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SUMMARY

This thesis is concerned with the asymptotic theory of general
M—estimators and some minimal distance estimators. Particular attention
is paid to uniform convergence theory which is used to prove limit
theorems for statistics that are usuallyAimplicitly defined as solutions
of estimating equatiomns.

The thesis is divided into eight chapteré and into three main
sections. In Section A the theory of convergence is studied as a prelude
to Validating'the use of the particular M-estimators given in Section B
and C. Section B initially covers theAview of robustness of Hampel
(1968) but places more emphasis on the application of the notions of
differentiability of functionals and on M-estimators of a general para-
meter that are robust against "tail" contamination. Sectibns A and B
establish a Base for a comparison of robustness and application aspects
of minimal distance estimators, particularly with regard to their
application to estiméting mixtures of normal distributions. An important
apﬁlication of this is illustrated for the analysis of seismic data.
This constitutes Section C.

Chapter 1 is devoted to the‘study of uniforﬁ convergeﬁce theorems
over classes of functions and sets allowing also the possibility that
the underlying probability mechanism may be from a specified family.

A new Glivenko-Cantelli type theorem is proved which has applications
later to weakening differentiability‘requirements for the convergence
of loss functions used in this thesis.

For implicitly defined estimators it is important to clearly
identify the estimator. By uniform convergence, asymptotic uniqueness
in regions of the parameter space of solutions to estimating equétions

can be established. This then justifies the selection of solutions



through appropriate statistics, thus defining estimators uniquely for
all samples. This comeé under the discussion of existence and con-
sistency in Chapter 2. Chapter 3 includes central limit theorems and
the law of the iterated logarithm for the general M-estimator,
established under various conditions, both on the loss function and on
the underlying distribqtion. Uniform convergence plays a central role
in showing the validity of approximating expansions. Results are shown
for both univariate and multivariate parameters. Arguments for the
univariate parameter are often simpler.or require weaker conditions.

Our study of robustness is both.of a theoretical and quantitative
nature; Weak continuity and also Fréchet differentiability with respect
‘to Prokhorov, Lévy and Kolmogorov distance functions are established
for multivariate M-functionals under similar but necessarily stronger
conditions than those required for asymptotic normality. Rglationships
between the conditions imposed on the class of loss functions in order
td attain Fréchet differentiability and those necessary and sufficient
conditions placed on classes of functions for which uniform convergence
of measures hold can be showﬁ. Much weaker conditions‘exist for almost
sure uniform convergence and this goes part way to explaining the
restrictive nature of this functional derivative approach to showing
asymptotic normality.

In Chapter 5 the notion of a set of null influence is.emphasized.
This can be used to construct M—functionéls robuét (in terms of asymptotic
bias and Qariance) against contamination in the "tails“ of a distribution.
This set can depend on the parameter being estimated and in this sense
the resulting estimator is adaptive. Its comnstruction is illustrated
in Chapter 6 for the estimation of scale. Robustness against 'tail"

contamination is illustrated by numerical comparison with other



M-estimators. Particular applications are given to inference in the
joint estimation of location and scale where it is important to identify
the root to the M-estimating equations. Techniques justified by uniform
convergence are used here. Uniform convergence also lends itself to the
use of a graphical method of plotting "expectation curves'". It can be
used for either identifying the M-estimator from multifle solutions of
the defining equations or in large samples (e.g. > 50) as .a visual indica-
tion‘of whether the fitted model is a gobd approximation for the under-
lying mechanism. Theorems. based on uniform convergence are giveﬁ that
show a doméin of convergence (numerical analysis interpretation) for the
Newton-Raphson iteration method applied to M—estimating‘equations'for
the location parameter when redescending loss functions are used.

The M—-estimator theory provides a common framework whereby some
minimal distance methods can be compared. ‘Two established L2 minimal
distance estimators are shown to be general M-estimators. 1In particular
a Craméf—Von Mises type distance estimator is shown to be qualitatively
robust and have good small sample properties. 1Its applicability to
some new mixture data from geological recordings, which clearly requires

robust methods of analysis is demonstrated in Chapters 7 and 8.




SECTION A: CONVERSENCE AND LIMIT THEORY

CHAPTER 1

THE THEORY OF UNIFORM CONVERGENCE

§1.1 Basic Definitions

Terminology and results basic to later discussion are given in
this section. .The "observation space' is denoted by R, and it is
assumed to be a separable metric space. B? B we mean that smallest
o-field éontaining the.class of open sets on R generated by the
metric on R. It is called the Borel o-field on R. va R 1is
Euclidean k-space, Ek, the sets B are called k-dimensional Borel Sefs.
A distribution on R 1is a non-negative and countably additive set
function, u, on B, for which g(R) =1, and it is well known that on E
there corresponds a unique right continuous function F whose limits
are 0 .and 1 at -«, 4o, defined by F(x) = p{(-=,x]}.

As usual (Q,A,P) denotes an abstract probability space, i.e. A
a o-field of subsets of §, with P a probability measure on A. @ is
thought of as the sample space and elehents of Q, denoted.by w, are

the outcomes. Then a sequence of random variables on @ is defined via
 §(w) = Xle),Xz(w), ..... X (w),en.n. , (1.1)

taking values in the infinite product space (Ré,Bm). The observedb

sample of size n is then written
(xl(w), ..... X (W) = “(n)<>X(w) ,
W

while the n'th random variable is giVen by Xn(w) = ﬂnc)X(w). Both

(n)

. . 00
m and m,are then measurable maps with respect to B . They induce



(n)

diéﬁributions G and Gn respectively on R",B") and (R,B).
Theorems concerning equivalent representations of infinite sequences of
random variables and probability measures are found in Chung (1968,
P.54-58).

We use the symbol G to denote the space of distributions on

(R,B). The sequence X 1is independent and identically distributed

v
(i.i.d.) if there exists a G € G such that G, =G, n=1,2,..... ,
and for every A(n) = Alx ceeee ><A_n € g"
" .
J @) ac™ - [ dG ..... j dG
A A, A
1 n

The two modes of convergence of a sequence {Xn} of random variables
on (2,A,P) to a random variable X on that same probability space,
convergence in probability and convergence with probability one, are
‘defined in the usual way. Convergence with probability one, or almost
sure convergence, apriori implies convergence in progébility. But for
clarity we give the following formulation that helps to relate state-

ments about events to almost sure convergence.

DEFINITION 1.1: Sequences of statements Al(Xl),Az(Xl,XZ),....L are
said to hold for all‘sufficieﬁtly large n (f.a.s.l.n.) if
Plof U N1 A & @,..... X (W)} =1,
m=1 n=m
and a'seQuence {Tn(Xl,...,Xn)} of measurable maps Tn : R® > M, where

M 1is some metric space, converges almost surely to T if and only if

for every n > 0 the sequence of statements

d(Tn(Xl,...,xn), T) < n - n = 1,2,....7 ,

d the metric on M, holds f.a.s.l.n..




For an account of this definition see Foutz and Srivastava (1979).
From the definition we have an immediate lemma concerning sequences of

statements occurring in conjunction

LEMMA 1.1: Let sequence of statements
Al(Xl), AZ(Xl’XZ)""" , and
By (X)), By(X X)) ,ee. ..

both hold f.a.s.l.n.. Then the sequence of statements Al(Xl)r\B (Xl),

AZ(Xl,XZ)rWBZ(Xl,X ) hold f.a.s.l.n..
PROOF: Let A= U ) A, B= 1 [ B. Then J dP(w) =
: m=1 n=m m=1 n= ANB

The result follows from the identity

'AﬂB={U ﬂA} {U ﬂB}=lj ﬁ(AnﬂBn)

m=1 n=m m=1 n=m m=1 n=m
Expectation of a real valued random variable on (Q,A,P) is
oo .
written EX = [ X(w)dP(w) = J xdG(x), where G is the induced
Q —c0

distribution function on the real line. The variance ié denoted by
var X = E[(XfEX)Z]. A fundamental result that is used frequently is the
strong law of large numbers (S.L.L.N.), a classical expression of which
can be found in Loéve (1955, P.239). General extensions to the S.L.L.N.
to normed linear, Fréchet, and Hilbert spaces for sequences of un-
correlated random variables are given in Padgett and Taylor (1973).
Nagaev (1972) examines necessary and sufficient'conditions for the
S.L.t.N.. Application of the S.L.L.N. is exemplified by taking f to
be any real valued measprable map with domain R, and % an i.i.d.
sequence of random variables on (Q}A,P) taking values in R. Then
since f(Xl),f(kz),.i..., forms an i.i.d. sequence ofirahdom variables

on E, if E|f(X)]| <=



f(Xl) +..... +£(X) a.s.
- Ef(X) —™ 0. (1.2)

This "ergodic property" is known to hold for much more general sequences
%. Hannan (1970, P.202) presents the mixing condition as sufficient for
ergodicity of a stationary séquence. Breiman (1968, P.105) notes that
meaéurable transformations of a strictly stationary process are strictly
stationary. So for any measurable f with EIf(Xl)| < o, and strictly
stationary ﬁiking sequence X the ergodicity (1.2) is retained. Loeéve
(1955;‘P.423) states that a stationary process % is ergodic,if and
only if it is indecomposable, that is, if its invariant o-field consists
of ¢ and Q only,‘up to an equivalence.

| The Q#her major convergence is that of convergence of measures on
the general space (R,B). We consider the mode of weak convergence
described in Billingsley (1956). 1In particular we use the foilowing

characterization of weak convergence

PROPOSITION 1.7: The following statements are equivalent:
. =
1w Zw, _
2) 1imn_)Oo un(A) = u(A) for each continuity set A of wu, and

(3) . for each bounded and uniformly continuous function ’g(x)

on R,
limn_m J gdun = Jgdu.

This can be found in Alexandroff (1943) or Billingsley (1956).

The empirical distribution function will be the distribution
(random) that assigns atomic mass 1/n‘ to each point of.the sample
X = (Xyyeenn. ,X). We label it F_(x,w), and abbreviate it to F_(-)
for most purposes. A result of Varadarajan (1958) states that for an

ergodic sequence he with marginal distribution G,

| P{m|.Fn(-,w)=$ G} =1. : (1.3)



Therefore if we have estimators which are functions of the sample,
Tn(xl’ ..... ’Xn)’ that can be written as functionals T[Fn], they will
converge whenever the functional satisfies a continuity property in
the topology of weak convergence. Invoking (1.3) and using the
"deterministic" approach ofvweak convergence can be sufficient for
showing convergence of functionals T[Fn]’ But it is not always
necessary to assume this weak continuity.

We let estimators and/or functionals take values in subsets of

r . .
Euclidean r-space, E . For a vector 1z = (zl""’zr) S Er; we denote

. ) .

the usual Euclidean norm of z by (zl-l-...-l-zi)/5 = "%H. For an
' 1

arbitrary n*m matrix A we write, [A] = {trace(A'A)}?.

§1.2 Uniform Convergence on Classes of Sets and Functions
Frequently we have a sequence of points {Tn} that converge to T

in some sense, but our interest lies in the convergence of

sup. & o [E(T) =~ £(D ],

for Qﬁ a class of real valued functions on R, or more generally the

almost sure limits of
mmfea|deﬂx“deQ ,

where G is the underlying marginal probability disgribution. This
convergence is of particular interest in statistical inference where P
is a family of probability measures {Pele € 0}, so that 0 C Er, and
we wish to find consistent asymptotically normal estimates of some

underlying 60 € 0, when samples ¥(n) are generated from Pe .
o

The classical theorem of uniform convergence of measures on sets

is that of Glivenko and Cantelli which asserts that

P{mllimn+® sup IFn(x,w) - G(x)|‘= 0} =1, (1.4)_

_oo<x<®.



for % a strictly stationary ergodic sequence. The proof stems from

the S.L.L.N. applied to the sequence of indicator function values

{ k

I(—w,x](Xi)j:=l' Extensions of the Glivenko-Cantelli theorem to E
space and more general sets have been carried out by Wolfowitz (1954),
Rangé.Rao (1962), Topsoe (1970) and Elker, Pollard, and Stute (1979).
All of these authors consider the theorem for closed half.spaces Ek.
Rao uses Varadarajan's result (1.3), and examines classes for which weak
convergence implies uniform convergence. >Billingsley and Topsoe (1970)
follow up this approach and investigate thebnecessary and sufficiént

condition for a class Q@ of functions to be a P-uniformity class;

that is a class Q for which if {Pn} are such that P =P, then
lim .supfeaJ depn - deP‘ =0 .

To describe their result let Ué(x) be the open sphere with center x
and radius 6. We adopt this common notation throughout. Then denote
the oscillation of a function f on a set B by Wf(B), and WaﬁB)

is the oscillation of thé family of functions, i.e.
wa(B) = sup{wf(B)|f € Ay,

We call 36 E(f). the &,e-boundary of the function £, the set of

j .
points x in R such that wf(US(x)) > €. The necessary and sufficient

condition is stated in Topsoe.

PROPOSITION 1.2 (Billingsley and Topsoe): (b is a P-uniformity class if
and only if

W R) <w,
and

limé_)o SqueaP(aé,E(f)) =0,

holds for all € > 0.



10.

If (L denotes the class of indicator functions of a class U C B
U is called a uniformity class. A uniformity class of sets with respect
to a distribution G will be automatically a Glivenko Cantelli class;

a class D for which

‘ a.5.
dF_(x,0) - ;( dG(x)| — 0 ;

sups |f i

D
but the converse need not be true (Example 2 of Elker, Pollard, and
Stute).

So it is important to recognise the delineation between probability,
or almost sure results, and those implied by weak convergence. The
latter provides a convenient avenue for arriving at results of the former,
but is not necessary. Topsoe does point out though that if one can show
the class U to be a uniformity class with respect to the continuous
part of the probability measure G, it is automatically then a Glivenko
iCanﬁelli class. Particular clasées of sets that have been investigated

k
are the convex measurable subsets on E .

PROPOSITION 1.3 (Fabian 1970): Let E° be the Borel sets of EX, C the
set of all convex measurabie subsets of Ek. Let {un} be a sequence of
measures éonverging pointwise on C to a measure u on Ek. Suppose .
u(C-c® =0, for any C € C with .6 and c° deﬂoting closure and
interior of C. Thén {un} converges to u uniformly OQTVC.

The result wés proved as an if and only if result assuming My =y
by Rao (1962, Theorem 4.2).‘

"Generalizations of the Glivenko Cantelli theorem to dependent
sequences have been carried out by Tucker (1959). He coﬁsiders the case
where the stationary sequence may not be indecomposable. His result is
stated

P{w|sup [Fn(x,w) - 6| — 0 =1,

n->«

-0y <o




S

11.

whére G(x|T) denotes the conditional distribution function of Xl
given T, the invariant o-field of events of é. Rao (1962) considered
the extension to the collection of half spaces in Ek.

Also Rao illustrates that uniform convergence over classes of
functions almost surely need not reqﬁire the class to be a uniformity
class. To describe his result in its generality we say a sequence of

random measures {Xn(A,w), A(A{w); n=1,2,...} on R, possesses the

' "ergodic property" if for each real valued function g(x) on R, for

which
EJ lg(x) |A(dx,w) < =,
then

: f i
lim J g(x)dx_ = J g(x)dx  a.e. (1.5)

PROPOSITION 1.4 (Rao 1962, Theorem 6.4): Let. X be a strictly
stationary sequence and denote G(dx,w) the random measure associated
with the conditional expectation (as in that of Tucker). Set QA to

be an equicontinuous class of continuous functions and g(x) a con-
tinuous function on R such that |f(x)| < g(x) for each f € A and

1+a <

x € R. Suppose EIg(Xl)[ © .for some a > 0, then

(a) P{limn n, = 0}

00

Il
o

(b) lim__ En_ * =0,

where

f(Xl)+-...+~f(Xn)
n, = sugfe o - - J f(x)G(dx,w)

The proof of this proposition relies on the more general expres-
sion of the S.L.L.N., in Birkhoff's ergodic theorem (c.f. Loéve 1955,
P.421). A result that clarifies the nature of the random measure-

G(dx,w) is found in Blackwell (1956). For an indecomposable sequence
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G(dx,w) is the constant measure dG(x).

Since functions f are permitted to be unbounded clearly Q is
not required to be a uniformity class with respect to any measure. To
impress on the reader the action of the S.L.L.N. in this result we
give the proof for an ergodic sequencé % of real valued random
variables. This also serves the purpose of familiarizing us with a

useful technique to be used later.

PROOF: Denote C = (-c,c] and c' its complement. Since g is

integrable (g € Ll(C) in symbols), givenr ¢ > 0 there exists

0 < ¢ < » such that } gdG < g/2. Since (L is equicontinuous on
c' ‘

[-c,c], given arbitrary n > O there exists a finite partition

for which a; | X <y<a; implies |f(x)-—f(y)| < n for every

fE€Q@, and i =1,...,m. Consider the possibly improper distribution

% . . . _ . . =
G attrlbutlng weight G(gi) G(ai-l), to the points xg (ai4-ai_l)/2?
i=1,...,m. Then clearly
% m |
]J fdG’—J £fdG| < = J [£(x,) - £(x)|dG(x)
-+ = . i
C C i=1/(a, ,,a.,]
i-1°71i

< n(G(c) =G(-c)) < n . . (1.6)

Let oa(c) = supclg(x)| < o and F: be analogously constructed from Fn'

Then

m
sup IJ de"’—J £dG*| < alc) = J d(F_-G) |
AR T e i=1 J(a,_j,a,1 "

<n f.a.s.l.n., (1.7)

a.s. :
since F_(x)-G(x) — 0 for every x € E by the S.L.L.N.. We

deduce from (1.6) and (1.7) that

SuprECl|JCiEdFH - ch dG| < 3n f.a.s.l.n. . (1.8)
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Finally

' supfeaJ deFn—deG| < sup-fea]J C'f an-JC' f dG |

.
-mefedjcfdafwgfdﬂ

»<J g dF +J“ g dG + sup ]] f dF —I fdGI
ct g FEQ )" T g

< e + 3n f.a.s.1l.n.

d.S.

This is true from (1.8) and since J ngn — J g dG by the S.L.L.N.
c' c'

Only the S.L.L.N. were necessary in this proof of the proposition,

not a Glivenko Cantelli result. Hence there exists an obvious corollary

to independent but not identically distributed (i.n.i.d.) sequences X.

COROLLARY 1.1: Let (A be an equicontinuous class of functions with

domain E, and assume % to be an i.n.i.d. sequence of real valued

random variables with distributions Gl;GZ,..;. . Further let g be a

continuous function on the real line such that (a) lf(x)l < g(x) for
each £f €Q and x € E; (b) for every e > 0 there exists a
C= (-c,c], ¢ >0 such that J gdﬁn <e for n Z.no(c)§ and

. cr |

(¢) the S.L.L.N. holds for the sequence {g(Xi)IC,(Xi)}. Here

¢ =n':" _ G.. Then
n i=1 i

P{limnﬁm‘nn =0} =1,
where

n, = supfealff(x)d F (x) - ff<x>d e, x| .

PROOF: From the previous proof we see that it is only necessary that

the S.L.L.N. hold on the bounded sequence {I(_Do x](Xi)} for all x € E,

. a.s.
for then |Fn(x)-Gn(x)|"—* 0 for every x € E. This is true by

using Theorem 3.1.2 of Padgett and Taylor (1973).
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It is difficult to see an extension of this method of proof to
functions with domain Ek, even if easily verifiable conditions for the
S.L.L.N. are satisfied, although we can resort to the weak convergence
arguments. Sequences that are not identically distributed are of no
particular interest for the parametric estimation investigated here and
we do not pursue this line of discussion.

An important result that combines the notions of uniform con-
vergence over both classes of functions andbsets, or equivalently extends
the classes of functions considered in Proposition 1.4, can be shown for
univariate sequences on the real line.  We consider a stﬁtionary ergodic
sequence with marginal distribution G, and in notational abbreviation

write G(x ) = lim h+0 G(x-h). The following are ‘preparatory lemmas.

LEMMA 1.2: Let G be any distribution function for which
G(x) -G(x ) < n/4 for x € (a,b), where a < b real, and n > 0 are

given. If G(b ) -G(a) > n, then there exists a finite partition

so that

- . ,
G(xy) - G(xj_l) <n,  J=1l,..0k

PROOF: Define G_l(z) = inf{x[G(x)_i z, z € [a,b]}. Since G is right

continuous G(G_l(z)) > z. Choose.

y; = ¢ He@ +{ @00 - c@))

where k > 1 is chosen so that

.

6 -Ga) _, . 2607 - 6(a))
n ' . n

Then
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j -
G(yj)-G(yj_l) > G(a) + 3 (G(b )-—G(a))-—G(yj_l)

> G(a) + ¢ (6(b7) - 6(a)

- {6(a) + L2 (607 - 6(a)) +n/4)

£ () - Ga)) - n/é
> /4 .

If yj € (a,b), j = 1,...,k, then yj > yj—l" For if yj =y then

3-1
G(y;) = G(y;) = Clyp) = 6(y] 1) > 6(yy) = Gly;_y)

> n/4 .

But this contradicts the initial assumption. Now since

6(y])) < 6(a) + ¢ (GBI =6@) , §=1,...k,
then

6t - 605 < @O -G@) <n .

Note that Yo = a8 ¥y > @ and if Y < b, then G(b )-LG(yk) = 0.
Let a =% < X, < «ovu. < X1 = b, be formed from {yj} U {b}.

j=1
LEMMA 1.3 (c.f. Proposition 1.4): Let: % be a stationary ergodic
sequence of real valued random variables with marginal distribution G.
Assume U to be a family of real valued functions on E -such that
(i) Cl/ is equiconfinuous; and (ii) there exists a continuous function
g such that [f(x)] < g(x) for evepyr x €E, f €Q Then given any

c > 0, setting C = (-c,c]

. a.s.
supxeC supfealj f(y)an(y) - J f(y)d(;(y)l — 0 .
(~c,x] (-c,x]
L .
PROOF: Given n > 0, let {di}.’ be the at most finite set of points
i=1

in C such that G(di)-G(dg) > n/(4.a(c)), where a(c) = sup{g(y)‘y € c},
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if they exist. Since the family L is equicontinuous and C is com-

pact, we may choose a decomposition

so that a;_ <x <y f_ai implies |f(x) - f(y)l <n, for every f € CL,

k _
and i =1,...,m. Let {a¥*} be the further decomposition obtained
1 i=0
, m 2
be combining the points .{a,} and {d,} , so that a¥ . < a¥,
10 i1 i-1 i

i=1,...,k. From Lemma 1.2 if G(ai_)-G(a?_l) > nf/a(c), then there

n,
i
exists a finite decomposition {x,.} so that
137520
* — : = *
aj ] = Xy, < Kyp < eeeen < xini a;
for which
G(xij)——G(xi(j_l)) < nfa(c) , j = 1‘,...,11i . (1.9)
*— E3 ' = = % = %
If G(ai ) G(ai_l) < n/a(e), set 0, 1, X5 aj_ and X4 ai.
n ]
That is, no further partitioning is necessary. Let {bi} be the set
i=o i

of points that partition (-c,c] formed from combining the points

{xi.} * , i=1,...,k. Denote F* the possibility improper distribution
j=o

that attributes weight G(bi)-G(b;) to the points bi’ and weight

—_ Y i = L i = '
G(bi) G(bi—l) to the points Py 2(bi-+b ), i=1,...,n".

i+l
Let x € C. Then either; (1) there exists an .0 j_ix i_n’—l, such that

b. < x < b, 3 or (2) there exists an 1 < i < n' for which
i, 1X+1 — X —

e Q
(D 1f bix < x < biX+l and f , then

X
|f £ dF* - f fdc| < = J [E(p.) - £(x)]dG(x)
(—C’X] ) (—C,X] j:]_ (bj_l,bJ) J
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+ IJ £ (x)d (F*~G) (x) |
(bi x]
X’

< n(G(C)-'G(-C))‘an(C)(G(b;X+l)-G(bix))

<n+2n= 3n. (1.10)
(2) If x = bi for some 1 j_ix <n' and f € Q, then
. :
i
X

|J £ art - J £dG| < = [ [£(p.) - £(y)|dG(y)
(-c,x] (-c,x] 5710y by

< n(6(c) -6(-¢)) < n .

Hence

£ dF¥ -'J £dG| < 3n . (1.11)

SUP_ < SUP e alf
(_C,X]

(=c,x]

This is true for any distribution satisfying (1.9). In particular,

since by the S.L.L.N.

