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ABSTRACT

This thesis addresses the problem of model reduction
for scalar linear time-invariant systems via the use of
the optimal Hankel-norm approximation problem. Frequency
weighting is combined with optimality in the Hankel norm
to obtain a frequency shaped approximation to a given
linear system. This is accomplished by the solution of a
modified optimal Hankel-norm approximation problem.

Also presented is an error analysis for the frequency

shaped approximation.
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CHAPTER 1

§1.1 INTRODUCTION

The approximation of high order linear system transfer functions
plays an important part in many areas of electrical engineering. The
desirability of replacing a high order model by one of reduced order is
motivated primarily by the advantages of implementing, either in hardware
or software, as simple a system as possible while still meeting the
design specifications. To determine whether an approximation scheme
satisfies any design requirement, the size of the error incurred in
making the approximation should be explicitly known, while simple
algorithms for determining the approximation would also be of distinct
advantage.

It is precisely these features that have led to the keen investiga-
tion and application of the so called optimal Hankel-norm approximation
. problem [3,14,27 ,36] io model reduction of engineering systems. This
technique, essentially an application from the theory of Hankel operators,
has led, together with the theory of balanced realizations, to a renewed
interest in model reduction in recent years. In particular, optimal
Hankel-norm approximation has found wide application among the following:

(1) the reduction of high order plant models to allow the design of
low order controllers [16],
(ii) the reduction of high order controllers designed using the full
order plant model [27-29],
(i11) the reduction of filter designs,
(iv) the approximation of infinite dimensional systems [9], and

(v) spectral approximation [22].



Besides having a computationally cheap closed form solution and
calculable error bounds in terms of the frequency response, the method
gives an approximation which, as the name suggests, is optimal inva
specific measure (the Hankel-norm) and so is the first model reduction
technique to obey any strong optimality criterion. More importantly
however, is that the resulting approximation is guaranteed to be realizable.

The object of this thesis is to show how to combine the‘additibna]
feature of specifying the approximation accuracy with frequency, thereby
shaping the error of the optimal Hankel-norm approximation. This is
highly desirable since in many practical situations, it is possible to
identify frequency regions where any approximating system should be
particularly 'close’ tobthe original system. For example such a region
is represented by the unity gain crossover for a closed-1oop control
system. From an engineering viewpoint, the synthesis of optimal Hankel-
norm approximation and specification of error size with frequency,
combines the power of frequency domain and state space methods. It
allows the incorporation of intuitive classical design ideas, which
provide unmatched insight and insensitivity to small errors in a syétem
description, with formal tractable mathematics. Like state-space>methods,
the frequency-weighted approximation scheme also extends easily to

multivariable systems.

§1.2 REVIEW

The modern theory of Hankel operators has its beginnings in the
algebraic theory of Hankel and Toeplitz matrices and forms which
originated in the memoirs of G. Frobenius [11,12], who studied them in
connection with problems of stability theory and related questions of

localization of roots of polynomials, and the works of L. Kronecker [24,25].



In the first half of this century, the study of Hankel operators gained
an important impetus from applications in function theory, probability
theory and the problem of moments [35]; however the present intense
interest in the theory can largely be attributed to the discovery of new
applications for recent advances, chiefly in function theory, Gaussian
processes and systems theory.

Important recent results include the works of Nehari [31], Hariman
(18], Adamjan, Arov and Krein [1-4], Clark [7,8] and Peller and |
Khrushchev [32;33]. A complete overview of this work appears in Power
[34] and Peller and Khrushchev [33], while the progress enjoyed by the
algebraic theory is detailed in Iohvidov [20].

From the systems fheoretic point of view, the most significant of
this work applicable to model reduction is that of Adamjan, Arov and
Krein [3] which appeared in English in 1971. This work went largely
unnoticed (by systems theorists) until 1978 when P. Dewilde [23] pointed
out its importance to the larger system theoretic community. In
particular [3] is the source of the theory behind the optimal Hankel-
norm approximation technique which has found so many fruitful enginéering
applications.

Using the theory of balanced realizations, Silverman and Bettayeb
[36] made the existence results of [3] concrete and gave explicit
algorithms for obtaining the optimal Hankel-norm approximation of any -
specified order to a given finite-dimensional scalar system. Kung and
Lin [26] employed a polynomial approach that led to a simple generalised
eigenvalue formulation of the optimal Hankel-norm problem and gave a
fast matrix-fraction description algorithm for its solution. This
approach was extended in [27] to obtain efficient algorithms for multi-
variable systems while [28] uses a state-space approach to solve the

same problem.



A different approach is that of Harshavardhana et al. [19] who
with the implementation of one algorithm obtained solutions of all
orders to the optimal Hankel-norm problem for a scalar system from the
eigenvectors of a bilinear matrix combination of rearranged versions of
the Hurwitz matrix for the characteristic polynomial of the system.

An interesting application to model reduction is that of Jonckheere

and Helton [22], where the order of a stochastfc process power spectrum
is reduced by finding the optimal Hankel-norm approximant of the phase
of the outer spectré] factor. The most complete treatment, known to
the author, of the optimal Hankel-norm app}oximation problem for multi-
variable systems is that of Glover [14]. [14] uses results in balanced
realizations, all-pass functions and the inertia of matrices to obtain
all solutions by solving Lyapunov equations and for one class of

solutions gives explicit error bounds in the supremum norm.

§1.3 APPROACH AND CONTRIBUTION OF THE THESIS

Under]ying'the work of this thesis is the considerable theory of
Hankel operators and their applications to linear systems. From this
large body of theory, §81.4 and 1.5 assemble some well known results,
including the main result of Adamjan, Arov and Krein about which the
thesis is developed. §1.5 also introduces and defines an important set
of input-output invariants of a linear system; the singular values, in a
more genéra] setting. Also presented there, is a new derivation of a
weak bound on the first singular value of the optimal Hankel-norm
approximant. In §1.6, wé derive some shift inequalities for the singular
values of rational functions that contain an all-pass factor. In
particular, we partially extend a result of Glover [14], concerning the

optimal Hankel-norm approximation of stable rational all-pass systems

to the unstable case.



The work in Chapter 2 introduces and develops the central new
idea of the thesis; combining frequency weighting and optimal Hankel-
norm approximation. The basic idea involved is as follows: consider a
series combination of two stable systems the second of which is to be
approximated by a lower order system. We desire the approximation error
to be determined by the magnitude of the frequency response of the first
system. Available from the Adamjan Arov and Krein theory, is a procedure
for obtaining the explicit form of an optimal approximating system
(of reduced order) which we wish to utilise. The synthesis is performed
thus: first devise a transformation that, when applied to the first,
frequency weighting system, produces a completely unstable system with
the same magnitude (with frequency), as the frequency weighting. Next,
combine it with the second éystem to form a modified system. Apply now
the optimal Hankel-norm approximation technique to the modified system.
The modification is now."undone" by multiplying the resulting approximatidn
by the image of the frequency weighting under the inverse of the original
transformation. Finally, take the stable part of the result as the
frequency-weighted optimal Hankel-norm approximation. This method is
formally developed in §8§2.1 to 2.4. We conclude the chapter with a
practical example of the technique. A classical Butterworth filter is
reduced gn order by two, the approximation being frequency shaped by a
simple second order system.

The core of the third chapter consists of a more thorough error
analysis of the frequency weighted optimal Hankel-norm approximation
theory presented in Chapter 2. Error bonds are derived for the incurred
error in both the supremum (L”) and Hankel-norms so that frequency
weighting may be compared with other candidate model reduction schemes.
In particular, the bounds allow an easy comparison with those for direct

optimal Hankel-norm approximation without frequency weighting.



The final chapter of the thesis presents a retrospective overview,
followed by several suggestions for future research into the many new
ideas that arose during the investigations of the thesis.

The appendix is supplemental to Chapter 2 in that it presents in
part the same theory contained in that chapter but derived independent]y
in continuous time with the use of integral operators.

In summary, the contribution of the thesis is first, to proposé
and develop the theory of a new method for combining the optimal Hankel-
norm approximation technique with the analytical specification of the
approximation accuracy with frequency, and secondly to present an error
analysis and demonstrate the applicability of the method via a common

example from circuit theory.

