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Abstract

This thesis presents a characterisation of the dynamics of evoked and spontaneous

Ca2+ transients in synaptic boutons of neocortical pyramidal neurons.

In response to an action potential (AP), a transient rise in the intracellular Ca2+

concentration ([Ca2+]i) causes transmitter release from nerve terminals. As the

spatiotemporal dynamics of this Ca2+ rise can affect the efficacy and plasticity of

synaptic connections, it is essential to understand their determinants. To characterise

factors that shape Ca2+ transients in neocortical synaptic boutons, layer 5 pyramidal

cells in the rat somatosensory cortex were filled through the patch pipette with a

fluorescent Ca2+ indicator for the measurement of [Ca2+]i.

For accurate calculation of [Ca2+]i from the fluorescence intensity, the Ca2+ binding

affinities (Kd) of the indicators were measured in vitro, in solutions that were similar

to the patch-clamp internal solution. These solutions were made with various

concentrations of CaCl2, but a constant concentration of a Ca2+ buffer. The resultant

free [Ca2+] was measured with a Ca2+-selective macroelectrode. It was found that the

Kd values of the Ca2+ indicators were considerably different from those previously

published or provided by the manufacturers.

Two main determinants of the intracellular Ca2+ dynamics are the capacity of

endogenous Ca2+ buffers and the activity of Ca2+ sequestration mechanisms. By

measuring the peak amplitude of single AP-evoked Ca2+ transients with different

concentrations of OGB-1 or OGB-6F, a value of 7 ± 2 was estimated for the Ca2+

binding ratio of endogenous buffers. Thus, in response to a single AP and in the

absence of exogenous buffers, [Ca2+]i was raised by 5.3 ± 1.3 µM, with a total

change of ⇠ 50 µM. The rate constant of Ca2+ sequestration (0.60 ± 0.03 s�1) was
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estimated from the slow decay time constant of the measured transients. The initial

fast decay did not prolong when intracellular Ca2+ uptake was inhibited, or speed up

during repetitive stimulation. These findings suggest that Ca2+-induced Ca2+ release

(CICR), buffer saturation, and a non-linear Ca2+ transporter were not the main cause

of the bi-exponential decay. A 3D model of a bouton en passant showed that diffusion

of Ca2+ into the axon was likely the underlying mechanism. During high-frequency

stimulation, CICR contributed to a supralinear summation of [Ca2+]i.

Spontaneous increases in [Ca2+]i have been observed in several nerve terminals. They

have been implicated in a number of cellular processes, including Ca2+ homeostasis

and spontaneous transmitter release. Here, the high-affinity Ca2+ indicator OGB-1

was used to monitor small changes in [Ca2+]i. Spontaneous Ca2+ transients (sCaTs)

were observed at a frequency of ⇠ 0.2 per min. The increase in [Ca2+]i associated with

each sCaT was 1.4 � 2.3 µM, in the absence of exogenous buffers. As they occurred

in the presence of tetrodotoxin, which inhibits AP firing, it was hypothesised that

sCaTs arose from Ca2+ release from presynaptic stores. In support of this, caffeine

increased the average frequency of sCaTs by 90 ± 30%. The amplitude and kinetics of

sCaTs identified in caffeine and in the control condition were not different from each

other, suggesting that the majority of sCaTs might have been a result of Ca2+ release

through ryanodine receptors. The functional consequence(s) of sCaTs in neocortical

synaptic boutons remains to be determined.
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Chapter 1

Introduction

1.1 Overview

The transfer of information between neurons is integral to our brain function.

Neurons are one of the two main types of cells in the nervous system, the other

being glial cells. They communicate with one another through highly specialised

points of contact called synapses. The arrival of an action potential at a presynaptic

nerve terminal results in a characteristic series of events: the opening of voltage-

gated Ca2+ channels (VGCCs), which give rise to Ca2+ influx, followed by the

fusion of synaptic vesicles, the release of neurotransmitter molecules into the

synaptic cleft, the activation of specific receptors on the postsynaptic membrane,

and finally, the diffusion and uptake of the transmitter. Therefore, the efficacy of

synaptic transmission is governed by the number of readily releasable vesicles, the

probability of vesicle fusion, and the response of postsynaptic receptors (amplitude

and duration) to the released neurotransmitter.

Ca2+ is an essential second messenger in all living cells. In neurons, it plays a key

role in triggering and regulating synaptic transmission. Not only does Ca2+ bridge

an electrical stimulation with the molecular machinery that drives vesicle fusion, but

it also initiates signalling cascades that enhance or depress transmitter release and

the postsynaptic response. In particular, the number of readily releasable vesicles, the

probability of vesicle fusion, and the kinetics of transmitter release are all regulated

by Ca2+ (Rozov et al., 2001; Bollmann and Sakmann, 2005; Wadel et al., 2007; Catterall

1
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et al., 2013). As a result, cellular mechanisms that modulate the intracellular Ca2+

concentration
�
[Ca2+]i

�
and dynamics can readily affect synaptic transmission and

plasticity.

This thesis aims at characterising factors that shape Ca2+ dynamics in nerve terminals

of neocortical pyramidal neurons. This chapter will give a background on our current

understanding of transmitter release and discuss the mechanisms by which Ca2+

controls multiple aspects of synaptic transmission. It will then describe the main

determinants of [Ca2+]i, before presenting the organisation of the thesis into the

succeeding chapters.

1.2 Synaptic transmission

In the central nervous system (CNS), a pyramidal neuron receives ⇠ 10,000

synaptic inputs from other neurons (Larkman, 1991). Each of these inputs,

generally received along its dendritic branches, causes the membrane potential to

depolarise or hyperpolarise. If they together produce a sufficiently strong membrane

depolarisation, an all-or-nothing electrical response called action potential (AP) will

be generated at the axon initial segment (Coombs et al., 1957; Fuortes et al., 1957;

Palmer and Stuart, 2006). This AP will propagate along the axon to its terminals

where synaptic transmission initiates.

1.2.1 The nature of synaptic transmission

By the end of the 19th century, largely owing to Ramón y Cajal’s histological work on

brain tissues, it was generally thought that neurons were discrete cells, connected

to each other by points of contact (von Waldeyer-Hartz, 1891). However, it was

unclear how information was conveyed across a synapse. For almost the first half

of the 20th century, a great debate took place on whether synaptic transmission

was electrical or chemical. The idea that nerve fibres, when stimulated, releases a



§1.2 Synaptic transmission 3

diffusible substance that produces postsynaptic effects was first suggested by Elliott

(1905). A few decades later, Loewi, and Dale and colleagues, provided evidence for

this form of transmission by the vagus nerve and at the neuromuscular junction

(NMJ), respectively (Loewi, 1924; Dale, 1937). Despite these researchers’ work,

it remained controversial whether chemical transmission could be fast enough to

produce the sub-millisecond delay between a motor nerve impulse and the onset

of a muscle response (Eccles, 1990). Eccles et al. (1942) finally showed that the

release of acetylcholine from motor nerve terminals was sufficient to cause the rapid

potential change in the muscle membrane during neuromuscular transmission, thus

precluding an involvement of electrical transmission at this synapse.

The introduction of microelectrodes to measure the membrane potential of nerve

fibres (Hodgkin and Huxley, 1939; Graham and Gerard, 1946; Cole, 1949; Marmont,

1949), together with the use of electron microscopy to visualise neuronal connections

(De Robertis and Bennett, 1955; Palay, 1956; Gray, 1959), rapidly advanced our

understanding of transmission between neurons. Both chemical and electrical

synapses have been observed and shown to coexist in most, if not all, nervous

systems (Pereda, 2014). Key components mediating information transfer across

them have also been identified. At a chemical synapse, the pre- and post-synaptic

membranes are separated by a 20 � 40 nm space called synaptic cleft (De Robertis

and Bennett, 1955; Palay, 1956). Transmitter molecules are packaged in presynaptic

vesicles from which they are released into the synaptic cleft. They then diffuse across

the cleft and bind to receptors on the postsynaptic membrane. In contrast, at an

electrical synapse, the membranes of the two communicating cells are tightly linked

and their cytoplasm connected by clusters of intercellular channels (Bennett et al.,

1963; Bennett, 1997). These channels allow ionic currents to flow passively between

the two neurons.

This thesis examines the dynamics of the intracellular Ca2+ rise associated with

neurotransmitter release. The axon terminals studied are known to form chemical

synapses onto the dendrites of surrounding neurons (Palay, 1956; Gray, 1959;

Markram et al., 1997; Frick et al., 2008). Therefore, from here onwards, unless



4 Introduction

otherwise stated, the term synaptic transmission will be used to refer to chemical

transmission.

1.2.2 The vesicular hypothesis

Through a series of seminal experiments, Del Castillo and Katz (1954) provided

some of our first understanding of the mechanisms underlying transmitter release.

They measured miniature end-plate potentials (mEPPs), which occurred randomly

at the NMJ in the absence of any stimulation, and compared them to evoked end-

plate potentials (EPPs) measured in a low Ca2+ external medium. By doing so,

they found that the amplitudes of mEPPs were normally distributed, whereas the

amplitudes of evoked EPPs displayed a quantised distribution whose peaks were

integer multiples of the mean mEPP amplitude. This finding led to the suggestions

that transmitter molecules are released in discrete multi-molecular packets, termed

quanta, and that the mEPP represents the postsynaptic response to the release of a

single quantum. A year later, based on electron microscopic observation of small

vesicles inside the motor nerve terminal (Robertson, 1956), Del Castillo and Katz

(1955) put forward the vesicular hypothesis, which provides a structural conception

for the transmitter quantum. According to this hypothesis, transmitter molecules are

packaged in subcellular vesicles from which they are released into the synaptic cleft

in an all-or-nothing manner. Thus, the size of a quantum, thereby the amplitude of a

mEPP, is determined by the transmitter content of a synaptic vesicle.

Among the first key works in favour of the vesicular hypothesis is a biochemical

study showing that synaptic vesicles isolated from the electric organ of Torpedo

contained a large amount of acetylcholine (Israel et al., 1968). Subsequently, images

of synaptic vesicles undergoing stimulation-induced exocytosis were captured in a

study that used rapid-freezing techniques in combination with electron microscopy

(Heuser et al., 1979). The same study reported a 1:1 relationship between the number

of vesicle openings on the presynaptic membrane and the number of released

quanta estimated from the postsynaptic response. This supports the idea that a
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synaptic vesicle corresponds to a transmitter quantum. Furthermore, recent advances

in molecular and genetic techniques have led to the discovery that numerous

presynaptic proteins, involved in the trafficking and exocytosis of synaptic vesicles,

play an important role in synaptic transmission (Sudhof, 2014). Together, these

studies have made the vesicular origin of transmitter release a wide consensus.

The vesicular hypothesis has also received support from electrophysiological studies.

A prediction of this hypothesis is that, upon vesicle fusion, the total surface area

of the presynaptic membrane will increase, as a result of the vesicle membrane

being added to it. Such a change can be tracked by measuring the cell membrane

capacitance. Membrane capacitance measurement was first developed by Neher and

Marty (1982) to monitor vesicle exocytosis and endocytosis in adrenal chromaffin

cells. This technique was later adopted by Sun and Wu (2001), who measured vesicle

fusion in response to membrane depolarisation in a large CNS synapse - the calyx of

Held. This study elegantly demonstrated a linear relationship between the increase

in the presynaptic membrane capacitance and the amplitude of the postsynaptic

response, lending further support to the vesicular hypothesis.

1.2.3 Modes of transmitter release

There are three kinetically distinct forms of neurotransmitter release: synchronous,

asynchronous, and spontaneous (Fig. 1.1). Both synchronous and asynchronous

forms of release result from AP firing (i.e. evoked release). However, the former

occurs within a few milliseconds, whilst the latter persists for tens of milliseconds to

tens of seconds after stimulation. Spontaneous release, on the other hand, occurs in

the absence of presynaptic APs.

1.2.3.1 Spontaneous release

Spontaneous transmitter release was first described by Fatt and Katz (1950) at

the frog NMJ. Since then, it has been observed in numerous synapses in the
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EPSC
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20 ms

2 ms

50 pA

10 pA

Released
quanta

Figure 1.1: Three modes of transmitter release illustrated with simulated data. (A)
Top: Stimulation (arrowhead) evokes an excitatory postsynaptic current (EPSC). Bottom:
Deconvolution of this current yields the number of released quanta, which reflect two
components of release: synchronous (grey) and asynchronous (red). (B) Spontaneous
release occurs independently of stimulation, producing miniature inhibitory or excitatory
postsynaptic currents (here, mEPSCs). Adapted from Kaeser and Regehr (2014).

CNS. Spontaneous miniature postsynaptic currents/potentials measured in central

neurons were initially thought to arise from the continual firing of presynaptic

cells in the absence of stimulation (Brock et al., 1952; Hubbard et al., 1967).

However, experiments using the voltage-gated Na+ channel blocker tetrodotoxin

(TTX) demonstrated that these miniature currents/potentials were independent of

AP firing (Blankenship and Kuno, 1968; Colomo and Erulkar, 1968).

On a per-synapse basis, spontaneous transmitter release occurs at a rather low

frequency of 0.01 to 0.1 Hz (Geppert et al., 1994; Frerking et al., 1997; Murthy and

Stevens, 1999). Despite this, it has been implicated in a range of physiological

processes, including neuronal excitability (Otis et al., 1991; Kombian et al., 2000;

Carter and Regehr, 2002), synaptic formation and maintenance (McKinney et al.,
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1999; Tyler and Pozzo-Miller, 2003; Choi et al., 2014), inhibition of dendritic protein

synthesis (Sutton et al., 2004, 2006), and synaptic and homeostatic plasticity (Frank

et al., 2006; Lee et al., 2010; Reese and Kavalali, 2015).

1.2.3.2 Synchronous release

Of the three forms of transmitter release, synchronous release is the most extensively

studied due to its principal role in fast synaptic transmission. It is also the primary

form of release at low-frequency stimulation at most synapses (> 90%; Kaeser and

Regehr, 2014). The synchronisation of quantal release evoked by an AP was first

revealed by Katz and Miledi (1965b) at the NMJ. By counting the released quanta

and measuring their latencies in a low Ca2+ external medium, Katz & Miledi showed

that transmitter release initiated within a few hundred microseconds of an AP, and

that most transmitter quanta were released within the first millisecond.

Unfortunately, the method of counting quanta can only be used when the rate of

transmitter release is low, often in non-physiological conditions. To determine the

kinetics of transmitter release at synapses with high release rates, a method that

involves deconvolution of the evoked postsynaptic current (PSC) with the miniature

postsynaptic current (mPSC) was developed by Van der Kloot (1988a,b). Consistent

with Katz and Miledi’s original observation, this method has demonstrated a high

degree of synchrony of AP-evoked transmitter release at a variety of central synapses

(Schneggenburger and Neher, 2000; Hefft and Jonas, 2005; Sakaba, 2008; Daw et al.,

2009). In fact, following an AP, the rate of transmitter release reaches a peak 105 � 106

fold higher than the spontaneous release rate (Lou et al., 2005).

1.2.3.3 Asynchronous release

Asynchronous release can be prominent at some synapses, even after a single AP

(Barrett and Stevens, 1972; Iremonger and Bains, 2007; Best and Regehr, 2009).

However, for most synapses, this form of transmitter release only becomes apparent
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after prolonged moderate- to high-frequency stimulation (Lu and Trussell, 2000;

Daw et al., 2009). Unlike its synchronous counterpart, asynchronous transmission

is characterised by a period of delayed and desynchronised transmitter release that

persists for tens of milliseconds or more after presynaptic membrane depolarisation

(Fig. 1.1A). Such persistence makes it ideal for providing sustained modulation of

neuronal excitability (Iremonger and Bains, 2007) and network synchrony (Manseau

et al., 2010).

1.2.4 Processes underlying synaptic transmission

Neurotransmitters can be broadly divided into two groups: small molecule

transmitters (acetylcholine, amino acids, biogenic amines, and gaseous molecules)

and neuropeptides. Neocortical pyramidal neurons, which are studied in this thesis,

release the amino acid glutamate. They are not known to release neuropeptides.

Therefore, this section will only describe processes underlying the release of

glutamate into the synaptic cleft (Fig. 1.2).

1.2.4.1 Neurotransmitter synthesis

The main precursor of glutamate is glutamine, which is synthesised in a type of

glial cell called astrocytes. Once produced, glutamine is released into the extra-

cellular space for uptake into neurons (Schousboe et al., 2013). In the presynaptic

nerve terminals, glutamine is converted to glutamate by the mitochondrial enzyme

glutaminase. Glutamate can also be synthesised within the nerve terminals by trans-

amination of a-ketoglutarate, an intermediate of the Krebs cycle (Schousboe et al.,

2013).

1.2.4.2 Loading of transmitters into vesicles

Loading of neurotransmitters into synaptic vesicles (⇠ 40 nm in diameter) is an active

process, energised by the vacuolar H+-ATPase (Edwards, 2007). This proton pump
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Figure 1.2: Processes underlying synaptic transmission. Step 1: Neurotransmitter molecules
(NT) are packaged into synaptic vesicles in the presynaptic terminal. Step 2: Synaptic
vesicles are docked at the active zone. Step 3: Docked vesicles are primed to become release-
competent. Step 4: Ca2+ influx during an AP triggers fusion of docked and primed vesicles.
Step 5: Released NT diffuses across the synaptic cleft and binds to postsynaptic receptors.
Step 6: Synaptic vesicles are retrieved from the presynaptic membrane by clathrin-mediated
endocytosis. Step 7: The new vesicles lose their clathrin coats. Step 8: Vesicles are trafficked
to an intermediate endosomal compartment. Adapted from Sudhof (1995).

uses energy released from ATP hydrolysis to transport H+ into synaptic vesicles. The

generated H+ electrochemical gradient across the vesicle membrane, in turn, enables

the vesicular glutamate transporter to transport glutamate into synaptic vesicles (Fig.

1.2, step 1).

1.2.4.3 Vesicle docking, priming, and fusion

In many axon terminals, synaptic vesicles are thought to reside in three functionally

distinct pools: a readily releasable pool (RRP), a recycling pool, and a reserve pool

(Rizzoli and Betz, 2005). As its name suggests, the RRP constitutes vesicles that are
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immediately available to release upon stimulation. It is essential to the speed and

synchronicity of evoked transmitter release (Kaeser and Regehr, 2014).

It is generally accepted that, in order to become readily releasable, vesicles need

to be “docked” and “primed” (Fig. 1.2, steps 2 and 3, respectively; Rizzoli and

Betz, 2005). Docking places vesicles close to the presynaptic membrane, near sites

of transmitter release called active zones. Priming then renders docked vesicles

competent to fuse with the plasma membrane upon stimulation. During high

frequency stimulation, vesicles might enter the primed state without being docked

to speed up the replenishment of readily releasable vesicles and sustain transmission

(Saviane and Silver, 2006; Verhage and Sorensen, 2008).

The arrival of an AP at the presynaptic terminal activates VGCCs, the opening of

which produces an influx of Ca2+ into the terminal. The resultant intracellular

Ca2+ rise causes readily releasable vesicles to fuse with the plasma membrane,

releasing neurotransmitters into the synaptic cleft (Fig. 1.2, step 4). As lipid-lipid

interactions are the slowest chemical reactions, specific interactions between proteins,

and between them and membrane lipids, are required to speed up the process of

vesicle fusion. Among the most important proteins are soluble NSF-attachment

protein receptors (SNAREs), Sec1/Munc18-like (SM) proteins, synaptotagmins, and

Rab3 interacting molecules (RIMs).

SNAREs - the “minimal” fusion machinery. SNAREs are membrane proteins,

classified as v-SNAREs if they are expressed on a transport vesicle or t-SNAREs

if they are on a target membrane (Malsam et al., 2008). The predominant

SNARE proteins in presynaptic terminals are the two t-SNAREs syntaxin-1 and

synaptosomal-associated protein 25 (SNAP-25), and the v-SNARE synaptobrevin

(also referred to as VAMP; Jahn and Fasshauer, 2012). Like all SNAREs, their

cytoplasmic regions contain a conserved 60- to 70-amino acid sequence called the

SNARE motif. Fusion of synaptic vesicles occurs when the SNARE motifs of these

three SNAREs associate to form a tight bundle of four parallel a-helices, with two
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from SNAP-25 and one from either syntaxin-1 or synaptobrevin (Sutton et al., 1998;

Stein et al., 2009). As this assembly progresses from the N-termini to the C-termini of

the SNAREs (“zippering”), the vesicle and presynaptic membranes are brought into

close proximity, promoting their fusion. The energy that is released during SNARE

complex formation is thought to fuel membrane fusion (Li et al., 2007a; Wiederhold

and Fasshauer, 2009).

An experiment in which cognate v- and t-SNAREs were reconstituted into artificial

lipid bilayers showed that they were both necessary and sufficient for membrane

fusion (Weber et al., 1998). Consistently, cells with “flipped” SNAREs expressed on

their surfaces were found to merge spontaneously (Hu et al., 2003). However, not

only was membrane fusion observed in these early experiments Ca2+-independent,

but it also occurred at a rate much slower than that required for efficient synaptic

transmission. Therefore, besides SNAREs, presynaptic terminals contain other

components that regulate vesicle fusion in a Ca2+-dependent manner, facilitate

SNARE complex formation, and increase the efficiency of membrane merging upon

stimulation (Malsam et al., 2008).

Synaptotagmins - Ca2+ sensors. In presynaptic terminals as well as many secretory

cells, vesicle fusion is triggered by Ca2+ binding to synaptotagmins. Four members

of the synaptotagmin family have been found to function as Ca2+ sensors for

transmitter release. Syt1, Syt2, and Syt9 are primarily localised on synaptic vesicles

and responsible for synchronous release (Fernandez-Chacon et al., 2001; Takamori

et al., 2006; Sun et al., 2007; Xu et al., 2007), whilst Syt7, which is mainly found

on the plasma membrane of neurons, mediates asynchronous transmission (Sugita

et al., 2001; Bacaj et al., 2013). Each of these synaptotagmins has two cytoplasmic C2

domains - C2A and C2B, to which two or three Ca2+ ions can bind (Perin et al., 1990;

Brose et al., 1992). Among the Ca2+ sensors for synchronous release, Syt2 mediates

release with the fastest kinetics whereas release induced by Syt9 has the slowest rise

time (Xu et al., 2007). Syt1, Syt2, and Syt9 are also expressed in different regions of

the nervous system (Xu et al., 2007).
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Despite many years of research, it remains elusive how Ca2+ binding to synaptot-

agmins triggers vesicle fusion (Chapman, 2008; Jahn and Fasshauer, 2012). A num-

ber of studies have illustrated that Ca2+-triggered membrane fusion requires Ca2+-

dependent binding of synaptotagmins to SNARE proteins and membrane phos-

pholipids (Zhang et al., 2002; Bhalla et al., 2006; Pang et al., 2006). The interaction

between synaptotagmins and anionic phospholipids is primarily electrostatic (Jahn

and Fasshauer, 2012). Thus, it occurs at different binding sites on Ca2+-free and

Ca2+-bound synaptotagmins (van den Bogaart et al., 2011). It has been proposed

that the binding of Ca2+-bound synaptotagmins to plasma membrane anionic phos-

pholipids pulls the vesicle and presynaptic membranes very close together, thereby

promoting vesicle fusion (van den Bogaart et al., 2011). At the same time, upon bind-

ing of Ca2+-bound synaptotagmins, SNARE proteins might undergo rearrangements

that render the SNARE complex fusion-competent (Chapman, 2008).

SM proteins - regulators of the “minimal” fusion machinery. The main SM

protein in vertebrate synapses - Munc18-1 - engages in two distinct interactions with

SNARE proteins, particularly with syntaxin-1 (Sudhof, 2014). Besides a SNARE

motif, syntaxin-1 contains a large N-terminal region that occupies ⇠ 60% of its

total sequence (Misura et al., 2000). This N-terminal region consists of two protein

motifs: a short N-terminal peptide called N-peptide, and a larger Habc domain which

autonomously forms a three-helix bundle. Prior to SNARE complex formation,

syntaxin-1 exists in a closed conformation, in which the Habc domain folds back

onto the SNARE motif, making the latter inaccessible to other SNAREs (Dulubova

et al., 1999; Misura et al., 2000). Munc18-1 binds to this closed conformation at the

Habc domain of syntaxin-1, independently of the syntaxin-1 N-peptide (Hata et al.,

1993; Dulubova et al., 1999; Misura et al., 2000). When syntaxin-1 opens to expose its

SNARE motif to interaction with other SNAREs, Munc18-1, while remaining attached

to syntaxin-1, binds to the N-peptide of syntaxin-1 and the four-helix bundle of the

SNARE complex (Dulubova et al., 2007; Hu et al., 2007; Rickman et al., 2007).

Both of these distinct interactions between Munc18-1 and SNARE proteins have been
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suggested to perform multiple functions in transmitter release. Binding of Munc18-1

to the closed conformation of syntaxin-1 stabilises the expression of both proteins

on the plasma membrane, thereby regulating vesicle priming and the size of the

RRP (Gulyas-Kovacs et al., 2007; Gerber et al., 2008; Zhou et al., 2013). It has also

been shown to prevent ectopic or premature formation of SNARE complexes, and

negatively modulate the rate of vesicle fusion (Medine et al., 2007; Burkhardt et al.,

2008; Gerber et al., 2008). On the other hand, binding of Munc18-1 to the open

conformation of syntaxin-1 appears to facilitate SNARE protein assembly and speed

up membrane fusion (Gulyas-Kovacs et al., 2007; Shen et al., 2007; Burkhardt et al.,

2008; Rodkey et al., 2008; Diao et al., 2010; Zhou et al., 2013).

RIMs - coupling the Ca2+ signal to the fusion machinery. RIMs are central active

zone proteins. They recruit not only synaptic vesicles but also VGCCs to the active

zone, thereby reducing the diffusional distance of Ca2+ and ensuring the speed of

transmitter release (Sudhof, 2013). RIMs participate in vesicle docking by binding to

the small GTPase Rab3, the membrane-bound form of which is densely expressed on

synaptic vesicles (Fischer von Mollard et al., 1990). At the same time, RIMs, together

with their binding proteins, bind directly to P/Q- and N-type VGCCs (Kaeser et al.,

2011; Han et al., 2011; Kaeser et al., 2012). Thus, at calyxes of Held where all

RIM isoforms were conditionally removed, a reduction in the number of docked

vesicles was paralleled by a decrease in the expression of VGCCs in the presynaptic

membrane (Kaeser et al., 2011; Han et al., 2011). The presynaptic Ca2+ current density

and the coupling between VGCCs and synaptic vesicles were also reduced.

Classic model of Ca2+-triggered vesicle fusion. According to a widely accepted

model, SNARE/SM complexes are partially assembled during vesicle priming, with

full zippering prevented by an energy barrier and/or an interfering protein, most

likely complexin and/or synaptotagmin (Jahn and Fasshauer, 2012; Sudhof, 2013,

2014). When [Ca2+]i rises during an AP, binding of Ca2+ to synaptotagmin causes

synaptotagmin to bind to plasma membrane phospholipids, change its interaction
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with SNARE/SM complexes, and displace complexin. The subsequent formation

of a fusion pore is thought to result from the binding of synaptotagmin to plasma

membrane phospholipids, although exactly how it occurs remains unknown (Jahn

and Fasshauer, 2012; Sudhof, 2014).

1.2.4.4 Neurotransmitter actions

After being released, neurotransmitters diffuse across the synaptic cleft and

bind to receptors expressed on the postsynaptic membrane (Fig. 1.2, step 5).

Neurotransmitter receptors can be divided into two main groups: ionotropic and

metabotropic (Eccles and McGeer, 1979).

Ionotropic receptors are ligand-gated ion channels which open upon neurotrans-

mitter binding and allow the passage of ions. The resultant ionic current could be

either excitatory or inhibitory, depending on the ion selectivity of the channels and

the electrochemical gradient across the postsynaptic membrane. Excitatory postsyn-

aptic currents (EPSCs) depolarise the membrane potential and thus bring it closer to

the AP threshold, whilst inhibitory postsynaptic currents (IPSCs) generally reduce

AP firing. Ionotropic glutamate receptors (iGluRs) are non-selective cation channels,

the activation of which under physiological conditions produces EPSCs. iGluRs can

be further categorised into three major subtypes, named after their selective agon-

ists: a-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA), N-methyl-D-

aspartate (NMDA), and kainate (Mayer, 2005).

In general, metabotropic receptors are G-protein coupled receptors, the activation of

which initiates second messenger cascades that result in channel opening/closing

and/or other cellular effects. Each functional metabotropic glutamate receptor

(mGluR) is a homodimer, composed of members of three distinct groups (Niswender

and Conn, 2010). Group I mGluRs are coupled to Gq/11 proteins; their activation

promotes hydrolysis of the membrane lipid phosphatidylinositol 4,5-bisphosphate

(PIP2). Group II/III mGluRs are coupled to Gi/o proteins; their activation inhibits

the production of cyclic adenosine monophosphate (cAMP).
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1.2.4.5 Neurotransmitter clearance

For synaptic transmission to be efficient and have a high signal-to-noise ratio, the

concentration of neurotransmitters in the synaptic cleft has be to tightly controlled.

The removal of glutamate occurs through two processes. First, it can simply

diffuse away from the cleft (Clements, 1996; Rusakov and Kullmann, 1998). Second,

unbound glutamate molecules are rapidly taken up by the excitatory amino acid

transporter (Takahashi et al., 1997). Although this transporter is expressed on

presynaptic membranes, its distribution is much more dense on the surface of

astrocytic processes that wrap tightly around synapses (Zhou and Danbolt, 2013).

1.2.4.6 Vesicle endocytosis and recycling

To sustain synaptic transmission, particularly during repetitive stimulation, presyn-

aptic terminals must be able to efficiently retrieve synaptic vesicles from the presyn-

aptic membranes. Vesicle endocytosis occurs in two alternative pathways, depending

on whether vesicles fully collapse or only “kiss” the presynaptic membranes during

transmitter release. A fully fused vesicle has to be retrieved by clathrin-mediated en-

docytosis (Fig. 1.2, step 6). However, if only a transient, nanometer-sized fusion pore

is formed between the vesicle and presynaptic membranes during release, the vesicle

can be rapidly retrieved by a direct reversal of the exocytotic process, reloaded with

neurotransmitters, and returned to the RRP (Bonanomi et al., 2006; Alabi and Tsien,

2013).

Clathrin-mediated endocytosis initiates with adaptor proteins binding to vesicular

membrane proteins (e.g. synaptotagmins and neurotransmitter transporters; Diril

et al., 2006; Jung and Haucke, 2007; Koo et al., 2011). Clathrin and accessory

proteins are subsequently recruited to mediate local invagination of the presynaptic

membrane (Jung and Haucke, 2007). This is followed by recruitment of dynamin

to the neck of the budding vesicle. Dynamin forms a constricting ring around the

neck and mediates membrane fission (Jung and Haucke, 2007). Once free from the
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plasma membrane, the new vesicle undergoes clathrin uncoating (Fig. 1.2, step 7).

It may then be trafficked to an intermediate endosomal compartment (Fig. 1.2, step

8), or immediately loaded with neurotransmitters and used for transmitter release

(Bonanomi et al., 2006).

1.3 Ca2+ regulation of transmitter release

In presynaptic nerve terminals, a brief but large increase in [Ca2+]i, in the

vicinity of VGCCs, drives synchronous fusion of readily releasable vesicles. By

comparison, slowly rising, longer-lasting, and spatially homogeneous elevations

regulate asynchronous transmission and several forms of synaptic plasticity.

Whether spontaneous transmitter release is driven by a high and short-lived Ca2+

elevation near open Ca2+ channels, or a smaller and longer-lasting rise, remains

unclear.

1.3.1 Ca2+ triggering of evoked release

The Ca2+ hypothesis of transmitter release was proposed by Katz and Miledi (1967),

based on a series of experiments investigating the opposite effects of Ca2+ and

Mg2+ on neuromuscular transmission (Del Castillo and Stark, 1952; Del Castillo

and Katz, 1954; Katz and Miledi, 1965a). According to this hypothesis, an influx

of Ca2+, upon presynaptic membrane depolarisation, triggers transmitter release.

Thus, an intracellular Ca2+ rise is required for synaptic transmission, whereas the

role of membrane depolarisation in this process is indirect: it facilitates transmitter

release by activating VGCCs, thereby increasing the Ca2+ permeability of the

presynaptic membrane. Such a distinction between Ca2+ and presynaptic membrane

depolarisation was substantiated by Augustine et al. (1985), who reported no direct

effect of the latter on AP-evoked release. Subsequent experiments in which photo-

labile Ca2+ chelators were introduced into presynaptic terminals provided further

support to the Ca2+ hypothesis (Lando and Zucker, 1994). As photo-labile Ca2+
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Figure 1.3: Simulated increases in [Ca2+]i in response to a brief AP-evoked Ca2+ current (244
µs half-width). (Inset) The increases in [Ca2+]i were scaled to the same peak to demonstrate
the difference in their time courses. Different colours indicate changes in [Ca2+]i at different
locations from the point source of Ca2+ influx: 20 nm (red), 200 nm (blue), and spatially
averaged (green).

chelators rapidly release Ca2+ ions upon photolysis, these so-called Ca2+ uncaging

experiments have shown that an elevation in [Ca2+]i is sufficient to induce transmitter

release.

1.3.2 Synchronous release is driven by a localised intracellular Ca2+ rise

The idea that transmitter release is triggered by localised and short-lived domains of

high [Ca2+]i developed from theoretical studies 30 years ago (Chad and Eckert, 1984;

Simon and Llinas, 1985). By simulating the diffusion of Ca2+ ions, these studies

revealed the complex spatial and temporal profiles of [Ca2+]i following the opening

of discrete VGCCs. They showed that, in the immediate vicinity of each channel,

[Ca2+]i rises to ⇠ 100 µM, and it does so within tens of microseconds after the

channels have opened (Fig. 1.3, red). Once the channels close, [Ca2+]i drops back

to the resting level very rapidly, in only a few tens of microseconds. In contrast,

more than a few hundred nanometres away, [Ca2+]i rises and falls much more slowly,
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taking more than 100 µs after the opening and closing of the channels (Fig. 1.3, blue).

Here, [Ca2+]i also reaches a lower peak, ⇠ 10 µM or less. As the delay between a

presynaptic Ca2+ current and the start of the postsynaptic response was found to be

⇠ 200 µs in the squid giant synapse (Llinas et al., 1981b), it was suggested that readily

releasable vesicles were located within 100 nm of VGCCs, and that their fusion was

triggered by localised, brief, and yet high Ca2+ signals (Simon and Llinas, 1985).

This would explain not only the remarkably short delay of evoked release, but also

its rapid time course.

1.3.2.1 The Ca2+ signal at transmitter release sites

Unfortunately, our current imaging techniques cannot unambiguously resolve the

local Ca2+ signal that triggers fusion of readily releasable vesicles. This is not only

because of the diffraction limit of optical imaging, but also because fluorescent Ca2+

indicators, which are commonly used to measure [Ca2+]i, produce signals that are

low-pass filtered by their Ca2+-binding and unbinding kinetics (Schneggenburger

and Neher, 2005). Therefore, a number of studies have implemented a “reverse

approach” to determine the amplitude and time course of the Ca2+ signal at

transmitter release sites (Fig. 1.4; Schneggenburger and Neher, 2005). Using Ca2+

uncaging to induce vesicle fusion, these studies first assess the intracellular Ca2+

dependence of transmitter release (Fig. 1.4A-B). A presynaptic terminal loaded

with a photo-labile Ca2+ chelator is uniformly illuminated to produce spatially

homogeneous elevations in [Ca2+]i. This allows the Ca2+ signal that the Ca2+ sensor

for release “sees” to be accurately measured with a low-affinity Ca2+ indicator. At the

same time, the rate of transmitter release is determined by measuring the resultant

change in the presynaptic membrane capacitance or the postsynaptic response. A

kinetic model is then formulated to fit the plots of release rate and delay vs. [Ca2+]i

(Fig. 1.4C). Finally, the rate of AP-evoked release is measured (Fig. 1.4D), and the

local Ca2+ signal that drives this release is back-calculated from the kinetic model

(Fig. 1.4E). It has been shown that Ca2+ uncaging and presynaptic membrane

depolarisation trigger release from the same pool of vesicles (Schneggenburger and
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Figure 1.4: The reverse approach of determining the Ca2+signal “seen” by the Ca2+sensor
for evoked release. Exemplified here is an experiment in the young calyx of Held by
Schneggenburger and Neher (2000). (A-B) The first step is to measure the rate of transmitter
release together with synaptic delay as a function of [Ca2+]i. Here, [Ca2+]i was raised
uniformly by uncaging of the photolabile Ca2+ chelator DM-nitrophen. At the same time, the
resultant transmitter release was assessed by measuring the postsynaptic currents. Dashed
line in A indicates a slope of 4.2. (C) A kinetic model is then formulated to fit the data.
To account for the steep dependence of release rate on [Ca2+]i, five Ca2+ ions needed to
bind to the release machinery before vesicle fusion occurred with a rate constant of g. (D)
Experimentally measured postsynaptic currents in response to presynaptic APs. (E) Finally,
based on the model in C, the Ca2+ signal that produces the measured postsynaptic currents
in D is back-calculated (solid red trace). The rate of transmitter release driven by the inferred
Ca2+ signal (solid black trace) was similar to that obtained experimentally (dashed black
trace; obtained by deconvolution of the measured postsynaptic currents). This Ca2+ signal
was slightly broader than the Ca2+ current measured in the calyx of Held during an AP by
Borst and Sakmann (1996, dashed red trace). Figure adapted.
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Neher, 2000; Sakaba, 2008). Therefore, the kinetic model formulated based on Ca2+

uncaging data should provide an appropriate inference of the local Ca2+ signal

during physiological stimulation.

Thus far, Ca2+ uncaging has been used to measure the intracellular Ca2+ dependence

of transmitter release at three specialised synapses in the mammalian CNS: the calyx

of Held - a large glutamatergic synapse located in the auditory brainstem (Bollmann

et al., 2000; Schneggenburger and Neher, 2000; Wang et al., 2008; Kochubey et al.,

2009), the cochlear inner hair cell afferent synapse, which has ribbon-type active

zones and is also glutamatergic (Beutner et al., 2001), and the immature GABAergic

cerebellar basket cell terminal (Sakaba, 2008). These experiments have revealed a

highly non-linear dependence of the rate of transmitter release on [Ca2+]i. At the

calyx of Held and the cerebellar basket cell terminal, the double-logarithmic plot of

release rate vs. [Ca2+]i has a slope of 3� 5 when [Ca2+]i is between 1 and 10 µM (Fig.

1.4A). Such a steep slope could only be explained by the binding of five Ca2+ ions

to each release machinery (Fig. 1.4C); the binding of each Ca2+ ion could, however,

be independent (Bollmann et al., 2000) or cooperative (Schneggenburger and Neher,

2000; Sakaba, 2008; Wang et al., 2008; Kochubey et al., 2009). This verifies the classical

proposal by (Dodge and Rahamimoff, 1967), who observed a supralinear dependence

of evoked release on the extracellular Ca2+ concentration, and suggested that a

cooperative action of about four Ca2+ ions is needed to trigger release of a synaptic

vesicle. At the calyx of Held, deletion of Syt2 abolished the steep dependence of

evoked release on [Ca2+]i (Sun et al., 2007; Kochubey and Schneggenburger, 2011).

Accordingly, Syt2 serves as a high-cooperativity Ca2+ sensor for release, a function

it shares with Syt1 (Nagy et al., 2006; Xu et al., 2007).

The reverse approach of determining the local Ca2+ signal that triggers transmitter

release has shown that the Ca2+ sensors for release at the so far examined

mammalian central synapses are more sensitive to Ca2+ than previously thought.

At both the young calyx of Held and the immature cerebellar basket cell terminal, a

local Ca2+ signal with a peak of 10 � 25 µM and a half-width of ⇠ 0.5 ms produces

a change in release rate that mimics AP-evoked transmitter release (Fig. 1.4D-E;
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Bollmann et al., 2000; Schneggenburger and Neher, 2000; Sakaba, 2008). As the calyx

of Held matures following the onset of hearing in rodents (P12 � 15), the local Ca2+

signal becomes larger yet briefer (50 µM peak amplitude and 0.3 ms half-width;

Wang et al., 2008; Kochubey et al., 2009). This is in marked contrast to the hundreds

of micromolar range of [Ca2+]i required to trigger transmitter release at the squid

giant synapse and at terminals of goldfish retinal bipolar cells (Adler et al., 1991;

Heidelberger et al., 1994).

The high sensitivity of transmitter release at the young calyx of Held is supported

by an elegant study by Bollmann and Sakmann (2005). In this study, low- to sub-

millisecond long elevations in [Ca2+]i were achieved by photolysis of caged Ca2+

in the presence of a high-affinity Ca2+ buffer (EGTA or BAPTA). This allowed a

direct measurement of the relationship between evoked release and the duration of

the Ca2+ rise. It was found that the rise time and amplitude of transmitter release

increased with an increasing half-width of the Ca2+ elevation. The sharp rise in the

rate of transmitter release following an AP could only be reproduced experimentally

by a Ca2+ transient with a peak of ⇠ 20 µM and a half-width of less than 1 ms. Thus,

not only does an intracellular Ca2+ rise trigger transmitter release, but the local Ca2+

signal at release sites also controls the timing and magnitude of the release.

1.3.2.2 The arrangement of Ca2+ channels at the active zone

The variation in the local Ca2+ signal between different types of synapses reflects

heterogeneity in the coupling between VGCCs and the release machinery. Due

to diffusion of Ca2+, a strong local Ca2+ signal most likely arises from nearby

Ca2+ channels, whereas a weaker signal would be “seen” by the Ca2+ sensor for

release if these channels were located further away. At the frog NMJ, electron

microscopy tomography revealed a distance of ⇠ 20 nm between putative Ca2+

channels and docked vesicles (Harlow et al., 2001). Such ultrastructural data are,

however, unavailable for most synapses. As a result, the arrangement of VGCCs at

the active zone has been indirectly assessed by manipulating the interaction between
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Ca2+ and the release machinery or by changing the presynaptic Ca2+ influx (Fig.

1.5).

The distance between VGCCs and the release machinery. The distance between

a readily releasable vesicle and its release-controlling Ca2+ channel(s) is commonly

probed by comparing the effects of two synthetic Ca2+ buffers, EGTA and BAPTA,

on transmitter release. The rationale behind this approach is that a Ca2+ buffer that

can capture Ca2+ ions on their way from the Ca2+ channel(s) to the Ca2+ sensor

for release will block synaptic transmission. Although EGTA and BAPTA have

similar affinities for Ca2+, the on-rate of Ca2+ binding to BAPTA is ⇠ 100 times

faster than that for EGTA. Adler et al. (1991) estimated that, under conditions of

the squid cytoplasm, 10 mM EGTA binds to Ca2+ with a time constant of more

than 50 µs, whilst it takes the same concentration of BAPTA less than 1 µs to do

so. This, together with mathematical models of Ca2+ diffusion, suggests that, if the

distance from the Ca2+ channel(s) to the Ca2+ sensor is more than 100 nm, i.e. loose

coupling or microdomain signalling, both EGTA and BAPTA will be able to suppress

transmitter release (Fig. 1.5A, right). However, if this distance is only a few tens of

nanometres, i.e. tight coupling or nanodomain signalling, BAPTA will be much more

effective at blocking transmission (Fig. 1.5A, left).

This approach was first used at the giant synapse of the squid, where a high

concentration of EGTA (⇠ 80 mM) had no effect on transmitter release (Adler et al.,

1991). In contrast, BAPTA, in the low millimolar range, significantly reduced the

postsynaptic potential. Therefore, at this synapse, the distance between VGCCs and

the release machinery is most likely only a few tens of nanometres, consistent with

a local Ca2+ signal of a few hundred micromolars suggested by Llinas et al. (1992).

Similarly, at the mature calyx of Held and the hippocampal basket cell to granule cell

synapse, evoked transmitter release appears to be triggered by Ca2+ nanodomains

(Fedchyshyn and Wang, 2005; Bucurenciu et al., 2008). Ca2+ microdomains, on the

other hand, have been suggested to control transmitter release at the young calyx

of Held (Borst and Sakmann, 1996; Fedchyshyn and Wang, 2005), the hippocampal
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Figure 1.5: Experimental strategies for determining the distance and the number of open
VGCCs that mediate transmitter release. (A) To assess the distance between Ca2+ channels
and the release machinery, two Ca2+ buffers with the same Ca2+ binding affinity but different
on-rates are used. If VGCCs are tightly coupled to Ca2+ sensors, only the fast buffer BAPTA
will be able to capture Ca2+ ions on their way from the former to the latter. In contrast,
BAPTA and EGTA will be equally effective at blocking vesicle fusion if coupling between
Ca2+ channels and sensors are loose. (B) The number of open Ca2+ channels that mediate
fusion of a vesicle can be estimated by measuring the dependence of transmitter release
on presynaptic Ca2+ influx in the presence of a slow Ca2+ channel blocker. If only one or
a few channels are required for vesicle fusion, sequential blockade of Ca2+ channels will
have a linear effect on the number of vesicles fused. As a result, transmitter release appears
proportional to the intracellular Ca2+ rise. However, if a large number of open channels
mediate fusion of a vesicle, blockade of Ca2+ channels will cause transmitter release to
decrease supralinearly. Adapted from Eggermann et al. (2012).
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mossy fibre bouton (Vyleta and Jonas, 2014), and synapses between neocortical layer

5 pyramidal neurons (Ohana and Sakmann, 1998). The finding that signalling at

the calyx of Held changes from microdomain to nanodomain during development is

consistent with the local Ca2+ signals inferred by the reverse approach: as the calyx

of Held matures, the Ca2+ signal “seen” by the release machinery becomes larger

in amplitude and shorter in half-width (Bollmann et al., 2000; Schneggenburger and

Neher, 2000; Wang et al., 2008; Kochubey et al., 2009).

The number of VGCCs required for transmitter release. The number of Ca2+

channels involved in generating the local Ca2+ signal “seen” by each vesicle has

also been determined semi-quantitatively. In these experiments, the number of

open Ca2+ channels is varied, by altering the duration of the presynaptic membrane

depolarisation or by addition of a slow Ca2+ channel blocker (Eggermann et al., 2012;

Wang and Augustine, 2014). The presynaptic Ca2+ influx and the corresponding

postsynaptic response are then measured and their relationship determined. If the

opening of only one VGCC is sufficient to induce vesicle fusion, the amount of

release will decrease linearly with the number of open channels (Fig. 1.5B, left).

On the other hand, if influx from multiple Ca2+ channels is required, a reduction in

the number of open channels will cause a supralinear reduction in the postsynaptic

response (Fig. 1.5B, right). The power coefficient of this relationship converges to the

intrinsic Ca2+ cooperativity of transmitter release (⇠ 4), as more channels involve in

generating the local Ca2+ signal. Predictably, at synapses where VGCCs are tightly

coupled to synaptic vesicles, only 2 � 3 open channels trigger transmitter release,

and thus, the relationship between release and presynaptic Ca2+ influx is close to

linearity (Augustine, 1990; Bucurenciu et al., 2010). In contrast, the power coefficient

of this relationship is more than 3 at the young calyx of Held, where vesicle fusion

is mediated by the opening of ⇠ 10 loosely coupled VGCCs (Fedchyshyn and Wang,

2005).

Spatial distribution of VGCCs. Electrophysiological studies have provided im-

portant information on the distance between VGCCs and the release machinery, and



§1.3 Ca2+ regulation of transmitter release 25

Figure 1.6: Hypothetical topographies of VGCCs and readily releasable vesicles at the active
zone. Adapted from Nakamura et al. (2015).

the number of open channels required for vesicle fusion. However, they cannot re-

veal how these channels are distributed at the active zone. A number of topographies

have been proposed to describe the relative spatial distribution between Ca2+ chan-

nels and readily releasable vesicles (Fig. 1.6). These include random distributions

of both channels and vesicles (model 1), a ring of channels surrounding each vesicle

(model 2), a random distribution of vesicles around a cluster of channels (model 3),

and vesicles located just outside a cluster of channels (model 4; Meinrenken et al.,

2002; Schneggenburger and Neher, 2005; Scimemi and Diamond, 2012; Ermolyuk

et al., 2013; Nakamura et al., 2015). Recent advances in immunogold labelling com-

bined with freeze-fracture replica electron microscopy have led to observations of

a non-random distribution of Cav2.1 or P/Q-type channels in CA3 pyramidal cell

axon terminals (Holderith et al., 2012), cerebellar parallel fibre boutons (Indriati et al.,

2013), and the calyx of Held (young as well as mature; Nakamura et al., 2015). As

a result, models 3 and 4 are more likely to represent the topography of VGCCs and

readily releasable vesicles at the active zone of central synapses.

A study by Nakamura et al. (2015) suggested that, at the calyx of Held, most of the

vesicles that are ready to be released upon an AP are located 15 � 30 nm from the

edge of a VGCC cluster. This is in accordance with model 4, which was termed by

the authors as the “perimeter release model”. The model was hypothesised based on

results from a diverse range of experiments. First, freeze-fracture replica labelling of

Cav2.1 channels revealed clustering of these channels, with each cluster ⇠ 100 nm

wide. Second, presynaptic Ca2+ imaging was done to estimate the concentration

and Ca2+ binding affinity of endogenous Ca2+ buffers. Third, the effect of EGTA
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on presynaptic Ca2+ influx as well as transmitter release was measured. Finally, an

experimentally constrained 3D reaction-diffusion model of Ca2+ and vesicle fusion

was constructed to provide a more precise estimate of the VGCC-sensor distance.

This reaction-diffusion model could predict the sensitivity of transmitter release to

EGTA if synaptic vesicles were located a few tens of nanometres from the perimeter

of a channel cluster. In contrast, a model with a random distribution of synaptic

vesicles (model 3) could only reproduce the measured level of EGTA inhibition

if each cluster had more than 50 Ca2+ channels, much more than that observed

experimentally. Based on the labelling efficiency of antibodies and the contribution

of Cav2.1 channels to the presynaptic Ca2+ current, the total number of VGCCs

per cluster was estimated to be ⇠ 20 on average, for P7 as well as P14 calyxes.

Remarkably, the perimeter release model could also explain developmental changes

in transmitter release at the calyx of Held: both decreases in the duration and EGTA

sensitivity of transmitter release, in mature calyxes, could arise from a shortening of

the distance between synaptic vesicles and the perimeter of a channel cluster (from

30 to 20 nm; Nakamura et al., 2015).

1.3.3 Asynchronous release is driven by the global Ca2+ elevation

Compared to synchronous release, asynchronous release is much more persistent:

it lasts for tens of milliseconds or more after cessation of presynaptic membrane

depolarisation (Fig. 1.1A). In a wide range of axon terminals, the slow exogenous

Ca2+ buffer EGTA markedly reduces the amplitude and duration of asynchronous

release, without affecting the synchronous fusion of synaptic vesicles (Cummings

et al., 1996; Atluri and Regehr, 1998; Hefft and Jonas, 2005; Iremonger and Bains, 2007;

Manseau et al., 2010). Therefore, it is generally acknowledged that asynchronous

transmission is triggered by the global, spatially homogeneous [Ca2+]i that rises and

decays slowly upon stimulation (in tens to hundreds of millisecond time scale; Fig.

1.3, green). During a high frequency train of APs, this spatially homogeneous [Ca2+]i

can build up to values in the low micromolar range, making asynchronous release

more prominent.
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A number of studies have suggested that synchronous and asynchronous release

share the same pool of readily releasable vesicles (Hagler and Goda, 2001; Otsu et al.,

2004; Sun et al., 2007; Burgalossi et al., 2010; but see Raingo et al., 2012). However,

it remains controversial whether the same Ca2+ sensor mediates these two forms

of evoked release (Neher and Sakaba, 2008; Kochubey et al., 2011). Ca2+ uncaging

experiments have shown that, at the calyx of Held, as [Ca2+]i is reduced to the

sub-micromolar range, the slope of the double-logarithmic plot of release rate vs.

[Ca2+]i becomes less steep (Lou et al., 2005; Sun et al., 2007). At [Ca2+]i relevant

for asynchronous release ( 1 µM), the Ca2+ cooperativity of release is 1 � 2,

significantly lower than that for synchronous release. Due to this reduced Ca2+

dependence, the rate of transmitter release at sub-micromolar [Ca2+]i is higher than

that predicted by the aforementioned five-site models. As a result, these original

models have been modified to allow vesicle fusion in the absence of Ca2+ binding

and at low levels of [Ca2+]i.

The first revised model proposes that transmitter release occurs even when the

release machinery is partially bound (Lou et al., 2005). The rate of release increases in

geometric progression with the number of bound Ca2+ ions, and the maximal release

rate is reached when the release machinery is fully occupied by five Ca2+ ions. Thus,

the Ca2+ cooperativity of release increases gradually as [Ca2+]i rises from sub- to

low-micromolar concentrations.

