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Abstract

The goal of this thesis is twofold. The first goal is to describe three categorifications
of the algebra of symmetric functions and establish relationships between them all.
The second goal is to establish an isomorphism between the centre of Khovanov’s
Heisenberg category [Kho14] and the algebra of shifted symmetric functions de-
fined by Okounkov and Olshanski [OO97]. This isomorphism lends us a graphical
description of some important bases of the algebra of shifted symmetric functions.
Conversely, we are also able to describe some important generators of the centre of
the Heisenberg category in the language of shifted symmetric functions. This turns
out to be given in the language of free probability, in particular, the transition and
co-transition measures of Kerov [Ker93, Ker00].
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Introduction

In Chapter 1 we introduce the notations and key concepts upon which we will rely
subsequently. The second chapter tells the story given by the diagram below, in
which each arrow represents an equivalence of some kind.

Polynomial

functors

Polynomial GLm
representations

Symmetric group
representations

Symmetric functions

Theorem
2.1.3

Proposition
2.2.1

Theorem 2.3.13

In this chapter we establish an isomorphism of rings between the ring of
symmetric functions and the graded ring formed by taking direct sum of the
Grothendieck groups of the category of Sn representations as n varies, where the
ring structure is given by the induction product. The structure of our proof fol-
lows Fulton [Ful97]. We introduce and classify polynomial functors. To this end
we follow the construction of Macdonald [Mac95]. We also refer the reader to
Friedlander and Suslin [FS97], who provide a more modern, category theoretic
approach to their construction. In this section, we also establish an equivalence
between the category of Sn representations and the category of polynomial functors
homogeneous of degree n, and hence describe the category of polynomial functors
as a categorification of the ring of symmetric functions.
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Next, we describe the irreducible polynomial representations ofGLm and demon-
strate that they are given by irreducible polynomial functors. We establish then
that the category of polynomial GLm representations is a categorification of the
ring of symmetric polynomials in m variables. We then follow the stable category
construction of Hong and Yacobi [HY13] to produce a category which describes
polynomial GLm representations for all values of m at once. We then show that
this category is equivalent to the category of polynomial functors. This then estab-
lishes this stable category as yet another categorification of the ring of symmetric
functions.

Finally, we discuss a multiplication on the ring of symmetric functions called
plethysm, which is given by composition. We then describe the analogues in each
of the categorifications we have discussed. Again we follow Macdonald [Mac95],
however he does not cover the analogue for the categoryM, the tower of sequences
of polynomial representations of GLm defined in §2.3.

The third and final chapter of this thesis contains the novel material. In
[Kho14], Khovanov introduces a graphical calculus of oriented planar diagrams
which we use to define a linear monoidal category H1, designed to be a categorifica-
tion of the Heisenberg algebra. We denote by EndH1p1q the endomorphism algebra
of the monoidal unit in H1. Diagramatically this is given by the algebra closed ori-
ented planar diagrams, modulo the relations of his graphical calculus. Khovanov
introduces two sets of generators for EndH1p1q: the clockwise curls tckuk¥0 and the
counterclockwise curls tc̃kuk¥2. He then establishes algebra isomorphisms

EndH1p1q � Crc0, c1, c2, . . .s � Crc̃2, c̃3, c̃4, . . .s,

and gives a recursive relationship between the two sets of curls.
He then relates H1 to representation theory by defining a sequence of functors

F 1
n from H1 to bimodule categories for symmetric groups. A consequence of the

existence of these functors is the existence of surjective algebra homomorphisms,

fH1

n : EndH1p1q ÝÑ ZpCrSnsq,

from EndH1p1q to the center of the group algebra of each symmetric group. Based
in part on this, Khovanov suggests that there should be a close connection between
EndH1p1q and the asymptotic representation theory of symmetric groups. Further-
more, one might hope that EndH1p1q in fact gives a diagrammatic description of
some algebra of pre-existing combinatorial interest.

The main goal of this chapter then, is to make precise the connection between
EndH1p1q and both the asymptotic representation theory of symmetric groups and
algebraic combinatorics. This is achieved by establishing an isomorphism

Ψ : EndH1p1q ÝÑ Λ�,
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where Λ� is the shifted symmetric functions of Okounkov-Olshanski [OO97]. This
is the content of theorem 3.1.3.) The algebra of shifted symmetric functions Λ� is
a deformation of the algebra of symmetric functions. As is the case for EndH1p1q,
there are surjective algebra homomorphisms

fΛ�

n : Λ� ÝÑ ZpCrSnsq,

to the center of the group algebra of each symmetric group. The isomorphism
Ψ : EndH1p1q ÝÑ Λ� is canonical, in that it intertwines the homomorphisms fH1

n

and fΛ�

n .
The remainder of the chapter is largely concerned with finding graphical de-

scriptions of some important bases of Λ� and conversely finding combinatorial
descriptions of some important graphical bases of EndH1p1q. The curl generators
ck and c̃k of EndH1p1q can be described in the language of free probability. This
was anticipated by Khovanov [Kho14], however the connection described between
moments of the co-transition measure and the Boolean cumulants of the transition
measure appears to be new. Table 1 provides a dictionary of these findings. Our
last consideration is an involution common to both EndH1p1q and Λ�.
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Λ� diagram in EndH1p1q page defined (object, diagram)

p#
λ

���
λ p. 20, p. 50

s�λ
���

dimλ
1

Eλ p. 18 , p. 52

h�k
���

Epkq p. 20, p. 52

e�k
���

Ep1kq p. 20, p. 52

σk

k
p. 29, p. 22

pbk�2 � p#
1 pσk k

p. 29, p. 22

Table 1: A dictionary between Λ� and diagrams in EndH1p1q.



Chapter 1

Preliminaries

1.1 Partitions and Young’s lattice

Following [Mac95], a partition is any sequence λ � pλ1, λ2, . . . , λk, . . .q of non-
negative integers in weakly decreasing order, with only finitely many non-zero
terms. The non-zero λi are called parts, and the number of parts the length,
denoted lpλq. The sum

|λ| �

lpλq̧

i�1

λi

is called the weight of λ. If |λ| � n, we call λ a partition of n, and write λ $ n.
Given two partitions µ and λ, we write µ � λ if for all i � 1, 2, . . ., we have µi ¤ λi.

The multiplicity, mi � mipλq � cardtj : λj � iu, is the number of times the
part i appears in λ. At times we will find it convenient to write

λ � p1m1 , 2m2 , . . . , kmk , . . .q

to indicate the number of times each part occurs in the partition. Define

zλ :�
¹
i¥1

imipλqmipλq! P N.

Let the set of all partitions of n be denoted by Pn, and take

P :�
º
n¥0

Pn.

For k ¤ n we have an embedding φk,n : Pk ãÑ Pn that sends λ $ k to

pλ1, . . . , λlpλq, 1, . . . , 1q.

We write λ for the partition obtained by removing all the parts equal to 1 from λ.

5
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The Young diagram of a partition λ is the set of points pi, jq P Z2 such that
1 ¤ j ¤ λi. We adopt the convention that the i coordinate increases moving
downwards, and the j coordinate increases moving from left to right. We represent
the diagram pictorially with boxes for each point in the diagram. The diagram of
p5, 3, 3, 1q is shown below.

The conjugate of a partition λ is the partition λ1 such that

λ1i � cardtj : λj ¥ iu.

Alternatively, it is the partition whose diagram is the reflection in the main di-
agonal. The conjugate of the partition p5, 3, 3, 1q above is readily seen from its
diagram to be p4, 3, 3, 1, 1q.

The content, cpi, jq of a node pi, jq P λ, is defined to be j � i. We denote by
Aλ the finite alphabet of contents of λ.

The hook-length of a partition λ at the point pi, jq is the quantity

hpi, jq :� λi � λ1j � i� j � 1.

This counts the number of cells to the right and directly below the cell, and the cell
itself. The product of all the hook-lengths is then easily shown to be the product

Hλ :�

±lpλq
i�1pλi � lpλq � iq!±

1¤i j¤lpλqpλi � λj � j � iq
.

For any partition λ and any integer 1 ¤ i ¤ lpλq�1, let λpiq denote the partition
µ, if it exists, such that µj � λj for j � i, and µi � λi � 1. Similarly, denote by
λpiq the partition ν, if it exists, such that νj � λj for j � i, and νi � λi � 1.

Following [Ful97], we call a numbering or filling of the boxes of a Young diagram
the result of placing elements of some alphabet, usually the numbers from 1 to n,
where λ $ n. A (semi-standard) Young tableau, often lazily referred to as tableau,
is a filling that is weakly increasing across each row, and strictly increasing down
each column. A standard tableau is a tableau in which we further require strictness
along the rows. An example of each is shown below for the shape p4, 2, 2, 1q.
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1 2 2 5

2 3

5 6

7

1 3 4 9

2 6

5 8

7

Tableau Standard tableau

Define a Young tabloid to be an equivalence class of Young tableaux in which
two tableaux are considered equivalent if they contain the same entries in the same
rows. The tabloids of shape p2, 1q are then#

1 2

3
,

2 1

3

+
,

#
1 3

2
,

3 1

2

+
,

#
2 3

1
,

3 2

1

+
.

Note that we omit column lines in our notation of each tableau in the equivalence
class. We usually also denote the equivalence class with a representative of the
class.

Let Yn denote the set of Young diagrams with n boxes, and take

Y :�
º
n¥0

Yn

to be the lattice of all Young diagrams, ordered by inclusion.
Let dimλ be the number of standard tableaux of shape λ. For λ $ n, this num-

ber is the same as the dimension of irreducible representation of Sn corresponding
to λ. By setting dimH � 1, we then have the recurrence relation

dimλ �
¸
i

dimλpiq

as a direct consequence of the branching rule (Corollary 2.1.6).
The k-th falling factorial power, written px ç kq, is defined by

px ç kq :�

"
xpx� 1q � � � px� k � 1q, k ¡ 0,
1, k � 0.

To each partition µ $ k we then define a function fµ on Y by

fµpλq :�

#
pn ç kqpχλµ, n � |λ| ¥ k,

0, |λ|   k,

where pχλµ is the normalised irreducible character defined below.
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1.2 The symmetric group and its representations

Let Sn be the symmetric group on t1, 2, . . . , nu. Sn is generated by the elements
s1, . . . , sn�1, where si is the transposition pi, i � 1q. For any k ¤ n, there is an
embedding ιk,n : Sk ãÑ Sn, given by identifying Sk with the stabiliser of

tk � 1, . . . , nu.

Every permutation σ P Sn factorises uniquely as a product of disjoint cycles. If we
order the disjoint cycles by length, we form a partition λ � pλ1, . . . , λkq of weight
n. The partition λ is called the cycle-type of σ. The cycle-types, and hence the
partitions of n give the conjugacy classes of Sn. Given a partition λ $ n, we write
Cλ for the conjugacy class of permutations of cycle-type λ.

