always BI-morphisms. However, the projections

BB, (v =21, 2)
2

are not necessarily TI'-morphisms. If they are, we shall call the direct sum

a TI'-direct sum and denote it by El'C% E2 . 'The Bl'-direet sum E1 E%F E2

is defined similarly.
[ e e 1y and Yet « By F, G € B
(2.1) PROPOSITION. The evaluation map

LF(E’ F) Xp B B a0 e) > ule)
(respectively Lpp(E, F) Xpp B> F (u, ) — u(x) ) is T-continuous

(respectively Bl-continuous).

(252" PROPUSTITION. “Let ' E = B, %o B Then a bilinear map

u : E~>F 1is T-continuous at one point (hence everywhere) i1ff for any

p € T , there exists a positive constant Yp such that

pp (z)pp (=) (5)

pF[u(xl’ xz]] = Yp 5 5 .

for all (xl, xQ) g and all p €T,

If the product is a BT-product (i.e. E = E. X then the

) *ar By )
bilinear map u is BT-continuous iff the same inequality holds with Y > 0

independent of p :

pF[u[xl, xQ)] = Ypg (xl)pE (xz) A V[xl, xz) oy AP € (6)
1 2
We shall denote by L?(El *p EQ, F) (Pespectively L;F(El a1 E?, F) )

the space of all TI'-continuous (respectively Bl-continuous) bilinear maps

£ E. X_ F specti j
o El r E2 (POQpLCLlVCly E

X . it ! : arc
1 *Br E2 ) inteo . F . w? shall regard




L?(EJ XF EQ, F) as a LCS whose calibration consists of seminorms p
defined by:
p(u) = sup {pglu(x,, =))] | pEi(xi) == i o] (7)
B @5 (@ % E. ) F) and pleT
e A e
2 3 ;
We regard LBF(El XBF EQ, F) as a normed space with the norm:
2
lull, = sup p(u) for all u € LBF(El B F) . (8)
p€l
(2.3) PROPOSITION. L2(E x, F, G) s T-isomorphic to
LF(E, LF(F’ G)) by the correspondence
2
BB EL e ur (e ) evLF(E, Bo(E, G) (9)
s 2 : & . : ,
Similarly, LBF(E ar 2 G) 18 Bl'-isomorphic to LBF(E’ LBF(F’ G))

by the same correspondence (9).

3. T-Differentiation

Let E be a I'-family and E, F € E . Let U be an open subset of

feiayabe f U+ F and wu : E=> F , we put

ru(f, Gy ) = flatx) - fla) - ulzx) (1)

NREl g, afx € U .
Amap f : U+ F 1is said to be TI'-differentiable at a € U if there

exists wu € LF(E’ F) such that the following condition is satisfied: for

SEENE CME Elid €' > 0, there is ' 6§ > 0 such that

pF[ru(f, &y x)] < EpE(x) whenever pE(x) <§ and atx €U . L2)

If this is the case, the TI'-morphism u is uniquely determined; we
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shall call it the ['-derivative of f at a and denote it by f'(a)
If f is TI-differentiable at every point of U , we say that f 1is

[-differentiable on U , and then we have a map

f' 1 UCSE > Ly(E, F) (3)

which again maps an open subset of an object £ € E into another object

LF(E’ PR Y I8 T-continuous at a € U , then f is said to be

continuously T-differentiable at a or C% G ans NEE T dE CF at

—

gvery. point of U , it is called a C% map cof. U inte F . Similarly,

we can define C? maps of U into F and the set of all such maps will be

denoted by C?(U, F) . The set C?(U, F) 1is the intersection of all

C?(U, F) with respect to k , where as C?(U, F) consists of all

[-continuous maps of U into F .
There is a corresponding notion of differentiability when we replace

the LCS LF(E’ F) by the normed space LBF(E’ F) throughout the above

definitions. It is the '"BI'-bounded" version of the [I'-differentiability.
RN O = F is said to be Bl-differentiable at a € U if

there exists u € LBF(E’ F) such that the same condition for the

I-differentiability holds. f is called continuously BU-differentiable at
a € U iff furthermore, the map

Flnt @Bty (8, (F) (4)

is T-continuous at a . Such a map is also called C;F at a . The set

1}
of all CBF maps of U into F will be denoted by CéF(U, F)

Repeating this process, we obtain CZF(U’ F) and we put




?——_

43

(e e]

o 2 K
Cepkts ) = WY O NI D) (5)

k=0
Thus, whenever we deal with the BlI'-differentiability, the derivatives
are Bl'-bounded linear maps (called the BI'-derivatives to be distinguished
from the previous [I'-derivatives) and the continuity of Bl'-derivatives is

as maps into the normed space LBT(E’ F)

The following three propositions are obvious.

(3.1) PROPOSITION. If f : U= F is T-differentiable at a € U , it

28 I'-continuous at a .

(3.2) PROPOSITION. L.(E, F) € CL(E, F) and Lg,(E, F) € Con(E, F) .

For i € LF(E’ F) , we have

wile) = u, foriall x.t.E (6)
and
(k) A
grevieinaioe for all x,. 1B tand ~Kize2 | (7)
2 o
(3.3) PROPOSITION. ;F(E %o E,. e, % B, F) and
2 0
Lpp(By *gp By F) € Cpp(B) »pp By F)
For u € LQ(E X, E F) we have:
Jem@geaarg? ’

u'Ca, b) = u_ + u (8)
a b

where U, iy ula, y) and Uy T u(x, b)

Let us recall some definitions given in [80], [81]: 1let U, E, F be

as above. Then f : UCE »> F is said to be Fréchet differentiable at
a € U (or better boundedly differentiable at a € U) if there exists

u € L(E, F) (see §1) such that

=0
€ Pu(f, a, ex) >0 as € > 0 uniformly on each bounded set; (9)

that is,
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1im sup p[;—lr (FS a5 Ex;] =10 (10)
e>0 x€8 L Y )

for any bounded subset B and for any p € P(F) . The properties of this
differentiation have been investigated in [80] in detail. f : U = F 1is said

to be Gateaux differentiable at a € U 1if there exists u € L(E, F) such

that
- =
lim € Pu(f, geer) = @ (11)
€0
for each « € £ . In both cases, we denote u by F'la) which stands for

the bounded derivative (or Fréchet derivative) at a for the first case and
the Gateaux derivative at a for the second case.

It is immediate that bounded differentiability implies Gateaux
differentiability. The following result gives us a Pelationship between the
[-differentiability and the bounded differentiability:

PRSP ROROSIPIONY s Tet k = 0 be an integer. Then if f : UCE > F
is k-times T-differentiable at a € U , it is k-times boundedly

differentiable at a with the same derivative.

IF W v C? at a €U , it is k-times continuously boundedly

differentiable at a .

One of the immediate consequences of Proposition (3.4) is the
following

(3.5) THEOREM (The Mean Value Theorem). Let f : U Cuky B be
I-differentiable on U . Then, for each p € T and € E such that
(I BNENNT e gll £ € [0, 11 , there exists 6 € (0, 11 such that

pF[f(a+x)—f(a)J < p[f'(a+6x)]pE(x) ! {12)

If f is BI-differentiable on U , then

pplfatz)-fla)] < Hf’(a+6x)HFpE(x) , (13)

Using this Mean Value Theorem, one can prove the following fundamental

fact.




(3.6) THEOREM. Assume that U <is convex, open in E , f : U > F 1is
Gateaux differentiable on U and the Gateaux derivative f'(x) belongs to

LF<E’ P) for each zx €U . If themap f' : U ~+LF(-E’, F) is T-continuous

at a €U, then f 1s T-differentiable at a with the same derivative.

I, Fuwthermore, f'(x) € LBF(E’ R) for each x € U and

iR LBF(E’ F) 1is T-continuous at a , [f 1is BI-differentiable at

The following proposition is the main tool for the proof of the chain

rules.

(3.7) PROPOSITION. The composition map
comp : LF(E’ F) XF LF(F’ G) > LF(E’ G)

(0.0)

(respectively comp : LBF(E’ F) X LBF(F’ g) > LBF(E’ G) ] ts a Cp-map

(respectively a C;F-map].

{3.81 PROPOSITION (Chain Rules). Let E be a T-family,

S CeRENNGd U C B, VCEF be open. Let k =20 be an integer. Then

B UV E P is C? (PespectiveZy Cgr ] at acls g : V> @G is c?

k

at f(a) € V , the composite g o f : U~>G 1is Cr

! k
(Pespect@vely CBF )

(respectively Ck at .z .8 U .

pr )

If we denote by GLBF(E’ By O NE,F € E) . the set of all

BI'-isomorphisms of E onto F , then the following fact is well-known

I se 7 , ;
ecause GLBF(E’ F) and LBF(E’ F) are normed spaces.

(3.9) PROPOSITION. If F is sequentially complete, then GLBF<E’ F)

18 open in LBF<E’ F) and the tnverse operation u +> - Lt C;F on

G 1
-LBF(E, F)

We now add basic properties of the partial derivatives. Let E be a
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o e Bl e\llppeses B = E. X B et . Let U=U, XUy

[-family; Ela 5 I 3 2

where [I. 1s an open subset of Ei for i = 1, 2. . Thep a map  f.: U +F
z

is said to be partially T-differentiable at (al, a2) € U with respect to

the first variable if the partial map f& 2 Ul +~ F  defined by

2
Fed ) =il el (14)
a 2
2
of Ul into F 1is [I'-differentiable at a, - The derivative will be
denoted by alf(al, aQJ , which is an element of LF(El’ F) . In the same

way the partial [I'-derivative BQf(al, a2) ol el at (al, a2) can be

defined. By repeating the process we can also define higher partial

[-derivatives.

If the LCS. £ 1is a Bl-product, F = El *BF E2 , then we can define
partial Bl-derivatives Blf(al, az) and BQf(al, az) . They belong
respectively to LBF(El’ F) and LBT[EQ’ F)

I RROPOSITION. L fet B = 8. XuE. and U.= Uy % U

1 %p &5 for open

2

subsets Ui of Ei G w0 s Then, iF «f+'isy T-differentigble at
0. % (al, az] €U , then alf and 82f erist at..a and

f'la)(x) = Blf(a)(xl) + 82f(a)(x2) (15)
fopcald x = (xl, % ) AW

If, moreover, U 1s convex, themn f s C% at' ‘e 1TFf Blf and 82f

are TI'-continuous at a .
The Bl-versions are valid if E 1s a BT-product.

We now consider the case of a mapping in a product. Let F = Fl XF F2

o

SHEN e - P, where [/ is open in EF € E. Then f can be

written in the partial maps as fecllows:
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f@) = (fi(=), F(a) , Yz €U, (16)
where fi WA, e =1, 2,

(3.13) PROPOSITION. Let f : U > F = Fl xp F, as above and let

k>0 be an integer. Then f is k-times T-differentiable or CE gt a

iff £, (i=1,2) are k-tines T-differentiable or X

r respectively at

- .

The BT-version is valid if F is a Bl-product.

The following two theorems are the most important in Bl'-differentiation
theory and shall be used later.

(3.12) THEOREM (Inverse Mapping Theorem). Let f : UCE > F be as

usual. Assume that E 1is sequentially complete, [ € CSF(U, P} rand f'la)

18 a BI'-isomorphism for some a € U . Then, f s a local Cgr—

diffeomorphism at a .

(3.13) THEOREM (Implicit Function Theorem). Let U = Ul X U2 with

U. open in B s f +U~>F . Suppose that F is sequentially complete

k
and E = B R E, be a Bl'-product. Let f € CBF(U’ F) , f(al, aQ) =0

and 82f(al, az) be a BI-isomorphism of E, onto F . Then, there is an

open netighbourhood Ql X QQ of (al, aQ) and also a map g € C;F(Ql’ 92)

such that g(al) = a, and

(0) n (0, x Q) = {(x, g@) | z €q}. (17)

If this i1s the case,

g'{z) = - Bzf(al, aQ)— o Blf(al, az) A (18)
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4. A Criterion for TI-Differentiability

In this section we give an useful criterion for the ['-differentiability

of mappings f : UC E > F where the calibrations PE and FF consist of

families of norms {pE | p € r'} and {pF | p ¢ F} respectively. The

criterion simplifies very much when the calibration FE is an increasing

r}r:O,l,Q,... and the calibration FF is a

sequence of norms: FE = {

single norm. In this case, we have even Bl'-differentiability. The results
shall be used in the next two sections.

Let E be a I'-family. Let FE, F € E and suppose that for each

p € I' the semi-norm Py € FE (respectively Pp € FF ) is a norm. Thus we
have:
FE = {pE | p € T} = family of norms, (1)
PF = {pF | p € T} = family of norms. (2)

RO b open and let  f : U CE > F be a map. For each p €1,

consider the normed spaces.

o (2, p) and E s 80 2y s (3)

ihen we say that f is p-differentiable at a € U iff

(R e i=differentiable in the usual sense of mapping between
normed spaces. Similarly, the notion of C; for f 1is defined for any

integer k > 1 or ®« . We shall denote by fér)(a) the rth p-derivative

of f at a € U and by

(r) r
e R . > L (B, F I
fb 1 el 3( p p) Y

LHEELh S pedepivative of f , for 0 =pr < k .

Irstorvesch p ET -, L(E 5 ) denotes the space of linear continuous

maps from the normed space . E into the normed space Fp , then we have
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immediately:

bokB, FY&) 0 I8 ,.F ) . (5)
p€l g - P

The following theorem, suggested to me by Dr Yamamuro, is an useful
criterion for [I'-differentiability.
(4.1) THEOREM. Let r be an integer greater than or equal to 1 or

+ o and let E, F ¢ E with the condition that T, = {pF | p € T} and
FF = {pF | p € F} are families of norms. Let UcCk be open and consider a
1 S S gl e o

Thewe fants C? 1ff the following conditions are satisfied:

e OP'gvery p eTr , f s C; 3

IR =) L D P T we Rave f;k) = fék) for all

Peirgef b, .
Condition (b) can be dropped 1f F 18 sequentially complete.
Proof. NECESSITY: We first prove the case r = 1 and then use

induction on P .

i

e o F | Y (Suppose’ T WU CE +F s CF .

Then by

definition, f 1is TI-differentiable at every a € U "and the TI-derivative

Fooal ol LF(E’ F) is T-continuous. Hence for each a € U , there is

f'(a) ¢ LF(E’ F) such that for all € >0 and p €T we can finda 6 > 0

such that
(Pp(x) < 8 and a+x € U) = (pplflatx)-fla)-f'(a)x] < epy(x)) . (6)

We want to prove (a) and (b) for the case r =1 .

To do this, let p € T . Then by (5), we have f'(a) ¢ L(Ep, Fp) ;

and for all € > 0 , there isa & > 0 (given above) such that (6) holds.

This means f' : U E-Ep + Fp is p-differentiable at a € U , and the
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p-derivative is
flla) = f'(a) . (7)
4
Since Pp> Pp are norms, the p-derivative is unique. Thus (7) is
meaningful and we also have
f; = fé for all p, g €T (8)

It remains to prove that f; R L(E o' ) is p-continuous. But

R

since fé = f' and since f' 1is TI-continuous this follows quickly.

(ii) General Case: Suppose that the necessary condition is true for
i = 1 , we want to prove it for » + 1 , that is, we want to prove if

r+1

T then

FEC

L Sopdeverynlp €-luy tf.tis C;+l p

L IR f(k) = f(k) foralld  pig kT .

4 q

(b) for every k
Indeed, by hypothesis, the T-derivative f' : U cCF > LF(E’ F) is C? ’

where the calibration of LF(E’ F) = F € E is:
F? = {p(E,F) | p € T} = family of norms. (9)
Thus, by induction hypothesis we have:

forall p€l, f':0UcE - (L2, B), p is C; ; (10)

(5,7
fg(k) = fé(k) BienaltR g e D and" all  K'S 1,72, cu.s P (11)

Furthermore, by the above part (i), the case ~» = 1 is true, we also have:
§ LU Bk L o) (12)

thus (10) and (12) give (a); (11) gives (b) as desired.

SUFFICIENCY: We first prove the case r = 1 , and then proceed by

induction on »r .

(i) Case »r =1 : Suppose we have (a), (b) of the theorem for the
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1
I'l

gase "¢ ="1"." We want to prove that f : UCE~*>F is C(

et @ € UU . Then by (a), for all p € I' , there is a

f;(a) € L(Ep, Ep) such that for all € > 0 , we can find ¢ > 0 verifying:

(pE(x) g arx € ) = (pF[:f(mx)—f(a)—fZ;(a).xJ < EpE(.T)) : (13)
Then by (b) we have fg(a) = fé(a) for all p, q € T . Thus we can define
a linear map f'(a) € LF(E’ Fy "Dy puttinig:
FHa).x = fé(a).x' for all” x € U (14)
where p 1is any norm in T . The fact that a)re LF(E’ F) follows from

g
Thus for all € >0 and p € ' we can find § > 0 (given above) such
that (13) holds. This means that f is T-differentiable at a € U and

has T-derivative f'(a) equal to the p-derivative f;(a) for all

PeET

It remains to prove that f' : UCFE ~» LT(E’ F) 1is T-continuous.
Since f! = fg for all p € I' and since f; is p-continuous for all

ok 1 o thias follows gquickly.
(ii) General Case. Suppose the sufficient condition is true for

r >1 . We want to prove it for r + 1 . That is, we want to prove that

gefditions (a), (b) for "r ¢+ 1 .imply that f is C?+l :

First note that the proof for r = 1 gives us f 1is C% . Now
gonsider the 'I-derivative f' : UcCE -+ LF(E’ F) . Then conditions (a),
(b) give:

for all ST TR T SRR RO N PR il (15)
q fb o ( p P) p
(k)
fé = fé(k) P el K= 1,2, ..y and all p, g €T . (16)
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By induction hypothesis, (15) and (16) give:
o IR S I D I (17)
L ] 1 . : ; Cr+l
Thue, sihce f'is already CT , (17) implies that f is T asg
desired.
Now suppose that F 1is sequentially complete. We want to prove that
condition (a) in the theorem implies (b).
: v . 1 9
Firatorproye the case v = 1 : Suppose f : UCE>F is C_  for all
p €T and let a € U . Then if (am > O) is a sequence of positive numbers
converging to 0 , we have for each x € F and each p €T
f{a+amx]—f(a)
= r > - Y 18
Py = f%(a).x 0 when m > + @ (18)
m —_—
From this, it follows quickly that:
f(a+amx)—f(a)
f'(a).x = lim (since Pp is a norm (19)
< oo “m
and
f(a+amx)—f(a)
{ - } is a Cauchy sequence in F . (20)

m
Thus, since F 1is sequentially complete this Cauchy sequence converges
to an unique element in F , which proves:

fé(a).x = fé(a).x for all x € E . (21)

Since g 1is arbitrary we have the desired result.
Now suppose that the case » = 1 is true and let us prove the case

r + 1 . First note that by Proposition (1.6), for each integer J ,

L%(E, F) 1is sequentially complete. Then by the induction hypothesis we have

f;f‘) - f;”) - f(f’) €N W) For all pLgiel (22)

and
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f(P) P E B L?(E, F) = F is C; foriall op e L . (23)
Fix a € U . Then for each x € E and each p € I' , we have again
f(P)(ammx) _f(r)(a) (r+l) (

~ e x| > 0 > + 24

Py - fé (a).x as m )

m

where px is the norm on L?(E, F) induced by p €T

Pﬁ(“) sup{u(xl, Rhis xr) | pE(xl) AP R pE(xp) =.11 4 (25)

Thus the same argument as above gives us:

(r+l)

(r+1)
( . =
L) f

fb g e afor gk € F Jall. p, g €l . sk 26
Later we shall have occasion to investigate the BI-differentiability

g @ map . ¢ U< E ~» F .yhere the calibration FE of E 1is an increasing

(e 0. ), 2. 5 ) and the calibration T of  F

sequence of norms 7

is just a single norm |

P
In this particular case, we have the following criterion for BI'-
differentiability.
(4.2) COROLLARY. Le£ FEkel € BesFonbelatmap, - Venbeing open in E .

Suppose that E 1is calibrated by T = {|°

!n} > an inereasing sequence oOf

norms (mn =0, 1, 2, ...) and F 18 calibrated by the norm-calibration
‘Il - Suppose furthermore that F <is complete with respect to H‘HF and
QoRRcEch n = 0, 1, 2, ... , denote by B (2, |- n) the corresponding

normed space.

Let r be an integer greater than or equal to 1 or + ® ., Then

f:UCE>F is cg Ol e, 1,2, ., [ UCE +F is

C" in the usual sense as map between normed spaces.

Proof. Since F is complete, Theorem (4.1) ensures that F. o is C?

e P is ¢ for all 5 =0, 1, 2,
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We claim that for all integers Kk

oh(Es P = s P (27)
Indeed, let u € L?(E; F) . Then by definition there is a constant
a, 20 lsueh, that for all L1 -5 Ty € F , we have:
lulwys ooy 2 )llp = aplleglly «oo Nl lly - (28)

Since the sequence of norms is increasing, (28) implies

luleys «ovs @ dllp = ogllayll, oo lzgll, (29)

B e e = D s, and oall &= € E ;3 which proves (27)

l, O.., xk

as claimed.

Thus, since f 1is C? gnd)sineetforsall’ ok jpales, ki=ere and all

a €U , Dkf(a) € L;F(E; F) , the corollary is proved. 1/

5. The TI'-Omega Lemma

In this section we prove the TI'-version of the w-lemma in [1]
(Corollary 3.8, p. 9). This shall be globalised later in Chapter 2 and shall
be used to prove that the space Cm(X, Y) of ¢ maps X > Y (where X Iis
compact) is a TI'-manifold (see Chapter 2).

Let EF, F, G be Banach spaces, XCFE be compact and Y € F be open.
Let Cw(X, F') be the space of c maps of X 1into F . Then, for an

j0.0)

integer ¢ > 0 , we have, for each f € C (X, F)

bl

sup HDif(x)H i < + o, (3}
T€X L (E;F)
gLy 2, ... and for fF ¢ Cm(X, F) , define:
Ifll, = sup {If) + IDFC)l] + .o + D"} < + o (2)

x€eX



and let Cn(X; F) denote the Banach space of all it maps X > F .

Then define

c(x, F) = n cMx, F) (3)
n=0

which is regarded as a LCS calibrated by the sequence of increasing norms

r={lll}

m
e Rshydy2qL . . (4)
Let Cn(X, Y) (respectively Cm(X, Y) ) be the subset of all

™ ok AN D (Pespectively i Cw(X, Y) ) such that f(X) € Y . Then it

is clear that Cn(X, Y) is open in Cn(X, F)y  forveach: n. =10, 1, 2,

and Cw(X, ¥). iz open—in Cm(X, F) calibrated by (4).

Let Cn(X, G) and Cw(X, G) Dbe the similar spaces, where Cw(X, G)

is calibrated by a similar sequence of increasing norms

re = |

'n}n:O,l,Q,... £

Then we have the following I'-version of the w-lemma given in g 8

(5.1) PROPOSITION (T-omega lemma). Let E, F, G be Banach spaces,
A€ B Teompact and Y C F open. Then, for a fixed g € c(¥, G) , the mav

0y = gy Bl e g (X, B 0.2, 0) . Py g.f) =gof (6)

18 C? with respect to the above calibrations (u4) and (5) fur GobX; om)
and C (X, G) respectively.

Proof. We apply Theorem (4.1). Since Cm(X, G) 1is a Fréchet space

(see e.g. [3u], [50]) it suffices to verify condition (a) of the theorem. To

do this, let us put

BT L B s XD 3 F = O (Xy6) . (7)
Then U s open in E and we have By ¢ U 5_7 5B,
Forgesel” n = 0, 1, 2, , we put
= ’\: . g’ st 2 [o
=, ) and =0 L) (8)
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Then condition (a) means that

. 7] & I - >
gy 3 U —-En Fn (9)
is Coo as map between normed spaces 5n and }n . This in turn follows
quickly from Theorem 6 in [35], p. 117. //

(5.2) Remark. 1In the proof of the Proposition (5.1) we do not need
the explicit form of the kth derivatives of g, (k =0, 1, 2, ...)
Actually, using the results in [35], it is not hard to see the following

E¥ae . k ' o
formula for the derivative D g,(f) of g, at f € C (X, Y)
Kk \ K ¢,
D g4(f)ny +o. My l(x) =D g(f(x)).nl(x) e ML) (10)
(e o]
for Ny cs My e LXivF) and o € X .

(5.3) Remark. Proposition (5.1) still holds if we replace the norm

(2) by the follcwing norm
£l = max {Sup Hth(x)H} (11)
" osi=n \wex

for each f € ¢ (X, F) and each #n =0, 1, 2,

6. The Evaluation Map

In this section, we prove the BI-differentiability of a kind of
evaluation map, the result of which shall be used later in some applications
of the BI'-Transversal Density Theorem (see Chapter 5).

