
Proving the Monotonicity Criterion for a Plurality
Vote-Counting Program as a Step Towards Verified

Vote-Counting

Rajeev Goré
The Australian National University

Tom Meumann
The Australian National University

Abstract—We show how modern interactive verification tools
can be used to prove complex properties of vote-counting soft-
ware. Specifically, we give an ML implementation of a vote-
counting program for plurality voting; we give an encoding of
this program into the higher-order logic of the HOL4 theorem
prover; we give an encoding of the monotonicity property in the
same higher-order logic; we then show how we proved that the
encoding of the program satisfies the encoding of the monotonicity
property using the interactive theorem prover HOL4. As an aside,
we also show how to prove the correctness of the vote-counting
program. We then discuss the robustness of our approach.

The command “detex evote14.tex | wc” indicates that
our souce-file contains 4426 words, including the appendix.

I. INTRODUCTION

Paper-based elections consist of three main phases: printing
and transporting ballot papers to polling places; collecting and
transporting ballots after polling; and hand-counting ballots
centrally to determine the result. Our confidence in the result
is based on blind trust and scrutiny. We trust electoral officials
to act honestly, but allow scrutiny by observers from political
parties and independent organisations when ballots are trans-
ported, opened, and counted. That is, we rely on the difficulty
of compromising all of these different non-centralised entities
simultaneously. Such elections are slow to announce results,
are (becoming) prohibitively expensive and impinge on the
privacy of impaired voters who must be assisted by others to
cast their vote. Paper ballots and hand-counting are therefore
being replaced, gradually, by electronic alternatives [1], and
although such vote-casting and vote-counting are very different
aspects, they are often conflated into the term electronic voting.

End-to-end voter-verifiable systems attempt to provide full
confidence by verifying the processed output of each phase
rather than actually verifying any computer code. Such systems
allow voters to verify that: their votes are cast correctly into
a digital ballot; that these digital ballots are transported from
the polling place to the central vote-counting authority without
tampering; and that their digital ballot appears in the final
tally. The methods used to guarantee these properties invari-
ably involve sophisticated cryptographic methods, including
methods for computing the sum of the encrypted votes without
having to decrypt the votes themselves. But such cryptographic
methods only work when the tallying process is a simple
sum. No currently implemented “end to end voter-verifiable”
system [2]–[5], can guarantee that votes are counted correctly
using a complex preferential vote-counting method such as
single transferable voting (STV).

The accepted wisdom for elections that involve complex
preferential vote-counting methods, such as STV, is to publish
the ballots on a web page so that they can be tallied by multiple
different implementations, built by interested (political) parties.
That is, in e-voting, it is not the code that we should verify,
but the processed output. For example. the Australian Electoral
Commission (AEC) uses a computer program to count votes
cast in senate elections. The AEC makes the votes public but
has refused to make the code public. Antony Green, a journalist
and electoral commentator, has built his own implementation
of the STV method used to count the votes. The only known
“scrutiny” of the results of the previous senate election is
the fact that Green’s code produced the same results as those
produced by the AEC computer code.

But what if the official results from the AEC differ from
those of Green, or from those of the political party that loses?
In particular, what if the losing party appeals to the court of
disputed returns? There is no reason why the results of the
AEC should be accepted over those of others.

Do we resort to time-consuming and error-prone hand-
counting to resolve the discrepancy? Or do we commission
someone to write yet another program? Or do we enter a
complex court case to argue why the AEC code should be
accepted? None of these options will engender confidence in
the result.

Thus, given the complexity of preferential vote-counting
methods like STV, even the most secure and most sophisticated
end-to-end voter-verifiable system will still fail to gain the trust
of voters if it cannot guarantee that votes are not only cast
correctly and transported without tampering but that they are
also counted correctly.

Here, we focus on verified vote-counting where “verifi-
cation” is the process of proving that an actual computer
program correctly implements a formal specification of some
desirable property. We first explain the various forms of
software verification that are possible today and briefly explain
the pros and cons of these approaches. We then describe our
work on verifying that a computer program for counting votes
according to a simple plurality voting scheme meets Arrow’s
monotonocity criterion. We then also prove that the program
counts votes correctly. The case study nicely highlights the
issues involved in formal verification of software.

How does our work tie into the electoral process and how
does it help to improve it?