The second model, on the other hand, proposes the presence of two different Ca2+

sensors with different Ca2+ binding kinetics (Sun et al., 2007). Besides a sensor with

a Ca2+ cooperativity of 5 that predominantly triggers rapid release at high levels of

[Ca2+]i, another sensor with a slower Ca2+ binding rate and a Ca2+ cooperativity of

2 mediates release at sub-micromolar [Ca2+]i. Vesicle fusion occurs when either or

both Ca2+ sensors are fully bound. This model was based on the finding that deletion

of Syt2, whilst abolishing synchronous release, did not eliminate asynchronous

transmission at the calyx of Held synapse (Sun et al., 2007). Similarly, asynchronous

release persisted in cultured cortical and autaptic hippocampal neurons after deletion

of Syt1 (Maximov and Sudhof, 2005; Burgalossi et al., 2010). The slope of the
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double-logarithmic plot of release rate vs. [Ca2+]i is near linear in Syt1 knockout

hippocampal autapses as well as Syt2 knockout calyxes (Burgalossi et al., 2010;

Kochubey and Schneggenburger, 2011).

Bacaj et al. (2013) demonstrated that a loss of function of Syt7 produced a near-

complete inhibition of asynchronous release in Syt1 knockout cultured hippocampal

neurons, without affecting transmitter release in wild-type neurons. Such an

effect was only rescued by wild-type but not mutant Syt7 that lacked functional

Ca2+-binding sites. This indicates that Syt7 functions as a Ca2+ sensor for

asynchronous release in hippocampal neurons. Consistently, Syt7 has been suggested

to complement Syt1 in driving Ca2+-dependent release in chromaffin cells (Schonn

et al., 2008). It remains to be determined whether Syt7 also mediates asynchronous

release in presynaptic terminals such as the calyx of Held where Syt2 is the main

Ca2+ sensor for synchronous release.

1.3.4 Ca2+ dependence of spontaneous transmitter release

In one of their early experiments, Fatt and Katz (1952) showed that the frequency of

mEPPs was relatively independent of the extracellular Ca2+ concentration. Thus,

spontaneous transmission was generally thought to result from the spontaneous

fusion of synaptic vesicles (Katz, 1962). Although a few classic studies demonstrated

an influence of extracellular Ca2+ on mEPP frequency (Boyd and Martin, 1956;

Hubbard, 1961), the role of Ca2+ in their generation remains a matter of debate.

Within the last two decades, an increasing number of studies have demonstrated

a dependence of spontaneous transmission on Ca2+ (Bao et al., 1998; Llano et al.,

2000; Simkus and Stricker, 2002a; Xu et al., 2009; Groffen et al., 2010; Goswami

et al., 2012; Williams et al., 2012; Ermolyuk et al., 2013). In these studies, removal

of the extracellular Ca2+, blockade of VGCCs, and/or addition of exogenous

Ca2+ buffers (BAPTA and/or EGTA) abolished a significant fraction (> 30%) of

miniature postsynaptic currents. As a result, the idea that a considerable amount of
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spontaneous transmitter release is triggered by spontaneous fluctuations in [Ca2+]i

has gained general acceptance. It is unclear whether the remaining spontaneous

release is truly Ca2+-independent, whether it is triggered by brief and localised

elevations in [Ca2+]i that are incompletely blocked by BAPTA, or whether it is driven

by the resting [Ca2+]i that is unaffected by Ca2+ buffering (Kaeser and Regehr, 2014).

Ca2+-independent spontaneous release might occur as a consequence of spontaneous

energy fluctuations, allowing the energy barrier for vesicle fusion to be overcome

(Schneggenburger and Rosenmund, 2015).

The spontaneous opening of VGCCs underlies spontaneous release of GABA

at inhibitory synapses onto hippocampal granule cells and those onto cultured

neocortical neurons (Goswami et al., 2012; Williams et al., 2012). Each vesicle

fusion event requires simultaneous opening of multiple Ca2+ channels, either

through microdomain or nanodomain signalling. In contrast, spontaneous release

of glutamate from cultured hippocampal neurons has been suggested to arise

predominantly from individual Ca2+ channels that open independently (Ermolyuk

et al., 2013). At this synapse, addition of exogenous Ca2+ buffers inhibited evoked

and VGCC-dependent spontaneous release in similar fashion. A simulation of

spontaneous release, utilising the Ca2+ sensor for evoked release, showed that ⇠

90% of VGCC-dependent mEPSCs could arise from the stochastic opening of single

Ca2+ channels located within 70 µm of readily releasable vesicles (Ermolyuk et al.,

2013).

Besides Ca2+ influx, intracellular Ca2+ release also drives spontaneous transmission

at a variety of synapses. Ca2+ can be released from presynaptic stores through the

ryanodine and/or inositol 1,4,5-trisphosphate (IP3) receptor. At inhibitory synapses

onto cerebellar Purkinje cells and at excitatory synapses onto neocortical and

hippocampal CA3 pyramidal neurons, inhibition of ryanodine and/or IP3 receptors

reduced the frequency of miniature postsynaptic currents (Llano et al., 2000; Emptage

et al., 2001; Simkus and Stricker, 2002a). Importantly, spontaneously occurring Ca2+

transients that are sensitive to ryanodine have been observed in basket cell terminals

onto Purkinje cells and in axon terminals of cultured hippocampal CA3 pyramidal
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neurons (Emptage et al., 2001; Conti et al., 2004). In these studies, [Ca2+]i in the

presynaptic nerve terminals was monitored with a high-affinity fluorescent Ca2+

indicator in the presence of TTX. Together, these findings provide strong evidence

that spontaneous transmitter release can arise from intracellular Ca2+ release.

A lot remains controversial about the mechanism(s) of spontaneous release, including

the identity of its Ca2+ sensor(s) and whether it utilises the same pool of synaptic

vesicles as evoked release (Sara et al., 2005; Groemer and Klingauf, 2007; Fredj and

Burrone, 2009; Wilhelm et al., 2010). In addition, due to its stochastic nature, the

local Ca2+ signal(s) that drives spontaneous release is elusive. The fast and high-

cooperativity Ca2+ sensor Syt1 has been suggested to mediate the majority of Ca2+-

dependent spontaneous release from cultured cortical neurons (Xu et al., 2009).

This is reasonable if spontaneous transmission is driven by a high and short-lived

elevation in [Ca2+]i near voltage-gated and/or store release Ca2+ channels (Ermolyuk

et al., 2013). On the other hand, a smaller and longer-lasting rise might be able

to trigger spontaneous release through activation of a slower and near-linear Ca2+

sensor (Kochubey and Schneggenburger, 2011).

1.3.5 Ca2+ regulation of presynaptic plasticity

Synaptic plasticity refers to the ability of synapses to increase or decrease their

efficacy over time, given particular stimulation histories. Short-term synaptic

plasticity, which occurs on a sub-second to minute timescale, is thought to mediate

sensory adaptation, underlie direction selectivity, enable neuronal gain control, and

regulate circuit dynamics (Regehr, 2012; Jackman and Regehr, 2017). Long-term

synaptic plasticity, which lasts anywhere from minutes to hours, days or years, is

the dominant model of learning and memory formation (Collingridge et al., 2010;

Nicoll, 2017). Although Ca2+ plays a major role in many aspects of long-term

synaptic plasticity (Raymond and Redman, 2002; Cavazzini et al., 2005), its induction

is predominantly postsynaptic (Cavazzini et al., 2005; Collingridge et al., 2010).
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As this thesis examines presynaptic Ca2+ dynamics, only presynaptic mechanisms

underlying Ca2+ regulation of short-term plasticity are described here.

Short-term synaptic plasticity can be divided into three main categories: 1)

depression, 2) facilitation, and 3) post-tetanic potentiation. Several features of

short-term depression can be explained by the depletion model (Liley and North,

1953; Betz, 1970), according to which, an AP transiently depletes the RRP, and

hence, reduces the number of vesicles available to fuse in response to subsequent

APs (but see Xu and Wu, 2005; Sullivan, 2007). However, certain presynaptic

nerve terminals may be equipped with specialised Ca2+-dependent mechanisms

that enhance transmitter release, even when the pool of readily releasable vesicles

decreases (Jackman and Regehr, 2017).

1.3.5.1 Synaptic facilitation

Facilitation is a form of short-term synaptic plasticity that boosts transmitter release

for tens of milliseconds to seconds (Eccles et al., 1941). As in the case of asynchronous

transmitter release, it is widely accepted that synaptic facilitation is a result of the

global Ca2+ elevation that remains from previous APs (Fig. 1.3, green; Katz and

Miledi, 1968; Kamiya and Zucker, 1994; Atluri and Regehr, 1996). This spatially-

averaged [Ca2+]i is often referred to as the residual [Ca2+]i
�
[Ca2+]residual

�
. However,

the molecular mechanism(s) by which [Ca2+]residual induces facilitation remains

unknown for many synapses.

According to the residual Ca2+ hypothesis proposed by Katz and Miledi (1968),

[Ca2+]residual simply adds to the local [Ca2+]i
�
[Ca2+]local

�
created by a subsequent

AP, thereby increasing the probability of transmitter release. As, in this hypothesis,

facilitation and synchronous transmitter release share the same high-cooperativity

Ca2+ sensor, the extent of paired-pulse facilitation (PPF) produced by two closely

spaced APs (Dt  100 ms) can be described as
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PPF =
([Ca2+]local + [Ca2+]residual)4

([Ca2+]local)4
. (1.1)

It has been argued that a simple addition of [Ca2+]residual to [Ca2+]local cannot account

for a large extent of synaptic facilitation (Kamiya and Zucker, 1994; Zucker and

Regehr, 2002). This is because, at some synapses, [Ca2+]residual is ⇠ 100-fold smaller

than [Ca2+]local ( 1 vs. 100 µM, respectively). Thus, a linear sum of [Ca2+]residual

and [Ca2+]local would only produce a PPF of ⇠ 4%, a value much smaller than

typically measured (� 50%; Atluri and Regehr, 1996; Rozov et al., 2001; Jackman

et al., 2016). In addition, at the granule cell to Purkinje cell synapse, [Ca2+]residual

always decayed more rapidly than did PPF (Atluri and Regehr, 1996). Even when

the duration of [Ca2+]residual was reduced to less than 20 ms, facilitation still persisted

with an intrinsic decay time constant of ⇠ 40 ms. Due to these disparities, it has

been proposed that synaptic facilitation is mediated by a Ca2+ binding site with a

high affinity but slow kinetics. This binding site is located either on Syt1/Syt2, but

different from the low-affinity, fast kinetic sites responsible for synchronous release,

or on a Ca2+ sensor distinct from Syt1/Syt2 (Kamiya and Zucker, 1994; Bertram

et al., 1996; Atluri and Regehr, 1996). In support of this idea, Jackman et al. (2016)

demonstrated that the high-affinity Ca2+ sensor Syt7 is required for facilitation in

corticothalamic, hippocampal mossy fibre, Schaffer collateral, and perforant path

synapses. Nonetheless, whether Ca2+ binding to Syt7 mediates facilitation at other

synapses, and if this causes facilitation by increasing the probability of Syt1- or Syt2-

mediated release remain to be determined (Jackman and Regehr, 2017).

Recent studies have shown that, for many synapses, the local Ca2+ signal at

transmitter release sites (10 � 50 µM; Bollmann et al., 2000; Schneggenburger and

Neher, 2000; Wang et al., 2008; Sakaba, 2008; Kochubey et al., 2009) might not be as

large as previously thought (> 100 µM; Simon and Llinas, 1985; Adler et al., 1991).

Therefore, a simple addition of [Ca2+]residual to [Ca2+]local can produce a PPF much

larger than the 4% estimated above. To investigate the extent to which a linear sum

of [Ca2+]residual and [Ca2+]local contributed to PPF, Felmy et al. (2003) used Ca2+
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uncaging to homogeneously raise [Ca2+]i in the calyx of Held, before evoking a

brief membrane depolarisation to trigger transmitter release. They found that a

linear sum of the pre-elevated [Ca2+]i and [Ca2+]local could account for almost 30%

of the observed facilitation. As the Ca2+ sensitivity of transmitter release did not

change during Ca2+-dependent synaptic facilitation, Felmy and colleagues argued

that facilitation at this synapse is unlikely to be mediated by a high-affinity Ca2+

binding site. Facilitation caused by Ca2+ binding to such a site would have led to an

increased Ca2+ sensitivity and/or a reduced synaptic delay. To explain the remaining

70% of the observed facilitation, Felmy and colleagues proposed that [Ca2+]residual

partially saturated endogenous fast buffers. As a result, more Ca2+ ions remained

free during the second stimulation, giving rise to a larger [Ca2+]local. Due to the

high cooperativity of the Ca2+ sensor for release, only an additional 20% increase

in [Ca2+]local was sufficient to account for the remaining facilitation. Saturation of

endogenous Ca2+ buffers, in particular, calbindin-D28k, has also been suggested to

underlie synaptic facilitation at the hippocampal mossy fibre synapse (Blatow et al.,

2003).

Besides a high-affinity Ca2+ binding site and buffer saturation, an activity-dependent

increase in Ca2+ influx has also been shown to contribute to synaptic facilitation.

One mechanism that can increase the presynaptic Ca2+ influx is the broadening of

the AP waveform (Jackson et al., 1991; Geiger and Jonas, 2000). However, its role

in synaptic facilitation is likely restricted to later APs of a long train and to certain

synapses (Charlton and Bittner, 1978; Jackman and Regehr, 2017). Independently

of AP broadening, P/Q-type Ca2+ currents facilitate in response to a pair of

brief membrane depolarisations (Dt < 100 ms; Borst and Sakmann, 1998b; Cuttle

et al., 1998). This process arises as a result of Ca2+ binding to the C-terminal

lobe of calmodulin (CaM), which, although pre-associated with the Ca2+ channels,

strengthens its interaction with their a1 pore-forming subunit upon Ca2+ binding

(DeMaria et al., 2001; Lee et al., 2003). Consequently, the Ca2+ channels activate more

rapidly and produce a larger Ca2+ influx in response to the second depolarisation

(Cuttle et al., 1998). It has been shown that, by augmenting the rise in [Ca2+]local
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evoked by the second AP, facilitation of P/Q-type VGCCs accounts for a significant

fraction (� 40%) of the observed PPF at the calyx of Held (Inchauspe et al., 2004;

Ishikawa et al., 2005; Xu and Wu, 2005; Muller et al., 2008). Interestingly, Ca2+

binding to the N-terminal lobe of CaM, which causes P/Q-type VGCCs to inactivate

(DeMaria et al., 2001; Lee et al., 2003), also plays a major role in short-term depression

at the calyx of Held, during low-frequency or after tetanic stimulation (Forsythe et al.,

1998; Xu and Wu, 2005).

1.3.5.2 Post-tetanic potentiation

Post-tetanic potentiation (PTP) refers to an increase in synaptic efficacy that follows

a long period (seconds to minutes) of high-frequency stimulation (Feng, 1941; Liley

and North, 1953; Hughes, 1958). Compared to synaptic facilitation, PTP lasts for

much longer: tens of seconds to minutes. At many synapses, a closely related but

shorter lasting form of short-term synaptic enhancement, known as augmentation,

is also observed (Magleby and Zengel, 1976; Zengel et al., 1980). However, the

distinction between augmentation and PTP is often unclear, partly because different

synapses show a considerable variability in the number and frequency of APs needed

to induce these two processes (Regehr, 2012).

The global accumulation of Ca2+ in presynaptic nerve terminals also gives rise

to PTP (Kretz et al., 1982; Connor et al., 1986; Delaney et al., 1989; Delaney and

Tank, 1994; Kamiya and Zucker, 1994; Regehr et al., 1994; Habets and Borst, 2005;

Korogod et al., 2005). Compared to that remaining after a single AP, the [Ca2+]residual

following sustained high-frequency stimulation decays much more slowly, taking

tens of seconds to minutes to return to the resting level. Such a slow decay time

course occurs as a result of Ca2+ release from mitochondria (Tang and Zucker, 1997;

Lee et al., 2007), or a slow-down, or even a reversal, in the activity of Na+/Ca2+

exchangers (Mulkey and Zucker, 1992; Regehr, 1997; Zhong et al., 2001). Although

PTP decays in parallel with [Ca2+]residual at many synapses (Connor et al., 1986;

Delaney et al., 1989; Delaney and Tank, 1994; Habets and Borst, 2005; Korogod et al.,



§1.3 Ca2+ regulation of transmitter release 35

2005), at the hippocampal mossy fibre and Schaffer collateral synapses, the decay

time course of [Ca2+]residual is more rapid than that of PTP (Regehr et al., 1994;

Brager et al., 2003). As a result, [Ca2+]residual may induce PTP by activating a slow

biochemical cascade that enhances transmitter release (Regehr et al., 1994; Brager

et al., 2003; Beierlein et al., 2007).

Even though [Ca2+]residual decays very slowly after tetanic stimulation, its amplitude

is still ⇠ 50-fold smaller than [Ca2+]local at transmitter release site (Regehr et al.,

1994; Habets and Borst, 2005; Korogod et al., 2005; Fioravante et al., 2011). Therefore,

it is very unlikely that a simple addition of [Ca2+]residual to [Ca2+]local (Eq. 1.1)

can give rise to PTP (� 100% increase in EPSC amplitude). It is also unlikely

that this [Ca2+]residual partially saturates endogenous fast buffers and produces a

larger [Ca2+]local in response to a subsequent AP. Instead, [Ca2+]residual has been

demonstrated to cause PTP through an increase in AP-evoked Ca2+ influx or

activation of protein kinase C (PKC). By measuring the rise in the volume-averaged

[Ca2+]i evoked by a single AP, Habets and Borst (2006) showed that, at the calyx of

Held, a large fraction of PTP could be accounted for by an increase in the presynaptic

Ca2+ current. Such an increase, likely caused by Ca2+/CaM-dependent facilitation

of P/Q-type VGCCs, had a peak amplitude of 15% and a decay time course similar

to that of PTP (Habets and Borst, 2006). The remaining PTP was attributed to a

30% increase in the RRP. A similar increase in the volume-averaged Ca2+ elevation

evoked by a single AP was also observed by Korogod et al. (2007). However, Korogod

et al. argued that a 15% increase in the global Ca2+ elevation could not significantly

contribute to PTP, especially because not all of it would trigger transmitter release.

Consistent with this idea, it has been shown that activation of Ca2+-dependent

PKCa/b is the main mechanism underlying PTP at the calyx of Held (⇠ 80%;

Korogod et al., 2007; Fioravante et al., 2011). Neither the basal release properties,

the [Ca2+]residual, nor the AP-evoked Ca2+ influx were affected in PKCa/b double

knockouts (Fioravante et al., 2011). In addition, the increase in AP-evoked Ca2+ influx

following tetanic stimulation was unchanged, indicating that the much reduced PTP

in knockout animals did not result from impaired facilitation of VGCCs. PKCa/b
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may induce PTP by enlarging the RRP (likely via phosphorylation of Munc18-1)

and/or increasing the Ca2+ sensitivity of vesicle fusion (Yawo, 1999; Wu and Wu,

2001; Korogod et al., 2007; Fioravante et al., 2011).

1.3.5.3 Ca2+-dependent recovery from depression

According to the simplest form of the depletion model, short-term synaptic

depression occurs as a result of a slow and constant rate of replenishment of the

RRP (Betz, 1970). However, at a number of synapses, recovery from depression is

accelerated by high-frequency stimulation (Dittman and Regehr, 1998; Wang and

Kaczmarek, 1998; Fuhrmann et al., 2004). As chelation of the intracellular Ca2+ with

EGTA reduced activity-dependent recovery from depression, it has been suggested

that Ca2+, accumulating in the presynaptic terminals during repetitive stimulation,

plays a central role in this process (Dittman and Regehr, 1998; Wang and Kaczmarek,

1998; Fuhrmann et al., 2004). In support of this, Hosoi et al. (2007) showed that, at

the calyx of Held, the rate of recruitment of fast releasing synaptic vesicles increases

linearly with the global Ca2+ elevation (see also Gomis et al., 1999). This process,

which is mediated by CaM, allows fast releasing vesicles to be recruited up to 10⇥

faster than at rest (Sakaba and Neher, 2001; Hosoi et al., 2007). Therefore, Ca2+-

dependent vesicle recruitment represents a major mechanism that maintains synaptic

transmission under conditions that would otherwise render synapses ineffective.

How Ca2+-CaM accelerates vesicle recruitment and whether it accounts for activity-

dependent recovery from depression at other synapses remain to be determined.

1.4 Determinants of presynaptic Ca2+ dynamics

Factors that regulate the spatiotemporal dynamics of an intracellular Ca2+ elevation

can be divided into three main categories: the source of Ca2+, Ca2+ buffers, and Ca2+

sequestration mechanisms. In a presynaptic nerve terminal, an increase in [Ca2+]i

typically arises from Ca2+ influx through voltage- or ligand-gated Ca2+ channels
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(specific as well as non-specific for Ca2+). Ca2+ can also be released from intracellular

stores through the ryanodine and/or IP3 receptors (RyR and IP3R, respectively).

Upon their activation, these Ca2+ channels allow Ca2+ to quickly flow down its

electrochemical gradient (⇠ 103 ions/ms), and thus, produce a rapid increase in

[Ca2+]i. Through their interactions with Ca2+ (binding and unbinding), Ca2+ buffers

shape the amplitude, spatial distribution, and time course of the Ca2+ rise. Finally,

active transport mechanisms (and the mitochondrial uniporter) function together to

return [Ca2+]i to the resting level.

1.4.1 Sources of Ca2+ influx

1.4.1.1 Voltage-gated Ca2+ channels

In most nerve terminals, VGCCs provide the main source of Ca2+ for evoked

transmitter release. VGCCs are heteromeric complexes, each consisting of an a1 pore-

forming subunit and four associated subunits (a2, b, or g). They can be classified into

different functional groups, depending on the molecular identity of the a1 subunit:

P/Q-type or Cav2.1 (containing a1A), N-type or Cav 2.2 (a1B), L-type or Cav1.2 � 1.3

(a1C or a1D, respectively), R-type or Cav2.3 (a1E), and T-type or Cav3.1 � 3.3 (a1G,

a1H, or a1I, respectively; Catterall, 2011). At neocortical excitatory synapses, evoked

transmitter release is predominantly mediated by Ca2+ influx through P/Q- and N-

type Ca2+ channels (Iwasaki et al., 2000; Koester and Sakmann, 2000; Rozov et al.,

2001; Millan et al., 2003; Ali and Nelson, 2006).

Voltage-dependent activation and deactivation. Thus far, a direct measurement

and detailed characterisation of presynaptic Ca2+ currents has only been achieved at

two nerve terminals in the mammalian CNS: the calyx of Held and the hippocampal

mossy fibre bouton (Borst and Sakmann, 1996, 1998a; Geiger and Jonas, 2000;

Bischofberger et al., 2002; Li et al., 2007b). In these terminals, the activation of

P/Q- and N-type Ca2+ channels depends steeply on the membrane potential and
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has a high threshold (at membrane potentials � �40 mV; Borst and Sakmann, 1998a;

Bischofberger et al., 2002; Li et al., 2007b). These channels also exhibit rapid activation

and deactivation kinetics, with time constants in the sub-millisecond range. As a

result, an AP elicits a brief Ca2+ current, starting at the peak of the AP and ending

before or when the AP repolarisation phase is complete (half-width  0.5 ms).

All of these findings are consistent with previous measurements of the presynaptic

Ca2+ current at the squid giant synapse (Llinas et al., 1981a; Augustine and Eckert,

1984; Augustine et al., 1985). However, compared to those in the invertebrate nerve

terminal (Pumplin et al., 1981), presynaptic VGCCs in the mammalian CNS are

more effectively activated by a single AP, with the peak open probability reaching

70 � 90% of the maximal value (Borst and Sakmann, 1998a; Bischofberger et al.,

2002). Nonetheless, because their gating properties are strongly dependent on

the membrane potential, any changes in the AP waveform, particularly during

high frequency stimulation, will significantly affect the presynaptic Ca2+ currents

and therefore transmitter release (Jackson et al., 1991; Geiger and Jonas, 2000;

Bischofberger et al., 2002).

Ca2+-dependent facilitation and inactivation. As previously mentioned, P/Q-type

Ca2+ channels show both Ca2+-dependent facilitation and inactivation. During a

train of APs, the amplitude to the Ca2+ current undergoes a frequency-dependent

enhancement, followed by a gradual decline (Cuttle et al., 1998). Based on

mutagenesis studies, a model has been proposed in which these two processes

involve the two lobes of CaM binding to two adjacent sites on the Ca2+ channels:

the high-affinity C-terminal lobe binding to an IQ-like domain, and the low-affinity

N-terminal lobe to a downstream CaM-binding domain (Catterall, 2011). Thus, a

small increase in [Ca2+]i induces facilitation through the former interaction, whereas

a larger Ca2+ elevation, during sustained stimulation, causes inactivation through

the latter.
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Direct interaction with the release machinery. A cytoplasmic region, called the

synaptic protein interaction (synprint) site, on P/Q- and N-type Ca2+ channels

binds directly to SNAP-25 and syntaxin-1A (Sheng et al., 1994; Rettig et al., 1996).

This physical link ensures that the VGCCs are positioned close to readily releasable

vesicles, thereby reducing the diffusional distance of Ca2+ and enhancing the speed

and efficacy of transmitter release. In support of this idea, a synprint peptide, which

binds to syntaxin and disrupts its interaction with N-type Ca2+ channels, inhibits

synchronous transmission (Mochida et al., 1996). Rettig et al. (1997) showed that this

inhibition is caused by a decrease in the Ca2+ sensitivity of vesicle fusion, most likely

as a result of a longer distance between readily releasable vesicles and open Ca2+

channels. P/Q- and N-type Ca2+ channels have also been shown to bind directly to

Syt1 (Charvin et al., 1997; Sheng et al., 1997).

Although both P/Q- and N-type Ca2+ channels can directly interact with the release

machinery, at the young calyx of Held, P/Q-type Ca2+ channels trigger transmitter

release more effectively (Wu et al., 1999). This is because N-type Ca2+ channels are

diffusely expressed throughout the calyx, even though some of them are present at

transmitter release sites (Wu et al., 1999). In contrast, P/Q-type Ca2+ channels are

predominantly co-localised in clusters with synaptotagmin at the release face. As a

result, Ca2+ influx through P/Q-type channels drives fusion of readily releasable

vesicles more effectively. The different localisation of these VGCCs may reflect

competition between them for interaction with SNARE proteins (Rettig et al., 1997;

Wu et al., 1999; Cao and Tsien, 2010). N-type Ca2+ channels, though not effective

at controlling transmitter release, may contribute to the global Ca2+ elevation that

supports asynchronous transmission and short-term synaptic plasticity (Wu et al.,

1999).

1.4.1.2 Presynaptic iGluRs

Although iGluRs are traditionally thought to be located postsynaptically, recent

anatomical and electrophysiological studies have demonstrated their presynaptic

expression and important roles in synaptic transmission.



40 Introduction

Ca2+ permeability. In the CNS, most functional iGluRs are homo- or heteromeric

complexes of four subunits from the same family (Mayer, 2005). There are four

AMPA (GluR1� 4), seven NMDA (NR1, NR2A�D, and NR3A�B), and five kainate

(GluR5 � 7 and KA1 � 2) receptor subunits. Whilst the majority of AMPA receptors

are permeable to only Na+ and K+, some AMPA and kainate receptors, and all

NMDA receptors are also permeable to Ca2+. The Ca2+ permeability of AMPA

and kainate receptors is governed by the GluR2 and GluR5/6 subunits, respectively;

incorporation of a specific GluR2 or GluR5/6 subunit, with glutamine/arginine

ribonucleic acid-editing, renders the channel impermeable to Ca2+ (Dingledine

et al., 1999; Lerma, 2003). Ca2+-permeable AMPA and kainate receptors, together

with NMDA receptors, are subject to a voltage-dependent block. Ca2+-permeable

AMPA and kainate receptors are blocked by intracellular polyamines at depolarised

membrane potentials (�40 to 40 mV; Jonas and Burnashev, 1995). In contrast, at the

resting membrane potential of ⇠ �65 mV, NMDA receptors are partially blocked by

extracellular Mg2+, which is relieved upon membrane depolarisation (Mayer et al.,

1984; Nowak et al., 1984). Activation of NMDA receptors also requires simultaneous

binding of the co-agonist glycine or D-serine (Johnson and Ascher, 1987; Shleper

et al., 2005).

Expression and functional consequences. Electrophysiological studies have shown

that the expression of presynaptic iGluRs is pathway-specific and developmentally

regulated (Engelman and MacDermott, 2004; Banerjee et al., 2016). For instance,

within layer 5 of the developing mouse visual cortex (P12 � 20), presynaptic NMDA

receptors enhanced transmitter release at synapses made by pyramidal cells onto

other pyramidal or Martinotti cells (Buchanan et al., 2012). However, such an

effect was absent at synapses made by the same pyramidal cells onto basket cells.

Using glutamate uncaging and Ca2+ imaging of synaptic boutons of these layer 5

pyramidal neurons, this study showed that the enhancement of glutamate release

was likely a result of Ca2+ influx through presynaptic NMDA receptors. Consistent

with the synapse-specificity of the modulation, the intracellular Ca2+ rises produced

by somatically evoked APs and glutamate uncaging summed supralinearly in only
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⇠ 50% of the imaged boutons. Such a supralinear summation presumably indicates

expression of NMDA receptors.

It remains unclear how presynaptic NMDA receptors can enhance transmitter release

evoked by the first AP in a train. Their maximal activation requires the presence

of glutamate as well as membrane depolarisation; the latter is to relieve the Mg2+

block. In addition, compared to the AP-evoked Ca2+ current mediated by VGCCs,

NMDA receptors generally produce a very slowly rising current (trise = 10 � 50

ms; Wyllie et al., 1998). Nonetheless, due to their high affinity for glutamate (half-

maximal effective concentration or EC50 = 0.5 � 2.0 µM; Dingledine et al., 1999),

presynaptic NMDA receptors might be tonically activated by the ambient glutamate

in the synaptic cleft (0.5 � 5.0 µM; Sah et al., 1989; Le Meur et al., 2007; Featherstone

and Shippy, 2008). Therefore, upon membrane depolarisation which removes the

Mg2+ block, an increase in the tonic current of presynaptic NMDA receptors might

be be able to augment the Ca2+ signal generated by VGCCs, and thus, enhance

vesicle fusion.

Activation of presynaptic iGluRs can also affect spontaneous transmitter release

and synaptic plasticity (Engelman and MacDermott, 2004; Banerjee et al., 2016).

At some synapses, the role of presynaptic iGluRs is likely a result of Ca2+ influx

into the nerve terminals, with or without subsequent Ca2+-induced Ca2+ release

(see below; Lauri et al., 2003; Rossi et al., 2008; Buchanan et al., 2012; Rossi et al.,

2012). However, at many synapses, presynaptic iGluRs modulate multiple aspects of

synaptic transmission not by generating a Ca2+ current and directly affecting the

release machinery. Instead, their activation causes a depolarisation of the nerve

terminals or even triggers a second messenger cascade that is independent of ion

flow (Engelman and MacDermott, 2004; Banerjee et al., 2016).

1.4.2 Intracellular Ca2+ release channels

A major constituent of intracellular Ca2+ stores is the smooth endoplasmic reticulum

(ER), which is a three-dimensional network formed by an endomembrane. In
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neurons, the smooth ER extends from the soma to most compartments, including

dendritic spines and presynaptic nerve terminals (Westrum and Gray, 1986; Hartter

et al., 1987). In a resting cell, the concentration of free Ca2+ in the smooth ER

([Ca2+]ER) ranges from 100 µM to 3 mM (Montero et al., 1995; Palmer et al., 2004;

de Juan-Sanz et al., 2017), which is three to four orders of magnitude higher than that

in the cytoplasm. Ca2+ can be released from the smooth ER through ryanodine

and/or IP3 receptors. As Ca2+ is an agonist of these receptors, an increase in

[Ca2+]i following their activation will be amplified by further release of Ca2+ from

intracellular stores. This process, called Ca2+-induced Ca2+ release (CICR), was first

described in cardiac muscles, in which Ca2+ influx through L-type VGCCs causes a

large release of Ca2+ from the sarcoplasmic reticulum (SR; Fabiato and Fabiato, 1975,

1978).

Presynaptic expression of both IP3 and ryanodine receptors has been reported in

the cerebellum, hippocampus, and neocortex (Sharp et al., 1993; Padua et al., 1996;

Llano et al., 2000). Consistent with these observations, CICR has been shown to

underlie evoked and spontaneous Ca2+ transients in a number of presynaptic nerve

terminals (Llano et al., 2000; Emptage et al., 2001; Liang et al., 2002; Conti et al.,

2004; Scott and Rusakov, 2006). Whilst the idea that intracellular Ca2+ release can

trigger spontaneous vesicle fusion is gaining acceptance, its contribution to evoked

transmission remains controversial. The extent to which presynaptic stores provides

Ca2+ for evoked transmitter release may depend on the local environment around

transmitter release sites and the experimental protocols used. In particular, studies

that reported a role of CICR in synaptic transmission and short-term plasticity were

often performed at near physiological temperatures (30 � 36 °C in Emptage et al.,

2001; Choy, 2011; but room temperature in Galante and Marty, 2003; Lauri et al.,

2003), whereas those that showed no effects were done at room temperature (Carter

et al., 2002; Breustedt and Schmitz, 2004).



§1.4 Determinants of presynaptic Ca2+ dynamics 43

1.4.2.1 Ryanodine receptors

There are three main isoforms of RyRs in mammalian cells. Each of them, coded

for by a different gene, forms a large homo-tetrameric complex, with a central

ion-conducting pore (Wagenknecht et al., 1989; Fill and Copello, 2002). RyR1 and

RyR2 are predominantly expressed in skeletal and cardiac muscles, respectively,

whereas RyR3 is found, to some extent, in most tissues. Expression of all three

receptor isoforms has been reported in neurons, with RyR2 being the most abundant

(Bouchard et al., 2003). Compared to VGCCs, RyRs have a large unitary conductance

but a low selectivity for Ca2+ (Fill and Copello, 2002).

Bi-phasic dependence on [Ca2+]i. The open probability of RyRs displays a bell-

shaped dependence on [Ca2+]i, as they are activated by low [Ca2+]i (� 100 nM) but

inhibited when [Ca2+]i exceeds 100 µM (circles in Fig. 1.7A; Bull and Marengo, 1993;

Xu et al., 1996; Chen et al., 1997; Xu and Meissner, 1998). These two processes occur

as a result of Ca2+ binding to two different cytoplasmic sites on RyRs, one with a

high affinity and the other with a low affinity, respectively (⇠ 1 µM and 1 mM). A

cytoplasmic site that causes inactivation of RyRs at 1� 10 µM of [Ca2+]i has also been

suggested, although its existence has not been conclusively confirmed or dismissed

(Fill and Copello, 2002; Laver, 2007).

Modulation. The activation of RyRs is strongly modulated by luminal Ca2+,

cytosolic ATP, and cytosolic Mg2+ (Fig. 1.7A; Xu et al., 1996; Xu and Meissner,

1998; Fill and Copello, 2002). An increase in [Ca2+]ER or in the concentration

of cytosolic ATP promotes the opening of RyRs, whereas high concentrations of

cytosolic Mg2+ inhibit it. It has been proposed that, in the presence of cytosolic

ATP, Ca2+ binding to a luminal site on RyRs is sufficient to activate the channels

(Laver, 2007). However, the maximal open probability can only be achieved by

Ca2+ binding to the cytoplasmic activation site. The ubiquitous Ca2+ sensor CaM

can either activate or inhibit RyR1 and RyR3, at low or high [Ca2+]i, respectively
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Figure 1.7: The open probability of ryanodine and IP3 receptors as a function of [Ca2+]i. (A)
The open probability of cardiac RyRs determined with or without 2 mM cytosolic Mg2+-ATP
(triangles or circles, respectively). Adapted from Xu et al. (1996). (B) The open probability
of the rat IP3R-3 measured in the presence of IP3 (filled circles: 10 µM; triangles: 33 nM;
squares: 20 nM). Adapted from Mak et al. (2001b).

(Tripathy et al., 1995; Chen et al., 1997; Fruen et al., 2000). For RyR2, only inhibition

by Ca2+-CaM has been reported (Fruen et al., 2000).

Pharmacology. Compounds that are commonly used to activate or block RyRs

include ryanodine, ruthenium red, and caffeine.

Ryanodine. The plant alkaloid, ryanodine, was first found to promote or inhibit

Ca2+ release from cardiac myocytes and SR membrane vesicles, in a concentration-

dependent manner (10 nM to 10 µM, or � 10 µM, respectively; Meissner, 1986;

Hansford and Lakatta, 1987; Lattanzio et al., 1987). It binds RyRs with a very high

specificity. In fact, RyRs were originally called triad junctional foot proteins, due to

their appearance in skeletal muscles under electron microscopy (Franzini-Armstrong,

1975). After being purified from skeletal and cardiac muscles, and found to bind

[3H]-ryanodine, RyRs acquired their present name (Inui et al., 1987a,b; Lai et al., 1988).

Subsequent single-channel recordings revealed the presence of high- and low-affinity

binding sites for ryanodine on RyRs (Buck et al., 1992). These binding sites have been
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proposed to account for the different effects of ryanodine on SR Ca2+ release. Ca2+

binding to the low-affinity binding site causes a complete closure of the channels,

thereby inhibiting Ca2+ release at high micromolar concentrations (� 200 µM; Buck

et al., 1992). Ca2+ binding to the high-affinity binding sites, on the other hand,

increases the open probability of RyRs, and thus, stimulates Ca2+ release at low

nanomolar to low micromolar concentrations. However, in this concentration range,

the extent to which ryanodine increases Ca2+ release is strongly concentration-

dependent. This is because, although a low concentration of ryanodine (5 � 40

nM) does not affect the single-channel conductance, higher concentrations (50 nM

to 70 µM) stabilise the channels in a sub-conducting state (1/4 � 1/2 of the maximal

conductance). As a result, the magnitude of Ca2+ release is reduced with an

increasing concentration of ryanodine.

Ruthenium red. Ruthenium red is a very potent inhibitor of SR Ca2+ release (half-

maximal inhibiting concentration or IC50 = 0.01 � 1 µM; Chamberlain et al., 1984;

Palade, 1987; Ma, 1993). Similar to ryanodine, it modifies the gating and conductance

of RyRs by multiple mechanisms, depending on the channel activity, SR membrane

potential, and whether it is exposed to the cytosolic or luminal side of RyRs (Xu

et al., 1999). However, in contrast to ryanodine, ruthenium red is a highly non-

specific blocker of RyRs. It has been shown to inhibit a multitude of Ca2+ channels,

including VGCCs (IC50 = 1 � 70 µM; Cibulsky and Sather, 1999), transient receptor

potential (TRP) channels (IC50 = 0.1 � 100 µM; Jia et al., 2004; Voets et al., 2004), and

possibly IP3Rs (Vites and Pappano, 1992).

Caffeine. Caffeine increases the sensitivity of RyRs to both [Ca2+]i and [Ca2+]ER (Porta

et al., 2011), without affecting their single-channel conductance (Rousseau et al., 1988).

At rest, when [Ca2+]i = 100 nM and [Ca2+]ER = 0.1 � 1.0 mM, caffeine stimulates

the opening of RyRs with an EC50 of ⇠ 5 mM (Porta et al., 2011). However, it inhibits

IP3Rs with an IC50 of ⇠ 2 mM (Bezprozvanny et al., 1994).



46 Introduction

1.4.2.2 IP3 receptors

The IP3R family in mammalian cells also comprises three distinct genes, encoding

IP3R-1, IP3R-2, and IP3R-3. Each receptor isoform forms a homo- or hetero-tetramer,

again with a central ion-conducting pore (Foskett et al., 2007). All three isoforms

have been found expressed in the brain, with IP3R-1 being the most abundant

(Verkhratsky, 2005). Compared to RyRs, IP3Rs have a similar selectivity for Ca2+,

but a two- to three-fold smaller unitary conductance (Fill and Copello, 2002; Foskett

et al., 2007).

Bi-phasic dependence on [Ca2+]i. Cytosolic Ca2+ is a true agonist of IP3Rs,

whereas IP3 regulates Ca2+-dependent inhibition of IP3Rs (Mak et al., 1998). Patch-

clamp recordings have shown that, even in the presence of saturating concentrations

of IP3, the open probability of IP3Rs is still low at a resting [Ca2+]i of ⇠ 50 nM (filled

circles in Fig. 1.7B; Kaftan et al., 1997; Mak et al., 1998, 2001b; Ionescu et al., 2006).

An increase in [Ca2+]i to less than 1 µM activates IP3Rs, with the half-maximal open

probability achieved at 70 � 210 nM of cytosolic Ca2+. However, IP3Rs are inhibited

when [Ca2+]i exceeds 1� 10 µM. The sensitivity of these receptors to Ca2+-dependent

inhibition is highly variable, even with a saturating concentration of IP3. In fact, some

studies have demonstrated a severe reduction or an absence of inhibition (Foskett

et al., 2007). Similar to the proposed inactivation of RyRs at 1 � 10 µM of [Ca2+]i, the

Ca2+-dependent inhibition of IP3Rs likely serves as a self-regulating mechanism to

prevent excessive CICR and Ca2+ overload.

Modulation by IP3. IP3 is a hydrolytic product of the plasma membrane

phospholipid PIP2 by phospholipase C (PLC). IP3 regulates the open probability of

IP3Rs by modulating their sensitivity to Ca2+-dependent inhibition, without affecting

their activation by Ca2+ (Fig. 1.7B; Foskett et al., 2007). At a low or sub-saturating

concentration of IP3, IP3Rs are inhibited by 0.1 � 1 µM of [Ca2+]i (Kaftan et al., 1997;

Mak et al., 1998, 2001b; Ionescu et al., 2006). An increase in the concentration of IP3
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causes this inhibition to occur at a higher [Ca2+]i, thereby expanding the range of

[Ca2+]i over which IP3Rs are active. The IP3 concentration at which such an effect is

half-maximal ranges from 50 nM for Xenopus IP3R-1 and rat IP3R-3 (Mak et al., 1998,

2001b), 400 nM for insect IP3Rs (Ionescu et al., 2006), to 10 µM for canine cerebellar

IP3R-1 (Kaftan et al., 1997). The reduced sensitivity of canine cerebellar IP3R-1 is

consistent with the finding that � 10 µM of IP3 was required to induce intracellular

Ca2+ release in rat cerebellar Purkinje neurons (Khodakhah and Ogden, 1995). In this

study, the concentration of IP3 was raised by flash photolysis of caged IP3. Therefore,

the low sensitivity of store release was not a result of rapid hydrolysis of IP3, but

likely due to a low affinity of the IP3R. Such a low IP3-binding affinity of cerebellar

IP3Rs may contribute to the fast kinetics of the observed Ca2+ release (Khodakhah

and Ogden, 1995).

The fact that IP3 can modulate the biphasic Ca2+ dependence of IP3Rs means that

activation of metabotropic receptors can transform highly localised signals to more

global elevations in [Ca2+]i (Foskett et al., 2007). In the absence of IP3, the opening

of IP3Rs will most likely produce a small and brief rise in [Ca2+]i. This is because

Ca2+ released from one channel will suppress the opening of its neighbours. During

synaptic activity, activation of metabotropic receptors coupled to Gq/11 proteins will

promote hydrolysis of PIP2 and lead to an increase in the concentration of IP3. This

will in turn alleviate Ca2+-dependent inhibition of IP3Rs, enhance intracellular Ca2+

release, and give rise to increases in [Ca2+]i with much higher amplitudes, longer

duration, and larger spatial spread (Manita and Ross, 2009; Miyazaki and Ross, 2013).

Other modulators. The activity of IP3Rs is also regulated by luminal Ca2+ and

cytosolic ATP. An increase in [Ca2+]ER decreases the open probability of IP3Rs

(Bezprozvanny and Ehrlich, 1994). In comparison, a high concentration of cytosolic

ATP increases their sensitivity to Ca2+-dependent activation, thereby extending the

range of [Ca2+]i over which IP3Rs are open to lower values (Mak et al., 1999, 2001a).

Increasing the concentration of cytosolic ATP can also change the sensitivity of Ca2+-

dependent inhibition (Mak et al., 1999, 2001a; Tu et al., 2005). Although Ca2+ binding
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to CaM has been suggested to modulate IP3R activity, there is little evidence to

support this proposition (Foskett et al., 2007).

Pharmacology. Heparin and 2-aminoethoxydiphenyl borate (2-APB) are commonly

used to block IP3R-mediated Ca2+ release. Their actions on IP3Rs are less well-

studied than those of ryanodine on RyRs. In addition, unlike ryanodine, these

compounds lack specificity.

Heparin. Heparin is a potent blocker of Ca2+ release through IP3Rs, with an IC50

of ⇠ 20 nM (Ghosh et al., 1988). However, at a resting [Ca2+]i of 100 nM, this

concentration of heparin also half-maximally activates RyRs (Bezprozvanny et al.,

1993).

2-APB. In rat cerebellar microsomes (i.e. ER vesicles), 2-APB inhibits Ca2+ release

induced by 100 nM of IP3 (IC50 ⇠ 40 µM; Maruyama et al., 1997). However, its

effect is likely dependent on the IP3R isoform and the cytosolic concentration of IP3

(Bootman et al., 2002). 2-APB also blocks the sarco/endoplasmic reticulum Ca2+-

ATPase (SERCA; IC50 ⇠ 100 µM; Missiaen et al., 2001) and store-operated Ca2+ entry

(IC50 ⇠ 10 µM; Gregory et al., 2001; Kukkonen et al., 2001). 2-APB additionally

modulates a range of TRP channels (IC50 or EC50 � 10 µM; Hu et al., 2004; Li et al.,

2006). Simkus and Stricker (2002a) showed that, in layer 2 pyramidal neurons of the

rat somatosensory cortex, 14 µM of 2-APB produced a maximal inhibition of IP3R-

mediated Ca2+ release, without significantly affecting other mechanisms underlying

Ca2+ homeostasis.

1.4.2.3 Ca2+ leak channels

In many cells and cellular compartments, including presynaptic nerve terminals,

blockade of SERCA pumps causes a reduction in [Ca2+]ER, independently of

ryanodine and IP3 receptors (Camello et al., 2002; de Juan-Sanz et al., 2017). Therefore,

it is generally accepted that intracellular Ca2+ stores exhibit a passive Ca2+ leak. The
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rate of this process ranges from 10 to 400 µM/min, depending on the cell type and

experimental temperature (Camello et al., 2002). As [Ca2+]ER is typically 0.1 � 3.0

mM at rest (Montero et al., 1995; Palmer et al., 2004; de Juan-Sanz et al., 2017), the

passive Ca2+ leak has been thought to cause a complete depletion of Ca2+ stores in a

few minutes (Camello et al., 2002). However, de Juan-Sanz et al. (2017) showed that,

in synaptic boutons of cultured hippocampal neurons, although blockade of SERCA

pumps caused [Ca2+]ER to decrease with a time constant of 25 s, ⇠ 2/3 of the resting

or initial concentration remained, without any further reduction (from ⇠ 150 to 100

µM).

Several candidates of ER leak channels have been proposed. These include the

translocon, a protein complex implicated in the translocation of polypeptides

(Flourakis et al., 2006), pannexin-1 (Vanden Abeele et al., 2006), and presenilins (Tu

et al., 2006; but see Shilling et al., 2012). Mutations in presenilins have been implicated

in the pathogenesis of Alzheimer’s disease, likely by impairing the regulation of

presynaptic Ca2+ dynamics and altering the induction of synaptic plasticity (Zhang

et al., 2009).

1.4.3 Endogenous Ca2+ buffers

A large fraction of Ca2+ ions that enter a nerve terminal is rapidly bound by

endogenous Ca2+-binding proteins. These proteins possess different Ca2+-binding

sites, predominantly EF-hand motifs, C2 domains, and four annexin repeats (Niki

et al., 1996). A large number of endogenous Ca2+ binding proteins function

as Ca2+ sensors, which couple an intracellular Ca2+ rise to specific signalling

cascades. If expressed at high enough concentrations, Ca2+ sensors can also

modulate intracellular Ca2+ dynamics, and thus, act as Ca2+ buffers (Schwaller, 2010;

Faas et al., 2011). However, the term “Ca2+ buffers” often refer to a small subset of

cytosolic proteins with EF-hand motifs, including parvalbumin, calbindin-D28k, and

calretinin (Schwaller, 2010).
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Table 1.1: Properties of commonly known exogenous and endogenous Ca2+ buffers.

BAPTA# EGTA# Parvalbumin$ Calbindin-
D28k& Calretinin+

kon
(M�1s�1) 4.5 ⇥ 108 2.7 ⇥ 106 6 ⇥ 106 7.5 ⇥ 107 1.8 ⇥ 106 (T)

3.1 ⇥ 108 (R)

koff (s�1) 79 0.5 ⇠ 1 29.5 53 (T)
20 (R)

Kd (µM) 0.18 0.18 0.15 � 0.25 0.39
28 (T)

0.068 (R)
1.4 (Apparent)

DB
(µm2s�1) 220 220 12 � 43 ⇠ 25 ⇠ 25

#Allbritton et al. (1992); Naraghi and Neher (1997); Naraghi (1997); $Maughan and Godt
(1999); Lee et al. (2000b); Schmidt et al. (2003, 2007); Schwaller (2010); &Schmidt et al.
(2005); Faas et al. (2011); +Ca2+ binding to calretinin is highly cooperative: after the first
binding, the state changes from tense (T) to relaxed (R; Faas et al., 2007).

In general, a Ca2+ buffer will attenuate an intracellular Ca2+ rise and prolong the

time it takes for [Ca2+]i to return to the resting level. Nonetheless, how and the

extent to which a Ca2+ buffer affects the spatiotemporal dynamics of an intracellular

Ca2+ rise depends on several parameters, including its concentration, Ca2+ binding

affinity (Kd), kinetics of Ca2+ binding and unbinding (kon and koff, respectively),

and mobility (DB; Table 1.1). These factors, in turn, depend on the specifics of the

intracellular environment, particularly the presence of ions or molecules that bind to

the protein (Lee et al., 2000b; Schmidt et al., 2005, 2007). In general, Ca2+ buffers are

more highly expressed in inhibitory interneurons than in excitatory neurons (Hof

et al., 1999). However, parvalbumin, calretinin, and calbindin-D28k have all been

found in the axons and nerve terminals of some excitatory neurons: parvalbumin

(⇠ 50 µM) and calretinin at the calyx of Held (Felmy and Schneggenburger, 2004;

Muller et al., 2007), and calbindin-D28k in hippocampal mossy fibres (⇠ 40 µM;

Blatow et al., 2003; Muller et al., 2005).
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1.4.3.1 Ca2+ binding affinity and kinetics

Similar to EGTA and BAPTA, these endogenous buffers bind Ca2+ with a high

affinity (Lee et al., 2000b; Nagerl et al., 2000; Faas et al., 2007, 2011). However, whether

they modulate the Ca2+ signal around open VGCCs, or only affect the slowly rising,

global Ca2+ elevation, depends on their Ca2+ binding rates. At a resting [Ca2+]i of

50 � 100 nM, the majority of Ca2+-binding sites on parvalbumin are occupied by

Mg2+ (> 80%; Olinger et al., 2012). When an AP produces an intracellular Ca2+

elevation, Mg2+ has to dissociate from these binding sites before Ca2+ can bind.

As a result, under physiological conditions, parvalbumin has a slow Ca2+ on-rate,

similar to that of EGTA (Table 1.1). This means that, if readily releasable vesicles

are tightly coupled to Ca2+ channels, parvalbumin may not be able to interfere with

synchronous release (Caillard et al., 2000), unless it is highly expressed (⇠ 1 mM;

Eggermann and Jonas, 2011). In comparison, calbindin-D28k, which is a faster buffer,

likely attenuates [Ca2+]local, thereby hindering vesicle fusion (Blatow et al., 2003).

Additionally, a high affinity and fast kinetic buffer, such as calbindin, may promote

PPF, as its saturation by the residual Ca2+ will produce a larger [Ca2+]local in

response to a subsequent AP (Klapstein et al., 1998; Rozov et al., 2001; Blatow et al.,

2003). In contrast, a slow buffer, such as parvalbumin, accelerates the initial decay

of the residual Ca2+, and thus, inhibits PPF (Caillard et al., 2000; Collin et al., 2005a;

Muller et al., 2007). Nonetheless, such an inhibition would only be present for as

long as the incoming Ca2+ does not saturate the slow buffer. During sustained

high-frequency stimulation, the slow buffer may become saturated (Lee et al., 2000b).

This may, in turn, allow synaptic facilitation to occur, unless depression becomes

dominant as a result of vesicle depletion or inactivation of the presynaptic Ca2+

current (Forsythe et al., 1998; Xu and Wu, 2005).

Although preventing synaptic facilitation, a slow buffer can enhance asynchronous

transmitter release. As a result of its slow binding and unbinding kinetics,

parvalbumin may accumulate a significant amount of Ca2+ during a train of APs.

Once the AP train terminates, it acts as a long lasting source of Ca2+, and hence,



52 Introduction

prolong the decay time course of the residual Ca2+ (Lee et al., 2000b). Consequently,

asynchronous transmitter release extends for longer in the presence of parvalbumin

(Collin et al., 2005a).

1.4.3.2 Intracellular mobility

The intracellular mobility of an endogenous buffer also determines how it shapes

presynaptic Ca2+ dynamics, and thus, regulates transmitter release and synaptic

plasticity. The diffusion coefficient of free Ca2+ is ⇠ 220 µm2s�1 (Allbritton et al.,

1992). However, in intact cells, its apparent diffusion coefficient is only 10 � 20

µm2s�1, as the majority of Ca2+ is bound to endogenous fixed buffers (Allbritton

et al., 1992; Gabso et al., 1997). In presynaptic terminals, candidates for endogenous

fixed or poorly mobile buffers include negatively charged phospholipid groups on

the intracellular face of the presynaptic membrane, active zone proteins with Ca2+-

binding sites (e.g. synaptotagmins and RIMs), the ubiquitous Ca2+ sensor CaM,

and membrane-associated Ca2+-binding kinases (Schwaller, 2010; Faas et al., 2011;

Eggermann et al., 2012; Matthews and Dietrich, 2015).