§1.4 SOME PRELIMINARY THEOREMS

As a preliminary, we assémb1e several important known results for
Hankel operators on a Hilbert space. They will be used repeatedly in
the sequel.

Let 22 denote the Hilbert space of two-way square summable comp1ex

sequences W = {... W2, Wi, Wi, W3, ...} and Ri the (sub) Hilbert space

of one sided square summable complex sequences y = {y7, ¥, ...}. 22

is endowed with the inner product (v,w) = I (ijj + vjﬁ}), where the bar
3= |

denotes the complex conjugate. Let {e7, e;, ...} denote the standard

orthonormal basis on zi. Each operator Y on Qi has a representing matrix
Yij = (Ye;, eg) with respect to the standard basis. The quantity Yl

will denote the induced operator norm on Qi. The mapping determined by
f(eie) = .; (fje'ije + fjei(j'])e) is a Hilbert space isomorphism from

2% to LZ,JE;e space of complex valued functions defined on the unit circle

C=1{z:2z-= e16,- T < 8 < 7} which are square Lebesgue integrable there.



Each sequence in zj under the mapping y(z) = .g]ygzj'] determines a
member of the Hardy class H?2, analytic in theJ;pen unit disk. This
is also a Hilbert space isomorphism.

By L denote the space of all complex valued functions, f, on
the unit circle with bounded L*-norm, ie || f || = ess sgp]f(eie)|< ®
and H> the space of complex valued functions which are analytic and

bounded in the open unit disk, |z|<1. It can be seen that L~ C L?

and H°C H2. We now define a Hankel operator on 25

Definition 1.1 A Hankel operator T on zi is an operator for

which there exists a sequence a;, a2, ... such that Fij = ai+j-1’

=12,
The following result allows us to construct bounded Hankel operators.

Theorem 1.1  (Nehari [31]) The infinite Hankel matrix

(ai+j_]))?’j=]determines a bounded Tinear operator T on 2}
if and only if there exists an L* function f such that a, = T,
where f,, is the n-th negative Fourier coeff1c1ent of f. That is,

' 2ﬂ1~/‘f(g)g" ]dg, =1, 2, ... . Moreover, given an

f € L™, and if T is the Hankel operator with matrix elements
= (fi4- 05 _j=1» then | T = iﬂf |f+h|l,, h € H”, and there

is a unique h” € H” such that | T|| = | f+h~|_ .

We will call f the symbol function of the bonded Hankel operator T and
denote the operator and matrix, (terms which are used interchangeably),
by T(f). It will sometimes be convenient to omit the symbol function
when no ambiguity can arise. Clearly for any given bounded Hankel
operator, the symbol function is not unique because I'(f) = I(f+h) for
all h €H”. Given an f € L, the unique symbol function f + h” for
which | T(f)| = | f + h”|_, h” €H", is called the Nehari extension of

f and we denote it by iy



Definition 1.2 Given an f € L, the Hankel-norm of f is

defined by, | f [, & | r(f)] .

Next is a characterization of the compact Hankel operators.

Theorem 1.2 (Hartman [18]). The Hankel operator T(f) is
compact if and only if f €H~ + C, where C denotes the space

of continuous functions on the unit circle.
Finally, we characterise the finite rank Hankel operators.

Theorem 1.3 (Kronecker [13,25]). The infinite Hankel matrix

T.. = (ai+j-1)i,j=1 is of finite rank n, if and only if

A a . . .
r(z) = =%+ é%—+ E§-+A... is a rational function of z and
z Z z

that in this case, n 1is the number of poles of r(z), counted with

multiplicity.

Throughout the thesis, we will be primarily concerned with Hankel
matrices whose symbols are real rational functions that represent
discrete-time syétem transfer functions. Theorem 1.1 then ensures that
if, as we will assume throughout, the symbol functions have no poles
on |[z| =1, the Hankel operators will be bounded. Theorem 1.2
guarantees the existence of bounded singular values (see §1.5) and
Theorem 1.3 implies that the Hankel matrices will be of finite rank
equal to the number of stable poles (counting multiplicity) of the
symbol function. A pole or zero will be called stable if it Ties in

|z|< 1 and unstable if it Ties in |z|> 1.

Remark: In view of the isomorphism between 2% and H* one can also
define the Hankel operator on H? in terms of projections on L2 as

follows. For g € L?, define the Riesz projections [-], and [f]_ on L2



by [gl, = jglggzj'] and [g]_=g-[g], . The projection [-]1_ selects
the stable part of g and projects L2 onto L%QH2 . If f €L” define
the Hankel operator T(f) on H?> by T(f)h S [(fh]_ = [[fl.h]_,

h € H? . This definition, which is equivalent to Definition 1.1, often

leads to simplified proofs involving Hankel and Toeplitz operators [33].

1.5 s-NUMBERS AND THE ADAMJAN, AROV AND KREIN THEOREM

An important set of parameters of a linear system, are its singular
values which are the s-numbers of the associated Hankel operator. We

now define these.

Definition 1.3 The (k+1)-st s-number of the Hankel operator

r(f), denoted ok+](f) is defined by
Opep(f) = iEf | T(f)-L | k=0,1,2... (5.1)

where the infemum is taken over all bounded linear operators L

of rank < k .

It can be shown [17] that ok+](f) is the (k+1)-st eigenvalue of
(FZfSP(f))g and that the s-numbers therefore form a decreasing sequence

for increasing k . Note that according to Definition 1.2, | f "H = 0,(f) .

Definition 1.4 Let o be an s-number of T(f). A pair

(¢, n), £, n € li is called a Schmidt pair of T(f) corresponding
to o if T(f)E = on (5.2)
and I'(f)n = o

Remark. The name singular values (or Hankel singular values) will be

reserved exclusively for the s-numbers of Hankel operators whose symbol

is a real rational function.
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Definition 1.5 A function ¢ (z), not necessarily stable, is

called all-pass if ¢(z)¢(z) =1 for all |z| =1 .

Important in determining the s-numbers of a given function are the

Blaschke products. A rational all-pass function of the form

B(z) = . e1uj z-aj for some complex numbers a; ... a_ and where
J

1 1-3.; n
1 an

os = arg aj , is called a Blaschke product with n zeros. Note that the

function B(z) = B(Z™!) satisfies BB = 1 for all z and has zeros at

==

the poles of B(z) and poles at the zeros of B(z).

The definition (5.1) may be regarded as an approximation measufe
that gives the smallest attainable distance from T(f) using rank k
operators. An important contribution of Adamjan, Arov and Krein is the
proof that the infemum in (5.1) is attained by a unique infinite Hankel
matrix of rank k. In addition, their constructive proof gave a unique
symbol function with exactly k stable poles that is a distance
ck+](f) from f in the L -norm. This symbol function is called the
k-th order optimal Hankel-norm approximation to f. We state their

result in the following theorem.

Theorem 1.4 (Adamjan, Arov and Krein [3]). Given an f € L”, there
exists a unique infinite Hankel matrix T(x) of finite rank

k < rank T(f) such that

| (f) - (x)|| = ok+](f) . (5.3)
Further, if (£,n) is any Schmidt pair of T(f) corresponding to

°k+1(f)’ then the symbol function x(z) that is given by

n_(z)
x(z) = f(z) - 0k+](f)éf:(zy (5.4)
where n_(z) é_? niz'1
A"] (5.5)
£(2) =3 £.2'7
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is the unique function that attains the infemum in the expression

the infemum in (5.6) being taken over all functions g of the
form r + h where r is a strictly proper rational function with

no more than k stable poles and h € H . That is
£ - x, = B(f) - (5.7)

and x(z) has exactly k stable poles (counted with multiplicity).

Moreover, the functions n_(z)/g,(z) have unit modulus on the unit

circle (ie they are all-pass).

