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ABSTRACT

This thesis addresses the problem of model reduction 
for scalar linear time-invariant systems via the use of 
the optimal Han kel-norm approximation problem. Frequency 
weighting is combined with optimality in the Hankel norm 
to obtain a frequency shaped approximation to a given 
linear system. This is accomplished by the solution of a 
modified optimal Hankel-norm approximation problem.
Also presented is an error analysis for the frequency 
shaped approximation.
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CHAPTER 1

§1.1 INTRODUCTION

The approximation of  high order  l i n e a r  system t r a n s f e r  funct ions  

plays an important  pa r t  in many areas  of  e l e c t r i c a l  engineer ing.  The 

d e s i r a b i l i t y  o f  replac ing a high order  model by one of  reduced order  i s  

mot ivated pr imar i l y  by the advantages o f  implementing,  e i t h e r  in hardware 

or sof tware ,  as simple a system as pos s ib l e  whi le s t i l l  meeting the 

design s p e c i f i c a t i o n s .  To determine whether an approximation scheme 

s a t i s f i e s  any design requi rement ,  the s i ze  o f  the e r r o r  incur red  in 

making the approximation should be e x p l i c i t l y  known, while simple 

algor i thms fo r  determining the  approximation would a l so  be of  d i s t i n c t  

advantage.

I t  i s  p r e c i s e ly  these  f ea tu res  t h a t  have led to the keen i n v e s t i g a 

t i o n  and a pp l i c a t i o n  of  the so c a l l ed  optimal Hankel-norm approximation 

problem [3,14,27 ,36] to model reduct ion of  engineer ing systems.  This 

technique,  e s s e n t i a l l y  an a pp l i ca t i on  from the  theory of  Hankel ope r a t o r s ,  

has l ed ,  t oge the r  with the theory of  balanced r e a l i z a t i o n s ,  to a renewed 

i n t e r e s t  in model reduct ion in r ecen t  y e a r s .  In p a r t i c u l a r ,  optimal 

Hankel-norm approximation has found wide a pp l i c a t i o n  among the fol lowing:

( i )  the reduct ion of  high order  p l an t  models to al low the design of  

low order  c o n t r o l l e r s  [16] ,

( i i )  the reduct ion  of  high order  c o n t r o l l e r s  designed using the fu l l  

order  p l a n t  model [27-29] ,

( i i i )  the reduct ion of f i l t e r  des igns ,

( iv)  the approximation of  i n f i n i t e  dimensional  systems [9] ,  and

(v) spec t ra l  approximation [22].
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Besides having a computationally cheap closed form solution and 

calculable error bounds in terms of the frequency response, the method 

gives an approximation which, as the name suggests, is optimal in a 

specific measure (the Hankel-norm) and so is the f i r s t  model reduction 

technique to obey any strong optimality criterion. More importantly 

however, is that the resulting approximation is guaranteed to be realizable.

The object of this thesis is to show how to combine the additional 

feature of specifying the approximation accuracy with frequency, thereby 

shaping the error of the optimal Hankel-norm approximation. This is 

highly desirable since in many practical situations, i t  is possible to 

identify frequency regions where any approximating system should be 

particularly 'close' to the original system. For example such a region 

is represented by the unity gain crossover for a closed-loop control 

system. From an engineering viewpoint, the synthesis of optimal Hankel- 

norm approximation and specification of error size with frequency, 

combines the power of frequency domain and state space methods. It 

allows the incorporation of intuitive classical design ideas, which 

provide unmatched insight and insensitivity to small errors in a system 

description, with formal tractable mathematics. Like state-space methods, 

the frequency-weighted approximation scheme also extends easily to 

multivariable systems.

§1.2 REVIEW

The modern theory of Hankel operators has i ts  beginnings in the 

algebraic theory of Hankel and Toeplitz matrices and forms which 

originated in the memoirs of G. Frobenius [11,12], who studied them in 

connection with problems of s tabil i ty  theory and related questions of 

localization of roots of polynomials, and the works of L. Kronecker [24,25].
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In the f i r s t  half of this century, the study of Hankel operators gained 

an important impetus from applications in function theory, probability 

theory and the problem of moments [35]; however the present intense 

interest in the theory can largely be attributed to the discovery of new 

applications for recent advances, chiefly in function theory, Gaussian 

processes and systems theory.

Important recent results include the works of Nehari [31], Hartman 

[18], Adamjan, Arov and Krein [1-4], Clark [7,8] and Peller and 

Khrushchev [32,33]. A complete overview of this work appears in Power 

[34] and Peller and Khrushchev [33], while the progress enjoyed by the 

algebraic theory is detailed in Iohvidov [20].

From the systems theoretic point of view, the most significant of 

this work applicable to model reduction is that of Adamjan, Arov and 

Krein [3] which appeared in English in 1971. This work went largely 

unnoticed (by systems theorists) until 1978 when P. Dewilde [23] pointed 

out i ts  importance to the larger system theoretic community. In 

particular [3] is the source of the theory behind the optimal Hankel- 

norm approximation technique which has found so many fruitful engineering 

applications.

Using the theory of balanced realizations, Silverman and Bettayeb 

[36] made the existence results of [3] concrete and gave explicit 

algorithms for obtaining the optimal Hankel-norm approximation of any 

specified order to a given finite-dimensional scalar system. Kung and 

Lin [26] employed a polynomial approach that led to a simple generalised 

eigenvalue formulation of the optimal Hankel-norm problem and gave a 

fast matrix-fraction description algorithm for i ts  solution. This 

approach was extended in [27] to obtain efficient algorithms for multi- 

variable systems while [28] uses a state-space approach to solve the 

same problem.
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A different approach is that of Harshavardhana et a l . [19] who 

with the implementation of one algorithm obtained solutions of all 

orders to the optimal Hankel-norm problem for a scalar system from the 

eigenvectors of a bilinear matrix combination of rearranged versions of 

the Hurwitz matrix for the characteristic polynomial of the system.

An interesting application to model reduction is that of Jonckheere 

and Helton [22], where the order of a stochastic process power spectrum 

is reduced by finding the optimal Hankel-norm approximant of the phase 

of the outer spectral factor. The most complete treatment, known to 

the author, of the optimal Hankel-norm approximation problem for multi- 

variable systems is that of Glover [14]. [14] uses results in balanced

realizations, all-pass functions and the inertia of matrices to obtain 

all solutions by solving Lyapunov equations and for one class of 

solutions gives explicit error bounds in the supremum norm.

§1.3 APPROACH AND CONTRIBUTION OF THE THESIS

Underlying the work of this thesis is the considerable theory of 

Hankel operators and their applications to linear systems. From this 

large body of theory, §§1.4 and 1.5 assemble some well known results, 

including the main result of Adamjan, Arov and Krein about which the 

thesis is developed. §1.5 also introduces and defines an important set 

of input-output invariants of a linear system; the singular values, in a 

more general setting. Also presented there, is a new derivation of a 

weak bound on the f i r s t  singular value of the optimal Hankel-norm 

approximant. In §1.6, we derive some shift inequalities for the singular 

values of rational functions that contain an all-pass factor. In 

particular, we partially extend a result of Glover [14], concerning the 

optimal Hankel-norm approximation of stable rational all-pass systems 

to the unstable case.
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The work in Chapter 2 introduces and develops the central new 

idea of the thesis; combining frequency weighting and optimal Hankel- 

norm approximation. The basic idea involved is as follows: consider a

series combination of two stable systems the second of which is to be 

approximated by a lower order system. We desire the approximation error 

to be determined by the magnitude of the frequency response of the f i r s t  

system. Available from the Adamjan Arov and Krein theory, is a procedure 

for obtaining the explicit form of an optimal approximating system 

(of reduced order) which we wish to uti l ise .  The synthesis is performed 

thus: f i r s t  devise a transformation that, when applied to the f i r s t ,

frequency weighting system, produces a completely unstable system with 

the same magnitude (with frequency), as the frequency weighting. Next, 

combine i t  with the second system to form a modified system. Apply now 

the optimal Hankel-norm approximation technique to the modified system- 

The modification is now "undone" by multiplying the resulting approximation 

by the image of the frequency weighting under the inverse of the original 

transformation. Finally, take the stable part of the result as the 

frequency-weighted optimal Hankel-norm approximation. This method is 

formally developed in §§2.1 to 2.4. We conclude the chapter with a 

practical example of the technique. A classical Butterworth f i l t e r  is 

reduced in order by two, the approximation being frequency shaped by a 

simple second order system.

The core of the third chapter consists of a more thorough error 

analysis of the frequency weighted optimal Hankel-norm approximation 

theory presented in Chapter 2. Error bonds are derived for the incurred 

error in both the supremum (L°°) and Hankel-norms so that frequency 

weighting may be compared with other candidate model reduction schemes.

In particular, the bounds allow an easy comparison with those for direct 

optimal Hankel-norm approximation without frequency weighting.
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The final chapter of the thesis presents a retrospective overview, 

followed by several suggestions for future research into the many new 

ideas that arose during the investigations of the thesis.

The appendix is supplemental to Chapter 2 in that i t  presents in 

part the same theory contained in that chapter but derived independently 

in continuous time with the use of integral operators.

In summary, the contribution of the thesis is f i r s t ,  to propose 

and develop the theory of a new method for combining the optimal Hankel- 

norm approximation technique with the analytical specification of the 

approximation accuracy with frequency, and secondly to present an error 

analysis and demonstrate the applicability of the method via a common 

example from circuit  theory.

§1.4 SOME PRELIMINARY THEOREMS

As a preliminary, we assemble several important known results for 

Hankel operators on a Hilbert space. They will be used repeatedly in 

the sequel.

