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ABSTRACT

The problem considered was that of the behaviour of a non-equilibrium
flow behind a shock wave supported by a convex curved body in a hyper-
velocity freestream. A simple gas model was assumed, taking into account
the dissociation only of a symmetrical diatomic molecule, whilst the
temperature in the shock layer was assumed to be small compared with the
characteristic temperature of dissociation. The curvature of the stream-
lines produces a negative pressure gradient along a streamline and the

effect of this pressure gradient upon the reaction was studied.

An approximate analytic solution was obtained, which shows that
properties along a streamline are consistent with the assumption that the
reaction proceeds independently of the pressure gradient initially, and
after a short distance the gas may be considered non-reacting and the

properties given by perfect gas relationships.

The result was verified both with exact numerical integration of the
relevant equations, and with some experimental results from a -

hypervelocity nitrogen flow over a circular cylinder.



. INTRODUCTION

In recent years attention has been paid to the flows of a real gas
over aerodynamic bodies, (as distinct from treating the gas as obeying
the perfect gas relationships). This has resulted from an interest in
hypersonic flows of sufficient total enthalpy, such’'that the temperatures
behind the shock waves caused by the body produce reactions
(e.g. chemical, vibrational) in the gas. One may loosely define a
"reaction time" as the time taken for a fluid element to effectively
reach equilibrium, after a sudden change in its physical properties,
such as would be caused by its passage through a shock. Also a
characteristic flow time may be defined as the time such a fluid element
remains in the vicinity of the body (i.e. a characteristic body scale
divided by the fluid element velocity). If these two characteristic times
are of the same order then the associated aerodynamic problem is known
as a non-equilibrium flow problem, and the gas is said to relax along a

streamline.

Of the real gas effects that are considered, chemical reactions may
disturb the aerodynamic problem to the greatest extent. Research into
non-equilibrium chemically reacting flows could be considered as

divided into three related fields.

(i) Experimental research to study the reactions of gases under controlled
conditions in order to determine the laws by which a gas (or systems
of gases) will relax. The work done by Appleton et al.d to investigate
nitrogen dissociation is an example of such work.

(ii) Investigations of numerical methods required to compute the inviscid
flowfield around an qérodynamic body, once a reliable gas model
has been established. Hayes and Probstein! discuss numerical methods
in considerable detail.

(iii) Experimental research into flows over models in test facilities capable

of producing the necessary high enthalpy freestream conditions in



order to verify the predictions of (i) and (ii). Such a facility has
been described by qulker7.

However such an idealized formal approach to the subject leaves
much to be desired, particularly in regard to interpretation of computed
results. That is, results of a numerical calculation involving many
parameters, leaves one largely ignorant of the relative importance of each
of the parameters, and also gives no physical insight into the problem
being considered. For this reason, approaches which yield approximate
results and are of limited applicability, but do provide a greater insight
are sometimes to be preferred. Such an approximate method is that
considered by Freeman2 in his investigation of chemically reacting flows
around blunt bodies. The gas model he used was the "ideal dissociating
gas" introduced by Ligh’rhillm. This model was obtained by putting fo a
constant value, the product of a temperature function and the partition
functions in the law of mass action for a diatomic gas. = This procedure was
found to yield a good approximation when compared with computed values
for the function. The model was derived for equilibrium conditions by
Lighthill. It was extended by Freeman to include the non-equilibrium
- case, by the derivation, based largely on physical arguments, of a form
for the forward and reverse dissociation rates. (The gas model has also
been used by Capiaux and Washingfon3 in their numerical calculations

of reacting flows over straight wedges.)

Freeman's numerical scheme for the blunt body problem was based on
the assumption that the ratio of the density in the shock layer to that in
the freestream was large compared with unity. One important simplification
that arises from this assumption is that the enthalpy along a streamline may

be considered constant. This result is discussed further in section 2.3.

The problem that is considered herein is that of the behaviour of the
non-equilibrium gas considered by Freeman in a two dimensional flow over

a curved body in a hypervelocity freestream. Whereas Freeman obtained



a numerical method for solving the reacting flow in the vicinity of the
stagnation region of a blunt body, the present analysis is more concerned
with the flowfield considered over distances typical of the body scale,
either for a curved wedge (with the angle of incidence decreasing as
distance measured away from the tip); with an attached shock, or for
blunt body flows away from the stagnation sireamline. The approach
taken was not one enabling a computation of the flowfield to be made,
but rather that of an approximate analysis of flow properties along a
streamline, giving a physical insight into the effect of various parameters
upon such a flow. In particular the effect of a prescribed negative
pressure gradient (i.e. pressure decreasing along a streamline away from
the shock) was examined. Such a pressure gradient will tend to reduce
the temperature of a fluid element as it moves along a streamline, and
thus reduce the forward dissociation rate. The problem was studied in

order to determine the consequences of this effect on the reaction.

This approach to the problem is valid because it has been found
theoretically and experimentally that real gas effects alter the pressure
distribution along a streamline to a small extent only, thus allowing a
pressure distribution to be assumed. For example Lick]5 has carried out
numerical calculations using an inverse method of assuming a catenary
shock shape and integrating to the body. The gas model assumed was
that of a pure diatomic gas simulating a mix ture of oxygen and nitrogen
in the same ratio as atmospheric air. Temperatures considered in the
shock layer were such that the only significant dissociation reaction was
that of oxygen. The finite relaxation rates were found to have little

affect on the pressure distributions obtained.

Spurk, Gerber and SedneyMr have investigated the inviscid hypersonic
flowfields of a reacting mixture of gases around pointed bodies with
attached shocks (wedges and cones of angle of attack in the range 30-45°9)
using the method of characteristics. They assumed a mixture of N,, 02,

NO, N and O with vibrational excitation in local equilibrium, and found



that the variation in pressure along a streamline was small.

The experimental pressure distribution measured by Stalker’ on the
surface of a re-eniry glider model, was also found to be insensitive to
real gas effects, and approximated closely a simple Newtonian pressure

distribution.

That these results are reasonable may be seen from the following
qualitative arguments (refer to figure A1). Freeman has shown that in
the vicinity of the stagnation region the pressure distribution is given to
a good approximation by the Newton-Buseman pressure law. This result
depends only on the assumption that the density ratio across the shock is
large, and is insensitive o details of the flow within the shock layer.
As the angle of inclination of the shock to the freestream decreases, the
approximﬁﬁon of large density ratio tends to break down, although it is
still expected to influence the resultant pressure distribution. However
one other effect is also operating. Most reaction rates (and in particular
the rate considered here) are extremely temperature sensitive, and thus
the initial rate of reaction behind a shock is extremely sensitive to the
local inclination of the shock to the freestream. Consequently there will
exist a so called "cut-off" streamline, along which the effects of the
reaction are negligible over a distance comparable to the body scale.
Streamlines entering the shock layer where the local angle of inclination
of the shock is less than that of the cut-off streamline will also be non-
reacting and the gas behaviour may be considered to be that of a perfec}
gas with composition frozen at the freestream value. Therefore under
these circumstances the reacting streamlines are confined to a region close
to the body. Referring again to figure Al consider the determination of
the pressure at the point A. Formally, the pressure at this pointis determined
from the pressure immediately behind the shock at point B and the application
of fhe‘mo'menfum equation (3) (section 2.1), where the integration is carried
out along the path AB, which is the line normal to the streamlines passing

through the point A. If the reacting streamlines lie close to the body then

they will not radically alter the position of the shock or the non-reacting



shock layer geometry. Furthermore the reacting streamlines will play
only a small part in the evaluation of the integral (3) and thusthe total
effect of the reaction on the pressure distribution along the reacting
streamlines (and non-reacting streamlines) will be small. The effect of
the reaction on the pressure disiribution around the blunt bodies used in
the experimental section of this work are examined numerically in

section 3.4.1.

The theoretical analysis was carried out by firstly assuming a constant
pressure distribution. Certain restrictions were placed on the magnitudes
of terms arising from the Freeman rate equation enabling approximate
analytic expressions to be obtained for flow parameters along a streamline.
The form of these expressions was examined and it was found that they
included a sudden displacement in the values of the flow parameters in a
small region close to the shock, followed by a more gradual displacement
over the remainder of the body scale. An order of magnitude analysis
suggested that the sudden displacement near the shock would be uneffected by
the presence of a pressure gradient. This result was then checked more
rigorously with the assumption of a constant unit pressure gradient along
the sireamline. A solution to the problem was then postulated, including
‘a short spatial regime behind the shock in which most of the reaction was
confined and which was uneffected by the presence of a pressure gradient
along the streamline. This was followed by a region in which reaction
effects could be neglected, with the gas behaving as a perfect gas whose
properties are influenced only by the presence of a pressure gradient. The
model was then checked by comparing it with numerical solutions of the
relevant equations to determine its accuracy and the limits of its

applicability.

The model was also compared with the density distribution in the shock
layer of aerodynamic models placed in a hypervelocity nitrogen freestream.
It was found that with the experimental facility used (discussed in section

3.1) significant reaction effects were observed only with blunt body flows.