A more concise proof of this theorem than that which apbeared in the
original paper, may be found in [33] or [34]. When applying Theorem 1.4
to approximate system transfer functions, f(z) is a stable real rational
function. In this case, it can be shown [36] that the rational all-pass
function n_/g+(z) has in general n+k stable poles and n-k-1 unstable
poles where n 1is the number of poles of f(z). Therefore to avoid
retaining unstable poles.in the approximation x, [x]_ is taken as the
approximating system to f(z). The equality (5.3) then holds since
r(x) = I'([x]_) but of course (5.7) is no longer valid. [x]_ will be
called the stable k-th order optimal Hankel-norm approximation to f(z)
and x(z) will be said to solve the optimal Hankel-norm approximation
problem of order k.

Theorem 1.4 enables the derivation of several equivalent characteriz-

ations for the s-numbers of a Hankel operator which we will now prove.
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Lemma 1.5 [6,7] The s-number ck+](f) may be expressed as:

Oy () = inf I T(f) - & | | (5.8)
= inf | T(uf) | (5.9)
u
=inf | f+v |, (5.10)
v _

where the infema are respectively taken over,
Hankel operators A of rank k,
Blaschke products u with k zeros in |z|<1 and

rational functions v with k stable poles.

Proof. Starting with (5.9), we get by using Nehari's theorem

(Theorem 1.1) and Kronecker's theorem (Theorem 1.3),

(o]

inf || T(uf) |
u

inf inf || uf + hj, h €H
u h

inf inf | f + uh]|,
u h

inf inf | £+ r+ gll, 5 g €H, r regular rational
r g
with k stable poles

inf || T(f) - T(r)|
r

1Rf | T(f) - Al = 0k+1(f) .
The last equality follows from Theorem 1.4.

Note that if Ok+1(f) is a repeated s-number, we need to take the
infemum in Lemma 1.5 over Blaschke products (etc.) with at most k

zeros in |z|<l.
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The equalities (5.8) and (5.10) show that the symbol function x

4) satisfies

I £ - I, = o4y (F) (5.11)

and that therefore Dk(f) = ck+](f).

I x "H

§1.6

The explicit form (5.4) gives the following easy bound for

= 01(x)

Lemma 1.6 o:(x) is bounded according to

o1(f) - 0k+](f) < 01(x) < o1(f) + ok+](f) . : (5.12)

Proof  Although (5.12) is a trivial consequence of the equality

(5.3), we give a slightly more instructive proof of the upper

bound. Denote ok+](f) by o. According to (5.4), on

z=e't, -1 <t<m, we have [x|? = |f]%2|f|ccos(e(e1t) - arg flelty)
+ o2, where 8(e'%) = arg n_/g.. Thus (|f| -0)? < [x]|? < (|f] +0)?
so that | || f ', - o] < | x|, < || fl+ o. Because T(x) = T'(x+h)

for all h € H”, we can replace f 1in Theorem 1.4 by its Nehari
extension fN and consider ; = fN -on_/g, . But fN is by uniqueness
just the function o1(f)ni_/E14+ where (£, m1) is any Schmidt

pair corresponding to o;(f). The above argument then gives for ;,

(o1(f) - 0)% < I;(I2 < (o1(f) + 0)? . Clearly, o:(x) =

o1(x) < | ;H» so that the upper bound immediately follows.

SYSTEMS WITH A RATIONAL ALL-PASS FACTOR

The method of introducing frequency weighting, to be described in

Chapter 2, produces a symbol function which has a rational a]l-paSs

factor. Here we present some useful new results on the singular values
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of such symbols. In particular, we partially extend a result in Glover [14]
on the singular values of rational all-pass systems.

Let F(z) € L” be a stable rational function of degree n and
¢(z) a rational a]l-pass.function with m; stable poles and m, unstable
poles. That is,

o(z) =>§]Bz (6.1)
where B, and B, are (modulo a factor eia, a real) B]aschke products 6f
orders m; and m2 respectively. Assume also that m, does not exceed
n-1 and that no pole-zero cancellations occur in the combination F¢;

Noting that ci(F) = 0 for i > n, we have the following Lemma.

Lemma 1.7. For F and ¢ as defined above,

(i) 0y (Fo) > oy, (F) k=1...nm | (6.2)

(11) oy (FO) € 0 () k=1 ...n. | (6.3)

Proof Using the characterization (5.18), we have that

ok(F¢) = iEf | Fo + uf, s k=1 ... ntm, , where u is rational
and has < k-1 stable poles. ¢ is all-pass so that ok(F¢) =

inf || F + $ul, . According to (6.1), ¢ = B;B> has m» stable poles
agd Gu has < k-T+mz stable poles so that o, (F$) > inf || F + v| =
ok+m2(F), k=1... n-mx , where v 1is rational an; has kf1+mz
stable poles. The inequality (6.2) is trivial for k > n - m, .

Similarly, o, (F)=inf [F.1+ul, = inf [Fed + ull, = inf [Fo + ¢uf, >
u u u :

inf || Fo + vl = oy, (F6) , where v has < k+m -1 stable poles.
v _

We note in passing the following special cases of Lemma 1.7.

Corollary 1.8 (i) If B, = 1, ie my = 0 and ¢ therefore has only
unstable zeros, then ok(F¢) > ok(F), k=1...n

(ii) If By = 1, ie my = 0 and ¢ therefore has only
stable zeros, then ck(F¢) < ok(F), k =1 .n.
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Combining (i) and (ii) of Lemma 1.7 gives bounds on a restricted set of
the singular values of F¢ as follows:

Ok(F¢) < Ok'mi(F) m; < k < m; +n

(6.4)
ok(F¢) < ck+m2(F) 1<kgn-m

so that when n>m, + m, ,

°k+m2(F)' < o (Fp) < ck_ml(F) m, < k<n-m,.
Glover [14] has noted the following result for stable all-pass systems.

Lemma 1.9 Let ¢(z) be a real rational stable all-pass function

with n zeros. Then

0:(9) = 1 P=1.n. (6.5)

Lemma 1.9 imb]ies that all optimal Hankel-norm approxihants of a
stable all-pass system are equidistant in the Hankel-norm from the
original system and that this distance is equal to 1. It would therefore
appear useless to approximate all-pass systems because the resulting
error is the same size (in Hankel-norm) as the original system.

Although Lemma 1.9 takes care of stable all-pass systems, it is not
immediately clear that optima] Hankel-norm approximation of unstable
all-pass systems will be successful, since Nehari's theoremnimplies only
that the singular values will be < 1. Some of the singular values

mdy therefore be suitably small. The following result shows thét certain
approximants of unstable all-pass systems are again equidistant from

the original system.

Lemma 1.10 Let ¢(z) be a real rational all-pass function such
that the number n, of stable poles exceeds the number m, of unstable

poles. Then
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(6.6)

oj(¢) <1 J=n-mtl ... n

Proof ¢ may be written as in (6.1) where B, has m zeros and B

has n > m zeros. By Nehari's theorem,

o;(0) < ol =1 j=1...n. (6.7)
According to (5.10) we also have
oj(¢) = isf [ BiBz + u | = inf | B2 + E?'uﬂw,>‘oj+m(§;) R
j=1...n-m. (6.8)

By Lemma 1.9, oi(EZ) =1 d=1...n. Thus for j=1... n-m
(6.8) and (6.7) give (6.6).

Remark. Lemma 1.10 implies that all optimal Hankel-norm approximants'

of order k such that k < n-m-1 will be a distance 1 from ¢ in the

Hankel-norm.

Finally, we state the important special case j = 1 of Lemma 1.10 separately.

Corollary 1.11  If ¢(z) is a real rational all-pass function

with more stable than unstable poles, then

b o)l = 1ol =1 . (6.9)
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CHAPTER 2

§2.1 INTRODUCTION

This chapter presents a method of frequency shaping the error
obtained by performing an optimal Hankel-norm approximation of a scalar,
finite-dimensional, linear, time-fnvariant system. As was seen in
Theorem 1.4, the optimal Hankel-norm approximation procedure finds a
transfer function (or transfer function matrix) of prescribed order
which approximates a given transfer function (or transfer function
matrix) of greater order.

