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1.

S u m m a r y
This thesis is concerned with the asymptotic theory of general 

M-estimators and some minimal distance estimators. Particular attention 

is paid to uniform convergence theory which is used to prove limit 

theorems for statistics that are usually implicitly defined as solutions 

of estimating equations.

The thesis is divided into eight chapters and into three main 

sections. In Section A the theory of convergence is studied as a prelude 

to validating the use of the particular M-estimators given in Section B 

and C. Section B initially covers the view of robustness of Hampel 

(1968) but places more emphasis on the application of the notions of 

differentiability of functionals and on M-estimators of a general para­

meter that are robust against "tail" contamination. Sections A and B 

establish a base for a comparison of robustness and application aspects 

of minimal distance estimators, particularly with regard to their 

application to estimating mixtures of normal distributions. An important 

application of this is illustrated for the analysis of seismic data.

This constitutes Section C.

Chapter 1 is devoted to the study of uniform convergence theorems 

over classes of functions and sets allowing also the possibility that 

the underlying probability mechanism may be from a specified family.

A new Glivenko-Cantelli type theorem is proved which has applications 

later to weakening differentiability requirements for the convergence 

of loss functions used in this thesis.

For implicitly defined estimators it is important to clearly 

identify the estimator. By uniform convergence, asymptotic uniqueness 

in regions of the parameter space of solutions to estimating equations 

can be established. This then justifies the selection of solutions
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through appropriate statistics, thus defining estimators uniquely for 

all samples. This comes under the discussion of existence and con­

sistency in Chapter 2. Chapter 3 includes central limit theorems and 

the law of the iterated logarithm for the general M-estimator, 

established under various conditions, both on the loss function and on 

the underlying distribution. Uniform convergence plays a central role 

in showing the validity of approximating expansions. Results are shown 

for both univariate and multivariate parameters. Arguments for the 

univariate parameter are often simpler or require weaker conditions.

Our study of robustness is both of a theoretical and quantitative 

nature. Weak continuity and also Frechet differentiability with respect 

to Prokhorov, Levy and Kolmogorov distance functions are established 

for multivariate M-functionals under similar but necessarily stronger 

conditions than those required for asymptotic normality. Relationships 

between the conditions imposed on the class of loss functions in order 

to attain Frechet differentiability and those necessary and sufficient 

conditions placed on classes of functions for which uniform convergence 

of measures hold can be shown. Much weaker conditions exist for almost 

sure uniform convergence and this goes part way to explaining the 

restrictive nature of this functional derivative approach to showing 

asymptotic normality.

In Chapter 5 the notion of a set of null influence is emphasized. 

This can be used to construct M-functionals robust (in terms of asymptotic 

bias and variance) against contamination in the "tails" of a distribution. 

This set can depend on the parameter being estimated and in this sense 

the resulting estimator is adaptive. Its construction is illustrated 

in Chapter 6 for the estimation of scale. Robustness against "tail" 

contamination is illustrated by numerical comparison with other
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M-estimators. Particular applications are given to inference in the 

joint estimation of location and scale where it is important to identify 

the root to the M-estimating equations. Techniques justified by uniform 

convergence are used here. Uniform convergence also lends itself to the 

use of a graphical method of plotting "expectation curves". It can be 

used for either identifying the M-estimator from multiple solutions of 

the defining equations or in large samples (e.g. > 50) as a visual indica­

tion of whether the fitted model is a good approximation for the under­

lying mechanism. Theorems based on uniform convergence are given that 

show a domain of convergence (numerical analysis interpretation) for the 

Newton-Raphson iteration method applied to M-estimating equations for 

the location parameter when redescending loss functions are used.

The M-estimator theory provides a common framework whereby some 

minimal distance methods can be compared. Two established minimal

distance estimators are shown to be general M-estimators. In particular 

a Cramer-Von Mises type distance estimator is shown to be qualitatively 

robust and have good small sample properties. Its applicability to 

some new mixture data from geological recordings, which clearly requires 

robust methods of analysis is demonstrated in Chapters 7 and 8.
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SECTION A: CONVERGENCE AND LIMIT THEORY

C h a p t e r  1

The Theory of Uniform Convergence

§1.1 Basic Definitions

Terminology and results basic to later discussion are given in 

this section. The "observation space" is denoted by R, and it is 

assumed to be a separable metric space. By B we mean that smallest 
a-field containing the class of open sets on R generated by the 

metric on R. It is called the Borel a-field on R. If R is 
Euclidean k-space, E^, the sets B are called k-dimensional Borel sets.
A distribution on R is a non-negative and countably additive set 

function, p, on B, for which p(R) = 1, and it is well known that on E 
there corresponds a unique right continuous function F whose limits 
are 0 and 1 at -°°, +°°, defined by F(x) = p{(-°°,x]}.

As usual (ft,A,P) denotes an abstract probability space, i.e. A 

a a-field of subsets of ft, with P a probability measure on A. ft is 

thought of as the sample space and elements of ft, denoted by go, are 

the outcomes. Then a sequence of random variables on ft is defined via

X(co) = X1 (gj),X2 (go),... ,X^(üo),....  , (1.1)
oo ootaking values in the infinite product space (R ,B ). The observed 

sample of size n is then written

(X (co) ,... .X (go)) = tt^ o X(go) ,i n

while the n 1 th random variable is given by X^(go) = 71 ° X(go) . Both
(n) °°it and it are then measurable maps with respect to B . They induce
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distributions and respectively on (Rn,Bn) and (R,8).

Theorems concerning equivalent representations of infinite sequences of 

random variables and probability measures are found in Chung (1968, 

P.54-58).

We use the symbol G to denote the space of distributions on 

(R,B). The sequence X is independent and identically distributed
'Xj

(i.i.d.) if there exists a G G such that G^ = G, n = 1,2,....
1 r- „ (n) _nand for every A = A, x ....x A G ßI n

The two modes of convergence of a sequence (Xn) °f random variables 

on (fi,A,P) to a random variable X on that same probability space, 
convergence in probability and convergence with probability one, are 
defined in the usual way. Convergence with probability one, or almost 
sure convergence, apriori implies convergence in probability. But for 
clarity we give the following formulation that helps to relate state­
ments about events to almost sure convergence.

DEFINITION l.l: Sequences of statements A ^ ( X ^) , (X^,X2),
said to hold for all sufficiently large n (f.a.s.l.n.) if

PU. I U n An(X1((0).....,Xn (o.))} = 1 ,
m=l n=m

and a sequence (T^(X^,...,X^)} of measurable maps T : Rn M, where 

M is some metric space, converges almost surely to T if and only if 
for every n > 0 the sequence of statements

d(Tn (X1>...,Xn), T) < n n = 1,2,.... ,

d the metric on M, holds f.a.s.l.n..
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For an account of this definition see Foutz and Srivastava (1979). 

From the definition we have an immediate lemma concerning sequences of 

statements occurring in conjunction

LEMMA 1.1: Let sequence of statements

A-^xp, A2 (X1,X2),....  , and

B1 (X1), B2 (X1,X2),....

both hold f.a.s.l.n.. Then the sequence of statements A^(X^) H b ^(X^), 

A2 (Xi ,X2) ^ B 2 (X^,X2),.....  hold f.a.s.l.n..

OO OO OO OO A

PROOF: Let A = U n A , B = U n V  Then dP (a)) = 1.
m=l n=m m=l n=m •'AHB

The result follows from the identity

a h b u n a
a  n=

n U
m=l

n b .
n=m

U
m=l

n
n=m

(A H b ) n n

Expectation of a real valued random variable on (fi,A,P) is

written EX = X(co)dP(oo)
•+°°

xdG(x) , where G is the induced
* H ■* -oo

distribution function on the real line. The variance is denoted by 
2var X = E[(X-EX) ]. A fundamental result that is used frequently is the 

strong law of large numbers (S.L.L.N.), a classical expression of which 

can be found in Loeve (1955, P.239). General extensions to the S.L.L.N. 

to normed linear, Frechet, and Hilbert spaces for sequences of un­

correlated random variables are given in Padgett and Taylor (1973). 

Nagaev (1972) examines necessary and sufficient conditions for the 

S.L.L.N.. Application of the S.L.L.N. is exemplified by taking f to 

be any real valued measurable map with domain R, and X an i.i.d. 

sequence of random variables on (ft,A,P) taking values in R. Then

since f(X-^),f(X2),.... , forms an i.i.d. sequence of random variables

on E , if E I f (X) I < 00
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f (X ) + .... +f (X ) a . s .
--- -----------------  - Ef (X) — ► 0 . (1.2)n

This "ergodic property” is known to hold for much more general sequences 

X. Hannan (1970, P.202) presents the mixing condition as sufficient for 

ergodicity of a stationary sequence. Breiman (1968, P.105) notes that 

measurable transformations of a strictly stationary process are strictly 

stationary. So for any measurable f with E|f(X^)| < °°, and strictly 

stationary mixing sequence X the ergodicity (1.2) is retained. Loeve 

(1955, P.423) states that a stationary process X is ergodic if and 

only if it is indecomposable, that is, if its invariant a-field consists 

of <f) and Q only, up to an equivalence.

The other major convergence is that of convergence of measures on 

the general space (R,B). We consider the mode of weak convergence 

described in Billingsley (1956). In particular we use the following 

characterization of weak convergence

P R O P O S I T I O N  1.1: The following statements are equivalent:

(1) Pn =* 1 ,
(2) lim ^  Pn (A) = p (A) for each continuity set A of p, and

(3) for each bounded and uniformly continuous function g(x)

on R,

limn-xn gd|Jn g dp .

This can be found in Alexandroff (1943) or Billingsley (1956).

The empirical distribution function will be the distribution

(random) that assigns atomic mass 1/n to each point of the sample

X (n) = (X......  X ). We label it F (x,co), and abbreviate it to F (•)'v 1’ ’ n n ’ ’ n
for most purposes. A result of Varadarajan (1958) states that for an 

ergodic sequence with marginal distribution G,

P{w I F (• ,oj) => G} = 1 .I n (1.3)
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Therefore if we have estimators which are functions of the sample,

T (X-. ,....,X ), that can be written as functionals T[F 1, they will

converge whenever the functional satisfies a continuity property in 

the topology of weak convergence. Invoking (1.3) and using the 

"deterministic" approach of weak convergence can be sufficient for 

showing convergence of functionals T[F ]. But it is not always 

necessary to assume this weak continuity.

We let estimators and/or functionals take values in subsets of 

Euclidean r-space, E . For a vector z = (z^,...,z ) £ E , we denote
2 2 hthe usual Euclidean norm of z by (z + . . . + z ) = || z|| . For an% J 1 r V

arbitrary nxm matrix A we write, ||A|| = {trace (A’ A) } 2.

§1.2 Uniform Convergence on Classes of Sets and Functions
Frequently we have a sequence of points {T^} that converge to T 

in some sense, but our interest lies in the convergence of

supf G ^  U(Tn) - f (T) I ,
»  /Vfor QJ' a class of real valued functions on 

almost sure limits of

supf ea f dF - f dG

R, or more generally the

where G is the underlying marginal probability distribution. This 

convergence is of particular interest in statistical inference where P 
is a family of probability measures {P |0 £ 0}, so that 0 C Er, and 
we wish to find consistent asymptotically normal estimates of some 
underlying 0 £ 0, when samples X^n  ̂ are generated from .O 'Xj 0o

The classical theorem of uniform convergence of measures on sets 

is that of Glivenko and Cantelli which asserts that

p(“lllmn̂  suP-ra<x<„ lFn(x.“) - GU)| = 0} = 1 , (1.4)
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for X a strictly stationary ergodic sequence. The proof stems from

the S.L.L.N. applied to the sequence of indicator function values

{I (X, ) }(-°°,x] i Extensions of the Glivenko-Cantelli theorem to E
i=l

space and more general sets have been carried out by Wolfowitz (1954),

Ranga Rao (1962), Topsoe (1970) and Elker, Pollard, and Stute (1979).

All of these authors consider the theorem for closed half spaces E .

Rao uses Varadarajan's result (1.3), and examines classes for which weak

convergence implies uniform convergence. Billingsley and Topsoe (1970)

follow up this approach and investigate the necessary and sufficient

condition for a class CL of functions to be a P-uniformity class;

that is a class CL for which if {P } are such that P =* P, thenn n

limn-+°° sup f E  d f dP - n f dP 0 .

To describe their result let U (x) be the open sphere with center x
o

and radius 6. We adopt this common notation throughout. Then denote 

the oscillation of a function f on a set B by w^(B), and Wß(B) 

is the oscillation of the family of functions, i.e.

l(B) = sup{w (B)|f G CL} .

We call ^(f) the 6,e-boundary of the function f, the set of

points x in R such that w^(U(j.(x)) > c. The necessary and sufficient 

condition is stated in Topsoe.

P R O P O S I T I O N  1.2 ( B i l l i n g s l e y  and T o p s o e ) :  CL is a P-uniformity class if
and only if

wa (R) < - ,

and

lim6-o s“p[ e a F(,i,£(f)) = 0 >
holds for all e > 0.
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If Ci denotes the class of indicator functions of a class U C ß 
U is called a uniformity class. A uniformity class of sets with respect 

to a distribution G will be automatically a Glivenko Cantelli class; 

a class V for which

supDep dF (x,m) nJD
dG(x)I * 0 ;

J D

but the converse need not be true (Example 2 of Elker, Pollard, and 

Stute).

So it is important to recognise the delineation between probability, 

or almost sure results, and those implied by weak convergence. The 

latter provides a convenient avenue for arriving at results of the former, 

but is not necessary. Topsoe does point out though that if one can show 

the class U to be a uniformity class with respect to the continuous 

part of the probability measure G, it is automatically then a Glivenko 

Cantelli class. Particular classes of sets that have been investigated 

are the convex measurable subsets on E .

P R O P O S I T I O N  1.3 ( F a b ian 1970): Let Êc be the Borel sets of E^, C the

set of all convex measurable subsets of E . Let {y^} be a sequence of 

measures converging pointwise on C to a measure y on Ê . Suppose 

y(C-C°) = 0, for any C £ C with C and C° denoting closure and 

interior of C. Then (y } converges to y uniformly on C.
The result was proved as an if and only if result assuming y^ ^ y 

by Rao (1962, Theorem 4.2).

Generalizations of the Glivenko Cantelli theorem to dependent 

sequences have been carried out by Tucker (1959). He considers the case 

where the stationary sequence may not be indecomposable. His result is 

stated

P{w I sup_oo<x< J  Fn ( x > w) - G(x|T)| » 0} = 1 ,
n-*»
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where G(x|T) denotes the conditional distribution function of 

j- given T, the invariant o-field of events of X. Rao (1962) considered 

the extension to the collection of half spaces in E .

Also Rao illustrates that uniform convergence over classes of 

functions almost surely need not require the class to be a uniformity 

class. To describe his result in its generality we say a sequence of 

random measures {A (A,w), A(A,to); n = 1,2,...} on R, possesses the 

"ergodic property” if for each real valued function g(x) on R, for 

which

E I g(x) I A (dx,to) < « ,

then

limn-*=° g(x)dAn g(x)dA a.e. (1.5)

PROPOSITION 1.4 (Rao 1962, Theorem 6.4): Let X be a strictly

stationary sequence and denote G(dx,m) the random measure associated 

with the conditional expectation (as in that of Tucker). Set CL to 

be an equicontinuous class of continuous functions and g(x) a con­

tinuous function on R such that | f (x) | <_ g(x) for each f  ^  CL and 

x £ R. Suppose E|g(X-])|̂ "+a < 00 for some a >_ 0, then

= 0} = 0

1+a

(a) P{lim qn-*» n

(b) lim Erfn-*» n 0 ,

where

q = sup n
f(xx) +

f G  OJ
+ f (X ) ny f (x)G(dx,w)

The proof of this proposition relies on the more general expres­

sion of the S.L.L.N., in Birkhoff's ergodic theorem (c.f. Loeve 1955, 

P.421). A result that clarifies the nature of the random measure 

G(dx,io) is found in Blackwell (1956). For an indecomposable sequence
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G(dx,oo) is the constant measure dG(x).

Since functions f are permitted to be unbounded clearly CL is 

not required to be a uniformity class with respect to any measure. To 

impress on the reader the action of the S.L.L.N. in this result we 

give the proof for an ergodic sequence X of real valued random 

variables. This also serves the purpose of familiarizing us with a 

useful technique to be used later.

PROOF: Denote C = (-c,c] and C' its complement. Since g is

integrable (g £ L-^(G) in symbols), given e > 0 there exists
r

0 < c < 00 such that I gdG < e/2. Since (X is equicontinuous on
J C’

[—c,c], given arbitrary n > 0 there exists a finite partition

-c = a < a, < o 1 < a = c m

for which a^_^ x < y <_ a^ implies | f (x) - f (y) | < q for every 

f £ d, and i = l,...,m. Consider the possibly improper distribution 

Gx attributing weight G(a.) - G(a^_^) to the points x_. = (a.. + a.. 1)/2,i i-r
i = l,...,m. Then clearly

m
f dG I <_ Zf dG* - If(x.) - f(x) IdG(x)

i 1 )3^]

< n(G(c) - G(-c)) < n (1.6)

Let a(c) = sup^|g(x)| < 00 and be analogously constructed from F^.

Then

supf e a l lc £dFn- f dG“" I £  a(c) E 
C i=l (ai_i>aiJ

d(F -G)|

< n f.a.s.l.n., (1 . 7)

a. s.
since F^(x)-G(x) 0 for every x £ E by the S.L.L.N.. We 

deduce from (1.6) and (1.7) that

sup f e a 1 J f dF - n f dc| < 3n f.a.s.l.n. ( 1 . 8 )
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Finally

supf g o J f dF - n f dG I <_ sup f G q \

C
f dF - n f dG

C'

+ sup _ J  I f  dF - I f  dG 
£ e ^ J c n J c

c gdFn + gdG+sup£ e a | f dF - n f dG I

< e + 3 n  f.a.s.l.n. .

f a. s. r
This is true from (1.8) and since I gdF — > gdG by the S.L.L.N

Je' n Jc '

Only the S.L.L.N. were necessary in this proof of the proposition, 

not a Glivenko Cantelli result. Hence there exists an obvious corollary

to independent but not identically distributed (i.n.i.d.) sequences X.

COROLLARY 1.1: Let CL be an equicontinuous class of functions with
domain E, and assume X to be an i.n.i.d. sequence of real valued

random variables with distributions G^jG^,.....  Further let g be a

continuous function on the real line such that (a) |f(x)| <_ g(x) for

each f G C L  and x G E; (b) for every e > 0 there exists a

C = S
 N 1 o o o V o such that gdGn <C

e for n > n (c): and —  o

(c) the S.L.L.N. holds for the sequence {g(X.)Ic,(Xi)}. Here

G = n
n _ 1  n r

Zi=l Gi* Then

P{lim p = 0} = 1 ,n-*» n
where

nn = SUpf G aJ j f (x d̂ Fn (x) ~ j f (x)d Cn (x) | .

PROOF: From the previous proof we see that it is only necessary that

the S.L.L.N. hold on the bounded sequence {l̂ _oo x ](2G)} for all x G E,
a. s.

for then |f (x) - G (x)| — > 0 for every x G E. This is true by

using Theorem 3.1.2 of Padgett and Taylor (1973).
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It is difficult to see an extension of this method of proof to 

functions with domain E , even if easily verifiable conditions for the 

S.L.L.N. are satisfied, although we can resort to the weak convergence 

arguments. Sequences that are not identically distributed are of no 

particular interest for the parametric estimation investigated here and 

we do not pursue this line of discussion.

An important result that combines the notions of uniform con­

vergence over both classes of functions and sets, or equivalently extends 

the classes of functions considered in Proposition 1.4, can be shown for 

univariate sequences on the real line. We consider a stationary ergodic 

sequence with marginal distribution G, and in notational abbreviation 

write G(x ) = lim hlO G(x-h). The following are preparatory lemmas.

LEMMA 1.2: Let G be any distribution function for which

G(x) - G(x ) < n/4 for x £ (a,b), where a < b real, and n > 0 are

given. If G(b ) - G(a) > n, then there exists a finite partition

a = x < x , <  .... < x. , = b ,o 1 k
so that

G(Xj) - G(xj_1) < n , j = l,...,k' .

PROOF: Define G ^(z) = inf{x|G(x) >_ z, z ^ [ a, b ] }. Since G is right

continuous G(G ^(z)) _> z. Choose

y = G 1{G(a) + i (G(b ) - G(a))} , 

where k >_ 1 is chosen so that

G(b")-G(a) 2 (G(b~) - G(a) )--------------  < k. < -------------------

Then
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G(y ) -G(yj_1) > G(a) + £  (G(b ) - G(a)) - G(yj_1)

>_ G(a) + ^ (G(b ) - G(a))

- {G(a) + ^  (G(b") - G(a)) + n/4} 

= £  (G(b~) - G(a)) - n/4 

> n/4 .

If G (a,b), j = 1, • • • , k, then y_. > y^^. For if y = y , then 

G(ŷ ) - G(y ) = G(ŷ ) - GCy^) i G(y.)- GCy^)

> n/4 .

But this contradicts the initial assumption. Now since

G(y ) <C(a) + i  (G(b )-G(a)) , j = 1.... k ,

then

G(yT) -G(yj_1) 1  ~ (G(b~) - G(a) ) < n .

Note that y^ = a, y^ > a, and if ŷ  < b, then G(b ) "G(y^) = 0.
k

Let a = x < x. < ....  < x, t = b, be formed from {y.} U {b}.o 1 k 3 - i
3 = 1

LEMMA 1.3 (c.f. Proposition 1.4): Let X be a stationary ergodic

sequence of real valued random variables with marginal distribution G. 

Assume to be a family of real valued functions on E such that

(i) is equicontinuous; and (ii) there exists a continuous function

g such that I f (x) | <_ g(x) for every x G E, f G Then given any

c > 0, setting C = (-c,c]

supx Gc supf e aJ f(y)dF (y) - 
J(-C,x] n

f Cy)dG(y)|
J (-C,x]

a. s.
0 .

i
PROOF: Given n > 0, let {d.} be the at most finite set of points

1 i=l
in C such that G(d^)-G(d^)_>_n/(4.a(c)), where a(c) = sup{g(y) | y G C},



16.

if they exist. Since the family (Â is equicontinuous and C is com­

pact, we may choose a decomposition

-c = a < a, < o 1 < a = c m

so that ji x < y £ a ; implies | f (x) - f(y)| < q, for every f £

and i = l,...,m. Let {a*} be the further decomposition obtained

>'c . -k

li-l i:

oII E £
and {d . }

i=o 1 i=l
if G(a*") -G(a*_

ni
exists a finite decomposition {x..} so that

l l  • j=o

ai-l Xio < Xil < < x. = a. in i

for which

G(xij) ~G(X£q _1 )̂ < n/a(c) . 

If G(a? ) -G(a“_^) q/a(c), set n^ = 1, x.

That

1 >•••> (1.9)

a? .. and x., = a*i-1 il
n ' i*

Let {b.} be
1 i=o

the set

of points that partition (-c,c] formed from combining the points 

ni{x..} , i = l,...,k. Denote F* the possibility improper distribution
1J j=o

that attributes weight G(b_̂ ) - G(b^) to the points b^, and weight

G(b_̂ ) - G(bi_1) to the points p = h(b + b^+ )̂ , i=l,...,n'.

Let x £ C. Then either; (1) there exists an 0 _< i <_ n ’-l, such that

b. < x < b. or (2) there exists an 1 < i < n* for whichl l+ l  — x —x x
x = bi ' x

(1) If b^ < x < bj. and f £ then
x x

f dF* - I f dG I _< Z
(~c,x] J (~c,x] j = l 1(VrV I f (pj) " f(x)IdG(x)
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+
(bi ,xl x

f(x)d(Fx-G)(x) I

£  D (G(c) -G(-c)) +2a(c)(G(b. +±) - G(b. ))
X X

< n + 2n = 3n . (1.10)

(2) If x = b. for some 1 < l < n and f £ ft, then l —  x —x

| f f dF* -
C x

f dG | £  E
J (-c,x] (-c,x] j=l J (bj _ 1 >b j )

I f (Pj) ~ f(y)|dG(y)

< n(G(c) - G(-c)) < n •

Hence

SUPx G C supf E a) f dF* -
(~c j x ]

f dG < 3n .
(-c,x]

(1 . 11)

This is true for any distribution satisfying (1.9). In particular, 

since by the S.L.L.N.

Fn(Xij) “ Fn^xi j-1^ < ^/a (c) » 3 = 1,...,n^, holds f.a.s.l.n.,

if we let F" be the corresponding measure constructed from F^, then

supxe c supf e a I(-c,x]
f dF* - n (-c,x]

f dF < 3n ,n 1 (1.12)

holds f.a.s.l.n.. Now consider case (2)

(2) For x = b. , 1 < i < n', l —  x —

< a(c) i E

CtlJ f(y)dF*(y) -
(— C , X ] (-c,x]

iX f Fx
E d(F -G)| + E

j = l J(Vi’V j = l

n'
E d(F-G)|

n'
+ E

j=l j=l

f(y)dF'c(y)|

{b.}
J

d(F -G)I

{b.}J
d(F -G)I (*)

< n f.a.s.l.n. by the S.L.L.N. (1.13)
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For case (1) we can split it further into two further cases 

(1) (a) For b_̂  < x < p^ for some 0 <_ ix n'-l
x

supfG 61 f(y)dF*(y) - f (y)dF*(y)|
(-C,x] n J(-c,x]

: (*) + sup
f  g  a: (b

f d(F*-F*)I
i n>x]

X

= (*) < n f.a.s.l.n

(1) (b) If p ±  £  x £  bi +1
X X

0 < i < n'-l , —  x —  ’

supf e  0 } C-c,x]
f(y)dF“(y) -

n J  ( -
f (y)dF'{ (y) I

(~c j x ]

1  (*) + a(c)|Fn (b. +1) - Fn (b. ) - G(b. +1) - G(b. )
X X X X

< 2n f.a.s.l.n. by the S.L.L.N. and (1.9)..

So for both cases (1) and (2)

S U P  SUpG C  OUFf e a 1 f dF'
(-c,x]

f dF5'I < 2q f.a.s.l.n. (1
(-c,x]

Then from (1.10) and (1.12) this shows that

r
supx e c supf = oJ I, , fdFn - ,(-c,xj J (-C,xj

f dGI < 8n f.a.s.l.n., (1

proving the lemma since n > 0 is arbitrary,

THEOREM 1.1:
Let X be a stationary ergodic sequence of real valued random 

variables with marginal distribution G. Assume g £ L^(G) is a con­

tinuous function that bounds the equicontinuous family of real valued 

functions f £ CL- Then

SUPx G E U ( » SUpfG O J f dF
, l n(—00, x ]

p a. s.
f dG I — » 0 .

J (-°°,x]

• 14)

• 15)
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PROOF: Let e > 0 be arbitrary and choose c > 0 so that

g dG < e/2. Set
C’

Hn (#/, G,x) = supf E ßj
(-°°,x]

f dF - n f dG .
(—00, x ]

If x £ (—00, —c ] , then

H (6t,G,x) < n — (~°° j x ] g dFn + (-°°,x]
g dG

(-°°,-c]
g dF + ° n (-°°,c]

g dG

< e f.a.s.l.n. uniformly in x £ (-°°,-c] .

This is by the S.L.L.N. on {g(X.)I. .i (-«>,-c] i 1=1
If x £ (-c, c]

H ((X, G, x) <
(-°°,-c] gdFn + (-°°,-c]

g dG

+ supx e c s u p f e a f | ,  , f d F n '(-c,xj
f dG

(-C,x]
< 3e/2 f.a.s.l.n. uniformly in x £ (-c,c].

This follows from Lemma 1.3 and the S.L.L.N. on {g(X.)I, ,(X.)}0 l (-°°,-c ] 1 i=l
If x £ (c,°°] then similarly

Hn(d,G,x) £
C'

g dF + ° n C’
g dG

+ supxec supf e a |j f dFn - J f dG|

< 3e/2 f.a.s.l.n. uniformly in x £ (c,00] .

Combining the three possibilities, x £ (-°°,-c], x £ (-c,c], and 

x ^ (c,°°] we get

SUPX G e U {+«>} Hn (£t>G>x) < 3e/2 f.a.s.l,

Since e > 0 is arbitrary the theorem is proved.
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This generalizes both the Glivenko-Cantelli result and 

Proposition 1.4 for univariate stationary ergodic sequences. The 
classical Glivenko-Cantelli lemma is obtained by taking 0^ = {1}. The 

result is proved for classes that need not be P-uniformity classes. 

Neither the oscillation of the family is required to be finite, nor

is it required that

u"Vo P(V (£V> ■0 -
since not all points x need be continuity points of the distribution 

G. Particular properties of the real line were utilized in Lemma 1.2, 
and the Theorem does not appear to have a natural extension to k-space. 
However restricting G to be absolutely continuous, it is possible 
to speculate that a proof utilizing weak convergence and Proposition 1.3 

could be constructed.

§1.3 Uniform Convergence fo r  Parameterized Functions

The results of §1.2 are instrumental in the study of parametric 
loss functions. Typically we deal with classes X  of either real or 

vector valued functions of two variables; one taking values in the 
observation space, and the other in the parameter space. The equicon- 

tinuity requirement is then examined in the observation space variable.

It need only be shown at each individual point of the observation space 

and we have some simple Lemmas that provide criteria for recognizing it.

LEMMA 1.4: Let X =  - ,0) [ 0 Gi 0} be a family of real valued functions

defined on E, that are continuously differentiable in x G E for each 

0 ^ 0 .  For each x G E write

sx = f(y,0) 11 x-yI < 1, 0 G 0} .

Suppose there exist constants A^, independent of 0, such that
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sups I (9/9y)iHy,0) | < Ax < «> . 
x

Then the family CL is equicontinuous.

PROOF: By the mean value theorem,

sup0 G O k ( x ’0) “ ^ (y»9 ) I < Ax |x-y| .

That is the family CL is equicontinuous in x.

REMARK 1.1: It is easy to see that conditions of Lemma 1.4 can be
relaxed to letting \ p ( x yQ) be continuous in x and piecewise con­

tinuously differentiable in x for each 0 ^ 0 .

LEMMA 1 . 5 :  Let CL = {ip(-,0) |ö £ 0} be a family of real valued functions

defined on E . Assume i|;(x,0) is twice continuously differentiable 

in x for each 0^=0. For each x £ E write

Sx = Uy,9) I Hx-yll < 1  , 0 G 0} .

If for each x £ E^ there exist constants A , B > 0  such thatx x —

sup || (3/9y)*Ky,0) II < A < 00 ,o XX

and

supg || O 2/3y2)vl»(y,0)|| < Bx < oo } 
x

then the family CL is equicontinuous in x.

PROOF: Consider the usual Taylor expansion

ijj(x,0) = i])(y, 0) + (x-y) ' (9/3y)t|j(y, 0) + *s(x-y) ' (d2 / dz2) ip(z, 0) (x-y) |

with £ so that IIy— ÎI _< ||x-y||. Take Euclidean norms and observe that 

for the kxk matrix A and kxl vector x

II Axl| < || All II xll .

Then
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supg I ip (x, 0) - ip (y, 0) I £ Hx-yllAx + ̂ llx-yl|2Bx 
x

< A + hB— x x

<  (X)

which implies that the family (X is equicontinuous.

Differentiability, while being convenient for establishing equicon- 
tinuity, is by no means necessary. If the parameter space is a compact 

subset of E , the result may be established in a manner similar to 

Graves (1946, P.20, Th.23). Since many limit theorem arguments are local 

in the parameter space we need only consider a compact subset D C 0, 

restricting the family (X accordingly.

LEMMA 1.6: Let CL = {ip( - ,0) |© ED} be a family of real valued functions
1c ITdefined on E , and suppose D C 0 C E is compact. Assume ip is a 

continuous function in x and 0. Then CL forms an equicontinuous 

family of functions.

PROOF: For each fixed b, continuity implies

limh->o ^(x»0+h) = g(0) on © 
x->b

where g(0) is finite. Taking h = 0 we have lim i|;(x,0) = g(0)x~>b
for each 0 E d , and further g(0) is continuous on D. That is i|;(x,0) 

is continuous on the closed set for which 0 E D and x = b and, since 

D is compact, is uniformly continuous on that set. That is,

lim^ i|>(x,0+h) = g(0) uniformly on D. 
x->b

This completes the proof.

We may combine any of these results with Proposition 1.4 or 
Theorem 1.1 to obtain uniform convergence over the parameter space.

Given that limit theorems often rely on local arguments in the parameter
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space it could be expected that uniform convergence theorems exist for 

some functions ijj under very weak conditions. Roussas (1969) 

illustrated one such result in a lemma, the original version of which 

was by Le Cam (1953). His assumptions on ip are adopted for current 

presentation.

Assumptions (Roussas)

(Rl) 0 is an open subset of Er.

(R2) The process X is stationary and metrically transitive
'X/

(indecomposable).
k(R3) For each y E E , the function \J;(y,0) i-s continuous in 0.

(R4) For each 0 E 0 there exists a neighbourhood of it

U /rtN (0) = U (0), (which lies in 0) and a (measurable)P (0) °

function HG(y) such that

II vp (y, t) || <_ H (y) , E^H(X^) < °° for all t in UQ(0) •

(R5) For each 0 ^ 0  both sup{i^(y,t)|t 6= C} and the

inf {if (y, t) I t E C} are B measurable for all compact subsets 

C of 0.

Under these conditions Roussas showed that

sup{IW (t)I I t E U
\ p„(0)3 o

(0)1
a.s

0 as n ,

where

Wn (t) = -  £ - EG*(X.,t)) .
j=l J J

Both Theorem 1.1 and this result show that the assumption of 

continuity in both variables may be relaxed. However, global consistency 

arguments often require uniform convergence over the whole parameter 

space and not only compacts. Thus it is preferable to use Lemmas 1.4

and 1.5 if possible.
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§1.4 Uniform Convergence in the Underlying Distribution

Uniform convergence results presented up to now have been 

established assuming a fixed underlying distribution. These are used 

in construction of proofs of consistency and asymptotic normality. But 

a justification for inference applications and point estimation suggested 

by Wald (1941, 1943), was the uniform convergence of these limit theorems 

with respect to the underlying probability distributions. Such results 

often appear difficult to establish but we give one possible avenue of 

approach here.

Let P be the range of uncertainty in the underlying probability 

distribution. For instance P can represent the parametric family of 

probability laws. Some natural convergence criteria are:

For every e > 0

P{(jo I ||T — T|| > e] - + 0 uniformly in P £ P, (1.16)n

and in the case of the central limit theorem (C.L.T.)

P{(d | ̂ T(Tn - T) £ x} -> N(0,o2(P) ;x ) , (1.17)

uniformly in x and P E P. (The inequality T < x is interpreted
2componentwise in Euclidean r-space and N(0,a (P);x) is the multivariate 

normal distribution with variance covariance matrix o2(P)). Parzen 

(1953) carried through a thorough investigation of this type of con­

vergence in one dimension assuming P to be the parametric family. 

Results applied with proper interpretation of the symbols (see Loeve 

1950, P.84) to the r-dimensional case. No obvious extension is apparent 

for more abstract spaces.
n

We write <£(X;x) = P{X < x), and S^ = I X^, and consider a
i=l

sequence X that is i.i.d. and univariate. Assume that the X have ^ n
2common distribution, mean and variance given by F^, m(0), and o (0) 

respectively. Then conditions for the uniform C.L.T. can be expressed
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in terms of the mean and variance.

PROPOSITION 1.5 (Parzen P.38): Uniform C.L.T.: Suppose there exists 

constants and ^  such that for all 0, 0 < a(0) <_ K < °°. 

Then uniformly in 0 and x

£
S - m(0) n

/n
$(x/o(0)) ,

if and only if the variances are convergent uniformly in 0; that is

limM-K o
J I x I >M

(x-m(0)) dF (x) = 0 uniformly in 0.0

Our mode of investigation of many results is through the S.L.L.N.. 

Parzen reformulates the usual notion of almost sure convergence. The 

equivalent statement to that of

P -Coo I (S - ES )/n -> 0} = 1 is ,' n n

for every c > 0 there is an N such that

P{u) S - ES > en, for some n > N} < e n n 1

By the uniform S.L.L.N. is meant the statement: for every e > 0 there 

is an N independent of 0 such that, for every 0,

V“ s -n EnS 0 n > e for some n > N) < (1.18)

The sequence is said to converge almost surely p-uniformly in 0.

The following proposition follows as a consequence of the 

Kolmogorov inequality.

PROPOSITION 1.6 (Parzen, Th. 16A): If (i) b̂  <_ bn(0) < Br < ”, where

bn 1 00, (ii) for each 0, X(0) is a sequence of independent random
2variables, (iii) E^Ivar[X^(0)]/bn (0)} is convergent and bounded by a 

constant K, uniformly in 0, then
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V e> k=iE ( x ^ e )  - E X ^ S ) }
a. s

p-uniformly in 0.

It is now possible to combine the uniform convergence theorems 

over functions and sets with uniform convergence in the underlying 

probability measure.

THEOREM 1.2:
Let 0U be an equicontinuous class of continuous real valued 

functions on E, and g(x) be a continuous function on E such that 

|f(x)I <_ g(x) for each f ^ CL and x ^ E. Suppose there exists 

set D C  0 so that for every z > 0 there exists a constant c = c(e) 

for which C = (-c,c] satisfies

some

C’
g dF < z for all 0 £ D, and0 o

further that var[g(X(0 ))] < °°. Then for i.i.d. sequence X(0 )o v o
where X-, (0 ) is distributed as F„ ,1 o oo

sup£ e c J
0

f dF
a. s.

f dF, 0 ,

p-uniformly in 0^ £ D.

OUTLINE OF PROOF: The proof follows that given for Proposition 1.4.
Given z > 0 we choose C so that

C'
gdF,

S V " 0 < E ’C o
where I , is the indicator function of C'. Since

var(} [g(X(0o))I , (X(0o))] < var0 [g(X(8Q))] + 2E2 [g (X(8Q)) ] 
o o

< 00 ,

it follows by Proposition 1.6 that,

C 1

and hence

g dF
0 r o a. s.

C'
gdF. 0 p-uniformly in 0^ £ D ,

C ’
gdF < e holds almost surely p-uniformly in 0q £ D. (1.19)
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0 (

Let Fn

and
CD

* e/V Oand F' be the improper distributions formed from F 6 no
in the manner described in the proof of Proposition 1.4. Now

o ’F (x) --* F (x) p-uniformly in 0 G Dn 0 oo

holds for every x G e . This follows by Proposition 1.6 and considering 

bounded sequences { 1 ^ ( ( 0 Q)) - E [1^(X(0q))]}. Then the equivalent 

statement to that of (1.7) follows, namely

supf e oJ f dF f dF,
J C

< P

holds almost surely p-uniformly in 0 G D. Combining this with (1.9)o
in the manner following (1.8), we obtain

supf e aj f dF f dF < c + 3 n

almost surely p-uniformly in 0^ £ D. Since e and p are 

this proves the theorem.

