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(iv) 

ABSTRACT 

We construct differentiable manifolds modelled on locally convex spaces 

using Yamamuro ' s theory of f-differentiation [81], [ 82] , manifolds which 

we term as f-manifolds . 

Then corresponding to the strong notion of Bf-differentiability in 

Yamamuro ' s theory [82] we obtain the subclass of Bf-manifolds . We show 

how to extend to these Bf-manifolds the standard properties of Banach 

manifolds : The Smale Density Th eorem [4] as well as the Transversality 

Theory [4]; [ 31] . 

As first applications , we give several simple results about genericity 

of smooth maps using our f-technique instead of the usual standard Banach 

techniques . 
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INTRODUCTION 

During the last two decades, there has been considerable development of 

the theory of Banach manifolds starting with J . Eells [20] in 1958 . He 

constructed a smooth manifold from the set of continuous maps between two 

manifolds . This was the first example of a non-trivial Banach manifold. 

Since then , many authors have contributed to the theory: R. Abraham [2], 

F . E. Browder [11] , [ 12 ], R. Bonic and J . Frampton [8], H. I . Eliasson [26], 

K. D. Elworthy and A. J . Tromba [ 28 ], [2 9], N. 11 . Kuiper and D. Burghelea [41], 

J . McAlp5n [25], R. S . Palais [58], [59], [60], S . Smale [67], [68], [29], A. 

Weinstein [7 7], [7 8], and many others. Eells' paper [ 21 ] is a good survey 

of development in this area . 

However , it is quickly apparent that , for many purposes, Banach 

manifolds are inadequate . In particular , they are not suitable for 

applications to mechanics , for instance , to the Cauchy problem of an equation 

00 

of evolution , and the space of C diffeomorphisms on a compact manifold. 

Marsden ' s note [48] is a g~od survey of these and other related matters . 

Thus there is an urgent need for a suitable theory of manifolds 

modelled on locally convex spaces , or at least on Frechet spaces . In fact, 

several attempts have been made in this direction . We mention the work of 

A. Bastiani [ 7] , W.D . Curtis and F . R. Miller [15], H.R. Fischer [30], J. 

Kijowski , W. Szczyrba and J . Komorowski [37], [ 38] , [3 9], N. Krikorian [40], 

J . Leslie [ 45] , H. Omori [ 54], [ 55], [5 61 and F . Sergeraert [7 0] . 

As is well-known, there is a previledged notion of differentiation in 

the normed case, the so- called Frechet differentiation, or more up to date, 

the bounded differentiation. However, in the case of locally convex spaces, 

there is a variety of possible differentiations (see [ 6], [ 36], [76], [ 80]). 

For instance , Leslie ' s work [45] is based on Bastiani ' s differentiation, 

Sergeraert 's [70] on Hyers ', Curtis-Miller ' s [15] on strong differentiation, 
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and so on . Unfortunately , all these differentiations share a common weakness : 

the lack of the Inverse Mapping Theorem , the essential tool for the 

investigation of differential results . 

Recently , in 1975 , in an attempt to overcome this weakness , S . 

Yamamuro [Bl] has given a new differentiat i on for which the Inverse Mapping 

Theorem and all of its equ ivalent forms hold . However , since this 

differentiation is too strong for some purposes , he has found it necessary 

to define a weaker notion ( see [ 52], . [82] ) . He terms this differentiation 

f-different i ation whereas the previous notion is referred to as Bf-

differentiation . These matters wil l be taken up in sections l to 3 of 

Chapter l of this thesis . It should be noted that , in the same year of 

1975 , H. R. Fischer [ 30] has independent l y proposed a differentiation which 

is almost equivalent to the f - differentiation . 

In this thesis , we shall use Yamamuro ' s f - differentiation t o 

construct manifolds model led on locall y convex spaces . These manifolds are 

called f - manifolds . Then corresponding to the strong not i on of Bf 

differentiation we have the subcl ass of Bf-manifolds . We will show how 

to extend the standard properties of Banach manifolds to this class of 

Bf- manifolds . For example , we have been able to define Bf- transversality , 

a generalisation of the standard notion of transversality ([4], [31] , [75]) 

and to prove all the standard theorems for this generalised notion . 

This thesis is divided i nto five chapters . In the first chapter , we 

prove two local results on f - differentiation , namely the f-omega lemma and 

the Bf-differentiability of the evaluation map . These results will be 

needed later in the text . 

Chapter 2 is devoted to definitions and examples of f- and Bf-manifolds 

00 

as well as f- and Bf-bundles . We shall prove that the space C (X, Y) 

00 00 

of C maps from a compact C manifold X into a (finite-dimensional) 

00 00 00 

C manifold Y is a f - manifold of class Cr . Hence the space Diff (X) 
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and Emb (X, Y) introduced in [ 31] are f-manifolds . We will also give 

several simple examples of Bf-manifolds . 

From Chapter 3 onward, we will restrict our attention to the subclass 

of Bf-manifolds and will use the full strength of the Inverse Mapping 

Theorem . Chapter 3 contains a generalisation of the Smale Density Theorem 

[ 68] to Bf-manifolds followed by a brief discussion of the notion of Bf

maps between f-manifolds. This notion cannot be defined in any natural 

fashion , however , it yields many interesting results. For example , using 

this notion, we can get the results in Chapter III of Omori ' s Lecture Notes 

[ ri 1~J. With this notion, we have also been able to give a yet more general 

f-version of the Smale Density Theorem. 

3 

The standard transversality theory ([4], [ 31], [ 33]) is generalised to 

the Bf-context in Chapter 4 under the name of Bf-transversality . We show 

that all the standard transversal theorems remain valid: the Bf-Transversal 

Density Theorem and the Bf-Transversal Isotopy Theorem. 

Some applications of our Bf-Transversal Density Theorem appear in 

Chapter 5 where we give si~ple "generic" results for local smooth maps which 

parallel the usual ones . They are local versions of the more general global 

results in [ 31], [ 33], [43]. The only difference is that here we follow the 

f-technique instead of the standard Banach techniques . 

Two papers based on the contents of Chapter 3 and Chapter 4 have been 

ccepted for publication [51] , [52] . 

For the reader ' s convenience, we include at the end of the thesis a 

list of notation as well as an index of terminology. 

After this thesis had been completely typed , we discovered two recent 

works of H. R. Fischer and J . Gutkecht which are closely related to it . They 

are added Lo the bibliography as additional references [ARl] and [AR2] . 
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CHAPTER 1 

r-DI FFERENTIATION 

The purpose of this chapter is to give two local results about 

f-differentiation which shall be needed later: the f-omega lemma and the 

Bf-differentiability of the evaluation map . 

For the sake of completeness , we include in the first three sections, 

§1-§3 , the f-differentiation theory of Yamamuro. The main results which 

shall be needed are stated without proof . For more details we refer to [52], 

[Bl], [82] . In §4 we give a criterion for f-differentiability in cas e r 

consists of a family of norms. In §5 , we combine the work of Irwin [35] 

with the criterion in §4 to prove the f-omega lemma, the main step for 

00 

proving that the space C ( X, Y) is a f-manifold (see Chapter 2). 

The last section , §6 , is devoted to the study of Bf-differentiability 

of the evaluation map ; the results are needed for Chapter 5 . 

1. Calibration 

A calibration for a locally convex space (LCS) is a set of continuous 

semi-norms which induces the topology . For a LCS E 
' 

the set P(E) of all 

continuous semi-norms on E is obviously the biggest calibration for E . 
Let E be a family of LCS ' s. A map p defined on E is called a 

sem-i - norm map if , for each E E E 
' 

the value PE of p at E belongs to 

P(E) . We call a set r. of semi-norm maps on E a calibration for E if, 

for each EE E , the set 

(1) 

i s a calibration for E . 

Let E be a family of LCS's and let r be a calibration for E. Let 

E, FEE and U be an open subset of E. Then a map f: Uc E ~ F is 
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·c1 to bn I'-continuou 0 at a EU if, for a ny E > 0 and p Er , there 3cl J 1.... 

exists cS > 0 s uch that the following condition holds: 

(pE(x) < cS and a+x E u) =} (pp[f(a+x)-f(a)] < E) ( 2) 

In other words , f is f-continuous at a EU if, for each p Er, we have 

and a+ x EU. 
n 

Note that the 

fact that U is open is not used in this definition; but under this 

condition, we can say that a map which is f-continuous at one point is 

continuous there . 

As us ual, we say that f: Uc E ~ F is I'-continuous on U if it is 

f-continuous at every point of U • 

( 1 . 1 ) PROPOSITION. A linear map u E~F . 
'iS I'-continuous at one 

point (hence on E ) iff., for each p E r ., 

p(E,F)( u ) = sup {pF[u(x)] I pE(x) < l} < + oo ( 3) 

We denote the set of all f-continuous linear maps of E into F by 

Lr(E , F) It is obvious that LI'(E, F) lS a linear space and p(E ,F) 

( defined in ( 3 )) lS a senn-norm on LI'( E, F) for each p E f . We put 

r(E,F) = {p(E,F) I p Er} (4) 

and regard Lr(E , F) as a locally convex space calibrated by I'(E,F) . 

As to the composition , we have the following usual results which also 

imply its continuity . 

(1 .2) PROPOSITION. Let E, F, GEE . If u E Lr(E, F) and 

VE Lf(F, G) then v o u E LI'(E , G) and 

p(E,G)(v o u) s p(E ,F)(u)p(F ,G)(v) for all p Er. ( 5) 

Note that Proposition (1 . 2) does not imply that Lr(E , E) is an algebra 

because the first E and the second E may have different calibrations . 

If they have the identical calibration then we denote it by Lr(E) which is 



6 

then an algebra with jointly continuous multiplication . 

In the sequel , we shall sometimes drop (E, F) from p(E,F) ; for 

instance , (3) shall permit us to write 

(6) 

We shall say that a map f: Uc E ~ F (where E, FEE , r is a 

calibration for E, and Uc E open) is strongly f - continuous at a EU 

if , for any £ > 0 , there exists 6 > 0 such that the following condition 

holds: 

(p Er, pE(x) < 6 and a+x Eu)=> (pF[f(a+x)-f(a)] < £) . (7) 

In this case , unlike the case of the f-continuity, 6 does not depend on 

p . It is easy to see that f is strongly f-continuous at a EU iff the 

following condition is satisfied : if for sequences P E f 
n 

f : Uc E ~ F is strongly f-continuous on U if it is strongly 

f-continuous at every point x EU. 

(1 .3) PROPOSITION. A linear map u 

at one point (hence on E) iff 

E ~ F is strongly f-continuous 

IJullr - sup sup {pF[u(x)] I pE(x) < l} 
pEf 

< + 00 

Such a map will be called a Bf-bounded linear map as is explained 

right now . 

Let EE E. An element x EE is said to be f-bounded if 

p E r} < + oo • 

(8) 

( 9) 

The set of all f-bounded elements of E will be denoted by Bf(E) , 

which will always be regarded as a normed space equipped with the norm 

defined by ( 9) . 

( 1 . 4) PROPOSITION. If E &S sequentially complete~ then Bf(E) 
. 
&Sa 

Banach space . 
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In eeneral, Bf(E) is small as a subset of E . 

(1 .5) PROPOSITION. Let E be Baire . If Bf(E) contains an interior 

point with respect to the relative topology from E ~ then E is normable . 

Now let E be a family of LCS's and r be a calibration for E. For 

E, FE E, we have seen that Lr(E, F) is equipped with the calibration 

r(E,F) (defined in (4)). Therefore, by extending each p Er over 

Lr(E , F) we may suppose that Lr(E, F) EE. Then, we denote the space 

Thus u E LBr(E, F) iff llullr, defined by (8), is finite. In other 

words , the set of Bf-bounded linear maps E ~ F coinc ides with the set of 

strongly f-continuous linear maps E ~ F Hence, if u E LBf(E , F) , we 

have 

pF[u(x)] ::: llullrpE(x) if x E E and p E r . (10) 

We shall always regard LBf(E, F) , the space of all Bf-bounded linear 

maps E ~ F, as a normed space equipped with the above norm. 

( 1 . 6) PROPOSITION. If F is sequentially complete~ 
. 

1.,S 

equentially complete and LBr(E, F) 1.,s a Banach space . 

If we denote by L(E, F) the space of all continuous linear maps 

E ~ F equipped with the topology of uniform convergence on bounded sets, 

then we have the relation 

(11) 

L8r(E , F) is , in general , a small subset of L(E, F) However, the 

following fact shows that L(E , F) is covered by LBf(E , F) . 

(1 .7) PROPOSITION. Let E, F be LCS ' s and u E L(E, F) . Then there 

exists a calibration r for Ex F such that u E LBr(E, F) . 

Note that in Proposition (1.7) the calibration r for which 



u E L
8

r(E, F) depends heavily on the given map u . If we specify a 

particular culibration on E or F , then L8r(E , F) does not cover 

L(E , F) . Yamamuro has given several examples of such a character (see 

[ 82]) . 

2. r-Family 

8 

Let E be a family of LCS ' s and r be a calibration for E . As we 

have seen in §1 , the family N of all normed spaces is equipped with a 

single calibration A (called the norm calibration) . Hence, it is possible 

/'.. 

N u to extend each E r to a . E by putting p semi- norm map p on 

PE if E E E 
' 

/'.. 

PE - (1) -

\E if E E N . . 

Next , let E, FE E . Then as we have seen in §1 , each space Lr(E, F) 

is equipped with the calibration r (E,F) which is uniquely determined by 

r . Hence , each p Er can be extended over Lr (E, F) . 

Now let EE E and F be a linear subspace of E. Then, for each 

p Er , the restriction of on F is a semi-norm on F . Then 

(2) 

is uniquely determined . 

From the above remarks , we can now give a convenient definition: 

A family E of LCS's is called a f - family if r is a calibration for 

E (see §1) and the following conditions are satisfied : 

(i) N c E and pE = \E for every EE N and p Er ; 

(ii) if E, FEE , then and Pc= p(E ,F) ; 

(iii) if EE E and F is a linear subspace of E , then the 



space F calibrated by rEIF (defined by (2)) belongs to 

E c1nd Pp = PEIF . 

The members of a f-family E are thus the pairs (E, f E) consisting 

of EE E and the E-component rE of r . We often call these members 

objects of E . If (F, rF) is another object of E then we define the 

morphisms , which we shall call f-morphisms, as f-continuous linear maps 

E -+ F . Bf - bounded linear maps E -+ F vri l l 1)e: ca lled Bf-morph1:.sm.c; . Th e 

[-isomorphisms and Bf- isomorphisms are then naturally defined. 

When E is a f-family we shall frequently write EE E to denote 

that (E , fE) is an object of E. 

We define the f-products of members of E as follows. Let 

E, FE E. Then the product Ex F may or may not belong to E. If it 

does , and moreover, the projections 

g 

(3) 

and the embeddings : 

E-+ Ex F and 
. 
1,F: F-+ EX F 

are f-morphisms, then we call Ex F a f-product and denote it by 

E xf F. This definition can be gen eralis e d in an obvious way to the 

f-products of more than two spaces . 

(4) 

When the projections (3) and embeddings (4) are Bf-morphisms, the 

f-product is called a Bf- product and is denoted by E xBf F. We note that 

if E, FE N then the product Ex F ~s always a Bf-product. 

A f-family E is said to be a f - family with f-product iff for all 

E, FEE , the f-product E xf F exists and belongs to E • A similar 

definition holds for a f - family with Bf- product . 

Now let E
1 

and E
2 

be linear subspaces of EE E and E be a 
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direct sum of E 
1 

and El 

2 . By the assumption , 
. 

-i - 1, 2 , 

l)clong to t und hence the embedding maps 

E . + E (i = 1 , 2) 
-i 

are always Bf-morphisms. However , the projections 

E + E . (i = 1, 2) 
-i 

are not necessarily f-morphisms. If they are , we shall call the direct sum 

a f-direct swn and denote it by E1 _®r E2 . The Bf- direct swn E1 ®Br E2 

is defined similarly . 

Let E be a f-farnily and l et E, F, GE E . 

(2.1) PROPOSITION. The evaluation map 

Lr(E , F) xr E + F : (u, x) 1----t- u(x) 

(respectively LBr (E , F) x
3
r E + F : (u, x) i-+ ·u(x) ) is f - continuous 

(respectively Bf- continuous) . 

(2.2) PROPOSITION. Let E - E
1 

xr E
2

• Then a bilinear map 

u E+F 
. 
-is f - continuou~ at one point (hence everywhere) iff for any 

p Er~ there exists a positive constant yp 

for all (x1 , x
2

) EE and all p Er . 

If the product -is a Bf- product (i. e. 

such that 

E = E X r E )~ then the 
1 B 2 

( 5) 

bilinear map u -is Bf- continuous iff the same inequality holds with y > O 

independent of p · 

\Jp E r . (6) 

the space of all f-continuous (respectively Bf-continuous) bilinear maps 

of E X E 
1 r 2 (respectively F . We shall regard 



L
2 (E x E F) as a LCS whose calibration consists of seminorms p r 1 r 2' 

defined by: 

p(u) - sup {pF[u(x
1

, x 2)J I PE . (xi) < 1, -i - 1, 2} 
& 

for all u E L~ (E
1 

xr E
2

, F) and p E f . 

We regard L
2 (E x E F) as a normed space with the norm: Bf 1 Bf 2 ' 

llullr - sup p(u ) 
pEf 

for all 

(2.3) PROPOSITION. L: (E xr F, G) -is f-isomor-phic to 

Lr(E , Lr(F, G)) by the correspondence 

by the same correspondence (9) . 

3 . r-Differentiation 

E . 

Let E be a f-family and E, FEE . Let U be an open subset of 

For maps f U + F and u: E + F, we put 

r (f, a, x) = f(a+x) - f(a) - u(x) 
u 

when a, a+x EU . 

ll 

(7) 

(8) 

(9) 

(1) 

A mup f: U + F is said to be f-differentiable at a EU if there 

exists u E Lr(E, F) such that the following condition is satisfied: for 

any p Er and E > 0 , there is o > 0 such that 

Pp[ru(f, a , x)] < EpE(x) wheneve r pE(x) < o and a+x EU. (2) 

If this is the case, the f-morphism u is uniquely determined; we 



shall call it the f - derivative of f at a and denote it by f'(a) . 

If f is f-differentiable at every point of U, we say that f is 

f - differentiable on U, and then we have a map 

1 2 

(3) 

which again maps an open subset of an object E E E into another object 

Lr(E , F) E E If f ' f-continuous at E U then f 
. 

said to be . lS a 
' 

lS 

continuously f - differenti able at a or c1 
f 

at a . If f lS c1 
f at 

every point of U , it is called a C~ map of U into F. Similarly , 

we can define c1 maps of U into F and the set ·of all such maps will be 

denoted by The set is the intersection of all 

k Cf (U, F ) with respect to k , where as consists of all 

f-continuous maps of U into F. 

There is a corresponding notion of differentiability when we replace 

the LCS Lf (E, F) by the ~armed space LBf(E, F) throughout the above 

definitions . It is the "Bf- bounded " version of the f-differentiability. 

A map f Uc E ~ F is said to be Bf- differentiable at a EU if 

there exists u E LB f( E, F ) such that the same condition for the 

f-differentiability holds . f is called continuously Bf- differentiable at 

a EU iff furthermore , the map 

(4) 

lS f-continuous at a . Such a map is also called 
l 

C Bf at a . The set 

of all l 
CBf maps of u into F will be denoted by 

Repeating this process , we obtain and we put 
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( 5) 

Thus, whenever we deal with the Bf-differentiability, the derivatives 

are Bf-bounded linear maps (called the Bf-derivatives to be distinguished 

from the previous f-derivatives) and the continuity of Bf-derivatives is 

as maps into the normed space LBf(E, F) . 

The following three propositions are obvious . 

(3.l) PROPOSITION. If f: U + F &S f-differentiable at a EU~ it 

&S f - continuous at a . 

(3.2) PROPOSITION. 

For u E Lf(E, F ) ~ we have 

and 

where u 
a 

u '( x)-u forall x -EE 

u(k)(x) = O for all x EE and k > 2 

u '( a, b) = ua + ub 

y 1-+ u(a , y) and x 1-+ u(x, b) 

(6) 

(7) 

(8) 

Let us recall some definitions given in [80], [81]: let U, E, F be 

as above . Then f : Uc E + F is said to be Frechet differentiable at 

a EU (or better boundedly differentiable at a EU) if there exists 

u E L(E, F) (see §1) such that 

-1 
E r Cf, a, ex)+ 0 as E + 0 uniformly on each bounded set; (9) u 

that is, 



14 

lim sup pr-lI'U(f , a , EX~ - 0 
E+O xEB -

(10) 

for any bounded subset B and for any p E P(F) . The properties of this 

differentiation have been investigated in [80 ] in detail. f : U + F is said 

to be Gateaux differentiable at a EU if there exists u E L(E, F) such 

that 

- 1 
lim E r ( f , a , Ex ) - 0 

u 
(11) 

for each x EE . In both cases , we denote u by f ' (a ) which stands for 

the bounded derivative ( or Frechet derivative ) at a for the first case and 

the Gateaux derivative at a for the second case . 

It is immediate that bounded differentiability implies Gateaux 

differentiability . The fo l lowing result gives us a relationship between the 

f-differentiability and the bounded differenti~bility : 

(3.4) PROPOSITION. Let k ~ o be an integer . Then if f : Uc E + F 

&S k- times f - diff erentiable at a E U ~ it is k- times boundedly 

differentiable at a with the same derivative . 

If f is C~ at a EU ~ it is k- times continuously boundedly 

differentiable at a . 

One of the immediate consequences of Proposition (3 . 4) is the 

following 

(3.5) THEOREM (The Mean Value Theorem) . Let f : Uc E + F be 

I' - differentiable on U . Then~ for each p Er and x EE such that 

a+~x EU for all ~ E [O , l] ~ there exists 8 E (0, l] such that 

Pp[f(a+x)-f(a)] s p[f ' (a+8x)JpE(x) . 

If f &S Bf- differentiable on U ~ then 

Pp[f(a+x)-f(a)J s llf ' (a+8x)llrPE(x) . 

(12) 

(13) 

Using this Mean Value Theorem , one can prove the following fundamental 

fact . 
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(3.6) THEOREM. Assume that U is convex~ open &n E ~ f : U + F is 

cateaux differentiable on u and the cateaux derivative f ' (x) belongs to 

Lr(E , F) for each x EU. If the map f' : U + Lr(E , F) f - continuous 

at a EU~ then f is f-differentiable at a with the same derivative . 

If~ furthermore~ f'(x) E LBf(E, F) for each x EU and 

f ' f-continuous at a ~ f is Bf- differentiable at 

a . 

The following proposit ion is the main tool for the proof of the chain 

rules . 

(3.7) PROPOSITION. The composition map 

comp : Lr(E, F) xr Lr(F, G) + Lr(E, G) 

(respectively 

(respectively a c;r-map ). 

(3.8) PROPOSITION ( Chain Rules ). Let E be a f - family~ 

co 

Cr-map 

E, F , GE E and Uc E ~ V c F be open . Let k > O be an integer. Then 

if f : u + V CF (respectively c~r ) at a EU~ g · 

(respectively C~r ) at f(a) EV~ the composite go f 

(respectively C~r ) at a EU. 

. u + G &S 

If we denote by GL8 r(E , F) , (E, FE E) , the set of all 

Bf-isomorphisms of E onto F , then the following fact is well-known 

because GLBr(E , F) and LBr(E , F) are normed spaces . 

(3.9) PROPOSITION. If F is sequentially complete~ then GLBr(E , F) 

and the inverse operation -1 u 1----+ u on 

We now add basic properties of the partial derivatives . Let E be a 
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f-family; El, E2' F E E and suppose E = E xr E2 E E Let u - u1 x u2 . -
1 

un open subset of E. for 
. - 1, 2 Then f . U -+ F where u. is 1., - a map . 

1., 1., 

is said to be partially I'-differentiable at (al' a2) E U with respect to 

the first variable if the partial map f · U -+ F defined by a · 1 

of into F is 

2 

f (x) = f(x, a
2

) 
a2 

f-differentiabl e at The derivative will be 

(14) 

denoted by 8
1
f(a

1
, a

2
) , which is an element of Lr(E1 , F) . In the same 

defined . By repeating the process we can also define higher partial 

f-derivatives. 

-
If the LCS E is a Bf-product, E = E

1 
xBr E

2 
, then we can define 

(3.10) PROPOSITION. ·Let E = E1 xr E
2 

and U = U X U 
1 2 for open 

subsets U. of E . ( i - 1, 2) 
1., 1., Then~ if f 1.,s f-differentiable at 

If~ moreover~ u 1.,S convex~ then f 1.,S c1 
r 

at a iff dlf and 

are f-continuous at a . 

The Bf- versions a:r'e valid if E 1.,S a Bf-product. 

We now consider the case of a mapping in a product . Let F = F X 
1 r 

and l et f U c E -+ F 
' 

where u is open in E E E . Then f can be 

written in the partial maps as follows : 

(15) 

82f 

F2 



1 7 

(16) 

f . U -+ F . for 
. = l 2 where 1., 

' 
. 1., 1., 

(3.11) PROPOSITION. Let .c' U -+ F = Fl xf F2 as above and let J 

integer . Then f 
. 

k- times f - differentiable 
1.t 

k ::: 0 be an 1.,S or C' ' at a f 

. f.c' f . (i - 1 , 2) o:re k- tirnes f - differentiable or ck respectively at 1., .} - f 1., 

a . 

The Bf- version is valid i f F 1.,S a Bf- product . 

The following two theorems are the most important in Bf-differentiation 

theory and shall be used later . 

(3.12) THEOREM ( Inverse Mapping Theorem ). Let f : Uc E-+ F be as 

usual . Assume that E i s sequentially complete~ 
k 

f E CBf(U , F) and f'(a) 

1.,s a Bf- isomorphism for some a E U . Then~ f is a local 

diffeomorphism at a . 

(3.13) THEOREM (Implicit Function Theorem ). Let U = U XU With 
l 2 

u. 1., 
. open 1.,n E . ; 1., f Suppose that F is sequentially complete 

and E = E x E be a Bf- p~oduct . Let f E Ck (U F) f(a a) - o l 2 .L Bf ' ~ l' 2 -

and a
2
f(a

1
, a2) be a Bf- isomorphism of E2 onto F . Then~ there is an 

open neighbourhood nl x n2 of (al, a2) and also a map g E ~f(nl, n2) 

such that g(a
1

) = a
2 

and 

(17) 

I f this 1., the case~ 

(18) 
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4. A Criterion for r-Differentiability 

In this section we give an useful criterion for the f-differentiability 

of mappings f : Uc E + P where the calibrations rE and rp consist of 

families of norms {pE I p Er} and {pp I p Er} respectively . The 

criterion simplifies very much when the calibration 
. . is an increasing 

sequence of norms: and the calibration 
. 
lS a 

single norm. In this case, we have even Bf-differentiability . The results 

shall be used in the next two sections . 

Let E be a f-family. Let E, PEE and suppose that for each 

p Er the semi-norm pE E rE (respectively Pp Erp) is a norm . Thus we 

have : 

rE - {pE I p Er} - family of norms, 

rp = {Pp Ip Er} - family of norms. 