One motivatfon for frequency weighting comes from the desire to
implement a reduced order approximating controller within a c]dsed-loop
control system. Suppose an LQG designed series compensator is to be |
used in a control system implementation. The compensator will have the
same dimension as the plant model. For simplicity, it is desirable to
approximate the compensator by}one of the lowest order possib]e while
maintaining an overall acceptable degradation in performance. The -
approximating compensator should be obtained in a wéy that takes account
of the frequency characteristics of the plant model. For example in the
plant stop band and at frequencies of high loop géin, the detailed
shape of the approximating compensator is not so important, however
around the unity gain crossover frequency, it is desirable to secure
accurate approximation.

We show here how to modify the approximation method originally
developed by Adamjan, Arov and Krein [3] to allow for frequency weighting.
‘The means for introducing frequency weighting while preserving the
closed form solvability of the optimal Hanke]-ﬁorm approximation problem

is not immediately apparent. A technique for doing this is described

below.
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§2.2 DISCRETE-TIME FREQUENCY WEIGHTED APPROXIMATION
We first establish some preliminary notation and results.

Definition 2.1 Let G(z) be a strictly minimum phase, strictly

stable, real rational scalar transfer function, ie G(z) has no
poles or zeros in |z]31, save for a possible zero at z = o.
Let r > 0 be the smallest integer such that 1im z"G(z) is nonzero.

Z-0

Then define the "tilde" operation by

&z) & ez . | (2.1)

It may be noted here that G and G ! are analytic in the closed unit disc.

Given a rational transfer function with Laurent expansion

[ee]

K(z) = 5 k2™ (2.2)

j=—o

which converges in some open region containing the unit circle, |z| =1,

then the Hankel operator T'(K) = T([K] )has matrix elements
M(K(2)) 5 = kipgop s 3= a2, .o (2.3)

where [K] , the stable part of K(z), is equal to the sdm of those terms
in the partial fraction expansion of K(z) that have poles in |z|<1 .

The tilde operation (2.1) has the desirable property of preserving
the rank of the Hankel matrix T'(K) under the change K -+ KG. This

property is crucial and is proved in the following lemma.

Lemma 2.1 Let F(z) be a strictly stable proper rational transfer
function and let G(z) satisfy the conditions of Definition 2.1 and
have Laurent expansion G(z) = I 912'1 » 9, # 0 , which converges

i=r
in an open region containing the unit circle. Then
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(i) rank T(F(z)) = rank T(F(z)G(z)) (2.4)
and

(i1) T(F&) = T(F)T(G) = T*(&)T(F) (2.5)
where T(G) is the infinite lower triangular Toeplitz matrix with

elements

(T(C))ij={g(i)-j+r P2 i,i=1,2, ...

and T(F) is as defined by (2.3). Here T°(G) denotes the transﬁose
of T(G).

Proof (i) Let &_(K(z)) & 8([K(z)].) be the McMiT]an degree of
the strictly stable part of K(z). Expandihg by partial fractions,
we divide FG into its strictly stable and unstab]e‘pérts.

We then have §_(FG) = 6_([FG1,) + 6_([FG1.) = 6_([FG1.)

Observe now that by Definition 2.1, G has no stable pole and no
stable pole of F can be cancelled by a zero of G. Hence

5_([Fé]_) = 8§ _(F), and so by Kronecker's theorem (Theorem 1.3),
rank T(FG) = rank T(F). '

(ii) The proof of (2.5) is computational.

Let F(z) have Laurent expansion F(z) = I sz'j . The expansion
J=0 o o
K. Then, [F&(z2)]_ = I =g

of G(z) is G(z) = = gq,,.z
k=0 KT j=1 k=0

-J
ktrfkeg? * o
so that (F(FG))ij = kEO gk+rfi+j+k-1 s i, 3=1,2, ... .

rf

The centre member of (2.5) is (P(F)T(é))ij = j+k-19K-j4r °
, k=1

but gk—j+r =0 if j > k. Substituting, this gives

(r(F)T(G);: = = f, gy s, = % ... g,.. , which proves
i K>j itk-1 Jk-j+r >0 i+j+k-1 “k+r

the result.

To prove the second equality of (2.5) we take the transpose of

r(FG) = T(F)T(8) and note that Hankel matrices are symmétric.
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In Lemma 2.1 (i), we used the strictly minimum phase nature of
G to ensure that no stable pole-zero cancellations occur in FG. In
fact if we define G for stable non minimum phase G exactly as in (2.1),
then all that is required of G for (2.4) to hold is that G have no
zeros coinciding with stable poles of F. The strictly minimum phase
property of G is however essential as it will allow us to use the

following Lemma.

Lemma 2.2 Let G(z) be strictly stable. Then T(G) is invertible

if and only if G is strictly minimum phase and then T(G) ‘= T(G"1).

Proof This is a standard result and the proof may be found for

example in [33,38].

We now restate the result of Theorem 1.4 for proper stable rational
transfer functions K(z) of McMillan degree n, ie the rank of I'(K) is n.
For any positive integer k < n, there exists a unique bounded Hankel

matrix T of rank k such that
I T(K) - Pl = 04q(K) (2.6)

where ak+](K) is the (k+1)-st singular value of T'(K), (the singular
values being ordered in descending magnitude). Further T = T(X), where

X(z) is a rational function given by
X(z) = K(2) - 0,,1(K)¢(2) (2.7)

and ¢(z) is a rational all-pass function with exactly k stable poles.
The function X(z) is the unique best L™ approximation to K(z) having

exactly’ k stable poles (and possibly some unstable ones), that is

” K(z) - X(Z)“m = 0k+](K) (2.8)

and §_(X) = k.
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Here the L”-norm is taken on the unit circle. The transfer function
[X(z)]_ can be regarded as an approximation to K(z) which is stable and
has precisely k poles.

To make use of the explicit solution afforded by (2.6) and (2.7)
we set K(z) = Fé(z) where G(z) and F(z) are as in Definition 2.1 and
Lemma 2.1 respectively. Using Lemmas 2.1 and 2.2, the difference

T(FG) - T(X) may be written as
(T(F) - T(xa™)T(E) (2.9)

which satisfies
| (r(F) - T(X6™1)) T(B) || = oy ,(FE). (2.10)

The bracketed expressioh in (2.10) suggests identifying T(XG™!) as a

rank k approximation to T(F), the function XG !(z) as an L™ approximation
to F(z), and the function [Xé'l(z)]_ as a stable reduced order

approximation to F(z). Note ndw that T(XG™!) although not an optimal
Hankel-norm approximation to I'(F), has the appropriate rank and incorporates
the weighting G in a manner that preserves the structure of the problem.

Defining

>

W= X6 = (FG - 0,1(FG)¢(2))6™" = F - o, (FG)¢6™* (2.11)

we can take

A

W=F -0, (F8)[6G "] (2.12)

as a stable k-th order approximation to F(z).

§2.3 L~ ERRORS OF THE APPROXIMATION

With the approximation (2.11), which retains an unstable part, the

error in the weighted gain FG is

FG - WG = o), 1(FG)¢G'G . (3.1)
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Because both ¢ and G716 are all pass functions, the magnitude of the

difference in (3.1) is constant over all frequencies, that is
|FG(e™) - Wa(e™)| = oy, (FE) (3.2)

for all real w. The role played by G as the frequency weighting is
clearly displayed in this formula. Using the stable k-th order

approximation of (2.12), we obtain the Tower bound

| FG - WG, >0, (FE) . | (3.3)

Note that the actual weighting in (3.2) and (3.3) is determined by |G|,

rather than |G| and argG. ArgG is only important in that it leads to

the minimum phase, striét]y stable property of G on which the algorithm

rests. One could thus conceive of an arbitrary weighting function,

free of poles and zeros on |z|=1, and replace it by a strictly minimum

phase strictly stable function with the same amplitude on |z|=1.
Although we have not presented an upper bound (see §3.3), it éeems

fortuitously characteristic of most examples, that the maximum error

is near the Tower bound. The error in F using the approximation (2;11)

is, F-W-= ok+](Fé)¢E'1, giving a frequency dependent error of
[F(e™) - W(e™)| = oy (FG) |G (™) = oy 4 (FG) [67(e“) . (3.4)

A small error given by (3.4) at a particular frequency, does not however

guarantee a small error in |F - ﬁ]. This error is bounded below by
IF =W, >0 (Fa) [ 6L, ~" . 4 | (3.5)

We postpone a derivation of an upper bound for these errors to Chapter 3

(§3.3).
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Note finally that if P and C are plant and nominal series transfer
functions respectively, the use of G = P(1 + CP)™! seems appropriate
in considering the problem of controller approximation. For if A = C-E_
represents the error between C and an approximation 6, C is stabilizing
and C and C have the same number of unstable poles, then C will be

stabilizing when || AG| < 1.

