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INTRODUCTION 

'rhese notes grew out of lectures given by the author at ·the Institut 

fur Angewandte Mathematik, Heidelberg University, and at the Centre for 

Mathematical Analysis, Australian National University. 

JA central aim was to give the basic ideas of Geometric Measure Theory 

in a style readily accessible to analysts. I have tried to keep the notes 

as brief as possible, subject to the constraint of covering the really 

important and central ideas. There have of course been omissions; in an 

expanded version of these notes (which I hope to write in the near future), 

topics which would obviously have a high priority for inclusion are the 

theory of flat chains, further applications of G.M.T. to geometric variational 

problems, P.D.E. aspects of the theory, and boundary regularity theory. 

I am indebted to many mathematicians for helpful conversations concerning 

these notes. In particular C. Gerhardt for his invitation to lecture on this 

material at Heidelberg, K. Ecker (who read thoroughly an earlier draft of the 

first few chapters) , R. Hardt for many helpful conversations over a number 

of years. Most especially I want to thank J. Hutchinson for numerous 

constructive and enlightening conversations. 

As far as eontent of these notes is concerned, I have drawn heavily 

from the standard references Federer [FHl] and Allard [AWl], although the 

reader will see that the presentation and point of view often differs from 

these references. 

An outline of the notes is as follows. Chapter l consists of basic 

measure theory (from the Caratheodory viewpoint of outer measure) . Most of 
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the results are by now quite classical. For a more extensive treatment of 

some of the topics covered, and for some bibl.iographical remarks, the reader 

is referred to Chapter 2 of Federer's book [FHl], which was in any case the 

basic source used for most of the material of Chapter 1. 

Chapter 2 develops further basic preliminaries from analysis. In 

preparing the discussion of the area and co-area formulae we found Hardt's 

Melbourne notes [HRl] particularly useful. There is only a short section 

on BV functions, but it comfortably suffices for all the later applications. 

We found Giusti's Canberra notes [G] useful in preparing this material 

(especially in relation to the later material on sets of locally finite 

perimeter) . 

Chapter 3 is the first specialized chapter, and gives a concise treatment 

of the most importan'c aspects of countably n-rectifiable sets. There are 

much more general results in Federer's book [FHl], but hopefully the reader 

will find the discussion here suitable for most applications, and a good 

starting point for any extensions which might occasionally be needed. 

In Chapters 4, 5 we develop the basic theory of rectifiable varifolds 

and prove Allard's regularity theorem. ((AWl] . ) Our treatment here is 

formally much more concrete than Allard's; in fact the entire argument is 

given in the concrete setting of rectifiable varifolds, considered as 

countably n-rectifiable sets equipped with a locally Hn-integrable multiplicity 

function. Hopefully this will mru<e it easier for the reader to see the 

important ideas involved in the regularity theorem (and in the preliminary" 

theory involving monotonicity formulae etc.). 

Chapter 6 contains the basic theory of currents, including integer 

multiplicity rectifiable currents, but not including a discussion of flat 
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chains. The basic references for this chapter are the original paper of 

Federer and Fleming [FF] and Federer's book [FHl], although in a number of 

respects our treatment is a little different from these references. 

In Chapter 7 there is a discussion of the basic theory of minimizing 

currents. The theorem 36.4, the proof of which is more or less standard, 

does not seem to appear elsewhere in the literature. In the last section 

we develop the regularity theory for codimension 1 minimizing currents. 

A feature of this section is that we treat the case when the currents in 

question are actually codimension 1 in some smooth submanifold. (This was 

of course generally known, but does not explicitly appear elsewhere in the 

literature.) 

Finally in Chapter 8 we describe Allard's theory of general varifolds, 

which originally appeared in [AWl] . (Important aspects of the theory of 

varifolds had earlier been developed by Almgren [A3].) 

In conclusion I want to express my sincere gratitude to Dorothy Nash, 

who did such a superb job in typing these lectures from a manuscript that 

was often messy and which frequently had to be corrected. 
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NOTATION 

The following notation is frequently used without explanation in the· 

1 
=A 

B (X) 
p 

B (x) 
p 

closure of a subset A (usually in a Euclidean space) 

{x E B: x f A} 

characteristic function of A 

identity map A + A 

Lebesgue measure in ~n 

open(*) ball with centre X radius p 

closed ball 

(If we wish to emphasize that these balls are in the balls in RP 1 we write 

BP (x) 1 

p 

w 
n 

Bp (X) • ) 
p 

(for A> o I X is defined by 

thus is translation y * y-x 1 

W cc U (U an open subset of ~P) 

-1 
nx,A (y) = A (y-x) ; 

and is homothety 
-1 

y *A y) 

shall always mean that W is open and W is a compact subset of U . 

Ck(U 1 V) (U 1 V open subsets of finite dimensional vector spaces) denotes the 

space of Ck maps from u into V . 

(*) 

C~ (U 1 V) = {lj> E Ck (U 1 V) : cjJ has compact support} . 

In Chapter 1 B (x) 
p denotes the closed ball. 



ERRATA Please send further corrections/comments to: 

pl7 line 13 

p21 line 9 

p33 line 11 

p51 line -1 

p65 line -1 

p70 line -9 

Leon Simon 
Centre for Mathematical Analysis 
Australian National University, GPO Box 4, 
Canberra ACT 2601 AUSTRALIA. 

H is a finite dimensional Hilbert space 

[RH] should be [Roy] 

~ converges uniformly to zero on bounded subsets of A . 

"if 9.3 holds" should be "if t divMX 0" 

0/2 should be o/4 . 

"ordered by inclusion" should be "ordered by the relation 

R < S R c S and Hn(S~R) > 0" . 

p87 Note that the Remark 17.9(1) refers to the case ~ Lp1 (\1) , p > n . 
oc 

p96 line -5 Chapter 10 should be Chapter 8 
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line -5 61/4 in place of 01/8 

line dxj(f) e. •f 
00 p 

pl30 -7 25.1 should be , fEC(U;:JR) 
J 

pl40 line -8 
-n 

should be 
-P 

0 0 

pl43 In Remark 26.28 we must justify that 8 is bounded in L1 (B) for 
ok 

each ball B cc u Indeed by 6. 4 and ~B(oT)<oo, there are 

constants ck such that 8 -c 
ok k 

is bounded in L1 (B) and hence 

T - ckfiB] has bounded mass in B But T T and hence 
ok ok 

{ck} is bounded. 

pl49 line 9 P = n+l should be P = n • 

pl71 line -6 (oTl rJ (oT) L Lk_1 (a;p) • 

pl76 In (31), Q should be (oQ) in both terms on right side. 

p215 line 13 (*) should be T = o[E] 

p169 line 1 ~ line 2 

jy-aj/jx-aj by 

unless k=2. But with L=Lk_ 2 (aF), dist(y,L)/dist(x,p;1 (L)) 
-1 -

similarity, and pF (L) c Lk-l (a), so jolj!(y) j 

p191 

~ cjx-aj/dist(x,Lk-l (a)) as required. 

In line -2, replace T by T., where {j'}c {j} and p>O are chosen so that 
J 

(i) n , #T., ~ 8 (x)rr T M] (O.K. by (10) and the fact that TJ. ~ T), and so 
X,!l.j J X 

that (ii) lines -4, -5 remain valid with Tj' in place ofT (O.K. by 

28.5(1) and a selection argument as in 10.7(2)). 



CHAPTER 1 

PRELIMINARY MEASURE THEORY 

In this chapter we briefly review the basic theory of outer measure 

(with Caratheodory's definition of measurability). Hausdorff measure is 

discussed, including the main results concerning n-dimensional densities 

and the way in which they relate more general measures to Hausdorff 

measures. The final section of the chapter gives the basic theory of 

Radon measures (including the Riesz representation theorem and the 

differentiation theory) • 

Throughout the chapter .x will denote a metric space with metric 

d • In the last section X satisfies the additional requirements of 

being locally compact and separable. 

§1. BASIC NOTIONS 

Recall that an outer measure (henceforth simply called a measure) 

on X is a monotone subadditive function Jl : 2X + [0, 00 ] with ]l (cjl} = 0. 

Thus Jl(cjl) = ·o and 

]l(A) S 
00 

I 
j=l 

]l (A.) 
J 

whenever A c u 
j=l 

A. 
J 

with A, A1 , A2 , ..• any countable collection of subsets of X. Of course 

this in particular implies ]l (A) ::: ]l (B) whenever A c B • 

We adopt Caratheodory's notion of measurability 

A subset A c X is said to be ]1-measurable if 



for each subset s c X 0 Of course by subadditivity of ~ we only actually 

have to check that 

Ll 

for each subset S c X with ~ (S) < oo o One readily checks (see for 

exampla [llll] or [FI-!1]) tha·t -the collection S of all measurable subsets 

forms a a-algebra; that is 

( 1) ¢ ' X E s 
oc 

( 2) If Al' A2 ,. o. E S then u A. and n A. E S 
j~l J j=l J 

( 3) If A E s then X~ A E s 

Furthermore all sets of ~-measure zero are trivially ~-measurable (because 

1.1 holds trivially in case ~(A) = 0 ) • If A 1 , A 2 , are pairwise 

disjoint ~-measurable subsets of X ' 

are ~-measurable then 

are ~~measurable then 

00 

then ~( U A.) = ) ~(A ) 
j=l J j~l j . 

If 

00 

lim ~(A.) = ~ ( U Ai) 
i-)<JO l i=l 

and if 

lim ~(A.) 
. l l-)<JO 

~< n A. l 
i=l l 

provided 

A measure ~ on X is said to be regular if for each subset A c X 

there is a ~-measurable subset B ~A with ~(B) ~(A) • One readily 
00 

checks that for a regular measure ~ the relation lim~(A·)=~(U Ai) 
i-)<JO l i=l 

is valid provided Ai c Ai+l I:J i , 

~-measurable. 

even if the A. are not assumed to be 
l 

A measure X is said to be Borel-regular if all Borel sets are 

~-measurable and if for each subset A c X there is a Borel set B ~ A such 

that W(B) ~ ~(A). (Notice that this does not imply ~(B-A) = 0 unless A 
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is ~-measurable and ~(A) < oo.) 

Given any subset A c X and any measure ~ on X, we can. define a 

new measure ~ L A on X by 

(~LA)(Z) ~<Anz> , z c x 

One readily checks that all ~-measurable subsets are also (~LA)-measurable 

(even if A is not ~-measurable). It is also easy to check that ~LA is 

Borel regular whenever ~ is, provided A is ~-measurable. 

The following theorem, due to Caratheodory, is particularly useful. 

In the statement we use the notation 

d(A,B) dist(A,B) inf{d(a,b) aE A , bE.B} 

1. 2 THEOREM (Caratheodory' s Criterion) If ~ is a measure on X suah 

that 

~(AUB) ~(A) + ~(B) 

whenever A, B are subsets of x with d(A,B) > 0 , then all Borel sets 

are ~-measurable. 

Proof Since the measurable sets form a a-algebra, it is enough to prove 

that all closed sets are ~-measurable, so that by 1.1 we have only to check 

that 

(1) ~<s> ~ ~<s-c> + ~<snc> 

whenever ~(S) < 00 and C is closed. 

Let {xE X dist(x,C) s 1/j} . 

~(S) ~ ~< <s-c .l u <snc> > 
J 

Then d(s-c. ,snc> > o , 
J 

~<s-c.> + ~<snc> , 
J 

hence 
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and we will have (1) if we can show lim p (S~C . ) 
j-+CO J 

To check this, 

note that since C is closed we can write 

co 

s ~ c = (s~c.) u ( u ~l 
J k=j 

where ~ {x E S < dist(x,C) ::: ~} But then by subadditivity of ]1 

we have 

00 

+ )' ,_, 
k=j 

and hence we will have lim ]J(S~C .) 
j-teo J 

as required, provided only that 

To check this we note that d(R.,R.) > 0 if j:: i+ 2 , and hence by 
l J 

the hypothesis of the theorem and induction on N we have for each integer 

N > 1 

and 

N 

p( U R2k) S ]J(S) < oo 

k=l 

N 

]J( U R2k-1) :0: ]J(S) < oo • 

k=1 

The following regularity properties of Bore1-regu1ar measures are of 

basic importance. 

1.3 THEOREM Suppose jJ is a Bore'L-reguZar meo.sure on X and X u 
j=l 

where Jl (V j) < 00 and v. is open for each j = 1, 2, ••. Then 
J 

(1) ]J(A) infu open,U=>A]J(U) 

fol' each sUbset A c X , and 

v. 
J 
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(2) ~(A) = supc closed,CCA~(C) 

for each ~-measurable subset A c X • 

1.4 REMARK In case the metric space X is locally compact and separable, 
00 

the condition X= u V. with v. open and ~(Vj) 
j=1 J J 

satisfied provided ]..I(K) < 00 for each compact K 

case we have from 1.3(2) that 

~{A) = supK compact, KCA~ {K) 

for each ~-measurable subset A c X with ~(A) < oo 

conditions on X any closed set c can be written 

< 

. 

c 

00 is automatically 

Furthermore in this 

because under the above 
00 

u 
i=1 

K. 
1. 

compact. 

Proof of Theorem 1.3 First note that 1.3(2) follows quite easily from 1.3(1). 

To prove 1.3(1), we assume first that ~(X) < 00 • By Borel regularity of 

·the measure ]..1 , it is enough to prove (1} in case A is a Borel set. Then 

let 

A {Borel sets A 1.3 (1) holds} . 

Trivially A contains all open sets and one readily checks that A is 

closed under both countable unions and intersections; in particular, A must 

also contain the closed sets, because any closed set in X can be written 

as a countable intersection of open sets. Thus if we let A = {A E A x-AE A} 

then A is a a-algebra containing all the closed sets, and hence A contains 

all the Borel sets. Thus A contains all the Borel sets and 1.3(1) is proved 

in case ~(X) < oo • 

In the general case (]..!(X) ~ 00) it still suffices to prove 1.3(1) when 

A is a Borel set. For each j 1,2, ••. apply the previous case to the 

measure ]..1 L V. 
J 

j 1,2, .••. Then for each E > 0 we can select an open 
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such that 

)l(U.nv. ~ AnV.) <s/2j, 
J J J 

so that 

and hence (summing over j ) 

co 

1..1 ( u 
j=l 

(u.nv.J ~ Al < c • 
J J 

Since U (UJ.nvj) is open and contains A , this completes the proof. 
j=l 

§2. HAUSDORFF MEASURE 

If m is a non-negative real number, we define m-dimensional Hausdorff 

measure by 

2.1 tfi(A) A c X , 

where for each 8 > 0 , H~(A) is defined by 

2.2 inf 
I w (diam c .)m 
j=l m 2 

(w = volume of unit ball in JRm in case m is a positive integer; w any 
m m 

convenient constant > 0 otherwise), where the inf is taken over all countable 

collections cl ' c2 ' of subsets of X such that diam C. < o and 
J 

A c 
00 

u 
j=l 

c. 
J 

Notice that the limit in 2.1 always exists (although it may be + 00 ) 

because H~(A) is a decreasing function of 8 ; thus Hrn(A) = sup H~(A) 
0<8 



7 

2,3 REMARKS 

(1) Since eve can add the additional requirement 

in definition 2,2 that the c. 
J 

be closed 111ithout changing the value of 

Hm(A) indeed since for any s > 0 we can find an open set u. ::> c. 
J J 

with diam u. < dia.m c. + F {")j 
I \lie could also take the cj to be open ' J J 

_, ~ 

except in case m= 0 

(2) Evidently 1-/~(A) < 00 Vm :::: 0 , o > 0 in case A is a totally 

bounded subset of X • 

One easily checks from the definition of 

1-/~(ALIB) H~<Al + H~(Bl if d(A,Bl > 2o , 

hence 

1-/m(A) + Hm(B) whenever d(A,B) > 0 , 

and therefore all Borel sets are lim-measurable by the Caratheodory criterion 1. 2. 

It follows f:t-om this and Remark 2. 3 ( 1) ·that each of the measures Hm is 

BoreZ.-regu.Z.ar. 

Note: It is not true in general that the Borel sets are H~-measurable 

for o > 0 for instance if n :::: 2 then one easily checks ·that the half-

space is not 
l 

1-10-measurable. 

We will later show tl1at for each integer n :::: 1 Hn agrees ••i·th the 

usual definition of n-dimensional volume measure on an n-dimensional c1 

submanifold of JRn+k , k =::: 0 . As a first step"we want to prove that Hn 

and Ln (n-dimensional Lebesgue measure) agree on JRn First recall one 

of ~~e standard definitions of Ln : 
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If denotes ·the collec·tion of all "n-dimensional cubes" I of the 

form I 

t > 0 , and if jii = volume of I = tn , then 

2.4 Ln(A) = inf 41Ijl 
J 

where a . E IR and 
l. 

where the inf is taken over all countable (or finite) collections 

;.1ith A c U One easily checks ·that . • 1 
lS u.m.que vy 

j 
characterized among measures on lRn by the properties 

inf 
U:JA 
U open 

We can now show 

(*) 

as follows. Let E > 0 and choose I 1 ,I 2 , ••• E K 

I Irk! s Ln(A) + E • 
k 

so that A c U Ik and 
k 

Now for each bounded open set U cJRn and each 6 > 0 we can select a pair
cc 

wise disjoint family of closed balls with B. c U , 
J 

diam 

B. < 6 ' and Ln(U ~ U B.) = 0 
J j=l J 

00 

(To see this first decompose U as a 

union lJ C. of closed cubes c. 
j=l J J 

of diameter < 6 and with pairwise 

disjoint interiors, and for each j ::: 1 select a ball B. c interior 
J 

c. 
J 

with diam 

8 
n 

Then Ln(B.) > 8 Ln(C.) 
J n J 

B. > ]: 
J 2 

edge-length of 

and it follows Ln(U ~ lJ Bj) < (l-8n)Ln(U) . 
j=l 

Thus 

for suitable 8 E (0,1); Since 
n 

N 
is open, we can 

repeat the argument inductively to obtain the required collection of balls.) 

Then take and such a collection of balls Since 

H~(Z) = 0 for each subset z c X (by definitions 2.2, 2.4) we 
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then have (writing pj = radius Bj) 

co 

Hn(I ) Hn( u B~) I n 
:5 wnpj 0 k 0 

j=l J j=l 

00 00 

I Ln(Bjl L n ( u B") Ln(Ik) Irk I ' j=l j=l 
j 

and hence 

H'~(A) :5 1-'n. u Ik) < I H~(Ik) < Ln(A) + E ·a'· 
k k 

Thus 2.5 is established. 

To prove the reverse inequality 

(**) 

we are going ·to need the inequality 

2.5 

This is called ·the isod1:ametric inequality ; it asserts that among all sets 

A c :IR11 \vith a_ given diameter p , ·the ball with diameter p has the largest 

Ln measure. I·t is proved by Steine1a symmetrization (see [HR] or [FHl] for 

the details) . 

Now suppose o > 0 , A c lRn , and let c1 ,c2 , . . . be any countable 

collection with A c U cJ. 
j 

and diam C. < o . 
J 

Then 

Ln(A) :5 Ln(U Cj) :5 I L n(C .) 
j j J 

I 
[diam C.)n 

:5 w ]I (by 2.5) 
j 

n 2 

Till~ing the inf over all such collections {cj} we have (**) . 
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Thus we have proved: 

2o6 THEOREM 

Ln(A) H~ (A) for every A c IRn and o > o . 

§3. DENSITIES 

Next we want to introduce the notion of n-dimensional density of a 

measure v on X For any measure V on X , any subset A c X , and 

any point x E X , we define the n-dimensional upper and lower densities 

(where B (x) 
p 

*n 
8 (]J,A,x) lim sup 

p+O 

lim inf 
p-1-0 

denotes the closed ball). 

11 (AnB (X)) p 

Jl(AnB (x)) p 

In case A= X we simply write 

*n 
8 (]J,x) and 8~(]J,x) to denote these quantities, so that 

*n *n n n L 8 (].l,A,x) = 8 (]J LA, X) I 8* (jl,A,x) = e,. (]J A,x) • 

3.1 REMARK One readily checks that if all Borel sets are p-measurable 

then !-dAnB (x)) ":: lim sup ].l (AnB (y)) for each fixed p > 0 , so that 
. p y+x p 

]J(AnB (x)) is a Borel-measurable function of x for each fixed p > 0 
p 

*n 
Hence 8 (]J,A,x) and 8 n(v,A,x) 

* 
are both Borel measurable (and hence 

]J-measurable) functions of x E X Notice that it is not necessary that 

A be ]J-measurable. 

*n 
If 8 (]J,A,x) 8 n(]J,A,x) then the common value will be denoted 

* 
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Appropriate information about the upper density gives connections 

beh~een ]1 and l-In • Specifically \lle have 

3. 2 THEOREfvl Let ]1 be a: Bore~-I'egular measure on X and t ::: 0 • 

*n 
(1) If A 1 c A 2 c X and 0 (1J,A2 ,x) ::: t f01n aU x E A 1 "' then 

t Hn(A1 ) S ]1(A2) 

(2) If A c X and 
~~n 

8 (]l,A,x) < t for aU x E A , then 

./l,n impo:ctant case of (1) is when A1 A2 . No·tice that we do not 

assurt1e A , A1 , A2 are jl-measurable. 

Of the tvm propositions above, (2) is the more elementary and '"e could 

prove it immediately. (1) requires a covering lemma, so '"e defer both 

proofs until we have discussed this. 

In the following covering theorem and its proof, we use the notation that 

if B is a ball B (x) c X , then B 
p 

3. 3 THEORB~ If B is any family of closed balls in X with 

R = sup{diam B : BE B} < ro , then there is a pairwise disjoint suhaollec-tion 

B• c B suah that 

U B c U B 
BEB BEB' 

in faat we aan ar1oange the stronger property 

B E B 3 s E B' with S n B r ¢ and 
~ 

S ::J B • 

Proof For j = 1, 2, ... let Bj = {BE B R/2J < diam B S R/2j-l} 
' 

so that 

co 

B = u Bj Proceed to define B~ c Bj as follows: 
j=l J 
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(i) Let Bi be any maximal pairwise disjoint subcollection of B1 • 

B~ 
J 

(ii) Assuming j ~ 2 and that Bi , ... ,Bj_1 are defined, let 

be a m~~imal pairwise disjoint subcollection of 
j-1 

{BE B. : B n B • 
J 

whenever B ' E U B '. } 
i=l l 

Then evidently if j ::: 1 and B E B. 
J 

B n B' # ¢ for some B' E 

we must have 

j 
u 

i=l 
B! 

l 

(otherwise ~~e contradict maximality of Bjl , and for such a pair B, B' we 

have diam B ~ R/2j-l 

Thus we may take 

2R/2j ~ 2 diam B' 

00 

u 
i=l 

B~ 
l. 

~ 

so that B c B' 

In the following corollary we use the terminology that a subset A c X 

is covered t~neZy by a collection B of balls, meaning that for each x E A 

and each s > 0 , there is a ball B E B with x E B and diam B < s 

3.4 COROLLARY If B is as in 3.3, if A is a subset of X covered finely 

by B, and if B' c B is as in 3.3, then 

A-
N 

u 
j=l 

B. c 
J 

u 
BEB'-{Bl, ••• ,BN} 

for each finite subcollection {B1 , ... ,BN} c B' . 

N 

B 

Proof If x E A - U Bj , since B 
j=l 

covers A finely and since 
N 

is open, we can then find B E B with B n ( U B.) 
j=l J 

¢ and x E B 

X 

(by (*)) find S E B• with S n B ¥ ¢ and S ~ B • Evidently then 

s 1 Bj Vj = 1, .•• ,N ' and hence x € U S • 
s-B• { B ' t - B 1' ••• ' Nj 

N 

U Bj 
j=1 

and 

Proof of (1) of Theorem 3.2 We can assume ~(A2 ) < oo and t > 0, otherwise 

the result is trivial. We can also assume the strict inequality 
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(because to obtain the conclusion of (1) for t equal to a given t 1 > 0 

it clearly suffices to prove it: for each t < t 1 ) 

For 0 > 0 let B (depending on ol be the collection 

{closed balls (x) ' xE Al ' 
o<p<o/2 

' f!(A 2nBp (x)) ::: t w pn} Evidently 
n 

B covers finely and hence there is a disjoint subcollection B' c B 

' 
so tha·t 3,3 (*) holds. Since ll n B) > 0 for each B E B and since 

]1 (A2 ) < co it follows that B' is a coun'cable collection {B 1 ,B 2 , .•. } and 

hence 3.4 implies 

N co 

B. c 
J 

Thus A 1 c ( U B . ) lJ ( lJ B . ) 
j=l J j=N+l J 

have 

N 

::: I 
j=l 

Since B. E B, we have 
J 

n 
uJnpj 

co 

+ 

u 
j=N+l 

B 
j 

1 . 

and hence by the def ini·tion 2. 2 of 

sn I n 
wrpj 

j=N+l 

diam B .1 
_2 _ _lJ 

< t-1 I ]1 (A .. JlB.) 
~ J 

-1 t - I (]JLA2)(Bj) 
j=l j=l 

and hence letting N + oo we deduce 

Letting 6 + 0 , we then have the required result. 

we 
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Proof of (2) of Theorem 3.2 we may assume that 

because to prove the conclusion of {2} for a given t = t 1 > 0 , it is 

clearly enough to prove it for each t > t 1 Thus if 

{xE A itO < p < 1/k} 

00 

then A= u Ak and ]\"k+l :J l'"k ' k= 1,2, ••• . The '\ are no·t necessarily 
n=l 00 

Jl-measurable, but we s·till have lim jl(~) = jl ( u ~) by virtue of the 
k""""' k=l 

regularity of jl Thus we will be finished if we can prove 

Vk ::: 1 • 

Let 8 E (O,l/2k) and let c1 ,c2 , ••• be any countable cover for ~ with 

diam C.< 8 and 
J 

Cj n Ak 1 ~ i!j • For each j we can find an xj E ~ 

diam Cj 
so that B 2p. (xjl 

J 
definition of Ak 

Hence 

:J Cj , 

that 

Then since 2p. < 1/k we have by 
2 J 

Taking inf over all such covers {cj} we then have (by definition of 

letting 

Jl(Akl s 2nt H~(~) • 

0 + 0 . 

Thus we have the required inequality by 

As a corollary to Theorem 3.2 (1) we can easily prove the following. 

3.5 THEOREM If 11 is Borel regular, if A is a ]l-measurable subset of 

X and if Jl(A) < oo, then 
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REf•lARK Of course ]l Hn is an h~portant case. 

Proof 

we can (by Theorem 1.3 (2)) find a closed set E c P. such t.hat 

(1) 

Since X~ E is open and c c x-A c x~E 
t 

we have 

'I'hus we can apply Theorem 

thus contradicting (1). Thus >~e conclude that 
00 

0 ~I+ > u- • I t" 1 I~ ( U C ) 0 , ·~ n par_ J.cu ar ., l/k = 
k=l 

We conclude this section with two important bounds for densi·ties with 

respect. to Hausdorff measure. 

3. 6 THEORH1 Suppose A is any subset of X 

( 2) If Hll.IJl) 0 't :l < co for each 8 > 0 (note this is automatic if A is 

a totally bounded subset of X ), then 

X E A 

REr~ARK Since l.,n 
::: 16 ::: (by definitions 2.1, 2.2) this theorem 

implies 

0 
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Proof of 3.6 To prove (1), let E:,t > 0, let At= {xE A: e*n(l{n,A,x) ::::t} 

and (using Theorem 1.3 (1) with ]l = Hnl A) choose an open set U :::> At such 

that 

Since u is open and since At c u we have e*(Hn,Anu,x) :::: t for each 

implies that 

We thus have Hn(A ) = 0 for each t > 1 Since 
t 

G*n(Hn,A,x) 
00 

{x : > 1} = u A for any strictly decreasing sequence { t.} 
t. J j=1 J 

with lim t. 
J 

0 , as required. 

To prove (2), suppose for contradiction that G*n(H~l A,x) < 2-n for 

each x in a set B0 c A with Hn(B 0 ) > 0 . Then for each x E B0 (by 

definition) 

Therefore, 

we can se·1ect ox E (0,1) such that 

00 

since B = u 
0 

j=1 

1-cS 
X 

<--

2n 

{x E B0 0 > 1/j} and since 
X 

n H~(A n Bp (x)) H0 (AnBP(x)) - for any p < o/2 (by definition 2.2), 

select 8 > 0 and B c B0 with Hn(B) > 0 and 

(1) n 1-o n 
H 0 (An B p (x) ) :S ~ wnp o < P < o/2 , x E B . 

2 

Now using 2.2 again, we can choose sets 

C. n B f ¢ ~j , and 
J 

(2) 

with 

diam C. 
J 

B c 

we can 

00 

u cj , 
j=l 
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(1), (2) that HS(B) 

B • 

§4. RADON MEASURES 

so that 
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00 

B c A n < u B <x . > > , 
j=l pj J 

and we conclude from 

0 , contradicting our choice of 

In this section X is assumed to be locally compact and separable. On 

such a space we say that ~ is a Radon measure if ~ is Borel regular 

and if ~ is finite on compact subsets of X • Notice that (by 1.3, 1.4) 

such a measure ~ automatically has the properties 

]..l(A) ~(U) I A c X arbitrary 

and 

]..l(A) supKCA ~(K) I A c X ]..1-measurable. 

K compact 

The finiteness of Radon measures ]..1 on compact subsets enables us to 

integrate continuous. functions with compact support. Indeed if H is a 

Hilbert space with inner product (,) and if K(X,H) denotes 

the space of continuous functions X+ H with compact 

support, then associated with each Radon measure ]..1 and each ]..1-measurabie 

H-valued function V X+ H satisfying Jvl = 1, ]..1- a.e. we have the 

linear functional L K(X,H) +m. defined by 

The following Riesz representation theorem shows that .every linear 

functional L : K(X,H) +lR is obtained as above, provided 
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sup {L(f) fEK(X,H), ltj ::;1, sptf CK} <oo 

for each compact K c X . 

4.1 THEOREM Let L be any linear functional on K(X,H) satisfying (*) 

above. Then there is a Radon measure ~ on x and a ~-measurable function 

v x -+ H such troat lv(x) I = 1 for 11- a.e. x E x and 

L(f) J~ (f,V)d~ 
X 

iff E K(X,H) • 

4.2 REMARK Notice that (as one readily checks by using Lusin's theorem to 

exhaust ~-almost all of X by an increasing sequence of compact sets on 

which v is continuous), we have 

sup{L (f) f E K (X, H) , I f I ::: 1 , spt f c V} ~(V) 

for every open V c X , assuming ~ , v are as in the theorem. For this 

reason the measure ~ is called the total variation measure associated 

with the functional L 

Proof of 4.1 First define ~(V) on open sets V according to the 

identity of 4.2 above, and then for an arbitrary subset A c X let 

( 1) ~(A) in£ 
ACV 
V open 

~(V) • 

(Of course these definitions are not contradictory when A itself is open.) 

To check that ~ is a Radon measure we proceed as follows. First, if 
00 

v,v1 ,v2 , ..... are open sets in X with v c u v. , and if w is any 
j=l J 

element. of K (X, H) with supxlwl ::: 1 and support w c v , then, by using 

the definition of ~ and a partition of unity of support w subordinate to 

to the sets {v.}. , 
J J=l, 2' ... 

we have 
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]l (V . ) • 
J 

00 

T~cing sup over all such w we thus get ]l(V) < L ]l(Vj) . Then by (1) 
j=l 

>ve see that 

whenever A, 

00 

]l(A) s I 
j=l 

]l (A . ) 
] 

00 

are subsets of X with A c U Aj 
j=l 

Thus ]l is a 

measure on X It: is also clear from the defini·tion of ]l that 

~tJhenever V 1 , V 2 are open subsets of X with d(V1 ,v2) > 0 • Then by (1) 

we see that 11 satisfies the Caratheodm:y criterion,. and hence all Borel 

sets are measurable by Theorem 1. 2. Thus >qe can conclude that ].1 is a Borel 

regular measure 2u1d since i·t is eviden·tly finite on compact sets (by ( 1')) it 

is then a Radon measure. 

Next le·t K (X) {f E {((X) f ::: 0} 

Define 

A.(f) supl I - jL(tu) I , f E K+(X) . w :::;:t 
wE/((X,H) 

Then by definition of ].1 we have 

supfEK (X) 
+ 

support feU 

iile in fact claim 

A (f) )l(U) '1 open U c X . 

(2) A.(f) f f d)l , f E K +(X) • 

To see this we first note t.'1.at A(cf) = c A(f), c constant":: 0, fE/(+(X). 

Further we claim that i,(f+g) = A{f) + A(g) 'Vf,gE {(+(X) . Indeed the inequality 
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A(f+g) ~ A(f) + A(g) is obvious, and we prove the reverse inequality as 

follows. Let wE K(X,H) with lwl ~ f+g , and define w1 , w2 by 

f+g = 0 
w = 2 l f!g w if 

0. if 

f+g > 0 l f! w if 
w = g 

1 0 if 

f+g > ·0 

f+g = 0 

One easily checks that then w1 , w2 E K(X,H) • Then since w = w1 + w2 and 

lw1 1 ~ f, lw2 1 ~ g, we have IL<w>l ~ A(f) + A(g) • Taking sup over 

all such w we then have A(f+g) = A(f) + A(g) • To complete the proof that 

(2) holds we let E > 0 and choose t 0 = 0 < t 1 < ••• < tN , tN> sup f , such 

that t.- t. 1 < E and ~(f-1 (t.)) 0 Vj = l, ••• ,N. (This is of course 
. ~ ~- J 

possible, because {tElR : ~(f-1 {t)) > O} is clearly countable.) Write 

U. = {x E X : t. l < f < t.} , j = 1, ••• ,N • 
J J- J 

Now, by definition of ~ , for each E > 0 we can choose hj E K+{X) 

with support hj c Uj , h. ~ 1 , 
J 

{3) 

and 

(4) 

Evidently (4) 

N 

t.<f-f I h.> 
j=1 J 

~{u.- {x: h.{x) = 1}) < E/N • 
J J 

together with 

~ supjfj E , 

the definitions of A, ~ 
N 

I U. - {x : h. {x) = 1}} 
i=l ~ J 

and it readily follows that 

implies 

N N N 

I tj_1~ {Oj)- 2E sup I fl ~ A(f I h.)::: /.(f)~ A(f I h.)+ E supj fj 
j=l j=l J j=l J 

N 

~ I 
j=l 

t.~(U.) + t supjfj 
J J 
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Since 

N 

I t . l]l (U.) :::: 
j=l J- J 

we then have IA(f) - J fd]ll < 2E suplfl , and hence (2). 

To complete the proof of the theorem, let e E H with I e I = 1 , and 

consider the linear functional Ae on K(X) defined by Ae(f) = T(fe) 

Evidently by (2) , 

't/f E K (X) 

and hence A extends uniquely to a linear functional on L 1 {\.!) 
e 

By ·the 

Riesz Representation Theorem for L1 (Jl) functions (see e.g. [RH] for 

details - the proof is based on the Radon-Nikodym theorem) we have a bounded 

]l-measurable (in fact Borel-measurable) function \) 
e on X such that 

Taking el ' ... 
n 

Vje. v = I ' 
j=l J 

each g E K(X,H) 

u c X we have 

(5) sup{L(g) 

I e 
n 

vi 

' 

L(fe) = J f ve d]l 't/f E K (X) • 

to be an orthonormal basis for H , and defining 

- V one then easily checks that L(g) = J<g,v)d]l for 
e. 

l 

as required. Furthermore (Cf. Remark 4.2) for each open 

gE K(X,H), lgj::: l, spt gc u} = J lvldJl . 
u 

On the other hand the left side of (5) is Jl(U) by definition of ]l . Hence 

(from the arbitraryness of U) \<Je conclude Jvl = 1 ]l- a.e. This completes 

the proof of Theorem 4.1. 

4.3 REMARK Note that in case H = JR , Theorem 4. 2 asserts that the linear 

functional L can be represented 
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L(f) f \) d]..! 'r/F E {((X,:R) , 

where \!(X) = ± 1 for ]..!-a. e. x E X In the special case when L is 

non--negative, Le. L(f) ::: 0 if f::: 0 , then one easily checks that 

\! - +1 , so that the t~eorem gives 

L(f) 

in this case. Thus we can identify the Radon measux>es on X with the non-

negative linear functionals on /((X,:R). (Note(*) is automatic if Lis non-negative.) 

Now for U c X with U open and U compact, let denote the set 

of bounded (real-valued) linear functionals on KU(X) = {continuous functions 

f : X +JR ·with spt f c u} which are non-negative on {(~(X)= {fEKU(X) : f::: 0} 

The Banach-Alaoglu theorem (see e.g. [RoYJ) tells us that {AE L~: ll:\ll s 1} is 

weak* compact. That is, given a sequence supk>li!Akll < co 

we can find a subsequence and such that lim Ak, (f) = A (f) 

for each fixed f E K~(X) Using the above Riesz Representation Theorem (and 

in particular Remark 4.3) together with an exhaustion of X by an increasing 

sequence {u.} 
]_ 

of open sets with U, 
l. 

compact 'r/i , this evidently implies 

the following assertion concerning sequences of Radon measures on x· 

4.4 THEOREM Suppose {]..lk} is a sequence of Radon measures on x with 

< 00 for each open U c X with compact. Then there is a 

subsequence {~k'} which converges to a Radon measure ll on x in the 

sense that 

~(f) for each f E K(x) , 

whePe K(X) = {f : f is a Peal-valued continuous function with compact 

support on X} . Here we used the notation 

ll (f) = t f d]..l • 
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Now let V be any Radon measure on X . We say that X has the 

syrrrmetric Vitali property relative to v if for every collection B of 

balls \~hich covers its set of centres A :: {x : B (x) E B for some p > o} 
p 

finely (i.e. for each x E A '"e have inf {p Bp (x) E B} = 0 ) , there is 

a countable pain1ise disjoint suhcollection B' c B covering v-almos·t all 

of A , provided V(A) < 00 • 

LL 5 REI~ARKS 

(1) It is easy to see (from Corollary 3.4) that the locally compact 

separable metric space X has this property wi·th respect to 11 , provided 

whenever B (x) c X , where c is a fixed constant 
p 

independent of x and p 

( 2) Most. importantly, in the special case v1hen X = IRn we have the 

symmetric Vital·i pl~oper-ty with respect to 11 for any Radon measure V 

To jus·tify this last remark we need first to recall the follm1ing 

Besicovitch covering lemma (see [FHl] or [HR] for a proof). 

4. 6 LEfv1MA Suppose B ·is a collection of closed balls in IRn let A 

be the set of centres, and suppose the set of all radii of balls in B is a 

bounded set. 

that each B. 
J 

still covers 

Then there are svh-collections B1 , ••• , BN c B (N=N (n)) 

N 

is a pw:H.Jise disjoint (or empty) collection, and 
N 

u 
j=l 

A : A c U 
j=l 

( U B) 

BEB. 
J 

such 

B. 
J 

We emphasize that N is a certain fixed constant depending only on n . 

Using this lem_rna we can easily justify Remark 4.5(2) : For a given Radon 

measure ]J in IRn and for a given collec-tion of balls B covering its mvn 

set of centres ·A finely, we first choose (from the set {BE B: radius B :"" 1}) 
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pairwise disjoint collections such that 
N 
u 

j=l 
B. covers A • 

J 

Then for at least one j E {l, •.• ,N} we get 

\l(A~ U B) S (1- 1/N)\l(A) 

BEB. 
J 

and hence taking a suitable finite subcollection {B 1 , ... , BQ} c Bj , 

Q 
\l(A~ U Bk) S (l-l/2N)].l(A) 

k=l 
Q 

Since B covers A finely, and since U Bk 
k=l 

is closed, the collection 

Q 
B = {BE B : B n ( U Bk) 

k=l 
¢} 

Q 
covers A ~ U Bk finely. Thus we can repeat 

the argument with B in place of B 

k=l 

and 
Q 

A ~ U Bk 
k=l 

order to select new balls BQ+l' ••• , BP E B such that 

p 

\l(A ~ U B ) 
k=l k 

1 2 
S (1- 2N) ].!(A) 

in place of A in 

Continuing (inductively) in this way, we conclude that if ].!(A) < 00 there is 

a pairwise disjoint sequence B1 , B2 , of balls in B such that 

00 

Thus Remark 4.5(2) is established. 

4. 7 THEOREM Suppose ]..1 1 , ]..1 2 are Radon measures on X , where x has 

the symmetric VitaZi property with respect to 11 1 Then 

exists ]..1 1-aZmost everywhere and is ]..1 1-measurabZe. Furthermore for any 

BoreZ set A c x 
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where 

where z 
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'7 
u I 

is a Borel set of f1 1-measw'e zero (z independent of A). 

In case X also has the syrronetl'ic Vitali property with respect to fl 2 

then also exists )1 2-almost eve.r>ywhere and 

(2) * )12 

(i.e. we may take Z {x + 00 } in this case.) 

4.8 REMARKS 

(1) Of course by Remark 4.5(2), we always have 4.7(2) if X =IRn. 

(2) * v 2 is called the singular part of )1 2 with respect to )ll . One 

readily checks ·that if and only if all sets of vl-measure zero 

also have )1 2-measure zero. In this case we say that v 2 is absolutely 

continuous with respect t.o fll. 4. 7 (1) then simply says 

(*) A a Borel set. 

Proof we can of course assume J-l1 (X) < oo , )12 (X) < oo since are 

Radon measures and X is locally compact and separable. 

First consider the case when all sets of )1 1 -measure zero also have 

)1 2-measure zero. In this case we want to prove (*) , and we have that X 

also has the symmetric Vitali proper-ty relative to ]1 2 

Let X = X - {x : Jll (Be (x)) = 0 for some 0 > o} Evidently X is 

closed and (by separability) )1 1 cx-x) = 0 )11 )11 L X Let !2)1_ )12 and 
l. 



D p be defined on X by 
pl 2 

and define 

are Borel measurable. 

lim inf 
p-1-0 

lim sup 
p-1-0 

on 
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1J2 (Bp (x)) 

)Jl (Bp (x)) 

)J 2 (Bp (x)) 

]Jl (Bp (x)) 

Notice that and 

We first prove that if a E (0, 00 ) then for any Borel set A c X , 

(1) A c {x E X D )J 2 (x) < 
-111 

a} => )J2 (A) :S a ll 1 (A) 

(2) A c {x E X D p 2 (x) 
111 

> a} "" ]..12 (A) ::: a 11 1 (A) 

To prove (1) we simply note that if A c {x E X : D u 2 (x) > a} , 
-111 

for any open the collection B = {Bp(x) : x E A , B (x) c V , 
p 

then 

p 2 (BP(x)) Sa ]..J 1 (Bp(x))} covers A finely, so there is a countable disjoint 

subcollection {B 1 ,B 2 , ••• } c B which covers ]..1 1-almost all of A (and 

hence p 2-almost all of A ) • 

Then 

00 

00 

00 

I 112 (Bj) 
j=l 

= a ]..1 1 ( U Bj) s a ]..J 1 (V) 
j=l 

00 

Taking inf over all such V , by ·(1.31) we have (1) as required. 

The proof of (2) is almost identical and is left to the reader. 

Notice particularly that if we let a + oo in (1) and use 
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0 , then we deduce 

(3) i5 ]J 2 (x) + 00 } 0 
l-ll 

{x E X D l-! 2 (x) < a < b < iS ]1 2 (x)} Then 
-jll lll 

Now let a < b and A 

by (1), (2) above we have 

and also b ]ll (A) ::: p 2 (A) , 

which implies that 11 1 (A) = l-! 2 (A) = 0 Thus, by (3) together with the fact 

that {x EX D 

u we have that 

a,b rational,a < b 

for almost all X E X • 

Next, ·to establish (*) we proceed as follows. For any Borel set 

A c X let 

\!(A) 

and for any subset A c X let V(A) infB=>A \!(B) • 

B Borel 

Then \! is evidently a Radon measure and 

< ll (At t ) < 
1' 2 

for any 0 < t 1 ::: t 2 , A. = {x E A 
'Cl,t2 

set. By then by (1), (2) we have 

and it readily follows that v = Thus (*) 

A any Borel 

is established. 

In the general case (when it may be that ]J 2 (A) > 0 when ]J1 (A) 0) 
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select a Borel set B from the collection A= {AC X A is Borel, lll (X~A) o} 
00 

such that ll2 (B) = infAEA l-12 (A) (Take B n A. where A. E A I 

i=l ~ ~ 

lim l-1 2 (Ai) = infAEA l-12 (A) . ) Now if A c B with lll (A) = 0 then we must 

have l1 2 (A) = 0 also, otherwise we contradict the minimality of l1 2 (B). Then 

we can apply the previous argument to the measure ~ 2 = ll 2 L B , thus giving 

* Thus 4.7(2) holds with l-1 2 

V Borel set A c X . 

Finally, in case X also has the symmetric Vitali property with respect 

to l-1 2 , the first part of the argument above establishes that Dll ll 2 exists 
1 

l-1 2-almost everywhere (as well as l-1 1-almost everywhere) in X and (1) 

shows that if A c {x E X : D ll 2 (x) 
lll 

l-1 1 (A) = 0 , then also l1 2 (A) = 0 • 

00 

< oo} (= U {xEx: D l-1 2 (x) < n}) and if 
n=l lll 

We can therefore apply the above argument 

Since we trivially have D ll 2 (x) = oo 

lll 
for X E X - X I we then deduce 4. 7 ( 1) with as in 4. 7(2). 