Let £2 denote the Hilbert space of two-way square summable complex 

sequences w = {... w2, w1} w{, w2, . . .}  and £2 the (sub) Hilbert space 

of one sided square summable complex sequences y = {y^, y2, . . .} .  £2
CO

is endowed with the inner product (v,w) = Z (v.w. + v^vT), where the bar
j  _ 1 J J J J

denotes the complex conjugate. Let {e^, e2, . . .}  denote the standard

orthonormal basis on £2. Each operator Y on £2 has a representing matrix

Y-. = (Ye", e") with respect to the standard basis. The quantity IIYll 
1J 1 J

will denote the induced operator norm on £2. The mapping determined by
oo

f (e19) = Z (f-e~1JÖ + f-e1' Ö) is a Hilbert space isomorphism from
j=l J J

£2 to L2, the space of complex valued functions defined on the unit circle
"1 0C = {z : z = e ,- tt £ 0 < tt} which are square Lebesgue integrable there.
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Each sequence in £ 2 under the mapping y(z) = Z determines a
j = l  J

member o f the Hardy class H 2, ana ly t ic  in the open u n it  disk. This 

is also a H ilb e r t  space isomorphism.
oo

By L denote the space o f a l l  complex valued functions, f ,  on

the u n it  c irc le  with bounded L°°-norm, ie || f  || = ess sup |f(e lw )|< 00 ,
0

OO

and H the space o f complex valued functions which are ana ly tic  and 

bounded in the open u n it  d isk, | z | < l .  I t  can be seen that L°° C, L2 

and H°°C H2. We now define a Hankel operator on £2.

D e fin it ion  1.1 A Hankel operator r on £2 is an operator fo r 

which there exists a sequence a i ,  a2, . . .  such that i \  • = -j,

i ,  j  = 1,2, . . .

The fo llow ing re su lt  allows us to construct bounded Hankel operators.

Theorem 1.1 (Nehari [31]) The in f in i t e  Hankel matrix

( ai+ j_ l ) ) 7  j_i determines a bounded l in e a r operator r on £2 

i f  and only i f  there exis ts  an L°° function f  such that an = f  , 

where f  is the n-th negative Fourier co e ff ic ie n t o f f .  That is ,  

f n = n = 1, 2, . . .  . Moreover, given an

f  E L°°, and i f  V  is the Hankel operator with matrix elements

r i j  = ( f i + j - i ) ' i , j = i » then II r ll = llf+hIL» h G H°°> and there

is  a unique h '  E H°° such tha t || T \ \  = || f+h^L .

We w i l l  ca l l  f  the symbol function o f the bonded Hankel operator r and 

denote the operator and m atrix , (terms which are used interchangeably), 

by r ( f ) .  I t  w i l l  sometimes be convenient to omit the symbol function 

when no ambiguity can arise. Clearly fo r  any given bounded Hankel 

operator, the symbol function is  not unique because r ( f )  = r(f+h) fo r 

a l l  h E H°°. Given an f  E L°°, the unique symbol function f  + h '  fo r 

which I r ( f )  II = II f  + h X >  h' e  h” , is  ca lled the Nehari extension o f 

f  and we denote i t  by f^.
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Defin it ion 1.2 Given an f  G L°°, the Hankel-norm of  f  is 

defined by, || f  ||H = || r ( f )  || .

Next is a characterizat ion of the compact Hankel operators.

Theorem 1.2 (Hartman [18]).  The Hankel operator r ( f )  is 

compact i f  and only i f  f  e H°° + C, where C denotes the space 

of continuous functions on the un i t  c i rc le .

F ina l ly ,  we characterise the f i n i t e  rank Hankel operators.

Theorem 1.3 (Kronecker [13,25]).  The i n f i n i t e  Hankel matr ix 

T - -  = (aq-+j _ i )”  j_i is of f i n i t e  rank n, i f  and only i f

r(z) = is a rat ional  function of z and
z z2 z3

that in th is  case, n is  the number of poles of r ( z ) ,  counted with 

mul t i p i  i c i t y .

Throughout the thesis, we w i l l  be pr imar i ly  concerned with Hankel 

matrices whose symbols are real rat ional  functions that represent 

discrete- t ime system t rans fe r  functions. Theorem 1.1 then ensures that 

i f ,  as we w i l l  assume throughout, the symbol functions have no poles 

on IzI = 1 ,  the Hankel operators w i l l  be bounded. Theorem 1.2 

guarantees the existence of  bounded s ingular values (see §1.5) and 

Theorem 1.3 implies that the Hankel matrices w i l l  be of f i n i t e  rank 

equal to the number o f  stable poles (counting m u l t ip l i c i t y )  o f  the 

symbol function. A pole or zero w i l l  be cal led stable i f  i t  l ie s  in 

I z I< 1 and unstable i f  i t  l i e s  in |z|> 1.

Remark: In view of the isomorphism between £2 and H2 one can also

define the Hankel operator on H2 in terms of project ions on L2 as 

follows. For g G L2, define the Riesz project ions [ * ] + and [ • ]  on L2
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oo . _

by [ g ] , = £ g^zJ" and [g] = g-[g] . The projection [•]  se lects
j=l J “

the stable part of g and projects L2 onto L2ÖH2 . If  f G L°° define 

the Hankel operator r( f )  on H2 by r( f )h = [fh]_ = [ [f]_h]_ , 

h G H2 . This definition, which is equivalent to Definition 1.1, often 

leads to simplified proofs involving Hankel and Toeplitz operators [33].

1.5 s-NUMBERS AND THE ADAMJAN, AROV AND KREIN THEOREM

An important set of parameters of a linear system, are i t s  singular 

values which are the s-numbers of the associated Hankel operator. We 

now define these.

Definition 1.3 The (k+l)-st  s-number of the Hankel operator 

T(f) , denoted 0 |<+-|(f) is defined by

Gk+l(f ) = inf II r ( f ) - L || k = 0,  1, 2 . . .  (5.1)

where the infemum is taken over all bounded linear operators L 

of rank £ k .

It can be shown [17] that a ( f ) is the (k+l)-st  eigenvalue of
— T— V  >(T ( f )r ( f ) ) 2 and that the s-numbers therefore form a decreasing sequence 

for increasing k . Note that according to Definition 1.2, || f  ||H = Oi(f)

Definition 1.4 Let a be an s-number of r ( f ) .  A pair 

(£, n ) , n G £2 is called a Schmidt pair of r( f )  corresponding 

to a i f  r ( f ) £  = on (5.2)

and T(f)n = oE,

Remark. The name singular values (or Hankel singular values) will be 

reserved exclusively for the s-numbers of Hankel operators whose symbol

is a real rational function.
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Def in it ion 1.5 A function 0 (z ) ,  not necessarily stable, is 

cal led al l-pass i f  <j>(z)<j>(z) = 1 fo r  a l l  |z| = 1 .

Important in determining the s-numbers o f  a given function are the

Blaschke products. A rat ional  al l-pass function of the form 
n .

B(z) = n e j  z-aj  fo r  some complex numbers ai . . .  a„ and where 
j=! l - ä j z

a.  = arg a. , is  cal led a Blaschke product with n zeros. Note that the 
J J ^ . __

function B(z) = B(z"-1 ) sa t is f ie s  BB = 1 fo r  a l l  z and has zeros at 

the poles of B(z) and poles at the zeros of B(z).

The d e f in i t io n  (5.1) may be regarded as an approximation measure 

that gives the smallest at ta inable distance from r(f )  using rank k 

operators. An important contr ibution o f  Adamjan, Arov and Krein is the 

proof that the infemum in (5.1) is attained by a unique i n f i n i t e  Hankel 

matrix of  rank k. In addit ion, th e i r  construct ive proof gave a unique 

symbol function with exactly k stable poles that is a distance 

ak+l ( f ) ^rom ^ 1' n  ̂ " norm* This symbol function is cal led the

k-th order optimal Hankel-norm approximation to f .  We state the i r  

resul t  in the fol lowing theorem.

Theorem 1. 4 (Adamjan, Arov and Krein [3] ) .  Given an f  G L°°, there 

ex ists a unique i n f i n i t e  Hankel matr ix T(x) o f  f i n i t e  rank 

k < rank r ( f )  such that

|| r ( f )  - r(x) || = crk+i ( f ) . (5.3)

Further, i f  (£,n) is any Schmidt pair o f  r ( f )  corresponding to 

ak+]( f ) ,  then the symbol function x(z) that is given by 

x(z) = f (z )  - Qk+1( f ) ^ ( z ] r  <5' 4)

n_(z)
A 00

= 2 n,-z 
i= l  1

C+(z) = T. g.z
i = l 1

i-1

where

(5.5)
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is the unique function that at ta ins the infemum in the expression

Dk( f )  = i n f  I f  - g L  , (5.6)
9

the infemum in (5.6) being taken over a l l  functions g of the

form r  + h where r  is  a s t r i c t l y  proper rat ional  function with
00

no more than k stable poles and h <= H . That is

II f  - x L  = Dk( f )  (5.7)

and x(z) has exactly k stable poles (counted with m u l t i p l i c i t y ) .

Moreover, the functions r i_(z)/£+(z) have un i t  modulus on the un i t

c i rc le  ( ie  they are a l l -pass).

A more concise proof of th is  theorem than that which appeared in the 

or ig ina l  paper, may be found in [33] or [34]. When applying Theorem 1.4 

to approximate system t ransfer  functions, f (z )  is a stable real rat ional 

function.  In th is  case, i t  can be shown [36] that the rat ional  al l -pass 

function q_/£+(z) has in general n+k stable poles and n-k-1 unstable 

poles where n is  the number o f  poles of f ( z ) .  Therefore to avoid 

re ta in ing unstable poles in the approximation x, [x]_ is taken as the 

approximating system to f ( z ) .  The equali ty  (5.3) then holds since 

r(x) = T([x]_) but of course (5.7) is no longer va l id .  [x]_ w i l l  be 

cal led the stable k-th order optimal Hankel-norm approximation to f (z ) 

and x(z) w i l l  be said to solve the optimal Hankel-norm approximation 

problem of order k.