§2.4 THE CONTINUOUS-TIME CASE

Frequency wéighting in continuous time can be performed by using
the method of §2.3  after transforming to discrete time via the
bilinear transformation s = (z+1)/(z-1). This is described in detail
by Lin and Kung [29]. Note however that if G(s) is proper, strictly
stable and minimum phase and 1im G(s) is finite and nonzero, then the

S0
obvious analogue to Definition 2.1 is

G(s) = G(-s) . (4.1)

It is however not clear how to define G for strictly proper systems.

Now an optimal Hankel-norm reduction can be performed on the system

K(s) = [F(s)G(-s)]_ where F(s) is strictly stable and proper of order n.
Again [-]_denotes the operation of taking the strictly stable part.

The resulting k-th order approximation has the same form as (2.7).

We again take

W= F -0, (F&)[ea 1] (4.2)

as the stable k-th order frequency weighted approximation to F(s).
Similar error bounds to those of §2.3 apply with L”-norms taken on

the jw axis. In particular, the corresponding results to (3.3) and

(3.4) are,
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| F6 - WGl > oy, (FG) (4.3)

and

[F(0) = W(gw)| = 0y, (FE) [6(j0) |~ (4.4)

§2.5 AN EXAMPLE

As an example of the method developed in §§2.2-2.4, we apply the
a]gorithmé of Glover [14] to a continuous time example. It should be

noted however that instead of the approximation (4.2), these algorithms

take
Wy =F -0, (F&)[6] + D (5.1)

as the stable k-th order approximation to F(s). The choice of the
constant D is specific and is explained in [14]. It is chosen to reduce

the final L™ error. Also see §3.3. ,
We take for F(s) a sixth order Butterworth filter with 3dB point

at w = 1.0. The transfer function is F(s) = Q" '(s), where
Q(s) = s® + 3.8637s° + 7.4641s" + 9.1416s% + 7.4641s% + 3.8637s + 1.

The weighting is given by the second order system

= _(s+1)2

(5.2)
s 24+2a5+1

where a < 1 is chosen to vary | Gall°° .

Fig. 1 shows the magnitudes [Ga| plotted against angular frequency
for two particular choices of a used in this example. Curve 1 has
o = 0.1 and attains an L™ -norm of 10, and curve 2 has o= .01 with a

corresponding L”-norm of 100. The L™-norms are attained at w = 1.0.
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For convenience of notation we denote by Ea(s) the error system given by
Eu(s) = F(s) - Wi(s), where W, is given by (5.1) and the subscript o
indicates that G is the frequency weighting used in (5.1). Note that
with this notation, E1.0(5) is the error obtained by performing a
Hankel-norm approximation of F(s) with no frequency weighting.

The singular values of the system F are:

.00630.

o1 = .94707, G,= .70013, Go,= .32544, G,= .08278, G5 = .00113, Ts

This set of singular values indicates G, as a natural cutoff (o4/os

1

8)
and so we perform a fourth order frequency weighted optimal Hankel-norm

approximation of F(s).

Example (i): o = 0.1

With o = 0.1, the singular values of the system K(s) =
[F(s)GO-](—s)]_ are: o; = 2.6790, o2 = 2.1589, o3 = .84239, g, = .19287,
os = .021903, os = .0011311 . Although each oF is larger than the
corresponding 6%, the new set of singular values still indicates a
fourth order approximation is appropriate, (ou,/os = 9). Fig. 2 shows
the magnitude of the resulting error systems E].O(s) and EO.](s). We
see that IEO.](jw)| is significantly smaller than |E].0(jw)| in a
frequency band about w = 1.0 and is frequency shaped according
|Géf](jw)|, the oscillation near w = 1.0 being a typical consequence of
neglecting the unstable part of the approximation in (2.11). Away from
w = 1.0, the magnitude of EO.](jw) exceeds significantly that of
E].O(jw), however this is a region where we can tolerate a less accurate
approximation. The method of frequency weighting has thus performed
better than the direct Hankel-norm approximation in the pass band of
GO.](s) and worse in the stop band of GO’](S).

The magnitudes of the errors in the weighted gains, namely

]E].O(jw)GO.](jw)| and IEO.](jw)GO.](jw)l appear in Fig. 3. We see that
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Il EO.]GO.llL = ,031 which as expected is close to the lower bound in
(3.3), namely os = .0219. In fact the magnitude of the errors over
all frequencies is close to this value and again in the pass band of
GO.](s) it is much less than the error obtained when E1.0(s) is

taken in series with the same frequency weighting.

Example (ii): o = 0.01

With o = .01, the singular values of K(s) = [F(s)G g5(-s)]_ are

o, = 3.6669, o, = 2.7631, o3 = .94358, o, = .22032, o5 = 024776,

os = .001228. Figure 4 shows the magnitudes of E].O(s) and E.O](s).

The shape of the curve 2 is similar to Fig. 2. Although the minimum
error is significantly less than that for Eo_](s), the oscillation

near w = 1.0 causes an improvement by only a factor of about 2 in the
pass band of G ;,(s). The frequency band in which IE.O](jw)|<,|E].O(jw)l
is less than the corresponding band in Fig. 2. The L®-norm
||E.0](joo)G.0](jm)IIQo can be seen from Fig. 5 to be approximately 0.15
which is much greater than the lower bound in (3.3), here os = .024226.
In the pass band of G ;(s), the magnitude of E.O](jw)G.O](jw) is still
much less than that for the direct Hankel-norm approximation used in
series with G.O](S), (curve 1 of Fig. 5). The increase in the L -norm
of'Ea(jw)Ga(jm) for sma]]la suggests that the L™ -norm of the frequency
weighting G (s) needs to be carefully chosen to obtain a good compromise
in the size of the loop gain error and the error in the approximation

to F(s).
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CHAPTER 3

§3.1 INTRODUCTION

The Hankel-norm approximation problem obtained by introducing
frequenty weighting in the manner described in 82.2, differs in several
important respects from the direct Hankel-norm problem with no
frequency shaping. Although the rank of the Hankel matrix TI(FG) is
preserved, the singular values are of.course corrupted. This means
that a new set of L~ and Hankel-norm error bounds will be obtained.

In this chapter, we explore by how much frequency weighting
changes the singular values and derive L™ and Hankel-norm bounds for
the error of the resulting stable approximating systeﬁ. This will 1in
part answer the following important questions:

(i) What sacrifice in accuracy is made in the resulting error in the
L™ and Hankel-norm measures by using frequency weighting?
(ii) How are "closeness" in the L® and Hankel-norms related?
(iii) What effect does the constant D of §2.5 have on the L* and Hankel-

norm bounds?

1 §3.2  KNOWN L*-NORM BOUNDS

The L™ error analysis will be based on the results of Glover [14].
Here, we present without full proof the relevant results in [14]. They
relate the L -norm of a stable transfer function to the Hankel singular-
values of that function which are assumed for convenience to be non-

repeated. First is a representation Lemma.

Lemma 3.1 Let F(z) be a stable, rational transfer function of

McMillan degree n and have Hankel singular values o:>02> cea >0,
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Then there exists a representation of F(z) as

F(z) = D, + 01E(2) + ...+ o,Eq(2) | (3.7)

~where

(1) Ej(z) is all-pass and stable for all j

(2) Forj =1, ..., k
k
Fk(z) =D, + jE]OjEJ : (3.2)

has McMillan degree k.