Bebiy s & be Banach spaces, UC E. open, convex. Recall that for a

nonnegative integer r , PP(E, F) 1is the Banach space of polynomials

E > F of degree less than or equal to r (see, e.g. P, 013871 %:

PY(E, F) = F x L(E, F) x Ls(E, F) x ... x ['(B, F) (1)

7 . ; wils,
where LS(E, F) (2 <17 = »r) denotes the space of symmetric <-linear maps

i
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For each & ¢ CP(U, F) and each x € U , Prg(x) is the point of
PP(E, F) given by
2
P’e(z) = (E(x), DE(z), D°E(x), ..., D'E(z)) . (23
Now choose the following norm on PP(E, F)
Iags ays --vn a)ll = llagh + llagll + ..v + lla (3)

for all (ao, al, ST ap) € PP(E, F) , and for each & € CP(U, F) , define

IENl., = sug {IP"e) ||} - (4)
xre

Let BP(U, F) denote the space of all & ¢ CP(U, F) such that

_HEHP < + » , and put

B(U, Fy = n B(U, F) . (5)
r=0

Now consider the product Bm(U, gy el B@nd forteach v =0, 1, 2,

define the following norm p, on Bm(U, F) x E°,
Pu(Es =) = ||Ell, + flxl, for all £ ¢ B (U, F) , x€E. (6)

Fix an integer »r > 1 and regard B (U, F) x E as a LCS calibrated by

the following sequence of increasing norms:

ke {pr+i}i:0,l,2,... L
and consider the norm-calibration *llp on F . Then we have the following
(6.1) PROPOSITION. Let r be an integer greater than or equal to

1, E, F be Banach spaces and U < E open. Then the evaluation map
ev : B(U, F) x Uc B (U, F) X E~ F (8)

gtven by ev(g, x) = &(x) for & ¢ Bm(U> F) , = €F, ts CgF WL

respect to the calibration (7) on Bm(U, F) x E and the norm-calibration on

F . Furthermore, for each k < r , the BT-derivative chu(i, x) 1s given

by
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Dkev(i, x).(nl, hl] o (nk, hk)
= Dki( ) K h, + é‘ Dk_l ()il h h, (9)
= z).hy e By 2 n(x)hy e by By
(where 21 means the factor hl 18 deZeted]; for & € Bw(U, 3 -

niEBOO(U,F) ), se 0 and B €F (12150

Proof. To prove the BI'-differentiability of ev , we apply Corollary

2, o First, for all 2= 03 1, 24.....  the mapping
o0 [ r+i
. X
3 A0E 0, ) Xy, pr+i) > LB CUSE R0 (10)
(0 2)9—0(C5 £)°="(g, "z}
considered as map between normed spaces, is the restriction of a linear
continuous map and hence of class ¢ . On the other hand, by Theorem
(10.3) in [u4], p. 25, the map
r+i
. X 2 .|l
B UL F) XU, P, ] (7, ,F) , (11)
b y ¥ .=
(€, ) evr+@(€, x) = Efa)
- +7 ¢ . - -
is of class C''°¢ , a fortiort il S topr alk 28= 0, .1, 2, .+ . Since the
composite map ev . ; © ® 1is exactly the map ev in (8), we have the first

part of the proposition.

For the formula (9), we use the proof of Theorem (10.3) in [4], p. 25:
if for each k =1, 2, ..., r we denote by Dkevr+i(5, x) the kth

derivative of the map (11) at (&, x) € B (U, F) x U , then

k

D evr+i(£, x).(nl, hl) it (nk, hk)
) k -1 "
R R L P e T ANk, ses By ey B, (12)
1 k - L 1 L k
=1
where 22 means the factor hZ is deleted, and where n; € Bm(U, F) and

hi R e efe = & LU Thus (9) fallows. //
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More generally, we have the following:
(6.2) PROPOSITION. Let E, F be Banach spaces, U C E be open,
convex and bounded, r be an integer greater than or equal to 1 and k
be an integer 0 < k < r . Then the mp
oo k k
B R U > X PR, F) s (€, 2) > (2, PUE(2)) (13)
18 C;F with respect to the calibration T = {pr+k+i}izo,l,2,... on
Bm(U, F) x E and the norm-calibration on E X Pk(E, 1 S
Bor edeh (E, %) '€ Bw(U, F) x U , the BT-derivative
Dev, (€, @) : B(U, F) x B~ E x PX(&, P) (11)

18 given by
k k+1
Deuk(g, x).(g, h) = (h, g(x)+DE(x). .k, blorcrs: 0 T E(x).h) (15)

57 ikl o il Bw(U, F) X E , and is onto.

Proof. We can write ev, as a composite of the following maps:

B, ) xu ¥ 8°(u, Pz, m) xu 2 v x Ka, ) (16)
| k k
(g, ) — (P'g, z) — (z, P E(x))

We choose as the calibration for Bw(U, Pk(E, F)) X E the following
sequence of increasing norms:

25 {pr+i}i20,l,2,... (17)

defined by

Ppep(E> @ = lEl_,; + llell, for all (z, ») € 8°(U, P*®, M) xE (18)

where . is the norm in Bm(U, Pk(E, F)) with respect to the norm (3)

Y+

in P'(E, F)
Then the map

D N N W (19)
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is obviously linear. Furthermore, it can be seen that
k = Y
IP7El,, , = (k+DOlIEN, ;- for all 2 =0, 1,2, ... . (20)
Since k 1s a constant, this proves that Pk is a linear Bl'-continuous
map, hence of class C;T A
Thus the above composite is C;F gince,the map
© k k
O U P, P XU TPUE,F) R, x) Y e (21)
is Cox (with respect to I' defined in (17) and ||* defined in
BT k
P (E,F)
(3)) by Proposition (6.1).
For -each ., (€. 2) € Bw(U, F) x U , we have by (16),
Devk(g, ) AT, h)
= D(® o ¥)(E, x).(T, h)
- 0o (P'e, x) o DY(E, x).(z, )
- po(Fe, ) (F¥z, )
& k k .
= D(P*E)(x).h + Pt(x)  (by (9))
1 2 K+l k
= (D&(&).h, DE(x).h, ..., D" "&(x).h) + (g(x), DG(x), ..., D t(x))
= (gte)+DECe) b, DL(x)+DE(x) R, ..., Die(x)+D ie(e).h) . (22)
Thus we have (15) as desired.
We now prove that Devk(g, x) 1is onto. Let (ho, Qs Ays ; ak) be
an arbitrary element in E X Pk(E, F) . We want to find a
(g, h) € B (U, F) x E such that
k L
(h, e=)4DE() R, ..., D o(2)+D" "E(2).h) = {(h, ay, w05 a) o (23)

Taking h = h_. , then (23) gives

0




|

where bi € LE(E, R gL, Loy, kY are given.

| L{z) + D&(x).ho = ag
2

Dt(x) + D g(m).ho = a,
| } (24)
i .....

k k+1 o
' Dt(x) + D E(x).hO = ak)
; That is, we must find T € Bm(U, ) . sueh that
| k k+1
B Segy SeDE(edihges by, be. . |0 i) =lay < DT E(2).h o= by, | (25)

That condition is satisfied if we take [ defined by

| b b

CREMUE EX+ Far yi—+eg(y)2 bO + I%—(y—s) F o4y i+ zé—(y—x)(k) :

(26)
Since U 1is open, convex and bounded, it is easy to see that T € Bw(U, F')

and ch(x) = bi 15t R 7~/
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CHAPTER 2

I'-MANIFOLDS AND T-BUNDLES

In this chapter, we construct [I'-manifolds and TI'-bundles modelled on
locally convex spaces using the I'-differentiation of Yamamuro. The models
of a TI'-manifold are open subsets of the members of a T['-family and the
transition maps are supposed to be TI'-differentiable (see Chapter 1, §3).

We shall prove that the space of Cm—maps from a compact manifold X into a

(Pinite-dimensional ) manifold ¥  .is a I'-manifold of class C? . taHence ‘the

space Diffm(X) of Cm—diffeomorphisms of a compact manifold X , and the
space Embm(K, x), of Cm—embeddings of a compact manifold K into a
manifold X are both TI'-manifolds.

Corresponding to the notion of BF—diffePéntiability, we have the
Bl'-manifolds (or T-manifolds of bounded type). More precisely, BI'-manifolds
are [-manifolds with the requirement that the transition maps are BI-
differentiable. We shall give some examples of simple Bl'-manifolds.

In the last section of this chapter, we shall give a brief exposition
of I'- and Bl-bundles and an useful example of a BI'-bundle, the BI-
bundle [

T of BI'-linear maps (see [4] for the Banach case).

BF(TX’ y)

1. T-manifolds

We follow the treatment of [u].

Let E be a T-family (see Chapter 1, §2). Then a local T-manifold

is an open subset of a member £ € E . A C?—Zocal mantfold morphism is a
C? map between local TI'-manifolds. These form a category whose isomorphisms

are just C?—diffeomorphism (see Chapter 1).
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Let X be a Hausdorff space. A T-manifold chart (or simply a
[-chart) on X is a pair (U, o) where U 1is an open subset of X and a

is a homeomorphism from U onto a local TI-manifold. Two [-charts (U, a)

and (V, B) are C?-compatible iff the composition (also called transition

map )

el s BT e

is a local C?—manifold isomorphism (i.e. a C?—diffeomorphism in the sense

of Chapter 1). A T-atlas of class C? (or a C?-atlas) on. X 348 a

collection of T-charts {(U, a)} any two of which are C?—compatible and

such that the U's cover X . A T-atlas is maximal iff it contains each
I's¢hart which is [I'-compatible with all of its members. Clearly, every
[-atlas extends uniquely to a maximal [I'-atlas.

12

r manifold) is a Hausdorff

A T-manifold of class C? (or simply a C

topological space X together with a maximal C?—atlas on, X . As usual,

we often suppress notation for the maximal C?—atlas on X but simply let

X refer ambigously to both the underlying topological space and the maximal
[-atlas. Instead of saying that a T-chart (U, a) is a member of the
maximal ['-atlas, we say that (U, o) is an admisstble T-chart on X .

If all the models Ea coincide to a fixed member E € E +then we have
a pure I'-manifold (modelled on FE ).

Let X be a C?—manifold gy aiid ilet | £ 'be a point of X . We

consider triples (U, o, v) where (U, o) is a T-chart at ax and v is
an element of FE € E (in which «a(U) lies). Following the standard way

(see Lang [44]) we say that to such triples (U, o, v) and (V, B, w) are

equivalent if the TI'-derivative of B o o a(x) maps v onto w .
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The formula reads

(B o u_l)’(a(x)).v = w", (1)
An equivalence class of such triples forms an entity called a I'-tangent
vector of X at x . The set of all these tangent vectors is called the

I'-tangent space of X at x , and is denoted by TxX 5
Each admissible TI-chart (U, o) at «x determines a bijection of TxX

onto the LCS E € E (in which o(U) 1lies) namely:

e A
Yw,0)
o= (0, 6, ) > ®(U,a)(m) =5
where (U, a, v) denotes the equivalence class of (U, a, v) . Furthermore,

if (U, o) and (V, B) are two C?—compatible ['-charts at « , then it

follows quickly from (1) that for each p € T , there exist Yp > 0 and

6p > 0 such that if w = (B o a_l)’(u(x)).v amd . = (a o B_l)'(B(x)).w &
then
6ppF(w) < pplv) = yppF(w) . (2)

Thus, by means of the bijection ¢(U q) ° We can transport to TxX the

LCS structure of E as well as the calibration of E . More precisely, we

define the calibration for TxX by
Tpoy = {pT ¥ | p €T} (3)
& &

with

pTxX(é) = pp(v) if x = (U, o, v) . (L)

By (2) it follows quickly that all the TI'-notions considered on TxX

remain the same if we define the LCS structure on TxX via when

°w,8)

(Vs B) s C?—compatible with (U, a)




We can define the tangent space at a point & € X of a [I'-manifold X

by another equivalent approach as follows (see [4]).

Let R be the real line endowed with the standard norm (i.e. the

absolute value ). Then R € E by our definition of a T-family (see

Chapter 1, §2). If X is a [@-manifold of class C? (r = 1) , then a map

e : ICR > X where I is an open interval in R is said to be of class

C% ifetanlevery tte€ Ry thererisra, I'sehart (U, o). at' e(t) € X such
that the map @ o ¢ : I +> o(VU) € F is C% (in the sense of Chapter 1). A

C%-curve in &8s i8-a C%‘ map from an open interval in R containing 0 to

X . Curves e, and ¢, are tangent at a pornt % © X CifE

e,(0) = 02(0) x and for some (and hence every) admissible TI'-chart

1
(U, a) at x , we have

(@0 ep)i"(0). Lr=sfare ieg) 4€0). 1 (5)
where ! *(d o @) 00) is the F+derivative of G o e¢ at 0
A C%—curve @ is called a curve at x iff ¢(0) = x . Among the

curves ¢ at & , tangency (at « ) is an equivalence relation. If we

denote by Xx the set of all equivalence classes, then it is easy to see
that for each [I'-chart (U, o) , there exists a bijection of Xx onto F&
(the member of € in which (V) lies), namely,

(b(U,OL) - Xx+E (6)

[dx > (0 o e)'(0).1

and we can identify Xx to TxX defined in the previous paragraph.

Now let X be a C?—manifold and §! be an open subset of X . Then

it is possible, in the obvious way, to induce a C?—manifold structure on
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Q , by taking as T-charts for §! the intersections

(UnQ, a|lU nQ) . (7)
The open subset § with this C?~manifold structure 1is called an open

I-submanifold of X .

More generally, we define the TI'-submanifolds as follows:

Let E be a T-family and let X be a C?—manifold. Let

A= (U, @)} be the T-atlas of X - Let W be a subset of X . Then we
say that an admissible [I-chart (U, o) € A has the T'-submanifold property
Tor W' in X "at x € W if the following conditions are satisfied:

(1} the'tes £ €'t (in which o(U) lies) admits a direct

['-decomposition E = El C% E2 (see Chapter 1) into two

closed TI'-splitting subspaces F. and E

i o

(ii) o(U) = Ul + U2 where Ul and U2 are open neighbourhoods

of 0 an El and E2 respectively;

i o) =0 cand ol 0. U) = Ul E»El 3

It is not hard to see that if every point « € W has a [I-chart

(U, a) with the above property, then the family

Ay={Wau,alpat) | (U, €A (8)

is a T-atlas for W . Note that if (V, B) is another such TI'-chart at
x , then the transition map

B o o i WaUnV)CE >BHaUNnV)CF

a( WnUNT)

1S C20 and F

T F. €t (since E is a [I-family).

- Sal |
The subset W with the above C?—manifold structure 1s called a
I-submanifold of X . Note that for x € W , the tangent space TxW is a

I-splitting subspace of TxX ‘
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We now define the C? maps between C?—manifolds. Let X, Y be C?—

manifolds and let f : X > Y be a map. Then we define the local
representative of f (with respect to the I'-charts (U, a) and (V, B) J
to be the map

1

= B oif il 2 00D). .S F > B(V) C F (9)

Folf

where E, F € E are respectively the spaces containing o(U) and RB(V)
dLomap X > ¥ iz of elass C? (or more categorically a C?—

mantfold morphism) iff for every x € X and every admissible T-chart
(V, B) on Y with f(x) € V , there exists an admissible TI'-chart (U, o)

on At suehlthat <z €U, 5 §f(U).C V ; and the local representative de is

a local C?—manifold morphism (i.e. C? in the sense of Chapter 1, §3).

ks e S L C? map (» = 1) then, as usual, it induces a

linear map
| Txf : TxX = Tf(x)Y (10)

called the I-tangent map of f at x . In the TI-charts (U, o) and

(V, B) , this tangent map is represented by the TI'-derivative
’ ’ .
figlat@) : E~F (11)

(see [4] for the Banach case).

2. Examples of T-manifolds

In this section we give some examples of TI'-manifolds. Let X be a
compact C -manifold and let Y be a finite-dimensional ¢~ manifold.
00
We denote by C (X, Y) the space of all c maps from X to Y . As

a first example of TI-manifold, we shall prove that Cm(X, Y} ‘iz = C;—

manifold in the sense of §1.
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To do so, we first prove the global version of the [I'-omega lemma in
Chapter 1. §5,
(6]
Let X be a compact (€ manifold and let
et i rd. aawDnd ForeX (1)

be two C  (Banach) vector bundles having the same compact hase space X .
Then a mapping f : E > F is fibre-preserving (see [1]) iff po f = m.

We denote by S”(m) and Sw(p) the spaces of ¢~ sections of T and
p respectively.

We endow S (m) and Sm(p) the following calibrations: cover T and
¢ 0
p by a finite number of pseudo compact VB charts [Ui’ ui’ ui} and

0

[U., o., B.] (1 =72 =n) where {[U., o’
L2 R’y 1 i

i]} is an atlas of X (see
1<i=n

BL), pr sy, Then each Yy € S¥(m) has the following principal part with
> T p P

respect to the VB-chart [U., aQ, u.J
e S

L aalE )R (== ) (2)

T %
For e O: l) 27 s define
¥, Il = sup {H?u_(x)H + ¥y @l v e v o7, (x)H} B
: xéaQ(ﬁ}J E T 1
1 1
and
n (0.0]
S o i 6 (1)
=1 2z

Then the set

(5)

1s a calibration for Sm(ﬂ)

Similarly, we have the calibration
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I {”'”r}r:o,l,Q,... 154
for Sm(p)
Now if § € E is an open set such that T|Q ¢ Q > X is surjective,
let Sm(Q) E.Sm(ﬂ) denote the open set of sections with image in § .
IENG T8 E*F is a il fibre-preserving map, let
Fio: SR =S (m) > S(p) (7)
denote the composition mapping induced by f :
Folydi='fo'y fer.ail y €S (Q) . (8)

Then the local TI'-omega lemma in Chapter 1 may be globalised as follows (see
[1] for the Banach case).

(2.1) LEMMA. Let X be a compact C manifold and let m : E » X ,
0p:F>X be two C (Banach) vector bundles having the same base space
el S B> F be a il fibre-preserving map as above. Then

fal: S0y e 87 (v) » 8 (p)

defined by f,(y) = f oy for all vy € ST(Q) is C? with respect to the

calibrations (5) and (6) for S (m) and S (p)

B¥oor: We firse prove that [, 1is C% : “Cover Sy .and. p by a finite
number of the pseudocompact VB charts {[U., uQ, u.}} and
S Vet

{[Ui’ ug, B.J} as above.
) 1<i<n

Now for each such pair of VB charts (U, Qo a] and (U, O o B)

with E‘E_V and (V, Q. a), (V, Q B) VB-charts (see the definition of

0 0®

pseudocompact charts [4]) we have

B e, = 2 A0 ifeslariory e s ) (9)

where

., = 4o Yo agl ta (V) €G> E (10)
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(f oY)g=Bo (fov)o o a (V) € G > Fy (11)
are local representatives of y and f o Yy , and f&B is the local
representative of f (G being the member of E in which uO(V) lies).
Hence
(f*(Y))B i de*(Ya) (12)
with
f&B : aO(V) X'Ea =¥ aO(V) X FB
and
f&B* ' (aO(U), 0, (V) x Eu] > C (aO(U), o, (V) FB) : (13)
Note that aO(U) is compact, aO(V) X Ea is open in G X Ea and
aO(V) X FB is open in G X FB .
Consider the map
(0.0] —_ (e o] —— (0] =
© : C (ay(0), E ) > C (ay(@), ay(¥) xE ) < ¢ (ay@), ¢ x E_)
defined by
s, for ALl gy € C o, (D), F ) (14)
where
S (, Ya(x)] for all zx ¢ uO(U) : (15)

- - - w -
Then it is easy to see that ¢ 1is CF with respect to the natural

calibrations on ( (aO(U), Ea) and ( (uO(U), G X Ea) (see Chapter 1, §3).

Indeed, we have

[0 (7,47 ) -0 (7 )] (=)

1

(z, ?a(x)+ﬁa(x)) ez, vam)]

(O, ﬁu(x)) for all zx ¢ uo(5)

which gives

o' (Y,) € Lp(c (0, E ), € (o)) G x B ))

defined by
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gl oa)f = 0 x 7 . (16)
The map ¢’ is [I'-continuous because 1t is a constant map, and we have
®(k) =\ ifenl k=12 | (17)
Now consider the composite pr, o de : aO(V) X Ea * FB .  Then
pr, o© f&B € ¢ and induces
(pry 0 Fug)s 0y, 0y(1) x E)) > " (a (D), A (18)

which is C? by the local T-omega lemma (5.1).

Thus the composite (pr2 o f&B)* gitdins

(6) (przofug) *

4 [aO(U), E’a) —=io=(d, (T, o, (V) % EOL)

> ¢ {a, (D), FB)

is C? by Chapter 1.

I %% Sm(Q) atid 1€ Sm(ﬂ) , we can define the following ¢~ section
ot *pe
' (o0)
¢ = Fi) . n € ST(p) (19)
by requiring that the principal part of ¢ with respect to the VB-chart

(U, ao, B) be:

CB - aO(U) =¥ FB
given by

= pr, o azfds(ao(x), Yologted)) i (e (23} - (20)

Note that formula (20) gives us a well-defined section ¢ (independent of

the VB-chart chosen).

Now we have




T o

L2

([(ory o £ig)x o 87 (F,) -7, } (o)

a

= {pr, 0 £ialy,) o ' (¥,) fi o, ()

pr,, o f&B(aO(x), ¥, (e ). (o, fi,, (o, (2)))

l

P [Blfdg(uo(x), Va(ao(x))).O+82fd8(ao(x), ?a(uo(x))).ﬁa(uo(x))]

pPr, o anQB(ao(x)’ ?a(uo(x)]).ﬁa(ao(x)).

Hence by (20), we have

[(or, o £ug)e o 617(7,) i,

[T
(F4¢v).m),

pRineipal pavt of fFily).m « (21)

Since (pr, o f Loss Bt ig ¢~ ifop each 1 (L =7 =n) we have:
2 aiBi * r

Fop adile 80800 5.@ll""r j.theve is 6i(€’ Pin=10u4(1 s1d1=n) .suchrthat

ey o £y g ), 0 0F +F, )-(ery o s )

g 7 1 7 * 7

[(pr, o fa.B.]* o ¢qr(§a )'ﬁa.” < EHﬁu-H
TP

7 7"y 1

whenever ”ﬁa “ < Si (L =4 =mn) . Thus, since the principal parts of the
s '

local representatives of f,(y) and f,(y+n) are:
i 1

(f*(Y))B. 8 2 a.p. (Ya.) K (pPQ i fd.B.)
7 T iR at 5
R/ e
(f*(Y+n))B. (pPQ . f&.B.) z ®(Ya o )

7 AR M 7 7

O
@ 7

I

we have by definition

Hf*(Y+n)—f*(Y)-fl(Y)-”HP

X H(f*(Y+ﬂ))R,_(f*(Y))R._( ;(Y)'H)B'H
. e

7= 7 7

= Y “ [pr‘2 o faigi)* o @(?a.+ﬁa.)—(pr2 o foc B-) o @(‘?OL')




Hence, taking 6 = min(@ i 6n) > 0 , we have

l)
I Crm)=Fe (V) -F(v)enll, = ellnll,, whenever |n|| <8

Furthermore, from the fact that

) o dl'@, ) ¢ Lr[c‘”[ag @), E%], cw[u.jj @), FBiH

1. 7

[(prz ° f&iB

for all 1 <7 =n , it follows quickly that for the above defined map

HeeY) seneEofiddansn
we have fi(y) € L (S7(m), $™(p)) and £} : ST() » I, (S7(m), S7(p)) s

I'-continuous.

Hence | £, ‘iz of class C% as desired.

The “proof " for C? for any »r = 2 1is analogous with the use of the

following facts:

LRk Sw(Q) g nl’ [ np € Sm(ﬂ) , the »rth T[I-derivative fir)(Y)

is defined by the analogue of (20),

i ol v
(fff’)(y).n nf’)B: pr,, © Bgfag(ya).na n§ :

and we have the following analogous formula of (21):

% ~K

GiRY ey 21 ~K k
[(prQ o f&B)* o @] (Ya)'nu R ek o andB(Yy)'nu drets W B // (22)

Now let X be a compact Cm—manifold, Y be a finite-dimensional C
manifold and let Cm(X, Y) denote the space of all g maps from X to

L ALF

e SRR i R T2Y is a spray on Y (see [1]) then there is a

neighbourhood Ds C TY of the zero-section and a neighbourhood Fs

of the diagonal such that ExpS . Ds > Fs isa C diffeomorphism (see

[l], Bl Lot

I oif o€ ¢ (X, ¥) , we have the diffeomorphism
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= f*ExpS : f*DS > D

s
I f,s
where Df 3 C X X Y 1is a neighbourhood of the graph of f .
if Uf's E_Cw(X, Y) consists of maps g such that graph(g) E_Uf B
then the map
R Cf(X, TY) = S (f*TY) (23)
defined by g > s}} o graph(g) is a homeomorphism of Uf ; onto an open

subset of C;(X, ry) (where C;

along f , i.e. the space Sw(f*TY) ). We shall call the pair

(X, TY) 1is the space of ¢ vector fields

(vp B
a natural chart.
(2.2) THEOREM. Let X be a compact C  manifold and Y be a

fintte-dimensional e manifold. Then the family {(Uf s S)} of

natural charts i1s a T-atlas of class C? on C (X, Y) 1f we take as

calibration for Sw(f*TY) the one defined by (5). Hence Cm(X, X 1S @

g manifold.

g
Proof. We follow the proof in Abraham [1], p. 32. Let (Uf Ll wf s)
9 2
and (Uf',s” @f',s') be natural charts, and supposel Uf,s = Uf’,s’ A
A -1 : o [ L : e,
suffices to show that @f’,s' o ®f,8 = | Cr—dlffeomorphlsm. But .1k,1s
clear that
¢ OCP—l(Y):F(Y)EFoy
Jose 1,8 3
where

i
F = [f’*EXpS ] i [f*ExpSJ 4
But s and s' are C. sprays and ., f* ave of class o o [

evident that F 1is a fibre-preserving map of class g By Lemma (2.1),

gy . is of class C? . Clearly
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go Fgotisra C?—diffeomorphism. //

As an immediate consequence of (2.2) we have the following two examples
of I'-manifolds.