Theorem 1.4 enables the derivat ion of  several equivalent characteriz

ations fo r  the s-numbers of a Hankel operator which we w i l l  now prove.
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Lemma 1.5 [6 ,7] The s-number a^+i ( f ) may be expressed as:

ak+1( f )  = i n f  || T(f) - A || (5.8)
K 1 A

= i n f  || T(uf) || (5.9)
u

= i n f  || f  + v L  (5.10)
v

where the infema are respectively taken over,

Hankel operators A of rank k,

Blaschke products u with k zeros in |z |< l and 

rat ional functions v with k stable poles.

Proof. Start ing with (5 .9 ) ,  we get by using Nehari's theorem 

(Theorem 1.1) and Kronecker's theorem (Theorem 1.3),

i n f  || T(uf) || = i n f  i n f  || uf + h L  h £ H°°
u u h

= i n f  i n f  || f  + üh L  
u h

= i n f  i n f  || f  + r  + g L  ; g G H°°, r  regular rat ional
r  g

with k stable poles

= i n f  || r ( f )  - r ( r )  ||
r

= i n f  || r ( f )  - A|| = a. , ( f )  .
A K 1

The las t  equal i ty  fol lows from Theorem 1.4.

Note that i f  a k+-j(f) is a repeated s-number, we need to take the 

infemum in Lemma 1.5 over Blaschke products (e tc . )  with at most k 

zeros in |z | < 1.
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The equal i t ies (5.8) and (5.10) show that the symbol function x 

of (5.4) sa t is f ies

II f  - x l l  = ok+1( f )  (5.11)

and that therefore ( f ) = ak+-|( f) .

The e x p l i c i t  form (5.4) gives the fo l lowing easy bound fo r  

II x||H =  Ol(x)

Lemma 1.6 a i (x )  is bounded according to

° i ( f )  - ^ k+-| ( *  a i (x )  £ o i ( f )  + ak+1( f )  . (5.12)

Proof Although (5.12) is  a t r i v i a l  consequence of the equal i ty 

(5 .3) ,  we give a s l i g h t l y  more ins t ruc t ive  proof of  the upper 

bound. Denote ak+^ ( f )  by o. According to (5 .4 ) ,  on 

z = en t , - tt £ t  < 7T, we have | x | 2 = | f  | - 2 | f  | aco s(e(el t ) - arg f ( e n t ))

+ a2, where 0(e^^) = arg n_/C+- Thus ( | f |  - o ) 2 £ | x | 2 < ( | f |  + a ) 2 

so that I II T_1|L " Gl < II XL  c II f | L + a - Because r(x) = r(x+h)
oo

fo r  a l l  h G H , we can replace f  in Theorem 1.4 by i t s  Nehari
A

extension f^ and consider x = f^ - ori_/C+ • But f^ is by uniqueness 

ju s t  the function o i ( f ) n i - / £ i +  where (Ci, m )  is any Schmidt
A

pair corresponding to Oi ( f ) .  The above argument then gives for x,

( a i ( f ) - a ) 2 < I x12 < ( a i ( f ) + a )2 . Clear ly , Gi (x) = 

a i ( x) < || x L  so that  the upper bound immediately fol lows.

§1.6 SYSTEMS WITH A RATIONAL ALL-PASS FACTOR

The method of  introducing frequency weighting, to be described in 

Chapter 2, produces a symbol function which has a rat ional al l-pass 

factor . Here we present some useful new resul ts on the singular  values
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o f  such symbols. In p a r t i c u la r ,  we p a r t i a l l y  extend a re s u l t  in Glover [14] 

on the s ingu la r  values o f  ra t iona l  a l l -pass  systems.

Let F(z) e  L be a stab le ra t iona l  funct ion o f  degree n and 

<j>(z) a ra t iona l  a l l -pass  funct ion with  mi s tab le poles and m2 unstable 

poles. That i s ,

4>(z) = BiBz (6.1)

where Bi and B2 are (modulo a fac to r  e^a , a rea l)  Blaschke products of 

orders mi and m2 respec t ive ly .  Assume also tha t  m2 does not exceed 

n-1 and tha t  no pole-zero cancel la t ions occur in the combination F<f>.

Noting tha t  a..(F) = 0 fo r  i > n, we have the fo l low ing  Lemma.

Lemma 1.7. For F and <j> as defined above,

^  °k<F*> > < W F) k = 1 .... n-m2 (6 . 2 )

°k+mTF<̂  * V F> k = 1 .,.. n . (6.3)

Proof Using the charac ter iza t ion  (5 .18) ,  we have tha t

ok(F4>) = i n f  II F<j> + u L  , k = 1 . . .  n+mi , where u is  ra t iona l  
u

and has < k-1 stable poles. 4 is  a l l -pass so tha t  a ^ ( Fcf) =

i n f  II F + ? u L  . According to (6 .1 ) ,  f  = Bi ET2 has m2 stable poles 
u

and 4>u has £ k-l+m2 stab le  poles so tha t  â (FcJ>) > i n f  || F + v L  =
v

o k+m2(F) ,  k = 1 . . .  n-m2 , where v is ra t iona l  and has k-l+m2

stable  poles. The in e q u a l i ty  (6.2) is  t r i v i a l  fo r  k > n - m2 .

S im i la r l y ,  a ^ F )  = i n f  ||F. 1 + u 11̂ = i n f  ||FcM + u L  = i n f  ||Ff + <|>uL >
u u u

i n f  II F<J> + v L  = G| +̂ ( F4>) , where v has £ k+m̂  -1 stable poles.

We note in passing the fo l low ing  special  cases o f  Lemma 1.7.

Coro l la ry  1.8 ( i )  I f  B2 = 1, ie m2 = 0 and <j) therefore has only

unstable zeros, then o^Fc})) > F ) , k = 1 . . .  n

( i i )  I f  B1 = 1, ie mi = 0 and therefore has only

stable  zeros, then o^Fcj)) < o ^ F ) ,  k = 1 . . .  n .
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Combining ( i )  and ( i i )  o f Lemma 1.7 gives bounds on a re s tr ic te d  set of 

the s ingular values of F<J> as fo llows:

°k<F*> * ak-ml(F) m l < k £ mx +

°k<F«  < < W F) 1 < k £ n - m2

so that when n > m1 + m2 ,

ak+m2(F) s ak(F<l>) Ä ak-mi(F) m‘ < k < n - m2.

Glover [14] has noted the fo llowing re su lt  fo r  stable a ll-pass systems.

Lemma 1.9 Let 4>(z) be a real ra tiona l stable a ll-pass function 

with n zeros. Then

a.jU) = 1 i = 1 . . .  n . (6.5)

Lemma 1.9 implies that a l l  optimal Hankel-norm approximants o f a 

stable a ll-pass system are equid istant in the Hankel-norm from the 

o r ig ina l system and that th is  distance is equal to 1. I t  would therefore 

appear useless to approximate a ll-pass systems because the resu lt ing  

e rro r is  the same size ( in  Hankel-norm) as the o r ig ina l system.

Although Lemma 1.9 takes care o f stable a ll-pass systems, i t  is  not 

immediately c lear that optimal Hankel-norm approximation o f unstable 

a ll-pass systems w i l l  be successful, since Nehari's theorem implies only 

that the singular values w i l l  be * 1. Some o f the singular values 

may therefore be su itab ly  small. The fo llow ing re su lt  shows that certain 

approximants o f unstable a ll-pass systems are again equid istant from 

the o r ig ina l system.

Lemma 1.10 Let 4>(z) be a real ra tiona l a ll-pass function such 

that the number n, o f stable poles exceeds the number m, o f unstable 

poles. Then
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o •(<!>) = 1 j = 1 . . .  n-m
J (6.6)

ö .(<J>) < 1 j = n-m+1 . . .  n
J

Proof <j) may be written as in (6.1) where Bi has m zeros and B2 

has n > m zeros. By Nehari's theorem,

< I <ML = 1 j = 1 . . .  n . (6.7)

According to (5.10) we also have

g .U)  = inf || BiBl + u  [  = inf  || Bl + B7 > o. (Bi) ,
J u u J

j = 1 . . .  n-m . (6.8)

By Lemma 1.9, ö^BT) = 1 i = 1 . . .  n . Thus for j = 1 . . .  n-m 

(6.8) and (6.7) give (6.6).

Remark. Lemma 1.10 implies tha t  all  optimal Hankel-norm approximants 

of order k such that  k £ n-m-1 will be a distance 1 from 4> in the 

Hankel-norm.

Finally, we s ta te  the important special case j = 1 of Lemma 1.10 separately.

Corol 1 ary 1.11 I f  <}>(z) is a real rational a l l -pass  function 

with more stable  than unstable poles, then

II r(*)|| = || <H|h - i - (6.9)
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CHAPTER 2

§2.1 INTRODUCTION

This chapter presents a method o f  frequency shaping the e r ro r  

ob ta ined by perform ing an optimal Hankel-norm approximation o f  a s c a la r ,  

f in i te - d im e n s io n a l ,  l i n e a r ,  t im e - in v a r ia n t  system. As was seen in  

Theorem 1 .4 ,  the optimal Hankel-norm approxim ation procedure f in d s  a 

t r a n s fe r  fu n c t io n  (o r  t r a n s fe r  fu n c t io n  m a tr ix )  o f  p rescr ibed  o rde r  

which approximates a given t r a n s fe r  fu n c t io n  (o r  t r a n s fe r  fu n c t io n  

m a tr ix )  o f  g re a te r  o rder.