(1) 

(2) 

Now let Uc E be open and let f 

consider the normed spaces. 

u CE+ p be a map. For each p Er' 

(3) 

Then we say that f is p-differentiable at a EU iff 

f Uc E + P is differentiable in the usual sense of mapping between 
- p p 

normed spaces . Similarly , the notion of for f is defined for any 

integer k > l or oo We shall denote by the rth p-derivative 

of f at a EU and by 

(4) 

the rth p-derivative of f , for OS r S k. 

If for each p E f , L (E , P ) 
p p 

denotes the space of linear continuous 

maps from the normed space E 
p 

into the normed space P , then we have 
p 



immediately : 

L(E , F) . 
p p 

The following theorem, suggested to me by Dr Yamamuro, is an useful 

criterion for f-differentiability . 
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(5) 

(4.1) THEOREM. Let r be an integer greater than or equal to l or 

+ oo and let E, FEE with the condition that rE = {pE Ip Er} and 

I'p = {Pp I p E r} arc Jamili e of norms . Let V c E be open and consider a 

map f : V c E -+ F • 

Then f is ~ iff the following conditions are satisfied: 

(a) for every p Er ~ f is r? . 
p ~ 

(b) for k - 1, ... , r ~ we have f(k) = ·f( k) for all -
p q 

p , q E f . 

Condition (b) can be dropped if F i,s sequentially complete. 

Proof. NECESSITY: We first prove the case r = l and then use 

induction on r . 

(i) Case r = 1 : Suppose f: V c E-+ F lS Then by 

definition , f is f-differentiable at every a EV· and the f-derivative 

f ' : V c E-+ Lr(E, F) is f-continuous . Hence for each a EV , there is 

f ' (a) E Lr(E , F) such that for all E > O and p Er we can find a o > O 

such that 

(pE(x ) < o and a+x E v) ~ (Pp[f(a+x)-f(a)-f'(a)x] < EPE(x)) . (6) 

We want to prove ( a) and (b) for the case r = l . 

To do this, let p E r . Then by ( 5) , we have f ' (a) E L (E , F ) 
' p p 

and for all € > 0 there is a o > O (given above ) such that (6) holds. 
' 

This means f ' V CE -+ F lS p-differentiable at a E V , and the 
- p p 
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p-derivative is 

f, (a) = f '( a) . 
p 

( 7) 

Since the p -derivative Thus (7) . 
PE' Pp are norms , is unique . is 

meaningful and we also hnve 

f ' - f' for all p , q Er 
p q 

(8) 

It remains to prove that f' : U c E -+ L (E , F ) is p-continuous . But 
p - p p p 

since f ' = f' and since f ' is f7continuous this follows quickly . 
p 

(ii) General Case: Suppose that the necessary condition is true for 

r ~ l , we want to prove it for r + l , that i s , we want to prove if 

(a) for every p Er, f is cr+1 
p ' 

( b ) for every k = l 
' 

... , r+ l , for all p , q Er. 

Indeed , by hypothesis , the f-derivative f ' : Uc E-+ Lr(E, F) is ~ , 

~ 

where the calibration of ~r (E, F) =FE E is: 

r~ - {p I p Er} - family of norms . F - (E ,F ) 

Thus , by induction hypothesis we have : 

is ~ , 
p 

(9) 

(10) 

f ' ( k) = f ' ( k ) for all p , q E r and all k = 1 , 2 , ... , r . ( 11) 
p q 

Furthermore , by the above part (i), the case r = 1 is true , we also have: 

f : u C E -+ F 
- p p 

is c1 . 
p ' 

thus (10) and (12) give (a); (11) gives (b) as desired. 

SUFf.ICIE CY : We first prove the case r = l , and then proceed by 

induction on r . 

( i) Case r = 1 Suppose we have (a), (b) of the theorem for the 

(12) 
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case r = 1 . We want to prove that f u CE-+- F is 

Let a EU. Then by (a), for all p Er , there is a 

f'(a) E L(E, E) such that for all E > 0 , we can find o > 0 verifying : 
p p p 

(pE(x) < o, a+x Eu) ~ (pF[f(a+x)-f(a)-f~(a).x] < spE(x)) . (13) 

Then by (b) we have f '(a) = f '(a) for all p, q E f . Thus we can define 
p q 

a linear map f'(a) E Lr(E, F) by putting : 

f' (a) . x = f ' (a) . x for all x E U 
p 

(14) 

where p is any norm in r . The fact that f ' (a) E Lr(E, F) follows from 

( 5 ) . 

Thus for all s > 0 and p Er we can find o > 0 (given above) such 

that (13) holds . This means that f is f-differentiable at a EU and 

has f-derivative f ' (a) equal to the p-derivative f, (a) 
p 

for all 

p E f . 

It remains to prove that f ' : Uc E-+- LI'(E, F) is f-continuous. 

Since f' = f' 
p 

for all p E f 

p Er , this follows quickly. 

and since f' 
p 

is p-continuous for all 

(ii) General Case . Suppose the sufficient condition is true for 

r > 1 . We want to prove it for r + 1 . That is, we want to prove that 

conditions (a), (b) for r + 1 imply that f is 

First note that the proof for r = 1 gives us 

c::+1 
r 

f 
. 
is c1 

r Now 

consider the f-derivative f' : Uc E-+- Lf(E, F) . Then conditions (a), 

(b) give : 

for all p E f 
' f' UcE -+- L(E , F ) is ~ 

' p - p p p p 
(15) 

f, ( k) - f, ( k) for all k - 1, 2 ' r and all p , q E f - - . 
p q . . . ' (16) 



By induction hypothesis, (15) anc (16) give : 

f' 

Thus, since f ]3 already C~, (17) implies that f is 

desired . 

c:+l 
r ac 
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(17) 

Now suppose that F is sequentially complete. We want to prove that 

condition (a) in the theorem implies (b). 

First prove the case r - l suppose f u CE+ F is c1 for all 
p 

p Er and let a EU. Then if (a > o) 
m 

is a sequence of positive numbers 

converging to O , we have for each x EE and each p Er 

and 

r ( a +amx) - f (a) , l 
Pp - f (a) .x a p m 

- -

From this, it follows quickly that: 

f'(a).x 
p 

f(a+amx) -f( a ) 
- lim 

r!1-¥X> am 

+ 0 when m + + oo • 

( since is a norm) 

{
f ( a+a":._xm) -f( a )l 

~ J is a Cauchy sequence in F. 

(18) 

(19) 

(20) 

Thus, since F is sequentially complete this Cauchy sequence converges 

to an unique element in F , which proves : 

f'(a) .x = f'(a) .x for all x E E • 
p q 

(21) 

Since a is arbitrary we have the desired result. 

Now suppose that the case r ~ 1 is true and let us prove the case 

r + 1 First note that by Proposition (1.6), for each integer J , 

if CE , F) is sequentially complete . Then by the i~duction hypothesis we have 

for all p, q E f (22) 

and 



23 

~ 

Uc E-+ L~(E, F) - F is c1 
p 

for all p E f . (23) 

Fix a EU . Then for each x EE and each p Er , we have again 

as m-++co (24) 

where Pp is the norm on induced by p E f : 

Pp(u) = sup {u (x1 , . . . ' (25) 

Thus the same argument as above gives us: 

f ( r+ l ) ( ) _ f ( r+ l ) ( ) a .x - a .x p . q for all x EE , all p, q E f . II (26) 

Later we shall have occasion to investigate the Bf-differentiability 

of a map f : Uc E-+ F where the calibration fE of E 
. . 

is an increasing 

3equence of norms II · Jin ( n = 0 , 1 , 2 , ... ) and the calibration r F of F 

is just a single norm 11 • llp 

In this particular case , we have the following criterion for Bf

differentiability . 

(4.2) COROLLARY. Let f : Uc E-+ F be a map~ U being open in E. 

Suppose that E &S calibrated by r - { II · II } ~ an increasing sequence of 
n 

norms (n = 0 , 1 , 2 , ... ) and F is calibrated by the norm-calibration 

II · lip . Suppose furthermore that F &S complete with respect to 11 • IIF and 

for each n - o, 1 , 2 , ... ~ denote by E = ( E, II· II ) n n the corresponding 

normed space . 

Let r be an integer greater than or equal to l or + 00 • Then 

f: u CE-+ F &S r 
CBr iff for all n = o, 1, 2, . . . ~ 

~ &n the usual ense as map between normed spaces . 

f u CE -+ F &S 
- n 

Proof. Since F is complete, Theorem (4 . 1) ensures that f is cf 

iff f UcE 
- n 

F is for all n = 0, 1, 2 , 



We claim that for all integers k : 

(27) 

Indeed , let Then by definition there is a constant 

a
0 

> O such that for all x
1

, ... , xk EE , we have : 

(28) 

Since the sequence of norms II · lln is increasing , ( 28) implies 

(29) 

for all n = O, 1 , 2 , ... , and all x1 , ... , xk EE ; which proves (27) 

as claimed . 

Thus , since f is ~ and since for all k , l < k Sr and all 

a EU , Dkf(a) E L~r (E; F) , the corollary is proved. // 

5. The r-Omega Lemma 

In this section we prove the f - version of the w-lemma in [l] 

(Corollary 3 . 8 , p . 9 ). This shall be globalised later in Chapter 2 and shall 

co 
be used to prove that the space C (X , Y) 

co 
of C maps X + Y (where X . 

lS 

compact) is a f-manifold (see Chapter 2) . 

Let E, F , G be Banach spaces , X c E be corrrpact and Y c F be open. 

CO 00 

Let C (X , F) be the space of C maps of X into F . Then, for an 

integer i ~ 0 , we have, for each 
00 

f E C ( X, F) , 

sup IID,z,f(x)II . < + oo • 

xEX L-i(E;F) 

For n - 0, 1 , 2, 
00 

and for f EC (X, F) , define: 

- sup {II (x)II + !ID (x)II + ... + IIDnf(x)II} < 
xEX 

+ 00 

(1) 

(2) 



and let r ( X ; F) 

Then define 

denote the Banach s pace of all 

00 

C
00

(X , F) - n Cn ( X, F) 
n=O 

maps X -+ F . 

which is regarded as a LCS cal ibrated by the sequence of incr eas ing norms 

r = {ll · lln }n=o,1 ,2, .... 

Let Cn ( X, Y ) (respective l y C
00

( X, Y) ) be the subset of all 

25 

(3) 

(4) 

f E Cn ( X, Y ) (respectively f E C
00

( X, Y)) such that f ( X) c Y . Then it 

is clear that Cn ( X, Y ) 1s open in Cn (X , F) for each n = 0 , 1 , 2 , ... 

00 00 

and C (X, Y ) is open in C ( X, F) cal i brated by ( 4 ). 

r!'- cx, 00 00 

Let G) and C ( X , G) be the similar spaces , where C (X , G) 

lS calibrated by a s imila~ sequence of i ncr eas ing norms 

r ' -
{ 11 • lln}n=O ,1,2, ... ( 5) - . 

Then we have the following r - version of the w-lemma given in [l], 

p . 9 : 

(5.1) PROPOSITION Cr-omega l emma) . Let E, F, G be Banach spaces~ 

X cE compact and YcF open . Then~ fnr a fixed 
00 

g EC (Y , G) ~ the mav 

00 00 00 

w = g* : C ( X, Y ) c C ( X, F ) -+ C (~ , G) : f 1-+ g*(f) =go f (6) 
g 

00 00 

Cr with respect to the above calibrations (4) and ( 5 ) fur C (X, F) 

and 
00 

C (X , G) r espectively . 

Proof. We apply Theorem (4 . 1) . 
00 

Since C (X , G) i s a Frechet s pace 

( see e . g . [ 34] , 15 0]) it suffices to verify condition ( a ) of the theorem. To 

Jo thi s , l e t us put 

- 00 - 00 - 00 

U = C (X, Y) ; E - C (X , F) ; F - C ( X , G) . ( 7) 

~ ~ 

Then U 1s open i n E a nd we have g* 

For each n = O, l, 2 , . . . ' we put 

(8) 



Then condition (a) means that 

is 
co 

C as map between normed spaces 
-E and F 

n n 
This in turn follows 

quickly from Theore~ 6 in [ 35] , p . 117 . // 

(5.2) Remark. In the proof of the Proposition (5 . 1) we do not need 

the explicit form of the kth derivatives of g* (k = 0, 1 , 2 , ... ) . 

Actually , using 1-he result~ in [35] , it is not hard to see the following 

co 
formula for the dPrivative at f EC (X , Y) 
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( 9) 

(10) 

co 
for n1 , ... , nk EC ( X, F) and x EX . 

(5 . 3) Remark. Propos i tion ( 5 . 1) still holds if we replace the norm 

(2 ) by the follcwing norm 

llflln - max 
osisn 

(11) 

co 
for each f EC (X , F) and each n = 0 , 1 , 2, .. . . 

6. The Evaluation Map 

In this section~ we prove the. Bf-differentiability of a kind of 

evaluation map, the result of which shall be used later in some applications 

of the Bf-Transversal Density Theorem (see Chapter 5) . 

Let E, F be Banach spaces , Uc E open , convex . Recall that for a 

nonnegative integer r , rT(E , F) is the Banach s~ace of polynomials 

E F of degree less than or equal to r (see , e . g . [4J~ [1 31): 

I7(E , F) = F X L(E, F) X L~(E, F) X • .. X i;(E, F) (1) 

where (2 < i, < r) denotes the space of symmetric i-linear maps 

E+F . 
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For each ~ E r;Y'cu , F) and each XE u ' F~(x) lS the point of 

F(E , F) giuen by 

F~ ( x ) = (~(x) , D~ ( x) , D
2
~(x) , ... , Dr~(x)) . ( 2) 

Now choose the following norm on F (E, F) 

(3) 

for all (a ' a ' ... ' a ) E V ( E , F) ' and for each ~ E r!1cu, F) ' define o 1 r 

sup 
xEU 

{llr'~cx) II } 

Let Br(U, F) denote the space of all ~ E r;Y'(u , F) such that 

ll~llr < + 00
, and put 

CX) 

CX) 

Br(U, B (U, F ) - n F) -
r=O 

Now consider the product 
CX) 

B ( U, F) X E and for each r = 0' 1 , 2 ' . . . 

define the following norm Pr on 
CX) 

B ( U, F) X E 
' 

CX) 

~ E B ( U , F) , x E E . 

(4 ) 

(5) 

(6) 

CX) 

Fix an integer r ~ 1 and rP.gard B (U, F) x E as a LCS calibrated by 

the following sequence of increasing norms : 

r = {p . } . -
r+-i -i - O , 1 , 2 , ••• 

( 7 ) 

and consider the norm- calibration IJ • llp on F . Then WP. have the following 

(6.1) PROPOSITION. Let r be an integer greater than or equal to 

1 ~ E, F be Banach spaces and Uc E open . Then the evaluation map 
CX) CX) 

ev : B (V, F) x Uc B (U, F) x E ~ F 

given by ev(~ , x) = ~(x) 
CX) 

for ~ E B ( U, F) ~ XE F ~ -is ~r with 

(8) 

respect to the calibration (7) on 
CX) 

B (V, F) x E and the norm- calibration on 

F . 

by 

Furthermore~ for each k < r ~ the Bf- derivative k Dev(~, x) is given 



k 
- D E,:(x) .h

1 

A 

(where hl means the factor 

00 

n. E B ( U , F) 
'l, 

(1 < i :S k) ., 

i,s deleted) ; for 
00 

F,: E B ( U, F) ., 

x EU and h . E F (l < i < k) . 
'l, 
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Proof. To prove the Bf-diffe~entiability of ev , we apply Corollary 

(4 . 2) . First , for all i, - 0 , 1, 2 , _ ... the mapping 

( E,: , x) 1--+ ¢(~ , x) = (E,:, x) 

considered as map between normed spaces, is the restriction of a linear 

00 

continuous map and hence of class C On the other hand , by Theorem 

(10 . 3) in [4], p . 25 , the map 

ev . r+i, [F+i(U, F) Xu, pr+i) + (F , ll · l!p) ' 

( E:' X) I-+ ev . ( E:' X) - ~ ( X) r+i, 

(10) 

(11) 

is of class Cr+i , a fort{ori ~ , for all i, - 0 , 1, 2, .... Since the 

compos ite map e:) . o <P 
r+i, is exactly the map ev in (8), we have the first 

part of the proposition . 

For the formula (9), we use the proof of Theorem (10.3) in [4], p. 25: 

if for each k = 1 , 2 , ... , r we denote by 
k 

D ev . ( ~, x) 
r+i, 

00 

derivative cf the map (11) at (E,: , x) EB (U, F) x U , then 

k 
k k-1 - D ~(x) .h

1 hk + ) D nz(x) .h1 
-

Z=l 
A 

where hl means the factor hl lS deleted , and where n . 
'l, 

hi E F for l < i, < k . Thus (9) follows . // 

the kth 

" 
hl . . . hk (12) 

00 

E B ( U , F) and 
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More generally , we have the following : 

(6.2) PROPOSITION. Let E, F be Banach spaces~ Uc E be open~ 

con1..>ex and bounded~ r be an integer greater than or equal tn 1 and k 

be an integer OS k < r . Then the mnp 

i.s s;r with respect to the calibration r = {p k . } . -r+ +i. i.-0 ,1 , 2 , . .. on 

(X) 

norm- calibration Ex Pk(E , F) B ( U, F) X E and the on . 
(X) 

For each ( E,; , x) E B ( U, F ) X ij ~ the Bf- derivative 

(X) 

XE+ EX Pk(E , F ) Devk ( E,; , x ) : B ( U, F) 

i.s given by 

= (h , r;, (x) +DE,; (x) .h , . . . ' k k+l ) D [_, (x)+D E,;(x) .h 

(X) 

or ( [_, , h ) EB (U, F ) x E : and is onto . 

Proof . We can write evk as a composite of the following m2ps : 

B
00

(U, F) x U ~ B00

(U, Pk (E~ F )) x U ~ U x Pk (E, F) 

( t,; , X ) I-+ (pkt,; , X) I-+ ( X , pk t,; ( X ) ) . 

We choose as the calibration for B
00 (U, Pk(E , F ) ) x E the following 

sequence of increasing norms : 

r = {p . } . - 2 r+i. i. - o , 1 , , . . . 

defined by 

ilsll · + llxllE r+i. for all 

(13) 

( 14) 

(15) 

(16) 

(17) 

(18) 

where II • II is the norm in B
00

(U, Pk(E , F)) r+i with respect to the norm (3) 

1n Y(E , F) . 

Then the map 

(19) 
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is obviously linear . furthermore, it can be seen that 

for all 
. 

& = o, 1, 2, .... (20) 

Since k is a constant , this proves that Pk is a linear Bf-continuous 

CX) 

map, hence of class CBI' . 

Thus the above composite is ~r since the map 

(X) k . k 
ev : B (u, p CE, F) ) Xu+ p CE, F) : Cs, x) + sCx) (21) 

lS s;f (with respect to -r defined in Cl7) and defined in 

(3)) by Proposition ( 6 . 1) . 
CX) 

for each ( ~ , x) EB (U, F) x U , we have by (16), 

= D(¢ o ~)(~, x).(s, h) 

- D¢(Pk~, x) o D~C~ , x ).(s, h ) 

- D¢ (Pk~ , x ) (Pks , h) 

- D(Pk~)(x) .h + Pks(x) (by ( 9)) 

2 k+l k - ( D~ ( X) . h, D ~ ( X) . h, ... , D ~ ( X) . h) + ( s ( X) , Ds ( X) , ... , D s ( X)) 

( 
2 k k+ 1 . ) - s(x)+D~(x) .h , Ds(x)+D ~(x) .h, ... , D s(x)+D ~(x).h . (22) 

Thus we have Cl5) as desired . 

We now prove that Devk(~ , x) is onto . Let (h
0

, a
0

, a 1 , ... , ak) be 

an arbitrary el~ment in Ex Pk(E, F) . We want to find a 

CX) 

Cs, h) EB (U, F) XE s uch that 

( k k+l ) h , sCx)+D~Cx) .h, ... , D s(x)+D ~Cx) . h - C23) 

Taking h = h
0 

, then (2 3) gives 
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l;;(x) + 

Dl;;(x) + 
(24) 

k Dk+l~(x) .h D l;;(x) + -
ak -

0 

(X) 

That lS , we must find l;; E B ( U, F) such that 

l;;(x) = a - D~(x).h
0 = bo, Dkl;;(x) = ak - Dk+ 1 ~ ( X) . h 0 = bk 0 . . . ' (25) 

where b. E L&(E F) 
& s ' 

(i = 0, 1, ... , k) . are given . 

That condition is satisfied if we take l;; defined by 

bl 
z;; : u c E ~ F: y 1---+ l;;(y) = b

0 
+ - (y-s) + 

l! 

bk (k) 
+ - (y-x) k! (26) 

(X) 

Since U is open, convex and bounded, it is e~sy to see that l;; EB (U, F) 

and Dkl;;(x) = b. for i - 0, 1, ... , k II 
& 
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CHAPTER 2 

f -MANIFOLDS AND f -BUNDLES 

In this chapter , we construct f-manifolds and f-bundles modelled on 

locally convex spaces using the f-differentiation of Yamamuro. The models 

of a f-manifold are open subsets of the members of a f-family and the 

transition maps are supposed to be f-differentiable (see Chapter 1, §3). 

co · 
We shall prove that the space of C maps from a compact manifold X into a 

co 
(finite-dimensional) manifold Y is a r-manifold of class Cr . Hence the 

co co 
space Diff (X) of C -diffeomorphisms of a compact manifold X , and the 

co co 
space Emb (K, X) of C -embeddings of a compact manifold K into a 

manifold X are both f-manifolds. 

Corresponding to the notion of Bf-differentiability, we have the 

Bf-manifolds (or f-manifolds of bounded type) . More precisely , Bf-manifolds 

are f-manifolds with the requirement that the transition maps are Bf

differentiable . We shall give some examples of simple Bf-manifolds. 

In the last section of this chapter, we shall give a brief exposition 

of f- and Bf-bundles and an useful example of a Bf-bundle, the Bf

bundle LBf(TX' Ty) of Bf-linear maps ( see [4] for · the Banach case). 

1 . r-man if o 1 ds 

We follow the treatment of [4]. 

Let E be a f-family (see Chapter 1, §2) . Then a local [-manifold 

is an open subset of a member EE E. A Cj-local manifold morphism is a 

~ map between local f-manifold s . Thes e form a category whos e isomorphisms 

are just Cj-diffeomorphism (see Chapter 1) . 
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Let X be a Hausdorff space . A f-manifold chart (or simply a 

f-chart) on X is a pair (U , a) where U is an open subset of X and a 

is a homeomorphism from U onto a local f-manifold. Two f-charts (U, a) 

and (V, B) are cr.,-corrrpatible iff the composition (also called transition 

map) 

So a-l : a(U n V) ~ B(U n V) 

is a local Cj-manifold isomorphism (i. e . a {-diffeomorphism in the sense 

of Chapter 1 ). A I' - atlas of class Cj (or a Cj-atlas) on X is a 

collection of f-charts {(U, a)} any two of which are ~-compatible and 

such that the V' s cover X. A f-atlas is maximal iff it contains each 

f-chart which is f-compatible with all of its members. Clearly, every 

f-atlas extends uniquely to a maximal f-atlas . 

A f -manifold of class (or simply a cf-manifold) is a Hausdorff 

topological space X together with a maximal Cj-atlas on X. As usual, 

we often suppress notation for the maximal ~-atlas on X but simply let 

X refer ambigously to both the underlying topological space and the maximal 

f-atlas . Instead of saying that a f-chart (U, a) is a member of the 

maximal f-atlas, we say that (U, a) is an admissible f-chart on X. 

If all the models E coincide to a fixed member EE E then we have a 

a pure I' -manifold (modelled on E ). 

Let X be a Gj-manifold (r ~ 1) and let x be a point of X. We 

consider triples ( u' a, v) where ( u' a) lS a f-chart at X and V lS 

an element of E E E ( in which a(U) lies). Following the standard way 

(see Lang [44]) we say that to such triples (U, a , V) and ( V ' B, w) are 

equivalent if the f-derivative of B O a 
-1 

a(x) at maps V onto w . 



34 

The formula reads 

(Bo a-1 ) '(a(x)) . v = w. (1) 

An equivalence class of such triples forms an entity called a r- tangent 

vector of X at x . The s et of all th ese tangent ve ctors is called th e 

f - tangent space of X at x , and i s denot ed by TX. 
X 

Each admissible r-chart ( U, a) at x determines a bijection of 

onto the LCS EE E (in which a(U) lies) namely : 

¢ 
( U , a) 

T X -+ E 
X 

• • 
x - (U, a, v) 1-+ <P(U ,a)(x) - v 

TX 
X 

where (U, a, v) denotes the equivalence class of (U, a, v) . Furthermore, 

if (U, a) and (V, B) are two {-compatible f-charts at x, then it 

follows quickly from (1) that for each p Er , there exist y > 0 
p 

and 

o > 0 such that if w - (B o a-
1) '(a(x)). v and v - (a o B-1) '(BCx)) .w , 

p 

then 

Thus, by means of the bijection <P (U,a) , we can transport to 

(2) 

TX the 
X 

LCS structure of E as well as the calibration of E· . More precisely, we 

define the calibration for TX by 
X 

- {pT x Ip Er} 
X 

with 

• • 
PT x(x) = pE(v) if x - (U, a , v) . 

X 

By (2) it follows quickly that all the f-notions considered on TX 
X 

r emain the same if we define the LCS structure on TX via 
X 

(V, B) is Cj-compatible with (U, a) . 

wh en 

(3) 

(4) 
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We can define the tangent space at a point x EX of a f-manifold X 

by another equivalent approach as follows ( see [ 4]) . 

Let JR be the real line endowed with the standard norm (i.e. the 

absolut e value I ·I ). Then JR E E by our definition of a f-family (see 

Chapter 1 , §2 ). If X lS a r-manifold of class s: (r > 1) then a map - ' 

I c JR -+ X where I interval JR . said to be of class C lS an open ln lS 

c1 
r 

if for every t E lR 
' 

there lS a r-chart ( u' a) at c(t) E X such 

that the map a o c I -+ a( U) c E is c1 
r (in the sense of Chapter 1). 

1 
X c1· from an interval JR containing 0 Cr- curve ln lS a map open ln 

r 

X . Curves cl and c2 are tangent at a point X E X iff 

c
1

( o ) - c
2

(o) - X and for some (and hence every ) admissible r-chart - -

( u' a) at X , we have 

A 

to 

(a 0 c
1

) '(O).l - (a o c
2
)'(0).l (5) -

where ( a o c) '( O) lS the f-derivative of a o C at 0 . 

1 . called at iff c(O) A Cr-curve C lS a curve X - X Among the - . 

curves c at x , tangency (at x) is an equivalence relation. If we 

denote by X 
X 

the set of all equivalence classes , then it is easy to see 

that for each r-chart (U, a) , there exists a bijection of 

( the member of E in which a( U) lies) , namely, 

[c] 1-+ (a o c) '( O) .l 
X 

X 
X 

onto 

and we can identify X to 
X 

TX defined in the previous paragraph . 
X 

E 

(6) 

Now let X be a c;-manifold and ~ be an open subset of X. Then 

it is possible , in the obvious way , to induce a S:-manifold structure on 



n 'by taking as f-charts for n the intersections 

(Un n, alu n n) . 

