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Abstract

In recent years, deep neural networks have been very successful in computer vi-

sion, speech recognition, and artificial intelligent systems. The rapid growth of data

and fast increasing computational tools provide solid foundations for the applica-

tions which rely on the learning of large scale deep neural networks with millions

of parameters. The deep learning approaches have been proved to be able to learn

powerful representations of the inputs in various tasks, such as image classification,

object recognition, and scene understanding. This thesis demonstrates the generality

and capacity of deep learning approaches through a series of case studies includ-

ing image matching and human activity understanding. In these studies, I explore

the combinations of the neural network models with existing machine learning tech-

niques and extend the deep learning approach for each task. Four related tasks are

investigated: 1) image matching through similarity learning; 2) human action pre-

diction; 3) finger force estimation in manipulation actions; and 4) bimodal learning

for human action understanding.

Deep neural networks have been shown to be very efficient in supervised learn-

ing. Further, in some tasks, one would like to group the features of the samples

in the same category close to each other, in additional to the discriminative repre-

sentation. Such kind of properties is desired in a number of applications, such as

semantic retrieval, image quality measurement, and social network analysis, etc. My

first study is to develop a similarity learning method based on deep neural networks

for image matching between sketch images and 3D models. In this task, I propose

to use Siamese network to learn similarities of sketches and develop a novel method

for sketch based 3D shape retrieval. The proposed method can successfully learn

the representations of sketch images as well as the similarities, then the 3D shape

retrieval problem can be solved with off-the-shelf nearest neighbor methods.

After studying the representation learning methods for static inputs, my focus

turns to learning the representations of sequential data. To be specific, I focus on

manipulation actions, because they are widely used in the daily life and play impor-

tant parts in the human-robot collaboration system. Deep neural networks have been

shown to be powerful to represent short video clips [Donahue et al., 2015]. However,

most existing methods consider the action recognition problem as a classification
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task. These methods assume the inputs are pre-segmented videos and the outputs

are category labels. In the scenarios such as the human-robot collaboration system,

the ability to predict the ongoing human actions at an early stage is highly impor-

tant. I first attempt to address this issue with a fast manipulation action prediction

method. Then I build the action prediction model based on Long Short-Term Mem-

ory (LSTM) architecture. The proposed approach processes the sequential inputs as

continuous signals and keeps updating the prediction of the intended action based

on the learned action representations.

Further, I study the relationships between visual inputs and the physical infor-

mation, such as finger forces, that involved in the manipulation actions. This is

motivated by recent studies in cognitive science which show that the subject’s inten-

tion is strongly related to the hand movements during an action execution. Human

observers can interpret other’s actions in terms of movements and forces, which can

be used to repeat the observed actions. If a robot system has the ability to estimate

the force feedbacks, it can learn how to manipulate an object by watching human

demonstrations. In this work, the finger forces are estimated by only watching the

movement of hands. A modified LSTM model is used to regress the finger forces

from video frames. To facilitate this study, a specially designed sensor glove has

been used to collect data of finger forces, and a new dataset has been collected to

provide synchronized streams of videos and finger forces.

Last, I investigate the usefulness of physical information in human action recog-

nition, which is an application of bimodal learning, where both the vision inputs

and the additional information are used to learn the action representation. My study

demonstrates that, by combining additional information with the vision inputs, the

accuracy of human action recognition can be improved steadily. I extend the LSTM

architecture to accept both video frames and sensor data as bimodal inputs to predict

the action. A hallucination network is jointly trained to approximate the represen-

tations of the additional inputs. During the testing stage, the hallucination network

generates approximated representations that used for classification. In this way, the

proposed method does not rely on the additional inputs for testing.
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Chapter 1

Introduction

In the last five years, we witness the rapid development and significant success of

deep learning methods in both academia and industry. The idea of automatically

learning of features has been shown to be more efficient than the traditional feature

engineering methods with domain knowledge. Some notable applications include

image classification and natural language processing. It may be interesting to raise

the question about what applications, in additional to these mainstream ones, can

benefit from deep learning. This thesis is an attempt to answer this question with

deep analysis and case studies of applications. The studies in this thesis focus on

the deep learning methods and their variations to solve computer vision tasks that

traditionally have been considered difficult. The research work in this thesis is two

folded. One is the learning of static inputs such as images. The other one is the

learning of dynamic inputs with temporal information such as videos.

The performance of existing computer vision algorithms depends heavily on the

representations or features of the given inputs. Traditional learning algorithms rely

on manually designed features for specific data in different tasks, such as human

speech, language, handwritten texts, and natural images. This procedure is called

feature engineering, which requires expert knowledge of the given inputs as well as

a certain understanding of the learning algorithms to design a good feature. Such

procedures are very inefficient because they usually do not generalize well across do-

mains. Based on these handcrafted features, researchers have proposed many learn-

ing algorithms that are proved to be successful for computer vision, for example,

naive Bayes [Russell and Norvig, 2003], logistic regression [Cox, 1958] and support

vector machines [Cortes and Vapnik, 1995], etc. However, most of these methods

treat the features as fixed inputs or perform simple preprocessings to the input fea-

tures. One step towards the feature learning is the sparse coding method, which aims

at finding the representation of input data by learning the linear combination of a

1



2 Introduction

(a) (b)

Figure 1.1: An illustration of the artificial neural network structure and the
activation function. (a) In an artificial neural network, a number of hidden layers
with neural units are used to connect the input and the output layers. (b) The
activation function takes the weighted summation of the inputs and generates the
output response with a non-linear function.

set of basic feature elements [Olshausen and Field, 1996; Donoho and Elad, 2003].

In this way, the model can learn a sparse representation for each input. However,

the basic elements are still manually defined and the model can only learn simple

combinations of the basis with a shallow structure.

Motivated by this, the idea of learning more powerful feature representations

with deep structures is proposed to alleviate the problems for handcrafted features.

The artificial neural network [Holyoak, 1987] is one of the earliest attempt to auto-

matically learn features with multiple layers. As an analog of the neural system in

the human brain, an artificial neural network typically consists of a large number of

neural units that are connected and joined in one network (See Figure 1.1a). Each

of these neural units simulates the axons in biological brains, which takes multiple

input signals and generate an output response. For each unit, an activation function

is used to decide how the output response is calculated from the inputs. Typically,

the activation function is a non-linear function over the weighted summation of the

inputs (See Figure 1.1b). With all the neural units connected into a neural network,

one can train the network with backward propagations [Rumelhart et al., 1988]. The

weights of all neural units are tuned at the same time and learned to activate to

the specific patterns in the inputs. In such neural networks, the intermediate units,

also called hidden units, are trained to learn the representations of the given inputs.
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To represent highly complex and redundant inputs such as natural images, a large

scale artificial neural network with millions of units is necessary. However, training

of such large scale networks requires plenty of computational resources and labeled

training samples, which limits their usage.

In recent years, the rapid accumulating of data makes it possible to collect large

scale datasets with millions of training samples. Further, the emergence of fast paral-

lel computing devices enables the development of learning algorithms that have high

computational cost. Both these new developments make the training of large scale

neural network possible. These large scale neural networks are called deep neural

networks since they usually consist of many connected neural layers and form a deep

structure. The deep neural networks are derived from the traditional artificial neu-

ral networks. Different from the other popular machine learning methods that have

shallow structures, deep neural networks typically have more layers and parame-

ters, thus they have the potential to represent more complex inputs. These complex

networks allow people to build intelligent agents that are capable of complicated

perception tasks and even reach the performance of human in some cases.

In the following sections of this chapter, Section 1.1 introduces the basic concepts

and commonly used tools in deep learning, and discusses the typical neural network

structures for different tasks. Section 1.2 discusses the deep learning approaches

for static input learning. It briefly introduces the popular network structures used

for discriminative learning as well as similarity learning tasks. Section 1.3 discusses

about deep learning methods for sequential data. This section introduces the net-

work structures that can handle sequential inputs. These networks have temporal

recursive loops and are suitable for modeling the dynamics in sequential data. In

this thesis, I use these network architectures to learn representations of human ac-

tions and briefly introduce three related tasks about manipulation action recognition.

At last, the outline of the whole thesis is given in Section 1.4 and a list of publications

is presented in Section 1.5.

1.1 Deep neural networks

A deep neural network is an artificial neural network that consists of multiple layers

of hidden units to extract features of given inputs. A non-linear activation function is

applied to each hidden unit to generate the output. The activation functions add non-

linearity to the model so that the deep neural networks is able to model complex non-
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linear relationships. The hidden units are connected with all or partial of the units in

the previous layer and feed the outputs forward to the next layer. With the stacked

structure of many hidden layers, the deep neural network is able to learn multiple

levels of feature representations that correspond to different levels of abstraction.

Analysis of the weights in each layer shows that the earlier layers can extract the

lower level patterns from the inputs, and the latter layers tend to learn high-level

features by combining the lower level patterns [Zeiler and Fergus, 2014]. With such

structures, the deep neural networks are able to extract complex representations.

A deep neural network can be trained using standard backpropagation method.

Rumelhart et al. [1988] showed that it is possible to train the hidden units in a neural

network to represent the important features of the task domain using backpropaga-

tion method. For each training input, the backpropagation algorithm first calculates

the response of each unit in the network using the forward procedure. Next, the out-

puts are compared with the ground-truth labels to calculate the error or loss. Then

this error can be propagated back to all units and get the adjust value of the unit pa-

rameters. The standard backpropagation method for training deep neural networks

is the stochastic gradient descent (SGD) method. It converges much faster than the

batch gradient descent method. In practice, an alternation of the stochastic gradient

descent method is often used which is call “mini-batch” gradient descent. Other than

calculating the gradient updates for each training sample, the “mini-batch” method

uses multiple training samples at each step. This is a good compromise between

the standard batch gradient descent and the global gradient descent method. One

benefit is that with multiple training samples at each step, one can utilize the paral-

lel computing tools to accelerate the training process. Another benefit is that using

“mini-batch” makes the training process more stable than using individual inputs

because it uses multiple training samples for gradient updates in each step.

1.2 Learning of static inputs

Deep learning methods have shown to be very effective in supervised learning. For

vision based recognition tasks, the convolution neural network (CNN) [LeCun and

Bengio, 1998] is one of the most frequently used network structures. It stacks multiple

convolutional layers, each of which conducts convolution operations on its input and

generates a set of response maps. These response maps are then used as inputs

of the next layer. The usage of convolution operation makes it very suitable for
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processing grid-like data such as speech signals (1D grid) and images (2D grids). To

automatically learn features from image inputs, an important ability is to be robust

to deformations and image noise. CNN models use max-pooling layers to learn

robust features and handle deformations. With these techniques, the CNNs have

shown to be effective in both vision and speech tasks. For example, in the ImageNet

Large Scale Visual Recognition Competition (ILSVRC) [Russakovsky et al., 2015],

over one million images are used to train a 1000-way classifier. In this scenario,

convolution neural networks achieved the best performance on both classification

and detection tasks, and the best method reported less than 3% classification errors

over 1000 categories [ILSVRC, 2016], which is competitive with the performance of

human recognition.

Although the CNN model is able to learn powerful representations for discrim-

inative learning, in some tasks we would like to learn the representation that more

similar objects have smaller distances. Such kind of properties is desired in a number

of applications, for example, semantic retrieval, image quality measurement, and so-

cial network analysis. In computer vision, the Siamese network has been adopted for

face verification [Chopra et al., 2005] and digit recognition [Yih et al., 2011]. It uses a

shared deep neural network to learn features from pairs of samples instead of pro-

cess individual samples. Then the extracted features are compared with a contrastive

loss function, which allows the Siamese network to learn the feature representations

as well as the similarities for pairs of data.

In this work, the Siamese network is studied and applied to solve the sketch

based 3D shape retrieval problem. Existing methods for 3D shape retrieval depend

on handcrafted features and extensive searching for the best viewpoint to match

the 3D models and the 2D sketches. The proposed method using learned shape

representations for shape matching, which is shown to be superior to traditional

shape features. We show that the learned features using deep neural networks are

good for cross-domain similarity learning as well as simple sketch matching.

1.3 Learning of sequential data

All these neural network structures mentioned before are designed for static inputs.

In vision tasks, there is a large family of problems requiring feature learning for

sequential data. There are a lot of practical applications in recognition in videos,

such as human activity recognition, scene understanding, and object in the wild,
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etc. To model sequential data, the Recurrent Neural Network (RNN) is the most

frequently used network architecture. RNN contains a recursive loop that unfolds

over time, which makes it suitable for modeling non-linear time series with long

time correlations. RNN has been widely used in natural languages processing as

well as video sequences modeling. However, the traditional RNN is hard to train

using gradient descent method because of the vanishing gradient problem. To tackle

this problem, the Long Short-Term Memory (LSTM) model is then proposed. It

introduces memory cells with gates control, which makes the LSTM architecture

more robust when learning temporal dynamics with long time constants.

This thesis focuses on the human action recognition problem to explore the rep-

resentation learning method of sequential data. Human action recognition is one of

the fundamental problems in computer vision. Due to its high complexity, many

research works try to simplify the visual inputs into a set of key points and only

focus on the trajectories of these key points to model the dynamics [Laptev, 2005;

Rohrbach et al., 2012; Wang et al., 2011]. Other researchers aim at finding spatial-

temporal representations that are suitable for action recognition [Dollár et al., 2005;

Laptev and Lindeberg, 2006; Klaser et al., 2008; Scovanner et al., 2007]. With all these

efforts, it is still challenging to learn a good representation of human actions and

model the dynamics. In this thesis, I study the effectiveness of the recurrent neural

network architecture in human action recognition. The goal is to understand how to

effectively learn a good representation of human actions using neural networks. To

be specific, three aspects of the action recognition problem has been investigated. 1)

I propose to predict the intended actions as a continuous task instead of classifying

the actions for segmented video clips. 2) I propose to estimate the physical motoric

information such as finger forces by watching the hand movements. 3) I explore the

bimodal learning for action recognition to utilize the physical information to improve

the recognition performance.

1.3.1 Predicting actions

Different from traditional approaches that treat action recognition as a classification

problem, we study the action prediction problem which aims at predicting human

actions by watching the early stage of hand and body movements. This is useful for

cognitive robots in the human-robot collaboration scenario, where the robots need to

understand their partner’s intended actions before the action is completely finished

to prepare the correct response for real time collaborations.
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In this thesis, I focus on hand manipulation actions that are often involved in

human-robot collaboration tasks. For a robotic system, it is essential to have the

ability to update the beliefs about the observed actions and predict the intended

actions of their human counterpart. An efficient action prediction method needs well-

learned action representations that are able to discriminate the subtle differences of

the early hand movements. Therefore, I proposed to build an action prediction model

based on the LSTM architecture. The proposed approach processes the sequential

inputs as continuous signals and generates confidence map over all candidate action

categories for each frame. With the recurrent loops in the LSTM architecture, the

history information is implicitly encoded in the model, so that the prediction for

each frame is based on both the latest input as well as the previous visual inputs. In

this way, the prediction model is able to update the confidence of action categories

along with time changes.

This is a challenging task since we are aiming at distinguishing the intended

action by watching the dexterous movements of hands. The convolutional neural

networks are known to represent image frames, and the recurrent neural networks

are designed to learn the dynamic changes of sequential inputs. So we combined

these two models in our proposed method to make use the representative power of

both these architectures. With this combination, our method is able to capture the

delicate differences of the dynamics of the manipulation actions.

1.3.2 Predicting hand forces

Recent studies in cognitive science show that the subject’s intention is strongly re-

lated to his/her movements during an action execution. Also, the physical contacts

between hands and the objects can be altered with different attentions. For exam-

ple, when a subject intends to use a hammer to pound a nail, it is highly likely that

he/she will grasp with more forces than just to passing the tool. Human observers

can easily interpret other’s actions in terms of movements and forces, and predict

the consequences driven by these patterns. If a robot system can estimate the force

patterns from videos, it will be able to learn how to manipulate an object by watching

video demonstrations.

We focus on the estimation of the forces on the fingertips by regression. Since the

lower level layers that are close to the input layer are similar to the action prediction

model, we also build the regression model based on the LSTM architecture. The

LSTM model is formulated for regression to estimate the force values from video
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frames. To train this model, videos of manipulation actions need to be collected with

synchronized streams of force measurements on the hand. This was done with a

specially designed sensor glove that attached force sensors to the fingertips.

1.3.3 Learning with bimodal information

With the action prediction model and the hand forces regressor, it is natural to ask

how to combine the additional information with vision inputs to improve action pre-

diction performance. In many real applications, the additional information, such as

accelerometer data, hand forces, gazing points, needs to be gathered with special de-

vices. This limits the use of bimodal learning approaches. To alleviate this problem,

I explore a bimodal learning method that can learn the relationship between the two

input streams and use the learned representation to improve manipulation action

recognition for samples that do not have the additional information.