The gas model used in the analysis (the ideal dissociating gas) assumes
that the vibrational energy of the molecule is half excited, whereas
experimentally it would be more usual for vibrational states to be in
equilibrium in the shock layer. The analysis was carried out retaining
the vibrational half excitation, and relevant results for the equilibrium
case are quoted where necessary. In general the difference in the value

of flow parameters predicted under the two asshmp’rions is small.



2. THEORETICAL ANALYSIS

2.1 Basic equations

The relevant two-dimensional equations of motion in the shock layer

may be written as

Continuity "B‘g‘g_"?i)‘"" p'q’ a_e' = 0 (1)
X on
\ A
Momentum p'q" -g-:]?— + —g—}%— = 0 (2)
. 30 op’ :
p'qtz 2V 4 oP_ _ 0o, (3)

ox' an'

where a primed variable is dimensioned and

p = density

P = pressure

4 = velocity along a streamline

6 = inqlincﬁoﬁ of streamline to the freestream

¥ = distance measured along a streamline
n = distance measured normal to a sireamline.

The co-ordinate system is illustrated in figure Al.

The equation of conservation of energy can be written in several

equivalent ways.

Dt Dt
2 g KUl R 0 (5)
Dt 2 - ’
where h = specific enthalpy
D/Dt = convective derivative.

The equations that are used in this analysis are (2), (4) and (5).

Considering first the ideal dissociating gas

e' = 3RT' + oD ,




where e = specific internal energy
R = gas constant defined as the universal gas constant

divided by the molecular weight of the molecular

species

atoms divided by the total mass of the gas

D = dissociation energy per unit mass.

Then the specific enthalpy is defined as

h'

11

e' + P'/p‘ >

i.e. h'

(4 +a)RT' + aD .

For the case of vibrational excitation in equilibrium

e' (3.5 - o/2)RT" + oD ,

and - h'

I

(4.5 + o/2)RT' + oD .

Equations (6) and (7) were obtained using the equation of state which

may be written as

p' = p'RT'(1+a) .
(4) and (6) may be combined to yield

' v 1 dp!

(4+(‘l.) dX' - p' dx'

= degree of dissociation defined as the mass of dissociated

(6)

)

(8)

(9)

A chemical rate law applicable to this situation is taken as that given by

Freeman
da - l'nl ' _L‘ 2
I - CT''p'"{ (1 -a)exp(-D/RT') - o s
t OD
where Py = constant
C = constant
‘N = constant.

(10)

A discussion of this reaction rate is given by Vincenti and Kruger4 (p.232).



The main approximation in expressing the reaction rate in this form
lies in the assumption that C is a constant. In general there are two

distinct reactions occurring
f
Ay + Ay = 2A+ A,

A2+A ‘£—2A+A

both of which have a forward reaction rate which ma'yrbe expressed as

dfAo]
{—d—f—}f = -~k la] M)

where M is the second body involved in the reaction (either A or A2) and

nf
k. =
f Cf T exp (-D/RT)

Thus a more general expression for the forward rate would be

da _ l-al p" _
Idt]f = {kf1“+kf2 2 }MA 1-0),

where subscript f refers to the forward rate and subscripfsA] ;2 refer to
the reaction with A and A2 as the second body respectively. MA is the
molecular weight of species A. Thus the approximation involved in (10)
is that kf] and kf2 have the same temperature dependence and that the

expression in brackets { } in the last equation is independent of o.

Variables are non~dimensioned in the following manner, where

umprimed variables are dimensionless

_ RT' _ 9
T U'2¢ a = gv
o0 o0
1 ]
- P_E ¢ = X
P pcvo X A
|
_ P
P T 5

where Uy = freestream velocity .
e = density ratio across the shock = B%
A= typical body dimension.
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Subscript « refers to freestream conditions. Subscript o refers to

conditions immediately behind the shock as given by the shock jump

conditions before any dissociation takes place. The variables have been

non-dimensioned in this manner so that in general variables (except o)

will be of order one behind the shock wave. Specifically for the

hypersonic shock conditions,

~

Po

i

a0

H

PO

~

d0

0(sin?¢)

0(sin%¢)

0(cos¢) ,

where ¢ is the angle of the shock to the freestream at which the stream-

line under consideration intersects the shock.

Equations (2), (9), (8) and (10) written in non-dimensional form

become

dGq®) _ dp (1)
dx = -efp dx
d
(b +0a) %§»+ [T + Uge] %%“ %-55. - 0 (12)
p = pI(1+a) (13)
ToU'2e|N p'A '
&x C[ R } o el oo EXP[YQZ—EJ by e 2f. 09

Two groupings of constants which are used frequently are denoted as

_ D
8 = 32 e
To Ul2e]"  plA
A = ¢C R € qp U; :

Equations (12) and (14) then become
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dr do 1dp _
(4+0a) g+ (T+a) - - Sdx - O (12q)
do Ap__’_l‘_nq_o (1-a) exp -a/T ——%Qaz (14a)
ax To] 4 P o € .

D

The analysis is directed towards the behavious of the solution to (12a),

(14a) in a prescribed pressure gradient.

In order to simplify the problem to a state where it is manageable

certain assumptions are made. These are

(i) In| is of order one (i.e. (T/To)n is not a rapidly varying function
of T).

Experimentally the gas that will be considered is nitrogen. For
‘nitrogen, Appleton et a|.5 give n = ~1,6. Vincenti and Kruger4 (p.231)

have tabulated data on reaction rates and give n = =0.5 for the reaction
Np + Ny = 2N+ N,

and n = =1.5 for the reaction

Np +N = 2N+ N

Furthermore Freeman has shown that variation in flow properties along a
streamline is insensitive to the value of n, because of the domination of

the exponential term in the rate equation.

For the remainder of the analysis n shall be put equal to zero. It
will become evi.dent that this restriction affects the behaviour of the
solution to no greater extent than any of the approximations that are
made at a later stage. The effect of a non-zero n will be examined

numerically in section 2.5 and shown to be small.

(ii) The range of parameters is restricted such that

1

n P ’
ADZ[TT_J g__O_ — 01,2 << 1
0 q pDe

over the range of interest,
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That is, the recombination term in the reaction rate equation (14a)
is neglected. This is essentially a restriction on the freestream density
(and hence the density in the shock layer) requiring it to be low enough
so that, over the body dimension, three-body reactions (recombination)
have a neglibible effect on the gas composition, the only significant
variation being due to two-body reactions (dissociation). A sufficient

condition that this is the case is derived in section 2.6.

(iii) The parameter a (= Ij/Uie) is required to be large compared to one.

It should be noted that

D a

RT(') Tg °

~and since TO is defined as being of order one, this requirement is that
D/RT} >> 1 (i.e. the thermal energy of the flow is small compared with the

dissociation energy). In general the parameter ¢ = p!/pg for hypersonic

shock conditions is small so that the requirement could also be written

as

D/ (U? 2 0(1) .

2.2 The constant pressure case

The approach that will be taken is to obtain an approximate solution
for (12a), (14a) for the case of constant pressure along a streamline and
then to examine the effect of a non-zero 'pressure gradient on this

solution.

Equation (11) yields the result

S =
q

Therefore with the assumptions already made (14a), (12a) may be written

h a
—— = Ap(l-0a) exp|- =
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where subscript h refers to the value of the variable when the specific

enthalpy is assumed to be constant (i.e. dp/dx = 0).

Hence

(T, +a) hp(l-0) Ty .

L JTh -4 +och) exp(a/Th)

To

Or, defining a variable u = a/Th, the integral may be expressed as

. Ju 4 +0Lh) a
X =
u

1
: (Th+a) Aph(l"uh) =T exp udu , »(]5)

where the condition a/T( >>1implies up >> 1 and the effect of the

reaction is to decrease T so that 'u(x) >>1 .

Integrals of the form [f(u) expudu With the condition u>>1
are examined in order to obtain an approximate solution to equation (15).

The integral may be successively integrated by parts to yield the series

Jf(u) exp(u) du = exp(u) {f(u) -£'(u) +£"(u) ...}

The series may under some circumstances be only semiconvergent, but in

general the condition

[£1 (] << [£w)]

will enable the approximation
Jf(u) exp(u) du = f(u) exp (u)

function of u the exponential term dominates the variation of the
whole function. (It is for this reason that putting n=0 in equation (14a)

has little effect.) As an example of the procedure

u
e _ uj 1 2! 3!
j—uz du = e {—u2+;3—+—u,++...} ¢
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with a relative error of 2!'/u .

Similar expressions may be derived for integrals of the form [ e"/u du

and f e/ud du.

The degree to which the pre-exponential term in equation (15)
satisfies the requirement which allows the approximation to be made is

discussed below. It will be noted that the relevant condition

l£7 ()] << |£(w]

may be written

ld_dJ in f(u)| << 1 ‘

and hence if £(u) is a product of terms then the terms of the product

may be examined individually.

