A CATEGORICAL APPROACH TO UNIVERSAL ALGEBRA

by

R.F.C. WALTERS

A thesis submitted for the degree of Doctor of Philosophy in the Australian National University

Canberra

January, 1970

The results presented in this thesis are mine except where otherwise stated.

R.F.C. Walters

PREFACE

The work of this thesis was made possible by a Commonwealth postgraduate award and an Australian National University research scholarship.

My supervisors, Professor Hanna Neumann and Dr S.S. Świerczkowski, have given me much help and advice for which I am most grateful, and I am also grateful to Professor B.H. Neumann and Professor S. MacLane for their encouragement.

I wish to thank Dr A. Shafaat and Mr N.H. Williams for many useful discussions.

The thesis was typed by Mrs F.A. Wickland and Miss T. Purdy and I appreciate their work.

Finally I wish to thank my wife, Margaret, for her multifarious efforts in the production of this thesis.

CONTENTS

Chapter O	Introduction and preliminaries	1
§0.1	Introduction	1
§0 .2	The language	3
§0.3	Some notation	3
§0.4	Universal arrows and adjoint functors	4
\$0.5	2-categories	7
§0.6	Triples in a category	8
§0.7	Adequacy	9
\$0.8	The classical notion of variety	10
Chapter I	Devices in a category	14
§1.1	Devices and the device construction	14
\$1.2	Devices and universal arrows	20
\$1.3	The enlargement of devices	25
§1.4	Devices and triples	31
§1.5	Morphisms of devices	37
§1.6	Operations	46
§1.7	A global description of devices and algebras	50
Chapter II	Algebra with devices	63
§2.1	Algebra in the basic situation	63

iv

§2.2	Algebra in the elaborate situation	81
\$2.3	Recognition theorems	100
§2.4	Birkhoff's Theorem	109
Chapter III	The category of devices	116
§3.1	Devices as algebras	116
\$3.2	Devices and algebras in <u>Sets</u> ⁿ	132

References

144

v

CHAPTER 0

INTRODUCTION AND PRELIMINARIES

\$0.1 Introduction.

There are two well-known ways of generalizing classical universal algebra to an abstract categorical setting. The most obvious approach is to generalize the concept of operation. In a category \underline{A} with products, an "n-ary operation" on an object A is defined to be a morphism from A^n to A. It is easy to see that with this definition the concepts of "algebra", "homomorphism" and "variety of algebras" can be defined categorically. This is the approach elaborated by Lawvere [16] and Linton [18]. A quite different generalization is suggested by the observation that the free algebras of a variety contain all the information about the variety. In the place of the free algebras we have the categorical notion of a "triple in <u>A</u>", and Eilenberg and "homomorphism" in <u>A</u>.

In this thesis we explore a variation of the second approach which leads to a rather different development of universal algebra in a category. It is perhaps more suitable than the method of triples for simulating the classical situation where the operations are ranked.

In Chapter I we define and develop simple properties of the concept of a "device in a category" and the corresponding "category of algebras of a device". We also discuss the relationship between triples and devices and between their corresponding algebras. In the second chapter we develop some analogues of conventional results in universal algebra under various conditions on the category. For example, there is a theorem guaranteeing that the functor which forgets the structure of the algebras has a left adjoint. Another theorem gives conditions for recognizing when a functor is the forgetful functor corresponding to some device. This theorem is used to give a version of Birkhoff's Theorem on the subvarieties of a variety.

Each device in a category $\underline{\mathbb{A}}$ has associated with it a functor $X : I \rightarrow \underline{\mathbb{A}}$ whose domain is a set. We define a category $\underline{\text{Dev}}(\underline{\mathbb{A}}, X)$ whose objects are all devices in $\underline{\mathbb{A}}$ with associated functor X, and we define a functor U : Dev $(\underline{\mathbb{A}}, X) \rightarrow \underline{\mathbb{A}}^{I}$. In Chapter III we prove under certain conditions on $\underline{\mathbb{A}}$ and X that U is the forgetful functor of some device in $\underline{\mathbb{A}}^{I}$. This chapter also includes descriptions of devices and their algebras in <u>Sets</u>.

The reader needs only a knowledge of elementary category theory, and of elementary universal algebra. He need not know about triples since they are defined in this chapter, and throughout the thesis no appeal is made to theorems about triples.

The discussions of this thesis take place in a set theory with universes, as described for example in [4]. Throughout the thesis we consider two fixed universes M_1 and M_2 with $M_1 \in M_2$. The sets in M_1 are called small sets, and the category of all small sets is written as <u>Sets</u>. A category defined in M_2 is called an M_2 -category, while a category \underline{A} , which has the property that for each pair A_1, A_2 of objects in \underline{A} the morphisms from A_1 to A_2 form a small set, is called a locally-small category. The category of all locally-small M_2 -categories is written as <u>Cat</u>, and the category of all small categories is called <u>Kit</u>.

We assume that the reader is familiar with elementary category theory, as contained for example in the early chapters of [22], [7] or [26]. In the following sections we shall indicate our notations and recall some well-known definitions and results which are basic to the thesis.

§0.3 Some notation.

Categories will usually be denoted by symbols $\underline{A}, \underline{B}, \underline{C}, \dots$; objects by A,B,C,... or $\underline{A}, \underline{B}, \underline{C}, \dots$; morphisms by $\alpha, \beta, \gamma, \dots$ and f,g,h,...; functors by F,G,H,U,...; and natural transformations by $\eta, \mu, \lambda, \dots$. The composition of morphisms $\alpha : A \rightarrow B$ and $\beta : B \rightarrow C$ will be written $\beta \alpha : A \rightarrow C$. If f is a function and a an element of its domain, f evaluated at a will be written fa or f(a). The set of all <u>A</u>-morphisms from A_1 to A_2 is written <u>A</u> (A_1, A_2) . The set of objects of <u>A</u> we write as obj <u>A</u>, and the opposite category as <u>A</u>^{op}. The category of functors from <u>B</u> to <u>A</u> is written <u>A</u>^{<u>B</u>}.

If η is a natural transformation from $G : \underline{A} \rightarrow \underline{B}$ to $H : \underline{A} \rightarrow \underline{B}$, and $F : \underline{C} \rightarrow \underline{A}$, $K : \underline{B} \rightarrow \underline{D}$, then $\eta F : GF \rightarrow HF$ is the natural transformation defined by $\eta F(C) = \eta(FC)$, and $K\eta : KG \rightarrow KH$ is the natural transformation defined by $K\eta(A) = K(\eta A)$.

A morphism $\alpha : A_1 \to A_2$ is a split epimorphism if there exists a morphism $\beta : A_2 \to A_1$ such that $\alpha\beta = 1 : A_2 \to A_2$. Dually we have the notion of split monomorphism.

<u>\$0.4</u> Universal arrows and adjoint functors.

0.4.1 DEFINITIONS Let $U: \underline{B} \to \underline{A}$ be a functor and A an object of \underline{A} . Then a <u>universal arrow from</u> A <u>to</u> U is a pair ($\alpha : A \to UB, B$) with B an object of \underline{B} , such that for any \underline{A} -morphism $\alpha_1 : A \to UB_1$, there is a unique \underline{B} -morphism $\beta : B \to B_1$ such that $\alpha_1 = U\beta \cdot \alpha$.

We often say in this situation that B is <u>free</u> on A, or that α : A \rightarrow UB <u>freely generates</u> B.

A <u>universal arrow from</u> U <u>to</u> A is a pair (B, α : UB \rightarrow A) such that for any morphism α_1 : UB₁ \rightarrow A there is a unique morphism

 $\beta : B_1 \rightarrow B$ in <u>B</u> such that $\alpha . U\beta = \alpha_1$.

0.4.2 DEFINITION A functor $U : \underline{B} \rightarrow \underline{A}$ "has a left adjoint" if for every A in <u>A</u> there is a universal arrow from A to U.

If U has a left adjoint we can indeed define a functor $F : \underline{A} \rightarrow \underline{B}$ which we call a left adjoint of U. F is determined up to natural equivalence and we say that U is a right adjoint of F. Further, the pairs F,U so obtained can be characterized in other nice ways. For example, associated with F and U are two natural transformations $n : l_{\underline{A}} \rightarrow UF$ and $\varepsilon : FU \rightarrow l_{\underline{B}}$ satisfying $\varepsilon F.Fn = l_F$ and $U\varepsilon.nU = l_U$. For an arbitrary pair of functors F,U the existence of such natural transformations guarantees that F is a left adjoint of U. Further, a functor $F : \underline{A} \rightarrow \underline{B}$ has a right adjoint if and only if to each B in \underline{B} there is a universal arrow from F to B.

0.4.3 DEFINITIONS Consider a functor $G: \underline{C} \rightarrow \underline{A}$, and consider the diagonal functor $d: \underline{A} \rightarrow \underline{A}^{\underline{C}}$ defined by $dA: (\gamma: C_1 \rightarrow C_2) \rightsquigarrow (1: A \rightarrow A)$ and $d\alpha(C) = \alpha$. We often confuse such a constant functor dA with the object A. Now if there is a universal arrow $(A, \lambda: dA \rightarrow G)$ from d to G, then we call the universal arrow, or just the natural transformation $\lambda: dA \rightarrow G$, a <u>limit</u> of G. Thus $\lambda: dA \rightarrow G$ is a limit of G if for every natural transformation $\lambda_1: dA_1 \rightarrow G$ there is a unique morphism $\alpha: A_1 \rightarrow A$ such that $\lambda C \cdot \alpha = \lambda_1 C$ for all

 $C \in \underline{C}$. A <u>colimit</u> of G is a universal arrow from G to d. A category \underline{A} is said to have \underline{C} -limits if each functor $G: \underline{C} \rightarrow \underline{A}$ has a limit; that is, if $d: \underline{A} \rightarrow \underline{A}^{\underline{C}}$ has a right adjoint. If for all small categories \underline{C} the category \underline{A} has \underline{C} -limits, then \underline{A} is <u>small</u> <u>complete</u>. A functor $H: \underline{A} \rightarrow \underline{B}$ is said to <u>preserve limits</u> if whenever $\lambda: A \rightarrow G$ is a limit of a functor with codomain \underline{A} , then $H\lambda$ is a limit of HG. The functor H <u>creates</u> limits if for each functor G with codomain \underline{A} and each limit $\mu: B \rightarrow HG$ of HG there exists a unique natural transformation $\lambda: A \rightarrow G$ such that $H\lambda = \mu$; and moreover λ is a limit of G.

We frequently use the following theorem of P. Freyd.

0.4.4 THEOREM Let $\underline{A}, \underline{B}$ be locally small categories where \underline{B} is small complete. Then a functor $U : \underline{B} \to \underline{A}$ has a left adjoint if and only if (1) U preserves small limits and (2) for each A in \underline{A} there is a small set S_A of objects in \underline{B} such that for any map $\alpha : A \to UB$ there is a B_1 in S_A , a map $\beta : B_1 \to B$, and a map $\alpha_1 : A \to UB_1$ such that $\alpha = U\beta \cdot \alpha_1$.

Condition (2) is called the solution set condition for U , and $S^{}_{\rm A}$ is called a solution set for A .

\$0.5 2-categories.

0.5.1 DEFINITION (Bénabou [2]) A 2-category A is a set of elements $\alpha, \beta, \gamma, \ldots$ called 2-cells, equipped with two partial operations; (1) the weak composition whose effect is denoted $\alpha \cdot \beta$, and (2) the strong composition whose effect is denoted $\alpha \star \beta$. The operations satisfy the following conditions.

(1) The 2-cells constitute a category with respect to the strong composition. We will denote this category by A_{\sim} . Its objects are called <u>vertices</u>.

(2) For each pair of vertices A,B the set A(A,B) is a category with respect to the weak composition. The objects of this category are called <u>arrows</u>. The weak composition is not defined for 2-cells with different domain or codomain in A.

(3) If S is an arrow of A(A,B) and T is an arrow of A(B,C) then T * S is an arrow of A(A,C).

(4) $(\alpha * \beta) \cdot (\gamma * \delta) = (\alpha \cdot \gamma) * (\beta \cdot \delta)$ if both sides are defined.

For other ways of describing 2-categories see [10].

We can write a 2-cell σ as $A \xrightarrow{\sigma \downarrow} B$ where A and B are the domain and codomain of σ in A, and S and T are the domain and codomain of σ in A(A,B).

The most familiar 2-category is the following nice structure on natural transformations. If $\eta : \mathbf{F} \to \mathbf{G} : \underline{A} \to \underline{B}$ and $\mu : \mathbf{G} \to \mathbf{H}$ are natural transformations then the weak composition of η and μ is just $\mu\eta$. If $\nu : \mathbf{K} \to \mathbf{L} : \underline{B} \to \underline{C}$ is a natural transformation then the strong composition of η and ν is $\nu \star \eta = L\eta \cdot \nu \mathbf{F} = \nu \mathbf{G} \cdot \mathbf{K}\eta$. The 2-category of all natural transformations between functors in \underline{Cat} is denoted Cat.

§0.6 Triples in a category.

0.6.1 DEFINITION (Godement [8]) A <u>triple</u> in a category <u>A</u> consists of three things; a functor $T : \underline{A} \rightarrow \underline{A}$, and two natural transformations $\eta : 1_{\underline{A}} \rightarrow T$ and $\mu : T^2 \rightarrow T$, which are required to satisfy three axioms; namely (1) $\mu.\eta T = 1_T$, (2) $\mu.T\eta = 1_T$, and (3) $\mu.T\mu = \mu.\mu T$. We denote the triple so defined as $T = (T,\eta,\mu)$.

If we have an adjoint situation as described in 0.4.2 then (UF,n,UEF) is a triple in \underline{A} , and in fact any triple may be so obtained from an adjoint situation.

0.6.2 DEFINITION (Eilenberg-Moore [6]) Let $T = (T, \eta, \mu)$ be a triple in <u>A</u>. Then a <u>T-algebra</u> is a pair (A, ξ) with A an object of <u>A</u> and ξ : TA \rightarrow A, satisfying the requirements (1) ξ . $\eta A = 1_A$ and (2) ξ . $T\xi = \xi$. μA .