This result is easily proved by recursing on the one-step optimal
Hankel-norm approximation of F(z) while noting that in this case, the
singular values are preserved and the all-pass functions n_/g, (of §1.5)

are stable.

Lemma 3.2 In addition to the properties of Lemma 3.1, let

F(z) be such that 1im F(z) = 0. Then

Z>
(1) I Fl, < 2(o1 + ... + o) (3.3)

(2) there exists a constant D, such that

| F - Doll, s 02 + ... + 0 (3.4)

n

and

I Do ll, < o1 + ... ‘o

] (3.5)

Proof (3.4) is obvious if D, is the constant in (3.1). (3.5)

follows by setting z = = in (3.1) and then (3.3) is immediate.
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Although by definition, the constant term in the Laurent expansion of
a transfer function plays no part in determining the optimal Hankel-
norm approximation problem, it is possible to add a constant to the
solution of this problem, in such a way that the overall L™-error is

reduced. This is the theme of the following result.

Lemma 3.3 Let X(z) be the optimal Hankel-norm approximation of
degree k to the stable rational transfer function F(z) of

~degree n. Then there exists a constant DO such that:

n
F-X -0D < o, (F)+ 1 o.(F) (3.6)
” - olLo k+1 | i=k+2 1
I D, | 3 (F) (3.7)
and D < ¥ o.(F 3.7

A
where X_ = [X]_,

§3.3 ERROR ANALYSIS

In this section, we use the results of §3.2 to derive upper and
Tower bounds on the L™-norm of the error for the frequency weighted
approximation given in §2.3. We also present bounds for the norms of
the associated Hankel matrices for the frequency weighted case.

The first result is a growth bound on the singular values of the

system FG in terms of those of the system F.

Lemma 3.4 Let F(z) be a real proper rational and stable transfer
function of degree n. Let G(z) be a stable and minimum phase‘

proper transfer function. Then

N

I oi(Fé) )
”GHLO Sai—(-lj:y— < "GILo 1=],...,n (3.8)
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~

where G is as in Definition 2.1, 82.2.

Proof Because G is real rational, || G| = | G|, and

| G2, = || G}, - We also have that for any K(z) €L", then
| T(K)|| = || K|l, where T(K) is the Toeplitz matrix with symbol
K(z) (see [5 1). According to (5.10) of §1.5, | G|, Gi(F) =

| Gllo;(F) = fnf I T(F) - L] | T(&)] > inf | (*(F) - L)T(G) ]

Using Lemma 2.1, §2.2, this is || G|o;(F)> inf || T(FG) - LT(G) |
| L |
Again by Lemma 2.1, §2.2, LT(G) is Hankel and has rank i-1, hence
I Gllo;(F) > inH I(FG) - Al = o,(FG)
Similarly, [ 6 | o;(FG) = inf | r(FG) - L] | T(G™Y) |
L

s inf | (D(F8) - L)T(G™Y)|| > inf || D(F) - LT(G™")|

L L :

> inf I T(F) -l = oy(F) .

It is also possible to relate the singular values of FG to those of FG

by using.the results of §1.6. To do this, we note that FG = FG B where

B = G6'is all-pass. FG is therefore a system with an all-pass factor.

For simplicity, assume that B has m < n stable poles and m unstable

poles ie G has the same number of zeros and poles. The results of

Lemma 1.7, §1.6, then translate as follows:

and

and

Oi(FG) 3 O'i+m(FG) : i=1...n
04 4m(FB) < 04(FG) i=1 n-m (3.9)
044 (FB)< 04 (FG) < oy (FG) 1 =m+ 1 n

Remark The inequalities (3.9) provide information about the relative

merits, in terms of the L™ and Hankel-norm errors, of performing and

frequency weighted approximation of F(z) or a direct optimal Hankel-norm

approximation of FG.
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For convenience, we recall the notation of §2.2 as follows:

(i) (&,n) is a Schmidt pair of T(FG) corresponding to 0k+](F§).

(ii) X = FG - o¢ (3.10)

is the k-th order of optimal Hankel-norm approximation of FG

. A .
where ¢ = o, .. (FG) and ¢(z) = n_(2)/£,(2) , and
(iii) W= XG! = F - 367" (3.11)

is the frequency weighted approximation to the stable proper
system F(z).

We then have a bound on the Hankel matrices of F(z) and W(z) as follows.

Lemma 3.5 The Hankel matrices T(F) and T'(W) satisfy,

felgt <« DIF) - PO gy, (3.12)

g

Proof. We have || I(F) - T(W) [ = || T(3¢G ") || = o1(5¢67?).
Lemma 3.4 can be applied since 6! € H™ so that

01(3¢G7Y) < | é"‘ﬂw G which is the upper bound. For the lower
bound, consider T(FG) - T'(X).

I(FG) - T(X) = (T(F) - T(XG™"))T(G) = (T(F) - T(W))T(G)

where we have used Lemma 2.1, §2.2. Thus

| T(FG) - T(X) |
I 1@ = | Gl,

< | T(F) - T(W)] || T(G)| . However

I Gl -

Remark  Using Lemma 3.4, (3.12) may be written as

Jalst e« DI = TOD I gy g (3.13)
Oe1(F)
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which is in general a looserbound but involves the singular values of T'(F).
Surprisingly, the weighted systems FG and WG have the same separation,
in the Hankel-norm as the systems FG and X. We prove this in the

following Lemma.
Lemma 3.6  For all orders k of the approximation (3.10),
| r(F6) - T(we)| =3 . (3.14)

Proof We analyse the all-pass function ¢E'IG.

F(z) has n stable poles. Let G(z) have m stable poles and 1
stable zeros (and only these). G !G therefore has m stable poles
and 1 unstable poles. ¢ has in general n+k stable and n-k-1
unstable poles. The difference in number of stable and unstable
poles of ¢G *G is therefore (n+m+k) - (n-k-1+1) = 2k + m - 1 + 1
which‘is always > 1. Thus ¢G 'G is an all-pass function with more
stable than unstable poles and so by Corollary 1.11, §1.6,
o1(¢G716) = 1. This pfoves (3:.14).

We now proceed to derive L™-norm error bounds for the approximations
(3.10) and (3.11) and compare them with those in the Hankel-norm.
Denote as usual by W, the quantity F - LeG 1] . According to

Lemma 3.1, [5¢G '] has a representation as
[666711. = ¥y + Tubs + --v * Try¥nak (3.15)

where the wj(j > 1) are all-pass and stable and we have accorded with
the assumption that the'Ei are not repeated. In the same manner as

§2.5, define a frequency weighted approximation W, to F by

Wy = W+ y, (3.16)
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and the error system EO by

E0= F_wo (3.17)
We then have the following bound for the L”-norm of EO.

Lemma 3.7 For the error E0 of (3.17),

E :
I 6l < "SlL" < (n+ K6, (3.18)

g

where k is the degree of the approximant (3.10).

Proof We have that T(F) - T(W,) = T(F) - T(W) = I(F) - T(H)

By Nehari's theorem, |

I o(F) - tW) || = | T(F) - TW )l < || F-Wgll, = Il Egll, so by
Lemma 3.5, [ E I, > || GI,'S . By (3.15),

| Egll = I 1806711 - woll, = [l Buwr+ - SVl < T -

+ T4 - Again by Nehari's theorem, 65 = oj(8¢é_‘) < (367 Y) |

< GJ67Y, for j =1 ... ntk. This gives the upper bound of (3.18).

Remark Lemma 3.4 may again be used‘to give the bounds (3.18) in terms
of o, ,1(F) and (3.18) yields the upper bound lEqG Ik, < (n+k)&] GIL,| G,
for the weighted system EOG.

Note here that the important consequence of Lemma 3.7 is to
demonstrate the existence of a constant woysuch that the upper bound
(3.18) is accomplished. The lower bound is insensitive to the choice of
the constant. Choosing the constant y  gives a suitably small L~ bound
on EO, however there is no guarantee that wo will be frequency shaped.
For this reason, it is more suitable to choose the constant D in the
expansion of the form (3.1) for [FG]_ rather than y_. This is in fact
the type of choice that is made in the example of §2.5.