The open subset n with this ~-manifold structure is called an open 

r-submanifold of X . 

More generally , we define the f-submanifolds as follows : 

Let E be a f-family and let X be a C~-manifold. Let 
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( 7) 

A = {(U, a )} be the f-atlas of X . Let w be a subset of x . Then we 

say that an admissible f-chart ( U, a) E A has the f-submanifold property 

for w -in 

(i) 

X at X E w if the following conditions are satisfied : 

the LCS E E E (in which a(U) lies) admits a direct 

f-decomposition E = E
1 

®r E
2 

( see Chapter 1) into two 

closed f-splitting subspaces E1 _and E
2 

; 

(ii) a(U) = u
1 

+ u
2 

where u
1 

and u
2 

are open neighbourhoods 

of O in E
1 

and E
2 

respectively; 

( iii) a(x ) = o and a(W n U) = u
1 

c E
1 

. 

It is not hard to see that if every point x E W has a f-chart 

(U, a) with the above property , then the family 

AW = { ( W n U, a I W n U) I ( U, a) E A} 

is a f-atlas for W . Note that if ( V, B) is another such f-chart at 

x , then the transition map 

is ~ and E1 , F1 EE (since E is a f-family). 

The subset W with the above ~-manifold structure is called a 

(8) 

f - submanifold of X Note that for x E W , the tangent space T W is a 
X 

r-splitting subspace of T X . 
X 
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We now define the ~ maps between ~-manifolds . Let X, Y be C::-r 

manifolds and let f X + Y be a map . Then we define the local 

representative of f (with respect to the f-charts (U , a) and (V, B)) 

to be the map 

-1 
f aB = B o f o a a(U ) c E + BCV) c F ( 9 ) 

where E, FEE are respect ive ly the spaces containing a(U) and B(V) . 

A map f : X + Y is of class (or more categorically a ~-

manifold morphism) iff for every x EX and every admissible f-chart 

(V, B) on Y with f(x) EV, there exists an admissible f-chart (U, a) 

on X such that x EU, f (U) c V and the local representative fas is 

a local ~-manifold morphism (i. e . ~ in the sense of Chapter 1, §3). 

If f X + Y is a ~ map (r > 1) then, as usual, it induces a 

linear map 

called the [-tangent map of f at x . In the f-charts (U, a) and 

(V, B) , th i s tangent map is represented by the f-derivative 

E+F 

(see [4] for the Banach case ). 

2. Examples of r-manifolds 

(10) 

(11) 

In this section we give some examples of f-manifolds. Let X be a 

00 00 

ompact C -manifold and let Y be a finite-dimensional C manifold . 

00 00 

We denote by C (X , Y) the space of all C maps from X to Y. As 

a first example of f-manifold, we shall prove that 
00 

C (X, Y) 

manifold in the sense of §1 . 

is a 
00 

C -r 
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To do so , we first prove the global version of the f-om ega lemma in 

Chap ter 1, § S. 

00 

Let X be a compact C manifold and let 

TI E-+X, p: F-+X (1) 

00 

be two C ( Banach ) vector bundles having the same compact hase space X. 

Then a mapping f: E-+ F is fibre- preserving (see [l]) iff po f - TI 

00 00 00 

We denote by S (TI) and S (p) the spaces of C sections of TI and 

p respectively. 

00 00 

We endow S (TI) and S (p) the following calibrations: cover TI and 

p by a finite number of pseudo compact VB charts [ui' a~, ai] and 

[u . , a~ , s . ) 
1., 1., 1., 

(1 < i < n) where {[u a
0
]} is an atlas of X (see 

i' i lSiSn 

[l l, p . 1 5 ). 
00 

Then each y ES (TI) has the following principal part with 

respect to the VB-chart [ui, a~, ai] 

- a~(u.) -+ E (1 n) Ya. < 1., < - -
1., 1., Cl • 

(2) 
1., 1., 

with 00 [ o C l Ea.] a~(u.) Ya. E C a. U . , and is compact. 
1., 1., 1., 1., 

1., 1., 

For r - o, 1, 2, , define - . . . 

JJya. llr - sup {IIY ai Cxl II + IIDy (x) II + . . . + Dry (x) } < + 00 (3) -

0 (-· ) 
Cl • Cl. 

1., xEa. U . 
1., 1., 

1., 1., 

nd 

00 

for y E S (TI) (4) 

Then the set 

(5) 

is a calibration for 
00 

S (TI) . 

Similarly , we have the calibration 
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(6) 

00 

for S ( p) . 

Now if n CE lS an open set such that Tijn: n +Xis surjective, 

00 00 

let S (n) c S (TI) denote the open set of sections with image in n . 

00 

If f : n c E + F . 
lS a C fibre -preserving map, let 

00 00 00 s (n) c s (TI)+ s (p) ( 7) 

denote the composition mapping induced by f : 

(8) 

Then the local f-omega lemma in Chapter l may be globalised as follows (see 

[l] for the Banach case) . 

( 2. 1 ) LEMMA. 
00 

Let X be a compact C manifold and let TI : E + X ., 
00 

p F + X be two C (Banach ) vector bundles having the same base space 

X . Le t f: E + F be a 
00 

C fibre -preserving map as above . Then 
00 00 00 

f* : s (n) c s (TI) + s (p) 

defined by 
00 00 

f*(y) = f o y for all y ES ( n ) ~s Cr with respect to the 

00 00 

calibrations ( 5 ) and ( 6) for S (TI) and S (p) . 

Proof. We first prove that f* lS c1 
r Cover TI and p by a finite 

number of the pseudocompact VB char ts {[u a0 a]} and 
i ' i ' i lsisn 

0 
a .' 
~ 

as above . 

Now for each such pair of VB charts (u, ao, a) and (u, ao , B) 

with u CV and (v, ao , a)' (v, ao , B) VB-charts (see the definition of 

pseudocompact charts [4]) we have 

wher e 

00 

(f O y)S = faB o ya for all y ES (n ) 

-1 
Y_a - a o y o a0 

( 9 ) 

( 10 ) 
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(11) 

are local representatives of Y ann f o Y , and fas is the local 

representative of f (c being the member of E in which a
0

(V) lies). 

Hence 

with 

and 

is compact, 

Consider the map 

defined by 

where 

. is open in G x E and 
a 

for all y E C
00

(a
0

(U), E) 
a a 

00 

Then it is easy to see that ~ is Cr with respect to the natural 

Indeed, we have 

(x, y (x)+n (x)) - (x, y (x)) 
a a a 

which gives 

defined by 

(12) 

(13) 

(14) 

(15) 
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(16) 

The map ¢ ' 1s f-continuous because it is a constant map, and we have 

if\(k) = 0 f k '*' or > 2 . (17) 

Now consider the composite pr
2 

o fas 

00 

pr2 o f aS E C and induces 

(pr2 o faS)* : C
00

(a0(U), a
0

(V) x Ea)~ C
00

(a0(U), FS) (18) 

00 

which is Cr by the local f-omega lemma (5.1). 

00 

lS Cr by Chapter 1. 

00 00 00 

If y ES (D) and n ES (n) , we can define the following C section 

of p : 

00 

s = fl(y) . n E S (p) (19) 

by requiring that the principal part of c,; with respect to the VB-chart 

( U, a
0

, S) be: 

given by 

s B ( a 
O 

( x ) ) - (f; ( y ) . n) B ( a 
O 

( x) ) 

- pr2 o 82fas(a0 Cx), ra(a
0

Cx))) .na(a
0

Cx) ) . c20) 

Note that formula (20) gives us a well-defined section s (independent of 

the VB-chart chosen) . 

Now we have 
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{ [(pr2 0 fas)* 0 <P] , (ya) . na} (ao(x)) 

- { pr 
2 

o f ' S ( Y ) o <P ' ( Y ) . 11 } ( a
0 

( X)) a a a a 

- pr2 0 f~s(ao(x) , ya(ao(x))) . (o, na(ao(x))) 

- pr2 0 [alfas (ao(x ), ya(ao(x))) . o+a2fas(ao(x), ya(ao(x))) . naJao(x))] 

- pr2 0 a2fas(ao(x), ya(ao(x))) .na(ao(x)) . 

Hence by ( 20) , we have 

[ (pr2 O f s ) * o <P] 1 (y ) . T) a a a 

- principal part of fJ(y).n (21) 

Since 
1 . . 

lS Cr for each i, (1 ::: i s n) we have: 

for all s > 0 , all r , there is c5 .( s , r ) > o 
1., 

(1 ::: is n) such that 

whenever llna ./1 < c5i (1 ::: i Sn) . Thus , since the principal parts of the 
i, r 

local representatives 
~ 

(f *( y)) s. -
1., 

~ 
(f * C y+n ) ) 6 . -

1., 

we have by definition 

of f*(y) and f*(y+n) are : 

pr2 0 fa.s . (ya ) = (pr2 0 fa . s .J * 0 

1., 1.,* 1., 1., 1., 

(pr2 0 f ) 0 <P (y +n ) a .S . * a . a . 
1., 1., 1., 1., 

n ~ rv ~ 
- .[ // (f * C y+n) ) R • - (f *CY))~ . - (f; ( Y) • n) 6 . I/ 

1,-l 1, 1, 1, r 

- [(pr2 o t J o ¢J , (y J . n II . a.S . * a. a . 
l, l, l, l, r 



Hence , taking cS = min(o1 , ... , on) > 0 , we have 

llnll < cS • r 

Furthermore , from the fact that 

for all 1 < & < n , it follows quickly that for the above defined map 

t;Cy) : n r-+ t;Cy).n 

we have f;(y) E Lr (S
00

(rr) , S
00

(p) ) and f! : S
00

(Q) + Lr(S
00

(rr) , S
00

(p)) is 

r-continuous . 

Hence f* is of class c1 
as desired . r 

The proof for ~ for any r > 2 is analogous with the use of the 

following facts : 

is defined by the analogue of ( 20) , 

( ( r) 1 r) 
f * ( y) . n .. ~ n s = pr 2 ° 

and we have the following analogous formula of (21): 

43 

~k n . 
a 

I I C 22) 

00 00 

Now let X be a compact C -manifold, Y be a finite-dimensional C 

00 00 

manifold and let C (X, Y) denote the space of all C maps from X to 

y . 

If 2 
s : TY+ TY is a spray on y (see [l]) then there is a 

neighbourhood V c TY of the zero-section and a neighbourhooc 
s 

00 

F C y X y 
s 

of the diagonal such that s Exp : V + F 
s s 

lS a C diffeomorphism (see 

[ 1] , p . 31) . 

00 

If f EC (X, Y) , we have the diffeomorphism 
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sf= f*Exp
8 

: f*V
8 

+ V 
f ,s 

where Vf,s c Xx Y is a neighbourhood of the graph of f. 

co 
If u CC (X, Y) 

f ,s 
consists of maps g such that graph(g) C Vf,s , 

then the map 

co co 

~f,s : uf,s + Cf(X, TY) - s (f*TY) ( 2 3). 

defined by 
-1 

g 1-+ sf o graph(g) is a homeomorphism of u 
f ,s 

onto an open 

co co 
subset of Cf(X, TY) (where is the space of C vector fields 

. co 

along f, i . e . the space S (f*TY) ). We shall call the pair (uf,s' ~f~s) 

a natural chart . 

(2.2) THEOREM. co 
Let X be a compact C manifold and Y be a 

finite-dimensional C
00 

.manifold. Then the family { (uf,s' ~.f~s)} of 

co co 
natural charts is a r-atlas of class Cr on C (X, Y) if we take as 

co co . calibration for S (f*TY) the one defined by (5). Hence C (X, Y) 1,S a 

co 
Cr manifold. 

Proof. We follow the proof in Abraham [l], p. 32. 

and be natural charts, and suppose uf = uf, , . ,s ,s 
It 

co 
suffices to show that 

-1 
~f ',s'o ~f ,s 

. is a Cr-diffeomorphism. But it i s 

clear that 

-1 
~f ' ,s, o ~f,s(y) - F*(y) - F o y 

where 

s, l s 
F = [f' *Exp ] - o [f *Exp ] . 

co co 
But s and s' ar e C sprays and f, f' are of class C , s o it i s 

evident that F is a f i bre -pres erving map of class 
co 

C By Lemma (2.1), 

co 
F* is of class Cr . Clearly 
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00 

so F* is a Cr-diffeomorphism . II 

As an immediate consequence of ( 2 . 2) we havP. the follm·.ring two examples 

of f-manifolds . 

(2.3) COROLLARY. 
00 00 

Let X be a compact C manifold and let Diff (X) 

00 

denote the space of all C - diffeomorphisms of X onto itself. Then 
00 00 

Diff (X) is a Cr-manifold. 

00 

Proof. By Proposition 1 .10 in [ 31], p. 75, Diff (X) 
. 
is open in 

00 

C ( X , X) . 
00 

Thus, it is an open f-submanifold of C (X, X) , i.e. a 

00 

Cr-manifold . II 

(2.4) 
00 

COROLLARY. Let X be a compact C manifold and Y be a 
00 00 00 

finite-dimensional C manifold. Let Emb (X, Y) denote the space of C -
00 00 

embeddings of X into Y . Then Emb (X, Y) -is a Cr-manifold. 

00 00 

Proof. Note that Emb (X, Y) is open in C (X, Y) ( see [ 31]) . Then 

the proof is similar to the one of (2.3). II 

3. Bf -manifolds 

There is a special kind of f-manifolds which are useful in application 

since we have the Inverse Mapping Theorem only for Bf-differentiability (see 

Chapter 1, §3) . In this section we shall define these Bf-manifolds, and 

their corresponding Bf-submanifolds . In the next section we shall give 

several simple examples of Bf-manifolds. 

If in the definition of f-manifold (see §2) we require that the 

transition maps 

-1 B o a a( U n V) c E -+ B( U n V) c F 

are ~r for all compatible f-charts (U, a) and (V, B) (see Chapter 1, 

§3) then the corresponding f-manifold X will be called a Bf-manifold of 

class ~r . The f-charts (U, a) and (V, B) are then called Bf- charts 
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of lass s;r (or s;r- charts) . 

Note that the only difference between a f-manifold and a Bf-manifold 

is about the extra condition on transition maps. Thus Bf-manif0lds may be 

called f-manifolds of bounded type in the sense that the coefficients yp 

and o in formula (2), §1, are bounded: 
p 

sup y = y < + oo, 

pEf p 

sup o 
pEf p 

=- 8 < + 00 

' 

and we have the following double inequalities 

for v and w satisfying 

w = ( S o a - l) ' ( ox) v and v = ( a o S - l) ' ( Bx) . w . 

(1) 

(2) 

(3) 

(4) 

From (3) we see immediately that if X is a Bf-manifold of class c;r 

(r ::: 1) then the definition of the tangent space TX 
X 

at a point x EX 

does not change if we take 

(U, a) is a Bf-chart at x 

TX- (U,a,v) 
X 

VEE EE, a(U) c E 

(5) 

Similarly, the definition of tangent space X 
X 

. 
via 

l . (l 

Cr-curves as in ~l does 

not change as well: 

Xx= {[c]x I c : I+ X, C~-curve at x} 
and we have the equivalence between the two definitions. 

For two Bf-manifolds X and Y of class s;r Cr> 1) we can 

define s;r maps f X + Y as well as ~-maps. 

More precisely, a map f X + Y is of class c;r iff for every 

x EX and every c;r admissible chart (V, S ) on Y with f(x) EV, 

(6) 
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there exists a c;f- admissible chart (U , a) on X such that x EU, 

f (U) c V and the local representative fas is a ~f map from a(U) c E to 

B(V) c F . It is then easily seen that the definition does not depend on 

~ f- charts (U, a ) and (V, S) . 

If f X ~ Y is a ~ f map (r > 1 ) then we can define the 

Bf- tangent map at x E X : 

(7) 

as u sual . The difference between this Bf- tangent map and the f - tangent 

map defined in §1 is that , in local ~f- charts (U , a) and (V , B) , the 

Bf- tangent map is repr esented by the Bf- derivat ive f~
8

(a(x) ) E LBf(E , F) 

-
(unlike the case of f - tangent map where f~

8
(a(x )) E· Lf(E , F) ) . 

We now define the Bf- submanifolds of a Bf - manifold . Let X be a 

Bf- manifold or class ~ f . If i n the definition of f - submanifold (as in 

§1 ) we requ ire that the f ~decomposition E = E
1 

©r, E
2 

in condition (i) be 

a Bf- decomposition ( i . e . E - E1 ®af E2 ) then Aw is a ~f- atlas for a 

Bf-manifold structure on W . W is th en called a Bf- submanifold of class 

c;;f of the c;;f-rnart1fold X and (U , a) is said to have the Bf- sub

manifold property for W &n X at x . Note that the Bf-t angent space 

T W of the Bf - submanifold W at x E W is a Bf-splitting subspace of 
X 

the Bf-tangent space TX 
X 

4. Examples of Bf -manifolds 

( see Chapter 3 , §1) . 

We give three simple examples of Bf - manifolds . 

EXAMPLE 1. Let Z = { (x1 , x
2

, x 3 ) E JR
3 Ix~+:~ - 1 - o} be the 



cylinder in ffi 3 defined in [ 32] , p . 115 . Then Z is a Riemannian sub

manifold of dimension 2 . 

If is a point, consider the mapping 

defined in a neighbourhood ~ of [q1 q2
] by O' 0 

sin 

Then c is a local isometry mapping ~ onto a neighbourhood V of 

L[q~ , q~] = q
0 

E Z . Furthermore, L induces 

~ x ffi2 
-+ TV c TZ 

which maps the canonical basis 

(q1
, q

2
) onto an orthonormal basis 

of the tangent space 

P . 115) . 

Let s - -1 
l 

T Z 
q 

V -+ ~ 

at each point 

be the inverse map of 

at 

( see [ 32], 

c , then 
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(1) 

( 2) 

(3) 

(4) 

(where S* = c:1
) can be taken as a VB-chart for the tangent bundle TZ • 

Now let I c JR'll be a compact subset and consider the space 
00 

C (I, Z) 

00 00 

of all C maps from I to z (i.e. maps which are C in a neigh~ourhood 

of I ) . 

00 00 00 

For each a EC (I, Z) , we denote by C (I, TZ) 
a 

the space of C -

vector fields along a 

00 00 

C (I, TZ) - {v : I-+ TZ I v EC and TI o v - a} 
a 

where TI : TZ-+ Z is the natural map. 

00 

( 5) 

Then C (I, TZ) is obviously a vector space. We define a calibration 
a 



00 

on C (I, TZ) as follows : 
a 

Fix a VB-atlas {(v., S ., S. )} for TZ with the VB-charts 
J J J * 

( V ., s . ' s . ) defined as above . Then for each X E I 
' 

there exists a 
J J J* 

( V . - s . ' s . ) such that a(x ) E V . . We can thus find a neighbourhood 
J' J J* J 

- a (U(x)) c V . alu(x) 
00 

U(x) uf X such that and . U(x)-+ V. lS C . 
- J J 

4 9 

We 

can furthermore find an open relatively compact neighbourhood U(x) of x 

such that : 

-U(x) c U(x) c U(x) . 

Since I is compact , we can cover I by a finite number of such V's 

~ ' ~ ' . . . ' ~ (the number M may depend on a ) . Thus 

{~, ~ , ~} . of I with the property that . . . ' lS an open covering 

compact (1 < 1., < M) and each rr. lS mapped into a V. - -
1., J 

00 rr. Now , if V E C (I, TZ) then on each (1 < 1., SM) we have a -a 1., 

map 

and for each x E if:, 
1., 

v. - vi 
1., rr. 

1., 

u°: -+ TV . c TZ 
1., J -

(6) 

Yr. . 
lS 

1., 

00 

C 

(7) 

(8) 

where {i 1 (x ), i 2(x)} is the orthonormal basis of Ta(x)Z defined as above. 

Obviously the components v~ : if: -+ lR and 
1., 1., 

For each integer r = 0 ' 1, 2 , . . . 
' 

a { v'"vi(x)I+ JJv - II - sup -
i, r 

xE7r. 
1., 

and 

2 v . 
1., 

define 

r 2 
D V .( x) 

1., 

rr. -+ lR 
1., 

} < + 00 

are 
00 

C 

(9) 



M 
a Jlv II = r ~ 

i=l 

a llv . II . -i r• 

Then it is easy to see that II · II~ are semi-norms on 

00 

a E C (I , Z) • 

00 

00 

C (I , TZ) 
a 
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(10) 

for each 

Note that if b EC (I , Z) is another map , then we have another open 

covering {~ , ~ ' ... , ~ } with the above property and for 

(11) 

(12 ) 

(13) 

00 00 

Thus we have a family of LCS ' s C (I , TZ) , 
a a EC (I, Z), calibrated by the 

calibrations 

ra = { II · II~} _ . 
r- 0 , 1 , 2 , ... 

(14) 

(4.1) THEOREM. Let I c ]Rm be a compact subset and let Z be the 
00 

above cylinder . Then C ( I , Z) -is a Bf-manifold of class 

as local models fer it the family of LCS ' s 

calibrated by ra in ( 14 ). 

00 

C (I, TZ) 
a 

00 

00 

c8 r if we take 

Proof. First , we know that exp : TZ ~ Z is C and there exists an 

open neighbourhood S of the zero-section of TZ such that 

TIX exp : s ~ z X z 
00 

maps S C -diffeomorphically onto a neighbourhood O of the diagonal 

6 c Z x Z (TI : TZ ~ Z being the natural map) . Its inv~rse 

(15) 

(16) 



' i s given by ([4 5], p . 268 ) 

For each 

n --
a 

Then n is a 
a 

tp(V, m) [v' -1 l ( V , m) - expv (m) for all E O - . 

00 

a E C (I, Z) let 

{l 
00 

I (a(x), l(x)) x EI} E C (I, Z) E 0 for all 

00 

neighbourhood of . 
C (I, TZ) , and the map a in 

00 

n -+ C (I, TZ) 
a a 

defined by l I---+ lJJ ( l ) 
a 

with 

lJ; ( l) (x) = exp -l( ) (l(x)) for all x E I , 
a ax 

maps n onto the open subset lJJ (n) c C
00

(I, TZ) . 
a a a - a 

00 00 
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(17) 

(18) 

(19) 

(20) 

Take a EC (I, Z) , as a f-chart for C (I, Z) at a. 

We need to prove that if nan nb t ¢ then 

00 

is c
8
r with respect to the calibrations 

00 

Cb(I , TZ ) . 

00 

on C (I, TZ) 
a 

It is obvious that, for v E lJJa(na n Db)~- c:(I, TZ) we have 

00 

w = ljJ(v) E Cb(I, TZ) given by (see [45]) 

(21) 

and 

w(x) = expbix) (expa(x)(v(x))) for all x EI. (22) 

Now , with respect to the VB-chart (v., s ., s .) 
J J J * 

constructed above, for 

each q E Z , the exponential map 

exp T Z-+ Z 
q q 

is given by (s ee [32], p.116 ) 

l 2 ( ( l 1) . ( l 1) 2 2) v = v il + v i2 i---+- expq(v) - cos v +q , sin v +q , v +q . (2 3 ) 

Thus, for all x EI, a(x) E Z and B(a(x)) - (a1 (x), a
2
(x)) E JR. 2 , then 
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v(x) E Ta(x )Z is given by 

• 
l 2 v(x) = v (x) I

1
(x) + v (x)I

2
(x) ( 2l~) 

where I
1

(x) = i
1

(a(x)) , I
2
(x) = i

2
(a(x)) are unit vectors of the basis 

Similarly , for a ll x EI, B(b(x)) _= (b1 (x), b
2(x)) E m2 and 

w(x) E Tb (x)Z with 

and 

From ( 22), (25), ( 27), we have for all x EI, 

( 26 ) 

(k is a constant integer) . ( 28 ) 

l 2 That is, for v(x) = v (x)I
1

(x) + v (x)I
2

(x) , we have 

( 1 l l ) (2 2 2 ) W(V)(x) = V (x)+a (x)-b (x)+k2TI J
1

(x) + V (x)+a (x)- b (x) J
2

(x ) . (29) 

We now prove that 
• OQ w is cBr . Indeed, consider the coverings 

{~ , u<; , ... , { } and {~, 1'2 , ... , {} , then for eaeh J - 1 , 2 , ... , N , 

we have by ( 29) , 

00 l 2 
h E Ca (I , TZ) with h(x) = h (x)I

1
(x) + h (x)I2(x) 

for all x E I . 
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Define 

(i.e. for all x EI, L(h)(x) = h1 (x)J
1

(x) + h2(x)J
2
(x)). Then obviously 

L i s linear. We claim that L is linear Bf-continuous. Indeed, by 

definition 

with 

IIL(h) ·"b 
J r 

IIL( h) "b 
r 

- sup 

xETf. 
J 

-N 
- ) IIL(h) ·"b 

__, J r 
j=l 

But since ~ is covered by {v;i, ~, ... , ~} we have 

Hence 

IIL(h) .II~ S ·m~x { sup [11Drh1 (x)!1+11Drh2 (x)IIJ} 
J lSbSM -;-fl 

xEu. 
b 

< llh II~ for all J - 1, 2, ... , N • 

Since N is independent of r , L is linear Bf-continuous: 

Furthermore , by (3 0 ), 

[w(v+h)-w(v)-L(h)](x) - oJ
1

(x) + oJ
2
(x) ~x EI 

(31) 

(32) 



which implies 

that 
. 
lS, 

Thus 

II (l/J(v+h)-ljJ(v)-L(h)) .Jib - O for all J = 1, 2, ... , N ; 
J r 

b lll/J(v+h)-ljJ(v)-L(h)II = o . r 

is Bf-differentiable at each V E ljJ ( S"2 n Slb) a a and the Bf-

derivative of ljJ at v is given by 

DljJ (v). h = L(h) for · all 

00 

00 

h E C (I, TZ) . 
a 

v 1--r L which proves that ljJ is C Bf . I I 

(4.2) COROLLARY. Let M be a compact manifold and let Z be the 
00 00 

54 

(33) 

(34) 

above cylinder . Then C (M, Z) &Sa Bf-manifold of class CBr if we take 

as local models for it the family of LCS ' s 
00 

C (M, TZ) 
a 

Proof. First recall a terminology . A pseudo-compact chart (U, tp) of 

a manifold M is a chart with U compact and satisfying the following 

condition : there exists another chart (V, ljJ) of M such that Uc V and 

l/Jlu = 4) • In other words , pseudo-compact charts are charts with relatively 

compact domain and which can be extended over a neighbourhood of the closure 

of the domain . 

Cover M by a finite number of pseudo-compact charts {(w X )} 
a' a 1sasn · 

Then each Wa (1 < a Sn) is mapped by xa onto a compact subset 

I - x (w ) c ]Rm (m - dim M) 
a a a -

00 

For each a EC (M, Z ) , consider the s pace 
00 

C (M, TZ) 
a 

00 

of C -vector 

fields along a , and for each integer r - 0, 1, 2 , ... , define a semi-

norm II · II~ on 

00 

00 

C (M, TZ) 
a 

as follows : 

Let v EC (M, TZ) , then for each a (l <a< n) put 
a 
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(35) 

v - v o -l E C
00 

(I, TZ) a Xa a a 
a 

Thus , since is compact , can be defined by (10) . 