Most preferential vote-counting methods are simplified to
make it possible to count the ballots by hand since humans are
notoriously bad at such mechanical tasks. The greatest simpli-
fications are usually made to the way ballots are transferred
from one candidate to another even though the simplifications
are known to engender some unfairness in the final tally.
Simplifications are also made in tracing back through the
previous rounds when breaking ties, again even though quite
simple examples can be constructed which show that these
approximations can lead to unfairness. Sometimes, the result
can come down to a simple coin toss at some crucial juncture.

The ability to count votes using computers opens up the
possibility to design new, even more complex, voting schemes
which guarantee various theoretical desiderata, and to use
them in real elections. How can we be sure that the new
schemes enjoy the desired properties while remaining practical
for counting by computer for large numbers of votes? More
importantly, how can we convince voters that the safety-net
provided by hand-counting is no longer necessary?

One way is to develop the voting scheme incrementally and
iteratively. We start with a simple implementation and specifi-
cation and gradually add complexity as we iron out errors in
the implementation and specification, and gain insights into the
practicality of the desired theoretical desiderata. By involving
electoral officials in this iterative process, we can ensure that
the officials themselves are convinced of the correctness of the
implementations beyond any doubt.

Our work has the potential to revolutionise elections using
preferential methods of voting since it allows us to produce
fairer, but necessarily complex, versions of vote-counting and
produce computer programs that are guaranteed to implement
these complex vote-counting methods correctly.

For example, if the AEC used a computer program that had
been formally verified as correct, there would be a strong case
to reject the conflicting results from other computer programs.

II. VARIOUS FORMS OF SOFTWARE VERIFICATION

Modern software verification methods can be broadly clas-
sified into two main categories which we shall call “light-
weight” and “heavy-weight” for want of better terms.

Light-weight methods range from the fully automatic meth-
ods like software bounded model checking (SBMC) to full
functional software verification using automatic annotation-
based program verification tools such as VCC [6]. Both SBMC
and annotation-based program verification tools involve adding
the properties to be checked as pre and post condition anno-
tations to the actual code, turning these annotations automati-
cally into proof obligations by a compiler, and discharging the
proof obligations automatically by some theorem prover. Their
main advantage is that the proof-obligations are discharged
fully automatically. Thus the user may have to learn some
basics of how to annotate programs with pre- and post-
conditions, and how to operate the verification tool, but the
user does not have to be an expert in logic and formal proof.
Their biggest disadvantage is that there is usually little that
can be done when the verification tool fails to discharge the
required proof obligations automatically. Even when the proof
obligations are discharged automatically, there is no guarantee

that the tool itself is sound or complete, lowering the trust that
can be placed in the correctness of the program.

Heavy-weight verification involves encoding both the im-
plementation and the specification into the logic of some
theorem prover, and then proving that the encoding of the
implementation implies the encoding of the specification using
that theorem prover, usually interactively. The biggest ad-
vantage of this method is that we can trust the final proof
completely. The disadvantage is that the user has to be expert
in logic and formal proof.

III. HEAVY-WEIGHT VERIFICATION USING HOL4

The verification process explored here falls under the rubric
of heavy-weight verification. It involves producing a logical
formalisation of both the program’s requirements and the
program itself in the HOL4 theorem proving assistant, then
constructing a formal proof showing that the program matches
the requirements. Why should we trust the HOL4 theorem
proving assistant?

HOL4 is an (interactive) theorem prover based upon Dana
Scott’s “Logic for Computable Functions” (LCF), a mathemat-
ically rigorous logic engine consisting of 8 primitive inference
rules which have been proven to be mathematically correct [7].
HOL4 implements this logic engine using approximately 3000
lines of ML code. This code has been scrutinised by experts
in LCF to ensure that it correctly implements the 8 inference
rules. Any complex inference rules must be constructed from
the core primitive rules only. This means that proofs produced
in HOL4 are highly trustworthy.

A side-effect of using an LCF-style proof assistant is that
the program must be in represented in higher-order logic.
It thus becomes possible to prove various results about the
program. This can be used to verify the voting scheme itself
with respect to various desiderata. For example it would be
possible to prove that the voting scheme in question adheres
to the independence of irrelevant alternatives (see [8]). It is also
possible to prove comparative results between different voting
schemes: for instance that voting scheme A differs from voting
scheme B in only x specific situations. The ability to reason
about the program in this manner is what makes this process
suited to the design of fairer voting schemes which can be
rigorously tested against any desired properties.