Motivated by the success of the hand force regression model, a natural idea is to

make use of the hand forces to help with the action recognition. One simple exten-

sion is to directly use the regression model and generate estimations of hand forces

and train the recognition model on both vision input and the forces. However, such

framework fails to model the relationship between the hand forces and the vision

inputs, which is crucially important for a bimodal learning model. To model the

relationship between videos and forces, a possible solution is to learn a hallucination

network to bridge the two inputs. During the training stage, the hallucination net-

work dedicates to approximate the learned representation of the forces using vision

inputs, so that it can learn the relationship between video frames and hand forces.

During the testing stage, the hallucination network can generate a simulated repre-

sentation of the forces. The whole network is trained end-to-end to jointly learn the

action recognition model as well as the hallucination network.

1.4 Thesis outline

The remain of this thesis is organized as follows:

Chapter 2: Background and Related Works This chapter introduces the basic con-

cepts of deep neural networks and the tools used in deep learning approaches. It

reviews the literature of deep learning methods and the key issues in applying neu-

ral networks for computer vision problems.
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Chapter 3: Sketch Based 3D Shape Retrieval This chapter describes a case study of

representation learning for sketches to solve the problem of sketch based 3D shape

retrieval. A similarity learning method for matching sketch images using Siamese

network is proposed. This work was published in CVPR 2015.

Chapter 4: Manipulation Action Prediction Using LSTM To study the represen-

tation learning methods of sequential data, we focus on human manipulation action

recognition tasks. In this chapter, I show how to use the RNN and LSTM models

to learn representations of manipulation actions and proposed a novel approach to

predict intended actions while watching the manipulation movements. This work

was published in IJCV, Special Issue on Chalearn: Looking at people, 2017.

Chapter 5: Hand Force Prediction Using LSTM This chapter demonstrates how to

estimate hand forces from vision input. The LSTM model is adopted for regression

of the hand force. I show that the estimated forces can be used to improve the action

recognition performance. A new dataset is collected with synchronized sequences of

hand forces and action videos to evaluate the proposed method.

Chapter 6: Manipulation Action Recognition Using Bimodal Inputs This chapter

expands the manipulation action recognition method to incorporate with additional

information such as hand forces or motoric data of the tools or objects that involved

in the actions. I show how to train a hallucination network for sequential inputs,

and generate hallucinated representations of the additional information for action

recognition tasks. This work was submitted to ICCV, 2017.

Chapter 7: Conclusion Finally, we summarize the main contributions in this thesis

and discuss the future directions.

1.5 Publications

During my study in NICTA/ANU, I have published the following papers:

Journal publications:

1. Aiwen Jiang, Fang Wang, Fatih Porikli, and Yi Li. "Compositional memory for

visual question answering." (Submitted to T-CSVT 2017)
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2. Cornelia Fermüller, Fang Wang, Yezhou Yang, Konstantinos Zampogiannis, Yi

Zhang, Francisco Barranco, and Michael Pfeiffer. "Prediction of Manipulation

Actions." IJCV, Special Issue on Chalearn: Looking at people, 2017.

Conference publications:

1. Chinmaya Devaraj, Fang Wang, Yi Li, Cornelia Fermüller, and Yiannis Aloi-

monos. "Leveraging Motoric Information for Recognizing Manipulation Ac-

tions" (Submitted to ICCV 2017)

2. Fang Wang, Le Kang, and Yi Li. "Sketch-based 3d shape retrieval using convo-

lutional neural networks." CVPR 2015.

3. Fang Wang and Yi Li. "Spatial matching of sketches without point correspon-

dence." ICIP 2015.

4. Fang Wang and Yi Li. "Beyond physical connections: Tree models in human

pose estimation." CVPR 2013.

5. Fang Wang and Yi Li. "Learning visual symbols for parsing human poses in

images." IJCAI 2013.



Chapter 2

Background and Related Work

In recent years, deep learning has achieved great success in speech processing and

computer vision tasks. Unlike the traditional methods that try to manually design

features for specific inputs, deep learning provides a powerful tool to learn represen-

tations directly from inputs. The idea of learning features automatically from inputs

is attractive because it relieves the need of expert knowledge to extract useful fea-

tures for specific tasks. Recent studies show that the data driven feature engineering

methods often have better performance than handcrafted features. This is possibly

because the automatically learned features can capture more discriminative features.

In this chapter, we introduce the basic concepts of deep learning approaches and

briefly discuss the key techniques that are used for training of deep neural networks.

Section 2.1 revisits the basic concepts of deep neural networks and introduces a fre-

quently used network structure in representation learning approaches. In Section 2.2,

several special network structures are introduced as the backgrounds of our case

studies. Section 2.2.1 introduces the Siamese network for matching problem. Sec-

tion 2.2.2 introduces the recent models for sequential data learning.

2.1 Deep neural network structures

Deep neural networks are a series of neural network structures that consist of many

neural layers. With a deep structure, a neural network can effectively learn compli-

cated mappings from the inputs to the target using end-to-end training, which does

not rely on domain knowledge. Several techniques have been devised to overcome

the difficulties in the training of complex neural networks.

11
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2.1.1 Convolution neural network

A convolutional neural network (CNN) is a neural network that is suitable for pro-

cessing images. As indicated by its name, the core component in CNN is the con-

volutional layer, which applies the "convolution" operation on the layer inputs to

filter out useful information. The second important component is the pooling layer,

which downsamples the inputs using a given selection method. The last is the fully

connected layer, which combines all the outputs of the previous layer and gener-

ates the feature representations. With a deep structure, a CNN can effectively learn

complicated mappings from raw images to the target, which requires less domain

knowledge compared to handcrafted features and shallow learning frameworks.

A typical CNN structure consists of several convolutional layers that have a small

field of perception, and a few fully connected layers that each combines all the out-

puts from the last layer and yields a feature vector with several thousands of dimen-

sions. To efficiently train the CNN model, the standard method is using Stochastic

Gradient descent (SGD) with backpropagation algorithm. Figure 2.1 shows the struc-

ture of AlexNet, which is one of the early CNN models.

Figure 2.1: A typical convolutional neural network structure (Redraw of the
AlexNet structure [Krizhevsky et al., 2012]).

The CNN structure is originally designed for classification tasks, thus the last

layer of the network works as a classifier based on the learned features from the

immediate precedent layer. One advantage of these networks is that one can eas-

ily adapt a pre-trained neural network to new tasks where only small number of

training samples are available. This technique is called finetuning. By removing the

classifier layer of a neural network and attaching a new layer with randomly initial-

ized parameters, one can train these new parameters efficiently and achieve good

performance on the new task. Because the pre-trained model has already learned
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comprehensive representations through millions of training samples, the finetuning

procedure can start from exploring useful representations for the new task without

going all the way from scratch.

2.1.2 Recurrent Neural Network

The Recurrent Neural Network (RNN) is a popular architecture that has been widely

used to processing sequential inputs, such as natural language and video frames.

The RNN model has a temporal recurrent loop that can capture compositional repre-

sentations in the time domain and is suitable for modeling the dynamic of sequential

inputs. The temporal recurrent loop creates a deep structure in the RNN model when

unfolding in the time series. Figure 2.2 shows the structure of RNN and the unfolded

network.

Figure 2.2: An Recurrent Neural Network and the unfolded structure.

Given a sequence x = {x1, x2, . . . , xT}, an RNN computes a sequence of hidden

states h = {h1, h2, . . . , hT} and outputs y = {y1, y2, . . . , yT} as follows:

ht = H(Wihxt + Whhht�1 + bh) (2.1)

yt = O(Whoht + bo), (2.2)

where Wih, Whh, Who denote weight matrices, bh, bo denote the biases, and H(·) and

O(·) are the activation functions of the hidden layer and the output layer, respectively.

Typically, the activation functions are defined as logistic sigmoid functions.

The traditional RNN is hard to train due to the so-called vanishing gradient prob-

lem. If the input sequence is too long, the gradient update through backpropagation

becomes inefficient. The weight updates decrease exponentially with the number
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Figure 2.3: A diagram of a LSTM memory cell (adapted from Graves et al. [2013]).

of backpropagation steps, which makes the training extremely slow. This problem

limits the maximum length of sequences that an RNN can accept.

To alleviate the vanishing gradient problem, the Long Short-Term Memory (LSTM)

model is then proposed by Hochreiter and Schmidhuber [1997]. Specifically, in ad-

dition to the hidden state ht, the LSTM also includes an input gate it, a forget gate

ft, an output gate ot, and the memory cell ct (shown in Figure 2.3). These gates are

regularized with sigmoid functions and control the portion of information passed

through the update functions. To be specific, in this architecture it and ft are sig-

moidal gating functions, and these two terms learn to control the portions of the

current input and the previous memory that the LSTM takes into consideration for

overwriting the previous state. Meanwhile, the output gate ot controls how much

of the memory should be transferred to the hidden state. These mechanisms allow

LSTM networks to learn temporal dynamics with long time constants.

The hidden layer and the additional gates and cells are updated as follows:

it = s(Wxixt + Whiht�1 + Wcict�1 + bi) (2.3)

ft = s(Wx f xt + Wh f ht�1 + Wc f ct�1 + b f ) (2.4)

ct = ftct�1 + it tanh(Wxcxt + Whcht�1 + bc) (2.5)

ot = s(Wxoxt + Whoht�1 + Wcoct + bo) (2.6)

ht = ot tanh(ct) (2.7)

The LSTM model has been used for image description generation [Donahue et al.,

2015], translating videos to language [Venugopalan et al., 2014], object recognition
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[Visin et al., 2014], and the estimation of object motion [Fragkiadaki et al., 2015]. Ng

et al. [2015] used the LSTM model to learn dynamic changes for action recognition.

Although the LSTM is the most commonly used structure, other variations have

been proposed to improve the performance. Cho et al. [2014] proposed a simplified

version of LSTM with fewer gate controls, named Gated Recurrent Unit (GRU). It

coupled the input and the forget gates into an update gate and replaced the output

gate with a reset gate that only controls the recurrent connections to the block input.

To improve the capability of long-term memory learning, Weston et al. [2014] pro-

posed the memory networks. It introduced a long-term memory component which

can learn flexible combinations of history information. This architecture provides a

mechanism for selective learning of long sequences.

2.1.3 Training neural networks

Deeper structures bring many challenges for the training such as overfitting and

slow convergence problems. To effectively learn the representations of inputs, non-

linearities play an important part in building a deep neural network. Inspired by

the biology, rectifying functions are used to control the outputs followed by nor-

malizations. Nair and Hinton [2010] proposed the Rectified Linear Units (ReLUs)

function as the activation function, while Krizhevsky et al. [2012] showed that it also

improved the convergence speed of the training procedure. For normalization, a

number of different methods have been studied. Jarrett et al. [2009] used local con-

trast normalization after each layer inspired by computational neuroscience model

[DiCarlo et al., 2008; Lyu and Simoncelli, 2008]. The local contrast normalization

enforces local competition between adjacent features in the feature map. Krizhevsky

et al. [2012] used brightness normalization, which is similar to the local contrast nor-

malization but without the subtraction of the mean activity. Another difficulty in

training a deep neural network is overfitting. Hinton et al. [2012] proposed to use

dropout regularization during the training stage. This is an efficient way to perform

model average and has been proved to be very effective that it has already become a

standard method in deep neural network training. Recent works on very deep neural

networks reveal that the network depth is crucial important [Simonyan and Zisser-

man, 2014b; Szegedy et al., 2015; He et al., 2015, 2016]. However, learning a network

with dozens or hundreds of layers is extremely challenging. This problem is largely

addressed with the batch normalization [Ioffe and Szegedy, 2015] and introducing

residual units into the network [He et al., 2016].
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Many machine-learning algorithms use variants of the standard gradient descent

method for optimization. However, for the training of deep neural networks, the

global gradient descent method is inefficient since calculating the sum-gradient of a

large training set is extremely expensive. Many research works have been dedicated

to creating efficient training methods for deep neural networks. One of the most

frequently used optimization methods to train deep neural networks is the Stochas-

tic gradient descent (SGD) method [Murata, 1998; Bousquet and Bottou, 2008]. This

is a random optimization method that approximate the global gradient descent op-

timization by accumulating gradient updates over individual samples. In practice,

the gradient updates are often calculated over a small number of samples, which

is also called a “mini-batch”, to utilize the parallel computational mechanisms. It

also makes the convergence more smooth by using more training samples at each

step. Research works show that the stochastic gradient descent converges faster

than global gradient descent method. When the training set has a large number of

samples, using global gradient descent is practically impossible. In such cases, the

stochastic gradient descent is the best choice for the optimization.

Although stochastic gradient descent is widely used, the training may not be

efficient enough in some cases. A number of adaptive updating algorithms have

been proposed to improve the stability or convergence speed of the optimization.

To achieve more robust update of gradients, the RMSProp method keeps a mov-

ing average of the squared gradients and use this value to normalize the gradient

update steps [Hinton, 2012]. Duchi et al. [2011] proposed the adaptive gradient al-

gorithm to improve the training performance over sparse inputs. The basic idea is to

use parameter-wise learning rate instead of one global learning rate for all parame-

ters. The adaptive gradient method gives larger update step length for more sparse

parameters and reduces the update step length for less sparse parameters so that

the training speed can be adjusted according to the geometry of the observed data.

ADADELTA is one of the most frequently used updating algorithms for its simplicity

and low overhead cost [Zeiler, 2012], which requires no manual tuning of learning

rates and is robust to noisy gradients and different network structures. Another ef-

fective method is Adaptive Moment Estimation (Adam) proposed by Kingma and

Ba [2014]. It considered both the first-order gradients and the lower-order moments,

which are very robust to highly noisy and sparse gradients. Generally, these adaptive

optimization methods have better performance compared to the standard stochastic

gradient descent, with the cost of more or less additional computation overheads.
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2.2 Applications: case studies of deep learning

In this thesis, I use deep learning approaches for two categories of computer vision

tasks: 1) similarity learning of static inputs; 2) the representation learning of sequen-

tial data. This section briefly discusses the backgrounds and closely related works of

the deep learning applications in the case studies.

2.2.1 Learning similarity

In this thesis, I select Siamese network as the similarity learning tool and use it

to solve the sketch based 3D shape retrieval problem. A typical Siamese network

structure is shown in Figure 2.4. The Siamese network has been initially proposed

for signature verification [Bromley et al., 1993]. It is designed to learn the relationship

of an input pair. The Siamese network consists of a shared sub-network that learn

the representations of sample pairs. In different variations of the Siamese network,

the shared sub-networks may be used with various network layers at different levels,

then the extracted pair of features is joined at the last layers with a contrastive loss

function. Different from the other single modal network structures, it learns the

representation of inputs with constraints of the pairwise relationship of samples. The

goal of the network is to minimize the feature distance if the input pair is labeled

as similar, and push the features far away from each other for dissimilar pairs. Such

kind of network structure can be used as supervised metric learning model.

Figure 2.4: A typical Siamese network structure.

Chopra et al. [2005] use the Siamese network for face verification. They pro-

pose to use the convolutional network to map the raw input to the target space to



18 Background and Related Work

achieve robustness to geometric distortions. Salakhutdinov and Hinton [2007] use

multilayer neural networks with Siamese network architecture to learn non-linear

embedding of high dimensional inputs. Recently, the Siamese network has been suc-

cessfully applied to semantic text similarity measurements [Yih et al., 2011]. The

authors show that Siamese network achieves high accuracy on cross-lingual docu-

ment retrieval as well as ad relevance measure tasks, which demonstrate the ability

of Siamese network to learn cross domain similarities. Chen and Salman [2011] ap-

plied Siamese network for speech feature classification task and successfully learn the

speaker-specific information. In recent year, the Siamese network has been adopted

in more vision tasks for image matching. Zagoruyko and Komodakis [2015] extended

and generalized the Siamese network to learning similarity between image patches.

Bertinetto et al. [2016] further extended the Siamese network with fully convolutional

networks for object tracking. Follow the line of multi-stream structures, Wang et al.

[2014] proposed the triplet network for image rank learning to learn fine-grained

image similarity.

2.2.2 Learning representations of sequential data

This section focuses on the deep learning approaches for sequential data modeling.

Recently the RNN and the LSTM architectures have been widely used for sequen-

tial data learning. They are popularized in language processing and have been used

for generating sentences that describe images [Karpathy and Fei-Fei, 2015; Vinyals

et al., 2015]. In these works, the recurrent networks are adopted to process the lan-

guage data to either learn the language model or generate sentences using visual

features. Instead of using recurrent networks for feature encoding, Vinyals et al.

[2015] proposed to use the convolutional neural network to encode the image feature

and decode it with an LSTM model. Karpathy and Fei-Fei [2015] further extended

the decoding module with a bidirectional recurrent network and an attention model

to generate sentences.

