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Abstract

The goal of this thesis is twofold. The first goal is to describe three categorifications
of the algebra of symmetric functions and establish relationships between them all.
The second goal is to establish an isomorphism between the centre of Khovanov’s
Heisenberg category [Khol4] and the algebra of shifted symmetric functions de-
fined by Okounkov and Olshanski [OO97]. This isomorphism lends us a graphical
description of some important bases of the algebra of shifted symmetric functions.
Conversely, we are also able to describe some important generators of the centre of
the Heisenberg category in the language of shifted symmetric functions. This turns
out to be given in the language of free probability, in particular, the transition and
co-transition measures of Kerov [Ker93) [Ker(0].
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Introduction

In Chapter 1 we introduce the notations and key concepts upon which we will rely
subsequently. The second chapter tells the story given by the diagram below, in
which each arrow represents an equivalence of some kind.

Polynomial Theorem 2.3.13 Polynomial GL,,

functors representations

\/

Symmetric group

representations
Proposition
22T
Theorem
2.1.3]

Symmetric functions

In this chapter we establish an isomorphism of rings between the ring of
symmetric functions and the graded ring formed by taking direct sum of the
Grothendieck groups of the category of S, representations as n varies, where the
ring structure is given by the induction product. The structure of our proof fol-
lows Fulton [Ful97]. We introduce and classify polynomial functors. To this end
we follow the construction of Macdonald [Mac95]. We also refer the reader to
Friedlander and Suslin [FS97], who provide a more modern, category theoretic
approach to their construction. In this section, we also establish an equivalence
between the category of S,, representations and the category of polynomial functors
homogeneous of degree n, and hence describe the category of polynomial functors
as a categorification of the ring of symmetric functions.



Next, we describe the irreducible polynomial representations of G'L,, and demon-
strate that they are given by irreducible polynomial functors. We establish then
that the category of polynomial GL,, representations is a categorification of the
ring of symmetric polynomials in m variables. We then follow the stable category
construction of Hong and Yacobi [HY13] to produce a category which describes
polynomial G L,, representations for all values of m at once. We then show that
this category is equivalent to the category of polynomial functors. This then estab-
lishes this stable category as yet another categorification of the ring of symmetric
functions.

Finally, we discuss a multiplication on the ring of symmetric functions called
plethysm, which is given by composition. We then describe the analogues in each
of the categorifications we have discussed. Again we follow Macdonald [Mac95],
however he does not cover the analogue for the category M, the tower of sequences
of polynomial representations of GL,, defined in

The third and final chapter of this thesis contains the novel material. In
[Khol4], Khovanov introduces a graphical calculus of oriented planar diagrams
which we use to define a linear monoidal category H’, designed to be a categorifica-
tion of the Heisenberg algebra. We denote by Ends; (1) the endomorphism algebra
of the monoidal unit in ‘H’. Diagramatically this is given by the algebra closed ori-
ented planar diagrams, modulo the relations of his graphical calculus. Khovanov
introduces two sets of generators for Ends(1): the clockwise curls {cj}r=0 and the
counterclockwise curls {¢}r=2. He then establishes algebra isomorphisms

Endq.y(l) = C[Co, C1,Co, .. ] = C[éz, C3,Cq, - - .],

and gives a recursive relationship between the two sets of curls.

He then relates H’ to representation theory by defining a sequence of functors
F) from H' to bimodule categories for symmetric groups. A consequence of the
existence of these functors is the existence of surjective algebra homomorphisms,

£ Endy (1) — Z(C[S,]),

from Endyy (1) to the center of the group algebra of each symmetric group. Based
in part on this, Khovanov suggests that there should be a close connection between
Endy; (1) and the asymptotic representation theory of symmetric groups. Further-
more, one might hope that Endy, (1) in fact gives a diagrammatic description of
some algebra of pre-existing combinatorial interest.

The main goal of this chapter then, is to make precise the connection between
Endy; (1) and both the asymptotic representation theory of symmetric groups and
algebraic combinatorics. This is achieved by establishing an isomorphism

U : Endyy (1) — A*,



where A* is the shifted symmetric functions of Okounkov-Olshanski [OO97]. This
is the content of theorem [3.1.3]) The algebra of shifted symmetric functions A* is
a deformation of the algebra of symmetric functions. As is the case for Endy, (1),
there are surjective algebra homomorphisms

A5 A — Z(C[S,]),

to the center of the group algebra of each symmetric group. The isomorphism
U : Endyy (1) —> A* is canonical, in that it intertwines the homomorphisms f7
and fA

The remainder of the chapter is largely concerned with finding graphical de-
scriptions of some important bases of A* and conversely finding combinatorial
descriptions of some important graphical bases of Endy,(1). The curl generators
cx and ¢ of Endyy (1) can be described in the language of free probability. This
was anticipated by Khovanov [Khol4], however the connection described between
moments of the co-transition measure and the Boolean cumulants of the transition
measure appears to be new. Table [I| provides a dictionary of these findings. Our
last consideration is an involution common to both End; (1) and A*.



| A | diagram in Endy, (1) | page defined (object, diagram) |
04 p. 20, p. 50

s p- 18, p. 52

hy p- 20, p. 52

ey p- 20, p. 52

Ok p- 29, p. 22

brya = pif oy p. 29, p. 22

Table 1: A dictionary between A* and diagrams in Endy(1).



Chapter 1

Preliminaries

1.1 Partitions and Young’s lattice

Following [Mac95], a partition is any sequence A\ = (A, Ag,..., Ag,...) of non-
negative integers in weakly decreasing order, with only finitely many non-zero
terms. The non-zero \; are called parts, and the number of parts the length,

denoted [(\). The sum
1)

Al = Z Ai
i=1

is called the weight of A. If |\| = n, we call X a partition of n, and write A - n.
Given two partitions p and A, we write u < Aifforalls = 1,2,..., we have u; < \;.

The multiplicity, m; = m;(\) = card{j : A\; = i}, is the number of times the
part ¢ appears in A. At times we will find it convenient to write

A= (1",2m2 0 K™ L)
to indicate the number of times each part occurs in the partition. Define

Zy = nimi(’\)mi()\)! e N.

i=1

Let the set of all partitions of n be denoted by P,,, and take

P = ]_[P”‘

nz=0

For £ < n we have an embedding ¢y, : Py — P,, that sends A - & to
(A, Ay, 1,00 1),

We write \ for the partition obtained by removing all the parts equal to 1 from .

5
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The Young diagram of a partition X is the set of points (i,5) € Z? such that
1 <5 < ). We adopt the convention that the i coordinate increases moving
downwards, and the j coordinate increases moving from left to right. We represent
the diagram pictorially with boxes for each point in the diagram. The diagram of
(5,3,3,1) is shown below.

The conjugate of a partition A is the partition X" such that
A, = card{j : \; = i}.

Alternatively, it is the partition whose diagram is the reflection in the main di-
agonal. The conjugate of the partition (5,3,3,1) above is readily seen from its
diagram to be (4,3,3,1,1).

The content, c(i,j) of a node (i,j) € A, is defined to be j —i. We denote by
A, the finite alphabet of contents of \.

The hook-length of a partition A at the point (i, ) is the quantity
h(i,j) ==X+ X;—i—j+1

This counts the number of cells to the right and directly below the cell, and the cell
itself. The product of all the hook-lengths is then easily shown to be the product

o TG+ 1) — )
AT . R
[Ticicjayi =X +5— 1)

For any partition A and any integer 1 < i < I(\)+1, let \®)/ denote the partition
(i, if it exists, such that p; = A; for j # ¢, and p; = A; + 1. Similarly, denote by
A the partition v, if it exists, such that v; = A; for j # 4, and v; = \; — 1.

Following [Ful97], we call a numbering or filling of the boxes of a Young diagram
the result of placing elements of some alphabet, usually the numbers from 1 to n,
where A = n. A (semi-standard) Young tableau, often lazily referred to as tableau,
is a filling that is weakly increasing across each row, and strictly increasing down
each column. A standard tableau is a tableau in which we further require strictness
along the rows. An example of each is shown below for the shape (4,2,2,1).
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1 215 1{31419
2 216

5 518

7 7

Tableau Standard tableau

Define a Young tabloid to be an equivalence class of Young tableaux in which
two tableaux are considered equivalent if they contain the same entries in the same
rows. The tabloids of shape (2, 1) are then

1 2 2 1 1 3 3 1 2 3 3 2
3 3 ’ 2 92 ’ 1 | '

Note that we omit column lines in our notation of each tableau in the equivalence
class. We usually also denote the equivalence class with a representative of the
class.

Let ), denote the set of Young diagrams with n boxes, and take

yi=[]w

n=0

to be the lattice of all Young diagrams, ordered by inclusion.

Let dim A be the number of standard tableaux of shape A. For A - n, this num-
ber is the same as the dimension of irreducible representation of .S,, corresponding
to A. By setting dim ¢Z = 1, we then have the recurrence relation

dim A =) ' dim A
as a direct consequence of the branching rule (Corollary [2.1.6)).
The k-th falling factorial power, written (x | k), is defined by

@wky:{fg—1%~@—k+n,zi&

To each partition p - k we then define a function f, on ) by

{ (n LR)Xy, n=IA=Fk,

fu(A) == 0, A < k.

where )22 is the normalised irreducible character defined below.
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1.2 The symmetric group and its representations

Let S, be the symmetric group on {1,2,...,n}. S, is generated by the elements
S1y---,8n_1, where s; is the transposition (i,i + 1). For any k < n, there is an
embedding ¢y, : Sk — Sy, given by identifying S; with the stabiliser of

{k+1,....,n}.