(2.3) COROLLARY. Let X be a compact g manifold and let Diff (X)
denote the space of all Cm—difféomorphisms of X onto itself. Then

Diff (X) 1is a C?—manifbld.

Brotty By Propesition X.10 in [31]; p. 75, Diff (X) is open in
Cm(X, X) . Thus, it is an open [I'-submanifold of Cw(X, X) , i.e. a

C?-manifold. £/

(2.4) COROLLARY. ILet X be a compact ¢ manifold and Y be a
finite-dimensional . manifold. Let mew(X, Y) denote the space of Gy~

00

embeddings of X 1into Y . Then Embm(X, Yiiatls @ Cr-manifbld.

Proof. Note that Embm(X, ¥). ds.open in Cm(X, ¥)usises 1311), ; Then

the proof is similar to the one of (2.3). 1f

3. BT'-manifolds

There is a special kind of I'-manifolds which are useful in application
since we have the Inverse Mapping Theorem only for BI'-differentiability (see
Chapter 1, §3). In this section we shall define these BI'-manifolds, and
their corresponding BI'-submanifolds. In the next section we shall give
several simple examples of Bl'-manifolds.

If in the definition of ' I'-manifold (see §2) we require that the

transition maps

B o a_l A AR OB A V) © F
are Cgr for all compatible TI'-charts (U, a) and (V, B) (see Chapter 1,
§3) then the corresponding T-manifold X will be called a Bl-manifold of

class Cgr . The T-charts (U, a) and (V, B) are then called BI-charts
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of class Cgr (or Cgr—charts).

Note that the only difference between a I'-manifold and a Bl'-manifold
is about the extra condition on transition maps. Thus Bl'-manifolds may be

called T-manifolds of bounded type in the sense that the coefficients Y

p
and 6 in formula (2), §1, are bounded:
SupiEn ={p @ £ 3 (1)
p€r p
sup, 6 =20 < 4 o (2)
p€r
and we have the following double inequalities
épF(w) - pE(v) < YpF(w) (3)
for v and w satisfying
- -y = =135
w=(Boa J'ax)y and v = (@ o B ) '(Bx).w . (4)

From (3) we see immediately that if X is a BI'-manifold of class Cgr

(r = 1) then the definition of the tangent space TxX at a point % € X

does not change if we take

LU, @) is & Bldchavrt at =
TxX = S el v ) (5)
PRONEENE o all) © B

g T b 1 .
Similarly, the definition of tangent space Xx via Cr—curves as in §1 does

not change as well:

ik

X = {[c]x lle « T'X, CF

-curve at m} (6)
and we have the equivalence between the two definitions.

For two Bl'-manifolds X and Y  of class Cgr (2 = 1) we can

define Cgr maps. Ff @nX +'¥ as well as C?—maps.

Horeipredicely; amap: f ¢ X -~ Y 1is of class Cgr iff for every

x € X and every C;F admissible chart (V, B) on Y with f(x) €V ,
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there exists a Cgr—admissible chapt "0y 0)"™on X ‘such that =z € U

b

f(U) €V and the local representative de is a Cgr map from o(U) € E to

B(V) € F . It is then easily seen that the definition does not depend on

Cgr—charts LU, ) and. (V, B)

¥ 5 X =Y s a Cgf map (r = 1) then we can define the

BT-tangent map at x € X :
Txf 2 TxX +* Tf(x)y L7
as usual. The difference between this BI'-tangent map and the TI'-tangent

map defined in §1 is that, in local Cr —charts (U ay  and (¥, B) , the

BT

BT'-tangent map is represented by the BI'-derivative f&B(a(x)) € LBT(E’ F)
(unlike the case of T'-tangent map where f&B(a(x)) € LF(E’ F) ).
We now define the BI'-submanifolds of a Bl'-manifold. Let X be a

Bl'-manifold of class Cgr . If in the definition of TI'-submanifold (as in

§1) we require that the T'-decomposition E = El CT E2 in condition (i) be

a Bl'-decomposition (1.e. E = El @%F E2 ) then AW is a C;r—atlas for a

Bl-manifold structure on W . W is then called a Bl-submanifold of class

C;F of the Cgr—manifold X and (U, a) 1is said to have the BI-sub-

manifold property for W im X at x . Note that the BI-tangent space

wa of the BT-submanifold W at x € W 1is a BI'-splitting subspace of

the BI'-tangent space TxX (see Chapter 3, §1).

4. Examples of BIr-manifolds

We give three simple examples of Bl'-manifolds.

EXAMPLE 1. Let 7 = {(xl, z,, ) €R° | 2

1 + x2 -1 = O} be the

2
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cylinder in R’ defined in [32], p. 115. Then Z 1is a Riemannian sub-
manifold of dimension 2

: ¢ 2z Vg ’ : k
If [qo, qo] € R is a point, consider the mapping
2
g : 8 e RTHVE (1)
) x 3 1 2
defined in a neighbourhood § of {qo, qo] by
x 2 i ; 1 2 ¥ 2
c(q,q]=(cosq,smq,q) (q,q)GQ. (2)
Then ¢ 1is a local isometry mapping §! onto a neighbourhood V of
1 2] .
g s du= g € 4 & FPurthermore, ¢ @ induces
82 19} 1570
2
6, 4 X Rie IV €,TZ (3)
4 ; ; 2
which maps the canonical basis {Dll sl D2| iia |
(¢7:4") (a7.9°)
1 2 ’
(q 3 ) onto an orthonormal basis
{il(q) = L*(Dl| 1.2 )3i2(q) £ L*(DQI )} (4)

1k, 1
q") (475q")
; 2
of the tangent space TqZ at each poant g = L(q e ) € V (see [32],

p. 115).
Let B=¢ : V>0 be the inverse map of ¢ , then (V, B, Ba)
(where BycE L;l ) can be taken as a VB-chart for the tangent bundle TZ

Now let T E;Rm be a compact subset and consider the space Cm(I, Z)
of all Coo maps from I to Z (i.e. maps which are c in a neighbourhood

v A )

For each ¢ € Cw(I, Z) , we denote by C:(I, T7Z) the space of c -

vector fields along a

C:(I, 72) ={v : I+72 | v € ¢ and 7o v = a) (5)

where T : TZ > Z 1is the natural map.

o
Then Ca(I, TZ) 1is obviously a vector space. We define a calibration
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on C:(I, TZ) as follows:
Fix a VB-atlas {(Vj, Bj’ Bj*)} for TZ with the VB-charts
(Vj, Bj’ Bj*) defined as above. Then for each x € I , there exists a
(Vj, Bj’ Bj*) such that aflx) € Vj . We can thus find a neighbourhood
U(z) of « such that a(&(x)) E_Vj and aIU( o U(z) ~ Vj Ls g o We

can furthermore find an open relatively compact neighbourhood U(x) of =x

such that:
U(x) € T(x) € Ulx) . (6)

Since I 1is compact, we can cover I by a finite number of such U's

Ui, UZ, AAPRT U“  (the number M may depend on a ). Thus

{Ua, Ug, AP UZ} is an open covering of I with the property that U? is

compact (1 =% = M) and each Uz is mapped into a Vj ;

=
O
5
e
Hh
=
m

C:(I, TZ) then on each Uﬁ (1<4i <M wehavea C.
map

g & :Ug—>TVJ.ETZ (7)

<k

and for each a € Ug 5

e (e ot () 6T, % (8)
7 7 1 7 2 alx)

where {il(x), iz(x)} is the orthonormal basis of Ta( Zz defined as above.

z)
Obviously the components vi ' Uz +~R and vi 3 Uz >R are C .

For each integer »r» = 0, 1, 2, ... , define

o % = sup {H

+p % (x)“} © (9)
xeﬁa

and
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a e a
lll,, = > vl - (10)
=l

.|a
r

(e 0]
Then it is easy to see that are semil-norms on Ca(I, TZ) for each

a€cC (I, 2

Note that if b € Cm(I, Z) 1is another map, then we have another open

covering {U?, U2> SN U;} with the above property and for

w € Cy (I, 12)

b

e = wi(x)jl(x) + wi(x)jQ(x) Ve € I (11)

where {jl(x), j2(x)} is a basis for Tb(x)z , and

”wk“i =€ &up {“Dpwi(x)”+HDrwi(x)”} t (12)

xéﬁi

N
b b
ll,, = X Il - (13)

ot

k=1

Thus we have a family of LCS's C:(I, B, 1'a € Cw(I, Z) ,calibrated by the

calibrations

o { . i} . (14)
<o S (Y R

(4.1) THEOREM. Let I'ngm be a compact subset and let 7 be the

above cylinder. Then Cw(I, Z) 18 a BT-manifold of class C;F 1f we take

as Llocal models for it the family of LCS's C:(I, T%) (a € Cm(I, Z) )

calibrated by % in (1w).
Proof. First, we know that exp : TZ +~ Z is ¢ and there exists an
open neighbourhood S of the zero-section of 7TZ such that
T Xexp : S+2Z X 1Z (15)
maps S Cm—diffeomorphically onto a neighbourhood 0 of the diagonal
AcZx2Z (m:TZ~> 7 being the natural map). Its inverse

@ 20> 5 (16)



o
‘is given by ([u45], p. 268)
(v, m) = [v, exp;l(m)] for all (v, m) € 0 . (LT
For each a € Cm(I, Z)y ‘let
R = {1 ¢ ¢ (2, 2) | fate), Ilx)) €0 for all 'z ¢ I} . (18)
Then Qa is a neighbourhood of a in Cm(I, TZ) , and the map
: T
wa Qa * Ca( , TZ) (19)
defined by 17 +— wa(l) with
-1
v (1) (x) = expa(x)(l(x)) for all x € I ., (20)
S (T, T2
maps Qa onto the open subset wa(Qa) c a( s TZ)
Take (Qa, wa] 5 e Cm(I, Z) ,as a TI'-chart for Cm(I, Zy At @, .
We need to prove that if Qa N Qb # @ then
= S \
b= 0y " sy (R nQ) > v (2, 0 ) (21)
is CZF with respect to the calibrations % and Tb on C:(I, TZ) and
Cb(I, TZ)
It is obvious that, for v € Y (Q n ] C Cw(I, TZ) we have
a‘a o' = "a
w = Y(v) € C,(I, TZ) given by (see [45])
o =i :
w(x) = epr(x)(expa(x)(v(x))) for-ald & € T . (22)
Now, with respect to the VB-chart (Vj, Bj’ Bj ) constructed above, for
*
each g € Z , the exponential map
ex SR e
g
is given by (see [32], p.116)
0y 3 h gt Xrog 5.5 Lo o
v =, tu, equ(v) = (cos(u +q ], 81n(v +q ], v +q”) . (23)

Thus, for all x € I , a(z) € Z and B(a(zx)) = (a*(z), a’(x)) € R° , then
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(x) € Ta(M)Z is given by
Py .

v(x) = v (x)Il(x) + v (x)IQ(x) (2u)
where Il(x) - il(a(x)) salle) s iQ(a(x)) are unit vectors of the basis
{Il(x), IQ(x)} of Ta(x)Z , and

expa(m)(v(x)] = (cos(vl(x)+al(x)), sin[vl(x)+al(x)), vz(x)+a2(x)) . (25)
Gimilarly, for.all zx € I , B(b(x))»z (bl(x), bz(x)) E:PQ and
wlx) € Tb(x)Z with
1 2

wlx) = w (x)Jl(x) + W (x)JQ(x) (26)

where {Jl(x), Jz(x)} is the basis {jl(b(x)), jz(b(x))} for Tb(x)z '

and
epr(x)(w(x)) = (cos(wl(x)+bl(x)), sin(wl(x)+bl(x)), w2(x)+b2(x)) Lo
From (22), (25), (27), we have for all x € I ,

wl(x)

vl(x) + al(x) - bl(x) + kom

(k is a constant integer)} . (28)

wz(x)

e G T L J

TR s, Pab . pley = vl(x)Il(x) ; 02<x)12(x> A

Y(v)(x) = (vl(x)+al(x)—bl(x)+k2w)Jl(x) + (UQ(x)+a2(x)—b2(x))J2(x) : £29)
We now prove that Y is C;F . Indeed, consider the coverings
a i _ g 8 ‘Al

{Ui, U2, P U;} and {Uﬁ, Ug, P & Uz} , then for each g ) N TR B

we have by (29),

(W) -p()) (2) = W (@) () + K (@) (z) , @ €1, (30)
J

if vey (9,09), keI, 2) with A(zx) = K(2)I (2) + K (@), (=)

o all €. I .
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Define

L @g, 72) > G, (I, T7)
1 2 il 2
hi='h Il + h IQi—* Lth) = A Jl + h J2

(i.e. ool eI, LWEY = hl(x)Jl(x) + hz(x)Jz(x) ). Then obviously

L is linear. We claim that L is linear Bl-continuous. Indeed, by
definition
N
b b
izl = Y L) |
B 3

with

b
HL(h)jHr

e {“DP{L(h);(x)}

£ DP[L<h>§<x>J”}
xéﬁg

sup {ID7R () 1+)DTR2 () |1}

xéﬁé
J

But since E? is covered by {Ua, ﬁa, b ﬁa} we have

M

i
20 JE = max L sup (07K e "% (2 1]}
Jj'r ;
1=2=M EUa

[A

M
e {12} < Tl

1<i<M =1
a .
< thlP i Al g =1, 2y e N
Hence
N
ok 48 b a .
IZCmL, = }_j IIL(h)J.HP = N|nll, - (31)

Since N 1is independent of » , L[ 1is linear Bl'-continuous:

Bt BealOelTL 12) 5, C. (1, TD))- . (32)

sr (%

Furthermore, by (30),

(Y(v+h)-P(v)-L(R) I (x) = oJl(x) + on(x) Ve € I
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which implies
H(w(v+h)-w(v)-L(h))jHi SRR 2l gf=ely 2y s N
that is,
o
W(v+h)-w(w)-L(M, = o . (33)
Thus Y is BI'-differentiable at each v € wa(Qa n Qb) and the BI'-
derivative of Y at v 1is given by
DY(v).h = L(h) for all h € C.(I, TZ) . (31)

Hence Dy : wa(Qa N Qb) > LBF(C:(I’ riy, C;(I, TZ)) is the constant map

(e.0)

v = [ which proves that Y is CBF : //

(4.2) COROLLARY. Let M be a compact manifold and let 7 be the

above cylinder. Then Cm(M, Z) 18 a Bl-manifold of class e

BT 1f we take

as local models for it the family of LCS's Cz(M, TZ) (a € Cw(M, Z) ).

Proof. First recall a terminology. A pseudo-compact chart (U, ¢) of
a manifold M is a chart with U compact and satisfying the following

condition: there exists aﬁother ehart (¥, W) of M such that UKE V and

wIU = ¢ . In other words, pseudo-compact charts are charts with relatively

compact domain and which can be extended over a neighbourhood of the closure

of the domain.

Cover M by a finite number of pseudo-compact charts {(W&, Xa)}lfafn ]

Then each W& (1 = o =n) is mapped by X, onto a compact subset

m

Ia = Xu(wa) cR (m = dim M)

For each a ¢ Cw(M, Z) , consider the space C:(M, IZ2) of ¢ -vector

fields along a , and for each integer »r = 0, 1, 2, , define a semi-

norm

on C:(M, TZ2Y - as follows:

Let v € C:(M, Fd) 5 then for each. o (1 = o =n) put



ik (35)

a
Thus, since .Q1EZFW7 is compact, HvaHPa can be defined by (10).

Put
aa 2
_for D € Ca(M, L (36)

Then it is not hard to see that C:(M, TZ) 1is a LCS calibrated by

a

r¢ = {I°lr} , (37)
PEGIR2 Y. AL

Now following the construction in the proof of Theorem (4.1), let

(Qa, wa) be defined as above with I replaced by M and x € I replaced

by meM.

We must prove that

N —l. o o 00
b= o Y wa(Qa n Qb) c ¢ (M, TZ) wb(ga A Qb) C C, (M, T2)

X (o 0]
g @

with respect to the calibrations Fa, Fb defined by (37).
BT ¥

For each v € wa(ﬂa n Qb] C C (M, TZ) we have Y(v) € C (M, TZ) , with

=1
P(v)(m) = epr(m)[expa(m)(v(x))) for all m € M . (38)
Hence, if we denote by
w(v)a = P(v) o x&l (1 <o =<n) (39)

we have for each 1 < a < nu

=1 (u0)
W(v)a(x) = epra(x)(expaa(x)(va(x))) vz € I

where a , b and v are defined in (35).
6> o o

By the proof of Theorem (4.1), for each 1 = a =<n , there is a BI-

continuous linear map
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L O, T2} #ey” (I, T7)
o o
defined by
1 , Lyl 2
o ot IR P L) =nJd, +hd,
with the property
bOL
Hw(v+h)a—w(v)a—La(hu)Hp 2.0 (1 =a=n). (41)

Now define the linear map

L : C (M, TZ) » C.(M, TZ)
a b

i 2 Apey 2
h-hIl+hI2F—+L(h)—th+hJ2
where {Il(m), IQ(m)} and {Jl(m), J2(m)} are, for each m € M , orthonormal

base for Ta(m)z and Tb(m)z respectively.

Note that if x € Iu and X&l(x) =m , then T ( Z and

a, x)z 3 T&(m)

the basis {Il(x), IQ(x)} of | T coincide to the basis

e
Q

{I,(m), I,(m)} . similar results hold for {Jl(m), J,(m)} and Ty om)® -

Thus we have

S - R (42)

From (42), it follows that

b - ba

Iz = 3, L)
- O, o) a''r
n ba n a,
= Y 5l = % vkl
Putting vy = max{yl, RE P yn} we have
b - “a
w12 = v % gl %)
o=1

that is,



¥

b a
Iz, = Yz,

and L €L C:(M, 77), C:(M, 7))

ar
Furthermore, by (41), we have

n b

o) -p()-L(m |2 = T W) o5,

b
o

n
: aZi o(wsh) -0(0) L (R 1|~ = o

which proves that ¢ 1is Bl'-differentiable at v ¢ wa(Qa Qb) and
p)"="L *for*all® v . "Henece DY ¢'p+>L 'is 'a constant map and ¢ is
" desired //

CBF as desired.

3 8 Ge 2/s 9 7
EXAMPLE 2. Let K = {(xl, e e o L o}

be the half-cone defined in [32], p. 116. Then K 1is a Riemannian
submanifold of ‘RB of dimension 2 .

If [qé, qg] E:RQ\{O} is a - point, and Q E}RQ\{O} is an open

neighbourhood of [qé, qg] , consider the map
¢ : @ cR°\{0} > K (43)
defined by
143 232
1 ppd 1 4 2iant 2V2 dn@ly 12y 2
ALEL A B e s s ) e V (@)% (@%)?] )

for (ql, qz] T

Then by [32], ¢ 1is a local isometry mapping § onto an open

; |
neighbourhood V of L(q y G ) € K ,.and for each (ql, qz) € 5l the

vectors

(@) = (D] ) s i(q) = (D, )

(4%54°) (444"

form an orthonormal basis for T K where q = L(ql, QQ) € K . Furthermore,



the exponential mapping

EXpy v 0 I K > K
q q

L 4 2. ;I 25
is 'given in [ 32], p. 116, as follows: for v = v 1, t v i, # A[-q 1179 12] "

A > 1, we have

1 8 2N
(v +q1) (v +q7)

(Ul+ql)2+(02+q2)2

: )

exp, (V) = -(wha?) + = (v°+q%) - =

(vl+ql)2+(02+q2)2’

Z!Z V[(vl+ql)2+(v2+q2)2 3 L

Let B = L_l sV > R? besthel@nverse of .t  and  f; the tamgent map.

Thekd (¥ B, B, is.a' VB-chart for TK |
If I'E{Rm ilgta compact subset and g € Cw(I, K) we can endow the

space C:(I, TK) with a calibration TI'¢ defined as in Example 1

(formulae (9) and (10)) Sha o af. D B C LT K, Cb(I; TK) has a similar

calibration Fb (defined by (12), (13)).

(4.3) THEOREM. Let .I'gimﬁ be a compact subset and let K be the

above half-cone. Then Cw(I, K) 11s a BT-manifold of class C;F 1f we

take as local models the family of LCS's C:(I, TK) calibrated by T

defined as above.
Proof. We follow the construction in the proof of Theorem (4.1). All

that we need is to prove that

_ -1 . O = 00
b= o s (R nQ)cc (T, R~y (2 0 Q) cC (I, TH

(e o]

is CBT where

Y(v)(x) = expé%x)(expa(x)(v(x))) for alil (&) ¢ 1A, (u6)

Using the formula (45) for the exponential map exp , it can be seen

that if Bfa(x)) = (al(x), aQ(x)) , B(b(x)) = (bl(x), bz(x)) s Porl & €T
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then

v(x) vl(x)Il(x) + vz(x)IQ(x)

and

w(x) wl(x)Jl(x) + wz(x)JQ(x)

where w = Y(x) and {Il(x), IQ(x)} : {Jl(x), JQ(x)} are the orthonormal
base of T % . ando T & .
a(x)

bz

Then from (46), we see that there are three possibilities.

(wl(x) = v (z) + a (x) - bi(x) .
() fe e IY .,

sz(x) = Uz(x) + aQ(x) - bz(x) .
| ] 1 V3 . 2 —N](T)+a?(r)va;?bl(x)
w(x) = (-FHv (x) + % TN lehih s s

LRI (¢ 1) ,

2 2 2

Lzf(.vc) : [ @]ulm) W e ) )
‘ 4 X ) :
wh(@) = (v () + [- Quzm e oia (o) s0b o)

(IIT) -+ =

d; 7 2

w’(x) = {—\/;]vl(x) + (v (p) 4 E(2)a <2x>-2?9 (z)

L 2 i :
In any case, the components w (x), w (x) of w(x) are affine functions

of the components Ul(x), vQ(x) of . vix)
. i 1 2 1 2 1 2t
W () = e v (x) + e,V (x) + Y, (x) + Y a (x) + élb (x) + 62b ()

. (47)

. 4 1 2 1 ? 1 2
w. {a) = dlv (x) + dzv (x) + n,a (x) + n,a (x) + klb () + XQb (x)J

where the e's, d's, Y's, n's, 6's and MA's are constant.

From (47) it follows quickly that ¢ is Bl-differentiable at every
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v € wa(Qa N Qb) and has Bl'-derivative at v given by

DY(v) = L : C:(I, F) + ¢ (7, T (48)

e 2 N g 2 1 2
h =¢h Il + h B, B L(h) = [clh +02h }J + [dlh +d2h ]JQ

3

(o]

From that ¢ 1is CBF ) //

(4.4) COROLLARY. [Let M be a compact manifold and let K be the

above half-cone. Then Cm(M, K) s a Bl-manifold of class CZF 1f we take

as local models the family of LCS's C:(M, TK) (a € Cm(M, K))

(0 0]
Proof. The construction of calibrations TI'¢ on Ca(M’ TK) 1is similar

to the one of Corollary (4.2) and the proof is omitted. //
EXAMPLE 3. I am indebted to Dr Yamamuro for giving me this example of

a Bl'-manifold.

L
Let I be a compact subset of R"” and let S~ be the 1-sphere

(defined, e.g., in [32], p. 2). Consider the space Cm(I, Sl] of all 'C

maps L > Sl ;

On Sl we have a standard atlas defined by the four charts (Cl, @l),

(02, @2) > (Ci’ (Dl') and (02’3 (»92')




oy 0y = {ley 5,) €8 Loy 20} 2R s (o 2) ooy, ) =
b, o1 {@d,ab) ¢ st |x2:>0}—>R (6,5 2,) = 0,05, 2,) = a,
o : Ol = {@ﬁ,&b)é & |4 <o}-+R (oys m) e olley. ) = a,
ol 01 = {@l,xﬂ ¢ &t | 2, <o}+nz; (6,0 2,) > o0, o) = =,

Let &§ > 0 be a small constant (0 < § < 0.001) and consider the sub-

apes .. Cf (L= 1,2) given by (see the figure above)

i %
c, - {(fl, z) €5t |z a} ,
e {(ml, z ) ie 5 Jiegsz 6} :
il {(ml, § e g s -5} ,
c) = {(xl, Mes | o= _5}

gcalifog)) o waifazeai ()0 (49)
5? = a—l(gt) . Déa = a—l[aé) (50)
Then &Q, U'%  are gompaet (1 = 1, 2) ue, U'%  are open in I and
T Loy
5? U &g U aia U 5éa = U? U Ug U Uia U Uéa & Il (51)

] g % 7 :
Now, if v € C:(I, TS ) , then on each Uz, Uéa L4 & 1% 20"y  has

local representative

MY HilaRbedie % 2) 1,
T 7
bl e e A B
T T

(ee]

which are (C
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i !
For each s € I , we have al(s) = (a](s), az(s)) €S EJRQ S Wi,

for every integer k =0, 1, 2, ... , we define

2l
dsk al(s)

k

05 “a e ‘ d 02(8) I
2"k P dsk az(s)
séUg

7 k N’ o
B2 = sup {Id7< [Uli;]\}
d" al S

= ol S
Ik
hiain ]

CHE 41
v Sfpa PRI CHED
s€U,/

2

\

T
15,117 = sup {
sEUi

- (52)

and for all v € C;(I, TSl) , we put

a _ g~ @ ~ a ~ @
lol? = 15,15 + 15,017 + 130

1Ny (53)

iy cl
v IS

18 e 8 %
Then "it 1= "easy to.,see that ;, 1s @ morm on Ca(I, TSl) because of

(5L). Thus for each a ¢ Cm(I, Sl) we have a calibration

i

!a} (54)
et 2, .,

S 1
for C (I, I57)

(4.5) THEOREM. Let I cR" be a compact subset and let C (I, Sl)
be the space of all i maps from I to the 1-sphere st . Then

Cm(I, Sl) 18 a Bl-manifold of class o

BT 1f we take as models the LCS's

C:(I, TSl) (a ¢ Cm(I, Sl)) calibrated by i given in (54).