One m o tiva t io n  fo r  frequency w e igh ting  comes from the des ire  to  

implement a reduced o rder approx im ating c o n t r o l l e r  w i th in  a c lo sed - loo p  

c o n tro l system. Suppose an LQG designed se r ie s  compensator is  to  be 

used in  a co n tro l system im plem entation. The compensator w i l l  have the 

same dimension as the p la n t  model. For s im p l i c i t y ,  i t  is  d e s ira b le  to 

approximate the compensator by one o f  the lowest o rde r poss ib le  w h ile  

m a in ta in in g  an o v e ra l l  acceptab le degradation in  performance. The 

approx im ating  compensator should be obta ined in  a way th a t  takes account 

o f  the frequency c h a r a c te r is t ic s  o f  the p la n t  model. For example in  the 

p la n t  stop band and a t  frequenc ies  o f  high loop ga in ,  the d e ta i le d  

shape o f  the approxim ating compensator is  no t so im p o r ta n t ,  however 

around the u n i ty  gain crossover frequency, i t  i s  d e s ira b le  to  secure 

accurate  approx im ation.

We show here how to  modify the approximation method o r i g i n a l l y  

developed by Adamjan, Arov and Kre in  [3 ]  to a l low  f o r  frequency w e igh t ing .  

The means fo r  in tro d u c in g  frequency w e igh ting  w h ile  p rese rv ing  the 

c losed form s o l v a b i l i t y  o f  the optim al Hankel-norm approx im ation problem 

is  not immediate ly apparent. A technique f o r  doing th is  is  described

below.
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§2.2 DISCRETE-TIME FREQUENCY WEIGHTED APPROXIMATION

We f i rs t  establish some preliminary notation and results.

Definition 2.1 Let G(z) be a s t r ic t ly minimum phase, s t r ic t ly  

stable, real rational scalar transfer function, ie G(z) has no 

poles or zeros in |z|>l,  save for a possible zero at z = °°.

Let r > 0 be the smallest integer such that lim zrG(z) is nonzero.
Z-*»

Then define the "tilde" operation by

G(z) - z~rG(z_1) . (2.1)

It may be noted here that G and G-1 are analytic in the closed unit disc. 

Given a rational transfer function with Laurent expansion

CO

K(z) =  ̂ £ ki z ' 1 (2.2)
i = -oo

which converges in some open region containing the unit circle,  |z| = 1, 

then the Hankel operator r(K) = r([K]_)has matrix elements

T(K(z))ij = ki+j_1 i ,  j = 1,2, . . .  (2.3)

where [K]_, the stable part of K(z), is equal to the sum of those terms 

in the partial fraction expansion of K(z) that have poles in |z|<l .

The tilde operation (2.1) has the desirable property of preserving 

the rank of the Hankel matrix T(K) under the change K KG. This 

property is crucial and is proved in the following lemma.

Lemma 2.1 Let F(z) be a s t r ic t ly  stable proper rational transfer 

function and let  G(z) satisfy the conditions of Definition 2.1 and
OO

have Laurent expansion G(z) = Z 9-jz_1 > 9 r / 0 , which converges
i = r

in an open region containing the unit circle. Then
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( i )  rank F(F(z)) = rank r(F(z)G(z)) (2.4)

and

( i i )  r(FG) = r(F)T(G) = r ( G ) r ( F )  (2.5)

where T(G) is  the i n f i n i t e  lower t r iangu la r  Toepl i tz matrix with 

elements

(T (§ ) ) i j  = { 9j ' j + r  U i
and r(F) is  as defined by (2.3) . Here T"(G) denotes the transpose 

of T(G).

Proof ( i )  Let 6_(K(z)) = 6( [K(z)]_) be the McMillan degree of 

the s t r i c t l y  stable part o f  K(z). Expanding by pa r t ia l  f rac t ions ,  

we divide FG in to  i t s  s t r i c t l y  stable and unstable parts.

We then have 6_(FG) = 6_([FG]+) + S_([FG]_) = 6_([FG]_)

Observe now that by Def in it ion 2.1, G has no stable pole and no 

stable pole o f  F can be cancelled by a zero of G. Hence 

6_([FG]_) = 6 (F), and so by Kronecker's theorem (Theorem 1.3), 

rank r(FG) = rank r ( F ) .

( i i )  The proof o f  (2.5) is  computational.
oo

Let F(z) have Laurent expansion F(z) = E f - z - '-1 • The expansion
j=0 J

OO 00 oo

of G(z) is  G(z) = E g. , zk . Then, [FG(z)] = E I  gk+rf k+,z ‘ J ,
k=0 K+r " j= l  k=0 K r  K J

oo

so that ( r ( F G )) . J = gk+rf i+ j+k . !  . i ,  J » 1.2. . . .  .

00

The centre member o f  (2.5) is  (r (F)T(G)) i j . = E f i + k_-|gk_ j+r »
k= 1

but 9k_ j+r = 0 i f  j  > k. Subst i tu t ing ,  th is  gives

(r(F)T(G)) . j j  = ^  f i+k_, gk. j+ r  = kZo f i+ j+k . !  gk+r . Which proves

the resu l t .

To prove the second equal i ty  of (2.5) we take the transpose of 

r(FG) = T(F)T(G) and note that Hankel matrices are symmetric.
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In Lemma 2.1 ( i ) ,  we used the s t r i c t l y  minimum phase nature of 

G to ensure that no stable pole-zero cancel lat ions occur in FG. In 

fac t  i f  we define G for stable non minimum phase G exactly as in (2 .1) ,  

then a l l  that is  required of  G fo r  (2.4) to hold is that G have no 

zeros coinciding with stable poles of F. The s t r i c t l y  minimum phase 

property o f  G is however essential as i t  w i l l  allow us to use the 

fol lowing Lemma.

Lemma 2.2 Let G(z) be s t r i c t l y  stable. Then T(G) is inve r t ib le  

i f  and only i f  G is  s t r i c t l y  minimum phase and then T(G)~1= T(G-1 )-

Proof This is  a standard resu l t  and the proof may be found fo r  

example in [33,38].

We now restate the resul t  of Theorem 1.4 fo r  proper stable rat ional 

t ransfer  functions K(z) of McMillan degree n, ie the rank of r(K) is n. 

For any posi t ive integer k < n, there exists a unique bounded Hankel 

matrix f  o f  rank k such that

where a^+-|(K) is the ( k + l ) - s t  singular value of r(K),  (the singular
A

values being ordered in descending magnitude). Further T = r(X),  where 

X(z) is a rat ional function given by

and <J>(z) is a ra t ional al l-pass function with exactly k stable poles. 

The function X(z) is  the unique best L°° approximation to K(z) having 

exactly k stable poles (and possibly some unstable ones), that is

II r(K) - f|| = ak+1(K) ( 2 . 6 )

X(z) = K(z) - ak+1 ( K)4>(z) (2.7)

I K(z) - X ( z ) L  = ok+1(K) ( 2 . 8)

and 6_(X) = k.
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oo
Here the L -norm is taken on the u n it  c i rc le .  The transfe r function 

[X(z)]_ can be regarded as an approximation to K(z) which is  stable and 

has precisely k poles.

To make use o f the e x p l ic i t  solution afforded by (2.6) and (2.7) 

we set K(z) = FG(z) where G(z) and F(z) are as in D e fin it ion  2.1 and 

Lemma 2.1 respectively. Using Lemmas 2.1 and 2.2, the difference 

T(FG) - r(X) may be w rit ten  as

(r(F) - r(XG_1))T(G) (2.9)

which sa t is f ie s

I (r(F) - r(XG-1)) T(G) || = ok+1(FG). (2.10)

The bracketed expression in (2.10) suggests id e n t i fy in g  r(XG_1) as a 

rank k approximation to T(F), the function XG-1(z) as an L°° approximation 

to F(z), and the function [XG_1(z ) ]_  as a stable reduced order 

approximation to F(z). Note now that r(XG-1) although not an optimal 

Hankel-norm approximation to r(F), has the appropriate rank and incorporates 

the weighting G in a manner that preserves the structure o f the problem.

Defining

W = XG'1 = (FG - ok+i ( FG)4>(z)) G"1 = F - ok+] ( FG)<J.G'1 (2.11)

we can take

W ■ F - ok+1{FG)[*G_1]_ (2.12)

as a stable k-th order approximation to F(z).

§2.3 L°° ERRORS OF THE APPROXIMATION

With the approximation (2 .11), which reta ins an unstable pa rt, the 

error in the weighted gain FG is

FG - WG = ak+1 (FG)4»G“ 1G . (3.1)
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Because both <J> and G-1G are a l l  pass functions, the magnitude of the 

di f ference in (3.1) is constant over a l l  frequencies, that is

fo r  a l l  real co. The role played by G as the frequency weighting is 

c lea r ly  displayed in th is  formula. Using the stable k-th order 

approximation of (2.12), we obtain the lower bound

Note that  the actual weighting in (3.2) and (3.3) is  determined by |G|, 

rather  than |G| and argG. ArgG is  only important in that i t  leads to 

the minimum phase, s t r i c t l y  stable property of G on which the algori thm 

rests.  One could thus conceive o f  an a rb i t ra ry  weighting function, 

free o f  poles and zeros on |z |= l ,  and replace i t  by a s t r i c t l y  minimum 

phase s t r i c t l y  stable function with the same amplitude on |z |= l .

