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Abstract

This thesis provides new equilibrium existence results for markets with information

asymmetries and relates them in a novel way to the role of economic intermediation.

Under atomless uncertainty, single market linear price equilibria are known not to

exist prevalently even when agents are risk averse expected utility maximizers. The

notion of prevalence involves essentially picking an economy at random. Bypassing

the nonexistence problem is one of the achievements of the nonlinear price decentral-

ization theory. This thesis contributes by reconciling the nonlinear price decentraliza-

tion theory to a large extent with certain competitive market structures. We do this in

Chapter 1 by defining linear price equilibrium with multiple markets and establish-

ing its existence. Each market has its own price vector (linear functional), and agents’

involvement in various markets is heterogeneous. As a result, price differences across

markets may prevail in equilibrium. We present an example in which single market

linear price equilibrium does not exist but certain corresponding equilibrium with two

markets does. Our equilibrium with multiple markets has a more standard economic

interpretation than equilibrium with nonlinear prices used in nonlinear decentraliza-

tion theory. Our framework can potentially accommodate even more nonlinearities if

economic intermediaries are explicitly introduced into the model.

Despite the nonexistence problem, single market linear price equilibrium with in-

finitely many states is still known to exist under restrictive assumptions on the infor-

mation structure. In Chapter 2, we introduce two new results on the existence of single

market linear price (Radner) equilibrium with infinitely many states under econom-

ically meaningful conditions. Our first result requires that agents have independent

information, while the second assumes that the total endowment of the economy is

common knowledge.

In Chapter 3, we explore how economic agents can test the scope of their knowl-

edge and, in particular, the informational content of equilibrium prices under asym-

metric information. We show that one can go far in arguing that equilibrium prices

tend to be fully revealing.
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Chapter 1

Multiple Markets:

New Perspective on Nonlinear

Pricing∗

1 Introduction

The theory of nonlinear price decentralization provides us with characterizations of

Pareto efficiency and limiting core allocations where Walrasian linear prices fail. Our

analysis in this paper suggests that the nonlinearities may often be interpreted in

terms of linear prices that segment the economy into multiple markets.

In their approach to decentralization, Aliprantis et al. (2001) describe a nonlinear

price by a family of personalized linear prices indexed by the set of agents. A com-

modity bundle is priced then at the maximum revenue from distributing the bundle

among these individually price-taking agents.

We replace personalized prices with marketwise prices, carefully choosing com-

petitive market structures which have room for linear pricing. We define markets by

specifying their participants as well as traded commodity bundles and then segment

the economy into multiple overlapping markets. We guarantee marketwise linear-

ity by requiring that an agent either participates in a market fully or is not involved

at all. The compatibility of market participation and the agents’ heterogeneous con-

sumption sets is of course ensured. As a matter of fact, the differences in otherwise

∗The idea of this paper occurred to the author while he studied examples of nonlinear price decentral-
ization of Pareto efficient allocations in Tourky and Yannelis (2003). The author thanks his PhD supervisor
at the ANU, Professor Rabee Tourky, for kindly sharing this working paper, helpful comments, and dis-
cussions. Two anonymous referees and the editor are gratefully acknowledged for questions that led
to significant improvements. The author appreciates valuable feedback at various stages from Patrick
Beissner, Simon Grant, Tai-Wei Hu, M. Ali Khan, Jeff Kline, Kieron Meagher, Idione Meneghel, Romans
Pancs, Martin Richardson, Ronald Stauber, Nicholas Yannelis, Valentin Zelenyuk, and an ANU audience.
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§2 Further Remarks on Related Literature 2

exogenous consumption sets may be attributed to the agents’ heterogeneous involve-

ment in multiple markets. A standard approach in the literature (Section 2) is to model

this situation as the agents’ limited participation in a single market. But this entails

failures of linear decentralization due to the nonexistence of single market linear price

equilibrium necessary for the decentralization of the core. In fact, the nonexistence of

single market equilibrium is known to be a prevalent situation in atomless economies

with differential information (Tourky and Yannelis, 2003; Podczeck et al., 2008). Nonlin-

ear pricing is a way for the decentralization theory to bypass the nonexistence prob-

lem. Our approach, on the other hand, affords the existence of linear price equilibrium

with multiple markets and a more standard economic interpretation.

An example, where single market linear equilibrium does not exist (Subsection

3.3.3) but equilibrium with two markets does (Subsection 3.3.2), clarifies our ideas. It

contrasts nonlinear decentralization with our approach of multiple markets in all of

Section 3. There multiple markets emerge not merely as a linear alternative to non-

linear pricing but also as its compatible reinterpretation. While all admissible trades

are priced linearly in multiple markets, the induced pricing of commodity bundles

agrees with the nonlinear pricing of Aliprantis et al. (2001). Sufficient conditions for

such consistent segmentability into multiple markets in general are presented and re-

lated to the role of economic intermediation in Section 5. It requires a general model

of multiple markets, which we develop before in Section 4. This framework can be ad-

ditionally regarded as an independent model of multiple markets in their own right.

The existence of equilibrium with multiple markets for our general model is estab-

lished in Section 6.

2 Further Remarks on Related Literature

Ever since its inception, standard infinite dimensional theory of value has excluded

most small consumption sets pertaining to limited market participation. The situa-

tion is especially tight with the lattice commodity spaces that motivated Mas-Colell

(1986) and Aliprantis and Brown (1983). Limited market participation translates into

heterogeneity of consumption sets and conflicts with the assumption of their equality

initiated by Mas-Colell (1986).

One root of limited market participation lies in the agents’ lack of information, as

in the theoretical differential information economies introduced by Radner (1968). Infi-

nite dimensional development of this finite dimensional prototype lagged behind the
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benchmark common knowledge theory of value in time and especially in scope. Only

forty years later did Podczeck and Yannelis (2008) allow for infinitely many state inde-

pendent commodities, but retain the assumption of a finite state space. Only slightly

has this assumption been relaxed since then. Such a progress is made by Hervés-Beloso

et al. (2009), but restricting all information asymmetries to the presence of private sig-

nals with only finitely many values. Besides, Klishchuk (2015) covers situations where

agents have independent information, and also where the total endowment of the

economy is common knowledge. Despite these limited equilibrium existence results,

the nonexistence is prevalent in the sense of Anderson and Zame (2001) according to

Podczeck et al. (2008). The problem arises because this literature is confined to sin-

gle market linear price equilibria. We solve this nonexistence problem by modelling

such situations as economies with multiple markets in contrast to nonlinear pricing of

Aliprantis et al. (2001).

It is important to mention that the nonlinear decentralization theory of Aliprantis

et al. (2001, 2005) also extends the theory of value beyond vector lattices. Without such

structure, the nonexistence problem spreads even to the case of full market participa-

tion, as revealed by the example of Aliprantis et al. (2004b). Sufficient conditions for

the existence of full participation linear price equilibrium in this context are provided

by Aliprantis et al. (2004a, 2005).

A separate relevant observation is that information asymmetries often coexist with

full market participation. This applies, for instance, to the model of Correia-da Silva and

Hervés-Beloso (2009), Definitions 3.5 and 3.6 in de Castro et al. (2011), and a special case

of Angelopoulos and Koutsougeras (2015).

A compelling sufficient condition for the existence of limited participation lin-

ear price equilibrium is seen in Remark 9 of He and Yannelis (2016). Their condition

requires norm compactness of consumption sets, and we note that many sequence

spaces admit appealing norm compact consumption sets (see Wickstead, 1975).

Finally, let us mention alternative approaches to nonlinear pricing present within

decentralization theory. They allow dispensing with certain convexity assumptions

according to Chavas and Briec (2012) and Habte and Mordukhovich (2011). The latter

paper considers economies with public goods. Nonlinear and linear decentralization

theory for them is studied at great economic generality by Graziano (2007).
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3 Example

In the approach of Aliprantis et al. (2001), core allocations are decentralized as person-

alized equilibria. This example compares a personalized equilibrium and an equilib-

rium with multiple markets in an economy where single market linear decentraliza-

tion fails. To the extent of featuring this failure (Subsection 3.3.3), the example is based

on a sufficient condition and other ideas of Tourky and Yannelis (2003).

3.1 Economy

We consider a particular differential information economy in the framework of Section

9.2 in Aliprantis et al. (2001). Two agents face exogenous uncertainty. It is described

by the probability space ([0, 1] , Λ, λ), where Λ is the σ-algebra of all Lebesgue mea-

surable subsets of [0, 1], and λ is the Lebesgue measure on R. Hereinafter, if x is an

element of a vector space K and p is a linear functional on K, then the value of p at x

is denoted by p · x.

Agent 1 has full information represented by the σ-algebra Λ. The agent’s con-

sumption set X1 is the positive cone of the commodity space L1 ([0, 1] , Λ, λ). Agent 2

has a coarser information (σ-algebra) Λ2 generated by the family of intervals

In =

[
n

n + 1
,

n + 1
n + 2

)
with n ∈ {0, 1, 2, . . . }. The agent’s consumption set X2 is smaller and limited to Λ2-

measurable nonnegative commodity bundles, i.e.

X2 = {x ∈ X1 : x is Λ2-measurable} .

The description of the economy is completed below in Table 1, where f1 : [0, 1] → R
is defined by f1 (s) = 1− s.

Table 1: Initial endowments and utility functions for Section 3

Agent Endowmentωi ∈ Xi Utility function ui : Xi → R

1 ω1 (s) = s u1 (x) =
∫ 1

0 f1 (s) x (s) ds
2 ω2 (s) = 1 u2 (x) =

∫ 1
0 x (s) ds
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3.2 Multiple Markets versus Personalized Equilibria

To describe a typical nonlinear price, let p = (p1, p2) be a vector of personalized

prices both of which are continuous linear functionals on the commodity space. The

induced possibly nonlinear price is the real function ψp that maps each nonnegative

commodity bundle x to its value

ψp · x = sup {p1 · y1 + p2 · y2 : y ∈ X1 × X2, y1 + y2 ≤ x} .

Given an (x1, x2) ∈ X1 × X2 which is an allocation (satisfies x1 + x2 ≤ ω1 +ω2), the

vector (x1, x2, p1, p2) is said to be a personalized equilibrium if

(a) for all i and x ∈ Xi, we have ui (x) > ui (xi) =⇒ ψp · x > ψp · xi,

(b) for allα ∈ R2
+, we have ψp · (α1ω1 +α2ω2) ≤ α1ψp · x1 +α2ψp · x2, and

(c) ψp · (ω1 +ω2) > 0.

In Subsection 3.3 we find such a personalized equilibrium (x1, x2, p1, p2), as given

in (1) there, and describe it in terms of two markets. Any commodity bundle can be

traded in market 1, but only fully informed agents participate in it. By contrast, mar-

ket 2 accepts only Λ2-measurable bundles but is open to all agents. Apart from these

participation requirements, agents are only constrained by their initial endowments

and marketwise prices. We find, in a sense, a market-clearing vector p′ = (p′1, p′2) 6=
p of marketwise prices, which are continuous linear functionals on the commodity

space as well. Agents sell their initial endowments in different markets so as to maxi-

mize revenue and make utility-maximizing purchases in those markets. Agent 1 max-

imizes revenue by selling a particular Λ2-measurable bundleω12 ∈ [0,ω1] in market

2 and the remainder ω11 = ω1 −ω12 in market 1. Agent 2 participates and sells the

initial endowment ω2 only in market 2. The corresponding revenues and the mar-

ketwise prices determine the agents’ budget sets. The consumption xi of every agent

i in the personalized equilibrium turns out to coincide with the agent’s total utility-

maximizing purchases in different markets. Thus, we obtain a competitive equilib-

rium description of the personalized equilibrium allocation (x1, x2). Since such allo-

cations belong to the core (Aliprantis et al., 2001, Theorem 7.5(3)), this example sets

side by side the two approaches to decentralization.

Notice thatψp′ assigns to each nonnegative commodity bundle the maximum rev-

enue from distributing the bundle among these two markets. Even though below we
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find p′ 6= p, they are such thatψp′ = ψp. Thus, we are able to reinterpret nonlinearities

of ψp in terms of multiple markets.

3.3 Technicalities

Here we confirm our last series of statements as well as the failure of single market

linear decentralization. We view prices pi and p′i as elements of L∞ ([0, 1] , Λ, λ) so

that corresponding values of a commodity bundle x are

pi · x =
∫ 1

0
pi (s) x (s) ds

and p′i · x defined analogously. A preliminary step is to decomposeω1 into

ω12 =
∞
∑

n=0

n
n + 1

χIn ∈ X2 andω11 =ω1 −ω12 ∈ X1,

as illustrated in Figure 11.

0 1
2

2
3

3
4

4
5
5
6

1
0

1

ω12

ω11

ω11 + ω12 = ω1

States

V
a
lu
es

o
f
fu
n
ct
io
n
s

Figure 1: Decomposition ofω1
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Figure 2: Personalized equilibrium

3.3.1 Personalized Equilibrium

We show in the next paragraph that a personalized equilibrium is obtained, as illus-

trated in Figure 2, by posing

x1 =ω11 +

(
4− 1

3
π2
)
χ[0, 1

2 )
, x2 =ω2 −

(
4− 1

3
π2
)
χ[0, 1

2 )
+ω12,

1Figures 1–3 may be helpful rather as quick reminders of how various functions are defined in our
example than as direct aids to reading.
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p1 = f1, and p2 = χ[0, 1
2 )

p1 +
3
4
χ[ 1

2 ,1]. (1)

It is first useful to note that 4− π2/3 = 2
∫ 1

0 ω12 (s) ds as confirmed below given that

the sum ∑
∞
n=1 n−2 = π2/6 is just the Riemann zeta function evaluated at 2 (see, e.g.,

Finch, 2003):

∫ 1

0
ω12 (s) ds =

∫ 1

0

∞
∑

n=0

n
n + 1

χIn (s) ds

=
∞
∑

n=0

∫
In

n
n + 1

ds

=
∞
∑

n=0

n
n + 1

∫
In

ds

=
∞
∑

n=0

n
n + 1

(
n + 1
n + 2

− n
n + 1

)

=
∞
∑

n=0

(
(n + 1)2

(n + 2)2 −
n2

(n + 1)2 −
1

(n + 2)2

)

= lim
N→∞

(
N

∑
n=0

(
(n + 1)2

(n + 2)2 −
n2

(n + 1)2

)
−

N

∑
n=0

1

(n + 2)2

)

= lim
N→∞

(
(N + 1)2

(N + 2)2 −
N

∑
n=0

1

(n + 2)2

)

= lim
N→∞

(
(N + 1)2

(N + 2)2 −
N

∑
n=1

1
n2 + 1− 1

(N + 1)2 −
1

(N + 2)2

)

= 2−
∞
∑

n=1

1
n2

= 2− 1
6
π2.

Clearly, the pair (x1, x2) ∈ X1 × X2 is an allocation. To see that condition (a) in the

definition of personalized equilibrium is satisfied, notice that

ψp · x ≥ pi · x > pi · xi = ψp · xi. (2)

We verify condition (b) by demonstrating that for all α ∈ R2
+ and y ∈ X1 × X2 such

that y1 + y2 ≤ α1ω1 +α2ω2 we have p1 · y1 + p2 · y2 ≤ α1 p1 · x1 +α2 p2 · x2:

α1 p1 · x1 +α2 p2 · x2 = α1 p1 ·ω11 +α1 p1 ·
(

4− 1
3
π2
)
χ[0, 1

2 )
+α2 p2 · x2
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= α1 p1 ·ω11 +α1
3
8

(
4− 1

3
π2
)
+α2 p2 · x2

= α1 p1 ·ω11 +α1
3
4

∫ 1

0
ω12 (s) ds +α2 p2 · x2

= α1 p1 ·ω11 +α1 p2 ·ω12 +α2 p2 ·ω2

= p1 · (α1ω1 −α1ω12) + p2 · (α2ω2 +α1ω12)

≥ p1 · y1 + p2 · y2.

Finally, condition (c) is also satisfied as ψp · (ω1 +ω2) ≥ p2 ·ω2 > 0.

3.3.2 Equilibrium with Multiple Markets

Let us describe the above personalized equilibrium in terms of two markets as out-

lined in the last two paragraphs of Subsection 3.2. Below we explain and illustrate in

Figure 3 how marketwise prices p′1 = p1 and p′2 = (3/4) χ[0,1] clear the two markets.