Similarly if the family of distributions {F^ |0 £ D)
o °

that atoms of each F , if they exist, are independent of0

arbitrary

is such

0 and there 
oo

are at most a finite number of them in any compact set, then Theorem 1.1 

may be extended in the same manner. The proof depends only on the

S.L.L.N. .

A feature common to Propositions 1.5 and 1.6, and theorems of 

Parzen that concern sums S^ for more general sequences X(0), is that 

they hold whenever the components of X(0) are bounded in absolute value 

by a constant independent of 0. Let us also note that statements 

concerning uniform convergence in the probability laws of class P need 

not be restricted to a parametric class of probability laws. It is the 

recognition of these two facts that justifies the use of asymptotics to 

compare robust estimators. To assume a more general family P, so that
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F = {F F is induced by P E P} extends {F 0 ED}, can severely0 o 
o

delimit the range of CL> because of the assumption of Theorem 1.2:

for every c > 0 there exists some constant c = c(c) for which 
*

g dF < e for all F £ F. It may be necessary that there be some
Je*
compact set C“ for which g(x) = 0 for all x E E- Cx. That is all 

of the functions of CL would be required to redescend to zero within 

the compact set. Examples where they do can be found in §6.
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C h a p t e r  2
Me a s u r a b i l i t y, Ex i s t e n c e, Un i q u e n e s s, and Co ns i s t e n c y

§2.1 Measurability of Im pl ic i t ly  Defined Estimators

We will mainly be concerned with the probability laws of maps 

Tn [X^,...,X ] from (Rn ,ßn ) to the parameter space (0,£) that are 

defined implicitly as a particular solution of equations

g (X(n),T ) ton ̂  n (2.1)

given solutions exist f.a.s.l.n. . The function is assumed to be

Borel measurable. That means for any Borel set B of the real line 

g^(B) E ßn x 8. Before any probability statements can be made about 

T^ it is first necessary to show its measurability. Rather than con­

sidering only the existence of a consistent measurable map we seek to 

define the maps uniquely for all samples (X^,...,Xn), n E N, or at least 

uniquely on a set of probability one for n >_ n^. For instance defining 

the map as a solution of (2.1) would not define the map uniquely if 

there existed multiple solutions. The selection of the root for the map 

T^ can have implications for both the resulting probability law and 

practical application of the statistical procedure.

In the literature many estimators are given as a solution 

satisfying

f (Xn a,
(n) T [X(n)]) n Lv inf 0 E 0 fn (X(n),9) (2.2)

Note that the estimator is not uniquely defined should

{x I f (x^n\ x) = infAC._ f (x^n \o)} consist of more than one point for 1 n 'T, 0 E 0 n v r
some x^n  ̂ E Rn n E N. What is then established is the existence of a 

measurable map T [•] which will have the usual desired asymptotic 

properties when the (fn ) are suitably regular. Strict convexity of
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f (x^n\o) in 0 resolves the difficulty in identifying the estimatorsn 'v
uniquely, but this is not always desirable or possible.

Limit theorems for these statistics are often arrived at by 

investigating local arguments on the minimizing equations. Then the 

choice is gn (x^n^,0) = V’f ^ x ^ , © )  where V represents the lxr 

operator (8/90^,...,9/90^). In fact it is common practice to search 

for the estimator (2.2) by examining the corresponding equation (2.1) 

for the set of solutions, which we label

h (x(n)) = {b e e|gn(x(n),e) = 0} .

Then f (X^n\*) is used as a "selection statistic" to determine the
n  r \ j

estimator so that

f (X(n),T [X(n)]) = inf n % n % , . f (x(n),e) . 
een (x n ) ^n̂ ,

For this estimator to correspond to that of (2.2), assuming that is 

unique, it is necessary for f to attain its infimum value at some 

point in the interior of the parameter space, and the observation space 

must be independent of the parameter.

This approach is feasible for the construction of estimators more 

generally, and indeed this has been suggested for application to 

determine some robust estimators. For instance Hampel (1974) suggests 

that the M-estimator for location when a three part redescending 

influence function is used should be chosen as that root of the 

M-estimating equations

Z ip(X. - 0) = 0 , 
i=l 1

which is closest to the median. This is equivalent to choosing

gn(X(n),e) = 1 'KX.-6), and f (Xkn;,0) = I 0 - med (X. ,... ,X ) [.(n)
n i=l n v

Clearly the equations are not derived from the selection statistic.
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Emphasis on the technique of using the selection statistic independent of 

the estimating equations is new. We consider specifically the situation 

where multiple solutions to the equations (2.1) exist even asymptotically, 

as can be the case with the redescending influence function of Tukey’s 

biweight (c.f. §6.1). This situation motivates the examination of con­

sistency arguments that rely chiefly on asymptotic behaviour of the roots 

of equations (2.1) and where the estimator is identified specifically 

from the multiple roots. This contrasts with the approach of Huber 

(1967) where asymptotically there exists a unique root to the M-functional 

equation but only the existence of a consistent sequence of roots is shown. 

Particular comparison of conditions is given at the end of the chapter. 

Other authors, e.g. Collins (1976) or Foutz (1977), show only the con­

sistency of a root without identifying the root for all n.

The notion of a selection statistic or functional further allows 

the separation of robustness considerations into local and global 

arguments. Moreover limiting distributions of statistics are invariably

displayed having assumed the underlying distribution, usually an F^ .
o

There is no loss of generality in examining first the asymptotic distribu­

tion of a measurable sequence {T } defined by the selection statisticnl
|| 6 - 0 || and then showing that for any appropriate selection statistic

f (X^n\0) that defines a measurable sequence {T 0} it is true that n a, nz
the statement T ^  = T 2 holds f.a.s.l.n., i.e. the limiting distribu­

tions of T , and T „ are the same. The selection statistic || 0 - 0 II n 1 n 2 o
is independent of the data and selects the root of the equations that is 

closest to the true parameter, while f^ is dependent on 0^ only

through the sample which is supposedly generated from F . Av Uo
property of the selection statistic that is dependent on the sample is 

that the root that is selected converges almost surely to the true under­

lying parameter when the underlying probability law is within the
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parametric family. This is often stated under the guise of Fisher consis
tency. It is then possible to take the efficacious approach of first con

structing the equations (2.1) so that the limiting distribution of

statistics determined by II0 - 0 II is only slightly perturbed on

neighbourhoods of the distribution . Should the resulting equations
o

not necessarily correspond to any minimizing equations of some distance, 

an appropriate selection statistic is then chosen. Even if there is a 

correspondence with a distance it may prove advantageous for robustness 
reasons to resort to an alternative selection statistic. That is, it is

not necessary that g (x^n\0) = V’f (x^n^,0).n <\j n %
We let the set of global minima amongst the solutions of (2.1) be

A (X(n)) = {x £ 0|f (X(n),T) = inf f (X(n),0)) .n ^ ' n 0̂ g H (n) n ^
n v '

An ideal selection statistic would ensure A (xV ) is at most a singlen %
point set for all x ^  £ Rn, n ci N. Then the estimator

'U

T^ : Rn 0 CJ {+°°}, where 0 U {+°o} is the one point compactification 

of 0 described in Kelley (1967), is uniquely defined:-
(n)

n % A (X(n)) n X if A (X(n) n ^
+ oo if A (X(n) n %

But if this is not the case, then at least we would prefer that the set 

of ^ Rn such that A (j^n )̂ consists of more than one point

be a null set with respect to the laws F^n  ̂ induced on by the

probability measures P , for all 0 ^ 0 .  If for each 0 £ 0, Pft is 
absolutely continuous with respect to P+ , then this is achieved if this 

set is null with respect to the law induced by P+ on .

If 0 Cl e , we could for completeness, set
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(n)
n '\y A (X(n)) if A (X(n))n n 'v

+ °° if A ( X (n))n 'Xj

(2.3)

Borel measurability of these maps follows from the theory of Brown and 

Purves (1973). Some notation is necessary.

If 0 is a set of ordered pairs, the projection of 0, or 

proj (0), is the set of all first co-ordinates of members of 0.

If c C  u x V where U, V are metric spaces, S will be said to 

be a Borel selection of C whenever 

(i) S is a Borel set;

(ii) S C c ;
(iii) For u £ U, the section = {v E V|(u,v) E S} contains 

at most one point;

(iv) proj (S) = proj (C).

Corresponding to each selection S is the function p , which 

assigns to each u £ proj (C) the second co-ordinate of the unique 

member of S with first co-ordinate u. Thus (u, p (u)) £= C, for all 

u G proj (C) .

PROPOSITION 2.1 (Brown and Purves, Theorem 1): Let u, V be complete

separable metric spaces and C C U x V be a Borel set. If for each 

u £ U, the section is a-compact there is a Borel selection S of

C. Further proj (C) is a Borel set and ps is a Borel measurable 

function defined on proj (C).

Letting D" be the domain of the real valued function, f, of two 

variables, the infimum of the sets of reals, (f(x,0)|0 £ D"}, is 

abbreviated inf f^. A function f(x,0) is said to be lower semicon-

tinuous in 0 if
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inf Q , Gw f (x,0' ) f (x, 0) , 

as the neighbourhood W shrinks to {0}.

COROLLARY 2.1 (Brown and Purves): Let V, 0 be complete separable metric
—  Yspaces, where 0 is the closure of 0 C E . Assume f to be a real

valued Borel measurable function defined on a Borel subset of R x 0.

(Assume 0 C Er is Borel). Suppose that for each x £ proj (D*), the
section Dx is o-compact and f(x,*) is lower semicontinuous with x
respect to the topology on D̂‘c. Then:

(i) the sets

J = proj (D~)
Q = {x D^lfor some 0 E D", f(x,0) = inf f } ,1 x x

are Borel;

(ii) there is a Borel measurable function T from V to the 
extended real line satisfying for x £ V,

f(x,T(x)) = inf f if x G Q

and
T(x) = + °° if x ^ Q .

In the proof of the Corollary, the functional T is defined as

a map
T : x p (x, inf fx) , x G Q , 

where p is defined by a Borel selection of the set

b = {((x,v) j 0) e (V x E) x Ö I (x, 0) e D*,f (x,0) <_ v} ,

whence Proposition 2.1 is utilized. For x G Q, f(x,T[x]) = inf f .

Since Q is shown to be Borel and T is the composition of Borel 

measurable maps p and x - * (x,inf f ), it follows that T is Borel
measurable.
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Now the measurability of an estimator that is defined by equation 

(2.1) and some selection statistic will follow from Corollary 2.1.

Suppose gn (x^n^,0) is lower semicontinuous in 0, and 0 is a-compact. 

Then

H = {(x(n),0)|g (xn a. 1 n a»

is Borel, and further H (x^n^n a,
the following construction 

Construction (t): Set d * = H

(n)

)

n

,0) = 0, x
r\j

(n)

is o-compact.

and f(x,0) =

6 Rn , e e 0}
Measurability follows by

fn(^n  ̂>0) in the

Corollary.

This does not conclude discussion. For in the proof of the 

Corollary Proposition 2.1 was used to produce a map p, and therefore 

a map T. It is possible for there to be several maps p from the set

A = {(x,v) E V x E|for some 0 E 0, ((x,v),0) E B} ,

into B. Hence the above construction (t) could reveal several possible 
T r (n),maps T[x J.

There exist several possibilities for a sequence of estimators 

{Tn } constructed under (t) using sequences of functions {g^}, {f }.

It is assumed that these functions satisfy

(i) gn, f have domain Rn x 0 and are measurable for every 

n E N; and

(ii) g , f^ are lower semicontinuous in 0 for every n E N.

Resulting estimators can be distinguished according to whether neither, 

one, or both of the subsequent criteria are true:

(1) Rn - proj (H ) is a null set with respect to

(2) There exists a Borel set C proj (Hn) such that proj (Hn) - Q*

is a null set with respect to G ^ ,  where for every x ^  E Qx therer n % n
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exists a unique 9 £ 0 such that (x^n\ö) £ and

f (x(n),0) = inf , , f (x(n),8) .
n % 0£H (x(0)) n "n A

On the set Rn - proj (H ) the estimator takes the value + °°

whilst on Q Q'v the estimator need not be uniquely determined, n n
(When construction (t) is made Q corresponds to the set Q of then
Corollary). Ideally both (1) and (2) are preferable, but often we 

tentatively forgo either or both of these to gain elegant asymptotic 
results. Some constructions g^ may have a set of decreasing probability 

in n in which solutions to equations (2.1) do not exist, in which case 

Rn - proj (Hn) is not a null set with respect to Letting

Q'w' = {x^n  ̂ I  there exists a unique 0 ^ 0  such that (x^n^,0) £ H , Hn % 1 % ’ n’

and f (x^,0) = inf f (x^,0)} ,
n " 0GH (x(n)) n "n

the identification problem is apparent when proj (H ) - Q“' is not 

contained in a null set. But if X^n\  the sample, is an element of this 
latter set even in the pathological case of it being a null set the 
identification becomes vital. By defining the set

+Hn { (x \  0) I (x^n\  0) 6 H ,v 1 'v. n inf , , £ (x(n),0)},
O0H (x(n)) %n '

which is a Borel set since the map x inf f , x £ proj D ' is measure- 

able, we can introduce a refining selection statistic f ^  and operate
jr* Iwith the construction (t) using D' = and f = f

An important illustration of the Corollary is the following.

EXAMPLE 2.1: Let 0 be a compact subset of Er. Then for any

£ proj (Hn) the set H (;^n )̂ is compact by lower semicontinuity 

of gn- Similarly lower semicontinuity of f^ implies proj (Ĥ ) = Q .
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A suitable value 0 for which

£ (x(n),e) -inf , . f (x(n),e)
n ^ e e H (x(n)) n %n

can be described explicitly in the manner sketched below.

For r = 1, Borel measurability of the estimator 

as a consequence of:

(2.4)

of (2.3) is

(*) Let H be a Borel set in V x E, where V is a complete 

separable metric space. The set proj (H) is Borel. Then the function 

x inf H , x G proj (H) G v is Borel measurable.

This is an instance of Corollary 2.1 with f chosen to be zero on 

H and one on the complement of H. That is Borel follows because

(*) implies proj (H ) is Borel and also from the proof of Corollary 2.1

(or otherwise) x^n  ̂ inf . f (x^n^,0), x^n  ̂ G proj (H ) is Borel
^ 0£H (x(n)) " 'n

measurable. Since each x ^  section of An is o-compact (*) implies 

that T : x ^  -► inf A ( x ^ )  = H+ ( x ^ ) ,  x ^  G proj (A ) = proj (H ) 

is Borel measurable. The effective selection statistic in this instance 

is 0 - inf 0.

The case where r > 1 is examined in Remark 3 of Brown and Purves. 

Quite often it is useful for the purposes of limit theorems that

are given only at the underlying distribution P to define the0o
statistic uniquely through the selection statistic || 0 - 0Q|| • If 0 C E

the refining selection statistic might be 0 - inf 0 for example. When

both equations and selection statistic can be written as functions of

the empirical distribution function we write T [X^n^] = T[F 1, and

refer to the selection functional f.(0). The selection statistic is

then fF (0). 
n

Given that maps {T } are Borel measurable it follows that
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00 CO oo

C = (1 u n {w I ||T [X(n)(üj)] - Til < l/£) e A,„ t t n <\,£=1 m=l n=m
a. s.

and we see from Definition 1.1 that > T if and only if P(C) = 1.

This is strong consistency. A sequence {T^} that is defined by {g^}, 

{fn} via (t) will be asymptotically well defined provided the almost 

sure limit T is unique, whatever the representations are that can

take.

Pfanzagl (1969) establishes measurability of "minimum contrast" 

estimators, which he defines as follows:

DEFINITION 2.1: A strict estimate for the sample size n is a 8n

measurable map : Rn 0, which depends on only. A m.c.

(minimum contrast) estimate for the sample size n is a strict estimate 

for which

n ^  " lnf {n t) 11 e 0 I .

For instance the M.L.E. is obtained by setting £(x,0) = -log f (x)0
The restriction of the mappings to 0 can be a strong one when 0 is a

£proper subset of E • Examples where this estimate does not exist 

because the infimum is not attained on 0 are common. This is seen for 

the M.L.E. of the mixture parameter in §8.1, or the M.L.E. of the para­

meters of a mixture of two normal distributions when both dispersions 

are unknown, discussed in section C.

PROPOSITION 2.2 (Pfanzagl, P.252): Set (W,U) to be a locally compact

Hausdorff space with countable base, and o(U) the o-algebra over W 

generated by U. Let £(*,t) : R [ —°°,00 ] , t £ W, be such that

(0) for all n E N and all (x^,...,x̂ ) £ Rn f

inf I  ̂£ £(x^,t) 11 ^ W | is attained in W ;
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(1) t -*■ £(*,t) is lower semicontinuous for all x £ R ;

(2) inf C ß for all compact sets D C W .

Then for any n G N there exists a Bn, a (U)-measurable function

T : Rn -> W, such that n

— E £(x ^ , T  [x(n)]) = inf / — E i (x t) | t £ 4J } . n i=1 % n ^ [n i=i 1 J

(Condition (2) is always fulfilled if instead of (1) the stronger condi­

tion
lim £(*,s) = £,(*,t) for all t G W holds.)s t

Reiss (1978), recognizing that the minimum contrast estimator need 

not exist, investigated the consistency of a more general class of 

estimators; asymptotic minimum contrast estimators.

§2.2 Existence; Relation to the Minimal Distance Approach
Assumption of a parametric family P inducing the family of

marginal distributions F = {Fq |0 £ 0} on (R,B) is motivated by the

idea that the underlying probability measure of a ’’sample" X^,...,Xn>
is a P €= P; that is there is some 0 FE 0 so that F is the inducedo 0o
marginal distribution from P. A natural requirement for point estima­
tion to be unambiguous is that F be identifiable which is so whenever 

01,02 £ 0, 4 implies F^ 4 F q . Presumably the parameter 0

describes physical characteristics of "nature", and assuming the latter 

follows some sort of continuity in 0 we attempt to estimate the true 

0q on the evidence presented, which is the sample.

In the literature, for i.i.d. sequences X there exist many 
strongly consistent estimators proposed to be solutions of a set of rxl 

(possibly nonlinear) equations which we label
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—  s ip(X. , 9) = o , 
n i=l % 1

(2.5)

IT IT ITwhere ip is some measurable mapping from (R*0, B x & (0)) to (E ,& ).
it v rHere & are the Borel sets on E , and & (0) is the relative

topology for 0. Fisher consistency requires that

E0[<KX,e)] = 0 , (2.6)

the expectation being taken componentwise with respect to F . Huber0
(1964, 1967) studied M-estimators through these equations, restricting 

ip for reasons of identification or asymptotic identification of the 

estimator. Chanda (1954) and Foutz (1977) discussed aspects of con­

sistency of a solution of (2.5) when iJj was assumed to be the efficient 

score.

Hampel (1968) took the approach of defining F^ = { }  C G, the

set of probability measures whose atoms have probabilities equal to 1/n

or a multiple of 1/n and regarding solutions Tn [X ^ ] of (2.5) as
/ \

functionals defined on F^. Writing '] = T [ip,F^], consistency

then follows from weak continuity of functionals T[^,*]. The o-algebra 

on F^ is that generated by the Prokhorov distance which we give here.

DEFINITION 2.2: Let d be the metric on the space R generating Borel 

sets B. Denote A to be the closed 6-neighbourhood of A. That is

the closure of

Then the Prokhorov distance between two distributions F, G on (R,B) 

is defined,

dp(F,G) - inf{e|F{A} £ G{AG} + e, G{A} £  F{AE} + e, for every A £ B}.

{xjthere exists a y £ A, for which d(x,y) £  6} .

This approach to consistency does not lead to proofs of consistency for 

many established estimators. Just as for uniform convergence theory
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(§1.2), the same is true here. Results derived deterministically using 

weak convergence are not as broad as those obtainable through 

probabilistic arguments.

The term "influence function" will refer to the equivalence class 

of functions defined by the relation: ip ^ ^  if and only if for each 

^2 there exists some constant nonsingular r><r matrix A so that 

i|; = A^2* It is distinct from the specific curve introduced by Hampel

(1968) called the influence curve (§4.4).

We stress that for many influence functions there can exist more 

than one solution to equations (2.5). If a selection statistic, that 

can be written f (0), is required, the corresponding estimating func-rn
tional may be written T|>,f,-]. Both ip and f characterize the 

functional.

The contemporary approach of authors Huber (1967), Pfanzagl (1969), 

Landers (1972) and Reiss (1978) has been related to m.c. estimators.

They in general adopt an asymptotic identification criterion:

£(x,T[£,G])dG(x) < £(x,0)dG(x) for all 0 =(= T[Ä,G], G ^ G  ,

and (2.7)

T[«.,F0 ] = e for all 0 e 0 . 0 0 oo

This restriction may be regarded as a generalization of the Jensen 

inequality, used in Wald's (1949) argument for consistency of the 

maximum likelihood estimator. If 0 is an open interval and £ 

satisfies appropriate differentiability conditions, the estimators are 

based on (2.5), with if» (x, 0) = V£(x,0).‘ The selection statistic is then

fF (8)
n

£(x,0)dF (x). Questions of basic importance concern existence

and asymptotic uniqueness of consistent solutions to the equations (2.5).

We will mean by an M-estimator3 any estimator arrived at through equations 

2.5 (viz construction (1)). They need not be minimum contrast estimators.
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Asymptotics of M-estimators are investigated as a consequence of 

the uniform convergence theory, although techniques equally apply to 

m.c. and minimal distance estimators. Wolfowitz (1952, 1954, 1957) was 

an initial exponent of the general methods of the latter, while Sahler 

(1970), Bolthausen (1977), and Pollard (1980) discuss further asymptotic 

properties in a general framework. More applied works that include 

asymptotics of minimal distance methods are by Blackman (1955), Choi 

and Bulgren (1968), Paulson, Holcomb and Leitch (1975), and Quandt and 

Ramsey (1978). Efficiency and robustness motivate discussion of certain 

I^-norms in Heathcote (1977), and Beran (1977). An 1^ distance takes 

the form

L (0) n Ih (t) - h(t,0)I dw(t)

where h^ is characterized by the empirical distribution (e.g. 

characteristic function, moment generating function, kernel density 

estimate), and w(t) is some weight function possibly dependent on 0. 

The asymptotic identification of the estimator under the parametric 

model is usually guaranteed assuming at least

L (0) F e O
I h (t, 0 ) — h(t,0) I dw (t) > 0, 0 =1= 0 , 0 G 0 .

and arguing from the convergence of h^(t) h(t,0 ). By the convergence

L (0) Lp (0) uniformly in 0 £ Q it is shown that the minimizingn Feo
statistic 0^ of Ln (0) converges to 0 . Slight perturbations from

Fq can possibly perturb the convergence greatly from the value 0 , 
o

depending on the weight function w(t).

But for some L^-distances the minimizing equations correspond to 

M-estimating equations. This together with the intuitively simpler to 

work with construction of the M-estimator make it the central theme of
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our robustness discussion. Asymptotics are discussed without necessarily

assuming the underlying distribution Gq £= F. The emphasis on studying

convergence of functionals in this case stems from robustness theory,

where we look for stability in "neighbourhoods" of a given F . This
o

is merely a formalization of our uncertainty about the choice of model 

family which we put forward to explain a given sample.

A neighbourhood of a distribution G, n(*,G), is only required to 

be a subset of G, containing G, and satisfying the ordering property,

n(e^,G) C n(£2 >G) whenever 0 < _< •

It may be determined by a metric, or otherwise. With this generality we 

can determine asymptotic limits, either of the M-functional or the 

M-estimator, by varying the neighbourhood. We consider existence of 

functionals on neighbourhoods about some specified distribution Gq 

under varying conditions on ip. Functionals T[ip,«] evaluated at a 

distribution G are a solution of

Kg(0) ijj (x, 0) dG (x) (2.8)

if a solution exists. If not T[^,G] is set equal to + 00.

Properties of minimal distance estimators and or solutions to 

either (2.5) or (2.8) are dependent largely on Euclidean geometry. In 

the sequel we let D C 0 be some nondegenerate compact set that contains 

the parameter 0^ in its interior. We distinguish between two 

situations:

B1: The parameter 0“ is a zero of an rxl continuously

differentiable vector function Kr (0), so that VK (0'') isb b Oo o
nonsingular.

B2: The parameter 0“ is an isolated local minima of twice con­

tinuously differentiable (0). (This implies VV'Q„ (0*)b b OO O
is positive definite). This will be regarded as being some

distance quantity.
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Under restrictive conditions on if; it is possible to see the 

correspondence between proofs of existence of minimal distance estimates 

and existence of solutions to equations (2.8). For instance we can set

QG(e) = IIKq (6) !l2 , (2.9)

and then B1 implies B2. It can also happen that K (0) = V'Q^(0),G G
whence B2 is equivalent to B1. We use the condition

C l : For every e > 0 there exists a 6 > 0, so that G £ n(6,G )o
implies

sup0 £ D i|;(x, 0)dG(x) ij)(x, 0)dGQ (x) It <  e  •

This assumption implies in the situation (2.9) that given e > 0 

there exists a 6 > 0, so that G £ n(6,GQ) implies

SUP £ |q g (6) - Qg (0)| < € . (2.10)
o

We denote by 9U the boundary of a set U.

LEMMA 2.1: Let 0'v, G and Q be so that B2 and (2.10) hold. Then0 o ’ H

there exists an e. > 0 so that U (0“) £ D, and given e > 01 0 - ^ 0  °

arbitrary there is a 6 > 0 so that G £ n(6,Go) implies 

inf , Qr (0) < inf Qr (0) >
e e u c^(0o> ee3V<eS>

where e* = min(c,c1). Hence if Q„(0) is continuous on D there exists1 G
Vcat least one local minima of Q in (0 ) .

PROOF: Let
r

{d, } be the
k k=i

eigenvalues of the Hessian matrix VV ■Qg  (0)
o

Write d"(0) = minliklr dk (9)- Given arbitrary unit vector x, llxll'V = 1,

we may express x in terms of% the orthonormal basis

^ = a1Y1(Ö) + .... + arYr (0) , (2.11)
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where the y.(0)'s are the orthonormal eigenvectors of VV’Qp (0).
1  VJJo

Observe,

x’VV'Q (0)x = x Tr(0)D(0)r’(0)x 
% b a- a» %o

= E dk(0)(Tk(0)'x)2 
k=l

^ d (0) E a, = d  (0) . 
k=l

— XBy continuity choose so that 0 E U (0 ) implies
1 £1 °

II w ’ Q (0) - VV'Q (0*) || < d~(0*)/2 .b b o  OO O

Then from the Taylor expansion, for any 0 E 8U y.(0*), the boundary ofe5' o
Ue*(6:>>

Qr (0) = Qr (0*) + v 'q (9*)(0-8*) +Ss(e-e*){vv'Q (e)}(e-e*)b o b o O  O b Oo o

qG (0q ) + o + *$(0-0*) ' {VV'Q^ (0*)}(0-0*)G 'o' o

+ 4(0-0*) ’ {vv’Qr ( O - v v ' Q r  (0*)} (0-0*)O b b o oo o

> Qg (e*) + !5e* V ( 0*) -!sei2d'(0")
o

Qr (9") + %£ d (0X)b o  oo

Thus choose 6 so that G E n(6,G ) implieso

supo E d Iqg (0)-Qg (6)1 < |  ,

whence 0 E 3U , ( O ') implies 
eyC o

Qg (0) > Qg (0) - I e*2d (0*)
o

> %  <9o> + ? o

> Qr(0") ,b O

and the lemma is proved.
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The assumption of the existence of two continuous partial 

derivatives of Q is required only at Ĝ . What has been shown is the 

existence of a nondegenerate compact region of arbitrarily small size 

about 0^ for which there exists a neighbourhood of Gq so that if 

the minimum of Q(,(0) is attained on that region for any distribution 

G of the neighbourhood, the minimizing parameter is found in the 

interior of that region. If Q^(0) is continuously differentiable in 

0, the minimum exists and is found by solving V’Q^(0) = 0, or equations 

(2.8) if Q is a m.c. distance or a suitable distance. But

differentiability in 0 of Q.(0) on n(e,GQ) is not always possible.

If Q„ (0) is given by (2.9) and Q (0X) = 0, we need only G G oo o
assume existence of one continuous partial derivative of K- (0) to(jo
observe the existence of a minimum.

LEMMA 2.2: Let 0'v G , and ip be so that B1 and Cl hold. Then thereo ’ o ’
juexists an > 0 so that (0“) C D and given e > 0 arbitrary,

there is a 6 > 0 for which G £ n(6,G^) implies

inf ||K (0)11 < inf IIK (0)11 ,e eu.(e*) G e ^ u  .(0*) Ge* o £'' o

where e'c = min(e,e1). A minimum attained on Ü ,(0“), is attained in1 o
the interior of that set (which is the case if Kr(0) is continuous

vjj

on D) .

PROOF: By continuity of the matrix of partial derivatives of VK„ (0),GO>'cand the nonsingularity of VK„ (0“) let e be given as in the inverseG o  Io
function theorem (Appendix 1) so that

sup IIVK (0) - VK (6")ll < K ,
BED (0*) G0 Go °E, Oy
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where k = (2||VK_ (0 ) II) . Then by (a) of that theorem 0 E 3U , (0 ) G o  £K oo
it is true that

c *  = 110-0*11 < 2 II VK (0*)_1 IIIIK (0)-Kp ( 0* )  IIO —  G o  G G oO O O

since K (0'c) = 0 for every 0 ^ 3U , (0")G o  £ oo

IIKg (0) II >_ k e* . 
o

By Cl let 6 > 0 be so that G E n(6,Go ) implies

SUP0 E DHKG(0) " Kg (0)l1 < e0 < K£Ä/2 •o

Then for 0 £ 9U (0*')£'f o

II Kr (0) II > K£X -  E > £ > || ( O ' )  II ,G O O b O

and the lemma is proved.

The importance of the formulations using neighbourhoods can be 

demonstrated with a simple choice of neighbourhood,

no (6 * Gq) = {G E G I supQ £ D IIKg (0) - Kg (0)11 < 6} .
o

For this neighbourhood Cl automatically holds with 6 = £.

EXAMPLE 2.2: Let G = $, the standard normal distribution, and set
o

ip(x) = x 

0

0 < I x I _< c 

otherwise

Then K^(0) = ip (x-0)d$(x) is continuously differentiable, K^(0) f 0,

and K^(0) = 0. Let d > 0 and nQ be defined for the compact set

D = [—d ,d]. By Lemma 2.2, for every e > 0 there exists a 6 > 0 so
2that G E n (6,$) implies that there exists a local minima of K (0)

in (-£,£). But by Theorem 1.1 observe for any stationary ergodic

sequence with marginal $,
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^(x-0)dF^(x) x dF (x)
' [-c-0,c-0]

a. s.
i^(x-0)d$(x)

uniformly in 0 £  D.

That is "F^ G n (6,$)" holds f.a.s.l.n., and so there exists a con-
A 2 .

sistent sequence, {0^}, of minima of Kn (0), consistent to 0^ = 0. It

is important to note here that ip is discontinuous in 0.

§2.3 C o n s i s t e n c y  and U n i q u e n e s s  of the M u l t i v a r i a t e  M - f u n c t i o n a l

Considering the M-functional specifically as a solution T[ip,*] 

of equations (2.8) we make the further assumptions

C2 i|;(x,0) is a continuous function on R x D.

C3 There exists a continuous function g G  L^(Gq ) so that

II »Kx, 0)|| < g (x) for all (x,0) G  (RxD) .

Then assumption C2 leads to an extension of Lemma 2.2. Addition 

of C3 ensures a corollary giving existence of roots f.a.s.l.n. of the 

estimating equations.

LEMMA 2.3: Assume 0^, G , and ip are so that Bl, Cl, and C2 hold.

Then there is an > 0 so that (0*) C  p, and given e > 0

arbitrary, there is a 6 > 0 so that G G  n(6,G ) implies there exists 

a solution, t[G] G  U ^ v(0^), of equations (2.8) where e* = min(e,e^).

PROOF: By continuity of the partial derivative let > 0 be so that
VK (0) i-s nonsingular on 0 (0X). Then consider the open ball

G n oo 1
Kq (Uc .,.(0'c)) containing 0 and let B^ be a ball of positive radius r 

o

contained in KQ (U*(0*)). Since KQ is a continuous map K~1 (B )
7o f:'' ° o o r

is closed, as is then W = K.^(B ) H  Ü ^(0X).G r e« oo
Consider the 1-1



49.

homeomorphism K (0) | , which maps W onto B . Ifti ~ ro B r
sup II g (9)11 < r, we can transform the equation0 G W G

Kg (0) + gG (0) = 0  for 0 G W 
o

into

t + gG (KG^(t)) = 0 for IItII £  r . 
o

The map t -> -g„(Kn^(t)) is continuous and maps the ball B into u u ro
itself. So Brouwer's fixed point theorem (Appendix 1) guarantees a

solution. Then letting 6 be so that G G n(6,G ) implieso

s u p q G d IIKg (0) - Kg (0)11 £ r ,
o

the theorem is proved with gG (0) = KG (0) - KG (9).
o

Reeds (1976) used the Brouwer's fixed point theorem in a like 

manner, while another version was used in the consistency argument of 

Aitchison and Silvey (1958).

COROLLARY 2.2: Let 0“, G , and ib be so that Bl, C2 and C3 hold, ando o
Gq is the marginal of a stationary ergodic sequence X. Then given

e > 0 there exists a root 0n ( X ^ )  of equations (2.5), within

U (9x) f.a.s.l.n. . e o

PROOF: By Lemma 1.6 and Proposition 1.4, for fixed 6 > 0, see that C2

and C3 imply

F G n ( 6 , G )  f.a.s.l.n., (2.12)

and the result follows from the Lemma.

The assumption that ij;(x,0) is continuous in 0 is utilized here 

to ensure existence of a root to equations (2.5). But while Corollary 2.2 

appears to describe the existence of a consistent root to 0q, it is
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far from complete in its description of the identity of the root. For

instance the above Corollary states: there is a ball U about 0*o

so that given any 0 < e < arbitrarily small, there exists a root of

equations (2.5) in f.a.s.l.n.. There may be more than one root.

But also there is the possibility that there exists roots in -U^.

Similar statements can be made about the local minima of empirical

distances (6). This raises a natural question; "Do all the local
n

minimizing parameters of Q_, (0), or the zeros of K (0), that are knownr nn
to lie in the set U (0X) converge to 0'' f.a.s.l.n.?" An answer fore^ o ° o

the latter, which is also an answer for the former should Q (0) bern
continuously differentiable, is provided by the following Theorem:

THEOREM 2.1 :
Let 0“, Gq, and ip be so that Bl, C2, and C3 hold. By continuity 

let e  ̂ be so that

-1 _1sup II VK„ (0) - VK (0*)ll < (211VK (0*) i||) .«CT, /n*\ C C o  G o0 U (0 ) o o oo

Let X be an ergodic sequence with marginal G . Then, for any sequence 'X/ o
(0 (X(n))} of roots of (2.5), such that "0 (X^n )̂ £ U (0*)" holds n o » - .  no» e, on=l 1
f.a.s.l.n.,

a. s,
110. 0 .

A jt IPROOF: From (a) of the Inverse Function Theorem, since 0 , 0  £  U (0X)n* o e, o

IIÖ - 0*11 < 2II VKr (G*)_1|| II Kr (0 ) - Kr (0*)|| n o —  G o G n  G oo o o

= 2 II VKg ( 0 * ) _ 1 || IIKc (0 n )||
O *o

= 2|| VKr (0*)~1II . IIK (0 ) - K (0 ) II G o  G n n no o
(2.13)
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a. s. 0 by (2.12).

The mode of proof may be applied to any set of nonlinear equations 

for which there is uniform convergence over the parameter space. It is 

possible to show with further regularity conditions on ip the existence 

of an asymptotically unique consistent root of the equations (2.5). In

fact there is a small region about 0^ in which there will exist a unique 

root f.a.s.l.n.. Clearly this has no significance by itself but in the 

context of the parametric model where = FQ , and ^ is suitably
o

regular and satisfying (2.6), then these results apply to the parameter

0 , as well as to other roots of E ip (X, 0) = 0. There exists a sequence o 0
o

of roots 0^ consistent to 0q , which are unique in a region about 0q 

f.a.s.l.n.. But also, for suitable functions ip, there exist other 

neighbourhoods of the distribution function F^ , on which there exists
o

a unique root of (2.8) within a region of the parameter space. This is

fundamental to the theory of robustness where the indeterminacy assumed

about the generating marginal of (F^} spans not only F, but also

neighbourhoods of elements of F. It is also important in that many

functional limits of the M-functional presume the existence and uniqueness

of the M-functional on neighbourhoods of a parametric distribution F .0o
Under specific regularity conditions on \p and the neighbourhood, we 

show existence and uniqueness of the M-functional simultaneously by a 

method that adopts the mode of proof in Foutz (1977). He showed existence 

and uniqueness of a consistent solution of the maximum likelihood

equations. The results here extend to dependent sequences and contain 

the consistency argument for estimators in Markov chains detailed by 

Foutz and Srivastava (1979). Uniform convergence theory that is of 

interest in this thesis, gives practical conditions that cover the

assumptions of Foutz.
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For completeness we list the conditions at the risk of some repeti­

tion. The first condition appears slightly esoteric. But suppose for

the moment that the distribution is known. We wish to illuminate
o

the behaviour of the root of (2.8) that is closest to 0 in Euclideano
norm, on neighbourhoods of F . This provides a temporary identifica-

o

tion of the M-functional. We can later employ a more statistically

applicable selection functional that does not presume the knowledge of

0q but one that will be equivalent in its selection on small enough
neighbourhoods of F() , to || 0 - 0q|| .

o

CONDITIONS A
AO T[i[»,G] is a root of (2.8), if one exists, chosen by the selection 

functional f„(0) = It 0 - 0 II (independent of G) . T[î ,G] = + 00ti o

otherwise. T [ip, F 1 = 0.0 J o o

A1 The r*l vector function i|;(x,0) is differentiable in 0, and 
has partial derivatives which are continuous on R x D.