The variation in the term P, (1 -ay) with temperature may be written

(from equations (8) and (12a) as

4 -0} = p-{(4+ah) = (l_ah)}
d’_[‘h h h (Th+a) (1+0Lh)2 Th2 (l+uh)
With typical values of the variables the last term in this expression is
of order one. The magnitude of the first term depends on the magnitude
of the parameter 'a', but with the condition that has been imposed of
ass1 « it will be assumed that it is less than order one. The two ferms
in the above expression tend to cancel, and if a term n(Th)' is

introduced such that n(T,) <0(1) then,

d .
m {ph(l-uh)} = -n(Th)
and d% fo,(L-a )} = n(1,) T 2/a
Since py (1 -a,) ~ 0(1) ’

then ) _-(f‘; Infp, (1-0p)} ~ O(n(Ty) T, 2/a) | .
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Regarding the remaining terms one may write

o n(u™2) = -2/u !
T 2
< " h 1
du Ln(4+ 0‘h) a (Th+a) 7
T 2
4 - b 1 )
o Zn(Th+a) = - <Th+a)

Hence for the pre-exponential factor £(u) in equation (15)

‘ _4 in £(u) ~ 0(2/a) << 1

from the condition a>>1

Thus equation (15) may be approximated to

_ Groglxa 4 F . - (16)
X (Th+a) Aph(l—ah) u? P ug
This may be inverted to yield
alT_ - In 6()/[6() = Infexp(a/Ty) + x CC)) : (17)
Where (T, +a)
G(x) =2 Aoy (1-a.)
Th2 (4+ah) h h
(For the case of equilibrium vibration
(T, +a)
a h :
6G) = 7 Gsra s el T )

The relative magnitudes of the two terms on the L.H.S. of equation

(17) are considered by the introduction of the function R(T,) defined as

r '
R = —;—Zn G(x)/G(o)



The function is examined over the range T, <T<O0 . It is

seen that |R] has a maximum value when

T, 2
d
R = ——;El' [E-,ITI: In G(X[Th]) r

T Thm

Where Ty, is the solution to the equation

4

In{G(x[T,1)/G(o)} + T ar,_

In G(x[Th]) = 0

An order of magnitude analysis, almost identical to that carried out
for f(u) inrelation to equation (15) shows that

d

- q G(x[T, 1) ~ 0(2) o

and thus from the condition a>>1 , '_"[R(Th)\ « 1 in the
range T < T <0 .
(This procedure could perhaps be better understood by considering a
specific simple temperature dependance for G. Assume that the

. 3 . T . - ) »
 variation with Ty in the terms ph(l och) (Th+a)/(4+ah) cancel
to a large extent, and consider a temperature dependance of G as

G« TS where s ~0(2) . Then

R = {s T, Zn(TO/Th)}/a .

Examination of this function yields the result that |r| has a maximum

value of

sTO '
lR‘ T a exp (1)

which occurs when T, = To/exp(l).)

Consequently the second term in the L.H.S. of equation (17) is

small compared with the first and may be ignored with only a small

16



error introduced. Thus (17) may be written as

- a
h ~ In{exp a/Tg + G(0)x} : (17a)

(It will be noted that the approximation made here is that of putting
G(x) = G(0) ).
% can be calculated approximately from the condition of constant

enthalpy which may be written as

Th+a = 4+0L0 (]8)
To+a = F¥Fa.

h

For the conditions Tg <<a and (0p — ) << 4 @ useful approximation to

(18) is

(o, —ap) = T, T2

(To =T (18a)

W

For equilibrium vibration the equations corresponding to (18) and (18a)

are ’ T, +a

h _ 4.5 + a0/2
Tp +a 4.5 + o, /2
4.5 + ag/2
and (ahv.—ao) = —m— (TO-Th) .

The density distribution may be determined from the equation of state

(13).

It should be noted however that the approximation leading to (17a)
although expected to give a good approximation for T, (x) and o (x) will
give only the order of magnitude for terms of the form dTh(x)/dx and
dey (x)/dx since (16) may be written

ﬂ“l ) a(Th+a) . .\ (4+0Lo) T02 dah '_1
dx (4 +och) Th x (To+a) a dx

X=0

Here it is obvious that putting terms equal to their initial values will

introduce errors in the last term of the above equation as a factor of
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order (TO/Th)z. Nevertheless it is useful to write this equation as
-1 -1
dah o dah .y (Ty +2a) a . , (19)
dx dx J__q (4 +0g) To2

and consequently

v ) - _
[dTh} ' [dTh] _a_ . (20)
— ~ Q% |— - X 5

dx dx x=0 To

It is useful to consider the form of the solution so far obtained. (17a) can

‘0 X}J'l o (17b)

If |dT/dx|¢ << 1 then it is obvious that the variation of Th in the range

be written

T T ' s
—_— = —0 =
T, [1 + = in {l + T,2

dT

dx

0<x<1 issmall. If |dat/dx|y, ~0(1) then

T T | -1
H ~0 {1 +0og,8 T chm}
0 a Tp a
x=1

Since Ty/a << 1 the last term in this expression is small. The condition

that the variation in Th is small compared with one in the range p<x<1

can therefore be written as

a a
Ty >> Zn[To]
This condition is only slightly more stringent than the condition

a/Ty >> 1 and the former will be assumed to be included in the latter.

It should also be remembered that no special emphasis is placed on
the conditions behind the shock and any other initial conditions would

suffice as starting values for the integration. In particular (20) shows

02
a .

were used to start the integration then the variation in Th over the

2

, IdTh/de < 1 and hence if the conditions at x = I—g—

that for x > T

remainder of the body scale would be small.

Thus with the assumptions that have been made the following

conclusion may be drawn. If any variation in temperature due to the

reaction is to occur then the larger part of that variation will occur



19

before x ~ 0(Ty2/a) and the variation of temperature over the remaining
body scale will be small. Equations (18), (13) show that the same will be
true of @ and the density. That is, since the pressure is constant, then
for x 2 Typ2/a , the gas is behaving approximately as a perfect gas except
that the flow starts from values which are different from those given by
the conditions behind the shock. (An assumption of equilibrium vibration

does not alter this basic property.)

The remainder of the analysis will be directed towards determining

whether this behaviour persists in the presence of a pressure gradient.

2.3 An order of magnitude approach and a discussion
of the approximations made by Freeman

. . 2
The basic approximation made by Freeman™ was that of constant
enthalpy along a streamline even in the presence of a pressure gradient.
This result was derived by Freeman from an order of magnitude analysis

of equation (4) which may be written

1 a'
h L ®__ . (4)

Considering the magnitude of the terms in this equation from shock

relations, they can be written

R' ~0(U2) . 1 p' ~(py/e) st ~ 00 UL

Thus

1 3p' —Bﬁ'-~o(e)
p' ox! ox'

Freeman considered the case €<<1 and made the approximation

ah;/ax' ~ 0 - (i.e. the effect of the pressure gradient on the
reaction was ignored.) Thus the approximate solutions obtained for T
and o assuming zero pressure gradient would also suffice as approximate
solutions for the Freeman constant enthalpy case. The density could then
be calculated from the equation of state with an assumed pressure
distribution. The main objection that can be brought against this

analysis when considering the flow along a streamline, where the pressure
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can vary considerably, is that the temperature distribution is determined
solely by the effect of the reaction, and ignores the effect of the

pressure gradient.
Consider equation (12a)

daT
(4+a) T T (T+a) %% - %d—i = 0 (12q)

and confine the discussion to cases where gp/dx < 0(1) . This is a reason-

able assumption to make for a smooth body since the pressure may only
vary from one to zero over a body scale. Thus the last term in equation
(12a) is of order one. lIgnoring this last term is a good approximation
provided do/dx (T+a) >>1. But it has already been shown that the
effects of a reaction (for the gas considered) are confined to a small
region close to the shock, and if a situation is reached where

(T +a) da/dx << 1 then it is this term that can be ignored and the
temperature distribution will be determined predominately by the pressure
distribution. (There will also exist a region where (T +a) da/dx ~ 07(1)

and in these circumstances all three terms in (12a) are important.)

" Thus the expected behaviour of properties along a streamline would
be an initial rapid change due to the reaction followed by a slower
variation in density and pressure due to the pressure distribution. The
question must now be asked as to whether the values which the flow
properties assume at the end of the reaction zone, as calculated with no
pressure gradient, are effected by the pressure gradient. It has already-
been shown for the constant pressure case that if |da/dx|g, ldT/dx|o ~ 0(1)
then no significant change occurs in flow properties, and therefore if
|da/dx|y, |dT/dx|y>>1 then by the time the pressure gradient in (12a) is
important no further significant variation of flow parameters due to the
reaction would have occurred, even in the absence of the pressure
gradient. This would imply that o would rise to a 'plateau’ level which
is uneffected by the pressure distribution (except in the case where the
variation of o would be small anyway) and the temperature would continue

to fall due to the pressure gradient.
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However this sort of analysis ignores one important feature. That
is that at all times there are two factors tending to reduce the
’rrempercfure; the reaction and the pressure gradient, and the approximate
solution for flow variables ignoring the pressure gradient was only
obtained by using the fact that the reaction rate considered was
extremely sensitive to temperature. (This is the assumption a/Tg>>1 .)
Thus, although the qualitative behaviour of parameters (reaction
dominated behaviour over a short distance followed by freezing of the
reaction and perfect gas behaviour) is still expected to hold, an order
of magnitude analysis as given above may not be sufficiently precise to

define the frozen-flow levels.