This idea is later developed into a general definition of equilibrium with multiple

markets in Section 4.
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Figure 3: Equilibrium with multiple markets

First observe that all commodity bundles belonging to X2 are at least as expensive

in market 2 as in market 1. Next notice that ω12 = sup (X2 ∩ [0,ω1]). Thus we say

that sellingω12 in market 2 and the remainderω11 in market 1 maximizes revenue of

agent 1. The maximum revenue of agent 2 is p′2 ·ω2.
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Let agent 1 buy

x11 = ω11 in market 1 and x12 =

(
4− 1

3
π2
)
χ[0, 1

2 )
in market 2,

and agent 2 buy x2 in market 2. Observe that both markets are cleared, i.e. x11 = ω11

and x12 + x2 = ω12 +ω2. Next we demonstrate how both agents’ preferences are

maximized subject to their budget constraints. These purchases are indeed affordable,

as p′1 · x11 + p′2 · x12 = p′1 ·ω11 + p′2 ·ω12 and p′2 · x2 = p′2 ·ω2. Moreover, agent

2 cannot afford commodity bundles y ∈ X2 such that u2 (y) > u2 (x2), as p′2 · y >

p′2 · x2 = p′2 ·ω2. To see how agent 1’s utility is also maximized, consider any y1 ∈ X1

and y2 ∈ X2 such that u1 (y1 + y2) > u1 (x11 + x12). We have

p′1 · y1 + p′2 · y2 ≥ p′1 · y1 + p′1 · y2 = p′1 · (y1 + y2) > p′1 · (x11 + x12)

= p′1 · x11 + p′1 · x12 = p′1 · x11 + p′2 · x12 = p′1 ·ω11 + p′2 ·ω12,

meaning that agent 1 cannot afford a better consumption as well.

3.3.3 Failure of Single Market Linear Decentralization

We demonstrate the impossibility to decentralize the core allocation (x1, x2) by a sin-

gle linear price. In a minimal sense, this allocation is said to be decentralized by a

price (linear functional) q on the commodity space if q 6= 0 and, for all i and x ∈ Xi,

we have

ui (x) > ui (xi) =⇒ q · x ≥ q · xi.

Supposing the existence of such a q leads to the following contradiction. We start by

observing that q must be positive and thus continuous. Using this property and the

fact that x1 (s) > 0 a.e., we may assume without loss of generality that q = f1. But

this is indeed impossible given that x2 > 0.

4 General Model

In the above example of two markets, all restrictions on an agent’s participation in a

market take the form of the agent’s complete exclusion from the market. Whereas this

market structure admits a competitive equilibrium, the alternative of a single market

with partial participation does not in view of Subsection 3.3.3. That is why we cannot
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eschew embedding this requirement in our general model, which is presented next.

4.1 Mathematical Preliminaries

A Banach lattice is an ordered Banach space L such that every pair x, y ∈ L has a

supremum and an infimum (sup {x,−x} is written |x|), as well as satisfies

|x| ≤ |y| =⇒ ‖x‖ ≤ ‖y‖ .

For example, the commodity space L1 ([0, 1] , Λ, λ) in Section 3 is a Banach lattice.

Every pair x, y ∈ L defines the set [x, y] = {z ∈ L : x ≤ z ≤ y}. Sets of this form

are called order intervals. A vector sublattice of a Banach lattice L is a vector sub-

space closed under pairwise suprema and infima taken in L. For instance, the space

L1 ([0, 1] , Λ2, λ) is a closed vector sublattice of the commodity space L1 ([0, 1] , Λ, λ).

A Banach lattice is said to be order complete if every nonempty subset that is order

bounded from above has a supremum. Order completeness is implied by weak com-

pactness of order intervals (Aliprantis and Border, 2006, Theorem 9.22). In our example

of a Banach lattice, order intervals are weakly compact.

4.2 Economy with Multiple Markets

A market is a pair (Z, J) consisting of a set Z of admissible trades and a set J of partici-

pants, e.g. Z = L1 ([0, 1] , Λ2, λ) and J = {1, 2}. We consider an economy composed of

a finite number of markets (Z1, J1) , (Z2, J2) , . . . , (ZM, JM). Participants of all markets

form the set I = ∪M
m=1 Jm of agents. The trade spaces Z1, Z2, . . . , ZM are subspaces of a

commodity space L. Their Cartesian product L = ∏
M
m=1 Zm is called the market space.

Technically, we assume that

(a) L is a Banach lattice whose order intervals are weakly compact (see remarks pre-

ceding Theorem 2),

(b) each Zm is a closed vector sublattice of L, and

(c) each Jm is nonempty and finite.

Agent i consumes nonnegative bundles from the markets in which she partici-

pates. We index these markets by the set Mi = {m ∈ {1, 2, . . . , M} : i ∈ Jm}. Nonneg-

ative bundles traded in market (Zm, Jm) comprise the positive cone Z+
m of the trade
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space Zm. The agent’s consumption set is Xi = ∑m∈Mi
Z+

m . The agent has a consump-

tion preference correspondence Pi : Xi � Xi, with Pi (x) interpreted as the set of bundles

strictly preferred to x. The initial endowment of the agent is a consumption bundle

ωi ∈ Xi\ {0}. We letω = ∑i∈Iωi denote the total initial endowment.

4.3 Equilibrium

Agent i’s demand set X i is obtained by replacing the coordinate spaces of L having

i ∈ Jm with Z+
m and the remaining coordinate spaces of L with {0} ⊂ L. An element

x ∈ X i will usually represent the agent’s purchases in different markets for the sake

of consumption, with xm interpreted as the bundle bought in the mth market. There is

a natural consumption mapping c : L → L defined by c (x) = ∑
M
m=1 xm, and ci denotes

the restriction of c to X i. We define the induced demand preference correspondence Pi :

X i � X i by posing Pi (x) = c−1
i (Pi (ci (x))).

Agent i’s supply set Y i = c−1
i ([0,ωi]) captures how the agent’s initial endowment

can be sold in different markets. A coordinate ym of an element y ∈ Y i is interpreted

as the bundle sold in the mth market.

The value of trades x = (x1, x2, . . . , xM) ∈ L is given by a price system prevailing

across markets. Formally, a price system is a continuous linear functional p on L.

We define X = ∏i∈I X i and Y = ∏i∈I Y i. An allocation is a vector (x, y) ∈ X × Y

such that ∑i∈I xi ≤ ∑i∈I yi.

A quasi-equilibrium is a triple (x̄, ȳ, p̄) consisting of an allocation (x̄, ȳ) and a nonzero

price system p̄ with the following properties for every agent i ∈ I:

(a) y ∈ Y i implies p̄ · y ≤ p̄ · ȳi,

(b) p̄ · x̄i ≤ p̄ · ȳi, and

(c) x ∈ Pi (x̄i) implies p̄ · x ≥ p̄ · ȳi.

A quasi-equilibrium (x̄, ȳ, p̄) is said to be an equilibrium if for every agent i ∈ I and

for all x ∈ Pi (x̄i) we have p̄ · x > p̄ · ȳi. A quasi-equilibrium (x̄, ȳ, p̄) is said to be

nontrivial if there exist an agent i ∈ I and an x ∈ X i such that p̄ · x < p̄ · x̄i.

5 General Perspective on Reinterpretation

Now we are ready for a general analysis of the ideas that in Section 3 allow us to

reinterpret an example of nonlinear pricing in personalized equilibrium. Theorem 1
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generalizes such reinterpretation under economically meaningful conditions, and we

relate one of them to the role of economic intermediation.

We start by introducing nonlinear pricing independently of our general model of

multiple markets (Section 4), and only keep the same commodity space L. Agents now

collectively constitute a finite nonempty set Î. Their consumption sets X̂i ⊂ L, one

for each agent i ∈ Î, enter this model directly as its primitives, in contrast to our

more structural model of multiple markets. The preference correspondence P̂i : X̂i � X̂i

of every agent i ∈ Î is analogous to our consumption preference correspondences.

Also analogously, the initial endowment of the agent is a consumption bundle ω̂i ∈ X̂i.

We define X̂ = ∏i∈ Î X̂i, let ω̂ = ∑i∈ Î ω̂i stand for the total initial endowment, and

associate with every commodity bundle x ∈ L the set

A (x) =

{
y ∈ X̂ : ∑

i∈ Î

yi ≤ x

}
.

Technically, we assume for every agent i ∈ Î that

(a) X̂i is the positive cone of a closed vector sublattice Ẑi of L, and

(b) ω̂i > 0.

For our purpose it is convenient to suppose from the outset that a personalized

equilibrium exists and then to analyze it. In this equilibrium personalized prices are

also continuous linear functionals on the commodity space, i.e. they are elements of

the topological dual L′ of L. Let p̂ ∈ (L′) Î be the vector of these equilibrium personal-

ized prices. They induce a possibly nonlinear price ψ p̂ : ∑i∈ Î X̂i → R+ by assigning to a

commodity bundle x in the domain the value

ψ p̂ · x = sup

{
∑
i∈ Î

p̂i · yi : y ∈ A (x)

}
.

Simultaneously, agents’ choices determine the equilibrium allocation x̂ ∈ A (ω̂) such

that the following conditions of Aliprantis et al. (2001) hold:

(a) for all i ∈ Î, if x ∈ P̂i (x̂i), then ψ p̂ · x > ψ p̂ · x̂i,

(b) for allα ∈ R Î
+, we have ψ p̂ · ∑i∈ Îαiω̂i ≤ ∑i∈ Îαiψ p̂ · x̂i, and

(c) ψ p̂ · ω̂ > 0.
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Let us refer to this personalized equilibrium by the pair (x̂, p̂).

We say that the personalized equilibrium is segmentable if it can be modelled as an

equilibrium (x̄, ȳ, p̄) of an economy with multiple markets in the sense that

(a) I = Î,

(b) for every agent i ∈ I, we have Xi = X̂i, Pi = P̂i, ωi = ω̂i, as well as c (x̄i) = x̂i,

and

(c) for every commodity bundle x in the domain of the price ψ p̂, we have

ψ p̂ · x = sup
{

p̄ · x : x ∈ c−1 ([0, x]) , x ≥ 0
}

. (3)

Such segmentability is established in Theorem 1 under two conditions, which we next

introduce and motivate.

Individual supportability. Looking carefully into the proofs of Aliprantis et al. (2001),

one finds that their conclusions are stronger than those stated as theorems in the fol-

lowing sense. Their assumptions yield the existence of personalized equilibrium with

personalized prices summarizing individual incomes and substitution attitudes (p.

44) via

p̂i · x̂i = ψ p̂ · x̂i, and x ∈ P̂i (x̂i) =⇒ p̂i · x > p̂i · x̂i. (4)

This way, personalized prices are closer to Walrasian, as in the example of Section 3 in

view of (2). We say that the personalized equilibrium (x̂, p̂) is individually supporting

if conditions (4) hold for every agent i ∈ Î.

Bilateral feasibility. To motivate this concept, consider first the benchmark case in

which all consumption sets coincide with the positive cone of L and there is no dis-

posal, i.e.

∑
i∈ Î

x̂i = ω̂.

Here x̂ is bilaterally feasible in the sense that some z ∈ X̂ Î decomposes individually

ω̂i = ∑
j∈ Î

zi j and x̂i = ∑
j∈ Î

z ji (5)
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by the Riesz decomposition property (Aliprantis and Tourky, 2007, Theorem 1.54). A

coordinate zi j is interpreted as a consumption bundle sold by agent i to agent j. In the

example of Section 3, the consumption set of agent 2 differs from the positive cone but

there exist z12 ∈ X1 ∩ X2, z21 ∈ X2 ∩ X1, z11 ∈ X1, and z22 ∈ X2 with(
ω1

ω2

)
=

(
z11 + z12

z21 + z22

)
and

(
x1

x2

)
=

(
z11 + z21

z12 + z22

)
.

While in general having zi j ∈ Xi ∩ X j only states that both the buyer and the seller

can consume this traded bundle, it says more with differential information. In this

context, the condition ensures that both agents are sufficiently informed to verify ex-

post consequences of the ex-ante agreement zi j, due to measurability. The following

definition generalizes this property. We say that the personalized equilibrium (x̂, p̂)

is bilaterally feasible if there exist vectors zi j ∈ X̂i ∩ X̂ j, one for each pair (i, j) ∈ Î2,

satisfying (5) for all i ∈ Î.

Lest the indispensability of bilateral feasibility be a concern, a comforting observation is

that a natural way forward suggests itself in that case. Bilaterally infeasible allocations require

intermediation, and modelling intermediation explicitly may prove fruitful. In particular, it

may be helpful for explaining the existence of intermediaries in the real world.

Theorem 1. The personalized equilibrium (x̂, p̂) is segmentable if it is individually support-

ing and bilaterally feasible.

Proof. We let markets be given by an arbitrary enumeration of the family

{(
Ẑi ∩ Ẑ j, {i, j}

)
: i, j ∈ Î

}
. (6)

An allocation (x̄, ȳ) such that

∑
i∈I

x̄i = ∑
i∈I

ȳi (7)

is defined by applying to coordinates having Jm = {i, j} the formulas x̄im = z ji and

ȳim = zi j. A price system p̄ is defined by considering the topological dual of each Zm

as a lattice, in which we take the supremum p̄m =
∨

i∈Jm ( p̂i|Zm), and letting

p̄ · x =
M

∑
m=1

p̄m · xm. (8)
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If x ≥ 0, then we have

p̄ · x =
M

∑
m=1

p̄m · xm =
M

∑
m=1

(∨
i∈Jm

( p̂i|Zm)

)
· xm

≤
M

∑
m=1

ψ p̂ · xm ≤ ψ p̂ ·
M

∑
m=1

xm = ψ p̂ · c (x) . (9)

By this fact, the definition of supply set, condition (b) in the definition of personalized

equilibrium, and individual supportability, all i and y ∈ Y i satisfy

p̄ · y ≤ ψ p̂ · c (y) ≤ ψ p̂ · ω̂i ≤ ψ p̂ · x̂i = p̂i · x̂i. (10)

For all i and x ∈ X i, we additionally obtain

p̄ · x =
M

∑
m=1

p̄m · xm ≥
M

∑
m=1

p̂i · xm = p̂i ·
M

∑
m=1

xm = p̂i · c (x) , (11)

and next verify conditions (a)–(c) in the definition of quasi-equilibrium.

(c) Combining (11), individual supportability, and (10) for y = ȳi yields

p̄ · x ≥ p̂i · c (x) > p̂i · x̂i ≥ p̄ · ȳi, (12)

as required.

(b) Results (10) and (11) for y = ȳi and x = x̄i give us p̄ · x̄i ≥ p̄ · ȳi, while an

application of equation (7) yields ∑i∈I (p̄ · x̄i − p̄ · ȳi) = 0. It follows for each i that

p̄ · x̄i = p̄ · ȳi, establishing the equilibrium condition.

(a) Starting with the last condition, letting x = x̄i in (11), and invoking (10), we

obtain

p̄ · ȳi ≥ p̄ · x̄i ≥ p̂i · c (x̄i) = p̂i · x̂i ≥ p̄ · y,

as desired.

Due to the strict inequality in (12), the quasi-equilibrium (x̄, ȳ, p̄) is actually an

equilibrium. Now it only remains to verify formula (3). Firstly, every y ∈ A (x)

defines an x ∈ c−1 ([0, x]) by matching coordinates so that xm = yi ≥ 0 if Jm = {i}
and xm = 0 otherwise. Since ∑i∈I p̂i · yi = ∑

M
m=1 p̄m · xm = p̄ · x, the supremum on the

right hand side of equation (3) is greater than or equal toψ p̂ · x. The reverse inequality

is obtained using (9) and calculating for every x ∈ c−1 ([0, x]) satisfying x ≥ 0 that



§6 General and Direct Equilibrium Existence Result 16

p̄ · x ≤ ψ p̂ · c (x) ≤ ψ p̂ · x. This yields (3) and completes the proof.

6 General and Direct Equilibrium Existence Result

A corollary of Theorem 1 is equilibrium existence for economies with multiple mar-

kets fitted in a particular fashion to bilaterally feasible personalized equilibria. But

operation (6) stands also as one way to model all other economies from the nonlinear

decentralization theory in focus of Section 5 in terms of multiple markets. One refine-

ment combines markets having identical trade spaces Zm, letting their participants

(the union of the corresponding sets Jm) redefine the set of participants. Thus our

general existence result without feasibility restrictions in Theorem 2 establishes our

model as a nonvacuous natural alternative to nonlinear pricing. Besides, our model

accommodates economic situations with evident structures of multiple markets, e.g.

the world economy with barriers to international trade. Closed economy examples

are furnished by market exclusions via eligibility criteria in financial services, license

or qualification requirements, or age restrictions.

One could be inclined to misjudge Theorem 2 by viewing each supply set Y i as a

production set of a firm owned privately by agent i. Indeed, our exchange economy

with multiple markets may be viewed as a production economy in L. Unfortunately,

there is no result on the existence of production equilibria that we could apply di-

rectly. The reason is that consumption sets in our induced production economy may

be thin in the sense that they need not coincide with the positive cone, which also may

have an empty interior. Even though consumption sets are allowed to be thin in Flo-

renzano and Marakulin (2001) and Aliprantis et al. (2006), their properness assumptions

are too strong when consumption sets are actually thin. Nevertheless, it is convenient

to keep this analogy with production economies in mind when proving the existence

of equilibrium with multiple markets.