Denote by CrSns the group algebra of Sn, and let ZpCrSnsq be its centre. We
write

prn : CrSn�1s� CrSns
for the orthogonal projection of CrSn�1s onto CrSns defined by

prnpgq �

"
g, g fixes n� 1,
0, otherwise.

For 1 ¤ i ¤ n, the Jucys-Murphy elements Ji are defined by

Ji :�
¸

1¤j i

pj, iq.

Jucys [Juc74] showed that ZpCrSnsq is spanned by symmetric polynomials in the
Ji. The set of elements

Kλ :�
¸
σPCλ

σ

as λ ranges over all partitions of n give a basis for ZpCrSnsq. When λ $ k ¤ n,
out of laziness we will write

Cλ :� Cφk,npλq, zλ :� zφk,npλq, Kλ :� Kφk,npλq.

The irreducible representations of Sn are indexed by partitions λ $ n. Let
Vλ denote the irreducible representation of Sn corresponding to the partition λ,
and write χλ for the corresponding irreducible character. For brevity we write χλµ
for its value χλpσq at any permutation σ of cycle-type µ, and will conflate dimλ
for dimVλ (note that this number is the same as our previous designation of this
notation anyway). The normalised character, is defined by

pχλµ :�
χλµ

dimλ
,
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and the central character by

θλµ :�
Hλ

zµ
χλµ �

n!

zµ
pχλµ.

All characters can be extended by linearity to functions on CrSns in the following
way: the application of the character χ on Sn to an element¸

aigi P CrSns,

is given by ¸
aiχpgiq.

To each partition λ � pλ1, . . . , λrq $ k ¤ n we assign an element

aλ,n �
¸
pi1, . . . , iλ1qpiλ1�1, . . . , iλ1�λ2q � � � pik�λr�1, . . . ikq,

where the sum is taken over all distinct k-tuples pi1, . . . , ikq of elements drawn from
t1, . . . , nu. These elements have been the object of study in [KO94] and [IK99].
In particular, we have the result [KO94, Proposition 1]:

pχλpaµ,nq � fµpλq.

1.3 Polynomial functors

We closely follow here the construction and exposition given by Macdonald [Mac95,
Chapter I Appendix A]. We refer the reader to Friedlander and Suslin [FS97] for
a modern categorical approach to the subject. Let V denote the category whose
objects are finite-dimensional vector spaces over the complex numbers, and whose
morphisms are C-linear maps. A polynomial functor is a functor F : V Ñ V such
that for each pair V,W P V , the mapping

F : HompV,W q Ñ HompF pV q, F pW qq

is a polynomial mapping. More precisely, if pfiq1¤i¤r is a collection of morphisms
V Ñ W , and if λ1, . . . , λr P C, then F pλ1f1 � . . .� λrfrq is a polynomial function
of the λi with coefficients in HompF pV q, F pW qq, depending on the fi.

If F pλ1f1 � . . .� λrfrq is a homogenous polynomial of degree n, for all choices
of f1, . . . , fr, then F is said to be homogeneous of degree n. The nth exterior power�n and nth symmetric power Symn are both homogeneous of degree n.

We say that a polynomial functor F has bounded degree if for all sufficiently
large n, Fn � 0 in the direct sum decomposition established below. We denote the
category of polynomial functors of bounded degree by F .
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Proposition 1.3.1. A polynomial functor F : V Ñ V has a direct sum decompo-
sition

F �
à
n¥0

Fn,

where each Fn is a homogeneous polynomial functor of degree n.

Proof. Let λV denote multiplication in V by the scalar λ P C. If F is a polyno-
mial functor on V , then F pλV q is a polynomial function of λ with coefficients in
EndpF pV qq. That is, for each n ¥ 0, we have

F pλV q �
¸
n¥0

unpV qλ
n,

for some collection unpV q P EndpF pV qq.
Given that F ppλµqV q � F pλV µV q � F pλV qF pµV q, it follows that¸

n¥0

unpV qpλµq
n �

�¸
n¥0

unpV qλ
n

��¸
n¥0

unpV qµ
n

�
,

for all λ, µ P C. We therefore have that unpV q
2 � unpV q, for all n ¥ 0, and

umpV qunpV q � 0

whenever m � n. By taking λ � 1, we also find that¸
n¥0

unpV q � F p1V q � 1F pV q.

If we take FnpV q to be the image of unpV q : F pV q Ñ F pV q, then the unpV q
determine a direct sum decomposition

F pV q �
à
n¥0

FnpV q.

Since F pV q is a finite dimensional complex vector space, it follows that all but a
finite number of the summands FnpV q will be zero for any given space V .

If f : V Ñ W is a C-linear map, then fλV � λWf , for all λ P C. There-
fore, F pfqF pλV q � F pλW qF pfq, and so for each n ¥ 0 we have F pfqunpV q �
unpW qF pfq, that is to say, each un is an endomorphism of the functor F . On re-
striction to FnpV q, we therefore have a C-linear map Fnpfq : FnpV q Ñ FnpW q, and
hence each Fn is a polynomial functor homogeneous of degree n. As a consequence,
the functor F has the required direct sum decomposition

F �
à
n¥0

Fn

into polynomial functors homogeneous of degree n.
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Let F : V Ñ V be a polynomial functor homogeneous of degree n, and let
W � V1`� � �`Vn, where each Vi P V . For each 1 ¤ α ¤ n we have monomorphisms
iα : Vα Ñ W and epimorphisms pα : W Ñ Vα which satisfy the relations

pαiα � 1Vα ,

pαiβ � 0, if α � β, and¸
α

iαpα � 1W .

Given any composition λ � pλ1, . . . , λnq P Cn, let pλqW , or simply pλq if the
space is obvious from the context, denote the morphism

°
α λαiαpα : W Ñ W ,

so that pλqW acts as scalar multiplication by λα on the component Vα. Let
vpV1, . . . , Vnq be the coefficient of λ1 � � �λn in F ppλqW q. The linearisation of F is
the functor LF defined by taking LF pV1, . . . , Vnq to be the image of vpV1, . . . , Vnq.
It is a direct summand of F pW q and is homogeneous of degree one in each variable.

Let F be a polynomial functor homogeneous of degree n, and define

L
pnq
F pV q � LF pV, . . . , V q.

For any π P Sn, let π : V `n Ñ V `n denote the morphism which permutes the
summands of V `n. This is the map given by¸

iπpαqpα.

Given any composition λ � pλ1, . . . , λnq of complex numbers, we have that

πpλq �
¸
α

λαiπpαqpα � pπλqπ,

where πλ � pλπ�1p1q, . . . , λπ�1pnqq. Applying the functor F therefore gives

F pπqF ppλqq � F ppπλqqF pπq.

Selecting the coefficient of λ1 � � �λn on either side, it follows that

F pπqv � vF pπq.

Let
j : L

pnq
F pV q Ñ F pV `nq, and q : F pV `nq Ñ L

pnq
F pV q

be the injection and projection, respectively, associated with the direct summand
L
pnq
F pV q of F pV `nq, so that qj is the identity, and jq � v. We then define

F̃ pπq � qF pπqj,
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which gives an endomorphism of L
pnq
F . Further, if τ P Sn is another permutation,

then

F̃ pπqF̃ pτq � qF pπqjqF pτqj

� qjqF pπqF pτqj psince jq � vq

� qF pπτqj psince qj � 1q

� F̃ pπτq.

We therefore have a representation of Sn given by π ÞÑ F̃ pπq on the vector space

L
pnq
F pV q, which is functorial in V .

The sequence of propositions which follows shows that this action of Sn deter-
mines the functor F up to isomorphism. In fact, we produce a functorial isomor-
phism of F pV q onto the subspace of Sn-invariants of L

pnq
F pV q.

Proposition 1.3.2. If i �
°
iα : V Ñ V `n, and p �

°
pα : V `n Ñ V , then

vF pipqv �
¸
πPSn

F pπqv.

Proof. Let f : V `n Ñ V `n be a linear transformation of the form

f �
¸
α,β

ξαβiαpβ

where ξαβ P C. F pfq is then a homogenous polynomial of degree n in the n2

variables ξαβ, with coefficients in EndpF pV `nqq, depending only on V and F . For
each π P Sn let wπ denote the coefficient of ξπp1q1 � � � ξπpnqn in F pfq.

Given that v2 � v, and F pπqv � vF pπq, it follows that

F pπqv � vF pπqv.

Hence F pπqv is the coefficient of λ1 � � �λn µ1 � � �µn in

F ppλqqF pπqF ppµqq � F

�¸
α

λπpαqµαiπpαqpα

�
,

and therefore F pπqv � wπ.
We also have that vF pipqv is the coefficient of λ1 � � �λn µ1 � � �µn in

F ppλqqF pipqF ppµqq � F

�¸
α,β

λαµβiαpβ

�
,

which is given by ¸
πPSn

wπ �
¸
πPSn

F pπqv.
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Proposition 1.3.3. Define two natural transformations of functors

ξ � qF piq : F Ñ L
pnq
F , and η � F ppqj : L

pnq
F Ñ F.

The composition ηξ is scalar multiplication by n!, and ξη �
°
πPSn

F̃ pπq.

Proof. From their definition

ηξ � F ppqjqF piq � F ppqvF piq,

which is the coefficient of λ1 � � �λn in F ppqF ppλqqF piq. Given that ppλqi : V Ñ V
is actually scalar multiplication by λ1 � � � � � λn, it follows that F pppλqiq is scalar
multiplication by pλ1 � � � � � λnq

n. The coefficient of λ1 � � �λn is therefore n!.
Now the composition

ξη � qF piqF ppqj,

so by the previous proposition we have that

jξηq � vF pipqv �
¸
πPSn

F pπqv,

and therefore

ξη � qjξηqj

�
¸
πPSn

qF pπqvj

�
¸
πPSn

qF pπqjqj

�
¸
πPSn

qF pπqj

�
¸
πPSn

F̃ pπq.

Proposition 1.3.4. Let L
pnq
F pV qSn denote the subspace of L

pnq
F pV q that is invariant

under the action of Sn, and take

ι : L
pnq
F pV qSn Ñ L

pnq
F pV q, and ρ : L

pnq
F pV q Ñ L

pnq
F pV qSn

to be the associated injection and projection. The natural transformations given
by

ξ1 � ρξ : F pV q Ñ L
pnq
F pV qSn ,

and
η1 � ηι : L

pnq
F pV qSn Ñ F pV q

are functorial isomorphisms such that the compositions ξ1η1 and η1ξ1 are both scalar
multiplication by n!.
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Proof. The map σ � pn!q�1ξη is idempotent with image L
pnq
F pV qSn . We observe

then that ρι � 1, and ιρ � σ. By the previous proposition we therefore have that
the composition

η1ξ1 � ηιρξ

� pn!q�1ηξηξ

� n!.