A2 The families of vector functions {ih( - ,0) | 0 £ D} and matrix
functions {Vi|i(*,0)|0 €= D} are bounded above in Euclidean norm

by some function g on R, where g G L,(G) for all G €= n(e ,F )1 o 0o
and some c >0.o
As a result of AO-1 resulting M-estimates are measurable. From 

Al-2 observe that vectors Kg(0) and matrices

M(U,G) =

are continuous in 0 £ D

ViKx,0)dG(x)

for each G £ n(c ,F„ o’ 0 )• Then the function
o

Kg(0) has partial derivative M(0,G), since interchange of differentia­
tion and integration is availed by A2 and dominated convergence. We will 

set M(0) = M(0,Fq ), which is also continuous in 0 £ D.
o
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A3

A4

M(0 ) is nonsingular,

Given e > 0 there exists a - 6 > 0 so that G G n(6,F ) implies0o
sup e g d 0)dG(x) - iKx,0)dFQ (x)ll < e , 

o

and

sup0£d Vip (x, 0)dG(x) - I (x, 0) dG^ (x) II < z .

Assumption A3 is often replaced by the stronger property of positive 

definiteness of M(0 ) when (2.5) represents the minimizing equations 

of some distance Qn (0), but nonsingularity is sufficient for the argu­

ments here. A1 proves necessary for application of the inverse function 

theorem employed in the uniqueness argument. Assumption A4 can place 

some restriction on the function ip, depending on the neighbourhood that 

is considered. Investigation of the influence curve of Hampel (1974) 

involves examining the M-functional in starlike neighbourhoods

n (e,F ) = {(1-6)F + 6 6  j 0 _<_ 6 <_ z, and 6 is theX U o X Xo o

d.f. determined by the point mass one at the given 

point x G R} .

For neighbourhoods n , assumption A4 follows as a result of Al-2. 

Neighbourhoods

f f
*(e,Go) = {GIG e G,n- [ e. u ) = igiu ^ u . sup0 ^ D „

sup0GD

4>(x,0)dG(x) - 

Vi|;(x, 0)dG(x) -

iKx,0)dGQ (x) ||

Vil» (x, 0)dG^ (x) II •< z } ,

satisfy A4 immediately with 6 chosen equal to z and Gq = F© .

(2.14)

< z

Again
o

by Lemma 1.6 and Proposition 1.4 it follows that assumptions Al-2 imply 

that the empirical distribution function satisfies

F G n * ( e G ) f.a.s.l.n. . n v ’ o' (2.15)
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Analogous statements hold for the maximum likelihood estimation of

parameters in a Markov process .... ^-l’̂ o’̂ l’....> by writing
= (Ŷ _-̂ ,Ŷ ) and ip (x, 0) = Vp^ (x)/pQ (x). Here Pq (x) is the conditio­

nal density described in Roussas (1969, P.63).

EXAMPLE 2.3: To illustrate the practicality of conditions A we show

AO-3 for the maximum likelihood estimator of location scale of an i.i.d.

sequence from a univariate normal population. This is even though the

uniqueness and asymptotics may be clearly demonstrated in this instance
2 v

by other means. Here <jj(x;y,o) 2̂  _! +{3̂ }a a satisfies the
restriction placed on \jj by AO. Let be the parameter in

question, where oq may take any positive number. Set

D =  {(y ,o) I II (p ,a) ’ - (P0>a0),H Jia0/2}. Clearly ip has continuous
partial derivatives on D. Since uniformly on D it is true that

I V I  < (2/ao) (|x - %l + 0o / 2 )  ,

the vector function ip(x;p,o) and matrix function of partial derivatives 
of ijj are bounded in Euclidean norm by

g(x) = {1 + 4.(2/üq) (|x - I + oq /2)}^max(l.,öq /2) .

Then A2 is satisfied if g is integrable with respect to each

G £ n(eo,Fg ). This is true for neighbourhoods n , x ^ E. Since 
o

det{M(p ,o )} = 2o"2 > 0, A3 holds, o ’ o o
Preliminary results follow.

LEMMA 2.4: Let conditions A hold. Then there is a 5̂  > 0 and an

> 0 so that for all 0 £ (0Q), G G n(e^,Fg ) implies the matrix
1 o

M(0,G) is nonsingular.

PROOF: By continuity of the determinant as a function of the elements

of a matrix we may choose n > 0 such that for any matrix A with
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IIA -  M (0 ) || < n, I det {A } I > ^ I  de t {M(0q) } I . From the continuity of M(0)

in 0 we may choose 6^ > 0 so that IIM ( 0 ) - M ( 0 o ) |] < q/2 whenever

0 C U (0 ) . Assume 6, o U Cp. By A4 we can choose such that
1 °1

l|M(0,G) - M(0) || < n/2 holds for all G e n(e;L,F0 ). The lemma is proved
o

by the triangle inequality of norms.

The next result is vital to many limit arguments concerning the 

implicitly defined M-functional.

LEMMA 2 .5 : Let conditions A hold. Then given k > 0 there exists an

e > 0 such that G C n(e,F^ ) implies existence of T[ip,G] C Uk (0q).
o

Also there exists k 'c > 0 for which T[iJj,G] is the unique zero of 

1̂ ,(0) in U ,̂(0 ), and M(0,G) is nonsingular on U .(0 ), for allLr k " o k * o
G C n(e,F^ ). For any positive null sequence {0 .̂} we ma^ ta^e an 

o
arbitrary sequence {G^}, where G^ C n(ek,FQ ), and then

o

limk-xo T U, G k] - T[lf.,F0 ] . (2.16)
o

If T[^,’] is any other functional satisfying (2.8) and (2.16) then 

T[ijj,G ] = T[i/>,G. ] for all k _> kK. K. O

where kQ is independent of the choice of sequence {G^}*

PROOF: Write A =  l/(4.||M(0o) "*"||). By continuity of M(0) we may

choose an open ball of radius 0 < k x < min(6^,K) so that 0 C U^Ä(0o)

implies ||M(0) - M (0o) II < A/2. Let be given by Lemma 2.4. For

G C n (e^,F0 ), define A(G) = 1/(4. IIM(Oq , G) "* II) • Choose 0 < e* <_ 
o

so that

|| M(0 , G) - M(0o ,G)|| £ II M(0 , G) - M ( 0 ) II + IIM (0 q , G) - M (0 Q) II

+ IIM ( 0) - M (0 o) II

< A < 2.A(G) ,
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holds uniformly in 0 E 0^(0^) for all G £ n(e*,F ). Properties
o

(a) and (b) of the Inverse Function Theorem of Appendix 1 ensure Kq (*)

is a one-to-one function from U^,{ onto K^U^*), and that the image

set contains the open ball of radius Akx/2 about K~(0 ). ChooseG ' o
0 < e’ _< ex such that

IIKg(0q) " Oil < X k * /2 .

Then it is clear that 0 £ K (U ,v(0 )) for all G £ n(ex,F„ ), and thatG k x o 0 ’o
the image set contains the open ball of radius Akx/2 about K„(0 ).G o
Consider the inverse function

KG1:KG(Uk*(6o>) " Uk*(V >  f°r G e n ( £ ’’F0 > •o

It is well defined whenever KG(0) is one-to-one. Since 0 £ K^CU^^)

for G £ n(e',F ) we may conclude that with s’ = e there exists auo
unique root T[ip,G] of (2.8) in U^(0 ) whenever G ^n(e,FQ ).

o
CO

Now letting {kV} be a positive null sequence for which k* <_ k*,
1 i=l 1 ~

there exists a corresponding sequence of {e!}. Since {e^} is null

there is some i(i) for which e.,.N < e\, whence G .,.N £ n(e' F„ ).J(i) - i J(i) l* 0Q
Letting

T[*,Gk] = K'ho) n UKft(0o) ,

we see that

limk̂  T^ ’Gk] - n*-Fe ] •o

The functional value is the unique root of (2.8) on U .(0 ) forK* O
k > jU) = kQ.

The versatility of Lemma 2.5 is immediately apparent. For if

is a stationary ergodic sequence with marginal distribution F , it0o

ex
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follows from (2.15), where , that there exists an asymptotically
o

unique consistent root of equations (2.5) to 0 . This is Theorem 2 of 

Foutz. For the starlike neighbourhoods of (2.14) we see that contamina­

tion of a single point x of the observation space, provided that it is 

sufficiently small, leads to only small perturbations of the M-functional 

which is also unique in a region about 0 .

Employing continuity properties on the asymptotics of the 

M-functional, for instance in terms of Prokhorov, Kolmogorov, or Levy 

distance, does not necessarily make those properties relevant to the 

M-estimator. The next theorem alleviates this doubt.

THEOREM 2.2:

Let conditions A hold. Denote F̂  (random) to be the empirical

distribution function from a stationary ergodic sequence with marginal

Gq where G £ n(e,FQ ), the value e being given by Lemma 2.5. Then
o

there exists a root 0(ip,F^) of equations (2.5) which has the property

0<>>Fn) — * T[^,Gq] . (2.17)

If 0(i[»,Fn) is any other functional satisfying (2.5) and (2.17)

0 (if», Fn) = 0 (ip, F^) f.a.s.l.n. .

PROOF: By Lemma 2.5, T [ih, G^] exists and lies in (©q) , and also

M(T[^,Gq ],Gq) is nonsingular. Analogous statements to those of

Lemma 2.5 are true taking neighbourhoods nx centered at Gq and

denoting the selection functional that determines 0(i|/,«) equal to

||0 — T[ih,G ] II. That is given k > 0  there exists 0 < k* < k , 0 < z ,

such that G E nx(e ,G ) implies existence of a functional value

0(ip,G) £ U(<}V(T[^,Go]) which is unique in that set. Given a null 
o

sequence {e^}» for any sequence {G^}, G^ 0 n/'(eo^,GQ), we have
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U V ~  e«.Gk) = T[*,Go] .

The theorem follows from (2.15).

REMARK 2.1: If ip satisfies conditions A for Prokhorov, Kolmogorov, or

Levy neighbourhoods (determined by the respective metrics), and T[ip, ]

is the unique functional such that || T [if), Gq ] - 0 II < kx whenever
a. s.

G El n(c,F ) then since d(F ,G ) * 0 for each metric it followso 0 v n’ oo
that F E n(e,F ) f.a.s.l.n.. So 0(^,F ) = T[ip,F ] f.a.s.l.n. andn 0 n no
a unique solution of (2.8) in U .v(0q), even though generated by Gq.

The conditions introduced are not difficult to check. Under them 

the existence of a region about 0^ in the parameter space has been 

demonstrated for which the M-functional will exist and be unique in a

small enough neighbourhood about F . Moreover given any distribution0o
in that neighbourhood generating the process (1.1) there will exist an 

asymptotically unique consistent root to the M-functional. If the 

neighbourhood is determined by a suitable metric the M-estimator will 

also be unique in the region about 0^ subject to conditions A being 

satisfied.

Theorems to this point have been local in nature. Indeed uniform
JLconvergence need only apply in a local region about some parameter 0 

in order that a consistency result be attained. But what is sought for 

are theorems of a global nature which, in practice are more useful.

/ n a.s .
LEMMA 2. 6: Let f (X̂  , 0) ~ > f (0) uniformly in 0 E 0. Supposen ^ (_jo
there exists a 0q so that for every neighbourhood N of 0'

inf6tN fG (0) - fG > 0 •1 o o

Define ^ ( ’lO = {0 E ©|Kn(0) = 0}. Suppose further there exists a region
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U Ä(0*), K* > 0, so that H (vp) H U yf(0*) consists of a single point k o n K o
f.a.s.l.n.. Assume there exists a sequence {0^ G H (̂ )} so that 

a. s.
0 --> 0*. Then,n o

inf Pu , . f (X(n),0) = f (X(n),0 ) f.a.s.l.n..0 E H (ip) n % n % n

PROOF: Let e (k ) = inf f_ (0) - f_ (0 ). Choose 0 < 61 < k
a  <dr tt /  n  ^  C o  10fU ,(0 ) o oT K* o'

so that

f (0) - f (0*)| < e (k*)/2 0 G U. (0*) .C b o 0 -I o

Since 0 G U. (0 ) and f (X ,0) - f_ (0) < e(icv)/4 uniformly mn o, o 1 n ^ C 11 o
0 £= 0 f.a.s.l.n.,

£n<?(n)’en) < fG <9n> + o

Hence

< fG (0~) + (3/4) e (kx)
o

< f_ (0) - e (kx)/4 uniformly in 0 ^ N = U . ( 0 * )C k ” oo
< f (X(n),0)n \ uniformly in 0 ^ N .

in£0 e H (*) £n ^ (n)’6) “ £n<?(n)’V  £-a-s.l.n. .n r

If f (X(n),0) = f„ (0), the functional T[^,f,*] leads to an 'Xi rn
j.measurable estimator that is consistent to T [ih,f,G 1 = 0". The state-o o

ment of consistency is with respect to an underlying probability measure

P which induces G . When G = and 0* = 0 we may assert theo o 0 o oo
estimation procedure is "globally consistent". With identifiability

of the parametric family F it is desirable to have this property for
all 0 Go. o

The separation requirement of the Lemma can be shown to be satisfied
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for a number of the norms of the Kolmogorov-Smirnov and Cramer

Von Mises type. Pollard (1980) studies statistics of the type IlF̂ -F̂ II, 

where distributions F take values in ^  where ($£, II • II ) is a normed
linear space. Moreover the maps 0 F are assumed continuous. HereÜ

we have = E. Since F„ =f Fn whenever 0, { 0., it suffices to
®1 ®2 1 2

show there exists at least one compact neighbourhood Nq of 0q for 

which

lnf0fN l|F0 - F0 " > ° •1 o o

For then, given an N, the continuous function G t-* II F - F II mustU oo
be bounded away from zero on the compact set - int N, and hence also

on the set (0 - Nq) U (Nq - int N) p 0 - N. These investigations are 
related to the separation arguments of Wolfowitz (1957) who considered 
strong consistency of minimal distance estimators. Other selection 
statistics yielding globally consistent estimators are based on (2.7).

§2.4 Global Consistency and Uniqueness of the Univariate M-functional

When the parameter space is a subset of the real line, arguments 

peculiar to the real line can be employed to prove existence of an 

asymptotically unique root of equations (2.5). Continuous differenti­
ability of 1» can be relaxed. Moreover a selection statistic based on 
the expected slope of the influence function is possible. This obviates 

the need for searching for the function £(x,0) of (2.7), which may not 

even exist if  ̂ is constructed for its local properties.
Small violations in differentiability of an influence function \p 

can be overcome by considering {(9/90) ip(x,0) |0 E 0 C E}, where (9/90) 

denotes left differentiation, which is often well defined on R x 0.

Individual investigation frequently shows
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(d/d0) K (0)
a. s .

VK (0) uniformly in 0 C  D ,
V_7

(2.18)

where (0) Is continuously differentiable and

VKG (e) 0 / 8 0 )  i|)(x,0)dGo (x) .

LEMMA 2. 7: Let 0", G , and ip be so that Bl, C2 and C3 hold, and that
o o

(2.18) is also satisfied. Then there exists an open ball 11.(0*),o o
6 > 0, such that

(a) there exists a sequence {0 (F )} of zeros of {K (0)}n n n

within U.(05<), and 
o o

(b) for any other sequence {0(F )} of zeros of {K (0)}n n
consistent for 0'c, 0 (F ) = 0 (F ) f.a.s.l.n..o n n' n n

PROOF: Abbreviate Aq - VK^ (0*). By continuity choose the ball
o

U (0*) C D  so that VK (0) > A /2 for 0 C  U.(0*). By (2.18) o o G o o oo

(d/d0) K (0) > A /4 uniformly in 0 G  U r(0x), f.a.s.l.n. n o 6 o (2.19)

By the uniform convergence indicated by (2.12), and differentiability of

k g (0),
o

K (0*-6) < K (0*-6) + A 6/2 < 0 < K (0*+6) - A 6/2 < K (0*+5) f.a.s.l.n. n o  G o  o G o  o n oo o
(2.20)

By continuity of K^(0) there exists 0^ C  U^(0") f.a.s.l.n., and

by strict monotonicity, (2.19), it is unique within f.a.s.l.n. .

Fixing 6 > 0 and taking 0 < 6^ < 6 arbitrarily small we see that 

0(F^) C  and is unique in f.a.s.l.n.. That is the functional

values 0n (Fn ), defined by selection function |0 - 0q | are asymptotic­

ally unique and satisfy 0(Fn )
a. s

0(G). This completes the proof.
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Then to each nonstationary zero 0X of (0) there exists ano Go
asymptotically unique consistent sequence of roots of equations (2.5).

They are identified as those closest to 0X, the minimum if there occuro
kl>two equidistant from 0''. Not knowing Gq this belies the statistical 

estimation procedure. But with some mild conditions on ip the estima­

tion can be resolved when G = F~ . Leto 0o

H (ip, F ) = {0 = 0 (ih, F )|K (0) = 0, VKf (0) ? 0 , 0 G 0} .V  Fe
A requirement for estimation is that 0 E H(^,F ) for all 0 €= 0.0 0 oo
For a global consistency argument we consider the following assumptions

(a) H(ip,Fq) is finite (= 0q,....,0N say).

(b) 0 G H(iJj,Fq ), 0 * 0Q implies | VKp (0) - VKp (0) | > £(6^ > 0 ,
o 0 0o

for some £ (0 ).o

(c) I VKp (0 ) I >_ Z for some £ > 0 .

By continuity there exists balls (0 ), 6^ > 0 where for each
i

0 E (0̂ ) it is true that 
i

|VK (6) I > î IvKp (0.) I .
0 0o o

Assume further that,

(d) there exists e = e(£) such that if
N

0 E T (e , , Fq ) = {0 
o

|Kf (0)1 < e 0 E 0 - U u.  (e,.)}
*0o i=i i

implies V | Kp (0)|
0o

< s.£ for some fixed 0 < s < £, and

(e) VK (0) is a continuous function in 0 E 0.F e
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The motivation for assumption (d) is to allow for possible zeros

of Kp (0) which may be stationary points of that function. Or more
6o

importantly if litri (0) = 0 it often occurs that in finite0-x» Fuo
samples and for large 0 there exists roots 0^(F^) of equations (2.5), 

yet the {0^(F^)} need not correspond to an estimator sequence consistent

to an element of H(ip,F ).Öo

THEOREM 2.3:
Let 0 = 0 , G = F- , and ip be so that Bl, C2, and C3 hold witho o o 0o

D = 0. Assume (a)-(e) hold and (2.18) holds when D = 0. Abbreviate 

(d/d0) Kn (0) = K^(0) and let

Hn (^,s.£) = {0 I Kn (0) = 0, |K^(0) I >_ s.£ , 0 G 0} ,

where £ is a known constant of (c) and 0 <_ s < 1 is some constant. 

Define {T [ ip, F^ ] } to be that sequence of zeros of { ( 0  ) } if they 

exist (if not define T[^,F ] = + °°) which satisfy

min0 E  H n ( i p , s . £) K ; ( 6 ) - K ' (6) I K;(T[^Fn])-K’
T[*,Fn]

(T[i|>,F ]) I

(2.21)

(let T [ ih 5 F^] be the least if there exists more than one solution.)

Then

T[i|>,F ] 0 .n o

PROOF: Firstly observe from (2.12) and (2.18), with D = 0 and

o
N

Hn 0j),s.£) n  {o - U u (0.)} = 4 f.a.s.l.n. . 
i=l °i

By Lemma 2.7 there exist asymptotically unique sequences (0 (Fn)}
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a.s,
such that 0 . (F ) = H (ip,F H u. (0.) = 0 .(F) m  n n n o l ni n

l
ei , i = 0,. . .,N.

Then by (2.12), continuity of Kp .(6) and (e) respectively

K; (6ni(Fn>) - K <eni<F„ » h  K  (9ni(Fn »  " KFfl ( V ' ’0 0 0 o o o

|k ; (0.) - Kl (0 .(F ))I,
Fe. 1 F0 . (F  ) n i  ni ni n

are all less than 4(0q)/6 f.a.s.l.n., i = 0,...,N, which by (b) implies

(9 .(F ))| > 4(0 )/6 f.a.s.l.n.
t-> T T l  1 Q

i = 1,...,N.

K'(0 .(F )) - Kl .n ni n Fn . ni n
6  • ( F r J  ni n

Finally

IKT(0 (F ))[ > s.£ f.a.s.l.n., for any 0 < s < 1 ,1 n no n 1 — J

whereby the lemma is proved since

IK'(0 (F )) - Kl (0 (F ))| < 4(9 )/6 f.a.s.l.n. .1 n v no n Fo . . no n y/| o9 (F ) no n

If a lower bound, £, is not known to exist uniformly in 0 ^ = 0o
it may be true that there is an e > 0 for which i(e,iJ),F ) = (J). In0o
that case Theorem 2.3 remains valid replacing Hn (ij),s.£) by H(\|;,Fn)

in (2.21). If a lower bound were not to exist and yet x(e,i|;,F ) ^ $0o
for all c > 0 then a natural assumption in place of (d) is:

(f) There is an £ > 0 so that 0 £= x(e,i/j,F ) implies0o

k; (6) - k; (0)I > s(0 )/2

Then any solution 0 £ i(e,^,FQ ) will be so that

K'(8) - K' (0)| > 5(0 )/6 f.a.s.l.n

Hence the root 0 (F ) will minimize the selection statistic no n
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fn (X^n ^,0) = |k^(0) - Kp (0)I over all such roots. The particular
0

assumptions imposed then will depend on the individual family F and 

influence function ip. Note that uniform convergence over the whole of 

the parameter space is necessary for the Theorem.

Many authors prove existence of a consistent sequence of solutions 

of (2.5) but few also deal with uniqueness of the estimator. Very weak

conditions were given in the consistency case B of Huber's (1967)

monograph, 

estimators

that were sufficient for showing almost sure convergence of 

T : Rn -*■ 0 that satisfiedn

1
n

n a. s.Z ip ( X . , T ) - > 0 .
i=l

( 2 . 22 )

For clarity we make a comparison.

Assumptions (Huber 1967)
(B-l ) For fixed 0 ^ 0 ,  ip(x,6) is B measurable, and i|>(x,0) is 

separable (see Huber 1967, P.222, (A-l)).

(B-2) The function ip is a.s. continuous in 0: 

lim0,^0 |iKx,0') “ «Kx,0)| = 0 a.s.

(B-3) The expected value K„ (0) = E„ ip(X,0) exists for all 0 €= 0,
O  (jrO O

and has a unique zero at 0 = 0 .o

(B-4) There exists a continuous function which is bounded away from 
zero, b(0) _> bQ > 0, such that

(i) sup0 ^  ̂ is integrable

|kg (0)I
(ii) lim inf0_  -b^-r -  > 1

|iKx,0) - k g (o) I
Eg {lim supQ_yco(iii) b (0) < 1} .



Relinquishing the requirement that be a root of equations (2.5)

allows the relaxation of the continuity assumption slightly in (B-2).

Theorem 2.3 relaxes condition (B-3) and in particular (B-4)(ii). The

assumption (B-4) (ii) bounds the curve (0) away from zero outside
o

some compact set. At the model F this would ensure x(e,^,F ) was0 0 o o
empty for some c > 0. But for instance consider the common case of

estimating the location of a symmetric distribution, say. Assume

symmetry about the origin for instance. For those continuous odd psi-

functions that are zero outside the compact set [-c,c], \p(x-0) is zero

whenever x lies in (-°°, -c+0] hJ [c+0, °°) . Clearly
•c+0

llnW  kg (0) = linW  .Mx-e)dGo(x) = o ,
O J-C+0

which violates (B-4)(ii). But either assumption (d) or (f) is quite

plausible since there will exist some set U (0) so that
o

IKq (6) I < \ k 'g (0) I uniformly in 0 G E - 11̂ (0). 
o o

Huber proves existence of a consistent root. We give a proof that 

identifies the estimator uniquely for all n.
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C h a p t e r  3

L im it  Theorems for H-Estimators

§3.1 Asymptotic Normali ty o f  the Univar ia te  M-Estimator

In this chapter we use uniform convergence theory to obtain limit 
theorems for suitably normed M-estimators. We consider i.i.d. sequences 

and limit theorems for dependent sequences will be regarded as peripheral 

to this thesis. The only change required in the proofs is to apply the 

appropriate classical law to the sums of random variables.

Typically proofs of the C.L.T. (central limit theorem) for 
implicitly defined estimators use Taylor expansions. For the M-estimator 
this requires that ip be at least continuously differentiable in 0 for 
each x in the observation space. It is often not possible to escape 

situations where apparently "slight" violations of this assumption occur. 
Portnoy (1977) gave a proof that showed "sharp corners" do not affect the 
asymptotic distribution of the M-estimator of location on the real line. 

The following theorem gives an extension of this result to the M-estimator 

of a general univariate parameter.

THEOREM 3.1:

Let Gq be the common distribution function of an i.i.d. sequence

X, and suppose 0* G , and if are such that B1 of §2.2 and C2, C3 of 'v, r o o
§2.3 hold. Assume also that 0 C E and (2.18) holds. Denote

A = K' (0*) = I (9/90) i|i(x,0)dG (x) I 4 0 .° o ° J ° 0*o
Let be a sequence of functions that are continuously differentiable

in 0 for all x £ R, and suppose there exists sets {6^(0)}, 6^(0) 

that belong to a Glivenko-Cantelli class of G , so that there exists a
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neighbourhood W C  D of 0X for which the following hold:

(i) ipm (x , 0) = ip (x, 0)

(ii) Pm =sup06w

x R  - 6 (0), 0 ^ 0  m v 7 ’

dG (x) -*0 as m o
6 (6 )m

(iii) 3m = sup06w suPx e R k m(x»0) " ^(x»0)| = o(m 2) , and

(iv) ß̂  = supq G w suPx e R 1(9/99) iKx,0) - O/30)i|»in(x,0) I = 0(1)

Then if li(X,0^) has a finite second moment, there exists on asymptotic­

ally unique consistent sequence of zeros {0(F )} of {K (0)}, then n

latter given in (2.5), such that t/n(0(F ) - 0*) ^  N{0,o2 (ifj,GQ , 0*) }, the 

normal random variable with zero mean and variance given by

o2 (^,G,0) = {var \p (X, 0 ) }/A2 (G) u o (3.1)

PROOF: Asymptotic uniqueness of {0(F^)} follows from Lemma 2.7. Let

(0) and (0) be the quantities corresponding to and KG
o o

when ip is replaced by iĵ . If m(n) = n then |K^m ^(0) - K^(0)| <_ ß^, 

and so by (2.12)

K (m)(0*-6) < Kr (0*-6)+A 6/2 < 0 < K (0*+6) - A 6/2 < K (m) (0*+6) , n o G o o G o  o n oo o

f.a.s.l.n., when m(n) = n and U r(0x) ^  W. Label zeros of (0)6 o n
and K^m ^(0) uniquely defined by the selection statistic |0 - 0**1, as G oo

0 (F^) and 0m (0’Q ) respectively. They exist within any given neighbour­

hood of 0 f.a.s.l.n o Consider the expansion

Ä ( e ( F n ) - e * )  -  v ^ ( e ( F n ) - e m ( F n )) +  ^ ( 9 m (Fn ) - e m ( G o )) +  ^ ( e m ( G o ) - e * )  .

The required result is obtained by letting m(n) = n, and considering 

the three terms on the right separately. We show the first and third 

terms to be asymptotically negligible and the limiting distribution of
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the second term, and thus that of /n(0(F^) - 0 )̂ , is normal 
2 *N{0,o (ip, G ,0')}. This would be expected if ijj were continuously o o

differentiable.

Let Y (0) = nnm dF (x). By the Glivenko-Cantelli assumption
6 (0)m

sup sup _ In ^Y (0) - p (0)1 0 G W nm rm 1
a. s.

0. Then

(0)-K^m)'(0)I £  |K^ (0)-(d/d0) K^(0)|G no o
1+ |- Z 0/39) {^(Xi,0)-^m (X.,0)}|

i=l

< |K^ (0)-(d/d0) Kn (0)| + n h nm(0)e^

a. s
0 uniformly in 0 G W as m(n) = n->-°0. (3.2)

Let U G w be an open ball containing 0" with the property that foro
some 6 > 0, K' (6) > £ for all 0 G {J. Then (3.2) implies that

Lx

(m)'K'-“' (0) > £/2 uniformly in 0 G u f.a.s.l.n.n (3.3)

Term 1 may be written,

v̂rT {0 (F )-0 (F )} = {K(m) ’ (0 )}_1^  K (m)(0(F ))n m n' nm

where 0 lies between 0(F ) and 0 (F ). Now, nm n m n

1 ^  K^m) (0(Fn)) I = |/S‘{K^m;(e(Fti)) - Kn (0(Fn))}|(m)

—  E {i|-m (Xi,0(Fn)) - iKX.,0(Fn))}| 
/n i=l

< n \ (0(F ))B nm n m

a. s.
0 .

Also from (3.3), (0 ) > £/2 f.a.s.l.n., whencen nm ^

a. s.
/n(0(F ) - 0 (F )) — > 0 .n m n
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Term 3 may be w r i t t e n

^ ( 9  ( G o ) - e * )  =  -  { K ^ m)  ' ( 9  )  } _ 1  t^n K ^ m )  ( 9 * )m o o  G nm G oo o

-  {KGm ) ' < W r l {o
vrT|>m( x , e ^ )  -  ^ ( x , e * )  ]dGo (x)  }

S i n c e  t h e  s equence  /n  [ ^  (x , 0^) -  i | ; (x ,0" ) ]  i s  dom in a ted  by an i n t e g r a b l e
/ \ I

v a r i a b l e  and t e n d s  to  z e ro  a . s . ,  and Kg ; (0) > £ /2  u n i f o r m l y  i nCj

0 £  U a s  m(n) = n -* t hen

/n  (0 (G ) - 0 * )  = -  {K^m ) , (0* ) }_1 /n  K(m )(0*)  .m o  o nm

Here 0'  l i e s  be tw een  0 (F ) and 0 (G ) .  Now a s  b o t h  0 (F ) ,  nm mv n '  m o  mv n

O^CG^) c o n v e rg e  a . s .  t o  0^, f rom ( 3 .2 )  and s i n c e  a . s .  c onve rge nc e  

a p r i o r i  i m p l i e s  c o n v e rg e n c e  i n  p r o b a b i l i t y

fm'* ' a a P
Kkm; ( 0 )  -  K' ( 0 X) -► 0 . ( 3 . 4 )n nm G o o

F u r t h e r ,

/n  K(m )(0 (G ) )  = /n  K(‘m) (6*)  + vn (0 ) (0 (G ) - 0 * )n m o ' n o'

G  K(m) (9*)  + o (1)  . n o P

nm m o o

( 3 .5 )

Now

^ |K <m)(e*) -  Kn(0*)| = 14; ” U j x ^ e * )  -  >Kx.,e*)}|
/n  i = l m i ’ o'

< n \  (0* )ßnm o m

0 as  m(n) = n ->

Then s i n c e

^  K ( 6 X) — > N { 0 ,v a r _  iKX,0 ,{)} ,n o  G oo

t h i s  i m p l i e s  from ( 3 .5 )  t h a t

/ ^ K (m )(0*)  -----* N { 0 ,v a r „  ih( X, 0*) } .n o  G oo
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From (3.4) and the above convergence, using Slutsky's theorem detailed 

in Cramer (1946, §20.6)

D 7/̂ (e (F ) - e (G )) --* N{0,o (^,G ,0x)} ,m n m o o o

and the proof is complete.

The theorem avoids the necessity for continuous partial derivatives 

of \p, and the local nature of the argument makes it applicable to non­

monotonic (in the parameters) influence functions that have "sharp 

corners". Huber (1977) sketches a proof of Hampel (1973) giving 

asymptotic normality of a psuedo solution of the estimating equations 

under very weak conditions on a tp that is monotonic in 0 for each 

x G R.

The classical basis for inference about a parameter estimate is

the notion that G 6 F = (F^I 0 £ 0}.  Moreover the convergence in theo 0 '
central limit theorem should be uniform in the underlying distribution. 

Even if the first should be true, to establish the latter it is initially 

required to show uniform consistency.

LEMMA 3.1: Let il> be continuous on Rx0, where 0 C E. Write
0

K^°(0) to be 14^(6) when the i.i.d. sequence X(*) = X(0q ,*) is

generated by F^ . Assume Kp (0q) = 0 for every 0q £ 0, and Kp (0)
o 0 0o o

is continuously differentiable in 0 for each 0q £ 0. Then if

0
(1) Kn (0) - Kp (0)

a. s .
0 uniformly in 0 £ 0, p-uniformly

in 0 ^ 0; ando

(2) there exists a 6 > 0, X > 0 such that

VK (0) > A for 0 -5 <• 0 < 0 +6 uniformly in 0 £ 0;

then there exists a measurable sequence {T^[X^n^(0^)]}



72.

('n') a,s*such that T [XV ;(0 )] - 0 ---> 0 p-uniformly in 0 £ 0.n o'J o o

PROOF: Given arbitrary e > 0, let 6“ = min(c,5). Since

0 , 0
K °(0 -6*) < (0 -6*) + A 6 * < 0 < K V (0 +6*) - A6* < K (0 +6*)n o F o F o n ot) oo o

holds p-uniformly in 0 ^ 0 ,  there exists a measurable root of
0 / NK °(0) = 0, within radius e of 0 . Define T [X^n'(0 )] to be the n o n % v o'

root closest to 0 , the least if two are equidistant. The proof is 

then complete.

Conditions on T sufficient for (1) are found by examining 

Theorem 1.2. It is not necessary to give the broadest possible condi­

tions here. We merely point out that a basis for the result is the 

uniform S.L.L.N.. Asymptotic uniqueness of the root may be approached 

through p-uniform convergence of the partial derivatives. This assump­

tion can also be used to establish the uniform C.L.T.

THEOREM 3.2:
Let \ p ( x , 0 ) be continuously differentiable so that variances

2o (tp,F ,0 ) are convergent uniformly in 0 £ 0 and bounded above and 0 o o
below uniformly. Assume (1), (2) of Lemma 3.1, and

(3) there exists a 6 > 0 such that

|v k F() ( e p  - v k F q (eo )| < M 4 |er 6o |
O O

for all 0 -6 < 01 < 0 + 5  uniformly in 0 £ 0.o 1 o o
0 a. s.

(4) VKn°(0) > VKp (0) uniformly in 0 £ 0 p-uniformly
0o

in 0 G 0. o

Then uniformly in z £ E and 0 F 0, there exists a sequence 
, , 0

{T [X^n'(0 )]} of roots of K °(0) = 0 for which n L'u o n
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Pfl {ü)|^(Tn [X(n)(0o)] - e0) < z} -* ,0o)) .
O ' O

PROOF: Let
0

K °(0) = 0. n

{T^fX^ ; (0 ) ] } be the consistent sequence of roots of 

Expanding using the mean value theorem

/n (T -0 ) n o

0
/n K °(0 ) n o

0
vk °a )n n'

a. s.
where £ lies between T and 0 and so K > 0 p-uniformly inn n o  n o
0 G 0. This, together with (3) and (4) gives that o

0 a. s.
VK °(£ ) * VK (0 ) p-uniformly in 0 G 0 .n n' Fq o v o0o

0
The numerator, /n K (0 ), is a normed sum of i.i.d. random variablesn o

2with zero means and variances o (ip,F ,0 ). So by Proposition 1.5 its0 o o
distribution tends to $ (z//var i|;(X,0 )) uniformly in 0 G  0.0 o oo
The conclusion follows from the uniform analogue of Slutsky's theorem 

(Parzen, 1955, P.48, Theorem 18D).

Restricting uncertainty to a parametric family F ignores the 

general trend of robustness theory where relatively wide departures from

an underlying F are considered. Uniform convergence in the under-Öo
lying parameter with indeterminacy restricted to F would appear to be 

a necessity for justifying inferences made from the asymptotic distribu­

tion. But such a result can be illusory in practice since the under­

lying model is inevitably not in F. A remedy is to consider an influence 

function that redescends to zero inside some compact set, is zero on the 

complement of that set and is so that conditions A hold. Then by 

Theorem 1.2 the equivalent of (1) and (4) hold in neighbourhoods of an

Fq . Conditions similar to (2) and (3) may be shown in small enough 
o
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neighbourhoods of an F . Whether these results are uniform over the
o

whole parameter space or just on compacts of it generates further 

complications.

§3.2 The Law of the Iterated Logarithm
Limit theorems for estimators are not restricted to the central 

limit theorem. A law of the iterated logarithm for the M-estimator of 

location was shown by Boos (1977) and Boos and Serfling (1980). Under 

suitable regularity conditions this may be extended to the general 

M-estimator of a univariate parameter. We extend the conditions C.

C4 The partial derivatives of ip exist and are continuous on R x D.

C5 There exists a continuous function g £ L-. (G ) , so thati o

I! Vip(x, 0) II < g(x) for all x £ R, 0 £ D .

THEOREM 3.3:
Let 0 C x be an i.i.d. sequence generated by Gq and assume 

0^ and ip are so that B1 of §2.2, C2 and C3 of §2.3 and C4, C5 hold. 

Further let ip(X,0'') £ ^^(G^. Then there exists an asymptotically 

unique sequence {0(F^)} of zeros of { ( 0 ) }  defined by selection
I /V Istatistic 0 - 0 I, such that o

vn A {0 (F ) - 0*}
P{(jo I lim sup ----° . . . .n-.-- —- = 1} = 1 (3.6)

/ 2a^ £n(£n n)

/n A {0(F) - 0*}
P{a)|lim inf ---------------—  = -1} = 1 ,

J 2 £n(£n n)

where Aq = VK^ (0̂ ) and a^ = var^ {ip(X, 0") } . 
o "o
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y*cPROOF: By continuity, given 0 < n < A^/2 choose an open ball U (0 ),

6 > 0, on which A -n < VKr (0) < A +n. By Lemma 2.7 there exists ano L • oo
asymptotically unique sequence (0(F^)} of zeros of {K^(0)} consistent

JCto 0' . By Lemma 1.1 o

where

P
oou

m=l n=m
1 (3.7)

A^(X(n)) = {,o|0(Fn) € u, , Kn (0(Fn )) = 0 ,

0 < -— 77T- < {VK (0)} 2 < -r— ^r- uniformly in 0 e U~}. A +2q n A -2q y 6

Let w E A . By the mean value theorem n J

0(F) - 0* = -{VK (£ )}-1K (0*) n o n n n o

lies inside the interval with end points - -— -~z— K (0 ) andA +2 n n o o

K (0*). For a,b > 0 we write [a,b]c to be the closedA -2q n o o
interval [ac,bc] if c > 0, and [bc,ac] if c < 0. Now for each

m = 1,2,... a) E f| implies
n=m

/n{0(F )-0*}i , v n o cb (m) = sup -------------m n>m
/? 22a £n(S,n n)

A +2q * A —2 n o o
supn>m

k (0,v)_____ n oy

J 2a2 £n (£n n)

(3.8)

n ^(Xt ,0o)C = {o)|lim sup E - ---------------  = 1}
t=1 /" 22a n £n(&n n)

For an i.i.d. sequence where oZ < 0 the well known law of the iterated

logarithm result given in Breiman (1968, P.64) gives that
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P{C} = 1 . (3.9)

( 00 00 n 1
Let a) G j U fl A 1 h e .  Then there exists

( m=l n=m n '
an m such that m > m o —  o

implies w £ f) A , whence (3.8) holds. However, 
n=m

h  — b2 — > b > b , .— m — m +1 — o o
, implies inf b = inf b .

m  m  m > m  m— o
Then since A -2p > 0 o

m f  b (w) = m f  b (w) 
m  m  m > m  m—  o

A +2p ’ o A -2p 0

1 1
A +2p ’_ o A -2q 0

1 1

inf supm>m rn>m
—  o  —

-v^K (0*) n o

/ ? 22o £n(£n n)

A -1-2 n ’ A -2p o o

inf sup m n>m

by (3.9)

-v'n K (0*) n o

/r 22o £n(£n n )

Since n is arbitrary

/^(0(F ) - 0*)
P {to 11 im sup ------ —----—  = —  } = 1 .