Every permutation o € S, factorises uniquely as a product of disjoint cycles. If we
order the disjoint cycles by length, we form a partition A = (A, ..., \x) of weight
n. The partition A is called the cycle-type of o. The cycle-types, and hence the
partitions of n give the conjugacy classes of S,. Given a partition A — n, we write
C), for the conjugacy class of permutations of cycle-type A.

Denote by C[S,,]| the group algebra of S,,, and let Z(C[S,]) be its centre. We
write

pr, : C[Sni1] = C[Sh]
for the orthogonal projection of C[S,, ;] onto C[S,,] defined by

) g, gfixesn+1,
Pro(9) = { 0, otherwise.

For 1 <i < n, the Jucys-Murphy elements J; are defined by

Jii= > (j,i).

1<j<i

Jucys [Juc74] showed that Z(C[S,]) is spanned by symmetric polynomials in the
J;. The set of elements

as A ranges over all partitions of n give a basis for Z(C[S,]). When X - k < n,
out of laziness we will write

C)\ = O¢k~,n(>‘)’ Z\ = Z¢k,n()‘)’ KA = K¢k,n(/\)

The irreducible representations of S, are indexed by partitions A — n. Let
V) denote the irreducible representation of S, corresponding to the partition A,
and write x* for the corresponding irreducible character. For brevity we write X,’}
for its value x*(co) at any permutation o of cycle-type u, and will conflate dim A
for dim V), (note that this number is the same as our previous designation of this
notation anyway). The normalised character, is defined by

A
ik - Xu
o dim A
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and the central character by

All characters can be extended by linearity to functions on C[S,] in the following
way: the application of the character x on .S, to an element

Z a;g; € C[Sn]7

is given by
Z a;ix(9:)-
To each partition A = (A,...,\,) = k < n we assign an element
Urn = Z(ih o) (s s Dagang) o (Bea 1y - - i),
where the sum is taken over all distinct k-tuples (iy, .. ., i) of elements drawn from

{1,...,n}. These elements have been the object of study in [KO94] and [IK99].
In particular, we have the result [KO94, Proposition 1]:

)2)\(@#,”) = fu()‘)-

1.3 Polynomial functors

We closely follow here the construction and exposition given by Macdonald [Mac95),
Chapter I Appendix A]. We refer the reader to Friedlander and Suslin [FS97] for
a modern categorical approach to the subject. Let V denote the category whose
objects are finite-dimensional vector spaces over the complex numbers, and whose
morphisms are C-linear maps. A polynomial functor is a functor F' : YV — V such
that for each pair V, W € V), the mapping

F : Hom(V, W) — Hom(F(V'), F(W))

is a polynomial mapping. More precisely, if (f;)1<i<r is a collection of morphisms
V — W, and if \,..., A\ € C, then F(\ f1 + ...+ \.f;) is a polynomial function
of the \; with coefficients in Hom(F(V'), F(W)), depending on the f;.

If F(A1fi +...4+ \.fr) is a homogenous polynomial of degree n, for all choices
of f1,..., f., then F is said to be homogeneous of degree n. The nth exterior power
A" and nth symmetric power Sym” are both homogeneous of degree n.

We say that a polynomial functor F' has bounded degree if for all sufficiently
large n, F,, = 0 in the direct sum decomposition established below. We denote the
category of polynomial functors of bounded degree by F.
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Proposition 1.3.1. A polynomial functor F : V — YV has a direct sum decompo-

sition
F=@F,,

n=0

where each F,, is a homogeneous polynomial functor of degree n.

Proof. Let Ay denote multiplication in V' by the scalar A € C. If F is a polyno-
mial functor on V, then F(\y) is a polynomial function of A with coefficients in
End(F(V)). That is, for each n = 0, we have

F(Av) = Y un(V)A,

n=0
for some collection u, (V') € End(F(V)).
Given that F((Au)y) = F(Avuy) = F(A , 1t follows that
S - (G )( )
n=0 n=0 n=0
for all A\, u € C. We therefore have that u, (V)* = u,(V), for all n > 0, and

U (V)u, (V) =0
whenever m # n. By taking A = 1, we also find that

nz=0
If we take F,,(V) to be the image of u,(V) : F(V) — F(V), then the u,(V)
determine a direct sum decomposition

V)=@D F.(V)

nz=0
Since F(V') is a finite dimensional complex vector space, it follows that all but a
finite number of the summands F,,(V') will be zero for any given space V.

If f:V —- Wisa C-linear map, then fAy = Ay f, for all A € C. There-
fore, F(f)F(A\v) = F(Aw)F(f), and so for each n = 0 we have F(f)u,(V) =
un, (W)F(f), that is to say, each u, is an endomorphism of the functor F'. On re-
striction to F,,(V'), we therefore have a C-linear map F,(f) : F.(V) — F,(W), and
hence each F}, is a polynomial functor homogeneous of degree n. As a consequence,
the functor F' has the required direct sum decomposition

F=@F,

nz=0

into polynomial functors homogeneous of degree n. O]
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Let FF: V — V be a polynomial functor homogeneous of degree n, and let
W =Vi®---®V,, where each V; € V. For each 1 < a < n we have monomorphisms
o : Vo — W and epimorphisms p, : W — V,, which satisfy the relations

pcxia = 1Va7
Paip =0, if @ # 3, and

Ziapa = lw.

(67

Given any composition A = (A1,...,A,) € C", let (A)w, or simply (A) if the
space is obvious from the context, denote the morphism ) Aqiapa : W — W,
so that (A)w acts as scalar multiplication by A, on the component V. Let
v(Vi,...,V,) be the coefficient of A;---\, in F((A\)w). The linearisation of F is
the functor Ly defined by taking Lp(Vi,...,V,) to be the image of v(V,...,V},).
It is a direct summand of F'(W') and is homogeneous of degree one in each variable.

Let F' be a polynomial functor homogeneous of degree n, and define

W) = Lp(V,....V).

For any m € S, let 7 : VO — V%" denote the morphism which permutes the
summands of V®*, This is the map given by

Z iw(a)pa-

Given any composition A = (A,...,\,) of complex numbers, we have that
T(A) = Y Aain(@pPa = (TN,

where mA = (Ar-1(1), .. ., Ar=1(n)). Applying the functor F therefore gives
F(m)F((A) = F((wA)) F ().
Selecting the coefficient of A\; - -- A, on either side, it follows that
F(m)v = vF(n).

Let
J: L;Z‘)(V) S F(V®), and ¢: F(VE) - L%”(V)

be the injection and projection, respectively, associated with the direct summand
LI (V) of F(V®), so that ¢j is the identity, and jq = v. We then define

F(r) = qF()j,
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which gives an endomorphism of L%n). Further, if 7 € S,, is another permutation,
then

F(m)F(r) = qF(7)jqF(7);

= qjqF(m)F(7)] (since jg = v)
= qF(77)j (since ¢j = 1)
= F(n7).

We therefore have a representation of S, given by 7 — F(r) on the vector space
Lgl)(V), which is functorial in V.

The sequence of propositions which follows shows that this action of S,, deter-
mines the functor F' up to isomorphism. In fact, we produce a functorial isomor-
phism of F(V') onto the subspace of S,-invariants of L(PZL)(V).

Proposition 1.3.2. Ifi=Yli,: V > VP andp=>p,: VO -V, then

vE(ip)v = Z F(m)v.

TESH

Proof. Let f: V®" — VO be a linear transformation of the form

f = Z gaﬂiap,é’
a,B

where &,5 € C. F(f) is then a homogenous polynomial of degree n in the n?
variables {5, with coefficients in End(F(V®")), depending only on V and F'. For
each m € S, let w, denote the coefficient of §r(1y1 -+ - &rnyn in F(f).

Given that v? = v, and F(m)v = vF(x), it follows that

F(m)v = vF(m)v.
Hence F(m)v is the coefficient of Ay -+ A, ptg -+ - i, in

F((A))F(W)F((:U’)) =F (Z Aw(a)ﬂain(a)pa> )

and therefore F(m)v = wy.
We also have that vF(ip)v is the coefficient of Ay« -+ X\, pg -+ -y, in

F()F@p)F((n) = F (Z /\auﬁiam> ,

a75
which is given by

Z Wy = Z F(m)v.

TESH TESy
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Proposition 1.3.3. Define two natural transformations of functors
§=qF(z’):F—>L§f), andnzF(p)j:Lgf) — F.
The composition ng is scalar multiplication by n!, and &n = > F(n).

Proof. From their definition
né = F(p)jqaF (i) = F(p)uF (i),

which is the coefficient of A - -+ A, in F(p)F((\))F(i). Given that p(A)i:V — V

is actually scalar multiplication by A; + - -+ + A, it follows that F'(p(\)i) is scalar

multiplication by (A; + -+ 4+ A,)". The coefficient of A; - -- A, is therefore n!.
Now the composition

TESH

&n = qF @) F(p)J,
so by the previous proposition we have that
jéng = vF(ipjv = > F(m)v,
TESH

and therefore
&n = qjiéngj

= ). qF(m)vj

TESH

= ) qF(m)jqj

TESH

= ) qF(m)j

TESH

= > F(n).