Fn(xij) - Fn(xi,j—l) < nfale) , ] ='l,...,ni, holds f.a.s.l.n.,

if we let F: be the corresponding measure constructed from Fn,’then

% .
f£dF - J den| < 3n, (1.12)

SWXEC&meOJJ
. (-c,x]

("C’X]
holds f.a.s.l.n.. Now consider case (2)

(2) For x=b, , 1 <i_<n',

1 X
X -
S“pf€56L|J £(y)dF: () - J £(y)dF*(y) |
(-c,x] (-c,x]
i
X X
<oafe)y I IJ d(F_-G) | +2 IJ d(FneG)I
j=1 (bj_l,bj) j=1 ‘{b.}
n' n' ‘
<a(e)d t A|J , d(F -G)| + = IJ d(F_-C) | (%)
i=1 “(by_;,b)) j=1. {bj}

<n f.a.s.l.n. by the S.L.L.N. , (1.13)
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For case (1) we can split it further into two further cases

(1)(a) For bi <X < py for some O :_ix <n'-l
X x

f(y)dFi(y)'— J £ (y)dF*(y) |

(-c,x]

supg e g J

(-c,x]

A

() supe e alJ(b e
i

It
i~
-

A
=
th
®
o)
'_J
=)

(L®) If p

£(y)dF (y) - [ ]f(y)dF*(y)l
(-c,x

supf = QIJ(_C <]
; 410~ Fpby ) - G(b; +1) ~ 6(by )
X X X X

< () + a(e)|E (b

< 2n f.a.s.l.n. by the S.L.L.N. and (1.9)..

So for both cases (1) and (2)

L * : %
&WXECSWEEQJJ fdﬂl~J £dF*| <2n f.a.s.l.n. (1.14)
(-c,x] (-c,x]

Then from (1.10) and (1.12) this shows that

( .
£dF_ —‘J fdG| <8n f.a.s.l.n., (1.15)

(=c,x]

(-c,x]

proving the lemma since n > 0 1is arbitrary.

THEOREM 1.1:

Let % be a stationary ergodig sequence of real valued random
variables with marginal distribution G. Assume g € Ll(G) is a con-
tinuous function that bounds the equicontinuous family of real valued
functiéﬁs' f €Q. Then

a.s.
SuprEU{—i«n}SquEC(/IJ den - f fdGl — 0 .
(—-Oo’x] (-co’x]
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PROOF: Let € > 0 be arbitrary and choose c¢ > 0 so that

J gdG < e/2. Set
Ac'

Hn(@,G,x) = sup, ¢ alj £dF - f(_m g fdGl..

n
(_w’X]
If x € (-»,-c], then

H (Q,6G,x) iJ g dF +J g dG
n (—m,x] n (—m’X] ‘

I A

g dF_ + J g dG
J(—w’—c] " (—w,c]

< e f.a.s.l.n. uniformly in x € (-=,-c] .

This is by the S.L.L.N. on {g(xi)l(—w,—c](xi)}i=1'

If x € (-c,c]

H (Cl,G,x)_i J g dF + J g dG
! (==l T (ee,me]

f dF —J fdcl
n

+supXEC supfea[J .
. (=c,x]

(-c,x]

< 3¢/2 f.a.s.l.n. uniformly in x € (-c,c].

This follows from Lemma 1.3 and the S.L.L.N. on - {g(X.)I. X))}
) i (—m’-c] 1 i=1

If x € (c,»] then similarly

I{n(CL;G,x) iJ g dF +J g dG

-CI Cl
+ SUP_ e SuprO,'(den - ffdG|

< 3¢/2 f.a.s.l.n. uniformly in x € (c,«] .

Combining the three possibilities, x € (-»,-c], x € (-c,¢], and

x € (c,»] we get

SUPL €U {4} Hn(CL,G,X) < 3e/2 f.a.s.1l.n.

Since € > 0 is arbitrary the theorem is proved.



20.

This generalizes both the Glivenko-Cantélli result and
Proposition 1.4 for univariate sta;ionary ergodic sequences. The
classical Giivenko—Cantelli lemma is obtained by taking Q.= {1}. The
result is proved for classes that need not be P-uniformity classes.b
Neither the oscillation of the family (A is required to be finite, nor
is it required that

limg P(?G’e(flx)) =0,
-since not all points x need be continuity pbints of the distfibution
.G. Particular properties of the real line were utilized in Lemma 1.2,
" and the Theorem does not appear to have a natural extension to k-space.
However restricting G to be absolutely continuous, it is possible
to speculate that a proof utilizing weak convergence and Proposition 1.3

could be constructed.

§1.3 Uniform Convergence for Parameterized Functions

The results of §1.2 are instrumental in.the study of parametric
loss functions. Typically we deal with classes QU of either real or
vector valued functions of two variables; one taking values in the
observation space, and the other in the parameter space. The equicon-
tinuity requirement is then examined in the observation space variable.
It need only be shown at each individuai point of the obser#ation space

and we have some simple Lemmas that provide criteria for recognizing it.

LEMMA 1.4: Let Q= {w(-,e)le € 0} be a family of real valued functions
defined on E; that are continuously differentiable in x € E for each

8 € 0. For each x €E write
s, = {5, lx-yl <1, 0 €0)

Suppose there exist constants Ax’ independent of- 6, such that
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supg [(8/0y)¥(y,8)| < A < = .
x N
Then the family (@ is equicontinuous.

PROOF: By the mean value theorem,
sWPg g [VGu0) — (o))< A fxy| .
That is the family (I is equicontinuous in x.
REMARK 1.1: It is easy to see that conditions of Lemma 1.4 can be

relaxed to letting. ¢(x,8) be continuous in x and piecewise con-

tinuously differentiable in x for each 6 € o.

LEMMA 1.5: Let Q = {w(-,e)le €0} be a family of real valued functions
defined on Ek. Assume Y(x,0) is twice continuously differentiable

in x for each 6 € ©. TFor each x € Ek write

S, = {(y,8) |Ix-yl <1, 6 € 0}

If for each x € Ek, there exist constants Ax’ Bx 3;0 such that
supg 1(3/3y)¥(y,0)l < A <,
X ,
and
2 2
supg 13773y )y (y,8)l < B <=,
X

then the family (L is equicontinuous in x.

PROOF: Consider the usual Taylor expansion
p(x,8) = w(y,e)4-(x—y)'(a/ay)w(y,e)-F%(x—y)‘(az/azz)w(z,e)(x-y)lz=g

with & so that ly-&l < lx-yl. Take Euclidean norms and observe that

for the kxk matrix A and kx1 vector x
laxt < Al

Then
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| A

2
supg [¥(x,0) = ¥(y,0)| < lx-yla, + hlx-yI"B
X

| A
>
+
.
[w=]

which implies that the family (L is equicontinuous.

Differentiability, while being convenient for establishing equicon-
tinuity; is by no means necessary. If the parameter space is a compact
subset of 'E?, the result may be established in a manner similar to
Graves (1946, P.20, Th.23). Since many limit theorem argﬁments are local
in the parameter space we need only consider a compact subset D C 0,

restricting the family QL accordingly.

LEMMA 1.6: Let CL=={¢(',6)!6 € D} be a family of real valued functions
»defined on Ek, and suppose D Cp C B is compact. Assume  is a
continuous function in x and 6. Then A forms an equicontinuous

family of functions.

PROOF: For each fixed b, continuity implies

limh»o w(x,efh) = g(®) on ©
x-b
where g(8) is finite. Taking h =0 we have 1imx+b v(x,0) = g(0)
for each. 6 € D, and further g(8) is continuous on D. That is ¥(x,8)
is continuous.on the closed set for which e'é D Aand x = b and, since
D is compact, is uniformly continuous on that set. That is,
]_imh‘)0 P(x,0+h) = g(6) uniformly on D.
x-b
This completes the proof.
We may combine any of theée results with Proposition 1.4 or
Theorem 1.1 to obtain uniform convergence over the parameter space.

Given that limit theorems often rely on local arguments in the parameter
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space it could be expected that uniform convergence theorems exist for
some functions ¢ under very weak conditions. Roussas. (1969)

illustrated one such result in a lémma, the original version of which
was by pe Cam (1953). His assumptions on ¢ are adopted for current

presentation.

Assumptions (Roussas)

(RT)  © 4is an open subset of E'.
(R2) The process % is stationary and metrically transitive
(indecomposable).

(R3) For each y € X

, the function ¢(y,8) is continuous in 6.
(R4) For each 6 € 0 there exists a neighbourhood of it

Up (9)(8) = Uo(e), (which lies in ©) and a (measurable)
)
function HG(y) such that
lo(y, )l < H(y), EH(X)) <« for all t in U_(8) .

(R5)  For each 6 € 0 both sup{¢(y,t) |t € C} and the
inf{w(y,t)lt € C} are B measurable for all compaét subsets
C of O.

Under these conditions Roussas showed that

a.S.
sup{|W ()| |t €T (8} —™ 0 as n >,
" Lo (8
3 o
where
1
. Wn(t) = E.jgl (w(xj,t) - EG¢(xj,t))

Both Theorem 1.1 and this result show that the assumptioﬁ of
continuity in both variables may be relaxed. Howeve%, gloEal consistency
arguments often require uniform con&érgence over the whole parametér
" space and not iny compacts. Thus it is preferable to use Lemmas 1.4

and 1.5 if possible.
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§1.4 Uniform Convergence in the Underlying Distribution

Uniform convergence results presented up to now have been
established assuming a fixed ﬁnderlying distribution. These are used
in construction of proofs of consistency and asymptotic normality. But
a justification for inference applications and point estimation suggested
by Wald (1941, 1943), was the uniform convergence of these limit theorems
with respect to the underlying probability distributidns. Such results
often appear difficult to establish but we give one possible avenue of
approach here.

Let P be the range of uncertainty in the underlying probability
distribution. For instance P can represent the parametric family of
probability laws. Some natural convergence criteria are:

For every € > 0

P{wIHTn-TH > e} >0 uniformly in P € P, | (1.16)
and in the case of the central limit theorem (C.L.T;)‘

P{m[/r_x—(’l‘n—’l‘)‘ < x} > N(0,0%(P);x) , - (1.17)

uniformly in x and P € P.:  (The inequality T < x 1is interpreted
componentwise in Euclidean r-space and N(O;OZ(P);X) is the multivariate
normal distribution with variance covariance matrix oZ(P)). Parzen
(1955) carried through a thdrough investigation of this type of con-
vergence in one‘dimension assuming P to be the parametric family.
Results applied with proper interpretation of the symﬁols (see Loeve
1950, P.84) to the r-dimensional case. No obvious extension is apparent
for more abstract spaces.

n

We write L£(X;x) = P{X < x}, and s, = I Xi’ and consider a
. i:l

sequence % that is i.i.d. and univariate. Assume that the Xn have
common distribution, mean and variance given by Fe, m(6), and 02(6)

respectively. Then conditions for the uniform C.L.T. can be expressed
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in terms of the mean and variance.

PROPOSITION 1.5 (Parzen P.38): Uniform C.L.T.: Suppose there exists

~ constants Kl and K2 such that for all 6, 0 < K, < 0(8) < K, < =,

1 2

Then uniformly in 6 and x
Sn -m(0)

. s x| > e(x/0())
/a

if and only if the variances are convergent uniformly in 6; that is,

. 2 ~ . .
‘llmM_)co J (x-m(0)) dFe(x) = 0 uniformly in 6.

|x|>M

Our mode of investigation of many results is through the S.L.L.N..
Parzen reformulates the usual notion of almost sure convergence. The

. equivalent statement to that of
] - - = i
P{w[(Sn ESn)/n 0} =1 is ,
for every € > 0 there is an N such that
P{w!lSn - ES_| > en, for some n > N} < e .

>By the uniform S.L.L.N. is meant the statement: for every € > 0 there

is an N independent of 6 such that, for every 6,

Sn - EeSn~
' Pe{wl|*"-—;;"———| > ¢ for some n > N} < ¢ . (1.18)

The sequence is said to converge almost surely p-uniformly in 6.
The following proposition follows as a consequence of the

Kolmogorov inequality.

PROPOSITION 1.6 (‘Parzen, Th. -16A): If (i) bn < bn(e) < Bn < o, where
bn + o, (ii) for each 8, %(9) is a sequence of independent random

variables, (iii) Zn{var[Xn(e)]/bi(e)} is convergent and bounded by a

constant K, uniformly in 6, then
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n a.s.
1

bn(e) kil{xk(e) - EXk(G)} — 0 p—uniférmly in 9.

It is now possible to combine the uniform convergence theorems
over functions and sets with uniform convergence in the underlying

probability measure.

THEOREM 1.2:

Let QU be.an equicontinuous classlof continuous real valued
functions on E, and g(x) be a‘continuous function on E such that
|£(x)| < g(x) for each f € O and x € E. Suppose there exists some
set DCO so thaf for every e > 0 there exists a constant c¢ = c(g)

for which C = (~c,c] satisfies f nge < ¢ for all eo € D, and
' c' 0 o

further that var[g(X(eo))] < ®, Then for i.i.d. sequence %(60)

where Xl(eo) is distributed as Fe ,

o

. 8, ' a.s. '
supfea’lfden - deFeo| — 0,

p—uniformly in 60 € D.

OUTLINE OF PROOF: The proof follows that given for Proposition 1.4.

Given € > 0 we choose C so that J g dFB = J g1 ,dFe < g,
| ¢ Y% Je & %

where I is the indicator function of C'. Since

C‘

varg L6 TG, (6] < varg [8(K(9)] + 2E” [g(X(8_))]

it follows by Proposition 1.6 that,

8 a.s. .
Il gar © - gdF, | — 0 p-uniformly in 6_ €D,
c' n c' % °

and hence

S
o

J gdF =~ < ¢ holds almost surely p-uniformly in 60 €D. (1.19)
C'




27..

0, : : 6
on
Let Fn and Fg be the improper distributions formed from Fno
o

and Fe in the manner described in the proof of Proposition 1.4. Now

S
o a.s.

F (x) —™ F_ (x) p-uniformly in 60 € D

0
o

holds for every x € E. This follows by Proposition 1.6 and considering
bounded sequences {IX(Xi(GO)) - E[IX(X(SO))]}. . Then the equivalent

statement to that»of (1.7) follows, namely

e X Jo
sup || £aF ° - | £4F. | <n
fER c n g 9

holds almost surely p-uniformly in 90 € D. Combining this with (1.9)

in the manner following (1.8), we obtain

8
' o}
supfea/ldeFn -[deeol < g + 3n

.almost surely p-uniformly in 90 € D. Since € and n are arbitrary
this proves the theorem.

Similarly if the family of distributions ({F, |eo € D} is such
: o

that atoms of each F6 , if they exist, are independent of 60 and there

. o
are at most a finite number of them in any compact set, then Theorem 1.1

may be extended in the same manner. The proof depends only on the
S.L.L.N.

A feature common to Pfopositions 1.5 and 1.6, and theorems of
Parzen that concern sums Sn for more general seqﬁences ‘§(8), is that
they hold whenever the components of %(é)» aré bounded in absolute value’
by a constant independent of 8. Let us also note that statements
concerning uniform convergence in the probability laws of class P need
not be restricted to a parametric class of probability laws. It is the

recognition of these two facts that justifies the use of asymptotics to

compare robust estimators. To assume a more general family P, so that
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F = {F|F 1is induced by P € P} extends {Fe |eo € D}, can severely
. O )

delimit the range of (A because of the assumption of Theorem 1.2:
for every € > 0 there exists some constant c¢ = c(e) for which

J gdF < e for all F € F. It may be necessary that there be some
C 1 .

compact set C* for which g(x) = 0 for all x € E- C*. That is all
of the functions of Q. would be required to redescend to zero within

the compact set. Exémples'where they do can be found in §6.
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CHAPTER 2

MEASURABILITY, EXISTENCE, UNIQUENESS, AND CONSISTENCY

§2.1 Measurability of Implicitly Defined Estimators

We will mainly be concerned with the probability laws of maps

T

[X,,...,X ] from (Rn,Bn) to‘the parameter space (0,&) that are
n 1 >“n : . ;

defined implicitly as a particular solution of equations
gn(§(“),Tn) =0, | (2.1)

given solutions exist f.a.s.l.n. .  The function 8, is assumed to be -
Borel measurable. That means for any Borel set B of the real line
g;l(B) € B"x&. Before any probability statements can be made about
Tn' it is first necessary to show its measurability. Rather than con-
sidering only the existence of a consistent measurable mép we seek to
defing the maps uniquely for all samples (Xl,...,Xn), n € N, or at least
uniquely on a set of probability one for n >n. For instance defining
the map as a solution of (2.1) would not define the map uniquely if
there existed'multiple’solutions. The selection of the root for the map
Tn can have implications for both the resulting probability law and
practical appiication of the statistical procedure.

Iﬁ the literature many estimators are given as a solution

. satisfying

fn(&;(“),Tn[%q(F‘)]) = inf fno%c(“),e) . : (2.2)

Note that the estimator is not uniquely defined should

(n)

: - 4 . (n) . ,
{r[fn(§ yT) = lnfBEEO fn(¥ ,0)} conslst of more than one point for
some ﬁ(n) € R®, n € N. What is then established is the existence of a

measurable map Tn[-] which will have the usual desired asymptotic

properties when the {fn} are suitably regular. Strict convexity of
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fn(ﬁ(“),e) in 6 resolves the difficulty in identifying the estimators
uniquely, but this is not always desirable or possible.
Limit theorems for these statistics are often arrived at by

investigating local arguments on the minimizing equations. Then the

choice is gn(g(n);ﬁ) = v’fn(é(?)’e) where V represents the Ixr
operator (8/361,...,8/86r). In fact it is common practice to search
for the estimator (2.2) by examining the corresponding equation (2.1)
for the set of soletions, which we label |

1, (™) = (6 € o, x™,0) = 0)

Then fﬁ(x(n),-) is used as a "selection statistic" to determine the
r\l .

estimator so that

£ x™ 0y .

(n) (n) .
f (XY, T [XV7]) = inf _
o n - (n), n
0 € H (X Ly B

For this estimator to correspond to that of (2.2), assuﬁing that is
unique, it is necessary for fn to attain its infimum value at some
point in the interior of the parameter space, and the observation space
must be independent of the parameter.

This approach is feasible for the construction of estimators more
generally, aﬁd indeed this has been suggested for application to
determine some robust estimators. For instance Hampel (1974) suggests
that the M-estimator for locatioﬁ when a three part redescending
influence function is ueed should be chosen as that root of the

M-estimating equations

n .

L (X, -8) =0,
. i

i=1

which is closest to the median. This is equivalent to choosing

® 0y = 3 y(x; - 0) ®.6) = [o-u
, _ : , and £ (X"7,6) |e med(Xl,...,Xn)l.

g (X
' v i=1

n

Clearly the equations are not derived from the selection statistic.
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Emphasis on the technique of using the selection statistic independent of
the estimating equations is new. We consider specifically the situation
where multiple solutions to the equations (2.1) exist even asymptotically,
as can be the case with the redescending influence fUnqtionAof Tukey's
biweight (c.f. §6.1). This situation motivates the examination of con-
sistency arguments that rely chiefly on asymptotic behaviour of the roots
of equations (2.1) and where the estimator is identified specifically
from the multiple roots. This contrasts'with the appréach of Huber
(1967) where asymptotically there exists a unique root to the M-functional
equation but ‘only the existence of a consistent sequence of roots is shown.
Particular compafison of conditions is given at the end of the chapter.
Other authors, e.g. Collins (1976) or Foutz (1977), shoﬁ only the con-
sistency of a root without identifying the root for all n.

The noﬁionrof a selection statistic or functional further allows
the‘separation of robustness considerations into local and global
arguments. Moreover limiting distributions of statistics ére invariably

displayed having assumed the underlying distribution, usually an Fe .
o
There is no loss Qf'generality in examining first the asymptotic distribu-

tion of a measurable sequence {T _} defined by the selection statistic

nl

e - GOH_ and then showing that for any appropriate selection statistic

fn(é(n),e) that defines a measurable sequence {TnZ} it is true that

the statement T , = T , holds f;a.s.l.n., i.e. the limiting distribu-
tions of Tnl and Tn2 are the same. The selection statistic le - eoH
is independent of the data and selects the root of the equationsvthat is
closest tolthe true parameter, while fn is dependent on 60 only
through the sample

which is supposedly generated from F

X(n) A
Ny

o *
o
property of the selection statistic that is dependent on the sample is

that the root that is .selected converges almost surely‘to the true under-

lying parameter when the underlyiﬁg probability law is within the
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parametric family. This is often stated under the guise of Fisher consis-

tency. It is then possible to takg the efficacious approach of firét con-
structing the equations (2.1) so that the limiting distribution of
statistics determined by 6 - GOH is only slightly perturbed on
neighbourhoods>of the distribution Fe . Should.the resulting equatibns

o
not necessarily correspond to any minimizing equations of some disténce,
an appropriate selection statistic is then chosen. Even if there is a
correspondence with a distance it may prove advantageous for robustness
reasons to resort to an alternative selection statistic. That is, it is
not necessary‘that gn(é(n),e) = V'fn(ﬁ(n),e).

We let the set of global minima amongst the solutions of (2.1) be

(n)

A ™) = (reole ™, = taf o)} .

n X

f
(n), n
GEHH(I)é )

An ideal selection statistic would:/ensure An(é(n)) is at most a single
» . (1‘1) c n ~— .

point set for all X R, n &€ N. Then the estimator

T, :R" > 0 U {+=}, where 0 U {4+w} is the one point compactification

of 0O described in Kelley (1967), is uniquely defined:-
(n), _ () . (n)
TIXD = A @) if AT ¢
- : <@y _
+ if An(§ ) ¢ .

But if this is not the case, then at least we would prefer that the set

of §(n) € R" such that An(§(n)) consists of more than one point

() n)
Fe

be a null set with respect to the laws induced on ¥(

by the

probability measures P_, for all 6 € 0. If for each 8 € 0, P, 1is

6’
absolutely continuous with respect to P , then this is achieved if this

(n)+ (n)

set is null with respect to the law G induced by Pt on % .

If 0 CE, we could for completeness, set
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Tn[é(n>] - inf‘An(X(n)) if Aﬁ(§(“)) = ¢

_ (2.3)
+ o o if vAn(§(n)) 14 . '
Borel measurability of these maps follows from the theory of Brown and
Purves (1973). Some notation is necessary.
If 0 is a set of ordered pairs, the projection of 0, or
proj (0), is the set of all first co—ordinates of members of O.
If C CU x V where U, V are metric spaces, S will be said to
be a Borel selection of C whenever
(i) S 4dis a Borel set;
(ii) s Cc;
(iii) For u € U, the section Su = {v E(VI(u,v) € S} contains
at most oﬁe point;

(iv) proj (S) = proj (C).

Corresponding to each selection S is the function G which
assigns to each u € proj (C) the second co-ordinate of the unique
member of S with first co-ordinate u. Thus (u, ps(u)) e‘C, for all

‘u € proj (C).

PROPOSITION 2.1 (Brown and Purves, Theorem 1): Let U, V be complete
separgble metric spaces and C CU x V be a Borel set. If for gach
u € U, the section‘,Cu is o-compact there is a Borel selection S of
C. Further proj (C) 1is a Borel set and g is a Borel measurable
function defined on prbj (c).

Letting D* be the domain of the real valued function, £, of two
variables, the infimum of the sets of reals, {f(x,e)la € Di}, is
abbreviated inf f . A function f(x,0) 1is said to be lower semicon-

tinuous in 6 if
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infe,ew f(x,0") > f(x,0) ,

as the neighbourhood W shrinks to {6}.

COROLLARY 2.1 (Brown and Purves): Let V, O be complete separab;e‘metric
spaces, where © 1is the closure of o C E°. Assume f to be a real
- valued Borel measurable function defined on a Borel subset D* of R x 0.
(Assume 0 C ET is Borel). Suppose that for each x € proj (D*), the
section Di is o-compact and f(x,+) 1is lower semicontinuous with
respéct to the topology on Di. Then:

(i) the sets

. *
proj (D7)

J

{x € D"

Q for some 68 € Di, f(x,0) = inf fx} s
are Borel; |
(ii) there is a Borel measurable function T from V to the
extended reél line satisfying for x €V, |
f(x,T(x)) = inf fx iif x € Q

and

T(x) = + @ if x€&q.

In the proof of the Corollary, the functional T is defined as
a map

T:x"’p(x,ir_lffx), x€Q,
where p 1is defined by a Borel selection of the set
B = {((x,v),8) € (VXE) x 8| (x,0) € D* £(x,0) < v},

whence Proposition 2.1 is utilized. For x € Q, £(x,T[x]) = inf fx.
Since Q is shown to be Borel and T 1is the composition of Borel .

measurable maps p and x > (x,inf fx)’ it follows that T 1is Borel

measurable.
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Now the me35urability of an estimator that is defined'by equatioﬁ
(2.1) and some selection statistic will follow from Corollary 2.1.

