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1. Introduction and Summary 

The study of the flow of an incompressible viscous liquid is greatly 

simplified if discussion is limited to Stokes flow in which the Reynolds 
rum-~ 

number is small enough for the~inertia forces to be neglected in 

comparison with the viscous forces so that the equations of motion 

become linear . The Stokes flow approximation is a suitable model to take 

for peristaltic motion since the velocities met in practice are small 

and conditions at infinity are not considered. 

In this thesis, two dimensional flow through a symmetrical channel 

and axially symmetric flow through a pipe of circular cross-section are 

considered. In each case the boundary varies sinusoidally. 

Two causes of motion are studied. Firstly, it will be assumed 

that there is a prescribed pressure gradient along the pipe or channel 

and secondly that a progressive wave passes along the walls. If the 

prescribed pressure gradient is constant, and if the progressive wave 

velocity is small enough, this peristaltic motion is governed by the 

usual equations for steady Stokes flow. Thus -- the two extreme cases, of 

motion caused solely by the variation in cross-section and of motion 

under a constant pressure gradient when the walls are fixed can be 

treated together. Moreover, the two cases of pipe flow and channel 

flow can be treated together by taking advantage of the notation of 

generalized axi-symmetric potential theory to develop the theory in a 

form which is applicable to each case, leaving only the detailed calcu

lations to be carried out separately. This simpler case is treated first . 

.. 
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If the prescribed pressure gradient varies sinusoidally with time then 

the motion is governed by the unsteady Stokes flow equations . In this 

case there is nothing to be gained by imposing the condition that the 

progressive wave velocity should be small and so the general case of 

peristalsis with sinusoidal pressure gradient has been solved. 

It will be convenient, where it is not necessary to distinguish 

between channel flow and pipe flow, to use "tube" to denote either the 

symmetric channel or the axi-symmetric pipe and "radius of the tube" to 

denote half the breadth of the channel or the radius of the pipe. 

The problem is solved by expanding the stream function, which 

detennines the flow, as a Fourier series involving two infinite sets of 

unknown coefficients, real in the simple case but complex in general . 

The boundary conditions on the wall of the tube give a set of linear 

equations which can be solved for these coefficients . Following closely 

the method used by Taylor (1951) in a similar problem, a perturbation 

solut ion is found in which these coefficients are derived as power 

series in ri/h, the ratio of the amplitude of the variation of the tube 

radius to the mean tube radius. The solution is used to derive an 

expression for the average flux through the tube in the general case. 

This average flux is calculated numerically in some particular cases, 

are the streamlines and the velocity distributions along and normal to 

the axis of the tube . 

An alternative method of direct calculation of the unknown 

coefficients has been devised and tested in particular cases. This 

as 
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method works well for small { ~, where it would be expected to do so, and 

agrees with the perturbation method. It should work better than the 

perturbation method for large { ~ and it is proposed to complete the 

necessary calculations on a digital computer. 
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2 . Historical Survey 

Peristaltic motion of a viscous fluid through pipes and channels 

does not appear to have been discussed previously mathematically although 

the particular case of flow under a prescribed pressure gradient through 

a fixed tube whose walls vary s inusoidally has been treated by several 

authors . Langlois (1 964) di scussed f ow along channels of varying breadth 

and obtained approximate solutions in several different cases . Gheorgita 

(1959) found solutions to the first order in~ f or symmetrical channels 

in which the breadth varies along the length according to a cosine law 

and also gave first order solutions in cases in which the distance of 

each wall from the centre plane varies p eriodically along the length with 

the same frequency but the channel is not symmetrical. Belinfante(1962) 

considered flow of a viscous fluid along pipes and channels in which the 

radius or breadth varies along the length acc ording to a cosine law. He 

also obtained solutions for the Stokes flow approximation correct to the 

first order in ~/h_. He used these solutions as a basis for solutions of 

the Navier-Stokes equations in powers of the Reynolds number of the flow. 

He remarks that he has also obtained solutions of the Stokes flow. problem 

to the second order in ~/h for both pipe and channel fl ow . Burns (1965) 

used the methods of this thesis to obtain results for both pipes and 

channels with fixed walls, which is a special case of the general 

problem. of peristaltic flow with sinusoidal pressure gradient considered 

here. It is also, of cour se, a special case of peristaltic flow with 

constant pressure gradient which was considered by Burns and Parkes 
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The analysis of peristaltic motion may have several import ant 

practical applications. Peristalsis occurs naturally in several part s 

of the body. According to Wright (1961) "Bayliss and Starling defined 

true peristalsis as a coordinated reaction in which a wave of contraction 

preceded by a wave of relaxation passes down a hollow viscus; the contents 

of the viscus as they are propelled along would thus always enter a 

segment which had actively relaxed and enlarged to receive them. This 

type of movement was thought to be responsible for transferring the 

contents of the alimentary canal from the oesophagus through the stomach, 

small and large intestine and finally to the anus." Peristaltic waves 

also occur in the ureter. 

The flow of corrosive fluids along pipes is often brought about by 

the use of peristaltic pumps which are designed so that the fluid does 

not come into contact with the pump itself. Latham and Shapiro (1966) 

have done some work on peristaltic pumping but this paper is not yet 

available. 

The flow of blood in arteries, while not being caused by peristaltic 

-
motion of the artery walls, has similarities, particularly if it is 

assumed that the artery walls are sufficiently flexible so that they 

oscillate in sympathy with the pressure gradient. For this reason it 

seemed logical in this thesis to consider the general case of peristalsis 

with sinusoidal pressure gradient . However it must be realised that the 

Reynolds number associated with blood flow in arteries is not small, and 

ranges from about 300 to 10,000 in the human body. 
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The particular case of flow through a fixed pipe of constant cross 

section under a prescribed sinusoidal pressure gradient has also been 

treated by several authors but the more general case of a pipe whose 

walls vary sinusoidally does not appear to have been considered. 

Womersley was very prolific on this subject both theoretically and 

experimentally. Amongst other things, he (1955) considered the oscil

latory motion of a viscous liquid in a rigid tube under a simple harmonic 

pressure gradient and also similar motion in a thin walled elastic tube 

with particular reference to the flow of blood in arteries. In the latter 

case he showed that the longitudinal oscillation of the walls of the tube, 

caused by viscous drag on its inner surface, is important in determining 

the r a te of flow, which may be 10% ,greater than that in a rigid tube 

under the same pressure gradient . Olsen and Shapiro (1967) considered 

large amplitude , unsteady flow in liquid filled elastic tubes but only 

where the wave- length is long compared with the diameter (-Di< 0·06) so 

that a one dimensional model can be used. Lance (1956) considered the 

flow through a pipe or channel of constant cross section due to a pressure 

gradient and a series of pulses acting in the opposite direction. He 

showed that it is possible for the flow to be arrested when the pipe is 

subjected to one or more pulses of sufficient strength. (This problem 

was suggested by reports that the engines of a certain jet aircraft fail 

when the guns are fired . The failure could be due to fuel starvation.) 

Sanyal (1956) studied the flow in a circular tube under pressure gradients 

which rise or fall exponentially with time. She found that for small 

diameter tubes the velocity distribution in a cross section of the tube 
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is parabolic in both cases but for large diameter tubes the two motions 

are quite different . In the first case the flow has the boundary layer 

character while this characteristic is completely absent in the second 

case and the velocity depends on the wall distance . 

/ 
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3. Statement of the Problem 

It is convenient to use "tube" to denote either the symmetrical 

channel or the axi-symmetric pipe and "radius of tube" to denote half 

the breadth of the channel or the radius of the pipe. 

The wall of the tube is defined by the equation 

y h + 'fl COS {_( X - ot) (1) 

so that a progressive wave of amplitude Tl, velocity rr and wave-length 

A= 2v/t passes along the tube in the positive x-direction. It will 

frequently be convenient to write z = x - ot. If rr = o, the wall of 

the tube is a fixed cosine wave. The x-y plane is a meridian plane of 

the tube , the axis OX being along the axis of symmetry and the axis OY 

normal to OX. Let the velocity components in the x,y directions be u,v 

respectively (see Figure 1). 

Figure 1. 
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The equations of motion governing the flow of an incompressible 

fluid through the tube are the continuity equation and the Navier-Stokes 

equation . These , in the absence of body forces, are 

0 J ( 2) 

av 1 
~ + V(!v2) - V X ill = - - 'vP - VV X Q.) , at 2- - -

( 3) 

where y is the velocity, vis the kinematic viscosity, pis the pressure , 

pis the density and~= V x y is the vorticity (Rosenhead 1963). 

If squares of velocities can be neglected then equation (3) reduces 

to 

av -
at 

1 
- Vp - VV X ill . 
p 

It is possible to treat the two dimensional flow and the axi

symmetric flow together by using the notation of generalized axially 

symmetric potential theory (Weinstein 1953). 

Let* be a stream function such that 

u - k a* = y -ay and V 
-k 8 1lr 

-y ..:::..:i:. .. ax 

where k = 0 or l according as the flow is two dimensional or axi

symmetric. Then equation (2) is satisfied. 

and 

If ill - l~I then the equations satisfied by* and w are 

k 
- -y (1) 

L ( k ) l a ( ykw\ , 
- k Y w = v at ~ 

( 4) 

( 5) 

( 6) 

( 7) 
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32 
+ --

ay2 
k 8 
y 8y • 

Also equation (4) produces the f ollowing pressure relations: 

au 
- p -at 

- k 8 k 
µy ay ( Y ill) ' 

av -k a k 
- P at + µy ax ( Y ill) ' 

whereµ - p V is the vi scos i ty . 

( 8) 

( 9) 

The following conditions must be sati sfied. On the axis of symmetry 

\jr = 0 and ill+ 0 as y + O. On the outer boundary of the flow, the fluid 

must have the same velocity as the wall of the tube . It will be assumed 

in the first instance that the particles of the tube wall move in 

straight lines perpendicular to the axis of the tube so that the boundary 

condition i s 

- k 21 
-y 8z 

- k 8\jr 
Y = u - 0 , 8y 

V 
ay 
at { cn1 sin {z on y = h +~cos {z . 

This condition requires that the wall of the tube be extensible . A 

modified boundary condition will be considered later in Section 7. 

(10) 

The problem is to solve equations (6) and (7) for \jr and ill subject to 

these conditions on the axis of symmetry and the wall of the tube. 

It is necessary to prescribe the pressure gradient which produces 

the flow and, in the general case , it will be assumed that the pres sure 
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drop over a wave- length has the value P cos ft. In particular, P 0 

corresponds to peristalsis with zero pressure gradient and f 0 

corresponds to peri stalsis with constant pressure gradient . 
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4. Solution of the problem 

It is convenient to deal with a particular case first and then 

consider the general case . It is assumed that the flow has existed long 

enough for all transient terms to have decayed so that only the steady 

state solution is considered . 

4.1 Peristalsis with constant pre ssure gradient and~ small 

i . e . f = 0 and ~/tv = o (1) 

This is the case of peristalsis with constant pressure gradient 
av 

where the progressive wave velocity is small enough for the term at in 

equation (4) to be neglected (Rosenhead 1963). An account of this has 

already been published (Burns and Parkes 1967). 

and 

The equations to be solved are now 

k 
-y (1) 

0 

with the conditions*= 0 on y = O and w ~ 0 on y = 0 . 