A <u>*T*-morphism</u> from (A_1, ξ_1) to (A_2, ξ_2) is a morphism $\alpha : A_1 \rightarrow A_2$ with the property (1) $\xi_2 \cdot T\alpha = \alpha \cdot \xi_1$.

T-algebras and *T*-morphisms with the obvious composition form a category \underline{A}^T . The functor which takes $\alpha : (A_1, \xi_1) \rightarrow (A_2, \xi_2)$ to $\alpha : A_1 \rightarrow A_2$ is written $U^T : \underline{A}^T \rightarrow \underline{A}$.

0.6.3 DEFINITION A functor $U : \underline{B} \to \underline{A}$ is <u>tripleable</u> if there exists a triple T in \underline{A} and an isomorphism of categories $K : \underline{B} \to \underline{A}^T$ such that $U^T K = U$.

There is another meaning of tripleable which requires only that K be an equivalence.

0.6.4 DEFINITION A <u>triple-map</u> from T_1 to T_2 is a natural transformation $\lambda : T_1 \rightarrow T_2$ such that $\lambda \cdot n_1 = n_2$ and $\lambda \cdot \mu_1 = \mu_2 \cdot (\lambda * \lambda)$

For some idea of the scope of recent literature on triples see [29].

\$0.7 Adequacy.

0.7.1 DEFINITION A family of objects $X = (Xi; i \in I)$ in a category <u>A</u> is called a <u>generating family</u> if for any two different maps $\alpha, \beta : A \rightarrow B$ in <u>A</u> there is an $i \in I$ and a map $\gamma : Xi \rightarrow A$ such that $\alpha\gamma \neq \beta\gamma$.

0.7.2 DEFINITION (Isbell [13]) A generating family $X = (Xi; i \in I)$ is said to be adequate in \underline{A} if, for any pair of objects A,B in \underline{A} , and any family of functions (fi; $i \in I$) with properties (1) fi : $\underline{A}(Xi,A) \rightarrow \underline{A}(Xi,B)$ and (2) for any ε : $Xi_1 \rightarrow Xi$, ϕ : $Xi \rightarrow A$ it is true that $fi(\phi).\varepsilon = fi_1(\phi\varepsilon)$, then there exists a map

In [13] the above property is called the left adequacy of the full subcategory of \underline{A} with objects {Xi; i \in I}.

 $\alpha : A \rightarrow B$ such that fi(-) = α .(-) (all $i \in I$).

<u>\$0.8 The classical notion of variety</u>. (see [4], [9], [30] or [27])

0.8.1 DEFINITIONS To define abstract algebras we need a small set Ω of "formal operations" with a small set a assigned to each ω in Ω called the "arity" of ω . (In [4], [9] and [27] a is always a finite ordinal, and in [30], an ordinal.) Then an Ω -algebra <u>A</u> is a small set A and to each ω in Ω an operation $\omega_{\underline{A}} : A^{\underline{a}\omega} \rightarrow A$. A homomorphism from <u>A</u> to <u>B</u> is a map $\lambda : A \rightarrow B$ such that for

all ω in Ω and all $\alpha : a\omega \to A$ we have $\lambda \cdot \omega_{\underline{A}}(\alpha) = \omega_{\underline{B}}(\lambda \alpha)$.

All Ω -algebras and all homomorphisms form a category $\underline{\Omega-Alg}$. There is a clear forgetful functor U : $\underline{\Omega-Alg} \rightarrow \underline{Sets}$ which has a left adjoint F.

Now an Ω -law in variables X is a pair of elements of UFX. An Ω -algebra <u>A</u> satisfies the law (t_1, t_2) if $\alpha t_1 = \alpha t_2$ for all homomorphisms α : FX $\rightarrow \underline{A}$. Given Λ , a set of Ω -laws in variables X, then the set $\underline{V} = \underline{V}(\Lambda)$ of all algebras satisfying these laws is called a <u>variety</u>. There is an obvious category $Cat(\underline{V})$ and an obvious forgetful functor U : $Cat(\underline{V}) \rightarrow \underline{Sets}$ which again has a left adjoint.

0.8.2 REMARKS It has been recognized that this way of defining varieties of algebras is not completely satisfactory. For example, with this definition, the variety of groups defined in terms of multiplication, inverse, and identity, is different from the variety of groups defined in terms of right division and identity, where we would like them to be the same. The particular operations used to define a variety are less important than the "abstract clone of operations" of the variety, a concept we define in the next paragraph.

0.8.3 DEFINITIONS (P. Hall, see [4] p 132) Let S be a set. An <u>abstract S-clone</u> consists of the following data: an S-tuple of sets (A_s ; $s \in S$); specified elements ($d_{s_1,s}$; $s_4 \in s$) in A_s ; and a function which associates with each μ : $s_1 \rightarrow A_s$ and each α in A_{s_1} an element denoted $\alpha(\mu)$ in A_s . Using this last function we can define to any μ : $s_1 \rightarrow A_s$ and any ν : $s_2 \rightarrow A_{s_1}$ a function

 $v\langle \mu \rangle : s_2 \rightarrow A_s$ by $v\langle \mu \rangle(t) = (vt)\langle \mu \rangle$ for all $t \in s_2$. Then the data are required to satisfy the following axioms where $\omega \in A_s$ and v, μ are as above. (1) $\omega \langle v \rangle \langle \mu \rangle = \omega \langle v \langle \mu \rangle \rangle$. (2) $d_{s_3, s_1} \langle \mu \rangle = \mu(s_3)$.

A homomorphism from S-clone <u>A</u> to S-clone <u>A'</u> is a family of functions ($f_s : A_s \rightarrow A'_s$; $s \in S$) with the properties

(1) $f_s(\alpha \langle \mu \rangle) = (f_s \alpha) \langle f_s, \mu \rangle$ and (2) $f_s d_{s's_4,s} = d'_{s_4,s}$.

Now from any variety \underline{V} we can form an abstract M_1 -clone of operations as follows. Let U be the forgetful functor for \underline{V} , and F a left adjoint of U with associated natural transformation $\eta : 1 \rightarrow UF$. Then take the family of sets to be (UFX ; $X \in M_1$); take the specified elements in UFX to be ($\eta X(x)$; $x \in X$); for $\mu : X \rightarrow UFY$ and w in UFX take $w(\mu)$ to be $U\alpha(w)$ where $\alpha : FX \rightarrow FY$ is the homomorphism determined by $U\alpha.\eta X = \mu$.

A different left adjoint yields an isomorphic clone of operations. The name "clone of operations" arises since each element of the X-component of the clone induces an X-ary operation on every algebra of the variety.

0.8.4 REMARKS CONTINUED The operations in the clone of operations of \underline{V} may be thought of as all the operations "derived" from the defining operations, and it is our contention that two varieties should be considered essentially the same if they have isomorphic clones of operations. Let us call functors $U_1 : \underline{A}_1 \rightarrow \underline{B}$ and $U_2 : \underline{A}_2 \rightarrow \underline{B}$ <u>strictly</u> <u>isomorphic</u> if there is an isomorphism $K : \underline{A}_1 \rightarrow \underline{A}_2$ such that $U_2K = U_1$. For any <u>Sets</u>-valued functor with a left adjoint we can derive an M_1 -clone in much the same way as described in 0.8.3 above. A functor strictly isomorphic to $U : Cat(\underline{V}) \rightarrow \underline{Sets}$ yields a clone isomorphic to the clone of \underline{V} . Thus we may regard any functor strictly isomorphic to $U : Cat(\underline{V}) \rightarrow \underline{Sets}$ as containing the essential information of \underline{V} .

This discussion is contained implicitly in Linton [18] in terms of "theories" rather than clones of operations.

CHAPTER I

DEVICES IN A CATEGORY

As we remarked in §0.1, a triple in a category may be regarded as an analogue of "the set of all free algebras of a variety". Then the Eilenberg-Moore construction of the category of algebras of a triple amounts to the construction of the variety from its free algebras. In this chapter we define a notion, "device in a category", which is an abstraction of "a family of free algebras of a variety" and hence is a generalization of triple. There is a corresponding construction of "the category of algebras of a device" which in the special case of triples is equivalent to the construction of Eilenberg and Moore.

Also in this chapter we prove some simple properties of devices and their algebras. We define "morphisms of devices" and then, in the last section, we give an alternative global description of devices and their algebras.

The reader who would like to see devices in action in simulating conventional universal algebra might well read only the first two sections of this chapter before proceeding to Chapter II.

§1.1 Devices and the device construction.

1.1.1 DEFINITION Let \underline{A} be a category. A <u>device</u> \mathcal{D} in \underline{A} consists of the following data:

(1) a family $X = (Xi; i \in I)$ of objects of A;

(2) a family $n = (ni ; i \in I)$ of maps of \underline{A} , where the domain of ni is Xi and we write the codomain as Di; (3) a family $\Delta = (\Delta(i_1, i_2); i_1, i_2 \in I)$ of sets $\Delta(i_1, i_2)$ of maps of \underline{A} , where each map in $\Delta(i_1, i_2)$ has domain Di₁ and codomain Di₂.

The data are required to satisfy the following axioms for all i, i_1 , i_2 , i_3 in I.

The identity axiom: $l_{Di} \in \Delta(i,i)$.

The closure axiom: $\Delta(i_2,i_3).\Delta(i_1,i_2) \subseteq \Delta(i_1,i_3).$

The universality axiom: for each μ : Xi₁ \rightarrow Di₂ there is a unique $\delta \in \Delta(i_1, i_2)$ such that $\delta \cdot ni_1 = \mu$.

We denote the device defined above by (X,n,Δ) or just (n, Δ). The set I is called the <u>index set</u>, and X is called the <u>object family</u> of \mathcal{D} . The special case when I is a set of objects of \underline{A} and Xi = i for all i ε I occurs frequently. In this case we say that \mathcal{D} has a set of objects, and we identify I and X. We say that a device is <u>full</u> if it has a set of objects consisting of all the objects of \underline{A} .

Unless otherwise indicated we adhere to the following convention. The device \mathcal{D} will always be (n, Δ) with index set I and object family X. The map ni will always have codomain Di. If \mathcal{D} is decorated in any way, for example as \mathcal{D}_1 or \mathcal{D}^* , then we shall decorate the various parts of the device in the same way. 1.1.2 EXAMPLE Let \underline{V} be a variety of algebras, with forgetful functor U. Let (Fi;i ε I) be any family of free algebras of \underline{V} with Fi freely generated by set Xi. Write the insertions of the free generating sets as ηi : Xi \rightarrow UFi. Then, if we take $\Delta(i_1, i_2)$ to be the set of homomorphisms from Fi₁ to Fi₂, it is easy to see that (η, Δ) is a device in <u>Sets</u>.

More generally, let $U : \underline{B} \to \underline{A}$ be a functor and $S = ((ni,Fi); i \in I)$ a family of universal arrows to U. Then if we take $\Delta(i_1,i_2)$ to be $U\underline{B}(Fi_1,Fi_2)$, clearly (n,Δ) is a device. From any <u>A</u>-valued functor with a left adjoint we can obtain a full device.

1.1.3 DEFINITIONS Let \mathcal{D} be a device in $\underline{\mathbb{A}}$. Then a <u> \mathcal{D} -algebra</u> consists of an object A in $\underline{\mathbb{A}}$ and, to each i in I, a set Φ i of morphisms from Di to A, satisfying the following axioms for all \mathbf{i}_1 , \mathbf{i}_2 in I.

The closure axiom: $\Phi i_2 \cdot \Delta (i_1, i_2) \subseteq \Phi i_1$.

The universality axiom: to each μ : Xi₁ \rightarrow A there is a unique $\phi \in \Phi_{i_1}$ such that $\phi.\eta_{i_1} = \mu$.

We denote the \mathcal{D} -algebra defined above by (A, Φ) . The object A is called the <u>carrier</u> and Φ is called the <u>structure</u> of the \mathcal{D} -algebra (A, Φ) .

A $\underline{\mathcal{D}}$ -morphism from (A_1, Φ_1) to (A_2, Φ_2) is a morphism $\alpha : A_1 \to A_2$ such that $\alpha \cdot \Phi_1 \mathbf{i} \subseteq \Phi_2 \mathbf{i}$ for all \mathbf{i} in I. Then \mathcal{D} -algebras and \mathcal{D} -morphisms form a category $\underline{A}^{\mathcal{D}}$ if the composition of \mathcal{D} -morphisms is defined in the obvious way. There is a forgetful functor $\underline{U}^{\mathcal{D}} : \underline{A}^{\mathcal{D}} \to \underline{A}$ defined by:

 $U^{\mathcal{D}}: (\alpha : (A_1, \Phi_1) \rightarrow (A_2, \Phi_2)) \rightsquigarrow (\alpha : A_1 \rightarrow A_2).$

Notice that if \underline{A} and I are in <u>Cat</u> then so is $\underline{A}^{\mathcal{V}}$.

The definitions of 1.1.1 and 1.1.3 appear in [31] with a slightly different notion of device.

1.1.4 EXAMPLE If \mathcal{D} is the device obtained from a family of free algebras of variety \underline{V} as in 1.1.2, then given any algebra \underline{A} of \underline{V} with underlying set A, we can form a \mathcal{D} -algebra with object A, and with maps Φ i taken to be the homomorphisms from Fi to \underline{A} . A homomorphism from \underline{A}_1 to \underline{A}_2 clearly yields a \mathcal{D} -morphism from $(\underline{A}_1, \Phi_1)$ to $(\underline{A}_2, \Phi_2)$. These observations describe a functor from $\operatorname{Cat}(\underline{V})$ to $\underline{A}^{\mathcal{D}}$ which is an isomorphism provided we have taken a suitably large family of free algebras of \underline{V} . A full description of devices and their algebras in the category of <u>Sets</u> is given later in Chapter III.