(n)

Suppose gn(¥ ,0) 1is lower semicontinuous in 6, and O is g-compact.
Then

Hn = {(%(n),8)|gn(§(n),e) - O, }r\s(n) c Rn’ 6 E@}

is Borel, and. further Hn(é(n)) is g-compact. Measurability follows by

the following construction

Construétion (t): set D¥ = H and f(x;e) = fn(ﬁ(n),e) in the
Corollary.

This does not conclude discussion. For in the pfoof of the
Corollary Propqsition 2.1 was used to producé a map p, and therefore

a map T. It is possible for there to be several maps p from the set
A = {(x,v) €V x E|for some 6 €0, ((x,v),8) € B} ,

into ‘B. Hence the above construction (t) could reveal several possible

(n)

maps Tlx .
p (x" 7]
There exist several possibilities for a sequence of estimators

{Tn} constructed under (1) using sequences of functions {gn}, {fn}.

.1t is assumed that. these functions satisfy

(i) -g,, f, have domain R x O and are measurable for every
n € N; and

(ii) g, f_  are lower semicontinuous in 6 for every n € N.
n’ n _ o

'Resulting estimators can be distinguished according to whether neither,
one, or both of the subsequent criteria are true:

(1) R" - proj (Hﬁ) is a null set with respect to G(n)+

(2) There exists a Borel set Q: C proj (Hn) such that proj (Hn) - Q:

e
n

. . . n : .
is a null set with respect to , where for every ﬁ( ) € Qz there
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exists a unique 6 € 0 such that (ﬁ(“),e) & Hn and

f (x(“),e)
o

£ ™,0) = int |

‘GEHH(%(H)

On the set R - proj (Hn) the estimator takes the value +w
whilst on Qn - Qg the estimator need not be uniquely determined.
(When construction (f) is made Qn corresponds to the set Q of the
Corollary). Ideally both (1) and (2) are.preferable,‘but often we
tentatively forgo either or both of these to gain elegant asymptotic

results. Some constructions g, may have a set of decreasing probability

in n in which solutions to equations (2.1) do not exist, in which case -

R - Proj (Hn) is not a null set with respect to G(n)+. Letting
Q** = {x(n) | there exists a unique 6 € © such that (x(“),e) €H,
n N N n
n . n .
and fl‘l(%( ),e) = inf (ﬁ( ),e)} s

£
GEHn(x(n)) n

the identification problem is apparent when proj (Hn) - Qz* is not

contained in a null set. But if X(n)

X , the sample, is an element of this

latter set even in the pathological case of it being a null set the

identification becomes vital. By defining the set

i = (™0™ en, g 50 = s ™0,

f
) eHn(x(n)) n

. . . . ook
which is a Borel set since the map x = inf fx’ x € proj D is measure-

able, we can introduce a refining selection statistic f

nl and opgrate

with the construction (+) using D* = H: and f = fnl'
An important illustration of the Corollary is the following.
‘EXAMPLEIZ.]: Let © be a compact subset of E'. Then for any.

ﬁ(n) € proj (Hn) the set Hn(ﬁ(n)) is compact by lower semicontinuity

of 8n* Similarly lower semicontinuity of fn implies proj (Hn) = Qn'
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A suitable value 6 for which

fn(ﬁ(“),e) = inf (n)

,0) (2.4)
GEHn(x '

(n))fn(§

can be described explicitly in the manner sketched below.

For r = 1, Borel measurability of the estimator Tn of (2.3) is

as-a consequence of:

(*) Let H be a Borel set in V x E, where V is a complete
separable metric spéce. The set proj (H) is Borel. Then the function
x > inf Hx’ x € proj (H) CvV is Borel measurable.

This is an instance of Corollary 2.1 with f chosen fo be zero on
H and one on the complement of H. That An is Borel follows because

(*)'implies prdﬁ'(Hn) is Borel and also from the proof of Corollary 2.1

(or otherwise) x(n)'* inf f.(x(“),e), x(n) € proj (H_.) 1is Borel
N (n), o'~ N ~'n
.6 eHm(x )
measurable. Since each ¥(n) section of _An is o-compact (*) implies
.. (m) . (@), _ .+, (n) (n) _ .
that Tn P X —> inf An(§ ) = Hn(§ ), X € proj (An) = proj (Hn)

is Borel measurable. The effective selection statistic in this instance
is 6 - inf 0.
The case where r > 1 1is examined in Remark 3 of Brown and‘Purves.
Quite 6ften it is useful for the purposes of limit. theorems that

are given only at the underlying distribution Pe "~ to define the-
o

statistic uniquely through the selection statistic |6 - 60". If 0 CE
the refining selection statistic might be 6 - inf 0 for example; When
both equafions and selection statistic can be written as functions of
the empirical distribupion function we write Tn[X(n)] = T[Fn], and
refer to the selection functional f£.(8). The selection statistic is

then fF (6).
n

- Given that maps {Tn} are Borel measurable it follows that
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o8

U 1 twhir x™ @1 - 11 < 1/2) €4,
1 m=1ln

m

(@]
i
=08

2

- a.s.
and we see from Definition 1.1 that 'I’n —> T if and only if P(C) = 1.

This is strong cqnsistency. A sequence {Tn} that is defined by {gn},
{fn} via (t) will be asymptotically well defined provided the almost
sure limit T 1is unique, whatever the representations are that Tn .can
take.

Pfanzagl (1969) establishes measurability of "minimum contrast"

estimators, which he defines as follows:

DEFINITION 2.1: A strict estimate for the sample size n is a B™
(n)

measurable map Tn : RV = 0, which depends on ( only. A m.c.
(minimum contrast) estimate for the sample size n is a strict estimate

for which

1 B () 1 0
o I oa(x,T [x 1) = inf {H R z(xi,t)|t € o}.
i=1 i=1
For instance the M.L.E. is obtained by setting 2(x,6) = —log-fe(x).

The restriction of the mappings to © can be a strong one when O 1is a
proper subset of EC. EXamples where . this estimate does not exist»
because the infimum is not attained on © are common. This is seen for
the M.L.E. of the mixture parameter in §8.1, or the M.L.E. of the para-
meters of a mixture of two normal distributions when both dispersions

are unknown, discussed in section C.

PROPOSITION 2.2 (Pfanzagl, P.252): Set (W,U) to be a locally compact
Hausdorff space with countable base, and o(U) the o-algebra over W

geﬂerated by U. Let 2(+,t) :R > [-»,»], t € W, be such that
(0) for all n €N and all (x,...,x ) €R",

S ‘
1nf={;~ l(xi,t)|t € w}- is attained in W ;
AT :
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@D t > 2(-,t) 1is lower semicontinuous for all x € R ;
(2) inf ZD CB for all compact sets D C W .
Then for any n € N there exists a Bn, g (U) -measurable function

Tn : R - W, such that

n
1 ,l(x(n),T [x(n)]) = inf-{l- Toe(x,,t)|t eAW}'.
Dol n-a n g i

no~pB

(Condition (2) is always fulfilled if instead of (1) the stronger condi-
tioﬁ

s>t

lim 2(+,s) = 2(+,t) for all t €W holds.)

Reiss (1978), recognizing that the minimum contrast estimator need
not exist, investigated the consistency of a more general class of

estimators; asymptotic minimum contrast estimators.

§2.2 Existence; Relation to the Minimal Distance Approach

Assumption of a parametric family P inducing the family of
marginal distributions F = {Fe16 € 0} on (R,B) is motivated by the
n’

idea that the underlying probability measure of a "sample" Xl,..;,X

is a P € P; that is there is some 6 € 0 so that Fe is the induced
° o

marginal distribution from P. A natural requirement for point estima-

tion to be unambiguous is that F be identifiable which is so whenever

6,,8, € o, 04 1 6, dimplies Fel 4 Fy Presumably the paramgter 9

2
describes physical characteristics of '"nature", and assuming the latter
follows some sort of continuity in 6 we attempt fo estimate the true
60 on the evidence presenfed, which‘is the sample.' |

In the literature, for i.i.d. sequences % there exist many

strongly consistent estimators proposed to be solutions of a set of rxl

(possibly nonlinear) equationmns which we label
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(n) 1

n

) =

[ e =}

K_(0,X B(x;50) = 0, 2.5

i=1
where ¢ is some measurable mapping from (Rx0, Bx & (9)) to (Er,ﬁtj.
N

Here &r are the Borel sets on Er, and 8?(9) is the relative

topology for 0. Fisher consistency requires that
E lv(x,0)] =0, (2.6)

the expectétion being taken compbnentwise'with respect to FB' Huber
(1964, 1967) studied M-estimators through these equations, restricting
p for reasons of identification or asymptétic identification oflthe
estimator. ‘Chanda (1954) and Foutz (1977) discussed aspects of con;
sistency of a_sblution of (2.5)_when Y was assumedbto be the efficient
score.

Hampel (1968) took the approach of defining Fn = {Gn} C G, the
set of probability measures whose atoms have probabilities equal to 1/n
or a multiple of 1/n and regarding solutions Tn[é(n)] of (2.5) as
functionals defined on Fn. Writing Tn[§(n)] = T[w,Fnj, consistency "
then follows from weak continuity of functionals T[w,~]; The o-algebra

on Fn is that generated by the Prokhorov distance which we give here.

DEFINITION 2.2: Let d be the metric on the space R generating Borel
sets B. Denote A(S to be the closed §-neighbourhood of A. That is

the closure of
{x|there exists a y € A, for which d(x,y) < 8} .

Then the Prokhorov distance between two distributions F, G on (R,B)

is defined,

d (F,0) = inf{e|F{A} < G{A®}+e, G{A} < F{A®}+¢, for every A € B}.

This approach to consistency does not lead to proofs of consistency for

many established estimators. Just as for uniform convergence theory
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(§1.2), the same is true here. Results derived deterministically using
weak convergence are not as broad as those obtainable through
probabilistic arguments.

The term "influence function" will refer to the equivalence class
of functions defined by thé relation: vwl N wz if and only if for each
wl, wz there exists some constant nonsingular rXr matrix A so that
wl = sz. It is distinct from the spécific cufve introduced by Hampel
(1968) called the influence curve (84.4).

We stress that for many influence functions there can‘exist more
than one solution fo equations (2.5). If a selection statistic, that
can be written fF (8), is réquiredg the corresponding estimating func-
tional may be writzen TY,£,°]. Both‘ Yy and f characterize the
functional.

The contemporary. approach of authors Huber (1967), Pfanzagl (1969),
.Landers (1972) and Reiss (1978) has been related to m.c. estimators.

They in general adopt an asymptotic identification criterion:

J 2(x,T[2,G])dG(x) < J 2(x,0)dG(x) for all 8% T[%,G], GEG ,
and : (2.7)

T[2,Fy ]
(o]

= 60 for all 80 €o0.

This restriction may be regarded as a generalization of the Jensen

inequality, used in Wald's (1949) argument for consistency of the

maximum likelihood estimatof. If © 1is an open interval and &

satisfies appropriate differentiability conditions, the estimators are

based on (2.5), with ¥(x,8) = VR(X,G).' The selection statiétic is then

fF (8) = J‘l(x,e)an(x). Questions of basic importance concern existence
n .

and asymptotic uniqueness of consistent solutions to the equations (2.5).

We will mean by an M-estimator, any estimator arrived at through equations

2.5 (viz construction (+)). They need not be minimum contrast estimators.
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Asymptotics of M—esfimators are investigated as a consequence of
the uniform convergence theory, élghough techniques eQually apply to
m.c. and minimal distance estimators. Wolfowitz (1952, 1954, 1957) was
an initial exponent of the general methods of the latter, while Sahler
(1970), Bolthausen (1977), and Pollard (1980) discuss further asymptotic
properties in a general framework. More applied works that include
asymptotics of minimal distance methods are by Blackman (1955), Choi
and Bulgren (1968), Paulson, Holcomb and Leitch (1975), and Quandt and
Ramsey (1978). Efficiency and robustness motivate_discussion'of certain
Lz—norms in Heathcote (1977), and Beran (1977). An L2 distance takeé

the form
L (8) = flhn(t) - h(t,e)lzdw(t) ,

where hn is characterized by the empirical distribution (e.g.
characteristic function, moment generating function, kernel denéity
estimate), and w(t) is some weight function possibly dependent on 6.
The asymptotic identification of the estimator under thé‘parametric
model is usually guaranteed assuming at least

LFe (8) = J]h(t,eo)-h(t,e)|2dw(t) > 0, 6 o, 0€o0,

o
and arguing from the convergence of hn(t)‘* h(t,eo). By the convergence

Ln(e)'+ LF (0) uniformly in 6 € 0 it is shown that the minimizing

0
o

statistic én of Ln(e) converges -to eo., Slight pertﬁrbations from

F6 can possibly perturb the convergence greatly from the value 6
o

b
depending on the weight function w(t).
But for some Lz—distances the minimizing equations correspond to
M-estimating equations. This together with the intuitively simpler to

work with construction of the M-estimator make it the central theme of
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our robustness discussion. Asymptotics are discussed without necessarily
assuming the underlying distribution G € F. The emphasis on studying
convergence of functionals in this case stems from robustness theory,

where we look for stability in "neighbourhoods" of a given VFe . This
o

. is merely a formalization of our uncertainty about the choice of model
family which we put forward to explain a given sample.
A neighbourhood of a distribution G, n(*+,G), is only required to

be a subset of G, containing G, and satisfying the ordering property,

n(El,G) C D(EZ,G) whenever AO < El 5.52 .

It may be determined by a metric, or otherwise. With this generality we
can determine asymptotic limits, either of the M-functional or the
M-estimator, by varying the neighbourhood. We consider existence of
functionals on neighbourhoods about some specified distriﬁutipn Go
under varying conditions on . Functionals Ty, -] evaluafed at a

distribution G are a solution of

KG(B) = J P(x,08)dG(x) = 0 - (2.8)

'if a solution exists. If not T[y,G] is set equal to ‘+-W.

Propertiés'of minimal distance estimators and or solutions to
either (2.5) or (2.8) are dependent largely on Euclidean geométry. In
the séquel we let D € O be some nondegenerate compact set that contains
the parameter eé Ain its interior. We distinguish between two
situations:

Bl1: The parameter 6

o

is a zero of an rxl continuously
differentiable vector function KG (6), so that VKG (62) is
. o A

' 0
nonsingular.

B2: - The parameter Gg is an isolated local minima of twice con-
tinuously differentiable QG (8). (This implies VV'QG (62)
o o

is positive definite). This will be regarded as being some

distance quantity.
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Under restrictive conditions on ¢ - it is possible to see the
correspondence between proofs of existence of minimal distance estimates

and existence of solutions to equations (2.8). For instance we can set
Q.(8) = IK (e)ll2 (2.9)
G G ?

and then Bl‘implies B2. It can also happen that KG(B) = V'QG(e),

whence B2 is equivalent to Bl:. We use the condition

Cl: For every ¢ > 0 there exists a § > 0, so that G € n(G,Go)
iﬁplies

supeeDlljw(x,e)dG(x) - ( ¥(x,8)d6 ()N < e .

This assumption implies in the situation (2.9) that given € > 0

there exists a § > 0, so that G € n(6,GO) implies
sup, Q5 (0) - QGO(e)I <e . | (2.10)
We denote by 03U the boundary of a set U.

LEMMA 2.1: Let eo G, and Q be so that B2 and (2.10) hold. Then

there exists an €y > 0 so that Ua (Bﬁ) C D, and given ¢ > 0
1

arbitrary there is a & > 0 so that G € n(G,GO) implies

inf . Qc(8) < inf Qg (8)
€ ) ' € %
0EU_,.(8)) 6 E3U_, (6%)

where €% = min(e,sl). Hence if QG(B) is continuous on D there exists

at least one local minima of Q in Ue*(ez)'

r

PROOF: Let {dk} be the eigenvalues of the Hessian matrix VV'QG (9).
k=1 : . o

Write d (8) = minlikir dk(6). Given grbitrary unit vector x, H&" =1,

we may express X in terms of the orthonormal basis

X = alYl(e) + ... + a vy._(8) , . (2.11)
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where the Yi(e)'s are the orthonormal eigenvectors of VV'QG (©).
(o]

Observe,

ﬁ'vv'QGO(e)g | %'r(e)n(e)r'(e)§

r

2
= 5 d,(8)(y, (8)'x)
k=1 k k A
- r -
>d (8) T a =4 (8)
k=1 '

By continuity choose €, SO that 6 € ﬁe (BZ) implies
1

1 _ Y % =/t
199'Q; (8) - v9'q, (8% < d7(e¥)/2 .
) o
Then from‘thebTaylor expansion, for any 6 € BUE*(GZ), the boundary of
% -
U, (8%,

- % 1 x FIN 1 _ % ' _ o
QGO(G? = QGO(90)4'V QGO(eq)(e"90)4'z(9 eo){VV QGO(E)}‘G 60)

%N - F I 1 ;';v £
QGO(eO)-+0-+%(e-eO) {vv QGO(eo)}(e-eo)

""|‘| ' * _n*
-+%(e—eo) {wv QGo(a)-vv QGO(eO)}(e 0.)

\%

ky L K2amooaky o k2= ok
QGO(60)4-26 d (60) e d (eo)

% %2 ,- %
]y ”
Qg (87 +%e™d™(8%)

(o]

fi

Thus choose & so that G € n(ﬁ,Go) implies
l %2 -, %
supy < o |QG(6)-QGO(8)l <gede),

whence 6 € oU_ (62) implies

%

0a(®) > Qg (©) - 5 €7a7 (%)
(o] . .

l x 1 %2 - 23
> Qg (eg),+-§ e °d (e;)
(o]

> Qp(87)

and the lemma is proved.
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The‘assumption of the existence of t&o continuous partial
derivatives of Qv is required onlj at Go' "What has been shown is the
existence of a nondegenerate compact region of arbitrarily small size
about 8: for which there exists a neighbourﬁood of Go so that if
_ the minimum of QG(B) is attained on that region for ény distribution
G of the neighbourhood, the minimizing parametervis found in the
interior of that region. If QG(G) is continuously differentiable in
6, the minimum exists and is found by solving V'QG(G) = 0, or equations
(2.8) if Q 4is a m.c. distance or a suitable Lé distance. Bpt
differentiability in & of Q.(6) on n(a,Go)v is not always possible.

If QG (9) is given by (2.9) and QG (ez) = 0, we need only
o . , 0

assume existence of one continuous partial derivative of KG (8) to

o
observe the existence of a minimum.

LEMMA 2.2: Let eﬁ, GO, and Yy be so that Bl and Cl hold. Then there

exists an €, > 0 so that U

1 (eg) CD and given € > 0 arbitrary,

€1

there is a &§ > 0 for which G € n(G,GO) impiies

inf HKG(B)" < inf . HKG(G)H ,
% =
8E€U_, (67) 8EU_,(67)

where ¢* = min(e,el). A minimum attained on ﬁe*(e*), is attained in
**7o

the interior of that set (which is the case if KG(B) is continuous

on D).

PROOF;' By continuity of the matrix of partial derivatives of VK. (8),
i)
and the nonsingularity of VKG (Gz) let El be given as in the inverse
o

function theorem (Appendix 1) so that

sup IVK, (8) - VK. (65 < «
8ET (67 Go Go °
El (o]
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"].“ _l

where « = (2]VK ) 7. Then by (a) of that theorem 6 € aue*(e:)

G (60)
o

it is true that

* _p% % =1 _ % ‘
e’ = lo-6 Il < 2|Iv1<Go(eo) ||||1<G0(e) KGO(eO)II

. *y - c *
since KGO(SO) 0 for every 6 BUE*(GO)
"KG (ol z_KE* .
)

By Cl1 let & > 0 be so that G € n(G,GO) implies

sup

, %
eED"-KG(e) - 'I\GO(G)“’ < e < ke /2 .

Then for o6 € 3U h(e*)
. e* o
% N1 %
IR (O > xe™ - €y > €5 7 HRG(GO)H ,

and the lemma is proved.

The importance of the formulations using neighbourhoods can be

demonstrated with a simple choice of neighbourhood,

n (8,6) = {GEG [ supg e Ik, {8) - KGO(e)ﬂ < 8} .
Fof this neighbourhood Cl automatically holds with 6 = e.

EXAMPLE 2.2: Let Go = ¢, the standard normal distribution, and set

P(x) = x 0< |x] <ec

0 otherwise

Then KQ(S)'¥ J wkx—G)d®(x) is continuously differentiable, K&(O) # 0,
and KQ(O) = 0. Let d >0 and ng be defined:for the compact set

D = [-d,d]. By Lemma 2.2, for every € > 0 there exists a § > 0 so
that G € nO(G,Q) iﬁplies‘that there exists a local minima of Kﬁ(e)

in (-e,e). But by Theorem 1.1 observe for any stationary ergodic

sequence with marginal &,
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a.s.
Jw(x—e)dF (x) = J xdF_(x) —> Jw(x—e)dQ(x)
n n
[-c-6,c-6]

uniformly in 6 € D.

That is "Fn € no(5,®)” holds f.a.s.l.n., and so there exists a con-

~

2
sistent sequence, {en}; of minima of Kn(e), consistent to Sz' 0. It

1]

is important to note here that ¢ 1is discontinuous in 8.

N

2.3 Consistency and Uniqueness of the Multivariate M-functional

Considering the M-functional épecifically as a solution T[y,-]

of equations (2.8) we make the further assumptions

C2 V(x,6) is a continuous function on R xD.

C3 ‘There exists a continuous function g € Ll(Go) so that

lv(x,8)II < g(x) for all (x,8) € (RxD)

Then assumption C2 leads to an extension of Lemma 2.2. Addition
of C3 ensures a corollary giving existence of roots f.a.s.l.n. of the

estimating equations.

LEMMA 2. 3: Assume 8:, Go’ and ¢ are so that Bl, Cl, and C2 hold.

Then there is an €, > 0 so that Ue (62) C D, and given € > 0
. 1 ©

arbitrary, there is a ¢ > 0 so that G € n(a,Go) implies there exists

a solution, t[G] EVUE*(ez), of equations (2.8) where e* ='min(e,el).

PROOF: By continuity of the partial derivative let €y > 0 be so that

VKG (6) 1is nonsingular on ﬁg (62). Then consider the open ball
1
o

Ko (UE+(GZ)) containing Q and let Er “be a ball of positive radius r
o
. . * ; { i 13
contained in KGO(UE*(GO))' Since KGO is a continuous map KGO(Br)

is closed, as is then W = Kgl(ﬁr) N ﬁe*(ez). Consider the '1-1
o
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homeomorphism KG (5)‘_ , which maps W onto Bf. If
B

(o]
r

SUPy ey "gG(G)":j_r, we can transform the equation

KG ) + gG(G) =0 for B EW
o)
into

£+ gg(K () = 0 for fel <r .
o

The map ¢t %»;gG(Kal(t)) is continuous and maps the ball Er into.
o

itself. So Brouwer's fixed point theorem (Appendix 1) guarantees a

solution. Then letting & be so that G € n(é,Go) implies

SUPy Ik, (e) - KGO(Q)H <r,

the theorem is proved with gG(e)'= KG(G) - KG ().
: o

Reeds (1976) used the Brouwer's fixed point theorem in a like
manner, while another version was used in the consistency argument of_

Aitchison and Silvey (1958).

COROLLARY 2.2: Let e:, G,» and ¢ be so that Bl, C2 and C3 hold, .and
Go is the marginal of a stationary ergodic sequence %. Then giveni

€ >0 there exists a root 0 (é(n)) of equations (2.5), within

n

%
Ue(eo) f.a.s.l.n. .

PROOF: By Lemma 1.6 and Proposition 1.4, for fixed 6 > 0, see that C2

and C3 imply

F € no(é,GO) f.a.s.l.n. , (2.12)

and the result follows from the Lemma.
The assumption that ¢(x,8) 1is continuous in © is utilized here
to ensure existence of a root to equations (2.5). But while Corollary 2.2

appears to describe the existence of a consistent root to 9:, it is
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far from complete in its description of the identity of the root. For

instance the above'Corollary states: there is a ball Ue about 93
’ 1

so that given any 0 < g < € arbitrarily small, there exists a root of
equations (2.5) in Ue f.a.s.l.n.. There may be more than one root.

But also there is the possibility that there exists roots in Ue -U-.
, , 1

Similar statements can be made about the local minima of empirical
distances QF»(G). This raises a matural question; "Do all the local
n

minimizing parameters of Qp (8), or the zeros of K (8), that are known
v n '
to lie in the set U (0*) converge to 6%
e © o
the latter, which is also an answer for the former should QF (6) be
n

f.a.s.1.n.?" 'An answer for

continuously differentiable, is provided by the following Theorem:

THEOREM 2.1:

Let 6, G,, and ¥ be so that Bl, C2, and C3 hold. By continuity

let €1 'be so that

-1

1y .