One technical assumption on the commodity space in the general model of Section

4 is weak compactness of order intervals. Even single market equilibrium existence

theorems require this property partially but indispensably, as Aliprantis et al. (1987)

show in their Example 5.7. They describe an economy which lacks this property but

otherwise fits our framework with a single market and satisfies all our remaining exis-

tence conditions (Theorem 2). Simply missing weak compactness, this economy does

not have an equilibrium, as the results of Aliprantis et al. (1987) let us see. When prefer-

ences have utility representations, a common alternative assumption is compactness
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of the individually rational utility set, used recently by Xanthos (2014).

The additional assumptions required by Theorem 2, which is stated below, are

standard. For instance, Assumptions (a)–(d) are used by Aliprantis et al. (2001). As-

sumption (e) is satisfied if Pi has open values, which is also assumed by Aliprantis

et al. (2001). Assumption (f) is a version of the properness condition introduced by

Tourky (1998). We also remark that a nontrivial quasi-equilibrium is an equilibrium if

irreducibility assumptions are satisfied (see Florenzano, 2003, Section 5.3.6).

Theorem 2. There exists a nontrivial quasi-equilibrium if the following conditions hold for

every agent i ∈ I:

(a) Pi is irreflexive, i.e. x 6∈ Pi (x) for all x ∈ Xi;

(b) Pi is convex-valued, i.e. Pi (x) is a convex set for all x ∈ Xi;

(c) Pi is monotone, i.e. x + z ∈ Pi (x) for all x ∈ Xi and z ∈ Xi\ {0};

(d) Pi has weakly open lower sections, i.e. {z ∈ Xi : x ∈ Pi (z)} is weakly open in Xi for all

x ∈ Xi;

(e) Pi is “continuous” in the sense that x ∈ Xi, z ∈ Pi (x), and z′ ∈ Xi implies αz +

(1−α) z′ ∈ Pi (x) for some scalarα ∈ [0, 1);

(f) Pi is proper in the sense that there exists a convex-valued correspondence P̂i : Xi � L

such that for all x ∈ Xi

(i) x +ωi is an interior point of P̂i (x) and

(ii) P̂i (x) ∩ Xi = Pi (x).

Proof of Theorem 2

Lemma 1. For every agent i ∈ I, the supply set Y i has a supremum ui in L.

Proof. Due to order completeness of L, the set Y i has a supremum ui ∈ LM. We prove

the lemma by showing that ui ∈ L.

For every m, let Ym = Zm ∩ [0,ωi]. Notice that uim = sup Ym ∈ L if i ∈ Jm and

uim = 0 otherwise. It suffices to show that uim ∈ Zm if i ∈ Jm. Observe that Ym

is directed by the order relation ≥ of L, making the identity function on Ym a net

in [0,ωi]. Since this order interval is weakly compact, the net has a subnet {yα}α∈D

which converges weakly to some y ∈ [0,ωi]. Since Zm is closed and convex, it is
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weakly closed as well, and it follows that y ∈ Zm ∩ [0,ωi]. This also means that

y ≤ uim, and we complete the proof by demonstrating the reverse inequality y ≥ uim.

Let us denote the direction on D by �. Consider another binary relation % on D

defined by posing α % β if and only if α � β and yα ≥ yβ. This binary relation %

inherits reflexivity and transitivity from � and ≥. Thus% is also a direction provided

that every pair α,β ∈ D has an upper bound in (D,%). Such an upper bound γ

can be constructed as follows: let z = yα ∨ yβ ∈ Ym, using the definition of subnet

take any δ0 ∈ D such that δ � δ0 implies yδ ≥ z, and let γ be an upper bound of

{α,β, δ0} in (D,�). Now consider the net {yα}α∈(D,%), which also converges weakly

to y. Moreover, this net is increasing, i.e. α % β implies yα ≥ yβ. Our last two

observations reveal that y = sup {yα : α ∈ D} (Aliprantis and Tourky, 2007, part (4) of

Lemma 2.3). Now the definition of subnet yields for each z ∈ Ym some α ∈ D such

that y ≥ yα ≥ z. This confirms that y ≥ uim.

For each i, let ui ≥ 0 be the supremum given by Lemma 1. We define u = ∑i∈I ui ∈
L, take the order interval [−u, u] in L, let K = ∪∞n=1n [−u, u] be the principal ideal

generated by u in L, and K+ = {x ∈ K : x ≥ 0}.
At this stage, let us view K as the commodity space of the production economy

which we now construct by restricting our economy with multiple markets. Agents

in the production economy are the same as in the economy with multiple markets.

For each i, the restricted demand set X i ∩K is viewed as the agent’s consumption set,

which is the domain of the agent’s preference correspondence x 7→ Pi (x) ∩ K. The

agent’s initial endowment is 0 ∈ X i ∩ K but the agent possesses a private firm whose

production set is Y i ⊂ K. We let the price space be the topological dual of (K, ‖·‖u),

where the norm ‖·‖u on K is defined by

‖x‖u = inf {α ∈ R++ : x ∈ α [−u, u]}

(making u an interior point of the positive cone K+). Conveniently, this production

economy is a special case of the model in Chapter 5 of Florenzano (2003). We combine

Propositions 5.2.3 and 5.3.1 there, whose assumptions are easy to verify noting that

each i satisfies

∅ 6= c−1
i (ωi) ⊂ (X i ∩ K) \ {0} ,

and first obtain a nontrivial quasi-equilibrium in K. Namely, we are able to find an
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allocation (x̄, ȳ) ∈ K I × K I and a positive linear functional q̄ on K with

q̄ · x̄i > 0 for some i (13)

as well as the following properties for each i:

(a) x ∈ Pi (x̄i) ∩ K implies q̄ · x ≥ q̄ · ȳi,

(b) y ∈ Y i implies q̄ · y ≤ q̄ · ȳi, and

(c) q̄ · x̄i = q̄ · ȳi.

For each i, define the convex set P̂i (x̄i) = c−1 (P̂i (c (x̄i))
)
. These sets inherit the

following two properties from properness:

(i) elements of x̄i + c−1
i (ωi) belong to the interior of P̂i (x̄i), and

(ii) P̂i (x̄i) ∩ X i = Pi (x̄i).

We note that the interior of P̂i (x̄i) is convex and define an open convex set

V i =
{
α (z− x̄i) : α ∈ R++, z ∈ int

(
P̂i (x̄i)

)}
⊂ L.

Lemma 2. For every agent i ∈ I, if we have x ∈ (x̄i + V i) ∩ X i ∩ K, then q̄ · x ≥ q̄ · x̄i.

Proof. Write x = x̄i +α (z− x̄i) for some z ∈ int
(

P̂i (x̄i)
)
∩ K and α ∈ R++. Since

x̄i belongs to the closure of P̂i (x̄i), it follows that x̄i + β (z− x̄i) ∈ int
(

P̂i (x̄i)
)

for

all scalars β ∈ (0, 1]. On the other hand, taking positive parts on both sides of x̄i ≥
−α (z− x̄i) shows that x̄i ≥ α (z− x̄i)

−. Let β = min {1,α} and observe that

0 ≤ x̄i −α (z− x̄i)
− ≤ x̄i −β (z− x̄i)

−

≤ x̄i +β (z− x̄i) ∈ int
(

P̂i (x̄i)
)
∩ X i ∩ K ⊂ Pi (x̄i) ∩ K.

Now the restricted quasi-equilibrium properties of x̄i and q̄ yield q̄ · (z− x̄i) ≥ 0. It

follows that q̄ · x ≥ q̄ · x̄i indeed.

Lemma 3. For every agent i ∈ I, there exist a price system pi and a linear functional p′i on L

such that

(a) x ∈ x̄i + V i implies pi · x ≥ pi · x̄i,

(b) x ∈ X i ∩ K implies p′i · x ≥ p′i · x̄i, and
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(c) pi · x + p′i · x = q̄ · x for all x ∈ K.

Proof. This result follows from Lemma 2 and the Podczeck’s extension lemma (Pod-

czeck, 1996, Lemma 2).

For every i, let pi be a price system given by Lemma 3. For each m, this pi induces

a continuous linear functional pim on Zm by matching values so that pim · x = pi · x
when xm = x and xn = 0 for n 6= m. Since the topological dual of Zm is a lattice, the

supremum

p̄m =
∨

i∈Jm

pim

is also a continuous linear functional on Zm. A price system p̄ is now defined by

formula (8). For all i and x ∈ X i, we have

pi · x ≤ p̄ · x =
M

∑
m=1

p̄m · xm. (14)

Lemma 4. The following statements are true for every agent i ∈ I:

(a) x ∈ X i ∩ K implies q̄ · x ≥ pi · x, and

(b) q̄ · (x̄i − x) ≤ pi · (x̄i − x) for all x ∈ X i satisfying x̄i ≥ x.

Proof. (a) Since x̄i + x̄i ∈ X i ∩ K, part (b) of Lemma 3 yields p′i · x̄i + p′i · x̄i ≥ p′i · x̄i,

which implies that p′i · x̄i ≥ 0. Applying part (b) of Lemma 3 once again, we see that

p′i · x ≥ p′i · x̄i ≥ 0 for all x ∈ X i ∩ K. Combining this result with part (c) of Lemma 3,

we obtain the desired conclusion.

(b) Since x ∈ K, part (b) of Lemma 3 yields p′i · x ≥ p′i · x̄i. Now part (c) of Lemma

3 shows that pi · (x̄i − x)− q̄ · (x̄i − x) = p′i · (x− x̄i) ≥ 0, completing the proof.

Lemma 5. For all x ∈ K+, we have q̄ · x ≥ p̄ · x.

Proof. For each m, we write q̄m · xm to denote the value of q̄ at the point y ∈ K with

ym = xm and yn = 0 for n 6= m. Since xm ∈ Z+
m , the Riesz-Kantorovich formula yields

p̄m · xm =

(∨
i∈Jm

pim

)
· xm

= sup

{
∑

i∈Jm

pim · zi : z ∈
(
Z+

m
)Jm , ∑

i∈Jm

zi = xm

}
, (15)
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and any z in this supremum has a corresponding z ∈ ∏i∈Jm (X i ∩ K) with pi · zi =

pim · zi for all i and ∑i∈Jm zi = y. Using part (a) of Lemma 4, we obtain

∑
i∈Jm

pim · zi = ∑
i∈Jm

pi · zi ≤ ∑
i∈Jm

q̄ · zi = q̄ · ∑
i∈Jm

zi = q̄ · y = q̄m · xm.

Since this is true for every z in formula (15), we conclude that q̄m · xm ≥ p̄m · xm.

Observing that this applies to every m, we complete the proof by the calculation

q̄ · x =
M

∑
m=1

q̄m · xm ≥
M

∑
m=1

p̄m · xm = p̄ · x.

Lemma 6. The following statements are true for every agent i ∈ I:

(a) x ∈ Pi (x̄i) implies p̄ · x ≥ p̄ · x̄i,

(b) p̄ · x̄i = p̄ · ȳi, and

(c) y ∈ Y i implies p̄ · y ≤ p̄ · ȳi.

Proof. (a) Since x belongs to the closure of the interior of P̂i (x̄i), part (a) of Lemma 3

implies that pi · x ≥ pi · x̄i. Defining x′ = x ∧ x̄i ∈ X i ∩ K, we have pi · (x− x′) ≥
pi · (x̄i − x′). Using this result, Lemma 5, the inequality in (14), and part (b) of Lemma

4, we calculate that

p̄ · (x− x̄i) + q̄ ·
(
x̄i − x′

)
≥ p̄ · (x− x̄i) + p̄ ·

(
x̄i − x′

)
= p̄ ·

(
x− x′

)
≥ pi ·

(
x− x′

)
≥ pi ·

(
x̄i − x′

)
= q̄ ·

(
x̄i − x′

)
.

This yields p̄ · x ≥ p̄ · x̄i, as required.

(b) We first use Lemma 5, the restricted quasi-equilibrium properties, part (b) of

Lemma 4, and (14) to obtain the inequality

p̄ · ȳi ≤ q̄ · ȳi = q̄ · x̄i ≤ p̄i · x̄i ≤ p̄ · x̄i. (16)

On the other hand, we utilize part (a) to deduce that p̄ is positive, and it follows that

∑i∈I (p̄ · ȳi − p̄ · x̄i) ≥ 0. Together these inequalities yield the desired result.

(c) Observing that y ∈ K+, we combine Lemma 5, the restricted quasi-equilibrium
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properties, inequalities in (16), and part (b) of this lemma as follows:

p̄ · y ≤ q̄ · y ≤ q̄ · ȳi ≤ p̄ · x̄i = p̄ · ȳi.

This completes the proof.

By property (13) and the right hand side of the equality sign in (16), there exists an

agent i with p̄ · x̄i ≥ q̄ · x̄i > 0. This observation and Lemma 6 finalize the proof of the

theorem.



Chapter 2

New Conditions for the Existence of

Radner Equilibrium with Infinitely

Many States∗

1 Introduction

In 1968 Radner explored how far one could go in applying the theory of competitive

equilibrium to the case of differentially informed agents. He tailored a way to model

information asymmetries so that the standard notion of Walrasian equilibrium would

apply. His economic model has subsequently become known as a differential infor-

mation economy, and its Walrasian equilibrium is commonly referred to as Radner

equilibrium (see Section 2). Radner concluded that standard theorems on the exis-

tence of Walrasian equilibrium continued to hold, but that referred only to the case

of finitely many states of nature and finitely many state-independent commodities

(available for consumption in each state), as infinite-dimensional equilibrium theory

was only in its infancy back then.

It is now understood that the situation with infinite-dimensional commodity spaces

is more subtle. Podczeck and Yannelis (2008) established the existence of Radner equilib-

rium with infinitely many state-independent commodities, but the case of infinitely

many states of nature was left behind. Tourky and Yannelis (2003) and Podczeck et al.

(2008) have discovered prevalent non-existence conditions peculiar to the case of in-

finitely many states even with preferences confined to risk averse expected utility.

They utilize the notion of prevalence introduced by Anderson and Zame (2001). The ba-

sic idea behind this result is that in atomless differential information economies agents

∗This research was inspired by two working papers (Tourky and Yannelis, 2003; Podczeck et al., 2008)
kindly provided to the author by his Ph.D. supervisor at the ANU, Professor Rabee Tourky.
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with different priors and information seek to specialize their optimal consumption on

a null event, and the duality condition characterizing the existence of equilibrium de-

rived in Aliprantis et al. (2004a, 2005) cannot hold.

Radner equilibrium with infinitely many states is nevertheless known to exist un-

der restrictive yet economically meaningful assumptions on the information structure.

Such an assumption was found by Hervés-Beloso et al. (2009). They suppose that each

agent observes a public and a private signal; the public signal may take infinitely

many values, but private signals are restricted to take only finitely many values. We

introduce two new economically meaningful conditions that guarantee the existence

of Radner equilibrium with infinitely many states.

Our first condition (Section 3) requires that agents’ informationσ-algebras (or sig-

nals) are independent. If, in addition, there is only one commodity available for con-

sumption in each state, then there exists a unique Radner equilibrium in which there

is no trade. With more commodities per state, however, agents might be willing to

trade, and the problem of existence becomes more challenging. In this more general

scenario, we also make an assumption that limits the substitutability of one state-

independent commodity by others.

Our second condition (Section 4) requires that the total endowment of the econ-

omy is common knowledge. This is the same as saying that the total endowment

belongs to every agent’s informationally constrained consumption set. We also make

somewhat unusual assumptions on preferences, but we show that they are implied

by standard assumptions if agents exhibit a degree of risk aversion. In particular, this

risk aversion is satisfied in the standard case of expected utility with concave Bernoulli

functions. We also give an example of non-expected utility preferences satisfying all

our assumptions.

Let us briefly mention the importance of infinite state spaces. They arise naturally,

for instance, if uncertainty is resolved sequentially over an infinite horizon (see Shreve,

2004). In addition, they are often utilized for the sake of mathematical convenience.

For example, if one wants to work with continuously distributed random variables

(say, agents’ signals about the return of a risky asset), then the state space must be

infinite. These considerations originally motivated Bewley (1972) and other authors to

introduce infinite-dimensional commodity spaces into general equilibrium theory.