It is the purpose of the next section to show that conclusions
reached with such an analysis are valid. Rather than use the order of
magnitude results (19), (20) more exact forms for the variation of

parameter gradients must be considered.

2.4 The case with a pressure gradient

A brief description of what shall be attempted in this section is
in order. The flow variables are considered as a constant enthalpy
term and a correction term. A solution for the correction term is
obtained when this term is small. This solution is then used to set up
differential equations for the correction, which may be applied over a
more general range. These are integrated, and the behaviour of these
functions are compared with the expected behaviour of the general

solutions, which have been discussed in the previous section.

Consider equations (16) and (12a)

2 . SalT
(T 4-(:-;ah)1Th exp - o = x ’ (16)
a - -
h ph( ah) a Th a/Ty
dT do 1 dp
(4+0) —+ (T+a) & s a = O (12q)
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Equation (18) is considered to be a better starting point than the
further approximated (17a). A specific form of pressure gradient will
be chosen. For simplicity the case dp/dx = -1 is considered. This

is the largest average pressure gradient that can be sustained over a
body length and it is expected that results obtained using such a simple
gradient will shed light on the effect of more gener'al pressure gradients

encountered along streamlines over a smooth body.

The physical properties of the gas are considered as the sum of two
terms, a constant-enthalpy term and a term due to the action of the

pressure gradient.

Variables with subscript p are defined as

. T = T, + T o = o, +a

h P h P
Initially the conditions are imposed that T, << T, and oy <<ay
Thus from (12a)

dT da

(4+0L)—d‘xh+ (':['4-3.)—(-1“}{l = 0 ’ » (2])

| dr, " do

(4+a)—a§—+(T+a)—d—xR+‘6 = 0 (22)
and docP _ da fl_(}_kl

dx dx dx

= Ap(l-0a) {exp[— ;] - exp[- —&—1-}}
Tp+Th Th

which for I, <«<Ty implies

oy _ oy [T
dx dx Th2
Thus from (22)
dTp+ (T+a) a dah . _ 1
dx (4+a) Th2 dx P (b+a)p
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Thus, using da = -(4+a)/(T+a)dT, , the formal solution to the above

first order differential equation becomes
X
= —exp|- 2 S S S -
Tp exp[ Th] jo T exp[ThJ dx . (23)

Then, using duh/dx = Ap(l-a) exp(- a/Th) ; (23) can be written

T = exp|- = JTh exp (2a/Tp) dT
- - 2
p T,) Jp, @¥a) ATy o7 ©h

The integral involved in this relation is of the same form as those
considered previously for the constant pressure case. Thus it can be

written approxima tely as

T

a Th2 exp(2a/Th) h
Tp = Tt | STy i :
P h p2 a(T+a) A(l-q) T,

provided that  (T+4+a)(1-q)p2 is aslowly varying function of Th

compared with the exponential.

Since the condition Tp <<T,  has been specified the variation in
terms like Th2 are small compared with the variation in exp(Za/Th) and

the above equation may be written

T L .ThZ 1 {(exp a/']_‘h)2 - (eXp(a/TO))z} . (24)
P 2 _p_Z'.a(T'*'a) A(l =a) exp a/Th

Equation (24) gives the deviation of the temperature from the constant

enthalpy solution when this deviation is small. When this is the case
all variables in (24) could be put equal to their constant enthalpy

values.

It is the purpose of the following to use (24) as a basis for the
behaviour of Tp when Tp is not small. Initially however the condition

T <<T, isretained. A change in notation is useful.
%
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A small constant § is chosen and the point at which

T, = -Gy | (25)

is investigated. For this point equation (24) gives

(exp a/'I.‘h)2 ~ (exp a/Tg)?

_ 201 _ (26)
pvs a/Th = 2(T+a) Apc(1l -a)é
A variable ¢, is defined as
exp (a/T.)
h (T+a) Ap2(1l -0a)
Then (26) is quadratic in ¢, and has solution
g = s+ /T F 12 . (28)
Where -
T = ) g
The significance of this equation is as follows. If an initial value of

¢, is chosen then (28) is a relationship between the departure of the
solution due to the pressure gradient and the solution where pressure

gradient terms are neglected.

A variable similar to

g, may be defined as
- _exp a/T , (29)
c (T+a) hp2(1 -a)
where from (25)
C = Z;h €Xp 6 * ) (30)

The constant enthalpy case has been dealt with previously and (16) may

be written as
(31)

where




Consider the following scheme. Behind the shock all variables are known
from the shock conditions. Then a value of ¢ is chosen such that it
satisfies the condition Tp <<Ty through equation (25). A point (1) may
then be defined where (28) is satisfied, i.e.

(), = &+ 52+ 2 , (32)
and at this point
Ly = (g); expd : (33)

However there is nothing unique about the conditions behind the
shock. The conditions at point (1) could be used in conjunction with
(18) to find a point (2). In principle this local linearization process

could be repeated indefinitely.

That is, for a given & , between two such points equation (31) holds
for the constant enthalpy solution between those points, and when (28) is
satisfied, the departure from the constant enthalpy solution during this

step is given by (30). Consider the behaviour between the points (i) and
(i+1).

(Ctliyy = 6 F /62_"‘-?;_1—2
and (6 ey = By * X i+1
Thus X:i:l - 5+m‘€i-
Also g = (g) expd ,
so that Civ1 ~ e+ m} exp §
C?l ] {6 + V62 + ¢ 2} exPS—gi
i.e. Xiﬂ - 6+m—€i —
[< T lim{6+m} exp § - ¢
_and dx 550 s + m S

= 1+z.

25
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This may be integrated to yield

1+¢ _ R 34
tn {1+Co} - X (34

It is this expression which will be used to determine the behaviour of

the gas properties when the reaction has slowed down sufficiently for it
to be ignored. From the definition of ¢, equation (29), it can be seen

that as da/dx ~ 0 then [ 5

Equation (34) is written with the condition ¢z>>1 ,

exp a/T _ v
(T+a) Ap2(1l=-0a) (1+20) exp x ’
or a _ 2 xa 1 ’
T n(T+a) Ap“(l+zp) + o T2 (G+a)
or in terms of the pressure
1+ |
%{1 - x EHZ;} = n(T+a) Ap2(l —a) (1 +2p) : (35)

Thre variation of the log function is small compared with itself, since

the argument is large so that variables included in this function may be
put equal to their initial values. (A more rigorous derivation of this
result can be obtained by a method similar to that in which the
approximation G(x) = G(0) was made in section 2.2). Putting p = pg-x

and expanding in terms of x (35) may be written as

p—ao-{po - x%&b—)-+ 0(x?) }

T = in(Tyg+a) A(l=-ap)(1l+zgp)

But for a non-reacting gas,

(1+o/4+a)
%
)
£ (ps
where subscript f refers to a reference condition. This result is obtained
from equation (12a), with da/dx = 0 , and the equation of state (13).

This may also be written for the case of a negative unit pressure gradient as



_ 0+

Ef_ [pO)(l+a/4+0L) {
Po T G a)

— + 2
P X 0(x%) + }

Pg¢

It should be noted that the third and subsequent terms in the above
two expressions are not equal. However, considering the approximate
nature of (35) an agreement in the first order of x is considered

significant.

These two expressions are in agreement to the first order of x if

a
in(Tg+a) A(l=-ag)(l+zgp)

[PO] (1+a/4+a)
T |20 -
f pf

If the conditions denoted by subscript (f) are chosen at x = 0, then

_ a
£ T Tn(To+a) A(1-oag) (L+2g) . (36)

From the definition of ¢, equation (29), this may also be written as

a a
f ~ 1n{(Tg+a) A(L~-o0g) + exp a/Tp} '

T

which may be compared with equation (17a). It is seen that T,
corresponds to the constant enthalpy solution at x ~ (4+0ap) To2/a . This
is well within the 'plateau' region of the constant pressure solution and
thus it could be assumed that the effect of a unit pressure gradient does
not alter the height of the plateau despite the extreme sensitivity of

the reaction rate to temperature. (In fact it is a consequence of it,

since putting the log. expression in (35) equal to its initial value can

only be justified if ‘Zn A>>1, i.e. a/Ty>>1.)

Corresponding to Tf, there exists an a; given by (18) which is also
characteristic of the 'plateau level' obtained in the absence of a

pressure gradient.

The following characteristics of the complete solution are therefore

postulated:

(i) In the region g . 4 < To2/a the physical parameters of the gas

27
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are essentially not effected by a pressure gradient and behave in a

manner given approximately by equation (17a) and equations derived from

it.

(ii) In the region x » Ty?/athe solution will tend to a perfect gas
behaviour, as the pressure gradient causes the temperature to drop, thus
inhibiting further reaction. In this region a will be nearly constant
and given by (18), (36). The behaviour of temperature and density will
tend to a perfect gas solution with initial values at x = 0 approximated
by (36), (18) and the equation of state (13). It is expected that this
asymptotic behaviour will be approached quickly (due to the falling
temperature stopping any remnant of the reaction) so that in the major
portion of the region Tg?/a 5 x < 1 the flow will essentially follow

perfect gas behaviour.