1.1.5 EXAMPLE Suppose X is any family of objects of $\underline{\mathbb{A}}$. Then take ni to be 1_{Xi} and $\Delta(i_1, i_2)$ to be $\underline{\mathbb{A}}(Xi_1, Xi_2)$. This yields a device \mathcal{D} which we call the <u>initial device</u> on X. It is easy to see that in this case $U^{\mathcal{D}} : \underline{\mathbb{A}}^{\mathcal{D}} \to \underline{\mathbb{A}}$ is an isomorphism. 1.1.6 EXAMPLE Suppose \underline{A} has an initial object 0. Then if we take $X = \{0\}$ and $\eta(0) = 0 \rightarrow A$, and the maps from A to A to be just the identity map, then we have a device which can be described by the diagram $0 \rightarrow A \supseteq 1$. Algebras are single morphisms $\alpha : A \rightarrow A_1$, and a morphism from α to $\beta : A \rightarrow A_2$ is a map $\gamma : A_1 \rightarrow A_2$ such that $\gamma \cdot \alpha = \beta$. In other words, the category of algebras is the category of objects under A.

1.1.7 EXAMPLES In a category with a terminal object 1 there is also a very simple way of making a device with a single object. For any object A of A the diagram $A \rightarrow 1$ $\bigcirc 1$ describes a device. If $A \rightarrow 1$ is an epimorphism, the only possible structure on an object B is the set of all maps from 1 to B, and hence the category of algebras may be considered, by an abuse of language, to be a full subcategory In Kit, if we take A to be the category with two of A. objects and a single map between them, then the category of algebras is <u>Sets</u>. In the category of abelian groups, if we take A to be a cyclic group of order p (prime), then the algebras are the groups with no element of order p. We can enlarge this device to get just torsion-free groups in the following way. Let $I = \{2,3,5,\ldots,p,\ldots\}$ and $Xp = C_p$ (the prime cycle). Further let $np = C_p \rightarrow \underline{1}$ and $\Delta(p,q) = \{1\}$.

This gives us a device with the torsion-free groups as algebras.

In <u>Kit</u> take X to be $\{\underline{A}\}$ where \underline{A} is the category $1 \subseteq A \stackrel{\alpha}{\underset{k}{\rightarrow}} B \supseteq 1$ with $\alpha\beta = 1$, $\beta\alpha = 1$. Take $n\underline{A}$ to be β generated by $G : \underline{A} \rightarrow \underline{B}$ where \underline{B} is the category $1 \bigoplus_{\beta} A \supseteq_{\beta} \alpha$ with again $\alpha\beta = 1$, $\beta\alpha = 1$, and $G\alpha = \alpha$, $G\beta = \beta$. Then, if the maps $\Delta(\underline{A},\underline{A})$ are taken to be all the endofunctors of \underline{A} , we have a device in <u>Kit</u> whose algebras are the skeletal (small) categories.

1.1.8 EXAMPLE Consider the category P(Y) of all subsets of a set Y (with inclusions as morphisms). Any closure operator J on Y yields a device with object set the finite subsets $X = \{X_1, X_2, ...\}$ of Y if ηX_1 is taken to be the map $X_1 + JX_1$ and $\Delta(X_1, X_2)$ to be $P(Y)(JX_1, JX_2)$. An algebra is a subset A such that if $X \subseteq A$ then $JX \subseteq A$. Hence if J is an algebraic closure operator (see [4] page 45) the algebras are just the closed subsets. There is a precise correspondence between algebraic closure operators on Y and devices in P(Y)with object set the finite subsets of Y. Of course, there is a well-known correspondence between closure operators on Y and triples in P(Y). As we remarked in 1.1.2 any family of universal arrows to a functor $U: \underline{B} \rightarrow \underline{A}$ gives rise to a device in \underline{A} just as adjoint functors give rise to triples. In this section it is shown that all devices arise in this way, again in analogy with the triple-adjoint functor situation.

1.2.1 THEOREM Given device D, then $F^{D}i = (Di, \Delta(-, i))$ is a D-algebra where $\Delta(-, i)(i_1) = \Delta(i_1, i)$. Further if (A, Φ) is any other algebra then the D-morphisms from $F^{D}i$ to (A, Φ) are precisely the morphisms in Φi .

PROOF Checking that $F^{\mathcal{D}}$ is an algebra, we note that: (1) $\Delta(-,i)(i_1) \cdot \Delta(i_2,i_1) = \Delta(i_1,i) \cdot \Delta(i_2,i_1) \subseteq \Delta(i_2,i) =$ $\Delta(-,i)(i_2)$; (2) given any μ : Xi₁ \rightarrow Di there is a unique δ in $\Delta(i_1,i) = \Delta(-,i)(i_1)$ such that $\delta.ni_1 = \mu$. Each ϕ in Φ i is a \mathcal{D} -morphism since $\Phi i \cdot \Delta(-,i)(i_1) = \Phi i \cdot \Delta(i_1,i) \subseteq \Phi i$. To see that any \mathcal{D} -morphism α : $F^{\mathcal{D}}i \rightarrow (A,\Phi)$ belongs to Φi , note that

 $\alpha = \alpha \cdot \mathbf{1}_{D_i} \in \alpha \cdot \Delta(-,i)(i) \subseteq \Phi_i.$

The notation $F^{\mathcal{V}_{i}}$ will be used throughout this thesis for the algebra (Di, $\Delta(-,i)$).

1.2.2 THEOREM Consider device \mathcal{D} in $\underline{\mathbb{A}}$. There is a family of universal arrows, indexed by I, to $U^{\mathcal{D}}$ such that the device obtained from these arrows as in 1.1.2 is just \mathcal{D} .

PROOF The i-th universal arrow is $(ni, F^{D}i)$. It is a universal arrow since if $(A, \Phi) \in \underline{A}^{D}$ and μ is any map from Xi to A, then μ factors uniquely through ni in Φi , and Φi , by 1.2.1, is $U^{D}\underline{A}^{D}(F^{D}i, (A, \Phi))$. To see that the device obtained from these arrows is D, note that by 1.2.1 $U^{D}\underline{A}^{D}(F^{D}i, F^{D}i_{1}) = \Delta(i, i_{1})$.

We shall presently describe universal arrows to a much simpler functor which lead to \mathcal{D} .

1.2.3 DEFINITION Consider device \mathcal{D} in $\underline{\mathbb{A}}$. The <u>Kleisli</u> <u>category of</u> \mathcal{D} , which we denote by $\underline{\mathbb{A}}_{\mathcal{D}}$, is the category constructed as follows: the objects of $\underline{\mathbb{A}}_{\mathcal{D}}$ are the ordered pairs (i,Di)(i \in I); the set of morphisms in $\underline{\mathbb{A}}_{\mathcal{D}}$ from (i,Di) to (i_1,Di_1) is $\Delta(i,i_1)$; composition is the same as in $\underline{\mathbb{A}}$. That $\underline{\mathbb{A}}_{\mathcal{D}}$ is a category is an obvious consequence of the properties of device. (The name comes from the category defined by Kleisli in^[15].) There is a functor $U_{\mathcal{D}} : A_{\mathcal{D}} \to A$ defined by

 U_{D} : (δ : (i,Di) → (i₁,Di₁)) \rightsquigarrow (δ : Di → Di₁). We denote the object (i,Di) by F_{D} i.

The definition of device leads immediately to the following result.

1.2.4 THEOREM There is a family of universal arrows to $U_D : \underset{D}{\underline{A}} \rightarrow \underset{\underline{A}}{\underline{A}}$ such that the device obtained as in 1.1.2 from these arrows is \mathcal{D} .

The two functors U^{D} and U_{D} have a very special position among <u>A</u>-valued functors which have a family of universal arrows leading to the device D. Before explaining this remark we prove a useful lemma.

1.2.5 LEMMA Let \mathcal{D} be a device in $\underline{\mathbb{A}}$ and (\mathbf{A}, Φ_1) , (\mathbf{A}, Φ_2) two \mathcal{D} -algebras. If for all i in the index set I of \mathcal{D} we have $\Phi_1 \mathbf{i} \subseteq \Phi_2 \mathbf{i}$, then $\Phi_1 = \Phi_2$. That is, for maps α in $\underline{\mathbb{A}}^{\mathcal{D}}$ we have that $U^{\mathcal{D}}\alpha$ is an identity in $\underline{\mathbb{A}}$ if and only if α is an identity.

PROOF For any $\phi_2 \in \Phi_2^i$ we can find $\phi_1 \in \Phi_1^i$ such that $\phi_1 \cdot ni = \phi_2 \cdot ni$. But both ϕ_1 and ϕ_2 are in Φ_1^i , so the

uniqueness part of the universality condition for algebras gives us that $\phi_1 = \phi_2$ and hence $\phi_1 = \phi_2$.

1.2.6 THEOREM Consider functor $U : \underline{B} \to \underline{A}$ and a family of universal arrows ((ni,Fi); i \in I) to U with associated device $\mathcal{D} = (n, \Delta)$. Then there is a unique functor $K : \underline{B} \to \underline{A}^{\mathcal{D}}$ such that $U^{\mathcal{D}}.K = U$ and $K(Fi) = F^{\mathcal{D}}i$ for all i in I. Further, there is a unique functor $K' : \underline{A}_{\mathcal{D}} \to \underline{B}$ such that U.K' = U_D and K'(F_Di) = Fi for all i \in I.

The situation is summarized in the following diagram

where the families F_{D} , F and F^{D} are here regarded as functors.

PROOF (a) Let $\phi i = U\underline{B}(Fi, B)$. Then K is defined by:

K : B \rightsquigarrow (UB, Φ), and

 $K : (\alpha : B_1 \rightarrow B_2) \rightsquigarrow (U_\alpha : KB_1 \rightarrow KB_2).$

Since the universal arrows to U yield \mathcal{D} , we must have $U_{\mathbb{B}}^{\mathbb{C}}(\mathrm{Fi},\mathrm{Fi}_{1}) = \Delta(\mathrm{i},\mathrm{i}_{1})$. Thus (UB,Φ) is an algebra, since (1) $\Phi \mathrm{i}.\Delta(\mathrm{i}_{1},\mathrm{i}) = U_{\mathbb{B}}^{\mathbb{C}}(\mathrm{Fi},\mathrm{B}).U_{\mathbb{B}}^{\mathbb{C}}(\mathrm{Fi}_{1},\mathrm{Fi}) \subseteq U_{\mathbb{B}}^{\mathbb{C}}(\mathrm{Fi}_{1},\mathrm{B}) = \Phi \mathrm{i}_{1}$ and (2) any μ : Xi \rightarrow UB factorizes uniquely through $\eta \mathrm{i}$ in $U_{\mathbb{B}}^{\mathbb{C}}(\mathrm{Fi},\mathrm{B})$. Similarly $U\alpha$: KB₁ \rightarrow KB₂ is a \mathcal{D} -morphism. That K is a functor is obvious, and K clearly takes Fi to $(\mathrm{Di},\Delta(-,\mathrm{i}))$.

Consider another functor $K_1 : \underline{B} \to \underline{A}^{\mathcal{D}}$ with $U^{\mathcal{D}}K_1 = U$ and $K_1(Fi) = F^{\mathcal{D}}i$ for all $i \in I$. Then $K_1B = (UB, \Psi)$ for some structure Ψ . Further

$$U_{\underline{B}}^{\underline{B}}(\mathtt{Fi},\mathtt{B}) = U^{\mathcal{D}}K_{\underline{1}}^{\underline{B}}(\mathtt{Fi},\mathtt{B}) \subseteq U^{\mathcal{D}}_{\underline{A}}^{\mathcal{D}}(\mathtt{F}^{\mathcal{D}}_{\underline{i}},(\mathtt{B},\Psi)) = \Psi_{\underline{i}}.$$

However, we have seen above that $(UB, U\underline{B}(Fi, B))$ is a \mathcal{D} -algebra, and hence by Lemma 1.2.5 we have $\forall i = U\underline{B}(Fi, B)$. Thus K_1 agrees with K on objects. Since $U^{\mathcal{D}}K_1 = U^{\mathcal{D}}K$ and $U^{\mathcal{D}}$ is faithful, it is clear that K_1 also agrees with K on morphisms. (b) The functor K' is defined by

where δ' is determined by $U\delta'.ni = \delta.ni$. Clearly K' must act in this way to have the desired properties since $UK'\delta.ni = U_D\delta.ni = \delta.ni$. Now $U\delta' \in \Delta(i,i_1)$ since the device associated with U is \mathcal{D} . Hence $U\delta' = \delta$ and so $U_D = U.K'$.

\$1.3 The enlargement of devices.

1.3.1 DEFINITIONS Given a device \mathcal{D} with index set I, and a subset I₁ of I, then $\mathcal{D}|I_1 = (n|I_1, \Delta|I_1)$ is a device with index set I₁ if $n|I_1$ is defined by $n|I_1(i_1) = n(i_1)$ and $(\Delta|I_1)(i_1, i_1') = \Delta(i_1, i_1')$ for all i_1, i_1' in I_1 . The device $\mathcal{D}|I_1$ is called the <u>restriction</u> of \mathcal{D} to I_1 , and \mathcal{D} is called an <u>enlargement</u> of $\mathcal{D}|I_1$ to I. There is an obvious functor $U(I_1) : \underline{A}^{\mathcal{D}} \neq \underline{A}$ defined

as follows:

$$U(I_1)$$
 : $(A, \Phi) \rightsquigarrow (A, \Phi | I_1)$ and $U(I_1)$: $\alpha \rightsquigarrow \alpha$,

where $\Phi | I_1$ is a family indexed by I_1 and defined by $(\Phi | I_1)(i_1) = \Phi i_1$. Again, that $(A, \Phi | I_1)$ is a $\mathcal{D} | I_1$ -algebra is clear, as is the functorial nature of $U(I_1)$.

If $U(I_1)$ is an isomorphism, then we say that \mathcal{D} is an <u>inessential enlargement</u> of $\mathcal{D}|I_1$. Call two devices <u>equivalent</u> if there is a device which is an inessential enlargement of each of

them. We will see in 1.3.3 that equivalence is indeed an equivalence relation.