Following these studies, a number of works proposed to extend the recurrent net-

works to the image domain to encode video frames and generate video descriptions

[Venugopalan et al., 2014; Donahue et al., 2015]. Donahue et al. [2015] introduced a

generalized structure called Long-term Recurrent Convolutional Networks (LRCN),

which combines recurrent networks and convolutional neural networks for sequen-

tial data modeling. Under this architecture, the recurrent networks can be used for

action recognition by encoding image features and generate action categories. [Ng
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et al., 2015] extended the LSTM model with temporal pooling over frame features

and ordered sequence of frames to learn action representations.

In my study, specifically, I explore the representation learning approaches for

human action recognition problem. Most traditional methods consider the action

recognition problem as a classification task. Given a pre-segmented input video, the

action recognition methods extract features of the video clips and generate a set of

category labels as the output. In a very recent work, Ma et al. [2016] trained an LSTM

using novel ranking losses for early activity detection.

2.3 Summary

In this chapter, we revisited the basic concepts and recent developments of deep

learning methods and summarized the advantages and drawbacks of these new ap-

proaches. We described the convolutional neural network model for static represen-

tation learning as well as the Siamese network for similarity learning. For sequential

data modeling, we described the Recurrent Neural Network and the Long Short-

Term Memory model for feature learning. These research findings are the basis of

the works proposed in this thesis. Many of them provide deep insights of the re-

search area and motivations of new ideas.
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Chapter 3

Sketch Based 3D Shape Retrieval

In this chapter, my study is to learn sketch representations and similarities for shape

matching. The 3D shape retrieval is an important research topic in content based

object retrieval. It has important applications in computer graphics, information

retrieval, and computer vision [Eitz et al., 2012b; Furuya and Ohbuchi, 2013; Li et al.,

2014a]. Early studies of 3D shape retrieval directly use 3D shapes as queries and

focus on creating proper feature descriptions that are suitable for 3D shape matching

[Shilane et al., 2004]. Such methods suffer from the difficulty of 3D shape orientation

alignment and high computational cost. Using 3D shapes as queries also limited the

application of these methods. In contrast, a more intuitive approach is retrieving 3D

shapes using hand drawn sketches. The idea of sketch based 3D shape retrieval is

very attractive. It provides a user friendly way to create query inputs and visually

depictive to specify shape.

Directly matching 2D sketches to 3D models suffers from significant differences

between the 2D and 3D representations. Many existing methods project the 3D mod-

els to multiple 2D views and do the sketch matching in the 2D space. Figure 3.1

shows a few examples of 2D sketches and their corresponding 3D models. One can

immediately see the variations in both the sketch styles and 3D models. In almost

all state of the art approaches, sketch based 3D shape retrieval amounts to finding

the “best views” for 3D models and handcrafting the right features for matching

sketches and views. First, an automatic procedure is used to select the most repre-

sentative views of a 3D model. Ideally, one of the viewpoints is similar to that of the

query sketches. Then, 3D models are projected to 2D planes using a variety of line

rendering algorithms. Subsequently, many 2D matching methods can be used for

computing the similarity scores, where features are always manually defined (e.g.,
dense SIFT [Furuya and Ohbuchi, 2009] and Gabor local line based feature (GALIF)

21
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Figure 3.1: Examples of sketch based 3D shape retrieval.

[Eitz et al., 2012b]).

This stage-wise methodology appears pragmatic, but it also brings a number of

puzzling issues. To begin with, there is no guarantee that the best views have similar

viewpoints with the sketches. The inherent issue is that identifying best view is an

unsolved problem by itself, partially because the general definition of best views is

elusive. In fact, many best view methods require manually selected viewpoints for

training, which makes the view selection by finding “best views” a chicken-and-egg

problem. Further, this viewpoint uncertainty makes it dubious to match samples

from two different domains without learning their metrics. Take Figure 3.1 for ex-

ample, even when the viewpoints are similar the variations in sketches as well as the

different characteristics between sketches and views are beyond the assumptions of

many 2D matching methods.

Considering all the above issues arise when we struggle to seek the viewpoints

for matching, can we bypass the stage of view selection? In this work, we demon-

strate that by learning cross domain similarities, we no longer require the seemingly

indispensable view similarity assumption. Instead of relying on the elusive concept

of “best views” and handcrafted features, we propose to define our views and learn

features for views and sketches. Assuming that the majority of the models are up-

right, we drastically reduce the number of views to two for the whole dataset. We

also make no selection of these two directions as long as they are significantly dif-

ferent. Therefore, this can be considered as the minimalist approach as opposed to

multiple best views. This upright assumption appears to be strong, but it turns out
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to be sensible for 3D datasets. Many 3D models are naturally generated upright (e.g.,
the Princeton Shape Benchmark [Shilane et al., 2004]). We choose two viewpoints

because it is very unlikely to get degenerated views for two significantly different

viewpoints. An immediate advantage is that our matching is more efficient without

the need of comparing to more views than necessary.

This seeming radical approach triumphs only when the features are learned prop-

erly. In principle, this can be regarded as learning representations between sketches

and views by specifying similarities, which gives us a semantic level matching. To

achieve this goal, we need comprehensive shape representations rather than the com-

bination of a bunch of shallow features that only capture the low level visual infor-

mation. We learn the shape representations using Convolutional Neural Network

(CNN). Our model is based on the Siamese network [Chopra et al., 2005]. Since the

two input sources have distinctive intrinsic properties, two different CNN models

are used, one for handling the sketches and the other for the views. This two model

strategy can give us more power to capture different properties in different domains.

Most importantly, a loss function is defined to “align” the results of the two CNN

models. This loss function couples the two input sources into the same target space,

which allows us to compare the features directly using a simple distance function.

The remain of this chapter is organized as follows. In Section 3.1, I first review

the closely related works for sketch based shape retrieval and introduce the bench-

mark datasets. In Section 3.2, I show how to build the cross domain matching model

using Siamese network and present the network architecture. Section 3.3 shows the

experiment results of our method. I evaluated our method on three datasets. Com-

parison results show that our method significantly outperforms existing approaches

in a number of metrics, including precision-recall and the nearest neighbor. I further

demonstrate the retrieval performances within each domain.

The main contributions in this work include

1. I proposed to learn feature representations for sketch based shape retrieval,

which bypasses the dilemma of best view selection;

2. I adopted two Siamese Convolutional Neural Networks to successfully learn

both the within domain and the cross domain similarities;

3. The proposed method significantly outperformed previous methods on three

large datasets.
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3.1 Related work

Sketch based shape retrieval has received many interests for years [Funkhouser et al.,

2003; Li et al., 2014a,a]. In this section, we review three key components in sketch

based shape retrieval: public available datasets, features for shape matching, and

similarity learning.

Datasets The effort of building 3D datasets can be traced back to decades ago.

The Princeton Shape Benchmark (PSB) is probably one of the best known sources

for 3D models [Shilane et al., 2004]. There are some recent advancements for gen-

eral and special objects, such as the SHREC’13 Benchmark [Li et al., 2014a], the

SHREC’14 Benchmark [Li et al., 2014b] and the Bonn Architecture Benchmark [Wes-

sel et al., 2009]. 2D sketches have been adopted as input in many systems [Daras

and Axenopoulos, 2010]. However, the large-scale collections are available only re-

cently. Eitz et al. [2012b] collected sketches based on the PSB dataset. Li et al. [2014a]

organized the sketches collected by Eitz et al. [2012a] in their SBSR challenge.

Features Global shape descriptors, such as statistics of shapes [Osada et al., 2002]

and distance functions [Kazhdan et al., 2002], have been used for 3D shape retrieval

[Tangelder and Veltkamp, 2008]. Recently, local features is proposed for partial

matching [Funkhouser and Shilane, 2006] or used in the bag-of-words model for

3D shape retrieval [Bronstein et al., 2011].

Boundary information together with internal structures are used for matching

sketches against 2D projections. Therefore, a good representation of line drawing im-

ages is a key component for sketch based shape retrieval. Sketch representation such

as shape context [Belongie et al., 2002] was proposed for image based shape retrieval.

Furuya and Ohbuchi [2009] proposed BF-DSIFT feature, which is an extended SIFT

feature with Bag-of-word method, to represent sketch images. One recent method is

the Gabor local line based feature (GALIF) by Eitz et al. [2012b], which builds on a

bank of Gabor filters followed by a Bag-of-word method.

In addition to 2D shape features, some methods also explored geometry features

as well as graph-based features to facilitate the 3D shape retrieval [Li et al., 2015].

Semantic labeling is also used to bridge the gaps between different domains [Gong

et al., 2013].
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3.2 The approach

We propose to learn the representations of 2D sketches using CNN model and jointly

learn the similarities using Siamese network architecture. As introduced in Chap-

ter 2, the CNN model is suitable for learning of hierarchical feature representations.

We extend the Siamese network architecture with two CNN models for the two dif-

ferent input domains, one for the hand drawn sketches and the other for the projected

views of 3D models. These two CNN models have identical network structure but

are updated separately. This two model strategy can give us more power to capture

different properties in different domains.

Siamese Network combined with convolutional networks has been successfully

used for dimension reduction in weakly supervised metric learning [Salakhutdinov

and Hinton, 2007]. The most important part of Siamese network is the loss function

defined on the pairs of extracted features, which is designed to “align” the learned

features from the two domains. A typical loss function of a pair has the following

form:

L(s1, s2, y) = (1 � y)
1

Cp
D2

w + yCne
�2.77

Cn Dw , (3.1)

Dw = k f (s1; w1)� f (s2; w2)k1 (3.2)

where s1 and s2 are two input samples, y is the binary similarity label, y = 0 for

matched pairs and y = 1 for mismatched pairs. Dw is the distance, and Cp and Cn

are two constants. In the experiments, we empirically use Cp = 0.2 and Cn = 10.0,

respectively. The loss function consists of two terms. For matched pairs, the loss

function penalizes large distances of the projected features; for mismatched pairs, the

loss function minimizes the exponential of negative feature distance so that closer

feature pairs are penalized. This can be regarded as a metric learning approach.

Unlike methods that assign binary similarity labels to pairs, the network aims at

bringing the output feature vectors closer for input pairs that are labeled as similar,

or push the feature vectors away if the input pairs are labeled as dissimilar. The

proposed model is trained with Stochastic Gradient Descent (SGD) method.

The Siamese network is frequently illustrated as two identical networks for two

different samples. In each SGD iteration, pairs of samples are processed using

two identical networks, and the error computed by Equation (3.1) is then back-

propagated and the gradients are computed individually base on the two sample
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sets. The Siamese network is updated by the average of these two gradients.

3.2.1 Cross-domain matching using Siamese network

In this section, we propose a method to match samples from two domains without

the heavy assumption of view similarity. We first provide our motivation using an

illustrated sample. Then, we propose our extension of the basic Siamese network.

Specifically, we use two different networks to handle sources from different domains.

An illustrated example The matching problem can be cast as a metric learning

paradigm. In each domain, Siamese network effectively maps the line drawings to a

feature space, respectively. The cross domain matching can be successful if these two

domains are “aligned” correctly.

(a) (b)

Figure 3.2: An illustrated example, a) the shapes in the original domain may be
mixed, and b) after cross-domain metric learning, similar shapes in both domains
are grouped together.

This idea is illustrated in Figure 3.2. Blue denotes samples in the sketch domain,

and the orange denotes the ones in the view space. Different shapes denote different

classes. Before learning, the feature points from two different sources are initially

mixed together (Figure 3.2a). If we learn the correct mapping using pair similarities

in each domain as well as their cross-domain relations jointly, the two point sets may

be correctly aligned in the feature space (Figure 3.2b). After this cross-domain metric

learning, matching can be performed in both the same domain (sketch-sketch and

view-view) and cross-domain (sketch-view).

Note that, there are no explicit requirements about viewpoint similarity in this
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Figure 3.3: Dimension reduction using Siamese network.

perspective. That is, whether the matched pairs are from the same viewpoints is less

important. Instead, the focus is the metric between the two domains.

Two networks, one loss The basic Siamese network is commonly used for samples

from the same domain. In the cross domain setting, we propose to extend the basic

version to two Siamese networks, one for the view domain and the other for the

sketch domain. Then, we define the within-domain loss and the cross domain loss.

This hypothesis is supported by the experiments in the Section 3.3.

Assuming we have two inputs from each domain, i.e., s1 and s2 are two sketches

and v1 and v2 are two views. For simplicity, we assume s1 and v2 are from the same

class and s2 and v1 are from the same class as well. This can be achieved by restricting

the class of sketch/view samples during pair sampling. Therefore, the three pairs are

guaranteed to have the same matching type and one label y is enough to specify their

relationships.

As a result, our loss function is composed of three terms: the similarity of

sketches, the similarity of views, and the cross-domain similarity.

L(s1,s2, v1, v2, y) = L(s1, s2, y) + L(v1, v2, y) + L(s1, v1, y), (3.3)

where L(·, ·, ·) is defined by Equation (3.1).
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3.2.2 Network architecture

Figure 3.3 shows the architecture of our network for the inputs are views and sketches,

respectively. We use the same network design for both networks, but they are learned

simultaneously. Our input patch size is 100 ⇥ 100 for both sources. The structure of

the single CNN has three convolutional layers, each with a max pooling, one fully

connected layer to generate the features, and one output layer to compute the cross

domain loss.

The first convolutional layer followed by a 4 ⇥ 4 pooling generates 32 response

maps, each of size 22 ⇥ 22. The second layer and pooling outputs 64 maps of size

8 ⇥ 8. The third layer has 256 response maps, each is pooled to size 3 ⇥ 3. The 2304

features generated by the final pooling operation are linear transformed to 64 ⇥ 1

features in the last layer. Rectified linear units are used in all layers.

3.2.3 View definitions and line drawing rendering

This section presents our procedure of generating viewpoints and rendering 3D mod-

els. As opposed to multiple best views, we find it sufficient to use two random views

to characterize a 3D model because the chance that both views are degenerated is

very little. Following this observation, we impose the minimal assumptions on se-

lecting views for the whole dataset:

1. Most of the 3D models in the dataset are upright;

2. Two viewpoints are randomly generated for the whole dataset, provided that

their angle larger than 45 degree.

Figure 3.4 shows some of our views in the PSB dataset. The first row shows that

the upright assumption does not require strict alignments of 3D models, because

some models may not have well defined orientation. Further, while the models are

upright, they can still have different rotations (second row).

It is worth to stress that this approach does not eliminate the possibility of select-

ing more (best) views as input, but the comparisons among view selection methods

are beyond the scope of this chapter.

Once the viewpoints are chosen, we use two methods to render line drawings.

Rendering line drawings that include strong abstraction and stylization effects is a

very useful topic in computer graphics, computer vision, and psychology. Outer

edges as well as internal edges both play an important role in this rendering process.
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Figure 3.4: 3D models viewed from predefined viewpoints.

Therefore, we use the following descriptors: 1) closed boundaries and 2) Suggestive

Contours [DeCarlo et al., 2003] (Figure 3.5).

(a) Shaded (b) SC (c) Final

Figure 3.5: Line rendering of a 3D model. (a) shaded rendering of the 3D model; (b)
the suggestive contour; (c) the combination of shaded contour with suggestive
contour.

3.3 Experiments

We present our experiments on three recent large datasets in this section. In all

experiments, our method outperformed the state of the arts in a number of well

recognized metrics. In addition to the cross domain retrieval, we also present our

within-domain retrieval results, which have not been reported in any other com-

parison methods. These experiments demonstrate our siamese network successfully

learns the feature representations for both domains.
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3.3.1 Datasets

PSB / SBSR dataset The Princeton Shape Benchmark (PSB) [Shilane et al., 2004]

is widely used for 3D shape retrieval system evaluation, which contains 1814 3D

models and is equally divided into training set and testing set. The 3D models are

collected from 161 object classes. Notice that only part of the classes is shared by

the training and testing set. To be specific, 21 classes appear in both training and

testing set, 69 classes appears only in the training set, and 71 classes are used only

for testing. In section 3.3.3, we will evaluate the retrieval performance of the classes

exists only in the testing set. As these 3D models are unseen during the training

stage, they are more challenging for the similarity learning task.

In [Eitz et al., 2012b], the Shape Based Shape Retrieval (SBSR) dataset is collected

for pairing with the PSB 3D models. The 1814 hand drawn sketches were collected

using Amazon Mechanical Turk. In the collection process, participants were asked

to draw sketches given only the name of the categories, thus the sketches are drawn

without any visual clue from the 3D models.

SHREC’13 & ’14 dataset Although the PSB dataset is widely used in shape retrieval

evaluation, there is a concern that the number of sketches for each class in the SBSR

dataset is not enough. Some classes have only very few instances (27 of 90 training

classes have no more than 5 instances), while some classes have dominating number

of instances, e.g., the “fighter jet" class and the “human" class have as many as 50

instances.

To remove the possible bias when evaluation the retrieval algorithms, Li et al.