Put 

n a 
llv II~ I a 00 

- llv allr for V E C (M, TZ) - . 
a=l 

a 
(36) 

00 

Then it lS not hard to see that C (M, TZ ) is a LCS calibrated by a 

ra = { 11 • I I~} _ . 
r-0 , 1 , 2 , ... 

(37) 

Now following the construction in the proof of Theorem (4.1), let 

( ~ 
1

'
1

) be defined as above with I replaced by M and x EI replaced a ' '¥ a 

by m EM. 

We must prove that 

Coo "th t t th l "b t" ra , rb defi"ned by (37) . is Bf wi respec o e ca i ra ions 

00 

For each v E 1J; (~ n ~b) c C
00

(M , TZ ) a a - a we have 1J;(v) E Cb(M, TZ) , with 

~(v)(m) = expbtm)(expa(m)(v(x))) for all m EM. 

Hence , if we denote by 

,l,(v) - ~'(V) o -1 
'¥ a v Xa (1 <a< n) 

we have for each ls a< n : 

v are defined in (35). 
a 

Vx EI 
a 

(38) 

(39) 

(40) 

By the proof of Theorem (4.1), for each l Sa< n , there is a Bf-

continuous linear map 
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L C
00 

(I, TZ) ~ C
00

b (I, TZ) 
Cl a a · Cl 

Cl Cl 

defined by 

with the property 

b 
lll}J(v+h) -l}J(v) -L (h ) II a - o (1 s as n) • 

Cl Cl Cl Cl Y' 
(41) 

Now define the linear map 

by 

where and are , for each m EM orthonormal 
' 

base for Ta (m) Z and Tb (m) Z respectively . 

Note that if 
-1 

Ta (x)z = Ta(m)z X E I and X (x) - m , then and -
Cl Cl 

Cl 

the basis {I
1

(x ), I 2(x)} of T a (x ) z coincide to the basis 
Cl 

Thus we have 

L(h) - L (h ) for 1 S Cl Sn 
Cl Cl Cl 

(42) 

From (42), it follows that 

n b 

'I
L ( h) ''b = \ IIL( h) II Cl 

Y' L ClY' 
Cl=l 

Putting y - max{y
1

, ... , yn} we have 

that is , 



Furthermore , by ( 41 ), we have 

which proves that W is Bf-differentiable at v E W (n a a 

57 

and 

Dw (v ) - L for all v . Hence DW V f---+ L is a constant map and W is 

00 

CBI' as desired . // 

be the half-cone defined in [ 32] , p . 116 . Then K is a Riemannian 

submanifold of JR3 of dimension 2 . 

If (ql q2] E JR2 \{ o} lS a point , and n c lR.2 \ {o} 
O' 0 

neighbourhood of (ql q2] . consider the map 
o' o ' 

defined by 

= [-l 

. is an open 

Then by [32] , c is a local isometry mapping n onto an open 

neighbourhood V of c(q1
, q

2
) EK , and for each (q1

, q
2

) En the 

vectors 

(43) 

( 1 - 2) form an orthonormal basis for T K where q = c q , q EK . 
q 

Furthermore, 



the exponential mapping 

exp : T K-+ K 
q q 
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1 . 2. '[ 1. 2. l is given in [ 32] , p . 116 , as follows: for V = V &l + V &
2 

¥ A -q &
1
-q &

2 
, 

A> 1 , we have 

4 (vl +ql) 3 

+ 3 ( 1 1) 2 ( 2 2) 2' V +q + V +q 

( 2 2) 3 
( 2 2) 4 V +q 
V +q - 3 ( 1 1) 2 ( 2 2) 2 ' 

V +q + V +q 

2V2 I ( 1 1) 2 ( 2 2) 2] ~
3

- V V +q + V +q . (L~5) 

Let B = e, -l : V -+ ffi 2 
be the inverse of e, and B * the tangent map. 

Then (V, B, S*) is a VB-chart for TK 

CX) 

is~ compact subset and a EC (I, K) we can endow the 

space 
CX) 

C (I , TK) 
a 

with a calibration ra defined as in Example 1 

CX) CX) 

(formulae ( 9) and (10)) and if b EC (I, K) , Cb(I, TK) has a similar 

calibration rb (defined by (12), (13)). 

(4.3) TH EOREM. Let I c nf7 be a compact subset and let K be the 
CX) CX) 

above half- cone . Then C (I , K) &Sa Bf-manifold of class CBI' if we 

take as local models the family of LCS's C
00

(I, TK) calibrated by ra 
a 

defined as above . 

Proof. We follow the construction in the proof of Theorem (4.1). All 

that we need is to prove that 

CX) 

is CBI' where 

~(v)(x) = expb~x )(expa(x) (v(x))) for all x EI. (46) 

Using the formula (45) for the exponential map exp , it can be seen 
q 

tl1at if B(a(x)) = (a
1

(x), a
2
(x)) , B(b(x)) - (b

1
(x), b

2
(x)) , for x E I , 
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l:hen 

v(x) 

and 

where w - ~(x) and {I
1
(x), I

2
(x)} , {J

1
(x), J

2
(x)} are the orthonormal 

Then from (46), we see that there are three possibilities. 

( I ) (x EI) 
' 

2 2 2 
b

2
(x) w (x) - v (x) + a (x) --

' 

1 1 \/3 2 -a 
1 

( x) +a 
2 

( x) VJ- 2 b 
1 

( :r) w (x) - (- t )v (x) + 2 v (x) + -
2 ' 

(II) (x EI) 
' 

[ \13) l 
1 2 2 

2 2 -a (x)\/3-a (x)-2b (x) w (x) - - 2 V (x) + (-t)v (x) + -
2 ' 

[ 4 2 

1 2 1 
l l -a (x)-a (x)V3- 2b (x) w (x) - (- t )v (x) + - 2 V (x) + -

2 ' 

( III ) (x E I) . 

In any case, the components 
1 2 

w (x), w (x) 0f w(x) are affine functions 

of the components 
1 2 

v (x), v (x) of v(x) 

(47) 

where the e's, d ' s , y's, n's, o's and A's are constant . 

From (47) it follows quickly that ~ is Bf-differentiable at every 



v E ~ (n n nb) and has Bf-derivative at v given by 
a a 

00 

From that ~ is CBf . II 
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(48) 

(4.4) COROLLARY. Let M be a compact manifold and let K be the 
00 00 

above half- cone . Then C (M, K) is a Bf-manifold of class CBf if we take 

as local models the family of LCS 's 
00 

C (M, TK ) 
a 

Proof. The construction of calibrations on 
00 

C (M , TK) 
a 

to the one of Corollary ( 4 . 2 ) and the proof is omitted . II 

is similar 

EXAMPLE 3. I am i ndebted to Dr Yamamuro for giving me this example of 

Bf-manifold . 

I b b Of IRm 
Let ea compact su set and let s1 

be the 1-sphere 

( defined , e . g ., in [ 32 ], p . 2) . Consider the space C
00

(I , s1
) 

00 

of all ·c 

maps I-+ S1 . 

On s1 
we have a standard atlas defined by the four charts (c

1
, ~

1
), 

(C 1 m
2
') 2 ' 't' 

: +-+ +-+: 
. o o . 



~l 

~2 

~, 
1 

~, 
2 

arcs 

Then 
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c1 - { (xl , x2) E s1 
xl > 0} + JR (xl , x2) ....-+ ~l(xl, x2) -

xl - - ' 

c2 - {(xl , x2 ) E s1 x2 > 0} + JR (xl ' x2 ) ....-+ ~2 (xl' x2) - x2 - -
' 

C' - { (xl ' x2 ) E s1 
xl < 0} + JR (xl ' x2 ) ....-+ ~{ (xl ' x2) - x2 - - ' 1 

. C, - {(xl , x2 ) E sl I x2 < 0} + JR (xl ' x2 ) ....-+ ~~ (xl' x2 ) = xl. . 2 -

Let cS > 0 be a small constant ( 0 < c5 < 0 . 001 ) and consider the sub-

- -
C. , c ~ (i - 1 , 2 ) given by (?ee the figure above) -

1., 1., 

c1 
- { (xl ' x2 ) E s1 xl:::: o} - ' 

~ 

{ (xl , s1 o}, c2 
- x2 ) E x2 > - -

- {(xl , x2 ) E S
1 -o} C' - xl < - - ' 1 

- { (xl ' x2] E s1 I -o} C' = x2 < 
2 

-

If a E c
00 

(I , s
1

) , we def i ne a calibration on C
00

(I , TS
1

) 
a 

For 1., = 1 , 2 
' 

we pu t 

rr. - a-
1

(c .) . U ~a - a -
1

(c ~) -
' 

-
' 1., 1., 1., 1., 

r/1: 1 - U~a 1 -- a- (c .) = a- (c ~) -
' 1., 1., 1., 1., 

U
-a U- ,_ a 

. ' are compact ( i = 1 2 ) ' ' 
are open in 

1., 1., 

Now , if v E C
00 (I , TS

1
) , then on each 

a 
:-.a -U ,.a 
u . ' 1., 1., 

(i - 1 , 2) 

as follows: 

(49) 

(50) 

I and 

(51) 

v has 

local representative 

co 
which are C 

-v . 
1., 

- , v . 
1., 

u°:-+ lR (1 < 1., < 2) , 
1., 

U ~a -+ JR ( 1 s i < 2 ) , 
1., 



For each s EI , we have a(s) = (a
1

( s), a
2
(s) ) E S

1 
c lR

2 
. Then, 

for every integer k = 0 , 1 , 2 , ... , we define 

{ 
dk 

sup ~ 

sE~ ds 

llv { II~ - sup 

sEU{a 

llv~II~ - sup 

EU~ ,a 
s 2 

and for all v E C
00

(I , TS
1

) , we put 
a 

Then it is easy to see that II · II~ is a norm 

(51) . Thus for each a E C
00

(I , s1) we have a calibration 

ra = { 11 • II~} _ 
k-0 , 1 , 2 , . . . 

because of 
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(52) 

(53) 

(54) 

(4.5) THEOREM. Let I c ]Rm be a compact subset and let C
00

(I, s1
) 

00 l 
be the space of all C maps from I to the 1- sphere S . Then 

00 

&Sa Bf-manifold of class CBI' if we take as models the LCS's 

Proof. We follow the construction in Examples land 2. The only thing 

to prove is that 



is c;f with respect to the calibrations fa, fb defined by (54). 

But, for V E 1jJ ( St n Stb) , a a is given by 

1jJ ( v) ( s) = expb-7 , ( exp ( ) ( v ( s)) ) 'vs E I . ,s1 as 

To simplify the notation we put 

for 

Note that for each s EI, 1 1 
a(s) ES and Ta(s)S is 1-dimensional 

(which is identified to the real line R with basis 1 ). Then for all 

s E I , 

v(s) = t(s) ER . 

The same argument holds for 

lj)(v)(s) - ¢(t(s)) ER . 
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(55) 

(56) 

Then, using the formula for exp 
e 

T Sl + s1 given in [32] at the north 
e 

pole 

exp (t) = (sin t , cost) for t ET s1 
e e 

and the fact that at arbitrary points a(s) E s1 , 

where a JS 

then 

-1 -
expa(s) - a o exp o Cl* e 

an isometrv a E 0(2) such that 
.J 

a(s) - (a
1

(s) , a
2 

( s)) E C. or c ~ -
1., 1., 

b(s) - (b
1
(s), b 2(s)) E C . or c~ -

J J 

b . 
¢(t) - + ~ t + C 

a . 
1., 

a(e) 

(i 

(j 

= a , we 

- 1 , 2) -

- 1, 2) -

can see : if 

' 

' 

(57) 



where c is a constant and the sign + or 

C ., C ., C ~, C' .• 

depends on the mutual 

& J & J 

We define a map L dX) (I, TS1 ) + c; (I , TS
1

) by h 1-+ L(h) a 

follows : 

For each s E I ' if s E u°: n r} (or s E U'a r} . n 
& J & J 

or s Eu°: n U~b) 
& J 

(i, J - 1, 2) then h(s) - h . ( s) E IR - -
& 

b .( s) 
L(h)(s) - + J_ h. ( s) E IR - a . ( s) & 

& 

(The sign + or lS determined by ( 5 7) . ) 

Then it can be checked that L(h) is well-defined and 

Furthermore, 

with 
rv 

11ichl i 11t { ak (hl/sl] } 
. 

-- sup -
'(}. d k b .( s) s & sE 

& 

- { i [\Cs)] } - sup -
sEff dsk ai(s) 

b 

< llhll~ for 
. 

1, 2 & = -

and similarly 

Thus 

JJL(h)i!f s 41ihJ!~ for all h E c:(I, TS
1

) 

which proves that LE Lsr[c:(I, TS
1
), c;(r, TS1

) l . 
Furthermore, by construct jon we have 

or s 

and we 

as 

E u~a 
& 

put 
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U'b n . 
J 

(58) 



Hence 

(i - 1, 2) , 

II (l/J(v+h)-lj}(v)-L(h))illt - o (i - 1, 2) . 

b 
ll4J (V+h )-1j}(v)-L(h)llk = 0 
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which proves that ljJ is Bf--differentiable with Bf-derivative at v given 

by DljJ( V) = L • 

00 

Hence D4J : v ~ L is a constant map , and 1jJ is CBr I I 

(4.6) COROLLARY. Let M be a compact manifold and let s1 be the 

00 

1- sphere . is a Bf-manifold of class CBr if we take as 

Proof. The proof is analoguous to the proof of Corollary (4 . 4 ). / / 

Remarks. (1 ) Dr Yamamuro has kindly informed me that the construction 

of calibration fa on C
00

(M, TS1
) can be given via the covariant derivative 

a 

along a as follows . 

For each v E C
00

(M, TS1
) , we define 

a 

sup 
xEM 

{ [v}) ( x ) } 
a (x ) 

Where Dn denotes the nth · t d · t ' 1 d covarian eriva ive a ong a an 
a 

denotes the Riemannian norm in the tangent space 

l · la(x) 

A simple calculation will show that in local charts, we refind the 

previous formulae . 

(2) Let M be a compact manifold . He denote by C the family of all 

00 

Riemannian manifolds X such that C (M, X) can be g iven a Bf-manifold 

structure . Th en, as we see , by Theorems (4 . 2) , (4 . 4) and (4 . 6 ), C contains 

the cylinder Z , the cone K anJ the 1-sphere s1 
. 
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An jmport nt question is to find which space X belongs to C . 

Dr Yamamuro has announced that : 

(i ) . ]Rn every Euclidean space belongs to C , 

(ii) if X E C and YE C then Xx YE C , 

( iii ) if XE C and X is isometric to Y then YE C . 

In particular , all flat manifolds ( i . e . Riemannian manifolds with curvature 

identically zero ) belong t o C. 

The problem to see whether C -contains a non flat manifold is still 

not known . 

5. f -Bund l es 

In this section , we g i ve a short exposition about f-bundles and 

Bf-bundles to see that the us ual Banach bundles can be generalised to the 

f-theory . 

For simplicity , we on l y consider the Bf-case which shall be needed 

later . The f -case is s i mi l ar. Our treatment follows [4] . 

Let E be a f-fami l y wi th Bf-product (Chapter 1, §2) . We suppose 

that all EE E are sequentially complete . 

A local Bf-bundle is a map TI : U x F + U where U is an open subset 

of an element EE E, F i s another element of E and TI is the first 

projection . (Note that we consider U x F as a subset of the space 

E xBf FE E. ) 

Let TI : U x F + U and TI ' : U' x F' + U' be two local Bf-bundles. 

Then a pair with f : U x F + U' x F' and f 0 : U + U' is a 

local Bf- bundle morphism if the following conditions are satisfied: 

LBI'BM 1 : The diagram 



u X F f) U' X F ' 

TI TI r 

u U' 

is commutative . 

LBfBM 2 : for all x EU, the mapping f#(x) : F + F' defined by 

f(x, v) - [to(x ), lcx)v] 
-

is linear Bf- continuous (i. e . f#(x) E LBf (F, F ')). 

LBfBM 3 : The mappings f
0 

U c E + U ' c E ' and f# 

are s;f . 

Th local Bf-bundles a nd Cr local Bf-bundle morphisms form a 

category with (f , f
0

) o (g, g
0

) defined by (fog , f
0 

o g
0

) . Hence we 
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have a notion of isomorphism. More precisely , (f , f
0

) is a r? local Bf-bundle 

isomorphi miff it is a r? l ocal Bf-bundle morphism and there is a ~ 

local Bf-bundle morphism (g , g
0

) such that fog , go f, f
0 

o g
0 

, 

and g of are the identities . 
0 0 

For r? local Bf- bundle morphisms we have the following property (see 

[4] for the Banach case) : 

(5.1) PROPOSITION. Let E be a f - family with Bf- product and suppose 

that all members of E are sequentially complete . 

(I) For r? local Bf-bundle morphisms~ the condition 

LBfBM 4 : f : u x F + u' x F' &s s;r 
holds . Furthermore ~ if every EE E &S finite - dimensional~ condition 

LBfHMY may replace condition LBfBM 3 in the definition of r? local 

Bf-bundle morphisms . 



(II) A local Bf-bundle morphism 1.,S a local 

Bf-bundle isomorphism iff f
0 

is a ~f-diffeomorphism and for each 

x EU~ f#(x) 1.,s a Bf-isomorphism (i.e. # f (x) E GLBf(F, F') for all 

x E U ) . 

Proof. (I) We have f U x F c E x
8
r F ~ U' x F' c E' xBf F' 

given by 

. [ # l (x, v) r-+ f
0

(x ), f (x)v . 

The first partial map f
0 

is 

.Jl 
tr · ( x , v ) r-+ f ( x) V , we can write 

r 
CBI' by LBfBM 3 • As for the second, 

V x F ~ LBf(F , F ') x u ~v~ F' 
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(1) 

Since (x, v) r-+ f#(x) is ~r by LBI'BM 3 and the evaluation map ev is 

c;r (by Chapter 1, Proposition (2.1)) f is ~f. Thus we have the first 

part of (I). 

The second part of (I) follows quickly from Proposition 1 in [44], 

p . 35 . 

(II) The only if part lS obvious . We prove the if part. Let go be 

the inverse of fo ' 
then go U' ~ U is 

~f 
. We define the inverse g 

of f as follows : 

g : U' X F' ~ u X F (2) 
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Since f# (g 
O 
(x ')) E GLBf ( F, F ' ) , for all X' E u' , the inverse 

f ff (g O ( X ' ) ) -1 lS defined . Then for each x' E U' 
' 

# #( )-1 g (x') = f go(x ') E GLBf(F', F) . (3) 

Furthermore, 
# can be considered as a composite g 

U' 
go 

u f #) 
GLBf ( F, F ') c LBf ( F, F ') 

inv 
GLBf (F', F) c LBf (F', F) 

' 
-

X ' f-r g ( X ' ) f-r f # (g ( X ' ) ) f-r f # (g ( X ' ) ) - l = g # ( X ' ) • 
0 0 0 

Since f# U-+ LBf(F, F ') 
. 
lS 

s;f 
(by LBfBM 3 ), and the map 

inv GLBf(F, F') -+ GL ( F ' 
Bf ' 

F) (4) 

-1 u f-r u 

co 
lS CBf (see Chapter 1, § 3) g 

# 
~f 

lS as desired. II 

Now let E be a set, X a Bf-manifold of class ~f and TI 

a surjective map . 

E -+ X 

A cf' Bf-bundle chart on TI is a triple (a, a
0

, u) where (u, a 0) 

is an admissible cf' Bf-chart on X, a: TI-
1

(U)-+ a0(U) x Fa (where 

Fa EE and is not necessarily the ambient space of a
0
(U)) is a bijection, 

and the diagram 

1 
u 

commutes . (The right-hand map is the natural projection .) 

Two cf' Bf-bundle charts (a , a
0

, u) and (B, B
0

, v) are ~r 

compatible iff the pair [so a-
1

, B
0 

o a~
1

] is a rf' local Bf-bundle 



isomorphism from the local Bf-bundle a(U n V) x F ~ a(U n V) 
a 

local Bf-bundle S(U n V) X Fs ~ S(U n V) . 

to the 

A rf1 Bf-bundle atlas on TI is a collection {(a, a
0

, u)} of rf1 
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Bf-bundle charts on TI, any two of which are ~f-compatible and such that 

the V's cover X . A rf1 Bf-bundle atlas is maximal iff it contains each 

cf1 Bf-bundle chart which is ~f- compatible with all of its members . As 

before , every rf1 Bf- bundle atlas extends uniquely to a maximal Cr 

Bf-bundle atlas . A rf1 Bf-bundle is a surjective map TI : E ~ X where E 

is a set and X is a Bf-manifold of class ~f together with a maximal Cr 

Bf-bundle atlas . Elements of the maximal Bf-bundle atlas will be called 

admissible rf1 Bf-bundle charts on TI. 

Before giving some examples of Bf-bundles, we define the morphisms 

between them . 

Let TI: E ~ X and n' : E' ~ X' be rf1 Bf-bundles, f: E ~ E' and 

f 0 X ~ X ' a pair of maps, and (a, a
0

, u) and (S, S
0

, v) admissible 

rf1 Bf-bundle charts on TI , respectively with f ( U) c V and 
0 -

TI and 

( -1 ) -1 f TT ( U) C TI ' ( V) • Then we define the local r epresentative of 

(with respect to the Bf-bundle charts) by 

where 

We say that 

f - So f o a- 1 
aS 

lS a 

and 

Bf- bundle morphism from TI to TI' , for 

short a ~ BfB-morphism, iff for every x EX and every admiss ible 

(5) 

(6) 



BfB-chart 

BfB-chart 

(B B v) on TI ' with f
0

(x) EV , there is an admissible 
' 0 ' 

(a, a
0

, u) on TI with x EU , f ( U) c V , 
0 -

and such that lS a local Bf-bundle morphism . 
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We now give some simple examples of Bf-bundles . The first one is the 

standard bundle , the tangent bundle of a Bf-manifold . 

(5.2) PROPOSITION. Let X be a Bf-manifold of class c1:+l and let 
Bf 

TX -

by 

u 
xEX 

TX 
X 

be the union of all tangent spaces . 

TX-+ X 

• 
x E T X 

X 

Then TX : TX-+ X &Sa rf1 Bf- bundle . 

We define a map 

Proof. Let (U , a ) be an admissible Bf- chart on X with a(U) an 

open subset of E E E . 
Cl 

We define 

Ta 
-1 

TX (U) -+ 

by setting 

• 
where x = (U, a , v ) (see §1) . 

a( U) x E 
Cl 

Then it is easy to see that (Ta , a , U) lS a local Bf-bundle 

chart on TX (it is usually called the natural Bf- bundle chart associated 

with the Bf-chart (U, a) ) . 

We take as a rf1 Bf-bundle atlas on the set of all such natural 

Bf-bundle charts (as (U , a) ranges over the admissible Bf-charts on 

X ) • 

The only thing left is to prove that two such charts (Ta, a, U) and 

(TB , B, V) are ~f compatible . This follows quickly from the following 

formula for th8 -ransition map 



-1 
(TB) o Ta 

and Proposition (5.2) (II): 
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a(U n V) x Ea+ B(U n V) x FB 

The second example of Bf-bundle is an useful one, the Bf-bundle 

LBf(TI, TI ') , which shall be used later in the proof of the Bf-transversal 

isotopy theorem (see Chapter 4, §4). 

Our treatment follows from [4], -p . 21 . 

Let TI . E + X and TI , E ' + X ' be two c!1 Bf-bundles (where X, X' . 

are two Bf-manifolds of class {f) . For each X E X (respectively 

x ' E X ' ) denote by E ( respectively E' ) the fibre over X 
X x' 

(respectively over x' ). 

Define the set LBf(E, E') by 

(7) 

One has a natural projection 

given by 

L
8

f(TI, TI')(\) - (x, x') (8) 

where 

Given Bf-bundle charts (a, a
0

, u) and ( , , a, a
0

, u,) on TI and TI , 

respectively, one defines a natural Bf-bundle chart on L(TI, TI') as 

follows. 

Let E and E ' a a' be the ambient spaces of a
0

(U) 

respectively; i . e . a
0

(u) c Ea EE, a'(U') c E' EE o - a ' 

and a'(U') x F' 
O · a ' 

and a '( U ') 
0 

Suppose 

Then for X E u ' 
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by 

L , ( ).. ) = ( a
0 

( x) , a ' ( x ' ) , ;.. , ( x , x ' ) ) 
aa o aa 

( 9 ) 

(10) 

-
for v E Fa and where pr

2 
: a~(U ' ) x F~ , 7 F~ , is the natural projection 

on the second factor . The set of all such natural Bf-bundle charts (as 

(a, a
0

, u) and (a ', a~ , U') range over the admissible Bf-bundle charts 

on TI and TI ' respectively) is called the natural Bf- bundle atlas for 

(5.3) PROPOSITION. The natural Bf- bundle atlas on LBf(TI, TI') 
. 

1.-S a 

~ Bf- bundle atlas ; hence LBf(TI, TI ') (together with the maximal Bf-bundle 

atlas which extends the natural Bf- bundle atlas) 1.-s a ~ Bf-bundle called 

the Bf-bundle of linear Bf- continuous maps of TI and TI'. 

Proof. Let (B, B
0

, v) and (B', B~, v) be Bf- b undle char ts on TI , 

TI ' at and 

is given by 

-1 
a ' (x') 

0 
respectively . Then the transition map 

[LBS' o L~! ,] #cx, x ' )A - µ ' o Ao µ-l 

f or A E LBf(Fa, F~ ,) and where 

( -1) # µ = Bo a (x) and µ ' = ( B ' o a ' - l) # ( x ' ) . 

From this Proposition (5.3) follow s . // 

(11 ) 

( 12 ) 
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CHAPTER 3 

THE SMALE DENSITY THEOREM 

From now on , except for the last section, §4, of this chapter , we shall 

always restrict our interest to the Bf-manifolds defined in Chapter 2, §3. 

The purpose of this chapter is to generalise the Smale Density Theorem 

(see [4], [ 68] ) from the Banach case to the Bf-context . 

In the first section we give a brief exposition of Bf-splitting maps; 

in §2 we defin e the Bf - Fredholm maps , a generaJ_isation of ~he standard 

Fredholm maps in the Banach case ( see e . g. [4]) . The Bf-version of the 

Smale Density Theorem will be stated and proved in §3 . 

In the last section, §4 , we include the work of S . Yamamuro about a 

possibility of defining ~r maps from one 
r Cr manifold to another . We 

shal l see that, with th i s notion of SCj maps , we can state and prove a yet 

more general "f-version" of the Smal e Density Theorem . 

1. Bf-Splitting Maps 

Let E be a f-family and EE E a member. Recall that ( [82], Chapter 

v, §1) a closed subspace E
1 

of E is said to be Bf- splitting &n E if 

we can find a closed complement E
2 

for E
1 

(in E) such that the 

canonical projections P. 
& 

(i = 1 , 2) are Bf-continuous. 