J2o^ £n(iln n) °

The associated result of (3.6) follows in an analogous manner. This 

completes the proof.

Following Theorem 3.1 the conditions of continuous differentiability 

can be relaxed slightly. An issue related to the law of the iterated 

logarithm for the estimator concerns the asymptotic expansion in the 

estimating equations.

LEMMA 3.2: Let ip satisfy the assumptions of Theorem 3.3 and further

be twice differentiable such that

2 a. s. 2
V Kn (0) * V (0) uniformly in 0 £ D (3.10)

o
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Then the asymptotically unique consistent sequence {0(F^)} satisfies

P{o) lim sup n{£n(£n n) } K (0 ) + X (0 (F ) - 0 ) < —  H-- ---} < 1' n o  o n o —  ,2 X —X oo

where a = a(iJj,G ,0'c) = I V^K (0") | , and k = k (i|i,G ,0'V)=var ViJj(X,0*).O o  O O O O t r  oo O

PROOF: The usual Taylor expansion gives

0 = Kn{0 (Fn)} = Kn(6*)+ VKn(e*){8(Fn)-0*}+>5V2Kn(Sn){e(Fn)-e*}2)

with E between 0(F) and 0 , from which we write n n o

K (0*)+VK_ (0*){0(F ) — 0*} = {VK (0*)-VK (0*)}{0(F ) - 0*}n o G v o o G o' o n o

- %V2Kn(Sn)t0(Fn) - 0*}2. (3.11)

a.s___ , 2 a. s. 2
Note that £ -- * 0* and (3.10) imply IV K (£ )| --> |v (0*) Ir J 1 n n 1 ' G o

a. s.
Note that E

■k 2 a. s. 2 .0 and (3.10) imply |v Kn(En)| -- > |v (0X)|n n

Multiplying (3.11) by n(£n(£n n)} 1 and taking absolute values we 

observe from the usual law of the iterated logarithm result

lim sup Vn{£n(Jin n) } ^|VKp (0 ) - VK (0“) | < /2k" a.s.,G o o n o

and from the result of Theorem 3.3

lim sup i/i{£n(&n n) } ^|0(F ) - 0X | < /2o/X a.s.

the Lemma holds true.

A particular version of the Lemma is to consider the M-estimator 

for location of a symmetric distribution on E, where i]j(x ,0) = i|j(x-0) 
for ip an odd function, twice continuously differentiable. For Gq 

symmetric about zero there exists an M-functional value 0q = 0, and
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ot (i/j»G ,0 ) = 0. Then o o

P{wIlim sup n{£n(£n n)}  ̂IK (0/<r) + A {0 (F ) - 0* } I < c} = 1 ,

where c = /kg/A . This is a refinement of Carroll (1978a) who only 

claimed existence of a constant c. Conditions here appear stronger but 

extend to the more general M-estimator.

§ 3 . 3  The M u l t i v a r i a t e  M - e s t i m a t o r

More intricate arguments are necessary to extend limit theorems 

under equivalent conditions to the multiparameter models. But under 

suitable regularity conditions one can derive the asymptotic normality 

of the M-estimator when the underlying distribution lies in a neighbour­

hood of an F £ F.0o

THEOREM 3 . 4 :

Let iJj satisfy conditions A of §2.3 and suppose X is an i.i.d.
'Xj

sequence of r.v.'s generated by G £ n(e,F ), where e is given byo 0o
Lemma 2.5. Suppose T[tJ),G] is the functional determined by selection

statistic II0 - 0 II. Assume (̂X,T[if),G ]) has finite second moments, o o
Then there exists an asymptotically unique consistent sequence 0(ip,F^),

consistent to T[iKG ], for whicho

D 2
/S(0(i|i,Fn) - T[i|),Go]) -- >N{0,o O,G0>T[i|J,Go])} (2.12)

where

o2(ip,G,0) = M(0fG)~1L(iP,G,0){M(0,G)~1} ,

and E(if,G,0) = var (j;(X,0). Here 0 C Er.
(_x

PROOF: By Theorem 2.2 {0(ip,F^)} is an asymptotically unique consistent

sequence to T[^,G^], defined by selection statistic || 0 - T [ ip, Gq ] II - 

The two term Taylor expansion
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0 = Kn (0[i|/,Fn ]) = Kn (T[^,Gol) + VKn(6n)(6(i|;,Fn) - T[^,Gq]) ,

where VK (0) is evaluated at possibly different points 0 on the n n
diagonal between 0 (ip, ) and T [ ̂ , G^ ] (cf. Appendix 1), can be made.

a. s.
Since 0̂  -- > T [ih, Gq ] and assumptions Al-2 give that

3. S
I|VK̂ (0) - M(0,G )ll > 0 uniformly in 0 £ D, then

3 • S
IIVKn (0n) " M(T[^,G ],Go)|| -- » 0 .

So clearly the expansion implies v'rT (0 (ip, F^) - T [ ih, Gq ]) = 0^(1). This 

follows since

1 nKn(T[i|>, G ]) = —  Z ip(X.,T[ip,G ]) n o /— . , l o/n i=l
D

N{0,E(^,Go,T[^,Go])} ,

by the multivariate central limit theorem of Anderson (1958, P.74). The 

expansion can be validly re-expressed

Ä ( 0(*,Fn) -T[,(;,Go]) = -M(T[i(),G0],G0)"1»n Kn (T[iJj,Go])

+ M(T[l|),Go]>Go)'1{M(T[4,)Go],Go) - VKn (0n) } ̂ "(0 (*, Fn> -T^.GJ).

The latter term is now 0^(1). This completes the proof.

REMARK: An alternative method of the multivariate C.L.T. proof is to

make use of the Cramer-Wold (1936) device which shows that to study the 

asymptotic distribution of a vector it is sufficient to study the

one-dimensional asymptotic distribution of = z'£ for arbitrary

unit z. (Crowder 1976).
%

By Theorems 2.2 and 3.4 we have introduced some new conditions 

which for suitably regular ip functions are not difficult to check.

The existence of a region about 0q in the parameter space has been
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d e m o n s t r a t e d  f o r  which  t h e  M - f u n c t i o n a l  w i l l  e x i s t  and be u n ique  i n  a

s m a l l  enough n e ig h b o u rh o o d  a b o u t  F . Moreove r ,  g iv e n  any d i s t r i b u t i o n
'  0 o

i n  t h a t  n e ig h b o u r h o o d  t h e  M - e s t i m a t o r  w i l l  be an a s y m p t o t i c a l l y  u n iq u e

c o n s i s t e n t  r o o t  t o  t h e  M - f u n c t i o n a l ,  and as  w e l l  be a s y m p t o t i c a l l y  no rm a l .

The a rg u m e n ts  used  a r e  l o c a l  and t h e  c h o i c e  of  s e l e c t i o n  s t a t i s t i c  i s

l e f t  t o  be r e s o l v e d .  But t h i s  w i l l  no t  a f f e c t  t h e  a s y m p t o t i c  d i s t r i b u t i o n .

A s y m p to t i c  n o r m a l i t y  theo rem s  a t  a s p e c i f i e d  d i s t r i b u t i o n  a r e

common. A v e r y  weak s e t  o f  c o n d i t i o n s  p r e s e n t e d  f o r  showing a s y m p t o t i c

n o r m a l i t y  was g i v e n  by Huber  (1967) .  He c o n s i d e r e d  a s equence

{T [X( n ) ]} s a t i s f y i n g  n o-

n / \ p
( l / / n )  E ip(X.,T [XCn; ])  —* 0 . ( 3 .1 3 ). l  n 'u1=1

For i n s t a n c e  i f  ^ i s  n o t  c o n t i n u o u s  i n  0 t h e r e  i s  no g u a r a n t e e  of  a

s o l u t i o n  t o  t h e  e q u a t i o n s  ( 2 .5 )  as  t h e r e  o t h e r w i s e  would be by C o r o l l a r y

2 . 2 .  But Lemma 2 .2  does  i n d i c a t e  t h e  e x i s t e n c e  o f  c o n s i s t e n t  l o c a l
2

minima of  ||K ( B) II . I t  i s  i n t e r e s t i n g  to  compare H ube r ’ s a s s u m p t io n s  

w i t h  o u r s .

Assumptions: Huber (1967)

(N-l  ) For  each  f i x e d  0 G 0,  ip(x,0)  i s  B m e a s u r a b l e  and i | ;(x,0)

i s  s e p a r a b l e  i n  t h e  s e n s e  o f  Doob: t h e r e  i s  a P - n u l l  s e t  N and 

a c o u n t a b l e  s u b s e t  0 ’ C 0 such  t h a t  f o r  e v e ry  open s e t  U C 0 

and e v e r y  c l o s e d  i n t e r v a l  A, t h e  s e t s  ( x | i|j( x , 0) ^  A, V 0 £  U}, 

{ x | ^ ( x , 0 )  €= A, V 0 ^  U f'' 0 ’ } d i f f e r  by a t  most a s u b s e t  of  N.

Pu t  u ( x , 0 , d ) = s u p (| ||<d I! ip ( x , T) -  iJj (x ,  0) II .

(N-2)  There  i s  a T[G ] such  t h a t  KP (T[G ]) = 0.o w oo

(N-3) There  a r e  s t r i c t l y  p o s i t i v e  numbers  a , b , c , d Q such  t h a t



81.

(i)

(ü)

(iü)

K (6) > all e - T [G ] II for II0 - T [G ] II < d .G —  o o —  oo

u(x,0,d)dG (x) < b.d 'for || 0 - T [G ] II + d < d o — o — o

u(x,0,d)2dG (x) < c.d for || 0 - T [G ] II + d < d o —  o —  o

d >_ 0 

d > 0 .

(N-4) ip (x, T [G^ ]) \p (x, T [Gq ]) ' dGQ (x) is finite.

PROPOSITION 3.1 (Huber 1967, Theorem 3): Assume (N-l)-(N-4) hold and
that T satisfies (3.13). If P {IIT -T [G 111 < d } -*• 1, then n n o —  o

n
(l//n~) E iKXi,T[GQ]) + Kg (Tn) 0 

i=l o

in probability.

COROLLARY 3.1 (Huber 1967, C o ro l la ry ) :  Under the conditions of

Proposition 3.1, assume K„ has a nonsingular derivative at 0 = T[G ].G OO
Then 7n(T - T[G ]) is asymptotically normal with mean zero and

2variance covariance matrix a (ib,G ,T[G ]).o o
The assumption (N-3)(ii) can be looked upon as a type of weakened 

Lipschitz condition on ip over the parameter space, an essentially 

different condition to that of equicontinuity at each point in the 

observation space. While Huber's conditions are asserted to be very weak 

they appear difficult to check. For the influence functions associated 

with the symmetric location estimation a common condition imposed is that 

I ip(x) - iKy) I < MI x—y j , for a constant M < 00 and all x,y £ E. Clearly 

then {iK*-p)|p ^ E} forms an equicontinuous family and condition 

(N-3)(ii) and (iii) are simultaneously satisfied.

The Lipschitz type condition to some extent emanates from the 

classical assumptions made by Cramer (1946, P.501) to prove asymptotic 

normality of the M.L.E. for i.i.d. random variables. They are equivalent 

to
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CR1: There exists an a > 0 such that ip(x,0) is twice differentiable 

with respect to 0, V 0 £ = {0 | || 0 - T[G]|| a} and the

derivatives are for fixed 0, B measurable and almost surely con-

CR2 is a type of weakened Lipschitz condition, on ip(x,0) in the 

parameter 0, in the sense that it is averaged over the x values by 

assuming an integrable third derivative. Our approach is a uniform 

restriction about each individual x-value over all 0 G D, a compact 

subset of 0. In general we cannot reconcile the two even though in 

specific cases such as the location parameter there appears to be some 

overlap.

§3.4 Relaxing Dif ferentiabi l i ty  of the Multivariate Influence Function 

The Cramer conditions assume the second partial derivatives of ip 
exist and are almost surely continuous. Carroll (1978) makes similar 

assumptions to those of Cramer, but takes into account the possibility 

of a set B(0) of Lebesgue measure zero in R = E , k-dimensional 

Euclidean space, at which the influence function does not have a con­

tinuous partial derivative at 0. A cornerstone to his proof is a lemma 

in which he shows

tinuous of 0 G S . Functions (8^/90.80 . ) i p (x, 0), i,j,k = l,...,r a i j k.
are each B measurable for every 0 £ S for some a > 0.a

CR3: ^(x,0)i|Kx,0)’dG^(x) < °°.

This result is derived as a consequence of the uniform convergence
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theory through Theorem 2.1 and results from the theory of empirical 

processes. Our approach has attempted to exhibit possible advantages 

of using a theory of uniform convergence. By it we also obtain easily 

checkable conditions on the multivariate ip that do not require con­

tinuous differentiability.

LEMMA 3.3: Let X be an i.i.d. sequence of real valued random variables

with common distribution G that is continuous. Let 0 , G , and ipo o o

be such that B1 of §2.2 and C2, C3 of §2.3 all hold. Further suppose 

there exists a bounded integrable function w(y) so that

W(x)
'X

w (y)dy £ L^CG^) and
' —  OO

s u p q G d |dipi (y,6)| < w(y)dy i = l,...,r .

a (n.)Then there exists a constant C so that for any sequence {0 (X )}n %
r i ^of zeros of IK (0); consistent to 0' n o

110n 0'v|| < Cn 2{£n(£n n) } 2 holds f.a.s.l.n.. o (3.14)

PROOF: By (2.13) it is sufficient to show

f
sup0 G o  llKn (Q) - KG (e)ll = s u p q G d II I \p(x, 0)d [Fn (x) - GQ (x) ] II

o J
-L L

< n 2 { in (£n n) } 2 .

Observe for the component functions ip , integration by parts gives

•+°° <•+«>
ipi(x,0)d[Fn (x) - Gq (x ) ] I = |- [Fn (x) - Gq (x) ]d\pi (x,0) |

' — OO J — oo

^t-OO

|Fn(x)- Go(x)||d*i(x>0)|

•+°o l F n ( x )  ■ Go (x)|w(x)dx . (3.15)
J — oo
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Let B(E) be the space of bounded real valued functions on the real 

line, with the sup norm. For n >_ 3, and x ^  E set

n^[F (x)-G (x)]
vn (x) = ---- ------ ------ w(x) .

/2 £n(£n n)

By Corollary 1 of James (1975, P.771), there is a set of probability

one on which the sequence {V } is relatively compact on B(E)
n

with set of limit points

K* „ = {w(x)f(C (x))|f e  K*} .w, G o 'o

Here K" is the set of absolutely continuous functions f in B ( [0,1])

f"*" 2such that f (0) = 0 = f (1) and [f f (t) ] dt £  1. Then for a realiza-
•' o

tion of a limit point of we have from (3.15)

c+°°
ipi (x,0)d[Fn (x)-Go (x) ] I

— OO

(by parts)

(Holder's inequality)

_b in
< n {2 £n(£n n) }

.+CO

W(x)If(GQ (x)) Idx

n 2{2 £n(£n n) } 2

< n 2{2 £n(£n n) } 2

-foo
W(x)If'(G (x)) IdG (x)

f+ °°

l
—  OO

r+ oo

W(x) dGQ (x)

[f’(Gq (x))] dGQ(x)

_+ b
< n 2{2 £n(£n n) } 2

'+00

W(x) dGQ (x)
2̂

and this proves the Lemma.

The result used from empirical processes in the Lemma is in fact 

a direct result of Finkelstein (1971). James allows the possibility of 

a much more general weight function w for the limit process of Vn 

to be attained. But for most purposes we need only that w be bounded. 

Results that appear to be for very restrictive classes CO for which

sup f £i Cl
+oo r+°o ^  ^

fdF - f dG I << n 2{£n(£n n ) } 2 f.a.s.l.n.
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can also be found in Kaufman and Phillip (1978).

It is emphasized that the component functions iĵ (x,0) need not 

be continuously differentiable in 0, but rather a continuity in the 

observation space variable is necessary. If 0 Cl e , Theorem 3.1 can be 

applied. The proof of that theorem took a semi-deterministic approach 

which is also applicable to the law of the iterated logarithm and the 

uniform convergence to asymptotic normality. When 0 C E , r > 1, a 

purely probabilistic approach through uniform convergence over classes 

of functions can avoid the necessity for continuous differentiability.

THEOREM 3.5:

Set X to be an i.i.d. sequence generated by Gq £ G. Let 0 ,

Gq, and be as in Lemma 3.3, and i[»(X,0̂ ) £ L^G^). Suppose the

partial derivatives of \p exist and are continuous at 0 for all

x R - B(0). Denote by B^ the set U{B(0)|||0 - 0*|| _< 6^}, where 
~'2 \ 2̂ —6 = Cn Kn(£n n)} , and suppose P (B ) = 0(6 ). Assume there is ann G n no

extension of Vi|;(x,0) to points x £ B(0), 0 £ D, so that

a. s.
VK (0) > VK (0) uniformly in 0 E D .n uo

By Corollary 2.3 there exists a consistent sequence {0^} of roots of
JL(2.5) f.a.s.l.n., consistent to 0“. Assume they satisfy (3.14). 

Finally let there exist a constant H-̂ < °° so that for large enough n

HiMx, 0)_T(x,O“) II <_ HII0 - 0“ll uniformly in x E B^, and

II Vijj (x , 0) II < uniformly in x E .

Then for the strongly consistent sequence {0 } ,

^(^n “ Gq ) ~^ N{0,o2(ip,Go, 0qC) } .

PROOF: Set S = {iIX. E B , 1 < i < n}, and writen 1 l n — — *



Then let Kn (0) = K*(0) + K**(0). For 0n , a root of (2.5),

0 = K (0 ) = K*(0*) + VK*(0 )(0 - 0*) + K** (0 )n v n n o  n n n o n v n

= K (0*) + VK (0 )(0 - 0*) - VK**(0 )(0 - 0*)n v 0 n v n n o n n/ v n o

+ K**(0 ) - K**(0'c) . n n n o
Hence

. „ j //X , GB
||^ K (0X) + VK (0 )/n(Q - 0 *) II < n̂ . 2. H --- --- - || 0 -0*'n o n n/ v n o  1 n n o

1 11
2H, —  Z I (X,)l 0-0*1 1 r~ . , B l n o  /n i=l n

So for large n

P{w I II v/rT Kn (0*> + vXn (0n)v/n(0n-0*)|| > en )

<  P { M | S n S B n >  2 H t  j- 7 i  < x ± ) . I I e n - e * U  >  e n > +  p { u | e n $ B n }
/n i=l n

1 n< P{o)|2.H1 —  E L  (X.).6 > e } + o (1)— 1 1 j- . , B l n n P/n i=l n

P(w| —  Z Iu (X.) -} + o (1)r  . -B v i' 2.H .6 p/n i=l n I n

_<_ en^.4.H^.6^ P(B^) ((n-l)P (B^) + 1) + o (1) (Chebyshev’s Inequality)

Letting e = 6 2 see that n n

e 2.4.H^.62. (n-l).P(B )2 = 0(n63) = o(l.) , and n I n  n n ’

e .4.H-.62 P(B ) = 0(62) = o(l). So, n I n  n n ’

P{a)|||v/n~K(0'')+VK(0)/n(0-0*')ll>62}~*O as nn o n n' n o

a  • s  • *Finally, by the uniform convergence, and since 0^ -- * 0^
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VK (0 ) -----* VK„ ( 0 X) , and thenn n G o
o

v ^ ( e n - 0 * )  = -  {VK ( 0 * ) }” 1 /n  K (0*)  + o (1)  , n o  G o  n o  po

which  p r o v e s  t h e  r e s u l t  by t h e  m u l t i v a r i a t e  c e n t r a l  l i m i t  theorem  used  

i n  Theorem 3 . 4 .

Uni form c o n v e rg e n c e  i s  t h e  e s s e n t i a l  i n g r e d i e n t  i n  t h e  p ro o f  of  

t h i s  theo rem .
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SECTION B: ROBUSTNESS - THEORY AND APPLICATION

C h a p t e r  4

Weak Co n t in u it y  and Functional Deriv a t iv e s

§4.1 Background

In data analysis the P that describes the underlying process is

most likely not in P. This has two effects on the theory. Firstly,
estimators T are consistent to some 0. £ 0, but P does not n 1 91
uniquely correspond to the generating P in any known way. Secondly,

the predicted rate of convergence under the model (for instance through

asymptotic variance) can be replaced by a radical departure even if P

is "close" to a P in the sense of some neighbourhood. FurtheroO
criteria are necessary to take into account these latter considerations 
when choosing an estimator.

The development of robustness theory saw the structuring of such 

criteria. This began with the most important case; that of location for 
an i.i.d. sequence X generated from a symmetric distribution Gq.

Tukey (1960) gave an example with a set of mixtures of two normal 
distributions, the "contaminating" one having the same mean as the other, 

but a larger variance. In this situation there is no question as to 

what one is estimating, and the simple model provides a vivid illustra­
tion of the unsatisfactory behaviour of the sample mean and sample 

standard deviation under mild perturbation from strict normality. This 

compares with the acceptable behaviour of trimmed and Winsorized means. 
Huber (1964) arrived at an M-estimator for which the asymptotic variance 

was minimax amongst asymptotic variances of M-estimators consistent in
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symmetric e-contaminated neighbourhoods of the normal distribution.

Again in 1972 he reviewed several methods that were stable under small

symmetric departures from the underlying model. The lead away from the

location parameter was taken by Hampel (1968). He argued heuristically

in his thesis that sensitivity of estimators to observation values can

be examined through the properties of the estimator functional at the

model F. Robustness in that sense can be basically summed up: if the

distance of the true G from F is small enough, then the distance
o

between the induced distribution laws on the estimators, JC (T ) andG n

»Cp (T ) respectively, is also small. We are interested in the para-
0 n o

metric procedure and not in a particular G , and hence consider 

neighbourhoods of an F .

Erratic behaviour of an estimating functional T[•] on e-contamin- 

ated neighbourhoods

n(e,F0) = {(1-6)Fq + «H | 0 < 6 < e , H £ G} ,

will indicate the possible erratic behaviour of TfF^] when a single 

observation is permitted to greatly vary from the rest of the sample.

On the other hand the Prokhorov neighbourhood allows for small round-off 

errors with large probability and gross errors with small probability 

within the sample. The former can be described as a modification of 

events A to A , the latter as a probability error of size 6. Our 

model assigns F^{A} to A; in fact we observe A plus gross errors 

with probability G(A) = Fn (A ) + 6. When distribution functions are
U O

close (within 6) in Prokhorov metric, then functionals T defined on 

the distribution space G which are weakly continuous are insensitive 

to such kinds of contamination.
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DEFINITION 4.1: Let T be defined everywhere in G. Then T is 

defined to be weakly continuous at F £ G if for every £ > 0 there 
exists 6 > 0 such that for every C F G ,  d^(F,G) < 6 implies 

IIT [F] - T [G] || < £»

That weak continuity of the functional T should be equivalent 
to uniform continuity in n of the estimators T^fX^] = T[F ] is 

seen as follows.

PROPOSITION 4.1 (Hampel 1971): Let T be defined everywhere in G and

put T = T[F ]. We say that T is consistent at F if T tends r n L n J n n
to T [F] in probability, where F is the true underlying distribution.

(i) If T is weakly continuous at all F, then T^ is consistent

at all F, and F -*JC(T ) is weakly continuous uniformly in n. 

(ii) If T^ is consistent and F -»-,£(1 ) is weakly continuous 

uniformly in n at all F, then T is weakly continuous.

Weak continuity alone may be satisfied by a broad class of 

estimators, even within the class of M-functionals. What we seek then 

are additional quantitative as well as qualitative results to help 
settle on a good robust statistical procedure. Quantitative results 
may relate to behaviour of asymptotic variance and bias within neighbour­

hoods of F_. "Breakdown points" or sizes of smallest neighbourhoods Ö

on which functionals exceed set values of asymptotic variance or bias, 

possibly infinite, may also be considered. In this thesis we emphasize 
M-estimators of a general parameter that have an influence function 
giving zero weight to "tail" regions of an F . Hampel initially pro­

posed the notion of these influence functions for symmetric location 

M-estimators, giving an example in his 1974 paper. This is a qualitative 

approach, although quantitative evidence may be found in support of it.
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While robustness theory indicates the use of some general

statistical procedures, specific application is often neglected.

Invariably one requires algorithms for the search of solutions, or

estimators, T . By examining asymptotics it is possible to reveal some n
relations which give a clearer picture to the identification of solutions 

of estimating equations. This is in addition to that already afforded 

in the manner of consistency arguments.

§4.2 Weak Continuity of M-Functionals
The relationship between weak continuity and consistency of 

Proposition 4.1 follows from the fact that if {y^} is any sequence of 

probability measures such that y^ => y then this is equivalent to 

dp(yn >y) 0 (Prokhorov 1956). Consistency then follows from the result 

of Varadarajan (1958), =» Gq almost surely. From this follows Fisher

consistency. Also bearing in mind the intuitive interpretation of the 

Prokhorov distance a natural robustness or stability requirement is that T 

should be continuous with respect to the weak topology (at least at the 

model distribution, but if possible for G in some pencil of neighbour­

hoods of the model).

Weak continuity of the M-functional T [ih,•] is closely related 

to condition B1 and Cl (of §2.2). Huber (1977) points out that f°r the 

M-functional for location to be weakly continuous, it is sufficient that 

\p be bounded and continuous. Also there is an assumption of monotonicity 

of \p, any corresponding loss function of which is convex. For more 

general parameters and influence function ip, weak continuity will also 

depend on the nature of the selection statistic. Endeavouring to 

establish Cl for Prokhorov neighbourhoods

np(e,Go) = lG G G ldp(G’Go> e) ■
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we take the now familiar approach via equicontinuity giving some 

preparatory results.

LEMMA 4.1: Given some distribution function G^, a continuity set A £ B

of G , and k > 0, there exists 6 > 0 such that for any G G G: o

dp(G,GQ) < 6 implies |G(A) - Gq (A)| < k .

PROOF: Since A is a continuity set there is some 6̂  > 0 for which 
61G (A ) < G (A) + k/2. We may choose 6. < tc/2. Then if d (G,G ) < 6, , o o J 1 p o l

G(A) < G (A ) + 6, < G (A) + k . o 1 o

Similarly, since R - A  shares the same boundary as A there is some
-6 6

<5„ > 0 for which G (A =G (R - (R-A) )̂ > G (A) - k/2. Choose z o o o
62 < k/2 and suppose dp(G,GQ) < Then,

-62G(A) > Gq(A ) - &2 > Gq (A) - K .

Taking 6 - min(6^,02) gives the lemma.

PROPOSITION 4.2 (Rao 1962): Let G^ be a probability measure on (R,B)
and CL be an equicontinuous family of real valued functions on R.

Then given arbitrary compact C C R, for each q > 0 there exists a
n

finite number of sets (A.) , where n = n(n) such that
J j=i

n
(1) (J Aj = C; (2) Â  H Aj , = <j>, for j j- j?; and (3) for each j,

j = l
Aj is a continuity set for Ĝ ; (4) for any x,y G A and f £ CC 
I f (x) - f (y) I < n.

REMARK 4.1: Both assumptions of separability and metrizeability of R

are utilized in the proof of this proposition.
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THEOREM 4.1:
Let CL be a class of continuous functions on R possessing the 

following two properties; (1) (yL is uniformly bounded, that is, there 

exists a constant H such that | f (x) | <_ H < 00 for all f E Cl and 

x £ R; and (2) (yL- is equicontinuous. Suppose £ G. Then for every 

e > 0 there exists a 6' > 0 such that d^(G,Go) < 6 implies

supf 6 f dG - f dG < e . o

PROOF: Since R is separable and complete there exists a compact set

such that G (R-C) < e/(16.H). We can assume C to be a continuity

set of G . Let q = e/4 and {A.} subsequently be formed in the
J n n

manner of Proposition 4.2. Choose {y .} arbitrarily in {A.}
j j=i J j=i

respectively and let G* be the possibly improper measure attributing 

weight Gq (A^) to the point y^, for each j = 1,...,n. Then for each 

f e  CL

f dG - o f dG < E, o 1 —  . 1C J=1

< e/4 .

If(x) - f(yj) |dGQ (x)

Hence,

supf <E OJ j f dG f dGx < e/4 . 
o  —

Similarly, given G G G we let G* be that measure attributing weight 

G(Aj) to y^ for each j = l,...,n. And so

supf LCL f dG - f dGx | < e/4

f dG - o f dG" < H. E |G (A.) - G(A.)I .
j=l J

Now
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By Lemma 4 . 1  c h o o s e  6.  s u c h  t h a t  i f  G E G, d (G,G ) < 6.  i m p l i e s
J P o j

|G (A .)  -  G ( A . ) |  < e /  ( 4 . n . H ) . L e t  6 be  so  t h a t  i f  G £  G, o j  J o

d p (G,GQ) < 6q i m p l i e s  | Gq (R -  C) -  G ( R - C ) |  < e / ( 1 6 . H ) .  T a k i n g

6 = m i n ( 6  , 6 , , . . . , 6  ) ,  i f  G E Q a n d d (G,G ) < 6 i t  f o l l o w s  t h a t  o l  ’ n ’ p o

SUp f  e  a l I f  dGo - f  dG < sup f  dG -

f e a  ! r- c 0
f  dG I

R-C

+ s u p f e  a | f  dG -  o f  dG I + suPf E o J f  dG - f  dG

+ sup£ e a>Lf dGo ■ Lf dG’
< H. (G (R -  C) + G(R -  C))

+ e/4 + e/4 + e/4

< e

The Theorem i s  p r o v e d .

REMARK 4.2:  C l e a r l y  i f  R = E and t h e  d e c o m p o s i t i o n  o f  C i s  i n t o

t h e  s e t  - c  = a Q < a^  < ..........  < a^  = c ,  w h e re  t h e  a^  a r e  c o n t i n u i t y

p o i n t s  o f  G and A. = ( a .  . , a .1 , t h e n  Theorem 4 . 1  h o l d s  w i t h  d ^ o 1 1 -1*  l  p

r e p l a c e d  by e i t h e r :

(1)  t h e  Kolmogorov  m e t r i c  d^., w h e re

d k (G,G0 ) = SUPX g  “ Go ^ l *  o r

(2)  t h e  Levy m e t r i c  d ^ ,  w he re

d j ( G , G o ) = i n f { e I G ( x ) £ Gq ( x+e )  + e , G (x)  <_G(x+e) + e ,

f o r  a l l  x E E} .

In  a  s e n s e  t h e  a s s u m p t i o n s  o f  t h e  t h e o r e m  d e s c r i b e  t h e  m o s t  g e n e r a l  

c l a s s  f o r  w h ic h  t h i s  r e s u l t  h o l d s .  C o n s i d e r i n g  a w e a k e r  c o n d i t i o n  t h a t

sup
f  E (X'

f I dG < and  l e t t i n g  CL- be un b o u n d ed  i t  i s  p o s s i b l e  t o

c h o o s e  s e q u e n c e s  {f } E CL and {y } E R So t h a t  I f  (y ) | -> +<» 'i n y n 1 n w n 1

n -* 00. But  t h e n  g i v e n  any 6 > 0 l e t t i n g  G ( 1 - 6 ) G  + 66 , w h e r eo y
n
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6 is that degenerate distribution attributing unit mass to the point 
^n
y =

Supf € c j  J f dGo ‘ J f d G J  ' 5 | j fndG0 - M V 1
=• 6d fn(yn)l - suPf eCt f dG ) 1 o

+°° as n -> 00 .

This is even though d (G ,G ) < 6. Hence the result of the theorem 0 p o n —
could not hold if CL is permitted to be unbounded.

When the family CC is not equicontinuous there exists an z > 0 

and an x E R for which

supy 6 N  (n) Supf e c J f(x) " f(yn)l > e •

So if G = 6  and G = 6 , it is true that d (G ,G ) 0 buto x  n y ’ p o nn
f dG I > e. This again prevents the assertion ofsupf e aJ f dGo

Theorem 4.1. This does not mean the conditions on CL are necessary. 

Since in the latter example the distribution Gq was chosen in relation 

to the family CL. That is, if Gq were simply chosen to be a con­

tinuous distribution function, it is quite plausible that the theorem 

can hold for broader families CL than those specified in Theorem 4.1.

We now observe that if {ip(*,0)|9 £ D} form an equicontinuous 

family of functions that are bounded uniformly by a constant, that 

condition Cl of §2.3 is satisfied for the Prokhorov metric. That is 

given e > 0 there exists a 6 > 0 so that G £ n^(6,GQ) implies

sup e e D 'Kx, 0) dGQ (x) - i|/(x, e)dG(x) || < e •

Here n^ is the Prokhorov neighbourhood generated by the metric d^. 

So as a result of Lemma 1.6 and Theorem 4.1, it follows from condition 

C2 of §2.3 and uniform boundedness of \p on R X D, that condition Cl

is satisfied. The next result follows from Lemma 2.3.
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LEMMA 4.3: Let Bl, and C2 hold, and assume {ip( - ,0) |ö £ D} is a

family of functions uniformly bounded by a constant. Define the func-

tional T[i|j,*] uniquely by the selection functional || 0 - 0 ||. Theno
T[^,*] is weakly continuous at Gq.

PROOF: The assumptions of Lemma 2.3 are satisfied.

Similarly assumptions A can be verified with the application of 

Theorem 4.1. By Lemma 2.5 and Theorem 2.5 they are sufficient for 

uniqueness of solutions to the estimating functional equations, (2.8), 

in a set region of the parameter space. In particular note that if A1 

is satisfied and families {ip(-,0)|0 £ D), {Vi|>(*,0)|0 £ D) are uniformly 

bounded in Euclidean norm by some constant, then assumptions A2 and A4 

immediately hold.

The conditions sufficient for the weak continuity of T[î ,*] are 
simple. Moreover if conditions A hold we can assert that there exists a 
region about 0^ for which there is a unique solution to equations (2.8)

on a neighbourhood of F . Returning to Remark 2.1 following Theorem 2.2,0o
there is also a unique solution to equations (2.5) in that region 

f.a.s.l.n. if the sequence X is generated from a distribution G of 
that neighbourhood. Influence functions \p possessing "monotonicity 
properties", ensuring at most a unique root to the equations (2.5) or 

(2.8) for whatever distribution G G  G, then generate weakly continuous 

M-functionals. But if more than one root is allowed to exist further 
consideration must be given to the global arguments identifying the

M-functional.
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THEOREM 4.2:
Assume f^(0) is continuous in 0 £ 0 for all G E G, and given

L j

F ^ F we have that for every neighbourhood N of T[ij;,f,F ] = 0 0 0 oo o

inf0$N fF “ fF (T^ ’f>Fe 1) > 0 .

Suppose for every n > 0 there exists e > 0 such that d (G,F ) < e
P 0o

implies

sup0€0 lfG(0) ” fF (0)l < n •
0o

Then if conditions A of §2.3 are satisfied with respect to the Prokhorov 

neighbourhood n^, T[ip,f, • ] is weakly continuous at F^ .

PROOF: By Lemma 2.5, there is k* > 0 and e > 0 such that

d^(G,Fg ) < e implies that (ip, G) H U^Ä(0̂ ) consists of a singlek * o'
point, where

Hq (ip,G) = 10 I 0 e 0,Kg (0) = 0}

Denote 6(k*) = inf ^ , f (0) - f (0 ). Choose 0 < k ’ < k*
9 t U K*C9o) F0 F0 °, ° oso that

|f (0) - f (0)| < 6(k*)/2 for 0 e u , (8 ) .
F0 F0 0 K °o o

For k ' > 0 choose 0 < e* < c so that d (G,F ) < s' implies there
P 9o

exists a root 0 (ip, G) in U , (0q) , and

|f„(0) - f„ (0)| < 6(kx)/4 uniformly in 0 £= 0 .
G F0o

The root is unique in U .(0 ) T) u ,(0 ). Then  ̂ k,; o' k o

fr (0(*,G)) < f„ (0(i(i,G)) + 6(k*)/4 
G F0o

< fF (0 ) + 3.6 (k*)/4
0o
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< fp  ( 0 ) -  6 ( k 'c) / 4  u n i f o r m l y  i n  0 £  0 -  Ukä( 0q ) 
0 k o

o

< f q ( 9) u n i f o r m l y  i n  0 G 0 -  ^ ^ ( 0 ^  .

i n f 9 0 H o ( i G )  f G(0) f G(0(^»G))  .

That  i s  T [ ^ , f , G ]  = 0( ip ,G),  where 0(ip,G) i s  d e t e r m i n e d  by t h e  s e l e c t i o n

s t a t i s t i c  || 0 -  0 II • Hence o

II T [ ip, f  j G ] -  T[ip, f  , F0 ]|| < k *
o

whenever  d (G ,FQ ) < e ’ . The f u n c t i o n a l  T i s  weak ly  c o n t i n u o u s .
P 9o

Theorem 4 .2  p r o v i d e s  s u f f i c i e n t  c o n d i t i o n s  f o r  weak c o n t i n u i t y  of

t h e  M - f u n c t i o n a l  when a s e l e c t i o n  s t a t i s t i c  i s  r e q u i r e d .  I t  i s  emphas ized

t h a t  t h e  c o n d i t i o n s  a r e  by no means n e c e s s a r y .  For  i n s t a n c e  t h e  s e l e c t i o n

f u n c t i o n a l  f G(0) can be weakly  c o n t i n u o u s  a t  F0 i n  t h e  s e n s e
o

d e s c r i b e d  i n  t h e  Theorem, b u t  i t  i s  e q u i v a l e n t  i n  i t s  a c t i o n  t o  t h e  

s e l e c t i o n  f u n c t i o n a l

f “ (0) = f G(0) + Ix|| dG(x)

where R i s  a F r e c h e t  s p a c e .  We assume t h e  l a t t e r  t e rm  i s  f i n i t e  ( s e t  

i t  e q u a l  t o  z e r o  i f  n o t ) .  C l e a r l y  f “ (0) does  n o t  s a t i s f y  t h e  weak
Cj

c o n t i n u i t y  p r o p e r t y .