The existence of Radner equilibrium is an active area of research. Recent contribu-

tions include Xanthos (2014) and Yoo (2013).
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2 Model

We have a finite set of agents I = {1, . . . , m} who face exogenous uncertainty de-

scribed by a probability space (S,F ,µ). There is a finite nonempty set C of state-

independent commodities available for consumption in each state. Agents are differen-

tially informed, which simply means that they have heterogeneous ability to discern

events in F . Agent i can only discern events that belong to some sub-σ-algebra Fi

of F . If G is any sub-σ-algebra of F , we denote the space (L1 (S, G ,µ|G))C by L1 (G)
and its positive cone by L+

1 (G). Notice that we can identify points x ∈ L1 (G) and

y ∈ L1
(

S, G ,µ|G ,RC) satisfying xc (s) = (y (s))c for all s ∈ S and c ∈ C. We take

L1 (F ) as our commodity space and let L+
1 (Fi) be the informationally constrained con-

sumption set of agent i. The agent has a preference correspondence Pi : L+
1 (Fi)� L+

1 (Fi)

and an initial endowment ωi ∈ L+
1 (Fi). We let ω = ∑

m
i=1ωi denote the total initial

endowment.

An allocation is a vector x ∈ Πm
i=1L+

1 (Fi) such that ∑
m
i=1 xi = ω. A price system is

an element of (L∞ (S,F ,µ))C, the topological dual of L1 (F ). Given a price system

p, the value of a commodity bundle x ∈ L1 (F ) is simply p · x = ∑c∈C E (pcxc). An

allocation x is said to be a Radner equilibrium if there exists a price system p such that,

for all i ∈ I, we have p · xi ≤ p ·ωi, and y ∈ Pi (xi) implies p · y > p ·ωi.

A remark about the interpretation of the probability measure µ is in order now.

Technically, our model would not change if we replaced µ by another measure ν as

soon as µ-null sets coincided with ν-null sets. This is because spaces of (equivalence

classes of) µ-integrable and ν-integrable random variables are lattice isometric. But

concepts of independence and risk aversion, which are of fundamental importance to

the theory of choice under uncertainty and are of use in this paper, are not immune

to such a change of measures. If two random variables are independent with respect

to µ, they are not necessarily independent with respect to ν. If a preference relation is

risk averse with respect to µ, it is not necessarily risk averse with respect to ν. To be

able to interpret mathematical independence as a reflection of causal independence in

the real world, we must suppose that µ is a “true” probability measure. On the other

hand, the assumption of risk aversion with respect to µ is hard to justify unless µ is

supposed to be our agents’ common belief. So we can view µ as a “true” probability

measure in Section 3, where we make use of the independence assumption, and as

our agents’ common belief in Section 4, where risk aversion comes into play.

We use expected values and conditional expectations extensively in the exposition

of our results. If x ∈ L1 (F ) and G is a sub-σ-algebra of F , the symbol E (x) denotes
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the vector a ∈ RC in which ac = E (xc) for all c ∈ C, while the notation E (x|G) stands

for the element y ∈ L1 (G) in which yc = E (xc|G) for all c ∈ C.

We conclude this section by listing below standard assumptions that would typ-

ically be required for an existence proof even without information asymmetries, i.e.

when Fi = F j for all i, j ∈ I, as in Section 9.1 of Aliprantis et al. (2001). Assumption

(A6) is a version of the properness condition introduced by Tourky (1998). We will

refer to these assumptions later.

(A) The following is true for every i ∈ I and some v ∈ Πm
j=1L1

(
F j
)

satisfying

∑
m
j=1 v j ≤ ω and v j > 0 for all j ∈ I.

(1) Pi is irreflexive, i.e. x 6∈ Pi (x) for all x ∈ L+
1 (Fi).

(2) Pi is convex-valued, i.e. Pi (x) is a convex set for all x ∈ L+
1 (Fi).

(3) Pi is strictly monotone, i.e. x ∈ L+
1 (Fi) implies x + y ∈ Pi (x) for all y ∈

L+
1 (Fi) \ {0}.

(4) Pi has open values, i.e. Pi (x) is open in L+
1 (Fi), relative to a linear topology

on L1 (F ), for all x ∈ L+
1 (Fi).

(5) Pi has weakly open lower sections, i.e. for every z ∈ L+
1 (Fi) the set P−1

i (z) ={
y ∈ L+

1 (Fi) : z ∈ Pi (y)
}

is weakly open in L+
1 (Fi).

(6) Pi is proper in the sense that there exists a convex-valued correspondence

P̂i : L+
1 (Fi)� L1 (F ) such that for each x ∈ L+

1 (Fi)

(i) x + vi is an interior point of P̂i (x) and

(ii) P̂i (x) ∩ L+
1 (Fi) = Pi (x).

3 Independent Information

In this section we establish the existence of Radner equilibrium when agents’ informa-

tionσ-algebras are independent. We consider the case of a single commodity per state

separately first. In this scenario we obtain the existence of a unique Radner equilib-

rium in which there is no trade. This result is in accord with Koutsougeras and Yannelis

(1993), who prove that only the initial allocation belongs to the private core when

agents have independent information1. However, our main contribution is to show

that the initial allocation can actually be supported by some price system. We cannot

1The author thanks Professor Nicholas Yannelis for bringing this result to his attention.
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resort to the second welfare theorem or the converse part of the core equivalence the-

orem to obtain supporting prices. Tourky and Yannelis (2003) and Podczeck et al. (2008)

demonstrate that these theorems do not hold for differential information economies

with infinitely many states.

With a single commodity per state, we require only pairwise independence of

agents’ information. This assumption is expressed formally in (B) below.

Assumption (C), with a single commodity per state and monotonicity (A3), is satis-

fied whenever in the single-agent economy corresponding to each agent i we can find

a Walrasian equilibrium. Technically, this assumption requires the strict separation

of the sets {ωi} and Pi (ωi), which need not be convex, by a normalized continuous

linear functional. This is implied by a wide variety of conditions on preferences. One

set of sufficient conditions for Assumption (C) is given by Assumption (A) with vi

replaced byωi (Aliprantis et al., 2001, Corollary 9.2).

Assumption (D) is used in the proof of uniqueness only. This monotonicity condi-

tion is implied by strict monotonicity as stated in (A3).

(B) Pairwise independence: µ
(

Fi ∩ Fj
)
= µ (Fi)µ

(
Fj
)

for any choice of Fi ∈ Fi and

Fj ∈ F j, for all i, j ∈ I such that i 6= j.

(C) Separation: there exist price systems pi, for each i ∈ I, such that y ∈ Pi (ωi)

implies pi · y > pi ·ωi, and E (pi) = E
(

p j
)

for all i, j ∈ I.

(D) Monotonicity: for every i ∈ I and for all scalarsα > 0, if y ∈ L+
1 (Fi) is such that

yc (s) =ωic (s)−α for almost all s ∈ S for all c ∈ C, thenωi ∈ Pi (y).

Theorem 1. Suppose that there is a single commodity per state, i.e. the set C is a single-

ton. If Assumptions (B) and (C) hold, then the initial allocation (ω1, . . . ,ωm) is a Radner

equilibrium. If, in addition, Assumption (D) holds, then this Radner equilibrium is unique.

There is no trade because with independent information each agent’s net trade

must be constant across states (almost everywhere), for otherwise either the agent

or the rest of the agents are unable to verify the trade. Since agreeing to a negative

net trade contradicts individual rationality (with monotone preferences), and strictly

positive net trades are infeasible, net trades must be zero in every individually rational

allocation.

When the number of commodities per state is greater than one, then each agent’s

net trade in each commodity must be still constant across states. However, now a

negative net trade in one commodity may be compensated with a positive net trade
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in another. In other words, the initial allocation need not be a Radner equilibrium.

Technically, the normalization requirement in Assumption (C) makes it too strong.

In the case of many commodities per state, we will construct a Radner equilibrium

from a personalized equilibrium, supported by a possibly non-linear value function,

of Aliprantis et al. (2001). Let us define these concept precisely. An allocation with free

disposal is a vector x ∈ Πm
i=1L+

1 (Fi) such that ∑
m
i=1 xi ≤ω. A personalized price system is

a vector p = (p1, . . . , pm), in which pi is a price system for all i ∈ I. Every personalized

price system p induces a value function ψp : ∑
m
i=1 L+

1 (Fi) → R+, which assigns to an

element x of the domain the value

ψp · x = sup

{
m

∑
i=1

pi · yi : y ∈ Πm
i=1L+

1 (Fi) ,
m

∑
i=1

yi ≤ x

}
.

An allocation with free disposal x is said to be a personalized equilibrium if there exists

a personalized price system p such that

y ∈ Pi (xi) =⇒ ψp · y > ψp · xi (1)

for all i ∈ I, and

ψp ·
m

∑
i=1
αiωi ≤

m

∑
i=1
αiψp · xi (2)

for allα ∈ Rm
+. Finally, it is convenient for us to define

κc = ess infωc and κic = ess infωic

for every i ∈ I and c ∈ C.

To ensure the existence of personalized equilibria, we need Assumption (E) stated

below. It is an adaptation of assumption (A5) in Aliprantis et al. (2001) to our setting.

We will utilize some of their results, which we present in the theorem following the

statement of the assumption below. The assumption simply requires that the initial

endowment of each agent is bounded away from zero in some commodity.

(E) Boundedness: for every i ∈ I, there exist a c ∈ C such that κic > 0.

Theorem 2 (Aliprantis et al., 2001). If Assumptions (A) and (E) hold, then there exist a

personalized equilibrium x and a personalized price system p such that, in addition to (1) and
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(2), the following two properties hold:

y ∈ Pi (xi) =⇒ pi · y > pi · xi = ψp · xi, (3)

for all i ∈ I, and

ψp ·ω =
m

∑
i=1

pi · xi. (4)

We show that a personalized equilibrium x given by this theorem under inde-

pendence is actually a Radner equilibrium once we limit the substitutability of one

state-independent commodity by others. This is ensured by Assumption (F). We also

require joint independence of agents’ information, as stated in (B′).

(F) Limited substitutability: for every i ∈ I and c ∈ C, if x ∈ L+
1 (Fi) is defined

by letting xc (s) = ωic (s) − κic and, otherwise, xd (s) = ωid (s) + λd for some

λd ∈ [−κid,κd], thenωi ∈ Pi (x).

(B′) Independence: µ (
⋂m

i=1 Fi) = Πm
i=1µ (Fi) for all (F1, . . . , Fm) ∈ Πm

i=1Fi.

Theorem 3. If Assumptions (A), (B′), and (F) hold, then there exists a Radner equilibrium.

Let us present a simple example of Assumption (F) being satisfied. Consider a

utility function Ui : L+
1 (Fi)→ R defined by letting

Ui (x) = − ∑
d∈C

∫
S

e−ρxd dµ

for some scalar ρ > 0. Suppose that Pi derives from this utility function, i.e. y ∈ Pi (x)

if and only if Ui (y) > Ui (x). Also, suppose that there exists an F ∈ Fi such that

µ (F) > 0 and ωid (s) = κid for almost all s ∈ S and for all d ∈ C. Since Ui is

monotone, Assumption (F) holds if and only if it is satisfied when we let λd = κd for

all d. Consider the corresponding x ∈ L+
1 (Fi) for any c ∈ C. Observe that

Ui (x) = −
(∫

F
e−ρxc dµ +

∫
S\F

e−ρxc dµ + ∑
d 6=c

∫
S

e−ρxd dµ

)
≤ −

∫
F

e−ρxc dµ = −µ (F) .

Also, notice that Ui (ωi) ≥ −∑d∈C e−ρκid . Our last two observations show that we
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have Ui (ωi) > Ui (x) if

∑
d∈C

e−ρκid < µ (F) .

This inequality is satisfied for all sufficiently large ρ provided that κid > 0 for all d. In

other words, Assumption (F) holds for this particular agent i if κid > 0 for all d and ρ

is sufficiently large, regardless of other agents’ characteristics.

4 Common Knowledge of Total Endowment

In this section we prove that Radner equilibrium exists when the total endowmentω

is common knowledge. Formally expressed in (G) below, this assumption holds if and

only ifω belongs to the informationally constrained consumption set L1 (Fi) of every

agent i.

(G) Common knowledge: ωc is Fi-measurable for all i ∈ I and c ∈ C.

To get existence, we also need Assumptions (H1) – (H6), where we let E (Pi (x)|G)
= {E (y|G) : y ∈ Pi (x)}, for all x ∈ L+

1 (Fi). These assumptions are somewhat un-

usual, but Proposition 1 shows that they are implied by standard assumptions listed

in (A) provided that the risk aversion condition stated in (H7) holds. The term ‘risk

averse’ is justified, because the conditional expectation operator preserves the mean

and never increases the variance of a random variable (Abramovich and Aliprantis, 2002,

Lemma 5.38).

(H) The following is true for every i ∈ I, some sub-σ-algebra G of
⋂m

j=1 F j such that

ωc is G-measurable for all c ∈ C, and some v ∈ (L1 (G))m satisfying ∑
m
j=1 v j ≤ ω

and v j > 0 for all j ∈ I.

(1) Pi is conditionally irreflexive, i.e. x 6∈ E (Pi (x)|G) for all x ∈ L+
1 (G).

(2) Pi is conditionally convex-valued, i.e. E (Pi (x)|G) is a convex set for all x ∈
L+

1 (G).

(3) Pi is conditionally strictly monotone, i.e. x ∈ L+
1 (G) implies x+ y ∈ E (Pi (x)|G)

for all y ∈ L+
1 (G) \ {0}.

(4) Pi has open conditional values, i.e. E (Pi (x)|G) is open in L+
1 (G), relative to a

linear topology on L1 (G), for all x ∈ L+
1 (G).
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(5) Pi has weakly open conditional lower sections, i.e. for every x ∈ L+
1 (G) the set{

y ∈ L+
1 (G) : x ∈ E (Pi (y)|G)

}
is weakly open in L+

1 (G).

(6) Pi is conditionally proper in the sense that there exists a convex-valued corre-

spondence P̃i : L+
1 (G)� L1 (G) such that for each x ∈ L+

1 (G)

(i) x + vi is an interior point of P̃i (x) and

(ii) P̃i (x) ∩ L+
1 (G) = E (Pi (x)|G).

(7) Pi is risk averse in the sense that E (Pi (x)|G) ⊂ Pi (x) for all x ∈ L+
1 (G).

Proposition 1. If Assumption (G) is satisfied, then the following statements are true:

(1) (A1) and (H7) together imply (H1);

(2) (A2) implies (H2);

(3) (A3) implies (H3);

(4) (A4) and (H7) together imply (H4);

(5) (A5) implies (H5);

(6) (A6) with v ∈ (L1 (G))m and (H7) together imply (H6).

Our approach in the following theorem is to find an equilibrium in the projection

of our economy into a smaller commodity space, L1 (G). The risk aversion assumption

ensures that this projected economy is well-behaved, in the sense of meeting Assump-

tions (H1) – (H6), and has an equilibrium. We then show that this equilibrium is also

a Radner equilibrium of the original economy.

Theorem 4. If Assumptions (G), (H1) – (H6) hold andωi > 0 for all i ∈ I, then there exists

a Radner equilibrium.

Examples

In this subsection we suppose that there is a single commodity per state, i.e. the set C is

a singleton. We give examples of preferences that satisfy and violate our assumptions.

Assumption (H7) is satisfied for any sub-σ-algebra G of Fi if Pi has an expected

utility representation with a concave Bernoulli function ui : R → R, i.e. y ∈ Pi (x)

if and only if E (ui ◦ y) > E (ui ◦ x). Indeed, Jensen’s inequality yields ui ◦ E (y|G) ≥
E (ui ◦ y|G), and consequently

E (ui ◦ E (y|G)) ≥ E (E (ui ◦ y|G)) = E (ui ◦ y) > E (ui ◦ x) . (5)
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The case of risk averse expected utility is important because even in such a sim-

ple setup equilibrium may fail to exist without the common knowledge assumption

(Tourky and Yannelis, 2003; Podczeck et al., 2008).

More generally, in the next paragraph we will show that Assumption (H7) holds if

Pi can be represented by an implicitly separable utility function (Epstein, 1986; Dekel,

1986). Such a utility function Ui : L+
1 (Fi)→ R is defined implicitly by

Ui (x) = E (vi (·, Ui (x)) ◦ x) (6)

with some vi : R2 → R such that vi (·,β) is concave and strictly increasing for all

β ∈ Ui
(

L+
1 (Fi)

)
and such that vi (α, ·) is decreasing for all α ∈ R+. For instance,

let vi (α,β) = −eαβ. For each x ∈ L+
1 (Fi), the expected value E (vi (·,β) ◦ x) is con-

tinuous in β on [−1, 0] by the Lebesgue dominated convergence theorem. Thus the

intermediate value theorem gives us a Ui (x) ∈ R solving equation (6), and it is read-

ily seen that this solution is unique. This utility function cannot be always represented

by expected utility maximization, i.e. it may be impossible to find a Bernoulli function

ui : R+ → R such that Ui (x) > Ui (y) if and only if E (ui ◦ x) > E (ui ◦ y). To see this,

let S = {1, 2, 3}, Fi = 2S, and µ ({1}) = µ ({2}) = µ ({3}) = 1
3 . In this case Ui (x)

solves

ex1Ui(x) + ex2Ui(x) + ex3Ui(x) + 3Ui (x) = 0. (7)

Differentiating the left-hand side of this equation with respect to Ui (x) yields

x1ex1Ui(x) + x2ex2Ui(x) + x3ex3Ui(x) + 3 > 0.