_. The closed s ub space E2 is called a Bf- complement of E
1 

(in E ), and a 

decomposition E = E
1 

EB E
2 

with the above property is denoted by 

(1 .1) EXAMPLE. Let ~ cnf7 be an open , convex and bounded subset, 
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Jf7 be another Euclidean space . Then for each integer k = 0, 1, 2, .. . we 

the space of all maps such that the norm 

llfllk = sup { llf(x) II + IIDf(x) II + · · · + IIDkf(x) II} 
xESt 

is finite . 

We denote by E = B
00

(S1 , IRm) the intersection of all Bk(St, IR'77) 

00 

B 
00 

( S1 , IRm) = n Bk ( S1 , IRm) 
k=O 

- {t and 

( 1) 

llfllk < + 00 for all k} . ( 2) 

Then we shall see in Lemma (1.1), Chapter 5, that E is a separable Frechet 

space if we equip E with the sequence of increasing norms 

{II • II } defined by ( 1) . 
k k=0 ,1, 2, ... 

Now let x E S1 and k ~ 0 be fixed and define (see [4]) 

. 
K

1 
= {c;; E B

00

(S1 , JR'77) I D-ic;;(x) = O for i = O, 1, 2 , ... , k} • (3) 

Then , as shall be seen in the proof of Lemma (1. 3 ), Chapter 5, there always 

exists an integer -i
0 

such that if we give the following calibration for 

E , 

f = { II · llr+k+i } i>i 
- 0 

then K
1 

is Bf- splitting in E . 

Now let E , F be two members of E ·• Then a Bf-continuous linear 

(4) 

map S : E ~ F is called double Bf- splitting if both Ker S and Im S 

are Bf-splitting and such that there exists a Bf-complement of Ker S in 

E such that the restriction of S to this Bf-complement is a Bf

isomorphism . In other words, S is double Bf-splitting iff: 

(i) E
1 

= Ker S is a closed subspace of E, there exists a 

closed subspace E
2 

of E such that E - E
1 

Ei=)Bf E
2 

; 
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(ii) F2 
- Im S is a closed subspace of F there exists a closed -

' 

s11bspace Fl of F such that F = Fl ®Br F2 
. 
' 

(iii) SIE 
. 

E2 -+- F is a Bf-isomorphism. . 
2 

2 

A Bf-continuous linear map s E -+- F . 
called Bf-splitting . is a . 

surjection if it lS a surjection , its kernel Ker S lS Bf-splitting 

E 
' 

and there exists a Bf- complement of Ker s in E such that the 

restriction of s to this Bf-compl~ment is a Bf-isomorphism onto 

other words , S is a Bf -splitting surjection iff S is double Bf

s plitting and onto . 

We shall denote by SLBf( E , F) the space of all Bf-splitting 

surjections of E onto F . 

The following two results are due to S . Yamarnuro ([ 82]). 

F 

. 
in 

. In 

(1 .2) PROPOSITION. The set SLBf(E, F) of Bf- splitting surjections 

of E onto F is open in the space LBr(E , F ) of Bf-continuous linear 

maps E -+- F . 

Proof ( see [82] ). Let u E SLBf(E , F) and denote by 

Pi E = E1 ©Br E2 -+- Ei ( i = 1 , 2) the projections corresponding to the 

Bf-decomposition of E into Bf-direct s um with E
1 

- u-
1

(0) . Denote by 

u = 
2 

(5) 

the Bf-isomorphism given in the definition . (Here F - F
2 

- Im u .) Then 

it is obvious that 

Now , if v E LBf(E, F) is s uch that 

1 
llu-vllr < r-Tfl 

llu2 !IT' r 

(6) 

( 7) 



then 

-1 w = 1 - u
2 

(u-v) 
E 

is a Bf-isomorphism of E onto E, and 

-1 
uw = uP

1 
+ uu

2 
v -

-1 
uu

2 
v = v . 

Since u and w are surjective , v is also a surjection. 

To see that v is double Bf-splitting , we put 

Then these are projections , and 

Moreover , we have -1 
S

1
(E) = V ( 0) 

and 

because 

Thus v E SLBf(E , F) as desired . // 

(1 .3) PROPOSITION. If u E SLBf(E , F) and v E GLBf(E, E) ~ then 

uv E SLBf (E , F) . 

Proof ( see [ 82]) . Since V 

E 
-1 

= V (E) --

( where El and E2 are as in the 

Furthermore , 

is an isomorphism of 

v-l (El) + V -1 (E2) 

proof of Proposition 

~ E .-.!:!:.+ F 
2 

is a Bf-isomorphism and the projections 

E , we have 

(1.2)) and 
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(8) 

(9) 

(10) 

(11) 

(12) 

(13) 

(14) 

are given by and respectively, which are Bf-continuous. 
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Hence UV E SLBr(E ' F) . I I 

2. Bf-Fredholm Maps 

Let E be a f-family as usual . Then a Bf- continuous linear map 

s . E -+ F (E , F being members of E ) is called a Bf- Fredhom operator . 

iff 

( a ) s is doub l e Bf- spl itting ( see §1 ), 

( b ) Ker S is finite - d i mensional, 

( c) Im S i s finite-codimensional . 

In this case , if n = dim Ker S and p = codim Im S , the integer (possibly 

posit ive , negativ e or zero ) n - p is called the index of S, in symbol 

ind ( S ) . Thus 

i n d ( S ) = dim Ker S - codim Im S (1) 

Note that when E i s t he categor y of Banach spaces with the norm-

calibration r , then Bf - Fr edholm operators are exactly the usual standard 

Fredholm operators ( see e . g . [ 4] , [68]) . 

Now let X, Y be ~f - manifolds (r ~ l) and f X-+ Y be a ~f 

mapping . Then f is a BI'-Freholm map iff for every x EX the Bf-tangent 

map T f 
X 

is a Bf - Fredholm operator . 

( 2. 1 ) EXAMPLE. Let be as in Example (1.1), 

§1 . For each integer k = o, 1 , 2 , ... denote by 
k 

P (n, m) the space of 

. lRn lRm polynomials -+ of degree less than or equal to k : 

defined in §6 , Chapter 1 . 

Let r be an integer greater than or equal to l and k another 

integer such that OS k < r , and define the mapping 

oo ( m) k ev k : B n ' JR X n -+ n X p -( n ' m) 

( 2) 

(3) 
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by 

We regard ~ and 
k 

~ x P (n, m) as (finite-dimensional) Banach 

manifolds with the corresponding canonical norm-calibrations and B
00

(~, lRm) 

as a c;r manifold (modelled on the Frechet space B
00

(~, lRm) ) with the 

calibration 

where is an integer given by Lemma (1.3), Chapter 5. 

00 

(5) 

is a c
8

r-manifold (the Bf-product of Bf-manifolds) and the map evk is 

a Bf-Fredholm map of class ~r (see Lemma (1.3), Chapter 5). 

The fol lowing proposition g ives us a convenient form for the local 

representative of a Bf- Fredholm map ( see [4] · for the Banach case). 

(2.2) PROPOSITION. Let X and Y be ~r-manifolds Cr::: 1) 

modelled respectively on E , FEE ., E sequentially complete ., and let 

f : X -+ y 

Then we can 

( V, B) on 

(i) 

(ii) 

be a Bf- Fredholm map of class 
~r 

(r ::: l) . Let X E X . 

find admissible Bf- charts (U , a) on X centred at x., and 

y ., centred at f(x) ., with the following properties: 

E -- El (±)Bf E2 where El 

dim E = n < + oo ., 
l 

and E2 are closed subspaces of 

U c domain of f ; a maps U 

c;r- diffeomorphically onto B1 + B2 with B. 1.., closed convex 

circled neighbourhoods of 0 1..,n B . (i = l , 2) . 
1.., ., 

F -
Fl (±)Bf F2 where Fl and F2 are closed subspaces of - ., 

F ., dim F
1 

= p < + 00• ., f( U) c V ; B maps V ~r-

diffeomorphically onto an open subset of F1 ®Br F
2

; 



(iii) the local representative f a.B 
a.(U) c E + B(V) c F has the 

fnrm 

f = n + ¢ o P a.B 2 

where n : a(U) c E + F
1 

&S 
r 

cBf with n'Co) = o ; <p &Sa 

Bf- isomorphism of E
2 

onto F
2 

and P
2 

&S the second 

projection of E = E
1 

®Bf E
2 

onto E
2

• 
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(6) 

Proof. We may find admissible Bf-charts (U, ~) at x and (V, ~) 
~ ~ 

at f(x) such that the local representative f 111 : ~(U) CE+ lj)(V) CF 
~'t' -

is 

of class s;f (r ~ 1) and the Bf-derivative f;lj)(~(x)) : E + F is a Bf

Fredholm operator . By suitable translations (which are c;f-diffeomorphisms) 

we may suppose that ~(x) = 0 and ljJ (f ( X)) - 0 . Thus and 

the Bf-derivative is double Bf-splitting. 

and F
2 

= Im f ' ( O ) 
~lj) 

Then dim E = n < + oo • 
l ' 

codim F
2 

= p < + oo and there exist closed subspaces E
2 

of E and F
1 

of 

F such that E = E1 ®Bf E2 , F = F
1 

®Bf F2 and such that 

¢ - f ',,,Co)IE : E2 + F
2 

is a Bf-isomorphism. 
~'t' 2 

(i = 1, 2) be corresponding projections . Then P. and Q. are Bf-
& & 

continuous . 

We can write 

But since 

Q O f ' (0) = 0 . 
l ~ljJ 

Define k E + E in a neighbourhood of OE E _by 

( 7) 

(8) 
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k = p + ¢-l O Q Of 
1 2 ~~ . 

(9) 

Then it is not hard to see that k is a ~f-map with k(O) - 0 , 

By the Inverse Mapping Theorem (3.12), §3 , Chapter 1, we can find a 

neighbourhood n' of O contained in ~(U) and a ~f-diffeomorphism 

A : n 1 ~ n so that k O A-l lS the identity on n (where n lS a 

neighbourhood of O in E ): 

Let A be any neighbourhood of O in F - F
1 

®Bf F
2 

such that 

and let lJ = id 
A 

A ~ A . We put 

-1 1 u = ~ en') , v = ~- CA) , 

a= Ao~ : U ~ a(U) c E, B = µ o ~ V ~ B( V) C F 

(10) 

(11) 

(12) 

Then it is clear that (U, a) and (V, B) are Bf-charts on X and . Y 

and the local representati~e of f with respect to these Bf-charts is 

(13) 

-1 ,:I' 
We put n - Q1 of~~ o A , then n E G'Bf and from (8) we see that 

n '( O) = 0 . (14) 

Furthermore , from (9) and (10), it is not hard to see that 

(15) 

By making routine adjustments in a , B, U and V we can satisfy the 

conditions in the proposition. // 

Recall that a map g between topological spaces is locally closed iff 

every point in the domain of the definition of g has an open neighbourhood 

n such that gin is a closed map (i.e. maps closed sets to closed sets). 
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(2.3) PROPOSITION. A Bf-Fredholm map f: X + Y &S locally closed. 

Proof. Let x be an arbitrary point in X contained 1n the domain of 

f . We want to prove that there exists an open neighbourhood ~ of x (in 

X) such that fl~ is a closed map. 

By Proposition (2.2) we can find Bf-charts (U, a) on X and (V, 6) 

on Y such that x EU, f(x) EV and the properties (i), (ii), (iii) in 

Proposition (2.2) hold. 

Let D1 be an open (convex circled) bounded neighbourhood of O in 

such that D C Bl l -
and let be an open (convex circled) neighbour-

hood of 0 1n E2 such that 

compact . 

D CB . 
2 - 2 

Since dim E = n < + oo, 
l 

lS 

Let A= D1 + D2 . Then A= D1 + D2 c B1 + B
2 

= a(U) . We claim that 

fas IA lS closed. Indeed, if ACK is closed , we see as follows that 

fas(A) lS closed: 

Choose a net {y~+yn c fal3(A) such that 

Y~ + Y~ - fa 13 [x~+x~] (16) 

where . 
& • for all 

Since A CA - Dl + D2 for all & , we have -
' 

. . 
& E D1 

& 
E D2 

& 
xl ' x2 ' Y1 

. 
E F1 and & E <i>(D

2
) c F

2 
(17) Y2 . 

Since Dl lS compact, and {x~} CD , we may assume (replacing {xf} by a - l 

s ubnc t if necessary) that 

(18) 

Then by (iii) in Proposition (2.2) we have 

(19) 
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Since P[x~] + y 2 E F2 , and P is a homeomorphism , we have 

(20) 

must have 

(21) 

Since n is continuous , 

(22) 

and 

(23) 

But , by (21), we have 

(24) 

Thus , we have y1 + y
2 

E f~B(A) and faSjA is closed . 

Take 
-1 

a (A) , then it is clear that fl~ is closed. II 

3. Bf -Version of Smale Theorem 

Let E be a f-family, E, FEE and let X, Y be ~f-manifolds 

modelled on E, F respectively Cr> 1) . 

Let f X -+ y be a s;f-map (r > l) Following [4], we say that a 

point X E X lS a regular point of f iff the Bf-tangent map 

T;rJ' TxX-+ Tf(x)y lS surjective; X lS a critical point of f iff it lS 

not regular . 

If Cc X is the set of critical points off, then f(C) ~ Y is the set 
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of critical values of f and Y\f(CJ is the set of regular values of f. 

The set of regular values of f is denoted by or R(f) . In 

addition , for an arbitrary set Ac X , we follow [ 4] to define 

(1) 

In particular , if Uc X is open, then Rfju = R( fjU) 

(3.1) REMARK. S . Yamamuro has given the following definitions for 

regular point and regular value in the linear case ( see [82], p . 62 ): let 

E be a f-family , E, FE E and Uc E be open . Let f: Uc E + F be a 

~f map ( r ~ l) Then a point X E U lS a regular point of f iff the 

Bf-derivative f , (x) lS a Bf- splitting surject ion of E onto F (i.e. 

f , (x) E SLBf (E , F) ) . X is a ~ritical point of f iff f '(x) f SLBf (E, F) 

Obviously his notion of regular point is stronger than ours and the set of 

critical points of f in his sense is bigger than ours, and both coincide 

in the case of finite-dimentional spaces . 

For a Bf-Fredholm map , we have the following property . 

(3.2) PROPOSITION. Let f : X + Y be a Bf- Fredholm map of class 

~f Cr~ 1) ~ where X, Y are ~f-manifolds modelled on E, FEE with 

F sequentially complete . Then the set of regular points of f 
. . 
i-s open i-n 

X ~ hence the set C of critical points of f is closed in X . 

Proof. Let x
0 

EX be a regular point of f . We want to prove that 

there exists a neighbourhood of such that every 

regular point of f . 

By definition of regular points, the Bf-tangent map 

is onto . Furthermore, since f is a Bf-Fredholm map, 

x E rt is a 

T f maps 
XO 

onto Ker T f' is X., 
0 

Bf-splitting in T X and there exists a 
XO 

Bf-comple~en~ of Ker T f such that the restriction of 
'Y' 

""o 
T f to this X., 

0 

. 
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Bf-complement is a Bf-isomorphism . 

Let (U, cp ) and (V, ljJ) be admissible Bf-charts at XO and f(x 0) 

respectively. Then f;l/J (cp (x0)) E SLBf (E , F) (by the above discuss ion) . 

Consider the composite map 

f ' 
u C X ~ cp( U) C E cplµ~ L (E F) 

Bf ' ( 2) 

then is continuous , and f' o m(x) ESL (E F) cpljJ ~ 0 Bf ' . 

-
Since SLBf (E , F) is open in LBf(E , F) by Proposition (1.2) , 

we can find an open neighbourhood of with ~CU such that 

(3) 

and , a fortiori, f;ljJ(cp(x)) : E + F is onto for everv x E ~. // 

(3.3) REMARK. The Prnposition (3.2) still holds if we define critical 

points of f as in Remark (3.1), that is, X is a critical point of 

f : X + y iff T~ f SLBr (TXX , Tf(x )Y) where we identify TX X 

(respectively T f(x )y ) to E ( respectively F ) in the f-family E 

Before stating the Smale Density Theorem , we restate the Sard Density 

Theorem ([4], [68]) in a convenient form as follows: 

A subset of a topological space is residual iff it is the countable 

intersection of open dense sets . Recall that if the topological space is 

Baire then a residual subset is dense . 

(3.4) THEOREM ( Sard Density Theorem) . Let X and Y be finite-

dimensional rf1 manifolds with dim X = n ~· dim Y - p and with X 

Lindelof. Let f : X + Y be a map . Then if r > max( 0, n-p) ., 

&S residual (and hence dense) &n Y . 

Proof. See , for example, [4] . 

Now recall that if X, Y are ~r-manifolds modelled on E, FEE and 
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if f X + Y is ~f , then if E and F are normable then by Proposition 

(3 . 4) , Chapter 1 , f is cf1 with respect to any admissible norms on E and 

F . 

We now state and prove the main theorem of this chapter whose Banach 

version is due to Smale ([68]). 

(3.5) THEOREM (Bf-version of Smale Density Theorem), Let E be a 

sequentially complete. 
'Yl 

f - family ., b' F E E Let X' y be SJf-rr.anifolds ' 

modelled on E, F respectively with X Lindelof and let f:X+Y be a 

Bf- Fredholm map of class s;f . Suppose that r > max(o , ind T :xf) for 

every x E X • Then is residual in y (hence dense in y if the model 

F of Y &S Baire) . 

Proof. We follow the method in [4] . Let be an arbitrary point 

in X • We 3hall construct a neighbourhood . is z of so that 

open dense in Y . 

First , we may choose admissible Bf-charts ( U, a) centred at and 

(V, S) centred at f(x
0

) verifying the properites (i), (ii), and (iii) in 

Propos ition (2 . 2) . We may suppose that 

where B ., D . 
& & 

(i = 1, 2) are closed neighbourhoods of 0 

(i = 1, 2) respect ively . Furthermore, we can suppose 

in E., F. 
& & 

where cp : E + F 
2 2 

is the Bf-isomorphism in Proposition (2 . 2). 

Sine~ fas(a(U)) c BCV)= Dl + D2 , it follows immediately that 

where Ac denotes the complementary of A in F (Ac F) 

( 5) 

(6) 
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Thus we have fas a(U) = B + B
2

-+ BCV) - Dl + D2 with -l 

fas 
- Tl + <p 0 p2 - (7) 

where Tl a(U)-+ F
1 lS c;;r and n ' (O) - 0 - . 

By hypotheses , we have 

dim E
1 

= n dim F
1 

- p ind T f - n - D ' 
-

' 
-

XO 
L 

(8) 

and 

r > max(O , n-p) . (9) 

We now show that R(f lU) is dense in Y . Indeed, it suffices to show 

that R(fas) lS dense in F . 

Let e ' be an arbitrary 

(1) e ' f D2 = ¢ (B2) . . 

y + 

That is 

Hence 

which implies that 

point in F2 . 

Then for every 

e ' f BCV) = D 
l 

Two cases are possible . 

y E F - l , we 

+ D2 . 

F + e' 
l 

hi;!.Ve 

(10) 

(11) 

(2) e ' E D2 = ~ (B2) : Since ¢ is a homeomorphi.s~, therp exists one 

and only one e E B
2 

such that ¢(e) = e ' . 

Define a map ne 

(12) 

Then it is clear that n is a ~ map from the open neighbourhood B
1 

of 

0 in E1 (dim E1 = n) into a finite-dimensional space F
1 

(dim F
1 

= p) 

with r > max(O, n-p) . 
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By Sard Density Theorem (3.4), R (n ) 
e 

is dense in F
1 

. Furthermore , 

it is not harrl to see that 

(13) 

Thus , since R (n ) 
e 

is dense in F
1 

, we see that 

( 14) 

So , by (11) and (14), we have proved that for each e ' E F
2 

, 

R (f aB) (F1+e ') dense F + e ' Thus R (f aB) 
. dense F and n is in l 

. is in 

we have R(f!U) dense in y as desired . 

By Proposition ( 2 .3) we can choose an open neighbourhood z of XO 

such that Z C u and flz is closed . By Proposition (3.2), the set C of 

critical points of f is closed in X . Hence 

Rfl z = Y\f(Z n C) is open in y . (15) 

Since P.(f!U) C Rfjz' Rfl z is also dense . 

Now , since X i s Lindelof, we can find a countable cover {z.} of X 
1., 

such that Rfj zi is open den s e . Since 

Rf = ~ Rfj Zi (16) 
1., 

it follows that Rf is residual and we have proved the theorem . II 

(3.6) REMARK. If we follow Yamamuro ' s definition of regular points as 

in Remark ( 3 .1) then Theorem (3.5) is still true by analogous proof . 

Actually the set Rf in this case is smaller than the normal one, but is 

st ili r es idual . 

The following proposition is a standard corollary of Theorem (3.5) 

(see [ 68] for the Banach case). 

(3.7) COROLLARY. Let E, FEE be sequentially complete with F 

Baire and let X, Y be ~r-manifolds (r > 1) modelled on E, F 

respectively with X Lindelof. If f X ~ Y is a ·ar-Fredholm map of 



class s;f (r :::: 1) and ind T f < O for all x E X ., then its image 
X 

contains nu interior points . 

Proof. Since for all x EX, ind Tx1 < 0 , the condition 

r > max(o, ind T f) for all x EX is trivially verified. 
X 

Furthermore , the condition ind Tx1 < 0 for all x EX also implies 

that all x EX is a critical point of f Hence the image f(X) . 
lS 
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exactly the set of critical values of f and thus has no intPrior points as 

indicated by the last part of the Smale Density Theorem (3.5). II 

If we follow Yamamuro's definition for regular points (see Remark 

( 3.1)), then the Smale Density Theorem has another consequence as follows. 

(3.8) COROLLARY. Let X, Y be as in Corollary (3.7). If f: X ~ Y 

&Sa Bf- Fredholm map of class r > _max(o, ind T f) 
X 

for all 

x EX. Then for almost all y E Y ., f-
1

(y) is either empty or a Bf

suhmanifold of class s;f of X • 

Proof. By Smale Density Theorem given in Remark (3.6), almost all 

y E Y is a regular value of f ( in the sense of Yamamuro's definition as 

in Remark ( 3.1)), that is y = f(x) for a x EX with 

. 
is empty or 

f- 1(y) t ¢ and is a closed Bf-submanifold of X . The fact that f- 1(y) 

is a Bf-submanifold can be proved directly from the definitions or by just 

noTing that {y} is a Bf - submanifold of Y of dimension O , and y 

regular value of f ( in Yamamuro ' s sense) iff f ~Bf {y} , and apply 

Corollary (1.2), Chapter 4. II 

4. A Possibility of Generalisation 

. 
lS a 

The results in this section are due to S . Yamamuro. I thank him for 

permitting me to include them here . 
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The purpose of this section is to discuss a possibility of defining 

s;f maps between ~-manifolds, a non-standard notion. The reason for this 

shall be given now . 

As we have seen in Chapter 2: the class of Bf-manifolds is rather 

small while the class of f-manifolds is considerably larger. And the 

reason for introducing these Bf-manifolds is to gP.t the Inverse Mapping 

Theorem (3 . 12) in Chapter 1. Thus we have encountered a difficult choice: 

(i) either we restrict ourselves to the small class of Bf

manifolds (with the Inverse Mapping Theorem available) but 

which is not suitable for many applications, or 

(ii) we have to force ourselves to define the notion of Bf-maps 

bet-ween f -manifolds, so that whenever we need, we can use 

the Inverse Mapping Theorem or its ~quivalent forms . 

Dr S . Yamamuro has proposed a solution for (ii) and we shall show in 

this section that with this general notion of s{ maps the Smale Density 

Theorem (3 . 5) can be stated and proved. Dr Yamamuro has also informed me 

that with the use of sS: ·1naps he has heen able to ref ind several results 

in [ 54] , §III . 

Let E be a f-family, X, Y be f-manifolds of class S: (r ~ 1) 

modelled on E , F E E respectively . Let f X -+ y be a mapping and 

X E X be a point . Then a pair of {-charts ( u' a) and ( V, B) of X 

and y respectively is said to be a 
. 

of strong ~ - charts for f at pa-ir X 

(or for short ., a pa-ir of S~-charts for f at X ) iff x E u 
' 

f(x) E V 

f(U) c V and the local representative fas : a(U) cE -+ BCV) C F is a s;f 

map (see Chapter 1, § 3) . 

We say that f : X -+ y is strongly ~ at X (for short of class 

' 



--

SCj at x) iff f 
. 
is at x, a nd in addition, there is a pair 

{(U , a) , (V , B)} of strong Cj-charts for f at x. In other words, f 

is strongly Cj at x iff we can find a pair of admissible f-charts 

(U, a) and (V , B) at x and y = f(x) respectively such that, with 

respect to these f-charts , the local representative of f is of class 

s;f . 

f : X + Y is a strongly ~ map (or of class SC~) iff it is S~ 

at every point x EX . Note that when X and Y are Bf-manifolds of 

class s;f then S~ ~aps X + Y coincide with s;f maps X + Y. 

Now cons ide r c:1 S~ map f X + Y between f-manifolds X, Y of 

class c; Cr> 1) . We say that f has the Bf-Fredholm property at 

x EX if , with respect to a pair of slj-charts {(U, a), (V, B)} , the 

f-derivative f~8(a(x) ) : E + F is a Bf-Fredhom operator (see §2). In 

this case , we define the index of f at x with respect to the pair of 

S~- charts {(U , a) , (V , B)} as follows : 

ind (f' X ' ( u' a) ' ( V' B)) - ind f ~s ( a( X)) 
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= dim Ker f~B(a(x)) - codim Im f~B(a(x)) . (l) 

We say that f: X + Y has the Bf- Fredholm property iff it has the Bf

Fredholm property at every x EX. 

With this general definition, we have the following v ersion of 

Proposition (2 . 2) . 

(4.1) PRO POSITI ON. Let X, Y be ~-manifolds (r ~ l) modelled on 

E, FEE ~ E be sequentially complete~ and let f X + Y be a SCj map 



having the Bf- Fredholm property at a point x EX . Then we can find 

admissible f - charts (U , a) on X centred at x ~ and (V, B) on Y 

centred at f(x) with the following properties : 

(iJ E - E1 EBBr E2 where E1 and E2 are closed subspaces of 

dim E1 = n < + oo ~ Uc domain of f; a maps u 

diffeomorphically onto B1 + B
2 

with 

circled neighbourhoods of 0 in E . 
'l, 

B. 
'l, 

closed convex 

(i = 1, 2) ; 

(ii) F - F
1 

EBBr F2 where F1 and F2 are closed subspaces of 

F ~ dim F
1 

= p < + 00 ~ f (U) c V ; S maps V ~-diffeo

morphically onto an open subset of F1 ®Br F2 ; 

(iii) 

Proof. 

the local representative f aS a(U ) c E-+ S(V) c F has 

the form 

f - n + cf> o P as - 2 

where n : a(U) c E-+ F 
- 1 s;r with n ' (O) = 0; 

Bf- isomorphism of E2 onto F
2 

and P
2 

is the second 

projection of E = E1 (±)Bf E
2 

onto E
2

• 

We start from a pair of r 
SCr-charts {cu, tp), cv, w)} 

. 
1,,S a 

for 

at x and proceed exactly as in the proof of Proposition (2.2). // 

(4.2) PROPOSITION. Let f: X-+ Y be a SCj map Cr~ 1) having 

the Bf- Fredholm property. Then f is locally closed. 