Although we have not presented an upper bound (see §3.3), i t  seems 

fo r tu i to u s ly  charac te r is t ic  o f  most examples, that the maximum error 

is  near the lower bound. The er ro r  in F using the approximation (2.11) 

i s ,  F - W = o^+i ( FG)4>G-1 , giving a frequency dependent error  of

|F(e1M) - W(elw) I = ak+1(FG) |G_1(eiaJ)i = ak+1 ( FG) |G_1(eiüJ) | . (3.4)

A small er ror  given by (3.4) at a pa r t icu la r  frequency, does not however

guarantee a small er ror  in |F - W|. This er ror  is  bounded below by

I FG(ei u ) - WG(eiü))|  = ok+1(FG) (3.2)

II FG - WGIL, > ok+1(FG) ' (3.3)

II F - W t  > ok+1(FG)|| G f *  . (3.5)

We postpone a der ivat ion o f  an upper bound fo r  these errors to Chapter 3 

(§3.3).
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Note f in a l ly  tha t i f  P and C are plant and nominal series transfe r 

functions respective ly, the use o f G = P(1 + CP)-1 seems appropriate
A

in considering the problem of co n tro l le r  approximation. For i f  A = C-C

represents the erro r between C and an approximation C, C is  s ta b i l iz in g
/ \  / \

and C and C have the same number o f unstable poles, then C w i l l  be

s ta b i l iz in g  when || AG^ * 1.

§2.4 THE CONTINUOUS-TIME CASE

Frequency weighting in continuous time can be performed by using 

the method o f §2.3 a f te r  transforming to discrete time via the 

b i l in e a r  transformation s = ( z + l ) / ( z - l ) .  This is  described in deta il 

by Lin and Kung [29]. Note however that i f  G(s) is proper, s t r i c t l y

stable and minimum phase and 1im G(s) is f i n i t e  and nonzero, then the
s-*°°

obvious analogue to D efin it ion  2.1 is

G(s) = G(-s) . (4.1)

I t  is however not c lear how to define G fo r  s t r i c t l y  proper systems.

Now an optimal Hankel-norm reduction can be performed on the system 

K(s) = [F(s)G(-s)]_ where F(s) is  s t r i c t l y  stable and proper of order n. 

Again £•]_ denotes the operation o f taking the s t r i c t l y  stable part.

The resu lt ing  k-th order approximation has the same form as (2.7).

We again take

W = F - ok+1 ( FG) [<J>G~1 ]_ (4.2)

as the stable k-th order frequency weighted approximation to F(s). 

S im ilar e rro r bounds to those o f §2.3 apply with L°°-norms taken on 

the jo) axis. In p a r t ic u la r ,  the corresponding results to (3.3) and 

(3.4) are,
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|| FG - WG|L > ak+](FG) (4.3)

and

I F( joj) - W(jo>) I = ok+1(FG) |G( joj) I ' 1 (4.4)

§2.5 AN EXAMPLE

As an example of the method developed in § § 2.2-2.4, we apply the 

algorithms of  Glover [14] to a continuous time example. I t  should be 

noted however that instead of the approximation (4 .2) ,  these algorithms 

take

Wi = F - ak+1 ( FG) [4>G"1 ]_ + D (5.1)

as the stable k-th order approximation to F(s). The choice of the 

constant D is spec i f ic  and is explained in [14]. I t  is chosen to reduce 

the f ina l  L°° error.  Also see §3.3.

We take for  F(s) a s ix th order Butterworth f i l t e r  with 3dB point 

at w = 1.0. The transfer function is F(s) = Q_1(s ) ,  where

Q(s) = s6 + 3.8637s5 + 7.4641s4 + 9.1416s3 + 7.4641 s2 + 3.8637s + 1 .

The weighting is given by the second order system

G (5) = (s+1)2 (5.2)
“  s 2+2as+l

where a £ 1 is chosen to vary || G ^  .

Fig. 1 shows the magnitudes |G | plotted against angular frequency 

fo r  two pa r t icu la r  choices of  a used in th is  example. Curve 1 has 

a = 0.1 and at ta ins an L°°-norm of  10, and curve 2 has a= .01 with a 

corresponding L°°-norm of 100. The l.°°-norms are attained at oj = 1.0.
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For convenience o f notation we denote by E (s) the error system given by 

E (s) = F(s) - Wi(s), where Wi is  given by (5.1) and the subscript a  

indicates that is the frequency weighting used in (5 .1). Note that 

w ith th is  notation, E-j g(s) is the erro r obtained by performing a 

Hankel-norm approximation of F(s) with no frequency weighting.

The singular values o f the system F are: 

cFi = .94707, 02= .70013, o 3= .32544, o4 = .08278, F 5 = .00113, a6 = .00630.

This set o f s ingular values indicates 07+ as a natural cu to f f  (0 4 / 0 5  -  8 ) 

and so we perform a fourth order frequency weighted optimal Hankel-norm 

approximation o f F(s).

Example ( i ) : a =0 . 1

With a = 0.1, the s ingular values o f the system K(s) =

[F (s)Gq 1( -s ) ]_  are: o x = 2.6790, 0 2  = 2.1589, o 3 = .84239, a4 = .19287,

a5 = .021903, 06  = .0011311 . Although each o  ̂ is  larger than the 

corresponding a . ,  the new set o f s ingular values s t i l l  indicates a 

fourth order approximation is appropriate, (o4/o 5 - 9). Fig. 2 shows 

the magnitude o f the resu lt ing  erro r systems E-| Q(s) and Eg -j (s). We 

see tha t |Eg 1 ( jco) | is s ig n i f ic a n t ly  smaller than |E-j Q( jco) | in a 

frequency band about co = 1 .0 and is  frequency shaped according 

IGq 1 1 ( j(jo) I , the o s c i l la t io n  near co = 1.0 being a typ ica l consequence o f 

neglecting the unstable part o f the approximation in (2.11). Away from 

co = 1.0, the magnitude o f Eg -|(joo) exceeds s ig n i f ic a n t ly  tha t o f 

E-] g(jco), however th is  is  a region where we can to le ra te  a less accurate 

approximation. The method o f  frequency weighting has thus performed 

be tte r than the d ire c t Hankel-norm approximation in the pass band o f 

Gg 1 ( s) and worse in the stop band o f Gq -|(s).

The magnitudes o f the errors in the weighted gains, namely 

|Ei 0 (J^)G0 1 ( J<*>) I and |EQ - | ( j c o ) G g  - | ( j c o ) |  appear in Fig. 3. We see that
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|| Eg iGq i 1̂  -  .031 which as expected is close to the lower bound in 

(3 .3 ),  namely a5 = .0219. In fac t the magnitude of the errors over 

a l l  frequencies is  close to th is  value and again in the pass band of 

Gg i ( s) i t  is much less than the erro r obtained when E-j g(s) is 

taken in series with the same frequency weighting.

Example ( i i ) : a = 0.01

With a = .01, the s ingular values o f K(s) = [F(s)G g-j(-s)]_ are 

ö! = 3.6669, o 2 = 2.7631 , a 3 = .94358, a4 = .22032, ab = 024776, 

o 6 = .001228. Figure 4 shows the magnitudes o f E-j g(s) and E q -j ( s ) .

The shape of the curve 2 is  s im ila r  to Fig. 2. Although the minimum 

error is s ig n i f ic a n t ly  less than tha t fo r  Eg -|(s), the o s c i l la t io n  

near oo = 1.0 causes an improvement by only a fac to r of about 2 in the 

pass band o f G q-|(s). The frequency band in which |E g-](jco)|< |E-j g(ju)) | 

is less than the corresponding band in Fig. 2. The L°°-norm 

||E g-|(ja))G qi ( jw) L  can be seen from Fig. 5 to be approximately 0.15 

which is  much greater than the lower bound in (3 .3 ) ,  here o5 = .024226.

In the pass band o f G q - | ( s ) ,  the magnitude o f E gi ( jco)G g-|(jw) is s t i l l  

much less than that fo r the d ire c t  Hankel-norm approximation used in 

series with G g-j(s), (curve 1 o f Fig. 5). The increase in the L°°-norm 

of Ea(jaj)Ga( jüü) fo r small a suggests tha t the L°°-norm of the frequency 

weighting G (s) needs to be ca re fu l ly  chosen to obtain a good compromise 

in the size o f the loop gain e rro r and the e rro r in the approximation 

to F(s).
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CHAPTER 3

§3.1 INTRODUCTION

The Hankel-norm approximat ion problem ob t a i ne d  by i n t r od u c i n g  

f requency  we igh t ing  in the  manner d e s c r i be d  in §2.2 ,  d i f f e r s  in  s eve r a l  

impor t an t  r e s p e c t s  from t he  d i r e c t  Hankel-norm problem wi th no 

f r equency  shaping.  Although the  rank o f  the  Hankel ma t r i x  r ( F G )  i s  

p r e s e r v e d ,  t he  s i n g u l a r  va lues  a r e  of  cour se  c o r r up t e d .  Thi s  means
oo

t h a t  a new s e t  o f  L and Hankel-norm e r r o r  bounds wi l l  be o b t a i ned .

In t h i s  c h a p t e r ,  we e xp l o re  by how much f requency we igh t ing  

changes t he  s i n g u l a r  values  and d e r iv e  C° and Hankel-norm bounds f o r  

t he  e r r o r  of  t he  r e s u l t i n g  s t a b l e  approximat ing system.  This  wi l l  in 

p a r t  answer the  fo l l owi ng  i mpor t an t  q u e s t i o n s :

( i )  What s a c r i f i c e  in accuracy i s  made in the  r e s u l t i n g  e r r o r  in the  

L°° and Hankel-norm measures  by us ing f requency weigh t ing?

( i i )  How a r e  " c l o senes s "  in the  L°° and Hankel-norms r e l a t e d ?

( i i i )  What e f f e c t  does the  c o n s t a n t  D of  §2.5 have on the  L°° and Hankel-  

norm bounds?

§3.2 KNOWN L°°-N0RM BOUNDS

The L°° e r r o r  a n a l y s i s  wi l l  be based on the  r e s u l t s  of  Glover  [14] .  

Here ,  we p r e s e n t  wi t hou t  f u l l  p roof  t he  r e l e v a n t  r e s u l t s  in [14] .  They
oo

r e l a t e  t he  L -norm of  a s t a b l e  t r a n s f e r  f u n c t i on  to the  Hankel s i n g u l a r -  

va l ues  o f  t h a t  f unc t i on  which a r e  assumed f o r  convenience to  be non- 

r e p e a t e d .  F i r s t  i s  a r e p r e s e n t a t i o n  Lemma.