It is also expected that this behaviour is not dependent upon the
form of the pressure gradient assumed, and that in the presence of any

pressure gradient for a smooth body of approximately constant curvature,

the behaviour just described will be retained.
Two further points also need discussing at this stage.

(i) The parameter A found in (36) contains a characteristic length A
over which the streamline is examined. In the case of a defined unit
pressure gradient therefore, there exists an implied relationship between
A and the dimensioned pressure gradient. Therefore, strictly, (36) holds
only for a constant pressure gradient where A is defined as the inverse

of such a gradient. It should, however, be pointed out that T)C as
defined by (36) is extremely insensitive to the value of A so that for
practical purposes any obvious characteristic body scale would suffice

to define J.

(ii) The existence of a 'plateau’ in the zero pressure gradient solution
is essential to the postulated scheme outlined above. There is, however,
a case when this feature does not occur, i.e. when (da/dx), is of order

one. Under these circumstances there is no rapid change in dah/dx and
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dT /dx as a function of x, and in the presence of a pressure gradient all
terms in equation (12a) are equally important. Therefore the resulting
solution will depend upon the form of the pressure gradient. However, it
has already been shown that in these circumstances (qh-ao) is small and
T,/To = 1 over a body scale. Therefore Tf, Df and o, defined from (36)
would be sufficiently accurate to enable the perfect gas portion of the
solution to be constructed. The value of @¢ thus obtained would not
necessarily correspond to the plateau in the solution of o but would only

be an order of magnitude estimate of the value of o along the streamline.

Thus the value of (og - ag) using this scheme may have a large
fractional error if (Oﬂf -og) is small, but will have a small absolute
error. It should also be pointed out that this feature is a result of
the sensitivity of the reaction rate to temperature (i.e. the condition
that 'a' is large), and would be expected to break down when this

condition is relaxed.

2.5 Comparison of expected behaviour
with exact numerical computations

In order to verify the conclusions concerning the form of the
solution it was necessary to integrate equations (11), (12a), (14a)
numerically (with the recombination term deleted) in conjunction with
(13) for specified initial conditions and pressure gradient. This was
carried outf using a standard library subroutine capable of integrating
systems of ordinary differential equations. The only modification found
necessary was the use of In(x) rather than x as the independent variable
in order to accommodate the extremely large gradients in state variables
which sometimes occurred. The assumption of half excited vibrational

energy was retained throughout.

In order to specify initial conditions an angle ¢ for the shock
slope was specified, and approximate shock equations were applied. The

exact shock conditions for a shock of inclination ¢ may be written
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Pl +pl U'? sin?p = Py + oy q§é
U! cosp = q%o
by + 3% U2 = hy+3 qi2,

where all variables are dimensioned and q.'m, are the components of

I
No
g tangential and normal to the shock respectively. All other variables and

[3

subscripts have been introduced previously.

With the non-dimensionalization used and the assumptions that

(i) dyo << U, (equivalent to € <«<1),
(if) pl<<p! U'Z sin?p,

(iii) h is given by equation (6),

these equations may be written

Ty = sin?¢/(l+ag) |

Py = sin2¢

ay = o , (37)
pg = 1

q, = coso J

The aim of the numerical calculations was to examine the mathematical
behaviour of the equations so that any consistent set of initial
conditions would have sufficed. The approximate shock equations (37)

were used to generate the consistent set only as a convenience.

In addition the following were specified: A, n , 2 (relevant to
(14a)) and ¢ (relevant to equation (11)). € was specified independently
in order to examine the effect of this parameter on q. The two most
important parameters were considered to be A, and a , and for this reascn,

for the majority of the cases considered, n=0, o_=0and "€ was



arbitrarily set at a typical value of 1/8.

Two forms of imposed pressure distribution were considered.

p sin?{¢ (1 -x)} (38)

s 2
p = %*—i{(l-x)lo + (1-%)} . (39)

A constant unit pressure gradient used to derive the results was
considered to be an unsuitable choice because of its limited

applicability.

Equation (38) was chosen as it is the simple Newtonian pressure law
for a circular arc, where the variation of x goes from 0 to 1 as the
inclination of the body streamline goes from¢ to 0. It was assumed that
this pressure distribution would be similar to cases likely to be

encountered in real situations.

Equation (39) was deliberately chosen as a bad example because the
pressure gradient changes rapidly as a function of x, the largest
gradients occurring when x is small (i.e. when large gradients also occur
in other flow variables due to the reaction). As well as defining the
initial pressure and temperature, ¢ also defines the average pressure
gradient since the forms of (38) and (39) have been chosen so that p
varies from sin?¢ to 0, as x varies from 0 to 1. The magnitude of the

parameter a/TO was varied by defining 'a' separately.

Altogether there were six parameters to which values could be
assigned independently. Only the results of ten computations have been
included, each being selected to show a specific feature. They are

figures 1 - 10.

The parameters used in the computation for figure 1 are such that
they fulfill the conditions a/To>>1 ,(da/dx )y >> 1, and there is good
agreement between the numerical results and the features predicted by
(17a), (36) and the related discussion. Both the absolute and relative

errors in the prediction for the behaviour of o are small.

31
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Figure 2 is chosen because none of the necessary approximations hold
in this case. The agreement between predicted behaviour and computed

results is poor.

Figure 3 has (da/dx)g <<1 and 'f' values are very close to the
initial values of variables; the gas behaves almost like a perfect non-
reacting gas throughout. In this case there is a large relative
discrepancy between the behaviour of o in the presence of a pressure
gradient, and that without, but the absolute change in a in all cases is

small.

The values of parameters for the figures 4, 5, 6 and 7 are of the
order of magnitude of the values expected for nitrogen flows in available
experimental facilities. It is seen that the exact solutions are
beginning to depart from the predicted behaviour as the value of 'a'is

decreased. In particular the following points should be noted.

(i) The agreement in the temperature and density is reasonable, but the
departure from the expected behaviour is more noticeable for the extremely

'a'

nonlinear pressure gradient, equation (39). It would appear that for
 of order 5 the analysis is only applicable to 'well-behaved’ pressure

distributions.

(ii) o begins to show a significant departure from the expected

behaviour of a = Otf' in the region T,2/a < x < 1 both with and without
a pressure gradient. For the represenfcfivevc”ases considered this
approximation is only true if an error in o of order 0.05 is considered

small. This error may for some cases be significant.

It is concluded that the smallest value of a that could be tolerated
with the approximate solution still yielding useful results would be that

of a~5

Figures 8 and 9 show the dependence of the solution on n for the

case of constant pressure and nonlinear pressure gradient (39)
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only.

. 5 . .
respectively. Appleton et al.” give the value of n for nitrogen as -1.6.
It is seen that this value of n affects the solutions to a small extent

For figure 10 ajwas put equal to 0.4 and shows that the agreement
between expected behaviour and exact solution is no worse than that of
oy =0 (see figure 7).

Calculations were also carried out for larger values of € up to

€=0.4. This parameter has the least offect on the solutions of all

those considered, affecting only the velocity. All other variables are
affected only in the fourth significant figure.

2.6 A condition that the recombination
rate may be ignored

In the preceding analysis the recombination of dissociated atoms was

ignored. A condition which defines the order of magnitude of parameters

which allows this approximation to hold may be written in terms of the
'f' values for each of the flow variables.

Consider equation (14a)
do

] '

i T 0 - ~&a__2e 20
dx AD[TO} q x{(l @) exp 7 Pp € a'}
The recombination term may be neglected if

n v .2
) ek
pf To £

<< 1
D

2.7 Application of results to a scaling problem

One of the unavoidable features of experimental facilities using a
steady nozzle expansion from a high temperature, high pressure reservoir
to generate a hypervelocity flow is the onset of chemical freezing in the

nozzle. This is due to the large difference between the characteristic
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flow time and the charocteristic time required for recombination

reactions to occur. Thus, in the test section, the chemical composition
of the flow is not in equilibrium and for the case of a nitrogen flow the
freestream o is that corresponding to an equilibrium condition at a far
higher temperature than the freestream translational temeprature (see
Vincenti and Kruger4 p.293). In this section an dttempt has been made to
derive a scaling law such that a limited dynamic similarity would exist
between flow along a streamline with zero freestream @ and one in which

the freestream o is finite.

Consider a given shock shape and a streamline entering the shock
where its angle of inclination to the flow is ¢. Then, assuming that the
pressure distribution along the streamline is independent of reaction
rate, the variations in density and a are characterised by p¢ and ag . If
under two different sets of conditions pf/E and ¢; are the same, then
except for the thin region close to the shock where reaction dominates,
the ratio of specific heats v will be the same and hence the variation in
density over the greater part of the streamline length will be the same.
That is, except for the region close to the shock flow geometries will be
similar. Conditions are sought which will keep acand pflre constant while

allowing other parameters to vary.

Consider two situations, one denoted by subscript 1 in which all
conditions are defined and the other denoted by subscript 2 in which two
variables U! and A are left undefined. To simplify matters, the

approximate shock equations (37) are used as well as the approximation to

(18) given by (184a).