§4.3 Frechet Di f f er en t i ab i l i ty

In  a r e c e n t  Ph.D.  t h e s i s  Reeds (1976)  examined t h e  d e f i n i t i o n  o f  

von Mises  f u n c t i o n a l s  and t h e i r  d e r i v a t i v e s .  Von Mises  (1947)  gave an 

i n i t i a l  f ramework o f  t h e  f u n c t i o n a l  d e r i v a t i v e ,  and t h i s  was s u b s e q u e n t l y  

f o l l o w e d  up by F i l l i p o v a  ( 1 9 6 2 ) ,  and K a l l i a n p u r  ( 1 963 ) ,  a l t h o u g h  domains 

o f  t h e  f u n c t i o n a l  v a r i e d  and t h e r e  e x i s t e d  some c o n f u s i o n  a s  to  t h e



99.

nomenclature of the derivatives. The latter author discussed 

specifically the M.L.E. with emphasis on its asymptotic efficiency among 

a class of Von Mises functionals of second order. Relatively strong 

conditions that included Cramer’s conditions for asymptotic normality 

were imposed to prove existence of derivatives.

Statistical application of the approach through functional deriv­

atives requires establishing asymptotic normality and the examination 

of higher order properties of estimators. It brings into a common 

structure estimators of diverse origin.

If we consider functionals defined on the linear space of finite 

signed measures

M = {aF + bG I a,b real, F,G ££ G} ,

we can give simply three notions of derivative. M is a normed linear 

space with respect to ||H||/C = SUPX |H(x) “ H(-°°)| where R = E, or 

IIHII * = total variation of H, when H £ II. Let the functional T : M Er. 

Define derivatives for T at Gq £ H as follows: first, for any (4.1) 

continuous linear map L : M E , and H £ H define associated remainder

' T[GQ+tH] - T[Gq] - L[tH] , t f 0
R(GQ+tH)

0 t = 0 .

Suppose

R(Go+tH)
(4.2)

(i) T is said to be Gateaux differentiable at Gq with

derivative = L if (4.2) holds for all H ££ M ;
o

(ii) if (4.2) holds uniformly for H lying in an arbitrary

compact subset of M, is called a compact derivative

of T at G ;o
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(iii) if (4.2) holds uniformly for H lying in an arbitrary bounded 

subset of M, T’ is called the Frechet derivative of T at
(jr

G .o
These derivatives are successively stronger. Now T is Frechet

differentiable at G if and only ifo

llT[G]-T[G ] - T* (G-G ) II = 0(IIG-G II*) (4.3)O U O Oo

for some continuous linear functional . But many statistical
o

functionals are not defined on M, and it is necessary to specify what is
meant by the derivative. (Hampel 1968, P.39 implies that the extension

of the functional T from G to the space of signed measures can be

made in a "natural way", but the extension is not specified.) If T is
a vector valued functional defined on a subset G' C G of distribution

functions including G and d is a metric on G, we say the statistical
functional T is Frechet differentiable at G with respect to (G',d)o
when it can be approximated by a linear functional T’ such that for

O
all G e G'

IIT[G]-T[G ] - T’ (G-G ) II = 0(d(G,G )) . (4.4)o u o oo

This definition was essentially used to define the Frechet derivative 

in Kallianpur and Rao (1955). They used G* = F, the parametric family 

of univariate distributions for which 0 C E. The metric was the 

Kolmogorov metric defined by

dk(G,Go) = suP-~<x«» !G(x) ■ Go(x)l •

The two definitions of Frechet differentiability (4.3) and (4.4) effect­

ively depart when the metric distance between G and Gq cannot be 

guaged solely from the difference G - Gq. Metrics which can, are the 

Kolmogorov metric, the total variation metric, and the bounded Lipschitz
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metric (Huber 1977). Boos (1979) adopts the expansion (4.3) although 
he restricts the domain of the derivative to be in line with the domain 

of the statistical functional T. Boos and Serfling (1980) take this 

approach to establish asymptotic normality of the M-estimator of location. 

Reeds (1976) on the other hand introduced the compact derivative in order 
to accommodate asymptotic normality arguments when statistical functionals 

were not necessarily Frechet differentiable.
Kallianpur and Rao (1955) introduced Frechet differentiability for 

a class of Fisher consistent estimators, showing that any statistic 

belonging to this class was consistent and asymptotically normally 

distributed with asymptotic variance greater than or equal to [n 1(6)] 
where 1(0) is the Fisher information function. Rao (1957) was able to 

show that the M.L.E. for the multinomial distribution was a member of 
this class, and hence efficient with respect to this class. But 

Kallianpur (1963) reported that in general neither author could under any 
reasonable set of assumptions (on the density function in the continuous, 

and the probability function in the infinite discrete case) prove Frechet 

differentiability of the M.L.E.. It was felt that Frechet differenti­
ability was too severe a restriction when dealing with the infinite 
dimensional (non multinomial) situation. This was the motivation for the 

latters article on "Volterra" derivatives. By results from §4.2 and 

§2.3 we can obtain some restrictive conditions under which Frechet 
differentiability can be established for the M-functional. They are 

restrictive only in the sense that for a number of parametric families 

they will not be satisfied by the M.L.E., which can still be an efficient 

estimator in the first order sense of Rao (1963).
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THEOREM 4 . 3 :

Assume c o n d i t i o n s  A of  §2.3  ho ld  w i t h  r e s p e c t  to  t h e  n e ig h b o u r h o o d s  

g e n e r a t e d  by a m e t r i c  d on G. Suppose f u r t h e r  t h a t  f o r  G £  G' C G '

i | ; ( x , eo ) d ( G - F 0 ) ( x )  = 0 (d (G, F0 ) )  .
o o

( 4 .5 )

Le t  F C G ' . Then T [if», * ] i s  F r e c h e t  d i f f e r e n t i a b l e  a t  F w i t hUo
r e s p e c t  t o  ( G ' , d ) ,  and h a s  d e r i v a t i v e

Tp (G-F ) = -M(60 ) 1 * ( x , 9 0 )d (G -F  ) (x)
0 o ■* <

o

where  M(0 ) i s  g iv e n  i n  c o n d i t i o n  A3.

PROOF: A b b r e v i a t e  T [ ip, • ] = T [ • ] ,  and l e t  kx , e be g iv e n  by Lemma 2 . 5 .

Le t  { e ,  } be so t h a t  e, 1 0+ a s  k -v °°, and l e t  {G } be any s e quenc e  
k  k  c .k

such  t h a t  G C n (c ,  ,F  ) H G ' . Here n (c .  ,F ) i s  t h e  ne ig h b o u rh o o d  
e ,  k  0 k  0k o o

of  d i s t r i b u t i o n s  w i t h i n  d i s t a n c e  e, f rom F„ . I t  i s  s u f f i c i e n t  t ok 6o
show

IIT[G 1 -  T[F0 ] -  T- (G -  F0 )« = o ( e k ) .
k o 0 k oo

By Lemma 2 . 5 ,  T[G ] e x i s t s  and i s  u n ique  i n  U . (0  ) .  Also  n o t e  t h a t
K *  O ’

by a s s u m p t io n  A4

k-**>
||M(0 , G ) -  M(0 ) || * 0 u n i f o r m l y  i n  0 C D . ( 4 . 6 )

Examine t h e  two term T a y l o r  e x p a n s i o n ,

0 = Kp_ (T[Gr. ]) = Kr: (0^)  + M(0k ,G£ ) (T [ G £ ] -  0Q) ,
k ke. kk

G ' o' 
£k

where 0 G U (0 ) f o r  k > k and i s  e v a l u a t e d  a t  d i f f e r e n t  p o i n t s  f o r
K *  O — O

e ach  component  f u n c t i o n  e x p a n s i o n .  In  p a r t i c u l a r  by Lemma 2 .5

II0, -  0 II < IIT [G ] -  0 II 0 a s  k
K. O Ok

-> oo #
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Then from the expansion and (4.6) see that

IIT[G ] - 0 J = 0(K ) = 0(E, ) .
Ek ° Gek k

Consider the reformulation

T[Gr ]-0„ = - M ( 0 J  V  (0 ) + M (0 ) 1 (M(0 ,G )-M(0 )) (T[G ]-0 ) .
k e. k kk (4.7)

Since by continuity of M(0) and (4.6) ||M(0. ,G )-M(0 ) II = o(l)k ’ e, o

IIT [ G ]-0 -Ti (G„ -F„ )ll = o (1 )0(d (G , F )) - o(c,).£ ' O F E 0k 0 k o e. ’ 0 k o

The theorem is proved.

Now if i|;(x,0o ) is a function of total bounded variation, and if 

for all G 6  G integration by parts

<Kx,0o )d(G-F0 ) = - [(G-Fq )(x)d^(x,0Q ) , (4.8)
o J o

is valid, then (4.5) is easily established for the Kolmogorov metric. 

Bearing in mind Remark 4.1 Frechet differentiability with respect to the 

Kolmogorov metric may be established by this theorem for certain 

M-functionals of univariate distributions. If (4.8) were to hold for 

distributions on E , where G(x) = G(x^,...,x^) given by

G(x) = G (x-j , . . . ,xk )
(~°° , X • . . x (-“ ,xk ]

dG(x) ,

it follows that (4.5) holds for the total variation metric. Conditions

on ij;(x,0o ) and F0 (x) are not so clear that we can easily establish
o

(4.5) for the Levy or Prokhorov metrics. But for instance if F0 were
o

an absolutely continuous distribution function on the real line, posses- 

ing a bounded density in which case

sup^£ g F0 (x+6) - F0 (x) < c6 uniformly in 6 > 0 , 
o o
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it is then not difficult to observe that if

F0 (x) 1 G(x+<5) + 6 , 
o

and G(x) < F (x+6) + 6 holds uniformly in x £ E, then0o

SUP I G(x) - F (x) I < (c+1) 6 .xtt üo

Hence

supx IG(x) - Fq (x)I £ dL(G,FQ )(c+1) , 
o o

and (4.5) can be established immediately from (4.8) for the Levy metric,

and also the Prokhorov metric since dT < d . The latter metric isL - p
defined on more general spaces and cannot always be compared with d^.

From the relations d £ d,,d £ d , Fr^chet differentiability withlj k. p l
respect to the Levy, Prokhorov, or Kolmogorov metrics implies differenti­

ability with respect to the total variation metric. Beran (1977) 

advocated the Hellinger metric, d^, for robust parametric estimation.

The topology generated by d^ is equivalent to that generated by the 

total variation metric since d~ < du < 2̂ d (Stautde 1978).

If a selection functional is used then the same condition on the 

selection functional as that described in Theorem 4.2 ensures Frechet

differentiability of T[>,f,*] at F . This is because differentiabilityuo
is only a local argument.

If T [if», * ] is Frechet differentiable with respect to (G,d^) at

a continuous distribution F , and if Ao of conditions A in §2.3 is0o
satisfied, there exists an expansion

v^Cr^.FJ-TU.Fg ]) = -M(e0)_1Ä  iHx,0o)dFn(x) + o(dk(Fn,F0 )).
o o

(4.9)

If F^ is the empirical generated by F̂  , then for the i.i.d. sequence
o
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X, a result of Kolmogorov gives that
2

lim P{n 2 sup (F (x) - FQ (x)) < A} = 1 - e n-x» x n 0o

(Hajek and Sidak 1967, P.199). That is o(d^(Fn,Fg )) is o (1).
o

Hence i/n(T[iKF ] - T[i[>,F ]) converges in law asymptotically to an 0 o
normal random variable with mean zero and variance covariance matrix 

2o (ib,Fq >0o)- More generally if F is generated by an i.i.d. uni- 
o n

variate sequence taken from arbitrary G £ G it is shown in Appendix 2

that d, (F ,G) = 0 (n 2). k. n ’ p
The methods used to prove Frechet differentiability of the

M-functional follow similar lines to proving existence of consistent
asymptotically normal roots of M-estimating equations when the underlying

distribution lies in neighbourhoods of an F (cf. Theorem 3.A).
o

Clearly the asymptotic normality proof via direct expansion of the

estimating equations affords greater generality as it includes cases
where ip(x,0) is unbounded, whence condition A4 does not hold for
metrics dT, d,, or d .L k p

EXAMPLE: We illustrate by showing Frechet differentiability of the

M.L.E. of the multinomial parameter. Since observations are congregated 
on k points, representing k classes, there is no need for the 

Prokhorov metric to cover the possibility of rounding or gross errors. 

Apparently, Frechet differentiability with respect to (G’,d^), where 
G’ is the subset of distributions of G whose support is contained

within k points Xp < ^2 < .... < ŷ. saX’ as sufficient to show
asymptotic normality. Rao (1957) considered a representation of k

classes with hypothetical frequencies tt ̂  (0 ) ,....,^(0), while the

observed frequencies were written p^,...,p^. So in a sample size n
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the likelihood is proportional to Lr ( tt) =  tt^ • tt, . The k
maximum likelihood equations are then written

Pk du.p dir ¥
—  — -  +  . . . +  —  — -  =  0 . TT de Tr de1 k

For a multivariate parameter we can easily write these by considering

^(y,0)

1 Vtt1 (0 )
TT1 (0)

1 Vtt. (0)  + 
JV 0)

1 VTTk (0)
\ ( 0)

y-yj

iyj + r yj j

y < y.

7777(07 V7Tj+i(0) yj-y-yj+r ^ ^j+i

y - yk (4.10)

and they are then written iKx,6)dFn (x) = 0. We let F^ be the

distribution function attributing weight tk (0) to the point y^ 

1 <_ j k. Rao made assumptions

RA1: The expression

k tt . (0)
1(0 ,0) = - E tt.(0 )log — 7-~r , o’ . . iv o' 0 tt . (0 )1=1 1 o'

(I > 0)

which provides the average amount of discrimination between the
multinomial distribution defined by 0 and the true one defined
by 0 , is bounded away from zero II0 - 0 II > 6 for each 6 > 0,J o o

RA2 : tt̂  (0) , . . . , tt̂  (0) have continuous partial derivatives of the second

order in a neighbourhood of the true value 0q,

RA3: t t (©0)  ̂0 for e a c h  j, and  ( d T r ^ (0 ) /d 0 )   ̂0 for at least one j
(As a consequence of this assumption I(0 ) = (d/d0)K (0)

0 FeO
which is Fisher's information at 0 is ^ 0),

0=0

RA4: tt^ ( 0 )  = tt^ ( 0  for all i implies 0 = £.
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Under RA1-RA4 Rao showed existence of a neighbourhood of the true 

proportions tt(0 ), say N(tt(0o)), and a positive 6 such that 

p E N(tt(0o)) implies

(i) There exists one and only one root 0 of the likelihood

equation which differs from the true value of 0q by less
than 6. This root, as a function of the relative frequencies,

is continuous at tt (0 ) where it tends to 0 and is Fishero o
consistent.

(ii) 0 is Frechet differentiable (with respect to (F,d^)).

(iii) 0 is the unique M.L. estimate and is therefore the M.L.E. 

estimate.

The proof is given by Rao for 0 ^ E. Using M-estimation theory 
we extend the proof to 0 C E and Frechet differentiability is given 

with respect to the wider class GT. We replace RA2 and RA3 by

RA21 : (0) 7î(0) have continuous partial derivatives of the
second order in a neighbourhood of the true value 0q and are 

uniformly bounded away from zero on 0.

RA3 1 : ttj (0o) y 0 for each j, and

vkf q (eo) = -I(eo)
O

k { V1 TT. (0 ) } { Vtt . (0 )}
{V*(x,0o))dF0 (x)=- Z --- 3 „°(0 ) ....

O J=1 J o'

is nonsingular, and hence negative definite.

Let U (0 ) C 0. By continuity of the partial derivatives and 
0  ̂ o

RA3', there exists a constant H so that

sup
eeu6 (eo) SUPl̂ -k "h(e) "'3

Vtt. (0) II < H < oo .

Then
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sup - ITy (y.°)ll i raax1<i<k , -—  eeu. (a ) 3y ^ - k 1 yj+i'yjo
H ,

and so by Lemma 1.4 {ip(*,6)|ö e (0q) } is an equicontinuous family

uniformly bounded by some constant. Similarly

sup
06V eo>

{V' TT . (6) } { V ti - (0) } ,
supi<j<k11— — + v ^ v'vV 8)l—- — TTj (9) J

and so the family {ViK*»9)|9 (0q)} is equicontinuous and bounded

by a constant also. Conditions A are then satisfied with respect to the 

Kolmogorov metric and with D = (0q), 6^ > 0. Then (i) can be seen

directly from the remarks following Lemma 2.5, while (ii) follows as a

consequence of Theorem 4.3, since (4.5) is easily checked when G £ G*.

Hence the estimate 0 is asymptotically normal. Finally we can choose
the selection statistic f (x^n^,9) = -L ( tt (0)) , which satisfiesn % n ’

k
S

j=l

a. s. k

j=l
fn (x(n),e) = - s Pj loggte) > - z TTj(eo)iog t k (0o) = fp (0).

The convergence is uniform in 0 C Er provided the (0) are uniformly 

bounded away from zero. Since it is true that by RA1 that

infII9-9 II>6 ff (0) - fF (0O> = ±nf lie-9 II 3 1Trj (0o)1°8 T T S T  ” °’ o 0 0 o J-l io o J

part (iii) of the Theorem is confirmed by Lemma 2.6.

§4.4 The Influence Curve
Relationships between Frechet differentiability and robustness 

follow from the fact that Frechet differentiability of the M-functional 

implies boundedness of the influence curve, defined by Hampel (1974)

as follows:
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DEFINITION 4.2: Let T be a vector valued functional of real numbers,

defined on some subset of the set of all distribution functions on R

for which T is defined. Denote by 6 the distribution functionx
determined by the point mass one at any given point x £ R. Mixtures of

G and some 6 are written as (l-c)G + e6 , for 0 < e < 1. Then the x x
influence curve IC „(•) of ("the estimator") T at ("The underlying 

distribution function") G is defined pointwise by

IC (x) = lim {T[(1-e)G + ed ] - T[G]}/e ,1G elo x

provided that the limit is defined for every point x £ R.

In some situations we will consider it sufficient to show the 

existence of the limit at all bar a finite number of points.

Existence of the Frechet derivative with respect to (G,d) at F0o
where d is either Kolmogorov or Prokhorov metric, implies that for 

the gross error model

n(e,F0 ) = 
o

T[G]-T[F0
o

{G! G

c

= (1-6)F + 6H, H G  G,0o

IC (x)dG(x) + o (e)TFeo
IC (x)dH(x) + o(c)T F e O

0 < 5 < e}

In that case

b1(e) = suPG e n(F,F ) l|T[G1 ' TtF0 111 = ^  + o(£) >’ 0 Oo

with y = sup l|lCTTr (x) || . We call this the gross error sensitivity.X it
o

Hampel (1968) used the equivalent Euclidean norm, where ||a|| is given

as the sup I a I, where |a| is the vector of absolute values of components

of a. Hence he defines gross error sensitivity y* = sup sup|ICTV (x)|.x n Q
o
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Huber admonishes us, pointing out that if only the weaker Gateaux 

derivative is available, then there exist examples where

(i) y *  < co but b1(e) = 00 for e > 0

(ii) Y = 00 but lim b(e) = 0 for £ -* 0

The influence curve exists for the M-functional under weaker con­

ditions on ip than those imposed to show Frechet differentiability with 

respect to the metrics. But the mode of proof is the same.

THEOREM 4.4:

For x G R assume there exists a set D = D such that conditionsx
A of §2.3 hold for the starlike neighbourhoods n (e,F ). Then thex 0o
influence curve T [ ip, * ] at F exists and is given by0 „

CT[*,-],eo(x) -M(e ) Xi(j(x ,0 )O O

PROOF: Letting {e. } be so that £.4-0 then for Gk k e,k

IIM( 0 , G ) -  M ( 0) || = e , | | M ( 0 )  - ViKx,0)|| -> 0 .C - K.k

(1-Ek>Fe + \ 6xO

(4.11)

From (4.7)

T[Ge 1_eo = 'M(0o)KG (0o) +H(eo)"1(M(0k>G£ ) - M(0 )) (T [G ]-80) ,
k e. k kk

and since K Q (0q) = ekij;(x,0o) 
Gk

T[G£ ]-0o ~ -M(0o)ekiKx,0o) + o(Ek) •

So

limk-« {Tl(1-ek>F0 +Ek6x 1-0O }/Ek = -M(0o)*(x,0o) . o

Sometimes there can exist a few points x E R at which ip(x,0) 

has not a continuous partial derivative at 0 , but the proof holds at



111.

all other points of the observation space.

Those M-functionals at which = + °o are considered non-robust. 
Those that are Frechet differentiable necessarily have finite y * and 

the M-estimators are asymptotically normal with covariance matrix

ö20,F ,0 ) = var (ICTF (x)) •
o 9 0

o o
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C h a p .t e r  5
Qu a n t i t a t i v e  and Qu a l i t a t i v e  Cr i t e r i a

§5.1 Sensitivity and Breakdown Verses Efficiency

Weak continuity and Frechet differentiability are useful notions 

in studying the robustness of the M-functional in infinitesimal departures

from the model F . Kallianpur and Rao (1955) show that if the M.L.E.uo
is Frechet differentiable, then it is asymptotically efficient among the 

class of Frechet differentiable functionals (with respect to (F,d^)).

It is then the natural choice of estimator. Under weak regularity con­

ditions on ip the M-estimator for the invariate parameter is asymptotic­

ally normal under a parametric family F. If F is absolutely continuous 

with respect to measure y on R with a corresponding family of density 

functions, {f 10 £ 0} whose support is independent of 0, then M(0)
O

defined in conditions A is in fact given by

M(e) = -covF | > ( x , e ) ,v log f0(x) ] .
0

From this, or directly from the Cramer-Rao bound, we obtain the inequality

a 2 (ip> F » 0) >_ 1 (o)
6

where

1(6) (V log fQ (x) }2f0 (x)dy (x) < 00 ,

(5.1)

is the Fisher Information Matrix. The inequality (5.1) concerns the 

diagonal elements only in the multivariate case. For the univariate 

parameter the asymptotic efficiency is defined

M(6)2_____
I(0)varF {ih(X, 0)}F e

e(0) = (5.2)
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Then 0 <_ e(0) £ 1 for any M-estimator. The M.L.E. attains efficiency 

one. But for parameters of normal families, the influence curve of the 
M.L.E. which corresponds to the efficient score is unbounded. Then the 

M.L.E. is neither Frechet differentiable, nor robust. Normal families 

are so often used for the ostensible reason that normality frequently 

occurs in nature. Realistically they present a convenient mathematical 

representation. It is not necessary to abandon normality, but perhaps 

to abandon the M.L.E., if circumstances warrant it.

Hampel (1968) introduced the measures of sensitivity and breakdown 

to compare M-estimators in departures from a model. In 1971 he formalized 

a definition of breakdown of an estimator functional T as follows:

DEFINITION 5.1: Let {T^} be a sequence of estimators. The breakdown
point 6̂  of (T^} at some probability measure G is defined

6^ = 6^({T^},G) = sup{6 <_ 1 I there exists a compact set K = K(6) 
which is a proper subset of the parameter space so that 
F £ n^(6,G) implies FlT^ ^ K} 1 as n ->• °°}.

LEMMA 5 . 1 :  If \ p , f determine an M-functional let

= {6 < 1 there exist a compact set K = K(6) which is a
D  —

proper subset of the parameter space such that F E n (6,G) 

implies T[ih,f, * ] is weakly continuous at F, and

t [<m ,f ] e Kint}.

Then Sg < «H({ T[i|),f,Fn ]},G).

PROOF: The proof follows from Proposition 4.1 and consistency.

Another definition of breakdown is found in Huber (1977). His 

criticism of previous breakdown point investigations was that the con­
vergence F(Tn £ k } 1 need not be uniform in F £ n . Unfortunately
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it is sometimes impractical to evaluate 6„ and and even more so
d rl

this latter breakdown. If it were known that there existed at most a 

unique solution of the equations (2.8) then would be the smallest

neighbourhood of G such that H(^,F) = , for some F in the neighbour­

hood. But in the estimation of scale using Huber's Proposal 2 it was 

possible to observe that <$g = 1 even though there existed a sequence

of distributions {G } for which T[^,G ] •+ °° and d (G G) 1 . Whatn n p n
is necessary is an indicator of behaviour of the M-functional on 

neighbourhoods of a distribution G that can be readily computed.

DEFINITION 5.2: Let {T^} be a sequence of estimators. The local break­

down point 6 of {T } with respect to the triple (G,K,n), wheren
G £ G, K is a subset of the parameter space, and n is a neighbourhood 

centered at G, is

6, = 6t ({T },G,K,n) = sup{6 < 1|F £ n(6,G) implies
Li n

F[T E K] 1 as n -> 00}. n

This can often be readily computed in the e-contaminated neighbour­

hoods for the univariate M-functional (see §6.3).

§5.2 R e d e s c e n d i n g  I n f l u e n c e  F u n c t i o n s
At the root of understanding robustness is the question; "What is 

the significance of T[G] when G ^ F ?" This depends to a large extent 

on the nature of the departure from F , and on F itself. The most 

easily represented departure is e-contamination

Gq = (1-e)F0 + eH (5.3)
o

where 0 < e < 1 is small and H varies in G. Setting H = 6x and

letting x 00 simulates the behaviour of T in the presence of grossly

erroneous observations. For the representation (5.3), ||T[G] - T[F ] ||Üo
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denotes the "asymptotic bias". As it turns out breakdown bounds and

asymptotic bias using either e-contamination or Prokhorov neighbourhoods
are determined at a particular 0 . They do not naturally transfer to

the whole family F as for the location family which is an exception.

This realization suggests that if we are to guard against a

particular kind of contamination H we may need to proceed adaptively

in 0 ^ 0 .  Our object then is to gather information that contributes to

F but to screen out observations that fall in regions corresponding 
o

to "tails" of F„ Since 0 is not known we consider a construction 0 oo
for general 0. Then since the estimator is assumed close to 0q con­

tinuity of F^ in the parameter leads to approximately the right action 

on the "tail regions". For the moment we define the selection statistic 
(functional) to be f (0) = II0 - 0 II for a departure of the form (5.3).

It is necessary to make a judicious choice of ip for both asymptotic 

efficiency at the model and asymptotic bias away from the model. We link 
the observation space to the parameter space in the following manner.

DEFINITION 5.3: The set of null influence N(ip,0) C R associated with
an influence function \p is defined

N(ip,0) = {x £ r |^(x ,0) = 0} .

Observe that if G is given by (5.3) where
N ( i M J

dH = 1,

0 = T[ijj,Ffi ], and M(0 ) is nonsingular, then it is true that
o

T[4̂ ,Gq] = 0Q and M(T[i|j,Gq] ,Gq) = (l-e)M(0o). For suitably regular ip

there exists an asymptotically unique consistent sequence of roots

{T[4»,Fn] } to 0q for which v̂ n(T[4̂ ,F^] - 0q) is asymptotically normal
2 -12with variance covariance matrix a (4», Gq , T [ 4»» Gq ]) = (1-c) o (^>Fq ,0 ).

o
Then the only departure in the usual convergence at the model is an 

increase in asymptotic variance of the order (1-e)
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The optimal choice for N(i/j,0) is a tail region of F , where a
0

single observation is least likely to fall. It can be employed also 

according to the sample size. For instance it may be possible to choose 

Nn ('p, 0) so that

l - P B{X(n) e ( R - N  (i|/,0))n } = .05 n = 1,2,... (5.4)U n

Finally, note that the influence curve is zero on N (ip,0).

It was remarked by Hogg (1977) that the notion of the redescending 

influence function and asymptotic efficiency one were not necessarily 

incompatible. His illustration was the M.L.E. for location of a Cauchy 

distribution, where

ijj(x-e) 2 (x-9)
i + (x-e)2

which tends to zero as jx—0 1 -*■ °°. The contrast is the M.L.E. for loca­

tion of a normal distribution for which

iKx-6) = x-0 .

To determine an optimality criterion that balances efficiency and 

sensitivity Hampel (1968) provided his Lemma 5. There is a simple exten­

sion of it that includes the notion of a set of null influence. Since

we have only a single parameter we use the abbreviation ij>(x,0) = V logf (x) .0

LEMMA 5.2: Let f^(x) be from a model family of densities with respect

to (o-finite) measure p (on R) and let 0 C E. Densities are assumed 

regular in the sense that each density is positive on (closed) support S 

(not depending on the parameter 0), and {VfQ(x)|0 E 0} are measureable

on S, zero elsewhere, with | Vf^(x)dp(x) = 0 and

1(9) i|j(x ,0) f„(x)dp(x) < °o. Set N(0) C R to be a specified set of

null influence for which
R-N(0 )

fQ(x)dy(x) > 0; let b(0) > 0 be some

constant; define
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<(x,0)
min( I ip(x, 0)-a I ,b(0) )sign(i|;(x, 0)-a) x £ R-N(0)

otherwise.

Then there is an a(0) so that | ip (x,0)f (x)dp(x) = 0. Define
j CL { u ) 0
ip(x, 0) Vf „ (x)dp (x). Assuming c(0) i  0,

U
ip(x,0) = if)' v(x,0) and c(0) = a (0;

2then ^(*,0) minimizes a (ip,F ,0) among all ip with0
i|;(x,0)Vf (x)dy(x) ^ 0, and with the same upper boundÜ

f .
k (0) = b (0) / I *Kx, 0) Vf A (x)dp (x) I

for the sensitivity.

PROOF: For brevity we drop the function arguments where possible and

let Vf (x) = f '. By the dominated convergence theoremÖ ip fdp is a a
continuous function of a, and as a  ±°°, this inegral tends to

+ b f dp; hence there is an a(0) with
R-N a(0)

loss of generality we can assume ip f dp = 0 and

f dp = 0. Without 

^ f ’ dp = c so that

we have to consider \p f dp . Then

[ (vp-ot (0) ) -ip] f dp ( i p - a ( 6 ) )  f dp - 2 ipip f dp + 2 a.(0)ip f dp

+ ^ f dp

(ip-a(0)) f dp - 2 ip f* dp + 2a(0) ip f dp

+ ip^ f dp

(ip—ct (0)) f dp - 2c + 0 + ip f dp .

On the other hand

[ (ip—cx (0) ) —ip] fdp (ip— a  (0 ) ) fdp + (ip—ot (0 ) —ip) fdp
N J (R-N)H{ |ip-a(0) I >b}

+
(R-N)H{ |^-a(0) I <b}

(ip—cx (0) —ip) fdp

and since < b this is minimized when ip = ip whence the lemma follows,



118.

COROLLARY 5.1: If N(0) = 4) then c(0) > 0, and the resulting Lemma

corresponds to Lemma 5 of Hampel (1968).

COROLLARY 5.2: if b(0) = +°°, then

\p(x,e) =  -

ij;(x,0) - P (0) x E R - N (9)

o x E N(0) ,

where P(0)
R-N

i(x,0)fG(x)dp(x) /
R-N

fG(x)dy(x), and whenever

f ip(x,0)VfQ(x)dy(x) 4 0 .

REMARK 5.1: Care should be observed in applying the resulting \p. Dis­

continuities may preclude use of presented asymptotic normality theorems, 

It is clear though that one can obtain a sufficiently smooth sequence 

of functions {1̂ }  that satisfy ^(*,0) ^  ^(*,0) a.e. y as j 00.

Then ^  f dy -+

j"*

-2ip f dy and
R-N

iJk  f ’ dy ip f' dy, so that

o2(i|)j>Fe,8) -- * o2 (i,FB,e)

EXAMPLE 5.1: For the normal location family setting N(0) = <j>, and
b(0) = c reveals the solution corresponding to Huber’s (1964) minimax 

psi-function, t|;(x) = min (max (-c, x) , c) .

EXAMPLE 5.2: Setting b(0) = +°° and N(0) = (-°°,-c+0) U  (c+0,°°) for

the normal location family gives the influence function of Example 2.2.

There, consistency of 0^ = 0(F^) was established. Also observe 
- a. s.

Kn(©n ) ---> K^(0) = 0. Without loss of generality suppose < 0. By

expanding i p ( x - Q ^ ) = ip(x) + V(£)0 in the region [-c,0n+cl, and noting 

ip' (C) = 1 , there exists the corresponding expansion
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K (0 ) = K (0) + n 1 ( X I x - , , (X.) 1 (0 -0) n n n 1 . _ [-c,0 +c] l j n^ i = l  n 1

1 n i n
+  -  x (x.-e ) i rS ,(x.) - -  x (x.-e ) i r- , (x. ).  (5.5)n . , l rr [0 -c,-cj 1 n . 1 1 n [0 +c,c] 1L n i=l 1 ni=l

-I5For consistent 0^ the two latter terms are o^(n ). Supposing that 

Ä a. s.
/n K (0 ) -- ► 0, asymptotic normality follows from the C.L.T. forn n
v'rT K^CO). Then /11 0^ is asymptotically normal with the usual asymptotic 

variance,

o (̂,$,0) \p2 (x)d$(x) / ( I (x)d$(x) )2 .

The two latter terms of the expansion (5.5) are composed of those

observations that contribute greatest towards the values of K (0 ) and0 n n'
K (0). Observations X. near the underlying location parameter have n 1

little weight. This suggests that contamination about cut off points ±c 

can be a vital concern for behaviour of the estimator. We choose the 

null set N(0) C R to dampen the asymptotic bias given a particular kind 

of contamination. Choosing an upper bound b(0) for the influence curve 

keeps asymptotic variances stable in small departures from the model. A 

combination of the two would reduce the sensitivity of the estimator to 

contaminations near 9N(0).

Estimators based on linear combinations of order statistics and 

rank statistics do not necessarily behave in the same manner as the 

M-estimator in departures from the model. Huber (1977, P.24) has noted 

that using the influence curve as a tool to identify robust estimators 

at the parametric family F may not be adequate. The influence curve 

should also be examined under departures from F. If the set of null 

influence, N(0), for an L-statistic (linear combination of order statistics) 

is determined by its influence curve at it is most likely that it

will not correspond to the set of null influence at Gq given by (5.3),
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feven if I dH = 1. That is when an observation falls into the null 
•’N(e)

set it is still taken into account'to determine the ordering of the other 

observations.

§5.3 Mult iparameter Models

Construction of practical estimators that are both robust and 

efficient for multivariate models is governed by a number of complexities. 

Increasing the number of parameters can increase the possibility of zeros 

in the estimating equations. All zeros must be searched for numerically 

before a selection is made. This involves time consuming numerical 

searching algorithms. Robustness requires bounded influence curves but 

there is no natural choice for such, even in attempting to trade off 

efficiency with sensitivity.

Hampel (1978, P.436) published an incomplete result extending 

Corollary 5.1 to the multivariate parameter. To be realistic an analogous 

proof to that of Lemma 5.2 or its corollaries in the multivariate para­

meter case would necessarily assume M(0) to be a constant matrix.

This is generally not possible. But in estimation of location and scale
X — ywhere the influence function takes the form i|;(x,0) = (---), it iso

possible to write the matrix

M(y,o) = o-1
iĴ (x)dFo(x)

x^2 (x)dFQ(x)

Here ip = and F is the model distribution from which the

family F is derived. Given a vector £(y,a) the asymptotic variance is 

minimized among all the estimators with the same upper bound for sensitivity

k(h,o)
\j

IM(y,o) 1b(y,o)|

where represents the vector of absolute values of the elements, the
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bound being elementwise. Huber’s (1964) Proposal 2 for estimation of 

location and scale of the normal distribution given by

= min (max (-c, x), c) and

3c ^1(x)d$(x)

2 21>2 (x) = (x)-3c > where

minimizes the asymptotic variance of all M-estimators with upper bound 

k(y,o) given by

b(p,a) = (c,(c2-1)(2$(c)-1) + 2c<f>(c)) .

Any other M-estimators whose influence functions are so that their 

corresponding value of k(y,o) is bounded above by that of Proposal 2 

have asymptotic variance that is greater than or equal to that of 

Proposal 2. Alternatively if we set an upper bound on the sensitivity 

(Hampel’s 1968 definition)

y*(p,o) = y .ö

for some constant y, the Winsorizing constants of and that

minimize the asymptotic variance, are different. They are given by the 

equations

C-l (c2-l) (2<J>(c2)-1) + 2c2<Kc2)
Y " 2<D(c1)̂ l = 2. (2.$(c2)-1) - 4c2<Kc2) '

The choice of estimator is still left fairly open with no clear guidance 

for the choice of y. This is without considering the possibility of 

a set of null influence.

With more complex parametric families the requirement of bounded 

influence curves is satisfied by some minimal distance estimates. It 

will become clear in Ch. 6 that efficiency at the model as a sole 

criterion must be abandoned, and that estimators with only average 

efficiency can be quite attractive under small departures from the model.
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Then the main factor is the cost in employing the minimal distance 

estimate, particularly if the estimator is to be used on small samples 

where it may be necessary to account for small sample bias. Implementing 

bias reduction procedures, such as the jackknife of Quenoville (1956) 

may be costly due to the nature of implicitly defined M-estimates. 

Nevertheless Reeds (1978) demonstrates that asymptotics of the jackknifed 

estimates are equivalent to the M-estimates. But often it can be easier 

to correct for the small sample bias adopting the approach of Cox and 

Hinkley (1974, P.310). Taking the Taylor expansion approach the bias of 

the M-estimate is given by

E[0 -T[G]] n

-[2 i|̂ (x,0)Vi|;(x,0)dG(x) +
.

ip (x,0)dG(x) V ^(x,6)dG(x)]

2n[
r

Vip (x , 0)dG (x) ] 0=T[G]

+ o(n 1)

+ oCn'1) (5.6)

The bias is estimated by b(0n ,F§ )/n, whereby we adhere to the assump- 
n

tion of the model, at least approximately.
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C h a p t e r  &

Applications  to Location and Scale Estimation

§6.1 Theory for Location M-estimates

The theory of M-estimates of location of symmetric distributions 

has been well developed since Huber’s (1964) introduction of the minimax 

M-estimator. Specifically M-estimates of location are defined as solu­

tions of
n
E ip (X. - 0) = 0 , (6.1)

i=l 1

where ip(x) is assumed to be an odd function in x.