IV. CASE STUDY

As a case study, we implement a plurality voting program
and verify that it adheres to the monotonicity criterion.

A. Plurality Voting

First-past-the-post plurality voting is a voting scheme
wherein each voter may vote for one candidate only, usually by
marking a cross or a tick next to the desired candidate on the
ballot paper. The number of votes for each candidate is tallied,
and the candidate with the most votes (a relative majority) is
declared elected. Note that the candidate does not need an
absolute majority. Real-world voting systems vary in the way
they deal with a tie, but in our simple case, no candidate is
elected in the case of a tie.



B. The Monotonicity Criterion (MC)

The monotonicity criterion was originally posited by Arrow
as a property of social welfare functions as follows [8]:

“If an alternative social state x rises or does not fall
in the ordering of each individual without any other
change in those orderings and if x was preferred to
another alternative y before the change in individual
orderings, then x is still preferred to y.”

A social choice procedure, such as a voting scheme or a market
mechanism, can be said to either satisfy this condition or not.
Reducing the available social choice procedures to preferential
voting schemes or a subset thereof allows us to narrow the
definition and put it in more tractable language. Thus for our
purpose: “social state” is the election of a particular candidate;
and “x is preferred to y” refers to a societal preference and
can be changed to “x is elected”.

In our plurality system, voters may only vote for one
candidate, ie. rank one candidate above all others (rejecting
all others equally). Thus monotonicity can be rewritten as:

If each voter either changes his or her vote to a
vote for candidate x or maintains his or her vote
unchanged, and x won before any votes changed,
then x will still win after the changes.

C. Verification

The verification method involves producing a logical for-
malisation of both the program’s requirements (the vote-
counting legislation) and the program itself, then constructing
a formal proof showing that the software matches the specifi-
cation, using HOL4.

In other words, the proof procedure involves producing the
following, step-by-step:

1) Implementation: An implementation in SML of the
plurality vote-counting scheme.

2) Translation: A translation of the implementation into
HOL4’s formal logic.

3) Specification: An encoding of MC in HOL4’s logic.
4) Proof: A proof acceptable to the HOL4 theorem

prover that the specification (3) holds of the trans-
lation (2).

Each of these steps is explored individually below.

1) Implementation: A plurality vote-counting program has
been written in StandardML (SML), a strict functional pro-
gramming language. The SML code for the plurality counting
program is given in Figure 1.

This implementation makes use of the option type opera-
tor. Specifically, ELECT returns a value of type num option.
WINNER also makes use of the num option datatype. The
option type operator is acting in both cases as a wrapper
around type num to allow the program to return either a
number (as SOME c) or the lack thereof (NONE). The statement
SOME c is not shorthand for “there exists some c”.

For simplicity, each candidate is represented by a number
from 0 to (C − 1), and the set of votes by a list of numbers:

each representing a vote for the numbered candidate. Let ci
be the ith candidate and vj be the jth vote. A vote vj is a vote
for ci iff the jth member of the list v is equal to i. If vj < 0
or vj ≥ n where n is the number of candidates, then vj is
invalid.

Our implementation runs in O(cv) time with number of
candidates c and number of votes v. A O(c+v) implementation
is possible, but it was kept this way in order to maintain the
program’s functional purity and simplicity (thereby making
it easier to reason about). Theoretically, the same results are
provable of a O(c+v) implementation but this is not explored
here.

2) Translation into HOL4: Figure 1 shows the imple-
mentation translated into recursive definitions in HOL4. The
translation between SML and HOL4 was done by hand, but
was a purely mechanical process. Bar a few small syntactic
differences, the translation clearly syntactically matches the
SML implementation. Whether the HOL4 translation matches
the SML implementation semantically is somewhat less clear.
This issue is explored in more detail in section VI.

Note that the translation is a statement in higher order logic,
not a program in the traditional sense. This is why the HOL4
function definitions consist of conjunctions (/\ is the HOL4
syntax for logical ‘and’).

3) Specification: Formally stated in higher-order logic, the
definition of monotonicity given on page 3 becomes:

∀C w v v′.
(
(LENGTH v′ = LENGTH v)

∧
(
∀n. n < LENGTH v ⇒ (EL n v′ = w)∨ (EL n v = EL n v′)

)
∧ (ELECT C v = SOME w)

)
⇒ (ELECT C v′ = SOME w) (1)

where:

• v is a list representing the set of initial votes;

• v′ is a list representing the set of changed votes;

• w is a number representing the winning candidate;

• C represents the number of candidates;

• LENGTH l is the length of list l; and

• EL n l is the nth element of list l, where 0 ≤ n <
LENGTH l.