Following a Ca2+ influx, a fixed or poorly mobile buffer, with fast Ca2+ binding

kinetics, reduces the spatial spread of Ca2+ and prolongs its dwell time around an

open channel (Matthews et al., 2013; Delvendahl et al., 2015; Matthews and Dietrich,

2015). As fixed buffers cannot be replenished by means of diffusion, those that are

in the vicinity of the channel are prone to saturation (Naraghi and Neher, 1997).

Consequently, a subsequent AP may produce a larger increase in [Ca2+]local and

lead to synaptic facilitation. However, a high concentration of fixed buffers will

slow down the local Ca2+ clearance, as they compete with Ca2+ transporters for

Ca2+ binding and reduce the apparent mobility of Ca2+. This may in turn limit the

synchronicity of transmitter release during high frequency stimulation (Delvendahl

et al., 2015).

In contrast, an intermediately or highly mobile buffer, which shuttles Ca2+ away

from open channels, will attenuate its local build-up and speed up the global rise
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in [Ca2+]i (Sala and Hernandez-Cruz, 1990; Delvendahl et al., 2015). Parvalbumin,

calbindin-D28k, and calretinin all have diffusion coefficients similar to or larger than

the apparent diffusion coefficient of Ca2+ in intact cells (12 � 43 vs. 10 � 20 µm2s�1;

Allbritton et al., 1992; Gabso et al., 1997; Schmidt et al., 2003, 2005, 2007; Schwaller,

2010). Therefore, they likely accelerate the diffusion and spatial equilibration of Ca2+

following a Ca2+ influx. In the vicinity of the open channels, Ca2+-bound buffers

can be replaced by diffusible free buffers. As a result, a mobile buffer is less likely

to saturate than a fixed buffer with the same Ca2+ binding affinity and kinetics.

By increasing the apparent mobility of Ca2+, a mobile buffer also enables rapid

clearance of the local Ca2+ rise around VGCCs, and thus, may maintain synchronous

transmission during repetitive stimulation.

1.4.3.3 Endogenous Ca2+ binding ratio

Unfortunately, the molecular identities of fixed and mobile buffers in most nerve

terminals are unknown. To characterise the endogenous buffering capacity, the Ca2+

binding ratio of endogenous buffers (kE) is often used. This is the ratio of buffer-

bound Ca2+ (BCa) to free Ca2+ following an intracellular Ca2+ rise; that is,

kE =
∂[BCa]

∂[Ca2+]i
.

In presynaptic terminals, kE has been shown to range from ⇠ 20 in proximal boutons

of dentate gyrus granule cells and cerebellar mossy fibre terminals (Jackson and

Redman, 2003; Delvendahl et al., 2015), 20 � 40 in the calyx of Held (Helmchen et al.,

1996; Neher and Taschenberger, 2013; Babai et al., 2014), ⇠ 60 in synaptic boutons of

cerebellar granule cells (Brenowitz and Regehr, 2007), and ⇠ 140 in synaptic boutons

of neocortical layer 2/3 pyramidal neurons (Koester and Sakmann, 2000), to up to

⇠ 1000 in cerebellar basket and stellate cell terminals (Collin et al., 2005a). These

estimates indicate that, in response to a single AP,  5% of the Ca2+ that enters a

nerve terminal remains free.
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1.4.4 Ca2+ sequestration mechanisms

The turnover rate of an active Ca2+ transporter is at least three orders of magnitude

smaller than that of a Ca2+ channel (i.e.  2 ions/ms; Blaustein et al., 2004).

Therefore, it is unlikely to affect the peak amplitude of a Ca2+ rise evoked by a

single AP. However, the activity of a transporter regulates the decay kinetics of this

Ca2+ transient. By doing so, it also shapes the summation of [Ca2+]i during repetitive

stimulation.

Ca2+ can be removed from presynaptic nerve terminals by the plasmalemmal

Ca2+-ATPase (PMCA), the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), the

Na+/Ca2+ exchanger (NCX), the K+-dependent Na+/Ca2+ exchanger (NCKX), and

the mitochondrial Ca2+ uniporter. Whilst the others are active transporters, the

mitochondrial Ca2+ uniporter is actually a Ca2+ channel (Kirichok et al., 2004).

Therefore, it has a much larger turnover rate. These transporters are also different in

their Ca2+ binding affinities and modulatory mechanisms. As a result, most cells

express multiple types of transporters to enable Ca2+ regulation under different

conditions.

1.4.4.1 Plasmalemmal Ca2+-ATPase

There are four main isoforms of PMCA pumps (PMCA1 � 4), all of which have

been found expressed in the cerebral cortex (Stauffer et al., 1995). As its name

suggests, PMCA transports Ca2+ across the cell membrane, from the cytosol into

the extracellular space. It is powered by ATP hydrolysis, with a stoichiometry of one

Ca2+ ion extruded for each molecule of ATP hydrolysed (Brini and Carafoli, 2011).

The [Ca2+]i at which PMCA pumps are half-maximally activated (that is, K0.5) is

10 � 20 µM in the resting state, but decreases to  1 µM upon Ca2+-CaM binding

(Brini and Carafoli, 2009). It is likely that, even at a resting [Ca2+]i of ⇠ 100 nM, the

majority of PMCA pumps are associated with Ca2+-CaM (Vincenzi et al., 1980). This

is because their affinity for Ca2+-CaM is 2 � 50 nM (Brini and Carafoli, 2009), which
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is at least an order of magnitude smaller than the basal concentration of Ca2+-CaM in

neuronal tissues (⇠ 500 nM, estimated with a total CaM concentration of 100 µM and

a Kd value of 13 µM, according to Biber et al. 1984 and Faas et al. 2011, respectively;

consistent with Vincenzi et al. 1980). The binding of Ca2+-CaM also increases the

maximal transport rate of PMCA pumps by up to four-fold (Preiano et al., 1996).

PMCA was initially found to have a very high affinity for Ca2+, with a K0.5 value of ⇠

180 nM (DiPolo and Beauge, 1979). Therefore, it has long been attributed to keeping

the resting [Ca2+]i low, at ⇠ 100 nM (Brini and Carafoli, 2011). However, more recent

studies have revealed numerous PMCA isoforms, including splice variants, each

with a different affinity for Ca2+-CaM, maximal transport rate, cellular distribution,

and/or regulatory mechanism (Strehler and Zacharias, 2001). Accordingly, the

multitude of PMCA pumps might have evolved to regulate [Ca2+]i at rest as well

as following stimulation (Brini and Carafoli, 2011). Consistent with this idea, Kim

et al. (2005) showed that, at the calyx of Held, the rate of Ca2+ extrusion by PMCA

was yet to reach a maximal level and could still account for ⇠ 25% of the total Ca2+

clearance, after an intracellular Ca2+ rise to 1 µM.

1.4.4.2 Sarco/endoplasmic reticulum Ca2+-ATPase

Mammalian cells contain three different genes that code for the three main SERCA

isoforms (SERCA1 � 3; Brini and Carafoli, 2009). Only one of them, SERCA2, has

been shown to be expressed in the cerebral cortex (Wu et al., 1995; Pelled et al., 2003).

Similar to PMCA, SERCA pumps derive energy from ATP hydrolysis, using one ATP

molecule to transport two Ca2+ ions from the cytosol into the ER lumen (Brini and

Carafoli, 2009). Their half-maximal activation constant by cytosolic Ca2+ is also in

the range of that of PMCA (K0.5 = 0.3 � 1.1 µM; Lytton et al., 1992; Pelled et al., 2003).

SERCA is the main Ca2+ sequestration mechanism in skeletal muscles (Blaustein

et al., 2004). As almost all of the Ca2+ required for muscle contraction comes from the

SR, not only does the activity of SERCA allow muscle relaxation, but it also ensures
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rapid refilling of the SR for subsequent activity. In neurons, a much larger fraction

of Ca2+ required for synaptic transmission arises from Ca2+ influx through VGCCs.

Therefore, the relative contribution of SERCA pumps to Ca2+ sequestration is likely

less than that in skeletal muscles. In fact, Kim et al. (2005) showed that SERCA pumps

do not contribute to Ca2+ sequestration at the calyx of Held. However, blockade

of SERCA activity slowed the decay time course of AP-evoked Ca2+ transients

at synaptic boutons of hippocampal pyramidal neurons and mossy fibre boutons

(Emptage et al., 2001; Scott and Rusakov, 2006). In agreement with this, de Juan-

Sanz et al. (2017) found a significant increase in [Ca2+]ER in synaptic boutons of

hippocampal neurons, even in response to a single AP. Therefore, SERCA pumps play

an important role in regulating presynaptic Ca2+ dynamics. As they constitutively

load the ER with Ca2+, these pumps also support intracellular Ca2+ release through

ryanodine and IP3 receptors (Brini and Carafoli, 2009).

Pharmacology. Blockade of SERCA pumps is often achieved with thapsigargin or

cyclopiazonic acid (CPA). Although a tumour promoter, thapsigargin is the most

commonly used blocker, because of its high affinity and specificity for SERCA

(IC50 = 1 � 10 nM; Thastrup et al., 1990; Ma et al., 1999). CPA also inhibits SERCA

pumps, without affecting other Ca2+ transporters, including PMCA (Seidler et al.,

1989). However, it has a lower affinity (IC50 ⇠ 0.1 � 1 µM; Soler et al., 1998; Ma et al.,

1999).

1.4.4.3 Na+/Ca2+ antiporters

Two distinct gene families code for the main antiporters that mediate Na+/Ca2+

transport in neurons. The SLC8 gene family encodes the Na+/Ca2+ exchangers

(NCX), whilst the SLC24 family encodes the less recognised Na+/Ca2+-K+

exchangers (NCKX; Brini and Carafoli, 2011). There are three different NCX and

at least five different NCKX gene products in mammalian cells (NCX1 � 3 and

NCKX1 � 5, respectively; Altimimi and Schnetkamp, 2007). The expression of
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NCX1 � 3 and NCKX2 � 4 has been reported in the cerebral cortex (Lytton et al.,

2002; Minelli et al., 2007).

Both NCX and NCKX extract energy from the electrochemical gradient of Na+ to

transport Ca2+ across the cell membrane. During each cycle, NCX removes one

Ca2+ ion in exchange for three Na+ ions (Blaustein and Lederer, 1999). NCKX, on

the other hand, exchanges four Na+ ions for one Ca2+ and one K+ ion (Altimimi

and Schnetkamp, 2007). As it also exploits the outward electrochemical gradient

of K+, NCKX extrudes Ca2+ more efficiently than its K+-independent counterpart,

particularly when the electrochemical gradient of Na+ is low (Schnetkamp, 1995).

Compared to Ca2+-ATPases, NCX has a lower affinity for cytosolic Ca2+ (K0.5

= 0.6 � 3 µM; Blaustein and Lederer, 1999). Consistently, at the calyx of Held,

an intracellular Ca2+ rise to 0.2 µM was less effectively cleared by NCX than by

PMCA (Kim et al., 2005). NCX, however, played a more important role in Ca2+

sequestration, when [Ca2+]i was raised to 2 µM. After the same Ca2+ elevation,

NCKX also accounted for 42% of the total Ca2+ clearance. This suggests that the

Ca2+ binding affinity of NCKX is likely similar to that of NCX.

The activity of NCX and NCKX is reversible as it depends on the membrane

potential and the electrochemical gradients of Na+ and Ca2+ (and K+ for NCKX).

Under physiological conditions and in response to an intracellular Ca2+ rise, they

predominantly extrude Ca2+ and allow [Ca2+]i to rapidly return to the resting level

(Mulkey and Zucker, 1992; Kim et al., 2005). This is commonly referred to as the

forward mode of NCX/NCKX. However, during sustained activity, the repetitive

activation of voltage-gated Na+ channels can cause the intracellular concentration

of Na+ to increase significantly, reducing its electrochemical gradient. As a result,

NCX/NCKX can reverse and start to transport Ca2+ into the cytosol. Similar to the

forward mode, the reverse mode operation of NCX also depends on [Ca2+]i (K0.5

= 0.6 � 2 µM; Blaustein and Lederer, 1999). An increase in [Ca2+]i caused by the

reverse mode has been reported at the crayfish NMJ (Zhong et al., 2001) and synaptic

boutons of cerebellar granule cells (Regehr, 1997; Roome et al., 2013).
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1.4.4.4 Mitochondrial Ca2+ uptake

Mitochondrial Ca2+ uptake plays a central role in regulating many cellular

processes, including energy production and cell death. As mitochondria are double-

membrane bound organelles, Ca2+ must cross two different membranes to reach the

mitochondrial matrix. It is generally accepted that Ca2+ can freely flow across the

outer mitochondrial membrane (Bianchi et al., 2004). This is because of the abundance

of the voltage-dependent anion channel (VDAC), which is mainly expressed in the

outer mitochondrial membrane and accounts for almost half of its total protein

pool (Linden et al., 1984; Shoshan-Barmatz et al., 2010). Despite its name, the

VDAC is poorly selective for anions (Tan and Colombini, 2007). It also has a large

conductance, which facilitates the movement of ions and small molecules across the

outer mitochondrial membrane.

The mitochondrial Ca2+ uniporter is the primary mode of Ca2+ transport from

the inter-membrane space into the mitochondrial matrix. It is a large complex,

consisting of a pore-forming subunit called mitochondrial Ca2+ uniporter (MCU),

three regulatory subunits (mitochondrial calcium uptake 1 or MICU1, MICU2, and

MCUb), and a small membrane-spanning protein (EMRE; Baughman et al., 2011;

Kamer and Mootha, 2015; Oxenoid et al., 2016). These proteins are expressed in most

mammalian tissues (Plovanich et al., 2013). A paralog of MICU1 and MICU2, called

MICU3, is also expressed in the CNS and skeletal muscles, although its function is

unclear (Plovanich et al., 2013). According to current models, MICU1 and MICU2

modulate the Ca2+ dependence of the uniporter, allowing Ca2+ to flow through the

MCU pore only when [Ca2+]i is sufficiently high (Kamer and Mootha, 2015). Their

EF-hand motifs are exposed to the inter-membrane space, and thus, can sense [Ca2+]i

(Perocchi et al., 2010; Plovanich et al., 2013). These Ca2+ sensors are linked to MCU

by EMRE, which is also essential to generating the Ca2+ current (Sancak et al., 2013).

MCUb is a negative regulator of the uniporter activity (Raffaello et al., 2013).

Due to the mitochondrial membrane potential (�150 to �200 mV), there exists a large

electrochemical gradient that drives Ca2+ into the mitochondrial matrix. By voltage-

clamping the inner mitochondrial membrane, Kirichok et al. (2004) demonstrated
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that the mitochondrial Ca2+ uniporter is a highly selective, inwardly rectifying

Ca2+ channel. An increase in [Ca2+]i increases the current amplitude, with a K0.5

value of 19 mM (Kirichok et al., 2004). This value is much larger than previously

estimated with Ca2+ imaging (10 � 40 µM; Xu et al., 1997; Colegrove et al., 2000b).

This is most likely due to the fact that, under physiological conditions, the flow

of Ca2+ into the mitochondrial matrix would rapidly dissipate the mitochondrial

membrane potential. As the open probability of the uniporter channel decreases with

a depolarised membrane potential, the Ca2+ influx would reach a maximal level at a

lower [Ca2+]i (Kirichok et al., 2004). At [Ca2+]i above 100 µM, the Ca2+ current is so

large that the potential difference across the inner mitochondrial membrane can only

be maintained by voltage-clamp.

Ca2+ can also be released from mitochondria through the activity of a Na+/Li+/Ca2+

exchanger (NCLX; Boyman et al., 2013). However, when [Ca2+]i is elevated, mito-

chondrial Ca2+ uptake dominates, producing a net flux of Ca2+ into the mitochon-

drial matrix (Colegrove et al., 2000a). At the calyx of Held, mitochondria started to

take up Ca2+ after an intracellular Ca2+ rise to more than 2.5 µM (Billups and For-

sythe, 2002; Kim et al., 2005). This is consistent with a K0.5 value of 10 � 40 µM (Xu

et al., 1997; Colegrove et al., 2000b). As mitochondria are present in nerve terminals

(Palay, 1956; Gray, 1959), the mitochondrial uniporter is likely an important regulator

of presynaptic Ca2+ dynamics, particularly during sustained stimulation.

1.5 Measuring the spatially homogeneous Ca2+ rise

Much of our current understanding on Ca2+-dependent mechanisms that underlie

transmitter release stems from studies of large- and medium-sized synapses, such as

the squid giant synapse (Llinas et al., 1981a; Augustine and Eckert, 1984; Augustine

et al., 1985), the calyx of Held (Borst and Sakmann, 1996; Cuttle et al., 1998;

Bollmann et al., 2000), and the hippocampal mossy fibre terminal (Geiger and Jonas,

2000; Bischofberger et al., 2002). These nerve terminals allow direct patch-clamp
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recordings, and thus, enable the presynaptic membrane potential to be controlled

and manipulated.

In contrast, many aspects of Ca2+ regulation of transmitter release remain unclear at

bouton-type synapses, including nerve terminals of neocortical pyramidal neurons.

Due to their small sizes (⇠ 1 µm in diameter), routinely patch-clamping these

boutons is not possible (yet). Thus far, it has only been achieved in a few

studies (Novak et al., 2013), with presynaptic Ca2+ currents yet to be systematically

characterised. In addition, the local Ca2+ signal at transmitter release sites has not

been determined. This is because the amplitude and kinetics of transmitter release,

elicited by Ca2+ uncaging in a small nerve terminal, are not easily measured. These

parameters can be determined by measuring the resultant change in the presynaptic

membrane capacitance or the postsynaptic current. However, membrane capacitance

measurements have not been achieved on small nerve terminals. Regarding the

postsynaptic current, as each neocortical neuron forms synaptic contacts onto

hundreds to thousands of other cortical cells, identification of the postsynaptic cell

that receives input from a specific synapse is also not trivial (although this has

been achieved by Koester and Johnston, 2005). Nonetheless, by characterising the

sensitivity of transmitter release to EGTA and BAPTA, the coupling distance between

readily releasable vesicles and VGCCs has been estimated at some small synapses

(Ohana and Sakmann, 1998; Rozov et al., 2001).

Due to technical limitations, most studies that aim at characterising the regulation

of transmitter release by Ca2+ at small nerve terminals have imaged the spatially

averaged intracellular Ca2+ rise caused by a single AP. Although it is not the Ca2+

signal that triggers synchronous transmitter release, the measured Ca2+ transient

has been shown to regulate asynchronous transmission, short-term facilitation, post-

tetanic potentiation, and recovery from short-term depression (Atluri and Regehr,

1996; Zucker and Regehr, 2002; Neher and Sakaba, 2008). In addition, this spatially

averaged Ca2+ elevation can reveal valuable information on the expression of Ca2+

channels and the buffering capacity of endogenous buffers, both of which play
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important roles in regulating the localised Ca2+ rise “seen” by the release machinery

(Buchanan et al., 2012; Delvendahl et al., 2015).

1.6 Aims of study

This thesis aims at characterising factors that shape the dynamics of AP-evoked and

spontaneous Ca2+ transients in synaptic boutons of neocortical pyramidal neurons.

To achieve this, it has four main objectives:

1. To calibrate the fluorescent Ca2+ indicators used to measure [Ca2+]i.

2. To measure the increase in the spatially averaged [Ca2+]i evoked by a single AP

and characterise factors that determine its amplitude and time course.

3. To determine the extent to which Ca2+ release from presynaptic stores

contributes to AP-evoked Ca2+ elevations.

4. To detect and characterise spontaneous Ca2+ transients in the absence of AP

firing.

1.7 Thesis structure

In this chapter, I have provided the background information and objectives of this

thesis. Chapter 2 presents a calibration of the fluorescent Ca2+ indicators used for

imaging [Ca2+]i in synaptic boutons of neocortical pyramidal neurons. Chapter 3

presents a characterisation of factors that shape the amplitude and time course of

an AP-evoked Ca2+ transient. It also describes the summation of [Ca2+]i during

repetitive stimulation and addresses the contribution of intracellular Ca2+ release to

AP-evoked Ca2+ elevations. Chapter 4 presents the detection and characterisation

of spontaneous Ca2+ transients. Finally, chapter 5 ties all the preceding chapters

together and gives a summary of the conclusions.
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1.8 Author contribution

I performed all experiments presented in this thesis, except for the measurement of

the Ca2+ binding affinities of OGB-1, OGB-6F, and OGB-5N, in the presence of Mg2+.

These Kd values were measured by Chang Ha Michael Park for a summer research

project. They are shown as the results of a preliminary experiment, either in the

Discussion of Chapter 2 (OGB-1 and OGB-6F) or in Chapter 3 (OGB-5N).



Chapter 2

Calibration of Ca2+ indicators

2.1 Introduction

Ca2+ is an essential second messenger in all living cells. An increase in the

intracellular Ca2+ concentration ([Ca2+]i) can arise from Ca2+ influx through voltage-

or ligand-gated Ca2+ channels, or Ca2+ release from intracellular stores. The action

of Ca2+- binding proteins and sequestration mechanisms then returns [Ca2+]i to the

resting level. Not only the amplitude, but also the time course of an intracellular

Ca2+ rise is a determinant of many cellular processes, including those in neurons.

In particular, a brief increase in [Ca2+]i (less than 1 ms long) in the vicinity

of voltage-gated Ca2+ channels drives synchronous transmitter release, whilst

longer-lasting elevations regulate asynchronous transmission, synaptic plasticity,

and neuronal development (Zucker and Regehr, 2002; Bollmann and Sakmann,

2005; Kwon and Sabatini, 2011; Kanamori et al., 2013; Kaeser and Regehr, 2014).

Therefore, quantification of [Ca2+]i and characterisation of its dynamics are central

to understanding physiological processes that underlie neuronal functions.

A common method for measuring [Ca2+]i involves the use of fluorescent Ca2+

indicators, which can be classified as chemical or genetically encoded Ca2+ indicators

(GECIs). Chemical indicators are small-molecule fluorophores, each with a Ca2+

binding site. The Ca2+ binding site of the majority of chemical indicators is based on

BAPTA, a synthetic Ca2+ buffer with fast Ca2+ binding kinetics and a high selectivity

for Ca2+ over Mg2+ (Tsien, 1980; Grynkiewicz et al., 1985; Minta et al., 1989). In

63
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contrast, GECIs are chimeric fluorescent proteins, each consisting of a Ca2+-binding

domain (such as calmodulin or troponin C) fused to one or two fluorescent proteins

(Miyawaki et al., 1997; Nagai et al., 2001; Mank et al., 2006; Tian et al., 2009; Chen

et al., 2013). Although GECIs are increasingly used for imaging of neuronal activity,

chemical indicators remain popular in studies that characterise rapid changes in

[Ca2+]i, due to their much faster Ca2+ binding kinetics (Chen et al., 2013).

Upon Ca2+ binding, the excitation and/or emission properties of a chemical Ca2+

indicator change (Grynkiewicz et al., 1985; Tsien, 1988; Minta et al., 1989). Ratiometric

indicators are those with a shift in the maximum excitation and/or emission

wavelength, whilst non-ratiometric indicators exhibit Ca2+-dependent changes in

the fluorescence intensity, without any wavelength shift. Compared to their

counterparts, ratiometric indicators allow a more accurate quantification of [Ca2+]i.

This is because the calculation of [Ca2+]i from their fluorescence intensities, measured

at two excitation/emission wavelengths, corrects for experimental variations such as

indicator concentration and optical path length. However, single-photon excitation

of most currently available ratiometric indicators requires UV irradiation (< 400 nm),

which produces significant autofluorescence from cellular organelles and can cause

multiple side-effects (Grynkiewicz et al., 1985). Therefore, non-ratiometric Ca2+

indicators, all of which can be excited by visible light (450 � 600 nm), are more

commonly used to characterise the intracellular Ca2+ dynamics in living cells.

The calculation of [Ca2+]i from the fluorescence intensity of a non-ratiometric

Ca2+ indicator requires knowledge of three parameters: 1) the dynamic range

(Rf = Fmax/Fmin), 2) the Ca2+-binding affinity or dissociation constant (Kd), and 3)

the maximum change in fluorescence ((DF/F0)max) of the indicator (Lev-Ram et al.,

1992; Maravall et al., 2000, also see Section 3.2.6.4). Ideally, these parameters should

be measured in situ; in this study, they should be measured in synaptic boutons of

layer 5 pyramidal neurons. This is because the interaction between Ca2+ and a Ca2+

chelator - which a Ca2+ indicator essentially is - depends on the specifics of the local

environment, including ionic strength, pH, temperature, and the presence of other

ions or molecules that bind to the chelator (Harkins et al., 1993; Bers et al., 2010).
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However, only (DF/F0)max was measured in situ for each bouton imaged (Section

3.2.4). It would be a challenge to measure Kd and Rf of a Ca2+ indicator in these

synaptic boutons. To determine Kd, [Ca2+]i would need to be clamped to at least

four different levels. Even if Kd was to be measured at the soma, this would still

be a difficult and cumbersome task. Similarly, to accurately measure Rf of the high-

affinity Ca2+ indicator Oregon Green 488 BAPTA-1 (OGB-1; Kd = 170 nM, according

to the manufacturer), [Ca2+]i in a bouton would need to be clamped to less than

10 nM. This is probably impossible considering the long distance between a patch

pipette and the bouton (� 100 µm).

In this chapter, Kd and Rf of four non-ratiometric Ca2+ indicators (OGB-1, OGB-6F,

Cal-520, and Fluo-4FF) were measured in vitro, in solutions that mimicked the patch-

clamp internal solution in terms of ionic strength, pH, and temperature. In these

so-called Ca2+-buffer solutions, the free or ionised concentration of Ca2+ ([Ca2+]i)

was varied by adding different concentrations of CaCl2 to a constant concentration

of a Ca2+ buffer (EGTA or HEDTA). To avoid errors associated with the calculation of

[Ca2+]i using tabulated constants or freely available computer programs (McGuigan

et al., 2007; McGuigan and Stumpff, 2013), the resultant [Ca2+]i was measured with

a Ca2+-selective macroelectrode. The fluorescence of each Ca2+ indicator was then

measured in these Ca2+-buffer solutions so that its Kd and Rf could be determined.

2.2 Materials and methods

2.2.1 Preparation of Ca2+-buffer solutions

Two sets of Ca2+-buffer solutions, each with a different buffer (EGTA or HEDTA,

Sigma-Aldrich, St. Louis, USA), were made such that their ionic strength and

pH were similar to those of the patch-clamp internal solution (⇠ 170 mM and

pH 7.20 ± 0.01 at 35 ± 1 °C). Fig. 2.1 shows how these solutions were prepared

based on the ratio method (McGuigan et al., 1991). The K-gluconate present in the
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Starting solution (250 ml)
2x final concentration - mM

KCl
HEPES
NaCl
KOH

EGTA/HEDTA

232
20
60
29
8

Titrate to pH 7.20 at 35 °C

Ca2+-buffer solutions with different [Ca2+]
T
 

Ca2+-buffer solution (250 ml)
Add 4 mM CaCl

2
 & 9 mM KOH

Titrate to pH 7.20 at 35 °C

Buffer solution (250 ml)
Add 9 mM KCl 

125 ml 125 ml

Figure 2.1: Flow chart for preparation of Ca2+-buffer solutions. The initial 250 ml solution
contained solutes at 2⇥ the final concentrations. This starting solution was then split into
two 125 ml portions used to make buffer and Ca2+-buffer solutions. pH was titrated to 7.20
± 0.01 at 35 ± 1 °C with 1 M HCl.

patch-clamp solution was substituted by KCl, as the former binds Ca2+, although

with a low affinity (Kd ~ 50 mM; Stumpff and McGuigan, 2014; Woehler et al.,

2014). Phosphocreatine (disodium salt; 10 mM) was also replaced with NaCl of

an equivalent ionic strength (i.e. 30 mM), whilst ATP-Mg and GTP were omitted.

Mg2+ was excluded as it might interfere with the measurement of [Ca2+]i using the

Ca2+-selective macroelectrode.
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Table 2.1: Composition of buffer and Ca2+-buffer background solutions, and calibrating
solutions.

Compound
Concentration (mM)

Buffer solution Ca2+-buffer solution Calibrating
solutions

KCl 125 116 135
HEPES 10 10 10
NaCl 30 30 30
KOH 14.5 23.5 4.5

EGTA/HEDTA 4 4 0

CaCl2 0 4 0.5, 0.8, 1.5, 2.5, 4.0,
6.0, 8.0, 10.0

For each set of Ca2+-buffer solutions, two background solutions with the same ionic

strength and pH were first prepared. Both contained a Ca2+ buffer (EGTA or HEDTA;

4 mM), but only one had CaCl2 added to form Ca2+-buffer complexes (4 mM; from

100 mM CaCl2 standard solution, Sigma-Aldrich; Table 2.1). These two solutions

were then mixed in the appropriate ratios to give a set of Ca2+-buffer solutions

with different total Ca2+ concentrations ([Ca2+]T; Table 2.2). This so-called ratio

method of making Ca2+-buffer solutions offered two main advantages (McGuigan

et al., 2017). First, pH changed minimally when the background solutions were

mixed, eliminating the need to measure and adjust pH of individual Ca2+-buffer

solutions. Second, the ratio method ensured that the concentrations of all cations

and buffers, except for Ca2+, were the same in the final solutions.

2.2.2 Preparation of calibrating solutions

To determine the voltage change per decade of a Ca2+-selective macroelectrode, a set

of calibrating solutions with no Ca2+ buffer added, but with an ionic strength and

pH similar to those of Ca2+-buffer solutions, was made (Table 2.1). A background

solution with 2⇥ the final concentrations of solutes, but without CaCl2, was first

prepared; its pH was titrated to 7.20 ± 0.01 at 35 ± 1 °C with 1 M HCl. Different
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Table 2.2: Ratios of Ca2+-buffer and buffer background solutions in the final Ca2+-buffer
solutions. Different ratios of Ca2+-buffer and buffer background solutions were mixed to
produce solutions with different [Ca2+]T. [Ca2+]i in these solutions was measured with a
Ca2+-selective macroelectrode (2 repeats).

Solution # Ca2+-EGTA/EGTA [Ca2+]T (mM) [Ca2+]i (µM)
1 9:1 3.600 5.290 ± 0.107
2 8:1 3.556 3.725 ± 0.007
3 7:1 3.500 2.673 ± 0.030
4 5:1 3.333 1.401 ± 0.038
5 4:1 3.200 0.989 ± 0.032
6 3:1 3.000 0.663 ± 0.024
7 2:1 2.667 0.400 ± 0.016
8 1.5:1 2.400 0.286 ± 0.012
9 1:1 2.000 0.182 ± 0.008
10 1:1.5 1.600 0.118 ± 0.005
11 1:2 1.333 0.087 ± 0.004
12 1:4 0.800 0.043 ± 0.002
13 1:9 0.400 0.019 ± 0.001

Solution # Ca2+-HEDTA/HEDTA [Ca2+]T (mM) [Ca2+]i (µM)

1 19:1 3.800 48.95 ± 2.41
2 15:1 3.750 40.90 ± 1.96
3 12:1 3.692 33.93 ± 1.57
4 9:1 3.600 26.26 ± 1.16
5 7:1 3.500 20.74 ± 0.87
6 6:1 3.429 17.90 ± 0.73
7 5:1 3.333 14.96 ± 0.59
8 4:1 3.200 12.01 ± 0.46
9 3:1 3.000 9.02 ± 0.33
10 2:1 2.667 6.02 ± 0.21
11 1:1 2.000 3.00 ± 0.10
12 1:2 1.333 1.50 ± 0.05
13 1:4 0.800 0.75 ± 0.02
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calibrating solutions were then made by diluting this background solution by two-

fold. To these solutions, various amounts of a 100 mM CaCl2 standard solution were

added to produce [Ca2+]T between 0.5 to 10 mM.

2.2.3 Measurement of [Ca2+]i using a Ca2+-selective macroelectrode

Once calibrating and Ca2+-buffer solutions had been prepared, [Ca2+]i in these

solutions was measured at 35 ± 1 °C using a Ca2+-selective macroelectrode

(Radiometer ISE25Ca, Hach, Colorado, USA). The potential difference between

the Ca2+ electrode and a 3 M KCl reference electrode (Radiometer REF201) was

measured with a pH meter in mV mode (input impedance > 3 ⇥ 1012 W; Model 1852

mV, TPS Pty. Ltd., Queensland, Australia). All solutions were placed in a 35 °C water

bath before and during measurement.

The calibrating solution containing 10 mM CaCl2 was first measured, followed by

those with sequentially lower [Ca2+]T. This yielded a calibration curve in the

Nernstian range of the Ca2+ electrode. Measurement was then done for the set

of Ca2+-HEDTA solutions, starting from the solution with the highest [Ca2+]T to

that with the lowest [Ca2+]T. [Ca2+]i in the set of Ca2+-EGTA solutions was then

measured, again starting from the solution with the highest [Ca2+]T. Once all Ca2+-

buffer solutions had been measured, [Ca2+]i in the 10 mM CaCl2 calibrating solution

was re-measured to check for potential drift. In all experiments, the electrode

potential in the 10 mM CaCl2 calibrating solution stayed constant throughout,

indicating that there was no detectable drift. Two independent measurements (i.e.

on two different days) were obtained.

2.2.4 Fluorescence measurement

The fluorescence intensity of a Ca2+ indicator in Ca2+-buffer solutions was measured

with a Tecan microplate reader (Infinite® M200 Pro, Männedorf, Switzerland). OGB-

1, OGB-6F, and Fluo-4FF were purchased from Life Technologies (Carlsbad, CA,
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USA), whilst Cal-520 was from AAT Bioquest, Inc. (Sunnyvale, CA, USA). A small

aliquot of each indicator (2 µl) was added to 200 � 400 µl of different Ca2+-buffer

solutions (final concentration of indicator ⇠ 10 � 100 nM). A 100 � 200 µl sample of

each solution was then pipetted into a well of a 96-well plate (Costar®, flat bottom,

transparent), in duplicate. The microplate reader was set to 35.0 ± 0.5 °C and the

96-well plate was left in the reader for ⇠ 10 min before fluorescence measurement

was obtained. Samples were excited by 485 nm light and the fluorescence intensity

was measured at 525 nm (bandwidth < 9 and 20 nm, respectively). A sample of a

Ca2+-buffer solution, with no Ca2+ indicator added, was used as a blank. Two to

three sets of measurements were done for each indicator.

To measure the maximum fluorescence of OGB-1 and Cal-520, the Ca2+-EGTA

background solution, with 4 mM CaCl2 and 4 mM EGTA, was used. [Ca2+]i in

this solution was not measured but could be accurately calculated from Eq. 2.3

based on the optimised values for Kd and [B]T of EGTA (Table 2.3). To measure

the maximum fluorescence of OGB-6F and Fluo-4FF, two additional solutions were

made, each by adding a small amount of the 100 mM CaCl2 standard solution to

an aliquot of the Ca2+-EGTA background solution to produce a sub-millimolar or

millimolar [Ca2+]i; the resultant [Ca2+]i was also calculated. For all Ca2+ indicators,

the minimum fluorescence was measured in the EGTA background solution (4 mM

EGTA and 0 CaCl2). [Ca2+]i in this solution was assumed to be 1 nM.

2.2.5 Data analysis

2.2.5.1 Determination of [Ca2+]i based on the ligand optimisation method

[Ca2+]i in Ca2+-buffer solutions was determined from the electrode potentials based

on the ligand optimisation method (Luthi et al., 1997; McGuigan et al., 2006, 2014).

This analysis was implemented in R (version 3.3.1), with the R code kindly provided

by James Kay (Department of Statistics, University of Glasglow, UK). To find [Ca2+]i,

this method calculates Kd and the purity of EGTA and HEDTA in the prepared



§2.2 Materials and methods 71

solutions, through an iterative process. More specifically, the following steps were

done:

1) Relative potentials (DE) were calculated by subtracting the electrode potential in

the 10 mM CaCl2 calibrating solution from all measured potentials.

2) DE values of the calibrating solutions were plotted against the corresponding pCa.

A Nernstian fit to this plot, constrained to pass through 0 at a pCa of 2, provided an

estimation of the slope (s) of the Ca2+ electrode; that is,

DE = 2s � s ⇥ pCa. (2.1)

3) Using Eq. 2.1, pCa or [Ca2+]i of the Ca2+-buffer solution with the highest [Ca2+]T

was estimated from its DE value. Kd of the buffer was in turn estimated as follows:

Kd =
[Ca2+]i ⇥

⇥
[B]T �

�
[Ca2+]T � [Ca2+]i

�⇤

[Ca2+]T � [Ca2+]i
, (2.2)

where the total buffer concentration ([B]T) was assumed to be 4 mM.

4) With the estimated Kd, [Ca2+]i in all Ca2+-buffer solutions was calculated as

[Ca2+]i =
�(Kd + [B]T � [Ca2+]T) +

q
(Kd + [B]T � [Ca2+]T)2 + 4Kd[Ca2+]T

2
, (2.3)

where [B]T was again assumed to be 4 mM. The calculated [Ca2+]i was then converted

to pCa.

5) The plot of DE vs. pCa for Ca2+-buffer solutions was fitted with the Nicolsky-

Eisenman equation, again constrained to pass through 0 at a pCa of 2. That is,
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DE = �s ⇥ log(0.01 + S) + s ⇥ log(10�pCa + S), (2.4)

where S represents the total concentration of interfering ions. Here, the slope of

the electrode s was a constant, whilst S was a free parameter. The residual sum of

squares (RSS) of this fit was calculated.

6) [B]T, Kd, and S were optimised using PORT routines until the best fit to the

Nicolsky-Eisenman equation was obtained; i.e. RSS reached a minimum. [B]T

was constrained to be  4 mM. Steps 4 � 5 were repeated during this optimisation

process.

7) The plot of DE vs. pCa for calibrating solutions was fitted with the Nicolsky-

Eisenman equation (Eq. 2.4) using the optimised S value. The slope s was re-

calculated from this fit.

8) Steps 5 � 6 were repeated until the new values for s differed by less than 10�6.

Once this criterion had been reached, step 6 was repeated one last time with the final

value for s. This yielded a calibration curve for the Ca2+-selective macroelectrode,

covering the range of pCa of all solutions (calibrating and Ca2+-buffer solutions; Fig.

2.2). Optimised values for [B]T and Kd were also obtained (Table 2.3). The purity of

each Ca2+ buffer was calculated by dividing the optimised value for [B]T by 4 mM.

9) [Ca2+]i in all Ca2+-buffer solutions was calculated using Eq. 2.3 and the optimised

values for [B]T and Kd (Table 2.2).

2.2.5.2 Determination of Kd of Ca2+ indicators

Kd of each Ca2+ indicator was determined by plotting its fluorescence intensity in

Ca2+-buffer solutions (with fluorescence of the no-indicator solution subtracted) as

a function of [Ca2+]i. This plot was then fitted with a Hill equation of the following

form:



§2.3 Results 73

F = Fmin +
Fmax � Fmin

1 +
Kd

[Ca2+]i

. (2.5)

This fit yielded not only Kd but also Fmin and Fmax; the latter parameters allowed Rf

to be calculated as Fmax/Fmin. Values for Kd and Rf were determined from the fit to each

set of measurement (2 � 3 repeats per indicator), and then averaged together to give

the mean values cited in this thesis (Table 2.4). To generate averaged, normalised

fluorescence vs. [Ca2+]i plots (Figs. 2.3A-D), the plots of individual sets of

measurement were normalised by dividing by the largest fluorescence measurement

in that set, and then averaged together. The averaged plot was refitted with Eq. 2.5;

values for Kd and Rf obtained from this fit were less than 5% different from the means

mentioned above.

2.3 Results

2.3.1 [Ca2+]i in Ca2+-buffer solutions

A Ca2+-selective macroelectrode was used to measure [Ca2+]i in Ca2+-EGTA and

Ca2+-HEDTA solutions. Fig. 2.2 shows the potential (DE) of each Ca2+-buffer or

calibrating solution, relative to that of the 10 mM CaCl2 calibrating solution, as

a function of pCa. To generate this plot, the potentials measured with the Ca2+

electrode were analysed based on the ligand optimisation method (Section 2.2.3). The

voltage change per decade of the electrode was first estimated based on the relative

potentials of the calibrating solutions (black circles; n = 2). As no Ca2+ buffer was

present in these solutions, [Ca2+]i was equal to the respective concentration of CaCl2

([Ca2+]T; Table 2.1), corresponding to a pCa value from 2 to 3.301. As expected,

in this range of pCa, the response of the Ca2+ electrode was close to the Nernstian

prediction. A Nernstian fit to this part of the plot yielded an estimate of the electrode

slope, which was 28.77 ± 0.06 mV/decade (Eq. 2.1).
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Figure 2.2: Calibration curve of the Ca2+-selective macroelectrode. The electrode potential
was measured in a set of calibrating solutions (black circles), a set of Ca2+-HEDTA solutions
(red, open circles), and a set of Ca2+-EGTA solutions (red, filled circles). Displayed values
(DE) are relative potentials, with respect to that of the 10 mM CaCl2 calibrating solution
(pCa = 2). The plot of DE vs. pCa for each set of Ca2+-buffer solutions was fitted with the
Nicolsky-Eisenman equation (Eq. 2.4; EGTA: solid curve; HEDTA: dashed curve).

With the assumption that the electrode response remained Nernstian, the pCa

values of the Ca2+-EGTA and Ca2+-HEDTA solutions with the highest [Ca2+]T were

calculated from the corresponding DE and the estimated slope. This in turn allowed

the Kd values of EGTA and HEDTA, and [Ca2+]i in the remaining Ca2+-buffer

solutions, to be estimated (Eqs. 2.2 and 2.3, respectively). However, the detection

limit of a Ca2+-selective electrode is typically � 5 µM. As [Ca2+]i approaches this

value, the response of the electrode no longer follows the Nernstian prediction, with

the voltage change per decade gradually decreasing. Consequently, the calculation

of [Ca2+]i based on a Nernstian fit yielded overestimates of the true [Ca2+]i (Bers,

1982). To extend the detection limit and accurately determine [Ca2+]i in Ca2+-buffer

solutions, the plot of DE vs. the estimated pCa values of each set of solutions were

fitted with the Nicolsky-Eisenman equation in an iterative process (Eq. 2.4). This

process optimised for the total buffer concentration ([B]T), Kd of each buffer, the total
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concentration of interfering ions (S), and finally, the slope of the electrode (Luthi

et al., 1997; McGuigan et al., 2006, 2014). It produced the following best fits:

DE = �28.77 ⇥ log(0.01 + 5.32 ⇥ 10�8) + 28.77 ⇥ log(10�pCa + 5.32 ⇥ 10�8)

= 57.54 + 28.77 ⇥ log(10�pCa + 5.32 ⇥ 10�8)

and

DE = �28.77 ⇥ log(0.01 + 9.84 ⇥ 10�8) + 28.77 ⇥ log(10�pCa + 9.84 ⇥ 10�8)

= 57.54 + 28.77 ⇥ log(10�pCa + 9.84 ⇥ 10�8),

for Ca2+-EGTA and Ca2+-HEDTA solutions, respectively. These two fits were very

consistent with each other, with the former completely overlapping the latter (Fig.

2.2, solid and dashed curves, respectively). Both fits had a regression coefficient

r � 0.9996.

The corresponding optimised values of [B]T and Kd are shown in Table 2.3. As

expected, the purity of the buffers was less than 100%, with that of EGTA consid-

erably smaller than the value quoted by the manufacturer (92.5 ± 0.2 vs. ⇠ 97%).

In addition, the optimised values of Kd, especially for HEDTA, were different from

those estimated by a widely used computer program Maxchelator (2.99 ± 0.09 vs.

7.2 µM; WebMaxC Standard version; http://web.stanford.edu/~cpatton/maxc.html;

accessed on 08/03/2017); these estimates were for the same pH, ionic strength, and

temperature as those in this study. These findings emphasise the importance of

measuring [Ca2+]i in the Ca2+-buffer solutions with a Ca2+-selective macroelectrode.

Based on the optimised values of [B]T and Kd, the values of [Ca2+]i in all Ca2+-

buffer solutions could be accurately determined using Eq. 2.3 (Table 2.2). The
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Table 2.3: [B]T, purity, and Kd of EGTA and HEDTA. The purity of the buffers, provided by
the manufacturer, and values of Kd estimated by the Maxchelator program are also shown.

Buffer [B]T (mM)
Kd (µM) Purity (%)

measured Maxchelator measured advertised

EGTA 3.70 ± 0.01 0.155 ± 0.007 0.143 92.5 ± 0.2 ⇠ 97
HEDTA 3.98 ± 0.01 2.99 ± 0.09 7.2 99.5 ± 0.2 � 98

corresponding values of pCa are displayed in Fig. 2.2 (EGTA: red, filled circles;

HEDTA: open circles). The fact that the plots of DE vs. pCa for EGTA and HEDTA

solutions overlapped each other supports the validity of the ligand optimisation

method.

2.3.2 Kd and Rf of Ca2+ indicators

The fluorescence intensities of OGB-1, OGB-6F, Cal-520, and Fluo-4FF were measured

in Ca2+-buffer solutions with different [Ca2+]i to determine their Kd and dynamic

range (Rf). Figs. 2.3A-D display the normalised fluorescence of these indicators as

a function of [Ca2+]i. The consistency in the fluorescence intensity between Ca2+-

EGTA and Ca2+-HEDTA solutions (filled and open circles, respectively) verifies the

measured values of [Ca2+]i. Each of these plots was fitted with a Hill equation (Eq.

2.5; black curves). The values of Kd and Rf obtained from these fits are shown in

Table 2.4.

Figs. 2.3E-F demonstrate the importance of measuring [Ca2+]i with a Ca2+-

selective macroelectrode. In these plots, values for [Ca2+]i were calculated using

Figure 2.3: Plots of normalised fluorescence vs. [Ca2+]i for OGB-1, Cal-520, OGB-6F, and
Fluo-4FF. (A-D) The normalised fluorescence of each indicator was plotted against [Ca2+]i in
Ca2+-EGTA (filled circles) and Ca2+-HEDTA solutions (open circles). The displayed values
of [Ca2+]i were measured with a Ca2+-selective macroelectrode. Each plot has been fitted
with a Hill equation (black curves), yielding values of Kd and Rf. (E-F) Same as (A-B) but
with values of [Ca2+]i calculated using Maxchelator. Only values for Ca2+-EGTA solutions
were fitted with a Hill equation.
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Table 2.4: Kd and Rf of OGB-1, OGB-6F, Cal-520, and Fluo-4FF. Values for Kd and Rf were
determined for each batch of an indicator, with 2-3 repeats per batch. Rf of Fluo-4FF could
not be accurately calculated as its Fmin was very close to 0. Also shown are the values of Kd
obtained from the manufacturers or by previous studies. s.f.: significant figures.

Indicator Lot #
Kd (µM)

Rf
Kd used for [Ca2+]i

calculation (µM)measured published

OGB-1
1 0.28 ± 0.04

0.19 � 0.21acd 12.8 ± 0.8
0.30 (1 s.f.)

2 0.30 ± 0.03 12.9 ± 0.1

OGB-6F
1 8.0 ± 0.2

3ae 8.9 ± 0.1
8.0 (1 s.f.)

2 8.4 ± 0.2 8.9 ± 0.4

Cal-520 1 1.15 ± 0.07 0.32b 32 ± 1 not used

Fluo-4FF 1 20 ± 2 8.1d > 100 not used

aLife Technologies; bAAT Bioquest, Inc.; cMaravall et al. (2000); dYasuda et al. (2004);
eBrenowitz and Regehr (2007)

the Maxchelator program, with Kd of EGTA and HEDTA shown in Table 2.3. Such a

calculation yielded values that were different from those obtained from the electrode

potentials. In addition, although the fluorescence intensities of OGB-1 and Cal-520

in some EGTA solutions were similar to those in some HEDTA solutions, the latter

solutions had much larger calculated values of [Ca2+]i. The Kd values of OGB-1 and

Cal-520 would have been determined as 240 ± 40 and 600 ± 90 nM, respectively, if

only Ca2+-EGTA solutions were used, if EGTA was assumed to be 100% pure, and

if [Ca2+]i in these solutions were estimated using Maxchelator. These values were

smaller than those obtained with the measured [Ca2+]i values (300 ± 30 and 1150 ±

70 nM; pt = 0.4 and 0.04, respectively).

It has been suggested that Kd and Rf might vary between different batches of a Ca2+

indicator, likely due to different levels of impurities (Harkins et al., 1993; Faas and

Mody, 2014). As during the course of this study, two batches of OGB-1 and OGB-6F

were used for imaging of presynaptic Ca2+ dynamics, Kd and Rf were measured for

all of them. It was found that values of Kd and Rf did not vary significantly between

these batches (Table 2.4). Therefore, only one value of Kd was used for each indicator
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to calculate [Ca2+]i from their fluorescence intensity (Table 2.4).

2.4 Discussion

In this thesis, non-ratiometric Ca2+ indicators, including OGB-1, Cal-520, OGB-6F,

and Fluo-4FF, were used to image Ca2+ dynamics in synaptic boutons of layer

5 pyramidal neurons (Chapters 3 and 4). To accurately calculate [Ca2+]i from

their fluorescence intensities, the Kd values of these indicators were measured in

Ca2+-buffer solutions that mimicked the patch-clamp internal solution in terms

of pH, ionic strength, and temperature. [Ca2+]i in these Ca2+-EGTA and Ca2+-

HEDTA solutions was measured with a Ca2+-selective macroelectrode to ensure

accuracy. When plotted against the measured values of [Ca2+]i, the potentials of

the Ca2+ electrode as well as the fluorescence intensities of all indicators were

consistent between Ca2+-EGTA and Ca2+-HEDTA solutions. This validates the

[Ca2+]i measurements.

2.4.1 The purity and Kd values of EGTA and HEDTA

As has been found by a number of studies (Miller and Smith, 1984; McGuigan et al.,

2007; McGuigan and Stumpff, 2013), the purity of EGTA was much smaller than the

value quoted by the manufacturer. This was most likely due to “contamination” by

water. Miller and Smith (1984) suggested that water is an integral component of the

crystal structure of EGTA. Drying at 80 °C for 24 hours did not increase the purity

of their sample. There was also no significant water uptake by EGTA under normal

shelf-storage conditions. As a result, the purity of EGTA should always be measured

in order to accurately determine [Ca2+]i in Ca2+-EGTA solutions.

Another factor that is critical to the calculation of [Ca2+]i in Ca2+-buffer solutions is

the Kd value of the buffer. The finding that the values of Kd of EGTA and HEDTA

were different from those estimated by the widely used Maxchelator program
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emphasises the necessity to measure [Ca2+]i in these solutions (McGuigan et al., 2007;

McGuigan and Stumpff, 2013). In fact, many computer programs and tabulated

constants provide inaccurate and inconsistent values of [Ca2+]i in Ca2+-buffer

solutions, even when the purity of the buffers has been measured and corrected

for (McGuigan and Stumpff, 2013). This is because the association/dissociation

constants that underlie the affinity of a buffer for Ca2+ are often measured under non-

physiological conditions (e.g. at a low ionic strength of ⇠ 100 mM, pH 7.0 and/or

20 � 25 °C). Therefore, corrections have to be made to determine the apparent Ca2+

binding affinity of the buffer in physiologically relevant solutions. Unfortunately,

as they involve assumptions and sometimes unavailable data, these corrections are

prone to significant errors (Bers et al., 2010; McGuigan et al., 2017).

2.4.2 Kd of Ca2+ indicators

The Kd values of OGB-1, Cal-520, OGB-6F, and Fluo-4FF, obtained from the

manufacturers or by previous studies, were also much smaller than those measured

in this thesis (Table 2.4). Admittedly, different batches of dyes may vary in their

purity and thus Kd (Faas and Mody, 2014). However, a major reason for the large

variation in Kd values is likely the fact that the manufacturers, in particular Life

Technologies, often calibrate fluorescent Ca2+ indicators in solutions with a low ionic

strength (⇠ 100 vs. 170 mM in a standard patch-clamp internal solution). However,

the Ca2+ binding site of these Ca2+ indicators is based on BAPTA, the Ca2+ binding

affinity of which is highly sensitive to the ionic strength (Bers et al., 2010). In fact, an

increase in the ionic strength from 100 to 250 mM caused the affinity of Fura-2 for

Ca2+ to decrease by almost 7-fold (Grynkiewicz et al., 1985).

Additionally, some of the previous studies might have used Ca2+-EGTA solutions to

calibrate low-affinity Ca2+ indicators, such as OGB-6F and Fluo-4FF (Yasuda et al.,

2004; Brenowitz and Regehr, 2007). As the values of Kd of these indicators are not in

the optimal buffering range of EGTA, the use of Maxchelator and the assumption of

100% buffer purity would significantly underestimate the true Kd (as shown here for



§2.4 Discussion 81

Cal-520). Moreover, when a solution is not appropriately buffered, the true [Ca2+]i

is highly sensitive to metal contamination, incorrect weighing, and pipetting errors

(Patton et al., 2004). Therefore, without measurements, [Ca2+]i cannot be accurately

determined.