The boundary conditions (10) are unchanged . The pressure 

relations (8) and (9) become 

- k a k 
- µy ay ( Y w) 

and ~ 
ay 

- k a ( k 
µy ax Y w) 

( 6) 

( 7A) 

( 8A) 

( 9A) 

Since the boundary varies periodically with z and is symmetrical 

about z = O, it follows that both* and ware even periodic functions of 

z with wave- length A, and so can be expr essed in the form 
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00 

1jr(z ,y) - l 1jr ( y) cos n~ , (11) n 
n=O 

00 

ul..z,y) - l Cl.h ( y) cos n{z . ( 12) 
n=O 

If (11) and (12) are substituted in equations (6) and (7A) and the 

coeffici ents of terms in cos n~ compared, then for n ~ o, 1jr (y) and 
n 

llb(y) satisfy the equations 

k 
-y CD ' n 

- o. 

Tnese equations have to be solved under the conditions that 

*n + 0 and CDn +Oas y + o. 

The solutions of (14) satisfying these conditions are 

and for n ~ 1 

k 
y Clb 

k 
y CD 

n 

_ -A yk+l 
0 

k+l 

- -A y 2 
n (n~) 

where A, A are arbitrary constants and Iv(x) is a modified Bessel o n 

function of the first kind of order v. 

(13) 

(14) 

( 15) 

When CD in equa tion (13) is replaced by the expressions given in n 

(15) then the resulting equations are of a type for which particular 
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integrals can be found ( Burns (1966)) and the complementary func tion s 

are of course the general solution of equation (14). The funct ions 

o/ (y) which satisfy these equations and the condi t ion o/ ~ 0 as y ~ 0 
n n 

are found without difficulty and when these are substituted in (11) the 

resulting expression for o/(zJy) is 

o/(z Jy) 
Ao k+3 

Boy 
k+l 

2(k 3) y + + 

00 k+l 

l 
-

[2~:P, yik-1 ( n-fy) Bnik+l(n-fy) J 2 
cos n{z. + y + 

n=l 2 2 

( 16) 

The arbitrary constants AnJ Bn for n ~ 0 must be determined from the 

condition (lO)J that the fluid on the boundary has the same velocit y as 

the wall of the tubeJ together with the condition that the pressure drop 

per wave- length is P . J.t ~ ~ AR..J>rl\. ~ tL.t, ~ L o..;;,,e<,uYn/,1;_~ 

~~ J!:Jt-rd ~ryt~boP ~~ 
~an be s~n from equation (9A) that~ is an odd periodic f u nc tion 

of z . Hence~~= OJ i . e. pis constant) on the sections z = OJ AJ 2A ... 

of the tube. It can also be seen from equation (BA) that!~ = ~ will 

be an even periodic function of z and so the £ressure difference between 

successive points of maximum cross section is always the same. In t h is 

case it is assumed to be P . 

Since the pressure is constant over the sections z = OJ A i t 

follows that the pressure drop between these sections can be obtai ned 

by integrating~ along the line y = O. oz 
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Equation (8A) gives 

~ 
oz 

- k a k 
- µy - (y ru) ay 

and this, with (12) and (15), leads to 

00 

µ(k + 1) A
0 

+ I fn cos n-tz , 

n l 

where the coefficients fn are constants. Integration of (17) from 

z = 0 to z = A gives 

p~ 
- 2µ7T( k + 1) 

( 1 7) 

(18) 

Thus the constant A0 is known in terms of the prescribed pressure 

gradient . The remaining boundary condition leads to equations sufficient 

to determine the constants B0 , ~, Bn (n ~ 1) in terms of A
0 

and~. 

At thi s point it becomes convenient to give separate (although 

closely similar) discussions of the two cases of channel flow and pipe 

flow. 

For channel flow, k = 0 and the stream function becomes 

'lr(z ,y) 
Ao 
b y3 + Boy 

cosh n,fy + Bn sinh n,fy} cos n-tz. 

( 19) 

The replacement of the Bessel functions I1(niy) and I 1(n,cy-) by 
'2 - '2 

expressions involving cash niy and sinh n,cy- leads to a considerable 

simplification in the detailed analysis which follows. 

.... 
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For pipe flow, k = 1 and the stream function becomes 

\jr(z , y) 
Ao 

y4 + Boy2 b 
00 

+ I y {2~'.t ylo( n,fy) + BnI1 (n,fy)} cos n-i'z . 

n l 

It is convenient to introduce new coefficients as follows : 

For channel flow, let 

and, for n ~ 1, 

and for pipe 

and, for n ~ 

a n 

flow, 

ao 

1, 

an 

let 

!A 
2 0 ' 

!A 
2 0 ) 

An 
2nt ) 

b 
0 

b n 

) b n 

2B
0

, 

B . n 

The stream function for channel flow then becomes 

\jr (z,y) 

00 

( 20) 

( 21) 

( 22) 

+ I {any cosh n,fy + bn sinh n,fy} cos n-i'z ( 23) 

n l 

where b, a, bn (n ~ 1) are to be found in terms of a and~ fr om the o n o 

conditions 



ch/r = 0 ay and o\jr -
oz 

1 7. 

sin .{z on y = h + T) cos {z 

which are obtained from (10) by putting k - O. 

The stream function for pipe flow becomes 

- 1 a y4 + ! b y2 
4 0 2 0 

00 

+ I Y {any I 0 ( n,fy) + bnI1 ( n,fy)} cos n--tz 

n l 

( 24) 

( 25) 

where b 0 , an , bn (n ~ 1) are to be found in terms of a
0 

and~ from the 

conditions 

1 o\jr 
Y ay - 0 and 1 8\jr _ _ {o-T) 

y oz sin {.z 

which are obtained fr om (10) by putting k = 1. 

4 .1 .1 Evaluation of the coefficients an, bn. 

on y = h + T) cos {.z (26) 

The boundary conditions (24) and (26) at the tube wall, which in 

each case has equation y = h + T) cos {.z = y
1 

say, lead to the f ollowing 

equations : 

For channel flow : 

00 

+ I [( an + n-bin) cosh n,fy1 + n~y
1 

sinh n,fy
1 

]cos n--tz - o 
n l ( 27) 

and 
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00 l [any1 cosh n{i,1 + bn sinh n{i,1 ] n sin n-fz - ~~ sin -fz ; (28) 

n l 

for pipe flow : 

and 

00 

+ l [ ( 2an + n-1'.bn) I 0 ( n{y 1 ) + n-f'.any 1 I 1 ( n{v 1 ) ] cos n-fz 

n 1 

00 

l [any1 I 0 (n{v1 ) + bnI
1

(n{v1 ) J n sin n-fz 

n l 

T)O- sin {z . 

0 

( 29) 

( 30) 

For channel flow , cosh n-lyl and sinh n,lyl and for pipe flow, 

I
0

(n,lyl) and Il(n-lyl) are expanded in powers of cos -tz . Substitution 

in (27), (28) and (29) , (30) leads, in each case, to terms of the form 

cosP {z cos n-lz and cosp {z sin n--fz which are expanded in Fourier 

cosine and sine series respectively. Finally, the coefficients of 

terms in cos r -lz and sin r--fz in the resulting equations are equated and 

linear equations for b
0

, an, bn (n ~ 1) are obtained. In each case, 

these are of the form 

00 

l ( pm an + qm bn) 
n l 

00 

l (pnran + qnrbn) 
n l 

0 ' 

( h a + k b ) non non 

r = 1, 

r = 2, 3, 4 ... , 
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00 

l ( h a + k b ) nr n nr n r = 1, 2, 3 ... , ( 31) 

n-1 

where all the coefficients p , q , h , k , c are known . These can nr 11r nr nr r 

be calculated to any required accuracy, so that direct numerical solution 

of the equations for as many coefficients a, b as are necessary to 
n n 

give a desired accuracy is possible . This method is discussed more fully 

in Section 6. 

For the purposes of the perturbation solution used here, the 

coefficients p q h k , c may be expanded in powers of .{n nr' 11r' nr' nr r · 1 

and the leading term of the series for each of the first four involves 

t71 raised to the power In - rl while cr is of the order ( .{71)r. It 

follows that an and bn are of order ( .{71)n and it turns out that they are 

obtained as series in the form 

a n 

b n 

00 

l 
t=O 

00 

l 
t=O 

.{ n+2t 
ex +2t ( 71) n , n 

{ n+2t 
t3n n+2t ( 71 ) 

' 

n ~ 1 . 
' ' 

( 32) 

' . n ~ o. 

At this stage it is assumed that the non- dimensional quantity, .{71, 

is small and *(z ,y) is to be calculated to order ( .{71)n. Imposing this 

restriction, and comparing coefficients of powers .{71 in equations (31) 

gives a set of equations which can be solved for ex and t3 . 
nr nr 

To find *(z ,y) to order (t71)n, !(n + l)(n + 2) equations are needed 

but these can be solved in pairs. Thus to find* to order (t11) 4 needs 



20 . 

15 equations . This is the order of many of the calculations in this 

thesis . 

An alternative approach , which l eads to the same results for an 

and bn, is given in Appendix A. There it is assumed at the start that 

t~ is small so that only a few terms in the expansions of cosh n{yl, 

sinh nty
1

, I 0 (n~
1

) and Il(nt y
1

) need be considered. 

4 .1 . 2 Calculation of the flux through the tube 

To find the flux through the tube it is necessary to evaluate the 

stream function *(z,y) at a point on the boundary y = h +~cos --Ez. For 

any value of x , this flux varies periodically with the time . Since an, 

b are determined as power series int~ it follows that the flux* is 
n 

also a power series i nt~ . Alternatively we can write* as a power seri es 

in ~/h, 1 . e ., 

where* is a periodic function of z . n 

What is wanted is the average flux per cycle and this can be found 

by integrating* at a point on the boundary over one period. Doing this 

removes all the odd powers of ~/h for it is easily seen (Appendix B) that 

o. 

The mean flux is then 

(33) 
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- -
and the expressions obtained for *o' *

2
, *

4 
are as follows: 

(a) For channel flow : 

*o - g a h3 ~ = - h3 [a0 + t 2 a sinh -01 + !t2~J 
3 0 ' ~2 ll 2 ' 

+ i a
22

(2-01 cosh 2-01 + sinh 2-01) J ; (34) 

(b) For pipe flow : 

In each case a11 , a13 , ~ 2 are obtained as indicated in section 4 .1.1. 

The expressions for some of these are given in Appendix A, where it can 

be seen that they are all linear functions of a 0 and~. 

In both cases therefore , the flux consists of two distinct parts, 

one due to the pressure gradient only, the other due to the movement of 

the walls only. There are no interaction terms which makes computing 

much easier . The numerical results are discussed in Section 5. 

4.2 The general case of peristalsis with sinusoidal pressure gradient 

and with~ large 

The e~uations to be solved are 

k 
-y CD ' 

( 6) 
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1 ~ ( ykrn), 
V ot ( 7) 

with the conditions "ljr = 0 on y = 0 and rn ~ 0 on y 

conditions (10) hold, i . e ., 

u 

and 

V 

on y = h + T) cos {z . 
' 

and so do the pressure 

- k o"l)r 
Y ay 

- k ~ 
- y oz 

relations 

0 

w-11 sin tz 

O. The boundary 

ap au - k a k 
- p - µy - ( Y rn) ax at ay 

( 8) 

and 

ap av - k a k 
- - p- + µy ( Y rn) . ay at ay ( 9) 

It can easily be seen that , because of the term on the right hand 

side of equation (7), "ljr and rn can no longer be even, periodic functions 

of z and a more general form must be taken . If the pressure gradient 

is to vary sinusoidally with time with frequency f then clearly "ljr and rn 

must also be periodic functions oft with frequency f . The most general 

form satisfying these conditions will be taken for "ljr and rn, namely, 
00 00 

t( z ,y, t) I I (~(y) cos mft + Brun( y) sin mft) cos ntz 

n=O m=O 
+ ( cnrn( y) cos mft + Dnrn( y) sin mft) sin 

with a similar expression for cr,(z ,y,t). 