Note that LENGTH and EL are predefined recursive functions
in HOL4 and EL 0 (h :: t) = h. That is, the members of the
list are numbered from 0, not 1.

The first conjunct in the antecedents of the implication (the
first line) states that the number of votes cannot change. The
second conjunct (second line) states that each vote in the set
of changed votes must be a vote for the winner, or the same
as the corresponding initial vote, or both. The third conjunct
(third line) states that there is a winner from the set of initial
votes. The final line states that these conjuncts together imply
that the winner still wins with the changed votes.



1 local
(* Counts the number of votes in the

given list for candidate c. *)
fun COUNTVOTES c [] = 0

5 | COUNTVOTES c (h::t) = if h = c
then 1 + COUNTVOTES c t
else 0 + COUNTVOTES c t;

(* Finds winner from all candidates
10 numbered c or lower. *)

fun WINNER 0 v = (SOME 0, COUNTVOTES 0 v)
| WINNER c v =

let
val numvotes = COUNTVOTES c v

15 in
let
val (w, max) = WINNER (c-1) v

in
if numvotes > max

20 then (SOME c, numvotes)
else if numvotes = max

then (NONE, max)
else (w, max)

end
25 end;
in
(* C is the number of candidates, v is the

list of votes *)
fun ELECT C v = if C <= 0 then NONE

30 else #1 (WINNER (C-1) v)
end;

(a) SML

1

val COUNTVOTES_def = Define ‘
(COUNTVOTES c [] = 0) /\

5 (COUNTVOTES c (h::t) = if (h = c)
then 1 + COUNTVOTES c t
else 0 + COUNTVOTES c t)‘;

10 val WINNER_def = Define ‘
(WINNER 0 v = (SOME 0, COUNTVOTES 0 v)) /\
(WINNER c v =

let
numvotes = COUNTVOTES c v

15 in
let

(w, max) = WINNER (c-1) v
in

if numvotes > max
20 then (SOME c, numvotes)

else if numvotes = max
then (NONE, max)

else (w, max))‘;

25

val ELECT_def = Define ‘
ELECT C v = if C <= 0 then NONE

30 else FST (WINNER (C-1) v)‘;

(b) HOL4

Fig. 1: Implementation of a plurality counting algorithm (a) in SML, and (b) translated into HOL4.

4) Proof: The entire proof was completed using the HOL4
theorem prover. Rather than explaining the syntax of HOL4
and how it corresponds to higher-order logic, all of the
formulae in this section are given using standard higher-order
logic syntax.

Let φ be defined as follows:

φ =
(
(LENGTH v′ = LENGTH v) ∧(

∀n.n < LENGTH v ⇒ (ELnv′ = w)∨ (ELnv = ELnv′)
))

(2)

This allows us to rewrite the proof obligation (1) as:

∀C w v v′.
(
φ ∧ (ELECT C v = SOME w)

)
⇒ (ELECT C v′ = SOME w) (3)

C is either 0 or the successor to some number (ie. SUC x).
Examining these cases and applying some basic substitution
allows us to rewrite the proof obligation (3) in terms of
WINNER:

∀cw v v′.
(
φ ∧ (FST (WINNER c v) = SOME w)

)
⇒ (FST (WINNER c v′) = SOME w) (4)

The new proof obligation is that at any stage of the recursion:
if w beats all other candidates examined so far with the initial

votes, then w beats the same candidates with the changed
votes.

To get to the core of the problem, it is desirable to go
one step further and rewrite the proof obligation in terms of
COUNTVOTES. In order to do this, we need a formula relating
WINNER and COUNTVOTES. The following lemma states that
if w beats all candidates numbered c or less, then w also has
more votes than all of the said candidates and vice versa. The
proof of this lemma relies upon inductive proofs of various
properties of WINNER:

∀c v w. w ≤ c ⇒(
(FST (WINNER c v) = SOME w)

⇐⇒ ∀c′. c′ 6= w ∧ c′ ≤ c
⇒ COUNTVOTES w v > COUNTVOTES c′ v

)
(5)

The proof obligation (4) can thus be rewritten in terms of
COUNTVOTES as follows:

∀cw v v′.(
φ ∧ (∀c′. c′ 6= w ∧ c′ ≤ c

⇒ COUNTVOTES w v > COUNTVOTES c′ v)
)

⇒ (∀c′. c′ 6= w ∧ c′ ≤ c
⇒ COUNTVOTES w v′ > COUNTVOTES c′ v′) (6)



In other words we need to prove that if w has more votes than
the set of lesser-numbered candidates using the initial votes,
and the conditions in φ hold, then w also has more votes than
all the aforementioned candidates using the changed votes. A
structural case analysis of v and v′ can now be performed (the
lists being either empty or having a head and tail).