Thus the implicit function theorem allows us computing

∂Ui (x)
∂x3

= − Ui (x) ex3Ui(x)

x1ex1Ui(x) + x2ex2Ui(x) + x3ex3Ui(x) + 3

for all x ∈ R3
+. Let y = (1, 1, 1) ∈ R3

+ and notice that Ui (y) = −eUi(y). It is easy

to check that − 3
5 < Ui (y) < − 14

25 < − 5
9 . It follows that e3Ui(y) > e−

9
5 and that

1 − 2eUi(y) + e−
9
5 > 1 − 2e−

5
9 + e−

9
5 > 0. Combining these inequalities yields 1 −

2eUi(y) + e3Ui(y) > 0, which implies

1 + e3Ui(y) + eUi(y) + 3Ui (y) > eUi(y) + eUi(y) + eUi(y) + 3Ui (y) = 0.
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Letting z0 = (0, 3, 1) ∈ R3
+, the previous inequality and equation (7) imply Ui (z0) <

Ui (y). Since for z1 = (1, 3, 1) ∈ R3
+ we have Ui (z1) > Ui (y), the intermediate value

theorem gives us a γ ∈ (0, 1) such that zγ = (γ, 3, 1) ∈ R3
+ is indifferent to y, i.e.

Ui (zγ) = Ui (y). We will show that in this case

∂Ui (y)
∂x3

=
−Ui (y) eUi(y)

2eUi(y) + eUi(y) + 3
6= −Ui (y) eUi(y)

γeγUi(y) + 3e3Ui(y) + eUi(y) + 3
=

∂Ui (zγ)
∂x3

,

which is inconsistent with the existence of an additively separable representation.

Simply notice that eUi(y) = −Ui (y) > 14
25 > 3e−

42
25 > 3e3Ui(y) and that eUi(y) > γeγUi(y),

because γeγUi(y) is strictly increasing in γ on [0, 1].

If Pi can be represented by an implicitly separable utility function Ui as in (6), then

y ∈ Pi (x) if and only if

E (vi (·, Ui (x)) ◦ y) > E (vi (·, Ui (x)) ◦ x) , (8)

for all x, y ∈ L+
1 (Fi). Thus Assumption (H7) is implied by the concavity of vi (·, Ui (x)),

as in (5), for any sub-σ-algebra G of Fi. Assumptions listed in (A) are also satis-

fied. (A1) holds by the existence of utility representation. (A2) is also implied by

the concavity of vi (·, Ui (x)). (A3) is satisfied because vi (·, Ui (x)) is strictly increas-

ing. (A4) holds because the left-hand side of (8) is continuous in y on L+
1 (Fi) (Balder

and Yannelis, 1993, Corollary 2.11). (A5) is satisfied because the left-hand side of (8)

is weakly upper semicontinuous in y on L+
1 (Fi) (Balder and Yannelis, 1993, Theo-

rem 2.8). Finally, let us show that (A6) also holds for any vi ∈ L+
1 (Fi) such that

vi > 0. Let β ∈ R++ be a supergradient of vi (·, Ui (x)) at zero. Now define a con-

cave function u : R → R by letting u (α) = vi (α, Ui (x)) if α ≥ 0 and u (α) =

βα + vi (0, Ui (x)) otherwise. A suitable correspondence P̂i is obtained by letting

P̂i (x) = {y ∈ L1 (F ) : E (u ◦ y) > E (u ◦ x)}.
We must admit that (H7) is a strong assumption, because it may fail when agents

are subjective expected utility maximizers with priors pi ∈ L∞ (S,F ,µ), e.g. y ∈
Pi (x) if and only if E (pi y) > E (pix). In this case even conditional irreflexivity (H1),

which is implied by (H7) according to Proposition 1, may fail. To see this, suppose

that G = {∅, S} and we can pick an essentially bounded pi ∈ L+
1 (Fi) having nonzero

variance. Since E
(

p2
i
)
− E (piE (pi|G)) = E

(
p2

i
)
− (E (pi))

2 > 0, we can find an

x ∈ L+
1 (Fi) such that E

(
p2

i
)
> E (pix) > E (piE (pi|G)), and thus x ∈ E (Pi (x)|G).
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5 Proofs

Proof of Theorem 3. First we show that

ess inf y + ess inf z = ess inf (y + z) , (9)

whenever y, z ∈ L1 (S,F ,µ) are positive and independent (generating independent

σ-algebras). Clearly, we have ess inf y + ess inf z ≤ ess inf (y + z). We prove that

ess inf y + ess inf z ≥ ess inf (y + z) by demonstrating the following: for every scalar

ε > 0, there exists an F ∈ F such that µ (F) > 0 and y (s) + z (s) ≤ ess inf y +

ess inf z + ε for almost all s ∈ F. We can find a set Y, belonging to the sub-σ-algebra

Y of F generated by y, such that µ (Y) > 0 and y (s) ≤ ess inf y + ε
2 for almost all

s ∈ Y. Also, we can find a set Z, belonging to the sub-σ-algebra Z of F generated by

z, such that µ (Z) > 0 and z (s) ≤ ess inf z + ε
2 for almost all s ∈ Z. The independence

implies that µ (Z ∩Y) = µ (Z)µ (Y) > 0. Let F = Z ∩Y.

We also show that

ess inf y ≥ ess sup z, (10)

whenever y, z ∈ L1 (S,F ,µ) are independent and satisfy y ≥ z ≥ 0. Suppose, by way

of contradiction, that ess inf y < ess sup z ≤ +∞. Pick an α ∈ (ess inf y, ess sup z).

We can find a set Y, belonging to the sub-σ-algebra Y of F generated by y, such that

µ (Y) > 0 and y (s) < α for almost all s ∈ Y. Also, we can find a set Z, belonging to

the sub-σ-algebra Z of F generated by z, such that µ (Z) > 0 and z (s) > α for almost

all s ∈ Z. Notice that z (s) > α > y (s) for almost all s ∈ Z ∩Y. Since y ≥ z, it must be

the case that µ (Z ∩Y) = 0 < µ (Z)µ (Y). This contradicts the independence of y and

z.

Now we let L+ denote the positive cone of L = ∑
m
i=1 L1 (Fi) and argue that

L+ ⊂
m

∑
i=1

L+
1 (Fi) . (11)

Define M =
{

y ∈ Πm
i=1L1 (Fi) : ∑

m
i=1 yi ≥ 0

}
, and consider any y ∈ M. We have

m

∑
i=1

y+i ≥
m

∑
i=1

y−i . (12)

Pick any j ∈ I. For every c ∈ C, we can find an Fc ∈ F j such that y−jc (s) > 0 = y+jc (s)
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for almost all s ∈ Fc and y−jc (s) = 0 for almost all s ∈ S\Fc. In view of (12), this

observation shows that

∑
i 6= j

y+i ≥ y−j . (13)

Define y+− jc = ∑i 6= j y+ic , for c ∈ C, and let FJ denote the smallest σ-algebra containing⋃
i∈J Fi, for J ⊂ I. For all k ∈ I and J ⊂ I, Assumption (B′) implies that Fk and FJ\{k}

are independent (Skorokhod, 2004, Corollary 3.1.1). It follows that ∑i∈J\{k} y+ic and y+kc

(or y−kc) are independent. Combining this observation with (9), (10), and (13), we see

that

∑
i 6= j

ess inf y+ic = ess inf y+− jc ≥ ess sup y−jc,

for all c ∈ C. Define a z ∈ Πm
i=1L1 (Fi) by letting zic (s) = yic (s)− ess inf y+ic for i 6= j,

and z jc (s) = y jc (s) + ess inf y+− jc, for all c ∈ C and s ∈ S. Letting Tj y = z defines a

transformation Tj : M→ M. This transformation satisfies

(i) ∑
m
i=1 zi = ∑

m
i=1 yi,

(ii) z j ≥ 0, and

(iii) yi ≥ 0 =⇒ zi ≥ 0, for all i ∈ I,

for all y ∈ M and z = Tj y. Consider any y ∈ M and notice that z = T1T2 . . . Tm y ∈
Πm

i=1L+
1 (Fi) is such that ∑

m
i=1 zi = ∑

m
i=1 yi. This proves our claim.

Next we define K = {∅, S} and argue that each y ∈ L has a unique decomposition

y = E (y|K) +
m

∑
i=1

zi, (14)

such that zi ∈ L1 (Fi) and E (zi) = 0 for each i. A quick thought confirms that at least

one such decomposition exists. So let us consider any two decompositions

y = E (y|K) +
m

∑
i=1

z′i = E (y|K) +
m

∑
i=1

z′′i (15)

with z′i , z′′i ∈ L1 (Fi) and E (z′i) = E (z′′i ) = 0 for each i. Taking conditional expecta-

tions in (15) with respect to any F j shows that z′j = z′′j , because E
(
zic
∣∣F j
)

is equal to

E (zic) = 0 almost everywhere for all i 6= j and for all c ∈ C due to Assumption (B′).

This proves our claim.
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Now notice that Assumption (E) holds, for otherwise Assumption (F) would yield

ωi ∈ Pi (ωi), which contradicts (A1). This means that we can use Theorem 2 to obtain

a personalized equilibrium x and a personalized price system p satisfying (2), (3), and

(4).

We proceed to demonstrate that x is an allocation, i.e. we have

m

∑
i=1

xi =ω. (16)

Suppose, by way of contradiction, that x is not an allocation. Since x is an allocation

with free disposal, we have 0 < ω− ∑
m
i=1 xi ∈ L+. Now (11) yields a y ∈ Πm

i=1L+
1 (Fi)

such that

m

∑
i=1

yi =ω−
m

∑
i=1

xi > 0. (17)

It must be the case that y j > 0 for some j. Using (3) and Assumption (A3), we see that

p j · y j > 0. Since y j + ∑
m
i=1 xi ≤ ω, it follows that

ψp ·ω ≥ p j · y j +
m

∑
i=1

pi · xi >
m

∑
i=1

pi · xi,

which contradicts (4).

Our next step is to show that

ess inf xic > 0 (18)

for all i ∈ I and c ∈ C. Suppose, by way of contradiction, that ess inf xic = 0 for some

i and c. Assumption (B′) implies that E
(
x jd
∣∣Fi
)

is equal to E
(
x jd
)

almost everywhere

for all j 6= i and d ∈ C. Now taking conditional expectations with respect to Fi on

both sides of ∑
m
j=1 x jd = ∑

m
j=1ω jd shows that

xid (s) + ∑
j 6=i

E
(
x jd
)
= ωid (s) + ∑

j 6=i
E
(
ω jd

)
(19)

for almost all s ∈ S. Consequently, we have xid (s) = ωid (s) + λd for some λd ∈ R.

Now λd ≤ xid (s) ≤ ω (s) reveals that λd ≤ κd. On the other hand, we have 0 ≤
ess inf xid = ess infωid + λd, which implies that λd ≥ −κid. Since ess inf xic = 0, we

see that actually λc = −κic. Our last three observations were meant to verify that xi lies

within the orbit of Assumption (F), which implies thatωi ∈ Pi (xi). This means that x
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is not individually rational. However, it must be individually rational by Lemmas 6.2

and 6.4 of Aliprantis et al. (2001). This contradiction proves our claim.

Letting K be the subspace of all y ∈ L1 (F ) such that yc is constant almost every-

where for all c ∈ C, we argue that

pi · y = p j · y (20)

for all y ∈ K and i, j ∈ I. Suppose, by way of contradiction, that pi · y > p j · y for

some y ∈ K and i, j ∈ I. It must be the case that E (pic yc) > E
(

p jc yc
)

for some c ∈ C.

Clearly, we have yc 6= 0. We may assume that yc > 0. Due to (18), we can pick a

scalarα > 0 such thatαyc < x jc. Now define an allocation z by letting zic = xic +αyc,

z jc = x jc −αyc, and zkd = xkd for k 6∈ {i, j} and d 6= c. The fact that

ψp ·ω ≥
m

∑
k=1

pk · zk >
m

∑
k=1

pk · xk

contradicts (4).

Now we define a linear functional q′ on L by letting

q′ · y = p1 · E (y|K) +
m

∑
i=1

pi · zi,

where zi are uniquely chosen as in (14). Using (20), we see that

q′ · y = pi · E (y|K) + pi · (y− E (y|K)) = pi · y (21)

for all i ∈ I and y ∈ L1 (Fi).

Next we show that q′ is (weakly) continuous. Consider a net yλ in L converg-

ing weakly to a point y ∈ L. Consider also the respective decompositions yλ =

E
(

yλ
∣∣K) + ∑

m
i=1 zλi such that zλi ∈ L1 (Fi) and E

(
zλi
)
= 0 for each i. Notice that

E
(

yλc
∣∣K) is equal to E

(
yλc
)

almost everywhere, for all c and λ, and that E
(

yλc
)

con-

verges to E (yc). These observations imply that E
(

yλ
∣∣K) converges weakly to E (y|K).

Consequently, the net zλ = ∑
m
i=1 zλi also converges weakly to some z ∈ L. Pick any

i ∈ I and a price system q such that qc is Fi-measurable for all c ∈ C. For every j 6= i,

we have

E
(

qczλjc
)
= E

(
E
(

qczλjc
∣∣∣Fi

))
= E

(
qcE

(
zλjc
∣∣∣Fi

))
= 0,
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since E
(

zλjc
∣∣∣Fi

)
is equal to E

(
zλjc
)
= 0 almost everywhere due to Assumption (B′).

This implies that

q · zλ =
m

∑
j=1

q · zλj = q · zλi ,

and it follows that zλi converges weakly to E (z|Fi). Now we see that y = E (y|K) +
∑

m
i=1 E (z|Fi), and q′ · yλ = p1 · E

(
yλ
∣∣K) + ∑

m
i=1 pi · zλi converges to q′ · y = p1 ·

E (y|K) + ∑
m
i=1 pi · E (z|Fi). This proves that q′ is indeed continuous.

We obtain a price system q by taking any continuous extension of q′ to all of L1 (F ).
Using (3) and (21), we see that

y ∈ Pi (xi) =⇒ q · y > q · xi, (22)

for all i ∈ I.

We complete the proof by showing that

q · xi ≤ q ·ωi,

for all i ∈ I. Suppose, by way of contradiction, that q · xi > q ·ωi for some i. Using

(21), (3), and (2), we also see that

q · x j = p j · x j = ψp · x j ≥ ψp ·ω j ≥ p j ·ω j = q ·ω j,

for all j ∈ I. It follows that ∑
m
j=1 q · x j > ∑

m
j=1 q ·ω j, which contradicts (16).

Proof of Theorem 1. Let pi, for each i, be price systems given by Assumption (C).

Consider the proof of Theorem 3 with x = (ω1, . . . ,ωm) and p = (p1, . . . , pm). Notice

that (20) holds because E (pi) = E
(

p j
)

for all i, j ∈ I. This means that we can advance

to obtain a price system q satisfying (22). Since xi = ωi for all i, we conclude that x is

a Radner equilibrium.

To demonstrate uniqueness, consider an arbitrary Radner equilibrium x supported

by a price system p. As in (19), we see that

xi (s) + ∑
j 6=i

E
(
x j
)
= ωi (s) + ∑

j 6=i
E
(
ω j
)

for almost all s ∈ S for all i ∈ I. Consequently, we have xi (s) = ωi (s) + E (xi) −
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E (ωi). It must be the case that E (xi) − E (ωi) ≥ 0, for otherwise Assumption (D)

implies thatωi ∈ Pi (xi), and hence p ·ωi > p ·ωi. But if E (xi)− E (ωi) > 0 for some

i, then E
(

∑
m
j=1 x j

)
> E

(
∑

m
j=1ω j

)
, which is impossible. We conclude that E (xi) =

E (ωi), and it follows that xi = ωi for all i.

Proof of Proposition 1. By Assumption (G), a suitable σ-algebra G exists, e.g. G =⋂m
j=1 F j.

(4) Simply observe that E (Pi (x)|G) = Pi (x) ∩ L+
1 (G).

(5) Similarly, observe that

{
y ∈ L+

1 (G) : x ∈ E (Pi (y)|G)
}
=

⋃
z∈E(·|G)−1(x)

{
y ∈ L+

1 (G) : z ∈ Pi (y)
}

=

 ⋃
z∈E(·|G)−1(x)

P−1
i (z)

 ∩ L+
1 (G) .

(6) Let P̃i (x) = P̂i (x) ∩ L1 (G). Clearly, P̃i is convex-valued, and the point x + vi

belongs to the interior of P̃i (x). Also, we have

P̃i (x) ∩ L+
1 (G) = P̂i (x) ∩ L+

1 (G) = Pi (x) ∩ L+
1 (G) = E (Pi (x)|G) .