Equation (6.1) is not scale invariant in the sense that the solu­

tion formed from taking a multiple of the sample can be different from 

that using the original sample. Assuming a standard normal distribution 

is unrealistic and a scale estimate is often used. A typical statistic 

for that purpose is the minimum absolute deviation estimator

d = med ( I - med (X_j.) I ) / . 67 45 .

The M-estimator then solves

n
E ip

i = l

X . - B

The value .6745 provides d as a consistent estimator when the under­

lying distribution is $(x/o). With o known ip(x) = min(max(-l.5,x),1.5) 

gives efficiency greater than 95%. If o is unknown the asymptotic 

distribution of the M-estimator depends also on the statistic d. Then 

one can only speculate through behaviour of the strict location estimate 

with o-known on the behaviour or optimality of a particular criterion

(c.f. §5.3).
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Other authors recognizing that observations that do not belong to 

the normal distribution should be neglected introduce redescending 

influence functions. Some examples are:

1. Hampel psi-function

k (x) a, b , c a sign (x)

c- x

0 _< 

a <

, a sign (x) b < c-b —

0

x I _< a

x I <_ b

x  I <_ c

x > c

2. Wave of Andrews

’Kx)
sin (x/c) 

0

3. Biweight of T u keys

^BS(x)
x(l-(x/c)2)2

0

X I < C7T

X I > C7T

X I <_ C

X I > c .

Examples 1. and 3. have set of null influence (-°°,-c] U  [c,°°) U {0}, 

while that of example 2. is (-»»-ctt] U [ctt,00) U  {0}. Hogg (1979) 

provides the following suggested values

1. ) a = 1.7 , b = 3.4 , c = 8.5.

2. ) c = 1.5 or 2.

3 . ) c = 5. or 6.

For 3., c = 4.685 determines 95% efficiency with o known.

If contamination were restricted to the set of null influence,

ideally the choice of null set would exclude all observations that fell
more than just over three standard deviations from the location. In a

sample of size 30 generated from the normal distribution the probability
30 .that the largest observation is greater than 3.5 is 1 — $(3-5) = .007.

It is extremely unlikely to obtain an observation in (-°°,-3.5] U [3.5,°°).
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But all parameter values given above weight observations in that region. 

Admittedly the weight is exceedingly diminished from that which is 

attributed by the M.L.E. (^(x) = x). However it could be argued that 

it is preferable not to weight these aberrant observations at all.

Large parameter values of c were born out of the Monte Carlo studies 

of Andrews et al (1972) where the apparent concern is for both asymptotic 

variance and small sample variance in symmetric departures from the model. 

With large samples asymptotic bias becomes the predominant concern and 

smaller values of c would be more in harmony with the notion of a model 

normal distribution.

Perhaps most criticism of redescending psi-functions has been that 

they allow multiple roots to the estimating equation. Hampel (1974) 

suggests iterating a few times from an initial consistent estimate of the 

location, proposing the median to be an appropriate starting point. This 

gives rise to a natural question; "Will such an iteration take us closer 

to the M-estimator or in fact take us farther away?" We answer the 

question partially with the following analysis.

Consider the classical Newton-Raphson iteration when solving the 

equation

f(x) = 0 . (6.2)

Starting with as an initial estimate it takes successive estimates

by setting

£<V
x v+l X\> f’(X )V

0,1,2, (6.3)

For a particular root 6 of (6.2) we want to know of a region 

about £ in which the method eventually converges to £ for any choice 

of x q in the region. A rate of convergence is also of interest. 

Ostrowski (1960, P.44) describes an answer to both of these points in
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h i s  Theorem 7 . 2 .  The p r o o f  o f  t h a t  theo rem can be c a r r i e d  t h ro u g h  

assum ing  f i s  c o n t i n u o u s l y  d i f f e r e n t i a b l e  w i t h  p i e c e w i s e  c o n t i n u o u s  

second  p a r t i a l  d e r i v a t i v e .

LEMMA 6 . 1 :  Le t  f ( £ )  = f " ( 0  = 0,  f ' ( 0  = Aq > 0. Suppose {f (x)}

i s  a s e q u e n c e  o f  f u n c t i o n s  s a t i s f y i n g

(1) f ^ ( x )  f ( x ) ,  f ^ ( x )  f ' ( x ) ,  f ^ ( x )  f " ( x ) ’ u n i f o r m l y  i n  x E E

a s  n Then t h e r e  e x i s t s  an open n e ig h b o u rh o o d  N ( £ ) ,  such  t h a t  f o r

s u f f i c i e n t l y  l a r g e  n ( f . s . l . n . )  t h e r e  i s  a r o o t  £ i n  N(£) o f  

f n (x) = 0. F u r t h e r  s t a r t i n g  w i t h  any Xq E N ( 0 ,  t h e  s e q u en c e  x^n  ̂

formed by t h e  r e c u r r e n c e  fo rm u la

, s , . £ ( x ( n ) )(n) = (n) _ n v

V+1 V '  f ' ( X ( n ) ) n v

0 , 1 , 2 , . . . .

a l l  l i e  i n  N(£) and we have

( 6 .5 )

x ^  —* 6 (v -> °°) .v Jn

F u r t h e r  g iv e n  any e > 0 t h e r e  e x i s t s  a n e ig h b o u rh o o d  N ( £ , e )  w i t h  t h e  

p r o p e r t y  t h a t  f . s . l . n .

(a)
»
v+1

-  X
( n )

(n) „ (n) I 2 — (v = 1 , 2 , . . . . )

v-1

P R O O F :  By c o n t i n u i t y  choose  0 < 6 < Aq / 3  so t h a t

(2) f l  X C f ' ( x )  < 1 4  A X e  ( £ - 6 ,£ + 6 )i J  o 1J o

| f " ( x ) I  < 1 X e  ( £ - 2 5 , 5 + 2 6 ) .

By (1) t h e  i n e q u a l i t i e s  (2)  a r e  t r u e  when f i s  r e p l a c e d  by f ^  f o r  

a l l  n g r e a t e r  t h a n  some n ( 6 ) .  Let  0 < k  < 1 /3  and choose  

n (ö ,K )  n ( 6 )  so t h a t  n > n(6, i<) i m p l i e s  £ - k6 < < £+k6 ( c f .

p r o o f  o f  Lemma 2 . 7 ) .  Choose X^n ^(n )  = 6n _h f o r  any 0 <  | n |  < (1 - k) 6 s a y .
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Observe by the mean value theorem

12
13 A no < £X n)^'> A n .o

Then it is true that

6
7 n £n(*

(n)
o
Cn7
o

( n) )

( n) )
uniformly in n _> n(6,ic) .

0 < InI < (1-k)6

set h^n\n) = f ( n ) ) / f l ( n) )  andn o n o

Hence

T n ) (n)  = [ x (n)  ( n ) , x ( n ) (n) + 2 l l n ) ( n) ]  C ( - 2 5 , 2 « )  .o o o o

sup I f"(x) I < sup I f"(x) I <  1  .£ j W  nw |  - ‘e-26<x<5+26 1 nw |  -
o '

2.l/n)(n)suP |f^(x)| < 2 . \  n.l < \  <5 < \  < || *
x G J v (u) o

6 M'̂  3 9 ”o 13 'o

< I f ' ( d n )  ( n ) ) In o

uniformly in n >_ n(ö,<), 0 < |n| < (1-k )6. By Theorem 7.2 of Ostrowski 

we can set

N(0 = (£ ~  (1-2k) 6, £ + (1-2k) 6) ,

since observe that (£-k6,£+k6) C N(£) and further given any

£^ £ (£-k6,£+k6) all points of N(£) are contained in the interval

(£n - (l-K)6,Cn + (1-k)6).
We now observe the last part of the Lemma. Since 6 may be chosen 

arbitrarily small, assume

|f"(x)| < Aq y j  . e uniformly in (£-26,£+26) .

For n >_ n(6,K) assume the corresponding inequality holds with f 

replaced by f . Then
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M (n) n sup
x e j (n)(n)O

fn(x)l " SUPC-26<x<S+2«l£n(x)l
A .24 

o

uniformly in n n(6,K) and 0 < |n| < (1-k)6. Then letting X^n^(q)
/ \

be the sequence generated by (6.5) with initial starting point X^ '(q) 

we have the result from (a) and (b) of Theorem 7.2 of Ostrowski by 

observing

Mn (n)
2.If*(*(n)n v

24_ 
o 13

( n ) ) I 2. —2 A 13 o

The Lemma is proved.

What has been shown is the existence of a region about the zero of 

f for which any initial estimate chosen in this region will lead to the 

Newton-Raphson iteration to converge to the zero of f for n large 

enough. A quadratic rate of convergence holds uniformly in n for 

large n. But the region in which convergence occurs can be explored 

further. The next Theorem pertains more closely to the M-estimating 

equations.

THEOREM 6.1:
Let f(£) = 0, f'(£) = A < 0  and set {f } to be a sequence ofo n

continuous functions with piecewise continuous derivatives satisfying

(3) f^(x) f(x) uniformly in x €= E

r(x) f’(x) uniformly in x £ E ,

where f'(x) is the left hand derivative assumed to exist for all x £ E. n
Given x we set X^1̂ = X for all n and define {x^°\ to be

0 0 0  v v=0
sequences defined by (6.5). Suppose 6 > 0 is such that f.s.l.n.,

00

Xq £ U^(£) implies the sequence { x ^  } converges to the root
v=0

6^ ^ Uß(£;) of fR (x) = Tor some £ > 0 suppose there exists an

X* > 6 for which
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O( r\ f(X)  ̂ „
2(X K ) f'(x)

2 (x-n - J-M- > pU  U  f ' (x)

X g  [s-x*,£-6] 

X G  [£+6,£+X*]

( 6 . 6 )

f'(x) < -a(X*) < 0  x G  [-x*,X*]

(n)Then f.s.l.n. X G [£-x ,6+X ] implies the sequence {xv y) con-o v nv=0
verges to £ G U r( 0  which is unique in [£-X*,£+X*]. n 6

PROOF: F.s.l.n. it is true that f^(x) < -a/2 for all x G [£-x*,?+Xx ]. 
Since f(£+6) < -a6, f(£-6) > a6, then f.s.l.n. f (£+6) < -a6/2, 

f (£-6) > a6/2, and hence also

^n a6/2
f' (x) > a n

6/2 x G [£+6 , £+X*]

fn (x)
rex) - 6/2 x G U-X*,£-5] .

Also f.s.l.n.

(6.7)

f (x) n
f ' (x) n v '

f(x) I 
f  (x) 1 < c/2 . (6.8)

Given n for which all the above inequalities hold, consider 

X^n) G [£+6,£+x*]. By (6.7)

, V , X f ( X ^ )y(n) = (n) _ n v v
V+1 v f’(X(n ))n v v

< X (n) - 6/2 .

By (6.6) and (6.8)

x (n) = (n) _ fn (Xv

v + 1 _  v " f ; ( ^ n))
> 2C - X (n) + e/2 .

-(x^n)-c) + e/2 < (x^-C) < (x̂ n)-C) - 6/2
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That is

< |x^-£| + min(e,S)/2 . v+1 v (6.9)

The inequality (6.9) is also true when £ [£-x>s,£-6]. Therefore

there exists a v = v (n) for whicho o

x(n) e u [£+fi,S+x*]V

and

o

The theorem is proved.

EXAMPLE 6.1: Consider the domain of convergence of the Tukey Bi-weight

M-estimating equations. Necessarily the statements "for sufficiently 

large n" are interpreted as probability statements "for all sufficiently 

large n" or "with probability going to one".

Observe that if the underlying distribution G is symmetric about 

some value letting

kg (0) ^Bs(x~6)dG(x)

it is true that

Kg(0 = KJUO = 0 , K'g U )  = ~ ^ s(x-OdG(x) < 0 . (6.10)

Let us write

(x-0)(l-(x-0)^/c^)^ -c < x-0 < c
^BS(x-0) 0 otherwise



131.

_0 + 29i_e!) + L 6 e2 W  
c l 2 4c '

+  X 60 100’
2 4c C

3 2 , 100+ x I — +2 4c c '

+ X4 -504 , c
+ x' 0—c < X  < 0+c

otherwise .

Note that ill (x) is continuously differentiable with piecewise con-
DO

tinuous second partial derivatives. Hence so also is

K (0) = (y-9)dF (y). If we consider any closed interval C = [a,b],

it is not hard to construct uniformly continuous functions {hj(x) } 

so that

5

j=o

hj (x) = x~* x G [a-c,b+c] , j = 0,...,5

and

sup _ [h .(x)I = max c r , , . Ix̂ I .x ^ e 1 j 1 x ^  [a-c,b+c] 1 1

The family CL= {h^ (x) j 0 _<_ j 5} will be both bounded and equicon- 

tinuous. By Theorem 1.1

supx e E supo<j<5 'j
— J J  — c

a. s.
hj(y)dFn(y) “ hj(y)dG(y)| > 0

But this implies

0+k c0+k . 3. • S •
S u p e e  [a,b] sup0<j<5 'I yJdFn (y)-| YJdG(y) | — * 0 .L ’ J -J- J e-k J0-k

More precisely, for any compact set [a,b] it is true that

3 • S
K^(0) > K^(0) uniformly in 0 £ [a,b] .

Similarly we can apply this approach to the derivatives K'(0), K"(0)n n
so that
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K (6) n '
a. s.
---> Kr (6), K ’(0) G n

a. s . 
---;►

a. s
Kq (0), K”(0) K"(0), uniformly on C

(6.11)

From (6.10) and (6.11) we see that K^(0) satisfies the requirements of

Lemma 6.1. That is there exists a domain of attraction for the Newton-
/ \

Raphson iteration. Given an x £  (£-6,£+6) the sequence {X.v ' } willo v

converge f.a.s.l.n. to the unique £  (£-6,£+6) for which Kn (Sn ) = 0. 

To explore this convergence further we need only investigate the nature 

of the function

sg (6) 2(8-0
Kg (6)

K’(0)

so as to apply Theorem 6.1. The function Sq (9) is even about

Letting G = the function S (0) is explored for four different values$
of c. For each of these (0) = 0, S^(0) > Designating 0* = 0*(c)

the minimum positive value 0 for which S (0) = 0 the following values$

were obtained

c 0* c 0*

3.5 1.218 5. 1.674

4.685 1.574 6. 1.999

For each value of c, K^(0) < -a(c) < 0 for all 0 G  [-0*(c),0*(c)] and
JL

some a(c). Also S^(0') < 0 for each c. Hence given 0 < 6 < 0(c), 

by Lemma 6.1 any value x" G  [6,0(c)) will satisfy the criterion of 

Theorem 6.1 with

e ^ min 0 Gi [ 6 , x * ] S4)(8) > 0 .

Then for any 0 0' < 0  , [-O’,O’] is a domain of convergence for the

Newton-Raphson iteration on the estimating equations (6.1).

For large n any initial estimate within one standard deviation
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of the true location will ensure convergence of the Newton-Raphson

iteration to the unique M-estimator. Using a consistent estimator for

the initial estimate the rate of convergence of the iteration will be

made arbitrarily large with increasing n. This suggests for large

samples, only a few iterations from a consistent estimate are sufficient

to retain reasonable accuracy to the M-estimator. Asymmetric departures

or even departures from normality in the underlying distribution can make

these observations redundant. But boundedness of the influence function

and its derivatives would also make the domain of convergence robust

against small departures from normality. In particular for contamination

G = (1-e)$ + eH, where H attributes zero weight to [-c-0Ä(c),c+0'c(c)]

observe that K^(0) = (l-e)K^(0) for all -0* <_ 0 j< 0*. So

K^CO) = K!I(0) = 0 and K ’(0) = (l-e)K'(O) < 0. The domain of convergence of G G G 9

the population (e small) will remain the same since 3^(0) = S.(0) onG $
[-0*,0*].

While has only piecewise continuous second partial derivatives

it is clear that families {ip (*-0)|0 £ E}, and {ip * (• —-0) 10 £ E) are 

both equicontinuous and bounded above by a constant. Hence the uniform 

convergence of the resulting M-estimator in the underlying distribution 

is assured. This completes the example.

§6.2 I d e n t i f i c a t i o n  and G o o d n e s s  of Fit; A G r a p h i c a l  A p p r o a c h
Uniform convergence over the whole parameter space does not only 

lend itself to limit theorems and convergence criteria that identify the 

M-estimator. On estimation it is necessary to determine the adequacy of 

the model family F in explaining the data. Having guarded against 

slight contamination it is still important to know whether the underlying 

mechanism conforms or departs radically from the estimated distribution.

In large samples the geometry of curves (0) approximates that of
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Kg (0). Since Gq is estimated by FT r F 1 a PFot oF Kn(0) and 
o ^’ n J

Kf (0) can be advantageous as a graphical measure of goodness of
TfilNFJ

fit. Examples ip . and iJj are known to have good efficiencycl y D 9 C Du

within small symmetric perturbations from the normal distribution. But 

to make inferences based on asymptotics at the normal distribution the 

bulk of the population should be compared for its normal nature. Hampel 

(1978, P.427) supports this in his statement; "In careful and high-quality 

samples of measurement data from astronomy and geodesy, without any 
visible gross errors, typically have a higher kurtosis than the normal

distribution ........". The following example illustrates the graphical

procedure and also shows how the M-estimator is identified in small 
samples using the global consistency argument of Theorem 2.3.

EXAMPLE 6.2: Consider the Hampel psi-function estimating equations

V«> - TT <a,b,c(xt - e) = 0 . (6.12)

Then

(d/d0)"Kn (0) = n_1[-^- {//Xt's G(0-c,0-b] U (O+b,0+c]>

—  {//X ' s E (0-a,0+a]}]

= {(Fn(0~b) - Fn O-c))+ (Fn (0+c) -Fn(6+b))}

- {Fn(e+a)-Fn(0-a)}]
a. s. r
-- > Kg (0) = (d/dQ)\ b c(x-0)dGo(x)

o  ̂ ’ ’

uniformly in 0 E E, by the Glivenko-Cantelli theorem.

The statistician who proposes the model F = {$(x-0)|0 E E}, may choose

£ = ip' (x)d$(x) ,3. j D , c
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where Z is as in (d) of §2.4. Note K^,(0) < 0. For any sample of

size n there exist roots of equations (6.12) for all 0 _< - c,

0 > X, s - c, where X... is the i'th order statistic. There exists -  (n) (l)
one root between. The first two sets of roots are excluded from

H (ijj , ;s.£), 0 < s < 1, since |(d/d0) K (0) | < s.Z.n a,b,c n
Two samples, one of size 10 and one of size 60 were generated 

from a double exponential distribution located at the origin. Solutions 

0(F) were found for the parameters (a,b,c) = (2.,3.,3.5). Assuming 

normality the value Z = -.9456. For the sample of size ten, -3.61235, 

-1.39213, -1.18903, -.52096, -.15880, .02580, .084251, .44745, 6.10150, 

7.95135, three solutions between X ^ ^  - 3.5 = -7.11 and X̂ -̂ q ^+3.5 

X(i q ) + 3.5 = 11.45 were found. They were 0^(F^g) = -.6719,

02 (F1q) = 3.5192, and = ^-0264 respectively. Corresponding

values of (d/d0) K^(0) evaluated at 0^, 02 , 0^ were respectively 

-.7, 1.2, and -.2. According to Theorem 2.3 this determines 

T[*,Fi0] = -.6719. Plots can also be used to indicate which root is the 

M-estimator, namely the root that yields the closest fit to Kn (0) of

K0 (0) 
1

ip , (x-d)d<P (x-0 .) .
3. y D j C 1

The sample of size 60 yields only the one root, T[iJ;,Fgg] = -.0447

between X... - 3.5 = -7.84 and X.,». + 3.5 = 11.45, at which the U; (bO)
derivative (d/d0) K (0) = -.7667. There is still a relatively large

discrepancy between this value and (d/d0)K^(0)| -.9456. This
0=0

follows from the wrong selection of model. This is made apparent by 

diagram 6.2 where it is observed that the empirical curve follows the

curve Kr (0) more closely than the fitted curve K (6)
T[ip,Fn]

dub the curves "expectation curves".
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DIAGRAM 6.1
Plots of "expectation

i= 1,2,3, where G is o

curve", Kn (0), (0),
' o

the double exponential

and K (6) , t). l
distribution

0 .00
---

Key:
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DIAGRAM 6.2
A graphical goodness of fit test.

Expectation curves of K (0), K„ (0), and K_ (0)
n FTU,Fn ) Go

K ( T H E T A )
0.80_ J

oo



138.

§6.3 Robust Estimation of Scale

Estimation of scale has always proven difficult in that there is 

no natural symmetry in which to appeal to, as in the symmetric location 
situation. The scale parameter may be regarded as a measure of dis­

persion. However, in general, such measures are purely arbitrary.

Indeed Bickel and Lehman (1976) proposed three alternatives to the 

standard deviation,

SD(G) = [ j (x-u)2dG(x)] 5 ,

where y is the expectation of the random variable X with distribution 

function G.

Huber (1972) considered estimation of scale by taking logarithms, 
reducing the problem to estimation of location. But again this results 

in highly asymmetric distributions not easily handled by the symmetric 
theory of location. Recently Thall (1979) extended this approach giving 
a minimax theorem for estimation of scale when departure is of the form 

{G|supx |g (x) - F(x)| < e}. The parametric family was 

F = {F(x/o)|a > 0}. The approach necessarily neglects any asymptotic 
bias incurred.

Influence functions of the form ip(x/o) ensure that 
T [̂ , F( • / Oq) ] = GqT , F (•) ] , for a > 0. They allow for scale transforma­

tions of the data. Perhaps an obvious question to ask for symmetric 

distributions F defined on E is; "Does there exist a class of psi- 

functions, C, for which one retains consistency to the parameter 
whenever the uncertainty is allowed to vary in the form

G(x) = (l-e)F(x/oo) + eH(x) for all gq > 0 , (6.13)

H being from the class of symmetric distributions about zero?" The 

answer is no. Since to retain consistency it is necessary that 

Kg (go) = 0* However, this would mean \p has to be odd in x, in which
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case

0/3 o )Kf (o ) = - <K$)dF(x/a )Z ' Ö o = 0 .
ao a=a a a=ao o

Then we lose consistency under the model regardless. A true minimax 

theorem should weight both asymptotic bias and variance in its measure 

of loss. Experimental results lead us more quickly to insight into 

estimation of scale.

the model of indeterminacy (6.13) it is necessary to dampen down values 

of t|i(X̂ /ao) when <j>(X ;aQ) is too small relative to (x;aQ) in a 

region judged to be where the bulk of the probability lies. Such a 

region is clearly related to the contours of the density function, and 

in that way is heuristically linked to the maximum likelihood method of 

estimation. Hence the Huber Proposal 2 is a natural construction. 

Alternatively, arguing that given a model normal distribution observa­

tions outside the region of approximately three times the scale occur 

with negligible probability we propose the following redescending 

influence function. Let

When F = <t>, the M.L.E. of scale is T[ib,F ] =n l X2/n, and 
i=l 1

iKx/o) = {(3/3ö)4»(x ;a)} 1cj>(x;o) ,

is the efficient score. Here <j>(x;o) = (/^tT ö ) ^exp(-x 2/2o2) is the
2normal density with standard deviation a, and ip(x) = - 1 + x . With

2-1 + x - P 0 < x < a (6.14)

-1 + a2 P a < x < b

(-1 + a" - P) ^ b < x < c

0 c < X < 00 .
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The parameters 0 < a _< b < c are given and the parameter P satisfies

I ̂a,b,c^x^ ^ x;1^dx = 0 •
The corresponding set of null influence is then

N(ip , ;o) = {±/l+P U (—oo9 —co] U [co,00)}. The effect of such a construe-3, D , C

tion in small departures from the model is clearly demonstrated by the

asymptotic values in Table 6.1 for symmetric contamination H = $(x/aaQ) .
2Asymptotics of the M.L.E. are easily derived since i|j(x ) = -1 + x gives

-2 2 2 2 2 kK„(o) = -l + o {(l-e)o + ea o }, whence T[iJ/,G] = o {(l-e)+ea } = a, ,U O O O X
say. The asymptotic variance for the M.L.E. is then

q4
o2(ip,G,a1) = — ^2 [3{ (1-e) + ea^} - { (1-e) + ea2}2 ] .

3oi

Since for each choice of ip, K„(o) is a function of o/o ifu O
oq = 1 yields bias a (1) then for arbitrary öq > 0 the bias 
o*(oo) = o^o* (1), (keeping e, a, and  ̂ fixed).

Table 6.1 shows that minute contamination of .1% and .5% perturbs 

the asymptotic variance of the M.L.E. alarmingly and includes also an 
asymptotic bias. This throws into doubt the applicability of the M.L.E. 
to small samples on the basis of efficiency, the latter evaluated at the 

true parametric model. On the other hand Proposal 2 and the redescending 

type estimators (R.E.'s) remain relatively unperturbed.
When contamination of 10% is present, which is more the rule than 

the exception as noted by Hampel (1978, P.427), the M.L.E. behaves 

disastrously in both bias and variance. Redescending influence functions 

perform favourably in that asymptotic bias from the heavy tailed contami­

nation is negligible and asymptotic variances remain near values at the 

true model; a property which is desirable for inference.
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TABLE 6.1
Asymptotic bias and variance for maximum 
likelihood, Proposal 2, and redescending 

type estimators of scale with G= (1-e) $>(x)+e$(x/3)

BiasBias

Redescending

a=l.645 b=2.4.001 M.L.E.

c=3.0

Redescending
Proposal 2

a=l.645 b=2.
c=l.645

c=3.3

Redescending
Proposal 2

a=l.96 b=2.5
c=l.96

c= 3.0

Application of the Leibnitz rule on the partial derivative of Kr (a) 

when ip is given by Huber’s Proposal 2 gives

(3/9o )Kg (q ) x^dG(x) < 0 . (6.15)

So there can exist at most a single root to K^Co) = 0. The greatest
2effect on the asymptotic variance expression a (\p,G,o), through con­

taminating H affecting the denominator (9/9o)KG (a) = M(a,G), is when 

H attributes all of its weight to the region (-°°,-ca] U [ca,00).

Then (9/9o)KG (a) = (l-t)M(o).
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For redescending influence functions the rate at which the influence 

function redescends proves important in guarding against worst possible 

contamination. For symmetric contamination H

(9/8o)KG (o) 2 r„  x r / . -1+a -P-y {(l-e)o [ — 0 /a+----r—2 o o c-b (<K— ; D-*(^; 1))]ö ao o

.+oo

■' — oo
x2dH(x) + o ( - 1+a- - F ) c-b

rCO

xdH(x)]} .
' ba

(6.16)

2Since P < -1+a , the major effect of an H on (9/9o)K (a) is seenCj

by maximizing the functional

f(b,c,d;H) x 2dH(x) + d
- — OO

(c
xdH(x) 

Jb

over H £= G, when parameters b,c,d are assumed fixed positive constants.

LEMMA 6.2: The functional f(b,c,d;H) is maximized over all H G  G in

the regions d < b, b < d _< 2b, 2b d _< 2c, and 2c ^  d < 00 respectively

by the Heaviside functions at 0, b, d/2, and c. In each case it is the

unique H £  G at which the maximum is achieved. The maximum values

attained are respectively 0, -b(b-d), d /4, and -d(c-d). When d = b

distributions (l-n)6 + , 0 < q < 1 attain the maximum value of zero.o b —  —

PROOF: For any H F  G let H = be the decomposition of H

into components so that the support of H-̂  is contained in {0} U  [b,c]

and the support of ^  is E - {{0} U  [b,c]}. Then

f (b,c ,d ;H) = f C b ^ d j H ^  + f(b,c,d;H2) .

For a distribution H with support {0} U  [b,c],

f (b,c,d,H-, ) x(d-x)dH^(x). If d < b then x(d-x) < 0 uniformly

in x £  [b,c]. So f is maximized by the Heaviside function 6q for
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which f (b,c,d,6q) = 0. If b < d < 2b, then b(d-b) > x(d-x) uniformly

in x £ {0} U (b,c]. Then f is maximized uniquely by the distribution

function 6, , whence f(b,c,d;6u) = b(d-b). Similarly x = d/2 and b b
x = c maximize x(d-x) on {0} LJ [b,c] when 2b d j< 2c and 

2c _< d < 00 respectively. Distribution functions anĉ  ^c roaxiroi26

f on those regions. When d = b the maximum of x(d-x) is attained 

at x = 0 and x = b, implying distributions (1—n ) m a x i m i z e  f, 

and the maximum is zero.

Note that in each case the maximum value attained is 0. For 

any H, a positive measure of finite total variation with support 

E - ({0} U [b,c]), f(b,c,d;H) < 0. This completes the Lemma.

The maximum non-negative contribution to (6.15) from any contamina­

tion is then

— - max f(bo,co,do;H) 
a H E G

d

-— - max f(b,c,d;H), where 
° H 6 G

-l+a2-P
c-b

This maximum attains its least value when — — -—  jc b, suggesting a 

reasonable separation of values b and c to be appropriate.

TABLE 6.2
Redescending Estimators

a b c max f(b,c,d;H)
h e g

1.
2 .

1.645 2.
1.645 2.4 
1.96 
2 .

3. 3 0.
1.6
8.7

39.5
3.
4.

2.5
2.9

3.
3.
3.1
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A premium is paid in loss of efficiency, although relatively small,

in order to attain non-positive contribution from the functional f.

This is compensated for by asymptotic bias in departure from the model

if c is made too large in attempting to reduce d. Steep descents,

as in 4., are particularly susceptible to increased asymptotic variance

when contamination appears near tails of the distribution $(x/aQ), that

is near co .o

Non positive contribution from f has the added advantage for 

0 e < 1 and all H E G

2
0/3a)KG (o) 5  \  (l-E)ao [-oo/a + ~X^ b~P (4>(^; D  - 4>(^ ; D ) ]

O O O

< 0 uniformly in a 6= (0,°°), a = 1.645, b = 2., c = 3.3

Then there exists at most one root T [î ,G ].

Setting e = e* and G = (1-e*)$(x /öq) + e*H(x), H 6  G, the M.L.E. 

fails completely in the presence of heavy tailed contamination. But a 

lower bound for T[i|>,G] is attained when H = 6 . This indicates the 

behaviour of the M.L.E. for scale when accumulated "super efficient" 

observations near the true location parameter are present. For Proposal 2 

monotonicity, (6.15), and the inequality

(l-£ ) I ip (x/o) (p (x; on )dx-e*ß^ _< Kq (o) 5 (1-e ) V (x/o)(j) (x; aQ)dx

+ e*(c2-ß2) , (6.17)

ensure that regardless of contamination H

a£ (e*) £  T[^,G] < au (£*) , (6.18)

where a£ and are the unique zeros of the lower and upper bounds

on Kg(a). For a R.E.
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(1-e*)
r
i|> v (x/o)(|>(x;o )dx - j äj bjC o e*(l+P) £ KG (o)

< (1-e*) ip (x/o) <p (x; o )dx + e*d . (6.19)

While K need not be monotonic in o, numerical investigations give 

unique lower and upper bounds for zeros o^, and ö . So any solution 

of Kg(o) = 0  is bounded by them. The value of e at which we cease 

to retain a zero in the region ° / ° 0 < 1*5 to the upper bounds of 

(6.17) and (6.19) is denoted a local breakdown point. Proposal 2, as 

expected, compares favourably in regard to this pessimistic approach of 

worst possible contamination. The sensitivity, a measure of robustness 

in infinitesimal departures, reveals analogous results.

TABLE 6.3
Bounds on asymptotic bias in e-contaminated

neighbourhoods, breakdown points , and sensitivities

Estimator
e = 
°Z

.01
0 u

e = 
°Z

.1
0u

Sensitivity
Y*

Breakdown 
6*(1.5)

M.L.E. .995 00 .949 oo OO 0.
Proposal 2, c=1.645 .993 1.02 .922 1.22 1.67 .176
Proposal 2, c=1.96 .994 1.02 .934 1.29 2.03 .138
Redescending 1. .992 1.02 .910 1.24 1.96 .165
Redescending 2. .991 1.02 .912 1.23 1.87 .169
Redescending 3. .993 1.02 .926 1.32 2.29 .133
Redescending 4. .993 1.02 .931 1. 32 2.22 .132

The influence curve of the M.L.E. is a quadratic, indicating the 

scale parameter to be extremely sensitive to heavy tailed contamination. 

This is indicated clearly, for with H = $(x/aoQ), T [vp,G] = ao/(l-e)+ea^. 

This is perturbed upward from g q for a > 1. In contrast
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a ^ ( e * )  = a / 1 - e * .  C o n ta m in a t io n  by s u p e r  e f f i c i e n t  o b s e r v a t i o n s  i s  n o t

a p rob le m .  But f o r  t h e  more r o b u s t  e s t i m a t o r s  t h a t  guard  a g a i n s t  heavy

t a i l s ,  t h e r e  i s  a g r e a t e r  s e n s i t i v i t y  t o  o b s e r v a t i o n s  n e a r  t h e  o r i g i n .

N e v e r t h e l e s s  t h e  v a l u e s  o f  l a .  -  a I r em a in  w e l l  be low a -  a .
' l  o '  u o

§6.4 M-Estimators of the Exponential Distribution Parameter

The most  i m p o r t a n t  a p p l i c a t i o n  of  t h e  s o l e  e s t i m a t i o n  o f  s c a l e  i s  

i n  t h e  c a se  o f  t h e  e x p o n e n t i a l  d i s t r i b u t i o n  used  t o  d e s c r i b e  l i f e t i m e

4- +
d a t a .  The d e n s i t y  i s  r e g u l a r  w i t h  R = E, S = E U {0}, 0 = E , and y

- 0 x
t a k e n  to  be Lebesgue  m easu re  so t h a t  f (x) = 0e . The s c a l e  i s  g iv e n

0

by 0

-1  _x
S e t t i n g  b (0)  = -0  ( 1 -x  - e  ° ) , f o r  some xq > 1 . 5 9 3 ,  and

N(0)  = cf> i n  Lemma 5 . 2 ,  and o b s e r v i n g  i | ;(x,0) = 0 ( l - 0 x ) ,  x > 0,  t h e  

r e s u l t i n g  i n f l u e n c e  f u n c t i o n  i s

- 1  ~ x
ib(x, 0 ) = 0 ( l - m i n ( 0x , x  ) -  e ° )  . ( 6 . 20 )

Th i s  M - e s t i m a t o r  be ha ves  a n a l o g o u s l y  to  a Huber P r o p o s a l  2 unde r  t h e

normal  d i s t r i b u t i o n .  Large  o b s e r v a t i o n s  a r e  " b r o u g h t  i n " ,  a l t h o u g h

t h e  W i n s o r i z i n g  i s  done a d a p t i v e l y ,  de p e n d in g  a l s o  on 0. But t h e
- x

p r o p o r t i o n  o f  W in s o r iz e d  v a l u e s  a t  t h e  model  r e m a in s  a t  e

S e n s i t i v i t y  and a s y m p t o t i c  v a r i a n c e  a t  f  a r e  r e s p e c t i v e l y
0

Y*(0) = 8 ( l - x 0- e  ° ) / ( l - ( l - x o ) e  ° )

a 2 (i).,f 6) = e 2 ( l - 2 x  e ° - e  ° ) / ( l + e  ° ( l - x j ) 2 .
o O O

S m a l l e r  v a l u e s  o f  xq t h a n  1 .593  g i v e  an i n f l u e n c e  f u n c t i o n  t h a t  

dampens down t h e  e f f e c t  on s m a l l  o b s e r v a t i o n s  a l s o .  But t h i s  would 

e f f e c t i v e l y  W in s o r i z e  a t  l e a s t  20% of  t h e  p o p u l a t i o n .
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TABLE 6.4
Efficiency, sensitivity, and local breakdown bounds 

for Winsorizing M-estimates of the exponential family

% Winsorizing Efficiency Sensitivity
Y*(l)

Breakdown Bound
6*(.5)

15 .7829 1.852 .2104 (*)
10 .8472 2.094 .2240
5 .9175 2.556 .1808

2.5 .9563 3.074 .1495

Efficiencies are uniform in 0 £ E+ but sensitivity is proportional 

to 0. Breakdown values are the minimum proportion of contamination H 

so that 6o /T[i|j,G] is outside the region [.5, 1.5]. We can observe 

here that behaviour of the estimator for 10-15% Winsorizing in quantitative 

departures (Breakdown) cannot be inferred from the infinitesimal departure 

indicated by y '. The (*) indicates that breakdown is achieved by 

point contamination at the origin.

Thall's (1979) solution, that minimizes the maximum variance in 

the Kolmogorov neighbourhood n (e,F ) where e is specified andK. O

F (x) = 1-e X , is o

4>o (x) = k tan ((k/2) log a) 

k tan((k/2)log x) 

x - 1 

c - 1

if 0 < x < a

a _< x _< b

b x c

c < x < 00

This is continuous and has piecewise continuous bounded derivatives.

It is a solution only for values e _<_ co = .0095, which is clearly 

restrictive. Strictly speaking to make the estimator unbiased at the 

model Fq (0x) the value of | 4>o (x)dFQ (x) should be subtracted from 

Thall corrects after the estimation dividing through by b(c) which is
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a solution of
r°°

ip (x/b(c))e Xdx = 0 . 
J o

Efficiency at the model is poor, while the introduction of an asymptotic 

bias at the model is alarming considering small values of contamination 

that are allowed.

TABLE 6.5

e k a b c b (e) eff

.005 1.6005 .6085 3.4751 4.1506 .9896 .5323

.008 1.5935 .6115 3.6075 3.799 .9860 .5430

.0095 1.5902 .6123 3.6673 3.6732 .9835 .5482

If the bulk of the distribution is approximately exponential but 

there is the possibility of tail contamination a redescending influence 

function is appropriate. We are particularly concerned for those large 

samples where asymptotic bias and not variance are important. Let

 ̂(x, 0 ) 1 - 0x - P 

1 - a - P 

P*(0x-c) 

0

0 <_ 0x < a

a 0x < b

b _< 0x < c

c < 0x < 00 ,

where P* P+a-1
c-b and

ae a + (1-a) (e a-e b) + ^  ((b+l-c)e b - e C) 

1 - e"b - ^  ((b+l-c)e_b - e”c)

Observations falling in the region [c/0,°°) are neglected in the 

estimating equation at 0, since this is a set of null influence. The
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choice of null set can depend on n. For instance for a sample of size 

n if we set P{X^^ > c/0} = e, then c = - log(1-(1-e)^n). Some 

values are given below.

TABLE 6.6
\  n

E \
10 15 20 50 100

.025 5.98 6.39 6.67 7.59 8.28

.05 5.28 5.68 5.97 6.88 7.58

.1 4.56 4.96 5.25 6.16 6.86

Asymptotically the proportion of values either Winsorized or trimmed 

tends to e . Values a = 2.303, 2.996 correspond to proportions .1, 

.05 respectively. Several values of a,b,c were chosen and asymptotics 

given.