Proof. We follow the construction in Examples 1 and 2. The only thing

to prove is that



0
g &

o
(2. 557 ] (2, n0) ,

=4 00
b= o by (@ ) cC

o0

is C with respect to the calibrations Ta, Fb defined by (54).

BT
But, for v € Y (Q n ) Y(v) € Cw(I TSl) is given b
iy a‘a b’ e ’ Hd
=y
Y(v)(s) = epr(s)(expa(s)(v(s))) Na € T

To simplify the notation we put

(L) = eng%s)(eXpa(s)(t)) for L & Ta(s)Sl

1

4 . : :
Note that for each ¢ € I , al(g) €5 and Ta S 1s 1l-dimensional

(s)

(z, 7s%)
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(55)

(which'is identified to the peal line R 'with basis 1 ). Then for all

g € Iy
pla) -2 rt(s )€ R .
The same argument holds for Y(v)(s) € Tb(s)Sl .

P(v)(s) = (t(s)) €R .

Then, using the formula for exp , ! TQS¢ -+ Sl given in [32] at the north

pole

expe(t) = Rgin t, cos ) (For t € TeSl

and the fact that at arbitrary points a(s) € Sl .

ex = .0 o ex o o
pa(s) Po *

where o is an isometry a € 0(2) such that oa(e) = a , we can see:

a(s) (al(s), a2(s)) €C. or Cé (o'= 1y 2) ,

b(s)

(b,(8), b,(8)) ¢ C; or CL (F=1,2),

J

then

% 5

6)

(57)
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where ¢ 1s a constant and the sign + or - depends on the mutual
s LR
T J T J
f 00 1 0o 1
We define a map L : Ca(I, TS™) -+ Cb(I, TS™) by h+> L(h) as
follows:
Fov each g € £ , 1f g € v n Ué (or s € 0% n Ué or s € U!% n U(b
1 J 7 i T J
1A D W i
or 8u€ ;N Uj ) e = L, 2) then h(s) = hi(S) € R and we put
b.(g)
fihliel = & == . (3) ER . (58)
g Gl A
)
(The sign + or - 1is determined by (57).)

Then it can be checked that L(kh) is well-defined and

L(h) € Cm(I, TSl) for each h € C:(I, TSl) . Furthermore,

b
LGP = n;?>§ P+ wf?if P 4 ﬁZ?Zier - H£?23ﬁnb
FA T e e gy iR e Sl
with
i y N/
D d 1,
ERL = suD {‘d 7 [ W Jl}
S T

= = || % )|}
P el (o (5)
i
< HhHZ for ¢ = 1, 2

and similarly

)
rb( a o T
HL(h)in < Hth fop 1 2qit 9
Thus
IZI? < 4IRS for a1 & € ¢2(1, 75V

)k~—-
which proves that [ € A C:(I, TSl), CZ(I, TS])

Furthermore, by construction we have




e i

| (p(w+)-v()-L(M) Iy = 0 (4

e N

7
| (WCosm)-w()-L(W) [, = 0 (i =1, 2)

I
=
¥ J

200 5

Hence

I
=)

Hw<u+h>—w<u>—L<h)Hi
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which proves that ¢ is Bl'-differentiable with Bl'-derivative at v given

by DY(v) =L

00

Hence DY : v +— L 1s a constant map, and Y 1is CBF . //

(4.6) COROLLARY. Let M be a compact manifold and let Sl be the
P

1-sphere. Then Cw(M, Sl) is°a Bl-manifold of class il

BT 1f we take as

models the LCS's C (M, st (a € ¢~ (m, 1))

Proof. The proof is analoguous to the prbof of Corollary (4.4).

/7

Remarks. (1) Dr Yamamuro has kindly informed me that the construction

. ; L 1 : g : ;
of calibration TI'* on Ca(M, TS ) can be given via the covariant derivat
along' a as ftollows.

For each v € C:(M, TSl] , we define

& s n
oI = sup {| 22]

}

xeM alx)
where DZ denotes the nth covariant derivative along a and I.la(x)
- . : 1
denotes the Riemannlan norm 1in the tangent space Ta(x)S

A simple calculation will show that in local charts, we refind the

previous formulae.

ive

(2) Let M be a compact manifold. We denote by C the family of all

Riemannian manifolds X such that Cm(M, X) can be given a Bl-manifold

structure. Then, as we see, by Theorems (4.2), (4.4) and (4.6), C contains

the cylinder Z , the cone K and the 1l-sphere Sl
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An important question is to find which space X belongs to C

Dr Yamamuro has announced that:

(i) every Euclidean space R" belongs to C ;
el r Y el Jand, Y€ C then X % Y € C 3
f e  x e 0 and X is isometrie to Y then Y € C
In particular, all flat manifolds (i.e. Riemannian manifolds with curvature
identically zero) belong to C
The problem to see whether C -contains a non flat manifold is still

not known.

5. T-Bundles

In this section, we give a short exposition about [I'-bundles and
BI'-bundles to see that the usual Banach bundleé can be generalised to the
['-theory.

For simplicity, we only consider the Bl'-case which shall be needed
later. .The .T-case is similar. Our treatment follows [4].

et E be a F—family with Bl-product (Chapter 1, §2). We suppose
that all FE € E are sequentially complete.

A local BTU-bundle is amap 7 : U X F > U where U 1is an open subset
of an element E € E , F 1is another element of E and m is the first
projection. (Note that we consider U X F as a subset of the space

F %..(B &\E .)

BT
B ek S8 sandsemloerllt Pl 8 o be two local Bl'-bundles.

Then a pair (f, fo] with f : U X F + ! x F! and fb ¢ gt dsa o

local BT-bundle morphism if the following conditions are satisfied:

LBI'BM 1: The diagram
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is commutative.
" i :
LBTBM 2: For all x € U , the mapping f ' (x) : F > F' defined by

fla, v) = |fyle), iz
is linear Bl'-continuous (i.e. f#(x) € LBT(F’ Fi ).

: ,
LBT'BM 3: The mappings fo gt el e BT L and f# SIS, LBF(F’ F')

dre CP

BlE-+*
The local Bl-bundles and ¢° local BT-bundle morphisms form a
category with (f, fo) o [g, go) defined by (f o J» fo o go) . Hence we

have a notion of isomorphism. More precisely, (f, fo) is a ¢ local BT-bundle

isomorphism iff it is a C# local BI'-bundle morphism and there is a o

local BI'-bundle morphism (g, go) suchothet . o g s g5 [ s fo °© g »

and gy © fo are the identities.

For ¢ local Bl-bundle morphisms we have the following property (see
[4] for the Banach case):

(5.1) PROPOSITION. Let E be a T-family with BT-product and suppose
that all members of E are sequentially complete.

(I) For ¢ local BT-bundle morphisms, the condition

IBTBM 4: f : UXF >U' x F' {g Cgr

holds. Furthermore, if every E € E 1is finite-dimensional, condition

LBTBM4 may replace condition LBTBM 3 in the definition of C' local

BI'-bundle morphisms.
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(11) 4 ¢ 1local BT-bundle morphism (f, fo) is a € local
BT-bundle tsomorphism 1ff fb 180l Cgr—difféomorphism and for each
# 4
x €U, f'(x) is a BI-isomorphtsm (i.e. f#(x) € GLBF(F’ F') for all
& € U ).
Feiie ) e e f U x FCE X F U X P CE X, F
given by
(st ) | P (2T, | . (1)

The first partial map fO is C;T by "LBIBM 3 . Az for the second,

41
(x, v) — f'(x)v ,we can write

ev

T el S G

b oy, O) e i)

Cpr

BT

Since (&, V) f#(x) i Cgr by LBIBM 3 and the evaluation map ev is

C;F (by Chapter 1, Proposition (2.1)) f is Cg . Thus we have the first

part of (I).
The second part of (I) follows quickly from Proposition 1 in [44],
P« 35

(ITI) The only if part is obvious. We prove the if part. Let 90 be

the inverse of fo , then do N ot | N C; . We define the inverse g

of " f das follows:

g: U' XF' >UXF (2)

1!
f

LIRS o ] R R go(x'), i (go(x’))—lv’
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Since f#(go(x’)) ‘ GLBF(F’ T o w1 x' € U''y the inverse
# ' =L . . [/ !
i i (go(x ) is defined. Then for each x' € U' ,
g#(x') = f#(g (x’))_l € GL._(F', F) . (3)
0 BT
Furthermore, g can be considered as a composite
7y go‘ U f#‘ e e T LS O el N O ORN _iﬂl+ Gla FECL ) &L oA FLy F)
SR 2 et N = Brisp i
/ ' N,
al go(x’) i f#r(go(x’)) b ‘#(go(x’)) L g#(x’)
o it ; .
ince f% U= LBF(F’ Er ) 48 BT (by LBTBM 3 ), and the map
3 . ! §
inv : GLBF(F’ g 0 b GLBF(F , F) (4)
-1
U
is C... (see Chapter 1, §3) ¢ is (.. as desired //
S BF b Ak g BI_. : it

Now let E be a set, X a Bl-manifold of class Cgr and W o E > X

a surjective map.

A ¥ BI-bundle chart on T is a triple (a, a U) where (U, ao)

O’
g L C.Y’ o

is an admissible Bl -dhaiidon™ X Toages twvall ) aO(U) X Fa (where

Fu € E and is not necessarily the ambient space of aO(U) ) 18 a b¥jection,

and the diagram

u —— aO(U)

commutes. (The right-hand map is the natural projection.)

Two ¢ BP-bundle charts (@, @, U) and (B, By> V) are Cgr

0

compatible iff the pair (B o u—l, BO o agl is a (' local BT-bundle



isomorphism from the local Bl-bundle o(U n V) X Fa =5 6l sv Vi it the

YecalBll-bundle PR(U n W) X F > B(U n V)

B

A ¢° BI-bundle atlas on T is a collection {(a, ey U)} of i

Bl'-bundle charts on 7 , any two of which are Cgr—compatible and such that

the U's cover X . A ¢ Br-bundle atlas is maximal iff it contains each

¢ BT-bundle chart which is Cgr—compatible with all of its members. As

before, every ¢” BI-bundle atlas extends uniquely to a maximal &
Bl-bundle atlas. A (' Bl-bundle is a surjective map T : E > X where F

is a set and X 1is a BTl-manifold of class Cgr together with a maximal ol

BT'-bundle atlas. Elements of the maximal BI'-bundle atlas will be called
admissible C  BT-bundle charts on T .
Before giving some examples of BI'-bundles, we define the morphisms

between them.

Let T :E>X and 7' : E' > X' be C Bl'-bundles, f : E +E' and

fO : X > X' a pair of maps, and (a, & 5 U) and (B, BO’ V) admissible

0
¢” BIP-bundle charts on 7 and 7' respectively with fO(U) C ¥V and

i

f(ﬂ_l(U)) S.W'_ (V) . Then we define the local representative of (f, fo)

(with respect to the BI'-bundle charts) by

(f’ fO)CiB : (faB’ faBO) (5)

where

S

. 3 R % " ;
faB — i < T - and fﬂBO = BO o fo o (6)

We say that (f, fo) is a ¢© BI-bundle morphism from w to mw' , for

short a (" BTB-morphism, iff for every x € X and every admissible

-
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BI'B-chart (B, B V) ot s W with fo(x) € V , there is an admissible

3

Pt !

BIB-chart (o, a_, U} on T with z €U , flev, f("n'l(U)) cm

0
and such that (f, fo)uB is a ¢ local Bl-bundle morphism.

We now give some simple examples of BI'-bundles. The first one is the

standard bundle, the tangent bundle of a Bl'-manifold.

(5.2) PROPOSITION. Let X be a BT-manifold of class Cg?l and let
PX = Oy TxX be the union of all tangent spaces. We define a map
ek
TX L S ¢

Tﬂx)=x for fo%X.

Then Ty T = X i3 & ¢t BTl'-bundle.

Proof. Let (U, o) be an admissible Bl'-chart on X with o(lU) an

open subset of Eu € E . We define

To T%l(U) > o(U) x E

by setting

Ta(x) = (OL(TX(:;C)), v)
where x = Wi, B) lsee §1).

Then it is easy to see that (Ta, o, U) is a ¢” local BT-bundle
chart on Ty (it is usually called the natural BTU-bundle chart associated

with the BI'-chart (U, a) ).

We take as a Cp BI'-bundle atlas on TX the set of all such natural

Bl'-bundle charts (as (U, ) ranges over the admissible BI'-charts on

..

The only thing left is to prove that two such charts (To, o, U) and

(T8, B, V) are Cgr compatible. This follows quickly from the following

formula for the transition map

(V)
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(T8) s Mo (U n V) % B, > B(Ua 1) X Fy

and Proposition (5.2) (II):

=1 -1 -1
(TB) o Ta ~(z, v) = (Bo a (x), (Bo a ) "(x)v) . 1
The second example of BI'-bundle is an useful one, the BIl'-bundle

LBF(H, m'’) , which shall be used later in the proof of the BI-transversal

isotopy theorem (see Chapter 4, §u).

Our treatment follows from [4],-p. 21.
Let T :E->X and 7' : E' > X' be two C Bl-bundles (where 2 5 Xt

are two Bl'-manifolds of class C;F)' For each x € X (respectively

x' € X' ) denote by Ex (respectively Eé, ) the fibre over x
(respectively over x' ).

Define the set LBF(E’ ET) by

Lop(E, B') = U N Eé,) : (7)

Bl
’ [/
(x 2 )EXXBFX

One has a natural projection

! e ! !
8 LBF(E’ gE') =X BT X

Lpr
given by
LBF(N, Wt POy = (') (8)

where

e s (B v

Given Bl'-bundle charts (a, ass U) and (u’, aé, U’] en W amd w’

respectively, one defines a natural Bl'-bundle chart on L(m, m') as

follows.

Let E and E&, be the ambient spaces of aO(U) and ué(U’)

tively; o ! S e : S S
respectively; i.e aO(U) —-Ea & aO(U ) —-Ea' € E uppose

=} =
a(r (W) = a,(U) x F, and a'(w’ Lawn) = SIS 0. Then for z €V
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$ Ut and h ok LLlE E;,) define

BT
Lo A Ea Ll < ol (UL X LBF(FG, F&,)
by
Ly ) = (e (@), af(z), A, (x, x")) (9)

(7, F&,) is defined by

!
where Aau’(x’ ay € Lpr\Fy

(. 2")v = pr. o t''e Ao a-l[ao(x), v) (10)

>\OLOL' 2

for v € F_ and where pr, : ué(U')'X F&, > F&, is the natural projection

on the second factor. The set of all such natural BT-bundle charts (as

U) and (a', o' U') range over the admissible BI'-bundle charts

o n:

O )
on m™ and T' respectively) is called the natural Bl'-bundle atlas for

!
LBF(W, m')

(5.3) PROPOSITION. The natural BT-bundle atlas on LBF(W, n') 18 a
¢” BT-bundle atlas; hence LBF(W’ m') (together with the maximal BlI'-bundle

atlas which extends the natural Bl-bundle atlas) 71s a cr BTl-bundle called
the Bl'-bundle of linear Bl'-continuous maps of T and 7' .

Proof. Let (B, By, V) and (B’, B!, V] Dbe BI-bundle charts on T ,

L aal(x) and aé_l(x') respectively. Then the transition map

#
ha plan, ;
[LBB' 4 Laa'] St LBF(FQ’ Fu') LBF(FB’ FB’)

is given by

=9 f =1
[LBB' o Laa'] (')A =" e A o | (11)
for X € LBF(FQ’ F&,) and where
e R U e L/ P (12)

From this Proposition (5.3) follows. //
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CHAPTER 3

THE SMALE DENSITY THEOREM

From now on, except for the last section, §u4, of this chapter, we shall
always restrict our interest to the BI'-manifolds defined in Chapter 2, §3.

The purpose of this chapter is to generalise the Smale Density Theorem
(see [4], [68]) from the Banach case to the BI'-context.

In the first section we give a brief exposition of Bl'-splitting maps;
in §2 we define the BI'-Fredholm maps, a generalisation of the standard
Fredholm maps in the Banach case (see e.g. [41). The Bl'-version of the
Smale Density Theorem will be stated and proved in §3.

In the last section, §4, we include the work of S. Yamamuro about a

possibility of defining Cgr maps from one C? manifold to another. We

shall see that, with this notion of SC? maps, we can state and prove a yet

more general '"I'-version" of the Smale Density Theorem.

1. BI'-Splitting Maps

Let E be a TI'-family and E € E a member. Recall that ([82], Chapter

Vv, §1) a closed subspace El of E 'is said to be Bl-splitting in E if

we can find a closed complement E2 for El (in E ) such that the
canonical projections Pi : F = El @E’2 > Ei (£'=1, 2) ave Bl-continuous.
- The closed subspace E,_, 1is called a BI'-complement of FE (in E ), and a

o a5

decomposition £ = El @E2 with the above property 1s denoted by

S Fy e e

(1.1) EXAMPLE. Let el bean open, convex and bounded subset,
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R" be another Euclidean space. Then for each integer k = 0, 1, 2, ... we

denote by Bk(Q,‘Rm) the space of all Ck maps £ > R" such that the norm

£l = sup {IFGI + IDFG@ + ... + 1DPC) ]} (1)
L Eh

is finite.
We denote by E = Bw(Q,:Rm) the intersection of all Bk(Q,:Rm)

Bm(Q, EWU = kﬂ Bk(ﬂ,jmm) = {f SR +ij ’ f € ¢ and
=0

“fHk < 4 ® fFor all k} k. L)

Then we shall see in Lemma (1.1), Chapter 5, that E is a separable Fréchet
space if we equip E with the sequence of increasing norms

{”.Hk}k:O,l,Q,--- defined by (1).

Now let 2 €  and k = 0 be fixed and define (see [4])

K, = {g e fpa®’y | Di?;(ac) = Bkl D =00, B -ogniioydel (3)

Then, as shall be seen in the proof of Lemma (1.3), Chapter 5, there always

exists an integer io such that if we give the following calibration for

E ,
il r+k+i}izio i
then K is Bl-splitting in' E .
Now let FE, F be two members of E . Then a BlI'-continuous linear

map S : E > F is called double Bl-splitting if both Ker S and Im S
are PBl-splitting and such that there exists a Bl-complement of Ker S in
E such that the restriction of S to this Bl'-complement is a BI-
isomorphism. In other words, S is double BI-splitting iff:

(i) El = Kep § .18 a closed subspace of E ; there exists a

closed subspace E2 of W fsuch that & = El @%F E2 g




{2 I S5 ke a ¢

&

subspace Fl of

(iii) S|E &l of Fy i
2

A Bl'-continuous linear map S

surjection if it is a surject
F , and there exists a
regtrietion of "o teo this 5
other words, S 1is a BIl'-spl

splitting and onto.

We shall denote by SLBF

surjections of & onto F .

The following two result

(1.2) PROPOSITION. The

Bl'-complement of Ker S in F
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losed subspace of F ; there exists a closed

B isuehvthati«\F = Fl Q%F F2 .

s a BI'-isomorphism.

: E > F 1is called a BTl-splitting

ion, its kernel Ker S 1is Bl'-splitting in
such that the

[-complement is a BI'-isomorphism onto F . In
wEting surjection iff S is double Br-

(F, F) the space of all Bl'-splitting

s .are due to 'S. Yamamuro ([ 82]).

set SLBF(E’ F) of Bl'-splitting surjections

of E onto F 1s open in the space LBF(E’ F) of Bl'-continuous Llinear

maps ' B % F .

Proof (see [82]). Let

P, i E=E @ F) > E, (i =

BT'-decomposition of F into

U

the BI'-isomorphism given in

it 1s obvious that

Now, if v € LBF(E’ F)

u € SLBT(E’ F) and denote by

1, 2) the projections corresponding to the
Bl-direct sum with El = u-l(O) Denote by
WP u[E § E2 — ()
2
the definition. (Here F = F2 = Im u .) Then
e (6)
1 g TR

is such that

1

%)
o

lu-vllp < (7)




P

then

is a Bl'-isomorphism of F onto FE , and

" S wde . i
Uw = uPl + U, v = uu, v = v . (8)

Since u and w are surjective, v 1is also a surjection.

To see that v 1is double Bl'-splitting, we put

_ -1 _ -1
Sl = le and 32 = W Pzw ¥ (9)
Then these are projections, and
SlSQ = SQSl = 1, and Sl o (10)
-1

Moreover, we have Sl(E) = v “(0) because

L0y

i sl S Y g
Sl(E) = w Pl(E) =w u (0) =v

Thus ' € SLBF(E’ F) as desired. //
(1.3) PROPOSITION. If u ¢ SLpp(E, F) and v € GLy(E, E) , then

uv € SLBF(E’ 7

Proof (see [82]). Since v 1is an isomorphism of E , we have

= 2 "
F=oi®) = v (7)) + o (B,) (11)
(where E, and E, are as in the proof of Proposition (1.2)) and
= ,
(uw)™(0) = v (E,) . (12)
Furthermore,
v ) > m, 2 F (13)

is a BI'-isomorphism and the projections

E - u‘l(El) and E - 0"1(52) (14)

: =il -1 ] ] .
are given by v Plv and v PQU respectively, which are BI'-continuous.



78

Hence uv € SLBF(E’ ) 35 i

2. BIr'-Fredholm Maps

Let E be a I'-family as usual. Then a Bl-continuous linear map
S : E~>F (E,F being members of E ) is called a BI-Fredhom operator
ik i

(a) S is double BTl-splitting (see §1),

(b) Ker S is finite—dimensionél,

(¢c) Im S is finite-codimensional.
In this case, if #n = dim Ker S and p = codim Im S , the integer (possibly
positive, negative or zero) n - p 1s called the index of S » in symbol
ind(S) . Thus

ind(S) = dim Ker S - codim Im S . (1)
Note that when E is the category of Banach spaces with the norm-

calibration I , then BI'-Fredholm operators are exactly the usual standard

Fredholm operators (see e.g. [4], [68]).

Now let X, Y be Cgr—manifolds (o= 1) and f + X +Y be a Cgr

mapping. Then f is a BI-Freholm map iff for every x € X the Bl'-tangent

map Txf : T X > Tf(x)Y is a Bl'-Fredholm operator.

(2.1) EXAMPLE. Let ,R",R" and B (2, R") be as in Example (1.1),
§1. For each integer &k = 0, 1, 2, ... denote b Pk(n, m) the space of
y

n
polynomials R > R" of degree less than or equal to Kk

m

o, m) = KRR =R" x L@, K" x ... x 'R, R (2)

defined in §6, Chapter 1.
Let P be an integer greater than or equal to 1 and Kk another

integer such that 0 <= Kk = r , and define the mapping

ev, Bm(Q,ﬁRm) X Q> Q x Pk(n, m) (3)




evk(g, B = (x, PkE(x)) Tor athft & € 6", £ € Bm[Q,:Rm) A (4)

We regard §! and § X Pk(n, m) as (finite-dimensional) Banach

; . . o m
manifolds with the corresponding canonical norm-calibrations and B (Q,:R )

00

. o0 m .
as a CBT manifold (modelled pn. the Frechet space B (Q,:R ] ) with the

calibration

-

J

a2 (5)
el

r+k+1 :

o0
where iO is an integer given by Lemma (1.3), Chapter 5. Then B (Q,:Rm) X 0

(0.0

is a CBF—manifold (the BIl'-product of Bl'-manifolds) and the map ev;, is

a BT'-Fredholm map of class Cgf (see Lemma (1.3), Chapter 5).

The following proposition gives us a convenient form for the local

representative of a Bl'-Fredholm map (see [4] "for the Banach case).

(2.2) PROPOSITION. Let X and Y be Cgr—manifblds (r = 1)

modelled respectively on E, F € £, FE sequentially complete, and let

f:X~>Y bea BI-Fredholm map of class C;F (e 1Y - olel 'a2u6i X &

Then we can find admissible Bl'-charts (U, o) on X centred at x , and
(V, B) rom Y , eentred at f(x) ;, with the following properties:

(z). 2

E) @r B, where B, and E, are closed subspaces of

& ., dim El e s %o, UC domatn of f 3 o maps U

Cgr—difféomorphically onto B, + B with B, closed convex

2

circled neighbourhoods of 0 1in B. (Z. =1, 2) 3

fet) B = Fl C@F F2 , where Fl and F2 are closed subspaces of

B it P pee dioe FUI)CV ; B maps V C'gr-

di ffeomorphically onto an open subset of Fy @%F Fy 3
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(1172) the local representative j&B : ) cE > B(V)CF has the

form

fOLBZT]wLCboPQ (6)

where n : a(U) € E ~ Fl is CZF wieth n'Mo) =03 @ 18 a

BI'-isomorphism of E, onto F, and P, 18 the second

projection of E = El @%F E_. onto E2 L

2

Proof. We may find admissible Bl'-charts (U, w) - at £ and (?, @)

at f(x) such that the local representative f&w : o(U) CE > W(V) e F as

of class C; (r = 1) and the Bl-derivative féw(w(x)) s B Fdg-a Bl-

Fredholm operator. By suitable translations (which are C —diffeomorphisms)

BT

we may suppose that ¢(x) = 0 and w(f(x)J = e, T P f&w(o) = 0 and
the BI'-derivative féw(O) + £+ F is double Bl-splitting.
Letiabizakerh it (0) and ,F2 = Im f! (0).. “Then ,dim . = n.< + @ j
1 f&w 2 f@w 1

codim F2 = p < + » and there exist closed subspaces E2 gf B " and Fl of

F such that £ = F F = Fl @%F F and such that

1 C%F EQ g 2

o 1 : g ’

> f(pw(o)|E2 . E2 * F2 is a Bl'-isomorphism.
Let Pi : El C@T E2 -> Ei {2:=81,"2) *and Qi : Fl @bF F2 =5 Fi

(2 = 1, 2) be corresponding projections. Then Pi and Qi are BI'-

continuous.