Then require the following two equations to hold, in order to

reproduce agcand pc/e,
Top U*og) | Top Gtagy) | (410)
'I‘f1 (1+af1) € sz (1+af2) €y
b+a - b4+a
01 - - 02 - 41
s, Tor ™ e * o0l a, (Tgy = Tgy) + oy - (41



Solutions are required for fiyand U',.  After much tedious algebra a

solution for U, may be written

. (14—&02)
LT . (l+a,.,) - T,.,(4+a.,) ——<xc¢
02 02 £1 02 Ti+a 1

D _ ooy (42)
U°;22 4+0c01 RTo'oz >

a, (Tgp = Tgy) + (g —agy) = (hHag)) —

and '

. . (1 +a01) E_l_ (43)
£2 £1 (THoy,) <,

(42) completes the specification of the freestream for case 2 and hence
through the shock equations defines. e, - From its definition TF2 defines

A2_

As an example consider the following

sin?¢ = 0.8 a,, = 0.2
12 '

U3 . RT! (L +ay,) oo
D U'¢ sin2¢ : :
A = 10°

These conditions are typical of those found in the experimental facility
known as T3 at the A.N.U. for a nitrogen flow. Then consider %5y =0,
T ,=0 7 sin2¢ =0.8 . Then from (42), (43) and related equations

(o]

fan)
NN

1
©

]
o

and hy = 2 x 102

a
—
[
w

Experimental facilities are usually designed to produce femperqfure.s
in the shock layer of the same magnitude as those in the situation which
is being scaled so that U! is conserved in the scaling. Also to conserve
reaction rates produced behind the shock the product plA is conserved,

i.e. A is conserved in the scaling.

It would seem that a scaling based on considerations discussed here
suffers from two distinct disadvantages. One is that it deals with flow
along a specific streamline, and thus could be used only to scale a

region of the flow~field. The other is that to scale the flow geometry
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in the region after the reaction has occurred, invalidates the usual

scaling requirements for the reacting region itself.

2.8 Application of results to a
stand~off distance correlation

The term €/p¢ is a measure of the overall density ratio, taking into
account both the density ratio across the shock and the further density
increase due to the reaction. An attempt was made to use this term to
correlate stand-off distances for computed nitrogen flows over a

cylinder.

It has already been pointed out that the analysis will break down
along the stagnation streamline and in the immediate vicinity of it.
However the analysis is expected to hold along streamlines other than the
stagnation streamline which enter the shock in the subsonic region of the
shock layer. Since the stand-off distance depends on the properties
of the whole of the stagnation region it was hoped that the quantity elog
where f¢ is calculated from normal shock conditions, would be a
sufficiently precise quantity to allow the shock stand-off distance to be

correlated, and make unnecessary the computation of the whole flow-field.

Hornung]2 has investigated a nitrogen flow over a cylinder using a
modification of the method of Garr and Mdrronneé. This method is an
inverse method which uses the full equations of motion and a more general
rate equation than that previously considered, taking into account

separate rate laws for the reactions,

g

No + N 2N + N
No + Np = 2N + Np .
In order to calculate pg, for the purpose of this study, A was taken as

(da/dx)o/ (1 -ag) exp(- a/Tg) ‘and the characteristic scale was taken as

the radius (r).

The relevant results of the twelve calculations performed by Hornung

were reduced in the manner described above and are presented in figure 11.
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The solid line is that given by Hornung for a non-reacting high Mach
number flow. In the context of this application it may be interpreted
as the case pg= 1 . It is thus seen that a correlation based on €/pg
meets with only limited success. [f the solid line were ignored the
correlation of the twelve points could be considered reasonable.
However if more points were calculated with smaller A they would
lie between the points shown and the non-reacting solution. The

scatter in the correlation is therefore not small.

A large number of points could be computed and a correction term

introduced so that all points lie about the line given by the non-

reacting gas case but this would only yield a rather complicated empirical
correlation. A much simpler correlation has been proposed by Hornung.
However it is inferesting to observe that p¢, calculated from normal
shock conditions can be used approximately as a representative density of

the shock layer in the stagnation region.
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3. EXPERIMENT

3.1 Description of facility

The preceding analysis was directed towards an understanding of the
shock layer structure around bodies in nitrogen flows of moderately high
velocity (6 km/sec) and density (4 x 10-6 gm/cm3), Such flows may be
produced in the experimental facility known as T3 at the A.N.U. This
facility has been described in some detail elsewhere (qulker7).

A schematic diagram of T3 showing its main components is included
as figure A3. Briefly, the device is conventional in the sense that it is
a shock tunnel utilizing the high temperature, high pressure gas produced
by a reflected shock wave at the end of a shock tube, as a reservoir for
a steady nozzle expansion. Its unorthodox feature is the use of a free
piston technique to supply energy to drive the shock tube. The technique
involves the storage of energy in compressed air behind a free piston
which, when released, isentropically compresses a driver gas between the
piston and a diaphragm. The rupturing of this diaphragm produces a
strong shock which travels down the shock tube portion of the apparatus.
To give an idea of the size of T3, the piston mass is 90 kg, the compression
tube is 600 x 30 cm and the shock tube is 600 x 7.6 cm. The test gas is
not limited to nitrogen, the most common gases used being air, carbon

dioxide and the inert gases argon and helium.

The ambient conditions in the test section are calculated by the
. . 8 . . .
nozzle calculations of Lordi et al.” from reservoir conditions which may
be determined from the measured shock speed in the shock tube and

measured reservoir pressure.

The only diagnostic tool used in the experiments described herein
was a Mach-Zehnder interferometer. The principles of operation of a
Mach-Zehnder interferometer are described in Liepmann and Roshko]6

(p.165) and shall be discussed only briefly here. A parallel beam of



monochromatic light is passed through a beam splitter (a half silvered
mirror) to produce two beams of coherent light. One beam is passed
through the test section and the other is used as a reference. The two
beams are then recombined, and brought to focus on a screen (or film).
If there is a slight angle between the two beams when recombined, and
also a uniform distribution of refractive index exists in the test section,
then a set of uniformly spaced interference fringes are produced on the
screen. A change in the refractive index of the medium in the test
section will produce a spatial shift of the fringes displayed on the screen
proportional to the change in refractive index. Similarly, a non-uniform
refractive index field in the test section (as would be expected for
aerodynamic flows around bodies) will produce a fringe pattern such that
the relative Friﬁge shift between two points on the image is proportional
to the difference of refractive index (spatially integrated across the test
section) between those two points. The light source was an exploding
wire through which a capacitor was discharged. It provided illumination
for about 100 usecs (the flow in the test section remained steady for the
order of 500useCS)and was of sufficient intensity to swamp the flow

luminosity. A band pass filter of 4330% 100 A was inserted in the

optical system to ensure that a large number of fringes of good confrast
were produced across the region of interest.
The fringe shift F is related to the density change 28p by

___4.16 FA s
be = T(T+0.280) & Cm° > (44)

where 2 is the wavelength

L is the geomeiric path.

This expression is derived from the refractivities of molecular and

atomic nitrogen given by Alpher and Whi’re9.

It is seen that if the change in o is not very large then the fringe

shift is nearly proportional to the change in density.
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The shock tunnel was run with suitable shock driver conditions which
were kept constant from shot to shot. Ambient conditions in the test
seciion downstream of the nozzle were altered by changing the guantity of
test gas which was introduced into the shock tube. For the driver
conditions used nominal freestream conditions are given in table 1 as a
function of py , the pressure of nitrogen in the shock tube at room

temperafure before the shot.

TABLE 1
PR Too P, | P, | Uo0 Moo S
in. Hg °Kk  dyne/cm?  gn/cm3 X 108 km/sec |
2.0 2382 28960 3.23 6.88 6.27 .266
3.0 2216 29300 3.79 6.35 6.22 174
4.0 2111 29520 4.15 6.201 6.30 .137
6.0 1833 29080 4.98 5.5%94 6.36 .073

Henceforth the value of PR will be used to denote a set of ambient free~
siream conditions. It is seen that os PR decreases the total enthalpy of

the flow increases.

Freestream testing conditions may also be changed by altering the

nozzle configuration but for these tests it was kept constant.

The flow around three separate classes of models was investigated.
In all cases they were plane, of width 6 in., approximating two-
dimensional flow. They shall be discussed independently in the following
sections. Diagrams of the models and flow regimes around them are

included as figure A3.

3.2 Flow over a wedge with a sharp expansion corner

This model examined the flow over a straight wedge at 45° to the
flow. At a distance 'd' from the leading edge the angle of incidence of

the plate was reduced by 40° through a sharp corner. The model was so
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constructed that the parameter 'd' could be varied from 2 mm to 20 mm by
attaching rectangular plates to the bottom of the model. The advantage
of considering a sudden expansion is that the pressure gradient along
different streamlines is a function of the proximity of the streamline to

the body. That section of the flow before the expansion is approximately
the zero pressure gradient case, so that altering the distance between

tip and the corner allows the gas to react to different stages before

being subjected to a pressure gradient. In this way the interaction
between pressure gradient and reaction rates may be studied with different

initial reaction rates.