% %
sup vk, () = vk, (8)I < (2lvk, (87)
8EU_ (8)) % o o o ©
€. O
1
Let % be an ergodic sequence with marginal Go' Then, for any,séquence
6. x™)}  of roots of (2.5), such that "6 (x™) €U (6*)" holds
n-' n=1 n~ el [s}

f.a.s.l.n.,

d.Ss.

n - —
16, - 6.l 0.

A

: , *
PROOF: From (a) of the Inverse Function Theorem, since 6.5 O € U€ (62)

| A

N %
1, - Xl

=1 A ’ , *
0 ZNVKG (eo) HHKG (en) - K (eo)H
O (o) o]

fy—1 o
209K, (0)7HIIK, (6)1
(o] (o]

% .—l I ~
ZHVKGO(SO) H.HKGO(en) - Kn(en)H (2.13)
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a.S.
— 0 by (2.12).

The mode of proof may be applied to any set of nonlinear eQuations
for which there is uniform convergence over the pérameter space. It is
possible to show with further regularity conditions on ¢ the existence
of an asymptotically unique consistent rdot of the equations (2.5). 1In
fact there is a small region about Gg in which there will exist a unique

root f.a.s.l.n.. Clearly this has no significance by itself but in the

context of the parametric model where Go = Fe , and ¥ is suitably
o

regular and satisfying (2.6), then these results apply to the parameter

60, as well as to other roots of Ee ¥(X,6) = 0. There exists a sequence
: o

~

of roots en consistent to 80, which are unique in a region about 60
f.a.s.l.n.. But.also, for suitable functions 1, there exist other

neighbourhoods of the distribution function Fe , on which there exists

o
a unique root of (2.8) within a region of the parameter space. This is
fundamental to the theory of robustness where the indeterminacy assumed
about the generating marginal of {Fn} spans not only F, but also
neighbourhoods of elements of F. It is also important in that many
functional limits of the M-functional presume the existence and uniqueness

of the M—-functional on neighbourhoods of a parametric distribution F

e
o

Unaer specific regulérity conditions on ¢ and thé neighbourhood, we
show existence and>uniqueness of the M~-functional simultaneously by a
method that adopts the mode of proof in Foutz (l§77). He showed existence
and uniqueness of a consistent solution of the maximum likelihood
equations. The results here extend to dependent sequences and contain
the consistency argument for estimators in Markov chains detailed by
Foutz and Srivastéva.(l979). Uniform convergence theory that is of
interest in this thesis, gives practical conditions that cover the

assumptions of Foutz.
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~ For completeness we list the conditions at the risk of some repeti-
tion. The first condition appears slightly esoteric. But suppose for

the moment that the distribution Fe is known. We wish to illuminate
o .

the behaviour of the root of (2.8) that is closest to 90 “in Euclidean

0

norm, on neighbourhoods of F, . This provides a temporary identifica-
o

tion of the M-functional. We can later employ a more statistically
applicéble selection functional that does not presume the knowledgé of

60 but one that will be equivalent in its selection on small enough

80’ to |8 - eou.

neighbourhoods of F

CONDITIONS A
AO T[y,G] is a root of (2.8), if one exists, chésen by the selection
functional fG(e) = lle - GOH (independent of G). T[¢,G] = +

otherwise. T[lb,Fe 1] =29
o

o

Al The rxl vector function y(x,8) is differentiable in 6, and

has partial derivatives which are continuous on R xD.

A2 The families of vector functions {w(-,e)[e € D} and matrix
functions {Vy(-,6)|6 € D} are bounded above in Euclidean norm
by some function g on R, where g €L;(G) for all GE n(s—:O,Fe )

o
and some € > 0.

As a result of AO-1 resulting M-estimates are measurable. From

Al-2 observe that vectors KG(G) and matrices

M(6,G) = J Y (x,0)dG(x)
are continuous in 0 € D for each G € n(eO,Fe Y. Then the function

KG(G) has partial derivative M(06,G), since interchange of differentia-
tion and integration is availed by A2 and dominated convergence. We will

set M(0) = M(G,Fe ), which is also continuous in 6 € D.
o
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A3 M(eo) is nonsingular.

Ad Given € > 0 there exists'a- 6 > 0 so that G € n(cS,Fe ) implieé
)

supy cp |l fw(x,e)dc(x) - J w(x,e)dFeo(x)u <€,
and .

. _
SUPg llJWJ(x,G)dG(X)‘ - J VP (x,0)d6_(x) < e .

Assumption A3 is ofteﬁ replaced by the stronger property of positive
definiteness of M(eo) when (2.5) represents the minimizing equations
of some distance Qn(G), but nonsingularity is sufficient for the argu-
ments here. Al‘proves neéessary for application of the inverse function
theorem employed in the uniqueness argument. Assumption A4 can place
some restriction on the function -y, depending on the neighbourhood that
is considered. Investigation of the influence curve of Hampel (1974)

involves examining the M-functional in starlike neighbourhoods

nx(e,Feo) = {(1—6)Feo + 66, 0-§'§ < g, and GX is the

d.f. determined by the point mass one at the given (2.14)

point x € R} .

For neighbourhoods n_, assumption A4 follows as a result of Al-2.

Neighbourhoods
n*(e,G) = {G|G €6, supy e | [w(x,e)dG(X) - f v (x,0)d6 ()1 < e

sup

s€ED va(x,e)dG(X) - f Vw(x,e)dGo(X)" < g},

satisfy A4 immediately with § chosen equal to € and G0 = F6 . Again
o

by Lemma 1.6 and Proposition 1.4 it follows that assumptions Al-2 imply

that the empirical distribution function satisfies

F € n*(E,GO) f.a.s.l.n. . (2.15)
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Analogous statements hold for the maximum likelihood estimation of

parameters in a Markov process "i"'Y—l’Yo’Yl’ ..... , by writing

X, = (Yi_l,ii) and w(x,e) = Vpe(x)/pe(x). Here pe(x) is the coﬁditio—

nal density described in Roussas (1969, P.63).

EXAMPLE 2.3: To illustrate the practicality of conditions A we show

A0-3 for the maximum likelihood.estimator of location scale of an i.i.d.

sequence from.a’univariaté normal population. This is even though the

uniqueness and asymptotics may be clearly demonsfrated in this instance
1

by other means. Here ¢(x;u,0) = (Eiﬁ., -1 + {Eég-}z)v‘satisfies fﬁe

restriction placed on 1 by AO. ' Let (uo,co) be the parameter in

question, where o, may take any positive number. . Set

D = {(u,0)|l(u,0)" - (uo,oo)'" 5_00/2}. Clearly V¥ has continuous

partial derivatives on D. Since uniformly on D it is true that
X=H
1= <»(2/oo)<lx - | +o /2)

the vector function w(x;u,o) and matrix function of partial derivatives

of ¢ are bounded in Euclidean norm by
1 )
g(x) = {1+4.(2/0 ) (|x=n | +0_/2)} max(l.,0_/2) .

Then A2 is satisfied if g is integrable with respect to each

G € n(EO,Fe ). This is true for neighbourhoods n, x € E. Since
o ,
' -2
dEt{M(Ud,OO)} = 200 > 0, A3 holds.
Preliminary results follow.

LEMMA 2.4: Let conditions A hold. Then there is a 61 > 0 and an

€, > 0 so that for all 8 € U<S (60), G € n(el,F6 ) implies the matrix
1 o

M(6,G) is nonsingular.

PROOF: By continuity of the determinant as a function of the elements

of a matrix we may choose n > 0 such that for any matrix A with
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1A - M6 )N < n, |det {A}| > %[det{M(eo)}|. From the continuity of M(8)

in © we may choose 61 > 0 so that [M(8) - M(eo)ﬂ < n/2 whenever

8 €U, (6 ). Assume U, € D. By A4 we can choose €
61 o 61

IM(8,G) — M(8)l < n/2 holds for all G € n(el,F

1 guch that

5 ). The lemma is proved
o

by the triangle inequality of norms.
The next result is vital to many limit arguments concerning the

implicitly defined M-functional.

LEMMA 2.5: Let conditions A hold. Then given «k > 0 theré exists an

e > 0 such that” G € n(e,F iﬁplies existence of T[y,G] € UK(GO).

g )
o
Also there exists «k* > 0 for which T[y,G] is the unique zero of

KG(B) in UK*(GO), and M(6,G) is nonsingular on UK*(BO), for all

G € n(c,Fe ). TFor any positive null sequence {ek} we may take an
o ‘

arbitrary sequence {Gk}, where G

€
I n(ek,Feo), and then

Limg,o T0HG] = TOHF 1 ‘ o (2.16)

If T[¢y,*] 4dis any other functional satisfying (2.8) and (2.16) then
T[¢,Gk] = T[w,Gk] for all k 3_ko o

where, ko is independent of the choice of sequence {Gk}.

PROOF: wWrite A =Vl/(4.HM(60)-IU). By continuity of M(8) we may
choose an open ball of radius 0 < «* j_min(él,K) so that 6 € UK*(GO)
implies |M(8) - M(eé)ﬂ < A2. Let €y be given by Lemma 2.4. For

G € n(e ), define A(G) = 1/(4."M(90,G)”1H). Choose 0 < ¢* <€

o

1°Fg 1

so that

IM(6,G) - M(ao,c)n

| A

IM(6,G) - M(8)Il + HM(GO,G) - M(eo)ﬂ

+ (o) - mM(e )l

| A

A< 2.0(0) ,
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holds uniformly in 6 € UK*(BO) for all G € n(e*,Fe ). Properties
: o
(a) and (b) of the Inverse Function Theorem of Appendix 1 ensure KG(-)

is a one-to-one function from UK*

onto KG(UK*)’ and that the image
set contains the open ball of radius AK*/Z about KG(SO). Choose

0 <e' < ¢* such that
IKg(6,) = Ol < ac™/2 .

Then it is clear that 0 € KG(UK*(SO)) for all G € n(E*,Fe ), and that
o)

the image set contains the open ball of radius Ac*/2  about . KG(BO).
Consider the inverse function

-1 :
KG : KG(UK*(GO)) *‘UK*(GO), for G € n(e ,F6 ) .

o

It is well defined whenever 'KG(e) is one-to-one. Since 0 € Ké(UK*)

for G € n(e',Fe ) we may conclude that with €'

o

= ¢ there exists a

unique root T{y,G] of (2.8) ‘in UK*(GO) whenever G € n(g,Fe ).
o

*

- Now letting {Ki} be a positive null sequence for which «I <«

i=1

*
i b
there exists a corresponding sequence of {ei}. Since {en} is null
s P . < 1 e 1 .
there is some j(i) for which Ej(i) < €5 whence Gj(i) n(ei,Feo)

Letting

T{v,G

-1
k] - KGk(O) N UK*(GO) 1)

we see that

lim T[w,ck] = T[¥,Fy ]
(o]

The functional value is the unique root of (2.8) on UK¥(BO) for
k 21](1) = ko.

The versatility of Lemma 2.5 is immediately apparent. For if %

is a stationary ergodic sequence with marginal distribution Fe , 1t
o
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0

follows from (2.15), where GO = F_ , that there exists an asymptotically
o -

unique consistent root of equations (2.5) to 60. This is Theorem 2 of
Foutz. For the starlike neighbourhoods of (2;14) we see that contamina-
tion of a single point x of the observation space, provided'that it is
sufficiently small,‘leads to only small perturbations of the M-functional
which is also unique in a regipn about 60

Employing cdntinuity properties on the asymptotics of the
M-functional, for instance in terms of Prokhorov, Kolmogorov, or Lévy
distance,'does not necessarily make those properties relevant to the

M-estimator. The next theorem-alleviates this doubt.

THEOREM 2.2:v
Let conditions A hold. Denote Fn (random) to be the empirical
distribution function from a stationary ergodic sequence with marginal

G0 where Go € n(E,Fe ), the value € being given by Lemma 2.5. Then
(o]

there exists a root e(w,Fn) of equations (2.5) which has the property:

a.s. : ’
e(w,Fn) — T[w,co] . . (2.17)

If é(w,Fn)' is any other functional satisfying (2.5) and (2.17)

é(w,Fn) = 8(,F ) f.a.s.l.n.

PROOF: By Lemma 2.5, T[w,Go] exists and lies in UK*(GO), and also

M(T[w,GO],GO) is nonsingular. Analogous statements to those of

%

Lemma 2.5 are true taking neighbourhoods n™ centered at G, and

denoting the selection functional that determines 6(y,+) equal to

ﬂe-T[w,GO]H. That is given «_ > 0 there exists 0 < Kg

< Koo 0 < €4
such that G € n*(EO,GO) implies existence of a functional value

8(y,G) E,UK*(T[w’Go]) which is unique in that set. Giﬁen a null
o ,

' %,
sequence {eokj, for any sequence {Gk}, Gk S n‘(eok,Go), we have
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lim 'e(w,ck) = T(¥,6,]

koo

-

The theorem follows from (2.15).

REMARK 2.1: 1If ¢ satisfies conditions A for Prokhorov, Kolmogorov, or
Lévy neighbourhbods (determined by the respective metrics), and T[w,Go]

is the unique functional such that HT[w,GO] —.eo"'< «*  whenever

: © a.s.
G, € n(e,F9 ), then since d(Fn’Go) —> 0 for each metric it follows
o

that Fn € n(e,Fe ) f.a.s.l.n.. So e(w,Fn) = T[w,Fn] f.a.s.l.n. and
o ' '

a unique solution of (2.8) in UK*(GO), even though generated by Go’
The conditions introduced are not difficult to check. Under them

the existence of a region about GO in the parameter space has been

demonstrated for which the M-functional will exist and be uﬁique in a

small enough neighbourhood about Fe . Moreover given any distribution
: o

in that neighboﬁrhood generating the pfocess (L.1) there will exist an
asymptotically unique consistent root to fhe M-functional. If the '
neighbourhood is determined by a suitable metric the M-estimator will
also be unique in the region about 90 subject to conditions A béing
satisfied.

Theorems to this point have been local in nature. Indeed uniform

*

convergence need only apply in a local region about some parameter eo’

in order that a consistency result be attained. But what is sought for
are theorems of a global nature which, in practice are more useful.

a.s.

LEMMA 2.6: Let fn(§(n), )y — fG (6) uniformly in 6 € 0. Suppose
o ‘

there exists a 6; so that for every neighbourhood N of 6:

1nf6q5N fGO(S) - fGo(eo) >0 .

If

Define H () {6 € O]Kn(ﬁ) = 0}, Suppose further there exists a region
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%* * X . .
UK*(GO), k* > 0, so that Hn(w) n UK*(GS) consists of a single point

f.a.s.l.n.. Assume there exists a sequence {en € Hn(w)} so that
a.s.

6 —> 6°. Then,
n o

. (n) _ (n) .

lnfefan(w) fn(§ ,0) = fn(% ,On) f.a.s.1l.n..
PROOF: Let e(x*) = inf f '(6) - £, (86%). Choose 0 < §, < >

K%' o
so that
_ * * c * '
IfGO(e) fGO(eO)I < e(x®)/2 0 UGl(eo) .

. L) . o
Since en € Uél(BZ) and |fn(§ ,0) - fGO(e)l < e(k*)/4 un1fo§m1y in

6 €0 f.a.s.l.n.,

fn(§(n)’6n) < fGO(en) + e(g*)/a

A

fGO(eg) + (3/4)e(x™)

A

fGO(e) - €(<*)/4 uniformly in 8 § N = U_(67)

< fn(%(n),ﬁ) uniformly in 6 ¢ N .
Hence
o () .y - (n) : |
1nf9€5Hn(¢) fn(§ ,0) fn(§ 6 ) f.a.s.l.n. .
If fn(§(n),6) = fF (8), the functional T[y,f,*] leads to a

n

, %
measurable estimator that is consistent to T[w,f,Go] =reo. The state-~
ment of consistency is with respect to an underlying probability measure

P ﬁhich induces Go' When Go = Fe and eg = eo we may assert the
‘ o

estimation procedure is ''globally consistent'. With identifiability

of the parametric family F it is desirable to have this property for

all 8 € o.
0

The separation requirement of the Lemma can be shown to be satisfied
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for a number of the L2 norms of the Kolmogorov-Smirnov and Cramer
Von Mises type. Pollard (1980) studies statistics of the type "Fn-Fe",
where distributions F6 take values in ¢ where @¢,[l*]l) is a normed

linear space. Moreover the maps 6 — F8 are assumed continuous. Here

we have 3 = E. Since F + F,- whenever 6 + 8,, it suffices to
_ Sl 92 1 2 .

show there exists at least one compact neighbourhood NO of ,90 for

which

i F - F .
1nf8¢N ‘Il . 8 I >0
o} (o]

For then, given an N, the continuous function 0‘F>HF6 - T, | must

, o
be bounded away from zero on the compact set NO - int N, and hence also
on the set (0 - NO) U (Né - int N)‘g ® - N. These investigations are
related to the separation arguments of Wolfowitz (1957) who considered

strong consistency of minimal distance estimators. Other selection

statistics yielding globally consistent estimators are based on (2.7).

§2.4 Global Consistency and Uniqueness of the Univariate M-functional

When the parameter space is a subset of the real line, arguments
peculiar to the real line can be employed to prove existence of an
asymptotically unique root of equations (2.5). Continuous différenti-v
ébility of ¢ can be relaxed. Moreover a selection statistic based on
the expected slope of the influence function is possible. This obviates
the need for searching for the function 2£(x,6) of (2.7), which»may not
even exiét if. Y 1is constructed for its local properties.

| Small violations in differentiability of an influence function .w
can be overcome by considering {(3/36) y(x,8)|6 € @ C E}, where (3/36)"
denotes left differentiation, which is often well defined on RXx0.

Individual investigation frequently shows
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‘ _ a.s.
(d/de) Kn(e) — VKG (6) wuniformly in ©6 €D , - (2.18)
o

v

where K. (6) 1is continuously differentiable and
o

VK, (8) = J (3/38) ¢(x,08)dG_(x) .
o v
LEMMA 2.7: Let e; G, and § be so that Bl, C2 and C3 hold, and that
(2.18) is also satisfied. Then there exists an open ball Uﬁ(e:)’

§ > 0, such that

(a) there exists a sequence {Oh(Fn)} of zeros of {Kn(S)}

. . %
within Ué(eo), and

(b) for any other sequence {B(Fn)} of zeros of {Kn(e)}

consistent for 6%, 8 (F) = 6 (F.) f.a.s.l.n..
» o’ n'n n'n’

PROOF: Abbreviate Ao = VKG (eg)[v By continuity choose the ball
)

% . ) ‘ %
Ué(eo) CD so that VKGO(S) > )\0/2 for 6 € Ué(eo)' By (2.18)

(d/de)—Kn(e) > AO/A uniformly in 6 € 56(6:), f.a.s.l.n. (2.19)

By the uniform convergence indicated by (2.12), and differentiability of
K, (8),
o

% % k3 *
Kn(eo—é)<:KGO(60—6)-+A06/2 <0<<KG0(90+5)-A05/2<:Kn(eo+6) f.a.s.l.n.
(2.20)
By continuity of Kn(e)' there exists Gn'e Ua(ez) f.a.s.l.n., and '

by strict monotonicity, (2.19); it is unique within Ud f.a.s.1l.n.

Fixing 6 > 0 and taking O < Gl < § arbitrarily small we see that

G(Fn) = Ué and is unique in UG f.a.s.l.n.. That is the functional
1

values en(Fn), defined by selection function 1o - 8§| are asymptbtic—

. : a.s.
ally unique and satisfy G(Fn) —> 6(G). This completes the proof.
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Then to each nonstationary zero 9: of KG (8) there exists an
7o

asymptotically unique consistent sequence of roots of équations (2{5).

They are identified as thosg closest to 63, the minimum if there occur
two equidistant from 6§. Not knowing GO this belies the statistical
estimation procedure. But with some mild conditions on ¢ the estima-

tion can be resolved when Go'= Fe . Let
: o

Hy,F ) = {8 = 6(¢,F80)|KF8 (8) = 0, VKFG (8) # 0 , 6 €0} .

0 -
[0} o

A requirement for estimation is that 60~€ H(lP,Fe ) for all 60 € 0.
. ' )

For a global consistency argument we consider the following assumptions
(a) H(w,Fe) is finite (= 60 ..... G say).

(b) 6 €H(Y,F ), 8 # 6 implies ]VKF (8) - VK 8)| » £(6 ) > 0,

o ) 0
o

for some g(eo).

(c) |WK (60)] > ¢ for some & > O .

Fe
[e] .
By continuity there exists balls U6 (80), di >0 where for each
i
S Ug (Gi) it is true that
i

vk,  (8)] > %|vk, (6.)]|
Fe l l Fe i

o o
Assume further that,
(d) there exists € = e€(2) such that if
: N
6 € t(e,,F ) = {o||k, (@] <e 8€0- | U, (8))
o 60 i=1 i

implies V|KF (6)| < s.% for some fixed 0 < s < ¢, and

o

(e) VK, (8) is a continuous. function in 6 € 0.
6 .
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The motivation for assumption (d) is to allow for possible zeros

of 'KF (8) which may be stationary points of that function. Or more

8
o

90 Fe
o

importantly if lim K (6) = 0 it often occurs that in finite

samples and for large 6  there exists roots en(Fn) of equations (2.5),

yet the {eh(Fﬁ)} need not correspond to an estimator sequence consistent
to an element of H(lb,Fe ).

o

THEOREM 2.3:

Let 6" = 0 ,'GO‘= Fe., and ¢  be so that Bl, C2, and C3 hold with
. o : '
D = 0. Assume (a)-(e) hold and (2.18) holds when D = ©. Abbreviate

(d/d8)™K_(8) = K!(6) and let
H ($,s.2) = {8|K_(8) - 0, |1<I'1(e)| >s.2 , 6 €0},

where £ is a knowﬁ»constant of (c) and 0 <s <1 is some constant.
Define {T[w,Fn]} to be that sequence of zeros of {Kn(e)} if they
exist (if not define. T[w,Fn] = + «) which satisfy
1 _t - 1 it :
mineeﬂn(w,s.g)lKn<e) KF6<8>| [} (Tly, F DK}, (Tlv,F, D |

T[y,F_]
n (2.21)

(let T[w,Fn] be the least if there exists more than one solution.)

Then

a.s.

TW,E] — 6

PROOF: TFirstly observe from (2.12) and (2.18), with D = 0 and

N
H (y,s.2) N{e - |J U, (6,)} =¢ f.a.s.l.n. .
n i=1 61 i

By Lemma 2.7 there exist asymptotically unique sequences {Bni(Fn)}
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' a.s.
such that eni(Fn) = Hn(w,Fn) N Udi(ei) = eni(Fn) — Gi, i=20,...,N.
Then by (2.12), continuity of KF .(6) and (e) respectively
S]
o .-

|K;(eni(Fn)) - K%G (eni(Fn))l’ IK%G (eni(Fn)? - Kfe (ei)l’
‘ o] » 0 0

k! (8,) - K! 6_.(F)N],
Fe' i Fe (F) ni'n
i ni n

are all less than 5(60)/6 f.a.s.l.n., i = O,...;N, which by (b) implies

ni' ' n F
eni(Fn)

1 - 1 '
AIKn(e (F)) -K (6 ;| > &(6)/6 f.a.s.l.n.
i=1,...,N
Finally

|
lKn(eno(Fn))] > 5.4 f.é.s.l.n., for any 0 <s <1,

whereby the lemma is proved since

|K: (8, (F ) - K (0,,(F))| < €8 )/6 f.a.s.l.n. .

eno(Fn)

If a lower bound, %, is not known to exist uniformly in eo €0

it may be true that there is an ¢ > 0 for which T(e,w,Fe Y =¢. In
: o

that case Thedrem 2.3 remains valid replacing Hn(w,s.z) by H(w,Fn)
in (2.21). 1If a lower bound were not to exist and yet f(e,w,Fe Y # ¢
o

for all € > 0 then a natural assumption in place of (d) is:

(f)' There is an € > 0 so that 8 € T(s,w,Fe ) implies
)

Ing (8) - ng(e)l > E(8)/2 .
(o]

Then any solution 6 € T(e,w,Fe ) will be so that
o

iK;(é) - K%é(é)l > £(8))/6 f.a.s.l.n.

Hence the root SnO(Fn) will minimize the selection statistic
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£ (x(“),e) = |K'(8) - K! (e)| over all such roots. The particular
n-a n Fe

assumptidns imposed then will depend on the individual family F and
influence function . Note that upiform convergence over the whole of
the parameter space is necessary fprvthe Theorem.

Many authors prove existence of a consistent sequence of solutions
of (2.5) but few also deal with uniqueness of thevestimatér. Very weak
&bconditions were given in the consistency case B of Huber's (1967)
monograph, that were sufficient for showing almost sure cénvergencé of

estimators Tn :Rn — 0. that satisfied

1 a.s. :
o ) w(xi,Tn) — 0 . ‘ (2.22)
i=1 '

For clarity we make a comparison.
Assumptions (Huber 1967)
(B-1) = For fixed © € 0, ¥y(x,08) .is B measurable, and ¥(x,0) 1is

separable (see Huber 1967, P.222, (A-1)).

