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The Einstein-Podolsky-Rosen (EPR) paradox, which was formulated to argue for the incompleteness of
quantum mechanics, has since metamorphosed into a resource for quantum information. The EPR
entanglement describes the strength of linear correlations between two objects in terms of a pair of
conjugate observables in relation to the Heisenberg uncertainty limit. We propose that entanglement can be
extended to include nonlinear correlations. We examine two driven harmonic oscillators that are coupled
via third-order nonlinearity can exhibit quadraticlike nonlinear entanglement which, after a projective
measurement on one of the oscillators, collapses the other into a cat state of tunable size.
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The argument developed in 1935 by Einstein, Podolsky,
and Rosen (EPR) [1] illuminated a striking inconsistency:
quantum mechanics, as it stood then and still stands today,
is a theory incompatible with the premise of local realism.
Although never doubting the validity of the theory in
describing the outcomes of measurements, EPR concluded
that quantum mechanics was conceivably an incomplete
description of reality. At the heart of the EPR paradox is the
ideal case of two particles that are spatially separated, yet
exhibit both perfect linear correlation in momentum and
anticorrelation in position when measurements of each are
compared. This set of correlations for a conjugate pair of
observables, termed by Schrödinger as the phenomenon of
steering [2], requires the wave function describing both
particles to be inseparable, in which the two particles are
said to be entangled. Hence, two particles that invoke the
EPR paradox, i.e., can be steered, are defined as being
EPR entangled [3–5]. The requirement of steerability is
strictly stronger than that of entanglement (wave function
inseparability), and strictly weaker than that of the Bell
nonlocality [6–9].
The entangled states of massive particles that were

introduced in the original EPR paper, possessing correla-
tions in continuous variables (CVs), have so far escaped
verification. However, it was discovered that pairs of
particles of the electromagnetic field could be created via
the process of optical parametric oscillation. The insepa-
rable wave function of the resulting two-mode squeezed
state [10] has since been used to demonstrate steerability, the
EPR paradox [11–15], and a diverse command of quantum
information protocols. Surprisingly, only linear correlations
leading to EPR entanglement have been considered thus far.
We propose that nonlinear correlations in CV observables

can lead to a form of nonlinear entanglement that demon-
strates steerability by satisfying an equivalent nonlinear
EPR criterion.
In this Letter, we develop the concept of nonlinear EPR

entanglement and propose a method for demonstrating it
optically via a third-order nonlinear interaction. We reveal
how a cat state of tunable size is produced by a simple
projective measurement of the quadraticlike correlations
that naturally comprise the nonlinearly entangled state.
Let us consider a three-photon down-conversion process,

where a pump photon at frequency ωC is down converted to
a signal photon at frequency ωA and two degenerate idler
photons at frequency ωB, with the energy conservation
relation ωC ¼ ωA þ 2ωB. This process is described by the
Hamiltonian

Ĥ ¼ iℏκðâ†b̂†2ĉ − âb̂2ĉ†Þ; ð1Þ
where κ is the third-order coupling constant that describes
the strength of the nonlinear interaction, â and b̂ are the
annihilation operators of the down-converted signal and
idler modes, and ĉ is the annihilation operator for the
pump mode.
With this Hamiltonian we propagate the initial state of no

photons in the signal and idler modes and a coherent state
jαci in the pump mode for a time t. Using the method
introduced in Ref. [16], we can obtain the generated state
numerically.
Because of the down-conversion process induced by the

pump, the modes A and B evolve away from their initial
vacuum states. This is evident in the joint probability
distributions of the linear quadratures taken between modes
A and B, as shown in Fig. 1. These distributions, which
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initially were Gaussian and circularly symmetric, now
show a great deal of complexity, and hint at the nonlinear
correlation properties of the final two-mode state.
Being a key element for quantum information processing