1.3.2 THEOREM Let \mathcal{D} be a device on $\underline{\mathbb{A}}$ with index set I, and let $S(I) = ((ni, F^{\mathcal{D}}i); i \in I)$ be the derived family of universal arrows to $U^{\mathcal{D}}$. Suppose $I_1 \supseteq I$, and there is a family $S(I_1)$ of universal arrows to $U^{\mathcal{D}}$ indexed by I_1 , which, when restricted to I, is S(I). Let \mathcal{D}_1 be the device associated with the family $S(I_1)$. Then \mathcal{D}_1 is an inessential enlargement of \mathcal{D} . Further any inessential enlargement of \mathcal{D} may be obtained in this way.

PROOF Clearly $\mathcal{D}_1 | I = \mathcal{D}$. We want to show that $U = U(I) : \underline{A}^{\mathcal{D}_1} \to \underline{A}^{\mathcal{D}_1}$ is an isomorphism. Notice first that if $(n_1i_1 : X_1i_1 \to D_1i_1, Fi_1)$ is the universal arrow corresponding to i_1 in $S(I_1)$ then $Fi_1 = (D_1i_1, \Delta_1(-, i_1) | I)$ since $\Delta_1(i, i_1)$ is the set of morphisms from $F^{\mathcal{D}}_i$ to Fi_1 .

That U is faithful is clear. To see that U is onto objects, consider (A, ϕ) in $\underline{A}^{\mathcal{D}}$. Define ϕ_1 by

$$\Phi_{1}i_{1} = U^{\mathcal{D}}\underline{A}^{\mathcal{D}}(Fi_{1}, (A, \Phi)) \text{ for all } i_{1} \in I_{1}.$$

Notice that $\Phi_1 | I = \Phi$, so that if $(A, \Phi_1) \in A^{\cup 1}$ then certainly $U(A, \Phi_1) = (A, \Phi)$. But

$$\Phi_{1}i_{1} \cdot \Delta_{1}(i_{2},i_{1}) = U^{\mathcal{D}}\underline{A}^{\mathcal{D}}(Fi_{1},(A,\Phi)) \cdot U^{\mathcal{D}}\underline{A}^{\mathcal{D}}(Fi_{2},Fi_{1})$$
$$\subseteq U^{\mathcal{D}}\underline{A}^{\mathcal{D}}(Fi_{2},(A,\Phi)) = \Phi_{1}i_{2} \cdot$$

Further given any μ : Xi₁ \rightarrow A, the fact that (ni₁,Fi₁) is a universal arrow enables us to factor μ uniquely through ni₁ in Φ_1 i₁.

To see that U is one-to-one on objects, consider $\begin{pmatrix} P_1 \\ P_1 \end{pmatrix}$ in $\underline{\mathbb{A}}^{\mathbb{D}_1}$. It is sufficient to show for all \mathbf{i}_1 in \mathbf{I}_1 that $\Psi_1 \mathbf{i}_1 = \mathbf{U}^{\mathcal{D}} \underline{\mathbb{A}}^{\mathcal{D}}(\mathbf{Fi}_1, \mathbf{U}(\mathbf{A}, \Psi_1))$. We know that $\Psi_1 \mathbf{i}_1 \cdot \mathbf{A}_1(\mathbf{i}, \mathbf{i}_1) \subseteq \Psi_1 \mathbf{i}$. But the morphisms in $\mathbf{A}_1(\mathbf{i}, \mathbf{i}_1)$ (i in I) are the structure maps of the \mathcal{D} -algebra \mathbf{Fi}_1 from Di, and so $\Psi_1 \mathbf{i}_1$ consists of \mathcal{D} -morphisms from \mathbf{Fi}_1 to $\mathbf{U}(\mathbf{A}, \Psi_1)$. That is $\Psi_1 \mathbf{i}_1 \subseteq \mathbf{U}^{\mathcal{D}} \underline{\mathbb{A}}^{\mathcal{D}}(\mathbf{Fi}_1, \mathbf{U}(\mathbf{A}, \Psi_1))$. But as we have seen above $\mathbf{U}^{\mathcal{D}} \underline{\mathbb{A}}^{\mathcal{D}}(\mathbf{F}(-), \mathbf{U}(\mathbf{A}, \Psi_1))$ is a \mathcal{D}_1 -structure for A, and hence by Lemma 1.2.5 we have that $\Psi_1 \mathbf{i}_1 = \mathbf{U}^{\mathcal{D}} \underline{\mathbb{A}}^{\mathcal{D}}(\mathbf{Fi}_1, \mathbf{U}(\mathbf{A}, \Psi_1))$.

Finally, to see that $U : \underline{A}^{\mathcal{D}} \to \underline{A}^{\mathcal{D}}$ is full, consider $\alpha : (A, \Phi) \to (B, \Psi)$ in $\underline{A}^{\mathcal{D}}$. We need to show that $\alpha . U^{\mathcal{D}} \underline{A}^{\mathcal{D}} (Fi_{1}, (A, \Phi)) \subseteq U^{\mathcal{D}} \underline{A}^{\mathcal{D}} (Fi_{1}, (B, \Psi))$ which is clear.

The second part of the theorem is easy since if \mathcal{D}_1 is an \mathcal{D}_1 is strictly isomorphic to $\mathcal{U}^{\mathcal{D}}$. Hence corresponding to universal arrows to $\mathcal{U}^{\mathcal{D}}$ there are universal arrows to $\mathcal{U}^{\mathcal{D}}$ which lead to the same device.

1.3.3 COROLLARY Devices \mathcal{D}_1 and \mathcal{D}_2 in $\stackrel{A}{=}$ are equivalent if and only if U^1 and U^2 are strictly isomorphic.

PROOF If U^{D_1} and U^{D_2} are strictly isomorphic then, as we remarked at the end of the proof of 1.3.2, a family S_1 of universal arrows to U^{D_1} may be carried across via the isomorphism to a family S_2 of universal arrows to U^{D_2} with the same associated device as S_1 . It is clear from this and Theorem 1.3.2 how to obtain a device D in \underline{A} which is a common inessential enlargement of D_1 and D_2 .

Next we give a theorem that allows us to reduce the object family of a device while still retaining an equivalent device.

1.3.4 THEOREM Consider device \mathcal{D} . If $I_1 \subseteq I$, and to each i in I there is an i_1 in I_1 and a split epimorphism $Xi_1 \rightarrow Xi$, then $\mathcal{D}|I_1$ is equivalent to \mathcal{D} .

PROOF To see that $U(I_1) : A \xrightarrow{p} \to A \xrightarrow{p} i$ is an isomorphism consider (A, Φ) in $A \xrightarrow{p}$. Then if α is the promised epimorphism from $Xi_1 \to Xi$ ($i \notin I_1$) for which there is a map β with $\alpha\beta = 1$, and Ψ is defined by $\Psi i = \Phi i_1 \cdot D\beta$ and $\Psi | I_1 = \Phi$ then (A, Ψ) is a D-algebra. Further it is the one and only D-algebra going to (A, Φ) under $U(I_1)$. To see that (A, Ψ) is an algebra

we first observe that

$$\Phi \mathbf{i}_1 \cdot \Delta(\mathbf{i}, \mathbf{i}_1) = \Phi \mathbf{i}_1 \cdot \Delta(\mathbf{i}, \mathbf{i}_1) \cdot \mathbf{D} \alpha \cdot \mathbf{D} \beta \subseteq \Phi \mathbf{i}_1 \cdot \Delta(\mathbf{i}_1, \mathbf{i}_1) \cdot \mathbf{D} \beta = \Phi \mathbf{i}_1 \cdot \mathbf{D} \beta.$$

The closure condition follows easily from this. Consider μ : Xi \rightarrow A. There exists a ϕ in Φi_1 such that $\phi \cdot ni_1 = \mu \alpha$. Then $\phi \cdot D\beta \cdot ni = \phi \cdot ni_1 \cdot \beta = \mu \alpha \beta = \mu$. Suppose for two maps ϕ_1, ϕ_2 in Φi_1 we have that $\phi_1, D\beta \cdot ni = \phi_2 \cdot D\beta \cdot ni$. Then

$$\phi_1 \cdot D\beta \cdot D\alpha \cdot \eta i_1 = \phi_1 \cdot D\beta \cdot \eta i \cdot \alpha = \phi_2 \cdot D\beta \cdot \eta i \cdot \alpha = \phi_2 \cdot D\beta \cdot D\alpha \cdot \eta i_1$$

and hence $\phi_1 D\beta D\alpha = \phi_2 D\beta D\alpha$. It follows that

$$\phi_1 D\beta = \phi_1 \cdot D\beta \cdot D\alpha \cdot D\beta = \phi_2 \cdot D\beta \cdot D\alpha \cdot D\beta = \phi_2 \cdot D\beta \cdot$$

Suppose (A, Ψ_1) is another algebra going to (A, Φ) under $U(I_1)$. Then certainly $\Phi i_1 \cdot D\beta \subseteq \Psi_1 i$. But, as we have seen, $\Phi i_1 \cdot D\beta$ is part of a structure for A, and hence $\Phi i_1 \cdot D\beta = \Psi_1 i$. It is easy to see that $U(I_1)$ is full, and hence is an isomorphism.

1.3.5 COROLLARY Given device \mathcal{D} , there is a subset I_1 of I such that for all i_1, i'_1 in I_1 , if $Xi_1 = Xi'_1$ then $i_1 = i'_1$, and further \mathcal{D} is equivalent to $\mathcal{D} | I_1$.

1.3.6 REMARKS Consider device \mathcal{D} and a bijection $\alpha : I_1 \neq I$. If we define η_1 by $\eta_1 i_1 = \eta(\alpha i_1)$ and Δ_1 by $\Delta_i(i_1, i_1') = \Delta(\alpha i_1, \alpha i_1')$ then \mathcal{D}_1 so defined is a device which for most purposes is indistinguishable from \mathcal{D} . Any statement about \mathcal{D}_1 can be trivially translated into one about \mathcal{D} . If we are prepared to overlook the difference between these two devices then Corollary 1.3.5 states that any device is equivalent to a device with a set of objects.

Not all devices can be enlarged so that their object family includes all the objects of the category in which they are defined. For example consider the category described by the diagram

Then the diagram $A \rightarrow B \gtrsim 1$ describes a device with one object A, which cannot be enlarged to the object C.

\$1.4 Devices and triples.

As we remarked in §0.6, any triple in a category $\underline{\underline{A}}$ arises from an adjoint pair of functors; and, as we know, any adjoint pair leads to universal arrows from each object of $\underline{\underline{A}}$, and hence to a device with object set all the objects of $\underline{\underline{A}}$. Conversely any full device arises from an adjoint pair of functors and hence from a triple. This suggests a correspondence, which we make precise in the following theorem, between triples and full devices in $\underline{\underline{A}}$.

1.4.1 THEOREM Let $T = (T,n,\mu)$ be a triple in \underline{A} . If we define $\Delta(A_1,A_2)$ to be $\{\mu \ A_2,T\alpha; \ \alpha : A_1 \rightarrow TA_2\}$, then $\mathcal{D} = (n,\Delta)$ is a device with object set all the objects of \underline{A} . Conversely, given such a device \mathcal{D} in \underline{A} we can define a triple in \underline{A} as follows: the functor T is defined by the requirements (1) TA = DA and (2) if $\alpha : A_1 \rightarrow A_2$ then $T\alpha \in \Delta(A_1,A_2)$ and $T\alpha.nA_1 = nA_2.\alpha$; the function n of the device \mathcal{D} is then a natural transformation from $1_{\underline{A}}$ to T; μ defined by $\mu A \in \Delta(DA, A)$ and $\mu A.nTA = 1_{TA}$ is natural from T^2 to T. These two processes, from triples to full devices, and from full devices to triples, are inverse to one another.
PROOF (a) To see that (n, Δ) (as defined in the first part of the statement) is a device, we observe the following facts.

(1) $1_{TA} \in \Delta(A, A)$ since $\mu A_{\circ} T \eta A = 1_{TA^{\circ}}$ (2) If $\delta_{1} \in \Delta(A_{1}, A_{2})$ and $\delta_{2} \in \Delta(A_{2}, A_{3})$ then $\delta_{1} = \mu A_{2^{\circ}} T \alpha$ and $\delta_{2} = \mu A_{3^{\circ}} T \beta$ for some α, β . Further,

$$\mu A_{3} \cdot T\beta \cdot \mu A_{2} \cdot T\alpha = \mu A_{3} \cdot \mu TA_{3} \cdot T^{2}\beta \cdot T\alpha$$
$$= \mu A_{3} \cdot T\mu A_{3} \cdot T^{2}\beta \cdot T\alpha$$

= $\mu A_3 \cdot T(\mu A_3 \cdot T\beta \cdot \alpha) \in \Delta(A_1, A_3)$.

(3) Given $\alpha : A_1 \to TA_2$ then $(\mu A_2 \circ T\alpha) \cdot nA_1 = \mu A_2 \circ nTA_2 \circ \alpha = \alpha \circ$ Furthermore it is clear that α determines the map $\mu A_2 \cdot T\alpha$ in $\Delta(A_1, A_2)$.