(B-2) The function ¢ .is a.s. continuous in 0:
1im6'+9 [w(x,e') - w(x,ejl =0 a.s.
(B-3) The exbected value K, (6) = E. P(X,6) exists for all 6 € 0,
. o ’

o
and has a unique zero at @ = 80.

(B-4) There exists a continuous function which is bounded away from

zero, b(86) z_bo > 0, such.thaf

. vl oL
(i) sup, b(0) is integrable
% @
(ii) 1lim ;nfe+w*—gzgs-—-i_l

vx,0) - K, ()]
8]

(iii) EGO{lim SUPy <1} .

b(6)
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Relinquishing the requirement that Tn be a root of equations (2.5)
allows the relaxation of the continuity assumption slightly in (B—Z).
Theorem 2.3 relaxes condition (B-3) énd in particular (B-4)(ii). The

assumption (B-4) (ii) bounds the curve KC (8) away from zero outside
o

6

some compact set. At the model F this would ensure T(e,w,Fe ) was
o o

empty for some € > 0. But for instance consider the common case of
estimating the location of a symmetric distribution,vGO ‘'say. Assume
symmetry about the origin for instance. For those continuous odd psi-
functions that are zero outside the compact set [-c,c], Y(x-6) is zero

whenever x lies in (-», -c+8] U [c+6, =). Clearly

c+6
lime—roo KG () = lime_)m [ d}(x—e)dGo'(X) =0,
o . -c+6 ‘

which violates (B-4)(ii). But either assumption (d) or (f) is quite
plausible since there will exist some set U6(0) so that

|Kéo(8)| < |Ké0(0)| uniformly in 6 € E - UG(O)f

Huber proves existence of a consistent root. We give a proof that

identifies the estimator uniquely for all n.
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CHAPTER 3

LiMIT THEOREMS FOR M-ESTIMATORS

§3.1 Asymptotic Normality of the Univariate M-Estimator

In this éhapter we use uniform convergence theory to obtain limit
theorems for suitably normed M-estimators. We consider i.i.d. sequences
and limit theorems for dependent sequences will‘be regarded as peripheral
to this thesis. The only change required in the proofs is to apply‘the
appropriate Elassical'law to the sums of random variables.

Typically proofs of the C.L.T. (central limit theorem)'for
implicitly defined estimators use Taylor expansions. For the M-estimator
this requires that @ bé at least continuously differgntiable in 6 for
each x in the observation spéce. It is often not possible to -escape
situations where apparently '"slight" violations of this assumption occur..
Portnoy (1977) gave a proof that showed "sharp corners" do not affect the
asymptotic distribution of the M-estimator of location on the real line.
The following theorem gives an extension of this result to the M-estimator

of a general univariate parameter.

THEOREM 3.1:
Let Gb be the common distribution function of an i.i.d. sequence
'%, and suppose 62, Go’ and Y are such that Bl of §2.2 and C2, C3 of

§2.3 hold. Assume also that © CE and (2.18) holds. Denote

_ v % _ - ‘
A, = KGO(eO) - f (3/939) w(x,e)dGo(x)Ie*‘+ 0.

o
Let {wm} be a sequence of functions that are continuously differentiable
in 6 for all x € R, and suppose there exists sets {5m(e)}, am(e) C R,

that belong to a Glivenko-Cantelli class of Go’ so that there exists a
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‘neighbourhood W C D of 63 for which the following hold:

L) Y (x,8) = ¥Gx,0)  xER-6(8), 6 €0
(ii) pP. = sup J dG (x) >0 as m >
" OC€W Js (o) °
m
‘ -
(1i1) By = sup o sup o U (x,0) - ¥(x,0)] = o(m ), and

(iv) By = sup o sup g, |(3/98) 0 (x,8) - (3/30)y (x,0)] = o).

Then if w(x,ez) has a finite second moment, there exists on asymptotic-
ally unique consistent sequence of zeros '{B(Fn)} of {Kn(e)}, the
latter given in (2.5), such that /E(S(Fn) - e:) B-N{O,oz(w,Go;e:)}, the

normal random variable with zero mean and variance given by

o? (4,6,0) = fvarg ¥(X,0)3/22(0) . 3.1)

PROOF: Asymptotic uniqueness of {e(Fn)} follows from Lemma 2.7. Let

Kém)(e) and Kém)(e) be the quantities corresponding to K and Ko
o ' o

when V is replaced by wm. If m(n) = n then IKém)(e) - Kn(e)l E'Bn’

and so by (2.12)

(m) ,, % % : %, oy (m) . %
K (90"6), < KGO(eO-é) + AOG/Z <0< KGo(eo+5) chs/z < Kn (eo+5), R

f.a.s.l.n., when m(n) = n and US(ez) C W. Label zeros of Kim)(e)

G

and K(m)(e) uniquely defined by the selection statistic IG - Gg!, as
o :

em(Fn) and kem(Go) respectively. They exist within any given neighbour-

hood of 8: f.a.s.l.n.. Consider the expansion
*y - . - _n*
/(e (F )-00) = /u(o(F -6 (F )+ /(e (F -6 (G)))+vn(e (G )-6%)
The required result is obtained by.letting m(n) = n, and considering

the three terms on the right separately. We show the first and third

terms to be asymptotically negligible and the limiting distribution of
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the second term, and thus that of /H(S(Fn) - 62), is normal
N{O,oz(w,Go,ez)}. This would be expected if ¢ were continuously
" differentiable.

Let Ynm(e) =n J an(x).‘ By the Glivenko-Cantelli assumption

§ (8) |
-1 ?i_s) -
sup SUP, < In Ynm(e) - pm(6)| 0. Then
kg (0)-k™ " (8)| < [k} (8)-(a/de) K _(0)]
. o o .
_ . n S
+ 15 £ (3/38) {u(X;,8)~¥ (X;,0)}]
i=1

| A

' - -1 '
|KGO(e)-(d/de);Kn(g)| +n Y (8)B)

a.s. .
—> 0 uniformly in° 6§ € W as m(n)=n->~. (3.2)

Let UCW :be an openbball containing 6: with the property that for

some £ > 0, KL (0) > £ for all 8 € U. Then (3.2) implies that
) (e}

' | . .
K]gm) (e) > 5/2 uniformly ]':n (5] EU f.a.s.l.n. (3'3>

Term 1 may be written,

Ao -6, (F)) = &{™ @)y k(™ (ar )

PN

where enm lies betweeg' S(Fn) and em(Fn). Now,

| kW eF )| = vax™ 6z )) - k_(0(F )3

- LJ; 2 0,00 = bx,0 )

i
R (8(F )8,

| A

a.s.
— 0.

. o
Also from (3.3), Kﬁm) (enm) > g/2 f.a.s.l.n., whence

a.s.
/n(e(F ) -6 (F)) — 0.
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Term 3 may be written

(m) "' ~ -1 (m) , *
- (kg " By ,/EKGO (e,)

.
/E(em(co)-eo)

- {Kém)'(énm) }_1{ J /E[upm(x,ez) - \P(X,ﬁz)]dGo(x)} .

o

Since the 'sequence vEIwm(x,ei) - w(x,ez)] is dominated by an integrable

‘ 4 .
variable and tends to zero a.s., and Kém) (8) > £/2 uniformly in
8 €U as m(n) = n > «, then
' oy M % -l oo (m) ok
/n(8, (G )-6%) = - {K ™ (67 )} ﬂ{Kn (eo)..

% .
Here enm lies between em(Fn) and em(GO). Now as both em(Fn),

*

em(Go) converge a.s. to 60, from (3.2) and since a.s. convergence

apriori implies convergence in probability

(m) ' % v k3 p .
K™ (el ) - KGO(GO) - 0. (3.4)

Further,

]

et e ) = i ™ eh) + va k™ @) (6, )-0%)

= /o k™ e¥) 0, (1) | (3.5)
Now
(m) , % : % 1 " * .
Al - K (0D ] = == = v (X,80) - w(X;,00)1]
n i=1 R
§ n—%Y (6*)8

nm' o’ m
=0 as m(n) =n > = ,

Then since

5 D
®
v/n Kn(eo) — N{O,varGO

b(x,05)
this implies from (3.5) that

) D
/5 K§m)(8:) ——*'N{O,va§GO w(x,ez)} .
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From (3.4) énd the above convergence, using Slutsky's theorem detailed

in Cramér (1946, §20.6)
/n(e_(F ) -6 (G)) 2, N{O oz(w C 6%y}
m* n’ m: o ? ’“0’ o ’

and the proof is complete.

The theorem avoids the necessity for continuous partial derivatives
of ¢, and the local nature of the argument'makes it applicable to non-
monotonic (in the pérameters) influence functions that have "sharp
corners'". Huber (1977) sketches a proof of Hampel (1973) giving
asymptotic normality of a psuedo solution of the estimating equations
under very weak conditions on a ¢ that isvmonotonié in 6 for each
x € R. |

The classical basis for inference about a parameter estimate‘is
the notion'thgt G0 €EF = {Fele € 0}. Moreover the convergence in the
central limit theorem should be uniform in the underlying distributiop,
Even if fhe first should be true, to establish the latter it is i1nitially

required to show uniform consistency.

LEMMA 3.1: Let ¢ be continuous on Rx0, where © CE. Write

0 .
o A _ . .
Kn (6) to be ‘Kn(e) when thg‘l.l.d. seguence %( ) = §(eq, ) is

generated by F_ . Assume K (6) =0 for every 8 € 0, and K (8)
60 F8 he) , o] Fe
o o ‘ o)

-is continuously differentiable in 6 for each 60 € 0. Then if

a.s. :
(8) —™> 0 wuniformly in 6 € 0, p-uniformly

F
0

o

0

o
(1) K@) -k
in 8_ € 0; and
A o
(2) there exists a & > 0, A > 0 such that

VKFe (6) > » for 6 _-8 <'e}< 6 *6 uniformly in 6 € 0;

(0]

then there exists a measurable sequence {Tn[%(n)(eo)]}
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a.s. .
such that T [X(n)(B Y] -8 —> 0 p-uniformly in 6 _ € 0.
nw ) o 0

PROOF: Given arbitrary e > 0, let 8% = min(e,8). Since

6 0

O/n _oky % % Ky yg% o *

K “(6,-87) < KFe (8_=6%) + 18 <0<KFe (8,+6%) - A% <K (eo+§ )
(o] o

holds p—ﬁniformly in 6 € 0, there exists a measurable root of

6

Kno(e) = 0, within radius € of 6 .

. (n) :
o Define Tn[§ (60)] to be the

root closest to '60, the least if two are equidistant. The proof is
then complete.

Conditiéns on sufficient for (1) are found by examining
Theorem 1.2. It is not necessary to give the broadest possible condi-
tions here. We merely point out that.a basis for the result is the
uniform S.L.L.N.. Asymptdtic uniqueness of the root may be approached
through p—ﬁniform convergence of the partial derivatives. This assump-

tion can also be used to establish the uniform C.L.T.

THEOREM 3.2:

Let ¥(x,8) be continuously differentiable so that variances

2 .
o} (w,Fe ,60) are convergent uniformly in 6 € 0 and bounded above and
o :

below uniformly. Assume (1), (2) of Lemma 3.1, and

(3) there exists a & > 0 such that

|VKF8 (8 - VKFG'(so)l-i Msl6,-8,]
o] (o]

for all 60—5 <0, < 80+6 uniformly in 6 € o.

1
0 a.s.

(4) ‘VKno(e) — VKF (6) wuniformly in 6 € © p-uniformly

8
o

in 6_ € 0.
o

Then uniformly in z € E and 60 € 0, there exists a sequence

¥
(n) ) _ .
{Tn[§ ‘ (60)]} of roots of Kn (8) = 0 for which



. (n) —_
Peo{mlvﬁ(Tn[§ (6,01 - 8) <z} @(z/c(w,Feo,eo>)

-

PROOF: Let {Tn[§(n)(eo)]} be the consistent sequence of roots of

6
Kno(e) = 0. Expanding using the mean value theorem

0
T (s}
vn K (80)
e b

(¢}
WK % (&)

M(T-0,) = -

a.s. ,
{ . . —-— 3 1
where &n .lies between Tn. and 80 and so £n — 90 P gnlformly in

8, € o. 'This, together with (3) and (4) gives that

0 a.s. ' ,
o, . A e . c
VK (€) VK (eo) p»unlformly in 6 €0 .

Fo

(o]

8 A
The numerator, /E'Kno(eo), is a normed sum of i.i.d. random variables

with zero means and variances oz(w,Fe ,60). So by Proposition 1.5 its
o0

distribution tends to <I>(z//var6 w(x,eo)) uniformly in ,60 € 0.

o)

The conclusion folléws from the uniform analogue of Slutsky's theorem
(Parzen, 1955, P.48, Theorem 18D).

Restricting uﬁcertainty to a parametric family F ignores the
general‘trend~of'robustness theory where relatively wide départures from

an underlying F are considered. Uniform convergence in the under-

8
o
lying parameter with indeterminacy restricted to F would appear to be

a necessity for justifying inferences made from the asymptotic distribu-
tion. But such a result can be illusory in practice since the under-
lying model is inevitably not in F. A remedy is to consider an influence
function that redescends to zero inside some compact set, is zero on the
complement of that set and is so that conditions A hold. Then by

Theorem 1.2 the equivalent of (1) and (4) hold in neighbourhoods of an

Fe . Conditions similar to (2) ard (3) may be shown in small enough
o
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neighbourhodds of an F Whether these results are uniform over the

o °
(o)

whole parameter space or just on compacts of it generates further

complications.

§3.2 The Law of the Iterated Logarithm

Limit theorems for estimators are not restricted to the gentral
limit theorem. A law of the iteratedblogaritﬁm for the M—egtimator of
location was éhown by Boos (1977) and Boos and Serfling (1980). Under
suitable regularity conditions this may be extended to the general

M-estimator of a univariate parameter. We extend the conditions C.

C4 The partial derivatives of ¢ exist and are continuous on R xD.

C5. There exists a continuous function g € Ll(Go), so that

lvw(x,8)l < g(x) for all x €ER, 6 €D .

THEOREM 3. 3:

Let 0 CE, % be an i.i.d. sequence generated by GO and assume
6¥ and § are so that BL of §2.2, C2 and C3 of §2.3 and Ch, C5 hold.
Further 1etvv¢(X,ez) S LZ(GO). Then there exists»an.asymptotically
unique sequence {G(Fn)} of zeros of {Kn(e)} defiﬁed by selection

statistic |8 - 6:], such that

3 *
ey Ao{e(Fn) - eo}

P{Qllim sup = 1} =1 (3.6)
/252 2n(tn n) .
o A {8(F ) - 6%}
P{w|lim inf o 2 © = -1} =1,

/202 Qn(in n)

%* 2 %
where Ay = VKGO(GO) and ¢ = varGO{w(X,eo)}.
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PROOF: By continuity, given 0 < n < XO/Z choose an open ball UG(Gz),

§ > 0, on which Ao—n < VKG (8) < Ao+n. By Lemma 2.7 there exists an
o

asymptotically unique sequence {G(Fn)} of zeros of {Kn(e)} consistent

"~ to 6:. By Lemma 1.1

p{ U N A" }b=1, | (3.7)
m=1 n=m O .
where
n, (), _
A(XT) = {wlo(F) €U

s 0 K (B(FD) =0,

0 <

-1 1 -
: : o €.
AO+2n < {VKn(e)} < Xo—zﬂ uniformly in 6 UG}'

Let w€ Ag. By the mean value theorem

0(F) - 6% = ~{vK_(£)} K (67

. . . . . . . 1 * )

lies inside the interval with end p01nts KO+2n Kn(eo) and

- L K _(86%). For a,b > 0 we write [a,blc to be the closed
A0—2n n o ,

interval [ac,bc] if ¢ > 0, and [be,ac] if c < 0. Now for each

m=1,2,... w € ] AE implies
: n=m

‘ ¥ »
1 17, /K (6)
+2n ’ X -2n uPnzm > ’
° . ° v 20" n(f&n n)

(3.8)

/nlo(F )-07) :
b (w) = sup .o < [}

' - ¢2021n(2n n)

Let

S S
/Eozrlﬁn(zn n)

C = {m|lim sup
t

(s l=}

1

For an i.i.d. sequence where 02 < 0  the well known law of the iterated

logarithm result given in Breiman (1968, P.64) gives that



P{C} =1 . | (3.9)

Let w € { U ﬂ Ag } N C. Then there exists an m such that m > m
m=1 n=m

implies w € [} AS, whence (3.8) holds. However,

n=m B}
bl z_bz > .. z_bm —-bm 4 e , implies infm bm = infm>m bm.
o o -0
Then since X -2 > 0
inf b (w) = infmzm bm(w)
e 1 I {0f /E.Kn(eo)
AO+2n ’ Ao—Zn in mzmo Sgpnim 2
L . /20 2n(en n)
~ _ ) _ %
= 1 1 inf su f Kn(eo)
AO+2n i Xb—Zn m pnim 5
- - /Eo an(n n )
[ 1 1]
A +2n > X _-2n by (3.9).

Since n 1is arbitrary'

/(e (F ) -0%)
P{wllim sup L o = XL-} =1.
) o

202 n(&n n)

The associated result of (3.6) follows in an analogous manner. This
compleﬁes the proof.

Following Theorem 3.1 the conditions of continuous differentiability
can be relaxed slightly. An issue related to the law of the iterated
logérithm for the estimator concerns the asymptotic expansion in the

‘estimating equations.

LEMMA 3.2: Let ¢ satisfy the assumptions of Theorem 3.3 and further

be twice differentiable such that

a.s. '
Van(ﬁ) — V2KG (8) ‘uniformly in 6 €D (3.10)
o
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Then the asymptotically unique consistent sequence {S(Fn)} satisfies

ag 2vka

. -1 R *
P{w|lim sup n{2n(&n n)} lKn(eo)-+Ao(9(Fn)-60)| j_AZ + X } <1
o .
o ) ko B *y *
where a = a(w,co,eo) ‘|V KGO(SO)I, and «k = K(w,Go,GO) varcovw(X,eo).

PROOF: The usual Taylor expansion gives
. _ % koo T k2
0= Kn{e(Fn)} Kn(eo)a-vxn(eo){e(Fn) eo}+-zv Kn(gn){e(Fn) eo} ,
with En between G(Fn) and 62, from which we write

* % %, _ : %y % _a*
Kn(eo)i-VKGO(GO){e(Fn)-60} = {VKG (eo) VKn(GO)}{G(Fn) eo}

o
2 *,2
- 1 -
3V K (g ){6(F) eo} . (3.11)
a.s. 2 a.s. . o *
o 1 — =
Note that En . 60 and (3.10) imply |V Kn(gn)l IV‘KGO(GQ)I 0
‘a.S. * . 2 a.8S. 2 o
. . —_— -
Note that - —— ©_ and (3.10) imply |V Kn(gn)[ |v KGb(eo)l o

Multiplying (3.11) by n{2n(&n n)}—l and taking absolute values we

observe from the usual law of the iterated logarithm result

lim sup fﬁ{ﬂn(ln n)}-l[VKG (6:) - VKn(G:)| < Y2¢ a.s.,
: . o : b

and from the result of Theorem 3.3

lim sup /a{2n(en n)}_lle(Fn) - ezl < V2o/2, a.s.,.

thé Lemma holds true.

A particular version of the Lemma is to consider the Mfestimatof
for location of a symmetric distribution on E, where y(x,8) = y(x-8)
for ¢ an odd function; twice continuously differentiable. For GO

. : . . nk
symmetric about zero there exists an M-functional value 60 = 0, and
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%*

a(p,G,6°) = 0. Then
P{w|lim sup n{¢n(2n n)}_llKn(G:)4-Ao{6(Fn)-9:}|.i cl=1,

where c¢ = VKG/AO. This is a refinement of Carroll (1978a) who only
claimed existence of a constant c. Conditions here appear stronger but

extend to the more general M-estimator.

§3.3 The Multivariate M-estimator

More intricate arguments are necessary to extend limit theorems
under equivalent conditions to the multiparameter models. But under
suitable regularity conditions one can derive the asymptotic normality
of the M-estimafor when the underlying distribution lies in a'neighbou:—

hood of- an Fe € F.
o

THEOREM 3.4:

Let "¢ satisfy conditions A of §2.3 and suppose % is an i.i.d.
sequence of r.v.'s generated by G0 € n(s—:,Fe ), where 15 is given by
Lemma 2.5. Suppose T{y,G] is the fﬁnctiongl determined by selection
statistic [l6 - eoﬂ. Assume w(X,T[w,GO]) has finite second moments.

Then there exists an asymptotically unique consistent sequence e(w,Fn),

consistent to T[w,GO], for which-

| D | |
MO, = TI,6,1) — 80,07 (4,6, T(h,6 1)} @1y

where

]

o2 (,6,0) = M(8,G) LI (y,C,0){M(0,6) 1}

b

and I(y,G,0) = varGw(X,e).' Here 0 C ET.

PROOF: By Theorem 2.2 {e(w,Fn)} is an asymptotically unique'consistent
sequence to T[w,GO], defined by selection statistic |6 - T[w,GO]“.

The two term Taylor expansion
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0 = K (8L¥,F 1) = K_(T[¥,G 1) + VK () (8(W,E ) = T(4,G.1) ,

~

where VKn(G) is evaluated at possibly different points Bn on the
diagonal between e(w,Fn) and T[w,GO] (cf. Appendix 1), can be made.
~ a.s.

Since Gn —> T[w,GO] and assumptions Al-2 give that

a.s.
IvE_ (6) - M(G,Go)ll —> 0 uniformly in © € D, then

N a.s.
||VK'n(6n) - M(:[w,co],co)ll —> 0.

So clearly the expansion implies /E(e(w,Fn) - T[w,GO]) = Op(l), This

follows since

Va K (T[V,G_ 1) v(X;,TI¥,6,1)

o~

1
vn i=1

D - .
> N{0,2(y,G_,Tl¥,6, D)} ,
by the multivariate central limit theorem of Anderson (1958, P.74). The

expansion can be validly re-expressed

Ao, F) = TLy,6,1) = -M(TI¥,6 1,60 " Va K_(T[4,6_1)

_l ~ .
+ M(T[y,G 1,6 ) " {M(T[y,6_1,6) = VK (8 ) }/n(8(y,F ) - T[¥,C_1).
The latter term is now op(l). This completes the proof;

REMARK:  An alternative method of‘the multivariate C.L.T. proof is to
" make use of the Cramér—WQld (1936) deﬁice which shows that to study the
asymptotic distribution of a vector: gn it is sufficient to'study the
one—dimensional asymptotic distribution of Zn = %'En for arbitrary
unit Z- (Crowder 1976).

By Theorems 2.2 and 3.4 we have introduced some new conditions

which for suitably regular ¢ functions are not difficult to check.

The existence of a region about 60 in the parameter space has been



80.

demonstrated fér which the M-functional will exist and be unique in a

small enough neighbourhood about Ee . Moreover, given any distribution

in that neighbourhood the M-estimatog will be an asymptotically unique

consistent root to the M—functional, an& as well be asymptoticaliy normal.

The argumenfs used are local and the choice of selection statistic is

left to be resolved. But this will nbt‘affect the asymptotic diStribution.
Asymptotic normality theorems at a specified distribution_are

common. A very weak set of conditions presented for showing asymptotic

normality was given by Huber (1967);' He considered a sequence

() 1

{Tn[§ satisfying

(1/va) w(xi,Tn[;\g(“)]) 20 (3.13)

h~mg

i=1

For instance if ¢ is not continuous in 6 there is no guarantee of a
- solution to the equations (2.5) as there otherwise would be by Corollary
2.2. But Lemma 2.2 does indicate the existence of consistent local

2
minima of HKn(G)H . It is interesting to compare Huber's assumptions

with ours. -

Aésumptions: Huber (1967)

(N-1) For each‘fixed 8 €0, P(x,0) is B measurable and ¢(x,8)
is separable in the sense of Doob: there is a P-null set N .and:
a céuntable>subset ' C'0 such that for every open set U C 0
and every closed inter&al A, ﬁhe sets {x|v(x,8) €A, ¥ 8 €U},

{XIW(X,G) €A, 0 E€EUNO'} differ by at most a subset of N.

Put  u(x,0,d) = sup, _ Mvix,t) - vix,0)l.

-6ll<d
(N-2) There is a T[GO] such that K, (T[GO]) = Q.
: o » v

(N—3) There are strictly positive numbers a,b,c,d0 such that
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(1) KGO(G) > afle - T[Go]ll for le - T[Go]ll < do.