Proof of Theorem 4. We will first find an equilibrium in our economy projected into

a smaller commodity space, L1 (G). In this economy agents’ consumption sets are

identical and coincide with the positive cone X = L+
1 (G) of the commodity space.

Agent i’s preference correspondence is Qi : X � X defined by Qi (x) = E (Pi (x)|G),
and the agent’s initial endowment is E (ωi|G). What we have just constructed is a

classical Walrasian economy (see Aliprantis et al., 2001, Section 9.1). Using Assump-

tions (H1) – (H6), utilizing the fact thatωi > 0 for all i, and invoking Corollary 9.2 of

Aliprantis et al. (2001), we see that this economy has a Walrasian equilibrium x ∈ Xm.

It is supported by a price system p such that pc is G-measurable for all c ∈ C. Conse-

quently, we have

(i) ∑
m
i=1 xi = ∑

m
i=1 E (ωi|G) =ω,

(ii) p · xi = p · E (ωi|G) = p ·ωi, for all i, and

(iii) y ∈ Qi (xi) implies p · y > p · E (ωi|G) = p ·ωi, for all i.
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The allocation x is in fact a Radner equilibrium, because y ∈ Pi (xi) implies E (y|G) ∈
Qi (xi), and p · y = p · E (y|G) > p ·ωi.

Acknowledgements

The author thanks an anonymous associate editor, an anonymous referee, Professor

Rabee Tourky, and Professor Nicholas Yannelis for helpful comments and suggestions.



Chapter 3

Seeming Genericity of Fully

Revealing Equilibrium Pricing
With Rabee Tourky

When economic agents do not know how much they do not know, economic out-

comes under uncertainty should arguably be viewed as uncertain themselves. In this

paper, we envisage agents trying to test the scope of their knowledge, but we keep our

analysis within the limits of standard economic models. Not only is this helpful for

evaluating their consistency, but also the discussion benefits from being conducted in

a familiar framework.

One source of information in markets lies in prevailing prices, and the arguments

that prices reveal full information are not rare in the economics profession. We discuss

how equilibrium prices may erroneously appear to reveal full information generically.

Traders seek information about states of nature, which are modelled as real numbers.

Equilibrium pricing is seemingly fully revealing in the sense that ex post traders have

nontrivial information about every event represented by an interval, no matter how

small. But full revelation is erroneous because there exist nonnegligible events which

remain indiscernible by some traders. Moreover, the probability of such an event can

be arbitrarily close to certainty.

1 Economic Model

We consider an equilibrium in a financial market for claims contingent on uncertain

events given by a probability space (Ω, Σ,µ). Admissible trades in this market com-

prise some space Lp (µ) with 1 < p ≤ ∞, and the positive cone of this ordered vector

space is denoted by Lp
+ (µ). The price system here takes the form of a random vari-

able p̄ such that for every x ∈ Lp (µ) the product p̄x is integrable, and that integral

41
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represents the market value of x. This price system is observed by market traders

who collectively constitute a finite nonempty set I. Being asymmetrically informed,

they have heterogeneous capacities to discern events in Σ. Trader i can only discern

events that belong to a particular sub-σ-algebra Σi of Σ such that the price system p̄

is Σi-measurable (as it reveals information). Trader i’s total information Σi shapes the

consumption set of the trader into

Xi =
{

x ∈ Lp
+ (µ) : x is Σi-measurable

}
.

Trader i has an associated demand x̄i ∈ Xi, and we allow for a degree of imbalance

between the total demand ∑i∈I x̄i and the total initial endowment ē ∈ Lp
+ (µ).

2 Testing Revelation: Imitative Analysis

We envisage a trading analyst trying to test the scope of information revelation by the

price system. The revealed information is the σ-algebra σ ( p̄) induced by p̄.

2.1 Big Gap Hypothesis

In a weak sense, incomplete revelation obtains when the revealed information σ ( p̄)

is a strict subfamily of the σ-algebra Σ. As a first step, the analyst asks whether the

revelation is incomplete in the stronger sense of a certain big gap between σ ( p̄) and

Σ. Only if the answer is no can there be a hope for full revelation, and the big gap

hypothesis is “easier” to reject.

For the test, the analyst takes a sample of nonnull events, which is a sequence

{Sn} in Σ such that µ (Sn) > 0 for all n. Stating the analyst’s big gap hypothesis re-

quires comparingσ-algebras on the sampled events by certain means of the following

definition.

Definition 1. Consider a probability space (Ω, Σ,µ) and a sub-σ-algebra Σ′ of Σ. We

say that Σ′ is µ-strictly coarser than Σ if there is a Σ-measurable f : Ω→ R++ such that

for any Σ′-measurable g : Ω→ R we have g (ω) 6= f (ω) almost everywhere.

If the revealed information σ ( p̄) is µ-strictly coarser than Σ, then the revelation

is incomplete, as confirmed by Lemma 1 below. Namely, the price system conceals

many events of nonzero probability, and they constitute a lower bound for the gap

between σ ( p̄) and Σ.
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Lemma 1. Consider a probability measure µ′ on the measurable space (Ω, Σ) and an event

E with µ (E) > 0. If a sub-σ-algebra Σ′ of Σ is µ′-strictly coarser than Σ, then some event

F ∈ Σ with F ⊂ E and µ′ (F) > 0 does not belong to Σ′.

(H1) For some term Sn of the sample {Sn}, the revealed informationσ ( p̄) is µ (·|Sn)-

strictly coarser than Σ.

Now the analyst formulates the big gap hypothesis in the form of (H1). The analyst

examines this hypothesis under the assumption that some trader is still locally fully

informed if the revelation is incomplete. We say that trader i is fully informed locally on

event E ∈ Σ with µ (E) > 0 if for every event F ∈ Σ there is an event G ∈ Σi such that

F ∩ E = G ∩ E. The analyst also assumes that the locally fully informed trader has a

local prior, which is a probability measure on (Ω, Σ) treating the event E as certain.

To specify the space of prior densities, consider the conjugate exponent q of p with

q−1 + p−1 = 1, the corresponding space Lq (µ (·|E)), its positive cone Lq
+ (µ (·|E)),

and let

∆E =
{

x ∈ Lq
+ (µ (·|E)) : E (x) = 1

}
.

Additionally, the analyst evaluates initial endowments and other random variables

locally using the space Lp (µ (·|E)) and its positive cone Lp
+ (µ (·|E)). The precise ver-

sions of the above and other assumptions of the analyst for testing hypothesis (H1)

are listed below in (A9).

(A9) Every term Sn of the sample {Sn} for which the revealed information σ ( p̄) is

µ (·|Sn)-strictly coarser than Σ satisfies the following conditions:

(a) some trader i ∈ I is fully informed locally on an event En ∈ Σ such that

En ⊂ Sn, µ (En) > 0, and for µ (·|En)-almost allω ∈ Ω we have p̄ (ω) > 0;

(b) the trader i has a local prior µin, some j ∈ I\ {i} has a local prior µ jn, and

these priors have density functions ρin ∈ ∆En and ρ jn ∈ ∆En respectively

with respect to µ (·|En);

(c) the traders i and j have concave continuously differentiable local Bernoulli

functions uin and u jn respectively on R into itself such that for some an, bn ∈
R++ everyα ∈ R+ satisfies

an ≤ u′in (α) ≤ bn and an ≤ u′jn (α) ≤ bn;
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(d) for each trader k ∈ {i, j}, the demand x̄k is locally optimal in the sense that

every x ∈ Xk satisfies in L1 (µ (·|En)) the condition that

E ((ukn ◦ x)ρkn) > E ((ukn ◦ x̄k)ρkn) =⇒ E ( p̄x) ≥ E ( p̄x̄k) ;

(e) the demand x̄ j of trader j is locally nonzero, i.e. nonzero in Lp (µ (·|En));

(f) the market is locally cleared in the sense that the total demand ∑k∈I x̄k and

the total initial endowment ē are equal as elements of Lp
+ (µ (·|En));

(g) for each trader k ∈ I\ {i}, the information Σk is locally limited to what p̄

reveals in the sense that for every F ∈ Σk there is a G ∈ σ ( p̄) such that

F ∩ En = G ∩ En;

(h) σ ( p̄) includes a countably infinite partition of Ω into events of nonzero

conditional probability µ (·|En);

(i) µ (·|En) is separable.

Lacking information about traders, the analyst forms beliefs about negligible sets

of priors and of initial endowments. If these vectors were finite dimensional, then a

natural notion of negligibility would be that of zero Lebesgue measure. But the ana-

lyst faces infinite dimensions and is convinced by Anderson and Zame (2001) and ref-

erences therein that there is no satisfactory infinite dimensional analogue of Lebesgue

measure. Fortunately, these authors do develop an economically relevant infinite di-

mensional analogue of the notion of Lebesgue measure zero, building on Hunt et al.

(1992). This notion is called shyness, and the analyst considers sets that are shy in the

relevant parameter set Lp
+ (µ (·|E)) or ∆E negligible. We say that hypothesis (H1) is false

generically if, for all terms Sn of {Sn} for whichσ ( p̄) is µ (·|Sn)-strictly coarser than Σ,

(A9)(a–d) is true only if there are sets F and G such that:

(a) F is a shy subset of ∆2
En

, and G is a shy subset of Lp
+ (µ (·|En));

(b) (A9)(e–i) implies that either
(
ρ jn,ρin

)
∈ F or ē as an element of Lp

+ (µ (·|En))

belongs to G.

Theorem 1. The big gap hypothesis (H1) is false generically.

2.2 Seeming Full Revelation Hypothesis

Having rejected the big gap hypothesis, the analyst formulates another hypothesis

and interprets it as essentially meaning full revelation. Here the analyst represents
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states of nature by real numbers, assuming that Ω = R with Σ being the Borel σ-

algebra on R.

The new hypothesis takes the form of (H2), and the analyst’s full revelation inter-

pretation of this hypothesis begins with Lemma 2. By this lemma, hypothesis (H2) im-

plies that every trader is fully informed locally on a subset of any interval of nonzero

probability, no matter how small and where located. In this sense, all traders have

nontrivial information about every event represented by an interval. The analyst finds

it enough to infer full revelation.

(H2) For every interval S with µ (S) > 0, the revealed informationσ ( p̄) is not µ (·|S)-
strictly coarser than Σ.

Lemma 2. Consider a Borel probability measure µ on R, an event E with µ (E) > 0, and a

sub-σ-algebra Σ′ of the Borel σ-algebra. If Σ′ is not µ (·|E)-strictly coarser than the Borel σ-

algebra, then E has a Borel subset F such that µ (F) > 0 and Σ′ generates the Borel σ-algebra

of F, i.e.

BF =
{

F ∩ G : G ∈ Σ′
}

.

The analyst affirms hypothesis (H2) by Theorem 2 and concludes that the price

system p̄ is generically fully revealing. We review the validity of this inference in the

next section.

Theorem 2. If (Ω, Σ) = (R,BR), then there is a sample {Sn} in Σ with µ (Sn) > 0 for all

n, for which (H1) is false generically but is true unless the seeming full revelation hypothesis

(H2) is true.

3 Limitations of Countable Inference

The confirmation of the seeming full revelation hypothesis (H2) is not enough to con-

clude that the price system is fully revealing. Theorem 3 tells us that (H2) does not

even ensure that there is no big gap between the revealed information σ ( p̄) and the

full information, as seen by letting Σ′ = σ ( p̄) in part (a). Moreover, it says that even a

continuum of events of nonzero probability can remain unrevealed if the uncertainty

is atomless. Further, this whole continuum of concealed events can be encountered

even locally within any event E of nonzero probability. Even the conditional proba-

bility µ (·|E) of these concealed events can be arbitrarily close to certainty.
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Theorem 3. Consider an atomless Borel probability measureµ on R, an event E withµ (E) >

0, and a real number α ∈ (0,µ (E)). There exists a sub-σ-algebra Σ′ of the Borel σ-algebra

such that:

(a) for every real number β ∈ (0,α), some Borel subset F of E with µ (F) = β (event of

probability β) does not belong to Σ′, even though

(b) for every interval S with µ (S) > 0, theσ-algebra Σ′ is not µ (·|S)-strictly coarser than

the Borel σ-algebra.

Next Theorem 4 shows that (H2) still does not ensure that there is no big informa-

tion gap even if we assume that the price system reveals all information (Σ′′) of any

strictly uninformed trader. Here we think of Σ′′ ⊂ Σ′ = σ ( p̄).

Theorem 4. Consider a Borel probability measure µ on R and a σ-algebra Σ′′ which is in-

cluded in and µ-strictly coarser than the Borel σ-algebra but such that the restricted probabil-

ity space (R, Σ′′,µ|Σ′′) is atomless. For every event E ∈ Σ′′ with µ (E) > 0, there exists a

sub-σ-algebra Σ′ of the Borel σ-algebra with Σ′′ ⊂ Σ′ such that:

(a) some Borel subset F of E with µ (F) > 0 (event of nonzero probability) does not belong

to Σ′, even though

(b) for every interval S with µ (S) > 0, theσ-algebra Σ′ is not µ (·|S)-strictly coarser than

the Borel σ-algebra.

Analogous conclusions for more general probability spaces are provided by Theo-

rems 5 and 6 below. They tell us that the rejection of the big gap hypothesis based on

such a countable inference is not enough to ensure that there is no big gap.

Theorem 5. Let (Ω, Σ,µ) be a probability space with a sub-σ-algebra Σ′′ of Σ such that the

restriction (Ω, Σ′′,µ|Σ′′) is atomless. Consider a sequence {Sn} in Σ, an event E ∈ Σ′′ with

µ (E) > 0, and a real numberα ∈ (0,µ (E)). There exists a sub-σ-algebra Σ′ of Σ such that:

(a) for every real number β ∈ (0,α), some event F ∈ Σ′′ with F ⊂ E and µ (F) = β does

not belong to Σ′, even though

(b) for every index n with µ (Sn) > 0, theσ-algebra Σ′ is not µ (·|Sn)-strictly coarser than

Σ.

Theorem 6. Let (Ω, Σ,µ) be a probability space with a sub-σ-algebra Σ′′ of Σ such that

Σ′′ is µ-strictly coarser than Σ and the restriction (Ω, Σ′′,µ|Σ′′) is atomless. Consider a

sequence {Sn} in Σ and an event E ∈ Σ′′ with µ (E) > 0. There exists a σ-algebra Σ′ with

Σ′′ ⊂ Σ′ ⊂ Σ such that:
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(a) some event F ∈ Σ with F ⊂ E and µ (F) > 0 does not belong to Σ′, even though

(b) for every index n with µ (Sn) > 0, theσ-algebra Σ′ is not µ (·|Sn)-strictly coarser than

Σ.

4 New Facts about Shyness

Here we complement the results of Anderson and Zame (2001) with new facts about

shyness. They are needed for our proofs and may be useful in other applications as

well. The notation in this section is independent of the preceding ones.

Lemma 3. Consider a Hausdorff topological vector space X, a completely metrizable convex

subset C of X, and a universally measurable subset E of X such that E ⊂ C. Let T be a

continuous linear projection on X. If T (C) is a completely metrizable subset of C in the

topology of T (X) and T (E) is both universally measurable in T (X) and shy in T (C), then

E is shy in C.

Proof. Consider any c ∈ T (C), any δ ∈ R++, and any neighborhood W of 0 in X. Since

T (E) is shy in T (C) as a subset of T (X), there is a regular Borel probability measure

τ ′ on T (X) with compact support such that

supp τ ′ ⊂ (δT (C) + (1− δ) c) ∩ ((W ∩ T (X)) + c)

and every x ∈ T (X) satisfies τ ′ (T (E) + x) = 0. Define a Borel probability measure

τ on X by τ (F) = τ ′ (F ∩ T (X)). Since X is Hausdorff and τ inherits tightness from

τ ′, the measure τ is itself regular (Aliprantis and Border, 2006, Theorem 12.4). Since

supp τ = supp τ ′, the support of τ is compact and

supp τ ⊂ (δC + (1− δ) c) ∩ (W + c) .

Since every x ∈ X satisfies

(E + x) ∩ T (X) ⊂ T (E + x) ⊂ T (E) + T (x) ,

we have

0 ≤ τ (E + x) ≤ τ ′ (T (E) + T (x)) = 0.

We have proved that E is shy in C at c ∈ C, and thus E is shy in C.
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Lemma 4. Consider a real number q ≥ 1, the space lq, and its positive cone lq
+. There exists

a Borel probability measure τ on lq with compact support such that:

(a) supp τ ⊂ lq
+\ {0} ;

(b) for every x ∈ lq and its set of smaller vectors S (x) = {y ∈ lq : y ≤ x}, we have

τ (S (x)) = 0.