Since ξη � n!σ, we have

ξ1η1 � n!ρσι

� n!ριρι

� n!.

Let Vn denote the category of whose objects are sequences V � pV1, . . . , Vnq of
finite-dimensional complex vector spaces, and

HompV,W q �
n¹
i�1

HompVi,Wiq.

A functor F : Vn Ñ V is said to be polynomial if

F : HompV,W q Ñ HompF pV q, F pW qq

is a polynomial mapping.
By 1.3.4 it follows that every homogenous polynomial functor F of degree n is

of the form V ÞÑ LpV, . . . , V qSn , where L : Vn Ñ V is homogenous of degree one
in each variable. Our goal is then to find all such functors.

In light of 1.3.1, an irreducible polynomial functor will be homogeneous of
some degree. We will show that the irreducible polynomial functors of degree n
correspond to the irreducible representations of Sn, and are therefore indexed by
partitions λ of n.

Proposition 1.3.5. Let F : Vn Ñ V be a polynomial functor and let pλq �
pλ1, . . . , λnq P Cn. The functor F then has a direct sum decomposition

F �
à

m1,...,mn

Fm1,...,mn

such that Fm1,...,mnpλ1, . . . , λnq � λm1
1 � � �λmnn .
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Proof. Let V � pV1, . . . , Vnq. Since F is polynomial, we have that

F ppλqV q �
¸

m1,...,mn

um1,...,mnpV1, . . . , Vnqλ
m1
1 � � �λmnn .

If as in 1.3.1 we define Fm1,...,mn as the image of um1,...,mnpV1, . . . , Vnq, then the
result follows.

Proposition 1.3.6. There is a functorial isomorphism

LpV q � LpCq b V,

where L : V Ñ V is homogeneous of degree one.

Proof. For each x P V , let epxq : C Ñ V be the map λ ÞÑ λx. If W is another
complex vector space, then we define

ψV : HompLpV q,W q Ñ HompV,HompLpCq,W qq

by ψV pfqpxq � f � Lpepxqq. Given that ψV is obviously functorial in V , it suffices
to show that it is an isomorphism.

Since L must be additive, it follows that

LpV1 ` V2q � LpV1q ` LpV2q

Therefore, if ψV1 and ψV2 are isomorphisms, then so is ψV1`V2 . Hence, it suffices to
show that ψC is an isomorphism, which is clear.

Proposition 1.3.7. Let L : Vn Ñ V be homogeneous and linear in each variable.
Then there exists a functorial isomorphism

LpV1, . . . , Vnq � LpnqpCq b V1 b � � � b Vn,

where LpnqpCq � LpC, . . . ,Cq.

Proof. This is achieved by the repeated application of 1.3.6:

LpV1, . . . , Vnq � LpV1, . . . , Vn�1,Cq b Vn

� LpV1, . . . , Vn�2,C,Cq b Vn�1 b Vn
...

� LpC, . . . ,Cq b V1 b � � � b Vn.
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Lemma 1.3.8. If F is a homogeneous polynomial functor of degree n, then there
is an isomorphism of functors

F pV q � pL
pnq
F pCq b V bnqSn .

Proof. This is a direct consequence of 1.3.4 and 1.3.7.

Theorem 1.3.9. Let Fn be the category of homogenous polynomial functors of
degree n. The functors α : Fn Ñ Sn and β : Sn Ñ Fn defined by

αpF q � L
pnq
F pCq, and βpMqpV q � pM b V bnqSn

constitute an equivalence of categories.

Proof. By 1.3.8 we have βα � 1Fn . Let M P Sn, and suppose that βpMq � F , so
that

F pV1 ` � � � ` Vnq � pM b pV1 ` � � � ` Vnq
bnqSn .

The linearisation of F is then given by

LF pV1, . . . , Vnq �

�
M b

�à
πPSn

Vπp1q b � � � b Vπpnq

��Sn

.

We then have that the composition

αβpMq � L
pnq
F pCq � pM b CrSnsqSn �M.

Corollary 1.3.10. The irreducible polynomial functors homogenous of degree n
are indexed by partitions λ of n.

Proof. Given the equivalence of categories in 1.3.9, the functors Fλ defined by

FλpV q � pVλ b V bnqSn ,

exhaust the irreducible polynomial functors homogenous of degree n.

Proposition 1.3.11. The tensor product V bn has the decomposition

V bn �
à
λ$n

Vλ b FλpV q.
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Proof. If M and N are CrSns-modules, then there is a canonical isomorphism

pM� bNqSn � HomCrSnspM,Nq,

where M� � HomCpM,Cq. Given that Vλ � pVλq
�, we therefore have that

FλpV q � HomCrSnspVλ, V
bnq.

If we consider V bn as a CrSns-module, then its decomposition into isotypic com-
ponents is given by

V bn �
à
λ$n

Vλ b HomCrSnspVλ, V
bnq,

and the result follows.

Proposition 1.3.12. Let E and F be polynomial functors of degrees m and n,
respectively, such that E � βpMq for some Sm representation M , and F � βpNq
for some Sn representation N . The tensor product E b F : V ÞÑ EpV q b F pV q

corresponds to M �N � Ind
Sm�n

Sm�Sn
pM bNq.

Proof. From their definition we have that

pE b F qpV q � pM b V bmqSm b pN b V bnqSn

� pM bN b V bm�nqSm�Sn

� pInd
Sm�n

Sm�Sn
pM bNq b V bm�nqSm�n ,

where the final step is an application of Frobenius reciprocity.

1.4 Shifted symmetric functions

We recall briefly the construction of the algebra of symmetric functions. We refer
the reader to [Mac95] for a comprehensive coverage of the material. The algebra
of symmetric polynomials Λn in the variables x1, . . . , xn. It is a graded algebra,
graded by the degree of the polynomials. The assignment xn�1 � 0 defines a
morphism of graded algebras

Λn�1 Ñ Λn

which we call the stability condition. The algebra of symmetric functions Λ is then
defined as the projective limit

Λ :� limÐÝΛn

in the category of graded algebras. An element f P Λ is then a sequence pfnqn¥1

such that
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(1) fn P Λn, n ¥ 1,

(2) fn�1px1, . . . , xn, 0q � fnpx1, . . . , xnq,

(3) supn deg fn   8.

Particular interest is given to the following algebraically independent generators
of Λ:

• elementary symmetric functions e1, e2, e3, . . .,

• complete symmetric functions h1, h2, h3, . . .,

• power sum symmetric functions p1, p2, p3, . . ..

For any collection tfkuk¥1 equal to any of these sets of generators and any partition
λ � pλ1, . . . , λkq we define

fλ :� fλ1 � � � fλk .

Another important basis is provided by the Schur functions tsλuλPP .
We now define the algebra of shifted symmetric polynomials in the variables

x1, . . . , xn, denoted by Λ�
n, be the algebra of polynomials that become symmetric

in the change of variables

x1i � xi � i, i � 1, . . . , n.

It is important to note that this defines not a graded algebra but one that is filtered
by degree. By analogy with Λ, setting xn�1 � 0 defines a homomorphism

Λ�
n�1 Ñ Λ�

n,

and so we can take the projective limit

Λ� :� limÐÝΛ�
n

in the category of filtered algebras. We call Λ� the algebra of shifted symmetric
functions. We then have the following relationship between Λ and Λ�:

Proposition 1.4.1. The associated graded algebra gr Λ� is canonically isomorphic
to Λ.

Let µ � pµ1, . . . , µnq be a partition with no more than n parts. The shifted
Schur polynomial in n variables, indexed by µ is defined by the following ratio of
n� n determinants:

s�µpx1, . . . , xnq :�
detrpxi � n� i ç µj � n� jqs

detrpxi � n� i ç n� jqs
,
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where 1 ¤ i, j ¤ n. If lpµq ¡ n, then s�µpx1, . . . , xnq � 0.
Okounkov and Olshanski [OO97] showed that the shifted Schur polynomials

satisfy the stability condition

s�µpx1, . . . , xn, 0q � s�µpx1, . . . , xnq,

and so the sequence ps�µpx1, . . . , xnqqn¥1 defines an element s�µ of Λ�, which we call
the shifted Schur function. We also refer to them as s�-functions for short. The
shifted Schur functions form a linear basis in Λ�.

Any shifted symmetric function f P Λ� can be evaluated on an infinite sequence
pi1, i2, . . .q so long as ik � 0 for all sufficiently large k. We can then consider f as
a function on partitions by taking fpλ1, . . . , λlpλq, 0, . . .q. Moreover, f is uniquely
determined by its values on all partitions. Hence, we can regard the algebra Λ� as
an algebra of functions on the set of partitions.

The proofs of the following sequence of theorems due to Okounkov can also be
found in [OO97]:

Theorem 1.4.2 (Vanishing Theorem). We have

s�µpλq � 0, unless µ � λ,

s�µpµq � Hµ.

Theorem 1.4.3 (Characterisation Theorem I). The function s�µ is the unique
element of Λ� such that deg s�µ ¤ |µ| and

s�µpλq � δµλHµ

for all λ such that |λ| ¤ |µ|.

Theorem 1.4.4 (Characterisation Theorem I’). Suppose lpµq ¤ n. Then s�µpx1, . . . , xnq
is the unique element of Λ�

n such that deg s�µpx1, . . . , xnq ¤ |µ| and

s�µpλq � δµλHµ

for all λ such that |λ| ¤ |µ| and lpλq ¤ n.

Theorem 1.4.5 (Characterisation Theorem II). The function s�µ is the unique
element of Λ� such that the highest term of of s�µ is the ordinary Schur function
sµ, and

s�µpλq � 0

for all λ such that |λ|   |µ|.



20 Chapter 1. Preliminaries

The shifted analogues of the complete symmetric functions and the elementary
symmetric functions are given by

h�k :� s�pkq,

e�k :� s�p1kq.

We then have that Λ� is the algebra of polynomials in the h�k, or the e�k.
There are numerous shifted analogues of the power sums

pk �
¸
i

xki ,

all of which have pk as a leading term.
First we have the functions given by

p�k :�
¸
i

�
pxi � iqk � p�iqk

�
.

We then have two factorial analogues of the p�k:

p̂k :�
¸
i

ppxi � i æ kq � p�i æ kqq ,

where px æ kq :� xpx � 1q � � � px � k � 1q denotes the k-th raising factorial power
of x, and

p̌k :�
¸
i

ppxi � i� 1 ç kq � p�i� 1 ç kqq .

The last, and possibly most important power sum analogue we describe here are
the functions defined to mirror the identity

pµ �
¸
λ$|µ|

χλµsλ.