[2014a] reorganized the PSB/SBSR dataset and proposed the SHREC’13 dataset where

a subset of PSB with 1258 models was used and the sketches in each class had 80 in-

stances. These sketch instances were split into two sets: 50 for training and 30 for

testing. Please note, the number of models in each class still varies. For example,

the largest class have 184 instances but there are 23 classes having no more than 5

models

Recently, SHREC’14 was proposed to address some above concerns [Li et al.,

2014b], which greatly enlarged the number of 3D models to 8987, and the number

of classes was doubled. The large variation of this dataset made it much more chal-

lenging, and the overall performance of all reported methods are very low (e.g., the

accuracy of the best algorithm is only 0.16 for the top 1 candidate). This is probably

due to the fact that the models are from various sources and arbitrarily oriented.
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While our performance is still superior (see Figure 3.11 and Table 3.4), we choose to

present our results using the SHREC’13 dataset.

Evaluation criteria In our experiment, we use all datasets and measure the per-

formance using the following criteria: 1) Precision-recall curve is calculated for each

query and linear interpolated, then the final curve is reported by averaging all pre-

cision values for fixed recall rates; 2) Average precision (mAP) is the area under the

precision-recall curve; 3) Nearest neighbor (NN) is used to measure the top 1 retrieval

accuracy; 4) E-Measure (E) is the harmonic mean of the precision and recall for the top

32 retrieval results; 5) First/second tier (FT/ST) and Discounted cumulated gain (DCG) as

defined in the PSB statistics.

3.3.2 Experimental settings

Stopping criteria All three of the datasets had been split into training and testing

sets, but no validation set was specified. Therefore, we terminated our algorithm

after 50 epochs for PSB/SBSR and 20 for SHREC’13 dataset (or until convergence).

Multiple runs were performed and the mean values were reported.

Generating pairs for Siamese network To make sure we generate the reasonable

proportion of similar and dissimilar pairs, we used the following approach to gener-

ate pair sets. For each training sketch, we random selected kp view peers in the same

category (matched pairs) and kn view samples from other categories (unmatched

pairs). Usually, our dissimilar pairs are ten times more than the similar pairs for

successful training. In our experiment, we use kp = 2, kn = 20. We perform this

random pairing for each training epoch.

Computational cost The implementation of the proposed Siamese CNN is based on

the Theano library [Theano Development Team, 2016]. We measured the processing

time on a PC with 2.8GHz CPU and GTX 780 GPU. With preprocessed view features,

the retrieval time for each query is approximately 0.002 sec on average on SHREC’13

dataset. The code is available from http://users.cecs.anu.edu.au/~fwang/sbsr_prj/sbsr_

demo.html.

The training time is proportional to the total number of pairs and the number of

epochs. Overall training takes approximately 2.5 hours for PSB/SBSR, 6 hours for

SHREC’13, respectively.

http://users.cecs.anu.edu.au/~fwang/sbsr_prj/sbsr_demo.html
http://users.cecs.anu.edu.au/~fwang/sbsr_prj/sbsr_demo.html


32 Sketch Based 3D Shape Retrieval

Figure 3.6: Retrieval examples of PSB/SBSR dataset. The cyan denotes the correct
retrievals.

3.3.3 Shape retrieval on PSB/SBSR dataset

Examples In this section, we test our method using the PSB/SBSR dataset. First, we

show some retrieval examples in Figure 3.6. The first column shows 8 queries from

different classes, and each row shows the top 15 retrieval results. The cyan denotes

the correct retrievals, and gray denotes incorrect ones.

The method performs exceptionally well in popular classes such as human, face,

and plane. We also found that some fine-grained categorizations are difficult to dis-

tinguish. For instance, the shelf and the box differ only in a small part of the model.

However, we also want to note that some of the classes only differ in semantics (e.g.,
barn and house only differ in function). Certainly, this semantic ambiguity is beyond

the scope of this chapter.

Finally, we want to stress that the importance of viewpoint is significantly de-

creased in our metric learning approach. Some classes may exhibit a high degree of

freedom such as the plane, but the retrieval results are also excellent (as shown in

Figure 3.6).

Analysis We further show some statistics on this dataset. First, we provide the

precision-recall values at fixed points in Table 3.1. Compared to Figure 9 in [Eitz

et al., 2012b], our results are approximately 10% higher. We then show six standard

evaluation metrics in Table 3.2.
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Since other methods did not report the results on this dataset, we leave the com-

prehensive comparison to the next section. Instead, in this analysis, we focus on the

effectiveness of metric learning for shape retrieval.

Table 3.1: Precision-recall on fixed points.

5% 20% 40% 60% 80% 100%
0.616 0.286 0.221 0.180 0.138 0.072

Table 3.2: Standard metrics on the PSB/SBSR dataset.

NN FT ST E DCG mAP
0.223 0.177 0.271 0.173 0.451 0.218

Retrieval for “pure test” classes As we have mentioned before, PSB/SBSR is a

very imbalanced dataset, where the training set and the testing set are partially over-

lapped. This makes it an excellent dataset for investigating similarity learning be-

cause the “unseen” classes verify the learning is not biased to the training classes.

In this experiment, we use the same model trained on the original training and

testing split, and evaluate the performance on three different test sets. The “pure test”

contains test samples from the classes that never appears in training. The “shared

test” contains test samples from the classes that also used in training. The “whole

test” consists of all test samples.

Some retrieval examples of the unseen classes are shown in Figure 3.7. It is

interesting to see that our proposed method works well even on failure cases, such

as the flower, the retrieval returns similar shapes (“potting plant”). This demonstrates

that our method learns the similarity effectively. Figure 3.8 shows our comparison

on the split testing set according to their class label.

3.3.4 Shape retrieval on SHREC’13 and SHREC’14 dataset

In this section, we use the SHREC’13 and SHREC’14 benchmark to evaluate our

method. We compare to all other methods evaluated in these two benchmarks and

also show the retrieval results within the same domain.
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Figure 3.7: Retrieval examples of unseen samples in PSB/SBSR dataset. The cyan
denotes the correct retrievals.
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Figure 3.8: Split test set performance on SBSR.

A visualization of the learned features First, a visualization of our learned feature

space is presented in Figure 3.9. We perform a principle component analysis on the

features learned by our network and reduce the dimension to two for visualization

purpose. The green dots denote the sketches, and the yellow ones denote views. For

simplicity, we only overlay the sampled views over the point cloud.

While this is a coarse visualization, we can already see some interesting properties

of our method. First, we can see that classes with similar shapes are grouped together

automatically. On the top right, different animals are mapped to nearby spaces. On

the left, various types of vehicles are grouped autonomously. Other examples include

house and church, which are very similar.

Note that this is a weakly supervised method, where only the similarity is la-

beled. This localization suggests that the learned features are effective in capturing

the similarities of samples.
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Figure 3.9: Visualization of feature space on SHREC’13. Sketch and view feature
points are shown by green & yellow, respectively.
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Statistical results This section presents the statistical results on SHREC’13 and

SHREC’14. First, we compare the precision-recall curve against the state of the art

methods reported in [Li et al., 2014a] and [Li et al., 2014b].
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Figure 3.10: Performance comparison on SHREC’13. Please refer to [Li et al., 2014a]
for the descriptions of the compared methods.

From the Figure 3.10 we can see that our method significantly outperformed

other comparison methods. On SHREC’13 benchmark, the performance gain of our

method is already 10% when the recall is small. More importantly, the whole curve

decreases much slower than other methods when the recall increases, which is desir-

able because it shows the method is more stable. The proposed method has a higher

performance gain (30%) when recall reaches 1. Figure 3.11 shows that, on SHREC’14

benchmark, our method consistently shows increased precision as the recall increase

(approx. 10%). This demonstrates our method exceeds other methods that use hand-

crafted features. The comparison clearly shows that our methods benefited from

the learned features a lot, and is much more stable at higher recall level. One rea-

son is that the CNN features are more representative than the handcrafted features,

thus it is more capable to capture similarities of different classes without loose the

discriminative power.

We further show the standard metrics for comparison. These metrics examine the

retrieval results from different perspectives. For simplicity, only the best method is

selected from each research group reported in [Li et al., 2014a] and [Li et al., 2014b].

As shown in Table 3.3, the proposed method has a better number in every metric on
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Figure 3.11: Performance comparison on SHREC’14. Detailed descriptions of the
compared methods can be found in [Li et al., 2014b].

both benchmarks. This further demonstrates our method is superior.

We also compared to the case where both networks are identical, i.e., both views

and sketches use the same Siamese network. Figure 3.10 suggests that this configu-

ration is inferior to our proposed version, but still, it is better than all other methods.

This supports our hypothesis that the variations in two domains are different. This

also sends a message that using the same features (handcrafted or learned) for both

domains may not be ideal.

Table 3.3: Comparison on SHREC’13 dataset. The best results are shown in red, and
the second best results are shown in blue.

SHREC’13
NN FT ST E DCG mAP

Ours 0.405 0.403 0.548 0.287 0.607 0.469
Identical Model 0.389 0.364 0.516 0.272 0.588 0.434

[Furuya and Ohbuchi, 2013] 0.279 0.203 0.296 0.166 0.458 0.250
[Li et al., 2014a] 0.164 0.097 0.149 0.085 0.348 0.116

[Sousa and Fonseca, 2010] 0.017 0.016 0.031 0.018 0.240 0.026
[Saavedra et al., 2012] 0.110 0.069 0.107 0.061 0.307 0.086
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Table 3.4: Comparison on SHREC’14 dataset. The best results are shown in red, and
the second best results are shown in blue.

SHREC’14
NN FT ST E DCG mAP

Ours 0.239 0.212 0.316 0.140 0.496 0.228
[Tatsuma et al., 2012] 0.160 0.115 0.170 0.079 0.376 0.131

[Furuya and Ohbuchi, 2013] 0.109 0.057 0.089 0.041 0.328 0.054
[Li et al., 2014a] 0.095 0.050 0.081 0.037 0.319 0.050

Within-domain retrieval Finally, we show the retrievals in the same domain. This

interesting experiment shall be straightforward to report because the data is readily

available, but was not shown before in any literature. Since this is a “by-product” of

our method, we do not tune up any parameter or re-train the system.

Figure 3.12 and 3.13 visualize some retrieval results in each domain, respectively.

Table 3.5 further reports the statistics. The retrieval results demonstrate our method

is powerful in learning the features for both within domain and cross-domain. From

these figures, one can see that the view domain is much more consistent than the

sketch domain. Comparing Table 3.5 to Table 3.3, we conclude that the inconsistency

in the sketches is the most challenging issue in the sketch based 3D shape retrieval.

Figure 3.12: Sketch-sketch retrieval on SHREC’13. The incorrect retrievals are
marked as light gray.
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Figure 3.13: View-view retrieval on SHREC’13. The cyan denotes the correct
retrievals.

Table 3.5: Standard metrics for the within-domain retrieval on SHREC’13.

NN FT ST E DCG mAP
view 0.965 0.877 0.982 0.536 0.971 0.909

sketch 0.431 0.352 0.514 0.298 0.679 0.373

3.4 Summary

This chapter proposes to learn feature representations for sketch based 3D shape re-

trieval. Instead of computing “best views” and match them against queries, we use

predefined viewpoints for the whole dataset and adopt two Siamese CNNs, one for

views and one for sketches. The experiment results on three large datasets demon-

strated that our method is significantly superior. At the end, I show an application

of the proposed method on hand drawn sketch retrieval and use fully convolutional

networks to learn the sketch representations. The experiment results show that the

proposed similarity learning method is effective for general tasks.
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Chapter 4

Manipulation Action Prediction
Using LSTM

In the last chapter, I studied the neural network approaches for representation learn-

ing and similarity learning of static inputs. From this chapter, I turn to the investiga-

tion of representation learning approaches for sequential data, because it has more

complex feature representations due to the dynamic changes and how to effectively

learn representations for such kind of inputs is an interesting question. Sequential

data has wide applications in many vision tasks, such as human activity recognition,

scene understanding, and object tracking. I choose to focus on the human actions

recognition problem and study three related tasks around this topic. In this chap-

ter, I first study the action prediction problem and propose an approach for human

action prediction based on the Long Short-Term Memory model.

Human action and activity understanding has been a topic of great interest in

Computer Vision and Robotics in recent years. Many techniques have been devel-

oped for recognizing actions and large benchmark datasets have been proposed, most

of them focus on full-body actions [Mandary et al., 2015; Takano et al., 2015; Schuldt

et al., 2004; Moeslund et al., 2006; Turaga et al., 2008]. Typically, computationally

approaches treat action recognition as a classification problem, where the input is a

previously segmented video, and the output a set of candidate action labels.

However, there is more to action understanding, as demonstrated by biological

vision. As we humans observe, we constantly perceive and update our beliefs about

the observed action and about future events. We constantly recognize the ongoing

action. Similarly, cognitive robots that will assist human partners will need to un-

derstand their intended actions at an early stage. If a robot needs to act, it cannot

have a long delay in visual processing. It needs to recognize in real-time to plan its

actions. A fully functional perception-action loop requires the robot to predict, so it

41
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Figure 4.1: Two examples demonstrate that early movements are strong indicators
of the intended manipulation actions. Inspired by this, our system performs action
predictions from early visual cues. Compared to the classification delay, earlier
prediction of action significantly reduces the delay in real-time interaction, which is
fundamentally important for the proactive system. (Top row: squeezing a sponge;
bottom row: wiping a table with a sponge.)

can efficiently allocate future processes.

Finally, even vision processes for multimedia tasks may benefit from being predic-

tive. Interpreting human activities is a very complex task and requires both, low-level

vision processes and high-level cognitive processes with knowledge about actions.

[Gupta and Davis, 2008; Kulkarni et al., 2013]. Considering the challenges in state of

the art visual action recognition, Aloimonos and Fermüller [2015] argue that by inte-

grating closely the high-level with the low-level vision processes, with the high-level

modifying the visual processes, a better recognition may be achieved. Prediction

plays an essential component in this interaction. In this work, I focus on manipu-

lation actions and how visual information of hand movements can be exploited for

predicting future action so that the crucial delay in the control loop can be shortened

(for an illustration see Figure 4.1).

Hand movements and actions have long been studied in Computer Vision to cre-

ate systems for applications such as recognition of sign language [Erol et al., 2007].

More recent applications include gesture recognition [Molchanov et al., 2015], vi-

sual interfaces [Melax et al., 2013], and driver analysis [Ohn-Bar and Trivedi, 2014].
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Different methods model the temporal evolution of actions using formalisms such

as Hidden Markov models [Starner et al., 1998], Conditional Random Fields [Wang

et al., 2006] and 3D Convolutional Neural Networks [Molchanov et al., 2015]. While

in principle, some of these approaches, could be used for online prediction, they are

always treated as recognition modules.

In recent years a number of works have developed tools for general hand pose es-

timation and hand tracking, which can be building blocks for applications involving

hand movement recognition. For example, building on work on full-body recognition

[Shotton et al., 2013], Keskin et al. [2013] develops a learning-based approach using

depth contrast features and Random Forest classifiers. Oikonomidis et al. [2011] in a

model-based approach use a 27-degree of freedom model of the hand built from ge-

ometric primitives and GPU accelerated Particle Swarm Optimization. So far, these

trackers and pose estimators work well on isolated hands, but methods still strug-

gle with hands in interaction with objects [Supancic et al., 2015], although there are

efforts underway to deal with such situations [Panteleris et al., 2015].

The inspiration for this work comes from studies in Cognitive Sciences on hand

motion. The grasp and the movement kinematics are strongly related to the manip-

ulation action [Jeannerod, 1984]. It has been shown that an actor’s intention shapes

his/her movement kinematics during movement execution, and, furthermore, ob-

servers are sensitive to this information [Ansuini et al., 2015]. They can see early

differences in visual kinematics and use them to discriminate between movements

performed with different intentions. Kinematic studies have looked at such physical

differences in movement. For example, Ansuini et al. [2008] found that when subjects

grasped a bottle for pouring, the middle and the ring fingers were more extended

than when they grasped the bottle with the intent of displacing, throwing, or pass-

ing it. Similarly, Crajé et al. [2011] found that subjects placed their thumb and index

fingers in higher positions when the bottle was grasped to pour than to lift.

It appears that the visual information in the early phases of the action is often

sufficient for observers to understand the intention of an action. Starting from this

intuition, we a.) conducted a study to evaluate humans’ performance in recognizing

manipulation actions; b.) implemented a computational system using state-of-the-art

learning algorithms.

The psychophysical experiment was designed to evaluate human’s performance

in recognizing manipulation actions in their early phases. These include: 1) the grasp

preparation, which is the phase when the hand moves towards the object and the
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fingers shape to touch the object; 2) the grasp, when the hand comes in contact with

the object to hold it in a stable position; and 3) the early actual action movement of the

hand together with the object. Throughout these three phases, observers’ judgment

of the action becomes more reliable and confident. The study gives us an insight into

the difficulty of the task and provides data for evaluating our computational method.