2.4.3 Potential effects of intracellular constituents and Mg2+

Although the values of Kd were measured in vitro, in the absence of proteins and

free Mg2+, they should provide reasonable estimates of the respective Kd values

in neocortical pyramidal neurons. It has been shown that certain intracellular

constituents, such as myoplasmic proteins, bind to Ca2+ indicators and lower their

affinities for Ca2+ (Konishi et al., 1988; Harkins et al., 1993). However, the interaction

between Ca2+ indicators and intracellular constituents is much less severe in non-

muscle cells (Neher, 2013). In fact, Neher and colleagues reported no difference

between the value of Kd of Fura-2 measured in adrenal chromaffin cells and that

in a standard intracellular saline (Zhou and Neher, 1993; Oheim, 1995; Neher, 2013;

but see Augustine and Neher, 1992). Consistently, the Kd value of OGB-1 measured

here is similar to that of its AM-ester in HeLa cells (nucleoplasmic: 320 ± 60 nM,

cytoplasmic 430 ± 90 nM; Thomas et al., 2000).

The presence of a physiological concentration of free Mg2+ has also been suggested

to decrease the affinity of Ca2+ indicators for Ca2+. This is particularly true for

early indicators, such as quin-2 (Tsien et al., 1982). Addition of 1 mM free Mg2+

increased the Kd value of quin-2 by almost two-fold. This is because, even though

quin-2 binds Ca2+ with a 104 times higher affinity (100 nM vs. 1 mM), the free

concentration of Mg2+ is also 104 times higher than that of Ca2+. As a result,

Mg2+ strongly competes with Ca2+ for quin-2 binding, increasing the Kd value of

the latter interaction. However, as the selectivity for Ca2+ of newer indicators has

been increased to more than 105, the presence of ⇠ 1 mM free Mg2+ is unlikely to

affect their Kd values, including those of the Fluo and OGB series (Tsien, 1988, 1989).

In support of this, a preliminary experiment showed that addition of 0.7 mM free
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Mg2+, a concentration found in neurons (Alvarez-Leefmans et al., 1984; Brocard et al.,

1993; Li-Smerin et al., 2001), did not significantly affect the Kd values of OGB-1 and

OGB-6F (data not shown).

2.4.4 Rf of OGB-1

The measured values of Rf, although similar to those provided by the manufacturer,

were considerably larger than in situ measurements. For instance, Thomas et al.

(2000) reported a value of ⇠ 2.5 for the AM-ester of OGB-1 in HeLa cells. In cultured

hippocampal neurons and cerebellar mossy terminals, Rf of OGB-1 ranged from 4

to 6 (Maravall et al., 2000; Delvendahl et al., 2015). Such a significant reduction in

Rf (by at least two-fold) has been proposed to result from the interaction between

intracellular constituents and Ca2+ indicators (Harkins et al., 1993; O’Malley et al.,

1999; Thomas et al., 2000). However, caution should be taken to interpret the values

of Rf measured in cells or cellular compartments. For a high-affinity indicator such

as OGB-1, [Ca2+]i would need to be reduced to ⇠ 10 nM to measure its minimum

fluorescence intensity. In comparison, for OGB-6F, Fluo-4FF, and other low-affinity

indicators, [Ca2+]i would need to be raised to more than 100 µM to achieve

saturation. It is questionable whether [Ca2+]i in living cells could be accurately

clamped to these non-physiological levels. In this study, only Rf of OGB-1 was

required so that the resting [Ca2+]i could be calculated from its fluorescence intensity

(Chapter 3). An Rf value of 6, which was the maximum value of Rf measured in

neurons (Maravall et al., 2000; Delvendahl et al., 2015), was used for this calculation.

With this value, the resting [Ca2+]i might have been underestimated. However, as

explained Section 3.4.1, this was unlikely to significantly affect the estimation of

the endogenous Ca2+ binding ratio, the rate constant of Ca2+ sequestration, and

the amplitude and time course of the Ca2+ transients in the absence of exogenous

buffers.
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2.4.5 Implications

The errors associated with calculating [Ca2+]i in Ca2+-buffer solutions have

implications for the published values of the intracellular [Ca2+]i. In particular, in

subcellular compartments, including axon terminals and dendritic spines, [Ca2+]i

can increase by ⇠ 1 µM upon stimulation. Therefore, low-affinity Ca2+ indicators

such as OGB-6F and Fluo-4FF are increasingly used to measure Ca2+ elevations in

these compartments (Koester and Sakmann, 2000; Sabatini et al., 2002; Brenowitz and

Regehr, 2007; Stocca et al., 2008; Kisfali et al., 2013; Delvendahl et al., 2015). However,

to my knowledge, most studies have not properly calibrated these dyes. Their Kd

values were either obtained from the manufacturer (who measured them in non-

physiological solutions) or measured in calibrating solutions with [Ca2+]i estimated

using computer programs. If the large difference in Kd values is in fact due to

inappropriate calibration rather than batch-to-batch variations, then the published

values of [Ca2+]i may have an error of up to 200%. This makes it difficult to interpret

not only the published values of [Ca2+]i, but also the values of other parameters that

are derived from them (e.g. the buffering capacity of endogenous buffers and the

number of Ca2+ channels that underlie a Ca2+ rise). In fact, as shown in Section

3.4.2.1 and Fig. 3.19, the Ca2+ binding ratio of endogenous buffers would have

been significantly overestimated and the number of VGCCs activated by an AP

underestimated, if the published values of Kd of OGB-1 and OGB-6F had been used

to determine presynaptic [Ca2+]i. This means that any comparison of [Ca2+]i and

related parameters between different studies is likely misleading.

2.5 Summary

The values of Kd and Rf were determined for OGB-1, Cal-520, OGB-6F, and Fluo-4FF.

The use of a Ca2+-selective macroelectrode allowed the purity and Kd of EGTA and

HEDTA in the prepared solutions to be measured. This ensured the accuracy of the

measured Kd values. Although measured in vitro, they provided reasonable estimates
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of the respective Kd values in neurons. Therefore, they were used to calculate [Ca2+]i

from the fluorescence intensity of the indicators (Chapters 3 and 4). A smaller value

of Rf, compared to that measured in vitro, was used to calculate the resting [Ca2+]i

from OGB-1 fluorescence (Chapter 3).



Chapter 3

Dynamics of AP-evoked Ca2+

transients in neocortical synaptic

boutons

3.1 Introduction

In nerve terminals, the arrival of an action potential (AP) activates voltage-gated

Ca2+ channels (VGCCs) and causes a brief influx of Ca2+ (Katz and Miledi, 1969;

Llinas et al., 1981a; Augustine and Eckert, 1984; Borst and Sakmann, 1996, 1998a;

Bischofberger et al., 2002). Within 10 � 100 µs of channel opening and in the vicinity

of open channels, localised domains of highly elevated [Ca2+]i trigger synchronous

transmitter release (Chad and Eckert, 1984; Simon and Llinas, 1985; Bollmann et al.,

2000; Schneggenburger and Neher, 2000). Once the channels close, Ca2+ equilibrates

with endogenous fast buffers, and the Ca2+ gradient dissipates by diffusion. The

spatially homogeneous, residual [Ca2+]i, typically  1 µM, is removed by Ca2+

sequestration mechanisms.

Although the spatially homogeneous [Ca2+]i does not trigger synchronous transmis-

sion, it has been implicated in asynchronous transmitter release and multiple forms

of synaptic plasticity (Atluri and Regehr, 1996; Zucker and Regehr, 2002; Neher and

85
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Sakaba, 2008). As a result, factors that underlie the spatially homogeneous Ca2+ dy-

namics have been the focus of many studies since 1980s. These include the endogen-

ous Ca2+ buffering capacity and the activity of Ca2+ transporters. To estimate these

factors, the single-compartment model described by Neher and Augustine (1992) has

been widely used. As its name suggests, this model considers a cell or a cellular

region as a single compartment in which [Ca2+]i behaves in a spatially homogeneous

manner. With additional assumptions on fast and non-saturable Ca2+ buffers, and

a linear rate of Ca2+ sequestration, the single-compartment model predicts [Ca2+]i

to decay mono-exponentially after a brief Ca2+ influx. A mono-exponential decay in

[Ca2+]i has been observed in several nerve terminals, including the calyx of Held and

hippocampal mossy fibre synapse (Regehr et al., 1994; Helmchen et al., 1997). How-

ever, in a growing number of terminals, the sum of two distinct exponential functions

is required to produce a satisfactory fit to the decay phase of AP-evoked Ca2+ tran-

sients (Tank et al., 1995; Koester and Sakmann, 2000; Collin et al., 2005a; Kim et al.,

2005; Muller et al., 2007; Kisfali et al., 2013). Such a deviation from the prediction of

the single-compartment model has been attributed to the presence of Ca2+ buffers

with slow binding kinetics (Collin et al., 2005b; Muller et al., 2007), buffer saturation

(Tank et al., 1995), or a non-linear transporter (Regehr, 1997; Kim et al., 2005).

A number of studies have shown that, besides Ca2+ influx, intracellular Ca2+

release also contributes to synchronous transmitter release and short-term plasticity.

Ca2+ can be released from presynaptic stores through the ryanodine and/or IP3

receptor, most likely through the process of Ca2+-induced Ca2+ release (CICR).

In cerebellar basket cell terminals, synaptic boutons of cultured CA3 pyramidal

neurons, and mossy fibre boutons (MFBs) of hippocampal granule cells, AP-evoked

Ca2+ transients are diminished by pharmacological agents that interfere with Ca2+

release (Llano et al., 2000; Emptage et al., 2001; Liang et al., 2002; Scott and Rusakov,

2006). Consistently, at synapses made by basket cells onto Purkinje cells, inhibition

of ryanodine receptors (RyRs) affects both the inhibitory postsynaptic current

(IPSC) amplitude and the paired-pulse ratio (Galante and Marty, 2003). Similarly,

blockade of Ca2+ release from presynaptic stores reduces the amplitude of excitatory
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postsynaptic currents (EPSCs) in connected pairs of layer 2 pyramidal neurons by ⇠

30% (Choy, 2011). However, such an effect has not been observed in cultured CA3

pyramidal neurons, in which inhibition of RyRs affects paired-pulse facilitation but

not the EPSC amplitude (Emptage et al., 2001).

In this chapter, AP-evoked Ca2+ transients were measured in boutons en passant of

neocortical pyramidal neurons. Factors that determined the amplitude and time

course of the intracellular Ca2+ elevations were estimated in accordance with the

single-compartment model. Based on these estimations, a 3D reaction-diffusion

model was created to simulate the rise in [Ca2+]i in response to an AP. The simulated

transients were compared to their measured counterparts, to elucidate the role of

diffusion into the axon in shaping the spatially homogeneous [Ca2+]i. The build-up

of [Ca2+]i during repetitive stimulation was also characterised to provide evidence

for CICR in these synaptic boutons.

3.2 Materials, methods, and theory

3.2.1 Animals

15 � 20 day old Wistar rats of either sex were obtained from the Animal Services

of the Australian National University (ANU). Animals were housed and handled

according to the guidelines of the ANU Animal Experimentation Ethics Committee.

3.2.2 Preparation of acute brain slices

Rats were quickly decapitated with a small animal guillotine (Stoelting Co., Wood

Dale, IL, USA; No 51330). The skull was cut along the sagittal suture with a scalpel,

and along the coronal and lambdoidal sutures with a pair of sharp-tipped dissecting

scissors. A pair of anatomical forceps was used to open the occipital and parietal

bones to reveal the brain. With the scalpel, the two cortical hemispheres were then
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separated from each other (along the midline), and from the olfactory bulbs at the

front and the brainstem at the back. Both hemispheres were removed from the

rest of the brain with a spatula and placed in ice-cold artificial cerebrospinal fluid

(ACSF) containing (in mM): 125 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 2 CaCl2,

1 MgCl2, and 10 glucose, bubbled with CarbogenTM (95% O2 and 5% CO2; BOC

Limited, North Ryde, NSW, Australia) to obtain a pH of 7.3 � 7.4 (⇠ 310 mOsm).

Once cooled, both hemispheres were glued onto the stage of a vibratome (Leica VT

1200S, Leica Biosystems Nussloch GmbH, Nussloch, Germany), with the sagittal cut

surfaces down, using cyanoacrylate (Loctite 407, Henkel, Düsseldorf, Germany). The

stage was then placed at a forward tilting angle of 15° in the vibratome chamber,

which was in turn filled with ice-cold, oxygenated ACSF. The vibratome blade was

positioned ⇠ 3 mm vertically below the top of the two hemispheres, before it was

allowed to cut through the brain (0.07 mm/s forward motion with 1.0 � 1.5 mm

horizontal amplitude). 300 µm thick parasagittal slices of the neocortex, with the

hippocampus attached, were obtained and placed in a holding chamber containing

oxygenated ACSF at 34 °C for 30 min. Slices were subsequently maintained at room

temperature until required.

3.2.3 Electrophysiology

Brain slices were placed in a recording chamber and superfused with standard ACSF

containing (in mM): 125 NaCl, 25 NaHCO3, 1.25 NaH2PO4, 2.5 KCl, 2 CaCl2, 1 MgCl2,

and 25 glucose, bubbled with CarbogenTM to obtain a pH of 7.3� 7.4 (⇠ 320 mOsm).

The flow rate of the superfusate was 3 � 4 ml/min. All experiments were done at 35

± 1 °C.

Brain slices were viewed on an upright microscope (LSM 510, Zeiss, Oberkochen,

Germany), equipped with a 40⇥ 1.0 NA objective (Zeiss) and infrared-differential

interference contrast optics (Stuart et al., 1993). Whole-cell patch-clamp recordings

were obtained from visually identified pyramidal neurons in layer 5 of the

somatosensory cortex. Patch pipettes were pulled from borosilicate glass tubes (outer
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diameter = 2 mm, inner diameter = 1 mm, length = 75 mm; Hilgenberg GmbH,

Malsfeld, Germany; Art.-No 1807502), using a Flaming/Brown micropipette puller

(P-97, Sutter Instrument Co., Novato, CA, USA) with a 3 mm box filament. A five-

step pulling program was used to produce slowly tapering pipettes. Patch pipettes

were filled with an internal solution containing (in mM): 115 K-gluconate, 20 KCl,

10 HEPES, 10 phosphocreatine, 4 ATP-Mg, and 0.3 GTP, titrated with KOH to a

pH of 7.3 (⇠ 285 mOsm). For fluorescence imaging, a Ca2+ indicator and a Ca2+-

insensitive dye were both added to the internal solution (Section 3.2.4). When filled,

patch pipettes had a tip resistance of 3 � 6 MW.

Patch pipettes were guided into the recording chamber and towards target cells using

an MP-285 manipulator (Sutter Instrument Co.). A positive pressure (⇠ 25 mmHg)

was applied to the pipette’s interior to prevent accumulation of debris on the tip.

When the pipette was close to the surface of the target cell, the pressure applied

produced a small dimple on the cell’s membrane. At this point, the positive pressure

was released and a negative pressure (⇠ �10 mmHg) was applied to promote sealing

of the cell membrane to the pipette tip. Once a GW seal had formed, brief pulses

of suction (⇠ 50 mmHg) were applied by mouth to rupture the membrane within

the pipette tip and allow access to the cytosol of the target cell. The initial access

resistance (Rs) was typically < 20 MW.

Voltage- and current-clamp recordings were made with a MultiClamp 700A

(Molecular Devices, Sunnyvale, CA, USA; commander version 1.2.10.4). Before a

patch pipette was positioned close to the surface of a target cell, the voltage reading

on the amplifier was set to zero. Under voltage-clamp, pyramidal cells were held at

�70 mV. APs were evoked in current-clamp mode, by applying 2 ms long somatic

current injections (1� 3 nA). Voltage responses were filtered at 10 and digitised at 20

kHz. Membrane potentials have not been corrected for the liquid junction potential,

measured to be �12 mV. Experiments were only done in cells which maintained a

resting membrane potential of  �60 mV. Data were acquired using custom-made

software implemented in Igor Pro 6.2/6.3 (Wavemetrics, Oregon, USA), via an ITC-18

computer interface (InstruTech Corporation, Port Washington, NY, USA). Data were
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stored on the hard drive of a MacIntosh PowerMac G5 computer, running Mac OS X

10.5 (Apple Inc., Cupertino, CA, USA). Timings for current and voltage steps were

provided by a Master-8 stimulator (A.M.P.I., Jerusalem, Israel).

3.2.4 Confocal Ca2+ imaging

Fluorescence imaging was done with a laser-scanning confocal microscope (Zeiss

LSM 510), equipped with a 40⇥ 1.0 NA water-immersion objective (Zeiss).

Manipulation of all lasers (on/off and intensity) and light paths, together with

acquisition of fluorescence images, was done through the LSM 510 software (Zeiss,

version 3.2 SP2), which was run on a Windows 2000 workstation.

Cells were filled through the patch pipette with two fluorophores: a Ca2+-insensitive

dye (50 µM Alexa Fluor® 568) for imaging of neuronal structures, and a Ca2+

indicator (40 � 160 µM OGB-1, 50 � 500 µM OGB-6F, 200 µM OGB-5N, 500 µM

Fluo-4FF, or 200 µM Cal-520) for measurement of [Ca2+]i. All fluorescent dyes were

purchased from Life Technologies (Carlsbad, CA, USA), except for Cal-520, which

was from AAT Bioquest, Inc. (Sunnyvale, CA, USA). Unless otherwise stated, cells

were filled with the fluorophores for at least 90 min before Ca2+ imaging commenced.

In all experiments, Alexa Fluor® 568 and the Ca2+-sensitive fluorophores were

excited separately to minimise photo-toxicity. The former was excited by 543 nm

light from a helium-neon laser (laser power < 0.1 mW). The emitted fluorescence was

long-pass filtered for > 560 nm and measured by a photomultiplier tube (PMT). Ca2+-

sensitive indicators were excited using an argon laser (488 nm; laser power < 1 mW),

and their fluorescence was long-pass filtered for > 505 nm before being acquired

by the same PMT. Bleed-through from Alexa Fluor® 568 into the fluorescence

measurement of Ca2+-sensitive indicators would not affect [Ca2+]i after stimulation

calculated based on Eq. 3.5 (Section 3.2.6.4). In contrast, bleed-through from Alexa

Fluor® 568 would lead to a slight overestimation of [Ca2+]i at rest
�
[Ca2+]rest

�

calculated from Eq. 3.4 (Section 3.2.6.4). Therefore, in experiments aimed to measure
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[Ca2+]rest, the fluorescence of OGB-1 (40 µM) was passed through a 500 � 550 nm

band-pass filter before being acquired.

The fluorescence intensity of Alexa Fluor® 568 was obtained in z-stacks (typically,

1508 ⇥ 1508 pixels per frame; pixel size = 150 nm; dwell time = 0.64 µs per pixel; z-

interval = 2 µm; open pinhole = 10 Airy units; Fig. 3.4A-B). To reduce laser exposure,

the fluorescence intensity of a Ca2+ indicator was acquired using line scans, drawn

across a bouton and perpendicular to its parent axon collateral (32� 44 pixels per line;

pixel size = ⇠ 150 nm; dwell time = 10.24 µs per pixel; open pinhole = 12 Airy units;

Fig. 3.4C-D). For single APs, line scans were taken every 5 ms if OGB-1 or Cal-520

fluorescence was measured, and every 1 � 3 ms if OGB-6F or Fluo-4FF fluorescence

was obtained. For 1� 2 s long trains of APs (10� 100 Hz), line scans were done every

10� 100 ms, unless stated otherwise. When averaging several repeats to improve the

signal-to-noise ratio, the inter-repeat interval was 10 � 30 s (typically 2 � 5 for each

measurement). For each cell,  3 boutons, preferentially on different collaterals,

were imaged. In experiments with bath application of a pharmacological compound,

only 1 � 2 boutons were imaged per cell.

3.2.5 Pharmacological compounds

To block the sarco/endoplasmic reticulum Ca2+ ATPase (SERCA), cyclopiazonic acid

(CPA; Alomone Labs, Jerusalem, Israel) was bath-applied for at least 10 min. The

stock solution of CPA (50 mM) was made by dissolving 25 mg of CPA in 1.486 ml

of dimethyl sulfoxide (DMSO; Sigma-Aldrich, St. Louis, Missouri, USA). On the day

that CPA was required for experiments, a small volume of the stock solution was

added to the standard ACSF to produce a final concentration of 25 µM.

3.2.6 Data analysis

3.2.6.1 Analysis of electrophysiological data

The voltage threshold of APs recorded at the soma was defined as the membrane

potential (Vm) at which dVm/dt first exceeded 50 V·s�1. The AP amplitude was the
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difference between the AP threshold and the peak Vm. The AP half-width was

defined as the width of the AP, halfway between its threshold and peak.

3.2.6.2 Analysis of Ca2+ imaging

Fluorescence data were imported into Igor Pro 6.3, where analysis was done, using

a custom-made Zeiss TIFF image reader. Each fluorescence line scan across a bouton

(32 � 44 pixels) was fitted with a Gaussian function, the y-offset of which was

considered to be background fluorescence (Fig. 3.4D, top left). The spatially averaged

fluorescence of an imaged bouton (F) was calculated as the average fluorescence

of 6 � 10 pixels, corresponding to ± 2 standard deviations around the peak of the

Gaussian, minus the background fluorescence. The baseline fluorescence (F0) was

determined by averaging over a 15 � 1000 ms time window immediately before the

AP onset (depending on the sampling interval; � 10 time points). The relative change

in fluorescence after stimulation (DF/F0) was calculated by normalising the change in

F to F0.

The decay time course of these fluorescence transients, as well as of the

corresponding Ca2+ transients, was fitted with either an exponential function
�

Ae�t/t
�

or the sum of two exponential functions
�

A1e�t/t1 + A2e�t/t2
�
; for the latter,

t1 was constrained to be larger than twice the sampling interval (1 � 3 ms for OGB-

6F and Fluo-4FF; 5 ms for OGB-1 and Cal-520). The decay kinetics of a bouton were

considered bi-exponential if 1) t2 � 3 ⇥ t1, 2) A1 and A2 each fell between 0.15 and

0.85 of their sum (A1 + A2), and 3) both t1 and t2 were smaller than the scanning

duration after stimulation.

Unless otherwise stated, the peak amplitude of an AP-evoked Ca2+ transient was

measured as the amplitude of the mono- or bi-exponential fit (A or A1 + A2). The

relative amplitude of the fast decay component of a bi-exponential fit (amplitudefast)

was calculated as A1/(A1+A2) ⇥ 100%. Occasionally, the decay kinetics of transients

with bi-exponential fits are presented by the amplitude-weighted decay time constant
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tw, which was calculated as A1t1+A2t2
A1+A2

; for a mono-exponential decay, tw = t. For 1

or 2 s long trains of APs, DF/F0 was measured as the average change over the last 100

or 200 ms of stimulation, respectively, unless stated otherwise.

In experiments in which CPA was added to the superfusate, data were excluded if

F0 changed by more than 30% after the 10 min of solution exchange. Based on this

criterion, a total of 4 boutons were excluded: 1 out of 12 boutons measured with

Cal-520 (8%), and 3 out of 20 boutons measured with OGB-6F (15%). Additionally, 2

out of 15 boutons measured with Cal-520 in control experiments (no CPA addition;

13%) were also excluded.

3.2.6.3 Determination of (DF/F0)max in situ

OGB-1. The maximal change in fluorescence ((DF/F0)max) of OGB-1 was determined

for each bouton imaged, by evoking 2 s long trains of APs at 10 and 20 Hz. According

to Maravall et al. (2000), if the change in [Ca2+]i (D[Ca2+]i) is linearly dependent on

the AP frequency, the ratio of DF/F0 between two different frequencies can be used to

estimate (DF/F0)max of the Ca2+ indicator. That is, if u1 and u2 are two AP frequencies

with D[Ca2+]u2/D[Ca2+]u1 = u2/u1, then

(DF/F0)max =
(DF/F0)u2

xu2

, (3.1)

where xu2 (0 < xu2 < 1) represents the level of saturation of the Ca2+ indicator caused

by an AP train at frequency u2. xu2 in turn can be approximated as

xu2 =
1 � Q ⇥ u1

u2

1 � u1

u2

, (3.2)

where Q =
(DF/F0)u2
(DF/F0)u1

.
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This analysis requires two conditions. First, [Ca2+]i changes linearly between u1

and u2. Second, the Ca2+ indicator is partially saturated during trains of APs at

frequencies u1 and u2, and thus, the fluorescence F of the indicator during these

trains is no longer a linear function of [Ca2+]i. This second criterion is required so

that
(DF/F0)u2
(DF/F0)u1

<
D[Ca2+]u2
D[Ca2+]u1

, making Q < u2/u1 ; otherwise, xu2 in Eq. 3.2 would be zero,

and as a result, (DF/F0)max in Eq. 3.1 would be undefined.

However, D[Ca2+]i was not a linear function of the AP frequency (Fig. 3.16). In

particular, in response to 2 s long trains of APs at 10 and 20 Hz, D[Ca2+]20Hz/D[Ca2+]10Hz =

2.7 ± 0.3 (n = 10). Therefore, to calculate (DF/F0)max of OGB-1 in these boutons,

the method described by Maravall et al. (2000) was extended to cope with the

supralinear summation of [Ca2+]i during the AP trains. More specifically, without

the assumption of linear summation, xu2 and Q have the following relationship:

xu2 =

Q
D1

D2
� 1

D1

D2
� 1

� [DCa]0
[D]T

1 � [DCa]0
[D]T

, (3.3)

where D1 = D[Ca2+]u1 , D2 = D[Ca2+]u2 , [DCa]0 is the Ca2+-bound concentration

of the dye at baseline, and [D]T is its total concentration (see Appendix A for a

derivation of this equation). It can be seen that Eq. 3.3 becomes Eq. 3.2, if D2/D1 = u2/u1

and [DCa]0/[D]T = 0. Eq. 3.3 was used to calculate the level of saturation of OGB-1

during the AP train at u2 = 10 Hz (x10Hz). In this calculation,

D[Ca2+]20Hz

D[Ca2+]10Hz
=

D1

D2
= 2.7

and

[DCa]0
[D]T

=
[Ca2+]rest

Kd + [Ca2+]rest
=

1
7

.
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Table 3.1: Level of saturation of OGB-1 during a 2 s long train of APs at 10 Hz (x10Hz).

[OGB-1]T (µM) x10Hz n

40 0.66 ± 0.03 18
80 0.63 ± 0.05 15
120 0.68 ± 0.04 13
160 0.71 ± 0.02 29

Here, [Ca2+]rest = 50 nM (Section 3.3.2), and Kd = 300 nM (Table 2.4). (DF/F0)max was

then calculated from (DF/F0)10Hz and x10Hz (Eq. 3.1). Table 3.1 displays the mean

values for x10Hz for different concentrations of OGB-1. There was no significant

difference in x10Hz in the range of OGB-1 concentrations used (pANOVA = 0.3).

To verify this method of calculating (DF/F0)max for OGB-1, DF/F0 of OGB-1 (40 µM)

was measured during 2 s long trains of APs at 100 Hz in 10 boutons. As these high-

frequency trains of APs raised [Ca2+]i to more than 10 µM (Fig. 3.16), it is reasonable

to assume that OGB-1 was completely saturated; that is, (DF/F0)100Hz ⇡ (DF/F0)max. In

these boutons, values for (DF/F0)max calculated from (DF/F0)10Hz and x10Hz were not

different from (DF/F0)100Hz (2.9 ± 0.3 vs. 2.7 ± 0.3; pt = 0.7).

OGB-6F. (DF/F0)max of OGB-6F was determined for each bouton imaged, by evoking

1 s long trains of APs at 80 and 100 Hz. As D[Ca2+]100Hz/D[Ca2+]80Hz was not measured,

Eq. 3.3 could not be used to calculate the level of saturation of OGB-6F during these

trains. In addition, it was clear that 1 s long trains of APs at 80 Hz and 100 Hz

did not cause complete saturation of OGB-6F as its fluorescence was still increasing

towards the end of the trains. Higher frequencies (> 100 Hz) could not be reliably

used to measure (DF/F0)max of OGB-6F, because neocortical pyramidal neurons do not

sustain firing at these frequencies (Zhu and Connors, 1999). Therefore, to determine

(DF/F0)max of OGB-6F, an upper-bound ((x80Hz)max) and a lower-bound ((x80Hz)min)

were calculated for its level of saturation during the 80 Hz AP train. (x80Hz)max

was found by assuming that (DF/F0)100Hz = (DF/F0)max; thus, (x80Hz)max = (DF/F0)80Hz
(DF/F0)100Hz

.
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Table 3.2: Level of saturation of OGB-6F during a 1 s long train of APs at 80 Hz (x80Hz).

[OGB-6F]T (µM) x80Hz n

50 0.70 ± 0.05 13
100 0.73 ± 0.04 15
200 0.71 ± 0.05 10
500 0.57 ± 0.04 12

On the other hand, (x80Hz)min was found by assuming that [Ca2+]i changed linearly

between 80 and 100 Hz; that is, D[Ca2+]100Hz/D[Ca2+]80Hz
= 100/80 = 5/4 . Eq. 3.2 was used

to calculate (x80Hz)min as [DCa]0/[D]T ⇡ 0 for OGB-6F. The level of saturation of OGB-

6F at 80 Hz (x80Hz) was then calculated as the mean of (x80Hz)max and (x80Hz)min.

(DF/F0)max was subsequently calculated from (DF/F0)80Hz and x80Hz (Eq. 3.1). Table 3.2

displays the mean values for x80Hz. There was no significant difference in x80Hz in

the range of OGB-6F concentrations used (pANOVA = 0.06).

To verify this method of calculating (DF/F0)max for OGB-6F, DF/F0 of OGB-6F (50 µM)

was measured in response to local application of the Ca2+-ionophore ionomycin

(0.3 mM). Among 10 boutons to which ionomycin was applied, only 5 boutons

had values for (DF/F0)ionomycin larger than (DF/F0)100Hz (4.0 ± 0.2 vs. 3.5 ± 0.1; pt

= 0.03). In these boutons, values for (DF/F0)max calculated from (DF/F0)80Hz and x80Hz

were not significantly different from (DF/F0)ionomycin (5.1 ± 0.4 vs. 4.0 ± 0.2; pt =

0.06). The tendency for the calculated (DF/F0)max to be larger than (DF/F0)ionomycin was

consistent with the observation that prolonged application of ionomycin caused cell

swelling/beading and a gradual reduction in fluorescence intensities, presumably

due to leakage of fluorescent dyes out of the cells or dilution by the increased volume

(data not shown). Because of this, (DF/F0)ionomycin would be smaller than the true

(DF/F0)max. Similarly, it is likely that (DF/F0)ionomycin was measured after substantial

dye leakage in the other 5 boutons with (DF/F0)ionomycin < (DF/F0)100Hz.
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3.2.6.4 Determination of [Ca2+]i

[Ca2+]rest was calculated from (DF/F0)max of the high-affinity Ca2+ indicator OGB-1

as follows (Maravall et al., 2000):

[Ca2+]rest = Kd ⇥
 

1 � R�1
f

(DF/F0)max
� R�1

f

!
. (3.4)

Here, Rf of OGB-1 was assumed to be 6 as had been measured in hippocampal

neurons and cerebellar MFBs (Maravall et al., 2000; Delvendahl et al., 2015).

[Ca2+]i after stimulation was calculated from DF/F0 of OGB-1 or OGB-6F as follows

(Lev-Ram et al., 1992):

[Ca2+]i =

[Ca2+]rest + Kd ⇥
DF/F0

(DF/F0)max

1 �
DF/F0

(DF/F0)max

. (3.5)

For all calculations, [Ca2+]rest = 50 nM (Section 3.3.2). It can be seen in Eq.

3.5 that, as DF/F0 approaches (DF/F0)max, the denominator approaches 0, thereby

subjecting the calculated [Ca2+]i to large errors. Accordingly, only measurements

with DF/F0  0.8 ⇥ (DF/F0)max were used for calculation of D[Ca2+]i. Based on this

criterion, two out of 13 boutons (15%) imaged with 40 µM OGB-1 and four out of 22

boutons (18%) imaged with 80 µM OGB-1 were excluded from further analysis.

3.2.6.5 Statistical analysis

Values were given as mean ± standard error (S.E.M). Error bars also indicate S.E.M.

In each box-and-whisker plot, the ends of the whiskers represent the minimum

and maximum values of the respective data set. Unless stated otherwise, statistical

comparisons between different experimental conditions were performed with the
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Student’s t-test or one-way ANOVA analysis, and linear correlation assessed using

Pearson’s r. pt < 0.05, pANOVA < 0.05, and pPr < 0.05 were considered significant.

To assess whether DF/F0 and D[Ca2+]i in response to an AP or a train of APs decayed

mono- or bi-exponentially, changes measured in different boutons using the same

concentration of a Ca2+ indicator were pooled and averaged. The decay time course

of this average response was fitted with an exponential function
�

Ae�t/t
�

or the sum

of two distinct exponential functions
�

A1e�t/t1 + A2e�t/t2
�
. As a mono-exponential

fit is “nested” within a bi-exponential fit (i.e., a bi-exponential fit can be transformed

into a mono-exponential fit by making either A1 or A2 zero), an F-test was used

to compare the two fits. The F-statistic was calculated as the ratio of the weighted

sums of squared errors (c2) of the fits (Motulsky and Christopoulos, 2004; Costa et al.,

2010). The null hypothesis that the sum of two exponential functions did not provide

a significantly better fit than a single exponential function was rejected if pF < 0.05.

To assess whether D[Ca2+]i reached a plateau during a 2 s long train of APs, changes

measured in different boutons using the same stimulation frequency and the same

concentration of a Ca2+ indicator were pooled and averaged. The lower envelope

of the average response was fitted with an exponential function
�

A ⇥ (1 � e�t/t)
�

or

the sum of an exponential function and a linear function
�

A1 ⇥ (1 � e�t/t) + A2t
�
.

The statistical comparison was then done with an F-test, as described above.

3.2.7 Theory

3.2.7.1 Estimation of endogenous Ca2+ binding ratio and sequestration rate

Formulation of a single-compartment model. The single-compartment model

described by Neher and Augustine (1992) was used to estimate the Ca2+ binding ratio

of endogenous buffers and the rate of Ca2+ sequestration. This model considers a

cell or a cellular region as a compartment in which [Ca2+]i is spatially homogeneous

and diffusion is fast and negligible (assumption 1). Thus, it addresses the time
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course of the global Ca2+ elevation following membrane depolarisation, rather than

the spatiotemporal dynamics of the Ca2+ signal around Ca2+ channels (Helmchen

and Tank, 2015). With rapid equilibration of Ca2+, D[Ca2+]i in this compartment is

determined only by Ca2+ influx, buffering, and sequestration (Fig. 3.1A). Only a

fraction of the Ca2+ ions that enter this compartment will appear as free Ca2+; the

rest will be chelated by Ca2+ buffers. This model includes two main pools of buffers:

a pool of endogenous buffers E and a pool of exogenously introduced buffers D.

Here, D mainly consisted of the Ca2+ dye. The dynamics of [Ca2+]i after a brief Ca2+

pulse at time tAP are described by the following differential equation:

d[Ca2+]i
dt

= koff[ECa]� kon[E][Ca2+]i + koff[DCa]� kon[D][Ca2+]i

+ D[Ca2+]Td(t � tAP)� S
�
[Ca2+]i

�
, (3.6)

where [ECa] and [DCa] represent the concentrations of Ca2+ ions bound to E

and D, respectively, kon and koff are the Ca2+ on- and off-rates of the respective

buffer, D[Ca2+]T indicates the total increase in Ca2+ concentration, and S
�
[Ca2+]i

�

describes the rate at which Ca2+ is removed. Here, it is assumed that Ca2+ influx

is instantaneous; that is, its duration is brief compared to the time course of Ca2+

sequestration (assumption 2). Therefore, the Ca2+ pulse is modelled by a d-function.

The first four terms on the right-hand side of Eq. 3.6 can be replaced by the rate of

change of [ECa] and [DCa] over time as follows:

d[ECa]
dt

= �koff[ECa] + kon[E][Ca2+]i, (3.7)

and

d[DCa]
dt

= �koff[DCa] + kon[D][Ca2+]. (3.8)
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Substituting Eqs. 3.7 and 3.8 into Eq. 3.6 yields

d[Ca2+]i
dt

+
d[ECa]

dt
+

d[DCa]
dt

= D[Ca2+]Td(t � tAP)� S
�
[Ca2+]i

�
. (3.9)

This equation simply describes the conservation of Ca2+: the change in the total

calcium concentration (free and buffered; left-hand side) equals the difference

between Ca2+ influx and sequestration (right-hand side). [ECa] can be quantified

by the Ca2+ binding ratio of endogenous buffers (kE), which is the ratio of E-bound

Ca2+ to free Ca2+ following an increase in [Ca2+]i; that is,

kE =
∂[ECa]

∂[Ca2+]i
. (3.10)

If the reactions between Ca2+ and endogenous buffers are sufficiently fast so that

they are always at equilibrium (assumption 3), then [ECa] can be replaced by

[ECa] =
[E]T[Ca2+]i

[Ca2+]i + Kd,E
, (3.11)

where [E]T is the total concentration of endogenous buffers and Kd,E represents their

apparent Ca2+ binding affinity. Differentiating [ECa] with respect to [Ca2+]i yields

kE =
∂[ECa]

∂[Ca2+]i

=
[E]T([Ca2+]i + Kd,E)� [E]T[Ca2+]i

([Ca2+]i + Kd,E)2

=
[E]TKd,E

([Ca2+]i + Kd,E)2
. (3.12)

Similarly, the Ca2+ binding ratio of exogenous buffers (kD) can be expressed as
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Figure 3.1: Schematic and predictions of a single-compartment model. (A) Schematic of the
model described by Neher and Augustine (1992). A cell or a cellular region is considered as
a compartment in which [Ca2+]i is spatially homogeneous. Two pools of Ca2+ buffers with
fast kinetics are present: a pool of endogenous buffers E and a pool of exogenous buffers
D. Ca2+ is removed from this compartment by a linear sequestration mechanism. (B) The
single-compartment model predicts a linear relationship between the inverse of the peak
amplitude of an AP-evoked Ca2+ transient (A�1) and the Ca2+ binding ratio of exogenous
buffers (k0

D). Characterisation of this relationship allows estimation of the endogenous Ca2+

binding ratio kE from the x-intercept and the total change in Ca2+ concentration (D[Ca2+]T)
from the slope. (C) The single-compartment model also predicts a linear relationship between
the decay time course of the Ca2+ transient (t) and k

0
D. Characterisation of this relationship

allows estimation of kE from the x-intercept and g from the slope. Extrapolation of these two
plots to k

0
D = 0 further yields values of A and t in the absence of exogenous buffers.
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kD =
∂[DCa]

∂[Ca2+]i
=

[D]TKd,D

([Ca2+]i + Kd,D)2
, (3.13)

assuming that exogenous Ca2+ buffers also have fast Ca2+ binding kinetics compared

to the rate of Ca2+ sequestration. Substituting Eqs. 3.10 and 3.13 into Eq. 3.9 yields

d[Ca2+]i
dt

(1 + kE + kD) = D[Ca2+]Td(t � tAP)� S
�
[Ca2+]i

�
. (3.14)

In Eqs. 3.12 and 3.13, it can be seen that both kE and kD increase as [Ca2+]i decreases.

kE reaches a maximum value of [E]T/Kd,E and kD approaches [D]T/Kd,D at [Ca2+]i levels

well below Kd,E and Kd,D, respectively. The single-compartment model assumes that

[Ca2+]i after the brief Ca2+ pulse is much smaller than Kd,E and Kd,D so that kE and

kD can be considered as constants (assumption 4). In addition, it is assumed that

S
�
[Ca2+]i

�
is linearly dependent on D[Ca2+]i; that is, S

�
[Ca2+]i

�
= g ⇥ D[Ca2+]i,

where g represents the rate constant of Ca2+ sequestration (assumption 5). With this

assumption, Eq. 3.14 can be re-written as

d[Ca2+]i
dt

(1 + kE + kD) = D[Ca2+]Td(t � tAP)� g ⇥ D[Ca2+]i. (3.15)

With kE and kD being constants, and tAP = 0, the analytical solution of Eq. 3.15 is an

exponential function:

D[Ca2+]i(t) = [Ca2+]i(t)� [Ca2+]rest = Ae�t/t, (3.16)

for t � 0 (Helmchen et al., 1996). The amplitude A of this function, which is the peak

amplitude of D[Ca2+]i, can be obtained by integrating Eq. 3.15 over the short period

of Ca2+ influx (Neher and Augustine, 1992), yielding

A ⇥ (1 + kE + kD) = D[Ca2+]T. (3.17)
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In this integration, the second term on the right-hand side of Eq. 3.15 has been

neglected, assuming that the integration time is short compared to the time course

of Ca2+ sequestration (i.e. assumption 2). Consequently,

A =
D[Ca2+]T

1 + kE + kD
. (3.18)

The decay time constant t can be obtained by solving the following equation:

d[Ca2+]i
dt

(1 + kE + kD) = �g ⇥ D[Ca2+]i, (3.19)

yielding

t =
1 + kE + kD

g
. (3.20)

According to Eqs. 3.18 and 3.20, the inverse of the peak amplitude of D[Ca2+]i

(A�1) and t are both linearly dependent on the Ca2+ binding ratios of buffers.

More specifically, the peak amplitude of an AP-evoked Ca2+ transient is reduced

and its decay time course prolonged with larger values of kE and kD, that is with

increasing buffer concentrations or higher Ca2+ binding affinities (smaller values of

Kd). Intuitively, this can be understood by considering that, as kE or kD increases, a

larger fraction of Ca2+ ions is chelated, thereby decreasing the fraction of free Ca2+

ions and D[Ca2+]i. In addition, Ca2+ ions that are bound to buffers have to unbind

before they can be sequestered. Therefore, an increase in kE or kD will slow down

the decay time course of the Ca2+ transient.

In contrast, the time integral of the Ca2+ transient, given by the product of A and t,

is independent of the total Ca2+ binding ratio (Helmchen et al., 1996); that is,

Z •

tAP

D[Ca2+]i(t)dt = At =
D[Ca2+]T

g
. (3.21)
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Whilst Ca2+ influx adds Ca2+ and sequestration mechanisms remove Ca2+ from the

compartment, Ca2+ buffers only act as temporary storage sites for Ca2+. As a result,

Ca2+ buffering does not affect the time integral of the Ca2+ transient.

Estimation of kE and g. The “added-buffer” method was used to estimate kE and

g based on the single-compartment model (Neher, 1995). According to Eqs. 3.18

and 3.20, these parameters can be estimated by plotting A�1 and t against kD.

Experimentally, kD can be varied by adding different concentrations of a fluorescent

Ca2+ indicator or by adding indicators with different Ca2+ binding affinities (Eq.

3.13). As kD of fluorescent Ca2+ indicators, in particular of high-affinity indicators

such as OGB-1, is not quite constant in the range of [Ca2+]i often measured in

synaptic boutons and dendrites, kD is generally replaced by k
0
D. The latter is the

incremental Ca2+ binding ratio of exogenous buffers (Neher and Augustine, 1992):

k
0
D =

D[DCa]
D[Ca2+]i

=
[D]TKd,D

([Ca2+]rest + Kd,D)([Ca2+]AP + Kd,D)
, (3.22)

where [Ca2+]rest and [Ca2+]AP represent [Ca2+]i before and at the peak of an

elevation. A plot of A�1 vs. k
0
D will allow estimation of kE and D[Ca2+]T (Fig.

3.1B). Similarly, by plotting t against k0D, kE and g can be estimated (Fig. 3.1C).

Extrapolation of these two plots to k
0
D = 0 further yields values of A and t in the

absence of exogenous buffers. Here, exogenous buffers included not only fluorescent

Ca2+ indicators but also gluconate and nucleotides (ATP and GTP) present in the

internal solution. The latter compounds gave an additional k of ⇠ 5 (See Table 3.3

for total concentrations and Kd values), which was added to all k
0
D values.

Assumptions of the single-compartment model. Since the solution of Eq. 3.15 is

an exponential function (Eq. 3.16), the single-compartment model predicts [Ca2+]i

after stimulation to decay mono-exponentially. However, in the imaged boutons, the

sum of two distinct exponential functions provided a significantly better fit to the
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decay time course of AP-evoked Ca2+ transients, than a single exponential function

(Fig. 3.6A). This suggests that at least one of the assumptions underlying the single-

compartment model was violated.

As mentioned previously, the single-compartment model of Ca2+ dynamics is based

on five assumptions: 1) Ca2+ gradients and diffusion can be neglected, 2) Ca2+ influx

is instantaneous, 3) Ca2+ and buffers are always at equilibrium, 4) Ca2+ buffers have

constant Ca2+ binding ratios, and 5) the rate of Ca2+ removal is linearly dependent on

D[Ca2+]i. Among these assumptions, assumption 2 is the most justifiable: compared

to Ca2+ sequestration which occurred on the timescale of a few tens to hundreds

of milliseconds, the presynaptic Ca2+ influx evoked by an AP could be considered

instantaneous. This is supported by the finding that, in the calyx of Held and

hippocampal MFBs, the Ca2+ current evoked by an AP is less than 1 ms long (Borst

and Sakmann, 1996, 1998a; Bischofberger et al., 2002).

The assumption of spatial homogeneity (assumption 1) is also justifiable within the

imaged boutons due to their small sizes (r ⇠ 0.5 µm). Following an AP-evoked

Ca2+ influx, Ca2+ gradients should dissipate within a characteristic diffusion time

(td) defined by

td =
r2

6Dapp
, (3.23)

where Dapp is the apparent diffusion coefficient of Ca2+ (Helmchen and Tank, 2015).

It takes into account the binding of Ca2+ to Ca2+ buffers, particularly endogenous

fixed buffers. For r = 0.5 µm and a Dapp value of 20 µm2s�1 (Gabso et al., 1997), td ' 2

ms. In the presence of exogenous Ca2+ buffers, which are highly mobile compared to

endogenous buffers (Table 3.3; Gabso et al., 1997), Dapp increases and thus td would

be even smaller. As this diffusion time was at least an order of magnitude smaller

than the time course of Ca2+ sequestration, spatial gradients of [Ca2+]i within these

boutons were negligible during the decay phase of an AP-evoked Ca2+ transient.
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However, diffusion of Ca2+ out of a bouton into its parent axon could reduce the

peak amplitude of the Ca2+ transient and speed up its decay time course.

Deviations from a mono-exponential decay time course could also arise from the

presence of an endogenous Ca2+ buffer with slow binding kinetics (assumption 3

is invalid), saturation of Ca2+ buffers (assumption 4 is invalid), a non-linear Ca2+

sequestration mechanism (assumption 5 is invalid), and/or CICR (Neher, 1995;

Tank et al., 1995; Helmchen and Tank, 2015). Even though these conditions could

significantly alter the decay time course of an AP-evoked Ca2+ transient, its peak

amplitude, which was reached within 3 ms of AP initiation, would be minimally

affected, unless Ca2+ buffers were saturated. Therefore, a plot of A�1 vs. k
0
D would

provide a more accurate and reliable estimate of kE than would a plot of t vs. k
0
D

(Neher and Augustine, 1992; Lee et al., 2000b). Saturation of exogenously introduced

Ca2+ indicators were taken into account in the former plot by using k
0
D instead of

kD. Strictly speaking, kE estimated with this method represents the fraction of Ca2+

ions that have been “buffered away” at the peak of an AP-evoked Ca2+ transient.

Therefore, it reflects the capacity of only endogenous fast buffers.

It should be noted here that all of the exogenously introduced buffers had fast Ca2+

binding and unbinding kinetics, compared to the rate of Ca2+ sequestration. The

rate at which each buffer bound Ca2+, determined as the product of kon and [D],

was � 104 s�1 (Table 3.3). Similarly, the slowest unbinding rate, which was of the

high-affinity indicator OGB-1 (koff ' 130 s�1; Table 3.3), was still around an order of

magnitude faster than the rate of sequestration (t > 50 ms corresponding to a rate

of 20 s�1 for Ca2+ transients measured with OGB-1). Therefore, Ca2+ was largely at

equilibrium with exogenous buffers.

3.2.7.2 Linear summation of [Ca2+]i during trains of APs

During a train of APs with a constant time interval (Dt), Ca2+ transients evoked by

individual APs will summate if Dt is shorter than the time it takes each transient
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2 µM

400 ms

10 Hz 20 Hz 40 Hz1 AP

Figure 3.2: Simulated summation of [Ca2+]i during 1 s long trains of APs. The lower envelope
of the Ca2+ build-up at 20� 40 Hz has been fitted with an exponential function (black curves).
Black lines indicate the average change in [Ca2+]i during steady state (D[Ca2+]ss).

to decay (Dt  2t). Linear summation of [Ca2+]i occurs when: 1) Ca2+ influx and

D[Ca2+]T per AP are constant, 2) the rate of Ca2+ sequestration remains linearly

dependent on D[Ca2+]i, and 3) Ca2+ buffers are not saturated (Helmchen and Tank,

2015). Under these conditions, each Ca2+ transient raises [Ca2+]i by the same amount

A and has the same decay time constant t (Fig. 3.2). The [Ca2+]i above resting level

immediately before the (n + 1)th AP (Bn) is given by a geometric series (Regehr et al.,

1994); that is,

Bn = A
n

Â
i=1

e�iDt/t (3.24)

= A ⇥ 1 � e�nDt/t

eDt/t � 1
. (3.25)

This equation shows that, during a high-frequency train of APs and under

the assumption of linear summation, the lower envelope of [Ca2+]i builds up

exponentially with a time constant of trise = t, independent of the AP frequency

(black curves in Fig. 3.2). As n ! •, Bn approaches a maximum value of

Bmax = A ⇥ 1
eDt/t � 1

. (3.26)

This steady state level is reached when Ca2+ influx and sequestration are in

equilibrium: the drop in [Ca2+]i during Dt is counterbalanced by an increase by
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A produced by the next AP (Helmchen et al., 1996). During this state, [Ca2+]i above

the resting level fluctuates between a lower level given by Bmax and an upper level

given by

Amax = Bmax + A (3.27)

= A ⇥ 1
1 � e�Dt/t

. (3.28)

The average change in [Ca2+]i during this steady state (D[Ca2+]ss; solid lines in Fig.

3.2) is in turn

D[Ca2+]ss =
1

Dt

Z Dt

0
Amaxe�t/tdt (3.29)

=
At

Dt
(3.30)

= AtuAP, (3.31)

where uAP = 1/Dt is the AP frequency (Tank et al., 1995; Helmchen et al., 1996).

According to Eq. 3.31, D[Ca2+]ss is a linear function of uAP, with the proportionality

constant being the time integral At of a single AP-evoked Ca2+ transient. As this

integral is determined by D[Ca2+]T per AP and the rate constant of Ca2+ sequestration

(Eq. 3.21), D[Ca2+]ss is independent of Ca2+ buffering (Helmchen and Tank, 2015).

More specifically, whilst Ca2+ buffers shape the dynamics of each Ca2+ transient,

they do not affect the steady state level of [Ca2+]i during high-frequency AP trains.

An increase in the total concentration of Ca2+ buffers or a decrease in their Kd

will reduce the amplitude and prolong the decay time course of individual Ca2+

transients, without changing D[Ca2+]ss. Similarly, D[Ca2+]ss is not affected by

saturation of Ca2+ buffers or by the presence of a buffer with slow Ca2+ binding

kinetics (Tank et al., 1995; Lee et al., 2000b).

To assess whether [Ca2+]i summed linearly during 2 s long trains of APs, the average

changes in [Ca2+]i during the last 200 � 500 ms of stimulation were compared to
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the predicted D[Ca2+]ss (Eq. 3.31). Because in most experiments, [Ca2+]i had yet to

return to [Ca2+]rest by the end of the imaging periods, the time integral of a single AP-

evoked Ca2+ transient was determined from values obtained by fitting its decay time

course; that is, the time integral was calculated as At if its decay was exponential,

and A1t1 + A2t2 if it decayed bi-exponentially.

3.2.7.3 Diffusion of Ca2+ into the axon

The single-compartment model described by Neher and Augustine (1992) was

extended to investigate how diffusion of Ca2+ out of a bouton into the connecting

axon shaped the presynaptic Ca2+ dynamics. As a starting point, [Ca2+]i in a

cylindrical structure with a constant radius r was examined. Only longitudinal

diffusion along the x-axis was considered; given the small diameter of axon

collaterals (< 0.5 µm), Ca2+ and buffers should be at spatial equilibrium in the radial

direction. The temporal dynamics of [Ca2+]i at position x (Ca(x, t)) in this cylinder,

after a brief Ca2+ current I(x, t), are described by the following differential equation:

∂Ca
∂t

= koff[ECa]� kon[E][Ca2+]i + koff[DCa]� kon[D][Ca2+]i

+
2
r

K• I(x, t)� S
�
[Ca2+]i

�
+ DCa

∂2Ca
∂x2 , (3.32)

where 2/r is the surface to volume ratio of the cylinder, K• represents the

proportionality constant between I(x, t) and the resultant increase in [Ca2+]T, and

DCa is the diffusion coefficient of free Ca2+ ions (Zador and Koch, 1994). Eq. 3.32

is an extension of Eq. 3.6, with the last term on the right-hand side describing how

diffusion causes [Ca2+]i to change over time (Fick’s second law). Again, the first four

terms on the right-hand side of Eq. 3.32 can be replaced by the rate of change of

[ECa] and [DCa] over time as follows:
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∂ECa
∂t

= �koff[ECa] + kon[E][Ca2+]i, (3.33)

and

∂DCa
∂t

= �koff[DCa] + kon[D][Ca2+]i + DDCa
∂2DCa

∂x2 , (3.34)

where DDCa is the diffusion coefficient of Ca2+ ions bound to D. Here, endogenous

buffers are assumed to be fixed whilst exogenously introduced buffers are mobile

(Zhou and Neher, 1993; Gabso et al., 1997). Thus, diffusion does not affect the rate of

change of [ECa] over time, whilst Ca2+ ions bound to D can diffuse out of the bouton,

most likely with a diffusion coefficient equal to that of D itself (that is, DDCa = DD).