This form of solution, however , is not convenient for solving 

equations (6) and (7) because it leads to a set of simultaneous dif

ferential equations and so it will be replaced by the equivalent form 

ntz 
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00 00 

'V( z , y , t) = Re l l (t nm ( y) e i( n--1'.z+mft) + Inm ( y) ei( n--1'.z-mft )) (36) 

n=O m=O 

and 
00 00 

a{z,y,t) =Rel l (ronm(y)ei(n--1'.z+mft) + Qnm(y)ei(n--1'.z-mft)) ,( 37) 

n=O m=O 

where~ (y) , f (y), w (y) and Q (y) are complex functions of y only. run run run run 

Note that z = x - ~t and is real . 

If (37) is substituted in equation (7) and the coefficients of 

i(n-fz+mft) d i(ntz- mft) k k 
e an e are compared, then y w and y Q sati sfy 

run run 

the equations 

d2 k k d k k -- ( y w ) - - - (y w ) K2 y w - 0 
dy2 run y dy run run run 

and 

d2 k k d k k ( y Q ) - -- ( y Q ) - 12 y Q - 0 , 
dy2 run y dy run nm nm 

where 

K2 = n2,e,2 _ i( nw - mf) 
run V 

and 

12 = n2,e,2 _ i( nw + mf) 
nm V 

, 

for n - o, 1, 2 . . . and m - o, 1, 2 . . . 

Equations (38) and (39) are similar to equation (14) but now 

wnm and Qnm are complex and n2t 2 in (14) is replaced by the compl ex 

quantity K2 in (38) and by 12 in (39). The solution therefore of nm run 

( 38) 

( 39) 

( 4o) 
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(38) is 

k 
-A 

k+l 
Y moo - ooy 

and k+l -k -A 2 
Y c.onm - nmy 

Similarly the solut i on of (39) is 

k 
y Qoo 

and 

k 
Y Qnm 

k+l 
- - Cy 

00 

k+l 
2 

- - Cy nm 

Ik+l ( Kruny) for n = o, 1, 2 

2 
m - o, 1, 2 

but not n = m = O. 

for n = o, 1, 2 

m = o, 1, 2 

but not n = m = 0 . 

If these are substituted in (37) then 

y CD= Re - (A + C )y k { k+l 
00 00 

( 41) 

. . . 

( 42) 

k+l 
2 + C y 

nm 
I (L )ei(n{z-mft))\L_ 
k+l nmY r 

2 

where the swnrnation does not include the case n = m = 0. 

There is no loss of generality by taking C
00 

= 0 or by taking A
00 

to be 

real, so that 

00 00 k+l 

y\u= -Aoo/+l - Re {l l(Arrmy2 Ik+l(Kruny)ei(n~ +mft) 

n=O m=O 2 

+ Crrrr7k;l Ik+l(Lrrmy)ei(n~-mft))} (43) 

2 
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If (43) is now substituted in eQuation (6), and if the coefficients 

i(n-lz+mft) d i(n{z- mft) of e an e are compared, then* and~ can be 
nm -nm 

shown to satisfy the following eQuations : 

for n = o, 1 , 2 . . . , m = o, 1 , 2 . . . , except n=m= o, 
k+l 

d2 --k d n2,t2i = 2 
1k+l (Lnmy) dy2 Inm - - - f - C nmy y dy nm nm 

2 

for n - O, 1 , 2 ... , m - O, 1 , 2 ... , except n = m - o, 

and 

The solution of eQuation (44) which satisfies the condition 

* = 0 when y = 0 is run 
k+l 

- y 2 ~ A:'.1" 

for n = 1 , 2 . . . and m - 0 1 2 ' ' 
and 

for m = 1, 2 ... 

k+l 
A om 2 

- -y 
K2 

om 
Ik+l(KomY) + BomYk+l 

2 

+ B 
nm 

Similarly the solution of eQuation (45) satisfying the condition 

Inm = 0 when y = O is 

( 44) 

( 45) 

... 
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Ik+l(Lnmy) + Dnm Ik+l(n,&)) 
2 2 

for n = ~, 2 ... and m = o, 1, 2 

and k+l 
C om 2 k+l 

Ik+l(LomY) + DomY - -y 
12 

om 2 

for m = 1 , 2 ... 

The appropriate solution of equation (46) is 

A ~+3 

where B is real . 
00 

00 k+l - + B y 
- 2(k + 3) 00 

If these solutions are substituted in (36) then 

Aoo k+3 k+l * = 2(k + 3) y + Booy + Re 

00 k+l 

+I G~m 
2 

Ik+l ( LomY) y 
-ml om 2 

00 00 k+l 

+l l -
~ ::2i2 2 y 

n 1 m-0 

00 

{I 
ml 

k+l 

Gorn 2 
-y 

2 
om 

k+l) -imft + DomY e 

1k+ 1 ( lSunY) + B 
nm 

2 

Ik+l ( n,&)) ei( n-fz+mft) 

2 

Ik+l(n-&)) ei(n-fz-mft)} 

2 
( 47) 
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It is easy to see , from (40), that ~o = 1~
0 

for n = 1 , 2 .... It 

follows , therefore , that the terms involving Cno and Dno can be absorbed 

into those involving Ano and Eno respectively so there is no loss of 

generality in taking Cno = Dno = 0 . Similarly K2 = - 12 form= 1 , 2 om om 

and it follows that there is no loss of generality in taking C0 m =Dom= O. 

A simpler expression for~ which is still perfectly general is 

therefore 

12 
nm 

00 k+l 
Aoo k+3 k+l {\ 

2(k + 3) y + BooY + Re ~ (
A.om 2 
- y 
K2 

om 

I ( K ) + B k + 1) imft 
k+l omY omY 

m 1 2 

00 00 k+l 

+l l 
-

(K2 ~U:2t2 Ik+l ( n,cy-) )i( n-fz+mft) 2 1k+l (~y) + B y run 
n 1 m=O run 2 2 

00 00 k+l 

+l l - (2 
C 

Ik+l(n,cy-J)i(n-fz•mft) . 2 run 
1k+l ( 1nnY) + Drun y _ n2,t2 

n--..:1 m 1 run 2 2 ~g) 

It is assumed in this solution that K2 - n2-l2 I= 0 and that run 
_ n2,t2 I= 0. From ( 40) it can be seen that 

K2 n2,t2 i~ n,Eo- - mf) and 12 _ n2{2 i( n,Eo- + mf) 
run V run V 

so that , if n,Eo- - mf = 0 then K2 - n2-l2 = o, and if n,Eo- + mf = O then 
run 

1~ - n2{2 = 0 . The first of these conditions is possible but the 

second is not since all the ~uantities concerned are positive. This 

condition will be dealt with later in section 4 . 3.6. 

The arbitrary complex coefficients A , B , C and D in 
run nm run nm 
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equation (48) can be determined from the condition (10) namely, that the 

fluid on the boundary has the same velocity as the boundary, togethe r 

with the condition that the pressure drop per wavelength is P cos ft. 

If the expressions for ykw and* given in (43) and (48) are 

substituted in equation (8) then the following· result is obtained~ 

ap 
ax 

00 

- µ A00(k + 1) - pRe {l 
m 1 

n 1 m=O n 1 m 1 

00 00 

+ µRe {l l (Fm(y)ei(n--tz+mft) + ~(y)ei(n--tz-mft))}, 

n 1 m=O 

It follows that 

1 A ap dz 
ax 

0 

if y is kept 

J
A 

2.£ d ax z 

constant during the integration . Hence for all values of y , 

is the same, i. e . the change in pressure per wavelength is 
0 

t he same for ally. If this change in pressure is - P cos ft then 

-P cos ft . 

( 49) 

This result is similar . to that obtained in the simpler case treated in 

4.1 which leads to equation (18). 
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If the coefficients of cos mft and sin mft in (49) are compared 

then the following results are obtained : 

and 

Aoo = o, 

B 
01 

Bom = 0 

iP 
Apf( k + 1) 

form 2, 3 ... 
' 

( 50) 

Thus the constant B
01 

is known in terms of the prescribed pressure 

gradient , i . e . in terms of P and f . The remaining boundary condition 

(10) at the wall leads to equations sufficient to determine the remaining 

arbitrary complex coefficients in terms of B
01 

and~-

It becomes convenient at this point to give separate discussions 

of the two cases of channel flow and pipe flow . It is also convenient 

to define new coefficients . 

For channel flow, k 0 and the stream function in (48) becomes 

00 

b 0 oY + Py sin ft + Re {\ 
Apf L . h K imft a 0 m sin omye 

00 00 

ml 

. h K b . h O ) in{z sin noY + no sin n~y e 

sinh K y + b 
nm run 

. h P~-) i( n{z+mft) sin n,Lo' e 

' 
( 51) 
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A 

~o:rr where 
om 

for m = 1 , 2 boo BOO ' a - -- . . . 
' 

-om K2 
om 

A 

~:7T ' /n-ir nm 
b = B for n = 1, 2 ( 52) a - . . . nm ~ _ n2--f2 nm nm 

m = o, 1 . . . 
' 

cnm J;., 2 7T ' d D /nZrr for n = 1, 2 C - -nm 12 _ n2,e2 nm nm 
nm nm m = 1 , 2 

For pipe flow, k = 1 and the stream function in (48) becomes 

00 

b 00 p~2 {l \jr = - y2 + Y s in ft + Re 
2 2Apf 

m 1 

I l (K y ) + b I l (nfy)) ein.-fz no no 

+ \c I (L y) + d 11 (n,fy)) ei(n-fz-mft)} , ( 53) nm l nm nm 

A 
whe r e a

0
m om 

for m = 1, 2 b = 2B - . . . 
' oo' K2 00 

om 

A 
nm 

b Brun ' for n = 1, 2 a -
' 

-
( 54) nm K2 n2{2 nm 

nm m = O, 1 . . . 
' 

C 
cnm 

d = D for n = 1, 2 -
' ' 

. . . nm 12 n2--f2 nm nm 
nm m = o, 1 . . . . 
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4.2 .1 Evaluation of the complex coefficients anm, bnm' cnm, dnm 

The remaining complex coefficients a , b , c and d can be nm nm nm nm 

determined in terms of P, f and~ by using the boundary conditions (10) 

on the wall of the tube in a similar way to that developed in 4 .1 .1 and 

Appendix A. However two factors make this analysis more complicated . 

Fir stly, if~ is not assumed small , then the expression fort 

contains cos n,£,z and sin n,£,z terms and this doubles the number of 

coefficients . This means that instead of having two infinite sets of 

coefficients an and bn there would be four infinite sets an, bn' en and 

d . The presence of both cos n,£,z and sin n,£,z terms also doubles the 
n 

number of equations obtained when comparing coefficients of cos n{ z and 

sin n{z so that a solution is still possible . 