Our computational approach processes the sensory input as a continuous signal

and formulates action interpretation as a continuous updating of the prediction of in-

tended action. From the stream of video input, we continuously predict the identity

of the ongoing action. We humans are able to update our beliefs about the observed

action, and predict it before it is completed. This capability is essential to be pro-

active and react to the actions of others. Robots that interact with humans also need

such capability. Predicting future actions of their counterpart allows them to allocate

computational resources for their own reaction appropriately. For example, if a per-

son is passing a cup to the robot, the robot has to understand what is happening well

before the action is completed, so it can prepare the appropriate action to receive it.

Furthermore, vision processes have to be initiated and possibly tuned with predicted

information, so the cup can be detected at the correct location, its pose estimated,

and possibly other task-specific processes performed (for example, the content of the

cup may need to be recognized).

In order to solve the action prediction task, we We use an RNN to recognize the

ongoing action from video input. A camera records videos of humans performing a

number of manipulation actions on different objects. For example, they “drink” from

a cup, “pour” from it, “pound”, “shake”, and “move” it; or they “squeeze” a sponge,

“flip” it, “wash”, “wipe”, and “scratch” with it. Our system extracts patches around

the hands and feeds these patches to an RNN, which was trained offline to predict

in real-time the ongoing action.

The main contributions of this work include

1. We present the first computational study on the prediction of observed dexter-

ous actions

2. We demonstrate an implementation for predicting intended dexterous actions

from videos;

3. We provide new datasets that serve as test-beds for the action prediction task.
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4.1 Related work

We will focus our review on studies along the following concepts: the idea of predic-

tion, including prediction of intention and future events, prediction beyond appear-

ance, the representations of human actions, works on hand actions, manipulation

datasets, and action classification as a continuous process using various kinds of

techniques and different kinds of inputs.

Prediction of action intention and future events A small number of works in Com-

puter Vision have aimed to predict intended action from visual input. For example,

Joo et al. [2014] use a ranking SVM to predict the persuasive motivation (or the in-

tention) of the photographer who captured an image. Pirsiavash et al. [2014] seek to

infer the motivation of the person in the image by mining knowledge stored in a large

corpus using natural language processing techniques. Yang et al. [2015] propose that

the grasp type, which is recognized in single images using CNNs, reveals the general

category of a person’s intended action. In [Koppula and Saxena, 2016], a temporal

Conditional Random Field model is used to infer anticipated human activities by

taking into consideration object affordances. Other works attempt to predict events

in the future. For example, Kitani et al. [2012] use concept detectors to predict future

trajectories in surveillance videos. [Fouhey and Zitnick, 2014] learn from sequences

of abstract images the relative motion of objects observed in single images. Walker

et al. [2014] employ visual mid-level elements to learn from videos how to predict

possible object trajectories in single images. More recently, [Vondrick et al., 2016]

learn using CNN feature representations how to predict from one frame in the video

the actions and objects in a future frame. Our study also is about the prediction of

future events using neural networks. But while the above studies attempt to learn

abstract concepts for reasoning in a passive setting, our goal is to perform online

prediction of specific actions from video of the recent past.

Physics beyond appearance Many recent approaches in Robotics and Computer

Vision aim to infer physical properties beyond appearance models from visual in-

puts. Xie et al. [2013] propose that implicit information, such as functional objects,

can be inferred from videos. [Zhu et al., 2015] takes a task-oriented viewpoint and

models objects using a simulation engine. The general idea of associating images

with forces has previously been used for object manipulation. The technique is called

vision-based force measurement and refers to the estimation of forces according to
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the observed deformations of an object [Greminger and Nelson, 2004]. Along with

this idea, recently Aviles et al. [2015] proposed a method using an RNN for the clas-

sification of forces due to tissue deformation in robotic-assisted surgery.

Representations of actions Spatial-temporal features have been proposed to repre-

sent video clips [Dollár et al., 2005; Laptev and Lindeberg, 2006; Klaser et al., 2008].

A number of research works using spatial-temporal representations based on optical

flow [Laptev and Lindeberg, 2006] or 3D gradients [Scovanner et al., 2007; Klaser

et al., 2008]. However, such methods suffer from high computational costs. To avoid

the high computational costs for video processing, [Laptev, 2005] and [Rohrbach

et al., 2012] used trajectories of key points instead of the raw video frames. The rep-

resentation is then extracted from these trajectories to model the dynamics of human

action. But, these methods are often sensitive to noise and the tracking error of the

key points. Wang et al. [2011] proposed dense trajectory feature, which achieved

better robustness by drastically increasing the number of tracked trajectories, then

the video features around these tracks are extracted as the action representation.

Dexterous actions The robotics community has been studying perception and con-

trol problems of dexterous actions for decades [Shimoga, 1996]. Some works have

studied grasping taxonomies [Cutkosky, 1989; Feix et al., 2009], how to recognize

grasp types [Rogez et al., 2015] and how to encode and represent human hand mo-

tion [Romero et al., 2013]. Pieropan et al. [2013] proposed a representation of objects

in terms of their interaction with human hands. Real-time visual trackers [Oikono-

midis et al., 2011] were developed, facilitating computational research with hands.

Recently, several learning based systems were reported that infer contact points or

how to grasp an object from its appearance [Saxena et al., 2008; Lenz et al., 2015].

Manipulation datasets A number of object manipulation datasets have been cre-

ated, many of them recorded with wearable cameras providing egocentric views.

For example, the Yale grasping dataset [Bullock et al., 2015] contains wide-angle

head-mounted camera videos recorded from four people during regular activities

with images tagged with the hand grasp (of 33 classes). Similarly, the UT Grasp

dataset [Cai et al., 2015] contains head-mounted camera video of people grasping

objects on a table and was tagged with grasps (of 17 classes). The GTEA set [Fathi

et al., 2011] has egocentric videos of household activities with the objects annotated.

Other datasets have egocentric RGB-D videos. The UCI-EGO [Rogez et al., 2014]
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features object manipulation scenes with annotation of the 3D hand poses, and the

GUN-71 [Rogez et al., 2015] features subjects grasping objects, where care was taken

to have the same amount of data for each of the 71 grasp types. Our datasets, in

contrast, are taken from the third-person viewpoint. While having less variation in

the visual setting than most of the above datasets, it focuses on the dynamic aspects

of different actions, which manipulate the same objects. The dataset can be accessed

from http://users.cecs.anu.edu.au/~fwang/action_prediction/index.html.

Action recognition as an online process Action recognition has been extensively

studied. However, few of the proposed methods treat action recognition as a con-

tinuous (in the online sense) process; typically, action classification is performed on

whole action sequences [Schuldt et al., 2004; Ijina and Mohan, 2014]. Recent works

include building robust action models based on MoCap data [Wang et al., 2014] or

using CNNs for large-scale video classification [Karpathy et al., 2014; Simonyan and

Zisserman, 2014c]. Most methods that take into account action dynamics usually op-

erate under a stochastic process formulation, e.g., by using Hidden Markov Models

[Lv and Nevatia, 2006] or semi-Markov models [Shi et al., 2011]. HMMs can model

relations between consecutive image frames, but they cannot be applied to high-

dimensional feature vectors. In [Fanello et al., 2013] the authors propose an online

action recognition method by means of SVM classification of sparsely coded features

on a sliding temporal window. Most of the above methods assume only short-time

dependencies between frames, make restrictive assumptions about the Markovian

order of the underlying processes and/or rely on global optimization over the whole

sequence.

In recent work, a few studies proposed approaches to recognition of partially ob-

served actions under the headings of early event detection or early action recognition.

Ryoo [2011] creates a representation that encodes how histograms of spatio-temporal

features change over time. In a probabilistic model, the histograms are modeled

with Gaussian distributions, and MAP estimation over all subsequences is used to

recognize the ongoing activity. A second approach in the paper models the sequen-

tial structure in the changing histogram representation, and matches subsequences

of the video using dynamic programming. Both approaches were evaluated on full

body action sequences. In [Ryoo and Matthies, 2013] images are represented by

spatio-temporal features and histograms of optical flow, and a hierarchical struc-

ture of video-subsegments is used to detect partial action sequences in first-person

http://users.cecs.anu.edu.au/~fwang/action_prediction/index.html
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videos. Ryoo et al. [2015] performs early recognition of activities in first person-

videos by capturing special sub-sequences characteristic for the onset of the main

activity. Hoai and De la Torre [2014] propose a maximum-margin framework (a

variant of SVM) to train visual detectors to recognize partial events. The classifier is

trained with all the video sub-sequences of different length. To enforce the sequential

nature of the events, additional constraints on the score function of the classifier are

enforced, for example, it has to increase as more frames are matched. The technique

was demonstrated in multiple applications, including detection of facial expressions,

hand gestures, and activities.

Our contribution regarding action recognition is that we demonstrate an online

prediction system based on the deep learning architectures. Furthermore, the subject

of our study is novel. The previous approaches consider the classical full body action

problem. Here our emphasis is specifically on the hand motion, not considering other

information such as the objects involved.

4.2 The approach

This section describes our proposed model for action prediction. We focus on ma-

nipulation actions where a person manipulates an object using a single hand. Given

a video sequence of a manipulation action, the goal is to generate a sequence of pre-

dicted actions while watching the video. Instead of assigning an action label to the

whole sequence, we continuously update the prediction as frames of the video are

processed.

Visual representation The visual information most essential for manipulation ac-

tions comes from the pose and movement of the hands, while the body movements

are less important. Therefore, we first track the hand using a mean-shift based tracker

[Bradski, 1998], and use cropped image patches centered on the hand. In order to

create abstract representations of image patches, we project each patch through a pre-

trained CNN model (shown in Figure 4.2). This provides the feature vectors used as

input to the RNN.

Action prediction In our model, the LSTM is trained using as input a sequence

of feature vectors x = {x1, x2, · · · , xT} and the action labels y 2 [1, N]. The hidden

states and the memory cell values are updated according to Equations (2.3)-(2.7).
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Then logistic regression is used to map the hidden states to the label space as follows:

P(Y = i|ht, Wu, bu) = so f tmaxi(Wuht + bu). (4.1)

Then the predicted action label is obtained as:

ŷt = argmaxiP(Y = i|ht, Wu, bu). (4.2)

Model learning We follow the common approach of training the model by mini-

mizing the negative log-likelihood over the dataset D. The loss function is defined

as

l(D, W, b) = �
|D|
Â
i=0

log(P(Y = y(i)|x(i), W, b)), (4.3)

where W and b denote the weight matrix and the bias term. These parameters can

be learned using the stochastic gradient descent algorithm.

Since we aim for the ongoing prediction rather than a classification of the whole

sequence, we do not perform a pooling over the sequences to generate the outputs.

Each prediction is based only on the current frame and the current hidden state,

which implicitly encodes information about the history. In practice, we achieve learn-

ing by performing backpropagation at each frame.

Figure 4.2: The flowchart of the action prediction model, where the LSTM model is
unfolded over time.
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4.3 Data collection

A Manipulation Action Dataset (MAD) is collected. It contains videos of people

performing dexterous actions on various objects. The focus was to have different

actions (with significant variation) on the same object. We asked five subjects to

perform a number of actions with five objects, namely cup, stone, sponge, spoon, and

knife. Each object was manipulated in five different actions with five repetitions,

resulting in a total of 625 action samples. Table 4.1 lists all the object and action pairs

considered in MAD.

Table 4.1: Object and Action pairs of MAD

Object Actions
cup drink, pound,shake,move,pour
stone pound,move,play,grind,carve
sponge squeeze,flip,wash,wipe,scratch
spoon scoop,stir,hit,eat,sprinkle
knife cut,chop,poke a hole,peel,spread

Since our aim was to build a system that can predict the action as early as possible,

we wanted to study the prediction performance during different phases in the action.

To facilitate such studies, we labeled the time in the videos when the hand establishes

contact with the objects, which we call the “touching point.”

4.4 An experimental study with humans

We were interested in how humans perform in prediction at different phases dur-

ing the action. Intuitively, we would expect that the hand configuration and motion

just before the grasping of the object, when establishing contact, and shortly after

the contact point can be very informative of the intended action. Therefore, in or-

der to evaluate how early we can accurately predict, we investigated the prediction

performance at certain time offsets with respect to the touching point.

We picked three objects from the MAD dataset for the study, namely cup, sponge
and spoon. The prediction accuracy at four different time points was then evaluated:

10 frames before the contact point, exactly at contact, 10, and 25 frames after the

contact point. Figure 4.3 shows the interface subjects used in this study.

In a first experiment, we asked 18 human subjects to perform the prediction task.
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Figure 4.3: Interface used in the human study.

For each of the three objects, after a short “training” phase in which all actions were

demonstrated at full length, each subject was shown a set of 40 video segments and

was asked to identify the currently perceived action. Each segment ended at one of

the four time points relative to the contact point described above and was constructed

from the same hand patches used in the computational experiments. All actions

and all time offsets were equally represented. Figure 4.4(a) plots subjects’ average

prediction performance for the different objects, actions and time offsets. With five

actions per object, 20% accuracy corresponds to chance level. As we can see, the task

of judging before and even at contact point, was very difficult and classification was

at chance for two of the objects, the spoon and the cup, and above chance at contact

only for the sponge. At 10 frames after contact human classification becomes better

and reaches in average about 75% for the sponge, 60% for the cup, but only 40% for

the spoon. At 25 frames subjects’ judgment becomes quite good with the sponge

going above 95% for four of the five actions, and the other two actions in average at

about 85%. We can also see which actions are easily confused. For the cup, ’shake’

and ’hit’ were even after 25 frames still difficult to recognize, and for the spoon,

the early phases of movement for most actions appeared similar, and ’eat’ was most

difficult to identify.

To see whether there is additional distinctive information in the actors’ move-

ment, and subjects can take advantage of it with further learning, we performed a

second study. Five participating subjects were shown 4 sets of 40 videos for each

object, and this time they were given feedback on which was the correct action. Fig-

ure 4.4(b) shows the overall success rate for each object and time offset over the four
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(a) without feedback (b) with feedback

Figure 4.4: Human prediction performance. (a) First study (without feedback).
Success rate for three objects (cup, sponge, and spoon) for five different actions at
four time offsets. (b) Second study (with feedback). Success rate for three objects
averaged over five actions over four sets of videos at four offsets.
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sets. If learning occurs, subjects’ should improve from the first to the fourth set. The

graphs show that there is a bit of learning. The effect is largest for the spoon, where

subjects can learn to better distinguish at 10 frames after contact. The focus was to

have different actions (with significant variation) on the same object.

4.5 Experimental results

The two algorithms have been implemented in a system that runs in real-time on

a GPU. This sections reports three experimental evaluations. The first experiment

evaluates the prediction performance as an on-going task, the second compares our

action recognition algorithm against human performance, and the third evaluates

our force estimation.

4.5.1 Hand action prediction on MAD dataset

Our approach uses visual features obtained with deep learning, which serves as

input to a sequence learning technique.

First, we apply the mean-shift based tracker of Comaniciu et al. [2000] to obtain

the locations of the hand. We crop image patches of size 224 ⇥ 224 pixels, centered

on the hand. Then our feature vectors are computed by projecting these patches

through a convolutional neural network. To be specific, we employ the VGG network

[Simonyan and Zisserman, 2014b] with 16 layers, which has been pre-trained on the

ImageNet. We take the output of layer fc7 as feature vector (4096 dimensions), which

we then use to train a one layer LSTM model for action prediction.

Our LSTM model has hidden states of 64 dimensions, with all the weight ma-

trices randomly initialized using the normal distribution. We first learn a linear

projection to map the 4096 input features to the 64 dimensions of the LSTM. We

use mini-batches of 10 samples and the adaptive learning rate method to update the

parameters. The training stops after 100 epochs in all the experiments.

To evaluate the action prediction performance, we performed leave-one-subject-

out cross-validation over the five subjects. Each time we used the data from one

subject for testing and trained the model on the other four subjects. Then all the

results were averaged over the five rounds of testing.

On-going prediction Our goal is to understand how the recognition of action im-

proves over time. Thus, we plot the prediction accuracy as a function of time, from
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Figure 4.5: Prediction accuracies over time for the five different objects. The black
vertical bars show the touching point. For each object, we warped and aligned all
the sample sequences so that they align at the same touching point. Best viewed in
color.
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Figure 4.6: Prediction uncertainty computed from the entropy. All sample
sequences are warped and aligned to the same length. Best viewed in color.

the action preparation to the end of the action. Our system performs predictions

based on every new incoming frame as the action unfolds.

Figure 4.5 shows the change in prediction accuracy over time. For a given action

video, our system generates for each frame a potential score vector (with one value

for each action) to form a score sequence of the same length as the input video.

Since the actions have different length, we aligned them at the touching points. To be

specific, we resampled the sequences before and after the touching points to the same

length. For each object, we show the prediction accuracy curves of the five actions.

The vertical bar in each figure indicates the time of the touching point. The touching

point splits the sequence into two phases: the “preparation” and the “execution”. It is

interesting to see that for some object-action pairs our system yields high prediction

accuracy even before the touching point, e.g. the “cup - drink” and “sponge - wash”.