Substituting Eqs. 3.33 and 3.34 into Eq. 3.32 yields

∂Ca
∂t

+
∂ECa

∂t
+

∂DCa
∂t

=
2
r

K• I(x, t)� S
�
[Ca2+]i

�
+ DCa

∂2Ca
∂x2 + DD

∂2DCa
∂x2 . (3.35)

Compared to Eq. 3.9, this equation states that D[Ca2+]T is determined not only by

Ca2+ influx and sequestration, but also by diffusion of Ca2+ (free or bound to mobile

buffers). Under the assumptions of chemical equilibrium, non-saturable buffers, and

a linear rate of Ca2+ sequestration (assumptions 3 � 5 of the single-compartment

model), Eq. 3.35 can be simplified as

∂Ca
∂t

(1 + kE + kD) =
2
r
�
K• I(x, t)� g ⇥ [Ca2+]i

�
+ (DCa + DDkD)

∂2Ca
∂x2 . (3.36)

Dividing both sides of this equation by (1 + kE + kD) yields
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∂Ca
∂t

=
2
r
⇥
 

K• I(x, t)� g ⇥ [Ca2+]i
1 + kE + kD

!
+ Dapp

∂2Ca
∂x2 , (3.37)

where the apparent diffusion coefficient Dapp = (DCa + DDkD)/(1+ kE + kD) (Gabso

et al., 1997). According to Gabso et al. (1997), after a brief Ca2+ current at x = 0 and

t = 0, this equation has a solution of the following form:

D[Ca2+]i(x, t) = [Ca2+]i(x, t)� [Ca2+]rest = y(x, t)e�t/t, (3.38)

with

y(x, t) =
A0p

4pDappt
exp

✓
�x2

4Dappt

◆
(3.39)

and

t =
r

2g
(1 + kE + kD). (3.40)

A0 in Eq. 3.39 depends on the Ca2+ current. To find its value, I integrate

D[Ca2+]i(x, t) from x = �• to •, and evaluate this integral at time t shortly after

tAP = 0. That is,

Z •

�•
D[Ca2+]i(x, t)dx =

Z •

�•

"
A0p

4pDappt
exp

✓
�x2

4Dappt

◆
e�t/t

#
dx (3.41)

=
A0p

4pDappt
e�t/t

Z •

�•
exp

✓
�x2

4Dappt

◆
dx. (3.42)

Let u2 = x2/(4Dappt). Then dx =
p

4Dappt ⇥ du. Accordingly,
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Z •

�•
D[Ca2+]i(x, t)dx =

A0p
p

e�t/t

Z •

�•
exp

�
�u2� du (3.43)

= A0e�t/t. (3.44)

At time t = tAP + dt = dt with dt being infinitesimally small,

Z •

�•
D[Ca2+]i(x, t)dx|t=dt = A0. (3.45)

Assuming that Ca2+ has yet to be sequestered at this time,

Z •

�•
D[Ca2+]i(x, t)dx|t=dt =

NCa

pr2(1 + kE + kD)
, (3.46)

where NCa is the total number of moles of Ca2+ ions that enter the bouton. Therefore,

A0 =
NCa

pr2(1 + kE + kD)
. (3.47)

This means that, in a cylindrical structure, D[Ca2+]i at any position x is

D[Ca2+]i(x, t) =
NCa

pr2(1 + kE + kD)
p

4pDappt
exp

✓
�x2

4Dappt

◆
e�t/t. (3.48)

However, in this study, only D[Ca2+]i within a bouton was of interest. In response

to an AP, Ca2+ predominantly entered through clusters of VGCCs in the presynaptic

membrane (Holderith et al., 2012; Nakamura et al., 2015). As explained above, the

spatial gradient of Ca2+ within the imaged boutons was negligible during the decay

phase of the Ca2+ transient. Therefore, diffusion of Ca2+ into the axon could be

simplified as diffusion away from an instantaneous point source. In other words,

D[Ca2+]i within a bouton could be approximated by
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D[Ca2+]i(0, t) =
NCa

pr2(1 + kE + kD)
p

4pDappt
e�t/t.

The extent to which diffusion into the axon shaped the decay kinetics of D[Ca2+]i

within a bouton could be understood by differentiating this equation, yielding

d[Ca2+]i
dt

= � NCa

pr2(1 + kE + kD)
p

4pDapp


1

t
p

t
e�t/t +

1
2
p

t3
e�t/t

�

= � NCa

pr2(1 + kE + kD)
p

4pDappt
e�t/t

✓
1
t
+

1
2t

◆

= �
✓

1
t
+

1
2t

◆
⇥ D[Ca2+]i

= � 1
t
⇥ D[Ca2+]i �

1
2t

⇥ D[Ca2+]i. (3.49)

The first term on the right-hand side of Eq. 3.49 describes the rate of change of

D[Ca2+]i in a truly single compartment where diffusion is negligible (Eq. 3.19). The

second term describes the rate of change due to diffusion in the absence of Ca2+

transporters (that is, g = 0). Unlike the former, the latter is not a linear function of

D[Ca2+]i. In addition, although both terms decrease in magnitude during the decay

phase (as D[Ca2+]i decreases), the second term decreases much more rapidly (due

to the factor 1/t). This means that the relative contribution of diffusion to the rate

of decay decreases over time. It also decreases if t decreases and the first term in

Eq. 3.49 becomes more dominant. Accordingly, if diffusion of Ca2+ into the axon

occurs soon after an influx, and if t is large, diffusion will play a major role in Ca2+

removal, causing the rate of decay to deviate significantly from a linear relationship

with D[Ca2+]i. A large t in turn occurs when kE + kD is large or g is small (Eq. 3.40).

However, as t increases, the deviation from linearity will become smaller. Eventually,

the rate of decay will be linearly dependent on D[Ca2+]i, reflecting the activity of

Ca2+ transporters.

Intuitively, the relative contribution of diffusion to the decay kinetics of D[Ca2+]i in

a bouton en passant is smaller than that indicated by Eq. 3.49. The reduced diameter
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of the axon, compared to that of the bouton, restricts the escape of Ca2+. This causes

the rate of change by diffusion to decrease with thinner axons (Fig. 3.11D). Based on

3D simulations, it was found that, if the diameters of the bouton and the axon were

1.0 and 0.2 µm, respectively, the maximum rate of change by diffusion was only 3%

of that in a cylindrical structure with a constant diameter (all values corrected for the

peak amplitude of D[Ca2+]i; data not shown). Despite this, diffusion into the axon

still played a major role in shaping the presynaptic Ca2+ dynamics in the presence

of exogenous mobile buffers (Figs. 3.11E-F).

3.2.8 Modelling

All simulations were performed using CalC (Calcium Calculator) computer software,

version 6.8.6 (Matveev et al., 2002). This software uses a finite-difference scheme to

solve partial differential equations governing the spatiotemporal dynamics of [Ca2+]i.

Data from the simulations were further analysed in Igor Pro 7.01. Both CalC and Igor

Pro were executed on a Mac mini computer, running Mac OS X 10.10.

To simulate AP-evoked Ca2+ dynamics in synaptic boutons of layer 5 pyramidal cells,

a 3D model of a bouton with an axon attached to it was created (Fig. 3.11A). Key

parameters of the model were constrained based on measurements obtained in this

thesis as well as previous studies (Table 3.3). The modelled bouton had a spherical

morphology, centred at (0,0,0) and 0.5 µm in radius. The axon attached to it was

cylindrical, with a diameter of 0.1 � 0.4 µm in the y- and z-axes, and a length of 20

µm on each side of the bouton along the x-axis. The number of grids was 190, 50, and

50 in the x-, y-, and z-axes, respectively. Within the bouton, each grid corresponded

to a cube of ⇠ 20 ⇥ 20 ⇥ 20 nm. To reduce simulation time, the size of each successive

grid outside the bouton was stretched along the x-axis by a factor of 1.06. The CalC

accuracy parameter was 1 ⇥ 10�5; smaller values did not change simulation results.
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Table 3.3: Model parameters for simulations of presynaptic Ca2+ dynamics.

Parameters Value Unit Reference/Note

Geometry

Grid size at
bouton ⇠ 20 nm Smaller grids did not

change results

Grid size at
ends of axon  1.1 µm Successive grids were

stretched by 1.06

Bouton
radius 0.5 µm Romand et al. (2011)

Axon
diameter 0.1 � 0.4 µm Rollenhagen and Lübke

(personal comm.)

Axon length 40 µm Longer axons did not
change results

Free Ca2+ DCa 220 µm2s�1 Allbritton et al. (1992)

[Ca2+]rest 0.05 µM measured (Section 3.3.2)

Ca2+ current

Radius 50 nm Nakamura et al. (2015)

Number of
Ca2+ ions 15,762 ions

calculated with
D[Ca2+]T = 50 µM
(measured)

Amplitude �18.6 pA

Half-width 244 µs consistent with Borst
and Sakmann (1998a)

Ca2+

extrusion gextrusion 0.06 µm·ms�1 estimated; at bouton
only

Ca2+ uptake guptake 0.07 ms�1
estimated;
homogeneously
distributed

Hypothetical
endogenous

buffer

CM 1000 µM = Kd ⇥ kE with kE = 10
(measured)

Kd 100 µM Xu et al. (1997)

kon 5 ⇥ 108 M�1s�1 Delvendahl et al. (2015)

koff 2.5 ⇥ 104 s�1 = Kd ⇥ kon

DE 0 µm2s�1 buffer is fixed
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Gluconate

CM 115 mM used in experiments

Kd 57 mM Woehler et al. (2014)

kon 1 ⇥ 108 M�1s�1 Woehler et al. (2014)

koff 5.7 ⇥ 106 s�1 = Kd ⇥ kon

Dgluconate 220 µm2s�1 Woehler et al. (2014)

ATP

CM 580 µM

calculated with
[Mg2+]T = [ATP]T = 4
mM, and Kd,Mg = 100
µM (Baylor and
Hollingworth, 1998)

Kd 200 µM Baylor and
Hollingworth (1998)

kon 1 ⇥ 109 M�1s�1 Hammes and Levison
(1964)

koff 2 ⇥ 105 s�1 = Kd ⇥ kon

DATP 220 µm2s�1 Naraghi and Neher
(1997)

OGB-1

CM 36 � 144 µM used in experiments

Kd 0.3 µM measured

kon 4.5 ⇥ 108 M�1s�1 ⇡ kon of BAPTA
(Naraghi, 1997)

koff 1.35 ⇥ 102 s�1 = Kd ⇥ kon

DOGB-1 100 µm2s�1 ⇡ DFura-2 (Gabso et al.,
1997)

OGB-6F

CM 45 � 450 µM used in experiments

Kd 8 µM measured

kon 4.5 ⇥ 108 M�1s�1 ⇡ kon of BAPTA

koff 3.6 ⇥ 103 s�1 = Kd ⇥ kon

DOGB-6F 100 µm2s�1 ⇡ DFura-2
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3.2.8.1 Presynaptic Ca2+ current

The AP-evoked Ca2+ current was modelled as a skewed gamma distribution with

the following probability density function:

f (t) = NCa ⇥ 2e ⇥ ba ⇥ (t � t0)a�1 ⇥ exp(�b ⇥ (t � t0))
G(a)

,

where NCa represents the total number of Ca2+ ions that entered the bouton, e is the

elementary charge, a is the shape parameter of the distribution, b is the inverse scale

factor, and t0 is the time of current onset. For an a value of 2, G(a) = G(2) = 1, and

thus

f (t) = NCa ⇥ 2e ⇥ b2 ⇥ (t � t0)⇥ exp(�b ⇥ (t � t0)).

For the half-width of this current to be in the range of that of the presynaptic Ca2+

current measured at the calyx of Held (Borst and Sakmann, 1998a), b was chosen to

be 0.1 s�1, corresponding to a half-width of 244 µs. With NCa = 15, 762, which is the

number of Ca2+ ions that would produce a D[Ca2+]T of 50 µM in a sphere of r = 0.5

µm, the modelled Ca2+ current had a peak amplitude of �18.6 pA (Fig. 3.11B). The

source of the Ca2+ current had a spatial radius of 50 nm, which was about half of the

width of an active zone (Nakamura et al., 2015). It was positioned on the surface of

the bouton at (0,�0.5, 0) µm.

3.2.8.2 Ca2+ sequestration

Following an intracellular rise, Ca2+ was extruded by a pump or sequestered by

a homogeneously distributed uptake mechanism. The value of g estimated based

on the single-compartment model represents the action of all Ca2+ sequestration

mechanisms on the volume-averaged D[Ca2+]i within the imaged boutons. This
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20 ms

0.5 µM

A B C

Figure 3.3: Estimation of the rate constants of Ca2+ sequestration mechanisms. (A) A
transient, simulated with an axon diameter of 0.4 µm, gextrusion = 0.06 µm·ms�1, and guptake
= 0 (black), was superimposed with the average Ca2+ transient measured in the presence of
CPA (green; n = 15). (Inset) The simulated transient was peak-scaled to match the measured
transient. (B) Similar to A but with guptake = 0.07 ms�1 and the average Ca2+ transient
measured before addition of CPA. (C) Similar to A but with an axon diameter of 0.2 µm and
gextrusion = 0.08 µm·ms�1. Shaded areas represent mean ± 1 SD.

estimation does not take into account the fact that the activity of a Ca2+ transporter

depends on the local [Ca2+]i. It also does not differentiate between the action of Ca2+

transporters and the escape of Ca2+ through diffusion into the axon. Therefore, the

rate constants corresponding to the action of the membrane pump and intracellular

uptake (gextrusion and guptake, respectively) were approximated based on the effect of

CPA on the decay time course of single AP-evoked Ca2+ transients (measured with

100 µM OGB-6F in the patch pipette).

gextrusion was estimated first, by increasing its value from 0, in steps of 0.01 µm·ms�1.

The simulated transient was compared to the average Ca2+ transient measured in

the presence of CPA (black vs. green, respectively; Fig. 3.3A). After scaling its

peak amplitude to match that of the measured transient (inset), the residual sum

of squares (RSS) was calculated. The minimum value of RSS was obtained when

gextrusion = 0.06 µm·ms�1. guptake was then estimated, by increasing its value in steps

of 0.01 ms�1. The simulated transient was compared to the average Ca2+ transient
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measured before addition of CPA (Fig. 3.3B). Again, after scaling its peak to match

that of the measured transient (inset), RSS was calculated. The smallest RSS was

obtained when gextrusion = 0.06 µm·ms�1 and guptake = 0.07 ms�1. All of these

simulations were done in the presence of 90 µM OGB-6F (see Section 3.3.1) and with

an axon diameter of 0.4 µm. The measured time courses were better reproduced with

this axon diameter than with a thinner axon (Fig. 3.3C).

3.2.8.3 Boundary conditions

The Ca2+ pump was distributed on the surface of the bouton. The boundary along

the axon was reflective (i.e. zero flux), and those at the ends were clamped to

[Ca2+]rest. When the Ca2+ pump was additionally distributed along the axon (on all

sides, except at the ends), the simulated Ca2+ transient still exhibited an initial fast

decay, although the relative amplitude of this component (amplitudefast) was reduced

(from 47 to 32% in the presence of 90 µM OGB-6F and with an axon diameter of 0.4

µm). As there is evidence for clustering of the plasmalemmal Ca2+-ATPase at the

active zones (Blaustein et al., 2002), the rate of Ca2+ extrusion along the axon was

unlikely to be as fast as that at the bouton.

3.2.8.4 Calculation of volume-averaged D[Ca2+]i

In simulations with exogenous buffers present, D[Ca2+]i in the bouton was calculated

from the Ca2+-free concentration of the fluorescent indicator ([D]) as follows:

D[Ca2+]i =
Kd ⇥

✓
1 � [D]

[D]T

◆

[D]
[D]T

� [Ca2+]rest.

The volume-averaged [D] was calculated by averaging 61 uniformly distributed

points along the i(1, 0, 0), i(0, 1, 0), or i(0, 0, 1) axis, with i 2 R, and |x|, |y|, and |z|
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 0.5 µm. In a model with only the bouton and no connecting axon, this calculation

gave a value of [D] equal to that obtained using the CalC default parameter for the

volume-averaged [D].

In simulations with no exogenous buffers, the volume-averaged [Ca2+]i in the bouton

was calculated by averaging [Ca2+]i at 475 uniformly distributed points on the planes

that contain two of the aforementioned axes, with |x|, |y|, and |z|  0.35 µm. In a

model with only the bouton and no connecting axon, this calculation yielded a value

of [Ca2+]i equal to that obtained using the CalC default parameter for the volume-

averaged [Ca2+]i, but only at time t � 2 ms after the AP onset. Since the spatial

gradient of Ca2+ took longer to dissipate in the presence of only fixed endogenous

buffers, for smaller time points, this calculation yielded a value of [Ca2+]i slightly

smaller than the default parameter.

3.3 Results

The spatially averaged [Ca2+]i in neocortical synaptic boutons was measured with

confocal microscopy. Whole-cell patch-clamp recordings were obtained from visually

identified pyramidal neurons in layer 5 (mostly 5A) of the rat somatosensory cortex.

These cells were filled through the patch pipette with Alexa Fluor® 568 (50 µM)

and a fluorescent Ca2+ indicator (OGB-1, OGB-6F, OGB-5N, Fluo-4FF, or Cal-520).

Approximately 20 min after break-in, the fluorescence of Alexa Fluor® 568 was

acquired to reveal the morphology of the patched cell (Figs. 3.4A-B). The cell

was confirmed to be a pyramidal neuron if it had a pyramidal-shaped soma, a

pronounced apical dendrite, and spines lining all dendrites. The majority of the

imaged cells had a thin apical dendrite and a main axon that was intact within 200

µm from the soma. Within this distance, the main axon gave rise to several axon

collaterals, with some extending horizontally and remaining in layer 5, whilst others

extending in an oblique fashion into the supragranular layers (layers 1 � 3) or down

to layer 6. Occasionally, a collateral that ran almost parallel to the apical dendrite
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Figure 3.4: Ca2+ imaging of synaptic boutons. (A) A layer 5 pyramidal cell visualised using
fluorescence of Alexa Fluor® 568. (B) Synaptic boutons (arrowheads) were identified along
its axon collaterals. (C) A magnified view of one of the boutons (inside square in B) showing
fluorescence of OGB-1 at rest. (D) Top: Acquisition of line scans across this bouton (dashed
line in C) over time revealed an increase in OGB-1 fluorescence in response to an AP evoked
at the soma. Arrowhead indicates time of AP onset. Each line scan was fitted with a Gaussian
function (e.g. left), and the spatially averaged fluorescence of the bouton (F) was calculated
as the average fluorescence of all pixels ± 2 SD around the peak of the Gaussian (black bar
inside fit), minus the background fluorescence (y-offset of fit). Bottom: The relative change
in F over time.
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was also seen. Cells that fired in bursts were not imaged to ensure that single APs

could be reliably evoked.

Synaptic boutons (⇠ 1 µm in diameter) were identified along 1st to 3rd order axon

collaterals (100 � 300 µm from the soma; Fig. 3.4C). Most of them were confined

to layer 5 and vertically below the respective soma (i.e. further away from the pia).

As axonal varicosities have been shown to represent synapses (Gray, 1959; Markram

et al., 1997; Lubke et al., 2000), the imaged boutons most likely contained synaptic

vesicles and formed functional release sites onto other layer 5 cells. Consistent with

this, their [Ca2+]i increased rapidly and strongly in response to a somatically evoked

AP (Fig. 3.4D; typically, AP threshold = �44 ± 2 mV, amplitude = 77 ± 2 mV, and

half-width = 0.68 ± 0.03 ms; n = 24 cells). Only boutons that displayed a rapid and

clear fluorescence increase (within 5 ms of AP onset; > 95%) were used for further

analysis.

3.3.1 Equilibration time course of fluorophores

The extent to which a drug affected the dynamics of presynaptic Ca2+ transients

could only be determined accurately if the concentration of the Ca2+ indicator in

the imaged bouton changed minimally during the recording period (i.e. 10 min of

solution exchange). Therefore, it was important to measure the amount of time it

took for the indicator concentration in the bouton to reach a steady state. To achieve

this, the fluorescence intensity of both Alexa Fluor® 568 and OGB-1 (80 µM) in a

chosen bouton was measured over time, starting from 30 to 150 min after break-in

and at an increasing interval between 10 to 30 min. At the same time, the relative

change in OGB-1 fluorescence (DF/F0) in response to an AP evoked at the soma was

also measured (Fig. 3.4D). To reduce laser exposure, the fluorescence intensity of

both dyes was acquired using line scans drawn across the bouton and perpendicular

to its parent axon collateral (Fig. 3.4C). Additionally, in these experiments, each

measurement at each time point was only performed once (i.e. no repeat).
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Figs. 3.5A-B show the averaged, normalised fluorescence of Alexa Fluor® 568 and

OGB-1 over time in 15 boutons of layer 5 pyramidal neurons (210 ± 10 µm from

the soma). To generate these plots, the measured fluorescence of each dye was

normalised by dividing it by the maximum fluorescence measurement obtained

from the same bouton; the normalised values were subsequently averaged together.

Note that the maximum values in these plots were less than 1 as the maximum

fluorescence measurement of each bouton occurred at a slightly different time (� 60

min after break-in). The fluorescence of both dyes increased rapidly after break-in

and reached a plateau after ⇠ 90 min. An exponential fit to the averaged plots gave

an equilibration time constant of 33 ± 2 and 41 ± 4 min for Alexa Fluor® 568 and

OGB-1, respectively (pPr  0.01 with log-level regression analysis). These values were

not different from the mean values calculated from the equilibration time constants

of individual boutons (38 ± 5 and 43 ± 5 min; pt � 0.3; ranging from 7 to 78 min,

and 14 to 82 min, respectively). There was also no difference in the equilibration time

constant between Alexa Fluor® 568 and OGB-1 (ppt = 0.3). Additionally, there was no

correlation between the equilibration time constants and the distance of the imaged

boutons from the somata, likely due to variations in the access resistance, axonal

branching, and the thickness of the axon collaterals (pPr � 0.7; data not shown).

Fig. 3.5C demonstrates the effect of the equilibration time on DF/F0 of OGB-1 in

response to an AP. All of the 15 boutons imaged had fluorescence transients with

bi-exponential decay kinetics. A nested model comparison between mono- and bi-

exponential fits showed that the former was rejectable for all measured time points

(dashed and solid black curves, respectively; pF  0.005). As the equilibration time

increased, the peak amplitude of DF/F0 decreased, whilst its decay time course became

longer. This was expected because of the binding of Ca2+ to the fluorescent indicator:

over time, as the concentration of OGB-1 in the imaged bouton increased, less of the

Ca2+ ions that entered the bouton during an AP would remain free and available

for sequestration, making the presynaptic Ca2+ transient smaller in amplitude and

longer in time course.

Figs. 3.5D-G summarise the change in the peak amplitude and decay time course
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Figure 3.5: Equilibration time course of fluorescent dyes. (A-B) The normalised fluorescence
of Alexa Fluor® 568 and OGB-1, plotted as a function of equilibration time (n = 15). Plots have
been fitted with an exponential function constrained to include (0,0). (C) DF/F0 in response
to an AP measured at the indicated time points. Each trace (solid, green) is an average of
fluorescence transients of 15 boutons. Shaded areas represent mean ± 1 SD. Each decay phase
has been fitted with an exponential function (dashed) and the sum of two distinct exponential
functions (solid, black). (D-G) The normalised peak amplitude of DF/F0, amplitudefast, tfast,
and tslow, plotted as a function of equilibration time. In D and G, plots have been fitted with
an exponential function. Dashed line indicates no correlation (E-F).

of DF/F0 over time. Each measured amplitude was normalised by dividing it by

the minimum amplitude obtained from the same bouton; the normalised values

were subsequently averaged together. The minimum normalised amplitude in this

averaged plot was more than 1 as the minimum value of DF/F0 occurred at a slightly

different time for each bouton (� 60 min after break-in). An exponential fit to the

averaged, normalised plot of the peak amplitude yielded a time constant of 50 ±

16 min (Fig. 3.5D; pPr = 0.0002 with log-level regression analysis). Similarly, an

exponential fit to the averaged plot of the slow decay time constant (tslow) yielded

a time constant of 81 ± 29 min (Fig. 3.5G; pPr = 0.0006 with log-level regression

analysis). Interestingly, the relative amplitude as well as the time constant of the

fast decay component (amplitudefast and tfast, respectively) did not change over time

(Figs. 3.5E-F; pPr � 0.2). This indicates that the bi-exponential decay time course was

unlikely to arise from either wash-out of intracellular constituents or wash-in of the

patch pipette filling solution.

The measured equilibration time courses appeared much longer than those reported

by early studies that characterised the Ca2+ dynamics in small synaptic boutons

(Koester and Sakmann, 2000; Jackson and Redman, 2003). However, they are

consistent with more recent studies, in which more than 60 min of equilibration

time was required for the indicator concentration to reach a steady state in distant

nerve terminals or remote regions of dendrites (> 100 µm from the soma; Scott

and Rusakov, 2006; Eilers and Konnerth, 2009; Kisfali et al., 2013). Due to the long

equilibration time constant of OGB-1 (41 ± 4 min; Fig. 3.5B), layer 5 pyramidal

neurons were filled with the fluorophore (or another Ca2+ indicator) for at least



126 Dynamics of AP-evoked Ca2+ transients in neocortical synaptic boutons

90 min before the extent to which a drug affected AP-evoked Ca2+ transients was

assessed. In most cases, the concentration of OGB-1 in the imaged boutons, at 90 min

after whole-cell break-in, reached only ⇠ 90% of that in the pipette filling solution

(assuming that the final steady-state value was equal to the dye concentration in the

patch pipette). However, according to Figs. 3.5D-G, after this time, DF/F0 should

change minimally during a period of 10 min required for solution exchange (< 10%

in both amplitude and decay time constants).

3.3.2 [Ca2+]rest

[Ca2+]rest was calculated from the maximum fluorescence (DF/F0)max of the high-

affinity Ca2+ indicator OGB-1 (40 µM; Eq. 3.4). The latter was measured in situ

using a 2 s long train of APs evoked at 100 Hz. Based on this method, [Ca2+]rest in

synaptic boutons of layer 5 pyramidal neurons was 53 ± 13 nM (n = 10; ranging from

15 to 158 nM). This value is in the range of [Ca2+]rest measured at the calyx of Held

and cerebellar MFBs (Helmchen et al., 1997; Delvendahl et al., 2015).

3.3.3 Ca2+ transients evoked by an AP decayed bi-exponentially

The “added-buffer” method was used to estimate the Ca2+ binding ratio of

endogenous buffers (kE) and the rate constant of Ca2+ sequestration (g; Neher,

1995). This method takes advantage of the fact that fluorescent Ca2+ indicators

are essentially Ca2+ buffers. Thus, they compete with endogenous buffers and

transporters, and alter the amplitude and time course of presynaptic Ca2+ transients.

By loading synaptic boutons with different concentrations of a Ca2+ indicator, or

with indicators with different Ca2+ binding affinities, the relationship between

presynaptic Ca2+ dynamics and the exogenous Ca2+ binding ratio (kD) can be

characterised (Fig. 3.1). This then allows kE, g, and the presynaptic Ca2+ dynamics

in the absence of any exogenous buffers (i.e. unperturbed Ca2+ dynamics) to be

estimated.
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Here, layer 5 pyramidal neurons were filled through the patch pipette with either

OGB-1 (40, 80, 120, or 160 µM) or OGB-6F (50, 100, 200, or 500 µM). AP-evoked

Ca2+ transients were measured around 90 � 100 min after whole-cell break-in. For

synaptic boutons loaded with OGB-1, DF/F0 was measured in response to an AP and

two 2 s long trains of APs, each at 10 and 20 Hz. For those loaded with OGB-6F,

DF/F0 was measured in response to an AP and two 1 s long trains of APs, each at 80

and 100 Hz. DF/F0 measured during the AP trains was used to estimate (DF/F0)max

(Section 3.2.6.3), which in turn allowed the calculation of D[Ca2+]i in response to an

AP (Eq. 3.5).

Fig. 3.6A displays the average Ca2+ transients evoked by a single AP, each measured

with a different concentration of OGB-1 or OGB-6F (green or orange, respectively;

n = 11 � 29 for each concentration). Consistent with previous studies (Koester

and Sakmann, 2000; Jackson and Redman, 2003), these transients reached a peak

within 2 � 3 ms of the AP onset. One intriguing observation from this set of

experiments was that the decay of most Ca2+ transients was not well approximated

by a single exponential function (Ae�t/t; dashed curves). Instead, based on the set of

criteria described in Section 3.2.6.2, the sum of two distinct exponential functions

(A1e�t/t1 + A2e�t/t2 ; solid curves) was required to fit most of them (80% of the

imaged boutons). A nested model comparison between mono- and bi-exponential

fits showed that the former was rejectable for all indicator concentrations used (pF

 10�4 ).

Figs. 3.6B-E summarise the effect of indicator concentration on the amplitude and

decay time course of the single AP-evoked Ca2+ transients. Note that the total

concentration of OGB-1 and OGB-6F ([D]T) was assumed to be 90% of that in the

pipette filling solution, as explained in Section 3.3.1. As expected, Ca2+ transients

measured with the high-affinity indicator OGB-1 were smaller in amplitude and

longer in time course compared to those measured with a similar concentration

of OGB-6F. In addition, the peak amplitude of the transients decreased while their

tslow prolonged with an increase in the indicator concentration (Figs. 3.6B and E,

respectively; OGB-1: pPr = 0.06 for both parameters; OGB-6F: pPr  0.03). Although
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Figure 3.6: Characteristics of single AP-evoked Ca2+ transients measured with OGB-
1 (green) and OGB-6F (orange). (A) The average Ca2+ transients evoked by single APs,
measured with different concentrations of OGB-1 and OGB-6F (increasing concentration from
left to right). Each trace is an average of transients of 11� 29 boutons. Shaded areas represent
mean ± 1 SD. Each decay phase was fitted with a single exponential function (dashed) and
the sum of two exponential functions (solid, black). (B-E) The peak amplitude of D[Ca2+]i,
amplitudefast, tfast, and tslow, plotted as a function of indicator concentration ([D]T). Plots
were fitted with linear regression. Dashed lines indicate no correlation.

tfast was independent of OGB-1 concentration (Fig. 3.6D; pPr = 0.3), amplitudefast

decreased as more OGB-1 was added (Fig. 3.6C; pPr = 0.048). This was most likely

because of saturation of OGB-1: a higher OGB-1 concentration would produce a

smaller D[Ca2+]i, which in turn would reduce the extent of its saturation and hence

amplitudefast. In contrast, amplitudefast as well as tfast were both independent of

OGB-6F concentration (pPr � 0.11). This suggests that OGB-6F was not significantly

saturated by D[Ca2+]i evoked by a single AP and that saturation of exogenous Ca2+

buffers was not the main cause of the observed bi-exponential decay time course.

3.3.4 Estimation of kE and g based on the single-compartment model

To estimate kE and g, the measured Ca2+ transients were analysed based on the

single-compartment model (Neher and Augustine, 1992; Helmchen and Tank, 2015).

kE was determined by plotting the inverse of their peak amplitudes
⇣�

D[Ca2+]i
��1
⌘

against the incremental Ca2+ binding ratio of exogenous buffers (k0
D; Eq. 3.22). k

0
D

was used in place of kD to take into account saturation of OGB-1. Again, in this

calculation, the total concentration of exogenous buffers was assumed to be 90% of

that in the pipette filling solution.

Fig. 3.7A shows
�
D[Ca2+]i

��1 as a function of k
0
D. Here, each data point indicates the

average values of
�
D[Ca2+]i

��1 and k
0
D of Ca2+ transients measured with a different

concentration of OGB-1 or OGB-6F (green or orange, respectively). This plot was

fitted with a regression line, with weights inversely proportional to the respective

standard errors. Extrapolation to k
0
D = 0 yielded a y-intercept of 0.19 ± 0.05 µM�1.
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Figure 3.7: Dependence of AP-evoked Ca2+ dynamics on the Ca2+ binding ratio of

exogenous buffers. (A)
⇣

D[Ca2+]i
⌘�1

plotted against k
0
D. (B) tslow plotted against

⇣
k
0
D

⌘

slow
.

(C) tfast plotted against k
0
D. (D) The time integral of the transients (Â Aiti) plotted against k

0
D.

In all plots, each data point represents the average values of Ca2+ transients measured with
a different concentration of OGB-1 or OGB-6F (green or orange, respectively; n = 11� 29). In
A-C, each plot was fitted with a weighted regression line. Dashed line indicates no correlation
(D).
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The inverse of this value, which was 5.3 ± 1.3 µM, provided an estimate of the peak

amplitude of a single AP-evoked Ca2+ transient in the absence of exogenous buffers

(D[Ca2+]i,0). The inverse of the slope of the regression line gave an estimate of 43 ± 3

µM for the total rise in [Ca2+]i immediately after an AP (D[Ca2+]T). kE was estimated

from the x-intercept to be 7 ± 2. This suggests that, at the peak of an AP-evoked Ca2+

transient, there were ⇠ 7 Ca2+ ions bound to endogenous buffers, for each Ca2+ ion

that remained free.

In this figure, the data points for OGB-1 and OGB-6F appeared inconsistent of each

other. This was mainly because different sampling intervals were used to measure

their fluorescence intensities. More specifically, OGB-1 fluorescence was sampled

every 5 ms, whilst that of OGB-6F was acquired every 1� 3 ms. Due to the relatively

long sampling interval, the amplitudes of D[Ca2+]i measured with OGB-1 were most

likely smaller than the true peak amplitudes. This is supported by the fact that

the Ca2+ transients measured with OGB-6F reached a peak within 2 � 3 ms of the

AP onset. Such an underestimation of D[Ca2+]i would have produced values of
�
D[Ca2+]i

��1 that were larger than the true values. This, together with the fact that

the values measured with OGB-6F had more weight on the fit, caused the data points

of OGB-1 to lie above the regression line.

According to the single-compartment model, g can also be determined by plotting

the decay time constant of an AP-evoked Ca2+ transient against k
0
D (Fig. 3.1). As

described earlier, most of the measured Ca2+ transients decayed bi-exponentially.

However, the slow rather than the fast initial decay of these transients was

predominantly shaped by the activity of Ca2+ transporters (explained in Section

3.3.5). Therefore, to determine g, tslow was plotted against the incremental Ca2+

binding ratio of exogenous buffers during the slow decay phase
⇣⇣

k
0
D

⌘

slow

⌘
.

⇣
k
0
D

⌘

slow
was calculated based on Eq. 3.22, with [Ca2+]AP being the amplitude of

the slow decay component. Ca2+ transients with mono-exponential decays (20%)

were excluded from this plot.

Fig. 3.7B shows tslow as a function of
⇣

k
0
D

⌘

slow
. Again, each data point indicates the

average values of tslow and
⇣

k
0
D

⌘

slow
of Ca2+ transients measured with a different
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concentration of OGB-1 or OGB-6F. Extrapolation of the weighted regression line to
⇣

k
0
D

⌘

slow
= 0 yielded a y-intercept of 36 ± 4 ms, which was tslow of the unperturbed

Ca2+ transient (tslow,0). The slope of the regression line provided an estimate of gslow

of 0.60 ± 0.03 ms�1. kE estimated from the x-intercept was 21 ± 3, significantly larger

than that obtained from the plot of
�
D[Ca2+]i

��1 vs. k
0
D (pt = 0.002). This suggests

that a larger fraction of Ca2+ ions was bound to endogenous buffers during the slow

decay phase than at the peak of the Ca2+ transients.

To provide a deeper understanding of the mechanism(s) underlying the initial fast

decay, tfast was plotted as a function of k
0
D (Fig. 3.7C). Similar to tslow, tfast was

linearly dependent on k
0
D (pPr = 0.01). The slope of the weighted regression line

yielded an estimate of gfast of 10 ± 1 ms�1, a value more than 10-fold larger than

gslow. This suggests that, immediately after the peak of an intracellular Ca2+ rise, a

highly non-linear process took place and allowed Ca2+ to rapidly escape the imaged

boutons.

Fig. 3.7D shows the average time integral of the Ca2+ transients as a function of k
0
D.

The time integral of each transient was calculated from values obtained by fitting

its decay time course (that is, At for a mono-exponential fit and A1t1 + A2t2 for a

bi-exponential fit). Consistent with the fact that Ca2+ buffers only act as temporary

storage sites for Ca2+, the time integral was independent of k
0
D (pPr = 0.3). The

average time integral was 61 ± 5 µM·ms, which was similar to the ratio between the

estimated values of D[Ca2+]T and g (72 ± 6 µM·ms; Eq. 3.21). This is consistent with

the opposite roles of Ca2+ influx and sequestration in determining the dynamics of

an AP-evoked Ca2+ transient.

3.3.5 Blockade of SERCA prolonged the late but not the initial decay

The observed bi-exponential decay kinetics, together with the different estimates of

kE (Fig. 3.7, A vs. B), indicate that at least one of the assumptions underlying the

single-compartment model was violated in the imaged boutons. Multi-exponential
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decays, which have been reported in a variety of cells and cellular compartments,

can arise from buffer saturation (Tank et al., 1995), slowly binding Ca2+ buffers

(Lee et al., 2000a,b; Collin et al., 2005a; Muller et al., 2007), a non-linear rate of

Ca2+ sequestration (Regehr, 1997; Kim et al., 2005), or Ca2+-induced Ca2+ release

(CICR; Sankaranarayanan et al., 2016). However, the mechanism(s) underlying the bi-

exponential decay time course observed in nerve terminals of neocortical pyramidal

neurons is still unknown (layer 2/3; Koester and Sakmann, 2000). Here, I sought to

explain the decay kinetics of AP-evoked Ca2+ transients in synaptic boutons of layer

5 pyramidal neurons.

Whether CICR gave rise to the observed decay time course was first investigated.

Whilst all of the other factors accelerate [Ca2+]i decay immediately after an AP, a

delayed source of Ca2+ through CICR would oppose the action of Ca2+ transporters

and cause the late decay kinetics to deviate from the initial rate of decay. In

other words, if CICR were the principal factor underlying a bi-exponential decay,

the activity of Ca2+ transporters would mainly determine its initial phase. To

investigate this, Ca2+ transients evoked by single APs were measured in the presence

of cyclopiazonic acid (CPA), a blocker of SERCA pumps. It was hypothesised that,

if Ca2+ sequestration was the main mechanism underlying the initial decay phase,

an inhibition on the rate of Ca2+ sequestration through blockade of SERCA would

increase tfast of the Ca2+ transients.

Fig. 3.8A shows AP-evoked Ca2+ transients measured with OGB-6F (100 µM) in a

synaptic bouton, before and after 10 min application of CPA (25 µM; bath-applied;

red vs. blue, respectively). It can be seen that both the amplitude and the initial

decay time course were not considerably affected by CPA. However, CPA seemed to

prolong the late decay phase.

Figs. 3.8B-E summarise the effect of CPA on the amplitude and decay kinetics of

AP-evoked Ca2+ transients in 15 different boutons. Twelve of them (80%) had Ca2+

transients that always decayed bi-exponentially (pF  10�8). The decay time course

of Ca2+ transients measured in the remaining three boutons was bi-exponential in
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Figure 3.8: Blockade of SERCA pump prolonged the late but not the initial decay phase. (A)
Ca2+ transients evoked by an AP measured with OGB-6F (100 µM) in a synaptic bouton,
before (red) and after 10 min application of CPA (blue). Each trace is an average of 5 repeats.
Each decay time course was fitted with the sum of two distinct exponential functions (black
curves). (B-E) The peak amplitude of D[Ca2+]i, tfast, tslow, and amplitudefast before and after
CPA addition. n = 15 in (B) and 12 in (C-E). *** pt < 0.001.
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the control condition, but became mono-exponential after CPA addition. The decay

kinetics of these boutons were thus excluded in Figs. 3.8C-E. On average, CPA did

not significantly alter the peak amplitude of the Ca2+ transients (ppt = 0.09; 2.4 ± 0.2

vs. 2.1 ± 0.2 µM in control and CPA, respectively). It also did not affect amplitudefast

and tfast (ppt � 0.16; 55 ± 3 vs. 59 ± 2%, and 8 ± 1 ms in both conditions). However,

tslow increased by 55 ± 11% from 63 ± 5 to 93 ± 4 ms (ppt = 0.0006). These findings

suggest that SERCA contributed to Ca2+ sequestration and that the activity of Ca2+

transporters was not the main factor that determined the initial decay time course of

the Ca2+ transients. Accordingly, the observed bi-exponential decay was unlikely to

arise from CICR opposing the action of Ca2+ sequestration.

3.3.6 The decay kinetics did not speed up during repetitive stimulation

To assess the level of saturation of endogenous Ca2+ buffers, Ca2+ transients were

measured in response to a single AP and a train of 5 APs at 50 Hz. It was

hypothesised that, if endogenous Ca2+ buffers were significantly saturated, a larger

rise in [Ca2+]i during repetitive stimulation would increase the degree of saturation,

thereby yielding Ca2+ transients with faster decay kinetics and larger D[Ca2+]i per AP

(Tank et al., 1995; Jackson and Redman, 2003). The low-affinity Ca2+ indicator Fluo-

4FF (500 µM; Kd = 20± 2 µM) was used for this set of experiments to avoid saturation

of the indicator, which would also speed up the decay kinetics. However, as [Ca2+]i

in synaptic boutons could not be raised to a level sufficient for the measurement

of (DF/F0)max of Fluo-4FF (� 100 µM), D[Ca2+]i could not be calculated from the

corresponding DF/F0.

Fig. 3.9A displays Fluo-4FF fluorescence transients measured in a synaptic bouton in

response to a single AP and a train of 5 APs at 50 Hz (left and middle, respectively).

Similar to Ca2+ transients measured with OGB-1 and OGB-6F, the decay time course

of these fluorescence transients was bi-exponential (pF  10�13). A peak-scaled

comparison of the transient evoked by the single AP and that evoked by the 5th
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Figure 3.9: DF/F0 measured with Fluo-4FF during repetitive stimulation. (A) DF/F0 of Fluo-
4FF (500 µM) measured in a synaptic bouton in response to an AP (left) and 5 APs evoked
at 50 Hz (middle). Each trace is an average of 2 repeats. Each decay time course was fitted
with the sum of two exponential functions (black curves). For easy comparison of the decay
kinetics, the transient evoked by a single AP was peak-scaled to match that evoked by the
5th AP in the train (right); the respective bi-exponential fits are also shown. (B-D) tfast, tslow,
and amplitudefast after a single AP vs. the 5th AP. (E) The average DF/F0 per AP, plotted as a
function of the AP number. n = 13 in (B-E). * pt < 0.05; *** pt < 0.001.
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AP in the train shows that, in contrast to the above hypothesis, the decay time course

slowed down during repetitive stimulation (Fig. 3.9A, right).

Figs. 3.9B-D summarise the change in the decay kinetics of Fluo-4FF fluorescence

after the AP train (n = 13). Both tfast and tslow increased after the 5th AP, whilst

amplitudefast became smaller (pt  0.04; tfast from 10 ± 1 to 20 ± 2 ms; tslow from

94 ± 10 to 139 ± 18 ms; amplitudefast from 64 ± 2 to 53 ± 5%). In addition, DF/F0

per AP did not change during repetitive stimulation (pPr = 0.12; Fig. 3.9E). Together,

these findings suggest that endogenous Ca2+ buffers were not significantly saturated

in the measured range of [Ca2+]i.

Although Fluo-4FF was used in this set of experiments to avoid indicator saturation,

the fact that D[Ca2+]i could not be calculated from the corresponding DF/F0 could

potentially be problematic. This is because, if [Ca2+]i upon stimulation approached

its Kd value, the fluorescence change of Fluo-4FF would no longer be a linear function

of D[Ca2+]i. In other words, DF would become smaller for the same D[Ca2+]i and

the decay time course of the fluorescence transient would be prolonged compared to

that of the underlying Ca2+ transient. These non-linear changes in the fluorescence

transient might have masked a potential increase in D[Ca2+]i per AP and a more rapid

decay time course caused by buffer saturation. However, it can be estimated that, in

the presence of 500 µM Fluo-4FF (which yielded a kD of ⇠ 25, slightly larger than

k
0
D of 200 µM OGB-6F), a single AP raised [Ca2+]i by ⇠ 2 µM. The peak amplitude

of DF/F0 in response to a train of 5 APs evoked at 50 Hz was 2.2 ± 0.2 times that

evoked by a single AP. Therefore, [Ca2+]i immediately after the AP train would only

be around ⇠ 5 µM, a value four-fold smaller than the Kd value of Fluo-4FF (20 ± 2

µM; Table 2.4). Accordingly, the measured fluorescence transients of Fluo-4FF were

most likely proportional to the intracellular Ca2+ elevations.

To consolidate the idea that endogenous Ca2+ buffers were not saturated by D[Ca2+]i

evoked by an AP, [Ca2+]i during repetitive stimulation was measured with OGB-

6F (500 µM) so that D[Ca2+]i could be calculated from the corresponding DF/F0.

Fig. 3.10A displays Ca2+ transients measured in a synaptic bouton in response to
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Figure 3.10: Ca2+ transients measured with OGB-6F during repetitive stimulation. (A) Ca2+

transients measured with OGB-6F (500 µM) in a synaptic bouton in response to an AP (left)
and 10 APs evoked at 15 Hz (middle). Each trace is an average of 3 repeats. Each decay
time course was fitted with the sum of two exponential functions (black curves). For easy
comparison of the decay kinetics, the transient evoked by a single AP was peak-scaled to
match that evoked by the 10th AP in the train (right); the respective bi-exponential fits are
also shown. (B-D) tfast, tslow, and amplitudefast after a single AP vs. the 10th AP. (E) The
average D[Ca2+]i per AP, plotted as a function of the AP number. This plot was fitted with
linear regression. n = 12 in (B-E).
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a single AP and a train of 10 APs evoked at 15 Hz (left and middle, respectively).

Again, following both types of stimulation, [Ca2+]i still decayed bi-exponentially

(pF  10�4). After the transient evoked by the single AP was peak-scaled to match

that evoked by the 10th AP in the 15 Hz train, a slight broadening of the decay time

course during repetitive stimulation was also revealed (Fig. 3.10A, right).

Figs. 3.10B-D compare the average decay kinetics of [Ca2+]i following a single AP

and the 15 Hz train (n = 12). Both tfast and amplitudefast did not change after the AP

train (pt � 0.08; tfast: 23 ± 5 vs. 31 ± 5 ms; amplitudefast: 53 ± 3% vs. 48 ± 2% after

a single AP and 10 APs, respectively). However, tslow increased by 48 ± 12% from

164 ± 15 to 234 ± 19 ms (pt = 0.002). D[Ca2+]i per AP also increased during the train,

at a rate of 45 ± 16 nM/AP (pPr = 0.02; Fig. 3.10E).

These findings lend further support to the conclusion above, that is, in synaptic

boutons of layer 5 pyramidal neurons, D[Ca2+]i evoked by a single AP did not

significantly saturate endogenous Ca2+ buffers. Together with the prolongation of

Fluo-4FF fluorescence transients following repetitive stimulation, they also argue

against a speed up in the activity of Ca2+ transporters at a higher [Ca2+]i (or the

presence of a transporter with a rate supralinearly dependent on [Ca2+]i). Therefore,

neither buffer saturation nor a non-linear rate of Ca2+ sequestration was the main

cause of the observed bi-exponential decays.

3.3.7 Diffusion of Ca2+ into the axon sped up the initial decay

Due to the small sizes of the imaged boutons and the fact that most, if not all

of them, were boutons en passant, it was hypothesised that diffusion into the axon

allowed Ca2+ to rapidly escape, thereby speeding up the initial decay time course

of [Ca2+]i within the bouton. To investigate the role of diffusion, a 3D reaction-

diffusion model of a bouton, with an axon attached to it, was created (Fig. 3.11A). The

bouton was modelled as a sphere, with a radius of 0.5 µm. The axon was modelled

as a cylinder, with a diameter varied between 0.1, 0.2, and 0.4 µm. These values
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Figure 3.11: Diffusion of Ca2+ into the axon sped up the initial decay of Ca2+ transients.
(A) A visualisation of the modelled bouton. (B) The simulated Ca2+ current. (C) D[Ca2+]i
in the modelled bouton, with the rate of decay determined solely by diffusion of Ca2+ into
the axon. The axon diameter was 0.1 (green), 0.2 (black), or 0.4 µm (blue). Dashed line
indicates D[Ca2+]i in a bouton with no connecting axon. (D) The rate of decay, obtained by
differentiating the respective traces in C. (E) D[Ca2+]i in a bouton with an axon diameter of
0.2 µm (solid), or with no connecting axon (dashed), without or with Ca2+ transport (black
vs. pink). (F) The corresponding rate of decay, plotted against time or D[Ca2+]i (inset). Plots
in inset were fitted with a linear regression.

represent the range of axon diameters of layer 5 pyramidal neurons (minimum, mean,

and maximum, respectively; Rollenhagen and Lübke, personal communication). To

understand how diffusion into the axon shaped the dynamics of D[Ca2+]i within the

bouton, an additional model with only the bouton was included. In these 3D models,

Ca2+ was buffered by an endogenous fixed buffer and a pool of exogenous mobile

buffers. The concentrations, Kd, Ca2+ binding and unbinding rates, and diffusion

coefficients of these buffers were derived from the experimental values or obtained

from the literature (Table 3.3). Following an AP-evoked Ca2+ current that increased

[Ca2+]T within the bouton by 50 µM (Fig. 3.11B), Ca2+ was extruded by a pump or

sequestered by a homogeneously distributed uptake mechanism. Both mechanisms

operated at a rate linearly dependent on the local D[Ca2+]i. The corresponding rate

constants (gextrusion and guptake) were approximated based on the decay time courses

measured with and without CPA (Section 3.2.8.2).

Figs. 3.11C-D demonstrate the effect of diffusion on the amplitude and time course

of single AP-evoked Ca2+ transients, simulated in the presence of 450 µM OGB-6F.

In this set of simulations, Ca2+ within the bouton could only escape by diffusion into

the axon; both membrane transport and intracellular uptake were zero. As expected,

Ca2+ could not escape if there was no connecting axon (dashed line), and the Ca2+

transients decayed more rapidly with increasing axon diameters: 0.1 (green), 0.2

(black), and 0.4 µm (blue). The escape of Ca2+ was particularly rapid within ⇠ 10

ms after the AP onset, when the gradient of Ca2+ between the bouton and the axon

was high. After this time, the rate of decay due to diffusion reduced to  40% of

the maximal rate. This is consistent with the fact that the rate of change by diffusion
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decreases inversely with time (Section 3.2.7.3). As a result, the rate of Ca2+ decay

was not a linear function of D[Ca2+]i, causing the decay time course to deviate from

a single exponential function (Fig. 3.11C).

In Fig. 3.11E, single AP-evoked Ca2+ transients, simulated in the absence of

membrane pumps and intracellular uptake, were compared to those simulated in

their presence (black vs. pink). The axon was 0.2 µm in diameter (solid) or non-

existent (dashed). Expectedly, the activity of Ca2+ transporters increased the rate

of decay of [Ca2+]i (Fig. 3.11F). Without a connecting axon, the maximal rate of

decay increased from 0 to 7 nM·ms�1 (in magnitude). With an axon diameter of

0.2 µm, it increased from 11 to 17 nM·ms�1. Therefore, diffusion of Ca2+ into the

axon accounted for ⇠ 11/17 or 60% of the initial Ca2+ removal. This shows that, even

when Ca2+ sequestration mechanisms were active, the rate of decay immediately

after the AP onset was still significantly determined by diffusion into the axon. This

is consistent with the fact that the maximal rate of decay caused solely by Ca2+

transporters was smaller than that caused solely by diffusion (7 vs. 11 nM·ms�1

in magnitude, respectively). Accordingly, in the presence of exogenous buffers, the

activity of Ca2+ transporters was not fast enough to capture all Ca2+ ions and prevent

them from escaping into the axon. As a significant fraction of Ca2+ ions were able to

diffuse out of the bouton, the rate of decay was non-linearly dependent on D[Ca2+]i

(filled circles in Fig. 3.11F inset). In contrast, without a connecting axon, the rate

of Ca2+ removal was always linearly dependent on D[Ca2+]i (open circles). Thus,

diffusion of Ca2+ out of the imaged boutons was likely the main factor that caused

the Ca2+ transients to deviate from a mono-exponential decay.