Secondly, if the :pressure gradient varies sinusoidally with time 

with frequency f and tis assumed to contain cos mft and sin mft terms, 

for all m, then the four infinite sets of coefficients an, bn' en and 

d become the four doubly infinite sets a , b , c and d . 
n nm nm nm nm 

When the boundary conditions (10) are applied then two equations 

are obtained similar to equations (27) and (28) or (29) and (30) of 

4.1 .1 . If the -coefficients of cos mft and sin mft are compared in these 

two equations then each one gives two more equations so that for each 

value of m there are four equations which are sufficient to determine 

the coeffici ents needed in the solution. For the perturbation solution 

an analy s i s similar to that of Appendix A shows that 

... 
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00 00 

l --e_ n +2t l ~ n+2t 
a - anmn+2t( ~) ' b - ~nmn+2t( ~) ' nm nm 

t=O t=O 

( 55) 
00 00 

l t n+2t l t n+2t 
C - lnmn+2t( ~) ' d - 5nrnn +2t ( ~) · nm nm 

t=O t=O 

fur~~""--~ 
The per turbation solutionAto order (i ~) 2 has~been found for both J-

,~~ :-..,...._ C.0.~2(:{~C 
channel flow and pipe flow.~ '"The relevant coefficients are as follows : d 
k ~~ ~ F Vv~~J1,/V'ff'J~J ~ ~ J.Jf,vu._v'.,-~ 4-•2·~ ~ ~ ~ '. 
For channel flow : 

A - 0 , f--'ooo 

oioi 

~lll 

iP a omo 

- o- cosh -{h 

- 0 for m ~ 2, 

- K cosh K h sinh {h - { sinh K h cosh =th' 
10 10 10 

o-K cosh K h 
10 10 

- { ( Kio cosh Kl
0

h s inh -01 - { sinh K10h cosh {h)' 

-iPK tanh K h sinh -{h 
01 01 

for m ~ 2, 

iPK tanh K h sinh K h 
01 01 11 

- 0 for m ~ 2, 

iPL tanh L h sinh -{h 
lill - 2Apf{( Lll cosh 1:: h sinh ~~ - { sinh Li 1 h cosh Tu) ' 

l1m1 = O for m ~ 2, 

( 56) 

( 57) 

( 58) 

( 59) 

( 60) 

( 61) 

( 62) 

.. 
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- 21-pf{( Lll cash Lll h sinh {h - t sinh Lll h cash -01) J 

-iPL tanh L h sinh L h 
Ol Ol 11 

olll = 0 form~ 2J ( 63) 

( 64) 

02 p {( 2 02) 
ao12~ Kol cash Koih - 4.Aµ - 2 Kll - ~ O:i.11 sinh Kllh 

- }( L~l - t 2
) 5lll sinh ~ J ( 65) 

-
where olll is the c omplex conjugate of o11 l J 

and 
a0 m2 - O form~ 2. ( 66) 

For pipe flow : 

A - OJ 1--'ooo ( 67) 

iP 
= 0 for m ~ 2J ( 68) aOlO -

1-pfK0l I 0( K0l h) J a omo 

-crI0( ~) 
( 69) 4-0l -

- {I ( K h) I ( {h) J K I 0 (K h)Il({h) 
lO lO l lo o 

crK I 0( K h) 
t3l 01 {(Kl o Io( Kl oh) 

lO lO 
( 70) -

Il ( -01) - { I1 ( Kloh) I
0
({ h)} J 

O'.:i.1l 
- iPKOl Il ( KOl h) Il ( ~) -

21-pf:f'., I (K h) (K I (K h) I ( -01) - { I ( K h) I ( {h) } J 0 Ol ll O ll l l ll 0 

a lml = 0 for m ~ 2J ( T-L) 

iPK I ( K h ) I ( K h) 
t3lll - Ol 1 01 1 ll 

21-p f { I ( K h) ( K I ( K h) I ( {h) - { I ( K h) I ( -01) } J 0 01 11 0 11 1 1 11 0 

t31m1 = O for m ~ 2J ( 72) 



34. 

iPL I (L h) I ( -01) 
Ol l Ol l 

'Y = 0 
/ lffil 

for m ~ 2, ( 73) 

- iPL I (L h) I (L h) 
Ol l Ol l ll 

~\mi = 0 f or m ~ 2, ( 74) 

2(3 t + Re { CT:i. 01 Kio 11 (JS_ oh) + ~101{2 11(,hi)} - o, 
002 

( 75) 

4iµ {i - I ( K h) } 
a {2K I 0( K h) l Ol - K h I ( K h) Ol2 Ol 01 01 0 01 

_ ,t(K2 
2 11 - t2) CTi11 I1 ( K11 h) 

- {,(12 
2 11 - {,2) 6111 Il(-01), ( 76) 

and 

CXOm2 - 0 form ~ 2. ( 77) 

Since ex , cx1m1 etc . are all zero form~ 2, it follows that* omo 

to order (~/h) 2 does not contain any terms in cos mft and sin mft for 

m ~ 2 . It can be shown that this is also true in the perturbation 

solution for* to any power of ~/h so that some simplification could 

have been achieved by assuming that m takes only the values O and l in 

the expression (36) for* and (37) for (D. 

so that the denominator of the expressions for 

CX:i_ 01 and (3101 can be zero only if ,t = o, which is of no interest , or if 

~ = O, the fixed wall cas e , which will be considered later in 4.3.3. 

The denominator of the expr essions for 0:i_ 11 and (3111 is zero only 

-
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l'f K2 = {2 , i . e . if {er - f = O and in this case the alternative solution 
11 

discussed later in 4 . 3 . 6 must be used . 

The denominator of the expressions for y and 5 is never zero, 
111 111 

if~ is non zero . 

L1 . . 2 . 2 Calculation of the f lux through th tube 

The average flux per wavelength, ~, can be calculated by evaluating 

w on the boundary and integrat ing it with respect to z over one wave-length . 

In general , this average flux will consist of two parts , one independent 

oft which will be called the net flux, the other a linear function of 

cos ft and sin ft , Jk ,,._.}; ~ U> ~ f:o ~ '~ 1 cl_~ 
~ /7L_ ~~ (/j %Lu._~ fl_~~~ 

The expression for~ thus obtained is similar to that of 4.1.2 

namely, 

-The expressions for w
0 

and w2 have been calculated for the general 

case and are as follows: 

For channel flow : 

·p tanh K h-
ift} Wo 

Ph sin ft + Re . ti 01 ( 78) Apf ApfK 
e , 

01 

- - h2 Re {th (t2 sinh {h K2 
<Xioi) 'V ~101 + sinh K h 

2 10 10 

K tanh K0 lh ift ~p 
+ 01 

2f e AP 

+ ,t sinh {h [( {er - f) ~ - ( {er + f) 5 J~ ) } · 
111 111 ' 

( 79) 
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For pipe flow : 

-
'V 0 

Ph2 { iPh I ( K h) ift} 
- 2Apf sin ft+ Re A fK lI f~ h) e , 

p 01 0 01 

iP I 2 ( K h) 
1 01 ift 

e + 
K h I ( K h) 

01 1 01 
2f I ( K h) 

0 01 

ift 
e 

( 80) 

( 81) 

where the expressions for as._
01

, ~
101

, ~
111 

and 5
111 

are given in 4.2.1 . 

It can be seen, from (40), that K~
1 

= if/v so that, in both channel 

flow and pipe flow, ~o is dependent on P and f but independent of G 

which is consistent with the simpler case of peristalsis with constant 

pressure gradient . 

It can also be seen that K~
0 

= ~2 - i{G/v so that the first term in 

1jr2 for channel flow and pipe flow depends on G but not on P and f. 

However , Kf1 = { 2 - i({G - f)/v and Lf1 = ~2 - i(W + f)/v so that 

~111 and 51 1 1 depend on both G and p . This means that there are inter

action terms in 1jr as well as tenns which depend only on G or only on 
2 

P and f . 

The net flux in this general case for channel flow is: 

where~ and~ are given by (58) and (59) , 
-'J. Ol 1 Ol 
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For pipe flow the net flux is 

- ~ Re {{2 I (-Ol)A K2 I (K h) } ~ l 1--'l Ol + l O l l O (Xl Ol J 
( 83) 

where CS.oi and t3ioi are given by (69) and (70) . 

4.3 Average flux in particular cases 

It is now useful to consider the ave age flux through the tube in 

the particular cases which can be derived from the general case already 

discussed . These cases are listed in Table 1 below) together with the 

sections in which they are considered. 

o- large 

o- small 

Table 1 

Peris tals is 

Os c pg Const pg Zero pg 

4.2.2 

4. 3. 4 

4.3.1 

4.1 . 2 

4.3.2 

4.1 .2 

Fixed Wall 

Osc pg Const pg 

4.3.3 

4.3.3 

4.1. 2 

4.1 . 2 

One other particular case J namely the flux through a uniform pipeJ 

is discussed in 4.3.5. 

It was shown in 4.2 that the solution for~ was not valid when 

n{o- - mf = O; the solution which is valid in this case is given in 4. 3.6. 

4.3.1 Peristalsis, constant pressure gradient, o- large 

This particular case can be derived from the general case by letting 

f ~ 0. If this is done ) then) for channel flow *o from (78) tends to 



Ph3 - Ph 4 

3
Atl and for pipe flow) *o from (80) tends to 161\+l and these agree with 

the values obtained in 4 .1 . 2 for the~ small case . 

-The first term in *2 is independent of P and f so is not affected 

by letting f tend to zero . The limit as f tends to zero of the second 

part of* can be found easily and it turns out that , 
2 

for channel flow : 

( 84) 

- - h3 Re {i (t2 where *2 - sinh {h r3i 01 + K~ 
0 

sinh K
10

1:J CXi, 
01

) 

for pipe flow ~ 

-
* 

where 

p 0+ 2Aµ v( K 

Re{~ (t2 

1lAµ 0 + 

lO 

i~ -01 sinh Kl h sinh {h 
0 

cosh K h sinh {h - ~ sinh K h 
lO 10 

11 ( {h) 13101 + Kf o 1 1 ( Ki oh) CXi. 01) 

( 86) 

v[K 
lO 

2i~ ~h Il(K10h) I 1 ({h) ) } 
I ( K h) I ( -01) . - { I ( K h) I

0
( -01) ] 

0 lO l l lO 

( 87) 

This average flux is independent of time and so it is also the net 

flux . If the approximation ~/{v = o(l) is now made then the resulting 

average flux agrees with that given by Burns and Parkes (1967) and in 

sect ion 4 .1 . 2 . 
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4.3.2 Peristalsis , zero pressure gradient , ~ large 

This particular case can be derived either from the general case 

or from the case discussed in 4.3.1 by putting p = 0 . If this is done 

then for channel flow 

-- Re 1..,: 
~h

3 {02 
2 

and for pipe flow, 

sinh -0113 l lO + K~ 0 sinh K1 0 h '\oi} ( 11/h) 2 , 

4.3.3 Fixed wall , sinusoidal pressure gradient 

( 88) 

( 89) 

This particular case can be derived from the general one by letting 

-
~ tend to zero . If this is done then *o given by (78) or (80) is not 

affected and the first term in~ given by (79) or (81) tends to zero. 
2 

-The limit as~ tends to zero of the second part of *
2 

can be found 

easily giv ing the f ollowing results : 

For channel flow, 

= - h2Re {iPK01 tanh Ko1 eift (1 
2Apf 

For pipe flow, 

Ol ol ll K tanh K h sinh K h sinh -01 )} 
_K_l _l _c_o ....... s=h- K_l _l h--s '"""inh;;;..__-Ol-...------:e,.,.=.;:s=-i-nh--K-l-l-h- c-o-s-h--.-Ol- ' 

f. PK h I ( K h) . ft ( Ol l Ol l 

2Apf I
0

(K h) e l 
Ol 

K I ( K h) I ( K h) I ( -01) 
Ol l Ol l l l l 

( 90) 

( 91) 
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Thus the average flux to order (~/h) 2 through a tube with fixed 

sinusoidal walls and sinusoidal pressure gradient is*= *o + *
2

(~/h) 2 

where , for channel flow, w
0 

is given by (78) and *
2 

by (90) while for 

pipe flow , ~o is given by (80) and *
2 

by (91) . In this case the average 

flux is oscillatory and there is no net flux . 