TESH

]

Proposition 1.3.4. Let L%n)(V)S" denote the subspace of L;@(V) that is invariant
under the action of S, and take

v LYWV — LWV, and p: L8 (V) — L8 (V)5

to be the associated injection and projection. The natural transformations given
by

¢ = p& F(V) = L (V)™
and

W= LY (V)" — F(V)
are functorial isomorphisms such that the compositions £'n' and n'&" are both scalar
multiplication by n!.
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Proof. The map o = (n!)~'¢n is idempotent with image Lgl)(V)S”. We observe
then that po = 1, and tp = 0. By the previous proposition we therefore have that
the composition

'€ = nupé
= (n!) "néng
=nl.
Since {n = nlo, we have
&' =nlpoe
= nlpLpt
= nl.

Let V™ denote the category of whose objects are sequences V = (Vi,...,V},) of
finite-dimensional complex vector spaces, and

Hom(V, W) = [ [ Hom(V;, W),

i=1
A functor F': V" — V is said to be polynomial if
F : Hom(V,W) — Hom(F(V), F(W))

is a polynomial mapping.

By it follows that every homogenous polynomial functor F' of degree n is
of the form V w L(V,..., V)% where L : V" — V is homogenous of degree one
in each variable. Our goal is then to find all such functors.

In light of [1.3.1], an irreducible polynomial functor will be homogeneous of
some degree. We will show that the irreducible polynomial functors of degree n
correspond to the irreducible representations of .S,,, and are therefore indexed by
partitions A of n.

Proposition 1.3.5. Let F' : V" — V be a polynomial functor and let (\) =

(A, ..., ) € C". The functor F then has a direct sum decomposition
= @ le ..... mn
mi,..., M,

such that Fr,  mn (A1,  Ap) = AT AT,
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Proof. Let V = (V4,...,V,). Since F' is polynomial, we have that

F((MDv) = D Umgeim (Vi VAT o A

If as in we define F,, ., as the image of wy,  m, (Vi,...,V,), then the

..........

result follows. N
Proposition 1.3.6. There is a functorial isomorphism

L(V)=L(C)®V,
where L : YV — V is homogeneous of degree one.

Proof. For each z € V, let e(z) : C — V be the map A — Az. If W is another
complex vector space, then we define

Yy Hom(L(V), W) — Hom(V, Hom(L(C), W))

by ¥v(f)(z) = f o L(e(x)). Given that 1y is obviously functorial in V', it suffices
to show that it is an isomorphism.
Since L must be additive, it follows that

L(Vi® V) = L(V1) ® L(V2)

Therefore, if 1y, and 1y, are isomorphisms, then so is ¥y, gyv,. Hence, it suffices to
show that ¢¢ is an isomorphism, which is clear. O]

Proposition 1.3.7. Let L : V" — V be homogeneous and linear in each variable.
Then there exists a functorial isomorphism

LV, Vo) = LY (C)@Vi®--- @V,
where L{M(C) = L(C,...,C).
Proof. This is achieved by the repeated application of

L(Vi, ..., V)

lle

L(‘/h .. '7Vn—17(c) ®Vn
L(‘/17 . 'JVTL727C7C) ®Vn71 ®Vn

lle

lle

LIC,...0)Vi® - ®V,.
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Lemma 1.3.8. If I’ is a homogeneous polynomial functor of degree n, then there
is an isomorphism of functors

F(V) = (L{(C) @ Ve)sn,

Proof. This is a direct consequence of [1.3.4] and [1.3.7} O]

Theorem 1.3.9. Let F, be the category of homogenous polynomial functors of
degree n. The functors a: F,, = S, and B : S,, — F, defined by

a(F) = L%)(C), and B(M)(V) = (M®V®n)5"
constitute an equivalence of categories.

Proof. By we have fa = 1x,. Let M € S, and suppose that 5(M) = F, so
that

FVi® - ®dV,)=MQ(Vi® - -@V,)®)5.

The linearisation of F'is then given by

Shn

TESH

We then have that the composition
aB(M) = L'(C) = (M @ C[S,])*" = M.
m

Corollary 1.3.10. The irreducible polynomial functors homogenous of degree n
are indezxed by partitions \ of n.

Proof. Given the equivalence of categories in [1.3.9, the functors F defined by
E\(V) = (Ve Ve,
exhaust the irreducible polynomial functors homogenous of degree n. O]

Proposition 1.3.11. The tensor product V& has the decomposition

Ve = PV (V).

An
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Proof. If M and N are C[S,]-modules, then there is a canonical isomorphism
(M*® N)* ~ Homgs, (M, N),
where M* = Homc¢ (M, C). Given that V) = (V))*, we therefore have that
Fy\(V) = Homcgs, (Va, Ve,

If we consider V®" as a C[S,]-module, then its decomposition into isotypic com-
ponents is given by

Ve = (P Vi ®@ Homggs,j (Va, VE),

AN
and the result follows. O

Proposition 1.3.12. Let E and F be polynomial functors of degrees m and n,
respectively, such that E = (M) for some S, representation M, and F = G(N)
for some S, representation N. The tensor product EQ F : V — E(V)® F(V)
corresponds to M + N = Indgzylsn(M ®N).

Proof. From their definition we have that

(EQF)(V)=(M@V®") g (N@Ve)
~ (M ® N ® v®m+n)SmXSn
= (Indg s, (M @ N) @ VEmim)smen,

where the final step is an application of Frobenius reciprocity. O

1.4 Shifted symmetric functions

We recall briefly the construction of the algebra of symmetric functions. We refer
the reader to [Mac95] for a comprehensive coverage of the material. The algebra
of symmetric polynomials A, in the variables z1,...,z,. It is a graded algebra,
graded by the degree of the polynomials. The assignment x,,; = 0 defines a

morphism of graded algebras
An+l - An

which we call the stability condition. The algebra of symmetric functions A is then
defined as the projective limit

A= @An
in the category of graded algebras. An element f € A is then a sequence (f,,),>1
such that
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(1) faeA, n=1,

(2> fn+1(w17 cee 73;7170) = fn(l'l, . :xn),
(3) sup,, deg f,, < o0.

Particular interest is given to the following algebraically independent generators
of A:

e clementary symmetric functions ey, es, €3, .. .,
e complete symmetric functions hq, hs, hg, .. .,
e power sum symmetric functions py, ps, ps, . . ..

For any collection { fi}r>1 equal to any of these sets of generators and any partition
A= (Ag,..., \r) we define
=TI I
Another important basis is provided by the Schur functions {sy}ep.
We now define the algebra of shifted symmetric polynomials in the variables
x1,...,%,, denoted by A, be the algebra of polynomials that become symmetric
in the change of variables

, . .
T, =2 —4 t=1,...,n.

It is important to note that this defines not a graded algebra but one that is filtered
by degree. By analogy with A, setting x,.; = 0 defines a homomorphism

A*

ES
n+1 - An?

and so we can take the projective limit
A" :=lim A}
2m
in the category of filtered algebras. We call A* the algebra of shifted symmetric
functions. We then have the following relationship between A and A*:

Proposition 1.4.1. The associated graded algebra gr A* is canonically isomorphic
to A.

Let u = (p1, ..., 1n) be a partition with no more than n parts. The shifted
Schur polynomial in n variables, indexed by p is defined by the following ratio of
n x n determinants:

o det[(zi+n—i | pj+n—j)]
~ det[(mitn—iln—j)]

si(Ty, .., ap) ,
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where 1 <4, <n. If l(11) > n, then s%(zy,...,2,) = 0.
Okounkov and Olshanski [O097] showed that the shifted Schur polynomials
satisfy the stability condition

si(r1, .70, 0) = s5(, ., 2),

and so the sequence (s7;(z1, ..., Zp))n=1 defines an element sy of A*, which we call
the shifted Schur function. We also refer to them as s*-functions for short. The
shifted Schur functions form a linear basis in A*.

Any shifted symmetric function f € A* can be evaluated on an infinite sequence
(i1,19,...) so long as i, = 0 for all sufficiently large k. We can then consider f as
a function on partitions by taking f(A1,..., N, 0,...). Moreover, f is uniquely
determined by its values on all partitions. Hence, we can regard the algebra A* as
an algebra of functions on the set of partitions.

The proofs of the following sequence of theorems due to Okounkov can also be

found in [OO97]:
Theorem 1.4.2 (Vanishing Theorem). We have

() =0, unless pc A,

Theorem 1.4.3 (Characterisation Theorem I). The function s}, is the unique
element of A* such that deg s}, < |u| and

SZ()‘) = 0unH,
for all X such that |\| < |p|.

Theorem 1.4.4 (Characterisation Theorem I). Suppose (1) < n. Then s}(xy,. .., zn)
is the unique element of Ay such that degs’(z1,...,z,) < [p| and

s* ()\) = 5N/\HM

I

for all X such that |\ < |u| and I(X) < n.