(b) To see that (T,η,μ) (as defined in the second part of the statement of 1.4.1) is a triple we need to consider the following facts. (1) T is well defined in view of the defining properties of device. It is clear then, by a well known argument, that T is a functor, and trivially that $\eta : 1 \rightarrow T$ is natural. (2) Again $\mu : T^2 \rightarrow T$ is well defined, by the definition of device. Further μ is natural since for each $\alpha : A_1 \rightarrow A_2$ we have

$$\mu A_2 \cdot T^2 \alpha \cdot \eta T A_1 = \mu A_2 \cdot \eta T A_2 \cdot T \alpha = T \alpha = T \alpha \cdot \mu A_1 \cdot \eta T A_1,$$

and since both $\mu A_2 \cdot T^2 \alpha$ and $T \alpha \cdot \mu A_1$ belong to $\Delta(T A_1, A_2)$ we may cancel the $\eta T A_1$. (3) That $\mu \cdot \eta T = 1_T$ follows immediately from the definition of μ . (4) Since for each $A \in \underline{A}$ we have

$$\mu A.T\eta A.\eta A = \mu A.\eta TA.\eta A = 1_{TA}.\eta A$$

and both μ A.TnA and 1_{TA} belong to $\Delta(A,A)$, we may cancel nA to obtain μ .Tn = 1_T . (5) Finally, since for each object A in A

$$\mu A.T \mu A.\eta T^2 A = \mu A.\eta T A.\mu A = \mu A = \mu A.\mu T A.\eta T^2 A$$

and since both $\mu A.T\mu A$ and $\mu A.\mu TA$ belong to $\Delta(T^2A,A)$, we may cancel ηT^2A to obtain $\mu.T\mu = \mu.\mu T$.

(c) To see that the two processes described in the theorem are inverse, suppose first that (T,n,μ) is taken by the first process to (n,Δ) and this device is taken by the second to (T_1,n_1,μ_1) . We notice immediately that $n_1 = n$ and that T_1 on objects is the same as T on objects. Now $T_1\alpha$ for $\alpha : A_1 \rightarrow A_2$ is the unique map in $\Delta(A_1,A_2)$ satisfying $T_1\alpha \cdot nA_1 = nA_2 \cdot \alpha$. Further $\Delta(A_1,A_2) = \{\mu A_2 \cdot T\beta; \beta : A_1 \rightarrow TA_2\}$, so

$$T\alpha = \mu A_2 \cdot T\eta A_2 \cdot T\alpha = \mu A_2 \cdot T(\eta A_2 \cdot \alpha) \in \Delta(A_1, A_2).$$

Since $T\alpha \cdot nA_1 = nA_2 \cdot \alpha$ we must have $T_1\alpha = T\alpha$. Finally μ_1A is the unique map in $\Delta(TA,A)$ satisfying $\mu_1A \cdot nTA = 1_{TA}$. Clearly μA satisfies this equation and further $\mu A \cdot T(1_{TA}) = \mu A \in \Delta(TA,A)$. So $(T_1, n_1, \mu_1) = (T, n, \mu)$.

Secondly, suppose that the second process takes the device (n, Δ) to the triple (T, n, μ) and the first takes this triple to (n_1, Δ_1) . Again, it is clear that $n_1 = n$. Now $\Delta_1(A_1, A_2) =$ $\{\mu A_2, T\beta; \beta : A_1 \rightarrow A_2\}$ and $\mu A_2, T\beta$ belongs to $\Delta(A_1, A_2)$. Hence $\Delta_1(A_1, A_2) \subseteq \Delta(A_1, A_2)$. Given $\delta \in \Delta(A_1, A_2)$ there exists a $\delta_1 \in \Delta_1(A_1, A_2)$ such that $\delta_1 \cdot nA_1 = \delta \cdot nA_1$. Since $\delta_1 \in \Delta(A_1, A_2)$ this implies that $\delta_1 = \delta$, and hence $\Delta_1(A_1, A_2) = \Delta(A_1, A_2)$.

Thus the two functions are inverse, and we may speak of the triple in \underline{A} corresponding to a full device, and vice versa.

1.4.2 THEOREM If \mathcal{D} is the full device in A corresponding to triple \mathcal{T} , then $U^{\mathcal{D}}$ is strictly isomorphic to $U^{\mathcal{T}}$.

PROOF We construct a pair of functors $L : \underline{A}^T \to \underline{A}^D$ and $L' : \underline{A}^D \to \underline{A}^T$ such that $U^D L = U^T$, L'L = 1 and LL' = 1. The functor L is defined by:

L : $(\alpha : (A_1, \phi_1) \rightarrow (A_2, \phi_2)) \longrightarrow (\alpha : (A_1, \phi_1) \rightarrow (A_2, \phi_2)),$

where $\Phi_j A = \{\phi, T\gamma; \gamma : A \to A_j\}$ (j = 1,2). The functor L' is defined by:

$$L' : (\alpha : (A_1, \phi_1) \rightarrow (A_2, \phi_2)) \rightsquigarrow (\alpha : (A_1, \phi_1) \rightarrow (A_2, \phi_2))$$

where ϕ_j is determined by $\phi_j \in \Phi_j A_j$ and $\phi_j \cdot \eta A_j = 1_{A_j}$ (j = 1, 2).

To see that L is a functor, we need to check first that if $(A_1, \phi_1) \in \underline{A}^T$, then $L(A_1, \phi_1) \in \underline{A}^D$. (1) Any $\delta \in \Delta(A', A)$ is of the form $\mu A.T\lambda$ for some $\lambda : A' \rightarrow TA$, and any $\psi \in \Phi_1 A$ is of the form $\phi.T\gamma$ for some $\gamma : A \rightarrow A_1$. Hence

$$\psi \cdot \delta = \phi \cdot T\gamma \cdot \mu A \cdot T\lambda = \phi \cdot \mu A_1 \cdot T^2 \gamma \cdot T\lambda = \phi \cdot T\phi \cdot T^2 \gamma \cdot T\lambda$$

and so $\Phi_1 A.\Delta(A',A) \subseteq \Phi_1 A'$. (2) For any $\nu : A \to A_1$ we have $\phi.T\nu.nA = \phi.nA_1 \cdot \nu = \nu$ and clearly $\phi.T\nu$ is unique in ΦA satisfying this equation.

We also need to check that if $\alpha : (A_1, \phi_1) \rightarrow (A_2, \phi_2)$ is in \underline{A}^T then $\alpha : (A_1, \phi_1) \rightarrow (A_2, \phi_2)$ is in \underline{A}^D . But notice that for any $\gamma : A \rightarrow A_1$ we have $\alpha \cdot \phi_1 \cdot T\gamma = \phi_2 \cdot T\alpha \cdot T\gamma$, and so $\alpha \cdot \phi_1(A) \subseteq \phi_2(A)$.

Similarly, to see that L' is a functor, first consider L'(A, ϕ) = (A, ϕ). Clearly ϕ . η A = 1_A. Further ϕ . $T\phi$. η TA = ϕ . η A. ϕ = ϕ = ϕ . μ A. η TA and we can cancel the morphism η TA to complete the proof that (A,ϕ) belongs to \underline{A}^{T} . Consider $\alpha : (A_{1},\phi_{1}) \rightarrow (A_{2},\phi_{2})$ in \underline{A}^{D} , and let L'(α) = $\alpha : (A_{1},\phi_{1}) \rightarrow (A_{2},\phi_{2})$. Then

$$\phi_2 \cdot T\alpha \cdot \eta A_1 = \phi_2 \cdot \eta A_2 \cdot \alpha = \alpha = \alpha \cdot \phi_1 \cdot \eta A_1$$

We can cancel the morphism ηA_1 , to see that $L'(\alpha)$ is a morphism in \underline{A}^T .

Finally, let (A, ϕ_1) be the image of (A, ϕ) under L'L and let (A, ϕ_1) be the image of (A, Φ) under LL'. Then ϕ_1 is the unique map in $\{\phi, T\gamma; \gamma : A \rightarrow A\}$ satisfying $\phi_1 \cdot \eta A = 1_A$. The map ϕ clearly has these properties, so $(A, \phi_1) = (A, \phi)$. Further $\phi_1 A_1 = \{\psi, T\gamma; \gamma : A_1 \rightarrow A\}$ where $\psi \in \Phi A$ and $\psi, \eta A = 1$, and so $\phi_1 A_1 \subseteq \Phi A_1$. This is enough to prove that $(A, \phi_1) = (A, \Phi)$. Hence L and L' are inverses.

1.4.3 REMARKS It is clear from 1.3.2 and 1.3.6 that a device \mathcal{D} is equivalent to (the full device corresponding to) a triple if and only if $U^{\mathcal{D}}$ has a left adjoint. In fact, in most interesting cases $U^{\mathcal{D}}$ does have a left adjoint, so one might suppose that nothing is gained by discussing devices rather than triples. However many of the theorems and concepts of this thesis

are not "preserved under equivalence" since they make essential use of properties of the families of objects of the devices involved. This might be considered the special advantage of our approach.

Notice that (the forgetful functor of) the Kleisli category of a full device, as defined in 1.2.3, is strictly isomorphic to (the forgetful functor of) the usual Kleisli category, defined in [15], of the corresponding triple. One could prove this by producing an explicit isomorphism, or by using the two comparison theorems, namely our Theorem 1.2.6 and the observation of Huber [12]. This second method of proof could have been employed for Theorem 1.4.2, using in this case the comparison theorem of [6], but we preferred to give the above explicit verification independent of [6].

\$1.5 Morphisms of devices.

In this section we defined and discuss morphisms between devices with the same object family.

1.5.1 DEFINITIONS Consider devices $\mathcal{D}_1 = (n_1, \Delta_1)$ and $\mathcal{D}_2 = (n_2, \Delta_2)$, both with the same index set I and object family X. Then a morphism from \mathcal{D}_1 to \mathcal{D}_2 is a family of maps (λ i; i \in I), where λ i : D_1 i $\rightarrow D_2$ i, satisfying for all i,i_1 \in I

- (1) $\lambda i.\eta_1 i = \eta_2 i$, and
- (2) $\lambda i_1 \cdot \Delta_1 (i, i_1) \subseteq \Delta_2 (i, i_1) \cdot \lambda i$.

The category of devices in \underline{A} with object family X, where the composition of morphisms is the obvious one, will be denoted by $\underline{\text{Dev}}(\underline{A}, X)$, or just $\underline{\text{Dev}}(X)$ or $\underline{\text{Dev}}$ when these are unambiguous. Notice that if I is small and \underline{A} is in <u>Cat</u> then $\underline{\text{Dev}}(\underline{A}, X)$ is in <u>Cat</u>. There is a clear forgetful functor U : $\underline{\text{Dev}}(\underline{A}, X) \rightarrow \underline{A}^{I}$ defined by

$$\mathbb{U} : (\lambda : (\mathfrak{n}_1, \Delta_1) \rightarrow (\mathfrak{n}_2, \Delta_2)) \xrightarrow{} (\lambda : D_1 \rightarrow D_2).$$

When X is the set of objects of $\underline{A}_{=}$, we would like to see that morphisms correspond to morphisms of triples.

1.5.2 THEOREM If $\mathcal{D}_1, \mathcal{D}_2$ are the full devices corresponding to triples $\mathcal{T}_1, \mathcal{T}_2$, then $\lambda : D_1 \to D_2$ is a morphism from \mathcal{D}_1 to \mathcal{D}_2 if and only if it is a morphism from \mathcal{T}_1 to \mathcal{T}_2 .

PROOF Consider morphism $\lambda : \mathcal{D}_1 \to \mathcal{D}_2$. Now for any $\alpha : A_1 \to A_2$ in \underline{A} we have $\lambda A_2 \cdot D_1 \alpha \in \Delta_2(A_1, A_2) \cdot \lambda A_1$; that is $\lambda A_2 \cdot D_1 \alpha = \delta \cdot \lambda A_1$ say, and hence

$$\delta \cdot n_2 A_1 = \delta \cdot \lambda A_1 \cdot n_1 A_1 = \lambda A_2 \cdot D_1 \alpha \cdot n_1 A_1 = \lambda A_2 \cdot n_1 A_2 \cdot \alpha = n_2 A_2 \cdot \alpha$$
$$= D_2 \alpha \cdot n_2 A_1 \cdot$$

It immediately follows that $D_2 \alpha = \delta$, and so $\lambda A_2 \cdot D_1 \alpha = D_2 \alpha \cdot \lambda A_1$. Hence λ is natural from T_1 to T_2 . Further, for any A in A we have

$$\mu_{2}^{\mathbf{A}\cdot\mathbf{T}}_{2}^{\lambda\mathbf{A}\cdot\lambda\mathbf{T}}_{1}^{\mathbf{A}\cdot\mathbf{\eta}}_{1}^{\mathbf{T}}_{1}^{\mathbf{A}} = \mu_{2}^{\mathbf{A}\cdot\mathbf{T}}_{2}^{\lambda\mathbf{A}\cdot\mathbf{\eta}}_{2}^{\mathbf{T}}_{1}^{\mathbf{A}} = \mu_{2}^{\mathbf{A}\cdot\mathbf{\eta}}_{2}^{\mathbf{T}}_{2}^{\mathbf{A}\cdot\lambda\mathbf{A}} = \lambda\mathbf{A}.$$

Also $\lambda A_{\mu_1} A_{\eta_1} T_1 A = \lambda A$. Now there exists a morphism δ in $\Delta_2(T_1 A, A)$ such that $\lambda A_{\mu_1} A = \delta_{\mu_1} A$. Then

$$\mu_{2}^{\mathbf{A} \cdot \mathbf{T}_{2} \lambda \mathbf{A} \cdot \mathbf{\eta}_{2} \mathbf{T}_{1} \mathbf{A}} = \delta_{\cdot \lambda} \mathbf{T}_{1}^{\mathbf{A} \cdot \mathbf{\eta}_{1} \mathbf{T}_{1} \mathbf{A}} = \delta_{\cdot \mathbf{\eta}_{2} \mathbf{T}_{1} \mathbf{A}}$$

and so $\mu_2 A \cdot T_2 \lambda A \cdot = \delta$. Hence as required $\mu_2 A \cdot \lambda T_2 A \cdot T_1 \lambda A = \mu_2 A \cdot T_2 \lambda A \cdot \lambda T_1 A = \delta \cdot \lambda T_1 A = \lambda A \cdot \mu_1 A$, and so λ is a triple morphism from T_1 to T_2 .