A typical interferogram with d = 1.0 ¢m and PR = 6 in. Hg., together
with the derived fringe shift field is shown as figure 12. Interferograms
were taken with PR equal to 3, 4, 6 in. Hg. In all cases the rise in
density along the body streamline of the straight section of the model
between the tip and the sharp corner was found to be negligible, and for
constant pp the density field in the expansion fan region was (within
experimental error) independent of 'd'. (The body streamline in this
context is to be interpreted as meaning the flow just outside the boundary
layer, which is easily recognizable on the interferograms.) This implies
that the temperature behind a shock of deflection angle equal to 45° is
insufficient to produce a reaction fast enough to substantially alter the
flow field behind it, with the freestream conditions and body scale which

were considered.

Increasing the angle of incidence of the wedge would have caused the
shock to have become detached. (This topic will be discussed in the next

section.)

3.3 Flow over a curved wedge

This model was a curved plate having a sharp leading edge and a
constant radius of curvature of 1 ft. The plate could be tilted to vary
the initial angle of incidence. The flowfield was studied with

PR = 2, 4, 6 in. Hg with various angles of attack. Here, as with the



previous case, results would only be useful if the shock at the leading
edge remained attached. Otherwise the initial conditions immediately

behind the shock would be difficult to ascertain.

Figure 13 shows the contours of constant fringe shift derived from a
series of shots with PR = 6 in. Hg and the model at three different angles
of attack. Close to the body, sireamlines may be considered to run
parallel to the body. If a reaction were to occur this would manifest
itself in an initial density increase (due to the reaction), and a subsequent
density decrease (due to pressure gradient effects), measured along a
streamline. It is only figure 13(c) which exhibits behaviour that could
be interpreted in this way. However the initial angle of attack of the

model in this shot is 49.5° and the shock would be expected to be detached.

The accuracy to which the fringe shifts may be measured is of
order .1 of a fringe, which would be decreased if the fringe spacing were
decreased. In any given situation the spacing of the fringes is a
compromise between accuracy, and detail of the flowfield which is being
investigated. The fringe spacing chosen for these shots does not allow

for good resolution in the region of the model leading edge.

Therefore although (13c) shows evidence of reaction, the reacting
streamlines are those close to the body having entered the shock layer
through a region of the flowfield which does not lend itself easily to
analysis either theoretically or experimentally. The cases of

PR = 4 in. Hg and 2 in. Hg exhibit the same form of behaviour.

Thus it may be concluded that for the freestream conditions which
were studied no reaction occurs behind an attached shock, of sufficient
magnitude to significantly alter the density field from that of a non-
reacting flow. Under these circumstances a model with a detached
shock which is more easily analysed appears the only alternative. The
disadvantage of such a model is that the analysis in the preceding
sections is not expected to hold along a body streamline which is the

only streamline whose position is known accurately.
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3.4 Flow over circular cylinders

3.4.1 A numerical investigation of streamline positions

An experimental investigation of nitrogen flows over circular
cylinders was made using the experimental facility T3 by Hornunglz, as
part of the work published. The flow fields around these bodies fulfill
the requirement of a 'well-behaved' detached shock. The raw data from
these experiments was made available for analysis in the context of this

work .

Since the expressions derived previously are in terms of the
behaviour along a streamline, a determination of the streamline shapes is
necessary. The equation of continuity (1) defines the streamline shapes

36 _ __1 3pd (1)
on Pq ox

Consider a given shock shape, a given reaction rate and given freestream
conditions. This is sufficient to define the position of a streamline of

a particular stream function ¥ .  If all conditions are left unaltered
except that of the reaction rate, a different density field will occur to
the shock layer and hence from (1) the position of the streamline ¢ will

change.

However if the distance during which the reaction dominates is small
then from (1) the change in the streamline position due to the change in -
reaction rate will also be small. When the reaction has stopped and the
gas behaves as a perfect gas then the only further difference in the two
streamline positions will be due to the difference in the pressure
distribufion and the effect of a different Y. Both of these effects are
considered to be small. That is, the position of the streamlines are

insensitive to the reaction rate assumed.

To verify this conclusion figure 14 shows the results of calculations
. . . 6 . .
using the inverse method of Garr and Maronne™ with the reaction rates of

Appleton et al .5. The shock shape used was that measured from an
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interferogram taken of flow over a 1 in. diameter cylinder with PR = 6 in. Hg.
The shock coordinates for this purpose were expressed in terms of x'/d

(d = diameter of the cylinder) and d was specified independently. Thus

the value of A and hence of (do/dx), could be changed by redefining d.
Three conditions are shown, with d equal to 20 cm, 1 cm and 0.02 cm
corresponding to a fast, moderate and slow reaction rate. Streamlines

are identified in the figure by ¥/¥  where ¥4 is the value of the stream
function at a transverse distance D across the freestream measured from

the axis of symmetry.

Figure 14 is a comparison of the pressure and density distributions
measured along a streamline for a particular value of 'd', with those
where the flow-~field is left unaltered but the distributions are measured
along streamline shapes calculated for the case d = 1 cm superimposed on
this flow=field. Figures 14(a) and 14(b) are for a flow~field calculated
with d = 20 ecm while 14(c) and 14(d) are for the case d = 0.02 cm. The
difference between the distributions shown in each pair of curves is seen

to be small.

In order to reduce the experimental data, one has the freestream
conditions, the shock shape, and the density field, but the streamline
positions are unknown and must be calculated, and superimposed on the
density field, to measure the density along a streamline. The purpose of
the preceding discussion and figure 14 was to show that the reaction rate
used in this calculation is relatively unimportant since the density
distribution so measured is insensitive to the variation of streamline
position caused by changing the reaction rate. For the reduction of
experimental data streamline positions were calculated with the known

freestream conditions, shock shapes, and in all cases with d = 1 cm.

The experimental points so derived were compared with the solutions
for the réc;cﬁng and frozen reaction solutions derived in earlier
sections. For the frozen regime a pressure distribution was required.
This was taken as the pressure along a streamline as calculated with

d=1cm.
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The magnitude of the errors involved in this approximation are typically
of the order of those illusirated by figures 14(b) and 14(d). The
difference between the pressure distribution calculated along streamlines,
with those measured along the superimposed streamlines calculated for
the case d = 1 cm, is small in both cases. This shows the insensitivity

of the pressure distribution along a streamline (as well as the position

of the streamlines relative to the pressure field), to the reaction rate.

3.4.2 Experimental results

Figure 15 shows the experimental fringe shift measured along the
computed streamlines for various conditions. Also shown are the
corresponding approximate zero pressure gradient solutions derived from
(17a) and the expected asymptotic solutions derived from (36). For the
purpose of these calculations, and the calculations of initial conditions
from shock relations the energy of vibration was assumed to be half
excited in the freestream and in equilibrium behind the shock. In order
to calculate T{_. and related quantities from (36) it was necessary fo
assume a characteristic body scale. This was taken as the diameter of
the cylinder under consideration. The reaction rates of Appleton et al.
were used and involve two reactions corresponding to the nitrogen atom
and the nitrogen molecule acting as the second body in the dissociation

process. The value of A was taken as (doz/dx)o/b(rl -ag) exp(- a/Ty).

In order to calculate the final solution (36) the pressure
distribution along a streamline was necessary. For the cases with higher
freestream enthalpy (pR =4 in. Hg, 2 in. Hg) the computed pressure
distribution became unstable at x'/d ~0.3 although the computed stream-
line positions remained stable. For these cases the pressure field
before x'/d = 0.3 was taken as that computed and for x'/d >0.3 was taken
as a sin?e distribution, where 6 was the streamline inclination to the

freestream.

The case for PR = 6 in. Hg and d = 1 in. was an infinite fringe
interferogram and the fringe shift was deduced by interpolation between

unit fringe shifts. The error in such a procedure was estimated at



* 0.2 fringe. All other cases were finite fringe pictures, the error in

reading being estimated as 0.1 fringe.

The freesiream conditions may be investigated experimentally. The

use of interferograms of flows over straight wedges, of sufficiently
low incidence so that no reaction occurs, yields a value for the free-
stream density. The shock angle gives a value for the density ratio
across the shock, while the fringe shift gives a value of the density
difference across the shock; hence the freestream density may be
calculated. Pitot pressure measurements may be used to measure the
product po‘o(Uo‘o)?- , and hence give a value for U . Values of ¢ and U} |
so obtained allow a check to be made on the calculated freestream
conditions. Such measurements indicate thate! and Uj are known to

+ 10%. No verification has been made at this time of o . The curves
shown in figure 15 are based on values of flow variables obtained from
the calculated freestream, and are therefore sui)iecf to the uncertainty

associated with these variables.

A further error introduced is that of assuming two—dimensional
flow over a three-dimensional model. This will especially exhibit itself
in readings close to the shock wave where any sudden change in ‘d‘ensity
will be 'smeared out' due to transverse curvature of the shock. With
these considerations and taking into account the small values of (a/TO)
obtained (of order 7), the experimental behaviour as shown in figures 15

(a,b,c,d) agrees reasonably with the predicted behaviour.