The map ϕ : Λ Ñ Λ� given by
ϕpsµq � s�µ

is a linear isomorphism. We then define

p#
µ :� ϕppµq,

so that
p#
µ �

¸
λ$|µ|

χλµs
�
λ.

Considered as a function on partitions, we then have the following result, also
found in [OO97]:

Proposition 1.4.6. For µ $ k and λ $ n,

p#
µ pλq � fµpλq.
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1.5 Khovanov’s Heisenberg category

We define a C-linear strict monoidal category H1 generated by two objects Q�

and Q� as follows. An object of H1 is a finite direct sum of tensor products
Qε1b� � �bQεm , where ε1, . . . , εm is a finite sequence of pluses and minuses. For the
sake of brevity we denote this tensor product by Qε, where ε � ε1 � � � εm. The unit
object, 1, then corresponds to the empty sequence QH. The space HomH1pQε, Qε1q,
for two sequences ε and ε1 is the C-module generated by planar diagrams modulo
some local relations. The diagrams are oriented compact one-manifolds embedded
in the strip R � r0, 1s, modulo rel boundary isotopies. The endpoints of the one-
manifolds are located at t1, . . . ,mu� t0u and t1, . . . , nu� t1u, where m and n are
the lengths of ε and ε1, respectively. Further, the orientation of the one-manifold at
the endpoints must match the signs in the sequences ε and ε1. Triple intersections
are not allowed. The composition of two morphisms is achieved by the natural
glueing of the diagrams. A diagram with no endpoints is an endomorphism of 1.
The local relations are as follows:

� , � �

� 1 , � 0

� , �

The relations in the first two rows are motivated by the Heisenberg relation
pq � qp� 1, where p and q are the two generators of the Heisenberg algebra, that
is, they imply that there is an isomorphism in H1 of the form

Q�Q� � Q�Q� ` 1 .

The relations in the third row are motivated by the symmetric group relations.
We find it convenient to denote a right curl by a dot on a strand, and a sequence

of d right curls by a dot with a d drawn next to it. The local relations imply the
following results regarding moving right curls across intersections:
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Proposition 1.5.1. A right curl can be moved across intersection points, according
to the following relations:

• �
•

�

•
� • �

Proposition 1.5.2. We can move k dots through an intersection according to the
following relations:

•k �
•k

�
k�1̧

i�0

• •i k � 1� i

•k
� •k �

k�1̧

i�0

• •i k � 1� i

A closed diagram is an endomorphism of the unit object 1 P H1. Let ck denote
a clockwise-oriented circle with k dots, and let c̃k denote an anticlockwise-oriented
circle with k dots. Any c̃k can be written as a linear combination of products of
clockwise circles. We already have that c̃0 � 1, and c̃1 � 0, since it is a figure eight
and hence contains a left curl. For the rest we have:

Proposition 1.5.3 ([Kho14], Proposition 2). For k ¡ 0, we have

c̃k�1 �
k�1̧

i�0

c̃ick�1�i.

Proof. We begin by expanding a dot into a right curl:

•k � 1 � •k

We then pull the k dots through the intersection to yield

• k �
k�1̧

i�0

•i •k � 1� i

The result then follows since the term on the left contains a left curl.
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Proposition 1.5.4 (Bubble moves). We can move dotted circles past lines ac-
cording to the following identities:

•k � •k �pk�1q • k �
k�2̧

i�0

pk� i�1q • k � i� 2 •i

•k � •k �
k�2̧

i�0

pk � i� 1q •i • k � i� 2

This result is given by Khovanov without proof. We provide a proof of the first
relation, noting the second is analogous.

Proof. We begin by bringing the line halfway through the circle, which gives

•k � •k � • k

We then pull the k dots through the intersection to yield

• k � • k �
k�1̧

i�0 •
i

• k � 1� i

The next step is to untwine the double upwards crossing on the dotted circle in
the left most term, and to pull the k � 1 � i dots through the intersection in the
rightmost term. We then have

•k � • k �
k�1̧

i�1

����� • k �
k�2�i¸
j�0

• k � 2� j •j

����
and the result follows by counting the terms in the sums.
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The local relations allow us to convert any closed diagram into a linear combi-
nation of diagrams without crossings consisting of nested dotted circles. The pro-
ceeding two results show us how to split apart nested circles using bubble moves,
and anticlockwise circles can be expressed as linear combinations of products of
clockwise circles. It is then evident that EndH1p1q is a quotient of the polynomial
algebra Crc0, c1, c2, . . .s in countably many variables via the map

ψ0 : Crc0, c1, c2, . . .s Ñ EndH1p1q

that by an abuse of notation identifies the formal variable ck with the clockwise
circle with k dots. It is a theorem of Khovanov [Kho14, Proposition 3] that ψ0 is
an isomorphism of algebras.

To simplify notation for bimodules, we use the following:

• pnq denotes CrSns considered as a pCrSns,CrSnsq-bimodule.

• pnqn�1 denotes CrSns considered as a pCrSns,CrSn�1sq-bimodule.

• n�1pnq denotes CrSns considered as a pCrSn�1s,CrSnsq-bimodule.

With a minor modification, we can interpret the graphical calculus of described
above as giving bimodule maps between symmetric group representations. We
label the regions of the strip R� r0, 1s by non-negative integers, beginning with n
in the rightmost region. An upwards oriented line separating two regions labelled
n and n� 1,

nn� 1

denotes the identity endomorphism of the induction functor

Indn�1
n : CrSns-mod Ñ CrSn�1s-mod.

This functor is given by tensoring with the bimodule pn� 1qn.
Similarly, a downward oriented line separating regions labelled n� 1 and n,

n� 1n

denotes the identity endomorphism of the restriction functor

Resnn�1 : CrSn�1s-mod Ñ CrSns-mod.

This functor is given by tensoring with the bimodule npn� 1q.
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We follow the convention that a diagram is zero if it has a region labelled by a
negative integer. We also have that the local relations with the rightmost region
labelled n still hold. They encode the symmetric group relations s2

n�1 � 1, and
sn�1sn�2sn�1 � sn�2sn�1sn�2, and the bimodule decomposition

npn� 1qn � pnqn�1pnq ` pnq,

giving an isomorphism

Resnn�1 � Indn�1
n � Indnn�1 �Resn�1

n ` Id

of endofunctors in the category CrSns-mod.

We have the following bimodule maps for the four U-turns, which for conve-
nience we refer to as RCap, RCup, Lcap, and Lcup, respectively:

n n� 1 , pn� 1qnpn� 1q Ñ pn� 1q, g b h ÞÑ gh, g, h P Sn�1,

nn� 1 , pnq Ñ npn� 1qn, g ÞÑ g, g P Sn,

n� 1 n , npn� 1qn Ñ pnq, g ÞÑ

"
g, g P Sn
0, otherwise

,

n� 1n , pn� 1q Ñ pn� 1qnpn� 1q,

where the last map is determined by the condition that

1n�1 ÞÑ
n�1̧

i�1

sisi�1 � � � sn b sn � � � si�1si.

We also have bimodule maps associated with the crossings, which we refer to
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as UCross, DCross, RCross, and LCross, respectively, given by:

n , pn� 2qn Ñ pn� 2qn, g ÞÑ gsn�1, g P Sn�2,

n , npn� 2q Ñ npn� 2q, g ÞÑ sn�1g, g P Sn�2,

n , pnqn�1pnq Ñ npn� 1qn, g b h ÞÑ gsnh, g, h P Sn,

n , npn� 1qn Ñ pnqn�1pnq,

where the last map takes g P Sn to zero, and gsnh to g b h, for g, h P Sn.
The right twist curl is then endowed with the following interpretation:

Proposition 1.5.5. The right curl with the rightmost region labelled n is the
endomorphism of pn� 1qn which takes 1n to the Jucys-Murphy element Jn�1.

We provide here the proof omitted by Khovanov.

Proof. The right twist curl can be written as the composition of a cup, a crossing,
and a cap:

n

Hence,

1n ÞÑ
ņ

i�1

si � � � sn�1 b sn�1 � � � si

ÞÑ
ņ

i�1

si � � � sn�1sn b sn�1 � � � si

ÞÑ
ņ

i�1

si � � � sn�1snsn�1 � � � si



1.6. Free probability 27

Let S 1n be the category whose objects are compositions of induction and re-
striction restriction functors, starting from the symmetric group Sn. For example,
Indn�1

n � Indnn�1 �Resn�1
n is an element of S 1n. The morphisms are natural trans-

formations of functors, and can be identified with homomorphisms of the corre-
sponding bimodules. Let S 1 be the sum of the S 1n over n ¥ 0.

To each n ¥ 0 we then have a functor F 1
n : H1 Ñ S 1n which takes Qε to

the corresponding composition of induction and restriction functors, matching the
symbol � with induction, and � with restriction. For example,

F 1
npQ���q � Resn�1

n�2 � Indn�2
n�1 � Indn�1

n .

If the string ε ends with at least n�1 more minuses than pluses, then F 1
npQεq � 0.

On morphisms, F 1
n sends the diagram representing the morphism to the diagram

with the rightmost region labelled n, viewed as a natural transformation between
compositions of induction and restriction functors. Note that this functor is not
monoidal, as S 1n does not have a monoidal structure matching that of H1.

Applying the functor F 1
n to the unit and its endomorphisms gives a homomor-

phism

fH1

n : EndH1p1q Ñ ZpCrSnsq.

Define ψ0,n : Crc0, c1, . . .s Ñ ZpCrSnsq as the composition fH1

n � ψ0. The following
result is then a direct consequence of bimodule maps defined above:

Proposition 1.5.6. We have

ck,n :� ψ0,npckq �
ņ

i�1

si � � � sn�1J
k
nsn�1 � � � si,

c̃k,n :� ψ0,npc̃kq � prnpJ
k
n�1q.

1.6 Free probability

With a rather analytical beginning in the study of operator algebras, the study of
free probability has blossomed into an area with links to many fields. We focus
mainly on the combinatorial aspects of the theory, in particular, the transition and
co-transition distributions on Young’s lattice. We refer the reader to [NS06] for a
more detailed exposition of the combinatorial aspects of free probability theory.

We begin with a construction of Kerov’s [Ker93, Ker00]. Two increasing se-
quences ty1, . . . , yd�1u and tx1, . . . , xd�1, xdu are said to be interlacing if we have

x1   y1   x2   y2   � � �   xd�1   yd�1   xd.
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The number c �
°
xk�

°
yk is called the centre of the sequence. A Young diagram

can be thought of as an interlacing sequence as illustrated below for the partition
p5, 3, 1q.

x1 y1 x2 y2 x3 y3 x4

To each Young diagram λ, with associated interlacing sequences pxiq1¤i¤d and
pyiq1¤i¤d�1 we have two probability measures (formally defined on the interval
rx1, xds). The first we call the transition measure, which is given by

ωλ �
ḑ

k�1

µkδxk ,

where

µk :�
k�1¹
i�1

xk � yi
xk � xi

d¹
j�k�1

xk � yj�1

xk � xj
,

and δx is the Dirac measure. The weights µk are called the transition probabilities.
Similarly, we define the co-transition measure by

pωλ � νkδyk

where

νk :�
pxd � ykqpyk � x1q°
i jpyi � xiqpxj � yj�1q

k�1¹
i�1

yk � xi�1

yk � yi

d¹
j�k�1

yk � xj
yk � yj

.