Figure 4.6 shows the change of prediction uncertainty over time for each of the

five objects. This measure was derived from the entropy over the different actions.

As can be seen, in all cases, the uncertainty drops rapidly as the prediction accuracy

rises along time.

Classification results At the end of the action, the on-going prediction task be-

comes a traditional classification. To allow evaluating our method on classical action

recognition, we also computed the classification results for the whole video. The

estimate over the sequence was derived as a weighted average over all frames using

a linear weighting with the largest value at the last frame. To be consistent with the

above, the classification was performed for each object over the five actions consid-
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Table 4.2: Comparison of classification accuracies on different objects

Object/Action SVM HMM LSTM LSTM
HOG VGG16

cup/drink 79.1% 96.0% 82.9% 92.5%
cup/pound 20.0% 81.7% 40.0% 73.3%
cup/shake 64.3% 56.8% 32.6% 83.3%
cup/move 62.7% 53.2% 51.9% 82.1%
cup/pour 60.0% 100.0% 80.3% 80.8%
stone/pound 26.7% 73.3% 60.0% 73.3%
stone/move 87.8% 68.0% 90.0% 61.4%
stone/play 64.6% 97.1% 60.5% 86.7%
stone/grind 28.3% 45.0% 60.0% 46.7%
stone/carve 43.3% 28.5% 66.0% 39.1%
sponge/squeeze 41.1% 81.7% 64.3% 83.4%
sponge/flip 53.3% 91.0% 96.0% 71.0%
sponge/wash 85.9% 84.6% 91.1% 92.5%
sponge/wipe 46.9% 47.5% 58.1% 46.3%
sponge/scratch 30.0% 0.0% 43.3% 15.0%
spoon/scoop 39.0% 27.1% 53.6% 32.0%
spoon/stir 45.3% 30.0% 20.0% 74.3%
spoon/hit 28.9% 20.0% 22.4% 56.7%
spoon/eat 65.0% 79.2% 78.1% 81.1%
spoon/sprinkle 60.0% 25.0% 40.5% 69.1%
knife/cut 33.5% 33.7% 49.6% 75.3%
knife/chop 0.0% 45.0% 43.3% 72.7%
knife/poke a hole 33.3% 20.0% 51.0% 72.0%
knife/peel 66.3% 28.9% 90.0% 72.5%
knife/spread 38.2% 28.3% 54.3% 74.2%
Avg. 48.1% 53.7% 59.2% 68.3%

ered. Figure 4.7 shows the confusion matrix of the action classification results. One

can see that our model achieved high accuracy on various object-action combinations,

such as “cup/drink” and “sponge/wash”, where the precision exceeds 90%.

We used two traditional classification methods as our baseline: Support Vector

Machine (SVM) and Hidden Markov Model (HMM). For the HMM model, we used

the mixture of Gaussian assumption and we chose the number of hidden states as

five. Since the SVM model doesn’t accept input samples of different length, we

used a sliding window (size = 36) mechanism. We performed the classification over

each window and then combined the results using majority voting. For both these

baseline methods, we conducted a dimension reduction step to map the input feature
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vectors to 128 dimensions using PCA. To further explore the efficiency of the LSTM

method in predicting actions on our dataset, we also applied the LSTM model using

HoG features as input. The average accuracy was found 59.2%, which is 10% higher

than the HMM and 23% higher than the SVM, but still significantly lower than our

proposed method.

Discussion It should be noted that this is a novel, challenging dataset with no

equivalent publicly available counterparts. Subjects performed the action in uncon-

strained conditions, and thus there was a lot of variation in their movement, and

they performed some of the actions in very similar ways, making them difficult to

distinguish, as also our human study confirms.

The results demonstrate that deep learning based continuous recognition of ma-

nipulation actions is feasible, providing a promising alternative to traditional meth-

ods such as HMM, SVM and other methods based on handcrafted features.

Figure 4.7: Confusion matrix of action classification.
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4.5.2 Action prediction on continuous sequences

To further validate the effectiveness of our approach, we applied our model on con-

tinuous sequences to predict actions.

Dataset The 50 SALADS dataset [Stein and McKenna, 2013a] consists of over 4.5

hours of RGBD video and accelerometer data of 25 subjects preparing two salads.

It includes 50 videos at a resolution of 640⇥480, captured at 30 Hz, along with ac-

celerometer data from sensors mounted on tools and objects. The videos are syn-

chronized with accelerometer data.

The activities are described in four granularities. At the semantically highest

level, the activities are categorized into “cut and mix ingredients”, “prepare dress-

ing”, and “serve salad”. The lowest level consists of more basic actions, such as “cut

cucumber” or “pour olive oil”. We are using one of the intermediate levels following

[Stein and McKenna, 2013a], which consists of 17 actions. From these 17 actions, we

group similar actions. For instance “adding salt” and “adding pepper” are grouped

into “adding salt-like condiments”. This results in ten action categories that are used

in our evaluations.

Evaluation metrics We use two evaluation metrics: the frame-wise classification

accuracy, and the edit score of the generated segmentations. The edit score is defined

as (1 � D(y, ŷ)) ⇤ 100.0, where y denotes the ground truth segmentation, ŷ denotes

the predicted segmentation, and D(y, ŷ) is the normalized Levenshtein distance of

the two sequences. Higher values indicate more consistency between the predicted

sequences and the ground truth.

Results In this dataset, each video contains consecutive action sequences, which

makes the action prediction task much harder without segmentation. We compare

to the method proposed in [Lea et al., 2016c], which combined the spatio-temporal

CNN model with video segmentation methods. In contrast, we didn’t use any kind of

video segmentation in our prediction framework. Benefited from the LSTM model,

our method can automatically learn the transitions between different actions and

produce accurate predictions over all frames. We achieved higher performance by

raising the frame-wise accuracy from 72.00% to 88.50%. Our edit score is lower

than compared method, because, without any temporal constraints, it is inevitable

to have some fluctuated predictions around the action boundaries. This effect can
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also be seen in Figure 4.8, which shows two prediction examples of consecutive

actions. The first and third bars show the ground truth action classes, while the

second and fourth bars show the predicted class labels using our method (different

colors indicate different action classes).

Table 4.3: Comparison of classification accuracies on the 50 Salad dataset.

Method Accuracy Edit Score
ST-CNN + Seg 72.00% 62.06
Our approach 88.50% 50.25

Figure 4.8: Samples of action prediction on the 50 Salad dataset.

4.5.3 Action prediction at the point of contact, before and after

We next compare the performance of our online algorithm (as evaluated in Sec-

tion 4.5.1) against those of human subjects. Figure 4.9 summarizes the prediction

performance per object and time offset. As we can see our algorithm’s performance

is not significantly behind those of humans. At ten frames after contact, computer

lags behind human performance. However, at 25 frames after the contact point, the

gaps between our proposed model and human subjects are fairly small. Our model

performs worse on the spoon, but this is likely due to the large variation in the way

different people move this object. Our human study already revealed the difficulty

in judging spoon actions, but the videos shown to subjects featured less actors than

were tested with the algorithm. Considering this, we can conclude that our algorithm

is already close to human performance in fast action prediction.
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Figure 4.9: Comparison of prediction accuracies between our computational method
(C) and data from human observers (H). Actions are classified at four different time
points before, at, and after the touching point (at -10, 0, +10, +25 frames from the
touching point). C denotes the learned model, H denotes the psychophysical data).

4.6 Summary

In this chapter, I proposed an approach to action interpretation, which treats the

problem as a continuous updating of beliefs and predictions. The ideas were imple-

mented for two tasks: the prediction of perceived action from visual input, and the

prediction of force values on the hand. The methods were shown to run in real-time

and demonstrated high accuracy performance. The action prediction was evaluated

also against human performance, and shown to be nearly on par. Additionally, new

datasets of videos of dexterous actions and force measurements were created.

The methods presented here are only a first implementation of a concept that can

be further developed along a number of directions. Here, I applied learning on 2D

images only, and clearly, this way we also learn properties of the images that are not

relevant to the task, such as the background textures. In order to become robust to

these “nuisances”, 3D information, such as contours and depth features, could be

considered in future work. While the current implementation only considers action

labels, the same framework can be applied for other aspects of action understanding.

For example, one can describe the different phases of actions and predict these sub-

actions since different actions share similar small movements. One can also describe

the movements of other body parts, e.g., the arms and shoulders. Finally, the pre-

dicted forces may be used for learning how to perform actions on the robot. Future

work will attempt to map the forces from the human hands onto other actuators, for

example, three-fingered hands or grippers.



Chapter 5

Hand Force Prediction Using LSTM

In the previous chapter, I studied an efficient approach for manipulation action pre-

diction. One observation of the manipulation action is that they are driven directly by

the physical interactions between human hands and the objects. If one can learn the

interaction of the hand and object, it would be helpful for understanding the manip-

ulation action and improving the recognition performance. In this chapter, I study

the hand object relationship by estimating the hand forces for manipulation actions.

In the meantime, I investigate how to generalize the representation learning methods

from vision features to representations of physical or kinematic information.

In recent years, the fast development of the field of cognitive robotics pushed the

focus of action recognition research from full-body movements to the more complex

manipulation actions. In this kind of actions, multiple entities interact with each

other including human hands, tools, and the target objects. Different manipulation

targets significantly increased the variations of the hand movements, which make

the action recognition task extremely challenging. One possible solution is to explore

the additional dynamic information that closely related with the actions, such as the

motoric data of the target objects, the forces applied on the objects, or the action

consequences. Besides distinguishing the hand movements, we are also interested in

the interactions of hand and the manipulated targets, and explore the force patterns

that applied on the objects.

One motivation for predicting forces is that the additional data may help increase

recognition accuracy. There is evidence that human understand others’ actions in

terms of their own motor primitives [Gallesse and Goldman, 1998; Rizzolatti et al.,

2001]. For a human observer, it is easy to interpret the body movements of others

and estimate the forces applied on the target object when watching other’s actions.

One can also predict the consequences driven by these patterns. These findings have

not been modeled in computational terms so far.

61
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Findings of neuroscience on the mirror neuron system [Gallesse and Goldman,

1998; Rizzolatti et al., 2001] provide evidence for a close relationship between mech-

anisms of action and perception in primates. Humans develop haptic perception

through interaction with objects and learn to relate haptic with visual perception.

They further develop the capability of hallucinating the haptic stimulus when seeing

hands in certain configurations interacting with objects [Tiest and Kappers, 2014]. For

example, human observers can easily estimating the deformation of objects by see-

ing others perform the manipulation action. If someone is holding a paper cup with

strong forces, a human observer can tell that the cup may be crushed by watching the

hand movements. This capability of hallucinating force patterns from visual inputs

is essential for a more detailed analysis of the interaction with the physical world. It

can be used to reason about the current interaction between the hand and the object,

and to predict the action consequences driven by the estimated force pattern.

Furthermore, the force patterns may be used in robot learning. A popular paradigm

in Robotics is imitation learning or learning from demonstration [Argall et al., 2009],

where the robot learns from examples provided by a demonstrator. If the forces can

be predicted from images, then the force profiles together with the positional infor-

mation can be used to teach the robot with video only. Many researchers are trying

to teach robots actions and skills that involve forces, for example, wiping a kitchen

table [Gams et al., 2010], pull and flip tasks [Kober et al., 2000], ironing or opening a

door [Kormushev et al., 2011]. These approaches rely on haptic devices or force and

torque sensors on the robot to obtain the force profiles for the robot to learn the task.

If we can predict the forces exerted by the human demonstrator, the demonstration

could become vision only. This would allow us to teach robots force interaction tasks

much more efficiently.

By associating vision clues with hand forces, it can be expected to obtain bet-

ter computational action recognition model. Intuitively, the force vectors, whose

dimensions are much lower than the visual descriptors, should provide useful com-

pact information for classification, especially when small number of training data are

available.

The aim of this hand force estimation approach is to predict the tactile signal

by watching the hand movements of manipulation actions. Figure 5.1 shows one

example of the estimated forces over time for the “cup-drink” action. While the

action is being conducted, we generate estimations of finger forces for each video

frame. The middle plot of curves in Figure 5.1 shows an example of estimated forces
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of four fingers, while the bottom plot shows the changes of the actual force values

collected with sensors.

Figure 5.1: Illustration of the hand force estimation. The video frames in the top
row show samples of the action “cup-drink”. The middle plot shows the estimated
forces of four fingers and the bottom plot illustrates the corresponding ground truth
force values collected with sensors.

In this work, we propose to adapt the LSTM model to perform regression over

finger force values. This can be done by replacing the classification layer in the LSTM

architecture with a regression layer that generates force values in a continuous space.

To train this force regression model, a dataset with synchronized video sequences

of actions and the finger force streams is necessary. Since there is no such kind of

dataset available yet, a new dataset is collected with a specially designed sensor glove

that can record the finger forces. We collect synchronized streams of videos of actions

and force data on the hand, and we used this dataset to evaluate the effectiveness of

our approach. The dataset can be accessed from http://users.cecs.anu.edu.au/~fwang/

action_prediction/index.html.

5.1 Related work

This section reviews several closely related studies of hand-object interaction and

hand force analysis. We focus on the following concepts: the analysis of hand-object

interaction, the simulation methods of hand forces, and the inference approaches of

manipulation forces.

http://users.cecs.anu.edu.au/~fwang/action_prediction/index.html
http://users.cecs.anu.edu.au/~fwang/action_prediction/index.html
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Analysis of hand-object interaction Most of the works on hand-object interaction

formulate the task as an articulated tracking problem, while only a few of these works

focus on object manipulation. Romero et al. [2010] proposed a method to track the

hand with the object in it by matching the observed hand pose with samples in a

large scale dataset with known poses. In contrast, other works focus on pose estima-

tion of the manipulated objects to analysis the hand-object interaction [Kyriazis and

Argyros, 2013].

Simulation of hand forces The first work in the computer vision literature to simu-

late contact forces during hand-object interactions is [Rogez et al., 2015]. The authors

segment the hand from RGBD data in single egocentric views and classify the pose

into 71 functional grasp categories as proposed in [Liu et al., 2014]. Classified poses

are matched to a library of graphically created hand poses, and theses poses are as-

sociated with force vectors normal to the meshes at contact points. Thus the forces

on the observed hand are obtained by finding the closest matched synthetic model.

The method only considered static RGBD images, so it lacks analysis of the dynamic

forces for a given action. Besides, the force values are simulated using geometric

methods on 3D meshes. Analysis of hand forces for the real actions is necessary.

Inference of manipulation forces Another approach on contact force analysis is

proposed in [Pham et al., 2015]. Using as input RGB data, a model-based tracker

estimates the poses of the hand and a known object, from which then the contact

points and the motion trajectory are derived. Next, the minimal contact forces (nom-

inal forces) explaining the kinematic observations are computed from the Newton-

Euler dynamics solving a conic optimization. Humans typically apply more than the

minimal forces. These additional forces are learned using a neural network on data

collected from subjects, where the force sensors are attached to the object. However,

since the framework in this paper is based on a model-based 3D tracking method, it

will be quite sensitive in real world applications. The force sensors are put on the

object, and thus the data collection is delayed until the hand touches the object, and

needs to be adapted to the specific object.

The prior approaches derive the forces using model based-approaches. The forces

are computed from the contact points, the shape of the hand, and dynamic observa-

tions. In contrast, we propose to collect force feedback from sensors attached to the

hand, which is more general and can collect the dynamic changes of the force values.
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Furthermore, both the prior methods use RGBD data, while ours is an end-to-end

learning approach using as input only RGB images.

5.2 Force estimation framework

This section describes the proposed hand force estimation model and the details of

the hand force dataset collection.

5.2.1 Predict hand forces with LSTM

Figure 5.2: The flowchart of the force estimation model. The cropped patches of
hands are processed with CNN model to extract features, then the features are
passed through the LSTM model to generate estimated forces. The regression layer
minimizes the distance between the regressed hand forces and the ground truth.

We use an LSTM based regression model to predict the forces on the fingers from

vision input. Given video sequences of actions, as well as simultaneously recorded

sequences of force values, we reformulate the LSTM model, such that it predicts force

estimates as close as possible to the ground truth values.

The network structure is shown in Figure 5.2. Given a sequence of feature vectors

x = {x1, x2, · · · , xT} as the input, the force measurements v = {v1, v2, · · · , vT}, vt 2
RM, are used as target values, where M is the number of force sensors attached to

the hand. The hidden states and the memory cell values are updated according to
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Equations (2.3)-(2.7). Then the forces are estimated as:

v̂t = Wvht + bv. (5.1)

To train the force estimation model, we define the loss function as the least

squares distance between the estimated value and the ground truth and minimize

it over the training set using stochastic gradient descent as:

l(D, W, b) =
|D|
Â
i=0

T

Â
t=0

kv̂t
(i) � v(i)t k

2
2 (5.2)

As for the visual representation, we use pre-trained CNN model to extract fea-

tures from image patches. Since we focus on manipulation actions, we are more

interested in the hand movements rather than the objects, so we first extract the im-

age patches centered on human hands and feed them into the CNN model to get the

features of hand movements.