Lemma 3.1 Let  F(z) be a s t a b l e ,  r a t i o n a l  t r a n s f e r  f unc t i on  of  

McMillan degree n and have Hankel s i n g u l a r  va lues  o i  > 0 2  > . . . >  o .
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Then there exists a representation of F(z) as

F(z) - Dq + cjiEi (z) + . . .  + onEn(z) ( 3 - D

where

(1) E-(z) is all-pass and stable for all j
vJ

(2) For j = 1......... k

(3.2)

has McMillan degree k.

This result is easily proved by recursing on the one-step optimal 

Hankel-norm approximation of F(z) while noting that in this case, the 

singular values are preserved and the all-pass functions n_/£+ (of §1.5) 

are stable.

Lemma 3.2 In addition to the properties of Lemma 3.1, let  

F(z) be such that lim F(z) = 0. Then

(1) II ML < 2(qi  + . . .  + op)

(2) there exists a constant D such that

(3.3)

1 F - D0L < a ,  + . . .  + a n (3.4)

and

(3.5)

Proof (3.4) is obvious i f  DQ is the constant in (3.1). (3.5) 

follows by setting z = °° in (3.1) and then (3.3) is immediate.
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Although by d e f i n i t i o n ,  the constant term in the Laurent expansion of 

a t ra n s fe r  funct ion plays no part  in determining the optimal Hankel- 

norm approximation problem, i t  is  possible to add a constant to the 

so lu t ion  o f  th is  problem, in such a way that the overal l  L°°-error i s  

reduced. This is  the theme o f  the fo l low ing  resu l t .

Lemma 3.3 Let X(z) be the optimal Hankel-norm approximation o f  

degree k to the stable ra t iona l  t ra n s fe r  funct ion F(z) o f  

degree n. Then there ex is ts  a constant DQ such tha t :

II F - X. - DoIL < W F> + . 1i = k+2
(3.6)

n
and II DJI < £ a • ( F)

" k+i 1
(3.7)

A r
where X_ = [X]

§3.3 ERROR ANALYSIS

In th is  sect ion, we use the resu l ts  o f  §3.2 to derive upper and 

lower bounds on the L°°-norm o f  the e r ro r  f o r  the frequency weighted 

approximation given in §2.3. We also present bounds fo r  the norms o f  

the associated Hankel matrices f o r  the frequency weighted case.

The f i r s t  re su l t  is  a growth bound on the s ingu la r  values o f  the 

system FG in terms o f  those o f  the system F.

Lemma 3.4 Let F(z) be a real proper ra t iona l  and stable t ra n s fe r  

funct ion o f  degree n. Let G(z) be a stable  and minimum phase 

proper t ra n s fe r  funct ion .  Then

cri (FG)

^T fT < II G L  i = 1, . . . ,  n (3.8)
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where G is as in Definition 2.1, §2.2.

Proof Because G is real rational, || G^ = || G|  ̂ and

II G'ML = || G-1 |L • We also have that for any K(z) G L°°, then

II T( K) || = || KL where T(K) is the Toeplitz matrix with symbol

K(z) (see [5 ]).  According to (5.10) of §1.5, || 6 ^  o.(F) =

II G||a.(F) = inf || r(F) - L || || T(G) || > inf || (r(F) - L)T(G) ||
1 L L

Using Lemma 2.1, §2.2, this is || G^o^(F)> inf || r(FG) - LT( G) ||

Again by Lemma 2.1, 52.2, LT(G) is Hankel and has rank i -1 ,  hence

II G||00ai (F) > inf|| r(FG) - A|| = a.(FG)
1 A

Similarly, || G'1 ||0Oa1 ( FG) = inf || F( FG) - L|| || T( G~1) ||

> inf || (r(FG) - D K G '1) || > inf || r(F) - LT(G”D ||
L L

i  inf || r(F) - A|| = a • ( F) .
A 1

It is  also possible to relate the singular values of FG to those of FG 

by using the results of §1.6. To do this ,  we note that FG = FG B where 

B = GG-1is all-pass. FG is therefore a system with an all-pass factor. 

For simplicity, assume that B has m < n stable poles and m unstable 

poles ie G has the same number of zeros and poles. The results of 

Lemma 1.7, §1.6, then translate as follows:

K ( FG) > ° i+m(FG) i = 1 -•- n

and o . +m(FG) < o i (FG) i = 1 . . .  n-m (3.9)

and oi+m(FG)« o^FG) < o , . m( FG) i = m + 1 . . .  n

Remark The inequalities (3.9) provide information about the relative  

merits, in terms of the L°° and Hankel-norm errors, of performing and 

frequency weighted approximation of F(z) or a direct optimal Hankel-norm 

approximation of FG.
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For convenience, we reca l l  the nota t ion o f  §2.2 as fo l lows:

( i )  (£,n) is  a Schmidt p a i r  o f  r(FG) corresponding to a^+-|(FG).

( i i )  X = FG - Sep (3.10)

is  the k- th  order o f  optimal Hankel-norm approximation o f  FG 

where o = o^+-|(FG) and 4>(z) = o _ (z ) /6 +(z) , and

( i i i )  W = XG"1 = F - ocpG'1 (3.11)

is  the frequency weighted approximation to the stable proper 

system F (z ) .

We then have a bound on the Hankel matr ices o f  F(z) and W(z) as fo l lows.  

Lemma 3.5 The Hankel matrices r(F) and r(W) s a t i s f y ,

I I C 1 * 11 F(F) '  F(W) 11 « II G - - L  (3.12)
a

Proof. We have || r(F) - r(W) || = || r(a4>G_ 1) || = cr^oQG"1) .

Lemma 3.4 can be appl ied since G*1 e H“  so tha t

öitöc^G'1) < || G_1L  o which is the upper bound. For the lower

bound, consider r(FG) - T(X).

r(FG) - r(x) = (r(F) - r(XG_1))T(G) = (r(F) - r (w))t ( g)

where we have used Lemma 2.1, §2.2. Thus

II r ( FG) - T(X) II = ä « II r(F) - r(w)|| || T(G)|| . However

II T(G)| = || GIL = II GIL •

Remark Using Lemma 3.4, (3.12) may be w r i t te n  as

II GIL1 II G'ML1 * 11 r(F) : , (w)l1 < II G'ML I I GL  (3.13)
°k+F F)
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which is in general a looser bound but involves the s ingular values of r(F). 

S u rp r is in g ly , the weighted systems FG and WG have the same separation, 

in the Hankel-norm as the systems FG and X. We prove th is  in the 

fo llowing Lemma.

Lemma 3.6 For a l l  orders k o f the approximation (3 .10),

|| r(FG) - r(WG) | | = o .  (3.14)

Proof We analyse the a ll-pass function ^G_1G.

F(z) has n stable poles. Let G(z) have m stable poles and 1 

stable zeros (and only these). G_1G therefore has m stable poles 

and 1 unstable poles, (j) has in general n+k stable and n-k-1 

unstable poles. The difference in number o f stable and unstable 

poles o f (j)G_1G is therefore (n+m+k) - (n-k-1 +1) = 2k + m - 1 + 1 

which is always s* 1. Thus 4>G_1G is an all-pass function with more 

stable than unstable poles and so by Corollary 1.11, §1.6, 

q i (4)G-1G) = 1. This proves (3.14).

We now proceed to derive L°°-norm e rro r bounds fo r  the approximations 

(3.10) and (3.11) and compare them with those in the Hankel-norm.
/V  _

Denote as usual by W, the quantity  F - ö [(pG- 1 ]_ . According to 

Lemma 3.1, [o^G-1 ]_ has a representation as

[acpG- 1 ]_ = ip0 + cfiijn + .. . + ä n+ki^n+k (3.15)

where the i j j . ( j  > 1) are a ll-pass and stable and we have accorded with
J

the assumption tha t the a\ are not repeated. In the same manner as 

§2.5, define a frequency weighted approximation WQ to F by

W0 = W + (3.16)
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and the e rro r system EQ by

co
We then have the fo llowing bound fo r  the L -norm o f E . 

Lemma 3.7 For the e rro r EQ of (3.17),

II C 1 < ^  < (n +  k )  II G 'M L

(3.17)

(3.18)

where k is  the degree o f the approximant (3.10).

/ \

Proof We have that r(F) - r(W ) = r(F) - r(W) = r(F) - r(W)

By Nehari's theorem,

II r(F) - r(w)|| = || r(F) - r(w0)|| < || F-w0 t  = || E0 L  so by 

Lemma 3.5, || EQIj  ̂ > || G|Q*d . By (3 .15),

II E0 L  = II [3d>G~ 1 ]_ - = II 3 ^ ‘ + + ° n+k<Fn+kIL + . . .

+ 0n+k . Again by Nehari's theorem, = Oj(d<|)G ‘ ) < ||r(Sit>G ' ) !

5: ollG“ ^  fo r  j  = 1 . . .  n+k. This gives the upper bound of (3.18).

Remark Lemma 3.4 may again be used to give the bounds (3.18) in terms 

o f ak+-|(F) and (3.18) y ie lds  the upper bound ||EqG ^  < (n+k)a|| G^H G_1|L 

fo r  the weighted system EQG.

Note here that the important consequence o f Lemma 3.7 is  to 

demonstrate the existence of a constant ^ such that the upper bound 

(3.18) is  accomplished. The lower bound is insens it ive  to the choice o f 

the constant. Choosing the constant gives a su itab ly  small L°° bound 

on E , however there is  no guarantee that WQ w i l l  be frequency shaped.

For th is  reason, i t  is  more su itable to choose the constant D in the 

expansion of the form (3.1) fo r  [FG]_ ra ther than i|/ . This is  in fac t 

the type o f choice that is made in the example o f §2.5.