The weights νk are called co-transition probabilities. The transition and co-transition
measures so defined are a generalisation to a broader category of diagrams, not
necessarily on an integer lattice and piecewise linear like a Young Diagram. The
combinatorial definitions on Young diagrams given of the measures are given by

pkpλq :� µk �
dimλpkq

|λpkq| dimλ
, and qkpλq :� νk �

dimλpkq
dimλ

,

recalling that λpkq and λpkq are the Young diagrams given by adding or removing
a box, when possible, from the kth row.
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The transition and co-transition measures are fundamental tools in the study
of the asymptotic representation theory of symmetric groups and in the connection
between asymptotic representation theory and free probability.

The r-th moments of the transition and co-transition distributions are given
respectively by

σrpλq :�
ḑ

k�1

µkx
r
k, and pσrpλq :�

d�1̧

k�1

νky
r
k.

We write the moment generating series for the transition measure (resp. co-
transition measure) as

xMλpzq :�
8̧

k�0

σkpλqz
�k�1 and |Mλpzq :� z �

8̧

k�0

|λ| pσkpλqz�k�1.

Note that we scale all coefficients of |Mλpzq by |λ| with the exception of the coef-
ficient on z.

Lemma 1.6.1. For λ P P

xMλpzq � p|Mλpzqq
�1.

Proof. This follows directly from equation p2.3q and Lemma 5.1, both found in
[Ker00].

The boolean cumulants tpbkpλquk¥1 associated to ωλ can be defined as the coef-

ficients on the multiplicative inverse of xMλpzq,

pBλpzq � z �
8̧

k��1

pbk�2pλqz
�k�1 � pxMλpzqq

�1.

With Lemma 1.6.1 this definition immediately gives us the following fact.

Proposition 1.6.2. Let λ P P and k ¥ 0, then pb1pλq � 0 and

pbk�2pλq � |λ| pσkpλq.
There is a more algebraic approach to the transition measure due to Biane

[Bia98]. In the context of probability theory, prn is sometimes known as the
conditional expectation.
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Proposition 1.6.3. For λ $ n,

σkpλq � pχλrprnpJ
k
n�1qs

and pbk�2pλq � |λ| pσkpλq � pχλ� ņ

i�1

si . . . sn�1J
k
nsn�1 . . . si

	
.

Proof. The first statement appears in [Bia03] Section 4. A detailed proof is given in
Theorem 9.23 of [HO07]. For the second statement, we note that since characters
are class functions,

pχλ� ņ

i

si . . . sn�1J
k
nsn�1 . . . si

	
� |λ|pχλpJknq.

As Jn eigenspaces, Vλ decomposes as

Vλ �
d�1à
i�1

Vλpiq

with Vλpiq corresponding to eigenvalue bi [VO04]. Hence,

|λ|pχλpJknq � |λ|
d�1̧

i�1

dimpλpiqqb
k
i

dimpλq
� |λ| pσkpλq � pbk�2pλq.



Chapter 2

Symmetric functions and
representations

In this chapter we explore some categorifications of the algebra of symmetric func-
tions and the connections between them. We begin by presenting the classically
understood categorification of the algebra of symemtric functions given by consid-
ering symmetric group representations for all values of n at once. We then turn our
attention to polynomial functors and polynomial representations of GLm. Finally,
we introduce plethysm of symmetric functions and describe the analogues of this
construction in each of the categorifications.

2.1 Symmetric group representations

The section that follows owes much to Fulton’s exposition [Ful97]. We denote the
category of finite-dimensional CrSns-modules by Sn. It is an abelian category, so
we can take the Grothendieck groupKpSnq. The groupKpSnq is the quotient of the
free abelian group on the set of isomorphism classes rV s of all representations V of
Sn by the subgroup generated by the relations rV `W s�rV s�rW s. It is generated
by the isomorphism classes of the irreducible modules Vλ, where λ is a partition
of n. Since the representations of CrSns are semi-simple, the Grothendieck group
of Sn coincides with the split Grothendieck group.

Taking Rn � KpSnq and R0 � Z, we define

R �
à
n¥0

Rn.

The induction product is the function � : Rn �Rm Ñ Rn�m given by

rV s � rW s � rInd
Sn�m
Sn�Sm

pV bW qs.

31
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Proposition 2.1.1. With the induction product, R carries the structure of a
graded commutative ring with unit.

Proof. We recall that the induced representation is given by

Ind
Sn�m
Sn�Sm

pV bW q � CrSn�ms bCrSnsbCrSms pV bW q.

The commutativity and associativity of the induction product are then direct
consequences of the commutativity and associativity, up to isomorphism, of the
tensor product. Distributivity follows from the fact that induction commutes with
direct sums.

We define an inner product x�, �y on Rn by requiring the isomorphism classes
of the irreducible representations rVλs to be an orthonormal basis. Let

V �
à
λ

pVλq
`mλ , and W �

à
λ

pVλq
`nλ

be two representations of Sn, then xrV s, rW sy �
°
λmλnλ. Given the orthonor-

mality of the irreducible characters of a finite group, if χV is the character of V
and χW is the character of W , then the inner product is also given by

xrV s, rW sy �
1

n!

¸
σPSn

χV pσq � χW pσ
�1q.

As before, let Cµ denote the conjugacy class of the cycle type µ, and let zµ be the
number of elements in the centraliser of a permutation of cycle type µ. Given that
a permutation and its inverse are in the same conjugacy class, it follows that

xrV s, rW sy �
¸
µ

1

zµ
χV pCµq � χW pCµq.

Denote by Mλ the representation associated with action of Sn on the set of
tabloids of shape λ. We then have the following result:

Lemma 2.1.2. The value of the character of Mλ on the conjugacy class of the
cycle type µ is the coefficient of xλ in pµ.

Proof. The trace of a permutation σ is the number of tabloids fixed by σ. If we
express σ as a product of cycles, then a tabloid will be fixed by σ precisely when
all elements of each cycle occur in the same row.

We can write the power sum pµ as a sum of monomial symmetric functions

pµ �
¹
i

pxµi1 � xµi2 � � � � q �
¸
ν

cν,µmν .



2.1. Symmetric group representations 33

The coefficients in the expansion of this product encode precisely the information
we are seeking. The choice of the term xµij encodes the choice of placing a cycle

of length µi in the jth row of the tabloid. The coefficient of the xλ term therefore
counts precisely the number of ways the cycles of µ can be distributed among the
rows of the λ-shaped tabloid, and hence counts the tabloids fixed by a permutation
of cycle type µ.

Theorem 2.1.3. Define ϕ : Λ Ñ R by ϕphλq � rMλs. The map ϕ is an isometric
isomorphism of Λ with R. Further, ϕpsλq � rVλs.

Proof. The map ϕ takes the nth complete symmetric function hn to the isomor-
phism class of the trivial representation Mpnq � In. Since Λ is a polynomial ring
in the hn, to demonstrate that ϕ is a homomorphism it is sufficient to show that

rMλs � rMpλ1qs � rMpλ2qs � � � � � rMλks,

where λ � pλ1, . . . , λkq. Let T be a tableau of shape λ. Let RpT q be the subgroup
of Sn which permutes the entries of each row of T among themselves. Now Mλ has
as a basis elements of the form σtT u as σ ranges over the elements of Sn{RpT q,
so it follows that Mλ is isomorphic to the induced representation of the trivial
representation I from RpT q to Sn, and given the natural isomorphism

RpT q � Sλ1 � � � � � Sλk ,

it follows that rMλs is the required product. Since the modules rMλs form a basis
of R, it follows that ϕ is an isomorphism of Z-algebras.

To prove the isometry, we first construct the inverse map ψ from R to Λ. The
map ϕ above informs us the image of rMλs should be hλ, however, in light of 2.1.2,
we will find it convenient to write

hλ �
¸
µ

1

zµ
cλ,µpµ,

as the coefficients cλ,µ give the value of the character of Mλ on Cµ. We can therefore
define

ψprV sq �
¸
µ

1

zµ
χV pCµqpµ.

This gives us an additive homomorphism ψ : RÑ ΛbZQ, but the composition ψ�ϕ
is the inclusion of Λ in ΛbZ Q. It follows then that ψ is the inverse isomorphism
of R onto Λ. We then show that ϕ is an isometry by showing that its inverse ψ is
one. The inner product

xψprV sq, ψprW sqy �
¸
λ,µ

1

zλzµ
χV pCλq � χW pCµqxpλ, pµy,
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where the inner product on Λ defined by

xsλ, sµy � δλ,µ.

Given the values of the inner product on the power sums, the sum on the right is¸
µ

1

zµ
χV pCµq � χW pCµq � xrV s, rW sy.

The complete symmetric functions can be expressed in terms of the Schur functions
in the following way

hλ � sλ �
¸
µ�λ

Kλ,µsµ,

where the coefficients Kλ,µ are the Kostka numbers, and the modules Mλ decom-
pose in the following way

Mλ � Vλ `

�à
µ�λ

pVµq
`mµ,λ

�
,

wheremµ,λ is the multiplicity of Vµ in Mλ. By the definition of ϕ, we must therefore
have integers kµ,λ such that

ϕpsλq � rVλs �
¸
µ�λ

kµ,λrVµs.

Since ϕ is an isometry

1 � xsλ, sλy � xϕpsλq, ϕpsλqy � 1�
¸
µ�λ

k2
µ,λ,

and hence all the coefficients kµ,λ must be zero.

Corollary 2.1.4 (Young’s rule). Mλ � Vλ `
�À

µ�λpVµq
Kλ,µ

	
, where Kλ,µ is the

Kostka number: the number of semi-standard tableaux of shape λ and weight µ.

Corollary 2.1.5 (Littlewood-Richardson rule). rVλs�rVµs �
°
ν c

ν
λ,µrVνs, where the

cνλ,µ are the Littlewood-Richardson coefficients: the coefficient of sν if the product
sλsµ is written in the Schur basis.

Corollary 2.1.6 (Branching rule). Let λ be a partition of n. The induced repre-

sentation Ind
Sn�1

Sn
Vλ is the direct sum of one copy of each of the modules Vλ1, where

λ1 is obtained from λ by adding one box.
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Proof. This is the special case of 2.1.5 where µ � p1q, and the inclusion of Sn�S1

in Sn�1 is the usual inclusion of Sn in Sn�1.