4. 3 . 4 Peristalsis 2 oscillatory pressure gradientz o- small 

This particular case is derived from the general case by taking 

O-/{v = o( l) and f / t 2 v = 0(1) . In both channel flow and pipe flow* 
0 

is independent of o- and so is not affected by this approximation. 

From (40), 

and 

K2 
11 

12 
11 

s o that K11 and 111 are the same as in the o-

Kio - ,t2 - i{o-/ V so that KlO ~ -{ -

. sinh K10h ~ sinh -0i - io-h 
cosh {h, 

2V 

cosh K10h cosh -01 - io-h 
sinh -Oi, ~ --2 V 

I o( K1oh) I ( -Oi) io-h 
I' ( -{h), ~ - --0 2V 0 

I1 ( Kl oh) I ( -01) io-h ' and ~ - I 1 ( -{h) . 1 2v 

if 
-+ ,l2 + -

V 

if 
-+ ,{2 -

V ' 

0 case (4 .3.3). 

io-; 
2V ' 

If these expressions are substituted in w
2 

given by (79) or (81), 

and o-2 is neglected, the following results are obtained~ 
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For channel flow , 

where *o i s given by (78) and 

- h2Re {~{2h (2~h + sinh 2{h) + iPKoi tanh Kolh eift (1 
2 \2-01 - s inh 2-01 2 A.pf 

For pipe fl ow, 

, 

Ol OL 11 
K tanh K h sinh K h s inh {h ) } 

_K_l_l_ c_o_s~h~K-l_l_h_s_i..::;nh:...=-.....,:f'..,....h--__,{.,...._ -=s:.a:i:-n_h_ K_l_l_h_ c_o_s_h_ {h,.,...- ; 

~o is given by (80) and 

iPK h I ( K h) 
ol l Ol 

K I (K h) I (K h) I ({h) Ol l ol l ll l 

( 92) 

( 93) 

In this case , with~ small, the interaction term disappears and so 

the average flux consists of two parts , the net flux due to the moving 

walls and an oscillatory flux due to the oscillatory pressure gradient. 

If now f ~ 0 then the average flux given in this section tends to the 

simpler case of peristalsis with constant pressure gradient discussed in 

4 .1 . 2 . 

4. 3. 5 Flux through a uniform pipe 

The flux due to a sinusoidal pressure gradi ent through a uniform 

pipe of radius h can be found from (80) , i . e . , ~
0

, by replacing P by 

P0 A where P0 is the pressure drop per unit length . If this is done, 
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then the flux through the pipe r educes to 

pf { 

2i 1
1 

( K 
1 

h) 
sin f t + Re K h 1 (~ h) 

01 0 Ol 

( 94) 

This expression agrees wi th that derived by Womersley and given in 

McDonald and Taylor (1959) if the appropriate changes in notation are 

used. 

4. 3. 6 Solution when n{.o- - mf = 0 

It was shown in 4.2 that equation (48) is only valid if 

K2 - n2 { 2 f O and 12 - n212 f O and it was also shown that nm nm 

K2 n212 - 0 if n{.o- - mf = 0 but that 1 2 - n2 12 is never zero . 
nm nm 

If n{.o- - mf = 0 then (40) gives K = ni and (44) is changed to 
nm 

2 

but only for the critical values of n and m satisfying n{.o- - mf - O. 

The solution of (95) is 

( 95 ) 

which) by appropriate change of coefficients gives) for channel flow) 

*nm - anmy cosh ni y + bnm sinh n,qr ( 96) 

and) for pipe flow) 

*nm - \anmy I 0 (n,f;y-) + bnm I1 (n{v)) ( 97) 



The stream function, therefore , for channel flow is the expression 

given in (51) for all m and n except those critical values satisfying 

the condition n-to- - mf = O, and then, for these values only, expression 

(96) must be used . 

Similarly for pipe flow, the stream function is the expression 

given in (53) for all m and n except the critical values for which (97) 

must be used . 

If m = 0 is one critical value then n = 0 must be the other and 

this is not applicable. If m = 1 is one critical value then n = f/,to

and so the critical value for n could be any positive whole number. 

However, in calculating average flux to order ~2 , the only critical 

value that needs to be considered is n = 1. Thus the special case 

f ={a-is the critical one and this is the case when the frequency of 

the pressure fluctuation is equal to the frequency of oscillation of 

the wall. If both of these frequencies are zero then the problem reduces 

to that of flow through a tube with fixed walls and constant pressure 

gradient discussed by Burns (1965) using solutions of this kind. 

The only coefficients that need to be changed are a
111 

and ~
111 

and 

these become, for channel flow, 

a 
1 

K2
1 

sinh K h sinh -01 
0 0 0 Ol 

t( s inh 2-01 - 2-01) 

and ( 98) 

~lll 

a
010 

K2 h sinh K h cash -01 
01 01 

{( sinh 2{h - 2-01) 
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and for pipe flow) 

CS.11 

a K2 I (K h) I (1Ji) 
OlO Ol l Ol l 

f3lll 

a K2 h I ( K h) I (-01) 
010 01 l 0 1 0 

( 99) and 

The average flux~ is still given by 

with ~o and ~
2 

given by (78) and (79) for channel flow and (80) and (81) 

for pipe flow but with t:3
111 

as defined in (98) and (99), 



5. Numerical Calculations of Flux2 Streamlines and Velocity Dis t ribu t ion 

The computations done so far have been of an exploratory nature. 

As was to be expected, they have shown that more detailed calculat i ons 

are needed to ob~ain the full range of resul t s available from the theory. 

It is hoped that these calculations will be carried out later. 

In the first part of the numerical calculations dealing with the 

simple case 4.1 the two causes of motion have been treated separately, 

i . e. peristaltic flow with no pressure gradient, given by putting P = 0 

and flow through a fixed tube with a prescribed pressure gradient given 

by putting rr = 0. 

5.1 Peristalsis, Zero pressure gradient 2 rr small 

5.1.1 Flux through tube 

In the case of channel flow the non- dimensional flux ~/rr has been 

calculated both to order (~/h) 2 and to order (~/h) 4 for a range of 

values of the two non- dimensional parameters t~ and 111. These results 

are displayed in Figure 2 by showing the graphs of ~/rr against the rati o 

~/h for values of~ ranging from 0·25 to 2·0. 

For pipe flow, the non-dimensional flux { 2 */rr has been similarly 

calculated and the results are shown in t he same way in Figure 3. 

Throughout the development of t he theory there has been an i mplicit 

assumption that conditions ensuring the convergence of the vari ous 

processes are satisfied. It is clear that, for a given value of ~' 

a perturbation solution in powers of ~/h can be expected to converge 
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only for values of ~/h not exceeding s ome value depending on -01 . 

Physically of course ~/h < 1 . 

It can be seen from Figures 2 and 3 that, for each value of -OiJ as 

~/h increases) the curves for the non- dimensional flux to order (~/h) 2 

and to order (~/h) 4 begin to diverge appreciably which suggests tha t the 

limit to the convergence of the process has been r ea ched. The calculations 

have also been carried out to order (~/h) 6 and the curve for~/~ to this 

order lies between the curves for~/~ t o order (~/h) 2 and to order (~/h) 4
. 

This suggests that the curve for order (~/h) 2 is the upper bound and the 

curve for order (~/h) 4 is the lower bound. 

A point has been indicated for each value of -OiJ where the (~/h) 4 

term first becomes one tenth of the (~/h) 2 term. He nce if the application 

of the pert urbation theory is limited to values of ~/h below those 

indicated then t he flux through t he tube will be known to an accuracy of 

better than 10%. This is an arbitrary criterion of course and Taylor 

(1951) uses 25% instead of 10%. 

It will be seen from Figures 2 and 3 that the indicated value of 

~/h decreases as -01 increases . 

Figure 2 shows that if ~/his constantJ the non-dimensional flux 

per unit length normal to the plane of motion through a channel of mean 

breadth h, for a given wave velocity~ and given wave- length A, is 

roughly proportional t o h (i . e. to the area of the cross-section). If 

~ is constant then the flux per unit length is roughly inversely 

propor tional to h. 



Figure 3 shows that if ~/his constant, the flux through a pipe 

of mean radius his similarly roughly proportional to h2 (i.e. to the 

area of cross - section) and that if~ is constant then the flux is 

roughly independent of h. 

These results can be expressed in a different way be defining a mean 

velocity u related to the average flux w by t = Au where A is vh2 , 

the mean cross- sectional area for pipe flow, and is h, the mean cross

sectional area per unit depth normal to the plane of motion for channel 

flow . A plot of u/~ as a function of ~/h for channel flow and pipe flow 

is displayed in Figure 4. 

5.1.2 Streamlines 

Figure 5 shows the streamlines in two dimensional flow for the case 

,bi= 0 · 25 and ~/h = O· l taking w to order (~/h) 2 • The streamlines have 

only been drawn for positive y but of course they are symmetrical about 

the z-axis which has been taken as w = O. The streamline w = 0 in 

addition to lying along the z-axis, also runs approximately perpendicular 

t o the z- axis at -tz = 0 · 56V and {z = 1·44v where z = 0 corresponds to a 

peak on the boundary. 

At the boundary, y 

t he y- axis. 

h +~ cos {z, the streamlines are parallel to 

5.1.3 Velocity Distributions 

Figures 6 and 7 show the distribution of the velocity parallel to 

and perpendicular to the axis of the channel in two dimensional flow 
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for the case ,£h = 0 · 25 and ~/h O·l. In both directions the flow is 

symmetrical about tz =~(i . e. a trough in the boundary). The maximum 

velocity for the case considered is 0 ·1 6~ along the axis of the channel 

and 0 · 25~ at the boundary) perpendicular to the axis. 

5 . 2 Fixed boundary with prescribed constant pressure gradient (i.e . ~ = 0) 

5 , 2 .1 Flux through tube 

The ratio ~/~
0 

has been computed .for both channel flow and pipe 

flow for several values of ,£hand plotted against ~/h in Figures 8 and 9. 

In each case the flux is given to order (~/h) 2 and to order (~/h) 4
. 

As in the case of peristaltic flow the curves for */*
0 

to order 

(~/h) 2 and to order (~/h) 4 diverge appreciably. Points have been 

indicated on the curves where the (~/h) 4 term first becomes one- t ent h 

of the (~/h) 2 term s o that) for values of ~/h below those indicated) 

the flux through the tube will be known to better than 10%, 

It should be noted that increasing the amplitude~ for a given h and 

t has opposite effects in the two cases considered. In peristaltic 

motion) the flux through the tube increases with~ but with a p r escribed 

pressure gradient and fixed boundary, the flux decreases as ~ is incr ea sed. 