CHAPTER 2 

SOME FURTHER PRELIMINARIES FR01~ A!~AL YS IS 

Here we develop ·the necessar~;{ further analytical background rna·terial 

needed for la-ter developmen-ts. In particular we prove some basic results 

abou·t Lipschi·tz and BV func·tionsv and v.ve also p:resen·t the basic facts 

concerning submanifolds of Euclidean space. There is also a brief 

treatment of the area and co-area formula and a. discussion of first and 

second variation form.ulc:e for 
2 c submanifolds of Euclidean space. These 

la-tter topics will be discussed in a much more general con-tex-t la'cer. 

§5. LIPSCHITZ FUNCTIONS 

Recall that a function f : X + lR is said to be Lipschi-tz if there is 

L < oo such that (if d is the metric on X) 

I f(x) - f(y) I ::: L d(x,y) 'r! x,y E X . 

Lip f denotes -the least such constant L . 

First we have the following trivial extension theorem. 

5 • 1 THEOREM If A c x and f A +lR is Lipschitz, then 3 f 

Lip f 

Proof 

Lip f, and f = fiA 

Simply define 

f(x) = inf E (f(y)+L d(x,y)), L 
y A 

Lip f . 

x +:m with 

Since f(y) + L d(x,y) ::: f(z) - L d(x,z) \f xE X , y,zE A , we see t.'lat f 
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is real-valued and f(x) f(x) for x E A . Furthermore 

Next we need the theorem of Rademacher concerning differentiability of 

Lipschit:.?: functions on lRn (The proof given here is due to C.B·. Morrey.) 

5.2 THEOREM If f is Lipschitz on lRn , then f is differentiable 

Ln-almost everywhere; that is, grad f(x) (D1 f (x) , •.. , Dnf (x)) exists and 

lim f(y)-f(x)-grad f(x)•(y-x) 0 
y+x 1y-x1 

for L n - a. e. x E lRn 

Proof Let n-1 
v E S , and whenever it exists let denote the 

directional derivative d 
dt f (x+tv) I . 

t=O 
Since exists precisely 

when the Borel-measurable functions .=f_,_(x:.:.+.:..t;:;.v'-')'---"f'-'('-='x"-) lim sup -
t+O 

t 
and 

lim inf f(x+tv)-f(x) coincide, the set A on which D f fails to exist 
t+O t v v 

is Ln-measurable. However ~(t) = f(x+tv) is an absolutely continuous 

function of t ElR for any fixed x and v, and hence is differentiable 

for almost all t . Thus Av intersects every line L which is parallel 

to v in a set of measure zero. Thus for each 

(1) Dvf (x) exists L n- a. e. x E JRn . 

Now take any C~(l~n) function l; and note that for any h > 0 



f(x+hv)-f(x) 
h 
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l;(x)-l;(x-hv) 
h 

(by ·the change of variable z = x+hv in the first part of the integral on 

the left) • Using the dominated convergence theorem and (1) we then get 

f Dv f I; = J f D I; J f v•grad I; 
v 

n 
vj J f 

n 
vj J I; I D. 4 + I D. f 

j=l J j=l J 

= J 4 v•grad f ' 

where all integrals are with respect to Lebesgue measure on lRn , and where 

we have used Fubini's theorem and the absolute continuity of f on lines 

to justify the integration by parts. Since I; is arbitrary we thus have 

(2) v•grad f(x) , Ln- a.e. x E lRn . 

Now let be a countable dense subset of n-1 
s ' and let 

~ = {x grad f (x) , D f (x) 
vk 

exist and D f(x) = vk•grad f(x)} . Then 
vk 

with A n A. we have by (2) that 
k=l k 

0 , D f(x) 
vk 

vk •grad f (x) \t x E A , k 1' 2' .•. 

Using this, we are now going to prove that f is differentiable at 

each point x of A • 'I'o see this, for any x E A , v E Sn-l and h > 0 

define 

Q(x,v,h) 

Evidently for any 

f(x+hv)-f(x) 
h 

n-1 
E S , 

- v•grad f (x) • 

(4) IQ(x,v,h)- Q(x,v' ,h) j ::; (n+l)L !v-v' I L Lip f . 

Nmv let t: > 0 be given and select P large enough so that 
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(5) v E I < some k E {1, o •• , 

Since lim Q(x, h) = 0 , v !/, 1,2, ... ,xEA ' (by ( 2)) ' tAl€ see that 
h+O 

for a given xo E A >.ve can choose 0 > 0 so that 

(6) \Q I < E/2 whenever O<h< 5 and k E {l, ... ,P} 

Since jQ v.,h) I < jQ 'v. ,h) I + jQ ,v,h) - Q ,h) I for each 
I K I 

k E { 1, " .. ,P} we then have (by (4). t (5) 
' 

( 6) ) th·2~··t 

whenever v E Sn-1 and 0 < h < 5 o Thus the theorem is proved. 

Finally we shall need the following consequence of the Whitney Extension 

Theorem. 

5.3 THEOREM Suppose f : IRn + IR is Lipschitz. Then for each s > 0 

function g with 

Ln({x: f(x) 'I g(x)} U {x: grad f(x) f. grad g(x)}) <E. 

Proof First recall Whitney's extension theorem for c1 functions: 

If P.. c Rn is closed and if h A +JR and \! A + JRn are continuous, 

and if 

{*) 

where 

( **) 

lim 
x+x0 ,y+x0 

x,yEA,xf.y 

R(x,y) 

R(x,y) 0 

h(y}-h(x)-v(x)•(y-x) 

jx-yj 

then there is a c1 function g : Rn + R such that g = h and grad g = \! 

on A . {For the proof see for example [SE] or [FHl]; for the case n = 1, 

see Remark 5.4(3) below.) 
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Now by Rademacher's Theorem f is differentiable on a set B CIRn with 

0 . By Lusin's theorem (which applies to sets of infinite measure 

for Ln) there is a closed set C c B such that grad fjc is continuous 

and L n (:R11~ C) < E/2 On C we define h(x) = f(x) , V(x)=grad f(x) and 

R(x,y) for x,y E C is as defined in (**). Evidently (since C c B) we have 

lim R(x,y) = 0 \! X E c r but not- necessarily (*). We therefore proceed 
y+x 
yEC 

as follows. For each k 1, 2, ... let 

sup{jR(x,y)j:yEcn (B 1 (x)~{x})} 
k 

Then T)k + 0 -pointwise in C , and hence by Egm'off 's Theorem there is 

a closed set A c C such that and converges uniformly 

to zero on A One now readily checks that (*) holds. Hence we can apply 

the Whitney Theorem. 

5.4 REMARKS 

(1) The reader will see that without any significant change the above 

proof establishes the following: If U c IRn is open and if f : u + IR is 

differentiable Ln- a.e. in u , then for each E > 0 there is a closed 

set A c u and a c1 func-tion g : IRn + IR 

f(x) g(x) grad f(x) = grad g(x) for each x E A . 

(2) The hypothesis (*) above cannot be weakened to the requirement 

that lim R(x,y) = 0 
y+x 
yEA 

\! x E A . For instance we have the example (for 

n= 1) when and h(O)=O, h(~)= (-lt!k312 ,v :=o. 

Evidently in this case we have lim H(x,y) = 0 v X E A , but there is no 
y+x 
yEA 

ih<l>- h<-1-' I 
cl extension bec'ause 

k k+l' k + 00 + 00 as 
(1- 1 
k- k+l) 
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{3) In the case n = 1 , the Whitney Extension Theorem used above has 

a simple proof. Namely in this case define 

R(x,y) 
h(y)- h(x) 

y-x 
- \!(X) 

and note that the hypothesis (*) guarantees that for each compact subse·t C 

of A we have a function with as t -1- 0 ' and 

( i) V x,y E C • 

Notice in particular this implies 

(ii) Jv(x)- V(y) I s 2 Ec( lx- Yi) \I x,y E C • 

Also 1R ~ A is a countable disjoint union of open intervals r 1 ,r2 , •••• 

If Ij = (a,b), 

(iii) g. (a) 
J 

and 

we then select 

h (a) , g . (b) 
J 

h(b) , g~(a) 
J 

as follows: 

\!(a) , g'. (b) 
J 

\)(b) 

(iv) supxEI. I gj (x) - \!(a) I :::: 3 EC (b-a) , C 

J 

[a-l,b+l] n A • 

This is possible by (i) 1 (ii)' with (x,y) = (a,b) One 

now defines g (x) = g. (x) l;f X E I. j 1' 2' ... and g(x) 
J J 

1 

= h(x) 'if xE A. 

It is then easy to check g E c- (JRJ and g' = \) on A by virtue of (i)- (iv). 

§6. BV FUNCTIONS 

In this section we gather together the basic facts about locally BV 

functions which will be needed later. 

First recall that if U is open in :Rn and if u E L 1
1 (U) 

oc 
then u 



35 

is said to be in BV10c(U) if for each W cc U there is a constant c(W) <oo 

such that 

r 
) u divg dln :::= c(W)supjgJ 
w 

for all vector functions g = (g1 , •.• ,gn) , gj E C00 (W) Notice that 
c 

this means that the functional JU u divg extends uniquely to give a (real-

valued) linear functional on K(U,:Rn) :=:{continuous g = (g1 , ... ,gn): U+:Rn, 

support JgJ compact} which is bounded on KW(U,:Rn):=: {gE K(U,:Rn): sptjgJ c W} 

for every W cc U . Then, by the Riesz representation theorem 4.1, there is 

a Radon measure ~ on U and a ~-measurable function v = (v1 , .• ,vn) , 

Jvl = 1 a.e. , such that 

6.1 

Thus, in the language of distribution theory, the generalized derivatives 

of u are represented by the signed measures v. d~ , 
J 

For this reason we often denote the total variation measure ~ (see 4.2) by 

!nul (In fact if uEW~' 1 (U) oc 
we evidently do have d~ = lnuj d ln and 

"j ·l n.u 
J if I nul t- 0 

jDuj 

0 if jnul 0 

Thus for u E BV10c(U) , lnuj will denote the Radon measure on U which 

is uniquely characterized by 

I nu J (W) supJgl::::;l,sptjgjcw J u div g dLn , W open c u . 
g smooth 

The left side here is more usually denoted J lnuj 
w 

Indeed if 

non-negative Borel measurable function function on U , then 

f is any 

J f djDuj is 

more usually denoted simply by J f j Du J ( = I f J Du I dl n in case u E W~~~ (U)) 
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We shall henceforth adopt this notation. 

There are a number of important results about BV functions which can 

be obtained by mollification. We let where is a 

symmetric mollifier (so that <P E Coo (:Rn) , 
c <P :::. 0 , spt ¢ c B 1 (0) , 

f <P = 1 and ¢(x) = <P ( -x)) and for u E L~ (U) let u (0) 
<Pa * u be 

Rn oc 

the mollified functions, where we set u= u on u0 , u= o outside uo , 

u0 ':' {x E u: dist(x, <lu) >o}. A key result concerning. mollification is then as follows: 

6.2 LEMMA then (0) 
u -+ u in Ll1 (U) 

oc 
and 

lnu(o) I-+ lnuj in the sense of Radon measures in u {see 4.4) as a~ 0 • 

Proof The convergence of u(O) to u in L 1
1 (U) 
oc 

remains to prove 

(1) lim J flnu(o) I 
a~o 

J flnul 

is standard. Thus it 

for each f E c0 (u) 
c f > 0 • In fact by definition of lnul it is rather 

easy to prove that 

I flnul ~lim inf I flnu(o) I , 
a~o 

so w~ only have to check 

(2) 

for each f E c0 (u) 
c 

lim sup I flnu(o) I ~I flnul 
a~o 

f ::: 0 . 

This is achieved as follows: First note that 

(3) 

On the other hand for fixed g with g smooth and lgl ~ f , and for 
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o < dist(spt f,3U) , we have 

I g • grad u (O) dL n = - I u (O) div g dL n 

J ¢0 * u div g dL n 

J u(¢0 *div g)dLn 

J u div(¢0 *g)dln . 

On the other hand by definition of loul , the right side here is 

:::Jw (f+s(oJJioul 

0 

where E:(O) + 0 , where W = spt f dist(x,W) < o} , because 

and because 

l¢0 *gl- l<¢0 *gl, ... ,¢0 *gnJI 

::: ¢o* lgl ::: ¢o* f 

¢0 * f -+ f uniformly in as 0 + 0 ' 

Thus (2) follows from (3). 

6.3 THEOREM (Compactness Theorem for BV function) 

where 

If {uk} is a sequence of BV10c(U) functions satisfying 

supk>l[ll~ll 1 + J 1°~1) < 00 

- L (W) W 

o 0 <dist(W,3U) . 

for each w cc u then there is a subsequence {uk,} c {~} and a 

BVloc(U) 

Proof 

function u such that 

f loul < lim inf 
Jw 

in Lll (U) 
oc 

and 

l;f w cc u . 

By virtue of the previous lemma, in order to prove ~· -+ u in 
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L~0c(U) for some subsequence {~,} , it is enough to prove that the sets 

(for given constants C (W) < 00 ) are precompact in Lll (U) 
oc 

For the simple 

proof of this (involving mollification and Arzela's theorem) see for example 

[GT, Theorem 7.22L 

Finally the fact that t J Du I :0 lim inf f W j Duk, I is a direct consequence 

of the definition of Jouj , Jo~,j . 

Next we have the Poincare inequality for BV functions. 

6.4 LEMMA 

spt u c u 

we have 

Suppose u is bounded, open and convex, 

Then for any e E (0, 1) and any 6 E R with 

J ju-61 
u 

dLn ~ c J joul , 
u 

where c = c(8,U) . 

with 

Proof Let 6, 8 be as in(*) and choose convex W c U such that 

(1) Joul (ClW) 

and such that (*) holds with W in place of U and 8/2 in place of 

8 . (For example we may take W = {x E U: dist(x, ClUJ > n} with n small.) 

Letting 
(0) 

u denote the mollified functions corresponding to u , 

note that for sufficiently small a we must then have with 
(0) 

u in place 

of u , 8/4 in place of e ' 6 (O) + 6 in place of 6 I and w in place of u . Hence by 
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the usual Poincare inequality for smooth functions (see e.g. [GT]) we have 

c = c(n,8,W) , for all sufficiently small a • The required inequality now 

follows by letting a + 0 and using (1) above together with 6.2. 

6.5 LEMMA Suppose u is bounded, open and convex, with 

spt u c u . Then 

J nlnul (=J_Inul] ~ 
lR u 

where c = c(U) . 

6.6 REMARK Note ~~at by combining this with the Poincare inequality 6.4, 

v?e conclude 

c = c(8,U) , whenever S is as in (*) of 6.4. 

Proof of 6.5 Let U0 = {x E U : dist(x, ()U) > o} and (for o small) let 

be a function satisfying 

(1) 

(2) 0 ~ cp 0 ~ 1 in :Rn , 

and (for a given point a E U) 

(3) lo¢0 (x) l ~- c(x-a) • DC/> 0 (x) , x E u , 

where c = c(U,a) is independent of o . (One easily checks that such ¢ 0 



40 

exist, for sufficiently small 6 , because of the convexity of U .) 

Now by definition of for BV1 (:Rn) functions w , we have 
oc 

(4) 

and by (3) 

5) 
-1 

c 

(by definition of I DIu II) 

S - J (x-a) • 

= J <lui div((x-a)¢6) + njuj¢6) dLn 

~ c( t 

(because ln!ul I S joul by virtue of 6,2 and the fact that 

lo!ull ~lim inf jnju(o) ill 
a+o 

Finally, to complete the proof of 6.5, we note that (using the definition 

of I nwJ for the BV loc (:Rn) functions w = u, <P 6u , together with the fact 

that ¢6u-+ u in L1 (:Rn)) 

Then 6.5 follows from (4), (5). 

7. SUBMANIFOLDS OF n+k 
R 

Let M denote an n-dimensional Cr submanifold of :Rn+k O~k, r:::l. 

By this we mean that for each y E M there are open sets U, V c :Rn+k with 
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y E U 0 E V and a cr diffeomorphism ¢ U + V such that ¢ (y) 0 

and 

w 

(Here and subsequently we identify Fn with the subspace of n+k . , 
R cons1stLng 

of all points x = (x1 , ... ,xn+k) such that xj = 0, j n+l, ... ,n+k .) 

In particular we have local representations 

1j!(W) M n V , 1j!(O) y 

such that 1!!!_ (0) ... 1!!!_ (0) are linearly independent vectors in 
1 I , 

dX dX n 

(For example we can take 1jJ = ¢-11w .) The tangent space T M of 
y 

is the subspace of Rn+k consisting of those T E Rn+k such that 

1 
y(O) for some C curve y 

n+k 
(-1,1) + R , y(-1,1) c M, y(O) 

One readily checks that T M 
y 

has a basis 1!!!_ (0) 1 • • • f ~ (0) 
dXl dXn 

local representation 1jJ as above. 

M at 

y . 

for a 

A function f : M + JRN (N:::l) is said ·to be C.Q. (.Q.:<::r) on M if f 

Rn+k 

y 

is the restriction to M of a C.Q. function f : U + RN where U is an 

open set in Rn+k such that M c U . 

Given T E T M the direc·tional derivative D f E JRN is defined by 
y T 

d 
f(y(t)) 't=O for cl ( -1, 1} with y(O) .y ( 0) 

dt 
any curve y : + M = y , T. 

Of course it is easy to see that this definition is independent of the 

particular curve y we use to represent T The induced linear map 

df 
y 

T M + JRN is defined by df (T) = D f 
y y T 

T E T M • . (Evidently df 
y y 

is exactly characterized by being the "best linear approximation" to f at 

y in the obvious sense.) 
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In case f is real-valued (Le. N= l) then we define the gradient 

n 
V'lt(y) I (D,,f)Tj' y E TYM 

j=l J 

any orthonormal basis for TM 
y 

(e. = j-th standard basis vector in :Rn+k 
J 

If we let 

j = 1, ... ,n+k) then 

If f is the restriction to M of a c 1 (u) function f where U is 

an open subset of 
n+k .. 

:R conta1n1ng M , then 

- T 
(grad n+k f (y)) 

:R 
y E M , 

where grad k f is the usual Rn+k gradient 
Rn+ 

and where )T means orthogonal projection of Rn+k onto T M 
y 

Now given a vector function ("vector field") X 

with Xj E c1 (M) , j = l, •.• ,n+k , we define 

on M (Notice that we do not 

have 

n+k. 
divM X I 

j=l 

n+k 

I 
j=l 

so that (since X 

n 

divM X = I 
i=l 

e. • 
J 

e. • 
J 

n+k 

I 
j=l 

require 

(~Xj) 

X E T M .) 
y y 

[ I (D Xj)T.) 
i=l T j l 

I 

Then, at 

u ' 

y E M , we 
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where is any orthonormal basis for T M 
y 

The divergence theorem states that if the closure M of M is a 

smooth compact manifold with boundary 3M M ~ M and if X E T M 'r/ y E M , 
y y 

then 

7.1 I div x dHn = ~ J x·n dHn-l 
M M 3M 

where n is the inward pointing unit co-normal of 3M ; that is, lnl = 1 , 

n is normal to 3M , tangent to M , and points into M at each point of 

3M 

7.2 REMARKS 

(1) M need not be orientable here. 

(2) In general the closure M of M will not be a nice manifold with 

boundary; indeed it can certainly happen that Hn(M~M) > 0 (For example 

consider the case when M u 2 2 
{(x,y) E R : y = x jk}~ {O} 

k=l 
1-dimensional submanifold of R 2 'r/ r in the sense of the above definitions, 

but M M is the whole x-coordinate axis.) Nevertheless in the general case 

we still have (in place of 7.1) 

provided support X n M is a compact subset of M and XY E TYM 1/yEM. 

In case M is at least c2 we define the second fundamental form of 

M at y to be the bilinear form 

such that 

7.3 B (T, nl 
y 

B 
y 

k 

I 
a=l 

.L 
+ (T M) 

y 
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where are (locally defined, near y) vector fields with 

z in some neighbourhood 

of y The geometric significance of B is as follows: If T E T M with 
y 

IT i 1 and y : (-1,1) -+ Fn+k is a c2 curve wi·th y (0) = y y(-1,1) CH 

and y(O) = T ' then 

B (T ,T) 
y 

o• J. 
(y(O)) 

which is just the normal component (relative to M) of the curvature of 

y at 0 , y being considered as an ordinary space-curve in JRn+k (Thus 

B (T, T) measures the "normal curvature" of M in the direction T • ) To 
y 

check this, simply no·te that va (y ( ·t) ) • y ( t) = 0 , It I < 1 , because 

Differentiating this relation 

with respect to t , we get 

(after setting t= 0) 

• T 

and hence (multiplying by va(y) and surmning over a ) we have 

k 

I 
a=l 

B (T,T) 
y 

as required. (Note that the parameter t here need not be arc-length 

for y ; it suffices that y(O) = T, 1-rl= 1.) More generally, by a similar 

argument, if and if mapping of a 

neighbourhood u of 0 in R2 such that <jl(U) c M <jl(O) = y ' 

j_p_ (0,0) T ' 
j_p_ (0,0) n , then 

(lxl (lx2 

B (-r,n> ( a2¢ r --1--2 (0,0) . y 
Clx Clx 
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In particular B (c,n) = B <n,cl y y 
that is B is a symmetric bilinear 

y 
j_ 

form with values in (T M) y 

We define the mean curvature vector H of M at y to be trace 

thus 

7.4 ,!J(Y) 
n 

I 
i=l 

j_ 
B ( T . , T . ) E (T M) 

y l l y 

B 
y 

where Tl, ••• ,Tn is any orthonormal basis for T M 
y 

Notice that then 

(if 

so that 

7.5 

near y . 

are as above) 

,!1 (y) 

H 

k n 

I I 
a=l i=l 

k 

I (divM,Plva 
a=l 

Returning for a moment to 7.1 (in case M is a compact c2 manifold 

with smooth (n-1)-dimensional boundary ()M M~M) it is interesting 

compute L divM X in case the condition X E T M is dropped. To 
y y 

this, we decompose X into its tangent and normal parts: 

T 1 
X X + X 

where (at least locally, in the notation introduced above) 

Then we have (near y) 

so that by 7. 5 

1 
X 

k 

I 
a=l 

k 

a a 
(\! •X) \! • 

L (Va•X)div va , 
a=l 

to 

compute 
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7.5' 

J T 
at each point of M . On the ot~er hand divM x· 

M 
r x • ll by 7 .1 • 

J <3M 

Hence, since divM X we obtain 

7.6 dHn - J X • 11 dHn-l 
CJM 

§8. THE AREA FORMULA 

Recall that if A is a linear map JRn + lRn and A c JRn , then 

Ln(A(A)) = jdet Aj Ln(A) . More generally if A : En+ JRN, N > n , then 

A (JRn) c F where F is a n-dimensional subspace of JRN , and hence choosing 

an orthogonal transformation q of :JRN such that q (F) = JRn , we see that 

q o A : JRn + JRn and hence L n (qA (A)) = I det (qA) J L n (A) for A c JRn . One 

readily checks, since q is orthogonal, that jdet(qA)j = /detX*oA, where 

A* : :RN + l<n is the adjoint of A . Since Hn(q(B)) = Hn(B) (by definition 

hence we obtain the area formula 

8.1 

whenever A is a linear map JRn + :RN , n s N . 

More generally given a map (M an n-dimensional 

c 1 submanifold of JRn+k) we have, by an approximation argument based on 

the linear case 8.1 (see [HR] or [FHl] for details) that 

8,2 V Hn-measurable set A c M , 
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where Jf is the Jacobian of f (or area magnification factor of f ) 

defined by 

8.3 Jf{y) /det { df ) * o ( df ) 
y y 

Here df : T M + RN is the induced lL>ear map described in §7, and 
y y 

(df ) * : RN + T M denotes the adjoint ·transformation. 
y y 

If f is not 1:1 we have the general area formula (which actually 

follows quite easily from 8.2) 

8.4 J H0 (f-l (y) n A) dHn (y) 

RN 

where H0 is a-dimensional Hausdorff measure i.e. "counting measure". 

(Thus H0 (B) = 0 if B = ~ , H0 (B) =the number of elements of the 

set B if B is a finite non-empty set, and H0 (B) = oo if B is not 

finite). More generally still, if g is a non-negative Hn-measurable 

function on M , then 

8.5 J f g dH0 dHn (y) 

N -1 
L (Jf) g dHn . 

JR f (y) 

This follows directly from 8.4 if we approximate g by simple functions. 

8.6 EXAMPLES 

(1) Space curves. Using the above area formula we first check that 

H1-measure agrees with the usual arc-length measure for c1 curves in JRn 

In fact if y: [a,b] + JRn is a 1:1 

IYI , so that 8.2 gives 

H1 (y(A)) 

as required. 

1 
C map then the Jacobian is just 
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(2) Submanifolds of ~n+k . If M is any n-dimensional c1 manifold 

of 
n+k 

~ we vvant to check that l-In agrees with the usual n-dimensional 

volume measure on M . It is enough ·to check this in a region v1here a local 

coo dina te represen·ta tion as in § 7 applies. If 

~J(W) 

is a local representation for M as in §7 then ·the usual definition of the 

n-dimensional volume of a Borel set A c ~·l n U is 

where A and i,j=~l,." .... fn 

However one easily checks that then ,/g is precisely J1P , the ,Jacobian of 

n+k 
I'!_,. ~ ' defined as above. Hence we have by the area formula 8.2 

that 

(3) n-d1:mensional graphs in ~n+l If It is a domain in JRn and if 

M = graph u ' where u E c1 {rt) t.'Jen M is globally represented by the 

ljJ }+ (x,u(x)) in this Jl/J(x) lctet(l1,. 'dlj! map ' X case - -.) 

dX 
~ dXJ 

- /det(oij +Di unju) = h+ 1 nu 1 2 

so Hn(M) f~h+ lnul 2 dx (by (2) above). 

§9. FIRST AND SECOND VARIATION FORMULAE 

Suppose that M is an n-dimensional c1 submanifold of JRn+k and let 

U be an open subset of JRn+k such that U n M ¥ Ill and Hn(KnM) < 00 for each 

compact Kc U Also, let {~t} be a 1-parameter family of diffeo-
o=:t:Sl 

morphisms U + U such that 
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( 1) tjl(t,x) (::: ¢t (x)) is a c2 map: (-1,1) XU+ U 

9.1 (2) ¢o(x) - X X E u { 
(3) ¢t(x) - X 'rj t E (-1, 1) 

' X E u~ K , where K c U 

is a compact subset of u . 

Also, let X , Z denote the initial velocity and acceleration vectors 

Then 

9.2 

thus X 
X 

3¢ (t,x) I' 

3t t=O ' 
z = 32cj?(t,x) I' 

X 3t2 t=O 

and X , z have supports which are compact subsets of U . Let 

Mt = ¢ t (M n K) (K as in 9 .1 ( 3) ) ; thus Mt is a 1-pararneter family of 

manifolds such that: Mo = M n K and Mt agrees with M outside some compact 
2 

d n 
1 ~Hn<M ll subset of u We want to compute dt H (Mt) and 
t=O dt2 t t=O 

(i.e. the "first and second variation" of M ) • The area formula is 

particularly useful here because it gives (with K as in 9.1 (3)) 

and hence to compute the first and second variation we can differentiate 

under the integral. Thus the computation reduces to calculation of 

and 

To calculate we first want to get a manageable expression for J~~ 
'-

First note that (for fixed t) 

(by 9 .2) . 
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Hence, relative to the bases Tl, .. .,Tn for T M and e 1 , o o,, en+k for 
X 

n+k 
the map dlj! . T M + :Rn+k has matrix :R tl X 

X 

£ ~ t2 £ 
a - T. + t D X' +-- D Z + 0 
ii - l T. 2 T. 

l l 

for i = 1, 0 •• , n , (d1j!ti ) * 0 (dlj!tl ) has matrix 
X X 

where 

b.. 0 .. + t(T. •D X+T.•D X) 
1] 1] 1 T j J T i 

+ t 2 (!(T.•D Z+T.•D Z) + (D X) 
l T. ] T. T. 

(D X)) 
l. 

J l l J 

+ O(t3) , 

so that (by the general formula det(I+tA+t2B) = l + t trace A + 

where 

we have 

l1 

(Jij!t) 2 = l + 2t divM x + t 2 (divMZ + L in xl 2 
i=l ' l i 

n 

I 
i=l 

n 
+ 2(divMX) 2 - . L 

i, j=l 

(DT X) 1 <=normal part of 
oi 

D X) 
T. 

l 

D X 
l, 

l 

l 2 
I (D X) I 

l, 
l 

n 

I (T.•D X)T. 
j=l J T i J 

Using 11+ x 
1 1 2 3 

1 + 2 X g X + O(X ) we thus get 

t2 2 n 
Jlj!t = 1 + t divM X + 2 (divMZ + (divMX) + l 

i=l 

n 

l 2 
I (Dl X) I 

i 

I (T.•D X)(T.·D X)) +O(t3). 
'i,j=l l 'j J 'i 
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Thus the area formula immediately yields ·the first and second variation 

formulae: 

9.3 

and 

I divM X dHn 
M 

9.4 d
2
2 Hn(Mt)l =J (divMZ+(divMX) 2 + .I \(DT_xJ 1 \

2
- I (T.•D X)(T.•D X)) 

dt t=O M. l=l l i,j=l l Tj J Ti 

We shall use the terminology ·t..hat M is stationary in U if Hn (M n K) < 00 

for each compact K c U and if _9_ Hn (M ) 1 = 0 
dt t t=O 

whenever 

as in 9.1. Thus in view of 9.3 we see that M is stationary in u if and 

only if t divM X dHn = 0 whenever X is cl on u with support X a 

compact subset of u 

In view of 7.6 we also have the following 

9.5 LEMMA 

(1) If M is a c2 submanifold of Rn+k and M is a c 2 submanifold 

with smooth (n-1)-dimensional boundary 3M M ~ M , then M is stationary 

in U if and only if ~ = 0 on M n U and 3M n U = 0 . 

(2) Generally, if M is an arbitrary c2 submanifold of JRn+k and 

-u n M 1:s a compact subset of M then M is stationary in u if and 

only if ~ = 0 on M n U • 

(In both parts (1), (2) above ~ denotes the mean curvature vector of M .) 

For later reference we also want to mention an important modification 

of the idea that M be stationary in u ' u open in 
n+k 

JR . 

N is a c2 (n+k1 )-dimensional submanifold of JRn+k 0 s kl 

suppose u is an open subset of N and M c N Then we say 

stationary in u if 9.3 holds whenever X E T N 
y y 

'r/ y E M . 

Namely, suppose 

s k ' and 

that M is 

This is 
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evidently equivalent to the requirement that ! Hn (¢> t (M n K)) I = 0 whenever 
t=O 

¢>t satisfies the conditions 9.1 (bearing in mind that U is required now 

to be an open subset of N rather than an open subset of 
n+k 

R as before) • 

If we let 1 k 
\) I • • • I\) be an orthonormal family (defined locally near a point 

y E M) of vector fields normal to M I such that 
1 kl 

\) , ... , \) are tangent 

to N and 
kl+l k normal to N then for any \) , ..• , v are , 

on M we can write X= x<ll + x<2J , where x<ll E TN z z 

x(2) 
n 

(vj •x) vj = I (= part of X normal to N) • Then 
j=kl+l 

any orthonormal basis for TYM , we have 

x(l) 
n 

(vj •X) div vj divM X divM + I 
j=kl+l 

M 

x<ll 
n 

- divM + I X·B (T.,T.) 
i=l y ~ ~ 

where B is the second fundamental form of N at y , 
y 

Thus we conclude 

vector field X 

and 

if Tl, ... ,Tn 

9.6 LEMMA If N is an (n+k1 J -dimensional submanifold of :rn.n+k if 

is 

M c N and if u is an open subset of N suah that Hn (M n K) < oo whenever 

K is a aompact subset of u , then M is stationary in u if and only if 

I divM X 
M 

I ~ • X 
M 

for each c1 veator field x with aompaat support contained in u ; here 

~I y 

n 

I 
i=l 

B (T .,T .) 
y ~ ~ 

form of N at 

yE .M where denotes the seaond fundamental 

is any orthonormal basis of T M 
y 

Finally, we shall need later the following important fact about second 

variation formula 9.4. 
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9.7 LEMMA If M is c2 stationary in u ' u open 7--n R 
n+k with 

(M~M) n u 0 and if X as in 9.4 ·has compact support in u with 

X E (T M)l 
y y 

l;j y E M , then 9.4 says 

ct2 n 
-2 H 01tl I 
dt 't=O 

n 

l 
i=l 

n 

I 
i, j=l 

2) n (X•B(T.,T.)) dH. 
l J 

9.8 REMARK In case k = 1 and M is orientable, with continuous unit 

normal \! , then X = i';;V for some scalar function I;; with compact support 

on M , and the above identity has the simple form 

n 

J clvMsl 2 - s 2 IBI 2 ldHn, 
M 

n 
IB 1 2 IB(T.,T.)I2::: lv•B(T. ,T .) 1 2 where l I This is clear, because !... 

i, j=l l J i, j=l l J 

(D (Vi;;)) 1 \) D_ s by virtue of the fact that D \)I E T M I;J y E M 
T. L. T. y 

l l l y 

Proof of Lemma 9.7 · First we note that J divM z dHn = 0 by virtue of the 
M 

fact that M is stationary in u and second we note that div X =-X • H M = 

by virtue of 7.5' and 9.5 (2) and the fact that X is normal to M The 

proof is complet.ed by noting that T. • D X - X • B (T., T.) by virtue of 7.3 
l T. l J 

J 
and the fact that X is normal to M 

§10. CO-AREA FORMULA 

As in our discussion of the area formula, we begin by looking at linear 

maps but here we assume N < n Let us first look at the 

special case when A is the orthogonal projection p of Rn onto JRN . 

0 

(As before, we identify JRN with the subspace of Rn consisting of all points 
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(x1 , .•• ,xn) with xj = 0, j = n-N+l, ••• ,n .) The orthogonal projection 

p has the property that, for each y E E.N , 
-1 

p (y) is an (N-n)-dimensional 

affine space; each of these spaces is a translate of the (N-n)-dimensional 

subspace 
-1 p {0) • Thus the inverse images 

-1 
p (y) decompose all of 

into parallel ~(n-N)-dimensional slices" and by Fubini's Theorem 

10.1 J Hn-N (p -l (y) n A) dy 

:RN 

whenever A is an Ln-measurable subset of E.n. 

This formula (which, we emphasize again, is just Fubini's Theorem) is 

a special case of a more general formula known as the co-area formula. We 

first derive this in case of an arbitrary linear map A : E.n + E.N with 

rank A = N • 

(Then for each N -1 
y E E. , A (y) is an (n-N)-dimensional 

affine space which is a translate of F ; the sets A-l(y) thus decompose all 

of E.n into parallel (n-N) -dimensional slices.) 

Take an orthogonal transformation q = :Rn + E.n such that q F1 = JRN , 

n-N 
q F = E. . Then A can be represented in the form A = o o p o q , where p 

is the orthogonal projection 0 is a non-singular trans-

formation of E.N . (This is easily checked by considering the action of A 

on suitable basis vectors.) By 10.1 above, for any ~-measurable A c JRn, 

Ln(A) J n-N -·1 N H (q (A) n p (y)) dL (y) 

BN 

making the change of variable z = O(y) (dy idetol-1dz) , we thus get 



I de to I Ln (A) 

Also, since q*q = 1 and pp* 
Rn 

so that ldetol ldet AoA* . 

Thus finally 

10.2 
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1 N , we have A o A* 
R 

0 o O* 

~his is the co-area formula for linear maps. (Note that it is trivially valid, 

with both sides zero, in case rank A < N .) 

Generally, given a map where M is an n-dimensional 

c1 submanifold of Rn+k we can define 

J*f{x) ldet(df ) o (df ) * , 
X X 

where, as usual, df 
X 

TxM + RN denotes 'the induced linear map. Then for 

any Borel set A c M 

10.3 J Hn-N (An f-1 (y)) dL N (y) . 

RN 

This is the general co-area formula. Its proof uses an approximation argument 

based on the linear case 10.2. (See [HRl] or [FHl] for the details.) 

An important consequence of 10.3 is that if C {xE M : J*f(x) = 0} 

then (by using 10.3 with A = C) Hn-N (C n f-l (y)) 0 for L N - a. e. y E RN 

Since J*f(x) ~ 0 precisely when dfx has rank N , it is clear from the 

implicit function theorem that 
-1 

X E f (y) ~ c ~ 3 a neighbourhood V of X 
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such that V n f- 1 (y) is an (n-N)-dimensional c 1 submanifold. In summary 

we thus have the following important result. 

10.4 THEOREM (C 1 Sard-type theorem.) 

Suppose f : M -+ JRN N < n , Then for N L - a.e. y E f (M) , 

-1 l 
f (y) decomposes into an (n-N) -d~:mensional c submanifold and a closed 

set of Hn-N_measure zero. Specifically, 

-1 -1 
(f CyJ~cJ u (f CylncJ, 

C = {x EM J*f (x) = 0} (:= {x EM : rank (df) < N}) , Hn-N (f-l (y) n C)= 0 , 

y ' and f- 1 (y) ~ c is an (n-N) -dimensional .c1 submanifold. 

10.5 REMARK If f and M are of class 
n-N+l 

c ' then Sard's Theorem 

asserts the stronger result that in fact f- 1 (y) n C = 0 for 
,N 
L - a.e. y E JRN ' 

so that f-l (y) is an (n-N) -dimensional Cn-N+l submanifold for LN- a.e. 

A useful generalization of 10.3 is as follows: If g is a non-negative 

Hn-measurable function on M , then 

10.6 f n-N N 
g dH dL (y) . 

f-l(y) 

10.7 REMARKS 

(l) Notice that the above formulae enable us to bound the Hn-N measure 

of the 11 slices 11 f-l(y) for a good set of y Specifically if I fl ::: R and 

g is as in 10.6 (g = l is an important case), then there must be a set 

s c BR(O) ( c :RN) 
' s = S(g,f,M) with LN(S) ::: ]:LN(B (0)) 

2 R 
and with 

J -1 
f (y) 
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for each y E S . For otherwise there would be a set T c BR(O) with 

LN(T) >I LN(BR(O)) and 

y E T , 

so that, integrating over T we obtain a contradiction to 10.6 if 

JM g J*f dHn > 0 On the other hand, if J g J*f dJin= 0 then the required 
M 

result is a trivial consequence of 10.6. 

(2) The above has an i..mportant extension to the case when we have 
n+k n 

f:JR +JR 

and sequences {Mj}, {g·j} satisfying the conditions of M, g above. In this 

case there is a set S c BR(O) with such that for each 

y E S there is a subsequence {j•} (depending on y) with 

J -1 

Hn-N 
g, I d S 

M. ,nf <Yl 
J 

J 

Indeed otherwise there is a se'c T with LN(T) > ~ LN(BR(O)) so that for 

each y E T there is £(y) such that 

(*) 

for each j > £(y) . But T 

there must exist j so that 

g. J*f dHn 
J 

U T T. = {y E T j I J 
£(y) ::: j} , and hence 

j=1 

LN (T .) > .! LN (BR(O)) . 
J 2 

Then, integrating (*) 

over y E T j , we obtain a contradiction to 10.6 as before. 



CHAPTER 3 

COUNTABLY n-RECTIFIABLE SETS 

The countably n-rectifiable sets, the <theory of >vhich we develop in 

this chap-ter, provide the appropriate notion of "generalized surface"; they 

are the se<ts on \vhich rectifiable currents and varifolds live (see later) • 

In the first section of this chapter we give some basic definitions, 

and prove the important result that countably n-rectifiable sets are 

essentially charac-terized by the property of having a suitable "approximate 

tangent space" almost everywhere. 

In later sections we show that the area and co~area formula (see §§8,10 

of Chapter 2) extend naturally <to the case when M is merely countably 

n-rectifiable rather than a c1 submanifold, we make a brief discussion 

of Federer's structure theorem (for the proof we refer to (FHl] or [RM]), and 

finally we discuss sets of finite perimeter, which play an important role in 

later developments. 

§11. BASIC NOTIONS, TANGENT PROPERTIES 

Firstly, a set M c Rn+k is said to be countably n-rectifiable if 

M c M0 U ( U 
j=l 

where 0 and F < : Rn->- Rn+k are Lipschitz 
J 

functions for = 1, 2, ... * Notice that by the extension theorem 5.1 this 

is equivalent to saying 

* 

M M0 u < u 
j=l 

F. (A<)) 
J J 

Notice that this differs slightly from the terminology of [FHl] in that 
we allow the set M0 of Hn-measure zero. 
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where n+k . h" F. : A.+ lR L~psc ~tz, 
J J 

A. c ::Rn • 
J 

More importantly, 

we have the following lemma. 

co 

11.1 LEMMA M is aountably n-reatifiable if and only if M c U N. 
j=O J 

where and where eaah :::: 1 , is an n-dimensional embedded 

c 1 submanifold of :Rn+k • 

Proof The "if" part is essentially trivial and is left to the reader. The 

"only if" part is an easy consequence of Theorem 5.3 as follows. By Theorem 5.3 

we can choose c 1 functions g (j) (j) 
1 , g2 , ... such that, if Fj are Lipschitz 

functions as in the above definition of countably n-rectifiable, then 

co 

F. (lRn) c E. u ( u g ~ j) (JRn) ) j 1,2 •.• 
J J i=l 

~ 

where Hn(Ej) 0 . Then we let 

co co 

u 
j=l 

E.) U ( 
J 

u 
i, j=l 

g~j)(C .. )) 
~ ~J 

Where C· = {xE :Rn: J g~j) (x) = 0} 
ij ~ 

and 
( ") 

J g. J 
~ 

denotes the Jacobian of 

( . ) 
g.J as in §8. By the area formula (see §8) 
~ 

we have 

and hence Hn(N0 ) = 0 . 

Now for each x E En ~C. . we let U .. (x) 
~J ~J 

be an open subset of 

containing x and such that g~j)Ju .. (x) is 
~ ~J 

1:1 . Such uij(x) exists 

by the inverse function theorem (since J g ~j) (x) > 0 
~ 

=- d g~j) (x) has rank n) , 
~ 

and the inverse function theorem also guarantees that g~j) (U .. (x)) :: N .. (x) , 
~ ~J ~J 

say, is an n-dimensional c 1 submanifold of :Rn+k in the sense of §7. We 

can evidently choose a countable collection x 1 ,x2 , •.• of points of 
co 

such that U U .. {xk) 
k=l ~J 

co 

hence U N .. (xk) ::> g~j) (JRn-c .. ) , 
k=l ~J ~ ~J 

so 

we have F j (:Rn) - N0 c U Nij (~) for each j 
i,k=l 

The required result now 

evidently follows. 
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We now 1.orant to give an important characterization of countably 

n-rectifiable sets in terms of approximate tangent spaces, which we first 

define. 

11.2 DEFINITION If M is an Hn -measurable subset of JRn+k with 

\:j compact K , then we say that an n-dimensional subspace P 

of is the approximate tangent space for IV! at x (x a given point 

in if 

lim f n f 

A+o 'n , <Ml 
X,/\ 

~ (y) d H (y) J f (y) d Hn (y) 
p 

(Recall n ' X, A 

11.3 REMARK 

n+k n+k 
JR + JR is defined by llx, A (y) 

Of course P is unique if it exists; we shall denote it by T M 
X 

It is often convenient to be able to relax the condition Hn (M n K) < oo 

\:j compact K in 11.2; we can in fact define TxM in case we merely assume 

the existence of a positive locally Hn-integrable function 8 on M (the 

existence of such a 8 is evidently equivalent to the requirement that M 

can be expressed as the countable union of Hn-measurable sets with locally 

finite Hn-measure). 

11.4 DEFINITION If M is an Hn -measurable subset of JRn+k and 8 is a 

positive locally ~-integrable function on M , then we say that a given 

n-dimensional subspace P of JRn+k is the approximate tangent space for M 

at X With respect to 8 if 

(By change of variable z = ;\y+x , this is equivalent to 
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8(x) J f(y)dHn(y) 
p 

11.5 REMARK Notice that if ]J = WL 8 and if M = {x E M : 8 (x) > n} , n 
Hn (M n K) < oo for each compact K and 

n 
for Hn- a.e. 

then 

Hence for Hn- a.e. x E M the approximate tangent space 
n 

for M with respect to 8 coincides with T M 
x n (as defined in 11.2) if 

the lat·ter exists. It follows that the approximate tangent spaces of M with 

respect to two different positive Hn-integrable functions 8, e coincide 

Hn- a.e. in M . For this reason we often still denote the approximate 

tangent space defined in 11.4 by TxM (without indicating the dependence on 8 ). 

The following theorem gives the important characterization of countably 

n-rectifiable sets in terms of existence of approximate tangent spaces. 

11.6 THEOREM Suppose M is Hn-measurable. Then M is countably 

n-rectifiable if and only if there is a positive locally Hn-integrable 

function 8 on M with respect to which the approximate tangent space 

TxM exists for Hn- a.e. x E M 

11.7 REMARK If M is Hn-measurable, countable n-rectifiable, then we can 

write M as the disjoint union u Mj I 

j=O 
where M. is 

J 

Hn-measurable, and M ~ N 
j '-- j ' j ::: 1 1 with N. an embedded n-dimensional 

J 

by 

submanifold of Rn+k 

M. 
J 

00 

j-1 

u 
i=O 

M. ' 
l' 

(To achieve this, just define the M. 
J 

inductively 

j ::: 1 ' where are submanifolds with 

N. having Hn-measure zero; such N. exist by 11.1.) We shall 
J J 

show below (in the proof of t>'1e "only if" part of Theorem 11.6) that then 

(*) 

This is a very useful fact. 
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Proof of "only if" part of Theorem 11.6 As described in 11.7 above, we may 
00 

write M as the disjoint union U M. , 
j=O J 

where Hn (M0 ) = o , Mj c Nj , j::: 1, 

and M. Hn-measurable. Nj embedded cl submanifolds of dimension n , 
J 

Let ~ = Hnl e , where e is any positive locally Hn-integrable function on M 

(e.g. put e= l/2j on M j , assuming, without loss of generality, that 

Now, by 3.5, 

(1) 

Also, since N. 
J 

(2) 

From (1), (2) 

0 , Hn- a.e. x E M. 
J 

is we have (by the differentiation theorem 4.7) 

and the fact that N. is c 1 , 
J 

6(x) , Hn- a.e. x E Mj 

it now easily follows that 

the approximate tangent space for M with respect to 6 exists for 

Hn- a.e. and agrees with TN. 
X J 

Rather than just proving the "if" part of Theorem 11.6, we prove the 

following slightly more general result.. (The "if" part of Theorem 11.6 

corresponds to the case ~ = Hn L 6 in this more general result - see Remark 

11.9 below.) 