Corollary 2.1.7. By Frobenius reciprocity, the Branching rule is equivalent to
saying that the restriction of Vλ from Sn to Sn�1 is the sum of one copy of each of
the modules Vλ1 where λ1 is obtained from λ by removing one box.

Corollary 2.1.8 (Frobenius character formula). The value of the character of Vλ
on Cµ is given by the integer dλ,µ in

sλ �
¸
ν

1

zpνq
dλ,νpν .

Proof. From the definition of the inverse isomorphism ψ in 2.1.3, we have that
rVλs corresponds to both sλ and the element¸

ν

1

zpνq
χVλpCpνqqpν .

2.2 The characteristic map for polynomial func-

tors

Given 1.3.1 and 1.3.9 it follows that F is abelian and semisimple, and further that

KpFq �
à
n¥0

KpFnq �
à
n¥0

Rn.

The tensor product 1.3.12 defines a graded commutative ring structure on KpFq.
Given its definition, it follows that this graded ring structure agrees with the one
defined on R by the induction product. Hence, we can identify KpFq with R as
graded commutative rings.

Let F be a polynomial functor on V . For each composition

λ � pλ1, . . . , λmq P Cm

let pλq denote the diagonal endomorphism of Cm with eigenvalues λ1, . . . , λm. The
trace of F ppλqq is then a symmetric function of the λ1, . . . , λm, since for any π P Sm
we have

trF pπλq � trF pπpλqπ�1q psince πpλq � pπλqπq

� trF pπqF ppλqqF pπ�1q

� trF pλq.
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Since trace is additive, we have a mapping χm : KpFq Ñ Λm given by

χmpF qpλ1, . . . , λmq � trF ppλqq.

Further, since trace is multiplicative with respect to tensor products, χm is a
homomorphism of graded rings. Let ρl,m : Λl Ñ Λm (l ¥ m) be the restriction to
Λl of the map Zrλ1, . . . , λls Ñ Zrλ1, . . . , λms which sends each of λm�1, . . . , λl to
zero. We therefore have that the composition

ρl,m � χl � χm.

The homomorphisms χm hence determine a homomorphism of graded rings

χ : KpFq Ñ Λ,

called the characteristic map.

Proposition 2.2.1. The characteristic map coincides with the map ψ : RÑ Λ of
2.1.3.

Proof. We first observe that χp
�nq � en, which is also the character of the sign

representation of Sn. Since the polynomial functor
�n corresponds to the sign

representation under the equivalence of categories 1.3.9, the result follows from
that fact that the en generate the ring Λ.

Proposition 2.2.2. If Fλ : V Ñ V is the irreducible polynomial functor corre-
sponding to the partition λ, then χpFλq � sλ.

Proof. By 1.3.10 the irreducible polynomial functors Fλ correspond to the irre-
ducible modules Vλ, and hence the result follows from 2.2.1 and 2.1.3.

2.3 Polynomial representations of GLm

Let G be any group and let R be a matrix representation of degree d over C,
the representing matrices given by Rpgq � pRijq, where g P G and 1 ¤ i, j ¤ d.
The representation R determines d2 functions Rij : G Ñ C, called the matrix
coefficients of R.

Proposition 2.3.1. Let Rp1q, Rp2q, . . . , Rpkq be a sequence of matrix representations
over C of a group G. The following are then equivalent:

(i) All the matrix coefficients R
p1q
ij , R

p2q
ij , . . . , R

pnq
ij are linearly independent.

(ii) The representations Rp1q, Rp2q, . . . , Rpnq are irreducible and pairwise inequiv-
alent.
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Proof. Suppose that some Rpkq is a reducible representation, then Rpkq is equivalent
to a matrix representation such that some of the matrix coefficients are zero. Since
the space of functions onG spanned by the matrix coefficients is the same, it follows
then that the matrix coefficients R

pkq
ij are linearly dependent over C. Let us now

suppose that some pair Rpkq and Rplq are equivalent, irreducible representations.
The matrix coefficients of Rplq are then linearly dependent on those of Rpkq. These
two facts give us the implication piq ùñ piiq.

For the reverse implication see Curtis and Reiner [CR62, (27.13), p. 184].

Let V be an m-dimensional complex vector space so that GLpV q is identified
with the group GLm. Let xij : GLm Ñ C (1 ¤ i, j ¤ m) be the coordinate
functions on GLm, so that xijpgq is the pi, jq element of the matrix g P GLm. Let

P �
à
n¥0

Pn � Crxij : 1 ¤ i, j ¤ ms

be the algebra of polynomial functions of GLm, where Pn consists of the polyno-
mials in the xij that are homogenous of degree n.

A matrix representation of GLm is called polynomial if its matrix coefficients
are polynomials in the xij. Let Mm denote the category of finite dimensional
polynomial GLm representations.

Theorem 2.3.2. Let Rλ be the polynomial representation of GLm in which an el-
ement g P GLm acts as Fλpgq on FλpV q, where λ is a partition such that lpλq ¤ m.
The representations Rλ are inequivalent irreducible polynomial representations of
GLm. Furthermore, every irreducible polynomial representation of GLm is equiv-
alent to some Rλ.

Proof. By 2.2.2, the dimension of FλpV q is given by taking x1 � � � � � xm � 1 in
the Schur polynomial sλpx1, . . . , xmq. Given the well-known relation¹

i,j

p1� xiyjq
�1 �

¸
λ

sλpx1, . . . , xmqsλpy1, . . . , ymq

(see [CR62], p. 63), it follows that dn �
°
λ$npdimFλpV qq

2 is the coefficient of tn

in p1� tq�m
2
, but this number is the same as dimC Pn.

The decomposition V bn �
À

λ$n Vλ b FλpV q shows that the representation of
GLm on V bn is the direct sum of dimVλ copies of Rλ, for each partition λ of n such
that lpλq ¤ m. The matrix coefficients of the representation V bn are the degree
n monomials in the coordinate functions xij, and hence span Pn. It follows that
the coefficients Rλ

ij also span Pn. From the discussion above, the total number of
these matrix coefficients is dn, so the Rλ

ij form a C-basis of Pn. By 2.3.1 it follows
that the Rλ are irreducible and pairwise inequivalent.
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Finally, suppose that R is a polynomial representation of GLm. If R is re-
ducible, then R is a direct sum of homogeneous polynomial representations. Hence,
it is enough to assume that R is irreducible. If R is irreducible, its matrix coeffi-
cients Rij are homogenous of some degree n. Therefore, by 2.3.1 R is equivalent
to some Rλ.

Corollary 2.3.3. The character of the representation Rλ of GLm is the Schur
function sλ. Further, a polynomial representation of GLm is determined up to
equivalence by its character.

Proof. If f is a symmetric function and x P GLm, then we can regard f as a
function of x by taking fpxq � fpξ1, . . . , ξmq, where ξ1, . . . , ξm are the eigenvalues
of x.

If x P GLm is a diagonal matrix and hence also if x is diagonalisable, then by
2.2.2

trFλpxq � sλpxq.

Since the diagonalisable matrices are Zariski dense in GLm, and both sλpxq and
trFλpxq are polynomial functions of x, it follows that sλpxq � trFλpxq for all
x P GLm.

The final part of the proposition is a direct consequence of this, since the Schur
functions sλ where lpλq ¤ m are linearly independent.

Corollary 2.3.4. If we endow KpMmq with the commutative ring structure given
by the tensor product of GLm-modules, then we have an isomorphism of rings
KpMmq � Λm.

Let Zm be the centre of GLm, which consists of the scalar matrices. If Vm is a
GLm-module, let

Vmpkq � tv P Vm : z � v � zkv for all z P Zmu.

The module Vm then has the decomposition into weight spaces

Vm �
à
kPZ

Vmpkq

under this action of the centre.
If a module Vm � Vmpkq for some k, we say that Vm is homogenous of degree

k. A polynomial representation of GLm is then a direct sum of homogeneous
representations of non-negative degrees. In particular, an irreducible GLm-module
Rλ is homogeneous of some degree |λ|. We denote the category of polynomial
representations of GLm of degree k by Mmpkq.
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For all m ¥ 1, we embed GLm�1 in GLm as the subgroup of matrices of the
form �

A 0
0 1



,

where A P GLm�1. Restriction to GLm�1 then defines a functor R :Mm ÑMm�1

given by RpVmq � ResGLmGLm�1
pVmq. Consider the embedding of GL1 in GLm as the

subgroup of matrices of the form �
Im�1 0

0 λ



,

where Im�1 is the identity matrix in GLm�1, and λ P C. The action of this copy
of GL1 on Vm then commutes with the action of GLm�1. We can then decompose
the functor R into weight spaces

R �
à
iPZ

Ri

corresponding to this action of GL1. In particular, R0pVmq � V GL1
m . The functor

R0 preserves degree, and hence defines a functor

R0pkq :Mmpkq ÑMm�1pkq.

Let �M denote the category whose objects are sequences

V � pVm, αmqm¥0,

where Vm PMm and αm : R0pVm�1q Ñ Vm is an isomorphism of GLm-modules.
By convention we take GL0 to be the trivial group. If the maps αm are obvious
from the context, we will sometimes write V � pVmqm¥0 for an object of �M.

A morphism V Ñ W of objects in this category is given by a sequence pfmqm¥0

of morphisms fm : Vm Ñ Wm, so that for sufficiently large m, the diagram

R0pVm�1q R0pWm�1q

Vm Wm

αm

R0pfm�1q

βm

fm

commutes.
An object V � pVm, αmqm¥0 P �M is homogeneous of degree k if every Vm is of

degree k. Let Mpkq denote the subcategory of �M consisting of objects of degree
k.
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Proposition 2.3.5. Let V � pVm, αmqm¥0 and W � pWm, βmqm¥0 be two objects

of �M, then V bW � pVmbWm, αmbβmqm¥0 defines a monoidal structure on �M.

Proof. We simply need to check that R0pVm bWmq � R0pVmq bR0pWmq. Under
the action of GL1 we have the decomposition into weight spacesà

s¥0

pVm bWmqpsq �
à
k�l�s

Vmpkq bWmplq.

The GL1-invariant subspace of Vm bWm is pVm bWmqp0q, which means we also
require k � l � 0. Since Vm and Wm are polynomial, this forces k and l to also be
zero, which gives the desired isomorphism.

Hong and Yacobi [HY13] provide the following simple examples of objects living

in �M:

1. If Im is the trivial representation of GLm, then we have the obvious iso-
morphism R0pIm�1q � Im. Hence they all glue together to form the object

I � pImqm¥0. This object plays the role of the unit object in �M.