The flux of a viscous fluid through a uniform two-dimensional channe l 

or through a uniform pipe of circular cross-section is given by ~o which 

is tbe value of~ when~= 0. 

For two dimensional flow the flux per unit length normal t o t he 



plane of motion through a uniform channel of breadth 2h is 2*
0

, while 

for axi- symmetrical flow the flux through a uniform pipe of radius h 

is 2~Wo · *o is given in the two cases by (34) and (35) and the values 

given there can be expressed in terms of the original quantities by 

using (21 ) , (22) and (18) noting however that P, the pressure drop over 

a wave length should now be replaced by P
0 

2~/twhere P
0 

is the pressure 

drop per unit length . The resulting values of the flux are 2P
0
h 3 /3µ 

for the channel and 77P h 4 /8µ for the pipe. 
0 

These are the well- known values obtained by solving the full 

Navier- Stokes equations of motion. For this , simple type of flow, all 

the non-linear tenns vanish and the Stokes equations give the flow 

exactly. 

5 . 2.2 Streamlines 

The streamlines in this case of steady flow follow the expected 

pattern, i . e . approximate cosine curves whose amplitude increases from 

zero on the axis of symmetry to~ on the boundary. Consequently they 

are not included in graphical form. Neither are the velocity distributions. 

5 . 3 Peristalsis, Zero pressure gradient, ~ large 

5.3.1 Average flux through tube 

The average flux through the tube in this case for channel flow 

was derived in 4 . 3.2 and is given by 

-013 { - - 2 Re t 2 s inh -01 A + K2 
f--'lol lO 

sinh K ha. } 
io -i 0 1 ' 

( 87) 
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where a
101 

and ~
101 

are defined in (58) and (59). 

Here K2 
lO 

i{o-/v and sow is not simply propor t ional torr as i t 

was in 5.1 with rr small . (87) can be written in a convenient non-

dimensional form as 

-w 
V 

This non-dimensional flux can then be computed for various values of t he 

non-dimensional parameters -01 and ~h/v. These computations have been 

done for two values of -01, namely 0·25 and 1, and for several values of 

~h/v from O· l to 10. 

With -01 = 0·25 the non- dimensional flux to order (~/h) 2 for~ l arge 

does not differ significantly from the rr small case (see Figure 2) for 

~h/v up t o 10 . With -01 = 1 the non-dimensional flux to order (~/h) 2 f or 

rr large is bigger than in the~ small case (see Figure 2). This differ ence 

is negligible for rrh/ V = 1 but increases to 1 7% for rrh/ v = 10. 

Similar calculations will be done for pipe flow, but p r evious work 

suggests that the results will be similar to channel flow. 

The average flux to order (~/h) 4 has not been derived for t he 

general case simply because of t he tedious algebra involved. However, 

in view of what has been done so far, it seems unlikely t hat there will 

be much difference in ~
4 

for t he two cases, ~ large and rr small . 

Several references t o p eris t altic motion in the body have been 
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found but none of them gives the amplitude of the progressive wave. 

Houssay (1955) gives the wave velocity for the ureter as 2 t o 3 cm/sec . 

with frequency 3 cycles/min . which corresponds to a wave-length of 

about 8 cm or t = o· 8 cm-
1 

The calibre of the ureter apparently varies 

along i ts length , but an average value of the radius (i . e. h) would be 

1 cm. The viscosity of the fluid also varies but an avera e value would 

be about 0 · 2 in cgs units. Using these rather rough values gives 

-01 = 0·8 and ah/ v = 12· 5 so that for this case the "er small" approximation 

given in 4.1 and 5,1 would be good enough . 

It should be remembered that the expr es sions derived may not be 

valid if er is very large because this may produce velocities which are 

so large that "squares of velocities" in the Navier- Stokes equation (3) 

cannot be neglected. 

5, 4 Fixed boundary, sinusoidal pressure gradient 

5. 4.1 Average flux through tube 

The average flux t o order (~/h) 2 f or channel flow was derived in 

4.3.3 and is* *o + *
2

(~/h) 2 where ~o is given by (78) and ~
2 

by 

(90). It can be wr itten in non- dimensional form as follows~ 

-01 V 
[sin ft+ Re t tanh K h 

eift} Ol - - -
2Tr fh2 K h 

01 

tiK h tanh K h ift (1 - Re Ol Ql 
2 

e 



if/v and K2 
ll 
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This non- dimensional flux can be computed for various values of the 

non-dimensional parameters {hand fh
2
/v. The computations have been done 

for fh
2

/ v = 0 ·125, -01 = 0 · 25 and 1, to order (~/h) 2 and (~/h) 4
• They 

have also been done for fh
2
/v = 0 · 5, -01· = 0 · 25 and 1, to order (~/h) 2 

only. 

This non- dimensional flux is of the form A cos ft+ B sin ft or 

~A2 + B2 cos(ft - E) where A and Bare power series in (~/h) 2 and 

E = tan- l B/A· Hence a pressure difference of -P cos ft per wave-length 

produces an average non dimensional flux of ~A2 + B2 cos(ft - E) and 

there is no net flux. 

The amplitude of the non-dimensional flux is displayed in Figure 10 

as a function of ~/h to order (~/h) 2 and (~/h) 4 where appropriate. The 

curves begin to diverge appreciably just as they did in the previous 

cases showing that the limit to the convergence of the various processes 

has been reached. This range of convergence decreases as fh
2
/v increases. 

Over the range of values of ~/hand -01 considered, the phase angle Eis 

almost constant but depends on fh
2/v. For fh

2/v = 0·125, E = 2·5° while 

for fh
2
/v = 0 · 5, E = 11° so that the phase angle is approximately 

proportional to fh2/v over this range. 

For pipe flow the non-dimensional flux µw can be computed for 
Ph3 

various values of the non-dimens i onal parameters -01 and fh
2
/v. These 

computations have been done for fh2/v = 0·125, 0·5 and -01 = 0·25, 1 
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to order (~/h) 2 only and are shown in Figure 11. The phase angle E, 

defined as for channel flow, is O for fh2 /v = 0·125 and 4° for f h2 /v 0 . 5 . 

It can be seen in Figures 10 and 11 that the effect of increasing 

~/h, i . e . of making the walls more deeply corrugated, is to reduce the 

to and fro surge of the fluid in response to the fluctuating pressure 

gradient. 

It can also be seen from Figures 10 and 11, that the effect of 

increasing fh
2
/v is to decrease the surge in the case of channel flow 

but to increase the surge in pipe flow. Further, more detailed, 

calculations may prove this effect to be spurious. 

5.5 Peristalsis with sinusoidal pressure gradient 

-
In order to calculate the av~rage non-dimensional fluxµ~ through 

Ph2 

a channel derived in 4.2.2 for rr large and in 4.3.4 for rr small , i t i s 

necessary to specify the four ~uantities -01, rrh/v, fh
2 /v and µV/Ph2 . 

These calculations will be done later. 
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6. Direct Calculation of the Coefficients an) bn 

The perturbation solution is only valid for ~/h up to about 0·4. 

It would be interesting to have a solution which is valid for larger 

values of ~/h so that more detailed information could be gained about 

the nature of the flow for large~· 

The problem is to calculate the coefficients an and bn in the 

stream function (23) for channel flow and (25) for pipe flow. A method 

of doing this has been tried for the two cases of (a) peris t altic flow 

with zero pressure gradient along a channel assuming~ small) and (b) 

fixed walls with constant pressure gradient. 

The method was to compute the coefficients cnr) hnr) knr) Pnr and 

qnr in the set of equations (31) and then to solve the equations for an 

and bn . This set of equations is a doubly infinite set of linear 

algebraic equations) but a s an) bn are Fourier coefficients and tend to 

zero as n increases ) it seems reasonable to seek approximate solutions 

by retaining only a small number of the coefficients and enough equations 

to solve for t hem. It should be possible t o judge the accuracy of these 

s olutions by comparing the results as the number of coefficients retained 

is increased. 

6.1 Evaluation of the coefficients cnr) etc. 

For channel flow the boundary conditions on the wall lead to the 

f ollowing equations: 
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00 

a
0
y~ + b

0 
+ l {an( cosh n{y1 + n{y1 sinh n{y1 ) 

n 1 

( 27) 

00 

l {an n{y 
1 

cosh n{y
1 

+ n-f:bn sinh n{y
1

} sin n-fz - {11cr sin -fz , ( 28) 

n--J. 

where y = h +~cos {z. 
l 

These equations can be written as 
00 

b + l ( an Rn+ -OJn Kn) cos n{z 2 - aoyi' 0 

n 1 

00 

l ( an P n + ,£,bn Qn) sin n-fz - ,£,,icr sin -fz, 

n 1 

K - n cash n{y, n l 

pn - nty
1 

cash n,£,y 
1

, 

Qn - n sinh nty
1

. 

Expanding cash nty and sinh nty gives 
l l 

(cash n{h + nty sinh n{h) cosh(nt~ cos {z) 
l 

+ (sinh n{h + nty cash n-01) sinh(n~ cos {z), 
l 

Kn - n cash n{h cosh(nt ~ cos {z) + n sinh n-01 sinh(n,£,~ cos {z), 

(100) 

(101) 

- n,£,y cash n{h cosh(nt ~ cos {z) + n--cy- sinh n-01 sinh(ntri cos {z), 
l l 
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n sinh n~ cosh(nt ~ cos {z) + n cash n~ sinh(nt ~ cos {z ). (1 02) 

The coefficients of an and -OJn in (100) and (101) can be expanded as 

Fourier cosine and sine series as follows : 
00 

Hn cos n{z - l h cos r{z, nr 
r=O 

00 

Kn cos n{z l knr cos r{z, 

r=O 

00 

pn sin n{z - l Pnr sin r{z, 

r 1 

00 

Qn sin n{z - l qnr sin r{z. (1 03) 

r 1 . 

If these series are sub s tituted in (100) and (101) and rearranged 

so that terms in sin r{z and cos r{z are collected together, then the 

following equations are obtained: 
00 00 00 

\ (a h + -0) k ) + L n no n no l l 
n 1 r-1 n 1 

(1 04) 

00 00 l l ( an Pnr + ,b,n qnr) sin dz tiicr sin {z. (1 05) 

r 1 n 1 

Finally equating coefficients of cos r{z and sin r{z in (104) and 

(105) gives the following equations: 
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00 

b + I ( an hno + -llin kno) - -a0 ( h2 + \rf) J 
0 

n l 

00 

I ( an hni + -OJn knl) - -2a
0

h11, 

n l 

00 

I ( an hll2 + -OJn kll2) - --k.0112
, 

n=l 

00 

I ( an hnr + -OJn knr) - 0 for r = 3, 4, 5 . . . ' 
n l 

00 

I (an Pm + {bn q_ni) - t11 cr, 

n l 

00 

I (an Pnr + {bn qnr - 0 for r = 2, 3, 4 .. 6l (106) 

n l 

These eq_uations which appeared in slightly less detail as (31), are 

the set of eq_uations which needs to be solved for an and bn. 