We can write
0 o fr (0) v g, o £ (0) . (7)
But since Im f! (0) = F, , we have
Q) © fay(0) =0 . (8)

Define k : E » E in a neighbourhood of 0 € E by



81
i e : (9)
i 2 Y
Then it is not hard to see that %k is a Cgr—map Wil ) e @
! — f ‘
k'(0) = 1, € GLBF(E, E)
By the Inverse Mapping Theorem (3.12), §3, Chapter 1, we can find a
neighbourhood §’' of 0 contained in @(5) and a Cgr—diffeomorphism
Rils B9 G so,that kK o o is the identity on 2 (where § 1is a
neighbourhood of 0 in F ):
i )
Ko Xk E idg . (10)
Let A be any neighbourhood of 0 in F = Fl E%F F2 such that
Fop(®) SACU(V) and let w=id, : A>A. We put
il L |
By=dp "W )0, LV slPoaeA ) g (11)
@a=Xoo :U>all) CE ; Bi=llep s W BEV) CF . (12)
Then it is clear that (U, a) and (V, B) are BI'-charts on X and Y
and the local representative of f with respect to these BI'-charts is
~1 -1 =1
z o A ~ o AT+ o o A . (13)
Tag = oy Yo Top e “ ° Ty
WeEput X5 = @ oV 4le > then 1 € C... and from (8) we see that
4 oY g BT
n’(o) = o0 . (14)
Furthermore, from (9) and (10), it is not hard to see that
6.6 o)\_l:CIDOP . (15)
2 oy 2

By making routine adjustments in o, B, U and V we can satisfy the
conditions in the proposition. //

Recall that a map g between topological spaces is Locally closed iff
every point in the domain of the definition of g has an open neighbourhood

Q such that ¢|Q is a closed map (i.e. maps closed sets to closed sets).
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(2.3) PROPOSITION. A BI-Fredholm map f : X ~ Y is locally closed.

Proof. Let x be an arbitrary point in X contained in the domain of
f . We want to prove that there exists an open neighbourhood  of 2 (in
X ) such that f|0% 1is a closed map.

By Proposition (2.2) we can find Bl-charts (U, @) on X and (V, B)
on Y such that = € U , f(x) € V and the properties (i), (ii), (iii) in
Proposition (2.2) hold. |

Let D. be an open (convex cir¢led) bounded neighbourhood of 0 in

1
El such that Ei E;Bl and let 02 be an open (convex circled) neighbour-
heod -of -0 in E2 such that Eé EiBQ J . Sinee dim El = n < 4 @ Ei is
compact.
Let A = Dl + 02 o By N = Ei + ZB SiBl + 32 = ofl) . We elaim that

f&8|ﬂ- is closed. Indeed, if A4 Eiﬂn is closed, we see as follows that

f&B(A) is closed:
Choose a net i+ . e £ A" such that . + G +
oose a ne Y11y, < fup u Yy t Y, Ty, t y, > say,
7 7. €.
Yy, t Y, = f&B[xl+x2] (16)
T T ;
where xq + X, €A for all <

Since A C A = Ei & 02 Jrfor all ¢ ., we have

it RS SRR il
©) €Dy ;5 x;, €D, ; y, €F and y, €%(D) cF, . (17)

l_l
o

Since Dl is compact, and {xi} E_Ei , We may assume (Peplacing {xi} by a

subnet if necessary) that
= AR LD (18)

Then by (iii) in Proposition (2.2) we have

yi + y; = f&B[x§+x;] = n(xi+xé] + @[x;] A (19)

-
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: 7 A :
Since @{x ] +y, € F i, and ¢ 1s a homeomorphism, we have

\

thadits i
@ (] €D,

bl (20)

& 7 -1 . ¢ 1 :
Hence T, t oz, A ) + & (92) . Since {xl+x2} CA and A is closed, we

must have
x, + ¢_l(y ) €4 (21)
1 2 s

Sincel v’ is continuous,

o £e
n(x1+xg] > n[xl+® (yz)] (22)
and
olebret] = nfetiat] « ofet] > nlmse,)] v, - 40
But, by (21), we have
7 z =1
Yt Yy f&ﬁ[“1+¢ (yQJ] € fupld) - (24)

Thus, we have y, +y, ¢ f&B(A) and f&B‘K- is closed.

1

Take £ = o (M) , then it is clear that f|Q is closed. i

3. BI'-Version of Smale Theorem

Let E be a TI'-family, E, F € £E and let X, Y be Cgr—manifolds

modelled on FE, F respectively (r > 1)

Let . f.::X> Y ,be a Cgr—map (r = 1) . Following [4], we say that a

point x € X 1is a regular point of f 1iff the BI'-tangent map
Txf SR Tf(x)y goNSwnective: | i3 @ evriliecal point of f iff it is
not -reguldr

If Cc X ,is the set of critical points of f, then flC)pe- ¥ is ihe set
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of eritical values of f and Y\f(C) 1is the set of regular values of f .
The set of regular values of f 1is denoted by Rf or “R(f). IAnm
addition, for an arbitrary set A € X , we follow [4] to define
Rl = Vftd'n C) . (1)

f

In particular, if U < X is open, then R

U = R(F|U)
7l 7l
(3.1) REMARK. S. Yamamuro has given the following definitions for

regular point and regular value in the linear case (see [82], p. 62): let

E bea TI-family, E, F € E and UCE be open. Let f : UCE>F be a

Cgr map (r Z 1) . Then a point x € U is a regular point of [ iff the
Bl'-derivative f'(x) 1is a Bl'-splitting surjection of EF onto F (i.e.

F'(x) € SLyn(By F) ). =z is a eritical point of f iff f'(x) ¢ SLpp(E, F)

Obviously his notion of regular point is stronger than ours and the set of
critical points of f in his sense is bigger than ours, and both coincide
in the case of finite-dimentional spaces.

For a BI'-Fredholm map, we have the following property.

(3.2) PROPOSITION. Let f : X =Y be a BI-Fredholm map of class

CZF (r =2 1) , where X, Y are C;F-manifblds modelled on E, F € E with

F sequentially complete. Then the set of regular points of f is oper in
X , hence the set C of critical points of [ is closed in X .

Proof.. lLet Z, € X be a regular point of f . We want to prove that

there exists a neighbourhood § of x, such that every x € Q@ 1is a

0
regular point of f .

By definition of regular points, the BI-tangentmap 7 f : T X > T Y
0 o £ =)

is onto. Furthermore, since f 1is a BI'-Fredholm map, Tx f maps Tm X
0 0

grito - ¥ Y, Ker T f is BI-splitting in T X and there exists a
flzy) o o

Bl-complement of Ker T _f such that the restriction of Tx o fe this
~0 0
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Bl'-complement is a BI'-isomorphism.

Let (U, ) and (V, Y) be admissible BI'-charts at x, and f(xo)
respectively. Then f$w(w(xo)) € SLBF(E’ F) (by the above discussion).

Consider the composite map

f"
vex Loy cp 2, (B, ) (2)

4 > 2 !
then f&w o ¢ 1s continuous, and f&w o @(xo) € SLBF(E’ F)
Since SLBF(E’ F) 1is open in LBF(E, F)isiShby Breposition (1.2).
we can find an open neighbourhood §i of X, with @ © U such that
= !
Yz € Q fw(mx)) ehgh, (B} F) (3)
and, a fortiori, féw(w(x)) B IpALsYento fortievery iz € 0) . /T

(3.3) REMARK. The Proposition (3.2) still holds if we define critical
points of f as in Remark (3.1), that is, x is a critical point of

St e 0 L b sL o7 X, 7o) Y) where we identify T X

[respectively

Tf(m)y ) to E (respectively F ) in the T-family E .
Before stating the Smale Density Theorem, we restate the Sard Density
Theorem ([4], [68]) in a convenient form as follows:
A subset of a topological space is residual iff it is the countable
intersection of open dense sets. Recall that if the topological space is

Baire then a residual subset is dense.

(3.4) THEOREM (Sard Density Theorem). Let X and Y be finite-
dimensional C manifolds with dim X = n , dim Y = p and with X
Lnvdelof. Let f + X+ Y be a i map. Then 1f r > max(0, #-p) , R

18 residual (and hence dense) in Y .

Proof. See, for example, [4].

Now recall that if X, Y are C;F—manifolds modelled on FE, F € E and
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G s A TP L Cgr , then if EF and F are normable then by Proposition

(3.4), Chapter 1, f .is ¢’ with respect to any admissible norms on FE and
F .

We now state and prove the main theorem of this chapter whose Banach
version is due to Smale ([ 68]).

(3.5) THEOREM (BT-version of Smale Density Theorem). Let E be a

EZ)

[-family, E, F € E sequentially complete. Let X, Y be Cpp-mant folds

modelled on E, F respectively with X Lindelof and let f : X > Y be a

BI'-Fredholm map of class igh Suppose that »r > max(O, ind T ) for

| Bl

3 every % € X . Then Rf 18 restdual in Y (hence dense in Y <f the model
Fof ¥ 418 Baive).

y Proof. We follow the method in [4]. Let Z, be an arbitrary point

M
in X . We shall construct a neighbourhood 7 of X, SO that Rflz' is

open dense in Y .

First, we may choose admissible BI'-charts (U, o) centred at x and

(V, B) centred at f(xo) verifying the properites (i), (ii), and (iii) in

Proposition (2.2). We may suppose that

a(U) = Bl + 82 it = Ei C@F E2 s B(V) = Dl UL & Fi= Fi @%T F2 (4)

where Bi’ Di (2 = 1, 2) are closed neighbourhoods of 0 in Ei’ Fi

(¢ = 1, 2) respectively. Furthermore, we can suppose

(B, = D, (5)
where & : E2 > F2 is the BI'-isomorphism in Proposition (2.2).
Since f&B(a(U)) c B(V) = B 0y s it follows immediately that
= @
R(fag);g p(n)” = (D,+D,) (6)

where A° denotes the complementary of A4 in F (A C F)
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Thus we have faB gl ). = Bl + 82 HBV) = Dl + D2 with
fOtB =" +CI>0P2 (7)
. Y —
where n : o(U) - Fl is Cgr and n'(0) 0
By hypotheses, we have
dim El & . Adim Fl TP 5. iad Txof =n -D (8)
and
r > max(0, n-p) . (9)

We now show that R(f|U)

is dense in Y . 1Indeed, it suffices to show

that R(f&B) is dense in F .

Let e’ be an arbitrary point in F

-
That is
% ol
Fl e 2
Hence
which implies that
R(fyg) n (7

(2) e' €D, = %(B,)

and only one e € 82

5 Two cases are possible.

Then for every y € F. , we have

2

e’ £ B(V) = Dy Dy

B e R(fyg) oy (6)).

R g (8te’) =7 + e (10)

l+e') is dense in F,o+ g’ . (11)

Since & 1is a homeomorphism, there exists one

gueh that @(e) = e’

Define a map n, : B < El i Fl by

LTS

ne(x)

= n(x+e) (x € Bl) g (12)

Then it is clear that n 1is a & map from the open neighbourhood B. of

g ~am B

1 (dim E. = n) into

i

with r > max(0, n-p)

i

(dim F. = p)

a finite-dimensional space F 1

1

-
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| By Sard Density Theorem (3.4), R(ne) is dense in Fl . Furthermore,
it is not hard to see that
R(de) N (Fl+e’] = R(ne] + e’ (13)
| Thus, since R(ne) is dense in Fl , Wwe see that
R(f&B) N (Fl+e') is dense in Fl Rodg 1, (14)
So, by (11) and (14), we have proved that for each e’ ¢ F2 §

( . . . .
| RLf&B) N (Fl+e’) is dense in F, + & . Thus R(f&B) is dense in F and

| we have R(f|U) dense in Y as desired.

| By Proposition (2.3) we can choose an open neighbourhood Z of T

such that Z‘S_U and f|Z is closed. By Proposition (3.2), the set C of

critical points of f is closed in X . Hence
| Rf|2': 187 5 6) s 'open in Y . €15
Since R(f|U) E_Rflz', Rffz is also dense.

Now, since X is Lindelof, we can find a countable cover {Zi} of X

‘ such that R IZ% is open dense. Since
\

f‘
| - 7,
| Rf N Rf| ; (16)
7
it follows that Rf is residual and we have proved the theorem. A

(3.6) REMARK. If we follow Yamamuro's definition of regular points as
in Remark (3.1) then Theorem (3.5) is still true by analogous proof.

Actually the set Rf in this case is smaller than the normal one, but is

still residual.

The following proposition is a standard corollary of Theorem (3.5)
(see [68] for the Banach case).

(3.7) COROLLARY. Let E, F € E be sequentially complete with F

Baire and let X, Y be Cgr-manifblds (r = 1) modelled on E, F

respectively with X Lindelof. If f : X > Y +<s a “BI-Fredholm map of
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<

class CZF

(r 2 1) and ind Txf <0 for all x'€ X', then its tmage
contains no interior points.

Proofdvoince for all x € X, ind T f < 0 , the condition

s b max(O, ind Txf) for all x € X is trivially verified.
Furthermore, the condition 1ind Txf <=0 for “all ¥ €'X . also implies

that all x € X is a critical point of f . Hence the image f(X) is
exactly the set of critical values of f and thus has no interior points as
indicated by the last part of the Smale Density Theorem (3.5). //

If we follow Yamamuro's definition for regular points (see Remark

(3.1)), then the Smale Density Theorem has another consequence as follows.

fRE N OROLLRRY . Fef X, ¥ be as in Corollary (3.7). If Ff: X

18 a BT-Fredholm map of class Cgr with r >,max(0, ind Txf) for all

¥ € Xy tThenforvalmnost @ll.. y € Y. ; f_l(y) 18 either empty or a Bl-

submantfold of class CZF OFT AT,

Proof. By Smale Density Theorem given in Remark (3.6), almost all
y € Y 1is a regular value of f (in the sense of Yamamuro's definition as

in Remark (3.1)), that is y = f(x) for a x € X with

Txf € SLB (T X, Tf( y? ) . Hence we have either f—l(y) is empty or

f_l(y) # § and is a closed BI'-submanifold of X . The fact that f—l(y)
is a Bl'-submanifold can be proved directly from the definitions or by just
noting that {y} is a BI-submanifold of Y of dimension O

yeand Py 18 @

regular value of f (in Yamamuro's sense) iff f #& {y} , and apply

BT
Corollary (1.2), Chapter Uu. //
4. A Possibility of Generalisation
The results in this section are due to S. Yamamuro. I thank him for

permitting me to include them here.




The purpose of this section is to discuss a possibility of defining

CI’

pr maps between C?—manifolds, a non-standard notion. The reason for this

shall be given now.

As we have seen in Chapter 2. the class of Bl'-manifolds is rather
small while the class of [I'-manifolds is considerably larger. And the
reason for introducing these Bl'-manifolds is to get the Inverse Mapping
Theorem (3.12) in Chapter 1. Thus we have encountered a difficult choice:

(i) either we restrict ourselves to the small class of BTl-
manifolds (with the Inverse Mapping Theorem available) but
which is not suitable for many applications, or

(ii) we have to force ourselves to define the notion of Bl-maps

between TI'-manifolds, so that whenever we need, we can use
the Inverse Mapping Theorem or its equivalent forms.
Dr S. Yamamuro has proposed a solution for (ii) and we shall show in

this section that with this general notion of SC? maps the Smale Density
Theorem (3.5) can be stated and proved. Dr Yamamuro has also informed me

that with the use of SC? naps he has been able to refind several results
in [54], S§1II.

Let E be a I'-family, X, Y be TI-manifolds of class ¢ = 1)

E

modelled on E, F € E respectively. Let f : X > Y be a mapping and

£ € X be a point. Then a pair of C?—charts gille oy camd (¥, B)Y of X

and Y respectively is said to be a pair of strong C?—charts fapaar at ox

(op for short, a pair of SC?—charts for, . at =z ) i kG @ e lin i) eV,

f(U) €V and the local representative de ety c & + (V) C F isa C;F

map (see Chapter 1, §3).

We say that f : X - Y 1is strongly C? o (for short of class
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SC? at = ] i 4 ig C? at x , and in addition, there is a pair
{(lUsutt) - LV,28)} of strong C?—charts fop.f.pat z . In other words, f

is strongly ¢l at =z iff we can find a pair of admissible TI'-charts

I

(U, a) and (V, B) at x and y = f(x) respectively such that, with

respect to these TI'-charts, the local representative of f 1is of class

P
CBF A

F 2= Y +is a strongly C? map (or of class SC? ) dEf dn is SC?

at every point x € X . Note that when X and Y are Bl-manifolds of

class Cgr then SC? maps X - Y coincide with Cgr maps X > Y .

r

r map e e between TI'-manifolds X, Y of

Now consider a SC

class C? (r 2 1) . We say that [ has the BI-Fredholm property at

x € X if, with respect to a pair of SC?—charts Ll re), (Vs Bila, the
[-derivative f&B(a(x)) : E > F 1is a BI-Fredhom operator (see §2). 1In
this case, we define the index of f at x with respect to the pair of

SC?-charts {(v, @), (v, B)} as follows:

1

ind(f, @, (U, @, (v, 8)) = ind £, (a(x))

dim Ker f&B(a(x)) - codim Im f& (u(x)) e L)

B
We say that f : X >~ Y has the BI-Fredholm property iff it has the BI-
Fredholm property at every x € X .

With this general definition, we have the following version of

Propogition (2.2).
(4.1) PROPOSITION. Let X, Y be C?—manifost (r > 1) modelled on

B FoeiE il be sequentially complete, and let . f : X+ Y be a SC? map




having the BTI-Fredholm property at a point x € X . Then we can find
admicgible 'Techarts (U, &) on X ecentred at x , and (V, B) on Y
centred at f(x) with the following properties:

; = h
il . E El C%F E2 where El and E2 are closed subspaces of

B . dim El =ns t®e, UcCdominof f; o maps U C?—

diffeomorphically onto B, tB with Bi closed convex

2

cireled neighbourhoods of 0 in E. (i =1, 2) ;

(i) E = Es C%F F, where g and F, are closed subspaces of

F, dim G S flud) cv,; B maps V C?-difféo—
morphically onto an open subset of Fl E@F F2 3

(i121) the local representative de : a(U) CUE > B(V) € F  has
the form

fﬁB =N+ o P2

where n : a(U) € E ~ Fl 18 Cgr WetH ' E0) =oish #llgs g

BI'-2somorphism of E, onto F, and P, 18 the second

projection of E = El @%F E2 onto E2 2

Proof. We start from a pair of SC?—charts {(5, 0®), (ﬁ, P)} for f

at « and proceed exactly as in the proof of Proposition (2.2). if
(4.2) PROPOSITION. Let f : X > Y be a SC? map (r = 1) having

the BI'-Fredholm property. Then f 18 locally closed.
Proof. Exactly as the proof of Proposition (2.3) with the use of

Proposition (4.1). //

Now let f ¢ X *+Y be a C?—map between C?—manifolds X and ¥

(r 2 1) . Then the notion of regular point, critical point, regular value

and critical value of f can be defined exactly as in the Bl'-case of §3.

Te)
N
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For instance, a point x € X 1is a regular point of f iff the T-tangent

mEp T T R T Y is onto. Note that this means that for every pair
P g x

flx)
of T-charts (U, o) and (V, B) at x and f(x) respectively with

f(U) €V, the T-derivative f&B(a(x)) of the local representative
fOLB 2ot} GuE moflV) £ B f ist ontod.

As before, we denote by R the' set of Pegular values'of T X > Y

f'

Then we have the following analogue of Proposition (3.2).

(4.3) PROPOSITION. Let f : X >Y be a SC. map having the BI-

Fredholm property where X, Y are C?-manifblds modelled on E,F € E ; F

sequentially complete. Then the set of regular points of f 1is open in X ,
hence the set C of critical points of f 1is closed in X .

Proof. Let Z, € X be a regular point of f . Then by definition of

regular points, the TI'-tangent map Txof : Ton > Tf(xo)Y 18 onte.

Furthermore, since f has the BI'-Fredholm property at X,, We can find a

pair of SC?—charts 1€0, @), (¥, W)} for f at =z , such that

0
éw@ﬂx&) £ 0 = P (2)

is a BI'-Fredholm operator. In other words, féw(@(xo)) € SLBT(E’ F)

Then by an argument analogous to the one in the proof of Proposition (3.2)

we can see that there is an open neighbourhood § of X, such that every

x € 5l 18 a regular point of f . P
With all these results we can now state and prove the 'I'-version'" of
the Smale Density Theorem (3.5).

(4.4) THEOREM. Let E be a T-family, E, F € E sequentially
complete. Let X, Y be C?—manifblds modelled on E, F respectively with

X Iindelof. Let f : X>Y be a SC? map (r = 1)- having the BlI'-Fredholm
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property. Suppose that for each x € X we can find a pair of SC?—charts

W, a), LV, B at =z such that
r > max{0, ind(f; x, (U, o), (V, B))} . (3)

Then the set Rf of regular values of f 1s residual in Y (hence dense

i ) F L0 the wodel B Vvof Y. 1is Baive).
Proof. Exactly as the proof for the Smale Density Theorem (3.5) using

Propositions (4.1), (4.2) and (4.3). //
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CHAPTER 4

BT'-TRANSVERSALITY

In this chapter we generalise the usual notion of transversality ([4],
[31], [75]) to maps between BI'-manifolds.

In the first section we give the definition of BI'-transversality and
prove some standard properties. In §2, we consider representations of BI'-
manifolds (following the treatment of [4]) and in §3 we prove the BT-
Transversal Density Theorem, a generalisation of the one in [4]. In the

last section, §4, we prove the BI'-Transversal Isotopy Theorem ([4], [75]).

1. BT'-Transversality

Let E be a TI'-family (see Chapter 1, §2) and let E, F € E . We say
that a BTl-continuous linear map u : E > F 1is a Bl-splitting surjection
iff u 1is surjective, ker y 1is Bl-splitting in F and there exists a
BI'-complement of ker u such that the restriction of u to this BT-

complement is a BIl'-isomorphism onto F .

1 : .
Now, let X, Y be two CBF~man1folds modelled on £, F respectively.

et el sha B sbe a Cér—map and. W.cC.X .be.a Cér—submanifold (Chapter 2,

§3).

We say that f 1is Bl-transversal to W at a point x € X , in

symbols f Apr s it whepe y = flx) .4 either wy € W or y € W .and

the following condition is satisfied:
(#) there exist a chart (U, o) centred at x , a chart (V, B)
verified the Bl'-submanifold property for W in Y at y

such that, if TyW 1s represented by Fl in™* ¥ with
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P

. BF =" ) and Q2 : FP=F. ® + F 1s the second projection,

1 ar 2 2

then the composite

Fap'®) &

E — P — (1)
I F F?

is a Bl-splitting surjection.
The definition is independent of the charts chosen.

We say that f is Bl-transversal to W , in symbols f mBF W o 1EF
f éBP xW for every x € X .

Note that if E = B , the category of Banach spaces, (with the norm-
calibration) then by the Banach thecrem (see [13]) our definition of BI'-
transversality reduces to the usual one as defined in Lang [4u].

Furthermore, the condition (*) can be formulated equivalently in
global form as follows:

(#%) There exists a Bl-complement Z of TyW in TyY such

that if we denote by @ : TyY = Téh7C%F L' 4 4 the

second projection, then the composite

Tf 0
TX———»TyY———»z (2)

is a BI-splitting surjection.
The following theorem for the local representative of Bl'-transversality
is an analogue of the one in [u4].

(1.1) THEOREM (Local Representative of BI'-Transversality). Let

X, Y be Cgr-manifblds (r = 1) modelled on E, F respectively with E

sequentially complete. Let f : X > Y be a Cgr—map, WcY a Cgr—

submanifold, and x € X such that y = f(x) € W .

Then a necessary and sufficient condition for f A,. xW <is that there

BT
exist admissible Bl-charts (U, a) and (V, B) at x and f(x)

respectively, BI'-decompositions E = El C@F E2 2 F = Fl G@P F_ for E

2
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and F such that:

ta) a(lU) = Bl + 82 E = El C%F S BlLF )os Dl faly © F = Fl C@F

ghx) = 08  Bly) = 0., BlW.nT) = Dl , Wwhere Bi and Di

(2

1
=
v
N
~

are open neighbourhcods of 0 1in Ei’ Fi

1, 2) respectively;

1l

(7

(b) the local representative f&B t By + B, >D, +D, of f has

the form

de =n+ % o P2

where n : By %8B, ©F > D, CIF 18 a Cgr-map, ¢ 2s a BI-

isomorphi.sm of E, onto F, and P2 . E = El EkF E, » E, 18

the second projection.
Proof, SUFFICIENCY. Suppose that there exist admissible Bl-charts
(U, ) and (V, B) verifying (a) and (b) in the theorem. We want to prove
Indeed, with respect to these Bl-charts, TxX’ TyY and
Txf LA TyY are represented respectively by
L1 - - £ ]
- U0 iR (3)

Since, hy (a), (V, B) has the Bl-submanifold property for W at y with

B(V):D]+DQEF1@B]"F2:F
i V=D, e 7S
TyW is represented by
i e
Yy i |
We claim that the composite o f’B(O) ,
f1a(0) Q
L N e

is a Bl'-splitting surjection.
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Indeed, by (b)), we have

féB(O) = NI(0) =& o P2 with nf(0) 2 F -~ Fl : (4)

Then for all =« € E ., .z = X, + X, € El G%F 52 and

fO’LB(O)x = Ql?lﬁ* $ o P2(a:)

€ Fl € F2

Hence Q2 o f&B(O)x = QQ o ® o Pz(x) L iThat is,
Q, o f&B(O)_: 8, 9 P 0P, (5)

which is a surjective map of E onto F2 (by (b)).