Consider morphism $\lambda : T_1 \to T_2$. To see that $\lambda A_2 \cdot A_1(A_1, A_2) \subseteq A_2(A_1, A_2) \cdot \lambda A_1$ for all A_1, A_2 in \underline{A}_1 , remember that $A_j(A_1, A_2) = \{\mu_j A_2 \cdot T_j \alpha; \alpha : A_1 \to T_j A_2\}$ (j = 1,2). Then the inclusion follows from

$$\lambda A_2 \cdot \mu_1 A_2 \cdot T_1 \alpha = \mu_2 A_2 \cdot T_2 \lambda A_2 \cdot \lambda T_1 A_2 \cdot T_1 \alpha = \mu_2 A_2 \cdot T_2 \lambda A_2 \cdot T_2 \alpha \cdot \lambda A_1$$

1.5.3 DEFINITION The category $\underline{Alg}(\underline{A}, X)$ has as objects categories of algebras $\underline{A}^{\mathcal{D}}$ together with specified devices \mathcal{D} where the devices are required to have object family X. A morphism from $\underline{A}^{\mathcal{D}_1}_{\begin{array}{c} \mathcal{D}_2 \\ \mathcal{D}_1 \end{array}}$ to $\underline{A}^{\begin{array}{c} \mathcal{D}_2 \\ \mathcal{D}_2 \end{array}}$ (where the devices are understood) is a functor $G: \underline{A}^{\begin{array}{c} \mathcal{A}}_{\begin{array}{c} \mathcal{A}} \end{array}} \neq \underline{A}^{\begin{array}{c} \mathcal{D}}_{\begin{array}{c} \mathcal{D}} \end{array}$ such that $U^2G = U^1$. Such functors are called algebraic functors.

1.5.4 THEOREM
$$(\underline{Alg}(\underline{A}, X))^{op} = \underline{Dev}(\underline{A}, X)$$
.

PROOF We define functors K_1 from categories to devices, and K_2 in the opposite direction. They are the obvious functions on objects, namely $K_1(\underline{A}^{\mathcal{D}}) = \mathcal{D}$ and $K_2(\mathcal{D}) = \underline{A}^{\mathcal{D}}$. Given an algebraic functor $G : \underline{A}^{-1} \rightarrow \underline{A}^{-2}$, we form a morphism $K_1G = \lambda : \mathcal{D}_2 \rightarrow \mathcal{D}_1$ as follows: to each Xi ε X we solve the diagram

for $\lambda \mathbf{i}$, a structure map of $\mathbf{GF}^{\mathbf{1}}\mathbf{i}$. We check that λ so defined is a morphism of devices. The structure of $\mathbf{GF}^{\mathbf{1}}\mathbf{i}\mathbf{i}$ is $\sum_{\mathbf{A}}^{\mathcal{D}} \sum_{\mathbf{F}^{\mathbf{2}}(\mathbf{F}^{\mathbf{2}}(-),\mathbf{GF}^{\mathbf{1}}\mathbf{i}) = \Phi$, say, so clearly $\Delta_{1}(\mathbf{i}_{1},\mathbf{i}).\lambda \mathbf{i}_{1} \subseteq \Phi \mathbf{i}_{1}$.

40

Further, given any $\phi \in \Phi_1$ we can solve the outer triangle of

for $\delta \in \Delta_1(i_1,i)$ and hence, by uniqueness, $\phi = \delta \cdot \lambda i_1$ and $\Phi i_1 = \Delta_1(i_1,i) \cdot \lambda i_1$. Now, since $\lambda i \in \Phi i$, we have $\lambda i \cdot \Delta_2(i_1,i) \subseteq \Phi i_1$, and so $\lambda i \cdot \Delta_2(i_1,i) \subseteq \Delta_1(i_1,i) \cdot \lambda i_1$. It is easy to see that K_1 is functorial.

To define K_2 on morphisms consider $\lambda : \mathcal{D}_1 \to \mathcal{D}_2$. Then K_2^{λ} is the functor $H : \underline{A}^2 \to \underline{A}^1$ defined by

$$H : (\alpha : (A_1, \Phi_1) \rightarrow (A_2, \Phi_2)) \xrightarrow{} (\alpha : (A_1, \Phi_1^{\lambda}) \rightarrow (A_2, \Phi_2^{\lambda})).$$

To check that $(A, \varphi \lambda)$ is a \mathcal{D}_1 -algebra if (A, φ) is a \mathcal{D}_2 -algebra, note first that

$$\Phi_{\mathbf{i}}, \lambda_{\mathbf{i}}, \Delta_{\mathbf{i}}(\mathbf{i}_{1}, \mathbf{i}) \subseteq \Phi_{\mathbf{i}}, \Delta_{\mathbf{i}}(\mathbf{i}_{1}, \mathbf{i}), \lambda_{\mathbf{i}} \subseteq \Phi_{\mathbf{i}}, \lambda_{\mathbf{i}}$$

Further for any μ : Xi \rightarrow A we can solve for $\ensuremath{\,\varphi}\ \epsilon \ \Phi i$ in the outer triangle of

and hence μ factors through η_1 i in Φ i. λ i. The uniqueness is clear.

Finally we shall prove that K_1 and K_2 are inverse to each other. On objects this is trivial. Consider $\lambda : \mathcal{D}_1 \rightarrow \mathcal{D}_2$ and suppose $K_1 K_2 \lambda = \lambda_1$. Then $\lambda_1 \mathbf{i}$ is the structure map of $K_2 \lambda (\mathbf{F}^{-1} \mathbf{i})$ satisfying $\lambda_1 \mathbf{i} \cdot \mathbf{n}_1 \mathbf{i} = \mathbf{n}_2 \mathbf{i}$. But $K_2 \lambda (\mathbf{F}^{-1} \mathbf{i}) =$ $(D_1 \mathbf{i}, \Delta (-, \mathbf{i}), \lambda (-))$, and so $\lambda \mathbf{i}$ is such a structure map. Consider algebraic functor $G : \underline{A}^{-1} \rightarrow \underline{A}^{-2}$, and suppose $K_2 K_1 G = G_1$. We only have to check G_1 on objects since its action on morphisms is then determined. Now $G_1(A, \Phi) = (A, \Phi \lambda)$ where $\lambda \mathbf{i}$ is in the structure of $G \mathbf{F}^{-1} \mathbf{i}$ and $\lambda \mathbf{i} \cdot \mathbf{n}_2 \mathbf{i} = \mathbf{n}_1 \mathbf{i}$. But an argument similar to that in the first paragraph of this proof establishes that the structure of $G(A, \Phi)$ is $\Phi \lambda$. Hence $G = G_1$.

Of course this theorem has as a special case the corresponding statement for triples given, for example, in [23] p.39. The next theorem shows that every algebraic functor is the forgetful functor associated with some device.

1.5.5 THEOREM Given any algebraic functor $G: \underline{A}^{U_1} \rightarrow \underline{A}^{U_2}$, there is device \mathcal{D}_3 in $\underline{A}^{\mathcal{D}_2}$ with object family $\mathbf{F}^{\mathcal{D}_2} = (\mathbf{F}^{\mathcal{D}_2}\mathbf{i}_2; \mathbf{i}_2 \in \mathbf{I}_2)$ such that $\underline{A}^{\mathcal{D}_1}$ is isomorphic to $(\underline{A}^{\mathcal{D}_2})^{\mathcal{D}_3}$, and G is strictly isomorphic to $\mathbf{U}^{\mathcal{D}_3}$. Conversely, given any device \mathcal{D}_3 in $\underline{A}^{\mathcal{D}_2}$ with object family $\mathbf{F}^{\mathcal{D}_2}$, then there exists a device \mathcal{D}_1 in \underline{A} on \mathbf{X}_2 such that $\mathbf{U}^{\mathcal{D}_1}$ is strictly isomorphic to $\mathbf{U}^{\mathcal{D}_2}\mathbf{U}^{\mathcal{D}_3}$.

PROOF Consider the situation in the first part of the statement. By Theorem 1.5.4 there is a morphism $\lambda : \mathcal{D}_2 \rightarrow \mathcal{D}_1$ corresponding to G. Now we define a device \mathcal{D}_3 in A^{2}_2 as follows: put $n_3 \mathbf{i} : \mathbf{F}^{\mathbf{D}_2} \mathbf{i} \rightarrow \mathbf{GF}^{\mathbf{D}_1} \mathbf{i} = \lambda \mathbf{i}$ for all \mathbf{i} in the common index set I of \mathcal{D}_1 and \mathcal{D}_2 , and take $\Delta_3(\mathbf{i},\mathbf{i}_1) : \mathbf{GF}^{\mathbf{D}_1} \mathbf{i} \rightarrow \mathbf{GF}^{\mathbf{D}_1} \mathbf{i}_1$ to be $\Delta_1(\mathbf{i},\mathbf{i}_1)$. To see that \mathcal{D}_3 is a device, notice that for any \mathcal{D}_2 -morphism $\mu : \mathbf{F}^{\mathbf{D}_2} \mathbf{i} \rightarrow \mathbf{GF}^{\mathbf{D}_1} \mathbf{i}_2$, since $\mathbf{GF}^{\mathbf{D}_1} \mathbf{i}_1 = (\mathcal{D}_1 \mathbf{i}_1, \Delta_1(-, \mathbf{i}_1)\lambda(-))$ is a \mathcal{D}_2 -algebra, then, by Theorem 1.2.1, the morphism μ is of the form $\delta \cdot \lambda \mathbf{i}$ with δ in $\Delta_1(\mathbf{i},\mathbf{i}_1)$. The uniqueness of δ follows by considering the equations

$$\delta \cdot \eta_1 \mathbf{i} = \delta \cdot \lambda \mathbf{i} \cdot \eta_2 \mathbf{i} = \mu \cdot \eta_2 \mathbf{i}$$

and the properties of device \mathcal{D}_1 . The isomorphism L from $(\underline{A}^2)^{\mathcal{D}_3}$ to \underline{A}^1 is then defined by

L:
$$((A, \Phi), \Psi) \longrightarrow (A, \Psi)$$
, and

 $L: \alpha \longrightarrow \alpha$.

To justify this definition we first show that if $((A, \Phi), \Psi)$ is

in $(\underline{A}^{\mathcal{D}_2})^{\mathcal{D}_3}$ then (A, Ψ) is in $\underline{A}^{\mathcal{D}_1}$. The closure condition for algebras is clearly satisfied by (A, Ψ) . Consider any μ : Xi $\rightarrow A$. Then there is a $\phi \in \Phi i$ with $\phi \cdot \eta_2 i = \mu$, and corresponding to the \mathcal{D}_2 -morphism ϕ there is a $\psi \in \Psi i$ such that $\psi \cdot \lambda i = \phi$. Hence there is a ψ in Ψi with $\psi \cdot \eta_1 i = \mu$. The uniqueness of ψ is easily checked.

Notice that we have the inclusion $\Phi i \subseteq \Psi i \cdot \lambda i$. Further, as we have seen in our proof of 1.5.4, λi is a \mathcal{D}_2 -morphism from $F^2 i$ to $GF^1 i$ and, since Ψi consists of \mathcal{D}_2 -morphisms from $GF^1 i$ to (A, Φ) , we have that $\Psi i \cdot \lambda i \subseteq \Phi i$ and hence $\Phi i = \Psi i \cdot \lambda i$. In the opposite direction it is easy to check that if $(A, \Psi) \in \underline{A}^1$, then $((A, \Psi \lambda), \Psi) \in (\underline{A}^2)^3$. Hence L': $\begin{array}{c} \mathcal{D}_1 \\ \mathcal{D}_1 \\ \mathcal{D}_1 \\ \mathcal{A} \end{array} (\underline{A}^2)^3$ defined by

- L': $(A, \Psi) \longrightarrow ((A, \Psi\lambda), \Psi)$ and
- L': $\alpha \sim \alpha \rightarrow \alpha$

is the inverse functor of L. Clearly $GL = U^3$.

Now consider the situation in the second part of the theorem. We define device \mathcal{D}_1 with object family X_2 in A as follows: put $n_1i_2: X_2i_2 \rightarrow D_1i_2(=U^2D_3i_2)$ equal to $n_3i_2 \cdot n_2i_2$, and put $\Delta_1(i_2,i_2') = \Delta_3(i_2,i_2')$. We need only check the universality condition. Given $\mu: X_2i_2 \rightarrow D_1i_2'$, consider the diagram

We can find ϕ : $F^{2}i_{2} \rightarrow D_{3}i_{2}'$ so that the left-hand triangle commutes. Then we can find $\delta \in \Delta_{3}(i_{2},i_{2}')$ so that the righthand triangle commutes and hence $\delta \cdot n_{1}i_{2} = \mu$. The uniqueness of δ is easily checked. Now it is not hard to see that $\mathcal{D}_{1},\mathcal{D}_{2}$, and \mathcal{D}_{3} are in the same situation here as in the first part of our proof, with n_{3} here taking the place of λ . That is, that n_{3} is a morphism from \mathcal{D}_{2} to \mathcal{D}_{1} , and that \mathcal{D}_{3} here has the properties which determined \mathcal{D}_3 in the earlier section. Hence we may use the proof of the first part of the theorem to conclude that $U^2 \cdot U^3$ is strictly isomorphic to $U^2 \cdot G = U^1$ where G is the algebraic functor corresponding to the device morphism η_3 .

I would not expect the triple-theoretic version of the first part of this theorem to be true; namely, that algebraic functors between categories of algebras of triples are themselves tripleable. There are, of course, theorems in this direction, for example in [20]. As far as the second part of the theorem is concerned, it is certainly not true that the product of tripleable functors is tripleable.

\$1.6 Operations.

We have not made any mention so far of the notion of operation, which is, of course, basic to classical universal algebra. In this section we introduce a generalized notion of operation which corresponds to the usual one in the case of <u>Sets</u>. We shall see that in terms of this notion some of the concepts introduced otherwise in this thesis have a more familiar appearance.