Burns (1965) pointed out that 

( ) {
cos 2tx cosh p cos x . 2t = sin x 

00 

12t(p)} + \ [r (p) 
0 ~ 2jt-mj 

+ I ( )] {cos 2mx 
- 2(t+m) p sin 2mx' 

ml 

00 

sinh ( P cos x) {~~: ;!~ = I fir 2t-2m-l I (p) ± I2t+2m+l ( p)] {~~: g::il ~ ' 
m=O 

00 

{
cos (2t+l)x \[ 

cash (p cos x) sin (2t+l)x =~ I2jt- mj(p) 
m=O 

+ I ( ) ] {cos (2m+l)x 
- 2(t+m+l) p sin (2m+l)x' 
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sinh (p cos x) {cos( 2t+l)x = 12t+l(p)} 
sin(2t+l)x 0 

00 

+ I [II 2t- 2m+l I (p) ± 12t+2m+l (p)] {~~~ ~: · (107) 

ml 

Substituti on of (107) in (102) and comparison then with (103) gives 

the coefficients hnr ' knr' Pnr and ~nr for any r or n . They can be 

calculated to any desired accuracy and so the infinite set of equati ons 

(106) can be solved to any desired accuracy simply by taking n large 

enough in the approximating finite set. However it is not clear how 

large n should be in any particular case. 

6 . 2 Application of the method 

The method was inves tigated by considering firstly the case of 

peristaltic fl ow with zero pressure gradient in a channel with -01 = 0·5, 

t~ = O·l, 0·2 and 0 · 4, and secondly t he case of fixed walls with constant 

pressure gradient f or the same values of -01 and t ~o 

Initially it was assumed that only values of n ~ 1 and r ~ 1 need 

be considered and the three equations to which (106) reduces under this 

assumption (with a
0 

= O), namely) 

and o, 

were solved for a1 /~, -OJ1 /~ and b 0 /~. Having solved these equations ) the 
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average non- dimensional flux~/~ was then calculated. 

The next step was to consider values of n ~ 2 and r ~ 2 and then 

(106) reduces to five equations, namely, 

a1P11 + {bl qll + a2P21 + -OJ2q21 t 11~, 

a1P12 + {b]. Cl12 + a2P22 + {b2q_22 o, 

a1h11 + {bl kll + a2h21 + {b2k21 o, 

al h12 + ~lkl2 + a2h22 + {b2k22 o, 

bo + a h + --£b k + ah + -OJ k o. 
1 10 1 10 2 20 2 20 

then~/~ was calculated. 

The method was repeated for n = 3 and n = 4. The coefficients and 

flux in each case are given in Table 2. It can be seen from this table 

that the method works, and that the values of the coefficients and flux 

converge at a rate which depends on 11/h. For 11/h 0 · 2 the convergence 

is rapid as is apparent from the first two lines of the table; for 

11/h = 0·4 the convergence is not so rapid and all four lines of the 

table are needed; for 11/h = 0·8 stability has not been reached. 

The flux is also given in Table 3 together with the flux derived 

from the perturbation method. For 11/h = 0·2 and o·4 the two es t i ma t es 

agree very well and differ by less than 2%. When comparing the flux for 

TJ/h = 0·8 it should be remembered that the perturbation method is not 

valid in this case. However, it was suggested in 5.1.1 that the true 



60. 

flux should lie between the values to order (~/h) 2 and to order (~/h) 4 

and the values given by the direct method do this . 

The velocity along the tube has also been calculated using the 

coefficients in Table 2 and converges more slowly than the flux . This is 

illustrated in Table 2 by giving the veloci ty on the axis at z = O. 

The method has also been used for the case of fixed walls with 

constant pressure gradient and the results are given in Tables 4 and 5. 

Conclusions similar t o those for peristalsis apply also to these results. 
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7. Other Boundary Conditions 

The boundary conditions (10) used throughout the thesi~ reQuire 

that the wall of the tube be extensible . In the case of peristalsi s 

with constant pressure gradient and~ small, the eQuations have also 

been solved for boundary conditions similar to those used by Taylor (1951). 

In the case of two dimensional flow these correspond to an inextensible 

wall. 

and 

These boundary condi tions are, to order (t~) 4
, 

u 
~ 

( t11) 4 

32 
(( tll) 2 - ( tg) 4) cos 2-f'.z 

( t11 - ( -f)f) sin -f'.z + ( t g) 
3 

sin 3-f'.z 

on y h +~cos -f.z. 

(108) 

The difference between the two solutions is very small and can be 

ignored. 
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8. Conclusion 

The general case of peristaltic motion of a viscous fluid wi t h a 

sinusoidal pressure gradient has been investigated assuming Stokes flow. 

A perturbation solution has been derived for the stream function in the 

two cases of channel flow and axi-symmetric pipe flow. Various particular 

solutions have then been derived from the general one. Some numerical 

results have been obtained which give an indication of the range of 

convergence of the solutions. 

The flux through a tube has been derived as a series in powers of 

the square of the relative variation in the radius) i.e. (~/h) 2
• It has 

been shown that) for a moderate range of ~/hJ a reasonable estimate of 

the flux can be obtained by using the first two terms of the series. The 

streamlines and velocity distributions have also been calculated for a 

particular case of peristaltic flow through a channel with zero pressure 

gradient. 

For applications to peristaltic motion this moderate range of 

convergence may not be an irksome restriction although no data on the 

relative amplitudes in naturally occurring peristalsis has yet been 

found. For the flow of blood along arteries a ratio of ~/h = 0 · 04 i s 

given by McDonald and Taylor (1959). Nevertheless) particularly for 

flow through fixed tubes with constant pressure gradient and for 

peristaltic flow with zero pressure gradient) it would be desirable to 

have solutions for values of ~/h outside the range provided by the 

perturbat ion solution. 



A more direct numerical approach has been tried for determini ng the 

coefficients in the Fourier series for the stream func t ion. The method 

appears to be promising . For small ~/h not many coefficien t s are ne eded 

and this method and the perturbation method agree very closely. For 

larger ~/h, where the perturbation solution is invalid, more coefficient s 

are needed and it becomes impractical t o do all the calculations 

without the aid of a digital computer . 
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Appendi x A 

Evaluation of the coefficients a and b 
n n 

A. l . Channel Flow 

The boundary conditions on the tube wall lead to the following 

eq_uations for channel flow: 
00 

a i: + b 
0 l 0 + l [(~ 

n 1 

+ n-Olnl cosh n{yl + n{anyi sinh n{yi] cos n--fz = 0 

( 27) 

and 
00 l [anyl cosh ntyl + bn sinh n,fyl J n sin n{z 

n 1 

~er sin { z , ( 28) 

where Yi= h +~cos {z . 

Cosh n{yl and sinh n{y
1 

can be expanded as powers of 

00 

cosh nty cosh n{h l ( n{!) cos {z)2r 
+ sinh n{h l 

( 2r) ! r=O 

00 

sinh n{y - sinh n{h 
l 

\ ( n{ ( cos --fz ) 
2

r + h o,_ L 2r) 1 cos n·u1 

r=O 

cos {z as f ollows: 

00 

{ {z 2r+l 

l ( n !] cos ) 

( 2r + 1) ! r=O 

00 
2r+l \ ( nt n cos {z ) 

L ( 2r. + 1) 1 
r=O 

If these expressions are substituted in equations (27) and (28 ) 

then the left hand side of (27) and (28) will consist of terms of the 

form cosp .{z cos n.-tz and cosp { z sin n{ z respectively. These i n 

turn can be expressed as cosine and sine series and coeffici ents of 

corresponding terms compared giving equations which can be solved for 

a and b as .power series in {n . To illustrate the method a and b will n n ·, n n 

) 



be determined in detail as far as{~ . 

Assume (-t~) 2 and higher powers can be neglected. Then equation 

(27) leads to 

a 0 (h2 + 2h~ cos {z) + b0 + [(a
1 

+ {b
1

)( cosh -01 + { ~ sinh -01 cos {z) 

+ -fa1 (h +~cos {z)(sinh -01 + -t~ cosh -0, cos {z) J cos {z 

+ [(a2 + 2-tb2 )(cosh 2-0i + 2{ ~ sinh 2-0i cos {z) 

+ 2-fa2 (h +~cos {z)(sinh 2{h + 2{~ cosh 2-tb cos {z) J cos 2{z 

+ •.. o. 
It can easily be seen that the following terms appear: 

gives 

constant, 

cos {z , 

cos2 {z = ~(l + cos 2~z), 

cos 2tz , 

cos 2{z cos {z = !(cos ~z + cos 3{z), 
2 

cos 3{z, 

cos 3~z cos {z = !(cos 2{z + cos 4--f..z), 
2 

etc . 

Equating the coefficient of the constant term to zero therefore 

a 0 h2 + b 0 + ~(a1 + {b1 )~~ sinh -01 + ~{a1 ( ~h cosh -01 + sinh ~h)~ = 0. 

(Al) 



gives 
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Similarly) equating to zero the coefficients of cos ,Ez and cos 2~z 

Equation (28) leads to 

sin --ez[a
1
(h +~cos {z) (cosh {h + {~ sinh {h cos {z) 

+ b1 (sinh -01 + {,~ cosh {h cos {z) J 

(A2) 

( A3) 

+ 2 sin 2--ez[a2 (h +~cos {z)(cosh 2-01 + 2{,~ sinh 2-01 cos {z ) 

+ b
2
(sinh 2-01 + 2{,~ cosh 2-01 cos {z ) J 

+ 3 sin 3{z[a3 (h +~cos {zJ(cosh 3{h + 3{,~ sinh 3{h cos {z) 

+ b3 (sinh 3{h + 3{,~ cosh 3{h cos {zJ J 
+ .. . = T)Cf sin ,Ez . 

It can easily be seen that the following terms appear: 

sin {z J 

sin {z cos {z = ~ sin 2,£.z.J 

sin 2{zJ 

sin 2{z cos { z = !(sin ,Ez + sin 3,£.z), 

sin 3{z, 

sin 3{z cos {z = !(sin 2,£.z + sin 4{z), 
2 

etc . 



The equations obtained by equating coefficients of s in {z 

a1 h cosh -ft + b
1 

sinh -01 + a r{ 2-01 sinh 2-01 + cosh 2-01) 
2 

+ 2b
2

t11 cosh 2-01 - 0-11 J 

and 

1 a
1 

11( -ft sinh -ft + cosh -ft) + ~ b1 -f11 cosh -01 + 2a
2

h cosh 
2 

+ 2b
2 

sinh 2-fh + ~ a 3 11(3-fh sinh 3-01 + cosh 31J:1) 

+ ~ b3 3t11 cosh 3-01 = 0. 

Now let . . . ' for n = lJ 2J 3 . . . ' 

and • • • J for n = OJ 1, 2 

and sin 2-f.z are 

( A4) 

2-fb 

( A5) 

Then if the coefficients of powers of -f11 are compared, equations (Al), 

(A2), (A3), (A4) and (A5) each lead to a pair of equations, i.e. to 

the following ten equations: 

a h2 + B = o, 
0 00 

(A6) 

+ ~
0

(2-fb cosh 2-fh + sinh 2-01) - o, ( A9) 

( a + 2-fB ) cosh 2-01 + a 2-01 sinh 2-01 - o, 
20 20 20 

(Al o) 

1 

+ J( CT.so + 3~) 3 sinh 3,ih + ~ a
30 

( 3-01 cosh 3{h + sinh 3th) = O, 

(All) 
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~ 0 h cash -01 + ~10 sinh -01 o, 

0:i_
1

h cash -01 + ~11 sinb -01 + ~(2~h sinh 2-01 + cash 2-01) 
t 

+ 2~20 cash 2-01 - 1, 

2a h cash 2-01 + 2~ sinb 2~h - o, 
20 20 

a 
~ f ( ~h sinh -01 + cash -01) + t~io cash -01 + 2o;

21 
h cash 2-01 

a 
+ 2~21 sinb 2-01 + ~ {o (3~h sinh 3~h + cosh 3-01) 

o. 