Furthermore,

Ker (@, o f14(0)) = f&B(O)_l[Q;l(O)] = f&8<o>'l(Fl)

S e Be . B, | n’(0)(x) + @(xQ) ¢ Fl}

=@ =% t3, €0 @O F | #(z,) = o} (becanse F n F, = {0} )

= {zx =2 +a, €E, @, F, | z, = 0} (because ¢ is a BI-isomorphism)
:El

which is BI'-splitting in ¥ (with a Bl'-complement E2 ).

Now it follows quickly from (5) that

Q, o f&B(o)IEQ =@ 1 E > F (6)

which is a Bl'-isomorphism by (b) .

NECESSITY. Suppose that f Apr xW . We want to prove that there exist

Bl-charts (U, a) and (V, B) with the properties (a) and (b) in the theorem.

First, since W 1is a Bl'-submanifold of Y and y = f(x) € W , we can

find a Bl'-chart (Vl, Bl) at y having the BI'-submanifold property for

Mooin T at oy oy o ihat is,
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b, SF @ F =F,
gl )= e, c F
Bl(y) =0

Moreover, we can find a chart (Ul, ul) at x with ul(x) =0 ,

i 40 (v)ce~8 (V) cF

is CP

BT

Since f‘mBF xW , the composite map

fr (0)
LB 8
E i —> F 2> F

is a BI'-splitting surjection. That is, Q2 o'f& 8 (0) 1is surjective and,

if we denote by El = (O)—l(Fl) , then FE s Fr-spiibting 16 “F 1,

4
alBl 1
and there exists a BI'-complement E2 of El {(4n ¥ 'E ' ) such that
r . . ) + e .
d, o fa 8 (O)I : B, > F, 1is a BT-isomorphism. (7)
o | E2

Denote by

b ] : BT
=40 f 81(0)‘E b e F (8)

2
- 2

Now, consider the map Q2 o f& e al(Ul) c E ~ F , then obviously
e

@5 0 (0) =0 . (9)
2 alBl
Define k : al(Ul) & B e B 2 BcE & by

(10)

(i.e. fop all o= xl + x2 ‘ ul(Ul) c E



=1
Blz) =2 + & o Q. o (x) )
1 2 alBl

Then Kk is Cgr and., k(0) = 0 . ! Furthermore

- W ! - =
RH0) = Pl B Q2 o f&lBl(O) = Pl + P2 = ldE |

(The fact that é_l o Q2 o f& 8 (0) = P, 1is proved as follows:

1"k .
TEESEE e PR R = " L (0)e = £, (0)ez, + £, (0).2
1 2 1HET 2 ulBl : alBl L alBl 2
B0 o T e =0 0 Ft . (0).p, =
2 alBl 2 ulBl 2

= -1 '
S QQ ¥ f& B

= e o
) l(o).x =& (o 2))
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(11)

By the Inverse Mapping Theorem (3.12), Chapter 1, Kk is a local L

diffeomorphism. Let U, be a sufficiently small neighbourhood of 0 in

e

= f & ke .
E Ei E%F Eé such that Ué._ o (Ul) and let a, be a CPF diffeomorphism

L 2 B

of U, ento an open neighbourhocod.of 0 in E, ®,. F., such that

s 1Bl 2

Then

Indeed, if z= x + z, € 0, (U2) c B¥g & and

£ [/ !
o, (el = x|+ x ‘ El(BBF Eé thel by L 12 %anda 1389,

k o d;l(x) = k(x£+xg)

which implies

(12)

(13)
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v 3
x{ = x,
B (14)
=1 ! (R
® o Q2 o fOL 3 (xl+x2) =X,
371 J
Hence
! [/ =
Q2 £ iy @ (xl+x2) @(xz)
: g o
=8 o P,z ) ;
that is,
_l B
Q0 fy g © 8, (x) =20 Pylx) forall x ¢ o, {0, - (15)
=T
We put
5 _ -1 ‘
O = 0090y 3 U= oy (Ul)
s (16)
B = Bl » Y €V small neighbourhood Vl)
Then (U, a) and (V, B) are the Bl'-charts desired if we make routine
adjustments in U and V , because
y e L 118, .4 =
de g Bl o o (u2 o al) £ Bl o f o gy oo s f&lel © 0, (1%)
That is,
-1 -1
Fo. 2 i o ol Gy £ . Qise. F o Q
af 1 alBl i 2 alBl 2
=N+ %o P2 (by (13)) (18)
if we put n =@, o f o a_l which is a CP -map L
i o, B 2 BT i

17k

(1.2) COROLLARY. Let X, Y be as in Theorem (1.1), f : X > Y be a

& -map and W< Y a o —submanifold (r > 1) . Suppose that f A

BE. BT BT dt

Then f_l(W) 18 eitther empty or a Cgr—submanifbld ef X : .In the

later case, we have
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(a) for x € f-l(W) and y = flzx) ,
ATy = T w)

(b) W and f“l(W) have the same codimension: more precisely,
for x € frl(W) , Y = f(z) , any BT-complement to
fx(f—l(W)) in r X i1s Bl-isomorphic to any BT-complement
to TyW in TyY .

PPOnT.  Let @ € f_l(W) , then y = f(x) € W and f App xW . By

Theorem (1.1) we can find Bl-charts (U, @) and (V, B) centred at «

and y vrespectively, with

a(l) = Bl + 32 E-El @%F E2 =E ,
BLlV) = Dl + D2 E-Fl C@F E2 = F,
and such that
f&B =n+ %o P2 : Bl + 82 g Dl + 02 (19)
where n : Bl + B2 & Fl s C;F and & : E2 = F2 is a  Bli-
isomorphism.
From this, we claim that a(f—l(W) n U) = B, . Indeed, let

d.

AU - frl(W) g shen gt = f(x') e WAV and B(f(x’)) € Dl EiFl N
Furthermore, by (19), if oa(x’) = bl + b2 € Bl t B, we have
fue(a(x')) = faB(bl+b2) =n(b+b,) + @(b,) ¢ =i (20)
Since #(b,) € F, and F n F, = {0} , this implies
@(bQ) T T TR R (21)

Hence

a(z’) € B, for all z' ¢ f‘l(W) nU .
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That is,
a(f ) nv) B (22)
Conversely,
~1
B, Ca(f () n ) (23)
i €
since for every bl Bl .
faB(bl) = n(bl) + ® o P2 (bl) = n(bl) € Dl
Thus
( \
] A ) = -
B[f[a (bl)” €D, = flo (bl]) € () =wnv
( 3
-1
= fhe: kb € W
flom (b))
o P e By n 7
=il
i bl € al(f (W) n V)
Thus, for all « € f-l(W) S there exisfts a Hl-chart (U, o) with
i 3 5 + .
o(U) = B, + B, CE @ E and o) =0, aff (M av) = B, . That is
frl(W) is a C;P—submanifold oF X
(a) In the Bl-charts (U, a) and (V, B) , we have
G =ae TR O SR il
£ Y
T (Flon) =B, , TW=F
X e gy 1
and
o= 4 . = 1 =
Tl = Togl®) + B =By @pp B, > F=F @ F, .
Furthermore, by the proof of Theorem (1.1), we have
£ F) =&, . (2u4)
o 1 1

Hence

[Txf)_l(TyW) = Tx(f—l(w)) Pl (25)
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(b) Since in the Bl'-charts (U, o) and (V, B) , E2 is a BI-

complement to &, = Tx(f_l(W)) in E = TxX and F2 is a Bl'-complement to
F. =TW in F = TyW , this part follows immediately from the fact that

¢ : IEVE P is a BI'-isomorphism. I

2. Representations of BI'-Manifolds

In this section we generalise the treatement in [4] to the BT-

manifolds.

Let E be a TI-family and let FE, F, G € E such that the BI'-product

(see Chapter 1) F XBF Be€E. Llet A, X, Y be Cgr—manifolds modelled on

E, F, G respectively. We shall denote by A XBT X the Cgr-manifold
product of A and X (which is modelled on F XBT & EE ], and by

CZF(X, Y) the space of Cgr—maps from X Ho. ¥ .

ket (p : A > CgF(X’ Y) be a map. For a € A, we follow [4] to write

o, instead of p(a) , i.e. pa v X Vig & Cgr-map. Following [u47], we

say that p 1is a c, -representation iff the evaluation map

BT
ev A Keop X+ ¥ (1)
given by
evp(a, ®) = pa(x) fop g € AQ x € X, (2)
is a Cgr—map from A 5 A~ > T

Now let (A, o) be an admissible Bl'-chart for A at a , (U, B) an
admissible Bl'-chart for X at « and (V, y) an admissible BI'-chart for

Y at evp(a, x) = pa(x) =y . Then (4 XU, o X B) is a BI'-chart for
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A x r ¥ at (g»> x) , and we have the following representative for cvp
B
(va)aXBaY talg) x B(y) c E R E ylv)c ¢ (3)
given by:
s ey £2
(OVQ)QXB’Y es> f
=y o (ev) o (ax B) e, £) Vie, £) € ald) x BW)CE P
=y o (v ) (@), 87
ol
:'Y[é e e <f>i}
a (e)
= [Y °p 1 o B—l)(f)
a (e)
That is
(e, f) = | (f) ()
SRR R I
where (p ) is the local representative of p : X > Y 1in the
L -1
a (e) B,y o (e)

Bl-charts (y, B) and (V, y) at x and y = pa(x) respectively.
If Lgq, #) € A XBF X , then we have
TA=EFE , TXx=2F, TY=G
a %

and

T(a,x)(A 4

We want to calculate the tangent map

/i

(A x Tpa(x)y = ’

X) -

R P G

In the above BI'-charts, we can write

T o) A Xgr K = {(a(@), B} < B xp, F s TDa(x)Y = {(y(x)} x G (5)

and Tka,x)evp is given by
I(eVp)axB,Y(u(a), B(z)) : (@), Blx)) X E %o F>Y(y) x G

with
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(a(a), B(x), e, f) — (v(u), (evp)&xe,y(a(a)’ B(x)).(e, £))
where
Y(y) = (evp)uxs’Y(a(a), B(x))
and
(evp)&xe,y(a(a), B(x)) : F Xpp £ > G is linear Bl-continuous.
By the TI'-differentiation theory applied to
(eVD)GXB,Y t a(d) X B(U) CE xpn F > (V) €6
we can write
= 4 ( =
(vvp)axB’Y(a\a), B(x)) al(evp)axs,y(a(a)) + az(evp)axB’Y(B(x)) . (6)
Hence, for each (&, x) € TaA Xpr TxX , identified to (e, f) € E Xpr F
we have
(T(a,x)evp)(a’ ®) .= (Tl(a,x)evp)a T (T2(a,x)evp)x : (7)
Furthermore, we claim that
Tz(a,x)evp SO (8)

Indeed, P X > Y 1is represented in the Bl-charts (U, B) and (V, ¥)

by
(e gy : B EF>y(V) 6
and TQ(a,x)evp is represented by
82(evp)uxe,Y(B(x)) = (evp)&xs,y(a<a>, -) (B(x)) (9)

where (evp) (a(a), °) : B(U) € F > y(V) € G denotes the partial map

axB,y
obtained by fixing ola) € a(d) . But when we fix oala) € a(4) , we have,

Soppall.ef € F ¢

&
(v ) oxg v (@(@)s £) =y 0 p o 8BTS

= (B)a 0. (10)

That is,
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(evp)&xe,y(u(a), 4 )i (oa]é Y(B(x)) : (11)

b

Since T is represented by (pa)é (B(z)) , (8) follows quickly.

Y

The above discussion gives:

(2.1) PROPOSITION. Let A, X, Y be Cgr—manifblds modelled on

By FL G & E vespectively, with v = 1 ;, and let p : A+ CZF(X, ¥Y) be a

Cgr representation. Let S A Xpp X > Y be the evaluation map.

Then for each (a, x) € A Xpp X 5 we have

r
T(a,x)evp = Tl(a,x)evp + Txpa (3,2)
which means that for every (a, z) € T )(A Xpr X) , we have
(T(a,x)evp)(a, Z) = (Tl(a,x)evp)a + (Txpa)x . (13)

3. The BTI'-Transversal Density Theorem

In this section, we apply the Smale Density Theorem in Chapter 3 to
prove the BI'-Transversal Density Theorem, a generalisation of the one in
[u] to the BT-manifolds and Bl'-transversality.

First, we prove a technical lemma.

Let{at tbe a [-family and let F, G € E such that F XgrG € E .

B G Tt ¥

(For the definition of F xfﬂ“G see Chapter l.) Denote by Mo BT

the first projection. We say that a BI-splitting subspace F of F Xpr G

BT -adapts LY if there exists a BT-complement H of F in F Xpr G

such that

TolE @ H) = 1.(E) @0 1 (H) (= F) . (1)

Note that in the category of Banach spaces with the norm-calibration
I', every finite-codimensional subspace of F X G with dim G < + ® , BI-

adapts the first projection F X G > F . (See the proof of Lemma 19.2 in

[u]) P-. ug.)
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The following lemma is a generalisation of Lemma 19.2 in [4] to the
BI'-context.

(3.1) LEMMA. Let F, G €E with Fx,, G€E, dimG=n<+ o,

BT

m o F'XBF G > F be the projection onto the first factor and let
ECF Xpr G be a Bl-splitting subspace of codimension q . Suppose that
E Bl-adapts T Then the restriction T = ﬂl|E 18 a BT-Fredholm

operator with index n - q .

Proof. We can find a Bl-complement H for FE in F Xer G such that

(1) holds. We have dim A=codim E = q . Let P and & be the first and
second projections corresponding to the Bl'-decomposition

F XBT T @%F H . Then P and & are Bl'-continuous.

We put L = Pm(E) and* K = En (0 X G) . We shall prove

K Q%F Li=& o, 2
TRt ) 65)
BT

Indeed, first consider F as F X 0 C F X G , then, for every

BT

e €E , m(e) € F can be written in a unique decomposition
m(e) = Pn(e) + @mu(e)

with Pm(e) € E , Qu(e) € H .

Then

m°(e) = m(e) = wPmle) + mgm(e)
which implies
mle-Pm(e)] + m(h) = 0 where h = -Qu(e) € H . (4)
Since e - Pn(e) € E and m(E) ®@ m(H) = F , (4) implies
mle-Pm(e)] = 0 for every e € E . (5)
Now, for every e € E , we can write
e = [e-Prn(e)] + Pr(e) € K + L . (6)

The fact that e - Pmn(e) € K follows from (5) and frem the obvious relation
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K=kerm=En (0 %X G)

But we also have K n L = {0} (by (5)) hence E = K@® L . Since the
projection on L. corresponding to the decomposition K @ L 1is nothing but
the composite Pm which is Bl'-continuous, we have (2).

As for (3), we note that

ﬂIL : L > m(E)

is one-to-one, onto and Bl'-continuous, and by (5), we can see that the

inverse map is P| which is also Bl-continuous. Hence we have (3).

m(E)
From the above discussion, it follows easily that m is a BI-Fredholm
operator and
ind mT=n-q . // (7)
We now state and prove the main theorem (see [U4]).
(3.2) THEOREM (BT-Transversal Density Theorem). Let E be a

I-family, F, G, J € E with F sequentially complete and F *pr e

Let & %X be Cgr-manifblds modelled respectively on F, G, J ;

0 : A > CZF(X, ¥y @ Cgr-fepresentation; WcYa Cgr-submanifbld (not

necessarily closed) and £ 08 A Xpp & = ¥ the evaluation map.

Define AwSA by

A={a €A : p hon W} . (8)

Assume that
(a) X has finite dimension n and W has finite codimension q ,
(b) A and X are second countable,
(¢) »r > max(0, n-q) ,

(d) evp,ﬁBF W,

(e) for every (a, x) € A XBT X “siech that (g.= pa(x) € W, the

oy =1
BT-splitting subspace (T(a,x)evp) (THW) ?f
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T(a,x)(A Xpr Bk = TaA Xpp TX Bl'-adapts the first projection
TaA XBT TxX -+ TaA ’
Then AW 18 residual in A . Moreover, i1f the model F of the
manifold A is a Baire LCS, then AW 18 dense in A .
Proof (see [u4]). Before proving the theorem, we note that condition

(e) in the theorem is well-defined (independent of the BI'-charts chosen).

Define B = evgl(W) c A Xpr X . Then by Corollary (1.2), B is a BI-

submanifold of A X__ X of codimension ¢q . Furthermore, for every

BT

(a, x) € B we have

1 <%
T(a,x)B ) (T(a,x)evp) (Tyw) e

: o hdng A ¥
and is a Bl-splitting subspace of TaA pr TxX T(a,x)(A BT

Let P, : A X7 X > A be the projection on the first factor and let

P:B~+A be given by P = PllB 2

Clearly P is a Cgrfmap. Let RP be the set of regular values of

P . We shall prove that

P is a BI-Fredholm map of constant index #»n - q , (10)

AW = RP ‘ (11)

The theorem then follows from the Smale Density Theorem of Chapter 3.

{*) & B+ A is a BI-Fredholm map of index #n - ¢
Choose (a, x) € B , we must show that the tangent map

T BT B~>TA is a BI-Fredholm operator with index #n - q .
(a,x) (a,x) a

If in Lemma (3.1) we read I ey G, TaA for F ,

X) for FX .G, T B for E

BT i (e .

P
@) L

for Ty and T(a x)P for m , then Lemma (3.1) gives us the desired
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assertion if we note that condition (e) means E Bl-adapts T
* * =P
(7} LA = R,

The inclusion Awfz RP is easy (see [4], p. 50). We only need to
prove R_c A

Choose a € RP . We want to prove that a € A that is o, M pp W .

W 2
Two cases can occur.
(#) g =mn : ‘Let g € X so that y = pa(x) € W . From the hypothesis

(d )i, evp A-n W , we can find BIl'-charts (A, al) centred at a , (U, Bl)

BT

centred at & and (V, Y) satisfies

Y(V) =D, + D, CJ @ d, =J,
Yeydn=%0 4
YW 0 V) = Dl E_Jl

Then (A X U, oy X Bl) is a Bl'-chart for A XBF X and with respect to

these charts, the composite

(e ) (0)

v /
P70 XBy 5y 4,
F Xpr G o/ > J2
is a BIl'-splitting surjection.
That means
=i
' e ' =
Ker(Q2 o (evp)alel,Y(O)) (evp)ulxsl,Y(O) (Jl) E (12)

1e Bl-gplitting in F Y . G ;

BT
there exists a Bl'-complement Hl of B dn F XBT & such that
' . o
¢, o (evp)a X8 ,Y(O) D H BE J2 d (13)
ot el Hl

Now, by condition (e), we have a Bl'-complement H of E in F XBF G

such that
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= 1, = L
T (B @y H) = W (E) @y M (H) = (F) . (1u)
Since H and Hl are Bl-complements of the same subspace F in

F XBF G ; we can find a Bl'-isomorphism

® : FX__,G=EF @%T H

BT e W

1 BT

such that ¢ maps Hl onto H and E onto itself.

Put a X B =@ o (al X Bl): then (4 X U, o x B) 1is a BI'-chart for

A XBT X and with respect to (4 ><‘U, a X B) and the above chart (V, v)

we have the following properties:

=1 : 2 Lusi, i
- ' e .
E (evp)aXB,Y(O) (Jl) is Bl-splitting in F Xpr G (15)
there exists a Bl-complement H of E in F XBF G such that
Wl(E @y H) = T () @y T (H) « (16)
the composite g, o (evp]&XB,Y(O) restricted to H is a
Bl'-isomorphism of H onto J2 . (17)

Now, since q € R. , T P s B>TA is onto. Thus 7w : E» F

is onto, where T = ﬂlIE and My ¥ F XBF G > F 1is the first projection.

We thus have

e = "rrl(E) = B,

I

Since ﬂl(E) @%F ﬂl(H) F and ﬂl(H) C F , we have

W) = w8 o F = m(H) nw (E) = {0} .
Hence
HcC 0 XxG
and we can write
=10} x 8 with BFcg. (18)

Now consider p : X>Y and Tp : T X->T Y . Then in the BI-charts
a X = Y

(U, B) and (V, y) above, Txpa is represented by the Bl'-derivative
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If we denote by
K=FEn (0%@ = {0} xK

then, from the discussion in §2 (see Proposition (2.1)), it is not hard to

see
e ' i
K = (pa)B,Y(O) (7)) ce@ (19)
and
G = & Q%T g, (20)
(v o) gxg (D 1 = 0 % ({e ) ((0)]3F) - (21)

From (21) and (17) it follows quickly that

Q, o (pa)é,Y(O)IE, LB ogptd,

and the composite

is a Bl'-splitting surjection, which proves P, hgr xW .

(b) g >n : From the above discussion, we have

pa(X) 0 W= Py

that is,

pa ﬁBF e

So, in any case, a € RP = a € AW and the proof is completed. [/

(3.3) REMARK. We note that Theorem (3.2) is a generalisation of the
corresponding one in [4], since in the Banach case (with the norm-
calibration), condition (e) in Theorem (3.2) is automatically satisfied, and

our Bl'-transversality reduces to the usual transversality.
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4. The BI'-Transversal Isotopy Theorem

In this section we generalise the important Transversal Isotopy Theorem
in [4] to our context of BlI'-manifolds and BI'-transversality.
We suppose that the [I'-family E is a T-family with BTI-product (see

Chapter 1, §2) " and let A, X, Y be Cgr—manifolds (r =2 1) modelled

respectively on E, F, G € E .

Lt 4 A C;F(X, Y) be a C;F—representation. Then the following

theorem is a generalisation of Theorem 18.2 in [4], p. U47.

(4.1) THEOREM (Openness of BI'-transversality). Let A, X, Y be

Cér-manifblds modelled respectively on E, F, G € E , where E s a

I-family with Bl-product. Tet W <Y be a closed Cér-submanifbld, Kc X

1 .
a compact subset of X and p : A > CPF(X’ A Cér—representatton.

Then the subset AKW of A defined by

A= {a € A |

X xW for =z € K}

Pa hpT
18 open tn A .

Proof. (see [u4]), Consider the Bl'-bundle of BIl-continuous linear
maps (see Chapter 2, §5):

T G 0 S M S

LBF(TX’ ¥ BT

whose fibre over a point (x, y) € X x__ Y is the space L

BT

el 2, X% TyY] of

Bl'-continuous linear maps from TxX to TyY . Define the following subset

Qi of LBF(TX’ TY) . An element A € LBF(TX’ ¥V ds.in L 1 Aff the

following condition is satisfied: if a € X , y € Y and 4 € L Xs TyY)

BF(Tx
then
(i) either y ¢ W , or

(ii) y € W , and there exists a Bl'-complement 2 of TyW in
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TyY such that the composite
&
e i
£ i
; = W @ > Z ] j 1
(where Q2 TyY Ty @br Z 1s the second pro]ectlon)
is a Bl'-splitting surjection.
Then § 1is open in LBF(TX’ TY) . Indeed we have
Q= Ql U QQ (1)
with
e e B (T, W) P LBT(TxX, TyY) then y § W} (2)

which is open in LBF(TX’ TY) because W 1is closed, and

DR T e B R B

T X, T Y) then
2 x 7y

pr
y € W and (ii) is satisfied} (3)

which is open in LBF(TX’ I¥) by Proposition (1.2), Chapter 3.
Now consider W' = LBF(TX’ TY)\Q , then W' is closed in
LBF(TX’ TY) . Consider the map

,.+F
0! @y KA CBF(X, Tk T 779 ) (4)

i
- ’ . ' : . - - o]
defined by aq > pa o pa(x) Txpa Then, since p 1s a CBT

. : 0 .
representation, . p’ is a C(_.-representation.

BT
By construction, pa’hBF xW if and only if pé(x) t W' . Hence
AKW = {a € A | pé(K) 0 W= ¢} (5)

which is open in A by Theorem 18.1 in [4], p. 46, about openness of non-
intersection. L/

We now prove the most important property of Bl'-transversality: the
stability of Bl'-transversal intersection. This is a generalisation of the

one in [4] to the BI'-context.
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First recall briefly what is meant by a Cr—isotopy. Let X be a
Banach manifold of class ol Cp—diffeomorphism G e

cF'-isotopic to the tdentity iff there is a Cr—map
g i dp X (6)

(where I is an open interval in R containg [0, 1]) such that
¢, = leX{t} ig a Cr—diffeomorphism for all ¢ € [0, 1] and Py = idX "
¢, = F .