(ii). J u(x,e,d)dGo(x) < b.d “for 6 - T[GO]H-Fd j_do d>0

(iii) J u(x,e,a)zdco(x) < c.d for |6 - T[GO]|l+d <d;, d>0.
(N-4) J w(x,T[GO])w(x,T[GO])'dGo(x) is finite.

PROPOSITION 3.1 (Huber 1967, Theorem 3): Assume (N-1)-(N-4) hold and-

that T = satisfies (3.13). If P{HTnfT[GO]H.g d } =1, then

(1/vn)

“.M =}

| VELTIED + o Kg (1) 70

1

in probability.

COROLLARY 3.1 (Huber 1967, Corollary): Under the conditions of

Proposition 3.1, assume KG has a nonsingular derivative at 6 = T[Go].

0.
Then /H(Tn —'T[Go]) is asymptotically normal with mean zero and

variance covariance matrix oz(w,Go,T[Go]).

"~ The assumption (N-3) (ii) can be looked upon as a type of weakened
LipSchitz condition on ¢ over the parameter spéce, an essentiaily
different condition to that of equicontinﬁity at each point in the
observation space. While Huber's conditions are asserted to be very weak
they appear difficult to check. For the influence functiéns associated
with the symmetric location estimation a common condition imposed»is~that
Iw(x) - w(y)| < Mlx—yl, for a constant M < » and all x,y € E. "Clearly
then {¢(°—u)|u € E} forms an equicontinuous family and condition
(N-3) (ii) and (iii) are simultaneously satisfied.

The Lipschitz type condition to some extent emanates frém the
classical assumptions made by Cramér (1946, P.501) to prove asymptotic
normality of the M.L.E. for i.i.d. random ?ariables.. They are equivalent

to .
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CR1: There exists an ‘o > 0 such that y(x,6) is twice differentiable
with respect to 6, ¥ 9 € 5, = {Slﬂé - T[G}l < a} and the
derivatives are for fixed. 6, B measurable and almost surely con-
tinuous of 0 €S . Functions (37/30,30.)0 (x,0), 1,3,k = ...,z

are each B measurable for every 6 € Su for some o > 0.

CR2: ¥ 0 €5 , i (x,0)] < F, | (3730w (X,8) | < Fy,
l(az/aeiaej)wk(x,e)l < H, where F,, F, are integrable over

(=w,©) and J H(x)dGO(x) < M.

CR3: J w(x,e)w(x;e)'dco(x) < o,

CR2 is a type of weakened Lipschitz condition, on w(k,e)' in the
parameter 6, in tﬁe sense that it‘is averaged over the. X values by
assuming an integrable thirdAaerivative. Our approach is a uniform
restriction about each individual x-value over all 6 € D, a compact
subset of ©O. 1In general we cannot reconcile the two even though in

specific cases such as the location parameter there appears to be some

overlap.

§3.4 Relaxing Differentiability of the Multivariate Influence Function

The Cramér conditioms assumé thebsécond partial derivatives of
exist and are almost surely continuous. Carroll (1978) makes similar
assumptions to those of Cramér, but takes into account the possibility
of a set B(0®) of Lebesgue measure zero in R = Ek, k-dimensional
Euclidean space, at which the influence function does not have a con-
tinuous partial derivative at 0. A cornefstone to his. proof is a lemma

in which he shows

) B N
ﬂ@n - eou < Cn *{en(gn n)}? f.a.s.l.n..

This result is derived as a consequence of the uniform convergence
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theory through Theorem 2.1 and results from the theory of empirical
processes. ' Our approach has attempted to exhibit possible advantages
of using a théory of uniform convergence. By it we also obtain easily
checkable conditions on the multivariate y that do not .require con-

tinuous differentiability.

. LEMMA 3.3: Let % be an i.i.d. sequence of real valued random variables

with common distribution Go that is continuous. Let 6:; Go’ and ¥

be such that Bl of §2.2 and C2, C3 of §2.3 all hold. Further suppose

there exists a bounded integrable function w(y) so that

X
W(x) = J w(y)dy € LZ(GO) and
suPesz ldwi(y,8)| <>w(y)dy 1=1,...,r .

Then there exists a constant C so that for aﬁy sequence {6n(§(n))}

of zeros of {Kn(e)} consistent to '8:

A -L 1L
e - e(’:n < cn {n(fn n)}? holds f.a.s.l.n.. (3.14)

~ PROOF: By (2.13) it is sufficient to show

sup, o 1K, (8) —KGO(O)II = supg ey | fw(x,e)d[pn.(x) -6 (]I

3
-3

i
< Clrl {en(2n n)}? .

Observe for the component functions wi’ integration by parts gives

. o0
- J [F_(x) = G_(x) 14y, (x,0) |

+oo v
IJ Wy (6,0 ALF, G - 6, 6]

J-‘QT |Fn(X) - GO(X) I fdlbl(x,e)l

| A

| A

- .
f i |F () -G, () [wx)dx . (3.15)
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Let B(E) be the space of bounded real valued functions on the real
line, with the sup norm. For n > 3, and x € E set

1
n°[F_(x)-G (x)]
V() = o o w(x)
v2 &n(fn n)

By Corollary 1 of James (1975, P.771), there is a set of probability

one on which the sequence {V_} is relatively compact on B(E)
n>3
with set of limit points

* = » | '.~‘<.
KW’GO = {W(X)f(Go(g))If EAK }

Here K* 1is the set of absolutely continuous functions f in B([0,1]) .
. : 1 :
such that £(0) = 0 = £(1) and j [f'(t)]zdt < 1. Then for a realiza-

)
tion of a limit point of Vn we have from (3.15)

- ,
w(x) [£(6_(x)) |dx

—00

|f+w wi(x,e)d[Fn(x)—Go(x)]| f_n—%{2£n(2nn)}%f

. . _1 (e
(by parts) < n %2 en(nn)}? w(x)lf'(Go(x))|dGO(x)

S 1/2rf+°° 2 1/2
n {2 %n(&nn)} W(x) dGO(x)]

J —00

| A

(Holder's inequality)

tand 2
X [£'(G,(x))] dGo(x)}

\J —oo

oo 2
f W(x) dco(x)]

( b

1 1
n {2 gn(%nn) }/2

A

\

.and this proves the Lemma.

Thé result uéed from empirical pfocesses in the Lemma is in fact
a direct result of Finkelstein (1971). James allows the possibility of
a much mofe general weight function w for the limit process of Vn
to.be_attained. But for most purposes we need only that w be bounded.

Results that appear to be for very restrictive classes Qs for which

+oo oo 1 .
SquéE(lJf R, - f £dG | << n *{2n(2n n)}* f.a.s.l.n.
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can also be found in Kaufman and Phillip (1978).

'It is emphasized that the CO@pohent functions wi(x,e) need not
be continuously differentiable in 6, but rather a continuity in the
observation space variable is necessary. If 0 CE, Theorem 3.1 can bg
applied. The proof of thét theorem took avsemi—deterministic approach
which is alSo applicable to the law of ‘the iterated logarithm and the
uniform convergence to asymptotic normality. When © C Er, r>1, a
purely probabilistic apprbach through uniform convergence over classes

of functions can avoid the necessity for continuous differentiability.

- THEOREM 3.5:
Set % to be an i.i.d. sequenceAgenerated by Go € G. Let 62,

Co’ and ¢ be as in Lemma 3.3, and w(x,ez) € LZ(Go)‘ Suppose the

partial derivatives of ¢ exist and are continuous at 6 for all

x € R - B(B). Denote by B the set U{B(8)|H6 - S:H f_én}; where

. _Ll L —
6n = Cn *{2n(2n n)}°, and suppose PG—(Bn) = O(Sn). Assume there is an
o

extension of Vy(x,0) to points x € B(8), 8 € D, so that

a.s..
VKn(e) — VK, (6) uniformly in 6 €D .
o ’ '

~

By Corollary 2.3 there exists a consistent sequence {en} of roots of

(2.5) f.a.s.1l.n., consistent to 6 Assume they éatisfy (3.14).

O %

Finally let there exist a éonstan; Hy <= so that for.large enough n
Hw(x,e)—w(x,eg)u < Hylle —'Gzﬂ uniformly in, x € B, and
199 G, 00 < B, uniformly in x € B_ .

Then for the strongly consistent sequence {én} s

%*

Vn (8 -

_ 6%y 2 n0,62(.c 6
n O ,0 d)’ O’

PROOF: set Sn‘= {i|Xi € B> 1 <i < n}, and write
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33
Kn () = ¢ w(xi,e)
165n

R %k ’ N
Then let Kn(e) = Kn(e) + Kn (8). For 6, a root of (2.5),

it

_ A %, % %, P % A
0 Kn(en) Kn(eo) + \71<n(en)(en eo) + K (en)

% ~ ~ % x% o~ A *
Kn(eo) + v1<n(en)(en - go) - VKn (en)(en - eo)

*% A k%
+ Kn (en) K (6 )

Hence
) * ~ \' /5 #X seBn *
A4 -
I/n K (8) + VK (6 )vn(8 -67)I < n?.2.H, 16 _-e’l
n
- 1 5 —o*
=y = DLy (180
So for large n 7
* .
{wlu K, (67 ‘) + K (6 )/n(8 ~6X)l > e )
< Plw|8_€B_, 2H L g (X.).18_ -6%1 > e } + Plw|8_€B )
— n n’ J— - B i’”""n Yo n n' n
_ n i= n
. 0
< Plwl2.H, =— T I, (X).8_ > e} +o_(1)
l\/r?i=l Bn i n n P
1 n €n
=Plu| = 1 I, (X)) > 55—} + o0 (1)
/aoi=1 Pa & ZHpST P
-2 2 2
el .4.Hl a P(B )((n 1)P(B Y+ 1) + ° (1) (Chebyshev s Inequallty)

o

Letting e = § see that
n . n

-2 2,2 2 3
En .4.H1 n.(n—l).P(Bn) = O(HGH) = o(1) , and
2 2 .
N Hl P(Bn)»= O(Sn) = o0(1). So,
A % L
P{ow|lvn K (6% ) + VK (o DY@ -6 > 62} >0 as n > .

a.s.
, . . ~ *
Finally, by the uniform convergence, and since en'——+ eo
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. a.s. v .
*
VKn(en)'—** VKGO(SO) , and then

~ % %y =1 — % |
Vﬁken-eo) = - {VKGO(GO)} /E'Kn(eo) + op(l)‘,

which proves the result by the multivariate central limit theorem used
in Theorem 3.4.
Uniform convergence is the essential ingredient in the proof of

this theorem.
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SECTION B: ROBUSTNESS - THEORY AND APPLICATION

CHAPTER 4

‘Weak CoNTINUITY AND FuNcTIONAL DERIVATIVES

§4.1 Background

In data analysis the P that describes the underlying process is
most likely not in P. This has two effects on the theory. Firstly,

estimators Tn. are consistent to some 61 € 0, but Pe does not
1

uniquely correspond to the generating P in any known way. Secondly,
the predicted rate of convergence under the model (for instance through
asymptotic variance) can be replaced by a radical departure even if P

is "close" to a Pe in the sense Qf some neighbourhood. Further'
o

criteria are necessary to take into account these latter considerations

when choosing an estimator.

Thé‘development of robustness theory saw the structuring of such
criteria. This began with the most important case; that of location for
an i.i.d. sequence % generated from a symmetric distribution Go.

Tukey (1960) gave an example with a set of mixtures of two normal
distributions, the "contaminating" one having the samevmeaﬁ as the other,
but a iargef variance. In this situation there is no question as to

what oné is estimating, and the simple model provides. a vivid illustra; .
tion of the unsatisfactory behaviour of the sample méan gnd sample
‘standard deviation under mild perturbation from strict normality. This
compares with the acceptable behaviour of trimmed and Winsorized means.

Huber (1964) arrived at an M-estimator for which the asymptotic variance

was minimax amongst asymptotic variances of M-estimators consistent in
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symmetric e-contaminated neighbourhoods of the normal distribution.
Again in 1972 he reviewed several @ethods that were stable under smailv
symmetric departures from the underlying model. The lead away from the
location parameter was taken by Hampel (1968). He argued heuristically
in his thesis that sensitivity of esfimators to observation values can
be examined through the properties éf-the estimator functional at the
_model F. Robustness in that sense can be basically summed up: if the 7

distance of the true GO from Fe is small enough, then the distance
o

G (Tn) and

o

- between the induced distribution laws on the estimators, £

£F (Tn) respectively, is also small. We are interested in the para-

6
o]
metric procedure and not in a particular Go’ and hence consider

neighbourhoods of an Fe.

Erratic behaviour of an estimating functional T[-] on e-contamin-

ated neighbourhoods
n(e,Fg) = {(1-8)Fy + 8H | 0 < § <e , HEG},

will indicate the possible erratic behaviour of T[Fn] when a single
observation is permitted to greatly vary from the rest of the sample.

On the other hand the Prokhorov neighbourhood allows for small réund—qff
errors with large probability and gross errors with small probability
within the sample. The former can be desgribed as a modification of
events A_ to AS, the latter as a probability error of size 6. Oﬁr
model assigns ’Fe{A} to A; in fact we observe AG plus gross errors
with probability G(A) = Fe'(AG) + 8. When distribution functions are

o .

close (within §6) in Prokhorov metric, then functionals T defined on

the distribution space G which are weakly continuous are insensitive

to such kinds .of contamination.
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DEFINITION 4.1: Let T be defined everywhere in G. Then T is
defined to be weakly continuous at F € G if for every € > 0 there
exists § > 0 .éuch.that for every G € G; dp(F,G) < 8 impliés
IT[F] - TI[G]I < e.

That weak continuity of the functional T should be equivalent
to uniform continuit& in n of the estimators Tn[ﬁ(n)] = T[Fn] is

seen as follows.

PROPOSITION 4.1 (Hampel 1971): Let T ‘Be defined .everywhere in G and
put T = T[Fn]. We .say that T, is consistent at F if Tn tends
to T[F] in probability, where F is the true underlying distributionm.
(i) If T is weakly continﬁoué at all F, then Tn is consistent
at all F, and F ﬁ-ﬁ(Tn) is weakly continuous uniformly in n.

(ii) I1f Tn is consistent and F *'£(Tn) is weakly continuous

uniformly in n at all F, then T is weakly continuous.

Weak continuity alone may be satisfied by a broad class of
éstimators, even within the class of M-functionals. What we seek then
are additional quantitative as well as qﬁalitative resulﬁs to help
settle -on a good robust statistical procedure. Quantitativé results
may relate to behaviour of asymptotic variance and bias within neighbour-

hoods of F "Breakdown points'" or sizes of smallest neighbourhoods

o
on which functionals exceed set values of asymptotic variance or bias,
possibly infinite, may also be considered. - In this thesis we emphasize
M-estimators of a general parameter that have an influence function

-giving zero weight to "tail" regions of an F Hampel initially pro-

5
posed the notion of these influence functions for symmetric location

M-estimators, giving an example in his 1974 paper. This is a qualitative

approach, although quantitative evidence may be found in support of it.
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While robustness theory indicates the use of some general
statistical procedures, specific agplicationvis often neglected.
Invariably pné requires algorithms for‘the seéfcb of solutions, or
estimators,'Tn; By examining asymptotics it is possible to reveal some
relations which give a clearer picture to the identification of solutions
of estimating eqdafions. This is in addition to that already afforded

in the manner of consistency arguments.

§4.2 Weak Continuity of M-Functionals

The reiationship between weak continuity and consistency of
Propésition‘A.l follows from the fact that if {un} is any sequence of
probability méasures such that H ='ur then this is equivalent to |
dp(un,ﬁ)'* 0 (Prokhorov 1956). Cbnsisﬁency then follows from the regult
of Varadarajan (1958), Fn:: GO almost surely. From this follows Fisher
consistency. Also bearing in mind the intuitive interpretation of the
Prokhorov distance a natural robustness or stability requirement is that T
should be continuous with respect to the weak topologyv(at leést at the
quel distribution, buﬁ if possibie for G in some péncil of neighbour-
hoods of the model).

Weak continuity of the M—-functional T{Y,+] 1is closely related
to condition Bl and Cl (of §2.2). Huber (1977) points out that for the
M-functional for locatién to be weakly continuous, it is sufficieﬁt that
¥ be bounded and continuous. Also there is an asSumﬁtion of monotonicity
of ¢, any corresponding loss functipn of which is convex. For more
general parameters and influence function V, weak continuity will also
depend on the nature Qf the selection statistic.. Endeavouring to

establish Cl1 for Prokhorov neighbourhoods

n,(e,6,) = {6 € G‘ldp(c,co) < e},
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we take the now familiar approach via equicontinuity giving some

preparatory results.

LEMMA 4.1: Given some distribution function GO,‘a continuity set A € B

of Go’ and « > 0, there exists & > 0 such that for any G € G:

dP(G,GO)'< § implies IG(A) - GO(A)i <K .

PROOF: Since A 1is a continuity set there is some §, >0 for which
s .

1 ' ' ' o .
GO(A ) < G_(A) + k/2. We may choose» 8 < k/2. Then if dp(G’Go)_< 85
s ,

G(a) < ¢ (A Ly 45 <C_(A) + k.

1

Similarly, since R-A shares the same boundary as A there is some

. _ s '
5, >0 for which G_(A °)=C_(R - (R-4) 2) > G_(A) - /2. Choose
62 < k/2 and suppose dp(G,GO) { 62. Then, .

_52

G(A) > G (A %) -6, >0 (&) -« .

2
Taking 6§ = min(Sl,Gz) gives the lemma.
PROPOSITION 4.2 (Rao 1962): Let Go be a probability measure on (R,B)

and CL be an equicontinuous family of real valued functions on R.

Then given arbitrary compact C C R, for each n > 0 there exists a

. n :
finite number of sets {Aj} , where n = n(n) such that
j:l .
n ' S :
@ U Aj = C; (2) A.j N Aj' = ¢, for j # j'; and (3) for each j,
j=1

Aj is a continuity set for GO; (4) for any x,y €A and f € (1/

[£G) - £ ] < n.

REMARK 4.1: Both assumptions of separability and metrizeability of R

are utilized in the proof of this proposition.
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THEOREM 4.1:

Let (L be a class of contiquous functions on R possessing the
following two.properties; (1) (L is uniformly bounded, that is, there
exists a constant H such that |f(x)| < H < « for all f € Q. and
x € R; and (2) L is equicontinuous. Suppose‘ GO,G G. Then for every

€ >0 there exists a &' > 0 such that dp(G,Go) < § implies
supfealldeG - decol <e .

PROOF: Since R 1is separable and complete there exists a compact set
such that Gd(R-C) < €/(16.H). We can assume C to be a continuity

set of Go' Let n = e¢/4 and {Aj} subsequently be formed in the
n n

manner of Proposition 4.2. Choose {yj} arbitrarily in {Aj}
j=1 j=1

respectively and let Gé be the possibly improper measure attributing
weight Go(Aj) to the point Y3 for each j =1,...,n. Then for each

fEQ

N~

) JA |£(x) - f(yj)ldGo(X)

IJ £dG —J £dG¥| <
C [o] o' — ,
k|

C J
< 6/4 .

Hence,

supfea/‘jcfdGo ~ chdczl < e/b .

Similarly, given G € G we let G* be that measure attributing weight

G(Aj) to Y for each j = ..,n. And so

1,.
. ' *
supfealjcfdG - fcfdc | < e/4.

Now

n
|| £dc* —J £d6™| < H. T |G (A)) - G(AL)]| .
Jc ° g - g=1 ° ]
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By Lemma 4.1 choose Gj such that if G € G, dp(G’Go) < dj implies
|G0(Aj) - G(Aj)l <e/(hn.B). Let & be so that if G € G,
4,(6,G,) < 8. implies |G (R-0C) - G(R-C)| < €/(16.H). Taking

§ = min(cso,'csl,...,csn), if GE€G and dp(G,Go) < § it follows that

£ dG -J, £ dG|
° Jr-c

su]pfe al[f_dGo—Jf dGl < supfeallf
R-C

. * *
+ sup. o a|[Cfdco-fcfdco|+supfealjcfdc-jcfdc ]

* *
+supf€a|f fdGo—J £ dG*|
c c
< H.(G_(R=C) + G(R-C))

+ e/b + elb + €lb

The Theorem is proved.

REMARK 4.2: Clearly if R = E and the decomposition of C is into
the set fé =ag < ay <. <a =c, where the a; are continuity

points of Go and Ai = (ai_l,ai], then Theorem 4.1 holds with dp

replaced by either:.
(1) the Kolmogorov metric dk’ whefe
dk(G,GO) = supx€5E|G(x).f Go(x)|, or
(2) the Lévy metric dL’ where
| d; (6,G6) = inf{e|G(x)_<_Go(x+e)+e, Go(x)iG(x+e)+e:,

for all x E.E} .

In a sense the assumptions of the theorem describe thevmost general
class for which this result holds. Considering a weaker condition that
suprECLJ{fIdGO < 4o and letting (A be unbounded it is.possible to
choose sequences {f } € A& and {y,} €R so that Ifn(yn)l = 4o as

n > . But then given any § > 0 letting G_ = (1-8)C_ + 86, , where
n
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6y is that degenerate distribution attributing unit mass to the point

~<
]

y

n’

supfécdffdGo - J[fdc;n] > a|[ £.dG, - fn(yn)l
> (£ v - supfea,[lfldca

> 4o as n > » ,

This is even though dp(GO,Gn) < §. Hence the result of the theorem
could not hold if (A is permitted to be unbounded.
When the family . O is not equicontinuous there exists an € > 0

and an x € R for which
- ) > .
SWPyen_(n) *"Pre ol £ - G| > e

; ; = = i i > v
So if Go 6x and Gn éyn, it is true that dp(Go,Gn) >0  but

squEECLJJf dGo'— Ji?dGn| > €. This again prevents the asSertion of
Theorem 4.1. This does not mean the conditions on (L are necessary.
Since in the latter example the distribution G0 was chosen in relation
‘to the family Q. That is, if Go were simply chosen to be a con-
tiﬂuous distribution function, it is quite plausible that the‘tﬁeorem
can hold for broader families (A than those specified in Theorem 4.1.
We no&,observe that if {w(-,e)]e € D} form an equicontinuous
family of functions that are boqndedAuniformly by a constant, that
coﬁdition Cl of §2.3 is satisfied for the Prokhorov metric. That is

vgiven € >0 there exists a 6 > 0 so that G € np(G,Go) ‘implies

SVUPeeD I jw(x,e)dGOCX) - J P(x,8)dG(x) < € -

Here npv is the Prokhorov neighbourhood generated by the metric d_.
So as a result of Lemma 1.6 and Theorem 4.1, it follows from condition
C2 of 82.3 and uniform boundedness of ¥ on R>?D, that condition Cl

is satisfied. The next result follows from Lemma 2.3.
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LEMMA 4.3: Let Bl, and C2 hold, and assume {¥(-,0)|6 € D} is a
family of functions uniformly bounded by a constant. Define the func-
tional T[y,*] wuniquely by the selection functional [0 - e:". Then

T[{y,*] is weakly continuous at Go'

PROOF: The assumptions of Lemma 2.3 are satisfied.

Similarly assumptions A‘can be verified with the applicatioﬁ of -
Theorem 4.1. By Lemma 2.5 and Tﬁeofem 2.5kthey are sufficient for
uniqueness of solutions to the estimating functional equations, (2.8),
in a set region of the parameter space. In particular note that if Al
is satisfied and families {w('38)16 GAD}, {vy(-,0)|8 € D} are uniformly
" bounded in Euclidean norm by some constant, then assumptioﬁs A2 aﬁd A4
immediately hold.

The conditions sufficient for the weak continuity‘of T[¢,;] are
simple. Moreover if conditions A hold we can assert that there exists a
region about 80‘ for which there ié a unique solution to equatiomns (2.8) -
on a neighbourhood of Ee . Returning to Remark 2.1 following Theorem 2.2,
thefe ié also a unique soiution to equations (2.5) in that region
f.a.s.l.n. if the sequence % is genefated from a distribution G of
that neighbourhood. Influence functiéns ¢ possessing "monotonicity
properties", ensuring at most a unique root to the equations (2.5) or
(2.8) for whatever -distribution G € G, then generate weakly continuous
M-functionals. But if more than one root is allowed to exist further
consideration must be given to the global arguments identifying the

M-functional.
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THEOREM 4.2:
Assume fG(e) is continuous in S‘E © for all G € G, and given

Fe € F we have that for every neighbourhood N of T[w,f,Fe ] = 60

(o) o

info gy fp (@) = £ (T0H,E,F D > 0.

6 o 6 o
o o

Suppose for every n > 0 there exists € > 0 such that dp(G’Fe ) < ¢
o
implies

~sm%66|fd9)—fF (0)] <n .