Fig. 3.11F (inset) supports the finding that blockade of SERCA prolonged the late,

but not the initial decay phase of single AP-evoked Ca2+ transients. As the extent

to which Ca2+ diffused into the axon decreased with time, the contribution of Ca2+

transporters became more prominent (Section 3.2.8.2). Consequently, once D[Ca2+]i

decreased to ⇠ 40% of the peak amplitude, the rate of decay was a linear function of

D[Ca2+]i. The slope of this linear relationship (solid line) was similar to that in the

absence of a connecting axon (dashed line). This indicates that, at D[Ca2+]i below
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Figure 3.12: Simulated Ca2+ transients evoked by a single AP. In each sub-figure, the
averaged single AP-evoked Ca2+ transient, measured with a different concentration OGB-
1 (green) or OGB-6F (orange), was superimposed with the corresponding transients obtained
from 3D models of different axon diameters: 0.1 (dashed, outer), 0.2 (solid), or 0.4 µm
(dashed, inner). Shaded areas represent mean ± 1 SD.
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⇠ 40% of the peak amplitude, the rate of Ca2+ removal was mainly determined by

Ca2+ sequestration mechanisms.

Fig. 3.12 compares single AP-evoked Ca2+ transients, obtained from the 3D models

of different axon diameters, to those measured in synaptic boutons of layer 5

pyramidal neurons (Fig. 3.6A). In each sub-figure, data were obtained with a

different concentration of OGB-1 (green) or OGB-6F (orange), with the simulated data

indicating the volume-averaged D[Ca2+]i within the modelled bouton (black). As the

axon diameter increased from 0.1 to 0.4 µm, the peak amplitude of the simulated

Ca2+ transients decreased, whilst their initial decay kinetics sped up. Even with a

very thin axon of 0.1 µm in diameter (outer dashed trace), the decay time course of

the simulated Ca2+ transients did not become mono-exponential. However, all of

the measured time courses were better reproduced when the modelled axon had

a diameter of 0.2 or 0.4 µm (solid or inner dashed trace, respectively). This is

consistent with the fact that the imaged boutons were mostly from 1st to 2nd order

axon collaterals. Therefore, the connecting axons were likely to be � 0.2 µm in

diameter. For all indicator concentrations used, the dynamics of the simulated and

measured transients were remarkably similar to each other, even though the values of

gextrusion and guptake were approximated based solely on tslow measured with 100 µM

OGB-6F in the patch pipette. This emphasises the consistency between the measured

Ca2+ transients. Together, the results in Figs. 3.11 and 3.12 suggest that diffusion of

Ca2+ into the axon played a major role in shaping the decay kinetics of AP-evoked

Ca2+ transients in the imaged boutons.

3.3.8 Evaluation of model parameters and the single-compartment model

The simulated Ca2+ transients (Fig. 3.12) were analysed based on the single-

compartment model to assess the appropriateness of the parameters used in the

3D models (Table 3.3). This also allowed an examination of whether the single-

compartment model provided accurate estimates of the unperturbed Ca2+ dynamics

in a small bouton en passant. In each of Figs. 3.13A-D, the experimentally measured
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Figure 3.13: Analysis of the simulated Ca2+ transients based on the single-compartment
model. In each plot, simulation results, obtained with an axon diameter of 0.2 (black circles),
0.1 or 0.4 µm (dashed lines), were superimposed with experimental data (red).

values (red; Fig. 3.7) were superimposed with simulation results. Black circles

represent simulated data obtained with an axon diameter of 0.2 µm, whilst dashed

black lines indicate linear fits to the data obtained with an axon diameter of 0.1 or

0.4 µm.

Unexpectedly, the values of kE and D[Ca2+]i,0 obtained from the plot of
�
D[Ca2+]i

��1

vs. k
0
D were rather insensitive to the variation in axon diameters (Fig. 3.13A). With a

Kd value of 100 µM and a total concentration of 1 mM, the modelled endogenous

buffer provided a maximum kE value of [E]T/Kd = 10. Therefore, following a

presynaptic Ca2+ current that yielded a D[Ca2+]T of 50 µM, the peak amplitude

of D[Ca2+]i,0 in the modelled bouton was approximately 50/(10+1) or 4.5 µM. In
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agreement with this, for an axon diameter of 0.2 µm, a linear fit to the plot of
�
D[Ca2+]i

��1 vs. k
0
D yielded a kE value of 9 ± 1, and a D[Ca2+]i,0 value of 4.2 ±

0.4 µM. These values were not different from those obtained with an axon diameter

of 0.1 or 0.4 µm, indicating that diffusion of Ca2+ into the axon did not significantly

reduce the peak amplitude of AP-evoked Ca2+ transients in the absence of exogenous

buffers. They were also in the range of those estimated from the measured Ca2+

transients (7 ± 2 and 5.3 ± 1.3 µM, respectively; red line). These findings suggest

that, in the range of axon diameters of layer 5 pyramidal neurons and in the absence

of endogenous buffer saturation, the single-compartment model provided accurate

estimates of kE and D[Ca2+]i,0.

In contrast, the single-compartment model provided only a rough estimate of

D[Ca2+]T evoked by a single AP. Despite a constant presynaptic Ca2+ current, the

value of D[Ca2+]T, obtained from the slope of the plot of
�
D[Ca2+]i

��1 vs. k
0
D, was 47

± 1, 44 ± 1, and 37 ± 1 µM for an axon diameter of 0.1, 0.2, and 0.4 µM, respectively

(Fig. 3.13A). Such an inverse relationship between the estimated value of D[Ca2+]T

and the axon diameter was most likely because, the thicker the axon, the more Ca2+

ions escaped from the bouton before the spatially averaged [Ca2+]i reached its peak

(Fig. 3.12). However, the fraction of Ca2+ ions that escaped decreased with increasing

concentrations of OGB-1 or OGB-6F (due to a speed up in spatial equilibration and

an increase in the absolute binding rate, or kon ⇥ [D], of the dye). This means that,

with a larger value of k
0
D, the relative reduction in D[Ca2+]i due to an increase in

axon diameter became smaller, making the corresponding difference in
�
D[Ca2+]i

��1

larger. Consequently, the slope of the plot of
�
D[Ca2+]i

��1 vs. k
0
D increased with

increasing axon diameters, yielding smaller estimates of D[Ca2+]T (= slope�1).

Surprisingly, the value of D[Ca2+]T estimated with the mean axon diameter (0.2 µm)

was the same as that obtained with the measured Ca2+ transients (44 ± 1 vs. 43 ± 3

µM, respectively). This suggests that the value of D[Ca2+]T provided by the single-

compartment model was an underestimate of the true D[Ca2+]T evoked by a single

AP, which was likely ⇠ 50 µM in these boutons.

Similarly, the single-compartment model provided only a rough estimate of g. This
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is because the model does not take into account the fact that the activity of a

Ca2+ transporter depends on the local D[Ca2+]i, not the volume-averaged D[Ca2+]i.

Furthermore, diffusion into the axon, which contributed significantly to the total

Ca2+ removal, caused the rate of decay to be non-linearly dependent on D[Ca2+]i

(Fig. 3.11F). This violated one of the assumptions of the single-compartment model.

As a result, the values of gextrusion and guptake had to be approximated based on the

measured values of tslow in the control condition and after addition of CPA, instead

of the estimated value of gslow (Section 3.2.8.2). Consistent with the remarkable

similarity in the decay time courses between the simulated and measured transients

(Fig. 3.12), the plot of tslow vs.
⇣

k
0
D

⌘

slow
obtained with the measured transients

(red) lied reasonably well within the grey area defined by the simulated values (Fig.

3.13B). A linear fit to the simulated data, with the mean axon diameter (0.2 µm;

black circles), yielded a gslow of 0.64 ± 0.02 ms�1 and a tslow,0 of 38 ± 7 ms, both of

which were similar to those obtained with the measured Ca2+ transients (0.60 ± 0.03

ms�1 and 36 ± 4 ms, respectively; red line). Interestingly, the value of kE estimated

from the x-intercept of this plot (23 ± 5) was larger than that obtained from the

corresponding plot of
�
D[Ca2+]i

��1 vs. k
0
D (9 ± 1), but in the range of that obtained

with the measured transients (21 ± 3). This finding further supports the idea that

diffusion of Ca2+ into the axon was the main mechanism that caused the measured

transients to deviate from the prediction of the single-compartment model.

The plot of tfast vs. k
0
D obtained with the measured Ca2+ transients did not lie as well

within the grey area defined by the simulated values (Fig. 3.13C). This was likely

because, compared to tslow, tfast was measured based on a smaller number of data

points, and thus, more prone to random sampling. The values of tfast were also much

more sensitive to the variation in axon diameters, consistent with the rapid rate of

diffusion during the initial decay phase (Figs. 3.11C-F). A linear fit to the simulated

data, with the mean axon diameter, yielded a value of gfast roughly in the range of

that obtained with the measured transients (5 ± 1 vs. 10 ± 1 ms�1, respectively).

Similar to tfast, there was a large variation in the time integral of a single AP-

evoked Ca2+ transient between axon diameters of 0.1 and 0.4 µm (Fig. 3.13D). Even
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with the same diameter, Â Aiti decreased considerably with increasing values of

k
0
D. These phenomena likely arose from the diffusion of Ca2+, particularly those

bound to buffer molecules, out of the bouton. The thicker the axon or the higher the

concentration of mobile buffers, the more Ca2+ ions were carried away and remained

“unseen” by sequestration mechanisms that operated within the bouton. In contrast,

without a connecting axon, Ca2+ is only temporarily “stored” by buffers, and all of

the ions that enter the bouton during an AP will be taken up and removed by a

transporter. Therefore, Â Aiti is independent of k
0
D in a truly single compartment,

where diffusion is negligible. The lack of a linear correlation between the measured

values of Â Aiti and k
0
D (pPr = 0.3) was likely due to variations in the geometry of the

imaged boutons and their connecting axons.

Together, the results in Figs. 3.12 and 3.13 show that the parameters used in the

3D reaction-diffusion models produced quite accurate predictions of single AP-

evoked Ca2+ transients in synaptic boutons of layer 5 pyramidal neurons. They also

suggest that, in the absence of endogenous buffer saturation, the single-compartment

model provided accurate estimates of kE and D[Ca2+]i,0, but only rough estimates of

D[Ca2+]T and g in small boutons.

3.3.9 Modelling Ca2+ transients in an unperturbed bouton

As the 3D model with a connecting axon quite accurately reproduced the spatially

averaged [Ca2+]i in the presence of exogenous buffers, I used it to simulate Ca2+

dynamics in an unperturbed bouton. Fig. 3.14A displays simulated Ca2+ transients,

evoked by a single AP, in the absence of exogenous buffers. Again, the axon diameter

was varied between 0.1 (green), 0.2 (black), and 0.4 µm (blue). Consistent with the

estimate of D[Ca2+]i,0 based on the single-compartment model (4.2 ± 0.4 µM; Fig.

3.13A), the peak amplitude of the Ca2+ transients was 4.6 µM, independent of the

axon diameter. This supports the use of the single-compartment model to estimate

D[Ca2+]i,0 in the imaged boutons.
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Figure 3.14: Single AP-evoked Ca2+ transients in an unperturbed bouton. (A-B) Simulated
Ca2+ transients evoked by a single AP in the absence of exogenous buffers. The connecting
axon was 0.1 (green), 0.2 (black), or 0.4 µm (blue) in diameter. Dashed lines in B indicate
mono-exponential fits to the decay time courses between 30 and 50 ms, extrapolated back
to the time of peak amplitude. (C-D) The rate of decay of D[Ca2+]i in an unperturbed
bouton with an axon diameter of 0.2 µm (solid/filled circles), or with no connecting axon
(dashed/open circles), plotted against time or D[Ca2+]i. Solid line in D indicates a linear fit
to the values at D[Ca2+]i < 2 µM.
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Again, the decay time course of the Ca2+ transients was not truly mono-exponential

(Fig. 3.14B). However, based on the difference between the maximal rates of decay

with a 0.2 µm thick axon vs. without an axon (Fig. 3.14C; solid vs. dashed; �280

vs. �260 nM·ms�1, respectively), it was estimated that diffusion of Ca2+ into the

axon accounted for only ⇠ 7% of the initial Ca2+ clearance. Thus, the relative

contribution of diffusion was much smaller than that in the presence of exogenous

buffers (⇠ 60%; Fig. 3.11F). This was expected because exogenous buffers competed

with Ca2+ transporters for Ca2+ binding, thereby decreasing the effective rate of

Ca2+ sequestration. Without them, the total Ca2+ binding ratio of all buffers was

much reduced (kE + kD = 9 vs. 65 in the presence of 450 µM OGB-6F). This allowed

Ca2+ transporters, operated within the bouton, to capture the majority of Ca2+ ions

and prevent them from escaping into the axon. Consequently, the rate of decay

deviated less from a linear relationship with D[Ca2+]i (Fig. 3.14D; filled circles). A

fit to the linear part of this plot yielded a slope of 0.056 ± 0.001 ms�1 (solid line;

for D[Ca2+]i  2 µM). Multiplying this by a factor of 11, which was the maximum

value of (kE + 1), gave a value of 0.61 ± 0.01 ms�1 for the rate constant g of Ca2+

sequestration (Eq. 3.19). As this is similar to the value of gslow obtained from the

plot of tslow vs.
⇣

k
0
D

⌘

slow
(0.64 ± 0.02 ms�1; Fig. 3.13B), the estimated gslow mainly

represents the action of Ca2+ transporters on the volume-averaged D[Ca2+]i.

Interestingly, even without a connecting axon (Fig. 3.14D; open circles), the

relationship between the initial rate of decay and D[Ca2+]i still deviated slightly from

linearity. This arose from the low apparent mobility of Ca2+ in the presence of only

fixed endogenous buffers. The apparent diffusion coefficient of Ca2+ (Dapp) was ⇠

five-fold smaller in the absence of exogenous buffers than in their presence (14 vs.

60 � 75 µm2s�1; data not shown; consistent with Allbritton et al., 1992 and Gabso

et al., 1997). As a result of this, the Ca2+ gradient took longer to dissipate after an

AP-evoked Ca2+ influx (⇠ 3 vs. < 1 ms; Eq. 3.23). Before spatial homogeneity was

achieved, the activity of membrane pumps and intracellular uptake was non-linearly

dependent on the volume-averaged D[Ca2+]i, even though it was a linear function of

the local D[Ca2+]i.
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A bi-exponential fit to the decay time course of the simulated Ca2+ transient, with

the mean axon diameter, yielded a tfast of 6 ms and a tslow of 19 ms (black trace

in Fig. 3.13A). The difference between these values and those estimated based on

the single-compartment model (16 ± 2 and 38 ± 7 ms, respectively; Figs. 3.13B-C)

was most likely a result of the non-linear relationship between the rate of decay by

diffusion and D[Ca2+]i. Regardless, both analyses suggest that, in an unperturbed

synaptic bouton of layer 5 pyramidal neurons, [Ca2+]i was rapidly removed and thus

returned to the resting level within 100 ms following a single AP.

3.3.10 CPA, coupled with a train of APs, did not affect D[Ca2+]i amplitude

In synaptic boutons of cultured CA3 pyramidal neurons, blockade of CICR by either

ryanodine or CPA (20 and 30 µM, respectively) reduced the amplitude of Ca2+

transients evoked by a single AP by 30% (Emptage et al., 2001). These blockers

interfere with intracellular Ca2+ release through different mechanisms: whilst a

high concentration of ryanodine directly inhibits the RyR-dependent store release,

prolonged application of the SERCA pump blocker CPA causes depletion of Ca2+

stores, which are thought to continuously leak Ca2+. However, in this thesis, bath

application of CPA for 10 min did not affect the amplitude of Ca2+ transients evoked

by a single AP (Fig. 3.8).

One reason for the lack of effect of CPA on the amplitude of the measured Ca2+

transients could be the use of the relatively low affinity Ca2+ indicator OGB-6F.

The contribution of CICR to AP-evoked Ca2+ transients described by Emptage et al.

(2001) was measured with OGB-1, the Ca2+ binding affinity of which is about 25-

fold higher than that of OGB-6F (Table 2.4). Therefore, the role of presynaptic Ca2+

stores in shaping AP-evoked Ca2+ transients was re-assessed with Cal-520 (200 µM),

a BAPTA-based Ca2+ indicator with a Kd value in the range of D[Ca2+]i caused by a

single AP (Table 2.4). Cal-520 was preferred to OGB-1 as the latter was significantly

saturated following a single AP (see Section 3.3.3). In addition, with a higher signal-

to-noise ratio and a larger dynamic range than OGB-1 (Tada et al., 2014, and Table
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2.4, respectively), Cal-520 was potentially more suitable to the measurement of small

changes in the amplitude of Ca2+ transients.

Fig. 3.15A shows the experimental protocol for measuring the extent to which CICR

contributed to Ca2+ transients evoked by a single AP. CPA (25 µM) was bath-applied

for 10 min to prevent refilling of intracellular Ca2+ stores. Additionally, a train of 200

APs was evoked at 10 Hz at 8 min after CPA addition to promote store emptying.

Control experiments in which CPA was not added were also performed to gauge the

stability of the evoked Ca2+ transients. In some experiments, DMSO, which was used

as the solvent for the CPA stock solution, was added to the superfusate to check if it

affected the Ca2+ response. As the data from control experiments with and without

DMSO were not different from each other (n = 7 vs. 6; pt � 0.13), they were pooled.

Fig. 3.15B (left) displays Cal-520 fluorescence transients measured in a control

experiment with DMSO application. In this synaptic bouton, addition of DMSO

together with a train of 200 APs did not considerably affect the amplitude or decay

time course of DF/F0 evoked by an AP. In contrast, in another bouton to which CPA

was applied, the amplitude of DF/F0 was reduced and its decay time course prolonged

(Fig. 3.15B, right). As (DF/F0)max of Cal-520 was not measured in these experiments,

D[Ca2+]i was not be calculated from the corresponding DF/F0.

Figs. 3.15C-G summarise the effect of CPA, together with the 10 Hz train of APs,

on the amplitude and decay kinetics of DF/F0 of Cal-520. In the set of control

experiments (n = 13), the decay kinetics of the fluorescence transients never changed:

11 boutons (85%) had fluorescence transients that always decayed bi-exponentially

(pF  10�10), and the remaining two boutons had transients that always decayed

mono-exponentially. In the set of experiments with CPA (n = 11), the decay time

course of fluorescence transients measured in one bouton was bi-exponential before

and mono-exponential after CPA addition. Except one with mono-exponential

decay kinetics all throughout, the remaining nine boutons (82%) always had bi-

exponential decay kinetics (pF  10�9). As boutons with mono-exponential decays

were excluded from Figs. 3.15D-F, the amplitude-weighted decay time constants
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Figure 3.15: Addition of CPA together with a train of APs did not affect the amplitude of
DF/F0 of Cal-520 following an AP. (A) Experimental protocol to assess the contribution of
presynaptic Ca2+ stores to AP-evoked Ca2+ transients. (B) DF/F0 evoked by single APs in
two different boutons before (green) and after 10 min of DMSO or CPA application (25 µM;
red and blue, respectively). Each trace is an average of 3 � 4 repeats, with decay time course
fitted with the sum of two exponential functions (black curves). (C-G) The average change in
peak amplitude, tfast, tslow, amplitudefast, and tw in control experiments (red; n = 13) and
after addition of CPA (blue; n = 11).
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(tw) of all fluorescence transients were plotted in Fig. 3.15G so that the extent to

which CPA affected the decay kinetics in all boutons could be assessed (for a mono-

exponential decay, tw = t).

On average, after 10 min of solution exchange (with or without DMSO, but no

CPA), and a train of 200 APs at 10 Hz, the peak amplitude of DF/F0 evoked by an

AP decreased by 9.5 ± 3.0%, from 2.2 ± 0.2 to 2.0 ± 0.2 (ppt = 0.001), whilst its

tfast, amplitudefast, tslow, and tw were all unchanged (ppt � 0.3). Addition of CPA

increased tslow by 77 ± 27%, from 139 ± 12 to 230 ± 21 ms (ppt = 0.004; control

vs. CPA experiments: pt= 0.04). tw was also increased by 81 ± 20%, from 82 ± 5

to 141 ± 11 ms (ppt = 0.0002; control vs. CPA experiments: pt= 0.003). However,

although the peak amplitude of DF/F0 decreased after CPA addition (ppt = 0.007; from

2.0 ± 0.3 to 1.6 ± 0.2), this reduction was not different from that observed in control

experiments (pt = 0.2). CPA also did not affect tfast and amplitudefast (ppt � 0.09;

control vs. CPA experiments: pt � 0.3). These findings suggest several possibilities.

First, presynaptic Ca2+ stores might have been insufficiently emptied. Second, the

contribution of store release to Ca2+ transients evoked by single APs was relatively

small (expected to be ⇠ 10%; see Discussion) and might not be readily resolved by

the experimental design and tools in this study.

It should be noted that, although the baseline fluorescence (F0) of Cal-520 increased

by 13 ± 5% after CPA application (ppt = 0.03), this increase was not different from

that seen in control experiments (12 ± 4%; pt = 0.9). In another set of experiments, F0

of OGB-1 (160 µM) was also unchanged after 10 min of CPA application (n = 6; ppt

= 0.4; data not shown). This is in contrast to studies in synaptic boutons of cultured

CA3 pyramidal neurons and hippocampal mossy fibres, in which blockade of SERCA

caused a significant increase in F0 of OGB-1 (Emptage et al., 2001; Scott and Rusakov,

2006).

3.3.11 [Ca2+]i summed supralinearly during high-frequency stimulation

It remains controversial whether CICR contributes to the presynaptic Ca2+ dynamics

following a single AP. Whilst blockade of intracellular Ca2+ release was found
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to reduce D[Ca2+]i evoked by a single AP in synaptic boutons of cultured CA3

pyramidal neurons (Emptage et al., 2001), it had no effect on the peak amplitude

of DF/F0 evoked by a short extracellular stimulus in parallel fibre to Purkinje

cell, hippocampal associational-commissural, mossy fibre, and Schaffer collateral

synapses (Carter et al., 2002). In fact, most studies that provide evidence for CICR

in presynaptic terminals only measured the extent to which store release augmented

D[Ca2+]i caused by repetitive stimulation (� 4 brief stimuli evoked at � 20 Hz; Llano

et al., 2000; Liang et al., 2002; Scott and Rusakov, 2006). Thus, the build-up of [Ca2+]i

during trains of APs was characterised to find evidence for CICR in synaptic boutons

of layer 5 pyramidal neurons.

Fig. 3.16A displays D[Ca2+]i in a bouton in response to a single AP, and 2 s long

trains of APs evoked at 10 � 40 Hz. In this set of experiments, the low affinity Ca2+

indicator OGB-6F (100 µM) was used to minimise dye saturation but still allow the

calculation of [Ca2+]i. As the fluorescence of OGB-6F was sampled at 50 Hz during

these AP trains, the peak amplitude of D[Ca2+]i associated with individual APs was

not sampled. It can be seen that, during the AP trains at 10 and 20 Hz, a steady state

was reached within 1 s of the first AP. During this state, [Ca2+]i fluctuated around a

plateau level (black lines), which was dependent on the AP frequency. In contrast,

[Ca2+]i in this bouton never reached a steady state during the 2 s long trains of APs

at 30 and 40 Hz, but kept increasing with the stimulus number.

Fig. 3.16B shows the average intracellular Ca2+ elevations pooled from 10 different

boutons. Consistent with previous observations, the average Ca2+ transient evoked

by a single AP decayed bi-exponentially (pF = 9⇥ 10�8; tfast = 6± 1 ms; tslow = 58± 3

ms; amplitudefast = 50 ± 7%). Similarly, the decay kinetics of all Ca2+ elevations

evoked by repetitive stimulation, except those at 12.5 and 40 Hz (pF � 0.06; t =

122 and 113 ms, respectively), were bi-exponential (pF  0.03; tfast from 40 to 110

ms; tslow from 350 to 860 ms; amplitudefast from 72% to 91%). However, the decay

time course after the AP trains was longer than that in response to a single AP (Fig.

3.16C; coloured vs. black, respectively). This could have been caused by a number

of factors, including the longer sampling interval (20 vs. 1.5 ms, respectively), a
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Figure 3.16: Summation of [Ca2+]i during 2 s long trains of APs. (A) D[Ca2+]i in a synaptic
bouton in response to a single AP, and a train of APs evoked at 10 � 40 Hz. Each trace is an
average of 2 � 3 repeats, measured with OGB-6F (100 µM). The decay of the Ca2+ transient
evoked by an AP was fitted with the sum of two exponential functions. Black lines indicate
the average [Ca2+]i during the last 200 ms of stimulation. (B) The average D[Ca2+]i from
10 boutons. Each decay time course was fitted with the sum of two exponential functions
(1 AP, and 10 � 30 Hz), or a single exponential function (40 Hz). The lower envelope of
D[Ca2+]i during AP trains was fitted with an exponential function (10 � 20 Hz) or the sum
of an exponential function and a linear function (30 � 40 Hz). (C) Overlay of the decay
time courses of the average Ca2+ elevations in response to a single AP (black), or a 2 s long
train evoked at 10 (red), 20 (green), or 40 Hz (blue). Traces were aligned at the time of
the last AP, with peak amplitudes scaled to the same value. (D) trise plotted against AP
frequency. Dashed line represents the average trise. (E) The average D[Ca2+]i during the last
200 ms of stimulation (filled circles), and the predicted D[Ca2+]i calculated based on Eq. 3.31
(open circles), plotted against AP frequency. Plots were fitted with either a power function
(solid) or a regression line (dashed). (F) The average D[Ca2+]i during the last 200 ms of
stimulation, plotted against the predicted values. This plot was fitted with a linear function
(solid), constrained to go through (0,0). Each colour indicates a different AP frequency: 10
(red), 12.5 (orange), 15 (pink), 17.5 (yellow), 20 (green), 30 (light blue), 40 (dark blue), and 50
Hz (purple). Dashed line represents the line of identity.

reduction in the rate at which Ca2+ diffused into the axons (due to decreased spatial

gradients during repetitive stimulation), saturation of Ca2+ transporters, and/or

CICR. Nonetheless, the decay time course after the AP trains was independent of

the stimulation frequency (pPr � 0.11).

To assess whether a steady state level was reached during the 2 s long trains of

APs, the lower envelope of the average intracellular Ca2+ elevations was fitted with

either an exponential function or the sum of an exponential function and a linear

function. A nested model comparison between these two fits showed that the former

was satisfactory for AP trains between 10 and 20 Hz (pF � 0.3), but was rejectable

for AP trains at 30, 40, and 50 Hz (pF  0.03). Fig. 3.16D demonstrates that, during

the AP trains at 10� 20 Hz, the time constant of the intracellular Ca2+ rise (trise) was

independent of the AP frequency (pPr = 0.3). The average value of trise was 220 ±

20 ms (dashed line), significantly larger than tslow of the average single AP-evoked

Ca2+ transient (58 ± 3 ms; pt < 10�4). In contrast, for the AP trains above 20 Hz, the

slope of the linear fit to the late rising phase appeared dependent on the stimulation

frequency. More specifically, the slope at 40 Hz was ⇠ 2.5-fold larger than that at 30
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Hz (3.18 ± 0.04 vs. 1.28 ± 0.03 µM/s), although it was not different from that at 50

Hz (3.16 ± 0.04 µM/s; pt = 0.7; data not shown). These results indicate that, during

2 s long trains of APs at frequencies  20 Hz, the rate of Ca2+ sequestration was able

to match that of Ca2+ influx, allowing [Ca2+]i to reach a steady state after ⇠ 500 ms.

However, at frequencies above 20 Hz, [Ca2+]i was never removed at a rate as fast as

that of Ca2+ influx (and CICR), causing it to continuously rise with subsequent APs.

In Fig. 3.16E, the average D[Ca2+]i during the last 200 ms of stimulation was

plotted as a function of AP frequency (filled circles; black lines in Fig. 3.16A). To

assess whether [Ca2+]i summed linearly, the values of D[Ca2+]i produced by linear

superposition of single AP-evoked transients were also plotted (open circles; Eq.

3.31). The fact that all the measured values of D[Ca2+]i, particularly at frequencies

above 20 Hz, were larger than the predicted values indicates supralinear summation

of [Ca2+]i during repetitive stimulation.

To further evaluate the degree of linearity of summation, for each bouton imaged,

the average values of D[Ca2+]i during the last 200 ms of stimulation were plotted

against the predicted values (Fig. 3.16F); here, each colour indicates a different

stimulation frequency. Consistent with the continuous rise in [Ca2+]i during high-

frequency AP trains, a linear fit to this plot was significantly different from the line

of identity (pANCOVA < 10�5; solid vs. dashed line, respectively). This emphasises

that [Ca2+]i summed supralinearly during repetitive stimulation, potentially even at

frequencies below 20 Hz. Such a build-up of Ca2+ could not have arisen from buffer

saturation as Ca2+ buffers do not determine the steady-state or average D[Ca2+]i

during a long train of APs (Tank et al., 1995 and see Section 3.2.7.2). Instead, the

underlying mechanism might have been facilitation of presynaptic Ca2+ currents,

activation of CICR, and/or saturation of Ca2+ sequestration.

3.3.12 Ca2+ current facilitation could not explain supralinear summation

At neocortical excitatory synapses, Ca2+ influx through N- and P/Q-type Ca2+

channels provides the main source of Ca2+ for evoked transmitter release (Iwasaki
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et al., 2000; Koester and Sakmann, 2000; Millan et al., 2003; Ali and Nelson, 2006).

It has been shown, at the calyx of Held, that P/Q-type Ca2+ currents undergo

facilitation when activated repetitively at a frequency higher than 10 Hz (Cuttle

et al., 1998). To investigate whether the supralinear summation of [Ca2+]i arose

from facilitation of presynaptic Ca2+ influx, D[Ca2+]i associated with individual APs

during a 40 Hz train was measured. In this set of experiments, the low-affinity Ca2+

indicator OGB-5N (200 µM; Kd ⇠ 30 µM, preliminary experiment - data not shown)

was used to avoid saturation of exogenous Ca2+ buffers, which would also affect

D[Ca2+]i per AP. As its Kd value is about three-fold larger than the average D[Ca2+]i

during the last 200 ms of the 40 Hz train (11 ± 3 µM; Fig. 3.16E), OGB-5N would

not be significantly saturated. However, as [Ca2+]i in synaptic boutons could not

be raised to a level sufficient for measurement of (DF/F0)max of OGB-5N (> 100 µM),

D[Ca2+]i could not be calculated from the corresponding DF/F0.

Fig. 3.17A displays DF/F0 of OGB-5N measured in a synaptic bouton in response

to a 2 s long train of APs at 40 Hz. To measure the amplitude of DF/F0 associated

with individual APs, the fluorescence of OGB-5N was sampled every 5 ms. Similar

to Ca2+ transients measured with other fluorescent Ca2+ indicators, the decay time

course of OGB-5N fluorescence transients following the AP train was bi-exponential

(pF = 0.01; tfast = 45 ± 14 ms; tslow = 286 ± 104 ms; amplitudefast = 63 ± 9%). It

can be seen, in this bouton, that the change in DF/F0 associated with individual

APs was largely constant throughout the AP train. However, the lower envelope

of the fluorescence measurement (black curve) rose continuously and never reached

a steady state. In Fig. 3.17B, the rate at which DF/F0 decayed following each AP

was plotted against the corresponding peak amplitude; the former was calculated

from the difference between each peak and the following trough (20 ms interval).

Despite the continuous rise in [Ca2+]i, the rate of decay remained linearly dependent

on D[Ca2+]i (pPr = 0.0005).

Similar features are apparent in Fig. 3.17C, which shows the average DF/F0 of OGB-

5N measured in seven different boutons. To assess whether a steady state level was

reached, the lower envelope of the average DF/F0 was fitted with either an exponential
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Figure 3.17: Continuous rise in [Ca2+]i during repetitive stimulation was not caused by
facilitation of presynaptic Ca2+ currents. (A) DF/F0 of OGB-5N (200 µM) measured in a
synaptic bouton in response to a 2 s long train of APs evoked at 40 Hz (2 repeats). (B) The
rate of decay of DF/F0 following each AP, plotted against the corresponding peak amplitude,
for the bouton illustrated in A. (C) The average DF/F0 of OGB-5N pooled from 7 boutons.
Inset: The average DF/F0 of OGB-5N was overlaid with the corresponding average D[Ca2+]i
from Fig. 3.16B. Traces were scaled by the peak amplitudes of their lower envelopes. (D)
Same as B but with values calculated from the average trace in C. (E) The average DF/F0 per
AP, plotted against the AP number. The decay time courses in A and C were fitted with the
sum of two exponential functions, and the lower envelopes with the sum of an exponential
function and a linear function. The upper envelope in C was calculated from the fit to the
lower envelope and the average DF/F0 per AP (dashed line in E). In B and D, plots were fitted
with a linear regression, constrained to go through (0,0).

function (not shown) or the sum of an exponential function and a linear function

(lower black curve). A nested model comparison between these two fits showed that

the former was rejectable (pF = 5 ⇥ 10�13), consistent with the corresponding Ca2+

elevation measured with OGB-6F (inset). Despite this, each AP produced a constant

change in DF/F0 (pPr = 0.96; Fig. 3.17E). The average value of DF/F0 per AP was 0.63

± 0.01 (dashed line). Adding this value to the fit of the lower envelope produced a

perfect fit to the upper envelope of the average DF/F0 in Fig. 3.17C (upper black curve;

pc2 = 1).

Together, these findings suggest that the supralinear summation of [Ca2+]i during

high-frequency stimulation did not arise from facilitation of presynaptic Ca2+

currents. Instead, it might have been a result of saturation of Ca2+ sequestration

and/or activation of CICR. However, in all but one bouton imaged, the rate at which

DF/F0 decayed following each AP was linearly dependent on the peak amplitude (Fig.

3.17D; pPr  0.006). This indicates that, during the 40 Hz AP train, the rate of Ca2+

sequestration did not significantly saturate.

3.3.13 Blockade of SERCA attenuated supralinear summation

To determine whether the supralinear summation of [Ca2+]i arose from saturation

of Ca2+ sequestration, the build-up of [Ca2+]i during AP trains was measured
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when SERCA pumps were blocked with CPA. It was hypothesised that, if a Ca2+

sequestration mechanism was saturated, a reduction in the rate of sequestration

through blockade of SERCA would put further strain on this mechanism, causing

it to become saturated at lower stimulation frequencies. As a result, [Ca2+]i would

sum even more supralinearly.

Fig. 3.18A displays D[Ca2+]i in a synaptic bouton in response to a single AP, and 2 s

long trains of APs evoked at 10 � 40 Hz, before and after application of CPA (25 µM;

bath-applied for 10 min; red and blue, respectively). To minimise laser exposure,

fluorescence of OGB-6F (100 µM) was sampled at 100 ms intervals during the AP

trains. Although the peak amplitudes of D[Ca2+]i associated with individual APs

could not be resolved, the low sampling frequency was sufficient for characterising

the build-up of [Ca2+]i during repetitive stimulation. Consistent with previous

experiments, in this bouton, CPA did not considerably affect the peak amplitude and

fast decay component of the Ca2+ transient evoked by a single AP, but prolonged

its tslow by 96%, from 57 to 112 ms. As a result, the time integral (A1t1 + A2t2) of

this Ca2+ transient increased by 38%, from 106 to 147 µM·ms. Due to the prolonged

decay time course and increased time integral of the single AP-evoked transient, it

was expected that, during repetitive stimulation, [Ca2+]i would build up to a level

Figure 3.18: Blockade of SERCA pump reduced supralinear summation of [Ca2+]i during
repetitive stimulation. (A) D[Ca2+]i in a synaptic bouton in response to an AP, and 2 s
long trains of APs at 10 � 40 Hz before and after addition of CPA (25 µM; red and blue,
respectively). Each trace is an average of 2 � 3 repeats, measured with OGB-6F (100 µM).
The decay time course of the Ca2+ transients evoked by an AP was fitted with the sum of
two exponential functions. (B) The average change in peak amplitude, tslow, tw, and Â Aiti
of a single AP-evoked Ca2+ transient after addition of CPA (n = 9). (C) The average D[Ca2+]i
during the last 500 ms of stimulation (filled circles), and the predicted D[Ca2+]i calculated
based on Eq. 3.31 (open circles), plotted against AP frequency. Plots were fitted with either
a power function (solid) or linear regression (dashed). (D) The averaged D[Ca2+]i during the
last 500 ms of stimulation, plotted against the predicted values. (E) The averaged, normalised
D[Ca2+]i at 40 Hz measured in CPA plotted against that measured before CPA addition. In
D-E, plots were fitted with a linear regression constrained to go through (0,0). Black dashed
lines represent the line of identity.
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higher than that during the control condition. However, D[Ca2+]i evoked by the

10 � 40 Hz AP trains did not increase after addition of CPA.

Fig. 3.18B summarises the effect of CPA on the amplitude and decay kinetics of single

AP-evoked Ca2+ transients in 9 different boutons. Seven of them (78%) had Ca2+

transients that always decayed bi-exponentially (pF  10�5). The decay time course

of Ca2+ transients measured in the remaining two boutons was bi-exponential in

the control condition, but became mono-exponential after CPA addition. The decay

kinetics of these boutons were thus excluded in the average change in tslow, but

included in the average change in tw shown in Fig. 3.18B. On average, CPA did not

affect the peak amplitude of the Ca2+ transients (ppt = 0.15; 2.3 ± 0.2 vs. 2.1 ± 0.2

µM). It also did not affect amplitudefast or tfast (ppt � 0.4; 54 ± 5 vs. 58 ± 4%, and

8 ± 2 vs. 8 ± 1 ms, respectively; data not shown). However, after addition of CPA,

tslow and tw increased by 58 ± 17 and 35 ± 7%, respectively (ppt  0.03; from 63 ±

6 to 94 ± 7 ms, and 32 ± 1 to 43 ± 2 ms). Despite this, the time integral of the single

AP-evoked Ca2+ transient (Â Aiti) did not significantly increase (ppt = 0.08; 74 ± 7

vs. 88 ± 10 µM·ms).

Fig. 3.18C summarises the effect of CPA on the build-up of [Ca2+]i during the 2 s

long trains of APs. In this figure, the average values of D[Ca2+]i during the last 500

ms of stimulation, before and after addition of CPA, were plotted as a function of AP

frequency (filled circles). The values of D[Ca2+]i produced by a linear superposition

of single AP-evoked transients were also plotted (open circles). It can be seen that,

despite blockade of SERCA, [Ca2+]i did not build up to a level higher than that

during the control condition. This suggests that the continuous rise in [Ca2+]i was

unlikely to arise from significant saturation of a Ca2+ sequestration mechanism.

To assess the extent of summation after CPA application, for each bouton imaged,

the average values of D[Ca2+]i during the last 500 ms of stimulation were plotted

against the predicted values (Fig. 3.18D). Consistent with previous experiments,

most of the values measured in the control condition lied above the line of identity

(pANCOVA < 10�5), indicating supralinear summation of [Ca2+]i. Summation was



§3.4 Discussion 165

also supralinear in the presence of CPA (pANCOVA < 10�5). However, the extent of

“supra-linearity” was not increased after its addition (pANCOVA = 0.06), again arguing

against significant saturation of Ca2+ sequestration.

Interestingly, in Fig. 3.18D, the average values of D[Ca2+]i measured in CPA appeared

to lie closer to the line of identity than those measured in the control condition,

particularly for D[Ca2+]i evoked by higher stimulation frequencies. To elucidate

whether blockade of SERCA decreased the extent of summation during the 40 Hz

train, the degree of supra-linearity of summation was calculated by normalising each

measured value of D[Ca2+]i to its corresponding predicted value. In Fig. 3.18E,

the degree of supra-linearity of summation in the presence of CPA is compared

to that in the control condition; each data point represents an imaged bouton. A

linear regression through the data points yielded a fit that was different from the

line of identity (pANCOVA = 0.02), indicating a reduction in the extent of summation

by 28 ± 2%. Together with the linear rate of Ca2+ decay (Figs. 3.17B and D),

these findings suggest that the continuous rise in [Ca2+]i during high-frequency

stimulation was unlikely caused by significant saturation of Ca2+ sequestration.

Instead, the fact that the build-up of [Ca2+]i during the 40 Hz train decreased after

blockade of SERCA implicates CICR as an underlying mechanism.

3.4 Discussion

In this study, factors underlying the presynaptic Ca2+ dynamics in layer 5 pyramidal

neurons were characterised by measuring single AP-evoked Ca2+ transients with

different concentrations of fluorescent indicators. A surprisingly low Ca2+ binding

ratio of endogenous buffers was found, together with a large amount of Ca2+ ions

entering the boutons in response to a single AP. However, there was no evidence to

suggest that endogenous Ca2+ buffers were saturated. Based on experimental results

and 3D reaction-diffusion models, it can be concluded that the initial fast decay of

the measured Ca2+ transients was predominantly caused by diffusion of Ca2+ into
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the connecting axon. Despite a high and linear rate of Ca2+ sequestration, [Ca2+]i

summed supralinearly during high-frequency trains of APs. Blockade of SERCA

reduced the extent of summation, implicating a role of CICR.

3.4.1 [Ca2+]rest of 50 nM

Based on the fluorescence intensity of OGB-1 before and after a 2 s long train of

APs at 100 Hz, [Ca2+]rest was found to be 53 ± 13 nM. The presence of exogenous

buffers in the imaged boutons should not affect this measurement. This is because

[Ca2+]rest is established by passive Ca2+ fluxes and active sequestration mechanisms,

all of which are unaffected by the extent of Ca2+ buffering (Neher, 1998). Consistent

with this idea, Jackson and Redman (2003) found no correlation between [Ca2+]rest

and the concentration of OGB-1 present in synaptic boutons of granule cells in the

dentate gyrus (DG).

The measured value of [Ca2+]rest is in the range of that measured in the calyx of Held

(39 ± 7 nM; Helmchen et al., 1997), cerebellar MFBs (57 ± 7 nM; Delvendahl et al.,

2015), Purkinje cell dendrites and soma (47 ± 9 and 34 ± 3 nM, respectively; Llano

et al., 1994; but 95 ± 15 nM; Hashimoto et al., 1996), and dendrites of CA1 pyramidal

cells (53 ± 7 nM; Pohle and Bischofberger, 2014). However, it is considerably

lower than [Ca2+]rest in proximal boutons of DG granule cells (74 ± 9 nM; Jackson

and Redman, 2003), hippocampal MFBs (116 ± 20 nM; Scott and Rusakov, 2006),

neurohypophysial nerve endings (145 ± 22 nM; Stuenkel, 1994), and skeletal muscle

fibres (106 ± 2 nM; Williams et al., 1990). These values may reflect variability in

the regulation of [Ca2+]rest between different cells and cellular compartments, most

likely due to differential expression of Ca2+ leak channels and transporters. However,

some of their differences could have also been caused by the different experimental

methods and assumptions, including those used to calibrate the fluorescent Ca2+

indicators (see Chapter 2 discussion).

In this study, [Ca2+]rest was calculated based on the assumption that Rf of OGB-

1 in the imaged boutons was 6, a value measured in cultured rat hippocampal
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neurons and cerebellar MFBs (Maravall et al., 2000; Delvendahl et al., 2015). The

fact that this value was almost two-fold smaller than that measured in vitro (Table

2.4; also see Maravall et al., 2000) could be because of interactions between OGB-

1 and intracellular constituents (Harkins et al., 1993; O’Malley et al., 1999). If such

interactions were however weak and the lowered value of Rf measured in situ was

caused by insufficient clamping of [Ca2+]i to desired levels, then the calculated value

of [Ca2+]rest was an underestimate of the true value. An Rf value of 12.8, as measured

in vitro (Table 2.4), would have yielded an almost two-fold larger value of [Ca2+]rest

(91 ± 15 nM).

It should be noted here that, although [Ca2+]rest could not be precisely determined,

the estimation of kE, g, and unperturbed Ca2+ dynamics based on the single-

compartment model was unlikely to be significantly affected. For a value of [Ca2+]rest

between 50 and 90 nM, the values of D[Ca2+]i as well as k
0
D calculated from the

fluorescence intensity of OGB-6F changed by less than 1% (Eqs. 3.5 and 3.22,

respectively). Larger deviations were obtained for the values of D[Ca2+]i and k
0
D

calculated with OGB-1 fluorescence ( 10 and 18%, respectively). However, kE,

g, D[Ca2+]T, and D[Ca2+]i,0 were estimated based on weighted linear fits, with

weights inversely proportional to the respective standard errors (Figs. 3.7A-B).

As a result, they were predominantly determined by values calculated from OGB-

6F fluorescence. This made them, to some extent, insensitive to uncertainties in

[Ca2+]rest.

3.4.2 A low kE and a large D[Ca2+]i,0 associated with a single AP

The present results indicate that, in synaptic boutons of layer 5 pyramidal neurons,

a single AP caused [Ca2+]T to increase by ⇠ 50 µM. However, due to the presence of

endogenous fast buffers with a kE of 7 ± 2, the concentration of free Ca2+ or [Ca2+]i,0

increased by only 5.3 ± 1.3 µM.
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3.4.2.1 Comparison with other presynaptic terminals

The value of kE in the imaged boutons is considerably smaller than many of those

found in previous studies (Table 3.4). In contrast, the values of both D[Ca2+]T and

D[Ca2+]i,0 are larger than those previously estimated (but see Koester and Sakmann,

2000 and Ermolyuk et al., 2013). These variations may reflect variability in the

surface area to volume ratio, and the expression of Ca2+ channels and buffers,

between different types of nerve terminals (Collin et al., 2005a; Matthews et al.,

2013). Differences in channel density and buffer capacity have also been observed

in synaptic boutons of the same type (Brenowitz and Regehr, 2007). As Ca2+

channels and buffers can influence both the local Ca2+ signal at transmitter release

sites and the spatially homogeneous Ca2+ rise, differences in their expression are

likely to contribute to the variable properties of synaptic transmission and short-term

plasticity.

Differences in the experimental conditions and methods could also contribute to

the large ranges of kE, D[Ca2+]T, and D[Ca2+]i,0. In particular, it was found that

the estimated values of kE, D[Ca2+]T, and D[Ca2+]i,0 were highly sensitive to the

Kd values of the Ca2+ indicators. When D[Ca2+]i was calculated with published

values of Kd of OGB-1 and OGB-6F (200 nM and 3 µM, respectively; Maravall et al.,

2000; Brenowitz and Regehr, 2007), both of which were smaller than the measured

values (300 nM and 8 µM), the resultant values of D[Ca2+]i in response to an AP

were much reduced. Consequently, the values of
�
D[Ca2+]i

��1 and k
0
D were both

increased, and the plot of
�
D[Ca2+]i

��1 vs. k
0
D was shifted to the left (open circles

in Fig. 3.19A). A linear fit to this plot yielded an estimate of 24 ± 4 for kE, 29 ± 2

µM for D[Ca2+]T, and 1.2 ± 0.1 µM for D[Ca2+]i,0 (dashed line). These values were

considerably different from those estimated using the measured Kd values, indicating

that the inappropriate use of published Kd values could lead to an overestimation of

kE and an underestimation of D[Ca2+]T and D[Ca2+]i,0. Unless Ca2+ indicators are

properly calibrated, a comparison of values of kE, D[Ca2+]T, and D[Ca2+]i,0 obtained

by different research groups is likely misleading.
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Table 3.4: Values of kE, D[Ca2+]i,0, D[Ca2+]T, and g measured in axon terminals of different
excitatory cells. All measurements were done in response to a single AP at ⇠ 35 °C. PCs:
pyramidal cells; GCs: granule cells. c calculated as the product of (kE + 1) and D[Ca2+]i,0.

Type of
terminals

kE
D[Ca2+]i,0

(µM)
D[Ca2+]T

(µM) g (ms-1) Reference

Layer 5
PCs

7 ± 2 5.3 ± 1.3 ⇠ 50 0.60 ± 0.03 This study

Layer 2/3
PCs

140 0.5 � 1.0 70 � 140c 2.6
Koester and

Sakmann
(2000)

Dentate
gyrus GCs

20 1.0 30 0.5
Jackson and

Redman
(2003)

Cerebellar
GCs

56 ± 12 0.5 ± 0.1 15 � 45 Brenowitz and
Regehr (2007)

Cerebellar
MFBs

17
[�20, 70]

0.2 4c 0.3 Delvendahl
et al. (2015)

Calyx of
Held

20 � 40 0.5 � 0.9 10 � 13 0.9

Helmchen
et al. (1997);
Neher and

Taschenberger
(2013); Babai
et al. (2014)



170 Dynamics of AP-evoked Ca2+ transients in neocortical synaptic boutons

A B
12

8

4

3002001000

(∆
[C

a
2

+
] i)-1

 (
µ

M
-1
)

0.6

0.4

0.2

3002001000

τ
sl

o
w
 (

s)

D

'

D

'( )
slow

Figure 3.19: Estimation of kE, D[Ca2+]T, g, and unperturbed Ca2+ dynamics based on
measured vs. published values of Kd of fluorescent Ca2+ indicators (filled vs. open circles,

respectively) . (A)
⇣

D[Ca2+]i
⌘�1

plotted against k
0
D. (B) tslow plotted against

⇣
k
0
D

⌘

slow
. Each

plot was fitted with a weighted regression line.

In contrast, the estimated value of gslow was quite insensitive to the Kd values of

the Ca2+ indicators. Fig. 3.19B compares the plots of tslow vs.
⇣

k
0
D

⌘

slow
obtained

from the measured and published values of Kd (filled and open circles, respectively).

It can be seen that the values of tslow, primarily determined by the ratio between

DF/F0 and (DF/F0)max (Eq. 3.5), were unaffected by the different values of Kd. On the

contrary, the values of
⇣

k
0
D

⌘

slow
calculated based on the published Kd values were

larger, causing the plot of tslow vs.
⇣

k
0
D

⌘

slow
to shift slightly to the right. A linear

fit to this plot yielded an estimate of 0.65 ± 0.03 ms�1 for gslow, 23 ± 3 for kE, and

37 ± 4 ms for tslow,0 (dashed line). These values are not significantly different from

those estimated using the measured Kd values. Consistently, the value of gslow in the

imaged boutons is in the range of that found in other presynaptic nerve terminals in

the CNS (see Table 3.4).

It should be noted here that the low value of kE was unlikely due to significant

“wash-out” of endogenous fast buffers. In a set of experiments in which kE was

measured for individual boutons and within 60 min of break-in (in accordance with

Helmchen et al., 1996), it was found to range from �55 to 67, with a mean value of

8± 8 (n = 14; data not shown). Similar values of kE have been reported in individual



§3.4 Discussion 171

MFBs (Delvendahl et al., 2015). This finding supports the low value of kE obtained

from the population means (Fig. 3.7A) and argues against significant “wash-out” of

endogenous fast buffers.

3.4.2.2 The number of Ca2+ channels activated during an AP

The present results allow a rough estimate of the number of Ca2+ channels that

were activated in response to a single AP. With a value of D[Ca2+]T of ⇠ 50 µM, and

assuming that the average volume of the imaged boutons was 0.36 µm3 (Rollenhagen

and Lübke, personal communication), a total of ⇠ 10,000 Ca2+ ions entered these

boutons. As there was no evidence for CICR following a single AP, the majority of

these ions entered through VGCCs. To approximate the number of VGCCs that were

open, their mean unitary current was assumed to be 0.3 pA (for an external [Ca2+]

of 2 mM, a membrane potential of �30 mV at which the presynaptic Ca2+ current

reaches its peak, and at 35 °C; Gollasch et al., 1992; Borst and Sakmann, 1998a). With

a mean opening time of 200 µs (Borst and Sakmann, 1998a), the opening of each

VGCC let in ⇠ 200 Ca2+ ions. Accordingly, a single AP activated ⇠ 50 VGCCs in

these synaptic boutons.

Although this value is only a rough estimate, it is in agreement with previous

suggestions in synaptic boutons of layer 2/3 pyramidal neurons (40 channels with

5,500 ions; Koester and Sakmann, 2000), cultured hippocampal pyramidal cells (40

channels with 3,500 ions; Ermolyuk et al., 2013), and cerebellar granule cells (20� 125

channels with 6,000�19,000 ions; Brenowitz and Regehr, 2007). Even in larger

presynaptic terminals with multiple release sites, a similar number of VGCCs has

been proposed to open at each release site in response to a single AP (hippocampal

MFBs: 20 channels with 10,000 ions per site, Bischofberger et al., 2002; calyx of

Held: 60 channels with 13,000 ions per site; Borst and Sakmann, 1996). However,

not all of these channels necessarily contribute to synchronous transmitter release.

A small fraction of them, especially R-type VGCCs, might be required to support

asynchronous release, sustain transmitter release during repetitive stimulation, and
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promote the induction of synaptic plasticity (Atluri and Regehr, 1998; Breustedt et al.,

2003; Li et al., 2007b).

3.4.2.3 No evidence for saturation of endogenous buffers

A small value of kE may mean that endogenous Ca2+ buffers were saturated.

However, there was no evidence to suggest that the spatially averaged Ca2+ rise

in response to a single AP caused saturation of endogenous buffers. A larger rise in

[Ca2+]i during repetitive stimulation did not decrease tfast or increase amplitudefast.

In addition, during 2 s long trains of APs evoked at 10� 20 Hz, the time course of the

intracellular Ca2+ rise (that is, trise) was independent of the stimulation frequency.