2. The standard representation Cm ofGLm is canonically isomorphic to R0pCm�1q,
since the the GL1-invariant vectors of Cm�1 under the action described above
are simply the vectors whose pm � 1qth component is zero. The stan-
dard representations hence glue together to produce the standard object
St � pCmqm¥0.

3. For a non-negative integer r, we have the tensor product representation of
GLm given by

Âr Cm. If we take e1, . . . , em�1 to be the standard basis of
Cm�1, then the tensor product representation has vectors of the form

ei1 b � � � b eir

as a basis. The GL1-invariant vectors in the tensor product representation
are therefore linear combinations of such basis vectors containing no instances
of em�1. We therefore have an obvious isomorphism

R0

� râ
Cm�1



�

râ
Cm.

The tensor product representations then glue together to an object which
is canonically isomorphic to

Âr St. The objects
�r St, and Symr St are

similarly defined.
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4. Since the exterior algebra of a finite dimensional vector space is also fi-
nite dimensional,

�
Cm is an object of Mm. Again, from isomorphisms

R0 p
�

Cm�1q �
�

Cm we can glue together an object
�

St P �M.

For an object V � pVmqm¥0 in �M, let

V pkq � pVmpkqqm¥0

where each Vmpkq is the weight space corresponding to the action of Zm on Vm.

We then have the potentially infinite direct sum in �M:

V �
à

V pkq.

We say that an object is compact in �M if this direct sum is finite. Of the examples
presented above, it follows that I, St,

Âr St, Symr St, and
�r St are compact

objects, while
�

St is not.

Let M be the full subcategory of �M consisting of compact objects. We then
have that M is the direct sum of categories

M �
à
k¥0

Mpkq,

and that it is also a tensor category.

Proposition 2.3.6. For m ¥ k, the functor R0pkq : Mm�1pkq Ñ Mmpkq is an
equivalence of categories.

Proof. The irreducible representations in Mm�1pkq are the modules Rλ where
|λ| � k. By 2.3.3, the restricted map χm�1pkq : Mm�1pkq Ñ Λk

m�1 defined by
Rλ ÞÑ sλ is a bijection. Let

ρm�1,m : Λm�1 Ñ Λm

be the map defined by sending sλpx1, . . . , xm�1q to sλpx1, . . . , xmq if lpλq ¤ m and
to zero otherwise. Upon restriction to Λk

m�1, this map produces an isomorphism

ρkm�1,m : Λk
m�1 � Λk

m

whenever m ¥ k. It then follows that R0pkq is a bijection, and the result follows.

Corollary 2.3.7. Let Ψm denote the projection from M to Mm, and let Ψmpkq
denote its restriction to Mpkq. For m ¥ k, Ψmpkq : Mpkq Ñ Mmpkq is an
equivalence of categories.
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Let Mm,n � HompCm,Cnq, and let OpMm,nq denote the algebra of polynomials
on Mm,n. There exists a natural action of GLm �GLn on Mm,n given by

pg1, g2q �M � g1Mgt2.

On OpMm,nq this action becomes

ppg1, g2q � fqpMq � fpgt1Mg2q.

Let I0 :Mm ÑMm�1 be the functor defined by

Vm ÞÑ pVm bOpMm,m�1qq
GLm .

Here the invariants are taken with respect to the tensor product action of GLm on

Vm bOpMm,m�1q,

which commutes with the action of GLm�1 on OpMm,m�1q. Hence, I0pVmq is a
polynomial GLm�1-module.

Lemma 2.3.8. The functor R0 is left adjoint to I0.

Proof. We will show that for all Vm�1 PMm�1, and Wm PMm that

HomGLmpR0pVm�1q,Wmq � HomGLm�1pVm�1, I0pWmqq.

Consider a map f P HomGLmpR0pVm�1q,Wmq. Given the definition of R0 this lifts
to a GLm-equivariant map f 1 : RpVm�1q Ñ Wm. Composing this with the map

Wm Ñ Wn bOpMm,m�1q

given by w ÞÑ w b 1 and restricting to GLm invariants gives a GLm�1-equivariant
map Vm�1 Ñ I0pWmq.

For the reverse map we send a GLm�1-equivariant map f : Vm�1 Ñ I0pWmq to
the map RpVm�1q Ñ Wn given by v ÞÑ fpvqpIm�1q, where Im�1 is the m� pm� 1q
matrix with ones in the entries pi, iq for 1 ¤ i ¤ m, and zero elsewhere. This
descends to a GLm-equivariant map R0pVm�1q Ñ Wm.

Corollary 2.3.9. For m ¥ k,

I0pkq :Mmpkq ÑMm�1pkq

is an equivalence of categories.

Proof. By 2.3.8 and 2.3.6, I0pkq is adjoint to an equivalence of categories in the
reverse direction.
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Proposition 2.3.10. The functor

Ψ :
à
k¥0

Mpkq Ñ
à
k¥0

Mkpkq,

defined by taking the direct sum of the projection functors Ψkpkq is an equivalence
of categories. The inverse morphism Ψ�1 :

À
k¥0Mkpkq ÑM is given by taking

the direct sum of functors Ψ�1
k : Mkpkq Ñ M defined by Ψ�1

k pVkq � pVmqm¥0

where

Vm �

"
Im�k0 pVkq, m ¥ k,
Rk�m

0 pVkq, m   k.

Proof. The first part of the proposition follows easily from 2.3.7, which implies
that for all m ¥ k we have an equivalence of categories Mkpkq Ñ Mmpkq. To
show Ψ�1 gives the inverse, we simply need to check that Ψ�1pVkq is a well-defined
object of M. Clearly we have isomorphisms R0pVm�1q Ñ Vm whenever m   k,
so we need to check the case when m ¥ k. This follows from 2.3.8 as we have
R0pI0pVmqq � Vm.

Let Γk denote the kth divided power, that is ΓkpV q �
�Âk V

	Sk
, and let

Γk,m � Γk � HomCpCm,�q.

The action of GLm on Cm induces an action on HomCpCm,�q and hence on Γm,k.

Lemma 2.3.11. For any homogeneous polynomial functor F of degree k, and any
m ¡ 0,

HomFkpΓ
k,m, F q � F pCmq.

Proof. For any vector space V we have a natural C-linear map

θV : ΓkpHomFkpC
m, V qq b F pCmq Ñ F pV q,

which is functorial in V . This defines a natural transformation

θ : F pCmq b Γk,m Ñ F,

so by the tensor-hom adjunction we have a C-linear map

F pCmq Ñ HomFkpΓ
k,m, F q.

Conversely, for any map α : Γk,m Ñ F , we can associate an element of F pCmq,
namely the image αCmp1Cm b � � � b 1Cmq. It is clear that these two maps are
mutually inverse.
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Lemma 2.3.12. For any degree k polynomial functor F , we have an isomorphism

HomFkpΓ
k1 b � � � b Γkm , F q � F pCmqk1,...,km ,

where F pCmqk1,...,km is the weight space corresponding to the weight pk1, . . . , kmq.

Proof. Using the explicit formulae for the inclusions

Γk1 b � � � b Γkm ãÑ Γk,m and F pCmqk1,...,km
ãÑ F pCmq,

it is a small chore to check that the following diagram commutes:

HomFkpΓ
k1 b � � � b Γkm , F q F pCmqk1,...,km

HomFkpΓ
k,m, F q F pCmq

where the lower map sends α : Γk,m Ñ F to αCmp1Cm b � � � b 1Cmq as in the proof
of 2.3.11, and the upper map sends β : Γk1 b � � � b Γkm Ñ F pCmqk1,��� ,km to

βCmppe1 b � � � b e1qlooooooomooooooon
k1

b � � � b pem b � � � b emqloooooooomoooooooon
km

q.

Theorem 2.3.13. The assignment

F ÞÑ pF pCmq, F pπmqqm¥0,

where πm : Cm�1 Ñ Cm is the natural GLm-equivariant projection, defines an
equivalence of categories

Φ : F ÑM.

Proof. We first need to check that F pπmq is an isomorphism. It is enough to check
this in the case that F is of degree k. The action of GLm induces on Γk,m induces
a GLm-module structure on HomFkpΓ

k,m, F q, so by 2.3.11 we have a canonical
isomorphism of GLm-modules HomFkpΓ

k,m, F q � F pCmq. Hence, it is enough to
show that R0pHomFkpΓ

k,m, F qq � HomFkpΓ
k,m�1, F q. Given that the functor Γk,m

decomposes canonically as

Γk,m �
à

k1�����km�k

Γk1 b � � � b Γkm ,
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then by 2.3.12

R0pHomFkpΓ
k,m, F qq �

à
k1�����km�1�k

HomFkpΓ
k1 b � � � b Γkm�1 , F q

� HomFkpΓ
k,m�1, F q.

We have then established that the assignment gives a well-defined object inM,
so we are left to show that this assignment constitutes an equivalence of categories.
Now,

F �
à
k¥0

Fk,

and since Φ clearly preserves degree, it is enough to show that Φ : Fk Ñ Mpkq
is an equivalence of categories for every k ¥ 0. Let Φmpkq : Fk ÑMmpkq be the
functor defined by F ÞÑ F pCmq, then the following diagram commutes:

Fk Mpkq

Mmpkq

Φ

Φmpkq
Ψmpkq

For m ¥ k, by 2.3.7, Ψmpkq is an equivalence of categories, hence we are left
to show that Φmpkq is an equivalence of categories for m ¥ k, but this is a simple
consequence of 2.3.2.

Corollary 2.3.14. M is a categorification of the ring of symmetric functions.

2.4 Plethysm

Once more we lean heavily on Macdonald [Mac95] to define another multiplication
on Λ given by composition of symmetric functions, called plethysm. More formally,
let f, g P Λ, and write g as a sum of monomials:

g �
¸
α

uαx
α.

Define variables yi by setting¹
p1� yitq �

¹
α

p1� xαtquα .

The composition or plethysm of f and g is then defined as

f � g � fpy1, y2, . . .q.

If f P Λm and g P Λn, then f � g P Λmn.
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Proposition 2.4.1. For each g P Λ, the mapping f ÞÑ f � g is an endomorphism
of Λ.

Proof. From the definition of plethysm it is clear that plethysm respects sums and
products, and hence it defines an endomorphism of Λ.

Proposition 2.4.2. If g is any symmetric function, then

pn � g � g � pn

for any power sum pn.

Proof. Since we can write any g P Λ as the sum

g �
¸
λ

cλpλ,

where cλ P Q, by 2.4.1 it is enough to show that

pλ � pn � pn � pλ.

To this end, we first note that

pm � pn � pmpx
n
1 , x

n
2 , . . .q � pmn � pnpx

m
1 , x

m
2 , . . .q � pn � pm.