11.8 THEOREM Suppose ~ is a Radon measure on nH: 
JR , and for x E JRn+k , 

A > 0 Zet ~x,A be the measure given by ~x,A A 
-n A ~(x+AA) Suppose 

that for ~-a .e. X there is e (x) E (O,oo) and an n-dimensionaZ subspace 

P c Rn+k with 

(*) lim .J f (y) d~ A (y) =- 6 (x) J f (y) dHn (y) • 
A+O x, P 

(P is called the approximate tangent space for ~ at x , and 6(x) is 

called the multiplicity.) Let M =- {x : (*) holds for some P and some 
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B(x) E (O,oo)} , and set B(x) 0 , x E Rn+k M . 

Then M is countably n-rectifiable, B is Hn-measurable on Rn+k , and 

11=Hnle 

11.9 REMARK Notice that in case J1 = Hn L B , where 8 is a non-negative 

locally Hn -integrable function on Rn+k then 

J f(z)B(x+Ay)dHn(y) , 
ll , (M) 

Xr/\ 

where M = {x : 8(x) > O} , so the approximate tangent space for J1 at x 

is just the approximate tangent space T M 
X 

with respect to 8 (in the sense 

of 11.4). Thus we get the "if" part of Theorem 11.6 in this special case. 

Proof of Theorem 11.8 Replacing ll by )J L BR ( 0) (R chosen so that 

\.re may assume that 
n+k 

ll (R ) < oo • First note that (by(*)) 

we have 

(1) 8 (x) lim 
p+O 

and hence, by Remark 3.1, 

(2) 

)l- a.e. 

e is Hn-measurable. 

Given any k-dimensional subspace 
n+k 

1T c R and any a E (0,1) 

denote the orthogonal projection of Rn+k onto 1T and 

the cone 

{y E JRn+k Jp (y-x) J ~ aJy-xJ} . 
1T 

let 

denote 

Fork-dimensional subspaces 1T , 1T' we define the distance between 1T , 1T' , 

denoted dist (1T ,1T') , by 

dist ( 1T, 1T ') sup Jp (x) -p , (x) J 
JxJ=l 1T 1T 
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Choose e0 > 0 and a Borel-measurable subset F c ~n+k such that 

(3) 

and such that for each x E F , has an approximate tangen·t space p 
X 

at 

X witll multiplicity 8(x) ~ e0 Thus in particular for x E F (by (1) and 

( *) ) 

(4) 

and 

(5) 

where n 
X 

For k 

and 

Then 

(6) 

lim 
Jl(Bp(x)) 

:': 
p+o n 

u\P 

]1 (X,. (TI , x) nB (x)) 
2 X p 

lim 
p+o 

1,2, ... and x E F, define 

inf 1 
o<p<k 

8., 
u 

sup 1 
O<p<k 

jl(X!(Tix,x)nBp(x)) 

n 
wnp 

0 ' 

I;J X E F , 

and hence by Egoroff's Theorem we can choose a jl-measurable E c F with 

(7) 

and with (6) holding uniformly for x E E • Thus for each s > 0 there 

is a 8 > 0 such that 
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(8) 
~(X~(TI ,x)nB (x)) 

"l X p 

X E E , 0 < p < 0 . 

Now choose k-dimensional subspaces TI1 , •.. ,TIN of Rn+k (N=N (n,k)) such 

that for eaeh k-dimensional subspace TI of 
n+k 

:R , there is a jE {1, ••• ,N} 

such that d(TI,1Tj) < t6 and let E1 , ... ,EN be the subsets of E defined 

by 

N 
Then E = U E. and we claim that if we take E 

j=1 J 

such that (8) holds, then 

(9) x3 (TI. ,x) n Ej n B012 <x> {x} , v xE E. 
J J 

4 

j 

Indeed otherwise we could find a point X E E. and a 
J 

for some 0 < p ::: 012 But since x E E and 2p ::: 

(10) 

~ (Xt (Tix' x) n B2p (x)) ::': ~ (B p/8 (y)) 

1, ••. ,N . 

Y E x 3 (1T. ,x) n E. n ()B (x) 
- J J p 
4 

0 , we have (by (8)) 

which contradicts (8), since We have therefore proved (9) • 

Now for any fixed x 0 E Ej it is easy to check that (9), taken together 

with the extension theorem 2.1, implies 
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where q is an orthogonal transformation of 

where 
1 k f = (f , .•• ,f ) is Lipschitz. 

Rn+k with q(7T .) 
J 

and 

Since j E {1, ••• ,N} and x0 E Ej 

select Lipschitz functions f 1 , •.• ,fQ 

q1 , .•. , ~ of lRn+k such that 

are arbitrary, we can then evidently 

lRn-+ lRk and orthogonal transformations 

E c 

Thus by (3), (7) we have 

Q 
u 

j=1 
q.(graph f.) • 

J J 

Q 
U q. (graph f.)) ~ i ]l (:Rn+k) 

j=1 J J 

Since we can now repeat the same argument, starting with 

n+k Q 
ll L (:R - U q. (graph f.)) in place of ]l , we thus deduce that there are 

j=1 J J 

countably many Lipschitz graphs F j = graph f j , and that 

00 

).l(lRn+k_ U Fj) = 0. 
j=1 

By (1) and 3.2(1) 
00 

we then deduce Hn (M - U F . ) = 0 , 
j=1 J 

so that (by definition) M is countably n-rectifiable. Thus by 11.1 (see in 
00 

particular Remark 11. 7) we can write M as the disjoint union U Mj , 
j=O 

N. being n-dimensiona1 c1 submanifo1ds 
J 

Then (1) evidently implies that lim 
p-1-0 

]l (Bp (x)) 
----"---- = e <x> , 
Hn(B (x)nN .) 

p J 

Hna.e. xEM. 
J 

then by the differentiation theorem 4.7 we have ]l 

as required. 

§12. GRADIENTS, JACOBIANS, AREA, CO-AREA 

Throughout this section M is supposed to be Hn-measurable and countably 

n-rectifiable, so that we can express M as the disjoint union 
00 

u 
j=O 

M. 
J 

(as in 
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M, 
J 

is Hn-measurable, j ::: 1 ' where 

N, 
J 

are embedded n-dimensional c1 submanifolds of 

Let f he a locally Lipschitz function on U where U is an open set 

in IR n+k containing M , 'I'hen we can define the gradient of f , \IMf , 

Hn - a. e. on M according to 

12.1 DEFINITION 

N, 
\1 Jf(x) 

whenever x EM, and fiN, is differentiable (which is true Hn-a.e. 
J J 

by virtue of Rademacher's Theorem 5.2 together with the fact that N, 
J 

12.2 REMARK Note that (by 11.7) if1£(x) E T M 
X 

for Hn- a.e. X E M , and 

is, up to a set of Hn-measure zero in M , independent of the particular 

decomposition 

00 

u 
j=O 

M, 
J 

used in the definition. (i.e. is well-defined 

as an function on subsets of M with finite Hn-measure). Indeed we can 

easily check that, at all points x where f!Nj is differentiable, we have 

f!L is differentiable on the affine space L 
N. 

and gradient f!L (x) = \! Jf(x) Since TxNj 

x +TN. at the point x, 
X J 

TxM for Hn- a.e. x E Mj 

(see 11.7), and since T M 
X 

is independent of the particular decomposition 
00 

U Mj , we thus deduce that ~f is also independent of the decomposition 
j=O 
up to a set of measure zero, as required. 

Having defined lfif , 

induced by f by setting 

at all points where TM 
X 

values in JRN (fj still 

dMf TXM + JRN by 
X 

we can now define the linear map T M + JR 
X 

and ~f(x) exist. If f 

locally Lipschitz on u ' 
= l, •.. ,N) , we define 
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N 

12.3 E 
j=l 

l/l!ith such an f , in case N ::: n , we define the Jacobian 

(Cf. ·the smooth case 8 .3), ;;;here : :RN + T H denotes the adjoint 
X 

Then we have the general area formula 

12 .LJ, J H0 (An f-1 <Yl) dl-r <Yl 

'RN 

for any Hn-measurable set A c M . The proof of this is as follows: We may 

suppose (decomposing Hn-almost all M. 
J 

as a countable union if necessary and 

using the c1 approxi1nation theorem 5.3) that f!Mj 

n+k 
on lR , j ::: 1 .. 

By virtue of the definition 12.1, 12.3, we then have 

J g.(x) , Hn-a.e. 
Nj J 

X E M. 
J 

where g. is 
J 

Thus JMf is Hn- measurable, and by the smooth case 8.4 of the area formula 

(with N. 
J 

in place of M ' An M. 
J 

in place of A and in place of f ) ' 

we have 

f 0 -1 N 
H <AnM .nf <Yl l dH 

N J 
JR 

We now conclude 12.4 by summing over j ::: 1 and using the (easily checked) 

fact that if ~ : U + JRN is locally Lipschitz and B has Hn-measure zero, 
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We note also that if g is any non-negative Hn-measurable function on 

M , then, by approximation of g by simple functions, 12.4 implies the more 

general formula 

OJ N g dH dH (y) • 

In case f is 1:1 on M , this becomes 

12.5 

There is also a version of the co-area formula in case M is merely 

Hn-measurable, countably n-rectifiable and f U + JRN is locally Lipschitz 

with N < n • (U open, M c U as before) • 

In fact we can define (Cf. the smooth case described in §10) 

J* f(x) =I det(dMf) 0 ccflt )* 
M X X 

with cflt as in 12.3 
X 

and 

Hn-measurable set A c M , 

12.6 

(eft )* 
X 

adjoint of 

J Hn-N(Ant-l(y)l 

RN 

Then, for any 

This follows from the c1 case (see §10) by using the decomposition 

M = U M. and the approximation theorem 5.3 in a similar manner to the 
j=O J 

procedure used for the di~cussion of the area formula above. 

As for the smooth case, approximating a given non-negative Hn-measurable 

function g by simple functions, we deduce from 12.6 the more general formula 
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12.8 REMARKS 

I g J~f dlin 
A 
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I I g dlin-N dLN(y} • 

:Rn f-l(y}()M 

(1) Note that the remarks 10.7 carry over without change to this setting. 

(2} The "slices" M n f- 1 (y} are countably (n-N}-rectifiable subsets 

of JRn+k for LN- a.e. y E :RN This follows directly from the decomposition 
00 

M = U M. , together with the c1 Sard-type theorem 10.4 and the approxima
j=O J 

tion theorem 5.3. 

§13 THE STRUCTURE THEOREM 

Notice that an arbitrary subset A of JRn+k which can be written as 

the countable union 

into a disjoint union 

13.1 

00 

u 
j=l 

A. 
J 

of sets of finite measure, is always decomposible 

A=RUP, 

where R is countably n-rectifiable and P is purely n-unrectifiable; 

that is P contains no countably n-rectifiable subsets of positive Hn-measure. 

To prove 13.1, we simply let R be a maximal element of the collection 

of all countably n-rectifiable subsets of A (ordered by inclusion}; such R 

exists by the Hausdorff maximal principal. 

A very non-trivial theorem (the Structure Theorem} due to Besicovitch [B] 

in case n = k = 1 and Federer [FH2] in general, says that the purely 

unrectifiable sets Q of :Rn+k which' (like the subset P in 13 .1} can be 

written as the countable union of sets of finite Hn-measure, are characterized 

by the fact that they have. Hn-null projection via almost all orthogonal 

projections onto n-dimensional subspaces of :Rn+k • More precisely: 
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13.2 THEOREM Suppose Q is a purely n-um•sctifiahl-e subset of Rn+k 
00 

with Q = U QJ. , 
j=l 

Then Hn(p(Q)) = 0 for o-aUnost all-

p E O(n+k,n) . Here 0 is Haar measure for O(n+k,n) , the orthogonal 

projections of Rn+k onto n-dimensional subspaces of Rn+k 

For the proof of this theorem see [FHl] or [RM] .. 

13.3 REMARK Of course only the purely n-unrectifiable subsets could possibly 

have the null projection property described in 13.2. Indeed (by 11.1) if Q 

were not purely n-unrectifiable then there would be an n-dimensional c1 

submanifold M of Rn+k such that Hn (M n Ql > 0 • It is then an easy matter 

to check that if we select any x E M with o*n(Hn,Mn Q,x) > 0 , then 

for all orthogonal projections p of 

n-dimensional subspace s which is not orthogonal to T M 
X 

onto an 

Notice that, by combining 13.1 and 13.2, we get the following useful 

rectifiability theorem: 

13.4 THEOREM If A is an arbitrary subset of Rn+k which can be written 
00 

as a countable union u A. with Hn(Ajl < 00 \lj ' and if every subset 
j=l J 

B c A with positive Hn-measure has the property that Hn(p(B)) > 0 for a 

set of P E O(n+k,n) with a-measure > 0 , then A is countahl-y n-rectifiabl-e. 

§14 SETS OF LOCALLY FINITE PERIMETER 

An important class of countably n-rectifiable sets in Rn+l comes from 

the sets of locally finite perimeter. (Or Caccipoli sets- see De Giorgi [DG], 

Giusti [G] .) First we need some definitions. 

If 
n+l . 

U c R ~s open and if E is an Ln+l_measurable subset of 

we say that E has locally finite perimeter in U if the characteristic 
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function of E is in BVloc(U) . (See §6.) 

Thus E has locally finite perimeter in U if tl1.ere is a Radon :measure 

llE ( = I nxE I in the not.ation of §6) on u and a llE·-measurable function 

"-- (''1, ... ,,,n+l,,. 'th 1"\ 1 J.l a v v v w:t v = E - • e. in U , such that 

14.1 J' , . dln+l 
Cl.l.V g 

Enu 

for each g = 1 .. ""' 
with gj E (U) , j = 1,. •• ,n+l Notice that 

if E is open and dE n U is an n-dimensional embedded c1 submanifold of 

n+l 
:lR , then the divergence theorem tells us that 14.1 holds with 

f.lE = Hnl (dEn U) and with v = l=he inward pointing unit nol.'!.llal to dE Thus 

in general we interpret J.lE as a "generalized boundary measure" and \! as a 

"generalized inward unit normal". It turns out (see Theorem 14.3 below) 

that in fact this interpretation is quite generally correct in a rather precise 

(and concrete) sense. 

We now want to define the reduced boundary 3*E of a set E of finite 

perimeter by 

14.2 3*E {x E U exists and has length 1} . 

Since jvj = 1 llE- a.e. in U, by virtue of the differentiation theorem 

4. 7 we have llE (U ~ (J*E) = 0 , so that J.lE = yE L Cl*E . We in fact claim 

much more : 

14.3 THEOREM (De Giorgi) Suppose .E has locally finite perimeter ·in u 

Then Cl*E is countably n-rectifiabZe and llE = Hn L 3*E . In fact at each 

point x E 3*E the approximate tangent space Tx of llE exists~ has 

multiplicity 1 , and is given by 
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X 

r \)dlJ 
1 B (x) E 

UJhere \) (x) =lim p -
E ptO llE {Bp(x)) 
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(so that JvE {x) I = 1 14.2). Furthermore at 

any such point x E Cl*E we have that \'E (x) is the ··inward pointing unit 

normal for E " in the sense that 

{2) 
- -1 

E , = {"A (y-x) 
X,J\ 

yEE}-+ {yE Rn+l 

in the sense. 

y•\) <xl > o} 
E 

Proof By 11.6 and 3.5, the first part of the theorem follows from (1), 

1t1hich we now establish. (2) will also appear as a "by product" of the proof 

of (1). Assume without loss of generality \) = \) 
E 

on Cl*E • 

Take any y E 3*E • For convenience of notation we suppose that y 0 

and \)(0) = (0, ..• ,0,1) . Then we have 

(1) 

and hence (since 1\)1 

(2) 

Further if 

(3) 

lim 
p-l-0 

lim 
p-!-0 

j B ( 0) \) n+l dlJE 
p 

1 

1 11E- a.e.) 

J 1\)ildllE 
B (0) 

p 

has support in 

0 ' i 

B (0) c U , 
p 

then by 14.1 

Now (taking Bp(O) to be the closed ball) replace s by a decreasing 

sequence {sk} converging pointwise to the characteristic function of Bp(O) 

and satisfying 
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(4) 

(Notice that this can be done whenever 'che right side exists, •.;hich is 

L1 -a.e. p .) Then (3) gives 

(5) I B {0) 
p 

\! d\.lE < __£_ Ln+l(EilB (0)) 
n+l - dp p 

for ~a.e. p E (0, c1ist.(O, 3U) .. T'hen 1: .. y (1) '~Ne have 11 for 

suitable p 1 E (O,p 0 J , 

(6) 

Then by the compactness theorem 6. 3, it follows tha·t we can select a 

sequence so that in where F is a set 

of locally finite perimeter in Rn+l Hence in particular for any non-negative 

( 7) limJ D. L; dl n+l 
JF D. L; dln+l . 

k-><X> -1 
~ ~ 

pk E 

Now write L;k(x) 
-1 

i:;(pk X) and change variable x + pkx then 

(by 14.1), so that D. L; dln+l + 0 
~ 

by ( 2) fo:t i=l, ... ,n. Thus (7) gives 



J D. l; dL n+l 
F l. 

0 
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" r _ ~1 (JRn+l) 
v " t .._0 i 1, .... ., ,n i' 

and it follows that F JRn x H for some L 1 -measurable subset H of JR . 

On the o·ther hand by 14.1 with g sk en+l and by (1) we have, for 

k sufficiently large and l; > 0 , 

as k-+-oog 

(8) 

for some A 

so that 

F 

X H 

J D s _ 1 n+l 

pk E 

is non-decreasing on JR, hence 

{x E.Rn+l X < A} 
n+l 

We have next to show that A = 0 . To check this we use 

the Sobolev inequality (see e.g. [Gl']) to deduce that, if l; :':: 0 , spt s c U 

and 0 < dist(spt r;,ClU) , then 

n+l n 

[ Jfu (r "o*XE)-n. dLn+l] n+l <_ I j ( , I Ln+l " ~ c U D s ~o*XE) d 

Then by 6.2 it follows that 

n+l 
n 

]
n+l 

dL n+l S c [ J u s d]JE + J E I Di:; I dL n+ 1 J ' s n 

and replacing l; by a sequence i:;k as in (4) , we get for a.e. p E (O,p 1 ) 
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n 

(Ln+1 (EnBP(O)))n+1 < c(~E(BP(O)) + :P Ln+l(EnBP(Ol)) 

which by (6) gives 

n 

(Ln+ 1 (EnBP(Oll]n+1 s c :P Ln+ 1 (EnBP(O)) 

Integration (using the fac·t that L n+1 (EnBP (0)) is non-decreasing) then 

implies 

(9) 
n+1 

c p 

for all sufficiently small p Repeating the same argumen·t with U ~ E in 

place of E , we also deduce 

(10) Ln+l(B (0)-E) 
p 

n+1 
::: c p 

for all sufficiently small p • (9) and (10) evidently tell us that A 0 

in (8). 

Now given any sequence pk 4- 0 , the argument above guarantees we can 

select a subsequence pk' such that X + X in 
-1 {xEJRn+l, 

established. 

Hence X -1 
p E 

+X 

Pk,E 

{xEJRn+l x <O} 
n+l 

Then by 14.1, (1) and (2) we have 

X <Q1 
n+1 ' 

and (2) of the theorem is 

~ -1 
p E 

+ ::= Hnl ~ n+1 
{xEJR : x 1<0} 

n+ 

0} as p + 0 and the proof is complete. 



CHAPTER 4 

THEORY OF RECTIFIABLE n-VARIFOLDS 

Let M be a countably n-rectifiable, Hn-measurable subset of n+k 
:R ' 

and let e be a positive locally Hn-integrable function on M . Corresponding 

to such a pair (M, 6) we define the rectifiable n-varifold ~(M,6) to be 

simply the equivalence class of all pairs (M,S) where M is countably 

n-rectifiable with Hn ((M- ih U (M- M) ) = 0 and where e = 6 Hn - a. e. on 

M n M ·* e is called the mu~tiplicity function of ~(M,6) ~(M,6) is 

called an integer multiplicity rectifiable n-varifold (more briefly, an 

integer n-varifo~d) if the multiplicity function is integer-valued Hn- a.e. 

In this chapter and in Chapter 5 we develop the theory of general 

n-rectifiable varifolds, particularly concentrating on stationary (see §16) 

rectifiable n-varifolds, which generalize the notion of classical minimal 

submanifolds of Rn+k • The key section is § 17, in which we obtain the 

monotonicity formulae; much of the subsequent theory is based on these and 

closely related formulae. 

§15. BASIC DEFINITIONS AND PROPERTIES 

Associated to a rectifiable n-varifold V = ~(M,6) (as described above) 

there is a Radon measure (called the weight measure of V) defined by 

15.1 

* We shall see later that this is essentially equivalent to Allard's {[AWl]) 
notion of n-dimensional rectifiable varifold. ·In case Me U , U open in 
Rn+k and e is locally Hn-integrable in u ' we say v = ~(M,6) (as 
defined above) is a rectifiable n-varifo~d in U • 
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where we adopt the convention that e _ o on :JRn+k ~ M • Thus for 

Hn-measurable A , 

The mass (or weight) of V , ~(V) is defined by 

15.2 ~{V) 

Notice that, by virtue of Theorem 11.8, an abstract Radon measure ~ is 

actually ~ for some rectifiable varifold V if and only if ~ has an 

approximate tangent space T 
X 

with multiplicity 8 (x) E {0 ,oo) for 

n+k 
~- a.e. x E R . {See the statement of Theorem 11.8 for the terminology.) 

In this case v = ~{M, 8) I where M = {x : e*n {].i,X) > o} . 

Given a rectifiable n-varifold V = ~(M,8) , we define the tangent 

space TV 
X 

to be the approximate tangent space of ~V {as defined in the 

statement of Theorem 11.8) whenever this exists. Thus 

15.3 TV 
X 

TM 
X 

Hn- a.e. x E M 

where TxM is the approximate tangent space of M with respect to the 

multiplicity 8 . {See 11.4, 11.5.) 

we also define, for V ~{M, 8) 

15.4 spt V spt ~, 

and for any ~-measurable subset n+k 
A c R I v LA is the rectifiable 

n-varifold defined by 

15.5 v LA 

Given V ~{M,8) and a sequence Vk 
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n-varifolds, we say that Vk -+V provided ]Jvk-+ 11v in the usual sense of Radon 

measures. (Notice that this is not varifold convergence in the sense of Chapter 8.) 

Next we want to discuss the notion of mapping a rectifiable n-varifold 

relative to a Lipschitz map. 
n+k 1 

W open in R and suppose 

suppose v = ~(M,B) , U . n+k 
M c , U open 1.n JR , 

f : sptV n U -+ W is proper*, Lipschitz and 1: 1 • 

Then we define the image Vctrifold f#V by 

15.6 -1 
~(f'(M) ,Bof ) 

We leave it to the reader to check using 12.5 that f(M) is countably 

n-rectifiable and that 8 o f-l is locally Hn-integrable in w, and therefore 

that 15.6 does define a rectifiable n-varifold in vi. Horegenerally if f 

satisfies the conditions above, except that f is not necessarily 1:1 , then 

where 8 is defined on f(M) by I 1 8(x) [= J e dH0] 
xEf- (y) 0 M -1 n., 

f (y) .... 

Notice 

that a is locally Hn-integrable in w by virtue of the area formula (see 

§12), and in fact 

15.7 f 8 dHn 
J f (M) 

J f e dHn ' 
M 

where JMf is the Jacobian of f relative to M as defined in §12c that is 

i.e. 
-1 . 

f (K) n spt V is compact whenever K is a compact subset of W. 
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where cff 
X 

n+k 1 
TxM + :R is the linear map induced by f as described 

in § 12. 

§16. FIRST VARIATION 

Suppose {~t}-E<t<E (E>O) is a 1-parameter family of diffeomorphisms 

of an open set U of :Rn+k satisfying 

(i) ~0 = Ju , 3 compact KC u such that ~tiu~ K= 1u~K IJ tE (-E,E) 

16.1 
(ii) (x,t) + ~t(x) is a smooth map ux (-£,£) + u • 

Then if V = ~(M,8) is a rectifiable n-varifold and if K c U is compact 

as in (i) above, we have, according to 15.7 above, 

and we can compute the first variation ! ~(~t#(VL K)) I exactly as in §9. 
t=O 

We thus deduce 

16.2 

where d x1x = at ~(t,x) 1 is the initial velocity vector for the family 
t=O 

and where div~ is as in §7: 

e. • 
J 

<ifixj as in §12) we can therefore make the following definition. 

16.3 DEFINITION V = ~(M,8) is stationary in u if J divMX dpv = 0 for 

any c1 vector field X on u having compact support in u . 
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More generally if N is an (n+k1 )-dimensional submanifold of ~n+k 

(k1 ::: k) , if U is an open subset of N , if M c N , and if the family 

{¢t} is as in 16.1, then by Lemma 9.6 it is reasonable to make the following 

definition (in which B is the second fundamental form of N) . 

16.4 DEFINITION If U c N is open and M c N is as above, then we say 

v ~(M,6) is stationary in u if 

whenever X is a c1 vector field in U with compact support in U 

here H 
=M 

n 
I B (T.,t.) ' 

i=l X l l 

approximate tangent space T M 
X 

any orthonormal basis for the 

of M at X . (Notice that by 16.2, which 

remains valid when U c N , this is equivalent to :t ~(<jlt#(Vl K)) I = 0 
t=O 

whenever {¢t} are as in 16.1 with U c N .) 

It will be convenient to generalize these notions of stationarity in 

the following way: 

16.5 DEFINITION Suppose H is a locally llv-integrable function on M n U 

with values in ~n+k we say that V(= ~(M,8)) has generalized mean 

curvature H in u ( . n+k 
U open 1n ~ ) if 

1 
v1henever X is a C~ vector field on U wit.l,_ compact support in U . 

16.6 REMARKS 

(l) Notice that in case M is smooth with (l1~ M) n U = 0 ,. and when 

8 -- 1 , the generalized mean curvature of V is exactly the ordinary mean 
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curvature of M as described in §7 (see in particular 7.6). 

(2) V is stationary in U 
. n+k 

(U open ln ~ ) in the sense of 16.3 

precisely when it has zero generalized mean curvature in U , and V is 

sta·tiona1.-y in U (ll open in N) in the sense of 16.4 precisely when it has 

generalized mean curvature H 
=M 

§17. ~10NOTONICITY FORMULAE AND BASIC 

In this section we assume that U is open in 
n+k 

R V=:;[(M,8) 

generalized mean curvature !,! in U (see 16.5), and we write ).1 for 

llv ( = l e as in 15.1). 

has 

Our aim is to obtain information about V by making appropriate choices 

of X in the formula (see 16.5) 

17.1 - J X•H d].l , 

First we choose Xx y(r) (x-~) where t; E U is f i:'{ed, 1!- Jx-~ j , and 

y is a c1 (R) function with 

Y' (t) - 0 'rj t ' y(t) - 1 for t :s p/2 ' y (t) - 0 for t > p ' 

where p > 0 is such that i3 <~l c u (Here and subsequently Bp (~) denotes 
p 

the open ball in ~n+k with centre ~ and radius p .) 

For any f E c 1 (U) and 

we have (by 12.1) VMf(x) = 

any 
n+k 

x E M such that T M 
X 

exists (see 11.4- 11.6) 

I where 
j,£=1 

partial derivative of f taken in u and 'where is the matrix 
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of the orthogonal projection of onto T M 
X 

Thus, writing 

V~ e.•VM (as in §16), with the above choice of X we deduce 
J J 

Since 

and 

n+k 
VMxj - I 

j=l J 

n+k 
y(r) I ejj + ry'(r) 

j=l 

n+k 

I 
j, =1 

(xj-~jl (xJI,-t;£) 
r r 

(ejJI,) represen·ts orthogonal projection onto T M we have 
X 

n+k (xj-~j) Jl, ,£) 
I (x -s j,il, In 1 rl2 1 

e = 1 - ' where D r denotes 
j ,£=1 r r 

n+k 
ejj = n I 

j=l 

the 

orthogonal projection of Dr (which is a vector of length 1) on·to (T M)l 
X 

The formula 17.1 thus yields 

(*) n J y(r)dll + J ry'(r)dll 

provided i3 <t.:l c u . p 
Now take such that ¢ (t) = 1 for t s 1/2 ' 

¢(t) = 0 for t ~ 1 and ¢'(t) S 0 for all t. Then we can use(*) 

with y(r) = ¢(r/p) . Since 
-1 d 

ry' (r) = rp ¢' (r/p) = -p ap [¢ (r/p)] 

gives 

where 

I(p) 

J(p) 

Thus, multiply by 

17.2 

ni(p)-pi'(p) 

J ¢(r/p)dll , L(p) 

J ¢(r/Pli(Drl 1 l2d!l 

J' (p) - L(p) 

J ¢(r/p) (x-~)·~ dll 

-n-1 
p and rearranging we have 

-n 
p 

-n-1 
J'(p) + p L(p). 

this 

Thus letting ¢ increase to the characteristic function of the interval 

(-00 ,1) , we obtaL~, in the distribution sense, 
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17.3 

This is the fundamental monoton-icity identity; since ]1 (s)) and 

r \Dlr\2 
j are increasing in p it also holds in the classical sense 

B (s) rn 
p 

for a.e. p > 0 such that 

·tells us that the ratio 

17.4 

:B <sl c u p 

for all 0 < 0 ::= p with Bp(i;) c U , 

Notice that if ~ =: 0 

is non-decrea.sing in p • 

where r = max{r!'a} 7 
0 

J;! = 0 we have the particularly interesting identity 

17.5 

then 17.3 

Generally r 

so that if 

We now want to examine the important question of what 17.3 tells us in 

case we assume boundedness and Lp conditions on J;! 

17.6 THEOREM If I; E u , o <a ::= 1 , A ::: o , and if 

(*) a-1 J l~idl-l ::= 1\(p/Rla-ly(B <sll 
Bp(t;,) p 

for all p E (0, R) , 

then 
AR1-apa. -n 

e p ).l(Bp(s)) is a non-decreasing function 

of p E (O,R) , and in fact 

( 1) 
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whenever 0 < a < p ~ R • Also, 

(2) J ln1rl 2 djl 

- B (1;)-B {s) rn 
P a 

whenever o < a < p ~ R • 

Proof 

factor 

To get (1) we simply multiply the identity 17.3 by the integrating 
AR1-a a 

e p , Whereupon, after using(*), we Obtain 

ln1rl 2 d)l 
-n 
r 

in the sense of distributions. 

(2) is proved similarly except that this time we multiply through in 17.3 

by the integrating factor e 
-AR1-apa 

17.7 THEOREM If t; E u, and 

and p > n , then 

whenever 0 < a < p ~ R . 

Proof Using the Holder inequality, we obtain from 17.2 that 

for L 1 - a.e. p E (O,R) • Hence 

> -
-n/p 

P P r . 

Thus, integrating over (a,p) and letting ¢ increase to the characteristic 

function of (-00 ,1) as before, we deduce the required inequality. 
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17.8 COROLLARY If !;f E Li0 c(].l) in u for some p > n, then the &er12it;y 

].l(B (x)) 
lim---"'-
p-l-0 

exists at every point X E u , 

upper-semi-continuous function in u 

8n(].l 1 X) ::: lim sup 8n(ll 1 Y) 
y+x 

v X E u • 

is an 

Proof The inequality 17.7 tells us that (p-n].l(B (s))l/p + __ 1 __ r pl-n/p is 
p p-n 

a non-decreasing function of p hence lim p -nll (B <sl l 
p-¥0 p 

exists (and is 

the same as We also deduce that 

-n 1/p 1-n/p S (p ].l(B (x))) + c p · 

whenever a < p 1 E: > 0 1 

we thus have 

(Gn (]1 1 y)) 1/p 

p+E: 

B (x) c U and 
P+E: ly-xl < E: · 

Now let ·ili > 0 be given and choose E: << p < o so that 

Then the above inequality gives 

Letting a + 0 

(c depends on x but is independent of 0 1 E:) provided ly-xl < E:. Thus 

the required upper-semi-continuity is proved. 



87 

17.9 REMARKS 

(1) If 8 > 1 ]1- a.e. in U , then 8n(]l,X) :0:: 1 at each point of 

spt1JnU and hence we .can write V L U 

M,, = spt J1 n u ' e* (x) = e'n(]l,X) ' X E u Thus V L U is represented in 

terms of a relatively closed countably n-rectifiable set with upper-semi-

continuous multiplicity function. 

8n(]1,~)::: 1, and (w-l Jf i~lpd1J]l/p~:f(l-n/p), 
n B (0 

R 

(2) If ~ E u , 

BR(~) c U and p > n, then both inequalities 17.6(1), (2) hold 

with A = 2f Rn/p and C( = 1- n/p ' provided r pl-n/p :f 1/2 . To 

see this, just use Holder's inequality to give 

(*) f(Jl(B (~)))1-1/p 
p 

f jl(B (~))(\l(B (~)))-1/p 
p p 

On the other hand, letting a+ 0 in 17.7 we have 

so that for 
1 

<-- 2 and (*) gives 

Thus the hypotheses of 17 .. 6 hold 

with A 

(3) Notice t.'lat either 17.6{1) or 17.7 give bounds of the form 

>V"here 

\l(B0 (~)) ~Son , 0 < 0 < R for suitable constant S . such an inequality 

implies 

for any p E (O,R) .and 0 < cc < n. This is proved by using the follov7ing general 

and with n-a in place of Cl. • 
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17.10 LEMMA If x is an abstl'act space, Jl is a measu:l'e on x , a > 0 , 

f E L 1 (]l) ~ f ::: 0 , and 'if At = {x E X : f (x) > t} , then 

More generally 

a-1 -1 
t ]J (A~) dt = a ,_ 

for each t 0 ::: 0 • 

This is proved simply by applying Fubini's theorem on the product 

space for 

The observation of the following lemma is important. 

17.11 LEMMA Suppose 8 ::: 1 11- a.e. In u , H E Lp (]1) 
loc 

in U for 

some p > n If the appr•o."Cimate tangent space TxV (see §15) exists at a 

given point x E u , then TxV is a "classical," tangent plane for spt 11 

in the sense that 

lim (sup{p-1dist(y,T V) 
p+O X 

0 . 

Proof For sufficiently small R (with B2R(x) c U), 17.7, 17.8 (with a+ 0) 

evidently imply 

(1) 

Using this we are going to prove that if a E (0,1/2) and p E (O,R) then 

( 2) \.! (B (x) ~ {y 
p 

(J) 

} n n n 
dist(y,TxV) < sp ) < T a P 

spt\.l n Bp/2 (x) C {y: dist(y,TxV)< (S+ct)p}. 
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Indeed if E;, E {y : dist(y,T V) ::: (E+a)p} n B /?(x) , then 
X p -

Bap (E;,) c Bp (x) ~ {y : dist(y,TxV) < Ep} and hence t.'J.e hypothesis of (2) 

implies ).l(Bap(E;,)) < ~ wnanpn. On the other hand (1) implies 

1 n n 
).l(B (!;)) ::': -2 w a p , so we have a contradiction. Thus (2) is proved, 

ap n 

and (2) evidently leads immediately to the required result. 

~ (*\ 
§18. POINCARE AND SOBOLEV INEQUALITIES ' 

In this sec·tion we continue to assume that V = ~(M,8) has generalized 

mean curvature ~ in u , and we again write ).l for We shall also 

assume 8 ::': 1 ).l - a.e. x E U (so that (by 17.9) EP().l,x) ::': 1 everywhere 

in spt).l flU if HE Li0 c(]J) for some p > n ). 

We begin by considering the possibility of repeating the argument of 

the previous section, but with Xx = h(x)y(r) (x-t;,) (rather than Xx = y(r) (x-E;,) 

as before) , where h is a non-negative function in c1 (U) In computing 

divMX \<7e will get the additional term y (r) (x-E;,) • lfh , and other terms 

will be as before with an additional factor h(x) everywhere. Thus in place 

of 17.2 we get 

18.1 

+ P-n-1 J" M (x-E;,) • [v h + ~h]¢(r/p)d]J 

where now I (p) J ¢(r/p)h d]J . 

Thus 

::: p-n-l J (x-t;,) • (v~+~h)¢(r/p)d]J 

- R say • 

(*) The results of this section are not needed in the sequel. 
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We can estimate the right-side R here in two ways: .if ~~I :::= 11. we have 

(*) 

Alternatively, without any assumption on ~ we can clearly estimate 

(*") 

If we use (*) in 18.1 and integra·te (making use of 17.10) >ve obtain (after 

letting (jJ increase to t.l}e characteristic function of ( -'=", 1) as before) 

18.2 
n 

w a 
n 

provided B <sl c u and 0 < a < p . p 

If instead we use (**) then we similarly get 

and hence 

18.3 

JB (S)h d)l 
a 

n 
w a 

n 

(by 17.10 

n 
w a 

n 

JBP(s)h d\1 

::: + n 
wnp 

again) 

provided B <sl c u and 0 < a < p . p 

r -1 -n-1 
w T 

n 
a 

J r ( J Vih I + hI !il ) d]ldT . 
B,<s> 

If we let a + 0 in 18.2 then we get (since 8()1,s) > 1 for s E spt]l) 

h<s> 
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We now state our Poincare-type inequality. 

18.4 THEOREM Suppose hE c1 (u) , h :>: o, B2P<s> c u, IMI :::A, 8:>: 1 11-a.e. 

in u and 

(i) fl{xE B (SJ : h(x) > 0} 
p 

::: (1-a)w pn 
n 1 +a 

for some a E (0,1) . Suppose also that 

(ii) ll ( B 2p ( S) ) ::0 f P n , f > 0 • 

Then there are constants S = S(n,a,f) E (0,1/2) and c = c(n,a,f) > 0 such 

that 

Proof To begin we take S to be an arbitrary parameter in (0,1/2) and 

apply 18.2 with n E BSp(s) n sptfl in place of s . This gives 

( 1) 

Now let y be a fixed c1 non-decreasing function on R with y(t) = 0 

for t::: 0 and y(t) ::: 1 everywhere, and apply (1) with y(h-t) in place 

of h , where t :': 0 is fixed. Then by (1) 

y(h(nl-tl 
1+a.. <-·-

- nw 
n 

y' (h-t) lvl"'hl dfl + (l-a..2) (1 -SJ -n • 

lx-nln-1 
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Selecting S small enough so that (l-S}-n(l-a2} ~ 1-a212 , we thus get 

(2} 
a 2 l+a 
-<-
2 - nw 

n 
f y• (h-t> lv~l 

I ln-1 
B <~> x-n p 

d]l 

for any n E BS (~} n spt ]l such that y (h(n} -t} ::: 1 . Now let f: > 0 and p . 

choose y such that y(t} :: 1 for t ::: 1+ E • Then (2} implies 

(3} 1 ::: J ~h-t) 1~1 ,..,, 
c 1 ~ , 

B (~) lx-nln-
p 

where AT= {yE spt]l: h(y) >T}. Integrating over At+E n BSp(~} we 

thus get (after interchanging the order of integration on the right) 

1 n-1 d]l <n> l d]l (x) 
lx-nl 

by hypothesis (ii) and Remark 17.9(3). Since 
a 

y' (h (x) -t) = - (lt y (h (x) -t} 

we can now integrate over t E (0; 00) to obtain (from 17.10) that 

J (h-E) ::: cfp J IV~! d]l . 
A nBS (~) B (~) 

E p p 

Letting E + 0 , we have the required inequality. 

18.5 REMARK If we drop the assumption that 6 ::: 1 , then the above argument 

still yields 
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We can also prove a Sobolev inequality as follows, 

18.6 THEOREf4 Suppose h E c~ (U) 

Then 

h :: 0 , and 8 :: 1 ll - a. e. in U • 

[ J c = c(n) . 

Note: c does not depend on k . 

Proof In the proof we shall need the following simple calculus lemma. 

18.7 LEMMA Suppose f , g are bounded and non-decreasing on (0, 00 ) and 

then 3p with O<p<p0 _2(f(oo))l/n(f(oo) lim f(p)) such that 
p·t'-oo 

(2) 

Proof of Lemma 

1 s sup 
O<o<p 0 

Thus 

contradiction. 

f(5p) < 
1 
2 

g(p) . 

Suppose (2) is false for each 

-n Po 

p E (O,pol . Then (1) ~ 

-n -n 2.5 J -n_ 
0 f(O) S p f(p 0 ) + -- p I(5p)dp 

o Po o 

5po 
-n 2 f -n - Po f <Pol + -5- p f(p)dp 

Po o 

Po spa 
p-nf(p)dp J -n 2 J p -n f ( p) dp + f - Po f <Pol + --

5po o p0 

-n 2 -n 2 -n 
<Po f(oo) + 5 supO<p<po p f(p) + 5(n-1) Po f(oo) 

1 -n 
2 , which is a 2 
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Continuation of the proof of Theorem 18.6 

First note that because h has compact support in U , <the formula 

18.3 is actually valid here for all 0 < CJ < p < 00 • Hence we can apply 

the above lemma with the choices 

f (p) w- 1 J h d]J 
n B (~) 

p 

g(p) (J)-l J ( lifihl + hi~ I) d]J ' 
n Bp(~) 

provided that ~ E spt ]J and h(~) ?: 1 • 

Thus for each ~ E {xE spt]J : h(x)?: 1} we have p < 2(w~1 J h d]J)l/n 
M 

such that 

(1) 

Using the covering Lemma (Theorem 3.3) we can select disjoint balls 

Bpl (~1) , Bp (~ ) 
2 2 

{~EM h(~)?: 1} c 

have 

00 

s< E {E;E spt\1 : h(s)?: 1} such that 
~ 

Then applying (1) and summing over j 

Next let y be a non-decreasing c1 (F) function such that y(t) = 1 for 

we 

t > E and y(t) = 0 for t < 0 and use this with y(h-t) , t?: 0 , in 

place of h 

where 

This gives 

M = {x E M h (x) > a} , a > 0 • 
C( 
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Multiplying this 
1 

inequality by 
1 

1 
n-1 

(t+E) and using the trivial inequality 

Sf (h+E)n-l d~ 
Mt 

on the right, we then get 

1 
n-1 

(-t+E) - ]J (Mt+E) S Sn w~1/n [ JM (h+E)n~l d]Jr/n[- :t tY(s-t) !V4hl 

+ Lt ~~~ ""] . 
Now integrate of t E (0, 00 ) and use 17.10. This then gives 

The theorem (with c = now follows by letting E + 0 . 

18.8 REMARK Note that the inequality of Theorem 18.6 is valid without any 

bounde&>ess hypothesis on ~ it suffices that ~ is merely in 
1 

Lloc (~) 

§19. MISCELLANEOUS ADDITIONAL CONSEQUENCES OF THE MONOTONICITY FORMULAE 

Here v = ~(M,8) is a rectifiable n-varifold in 
n+k 

~ and we continue 

to assume V has an mean curvature H in u ' u open in 

We first want to derive convex hull properties for V in case ~ is 

bounded. 

19.1 LE111MA Suppose 

and suppose spt v is compact. Then 

spt v c BR (s) 

(i.e. v L u 0. ) 
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Proof Since spt V is compact it is easily checked that the formulae 

(see §17) 

n r y (r) d]JV + J ry' (r) ( 1- i D1r 1 2 ) d)lV ; - r g (x) ' (x-i;) Y (r) d]JV (x) 
J ' 

(where r = I x-1.; I) actually holds for any non-negative non--decreasing 

c1 (JR) function y Vlith y(t) ; 0 for t :S R+ E • (E > 0 arbitrary.) ll\1e 

see b.'lis as in §17, by substituting X(x) = lj!(x) y(.r)(x-i:;) where lJ; - l 

in a neighbourhood of spt V • Since 1 - ln1 rl 2 :::: 0 and I~· (x-i;}j < n 

llv- a.e. , we thus deduce J y(r)d]JV; 0 for any such y . Since we may 

select y so that y(t) > 0 for t > R+ E , we thus conclude 

Because E > 0 was arbitrary, ·this proves the 

lernma. 

19.2 THEOREM (Convex hull property for stationary varifolds) 

Suppose 

compact. Then 

spt V is compact and v ·is stationary in 

spt V c convex hull of K . 

n+k 
JR K 

Proof The convex hull of K can be written as the intersection of all balls 

BR(s) with K c BR(s) . Hence the result follows immediately from 19.1. 

Next we want to derive a rather important fact concerning existence of 

"tangent cones" for V in U We will actually derive much more general 

theorems of this type later (in Chapter· 10); the present simple result suffices 

for our applications to minimizing currents in Chapter 7. 