(A12) 

(A13) 

( A14) 

(A15) 

Clearly (A8) and (A12) show that ~o and ~10 are zero; (A7) then 

shows that ~
01 

is zero; (Alo) and (A14) show that a
20 

and ~20 are zero. 

~
00 

is given in terms of a
0 

from equation (A6); 0:i_ 1 and ~11 are given 

in terms of a 0 and~ by equations (A9) and (A13). 

This method can be extended to give an and bn as power series in ~T) 

for all n and to any desired power of ~-T) and if this is done it turns 

out that 

and 

(t n+2t 
~n n+2t T)) 

' ' 

for n = 1, 2, 3 ... , 

for n - 0, 1 , 2 . . . . 

If the coefficients a and b are needed to order (~T))n then it 
n n 

( n + 1) ( n + 2) follows that 2 equations are needed but it turns out that 



these can be solved in pairs. Detailed calculations will be given for 

determining the coefficient s to order (~~) 2
• 

The six equations needed are 

a h2 + A = 0 , 
0 f--'00 

~ 1 (cosh -01 + ,hi sinh ~h) + t2s11 cosh ~h - - 2ha0 , 

C\
1 

-01 cosh -01 + -ft311 sinh -01 - O", 

t 2 o: ( 2 sinh -01 + -01 cosh -01) + · ~3 f3 sinh {h + a + 2 f3 - 0, 
ll ll O 02 

{ 2 ~
1

(2 sinh -01 + {h cosh -01) + t 3 f3
11 

sinh ~h + a
0 

+ 2t2 a
22

( cosh 2-01 + 2-01 sinh 2-01) + 4t 3
~ 2 cosh 2-01 = O, 

~
1 

( cosh -01 + -01 sinh -01) + t2f3
11 

cosh -01 + 4t2 a
22

h cosh 2-01 

+ 4~·f3 sinh 2-01 = 0 . 
22 

Clearly (A6) gives f3 = -a0h2 , 
00 

(A16) and (A17) give <:xii 
2( 2ha0 sinh -01 + O"t cosh -01) 

{ (sinh 2~h - 2-01) 

( A6) 

( AJ..6) 

(Al 7) 

(A18) 

(Al9) 

(A20) 

(A21) 

and 
2[2h2 a 0 cosh -01 + O"(cosh {h + -01 sinh -01)] 

{( §inh 2-0i - 2-01) 
(A22) 

(Al8) then gives f3
02 

in terms of a 0 and O". (A19) and (A20) can then be 

solved for a and A in terms of a
0 

and O". These evnressions are 22 f--'22 ~'-.1:' 

long and cumbersome and so will not be included here. 
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A. 2 Pipe Flow 

The boundary conditions on the tube wall lead to the following 

equations for pipe flow . 
00 

ao~ + bo + I [(2an 
n l 

+ n{bn)I0 ( n-tY-1 ) + n{any1 I
1

(n,fy
1

) ]cos n{z = o, 
( 29) 

00 I [any1 I
0

(n-tY-1 ) + bn I 1 (n-tY-1 ) J n sin n--Cz - ~~ sin ,Cz . (30) 
n l 

00 

=I 
r=O 

where I ( r) ( n{h) 
0 

00 

' 
I1 (n~ = I I~r) (n-bi) (n-tn ~~s 

r=O 

etc. 

If these expressions are substituted in equations (29) and (30) 

then a similar analysis to that done for channel flow leads to the same 

conclusions , i . e. 
00 

I { n+2t a - a +2t( ri) ' n n,n n = 1, 2, 3 .. . , 

t =O 

and 
00 

b I ({ n+2t - ~n n+2t ri) ' n 
' 

n - o, 1, 2 .. .. 

t=O 

It also leads to similar expressions for ~
00

, CT:ii and ~
11

, i.e. 

~00 (A23) 



oii -

T-L . 

[2a
0
h I

1
( ,bi) + {10 ( 111) ~] 

t 2h tI~( -01) - I
0

( -0l)I2( -01) ] 

2a
0
h2 I

0
( -01) + [2I

0
( 111) + -01 I

1
( -0l) ]~ 

~ll - {_2h[I2( ~h) - Io(-Ol)I (-01) J 
l ~ 

The expressions for the higher coefficients are more cwnb ersome . 

(A24) 

( A25) 
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Appendix B 

Calculation of the flux through the tube 

B. l Channel Flow 

The flux through the channel is found by evaluating the stream 

function ~(zJy) at a point on the boundary Yi= h +~cos ,£.z , and 

subtracting from it the flux on the axis ~(z,O) which was made zero. 

By symmetry, thenJ the total flux through the tube is 2~(z,yl). 

Equation (23) gives 
00 

; a
0
y: + b

0
yl + I {anyl cash n-{;y-l + bn sinh n-1'yi} cos n-l'z 

n l 

which givesJ assuming ({~) 3 can be neglected, 

l a h3 + l a hn2 + A h ~ A h~n2 
3 0 2 0 ' I ~00 ~02 'I 

where f(~) and g(~) are function ~ of~ and independent of z. 

This gives the flux as a function of z . A more useful quantity is 

the average flux per cycle and this can be found by integrating ~(z,yl) 

over one period. There are two ways of looking at this which give the 

same result: for a given t integrate ~(zJyi) with respect to x from 

x = 0 to x - A or for a given x integrate ~(z,yl) with resp ect tot 

from t = 0 to '2:rr/{~· 
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A 
If this is done then f f( TJ) cos -fzdz 

0 

A 
- [ g( 11) cos 2--P zdz = 0 

lo 
and so 

If (A21) is substituted for a then 
11 

-
\V - 2 a h3 

3 0 

p{ 
where a 0 = - 41rµ . 

B. 2 Pipe Flow 

h3[ (sinh 2-0i - 2-01 cash 2-fh) 
ao \ sinh 2{h - 2{h 

_ {
2

cr (sinh 2-fh + 2-fh) J (21)2 

2 sinh 2-0i - 21'.h \h ' 
( Bl) 

The flux through the pipe is found in a similar way. If (t11) 3 is 

neglected then equation (25) reduces to 

,1,( z y ) - 1 a h 4 + ~ a h2 n 2 + ! A h2 + ! A n 2 + ! A {
2 n

2 h2 
~ J 1 4 0 4 0 ' I 2 ~00 4 ~oo' 1 2 ~02 ' I 

As in (Bl), 

( B2) 

wher e a 0 

p{ 
= - ~. 
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Table 2 

Peristalsis , coefficients and flux through channel) direct method 

-01=0· 5 t11 = O· l 11/ h = 0·2 

a1/ o- a2/ o- a3/ o- a4/ o- bo/ I {b1/ {b -0) 
-OJ 4/ 0-

{;jr 
2/ 0- 3/ 0- la- , µla-(0)0) o- I a-

- 1 · 2437 · 0597 ,1 · 5403 ·0303 . 3563 

-1 · 2943 · 0943 · 0609 l · 5835 - · 0637 
· 0~28 1 

- · 0302 1 · 3170 

· 0962 ,0067 · 0609 1 · 5828 ,0638 I 
-1 · 2939 - - · 0303 ·3200 

-1 · 2946 · 0964 - · 0069 · 0005 . 0610 11 · 5837 - -0640 · 0027 - ·0002 •0304 1 · 3196 

-01 = O· 5 t11 = 0·2 11/h = 0· 4 

- 2· 2658 ; · 21 72 2 · 8564 ·1139 ·8078 
-2· 6103 · 3413 · 2320 3-1470 - ·2335 ,1136 · 6430 
-2· 6275 · 3902 - · 0595 · 2319 3.1576 - ·2494 , 0289 .1132 · 6806 
-2· 6245 · 3906 - , 0670 · 0104 · 2316 3 · 15 42 - ·2480 .0294 -· 0040 ·1131 · 6717 

-01=0 · 5 t11 = 0· 4 11/h = 0·8 

-3·3427 · 6306 4. 5016 · 3738 l · 7895 
- 6· 0115 l · 3260 •8790 6· 9455 -1 · 0135 · 4048 1·1120 
- 7· 0815 2·4491 - · 5975 , 8885 7,8229 -1 · 5265 · 3462 •3858 1·4671 
- 7· 2968 2,8475 -1 · 0983 · 2668 ·8756 7· 9931 -1 · 6365 ·4970 - ·1314 ,3764 1-2803 



Table 3 

Peristaltic flow through channel with -01 = 0· 5 

Comparison of flux(~/ ~) using both methods 

Perturbation Direct Method 

ri/h O( TJ/h)2 0( ri/h) 4 n=l n = 2 n = 3 

0·2 · 0310 · 0302 · 0303 · 0302 · 0303 

0·4 ·1241 ·1114 ·1139 ·1136 ·1132 

0·8 · 4964 · 2933 · 3738 · 4o48 •3858 

n = 4 

· 0304 

·1131 

.3764 



Table 4 

Fixed walls . Constant pressure gradient 

Flux through channel and coefficients , direct method 

t n = O· l n/h = 0·2 

ai/a 1a2/a as/a a4/a bo/a lbi/a b2/ a bs/a b4/a 
1 

*/a u/a (0)0) o o o o o o o o o I o o 

i I I I 
- ·5737 1 1-· 2251 ·6222 i - i -· 0732 l -· 1766 

. 5844 1 -0293 j - -· 2250 -6290 -- 0178 : - 1 -
1 -·0733 I -· 1868 

. 5842 : -0296 -- 0019
1 

-
1-- 2250 , · 6287 -- 0176 i·ooo8 : - , -· 0733 I -- 1866 

· 5845 1 · 02961 -- 00181 -0004 !-- 2250 1 -6290!-. 0177 ! · 0006
1

-· 00021 -· 0733 ! -· 1866 

-1 · 4857 
-1 ·8159 · 2500 

-01 = 0· 5 t n = o.4 n/h = o· 8 

I - '-· 0142 :1 · 6662 - I -
l-· 0090 ~1 -8727 -- 1665 -

I - -0238 i ·1664 
-· 0815 -· 0352 

I I 

-1 ·8654 -3615 -· 0734 1 - -· 0153 ·1 · 8918 -· 2022 •0386 - i -· 0014 , 0106 

-1 -8479 ·3779 - -11381 -0250 1-· 0200 11 -8706 -- 1985 · 0469 -- 01141-- 0033 I -- 0102 

N. B. a
0 

is negative 



Table 5 

Fixed walls . Constant pressure gradient -01 = 0· 5 

Comparions of flux ( */ a 0 ) through channel using both methods 

--· -- - - ... -. - . 8----- -- . - - - - ----

Perturbation Direct Method 

ri/h o(11/h)2 0( ri/h) 4 n=l n = 2 n = 3 n = 4 

·2 -· 0728 - · 0734 -·0732 -·0733 -·0733 -·0733 

· 8 +· 0846 - ·0546 +·0238 - · 0815 - · 0014 - · 0033 

N. B. a
0 

is negative. 
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