Theorem 1.4.5 (Characterisation Theorem II). The function s}, is the unique
element of A* such that the highest term of of s, is the ordinary Schur function
S, and

sE(A) =0

for all X such that |\| < |ul.
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The shifted analogues of the complete symmetric functions and the elementary
symmetric functions are given by

h;: = Szkk),
€l 1= S{1ky-

We then have that A* is the algebra of polynomials in the hj, or the ej.
There are numerous shifted analogues of the power sums

k
Pk :inv
[

all of which have p, as a leading term.
First we have the functions given by

b= X (= 0F = (=),
We then have two factorial analogues of the pj:
= ((wi—i k) = (=i 1 k),
where (z | k) := z(x +1)---(z + k — 1) denotes the k-th raising factorial power
of x, and
Pri= Y ((mi—i+1|k)—(=i+1]|k).
The last, and possibly most important power sum analogue we describe here are
the functions defined to mirror the identity

Du = Z X,ALSA-
Ak|ul
The map ¢ : A —> A* given by
P(s) = SZ
is a linear isomorphism. We then define
pﬁ = ‘P(pu)7
so that
Pl = > x)ss.
A=l

Considered as a function on partitions, we then have the following result, also
found in [OO97]:

Proposition 1.4.6. For u+ k and X - n,
P (A) = fu(N)-
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1.5 Khovanov’s Heisenberg category

We define a C-linear strict monoidal category H' generated by two objects Q)
and @_ as follows. An object of H' is a finite direct sum of tensor products
Qe, ®---®Q,,, , where €1, ..., €, is a finite sequence of pluses and minuses. For the
sake of brevity we denote this tensor product by )., where € = €1 - - - €,,,. The unit
object, 1, then corresponds to the empty sequence Q). The space Homyy (Q., Q ),
for two sequences € and € is the C-module generated by planar diagrams modulo
some local relations. The diagrams are oriented compact one-manifolds embedded
in the strip R x [0, 1], modulo rel boundary isotopies. The endpoints of the one-
manifolds are located at {1,...,m} x {0} and {1,...,n} x {1}, where m and n are
the lengths of € and €', respectively. Further, the orientation of the one-manifold at
the endpoints must match the signs in the sequences € and ¢’. Triple intersections
are not allowed. The composition of two morphisms is achieved by the natural
glueing of the diagrams. A diagram with no endpoints is an endomorphism of 1.
The local relations are as follows:

O- 0 -

The relations in the first two rows are motivated by the Heisenberg relation
pq = qp + 1, where p and ¢ are the two generators of the Heisenberg algebra, that
is, they imply that there is an isomorphism in H’ of the form

Q-Q+ =Q:Q-D1.

The relations in the third row are motivated by the symmetric group relations.

We find it convenient to denote a right curl by a dot on a strand, and a sequence
of d right curls by a dot with a d drawn next to it. The local relations imply the
following results regarding moving right curls across intersections:
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Proposition 1.5.1. A right curl can be moved across intersection points, according
to the following relations:

Ko X
R

Proposition 1.5.2. We can move k dots through an intersection according to the
following relations:

A closed diagram is an endomorphism of the unit object 1 € H’'. Let ¢; denote
a clockwise-oriented circle with k dots, and let ¢, denote an anticlockwise-oriented
circle with k& dots. Any ¢, can be written as a linear combination of products of
clockwise circles. We already have that ¢y = 1, and ¢; = 0, since it is a figure eight
and hence contains a left curl. For the rest we have:

Proposition 1.5.3 ([Khol4], Proposition 2). For k > 0, we have

k-1
Ckr1 = Z CiCk—1—4-
i=0

Proof. We begin by expanding a dot into a right curl:

TeRNce

We then pull the k£ dots through the intersection to yield

The result then follows since the term on the left contains a left curl. O
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Proposition 1.5.4 (Bubble moves). We can move dotted circles past lines ac-
cording to the following identities:

k—2

k@ = k:@ +(k+1) k_;)(k—i_l) k—i—2 z@

k:@ = k:@ —]:Z::(’f—i—l)z'Q k—i—2

This result is given by Khovanov without proof. We provide a proof of the first
relation, noting the second is analogous.

Proof. We begin by bringing the line halfway through the circle, which gives

LT S k—1—1

The next step is to untwine the double upwards crossing on the dotted circle in
the left most term, and to pull the £k — 1 — ¢ dots through the intersection in the
rightmost term. We then have

k—1 k—2—1

k:@ + k +Z k —Z k—2—j j@
i=1 j=0

and the result follows by counting the terms in the sums. O
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The local relations allow us to convert any closed diagram into a linear combi-
nation of diagrams without crossings consisting of nested dotted circles. The pro-
ceeding two results show us how to split apart nested circles using bubble moves,
and anticlockwise circles can be expressed as linear combinations of products of
clockwise circles. Tt is then evident that Ends/ (1) is a quotient of the polynomial
algebra Clcg, ¢1, ¢a, .. .| in countably many variables via the map

V,DO . C[CO, C1,Cg, .. ] — End;u.y(]_)

that by an abuse of notation identifies the formal variable ¢; with the clockwise
circle with k& dots. It is a theorem of Khovanov [Khol4l Proposition 3] that 1, is
an isomorphism of algebras.

To simplify notation for bimodules, we use the following:

e (n) denotes C[S,,] considered as a (C[S,], C[S,])-bimodule.
e (n), 1 denotes C|S,| considered as a (C[S,], C[S,,_1])-bimodule.
e ,_1(n) denotes C[S,] considered as a (C[S,,—1], C[S,])-bimodule.

With a minor modification, we can interpret the graphical calculus of described
above as giving bimodule maps between symmetric group representations. We
label the regions of the strip R x [0, 1] by non-negative integers, beginning with n
in the rightmost region. An upwards oriented line separating two regions labelled
nand n + 1,

n+1 W n
denotes the identity endomorphism of the induction functor
Ind”™! : C[S,]-mod — C[S,,;1]-mod.

This functor is given by tensoring with the bimodule (n + 1),,.
Similarly, a downward oriented line separating regions labelled n + 1 and n,

nl n+1

denotes the identity endomorphism of the restriction functor
Res) ; : C[S,+1]-mod — C[S,,]-mod.

This functor is given by tensoring with the bimodule ,,(n + 1).
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We follow the convention that a diagram is zero if it has a region labelled by a
negative integer. We also have that the local relations with the rightmost region
labelled n still hold. They encode the symmetric group relations s?,; = 1, and
Snt1Sn42Sn41 = Sni2Sn+1Sna2, and the bimodule decomposition

n(n+1)n = (n)p-1(n) @ (n),
giving an isomorphism
Res!.; oInd**" =~ Ind”_, oRes! ' ®1d

of endofunctors in the category C[S,,]-mod.

We have the following bimodule maps for the four U-turns, which for conve-
nience we refer to as RCap, RCup, Lcap, and Lcup, respectively:

n n—l—lv (n+1)n(n+1)_>(n+1)7 g®h'_)ghv g,hESn+1,
n7 (TL)—) n(n+1)n7 g'_)ga gESﬂJ

9, g€ Sy
1 n n(n + 1)n - (n)7 g = { 0’ otherwise '’

n+l, (n+1)—=(n+1u(n+1),

€Y E3

where the last map is determined by the condition that

n+1
Iny1 = Z 8iSit1 " Sn @ Sp*+ Siq1Si.
i=1

We also have bimodule maps associated with the crossings, which we refer to
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as UCross, DCross, RCross, and LCross, respectively, given by:

><n ) TL—|-2 (Tl+2) g = gSn+1, geSn+2,
TL>< n + 2 - (n + 2)7 g — Sp+1d9, gcE€ Sn+27

><n7 (n) > ,(n+1),, g®hm— gs,h, g,heS,,

n>< = ()i (n),

where the last map takes g € S, to zero, and gs,h to g ® h, for g,h € S,.
The right twist curl is then endowed with the following interpretation:

Proposition 1.5.5. The right curl with the rightmost region labelled n s the
endomorphism of (n + 1),, which takes 1,, to the Jucys-Murphy element J, 1.

We provide here the proof omitted by Khovanov.

Proof. The right twist curl can be written as the composition of a cup, a crossing,
and a cap:

Hence,
1n*—>28i"'3n—1®8n—1"'8i
'_’Zsi"'sn—lsn®3n—1"'5i

n
— Z SitSp—15nSn—1"""38;
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Let &) be the category whose objects are compositions of induction and re-
striction restriction functors, starting from the symmetric group S,,. For example,
Ind”*' oInd” ,oRes” ! is an element of S/. The morphisms are natural trans-
formations of functors, and can be identified with homomorphisms of the corre-
sponding bimodules. Let &’ be the sum of the S over n = 0.

To each n > 0 we then have a functor F, : H' — &, which takes Q. to
the corresponding composition of induction and restriction functors, matching the
symbol + with induction, and — with restriction. For example,

FU(Q-4+) = Res!thoInd 2 o Ind2 .

If the string € ends with at least n+ 1 more minuses than pluses, then F/ (Q.) = 0.
On morphisms, F/, sends the diagram representing the morphism to the diagram
with the rightmost region labelled n, viewed as a natural transformation between
compositions of induction and restriction functors. Note that this functor is not
monoidal, as §) does not have a monoidal structure matching that of #'.

Applying the functor F, to the unit and its endomorphisms gives a homomor-
phism

7 Endyy (1) — Z(C[S,]).

Define vy, : Clco, c1, .. .] — Z(C[S,]) as the composition f?* o). The following
result is then a direct consequence of bimodule maps defined above:

Proposition 1.5.6. We have

k
i+ Sn—1dpSn—1 " Si,

=

Ckn = ¢O,n(ck) =
1

6k,n = w(],n(ék) = prn(‘]j;rl)'

<.
Il

1.6 Free probability

With a rather analytical beginning in the study of operator algebras, the study of
free probability has blossomed into an area with links to many fields. We focus
mainly on the combinatorial aspects of the theory, in particular, the transition and
co-transition distributions on Young’s lattice. We refer the reader to [NS06] for a
more detailed exposition of the combinatorial aspects of free probability theory.
We begin with a construction of Kerov’s [Ker93|, [Ker(0]. Two increasing se-
quences {y1,...,yq—1} and {zq,...,x4_1, x4} are said to be interlacing if we have

T <Y < T <Yy < - < Tg—1 <Yg—1 < g
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The number ¢ = >z, — >, yy is called the centre of the sequence. A Young diagram
can be thought of as an interlacing sequence as illustrated below for the partition
(5,3,1).