The main idea here is to consider the possibility of getting a cone {or 

a plane) as the limit when we take a sequence of enlargements near a given 

point s E U . Specifically, we use the transformation 
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and we consider the sequence Vj = n~,A.# V 
J 

"enlargements" of V centred at ~ 

(see 15.6 for notation) of 

19.3 THEOREM 

vj = n~,A..# v 
n+k J 

R where 

Suppose ~ E U ~ 

for a sequence Aj ~ 

lim flv<iip<~ll 
p~O w pn 

n 

0 . 

exists, and, with 

as above, suppose ~v. + ~w in the sense of Radon measures in 
J 

w is a rectifiable n~varifoZd which is stationary in aZZ of 

n+k 
R • Then w is a cone, in the sense that w = ~(C,1/J) , where c is a 

aountabZy n-reatifiabZe set invariant under aZZ homotheties x + A-1x, 

A > o , and 1/J is a positive ZoaaZZy Hn-integrabZe function on c with 

A > o . 

19.4 REMARK We do not need to assume V has a generalized mean curvature 

here. However note that (by 17.8) generalized mean curvature in 

p > n , guarantees the hypothesis that 8n(~,x) exists. Furthermore, in 

later applications the fact that the limit varifold W is stationary will 

often be a consequence of the fact that V has a generalized mean curvature 

which satisfies suitable restrictions near ~ 

Proof of 19.3 0 (which is true except possibly for 

countably many o ) we have 

(1) lim o-nflv (B (0)) 
j~ j 0 

lim <\ol -n ~V(BA .o (~)) (by definition of V j) 
j~ J 

independent of o • 

n+k . 5 On the other hand since W is stationary in R we know by 17. that 

(with r = lxl) 
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so that from (1) we deduce 

(2) I Dlr\2 "' 0 llw-a.e. 

But recall that (letting grad denote gradient taken in ~n+k) 

1 
D r(x) 

-1 
~(grad r(X)) (::: r ~(X)) , llw-a.e. X, 

where 'Ix denotes the orthogonal projection of 
n+k 

:R onto 

TxW the tangent space of W at x (see §15). Therefore (2) implies 

in other words 

(3) 

~(X) 0 ' 

X E T w 
X 

X 

X • 

Next note that if h is a c1 (:Rn+k -{0}) homogeneous function of degree 

zero, so that h(x) 
X - h<g> , then 

such a function h , (3) implies 

(4) 

pT W (grad h (x))) • 
X 

x•grad h(x) "' 0 , X of. 0 , and so, for 

0 

Thus for any homogeneous degree zero function h we see from (2), (4) 

and 18.1 that 

(5) -n J p h 
B (0) 

p 

const. (independent of p ). 

(Notice the fact that it is valid to substitute h in 18.1, even though h 

is not c1 at 0 , is a consequenc~ of a simple approximation argument, 
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using the fact that is constant.) 

It is easy to check tha·t (5) (for arbitrary non-negative c1 (JRn+k~ {O}) 

homogeneous degree zero functions) implies that llw is invariant under 

homotheties in the sense that: 

Thus the theorem is p:::·oved by taking 

c {x 

for any subset 
n+k 

ACR 

Finally we wish to prove a technical lemma concerning densities \mich 

we shall need in the next chapter. 

19.5 LEl"'MA Suppose o < ~~B < 1 , R > 0 , B (0) c U , p > n , 
R 

( ,, ) ( J ]1/p 
w- 1 l~lpdvv s (1-n/p)f , 

n B (0) 
fRl-n/p :::: 1/2 

R 

and suppose y,z E BSR(O) with ly-zl =:: SR/4, Gn()lv,y), Gn<llv'z) =:: 1 , and 

lq(y-z)l =:: ~~y-zl , where q is the orthogonal projection of Rn+k onto 

JRk Then 

where c = c(n,k,p) , p p n 
R 

19.6 REMARK By (*) and Remark 17.9(2) we can use the monotonicity formulae 

17.6 with A= 2fR-n/p , a= 1-n/p , and. s = y or z Notice that in 

fact the quantity AR1 -apa is then just 2fp1-n/p and, since et :::: 1+2t for 
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t < 1 ' we have by 17.6(1) that 

(**) 
-1 -n 1-n/p -1 -n 

W T )1 (B ( ~)) S ( 1+4I'cr " ) W C! ]1 (B ( E;) ) 
n T n C! 

jl for 

Proof of 19.5 First note that by 18.3 we have 

r 
J hdjl< 

BC! (~) 

-n p : + I g I h) d]l dT 

for any non-negative c1 (JRn+k) function h , provided 0< cr< p< (1-B)R and 

~ = y or z We make a special choice of h such that h = f ( I q (x-~) j } , 

where f is ( JR) •.ri t:h: 

f(t) = 1 for JtJ < !i,SR/16,f(t) = 0 for JtJ > !i,SR/8, Jf' (t) IS 3(!/,SRl-l and 

O:Sf(t)Sl 'rit. 

Then, since jv;(q(x-t;)) J :"' JpxoqJ - I (px-p)oqJ < jpx-pJ :"' ln+k llpx-PII 

j = 1, ... ,n+k (where t;f: = e .• ..Jl as in §12), we deduce, with 
J J 

cr :s 1BR/2 , p s (1-S)R 

(1) 
-1 

w 
n 

-n -1 -n { \ I } () )l(B(J(t;)) swn p jl(Bp(~) n X: q(x-~) I :::: .Q.BR/8) 

+ c 0 -n (Q,SRJ - 1 p f IIPx -pll d]J 
B (i;;) 

p 

+ c G-np J' \~I d]l • 
B (~) 

p 

Now (see 17.9(2)) from (*) we have 

(2) J 1~1 d]l S 2fp-n/p ]l(B (~)) 
B (~) - p 

p 

for 
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Taking alternately ~ = y , ~ = z. and adding the resultant inequalities in 

(1), (2) and 19.6 (**), we deduce the required result (upon letting T + 0 

in 19.6 (**} and 'caking a = £SR/8 and p = (1-S)R in all inequalities). 



CHAPTER 5 

THE ALLARD REGULARITY THEOREM 

Here we discuss Allard's ([AWl]) regularity theorem, which says roughly 

t..l,a·t if the generalized mean curvature of a rectifiable n-varifold V = ~("1,8) 

is in Lioc(]lv) in u p > n ' 
if 8 > 1 ]lva.e. in u ' 

if l; E sp·t vn u 

and if 
-1 -n 

(Bp (~)) is sufficiently close for sufficiently w p to 1 30"1118 
11 

small* p, then V is regular near V in the sense tc'lat. spt V is a 

cl,l-n/p n-dirnensional submanifold near i; • 

A key idea of the proof is to show that V is >veil-approximated by the 

graph of a harmonic func·tion near i; The background resul·ts needed for ·this 

are given in §20 (where it is shown that it is possible ·to approximate spt V 

by t..'le graph of a Lipschitz function) and in §21 (which gives ·the relevant 

results about approximation by harmonic functions). The actual harmonic 

approximation is made as a key step in proving the central "tilt-excess decay" 

theorem in § 22. 

c~he idea of approximating by harmonic functions (in roughly ·the sense 

used here) goes back to De Giorgi [DG] who proved a special case of the above 

theorem (when k = 1 and when V corresponds to the reduced boundary of a 

set of least perimeter - see the previous discussion in §14 and the discussion 

in §37 below. Almgren used analogous approximations in his work [All for 

arbitrary k > 1 . Reifenberg [Rl, R2] used approximation by harmonic 

functions in a rather different way in his v10rk or regularity of minimal 

surfaces. 

* Depending on 111:!11 p 
L <llvl 
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§20 LIPSCHITZ APPROXIMATION 

In this section V = ~(M,8) is a rectifiable n-varifold with generalized 

mean curvature ~ in U (see 16.5) 1 and we assume p > n , and 

o E spt llv 

20.1 I ~~~p d]Jv r/p < 

BR(O) 
(1-n/p) r , fRl-n/p < 1/2 

8"::1, w~lR-n!lv(BR(O)) <2(1-a), 

111here a E (0,1) . We also subsequently write J1 for and 

where p = p 
En 

Px = PT v ( = PT M !l- a.e. x) • Notice t_hat then the first 

term in the definition of 

away from over 

BR(O) - see §22). 

X X 

E measures the "mean-square deviation" of 

(This is called the "tilt-excess" of v 

TV 
X 

over 

20.2 THEOREM Assuming 20 .1, there is a constant y = y(n,a 1k 1p) E (011/2) 

such that if !/_ E (011] then there is a Lipschitz function 

f = (£1 fO •• ,fk) Bn (0) 
yR 

->- Rk with 

1 

Lip f :S !/_ , supj fj :S c E2n+2 R 

and 

n -2n-2 
H ( ((graph f~ spt V) u (spt v~ graph f)) n ByR(O)) < cQ, E I 

where c = c(n,a,k,p) . 
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20.3 REMARK Notice that this is trivial (by setting f = 0 and taking 

suitable c) unless 2-2n-2E is small. In particular we may assume 

E ::: o22n+2 which 0 is as small as we please, so long as our eventual 

choice of 0 depends only on n, k, Cl., p 

Proof of 20.2 By virtue of the above remark we can assume 

(1) 

o0 to be chosen depending only on n, k, Cl., p Set 

1 

9-o = (o~2E) 2n+2 < 1 , 

and take any two points x,y E BSR(O) n spt v with jq(x-y)j ~ 2olx-yj , 

jx-yj ~ SR/4, where SE (0,1/2) is for the moment arbitrary. By Lemma 19.5 we have 

Using Cauchy inequality ab ::: % a 2 

..;1 
the assumption (in 20.1) that wn 

Since 

+ l b 2 in the last term, together with 
Cl. 

-n R ~(BR(O)) ::: 2(1-CI.) , this gives 

IJ t; E spt V n U (by 1 7 • 8 and the 

assumption that 8 ~ 1 Jl- a-.e.) thi:s gives 

-n 
2 ::: 2(1+co0) (1-Sl (1-a.) 
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which is clearly impossible if we take 6 6(n,k,p,a) and 80 

small enough. Thus for such a choice of 6 , 80 we have 

1 

(2) lq(x-y) I < cE2n+2 R , x,y E spt )l n s 6R (0) 

where c ; c(n,k,p,a) , 6 = 6(n,k,p,a) . (Formally we derived this subject 

-1 to assumption (1), but if (i~ fails then (2) is trivial with c; a0 .) Noting 

the arbitrariness of x,y in (2) and noting also tha·t 0 E spt )l and that 

spt ).! n ClB 0 1 ~ (0) t i1l (which follows for example by selecting suitable ¢ in 17. 2), 
tJR,L. 

we conclude {after replacing 6 by 6/4) 
1 

(3) lq (x) I::::: c ELn+2 R X E B6R (0) n spt v ' 6 6 (n,k,p,a) E (0,1) 0 

Next let 8,£ E (0,1] be arbitrary and assame 

(4) 

(which we can do by Remark 20.3, provided we eventually choose 8 = O(n,k,a,p)) 

Set E 0 (o,!;) =o-n f liP -p!J 2djl(x) for any s E spt V , 

Bo<sl x 
and define 

G {!; E spt V n B6R/2(0) \f o E ( 0, R/ 2) } • 

Notice that if s E spt vnB6R(O) then by (4) and the monotonicity formula 

17.6(1) (see Remark 17.9(2) to justify the application of 17.6(1)) 

(5) 
-1 -n 

(l+cO)Wn ((l-6)R) \l(B(l-6 )R(s)) 

-n -1 -n 
< (l+co) (1-BI wn R \l(BR(O)) 

::0: 2 ( l+cO) (1-6) -n ( 1-a) 

::::: 2 (1-a/2) , 

for o,B small enough (depending on n,k,p,al . 
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Now let X 1 Y E G In view of (4) 1 (5) we may now apply the previous 

argument with a/2 I s-1 1x-yj /2 , X in place of aIR I 0 in order to deduce 

from (3) that 

(6) 
11 (2n+2> I I jq(x-y)j:::c.VS x-y ,x,yEG 1 c=c(n,k,pla) 

(because E0 (o,x) + (ro1-n/p} 2:::zo£2n+Z , 0 

and the fact that x E G ) . 

s-1 1x-yl/2 1 by Virtue Of {4) 

Choosing o so that 2011 (2n+2 ) (l+c) (n+k) < 1 ( c as in (6)) , we thus 

deduce 

lq(x-y) I ::: 2 (n:k) jx-yl , x,y E G c = c(n,k,p,a) . 

Since lx-yl ::: lq(x-y)l + lp(x-y)l , this implies 

(7) 
.II, 

lq(x)- q(y) I ::: (n+k) lp(x)- p(y) I 

and so (by the extension theorem 5.1) 

G c graph f , 

where f is a Lipschitz function BSR/2 (0) + Rk with Lip f ::: .II, • By ~irtue 

of (3) we can assume (by truncating f if necessary) that suplfl ::: cE 2n+ 2R • 

Next we note that (by definition of G for each 

I; E (BSR/2 (0) ~ G l n spt V we have 0 (I';,) E (O,R/10) such that 

and by (5) we therefore have 
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By definition the collection of balls is a cover 

and hence by the covering Theorem 3.3 we can select 

points t;:l,E;2'''' E Bi3R/2 (0) ~ G such that {BG (i;:.)} 
j J 

is a disjoin·t 

collection (Gj= 0(i;:j)) and {i3so. <t;:jl} still covers Bi3R/2 (0) ~ G 

Then setting 

(8) 

t;: = I; ' 
J 

J 

and summing over j ' we conclude 

Since Gn(~,s) ~ 1 for E; E spt V n U we have 

If ( (spt ~ ~ graph f) n Bi3R/2 ( 0)) s ~ (Bi3R/2 (0) ~ graph f) 

(by Theorem 3.2(1)) and it thus remains only to prove 

(9) 
-2n-2 n 

S c £, ER 

(Then the theorem will be established with y = 13/2.) 

To check 

0 E (O,i3R/2) 

this, take any n E (graph f~ spt ~) n Bi3R/4 (0) 

be such that B012 cnl n spt ~ = ¢ and B3014 Cnl 

and let 

n spt ~ =f. {ll • 

(Such 0 exists because 0 E spt ~ .) Then the monotonicity formula 17.6(2) 

(See Remark 17.9(2)) implies 

s c J I P (x-n) 12 C4l 
B (n) (T M)l 0 

0 X 
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r 
+ J II II L. 1 PT M- p n djl ' 

(T]) X JR ' 

where p graph f and ;;ihere we used p I 
T-

(x) for any subspace 

1' c Since IP ::: ci for x.,y E F n (T[) (because 

Lip f < _Q,) , <th.is iittplies 

<nl l ::: c 

S:L"lce we can take c £ S 1/2 (notice again the validity of the theorem in 

this case automatically .implies its validity for larger ""v"alues of _\L ·~ (0; 1]) 

we thus get 

(10) 

where F = graph f . Nmv since spt fl n B3014 (T]) of 0 i:he monotonicity (5) 

implies and hence (10) gives 

(11) n 
0 < c T , 

where T is the expression on the right of {10). Thus, writing n' p 

we get 

Ln 50 (n'll < c T 

r n 
< cifl( (B- (T]') X 

\, 0 

r , 
+ I . IIPT, 1v1-p 1.,11

2 dfll 
j -IBn 'n 1 'l XJRK' nB . . J 

' 0 \ ' . ! I' BR/2(0) X JR 

Since \ve have this for each Tl E (graph f ~ spt fl) n BSR/4 (0) it follotvs 

from t.he Covering Theorem 3.3 in the usual 'ltJay that 
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Since Lip f ::: 1 , this gives (9) with S/4 in place of S . Thus the 

theorem is established for suitable y depending only on n, k , a, p • 

§21. APPROXIMATION BV HARMONIC FUNCTIONS 

The main result we shall need is given in the following lemma, \vhich 

is an almost trivial consequence of .Rellich's theorem: 

21.1 LEMMA Given any E > o there is a constant o = o(n,E) > o such that 

if f E w1 ' 2 (B) , B :=: B1 (OJ = open unit ball in Rn , satisfies 

for any 

and 

PI'OOf 

I J grad f. grads dLnl ::: 0 suplgrad sl 
B 

then there is a hox-monic function u on B such that 

Suppose the lemma is false. Then we can find E > 0 and a sequence 



llO 

(1) I I nl -1 I I B grad fk • grad I;; dL ::: k sup grad 1;; 

00 

for each ~ E Cc(B) , and 

(2) 

but so that 

(3) 

whenever u is a harmonic function on B with 1 . 

fk dLn . Then by the Poincare inequality (see e.g. [GT]) 

we have 

(4) ::: c I! 

and hence, by Rellich's theorem (see [GT]), we have a subsequence {k'} c {k} 

such that f -). .... w 
k 1 .K' in 

Also by (1) we evidently have 

L2 (B) where w E w1 ' 2 (B) 

J grad w • grad I;; dLn 0 

with f I grad w\ 2 ::: 1 . 
JB 

for each I;; E C00 (B) 
c Thus w is harmonic in B and J \ fk, - w- Ak, \ 2 ->- 0 . 

B 

Since w + Ak' is harmonic, this contradicts (3). 

We also recall the following standard estimates for harmonic functions 

(which follow directly from the mean-value property- see e.g. [GT]): If u 

is harmonic on B = B1 (0) , then 

cilull 1 
L (B) 

for each integer q::: 1 , where c = c(q,n) . Indeed applying this with 

Du in place of u we get 
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2L2 eli Dull 1 (::; c 'II Dull 2 ) 
L (B) L (B) 

for q ~ 2 . Using an order 2 Taylor series expansion for u , we see that 

this implies 

21.3 sup8 (O) lu-tl 
ll 

2 s en IIDuil 2 
L (B) 

for each 11 E (0,1/2] , where c = c(n) is independent of n and where .Q, 

is the affine function given by Jl,(x) = u(O) + x • grad u(O) 

§22. THE TILT-EXCESS DECAY LEMMA 

We define tilt-excess E(s,p,T) (relative to the rectifiable n-varifold 

V ;¥(M,6)) by 

whenever p > 0 , s E Rn+k and T is an n-dimensional subspace of Rn+k 

Thus E measures the mean-square deviation of the approximate tangent space 

T M 
X 

away from the given subspace T 
k . 2 

2 }' 1..-Mxn+J I , is just ~.. V 
j=l 

Notice that if we have T = Rn then 

so that in this case 

22.1 E(s, p,T) 
-n p 

(VM = gradient operator on M as defined in §12.) 

,, 2 lp -pi denotes the inner pr.oduct norm trace 
T M 

X 

2 
(p'l' -p) ; 

-X 
this differs 

from IIPT M-Pii 2 by at most a constant factor depending on n + k. 
X 
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In this section we continue to assume V has generalized mean curvature 

1 
ME L10c(~vl in u 1 and we write ~ for ~V • 

We shall need the following simple lemma relating tilt-excess and height; 

note that we do not need 8 ~ 1 for this. 

22.2 LEMMA Suppose Bp(~) c u . Then for any n-dimensional subspace 

T c Rn+k we have 

E(~ 1 p/2 1 T) 

22.3 REMARK Note tl1at in case p-n~(Bp(~)} ~ c , we can use the Holder 

inequality to estimate the term J 1~1 2 d~ 1 giving 
BpW 

P2-n J IMI 2~~c[rlf IMIPd~)l/p Pl-n/p]
2

, p > 2. Thus 22.2 gives 
Bp(~) Bp(~) 

p ~ 2 . 

Proof of 22.2 It evidently suffices to prove the result with ~ = 0 and 

T = Rn • The proof simply involves making a suitable choice of X in the 

formula of 16.5. In fact. we take 

X = z;; 2 (x)x' , x' 
X 

n+l n+k 
(O,x 1 ••• ,x } 

1 n+k oo 
for x = (x 1 ••• ,x } E U 1 where z;; E c0 (U} will be chosen. 

By the definition of divM (see §12) we have 

n+k 

I 
i=n+l 

ii e ~- a.e. X E M I 
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where (eij) is <the matrix of the projection pT M (relative to the usual 
X 

ort~onormal basis for Rn+k) . Thus by the definition 16.5 of ~ we have 

(1) 

with 

(2) (J -

where (Eij) 

trace(eij) = n 

n+k 

I 
i=n+l 

I ( -2~ n+k 

I 
i=n+l 

ii 
e 

1 n+k 

2 I 
i,j=l 

n+k 

I 
j=l 

i 
X 

matrix of p n and where we used 
R 

We thus have for ~ ~ 0 

and hence (using 

The lemma now follows by choosing ~ = 1 in Bp/ 2 (0) 

and !grad~~ S 3/p, and then noting that lx'l 1~1 

~ P-2 1x' 1 2 +~ <I~IP> 2 

and 

~ = 0 outside Bp(O) 

<P-1 Ix'l> <I~IP> s 

We are now ready to discuss the following tilt-excess decay theorem, 

which is the main result concerning tilt-excess needed for the regularity 

theorem of the next section. (The Lipschitz approximation result of the 

previous section will play an important role in the proof.) 

In order to state this result in a convenient manner, we let 

E,a E (0,1) , p > 0 , p > n , and T , ann-dimensional subspace of Rn+k, 

be fixed, and we shall consider the hypotheses 
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1 ::: e < 1+s 

s E spt Jl , B ( i;) c U , 
p 
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j1-a.e. in U 

2(1-a) , 

E.,(i;,p,T) SE:, 

where E.,(i;,p,T) max{E(i;,p,T) , E-l(JB (/;) J~\pdJ..!J2/pp2(1-n/p)} 
p 

22.5 THEOREM For any a E (0, 1) , p > n there are constants n,E E (0, 1/2) , 

depending only on n, k, a, p, such that if hypotheses 22.4 

for some n-dimensional subspace n+k s c JR 

22.6 REMARK Notice that any such S automatically satisfies 

(*) 

Indeed we trivially have 

-n 11 E(i;,p,T) , 

while by 22.5 we have 

hold, then 

and hence by adding these inequalities and using the fact that J..!(Bnp(i;)) ~ cpn 

(see 19.6) we get (*) as required. 

Proof of Theorem 22.5 Throughout the proof, c = c(n,k,a,p) . we can suppose 

0 T = F.n . By the Lipschitz approximation theorem 20.2 there is a 

6 6(n,k,a,p) > 0 and a Lipschitz function f : B~p(O) ->- F.k with 
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1 1 

(1) Lip f ~ 1 , supjfj 
2n+2 2n+2 

~ c E* p ~ c E p 

and 

(2) Hn(((spt)l ~graph f) u (graph f~spt Jl)) n BBP(O))::: c E*P~ I 

where E* == E* ( 0, p, Rn) ( = max{p -n J I pT M -p 12 d)l , 
B (0) X Rn 

p 

E-1( J ~~~pdJ1)2/pp2(1-n/p)}) Furthermore by the height estimate (3) in 
Bp (0) · 

the proof of 20.2 we have 

1 1 
2n+2 2n+2 

(3) ::: c E* p ::: c E p I 

j n+1, ••• ,n+k. Let us agree that 

1 

(4) c E2n+2 ::: 8/4 

Then (3) implies 

(5) 

so that 

(6) 

(c as in (3)) . 

Our aim now is to prove that eaCh component of the approximating function 

f is well-approximated by a harmonic function. Preparatory to this, note 

that the defining identity for IJ (see 16.5), with X= i;; e +' , 
n J 

implies 

j = 1, • • .,k 1 where 

-I e .•Hi;;d)l, 
n+J = 

M -M ....M +' M 
'Vn+J' = e .• v- = p (e .) • -r = w·xn J) • 'V 

n+J TXM n+J 

<vM = gradient operator for M as in §12) • Thus we can write 

(7) 
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on i'\ = Mn graph f is defined on 
n+k 

:R by 

1 n+k n+k (x , . o. ,x ) E JR ) , vJe have by 

the definition of VM (see §12) that 

(8) 

Hence(7) can be written 

and hence by (2), together with the fact that (by 22.4) 

(9) 

we obtain 

(10) 
~-n 

p 

for any smooth s with spt s c BSP(O) . 

Furthermore by (8), 22.1, we evidently have 

(11) 

1 n 
Now suppose that s1 is an arbitrary Cc(BSp/ 2 (0)) function, and note 

that (by (6)) there is a function s E c;(BSp(O)) such that s = ~ 1 in some 

n k - - 1 n+k _ 1 n 
neighbourhood of BSp/2 (0) X :R n spt jl n BSp (0) where sl (X ' •• ,x ) ::: s1 (x I •• • x ) 

Hence (10) holds with in place of 

and p grad fj = grad fj , we have 
JRn 

s . Also, since - -
p grad sl= grad sl 

JRn 
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(13) 
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- I [p 1 o p (gradfj)J' (p 1 o p . (grad~ 1 l)J I 
(T M) :Rn (T I"l)- Rn 

X X 

I .1
2 1 · -j I I - I :S PT 14 - p n' grad f grad ~;: 1 

X :R 

on spt ~ n BB (OJ ' .P 
and hence (10) implies 

Also since (12) is valid with 1:; 1 we conclude from (11) that 

(14) 

(15) 

and 

(16) 

w'here 

From (13), (14) and the area formula 8.5 we then have (using also (1),(2)) 

I p -n J grad fj • grad c; 1 8cF J(F) dL nl 

B~p(O) -

:S c E!E! supJgrad s1 1 

F , Rn-+ Rn+k is defined by n 
F(x) = (x,f(x)) , xE BSP(O) and where 

J(F) is the Jacobian (det((dFx)*o dFx)) 112 as in §8 Since 

1 :S J(F) :s 1+ cjgrad fJ 2 on B~p(O) , as one checks by directly computing 

the matrix of dF x (relative to the usual orthonormal bases for :Rn , JRn+kl in 

terms of the par-tial derivatives of f , and since 1 :S 8 :S l+E , we conclude 
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(17) fp-n J grad fj • grad 1;; 1 dLnf 

B~p (0) 

:S c(s1E!+ sp-n In fgrad fjjdLn)supfgrad sll 

BSp/2 (0) 

by (16), because by (16) (and t.l-te fact that 8 ::: 1 , J(F) ::: 1) we have 

(18) 
-n p 

Now (17), (18) and the harmonic approximation lemma 21.1 (with fj 

in place of f we know t,hat for any given 6 > 0 there is s 0 = s 0 (n,k,6) 

such that, if the hypotheses 22.1 hold with s :S s 0 , there are harmonic 

functions on BSp/ 2 (0) such that 

(19) 

and 

(20) 

Where o = Sp/2 . 

Using 21.3 we then conclude that 

(21) 

-n-2 2 
< 2fl 6 E* + Cfl E* (by ( 19) ) , 
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where Notice that, since 

(19), (20) in particular imply (using 21.3 again) 

k 

I 
1 1 

2n+2 2n+2 
:0: c E* p :0: c E p. 

j=l 

1 
2n+2 

:0: c E* p 

Now let R- (R-\ ••• ,R-k) : Rn-+ Rk and let 8 be then-dimensional 

subspace graph (R--R-(0)). In view of (1), (2), (3) and (22) it is clear that 

(21) implies 

-n-2 J 2 -n-2 2 (23) (no) dist (x-T, 8). djl :0: en 0 E* + en E* , 
8 ncr/2 (T) 

1 

where T = (O,R-(0)) , provided cE 2n+ 2 < n/2 Then by 22.3 we get 

E(T ,no/2,8) 

If we in fact require 

(24) (c as in (22)) . 

then (by (22)) and this gives 

(25) E(O,ncr/4,8) 

The proof of the theorem is now completed as follows: 

First select n so that 2 < }( 0 /S)2(1-n/p) en _ 2 n., (with c asin(25)), 

then select o so that 
-n-2 1 2(1-n/p) 

en o < 2(nS/8) (c again as in (25)). 

Then, provided the hypotheses 22.4 hold with E satisfying the conditions 

required during the above argument (in particular (4), (24) must hold, and 

E ::: E0 (n,k,o) , E0 (n,k,o) as in the discussion leading to (19)) we get 

E(o P ) < n-2(1-n/p)E ,n ,8 - * , 
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where n = nS/8 . Since we trivially have 

we thus conclude that 

as required. 

-This completes the proof of 22.5 (with n in place of n ) . 

§23. MAIN REGULARITY THEOREM: FIRST VERSION 

We here show that one useful form of Allard's theorem follows very directly 

from the tilt-excess decay theorem 22.5 of the previous section. 

23.1 THEOREM Suppose a E (0,1) and p > n are given. There are constants 

E = E(n,k,a,p) , y = y(n,k,a,p) E (0,1) such that if hypotheses 22.4 hold 

with T = Rn and E; = o , then there is a cl,l-n/p function 

u = (u1 , •.. ,uk) : Bn {0) + Rk such that u(O) = 0, 
yp 

(1) spt V n Byp(O) graph u n Byp{O) , 

and 

(2) P-1 supjuj + supjDuj + Pl-n/psup !x-yj-(l-n/p) jDu(x)-Du(y) I 
x,yEBn (0) 

yp 
x#y 

S c [E' (O,p,Rn) + (JB (0) ~~~pd]lr/ppl-n/p] 
p 
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Before giving the proof we make a couple of important remarks concerning 

removability of the hypothesis e < 1+€ in 22.4: * 

23. 2 REfvlARKS 

(1) The monotonicity formula Lll 17.6(1), together with Remark 17.9(1), 

evidently implies that if (w~ 1 r . I !:JI p c\1] l/p p l-n/p ::: € < % I then, for 
- • Bp (!;) 

0 < 0 < T < ( 1-[3 ) p 

(*) -1 -n 
(l+cs)w T ~(B (s)) 

n T 

? -1 -n 
< (l+cs)- wn ((1-S)p) ll(B(l-[3)p(S)) 

provided Then ~~e hypothesis 

(in 22.4) gives 

(**) 
-1 -n 

lun (J p(B(J (s)) ::: 2 (1-a/2) I 0 < 0 < p/2 ' s E spt v n BSP (f,) ' 

provided S [3(n,k,a,p) is sufficiently small. Thus letting o + 0 we 

have 

6<sl < 2(1-a/2) 

If 6 is integer-valued (i.e. if V is an integer multiplicity n-varifold) 

~--a.e. in BSP(f,) . Thus, with Sp 

place of p , the hypothesis 6 S l+E in 22.4 is automatically satisfied, 

then this evidently implies 8 1 

hence the conclusion of Theorem 23.1 holds with Sp i:1 place of p , even 

without ·the hypothesis 6 S l+E . 

in 

* J. Duggan in his Ph.D. thesis [DJ] has shown that in any case the hypothesis 
6 S l+E can be dropped entirely. 
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(2) Quite generally, even if 6 is not necessarily integer-valued, we 

note that if we make the stronger hypothesis w-1 p-n ]J(B (F~)) < l+s 
n p (instead 

of 
-1 -n 

p · ]J(Bp(Ol ::: 2(1-a)) , then (*) above gives (taking i3=s) 

Thus again we can drop the restriction 6::: l+E in 22.4, provided we make the 

assumption 

place of p 

Proof of 23.1 

(1) 

-l o-n ]J(B (sll < l+E ; then Theorem 23.1 holds with sp in 
p 

Throughout the proof c = c(n,k,a,p) > 0 • We are assuming 

1::: e::: 1+s ]J- a.e. in Bp (0) n spt V 

(E to be chosen) and by Remark 23.2(1) (**) we can select E=E(n,k,a,p) 

and 13 = (3(n,k,a,p) such that 

( 2) 
-1 -n 

wn 0 ]J(B0 (<;;))::: 2(1-a/2), 0< OS p/2, I;E Bi3p (0) n spt V • 

By (1), (2) and the tilt excess decay theorem 22.5 (with 0 in place of p, 

a/2 in place of a , 1; in place of s ) we then know that there are 

E = E (n,k,a,p) , n n(n,k,a,p) so that, for o< p/2 i;E spt Bi3p(O) n spt V , 

(3) 

for suitable s 1 . Notice that this can be repeated; by induction we prove 

that if 0 < p/2 ' then there is 

a sequence s 1 ,s2 ... of n-dimensiona1 subspaces such that 

for each j ~ 1 , and (by Remark 22.6) 
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(5) 

n n n 
Next we note that E*(i'; 1p/2 1R) S 2 E*(0 1P 1R) 

for l; E Bp/2(0) I and hence the above discussion shows that if 22.4 holds 

with l; = 0 1 T = Rn and -n 
2 E 

hold with s = Rn and a = p/2 
0 

(6) 

and 

j 
E(l;1ll p/21S .) 

J 

in place of E ( E as above) then (4) 1 (5) 

Thus 

(7) lp P 1 2 S Cll2(1-n/p)j E*(Oipi:Rn) 
s .- s. 

J J-1 

for each j ~ 1 (with Notice that (7) gives 

(8) 

for ~ ~ j ~ 0 . It evidently follows from (8) that there is S(i';) such 

that 

(9) I P 12 S cn2(1-n/p)j E*(Oipi:Rn) 
Ps<r;>- s. 

J 

In particular (setting j=O) 

Now if r E (0 1p) is arbitrary we can choose j ~ 0 such that 

j+1 j 
11 p<rSllP. Then (6) and (9) evidently imply 

{11) 

for each l; E BSP {0) n spt v 

and (2) I with a= r 1 imply 

(12) 

and each O<rsp. Notice also that (10) 1 (11) 
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Hence for sufficiently small E we have from (12) that if G is as in the 
1 

proof of Theorem 20.2 (with Q,= c 2n+3 ) then 0 ((3= (3(n,k,a,p) , 

E = E(n,k,a,p) sufficiently small). That is 

(13) spt vn BBp (0) c graph f 

for E = E(n,k,a,p) and B = (3(n,k,a,p) sufficiently small, where f is a 

I,ipschi tz funct.ion 

{14) Lip f 

l 
2n+3 

< c suplfl 

1 
2n+2 

S c E p 

Now we claim that Dl fact 

(15) spt v n (0) =graph f n BBP(O) . 

Indeed otherwise by (13) we could choose ~ E B~p/ 2 (0) and O< o< Sp/2 

such that 

(16) 

f<B~(<:;) X :Rk)nBBP(O) n spt v 

tB~(O X Rk)nBBP(O) n spt v f. Jl) • 

Then taking and using (1), (13), (14), (16) 

we would evidently have Gn(]J,~*) < 1 (if E is sufficiently small). This 

contradicts the fact that Gn(]J,~)::: 1 iJ ~ E spt V n B ( 0) . 
p 

Having established (15) we can now easily check (using the area formulae) 

that for any linear subspace 

is linear and I grad tj I Sl 

(17) 

graph Q, where t = (£\ ... ,S!.k) 
n s = ' : :R -;.JR 

for each j ' we have 

k 
L lgrad fj{x)- grad S!.jJ 2 dLn(x) < c E(~,o,S) 

j=1 

k 

for o E (0,(3p/2) (again provided E in (14) is sufficiently small). Using 
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(17} and (11} we conclude that for each l; E BSp/ 2 (0} n spt V there is a 

1 in ear function 

(18} 

for 0 < r < f3p/4 . It evidently follows from this, by letting r -1- 0 in (18}, 

that gradfj (pRn(l;}} =grad.Q.~ for ]1-a.e. l;E sptvnBSp/4 (0} Hence 

using (18} again, we easily conclude [grad fj(x1 } -·grad fj(x 2} I 5 

for Ln- a.e. x 1 ,x2 E B~p/8 (0} Since f is Lipschitz it follows from 

this that f E cl,l-n/p with (19} holding for The 

theorem now follows with f = u and y = S/8 

§24. MAIN REGULARITY THEOREM: SECOND VERSION 

In this section we continue to assume V = ~(M,6} is a rectifiable 

n-varifold with generalized mean curvature ~ in u . With oE (0,1/2} a 

constant to be specified below, we consider the hypotheses: 

]1-a.e., 0 E spt V , 

24.1 
8 • 
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24.2 THEOREM If p > n is arbitrary, then there are o = o(n,k,p) , 

y = y(n,k,p) E (0,1) such that the hypotheses 24.1 imply the existence of 

a linear isometry q of JRn+k and a u = (u1 uk) E cl,l-n/p(B11 (0) ·JRk) 
' ... ' . yp ' 

·with u (0) = o , sp-t vnBYP(O) = q(graph u) nBYP(O) , and 

c = c(n,k,p) . 

Before giving the proof of 24.2, we shall need the following lemma. 

Suppose o E (0,1/2) and that 24.1 holds. Then there is 

B = B(n,k,p,o) E (0,1/2) such that 

and such that, for any z;; E spt v n BBP (O) , a E (0, BPl 

n-dimensional subspace T = T(i;;,o) with 

Proof First note that by the monotonicity formulae of §17 (see in particular 

23.2(1) (*)) we have, subject to 24.1, that 

(1) 
-1 -1 -n 

(l+cO) < cun o p(B0 (L;)) s l+co , O< o< p/2 , 

B B<n,k,p,o) E (0,1/4) , so the first part of the lemma 

is proved. 

Now take any fixed o E (O,Sp) and suppose for convenience of notation 

(by changing scale and translating the origin) that 0= 1/2 and L; = 0 . Then 

by (1) and 17.6(1) (see in particular Remark 17.9(1)) we have 
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(2) 

for E spt V 11 B112 (0) where 
l (T ti)l s 

X 
Next note that we can select 

N points t: 1 , 0 0. ,t:N E spt v n B112 coJ B 1/ Ll (0) N < ccS-1/4 
' such that 

cS _n 

N 
(3) spt vnB 112 (0) ·~ B~ 1/ 4n(O) c U B 1 .4 (4.) 

u j=1 cS I n J 

(To achieve this, just take a rnaxirral disjoint collection of balls of radius 

61 /Lln /4 centred in spt V n B (0) ~ B (0) ) Then by using (2) with 
1/2 01/4n · 

we have 

S c cS N S c ' cS 1/ 2 , 

so that for any given R > 1 we have 

N 

(4) I 
j=l 

except possibly for a set of X E B1/2(0) n spt v of 
-1 1/4 

~-measure S c R cS 

Taking R = R(n,k) sufficiently large and noting "1/4 
~ (B l/Ll (0)) ?: Cu 

cS .n 

(1)), we can therefore find such that 

1, .. .,N • 

Since we then have 

(5) 
,1/4n 

::: co 1 j lf .. ~., ,N .. 

That is, all points 
,l/4n 

co neighbourhood of tl<e 

subspace T· 
X 

0 

and the required result now follows from (3). 

(by 
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Proof of Theorem 24.2 Theorem 24.2 in fact now follows directly from 

Theorem 23.1, because by combining Lemma 22.2 and the above lemma we see 

that for any E > 0 there is 
2n o = c E (c= c(n,k,p)) such that the 

hypotheses 24.1 imply 22.4 with ~ 0 , p replaced by Sp and with 

suitable T . 



CHAPTER 6 

CURRENTS 

This chapter provides an introduction to the basic theory of currents, with 

particular emphasis on integer multiplicity rectifiable n-currents {brieflycalled 

integer multiplicity currents), which are essentially just integer n-varifolds 

equipped with an orientation. ·k The concept of such currents was introduced in 

the historic paper [FF] of Federer and FlerniEg; their advantage is that they 

are at once able to be represented as "generalized surfaces" (in terms of a 

countably n-rectifiable set with an integer multiplicity) and at the same time 

have nice compactness properties (see 27.3 below). 

§25. PRELIMINARIES: VECTORS, CO-VECTORS, AND FORMS 

denote the standard orthonormal basis for 

the dual basis for the dual space J\ 1 o:l) of ]l 

the spaces of n-vectors and n-covectors respectively. 

be represented 

v 

a 
a 

each is a positive integer} 

e a 

and 

Thus 

:1:l and 
l p 

W F.,.," ;W 

can 

Similarly any w E 1\n (RP) can be represented as 

'' These are precisely 'che currents called loca?..ly rectifiable in the 
literature (see [FF], [FHl]); we have adopted the present terminology 
both because it seems more natural and also because it is consistent 
wi'ch the varifold terminology of Allard (see Chapter 4, Chapter 8). 



where 

w = z 

if 

aEI 
n,P 
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a 
a w 

a 

Such a v (respectively 

w) is called simple if it can be expressed with v. E 
J 

(respectively with w. E /\1 (RP)) 
J 

We assume !\ (Rp) , 
n 

f\n(RP) are equipped with the inner products < > naturally induced from 

RP (making {ea}aEI 
n,P 

< 
and 

< 

I 
aEI 

I 
aEI 

p 
For open u c R ' 

a 
a 

n,P 

a 
a 

n,P 

En(U) 

w = I a dxa where a 
aEI 

n,P 
a a 

E 

orthonormal bases) • Thus 

e a' I b ea) = I a b 
aEI 

a 
aEI 

a a 
n,P n,P 

a I b wa) = I b w a 
aEI 

a 
aEI 

a a 
n,P n,P 

denotes the set of smooth n-forms 

00 dxa 
i1 in 

c (U) and dx 1\ ••• /\dx 

a (i1, ... 'in) E I n,P., 
dxj as usual denotes the 1-form given by 

25.1 dxj (f) 
()f 00 

. , f E C (U) 
()xJ 

if 

If we make the usual identifications of T RP and A1 (T :RP) with :RP and 
X X 

we are able to interpret w E En(U) as an element of 
co n P 

C (U; !\ :R ) ; 

we shall do this frequently in the sequel. 

The exterior derivative En(U) 7 En+1 (U) is defined as usual by 

25.2 

if i)j = I 
cxEI 

n,P 

a 
a 

dw 

('~ 
dx . 

p 

I 
j=1 

By direct computation (using 
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dxj II dxi) one checks that 

w = I 
aEI 

n,Q 

0 

open, and a smooth 

map f u + v we define the "pulled back" fm:-rn f#cu E En(U) by 

25.4 

where 

25.5 

p 

is I 
i=l 

I 
a= ( i 1 , ... , i ) E I 

n n,Q 

i i 
a of df 1 11 ••• f, df n 

()( 

1, ... ,Q . 

Notice that the exterior derivative commutes with pulling back: 

We let Vn(U) deno·te the set of w I a dxa E En(U) such that each 
('( 

aEI 
n,P 

has compact support. ~~e topologize vn (U) with the usual locally convex 

topology, characterized by the assertion that 

w I 
aEI n,P 

a 
a 

if there is a fixed compact 

k " w = ~ 
aEI 

n;rP 

K c U such that spt 
(k) 

a 
()( 

c K 

'tJ aEI ,k":l, 
n,P 

and if 'tj a. E I 
n,P 

and every multi-

index [3 • For any w E Vn(U) , we define 

25.6 1 
lwl = supxEU <w(x) ,cu(x)> 

a 
a 

Notice that if f : U + V is smooth (U,V open in 1l, RQ) and if f is 

proper is a compact subset of U ~'enever K is a compact 

subset of V) then f#w E V n (U) whenever w E Vn (V) . 
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§26, GENERAL CURRENTS 

Throughout this section U is an open subse-t of 1l . 

26.1 DEFINITION An n-dimensional current (briefly called an n-curren·t) in 

U is ii continuous linear functional on Vn (U) . The set. of such n-currents 

will be denoted (U) • 

Note that in c<tse n = 0 the n-currents in U are just the Schwartz 

distributions on U More importantly though, the n-currents, n =:: 1 , can 

be interpreted as a generalization of the n-dimensional oriented submanifolds 

M having locally finite Hn-measure in U . Indeed given such an M c U 

with orientation ~ (thus ~ (x) is continuous on M with ~ (x) = ± T 1 t\ ••• 11 T n 

'tj X E M ' \<lfuere is an orthonormal basis for 

is a corresponding n-current [M] E Vn(U) defined by 

T M) * 
X 

26.2 [M] (w) J n n 
M <w(x),~(x)>dH (x) , wE V (U) , 

where <, > denotes the dual pairing 

then there 

(That is, 

the n-current [M] is obtained by integration of n-forms over M in the 

usual sense of differential geometry: [M] (w) = J w 
M 

in the usual notation of 

differential geometry.) 

Motivated by t.11e classical Stokes' theorem ( J MdW= J ClMw if M is a 

compact smooth manifold with smooth boundary) we are led (by 26.2) to quite 

generally define the boundary CJT of an n-current T E V (U) 
n 

by 

26.3 CJT(w) 

* Thus ~ {x) E I\n (TxM) ; notice this differs from the usual convention of 

differential geometry where we would take 



(and dT = 0 if n = 0) 

subsequently we defi.IJ.e v 

Notice t.1>at CJ2T 0 

thus ClT E 

1 (U) = 0 
n-_ 

by 25.3 
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v n-1 (U) 

in case 

if T E V (U) 
n 

n = 0 • 

Here and 

Again mot.ivated by 'che special example T [ME as in 26.2 we define 

the mass of T , !1(T) for 'r E V n (U) by 

26.4 

(so ·that ~(T) = Hn(M) in case T [M] as in 26.2). More generally for 

any open W c U we def.ine 

26.5 suplwjsl,wEVn(U) T(w) 

sptwcw 

26.6 REMARK Notice that there is some flexibility in the definition of M 

we would still get the "correct" value Hn(M) for the case T = [Mll if we 

were to make the definition ~(T) supllw (x) II Sl T (W) ' 

wEVn(U) 

provided only that II II is a norm for An(Jrl) with the properties: 

(l) 

and 

(2) 

<w,E> s llwll lsi whenever i; E A cnlJ is simple 
n 

for each fixed simple i; E A o:l) 
n 

equality holds in (1) for some w f 0. 

(Evidently II II = I j is one such norm.) Notice that the smallest possible 

norm for An(:RP) having these properties is defined by 

llwll supi;EA (RPJ,Isl=l<w,i; > 
n 

i; simple 

<II II is called the co-mass norm for l\_n(J!l). ) There is a good argument to 

say that one should adopt this norm in the definition of ~(T) (and indeed 
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this is usually done- see e.g. [FF], [FHl]) since, by virtue of the consequent 

maximaZity of ~(T) it is more likely to yield equality in the general 

inequality ~(T) ~lim inf ~([Mj]) , if {Mj} is a sequence of c1 

submanifolds with weak limit T (see 26.12 below). Nevertheless we will here 

stick to the definition 26.4, because it has certain advantages (e.g. the 

application of the Riesz representation theorem - see below - is cleaner, and 

26.4 does yield the "correct" value in the most important case when T is 

an integer multiplicity current as in §27.) 