Proof. Exactly as the proof of Proposition (2 . 3) with the use of 

Proposition (4 . 1) . // 

Now let f : X-+ Y be a c1'.-map between Gj-manifolds X and Y 

f 

(r ~ 1) . Then the notion of regular point , critical point, regular value 

and critical value of f can be defined exactly as in the Bf-case of §3 . 

92 
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For instance, a point x E X is a regular point of f iff the f-tangent 

is onto . Note that this means that for every pair 

of f-charts (U, a) and (V, B) at x and f(x) respectively with 

f(U) c V , the f-derivative f~
6

(a(x)) of the local representative 

f : a(U) c E ~ B(V) c F is onto . aB 

As before , we denote by Rf the set of regular values of f 

Then we have the following analogue of Propositjon (3.2). 

X ~ y . 

(4.3) PROPOSITION. Let f : X ~ Y be a SCj map having the Bf-

Fredholm property where X, Y are Cj- mani folds model led on E , F E E ; F 

sequentially complete . Then the set of regular points of f . 
i.s open i.n X ., 

hence the set C of critical points of f is closed in X. 

Proof. Let x
0 

EX be a regular point of f. Then by definition of 

regular points , the f-tangent map is onto. 

Furthermore , since f has the Bf-Fredholm property at x
0

, we can find a 

pair of {(U, (j)) , ( V , ljJ)} for f at x
0 

, such that 

(2) 

Then by an argument analogous to the one in the proof of Proposition (3.2) 

we can see that there is an open neighbourhood of such that every 

x E ~ is a regular point of f . II 

With all these results we can now state and prove the "f-version" of 

the Smale Density Theorem (3.5) . 

(4.4) THEOREM. Let E be a f - family , E , FEE sequentially 

complete . Let X, Y be ~ -manifolds modelled on E, F respectively with 

X Lindelof. Let f: X ~ Y be a SCj map Cr~ 1)- having the Bf- Fredholm 
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property . Suppose that for each x EX we can find a pa&r of SCj-charts 

{(U, a), (V, B)} at x such that 

r > max { 0 , ind (f; x, ( U, a) , ( V, B)) } . 

Then the set Rf of regular values of f 

&n Y if the model F of Y is Baire) . 

is residual &n y 

( 3) 

(hence dense 

Proof. Exactly as the proof for the Smale Density Theorem (3.5) using 

Propositions (4.1), (4.2) and (4.3). II 
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CHAPTER 4 

Bf -TRANSVERSALITY 

In this chapter we generalise the usual notion of transversality ([4], 

[31], [75]) to maps between Bf-manifolds. 

In the first section we give the definition of Bf-transversality and 

prove some standard properties . In §2 , we consider representations or Bf

manifolds (following the treatment of [4]) and in §3 we prove the Bf-

Transversal Density Theorem, a generalisation of the one in [4]. In the 

last section , §4 , we prove the Bf-Transversal Isotopy Theorem ([4], [75]). 

1. Bf -Transversality 

Let E be a f-family ( see Chapter 1, §2 ) and let E, FEE. We say 

that a Bf-continuous linear map u : E + F is a Bf-splitting surjection 

iff u is surjective, ker u is Bf-splitting in E and there exists a 

Bf-complement of ker u such that the restriction of u to this Bf

complement is a Bf-isomorphism onto F. 

Now, let X, Y be two l . f d CBf-mani olds modelle on E, F respectively . 

Let f X + Y be a 
l 

CBf-map and W c Y be a C~f-submanifold (Chapter 2, 

§ 3) . 

We say that f is Bf-transversal to W at a point x EX, in 

symbols f mBr xW, iff , where y = f(x) , either y f W or y E W and 

the following condition is satisfied: 

(*) there exist a chart (U, a) centred at x , a chart (V, B) 

verified the Bf-submanifold property for W in Y at y 

such that, if T ~! 
y 

is represented by ln F with 



F © F = F) and 
l Bf 2 

is the second projection, 

then the composite 

E p 

LS a Bf-splitting surjection . 

The definition is independent of the charts chosen . 

We say that f is Bf- transversal to W , in symbols f mBf W , iff 

f mBf xW for every x E X 

Note that if E = B, the category of Banach spaces, (with the norm

calibration) then by the Banach thecre~ (see [13]) our definition of Bf

transversality reduces to the usual one as defined in Lang [44] . 

Furthermore , the condition(*) can be formulated equivalently in 

global form as follows : 

( .,. ·'·) .... ., .. There exists a Bf- complement 

that if we denote by Q 

z of T W 
y 

second projecti?n, then the composite 

T f 
TX x TYLz 

X y 

is a Bf-splitting surjection . 

. ln Ty 
y 

the 

such 
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(1) 

( 2) 

The following theorem for the local representative of Bf-transversality 

is an analogue of the one in [4]. 

(1.1) THEOREM (Local Representative of Bf-Transversality). Let 

X, Y be ~f-manifolds (r ~ 1) modelled on E, F respectively with E 

sequq.ntially comple te . Let f : X + Y be a ~f-map~ W c Y a ~f

submanifold~ and x EX such that y = f(x) E W . 

Then a necessary and sufficient condition for f mBf xW ~s that there 

exist admissible Bf- charts (U, a) and (V, S) at x and f(x) 

respectively~ Bf- decompositions E = E
1 

ffisf E
2 

~ F ~ F
1 

(f)Bf F
2 

for E 



and F 

Ca) 

Cb) 

such that: 

aCU) - Bl + B CE - El ffiBf E2 ; BCV) - -
2 -

aCx) - 0 ., BCy ) - 0 BC W n V) = Dl ., - - ., 

Ci - 1 , 2) are open neiqhbourhoods of -

Ci= 1 , 2 ) respecti vely; 

the local representative f 
aB 

the form 

fas= n + cp 0 

where n . Bl+ B2 CE+ Dl C Fl . 

p2 

1,,S a 

isomorph1:sm of E2 onto F2 and p2 

the second p~oj ection . 

. . 
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= D + l D2 c F = F1 EBBf F 2 ., 

where B . and D. 
1,, 1,, 

0 i,n E . , F . 
1,, 1,, 

~f-map., cp 'l,S a Bf-

E -
El ~f E2 +E 'l,S -

') 
L 

Proof. SUFFICI ENCY. Suppose that there exist admissible Bf- charts 

CU, a ) and CV, B) verifying Ca) and Cb ) in the theorem . We want to prove 

-:hat f th Bf xW • 

Ir.deed , with re3pect to these Bf-charts , T X , T Y and 
X y 

TX+ TY are represented respectively by 
X y 

TX=E TY - F, 
X ' y T J = f ~BC O ) : E + F . C3) 

Since , 0y (a) , CV, B) has the Bf-submanifold property for W at y with 

BC W n V) = D
1 

c F
1 

, 

TYW is represented by 

T W = F 
y l 

We claim th~t the composite Q
2 

o f~BCO) , 

E 

is a Bf-splitting surjection . 
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Indeed , by (I ) ) , we have 

with n'(O) : E-+ F . 
l 

(4) 

Then for all x EE, x = x1 + x 2 E E1 ®sf E2 and 

That is, 

( 5) 

which is a surjective map of E onto F2 ( by (b)). 

Furthermore , 

- {.x - xl + x2 E El EBBf E2 n'(O)(x) + ¢ (x 2) E F1 } - -

- {x - xl + x2 E El EBBf E2 I <P (x2) = o} (because Fl n F = { 0} ) - - 2 

- {x - xl + x2 E El EBBf E2 I x 2 = o} (because <P lS a Bf--isomorphism) - -

= El 

which . Bf- spli tting in E (with Bf-complement E2 ). lS a 

Now it follows quickly from (5) that 

(6) 

which is a Bf - isomorphism by ( b ) . 

NECESSITY. Suppose that f ffiBf xW . We want to prove that there exist 

Bf-charts (U, a ) and ( V, B) with the properties ( a ) and ( b ) in the theorem . 

First , since W is a Bf-submanifold of Y and y = f(x) E W, we can 

find a Bf- chart (v
1

, B1) at y having the Bf-submanifold property for 

W in Y at y , that is , 



Bl(vl) - cl+ c2 C Fl @Br F2 - F ' 

s
1

(w n v
1

) - c
1 

c F
1 

, 

Moreover , we can find a chart (u
1

, a
1

) at x with a
1

(x) = 0 , 

lS ~f . 

Since f mBf xW , the composite map 

E 

f' B (o) 
al 1 

F 
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is a Bf-splitting surjection . That is , is surjective and , 

if we denote by E
1 

= f ' B (0)-
1

(F
1

) , then E
1 

is Bf-splitting in E , 
al 1 

and there exists a Bf-complement E
2 

of E
1 

( in E) such that 

Q
2 

of ' B ( 0) 1 : E
2

-+ F 2 is a Bf-isomorphism . 
al 1 E 

2 

Denote by 

cp - Q2 0 f ' B ( 0) I 
al 1 E 

2 

Bf 

Now, consider the map 

Define k 

(7) 

(8) 

(9) 

(10) 



k(x) -1 ) - xl + cp o Q2 o f B (x) . 
all 

Then k is ~r and k(O) - 0 . Furthermore 

k'(O) 

(The fact that is proved as follows: 

~ Q2 of ' B (O) .x -
all 
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(11) 

By the Inverse Mapping Theorem (3 . 12), Chapter 1, k is a local ~r

diffeornorphism . Let V2 be a sufficiently small neighbourhood of O in 

of u
2 

onto an open neighbourhood of O in E
1 

(f)Br E
2 

such that 

(12) 

Then 

o a-1 = cp o P 
2 2 • (13) 

-1 
~ ( x) = x{ + x; E E1 ®Br E2 then by ( 12) and ( 13) , 

- X ' + cp - l Q o f (x '+ X ') -
1 ° 2 °'J_ S

1 
1 2 

which implies 



Hence 

that is, 

We put 

Q2 o falBl (x{+x~) - ~(x2) 

- Po P2 (x
1
+x2) ; 

y EV small neighbourhood c V 
- l 

Then (U, a) and (V, 6) are the Bf-charts desired if we make routine 

adjustments in U and V, because 

That is, 

- n +~a P2 (by (13)) 

if we put which is a II 
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(14) 

(15) 

(16) 

(18) 

(l .2) COROLLARY. Let X, Y be as in Theorem (1.1)~ f: X ~ Y be a 

~r- map and W c Y a ~r-submanifold (r ~ l) . Suppose that f m8r W. 

Then f- 1
(W) i,s either empty or a ~r-submanifold of X • In the 

later case~ we have 



(a) for x E f- 1(W) and y = f(x) ~ 

(b) W and f- 1 (W) have the same codimension: more precisely~ 

for x E f-
1

(W ) ~ y = f(x) ~ any Bf-complement to 

T (f-1 (W)) bn TX bS Bf-isomorphic to any Bf-complement 
X X 

to T W bn T Y y y 

Proof. Let x E f-
1

(W) , then y = f(x) E W and f ~Bf xW. By 

Theorem (l.l) we can find Bf-charts (U, a) and ( V, B) centred at x 

and y respectively, with 

and such that 

fas= n + <p O p2 

isomorphism . 

From this, we claim that a(f-1 (W) nu) = B
1

. Indeed, let 

x ' E f-
1

(W) n U, then y' = f(x') E W n V and B(f(x')) E D
1 

c F
1

. 

Furthermore, by (19), if a(x ') = b
1 

+ b
2 

E B
1 

+ B
2 

we have 

f aB ( a(x ')) = fas(bl+b2) = n (b1 +b 2) + cp(b2) E Dl c Fl . 

Since cp(b2) E F
2 

and F
1 

n F
2 

- {o} , this implies -

cp(b2 ) - 0 i . e . b2 = 0 . -
' 

Hence 

a(x ' ) E B
1 

for all X , E f- 1 (W) n U . 
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(19) 

(20) 

(21) 

........ 



That is , 

Conversely, 

a(f-1 (W) nu) c B . 
- l 

since for every b
1 

E B
1 

, 

Thus 

s[t[a-1 (b
1

) ]] E D
1 

=> t[a-1 (b
1

) l E S-1 (v
1

) - W n V 

=> t[a-1 (b1) l E W 

~ a-1 (b
1

) E f- 1(W) n V 

-1 
Thus , for all x E f (W) , there exists a Bf-chart (U, a) with 

f- 1
(W) is a ~ f- submanifold of X 

( a ) In the Bf- charts (u, · a) and (V, 8) , we have 

TX=E, TY=F , 
X y 

and 

Furthermore , by the proof of Theorem (1.1), we have 

Hence 
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(22) 

(23) 

That is 

(24) 

(25) 



(b) Since in the Bf-charts ( U , a) and (V, B) , E 
2 
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is a Bf-

complement to in E =TX and 
X 

is a Bf-complement to 

F = T W in F - T W , this part follows immediately from the fact that 
l y y 

¢ E
2 

+ F
2 

is a Bf-isomorphism . // 

2. Representations of Bf -Manifolds 

In this section we generalise the treatement in [4] to the Bf-

manifolds . 

Let E be a f-family and let E, F, G E E such that the Bf-product 

( see Chapter l) E xBf F E E • Let A, X, y be ~f-manifolds modelled on 

E, F, G respectively . We shall denote by A x X the Bf ~f-manifold 

product of A and X (which is modelled on E xBf FEE), and by 

~f(X , Y) the space of ~f- maps from X to Y . 

Let p A+ s;f(X , Y) be a map . For a EA, we follow [4] to write 

instead of p(a) , i . e . we Following [4], p : X + Y is a 
a 

say that p is a ~f- representation iff the evaluation map 

ev A X X + y (1) 
p Bf 

given by 

ev ( a , x) - p (x) for a E A X E X (2) -
' ' p a 

is a ~f- map from A xBf x to Y . 

Now let (A' a) be an admissible Bf-chart for A at a 
' ( u' B) an 

admissible Bf-chart for X at X and ( V ' y) an admissible Bf- chart for 

y at ev (a, x) - p (x) = y Then ( A XU, a X B) is a Bf-chart for -
p a 

........ 



Ca , :r ) , and we hc1vc t he follow lnr, r epr escn tc1 ti vc f or 

(ev ) : Cl CA ) X B Cu) C E X F -+ y Cv) C C 
p axS ,y Bf -

given by : 

( cv ) Ce, f) 
p axS ,y 

CV 
p 
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C 3) 

) 
-1 

=yo (evp o Ca x S) Ce, f) rJCe, f) E aCA) x SCU) c E xBf F 

- y 0 

That is 

where (p -1 ) 
a Ce) B,y 

) ( 
-1 -1 ) (ev a Ce), S Cf) 

p 

p -1 
a Ce) 

-1) 0 B Cf) · 

(ev )axB Ce, f) = (p -1 ·) Cf) 
P ,y a Ce) B,y 

is the local representative of p 
a-1 Ce) 

X -+ y 

Bf-charts C U, B) and C V, y) at x and y - p Cx) respectively . 
a 

If Ca, x) EA xBf X , then we have 

T A rv_ E , T X ~ F , T Y ~ G 
a X y 

and 

We want to calculate the tangent map 

TC ) ev : TC ) ( A x f X) -+ T C ) Y = T Y . a,x p a , x B p x y 
a 

In the above Bf-charts, we can write 

C4) 

in the 

TCa,x) (A xBf x) = { (aCa), BCx))} x E x8r F ; TP Cx)Y = {yCy)} x G (5) 
a 

and 

with 

T ev i s given by 
( a, x) p 

T(ev ) xa (aC a) , BC x)) p Cl µ,y (a(a), BCx)) x E xBf F-+ yC y) x G 

....... 



(a(a), B(x), e , f) 1-+ (y(y), (ev) ' xo (a(a), B(x)) . (e, f)) 
p Cl P,Y 

where 

and 

y(y) - (ev) xs (a(a), B(x)) 
p Cl 'y 

(evp)~xB ,y(a(a ), B(x)) : E xBf F + G is linear Bf-continuous. 

By the f-differentiation theory applied to 

(ev ) B : a(A) X B(U) CE XBf F + y(V) CG p ax ,Y 

we can write 

• • 
Hence , for e~ch (a , x) E TaA xBf TxX , identified to (e, f) EE xBf F, 

we hci.ve 

( T( ) e v ) (;, a,x p 
;; ) - ( T

1 
( ) e v ) ; + 
.a ,x p 

Furthermore , we claim that 

T ev = T p . 2( a ,x) p x a 

1 06 

(7) 

(8) 

Indeed , p 
a X + Y is represented in the Bf-charts (U, B) and (V, y) 

by 

(P J6 = scu) c F + yCV) cc a ,Y 

and T ev 2(a,x) p 
is represented by 

where (ev ) B (a(a), ·) : B(U ) c F + y(V) c G denotes the partial map 
p ax ,Y 

(9) 

obtained by fixing a(a) E a(A ) . But when we fix a(a) E a(A) , we have, 

for all f E F : 

(ev ) B (a(a), f) Pax ,Y 
-1 

- Y O p O S ( f) 
a 

- (p ) B Cf) . a ,y 
(10 ) 

That is , 
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(ev) ' xs (o:Ca), · ) = (p ) 6
1 (BCx)) . (11) 

po: ,Y a ,Y 

Since Txpa is represented by (pa)B,y(B(x)) , (8) follows quickly . 

The above discussion gives : 

(2.1) PROPOSITION. Let A, X, Y be ~r-manifolds modelled on 

E, F , GEE respectively~ with r > l ~ and let p : A+ ~r(X, Y) be a 

~r representation . Let ev 
p 

A xBf X + Y be the evaluation map . 

Then for each (a , x) EA xBr X ~ we have 

T(a ,x )evp = Tl(a ,x )evp + Txpa (12) 

which means that for every (;, ~) E T(a,x) (A xBr x) ~ we have 

(T( )ev ) (;, ;) = (Tl ( )ev ); + (T p ); . a ,x p a ,x p x a 
(13) 

3. The Bf -Transversal Density Theorem 

I~ this section , we apply the Smale Density Theorem in Chapter 3 to 

prove the Bf-Transversal Density Theorem , a generalisation of the one in 

[ 4 ] to the Bf-man ifolds and Bf-transversali ty. 

First , we prove a technical lemma . 

Let E be a f-family and let F , G E E such that F x Bf G E E . 

( For the definition of F x Bf G see Chapter 1 .) Denote by TI 1 : F x Bf G + F 

the first projection . We say that a Bf-splitting subspace E of F xBf G 

Bf-adapts n
1 

if there exists a Bf-complement H of E in F xBr G 

such that 

(1) 

Note that in the category of Banach spaces wi~h the norm-calibration 

r, every finite-codimensional subspace of F x G with dim G < + 00 , Bf

adapts the first projection F x G + F . (See the proof of Lemma 19.2 in 

[ 4] , p . 49 . ) 
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The following lemma is a generalisation of Lemma 19.2 in [4] to the 

Bf-context . 

( 3. l ) LEMMA. Let F, GEE with F xBf c E E ., dim G = n < + 00 ., 

1Tl 
. F xBf c -+ F be the projection onto the first factor and let . 

E c F xBr c be a Bf- splitting subspace of codimension q . Suppose that 

E Bf-adapts Then the restriction = 1T IE . 
Bf-Fredholm 1T l . 1T -is a 

l 

operator with index n - q. 

Proof. We can find a Bf-complement H for E in F xBf G such that 

( l) holds. We have dim H = codim E = q . Let P and Q be the first and 

second projections corresponding to the Bf-decomposition 

F xBI' G = E @Br H . Then P and Q are Bf-continuous. 

We put L = Pn(E) and K =En (0 x G) . We shall prove 

L ~ n(E) . 
Bf 

Indeed , first consider F as F x O c F xBI' G, then, for every 

e EE , n(e) E F can be written in a unique decomposition 

n(e) - Pn(e) + Qn(e) 

with Pn(e ) EE, Qn(e) EH. 

Then 

n2(e) = n(e) - nPn(e) + nQn(e) 

which implies 

n[e-Pn(e)] + n(h) = 0 where h = - Qn(e) EH. 

Since e - Pn(e) EE and n(E) (:f) n(H) = F, (4) implies 

n[e-Pn(e)] = 0 for every e EE. 

Now, for every e EE, we can write 

e = [e-PTI(e)] + Pn(e) EK+ L . 

( 2) 

( 3) 

(4) 

(5) 

(6) 

The fact that e - Pn(e) EK follows from (5) and fr0m the obvious relation 
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K - ker TI= En (0 x C) . 

But we also have Kn L = {o} (by (5)) hence E = K © L. Since the 

projection on L. corresponding to the decomposition K EB L is nothing but 

the composite PTI which is Bf-continuous , we have (2). 

As for (3), we note that 

is one-to-one, onto and Bf-continuous , and by (5), we can seP th2t the 

inverse map is PITI(E ) which is also Bf-continuous. Hence we have (3). 

From the above discussion , it follows easily that TI is a Bf-Fredholm 

operator and 

ind TI= n - q . II 

We now state and prove the main theorem (see [4]). 

(3.2) THEOREM (Bf-Transversal Density Theorem) . Let E be a 

r- family , F, G, JE E with F sequentially complete and F xBf GEE. 

Let A, X, Y be ~f-manifolds modelled respectively on F, G, J; 

p : A -+ s;fcx' Y) a ~f-representation ; w C y a ~f-su.1:Jma;1-ifold (not 

necessarily closed) and evp : A xBf X-+ Y the evaluation map. 

Define Aw c A by 

AW - { a E A 

Assume that 

(a) X has finite dimension n and W has finite codimension q, 

(b) A and X are second countable, 

(c) 

(d) 

( e) 

r > max(O, n-q) , 

ev p rt\ Bf W , 

for every (a, x) EA xBf X such that y = p ( x ) E W , the a 

Bf- splitting subspace (T( )ev )-
1 (T w) cf a,x p y 

(7) 

(8) 
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T(a,x) (A xBf x) = T A X TX Bf- adapts the first projection a Bf X 

T A X T X -+ T A . 
a Bf X a 

Then AW residual 
. A . Moreover., if the model F of the i,s i,n 

manifold A is a Baire LCS., then AW is dense in A. 

Proof ( see [4]) . Before proving the theorem , we note that condition 

(e) in the theorem is well-defined (independent of the Bf-charts chosen) . 

Define B = ev-
1 (W) c Ax f X .- Th en by Corollary (1.2), 

p - B 
B is a Bf-

submanifold of A xBf X of codimension q . Furthermore, for every 

(a, x) EB we have 

T ( )B = (T ( )ev )-
1 (T w) a ,x a,x p y 

and is a Bf- splitting subspace of TaA xBr Tx! = T(a ,x) (A xBr x) 

Let P
1 

: A xBf X-+ A be the projection on the first factor and let 

P B -+ A be given by P = P
1

jB. 

Clearl y P is a ~f~map . Let RP be the set of regular values of 

P . We shall prove that 

(9) 

P is a Bf- Fredholm map of constant index n - q, (10) 

(11) 

The theorem then follows from the Smale Density Theorem of Chapter 3. 

(*) p . B -+ A 1S a Bf-Fr edholm map of index n - q . 

Choose (a, X) E B , we must show that the tangent map 

T p : T( )B-+ T A is a Bf- Fredholm operator with index n - q . (a,x) a ,x a 

If in Lemma ( 3 . 1) we read TX for G 
' 

T A for F 
' X a 

T A X TX -
T(a ,x)(A X x) for F X G T B for E T, )p Bf -

Bf Bf ' ' a X (a ,x) ,_a,x l 

for and T p 
(a,x) for TI , then Lemma (3 . 1) gives us the desired 
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assertion if we note that condition (e) means E Bf-adapts n
1

. 

The inclusion AW c RP is easy (see [4], p . 50). We only need to 

Choose a ERP We want to prove that a E AW, that is pa thBf W. 

Two cases can occur. 

(a) q ::: n . Let X E X 

(d), ev p th Bf xW , we can find 

so that y --

Bf-charts 

P (x) 
a 

(A, a
1

) 

E W. From the hypothesis 

centred at a , ( U, B
1

) 

centred at X and ( V, y) satisfies 

y( y) - 0 ' 

Then (Ax U, a
1 

x B
1

) is a Bf-chart for A xBf X and with respect to 

these charts, the composite 

( ev ) ' xa ( 0) 
pal µ1,Y Q2 

--------- J --+ J 
2 

is a Bf-splitting surjection . 

That mean s 

Ker (Q
2 

o ( ev pl ~l xsl 'y< 0) l - (ev ), xs (0)-l(Jl) -
Pal l'y 

lS Bf-splitting in F xBf c; 

there exists a Bf-complement Hl of E ln F X G Bf 

= E 

such that 

(12) 

(13) 

Now , by condition (e), we have a Bf-complement H of E in F xBf G 

such that 
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(14) 

Since H and H
1 

are Bf-complements of the same subspace E in 

we can find a Bf-iso~orphism 

such that ¢ maps H1 onto H and E onto itself. 

Put ~ x B - ~ o (~ x Q) then (Ax U, ax B) is a Bf-chart for U, - '±' U,l µl 

and with respect to (Ax U, Cl x B) and the above chart (V, y) 

we have the following properties: 

there exists a Bf-complement H of E ln F x8 f c such that 

TI 1 ( E (±)Bf H) - nl(E) (t)Bf nl(H) . -
' (16) 

the composite Q2 ( ev ) ' B ( 0) restricted to H 
. 

0 lS a 
p ax 'y 

Bf-isomorphism of H onto J
2 

. (17) 

Now, since , T( )P: TC )B-+ TA · a ,x a ,x a is onto. Thus TI : E -+ F 

F xBf G-+ F is the first projection. 

We thus have 

Hence 

H c O x G 

and we can write 

H = {o} X H with H CG . (18) 

Now consider p : X-+ Y and T p 
a x a TX-+ TY . Then in the Bf-charts 

X y 

(U, B) and (V, y) above , Txpa is r epres ented by the Bf-derivative 

....... 
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G -+ J . 

If we dennte by 

K =En Cox G) = {o} x K 

then , from the discussion in §2 (see Proposition (2.1)), it is not hard to 

see 

and 

From (21) and (17) it follows quickly that 

and the composite 

r-.J'..J 

~ r'v'V 

Q2 ° (pa) B, y ( 0 ) I H : H Bf J 2 

G 

is a Bf-splitting surjection , which proves pa ffiBf xW. 

(b) q > n From the above discussion, we have 

p (X) n W = ¢ · 
a ' 

that lS , 

(19) 

(20) 

(21) 

So, in any case , a ERP~ a E AW and the proof is completed. // 

(3.3) REMARK. We note that Theorem (3.2) is a generalisation of the 

corresponding one in [4], since in the Banach case (with the norm

calibration) , condition (e) in Theorem (3 . 2) is automatically satisfied, and 

our Bf-transversality reduces to the usual transversality. 
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4. The Bf-Transversal Isotopy Theorem 

In this section we generalise the important Transversal Isotopy Theorem 

in [4] to our context of Bf-manifolds and Bf- transversality. 