To each Young diagram A, with associated interlacing sequences (x;)1<i<q and
(Yi)1<i<a—1 we have two probability measures (formally defined on the interval
[21,24]). The first we call the transition measure, which is given by

d
Wy = Z Mkdrm
k=1
where
k—1 d
. Tk — Yi Lk — Yj—1
wo= o= 1 =0
i=1 kT g TR T

and ¢, is the Dirac measure. The weights i, are called the transition probabilities.
Similarly, we define the co-transition measure by

Wy = I/k(syk

where

Uy 1= (za — yr)(yr. — 1) nyk—%ﬂ 1—[ yk—%
DiiciWi— )@y —yim) 1 ve—vi L v =i

The weights vy, are called co-transition probabilities. The transition and co-transition
measures so defined are a generalisation to a broader category of diagrams, not
necessarily on an integer lattice and piecewise linear like a Young Diagram. The
combinatorial definitions on Young diagrams given of the measures are given by

dim /\(k) dim /\(k)

A) =y = d A=y, = ——+
)= e = g B == T
recalling that A(*) and A(ky are the Young diagrams given by adding or removing
a box, when possible, from the kth row.
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The transition and co-transition measures are fundamental tools in the study
of the asymptotic representation theory of symmetric groups and in the connection
between asymptotic representation theory and free probability.

The r-th moments of the transition and co-transition distributions are given
respectively by

d d—1
or(N) = Z pwpxy, and  G,.(A) = Z VY-
k=1 k=1

We write the moment generating series for the transition measure (resp. co-
transition measure) as

Ma(2) = DoV 51 and Ma(z) =2 — D [AG(A\)z 5
k=0

k=0

Note that we scale all coefficients of M A(z) by |A| with the exception of the coef-
ficient on z.

Lemma 1.6.1. For A\ e P
Mi(2) = (My(2)) 7%

Proof. This follows directly from equation (2.3) and Lemma 5.1, both found in
[Ker00]. O

The boolean cumulants {gk()\)};@l associated to wy can be defined as the coef-
ficients on the multiplicative inverse of M, (z),

Ba(z) = 2= Y brya(N)z™5 = (M (2) 7™

With Lemma this definition immediately gives us the following fact.

Proposition 1.6.2. Let A€ P and k = 0, then by(\) = 0 and
brra(A) = G-
There is a more algebraic approach to the transition measure due to Biane

[Bia98]. In the context of probability theory, pr, is sometimes known as the
conditional expectation.
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Proposition 1.6.3. For A\ - n,

ox(N) = X\A[prn(‘]s-i-l)]
and

brsa(A) = [A[G(A (231...$n,1J53n,1 . s)

Proof. The first statement appears in [Bia03|] Section 4. A detailed proof is given in
Theorem 9.23 of [HOO7]. For the second statement, we note that since characters
are class functions,

n

)A()‘(Zsi.. Sp_1J¥s,_1 . ) INXMIF).

i
As J, eigenspaces, V) decomposes as
d—1

V,\ = (—_Dl V>\(i)

with V), corresponding to eigenvalue b; [VO04]. Hence,

dlm)\l . ~
AR |A|Z O — \|Ge(A) = brra(N).

dim(A



Chapter 2

Symmetric functions and
representations

In this chapter we explore some categorifications of the algebra of symmetric func-
tions and the connections between them. We begin by presenting the classically
understood categorification of the algebra of symemtric functions given by consid-
ering symmetric group representations for all values of n at once. We then turn our
attention to polynomial functors and polynomial representations of GL,,. Finally,
we introduce plethysm of symmetric functions and describe the analogues of this
construction in each of the categorifications.

2.1 Symmetric group representations

The section that follows owes much to Fulton’s exposition [Ful97]. We denote the
category of finite-dimensional C[S,,]-modules by S,,. It is an abelian category, so
we can take the Grothendieck group K(S,,). The group K (S,,) is the quotient of the
free abelian group on the set of isomorphism classes [V] of all representations V' of
Sy, by the subgroup generated by the relations [V@W|—[V]—[W]. It is generated
by the isomorphism classes of the irreducible modules V), where \ is a partition
of n. Since the representations of C[S,] are semi-simple, the Grothendieck group
of §,, coincides with the split Grothendieck group.
Taking R, = K(S,) and Ry = Z, we define

R =(PR,.

n=0

The induction product is the function = : R, x R,, — R, given by
[V]+ W] = [Indg s, (VO W)].

31
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Proposition 2.1.1. With the induction product, R carries the structure of a
graded commutative ring with unit.

Proof. We recall that the induced representation is given by
g5, (VO W) = ClShm] Ocis,jacis,] (VO W).

The commutativity and associativity of the induction product are then direct
consequences of the commutativity and associativity, up to isomorphism, of the
tensor product. Distributivity follows from the fact that induction commutes with
direct sums. O]

We define an inner product {-,-) on R, by requiring the isomorphism classes
of the irreducible representations [V}] to be an orthonormal basis. Let

V= @PWV0)P™, and W = P(V,)o™
A A

be two representations of S,, then {[V],[W]) = >}, myn,. Given the orthonor-
mality of the irreducible characters of a finite group, if xy is the character of V'
and yw is the character of W, then the inner product is also given by

WLV = 25 3 xvlo) - xwlo )

" oeSh

As before, let C), denote the conjugacy class of the cycle type i, and let 2z, be the
number of elements in the centraliser of a permutation of cycle type pu. Given that
a permutation and its inverse are in the same conjugacy class, it follows that

VL IVD = 3 x(C) - xw(C).

z
RS

Denote by M, the representation associated with action of S,, on the set of
tabloids of shape A. We then have the following result:

Lemma 2.1.2. The value of the character of M, on the conjugacy class of the
cycle type p is the coefficient of x* in p,,.

Proof. The trace of a permutation ¢ is the number of tabloids fixed by o. If we
express o as a product of cycles, then a tabloid will be fixed by ¢ precisely when
all elements of each cycle occur in the same row.

We can write the power sum p,, as a sum of monomial symmetric functions

Du = H(Jc’f +ahi+ ) = chm,,.

7 v
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The coefficients in the expansion of this product encode precisely the information
we are seeking. The choice of the term xé‘ * encodes the choice of placing a cycle
of length f; in the jth row of the tabloid. The coefficient of the 2* term therefore
counts precisely the number of ways the cycles of y can be distributed among the
rows of the A-shaped tabloid, and hence counts the tabloids fixed by a permutation
of cycle type p. m

Theorem 2.1.3. Define ¢ : A — R by ¢(hy) = [M,]. The map ¢ is an isometric
isomorphism of A with R. Further, p(sy) = [V)].

Proof. The map ¢ takes the nth complete symmetric function h,, to the isomor-
phism class of the trivial representation M,) = L,. Since A is a polynomial ring
in the h,, to demonstrate that ¢ is a homomorphism it is sufficient to show that

[Mi] = [Mogy] = [Mag)] = - - [My ],

where A = (A1, ..., A\x). Let T be a tableau of shape . Let R(T) be the subgroup
of S,, which permutes the entries of each row of 7" among themselves. Now M) has
as a basis elements of the form o{T} as o ranges over the elements of S,,/R(T),
so it follows that M) is isomorphic to the induced representation of the trivial
representation I from R(T) to S, and given the natural isomorphism

R(T) = Sy, x --- xSy,

it follows that [M,] is the required product. Since the modules [M,] form a basis
of R, it follows that ¢ is an isomorphism of Z-algebras.

To prove the isometry, we first construct the inverse map v from R to A. The
map ¢ above informs us the image of [M,] should be h,, however, in light of 2.1.2]
we will find it convenient to write

1
ha = 33 —Caubu

PPRL

as the coefficients c) , give the value of the character of M) on C),. We can therefore
define )
(VD) = 3 v (G

w
This gives us an additive homomorphism ¢ : R — A®QzQ, but the composition Yoy
is the inclusion of A in A ®z Q. It follows then that ¢ is the inverse isomorphism
of R onto A. We then show that ¢ is an isometry by showing that its inverse 1 is
one. The inner product

@V, o(W])) = Z (CN) - xw(Cp)lpa, P
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where the inner product on A defined by

<S)\7 Su> = 5/\»/1'

Given the values of the inner product on the power sums, the sum on the right is

3L (G - xwlC) = (V] WD

z
PRR{Z

The complete symmetric functions can be expressed in terms of the Schur functions
in the following way

hy = s\ + Z KA7M5M7

J7=5

where the coefficients K ,, are the Kostka numbers, and the modules M, decom-
pose in the following way

M}\ ~ V)\ &) (@(vﬂ)@mu,x> ,
=5\

where my, y is the multiplicity of V, in M. By the definition of ¢, we must therefore
have integers £, \ such that

e(sy) = [Vi] + Z kualVid-

Since ¢ is an isometry

1= {5y, 8x) ={@(sx),0(51)) = 1+ Z kiw

[7=5)

and hence all the coefficients k, y must be zero. O

Corollary 2.1.4 (Young’s rule). My =V, @ (@M>,\(VM)K*’“>; where K, is the

Kostka number: the number of semi-standard tableauz of shape \ and weight p.

Corollary 2.1.5 (Littlewood-Richardson rule). [Vi]+[V,.] = >, X [V, ], where the
X . are the Littlewood-Richardson coefficients: the coefficient of s, if the product
5x8, 1s written in the Schur basis.