We now obtain the corresponding bound to (3.18) according to th is  choice

of constant.
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Assumption. We assume in the fo llowing that l im  G"1 (z) = 1.
2 - X »

Let

Wi  = W +  D

be the frequency weighted approximation to F and

E = F -  Wx

the e rro r system. The constant D is chosen so that according to 

Lemma 3.3,

n
II [ F G ]  -  X -  D L  < Z a . ( F G )

k+1 1

and

II DlL < Z O .(FG)
k+1

We formulate the L°°-norm bounds fo r  E and EG as a theorem.

Theorem 3.8 The L°°-norms o f the e rro r E and the weighted 

EG are bounded according to

II G l t ‘5 < II E L  < K(n,k)

and

II EGIL < II G L K(n,k)

where

K(n,k) (2(n + k) || G-Ml+1)
n

5 + E a • ( FG) 
k+2 1

(3.19)

(3.20)

(3.21)

(3.22)

e rro r

(3.23)

(3.24)



Proof Using (3.19) and (3 .20), W1 = [XG_1]_ + D + F(°°) and 

E = F - Wi = F - [ ( [FG]_ - 0(J))G_1 - D + F(~) = aL^G"1 ]_ - D

40

so that || E11̂ £ I a[(|)G_1]_||oo + || . Using Lemma 3.2,

n+k
|| ö[<j>G~1 ] _ L  < 2  £ ö i , where are the s ingular values o f

a<J>G-1 . As was shown e a r l ie r  (Lemma 3.7), g . £ || G"1^ .

n
Combining th is with (3.22) gives || E ^  < 2(n+k)|| G-1 ^  + £ ai (FG)

which is  (3.23). The lower bound in (3.23) follows from Nehari's 

theorem and Lemma 3.5.

Remark I f  in fac t lim G"1 = 3 where 0 < 3 f  1, the appropriate choice
-----------------  Z-K»

of constant is ßD instead o f D. In th is  case K(n,k) = 2(n + k) || G-1 ^  
n

+ ß E g .(FG) . 
k+1 1

§3.4 CONCLUSION

In th is  chapter, we have derived weak bounds in the C° and 

Hankel-norms fo r  the frequency weighting scheme. Application of the bounds 

to the example in §2.5 shows tha t they are indeed weak. For example 

when || GL = 10, the s ingular values grow by a fac to r  only a t most 3.

With || G ' X  = 1, (3.23) gives an upper bound o f 20a whereas the actual 

e rro r has an L°°-norm of approximately 5 (see Fig. 2), while the 

theore tica l upper bound from (3.24) is 200 5, compared to the actual 

weighted e rro r L°°-norm of approximately 2 g.

Lemma 3.7 and Theorem 3.8 i l lu s t ra te s  that in order to preserve 

the frequency weighting when choosing a constant D that reduces the 

f in a l L°° e r ro r ,  a tradeo ff has to be made. The L°° e rro r w i l l  not be 

the smallest atta inable  fo r  the choice o f  D given by (3.21) and (3 .22),
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but as is  evidenced in Fig. 2 and Fig. 4, the desired shaping is  

achieved.

The theory o f §3.3 indicates tha t given a frequency weighting G 

with || Gll^ > 1, some o f the bounds w i l l  be small i f  || G"1!^ = 1.

Such a choice fo r  the frequency weighting w i l l  in general be possible 

fo r  simple weighting shapes or those that emphasise only narrow 

frequency bands. The bounds also ind icate || GL || G- 1 !^ as an important 

parameter o f the frequency weighting.

Although we have analysed the e rro r fo r  the scalar case, the 

resu lts  in §3.2 are va lid  fo r  m u lt iva riab le  systems. Therefore a 

s im ila r  analysis can be used fo r  frequency weighting o f m u lt iva riab le  

systems.
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CHAPTER 4

§4.1 SYNOPSIS

In t h i s  t h e s i s ,  we have presented  a new model reduct ion technique 

fo r  s c a l a r  l i n e a r  dynamic systems. F u r the r ,  we have given an e r r o r  

a n a ly s i s  and demonstrated the new methods'  successfu l  a p p l i c a t io n  via 

an example.

More p r e c i s e ly ,  we have developed a m odif ica t ion  of the optimal 

Hankel-norm approximation technique t h a t  allows the  use o f  c l a s s i c a l  

i n t u i t i v e  design ideas through frequency weighting.  Because the 

in t ro d u c t io n  of frequency weighting e n t a i l s  only the so lu t ion  o f  a 

modified optimal Hankel-norm problem, much of the  underlying theory 

a lready e x i s t s  so t h a t ,  f o r  the e r r o r  ana ly s i s  in p a r t i c u l a r ,  we have 

used s tandard  r e s u l t s  and techniques  throughout .

Because of the g rea t  i n t u i t i v e  appeal he ld  by frequency domain 

design methods, the new approximation procedure rep resen ts  an important 

br idge  between frequency domain and s t a t e  space ideas  which should 

i n e v i t a b ly  help the popu la r iza t ion  of the  s t i l l  l i t t l e  known optimal 

Hankel-norm method. I t s  p opu la r i ty  i s  expected to be f u r t h e r  inc reased  

by ad d i t io n a l  t h e o r e t i c a l  developments, e s p e c i a l l y  fo r  the m u l t iv a r i a b le  

problem, as more workers e n te r  the f i e l d .

§4.2 FUTURE RESEARCH

The in v e s t ig a t i o n s  o f  the  t h e s i s  have uncovered severa l  problems 

fo r  fu tu r e  research.  The following forms a c o l l e c t i o n  of those t h a t  

seem to the  author  to be the most t r a c t a b l e .
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In any practical use of frequency weighting, i t  is clearly desirable 

to have the greatest computational simplicity. To this end, the 

frequency weighting G should be regarded as a design variable, a suitable 

G being chosen to achieve the required shape of error. We therefore 

envisage an iterative approach whereby more complicated features are 

added to G until the detail of additional shaping is no longer important 

to the final approximation. Special choices of G are possible that give 

the combination FG added simplicity. One such choice, due to Glover, is 

to take the zeros of G equal to the poles of F, thereby giving an all- 

pass factor to FG. In this case, the one-step frequency weighted 

approximation has no unstable part, a fact which leads to an interesting 

multiplicative error analysis [15]. Other choices of G may also prove 

advantageous.

As was noted in §3.4, the error bounds of Chapter 3 are very 

weak. The good performance of the example of §2.5 suggests that tighter 

upper bounds may exist. For instance the inequality o^FG) < a^(G)o^(F), 

i = 1, 2, holds for this example. Two avenues are open; f i r s t  to 

construct an example so that the upper bounds of §3.3 are attained or 

secondly to find directly, improved upper bounds.

I t  is known that when the optimal Hankel-norm approximation 

technique is used to approximate a controller that forms part of a 

stable closed loop system, the approximating closed loop system will 

not in general be stable. In fact i t  has been shown that the Hankel- 

norm is too weak a measure for studying stabili ty of feedback systems 

[21]. Indeed, i t  is not reasonable to expect closed loop stabili ty from 

any approximation technique that ignores the plant model. Consider 

however, the following situation. Let G be the plant model and F the 

controller in a stable closed loop system. Obtain a frequency weighted 

approximation W, of F that uses G, _or its  minimum phase equivalent, as
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the frequency weighting. The natural question that arises is whether 

the account taken of G allows a determination of the stabili ty of the 

closed loop system employing G and W.

Although not widely used here, the definition of the Hankel 

operator as a projection (§§1.5 and A.2) is related closely to the theory 

of singular integrals [34], One avenue of investigation would therefore 

be to reformulate the optimal Hankel-norm problem in terms of singular 

integrals, presumably giving a relation of the inhomogeneous Riemann 

problem [30], and then to solve this new problem. In view of the 

substantial theory of singular integral equations, this approach may 

well lead to new proofs or techniques.

In this thesis, we have not addressed the multivariable optimal 

Hankel-norm approximation problem. Its solution [14] is straightforward, 

the only significant difference from the scalar case being that the 

solution is not unique. Despite this, one solution can be chosen that
oohas the smallest L error bounds. Once a specific solution has been 

selected, i t  is a relatively straightforward matter to extend frequency 

weighting to multivariable systems and this work has been undertaken 

by Glover [15].
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APPENDIX

§A.l INTRODUCTION

As was apparent in Chapters 1 and 2, the theory of frequency 

weighted optimal Hankel-norm approximation i s  most conveniently  developed 

in d i s c r e t e  time where the cons iderab le  too ls  o f  function theory are 

a v a i l a b l e .  We then re ly  on a b i l i n e a r  t ransform,  t h a t  maps the u n i t  

disk conformally onto the l e f t  h a l f  p lane ,  to ob ta in  from a continuous 

time t r a n s f e r  func t ion ,  an equ iva len t  d i s c r e t e  time system, to which 

the d i s c r e te - t im e  theory may be appl ied .  This procedure has been 

expounded f u l l y  by Lin and Kung [29].  An a l t e r n a t i v e ,  is  the d i r e c t  

approach of Glover [14] which uses the balanced r e a l i z a t i o n  of a given 

continuous-time system.

In §A.2 we demonstrate the v a l i d i t y  of the  frequency weighted 

approximation scheme d i r e c t l y  in continuous time. This is  done by 

proving the equ iv a len t  r e s u l t s  to those of  Chapter 2 by using an 

app rop r ia te  continuous time d e f in i t i o n  of  the Hankel ope ra to r  toge the r  

with the Laplace transform.

§A.2 CONTINUOUS-TIME THEORY

We f i r s t  e s t a b l i s h  some pre liminary  n o ta t io n .  Denote by 

( resp .  ft_) the  open h a l f  plane Re s < 0 ( resp .  Re s > 0 ) .