Notice that by the Riesz Representation Theorem 4.1 we have that if 

T E Vn(U) satisfies ~(T) < 00 ~ W cc U , then there is a Radon measure 

on u 

~T-a.e., 

26.7 

+ 
and ~T-measurable function T 

such that 

with values in 

T(W) = J < w(x) ,T(x) > d~T(x) 

p + 
A (R ) I ITI = 1 

n 

~T (the total variation measure associated with T) is characterized by 

26.8 ~T(W) supwEVn(U)' lwl~l T(w) ( = ~(T)) 
sptwc w 

for any open W c U . In particular 

~T(U) ~(T) 

Notice that for such a T we can define, for any ~T-measurable subset 

A of U (and in particular for any Borel set A c U) , a new current 

T l A E Vn (U) by 

26.9 (TL A:) (w) = t < w,T> d~T . 

More generally, if ~ is any locally ~T-integrable function on U then we 

can define T L ~ E V n (U) by 
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26.10 (Tl ¢) (W) J ¢ < w , E;, > dj.JT . 

Given T E Vn(U) we define the suppoPt spt T of T to be the 

relatively closed subset of U defined by 

26.11 spt T 

where the union is over all open sets W such that T(W) = 0 whenever 

with spt w c W • Notice that if < co for each w cc u 

and if is the corresponding total variation measure (as in 26.7, 26.8) 

then 

spt T 

where spt llT is the support of ].lT in the usual sense of Radon measures 

in U 

Given a sequence {T } c V (U) , 
q n 

we write T _... T 
q 

in U (TED (U)) if 

{T } converges weakly to T in the usual sense of distributions: 
q 

26.12 T 
q 

T <=> lim T (W) 
q 

T(W) 

n 

Notice that mass is trivially lower semi-continuous with respect to 

weak convergence: 

26.13 

if T 
q 

T in U then 

< lim inf ~(Tq) 
q-+= 

l;f open w c u . 

Notice also that by applying the standard Banach-Alaoglu theorem [Roy] 

(in the Banach spaces Mn(W) = {TE Vn(W): £:1w(T) <co} , W cc U) we deduce 

26.14 LEMMA If {T} c V (U) and 
q n 

then thePe is a subsequence {T ,} 
q 

sup 1 M (T ) < 
q::: =w q 

and a T E V (U) 
n 

foP each 

such that 

The following terminology will be used frequently: 

w cc u ' 

T in u . 
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26.15 TERMINOLOGY Given T 1 E v n (Ul) ' T 2 E Vn(U2 ) and an open w c u1 n 

we say Tl = T2 in w if Tl (W) = T 2 (w) whenever w is a smooth n-form 

in Rn+k with spt w c w 

Next we want to describe the cartesian product of currents T 1 E Vr(U1 ) , 

open. We are motivated by the case when 

of dime:ns.i.on r F s re_spectively o ~r.Je "~~'Jant to define T X T E V fU xu ) 
1 2 r+s· 1 2 

in 

such a way that for this special case (when = [ M .] ) we get 
J 

26.16 DEFINITION r+s 
If w E V (U 1xu 2 ) is written in the form 

u2' 

w :::; aa[3 (x, y) dxa 1\ dyf3 (using multi-index notation as in §26) 

r'+s'=r+s 

then we define 

(Notice in particular this gives T1 x T 2 (w1 /\ w2 ) = 0 if 

s' 
w2 EV (U 2) with r'+s' = r+s but (r',s') 1- (r,s).) 

One readily checks, using this definition and the definition of 3 (in 

26.3) that 

26.17 

(Notice this is valid also in case r or s = 0 if we interpret the appropriate 

terms as zero; e.g. if r= 0 then 3(T1xT 2) 

An important special case of 26.17 occurs when we take T E Vn(U) , 

U c RP, and we let [(O,ll] be the 1-current defined as in 26.3 with 

M (0, 1) c R ( (O,l) having its usual orien·tation) . Then 26.17 gives 
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26.18 d { [ (0, l)]XT) ({1}-{0}) X T - [{0,1)] X dT 

- {1} X T -· {O} X T - [ (0, 1)] X dT • 

Here and subsequently {p} , for a point p E U means the 

0-current E V 0 (U ) defined by 

26.19 {p} (CD) W(p) 
co 

(C:Cc{U)) 

Next we want to discuss the notion of "pushing forward" a curren·t T 

via a smooth map f : u ...,. v , u c Il v c RQ open. The main restriction 

needed is that fjspt T is p:Poper; that is f-l(K) n spt T is a compact 

subset of U whenever K is a compact subset of V • Assuming this, we 

can define 

26.20 

where is any function E 
00 

C (U) 
c 

'rJ w E Vn(V) , 

such that z;; = 1 in a neighbourhood of 

# spt T n spt f W . One easily checks that the definition of f#T in 26.20 

is independent of z;; • (Of course such z;; exist and l;;f#tll E Vn{U) because 

fjspt T is proper and spt w is a compact subset of V .) 

26.21 REMARKS 

(1) Notice that Clf#T = f#ClT whenever f, T are as in 26.20. 

( 2) If < co for each W c-c u , so that T has a representation 

as in 26.7, then it is straightforward to check that f#T is given explicitly 

by 
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Notice that we can thus make sense of f#T in case f is merely c1 (with 

flspt T proper) o 

(3) If T = [M] as in 26.2, then the above remark (2) tells us that 

if £1 (Mnu) is proper, 

(*) J < w (x), dfx#E; (x) > dHn (x) , 
M 

where s is the orientation for M . Notice that this makes sense if f is 

only Lipschitz (by virtue of Rademacher's Theorem 5.2). If f is 1:1 and if 

Jf is the Jacobian of f as in 8. 3, then the area formula evidently tells us 

that (since dfx#E;(x) = Jf(x)T(f(x)) , where T is the orientation for 

{x E M : Jf (x) > 0}, induced by f ) 

f#T(W) = f < W(y), T(y) > dJ-/n(y) . 
'f(M+) 

(Which confirms that our definition of f#T is "correct".) 

By using the above notions we can derive the important homotopy formula 

for currents as follows: 

If f, g U + V are smooth (V c JRQ) and h [0,1] xu+ V is smooth 

For a linear map 

by 

Then <w 1 

a £ e = ()( # ()( 

v I 
aEI 

n,P 

we define 

a £(e. )A ... A£(e. ) 
()( ll ~ 
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with h(O,x) = f(x) , h(1,x) = g(x) , if T E V (U), and if hI [0,1] x spt T 
n 

is proper, then (by the above discussion) h#( [(0,1)] x T) is well defined 

( E V 1 (V) ) and 
n+~ 

h#({l}XT-{O}XT- [(O,l)]X()T) 

Thus we obtain the homotopy formula 

26.22 

Notice that an important case of the above is given by 

(*) h(t,x) tg(x) + (1-t)f(x) f(x) + t(g(x)- f(x)) 

(i.e. h is an "affine homotopy" from f to g ) . In this case we note that 

by using the integral representation 26.7 and Remark 26.21(2) above that 

26.23 <sup lf-gl•sup E <ldf l+ldg llM(T). 
spt T X sptT X X = 

-+ 
e 1 1\ T and )l [(O, 1 )]XT so by Remark 26.21(2) (Indeed [(0,1)]xT 

we have 

and 26.23 follows immediately.) 
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we now give a couple of important applications of the above homotopy 

formula. 

26.24 LEMMA If T E Vn(U) , ~(T) , ~(3T) < 00 I;J w cc u and if f,g:U+V 

are f I spt T = g I spt T proper , then (Note that 

f#T , g#T are well-defined by 26.21(2) .) 

Proof By the homotopy formula 26.22 we have, with h(t,x) = tg(x) + (1-t)f(x) , 

3h# ([ (0,1)] X T) (W) + h#([ (0,1)] X dT) (W) 

h#([ (0,1)] X T) (dW) + h#([(O,l)] X dT) (W) , 

so that, by 26.23, 

0 , since f g on spt T • 

The homotopy formula also enables us to define f#T in case f is m~rely 

Lipschitz, provided f I spt T is proper and 

In the following lemma we let f(a) = f * ~a , 

a mollifier as in §6. 

26.25 LEMMA If T E V n(U) , ~w(Tl I ~(3T) 

f : U+V is Lipschitz with f I spt T proper~ 

for each w E Vn(V) ; f#T(W) is defined to be 

< 

< 00 I;J w cc u 

-n -1 
~a(x) =a ~(a x) , 

00 I;J w cc u , and 

then lim f (a)T (W) 
a+o # 

this limit; then 

with ~ 

if 

exists 

spt f#Tc f(spt T) and ~(f#T)::: (ess sup _1 lnflln~ _1 (T) 
f (W) f (W) 

I;J w cc v . 

Proof If a, T are sufficiently small (depending on w ) then the homotopy 

formula gives 
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where h: [O,l]XU-+V isdefinedby h(t,x) = ·tf0 (x) + (1-t)fT(x). 

Then by 26.23, for sufficient.ly small 0, T , ~~e have 

::: c sup 1 I f -f I • Lip f 1 

f- (K) flsptT 0 T 

where K is a compac·t subset of V with spt w c interior (K l . Since 

f 0 -+ f unifornuy on compact subsets of u , the result now clearly follows. 

Next 'lle want to define the notion of the cone over a given current 

We want to define this in such a way that if •r = [M] where M 

is a submanifold of sP-l c B.P then the cone over T is just 

CM {A.x: x E M 1 0<A.:::l} . We are thus led generally to make the definition that 

the cone over T 1 denoted 0 ~ T, is defined by 

26.26 

whenever T E Vn(U) with U star-shaped relative to 0 and spt T compact, 

where h : R x:~:l-+ RP is defined by h(t,x) = tx . 

and (by the homotopy formula) 

ao ~ T T - 0 ~ CiT • 

The following Constancy Theorem is very useful: 

Thus 0 ~ T E V l (U) n+ 

26.27 THEOREM If u is open w Rn (i.e. P = n), if u is connected, if 

T E Vn(U) and 3T= 0, then there is a constant c such that T = c[u] 

(using the notation of 26.2 -in the special case n = P , M u ; u is of 

course equipped with the standard orientation e 1 11 ••• 11 en) 

Proof We are given 

(1) T(dw) 0 whenever w E Vn-l(U) . 
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-n -1 § 0 ¢(0 x) , with ¢ a mo1lifier as in 6, and define 

if dist(spt w,CJU) > 0 

a E C00 (U) 
c 

since P = n any w E Vn(U) has this 

form.) 

Now if W cc U and 0 < dist(W,CJU) , we claim there is a constant 

c = c(T,W,0) such that 

(2) 

Indeed this follows directly from the fact that for fixed 0, W the set 

S = {¢0 * w: wE Vn(U), spt we W, J)w\ dLn::: 1} is compact in Vn(U) , relative 

to the nm::;m\ \ By the Riesz Representation Theorem 4.1, we see that (1) 

impLies 

(3) 

a E C 00 (W) 
c 

On the other hand if 

w 

n-1 
spt w c W , w E V ( U) , then 

by (1) • In particular, taking w = a ctx 1 /\ ••• 1\ dxj-l/\ dxj+l 1\ ••• 11 dxn , 

that dw =±Cla/Clxjdx1 11 ••• 11 dxn , and using {3) we have 

0 , j 

so 

for a E c:(U) with spt ac W . This evidently implies that 80 = constant 

(depending on 0) on each component of W The required result now follows 

from (3) by letting 0 + 0 and W t U 
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26.28 REMARK Notice ·that if we merely have ~(ClT) < 00 then the obvious 

modifications of the above argument (note that (3) si:ill holds) give first 

that 

r D.a 8 dL n [ s c sup[a[ ~(3T) 
j J 0 

co 
with c independent of 0 ' for a E· Cc(U) such that dist(spt a, 3U) > 0. 

8 ->- 8 in 
0k 

Thus (see §6 and in particular Theorem 6.3) we deduce that 

L~0c(U) (for some sequence 0k + 0), with 8 E BV10c(U) , and (from (3)) 

(*) 

Using the definition of !::!(3T) , we easily ·then check that ~(ClT) = [ne[ (W) 

for each open W c U (and ~(T) = J [8[ dL 11 ) • 

W n 
n = P, any wE vn-l(U) can be written w = L 

j=l 
j+l n 

dx 11 ••• /\dx for suitable 
00 

a. E C (U) , 
J c 

and 

Indeed in the presen·t case 

( -1) ja. dx 1 11 ••• 1\ dxj-l/\ 
J 

dw = div a dx 1 11 ••• 11 dxn 

for such w (a Therefore by (*) above we have 

3T(w) T(dW) J div ~ 8 dL n 

and the assertion ~(3T) = [ne[ (W) then follows directly from the definition 

of ~w(3T) and [n8[ (in §6). 

In the following lemma, for a 

l S i 1 < i 2 < ... < in S P , 

RP onto Rn given by 

we let denote the orthogonal projection of 

26.29 LEMMA Suppose E is a closed subset of u , u open in with 

L n (pa (E)) 

Then T l E 0 whenever T E Vn (U) With ~(T) , ~W(3T) < 00 for every W cc U . 
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26.30 REMARK The hypothesis Ln(pa(E)) 0 is trivially satisfied if 

Hn(E) = 0 , so in particular we deduce T L E = 0 if T E V (U) with 
n 

~(T) , M (ClT) =w < 00 v w cc u and Hn(E) 0 . 

Proof of 26.29 Let w E Vn(U) . Then we can write w = L w dxa , a 
aEin,P 

l(Tlw)p#dy 
a a 

( dy = dy1 11 ••• II dyn , y 1 , ••• , yn the standard coordinate functions in Rn • ) 

Thus 

(1) T(w) = L p #(Tlw )(dy) 
a a a 

(which makes sense because spt T L wa c spt wa = compact subset of U ) • 

On the other hand 

n-1 (because for any T E V (U) , 

thus i.n fact 

T(W dT) a 

T(d(w(XT)) - T(dwo:/1 T) 

ClT(W T) - T(d!,J !1 T) 
a a 
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Therefore by Remark 26.28 we have 8a E BV(pa(U)) such t.hat pa#(Tl Wa) (T) ~ 

( n J <T, e 1 1\ ••• i\e >8 dL , and hence pa#(Tlwa) L pa(E) ~ 0 because 
pa(U) n a 

L n(p (E)) 
()( 

0 . Then, assuming without loss of generality that E is close~ 

(2) 

s M (TL (JRP~E)) • lw I 
~w a 

for any W such that spt we W c U . 

Combining (1) and (2) we then have 

~(T) s c ~(T L (Rp~ E)) 

so G~at in particular 

(3) 

Letting K be an arbitrary compact subset of E , 

wq cc u , 

~(TL K) 

w cw 
q+l q 

0 . Thus 

00 

n W ~ K ; using (3) with 
q=l q 

~(T L E) = 0 as required. 

we can choose {w } 
q 

w = w 
q 

then gives 

so that 
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§27. INTEGER MULTIPLICITY RECTIFIABLE CURRENTS 

In this section we want to develop ti<e theory of integer multiplicity 

currents T E V n (U) , which, roughly speaking are those currents obtained 

by assigning (in a Hn-measurable fashion) an orientation to the tangent spaces 

T V 
X 

of an integer multiplicity varifold V (See Chapter 4 for terminology.) 

These currents are precisely those called locally rectifiable by 

Federer and Fleming [FF], [FHl]. 

Throughout this section n :::: 1 , k :::: 1 are integers and U is an open 

subset of Rn+k 

27.1 DEFINITION If T E Vn(U) we say that T is an integer multiplicity 

rectifiable n-current (briefly an integer multiplicity current) if it can be 

expressed 

(*) T(W) 

where M is an Hn-measurable countably n-rectifiable subset of u , 8 is 

a locally Hn-integrable positive integer-valued function, and 

is a Hn-measurable function such that for Hn- a.e. point x E M s (x) can 

be expressed in the form T 1 II ••• II Tn , where Tl,. •. ,Tn form an orthonormal 

+ 
T M (See Chapter 3,4.) Thus s<; T l 

X 
basis for the approximate tangent space 

orients the approximate tangent spaces of M in an Hn-measurable way. The 

function 8 in (*) is called the multiplicity and s is called the 

orientation for T • If T is as in (*) we shall often write T; I(M,8,1;) 

Notice ·that there is associated with any such T the integer multiplicity 

varifold V ,)[(M,8) in U . 
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27.2 REMARKS 

(1) If T1 , ·r 2 E Vn(U) are integer multiplicity, then so is 

then E v (U XV) 
r+s 

is also integer multiplicity, and in fact 

(3) If f:U-+V isLipschitz, T=J,(M,8,i;)EVn(U) (MCU) and 

f I sp-i: T is proper, then we can define f #T E V n (V) by 

(*) f#T(w) = J < w(f(x)), dMfx#i;(x) > 8{x) dHn(x) . 
t4 

Since I dMfx# !; (x) I JM.f(x) (as in § 12) by the area formula this can be 

writ·ten 

M 

(* *) f#T(w) J <w(y) I e (x) 
d fx#i;(x) 

) dHn(y) 
' I dMfx#s (x) I ' 

f(M) -1 
xEf (y) ntvi+ 

where M+ = {x E M: JMf (x) > 0} • Furthermore at points y where the approximate 

tangen'c space 

that f(M) is 

\f X E f-l(y) 

for Hn- a.e. 

(***) 

where 

T (f (lv!)) 
y 

countably 

(which is 

X EM ) ' + 

exists (which is Hn- a. e. y by virtue of the fact 

n-rectifiable) and where T M 
X ' 

dMf exist 
X 

again for Hn- a.e. y because T M , dMf exist 
X X 

we have 

±Tl/\ .... 1\Tn 

is an orthonormal basis for Hence (**) gives 

J < w (y) , T1 (y) > N {y) dHn (y) 
f(M) 
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where n(y) is a suitable orientation for the approximate tangent space 

T (f(M)) and N(y) is a non-negative in·teger. N, n in fact satisfy 
y 

M 
d fx#s(x) 

I dMfx#s (x) I 
N(y) n<yl , 

sothatfor Hn-a.e. yEf(M) wehave 

N (y) ::': 8(x) 

and 

N (y) 8(x) (mod 2) • 

Notice that, in case f is c1 , f#T agrees with the previous 

definition in 26.20 (see also 26.21(2)). Notice also that if f : U + W 

is Lipschitz and if V ~(M,8) is the varifold associated with 

T = ~(M,8,i;:) , then 

\lf T ::: llf V 
# # 

(in the sense of measures) with equality if and only if, for Hn- a.e. 

the sign in (***) above remains constant as x varies over 

In particular we have llf T 
# 

11 f v 
# 

in case f is 1:1 . 

A fact of central importance concerning integer multiplicity currents 

is the following compactness theorem, first proved by Federer and Fleming [FF] . 

27.3 THEOREM If V (U) 
n 

is a sequence of integer multiplicity currents 

with 



then there is an integer multiplicity 

such that T in u 0 
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< 00 v w cc u ' 

T E V (U) 
n 

and a subsequence 

We shall give the proof of this in Chapter 8. Notice that the existence 

and a subsequence with is a consequence of 

the elementary lemma 26.14; only the fact that T is an b!teger multiplicity 

current is non-trivial. 

27.4 REMARK No·te that the proof of 27.3 ill the codimension 1 case (when 

P = n+l) is a direct consequence of the Remark 26.28 and the compactness 

theorem 6. 3 for BV functions. 

In contrast to ·the difficulty in proving 27.3, it is quite straight-

forward to prove that if ~ converges to T in the strong sense that . j 

v w cc u ' and if T. are integer multiplicity Vj , 
J 

then T is integer multiplicity. Indeed we have ·the followillg lemma. 

27.5 LEMMA The set of integer multiplicity currents in Vn(U) is complete 

with respect to the topology given by the family {~w}wccu of semi-norms. 

Proof Let {TQ} be a sequence of integer multiplicity currents in Vn(U) , 

and {TQ} is Cauchy with respect to the semi-norms ~ 1 W cc U Suppose 

(8Q positive integer-valued on MQ 1 MQ countably 

n-rectifiable, Hn(MQnw) < oo for each W cc u.) Then 
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(1) 

\;/ P ::: Q , where sw(Q) 4- 0 as Q ->- co and where we adop·t the convention 

;;P = o , eP = o on 

(2) 

U ~ M 
p In particular, since 

and hence BP conver_ges in L1 (Hn) locally in U to an integer-valued 

function 6 . Of course (2) implies 

(3) 

{xE U: 6(x)>O} (1), (2) also imply 

(4) 

andhenceby(3) t;P convergesin L1 (Hn) locallyin U to a function 

with values in A (1Rn+k) with I c I = 1 and " · 1 n s s s~mp e on 

and (by (3)) T M 
X + 

except for a set of measure ::: sw(Q) in M+n W • It follows that 

l;(x) E li.n(TxM+) for Hn-a.e. x EM+ and we have shown that ~W(TP-T)->- 0, 

where T = ~(M+,6,i;) is an integer n-current in U . 

Finally, we shall need the following useful decomposition theorem 

fo:r· codimension 1 integer multiplicity currents. 
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27.6 THEOREM Suppose P = n+1 (i.e. . . -.nn+l ) u 1A3i open 1.-n """ and R is an 

integer multiplicity current in Vn+1 (U) with ~(3R) <"" '<I w cc u 

T = 3R is integer multiplicity. and in fact we can find a decreasing 

sequence of Ln+1-measurable sets {uj}~=~ of locally finite perimeter in 

u such tr.at (in u 

00 0 
R = I [uj] - I [v .n 

j=1 j=-oo J 
v. u~u., j:so, 

J J 

00 

T \ 3[u .] L. ' j=-00 J 

and 
00 

in particular 

~(T) ) ~w<Cl[uj]l 
]=-co 

'<I w cc u . 

27.7 REMARK 

n~1 j-1 1 j-1 j+l n+l 
*g = t., (-1) g.dx i\ • •• i\ dx i\ dx i\ • •• i\ dx , so that 

j=1 J 

Then 

d * g = div g dx 1 i\ ••• i\ dxn+ 1 Then for any L n+1 - measurable A c U we have 

3[A] (*g) [A] (d*g) 

and hence by definition of [DXA[ (in §6) and ~(T) (in §26) we see that 

(*) A has locally finite perimeter in U ~(Cl[A]) < oo 'tj w cc u , 

and in this case 
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(**) 

{ 
~~lA]) - f.ioxAI v w cc u 

3[A] = *VA , lnxAI a.e. in U . 

Here VA is the inward unit normal function for A (defined on the reduced 

boundary 3*A as in 14.3). 

Proof of 27.6 R must have the form 

where V is an L n+l_measurable subset of U and t;, (x) 

for each x E V Thus letting 

{ 
e (x) when 

B(x) -6(x) when 

0 when 

we have 

(1) R(w) 

xE V and t;,(x) 

xE V and t;,(x) 

xf V , 

J ae dLn+l , 

v 

+e1 A 

-e1 A 

w =a dxlA ••. A dxn+l E Vn+l(U) and (cf. 26.28) 

(2) 

(and 6 E BVloc(U)) . 

Define 

u. 
J 

v. 
J 

{x E U: e (x) ::: j} , j E ~ 

{xE U: S(x) :S-1-j}, j;::O 

u~u . l . 
-J 

•.• A en+l 

.•• A en+l 

v w cc u 



Then one checks directly that 

-
(3) e E 

j=l 

(XA characteristic function of 

00 

(4) R = E [ujn -
j=l 

Xu. 
J 

A 

I 
j=O 
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L Xv 
j=O j 

A c U 

[V .] in 
J 

and hence by (1) 

u 

Since T(W) dR(W) R(dW) w E Vn(U) we then have 

(5) T 3R = E 
j=l 

co 

E 
j=-oo 

d [ u.] 
J 

a[u.] , 
J 

I 
j=O 

a [v .] 
J 

so we have the :r·equired decomposition, and it remains only to pro•re ·that 

each U. has locally finite perimeter in U and that the corresponding 
J 

measures add. 

To check this, take \)jj E c1 (JR) with 

where E: 

with I gJ 

(6) 

E 

::: 

(0,~) 

a 

J div 
u 

t ::: j-l+E: 1/! . ( t) 
J 

1 I t ::: j-E: 

Then if a E 

we have (since 

N 

g L X 
j=M uj 

00 1 , .•. ,gn+ll gjE C00 (U) C (U) and g = (g , 
c c 

xu. 1/Jj 0 8 l;j j) that for any 

J 

I N 
div g L 1/!. o 8 dLn+l 

U j=M J 

lim J div g I 1/!. 0 e (0 ) dL n+l 
0+0 u j=M J 

-lim J g•gradG (0 )1/1 ~ (El (CJ)) dL n+l 
0+0 u J 

< (1+3E:) lim f a\grad](0 )\dLn+l 
0+0 u 

M S N 

(1+3s) Iu aJoeJ = (1+3s) fu ad~T 

I 
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by Lemma. 6.2 and (2). (Here e(O) are the mollified functions corresponding 

Then, taking M = N , we deduce that each U, has locally finite 
J 

perimeter in U On the other hand taking M = -N and defining 

N N 
I [u,]- I [v,] 

j=l J j=O J 
we see that (with g as in 27 o 7) (6) implies 

and hence, wi'th TN 

(7) 

00 

a :: 0 ' a E C (U) 
c 

I~ ( d*g) I :S ( 1+3E:) t ad)J.T ' 

()~' 

Ju ad)J. :S f adllT If N 
TN u :::: 1 I 

On the other hand by 14.1 we have 

N 

fu div 
dLn+l (8) ~(d*g) I g Xu, 

j=-N J 

I J V o •g dHn 
j=-N 3*u 0 J 

J 

where vo is the inward unit normal for Uo and a*uo is the reduced 
J J J 

boundary for Uo (see §14 and in particular Lemma 14.3). 
J 

By virtue of the 

fact that we see from l4o3(2) that on 3*u 0 n a*u 
J k 

If j,k . Hence (8) can be written 

N 00 

where hN OL x3 *u, and where \) is defined on u 3*u 0 by \) = \)0 

j=-co J J J=-N J co 

on <l*u, Since I vI = 1 on u a*u 0 this evidently gives 
J j=-00 J 

fa d)l 
TN fa ~ dHn 

N 

I J a dHn 
j=-N (J*U, 

J 
N 

fa I dvarr u J 
j=-N J 
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Letting N + 00 we thus have (by (7)) 

00 

Since the reverse inequality follows direc·tly from (5), t..h.e proof is complete. 

27.8 COROLLARY Let R be integer multiplicity E Vn+l (U) , U c Rp P ~ n+l • 

and suppose there is an (n+l) -dimensional c1 submanifold N of lRP with 

spt R c Nnu , Suppose further that T = ClR < 00 'tj w cc u 

Then T ( E Vn (U) l is integer multiplicity and for each point y E Nnu there 

is W CC U r y E ~~ 
y y 

and Hn+l measurable subsets {u. }''" 
J j=....OO 

with 

and with the following identities ~ <a[u.Til 
- y J 

< 00 'if j , 

holding in w 
y 

R 

T 

00 

I 
j=l 

00 

I 
j=-00 

I 
j=-00 

00 

[u. n I [u~u . n 
J j=O 

-J 

a[u.] 
J 

Proof The proof is an easy consequence of 27.6 using local coordinate 

representations for N . 

§28. SLICING 

We first want to define the notion of slice for integer multiplicity 

currents. Preparatory to this we have the following 16lli~a: 
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28.1 LEMMA If M is Hn~measurable, countably n-rectifiabZe, f is Lipschitz 

on JRn+k and M + - {x E M: I V1f (x) I > o} , then for L 1-aZmost aZZ t E JR the 

following statements hold: 

(1) Mt - f- 1 ct> n M+ is countably Hn-1 ·r bl -rect1- ·1-a e 

(2) For Hn-1 - a.e. X E Mt , TxMt and T M both exist, TxMt is an 
X 

(n-1)-dimensional subspace of TM and in fact 
X 

(*) 

Furthermore for any non-negative Hn-measurable function g on M we 

have 

Proof In fact (1) is just a restatement of Remark 12.8(2), and (2) follows 

from 11.6 together with the facts that for L 1 -a.e. t E JR and Hn-1 - a.e. 

(1) 

and 

(2) 

V11f(x) E T M 
X 

(by definition of '1/Mf in §12) 

1;1 T E T M 
X t 

(This last follows for example from the definition 12.1 of V1f(x) . ) 

The last part of the lemma is just a restatement of the appropriate version 

of the co-area formula (discussed in §12). 

28.2 REMARK Note that by replacing g (in 28.1 above) by g x characteristic 

function of {x: f (x) < t} we get the identity 
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J
··t 

-00 

so that the left side as an absolutely continuous function of t and 

d f 
dt J Yiil{f (x) <t}' 

a.e. t E :JR. 

.. . . n+k 
( U open :en R cUi let. f 1>2 Lipschit:.z: in U and lei: be defined 

f-£ n ~- a " e .. in Ivl by 

if V!Ylf (x) ,, 
u 

8 (x) 
-i-

(1c) if (x} =l 0 

For t.he 

- a.e. xE IYit and such that (*) of 28.1 holds, '"e have 

28.3 

and r~s unit length (for Hn-1 - a.e. X E Mt) Here we use the notation 

t.hat if v E and w E ·then v L Y.T E !\ (T !'!) 
n-1 x 

is defined by 

<vlw,a> 

Using ·this nr.Ytation. ":;'ie. can nov; define ·the notiori of a slice of T by 

f 1rJe cont.i.nue sco assume 'T i: 

28.4 DE FIN IT ION 
1 

For the (L ""- -almos·t a.ll 

exist and 28 "1 ("k} holds -a,e~ xE \"li i:.h i:he nota·tion int1:-oduced. 

above (an.d bearing in mind 28 .,3) v.re define t:he integer mul·tiplicii:y curren·t 
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where 

So defined, <T,f,t> is called the sliae of T by f at t . 

The main facts concerning the slices <T,f,t> are given in the following 

lemma: 

28.5 LEMMA 

(1) For eaah open w c u 

(2) If ~(ClT) < oo 'tJ w cc u, then for L1 -a.e. t E :R 

(3) If 

<T,f,t> = Cl[Tl {f<t}] - (ClT) L {f<t} • 

ClT is integer multiplicity in V 1 (u) , then for n-

<aT,f,t> = -a<T,f,t> • 

Proof (1) is a direct consequence of the last part of Lemma 28.1 (with g= 6+ ) • 

To prove (2) we first recall that, since M is countably n-rectifiable, 

we can write (see Remark 11.7) 

(1) 

where Mi n Mj = 0 

an embedded c1 

00 

M = U Mj , 
j=O 

'tJ i ;I j , 0 , and M. c N. 
J J 

j ::: 1 , 

submanifold of 
n+k 

:R • By virtue of this decomposition and 

the definition of VM (in §12) it easily follows that if h is Lipschitz 

on Rn+k and if are the mollified functions (as in §6) then, as 

(j + 0 , 



(2)· 
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') 

("t,Ic.ah: cvr1\7e:cge:t\c~::: in L-~ 

since N. is 
J 

(Incit:ed l:o 

in place of 

by smooth funct:ions and usin9 the fact 

1 

linear 

0 

and appl]t' ·::1:~:: above t.o h y.f . Then letting w E 

'T'd'' (0 )· '\ . '- '\.n w,~; 

T(dh (o) Awl + T(h (0 ) dtu) 

1~hen usin9 the int.e~rraJ. representatiox1s of "che form 26 .. 7 for 3~1~ vJe see tha·t 

(3) (3T L h) (w) 
(0'~ 

lim'r(dh '11w) + ('.rlh)(d'.!J). 

o+o 

Since t; (x) orients TxM , 'de have 

(4) 

(where 

Thus 

<,- ( ' dh (0) ' -t; X) 1 "' !\ 0)/ <"~:"( ) idh(o) ( , , T T) ·,s x , .. XJ) 1\ w 

T(dh (O) fl W) 

<t; (x), (dh ( 0 ) (x)) T fl w> 

r 
J <t; (x), (dh (O) (x)) T 1\ w> 8 dH0 

M 

r <t; (x) L V'1h (O) (x) ,w> 8 dHn 

JM 
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so that by ( 2) 

(5) lim. T (dh (G) 1\ W) = J <~ (x) L Vlh(x) ,w> 8 aHn • 
a+o M 

By definition 12.1 of VMh and by the chain rule for the composition of 

Lipschitz functions we have 

(6) on M 

(where we set y' (f) = 0 when f takes ·the "bad" values t or t-s 

note that 17Mh(x) = lll"lf(x) = 0 for Hn- a.e. in {xE M: f(x) = c} , 

c any given constant) . 

Using (5), (6) in (3), we thus deduce 

(ClT L h) (W) -1 J -s M <s L Vlf,w> 8 clHn 
{t-s<f<t} 

+ (TL h) (dw) 

Finally we let s + 0 and we use Remark 28.2 with g = 8 <~L Vlt;jVMfj ,w> 

in order to complete the proof of (2); by considering a countable dense set 

of wE Vn(U) one can of course show that 28.2 is applicable with 

g = 8 <~L llMf/jTfj,tu> except for a set F of t having L1-measure zero, 

with F independent of ttl • 

Finally to prove part (3) of the Lheorem, we first apply part (2) with 

3T in place of T . Since Cl 2T = 0 , this gives 

<3T,f,t> Cl [ (ClT) L {f<t}l . 

On the other hand, applying 8 to each side of the original identity 

(for T) of (2) , we get 
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3 [ (ClT) L {f<t}] -a< 'r,f,t> 

and hence (3) is established. 

t<>!otiva·ted by 'che above discussion we are led to define slices for an 

arbitrary current E Vn (U) which, together with its boundary, has locally 

finite mass in U Specifically, suppose !1w(T) + £1r.v(aT) < co if w cc u . 

Then \Ve define u slices" 

and 

28.7 

<T,f,t_) 

('I',f,t > 
+ 

a <T L {f<t} J - <aTl L{f<·t} 

-3(T L{f>t}) + (3T)L {f>t} . 

(ccnd the corrunon value is deno1:ed (T, f, t> ) 

for all but the couni:ably many values of 'c such that ~(T L {f=t}) 

+ ~( (C)T) L{f=t}) > 0 . 

The importan·t properties of ·the above slices are tha'c if f is Lipschitz 

on U (and if we continue to assume ~W(T) + ~W(3T) < 00 'if W cc U) , then 

28.8 spt (T,f,t±> c spt T n {x: f(x)=t} 

and, 'if open W c U , 

1 
ess supwlnfl 

-1 
£1w(<T,f,t+>l s lim inf h £1w<T L{t<f<t+h}) 

h+O 
28.9 

l £1w ( <T, f, t _>) s ess supwlnfl lim inf h-l M (T L { t-h<f<t} l 
MO 

=W 

Notice that M (T L{f<t}) 
=W 

is increasing in hence is differentiable 

for ·t E JR and ~ £1w<T L{f<t})dt s £1w<T L{a<f<b}) . Thus 

28.9 gives 
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rb ~(<T,f,t±>)dt ::': ess supWJofJ ~(Tl {a<f<b}) 
a 

for every open W c U . 

To prove 28.8 and 28.9 we consider first the case when f 

take any smooth increasing function y : R -+ R+ and note that 

(*) a (Tt yo f) (W) - ( (dT) L yo f) (w) 

(T L yo f) (do) - ( (dT) L yo f) (W) 

T(yofdJ.l) - T(d(yofW)) 

- T (y I (f) df A W) • 

Now let E > 0 be arbitrary and choose y such that 

y(t) = 0 for t < a , y (t) = 1 for 
l+E 

t> b , o:::y• (t) :::b-a for 

is 1 c 

a< t< b • 

Then the left side of (*) converges to < T,f,a+> if we let b -1- a , and 

hence 28.8 follow.s because spt y' c [a,b] . Furthermore the right side R 

of (*) evidently .satisfies 

(spt WCW) 

and so we also conclude the first part of 28.9 for f E c1 we similarly 

establish the second part for f E c1 . To handle general Lipschitz f we 

simply use f(O) in place of f in 28.6, 28.7 and in the above proof, then 

let a -1- 0 where appropriate. 

§29. THE DEFORMATION THEOREM 

The deformation theorem, given below in Theorem 29.1 and Corollary 29.3 

is a central result in the theory of currents, and was first proved by 

Federer and Fleming [FF] • 
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The special notation for this sect.ion is as follows: 

lSn.,l~k, 

C = [0,1] '<, •• X [0,1] (Standard unit Clilie in 1Rn+k) 

z;::;n+k = {z = ( n+k 
I ••qZ l 

L. 
J 

j-skele·ton of the decomposition 

collec'cion of j-·faces in Li 
J 

I' u (z+C) 

{z + F: z E F is a closed j-face of C} 

{ pF ' F E L .} F p > 0 
J 

denote the 

(n+l) -dimensional sub spaces of Rn+k which contain an (n+l) -face of the 

standard cube C . 

denotes the orthogonal projection of 

29.1 THEOREM (Deformation Theorem, unsealed version) 

Rn+k onto S., j=l, .. ql1-
J 

Suppose T is an n-·cv;rrent in 1Rn+k (i.e. T E V (Rn+k)) with 
n 

~(T) + ~(3T) < oo Then we can write 

T - p 3R + S , 

where P , R , s satisfy 

p 

with 
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!';!(R) S C!';!(T) , !':J(S) S c~(()T) 

(c=c(n,k)), and 

spt P U spt R c {x dist (x, sptT) < 2/n+k} 

spt ()p U spt S c {x dist (x, sptClT) < 2 ln+k } 

In case T is an integer multiplicity current, then P, R can be 

chosen to be integer multiplicity currents (and the SF appearing in the 

definition of P are integers). If in addition 3T ~s integer 

* multiplicity , then s can be chosen to be integer multiplicity. 

29.2 REMARKS 

(1) Note that this is slightly sharper than the corresponding theorem 

in [FF], [FHl], because there is no term involving ~(3T) in the bound for 

~(P) 

(2) It follows automatically from the other conclusions of the theorem 

that !':J(3S) S C!':J(3T) Also, it follows from the inequalities 

~(3P),!':J(S) ::: c~(3T) that S = 0 and ()p = 0 when 3T = 0. 

The following "scaled version" of 29.1 is obtained from the above by 

first changing scale 
-1 

X + p X 1 then applying 29.1, then changing scale 

back by x + px . 

* Actually (JT automatically is integer multiplicity if T is integer 

multiplicity and ~(3T) < oo see Theorem 30.3. 
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29,3 COROLLARY (DefOl~mation Theorem, scaled version) 

Suppose T , ClT woe as in 29, 1, and p > 0 • Then 

T - p 3R + S ; 

vJher•e P , R , s satisfy 

p 

llt(P) :S c~(T) 1;:\ (CJP) < (CJT) 

t!(R) < cp!;:f(T) 1;:\(Sl < cp!J(ClT) 

and 

sp·t P U spt R c {x dist. (x, spt 'l') < 2 v'n+k p} 

spt 3P U spt S c {x dist(x,sptClT) < 2Mk p} 

As 1:n 29 .1, ·in case T is integeP muZUpZiaii;y, so are P, R _; if 

CJT is integer multiplicity then so ·is s , 

The main step in the proof of the deformation ·theorem IN"ill involve "pushing" 

T onto the n-skeleton Ln via a certain re·traction map ~! • We first have 

·to establish the existence of a suitable class of retraction maps. This is 

done in the follorN"ing lemma, in vThich we use the notation: 

q centre point of C = (!,1, ... ,!) , 

Lk-1 (a) a+ ~-1 

Lk-1 (a;p) = {x E JRn+k 

(a a given point in B 1 (q)) 
;;: 

dist(x,Lk (a))< p} (pE (0,;!)) . 
-1 

Note that dist(Lk-l (a) , Ln) ::: ! for any point a E Bi (q) . 
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29.4 LEMMA For every a E s 1(q) there is a ZoaaZZy Lipsahitz map 

n+k n+k 
1/J : lR - ~-l (a) + E. - ~-l (a) 

suah that 

jDlJ!(x)j::; c/p, Ln+k_a.e. xEC- ~-l(a;p), pE (O,l), 

(c = c (n,k)) , a:nd suah that 

1/J (z+x) = z+l/J (x) , x E E.n+k- ~-l (a) , z E ~n+k 

Proof We first construct a locally Lipschitz retraction 1/!0 c- Lk-l (a) 

onto the n-faces of C • This is done as follows: 

Firstly for each j-face F of C , j ::: n+l , let aF E F denote the 

orthogonal projection of a onto F , and let 1/JF denote the retraction of 

onto which takes a point 

suchthat xE{aF+A(y-aF) :A.E(O,l]} 

x E F- - {a } 
. F to the point y E oF 

(Thus 1/JF is the "radial 

retraction" of F with aF as origin.) Of course 1/JFjoF = J;0F • Notice 

also that for any j-face F of C , j ::: n+l , the line segment aaF is 

contained in Lk_1 (a) ; in fact if JF denotes the set of ~ such that S~ 

(see notation prior to 29.1) is parallel to an (n+l)-face of F , then 

(because aaF is orthogonal to F , hence orthogonal to each S~, i E JF 

we have 

(1) c 

and this is contained in Lk_1 (a) 

(2) ~-l(a) 
N 
u 

i=l 

because (by definition) 



tp ( j) ,- { 1 
U-[F ~ aFJ F is a j-face of c} 

-l- u {(;: G is a (j-1) -face of c} 

by setting 

i) 1-lj! - F '" {a_} = ~J • 
l:'' F 

(Notice tha·t ·then is locally Lipschitz on i·ts domain by virtue of ·the 

fac·t that each lj!F is the identi'cy on 3F , F any j-face of C • ) 

Then the composite tp (n+l) _, lj! (n+2 ) o ••• o l/1 (n+k) makes sense on 

·~ Lk-l (a) (by (1)), so we can set 

w, 
0 

_ ,1 (n+l) ,1, (n+2) U (n+k) I C •. ( , - -f o ., o ••• o \ ,_ '"'k-1 a, 

No·tice that ljJ 0 has 'che additional property 1:hat if 

z E zzn+k and x, z+x E C , then 1)!0 (z+x) = z+l)!0 (x) • 

(Indeed x , z+x E C means that either x , z+x are in Ln (where 1)!0 is ·the 

identity) or else lie in the interior of parallel j-faces F1 , F 2 = z+F1 

(j 0:: n+l) of c •.vith z orthogonal to and a"P = z+aF . ) It follows 
- 2 -1 

·that we can then define a re'craction lj! of all of C ~ Lk-l (a) onto Ln 

by setting 

\j!(z+x) z+1)!0 (x) , xE c~~_1 (a) , zE zzn+k 

We now claim that 

(3) 
n+k 

on JR ~ Lk_1 (a,p) , c=c(n,k) 

(This will evidently complete the proof of the lemma.) 
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We can prove (3) by induction on k as follows. First note that (3) 

is evident from construction in case k = 1 • Hence assume k ::: 2 and assume 

(3) holds in case k- 1 replaces k in the above construction. Let x be 

· f · · (C) L. ( ) 1 t y -- ,,,n+k (x) ("'n+k 1.· s the any po1.nt o 1.nter1.or - k-l a;p , e ~ ~ 

radial retraction of c - {a} onto ac) , and let F be any closed 

(n+k-1)-face of C which contains y • 

Suppose now new coordinates are selectE!d so that F c JRn+k-l x {O} c JRn+k, 

and also let ~-2 (a) = Lk-l (a) n lRn+k-l X {0}) • By virtue of (1) we have 

aF E ~-l(a) , hence 

Let be the orthogonal projection of 

so that aF = pF(a) 

by (2) we deduce 

(5) 

onto ( ::J F) I 

Furthermore by definition of y 
ly-al 

we know that y-a = lx-al (x-a) and 

hence, applying pF , we have 

y-a = ~ p (x-a) 
F 1x-a1 F 

Hence since I y-a I ::: 3/4 , we have 

(6) 

-Now let 1jJ be the retraction of F - ~-2 (a) onto the n-faces of F 

-
( \j.l defined as for 1jJ but with (k-1) in place of k aF in place of a , 

n+k-1 . R 1.n place of in place of ~-l(a)) 

By the inductive hypothesis, together with (4), (5), (6) we have 
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(7) 16~ <Y> I ::: c , (n~ <Y> I 
dist(y,Lk_2 (a)) 

:S c (4 / 3 ) c lx-al 
_Jy-aF I I Pp (x-a) I 

:S (4 / 3 )c . lx-al 
d1.st(x,Lk:_l (a)) 

Also, by the definition of ~n+k we have that 

(8) I D~n+k (x) I :S _c_ , I D~n+k (x) I 
1x-a1 

Since ~(x) ~ o ~n+k (x) , we have by (7) , (8) and the chain rule that 

ln~<x> I ::: 16 ~(y) I ln~n+k(x) I < _c_ lx-al 
- lx-al dist(x,Lk-l (a)) 

c 
dist(x,Lk-l (a)) 

Proof of Deformation Theorem 

We use the subspaces SJ., ••• ,SN and projections p 1 , ... ,pN introduced 

at the beginning of the section. Let F. = C n S. 
J J 

(so that F. 
J 

is a closed 

(n+l)-dimensional face of C), let xj be the central point of Fj , and 

for each j = 1, ••• ,N define a "good" subset 

and 

(1) ~(T l 
-1 U p. (B (g+z))) 

n+k J p 
zE:?Z ns. 