[17–21], the cat state has been experimentally realized
using several approaches [22–25]. However, to date, the
size of the state has not been readily tunable. In our
proposal, the projective measurement is a continuous
variable, and, hence, allows the size of the cat state to
be tuned continuously. Figures 2(a)–2(d) shows the cross
sections of the joint probability distributions for values of
XA ¼ 1; 2; 3, and 4. Here we have taken the scaling ℏ ¼ 1.
These give the probability distribution of XB given a
particular outcome of XA. For large-enough XA, we observe
two distinct peaks in XB, which become more separated
with larger XA. This displays the coherent superposition
phenomena where two contradictory outcomes are simul-
taneously possible. The interference fringes in the orthogo-
nal mode ŶB tell us that the projected state cannot be a
statistical mixture of two states.
The Wigner function of the projected mode ρ̂B for the

outcome XA ¼ 3 is plotted in Fig. 3(a). We find that it bears
a remarkable resemblance to the conventional optical cat
state jα0i þ j − α0i [26]. The fidelity between the generated
state and the cat state with α0 ¼ 2.9 is 0.943.
For completeness, we also plot the Wigner function of

mode A for an outcome on XB ¼ 3 in Fig. 3(b). It shows an

asymmetric parabolic distribution with a marked negativity
and interference pattern near the center. In spite of the
dissimilar appearance, both Wigner functions in Figs. 3(a)
and 3(b) exhibit strong coherent superposition character-
istics, as seen by the ripples in the quadrature projections.
Next, we shall show that the modes A and B are not only

correlated, but also entangled. As an entanglement witness,
we use the negativity Nðρ̂Þ defined as [29]

Nðρ̂Þ ¼ ∥ρ̂TB∥ − 1

2
; ð2Þ

where ρ̂TB is the partial transpose over mode B and
∥A∥ ¼ Trð

ffiffiffiffiffiffiffiffiffi
A†A

p
Þ is the trace norm. N > 0 is the sufficient

condition of entanglement.
Since the photons in modes A and B are generated

simultaneously, we expect them to be entangled. For small
interaction strength, the three-mode state is approximately
ðj0A0Bi þ j1A2BiαcκtÞjαci, which is entangled between
modes A and B. This is shown in the negativity plots in
Fig. 4(a). In Fig. 4(b), we see that for short interaction
strength (αcκt < 0.4), the state ρ̂AB maintains a purity

FIG. 1 (color). Linear quadrature joint probability distributions
for (a) XA and XB, (b) XA and YB, (c) YA and XB, (d) YA and YB.
The joint probability distributions between the quadrature am-
plitudes of modes A and B displays no linear correlation.
Interaction strength αcκt ¼ 0.3 and pump amplitude αc ¼

ffiffiffiffiffi
10

p
.

FIG. 2 (color online). Tuning a cat state. The probability
distributions of the quadratures XB (left) and YB (right) when
postselecting with (a) XA ¼ 1, (b) XA ¼ 2, (c) XA ¼ 3, and
(d) XA ¼ 4. The cat state amplitude increases with XA. Interaction
strength αcκt ¼ 0.3 and pump amplitude αc ¼

ffiffiffiffiffi
10

p
.
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higher than 0.9. We also see in these figures that the
entanglement strength and purity increase for a brighter
pump and a correspondingly weaker coupling constant κ.
This trend has its origins in the fact that a brighter pump has
reduced depletion and, hence, approaches the parametric
approximation [30,31].
Steerability is also exhibited in this two-mode state

between the normal linear quadratures of mode A and
the so-called squared amplitudes [32] of mode B, which are
defined as

X̂ð2Þ
B ¼ b̂2 þ b̂†2

2
; Ŷð2Þ

B ¼ ðb̂2 − b̂†2Þ
i2

; ð3Þ

where b̂ and b̂† are the annihilation and creation operators
for mode B.
To quantify the steerability of mode B by mode A, we

shall use the jth steerability index RðjÞ [33], which is
defined as [26]

RðjÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hVðX̂ðjÞ

B jXAÞihVðŶðjÞ
B jYAÞi

q

h½X̂ðjÞ
B ; ŶðjÞ

B �i
; ð4Þ

where VðÔBjOAÞ is the variance of ÔB when the meas-
urement of ÔA on mode A gives the outcome OA, and

hVðÔBjOAÞi is the average of VðÔBjOAÞ over all the
possible outcomes OA. Here X̂

ð1Þ, Ŷð1Þ are just the normal
linear quadratures X̂, Ŷ. The jth quadrature mode B is
steerable by mode A if RðjÞ < 1. When this inequality is
satisfied, on average both the amplitude and phase jth
quadrature variances of B can be “squeezed” by measuring
the appropriate quadrature of A, giving an apparent
violation of the Heisenberg uncertainty relation and, hence,

FIG. 3 (color). Wigner function of postselected state. (a) Wigner
function of projected mode B when XA ¼ 3, displaying features
of a cat state. (b) Wigner function of projected mode A when
XB ¼ 3. The projections on the vertical planes show the
probability density distribution of a quadrature measurement. The
horizontal plane projection gives a contour plot of the Wigner
function. Interaction strength αcκt ¼ 0.3 and pump amplitude
αc ¼

ffiffiffiffiffi
10

p
.