TABLE 6.7

a b c eff. Y*(l) 5*(.5)

2.303 3.5 4.56 .66 2.53 .194

2.303 3.5 5.98 .71 2.39 .203 (*)

2.303 3.5 6.67 .75 2.30 .208 (*)

2.303 4.5 6.67 .78 2.21 .216 (*)

2.996 3.5 5.25 .74 3.06 .169

2.996 4.5 6.67 .84 2.73 .177

2.996 4.5 8.28 .87 2.67 .178

As b -* c efficiency is increased under the model and sensitivity
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decreased, but this should be balanced against behaviour of variances 

and sensitivities away from the model (viz. the value of Px tends to 

+°° as b c).

Asymptotics of the M-estimator are justified since the influence 

function is continuous with piecewise continuous derivatives. Suppose 

the true scale is 0 \  As it represents the expectation of the dis­

tribution it is not unreasonable to search for the consistent solution 

of the M-estimating equations in a compact set 0 < < 0 < < 00.

(In a Monte Carlo study it would be natural to let M^, depend on 0q .)

Since if>(x,0) is continuous on S* [M^,M2 ], the family

ö U m 1,m 2 ) = ( < K - , e )  |m 1 <_ e <_ m 2 )

is equicontinuous. Clearly &(M^,M2) is uniformly bounded since 

-1-P <_ ij;(x, 0) <_ -1 + a - P (x, 0) E S x 0  .

By Proposition 1.4

a. s.
K^(0) * Kg(0) uniformly in 0 ^ [M^,M2] (6.21)

for any G €= G given. Since ^ is only piecewise continuously 

differentiable with

(8/90) if>(x,0) = - x

0

P X 

0

0 < x <_ a/0

a/0 x <_ b/0

b/0 <_ x <_ c/0

c/0 < x < 00

it is amenable to consider functions
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h(x,0) x < 0

- x

a + p* b+a (x  .
b-a ' 0J

T)>VP X

p c/e

0 <_ x < ä/9 

a/0<_x_<b/e 

b/0 x <_ c/0 

c/e < x < 00

Then (h(*,0) |M^ 0 _< M^} is an equicontinuous and bounded family of

functions. By Theorem 1.1

a. s.

[0,x]
h(y,0)dFn (y) — >

[0,x]
h(y,0)dG(y) uniformly in x G S .

Observe then that

(3/30) K (0) (3/30) ^(y,0)dFn (y)

[O,a/0 ]
h(y,0)dF (y) +

J [0,c/0]
h(y,0)dF (y)

[O,b/0]
h(y,e)dFn (y)

a. s.
h(y,e)dG(y) +

J [O,a/0] [o,c/e ]
h(y,0)dG(y)

h(y,0)dG(y)
[O,b/0]

(3/30) ip (y,0)dG(y) uniformly in 0 £ [M^M^] .

-x0
So if G (x) = F (x) = 1 - eDo

a. s.
(3/30) K (0) -- * (3/30)K (0) uniformly in 0 E  [M,,M0]. (6.22)n F0 1 2

o

See that K (0) is continuously differentiable in 0, and
Feo
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where

0/38)Kf (0) = i  k(8o/6) ,
0 oo

k(X) = 1 + e Aa(Xa-l) +P*(e bA(Xb+l)-e Xc(Xc+l)) .

Also

(3/30)K (0 ) = ~  k(l) = i  {1+e a(a-l) +P*(e b(b+l) -e c(c+l))},
F0 ° 6o 0oo

and lim k(X)X-H-oo = 1, l i m ^ 0 k(X) = 0.

Values of k(l) are tabulated for the p a r a m e t e r s  of Table 6.7, together

w i t h  the region in w h i c h  k(X) > 0.

a b c k(l) {X I k(x) >0} = (X+ ,°°) {X | k(X)-k(l) = 0, X =(= 1}

2.303 3.5 4.56 1.23 (.308,^) .741

2.303 3.5 5.98 1.28 (.272,“ ) .544

2.303 3.5 6.67 1.29 (.259,“ ) .489

2.303 4.5 6.67 1.20 (.269,“ ) .546

2.996 3.5 5.25 1.31 (.316,“ ) .564

2.996 4.5 6.67 1.20 (. 292 ,oo) .477

2.996 4.5 8.28 1.22 (.255,“ ) .378

Since ( 9/90)K F (0) =
0o

f  k(6
o

/0) > 0 u n i f o r m l y  in 0 o < 0 A + ,O then

there exists a unique c o n sistent solution 0 (ib,F ) in
n'

the region

< 0 < m i n  (0 o A + ,m 2) f . a. s .l.n.. This follows from the u n i f o r m  con-

v e r gence (6.21) and (6 .22). Suppose there did exist a sequence of

solutions; {0 } n ex i s t i n g  in the region 0o /^+  1  6 1  ^ . Since

(3/90)K (0)I
0=0

a. s.
--* (9/9 0)K„ (0)|

0=0 0n n
k(0 /0 ) , v o' n *

then
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a. s.
I O/90)K (0 ) - -f- k(l) 

6n
k(OQ/0n) - k(l)I

> —  
- M„ inf {X |k(A)>_0} lk(A) k(1)l

> 0
a. s.

By Lemma 2.7 there exists a sequence 0(^,F^) -- > 0 . So

cl • S  •
|(8/ae)Kn(e(*,Fn)) - ^ ^ y k ( i ) |  - V  o .

Then if we let = {0 | (0) =0, M^ <_ 0 <_ M2 }, the M-estimator is

defined to be

inf |(3/30)Kn (0)-ik(l)| = |(3/30)Kn (T[iK,Fn ]) --f r A ~T  k(1) 1 
0^H(^,Fn) n J

This excludes all those solutions in [0 /A+ ,M_] f.a.s.l.n.. Theo 2
estimator is consistent and asymptotically normal. The latter observa­

tion follows from Theorem 3.1.

§6.5 Robust Estimation of Location and Scale
It is clearly of interest to estimate location and scale jointly 

Many authors, e.g. Collins (1976), Andrews et al (1972), advocate the 

simple inclusion of a nonparametric scale estimate in the equation for 

location. This is not conducive to the easy derivation of the 

asymptotic variance of the location estimator. But estimators satis­

fying equations

l
n

n
E

i=l ,V) (6.23)

for suitable 2x1 vector functions ijj = (iK .ij^)1 do have an
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asymptotically normal distribution with variance covariance matrix 
2o (i|j,G,T[\J>,G] ) . They are obviously location and scale invariant. It is 

apparent from §5.3 and Hampel (1978) that optimality of a multivariate 

M-estimator is not fully resolved. Thus a numerical investigation is 

useful. We consider the following three estimators:

(i) M.L.E. with ip(x) = (x, -1+x^)'

(ii) Huber’s Proposal 2 with ip (x) = (max{-c,min(x,c)},

min(x2,c2) - 3^)’, and

(iii) Redescending Estimator with

^ , (x)a , b , c (x , -1+x -P)’

(a sign(x), -1+a -P) '

c- 1 x 
c-b ( )'

0 < I x I <_ a

a <_ I x I _< b

b I x I c

C < I X I < 00

The redescending estimator has a set of null influence

N (ib ;y ,o) = (~°°, y-co] U  [y+ca,°°). Given a sample of size na, b , c
x~ ugenerated from $( ■■■■■) the probability that any observation falls in

that set is 1 - (2$(c)-l)n . At least one observation falls in N if

either < y - ca, or X, . > u + ca, where X,.N is the i'th order(1) (n) (l)
statistic. The value of c should be chosen so as to leave this value

minimal, especially in smaller samples, so as not to lose information

from medium size samples (e.g. n < 50) unnecessarily.

Validity of asymptotics follows from uniform convergence theory.

To establish asympLotic normality of M-estimators of (ii) and (iii) we

use the results of §3.4. First observe by Lemma 1.4 that

(^(-— ) I (y,a) G Ex (E+ - [0,n])> n > 0} is an equicontinuous family of
2 2 2functions uniformly bounded by /a + (-1+a -P) . The Fisher consistency 

assumption at the model is satisfied; that is i|;(x)d$(x) = 0. Suppose
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Suppose K0(y,a) has a zero (y'\o'c) and is continuously differentiable (j o o
at that point with non-singular derivative matrix. This is the case in 

the examples of Table 6.10. By Theorem 2.1 there exist consistent 

sequences of solutions of equations (6.23) to the zeros of Kg(y,a). 

Clearly from an analysis similar to that of §6.4 for any compact subset 

D of the parameter space bounding o away from zero we observe

a. s.
VKn (y,o) * VK^(y,o) uniformly in 0 £ D , (6.24)

whenever is generated from G. Points B(y,o) in the observation

space at which the derivative of  ̂ , does not exist are ±ao + y,3 j D j C

±ba + y, and ±co + y. Since each G has a bounded density,

Bn = U{B(p,0)|/(u-u*)2 + (a-0*)2 1 6n) is so that PG(5n> = 0(«n). 

Assumptions of Lemma 3.3 are satisfied, whence Theorem 3.5 asserts the 

asymptotic normality of the sequence of consistent roots.

On compacts D, {ih(-- ) I (y,o) £ D} is a family of functions all of
o

which redescend to zero within a compact subset of E. So by the comment 

comments proceeding Theorem 1.2 it can be expected that the asymptotic 

normality is attained uniformly in neighbourhoods of the normal distribu­

tion, justifying inference applications while slight contamination may 

be present.

To examine the correspondence between small sample behaviour and 

the asymptotic distribution a Monte Carlo experiment was performed. For 

the effective implementation of the redescending estimator it is 

necessary to identify it from multiple roots of (6.23). Rey (1977) 

identified this problem to be occurring in the regression estimation of 

Andrews (1974). It was overcome in the following manner. Starting with 

a grid of initial starting values (y,o) about the underlying value of 

(0,1), a selection statistic was used to identify the M-estimator.
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Analogous to the single parameter estimation (§2.4), the selection 

statistic was based on comparison of the derivatives of Kn (p,o) and 

Kg (y,o). Since the distribution is hypothesized to be some
o
r x-y

and it is known there exists a sequence {(y^jö^)} of roots

r
consistent to (y ,0q) then this is approximated by $

the selection statistic employed was

That is

r fx-y
fn(y,cj) = II V^(x P)dF (x) - a n v1H xau)(i/0n )4» n

0
n J

dx II (6.25)

where (j) is the standard normal density. This statistic is evaluated 

from the sample without prior knowledge of the underlying distribution. 

It is appropriate since the partial derivatives of are bounded, and

little weight is attributed to observations falling into the set of null 

influence. Investigations showed the resulting M-estimator most often 

to be the root closest to (X,S) as one would expect under the model.

In notation we let v , ^ 2 2  asymPtotic variances of loca­

tion and scale M-estimates respectively. Assuming a normal parametric 

family we can estimate by

i|̂1 (x)(})(x)dx

( (x) (x)dx)
(6.26)

That is the scale is estimated by o . Then in practice the 100(l-a)%n
confidence interval for location would be

%  ±  Za / 2 / v ll/n ’

where Z = $ ^(1-a).a
With 500 replications of each experiment, samples of size n = 20 

and 100 were generated from a standard normal distribution. Corresponding
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asymptotic variance compared favourably with resulting mean squared 

errors, labelled mv  ̂ and mv22 respectively for location and scale 
estimates, and were even a good approximation with n = 20. Also, 90,
95% confidence intervals for the location estimator derived from the 

asymptotic distribution, compared favourably with corresponding empirical 

confidence intervals generated from the experiment.

TABLE 6.8
Comparison of asymptotic variance and mean squared error 
of location and scale M-estimators using 500 replications 
of samples generated from the standard normal distribution

Estimator Sample 
size n vn /n v22/n mvn mV22 (2$(c)-l)n

20 .5-1 .25-1 .53-1 .24-1
M.L.E. 100 .1-1 .5-2 .96-2 .52-2
Proposal 2 20 .51-1 .32-1 .51-1 .34-1
c = 1.645 100 . 1-1 .64-2 .1-1 .76-2
R.E. 20 .54-1 .38-1 .63-1 .63-1 .9808
(a,b,c)=(l.645,2.,3.3) 100 .11-1 . 75-2 .11-1 .92-2 .9078

TABLE 6.9
Comparison of the asymptotic confidence interval with 
the empirical confidence interval (E.C.I.) for location

Estimator Sample 
size n ±Z.025^11 /n 95% E.C.I. ±Z 025v/vll/n 90% El,C.I.

M.L.E. 20 .438 -.413 .478 .368 .349 .398
100 .196 -.196 .195 .165 .149 .158

Proposal 2 20 .444 -.476 .384 .373 .402 .321
c = 1.645 100 .199 -.199 .195 .167 .173 .164
R.E.2. 20 .456 -.517 .426 .382 .438 .364

100 .204 -.191 .209 .171 .172 .185
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We can conclude from Tables 6.8 and 6.9 that the confidence intervals 

derived from the asymptotic distribution are a satisfactory approximation 

to the confidence intervals for y that exist in smaller samples. It is 

then reasonable to compare the behaviour of the asymptotic distribution 

in small departures from normality. This is particularly the case when 

intervals are estimated using (6.26). To give them approximate validity 

in small perturbations of the underlying distribution the asymptotic 

variance should not be perturbed greatly. Nor should the asymptotic 

distribution of a be far from that generated under the normal model. 

Asymptotic variances, v  ̂ and were found for various underlying

distributions of the form

The functional T was determined uniquely by the selection functional

T['K$] = (0,1) and the asymptotic variances for small values of e. As 

emphasized in §4.1 we need not be interested in the interpretation of 

the functional values but rather their stability behaviour in small 

neighbourhoods of a model distribution.

Redescending estimators reduce asymptotic bias for heavy tailed
x+l. 5contamination, e.g. when G(x) = .95$(x) + . 05$(— j-1— ) the asymptotic 

bias is reduced to (.08, .03) which compares with (.08, .23) for the 

M.L.E. and (.1, .06) for Huber’s Proposal 2. They can be further 

recommended for the estimation of confidence intervals since the 

asymptotic distribution, particularly V22* not 8reatly perturbed 

from that under the model. But sharply redescending influence functions 

can be susceptible to contamination near ±c. Overall the estimators 

with bounded influence curves stabilize bias and variance near the model

G(x) = (l-e)$(x) + e$(:x+A) • (6.27)a

in this case. Table (6.10) exhibits the perturbations from

at little cost in asymptotic efficiency at the model. This supports the
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TABLE 6.10
M-functional values and asymptotic variances of M-estimators 

of location and scale for distributions (6.27).

H(x)

e

= K

A

x+A^ 
ao '

a T [ ip

M.L.

,0]

.E.

V11 V22

Proposal 2 

T[ihG]

(c = 1 

V11

.645)

V22

0. 1. 0. 1. 1. .5 0. 1. 1.03 .64
.05 1.5 3. -.08 1.23 1.51 3.06 -.10 1.06 1.19 .82
.05 3.5 .1 -.18 1.24 1.53 1.11 -.10 1.1 1.33 1.03
.1 0. .1 0. .95 .90 .52 0. .93 .90 .52
.1 2.5 1. -.25 1.25 1.56 1.04 -.20 1.18 1.54 1.19

Redescending 1. Redescending 2.

0. 1. 0. 1. 1.09 .78 0. 1. 1.08 .75
.05 1.5 3. -.08 1.03 1.20 .91 -.08 1.03 1.19 .88
.05 3.5 .1 0. 1. 1.16 .84 0. 1. 1.14 .80
.1 0. .1 0. .91 .98 .96 0. .91 .98 .92
.1 2.5 1. -.14 1.13 1.78 .73 -.145 1.13 1.85 1. 72

use of confidence intervals derived from the asymptotic distributions. 

Further tables and conclusions may be found in Appendix 3.

The fact that we do not fully understand what we are estimating 

in perturbations from the model, as exhibited in the sole estimation of 

scale or even location in asymmetric departures, should not deter us 

from using the parametric model. It is important for estimators to have 

robust asymptotic behaviour in small perturbations from the model.

Amongst the robust M-estimators it is clearly possible to choose 

contamination to show one estimator in a better light than another. But 

the philosophy (or reassurance) behind the choice of redescending 

estimator is the elimination of observations not belonging to the bulk 

of the sample according to the model to be fitted. Simultaneously an

estimate is provided.
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A final point concerns the small sample bias of the scale estimate. 

Jackknifing is precluded due to the numerical searching for roots of the 

equations. Carroll (1979, P.677) also warns that one step M-estimates 

from a consistent estimate of location and with nonparametric estimate 

for scale do not have good jackknifed estimates of variance. However 

from the Taylor expansion method of (5.6) it can be established for the 

joint estimation of location and scale of a symmetric distribution Fq(—— ),

E [^2 E[X i|>̂ 2]
E[ip]_] E[X

E[i^]E[f'] E [ * 5 e [X2 f ’]
+ ------- f~ + ---------- f~

2E[i))|] 2E[X t|̂ ]

+ o(n 1).

E[a -a] n n E[X

Here E [•] is the expectation operator with respect to F0 (x). When

= 1 values of bias are given below.

a b c Bias = E[a

1.645 oo OO -.7390
1.96 oo oo -.9444
1.645 2.4 3. .7043
1.645 2. 3.3 1.1948
1.96 2.5 3. .9291
2. 2.91 3. 1.6381

The effect of the redescending influence function is to change 

the sign of the bias. Again the sharply redescending influence function 

should be avoided; this time because it incurs a larger small sample

bias.
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SECTION C: APPLICATION JO ESTIMATION IN MIXTURES
OF TWO NORMAL DISTRIBUTIONS

C h a p t e r  7

Minimal Distance Estimates For Mixtures

§7.1 Robustness and Relationships with Minimal Distance Methods

There are a variety of minimal distance methods for estimating the 

parameters in a finite mixture of normal distributions given by

rx-y >
F e = ei $

1

N
E E .  =  1 ,

i=l
0 =

+
x-u, fX-p,

+  •••• +  eN *

-N > >'i>- • • » “ n ’ 1

The apparent failure of the M.L.E. in the mixture model to attain a global 

maximum of the log-likelihood as described in Odell and Basu (1976, P.1099) 

motivated the use of minimal distance methods some of which we briefly 

review in this section. These had been sufficiently developed since the 

initial articles of Wolfowitz in the 1950's so that specific distances were 

proposed by Bartlett and Macdonald (1968), Choi and Bulgren (1969) and 

Macdonald (1971). The latter authors investigated Cramer-von Mises type 

distances which have been recently used in the testing area when parameters 

of the null distribution must be estimated by Durbin, Knott, and Taylor 

(1975). Pollard (1980) and Silvapulle (1980) discuss them in a more

general setting.
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Related distances compare empirical and almost sure limits of 

characteristic functions and density estimators. Paulson, Holcomb, and 

Leitch (1975) and Heathcote (1977) investigated the Integrated Squared 

Error (I.S.E.) distance

I (0) = |in (t) - <Kt,e) |2dw(t)

where <j> (t) = n E expiitX.} is the empirical characteristic function 
n i=l J

with expectation cj)(t;0). The I.S.E. estimator has direct application to 

estimating parameters in the stable laws where there is a ready representa­

tion in terms of the characteristic function (It is instructive to read 

the remarks of Hall (1980) concerning the correct forms of this representa­

tion.). The periodic nature of the characteristic function precludes any 

single observation from attributing undue weight to the distance I (0) 

which lends it a robustness quality. In fact it can be a form of 

M-estimator in the sense defined in this thesis. For assuming interchange 

of integration and differentiation the minimizing equations correspond to 

the choice of

iKx,0) [{cos(t.x)-u(t,9)}Vu(t,0)+{sin(t.x)-v(t,0)}Vv(t,0)]dW(t), (7.1) 
J

where u(t,0) and v(t,0) are the real and imaginary parts of the

characteristic function of F . This can be observed from the equations0
of Heathcote (1977, P.257). With a suitably regular weight function W(t) 

this representation of the influence function can be simplified.

LEMMA 7.1: Assume W is an absolutely continuous function with respect
k ~ kto Lebesgue measure on E , having density g(t) : E E which is the 

characteristic function of g(t) £ , g(t) =

further that g is real and symmetric about the origin; that is 

g (6^t-^»• • • > (̂ktk^ = § (tf > • • • > tk) where each 6^ can take values either ± 1.

elt,Xg(t)dt. Suppose
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Assume densities f have partial derivatives that exist and are

bounded above by an function. Then the I.S.E. estimator is

determined by influence function

i|;(x,e) = (2tt) { Vf (x-y)g(y)dy - Vf0 (x-y)g(y)dyfQ (x)dx}, (7.2)

and selection statistic I (0). Each integration is over EK .

PROOF: By the Fourier inversion on E , and noting

has Fourier transform (j>(t,0)g(t)

f 0 (x-y)g(y)dy

f0 (x-y)g(y)dy
(2 TT )

e Xt'X <j> (t, 0)g(t)dt .

k
Here t.x = E t.x. is the inner product. So 

i-i 1 1

I Vf (x-y)g(y)dy = — —
1 6 (2n)

e lt-x V<j>(t,e)g(t)dt .

By the Parseval relation

f Q (x) I Vf Q (x-y) g (y)dydx = — 4> (t, 0) V(J) (t, 0)g(t)dt 
J (2 TT) J

=  — ^  I <Kt,0)V<|>(t,0)g(t)dt 
(2tt) j

(as symmetry of g implies symmetry of g).

Hence the influence function is that of (7.1).

i j j(x,Q)
-it.

e XV(j)(t,0)g(t)dt cf>(t,0)Vcf)(t,0)g(t)dt

j [{cos(t.X^) - u (t ,0) }Vu(t,0) + (sin(t.X^)

- v(t,0)}Vv(t,0)]g(t)dt .
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Using this simpler form of the influence function it is possible

to evaluate explicit expressions for the influence curve more easily.

In both Paulson, Holcomb and Leitch (1975) and Thornton and Paulson
_t2(1977) the weight function dW(t) = e dt is used to estimate the 

location parameter of a univariate normal population. A short calcula­

tion reveals this to be an M-estimator with a bounded redescending 

influence curve

IC^(x) = ^  (x-p)exp{ - (x-p)2} .

A robust estimator of a different type is that derived from the 

Hellinger distance advocated by Beran (1977)

(fn - fe)2dx ’
where f (x) is chosen as an appropriate density estimator. In a 

heuristic way the minimizing equations

f*4(x)f''2(x)Vf (x)dx = 0 n 0 0

have similar asymptotic bias properties to an M-estimator with influence
_p-function ^(x,0) = f 2(x)Vf (x). For assuming g to be the density of
0 0

the underlying distribution the resulting asymptotic equation resolves to

g^(x)f'2(x)Vf (x)dx = 0 . t) t)

For a normal location family see that

f0 2(x)Vf0(x) = — ( 2 tt ) 4(x-0) exp{-(x-0) 2/ 4} ,

which is again a redescending function. Asymptotically the estimator is 

robust and efficient but the density must be estimated first. Small 

sample biases are most likely to be present in moderate sample sizes.
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The redescending nature of these functions also allows the possibility 

of more than one root to the estimating equations. Assuming large 

numbers of parameters it may be a cumbersome problem to search out all 

roots of the equations.

The robustness and applicability of many L^-distance estimators 

can therefore often be observed by studying the estimating equations. 

Simple illustrations in the single parameter case often provide insight 

into the behaviour of the distance estimator when larger numbers of 

parameters are present. This is certainly the case when estimating 

mixtures of normal distributions where with only two component distribu­

tions there are five parameters that must be estimated. The literature 

on the latter problem is extensive and we briefly set out some of the 

considerations involved before returning to the use of minimal distance 

estimates.

§7.2 Estimating Mixtures of Normal Distributions

The problem of "decomposing" a mixture of normal distributions by 

estimating the unknown parameters of the component distributions and 

mixing proportions is important in scientific and economic investigations. 

This is emphasized in the survey work of Macdonald (1975) and Odell and 

Basu (1976).

Several situations are possible. They depend on the parameters to 

be estimated, the number of component distributions, how much the com­

ponent distributions overlap, and how the data is collected. The theory 

in estimation of mixtures assumes the mixture to be identifiable. A 

mixture of a family F is called "identifiable" if
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implies H* = H. Letting H be the class of mixing distributions and 

G* the resulting class of mixtures we say Gx is identifiable if every 

G E G* is identifiable. Chandra (1969) and Yakowitz (1969) proved the 

normal (multivariate and univariate) mixtures to be identifiable, while 

Teicher (1960, 1961, 1963) examined identifiability more generally.

Assuming a mixture with two completely specified component dis­

tributions, many estimators can be found for the proportion parameter.

A class of estimators can be formed through

Fn {B} - F0 {B}

” F {B} - F {B} ’ ®1 ^ ®2
®1 ®2

for any Borel sets B for which the two mixed distributions satisfy

F {B} ^ F {B}. Each is unbiased, converges to the true mixing para-
®1 02

meter with probability one, and has variance 0(l/n). Unfortunately

the estimator can take values outside of the region [0,1] although

this is common amongst minimal distance estimators. Boes (1966)

investigates estimators derived from those such as e , giving necessaryn
and sufficient conditions for uniform attainment of the Cramer-Rao lower 

bound. This cannot be attained for the mixture of two normal distribu­

tions but can almost be attained if components are well separated.

Should the data be grouped in the form of knowledge of the empirical 

distribution function evaluated at r, the M.L.E. is in this form with

en (r)

(r-y,
1' (r) n v 7 -  $

r-y. rt-y, (7.3)

James (1978) shows the efficiency in theory and application of this 

estimator. The use of such a simple statistic is supported by the
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qualitative conclusion of Hill (1963) who claimed that large and often 

impractical sample sizes were required to obtain moderate precision in 

estimating the proportion should the mixing distributions be poorly 

separated. But with moderate separation this need not be the case and 

more frequently the component distributions must also be estimated.

The M.L.E. is known to work well under the model for those cases 

other than when both dispersion parameters are unknown and have to be 

estimated. In the latter case there exist singularities in the likeli­

hood. Day (1969) showed the good behaviour of the M.L.E. for multi­

variate normal distributions assuming equal covariance matrices of the 

component distributions. Kiefer (1978) showed existence of a consistent 

root of the maximum likelihood equations when unequal variances are 

assumed but Fowlkes (1979, P.74) shows that even in a sample as large 

as n = 200 there can exist a number of local maxima of the log likeli­
hood. Even assuming the model is true the correctness of the M.L.E. 
procedure has not yet been resolved. Apart from more recent work using 

minimal distance estimators the only procedure that has been discussed 

frequently as an alternative to the M.L.E. has been the method of moments 
introduced to the mixtures problem by Pearson (1894). Accounts of it 

being used for mixtures estimation are found in Cohen (1967) and Day 
(1969), while Bowmen and Shenton (1973) investigate regions for the 

method of moments solution to exist. Both the M.L.E. and the method of 
moments may be discounted on robustness grounds. This is clearly the 
case for the method of moments and can be observed to be so for the 

M.L.E. by observing the unboundedness of the influence function derived 

by partial differentiation of the log of the mixed normal density



168.

Derivatives with respect to proportion parameters are bounded but not 

those with respect to location or scale parameters.
It has been a tendency in the literature to illustrate the 

applicability of the M.L.E. and other distance estimators with computer 

generated data assuming the model distribution. However, some estimators 

are very sensitive to departures from the distributional assumptions. 

Iterative computer algorithms and graphical methods are liable to work 
for no data other than the original author’s example. Alternatives to 

the M.L.E. have been put forward simply under the criteria of estimability 

without thought for robustness.
To examine quantitative and qualitative robustness criteria 

specifically for mixtures is difficult since the notion of identifiability 

is easily lost. For instance for even small e > 0 there may exist
distributions F , F , 01  ̂ 0_, in the parametric family of mixed

91 62 1 2

distributions for which d(FQ ,FQ ) < e, but values of 0-, 0„ may be
81 ®2 1 2

well separated in the parameter space. This is one more reason for 

examining each local minima of a distance to see the degree to which it 

may explain the data, rather than to proceed directly to the global 
minimum of the distance. Solutions to minimizing equations may have 

locally robust properties but these may not be reflected by the corres­
ponding distance.

The implication of the existence of multiple local minima is that 
a search must be undertaken with a host of initial estimates. But to 

combine only two parameter values each of (e , > G]_>c^) in a 8rid
of initial estimates would require execution of the equation solving or 

minimizing algorithm 2~* times. Any Monte Carlo study that searches 

out all of the local minima becomes prohibitive in computing time.

A study for the mixture of two normals was undertaken by Quandt and 
Ramsey (1978) by letting the initial estimate be the underlying parameter.
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They minimized a distance

k
Z

j=l

s. x
e 3 dF (x) n

S X
e 3 dFQ(x)

2

For a univariate parameter and only a single weighting point {s^} the 

minimizing equations reduce to the M-estimating equations corresponding 

to

<Kx, 0)
ŝ x slye dF0(y) .

[ S1XThis is assuming V e dF0(x) f 0 which is necessary for estimability. 

The unboundedness of ip, and at a rate which is exponential in the tails,

causes the resulting estimator to be nonrobust. This together with

uncertainty in the choice of points {s.}
j=l

makes it a poor choice of

estimator. Discriminating between procedures is often more quickly done 

by examining the simple cases. Clarke and Heathcote (1978) compare the 

efficiency of this estimator with that of the Integrated Squared Error 

estimator for the location parameter again using a single weighting point. 

The latter is clearly superior. Kumar, Nicklin, and Paulson (1979) 

adopted the approach of plotting the sample and expected values of the 

moment generating function and characteristic functions in order to 

discriminate between the two types of general procedure. For both it is 

true that the convergence is uniform in compacts of the origin but the 

rate at which the convergence occurs appears faster for the characteristic 

function than for the moment generating function. The former has the 

advantage of being bounded.

We will now investigate the applicability of some specific distances 

based on robustness and small sample criteria to the estimation of para­

meters in a mixture of two normal distributions.
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§7.3 The Minimal Mean Squared Error: A Robust Estimator

A known robust I^-distance in estimating location was investigated 

by Kniisel (1969),

«7(e) (Fn (x) - F0(x)) dx (7.4)

Assuming a symmetric location parametric family the minimizing equations 

yield an M-estimator with bounded monotonic influence function

i|j ( x ) = F ( x )  -  ^  .

Heathcote and Silvapulle (1980) investigated this distance in the

estimation of location and scale. They observed the solution (y ,o )y n n
2is unique due to the convexity of m (y,o). The attractive property of 

the location estimator is that the asymptotic variance of ^(y^ ~ h)

is (12)
f + O O

' —  oo
f2 (x)dx

-2
which corresponds to that of the Hodges-

Lehmann (1963) estimator, the median of the pairwise averages 

(X^ + Xj)/2; i,j = l,...,n. At the normal model this corresponds to 96% 

efficiency. It is emphasized though that the estimators depart in 

behaviour away from the model.

More generally robustness of the estimator derived from (7.4) with 

a weighting function dW replacing Lebesgue measure, can be observed 

from the minimizing equations, written

. - ( -C O

V'ü7(0) = (Fn (x> - F0(x))V'F0(x)dW(x) = 0 .

On the real line integration by parts of each component equation reveals 

the M-estimating equations corresponding to

t|)(x, 0)
[x

j  — OO

V'F0(y)dW(y) -
-+00 

J — oo
[ V'F0(y)dW(y)dFe(x) .

For the mixture of two normal distributions we will write
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Fe(x) x-y+A + (1-e) $ x-y (7.5)

since this is a convenient form for the application considered in the 

next chapter. We will also take dW(x) = dx and briefly describe the 

evaluation of a more explicit form for . From this we can observe 

Frechet differentiability of the resulting M-functional.

LEMMA 7.2 : The influence function corresponding to the estimator that
2 2minimizes o)n (0) given by V’w (0) where 

V = (3/3e, 3/3y, 3/3A, 3/3g ,̂ 3/3o 2), is given by

^(x,©) = 2 A(x;y,A,o1,o2) - A<J>
’ 2, 2
°l+°2

/ 2 2 - / a, +1 2
/ol+a2

+
A

- £ A 1 - 2  <t>
' 2 2 
°l+a2

+
a.+a2

A
2/g  ̂+ a2 <J>

{A +a2
/J

2' ' ' I ' J
ip0 (x,6) = 1 - 2 e$ |—  + (1-e) $c—y-t-Â x-y

on /

4^ (x,0) = - 2 £ (j) - d .  (1-e) « 
°1 > vV

-A
/ 2 2  
l/°l+a2

\l>4 (x, 0) = 2 e (J) x-y+A U 1—  - 2e(1-e) ■ ■ - - - ({)
A / 2 , 2 / 2~2 /a1+o2 V o 1+o2^

^ 5  (x, 6) = 2 (1-e) (j) x-y (1-e)2 0/, \ a2- 2(l-e)e —----- cj)
2 A / ~ 2 ~ 2  /'l, 2/ gi+g2 Vai+a2

(7.6)

The term A(x;y,A, , a2) = A(x) say, in the first expression, is given 

by

A(x) = (x-y) \ $ x-y+A
a. - <J> x-y + a, x-y+A

1Y o. Oq 4>
( \ x-y + A$ x-y+A
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A brief outline of the proof follows. Beginning with the first 

expression we may write

1 2 - £ ^(X.,0) = 0/3c)a)n (G)
i=l

,-fco

-2{Fn(x)-F0( x ) } p ( ^ . ~ <$>

f ^x-p dx . (7.7)

Letting

a(x-y;A,a1,a ) = $ x-p+A - $ x-p]
l °2 J

it can be observed on integrating by parts that

A(x) = I a(y-p;A,o1,a2)dy 

Now integration by parts also gives

,-foo |-f-oo

Fn (x)a(x-p)dx = A - A(x)dFn (x)
— 00 ' — CO

(7.8)

It is possible either by using calculus or repeated integrations by 

parts to establish the following identities

(1)

(2)

(3)

.+°o x-p1
$

x-p2
dx = $ ' w

-oo Ö1 l °1 J i °2 J / 2, 2 
[/ol+a2J

a(x) dx = (p1-p2)
f

2 $ [ p r vl2] - 1 °l+ °2 A <p
f p — p > M1 m2

/ 2^ 2 [/o1+o 2j /n~ / 2 2 / 0 1 +0 r. ̂ 1 2J

+°° x-p a(x-p)dx = A - A$
/ 2o. 2J 
öl+ö2

/ 2 2 - / o^ + o2 4)
/ 2 2 Va1+o2-

+
/n~

Returning to (7.7) we can write
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C+°°
- I 1'1-(X,,0) n . , 1 i i=l

-2{F^(x) - ca(x-y) - $
( \ x-y } a(x-y)dx

-2
r+°° r+°°

Fn (x )a(x-y)dx - e a(x-y) dx

r+°°

*
x-y
o„— 00 1 2 J

a(x-y)dx

from which we obtain the expression for i/^(x,0) using (7.8) and (1), 

(2), and (3).

Expressions for ip̂  ~  ^5 may be obtained in the same manner.

A useful result in establishing (1), (2), and (3) is to set 

Y = (y1 ,y2 ,a1 ,a2) and

y 1 cy1 + \i?o?
a(y) = ----f—  , 3(y )

°1 + a2
°1°2

./ 2 2 
/ol + °2

and observe that

x-y. x-y, yl y2
/ T T T/ai+a2

x-a(y)
B(y )

see its applicability we derive ij^(x,0). Now

1 2 
-  E iP4 ( X . , 0 )  = O / 8 o 1 )mn (0)

i=l
-foo

2{Fn (x) - F0(x)}c 2L-y^ 4> x-y+A

by parts
r+°°

2c

- 2c (j)

x-y+A
°i

x-y+A

dF (x) n v '

x-y+A x-y

2 c 1
—  e <i>n . - i=l

Xi-y+A' (2c2 -e- f/2 x]
v  71 °1 . °i ]
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2e (1-e)
n. 2
/ol+a2

rx-a3 dx ,

where
-A a.

a = a (0) 2 2 
°1 + °2

3 = 3(6) al°2
/ 2 2 ✓ a, +

I <J)
i = l

X.-y+A

/n~
- 2e(l-e)

/ 2 , 2
/al + a2

Fl 2
/°l+02-

from which we easily obtain

A major reason for using the minimal mean squared error estimator 

for mixtures of two normal distributions is the following:

THEOREM 7.1:
Let T[^,*] be the M-functional defined by the selection functional

|| 0 - 0 o || and the M.M.S.E. influence function i/;(x,0) given by (7.6).

Let the parameter space be 0 = {0|-°° < y^A < °°, > 0, > 0, 0 < e < 1}

Then for each 0 E 0 at which M(0 ), defined in conditions A of §2.3, o o
is positive definite, T[^,*] is Frechet differentiable at F withOO
respect to (G,d). The distance d can be either of d^, d^, or d^.

PROOF: We first establish conditions A. Clearly AO is satisfied from

the expression (7.6). Suppose 0q = (e ,yQ,Aq ,o ^q ,ĉ q )• Then for any 

0 < 6 < ^ min(£o,l-£o,o^Q,0 2 Q) the function i|j(x ,0) is uniformly 

bounded above in norm by a constant for all (x,0) E E x Ug(0Q). Note 

that (9/9x)^(x,0) = V'F^(x) is also uniformly bounded above by some 

constant on E x  Ü(S-(0q). From Lemma 1.4 the family (ip(-,0) |0 E (0Q) }

is equicontinuous. Similarly the family of matrix functions 

{Vi|>(*,0)|0 ^ Üfi(0 )} involve terms which in the observation parameter, x, 

either decrease exponentially, or are uniformly bounded as |x| tends 

to + °° . Equicontinuity follows similarly since (9/9x) Vip (x, 0) = VV’Fq (x )
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which is uniformly bounded on E x  U^(0o). Then assumption A4 follows 

from Theorem 4.1 for the Prokhorov neighbourhood, and also the Kolmogorov 

and Levy neighbourhoods by Remark 4.1. Finally since ^(x,©^) is a 

function of total bounded variation so that (4.8) is valid,

Ih(x, eo)d (G - F0 )(x) = O(dk (G,F0 )) .
J o o

Since each F0 is an absolutely continuous distribution function on the 
o

real line possessing a bounded density this is true also for d^ and

d . Given that M(0 ) is positive definite conditions A are satisfied p o
and so are the assumptions of Theorem 4.3. This proves the theorem.

The actual M.M.S.E. selection functional is

fG<9> (G(x) - FQ(x))2dx .