We now obtain the corresponding bound to (3.18) according to this choice

of constant.
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Assumption. We assume in the following that lim G™'(z) = 1.

Z-o
Let

Wy =W +D (3.19)
be the frequency weighted approximation to F and
E=F- W1 (3.20)

the error system. The constant D is chosen so that according to

Lemma 3.3,
. n .
| [FGI_ - x_ -D|, < = o, (FG) (3.21)
k+1
and
I o, < z] o, (FG) (3.22)

We formulate the L™-norm bounds for E and EG as a theorem.

Theorem 3.8 The L™ -norms of the error E and the weighted error

EG are bounded according to

I'6IE'S < Il Ell, < K(nok) (3.23)
and

I EG||oo < | G||°o K(n, k) (3.24)
where

Kn,k) = (2(n + K)] 67 |+1) & + 3 o, (FB)
k+2
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Proof  Using (3.19) and (3.20), W = [XG ']+ D + F(«) and
E=F-W =F- [([FG] - 3871 - D+ F(v) = 6[¢67*] - D

so that | E|_ < | [¢& 1 ||, + || D], - Using Lemma 3.2,

~ n+k
| GLe67 ] [, < 2 % G; , where G, are the singular values of

~

5¢6™'. As was shown earlier (Lemma 3.7), G; < || 67|, 5.

‘ n -~ .
Combining this with (3.22) gives | Ef, < 2(n+k)|| G7' |3 + % o;(FG)
k+1

which is (3.23). The lower bound in (3.23) follows from Nehari's

theorem and Lemma 3.5.

Remark If in fact ;ig G™! =B where 0 < g # 1, the appropriate choice
of constant is BD instead of D. In this case K(n,k) = 2(n + k)|| 6| 3
n

+B8 I oi(Fé) .
k+1 _

§3.4 CONCLUSION

In this chapter, we have derived weak bounds in the L*  and
Hankel-norms for the frequency weighting scheme. Application of the bounds
to the example in §2.5 shows that they are indeed weak. For example
when || G|, = 10, the singular values grow by a factor only at most 3.
With || 671 =1, (3.23) gives an upper bound of 205 whereas the actual
error has an L”-norm of approximately & (see Fig. 2), while the
theoretical upper bound from (3.24) is 200 G, compared to the actual
weighted error L*-norm of approximately 2 &.

Lemma 3.7 and Theorem 3.8 illustrates that in order to preserve
the frequency weighting when choosing a constant D that reduces the
final L~ error, a tradeoff has to be made. The L™ error will not be

the smallest attainable for the choice of D given by (3.21) and (3.22),
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but as is evidenced in Fig. 2 and Fig. 4, the desired shaping is
achieved.

The theory of §3.3 indicates that given a frequency weighting G
with || G| > 1, some of the bounds will be small if | G™*|_ = 1.
Such a choice for the frequency weighting will in general be possible
for simple weighting shapes or those that emphasise only narrow
frequency bands. The bounds also indicate || Gf || G |, as an impoétant
parameter of the frequency weighting.

Although we have analysed the error for the scalar case, the
results in §3.2 are valid for multivariable systems. Therefore a

similar analysis can be used for frequency weighting of multivariable

systems.
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CHAPTER 4

§4.1 SYNOPSIS

In this thesis, we have presented a new model reduction technique
for scalar Tinear dynamic systems. Further, we have given an error
analysis and demonstrated the new methods' successful application via
an example.

More precisely, we have developed a modification of the optimal
Hankel-norm approximation technique that allows the use of classical
intuitive design ideas through frequency weighting. Because the
introduction of frequency weighfing entails only the solution of a
modified optimal Hankel-norm problem, much of the underlying theory
already exists so that, for the error analysis in particular, we have
used standard results and techniques throughout.

Because of the great intuitive appeal held by frequency domain
design methods, the new approximation procedure represents an important
bridge between frequency domain and state space ideas which should
inevitably help the popularization of the still Tittle known optimal
Hankel-norm method. Its popularity is expected to be further increased
by additional theoretical developments, especially for the multivariable

problem, as more workers enter the field.

§4,.2 FUTURE RESEARCH

The investigations of the thesis have uncovered several problems
for future research. The following forms a collection of those that

seem to the author to be the most tractable.
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In any practical use of frequency weighting, it is clearly desirable
to have the greatest computational simplicity. To this end, the
frequency weighting G should be regarded as a design variable, a suitable
G being chosen to achieve the required shape of error. We therefore
envisage -an iterative approach whereby more complicated features are
added to G until the detail of additional shaping is no longer important
to the final approximation. Special choices of G are possible that give
the combination FG added simplicity. One such choice, due to Glover, is
to take the zeros of G equal to the poles of F, thereby giving an all-
pass factor to FG. In this case, the one-step frequency weighted}
approximation has no unstable part, a fact which leads to ah interesting
multiplicative error analysis [15]. Other choices of G may also prove
advantageous.

As was noted in §3.4, the error bounds of Chapter 3lafe very
weak. The good performance of the example of §2.5 suggests that tighter
upper bounds may exist. For instance the inequality ok(FE) < oi(G)ok(F),
i =1, 2, holds for this example. Two avenues are oben; first to
construct an example so that the upper bounds of §3.3 are attained or
secondly to find directly, improved upper bounds.

It is known that when the optimal Hankel-norm approximation
technique is used to approximate a controller that forms part of a
stable closed loop system, the approximating closed loop system will
not in general be stable. In fact it has been shown that the Hankel-
norm is too weak a measure for studying stability of feedback systems

[21]. Indeed, it is not reasonable to expect closed Toop stability from

‘any approximation technique that ignores the plant model. Consider

however, the following situation. Let G be the plant model and F the
controller in a stable closed loop system. Obtain a frequency weighted

approximation W, of F that uses G, or its minimum phase equivalent, as
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the frequency weighting. The natural question that arises is whether
the account taken of G allows a determination of the stability of the
closed loop system employing G and W.

Although not widely used here, the definition of the Hankel
operator as a projection (§§1.5 and A.2) is related closely to the theory
of singular integrals [34]. One avenue of investigation would therefore
be to reformulate the optimal Hankel-norm problem in terms of singular
integrals, presumably giving a relation of the inhomogeneous Riemann
~problem [30], and then to solve this new problem. In view of the
substantial theory of singular integral equations, this approach may
well lead to new proofs or techniques.

In this thesis,vwé have not addressed the multivariable optimal
Hankel-norm approximation problem. Its solution [14] is straightforward,
the only significant difference from the scalar case being that the
solution is not unique. Despite this, one solution can be chosen that
has the smallest L~ error bounds. Once a specific solution has been
selected, it is a relatively straightforward matter to extend frequency
weighting to multivariable systems and this work haé been undertakeﬁ

by Glover [15].
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APPENDIX

§A.1 INTRODUCTION

As was apparent in Chapters 1 and 2, the theory of frequency
weighted optimal Hankel-norm approximation is most conveniently developed
in discrete time where the considerable tools of function theory are
available. We then rely on a bilinear transform, that maps the unit
disk conformally onto the left half plane, to obtain from a continuous
time transfer function, an equivalent discrete time system, to which
the discrete-time theory may be applied. This procedure.has been
expounded fully by Lin and Kung [29]. An alternative, is the direct
approach of Glover [14] which uses the balanced realization of a given
continuous-time system.

In 8A.2 we demonstrate the validity of the frequency weighted
approximation scheme directly in continuous time. This is done by
proving the equivalent results to those of Chapter 2 by using an
appropriate continuous time definition of the Hankel operator together

with the Laplace transform.

§A.2 CONTINUQUS-TIME THEORY

We first establish some preliminary notation. Denote by Q,
(resp. ©_) the open half plane Re s < 0 (resp. Re s > 0).
Let L2 (resp. L2) be the Lebesque space L*(R,) (resp. L*(R_) of real
valued functions. The two-sided Laplace transform L of a function
u(t) € L#(R) is defined by

L{u(t); s} =7 e Stu(t)at (2.1)

and in general the integral will converge uniformly to an analytic




function in some strip, -o1 < Re s<a, ; a1, a,> 0 . The two-sided

transform decomposes as
L=1, +L_ (2.2)

where for u € L? and supp u C R

L {u(t); s}

is analytic for s € Q. , and for v € L and supp v C R,

L, {v(t); s} ﬁ: e'Stv(t)dt (2.4)

is the standard ohe-sided Laplace transform which is analytic for
s € 0_. In what follows, the statement that u € L? (resp. Li) will
mean that u is to be regarded as a function such that supp u C g_
(resp. R,). That is, we consider only the restriction of u.