5.2.2 Training

The LSTM regression model is used to estimate the hand forces for each frame. Since

people have different preferences in performing actions, the absolute force values

can vary significantly for the same action. Therefore, a normalization is applied on

the force data, before the training started. All the force values are normalized to the

range [0, 1]. To generate the visual features, we first run a mean-shift hand tracker

to get the locations of hands and then crop patches that centered on the hand with

fixed size. A pre-trained CNN model is used to project the hand patches into visual

features. The regression model has one LSTM layer with 128 hidden states. Adaptive

learning rate method is adopted in training of the network. The batch size is set to

be 10 and a fixed training length of 100 epochs is applied to all experiments.

5.3 Data collection of hand forces

5.3.1 A device for capturing finger forces

In this section, we describe the design of a data glove, which is cheap and easy to

replicate. Other studies (e.g., Pham et al. [2015]) have measured the contact forces

by placing the pressure sensors on the object. However, this may restrict subjects in

their manipulation of objects. Our design overcomes this limitation by putting the
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sensors on the subject’s hand so that the interaction with the object becomes more

natural. One immediate advantage is that it is easier to study the manipulation forces

for different objects. For example, once the subject is wearing the force sensing glove,

there is no extra setup necessary for the objects. As a result, we can easily extend the

recordings to multiple objects or objects with irregular geometries.

(a) (b)

Figure 5.3: Illustration of the force-sensing device. (a) The sensors on four fingers;
(b) The set up of data collection.

We use a force sensing device with four force sensors attached directly to four

fingers: the thumb, the pointer, the middle and the ring finger (See Figure 5.3(a)).

The pinky finger is omitted, as the forces on this finger are usually quite small and

not consistent across subjects (as found also by [Pham et al., 2015]). We used the

Piezoresistive force sensors by Tekscan, with a documented accuracy (by the manu-

facturer) of ±3%. The sensors at the finger tips have a measurement range of 0 to

8.896 N (2 lb), with a round sensing area of 9.53 mm in diameter. The entire sensing

area is treated as one single contact point.

The raw sensor outputs are voltages, which should be translated to the force mea-

surements first. More details of this translation can be found on Tekscan’s website:

https://www.tekscan.com. In our experiment, we derived the forces perpendicular

to the sensor surfaces from voltages as follows,

F = 4.448 ⇤
✓

C1 ⇤
Vout

Vin � Vout
� C2

◆
, (5.3)

where Vout is the sensor measurement. Vin, C1, and C2 are fixed constants of the
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(a)

(b)

Figure 5.4: Force data collection and preprocessing. (a) The raw, unfiltered voltage
signal from the fingertip force sensors. (b) The filtered force signal from the
fingertip sensors.
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system. To remove environmental noise, we applied notch filtering to the raw data,

which gave us clear and smooth force outputs (See Figure 5.4).

5.3.2 Hand actions with force dataset (HAF)

We collected a new dataset to evaluate our force estimation approach, namely the

Hand Actions with Force (HAF) dataset. To solve the problem of synchronization,

we asked subjects to wear on their right hand the force sensing device, leave their

left hand bare, and then perform with both hands the same action, with one hand

mirroring the other (see Figure 5.3(b) for the setting). We use this so called “mirrored

actions” to capture synchronized data on both hands simultaneously. In this way, the

hand force data and the visual data of the bare hand movements can be collected at

the same time. This is not a perfect synchronization, but it is much better than

doing the same action twice with the same hand. The force sensing glove captured

the forces exerted by four fingers except for the little finger. We recorded from five

subjects performing different manipulation actions on four objects, namely “sponge”,

“cup”, “fork”, and “knife” (See Table 5.1). Each action was performed with five

repetitions, resulting in a total of 500 sample sequences.

Table 5.1: Object and Action pairs of HAF

Object Actions
cup drink, move, pound, pour, shake
fork eat, poke a hole, pick, scratch, whisk
knife chop, cut, poke a hole, scratch, spread
sponge flip, scratch, squeeze, wash, wipe

5.4 Experiment results

This section demonstrates the ability of the proposed model to predict forces on

the fingers directly from images. The preliminary model has been developed and

applied on testing videos.

We first show examples of our force estimation and then report the average errors.

Figure 5.5 shows six sample results. For each of the samples, the first column shows

the ground truth curves, while the second column shows the estimated forces using

our approach. To provide a baseline results for this experiment, we generated force

curves using nearest neighbor search for each testing frame. To be specific, we used
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the fc7 layer of the VGG features and reduced the dimensions to 128 using Principal

Component Analysis. The results are shown in the third column. It can be seen

that our system estimates well the overall force patterns for different actions. For

example, for the “sponge/squeeze” action, the estimated forces correctly reproduce

the three peaks of the real action, or for the “cup/move” action, the output forces

predict the much smoother changes. For most of the cases, the LSTM regression

method can recover more accurate dynamic patterns of the force curves, while the

results of baseline method are more fluctuating.

Table 5.2 provides the average error of estimated force for each finger, and Ta-

ble 5.3 gives the average estimation error for all the actions. The errors are in the

range of 0.075 to 0.155, which demonstrates that the method also has good quanti-

tative prediction and potential for visual force prediction. We also demonstrated the

average errors of the nearest neighbor method. The results are shown in Table 5.2

and 5.3. It can be seen that our method yield less average errors in almost all the

comparisons.

Table 5.2: Average errors of estimated force for each finger (unit in N).

Methods Ring Middle Pointer Thumb
NN 0.117 0.116 0.157 0.148
Ours 0.103 0.098 0.130 0.119

Table 5.3: Average errors of estimated force for each action (unit in N).

Cup Drink Move Pound Pour Shake
NN 0.121 0.145 0.176 0.121 0.152

Ours 0.096 0.122 0.108 0.107 0.110
Fork Eat Hole Pick Scratch Whisk

NN 0.119 0.115 0.078 0.113 0.127
Ours 0.106 0.090 0.075 0.094 0.100

Knife Chop Cut Poke Scratch Spread
NN 0.181 0.167 0.132 0.154 0.132

Ours 0.157 0.155 0.109 0.123 0.110
Sponge Flip Scratch Squeeze Wash Wipe

NN 0.107 0.134 0.126 0.149 0.137
Ours 0.101 0.130 0.112 0.127 0.121
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Figure 5.5: Samples of force estimation results. The first column show the ground
truth force curves of six actions, the second column shows our estimation results
using LSTM regressor, and the third column illustrates the results of the nearest
neighbor method for comparison.
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Table 5.4: Action prediction accuracy. Comparison of prediction using vision data
only ("Vision") against using vision and force data ("V+F").

Object cup stone sponge spoon knife Avg.
Vision 82.4% 61.4% 61.6% 62.6% 73.3% 68.3%
V + F 88.2% 75.1% 59.1% 57.5% 72.7% 70.5%

5.4.1 Use forces for action prediction

To evaluate the usefulness of the predicted forces, we applied our force estimation

algorithm on the MAF dataset to compute the force values. Then we used the vi-

sion data together with the regressed force values as bimodal information to train a

network for action prediction. Table 5.4 shows the results of the prediction accuracy

using the bimodal information on different objects. Referring to the table, the over-

all average accuracy for the combined vision force data (V+F) was 2.2% higher than

only using vision. This first attempt on predicting with bimodal data demonstrates

the potential of utilizing visually estimated forces for recognition. Future work will

further elaborate on the idea and explore networks [Hoffman et al., 2016a], which

can be trained to learn "hallucination" of the forces and predict actions.

As discussed in the introduction, the other advantage is that we will be able

to teach robots through video demonstrations. If we can predict forces exerted by

the human demonstrator and provide the force profile of the task using vision only,

this would have a huge impact on the way robots learn force interaction tasks. In

the future work, we plan to develop and employ sensors that can also measure the

tangential forces, i.e. the frictions, on the fingers. We also will expand the sensor

coverage to the whole hand. With these two improvements, our method could be

applied to a range of complicated task such as screwing or assembling.

5.5 Summary

In this chapter, I proposed the prediction of force values on the hand. The meth-

ods were shown to run in real-time and demonstrated high accuracy performance.

Additionally, new datasets of force measurements of dexterous actions were created.

Finally, the predicted forces may be used for learning how to perform actions on the

robot. Future work will attempt to map the forces from the human hands onto other

actuators, for example, three-fingered hands or grippers.



Chapter 6

Manipulation Action Recognition
Using Bimodal Inputs

In this chapter, I focus on utilizing additional information about the dynamics of the

hand and the object along with image data to perform fine-grained action recogni-

tion. I have shown in Chapter 5 that combining the force data with visual inputs can

help improving the action recognition accuracy. Now I explore the bimodal learning

methods that can make use of additional information for action recognition tasks. I

present a model to hallucinate motoric data from vision inputs. The proposed model

is trained for recognizing actions, while at the same time generating frame-wise clas-

sification results for the whole video.

Humans can understand manipulation actions not just in terms of the movements

involved, but also in terms of the objects, tools, body parts and their geometric rela-

tions. A number of works at the intersection of Computer Vision, AI, and Robotics

have proposed recognition of everyday actions using representations that encode a

combination of these quantities [Aksoy et al., 2011; Gupta et al., 2009; Summers-Stay

et al., 2012; Zampogiannis et al., 2015]. Such representations provide excellent high-

level cognitive models for everyday actions.

In addition, humans also understand such actions from the interaction of the

body with the physical world in terms of kinematics and dynamics. In other words,

humans represent actions in both vision and motor space. There is evidence from the

field of neuroscience [Gallese and Goldman, 1998; Rizzolatti et al., 2001] of a common

representation for actions and perception. The so-called mirror neurons in primates

exhibit activity when they observe someone doing an action as well as when they

1This work is a joint work with Chinmaya Devaraj at the University of Maryland, under the su-
pervision of Prof. Cornelia Fermüller. The experiment results reported in Section 6.3.2 and 6.3.3 were
generated by Chinmaya Devaraj.
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themselves perform the action. It appears that, through this mechanism, a hallucina-

tion of motoric information occurs. Inspired by these findings, we propose that when

representing manipulation actions, it is beneficial to also encode the kinematics and

dynamics of the person’s hand and/or the object being moved.

Why would motoric information be useful for helping recognize actions? Intu-

itively, there are two main reasons. First, the large variations in appearance in actions

in general, and manipulation actions specifically pose a great challenge for visual

recognition. Motoric data does not depend on the visual nuisances, for example, the

appearance changes due to lighting, texture, and choice of viewpoint. Thus, motoric

data should be valuable complimentary information to vision. Second, motoric data

is of much lower dimension, which should help in extracting the relevant subspaces

in visual information, even if only a small amount of training data is available.

Some previous works have used motoric data, but the bi-modal data was ana-

lyzed separately [Lea et al., 2016a,e]. Lea et al. [2012] reported the accuracy of both

vision-based and sensor-based input but used different tools for analyzing the two

sources of data. Rupprecht et al. [2016] predicted sensor values from videos, which

were then used for predicting the action labels. However, these works require the

motoric data to be regressed very well in order for it be useful for recognizing the

actions. Otherwise, the error would propagate during the prediction of actions.

I consider the motoric data available only during training, as “privileged infor-

mation,” using the terminology in [Vapnik and Vashist, 2009]. In the Support Vector

Machine framework, this privileged information has been exploited to improve the

performance and reduce the amount of training data necessary [Vapnik and Vashist,

2009]. Srivastava and Salakhutdinov [2014] proposed deep Boltzmann machines that

exploit multi-modal data even when some modalities are absent. This idea also re-

lates to the hallucination network presented in [Hoffman et al., 2016b], where depth

input is hallucinated in single images to improve object detection.

I present a model based on the Convolutional Neural Network (CNN) and the

Long Short-Term Memory (LSTM) model (shown in Figure 6.1) for fine-grained ma-

nipulation action recognition and segmentation that implements this idea. The net-

work is trained on two modalities, videos and kinematic/dynamic data, to predict

action labels. During testing, we use only video data. Our model learns a mapping

from the image inputs to the representation of kinematic/dynamic data, and this

mapping is used jointly with videos to recognize actions.

Specifically, in order to learn the mapping from images to the kinematic/dynamic
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data, we first construct two network structures to learn the representations of vision

input and motoric input respectively. Then, we additionally construct a hallucina-

tion network that replicates the vision network structure and use a loss function to

connect it to the motoric network, which aims at minimizing the difference of the hal-

lucinated representations and the motoric representations. With this method, we are

successful in capturing the additional information available from the motoric data.

One limitation of the approach used in [Mahasseni and Todorovic, 2016] is that

regularization can only be helpful for short video sequences which are already seg-

mented into actions. Our approach is generalizable even for longer videos. Our

method also handles asynchronous data naturally.

We validate our idea on two multi-modal fine-grained action datasets, namely, the

50 SALAD [Stein and McKenna, 2013b] dataset and Hand Action with Force (HAF)

dataset collected in Chapter 5. Each of these datasets captures subtle differences

between the manipulation actions. We conduct experiments on them to show that

our network outperforms vision-only approaches.

6.1 Related work

Fine-grained manipulation actions Fine-grained action recognition and detection

is an important vision task, especially as a component of imitation learning in robotics.

Unlike in whole-body action recognition, where the categories are quite different vi-

sually, fine-grained action recognition involves discerning the actions when there

are very subtle changes in the surroundings. In [Jain et al., 2015], they show that

identifying objects plays an important role in action recognition. Previous works on

fine-grained action recognition [Rohrbach et al., 2015; Ni et al., 2014] have used pre-

cise hand trajectories to aid action recognition. Hierarchal temporal convolutional

networks have been used in this task for detection and segmentation [Lea et al.,

2016a,e]. There is also work using motoric data [Lea et al., 2016d]. The novelty of our

approach lies in the integration of visual and motoric data and the demonstration of

the induced recognition performance gains.

Learning in perception with additional information The fusion of multi-modal

data in networks has been successfully demonstrated in various applications, includ-

ing object recognition [Eitel et al., 2015], object detection and segmentation [Gupta

et al., 2014], and activity recognition [Song et al., 2016]. However, it is often challeng-
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ing to collect more than two modalities of data for the same activity. Thus, the idea

has arisen to collect two modalities of data in controlled situations and use both for

training, while only one modality is available for testing. Vapnik and Vashist [2009]

call the second modality of data “privileged information” since it is present only

during the training stage. In related work, Hoffman et al. [2016b] have shown that

it is possible to hallucinate the depth information from RGB data and thereby im-

prove detection in RGB. Their work processes single images using the hallucination

with a CNN. Mahasseni and Todorovic [2016] used motion capture data to improve

action recognition from RGB data, but they do not use a hallucination mechanism.

Moreover, their approach is not applicable to the action segmentation problem. We

use a hallucination network in the temporal domain: we transfer information from

motoric data to improve action recognition from RGB data, and we also achieve tem-

poral segmentation.

Action recognition using deep learning Deep learning methods for action recog-

nition usually use either temporal CNN or Recurrent Neural Networks (RNN). The

former learns spatial-temporal filters over raw image sequences [Ji et al., 2013; Karpa-

thy et al., 2014] or optical flows [Simonyan and Zisserman, 2014a]. The RNN models,

which have temporal recurrent loops, can capture compositional representations in

the time domain. The LSTM model was proposed as a variation of the RNN model to

overcome the so-called “vanishing gradient” problem [Hochreiter and Schmidhuber,

1997]. Recently, it has been widely used in image description generation [Vinyals

et al., 2015], video captioning [Venugopalan et al., 2014], and action recognition tasks

[Donahue et al., 2015; Ng et al., 2015]. In our work, we adopt the LSTM model for

learning on vision data as well as kinematic/dynamic data.

6.2 Our approach

In this section, we describe our deep network structure that uses CNN model and

the LSTM architecture to learn motoric data representations from video data.

6.2.1 Motivation

The goal of our approach is to create a hallucination network, which takes the same

visual input as the vision network but is different in the sense that it is trained using

the information from the motoric data.
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To achieve this goal, we replicate the vision network as the hallucination network

and re-train it by enforcing its output to be similar to the motoric data network. By

accomplishing this, we should be successful in capturing the additional knowledge

from motoric data. In the following subsections, we explain the architecture and

optimization details.

6.2.2 Network architecture

The architecture we used for training is shown in Figure 6.1. Our network has three

components: the vision network, the motoric network, and the hallucination net-

work. For both, the vision network and the hallucination network, we use a CNN

to extract features from video frames. For the motoric inputs, we use a linear pro-

jection to generate features. Then both the CNN features and motoric features are

fed into LSTM models to get the dynamic representations after temporal convolution

and pooling.

In this architecture, the hallucination network learns the relationship between

the two modalities. It simulates the motoric network during the training stage. To

achieve this, we use an L2 loss function to minimize the difference between the mo-

toric representation and the hallucinated outputs. This way, the hallucination net-

work generates representations in the higher layers similar to the motoric network. It

can thus be used to replace the motoric network when only video input is available.