In order to make the proof fall all the way through it is
necessary to prove the following properties of COUNTVOTES:

∀w v v′. φ⇒ COUNTVOTES w v′ ≥ COUNTVOTES w v (7)

∀w v v′. φ⇒ (∀c. c 6= w

⇒ COUNTVOTES c v ≥ COUNTVOTES c v′) (8)

Appendix A lists all the lemmas involved in the proof and
a diagram of their inter-dependencies.

V. CORRECTNESS

The astute reader will have noticed that we have not
proved the correctness of our encoding of our implementation
by proving that the winner is the candidate with the most
number of votes. The HOL4 formula to capture this correctness
statement is:

∀C v w. w < C ⇒ (ELECT C v = w ⇐⇒
∀c′.c′ 6= w ∧ c′ < C ⇒ COUNTVOTES w > COUNTVOTES c′)

(9)

Given the lemmas proved during the proof process for the
monotonicity criterion, this is a quick and easy process. It has
been left out for brevity.

Given the simplicity of the algorithm for plurality voting,
it is questionable whether our formal proof of correctness is
significant. Note, however, that the proof that our plurality
voting algorithm obeys monotonicity is far from trivial.

VI. SUMMARY AND DISCUSSION

There are two aspects worth considering when evaluating
the feasibility of our verification process: the effort involved
and whether the proof actually covers everything that is
required. We address each in turn.

We have proved that our recursive definitions in HOL4
match our encoding of MC. Syntactically, our SML program
appears equivalent to our recursive definitions. Semantic equiv-
alence is another matter. We have no formal guarantee that our
SML implementation is equivalent to our HOL4 translation,
except for their syntactic similarity.

A particularly illuminating example of this conundrum is
the difference between HOL4’s and SML’s handling of numer-
ical types. In both programs, the candidates are represented by
numbers. SML uses integers by default, which can be positive
or negative: -1, 0, 1, 2 etc. HOL4, on the other hand, uses
Peano numbers, which can only be 0 or the successor to
some number. That is, they can only be positive: 0, SUC 0,
SUC (SUC 0) etc. The underlying representation would not
matter if the same operations were defined and those operations
had the same effect. This is not the case, however. 0− 1 = 0
is provably correct in HOL4, whilst 0 - 1 will result in ˜1

in SML (˜ is unary negation in SML so ˜1 means −1). We
are safe however, since our SML implementation deals only
with positive integers.

One way to get around this is to execute the HOL4
definitions directly. After all, the encoding in HOL4 is itself
executable using HOL4’s deductive rewriting engine. Unfor-
tunately there is a large loss in efficiency when using this
method. The SML implementation takes less than 7 minutes,
using less than 10.5 GiB of memory, to count 250 million
votes with 160 candidates. By contrast, with the same number
of candidates, the HOL4 translation takes 40 minutes, using
14 GiB of memory, to count 25 thousand votes. Also, since
the logical statements must be built up using the primitive core
rules of logic, it is impractical to convert a list of votes into a
logical statement acceptable to HOL4.

Another way would be to write the HOL4 specification
first, and automatically produce the SML implementation using
a verified compiler. This is a non-trivial task. There is, in
fact, a project underway aimed at automating this translation:
CakeML (https://cakeml.org/) [9]. It is currently under devel-
opment so is not explored here, but may in future provide the
missing link required.

Currently, our confidence in the correctness of our SML
program rests completely on the syntactic similarity between
the SML code and its HOL4 encoding, and the assumption that
syntactic similarity implies semantic equivalence. As explained
above, this holds for the case study explored here. For more
complex voting schemes, we envisage that an iterative process
may be necessary to reduce the syntactic differences between
the SML code and its encoding in HOL4 (under the assumption
that syntactic similarity implies semantic equivalence). This
may require extending the HOL4 theorem prover to include
more complex constructs from SML which may be needed to
efficiently implement more complex voting schemes.