0
o

Then if conditions A of 82.3 are satisfied with respect to the Prokhorov

neighbourhood o T{y,f,+] is weakly continuous at F
)

PROOF: By Lemma 2.5, there is «* > 0 and e > 0 such that

dp(G’Feo) < € implies that Ho(w,G) N UK*(eo) consists of a single
~point, where

H (,6) = {6]6 € ©,K;(8) = 0} .

Denote &§(k*) = inf f 9) - f 8 ). Ch 0 < k' < k¥
) eEEUK*(eO) Fe (9) F, ( o) oose - K K

so that ° ©
[fFe»(e) -, (8,)| < 8(x*)/2 for © €U, (8.) .
0 K '
For «' > 0 choose 0 < e' < e so that dP(G,F6 ) < €' implies there

o
exists a root 6(y,G) in UK,(BO), and

[£5(8) = £, (®)] < §(<*)/4 uniformly in 6 €0 .
5 :

o

. . ) D
The root is unique in UK*(GO) UK,(GO). Then

£, (8(0,6)) < £ (0(¥,G)) + 8(<*)/4

S}
0

< fp (8) + 3.6(™)/4

0
o
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< fFe~(6) - 5(x*)/4 uniformly in 6 € 0 - U, (8 )
. _
< fG(e) vuniformly in 6 €0 - UK*(BO) .
So
g £ = .
infoeq (5,0 6 = LB

That is  T[y,£f,G] = 6(y,G), where 6(y,G) is determined by the selection

statistic |6 - GOH. Hence

IT[v,£,6] = TIy,£,Fg 11 < «'
0

whenever dp(G’Fe ) < e'. The functional T is weakly continuous.
o

Theorem 4.2 provides sufficient conditions for weak continuity of
the M-functional when a selection statistic is required. It is emphasized
that the conditions are by no means necessary. For instance the selection

functional fG(B) can be weakly continuous at Fe in the sense
o

described in the Theorem, but it is equivalent in its action to the

selection functional

fé(e) = £,(0) + JR Ix)ldG(x) ,

where R is a Fréchet space. We assume the latter term is finite (set

it equal to zero if not). Clearly fg(e) does not satisfy the weak

continuity property.

- §4.3 Fréchet Differentiability

In a reéent Ph.D. thesis Reeds (1976) examined the defini;ion of
von Mises . functionals and their derivatives. Voﬁ Mises (1947) gave an
initial framework of the functional derivative, and fhis was subsequently
followed up by Fillipova (1962), and Kallianpur (1963), although domains

of the functional varied and there existed some confusion as to the
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nomenclature of the derivatives. The latter author discussed
specifically the M.L.E. with emphagis on its asymptotic efficieﬁcy among
a class of Von Mises functionals of second order. Relatively strong
conditions that included Cramér's conditions for asympﬁotic normélity
were imposed to prove existence of derivati?es.

Statistical application of thevapproach through functional deriv-
atives requires establishing asymptotic normality aﬁd the examination
of higher order properties of estimators. Itvbrings into a common
structure estimators of diverse origin.

If we consider functionals defined on tﬁe lineér space of finite

signed measures
M = {aF + bG | a,b real, F,G € G} ,

we can give simply three notions of derivafive. M is a normed linear
spaée with respect to e = sup |H(x) - H(-»)| where R = E, or

Il* = total variation of H, when H € M. Let the functional T; M — .
Define derivatives for T at G0 €M as follows: first, for any (4.1)
continuous linear map 'L: M~ Er, and H €M definé associated remainder

T[GO+tH] - T[GO] - L[tH] , t# 0
R(G0+tH) =

Suppose

" R(GO+tH)

T H‘* 0 as t‘”’O . : ‘(4.2)

(i) T is said to be Gateaux différentiable at G0 with

derivative Té =L if (4.2) holds for all HEM ;
o

(ii) 4if (4.2) holds anifbrmly for H lying in an arbitrary
compact subset of M, T, is called a compact derivative

of T at G_;
©
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(iii) 1if (4.2) holds uniformly for H 1lying in an arbitrary bounded
subset of M, T, is called the Fréchet derivative of T at

G_.
o
These derivatives are successively stronger. Now T 1is Fréchet

differentiable at G0 if and oniy if

HI;G]—T[GO]j- T, (G-G )l - o(le-6 1) . 7(4,3)

o

for some continuous linear functional Té . But many statistical

fuﬁctionals are not defined on M, and itois necessary to specify what is
meant by the derivative. (Hampel 1968, P.39 implies that the extension

of the functional T from G to the spacé of signed'measufes can be
made in a "natural way', but the extension is not specified.) If T is

a vector véluéd functional defiﬁed'on‘a subset G' CG of distribution
functions iﬁcluding GO and .d is a metric on G, we say the statistical
functional T 1is Fréchet differentiable at: G0 with respeét to (G',d)
when it can be approximated by a line;r functional Té such that for

)
all G €G'

ITIel-TIC, ] - Ty (6-G)] = 0(d(G,G,)) . B R
o : ‘

This definition was essentially used to define the Fréchet derivative
in Kallianpur and Rao (1955). They used G' = F, the parametric family
of univariate distributions for which © C E. The metric was the

Kolmogorov metric defined by

dk(G,Go) = sup_ lc(x) - GO(X)l .

o g <o

The two definitions of Fréchet differentiability (4.3) and (4.4) effect-
ively depart when the metric distance between G and Go cannot be
guaged solely from the difference G - Go' Metrics which can, are the

Kolmogorov metric, the total variation metric, and the bounded Lipschitz
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metric (Huber 1977). Boos (1979) adopts the expansion (4.3) although
he restricts the domain of the der%vative to be in line with the dqmain
of the statistical functional T. Boos and Serfling (1980) take this
approach to eétablish asymptotic normality of the M-estimator of location.
Reeds (1976) on the other hand introduced the compact derivative in order
to accommodate asfmptotic normality arguments when statistical functionals
were not necessarily Fréchet differentiable.

Kallianpur aﬁd Rao (1955) introduced Fréchet differentiability for
a class of Fisher consistent estimators, showing that any statistic
belonging to this class was consistent and asymptotically normally
distributed With asymptotic variance greater than or equal to [n I(e)]—l,
where I(8) 1is the Fisher information function. Rao (1957) was able to
shoﬁ that the'M.LfE. for the multinomiélvdistribution was a member éf
this class, and hence effiéient with respect to this class. But
Kallianpur (1963) feported that in general né}ther author could qnder any
reasonable set of assuﬁptions (qn the density function iﬁ the continuous,:
and the probability function in the infinite discrete case) prove Fréchet
differentiability of the M.L.E.. It was’felt_tﬁat Fréchet differenti-
ability Waé too severe a restriction when. dealing with the infinite
dimensioﬁal (non multinomial) situation. This was the motivation for the
latters article on "Volterra" deriVatiQes. By results from §4.2 and
§2.3 we can obtain some restrictive conditions under which Fréchet
differentiability can be established for the M-functional. They are
restfictive only in the sense thét.for a number of parametric families :
they will not be satisfied by the M.L.E., which can still be an efficient

estimator in the first order sense of Rao (1963).
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THEOREM 4. 3:

Assume conditions A of §2.3 bold with respect to the neighbourhoods
generated by a metric d on G. Suppose further that for G € G' C G-
[ w(x,eo)d(G—Fe ) (x) = O(d(G,Fe ) . (4.5)

o ’ ) _

Let F CG'. Then T[y,*] is Fréchet differentiable at Fe with
0

respect to (G',d), and has derivative

Ty (6-Fy ) = —M<eo>"1Jw<x,eo)d(c—Fe ) (x)
60 o . o

where M(GO) is given in condition A3.

PROOF: Abbreviate T[y,*] = T[*], and let «*, € be given by Lemma 2.5.

Let {ak} be so that ak~#0+ as k > o, and let {GE 1 be any sequence
. : k

such that G_ € n(e,Fo ) N G'. Here n(e ,F; ) is the neighbourhood

k o %
of distributions within distance €k from F6 . It.is sufficient to
)
show
ITlc. 1 - T(F, 1 - T (G =F, )l = o(ey)
€k » 60 FS' €1 60 k

o

By Lemma 2.5, T[GE ] exists and is unique in UK*(BO). Also note that
k

by assumption A4
ke , .
”M(G,G€ ) - M(®)f —> 0 uniformly in 8 €D . © (4.6)
k .

Examine the two term Taylor expansion,

€

0=k, (T[G_ 1) =X, (8.) + M(®, ,6_ )(T[G_]-96),
G . Ek GEk o) k Ek Ek o

where 8 € UK*(GO) for k > ko and is evaluated at different points for

each component function expansion. In particular by Lemma 2.5

18, = 8l < ITleg 1 = 051 20 as k>
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Then from the expansion and (4.6) see that

HT[GE ] - eo" =-0(KG ) = 0(e
ek -

) .
Kk k

Consider the reformulation

Tle, 1-6, = -M(8 )R, (8,)+(6 )T (M(B,,G_ )-M(0 ) (TIG, 1-8.)
k €1 | k k 4.7

Since by continuity of M(é) and (4.6) ]IM(ék,G€ )—M(BO)H = 0(1)
: ' k .

ITfe_ 1-6 -Tp (G_ -Fy = 0(1)0(d(G_ ,Fy )) = oley).

k .8 k o k o
o

The theorem is proved.

Now if w(x,eo) is a function of total bounded variatioh, and if

for all G € G integration by parts

,J {p_(x,eo)d(c—Fe ) = - J(G—Feo)(x)dw(x?eo) , . (4.8)

o

is 'valid, then (4.5) is easily established for the Kolmogorov metric.
Bearing in mind Remark 4.1 Fréchet differentiability with respect to the
Kolmogorov metric may be established by this theorem for certain
M—functionals of univariate distributions. If (4.8) were to hold for

distributions on Ek, where G(x) = G(Xl""’xk) given by

G(x) = G(xl,...;xk) = J dG(x) .

("m,Xl]X- . -X(—w,Xk]

it follows that (4.5) holds for the total variation metric. Conditions

on w(x,eo)' and Fe (x) are not so clear that we can easily establish

o

(4.5) for the Lévy or Prokhorov metrics. But for instance if Fe were
: 0

an absolutely continuous distribution function on the real line, posses-

ing a bounded density in which case

SUP, e g FeO(X+5) - Feo(x) < ¢§ uniformly in & > 0 ,
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it is then not difficult to observe that if.

F, (x) < GGxts) +6 ,
o

and G(x) < Fe (x+6) + & holds uniformly in x € E, then
0

l6(x) - F, (x)| < (c+1)8 .

Supx €x
) (o}

Hence

sup, [6(x) - Feo(x)l 5_4L(G,Feo)(c+1) ,

“and (4.5) can be established immediately from (4.8) for the Lévy metric,

and also the Prokhorov metric since dL j_dp. The latter metric is

defined oﬁ more generalbspaces and cannot always be cbmpared with dk'
From the relaﬁions dL j_dk,dp f_dT, fréchet differentiability with
respect to the Lévy, Prokhorov, or Kolmogorov metrics implies differenti-
ability with respect to the total variation metric. Beran (1977)
advocated the Hellinger metric, dH’ for robust parametric estimation.
The topology génerafed by dH -is equivalent to that generated by the - -
total v;riation metric since dT,f—dH 5_/§>dT (Stautde 1978).

If a sélection functional is used then the same condition on the .

selection functional as that described in Theorem 4.2 ensures Fréchet

. ‘This is because differentiability

differentiability of T[V,f,*] at ~Fe'

o

is only a iocal argument.
If T[v,*] dis Fréchet differentiable with réspect to (G,dk) at

a continuous distribution Fe , and if Ao of conditions A in §2.3 is

satisfied, there exists an expansion

(o}

R -TLE ) - —M<eo>“1/ﬁjw(x,eo>d1rn(x>+Fn o(deg’Feo))--

(4.9)

If Fn is the empirical generated by -Fe , then fdr the i.i.d. sequence

(o}
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X, a result of Kolmogorov gives that
n, .

—2%2

-

lim P{I'tl/2 sup  (F_ (x) - Fy (%)) < A} - 1l-e
' 0

(Hajek and Sidék 1967, P.199). That is v/n o(d, (F_,F, )) is 0, (1).
(o]

Hence VE{T[w,Fn] - T[w,Fe ]) converges in law asymptotically to a
o .

normal random variable with mean zero and variance covariance matrix

oz(w,Fe ,60). More generally if Fn is generated by an i.i.d. uni-
o . o

variate sequence taken from arbitrary G € G it is shown in Appendix 2
hat d, (F_,G) = 0_(n %) | |
that 1 (Fs )‘— p(n .
The methods used to prove Fréchet differentiability of the
M-functional follow similar lines to proving existence of consistent

asymptotically normal roots of M-estimating equations when the underlying

distribution lies in neighbourhoods of an Fe (cf. Theorem 3.4).
o

Clearly the asymptotic normality proof via direct expansion of the

estimating equations affords greater generality as it includes cases

where. ¥(x,0) is unbounded, whence condition A4 does not hold for

metrics dL’ dk’ or dp.

EXAMPLE: We illustrate by showing Fréchet differentiabilify of the
M.L.E. of the multinomial parameter. Since observations are congregated
on k  points, representing k classés, there is no need for the
Prokhorov metric to cover the possibility of rounding or gross errors.
Apparently, Frechet differentiability with respect to (G';dk), where

G' is £he subset of distributions of G whose support is contained
within k points y1 <Yy € we... <y, say, is sufficient to show
asymptotic normality. . Rao (1957) considered a represéntation of k
classes with hypothetical frequencies nl(e), ..... ,nk(e),Awhile the

observed frequencies were written,'pl,...,pk. So in a sample size n
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nPl npy
1 . e .

maximum likelihood equations are then written

the likelihood is proportional to Ln(w) =7

T do . M de

For a multivariate parameter we can easily write these by considering

L
OB | y 2y,

. ) 4 1 y—Yj 1 ( ) .

30) =7z Vr.(6) + Ur. ,(0)  y.<y<y.,,, 1<j<k-1

Vo ™5 (6) 38 Yie17Y5] T34 ® T3+1 Y§2Y V5410 + 232
1 ‘ _ _»
'Wk(e) V“k(e) . ‘ y z_yk .(4-10)
L . .

and they are then written [ w(x,e)an(x) = 0. We let Fe be the

distribution function attributing wéight wj(e) to the point yj;

1 < j < k. Rao made assumptions

RAl: The expression

m (8)
ni(eo)log ;*(a—; s

1 i o

(I >0)

1~ x

I(eoae) = - .
. 1

which provides the average amount of discrimination between the
multinomial distribution defined by 6 and the true one defined

by 6, is bounded away from zero e - 60" > 8 for each § > 0,

RAZ: vl(e),.;.,nk(e)‘ have continuous partial derivatives of the second

order in a neighbourhood of the true value 6 ,

o)
RA3: nj(eo),#’O for each j, and (dnj(e)/de) # 0 for at least one j.
(As a consequence of this assumption I(6 ) = (d/dB)KF (G)I s
© 8 6=0

- which is Fisher's information at 6, is # 0),

RA4: m;(8) = m;(§) for all i dimplies 6 = g.
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Under RA1-RA4 Rao showed existence of a neighbourhood of the true

proportions n(eo), say N(n(eo)),'and a positive & such that

p € N(n(eo)) implies

(i) There exists one and only one root 8 of thé likelihood
equation which differs from the true value of‘ Go " by less
than 6. This root, as a function of the relative ffequencies,
is continuous at n(eo) where it tends to 8, and is Fisher

consistent.

(ii) 6 is Fréchet differentiable (with.respect to (F,dk)).

(iii) 6 4is the unique M.L. estimate and is therefore the M.L.E.

estimate.

The proof is given by Rao for © C E. Using M-estimation theory

we extend the proof to 0 C E' and Fréchet differentiability is given

-with respect to the wider class G'. We replace RA2 and RA3 by

RA2':

RA3':

RA3',

Then

nl(e),;..,nk(e) have continuous partial derivatives of the

second order in a neighbourhood of the true value. 60 and are

‘uniformly bounded away from zero on O.

nj(eo)i# 0 for each j, and

| ko {7'm(8) HI, (8 )
VKp (60) = —I(eo) = J{Vlj}(x,eo)}dpe (x)=-1% j

. m. (6 )
60 o j=1 jt o

is nonsingular, and hence negative definite.

Let 66 (®,) C 0. By continuity of the partial derivatives and
1

there exists a constant H so that

sup I
e
6 Udl(eo)

1
suplijik “j(e) an(e)ﬂ <H<»,
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AP 1
sup  _ I .o <max, . . ———— - H,
0ET. (8 ) ay 1<j<k-1 Y5417

61 o]

and so by Lemma 1.4 {y(-,0)|6 € ﬁs (90)} is an equicontinuous family
' 1

uniformly bounded by some constant. Similarly

W' @) @)

* O

sup _
6 euél(eo) }

. _ , Vo
SUPY s g i 5 v an(e)ﬂ < H' < o,
<3< T, (0)

and so the family {Vy(-,8)|8 € GS (60)} is equicontinuous and bounded
1 .

by a constant also. Conditions A are then satisfied with respect to the

Kolmogorov metric and with D = 66 (60),’61 > 0. Then (i) can be seen
1

directly from the remarks following Lemma 2.5, while (ii) follows as a

consequence of Theorem 4.3, since (4.5) is easily checked when G € G'.

~

Hence the estimate 6 1is asymptotically normal. Finally we can choose

the selection statistic fn(ﬁ(“),e) = —Ln(w(e)), which satisfies
. (n) k a.s. : ‘
= —_— -— =
()ch 50) E Py log nj(e) _Z_ my (eo)log nj(eo) fF (0). .
j=1 . j=1 eo

The convergence is uniform in 0 C ok provided the nj(e) are uniformly

bounded away from zero. Since it is true that by RAl that

‘ A k nj(eo) '
infyo o pss fp (8 = fp  (8,) =dinfyo o I mi(8)1log Frv— > 0,
o : 60 8, o j=1 3 )

part (iii) of the Theorem is confirmed by Lemma 2.6.

§4.4 The Influence Curve

Relationships between Fréchet differentiability and robustness
follow from the fact that Fréchet differentiability of the M-functional
implies boundedness of the influence curve, defined by Hampel (1974)

as follows:
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DEFINITION 4.2: Let T be a vector valued functional of real numbers,
defined on some subset of the set qf all distribution functions on R
for which T is defined. Denote by SX the distribution function
determined by the point mass one at any given point x € R. Mixtures of
G and some dx are written as. (1-¢)G + gdx, for 0 < e < 1. Then the
influence curve IC_.(*) of ("the estimator") T at ('"The underlying

‘TG

distribution function") G is defined pointwise by

1e,, () = lin_, {T[(1-)G+es ] - T(61}/e

¢}

provided that the limit is defined for every point x € R.
In some situations we will consider it sufficient to show the
existence of the limit at all bar a finite number of points.-

Existence of the Fréchet derivative with respect to (G,d) at F

)
o
where d 1is either Kolmogorov or Prokhorov metric, implies that for
the gross error model
n(e,Fy ) = {G|G = (1-8)F, + 6H, HEG, 0 < & < ¢}
[0} o .
T[G]-T[F, ] = | IC,.. (x)dG(x) + o(e)
6 TF
o. - S
o
= g J _ICTF (x)dH(x) + o(e) .
- 0
)
In that case
= T[G] - T[F =
by (€) supcen(e,Fe y 1Tl ] = T[Fy 11 = ex” + o(e) ,
o ° '
with Y* = supX;HICTF (x)II. We call this the gross error sensitivity.
8
0

Hampel (1968) used the equivalent Euclidean norm, where |[a] is given
as the suplal, where |a} is the vector of absolute values of components

of a. Hence he defines gross error sensitivity vy* = sup_ suplICTF (x)l.
6

o
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Huber admonishes us, pointing out that if only the weaker Gateaux

derivative is available, then there exist examples where

(1) y* <» but bl(e) Z ® for € >0

(11) y* == but limb(e) =0 for e~ 0

The ihfluence curve exists for the M-functional under weaker con-
.ditions on ¢ than those imposed to show Fréchet differentiability with

respect to the metrics. But the mode of proof is the same.

THEOREM 4.4:»
For x € R assume there exists a set D = Dx such that conditions

A of §2.3 hold for the starlike neighbodrhoods nx(s,Fe ).  Then the
' o .

influence curve T[y,*] at F exists and is given by

%

_ -1
CT[W:'])GO(X) - _M(eo) IP_(X,GO)

PROOF: ‘Letting‘ {ek} be so that €, + 0 then for GE = (1—ek)'Fe +¢€
o

$
k X

k k

14(8,G_ ) - M(®) I = €, 1M(8) - Vy(x,0) >0 . (4.11)
k ~ o |

From (4.7)

Ekv‘ €

TG 1-6, = —M(eo)KG 6,) +M(eo)-l(M(ék,cEk) —M(eo))('r[cak]-eo) s
. ,

and since 'KG' (602 ='ekw(x,80)

€k
'l"[GER]—S0 = —M(eo)ekw(x,eo) + o(sk) .
So

,limk_m {I[(1—ek)Feo+ekcsx]—e-o}/ek = —Pl(eo)¢(x,eo) .

Sometimes there can exist a few points x € R at which ¢(x,8)

has not a continuous partial derivative at 60, but the proof holds at



111.

all other points of the observation space.

Those M-functionals at which v* = +o are considered non-robust.

Those that are Frechet differentiable necessarily have finite y* and

the M-estimators are asymptotically normal with covariance matrix

o” (b, F, ,68,) = var, (g (X))

o 0
o o
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CHAPTER 5

QUANTITATIVE AND QUALITATIVE CRITERIA

§5.1 Sensitivity and Breakdown Verses Efficiency

Weak continuity and Fréchet differentiability are useful notions
in studying the robustness of the»M—functional in infinitesimal departures

from the model F Kallianpur and Rao (1955) show that if the M.L.E.

o
is Frechet differeztiable, then it is asymptotically efficient among the
class of Fréchet differentiable functionals (witﬁ respect to (F,dk)).

It is then the natural choice of estimator. Under weak regularity con-
ditions on @ the M-estimator for the invariate parameter is asymptotic-
ally normal under a parametric family F. If F 1is absolutely continuous
with respect to measure p on R with a corresponding family of density

functions, {fele € 0} whose support is independent of ¢, then M(8)

defined in conditions A is in fact given by

M(e) = —covy, [§(X,0),7log £ (X)]
0

From this, or directly from the Cramer-Rao bound, we obtain the inequality

i3

o’ (4, F0) IO | (5.1)

where

1(0) = f {Vlogfe(x)}zfe(x)du(x) <o,

~ is the Fisher Information Matrix. The inequality (5.1) concerns the
diagonal elements only in the multivariate case. For the univariate
parameter the asymptotic efficiency is-defined
M(e)?

I(e)varF {v(x,0)} °
o .

e(8) = (5.2)
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Then 0 < e(8) <1 for any M-estimator. The M.L.E. attains efficiency
one. But for parameters of normal families, the influence‘curve‘of the
M.L.E. which corresponds to the efficient score is unbounded. Then the
M.L.E. is neither Fréchet differentiable, nor robust.‘ Normal families
are so often used for the ostensible reason that normality frequently
occurs in nature. Realistically they presen£ a convenient mathematical
represenﬁation. It is ﬁot necessary to aBandon normality,‘but perhaps
to abandon the M.L.E., if circumstances warrant it.

Hampel‘(1968) introduced the measures of sensitivity and'bfeakdown
to compare M—estimatorsbin departures ffom a model. In 1971 he formalized

a definition of breakdown of an estimator functional T as follows:

DEFINITION 5.1: Let AT} be a sequence of estimators. The breakdown

point 6ﬁ of {Tﬁ} at some probability measure G is defined

6H = GH({Tn},G) = sup{é < 1 | there exists a compact set K = K(8)
which is a proper subset of the parameter space so that

F € np(&,G) implies F{Tn €K} >1 as n > =},

LEMMA 56.1: 1f Y,f determine an M-functional let

63 = {6 <1 !there exist a compact set K = K(8§) which is a
proper subset of the paraméter space such that F € np(G,G)
implies T[¢,f,*] is weakly continuous at F, and

CTlY,£,F) € KL

AN

| Then 6B __6H({ T[w,f,Fn]},G).

PROOF: The proof follows from Proposition 4.1 and consistency.

Another definition of breakdown is found in Huber (1977). His
criticism of previous breakdown point investigations was that the con-

vergence F{Tn € K} > 1 need not be uniform in F € np. Unfortunately’
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it is sometimes impractical to evaluate GB and GH and even more so
this latter breakdown. If it were'knoWn that there exiéted at most a
unique sélution of the equations (2.8) then GB "would be the smallest
neighbourhood of G such that H(y,F) = ¢, for some F in the neighbour-
hood. But in the estimation of scale using Huber's Proposal’Z it was
possible to observe that 6g = 1 even though there existed a sequence

of distributions {Gn} for which T[¢,Gﬁ] > o and dp(Gn’G) > 1. what

is necessary is an indicator of behaviour of the M-functional on

neighbourhoods of a distribution G that can be readily computed.