Interferograms of flows around models with 2, 1 and % in. diameters
were studied. The flows around models with 2 in. diameter were similar
to the corresponding flows about 1 in. models, as expected from the
theory developed. Therefore such cases are not included herein. The
flows around % in. diameter models however exhibited substantial
differences from the 1 in. diameter models in the cases of PR = 4 in. Hg
and 2 in. Hg. Figures 15(e) and (f) are of d = % in. and PR = 4 in. Hg
and show practically no evidence of reaction. Hornung!2 has discussed
this phenomenon and found that the apparent reduction in reaction rates

for the case of small models is consistent with the induction time effect

46
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suggested by Shui, Appleton and Kecklo. This prediction is based on the
theoretical result that significant dissociation occurs only after the
electronically excited A3 Ez state of the nitrogen molecule is populated.
The induction time decreases as the concentration of molecular nitrogen
increases in the freestream and no reduction in the amount of dissociation

was observed for the case of pr = 6 in. Hg and d =3 in.

Shown in figures 15 (g,h) are the fringe shift distributions along
sireamlines over a 1 in., diameter model with Pg = 2 in. Hg. It is seen
that the experimental behaviour does not approach that which is predicted.
One possible explanation is that ionization is occurring to a significant
degree causing the electronic component of the gas to lower the
refractive index. KewleyH has studied the flow of nitrogen over a
straight wedge using the shock curvature at the tip to deduce the
initial reaction rates (i.e. data was obtained which was independent of
the refractive index of the gas). Discrepancies were also found in that

study for cases where PR = 2 in. Hg.

It should be noted that for the data presented in figure 15(g,h)
a/Tg ~ 5 and the analysis is not expected to hold particularly well.
However the magnitude of the discrepancy would seem to indicate that some
factor other than the inapplicability of the theory is operating. Two
possibilities could be incorrect freesiream conditions and incorrect
reaction rates (or a combination of both). Since the maximum fringe
shifts measured are less than or equal to the fringe shifts predicted
from the shock equations it seems likely that the calculated freestream

conditions are incorrect for this value of PR

Examining the results for PR = 4 in. Hg and d = % in. would also

indicate that the freestream conditions may be slightly incorrect for

pR=4in. Hg.
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4., CONCLUSION

A study was made of the flow properties of an ideal dissociating gas
along a streamline in a prescribed negative pressure gradient. Certain
restricfions were placed upon the parameters involved including the
requirement that the recombination term in the reaction rate was small
and could be neglected, and that the ratio of the temperature behind the

shock wave to the characteristic temperature of dissociation was small.

A theorectical analysis showed that for the case of constant pressure,
the effect of the reaction was confined to a small distance close to the
shock, and the variation in properties of the gas away from this region
was small; defining a 'plateau’ state which could be deduced from
initial conditions behind the shock wave. For the case of a constant
unit pressure gradient it was found that the flow could be described by
assuming that the initial reacting region was unaffected by the preésure
gradient and that the gas thereafter behaved as a perfect non-reacting
gas with initial conditions given by the 'plateau' conditions of the zero
pressure gradient case. It was assumed that this property was not unique
to a unit constant pressure gradient and the explicit analytic solutions
obtained for the two regions were verified by results obtained by numerical

computation of more complicated cases.

The predicted behaviour for the ideal gas was compared with
interferograms of flows over circular cylinders in a hypervelocity nitrogen
free stream, generated by a free piston shock tube. The behaviour for
the lower enthalpy cases showed reasonable agreement with the expected
behaviour. There was a large deviation for the high enthalpy cases,
and it is thought that the most likely cause was an insufficient knowledge

of freestream conditions.

The main advantage of the analysis is that it provides a physical insight
into the processes occuring along a streamline, where a single dissociation

reaction is taking place, which a computed solution alone would not have
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done. It also provides a quantitative measure of the effect of that
reaction. This can be applied immediately to the experimental
situation encountered with nitrogen flows in T3, to indicate the expected
effect of the reaction in a particular experimental arrangement. A more
detailed computer study could then be carried out in the light of results

from the approximate analysis, if it were thought necessary.

The analysis suffers from two disadvantages. The first is that it does
not give a complete description of the flow along a streamline, i.e. it
gives only an initial and a final solution. The second is that its
accuracy depends on the magnitude of the parameter 'a'. It was found
from the computed solutions that a ~ 0(5)defines the lower limit to which
the analysis may be reasonably applied. Further work could possibly be
done in order to find an intermediate function to match the initial and
final solutions and thus overcome the first disadvantage. The second
however is fundamental to the whole approach taken and could not easily
be rectified. On the experimental side, further work seems necessary
in order to define more clearly the cause of the discrepancy between theory

and experiment, in the high enthalpy nitrogen runs in T3.

A concept has been developed of a reaction being self-limiting under
certain conditions. That is, the reaction itself causes a temperature
decrease, thus limiting further reaction, defining a plateau state independent
of pressure gradient effects. This could possibly be the basis for the
investigation of more complex reactions, however it is unlikely that an

analytic solution could be obtained.



10.

1.

12.
13.

14.

15.

16.

50

5. REFERENCES

HAYES, W.D. and PROBSTEIN, R.F. (1966).
Hypersonic flow theory (second edition) Vol. 1 - Inviscid flows.
Academic Press.

FREEMAN, N.C. (1958). Physics of Fluids 4, 407.

CAPIAUX, R. and WASHINGTON, M. (1963).
A.1.A.A. Journal 1, no. 3, 650,

VINCENTI, W.G. and KRUGER, C.H. (1965).
Introduction to Physical Gas Dynamics.
John Wiley and Sons, Inc.

APPLETON, J.P., STEINBERG, M. and LIQUORNIK, D.J. (1968).
The Journal of Chemical Physics 48, no. 2, 599.

GARR, L.J. and MARRONE, P.V. (1963).
Cornell Aeron. Lab. Rep. QM-=-1626-A-12(1l).

STALKER, R.J. (1972).
The Aeronautical Journal of the Royal Aeronautical Society, June, 374.

LORDI, J.A., MATES, R.E. and MOSELLE, J.R. (1966).
N.A.S.A. Current Report CR-472,

-~

ALPHER, R.A. and WHITE, D.R. (1959). Physics of Fluids, 2, 162.

SHUI, V.H., APPLETON, J.P. and KECK, J.C. (1970).
Journal of Chemical Physics 53, 2547,

KEWLEY, D.J. (1971).
Honours Thesis, Australian National University, Canberra.

HORNUNG, H.G. (1972). Journal of Fluid Mechanics 53, pt 1, 149.
LIGHTHILL, M.J. (1957). Journal of Fluid Mechanics 2, pt 1, 1.

SPURK, J.H., GERBER, N., SEDNEY, R. (1966).
A.1.A.A. Journal 4, no. 1, 30.

LICK, W. (1960). Journal of Fluid Mechanics 7, 128,

LIEPMANN, H.W. and ROSHKO, A. (1957).
Elements of Gas Dynamics - John Wiley and Sons, Inc.



shock

cutoff
streamline

-
,JL
e

Pl reacting
streamline

path of integration
to determine pressure
at point A

ystagnation

@ ewmcun O *  we—

AN
stagnation
streamline

body

FIGURE A1 [llustration of the main features

of the problem considered,



jue}
dwng

‘€L °qn} M}I0oys

uojsid @94y jo sjusuodwod ulew jo weibel( 2V - 3¥nold
uoibai aqnjy agni ~ AI0A1DSd1 JAlE
1S9 ¥yooysg uolssaisdwo) passaisdwo)

/

\7

2]zz0}

2

wesyderq uojlsid



shock

expansion
fan

streamline

\\\\\\\—\\\\\\

—>

freestream

(a) wedge with sharp expansion corner

shock

streamline

_4>> SOV NN
freestream
(b) curved wedge
shock

streamline

__D \

freestream

(c) cylinder

FIGURE A3 Diagrams of models used in
experimental investigation.



LEGEND TO FIGURES 1 -10

showing the comparison between computed solutions of the flow equations

with the initial and final solutions derived in sections 2.2 and 2.4.

_ Computed solution.

————— Zero pressure gradient approximation, and initial solution for

the case with a pressure gradient.

—.—— Analytic approximations to the final solutions, in the

presence of a pressure gradient.
A Denotes zero pressure gradient.
B Denotes an imposed pressure gradient given by equation (38).

C. Denotes an imposed pressure gradient given by equation (39).
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LEGEND TO FIGURE 14

examining the effect of reaction rate on streamline position relative to

the density and pressure field calculated with a given reaction rate.

E— flow parameter calculated along a streamline with the cylinder

diameter (d) as specified.

————— flow parameter measured along a streamline shape calculated
with d=1 cm, superimposed over the flow field as calculated

with the cylinder diameter equal to d.
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LEGEND TO FIGURE 15

showing the comparison of experimental fringe shift relative to the
freestream, along a streamline, to the initial and final solutions of

sections 2.2 and 2.4.

————— Initial reacting solution using the reaction rates of

Appleton et aZ.S.

E— Final frozen reaction perfect gas solution using the computed

pressure gradient.

® Experimental point.
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