We then have that

pλ � pn � pλpx
n
1 , x

n
2 , . . .q �

lpλq¹
i�1

pλin �

lpλq¹
i�1

pnpx
λi
1 , x

λi
2 , . . .q � pn � pλ.

Proposition 2.4.3. Plethysm is associative, that is for all f, g, h P Λ

pf � gq � h � f � pg � hq.

Proof. By 2.4.1 it is enough to demonstrate associativity when f � pm and g � pn.
By 2.4.2 we have

pm � ppn � hq � ph � pnq � pm � hpxmn1 , xmn2 , . . .q � h � pmn � ppm � pnq � h.
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As in 1.3.9, let E � βpMq, and let F � βpNq, where M is an Sm-module, and
N is an Sn-module. The composition of E and F is then given by

pE � F qpV q � EppN b V bnqSnq

� pM b ppN b V bnqSnqbmqSm

� pM b pNbm b V bmnqS
m
n qSm .

Now, the normaliser of

Smn :� Sn � � � � � Sn

in Smn is the semi-direct product Smn � Sm in which Sm acts by permuting the
factors of Smn . This is called the wreath product of Sn with Sm and is denoted by
Sn � Sm. Using the fact that as subspaces of LbM

pLbMHqG{H � pLbMqG,

where L is a finite-dimensional CrG{Hs-module, and M is a finite-dimensional
CrGs-module, we find that

pE � F qpV q � pM b pNbm b V bmnqqSn�Sm

� pIndSmnSn�Sm
pM bNbmq b V bmnqS

mn

.

By 1.3.9 we can then define the plethysm of M and N as

M �N � IndSmnSn�Sm
pM bNbmq.

Proposition 2.4.4. For all Sm-modules M1 and M2 and Sn-modules N we have:

(1) pM1 `Mnq �N � pM1 �Nq ` pM2 �Nq, and

(2) pM1 �Nq � pM2 �Nq � pM1 �Mnq �N .

Proof. The first property is a simple consequence of the fact that induction com-
mutes with direct sums. The second property is easily verified from the tensor
product definition of induced modules.

Corollary 2.4.5. For polynomial functors E1 and E2 homogeneous of degree m,
and a polynomial functor F homogeneous of degree n we have

pE1 � F q b pE2 � F q � pE1 b E2q � F.

Proposition 2.4.6. For any two polynomial functors E and F

χpE � F q � χpEq � χpF q.
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Proof. If F is any polynomial functor, then the decomposition of 1.3.5 applied to
the functor F 1pV1, . . . , Vnq ÞÑ F pV1`� � �`Vnq shows that the eigenvalues of F ppλqq
are monomials λm1

1 � � �λmnn , with corresponding eigenspaces F 1
m1,...,mn

pC, � � � ,Cq,
and therefore the character

χnpF q �
¸

m1,...,mn

dimF 1
m1,...,mn

pC, . . . ,Cqxm1
1 � � � xmnn .

The result then follows from the definition of plethysm for symmetric functions.

Proposition 2.4.7. The plethysm of two Schur functions is

sλ � sµ �
¸

ν$|λ|�|µ|

aνλ,µsν ,

with coefficients aνλ,µ ¥ 0.

Proof. The plethysm of two irreducible polynomial functors Fλ and Fµ is a direct
sum of irreducibles

Fλ � Fµ �
à

ν$|λ|�|µ|

aνλ,µFν ,

where each aλ,µ ¥ 0. The result then follows from 2.4.6.

In order to define the plethysm of two objects inM we first recall that we can
compose the two representations ρ : GLm Ñ GLk and ρ1 : GLk Ñ GLr to produce
an r-dimensional representation of GLm. Take two objects V � pVm, αmqm¥0 and
W � pWm, βmqm¥0 in M. If dm � dimWm, then we can compose the representa-
tion of GLdm on Vdm with the representation of GLm on Wm, to produce another
representation of GLm. We denote this composition by Vdm �Wm. We can then
define the plethysm of V and W in M as the object

V �W � pVdm �Wm, αdmqm¥0.

By 2.3.13, there exist polynomial functors E and F such that

Vm � EpCmq and αm � Epπmq,

and
Wm � F pCmq and βm � F pπmq,

for all m ¥ 0. The plethysm of V and W can then equivalently be defined as

V �W � ppE � F qpCmq, pE � F qpπmqqm¥0.
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Diagramatics for shifted
symmetric functions and free
probability

The results in this chapter also appear in the paper coauthored with Kvinge and
Licata [KLM16].

3.1 The main results

We begin by defining a new family of elements αλ, where λ P P , whose image
under the functor F 1

n is the element aλ,n. Since the value of p#
λ considered as a

function on partitions is aα,n (see Proposition 1.4.6), this establishes our first, and
as we will see, fruitful, connection between EndH1p1q and Λ�.

Our first construction is to make a diagram with k upwards oriented strands
to represent a k-cycle:

τ k�1
1

� � �

:�

� � �

Here the symbol τ ji denotes

τ ij :�

$&% sj � � � si, 1 ¤ j ¤ i,
1, j � i� 1
0, otherwise.

49
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To a partition λ � pλ1, . . . , λrq, we then set

λ

� � �

:� τλ1�1
1

� � �

� � � τλr�1
1

� � �

The elements αλ are then defined by

αλ :� λ

. . .

Proposition 3.1.1. For a partition λ $ k, we have

fH1

n pαλq �

"
aλ,n, k ¤ n,
0, otherwise.

Proof. Recall that the elements aλ,n are defined by¸
pi1, . . . , iλ1qpiλ1�1, . . . , iλ1�λ2q � � � pik�λr�1, . . . ikq,

where the sum is taken over all distinct k-tuples pi1, . . . , ikq of elements drawn
from t1, . . . , nu.

Consider the diagram

λ

. . .

n n� k

If k ¡ n, then the centre of the diagram is negative, and the diagram is then zero.
If k ¤ n then the diagram is the composition of a series of k RCups, the diagram

n λ

� � �

n� k � � � n� 1 n
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and a series of k LCaps to close it off. The result then follows from the definitions
of the bimodule maps.

Proposition 3.1.2. The diagrams αpkq, k ¥ 1 form an algebraically independent
generating set of EndH1p1q.

Proof. We first note that the diagram αpkq can be redrawn as a dot below k � 2
UCrosses, enclosed in LCups and Rcaps. By an exercise in pulling dots through
intersections we find that

αpkq � ck�1 � l.o.t..

The result then follows from the fact that the clockwise circles form an algebraically
independent generating set of EndH1p1q.

We can consider the elements of EndH1p1q as functions on partitions in the
following way. Denote by FuncPpCq the algebra of functions P Ñ C. We define
Φ : EndH1p1q Ñ FuncPpCq for x P EndH1p1q and λ $ n by

rΦpxqspλq :� ppχλ � fH1

n qpxq.

It is easily checked that this defines an algebra homomorphism. For the sake of
convenience we will write xpλq in place of rΦpxqspλq.

Theorem 3.1.3. The map Φ induces an isomorphism Ψ : EndH1p1q Ñ Λ� given
by

αµ ÞÑ p#
µ ,

such that for each n the following diagram commutes:

EndH1p1q Λ�

ZpCrSnsq

Ψ

fH
1

n
fΛ�
n

Proof. It follows from Proposition 3.1.1 that αµ and p#
µ agree as functions on

partitions. By Proposition 3.1.2 and the fact that tp#
k uk¥1 is an algebraically

independent generating set of Λ�, the result follows.

Lemma 3.1.4. Suppose that g1, g2 P Sn are conjugate Then

���
g1 �

���
g2

.
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Proof. This is an easy diagrammatic argument which uses the fact that g1 �
hg2h

�1 for some h P Sn. Replacing g1 by hg2h
�1, we slide h around the diagram

to cancel it with h�1.

Theorem 3.1.3 and Lemma 3.1.4 then imply the following result.

Lemma 3.1.5. For µ $ n,

���
Cµ � n!

zµ,n

���
λ

Ψ n!
zµ,n

p#
µ .

For λ $ n recall that Eλ is the Young idempotent associated to λ.

Theorem 3.1.6. The isomorphism Ψ sends

dimVλ

1
s�λ.

Ψ
���

Eλ

Proof. Recall that � 1

dimVλ

	
Eλ �

¸
µ$n

χλpµq

n!
Cµ,

while

s�λ �
¸
µ$n

χλpµq

zµ,n
p#
µ .

The result then follows from Lemma 3.1.5.

In the proceeding sequence of results we have established some graphical real-
isations of some important bases of Λ�. We now go the other way and describe
two important generating sets of the centre Khovanov’s Heisenberg category, c̃k
and ck, as elements of Λ�. This description gives an explicit connection between
H1 and the transition and co-transition measures of Kerov.

Theorem 3.1.7. The isomorphism Ψ sends:
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1. c̃k ÞÑ σk P Λ�,

2. ck ÞÑ p#
1 pσk � pbk�2 P Λ�.

Proof. Let λ $ n, then from Proposition 1.5.6 and Proposition 1.6.3 we have

rΨpc̃kqspλq � pχλpprnpJ
k
n�1qq � σkpλq

and

rΨpckqspλq � pχλ� ņ

i�1

si � � � sn�1J
k
nsn�1 � � � si

	
� p#

1 pλq pσkpλq � pbk�2pλq.

Remark 3.1.8. In [FH59], Farahat and Higman used the inductive structure of
symmetric groups to construct a C-algebra known as the Farahat-Higman algebra
FHC (see also Example 24, Section I.7, [Mac95]). It follows from, for example
[IK99], that there is an algebra isomorphism FHC � Λ�. So in principle all of
the appearances of shifted symmetric functions in the previous sections could be
rephrased in the language of the Farahat-Higman algebra.

3.2 Involutions on the centre of Khovanov’s Heisen-

berg category

Khovanov [Kho14] describes three involutions on H1. Only one of these acts non-
trivially on EndH1p1q. We denote this involution by ξ, and it is defined on a
diagram D P HomH1pQε, Qε2q by

ξpDq :� p�1qcpDqD,

where cpDq is the total number of crossings and dots in a diagram. Consequently,
in EndH1p1q

ck
ξ
ÞÝÑ p�1qkck,

c̃k
ξ
ÞÝÑ p�1qkc̃k,

αk
ξ
ÞÝÑ p�1qk�1αk.

Okounkov and Olshanski [OO97, §4] defined an involution I : Λ� Ñ Λ� whose
action on f P Λ� is such that for λ P P

rIpfqspλq � fpλ1q.
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In particular,

Ips�λq � s�λ1 ,

Ipe�kq � h�k,

Ipp#
k q � p�1qk�1p#

k .

As a consequence of the isomorphism Ψ : EndH1p1q � Λ� we therefore have the
following proposition.

Proposition 3.2.1. The involution ξ on EndH1p1q coincides with the involution
I on Λ�.
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