Now, 1if 'WO and W are two submanifolds of X , we say that W 1s

C'-istopic to W, iff there is a ¢ -diffeomorphism

A oa e

such that F(WO) =W and F 1is Cp—isotopic to the identity.
: ; , i 4 Cr+l
Now let E be a [I-family with Bl-product and A, X, Y be BT -
manifolds (» = 1) modelled on FE, F, G € E . Suppose that X 1is compact
(hence F 1is a finite-dimensional space).

Let " p : A~ CZFI(X, Y) be a Cg;l—representation, Wc Y a closed

Cr+l

BT -submanifold, and a, € A a point such that pao hpp W .
For each a € A , let W& = pél(W) € X . Then by Theorem (4.1),
Py ABF W for a € A sufficiently near ay - Hence, by Corollary (1.2),

W& is' a Cg;l—submanifold & "X (i.e. a Cr+l—submanifold of X in the

Banach sense since X 1s a (Banach) finite-dimensional manifold). One

might expect that for a near ay > the submanifolds M@ and W& are
¢ 0

close. The BI'-Transversal Isotopy Theorem makes this precise. It says

that W_ and W are isotopic.
a a,
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(4.2) THEOREM (BI'-Transversal Isotopy Theorem, [4]). Let E be a

T-family with BT-product. Let X be a compact Cp+3—manifb2d (r = 1)

modelled on a (finite-dimensional) space F € E, A and Y be CgFl—
mentfolds. (¥ = 1) modelled on E, G € E. Let p : A~ Cg;l(X, Y) be a

Cr+l—representation and, W< ¥ be a elosed il

i1 .
T BT -submanifold. Let a, €A

be a point, and for each a € A , let = pgl(W) = i

W , there is an open neighbourhood N of a. . in A

Then 1f o, A g

0 o1

gueh that, for a €N , W, 18 Cr-isotopic to W,
0
Proof (see [4]). This proof is exactly the one in [ 4] rewritten

in our language of Bl'-manifolds and BIl-transversality.
£ . L . . ' +3
Since X is a finite-dimensional manifold of class (% (= 1Y) " and

W& is a closed submanifold of X , we can find a Cp+l—total tubular
0

neighbourhood of W, in ‘X (see [31] or [44]), that is, we can find an
0

open neighbourhood { of W& in X , a surjective map
0

W e W&
0

+1 :
and a (' “-vector bundle structure on T which makes  an open sub-
manifold of X .
Take a Riemannian metric on 7w and a reduction to the Hilbert group

(Lang [44], Chapter VII); and let :  *R be the Finsler associated

with this Riemannian metric in the usual fashion; that is,

2
lw]|” = (w, w) for w € Q (7)
where ( , ) 1is the Riemannian metric.

Thus we have an admissible covering of w by VB charts (a, ao, U)
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where U 1is an open subset of W& L 84@ s ﬂ—l(U) > aO(U) X Fa , and for each
0

such chart a norm

on F such that
o o

lw|| = Ha(w)Ha for w € ﬂ-l(U) g (8)

This covering is called the reduced atlas for m (see [4]).

To prove Theorem (4.2) we first prove a technical lemma.

(4.3) LEMMA ([4]). There is an open neighbourhood N of a, in

A such that, for a €N , W& = pél(W) 18 the image of a Cp+l—section

SFCREes SRt teyfor! G € N°; there is a Ea € Sr+l(ﬂ) such that

W& g ga(wﬁo)

Proof (see [4]). For each real number .-t > 0 we define

B {weQ | |lwl < ¢} (9)

and for an open subset U of W& we define Bt(U) C @ by
0

B (D) = {w e (@) | |lull <t} . (10)

i (a, o U] is a member of the reduced atlas with

O,

a(ﬂ_l(U)] = a,(U) x F_, then

a(B (U)) = a (V) x B_, (11)
where But is the open ball of radius t centred at the origin of Fu
For each x € X , we define an open neighbourhood Nx of a, in A

and an open neighbourhood Zm of * in X as follows.

(R} TF = é W& , then o () é W, Gingce W<€ Y 1is closed, and
0 0

the evaluation map eVO A XBF X > Y 1is continuous, we may take Nx and

Zx satisfying the condition
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BUATR L = @ for a € N, . (12)
(1) Suppose « € W& . Then p (x) € W . Choose an admissible
0 %0
Bl=chart (V, B) in Y at o, (x) having the BI'-submanifold property
0
for ¥ 4 that is,
B(V) = Vl + V2 —-Gl C@F G2 =G,
Blp. @) =0,
a
0
= =
B(W-A V) =V, S,
Because the evaluation map ev_: A XBF X > Y 1is continuous, we may choose
an open neighbourhood Nx of a, in A , a VB-chart [d’ Qg U) on
at & from the reduced atlas, and a real number ¢ > 0 such that
o (B, () €V forall ac¥ . (13)

Let Ha be the model space of the manifold W& (then aO(U) E-Hu )
0

and Fu be the model of the fibre of m in the chart (u, Qs U] , that is,

=1 ) 2
o (W) = (V) xF c B X F = (F) . (14)

Then as we see above

a8 (1)) = a (V) x B, .

Let Q2 : Gl @@T 62 = G »> 02 be the second projection and consider the map

fel, xa ) xB cAx . B XF +>V,cG, (15)

t BT

defined by
(a, u, v) — fla, u, v) = @, © B o e a_l(u, V) (16)

for g € N, - ué€ aO(U) E-Ha and v € Bat S-Fa :

Assume for simplicity that o(x) = (0, 0) and B(pa fayl =g
0

: : +1 .
Then f  1is obviously Cp . Furthermore, since p_ A W , we can
BT a, BT
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see that the partial Bl'-derivative
el Gl 2 By > 6,

is a BI'-isomorphism of F3 onto 62

By the Implicit Function Theorem (3.13), Chapter 1, (making Nx’ aO(U)

and Ba smaller if necessary) we have a Cg; -map

t

h : Nx X aO(U) g_A Xpr Ha > Bat g_Fu (17)

so that

f_l(o) N (Nx X aO(U) X Bat) = {(a, =, ha, x)) | (a, z) € . % aO(U)} 5 418)

We take
7z = o (o (U) x B ) = B(U) . (19)
X 0 ot t
Then
A 1
w,0 2. =a"|f (0)n (aO(U) X Bat) (20)
for a € Nx ; here fa . aO(U) X Bat + V, is given by
f&(u, v) = fla, u, v) for (u, v) € GO(U) X Bat . (21)

This completes the definition of Zx and Nx in case (ii).
By the compactness of X , finitely many of the Zx's cover— X , say

X =z G L v ) (22)

Then define N by

N =N ' lh SRR N 3 (23)
g n

We claim that this neighbourhood N satisfies the conclusion of the lemma:

for each fixed a € N , W& c 2 and W& intersects each fibre

Q= ﬂ_l(x) . (x € W ) ,» in exactly one point.
& a,

To prove this, fix a ¢ N . If =, é W; , then Zx N W& ~ g by
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CldYe Vopp 2. EH .. ., Zx C 2 by (19). Thus W& C @ . Choose
0 z

o € W& . We must show that W& N Qx consists of a single point. By (18)
0

and (20) and since the Zx s cover X , W& N Zx N Qx consists of exactly
% %

one point for some <2 =1, ..., n ; indeed, this is true for each

TRl ik n  Buch that! x € Zx . Suppose that W& N Qx contains two
z

points and let these two points be in Zx and Zx , respectively. By
T .

C12) wermust Liave ®,, ©. € W. . Then by (19),
e d a,
2, =B, (0) and 2 =B, (U] 2
7 7 J J
where & € U. nU. . But either ¢. =t. or t.=<t. ; hence either
- 7 J % i i 7

- nd &8 a2 op W b, fI 02 . Thus, in either case,
x T — @ z. x Jj— 8 .

1 J 7
W& N Qx N Zx (k =7 or J ) consists of two points contradicting our

k

previous conclusion. This proves that W& N Qx contains exactly one point.
Hence W& is the image of a section ga of' m for each a €l .

Furthermore, for a € N and each sufficiently small VB chart (a, Ao U)

of the reduced atlas, the map ha : aO(U) gl B.CF given by

Q t o

ha(x) = hla, ) for x € aO(U) (h being the map constructed above) is

the principal part of a local representative of Ea . As h  was Cg;l )
: Cr+l ) I T P . .

£ 1S .. ISince H and F are finite-dimensional, § 1s also

a BT o o a

tl .

€ , which ends the proof of Lemma (4.3).

The proof of Theorem (4.2) is straightforward, as follows: by Lemma

(4.3), we can find an open neighbourhood N of a, in A such that for

; il :
each a € N , there is a ¢’ gsection of % , Ea ,- such that



And for this

£

-~

a

Sl

r+l . : 0l % :
€S (w) ., &(W ) is CP—JSOEOPIC to
Q" 0

//

122
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CHAPTER 5

APPLICATIONS

In this chapter we give several applications of the BI'-Transversal
Density Theorem of Chapter 4. They are simple local results similar to the
global results given in [31], [33], [43]. Our method is also the one in
[31], [43]. But there are differences between the results obtained in this
chapter and the previous ones in [31j, [33], [43]. The first difference is
that the spaces in our results have different topologies from the one in
their results. The second one, and probably the most remarkable one, is
that we follow the BI'-technique instead of the usual standard techniques as
in £311,'[s3]1, [43l.

In the first section we fix the notations and prove two useful lemmas.
The next two sections, §8§2, 3, are devoted to two simple applications: the

Morse functions defined on an open convex and bounded neighbourhood

Q2 E;Rn , and the O-transversal vector fields on § . In §4, for the sake
of completeness, we include the Infinite Codimension Lemma from the paper
[43] of Kurland and Robbin which will be used in all later applications.

The remaining sections, §5 to §7,are for other applications which range from

o0 (o]
critical points of (€  local vector fields to the fixed points of C

maps.

1. Preparatory Lemmas

Throughout this chapter, § shall always stand for an open, convex and
bounded subset of an Euclidean space R' , and for each integer
J
B SR R (TR P<(n, m) shall stand for the space of polynomials of

degree less than or equal to k from R" +to another Euclidean space R"

m

P, m) =R x LR, R") x I2®", B") x ... x I*®", R, (1)
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defined in Example (2.1), Chapter 3.

We consider the space Bm(Q,:Rm] defined in Example (1.1), Chapter 3,

calibrated by the following sequence of increasing norms

I'= {l*] (2)

k}k:O,l,Q,...

is defined by (1) in §1, Chapter 3.

%)

where each |

k

Then we have the following:

(1.1) LEMMA. The space Bm(Q,‘FWU equipped with the sequence of

increasing norms in (2) 18 a separable Fréchet space.

Preofyr The! faet that Bm(Q,:Rm) is Fréchet is well-known. We need
only prove separability. For each integer k = 0, 1, 2, ... define the
space
o

UBk(Q,]Rm) S R T e

uniformly continuous on §}
g

Then it is easily seen that UB Q,:Rm) is a closed subspace of Bk(ﬂ,:mm)

Thus since Bk(ﬂ,:Rm) is a Banach space, UBk(Q,:Rm) is a Banach space for

each k=0, 1, 2,

We now prove that the Banach spaces UBk(Q,:Rm) are all separable.

First prove the result for k = 0 : we have

UBO(Q,:Rm) sed{pn > R" | ' € BO(Q,:Rm) and f 1is uniformly
continuous on @} .
By Theorem (3.15.6) in [16], p. 55, f can be extended to a uniformly

= m

continuous map f : > with £ compact.

—c m

Denote by CO(Q}IRm) the space of continuous maps § >R~ with the

norm HfHO = sup [|f(x)]] . Then since § is compact, we know that
2 €50

Oz mm : ‘ .
C (Q,:R ) is separable (applying the Stone-Weierstrass Theorem).
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Consider the mapping ¢ : UBO(Q,:Rm) %+ C (Q,:Rm) defined by
&(f) = f . Then it is easy to see that & is linear bijective with the
inverse & given by
s 4
37 (g) = gln for g €C’(Q, RN

Furthermore if f = &(f) , then we have

I7ll, = sup IF)l = sup IF@) = Ifll, - (3)

2 €52 2 €S2
Thus ¢ 1is a toplinear 1isomorphism. Hence UBO(Q,:Rm) is a separable
Banach space.
Now for each k =1, 2, 3, ... , define the mapping
P UBk(Q, R - vB’(q, P, m))
f Py

e s P ) - (Fla), DRz, ..., TR

fop all & € % .
Since each f ¢ UBR(Q,ﬁRm) implies immediately that Pkf € UBO(Q,:Rm) :
the map Pk is well defined.

P~ 1is obvioucly linear and one-to-one. Furthermore

1EFlly = sup {1 + IDF@ + ... + 0¥} = IflL, (1)
ALY

Hence Pk is continuous.

We claim that the image Pk[UBk(Q,:Rm)] is closed in the separable

0 k
Banach space UB (Q, Bin, m))
k Kk m :

Indeed; let i fZ c P [UB (Q,ﬁm )] be a sequence converging to (
. ; .
in UBO(Q, P<(n, m)) Wl ihat ds,

k
S (5)
Bons - Lge

Then we have by (5),
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Z h 0 L hUR ’
Hence {fl} is a Cauchy sequence in the Banach space UBk(Q,:Rm) « - Thus
fZ + f for f ¢ UBk(Q,:Rm) i 3
,Ifz_f’lk+o as L » o,
Thus we have
”Pku—Pka 0 as - lreiel, (6)
0

Let € >0 be given: then (5) and (6) show that
127zl < 26 -
Since € > 0 1is arbitrary, we must have
12l = o .

Hence

c = Py

: . 0
and Pk[UBk(Q,:Rm)] is closed in UB (Q, Pk(n, m)) A SThuE Pk[UBk(Q,:Rm)]
is a separable Banach space and Pk is a toplinear isomorphism. Hence
UBk(Q, Rm) i asepardble Banach spgee for each k = 0, 1, 2, «+e « (7)
’ oo m
Now if f € B (Q,:R ) , the mean value theorem proves that

Dkf : ‘2> Lg@Rn,:Rm) is uniformly continuous for all k = 0, 1, 2,

Thus we have

8

B (2, R") = kr—]o [ws* (2, RM)] . (8)

Since for all k = 0, 1, 2, , we have

5”(2, R") < us*(2, R < 5(a, R") (9)

the topology induced on Bw(Q, Rm) from the one of Bk(Q,:Rm) coincides

with the one induced by the topology of UBk(Q,:Rm) .* Thus by (7),; each
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% on UBk(Q, Rm) induces a countable basis for the induced topology on

o m . : !
B (Q,”P ) S anie Kos 0. .1 2%l aiWis ceuntable and, since the {

.”7{} is

increasing, Bm(Q,:Rm) equipped with T = {H.”k}k:O il has countable

w - .
basis. Since B (Q,:Rm) is metrisable, this 1s equivalent to the fact that

Bm(Q, EWU is separable. //

(1.2) REMARK. Since the sequence {} is increasing,

'”k}k:o,l,z,...
if we endow Bm(Q,:Rm) by

r= |

k}kzio

00 o
where iO is an integer, then B (Q,:Rm) is still a separable Frechet

space because [' and [ are equivalent.

Note that each 'Ij

on Bw(Q, Rm) induces a norm pj, on

Bw(Q,:Rm) x R? as in §5, Chapter 1:
p;(E, ) = [E]l; + llzll for all (€, o) B (e, M) xR* . (10)

The following lemma shall be used in all the proofs of the applications

of this chapter.

(1.3) LEMMA. et 9 <R" be an open convex bounded subset, r be an
integer greater than of equal to 1 and k be an integer such that

0 <k =r. Then we can always find an integer iO such that the following

assertions are true:

(a) the map evy Bm(Q,ZRm) X Q> Q X Pk(n, m) defined by

ev, (£, @) = (z, T R R T (N - ol

with respect to the calibration T = {pr+k+i}i>i on

0

Bm(Q,.Rm) x R"  and the norm-calibration on R* x Pk(n, m) ;
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(b) the Bl'-derivative Devk(é, - Bm[Q,ﬁRm) x R > R" x Pk(n, m)

(for each (&, x) ¢ Bm(Q,iRm) x Q ) is onto and has kernel BI-
splitting in B (2, R") xR" ;

(e) for any (BT-splitting) subspace & of R" x Pk(n, m) the

inverse image E, = Devk(E, x)_l(Fl) 18 Bl-splitting in

Bm(Q,ﬁRm) x R" and has a - BU-complement E, such that the

restriction of Devk(g, &) Lo L, 18 a Bl'-isomorphism onto a
: n K
BI-complement F, of F, in R x P (n, m) 3

(d)  the subspace E, = Dev,(E, x)_l(Fl) Bl'-adapts the first

projection B (@, ') xR*' > B (2, R

Proof. (a) By the first part of Proposition (6.2), Chapter 1, the map

evk is CZF with respect to the calibration T = {pr+k+i}i20 «. . Then for

the integer 4 (determined in (b)) vy e M1 T CZF with respect to

the calibration T = {p }._. and still has the same BF-derivative
rtkt+i =

Dev, (g, &) at (£, x) ¢ B(, R") x q .

(b) The ontoness of Devk(g, x) 1s the second part of Proposition (6.2),
Chapter 1.

For fa fixed (&, %) ¢ Bm(Q,:Rm) X  , define (see [4]).

e R | Do) =0 fer i=0,1, ..., k],

1

K g € Bm(g,jmm) | D'c 20 for i KEdd ).

2

0o m
Then Ki and ki are closed subspaces of B (Q,:R ) (equipped with the

family of norms 120 ).

”.”P+k+i 5
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We now prove that Bm(Q, Rﬁ) - Kl E%F K2 . Indeed, first prove that

11

Bw(Q,?Rm) = Kl @K2 . Let [ € Kl N K2 then since ch @ for 4 = k+1 |

Taylor's Formula (see [4], p. 4) gives us

k
< (y=2) + oow * 2—%$El (y—x)(k)

o R G

/M

ly) = tlx) + fFort 'y

Since ¢ € K this implies Z(y) =0 , Wy € Q ; that is, ‘T =0 .

l b

= 80F
Hence Kl N K2 {o}

Furthermore Kl # K2 = Bm(ﬂ, Rm) as seen by the following argument.

Let T € Bw(Q,'Fm) . Define the mappings

NI EﬂRn > K" S oy cR' >R/

i 2 e
by
oy, DT D*t(x) (k)
CQ(y) = gix) + — (y-x) + ... + ——?T——~(y—x) (Yy € Q) (12)
and
Ci(y) = t(y) - g,(y) for all y €Q . (13)

Then since ) is open, convex and bounded, it can be seen that

Ly B EB [0 B .

1* 9D

Furthermore by (13) we have ¢ = ¢, + ¢

1 with Cl € Kl (because

2

DJCl(x) E DJC(x) - ngz(x) = O‘ ForeeEN g S 2. ..., K by (12)) and

Bl :
La6dly (because D ¢, 20 for 1 = k+1 ].
Note that
k,={t eB (2, R") | 'z =0, © = ke1}
- . R
= P'(n, m) = space of polynomials >R
of degree less than or equal to %k . Thus dim K < + o .,

2
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Since dim K2 < + © and Kl (E)K2 = B (Q,:Rm) , and since B (Q, Rm)
is a Frechet space (by Lemma (1.1)), this is a topological sum.
Thus the mapping
[0 0] m b
e e SRR T AL SR R A o (14)
is continuous.
Furthermore, since D%C =0 for [ € K2 s, 1 = k+l , we have on K2 s

HCHj = llzll, for all j =k ,all ¢ €K,

Hence o alliisg = e@ e n 2y s and all g € K2

el = ),
The continuity of the mapping (14) implies there are a positive number

oo and an integer io such that

HCQHk < aHC”P+k+iO for all ¢ € B (Q,]Rm)

Hence
”CQHr+k+i i ”CQHk y u”C”P+k+iO = OL”C”mkn' e
for all. & = iO and all ¢ € Bw(Q,]Rm) , which proves that
(o) m Pt
B (2. R) = K, @ K,
i ot {pr+k+i}izio
By a simple calculation we have
Ker Devk(g, 2) = i 10} . (16)
Furthermore
oo < n
B o, /') xR = (Kl x {0}) Oy [KQ x R ] . (17)

Indeed, for an arbitrary (g, h) € Bm(Q, Eﬁq X Pﬁ’, we can write

C. € K. . Hence

C = Cl + 52 with Cl € Kl " 5 5

(6o ) = (gy0 0) + (g0 7) € (K, x (0}) + {K x:m”]

2
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On the other hand, if (g, k) € (Kl X {O}) N [KQ X:Rn} then

(¢, h) € K| X O =0 o T € A

(c,h>ez<2><1R”=ce1<

Since Kl N K2 el Tplies =0 ; di.e. (T, h) = (0, 0) and

(k, x {0}) n [KQ xIR”] = {(0, 0)} .

Thus we have Bm(Q,:Rm) x R? = (Kl X<{O}) C){K2 X:Rn] . Furthermore, the

mapping
(¢, h) = (cl, 0) + (CQ= n) (52, h) (18)
is continuous (because Kk, xR" is finite dimensional) and for all ¢ = 4
we have
pr+k+i(c2’ h) = HCQ”r+k+i + il

= lgolly + 1Bl = ollgll, gz + 7

= BUIZl g IR = B pger (80 )
where B > max(a, 1) . Hence we have (17).

Since Ker Devk(g, x) = Ky {0} , (17) proves that Ker Devk(E, e is

Bl'-splitting in Bw(Q, Rm) x R” .

(G If Fy is a (BI'-splitting) subspace of R" x Pk(n, m) then

dim Fl < + o , codim Fl = 7 < + » because R’ x Pk(n, m) is finite-

dimensional. We also have

K, x {0} = Ker Dev, (£, @) € ) = Dev, (£, &)} (F) . (19)

1

Let us denote by [ = E,n [Ké X Rn] C K, x R" , then by (19) we have

E, = L @ (K, x {o}) . (20)
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; . A e .
Since codim L < + © and since K, X R 1s a normed space with norm

2
. . n
= X
H(CQ, 3 HCQHk + ||#]] , we can find a complement E, of L in K, R
such that
= 8
| m(L) C%F W(EQ) K2 (see Chapter 4, §3), (21)
| where T : Bm(Q,:Rm) x R"* > Bm(Q,‘Rm) is the first projection.
' Furthermore, since Devk(i, x) 1is onto by part (b), we have
| | codim E, = dim E, = 1 (22)
and Devk(E, x)IE is one-to-one.
2
n k
Let F2 = Devk(g, x)(EQ) cR” x P*(n, m) ; then
dim F2 = codim Fl = ? ’ (23)
Furthermore, it can be seen easily that
F2 N Fl =0k (2u)
Thus (23) and (24) imply
F, ®F, =R" x P(n, m) . (25)
Since on R x Pk(n, m) we have the norm calibration, we also have
P F :]RnXPk(n m) (26)
LEEE 12 : p
Thus, Devk(g, x)IE : E2 > F2 is one-to-one, bijective, BI'-continuous
2
with E2 equal to a BI'-complement of El . F2 equal to a BI-
complement of Fl . Since E2 E_KQ x R" where the induced calibration
reduces to the norm H-Hk + |[*|| , the Banach theorem implies
Devk(g, &y E2 > LQ is a Bl'-isomorphism.
(d) By the proof in (c), E2 is a Bl'-complement of L 1in K2 x R" .
We also have
LR
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B (2, R") xR" = (k) x {o}) B0 [K2 ij”]
=@ dd) e (e, 2]
- [(Kl a3 Oor ] Opr £y -
Thus, by (20),
B (2, R") xR' = F @ F, . (27)
Furthermore, we have
ﬂ[El] £ ﬂ((Kl x {0})+L) :‘W[Kl x {0}) + m(L) ,
n(£,) = K, ® n(L) since m(L) €K, complementary to Ky - (28)
Thus
n(El) +m(E,) = K+ (m(z)+m(E,))
=K K, (by (21)).
That is,
(z,) + n(e,) = B (2, R") (29)
Now if 2z € m(E;) n m(Z,) then z=m(e) with e, ¢ E, . By (20) we can
write e, =1+ (k;, 0) with T €L , k ¢ Ko PlHente

ﬂ[el) = w(l) + k; with w(i) € n(l) €&, .
This implies kl = 0 and ﬂ(el) € m(L) .
Thus 2z & ﬂ(el) € m(L) n ﬂ(Ez) = {0} and we have
n(z) ®n(E,) = B (2. ") . (30)
We need to prove that (30) is actually a Bl-sum. Indeed, we have
n(£,) ® (&) = [k, ® m(L)] ®m(E,) ,
m(#) on(E) =k & [ enE,)] =k 6,k =8 (@, R) . (31
We want to prove that the mapping ﬂ(El) @)ﬂ(EQ] > W(E2) 5

2= ﬂ(el) * ﬂ(92)i—+ W(@QJ (32)
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is Bl'-continuous.
But we can write, by (31),
Z = ﬂ(el] + ﬂ(eQ) = kl + TEL) + W(ez) € K, E%F K,
Hence there is a constant o > 0 such that
pr+k+i(ﬂ(2)+ﬂ(e2)) = apr+k+i(z) gomed L =00 T 2y e (33)
Since (L) Q%F W(EQ) = K2 , we can find B > 0 such that
pr+k+i("(€2)) = Bpr+k+i(ﬂ(1)+ﬂ(e2)) G Al 2 = D, L Py i o (34)
Thus (33) and (34) give
: = i P AR (TR e 35
pr+k+z(ﬂ(82)) Bapp+k+$(2) R T 95
and we have
o m
ﬂ(El) & n(E,) = B (QT:R ) (36)
which proves that FE., Bl'-adapts T . L

1

2. First Application: Morse Functions

Let giRﬂ be open convex and bounded, and consider the space
Bw(Q,:R) of all (¢ functions § >R with all derivatives bounded on § .
Then Bw(Q,:R) is a separable Fréchet space by Lemma (1.1).