Corollary 2.1.6 (Branching rule). Let A be a partition of n. The induced repre-
sentation IndiZ“V,\ 1s the direct sum of one copy of each of the modules Vy:, where
N is obtained from X\ by adding one box.
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Proof. This is the special case of where p1 = (1), and the inclusion of S,, x S}
in 5,41 is the usual inclusion of S,, in S, ;1. O

Corollary 2.1.7. By Frobenius reciprocity, the Branching rule is equivalent to
saying that the restriction of V\ from S, to S,_1 is the sum of one copy of each of
the modules Vy where X' is obtained from A by removing one box.

Corollary 2.1.8 (Frobenius character formula). The value of the character of V)
on C, is gwen by the integer dy, in

1
= ——dy\ Dy
SX Z z(u) \vP

v

Proof. From the definition of the inverse isomorphism ¢ in [2.1.3] we have that
[Vi] corresponds to both s, and the element

S ()

— 2(v)

]

2.2 The characteristic map for polynomial func-
tors

Given [1.3.1]and [1.3.9|it follows that F is abelian and semisimple, and further that

K(F) =@ K(F,) = PR,

n=0 nz=0

The tensor product defines a graded commutative ring structure on K (F).
Given its definition, it follows that this graded ring structure agrees with the one
defined on R by the induction product. Hence, we can identify K(F) with R as
graded commutative rings.

Let F' be a polynomial functor on V. For each composition

A=(1..., Am) €C™

let (A) denote the diagonal endomorphism of C™ with eigenvalues Ay, ..., A,,. The
trace of F'((A)) is then a symmetric function of the Ay, ..., Ay, since for any 7 € S,,
we have

tr F(7)) = tr F(r(\)7 1) (since m(A) = (7))
= tr F(m)F((\)F(m )
= tr F'(\).
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Since trace is additive, we have a mapping x,, : K(F) — A,, given by

X (F)Y (A1, Am) = tr F (V).

Further, since trace is multiplicative with respect to tensor products, x,, is a
homomorphism of graded rings. Let p,, : Aj = A,,, (I = m) be the restriction to
A; of the map Z[\, ..., \| = Z[\1, ..., \y] which sends each of A\,4q,...,A to
zero. We therefore have that the composition

Piom © X1 = Xm-

The homomorphisms Y,, hence determine a homomorphism of graded rings
X K(F) = A,

called the characteristic map.

Proposition 2.2.1. The characteristic map coincides with the map ¢ : R — A of
213

Proof. We first observe that x(/\") = e,, which is also the character of the sign
representation of S,,. Since the polynomial functor A" corresponds to the sign
representation under the equivalence of categories the result follows from
that fact that the e, generate the ring A. m

Proposition 2.2.2. If I\ : V — V is the irreducible polynomial functor corre-
sponding to the partition X\, then x(F\) = sj.

Proof. By [1.3.10] the irreducible polynomial functors F) correspond to the irre-
ducible modules V), and hence the result follows from [2.2.1] and [2.1.3] O

2.3 Polynomial representations of GL,,

Let G be any group and let R be a matrix representation of degree d over C,
the representing matrices given by R(g) = (R;;), where g € G and 1 < i,j < d.
The representation R determines d* functions R;; : G — C, called the matriz
coefficients of R.

Proposition 2.3.1. Let RV, R® ... R%® be a sequence of matriz representations
over C of a group G. The following are then equivalent:

(i) All the matriz coefficients RS), Rg-), e ,RE?) are linearly independent.

(ii) The representations R, R®) ... R™ are irreducible and pairwise inequiv-
alent.



2.3.  Polynomial representations of GL,, 37

Proof. Suppose that some R® is a reducible representation, then R* is equivalent
to a matrix representation such that some of the matrix coefficients are zero. Since
the space of functions on G spanned by the matrix coefficients is the same, it follows
then that the matrix coefficients Rl(f are linearly dependent over C. Let us now
suppose that some pair R® and R® are equivalent, irreducible representations.
The matrix coefficients of R" are then linearly dependent on those of R*). These
two facts give us the implication (i) = (ii).

For the reverse implication see Curtis and Reiner [CR62, (27.13), p. 184]. O

Let V' be an m-dimensional complex vector space so that GL(V') is identified
with the group GL,,. Let x;; : GL,, —» C (1 < i,j < m) be the coordinate
functions on GL,,, so that z;;(g) is the (7, j) element of the matrix g € GL,,. Let

P=@P,=Clz;:1<4i,j<m]

n=0

be the algebra of polynomial functions of GL,,, where P, consists of the polyno-
mials in the z;; that are homogenous of degree n.

A matrix representation of GL,, is called polynomial if its matrix coefficients
are polynomials in the z;;. Let M,, denote the category of finite dimensional
polynomial GL,, representations.

Theorem 2.3.2. Let R* be the polynomial representation of GL,, in which an el-
ement g € GL,, acts as F\(g) on F\(V'), where X is a partition such that [(X) < m.
The representations R* are inequivalent irreducible polynomial representations of
GL,,. Furthermore, every irreducible polynomaial representation of GL,, is equiv-
alent to some R*.

Proof. By the dimension of F)(V') is given by taking 1 = --- = z,, = 1 in
the Schur polynomial s)(z1,...,%,). Given the well-known relation

H(l —zy) " = Z a1, ) SA (Y1 - -+ YUm)

i, A

see |[CR62|, p. 63), it follows that d,, = dim F\(V))? is the coefficient of ¢"
(see [CRG2] ) A-n

in (1 —¢)~™", but this number is the same as dim¢ P,.

The decomposition V& = @), VA ® FA\(V) shows that the representation of
GL,, on V®" is the direct sum of dim Vy, copies of R*, for each partition A of n such
that [(\) < m. The matrix coefficients of the representation V®" are the degree
n monomials in the coordinate functions x;;, and hence span P,. It follows that
the coefficients R;\j also span P,. From the discussion above, the total number of
these matrix coefficients is d,,, so the R;\j form a C-basis of P,. By [2.3.1]it follows
that the R* are irreducible and pairwise inequivalent.
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Finally, suppose that R is a polynomial representation of GL,,. If R is re-
ducible, then R is a direct sum of homogeneous polynomial representations. Hence,
it is enough to assume that R is irreducible. If R is irreducible, its matrix coeffi-
cients I%;; are homogenous of some degree n. Therefore, by R is equivalent
to some R*. O

Corollary 2.3.3. The character of the representation R* of GL,, is the Schur
function sy. Further, a polynomial representation of GL,, is determined up to
equivalence by its character.

Proof. If f is a symmetric function and z € GL,,, then we can regard f as a
function of x by taking f(x) = f(&1,...,&n), where &, ..., &, are the eigenvalues
of z.
If x € GL,, is a diagonal matrix and hence also if x is diagonalisable, then by
2.2.2)
tr F)\(z) = sx(z).

Since the diagonalisable matrices are Zariski dense in G'L,,, and both s,(z) and
tr F)\(z) are polynomial functions of z, it follows that sy(z) = tr Fy(x) for all
x € GL,,.

The final part of the proposition is a direct consequence of this, since the Schur
functions s, where [(\) < m are linearly independent. O]

Corollary 2.3.4. If we endow K(M,,) with the commutative ring structure given
by the tensor product of GL,,-modules, then we have an isomorphism of rings

K(M,,) = Ap,.

Let Z,, be the centre of GGL,,, which consists of the scalar matrices. If V,, is a
G L,,-module, let

Vi) ={veV, : z-v=2"forall ze Z,}.
The module V,,, then has the decomposition into weight spaces

Vi = @ Vin(k)

keZ

under this action of the centre.

If a module V,,, = V,,,(k) for some k, we say that V;,, is homogenous of degree
k. A polynomial representation of GL,, is then a direct sum of homogeneous
representations of non-negative degrees. In particular, an irreducible G L,,-module
R* is homogeneous of some degree |A\|. We denote the category of polynomial
representations of G L, of degree k by M, (k).
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For all m > 1, we embed GL,, 1 in GL,, as the subgroup of matrices of the

form
A0
0o 1)/’
where A € GL,,_;. Restriction to GL,,,_; then defines a functor R : M,,, —» M,,,_1

given by R(V,,) = Resgfz_l(vm). Consider the embedding of GL; in GL,, as the
subgroup of matrices of the form
L1 0O
0o X))’

where I, 1 is the identity matrix in GL,,_1, and A € C. The action of this copy
of GLi on V,, then commutes with the action of GL,,_;. We can then decompose
the functor R into weight spaces

R=PR
1€Z
corresponding to this action of GL;. In particular, Ro(V,,) = V.¢L1. The functor
MR, preserves degree, and hence defines a functor
Ro (k) : My (k) = M, 1 (k).
Let M denote the category whose objects are sequences

V= (Vma am)m>07

where V,, € M,, and «,, : Ro(Vins1) — Vin is an isomorphism of G L,,-modules.
By convention we take G'Lg to be the trivial group. If the maps «,, are obvious
from the context, we will sometimes write V' = (V)= for an object of M.

A morphism V' — W of objects in this category is given by a sequence ( f;,)m=o0
of morphisms f,, : V,,, = W,,, so that for sufficiently large m, the diagram

mO m+1
Ro(Vins1) (f—>)%0(Wm+1)
l‘lm lﬁm
fm

Vip —————— W,

commutes. ,\,
An object V' = (V,,, n)m=0 € M is homogeneous of degree k if every V,, is of

degree k. Let M (k) denote the subcategory of M consisting of objects of degree
k.
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Proposition 2.3.5. Let V = (V,,, tn)ms0 and W = (W, Bin)m=o be two objects
of M, then VW = (V,,, @Wy,, 0 ® B )mso defines a monoidal structure on M.