We suppose that the f-family E is a f-family with Bf-product (see 

Chapter l , § 2) and let A, X, Y be c;f-manifolds (r ~ 1) modelled 

respectively on E, F, GE E. 

Let p : A ~ ~f ( X , Y) be a s;f-representation . Then the following 

theorem is a generalis ation of Theorem 18 . 2 in [41, p . 47 . 

(4.1) THEOREM ( Openness of Bf- tran s v ersality ). Let A, X, Y be 

C~f-manifolds modelled respectively on E, F, GEE~ where E . 1,.S a 

f - family with Bf- product~ r,~~t fl c Y be a closed C~f - submanifold~ Kc X 

a compact subset of X and p A ~ C~f(X, Y ) a c~f-representation. 

Then the subset AKW of A defined by 

AKW = {a EA I pa ffiBf xW for x EK} 

1,.s open 1,.n A. 

Proof ( see [ 4]) . 

maps ( see Chapter 2 , ~5) : 

Consider the Bf-bundle of Bf - continuous linear 

whose fibre over a point (x, y ) EX xBf Y is the space LBf(TxX' TYY) of 

Bf- continuous linear maps from TX to 
X 

T y . 
y 

Define the following subset 

~ of LBf (TX , TY) . An element A E LBf(TX , TY ) is in ~ iff the 

following condition is satisfied : if XE X ' y E y 

then 

(i) either y ~ W , or 

(ii) y E W , and there exists a Bf-complement z 

and A E LBf(T X, TY) 
X y 

of T fv 
y 

. 
ln 



TY such that the composite 
y 

(where Q2 : TYY - TYW ©Bf Z ~ Z is the second projection) 

is a Bf-splitting surjection . 

Then St is open in LBf(TX, TY) . Indeed we have 

with 

which is open in LBf (TX, TY ) because f,v' is closed, and 

St = {A E LBI'(TX, TY) I if A E LBf (TxX, T Y) then 2 y 

E w and ( ii) . 
satisfied} y is 

which is open in LBf (TX , TY) by Pr opos j tion (l. 2 ), Chan t er 3 . 

Now cons 5_der W' = LEI'( TX, TY) \ St , then W' is closed in 

L8 r (TX, TY ) . Consider the map 

defined by a f-+ P , 
a 

representation , p , 

By construction , 

p , 

x f-+ p '( x ) - T p . 
a x a 

Then, since p is a 

is a C
o . 
Bf-representation . 

pa rh Br xW if and only if p'(x) f W'. 
a 

AKW = {a EA I p~(K) n W' = ¢} 

Hence 
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(1) 

(3) 

(4) 

( 5) 

which is open in A by Theorem 18 . l in [ 4] , p . 46, about openness of non-

intersection . // 

We now prove the most important property of Bf - transversality : the 

stability of Bf-transversal intersection . This is a generalisation of the 

one in [4] to the Bf-context . 
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first recall briefly what is meant by a rf'-isotopy. Let X be a 

Banach manifold of class A ~-diffeomorphism F 

rf'- isotopic to the identity iff there is a rf'-map 

<P : X X I -+ X 

X -+ X 

(where I is an open interval in ffi containg [O , l]) such that 

. 
is 

<Pt -
<Plxx{t } is a rf'- diffeomorphism for all t E [O , l] and <Po -

(pl - F - . 

Now , if WO and w are two submanifolds of X , we say that 

rf'- istopic to w
0 

iff there is a Cr- diffeomorphism 

F : X -+ X 

such that F(w0) - W and F Cr · · h · d · -isotopic tote i entity . . 
is 

Now let E be a f -family with Bf-product and A X Y be 
' ' 

- idx -

w 1,,8 

c::+1_ 
Bf 

(6) 

' 

manifolds ( r > 1 ) modelled on E, F , G EE. Suppose that X is compact 

( hence F is a fin ite- dimensiona l space ). 

Let 
,...r+l 

p : A -+ c·Bf (X, Y) be a 
,...r+l . 
c·Bf -representation, W c Y a closed 

s;;1
- submanifold , and a

0 
EA a point such that 

For each a E A , l et 
- 1 w = p (W) C X . 

a a 
Then by Theorem (4 . 1), 

pa ~Bf W for a E A sufficiently near a0 . Hence , by Corollary (1.2), 

Wa is a s;;1
-submanifold of X (i . e . a rf'+

1
- submanifold of X in the 

Banach sense since X is a (Banach) finite-dimensional manifold) . One 

might expect thJt for a near a
0 

, the submanifolds W and 
a 

are 

close . The Bf-Transversal Isotopy Theorem makes this precise . It says 

that W and 
a 

W are isotopic . 
ao 
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(4.2) THEOREM (Bf-Transversal Isotopy Theorem, [L~J). Let E be a 

f - family with Bf- produ / t . Let X be a compact c!'+ 3-manifold (r:::: 1) 

modelled on a (finite - dimensional) space FEE ~ A and Y be c::+1_ 
Bf 

manifolds (r > 1) modelled on E , GE E. Let p 
Y+l 

A -+ cBf ( X , Y) be a 

c::+1 . Bf -representat&on and WcY be a closed ~;
1
- submanifold. Let a E A 

be a point~ and for each 

Then if p i Bf 
ao 

w ~ 

such that~ for a EN~ 

Proof ( see [ 4 J) . 

a E A 

there 

w a 
. 

&S 

let w -1 
~ 

= p ( W) C X • a a -

. 
open neighbourhood &S an 

<?-isotopic to 

0 

N of ao &n 

This proof is exactly the one in [4] rewritten 

in our language of Bf-manifolds and Bf-transversality . 

A 

Since X is a finite-dimensional manifold of class {?+ 3 (r:::: l) and 

W is a closed s ubmanifold of X , we can find a <?+1
-total tubular 

ao 

neighbourhood of in ·X ( see [ 31] or [ 44] ), that is, we can find an 

open n eighbourhood D of in X , a surjective map 

,...r+l 
and a c -vector bundle structure on 'TT which makes D an open sub-

manifold of X . 

Take a Riemannian metric on TI and a reduction to the Hilbert group 

( Lang [ 44] , Chapter VII) ; and let II · II : D -+ JR. be the Finsler associated 

with this Ri emannian metric in the usual fashion ; that is , 

2 llwll = < w, w) for w E D (7) 

where ( 
' 

) is the Riemannian metric . 

Thus we have an adm i ssible covering of TI by VB charts (a, a
0

, u) 

-
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where u is an open subset of 
-1 TI (U) ~ a0(U) x Fa, and for each a 

such chart a norm ll · lla on Fa such that 

llwll = lla(w) II a 
for 

-1 w E TI (U) . (8) 

This covering is called the reduced atlas for TI (see [4]) . 

To prove Theorem (4 . 2) we first prove a technical lemma. 

(4.3) LEMMA ([4]). There &San open neighbourhood N of a
0 

&n 

A such that~ for a EN~ W - p-1 (W) &S the image of a ~+1-section 
a a 

of TI . 
~ 

that for a E N ~ there is a such that 

w - ~ (w ) . 
a a a

0 

Proof (s ee [4]). For each real number -t > 0 we define 

Et - {w E St I llwll < t} 

and for an open subset U of W we define Bt(U) c St by 
ao 

If (a, a
0

, u) is a member of the reduced atlas with 

a(TI-1 (U)) - a
0 

CU) x F then -
' a 

a(Bt(U)) = a0(u) X B 
at 

where is the open ball of radius t centred at the origl.Il of 

For each x EX, we define an open neighbourhood 

and an open neighbourhood z of X in X as follow s . 
X 

N 
X 

of . 

F 
a 

in 

(9) 

(10) 

(11) 

A 

( i) If X i w 
' 

then Pa (x) f w . Since WcY is closed, and 
ao 0 

the evaluation map ev . A xsr X ~ y is continuous , we may take N and . 
p X 

z satisfying the condition 
X 
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Z n W = ¢ for a EN 
X a X 

( 12) 

(ii) Suppose 

Bf-chart (V, S) 

for w . that is , 
' 

Then p (x) E W • 
ao 

Choose an admissible 

in Y at p (x) having the Bf-submanifold property 
ao 

S( V) = V l + V 2 c G l ®Br G2 
- G -

' 

S (p (X)) - 0 -
' ao 

SC W n V) - v
1 

c c
1 

-

Because the evaluation map A xBf X ~ Y is continuous, we may choose ev 
p 

an open neighbourhood N 
X 

of in A , a VB-chart 

at x from the reduced atlas, and a real number t > 0 such that 

a E N 
X 

Let H be the model space of the manifold 
Cl 

on TI 

(13) 

and Fa be the model of the fibre of TI in the chart (a, a
0

, u) , that is, 

a
0 

C u ) x F c H x F - c F) . 
Cl - Cl Cl 

(14) 

Then as we see above 

G1 GJBr G2 = G ~ G2 be the second projection and consider the map 

defined by 

for a E N 
X 

Assume 

Then 

f N x a
0

Cu) X B C A X H X F ~ V 2 c G2 
X at-=- Bf a Cl 

(15) 

(a ' U , V ) I-+ f ( a , U , V) = Q 0 B ~ 
-1 

pa o a (u, v) 
2 

(16) 

' u E ao(U ) C HCl and V E 8at 
c-= F 

Cl 

for simplicity that a(x) - ( 0 ' 0) and B(P Cx)) - 0 - - . 
ao 

f is obviously 
y+l 
cBf . Furthermore , since P ih W , we can 

a Bf 
0 
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see that the partial Bf-derivative 

is a Bf-isomorphism of F
3 

onto G
2 

By the Implicit Function Theorem ( 3. 13), Chapter 1, (making Nx' a0(U) 

) 
....r+l 

and Bat smaller if necessary we have a cBf -map 

so that 

We take 

Then 

fa(u, v) = f~a, u , v) for (u, v) E a..
0

(U) x Bat . 

T~is completes the definition of Z and 
X 

N 
X 

in -=:ase (ii). 

(17) 

(19) 

(20) 

(21) 

By the compactness of X , finitely many of the Z 's 
X 

cover X, say 

X - z u u z - . . . 
xl X 

n 
(22) 

Then define N by 

N - N n n N - . . . 
xl X 

n 
(23) 

We claim that this neighbourhood N satisfies the conclusion of the lemma: 

for each fixed a EN, W c n and W intersects each fibre a - a 

-1 
- TI (x) , (x E W ) , 

ao 
in exactly one point . 

To prove this , fix a EN . If x . f W , then 
1., C!o 

Z n W = ¢ by 
x . a 

1.-



(12) ; for x . 
i. 

Z C r2 
x. 

i. 

by ( 19). Thus W C rt . 
a 
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Choose 

We must show that W n n consists of a single point. By (18) a X 

and (20) and since the z ' s x. cover X, W n Z n n consists of exactly a X. X 
1,, 1,, 

point for - 1, indeed, this 
. 

true for each one some 1,, - . . . ' n 
' 

is 

1,, - 1, n such that X E z Suppose that w n n contains two - . . . ' x. a X 
1,, 

points and let these two points be in z and z 
' 

respectively. By x . x. 
1,, J 

(12) we must have X .' x . E w Then by ( 19), 
1,, J ao 

z = Bt. (vi ) and z - Bt . (uj) -x. x. 
1,, 1,, J J 

where x EU. n U. 
1,, J 

But either t. < t. or t . < t. ; hence either 
1,, J J 1,, 

r2 n Z C rt 
X x . - X 

w 
a 

n n 
X 

1,, 

n Z 
x . 

J 

(k = i 

or 

or 

n 
X 

n Z . C rt 
J - X 

n Z 
x . 

1,, 

Thus, in either case, 

J ) consists of two points contradicting our 

( 24) 

previous conclusion . This proves that W n n contains exactly one point. 
a X 

Hence w is the image of a section 
a E;,a of 1T for each a E N . 

Furthermore , for a E N and each sufficiently small VB chart ( a, ao, 

of the reduced atlas, the map h a0(u) c Ha -+ B C F given by a at - a 

h (x ) = h(a , x) 
a for x E a

0
(U) (h being the map constructed above) is 

the principal part of a local representative of h E;, • 
a 

As was 

is c::+1 
Bf Since H and F are finite-dimensional, 

a a E;, a is also 

cf+l , which ends the proof of Lemma (4.3) . 

The proof of Theorem (4.2) is straightforward, as follows: by Lemma 

(4. 3), we can find an open neighbourhood N of in A such that for 

each a EN , there is a cf+l section of 1T, E;, ,- such that 
a 

u) 
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J\nd for this is ~-isotopic to 

W by Lemma 2 0 . 4 in [4 J , p . 5 3 . / / 
ao 
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CHAPTER 5 

APPLICATIONS 

In this chapter we give several applications of the Bf-Transversal 

Density Theorem of Chapter 4 . They are simple local results similar to the 

global results given in [31], [33], [43]. Our method is also the one in 

[31] , [43] . But there are differences between the results obtained in this 

-
chapter and the previous ones in [31], [33], [43]. The first difference is 

that the spaces in our results have different topologies from the one in 

their results . The second one , and probably the most remarkable one, is 

that we follow the Bf-technique instead of the usual standard techniques as 

ln [31], [33], [43]. 

In the first section we fix the notations . and prove two useful lemmas. 

The next two sections , §§2 , 3 , are devoted to two simple applications : the 

Morse functions defined on an open convex and bounded neighbourhood 

~ c ]Rn , and the 0- transversal vector fields on ~ . In §4, for the sake 

of completeness , we include the Infinite Codimension Lemma from the paper 

[43] of Kurland and Robbin which will be used in all later applications. 

The remaining sections , §s to §7, are for other applications which range from 

00 00 

critical points of C local vector fields to the fixed points of C 

maps . 

l. Preparatory Lemmas 

Throughout this chapter, ~ shall always stand for an open, convex and 

bounded subset of an Euclidean space ]Rn , and for each integer 

k = o, 1, 2 , ... , 
k 

P (n , m) shall stand for the space of polynomials of 

degree less than or equal to k from ]Rn to another Euclidean space ]Rm 

--
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defined in Example (2.1), Chapter 3 . 

We consjrler the space B
00 (n , 1Rm) defined in Example (1.1), Chapter 3, 

calibrated by the following sequence of increasing norms 

where each II • II k is defined by ( l) in § 1 , Chapter 3 . 

Then we have the following : 

(1.1) LEMMA. The space B
00 (n,_1Rm) equipped with the sequence of 

increasing norms &n ( 2) is a separable Frechet space . 

Proof. The fact that B
00 (n, 1Rm) is Frechet is well-known. We need 

only prove separability . For each integer k = O, 1, 2, ... define the 

space 

and ·t , Df , ... , Dkf are 

(2) 

Th · · l h UBk (n . 1Rm) en it is easi y seen tat H~ 

uniformly continuous on n} . 

is a closed subspace of Bk(n, JR'71) • 

h Bk (n ' 1Rm) h T us since H is a Banac space , is a Banach space for 

each k = 0 , l , 2 , . . . . 

W th t th B h UBk (n, lRm) e now prove a e anac spaces ~G are all separable. 

First prove the result for k = 0 : we have 

UB0 (n' 1Rm) = {f : n -+ ]Rm I f E B0 (n' 1Rm) and f is uniformly 

continuous on n} . 

By Theorem (3.15. 6 ) in [16] , p . 55 , f can be extended to a uniformly 

continuous map f n -+]Rm with n compact. 

Denote by c0 (n , 1Rm) the space of continuous maps n -+]Rm with the 

norm llfll 
O 

= sup llf( x) II . Then since n is compact, we know that 
xEn 

CO (n , 1Rm) . ( . ) ~G is separable applying the Stone-Weierstrass Theorem . 



• rf, •• UBO ("' lRm) -+ Co (n-, lRm) Consider the mapping ~ H H defined by 

cp(f) = f. Then it is easy to see that ¢ is linear bijective with the 

inverse 
-1 cp given by 

Furthermore if f = cp(f) , then we have 

llfll
0 

= sup llf(x) II = sup llf(x) II = llfll 0 · 
xEn xEn 

Th rf, • • h · Hence UBO (", lRm) us ~ is a t oplinear isomorp ism~ ~G 

Banach space . 

Now for each k = 1, 2, 3, ... , define the mapping 

Pk UBk(n, lRm)-+ UB
0 (n , Pk(n, m)) 

ff--+ Pkf 

is a separable 
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(3) 

where Pkf n-+ Pk (n, m) is given by Pkf(x) = (f(~), Df(x), ... , Dkf(x)) 

for all x En. 

. l . . d . t l th t Pkf E UBO (", -n-JTI) , imp ies ~mme ia e y a ~G ~ 

the map Pk is well defined . 

Pk is obviously linear and one-to-one. Furthermore 

11Pkfll
0 

= sup {!lf(x) II + IIDf(x) II + ... + IIDkf(x) I!} - llfllk . (4) 
xEn 

Hence Pk is continuous . 

We claim that the image Pk[UBk(n, lRm)] is closed in the separable 

Banach space UB
0 (n , Pk(n, m) ) . 

Indeed, ~et {Pkfz} c Pk[UBk(Q, lRm)J be a sequence converging to S 

in that lS, 

Then we have by (5), 

( 5) 



pk f _ pk f - 11 fl - f h 11 k -+ 0 a s 
l h O 

l h -+oo • 
' 

{f} h B h UBk(n, lRm) . Th Hence l is a Cauchy sequence int e anac space a6 us 

Thus we have 

IPkfz-Pkf -+_O as l-+ 00 • 

0 

Let s > 0 be given: then (5) and (6) show that 

Since s > 0 is arbitrary, we must have 

Hence 

s = Pkf 

and Pk[UBk(n, lRm)J is closed in UB 0 (n, Pk(n, m)) 

~s a separable Banach space and pk is a toplinear isomorphism. 

is a separable Banach sp~ce for each k = o, 1, 2, 

Now if f E B
00 (D, lRm) , the mean value theorem proves that 

Hence 

Dkf ·. n -+ Lk r-lRn ' -.rm) . . f . k a6 ~ lK is uni ormly continuous for all = 0, 1 , 2, . . .. 
s 

Thus we have 

00 

B
00 (D , lRm) - n [UBk (n, lRm) ] . 

k=O 

Since for all k - 0 , 1 , 2, ... , we have 

th t l · d d B
00 (n lRm) from the one of Bk(n, lRm) coi' nci' des e opo ogy in uce on ~6 , a6 

with the one induced by the topology of UBk(n , lRm) · Thus by (7), each 
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(6) 

( 7 ) 

( 8) 

(9) 
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ll · llk on UBk(n , JR'7) induces a countable basis for the induced topology on 

Since k = O, 1, 2 , . . . is countable and since the {II · Ilk} 1s 

increasing , B
00

(n , JR'7) equipped with r - { II · II } has countable - k k=0,1 , 2, ... 

basis . Since B
00

(n, JR'7) is metri s able , this is equivalent to the fact that 

B
00

(n, JR'7) lS separable . // 

( l . 2) REMARK. Since the sequence { II · II } . . 
k k=0 , 1 , 2 , . . . 

is increasing, 

if we endow B
00

(n, JR'7) by 

-
r = { ll · llk }k:::io 

where 
. 

integer , then B
00 

( n, JR'7) still a separable Frechet 
i, 0 is an lS 

-
space because r and r are equivalent . 

Note that each II · II j on B
00 (n, lRm) induces a norm p . . on 

J 

Boo (n , lRm) x ]Rn § 5 Ch 1 H as in , apter : 

p .( ~ , x ) = 11~11 - + llxll for al l ( ~ , x ) E B
00

(n, lRm) x ]Rn . (10) 
J J . 

The following l emma shall be used in all the proofs of the applications 

of this chapter . 

( l . 3) LEMMA. Let n n c ]R be an open convex bounded subset~ r be an 

integer greater than of equal to 1 and k be an integer such that 

0 s k s r . Then we can always find an integer 
. 

1.,0 such that the following 

assertions are true : 

(a) the map evk : B
00

(n, nfl) X n-+ n X Pk (n , m) defined by 

with respect to the calibration r = {pr+k+i)i~i
0 

on 

B
00

(n , nf7) x lRn and the norm- calibration on ]Rn x Pk(n , m) ; 
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oo( m) n n k (b) the Bf- derivative Devk(E,, x) : B r2, JR x JR + JR x P (n, m) 

(for each ([,, x) E B
00

(r2, lRm) x r2) is onto and has kernel Bf-

( c) for any (Bf-splitting) subspace n k of lR x P ( n, m) the 

Boo ( r2' lRm) X ]Rn and has a -Bf-complement E2 such that the 

restriction of Devk(E,, x) to E 
2 

i-s a Bf-isomorphism onto a 

Bf-complement of ]Rn X k m) F2 Fl i-n p (n' . ., 

(d) the subspace E1 = Devk(E,, x)-1 (F1) Bf-adapts the first 

Proof. (a) By the first part of Proposition (6.2), Chapter 1, the map 

ev 
k 

lS J> with respect to the calibration CBf r = { } Pr+k+i i~O Then for 

the integer (determined in (b)) lS still with respect to 

the calibration r - {pr+k+i}i~i
0 

and still has the same Bf-derivative 

( b) The ontoness of Devk([,, x) is the second part of Propo s ition ( 6 .2), 

Chapter 1. 

For a fixed ([,, x) E B
00

(r2, lRm) x r2 , define (see [4]) . 

. 
Di,s(x) - 0 for i = 0 , 1, ... , k} , 

K2 = {s E B
00

(r2 , lRm) I Di,s = 0 for i ~ k+1} . 

Boo (n., lRm) Then K
1 

and K
2 

are closed subspaces of ~G (equipped with the 

family of norms II · II i > 0 ) r+k+i ' - . 
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Indeed , f irst prove that 

00 (n ~) K tC\ K Let r E K
1 

n K
2 

then since D~r - 0 for ~ > k+l , B ~G , 1K = l ~ 2 . s s 

Taylor's Formula ( see [4], p . 4) gives us 

sCy) Ds(x) Dks(x) ( )Ck) 
- l;(x) + l! ( y -x) + ... + k! y-x for y E D 

Since s E K1 , this implies s(y) - O , Vy ED; that is , s = O . 

Hence K
1 

n K
2 

= {O} . 

(11) 

Furthermore K1 + K
2 

= B
00

(D, rrf) as seen by the following argument . 

Define the mappings 

by 

and 

s
1 

(y) = i'.;(y) - s
2
(y) for all y E D . 

Then since D is open, convex and bounded, it can be seen that 

Furthermore by (13) we have s = s + s with 
1 2 

(b ecause 

(13) 

ri1 s
2 

( x) - 0 for all J - 0 , 1, 2 , ... , k by ( 12)) and 

(b ecause for i :=: k+l ). 

Note that 

. 
K

2 
- { s E B 

00 

( n, nf7) I v ~, - o , ~ :=: k+ 1} 

- Pk(n, m) = space of polynomials nf ~ nf7 

of degree l ess than or equal to k . Thus dim K
2 

< + oo . 
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is a Frec11et space (by Lemma ( 1 . 1)) , this is a topological sum . 

Thus the mapping 

(14) 

is continuous . 

. 
Furthermore , since D&s = O for s E K

2 
, i > k+l , we have on K

2 
, 

Jlsllj = llsllk for all j > k , all s E K2 . 

Hence II r II . = II r II k for all & - 0 , 1, 2 , ... 
s r+k+& s 

and all s E K
2 

. 

The continuity of the mapping (14) implies there are a positive number 

a and an integer &O such that 

Hence 

(15) 

for all and all 

By a s imple calculation we have 

(16) 

Furthermore 

(17) 

Indeed , for an arbitrary Cs , h) E B
00

(~, 1Ff7) X Rn ' we can write 

r = rl + r2 with r EK s s s s 1 1 , 



On the other hand, if <,, h) E (K
1 

x {o}) n [K2 x lRnJ then 

(s, h) E Kl x {o} ~ h - 0 , s E Kl , 

Since K
1 

n K
2 

- {o} , this implies s = 0 , i.e . (s, h) - (0, 0) and 

(K1 x {o}) n [K2 x lRnJ = {(o, o)} . 
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Thus we have B
00

(D , JR"') x ]Rn= (K1 x- {o}) Et) [K
2 

x lRnJ . Furthermore, the 

mapping 

(18) 

is continuous (because K
2 

x ]Rn is finite dimensional) and for all i > i
0 

we have 

II s2 11 k . + 11h11 r+ +i. 

where B ~ max(a, l) . Hence we have (17). 

Sp k . ( s, h) 
r+ +i. 

Since Ker Devk(~, x) = K1 x {O} , (17) proves that Ker Devk(~, x) is 

(c) is a (Bf-splitting) subspace of ]Rn x Pk(n, m) then 

dim Fl<+ 00 , codim F
1 

= l < + oo 
n k because lR x P (n, m) is finite-

dimensional . We also have 

(19) 

Let us denote by L = E n [K x ]Rn] c K x ]Rn, then by (19) we have 
l 2 - 2 

(20) 
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Since codim L < + 00 and since K x ]Rn 
2 

is a normed space with norm 

II (s2' h) II - lls211k + 11h11 ' we can find a complement E2 of L in K2 X ]Rn 

such that 

Furthermore, since Devk(~, x) is onto by part (b), we have 

codim E = dim E = l 
l 2 

and Devk(~ , x)IE is one-to-one . 
2 

dim F2 - codim F
1 

- l 

Furthermore , it can be seen easily that 

Thus ( 23 ) and (24) imply 

n k 
F

1 
(B F2 = lR x P (n, m) . 

Since on ]Rn x Pk(n , m) we have the norm calibration, we also have 

n k 
F 1 ©Br F 2 = ]R X p ( n ' m) . 

(21) 

(22) 

(23) 

(24) 

(25) 

(26) 

Thus , Devk(~ , x)IE : E2 ~ F2 is one - to-one , bijective, Bf-continuous 
2 

with E
2 

equal to a Bf-complement of E
1 

, F
2 

equal to a Bf-

complement of F
1

. Since where the induced calibration 

reduces to the norm JI · II k + II • II , the Banach theorem implies 

Devk(~, x) : E2 ~ F2 is a Bf-isomorphism. 

(d) By the proof in (c), is a Bf-complement of L 

We also have 

in 
n K X ]R • 

2 



Thus, by (20), 

Boo(n , lR"1) X ]Rn= (Kl X {o}) (t)Br [x2 X ]Rn] 

- (K1 x { o} ) ®Er (L ®sr E2 ) 

- [ ( K 1 x { 0 } ) ®s r L J ®s r E 2 

Furthermore , we have 

133 

(27) 

n(E1) = K1 EB TI(L) since n(L) c K2 complementary to K
1 

. (28) 

Thus 

= K + K ( by ( 21) ) . 
1 2 

That is , 

(29) 

write e
1 

- Z + (k
1

, o) with Z EL , k
1 

E K
1

. Hence 

This implies k
1 

= 0 and n(e
1

) E n(L) . 

Thus z = n(e
1

) E n(L) n n(E2) = {O} and we have 

(30) 

We n eed to prove that (30) i s actually a Bf-sum . Indeed, we have 

(32) 
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is Bf-continuous. 