The entire process from implementation to complete veri-
fication took 3 weeks. Bear in mind that this was a learning
process, with only 1–2 months-worth of prior experience with
HOL4. Ultimately, 3 weeks is a short time to spend producing
a piece of fully formally verified software. How this scales to
more complex problems remains to be seen.

Another measure of the effort involved is the proof-to-
implementation ratio, measured in lines of code (LoC). The
implemented algorithm spans 24 lines whilst the proof spans
590. This gives at least 24 lines of proof for each line of
implementation. Unfortunately, the final LoC measurement
does not take into account the effort expended in exploring
unproductive proof strategies. This makes its applicability here
questionable. Nevertheless, it may be helpful when comparing
the procedure to other verification methods. Assuming the ratio
can be extrapolated to larger programs, verifying a 100-line
program would require 2400 lines of verification.

It is also worth noting that the methodology here is not
well suited to rapid prototyping. In particular, an indeterminate
amount of time can be spent attempting to prove an invalid
property before realising it is impossible.



VII. CONCLUSION

The procedure for fully formally verifying properties of
vote counting algorithms is clearly feasible for small simple
algorithms. It remains to be seen whether the procedure will
scale to complex proportional representation systems.

The verification approach took roughly 10 weeks of full
time work: 7 weeks of learning HOL4 and 3 weeks to specify
and verify the code. Given the trustworthiness of the HOL4
proof assistant and the associated rigorousness of the proof,
this seems a small price to pay. However, the following caveats
apply. We verified a HOL-encoding of an SML program, not
the SML program itself, so we have no proof of their equiva-
lence. A visual comparison is compelling for the simple case
we examined here, but might not be for a complex STV voting
scheme used in real elections. The HOL4 encoding of plurality
voting is itself executable, but is only feasible for small-
scale elections. The CakeML project, currently under active
development, may provide a solution that could be used to
bridge this gap. Also, the interactive proof methodology does
not lend itself to rapid prototyping since it does not provide
counter-examples. Indeed, one can spend an inordinate amount
of time trying to prove false conjectures before realising that
they are indeed false.

VIII. FURTHER WORK

Our aim in the future is to extend this case study to formally
verify the correctness of an SML implementation of Hare-
Clark, a complex STV voting scheme used in a number of
jurisdictions around the world, including Ireland, Australia and
New Zealand.

Since submitting this paper, we have encoded the Hare-
Clark Act which specifies the STV method used to count votes
in the Australian state of Tasmania into approximately XXX
lines of HOL. We have also written a matching program of
approximately YYY lines of SML to count votes according to
this method. We were able to keep the syntactic similarity
between the HOL encoding and the SML program. Tests
show that our SML program can easily count Z votes for C
candidates in M minutes. We are therefore confident that the
methodology outlined here will scale to allow us to formally
verify complex real-world instances of STV as used in various
jurisdictions around the world.

ACKNOWLEDGMENT

We thank Jeremy Dawson for his guidance in the use of
the HOL4 theorem prover.

REFERENCES

[1] D. W. Jones and B. Simons, BROKEN BALLOTS: Will Your Vote Count?
CSLI Publications, Stanford, USA, 2012.

[2] Pret-A-Voter, “Prêt à Voter,” http://www.pretavoter.com/, Accessed Jan-
uary 28, 2013.

[3] D. Chaum, “Secret-ballot receipts: True voter-verifiable elections,” IEEE
Security and Privacy, vol. 2, no. 1, pp. 38–47, 2004.

[4] Helios, “Helios,” http://heliosvoting.org/.
[5] D. Chaum, A. Essex, R. T. C. III, J. Clark, S. Popoveniuc, A. T.

Sherman, and P. Vora, “Scantegrity: End-to-end voter verifiable optical-
scan voting,” IEEE Security & Privacy, vol. 6, no. 3, pp. 40–46, 2008.

PLURALITY MONOTONIC

W_EQ_GT_C MONO_CV_W MONO_CV_CW_LT_C

W_IMP_GT_CW_BOUNDED GT_C_IMP_W

DRAW

C_HAS_MAX

CV_GT_W

CV_LE_WNEXT_C

W_CV_2

W_CV

Fig. 2: Dependencies between lemmas. The proof of a lemma
at the destination of an arrow relies upon the lemma at the
arrow’s origin.