Proof. We simply need to check that Ro(V,, ® Wi,,) = Ro(Vin) @ Ro(W,,). Under

the action of GL; we have the decomposition into weight spaces

PV @Wo)(5) = B Vi (k) @ Win(0).

s=0 k+l=s

The GL;i-invariant subspace of V,, ® W,, is (V;,, ® W,,,)(0), which means we also
require k + [ = 0. Since V,, and W,, are polynomial, this forces k£ and [ to also be
zero, which gives the desired isomorphism. O

Hong and Yacobi [HY13] provide the following simple examples of objects living
in M:

1. If T,, is the trivial representation of GL,,, then we have the obvious iso-
morphism Ro(L,;1) = L,,. Hence they all glue together to form the object

I = (I,,)m=0- This object plays the role of the unit object in M.

2. The standard representation C™ of G'L,, is canonically isomorphic to Ro(C™ 1),
since the the G L;-invariant vectors of C™*! under the action described above
are simply the vectors whose (m + 1)th component is zero. The stan-
dard representations hence glue together to produce the standard object
St == (Cm)m>0.

3. For a non-negative integer r, we have the tensor product representation of
GL,, given by ®"C™. If we take ej,...,eny1 to be the standard basis of
C™*! then the tensor product representation has vectors of the form

€, Q- - e,

as a basis. The G L;-invariant vectors in the tensor product representation
are therefore linear combinations of such basis vectors containing no instances
of e,,.1. We therefore have an obvious isomorphism

Ro (@ Cm“) ~ @ c™.

The tensor product representations then glue together to an object which
is canonically isomorphic to X)" St. The objects A" St, and Sym” St are
similarly defined.
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4. Since the exterior algebra of a finite dimensional vector space is also fi-
nite dimensional, A C™ is an object of M,,. Again, from isomorphisms

Ro (A C™) = A C™ we can glue together an object A St € M.

For an object V = (Vi )mso in M, let

where each V,, (k) is the weight space corresponding to the action of Z,, on V,,.
We then have the potentially infinite direct sum in M:

V=P V(k).

We say that an object is compact in M if this direct sum is finite. Of the examples
presented above, it follows that I, St, X" St, Sym" St, and A" St are compact
objects, while A St is not.

Let M be the full subcategory of M consisting of compact objects. We then
have that M is the direct sum of categories

M =P M(k),

k=0
and that it is also a tensor category.

Proposition 2.3.6. For m = k, the functor Ro(k) : Mp1(k) —> My, (k) is an
equivalence of categories.

Proof. The irreducible representations in M,,.1(k) are the modules R* where
|A| = k. By [2.3.3, the restricted map xmi1(k) : My1(k) — AF,_ | defined by
R — s, is a bijection. Let

Pm+1,m Am+1 - Am

be the map defined by sending sy(z1, ..., Zms1) to sx(x1,. .., 2y) if I(A) < m and
to zero otherwise. Upon restriction to A¥, 41, this map produces an isomorphism
k Ak o Ak
pm-‘rl,m : Am-‘rl = Am

whenever m > k. It then follows that 2Ry (k) is a bijection, and the result follows.
O]

Corollary 2.3.7. Let V,, denote the projection from M to M,,, and let V,, (k)
denote its restriction to M(k). For m = k, U, (k) : M(k) — M, (k) is an
equivalence of categories.
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Let M,,,, = Hom(C™,C"), and let O(M,,,,) denote the algebra of polynomials
on M, . There exists a natural action of GL,, x GL,, on M,,,, given by

(91792) M = glMgé.

On O(M,,,) this action becomes

((91,92) - (M) = f(g1Mgo).
Let Jg : M,, = M,,,;1 be the functor defined by
Vin = (Vi ® O(Myp 1)) .
Here the invariants are taken with respect to the tensor product action of GL,, on
Vin @ O(Myy 1),

which commutes with the action of GL,,11 on O(M,,m+1). Hence, Jo(V},) is a
polynomial GL,,;-module.

Lemma 2.3.8. The functor Ry is left adjoint to Jy.
Proof. We will show that for all V,,,.; € M,,+1, and W,,, € M,,, that

Homer,, (Ro(Vint1), Win) = Homer,, ., (Vine1, Jo(Whnh))-

Consider a map f € Homegy,, (Ro(Vini1), Win). Given the definition of Ry this lifts
to a G L,-equivariant map f’: R(V,,,1) — W,,. Composing this with the map

Wm - Wn ® O(Mm,m+1)

given by w — w ® 1 and restricting to GL,,, invariants gives a G'L,,,1-equivariant
map Vi1 — Jo(Wi).

For the reverse map we send a G Ly, 1-equivariant map f : V,, 1 — Jo(W,,) to
the map R(V,,41) — W, given by v — f(v)(Ipn+1), where 1,41 is the m x (m + 1)
matrix with ones in the entries (i,4) for 1 < i < m, and zero elsewhere. This
descends to a G L,,-equivariant map Ro(Vi11) = Wi O

Corollary 2.3.9. Form =k,
Jo(k) : M (k) = Mo (F)

s an equivalence of categories.

Proof. By [2.3.8 and [2.3.6, Jo(k) is adjoint to an equivalence of categories in the
reverse direction. O
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Proposition 2.3.10. The functor

U P M(k) > P My (k),

k=0 k=0

defined by taking the direct sum of the projection functors Vi (k) is an equivalence
of categories. The inverse morphism V=" : @,_, My(k) — M is given by taking
the direct sum of functors W' : My(k) — M defined by ¥, * (Vi) = (Vi)m=o

where
v [TV, m=k,
" %gim(vk), m < k.

Proof. The first part of the proposition follows easily from [2.3.7, which implies
that for all m > k we have an equivalence of categories My(k) — M., (k). To
show ¥~ gives the inverse, we simply need to check that U=1(V},) is a well-defined
object of M. Clearly we have isomorphisms Ro(V;,41) — Vi, whenever m < k,
so we need to check the case when m > k. This follows from [2.3.8| as we have

S
Let T* denote the kth divided power, that is T*(V) = (@k V) " and let

%™ =" o Hom¢ (C™, ).
The action of GL,, on C™ induces an action on Home(C™, —) and hence on I'™*.

Lemma 2.3.11. For any homogeneous polynomial functor F of degree k, and any
m >0,
Homg, (T*™ F) = F(C™).

Proof. For any vector space V' we have a natural C-linear map
Oy : I*(Homz, (C™, V) @ F(C™) — F(V),
which is functorial in V. This defines a natural transformation
0:F(C")@I"™ —F,
so by the tensor-hom adjunction we have a C-linear map
F(C™) — Homg, (T*™, F).

Conversely, for any map « : ' — F. we can associate an element of F(C™),
namely the image acm(lem ® -+ ® lem). It is clear that these two maps are
mutually inverse. O]
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Lemma 2.3.12. For any degree k polynomial functor F, we have an isomorphism
Homz, (IT" ® - @, F) = F(C™)Mhm,
where F(C™)*u-Fm s the weight space corresponding to the weight (ki,. .., kp).

Proof. Using the explicit formulae for the inclusions

it is a small chore to check that the following diagram commutes:

Homz, (Fkl ® - @Ikm. F) — F(Cm)kl ,,,,, K

| !

Homy, (D™, F) — & F(C™)

where the lower map sends o : I*™ — F to acm(lem @ - -+ ® 1em) as in the proof
of 2.3.11} and the upper map sends §: '™ @ ... @ ['km — F(C™)k1Fm 1o

Bem((e1®- ®e1)@ @ (em @ Qem)).
— ~ ~ 7
k1 km,

Theorem 2.3.13. The assignment
F = (F(C"), F(mm))m=0,

where m, : C™tt — C™ is the natural GL,,-equivariant projection, defines an
equivalence of categories

b F - M.

Proof. We first need to check that F'(m,,) is an isomorphism. It is enough to check
this in the case that F' is of degree k. The action of GL,, induces on I'y ,, induces
a GL,,-module structure on Homz, (I'*™ F), so by we have a canonical
isomorphism of G L,,-modules Homz, (I'*™ F) =~ F(C™). Hence, it is enough to
show that Ro(Homgz, ("™ F)) =~ Homg, (['*™ ! F). Given that the functor ['*™
decomposes canonically as

rhm= @ The--er

ki4-+km=Ek
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then by [2.3.12
mO(Hom}—k (Fk,ma F)) = @ HOHl]:k (Fkl R ka_l, F)

ki+-+km_1=k

~ Homg, (T*™1 F).

We have then established that the assignment gives a well-defined object in M,
so we are left to show that this assignment constitutes an equivalence of categories.

Now,
F =P F,

k=0

and since ® clearly preserves degree, it is enough to show that ® : F, — M(k)
is an equivalence of categories for every k = 0. Let ®,,(k) : Fr, — M,,(k) be the
functor defined by F +— F(C™), then the following diagram commutes:

Fr —2— M(k)

l /@

For m = k, by 2.3.7, ¥,,(k) is an equivalence of categories, hence we are left
to show that ®,,(k) is an equlvalence of categories for m > k, but this is a simple
consequence of 2.3.2] O

Corollary 2.3.14. M is a categorification of the ring of symmetric functions.

2.4 Plethysm

Once more we lean heavily on Macdonald [Mac95] to define another multiplication
on A given by composition of symmetric functions, called plethysm. More formally,
let f,g € A, and write g as a sum of monomials:

g = Zua:ca

Define variables y; by setting

[T +wit) =] ]+ 2oty

«

The composition or plethysm of f and ¢ is then defined as

fog:f(y17y27"')‘
If fe A™ and g € A", then foge A™.
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Proposition 2.4.1. For each g € A, the mapping f — f o g is an endomorphism
of A.