Unfortunately this does not satisfy the weak continuity that is sufficient

for robustness since for any given k > 0 and any 0 G 0, given e > 0

and setting G = (1-k )F0 + k 6 so that d^(G,F0 ) <_ tc it is possible
o

to make f^(0) > e by letting y -> 00. For mixtures of normal distribu­

tions the only statistic that does not fail in this regard is the 

Cramer-von Mises statistic. The I.S.E. is precluded since 

{cos(t *)|t £ E) and {sin(t *)|t €E E} are not equicontinuous. So we 

conclude that there exists a locally robust root of the minimizing 

equations of the M.M.S.E. but robust identification of this root is not 

guaranteed by the M.M.S.E. selection functional.

Should the true proportion fall on the perimeter of 0, = 0 or 1,

F0 may be represented by any one of the parameters satisfying 
o

0 <_ e <_ 1, A = 0, = Ü2 » and so M(0q) will be singular. Values of

T [ih,G] need not fall within the parameter space unless T should be
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defined as such. For instance, the practicing statistician would simply

truncate an estimate of e < 0  to the value 0, and use a singlen
location and scale family for the estimation.

§7.4 The Minimal Mean Squared Error: S ta t is t ica l  Application

The expression for the asymptotic variance of the M.M.S.E. estimator
2is obtained directly from the expansion of V 00^(0). Abbreviating 

to F it is observed under the model F

„ a . s. ( r+°°
VV'o) (0) n ir <*>• inr<H =M(e> •i 3

Also

? f 1 ^
/n K (6) = /n V'o) (0) = —  £n n I / .l/n i=lJ

[Ij (x) - F(x) ] (x)dxj ,

which is a suitably normalized sum of i.i.d. random variables so that 

the asymptotic variance

'0
'
cov

1—  -
[Ij (x) - F(x) ] (x)dx,

i
[Ij (y) - F(y) ] (y)dy

( f+°° r+co

[F{min (x, y) } - F(x)F(y)] (x)90 T e T  ( y ) d x d y  j *

Splitting the integral into two half planes and using Fubini’s theorem

+oo

F(x) (X)
r+°°

90 .x J
(y)dydx + F(x) (x) 90 .x 1

(y)dydx

+oo
F(x) 9F f+°o

(x) dx F(x) 90 (x)dx .

In particular, if i = j and setting = (o„(0)) and

Li (x) 90 .— co 2L
(y)dy ,

the variance terms are given by
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o..(0) = 2L(») F(x)

'+°° > 2
F(x) | |  (x)dxl

 ̂—  co '

This expression allows simple application of numerical integration 

methods on the real line, or in the case of mixtures further decomposi­

tion can be made. In particular the estimating equation for proportion 

yields the explicit representation

en

{ v x> a(x-y)dx

»-foo

— OO

a(x) dx
(7.9)

or if using — Z i|^(X^,0) = 0 can be written 
i=l

n n

A(Xi) - 
n
V

A
/ 2 2 l/o1+ö2J

1=1 U 1-2 $f A 1 +

/o^+o^ <t>
P T  2/°l+ö2

+
/if

o^+o 2

V°2
/if

2 ^ + 0 ^  4>
/  2 , 2
/g1+°2

(7.10)

— E Z. say 
n i=i 1

So is the sum of i.i.d. bounded random variables Z^. Clearly
a. s.

E^fe^] = Eß [ Z . ] and by the S.L.L.N. > EQ[Z]. The almost sure'0L l
limits of can also be realized by observing

a. s.
Fr (x ) * F0(x) = ea(x-y) + $ xV| uniformly in x. By dominated con­

vergence and (7.9)

E[en] = E [Z] = £

That is the proportion estimator is unbiased. The usual C.L.T. applies
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so that

where

i/n(£n - e) ► N{O,o^(0)/Aj^(6) } ,

Xl l (6)

■4-00

a (x)dx = A 2$
/ 2
V CS- 2
°X+02

- 1 Q1+ö2 
/rr

+ 2 v/â +â  <J>
/ 2 2 VOi+a2

Observe that L^(x) = A(x) so that

-(-<»

a (0) = 2A I a(x)F (x)dx-A + 11 I 0
r-f°°

A (x)dFQ (x) -
f + ° °

a (x )Fq (x)dx

We observe by (2) and (3) that

,+oo
a(x)F (x)dx = A - A$ 0 /  2 , 2

/ol+°2

- ✓o?+a? <bf-----'1 w2 nr 2
l/°l+ °2

+
/n*

+ e A / 2 2 /a1+a2
- 1 °l+a2

/tT
+ 2/o ^

/ X T 2
/al+a2

The variance can then be evaluated. By writing

'-f-00 r+°°
A(x) dF0 (x)

_ o o  / r r "

{eA (/2a-, y-A+y) + (l-e)A (/2~a9y+y) }exp (-y )dy

this term can be evaluated accurately by Gauss Hermite integration since 
2A (x) is infinitely differentiable. Later examples use ten interpola­

tion points.

To implement the M.M.S.E. estimator the corresponding nonlinear 

M-estimating equations are solved using a nonlinear equation solving 

routine. Here we used ZSYSRB in the A.N.U. library of subroutines 

ANULIB2. This is based on a method of Brent (1973). The normal distribu­

tion is evaluated quickly and efficiently using Hastings approximation 

detailed in (26.2.17) of Abramowitz and Stegun (1970).
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Multiple roots can and often do exist. Should 0)̂ (0) be used as

the selection statistic then it must be evaluated numerically at each
2root of the equations. Alternatively one may wish to minimize wn (®) 

in a search for the local minima, rather than resorting to the minimizing 

equations. However this latter approach appears numerically time con­

suming given the numerical integration required at successive iterations.
2 , vTo evaluate wn(0) it is necessary to truncate the integral at 

appropriate points b^, b^ so that an absolute error of integration is 
less than a prescribed 6 > 0. Then b^, b^ depend on 6 and 9.
First order the data.

< X(l) < X(2) < < X (n) < " •
Then write

2 . . u) (0)
(1) n-1

F (x) dx + £
j  9 . -i•'-to i = l

(i+1)

(i)
^ - F9(x)| dx

(1 - F0(x)) dx .
(n)

The truncation of the first integral is at some point b^(6,0) which 

satisfies

F (x)dx < 6/4U (7.11)

LEMMA 7.3: The value k(6)

rk 2
x $ (x) dx

- /-£n (2  tt 6 ) satisfies 

< 6, whenever 6 < (2Ott) ^

COROLLARY 7.1: ;k (6) 2
$(x) dx < 6 whenever k(6) < -1.

J — oo
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PROOF OF LEMMA 7.3: Integration by parts gives
•x

$(x)dx = x$(x) + (J>(x) > 0 .
J _ o o

That implies

Then

|x$(x)| < 4>(x) for x < 0 .

rk r k
x$(x) d x | = I |x$(x)I$(x)dx 

J —00 J —00

rk
< cf) (x) <h(x) dx .

J _ o o

Since cf>(x) is increasing on (-°°,0]

< 4>(k)[k$(k) + 4>(k) ]

< *(k)2 

= 5 .

The lemma is proved.

If we consider the inequality 

b„f
0

f a 2 x-y+Ae $
J —oo «1 J / -1 n 2 fx-p + (1-e) $

max
b-^-p+A b^-y

<_ 2{e2o1 + ( 1 - e ) } $(x) dx ,

and choose

max

b-^(6,0) so that

b^-y+A b1~y
—  lr f 6 1

ö! ’ °2
K.

8{€2o1+(l-e)2o2},
(7.12)

then (7.11) holds.
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We solve

fbrb brdimax < ---- , ---- > = k ' when c > e > 0

For k > y it can be seen from the diagram that the solution to the o
equation is = ek+d. If k < yQ it is b^ = ck+b. So the solution

to (7.12) where y  o = A/(a1~o2) is the following

If < o2> the value of

ko2 + q k > A/ (0 ^-0 2 )
b, = ■1

ka^ + y + A k < A/(a!~a2)

and if °1 < °2

ka2 + y k < A/ (01-°2)
h =1

ka^ + y - A k > A/(a1~°2)

Note that if = a2

ka^ + y -  A A >_ 0
bi =

[ ka2 + y A <_ 0 .

Analogously to set b^ so that
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(1 - F0(x)) dx < 6/4

consider the inequality

r°°
(1 - F (x))2dx <_ 2{e2g + (l-e2)a }, u 1 Z

b2

-min

J - c

rb2-y+A b2~y

°1 °2
$(x) dx,

If o^ > o2 the solution for b2 is

b2 “ <

y - A - o^k

U - a2k

k <
°2 °l

k >
V°1

If < a2 then

Vi - A - o^k

U - o2k

k •> A/(g2-g1)

k <_ A/(a2-a^)

and if = o2

U - A - O -jk

y - a2k

A < 0

A > 0 ,

where k is given by Lemma 7.3 and

k = k[6/{8(e2o1 + (l-e)2o2)}] .

The integral is then evaluated by integration over the finite interval

[min{b ™ax{b2, X..}]

An absolute error of integration is then specified to be less than 6/2.
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CHAPTER 8

Sm a ll  Sample  Be h a v io u r

§8.1 Small Sample Comparison of Least Squares Estimators o f e

While Hill (1963) proposed that large numbers of observations were 
required for reasonable accuracy in estimating the proportion parameter 

in small separations of two normal distributions, moderate separations 

allow simple application of the many "least squares" or minimal distance 

estimators. The M.L.E. is included in this class by virtue of the fact 

that the maximum likelihood equations can be derived by formal minimiza­

tion of

d(Fn - F0)2 
dW (8.1)

where W has derivative w(x) = f (x). This example was given by 

Bartlett and Macdonald (1968). It is another case where an unnatural 

weight function (for the distance is infinite in this case) will yield 
useful estimating equations.

Some methods of estimation in mixtures have already been observed 
to fail a robustness criterion because of unbounded influence curves. 
But to obtain further information on remaining distance estimators it 

is useful to examine small sample behaviour of statistics, particularly 

for the mixing proportion which has important applications as noted in 

Odell and Basu (1976) and James (1978).

Macdonald (1971) proposed the parameter minimizing the Cramer von

Mises statistic
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S^(0) = I {Fn (x) - Fq (x)}2dFQ(x)
j  — 00

as an estimator in mixtures. He was motivated by the significant bias 

in the estimates of mixing proportion in sample sizes as large as 200 

that was exhibited in Table 1. of Choi and Bulgren (1968). The latter 

authors minimized the statistic

f+ ° °

(Fn (x) - FQ (x))2dFn (x)
J — no

which in terms of the Heaviside functions 1^(x), that are equivalent to

I, ,(X.) is written
( - ° ° , x j  J

Ij ̂  “ Fq (x)
2
dljCx) .

Macdonald noted that with the interpretation of 1^(x)dl^(x) as ^dl.(x)
2minimizing this distance was equivalent to minimizing (Ö). The 

Cramer-von Mises distance had been used by Blackman (1955) to estimate 

location and possessed the convenient representation

s2(e) = ~n' n
n
E

i=l Fe(x(i)) -
(i-%) +

12n"
( 8 . 2)

Monte Carlo work of Macdonald revealed a significant reduction in bias
2in the proportion estimator using Sn (0). The estimating equations for 

this statistic are

0 = V ’S2 (0) = f {Fn (x)-F0(x)}2V'f0(x)dx -

- 2 j {Fn (x)-F0 (x) HV'Fg (x) }f0 (x)dx .

The first term is 0p (n 1) at FQ and is asymptotically negligible in 

the estimation, not contributing to the asymptotic distribution of 

v^(0n ~ 0) at the model. The degree to which bias is incurred can be
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studied through the usual Taylor expansion. For a univariate parameter 

we observe

0 = VS2(0 ) = VS2 (0) + V2S2 (0) (0 -0) +^ V 3S2(0) (0 -0)2 + O (n~3/l) . n n  n v/ n v v n n n p

Letting

Vx) {VF0(y)}f0(y)dy

it can be observed (see Appendix 4) that

e 0[vs2(0)] = n 1 {n0C00) - 2

and

n0(x)f (x)dx) ,

E0[V2S^(6)] = {VF0(x) }2f 0(x)dx + n 1

-1

{V Fq(x)}{Fe(x)-^}f0(x)dx .

These extra terms of order n suggest the possibility of a still 

significant small sample bias in the Macdonald Cramer Von Mises (M.C.V.M.) 

statistic. We contrast this with the M-estimator where each of the terms 

in the corresponding Taylor expansion is unbiased toward its asymptotic 

value. The approximating equation for normality of the M.C.V.M. statistic 

is

{VF (x)}2f (x)dx(0 - 0)/n' = -VS2(0)/n .0 0 n n v/

Here it can be shown that

n var [vS (0)] = 4 0 n nQ(x) f0(x)dx - 4n0(°°) I n0(x)fQ(x)dx

5 2 . .'I "eW
f f l2 2 1 __-j

+ 3 n0 (x)f Q (x)dxj + n0(°°) + 4n

+ 7(n0(°°) - I nQ(x)f0(x)dx)

j
n0(x) dF0(x)

ne(x)dFe(x)

+ 0(n 2) .

The bias term of 0(n contrasts with that of the M-estimating

equations where
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n var0[Kn (0)] = var0[iKX,0)] .

In fact the M.M.S.E. estimator and I.S.E. estimators are unbiased for the 

proportion parameter. But the M.L.E. is still known to incur a small 

sample bias of

b(e’V
-2 f’3/f2 + f f’2/f0 ' 0 J e ' e j

2f1 / f0 ' 0

f'3/f30

where f' = (3/3e)f (x). This is nonzero.
0 0

In view of the fact that there appears to be no optimal estimator

it is instructive to compare various forms of minimal distance estimators.
2 2Letting W(t) = exp{-n t /2} the I.S.E. estimator for proportion can be 

derived from Lemma 7.1. It has the explicit representation

en = A/B , (8.3)

where

r/ 2, 2,-k 1[(o.+n ) — £ cf>
i=l

Xi-p+A

/ 2 2 VO +T\

2 2 -k I n- (o?+n ) — £ <J>
i=l

xr y

/2 2/o2+n j

2 2 2 -L- (â +ĉ +ri ) 2 (}> / 2 , 2 2 (/0-̂ +02+n
+ —  (2a2+n2) **]

and

-/2tt
2 2.-*s 9, 2 2 2.-%(20-̂ +n ) - 2(o1+o2+n ) <f> / 2 , 2 2 

/Gl+a2+n

2 2,-V+ --- (2o0+n )
/̂ri7

To concentrate the weight function near the origin, n should be chosen 

sufficiently large. In the absence of any criterion for choosing n we 

let T = [t^,12] be the region that is most weighted (relatively) by 

W(t). Then the information to be gained about F should be gleaned 

if T is restricted so that T.X lies within approximately one period 

of exp{i •} with probability greater than .9. With this criterion
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and the knowledge that W(t) is a normal weighting distribution the

value of n was chosen to be (3/tt)8.x , with 8 = 2 ando

x0 = max{IF~X(.05)|, |F“1(.95)|}.

In practice q would need to be estimated, for instance by using the

order statistics ^([na])5 ^( [n(1-a)])’ a = to estamat:e t̂ie  ̂and 95%
quantiles. Investigations showed the I.S.E. to be stable should the 

continuous weighting distribution be estimated this way. But this was 

not the case with a discrete weighting distribution, whose atoms were 

given by four equally weighted points

tn = -tt/8x , t_ = tt/8x l o Z o

t = -tt/28x , t, = tt/28x ,8 = 2. 3 o 4 o

Estimating the weighting distribution affects the asymptotic distribution 

of the statistics and even the unbiasedness of the proportion estimator.
In a Monte Carlo study with 500 replications of each experiment 

with data generated from the distribution

F (x)0 e<3>f X ’ M + A l  + (1-0*
( \ x-y

° 1  >
J

for various parameter values and different sample sizes, five "least 

squares" estimators of proportion were compared. Samples were generated 
from GGNML in the International Mathematical Statistical Libraries.
The M.M.S.E. and I.S.E. estimators of proportion were evaluated from 

their explicit expressions (7.10) and (8.3) respectively. Also the 
I.S.E. estimator with discrete weighting distribution (whose atoms were 

chosen assuming F to be known) was evaluated from its explicit expres-
U

sion. The M.C.V.M. statistic was obtained by numerical minimization of 
the expression (8.2), truncating at zero or one if necessary. The M.L.E.
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was obtained iteratively from its equation maximizing the log likelihood, 

again with truncation at zero or one if necessary.

With small separations and small samples sizes the M.M.S.E. and 

I.S.E. estimators given by explicit representations ranged outside the 

parameter space. Only then the truncated M.C.V.M. and M.L.E. statistics 

showed significantly smaller mean squared errors. For two equivalent 

populations separated by a location shift the M.M.S.E. and I.S.E. with 

continuous weight function performed slightly better in terms of small 

sample bias than did the M.L.E. or M.C.V.M., but the M.L.E. appeared to 

have smaller mean squared error. When the two populations differed in 

scale the M.C.V.M. performed poorly having a significant small sample 

bias. This was while the M.M.S.E. and I.S.E. with continuous weight 

function remained relatively unaffected. The M.L.E. dominated the other 

statistics when a large separation of the populations was apparent.

The I.S.E. estimator with discrete weighting points performed near 

an acceptable level when was known. But large samples were required

to successfully estimate the proportion when weighting points were 

estimated.

The M.M.S.E. estimator performed consistently well. Asymptotic 

variances corresponded closely with the mean squared errors which lends 

support to both the theory and the Monte Carlo. This estimator showed 

a decided advantage when the locations of the two populations were close 

but dispersion were different. This is the advantage of weighting by 

Lebesgue measure. It appears then that the M.M.S.E. must be considered 

alone amongst the least squares estimators considered here as providing 

a satisfactory estimation procedure for estimating parameters in the

mixture of two normal distributions.
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§8.2 Application of a Frechet Differentiable M-functional to Seismic Data

The complexities inherrant in estimating parameters of a mixture of 

two normal distributions using minimal distance methods make it important 

to investigate applicability of these procedures in real data situations. 

Frechet differentiability of the M-estimator that is a solution to the 

minimizing equations of the Mean Squared Error distance indicates a 

robustness of this statistic. This combined with the consistently good 

small sample behaviour under the model suggests that it is a useful 

statistic to investigate and apply to real data. Other established 

statistics, the M.L.E., M.G.F., and method of moments are discarded on 

the grounds of nonrobustness. The M.C.V.M. statistic has poor small 

sample behaviour when the dispersion parameters differ which leads us to 

drop this statistic even though it appears to have robust asymptotic 

behaviour. Finally the I.S.E. which seems to be the most appealing of 

the statistics other than the M.M.S.E. is dropped since the behaviour of 

the estimator depends much on the relationship between the true parameter 

value and the weighting distribution. There is no clear guide as to 

an overall good weight function.

A particular area in which data may be considered "rough" is 

seismology. Influences of many extraneous factors cause this. They are 

exemplified by the nonhomogeneous nature of the earth, and the measuring 

techniques used (Jeffreys 1970, P.71 and 1967, P.214). The application 

of interest to geologists is the following:

Recordings of all earthquakes of reasonable magnitude have been 

kept in recent years, for it is known that their attributes give insight 

into the structure of the earth. The focus of a quake is deduced, and 

time taken for a primary or longitudinal wave to travel through an 

epicentral distance to an observation point is recorded.
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DIAGRAM 8.1
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Diagram 8.1 illustrates a plot of such observations for data collected 

over the months March-May (1966). -There exist two main streams. The 

horizontal and major stream corresponds to PKIKP waves. They are 

waves that have travelled from the surface through the outer layer of 

the earth, the core of the earth, and then the inner core. They then 

travel back to the surface. At each interface they are refracted due 

to changes in velocity as the waves pass through material of different 

densities. The diagonal stream ascending upwards from 145° epicentral 

distance corresponds to PKPP waves, which are waves that have travelled 

in the same way as the PKIKP waves but on reaching the surface are 

reflected once more through the outer layer to the observation point.

For a background on the theory of such occurrences the interested reader 
is referred to Jeffreys (1970). Figure 16. of that gook gives plots of 

established paths of these distance time plots. Assuming a model of a 

perfectly spherical earth and core, both with uniform density, and 
assuming perfect observation, the data would follow two continuous curves. 
But actual irregularities in the earth and in particular the interface 
between the mantle and core allow distortions to appear. These add to 
observational error. In the latter context we note that the established 

method of determining the epicenter of an earthquake is the classical 
estimation method of least squares which is a nonrobust procedure.

Anderssen (1979) communicated the existence of the extra diagonal 

stream of points extending below 145° which had not been fully 

investigated. Cleary and Hadden (1972) put forward the hypothesis that 
the observations are the result of scattering of PKP waves from 

irregularities in the vicinity of the core mantle boundary. An individual 

investigation of the seismograph of any one earthquake can lead to a
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correct classification of the scattered wave from the PKIKP wave but 

the scattered waves are sometimes mistaken as the PKIKP waves and duly 

recorded as such. It is important to identify the locations of the two 

streams of data and the proportion of each. The proportion will indicate 

the amount of false classification.
The data is examined at fixed epicentral distances using the 

mixture model. This avoids any complicated modelling of randomness of 

epicentral distance. The assumed model is then of the form

F0 (x) = eT$
T

x-y +AT T

lx
+ (l-£ )$X

x-u
2x

where 0 = (e , y , A , a. , a_ ) is the parameter corresponding to theT T I I lx XT
epicentral distance t , to be estimated for each given t . This is done

by taking increments of (t-6, t+6) and solving the M.M.S.E. equations
with F = F , the empirical distribution function given by the observed n nx
travel time differences in that region of epicentral distance. So
(y - Â , o^) represents the location and scale of the minor diagonal

stream, while (y , c^) describes that of the major stream. Then

represents the proportion of scattered waves identified as PKIKP waves.
The nonlinear equation solver ZSYSRB was employed on the M.S.E.

equations with a search being carried out with varying initial estimates
2in order to obtain extrema of oo (9), the M.S.E. distance. To assistnx

in this regard it was contemplated that the main horizontal stream would
be reasonably homogeneous. Then some idea for the choice of initial

estimates of (ŷ , c^) Is attained by considering parameters in the 
rx-y.L

model $ — x—  in the region of epicentral distance 120. < x < 132.5.
x

While scattered waves are known to be in this region (Cleary and Hadden 

Fig. 2., or Adams and Randall, 1964) few appeared to be recorded as
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PKIKP waves. The M.M.S.E. was used to estimate location and scale 

when the single normal distribution was modelled. This M-estimator was 

used in preference to the constructions of §6.4 as no inference was 
warranted, and a unique solution is obtained.

TABLE 8.2
2Location and scale w -estimates of main population

Epicentral Distance Location Scale

120.-121.25 1.0280 1.6111
121.25-122.5 .9100 2.0304
122.5-123.75 .8695 2.2100
123.75-125. 1.2460 1.5867
125.-126.25 1.2737 1.9523
126.25-127.5 1.4092 2.0478
127.5-128.75 1.3779 1.6733
128.75-130. 1.3899 2.2653
130.-131.25 1.4914 2.2806
131.25-132.5 1.0383 2.3299

All solutions 0 to the M.S.E. equations for the mixture modelm
were sought out. Having prior knowledge of the data, the model and the 

results of Table 8.2 it was possible to make perspicacious choices of 
regions in which initial estimates to the equation solving algorithm 

were chosen. With as many as 500 initial estimates for any given 

epicentral distance the algorithm was permitted to run for 150 iterations 

on each. The algorithm had then either; diverged; was deemed as not 
making good progress (by the criteria of the algorithm); had converged 

in the sense that the absolute value of the residual was less than 10 ,

or the relative error between two successive estimates was less than 

10 or both; or the algorithm was still iterating. In the latter case 
parameters at the last iteration were used as initial estimates and

allowed to iterate till one of the former states had been achieved. The
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extensive searching ensured the detection of all local extrema of 
2a) (9) as this is important whenever the data is rough. In general nx

initial estimates found in large regions of plausible values in the

parameter space converged to a minima quickly but epicentral distances

X = 134., 134.5 and x _> 141. were not conducive to this behaviour.
2Three and sometimes four local extrema of m (0) were detected,nx

although one or two often degenerated to a single normal component.

When two solutions representing nondegenerate mixtures had to be 

distinguished one chooses that parameter which separates the two popula­

tions clearly. In this manner the solutions indicated by t were 

selected by the author. The discarded parameter often represented a 

mixture where one component had accommodated both populations by allowing 

the location to be centered between the two streams and having a large 

dispersion parameter. For example at x = 136.5 the estimate

F0(k ) 27 4> T x— 7.961 X-. 84
l 2 -75

+ . 73 2.28

is chosen for it clearly separates the populations. For the other solu­

tions the estimate for the first population envelopes the other as well. 

Solutions for which the value of y became negative were neglected. 

Selected minima are plotted in the plot 8.1.

It is now instructive to examine the performance of'distances 
2 2a) , S , and I as selection statistics. By the plots 8.2 and 8.3 nx nx ni J v

of locations of the estimated populations it is clear that these 

statistics do not select solutions in an always continuous manner. The 

Cramer-Von Mises distance which is more robust against tail contamination 

is only slightly better in this regard. If we exclude that solution with 

largest first component distribution scale, which corresponds to over­

lapped component populations, and any degenerate solutions the resulting 

M.S.E. estimate corresponds to that chosen by the author. This leads
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to a roughly continuous plot. Even using this strategy S (0) wouldnx
still not completely agree with the selection of roots. But it would 

seem that even though the M.S.E. is not Prokhorov continuous it can still 

be an effective selection statistic. The principal is though that each 

of the local minima should be investigated thoroughly.

Clearly the I.S.E. should not be used as a selection statistic 

because of its erratic behaviour. Co-incidental values of the estimated 

p in the weight function of the I.S.E. distance reflects the large 

rounding of errors employed in the computation of the data, accuracy 

being taken to only one decimal place for travel time. This is a major 

reason for using a Frechet differentiable functional in the analysis.

Work is being proceeded with on detailed investigation of the 

geological significance of the descending stream and its path. This 

will be expounded upon elsewhere.
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A p p e n d i x  1 

Two Mathematical Theorems

The two mathematical theorems that we give here are the Brouwer 

fixed point theorem and the inverse function theorem. We also remark 

on the Taylor expansions that are used in the thesis.

THEOREM (Brouwer)
If tj) is a continuous mapping of the closed unit sphere 

S = {x Gi E° I || x || <_ 1} ,

of Euclidean n-space into itself, then there is a point y G S such

that <j)(y) = y-

A proof of this theorem can be found in Dunford and Schwarz 

(1958, P.467). The following theorem can be found in Rudin (1964).

Inverse Function Theorem
r rSuppose <j) is a mapping from an open set 0 in E into E ,

the partial derivatives of cj> exist and are continuous on 0, and the

matrix of derivatives <j>'(0'') has inverse cf)f (0*)  ̂ for some 0* £ 0.
* -1Write A = 1/(4|| <j>' (0' ) ||) . Use the continuity of the elements of

cj> (0) to fix a neighbourhood of 0'v of sufficiently small radius

6 > 0 to ensure that J|f (0) - <f>T(0“)|| < 2A, whenever 0 G Ur. Theno

(a) for every 0^,02 e

II4) (0 1 ) -  4> (0 2 ) II _> 2 A || 0x -  02 ll ;

and

(b) the image set (}>(U^) contains the open neighbourhood 

with radius A6 about (f>(0'v).
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Conclusion (a) ensures <J> is one-to-one on Ur and that
o

defined on the image set

is well

Taylor Expansions: Two Taylor expansions are used. Given functions

f : E E' that are continuously differentiable, a two term Taylor 
expansion based on the mean value theorem is possible (cf. Hoffman 1975, 

P.391)

f (e) = f(0Q) + Vf(£)(0—0Q) ,

where Vf(0) is evaluated at a point £ on the diagonal between 0 

and 0 . Then for an rxl function Vf(£) represents an rxr matrix 

where the rows are evaluated at possibly different points £ on the 

diagonal.

The second type of Taylor expansion concerning a twice continuously 

differentiable real valued function f is

f(0) = f(0o) + vf(0o)(0-0o) + *s(0-eo),vv,f(c)(0-eo) ,

where £ is on the diagonal between 0 and 0^ (Hoffman 1975, P.393).
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A p p e n d i x  2

A Uniform Convergence Result

We remark here that for a general i.i.d. univariate sequence with

distribution G on E o

sup /n|F (x) - G (x) I = 0 (1) .—oo<x<+o° n v o ' p

This is a result from Shorack’s (1972) presentation. For let £, be a 

sequence of random variables defined on (ft,A,P) that are independent 

Uniform (0,1). U denotes the Brownian bridge on ft. That is 

{U (t) I 0 £  t < 1} is a normal process with all sample paths continuous,

E[U(t)] = 0 for 0 <_ t <_ 1, and covariance function of the U process

is min(s,t) - st. Let r be the empirical distribution function of 

the sample (£,...,£n).

For n >_ 1 we define the "uniform empirical process" Un by

U (t) = 7n(r (t) - t) for 0 < t < 1 .n v n —  —

For functions f , f2 on (0,1) let p(f15f2) = supQ ^  | f x (t) - f 2 (t) | .

Then p (U ,U) * 0 as n -> °° ®n* e
Every sample path of the U process converges uniformly as n -* 00 to

the corresponding sample path of the U process. Set

X = Gq ^(C) = inf{y|GQ (y) E,}. See that {X _< x} = {£ £  Gq (x)}. By

Proposition A1 of Shorack X has distribution function Gq and

F (x) = T (G (x)). So n ̂ ' n o

suP-„<x<+,Ä lFn(x) - Go(x)l = suP_„<x<4~ ^|rn(Go(x))-Go(x)|

5 SUP Iu„ ( t ) [
t e (0,1)

■ °p(1>
by ® and since sup IU (t) I = 0 (1).t G (0,1) 1 1 p
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A p p e n d i x  3

Tables on Location and Scale Estimates

Extensions to the tables of §6.4 giving results for a wider variety 

of parameter values are given here. The first table is an extension of 

Tables 6.8 and 6.9. Added is a column which details the number of times 

out of the 500 replications that the equation solving algorithm failed 

to converge from any one of the twenty five initial starting grid points. 

In small samples there appears to exist a small probability that no 

solution exists when redescending influence functions are used. This 

decreases with n. Small sample bias for the scale estimate is also more 
prevalent. The data is generated from the standard normal distribution.

The second table if anything exhibits the stability of inferences 
that are made from M-estimators that are formed from the redescending 

influence functions. Under wide ranging conditions they perform close 
to the model values. The table shows that heavy contamination in the 

region where the curve descends (i.e. on [b,c]) increases bias and 
variance markedly, but to values that are comparable with Proposal 2.
Also it is verified that contamination outside the null set results in 

zero bias and that variance increase is of order (1-e) Again V ;̂L’

v^2 represent the asymptotic variance of location and scale estimators. 
In Table 1 these are evaluated at the standard normal distribution.

The symbols mv.^, mV22 are t îe corresPonding ^ean squared errors from 
the Monte Carlo simulation. Again Z = $ ^(.95) and the 90% E.C.I. 

is calculated from the ordered estimates of location.
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TABLE 2
Asymptotic bias and variance incurred by estimators 

of location and scale when G = (1-e)$(x) + eH(x)

211.

H(x) = )
e = . 05 Maximum Likelihood Proposal 2 : c - 1.96

A a t [ i>,G] V11 V22 v12 T U > G] vn V22 V12

0 . 1. 0. 1 . 1. .5 0 . 0 . 1. 1.012 .571 0 .

0 . .1 0 . .975 .951 .512 0. 0. .968 .958 .593 0.

0 . 3. 0 . 1.183 1.4 2.33 0. 0. 1.061 1.163 .75 0.

1.5 1. -.075 1.052 1.107 .592 .272 -.069 1.045 1.111 .65 -.062
1.5 3. -.075 1.228 1.507 3.06 .93 -.04 1.067 1.185 .781 -.104
2.5 .1 -.125 1.117 1.247 .599 .462 -.119 1.126 1.425 1.165 -.469
2.5 1 . -.125 1.139 1.297 .904 .608 -.101 1.092 1.255 .841 -.226
3. 3. -.15 1.352 1.828 5.064 2.01 -.073 1.083 1.242 .867 -.213
3.5 .1 -.175 1.238 1.532 1.113 .948 -.12 1.127 1.439 1.206 -.495

Redescending estimators

a = 1.96 b = 2.5 c = 3. a = 1.645 b = 2. c = 3.3

0 . 1. 0. 1. 1.061 .674 0. 0. 1. 1.094 .784 0.
0. .1 0. .965 1.012 .726 0. 0. .957 1.040 .858 0.
0. 3. 0. 1.025 1.164 .801 0. 0. 1.023 1.186 .899 0.
1.5 1. -.063 1.040 1.170 .781 -.088 -.059 1.038 1.200 .891 -.084
1.5 3. -.084 1.028 1.181 .814 -.092 -.077 1.025 1.199 .911 -.084
2.5 .1 -.115 1.14 1.440 1.272 -.479 -.090 1.095 1.773 1.799 -.831
2.5 1. -.066 1.06 1.340 1.040 -.299 -.057 1.050 1.320 1.084 -.238
3. 3. -.127 1.029 1.023 .828 -.144 -.115 1.025 1.216 .923 -.129
3.5 .1 0. 1. 1.116 .710 0. 0 . 1. 1.156 .835 -.007
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TABLE 2 (Con t inued)

e = .1 Maximum L i k e l i h o o d  P r o p o s a l  2 : c = 1.645

A a T » , G ] V11 v22 v 12 T[i|>> G] vn v22 v12

0 . 1 . 0 . 1 . 1 . .5 0 . 0 . 1 . 1 .026 .640 0 .

0 . .1 0. .949 .901 .524 0 . 0 . .9229 .906 .702 0 .

0 . 3. 0. 1 .342 1 .8 3 .300 0 . 0 . 1 .110 1 .309 .961 0 .

1 .5 1 . - . 1 5  1 .097 1 .203 .645 .483 - . 1 3 7 1 .084 1 .221 .792 - . 1 1 4

1 .5 3. - . 1 5  1 .415 2 .003 4 .1 5 0 1 .519 - . 0 7 6 1.122 1.357 1 .028 - . 1 9 9

2 .5 .1 - . 2 5  1 .210 1 .464 .597 .758 - . 2 3 8 1 .249 2 .063 2 .213 -1 .2 2 8

2 .5 1 . - . 2 5  1 .250 1 .463 1 .040 1 .001 - . 1 9 9 1.176 1 .538 1 .190 - . 4 6 7

3. 3. - . 3  1 .616 2 .6 1 0 6 .261 3.124 - . 1 4 1 1 .153 1.494 1 .228 - . 4 3 2

3 .5 .1 - . 3 5  1.415 2 .004 1 .156 1 .455 - . 2 3 8 1 .250 2 .090 2 .295 - 1 .2 8 0

R e de sc end ing  e s t i m a t o r s

a = 1 .645 b = 2 . 4 c = 3. a = 2. t = 2.c c = 3 .1

0 . 1 . 0 . 1 . 1 .081 . 752 0 . 0 . 1 . 1.036 .619 0 .

0 . .1 0. .914 .976 .920 0 . 0 . .931 .936 . 705 0 .

0 . 3. 0.  1 .049 1 .291 1 .024 0 . 0 . 1.064 1.287 .958 0 .

1.5 1 . - . 1 2 7  1 .079 1 .306 . 967 - . 1 7 2 - . 1 3 7 1.085 1 .256 .802 - . 1 5 9

1 .5 3. - . 1 5 7  1 .060 1 .360 1 .090 - . 2 3 1 - . 1 7 8 1.079 1 .404 1 .063 - . 3 1 3

2 .5 .1 - . 2 3 5  1 .267 2 .052 2 .313 -L 229 - . 0 6 2 1 .272 1.502 .796 - . 1 5 9

2 .5 1 . - . 1 4 5  1 .128 1 .850 1 .718 - . 8 1 9 - . 1 8 9 1.172 1.875 1 .619 - . 8 6 4

3. 3. - . 2 4 5  1 .073 1 .475 1 .198 - . 4 1 - . 2 8 9 1 .1 01 1.645 1 .282 - . 6 2 3

3 .5 .1 0 . 1 . 1 .201 .841 0 . 0 . 1 . 1 .151 .688 0 .
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A p p e n d i x  4

Small Sample B ias of the Cramer Von Mises Estimator

The small sample bias of the estimator derived from the Cramer Von 

Mises distance, S^(G) of (7.2), is investigated through the small sample 

bias of the terms in the Taylor expansion on the minimizing equations.

The expansion that is truncated to two terms is usually given

0 = V’S (0 ) = V'S (8 ) + VV'S (0 )(0 -0 ) + 0 (n_1) . n x n n x o n v o'v n o '  P

Here
c+°°

V’Sn (6) = 2 I V1 Fq (x )(F0(x ) - Fn (x))dFn (x) ,
J —-oo

where the interpretation of Ii(x)dli(x)

Heaviside functions, and Fr->
1 n (x) = - E11 i—i ii•H

F0 (x) to F see that

!SEe [VSn (0o)]
r\

= j VF.F.dF - V’F.F dF n n

But

V’F.F dF 1 [ = E -±- Ea
_ n n . , . 2 0 lfi n o'

V’F.I.dl. i J

+ y  ^ E e I vf i.di.
1=1 n o

n-(n2-1-)- i V’F.FdF + I V’FdF .

r+°°

EA [V’ s (0 )] = -0 L n v o no
VrFo (x)(F (x)-Jj)dF (x) , 

o o o

and letting

n0(x) =
—  OO

(v’F0(y))f0(y)dy ,
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integration by parts gives

E„[V'S2 (6)] = n_1{ ( “) - 2Ö n u n0(x)fe(x)dx} .

The second term of the expansion is also biased towards its expectation

. + 0 0

E [VV'S (0 )] = 2 {V1F (x)}{VF (x)}dF (x)U n o u u uO ; -°o O O o

+ 2 n
r-H»

{VV'F0 (x) ) (F0 (x)-4)dF0 (x) . 
-oo O o o

Calculations of variance terms also reveal bias. The variance of

/n V’Sn (0o) is biased from its asymptotic value. To calculate the bias

terms set X = (9/00 )S (0 ) and X, = (9/90,)S (0 ) and use the a a n o' b b7 n v o'
formula cov(Xa,X^) = E[X^ X^] - E[Xa]E[X^]. Then from the expression

Efl[X X,] 0 a b — r £ F4 L0n i,j,k,£
•

- J Fa(x)Fb ^ ^ F x̂  ̂“ Ii(x))(F(y)

- Ij(y))dlk (x)dl£(y)

particular consideration of combinations of i,j,k, and i allows one 

to evaluate this quantity. It is a lengthy exercise and the final result 

is given in §8.1. The bias of the actual estimator is not evaluated.

But bias in these terms of the Taylor expansion will contribute to the 

overall bias term of order 1/n that is given by the expansion method 

of Cox and Hinkley (1974, P.310).
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