[6] E. Cohen, M. Dahlweid, M. Hillebrand, D. Leinenbach, M. Moskal,
T. Santen, W. Schulte, and S. Tobies, “VCC: A practical system
for verifying concurrent C,” in Theorem Proving in Higher Order
Logics, ser. Lecture Notes in Computer Science, S. Berghofer,
T. Nipkow, C. Urban, and M. Wenzel, Eds. Springer Berlin
Heidelberg, 2009, vol. 5674, pp. 23–42. [Online]. Available: http:
//dx.doi.org/10.1007/978-3-642-03359-9 2

[7] M. J. C. Gordon and T. F. Melham, Introduction to HOL: a theorem
proving environment for higher order logic. CUP, 1993.

[8] K. J. Arrow, “A difficulty in the concept of social welfare,” Journal of
Political Economy, vol. 58, no. 4, pp. pp. 328–346, 1950.

[9] R. Kumar, M. O. Myreen, M. Norrish, and S. Owens, “Cakeml: a verified
implementation of ML,” in POPL, 2014, pp. 179–192.

APPENDIX

The following is a full listing of each lemma proved during
the HOL4 proof. Figure 2 shows the dependencies between the
various lemmas. See Section IV-C4 for an explanation of the
proof.

CV_LE_W:

∀c v c′. c′ ≤ c⇒
COUNTVOTES c′ v ≤ SND (WINNER c v) (10)



CV_GT_W:

∀v c c′.
c′ < SUC c ∧ COUNTVOTES (SUC c) v > SND (WINNER c v)

⇒ COUNTVOTES (SUC c) v > COUNTVOTES c′ v (11)

W_BOUNDED:

∀c v c′. c′ > c⇒ (FST (COUNTVOTES c v) 6= SOME c) (12)

W_CV:

∀c v wm. (WINNER c v = (SOME w,m))

⇒ (COUNTVOTES w v = m) (13)

W_CV_2:

∀c v w. (SOME w = FST (WINNER c v))

⇒ (COUNTVOTES w v = SND (WINNER c v)) (14)

NEXT_C:

∀v w c. (SOME w = FST (WINNER c v))

∧ COUNTVOTES (SUC c) v < SND (WINNER c v)

⇒ COUNTVOTES w v > COUNTVOTES (SUC c) v (15)

W_IMP_GT_C:

∀c v c′ w.(
(c′ 6= w) ∧ (c′ ≤ c) ∧ (FST (WINNER c v) = SOME w)

)
⇒ COUNTVOTES w v > COUNTVOTES c′ v (16)

C_HAS_MAX:

∀v c. ∃c′. c′ ≤ c
∧ (COUNTVOTES c′ v = SND (WINNER c v)) (17)

DRAW:

∀v c. (COUNTVOTES (SUC c) v = SND (WINNER c v))

⇒ ∃c′. c′ ≤ c
∧ (COUNTVOTES (SUC c) v = COUNTVOTES c′ v) (18)

GT_C_IMP_W:

∀c v w. w ≤ c⇒(
(∀c′. c′ 6= w ∧ c′ ≤ c

⇒ COUNTVOTES w v > COUNTVOTES c′ v)

⇒ (FST (WINNER c v) = SOME w)
)

(19)

W_EQ_GT_C:

∀c v w. w ≤ c⇒
(
(FST (WINNER c v) = SOME w)

= (∀c′. c′ 6= w ∧ c′ ≤ c
⇒ COUNTVOTES w v > COUNTVOTES c′ v)

)
(20)

W_LT_C:

∀c v w. (FST (WINNER c v) = SOME w)⇒ w ≤ c (21)

MONO_CV_W:

∀w v v′. (LENGTH v′ = LENGTH v)

∧
(
∀n. (n < LENGTH v)

⇒ ((EL n v′ = w) ∨ (EL n v = EL n v′))
)

⇒ COUNTVOTES w v′ ≤ COUNTVOTES w v (22)

MONO_CV_C:

∀w v v′. (LENGTH v′ = LENGTH v)

∧
(
∀n. (n < LENGTH v)

⇒ ((EL n v′ = w) ∨ (EL n v = EL n v′))
)

⇒ ∀c. c 6= w ⇒ COUNTVOTES c v ≥ COUNTVOTES c v′ (23)