If endogenous buffers had been significantly saturated, more and more Ca2+ ions

would have remained free after each AP, causing trise to decrease with increasing

AP frequencies. Nevertheless, the possibility that, within 100 nm of open VGCCs,

endogenous Ca2+ buffers were saturated by the local [Ca2+]i cannot be excluded.

When measured with OGB-6F, D[Ca2+]i per AP increased during a train of 10 APs

evoked at 15 Hz. However, without a concurrent speed up in the decay kinetics,

this increase was unlikely a result of buffer saturation. Instead, it could have been

caused by facilitation of the presynaptic Ca2+ current (Cuttle et al., 1998) or CICR

(Llano et al., 2000; Emptage et al., 2001; Liang et al., 2002; Scott and Rusakov, 2006). In

support of this, a 2 s long AP train evoked at 15 Hz produced an increase in [Ca2+]i

that was slightly larger than expected with linear summation (Figs. 3.16E-F). The

corresponding trise was also longer than predicted. These two effects could not have

arisen from buffer saturation. An increase in D[Ca2+]i per AP was not observed in

the fluorescence transients of Fluo-4FF (Fig. 3.9E), likely because of the low affinity

of this indicator for Ca2+.

3.4.2.4 Candidates for endogenous fast buffers

It is unknown which Ca2+ binding protein(s) expressed in the imaged boutons gave

rise to the measured value of kE. Based on the range of D[Ca2+]i observed in this
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study, its Kd value was most likely larger than 5 µM, corresponding to a total

concentration of more than 35 µM. Low-affinity buffers have also been suggested in

the calyx of Held, synaptic boutons of cerebellar granule cells, and cerebellar MFBs

(Habets and Borst, 2006; Brenowitz and Regehr, 2007; Delvendahl et al., 2015). In

adrenal chromaffin cells, Xu et al. (1997) reported a Kd value of ~ 100 µM by titrating

endogenous buffers; a total concentration of 4 mM of such a low-affinity buffer would

need to be present to produce a kE of 40 in these cells. However, many of the

commonly known endogenous Ca2+ buffers, particularly parvalbumin, calbindin,

and calretinin, have much smaller Kd values, ranging from 50 nM to less than 2

µM (Lee et al., 2000b; Nagerl et al., 2000; Faas et al., 2007, 2011). In agreement with

the absence of buffer saturation, none of these proteins are expressed in neocortical

pyramidal neurons after the second postnatal week (Hof et al., 1999). Low-affinity

Ca2+ sensors such as calmodulin could potentially contribute to the measured kE

value and modulate presynaptic Ca2+ dynamics, if they are expressed at sufficiently

high concentrations (Faas et al., 2011).

3.4.2.5 Endogenous buffers with slow Ca2+ binding kinetics?

A number of observations suggest the possible presence of a buffer with slow Ca2+

binding kinetics. These include the initial fast decay of AP-evoked Ca2+ transients

and the discrepancy between the values of kE estimated from the plot of
�
D[Ca2+]i

��1

vs. k
0
D and that of tslow vs.

⇣
k
0
D

⌘

slow
(7 ± 2 and 21 ± 3, respectively; Figs. 3.7A-B). If a

buffer has not equilibrated with Ca2+ before a sequestration mechanism starts, it will

appear to sequester Ca2+ and thus speed up the decay kinetics (Atluri and Regehr,

1998). Once an equilibrium is reached, [Ca2+]i decays at a slower rate, determined by

the activity of Ca2+ transporters and the total Ca2+ binding ratios. This produces not

only bi-exponential decay kinetics, but also a larger Ca2+ binding ratio during the

decay phase than at the peak of the Ca2+ transient. As a result, in the presence of a

slow buffer, the value of kE estimated from the plot of tslow vs.
⇣

k
0
D

⌘

slow
is larger than

that estimated from the plot of
�
D[Ca2+]i

��1 vs. k
0
D (Lee et al., 2000a,b). In addition,

during 2 s long trains of APs evoked at 10 � 20 Hz, the time it took [Ca2+]i to reach
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a steady state was longer than tslow of single AP-evoked transients. Such prolonged

rise times are also indicative of a buffer that slowly equilibrates with Ca2+ (Lee et al.,

2000b).

Muller et al. (2007) provided convincing evidence that, at the calyx of Held, the

bi-exponential decay time course of AP-evoked Ca2+ transients was caused by the

presence of ⇠ 50 µM of the slow Ca2+ buffer parvalbumin. The intracellular Ca2+

rise, in response to a single AP, decayed with a tfast of 25 ± 7 ms, a value in the range

of those measured in this thesis (Fig. 3.7C). However, expression of parvalbumin has

not been observed in neocortical pyramidal neurons (Hof et al., 1999). In support

of this, intracellular Ca2+ elevations of more than 2 µM evoked by a train of APs

still decayed bi-exponentially (Fig. 3.10). If the initial fast decay had been caused by

parvalbumin, which binds Ca2+ with a very high affinity (Kd ⇠ 50 nM), it would have

been significantly reduced or abolished after repetitive stimulation (Lee et al., 2000b;

but see Muller et al., 2007). This, together with the finding that diffusion of Ca2+

into the axon could satisfactorily account for the initial fast decay and the different

estimates of kE, argues against the presence of a significant concentration of a slow

buffer. As the fast decay kinetics of fluorescence transients measured with OGB-1

did not change with equilibration time (Figs. 3.5E-F), the absence of a significant

contribution of a slow buffer was unlikely due to it being “washed-out”, as has been

observed at the calyx of Held (Muller et al., 2007). Accordingly, it can be concluded

that the prolonged rise times during the 2 s long trains of APs at 10� 20 Hz were not

caused by Ca2+ binding to a slow buffer. Instead, they could have arisen from CICR

(discussed below).

3.4.3 Ca2+ sequestration

Following a single AP-evoked Ca2+ influx, Ca2+ in the imaged boutons was rapidly

removed, not only by Ca2+ transporters but also by diffusion into the connecting

axon collaterals. Addition of exogenous buffers, which competed with Ca2+

transporters for Ca2+ binding, reduced the effectiveness of the latter in sequestering
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Ca2+. This allowed a significant fraction of Ca2+ ions to escape into the axon, causing

the rate of decay to deviate from a linear relationship with D[Ca2+]i. In the absence

of exogenous buffers, Ca2+ transporters were the main determinant of the decay

kinetics, although diffusion of Ca2+ into the axon still caused the initial rate of decay

be non-linearly dependent on D[Ca2+]i. The rapid activity of Ca2+ transporters, with

a rate constant of 0.60 ± 0.03 ms�1, and the small kE allowed [Ca2+]i to return to the

resting level within 100 ms after a single AP.

3.4.3.1 Diffusion into the axon

This is the first study to demonstrate that diffusion of Ca2+ into the axon plays an

important role in shaping the decay time course of AP-evoked Ca2+ transients in

small boutons en passant. A similar role of diffusion has been shown for dendritic

spines, in which the escape of Ca2+ through the spine neck contributes to Ca2+

clearance (Majewska et al., 2000; Noguchi et al., 2005). The effect of diffusion was most

prominent in the presence of exogenous buffers, causing the initial rate of decay to

be much faster than that determined solely by Ca2+ transporters. In support of this,

blockade of SERCA with CPA increased tslow, but did not affect tfast or amplitudefast

of single AP-evoked Ca2+ transients. The lack of effect of CPA on the initial decay

phase could have resulted from a reduced Ca2+ binding ratio and/or activation of

an additional transporter. However, as the peak amplitude of the Ca2+ transients

remained unchanged, the total Ca2+ binding ratio did not decrease. In addition,

an increase in D[Ca2+]i caused by repetitive stimulation did not speed up the initial

decay kinetics. Therefore, it was unlikely that, after application of CPA, an additional

sequestration mechanism became activated and counteracted the reduced rate of

Ca2+ uptake into intracellular stores. Accordingly, in the presence of exogenous

buffers, the initial fast decay of the presynaptic Ca2+ transients was largely caused

by a factor different from the action of Ca2+ transporters. However, once D[Ca2+]i

decayed to ⇠ 50% of the peak amplitude, the rate of decay was predominantly

determined by Ca2+ transport.
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The role of diffusion was supported by a 3D reaction-diffusion model, in which the

presence of a connecting axon (0.1 � 0.4 µm in diameter) caused the rate of decay

of [Ca2+]i to deviate from a linear relationship with D[Ca2+]i. As its parameters

were based on measurements acquired in this thesis or previous studies, this model

provided realistic representations of the Ca2+ transients measured in response to

a single AP. In fact, an analysis of the simulated transients based on the single-

compartment model yielded results that were in the range of those obtained from

the measurements. In this model, factors that could give rise to a multi-exponential

decay time course were excluded, except for diffusion of Ca2+ into the axon. More

specifically, a brief Ca2+ current was the only source of the intracellular Ca2+ rise,

with no Ca2+ influx or release occurring during its decay phase. In addition, the

endogenous Ca2+ buffer, which had a low affinity (Kd = 100 µM; Xu et al., 1997)

and a fast Ca2+ binding rate, was not saturated by the spatially averaged Ca2+ rise

(peak amplitude  5 µM). The rate at which Ca2+ was extruded or taken up into

intracellular stores was also linearly dependent on D[Ca2+]i. Therefore, diffusion of

Ca2+ into the axon was the only mechanism that could produce the initial fast decay

of the simulated Ca2+ transients in the presence of exogenous buffers.

Two main reasons underlay the large contribution of diffusion to the initial rate of

decay of the measured Ca2+ transients. The first was the small size of the imaged

boutons, which allowed Ca2+ to escape into the axon shortly after an AP-evoked

Ca2+ influx ( 3 ms after the AP onset). Due to the high spatial gradient of Ca2+

between the boutons and their connecting axons at this point in time, the rate of Ca2+

diffusion was large. This caused the initial rate of decay to be non-linearly dependent

on D[Ca2+]i within the boutons.

The second reason for the clear effect of diffusion was the presence of exogenous

buffers in the patch-clamp internal solution. Compared to their endogenous

counterparts, exogenous buffers are highly mobile, with large diffusion coefficients

(D = 0� 10 vs. 100� 220 µm2s�1, respectively; Table 3.3; Allbritton et al., 1992; Zhou

and Neher, 1993; Gabso et al., 1997). Due to the small kE of endogenous buffers, even

a small concentration of exogenous buffers, particularly those with a high affinity for
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Ca2+, would significantly increase the apparent mobility of Ca2+ and accelerate its

diffusion out of the boutons. In addition, by increasing the total Ca2+ binding ratio,

exogenous buffers reduced the effective rate of Ca2+ sequestration. This allowed

more Ca2+ ions to elude Ca2+ transporters, operated within the boutons, and escape

into the axon. As a result, immediately after an AP-evoked Ca2+ influx, diffusion

accounted for ⇠ 60% of the total rate of Ca2+ clearance.

According to the 3D model, diffusion had only a small impact on the rate of decay

of an unperturbed Ca2+ transient (⇠ 7% of the initial rate). This was due to the

presence of only fixed endogenous buffers and a much stronger effective rate of

Ca2+ sequestration. Unfortunately, with the experimental methods used, this study

could not identify whether the measured value of kE was accounted for by only fixed

buffers, or a mixture of fixed and mobile buffers. Mobile buffers, if present, were

unlikely to be completely “washed-out” due to the long distance between the patch

pipette and the imaged boutons. Whether a mobile buffer speeds up the diffusion

of Ca2+ depends on its diffusion coefficient (Matthews and Dietrich, 2015). A buffer

with a D value smaller than Dapp of Ca2+ in the presence of only fixed buffers (i.e.

14 µm2s�1 in the simulations) would further restrict Ca2+ diffusion. Due to their

large molecular weight, endogenous Ca2+ buffers are generally not as mobile as

the exogenous buffers (D = 12 � 43 µm2s�1; Schwaller, 2010). However, unless

they interact with intracellular fixed proteins or the cytoskeleton, their diffusion

coefficients are still slightly larger than Dapp of Ca2+ in the presence of only fixed

buffers. Therefore, they would increase the impact of diffusion. In addition, highly

mobile Ca2+-binding molecules, such as ATP and other nucleotide, would also

accelerate the diffusion of Ca2+ and strengthen its role in shaping the Ca2+ dynamics

in small boutons en passant.

To provide more direct evidence for the role of diffusion, future research could

measure [Ca2+]i along the connecting axon in response to an AP. If a significant

amount of Ca2+ escapes a bouton into the axon, [Ca2+]i in the axon and within 1 � 3

µm of the bouton should increase after stimulation. An axonal Ca2+ rise that stems

from diffusion of Ca2+ from the bouton should have a much slower rise time than
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that caused by activation of VGCCs. In addition, soon after the AP, [Ca2+]i along the

axon should display a spatial gradient, with high concentrations closer to the bouton.

However, the presence of nearby boutons may mask such a Ca2+ gradient, especially

if Ca2+ sequestration occurs along the axon.

3.4.3.2 Contribution of SERCA

The finding that addition of CPA increased tslow of single AP-evoked Ca2+ transients

suggests a role of SERCA in presynaptic Ca2+ clearance. As blockade of SERCA did

not affect the peak amplitudes and therefore the total Ca2+ binding ratios, the relative

contribution of SERCA can be estimated based on the change in tslow and the inverse

relationship between tslow and gslow (Eq. 3.20). As diffusion of Ca2+ into the axon

contributed minimally to late decay phase of the Ca2+ transients, gslow represents the

pooled activity of all Ca2+ sequestration mechanisms. With tslow increased from 63 ±

5 to 93 ± 4 ms after CPA addition, and a gslow value of 0.60 ± 0.03 ms�1 in the control

condition, the value of gslow with CPA present was 0.41 ± 0.04 ms�1. Accordingly,

the action of SERCA accounted for 32 ± 8% of the total Ca2+ sequestration, similar

to that in synaptic boutons of CA3 pyramidal neurons (Emptage et al., 2001) and

hippocampal MFBs (Scott and Rusakov, 2006). However, as I did not investigate

whether the application of CPA (25 µM) for 10 min fully abolished SERCA activity,

this value might be an underestimate of the relative contribution of SERCA following

a single AP-evoked Ca2+ influx.

3.4.3.3 No evidence for saturation of Ca2+ sequestration

Besides SERCA, the Na+/Ca2+ exchanger, Na+/Ca2+-K+ exchanger, and plasma-

lemmal Ca2+ ATPase were likely to account for most of the remaining 68 ± 7% of

the total rate of Ca2+ sequestration, during the slow decay phase of a single AP-

evoked Ca2+ transient. Although the activity of these transporters is half-maximal at

[Ca2+]i  3 µM (DiPolo and Beauge, 1979; Lytton et al., 1992; Blaustein and Lederer,
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1999; Pelled et al., 2003), there was no evidence that the rate of Ca2+ sequestration

approached a maximum value during high-frequency trains of APs. A 2 s long train

evoked at 40 Hz elevated [Ca2+]i to as high as 10 µM. Despite this, the rate of decay

of individual AP-evoked Ca2+ transients was linearly dependent on the correspond-

ing peak amplitude (Figs. 3.17B and D). This, together with the finding that blockade

of SERCA did not enhance the supralinear build-up of [Ca2+]i, argues against signi-

ficant saturation of Ca2+ sequestration.

Activation of the mitochondrial uniporter during repetitive stimulation might have

prevented the rate of Ca2+ sequestration from reaching a plateau at high levels of

[Ca2+]i. At the calyx of Held, Ca2+ uptake by mitochondria was activated in response

to intracellular Ca2+ elevations � 2.5 µM (Kim et al., 2005). As a result, when [Ca2+]i

was increased to 4 µM, mitochondrial uptake accounted for ⇠ 25% of the total rate

of Ca2+ clearance. Such a large contribution is quite surprising, as the mitochondrial

uniporter has a very low affinity for Ca2+. In fact, the rate of mitochondrial uptake is

only half-maximal when [Ca2+]i is � 10 µM (Xu et al., 1997; Colegrove et al., 2000b).

Due to the assumption of a constant kE in their study, Kim et al. (2005) might have

overestimated the contribution of mitochondrial uptake. Despite this, the facts that

mitochondria are a common feature of nerve terminals (Palay, 1956; Gray, 1959),

including synaptic boutons of layer 5 pyramidal neurons (Rollenhagen and Lübke,

personal communication), that they have a large capacity but low affinity for Ca2+

uptake (Xu et al., 1997), and that they start sequestering a considerable amount of

Ca2+ at [Ca2+]i � 2.5 µM (Kim et al., 2005), support the finding that the rate of Ca2+

sequestration did not saturate during the 40 Hz AP train.

3.4.4 Supralinear summation during trains of APs

Despite the rapid rate of Ca2+ sequestration in response to a single AP-evoked Ca2+

influx, [Ca2+]i never stopped rising during 2 s long trains of APs evoked at 30 � 50

Hz. In the presence of 100 µM OGB-6F in the patch pipette, a single AP-evoked Ca2+

transient decayed with a tslow of ⇠ 60 ms. If D[Ca2+]T per AP remained constant
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and the rate of Ca2+ sequestration was linearly dependent on D[Ca2+]i, then [Ca2+]i

should have plateaued within 100 ms of the first AP, independent of the stimulation

frequency. The fact that [Ca2+]i did not reach a steady state suggests that, even

though the rate of Ca2+ decay increased linearly with D[Ca2+]i, it was never able to

match the rate at which Ca2+ entered the cytosol. Therefore, D[Ca2+]T per AP was

unlikely to remain constant during repetitive stimulation.

3.4.4.1 Role of CICR in supralinear summation

The finding that blockade of SERCA reduced the extent to which [Ca2+]i summed

during the 40 Hz AP train provides direct evidence that CICR contributes to the

supralinear summation of [Ca2+]i. Due to a basal leak of Ca2+ from intracellular

stores, prolonged inhibition of SERCA by CPA might have caused a small reduction

in store [Ca2+] (Beck et al., 2004; de Juan-Sanz et al., 2017). As a consequence,

less Ca2+ was released and thus accumulated in the boutons during the AP train.

Admittedly, the supra-linearity of summation was only slightly reduced by CPA.

However, it was unlikely that presynaptic Ca2+ stores were completely depleted after

10 min of bath application of CPA (discussed below). Therefore, CICR might have

persisted and contributed to the remaining build-up of [Ca2+]i.

Intracellular Ca2+ release most likely arose from activation of RyRs. Although IP3Rs

could have been involved, their activation is typically inhibited by [Ca2+]i above

1 � 10 µM (Foskett et al., 2007). Both ryanodine and IP3 receptors have been found

expressed in a range of presynaptic terminals, including those in the cerebellum,

hippocampus, and neocortex (Sharp et al., 1993; Padua et al., 1996). As RyRs are

activated by [Ca2+]i as low as 100 nM (McPherson et al., 1991; Xu et al., 1996; Xu

and Meissner, 1998), it is conceivable that a small amount of Ca2+ was also released

during 2 s long trains of APs evoked at 10� 20 Hz, during which [Ca2+]i was elevated

to � 1 µM. In support of this, the time it took [Ca2+]i to reach steady states during

these trains was longer than expected with a constant D[Ca2+]T per AP and a linear

rate of Ca2+ sequestration.
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A similar role of CICR has been reported in Purkinje cells (Llano et al., 1994), in

which activation of RyRs caused D[Ca2+]i to be supralinearly dependent on the Ca2+

current integral. Blockade of RyRs reduced the build-up of [Ca2+]i during sustained

membrane depolarisation, whereas stimulation of RyRs enhanced it (Llano et al.,

1994). Ca2+ release through RyRs has also been suggested in other presynaptic

terminals, including hippocampal MFBs and cerebellar basket cell terminals (Llano

et al., 2000; Liang et al., 2002; Scott and Rusakov, 2006).

Interestingly, de Juan-Sanz et al. (2017) suggested that, although the ER regulates

presynaptic Ca2+ dynamics, it does so not by releasing Ca2+ but by modulating Ca2+

influx. By measuring the concentration of Ca2+ in ER stores ([Ca2+]ER) in synaptic

boutons of cultured hippocampal neurons, they found no evidence for Ca2+ release

from the ER in response to a single AP as well as a train of 20 APs evoked at 20 Hz.

Following bath application of CPA, [Ca2+]ER decreased with a time constant of 25

s, whereas the amplitude of D[Ca2+]i evoked by a single AP decreased with a time

constant of 150 s. These findings led to the conclusion that the reduction in D[Ca2+]i

was not a result of attenuated Ca2+ release, but caused by a decrease in Ca2+ influx.

Upon depletion of ER stores, the ER Ca2+ sensor STIM1 formed clusters at synaptic

boutons and presumably inhibited presynaptic VGCCs (de Juan-Sanz et al., 2017).

However, the idea that Ca2+ is not released from the presynaptic ER in response

to stimulation is inconsistent with the finding that inhibition of ryanodine or IP3

receptors reduced the amplitude of presynaptic Ca2+ transients and even affected

transmitter release (Emptage et al., 2001; Liang et al., 2002; Galante and Marty, 2003;

Scott and Rusakov, 2006; Cowan and Stricker, unpublished). Moreover, de Juan-

Sanz et al. (2017) measured [Ca2+]ER with a sampling interval of 50 � 100 ms and

with genetically encoded Ca2+ indicators, which have relatively slow Ca2+ binding

kinetics (Chen et al., 2013). Therefore, any brief and rapid release of Ca2+ that

occurred within 10 ms of an AP might have remained undetected.

Lack of CICR in response to a single AP. Despite the contribution of CICR to the

supralinear build-up of [Ca2+]i during repetitive stimulation, there was no evidence
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for its presence in response to a single AP. Blockade of SERCA did not reduce

the peak amplitude of D[Ca2+]i evoked by single APs, even when store emptying

was promoted with a 20 s long AP train. This may appear contradictory to the

finding that, in connected pairs of layer 2 pyramidal neurons, bath application of

CPA, together with membrane depolarisation, reduced the amplitude of EPSCs by

⇠ 30% (Choy, 2011). The same effect was also seen in connected pairs of layer

5 pyramidal neurons (Cowan and Stricker, unpublished). However, assuming a

fourth power relationship between D[Ca2+]i and transmitter release (Dodge and

Rahamimoff, 1967), a 30% reduction in EPSC amplitudes corresponds to a decrease

in D[Ca2+]i of only 9%. Such a small change might not be readily detectable by the

experimental design and tools used in this study.

Kinetics and regulation of CICR. The kinetics of CICR and its dependence on the

stimulation frequency remain to be carefully studied. However, because the decay

kinetics of D[Ca2+]i did not slow down with increasing frequencies (Fig. 3.16C),

it can be inferred that intracellular Ca2+ release did not significantly outlast the AP

trains. This is consistent with the finding that Ca2+ release from cardiac sarcoplasmic

reticulum vesicles was brief, with a rate as high as 100 s�1 (Sanchez et al., 2003). In

addition, as the linear rise of D[Ca2+]i at 50 Hz was not different from that at 40 Hz,

the magnitude of intracellular Ca2+ release was unlikely to increase significantly at

frequencies above 40 Hz. In support of this, it was found that the open probability

of RyRs increased steeply as [Ca2+]i rose from 1 to 10 µM, but remained constant at

[Ca2+]i above ⇠ 20 µM (Xu et al., 1996). As the 2 s long AP train at 40 Hz increased

[Ca2+]i to ⇠ 11 µM (Fig. 3.16E), a higher frequency train was unlikely to produce

much more Ca2+ release.

3.4.4.2 No evidence for contribution of Ca2+ current facilitation

Unlike CICR, facilitation of the presynaptic Ca2+ current did not play a major role in

the supralinear summation of [Ca2+]i. Due to the low Ca2+ binding affinity of OGB-

5N, an increase in D[Ca2+]i  1 µM might have been unresolved. However, without a
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concurrent, observable increase in the amplitude of DF/F0 associated with individual

APs, the continuous rise in its fluorescence intensity during the 40 Hz train was

unlikely caused by an increase in the amount of Ca2+ influx per AP. Following an

AP, the presynaptic Ca2+ current mediated by P/Q- and N-type channels is less than

1 ms long (Borst and Sakmann, 1996, 1998a; Bischofberger et al., 2002). Therefore,

AP-evoked Ca2+ influx most likely finished before OGB-5N fluorescence reached

its peak, measured 5 ms after somatic current injection. Even the Ca2+ current

through the less common R-type channels, which have relatively slow activation and

deactivation kinetics, terminates within 3 ms of the AP onset (Li et al., 2007b). As

a result, in the absence of an observable increase in D[Ca2+]i per AP, the continuous

rise in [Ca2+]i was unlikely caused by Ca2+ current facilitation.

3.4.4.3 Other factors underlying supralinear summation

The fact that blockade of SERCA did not abolish the supralinear build-up of

[Ca2+]i seems to suggest the involvement of an additional mechanism(s). These

include a slow down or reversal of Ca2+ transporters, a delayed source of Ca2+

due to diffusion from neighbouring boutons, or activation of presynaptic NMDA

receptors. Alternatively, bath application of CPA for 10 min might not have depleted

presynaptic Ca2+ stores and thereby allowed CICR to persist.

Although the rate of [Ca2+]i decay was linearly dependent on D[Ca2+]i (Figs. 3.17B

and D), the possibility that the activity of Ca2+ transporters slowed down during

repetitive stimulation cannot be excluded. A sublinear increase in the rate of Ca2+

sequestration might not be easily distinguished from a linear one. As a result

of the activation of voltage-gated Na+ channels and Na+/Ca2+ exchangers (in

normal/forward mode), Na+ would have accumulated inside the imaged boutons.

Regehr (1997) showed that, in presynaptic terminals of cerebellar granule cells, the

larger the Ca2+ rise, the more Na+ accumulated, causing the rate of Ca2+ removal

by Na+/Ca2+ exchangers to slow down. As a result, the decay kinetics prolonged

with more APs or a higher stimulation frequency (Regehr, 1997; Scheuss et al., 2006;
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Roome et al., 2013). In this study, the decay time course after repetitive stimulation

was longer than that in response to a single AP (Figs. 3.9C, 3.10C, and 3.16C).

This suggests a possible slow down or even reversal in the activity of Na+/Ca2+

exchangers. However, the decay time course after the 2 s long AP trains was

independent of the stimulation frequency (Fig. 3.16C). Even when the decay time

constants were only compared between AP trains evoked at  20 Hz to avoid a speed

up caused by saturation of OGB-6F, they did not increase with higher frequencies.

Accordingly, a slow down or reversal of Ca2+ transporters might partially but not

fully account for the supralinear summation of [Ca2+]i.

The finding that exogenous buffers significantly sped up and enhanced the diffusion

of Ca2+ into the axon suggests that Ca2+ from neighbouring boutons might have

contributed to the supralinear build-up of [Ca2+]i within a bouton. However, given

that the average inter-bouton distance in layer 5 pyramidal neurons is ⇠ 7 µm (Salin

et al., 1995; Schubert et al., 2006; Romand et al., 2011), [Ca2+]i from one bouton

was unlikely to significantly contribute to the summation of [Ca2+]i in its proximal

neighbours. This idea was supported by a 3D model, in which plasma membrane

transporters, intracellular Ca2+ uptake, and Ca2+ channels were all absent along the

axon (data not shown). Following a single AP-evoked Ca2+ influx, diffusion of Ca2+

from a bouton caused [Ca2+]i at 7 µm away from it to reach a peak amplitude of 6% of

that reached within the bouton (in the presence of 90 µM OGB-6F). It is unlikely that,

in the animals used (P15 � 20; with minimal myelination), the axonal membrane

is completely devoid of Ca2+ transporters. Therefore, this simulation provided an

upper estimate of the extent to which [Ca2+]i accumulated along the axon. Despite

this, when Ca2+ influx occurred simultaneously in two additional boutons (one on

each side and 7 µm away from the main bouton), [Ca2+]i in the centre bouton still

reached a steady state during a 1 s long train of APs evoked at 40 Hz (trise = 50

ms). Interestingly, according to this simulation, diffusion of Ca2+ from neighbouring

boutons could provide a delayed source of Ca2+, and thus, potentially account for

the increase in tslow following repetitive stimulation (Figs. 3.9C, 3.10C, and 3.16C).

Another mechanism that might have contributed to the supralinear build-up
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of [Ca2+]i was activation of presynaptic Ca2+-permeable glutamate receptors,

particularly NMDA receptors. Due to a partial voltage-dependent Mg2+ block,

activation of NMDA receptors upon membrane depolarisation typically produces

a supralinear rise in [Ca2+]i. Although it is unknown whether these receptors

are expressed on the boutons imaged in this study, their presynaptic expression is

generally determined by the postsynaptic cell and hence synapse specific (Banerjee

et al., 2016). In particular, in layer 5 pyramidal neurons of the developing mouse

visual cortex, only ⇠ 50% of the boutons produced a supralinear Ca2+ rise when

glutamate uncaging was coupled with somatically evoked APs (Buchanan et al.,

2012). Such a synapse specific expression has also been reported for presynaptic

kainate receptors (Scott et al., 2008). In my experiments, a 2 s long AP train evoked

at 30 � 50 Hz caused [Ca2+]i to sum supralinearly in all of the imaged boutons (Fig.

3.16F). Therefore, activation of presynaptic Ca2+-permeable glutamate receptors was

probably not the main underlying mechanism.

It was unlikely that bath application of CPA (25 µM) for 10 min completely emptied

presynaptic Ca2+ stores. Compared to those at the somata of many cell types

(Camello et al., 2002), presynaptic Ca2+ stores may have a very slow rate of basal

leak. Blockade of SERCA alone did not appreciably deplete presynaptic Ca2+ stores

in neocortical pyramidal neurons (Simkus and Stricker, 2002a). In addition, the basal

fluorescence intensity (i.e. F0) of Cal-520 and OGB-1 in the imaged boutons was not

affected by CPA, in contrast to that in synaptic boutons of CA3 pyramidal neurons

and hippocampal mossy fibres (Emptage et al., 2001; Scott and Rusakov, 2006). In

these studies, an increase in F0 of OGB-1 indicated a depletion of presynaptic Ca2+

stores, which in turn led to a small rise in [Ca2+]rest, most likely through activation

of store-operated Ca2+ channels (Emptage et al., 2001). My finding suggests that

leakage of Ca2+ from presynaptic stores of layer 5 pyramidal neurons is likely a slow

process, and that at least a fraction of the build-up of [Ca2+]i that remained after

addition of CPA arose from CICR.
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3.4.5 Functional implications

Following an AP-evoked Ca2+ influx, localised domains of elevated [Ca2+]i around

open channels rapidly collapse as a result of diffusion and buffering. The remaining,

spatially homogeneous Ca2+ is removed by sequestration mechanisms. A low value

of kE, particularly of fixed buffers, enables Ca2+ domains of a high amplitude and

large spatial width to build up around Ca2+ channels (Delvendahl et al., 2015).

Therefore, together with a large number of VGCCs activated in response to a

single AP, endogenous fixed buffers with a low kE are most likely required for

the efficacy and reliability of evoked transmitter release from synaptic boutons of

layer 5 pyramidal neurons (Frick et al., 2007). By producing a large increase in the

spatially homogeneous [Ca2+]i, they may also allow efficient activation of other Ca2+-

dependent cellular processes, including short-term synaptic plasticity (Zucker and

Regehr, 2002; Neher and Sakaba, 2008) and gene expression (Benech et al., 1999). In

addition, a low value of kE means that Ca2+ buffers do not strongly compete with

Ca2+ transporters. As a result, Ca2+ is rapidly sequestered after an intracellular Ca2+

rise. This ensures that transmitter release remains synchronous during repetitive

stimulation (Helmchen et al., 1997; Delvendahl et al., 2015).

In the absence of exogenous buffers, diffusion of Ca2+ into the axon does not

significantly reduce the peak amplitude of the spatially homogeneous Ca2+ rise

evoked by a single AP. However, it speeds up the rate of Ca2+ decay, and thereby,

decreases the time integral of the Ca2+ transient. As a result, cellular processes that

are dependent on [Ca2+]i may be affected by the axon diameter. By allowing Ca2+ to

rapidly escape the boutons, a thick axon may limit the extent to which the spatially

homogeneous [Ca2+]i enhances transmitter release in response to subsequent APs.

It may also affect mechanisms, such as intracellular kinases, that integrate the Ca2+

signal (Tanaka et al., 2007). As these mechanisms are often triggered by Ca2+ in

a highly cooperative manner (Tanaka et al., 2007), a small reduction in the time

integral of an intracellular Ca2+ rise could greatly attenuate their output. Akin

to dendritic spines and necks, the diameters of both synaptic boutons and axons
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have been shown to undergo activity-dependent modifications (Chereau et al., 2017).

These morphological changes may potentially affect the temporal availability of

Ca2+ to Ca2+-binding proteins within the boutons. Similarly, factors that regulate

the apparent mobility of Ca2+ may be important determinants of Ca2+-dependent

cellular processes. These factors include the expression of mobile Ca2+-binding

molecules and proteins, and the presence of physical barriers such as organelles

within the boutons.

The supralinear summation of [Ca2+]i may underlie frequency-dependent recovery

(FDR) from depression. FDR has been reported in a range of nerve terminals,

including synaptic boutons of layer 5 pyramidal neurons (Dittman and Regehr, 1998;

Wang and Kaczmarek, 1998; Fuhrmann et al., 2004). In these presynaptic terminals,

FDR is blocked by the slow Ca2+ buffer EGTA, indicating a role of the spatially

homogeneous Ca2+ rise (Dittman and Regehr, 1998; Wang and Kaczmarek, 1998;

Fuhrmann et al., 2004). An increase in [Ca2+]i may influence the rate of recovery from

depression by two different mechanisms. First, the rate at which synaptic vesicles

are refilled after a depleting stimulus increases with increasing [Ca2+]i (Hosoi et al.,

2007). Second, Gbg, a complex formed by two G-protein subunits, has been shown to

compete with synaptotagmin for SNARE binding in a Ca2+-dependent manner (Yoon

et al., 2007). A high level of [Ca2+]i may relieve the SNARE complex from inhibition

by constitutively active Gbg (Leurs et al., 1998; Morisset et al., 2000). This would

produce an enhancement in vesicle fusion, seen as a speed up in the recovery kinetics

at high levels of [Ca2+]i. Accordingly, by contributing to the supralinear build-up of

[Ca2+]i, CICR may not only accelerate vesicle recruitment, but also suppress Gbg-

dependent inhibition of transmitter release. As a result, it may prevent a complete

depletion of releasable vesicles and sustain transmitter release at high stimulation

frequencies.
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3.5 Summary

A low Ca2+ binding ratio of endogenous buffers and a rapid rate of Ca2+

sequestration were found in synaptic boutons of layer 5 pyramidal neurons.

Diffusion of Ca2+ into the axon was likely the main cause of the initial fast decay

of AP-evoked Ca2+ transients in the presence of exogenous buffers. In the absence

of exogenous buffers, a single AP raised [Ca2+]i by ⇠ 5 µM, which returned to the

resting level of ⇠ 50 nM in ⇠ 100 ms. During repetitive stimulation, activation

of CICR contributed to the supralinear build-up of [Ca2+]i. The activity of Ca2+

transporters did not significantly saturate, even after [Ca2+]i was elevated to ⇠ 10

µM.



Chapter 4

Spontaneous Ca2+ transients in

neocortical synaptic boutons

4.1 Introduction

Neurotransmitters can be released in response to or independently of presynaptic

action potentials (APs). The release of neurotransmitters following an AP requires

an increase in [Ca2+]i, the principal source of which is Ca2+ influx through voltage-

gated Ca2+ channels (VGCCs). In contrast, spontaneous transmitter release can occur

in the absence of extracellular Ca2+ (Fatt and Katz, 1952; Hubbard, 1961). As a result,

it is generally thought to arise from the spontaneous fusion of synaptic vesicles

with the presynaptic membrane (Katz, 1962). However, recent studies suggest

that presynaptic stores provide an intracellular source of Ca2+ that can contribute

to spontaneous transmission (Llano et al., 2000; Emptage et al., 2001; Simkus and

Stricker, 2002a).

The smooth endoplasmic reticulum (ER) is a major constituent of intracellular Ca2+

stores. It sequesters Ca2+ through the activity of the sarco/endoplasmic reticulum

Ca2+-ATPase (SERCA), and releases Ca2+ through the ryanodine and/or IP3 receptor

(RyR and IP3R, respectively). Since 1980s, it has been recognised that the smooth ER

extends from the cell body to the axon and nerve terminals of neurons (Westrum and

Gray, 1986; Hartter et al., 1987). In olfactory nerve terminals of the frog, the smooth

ER can be seen adjacent to synaptic vesicles and as close as 40 nm from the active
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zone (Hartter et al., 1987). Moreover, expression of both IP3 and ryanodine receptors

have been reported in a range of nerve terminals, including those in the cerebellum,

hippocampus, and neocortex (Sharp et al., 1993; Padua et al., 1996; Llano et al., 2000).

Consistent with these observations, a growing number of studies have shown that

Ca2+-induced Ca2+ release (CICR) contributes to presynaptic Ca2+ transients in

response to stimulation (Llano et al., 2000; Liang et al., 2002; Scott and Rusakov, 2006;

this study). Together, these findings suggest that the smooth ER, with its position

close to the presynaptic membrane and its ability to release Ca2+, could potentially

trigger vesicle exocytosis.

Within the last two decades, it has become clear that a significant fraction of

spontaneous transmission arises from the release of Ca2+ from presynaptic stores

(Llano et al., 2000; Emptage et al., 2001; Simkus and Stricker, 2002a). A key finding is

the observation that spontaneous Ca2+ transients (sCaTs) occur in synaptic boutons

of cultured hippocampal neurons (Emptage et al., 2001). In these cells, blockade

of RyRs reduces the frequency of both sCaTs and miniature excitatory postsynaptic

currents (mEPSCs). Consistently, Conti et al. (2004) observed sCaTs in cerebellar

basket terminals, and found that their amplitudes were similar to those of single AP-

evoked Ca2+ transients. These findings provide strong evidence that the spontaneous

release of Ca2+ from presynaptic stores can trigger transmitter release.

This chapter characterised sCaTs in synaptic boutons of layer 5 pyramidal neurons

in the rat somatosensory cortex. To elucidate the origin of sCaTs and whether

they underlie spontaneous transmitter release, their frequency, together with the

frequency of spontaneous postsynaptic currents (sPSCs), was also measured in the

presence of pharmacological compounds that interfere with Ca2+ release. The results

of this chapter extend a growing body of evidence favouring the role of presynaptic

Ca2+ stores in spontaneous synaptic transmission.
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4.2 Materials and methods

4.2.1 Tissue preparation and electrophysiology

15 � 20 day old Wistar rats of either sex were rapidly decapitated and 300 µm thick

slices of the rat somatosensory cortex were prepared as detailed in Section 3.2.2.

Brain slices were placed in a recording chamber and superfused with a standard

ACSF (see Section 3.2.3). All experiments were done at 35 ± 1 °C.

Visually identified pyramidal neurons in layer 5 of the somatosensory cortex were

filled through the patch pipette with a standard internal solution (see Section 3.2.3).

For fluorescence imaging, two fluorophores were added to the internal solution: 1)

Alexa Fluor® 568 (50 µM) or Alexa Fluor® 594 (40 µM), and 2) OGB-1 (80 µM; Life

Technologies). Patch pipettes were positioned using an MP-285 manipulator (Sutter

Instrument Co.).

Whole-cell recordings were made with a MultiClamp 700A (Molecular Devices;

commander version 1.2.10.4). sPSCs were recorded in continuous voltage-clamp at

a holding potential of �70 mV. The output current was filtered at 1 kHz using a

sample-and-hold amplifier (designed at JCSMR), and acquired at 5 kHz with an ITC-

18 computer interface (InstruTech Corporation). Series resistance (RS), and electrode

and whole-cell capacitance were not compensated. RS was monitored between each

sPSC recording period (3 � 4 min long) by applying a brief depolarising voltage step

(0.5 mV, 40 ms long; 30 repeats). The resultant current response was filtered at 10

and acquired at 20 kHz.

APs were evoked in current-clamp, by applying 2 ms long somatic current injections

(1� 3 nA). The resultant voltage responses were filtered at 10 and sampled at 20 kHz.

Experiments were only done in cells which maintained a resting membrane potential

of  �60 mV. Data were acquired using custom-made software implemented in Igor

Pro 6.2/6.3 (Wavemetrics), and stored on the hard drive of a MacIntosh PowerMac

G5 computer (Apple Inc.). Timings for current and voltage steps were provided by a

Master-8 stimulator (A.M.P.I.).



192 Spontaneous Ca2+ transients in neocortical synaptic boutons

4.2.2 Confocal Ca2+ imaging

Fluorescence imaging was done with a Zeiss LSM 510 and a 40x 1.0 NA water-

immersion objective, as described in Section 3.2.4. Unless otherwise stated,

pyramidal cells were filled with Alexa Fluor® 568 or 594, and OGB-1, for at least

40 min before Ca2+ imaging commenced.

In most experiments, Alexa Fluor® 568 or 594, and OGB-1 were excited separately

to minimise photo-toxicity. The Ca2+-insensitive fluorophores were excited by 543

nm light from a helium-neon laser (laser power < 0.1 mW). The emitted fluorescence

was long-pass filtered for > 560 nm and measured by a photomultiplier tube (PMT).

OGB-1 was excited using an argon laser (488 nm; laser power < 0.5 mW), and

its fluorescence was long-pass filtered for > 505 nm before being acquired by the

same PMT. Bleed-through from Alexa Fluor® 568 or 594 into the fluorescence

measurement of OGB-1 would not affect D[Ca2+]i associated with sCaTs calculated

from Eq. 4.1 (Section 4.2.4.2). In experiments in which Alexa Fluor® 594 and OGB-1

were excited simultaneously, fluorescence of OGB-1 was passed through a 500 � 530

nm band-pass filter before being acquired.

To reveal the morphology of a patched cell, the fluorescence intensity of Alexa Fluor®

568 or 594 was obtained in z-stacks (typically, 1508 ⇥ 1508 pixels per frame; pixel size

= 150 nm; dwell time = 0.64 µs per pixel; z-interval = 2 µm; open pinhole = 10 Airy

units; Fig. 3.4A). The patched cell was confirmed to be a pyramidal neuron if it had

a pyramidal-shaped soma, a pronounced apical dendrite, and spines lining along all

dendrites. Its axon was then traced, and synaptic boutons were chosen along 1st to

3rd order axon collaterals (100 � 300 µm from the soma; Fig. 3.4B). To reduce laser

exposure, fluorescence of OGB-1 was acquired using line scans (32 � 44 pixels per

line; pixel size = 130 � 150 nm; dwell time = 10.24 µs per pixel; open pinhole = 12

Airy units), drawn across a bouton and perpendicular to its parent axon collateral

(Fig. 3.4C). For measurement of a single AP-evoked Ca2+ transient, line scans were

taken every 5 ms (Fig. 3.4D). For detection of sCaTs, the sampling interval was 50

ms (Fig. 4.1A). Only boutons that displayed a rapid and clear increase in OGB-1
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fluorescence in response to an AP (within 5 ms of AP onset; > 95% boutons) were

used for detection of sCaTs.

4.2.3 Pharmacological compounds

Unless otherwise stated, detection of sCaTs was done in the presence of tetrodotoxin

(TTX; Affix Scientific, California, USA). The stock solution of TTX (1 mM) was made

by dissolving 1 mg of TTX in 3.132 ml of citric acid (0.1 M; BDH Chemicals, Victoria,

Australia). On the day that TTX was required for experiments, a small volume of the

stock solution was added to the standard ACSF to produce a final concentration of

1 µM. Imaging of sCaTs commenced more than 5 min after addition of TTX, when

APs could no longer be generated by somatic current injections.

To promote the occurrence of sCaTs, caffeine (Sigma-Aldrich) was bath-applied for

more than 10 min in the presence of TTX. Caffeine was not made into a stock solution,

but added directly to the standard ACSF to a final concentration of 20 mM on the

day of the experiment.

To investigate whether activation of IP3Rs contributed to the generation and/or

shaped the dynamics of sCaTs, 2-APB (Tocris, Bristol, UK) was bath-applied for more

than 10 min in the presence of TTX. The stock solution of 2-APB (16 mM) was made

with DMSO as the solvent. On the day that 2-APB was required for experiments, a

small volume of the stock solution was added to the standard ACSF to produce a

final concentration of 16 µM.

4.2.4 Data analysis

4.2.4.1 Detection and characterisation of sCaTs

Using a custom-made Zeiss TIFF image reader, fluorescence data were imported into

Igor Pro 6.3, where further analysis was performed.
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Fig. 4.1A shows a 30 s long recording of OGB-1 fluorescence (80 µM) in a synaptic

bouton in the presence of TTX (1 µM). To identify sCaTs, two values were calculated:

the average OGB-1 fluorescence across the diameter of the bouton (with background

fluorescence subtracted), and the total fluorescence of all pixels (32 � 44 pixels) in

each line scan (i.e. including background fluorescence). The average fluorescence was

calculated by fitting each line scan with a Gaussian function, the y-offset of which

was considered to be background fluorescence (Fig. 3.4D, top left). This was done

so that the location of the bouton centre was automatically determined, minimising

errors caused by movement of the bouton during imaging. The spatially averaged

fluorescence of the bouton (F) was then calculated as the average fluorescence of

6 � 10 pixels, corresponding to ± 2 standard deviations around the peak of the

Gaussian, minus the background fluorescence. However, due to the small diameter

of the imaged boutons, this spatially averaged fluorescence was largely determined

by the few brightest pixels (⇠ 3). As a sCaT should be seen across the entire bouton

diameter (sub-micrometer domains of intracellular Ca2+ rise were unlikely to be

detected), the total fluorescence of all pixels in each line scan (FT) was also used

for detection of sCaTs. As the imaged boutons were loaded with fluorescent dyes

through a patch pipette, background fluorescence contributed minimally to the value

of FT.

Once the total fluorescence of all pixels (FT) and the spatially averaged fluorescence

of the bouton (F) had been calculated and plotted against time (green traces in Figs.

4.1B-C, respectively), they were filtered as follows. First, they were digitally high-

pass filtered to remove low-frequency fluctuations, likely caused by movement of the

Figure 4.1: Identification of sCaTs. (A) A 30 s long recording of OGB-1 fluorescence in a
synaptic bouton in the presence of TTX (1 µM). Arrowheads indicate identified sCaTs. (B)
The total fluorescence of all pixels in each line scan (FT; green) was first high-pass filtered
(red) to remove low-frequency fluctuations. Two low-pass filtered signals (pink and blue)
were then produced by integrating the high-pass filtered signal over a time window of 200
or 300 ms, respectively. Solid lines represent the cut-off thresholds for the respective signals.
(C) Similar to B but with traces calculated from the spatially averaged fluorescence of the
bouton (F).
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bouton in and out of focus (red traces in Figs. 4.1B-C; end of reject band = 5 ⇥ 10�5

Hz; start of pass band = 0.025 Hz). Subsequently, the high-pass filtered signals were

low-pass filtered by replacing each value at time t with the sum of 4 or 6 consecutive

data points, starting from time t (pink or blue traces, respectively, in Figs. 4.1B-

C). The corresponding time windows (200 and 300 ms, respectively) were chosen to

match the slow decay time constant (tslow) of the fluorescence transient measured

with 80 µM OGB-1 in response to a single AP (249 ± 15 ms; n = 18). Both time

windows were used to reduce the frequency of false positives and thus increase the

specificity of the detection protocol (see below).

To identify sCaTs, a 30 s long section of a recording that contained no visually

identified increases in OGB-1 fluorescence was used as baseline (i.e., to estimate the

noise standard deviation or snoise). A sCaT was identified based on the following set

of criteria: 1) the high-pass filtered signal of FT was larger than the mean plus 2 ⇥

snoise of the corresponding baseline, 2) the low-pass filtered signals of FT were larger

than the mean plus 3 ⇥ snoise of the corresponding baseline, and 3) the low-pass

filtered signals of the spatially averaged fluorescence F were larger than the mean

plus 2 ⇥ snoise of the corresponding baseline. To avoid detection of large fluorescence

increases that decayed rapidly, the criteria for low-pass filtered signals had to be

met by at least two consecutive data points. Regardless of the total duration, all

consecutive data points that satisfied these criteria were attributed to an event. Two

events that started within 400 ms of each other were also counted as one. With this

set of criteria, 11 sCaTs were identified in the 30 s long recording shown in Fig. 4.1A

(arrowheads).

Once identified, the amplitude and decay kinetics of a sCaT was measured from the

spatially averaged fluorescence F. The baseline fluorescence (F0) was determined

by averaging over a 1 s time window immediately before its onset (i.e., the first

point that passed the set of detection criteria). In the case of multiple transients

that occurred within 1 s of each other, F0 of the following sCaT(s) was the same

as that of its predecessor. The relative change in fluorescence associated with each

event (DF/F0) was calculated by normalising the change in F to F0. Its amplitude and
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decay time constant (t) were then estimated by fitting the decay time course of the

fluorescence transient with an exponential function
�

Ae�t/t
�
, over a 0.5 � 2 s long

period starting at the highest fluorescence increment. The decay kinetics of transients

with decay phases straddled by other events were excluded from analysis. The inter-

event interval (IEI) between two successive sCaTs was calculated as the difference

between their onset times.

Specificity of the detection protocol. Two measures were used to assess the

performance of the automated detection protocol. These were the frequency of

false positives and the percentage of single AP-evoked Ca2+ transients that were

not identified. The first measure reflects the specificity of the protocol, whilst the

second indicates its sensitivity.

To examine the specificity of the detection protocol, fluorescence of OGB-1 and Alexa

Fluor® 594 in dye-filled boutons was acquired simultaneously. As bleed-through of

OGB-1 into the fluorescence measurement of the Ca2+-insensitive dye was minimal,

any changes in the latter fluorescence were independent of [Ca2+]i. As a result,

all events identified by the detection protocol from recordings of Alexa Fluor® 594

fluorescence were false positives.

In 14 boutons with a total of 168 min long recording (12 min per bouton), only 3 events

were detected from the fluorescence intensity of Alexa Fluor® 594, corresponding

to a false positive rate of 0.02 per min. In contrast, 55 events were detected from

fluorescence of OGB-1, yielding a frequency of sCaTs of 0.33 per min. This suggests a

high specificity of the detection protocol, with less than 10% of detected events being

false positives.

It should be noted here that such a high specificity was only obtained if both low-

pass filtered signals, with 200 and 300 ms integration windows (pink and blue

traces, respectively, in Figs. 4.1B-C), were used for the detection of sCaTs. When

either integration window was used, a total of 14 or 16 events were identified
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from fluorescence of Alexa Fluor® 594, and 75 or 77 events identified from OGB-

1 fluorescence. As all events identified with the former fluorescence occurred

independently of those identified with the latter fluorescence, the rate of false

positives was more than 15%. Interestingly, most false positives identified with

the 200 ms integration window were not detected by the 300 ms window, and vice

versa. Therefore, both integration windows were used to increase the specificity of

detection.

Sensitivity of the detection protocol. The sensitivity of the automated detection

protocol was assessed by evoking single APs during sCaT recordings (with a

sampling interval of 50 ms) and checking whether they could be identified by

the protocol. In this set of experiments, the fluorescence intensity of OGB-1 was

monitored in the absence of TTX so that APs could be evoked. In 17 boutons, a total

of 68 APs were evoked by somatic current injections (4 APs per bouton). Additionally,

five spontaneous APs were detected from voltage recordings at the soma. Out of

these 73 APs, 69 APs or 95% produced fluorescence transients that were identified

by the detection protocol. The remaining four AP-evoked fluorescence transients had

relatively small amplitudes (DF/F0  0.3, but one with DF/F0 = 0.68). However, the

main reason why they escaped detection was because their time integrals (with 200

and/or 300 ms integration windows) were not resolved from the recording noise. A

number of single AP-evoked transients with similar amplitudes but less noisy decay

phases were, in fact, identified.

Admittedly, the majority of fluorescence transients evoked by single APs had larger

amplitudes than sCaTs. Therefore, the percentage of single AP-evoked fluorescence

transients that were not identified (5%) provided an overestimation of the sensitivity

of the detection protocol. However, the observation that around a quarter of

identified sCaTs had DF/F0 smaller than 0.3 (Fig. 4.4D) suggests that the automated

detection protocol was able to identify events with small amplitudes, as long as their

decay phases could be resolved from the recording noise.
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4.2.4.2 Determination of D[Ca2+]i associated with each sCaT

D[Ca2+]i associated with each sCaT was calculated from DF/F0 of OGB-1 as follows

(Lev-Ram et al., 1992):

D[Ca2+]i =

[Ca2+]rest + Kd ⇥
DF/F0

(DF/F0)max

1 �
DF/F0

(DF/F0)max

� [Ca2+]rest. (4.1)

For this calculation, a value of 50 nM was used for [Ca2+]rest and 300 nM for Kd

of OGB-1 (Section 3.3.2 and Chapter 2, respectively). Bleed-through from Alexa

Fluor® 568 into the fluorescence measurement of OGB-1 would not affect D[Ca2+]i

calculated from Eq. 4.1, because it was cancelled in the ratio of the two relative

changes. (DF/F0)max of OGB-1 was determined in situ for each bouton imaged, by

evoking a 1 s long train of APs at 100 Hz at the end of each sCaT imaging period.

As this high-frequency train of APs raised [Ca2+]i to more than 10 µM (Fig. 3.16),

OGB-1 was most likely fully saturated; that is, (DF/F0)100Hz ⇡ (DF/F0)max. The latter

was thus measured as the average change during the last 500 ms of stimulation.