Proof. Consider a bijection B on N onto the set

∞⋃
i=1

(
{i} ×

{
0, 1, . . . , 2i − 1

})
⊂ R2.

Now let I = [0, 1), and define a Borel measurable functionφ : I → lq by

φ (α) (n) =

2− B1(n)/q if B2(n)
2B1(n)

≤ α < B2(n)+1
2B1(n)

0 otherwise
.

This function and the Lebesgue measure λ on R induce a Borel probability measure

τ ′ on lq
+ defined by τ ′ (E) = λ

(
φ−1 (E)

)
. Since lq

+ is a Polish space, the measure τ ′ is

tight (Aliprantis and Border, 2006, Theorem 12.7). It follows that there exists a compact

subset F of lq
+

∖
{0} such that τ ′ (F) > 0. Now define a Borel probability measure τ on

lq by

τ (E) =
τ ′ (E ∩ F)
τ ′ (F)

.

The support of τ is a compact subset of F ⊂ lq
+

∖
{0} , establishing part (a).

Part (b) is proved by contradiction, supposing that some x ∈ lq satisfies τ (S (x)) >

0. Observe that we must have x ≥ 0, and consider the y ∈ lq
+ defined by

yn =

2− B1(n)/q if 2− B1(n)/q ≤ xn

0 otherwise
.

We have

∞
∑

n=1
xq

n ≥
∞
∑

n=1
yq

n

=
∞
∑
i=1

2−i
∣∣∣{ j ∈

{
0, 1, . . . , 2i − 1

}
: 2− i/q ≤ xB−1(i, j)

}∣∣∣
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=
∞
∑
i=1
λ

(⋃{[
j

2i ,
j + 1

2i

)
: j ∈

{
0, 1, . . . , 2i − 1

}
, 2− i/q ≤ xB−1(i, j)

})
≥

∞
∑
i=1
λ
(
φ−1 (S (x))

)
,

and it follows that λ
(
φ−1 (S (x))

)
= 0. This means that

τ ′ (F ∩ S (x)) = λ
(
φ−1 (F ∩ S (x))

)
= 0,

yielding the contradictory conclusion that τ (S (x)) = 0.

Definition 2. A probability space (Ω, Σ,µ) is said to be nontrivial if the σ-algebra Σ

includes a countably infinite partition of Ω into nonnull events.

Lemma 5. Consider a nontrivial probability space (Ω, Σ,µ), real numbers q ≥ 1 and ε ∈
[0, 1), and let

∆ε = {x ∈ Lq (µ) : x ≥ εχΩ, E (x) = 1} . (1)

There exists a Borel probability measure τ on Lq (µ) with compact support such that:

(a) supp τ ⊂ ∆ε;

(b) for every x ∈ Lq (µ) and its set of smaller vectors S (x) = {y ∈ Lq (µ) : y ≤ x}, we

have τ (S (x)) = 0.

Proof. Since the probability space is nontrivial, the σ-algebra Σ includes a partition

P = {Sn}n∈N of Ω such that µ (Sn) > 0 for all n. This partition generates the sub-

σ-algebra σ (P) of Σ, and we let X = Lq
(
Ω,σ (P) ,µ|σ(P)

)
. Now define functions

T : lq → Lq (µ) with range X andφ : X+\ {0} → Lq (µ) by

T (x) =
∞
∑

n=1

xn

(µ (Sn))
1
q
χSn andφ (x) = εχΩ + (1−ε) 1

E (x)
x.

Both T andφ are continuous, because the latter is defined by continuous vector oper-

ations and the former is a positive operator between Banach lattices (see Aliprantis and

Border, 2006, Theorem 9.6). Thus, supplementing these functions with a Borel prob-

ability measure τ ′ on lq chosen according to Lemma 4 defines a Borel measure τ on

Lq (µ) by τ (E) = τ ′
(
T−1 (φ−1 (E)

))
. This measure τ is indeed a probability measure
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because

1 ≥ τ (Lq (µ)) ≥ τ ′
(
supp τ ′

)
= 1.

The support of τ is the compact subset φ (T (supp τ ′)) of ∆ε, which is what part (a)

requires.

For part (b), pick an upper bound k ∈ R+ of the compact set E (T (supp τ ′)), let

z = E
(

k
1−ε (x−εχΩ)

∣∣∣∣σ (P)
)

,

and recall that there must be a z′ ∈ lq such that T (z′) = z. The desired conclusion is

established by the following calculation:

τ (S (x)) = τ ′
(

T−1
(
φ−1 (S (x))

))
= τ ′

(
supp τ ′ ∩ T−1

(
φ−1 (S (x))

))
= τ ′

({
y ∈ supp τ ′ : φ (T (y)) ≤ x

})
= τ ′

({
y ∈ supp τ ′ : T (y) ≤ E (T (y))

1−ε (x−εχΩ)
})

≤ τ ′
({

y ∈ supp τ ′ : T (y) ≤ k
1−ε (x−εχΩ)

})
≤ τ ′

({
y ∈ supp τ ′ : T (y) ≤ z

})
= τ ′

({
y ∈ supp τ ′ : T (y) ≤ T

(
z′
)})

= τ ′
({

y ∈ supp τ ′ : y ≤ z′
})

≤ τ ′
({

y ∈ lq : y ≤ z′
})

= 0.

Lemma 6. Consider a nontrivial probability space (Ω, Σ,µ), real numbers q ≥ 1, r ∈ R++,

ε ∈ [0, 1), and δ ∈ R++, the ball Br =
{

x ∈ Lq (µ) : ‖x‖q < r
}

and the set ∆ε defined by

(1). There exists a tight Borel probability measure τ on Lq (µ) with compact support such that

supp τ ⊂ (Br + χΩ) ∩ (δ∆ε + (1− δ) χΩ) (2)

and part (b) of Lemma 5 holds.

Proof. Choose a Borel probability measure τ ′ on Lq (µ) according to Lemma 5. Since
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supp τ ′ is compact, it is norm bounded. It follows that there exists some α ∈ (0, δ]

such that α (supp τ ′ − χΩ) ⊂ Br. Define a continuous function φ : Lq (µ) → Lq (µ)

inducing a Borel probability measure τ on Lq (µ) by

φ (x) = αx + (1−α) χΩ and τ (E) = τ ′
(
φ−1 (E)

)
.

The support of τ is the compact set φ (supp τ ′) ⊂ Br + χΩ, and condition (2) holds

because the convexity of ∆ε ensures that

φ
(
supp τ ′

)
⊂ φ (∆ε)

= α∆ε + (1−α) χΩ

= δ

(
α

δ
∆ε +

δ−α
δ

χΩ

)
+ (1− δ) χΩ

⊂ δ∆ε + (1− δ) χΩ.

Since supp τ is a Polish space, the restriction of τ to the Borel σ-algebra of supp τ is

a tight Borel probability measure (Aliprantis and Border, 2006, Theorem 12.7), and thus

so is τ . Finally, it is true that τ (S (x)) = 0 because

φ−1 (S (x)) =
{

y ∈ Lq (µ) : y ≤ 1
α

x− 1−α
α

χΩ

}
.

Lemma 7. Consider a nontrivial probability space (Ω, Σ,µ), real numbers q ≥ 1 and ε ∈
[0, 1), and the set ∆ε defined by (1). The set

E =
{
(x, y) ∈ ∆2

ε : there is a real number k such that x ≤ ky
}

is shy in ∆2
ε .

Proof. By Facts 0 and 3 in Anderson and Zame (2001), it suffices to show that for every

(nonzero) natural number n the closed set

En =
{
(x, y) ∈ ∆2

ε : x ≤ ny
}

is shy in ∆2
ε at (χΩ, χΩ) ∈ ∆2

ε . Fix any δ ∈ R++ and any neighborhood W of 0 in

(Lq (µ))2. Pick an r ∈ R++ such that the ball Br =
{

x ∈ Lq (µ) : ‖x‖q < r
}

satisfies

B2
r ⊂W. Choose a tight Borel probability measure τ1 on Lq (µ) according to Lemma 6,
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and let τ2 be the (tight) Dirac measure on Lq (µ) at χΩ. The product measure τ1 ⊗ τ2

extends to a regular Borel probability measure τ on (Lq (µ))2 (Ressel, 1977, Theorem

1). The support of τ is the compact set

supp τ = supp τ1 × {χΩ} ⊂ δ∆2
ε + (1− δ) (χΩ, χΩ)

with

supp τ ⊂ (Br + χΩ)× {χΩ} ⊂ B2
r + (χΩ, χΩ) ⊂W + (χΩ, χΩ) .

Now it only remains to show that every (x̄, ȳ) ∈ (Lq (µ))2 satisfies

τ (En + (x̄, ȳ)) = 0. (3)

If (x, y) ∈ En and y + ȳ = χΩ, then

x + x̄ ≤ ny + x̄ = nχΩ − nȳ + x̄.

Thus, letting S = {x ∈ Lq (µ) : x ≤ nχΩ − nȳ + x̄}, we have

(En + (x̄, ȳ)) ∩ (Lq (µ)× {χΩ}) ⊂ S× {χΩ} .

Since supp τ ⊂ Lq (µ)× {χΩ}, condition (3) is verifies by the calculation

0 ≤ τ (En + (x̄, ȳ)) ≤ τ (S× {χΩ}) = τ1 (S) = 0.

Lemma 8. Consider a probability space (Ω, Σ,µ), a sub-σ-algebra Σ′ of Σ such that the

restriction (Ω, Σ′,µ|Σ′) is nontrivial, real numbers q ≥ 1 and ε ∈ [0, 1), and the set ∆ε

defined by (1). The Borel subset

E =
{
(x, y) ∈ ∆2

ε : there is a real number k such that E
(
x
∣∣Σ′) ≤ kE

(
y
∣∣Σ′)}

of (Lq (µ))2 is shy in ∆2
ε .

Proof. Let µ′ = µ|Σ′ , and define

∆′ε =
{

x ∈ Lq (µ′) : x ≥ εχΩ, E (x) = 1
}

,
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E′ =
{
(x, y) ∈

(
∆′ε
)2 : there is a real number k such that x ≤ ky

}
,

as well as a continuous linear projection T : (Lq (µ))2 → (Lq (µ))2 with range (Lq (µ′))2

by

T (x, y) =
(
E
(
x
∣∣Σ′) , E

(
y
∣∣Σ′)) .

By Lemma 7, the set T (E) = E′ is shy in T
(
∆2
ε

)
= (∆′ε)

2 ⊂ ∆2
ε viewing T

(
∆2
ε

)
as a

subset of (Lq (µ′))2. By Lemma 3, the Borel set E is shy in ∆2
ε .

Definition 3. Consider a probability space (Ω, Σ,µ), a sub-σ-algebra Σ′ of Σ, and a

function f ∈ L1 (µ). We say that Σ′ is µ-strictly dominated by f if f (ω) > 0 a.e. and,

for any Σ′-measurable g : Ω → R with g (ω) ≤ f (ω) a.e., we have g (ω) < f (ω)

almost everywhere.

Lemma 9. Let (Ω, Σ,µ) be a probability space, let Σ′ be a sub-σ-algebra of Σ, and suppose

that Σ′ is µ-strictly coarser than Σ. Let 1 ≤ p ≤ ∞, let β > 0 be a real number, and let

Bβ = {x ∈ Lp (µ) : x ≥ βχΩ}. Then the set

B =
{

x ∈ Bβ : Σ′ is µ-strictly dominated by x
}

is ‖·‖p-dense in Bβ.

Proof. Since the (µ-equivalence classes) of Σ-measurable simple functions in Bβ are

‖ · ‖p-dense in Bβ, it suffices to show that any such function is approximated, in the

norm ‖ · ‖p, by elements of B. Thus let z = ∑
n
i=0 λiχEi be a Σ-measurable simple

function in Bβ. We can assume that the family 〈Ei〉i=0,...,n is a partition of Ω.

Recall that the hypothesis of Σ′ being µ-strictly coarser than Σ means that we can

select a Σ-measurable function x̂ : Ω → R++ such that given any Σ′-measurable

function g : Ω → R we have x̂ (ω) 6= g (ω) for almost all ω ∈ Ω. We may assume

that x̂ is bounded. (If necessary, select a homeomorphism φ : R++ → (0, 1) and

replace x̂ by the composition φ ◦ x̂). Then (identifying x̂ with its µ-equivalence class)

we have x̂ ∈ Lp (µ); in particular, x̂� 0.

Fix any ε > 0 and let ẑ = z + εx̂. We claim that ẑ ∈ B. Note first that ẑ ∈ Bβ
because x̂ ≥ 0. Now let g : Ω → R be any Σ′-measurable function. Then for each

i = 0, . . . , n, the function (1/ε) (g− λiχΩ) is also Σ′-measurable, and hence we have

(1/ε) (g− λiχΩ) (ω) 6= x̂ (ω) for almost all ω ∈ Ω by the choice of x̂. It follows

that for each i, g (ω) 6= (λiχEi +εx̂χEi) (ω) for almost all ω ∈ Ei. Since 〈Ei〉i=0,...,n
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is a partition of Ω, it follows from this that g (ω) 6= ẑ (ω) for almost all ω ∈ Ω. In

particular, were g (ω) ≤ ẑ (ω) for almost all ω ∈ Ω, we would have g (ω) < ẑ (ω)

for almost allω ∈ Ω. Thus ẑ ∈ B, and as ε was arbitrary, the lemma is proved.

Lemma 10. Let (Ω, Σ,µ) be a separable probability space, and Σ′ a sub-σ-algebra of Σ. Then

the set

U =
{

x ∈ L0 (µ) : there is a Σ′-measurable function g : Ω→ R

such that µ ({ω ∈ Ω : g (ω) = x (ω)}) > 0}

is universally measurable for the topology of convergence in measure on L0 (µ).

Proof. In this proof, all topological notion concerning L0 (µ) are with respect to the

topology of convergence in measure on L0 (µ). Note first that since µ is a probability

measure, L0 (µ) is completely metrizable. Also, since the probability space (Ω, Σ,µ)

is separable, L0 (µ) is separable. Thus L0 (µ) is a Polish space. Let Y be the linear sub-

space of L0 (µ) consisting of the Σ′-measurable elements, endowed with the subspace

topology. Note that Y is closed in L0 (µ). Thus Y is also a Polish space.

Let

H =
{
(x, y) ∈ L0 (µ)×Y : µ ({ω ∈ Ω : x (ω) = y (ω)}) > 0

}
.

We claim that H is a Borel set in L0 (µ)×Y. To see this, letφ : L0 (µ)×Y → L0 (µ) be

the mapping given byφ (x, y) = x− y, x ∈ L0 (µ) , y ∈ Y, and let

C =
{

z ∈ L0 (µ) : µ ({ω ∈ Ω : z (ω) = 0}) > 0
}

.

Then φ is continuous, since the topology of convergence in measure is a linear space

topology. Also, C is a Borel set in L0 (µ). To see this latter fact, for each n ∈ N\ {0} let

Cn =

{
z ∈ L0 (µ) : µ ({ω ∈ Ω : z (ω) = 0}) ≥ 1

n

}
,

and note that Cn is closed for each n, and that C = ∪∞n=1Cn. Now H = φ−1 (C), and it

follows that H is a Borel set in L0 (µ)×Y.

Note that the set U from the statement of the lemma is just the image of H under

the projection of L0 (µ) × Y onto L0 (µ). Hence, since Y is a Polish space, the fact

that H is a Borel set in L0 (µ)× Y implies that U is universally measurable in L0 (µ)
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(Fremlin, 2000, 434X(d)).

Lemma 11. Let (Ω, Σ,µ) be a separable probability space, Σ′ a sub-σ-algebra of Σ, and 1 ≤
p ≤ ∞. Then the set

V =
{

x ∈ Lp (µ) : there is a Σ′-measurable function g : Ω→ R

such that µ ({ω ∈ Ω : g (ω) = x (ω)}) > 0}

is universally measurable for the norm-topology of Lp (µ).

Proof. The embedding of Lp (µ) into L0 (µ) is continuous for the norm-topology of

Lp (µ) and the topology of convergence in measure on L0 (µ). Hence if A ⊂ L0 (µ) is

universally measurable for the topology of convergence is measure, then A∩ Lp (µ) is

universally measurable in Lp (µ) for the norm topology of Lp (µ). Thus the assertion

of the lemma follows from the previous lemma.

Lemma 12. Let (Ω, Σ,µ) be a separable probability space and Σ′ a sub-σ-algebra of Σ. Let

1 ≤ p ≤ ∞, let β > 0 be a real number, and let Bβ = {x ∈ Lp (µ) : x ≥ βχΩ}, and let

W =
{

x ∈ Bβ : if g : Ω→ R is any Σ′-measurable function,

then g (ω) 6= x (ω) for almost allω ∈ Ω} .