1.6.1 DEFINITIONS Let Z be a specified set of objects in <u>A</u>, and \mathcal{D} a device in <u>A</u>. Then any map w from some object

46

 Z_1 in Z to some object Di (i ε I) is called a <u>formal</u> <u>operation</u> of D or just an operation of D_{\circ} . Then given a D-algebra (A, Φ) = <u>A</u> the <u>operation</u> corresponding to w in <u>A</u> is the map

$$\begin{split} & \mathbb{W}_{\underline{A}} : \underline{A}(Xi, A) \to \underline{A}(Z_1, A) & \text{defined by} \\ & \mathbb{W}_{\underline{A}} : \phi_{\circ} \eta i \curvearrowleft \phi_{W} & \text{for all } \phi \in \Phi i. \end{split}$$

A formal operation w with codomain Di is called Xi-ary, and we write aw = Xi. The set Z is called the <u>base</u> of the operations of \mathcal{D}_{\circ}

The idea is to keep Z fixed in the category \underline{A}_{\circ} . For example, in <u>Sets</u>, to get the usual notion of operation, take $Z = \{1\}$ where 1 is some singleton. Certainly then to each $w : 1 \rightarrow Di$ we get a conventional Xi-ary operation $w_{\underline{A}}$ in any algebra \underline{A}_{\circ} . Usually we shall need extra conditions on Z to have behaviour which simulates the usual behaviour of operations. We give here two examples of the use of operations.

1.6.2 THEOREM Suppose Z is a generating set in $\underline{A}_{=}^{\circ}$ A map α : $A \rightarrow B$ is a *D*-morphism from $(A, \Phi) = \underline{A}$ to $(B, \Psi) = \underline{B}$ if and only if, for each i ε I, and each Xi-ary operation w of \mathcal{D} , and each μ : Xi \rightarrow A, we have

$$\alpha \cdot w_{\underline{A}}(\mu) = w_{\underline{B}}(\alpha \mu).$$

PROOF If α is a \mathcal{D} -morphism and $\mu = \phi.\eta i$ ($\phi \in \Phi i$) then certainly

$$\alpha \cdot w_{\underline{A}}(\mu) = \alpha \phi w = w_{\underline{B}}(\alpha \cdot \phi \cdot \eta i) = w_{\underline{B}}(\alpha \mu)$$

since $\alpha \phi \in \Psi i$. Conversely, suppose α satisfies this equation for all w and all μ : $aw \rightarrow A$. Then, if for any $\phi \in \Phi i$ we have $\alpha \cdot \phi \cdot \eta i = \psi \eta i$ ($\psi \in \Psi i$), it follows that

$$\alpha \phi w = \alpha \cdot w_A(\phi \cdot \eta i) = w_B(\alpha \cdot \phi \cdot \eta i) = \psi \cdot w$$

Since this holds for any w, and Z is a generating set, we may cancel the w to get $\alpha . \Phi i \subseteq \Psi i$, and hence α is a D-morphism.

1.6.3 THEOREM Suppose that Z is a generating set in \underline{A} and that \mathcal{D}_1 and \mathcal{D}_2 are devices in \underline{A} with index set I and with common family of objects X. Then a family of morphisms $(\lambda i : D_1 i \rightarrow D_2 i; i \in I)$ is a morphism of devices if and only if for each i, $i_1 \in I$, (1) $\lambda i_{\circ} n_1 i = n_2 i$ and (2) for each Xi_1 -ary operation w of \mathcal{D} and each $\mu : Xi_1 \rightarrow D_1 i$ we have

$$\lambda i \cdot w_{F_1}(\mu) = (\lambda i_1 \cdot w)_{F_2}(\lambda i \cdot \mu),$$

where we have written F^{1} i as F_{1}^{i} and F^{2} i as F_{2}^{i} .

PROOF If λ is a device morphism and $\mu = \delta_{\circ} \eta_1 i_1$ where $\delta \in \Delta_1(i_1, i)$, and $\lambda i_{\circ} \delta = \delta'_{\circ} \lambda i_1$ for some $\delta' \in \Delta_2(i_1, i)$ then certainly

$$\lambda \mathbf{i}_{\circ} \mathbf{w}_{F_{1}} \mathbf{i}^{(\mu)} = \lambda \mathbf{i}_{\circ} \delta_{\circ} \mathbf{w} = \delta'_{\circ} \lambda \mathbf{i}_{1} \mathbf{w} = (\lambda \mathbf{i}_{1} \mathbf{w})_{F_{2}} \mathbf{i}^{(\delta' \mathbf{v} \mathbf{n}_{2} \mathbf{i}_{1})}$$
$$= (\lambda \mathbf{i}_{1} \mathbf{w})_{F_{2}} \mathbf{i}^{(\lambda \mathbf{i}_{\circ} \delta_{\circ} \mathbf{n}_{1} \mathbf{i}_{1})} = (\lambda \mathbf{i}_{1} \mathbf{w})_{F_{2}} \mathbf{i}^{(\lambda \mathbf{i}_{\circ} \mu)} \mathbf{e}^{(\lambda \mathbf{i}_{\circ} \mathbf{n}_{2} \mathbf{i}_{1})}$$

Conversely, if λ satisfies this equation for all operations w in \mathcal{D} and all appropriate maps μ : Xi₁ \rightarrow D₁i, then for any $\delta \in \Delta_1(i_1,i)$ we have

$$\lambda \mathbf{i} \cdot \delta \cdot \mathbf{w} = \lambda \mathbf{i} \cdot \mathbf{w}_{F_1} \mathbf{i} (\delta \cdot \eta_1 \mathbf{i}_1) = (\lambda \mathbf{i}_1 \cdot \mathbf{w})_{F_2} \mathbf{i} (\lambda \mathbf{i} \cdot \delta \cdot \eta_1 \mathbf{i}_1)$$
$$= (\lambda \mathbf{i}_1 \cdot \mathbf{w})_{F_2} \mathbf{i} (\delta' \cdot \eta_2 \mathbf{i}_1) = \delta' \cdot \lambda \mathbf{i}_1 \cdot \mathbf{w}$$

for some $\delta' \in \Delta_2(i_1, i)$ determined by $\lambda i \cdot \delta \cdot \eta_1 i_1 = \delta' \cdot \eta_2 i_1 \cdot A$ gain, since this holds for all operations w, and Z is a generating set, we can cancel the w to obtain $\lambda i \cdot \Delta_1(i_1, i) \subseteq \Delta_2(i_1, i) \cdot \lambda i_1 \cdot A$

\$1.7 A global description of devices and algebras.

Essentially we have described devices and algebras set-theoretically and internally in a category A. In this section we give a categorical and external description of devices and algebras. Our field of operation is the 2-category, Cat, although some of our discussion applies to an arbitrary 2-category.

DEFINITIONS Let A be a vertex of 2-category A. 1.7.1 Then the 2-category of vertices over A, denoted A/A, is defined Its vertices are arrows with codomain A; as follows. if $G_1 : B_1 \rightarrow A$ and $G_2 : B_2 \rightarrow A$ are two vertices of A_{γ} , then an arrow $(n, H) : G_1 \rightarrow G_2$ is an arrow $H : B_1 \rightarrow B_2$ and a 2-cell $\eta : G_1 \rightarrow G_2H$. A 2-cell in A/A from $(n_1,H_1): G_1 \rightarrow G_2$ to $(n_2,H_2): G_1 \rightarrow G_2$ is a 2-cell of A $\mu : H_1 \rightarrow H_2$ such that $G_2\mu \cdot n_1 = n_2$. If $\mu_1 : (n_1, H_1) \rightarrow (n_2, H_2)$: $G_1 \rightarrow G_2$ and μ_2 : $(\lambda_1, K_1) \rightarrow (\lambda_2, K_2)$: $G_2 \rightarrow G_3$ are 2-cells in A/A, then their strong composition is defined to be $\mu_{2}^{*}\mu_{1} : (\lambda_{1}H_{1}\circ\eta_{1},K_{1}H_{1}) \rightarrow (\lambda_{2}H_{2}\circ\eta_{2},K_{2}H_{2}) : G_{1} \rightarrow G_{3}^{\circ} \quad \text{If}$ $\mu_3 : (n_2, H_2) \rightarrow (n_3, H_3) : G_1 \rightarrow G_2$ is another 2-cell in A/A then the weak composition of μ_1 and μ_3 is defined to be μ_3, μ_1 : $(n_1, H_1) \rightarrow (n_3, H_3) : G_1 \rightarrow G_2$. We can visualize these 2-cells as diagrams

Strong composition amounts to pasting two of these together at a common vertical edge; weak composition amounts to pasting together at a common vertical face. (In the definition of A/A, we could just as easily have taken the arrows to be things like $(n,H) : G_1 \rightarrow G_2$, where $n : G_2H \rightarrow G_1$ rather than $n : G_1 \rightarrow G_2H$. However, we are not interested here in this alternative meaning for A/A.)

It is not hard to verify that A_{ν}/A is a 2-category. There is a corresponding definition of A/A_{ν} , the 2-category of vertices under A.

Its vertices are arrows with domain A; its arrows from $G_1 : A \rightarrow B_1$ to $G_2 : A \rightarrow B_2$ are diagrams like

(Notice the direction of the arrow.) It is clear what the 2-cells and compositions must be. (Again there is an alternative meaning available for A/A; again we are not interested in this meaning here.)

Notice that a "triangle", that is, a diagram of the form

can be regarded both as an arrow in A/A and as an arrow in A/B. Hence we shall use the non-committal notation $(n,G_1; G_2,G_3)$ for such a triangle. Unless we state otherwise, if T_1 and T_2 are triangles, then $T_2^*T_1$ is the composite under the strong operation in A/A where A is the common "apex" of T_1 and T_2 .

The basic notion we need for our global description is the "initial triangle".

52

1.7.2 DEFINITION An initial triangle in a 2-category $\underset{\sim}{A}$ is a triangle

which when considered as an arrow in A/A is initial in the category A/A(X,U). The vertex I is called the apex of T.

1.7.3 EXAMPLE In Cat if we take I to be a set and $U: \underline{B} \rightarrow \underline{A}$ a functor with a family of universal arrows to it, indexed by I, namely ((Xi \xrightarrow{ni} UFi,Fi); i \in I), then (n,X; F,U) is an initial triangle. Furthermore, any initial triangle in Cat, with I being a set, is of this form. We will prove this below. This clearly allows us to attach to any initial triangle (with I a set) a device \mathcal{D} in \underline{A} .

PROOF Consider a triangle T constructed as above from universal arrows. Consider any other arrow $(n',F') : X \rightarrow U$ in $\operatorname{Cat}/A(X,U)$. Then to $n'i : Xi \rightarrow UF'i$, by the properties of the universal arrow $(ni : Xi \rightarrow UFi,Fi)$, there is a unique $\&i : Fi \rightarrow F'i$ such that U&ini = n'i. That is, there is a unique natural transformation $\&i : F \rightarrow F'$ such that $U\mathcal{E}_{\eta} = \eta^{\dagger}$. This is precisely the meaning of initial in $\operatorname{Cat} / \operatorname{A}(X, U)$. The other statement in the example is now clear.

We next consider initial triangles in which the apex I is fixed as arrows in the 2-category I/A.

1.7.4 THEOREM Initial triangles with apex I form a category with respect to the strong composition in I/A. Further, if T_1 and T_2 are arrows of I/A, and both T_1 and T_2*T_1 are initial triangles, then so is T_2 .

PROOF If $H: I \rightarrow A$ is a vertex of I/A then it is easy to see that $(1_{H_1}, H; H, 1_A)$ is an initial triangle. Consider two initial triangles $T_1 = (n_1, G_1; G_2, H_1)$ and $T_2 = (n_2, G_2; G_3, H_2)$, where $G_1: I \rightarrow A$, $G_2: I \rightarrow B$ and $G_3: I \rightarrow C$. Then $T_2 \ast T_1$ is $(H_1 n_2 \cdot n_1, G_1; G_3, H_1 H_2)$. Let $(\mu, K): G_1 \rightarrow H_1 H_2$ be any arrow in $A/A(G_1, H_1 H_2)$. By the fact that T_1 is an initial triangle, there is an $\&: G_2 \rightarrow H_2 K$ such that $H_1 \&: n_1 = \mu$. Now $(\&, K): G_2 \rightarrow H_2$ is an arrow in $A/B(G_2, H_2)$ and hence, since T_2 is an initial triangle, there is an $\&: G_3 \rightarrow K$ such that $H_2 \&: n_2 = \&$. Then

 $H_{1}H_{2}\mathcal{E}' \cdot H_{1}\eta_{2} \cdot \eta_{1} = H_{1}(H_{2}\mathcal{E}' \cdot \eta_{2}) \cdot \eta_{1} = H_{1}\mathcal{E} \cdot \eta_{1} = \mu.$

54

The uniqueness of \mathscr{E}^{\dagger} follows from the uniqueness at each stage.

For the proof of the second statement of the theorem consider triangles T_1 and T_2 as above, but assume only that T_1 and $T_2^*T_1$ are initial triangles. Then consider $(\mu_1, K_1) : G_2 \rightarrow H_2$ in $A/B(G_2, H_2)$. Clearly $(H_1\mu_1 \cdot n_1, K_1) : G_1 \rightarrow H_1H_2$ is in $A/A(G_1, H_1H_2)$ and hence, since $T_2^*T_1$ is initial, there exists an $\mathscr{E} : G_3 \rightarrow K_1$ such that $H_1H_2\mathscr{E} \cdot H_1n_2 \cdot n_1 = H_1\mu_1 \cdot n_1$; that is, such that $H_1(H_2\mathscr{E} \cdot n_2) \cdot n_1 = H_1\mu_1 \cdot n_1$. By the uniqueness property of initial triangle T_1 we have $H_2\mathscr{E} \cdot n_2 = \mu_1$. The uniqueness of \mathscr{E} is clear.

1.7.5 DEFINITIONS Given an arrow $G : I \rightarrow A$ we define a category <u>It(G)</u> as follows. Its objects are initial triangles like $T_1 = (n_1, G; H_1, K_1)$. A morphism from T_1 to $T_2 = (n_2, G; H_2, K_2)$ is a triangle $T = (1, H_1; H_2, K)$ such that $T*T_1 = T_2$. The composition of morphisms in <u>It(G)</u> is also the strong composition in I/A.