Proof. From the definition of plethysm it is clear that plethysm respects sums and
products, and hence it defines an endomorphism of A. O

Proposition 2.4.2. If g is any symmetric function, then
Pn©g =9g°pn
for any power sum p,.

Proof. Since we can write any g € A as the sum

9= Z CAPA;
A

where ¢y € Q, by it is enough to show that

PXx©Pn = Pn ©Px-

To this end, we first note that

DPm © Pn = P, 25, .. ) = P = P (2], 25", . ..) = P © P

We then have that

LA M)
Pr oD = paal,xy,...) = HpAm = Hpn(xi\i,xg‘i, o.) = Pp O P
i=1 i=1

Proposition 2.4.3. Plethysm is associative, that is for all f,g,h € A
(fog)oh=fo(goh)

Proof. By it is enough to demonstrate associativity when f = p,, and g = p,.
By we have

Pm © (pnoh) = (hop,)op, =h(@ 5", ...) =hopu, = (Pmopn) o h.
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As in|1.3.9) let E = (M), and let F' = 3(N), where M is an S,,-module, and
N is an S,-module. The composition of F and F is then given by

(EoF)(V)=E((N®V®)5)
= (M ® ((N @ V&r)sn)@m)sn
=~ (M ® (N®™ @ V& ™)%i)5m,

Now, the normaliser of
Sii= Sy x -+ xSy,

in Sy, is the semi-direct product S]* x S,, in which S, acts by permuting the
factors of S)*. This is called the wreath product of S, with S,, and is denoted by
Sp ~ S,,. Using the fact that as subspaces of L & M

(L@ M™H = (Lo M)°,

where L is a finite-dimensional C[G/H]-module, and M is a finite-dimensional
C[G]-module, we find that

(EoF)(V) = (M® (N®" @ Vemn))sn~sn
(Indgm g (M @ N®™) @ V&)™,

IIe

By we can then define the plethysm of M and N as
MoN =Indg™y (M ®N®™).
Proposition 2.4.4. For all S,,-modules My and My and S, -modules N we have:
(1) (My@® M,)oN = (M;oN)® (MyoN), and
(2) (MyoN)s(MyoN)=(M;=+M,)oN.

Proof. The first property is a simple consequence of the fact that induction com-
mutes with direct sums. The second property is easily verified from the tensor
product definition of induced modules. n

Corollary 2.4.5. For polynomial functors FEy and Ey homogeneous of degree m,
and a polynomial functor F' homogeneous of degree n we have

(EloF)®(E20F) = (E1®E2)OF
Proposition 2.4.6. For any two polynomial functors E and F

X(Eo F) = x(E)ox(F).
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Proof. 1f F'is any polynomial functor, then the decomposition of applied to
the functor F'(V4,...,V,)) — F(Vi@®---@V,,) shows that the eigenvalues of F'((\))
are monomials A}"' --- A", with corresponding eigenspaces Fy (C,---,0),

and therefore the character

..... Mn,

Xn(F) = Z dimF,, . (C,...,C)a" ---apm.

..... n

The result then follows from the definition of plethysm for symmetric functions. [

Proposition 2.4.7. The plethysm of two Schur functions is

14
VAl g

with coefficients ay , = 0.

Proof. The plethysm of two irreducible polynomial functors F) and F), is a direct
sum of irreducibles
F)\OFM: @ CLK,;LFZU

VALl

where each ay , = 0. The result then follows from [2.4.6] O

In order to define the plethysm of two objects in M we first recall that we can
compose the two representations p : GL,, — GL; and p' : GL, — GL, to produce
an r-dimensional representation of G L,,. Take two objects V' = (V,,, & )m=0 and
W = W, Bin)m=o0 in M. If d,,, = dim W,,, then we can compose the representa-
tion of GLg4,, on V,, with the representation of GL,, on W,,, to produce another
representation of GL,,. We denote this composition by V; o W,,. We can then
define the plethysm of V' and W in M as the object

VoW = (V;lm o Wma adm)m20-
By [2.3.13] there exist polynomial functors £ and F such that
Vin = E(C™) and «,, = E(my,),

and
W,, = F(C™) and f,,, = F(m),

for all m = 0. The plethysm of V' and W can then equivalently be defined as

VoW = ((EoF)(C"),(E o F)(mm))m=o-



Chapter 3

Diagramatics for shifted
symmetric functions and free
probability

The results in this chapter also appear in the paper coauthored with Kvinge and
Licata [KLMI6].

3.1 The main results

We begin by defining a new family of elements «),, where A € P, whose image
under the functor 7, is the element a,,. Since the value of pf considered as a
function on partitions is a,, (see Proposition , this establishes our first, and
as we will see, fruitful, connection between Endy, (1) and A*.

Our first construction is to make a diagram with k& upwards oriented strands
to represent a k-cycle:

sjesi, 1 <g <y,
T =1 1, j=1+1
0, otherwise.

49
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To a partition A = (A,...,\,), we then set

Proposition 3.1.1. For a partition A — k, we have

H’ o Axn, k < n,
Ju ) = { 0, otherwise.

Proof. Recall that the elements a,, are defined by

Z(iu e i) gty i ang) o (a1 - - ),
where the sum is taken over all distinct k-tuples (i1, ...,4;) of elements drawn
from {1,...,n}.
Consider the diagram

If £ > n, then the centre of the diagram is negative, and the diagram is then zero.
If K < n then the diagram is the composition of a series of & RCups, the diagram

n \ n—k e ln—1 n
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and a series of £ LCaps to close it off. The result then follows from the definitions
of the bimodule maps. O

Proposition 3.1.2. The diagrams oy, k = 1 form an algebraically independent
generating set of Endyy(1).

Proof. We first note that the diagram o) can be redrawn as a dot below k — 2
UCrosses, enclosed in LCups and Rcaps. By an exercise in pulling dots through
intersections we find that

Q) = Cp—1 T+ l.o.t..

The result then follows from the fact that the clockwise circles form an algebraically
independent generating set of Endy(1). O

We can consider the elements of Endyy (1) as functions on partitions in the
following way. Denote by Funcp(C) the algebra of functions P — C. We define
® : Endyy (1) — Funcep(C) for x € Endyy (1) and A - n by

[@(2)](N) := (R o £3) ().

It is easily checked that this defines an algebra homomorphism. For the sake of
convenience we will write z(\) in place of [®(z)](N).

Theorem 3.1.3. The map ® induces an isomorphism ¥ : Endy (1) — A* given

by
Qy = pﬁ,

such that for each n the following diagram commutes:

4 \A*

) ,
Z(C[S,])

Proof. 1t follows from Proposition that «a,, and pf agree as functions on

partitions. By Proposition and the fact that {pk#}k>1 is an algebraically
independent generating set of A*, the result follows. m

EIld’H/ (1

Lemma 3.1.4. Suppose that g1, gs € S, are conjugate Then

DD
= [ ]
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Proof. This is an easy diagrammatic argument which uses the fact that g; =
hgoh~! for some h € S,,. Replacing ¢g; by hgh™!, we slide h around the diagram
to cancel it with h™L. O

Theorem and Lemma then imply the following result.

Lemma 3.1.5. For u + n,

/f o v,
= —— 2

For A - n recall that E) is the Young idempotent associated to .

Theorem 3.1.6. The isomorphism ¥ sends

1 VU
T E —_ 53.
dim Vy, A

Proof. Recall that

s
while /\( )
" X
Zu,mn
uen 122
The result then follows from Lemma [3.1.5] O

In the proceeding sequence of results we have established some graphical real-
isations of some important bases of A*. We now go the other way and describe
two important generating sets of the centre Khovanov’s Heisenberg category, ¢
and ¢, as elements of A*. This description gives an explicit connection between
‘H' and the transition and co-transition measures of Kerov.

Theorem 3.1.7. The isomorphism ¥ sends:
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1. ¢, — o0} € A*,
2. Cp —> p#é\k = /Z;k+2 e A*.
Proof. Let A = n, then from Proposition [1.5.6] and Proposition we have
(@] = X (P (T551)) = ow(N)

and

PN = bras (V).

W
—
o

Eal
SN
| S—
—
>
SN—
I
=)
L
TN
o
g
[Va)
7
L
=
o
7
L
o
R
N——
I

]

Remark 3.1.8. In [FH59], Farahat and Higman used the inductive structure of
symmetric groups to construct a C-algebra known as the Farahat-Higman algebra
FHe (see also Example 24, Section 1.7, [Mac95]). It follows from, for example
[[K99], that there is an algebra isomorphism FHc = A*. So in principle all of
the appearances of shifted symmetric functions in the previous sections could be
rephrased in the language of the Farahat-Higman algebra.

3.2 Involutions on the centre of Khovanov’s Heisen-
berg category

Khovanov [Khol4] describes three involutions on H’. Only one of these acts non-
trivially on Endss(1). We denote this involution by &, and it is defined on a
diagram D € Homy, (Q., Q.,) by

£(D) = (~1)*P'D,

where ¢(D) is the total number of crossings and dots in a diagram. Consequently,
in Endyy (1)

Cp 'i> (—1)kck,
& — (—1)ey,
(673 i) (—1)k7104k

Okounkov and Olshanski [OO97, §4] defined an involution I : A* — A* whose
action on f € A* is such that for A € P
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In particular,

I(pf) = (-1)*"pf.

As a consequence of the isomorphism ¥ : Ends (1) = A* we therefore have the
following proposition.

Proposition 3.2.1. The involution £ on Endsy (1) coincides with the involution
I on A*.
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