The three networks are jointly trained. During the testing phase, only the vision and

hallucination networks are used.

6.2.2.1 Vision network

The vision network is used to represent both the temporal and spatial aspects of the

action. It consists of a convolutional network similar to the VGG architecture Si-

monyan and Zisserman [2014b] followed by an LSTM cell. The convolutional net-

work is the same for all layers prior to the FC7 layer in VGG Simonyan and Zisser-

man [2014b]. Instead of the 4096 dimensional fully connected layer in fc7, we use a

512-dimensional vector, and this choice is based on empirical studies.

Long term dependencies in the input video are captured well by the LSTM. How-

ever, for manipulation actions, there is a lot of inter-subject variances, which also has

to be eliminated, before feeding the input to the LSTM. We use the idea of temporal

convolution followed by pooling to remove these inter-subject variations.
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Figure 6.1: The network structure of the hallucination network. The vision network
and the hallucination network share the same network structures and take the same
inputs. A motoric network is constructed to learn the representations of motoric
inputs. A L2 loss function is applied to the outputs of the hallucination network and
the motoric network to achieve “hallucination” of the motoric information. The
learned representations of visual network and the hallucination network are
combined and used for action classification.
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In our implementation, we use a filter of size (4⇥1) and convolve it across the

frames. We then use max pooling with a stride of (4⇥1). We repeat these temporal

convolution and max pooling steps to achieve downsampling by a factor of 16. This

makes our model resilient to small variations in the action so that mostly long term

dependencies can be captured by the LSTM. The temporal convolution and pooling

steps are followed by an embedding layer of dimension 128. We use 128 hidden

nodes in the LSTM. A fully connected layer of 128 dimensions precedes the LSTM

cell.

6.2.2.2 Hallucination network

The hallucination network is similar in structure to the vision network, except that

the final fully connected layer has the same dimension as the motoric representation

layer.

This network is designed to bridge the two modalities by accepting video inputs

and approximating the motoric representations. One benefit of using the same net-

work structure is that we can use the same CNN model for both the vision and the

hallucination network. In our experiment, we find that using the same fixed CNN

model does not harm the performance and significantly reduces the computational

cost. That being said, the proposed architecture allows more flexible network struc-

tures. The hallucination network is then jointly trained with the video and motoric

inputs.

6.2.2.3 Motoric network

The motoric network consists of a fully-connected layer followed by temporal con-

volution and max-pooling layers as shown in Figure 6.1. This is followed by another

set of temporal convolution and max-pooling layers. These layers are similar to the

vision model in terms of detail. This, in turn, downsamples the motoric data by

a factor of 16. An embedding layer of 128 dimensions and an LSTM cell with 128

hidden nodes precedes it. Finally, a fully-connected layer of dimensionality 128 is

present after the LSTM cell.

All three networks are followed by a softmax layer. Since the kinematic/ac-

celerometer data is already in a lower dimensional space, we did not use a deeper

network and a single fully connected layer is present before the LSTM cell to address

the above issue.
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6.2.3 Training

Action representation To perform action recognition, we concatenate the vision

and hallucination network representations to get the action representation. During

the training stage, the hallucination network approximates the representation of the

motoric input, while at the testing stage, the output of the hallucination network

represents the estimated motoric information that is encoded in the model.

Mirror constraints To force the hallucination network to yield similar representa-

tions as the motoric network, we apply a L2 loss on the two outputs as follows:

ldis = kumo � umik2
2, (6.1)

where umo and umi are the outputs of the motoric and the hallucination networks,

respectively.

Loss function We apply the cross-entropy loss to the action representation for the

purpose of training the recognition model. To further regularize the training, we

also add the cross-entropy loss to each of the sub-networks. Combined with the

hallucination constraints defined in Equation (6.1), we present the general form of

our loss function as follows:

Loss = a ⇤ lv + b ⇤ lmi + g ⇤ lmo + z ⇤ lvm + h ⇤ ldis (6.2)

where lv, lmi, and lmo in Equation (6.2) refer to the cross entropy softmax loss of the

vision network, the hallucination network, and the motoric network, respectively.

lvm in Equation (6.2) refers to the cross entropy softmax loss of the concatenated

output of the vision and motoric networks. ldis in Equation (6.2) represents the L2

loss between the FC layer output of the motoric network and that of the hallucination

network. Constants a, b, g, z, and h are fixed empirically after running the program

for iterations. Since the L2 loss is of high magnitude, we modify h to an appropriate

value such that the contribution of ldis towards the overall loss function is around

50%.

Model pre-training Training all the three networks jointly with all the weights ran-

domly initialized would be unstable. Thus, we first pre-train the vision network and

motoric networks separately to predict frame-wise action class labels. To train the
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vision network, we initially fine-tuned the modified VGG network described in Sec-

tion 6.2.2 using the Caffe framework Jia et al. [2014]. We used a base learning rate of

0.001, a momentum value of 0.9 and a weight decay value of 0.0005.

Joint training The pre-trained parameters are then used to train the complete

architecture using the Theano framework Theano Development Team [2016]. To re-

duce over-fitting, we add dropout layers after each temporal convolution layer and

the final fully connected layers. We find that the dimensionality of the embedding

layers is critical for effective training. In practice, we use 128 for all three networks

since this yields the best results.

6.3 Experiments

We used two datasets to evaluate the proposed method: 1) the 50 SALADS dataset

which has been described in Section 4.5.2; 2) the Hand Action with Force (HAF)

dataset introduced in Section 5.3.2. Subsequent subsections describe the experiment

results.

6.3.1 Datasets

Both datasets capture fine-motor activity and the differences between the featured

manipulation actions are subtle. Figure 6.2 and 6.3 shows a few samples from each

of the datasets. We evaluate action recognition on the 50 SALADS dataset using the

metric of per-frame accuracy. The HAF dataset has only one action per video, thus

we can only use it for evaluation of action classification.

Different modalities in most of the publicly available datasets are usually synchro-

nized, and most state-of-the-art methods cannot handle asynchronous data. How-

ever, going beyond just recognition, we evaluate our method’s performance when

the video data and force data are asynchronous. Our method can accommodate asyn-

chronous data by using dynamic time warping to resynchronize the streams.

6.3.2 Results on 50 SALADS

We present our results on 50 SALADS dataset in this sections. Table 6.1 shows the

per-frame accuracy on this dataset. We compared our approach to “TCN” and “ST-

CNN+Seg”, which are two state-of-the-art methods applied to this dataset.
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Figure 6.2: Sample actions of the 50 salads dataset. The first sequence shows an
example of a “cut” action. The curves below show the 3-axis accelerometer data
recorded from a sensor attached to a knife (blue, green, and red are the signal along
the x, y, and z axis, respectively). The second sequence shows an example of the
“add oil” action and the curves show the accelerometer data from the sensor
attached to the bottle.

Figure 6.3: Sample actions of the HAF dataset. The first sequence shows an example
of an “eat” action using “fork” and the second sequence shows a “drink” action
using “cup”. The curves below show the force values of four finger tips (blue,
green, red, and cyan indicate thumb, index, middle, and ring finger, respectively).
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First, we compare the performance using different modalities in our framework.

In this dataset, the accelerometer data is available. If we use only the direct measure-

ment of movement, our method achieved an accuracy of 71.57%. Alternatively, using

only visual input presented an accuracy of 72.09%, which is slightly higher than us-

ing motoric input. However, if we use both modalities in training, and test on the

visual data using both the vision network and hallucination network, we achieved a

higher accuracy of 74.02%.

Compared to “TCN” and “ST-CNN+Seg”, our network structure for testing is

simpler and more intuitive, while still achieving the best performance measures.

Specifically, our vision-only network has an inferior performance compared to “TCN”

while achieving a performance comparable to that achieved by “ST-CNN+Seg”. With

the hallucination mechanism employed using the accelerometer data, our method

outperformed both methods. It must be noted that in this case, our method using

accelerometers only had an inferior performance compared to both methods. There-

fore, we conclude that our hallucination network structure is effective in borrowing

useful information from one modality and improving the performance of the other,

which suggests that knowledge of motoric information about actions can provide

rich and useful information for perception tasks.

Algorithm Accuracy Edit Score
ST-CNN + Seg[Lea et al., 2016b] 72% 62.06

TCN [Lea et al., 2016a] 73.4% 72.2
Vision Only (Ours) 72.09% 77.77

Accelerometer Only (Ours) 71.57% 75.42
Vision+Hallucination (Ours) 74.02% 72.659

Table 6.1: Results for the 50 SALADS dataset.

6.3.3 Results on HAF dataset

This subsection presents results on the HAF dataset. In this section, our focus is on

demonstrating that our method can handle asynchronous data.

First, we studied the results for synchronized data. Possibly due to differences in

input sensors, the results for this dataset is qualitatively different from that achieved

by the 50 SALADS dataset in the sense that the performance of the vision modality

is much higher than the sensor modality (80%, as compared to 62.3%). Nevertheless,

similar to the 50 SALADS dataset, Table 6.2 shows that the statistical result for the

hallucination network shows a noticeable improvement (81.5%) over the vision-only
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modality.

The performance increase is notable because the “Force only” performance by

itself is very poor (Table 6.2). Nevertheless, by “combining” the two inputs directly,

we conclude that our hallucination network structure is able to successfully facili-

tate this information fusion during training, and is able to use the complementary

information correctly.

In this dataset, we further study the effect of asynchronous data. Although the

HAND dataset contains synchronous bimodal data, asynchronous data can be gen-

erated by interchanging the motoric data of one subject with that of another subject

performing the same set of actions. In order to apply our method to asynchronous

video and motoric data, we need to synchronize the signals. To account for tim-

ing differences, we time-normalize all sequences of a given action class to the same

duration. To achieve this, we leverage the fact that video and motoric signals are syn-

chronized per execution instance and use Dynamic Time Warping to temporally align

the motoric signals to a reference execution profile. This is done in a preprocessing

stage; the aligned sequences are then used for training. This process gives significant

improvements in the “Force only” and “Vision + Hallucination’ scenarios (Table 6.2).

Object Sponge Cup Fork Knife Average
Vision only 81 78 80 81 80
Force only 84 59 60 46 62.3

Asynchronous 83.5 64.3 59.5 52.2 64.9
Vision + Hallucination 87 78 81 80 81.5

Hallucination (asynchronous) 91 76 78 89 83.8

Table 6.2: Results for the HAF dataset (shown in percentage).

6.4 Summary

In this chapter, we studied the problem of incorporating knowledge about motoric

information to improve visual perception of manipulation actions. We provided an

approach for visual recognition and segmentation of fine-grained manipulation ac-

tions based on a recurrent neural network architecture. During training, a hallucina-

tion structure is learned from visual and motoric data, and this mirroring structure

helps recognition during the testing phase when only visual data is present. We vali-

dated our method on two multi-modal fine-grained action datasets and showed that

the network outperforms vision-only approaches.
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Conclusion

In this thesis, I studied the representation learning approaches using deep neural

networks. Two types of input data were studied: static inputs and sequential inputs.

To explore the different perspectives of the representation learning approaches, four

case studies were investigated. This chapter summarizes the proposed approaches

and our contributions and discusses several future directions to study.

7.1 Summary and contributions

My first study was the neural network approaches for the representation learning

and the similarity learning of static inputs. In Chapter 3, I chose to study the sketch

based 3D shape retrieval problem by learning the similarity of sketch images using

Siamese networks. My method directly learns the feature representations of hand

drawn sketches, which bypasses the dilemma of best view selection of 3D shapes

and drastically reduced the number of views to two from several dozens. I adopted

the Siamese network and extend the architecture to use two identical convolutional

neural networks for similarity learning of cross domains. The proposed model are

trained directly on sampled pairs, which is more efficient than training on individual

samples. The experiment results on three large-scale datasets show that our approach

outperformed previous methods significantly.

After studying the representation learning methods of static inputs, I turn to

focus on learning of sequential data. From Chapter 4 to Chapter 6, I studied three

closely related tasks around the human action recognition problem and explored the

neural network approaches for representation learning of dynamic information.

In Chapter 4, I adopt the recurrent neural network and the long short-term mem-

ory model to learn representations of human actions. In contrast to most existing

methods that treat the action recognition as a classification task on pre-segmented

85
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video inputs, we predict the intended actions and dynamically change the predicted

category while watching the body and hand movements. This schema allows fast

response of a robotic system in human-robot collaboration scenarios. This is the first

computational study on the prediction of manipulation actions. I demonstrated that

predicting the intended actions by watching the movement at an early stage is pos-

sible. A new dataset of manipulation actions (MAD) for evaluation of our action

prediction model was also collected.

In Chapter 5, I turned the focus from action prediction to the estimation of other

dynamic data, for example, the hand forces, that are closely related to the actions. We

adopted the long short-term memory model for regression and learn to estimate the

forces of fingertips from video inputs. The experiment results demonstrated that our

model can effectively learn the force patterns from visual features and the generated

force curves are well approximated the ground truth values. Further experiments of

combining forces with visual inputs showed that the estimated forces can help im-

prove the action recognition accuracy. The contribution is twofold. First, I proposed

an efficient force estimation approach that generates forces from 2D video frames.

Second, we collected a new dataset with synchronized videos and the hand forces as

a test bed for force estimations of manipulation actions (HAF).

At last, in Chapter 6, I investigated the methods to use additional data to im-

prove action recognition performance. I demonstrated that, by combining the visual

features with additional data such as hand forces and accelerometer data, the ma-

nipulation action recognition can be more accurate. To eliminate the dependency of

the additional information during testing, we built a hallucination model to learn

the relationships between the visual input and the additional data. The hallucination

network learns to approximate the representations of the additional data using visual

inputs, which can be used in the testing stage to generate the final action represen-

tations. With the hallucination model, our approach achieves better performance on

manipulation action recognition tasks.

7.2 Future works

The research presented in this thesis demonstrate the representation learning ap-

proaches using deep neural networks with several case studies. A number of op-

portunities for extending the scope of this thesis should be pursued. This section

discusses some of these future directions.



§7.2 Future works 87

General cross-domain similarity learning methods I presented a cross-domain

similarity learning architecture in Chapter 3, which can successfully learn similar-

ities of hand drawn sketches and 2D line renderings of 3D models. In this case, the

two domains share several characteristics. For example, they are both 2D images

and mainly contain black line strokes in a white background. In more general sce-

narios, one need to study similarity learning methods for inputs from significantly

different domains. A possible research direction is to learn the similarities of hand

drawn sketches and 3D models directly or to learn the relationships of sketches and

natural images. For these domains, the low level features differ significantly from

each other, so the learning techniques need to take these disparities into considera-

tion to achieve good performance. To push this line further, the cross-domain feature

matching has many uses in vision and language tasks, such as image captioning and

question/answering tasks.

Representation learning for human actions in complex scenarios I explored the

representation learning methods of manipulation actions in Chapter 4 and 6. How-

ever, it is remaining a challenging task to learn representations of human actions

with cluttered backgrounds. In complex scenarios, tracking the hand is much more

difficult in the first place. When multiple tools and objects are existing in the context,

one also need to consider the interactions between different tools or objects to un-

derstand the action. Deep neural networks have shown to be potentially capable of

learning good representations in complex scenarios. Using spatial-temporal feature

extraction with learned features using deep neural networks is a promising direction

for future research.

Completing the robot control loop In Chapter 4, I have stressed the importance

of the prediction ability for a proactive system. A natural direction of future work

is to apply the prediction approaches in such systems and make the robots take re-

sponding actions accordingly. With the action prediction module, one can complete

the robot control loop and build robotic systems that can accomplish human-robot

collaboration tasks. There are a number of open questions raised by this task, for ex-

ample, how to handle relative changing positions between the robot and the human

partner, recognition in cluttered environments, and how to manipulate a real object

with the robot grippers.
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Fast multi-modal learning in robotic system I studied the problem of bimodal

learning of manipulation actions in Chapter 6, which suggests the idea of using

multiple dynamic data in robotic systems. It is common that a robot is integrated

with many different kinds of sensors, which can collect multi-modal information

simultaneously. How to effectively use these data to improve the performance of

perception tasks is an important question.

7.3 Summary

In this thesis, I presented several case studies about the representation learning ap-

proaches using deep neural networks. For representation learning static inputs, I

designed a Siamese network to learn shape representations as well as cross-domain

similarities for the application of sketch based 3D shape retrieval. I showed that the

learned representations with simple nearest neighbor retrieval method significantly

outperforms existing methods that using hand crafted features. For representation

learning of sequential data, I developed an LSTM model to learn the action represen-

tations by adapting the long short-term memory model. Two similar architectures

are used for manipulation action prediction as well as regression of hand force pat-

terns. My results showed that the combination of convolutional neural networks and

the long short-term memory model provide an effective way to learn action represen-

tations. Finally, a hallucination network was adopted for bimodal learning of human

actions, which is shown to be beneficial for the action recognition accuracy.
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