J 

(S to be chosen, G.=G.(S)) 
J J 

G . c F . n B 1 (x . ) 
J J • J 

by 

'<I pE (0,!) 
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We now claim that the "bad" set Bj = FjnB1(xj) ~ Gj 

Ln+l_measure (taken in Sj) small; in fact we claim 

in fact has 

(2) 

which is indeed small if we choose large S. To see (2), we argue as follows. 

For each b E Bj there is (by definition) a pb E (O,i) such that 

(3) ~(Tl 
-1 

U p. (B (J::tt,z))} ::: 
n+k J Pb 

zE:iZ ns. 
J 

and by the covering theorem 3.3 there is a pairwise disjoint subcollection 

of the collection such that 

(4) 

But then, setting b = b~ in (3) and summing, we get 

\ n+l < 0 -1) 
(i.e. L p ~ - "' , 

~ 

(*) 

{p:~ OJn+z}}n=l 2 is a pairwise disjoint 
] p~ "' "' , , ••• 

zE :;zn+kns . 
J 

(using the fact that 

collection for fixed j ) • Thus by {4) we conclude 

Ln+l(B.) < 0 -1 5n+lw 
J - "' n+l ' 

which after trivial re-arrangement gives (2) as required. Thus we have 

and it follows that 

(5) 

where q is the centre point (i, ... ,i) of C . (So p. (q) =X •• ) 
J J 

( *) We of course assume T 'I 0 • 
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Then selecting S large enough so that 

see from (5) that we can choose a point a E 

{ n+k 
Lk-l (a)= a+Lk~l, ~-l (a;p) = xE R : dist(x,Lk-l (a))< p} (as in the proof 

of 29.4) and note that in fact 

~-l(a;p) 
-1 U , p. (B (p. (a) +z)) 

N 
u 

j=l n+k J p J 
zE~ ns. 

J 

Then since p. (a) E G. 
J J 

we have (by definition of 

(6) 'rJ p E (0,!) 

Indeed let us suppose that we take s such that 
n+l -1 

20 wn+l N S 

Then more than half the ball B!(q) is in the set 
N -1 n P. <G.> 

j=l J J 

< w /2 (n+k) 
n+k 

and hence, 

repeating the whole argument above with 3T in place of T , we can actually 

select a so that, in addition to (6), we also have 

(7) 'rJ p E (O,!) • 

Now let ~ be the retraction of 
n+k 

R ~ Lk-l (a) onto Ln given in 

Lemma 29.4, and let 

(8) Tp TLLk_1 (a;p), (3T)p TL~_1 (a;p), 

so that by (6), (7) 

(9) M(T ) 
= p 

n+l n+l 
::; cp ~(T) , ~( (3T) p) ::0: cp ~(3T) 

Furthermore by 28.10 we know that for each p E (O,!) we can find 

p* E (p/2,p) such that 

(10) ~(<T,d,p*>) < ~ M(T -T ) ::0: cp~_(T) , 
- p = p p/2 
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where d is the (Lipschitz) distance function to Lk-l (a) 

(d(x) dist(x,Lk~l(a)),Lip(d)=l) and <T,d,p*> isthesliceof T by 

d at (Notice that we can choose such that (10) holds and such 

that <:r,d,p*> is integer multiplicity in case T is integer multiplicity 

see Lemma 28.5 and the following discussion.) 

We now want to apply the homotopy formula 26.22 to the case when 

n+k 
]R Lk_1 (a;o), a> 0 . Notice that, h is only 

Lipschitz on :Rn+k 'V L (a ·0) 
k-1 ' so we define h# , ~# as in Lemma 26.25. 

(We shall apply h#, ~# only to currents supported away from [0,1] XLk_1 (a) 

and Lk_1 (a) respectively.) 

Keeping this in mind we note that by 29.4, (6) and (7) we have 

(11) 

and 

(12) 

Similarly by the homotopy formula 26.22, together with 26.23 and (6), (7) 

above, we have 

(13) 

and 

(14) 

Notice also that by (6), (10) and 26.23 we have 

(15) 

and 
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(16) ~(h#([(0,1)]x <T,d1p*>)) ~ cp~(T) 

Next note that by iteration (11), (12) imply 

(17) { 

~(~#(Tp-Tp/ 2V)) ~ 2cp~(T) 

~(ljJ# ( (3T) p- (3T) P/2v)) ~ 2cp~(3T) 

for each integer v ~ 1 1 where c is as in (11)1 (12) (c independent of 

V ). Selecting p = i and using the arbitrariness of V 1 it follows that 

(18) { 

~(ljJ#(T-Ta)) ~ c~(T) 

~(~#(3T-(3T)a)) ~ c~(3T) 

for each a E (0 11) (with c independent of a ) • 

Now select p = pv = 2-v and p~ E [2-v-1 12-v] such that (10) 1 (15) 1 

(16) hold with in place of then by (15) 1 (16) 1 (17) 1 (18) we 

have that 

are Cauchy sequences relative to ~ 1 and ~(<T 1 d 1 p~>) + ~(ljJ#<T,d,p~ ) + 0 

Hence there are currents Q, s1 E Vn (JRn+k) and R1 E Vn+1 (:Rn+k) such that 

(19) 

(lim M(Q-•1• (T-T )) = 0 
= "'# p* v 

0 

lim ~(R1-h#([(0,1)] X (T-Tp*)) = 0 . 
v 

Furthermore by the homotopy formula and 26.23 we have for each V 



(20) T-T p* 
\) 

Since dTP~ = (dT)p~- <T,d,p~> 

thus get that 
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(by the definition 28.6, 28.7 

(21) T-Q = dRl + s1 • 

of slice) we 

(Notice that Q, R1 are integer multiplicity by (19), 28.4, 28.5 and 27.5 

in case T is integer multiplicity; similarly s1 is integer multiplicity 

if aT is.) 

Using the fact that 1/J retracts n+k 
:R - Lk-l(a) 

(by 26.23) that spt 1/J#(T-TP*l c Ln , and hence 
\) 

(22) spt Q c Ln 

We also have (since 1/J(z+C) c z+C 'rJ z E :?Zn+kl that 

onto L we know 
n 

(23) { 
spt R1 U spt Q c {x: dist(x,spt T) < ln+k } 

spt s1 c {x: dist(x,spt aT) < /n+k } 

and, by (18), (19), we have 

(24) l M(Ql ::: cM{T) , !::!<R1l ::: 

l::!(Sl) ::0 C!::!(dT) • 

Cl::!(T) 

Also by (18) and the semi-continuity of !::! under weak convergence, we have 



( 25} ~(()Q) s lim inf 

lim inf 

s c~(ClT) 

Now let F be a given face of 
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~(31/J# (T-Tp*)) 
v 

1').(</J,.Cl (T-T *)) 
- rr Pv 

L (Le. 
,n 

0 

and let F interior of 

F • Assume for the moment that F c JRn x{o} ( c JRn+k) , and le·t p be the 

orthogonal projection onto JRn x{o} . By construction of ljJ 'lle know that 

po 1p = 1/J in a neighbourhood of any point y E F . We therefore have (since 

Q is given by (18)) that 

(26) 

It then follows, by the obvious modifications of the arguments in the proof 

of the constancy theorem (Theorem 26.27) and in Remark 26.28, that 

( 27) (Q L Fl <wl 

(28) 

L < e 1 11 ... 11 en,IJJ(X) > 8F(x)dLn(x) 

F 

L leF\dLn, ~((3Q)LFJ 
F 

Furthermore, since 

(Q L F- i3[F]) (iJJ) J (8F-i3) < e 1 II ... 11 en,IJJ(x)>dL n(x) 
0 

F 

(by (27)), we have (again using the reasoning of 26.28) 

(29) 

where Xo 
F 

J ~(QL :F- i3[F]l = L JeF- 13\dLn 

1 ~(3(QLF-i3[F]ll: J ln<xo<8F-Sll\, 
Rn F 

characteristic function of F 
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Thus taking S = BF such that 

(30) { n{ o } nr o } 1 min L X E F : eF:::: B u L tX E F : eF (x) ::: 8 :::: 2 

(which we can do because Ln (F) = 1 ; notice that we can take BF E 2Z if 

(31) 

is integer-valued), we have by 6.4, 6.6, (28) and (29) that 

I ~(QlF-B[F]):::cJF jneFj=c~(Qllh 
l £;'!(3(QLF-6[F]))::: c L JneFj=c~(QLF) 

F 

We also have by 26.30 

(32) Q l 3F = 0 . 

Then swmning over F E Ln and using (31), (32) we have, with P 

that 

(33) 

Actually by (30) we have 

(34) 

I ~(Q-P) ::: c~(3Q) 

1 ~(3Q-ClP) < c~(ClQ) 

\BFJ ::: 2 Jo JeFjdLn , 

F 

and hence (using again the first part of (28)), since £;'!(P) 

(35) ~(P) :5 C£;'!(Q) 

Notice that the second part of (33) gives 

(36) ~(dP) :5 C£;'!(3Q) 
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Finally we note Lhat (21) can be written 

(3 7) T-P 

Setting R = R1 , S = + (Q-P) ·the theorem now follovlS immediately from 

(23), (24), (25) and (33), (35), (36), (37); the fact that P, R are integer 

multiplicity if T is should be evident from ·the rew.arks during the course 

of the above proof, as should be the fact tha'c s is integer multiplicity 

if T !i dT are~ 

§30. Jl,PPUCP1TIONS OF THE DEFORi'lATION THEOREivJ 

We here establish a couple of simple (but very important) applications 

of the deformation ·theorem, namely ·the isoperimetric theorem and the weak 

polyhedral approximation theorem. This latter theorem, when combined with 

the compactness theorem 27.3 implies the important "boundary rectifiability 

theorem" (30.3 below), which asserts that if T is an integer multiplicity 

current in Vn(U) and if ~(3T) < oo V W cc U , then ClT ( E V n-l (U) ) is 

integer mutiplicity. (Notice that in the case k = 0 , ·this has already 

been established in 27.6.) 

30.1 THEOREM (Isoperimetric Theorem) 

Suppose V ( n+k, 
T E n-1 JR ' is integer multiplicity, n ~ 2 , spt T 

and 3T= 0 . Then there is an integer multiplicity current 

with spt R compact, 3R = T ~ and 

where c = c(n,k) . 

n-1 
n 

~(R) S c ~(T) , 

is compact 
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Proof The case T = 0 is trivial, so assume T # 0 . Let P, R, s be 

integer multiplicity currents as in 29.3, where for the moment p > 0 is 

arbi tra.ry, and note that S = 0 because CiT= 0 . Evidently (since 

(*) 

V FE Fn-l (p)) we have 

n-1 
t;j(P) = N(p)p 

for some non~negative integer N {p) • But since ~ (P) :::: c !1 (T) (from 29. 3) 
- 1 

we see that necessarily N(p) 
n~j_ 

0 in .(*) if we choose p= (2c~(T)) . Then 

P = 0 and 29.3 gives T = 3R for some integer multiplicity current R 
_1_ 

with spt R compact and ~(R) s cp~(T) c' (~(T))n-1. 

30.2 THEOREM (Weak polyhedral approximation theorem) 

Given any integer multiplicity T E V (U) 
n 

there is a sequence {Pk} of currents of the folm 

(**) 

v w cc u ~ 

such that Pk ~ T (and hence also (lpk ~ CiT) in u (in the sense of 26.12). 

Proof First consider the case U = JRn+k and ~ (T) , !:! (ClT) < oo In this 

case we simply use the deformation theorem: for any sequence pk t 0 , 

the scaled version of the deformation theorem (with p= pk) gives Pk as 

in (**) such that 

(1) 

for some Rk , Sk such that 

(2) 

and 
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Evidently (1), (2) give Pk (w) + Tk (W) 

if 3T = 0 , so the theorem is proved in case U = JRn+k and 'I' , 8T are 

of finite mass. 

In the general case v1e ·take any Lipschitz function ¢ n+k 
on JR such 

that ¢ > 0 in u' ¢ = 0 in JRn+k ~ U and such that {x = ¢ (x) > A.} cc U 

'if A. > 0 For L1 -a.e. 28.5 implies that '!' = T l {x : ¢ (x) > ,\} 
-~. -

is such that ~ (3TA.) < 00 Since spt TA cc U , we can apply the argument 

above to approximate TA for any such ), Taking a suitable sequence 

A.j + 0 , the required approximation then immediately follows. 

30.3 THEOREM (Boundary 1·ectifi ability theorem) 

Suppose T is an integer mult·iplicity current in Vn (U) with 

~\q (dT) < oo 'if w cc u Then ClT( E Vn-l {U)) is an 1:nteger multiplicity 

cu.rrent. 

Proof A direct consequence of 30.2 above and the compactness theorem 27.3. 

30.4 REMARK Notice that only the case 

the above proof. 

§31. THE FLAT METRIC(*) TOPOLOGY 

3T. = 0 
J 

Vj of 27.3 is needed in 

The main result to be proved here is the equivalence of weak convergence 

and "flat metric" convergence (see below for terminology) for a sequence of 

Note that the word "flat" here has no physical or geometric significance, 
but relates rather to Whitney's use of the symbol b (the "flat" symbol 
in musical notationj in his work. We mention this because it is often a 
source of confusion. 
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{T.} c V (U) 
J n 

such that 

'tj w cc u . 

We let U denote (as usual) an arbitrary open subset of 
n+k 

JR 

I T is in·teger multiplicity and 

(3T) < 00 v w cc u} , 

and 

1 
M,W 

{T E 1 spt ~: c l!J , ~ (T) + ~ (3'l') ::; M} 

for any M > 0 and W cc U • 

On I we define a family of pseudome·trics by 

31.1 

where RE Vn+l (U), SE Vn(U) are integer multiplicity} 

\lle henceforth assume I is equipped with the topology given (in the 

usual way) by the family f<" } ·'\1 Wccu 
of pseudometrics. This topology is 

called the "flat metric topology" for I 

neighbourhoods at each point, and 

'rf w cc u . 

T. -+ T 
J 

there is a countable base of 

in ·this topology if and only if 

31.2 THEOREM Let T, {Tj} c Vn (U) be ·£nteger multiplicity with 

supj?.l{~VI(Tj) +~~(()Tj)} 

26.12) if and only 

< 00 \j w cc u . Then T. 
J 

~(Tj,T) + 0 for each w cc u 

T (in the sense of 

31.3 REMARK Notice that no use is made of the compactness theorem 27.3 in 

this theorem; however if we combine the compactness theorem with it, ·then we 

get the statement that for any family of positive (finite) constants 
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{c (W) }wccu the set {TE 1 :~(T)+~(:3T) ::;c(W) V W cc u} is sequentially 

compact when equipped with the flat metric topology. 

Proof of 31.2 First note that the "if" part of the theorem is trivial 

(indeed for a given W cc U , the statement ~(Tj ,T) -+ 0 

with spt w c W) .• (T.-T) (W)-+ 0 for any fixed wE Vn(U) 
J 

evidently implies 

For the "only if" part of the theorem, the main difficulty is to 

establish the appropriate "total boundedness" property; specifically we show 

that for any given E > 0 and W cc W cc U, we can find N=N(E:,W,W,M) and 

integer multiplicity currents P1 , •.. ,PN E Vn(U) such that 

(1) 

where, for any P E I , 

N 

rM,w c I B w<P.> , 
j=l E:, J 

B -(P) = {SE I: d-(S,P) < d . This is an easy s,w -w 
consequence of the deformation theorem: in fact for any p > 0 , 29.3 

guarantees that for T E IM,W we can find integer multiplicity P , R, S 

such that 

(2) T-P :3R+ S 

(3) p 

(4) spt P c {x: dist(x,spt T) < 2/n+k p} 

(5) 

spt S c {x: dist(x,spt T) < 2/n+k p} 

(6) 

~(R) + ~(S) ::; cp~(T) ::; cpM • 

Then for p small enough to ensure 2/n+k p < dist(W,:3W) , we see from (2), 

(6) that 
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<Jw(T,P) :0: cpM . 

Hence, since there are only finitely many P1 , •.. ,PN currents P as in 

(3), (4), (5) (N depends only on M,W,n,k,p) , we have (1) as required. 

Next note that (by 28.5 (1), (2) and an argument as in 10.7(2)) we 

can find a subsequence {Tj,} c {Tj} and a sequence {wi} , wi ccwi+1 cc u, 
00 

u such that < 00 Vi • Thus from now on 

we can assume without loss of generality that W cc U and 

(7) 

Then t.alk:e any 

E: = 1 , ! , l etc . 

that 

and hence 

(8) 

spt T. c w 
J 

Vj • 

W such that W cc W cc U and apply (1) 

to extract a subsequence {T } 
l jr r=1,2, ... 

-r cJw {T . , T . ) < 2 
Jr+1 Jr 

where Rr , Sr are integer multiplicity, 

spt Rr U spt sr c w 

1 
~{Rr) + ~(Sr) <-

- 2r 

with 

such 

Therefore by 27.5 we can define integer multiplicity R{~) , s(~) by the 

~- absolutely convergent series 

00 

then 
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JR. 

Thus we have a subsequence of 
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{T.} 
J 

such that 0 . 

Since we can thus extract a subsequence converging relative to from 

any given subsequence of {T .} 1 

J 
we then have since this 

can be repeated with W = W. 1 
1. 

Vi as above), the required 

result evidently follows. 

§32. RECTIFIABILITY THEOREM, AND PROOF OF THE COMPACTNESS THEOREM. 

Here we prove the important rectifiability theorem for currents T 

which, together with 8T 1 have locally finite mass and which have the 

additional property that for JlT- a.e. x The main tool 

of the proof is the structure theorem 13.2. Having established the 

rectifiability theorem, we show (in 32.2 1 32.3) that it is then straight-

forward to establish the compactness theorem 27.3. Although this proof of 

compactness theorem has the advantage of being conceptually straightforward, 

it is rather lengthy if one takes into account the effort needed to prove 

the structure theorem. Recently B. Solomon [SB] showed that it is possible 

to prove the compactness theorem (and to develop the whole theory of integer 

multiplicity currents) without use of the structure theorm. 

32.1 THEOREM (Rectifiability Theorem) 

Suppose T E Vn(U) is suah that ~(T) + ~(8T) < oo 'if w cc u I and 

*n 0 (JlT~x) > 0 for JlT- a.e. x E u . Then T is rectifiable ; that is 
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(*) 
T = J,(M,6,!;) , 

where M is countably n-reotifiable, Hn~measurable, 6 is a positive 

locally Hn-integrable function on M, and !;(x) orients the approximate 

tangent space TxM of M for Hn- a.e. x E M . 

Proof First note that (by Theorem 3.2(1)) 

(1) 

for W cc U , and hence 

Notice that the same argument applies with dT in place of T in order to 

give 

(3) 

(Notice we could also conclude 0 for any d > 0 

by 3. 2 (1) .) 

Next notice that, because ~ (T) + ~ (3T) < co V W cc U , we know 

from 26.29 (see in particular Remark 26.30) that (by (2)) 

(4) co} 0 , 

and (by (3)) 

(5) 0 . 

(*) The notation here is as for integer multiplicity rectifiable currents (§27): 

J(M,6,!;) (W) JM <!;,w>6 dHn 

although of course 6 is not assumed to be integer-valued here. 
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Now le·t 

and note by (1) ·that H is ·the countable union of sets of fini·te Hn-measure. 

Furthermore by 26 .. 29 \r:Je kno'VJ ·that 11m (P) = 0 for each purely unrectifiable 
~ 

subset of f'.-1 ! and hence 

(6) (P) 0 'r/ purely unrectifiable P c JYI 

*n 
by virtue of 3. 2 (1) and the fac·t thai: G · (jJT,x) > 0 for every x E H. (by 

de£ ini tion of M) • Then by ·the structure theorem 13. 2 we deduce that 

(7) M is countably n-rectifiabZe. 

*Il 
Furthermore (since 8 (]JT,x) > 0 for )JT- a.e. x E U by assumption), we 

have 

(8) T T L M • 

Next we note that is absolutely continuous with respect to 

(by (4) and 3.2(2)) and hence by 'che differentiation ·theorem 4. 7 we have 

where 8 is a positive locally Hn-integrable function on M and 8 _ 0 

on U ~ M . Then by the Riesz representation theorem 4.1 we have 

(9) T(w) 

for some Hn-measurable, A (JRn+kl -valued function r-
n s ' 1 . 

It thus remains only to prove that s(x) orients T M for Hn- a.e. x EM. 

(i.e. S (x) = ±T 1 II ••• II T n for Hn- a.e. xE M , where 

orthonormal basis for the approximate tangent space T M 
X 

X 

is any 

of M.) To see 
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00 

this, write M = u M. ' j=O J 
0 

a submanifold of :Rn+k , j ::: 1 • Now, by 3.5, if j ::: 1 we have, for 

Hn- a.e. 

(10) 0 . 

Hence, writing as usual ~x,A(y) 

that, for all x E M. 
J 

such that (10) holds, and for A small enough to 

ensure that spt w c ~X, A (U) , 

+ E C\) I 

where E(A) + 0 as A+ 0 • (E(A) depending on x and w .) That is 

r n 
J <~ (x+Az) , w (zJ>e (x+Az) dH (z) + E (A) 

~ X,A(Nj) 

for all x E M. 
J 

such that (10) holds. Since N. 
J 

this gives 

(11) lim ~ A#T (w) = e (x) I <E; (x) , w (z)> dHn (z) 
A+O x, P 

x E M. {independent of w ) 
J 

where P is the tangent space 

TN. of N. at x 
X J J 

Thus (by definition of TxM - see §12) we have (11) 

with P = T M for Hn- a.e. x E M. 
X J 

On the other hand by (5) we have 

= o (A) as 

for Hn- a .e. x E Mj (independent of w) 

# 
CIT(~ ,w) 

X,A 

A + o 

Thus for such x 
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{12) lim(()Jl, '#T) (W) 
A.+O },, A 

0. 

On the other hand for lJT- a. e. X E u I for any 
n+k w cc JR we have by (4) 

that 

(13) lim sup ~w 
HO 

Thus (by (11), (12), (13)), for 
n , 

H - a.e. X EM , we can find a sequence 

+ 0 such tha·t 

s 
X 

where S E V (JRn+k) is defined by 
x n 

ds 
X 

0 , 

(14) Sx(w) = 8(x) JP <s(x), w(zl> dHn(z) 1 

wE Vn(Rn+k), p = TxM. We now claim that (14), taken together with the 

fact that as 
X 

(without loss of 

w E Vn-1 (JRn+k) 

0 ' implies 

generality) 

so that w(y) 

1 n+k . 
(y , ... ,y ) , J ~ n+1 y 

that s (x) orients p To see this, assume 

that p = JRnX {0} c JRn+k and select 

= yj</J(Y)dy 
il i 

n-1 
II ••• 1\ dy where 

and 

Then since y. :: 0 on JRn x {o} we deduce, from (14) and 
J 

the fact that ()sx 0 , 

0 ()Sx(w) 

That is, since 

s (dw) 
X 

f ~ i1 in-1 
e (x) P <P (yl<s (xl ,dyJ 11 dy 11 ••• 11 dy > 

is arbitrary, we deduce that 

s(x)•(e.lle. II ••• lie. ) = 0 whenever j ~ n+1 and 
J ~1 ~n-1 

{i1 , ... ,in_1 } c {1, •.• ,n+k} . Thus we must have (since ls(x) I 1) , 

s (x) = ± e 1 11 ••• 11 en as required. 
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We can now give the proof of the compactness theorem 27.3. For 

convenience we first re-state the theorem in a slightly weaker form. (See 

the remark (2) following the statement for the proof that the previous version 

27.3 follows.) 

32.2 THEOREM Suppose {Tj} c Vn(U) , suppose Tj, dTj are integer 

multiplicity for each j , 

(*) < 00 'r/ w cc u ' 

and suppose Tj ~ T E Vn (U) . Then T is an integer multiplicity current. 

32.3 REMARKS 

(1) Note that t:he general case of the theorem follows from the special 

case when U = RP and spt Tj c K for some fixed compact K ; in fact if 

T 
J 

are as in the theorem and if ~ E U then by 28.5 (1), (2) and an 

argument like that in Remark 10.7 (2) we know that, for L 1 - a.e. r > 0 , 

place of T. 
J 

for some subsequence {j'} c {j} (depending on r) . 

(2) The previous (formally slightly stronger) version 27.3 of the above 

theorem follows by using 30.3. (Note that the proof of 30.3 needed only the 

weaker version of the compactness theorem given above in 32.2; indeed, as 

mentioned in Remark 30.4, it used only the case <lT. = 0 of 
J 

27.3. 

Proof of 32.2 We shall use induction on n with U c RP (U,P fixed 

independent of n) First note that the theorem is trivial in case n = 0 

Then assume n ~ 1 and suppose the theorem is true with n-1 in place of n. 

By the above remark (1) we shall assume without loss of generality that 

spt T j c K for some fixed compact K , and that U = RP . Furthermore, by 
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remark (l) in combina-tion wi'ch the inductive hypothesis, for each E, E :RP 

we have 

(1) (l (T L Br (E,)) is an integer multiplicity current 

(in 
p 

I) l(JR~)) 
n-

for r > 0 . 

From 'che above assumptions U = JRP , spt T j c K we know that 0 lli( ClT- T 

zero boundarv and is the weak limi·t of 0 !lii' ~T - T 
- 0 j j since 0 ~ 3T is 

integer multiplicity (by the inductive hypothesis) v-Je ·thus see tha'c the 

general case of the theorem follows from the special case when 3T ~ 0 • We 

shall therefore henceforth also assume 3T = 0 . 

Next, define (for E, E JRP fixed) 

By virtue of 28.9 we have (since ClT = 0) 

(2) 

(Notice that f' (r) exists a. e. r > 0 because f (r) is increasing.) 

*D. 
On the other hand if 8 (lJT, E,) < n (T) > 0 a given constant), then 

lim sup 
f(p) 

< n and hence for each cS > 0 we can arrange ' p+O 
n 

lunp 

(3) d (fl/n (r)) s 2wl/n n 
dr n 

for a set of r E (0,6) of positive L1-measure. (Because 

reS 
6-l d (fl/n (r)) dr s cS-1 fl/n (6) S wl/nn for all sufficiently small cS > 0. ) 

J 0 dr n 

Now by (1) and the isoperimetric theorem, we can find an integer 

multiplicity such that and 
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(4) 
n 
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::: c~(a (TL Br(i;))) 

n-1 

::: cnM (T L B (1',;)) n = r 
(by (2) 1 (3)) 

for a set of r of positive L1 -measure in {0,8).* Since 8 was arbitrary 

we then have both (1), (4) for a sequence of r + 0. But then (since we 

can repeat this for any such that if c is any compact 

{ P *n } subset of X E JR : e (j.JT,x) < n I by Remark 4.5(2) we get for each given 

p > 0 a pairwise disjoint family B. 
J 

of closed balls covering 

j.lT-almost all of C , with 

(5) U B. c {x: dist(x,C) < p} 
j J 

and with 

(6) M(S~p))::: cl)M{TlB.) 
= J = J 

for some integer multiplicity s~Pl with 
J 

(7) as ~P> 
J 

a (Tl B.) 
J 

Now because of (7) we have S~p) - TL B.= a({i;.} ~ (S~p) - TL B.)) , and 
J J J J J 

hence (by 26.23, 26.26) we have for w E Vn(JRP) 

(8) i<s~P) -TLB.)(w)l :::cpM(S~p) -TLB.)idwj 
J J = J J 

(by (6)). 

Therefore we have 2: (S ~p) - T l B.) ~ 0 as P .j. 0 1 and hence 

(-9) 

as p + 0 . 

j J J 

T + 2: (S ~p) - T l B.) 
j J J 

~T 

However since the series 2: s~Pl 
j J 

and L: TL B. 
J j 

are ~-absolutely 

convergent (by (6) and the fact that the Bj are disjoint), we deduce that 

(JRP-U B.) + 2: s~P) and hence the left side in (9) can be written T L 
j J j J 

* In case n = 1 , (1) I (2) I (3) (for n < t) imply a {T L B {1',;)) = 0 I hence we get, in 
place of (4} , M {S } ::: M {T L B (1',;}} trivially by takifig S = 0 • 

= r := r r 
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(using (6) again, together with the lower-semicontinuity of ~(W open) 

under weak convergence) 

J.lT({x: dist(x,C) < p}) ::: J.lT({x: dist(x,C) < p}~c) + 

Choosing n such that 1 
en :::2 , 

cn].lT ({x: dist(x,C) < p}) • 

this gives 

].lT({x: dist(x,C) < p} ::: 2]1T({x: dist(x,C) < p} ~ C} . 

Letting p + 0 , we get ].lT(C) = 0 

Thus we have shown that for ].lT- a.e. We 

can therefore apply 32.1 in order to conclude that T = I(M,8,~) as in 32.1. 

It thus remains only to prove that 8 is integer-valued. This is achieved 

as follows: 

First note that for Ln- a.e. x E M we have (cf. the argument leading 

to (11) in the proof of 32.1) 

(10) A + o , 

where [TxM] is oriented by ~ (x) • Assuming without loss of generality 

that T M = :Rn x {0} c :RP and setting d(y) = dist(y,JRnX {0}) 
X 

by 28.5(1) we can find a sequence A. + 0 and a p > 0 
J 

<nx,A.#T,d,p> is integer multiplicity with 
J 

~Q(<nx,A.#T,d,p>) ::: c (independent of j 
J 

where Q = B~ (0) x :RP-n c JRP . Then by 28.5(2) we have 

such that 

S.- <nx,A.#T) L {y:d(y)<p} 
J J 

is such that, writing 
n P-n p 

Q = Bl (0) X R C :R 

(11) 
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Now let p denote the restriction to ~ of the orthogonal projection 

-onto and let S. be the current in V (~) obtained by 
n J 

setting s . (w) = s . (W) , w E Vn(Q} such that w = w in 
J J 

26.28 and (11) above, 

f 
B~ (0) 

for some integer-valued BV100 (B~(O)) function e. with 
J 

l 
M (p#S.) f I ej I dL n 

(12) 
B~(O) J B~ (0) 

~ (()pii .) J joe .1 
B~(O) J n J 

B1 (0) 

f I oe . I + J I e . I dL n ::: c , 
n J J 

'Bl (0) Bn(O) 
1 

Then by (11), (12) we deduce 

and hence, by 

c independent of j ' and hence by the compactness theorem 6.3 we know 

converges strongly in Ll in B~(O) to an integer-valued BV function 

on the other hand s. 8 (x) [JRnx {o}] by (10), and hence 
J 

- e(x)p#[JRn x {o}] = e(x)[JRn] 
n 

p#Sj in Bl (0) We thus deduce that 

thus 8(x) E ~ as required. 



CHAPTER 7 

AREA MINIMIZING CURRENTS 

c£'his chapteJ~ provides an int:roduction to the theor_y of area min:L.'11izing 

curren·ts. In the first sec'cion (§33) of the chapter ;,e derive some basic 

preliminary properties, and in particular we discuss the fact that ·the 

integer mul·tiplicity varifold corresponding to a minimizing· current is 

stable (and indeed minimizing in a certain sense). In §34 t.here are some 

exis·tence and compactness results, including the important theorem that if 

< co then T is also minimizing in 

U and the corresponding varifolds converge in the measure theoretic sense 

of §15. This enables us to discuss tangent cones and densities in §35, and 

in particular make some regularity statements for minimizing currents in §36. 

Finally, in §37 we develop the standard codimension l regularity ·theory, due 

originally to De Giorgi [DG], Fleming [FW], Almgren (A4], J. Simons (SJ] and 

Federer [FH2] . 

§33. BASIC CONCEPTS 

Suppose A is any subset of 
n+k 

JR ,AcU, U open in 

T E Vn(U) an integer multiplicity current. 

33.1 DEFINITION We say that T is minimizing in A if 

n+k 
JR and 

whenever w cc u , as 3T (in U) and spt(S-T) is a compact subset of 

A n w • 
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There are two especially important cases of this definition: 

(1) when A U 

(2) when A = N n U, N an (n+k1 ) -dimensional embedded submanifold of 

Rn+k (in the sense of §7). 

As a matter of fact, these are the only cases we are interested in here. 

CorJcesponding to the ctu::r.ent T = I(M,8,t;) E vn (U) 'l'l'e havc9 the integer 

multiplicity varifold V = ~(M,8) As one would expect, V is stationary 

in U if T is minimizing in U and ClT = 0 ; indeed we show more: 

33.2 LEMMA Suppose T is minimizing in N n U , where N is an 

' +k ) d ·m -: l c2 subman"· .Pold of .,.,n+k (k1., k) ,n 1- 1- ensvona vJ' = - and suppose ClT = 0 in 

u . Then v is stationary in N n u in the sense of 16.4, so that in 

particular v has locally bounded generalized mean curvature in u (in 

the sense of 16.5). 

In fact V is minimizing in N n U in the.sense that 

(*) 

whenever w cc u and ¢ is a diffeomorphism of u such that ¢(Nnu) c Nnu 

and ¢I U ~ K = 1 for some comnact 
=u~K "'"' 

K c W n N. 

Note: Of course N = U (when k 1 =k) is an important special case; then V 

is stationary and in fact stable in U . 

33.3 REMARK In view of 33.2 (together with the fact that 8::: 1) we can 

apply the theory of chapters 4 and 5 to V in particular we can represent 

T = ~(M*,e*,t;) where M* is a relatively closed countably n-rectifiable 

subset of U , and 6* is an upper semi-continuous function on M* with 

6*::: 1 everywhere on M* (and 6* integer-valued Hn- a.e. on M*) 
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Proof of 33.2 Evidently (in view of the discussion of §16) the first claim 

in 33.2 follows from (*) (by taking ¢= ¢t in (*) , ¢t is in 16.1 with 

U n N in place of U) . 

To prove ('') >o•re first no·te tha'c, for any W, ¢ as in the statement of 

the ·theorem, 

(l) 

by Remark 27.2(3). Also, since Cl'r 

(2) 

Finally, 

(3) 

lV1 (OJ T) 
=W , ~~ 

0 (in U) , v'fe have 

0 • 

By virtue of (2), (3) we are able to use the inequality of 33.1 with 

S = ¢#T . This gives (*) as required by virtue of (l) . 

We conclude this section with the following useful decomposition lemma: 

33.4 LEMMA Suppose T 1 , T 2 E V11 (UJ are integer multiplicity and suppose 

T1 + T2 is minimizing in A , A c u , and 

for each W cc u . Then T1 , T2 are both minimizing in A . 

Proof Let X E D11 (U) be integer multiplicity with spt X c K, K a 

compact subset of A n W , and with ax = o . Because is minimizing 

in A >ve have (by Definition 33 .1) 



However since ~(T1+T2 ) 

~(T2 ) , this gives 
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In view of the arbitrariness of X , this establishes that T1 is minimizing 

in A n W (in accordance with Definition 33 .1) . Interchanging T 1 , T 2 in 

the above argument, we likewise deduce that T2 is minimizing in A n W 

§34. EXISTENCE AND COMPACTNESS RESULTS 

We begin with a result which establishes the rich abundance of area 

minimizing currents in Euclidean space. 

34.1 LEMMA Let S E Vn_1 (~n+k) be integer multiplicity with spt s compact 

and as = o Then there is an integer multiplicity current 

such that spt T is compact and ~ (T) s ~ (R) for each integer multiplicity 

R E V (~n+kl with spt R compact and oR = s . 
n 

34.2 REMARKS 

(1) Of course T is minimizing in Rn+k in the sense of Definition 33.1. 

(2) By virtue of 33.2 and the convex hull property 19.2 we have auto-

matica1ly that spt T c convex hull of spt S . 

n-1 

(3) ~(T) n S c~(S) 

by virtue of the isoperimetric theorem 30.1. 

Proof of 34.1 Let 

R is integer multiplicity, spt R compact, oR= S} . 
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Evidently I 8 t 0 o (e.g. 0 ~ S E I 5 • ) Take any sequence {Rq} c I 5 \vith 

(1) lim M(R ) = infREI ~(R) , 
q+oo = q s 

let BH(O) be any ball in 
n+k 

JR such that spt S c BR (0) , 

f JRn+k -~ BR (0) be ·the nearest point (radial) re·tract of 

(0) Then Lip f = 1 and hence 

(2) 

on t.he other hand Clf,H 
11 q 

!li(f R ) :0 M(R ) 
= # q = q 

f#CJR . q = f s = 
# 

because 

spt S c (0) o Thus f#Rq c I 8 and by (1), (2) we have 

(3) lim !'1 (f#R ) = inf El ~(R) 
q+oo - . q R S 

(0) 

and let 

onto 

and 

Now by the compactness theorem 27.3 there is a subsequence {q'} c {q} and an 

integer multiplicity current such that and (by (3) 

and lower semi-continuity of mass with respect to weak convergence) 

(4) 

However spt T c BR (0) 

~(T) :': infREI ~(R) 
s 

and 

T E I 5 , and the le~ma is established (by (4)) . 

s ' so that 

The proof of the following lemma is similar to that of 34.1 (and again 

based on 27.3), and its proof is left to the reader. 

34o3 LEMMA Suppose N ·is an (n+k1 )-dimensionaZ compact c1 submanifoZd 

embedded in JRn+k and suppose R1 E V n (JRn+k) is given such that aR1 = 0 , 

spt R1 c N and 
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for some integer multiplicity s E V (JRn+kl with spt s c N} i' 0 . 
n+l 

34.4 REMARKS 

Then there is T E IR such that 
1 

(1) R- R1 = Cls with S integer multiplicity and spt S c N means 

that represent homologous cycles in the n-th singular homology class 

(with integer coefficients) of N (See [FHl] or [FF] for discussion.) 

(2) It is quite easy to see that T is locally minimizing in N 

thus for each ~ E spt T there is a neighbourhood U of ~ such that T 

is minimizing in N n U 

We conclude this section with the following important compactness 

theorem for minimizing currents: 

34.5 THEOREM Suppose {Tj} is a sequence of minimizing cv~rents in u 

with < co for each w cc u and suppose 

T. ~ T E V (U) 
J n 

Then T is minimizing in u and ]JT · + \lT 
J 

(in the usual 

sense of Radon measures in u). 

34.6 REMARKS 

(1) Note that ).!T· + ).!T means the corresponding sequence of varifolds 
J 

converge in the measure theoretic sense of §15 to the varifold associated 

with T . (T is automatically integer multiplicity by 27.3.) 

(2) If the hypotheses are as in the theorem, except that spt T. c N. c U 
J J 

and Tj is minimizing in Nj , {N.} a sequence of c1 embedded 
J 

(n+k1 )-dimensional submanifolds of JRn+k converging in the c1 sense to 
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(*) 

N f N c U an embedded (n+k1 )-dimensional submanifold of t.hen 

T minimizes in N (and 1;1e still have ll ~,. ]lT 
Tj 

in the sense of Radon 

measures in u) We leave t:his modification of 34.5 to the reader. (It 

is easily checked by using suitable local represelTtations for the N. and 
J 

by obvious mod if ica tions of the proof of 3 4. 5 given belmv. ) 

Proof of 34.5 Let K c U be an arbitrary compact set and choose a smooth 

cp ' U + [0,1] such that ¢ _ 1 in some neighbourhood of K and 

spt ¢ c {x E U dist(x,K) < t:} where 0 < s < dist. (K, 3 U) is arbitrary. 

For 0 < A < 1 , let 

W, {x E U : ¢ (x) > A} • 
1\ 

'rhen 

(1) 

for each A , 0 S A < 1 • 

By virtue of 31.2 we know tha·t '\q(Tj,T) + 0 for each W cc U, 

hence in particular we have 

(2) T - T. 
J 

oR. + S. , ~W (RJ.) + ~ (SJ.) -+ 0 
J J 0 0 

(W0 {xE u: rjJ(x) > O}) 

By the slicing theory (and in particular by 28.5) we can choose 

0 < a< 1 and a subsequence { j '} c { j} (subsequently denoted simply by 

{j }) 

(3) 

where 

(*) 

such that 

Cl(R.LW l = (ClR.) Lw + P. 
J a J a J 

spt P j c ClW 
(]. 

P. 
J 

is integer multiplicity, and 

in U 

3 1jJ. : u+ U, 1jJ .IN. in a diffeomorphism onto 
J J J 

with respect to the c1 metric. 

Thus N, and 1P . -+ 
J 

1 
=U 

locally 
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M(P .) + 0 • = J 

We can also of course choose a to be such that 

(5) M(T. Law > = o 
= J a 

Vj and M(TL aw > 
= Ci. 

Thus, combining (2), (3), (4) we have 

(6) 

with R. 
J 

S. integer multiplicity (R. = R. L W , S. 
J J J a J 

(7) M(R.) + M(S.) .... 0 • 
= J = J 

0 • 

s . L w + PJ.) with 
J Ci. 

Now let x E Vn(U) be any integer multiplicity current with ax 0 

and spt X c K . We want to prove 

(8) ~ (T) S ~ (T+X) . 
a a 

(In view of the arbitrariness of K, X this will evidently establish the 

fact that T is minimizing in U • ) 

By (6), we have 

(9) 

Now since 

we have 

(10) 

for A > a 

M(T. Law > = J a 

~ (T+X) 
a 

~ ~- (T.+X+aR.) - M(S.) 
=wa J J = J 

is minimizing and a (X+ClR .) 
J 

0 with spt(x+aii. .) c w 
J a 

But by (3) we have M(ClR. Law) = M=(PJ.) .... 0 I and by (5) = J a 

0 I ~ (T L awa) = 0 . Hence letting A .j. a in (10) we get 



201 

t\J (T .+X+ClR.) ::: 
a J J 

and ·therefore from (9) \ve obtain 

(11) 

(12) 

~\J (T+X} :::: 
CJ. 

In particular, setting X 

f:'I1,1 (T) ;:: 
CJ. 

- E. E. f 0 . 
J J 

0 , we have 

E. + 0 • 
J 

Using the lower semi-continuity of mass with respect 'co weak convergence 

in (11), we then have (8) as required. 

It thus remains only to prove that ~T. + ~T in the sense of Radon 
J 

measures in U . First note that by (12) we have 

so that (since 

lim sup M_ (T.) ~ M (T) , 
=W J '='N 

a a 

K c W c {x: dist(x,K)<s} 
a 

by cons·truction) 

lim sup ~T. (K) ~ ~{x:dist(x,K)<s}(T) · 
J 

Hence, letting s + 0 

(13) lim sup ~T. (K) ~ ~T (K) . 
J 

(We actually only proved this for some subsequence, but we can repeat the 

argument for a subsequence of any given subsequence, hence it holds for the 

original sequence {T.} . ) 
J 

By the lower semi-continuity of mass with respect to weak convergence, 

we have 

(14) ~T {W) ~ lim inf ~T. (W) 
J 

V open W cc u . 
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Since (13), (14) hold for arbitrary compact K and open W c U, it 

now easily follows (by a standard approximation argument) that 

Jtd~ + jfd~ for each continuous f with compact support in U , as 
T, T 

J 

required. 

§35. TANGENT CONES AND DENSITIES 

In this section we prove the basic results concerning tangent cones and 

densities of area minimizing currents. All results depend on the fact that 

(by virtue of 33.2) the varifold associated with a minimizing current is 

stationary. This enables us to bring into play the important monotonicity 

results of Chapter 4. 

Subsequently we take N to be a smooth (at least c2 ) embedded 

(n+k1 )-dimensional submanifold of 
n+k 

JR (kl :Ok) , U open in lRn+k and 

(N- N) n U = fll • Notice that an important case is when N = U (when k 1 = k) . 

35.1 THEOREM Suppose T E V (U) 
n 

is minimizing in U n N, spt T c U n N 

and aT = 0 in u . Then 

(1) exists everywhere in u and 

continuous in u ; 

(2) For each x E spt T and each sequence 

subsequence {;\J,,} such that n T 
X,Aj,# 

C in 

is integer multiplicity and minimizing in 

35.2 REMARKS 

is upper semi-

{A,,}+o, 
J 

where 

there is a 

'V!t>O, and 

If C is as in (2) above, we say that C is a tangent cone for T 
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at x . If spt C is an n-dimensional subspace P (notice that since C 

is in·teger multiplicity and ac ~ 0 ' it then follows from 26.27 that 

C = mi[P] for some m E ZZ , assuming P has constant orientation) then 

we call C a tangent plane for T a·t x • 

(2) No·tice that is not clear whe·ther or not there is a unique 

·tangent cone for T at x thus it is an open ques·tion 'N-hether or not C 

depends on the particular sequence p,j} or subsequence [Aj.} used in its 

definition. Recently it has been shown ([SL3]) that if C is a tangent cone 

of T at x such tha·t 1 for all 1: E spt C ~ { 0} then C is 

the unique tangent cone for T at x , and hence as A + o 

Also B. 'O'lhite [WB ] has shown in case n = 2 that C is always unique 

(with spt C consisting of a union of 2-planes mee·ting transversely at 0) • 

Proof of 35.1 By virtue of Lemma 33.2 we can apply the monotonicity formula 

of 17.6 (with a = 1) and Corollary 17.8 in order to deduce tha'c 

exists for every x E U and is an upper semi-continuous function of x in 

u . 

Similarly the existence of C as in part (2) of 35.1 follows directly 

(*) 
from Theorem 19.3 and the compactness theorem 34.5 (more particularly from 

Remark 34.6 with N. Notice that Remark 34.6 establishes first 
J 

that C is minimizing only in the (n+k1 )-dimensional subspace TxN c Rn+k 

However since orthogonal projec·tion of Rn+k onto T N 
X 

does not increase 

area, and since spt C c TxN , it then follows that C is area minimizing 

in 

(*) 

n+k 
R 

Actually 19.3 gives+ n 0 , A# V C = V C for the varifold V C associated with 

C, but then x/\ C(x)=O and hence nO,A#C=C by 26.22 with 

h (t,x) = tAx+ (1-t) x . 
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* 35.3 THEOREM Suppose T E Vn(U) is minimizing in u n N. spt T c u n N ' 

and CJT = 0 (in Ul • Then 

0 'rf a > 0 

(2) There is a set F c E (E as in (1)) with Hn- 2+a(F) = 0 

'rf a > 0 and such that for e.aah x E spt T F there is a tangent plane (see 

3 5. 2 ( 1) above for terminology) for T at x 

Note: We do not claim E , F are closed. 