Regall that '@ peint x € 8 1is a eritical point of f ¢ Bw(Q,:P) iff

Dilaan =0 g8 & non-degenerate eritieal point of f iff the Hessian
32
Hess(f) = --£—-(x) ig non singular (see [31], [33]).
& Bxiaxj

A function f € B (2, R) is a Morse function if all the critical points
of f are non-degenerate. We shall denote by M (Q, R) the subset of

Morse functions in Bw(Q,:R)

Morse functions can be characterised by condition on  1l-jets as

| 4
follows. Let J (2, R) = Q xR x L@Rn,ﬁR] be the space of 1l-jets Q -+ R ,

and let
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Sl = {O € Jl(Q, R) | corank o = 1}

be the submanifold of Jl(Q, R) defined in [31], p. 60. Then we have (see

[31], Definition 6.1 and Proposition 6.4),

M (2, R) = {f‘ ¢ B(2, R) | j°F ’*‘51} . (1)

; . : 1
Note that the submanifold Sl has codimension n in J (2, R) (see

[31], Theorem 5.U4).

(2.1) PROPOSITION. The set MW(Q,ZR) of Morse functions is dense in
B(Q, R) . In other words, every function in B (2, R) can be approximated
by Morse functions.

Proof. We apply the BI'-Transversal Density Theorem. Put

A = Bm(Q,]R) considered as a Bl-manifold and in the BI'-Transversal

Il

Density Theorem read X = Q c R” P Jl(Q, R) = @ xR x L(IRn, ]R) , and

W = Sl o Jl(Q, R)
£ : Xl 1 b el
Define the representation p : A > CBF(Q’ o (Q,.R)) by BiplPya=vng~F |

where f € A = Bm(Q,]R) and jlf e = Jl(Q,:R) is the 1-jet prolongation
ghT Frtees 811, [331Y (seealsc $u),

Then we have all the conditions of the BI'-Transversal Density Theorem:

v : B (LR S0 x P, 1) fs 0YL iF ve take the

BT

calibration T = {p2+i} given by Lemma (1.3).

2%
0

(a) 0 E;Rn is open, thus considered as a manifold of dimension # 3

Sl has codimension #n .

{b), A= Bm(Q,:R) is second countable by Lemma (1.1); § is second
countable.

(c¢) 1> max(0, n-n) = 0 .
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(d) follows from part (c) of Lemma (1.3).

evp ABF Sl

{e) Fop allw (f, £} € A Xar 2 such that

y = 3 fx) = (z, PLF)) ¢ i

the Bl'-splitting subspace Devp(f, x)_l(TySl} of Bw(ﬂ,ﬁm) x R Bl'-adapts

the first projection Bm(Q,]R) x R +-Bm(Q,:R) by part (d), Lemma (1.3).
Thus

A, ={f €B (@, R) | p

g f.m Sl} (2)

is dense in A

But this (2) ig exactly (1). A

(2.2) REMARK. According to the general result given in [33], p. 147
(or [31], p. 63) for any manifold X , Morse functions X - R form a

dense (and open) set in C;(M,]R)

If we take X = { the open submanifold of R” , then Morse functions

in Cm(Q,]R) is dense in Cg(Q,ZR) , the space Cw(Q,:R) equipped with the

(strong) Whitney topology. But the induced topology on Bm(Q, R) 1is not
P gy

the same as the topology defined by the sequence of increasing norms

{lI-

Hence our result, for this particular case, seems to be new.

Ik}kzo

3. Second Application: 0-Transversal Vector Fields (see [41, p. 62)

Let SZgiRn be open convex and bounded as before. Consider the

tangent bundle TQ = Q x R*  and the space of all ¢ sections of T -

that is, the space of all maps & : Q > TQ such that mo g = idQ where

m : TR > Q 1is the natural projection.
Thus each & : Q > T2 has the following form:

Eleie= {2, E(x)). for all =z, €8 (1)
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(e e]

~

where £ : Q >R is ¢

Denote by ST(TR)  the space of all such & with E € Bm(Q,:Rn]
defined in §1:
ST(re) = {& : Q@ >10 | £) = (z, E(z)) for all =z € Q

~

and £ €B (2, R} . (2)

Consider the usual topology on Bw(Q,ZRn) defined by the sequence of

,, and forweach 1k = 05 1, 2,.0.... define

increasing norms |

k

lEll, = NEN, for a1 £ € ST(TR) . (3)

Then S (T9) equipped with {”.”k}k>0 is a separable Fréchet space

(o]
isomorphic to B (Q,:Rn) via the toplinear isomorphism

¢ : S (1) »~ B (2, RY) (4)

defined by &(§) = £ .

Now a point =z € Q is a critical point of £ € S(TQ) iff
E(x) =0 ¢ R" g teatiisl Y Bls) = (¢, 0)... Then z is called a

nondegenerate critical point of & 1iff Dg(x) . R* > R* is surjective.
This is equivalent to the requirement that DE(x) is a toplinear
isomorphism.

Denote by (TQ)O the image of the Zero section in 70 3 that is,

(1), = {0, €12 | x €@} =0 x {0} caxR*. (5)
Then (TQ)O is a closed submanifold of TR and has codimension equals #n .
Thns ee Igvatcritical point of £  iff E(x) ¢ (TQ)O and it is a

nondegenerate critical point of § iff

£ A, (TQ)O : (6)

Indeed we have DE(x) = (Id, Dg(x)) 1 R xR 5 thas

g () [R™) ((re) ) = () ; (7)

Fidees) St

that is,
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R* xR" + ®" x {0}) =R" x R (8)

if and only if Dé(x) R R 4 onto.
We say that &£ € 8 (1) is a O-transversal vector field (on § ) (see

(4], p. 62) iff every critical point of & is nondegenerate. Let G:(Q)

denote the set of all O-transversal vector fields in Sm(TQ)

G‘;’(Q) ={g eS(m) | £ & ()} . (9)
(3.1) PROPOSITION. The set GS(Q) of O-transversal vector fields on

Q s dense in ST(TQ)

Proof. 1In the BI'-Transversal Density Theorem read for A, X, Y ,

W respectively Sm(TQ), Q, 5 29 «R® . (TQ)O = Q@ x {0} and consider

S7(m) > cl(2, )
. >
p L2 Bl" 9 =
defined by p(£) = £ where the right-hand side & 1is considered as a ¢’
n
map 2 > 7TQ = Q xR" .
Then eVp : S (TR) x Q » 2 = Q@ x R is the composite:

2 <I>><idQ 1L e g
S x Q@ ——=p (2, R") x90 —% 9 x PP, n) (10)

(&, &) — (&, z) > (, é(x)]

~

where the map ¢ : & > £ is the Bl'-isomorphism (4), and ev, is defined

in Lemma (1.3).

defined in Lemma (1.3). Then

}

We consider the calibration {p. e s
L=

: 1
evp 1S CBT and we have:

(a) & gﬁRn has dim =4 ; W = (TQ)O has codim = n

Sm(TQ) and §} are second countable;

(b) A

(c) 1> max(0, n-n) = 0 ;

(d) il &BF W follows from part (c) of Lemma (1.3) and (10);
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(edesforseach (E, &) €A XBT ! such that pg(x) = E(p) EW = (TQ)O
we have
Dev (&, 2) = Dev (&, x) o (& x id ) (11)
0] 0 Rn
and condition (e) follows quickly.
Thus the BI'-Transversal Density Theorem gives
A, = e €Sy | £ am b (12)
is dense in S (79)
Since AW is exactly Gz(ﬂ) we have proved the proposition. i

(3.2) REMARK. Every g ¢ GE(Q) has isolated critical points.

Indeed, if (¢,(0) denotes the set of all critical points of £ , then since

g
E A (TQ)O , we have by Corollary (1.2), Chapter 4,

Cg(o) = E_l((TQ)O) = submanifold of dimension zero. (13)

Thus, Proposition (3.1) also proves that there is a dense subset

G?(Q) g;Sm(TQ) such that every & ¢ G:(Q) has only isolated critical

points. In the third appiication in §5 we shall prove this result directly

using the Infinite Codimension Lemma of Kurland and Robin ([43]).

4. The Infinite Codimension Lemma

For the sake of completeness, we include in this section the first two
sections of [43] about the Infinite Codimension Lemma.

We denote by En or simply E the ring of germs at O ¢ R? of real
valued Coo functions of #n 7real variables and by Mn or simply M the

maximal ideal in E . Thus M consists of those germs which vanish at O

From the formula

1

£ of
fled = FLo) %‘ Jo Bxi (tx)dtxi
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it follows that M is generated by coordinate functions

M=<(x L (1)

10 e &
We frequently use:
(4.1) LEMMA (Nakayama). If I and I' are ideals in E and if I
18 finitely generated and
Fuc Rt M
then "F'c T,

Proof. Let gi> =+s Gy generate I . By hypothesis

where “R. -€ IT" "and "at. €M 7. Thus
1% zJ

ij_aij)gj = hi . (2)

28
J

The matrix on the left hand side of (2) is invertible as it is the identity

matrix when a = 0 . Thus each generator g; of I 1is a combination of
the elements hi i s henee in  IT //

As an application of Nakayama's lemma, we prove:
(2] PROPOSETION™ B2 B8 an 10647 in E of codimension less than

or equal to k . Then Mk = B,

By "codimension" we always mean '"codimension as a real vector subspace
of a real vector space".

(4.3) COROLLARY. 4n ideal in E has finite codimension if and only
1f it contains some power of the mazimal ideal.

Proof. Consider the sequence

kel € I+ Mk £ s €I % A1§;I + £t = E

IcI+ M
theve are K + 2 inclusion signs and if I has codimension less than or

equal to k at least two inclusions must be equality. Thus

I + MJJrl =7 + W
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for some F =0, 1, ..., kK 80 M e I MY so MY C I Dby Nakayama's

lemma. This proves the proposition as Mk E_MJ since j =k . The

corollary follows immediately from the fact that Mk has finite codimension

in kb (in fact the monomials of order less than %k form a basis for

Kk
E/M }. &
The main importance for us of ideals of finite codimension lies in the
following.

(4.4) PROPOSITION. Let I c E be an ideal. If I has finite

codimension, then the origin i1s at most an isolated zero of I ; that is,

there are elements hl, Bt hm of I such that the only =x ¢ R* for
which hl(x) = ses = hm(x) =0 e & =0,
Proof. If I has finite codimension then Mk < I for some k (by

Proposition (4.2)) and we may take # b hm to be the monomials of

l,
order k . Fi
Now let Jk(n, 1) denote the vector space of k-jets of germs at 0

of maps f : R? >R . 1In other words , Jk(n, 1) is nothing but the vector

space Pk(n5 1) (defined in §1) of all real polynomials in n-variables of

order less than or equal to k . This is a quotient of E

1

B0, 1~ B (3)
and is hence an algebra. (The multiplication is performed by multiplying
polynomials in the usual fashion and then dropping the terms of order

greater than k .)
The projection of E onto Jk(n, 1) 1is denoted by
S R (1)

Of course, jkf(o) is nothing more than the Taylor polynomial of order k
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of f at 0 . A polynomial is a real valued function (among other things)
so we have an inclusion

k
d {n, L)< E (5)

but this inclusion (unlike the projection (4)) must be used with caution as

it does not behave well under changes of coordinates (i.e., is not invariantly

defined).
(o0} "N p
We denote by En the set of germs at zero of C maps g : R >R
2
Thus E = E =E and E is a free E-module on p generators.
n 4 | Py

Similarly, Jk(n, p)  denotes the space of  k-jets of madps g € En (the

b

space Pk(n, p) defined in §l). This is a free Jk(n, 1)-module on p

generators and a quotient of E

n,p

e e (6)

n,p’ M M,p

We denote the projection by

x
Emp+fm,m:gh+ggm (7)

and also use the non-invariant inclusion

: 8
Jk(n, p) E-En, (8)
An element g € En,p consists of p functions gys v gp € En,l

and we denote by <(g) the ideal in E = En 1 generated by g., ..., gp
= e ] 3
(g) (gl, 3 gp) (9)

The inclusion (8) means that every u ¢ Jk(n, p) determines an ideal (u)
in E . It also determines the ideal in Jk(n, 1) generated by its

coordinates u &l up € Jk(n, 1) . We denote the latter ideal by (u)

s k

k+l) k+1

Cidy = [(u>+M g_Jk(n, x) .. (10)

% /M

Now let V be a finite dimensional vector space. Then an algebraic



143

vartety in V is the zero set of a finite set of functions p : V>R
where each p(x) is a polynomial in the coefficients of z € V. relative to
some (and hence any) basis of V . According to a theorem of Whitney [797],
an algebraic variety is a finite union of submanifolds. The codimension of
the variety is the codimension of a submanifold of largest dimension from
this finite union.

The following theorem called the Infinite Codimension Lemma is given by
H. Kurland and J. Robin ([43]) and shall be used in all the later
applications.

(4.5) THEOREM (Infinite Codimension Lemma, [43]). There are subsets
wk E_Jk(n, n) , k=1, 2, ... such that:

(a) if g ¢ En , and jkg(o) ¢ W then either g(0) # 0 or

g has an isolated zero at 0 ;

(b) Wk 18 an algebraic variety;

(c) the codimension of Wk in Jk(n, n) tends to infinity with

k .
Proof. For each lntegen 'k = 1, 2, .., -, we let Wk be the set of all

u € Jk(n, n) such that the codimension of (y) in Jk(n, 1) is greater

k
than k

i o {u € Jk(n, n) | codim ((u)k) > k} - (11)
Jk(n,l)

We shall prove the properties (a), (b), (c) of Theorem (4.5) by two lemmas.

(4.6) LEMMA. rLet g ¢ E . - Then jkg(o) e if and only if the
codimension of <u)k n Jk(n, 1) 1is greater than k .

Proof of lTemma. Suppose jkg(O) £ W~ « - Then <jkg(0))k has

codimension less than or equal to Xk in Jk(n, 1) . By the second
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: : : +1 h :
isomorphism theorem (Jkg(0)> 4 Mk has codimension less than or equal to

R AnpE oSt o and jkg(O) differ by terms of order k + 1 this last
k+1 k+1

ideal is (g) + M . By Proposition (4.2) we have Mk chgr + M 8 .. il

by Nakayama's lemma Mk«g_(g) s S04 gk =Ag) + Mk+l and has codimension

less than or equal to k . Conversely if (g) has codimension less than or
k+1 k : :
equal to k , then M c M c(g) , so the Noether isomorphism theorem
K Wk o
shows that J g(0) § as required. //

Proof of (a). (a) then follows immediately from Lemma (4.6) and

Proposition (4.4).

Proof of (b). Let d = dim(Jk(n, 1)) -k : Then Wk is the set of
all u € Jk(n, n) such that the vector space (u)k has dimension less than
d . The set of all elements xaui € Jk(n, 1) (where & ranges over the

monomials of order less than or equal to k in the coordinates Xys eees T

and u u ~are the coordinates of u ) span the vector space (u)

15 v L

Think of elements of Jk(n, 1) as column vectors and let M(u) be the
rectangular matrix whose columns are the k-jets of the xuui . Then (u)Z<
has dimension less than d if and only if every d X d minor of M(u)
vanishes. This expresses the condition u € Wk as a system of algebraic

equations (each of degree d ) in the coefficients of u proving that Wk
is algebraic as required.

Proof of (c). To prove (c) we need another lemma.

B 1o - Jiin, w) » I(n, n) be the
projection

m(39(0) = 5500

for . g € En,n . Then
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vt e n )
: e Wk
Proof of Lemma. Let g €¢E _ satisfy j g(0) ¢ . By Lemma (4.6),
(g) has codimension less than or equal to k in E . Then by k < I and
. 0 L )
Lemma (4.6) again, j g(0) ¢ W~ as required. 4

\ ; : : y . -1 ]
Now 7 1s a linear surjection so the codimension of 7 (Wk] in

Jz(n, n) 1s just the codimension of Wk in Jk(n, n) . Hence to prove (c)

it suffices to show that

for every .k 5 there is an [ > k such that no point of WZ is

an interior point of n_l(wk) : (12)

To prove this choose %k and let % € En be the germ whose coordinates
>

are given by

h.x) = x@+l ,
Z 7

: 1 . - !
T % Ly whvy 0. Clesrly Mnk Cc (h) so that (h) has finite codimension.

Let I be the codimension of (%#) in E . Then by Lemma (4.6),
IO Y
N P b L
OWw suppose g € En s sdatisfies J gl0) e W~ , and for ¢ €R , let
iy & (A~8)g i thos
As Jkgt(O) = (l—t)jkg(O) , 1t follows that ngt(O) ¢ ﬂ-l(Wk} for all ' %

By (a) the condition

b

d gt(O) ¢ W
1s algebraic in ¢ . It holds for ¢ = 0 but fails for ¢ = 1 ; thus- it
can hold for at most finitely many ¢ . In particular it fails for ¢

arbitrarily close to zero showing that jzg(o) is not an interior point of

ﬂ"l(wk) as required. £
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(4.8) REMARK. Equation (11) for the definition of Wk is rather
explicit and one could presumably compute the codimension of Wk by
counting the number of independent equations from this list. This gives
another method to prove (c). However that looks rather tedious.
5. Third Application: Zeros of ¢~ Vector Fields
Let § gﬁRn be open convex bounded as always and let Sm(TQ) be the

space of ¢~ vector fields on §Q whose derivatives of all order are

bounded (see §3). Recall that each £ ¢ SK(T )., has the form
Ea) = (x, g(x)) tor . ©.€ ., where £ € Bm(Q,ZRn)

We endow Sw(TQ) with the family of increasing norms

el = 12l = swp {IE@] + ... + 1@} for & =0, 1, 2,
€

defined by (3) in §3. Then S (7TQ) is a separable Fréchet space isomorphic

to Bm(Q,ZRn) by the isomorphism & defined in (4), §3.
Recall that a point x € Q is a zero (or eritical point) of & iff
E(z) =0 ¢ R" .

(5.1) PROPOSITION. There is a dense subset &< S(TR) such that
every & € G has the property that & has only isolated zeros.

Proof. We apply the Infinite Codimension Lemma (4.5) to find an

integer k so large that
q = codim(Wk in Jk(n, n)) > n (1)
where Wk is the algebraic subset constructed by (11) in §u.

Let Jk(TQ) > i be the vector bundle of k-jets of vector fields on

2 (see 4], p. 19):

Jk(TQ) = Q x Jk(n, n) . (2)

Define
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W= ax W eaxKa, n) = Ko . (3)

Then ﬁ is a finite union of submanifolds of Jk(TQ) of codimension

greater than »n :

W. where for dig dos ... ﬁﬁ = submanifold of Jk(TQ)
1

W o=

HV: =

J

and ,, = codim|W. in Jk(TQ) 2 - )
QJ 7

Moreover, if £ : Q > TQ = Q xR" is any vector field such that
K i) : .
J E(Q) nW =¢g , then & has only isolated zeros in by part (c) of the

Infinite Codimension Lemma (4.5). Here jkg 80 +-Jk(TQ) denotes the

k-jet extension of E s 99 3 .

We now apply the BI'-Transversal Density Theorem. Let A = S (7Q) and

consider the map

o0 k
p : A Cp(a, 5 (1))
: <k s ; o
defined by p(g) = j & for each § ¢ A ; J & 1s considered as a (¢ map

Q> Jk(TQ) « - Ther

SV A X 2 N T

N e e (e) = [y B B2))

ig . of class Cgr by Lemma (1.3) where r 1is an integer

r > max(q, k) (5)

and Fi= {pr+k+i}i2io given in Lemma (1.3).

PeXine for each 1 = 5= ¥,
" K N
G. = {E GiA ERY n WL = ¢} (6)
dJ J
and consider

G={e €A | e ai =9} . (7)
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Then it follows quickly that

{8 € S (1) | £ has only isolated zeros}. (8)

D
1l
0
e
1

fopreach 4 (1L =g =N) , evp and ﬁj verify all the conditions of

the Bl'-Transversal Density Theorem:

(@) 4 "has dim = n ﬁﬁ has codimension qj S n .z
(B, LA = Sm(TQ) and 2 are second countable;

(e} B> max[O, n—qj) since n - qj & Q7

~

(d) ev, @BF Wj by part (c) of Lemma (1.3);

(e) follows exactly as in the proof of Proposition (3.1).

Thus for each . =g = & Gj is residual in Sw(TQ) = A since we

have

: K ~
€ G . ff AW. 9
£ GJ FEE S WJ (9)

since codim ﬁj in Jk(n, n)| = qj >n = dim

Hence G 1is residual-by (8), and thus is dense in S7(TQ) because
o - -
S (1) 1is Baire. //
(5.2) REMARK. Proposition (5.1) proves the existence of a dense subset
G E_Sm(TQ) with the property that each & € G has only isolated zeros;

while Proposition (3.1) exhibits explicitly such a subset, the set G:(Q) of

O-transversal vector fields on {2 (see Proposition (3.1) and Remark (3.2)).

6. Fourth Application: Finite-to-One Maps

Let QgEJRn be open convex and bounded as always and let

i e Bm(Q,ﬂRn) . We say that f 1is locally finite-to-one (see [43]) iff

every point x € fl has a neighbourhood U c f§ such that f_l(y) Al is
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finite for all y € R"

Recall that Bw(Q,:Rm) is a separable Fréchet space calibrated by the

sequence of increasing norms

Il = sup {If@I + IDF) + ... + D%} (1)
x €50

defined in §1.
(6.1) PROPOSITION. There is a dense subset G c B (Q, RY) such that

each f € G has the property that f : Q >R" is Locally finite-to-one.
Proof. We apply the Infinite Codimension Lemma (4.5) to find an integer

k so large that

q = codim(Wk in Jk(n, n)) > n (2)

where Wk is the algebraic subset constructed by (11) in §u.

Consider the k-jets bundle Jk(Q,:Rn) 0 X Jk(n, n) = 0 x Pk(n, n)

and define

Jk(Q;ﬁRn) : (3)

W o=Q x Wk«E_Q X Jk(n, n)

Then W is a finite union of submanifolds of Jk(Q;:Rn) of codimension

greater than n

Consider the map p : A = Bm(Q;:Rn) - Cgr(ﬂ; Jk(Q;:Rn)] defined by

p(f) = jkf for each f € A , where » 1is an integer sufficiently large,
say r > max(g, k)

Then, as usual, the map

e%) - A Xpr Q +-Jk(Q;ng = () % Pk(n, n) (4)

i v = e, 76, e, D))

is . with respect to the calibration T = {p defined in the

BT r+k*i}i2io

Lemma (1.3).
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etk @ ="{F ¢4 | jkf(Q) ny = #} then G is dense in A = w(Q;:Rn)
as usual.

It remains to be seen that if f € G then f is locally finite-to-

ones;  that is, that'any f : 9 >R" such that jkf(Q) nW = @ is locally

Finite~to-one. Fizx such an f , and let x € 2 be an arbitrary point. Then
if y is a point in R" , then by part (b) of the Infinite Codimension

s K Wk : :
Lemma (4.5), since j f(x) ¢ » Wwe have: there is a neighbourhood U of
x such that f—l(y) NU=@ or is finite. Indeed, by suitable translations

we can suppose x = 0 € § and y =0 ¢ R" » f =V ogo® . Then either
g(0) # 0 (which means f(x) # y ) or g(0) =0 and 0 1is an isolated
zero for g (which means there is a neighbourhood U of x such that

¥e' ek, o'¥® =) Ey ). fi

7. Fifth Application: Fixed Points of ¢~ Maps

Let E;Rn be open, convex and bounded as usual, and consider the

= o n : s
separable Fréchet space B (Q;]R ) defined in §1. Then we have (see also

Beod BN

(7.1) PROPOSITION. There is a dense subset G E_Bw(Q;IRn) such that

every f € G has only isolated fixed points.

Proof. As usual, we choose k so large that
codim(Wk in Jk(n, n)) >n (1)

where Wk is the algebraic set defined in the Infinite Codimension Lemma

(4.5).

Fix k and consider the bundle Jk(Q;:Rn) (see [4]),

Jk(Q;:Rn} = 1 X Jk(n, n) = 0 xR* x Jﬁ(n, n) (2)
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where Jﬁ(n, n) denotes those k-jets with no constant term so that

O x O x Jg(n, n) 1is open in x R"* x Jé(n, ”) = Jk(Q;:Rn) since  is
open.

Note that Wk<E_J§(n, n) and define

W= a x (145) (3)

where A 1is the diagonal of Q x @ and 1 + Wk denotes the translate of

Wk by the k-jet of the identity map id " : R" > R”
R
I ) W = (e € W (1)

~

Then W 1is finite union of submanifolds of Jk[Q;jRn] of codimension

gredter than n

~

Define G = {f ¢ Bw(Q;:Rn] | jkf(Q) nW =@} then G is dense as

usual.
It remains to be seen that any f : Q +R" such that jkf(Q) nNKW =g

has only isolated fixed points. But if x € @ such that

1

jkax) = ($, TG DI LB 5 v Dkfxx)) ¢ W= A X (1+Wk) then either
@ F )N, that is, & is net a fixed point, or x = f(x) and

(Df(x), S Dkf(x)] 1+ Wk o ‘That ¥s, by putting g = f - id , glx) = 0

and Dkg(x) k Wk ; which implies, by the Infinite Codimension Lemma, that

& ue el dgoldted Zero of g (i.e. fixed point of f ). //
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