Let L2 ( resp .  L2) be the Lebesque space L2(z?+) ( resp .  L2(i?_) of real  

valued func t ions .  The two-sided Laplace transform L of  a function 

u ( t )  e  L2(i?) i s  def ined by

L {u( t ) ;  s} =/^ooe"s t u ( t ) d t  (2 .1)

and in general the i n t e g ra l  wi l l  converge uniformly to an a n a ly t i c
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function in some s t r i p ,  -a i  < Re s<a 2 ; ai , a 2 > 0 . The two-sided

transform decomposes as

L = L+ + L_ (2.2)

where for u E L2 and supp u c  r

L_{u ( t ) ;  s} = / ^ e " s tu ( t )d t  (2.3)

is analyt ic  fo r  s E fi+, and fo r  v E and supp v c  r+

V v ( t ) ;  s} = Q  e ' s t v ( t ) d t  (2.4)

is the standard one-sided Laplace transform which is analy t ic  for 

s E In what fo l lows, the statement that u E (resp. L£) w i l l  

mean that u is to be regarded as a function such that supp u c  r 

(resp. i? ). That i s ,  we consider only the re s t r i c t io n  of u.

The de f in i t ions (2.3) and (2.4) imply that formally

L _ {u ( t ) ;  s} = L+{ u ( - t ) ;  -s} .

We w i l l  also use the notations

v(s) = V(s) = L+{ v ( t ) ;  s} , v s

u(s) = U(s) = L _ {u ( t ) ;  s} , u e

(2.5)

( 2 . 6 )

where convenient. I t  w i l l  be obvious from the context which of L+ or 

is meant by th is  notat ion. F ina l ly ,  define V(s) fo r  v F by

V(s) = V(-s) (2.7)

with V(s) as given by (2.6).
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By the Schwarz symmetry principle, V(s) is analytic for s £ .

We now define the Hankel operator in continuous-time.

Definition 2.1 The Hankel operator r : L2 -* L2 is defined

(Tu)(t) = ( f ( t+ i)u(-T)dx t > 0

( 0 t £ 0 .

by:

( 2 . 8 )

where u e L2 .

Nehari's theorem now states that F is a bounded operator on L2 

i f  f(t)  is a generalised function coinciding for t > 0 with the Fourier 

transform of some function on the real axis. Here, we will be concerned 

with the sub-class of f 's  for which

F ( s ) = c + a [ f |  (2.9)

where c is a constant (possibly zero) and n/d is a real, s tr ic t ly  proper 

stable rational function. In the case that c is nonzero f(t)  contains 

at worst a "Dirac Delta" at t = 0 and the Laplace transform is of course 

there interpreted in the generalised sense [37]. We will therefore be 

dealing with bounded Hankel operators.

Definition 2.2 Let G(s) be of the form (2.9). Define the negative 

time convolution (n .t .c .)  operator T : L2 -* L2 by

(Tu)( t) f - o o  g(-t+T)u(x)dT t < 0

0 t  > 0

( 2 . 10 )

where u e L2 .
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Note tha t  according to (2.10) and by l e t t i n g  v = Tu ,

v ( t )  = / °  g ( x - t ) u( t ) dx t  < 0

= / ^ g t - t - T j u t - T j d x

or

v ( - t )  = / *  g(t-T)u(-x)dx , t  > 0 . ( 2 . 11 )

Thus i f  *  denotes the usual convolut ion operat ion fo r  t  > 0 and R 

the re f le c t io n  operator ,  ie (Ru)( t )  = u ( - t ) ,  then (2.11) states tha t

The d e f i n i t i o n  (2.10) is there fo re  e ss e n t ia l ly  the same as the usual 

pos i t ive - t im e  convolut ion.  Bearing th is  in mind, the fo l low ing  re su l t  

is eas i ly  proved.

Lemma 2.1 Let u ( t )  £ L^ and g( t )  be as in D e f in i t io n  2.2.

Then the n . t . c .  s a t i s f i e s

Proof Applying the convolut ion theorem [10] fo r  L+ to (2.11)

gives, L+{ v ( - t ) ;  s} = £+{ g ( t ) ;  s} L+{ u ( - t ) ;  s) and

£+{ v ( - t ) ; - s }  = L+{ g ( t ) ;  -s }  L+( u ( - t ) ;  -s }  . This by v i r tu e  o f

(2.5) is L _ { v ( t ) ;  s} = L+{ g ( t ) ;  -s )  L _ { u ( t ) ;  s} or

(Tu)~(s) = G(-s)U(s) , which is  (2 .13) .

Denote by [ • ] _  the operat ion o f  tak ing the s t r i c t l y  stable part  o f  a 

ra t iona l  funct ion o f  the form (2 .9 ) .  We now re la te  the Hankel operator 

(2.8) to [ • ] _  in the frequency domain.

Tu = R(g * Ru) . ( 2 . 12)

(Tu)~(s) = G(s)U(s) = G(-s)U(s) . (2.13)
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Lemma 2.2 Let u e  L̂  and f ( t )  be as determined by (2.9) and 

Definition 2.1. Then

( r u ) ~  = [ F U ] _  ( 2 . 1 4 )

Proof We calculate d i rec t ly  (Tu)" .

After a change of variable,  (2.8) may be wri t ten,  for t  > 0, as 

( Tu)( t) = f (t) u(x-t)dx . (2.15)

Thus

(Tu)~(s) = j °̂ e"s t  / j°f(x)u(x-t)dx (2.16)

and is analytic for s G , the integral  conveying uniformly there. 

We can therefore reverse t h eo rde ro f  integrat ion in (2.16). Then 

(ru)~(s) = e_stdt /^  f (t) u( t -x)dx .

Let X = t-x and dX = dt , so that  

( ru)- (s)  = /_°Te-s(T+X)dX (t ) u(X)dA

= JT e-STf (x ) ( / °T e - sXu(X)dX) dx . (2.17)

Letting w( s , t ) = j°e~sXu(A)dA , (2.17) is

(Tu)"(s) = L+{ f ( t ) w ( s , t ) ; s} . (2.18)

Now

W(s,p) = Ĵ ° e"ptw(s , t )d t

/.°t e-SXu(X)dX]; es t u( - t )d t

For s G and p G the f i r s t  term vanishes to give 

W(s,p) = 1  e"^p"s ^t u ( - t ) d t

= 1  L+{u ( - t ) ; p-s} , p-s G Q,_



50

= 1  L _ { u ( t ) ; s-p}

= ^  U(s-p) (by 2.5).

To (2.18) apply the convolution theorem [10] in the p-plane for 

the Laplace transform to give,

■ s t  & 1:  F(p)u(i t - p-))dp s e fl-

} r i "  F(p)U(p) dp .
2iri •>-i «° p-s (2.19)

We must have a = 0 since O ^ a ^ R e s - R e s .  Since we are 

concerned with rat ional functions o f  the form (2 .9) ,  (2.19) is

(ru)~(s)  = - Z Res [ H bU M "
pe Q+ L p ' s  J

= [FCp)U(p)]_ . (2.20)

(2.20) is  easi ly  seen by taking F = -p— , q G , and noting
r M

that U(p) is analyt ic  in .

Remark (2.20) can also be deduced from (2.19) when we recognise the 

in tegra l in (2.19) as the Riesz project ion on L2(C), where C denotes 

the imaginary axis. I f  K(p) e  L2(C) and s G ft then

1
27ri

P °
M

K(p)dp
p-s (P K)(s)

where P : L2(C) -* H: and

Here H2 is the Hardy class on .

Although according to (2 .9) ,  F(p)U(p) may not belong to L2( C), the 

in tegra l of  the constant term in the integrand is however zero by 

Cauchy's theorem.
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Consider now the stable t ransfer  function

Q(s) = [F(s)G(s)]_ . (2.21)

Let S be the associated Hankel operator , ie  (Su)(t) = ^q( t+x)u( - i )dT , t  > 0. 

We then have the following analogue of Lemma 2.1( i i )  of §2.2.

Lemma 2.3 S admits the factor izat ion

S = IT (2.22)

where T is the n . t . c .  for g(t) and r the Hankel operator with 

kernel f ( t ) .

Proof Let u e  l 2_ . By Lemma 2.2 we have

(Su)A = [[FG]_U]_ (2.23)

Because [[FG]+U]_ = 0, (2.23) is (Su)A = [FGU]_ = [F(Tu)A]_

= (rTu)A as required.

The analogue of Lemma 2.2,  §2.2 is also straightforward.

Lemma 2.4 I f  G(s) has, in addition to the requirements of 

Definition 2.2,  c f  0 and is also minimum phase, ie al l  zeros are 

in fl+, then T is inver t ible  and T_1 is the n . t . c .  operator 

associated with G-1(s).

Proof G’ 1 is stable ,  hence define for u e  Lf, the n . t . c .

(Yu) ( t )  = 1 ° ^  L^1{G” l (s); i - t )u(T)dx for t  < 0. Then by Lemma (2.1), 

(Yu)A = (G_1)~U so tha t  (YTu)A = (G_1)^(Tu)A = (G_1)~GU = U = u.

The second l a s t  equal i ty holds because (G_1)~ = G" .̂ Similarly,

(TYu)A = G(Yu)A = G(G- l r u  = u .
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Lemmas 2.1 - 2.4 now enable a discussion of the operator S in 

(2.22) in the same way as in §2.2. We therefore take G(s) as the 

frequency weighting and form the system (2.21). G(s) is chosen so that 

Lemma 2.4 is valid. The k-th order optimal Hankel-norm approximant 

X(s) for Q(s) has an associated Hankel operator A such that for 

u £ L2_ , (Au)" = [XU]_ . The difference S-A may then be written as 

(r  - AT_1)T exactly as in the discrete-time case. This completes the 

continuous-time analogy.
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