The proof of both parts is based on the abstract dimension reducing 

argument of Appendix A. In order to apply this in the context of currents 

we need the observation of the following remark. 

35.4 REMARK Given an integer multiplicity current there 

is an associated function where 

(n+k.) N = ' ' n, /, such that (writing 88 (x) 

~~ (x) is the jth component of the orientation 
+ 

where S(x) relative to the 

usual orthonormal basis e, II ••• II e, 
ll ln 

1 S i 1 < i 2 < •.• < in S n+k for 

A (JRn+k) (ordered in any convenient manner) . Evidently, for any x E lRn+k , 
n 

<Ps (x+A.y) 

and, given a sequence {si} c Vn(I+Rn+k) of such integer multiplicity 

currents, we trivially have 

~j dHn + ~j dHn 'rf 'E {1 } '~'s '~' J , ••• ,N ' s 
l 

* Cf. Almgren [A2] 

S, ~ S 
l 
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\Js. + lls 
l 

\i\!e shall also need ·the follO\ving· simple leiTLma, the proof of which is 

1ef"t to the reader" 

35. 5 LE~1~1A Suppose s is 1-n. , as = o and 

for some positive integer rn < n . (Recall n+k 
T)x' 1 : y + y-x ' y E JR • ) Then 

where Cls 0 0 and s0 is minimizing in JRn+k-m 

Purthe.rmore if s is a cone (i.e. nO,A#S = S for each A> 0) , then 

so is s 0 . 

Proof of 35.3(1) For each positive integer rn and B E (0,1) let 

Now T is minimizing in U n N so by the monotonicity formula of 17.6 

(which can be applied by virtue of 33.2) we have, firstly, that um,B is 

open, and secondly that for each x E um,B , 

such that 

(1) 
n w (J 

-n 

't/ (J < p ' 

there is some ball 

y E B (x) • 
p 

B2 (x) c u a 
p m,!-J 
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We ultimately want to prove 

Hn-3~ ( ~ {x E u S : m-1+13 < 0n (ll ,x) < m-S}) 0 l m, T 
m=l 

for each sufficiently small a, S > 0 , and, in view of (1), by a rescaling 

and translation it will evidently suffice to assume 

(2) 

and then prove 

(3) 

u ' n w 0 
n 

't/ 0 < 1 , y E B 1 (0) , 

Hn-3+a{x E B1 (0) Gn ( ) 1 13} - ).!T,x ::: m- + 0 . 

We consider the set T of weak limit points of sequences s. = n T 
~ X.,A.# 

~ ~ 

where lx.l < 1-A. , 0< A.< 1 , with lim x; E B1 (0) and lim A.= A:': 0 both 
~ ~ ~ ~ 1 

existing. For any such sequence Si we have (by (2)) 

< 00 

for each W cc nx,A(U) in case A > 0 I and for each 
n+k 

W cc JR in case 

A = 0 • Hence we can apply the compactness theorem 34.5 to conclude that 

each element S of T is integer multiplicity and 

(4) S minimizes in n ,U n n ,N in case S 
X 1 1\ X 1 A 

with lim x. = x and lim A. 
1 1 

(5) S minimizes in all of 

with lim x. = x and lim A. 
~ ~ 

35.1 (2).) 

A > 0 1 and 

S =lim nx.,A.#T 
1 1 

0 . (Cf. the discussion in the proof of 
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For convenience \Ve define 

I llx, >Y in case lim A.> o (as in ( 4) ) 
~ 

(6) u s l :IRn+k in case lim A.= o (as in (5)) ' l 

so that s E ·o n(Usl for ea.ch s E r 

Now by definition one readily checks ·that 

(7) T 0 < A< l ' I X I < 1-A ' 

and, by (2), 

(8) V y E u~ , S E T . .. , 

Furthermore by using 34. 5 tog· ether with the monotonici ty formula 17. 6, one 

readily checks that if Si ~ S (Si,S E T) and if y,yi E B 1 (0) with 

lim yi = y , then 

(9) 
n 

::: lim sup 8 (]15 . ,y i) 
l 

It now follows from (7), (8), (9) and 34.5 that all the hypotheses of 

Theorem A.4 (of Appendix A) are satisfied with (using notation of Remark 35.4) 

F {¢5 :sET} 

and with sing defined by 

{xEU ·8n(]15 ,•) :::m-l+S} s. 

for S E T . We claim that in this case the additional hypothesis is 

satisfied with d = n-3. Indeed suppose d::: n-2 ; then there is S E T and lly, A#S = s 

(n-2) -dimensional subspace of JRn+k, L c sing ¢ . Since we 1/ y EL , A> 0 with L an 
s 

can make a rotation of JRn+k to bring L into coincidence with JRn- 2x {o} , 

we assume that L Then by Lemma 35.4 we have 
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2-planes, with 
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s [ n-2] 
JR X SQ I 

N = 2+k , a 2-dimensional area minimizing 

Then spt s0 

P. n P. = {0} 
l J 

is contained in a finite union 
q 
u P. 

l 
of 

i=l 
IJi i j . (For a formal proof of this 

characterization of 2 dimensional area minimizing cones, see for example [WB l .) 

In particular, since is constant on P. ~ {O} 
l 

(by the constancy 

theorem 26. 27) , we have that. 
n 

G (Jls, y) E .'iZ for every and by 

(8) it follows that IJ y That is, sing a 

contradiction,hence we can take d = n-3 as claimed. We have thus established 

(3) as required. 

Proof of 35.3(2) The proof goes similarly to 35.3(1). This time we assume 

(again without loss of generality) that 

(1) u 

and we prove that T has a tangent plane at all points of spt T n B1 (0) 

except for a set F c spt T n s 1 (0) with 

(2) Hn-2+a(F) 0 \1 ct > 0 . 

T is as described in the proof of 35.3(1), and for any SET and 

i3 > 0 we let 

{xE sptS Bp(x) c US and 

h(spt S,L,p,x) < Bp for some p > 0 

and some n-dimensional subspace L of Rn+k} , 

where US is as in the proof of 35.3(1) (so that S E Vn(U8 )), and where we 

define 



with 

(2) 

and 

(3) 

q 
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h(spts,L,p,x) = supyEsptsnB (x) jq(y-x) I ' 
p 

the orthogonal projection of JRn+k onto 
1 

L 

Now no-tice that (Cf. the proof of 35.3 (1)) 

n T x,A# T 'if 0 < A< 1 , I X I < 1-A ' 

Furthermore if then by the monotonicity formula 

17.6 it is quite easy to check that if y E RS(S) and if with 

then for all sufficiently large j Because of this, 

and because of (2) , (3) above, it is now straightforward °CO check that the 

hypotheses of Theorem A.4 hold with (again in notation of Remark 35. 4) 

F {¢5 :sET} 

and 

(Notice that is completely determined by and hence this 

makes sense.) In this case we claim that d s n-2. Indeed if d > n-2 

(i.e. d = n-1) then 3 S E T such that 

'if x E L , A > o , and L c sing ¢5 

where L is an (n-1)-dimensional subspace. Then, supposing without loss of 

generality that L = JRn-l x {o} , we have by Lemma 35.5 that 

(3) s 
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where is a !-dimensional minimizing cone in 
k+l 

:R . However it is easy 

to check that such a !-dimensional minimizing cone necessarily has the form 

where m E ~ and ~ is a !-dimensional subspace of :Rk+l Thus (3) gives 

that S m[L] where L is an n-dimensional subspace and hence 

0 , a contradiction, so d ~ n-2 as claimed. 

We therefore conclude from Theorem A.4 that for each S E T 

n-2+a 
H (spts- Rs <sl n B1 <OJ> 0 v (). > 0 . 

If S. + 0 we thus conclude in particular that 
J 

co 

(4) 0 

However by (1) we see that 

co 

v (). > 0 . 

X E n RS. (T) ~ T has a tangent plane at x, 
j=l J 

and therefore (4) gives (2) as required. 

§36. SOME REGULARITY RESULTS (Arbitrary Codimension) 

In this section, for T E Vn(U) any integer multiplicity current, we 

define a relatively closed subset sing T of U by 

36.1 sing T spt T - reg T , 

where reg T denotes the set of points ~ E spt T such that for some p > 0 

there is an m E ~ and an embedded n-dimensional oriented c1 submanifold 

M of :Rn+k with T = m[M] in Bp (~) . 
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Recently F.J. Almgren [A2] has proved the very· important theorem that 

Hn- 2+a (sing T) = 0 \j a > 0 in case spt T c N, 8T = 0 and T is minimizing 

in N , where N is a smooth embedded (n+k1 )-dimensional submanifold of 

JRn+k '!.'he proof is very non-trivial and requires development of a whole 

new range of results for minimizing currents. ;;\le here restrict ourselves 

to more elemen·tary results. 

Firstly, the follov<ing theorem is an immediate consequence of Theorem 

24.4 and Lemma 33.2. 

36.2 THEOREM Suppose T E Vn(U) is integer multiplicity and minimizing in 

u n N for some embedded c 2 (n+k1 ) -dimensional submanifold N of .Rn+k 

0 , and suppose spt T c un N dT = 0 (in U) Then reg T 

is dense in spt T . 

(Note that by definition reg T is relatively open in spt T . )_ 

The following is a useful fact; however its applicability is limited 

by the hypothesis that l . 

36.3 THEOREM Suppose {T.} c D (U) , T E Vn(U) 
l n 

are integer multiplicity 

currents with Ti minimizing in u n N. 
]. 

T minimizing in 

embedded (n+k1 ) -dimensional c 2 submanifolds 

ClT. = dT = 0 
]. 

(in U) • 

sense in U , T. ~ T in 
J 

Suppose also that N. 
l 

and suppose 

and sp'c T i c N i , spt T c N , 

converges to N in the 

y E N n u with 

y lim yj 

y E reg T 

where yj is a sequence such that yj E ~pt Tj 1:/j . Then 

and for all sufficiently large j 

Proof By virtue of the monotonicity formula 17.6(1) (which is applicable 

by 33.2) it is easily checked that 
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n n 
lim sup 8 (~T.'yj) S 8 (~T,y) 1 , 

J 

hence (since 
n e <~T . , y j J ::: 1 

J 

we conclude 

Hence by Allard's theorem 24.2 we have y E reg T 

sufficiently large j . (33.2 justifies the use of 24.2.) 

Next we have the following consequence of Theorem A.4 of Appendix A. 

36.4 THEOREM Suppose T is as in 36. 2, and in addit·ion suppose E; E spt T 

Proof Let 

(1) 

Then there is a p > 0 such that 

Hn- 2+a (sing T n B (s)) = 0 
p 

n w 0 
n 

and let Bp(s) 

< 2 (1-a/2) 

V a > o . 

be such that B2P(sl c u and 

V 1; E spt T n Bp (s) , 0 < 0 < p • (Notice that such p exists by virtue of 

the monotonicity formula 17.6(1), which can be applied by 33.2.) Assume 

without loss of generality that E; = 0 , p = 1 and U = B2 (0) , and 

define T to be the set of weak limits S of sequences {si} of the 

form S. 
l 

< (1-A.), O<A.<l 
l l 

lim A. - A are assumed to exist. Notice that 
l 

where lim x. and 
l 

for each W cc llx,A (U) in case A > o and for each 
n+k 

W cc JR in case 

A= 0 . Hence by the compactness theorem 34.5 any such S is integer 

multiplicity in u8 

(u U · A > o u JRn+k · A o ) S = llx, A 1n case , s = ln case = 

and (Cf. the proof of 35.1(2)) 
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(3) 

(4) 

s minimizes in 
n+k 

JR 
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in case 

One readily checks that, by definii:ion of T , 

n r 
y,T# 

T ' 0 < l < 1 1 ! y I < l-T 

0 • 

Furthenuore \'Je note tha'c (by (1)) 

{5) 

and by Allard's theorem 24. 2 there is 8 > 0 such ·that 

(6) sing S 

Now in view of (2), (3), (4), (5) , (6) and the upper semi-continuity 

of Gn as in (9) of the proof of 35.3(1), all the hypotheses of Theorem A.4 

of Appendix A are satisfied with F = {¢5 : SET} (notation as in Remark 35.4) 

and with sing ¢5 = {xE u5 : 8n(]l8 ,x) :::: l+o} <=singS by (6)). In fact we 

claim that in this case we may ·take d = n-2 1 because if d = n-1 3 S E T and 

n s = S V x E L , ~- > 0 , where LC sing S is an (n-1) dimensional subspace of 
x,A# 

JRn+k, then (Cf. the last part of the proof of 35.3(2)) we have S = m[Q] 

for some n-dimensional subspace Q . Hence sing s = 0, a contradiction. 

The following lemma is often useful: 

36.5 THEOREM Suppose c V (JRn+k) is minimizing in n+k Clc = o and JR 1 n 

c is a cone: no,A.#c = c v A. > 0 Suppose further that spt c c H where 

H is an open ~-space of lRn+k with 0 E ClH • 'l'hen spt C c ClH 

36.6 REMARK The reader will see that the theorem here is actually valid 

with any stationary rectifiable varifold V in JRn+k satisfying nO,A.#V v 

in place of C . 
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Proof of 36.5 Since the varifold V associated with C is stationary (by 

n~ 1 
33.2) in E we have by 18.1 (since (Dr) = 0 by virtue of the fact that 

C is a cone), 

(1) 

for each p > 0 , where r = Jxl and ¢ is a non-negative c1 function 

on ~ with compact support, and h . b"t cl (..,;n+kl 
lS an ar ~ rary ·"" . function" 

denotes the orthogonal projection of grad kh (x) onto the tangent 
:Rn+ 

space TV 
X 

of V at x. ) 

Now suppose without loss of generality that H 

and select h(x) 
1 

- X Then where 
T 

v 

denotes orthogonal projection of v onto TxV . Thus the term on the right 

side of (1) can be written- J:Rn+k(e1•Vcr) (r¢(r/p))d~C which in turn can 

be written - JFn+k e1 •17C1/!pd~C , where 1/Jp(x) = f~x/ r¢(r/p)dr (Thus 1/Jp 

has compact support in JRn+k. ) But e 1 • Vel/! p::: divv (1p p e 1 ) , and hence the 

term on the right of (1) actually vanishes by virtue of the fact that V is 

stationary. Thus (1) gives 

const., O<p<co. 

In view of the arbitrariness of ¢ , this implies 

However trivially we have lim 
pto 

-n 
p 

-n 
p J X d~ 

B (0) 1 C 
p 

0 , and hence we deduce 

0 v p > 0 . 
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Thus since x 1 ::: 0 on spt C ( c ih 

={x: x 1 =0}) 

we conclude spt C c oH 

The following corollary of 36, 5 follmV'S directly by combining 36.5 and 

35.1 (2). 

36. 6 COROLU\RY If is in if ~ E if -is 
1 rr as 36,2 , spt rr· , Q a c-

n+k sueh that I; E and if i:a ZocaUy ]R Q spt ·r on one hypersurfaee 1>1 

side of Q near I; then aU tangent cones c of T a:t I; satisfy 

spt C c T~Q n TeN 
'-.> '-.> 

§37. CODIMENSION 1 MINIMIZING CURRENTS 

We begin by looking at those integer multiplicity curren·ts T E V (U) n 

with spt T c N n U , N an (n+l)-dimensional oriented embedded submanifold 

of :JRn+k with (l\i ~ N) n U = fll and such that 

(*) dT [E] 

(in U), where E is an Hn+l_measurable subset of N (We know by 27.8, 33.4 

·that all minimizing currents T E V n (U) with 3T = 0 and spt T in N can be 

locally decomposed into minimizing currents of this special form.) 

37.1 REMARK The fact that T has the form (*) and T is integer multiplicity 

evidently is equivalent to the requirement that if V c U is open, and if ¢ 

is a c2 diffeomorphism of V onto an open subset of such that 

cjJ (V n N) = G , G open in 
n+l 

R ' then ¢(E) has locally finite perimeter 

in G . This is an easy consequence of Remark 26.28, and in fact we see from 

this and Theorem 14.3 that any T of the form (*) with ~(T) < 00 

V W cc U is automatically integer multiplicity with 
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(**) 1 , lJT - a • e • x E U • 

we shall here develop the ·theory of minimizing currents of the form (*) 

indeed we show this is naturally done using only the more elementary facts 

about currents. In particular we shall not in this section have any need 

for the compactness theorem 27.3 (instead we use only the elementary compactness 

theorem 6.3 for BV functions), nor shall we need the deformation theorem and 

t.'le subsequen-t material of Chap·te:c· 6. 

The following theorem could be derived from the general compactness 

theorem 34.5, but here (as we mentioned above) we can give a more elementary 

n+k 
U c JR to be open, In this theorem, and subsequently, we take treatment. 

and 0 will denote the collection of (n+l)-dimensional oriented embedded 

c2 submanifolds N of JRn+k with (N ~ N) n U = !il , N n u I' !1) A sequence 

{Nj} c 0 is said to converge to N E 0 in the c2 sense in u if there 

are orientation preserving c2 embeddings ~~. : Nnu+N. with ijJ. + ~Nnu J J J 

locally relative to the c2 metric in N n u In particular if X E N 

then converges to TN 
X 

in the sense in w as A + o , for 

each W cc JRn+k 

In the following theorem p is a proper c2 map U+ Nnu such that, 

in some neighbourhood v c u of Nnu , p coincides with the nearest point 

projection of v onto N (Since the nearest point projection is c2 in 

some neighbourhood of N n U it is clear that such p exists.) 

37.2 THEOREM (Compactness theorem for minimizing T as in (*)) 

Suppose T. E V (U) , T. = 3[E.~(in U) , 
J n J J 

E. 
J 

Hn+l~easurable subsets of 

Njnu, Nj E 0, Nj + N E 0 in the c 2 sense described above, and suppose 

T. 
J 

is integer multiplicity and minimizing in u n N. 
J 
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Then there is a subsequence {Tj,} with Tj' ~ T in Vn(U) , T integer 

multipUeity, T = Cl[E] (in U) 1 in 1 Hn+1 
Ll ( IU) I oc 

(in the usual sense of Radon measures) in u , and T is minimizing in 

N n u . 

37 • 3 REMARKS 

(1) Recall (from Remark 37.1) that the hypothesis that To 
J 

is integer 

multiplicity is automatic if we assume merely that ~(Tj) < oo 1/ w cc u 

(2) We make no a-priori assumptions on local boundedness of the mass 

of the (we see in the proof that this is automatic for minimizing 

currents as in (*)). 

(3) Let h(x~t) = x+t(p(x)-x) 1 xE u, Osts1. Using the homotopy 

formula 26.22 (and in particular the inequality 26.23) together with the 

fact that in the sense in u I it is straightforward to check 

that 

with 

To-T 
J 

Ro 
J 

v w cc u , 

provided that as claimed in the theorem. Thus once we establish 

Xp(E o ,) + XE 
J 

for some E , then we can use the argument of 34.5 (with 

in order to conclude 

(1) T is minimizing in U 

(2) ].lT + ].lT in U . 
j I 

(Notice we have not had to use the deformation theorem here.) 

s 0 = 0) 
J 
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In the following proof we therefore concentrate on proving Xp(Eo,) + XE 
J 

in 
l n+l 

Lloc (fi ,N n U) for some subsequence {j'} and some E such that 

<l[E] has locally finite mass in u . (T is then autom,atically integer 

multiplicity by Remark 3 7 .l.) 

Proof of 37.2 We first establish a local mass bound for the To in 
J 

u : if s EN and B (s) c U , 
Po 

then 

This is proved by simple area comparison as follows: 

With r(x) = Jx-sl , by the elementary slicing theory of 28.5(1), (2) 

we have that, for L 1 - a.e. p E (O,p 0 ) , the slice < [Ej] ,r,p> (i.e. the 

slice of by is integer multiplicity, and (using 

<l[EonB (/;)] =TolB (!;} +<[Eo],r,p). 
J p J p J 

Hence (applying (l to this identity) 

l a (T 0 L B (/;)) = - a<[E o],r,p>' L - a.e. p E (O,po) . 
J p J 

But by definition 33.1 of minimizing we then have 

Similarly, since 

-

-To 
J 

is also minimizing in N n U , 

where E 0 = N n U ~ E o Thus 
J J 

(2) 

To= <l[E o]) , 
J J 

[N n U] , so that 
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(for a.e. p E (O,p 0 )) 

and hence (2) gives (1) as required (because ~(<N,r,p>) ~ Hn(Nn3Bp(~)) 

by virtue of the fact that lnrj = 1 , hence jV'Nrj ~ 1) 

Now by virtue of (1) and Remark 37.1 we deduce from the BV compactness 

theorem 6.3 that some subsequence {x (E ,} 
p j •' 

of converges in 

1 n+l 
Lloc (H ,N n U) to where E c N is Hn+l_measurable and such that 

3[E] is integer multiplicity (in U) . The remainder of the theorem now 

follows as described in Remark 37.3(3). 

37.4 THEOREM (Existence of tangent cones) 

Suppose T = 8[E] E Vn(U) is integer multiplicity, with ECNnu, 

N E 0 and T is minimizing in u n N . Then for each x E spt T and each 

sequence {/..j} J. 0 there is a sUbsequence {/..j ,} and an integer multiplicity 

C E V n (JRn+k) with C minimizing in JRn+k 0 E spt C c TxN , 

(1) 

(2) 

C = 3[F] , F an Hn+l~easurable subset of TN 
X 

]l + Jl in :Rn+k X +X in L 1 (Hn+l TN) 
n A T c ' p(nx,'. {E)) 'F lac , X 

X, . ,# A 
J J 

p is the orthogonal projection of :Rn+k onto 

F if A > o . 

TN 
X 

and 

37.5 REMARK The proof given here is independent of the general tangent 

cone existence theorem 35.1. 

Proof of Theorem 37.4 As we remarked prior to Theorem 37.2, nx,A.N 
J 

converges to in the sense in W for each 
n+k w cc JR By the 
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compactness theorem 37.2 we then have a subsequence Aj' such that all the 

required conclusions, except possibly for 37.4(2) and the fact that OE spt C, 

hold. To check that OE spt C and that 37.4(2) is valid, we first note by 

33.2 that the varifold V associated with T is stationary in N n U (and 

that V therefore has locally bounded generalized mean curvature ~ in 

N n u) • Therefore by the monotonici ty formula 17.6 (1) , and by 17.8, we have 

(1) 8n(l'v,x) exists-and,is ::0: 1 . 

Since so 0 E spt C , ~n T + ~c , we then have 
x,A.# 

J 
and by 19.3 we deduce that the varifold VC associated with C is a cone. 

+ x E lRn+k and hence, ;f we Then in particular x 1\ C (x) = 0 for ~C-a. e. • 

let h be the homotopy h (t,x) = tx + (1-t) Ax , we have h# ( [ (0, 1)] x C) = 0 , 

and then by the homotopy formula 26.22 (since ac= o > we have 

as required. Finally since spt C has locally finite Hn-measure (indeed 

by 17.8 spt C is the closed set n+k n 
{yE lR , e <~c'Y> :o: l}l, we have 

[F] [F] 

-where F is the (open) set { n+l n+l } 
yETN~sptC:8 (H ,TN,y)=l 

X X 
Evidently 

n0 ,A(F) = F (because n0 ,A(spt C)= spt C) 

established with F in place of F . 

Hence the required result is 

* 37.6 COROLLARY Suppose T is as in 37.4 and in addition suppose there is 

an n-dimensional submanifold l: embedded 1:n lRn+k with x E l: c N n U for 

some x E spt T , and suppose spt T l: lies locally, near x , on one 

side of l: • Then x E reg T • (reg T is as in 36.1.) 

Proof Let C = d [F] (F C TxN) be any tangent cone for T at x • By 

assurnption, spt[F] c H , where H is an open !-space in TN 
X 

with 

0 E !3H • Then, by 36.5, spt C c !3H and hence by the constancy theorem 26.27, 

* Cf. Miranda [MMl] 
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since C is integer multiplicity rectifiable, it follmvs that C = ±()[H] . 

However spt[F] c H , hence C = +Cl[H] . Then \P()lc,y) ::: 1 for y E 3H , 

and in particular 1 ' so that x E reg T (by 

Allard's theorem 24.2) as required. 

\'lie next want ·to prove the main regularity theorem for codimension 1 

currents. We continue to define sing T , reg T as in 36.1. 

37.7 THEOREM Suppose T = 3[E] E Vn(U) is integer multiplicity, with 

E c N n U , N E 0 , and T minimiz-ing 1--n N n U Then sing T = 0 for 

n < 6 sing T is locally finite in u for n = 7 and Hn- 7-K:l (sing T) = 0 

V a > 0 in case n > 7 

Proof We are going to use the abstract dimension reducing argument of 

Appendix A (Cf. the proof of Theorem 36.4). 

To begin we note that it is enough (by re-scaling, translation, and 

restriction) to assume that 

(1) u 

and to prove that 

(2) l sing T n B1 (0) = )') 

Hn-7-K:l ( - n ( ) ) Slng T B1 0 = 0 

if n:"' 6 , sing T n Bl (0) discrete if n = 7 , 

V a > 0 if n> 7 • 

Let T be the set of currents as defined in the proof of 36.4; and for 

each S E T let ¢5 be the function : :lRn+k + :lRn+l associated with S as 

in Remark 35.4. Also, let 

F {¢5 : s E T} 

and define 

* We still have 8n(]l5 ,x)=l for )15-a.e. xEu5 , this time by 37.2and37.1(**). 
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sing S . 

(sing S as defined in 36.1.) 

By Theorem A.4 we then have either sing S ~ for all S E T (and 

hence sing T = !2l ) or 

(3) dim Bl (0) n sing s < d I 

where d E [O,n-1] is the integer such that 

dim B1 (0) n sing s s d for all s E T 

and such that there is S E T and a d-dimensional subspace L of Rn+k 

such that 

s \1 X E L I A > 0 

and 

(4) sing S L • 

Supposing without loss of generali·ty that L Rd x{o} 1 we then (by Lemma 

35.5) have 

( 5) 

where aso = 0 

s d 
[ R ] X SO 

S is minimizing in Rn+k-l 
0 

and sing s0 {o} . (With 

s as in (5) 1 sing s 0 = {0} ., (4).) Also, by definition of T 1 spt S c some 

(n+l)-dimensional subspace of Rn+k hence without loss of generality we 

have that s0 is an (n-d)-dimensional minimizing cone in En-d+l with 

{0} Then by the result of J.Simons (see Appendix B) we have 

n-d > 6 i.e. d s n-7 . Notice that this contradicts d:: 0 in case n< 7. 
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Thus for n < 7 we must have sing T = 0 as required. If n= 7 , sing T 

is discrete by the last part of Theorem A.4. 

37.8 COROLU\RY If T is as in 37.7, and if T 1 E Vn(UJ is obtained by 

equipping a component of reg T with multiplicity 1 and with the orientation 

of T , then 3T1 = 0 (in U) and T1 is minimizing in U n N . 

37. 9 RH<lARK Notice that this means we can write 

(*) 

where each T , 
J 

multiplicity 1 

T 

is obtained by 

and with the 

00 

I 
j=l 

T, 
J 

equipping a component M. 
J 

orientation of T then 

of reg T 

M, n Mj = f/) 
l 

with 

'di f j , ClTj 0 and T, is minimizing 
J 

in u \fj Furthermore (since 

n 
~T (B (x)) ::: cp for B (x) c u and X E spt T, by virtue of 33.2 and the 

j p p J 

monotonicity formula 17.6(1)) only finitely many Tj can have support 

intersecting a given compact subset of U . 

Proof of 37.8 The main point is to prove 

(1) 0 in U • 

The fact that T1 is minimizing in U will then follow from 33.4 and the 

If w cc u 

To check (1) let 
n-1 

wE V (U) be arbitrary and note that if <;; - 0 

some neighbourhood of spt T ~ M1 

(2) T1 (d(<;;w)) T(d(<;;w)) ClT(<;;w) 0 . 

Now corresponding to any s > 0 we construct <;; as follows: since 

n-1 H (sing T) = 0 (by 37.7) and since sing T n spt w is compact, we can 

in 

find a finite collection {B (£; ,) }, 
p, J J=l, .•• ,P 

J 

of balls with t;, E sing T n spt w 
J 
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l 
j=l 

and 
n-1 p. < £ • 
J 

For each 

1 on i3 o;·. > , <PJ. = o 
Pj J 

p 
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j=l, ... ,P let¢. E 
J 

n+k 
on ll. - B2p. (l;j) , 

J 

oo n+k 
CC (:R ) be such that 

and everywhere. 

Now choose 1;; = II ¢. in a neighbourhood of spt T1 and so that 1;; = 0 in a 
j=l J p p 

neighbourhood of spt T- spt T 1 • Then dl;; = L II <P • d¢ . on spt T 1 , and hence 
i=l j~i J ~ 

p 
\ n-1 
L. pj ::: 

j=l 
csjwj on spt T1 . 

Then letting £ -t 0 in (2), and noting that l;;dw + dw Hn- a.e. in spt Tl n 

N n spt W (and using j?;;j :S 1) we conclude T1 (dw) = 0. That is 

3T1 = 0 in U as required. 

Finally we have the following lemma. 

37.10 LEMMA If T1 = 3[E1 ] , T2 3[E2] E Vn(U) U bounded, 

E1 , E 2 c un N , N of aZass c4 , N E 0 , T 1 , T 2 minimizing in U n N , 

reg T1 , reg T 2 are aonneated, and E1 n V c E2 n v for some neighbourhood 

v of au , then spt [E1] c spt[E2] and either [E1] = [E2] or 

spt T1 n spt T2 c sing T1 n sing T2 . 

Proof Since Hn+J. (spt Tj) = 0 (in fact spt Tj has locally finite 

Hn-measure in n 
U by 11irtue of the fact that 8 (JlT. ,x) =:: 1 

J 

we may assume that E1 and E2 are open with u n 3Ej 

j = 1,2 

Let s1 , s 2 E Vn(U) be the currents defined by 

using the hypothesis concerning V we have 

(1) T . L <v n u> , j = 1 , 2 • 
J 

un aE. 
J 

'r/ X E spt T .) , 
J 
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On the other hand we trivially have 

so (applying Cl ) we get 

(2) 

(3) 

(by (2)) 

V W cc U • On the other hand, choosing an open V O so that 3U c V O cc V , 

and using (1) together with the fact that T1 is minimizing, we have 

and hence (combining this with (3)) 

for W = U ~ v 0 Thus (using (1) with j = 2) s 2 is minimizing in U . 

Likewise s1 is minimizing in U . 

We next want to prove that either T1 = T 2 or reg T1 n reg T 2 = !1! • 

Suppose reg T1 n reg T 2 # !1! • If the tangent spaces of reg T1 and reg T 2 

coincide at every point of their intersection, then using suitable local 

coordinates (x,z) E :Rn x JR for N near a point ~ E reg T 1 n reg T 2 , we 

can write 

reg Tj graph u. , j = 1, 2 , 
J 
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where Du1 = Du2 at each point where u 1 

are (weak) c1 solutions of the equation 

a ( a F J ax. 3P. (x,u,Du) 
~ 1. 

aF - 3z (x,u,Du) 0 ' 

where F = F (x,z,p) , (x,z,p) E JRn x JR x JRn is the area functional for 

graphs z = u(x) relative to the local coordinates x, z for N. Since 

N is c4 we then deduce (from standard quasilinear elliptic theory - see 

e.g. [GT]) that u 1 , u 2 are c3,a: . Now the difference of the 

solutions evidently satisfies an equation of the general form 

where 

e.g. 

a .. ,b. ,c 
l.J 1. 

are By standard unique continuation results 

[PM]) we then see that Du1 = Du2 at each point where u 1 

(see 

is 

impossible if u 1 -u2 changes sign. On the other hand the Harnack inequality 

([GT]) tells us that either u 1 = u 2 or lu-uj>o 
1 2 

in case does 

not change sign. Thus we deduce that either T1 = T2 or reg T1 n reg T2 ~ 

or there is a point ~ E reg T1 n reg T2 such that reg T1 and reg T 2 

intersect transversely at ~ But then we would have Hn- 1 (sing a[E1 n E2]) > 0' 

which by virtue of 37.7 contradicts the fact (established above) that 

Cl[E1 n E2] is minimizing in U . 

Thus either T1 T2 or reg T1 n reg T2 = ¢ , and it follows in 

either case that E1 c E2 On the other hand we then have 

sing T l [l reg T 2 = ¢ and sing T 2 n reg T l = j1l by virtue of Corollary 3 7. 6. 

Thus we conclude that E1 c E2 and spt T1 n spt T2 C sing Tl n sing T2 as 

required. 



CHAPTER 8 

THEORY OF GENERAL VARIFOLDS 

Here we describe the theory of general varifolds, essentially following 

W.K. Allard [AWl]. 

1 · f 1 ' · ( · n+k) · 1 d Genera~ var1 o as 1n U U open 1n JR are s1mp y Ra on measures 

{ ""'n+k}. on G (U) ~ (x,S) : x E U and S is an n-dimensional subspace of "" 
n 

One basic motivating point for our interest in such objects is described as 

follows: 

Suppose {Tj} is a sequence of integer multiplicity currents (see §27) 

such that the corresponding integer multiplicity varifolds (as in Chapter 4) 

are stationary in U (U open in 
n+k 

JR ) , and suppose 3T. ~ 0 
J 

and there is a 

mass bound sup j::O:l~ (T j) < 00 "i/ w cc u By the compactness theorem 27.3 we 

can assert that Tj' 
~ T for some integer multiplicity T However it is 

not clear that T is stationary; the chief difficulty is that it is not 

generally true that the corresponding sequence of measures converge 

to Indeed if \l 
Tj' 

converges to \lT (as they would by 34.5 in case 

the are minimizing in U) then it is not hard to prove that T is 

stationary in U This leads one to consider measure theoretic convergence 

rather than weak convergence of the currents. However if we take a limit 

(.in the sense of Radon measures) of some sub-sequence {\lT } of the 
j' 

then we get merely an abstract Radon measure on U , and first variation of 

this does not make sense. 

To resolve these difficulties, we associate with each T. 
J 

a Radon 

measure Vj on the Grassmaniann Gn(U) (Gn(U) is naturally equipped with a 

suitable metric- see below); Vj is in fact defined by 
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]..lT (Tf. (A)) 
j J 

where Tf j (A) denotes {x E U: (x ,di j (x) )) E A} for any subset A of Gn (U) 

denotes the n-dimensional subspace determined by 
+ 
T. (x) • ) 

J 
One 

then uses the compactness theorem 4.4 to give , + V for some subsequence 

{j'} and some Radon measure V on Gn(U) . It turns out to be possible 

to define a notion of stationarity for such Radon measures (i.e. varifolds) 

V on Gn(U) and, for example, in the circumstances above V turns out to 

correspond to a stationary rectifiable varifold (in the sense of Chapter 4) . 

The reader will see that these claims follow easily from the rectifiability 

and compactness theorems of §42. 

§38. BASICS, FIRST RECTIFIABILITY THEOREM 

We let G(n+k,n) denote the collection of all n-dimensional subspaces 

of equipped with the metric 

where Ps ' PT denote the orthogonal projections of Rn+k onto S , T 

respectively, and ij 
ei ·ps (ej) 

ij = ei•pT(ej) the corresponding Ps ' PT are 

matrices with respect to the standard orthonormal basis e 1 , ... ,en+k for 

Rn+k 

For a subset A c Rn+k we define 

AX G(n+k,n) , 

equipped with the product metric. Of course then Gn(K) is compact for 

each compact 
n+k 

K c R • is locally homeomorphic to a Euclidean 

space of dimension n+k + nk • 



229 

By an n-vaPifoLd we mean simply any Radon measure V on Gn(~n+k). 

By an n-varifold on u (U open in :Rn+k) we mean any Radon measure V 

on Gn(U) • Given such an n-varifold V on U , there corresponds a Radon 

measure J.1 = llv on u (called the weight of V ) defined by 

J.1 (A) v (1T-l (A)) I A c u I 

where, here and subsequently, 1T is the projection (x,S) ~ x of Gn(U) 

onto U . The mass i;l(.V) of V is defined by 

i;l(V) J.1v (U) 

For any Borel subset A c U we use the usual terminology V L Gn(A) 

to denote the restriction of V to Gn(A) ; thus 

Given ann-rectifiable varifold X(M,8) on U (in the sense of Chapter 

4) there is a coresponding n-varifold v (also denoted by x<M,8} I or simply 

x<M) in case e = 1 on M) I defined by 

V (A) J.1 (1T (TMf1A) ) , A c Gn (U) , 

where J.1 = Hn L e and TM = { (x,TxM) : x E M*} , with M* the set of x E M 

such that M has an approximate tangent space T M 
X 

with respect to e 

x in the sense of 11.4. Evidently V , so defined, has weight measure 

The question of when a general n-varifold actually corresponds to an 

n-rectifiable varifold in this way is satisfactorily answered in the next 

theorem. Before stating this we need a definition: 

at 
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38o 1 DEFINITION Given T E G(n+k,n) , xE U , and 8 E (0, 00) , we say 

that an n-varifold V on U has tangent space T with multiplicity 8 

at x if 

(*) lim V , = 8~(T) , 
t..+o x,/\ -

where the limit is in the usual sense of Radon measures on G (Rn+k) o In 
n 

(*) we use the notation that vx,/.. is the n-varifold defined by 

38.2 REMARK Note that 38.1(*) implies that the weight measure ~V has 

approximate tangent space T with multiplicity 8 at x in the sense of 

ll.S. 

38.3 THEOREM (First Rectifiability Theorem) 

Suppose V is an n-varifold on u which has a tangent space T with 
X 

multiplicity 8 (x) E (O,oo) for ~V- a.e. x E u . Then V is n-rectifiable: 

in fact M ::: {x E U : T , 8 (x) exist} 
X 

is Hn-measurable, countabZy n-rectifiable, 

8 is locally Hn -integrable on M , and v = :¥; (M, 8) 

In the proof of 38.3 (and also subsequently) we shall need the following 

technical lemma: 

38.4 LEMMA Let v be any n-varifold on u Then for ~v- a.e. x E u 

such that, for any continuous there is a Radon measure 

6 on G(n+k,n) , 

J 6 (S) d~x) (S) 
G (n+k,n) 

on G(n+k,n) 

lim 
p+O 

f 6(S)dV(y,S) 
G (B (x)) 

n p 

~v (BP (x)) 
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Furthermore for any Bm"e"l set A c u , 

f S(S)dV(x,S) =I I _.. S(S)d~~') (S)d]JV(x) 
G (A) A G(n.k,n) 

n 

provided S ~ o . 

Proof The proof is a simple consequence of the differentiation theory for 

Radon measures and the separability of K(X,~) (notation as in §4) for 

compact separable metric spaces X . Specifically, write K K(G(n+k,n) ,~), 

K+ = { S E K : S ": 0} , and let By the 

differentiation theorem 4.7 we know that (since there is a Radon measure 

on 

(1) 

~n+k 
JK characterized by 

e (x, j) lim 
p+O 

y.(B)=J S.(S)dV(y,S) 
J G (B) J 

n 

J( 13_. (S)dV(y,S) 
G (B (x)) J 

n p 

J.!v(BP(x)) 

exists for each x E IRn+k Z where Z . ~ j I J 

and e(x,j) is a )JV-measurable function of x , with 

(2) 
r 
J 13.(S)dV(y,S) 

G (A) J 
n 

for any Borel set A c Rn+k 

( 00 

for Borel sets 

Now let E: > 0 S E K+ X E n+k 
R lj~l zjJ I and choose 13j such 

that 

(3) 

sup I S-13 .j < E: Then for 
J 

, r B(S)dV(yiS) 

l • G (B (x)) 
n p 

I 1-lv (B (x) ) 
I P 

any p > 0 

I 13.(S)dV(y,S) 
G (B (x)) J 

n p 

= E: 



and hence by (1) we conclude that 

n (x) (6) 
v lim 

p+O 
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f 6(S)dV(y,S) 
G (B (x)) 

n p 

exists for all 6 E K+ and all x E JRn+k ~ f ~ Z .J Of course, since 
lj=l J 

ln~x) (6) J :S supl61 'ri 6E K+, by the Riesz representation theorem 4.1 we 

have n~x) ((:3) ~ f . i3 (S) c1.n~x) (S) ''!here ll~x) i~ the total variation 
G (n+k,n) 

measure associated with n~x) 

Finally the last part of the lemma follows directly from (2) , (3) if 

we keep in mind that e(x,j) in (1) is exactly f\~x) (6.) =f 6.(S)dll~)(S) 
J G(n+k,n) J 

We are now able to give the proof of Theorem 38.3. 

Proof of Theorem 38.3 As mentioned in Remark 38.2, ~V has approximate 

tangent space Tx with multiplicity 8(x) in the sense of 11.8 for 

~V- a. e. X E u Hence by Theorem 11.8 we have that M is Hn-rneasurable 

countably n-rectifiable, e is locally Hn-integrable on M and in fact 

~v = Hn L 8 in u (if we set 8 = 0 in u~Ml 

Now if X E M is one of the ~v-almost all points such that 

exists, and if 6 is a non-negative continuous function on G(n+k,n) , then 

we evidently have ~x) (6) = 8(x)6(Txl and hence by the second part of 38.4 

we have 

J 6(S)dV(x,S) 
G (A) 

n 

for any Borel set A c U . From the arbitrariness of A and B it then 

easily follows that 



f f(x,S)dV(x,S) 
'G (U) 

n 
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r 

J f (x,T:) d]JV (x) 
tJ! 

for any non-negative f E C0 (Gn(U)) , and hence we have shown V ~(M,8) 

as required (because ; Hn L e as mentioned above) . 

§39. FlRST VARIATION 

vle can make sense of firs·t variation for a general varifold V on U 

We first need to discuss mapp-ing of such a general n-varifold. Suppose 

u I u open c JRn+k and f : u + u is c1 with f I spt]Jv n u proper. Then vJe 

define the image varifold f#V on u by 

39.1 f ,J5 f(x)dV(x,S) , A Borel, A c Gn(U) 
-1 

F {A) 

where F: G~ (U) -+ G (l)) 
n 

is defined by F' (x,S) and where 

1 
(det((df js)*o (df is))) 2 , (x,S)EG (U) 

X X n 

G~(U) = {(x,S) E Gn(U) : J 5 f(x) # O} 

(Notice that this agrees with our previous definition given in §15 in case 

V ~(M,8) • ) 

Now given any n-varifold v on u we define the first variation oV I 

which is a linear functional on K(U,JRn+k) (notation as in §4) by 

where {~t}-l<t<l is any l-parameter family as in 9.1 (and K is as in 

9.1(3)). Of course we can compute oV(X) explicitly by differentiation 

under the integral in 39.1. This gives (by exactly the computations of §9} 
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39.2 oV(X) = I divsX(x)dV(x,S) ' 
Gn(U) 

where, for any S E G(n+k,n) , 

n+k 
L \l~ xi 

i=l ~ 

n 
L < 1. ,o x>, 

i=l ~ T i 

where is an orthonormal basis for s and with 

1!5 f (x) = p 5 (grad kf (x)) 
:IRn+ 

f E c1 (U) • (p5 is the orthogonal projection 

of n+k :IR onto S • ) 

By analogy with 16.3 we then say that V is stationary in U if 

oV(X) = 0 

More generally V is said to have locally bounded first variation in 

U if for each W cc U there is a constant c < oo such that 

I;J XE /((U,JRn+k) with sptjxj cW. Evidently, by the 

general Riesz representation theorem 4.1, this is equivalent to the 

requirement that there is a Radon measure 118VII (the total variation measure 

of oV) on U characterized by 

39.3 iioVII (W) sup Jov (X) I 
XE /( (U, :IRn+k) 

( < oo) 

lxl::::l,spt]xlcw 

for any open W cc U . Notice that then by Theorem 4.1 we can write 

OV(X) J div5x(x)dV(x,s) = - Ju v•xd!loVII , 
G (U) 

n 

where v is lloVII-measurable with Jvj = 1 lloV!I- a.e. in U . By the 

differentiation theory of 4.7 we know furthermore that 



n l!ovl!<x> =lim 
llv p-1-0 
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[[ov[[ <BP <x> > 

].lV(Bp (X)}. 

exists llv- a.e. and that (writing 

Ju v•xdl!ovl! J ~·Xdllv + J v•xda , 
u ' u 

with 

a = l!ovll L z , z {xEU:D l!oVI!(x)=+oo}. (].lV(Z)=O.) 
llv 

Thus we can write 

39.4 oV(X) 

for X E K (U,:Rn+k) • 

By analogy with the classical identity 7.6 we call ~ the generalized 

mean curvature of V , z the generalized boundary of v , a the 

generalized boundary measure of v , and viz the generalized unit 

co-normal of v . 

§40. MONOTONICITY AND CONSEQUENCES 

In this section we assume that V is an n-varifold in U with locally 

bounded first variation in U (as in 39.3). 