Then if W is non-empty, W is prevalent in Bβ for the norm-topology of Lp (µ).

Proof. Suppose W 6= ∅ and let E = Bβ\W. We will show that E is shy in Bβ. Note

first by the previous lemma, E is universally measurable in Lp (µ). Let v ∈ W, let V

be the linear subspace of Lp (µ) spanned by v, and let λV be Lebesgue measure on

V. Note that V ∩ Bβ is closed in V and that αv ∈ V ∩ Bβ for all real numbers α ≥ 1.

Consequently λV (V ∩ Bβ) > 0.

According to Fact 6 in Anderson and Zame (2001), it now suffices to show that

(E + x) ∩ V is countable for each x ∈ Lp (µ). Thus fix any x ∈ Lp (µ). Let a, a′ ∈ E

with a 6= a′ and suppose a + x ∈ V and a′ + x ∈ V. Then by the definition of V,

a− a′ = αv for some α 6= 0, and by the definition of E, there are Σ′-measurable func-

tions g, g′ from Ω to R and elements S, S′ ∈ Σ, with µ (S) > 0 and µ (S′) > 0, such

that g (ω) = a (ω) for almost all w ∈ S and g′ (ω) = a′ (ω) for almost allω ∈ S′. Then

g− g′ is Σ′-measurable and (g− g′) (ω) = αv (ω) for almost all ω ∈ S ∩ S′. Hence,

by the choice of v, µ (S ∩ S′) = 0. Thus we can attach elements Sb ∈ Σ to the elements
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b ∈ E + x so that µ (Sb) > 0 for each b ∈ E + x and so that whenever b, b′ ∈ E + x

with b 6= b′, then µ (Sb ∩ Sb′) = 0. This implies that E + x must be countable.

Lemma 13. Consider a probability space (Ω, Σ,µ) such that the measure µ is separable, a

µ-strictly coarser sub-σ-algebra Σ′ of Σ, numbers 1 ≤ p ≤ ∞ and β ∈ R++, and let

Bβ = {x ∈ Lp (µ) : x ≥ βχΩ} .

The set

Aβ =
{

x ∈ Bβ : Σ′ is µ-strictly dominated by x
}

(4)

is prevalent in Bβ.

Proof. Consider the set W from the statement of the previous lemma. By what was

remarked in the second paragraph of the proof of Lemma 9, the hypothesis that Σ′ is

µ-strictly coarser than Σ implies that W is non-empty. Hence, by the previous lemma,

W is prevalent in Bβ. Clearly, if x ∈ Ω and if g : Ω→ R is any Σ′-measurable function

with g (ω) ≤ x (ω) for almost all ω ∈ Ω, then g (ω) < x (ω) for almost all ω ∈ Ω,

then g (ω) < x (ω) for almost all ω ∈ Ω. Thus W ⊂ Aβ and it follows that Aβ is

prevalent in Aβ.

Lemma 14. Consider a probability space (Ω, Σ,µ) such that the measure µ is separable, a

µ-strictly coarser sub-σ-algebra Σ′ of Σ, any p ∈ [1, ∞], the space Lp (µ), and its positive

cone Lp
+ (µ). For every real number β ∈ R++, consider the set Aβ defined by (4). The set

F = Lp
+ (µ)

∖⋃
β>0 Aβ is shy in Lp

+ (µ).

Proof. For every (nonzero) natural number n, the set B1/n \A 1/n is shy in B1/n by

Lemma 13. It follows that B1/n \A 1/n is shy in the superset Lp
+ (µ). Combining this

observation with Fact 3 in Anderson and Zame (2001) and using their Theorem 3.3, we

see that
⋃∞

n=1 B1/n \A 1/n and Lp
+ (µ)

∖⋃
β>0 Bβ are both shy in Lp

+ (µ). Since the shy

union of these two shy sets includes F, this set is indeed shy itself.

5 Remaining Proofs

Proof of Lemma 1

Suppose, by way of contradiction, that every F ∈ Σ with F ⊂ E andµ′ (F) > 0 belongs

to Σ′. Next choose a function f according to Definition 1, and pick a sequence {gn}
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of real simple functions converging pointwise to f . Let G ∈ Σ be the union of all µ′-

null inverse images of the elements of the ranges of the terms of the sequence {gnχF},
and observe that µ′ (G) = 0. Now

{
gnχE\G

}
is a sequence of Σ′-measurable simple

functions, whose pointwise limit g is Σ′-measurable and also coincides with f on E\G.

This is a contradiction, because µ (E\G) > 0.

Proof of Theorem 1

The set

F =
{
(x, y) ∈ ∆2

En
: there is a real number k such that E (x| p̄) ≤ kE (y| p̄)

}
is shy in ∆2

En
by Lemma 8. Since σ ( p̄) is µ (·|En)-strictly coarser than Σ, Lemma 14

yields a shy subset G of Lp
+ (µ (·|En)).

We complete the proof by showing that ē 6∈ G implies
(
ρ jn,ρin

)
∈ F. For all

k ∈ I\ {i}, condition (A9)(g) implies that x̄k as an element of Lp
+ (µ (·|En)) is measur-

able with respect to the restriction of µ (·|En) to σ ( p̄). It follows that ∑k 6=i x̄k is σ ( p̄)-

measurable. Since σ ( p̄) is µ (·|En)-strictly dominated by ē 6∈ G and also ē ≥ ∑k 6=i x̄k

due to (A9)(f), for µ (·|En)-almost allω ∈ Ω we have x̄i (ω) > 0. Combining this fact

with (A9)(d–e) yields Lagrangian multipliers λi, λ j ∈ R++ such that µ (·|En)-almost

everywhere we have

u′in (x̄i (ω))ρin (ω) = λi p̄ (ω) and u′jn
(
x̄ j (ω)

)
ρ jn (ω) ≤ λ j p̄ (ω) .

By (A9)(c), we have anρ jn ≤ λ j p̄ and λi p̄ ≤ bnρin. A combination of these inequalities

produces

ρ jn ≤
λ jbn

λian
ρin, hence E

(
ρ jn
∣∣ p̄) ≤ λ jbn

λian
E (ρin| p̄) .

This means that
(
ρ jn,ρin

)
∈ F and completes the proof.

Proof of Lemma 2

By Definition 1, there exist a Σ′-measurable g : R → R and a Borel subset G of E

such that µ (G) > 0 and for all ω ∈ G we have g (ω) = |ω|. If µ (G ∩R+) > 0,

let F = G ∩ R+, and otherwise let F = G\R+. Every Borel set B ∈ BF satisfies

B = F ∩ g−1 (B) or B = F ∩ g−1 (−B).
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Proof of Theorem 2

Let {Sn} be any enumeration of the set of nonnull closed intervals with rational end-

points. By Theorem 1, hypothesis (H1) is false generically.

To prove that (H1) is true unless (H2) is true, suppose that the latter is false. This

yields a nonnull interval S such that σ ( p̄) is µ (·|S)-strictly coarser than Σ. By Defini-

tion 1, the interval S is not a singleton, and the open interval with the same endpoints

is also nonnull. It follows that some Sn is a subset of S, and thus σ ( p̄) is also µ (·|Sn)-

strictly coarser than Σ, confirming (H1).

Proof of Theorem 5

Pick a real number θ > 1 such that

θ− 2
θ− 1

≥ α

µ (E)
.

Next consider a sequence {En} in Σ′′ such that:

(i) En = ∅ if µ (Sn\E) > 0 or µ (Sn) = 0, and

(ii) otherwise En is an event in Σ′′ with

En ⊂ E, µ (En ∩ Sn) > 0, and µ (En) =
µ (E)
θn ,

which is possible in view of Theorems 10.52 and 10.23.7 in Aliprantis and Border

(2006).

Define

C = E

∖ ∞⋃
n=1

En .

Now let

Σ′ = {(A\C) ∪ B : A ∈ Σ, B = C or B = ∅} . (5)

To prove part (b), consider any Σ-measurable f : Ω → R++, let g = fχSn\C, and

observe that µ (Sn\C) > 0.

Now it only remains to establish the validity of part (a). The first step is to calculate
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that

1−
∞
∑

n=1

1
θn = 1− 1

θ

∞
∑

n=1

(
1
θ

)n−1

= 1− 1
θ

1
1− 1/θ

=
θ− 2
θ− 1

and

µ (C) ≥ µ (E)−
∞
∑

n=1
µ (En) ≥ µ (E)−

∞
∑

n=1

µ (E)
θn =

θ− 2
θ− 1

µ (E) ≥ α.

Consequently, the event C ∈ Σ′′ has a subset F ∈ Σ′′ with µ (F) = β. If this event

F ⊂ E were Σ′-measurable, then the definition (5) of Σ′ would imply that C ⊂ F and

thus C = F, which would contradict µ (C) ≥ α > µ (F).

Proof of Theorem 6

Start by picking any real number α ∈ (0,µ (E)), and then perform the steps given in

the first paragraph of the proof of Theorem 5. Next let

Σ′ =
{
(A ∩ Cc) ∪ (B ∩ C) : A ∈ Σ, B ∈ Σ′′

}
. (6)

Since (6) defines a finer σ-algebra than (5), part (b) follows as in the proof of Theorem

5.

Part (a) is proved by contradiction, supposing that every F ∈ Σ with F ⊂ E and

µ (F) > 0 belongs to Σ′. In particular, every F ∈ Σ with F ⊂ C and µ (F) > 0 belongs

to Σ′. By the definition (6) of Σ′ and the fact that C ∈ Σ′′, every such F ∈ Σ with F ⊂ C

and µ (F) > 0 belongs to Σ′′. This contradicts Lemma 1, because µ (C) ≥ α > 0.

Proof of Theorem 3

Apply Theorem 5 with Σ′′ equal to the Borel σ-algebra and {Sn} taken to be any

enumeration of the set of nonnull closed intervals with rational endpoints. This yields

a sub-σ-algebra Σ′ of the Borel σ-algebra, and condition (a) holds. Finally, condition

(b) is implied by part (b) of Theorem 5 for Sn ⊂ S, as in the second parapraph of the

proof of Theorem 2.

Proof of Theorem 4

Apply Theorem 6 with {Sn} taken to be any enumeration of the set of nonnull closed

intervals with rational endpoints.



Bibliography

Abramovich, Y., and C. D. Aliprantis (2002), An Invitation to Operator Theory, Graduate
Studies in Mathematics, American Mathematical Society.

Aliprantis, C. D., and K. C. Border (2006), Infinite Dimensional Analysis: A Hitchhiker’s
Guide, Springer.

Aliprantis, C. D., and D. J. Brown (1983), Equilibria in markets with a Riesz space of
commodities, Journal of Mathematical Economics, 11(2), 189–207.

Aliprantis, C. D., and R. Tourky (2007), Cones and Duality, Graduate Studies in Math-
ematics, American Mathematical Society.

Aliprantis, C. D., D. J. Brown, and O. Burkinshaw (1987), Edgeworth equilibria, Econo-
metrica, 55(5), 1109–1137.

Aliprantis, C. D., R. Tourky, and N. C. Yannelis (2001), A theory of value with non-
linear prices: Equilibrium analysis beyond vector lattices, Journal of Economic Theory,
100(1), 22–72.

Aliprantis, C. D., M. Florenzano, and R. Tourky (2004a), General equilibrium analysis
in ordered topological vector spaces, Journal of Mathematical Economics, 40(3–4), 247–
269.

Aliprantis, C. D., P. K. Monteiro, and R. Tourky (2004b), Non-marketed options, non-
existence of equilibria, and non-linear prices, Journal of Economic Theory, 114(2), 345–
357.

Aliprantis, C. D., M. Florenzano, and R. Tourky (2005), Linear and non-linear price
decentralization, Journal of Economic Theory, 121(1), 51–74.

Aliprantis, C. D., M. Florenzano, and R. Tourky (2006), Production equilibria, Journal
of Mathematical Economics, 42(45), 406–421.

Anderson, R. M., and W. R. Zame (2001), Genericity with infinitely many parameters,
B.E. Journal of Theoretical Economics, 1(1), 1–64.

Angelopoulos, A., and L. C. Koutsougeras (2015), Value allocation under ambiguity,
Economic Theory, 59(1), 147–167.

Balder, E. J., and N. C. Yannelis (1993), On the continuity of expected utility, Economic
Theory, 3(4), 625–643.

Bewley, T. F. (1972), Existence of equilibria in economies with infinitely many com-
modities, Journal of Economic Theory, 4(3), 514–540.

60



BIBLIOGRAPHY 61

Chavas, J.-P., and W. Briec (2012), On economic efficiency under non-convexity, Eco-
nomic Theory, 50(3), 671–701.

Correia-da Silva, J., and C. Hervés-Beloso (2009), Prudent expectations equilibrium in
economies with uncertain delivery, Economic Theory, 39(1), 67–92.

de Castro, L. I., M. Pesce, and N. C. Yannelis (2011), Core and equilibria under ambi-
guity, Economic Theory, 48(2-3), 519–548.

Dekel, E. (1986), An axiomatic characterization of preferences under uncertainty:
Weakening the independence axiom, Journal of Economic Theory, 40(2), 304–318.

Epstein, L. G. (1986), Implicitly additive utility and the nature of optimal economic
growth, Journal of Mathematical Economics, 15(2), 111–128.

Finch, S. (2003), Mathematical Constants, Encyclopedia of Mathematics and its Appli-
cations, Cambridge University Press.

Florenzano, M. (2003), General Equilibrium Analysis: Existence and Optimality Properties
of Equilibria, Springer.

Florenzano, M., and V. M. Marakulin (2001), Production equilibria in vector lattices,
Economic Theory, 17(3), 577–598.

Fremlin, D. (2000), Measure Theory, Volume 4, Measure Theory, Torres Fremlin.

Graziano, M. G. (2007), Economies with public projects: Efficiency and decentraliza-
tion, International Economic Review, 48(3), 1037–1063.

Habte, A., and B. S. Mordukhovich (2011), Extended second welfare theorem for non-
convex economies with infinite commodities and public goods, Advances in Mathe-
matical Economics, 14, 93–126.

He, W., and N. C. Yannelis (2016), Existence of Walrasian equilibria with discontinu-
ous, non-ordered, interdependent and price-dependent preferences, Economic The-
ory, 61(3), 497–513.

Hervés-Beloso, C., V. F. Martins-da-Rocha, and P. K. Monteiro (2009), Equilibrium
theory with asymmetric information and infinitely many states, Economic Theory,
38(2), 295–320.

Hunt, B. R., T. Sauer, and J. A. Yorke (1992), Prevalence: A translation-invariant “al-
most every” on infinite-dimensional spaces, Bulletin (New Series) of the American
Mathematical Society, 27(2), 217–238.

Klishchuk, B. (2015), New conditions for the existence of Radner equilibrium with
infinitely many states, Journal of Mathematical Economics, 61, 67–73.

Koutsougeras, L. C., and N. C. Yannelis (1993), Incentive compatibility and informa-
tion superiority of the core of an economy with differential information, Economic
Theory, 3(2), 195–216.



BIBLIOGRAPHY 62

Mas-Colell, A. (1986), The price equilibrium existence problem in topological vector
lattices, Econometrica, 54(5), 1039–1053.

Podczeck, K. (1996), Equilibria in vector lattices without ordered preferences or uni-
form properness, Journal of Mathematical Economics, 25(4), 465–485.

Podczeck, K., and N. C. Yannelis (2008), Equilibrium theory with asymmetric infor-
mation and with infinitely many commodities, Journal of Economic Theory, 141(1),
152–183.

Podczeck, K., R. Tourky, and N. C. Yannelis (2008), Non-existence of Radner equilib-
rium already with countably infinitely many states, Working paper.

Radner, R. (1968), Competitive equilibrium under uncertainty, Econometrica, 36(1), 31–
58.

Ressel, P. (1977), Some continuity and measurability results on spaces of measures,
Mathematica Scandinavica, 40(1), 69–78.

Shreve, S. (2004), Stochastic Calculus for Finance II: Continuous-Time Models, Springer
Finance / Springer Finance Textbooks, Springer.

Skorokhod, A. (2004), Basic Principles and Applications of Probability Theory, Encyclopae-
dia of Mathematical Sciences, Springer.

Tourky, R. (1998), A new approach to the limit theorem on the core of an economy in
vector lattices, Journal of Economic Theory, 78(2), 321–328.

Tourky, R., and N. C. Yannelis (2003), Private expectations equilibrium, Working pa-
per.

Wickstead, A. W. (1975), Compact subsets of partially ordered banach spaces, Mathe-
matische Annalen, 212(4), 271–284.

Xanthos, F. (2014), A note on the equilibrium theory of economies with asymmetric
information, Journal of Mathematical Economics, 55, 1–3.

Yoo, S. H. (2013), An alternative proof for the existence of Radner equilibria, Mathe-
matical Social Sciences, 66(1), 87–90.