DEFINITION 5.2: Let {Tn} be a sequence of estimators. The local break- :
down point GL of {Tn} with respect to the triple (G,K,n), where
G E€G, K is a subset of the parameter space, and n 1is a neighbourhood

centered at G, is

6L‘= GL({Tn}’G’K’n) = sup{6 < 1|F € n(§,6) implies

F[T, €K] >1 as n > ©}.

This can often be readily computed in the eg-contaminated neighbour-

hoods for the univariate M-functional (see §6.3).

§5.2 Redescending Influence Functions

At the root of understanding robustness is the question; "What is
the significance of T[G] when G $ F?" This depen&s to a large extent
on the nature of the departure from F, and on F itself. The most

easily represented departure is e-contamination

G, = (l—e)Feo + e¢H . (5.3)

6x and

wherer 0 < € < 1 1is small and H varies in G. Setting H
letting x -+ < simulates the behaviour of T in the presence of grossly

erroneous observations. For the representation (5.3), IT[G] - T[FG 11
o
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denotes the "asymptotic bias". As it turns out breakdown bounds and
asymptotic bias using either e—con%amination or Prokhorov neighbourhoods
are determined at a particular ‘eo. They do not naturally transfer to
the whole family F as for the location family which is an exception.
This realization suggests that if we are to guard against a

particular kind of contamination H we may need to proceed adaptively
in G_E ©. 'Our object then is to gather information that contributes to
Fe but to screen out observations that fall in regions corresponding

o

to "tails" of F, Since 8 is not known we consider a construction
0 0

: o
for general 0. Then since the estimator is assumed close to 60 con~-

tinuity of Fe in the parameter leads to approximately the rigﬁt action
on the "tail regions". For the moment we défine the selection statistic
(functional) to be f£(8) = |8 - 90" for a departuré of the form (5.3).
It is necessary to make a judicious‘choice of ¢  for both asymptotic
efficiency at the model and asymptotic bias away from the model. We link

the observation space to the paraméter space in the following manner.

DEFINITION 5.3: The set of null influence N(y,0) CR associated with

an influence function ¢ is defined
N(p,8) = {x € R|Y(x,6) = 0}

Observe that if GO is given by (5.3) where ].. dd = 1,
‘ N(w,eo)

60 = T[L[J,Fe ], and M(Gé) is nonsingular, then it is true that
o .

T[¥,6,] = 8, and M(T[¥,G ],G)) = (1-e)M(8_). TFor suitably regular ¥

there exists an asymptotically unique consistent sequence of roots

{T[w,Fn]} to 6 for which /H(T[w,Fn] - 60) is asymptotically normal

with variance covariance matrix oz(w,Go,T[w,Go]) = (l—e)_lcz(\b,Fe ,60).
o

Then the only departure in the usual convergence at the model is an

increase in asymptotic variance of the order (l—E)—l.
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The optimal choice for N(y,8) is a tail region of FG’ wﬁere a
single observation is least 1ike1y’to fall. It can be employed aléo
according to the sample size. For instance it may be possible ﬁo choose
Nn(w,e)_ so that

(n)

1-P (X E(R—Nn(w,e))“};.os n=1,2,00.  (5.4)

Finally, note that the influence curve is zero on N(¥,0).

It was remarked by Hogg (1977) that the notion of the redescending
inflﬁence funcﬁion and asymptotic efficiency one were not necessarily
inéompatible. His illustration was the M.L.E. for location of a Cauchy
distribution, where

2(x—8) '

p(x-9) = - 3
1+ (x-98)°

which tends to zero as |x—e[ > o. The contrast is the M.L.E. for loca-

tion of a normal distribution for which
P(x=06) = x~0 .

To determine an optimality criterion that balances efficiency and
sensitivity'Hémpel (1968) provided his Lemma 5. There is a simple exten-
sion of it that includes the notion of a set of null influence. Since

we have only a single parameter we use the abbreviation ¥(x,68) = Vldgfe(x).

LEMMA 5.2: Lef fe(x) be from a model family of densities with respect
to (o-finite) measuré 1 (on R) and let o CE. Densitiesrare assumed
regular in the sense that each density is positive on (closed) support §
(not depending on the parameter 8), and {er(x)]e Gle} are measureable
on 'S, zero elsewhere, with j er(x)du(x) =0 ‘and

1(8) = I &(x,e)zfe(x)du(g) < o, Set N(8) CR to be a specified set of
null influenée for which f » f (x)du(x) > 0; let b(®) > 0 be some .

| R-N(0) °
constant; define
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min (] (x,0)-al,b(8))sign(¥(x,0)-a) x € R-N(8)
w:(x,e) =

0 ’ otherwise.

Then there is an 0©(6) so that f (x,e)fe(x)du(x) = 0. Define

*
Va(o)

| &(X,G) = w;(e)(x,e) and c(8) = [ @(X,S)er(x)du(x). Assuming é(e) #‘0,

then ®(~,e) minimizes oz(w,Fe,e) amdng all y with
J w(x,e)er(x)du(x) # 0, and with the same upper bound
k(8) = b(e)/|‘[@(X,G)er(x)du(x)l
for the sensitivity.
PROOF: For brevity we drop the function arguments where possible and

let er(x) = f'. By the dominated convergence theorem I ¢;fdu is a

continuous function of o, and.as o = *o, this inegral tends to

¥ b f dp; hence there is an o(0) with p* fdy = 0. Without
R-N a(6)

loss of generality we can assume 'J yfdu =0 and Y£'dy = ¢ so that

2
we have to consider J Y £dp . Then

1]

f [(h-a(8))-9]1% £ du j(&ﬂ(m>2fdu-2fw¢fm1+z[a(mwfdu

+ J w2 fdy

f (JJ—a(G))zfdu - Zlef' dy + Za(G)I\pfdu

+ {‘wa du

J (ﬁ)-a(e))bzfdu - 2c + 0+ flpzfdu .

. On the other hand

J[(@—u(e))-wl2fdu = f (&—a(e))zfdu + J o | (@-a(e)—w)zfdu
- N (R-N)N{ | P~ (8) [ >b}

+ f, o (b0 (8) ) 2£du
(R-N)N{ | y-a(6) | <b}

and since |w| < b this is minimized when ¢ = @ whence the lemma follows.
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COROLLARY 5.1: If N(8) = ¢ then c(8) > O, and the resulting Lemma

corresponds to Lemma 5 of Hampel (%968).V

COROLLARY 5.2: 1If b(e) = +w, then

D(x,8) - P(®)  x ER-N(8)
V(x,0) =
L o X € N(e) ’

where P(0) = J

@(x,e)fe(x)dp(x)/’[ ' fe(x)du(x), and whenever
R-N : )

R-N

f V0, 0)VE ()du(x) # 0 .

REMARK 5.1: Care should be observed in applying the resulting. @. Dis~
continuities may preclude use of presented asymptotic normélity theorens.
It is clear though that one can obtain a sufficiently smooth sequence

of functions {wj} that satisfy ¢, (+,0) 9>$(-,e) a.e. 1 as j > =,
Then [ wz.fdu*J fpzfdu and (w.f'du—*J’J)f'du, so that

R R-N ) .

2 e 5

g (Wj,Fe,e) > 0_(¢,Fe,a)-

EXAMPLE 5.1: For the normal location family setting N(8) = ¢, and

b(0) = ¢ reveals the solution corresponding to Huber's (1964) minimax

psi-function, ¢(x) = min(max(-c,x),c).

EXAMPLE 5.2: Setting b(8) = +» and N(ej = (-w,—c+8) U (c+8,=) ‘for
the normal location family gives the influence function of Example 2.2.
VTHere, consistency of én = G(Fn) was established.‘.Also observe
Kn(én) i;i: KQ(O) = 0. Without loss of generality suppose én < 0. By.b

expanding w(x—én) = p(x) + w‘(g)én in the region [-c,én+c], and noting

V'(E) = 1, there exists the corresponding expansion
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A RN (0 \ )
Kn(en) = Kn(O) +n {E I[_c’é +C](xi) / (en_o)
i=1 n »
17 5 ' 1B )
o iﬁl(xi‘en)l[én -1 - 3 iil(xi'en”[é;c,c](xi)‘ (5.5)

>

-1
For consistent en the two latter terms are op(n *). Supposing that

~ a.s. .
/n Kn(en)'——+ 0, asymptotic normality follows from the C.L.T. for
Vn Kn(O). Then Vg'én is asymptbtically normal with the usual asymptotic

variance,

6% (9,9,0) = f u»z(x)mb(x)/([.w'(xﬁub(x))2 :

The ﬁﬁo iatter terms of the expansion (5.5) are composed of those
observatiéns that:cbntributg greadtest towarés the values of 'Kn(én) and
Kn(O). Observations Xi near the underlying location parameter have
little weight. = This suggests that contamination about cut off points zc
can be a yital concern for behaviour of the estimator. We choose the
null set N(8) CR to dampen the asymptotic bias given a ﬁarticdlar kind
of contamination. Choosing an upper boundb b(8) for the influence curve
keeps asymptotic variances stable in small depaffures from the model. A
combination.of the two would reduce fhe sensitivity of the estimator to
contaﬁiﬁa;ions near IN(8).

Estimators based on linear combinétiohs of order statistics and
rank statistics do not necessarily behave in the same manner as the
M-estimator in departures from the model; Huber (1977, P.24) has noted
that using the influence curve as a tool to identify robﬁst estimators
>at the parametric family F may not be adequate. The influence curve
should also be examined under departures from F. If the set of null
influence, N(6), for an L-statistic  (linear combination of order statistics)
ié\determined by its influence curve at F

6 it is most likely that it

will not correspond to the set of null influence at Go given by (5.3),
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even if di = 1. That is when an ob§ervation falls into the null

JN(e)

set it is still taken into account-to determine the ordering of the other

observations.

§5.3 Multiparameter Models

Construction 6f prattical estimators that are both robust'ahd
efficient for multivariate models is governed by a number of complexities.
Increasing the number of parameters can increase the‘possibility of zeros
in the estimating equétions. All zeros must be searched for nﬁmerically
before a selection is ﬁade. This involves time consuming numerical

»searching algorithms. Robustness requires bounded influence curves but
there is no ﬁatural choice for such, even in attempting to trade off
efficiency with sensitiQity.

Hampel (1978, P.436) published an_incomplete.resqlﬁ extending
Corollary 5;1 torthe multivariate parameter. To be realistic an analogous
‘proof to that of Lemma 5.2 or its cqrollaries in the multivariatg para-
meter case would ﬁecessarily assume M(6) to be a constant matrix.

This is generally not possible. But in estiﬁation of location and scale
where the influence function takes the form {(x,08) = w(ﬁ-;—E , it is
possible to write the matrix |
A J Py (X)dF (%) 0
M(u,0) = o * | -
0 _ J xwé(x)dFé(x)

Here ¢ = (b,5¥,)" and F_ is the model distribution from which the
family F  is derived. Given a vector R(u,o) the asymptotic variance is

minimized among all the estimators with the same upper bound for sensitivity
_ -1,
%(U,O) - lM(U’O) b(U!O)I )

where |°[ represents the vector of absolute values of the elements, the
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bound being elementwise. Huber's (1964) Proposal 2 for estimation of

location and scale of the normal distribution given by

<

wl(x) = min(max(-c,x),c) and wz(x) =,wi(x)—8i, where
8, - f 47 ()9 ()

minimizes the asymptotic variance of all M-estimators with upper bound

k(u,0) given by
b(u,0) = (c,(cz—l)(éé(c)él) + 2c¢(c))

Any other M-estimators whose influence functions are so that their
corresponding'value of k(u,0) 1is bounded above by that of‘Proposal 2
have asympto;ic variance that is greater than or equal to that of
Proposal 2. Alternatively if we set an uppef-bound on the sensitivity

(Hampel's 1968 definition)

Y*(u,0) = v.o
for some constant vy, the Winsorizing constants. of wl and wz, that
minimize thé asymptotic variance, are different. They are given by the
equations

) cq ) (c%—l)(Z@(cz)—l) +l2c2¢(c2)
T 7 2ee-1 T T2.(2 0(cy)-1) - heydley)

The choice of estimator is still left fairly open with no clear guidance
for the choice of y. This is without considering the possibility of
a set of null influence.

With more complex parametric families the requirement of bounded
influence curves is satisfied by some minimal distance estimates. It
will become clear in Ch. 6 that efficiéncy at the model as a sole
criterion must be abandoned, and that estimators with only average

efficiency can be quite attractive under small departures from the model.



122.

Then the main factor is the cost in employing the minimal distance
estimate, particularly if the estimator is to be used on small samples
where it may be necessary to account for small sample bias. ’Implementing
bias reductiﬁn procedures, such as the jackknife‘of Quenovillé (1956)

may be costly due to the hature of implicitly defined M—éstimates}
Nevertheless Reeds (1978) demonstrates that asymptofics of the jackknifed -
estimates. are equivalent to the M-estimates. But often it can bé easier
to correct for the small sample bias adopting the‘approach of Cox and
Hinkley (1974, P.310). Taking the Taylor expansion approach the bias of

the M-estimate is given by

-2 f ¥ (x,0) 7Y (x,8)dG(x) +f \bz(x,e)dG(X) f Vzw(x,e)dc(x)]

E[6_-T[G]] |
2n{‘fvw(x,e)dc(x)] | 8=T[G]

1

+ o(n )

= 200y o7l | (5.6)

The bias is estimated by b(én,Fé )/n, whereby we adhere to the éssump—>
n

tion of the model, at least approximately.
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CHAPTER b

-

APPLICATIONS TO LOCATION AND SCALE ESTIMATION

§6.1 Theory for Location M-estimates

The theory of M-estimates of location of symmetric distributions

" has been well developed since Huber's (1964) introduction of the minimax

M-estimator. Specifically M-estimates of location are. defined as 'solu-

tions of

n .
T (X, -8) =0, (6.1)

where (%) ié assumed to be an odd function in x.

Equation (6.1) is not scale invafiant in the sense that the solu-
tion formed from taking a multiplevof the sample can be different ffom
that using the original sample. Assuming a standard normal distributioﬁ
is unrealistic and a scéle estimate is often used. A typical statistic .

for that purpose is the minimum absolute deviation estimator
d = med(|Xi-med(Xi)|)/.6745 .

The M-estimator then solves

n (Xi—-e]
Ty =0.
i=1 d

The value .6745 érovides d as a cbnsistent estimator when the un&er—
lying distribution is &(x/0). With o known y(x) = min(max(—l.S,x),l.S)
gives efficiency g;eater than 95%. If o .is unknown the ésymptotic
distribution of the M-estimator depends also on the statistic d. Then
one can only speculate through béhaviour of the strict location estimate
with o-known on the behaviour or optimality'of a parficular criterion

(c.f. §5.3).
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Other authors recognizing that observations that do not belong to
the normal distribution sheould be neglected introduce redescending

influence functions. Some examples are:

1. Hampel psi-function

A
o8]

x 0 < [x| <
Yo b C(x) = a sign (x) a<|x| <b
‘S;1§| a sign (x) b < |x| <c
0 ' |x| >c
2. Wave of Andrews
sin (x/c) . |x| < ecm
b(x) =
0 le > cm
3. Biweight of Tukeys
X(l-(X/c)z)2 Ix| j_cr
Yoo (x) =
BS 0o ‘ x| > c .

Examples 1. and 3. have set of null influence (-»,-c] U [ec,=) U {0},
while that of example 2. is (-,-cn] U [ew,=) U {0}. Hogg (1979)

provides the following suggested values

—
m
Il
=
~
o
il
w
ES)
e}
I
[o0]
(%3]

2.) ¢ =1.5 or 2.

3.) ¢ =5. or 6.

For 3., ¢ 4.685 détermines 957 efficiency with o known.

If contamination were restricted to the set of null influence,
ideally thé choice of null set would exclude all observétions that fell
more than just over tﬁree standard deviagions from the locétion. In a
sample of size 30 generated from the normal distribution the probability

that the largest observation is greater than 3.5 is 1--<I>(3.5)30  .007.

It is ektremely unlikely to obtain an observation in (-»,-3.5] U [3.5,@).



125.

But all parameter values given above weight observations in that region.
Admittedly the weight is exceeding%y'diminished from that which is .
attributed by the M.L.E. (¥(x) = X)-. However it could be argued that
it is preferable not to weight these éberrant observations at all.
Large parameter values of c were born out of the Monte Carlo stﬁdies
of Aﬁdrews et al (1972) where the apparent concern is for both asymptotic
variance and small sample variance in symmetric departures from the model.
With large samples asymétotic bias becomeé»the predominant concern and
smaller values of c¢ would be more in harmony with the notion of a model
normai distriEution.

Perhaps most criticism of‘redescending bsi—functions has been that
they allow multiple roots to the.estimatihg equation. . Hampel (1974)
suggests iterating a few timés from an initial cénsisfent estimate of the
location, proposing the median to be an appropriate starting point. This
gives rise to a natural question; 'Will such an iteration take us»closer
to the M-estimator or in fact take us farther away?" We answer the
question partially with the following analysis.

Consider the classical Newton-Raphson iteration when solving the
equation

f(x) =0. : : (6.2)

Startingrwith X, as an initial estimate it takes successive estimates
by‘sétting
£(x) | |
xv+1 =X - ET?;;Y v=20,1,2,.... . (6.3)
For a particular root & of (6.2) we waﬁt to know of a region
about é in which the method eventually c¢onverges to & for any choice
of X in the region. A rate of‘convergence‘is also of interest.

Ostrowski (1960, P.44) describes an answer to both of these points in
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his Theorem 7.2. The proof of that theorem can be carried through
assuming f 1is continuously differentiable with piecewise continuous

second partial derivative.

LEMMA 6. 1: Let -f(g) = f"(g) = 0,‘f'(g) = Ao > 0. Suppose {fn(x)}

is a sequence of functions satisfying

1) fn(x)‘* f(x), f;(x)‘+ £f'(x), f;v(x)'-> f'"(x), uniformly in x € E

as n > o. Theﬁ there exists an dpeh neighbourhood N(g),v such that for

sufficiently large n (f.s.l.n.) there is a root gn in N(&) of

fn(x) = (0. Further starting with any xa € N(£), the sequence x(n)
formed by‘the recurrence formula
(n)
X27)
m _ @ _ 2% )
Xoa1 = % 0 T — v=0,1,2,.... (6.5)
f (x\) )

all lie in N(£) and we have

x(n) N

v e (v > =)

Further given any € > 0 there exists a neighbourhood N(£,e) with the

property that f.s.l.n.

@ (n)
(a) 1 = % < e (v =12 )
MOEmOTE ©=12,

\ v-1

PROOF: By continuity choose 0 < § < Ao/3 so ﬁhat

N 12 Vi) < 14 '
(2) 13 Ao < f'(x) < 13 Ao x € (£-6,848)
[f"(x)| <1 - x € (£-26,E+26).

By (1) the inequalities (2) are true when f is replaced by fn for
all n greater than some n(8). Let 0 <« < 1/3 and choose
n(6;K) > n(8) so that n > n(§,k) implies E&-k§ < gn < g+k8§ (cf.

proof of Lemma 2.7). Choose xén)(n) = g,-n for any 0« In| < (1-k)6 say.
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Observe by the mean value theorem

12 (
Aon < fn(xo

n), « 14 ‘

Then it is true that

(n)
"< fn(xo (n))

~N|on

n  uniformly in n > n($,x)

o~

- <
£ () |
0 < |n| < (1-k)$

We set 5 (m) = £ M /e P () and

3 m = @)+ ™ c 26,260

o
Hence
sup [£7(x)| < sup . £ | < 1.
erén)(n) n £-26<x<g+28 ''n
So
(n) " Z, Z. Z. lg
Z-ho (n)sup (n) lfn(x)| < 2.6 n.1l < 3 § < 9 Ao < 13 Ao
: XEJO )

< g™ |

(¢]

uniformly in n > n(§,x), 0 < lnl < (1-x)8. By Theorem 7{2‘of Ostrowski

' wWwe can set

NE) = (£ - (1-2¢)8, £ + (1-26)8) ,

_ since observe that (§-k§,&+k8) C N(§) and further given any
£l € (£-«6,E+k8) all points of N(§) are contained in the interval
(€, - (1-0)8,E_ + (1-6)9).
We now observe the last part of the Lemma. Since ¢ may be chosen
arbitrarily sﬁall,,assume

£ G| <Ay 2. ¢ uniformly in (£-26,£+26) .

For n > n($§,x) assume the correspondingbinequality holds with £

replaced by fn’ Then
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A .24
0

[faGo] < S”pg-za<x<g+zalf;(x)| <713

M (n) = sup €

XEJén) (n)

(n)

uniformly in n > n(8,k) and O < Inl < (1-k)6. Then letting xv

(n)

be the sequence generated'by (6.5) with initial starting point xén?(n)

we have the result from (a) and (b) of Theorem 7.2 of Ostrowski by

observing
24
M(n) A — €
“(n) < -£L%§~—~— = ¢ .
2. | £! 2. =
i~n(xv (h))| 13 o

The Lemma isvprovéd.‘

What has been shown is the existence of a region about the zero of -
f for which any initial estimate chosen invthis region will lead to . the
NéWton—Raphson iteration to converge to the zero of fn for n large
~ enough. A.quadratic rate of convergence holds uniformly in n for
large n. But the region in which convergence occurs can be explored

further. The next Theorem pertains more closely to the M-estimating

equations.

THEOREM 6.1:
Let f(&) = 0, £'(§) = A0'< 0 and set {fn} ‘to be a .sequence of

continuous funcﬁions with piecewise continuous derivatives satisfying
3) fL(x) 7 f(x) uniformly in x € E
fé(x) > f'(x) uniformly in x € E ,

where f;(x) is the left hand derivative assumed to exist for all x € E.

Given x_ we set x(n) = X  for all n and define- {x(n) ® to be
) 0 o }
v=0
sequences defined by (6.5). - Suppose 6 >.0 is such that f.s.1l.n.,
xo E_Ua(g) implies the sequence {Xén)} converges to the root
) v=0

Eﬁ € UG(E) of fn(x) = 0. For some € > 0 suppose there exists an

x* > § for which
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2(x-E) - ffzg) < ¢ x € [E-x* £-8] (6.6)
2(x=&) - g}é& > ¢ ’ X < [g+6,g+x*]

£'(x) < —a(x*) <0 x € [-x*,x¥)

Then f.s.l.n. X, € [E—X*,£+X*] implies the sequence {xén)} . con~-
‘ v=0

verges to £ € U.(£) which is unique in [£-x*,£+x*].
n §

PROOF:  F.s.l.n. it is true that fé(x) < -a/2 for all x € [g-x*,e+x¥].
‘Since f£(&+6) < -as, £(£-6) > af, then fis.l.n. £_(£+8) < -as/2,

fn(g-d)'> a8/2, and hence also

£ (%) .
? > ad/2 _ §/2 x € [E+8,E+x*] 6.7)
fn(x) a ‘ .
£ (x) '
n %
—fjl-m < -6/2 ‘ X E [E-X ,5—6] .
Also f.s.1l.n.
f (%) :
n f(x) .
f;(x) - f'(x)l < e/2 . . (6.8)

Given n for which all the above inequalities hold, consider

.xin) € [e+8,8+x*]. By (6.7)

' (n) ,
x(ii = x{®) ~‘—3——%—$— < xsn) - 8/2 .
Vv Vv f,(xn) -
n \Y)
By (6.6) and (6.8)
(n)
f (x )
(n) (n) n "y (n)
X\H_l’—‘x\) ——'——(—)— > 2?;-)(,\) +e/2 .
£1.0657)
So : _
-y +en < o{Pee < ey -6
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That. is

(n)

Vv

|x(n)_€

v+l ‘ < !x

£] + min(e,8)/2 . (6.9)

The inequality (6.Y) is also true when xin) € [g-x*,g—&]. Therefore
there exists a v, = vo(n) for which

xi“) € [g-x*,6-6] U [£+6,E+x*]
o _ ,

and

) e (e
*vo+l € (£-9,E+6)

The theorem is proved.

EXAMPLE 6.1: Consider the domain of convergence of the Tukey Bi-weight °
M-estimating eduations. Necessarily the statements "for sufficiently

11

large n'" are interpreted as probability statements 'for ‘all sufficiently
large n'" or "with probability going to one'.
Observe that if the underlying distribution G 1is symmetric about

some value &, letting
KG(G) = J wBS(x—e)dG(x)
it is true that
Kg(8) = KE(E) = 0, KL(e) = —_[wés(x;a>dc<x> <0. - (6.10)
Let us write
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