FIG. 4 (color). (a) Entanglement, (b) purity, (c) linear steer-
ability, and (d) quadratic steerability of the generated state. (a) We
observe a positive negativity for all interaction time indicating
entanglement between modes A and B. (b) The state ρAB has a
high purity when αcκt < 0.3. (c) The linear quadratures are not
EPR steerable. (d) However, the quadratic quadratures displays
EPR steering when αcκt < 0.3. A weak third-order coupling
constant κ can be compensated by using a stronger pump αc.
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an EPR paradox [1,33]. For j ¼ 1, this is similar to the
well-known Duans inseparability criteria [34], which is
widely used in quantum optics as an entanglement witness.
As shown in Fig. 4(c), we find that the first-steerability
index Rð1Þ is always greater than one, indicating a lack of
steerability for all interaction time in the simulation.
Having found no linear entanglement, we proceed to

investigate the nonlinear correlations. In Fig. 5, we plot the
relation between the linear quadratures of mode A and the
expectation values of quadratic quadratures of mode B.
From Fig. 5(a), we see a nonzero linear correlation between
the quadratures X̂A and X̂ð2Þ

B [also between ŶA and Ŷð2Þ
B in

Fig. 5(d)]. The linear correlations between cross quad-
ratures hX̂AŶ

ð2Þ
B i and hŶAX̂

ð2Þ
B i are zero, as seen in Figs. 5(b)

and 5(c). From Fig. 5(a), we see that by measuring X̂A, we
learn about the distribution of Xð2Þ

B . For the averaged
distribution of Xð2Þ

B one obtains a variance smaller than
the “shot noise” variance given by the Heisenberg uncer-
tainty principle. This is also true for the Ŷ quadrature,
which implies that the quadratic quadratures of mode B is
steerable by A. We plot the second-steerability index Rð2Þ
for different values of pump strength αc against interaction
time in Fig. 4(d). The results confirm that provided a short-
enough interaction time, mode B is steerable for all values
of pump strength.
We make an estimate on the realizability of the nonlinear

entanglement in a χð3Þ process enhanced by an optical

cavity. In order for a sufficiently strong interaction between
the modes in a cavity, we need an input pump power of the
order P⋆ ¼ P2

0=ðℏωCγÞ, where γ is the cavity decay rate
and P0 is the cavity threshold power parameter, which
depends on the nonlinearity of the χð3Þ crystal, the cavity
geometry, and its losses [16]. For a silicon nitride crystal
with an observed third-order nonlinearity of χð3Þ ¼
10−20 m2V−2 [35] at a pump frequency of ωC ¼ 5.3 ×
1015 s−1 in a microcavity configuration of length
L ¼ 1 mm, the cavity threshold power P0 ∼ ð103 WÞT2,
where T ¼ Lγ=c parameterizes the losses in the cavity.
Note that modes A and B are chosen to be nearly
degenerate; hence, dispersion in the value of χð3Þ can be
neglected. This puts the required input pump power at
P⋆ ∼ ð6 × 1012 WÞT3. For a cavity with a finesse of
2 × 104, the required pump power for observation of
nonlinear entanglement is of the order P⋆ ∼ 1 W, which
is experimentally attainable. Considering that the propa-
gation loss of silicon nitride can be as low as 0.05 dB=m
[36,37], a resonator with a round-trip length of 1 mm can
theoretically achieve a finesse of over 5 × 105. Here we
have assumed a relatively large mode diameter on the order
of 10 μm. The power density in the resonator is thus
comparable to what has been achieved experimentally [38].
In conclusion, we have introduced a method to quantify

the entanglement between higher-order quadratures of a
two-mode system, and have examined the process of three-
photon down-conversion as a source of nonlinear entan-
glement. We showed that in this process, the quadraticlike
correlations can be utilized to generate continuously
tunable cat states. In certain regimes, these cat states can
also be steered. This process is experimentally feasible and
can be realized with a third-order nonlinear material in a
high-finesse cavity. While we have presented a specific
example for nonlinear entanglement, we anticipate that
nonlinear quantum correlations will find many more
applications in quantum information protocols.
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