4.2.4.3 Estimation of D[Ca2+]T associated with each sCaT

D[Ca2+]T associated with each sCaT was estimated as follows:

D[Ca2+]T = D[Ca2+]i ⇥ (1 + kE + kD), (4.2)

where kE and kD represent the Ca2+ binding ratios of endogenous and exogenous

buffers, respectively (Neher and Augustine, 1992). This equation simply states that

the total number of Ca2+ ions present in a bouton are divided into those that are

free, those bound to endogenous buffers, and those bound to exogenous buffers. For

this calculation, a value of 7 was used for kE (see Section 3.3.4). kD was calculated

according to Eq. 3.22, with the total concentration of OGB-1 and other exogenous

buffers being 90% of that in the patch pipette (see Section 3.3.1).
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4.2.4.4 Detection of sPSCs

sPSC recordings were discarded if RS changed by more than 20% during the time

course of the experiment. To estimate RS, the average current produced by a 0.5 mV

voltage step was fitted with the sum of two exponential functions, over a period from

200 µs to 10 ms after the start of the voltage step. RS was then calculated from the

peak amplitude of the fit using Ohm’s law.

The technique for detecting sPSCs was published in Simkus and Stricker (2002b).

In brief, sPSC recordings were first analysed using a template-matching algorithm

(Clements and Bekkers, 1997) implemented in AxoGraph 4.9 (Sydney, Australia). In

this process, a spontaneous event was chosen as a template if its amplitude was large

but sub-maximal, if its baseline, rise time, and decay time did not overlap another

spontaneous event, and if its time course matched the average sPSC time course

as determined by eye. Subsequently, to avoid detection of events with amplitudes

smaller than the respective recording noise, snoise in a recording sequence during

which there was no sPSC detected by eye was chosen as the cut-off level. Detected

events with amplitudes smaller than 2.5 ⇥snoise were discarded.

The average sPSC time course was estimated after peak-aligning all sPSCs. As

other events commonly straddled the decay phase of a sPSC, the time courses were

truncated typically after 50% of decay.

4.2.4.5 Statistical analysis

Values are given as mean ± standard error (S.E.M). Error bars also indicate S.E.M.

In each box-and-whisker plot, the ends of the whiskers represent the minimum

and maximum values of the respective data set. Unless stated otherwise, statistical

comparisons between different experimental conditions were performed with the

Student’s t-test, one-way ANOVA analysis, or a post-hoc test (i.e. Tukey’s honestly

significant difference test). To compare the numbers of boutons with and without
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sCaTs between different conditions, a 2 ⇥ 2 contingency table was constructed and

the c2-statistic was used. pt < 0.05, pANOVA < 0.05, pTukey < 0.05, and pc2 < 0.05 were

considered to be significant.

To compare the characteristics of sCaTs and sPSCs in the control condition and after

a drug addition, cumulative probability density functions (cPDFs) were formed and

compared using the Kolmogorov-Smirnov statistic (pKS). For sCaT characteristics

(frequency, IEI, DF/F0, and t), pKS < 0.05 was considered significant. For sPSC

amplitude and frequency, the significance level for pKS was taken at < 10�6, because

of the large sample sizes (more than 2000 events for a 3 � 4 min long recording).

The c2 goodness-of-fit test was used to assess whether the IEIs were exponentially

distributed. The expected number of sCaTs in each interval or bin was chosen to be

⇠ 7 (Snedecor and Cochran, 1989). Depending on the data set, this corresponded to

a total (k) of 7 to 13 bins, with a constant expected probability (prob) of 0.143 to 0.077,

respectively. With the null hypothesis that the IEIs were exponentially distributed,

the upper boundary of each bin was calculated based on the mean IEI (l) of each

data set. That is,

boundary = �l ⇥ ln(1 � i ⇥ prob),

where i = 1, 2, ..., k. The observed number of sCaTs with an IEI within these

boundaries was then counted. Subsequently, the c2-statistic was calculated from the

difference between the observed (O) and expected (E) numbers of sCaTs as follows:

c2 =
(O � E)2

E
.

The number of degrees of freedom was determined as k � s � 1, with s representing

the number of parameters of the exponential distribution (i.e. s = 1).

To assess whether DF/F0 associated with an AP or a sCaT decayed mono- or bi-

exponentially, fluorescence changes measured in different boutons, under the same
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experimental condition, were pooled and averaged. The decay time course of this

average response was fitted with an exponential function
�

Ae�t/t
�

or the sum of

two distinct exponential functions
�

A1e�t/t1 + A2e�t/t2
�
. As a mono-exponential fit

is “nested” within a bi-exponential fit (i.e., a bi-exponential fit can be transformed

into a mono-exponential fit by making either A1 or A2 zero), an F-test was used

to compare the two fits. The F-statistic was calculated as the ratio of the weighted

sums of squared errors (c2) of the fits (Motulsky and Christopoulos, 2004; Costa et al.,

2010). The null hypothesis that the sum of two exponential functions did not provide

a significantly better fit than an exponential function was rejected if pF < 0.05.

4.3 Results

4.3.1 Visualising sCaTs

The high-affinity Ca2+ indicator OGB-1 (80 µM) was used to monitor small changes

in [Ca2+]i that occurred in the absence of AP firing. Previous studies showed that,

in neocortical pyramidal neurons, mEPSCs can occur at a rate as high as 50 Hz, with

1/3 of them arising from intracellular Ca2+ release (Emptage et al., 2001; Simkus and

Stricker, 2002a). As each pyramidal neuron in the neocortex receives approximately

104 synapses (Larkman, 1991), the frequency of spontaneous Ca2+ release per nerve

terminal was predicted to be low, ⇠ 3 mHz or once every 5 min (assuming that 1/2

of all synapses remained intact in brain slices). In support of this, the frequency of

sCaTs in basket terminals of cerebellar interneurons is ⇠ 2 mHz (Conti et al., 2004).

With such a low rate of spontaneous Ca2+ release, it was necessary to monitor [Ca2+]i

in each bouton for at least 10 min in order to detect a few sCaTs. Such an extended

scanning duration introduced two issues. The first was image drift; that is, whilst

being imaged continuously for 10 min, a number of boutons slowly drifted out of

focus, perhaps due to heating of the tissue and/or alternating flow directions of

the superfusate in a circular recording chamber. To overcome this problem, the
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scanning duration was divided into 3 min periods, between which the position of the

microscope objective was adjusted to make sure that the imaged bouton remained

in focus. Each bouton was imaged for 3 � 4 such periods, corresponding to a total

duration of 9 � 12 min, respectively. Boutons with significant drift during imaging

were discarded from further analysis.

The second issue that could have been introduced by the extended scanning duration

was photo-damage. To minimise the total time of laser exposure, the fluorescence

intensity of OGB-1 was scanned at 50 ms intervals. This sampling interval, although

quite long, was only 1/5 of the slow and 1/4 of the amplitude-weighted decay

time constant of the fluorescence transient measured in response to an AP with

80 µM OGB-1 (tslow = 249 ± 15 and tw = 186 ± 16 ms, respectively). As the

indicator concentration played a major role in shaping the kinetics of presynaptic

Ca2+ transients (Section 3.3.4), the decay time constant of sCaTs was most likely also

around 200 � 250 ms, unless a significant amount of CICR occurred, prolonging its

decay kinetics. Consequently, with a sampling interval of 50 ms, each sCaT would

have been detected with 4 � 5 consecutive scans. Dye bleaching was unlikely to

occur with a laser power < 0.5 mW (Snapp, 2013); in fact, the baseline fluorescence

of OGB-1 did not considerably decrease after 12 min of imaging.

4.3.2 Assessing the frequency of sCaTs over time

Due to the extended imaging duration, it was important to evaluate whether the

frequency of sCaTs was affected by the exposure to laser light. Figs. 4.2A and C

display the number of sCaTs identified in four 3 min imaging periods in the presence

or absence of TTX (1 µM), respectively. Note that boutons imaged in the presence of

TTX were different from those imaged without it. It can be seen that, regardless of

the presence of TTX, no sCaT was detected during most imaging periods, consistent

with their expected frequency. As the underlying distribution of the number of sCaTs

identified in each imaging period was unknown, the effect of imaging time on the

frequency of sCaTs was assessed by comparing the cumulative probability density
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Figure 4.2: Dependence of sCaT frequency on total imaging time. (A) The number of sCaTs
identified in four 3 min imaging periods with TTX. (B) The corresponding cPDFs, with
dashed line indicating that of the 4th imaging period. (C-D) Same as A-B but without TTX.
(E) The maximum fluorescence of OGB-1 ((DF/F0)max) measured at the end of each imaging
period. n = 46 (A-B), 28 (C-D), and 11 (E). *pTukey < 0.05.

functions (cPDFs) between different recording periods based on the Kolmogorov-

Smirnov statistic (Figs. 4.2B and D). In the presence of TTX, the cPDFs were not

different from each other (n = 46; pKS � 0.4). In contrast, in the absence of TTX,

whilst the cPDFs of the first three imaging periods were not different from each

other (n = 28; pKS � 0.9), the cPDF of the 4th period was significantly different from

those of earlier periods (pKS  0.04). This suggests that a total duration of laser

exposure longer than 9 min might have increased the frequency of sCaTs.

In 11 out of the 28 boutons that were imaged in the absence of TTX, the
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maximum fluorescence of OGB-1 ((DF/F0)max) was measured to investigate whether

the regulation of [Ca2+]i remained constant. (DF/F0)max of OGB-1 was determined

by evoking a 1 s long train of APs at 100 Hz, at the end of each imaging period.

According to Eq. 3.4, (DF/F0)max of the high-affinity indicator OGB-1 depends

on [Ca2+]rest. Therefore, any change in (DF/F0)max of OGB-1 would indicate an

impairment in the regulation of [Ca2+]rest (Maravall et al., 2000).

Fig. 4.2E displays (DF/F0)max of OGB-1 measured at the end of the four 3 min imaging

periods. On average, (DF/F0)max decreased over time (pANOVA = 0.049), with the

value measured at the end of the 4th period significantly smaller than that measured

after the 1st period (3.4 ± 0.2 vs. 2.8 ± 0.2; pTukey < 0.05). This suggests that a

total duration of laser exposure longer than 9 min might have increased [Ca2+]rest.

However, (DF/F0)max was not different between the first three periods of imaging

(pTukey > 0.05). Therefore, during these periods, the regulation of [Ca2+]rest was not

significantly altered, and the majority of sCaTs were unlikely to result from laser-

induced dysregulation of [Ca2+]i. Hereafter, synaptic boutons of layer 5 pyramidal

cells were only imaged for a total duration of 9 min, with sCaTs identified from the

three imaging periods pooled for subsequent analysis.

4.3.3 General characteristics of sCaTs

Fig. 4.3 displays the occurrence of all sCaTs identified in the presence or absence

of TTX (red or green, respectively). Without TTX present, an increase in OGB-1

fluorescence was only accepted as a sCaT if it occurred when no AP could be detected

in the concurrent somatic voltage recording. Out of 46 boutons that were imaged in

the presence of TTX, 19 boutons (41%) did not exhibit any event during the 9 min of

imaging. Similarly, no event was identified in 13 out of 36 boutons (36%) that were

imaged without TTX. The percentage of boutons with no sCaT was not different

between the two conditions (pc2 = 0.6).

Fig. 4.4 compares the characteristics of sCaTs identified in the presence vs. absence

of TTX. PDFs and cPDFs were generated for the average frequency, inter-event
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Figure 4.3: Occurrence of sCaTs identified in the presence or absence of TTX. Each tick
represents a sCaT identified with or without TTX (1 µM) added to the superfusate (A and B,
respectively). Dashed lines indicate boutons with an average sCaT frequency larger than the
population mean plus 3 ⇥ SD.
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interval (IEI), amplitude, and decay time constant (t) of sCaTs identified in the

two experimental conditions. The average frequency was calculated by dividing

the number of events identified in each bouton by the total imaging duration (i.e.

9 min). TTX did not affect the average frequency of sCaTs, which was 0.19 ± 0.05

and 0.23 ± 0.07 per min in the presence and absence of TTX, respectively (pKS = 1.0;

Figs. 4.4A). This is in agreement with the finding that TTX did not affect the rate of

spontaneous transmitter release in neocortical pyramidal cells (data not shown; also

see Simkus and Stricker, 2002b). However, the distribution of IEIs was significantly

different between the two experimental conditions (pKS = 0.005; 44 ± 11 vs. 70 ±

13 s; Fig. 4.4B). The cPDF of the IEIs in the presence of TTX was shifted to the left,

indicating an increase in the number of sCaTs with short IEIs. These sCaTs were

predominantly from two “active” boutons, each of which exhibited a total of 15 or 12

sCaTs in the 9 min of imaging (boutons # 1 and 40, respectively, marked with dashed

lines in Fig. 4.3A). The average frequencies of sCaTs in these boutons exceeded the

population mean by more than 3⇥ the standard deviation. Without TTX present

in the superfusate, two such “active” boutons, each with 15 or 16 sCaTs, were also

observed (boutons # 11 and 34, respectively, marked with dashed lines in Fig. 4.3B).

These two boutons had a longer average IEI compared to the two “active” boutons

imaged in the presence of TTX (pKS = 0.0001; 27 ± 8 vs. 20 ± 11 s, respectively).

Together, these “active” boutons suggest a tendency of sCaTs to occur in clusters,

probably due to sensitisation of ryanodine or IP3 receptors.

Figs. 4.4C-D show that TTX did not affect the amplitude and t of sCaTs (pKS �

0.2; DF/F0 = 0.66 ± 0.06 vs. 0.52 ± 0.05; t = 0.35 ± 0.04 vs. 0.31 ± 0.03 s). Fig.

4.4E displays the average time course of sCaTs identified with or without TTX added

to the superfusate. Each average time course was generated from DF/F0 of sCaTs

identified in the respective experimental condition, after peak-aligning them. In this

analysis, events with fluorescence signals remaining above the detection thresholds

for more than 0.5 s were excluded so that the decay time course of the average sCaT

could be revealed. There were only 4 and 2 such events, out of a total of 78 or 74

events detected with or without TTX, respectively (5 and 3%). In this figure, the peak
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Figure 4.4: Characteristics of sCaTs identified in the presence (red) or absence (green) of
TTX. (A-D) PDFs of the average frequency, IEI, amplitude, and t of sCaTs. Insets: the
corresponding cPDFs. In B, plots were fitted with an exponential PDF (dashed). (E) The
average sCaT time courses (peak-aligned and scaled) measured in the two experimental
conditions, with an exponential function fitted to each decay phase. (F) The observed
(coloured) vs. expected (dashed) numbers of sCaTs. Each bin had an expected probability of
0.143, corresponding to an upper boundary of 6.8, 14.8, 24.7, 37.3, 55.2, 85.7, and • s for IEIs
measured in TTX, and 10.9, 23.7, 39.4, 59.7, 88.3, 137.1, and • s for those measured without
TTX. ** pKS < 0.01.

amplitudes of the average sCaTs had been scaled to match each other, to facilitate

a comparison between their time courses. Clearly, the kinetics of sCaTs were not

altered by TTX. Unlike fluorescence transients evoked by single APs (Fig. 3.5C), the

average sCaTs had their decay phases well-fitted with a single exponential function

(pF � 0.4). Due to the sampling interval of 50 ms, any fast component in their decay

phases could not have been detected. The decay time constant of the average sCaT

was 200 ± 30 or 230 ± 20 ms, in the presence or absence of TTX, respectively. These

values were not different from each other (pt = 0.4). They were also in the range of

tslow and tw of the fluorescence transients measured in response to a single AP with

80 µM OGB-1 (249 ± 15 and 186 ± 16 ms, respectively). This observation reflects the

central role of the indicator concentration in shaping the intracellular Ca2+ dynamics.

It also argues against significant occurrence of CICR during the decay phase of a

sCaT.

Next, I investigated whether the IEIs of sCaTs followed an exponential distribution

(i.e. whether they were generated by a Poisson process; dashed curves in Fig. 4.4B).

To do this, I performed the c2 goodness-of-fit test, with intervals or bins of equal

probabilities (Fig. 4.4F; see Section 4.2.4.5). The expected number of sCaTs in each

bin was chosen to be ⇠ 7 (dashed line). As each condition, with or without TTX, had

a total of 51 IEIs, this corresponded to 7 bins, with each bin having an expected

probability of 0.143. With the null hypothesis that the IEIs were exponentially

distributed, the upper boundary of each bin was calculated based on the mean IEI

of each data set (i.e. 44 or 70 s, respectively; see Figure legend). The observed

number of sCaTs with an IEI within these boundaries was then counted (red or
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green, respectively). Based on the c2-statistic, the null hypothesis was rejected for

both experimental conditions (pc2  2 ⇥ 10�5). A comparison between the observed

vs. expected numbers of sCaTs reveals an excess of sCaTs within the first bin,

corresponding to IEIs  10 s. Therefore, the underlying mechanism was unlikely

to be Poisson. Instead, there was a tendency for sCaTs to bunch.

4.3.4 Estimating D[Ca2+]i associated with sCaTs

To determine D[Ca2+]i associated with sCaTs, (DF/F0)max of OGB-1 was measured by

evoking a 1 s long train of APs at 100 Hz, in experiments in which TTX was not

added to the superfusate. D[Ca2+]i associated with each sCaT was then calculated

from its DF/F0 and (DF/F0)max measured in the respective bouton, in accordance to Eq.

4.1. In these experiments, cells were filled with OGB-1 for at least 90 min before

Ca2+ imaging commenced. This was to enable a comparison between spontaneous

transients and those evoked by a single AP, and an estimation of D[Ca2+]T associated

with the former.

A total of 38 sCaTs were identified in 19 boutons, imaged after 90 min of whole-cell

break-in. This corresponds to an average frequency of 0.22 per min. These boutons

were included in the above analysis as boutons # 18 to 36 in Fig. 4.3B. The average

frequency, IEI, amplitude, and t of sCaTs identified in these 19 boutons were not

different from those observed in the other 18 boutons without TTX present in the

superfusate (i.e. boutons # 1 to 17 in Fig. 4.3B; pKS � 0.6; 0.22 ± 0.10 vs. 0.23 ± 0.10

per min; IEI = 67 ± 18 vs. 74± 19 s; DF/F0 = 0.51 ± 0.06 vs. 0.54 ± 0.07; t = 0.28 ± 0.03

vs. 0.34 ± 0.05 s). They were also not different from those observed in the presence

of TTX (pKS � 0.2), except for the IEI (pKS = 0.01).

Fig. 4.5A (green dots and inset) shows the average time course of sCaTs identified in

this set of experiments. Here, one event with fluorescence signals remaining above

the detection thresholds for more than 0.5 s (3%) was excluded so that the decay

kinetics of the average sCaT could be revealed. Again, its decay time course was
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Figure 4.5: Estimating D[Ca2+]i associated with sCaTs. (A) The average time course of sCaTs
measured in the absence of TTX (green dots and inset), compared to the average fluorescence
transient measured in response to an AP with 80 µM OGB-1 (black trace; n = 22). The two
traces have been aligned by the data points immediately prior to their peak amplitudes. The
AP-evoked transient has been fitted with the sum of two exponential functions (black curve).
Shaded area represents mean ± 1 SD. Green curve is a mono-exponential fit to the decay
phase of the average sCaT, extrapolated back by 50 ms to the earliest possible time of sCaT
initiation. Red curve represents an upper estimate of the peak amplitude of the average
sCaT, assuming that it had a bi-exponential decay phase similar to that of the AP-evoked
fluorescence transient. (B) Lower and upper estimates of D[Ca2+]i associated with sCaTs
(green and red, respectively), compared to D[Ca2+]i evoked by an AP measured with 80 µM
OGB-1. (C) Lower and upper estimates of D[Ca2+]T associated with sCaTs.
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similar to the late decay phase of the average fluorescence transient evoked by a

single AP (also measured with 80 µM OGB-1; black trace; n = 22). An exponential

fit to the former (green; pF = 0.7) yielded a time constant of 230 ± 20 ms, a value

between tslow and tw of the latter (275 ± 8 and 182 ± 7 ms, respectively).

From the measured amplitude of DF/F0, D[Ca2+]i associated with each sCaT was

estimated to be 90 ± 20 nM, ranging from 19 to 700 nM (Fig. 4.5B, green). This,

however, is only a lower estimate of the peak amplitude of the intracellular Ca2+

rise. Due to the sampling frequency of 50 ms, which was most likely longer than the

rise time of a sCaT, most events would have reached their peak prior to the measured

highest fluorescence increment. To get an upper estimate of the peak amplitude,

the average fluorescence transient measured in response to a single AP with 80 µM

OGB-1 was examined (Fig. 4.5A, black). Its decay time course was bi-exponential

(pF = 5 ⇥ 10�18), with its amplitude at 50 ms after the AP onset reduced to 57 ±

1% of the peak amplitude. Therefore, an upper estimate of the peak fluorescence

change associated with each sCaT was calculated by dividing the measured DF/F0 by

0.57 (red curve in Fig. 4.5A). An upper estimate of the corresponding D[Ca2+]i was

then calculated from this value using Eq. 4.1. This yielded values ranging from 35

to 700 nM, with an average of 160 ± 30 nM (Fig. 4.5B, red). Note that the maximum

value of this data set was the same as the maximum value of the lower estimates (i.e.

700 nM; red vs. green in Fig. 4.5B). This is because the corresponding DF/F0, when

divided by 0.57, was larger than (DF/F0)max of OGB-1 measured in the respective

bouton. Therefore, the upper estimate of D[Ca2+]i for this sCaT was kept the same as

its lower estimate. Together, these calculations show that, in the presence of 80 µM

OGB-1, an average sCaT raised [Ca2+]i by 20 � 36% of that evoked by a single AP

(450 ± 60 nM).

To estimate the total Ca2+ flux associated with each sCaT, the lower and upper

estimates of D[Ca2+]i were multiplied by the total Ca2+ binding ratios plus 1 (Eq. 4.2);

multiplication of D[Ca2+]i by the Ca2+ binding ratios of endogenous and exogenous

buffers (kE and kD, respectively) yielded the total concentration of Ca2+ ions that

were bound to all buffers. In this calculation, a value of 7, measured at the peak of



§4.3 Results 213

single AP-evoked Ca2+ transients, was used for kE (see Section 3.3.4). This resulted

in a lower estimate of 11 ± 2 µM and an upper estimate of 19 ± 2 µM for the total

change in Ca2+ (D[Ca2+]T; Fig. 4.5C, green and red, respectively). Dividing these

values by (1 + kE) yielded D[Ca2+]i in the absence of exogenous buffers (D[Ca2+]i,0).

D[Ca2+]i,0 was 1.4 � 2.3 µM, corresponding to 25 � 45% of that evoked by a single

AP.

4.3.5 The IP3R blocker 2-APB did not affect sCaT frequency

As sCaTs were observed in the presence of TTX, which blocks voltage-gated Na+

channels and prevents AP firing, it was hypothesised that they arose from Ca2+

release from presynaptic Ca2+ stores. To investigate whether Ca2+ release through

IP3Rs gave rise to sCaTs, their frequency was measured in the presence of the IP3R

antagonist 2-APB. A concentration of 16 µM was used; this was approximately

the concentration that most effectively inhibited spontaneous transmitter release in

neocortical pyramidal neurons (Simkus and Stricker, 2002a).

Fig. 4.6A shows the occurrence of all sCaTs identified in 12 boutons in the presence

of TTX and 2-APB. The percentage of boutons with no sCaT (25%) was not different

from the control condition (pc2 = 0.3). A total of 17 events were identified,

corresponding to an average frequency of 0.16 per min. This average frequency was

not different from that measured in the presence of only TTX (pKS = 0.9; 0.16 ± 0.04

vs. 0.19 ± 0.05 per min; Fig. 4.6B). The amplitude and t of sCaTs were also not

affected by 2-APB (pKS � 0.4; DF/F0 = 0.66 ± 0.06 vs. 0.57 ± 0.08; t = 0.35 ± 0.04 vs.

0.30 ± 0.06 s; Figs. 4.6C-D). The distribution of IEIs in 2-APB was not characterised

and compared to that in the control condition due to their small number (n = 8 IEIs).

Fig. 4.6E shows the average time course of sCaTs measured in 2-APB compared to

that in the control condition. To generate this average time course, one event with

fluorescence signals remaining above the detection thresholds for more than 0.5 s

(6%) was excluded so that the decay time course of the average sCaT measured in
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2-APB could be revealed. An exponential fit to the decay phase of the average sCaT

(pF = 1.0) yielded a t of 230 ± 30 ms, not different from that of the control (200

± 30 ms; pt = 0.7). Together, the findings that addition of 2-APB did not alter the

frequency, amplitude, and kinetics of sCaTs argue against a significant contribution

of Ca2+ release through IP3 receptors to their generation and dynamics.

4.3.6 Caffeine increased the frequency of sCaTs and sPSCs

To investigate whether Ca2+ release through RyRs gave rise to sCaTs, their frequency

was measured in the presence of the RyR agonist caffeine (20 mM; EC50 ⇠ 5 mM,

according to Porta et al., 2011). Fig. 4.7A displays the occurrence of all sCaTs

identified in the presence of TTX and caffeine. For comparison, the occurrence of all

sCaTs identified in the control condition, with only TTX present in the superfusate,

was also presented (Fig. 4.7B). As described above, no sCaT was identified in 19 out

of 46 boutons (41%) that were imaged with only TTX. After addition of caffeine, the

percentage of boutons that did not exhibit any event was 24% (i.e. 9 out of 37), not

different from that in the control condition (pc2 = 0.10).

Fig. 4.8 compares the characteristics of sCaTs identified in the presence of caffeine to

those identified in the control condition. Addition of caffeine significantly increased

the average frequency of sCaTs by 90 ± 30%, from 0.19 ± 0.05 to 0.36 ± 0.07 per min

(pKS = 0.02; Figs. 4.8A). However, the distribution of IEIs was not different between

the two experimental conditions (pKS = 0.10; 44 ± 11 vs. 57 ± 9 s; Fig. 4.8B). Caffeine

also did not affect the amplitude and t of sCaTs (pKS � 0.2; DF/F0 = 0.66 ± 0.06 vs.

0.58 ± 0.03; t = 0.35 ± 0.04 vs. 0.33 ± 0.03 s; Figs. 4.8C-D). Therefore, caffeine-

induced events and those observed in the control condition likely arose from the

same process.

Fig. 4.8E displays the average time course of sCaTs identified in the control condition

and after addition of caffeine. In this analysis, one event with fluorescence signals

remaining above the detection thresholds for more than 0.5 s (0.8%) was excluded
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so that the decay time course of the average sCaT measured in caffeine could be

revealed. Again, the kinetics of the average sCaT was not altered by caffeine. An

exponential fit to its decay phase (pF = 0.08) yielded a t of 230 ± 20 ms, not different

from that in the control condition (200 ± 30 ms; pt = 0.4). This suggests that Ca2+

release through RyRs was brief and did not considerably persist during the decay

phase of sCaTs.

The c2 goodness-of-fit test was performed to assess whether the IEIs, measured in

the presence of caffeine, were exponentially distributed (dashed curve in Fig. 4.8B).

In Fig. 4.8F, the observed and expected numbers of sCaTs were plotted (blue and

dashed, respectively). With ⇠ 7 sCaTs expected in each bin, there was a total of 13

bins (n = 92 IEIs), each with an expected probability of 0.077. The upper boundary

of each bin was calculated using the mean IEI, which was 57 s (see Figure legend).

Based on the c2-statistic, the null hypothesis that the IEIs followed an exponential

distribution was rejected (pc2 = 2 ⇥ 10�8). This suggests that the release of Ca2+

through RyRs, in the presence of caffeine, was unlikely to be a Poisson process. As

seen in the control condition, there was an excess of sCaTs with IEIs  10 s.

In this set of experiments, the frequency of sPSCs was also measured to examine the

extent to which 20 mM caffeine increased the rate of spontaneous transmitter release

in layer 5 pyramidal cells. The majority of sPSCs were of excitatory synaptic origin,

as addition of the GABAA receptor blocker gabazine did not affect their frequency

and amplitude (data not shown; also see Simkus and Stricker, 2002b). Fig. 4.9A

illustrates a typical recording sequence (2 s long), before the addition of TTX and

caffeine (red) and after they were added to the superfusate (blue). During the control

period with a total recording duration of 4 min, 4,522 sPSCs were detected; their

instantaneous frequencies are plotted in Fig. 4.9B (t < 0). The average instantaneous

frequency was 45 ± 1 Hz and the amplitude �11.9 ± 0.1 pA. After addition of TTX

and caffeine at t = 0 and the resumption of the recording after a gap of 6 min,

6,230 events were detected in the subsequent 3 min. The respective instantaneous

frequencies are presented in Fig. 4.9B for t � 6 min. The average instantaneous

frequency during this period was 67 ± 1 Hz, corresponding to an increase by 51
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Figure 4.8: Characteristics of sCaTs identified after addition of caffeine (blue) compared
to those identified in the control condition (red). (A-D) PDFs of the average frequency,
IEI, amplitude, and t of sCaTs. Insets: the corresponding cPDFs. TTX was present in the
superfusate in all experiments. In B, plots were fitted with an exponential PDF (dashed). (E)
The average sCaT time courses (peak-aligned and scaled) measured in the two experimental
conditions, with an exponential function fitted to each decay phase. (F) The observed (blue)
vs. expected (dashed) numbers of sCaTs. Each bin had an expected probability of 0.077,
corresponding to an upper boundary of 4.5, 9.5, 14.9, 20.9, 27.5, 35.1, 43.9, 54.2, 66.9, 83.2,
106.2, 145.5, and • s. * pKS < 0.05.

± 1% (pKS ⌧ 10�6; Fig. 4.9C). Such an increase in frequency could have arisen if

the sPSC amplitude became larger in caffeine. However, sPSCs identified in caffeine

had an average amplitude of �13.2 ± 0.2 pA, not different from that measured in

the control condition (pKS = 0.07; Fig. 4.9D). The time course of sPSCs was also

not affected by caffeine (Fig. 4.9F). Fig. 4.9E displays the instantaneous frequency,

averaged for every 0.5 min and normalised to the average value during control. It can

be seen that the increase in the instantaneous frequency was maintained throughout

the recording period. Accordingly, in this cell, caffeine increased the frequency of

sPSCs, without significantly affecting their amplitudes.

Fig. 4.9G presents the average of the instantaneous sPSC frequency in three cells

that fulfilled the quality criterion for sPSC recordings (i.e. < 20% change in access

resistance). Caffeine increased the instantaneous frequency in all of these cells by

47 ± 14%, from 61 ± 9 Hz to 88 ± 11 Hz. In contrast, it inconsistently affected

the sPSC amplitude, with no change in one cell (pKS = 0.07; Fig. 4.9D) and a

decrease by 10 ± 1% in the two remaining cells (pKS  10�8; �11.6 ± 0.1 vs.

�10.3 ± 0.1 pA, and �9.5 ± 0.1 vs. �8.6 ± 0.1 pA). Thus, in layer 5 pyramidal

cells, the stimulatory effect of caffeine on the occurrence of sCaTs was paralleled

by its effect on sPSC frequency. This finding led to the hypothesis that sCaTs might

underlie spontaneous transmitter release, as has been proposed in synaptic boutons

of cultured hippocampal pyramidal neurons (Emptage et al., 2001).

It should be noted here that, as TTX was absent during the control period but added

to the superfusate together with caffeine, the extent to which caffeine increased the

frequency of sPSCs might have been underestimated. However, this was unlikely
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Figure 4.9: Caffeine increased the frequency of sPSCs. (A) A 2 s long recording sequence
before (red) and after (blue) addition of caffeine and TTX (20 mM and 1 µM, respectively).
(B) The instantaneous frequency of individual sPSCs in a layer 5 pyramidal cell, shown for
the control period (t < 0 min) and after caffeine and TTX were added (t = 0 min). (C-D)
cPDFs of the instantaneous frequency and amplitude of sPSCs before and after addition of
caffeine. (E) The change in instantaneous frequency, averaged for every 0.5 min, of the data
in B. (F) The average time courses of sPSCs measured during control and in caffeine. (G) The
overall change in instantaneous frequency, averaged for every 0.5 min, in three different cells.
In (E-G), dashed lines indicate no change with respect to the average of the 4 min control
period.

because, in a different set of experiments (n = 3), addition of only TTX did not

decrease the frequency of sPSCs (data not shown; also see Simkus and Stricker,

2002b).

4.4 Discussion

This chapter provided direct evidence for the occurrence of sCaTs in synaptic boutons

of layer 5 pyramidal neurons. In the absence of exogenous buffers, each sCaT raised

[Ca2+]i by 1.4� 2.3 µM. Additionally, it was found that 1) the mechanism underlying

sCaTs was unlikely to be Poisson, 2) the average frequency of sCaTs increased after

addition of the RyR agonist caffeine, but was unaffected by the IP3R blocker 2-APB,

and 3) both caffeine and 2-APB did not affect the amplitude and decay time course

of sCaTs. Together, these findings suggest that a large fraction of sCaTs might have

been a result of the spontaneous and brief release of Ca2+ through RyRs.

4.4.1 Mechanism(s) underlying sCaTs

4.4.1.1 Intracellular Ca2+ release through RyRs

Spontaneously occurring Ca2+ transients have previously been observed at the lizard

neuromuscular junction (Melamed-Book et al., 1999), synaptic boutons of cultured

hippocampal neurons (Emptage et al., 2001), and basket terminals of cerebellar
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interneurons (Conti et al., 2004). In these nerve terminals, the frequency of sCaTs

was decreased or increased by a high or low concentration of ryanodine, respectively

(Emptage et al., 2001; Conti et al., 2004). Similar Ca2+ transients have also been

reported in dendrites of hippocampal pyramidal neurons, in which their frequency

is independent of the activation of ionotropic receptors, but modulated by blockers

and agonists of intracellular Ca2+ release (Manita and Ross, 2009). Together, these

findings indicate that the spontaneous release of Ca2+ is a common feature of

intracellular stores in neurons.

The observation of sCaTs during whole-cell recordings in TTX and at somatic

membrane potentials  �60 mV suggests that sCaTs predominantly arose from

intracellular Ca2+ release, consistent with previous studies (Melamed-Book et al.,

1999; Emptage et al., 2001; Conti et al., 2004; Manita and Ross, 2009). At these

membrane potentials, P/Q- and N-type VGCCs, which are the main source of

AP-evoked Ca2+ transients in synaptic boutons of neocortical pyramidal neurons

(� 70%; Koester and Sakmann, 2000; Yu et al., 2010), are not appreciably activated

(Nowycky et al., 1985; Currie and Fox, 1997). Although Ca2+ influx through L- and T-

type Ca2+ channels, and NMDA receptors, can lead to activation of RyRs (Wang et al.,

2001; Manita and Ross, 2009; Tang et al., 2011; Reese and Kavalali, 2015), blockade of

VGCCs and NMDA receptors did not affect the frequency of mEPSCs in neocortical

pyramidal neurons (Simkus and Stricker, 2002b). Therefore, it is unlikely that VGCCs

and/or presynaptic NMDA receptors significantly contributed to the generation of

sCaTs.

A number of findings support the conclusion that the spontaneous release of Ca2+

occurred mainly through RyRs. First, the amplitude and kinetics of sCaTs in the

control condition was the same as those measured after addition of caffeine. Second,

the IP3R antagonist 2-APB did not affect the frequency, amplitude, and decay time

constant of sCaTs. Third, less than 5% of the observed sCaTs had fluorescence

signals remaining above the detection thresholds for more than 0.5 s. Such sustained

Ca2+ elevations are preferentially mediated by IP3Rs, whereas activation of RyRs

generally produces a rapid rise in [Ca2+]i, with a time to peak of less than 10 ms
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(Wang et al., 2001; Miyazaki and Ross, 2013). However, because of the long sampling

interval of 50 ms, the rise time and peak amplitude of most sCaTs were not resolved

or detected. Therefore, a contribution of IP3R-mediated Ca2+ release cannot be

completely excluded. In fact, in the absence of G-protein activation, 2-APB was

found to reduce the frequency of mEPSCs in neocortical layer 2/3 pyramidal neurons

(Simkus and Stricker, 2002a). This indicates that IP3Rs are likely to be constitutively

active. Additionally, during synaptic activity, activation of presynaptic metabotropic

receptors and subsequently IP3Rs could promote the occurrence of sCaTs (Manita

and Ross, 2009).

The lack of a significant effect of 2-APB could be due to the small number of sCaTs

observed in this study. Due to their low frequency, a large number of boutons would

need to be imaged to demonstrate a statistically significant reduction in the frequency

of sCaTs. This is also one of the reasons why I used an agonist, rather than an

antagonist, to investigate whether RyRs mediated sCaTs. The main reason I did not

attempt to block RyRs was the unavailability of a blocker that has a high specificity

and produces unambiguous results. To my knowledge, the only specific blocker of

all RyR isoforms is the plant alkaloid, ryanodine, which causes a complete closure of

the channels at high concentrations (� 200 µM; Buck et al., 1992). However, between 1

and 100 µM, ryanodine increases the open probability of RyRs, while stabilising them

in sub-conducting states (Buck et al., 1992). As these two actions produce opposing

effects on the overall Ca2+ conductance, the effects of ryanodine are not easy to

interpret. For instance, 20� 30 µM of ryanodine abolished sCaTs in synaptic boutons

and dendrites of hippocampal pyramidal neurons (Emptage et al., 2001; Manita and

Ross, 2009). Yet, 10 µM of ryanodine increased the frequency of sCaTs in cerebellar

basket terminals (Conti et al., 2004). In addition, Simkus and Stricker (2002a) found

that 20 µM of ryanodine (bath-applied for more than 20 min) failed to produce a

complete block of RyR-mediated mEPSCs in neocortical pyramidal neurons. Because

of the low frequency of sCaTs and the varying effects of ryanodine, I chose to

investigate the origin of sCaTs by stimulating RyRs with caffeine.
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4.4.1.2 Characteristics of the underlying mechanism(s)

Although sCaTs displayed a decay time course similar to that of a single AP-evoked

Ca2+ transient, their amplitude was, on average, only 25 � 45% of the latter. This

finding is not surprising, considering that different sources of Ca2+ most likely

underlay these transients. In addition, the open probability of a Ca2+ channel,

whether it is voltage-gated or not, is most likely very low at rest. Therefore, unless

it was significantly amplified by nearby Ca2+ channels, a sCaT was unlikely to be as

large as an AP-evoked Ca2+ transient.

The non-exponential distribution of the IEIs suggests that sCaTs might not be

generated by a Poisson process. In fact, the large number of sCaTs with short

IEIs indicates that they occurred in clusters. Temporal bunching of sCaTs and

RyR-mediated Ca2+ sparks has been described in basket terminals of cerebellar

interneurons (Conti et al., 2004) and cardiac myocytes (Parker and Wier, 1997),

respectively. Similar to those observed in cardiac myocytes, a cluster of sCaTs was

often accompanied with a small but sustained increase in the basal fluorescence of

OGB-1 (Fig. 4.1). A prolonged elevation in the spatially homogeneous [Ca2+]i might

have sensitised the same or nearby RyRs (Laver, 2007), thereby generating clusters of

sCaTs.

It is interesting that 34% of the boutons that were imaged (44 out of 131) displayed

no sCaT in the 9 min of imaging. This percentage of “inactive” boutons is larger

than that expected for a Poisson process. With an overall average of 2.2 sCaTs per

bouton, the probability of observing a bouton with no sCaT would have been only

11%. Although the mechanism underlying sCaTs was unlikely to be Poisson, the fact

that sCaTs were not detected in 34% of the boutons may indicate variability in the

expression of RyRs, ER Ca2+ content, and/or resting [Ca2+]i between presynaptic

terminals.
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4.4.2 The number of RyRs associated with each sCaT

The present results allow a rough estimation of the number of RyRs that generated

individual sCaTs. With a value of D[Ca2+]T of 11 � 19 µM, and assuming that

the average volume of the imaged boutons was 0.36 µm3 (Rollenhagen and Lübke,

personal communication), a total of 2,400�4,100 Ca2+ ions were released into the

cytosol. To approximate the number of RyRs that were open, their mean unitary

current was assumed to be 0.5 pA (for quasi-physiological ionic conditions; Mejia-

Alvarez et al., 1999; Kettlun et al., 2003). Their mean open time was additionally

assumed to be 1 ms (Xu and Meissner, 1998; Cannell et al., 2013). With these

assumptions, the opening of each RyR releases ⇠ 1,600 Ca2+ ions. Therefore, a

sCaT was generated by the activation of 2 � 3 RyRs. Although this value is only a

rough estimate, it is in the range of the number of RyRs producing “Ca2+ sparks” in

cardiac myocytes (4 � 6 RyRs; Wang et al., 2001). This suggests that a sCaT might be

equivalent to a “Ca2+ spark”.

4.4.3 Functional consequences of sCaTs

In the imaged boutons, individual sCaTs increased [Ca2+]i by 25� 45% of that evoked

by a single AP. In addition, caffeine increased the frequency of not only sCaTs but

also sPSCs. Based on these results, it is proposed that sCaTs can trigger vesicular

exocytosis, and therefore, underlie the Ca2+-dependent fraction of spontaneous

transmission in neocortical pyramidal neurons (Simkus and Stricker, 2002a). To test

this hypothesis, future work will need to simultaneously measure presynaptic sCaTs

and postsynaptic mEPSCs. Whether they contribute to spontaneous transmitter

release or not, sCaTs may also play important roles in the formation and maintenance

of synapses in the absence of neuronal activity (McKinney et al., 1999; Bouchard et al.,

2003; Tyler and Pozzo-Miller, 2003).
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4.5 Summary

In synaptic boutons of layer 5 pyramidal neurons, sCaTs were likely to arise from the

spontaneous and brief release of Ca2+ through RyRs. Each sCaT raised [Ca2+]i by

1.4 � 2.3 µM, and corresponded to the activation of 2 � 3 RyRs.



Chapter 5

Conclusion

For a variety of nerve terminals, especially the calyx of Held (Helmchen et al., 1997;

Kim et al., 2005; Muller et al., 2007) and mossy fibre boutons (Liang et al., 2002; Lauri

et al., 2003; Scott and Rusakov, 2006; Scott et al., 2008; Delvendahl et al., 2015), factors

that underlie the spatially homogeneous [Ca2+]i have been characterised. However,

only a few studies have imaged [Ca2+]i in synaptic boutons of neocortical pyramidal

neurons (Cox et al., 2000; Koester and Sakmann, 2000; Buchanan et al., 2012). In

particular, at the start of this thesis, there was no study that had systematically

characterised factors that shaped the presynaptic Ca2+ dynamics in layer 5 pyramidal

neurons. This thesis aimed to measure AP-evoked and spontaneous Ca2+ transients

in synaptic boutons of these neurons, in order to determine the endogenous Ca2+

binding ratio and the rate constant of Ca2+ sequestration, to reveal the Ca2+

dynamics in the absence of exogenous buffers, and to provide evidence for Ca2+

release from presynaptic stores.

5.1 Key findings and implications

In Chapter 2, the Ca2+ binding affinities (Kd) of several fluorescent Ca2+ indicators

were measured in calibrating solutions that mimicked the patch-clamp internal

solution. It was shown that Maxchelator, a freely available computer program,

provided inaccurate estimates of the Kd values of commonly used Ca2+ buffers, such

as EGTA and HEDTA. In addition, the purity of EGTA was not as advertised by
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the manufacturer. Therefore, the use of Maxchelator and the assumption of 100%

buffer purity yielded inaccurate and inconsistent estimates of the free concentration

of Ca2+ in Ca2+-buffer solutions. This has implications for the published values of

Kd of Ca2+ dyes and thus of [Ca2+]i, suggesting that they may have an error of up to

200%. To avoid this pitfall, the free [Ca2+] in the calibrating solutions was measured

with a Ca2+-selective macroelectrode. This allowed an accurate determination of

the Kd values of the fluorescent Ca2+ indicators. In the subsequent chapters, these

measured Kd values enabled [Ca2+]i to be calculated from the fluorescence intensity

of the Ca2+ indicators.

In Chapter 3, AP-evoked Ca2+ transients were measured in synaptic boutons of layer

5 pyramidal neurons. Based on these measurements, the endogenous Ca2+ binding

ratio (kE), the rate constant of Ca2+ sequestration, and the amplitude and time course

of an AP-evoked Ca2+ transient with no added buffer were estimated in accordance

with the single-compartment model (Neher and Augustine, 1992). It was found that

the imaged boutons had a very small value of kE. This allowed [Ca2+]i to rise by ⇠

5 µM in response a single AP and in the absence of exogenous buffers. A low kE

and a large Ca2+ rise may be required for the efficacy, reliability, and synchronicity

of evoked transmitter release, and facilitate the induction of Ca2+-dependent cellular

processes.

Additionally, Chapter 3 demonstrated that, in a small bouton-type synapse, diffusion

of Ca2+ into the axon can significantly speed up the decay time course of an AP-

evoked Ca2+ transient. Based on the estimated values of kE and the total Ca2+

influx, a 3D reaction-diffusion model was created to reproduce the measured Ca2+

transients. This model showed that, due to the small size of the imaged boutons

and the fact that they were boutons en passant, Ca2+ was able to escape into the

axon immediately after an AP-evoked Ca2+ influx. Therefore, a bouton-type synapse

is not a truly single compartment, where diffusion is negligible. Any changes to

the axon diameter or the apparent mobility of Ca2+ would affect the rate of Ca2+

decay. Consistently, in the presence of fluorescent Ca2+ indicators, which increased

the diffusion of Ca2+ into the axon, an AP-evoked Ca2+ transient exhibited an initial
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fast drop, followed by a much slower decay. The slow decay phase was mainly

determined by Ca2+ sequestration mechanisms, including intracellular Ca2+ uptake.

In contrast, the dynamics of the spatially homogeneous [Ca2+]i in these boutons were

unlikely shaped by saturation of endogenous Ca2+ buffers or by buffers with slow

Ca2+ binding kinetics.

Chapter 3 also demonstrated a supralinear summation of [Ca2+]i during high-

frequency trains of APs. Facilitation of presynaptic Ca2+ currents and saturation

of Ca2+ sequestration were unlikely to underlie this phenomenon. Instead, it most

likely arose from Ca2+ release from intracellular stores. The supralinear build-up of

[Ca2+]i may have considerable biological significance, such as induction of activity-

dependent presynaptic plasticity.

By providing direct evidence for spontaneous Ca2+ transients (sCaTs), chapter 4

showed that presynaptic Ca2+ stores may also contribute to spontaneous transmitter

release. As in synaptic boutons of hippocampal neurons and cerebellar basket

terminals (Emptage et al., 2001; Conti et al., 2004), the observed sCaTs were most

likely a result of spontaneous and brief release of Ca2+ through ryanodine receptors.

In the absence of exogenous buffers, the change in [Ca2+]i associated with each

sCaT was almost half of that evoked by a single AP. This suggests that sCaTs could

potentially trigger transmitter release, if synaptic vesicles are located in the vicinity

( 100 nm) of the open channels. The value of kE, determined in Chapter 3, allowed

the total Ca2+ flux associated with each sCaT to be estimated. This in turn allowed

a rough estimation of the number of ryanodine receptors involved in its generation.

It was concluded that a sCaT could be produced by the activation of 2 � 3 ryanodine

receptors, and thus, was equivalent to a “Ca2+ spark” in cardiac myocytes.

5.2 Concluding remark

This thesis revealed important factors that shape the spatially homogeneous [Ca2+]i

in synaptic boutons of neocortical pyramidal neurons. It also extends a growing body
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of evidence supporting the role of presynaptic Ca2+ stores in synaptic transmission

and short-term plasticity. Mutations or alterations in the expression of Ca2+ channels,

buffers, and transporters have been suggested to underlie a multitude of neurological

disorders, ranging from migraine, epilepsy, to neurodegenerative diseases (Schwaller

et al., 2002; Brini and Carafoli, 2009; Bezprozvanny, 2011; Brini and Carafoli, 2011;

Catterall, 2011; Del Prete et al., 2014). In addition, dysfunction of presynaptic

Ca2+ stores, which impairs neurotransmitter release and disrupts the induction

of synaptic plasticity, might be an early pathogenic event leading to Alzheimer’s

disease (Zhang et al., 2009). Therefore, a detailed investigation of mechanisms that

control the presynaptic Ca2+ dynamics, and how they regulate synaptic transmission

and plasticity, promises important insights into the pathogenesis of neurological

disorders and may offer therapeutic targets.



Appendix A

Estimation of dye saturation

The maximum change in fluorescence of OGB-1 ((DF/F0)max) was determined

by comparing its relative changes (DF/F0) during two trains of APs at different

frequencies. This analysis was based on Maravall et al. (2000). Here, Eq. 3.3 is

re-derived to extend beyond the assumption of linear summation of [Ca2+]i during

the AP trains. A similar derivation was found in Appendix A of Maravall et al. (2000).

The fluorescence intensity (F) of a non-ratiometric Ca2+ indicator can be written as

F = SD[D] + SDCa[DCa]

= SD([D]T � [DCa]) + SDCa[DCa]

= SD[D]T + (SDCa � SD)[DCa],

where SD and SDCa are constants that describe the brightness of the indicator when

it is free of and bound to Ca2+, respectively, [D]T is the total concentration of the

indicator, [DCa] is the concentration of Ca2+-bound indicator molecules, and [D] is

the concentration of free indicator molecules. By analogy, the baseline fluorescence

(F0) of the Ca2+ indicator can be written as

F0 = SD[D]T + (SDCa � SD)[DCa]0,
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where [DCa]0 is the concentration of Ca2+-bound indicator molecules at baseline.

Accordingly, during a train of APs, the change in fluorescence intensity of the Ca2+

indicator can be expressed as

DF = F � F0

= (SDCa � SD)([DCa]� [DCa]0)

= (SDCa � SD)D[DCa]. (A.1)

Eq. A.1 shows that the change in fluorescence intensity of a non-ratiometric Ca2+

indicator is proportional to the change in concentration of Ca2+-bound indicator

molecules; that is, DF µ D[DCa]. Based on the law of mass action,

[DCa] =
[D]T[Ca2+]i

Kd + [Ca2+]i
. (A.2)

Therefore,

DF µ

 
[Ca2+]i

Kd + [Ca2+]i
� [Ca2+]rest

Kd + [Ca2+]rest

!

µ

"
Kd([Ca2+]i � [Ca2+]rest)

(Kd + [Ca2+]i)(Kd + [Ca2+]rest)

#

µ

"
D[Ca2+]i

(Kd + [Ca2+]i)(Kd + [Ca2+]rest)

#
.

Let Q be the ratio between the fluorescence changes during two trains of APs at

different frequencies u1 and u2; that is, Q =
(DF/F0)u2
(DF/F0)u1

. Then,
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Q =
(DF)u2

(DF)u1

=
D[Ca2+]u2

D[Ca2+]u1

⇥ Kd + [Ca2+]u1

Kd + [Ca2+]u2

. (A.3)

Let D[Ca2+] be simplified as D. The second factor on the right-hand side of Eq. A.3

is thus

Kd + [Ca2+]u1

Kd + [Ca2+]u2

=
Kd + D1 + [Ca2+]rest

Kd + D2 + [Ca2+]rest

=
Kd + D1 + [Ca2+]rest + (D2 � D2)

Kd + D2 + [Ca2+]rest

= 1 +
D1 � D2

Kd + D2 + [Ca2+]rest

= 1 +
D1 � D2

Kd + D2 + [Ca2+]rest
⇥ D2

D2

= 1 +
D2

Kd + D2 + [Ca2+]rest
⇥ D1 � D2

D2

= 1 +
D2

Kd + D2 + [Ca2+]rest
⇥
✓

D1

D2
� 1
◆

.

As [Ca2+]rest ⌧ D2, this factor can be approximated as

Kd + [Ca2+]u1

Kd + [Ca2+]u2

⇡ 1 +
D2 + [Ca2+]rest

Kd + D2 + [Ca2+]rest
⇥
✓

D1

D2
� 1
◆

⇡ 1 +
[Ca2+]u2

Kd + [Ca2+]u2

⇥
✓

D1

D2
� 1
◆

.

Using the law of mass action (Eq. A.2), this can be re-written as

Kd + [Ca2+]u1

Kd + [Ca2+]u2

⇡ 1 +
[DCa]u2

[D]T
⇥
✓

D1

D2
� 1
◆

. (A.4)
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Let xu2 be the level of saturation of the Ca2+ indicator during an AP train at frequency

u2. According to Eq. A.1,

xu2 =
(DF/F0)u2

(DF/F0)max

=
(DF)u2

(DF)max

=
(D[DCa])u2

(D[DCa])max

=
[DCa]u2 � [DCa]0
[DCa]max � [DCa]0

=
[DCa]u2 � [DCa]0
[D]T � [DCa]0

=

[DCa]u2

[D]T
� [DCa]0

[D]T

1 � [DCa]0
[D]T

.

Rearranging this equation yields

[DCa]u2

[D]T
=

✓
1 � [DCa]0

[D]T

◆
xu2 +

[DCa]0
[D]T

. (A.5)

Using Eqs. A.4 and A.5, Eq. A.3 can be re-written as follows:

Q =
D2

D1
⇥
⇢

1 +
✓

1 � [DCa]0
[D]T

◆
xu2 +

[DCa]0
[D]T

�
⇥
✓

D1

D2
� 1
◆�

.

Consequently,

xu2 =

Q
D1

D2
� 1

D1

D2
� 1

� [DCa]0
[D]T

1 � [DCa]0
[D]T
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