The definitions (2.3) and (2.4) imply that formally
L_{u(t)s s} = £ {u(-t); -s} . (2.5)
We will also use the notations

v(s) = V(s)

r{v(t); s}, veEL

u(s) = U(s) = _{u(t); s}, u€ L2

where convenient. It will be obvious from the context which of L_or

L is meant by this notation. Finally, define V(s) for v € L2 by
~ A
V(s) = V(-s) (2.7)

with V(s) as given by (2.6).

46

© e Stu(t)dt (2.3)
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By the Schwarz symmetry principle, V(s) is analytic for s € Q, .

We now define the Hankel operator in continuous-time.

Definition 2.1  The Hankel operator T': L2 > L} is defined by:

ne>

(Tu)(t) f:f(t+T)U(-T)dT t>0

(2.8)
0 t<0.

where u € L% |

Nehari's theorem now states that I' is a bounded operator on L?
if f(t) is a generalised function coinciding for t > 0 with the Fourier
transform of some function on the real axis. Here, we will be concerned

with the sub-class of f's for which

F(s) = c + %%é%— (2.9)

where ¢ is a constant (possibly zero) and n/d is a real, strictly proper
stable rational function. In the case that c is nonzero f(t) contains
at worst a "Dirac Delta" at t = 0 and the Laplace transform is of course
there interpreted in the generalised sense [37]. We will therefore be

dealing with bounded Hankel operators.

Definition 2.2 Let G(s) be of the form (2.9). Define the negative

time convolution (n.t.c.) operator T : L2 > L2 by

(Tu)(t) : jfn g(-t+t)u(t)dr t<0

(2.10)
0 t>0

where u € L* .
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Note that according to (2.10) and by letting v = Tu ,

v(t) = fg g(t-t)u(t)dt t <0
= f;tg(-t-T)U(-T)dr
or
v(-t) = ¥ g(t-Du(-t)dr , t>0. (2.11)

Thus if * denotes the usual convolution operation for t > 0 and R

the reflection operator, ie (Ru)(t) = u(-t), then (2.11) states that
Tu = R(g * Ru) . ' (2.12)

The definition (2.10) is therefore essentijally the same as the usual
positive-time convolution. Bearing this in mind, the following result

is easily proved.

Lemma 2.1 Let u(t) € L?® and g(t) be as in Definition 2.2.

Then the n.t.c. satisfies

(Tu)~(s) = G(s)U(s) = G(-s)U(s) . (2.13)

Proof  Applying the convolution theorem [10] for L to (2.11)
gives, L {v(-t); s} = L {g(t); s} L {u(-t); s} and

L {v(-t); -s} = £,{g(t); -s} L {u(-t); -s} . This by virtue of
(2.5) is £_{v(t); s} = L {g(t); -s} L_{u(t); s} or

(Tu)~(s) = G(-s)U(s) , which is (2.13).

Denote by [-]_ the operation of taking the strictly stable part of a
rational function of the form (2.9). We now relate the Hankel operator

(2.8) to [-]_in the frequency domain.
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Lemma 2.2 Let u € L and f(t) be as determined by (2.9) and
Definition 2.1. Then

(ru)~ = [FU]_ (2.14)

Proof We calculate directly (Tu)” .

After a change of variable, (2.8) may be written, for t > 0, as

(ru)(t) = f§ f(x . (2.15)
Thus
(ru)~(s) = [ oSt [P u(t-t)dr (2.16)

and is analytic for s € @_, the integral conveying uniformly there.
We can therefore reverse the order of integration in (2.16). Then
(ru)~(s) = [T e Stdt[” f(r)u(t-1)dr .

Let A = t-t and dx = dt , so that

(tu)~(s) = fo e"s(T+A)dA'fwf u(x)dk

5 e Au(a)dn) dr . (2.17)

Letting w(s,t) = fgr e'sxu(x)dl » (2.17) is

(ru)~(s) = L {f(t)w(s,t); s} . - (2.18)
Now
W(s,p) = ﬂ? e'ptw(s,t)dt

e-pt -pt

P ;
= (0 _-SA © e st _
= 5 l;te U(A)dl]o ﬂ:-—:a~ eStu(-t)dt

For s € 9 and p € @_ the first term vanishes to give

1 -(p-s)t, _
5 ﬁ: e u(-t)dt

W(s,p)

%-L+{u(-t); p-s} , p-s € Q_
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o|—

L {u(t); s-p}

o |-

U(s-p) (by 2.5).

To (2.18) apply the convolution theorem [10] in the p-plane for

the Laplace transform to give,

(ru)(s) = oo [OH= HelMs=lsplldp s e g
- 1 i~ F(p)U(p) d
= A [l _.(‘pﬁ)_s_(_ﬂ P . (2.19)

We must have o = 0 since 0 € 0 < Re s - Re s. Since we are

concerned with rational functions of the form (2.9), (2.19) is

(ru)*(s) = - T Res [F( ) U( )]
PE Q, p=5S
= [F(p)u(p)]_ - (2.20)
(2.20) is easily seen by taking F = B%a- » Q €Q,_ , and noting

that U(p) is analytic in Q_ .

Remark (2.20) can also be deduced from (2.19) when we recognise the
integral in (2.19) as the Riesz projection on L?(C), where C denotes

the imaginary axis. If K(p) € L*(C) and s € q_ then

L K(p)dp _ (P_K)(s)

2mi /=i p-s

where P :L*(C)>H* and P2 = P

Here H> is the Hardy class on Q_ .
Although according to (2.9), F(p)U(p) may not belong to L?(C), the
integral of the constant term in the integrand is however zero by

Cauchy's theorem.



51

Consider now the stable transfer function
Q(s) = [F(s)G(s)]_ . (2.21)

Let S be the associated Hankel operator,ie (Su)(t) = L?Q(t+T)U(-T)dT, t > 0.

We then have the following analogue of Lemma 2.1(ii) of §2.2.
Lemma 2.3 S admits the factorization
S=1IT (2.22)

where T is the n.t.c. for g(t) and I the Hankel operator with
kernel f(t).

Proof Let u €L? . By Lemma 2.2 we have
(Su)~ = [[FGI_UI_ (2.23)

Because [[FEI,U]_ = 0, (2.23) is (Su)~ = [FGU]_ = [F(Tu)~]_

= (I'Tu)” as required.
The analogue of Lemma 2.2, 8§2.2 is also straightforward.

Lemma 2.4 If G(s) has, in addition to the requirements of
Definition 2.2, ¢ # 0 and is also minimum phase, ie all zeros are
in Q,, then T is invertible and T ! is the n.t.c. operator

associated with G 1(s).

Proof G! is stable, hence define for u € L?, the n.t.c.

(Yu)(t) = ng L;l{G'?(s);T-t}u(T)dT for t < 0. Then by Lemma (2.1),
(Yu)~ = (G™})~U so that (YTu)~ = (G })~(Tu)~ = (6™})~GU = U = Q.
The second last equality holds because (G )~ = [ Similarly,
(TYu)~ = G(Yu)" = 6(6™)"U=u .
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Lemmas 2.1 - 2.4 now enable a discussion of the operator S in
(2.22) in the same way as in §2.2. We therefore take G(s) as the
frequency weighting and form the system (2.21). G(s) is chosen so that
Lemma 2.4 is valid. The k-th order optimal Hankel-norm approximant
X(s) for Q(s) has an associated Hankel operator A such that for
u€L®, (Au)” = [XU]_ . The difference S-A may then be written as
(I - AT™!)T exactly as in the discrete-time case. This completes tﬁe

continuous-time analogy.
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