We first consider a point x E u_ such that there is 0 < p0 <.dist(x,au) 

and A~ 0 with 
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40.1 

Subject to 40.1 \ve can choose (in 39.2) X "'Y(r)(y-x), r=jy-xJ ,yEU 
y 

as in § 17 and note that (by essentially the same co111pu·tation as in § 1 7) 

n+k i i 
1 ij !:....:::L ny (r) + ry • (r) 1• e 8 r 

i, j=l 
r 

vlhere is ·the :mat.rix of the or·thogonal projection of onto 

the n-dimensional subspace S . We can ·then take y (r) ¢ (r/p) (again as 

n~k i-; xi -y~ xj -yj 
L es" r r 

i/7 j=l 
in §17) and, noting that 

conclude (Cf. 17.6(1) with a= 1) that is increasing 

in p , 0 < p < p 0 , and, for 0 < 0 S p < p 0 , 

40.2 n ~0 -1 -n ~p -1 -n 
8 (llv•x) < e· W a llv (B (x)) < e- W p llv (B (x)) - n a - n p 

-1 - w -
:n f -n-?1 12 r - 1p 1 (y-x) dV(y,S) 

G (B (x)~B (x)) S 
n p 0 · 

In fact if 1\ 0 (so that V is stationary in B (x)) 
Po 

we get the precise 

identity 

40.3 n -1 -n -1 r -n-21 ·2 e <llv,x) =w p flv(B (x)) -w J r ,P 1 (y-x) I dV(y,S) ' 
n p n G (B (x)) S 

n p 

for o < p < p0 

Using Xy = h(y)y(r) (y-x) (r= Jy-xi) in 39.2 we also deduce the 

following analogue of 18.1: 

40.4 

where I(p) 

p-n ddp J jp51 (y-x)/rJ 2¢(r/p)h(y)dV(y,S) 

+ p -n-1 [ 6v (X) + J (y-x) •IJ8 h (y) cp (r/p) dV (y ,S)) , 

J ¢(r/p)hdl.ly 
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40.5 LEMMA Suppose v has locally bounded first variation in u . Then, 

exists and is real-valued; in fact 

,x) exists whenever there is a constant [\ (x) < oo such that 

(*) 

(Such a constant A(x) exists for - a .. s. x E U by virtue of the 

differentiation theorem 4.7.) 

Fu:rthel"'7!ore is a llv- measurable function of x . 

Proof ·rhe firs·t part of the lemma follows di:t:ectly from the monotonicity 

en. 
formula 40. 2. •rhe llv-measurability of - (].lv' •) follows from ·the fact 

that llv(B (x)) ~lim sup llv(B (y)) , 
p y+x p 

which guarantees that 
n 

J.!v (B (x) ) I (w p ) 
p n 

is Borel measurable and hence llv-measurable for each fixed p • Since 

n n -1 
8 (lJV,x) =lim (wp) llv(B (x)) for llv-a.e. xE U, we·thenhave 

ptO n n p 
].lv-measurability of 8 (\lv,•l as claimed. 

40.6 THEOREM (Semi-continuity of t=t under varifold convergence.) 

Suppose V. + V 
l 

(as Radon measures in and 

except on a set B. c u with Jlv. (B;nw> ->- o for each 
l l -

w cc u , 

that each V. 
l 

has locally bounded first variation in u with 

and suppose 

lim inf !lev ill (W) < oo for each w cc u Then llovll (Wl ::: lim infllov .11 (W) 
l 

'r/ w cc u and Pv-a.e. in u . 

40. 7 REMARKS 

(1) The fact that 118VIi (W) ::: lim inflloV ill (W) is a trivial consequence 

of the definitions of Jlov II , llov J and the fact that V. + V , 
l 

only to prove the last conclusion that Gn(J.lv,y) ~ l 

so we have 

llv- a.e. to be given below is 

slightly complicated; the reader should note that if lloVII ::: 1\J.lv in u 
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(i.e. if v has generalized b01.mdary measure a = 0 and bounded ~ - see 3 9. 4) , 

then the result is a very easy consequence of the monotonicity formula 40.2. 

Proof of Theorem 40.6 Set and take any w cc u and 

p0 E (O,dist(W,()U)) . For i,j:: 1, consider the set A. . consisting of 
1u] 

all points y E W ~ Bi such that 

(1) 11 ov ·II o3 <Yl l < jJ.l. <a <Yl > , o < P < Po , 
1 p 1 p 

and let B .. 
.1., J 

w~A .. 
1,J 

Then if x E B . . we have either x E B . n W or 
1,) 1 

(2) 
-1 -

J..li <iia (x)) ::: j lloV ill (Ba (x)) for some a E (O,p0 ) • 

Let B be the collection of balls B (x) 
a 

with xE B .. , aE (O,p 0 J , 
1,] 

and with (2) holding. By the Besicovitch covering lemma 4.6 there are families 

B1 , .. .,BNcB with N=N(n+k) , with B ~B. c ~ ( U BJ and with each 
i,j 1 £=1 BEB£ 

B£ a pairwise disjoint family. Hence if we sum in (2) over balls 

N 
B E U B2 , we get 

£=1 

jl. (B. . ) 
1 1, J 

(W= {xE u: dist(x,W) < p0}) , so 

(3) ].J. (B .. ) 
1 1, J 

with c independent of i,j 

(4) 

.-1 
::;: c J + J..l i (B i n W) , 

In particular for each i,j :: 1 

::: lim inf J..lq[interior [ ~ B )) s 
q+oo £=i £,j 

since J..l (B n W) -+ 0 as q -+ 00 • 
q q 

.-1 
CJ 
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Now let j E {1,2, ... } and consider the possibility that there is a 

point x E t'l such that x E W ~ interior for each 

Then we 

jyi-x1 < 

for all 

·together 

could select, for each i=l,2, ... 
' 

1/i Thus there are sequences yi 

'j 
for each i = 1, 2,... . 'Then 

11c;v 11 (8 <Y. J J 
' qi p l 

:s: j]J (:B (v.) ) , 
qi p -1. 

yi E w ~ n B 
q, j 

\<lith 
q=i 

+ X and qi + co such ·that 

E A . and hence (by (1)) 
q. 'J 

l 

o< P < p0 , 

i= l, 2, ... Then by the monotonicity formula 40.2 (•..rith A= j) 

\'\lith the fact that 8n(]J ,y.) 
qi l 

> l we have 

lJ (B (y.)) 
qi p l 

o< p< p 0 , i= 1 .. 2, •.. , 

and hence 

o< P < p 0 , 

so that for such an x • Thus we have proved 8n (]J ,x) ::: 1 

for each X x E W ~ [ ~ interior l( ~ BQ, .JIJ for some j E {1,2, .. .} 
i=l 9-=i . 'J 

That is 

(5) 1;f x E W ~ ( -~ U interior [ 0 ~1. B.Q,,jJJ · 
j=l i=l x.,= 

However 

]J[j~l 
00 

interior(~ B.Q, .1] ]Jc~l interior( ~ Bi,j)) u < I;! j > 1 
i=l i=i , ]) 9-=i 

lim ]J[interior(i~i Bi,j)) 
i-+<x> 

:s: .-1 
by (4) CJ ' 

( 00 
r ""' 

Bi, j]) so ]J n u interiorl n 0 and the theorem is established (by (5)) • 
j=l i=l i=i 
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§41. THE CONSTANCY THEOREM 

41.1 THEOREM (Constancy Theorem) 

Suppose v is an n-varifold in u , v is stationary in u , and 

u n spt llv c M , 1.Jhere M is a oonneoted n-dimensional c2 submanifold 

of n+k 
:R • Then for some oonstant 

41.2 REMARKS 

(1) Notice in particular this implies (M ~ M) n u = ~ (if v t- 0) 

this is not a-priori obvious from the assumptions of the theorem. 

(2) J. Duggan in his PhD thesis [DJ] has recently extended 41.1 to 

the case when M is merely Lipschitz. 

(3) The reader will see that, with only minor modifications to the 

proof to be given below, the theorem continues to hold if N is an embedded 

(n+k1 )-dimensional submanifold of :Rn+k and if v is stationary in 

u n N in the sense that oV(X) = 0 '<J X E K (U;:Rn+k) with X E T N 
X X 

'r/ x E N , provided U.'e are given spt V c { (x,S) : x E N and S c TxN} • (This 

last is equivalent to spt llv c N and where p:u+unN 

coincides with the nearest point projection onto unN in some neighbourhood 

of U n N. ) 

Proof of 41.1 We first want to argue that V ~(M,8) for some positive 

locally Hn-integrable function 8 on M . 

To do this first take any with M c {x E U: f (x) = O} and 

note that by 39.2 

(1) ov (f grad f) = J IPs (grad f) 1 2dv (x,s) , 

b~cause (using notation as in 39.2) 
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div5 (f grad f) 

lp5 (gradfll 2 on M, 

where we used f - 0 on M . Since oV 0 , ~;e conclude from (1) that 

(2) ps (grad f (x)) 0 for all (x,S) E spt V • 

Now let E, E M be arbitrary. We can find an open 'il c u with E, E w and 

c 2 (U) 
k 

such that there are functions fl' ... ,fk with !Jl c n {x' f" (X) = o} 
c 

j=l J 

and with (TxM) 1 being exactly ·the space spanned by grad f 1 (x), •.. ,grad fk (x) 

for each x E Mn W • (One easily checks tha-t such W and f 1 , ••• ,fk exist.) 

Then (2) implies "chat 

(3) 0 

But (3) says exactly that 

for all 

S = T M 
X 

(x,S) E Gn (W) n spt V • 

for all (x,S) E Gn (W) n spt V , 

(since E, was an arbitrary point of H), we have 

(4) I" f(x,S)dV(x,S) = J f(x,TxM)d]JV(x) , fE Cc(Gn(U)) . 
, Mnu 

so that 

On the other hand we know from monotonicity 40.2 tha'c 8 (x) ::: 811 (]JV,x) exists 

for all x E Mn u, and hence (since 8 11 (Hnl M,x) = 1 for each x E M , by 

smoothness of M) , we can use the differentiation theorem 4.7 to conclude 

from (4) that in fact 

(5) J f (x,S) dV (x,S) 
r n 
J f (x,TXM) e (x) dH (x) ' f E c (G (U)) I 

Mnu c n 

(so that V ~(M,8) as required). 

It thus remains only to prove that 8 = const. on Mn u . Since M is 

c2 we can take XE K(U,F.n+k) such that X E TM \j XE Mn U Then by 
X X 

( 5) and 39.2 oV (X) = 0 is just the statement that f divX8dHn = 0 ' where 
Mnu 
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div X is the classical divergence of xiM in the usual sense of differential 

geometry. using local coordinates (in some neighbourhood u c ~n) this tells 

us tha·t 

0 if 

v1here 8 is 8 expressed in terms of the local coordinates. In particular 

0 

and it is then standard that e = constant in u Hence (since M is 

connected) 8 is constant in M . 

§42. VARIFOLD TANGENTS AND RECTIFIABILITV THEOREM 

Let V be an n-varifold in U and let x be any point of U such 

that 

42.1 and 
1-n 

lim p lioVII (B (x) l = o . 
ptO p 

By definition of oV (in §39) and the compactness theorem 4.4 for Radon 

measures, we can select a sequence "A. + 0 
J 

such that 

(in the sense of Radon measures) to a varifold C such that 

C is stationary in ~n+k 

and 

(*) 'tj p > 0 . 

converges 

Since oc = 0 we can use (*) together with the monotonicity formula 40.3 

to conclude 
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n p 
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dC(x,S) 0 

so that p 1 (x) 
s-

0 for C- a.e. (x,S) E Gn (JRn+k) 

'r/ p > 0 ' 

and hence p 1 (x) 
s 

0 

for aU (x,S) E spt C by continuity of p , (x) 
s-'-

in (x,S) • Then by the 

same argument as in the proof of 19.3, except ·that we use 40.4 in place of 

18.1, we deduce that fie satisfies 

42.2 llc (A) , A c :Rn+k , ,\ > o . 

V-Ie 'VIOuld lUw to prove the stronger result nO,,\#C = c (which of course 

irnplies 42. 2) , but we are only able to do this in case 8n (!JC,x) > 0 for 

X (see 42.6 below). Whether or not 'JJithout the 

ctdditional hypothesis on seems to be an open question. 

L'f2.3 DEFINITION Given V and x as in 42 .l we le·t Var Tan (V, x) ("the 

varifold tangent of V at x") be the collec·tion of all C = lim nx,,\ .#v 
J 

ob·tained as described above. 

in 

Notice that by the above discussion any C E Var Tan (V, x) is s·tationary 

n+k 
:R and satisfies 42.2. 

The following rectifiability theorem is a central part of the theory 

of n-varifolds 1>/ith locally bounded first variation. 

42. 4 THE ORE~! Suppose V has locally bounded ;Yrst variation in u and 

x E u . Then V is an n-rectifiable vmoifoZd. 

(Thus V :g: (M, 8) with M an Hn-measurable countably n-rectifiable subset 

of U and 8 a non-negative locally Hn-integrable function on u.) 

42. 5 RE~1ARK We are going to use Theorem 38.3. In fact we show that V has 

a tangent plane (in the sense of 38.1) at any point x where 
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(i) (ii) n~x) (as in Lemma 38.4) exists, (iii) 
n 

8 <1-lv'. l 

is 1-lv-approximately continuous at X ; and (iv) II oVII (Bp (x)) :S A (x) 1lv (Bp (x)) 

for o< p< p0 min{l,dist(x,3U)} . Since conditions (i)-(iv) all hold 

1lv- a.e. in U (notice that (iii) holds )JV- a.e. by virtue of the 

]JV-rneasurability of 8n()Jv,'l proved in 40.5), the required rectifiability 

of V will then follow from 38.3. 

Before beginning the proof of 42.2 we give the follov1ing important 

corollary. 

42.6 COROLLARY Suppose x E u, 42.1 holds, and 

lim P-nJ.lv({yE B (x): 8n(jlv,y) < 1}) = 0 . If C E Var Tan(V,x) , then C 
p+O p 
is rectifiable and 

(*) c 'rJ A > o . 

Proof · From the hypothesis 

semi-continuity theorem 40.6, we have for ].Jc- a.e. 
n+k 

y E JR 

Hence by Theorem 42.4 we have that C is n-rectifiable. On the other hand, 

n n 
'rJ A > since 8 <llc•Yl = 8 <llc•,\y) 0 (by 42.2)' we can write 

c ~(M,8) with n0 ,,\ (Ml = M 'rj A > 0 and 8 (,\y) = 8(y) 'rj ,\ > 0 ' 

y E JRn+k (Viz. simply set 8 (y) n 
8 <llc'Yl and M = {yEJRn+k, e (yl > o} . l 

It then trivially follows that. y E TYM whenever the approximate tangent 

space TYM exists, and hence flo,.A.#C C as required. 

Proof of Theorem 42.2 Let x be as in 42.5(i)-(iv) and take 

C E Var Tan(V,x) (We know Var Tan(V,x) ~ ~ because 42.5(i), (iv) imply 

42.1.) Then c is stationary in n+k 
:R and 

(1) \j p > 0 
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n+k 

y E R 
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(using (l) and the monotonicity formula 40.2) 

n 
W R 

n 

That is (again using the monotonicity formula 40.2), 

(2) 

Now let V. 
J 

llc (B (y) l 

where 

'II y E Rn+k , p > 0 . 

is such that lim llx,:\.#V 
J 

and where we are still assuming x is as in 42.5(i)-(iv). 

From 42.5 (iii) we have (with E (p) + 0 as p + 0) 

(3) 

where G c u is such that 

(4) 

Taking p Aj we see that (3), (4) imply 

(3) • 

with such that 

( 4) I 

Y E Gn B (x) , 
p 

c 

where E.+ 0 as j + oo 
J 

Thus, using (3) ', (4)' and the semicontinuity 

result of 40.6, we obtain 
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(5) y E :Rn+k 

(and hence for every y E spt llc by 40.3) . Then by combining (2) and (5) 

we have 

(6) V y E spt llc , p > o • 

Then by the monotonicity formula 40.3 (with V= C), we have 

p (x-y) = 0 for C- a.e. (x,S) E Gn (:Rn+k) 
sl 

Thus (using the continuity of p 1 (x-y) in (x,S)) we have 
s 

(7) x-y E S V y E spt llc and V(x,S) E spt c . 

In particular, choosing T such that (O,T) E spt C (such T exists because 

o E spt llc 'TT(spt C)) (7) implies y E T V y E spt llc Thus spt llc c T 

and hence C = e 0~(T) by the constancy theorem 41.1. 

Thus we have shown that, for x E U such that 42.5(i), (iii), (iv) hold, 

each element of Var Tan(V,x) has the form 8 0~(T) where T is an 

n-dimensional subspace of :Rn+k On the other hand, since we are assuming 

(42.5(ii)) 

(8) lim 
p-l-0 

that 
(X) 

n v exists, it follows that for continuous 

J S(S)dV(y,S) 
G (B (x)) 

J S (S) dn~x) (S) • 
n 

G(n+k,n) 

on G(n+k,n) 

Now let e0~(T) be any such element of Var Tan(V,x) and select 

A. + o 
J 

so that lim 

lim 

nx,A..#v 
J 

Then in particular 

J S(S)dV.(y,S) 
Gn(Bl (0)) J 

S(T) I 



247 

and hence (8) gives 

i3(T) = f i3(S)dn~x) (S) , 
G(n+k,n) 

thus showing that e 0~ (T) is the unique element of Var Tan(V,x) Thus 

lim nx,Jt#v = e 0~ (Tl so that T is the tangent space for v at X in 
i\+0 
the sense of 38.1. This completes the proof. 

The following compactness theorem for rectifiable varifolds is now a 

direct consequence of the rectifiability theorem 42.4, the semi-continuity 

theorem 40.6, and the compactness theorem 4.4 for Radon measures, and its 

proof is left to the reader. 

42.7 THEOREM Suppose {vj} is a sequence of rectifiable n-varifolds in 

u which are locally of bounded first variation in u , 

supj:::1 <1lv.<w> + llovjll<wl) 
J 

< 00 'rj W CC U 1 

and on where llv (A.n Wl + o as 
j J 

j + 00 'rj w cc u. 

Then there is a subsequence {vj,} and a rectifiable varifold v of 

locally bounded first variation in u > such that V +V j. (in the sense 

of Radon measures on Gn(U)} , 8n(Jlv,x) > l for 11v- a.e. x E u , and 

for each w cc u JJovJJ (Wl ::: lim inf llov .11 (Wl 
J j+oo 

42.8 REMARK An important additional result (also due to Allard [AWl]) is 

the integral compactness theorem, which asserts that if all the V. in 
J 

the above theorem are integer multiplicity, then V is also integer 

multiplicity. (Notice that in this case the hypothesis 

U ~A. 
J 

is automatically satisfied with an A. 
J 

such that 

n 
8 (Jlv., x) ::: 1 

J 
llv (A . ) = o . ) 

j J 

on 
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Proof that V is integer multiplicity if the Vi are: 

Let W cc U. We first assert that for llv-a.e. X E w there exists 

(depending on x) such that 

Indeed otherwise 3 a set A c W wiL~ ~(A) > 0 such that for each j~ 1 

and each j' E .A. the:>::e a.re > 0 ' i ::: 1 
X 

such that B (x) c !rl and 
px 

By the Besicovitch covering lemma 4.6 we then have 

where A. 
1. 

{x E A: i < i} . Thus 
X 

.-1 
l1v (Ail ::: CJ lim sup II6V Q,ll (W) , 

Q.->«> 

and hence since A. t A as i t oo we have 
1. 

l1v (A) 
.-1 

:": CJ 

c 

for some c ( < oo) independent of That is, ~(A) 0 a contradiction, 

and hence (1) holds. Since exists l1v- a.e. X E u ' we in fact 

have from (1) that for l1v- a.e. x E U there is a c = c (x) such that 

(2) lim inf ll6v.IICB (x))::: cpn, o<p<min{l,dist(x,Clu)}. 
J._ p 

Now since V = ~(M,8) , 

we have as 

(because vi+ v , and hence 

it follows that for l1v- a.e. 

that, with wi = nf,,A.#vi, 
J._ 

it is also true that for )Jv- a.e. 

A + 0 , where and 

for each fixed 

f, E u we can select a sequence 

f, E spt l1v 

Then 

A > o ) , 

A. + o 
J._ 

such 
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and (by (2)) for each R > 0 

We claim that e0 must be an integer for any such ~ ; in fact for 

an arbitrary sequence {wi} of integer multiplicity varifolds in Rn+k 

satisfying (3), (4), we claim that eo always has to be an ineger. 

To see this, take (without loss of generality) P = Rn x {o} , let q 

be orthogonal projection onto (RnX {0}) 1 , and note first that (3) implies 

(5) p (W.L G {xE Rn+k, lq(x) I< dl + 
Rn# ~ n 

for each fixed E > 0 However by the mapping formula for varifolds (§15), 

we know that (5) says 

(5) I 

where 

lf.ii <x> = I -1 n+k 8 i <Y> 
YEP n (xJn{zEJR :I q (z) I <d 

(6) 

lR 

( ei =multiplicity function of wi ' so that 1/Ji has values in ~n{oo}) . 

Notice that (5) 1 implies in particular that 

(7) 

(i.e. measure-theoretic convergence of 1/Ji to e0 • ) 

Now we claim that there are sets Ai c B1 (0) such that 

(8) 
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this will of course (when used in combination with (7)) imply that for any 

integer N > e0 , Iilax{1jJi,N} converges in L 1 (B1 (0)) ·to e0 , and, since 

max{1jJi,N} is integer-valued, it ·then follows that e0 is an integer. 

On the other hand (8) eviden·tly follows by setting W 

following lemma, so the proof is complete. 

In this lemma, p,q deno·te orthogonal project:ion of 

x {o} c JRn+k and {o} x 
n+k 

c JR respectively. 

W. in the 
~ 

onto 

42.9 LEMMA For each o E (0,1) , A::: 1, there is s = s(6,A,n) E (O,o 2 ) 

such that if w is an integer multiplicity varifoZd in B3 (0) with 

then there is a set such that 

L 8n(~w,y) 

yEp - 1 (x)rlspt)lwn{z: I q (z) I <d 

and , 

n 
[!) 2 

n 

\J x E Bl (0) ~A, 

+ 6 . 

42.10 REMARK It suffices to prove that for each fixed N there is 

60 = 6 0 (N) E (0,1) such that if 6 E (0,6 0 ) then 3 E = t::(n,A,N,6) E (0,6 2) 

such that (*) implies the existence of A c B~(O) with Ln(A) < 6 and, for 

X E B~(O) ~A and distinct yl, ... ,yN E p-1 (x) n spt llwn {z: Jq(z) I< E} , 

(**) 
Jlw (B2 (x)) 

::: (l+ol + 0 . 

Because this firstly implies an a-priori bound, depending only on n, k, A , 

on the munber N of possible points yj , and hence the lemma, as originally 

stated, then follows. (Notice that of course the validity of the lemma for 

small 6 implies its validity for any larger 6 . ) 
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Proof of 42.9 By virtue of the above Remark, we need only prove (**). Let 

~ = ~ , and consider the possibility that y E B1 (0) satisfies 

(1) 

(2) 

Let 

J [[p5 -p[[dW(z,s):;:spn,O<p<l. 
B (y) 

p 

A 1 {y E B 2 (0) n spt W : (1) fails for some p E (0, 1)} 

A 2 {yE B 2 (0) n spt W: (2) fails for some pE (0,1)}. 

Evidently if y E spt llw n B2 (0) ~· A1 then by the monotonicity formula 40.2 

we have 

(3) 
]l (Bp (y)) 

E 
~ (Bl (y)) 

:': e 
n W. 

wnp n 

(c = c (1\,n)) ' while if y E A2 ~ Al we have 

(4) 

for some p E (0,1) 
y 

If y E A1 then 

(5) 

for some p E (0,1) • 
y 

]l (Bp (y)) 
y 

:': c ' 0 < p < 1 

(using (3)) 

Ct:jl (B (y)) 
Py 

' 

Since then covers A1 U A2 we deduce from (4), (5) 

and the Besicovitch covering lemma 4.6 that 
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(6) 

::: cs 

by the hypotheses on VI • 

Our aim nmv is to show (**) holds whenever 

view of (6) this will establish the required result (with A= p(A1U A2)). 

So let In view of the monotonicity formula 40.2 it 

evidently suffices (by translating and changing scale by a factor of 3/2 ) 

to assume that x = 0 E B~ (0) ·~ p (A1 U A 2 )) • We shall subsequently assume 

We fiJ:st want to est:ablish the two formulae, for y E B1 (0) ~ (A1 U A 2) 

and T > 0 : 

(7) 

and 

(8) 

where 

n w 0 
n 

2T 
sa ll (uu (yl l 

S e ~----n-- + CSO/T , 
w 0 

n 

---&---n-- + csp/T , 

wnp 

O<a<l, 

o < a < p ::: 1 , 

n+k I I B (y) n {zE JR : q(z-y) < T} . 
0 

Indeed these two inequalities follow directly from 40.2 and 40.4. For 

example to establish (7) we note first that 40.2 gives (7) directly if T:::: a , 

while if T < a then we first ~se 40.2 to give 

and then use 40.4 with h of the form h(z) 

t < T and f(t) ::= 0 for t > 2T 

ST )l(BT(y)) 
::: e 

f(lq(z-y) ll , f(t) ::= 1 for 
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in 19. 5) we then deduce (by integrating in 40.4 from T to (J and using (3) ) 

\l (BT (y)) 
2T 

\l (UCJ (y)) 
CEG/T s + 

n n 
W T (J) (J 

n n 

(8) is proved by simply integra-ting in 40.4 from a to p (and using (3)). 

Our aim now is to use (7) and (8) to establish 

T l-l (B 2 (0)) N l-l (UCJ (y j) ) 
(l+co 2 J co 2 z: < + n 2n j=l tu a w 

n n 

(9) 

with c = c (n,k,N ,A) , provided 

-1 I I yj E spt pn p (0) 1-1 {z: q(z) 1 < E} (In view of (7) this 

will pro,re the required result (**) for suitable o 0 (N).) 

We proceed by induction on N • N = l trivially follows from (8) by 

noting that U~T (y 1)) and then using the 

monotonicity 40.2 together with the fact that [y1 1 < E Thus assume 

N ~ 2 and that (9) has been established with any M < N in place of N . 

Let 

min I q <Y j l 
jytQ, 

yl, ... ,yN 

- q(yQ,) I 

be as 

[= ;~~ 

n 
(J 

in (9) ' and choose p E 

' 
y j-y 9, I j = 46 2p ' and 

ll cuH (y. l l 
(J J 

n a 

1' 
Ep )l(Up(y.)) 

e _]___ + CE 
n 

p 

[CJ 1 1) such that 

set 1' = 26 2 p ( ~ 2T) 

(by (B)) , 

c = c (n,k,ol . Now since 1' %min lq(y .) - q(y 0 ) I 
jytQ, J !C 

we can select 

(Q S N-1) and T < CT such that 
A 2 
T ~ 30 p 

Then 

and 



N T 
u up (Yjl 

j=l 
c 

c = c(N) , and such that 

Since c6 2 < 1/2 for 6 < o0 (N) 

have T ~ 2o 2p and 

N 

I 
j=l 

Q 
u 

9v=l 

254 

A 1 • 
1: s4 m.J.n 

ih 
1 z.- z .\ . 

.J_ J 

(if o0 (N) is chosen suitably) we then 

Q 

I 
j=l 

A 

).l (U~ (z .) ) 
p J 

where p (l+co 2)p and c = c(N) . Since Q s N-1 , the required result 

then follows by induction (choosing E appropriately) . 
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APPENDIX A 

A GENERAL REGULARITY THEOREM 

We here prove a useful general regularity theorem, which is essentially 

an abstraction of ·the "dimension reducing" argument of Federer [FH2] 0 'l'here 

are a munber of important applications of this general theorem in the text. 

Let P ~ n > 2 and let F be a collection of functions 

" = ,;.1 ,,Q 
'f' ('!' '0 .. t'f' ) JRP->- JRQ (Q= l is an importan·t case) such ·that each c'pj 

is locally Hn-integrable on JJ:l . For ¢ E F, y E J£l and A > 0 we let 

" be defined by 
'~'y,A 

¢v A (x) 
~ ' 

¢ (y+Ax) , x E 1l 

Also, for ¢ E F and a given sequence {¢k} c F we write ¢k ¢ if 

(in lRQ) for each given 

We subsequently make the following 3 special assumptions concerning F 

A.l (Closure under appropriate scaling and translation): If jyj ::: 1- A , 

0 < A < l I and if ¢ E F , then ¢ , E F . 
Ytl\ 

A.2 (Existence of homogeneous degree zero "tangent functions"): If IYI < l , 

if {Ak} i- 0 and if ¢ E F, then there is a subsequence {Ak,} and 1J! E F 

such that ¢ ~ 1J! and 1J! = 1J! for each A > 0 o 

y,Ak' 0,:\ 

A.3 ("Singular set" hypotheses): We assume there is a map 

sing F -+ C ( set of closed subsets of JRP) 

such that 

(1) sing ¢ = 1/J ·if ¢ E F is a constant multiple of the characteristic 

function of an n-dimensionaZ subspace of 
p 

JR. , 
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(2) if then sing "' '+'y,A 
-1 

A (sing¢.-y), 

(3) if ¢,¢kEF with ¢k ~ ¢, then for each s > o there is a 

k(s) such that 

B1 (0) n sing ¢k c {xE JRP: dist(singtjl,x) <s} l;f k ": k(€) • 

We can nmv state the main result of this section: 

A.4 THEOREM SUbject to the notation and assumptions A.l, A.2, A.3 above~ 

we have 

(*) di:m B1 (0) n sing tjl S n- 1 'rf tjl E F . 

(Here "dim" is Hausdorff dimension, so that (*) means Hn-l+a(sing tjl) 0 

\1 a > o. l 

In fact either sing tjl n B1 (0) 

an ·integer d E [O,n-1] such that 

0 for every tjl E F or else there is 

dim sing tjl n Bl (0) S d 'rf ¢ E F 

and such that there is some \jJ E F and a d-dimensional subspace L c JRP with 

(**) 'rf y E L , A > 0 

and 

sing \jJ L . 

d 0 then sing ¢ n BP (0) is finite for each ¢ E F and each p < 1 . 

A.5 REMARK One readily checks that if L is an n-dimensional subspace of 

JRP and \jJ E F satisfies (**),then \jJ is exactly a constant multiple of the 

characteristic function of L (hence sing \jJ = 0 by A. 3 (1)) ; otherwise we 

would have P > n and \jJ =canst. of 0 on some (n+l) -dimensional half-space, 
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thus contradicting the fact that ~ is locally Hn-integrable on RP . 

Proof of A.4 Assume sing¢ n B1 (0) ~ 0 for some ¢ E F and let 

d = sup{dim L : L is a d-dimensional subspace of RP and there is ¢ E F 

with sing ¢ ~ ¢ and Vy E L , A. > o} . Then by Remark 

A.5 we have d ~ n-1 . 

For a given ¢ E F and y E B1 (0) we let T(cjl,y) be the set of ~ E F 

with ~O, 1 = ~ VA. > 0 and with lim ¢ 
1\ y ,A.k 

~ for some sequence A.k + 0 . 

(T(cjl,y) ~ ¢ by assumption A.2). 

Let i ~ 0 and let 

(1) {¢ E F 

Our first task is to prove the implication 

(2) 

for Hi- a.e. X E sing¢ n Bl (0) 

To see this, let be the "size approximation" of as 

described in §2 and recall that H2 (A) > 0 ~ H2 (A) > 0 , so that 
00 

Fi = {¢ E F : H!;(singcpn B1 (0)) > 0} 

bounded subset A of 1l , 
Also note that (by 3.6(2)), for any 

Thus we see that if ¢ E F2 then for Hi- a.e. X E sing¢ n B1 (0) we have 

For such x we thus have a sequence A.k + 0 such that 
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H!(sing¢ n B;., (x)) 

li.\11 -----::--"k-'---
k-KO A. t 

k 

> 0 ' 

and by assumption A.2 there is a subsequence {A.k,} such that 

¢ , ~ ~ E T(¢,x) • If now H!(singW) = 0 , then for any E > 0 we 
X;l\.k' 

could find open balls ) } such that 

(5) 

and 

(6) 

(by definition of Now (5) in particular implies that 

K = B1 (0) ~ U B (x.) is a compact set with positive distance from sing~. 
j pj J 

Hence by assumption A.3(3) we have 

(7) sing 

for all sufficiently large k , and hence by (6) 

Thus since 
-1 

A.k (sing ¢-x) (by A.3 (2)) we have 

< E 

for all sufficiently large k , thus a contradiction for 

(Such E can be chosen by (4) .) 
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We have therefore established the general implication (2) . From now on 

take FQ 
5Z, > d-1 so tha·t # ¢ (which is automatic for Q, :S d by definition of d ) . 

By (2) there is ¢ E FQ, with ¢0 ,:\ = ¢ 'r/ ), > 0 • Suppose also that there 

is a k-dimensional subspace (k ':': 0) S of JRP such that ¢y, A = ¢ 

V y E s , A > o . (Notice of course this is no additional restriction for 

¢ in case k = 0 • Now if k ::: d+l ·then, by definition of d , we can 

assert sing ¢ = 0 , thus contradicting the fact tha·t ¢ E FQ, • Therefore 

0 :::= k::: d , and if k ::: d-1 ( < Q,) , then H!i, (S) = 0 and in particular 

(8) 3 X E Bl(O) n sing¢~ s . 

But by A.2 we can choose ~ E T(¢,x). Since 

sequence 

:\ > o) 

(9) 

and 

(10) 

A. + o , 
J 

we evidently have (since 

lim¢ y+x,A. 
J 

~Sx,l 

lim <jl 
X,A. 

J 

~ = lim ¢ A 
x, j 

¢y+x,A <Px,A 

IJ y E S 

\:j i3 E JR . 

for some 

'r/ y E S , 

(All limits in the weak sense described at the beginning of the section.) 

Thus ~z,A = ~ for each A > 0 and each z in the (k+l)-dimensional 

subspace T of JRP spanned by S and x Sing~'f0 (by A.3(3)), 

hence by induction on k we can take k d-1 ; i.e. dim T d ' 

and hence sing~~ T by A.3(2). On the other hand if 3 x E sing~~ T 

then we can repeat the above argument (beginning at (8)) with T in place 

of S and ~; in place of ¢ . This would then give a (d+l) -dimensional 

subspace T and a ~ E F with sing ~ ~ T , thus contradicting the 

definition of d . Therefore sing ¢ T Furthermore if 5Z, > d then the 

above induction works up to k=d and again therefore we would have a 

contradiction. Thus dim(B1 (0) n sing<jl) ::: d \1 ¢ E F • 
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Finally to prove the last claim of the theorem, we suppose that d= 0. 

Then we have already established that 

(11) 0 lfa>o,cpEF. 

If sing cj> n Bp (0) is not finite, then we select 

x = lim xk for some sequence xk E sing cp n B1 (0) 

x E Bp(O) such that 

{x} • Then letting 

Ak= 2Jxk-xJ we see from A.3(2) that there is a subsequence {A.k,} with 

cp ~ljJET(cj>,x) and (x.,-xl/Jxk,-xJ->-~ E aB1 (0) 
x,Ak' K 

Now by A.3 (2), (3) 

we know that {s/2}11 {~} c sing ljJ and, since ljJO,A = ljJ this (together with 

A.3(2)) gives L~ c sing ljJ where L~ is the ray determined by 0 

Then H1 (sing 1l/J n B1 (0)) > 0 , thus contracting (11), because ljJ E F • 

and ~ . 
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APPENDIX 8 

NON-EXISTENCE OF STABLE MINIMAL CONES, 2 :s n :s 6. 

Here we describe J" Simons [SJ] result on non-existence of n-dimensional 

stable minimal cones {previously es·tablished in case n = 2, 3 by Fleming [F] 

and Almgren [JIA] respectively) . ·rhe proof here follows essentially Schoen-

Simon-Yau [SSY] , and is slightly cleaner ·than. the original proof in [SJ"] . 

Suppose to begin that 

integer multiplicity wi-th ac = o . If 

minimizing in. Rn+l then, writing M 

is a. cone <n 0 , A#c = C) 

sing C c {o} and if C 

a.nd 

is 

spt C {o} and taking Mt 

c is 

d d 2 n 1 
as in § 9, we have dt Hn (Mt) I 0 and --2 H (Mt) I ::: 0 (This is 

t=O dt t=O 

clear because in fact Hn(Mt) takes its minimum value at t= 0 , by virtue 

of our assumption that C is minimizing.) Notice that M is orientable, 

with orientation induced from C , and hence in particular we can deduce 

from 9.8 that 

B.l 

for any (notice 0 t M , so such ~ vanish in a neighbourhood 

of 0) • Her.e A is the second fundamental form of M and IAI is its 

length, as described in §7 and in 9.8. 

The main result we need is given in the following theorem. 

8.2 THEOREM Suppose 2 :s n :s 6 and 1'1 is an n-dimensional cone embedded in 

Rn+l with zero mean CUY'Vature (see § 7) and with M ~ M = {o} , and suppose 

that ~ is stable in the sense that B.l holds. Then M is a hyperplane. 

(As explained above, the hypotheses are in particular satisfied if 

M = spt c~ {0}, with CE Vn(JRn+l) a minimizing cone with ClC= 0 and singe c{o}.) 
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B.3 REMARK Theorem B. 2 is false for n = 7 ; J. Simons [SJ] was the first 
4 

(xi) 2 = 
8 

(xi) 2} I I to point out that· the cone M= { (x1 , •• .,x8 ) E :R8 : 
i=l i=S 

a stable minimal cone. (Notice that M is the cone over the compact 

manifold (~ s 3) x (~ s3 ) c s 7 c :R8 .) The fact that the mean curvature 

of M is zero is checked by direct computation. The fact that M is 

actually stable is checked as follows. First, by direct computation one 

is 

checks that the second fundamen·tal form A of M satisfies jAI 2 = 6/lx! 2 

On t.he other hand for a stationary hypersurface M c :Rn+l the first 

variation formula 9.3 says f divMxdH11 = 0 if sptlxl is a compact subset 

of M . Taking X (c; 2;r2 )x , c;E C00 (M) , r= lxl , and computing as in 
X C 

§17, we get 

J 2 2 n 
(n-2) M (i:; /r )dH = -2 J i:;r- 2x·~i:;dHn . 

M 

Using the Schwartz inequality on the right we get 

Thus we have stability for M (in the sense of B.l) whenever A satisfies 

. '21 12 2 lxl A s (n-2) /4 . 

I X ·l2 I 12 . For the example above we have n = 7 and 1 A = 6, so that this 

inequality is satisfied, and the cone over s3 x s 3 is stable as claimed. 

(Similarly the cone over Sq x Sq is stable for q ": 3 ; i.e. when the 

dimension of the cone is ": 7 .) 

Before giving the proof of B.2 we need to derive the identity of J. Simons 

for the Laplacian of the length of the second fundamental form of a hypersurface 

(Lemma B.8 below). 
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The simple derivation here assumes the reader's familiarity with basic 

Riemannian geometry. (A completely elementary derivation, assuming no 

such background, is described in [G] .) 

For the moment let M be an arbitrary hypersurface in :Rn+l ( M not 

necessarily a cone, and not necessarily having zero mean curvature) . 

Let T1 , ••• ,Tn be a locally defined family of smooth vector fields 

which, together with the unit normal v of M , define an orthonormal 

basis for n+l 11 . . . f :R at a po~nts ~n some reg~on o M. 

The second fundamental form of M relative to the unit normal v is 

the tensor A 

that we have 

B.4 

h .. T. ® T. 
~J ~ J 

where 

h .. 
~J 

h .. =<D V,T,) 
~J Tj ~ 

(Cf. §7.) Recall 

h .. 
J~ 

and, since the Riemann tensor of ~n+l is zero, we have the Codazzi 

equations 

B.5 h .. k 
~)I 

h.k . , i,j,k E {l, ••• ,n} • 
~ I) 

Here h .. k denotes the covariant derivative of A with respect to Tk 
~)I 

that is, h. . k are such that If A 
~), Tk 

h .. kT. ® T). 
~)I ~ 

We also have the Gauss aurvature equations 

B.6 

where R = Rijk~ Ti ® Tj ® Tk ® T~ is the Riemann curvature tensor of M , 

and where we use the sign convention such that Rijji (i~j) 

curvatures of M ( = +1 if M= Sn) • 

are sectional 
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From the properties of R (in fact essentially by definition of R ) 

we also have, for·any 2-tensor aij Ti ~ Tj , 

(where aij,kl means a - i.e. the covariant derivative with respect 
ij,k,l 

to of the tensor ,k Ti ·~ Tj ~ Tk) . In particular 

B.? 0• + h. R . OJ + 
, x..K. l.Ti.'! lYl] x., C 

by B.6. 

B.8 LEMMA In the notation above 

I h 2 . k - IAI 4 + h .. H .. + Hh .h .h .. 
i,j,k 1J, 1J ,1J m1 mJ 1J 

where H ~ = trace A • 

Proof We first compute h .. kk 1], 

h." kk 1j, h.k 'k l ,J 

~i,jk 

(by B .• .S) 

(by B.4) 

- hmi [~jhmk -hkkhmj] (by B. 7) 

( .., 1 
hki,kj l Ik h~Jhij + ~khmi11mj 

m, 

~k,ij - [m~k h~Jhij + hkkhmihmj (by B.5) 

Now multiplying by h .. 
1] 

we then get (since hijhij,kk 

\ 2 
1.. h .. k 

i,j,k 1 ]' 



1 \ 2 r ] ? 1.. h.. = Ji, j ~J ,kk 

which is ·the required identity. 

Vve now >~ant to examine carefully 

265 

the term 

h .. H .. 
lJ 'l] 

I 
Lj,k 

+ Hh . h .h .. 
ffil ffiJ lJ ( 

2 
hij ,k appearing in 

the identity of B.8 in case M is a cone 

if),_ > 0) In particular we want 'co compare 

v1ith vertex at 

l: h2 
.. J ""ij ,k 

0 (i.e. nO,.A.M=M 

with jV'MjAjj 2 J..n 
~1 J I C,: 

this case. Since 
n · -2 2 I lA\ (h .. h .. k) , we look at 'che 

k=l lJ lJ, 

difference 

(*) D - I 
i, j ,k 

n 2 2 I \AI- (h .. h .. k) . 
k=1 lJ l.J, 

B. 9 LEMMA If M is a cone (not necessarily mim:mal) the quan-tity D defined 

in (*) satisfies 

Proof Let x EM and select the frame T1 , ... ,Tn so that T 
n 

is radial 

(x/jxj) along the ray £x through x , and so that (as vectors in Rn+l) 

T1 , ... ,Tn are constant along Then 

(1) 

and (since 

(2) 

h . 
nJ 

h .. (Ax) 
lJ 

h. 
Jn 

0 along £x , j = l, ... ,n , 

-1 
A h .. (x) 

lJ 
A > o l 

h .. 
lJ ,n 

-1 
-r h .. 

l.J 
along 

Rearranging the expression for D , we have 

D 
1 n 
- z: 
2 k=1 

n 

I 
i,j,r,s=l 

I 1-2 2 
A (h h .. k- h .. h k) , rs l.J, lJ rs, 

as one easily checks by expanding the square on the right. Now since 
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n 
) 2 

n-1 

2 ::: 4 I ) 2 
' i,j,r,s=l i,j,r=1 

s=n 

we thus have 

n n-1 
D ::: 1: 

k=1 
1: 

i,j,r=1 

2 
(h .. h k) lJ rn, 

By the Codazzi equations B.S and (2) this gives 

n -21 ,-2 \ D "': 2r A L 
k=l 

n-1 2 2 
l: h .. h k 

i,j,r=l lJ r 

(by (1)) 

-?I , 2 2r - AI , 

as required. 

Proof of B.2 Notice that so far we have not used the minimality of M 

(i.e. we have not used H ( = hkk) = 0 ) . We now do set H = 0 in the above 

computations, thus giving (by B.8, B.9) 

(1) 

for the minimal cone M . (Notice that IAI is Lipschitz, and hence !VIAll 

makes sense Hn - a .e. in M.) 

Our aim now is to use (1) in combination with the stability inequality 

B. 1 to get a contradiction in case 2 ::; n ::; 6 

(2) 

Specifically, replace s by siAl in B.1. This gives 

t s2 IAI 4 s t \17<r,IAil 1
2 

f ( I Vr, 12 1 A 12 + r, 2 1 111 A 11 2 ) 
M 
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Jr (\71';2) • V<~\A\2) 
M 

t z;2t,M <1\A\2l 

::: t (jA[4z;2- 2r-2z;2jAj2 + z;2jVjAjj2) by (1) , 

and hence (2) gives 

(3) 

Now we claim that (3) is valid even if z; does not have compact support 

on M , provided that l; is locally Lipschitz and 

(This is proved by applying (3) with z;y€ in place of z; ' where YE: is 

for \xi E 
-1 

JVyE: (x) \ S 3/\x\ for all such that YE: (x) - 1 (E:,E: ) , X , 

y E: (x) 0 for \x\ < E:/2 \xJ > 2E: 
-1 and o:::yssl everywhere, then = or , 

letting E: + 0 and using (4) .) 

Since M is a cone we can write 

(5) I ¢(x)dHn(x) 
M 

n-1 
r f n-1 z ¢(rw}dH (W)dr 

for any non-negative continuous ¢ on M , where Z = M n Sn is a compact 

(n-1)-dimensional submanifold. Since \A(x} j 2 we can now 

use (5) to check that 
l+E: 1-n/2-2€ 

z; = r r 1 , max{l,r} is a valid choice 

to ensure (4), hence we may use this choice in (3). This is easily seen to 

give 
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(6) 

2 I I 12 2E: + (l+E:) . A r 
Mn{r<l} 

< co • 

For 2 :S n :S 6 we can choose E such that ( (n/2) -2+E) 2 < 2 and (l+E:) 2 < 2 , 

hence (6) gives jAj 2 = 0 on M as required. 
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