But we can write, by (31), 

Hence there is a constant a> 0 such that 

p k .(n(l)+n(e
2
))::: ap k .( z) for all i = 0, 1, 2, ... . (33) 

r+ +1, r+ +1, 

Since n(L) @Bf n(E
2

) = K
2 

, we can find B > O such that 

P k 
.(1r(e

2
))::: Bp k .(n( l)+n(e

2
)) for all i = O, 1, 2 , ... . (34) 

r+ +~ r+ +1, 

Thus (33) and (34) give 

and we have 

Sap k .( z) r+ +1, 
for all 

which proves that E
1 

Bf-adapts TI . // 

2. First Application: Morse Functions 

. 
'Z, - 0, 1, 2, ... 

Let n c ]Rn be open convex and bounded, and consider the space 

co co 

(35) 

(36) 

B (n, ]R) of all C functions n +]R with all derivatives bounded on n. 

co 
Then B (n, JR) is a separable Frechet space by Lemma (1.1). 

co 
Recall that a point x En is a critical point of f EB (n, JR) iff 

Df(x ) = 0 x is a non-degenerate critical point of f iff the Hessian 

Hess (f) = [a 82f (x)] lS non singular ( see [31], [33]). 
X X . X . 

'Z, J 

co 
A fun ct ion f E B ( n, lR ) is a Morse function if all the er it ical points 

co 
of f are non-degenerate. We shall denote by M (n, JR) the subset of 

co 
Morse functions in B (n, ]R) • 

Morse functions can be characterised by condition on 1-jets as 

follows . Let J
1

(n , JR )=~ x ]R x L(lRn , lR) be the space of 1-jets n +]R, 

and let 
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s
1 

= {a E J
1

(n, JR) I corank a - 1} 

be the submanifold of J
1

(n , JR ) defined in [31], p . 60 . Then we have (see 

[31] , Definition 6 . 1 and Proposition 6 .4), 

Note that the submanifold s
1 

[31] , Theorem 5 . 4) . 

has codimension n 

CX) 

(1) 

ln (see 

(2.1) PROPOSITION. The set M (n, JR) of Morse functions is dense in 
CX) CX) 

B (n , JR) . In other words ., every function in B (n, JR) can be approximated 

by Morse functions. 

Proof. We apply the Bf-Transversal Density Theorem . Put 
CX) 

A - B (n, JR) considered as a Bf-manifold and in the Bf-Transversal 

Density Theorem read y = J
1 

( n ' JR) = n X JR X L (1Rn ' JR) ' and 

Define the representation p 

h f E A B(X)cn JR) and J.lf: n ~ Jl(n, JR) were = ~6 , ~6 ~ H is the 1-jet prolongation 

of f (see [ 31] , [ 33] ) ( see also §4) . 

Then we have all the conditions of the Bf- Transversal Density Theorem: 

calibration 

lS 

f - {p .} . . given by Lemma (1.3). 
2+1, 1,::::1,0 

if we take the 

(a) n c JRn is open , thus considered as a manifold of dimension n ; 

s
1 

has codimension n . 

CX) 

(b) A= Ben , JR ) lS second countable by Lemma (1.1); n lS second 

countable . 

(c) 1 > max(O, n-n ) - 0 . 



(d) evp mBf s
1 

follows from part (c) of Lemma (1 . 3) . 

(e) For all (f , x) EA xBf Q such that 
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the Bf-splitting subspace Dev ( f , x ) - l ( T S 
1

) 
p y 

Bf-adapts 

the first projection B
00

( Q , JR ) x ]Rn+ B
00

(Q , JR ) by part (d) , Lemma (1.3) . 

Thus 

( 2) 

is dense in A . 

But this ( 2 ) is exactly ( 1 ). // 

(2.2) REMARK. According to the general result given in [33], p. 147 

(or [31] , p . 63) for any manifold X , Morse functions X + ]R form a 

00 

dense (and open) set in c
5

(M, JR ) . 

If we take X = Q 
n 

the open subrnanifold of JR , then Morse functions 

00 00 00 

in C (Q , JR ) is dense in c
5

( Q , lR ) , the space C (Q, lR ) equipped with the 

00 

( strong) Whitney topology . But the induced topology on B (Q , JR ) is not 

the same as the topology defined by the sequence of increasing norms 

{II · II k} k:::O . Hence our result , for this particular case , seems to be new. 

3. Second Application: 0-Transversal Vector Fields (see [4], p . 62 ) 

Let Q c ]Rn be open convex and bounded as before . Consider the 

00 

tangent bundl and the space of all C sections of TQ, 

that is , the space of all maps ~ : Q + TQ such that TI o ~ = idQ where 

TI T0, + Q is the natural projection . 

Thus each ~ : Q + TQ has the following form : 

~(x) = (x , t(x)) for all x E Q (1) 



00 

where is C 

defined in §1 : 

S
00

(TD) = {E;, : D-+ TD I E;,(x) - (x, ~(x)) for all X ED 

Consider the usual topology on B
00 

(D, lRn) defined by the sequence of 

increasing norms II · Ilk , and for each k = 0 , 1, 2 , . . . define 

00 

for all E;, E S ( TD) . 

00 

Then S (TD) equipped with {ll·llk}k:::O i s a separable Frechet space 

isomorphic to B
00 

(D, lRn) via the toplinear isomorphism 

oo oo( n) cf> : S ( TD ) -+ B D , JR _ 

defined by cf> ( E;,) - E;, 

Now a point x ED is a critical point of 
00 

E;, E S ( TD) iff 

~ ( x ) = 0 E lRn , that is , E;, ( x ) = ( x , 0 ) Then x is called a 

i. ff DC(x ) : lRn -+ n n nondegenerate critical point of E;, s n is surjective . 

This is equivalent to the requirement that D~(x) is a toplinear 

isomorphism . 

Denote by (TD)
0 

the image of the zero section in TD ; that is, 

(TD)
0 

= {ox ETD Ix ED} = D x {o} c D x lRn . 
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( 3) 

(4) 

( 5 ) 

Then (TD)
0 

is a closed submanifold of Tn and has codimension equals n. 

Thus x is a critical point of E;, iff E;,(x) E (TD)
0 

and it is a 

nondegenerate critical point of E;, iff 

( 6) 

Indeed we have DE;,(x) = ( Id, D~(x)) : lRn -+ lRn x lRn , thus 

(7) 

that is, 
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( 8) 

if and only if D~(x) : ]Rn -+ ]Rn is onto . 

00 

We say that ~ ES (TD) is a 0- transversal vector field (on D) (see 

[4], p . 62) iff every critical point of ~ is nondegenerate. 

00 
denote the set of all 0-transversal vector fields in S (TD) : 

(9) 

(3.1) PROPOSITION . 00 

The set G0 (n) of O- transversal vector fields on 

00 

n is dense &n S (Tn) . 

Proof. In the Bf-Transversal Density Theorem read for A, X, Y, 

w respectively S
00

(Tn) , n , T0, =DX ]Rn ' (Tn)o = n X {o} and consider 

defined by p(~) = ~ where the right- hand side ~ 00 
is considered as a C 

map 

Then ev S
00

(Tn) X n-+ Tn - n X ]Rn lS the composite: p 

cpXid 
s 

00 

c Tn) x n n B 
00 

( n , JRn) x n 
ev 
~-

0
- n x .P

0
(n, n) 

(~, x) ~-+ (~, x) ~-+ (x , ~(x)) 
~ 

(10) 

where the map cp ~ ~-+ ~ is the Bf-isomorphism (4), and ev
0 

is defined 

in Lemma ( 1 . 3) . 

We consider the calibration defined in Lemma (1.3). Then 

ev is 
p 

1 
CBI' and we have : 

(a) n C ]Rn has dim = n w = (Tn) O has codim = n . 
' ' 

00 
( b) A - s (Tn) and D are second countable; -

(c) 1 > max(O, n-n) = 0 . 
' 

(d) ev \r w follows from part (c) of Lemma (1.3) and ( 10); p 
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(e) for each (~, x) EA x8 r D such that p~(x) - ~(x) E W = (In)
0 

we have 

Dev(~, x) = Dev
0

(~ , x) o (¢ x id ) 
P Rn 

(11) 

and c ondition (e) follows quickly . 

Thus the Bf - Transversal Density Theorem gives 

(12) 

00 

is dense in S (TD) 

00 

Since AW is exactly G
0

(D) we have proved the proposition. // 

( 3. 2) REMARK. 
00 

Lvery ~ E G
0

(D) has isolated critical points . 

Indeed , if C~(O) denotes the set of all critical points of ~ , then since 

~ ~ (TD)
0 

, we have by Corollary (1 . 2) , Ch<l~Ler 4, 

C~(O) = ~-1 (( TD)
0

) = submanifold of dimension zero . (13) 

Thus, Propos ition (3.1) also proves that there is a dense subset 

00 00 00 

G
0

(D) c S (TD) such that every ~ E G
0

(D) has only isolated critical 

points . In the third application in §5 we shall prove this result directly 

using the Infinite Codimension Lemma of Kurland and Robin ([43]). 

4. The Infinite Codimension Lemma 

For the sake of completeness , we include in this section the first two 

sections of [ 43] about the Infinite Codimension Lemma . 

We denote by E or simply E the ring of germs at 0 E IRn of real 
n 

00 

valued C functions of n real variables and by M or simply M the 
n 

maximal ideal in E . Thus M consists of those germs which vanish at O . 

From the formula 

f(x) = f(O) + ~ J
1

0 
d:~ (tx)dtxi 

b b . 
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it follows that M is generated by coordinate functions 

M = < x 1 , ... , xn > • (1) 

We frequently use: 

( 4. l ) LEMMA (Nakayama) . If I and I ' are ideals . 
E and if I i,n 

. i,s finitely generated and 

IC I ' + MI 

then IC I ' . 
Proof. Let gl , ... ' g generate I. By hypothesis m 

g . = h . + I a . . g . 
1.,, 1.,, j 1.,,J J 

where h. E I ' and a . . E M . Thus 
1.,, 1.,,J 

I ( o . . -a . . ) g . = h . . 
• 1.,,J 1.,,J J 1.,, 

(2) 
J , 

The matrix on the left hand side of (2) is invertible as it is the identity 

matrix when X = 0 • Thus each generator g. 
1.,, 

of I 

the elements h . of I ' and hence in I' . II 
1.,, 

As an application of Nakayama ' s lemma , we prove : 

is a combination of 

(4.2) PROPOSITION. Let I be an ideal in E of codimension less than 

or equal to k . Then k M CI . 

By " codimension " we always mean "codimension as a real vector subspace 

of a real vector space ". 

(4.3) COROLLARY. An ideal in E has finite codimension if and only 

if it contains some power of the maximal ideal . 

Proof. Consider the sequence 

IC I+ Mk+l CI + Mk M I E E c ... cI+ c + =. 

There are k + 2 inclusion signs and if I has codimension less than or 

equal to k at least two inclusions must be equality . Thus 
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for some J = 0 , 1 , ... , k so so M3 c I by Nakayama's 

lemma . This proves the proposition as Mk c Mj since j S k . The 

corollary follows immediately from the fact that Mk has finite codimension 

in E (in fact the monomials of order less than k form a basis for 

E!Mk ) . / / 

The main importance for us of ideals of finite codimension lies in the 

following . 

(4.4) PROPOSITION. Let I c E be an ideal . If I has finite 

codimension~ then the origin is at most an isolated zero of I · 
~ that -is~ 

there are elements h
1

, ••• , hm of I such that the only x E ffin for 

which h
1 
(x) - - h (x) = O -is x - O . 

m 

Proof. If I has finite codimension ~hen for some k (by 

Proposition (4.2)) and we may take h
1

, ... , hm to be the monomials of 

order k . I I 

Now let k 
J (n, 1) denote the vector space of k-jets of germs at 0 

of maps f : Rn -+ R . In other words , k 
J (n, 1) is nothing but the vector 

k space P (n, 1) (defined in §1) of all real polynomials in n-variables of 

order less than or equal to k . This is a quot i en t of E : 

~(n, 1) ~ E/Mk+l 

and is hence an algebra . (The multiplication is performed by multiplying 

polynomials in the us ual fashion and then dropping the terms of order 

great er than k . ) 

Th e proj ect ion of E onto k 
J (n, 1) is denoted by 

( 3) 

(4) 

Of J.kf(O) course, is nothing more than the Taylor polynomial of order k 
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of f at O . A polynomial is a real valued function (among other things) 

so we have an inclusion 

( 5) 

but this inclusion (unlike the projection (4)) must be used with caution as 

it does not behave well under changes of coordinates (i.e., is not invariantly 

defined) . 

Thus 

00 

We denote by E 
n ,p 

the set of germs at zero of C maps 

E - E - E and E 
n n , l n ,p is a free E-module on p generators . 

Similarly , I- en, p ) denotes the space of k-jets of maps g E E 
n,p 

( the 

space 
k 

P (n , p ) defined in §1). This l3 a free J<-cn, 1)-module on p 

generators and a quotient of E 
n,p 

I-en, p) - E !ME 
n ,p n n ,p 

We denote the projection by 

E -+ j<- ( n , p ) : g 1--+ jk g ( o ) 
n ,p 

and also use the non-invariant inclusion 

An element g E E n ,p 

J<-cn , p) C E - n ,p 

consists of p functions gl, ... 'gp EE 1 n, 

and we denote by < g > the ideal in E = E 
n,l 

generated by g1 , ... , gp 

(6) 

( 7) 

(8) 

( 9) 

The inclusion (8) means that every u E /-en, p) determines an ideal (u) 

in E . It also determines the ideal in /-en, 1) generated by its 

coordinates u
1

, ... , up E ./<(n , 1) . We denote the latter ideal by (u)k : 

( k+l) k+l k 
< u>k = l< u>+M /M c J"(n, 1) • (10) 

Now let V be a finite dimensional vector spac~. Then an algebraic 
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variety in V is the zero set of a finite set of functions p : V ~~ 

where each p(x) is a polynomial in the coefficients of x EV relative to 

some (and hence any) basis of V. According to a theorem of Whitney [79], 

an algebraic variety is a finite union of suhmanifolds. The codimension of 

the variety is the codimension of a submanifold of largest dimension from 

this finite union . 

The following theorem called the Infinite Codimension Lemma is given by 

H. Kurland and J . Robin ([ 43] ) and shall be used in all the later 

applications . 

(4.5) THEOREM (Infinite Codimension Lemma, [43]). There are subsets 

J<- C J<(n , n) ~ k = 1 , 2, ... such that: 

( a) if g E E 
n,n then either g( 0) f; 0 or 

g has an isolated zero at 0 . 
~ 

(b) J<- 1.,S an algebraic variety; 

the codimension of J<- . 
J<-cn, n) 1.,n tends to infinity with 

(c) 

k 

Proof. For each integer k = 1, 2 , ... , we let J< be the set of all 

u E J<cn, n) such that the codimension of <u>k in k 
J (n, 1) is greater 

than k : 

J<- - {u E J<-cn, n) I codim k (<u\) > k} . 
J~(n,l) 

(11) 

We shall prove the properties (a), (b) , (c) of Theorem (4 . 5) by two lemmas. 

(4.6) LEMMA. Let g EE . 
n ,n Then jkg(O) E J< if and only if the 

codimen 1.,on of < u>k J<cn, 1) 1.,s greater than k . 

Proof of 1 emma. Suppose /g( 0) t J< . Then ( /g( 0) \ has 

codimension less than or equal to k in J<cn, 1) By the second 



144 

. . ( J• kg ( Q ) ) + A 1k + 1 isomorphism theorem /VI has codimension less than or equal to 

k in E As g and J.kg ( 0) d . ff b f d k 1 h. i er y terms o or er + tis last 

ideal is (g) + Mk+l By Proposition (4 . 2) we have Mk c (g) + Mk+l ; so 

by Nakayama's lemma 
k k+l 

M C ( g > ' so ( g > = < g > + M and has codimension 

less than or equal to k . Conversely if ( g > has codimension less than or 

k Mk+ l c Mk c ( g ) , h . . equal to , then sot e Noether isomorphism theorem 

shows that jkg( 0) t J< as required . / / 

Proof of (a ). (a) then follows immediately from Lemma (4 . 6) and 

Proposition (4 . 4) . 

Proof of (b). Let d = dim(~(n , 1)) - k Then is the set of 

all u E J<cn , n) such that the vector space_ <u>k has dimension less than 

d . The set of all elements xau. E ~(n, 1) 
1., 

monomials of order less than or equal to k 

( where a 
X ranges over the 

in the coordinates . . . ' 

and ul ' ... ' u 
n 

are the coordinates of u) span the vector space 

Think of elements of ~(n , 1) as column vectors and let M(u) be the 

X n 

rectangular matrix whose columns are the k-jets of the a 
X U. • 

1., 
Then ( u >k 

has dimension less than d if and only if every d x d minor of M(u) 

vanishes . This expresses the condition u E J< as a system of algebraic 

equations (each of degree d) in the coefficients of u proving that J< 
is algebraic as required . 

Proof of (c ). To prove (c) we need another lemma. 

(4.7 ) LEMMA . Let l > k and let rr : Jl(n, n) ~ ~(n, n) be the 

projection 

for g E E n ,n Then 
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Proof of Lemma. Let g EE satisfy jkg(O) f J< . By Lemma (4.6), 
n,n 

( g) has codimension less than or equal to k in E . Then by k < Z and 

L ( 4 6 ) . J. lg ( 0 ) ,I- wz emma . again , ~ as required. II 

TI
-1( k) Now TI is a linear surjection so the codimension of w~ in 

z J (n, n) is just the codirnension of J< . in k J Cn, n) Hence to prove (c) 

it suffices to show that 

for every k , there is an Z > k such that no point of WZ is 

TI -1( k) . an interior point of w· (12) 

To prove this choose k and let h EE be the germ whose coordinates 
n,n 

are given by 

h. (x) 
1., 

k+l 
- X . 

1., ' 

i - 1, ... , n . Clearly Mnk+ 1 
c ( h) so that ( h ) has finite codirnension. 

Let Z be the codirnensio~ of (h) in E • Then by Lemma (4.6), 

Now suppose g E E 
n,n 

satisfies z E W , and for t E lR , let 

gt= (1-t)g + th . 

k ( ( k ( ) . Z ( O) E TI-1 ( k) As j gt 0 ) = 1-t)j g O , it follows that J gt w~ for all t . 

By (a) the condition 

is algebraic in t . It holds for t - 0 but fails for t = l , thus it 

can hold for at most finitely many t . In particular it fails for t 

arbitrarily close to zero showing that jzg(O) is not an interior point of 

TI
-1 ( k) w· as required . II 



(4. 8 ) REMARK. Equation (11) for the definition of J< is rather 

explicit and one could presumably compute the codimension of J< by 

counting the number of independent equations from this list . This gives 

another method to prove (c) . However that looks rather tedious . 

5. Third Application: Zeros of 
CX) 

C Vector Fields 

- CX) 
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Let be open convex bounded as always and let S (Tfl,) be the 

CX) 

space of C vector fields on 0, whose derivatives of all order are 

bounded (see §3) . CX) 

Recall that each ~E S (T0,) has the form 

~(x) = x , ~(x) for x E 0, , where ~EB 0., ffi . ( ~ ) ~ oo ( n) 
CX) 

We endow S (T0, ) with the family of increasing norms 

~ ~ k~ 
ll~llk = IIE,://k = sup { ll~ (x) II + ... + /ID E,: (x)II } for k = 0, 1, 2 , . . . 

xE0, 

defined by ( 3 ) in §3 . 
CX) 

Then S (T0,) is a separable Frechet space isomorphic 

to B
00

(0. , ffin) by the isomorphism ~ defined in (4), §3. 

Recall that a point x E 0, is a zero (or critical point) of E,: iff 

~ ( x ) = 0 E ffin . 

( 5. l ) PROPOSITION. CX) 

There is a dense subset G c S (Tfl,) such that 

every E,: E G has the property that ~ has only isolated zeros . 

Proof. We apply the Infinite Codimension Lemma (4.5) to find an 

integer k so large that 

q = codim (w7< in J<cn , n)) > n 

where is the algebraic subset constructed by (11) in §4. 

Let j<-(Tfl,) 7 0, be the vector bundle of k-jets of vector fields on 

0, ( see [4] , p . 19) : 

Define 

( 1) 

( 2) 



W - n X J< C n X cl<-(n, n) = cl<-(Tn) 

Then lS a finite union of submanifolds of J<-cTn) of codimension 

greater than n 

N -w - u W. 
j=l J 

where for l:::J< N ' W. = submanifold of el<-(Tn) 
J 

Moreover , if ~ : n + T0, = n X ]Rn is any vector field such that 
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( 3) 

jk~(n) n W = ¢ , then ~ has only isolated zeros in n by part (c) of the 

Infinite Codimension Lemma (4.5). Here jk~ : n + el<(Tn) denotes the 

k-jet extension of ~ : n + Tn. 

00 
We now apply the Bf-Transversal Density Theorem. Let A= S (Tn) and 

consider the map 

defined by p(~) = jk~ for each ~E A , jk~ 

n + j<-(Tn) . Then 

00 
is considered as a C map 

k n X p (n, n) 

k-(x, P ~(x)) 

is of class by Lemma (1.3) where r is an integer 

and 

Define for each 

and consider 

r > max(q, k ) 

given in Lemma (1.3). 

1 ::: J s N , 

{ F; E A I Jk~cn) n G. --
J 

{~ I Jk~ en) n -G = E A w 

- ~} w. --
J 

¢} -- . 

( 5) 

( 6) 

( 7) 
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Then it follows quickly that 

N 
G - n G. -- -

j=l J 

00 

{ E;, E S ( Trt) I E;, has only isolated zeros}. (8) 

~ 

For each J (1 S j SN) , ev and W. verify all the conditions of 
p J 

the 

have 

since 

00 

Bf-Transversal Density 

(a) 

(b) 

( c) 

n has dim = n 

00 

A - s cm) and -

r > max (o , n-q .) 
J 

' 

n 

Theorem: 
~ 

w. has codimension q . 
J J 

are second countable; 

since n - q . < 0 ; 
J 

(d) evp mBI' Wj by part ( c) of Lemma ( 1 . 3 ); 

) n . 
' 

(e) follows exactly as in the proof of Proposition (3 . 1) . 

Thus for each l S j SN , 
00 

G. is residual in S (Trt) = A 
J 

q . > n = dim n 
J 

Hence G is residual · by ( 8 ), and thus is dense in 
00 s Cm) 

S (Trt) is Baire . / / 

since we 

( 9) 

because 

(5.2) REMARK. Proposition (5 . 1) proves the existence of a dense subset 

00 

G c S (Trt ) with the property that each E;, E G has only isolated zeros; 

00 

while Proposition ( 3 . 1) exhibits explicitly such a subset, the set G
0

(n) of 

0-transversal vector fields on n ( see Proposition (3.1) and Remark (3.2)). 

6. Fourth Application: Finite-to-One Maps 

Let n c ]Rn be open convex and bounded as always and let 

f E B
00

(s-2 , 1Rn) . We say that f is locally finite - to-one (se e [L~ 3 ]) iff 

every point x E S"2 has a neighbourhood UC S"2 such that 
-1 

f (y) n U is 
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finite for all y E ffin . 

Recall that B
00

(n, ffim) is a separable Frechet space calibrated by the 

sequence of increasing norms 

llfllk -

defined in §1 . 

sup 
x ED 

k {llf(x)II + IIDf(x)II + ... + IID f(x)JI} (1) 

(6.1) PROPOSITION. There is a dense subset G c B
00

(D , ffin) such that 

each f E G has the property that n f : D-+ ffi &S locally finite - to-one . 

Proof. We apply the Infinite Codimension Lemma (4 . 5) to find an integer 

k so large that 

q - codim(c/ in J<-cn , n )) > n 

where is the algebraic subset constructed by (11) in §4 . 

Consider the k - jets bundle 1<-(n ,Rn) = n X J<-cn, n) = n X Pk(n, n) 

and define 

Then W is a finite union of submanifolds of J<-(n; Rn) of codimension 

greater than n . 

Consider the map p 

p (f) - .kf for each f E A , where r is an integer sufficiently large, 

say r > max (q , k ) . 

Then , as usual , the map 

(2) 

( 3 ) 

(4) 

with respect to the calibration r = {p -+k . } • . defined in the 
r +i &~& 0 

Lemma (1 . 3) . 



150 

Let G - { f E A I jk f ( 0.) n W - ¢ } th en G is dense in A =-= B 
00 

( 0, ; ffi n) 

as usual . 

It remains to be seen that if f E G then f is locally finite-to-

one ; that is , that any f 0. -+ Rn such that jkf(fJ.) n W = ¢ is locally 

finite-to -one . Fix such an f, and let x E 0. be an arbitrary point . Then 

if y is a point in :Rn , then by part (b) of the Infinite Codimension 

Lemma (4 . 5) , since jkf(x) 1 J< , we have: there is a neighbourhood U of 

X such that f- 1(y ) n U = ¢ or is finite . Indeed, by suitable translations 

we can suppose x - 0 E 0. and y = 0 E IRn , f = ljJ o g o cp Then either 

g(O) t O (which means f(x) t y ) or g(O) = 0 and O is an isolated 

zero for g (which means there is a neighbourhood U of x such that 

Vx1 
EU, x 1 tx. ~ f(:t) fo y ). II 

7 . Fifth Application: Fixed Points of 00 

C Maps 

Let 0, c ffin be open , conv ex and bounded as usual, and consider the 

separable Frechet space B
00

(0. ; IRn) defined in §1 . Then we have (see also 

[43]), 

(7.1) PROPOSITION. There &Sa dense suhset G c B
00

(0.; IRn) such that 

every f E G has only isolated fixed pain ts . 

Proof. As usual , we choose k so large that 

codim(J< 
k n)) ( 1) in J (n' > n 

where J< is the algebraic set defined in the Infinite Codimension Lemma 

(4 . 5) . 

Fix k and consider the bundle Jkl0.; IRn) (see [4]), 

( 2) 
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where ~(n, n) denotes those k-jets with no constant term so that 

St x St x J~(n, n) is open in S"2 x ]Rn x J~(n, n) = /(St; lRn) since S"2 is 

open . 

Note that J< c ~(n, n) and define 

( 3) 

where 6 is the diagonal of S"2 x St and 1 + J< d e n o t es the translate of 

by the k-j et of the identity map id ]Rn -+ ]Rn : 
]Rn 

1 + J< = jk(id) + J< = {jk(id)+u ju E wk} . (4) 

Then W is finite union of submanifolds of J<(s-2; lRn) of codimension 

greater than n 

Define 
k ~ 

I j tcs-2) n w = ¢} then G is dense as 

usual . 

It remains to be seen that any f: S"2 -+]Rn such that 
k ~ 

j f ( S"2) n W - ¢ 

has only isolated fixed points . But if x E S"2 such that 

.k ( k ) ~ J f(x) = x, f(x) , Df(x) , ... , D f(x) f W = 6 x (1+J'c) then either 

x # f(x) , that is, x is not a fixed point, or x = f(x) and 

(Df(x), ... , Dkf(x)) f 1 + J< . That is, by putting g = f - id , g(x) = 0 

and Dkg(x) f Jc ; which implies, by the Infinite Codimension Lemma, that 

x is an isolated zero of g (i . e . fixed point of f ). II 
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