In this category we want to consider the notion of "local initial object" and the dual notion of "local terminal object". By a local initial object in a category \underline{A} we mean an object A such that given any diagram there is just one map from A to C.

We say that \underline{A} has enough local initial (terminal) objects if to each B in \underline{A} there is a map $A \rightarrow B$ ($B \rightarrow A$) where A is a local initial (terminal) object.

The local terminal objects in <u>It</u>(G) are called <u>Kleisli</u> <u>triangles</u> or KL-triangles and the local initial objects are called Eilenberg-Moore triangles or EM-triangles.

1.7.6 LEMMA If $\underline{\underline{A}}$ has enough local initial objects then it is a union of disjoint subcategories in such a way that each local initial object is initial in the subcategory containing it.

PROOF Clear.

1.7.7 THEOREM If we define $\underline{It}(G)$ in \underbrace{Cat}_{W} where the domain I of G is a set, then there are enough local initial and terminal objects. Further, each of the subcategories of $\underline{It}(G)$ described in 1.7.6 consists of all the initial triangles corresponding to some device (see 1.7.3).

PROOF First we prove that if $T : T_1 \rightarrow T_2$ is a morphism in <u>It(G)</u> then the device corresponding to T_1 is the same as the device corresponding to T_2 . For let $T_1 = (n,G; H,K)$ and and $T = (1_{H}, H; J, L)$ where $H = H : I \rightarrow \underline{B}$ and $J = J : I \rightarrow \underline{C}$. Then $T_{2} = (n, G, J, KL)$ and the device corresponding to T_{1} is $(n, K\underline{B}(H-, H-))$, and that corresponding to T_{2} is $(n, KL\underline{C}(J-, J-))$. Clearly $KL\underline{C}(Ji, Ji_{1}) \subseteq K\underline{B}(Hi, Hi_{1})$ (i, $i_{1} \in I$). Consider $\delta \in \underline{B}(Hi, Hi_{1})$. By Theorem 1.7.4 the triangle T is initial, and so there exists a morphism $\gamma : Ji \rightarrow Ji_{1}$ with $\delta = L\gamma \cdot 1_{Hi} = L\gamma$. Hence the two devices are the same.

We next remark that Theorem 1.2.6 states that if \mathcal{D} is a device in \underline{A} , then the triangle $(n,X;F^{\mathcal{D}},U^{\mathcal{D}})$ is a local initial object in $\underline{It}(X)$ and $(n,X;F_{\mathcal{D}},U_{\mathcal{D}})$ is a local terminal object. This is easily checked. In fact, Theorem 1.2.6 tells us more; since every initial triangle in $\underline{It}(X)$ has a suitable device associated with it, we see that $\underline{It}(X)$ has enough local initial and terminal objects.

1.7.8 THEOREM In Cat, Eilenberg-Moore triangles with apex I, a set, form a category with respect to the strong composition in I/A. Further if T_1 and T_2*T_1 are EM-triangles, then so is T_2 .

PROOF In view of Theorem 1.7.7 this is just a restatement of Theorem 1.5.5.

57

1.7.9 DEFINITIONS The category $\underline{\mathrm{EM}}(\mathrm{G})$, where G is the arrow G : I \rightarrow A in A, has objects the EM-triangles in $\underline{\mathrm{It}}(\mathrm{G})$ and morphisms from T₁ to T₂ the triangles T with T*T₁ = T₂. The category <u>KL</u>(G) has objects the KL-triangles in $\underline{\mathrm{It}}(\mathrm{G})$, and morphisms from T₁ = (n₁,G; H₁,K₁) to T₂ = (n₂,G; H₂,K₂) are triangles T = (µ,K₁; L,K₂) such that T*T₁ is T₂ where the composition is the strong composition in <u>A</u>/A.

1.7.10 THEOREM In Cat, if $X : I \rightarrow A$ is a functor with domain a set, then $\underline{KL}(X)$ is equivalent to $\underline{EM}(X)$.

PROOF The full subcategory \underline{K} of $\underline{KL}(X)$ with objects being initial triangles $(n,X; F_D,U_D)$ is equivalent to $\underline{KL}(X)$, and the full subcategory \underline{E} of $\underline{EM}(X)$ with objects being (n,X,F^D,U^D) is equivalent to $\underline{EM}(X)$. If we show that \underline{K} is isomorphic to $\underline{Dev}(\underline{A},X)$ and \underline{E}^{OP} is isomorphic to $\underline{Alg}(\underline{A},X)$, then by Theorem 1.5.4 we will have the required result.

The objects of \underline{K} and $\underline{\text{Dev}}(\underline{A}, X)$ are in obvious one-to-one correspondence; namely, $\mathcal{D}_1 = (n_1, \Delta_1)$ corresponds to $T_{\mathcal{D}_1} = (n, X, F_{\mathcal{D}_1}, U_{\mathcal{D}_1})$. Let λ be a morphism from \mathcal{D}_1 to \mathcal{D}_2 .

Then we can define a functor $H : \stackrel{A}{=} \mathcal{D}_1 \xrightarrow{} \stackrel{A}{=} \mathcal{D}_2$ as follows:

58

where $\lambda i_1 \cdot \delta = \delta' \cdot \lambda i$. That there is such a δ' follows since λ is a morphism of devices. That δ' is uniquely determined by this equation follows from the observation that $\delta' \cdot \lambda i \cdot n_1 i = \delta' \cdot n_2 i$ and the properties of devices. It is easy to check that H is functorial, and that λ is a natural transformation from U_{D_1} to U_{D_2} . Clearly also $H \cdot F_{D_1} = F_{D_2}$ and $\lambda F_{D_1} \cdot n_1 = n_2$. Hence $T_{\lambda} = (\lambda, U_{D_1}; H, U_{D_2})$ is a morphism in \underline{K} from T_{D_1} to T_{D_2} . The function defined by

$$\begin{array}{cccc}
 \mathcal{D}_{1} & & ^{\mathrm{T}}\mathcal{D}_{1} \\
 \lambda & & & \downarrow ^{\mathrm{T}}_{\mathrm{T}_{\lambda}} \\
 \mathcal{D}_{2} & & ^{\mathrm{T}}\mathcal{D}_{2}
\end{array}$$

can be shown to be functorial, and, in fact, an isomorphism from $\underline{\text{Dev}}(\underline{A},\underline{X})$ to \underline{K} .

The objects of $\underline{Alg}(\underline{A}, \underline{X})$ and \underline{E} are in obvious one-to-one

correspondence; namely, $\underline{A}^{\mathcal{D}}$ corresponds to $\mathbf{T}^{\mathcal{D}} = (\mathbf{n}, \mathbf{X}; \mathbf{F}^{\mathcal{D}}, \mathbf{U}^{\mathcal{D}})$. Consider an algebraic functor $G: \underline{A}^{\mathcal{D}_1} \rightarrow \underline{A}^{\mathcal{D}_2}$. Since $\mathbf{T}^{\mathcal{D}_2} = (\mathbf{n}_2, \mathbf{X}; \mathbf{F}^{\mathcal{D}_2}, \mathbf{U}^2)$ is an initial triangle, there is a (unique) natural transformation $\mathscr{E}: \mathbf{F}^{\mathcal{D}_2} \longrightarrow \mathbf{G}. \mathbf{F}^{\mathcal{D}_1}$ such that $\mathbf{U}^{\mathcal{D}_2} \mathscr{E}.\mathbf{n}_2 = \mathbf{n}_1$. From this we see that $\mathbf{T}^{\mathbf{G}} = (\mathscr{E}, \mathbf{F}^{\mathcal{D}_2}; \mathbf{F}^{\mathcal{D}_1}, \mathbf{G})$ is a morphism from $\mathbf{T}^{\mathcal{D}_2}$ to $\mathbf{T}^{\mathcal{D}_1}$. Again, the function from $\underline{Alg}(\underline{A}, \mathbf{X})$ to $\underline{E}^{\mathrm{OP}}$ defined by:

can be shown to be functorial and an isomorphism.

It is clear now that the use of the notion of Kleisli triangle instead of device, and Eilenberg-Moore triangle instead of category of algebras, leads to a global and more suggestive description of the basic notions of this thesis.

If we remove the restriction in the preceding discussion that I be a set, then we do not necessarily have that enough local initial objects exist. In the final theorem of this section we give a "structuresemantics adjointness" theorem, which is a generalization of a theorem of Maranda [25]. For a very general discussion of structure-semantics adjointness theorems see Linton [21]. First we need a new category.

1.7.11 DEFINITION Let G : I \rightarrow A be an arrow in A. Then the category <u>IT</u>(G) is defined as follows: its objects are initial triangles of the form $T_1 = (n_1,G; H_1,K_1)$. A morphism from T_1 to $T_2 = (n_2,G,H_2,K_2)$ is a triangle $T = (n_1,H_1; H_2,K)$ such that $T^*T_1 = T_2$.

1.7.12 THEOREM If $X : I \rightarrow \underline{A}$ is a functor in Cat with domain a set, then $\underline{EM}(X)$ is a coreflective subcategory of $\underline{IT}(X)$.

PROOF Clearly $\underline{\mathbb{PM}}(X)$ is a full subcategory of $\underline{\mathrm{IT}}(X)$. Consider an object T_1 of $\underline{\mathrm{IT}}(X)$. By Theorem 1.7.7, there is an EM-triangle E_1 and a morphism $T : E_1 \rightarrow T_1$ in $\underline{\mathrm{It}}(X)$. We will show that this map T is the coreflection of T_1 . Suppose $T_2 : E_2 \rightarrow T_1$ is any morphism in $\underline{\mathrm{IT}}(X)$ with domain an EM-triangle. Now again by Theorem 1.7.7, T_2 factors as $T' \ast E_3$ where T' is an $\underline{\mathrm{It}}$ -morphism and E_3 is an EM-triangle. (By an $\underline{\mathrm{It}}$ -morphism I mean a triangle whose first component is an identity natural transformation.) Hence we have the situation

Now both $T : E_1 \rightarrow T_1$ and $T' : E_3 * E_2 \rightarrow T_1$ are morphisms in <u>It(X)</u>, and by Theorem 1.7.8, $E_3 * E_2$ is an EM-triangle. Hence there is an isomorphism $T'' : E_3 * E_2 \rightarrow E_1$ in <u>It(X)</u> with T*T'' = T'. Then $T''*E_3 : E_2 \rightarrow E_1$ is a morphism in <u>IT(X)</u> with $T*(T''*E_3) = T_2$. That $E = T''*E_3$ is unique with this property follows since any other $E' : E_2 \rightarrow E_1$ with T*E' = T*E is first of all an EM-triangle, by Theorem 1.7.8, and hence E and E' are isomorphic, say $E' = T_3 * E$. Clearly $T_3 * E*E_2 = E*E_2$, and hence $T_3 = 1$ and E' = E.

CHAPTER II

ALGEBRA WITH DEVICES

In this chapter we discuss some notions and results of conventional universal algebra in a category \underline{A} equipped with a device \mathcal{D} . In most of the chapter we need to impose conditions on \underline{A} and X; that is, on the functor X: $I \rightarrow \underline{A}$. We consider algebra in the "basic situation", the conditions for which are given in section 1, and algebra in the "elaborate situation", which is discussed in section 2. Our main adjoint functor theorem is in section 1. In section 3 we develop some theorems which help in recognizing when a functor is strictly isomorphic to $U^{\hat{\mathcal{D}}}: \underline{A}^{\hat{\mathcal{D}}} \rightarrow \underline{A}$ for some device \mathcal{D} . In the final section of the chapter we give a version of a theorem of G. Birkhoff on the subvarieties of a variety.

§2.1 Algebra in the basic situation.

2.1.1 REMARK Suppose there is a morphism $\alpha : A_1 \rightarrow A_2$ in <u>A</u> such that there are no morphisms from any objects in X to A_2 . Then clearly $\alpha : (A_1, \phi_1) \rightarrow (A_2, \phi_2)$ is a morphism in <u>A</u>^D if ϕ_1 and ϕ_2 are the empty structures (which are of course the only possible structures on A_1 and A_2). In other words, in regions of <u>A</u> inaccessible to X the objects and morphisms are reproduced exactly

in $\underline{\underline{A}}^{\mathcal{D}}$. Hence it would seem that the most natural conditions on $\underline{\underline{A}}$ and X would involve only the region of $\underline{\underline{A}}$ that can be reached from X. For example, in proving that $\underline{U}^{\mathcal{D}}$ has a left adjoint one should not need any information about the remote regions of $\underline{\underline{A}}$. However in this thesis, for the sake of simpler presentation, our theorems are stated in terms of stronger, and less natural conditions.

The first result is true quite generally.

2.1.2 THEOREM The functor $U^{\mathcal{D}} : \underline{A}^{\mathcal{D}} \rightarrow \underline{A}$ creates limits.

PROOF Consider a functor $L: \underline{C} \to \underline{A}^{p}$ and let $\lambda : A \to U^{p}L$ be a limit of $U^{p}L$ in \underline{A} (where $A: \underline{C} \to \underline{A}$ is a constant functor). Let Φ_{C} be the structure of LC for C in \underline{C} . Then we form an algebra (A, Φ) (confusing A with its image) by taking Φ i to be all ϕ : Di $\to A$ with $\lambda C. \phi \in \Phi_{C}i$ for all C in \underline{C} . Clearly if (A, Φ) is a D-algebra then the morphism λC is a D-morphism from (A, Φ) to LC. We have that $\lambda C. \Phi i. \Lambda(i_{1}, i) \subseteq \Phi_{C}i. \Lambda(i_{1}, i) \subseteq \Phi_{C}i_{1}$ and hence $\Phi i. \Lambda(i_{1}, i) \subseteq \Phi i_{1}$. Further, consider α : Xi $\to A$. For each $C \in \underline{C}$ there exists a $\phi C \in \Phi_{C}i$ such that $\phi C. \eta i = \lambda C. \alpha$. Let $\delta : (A_{C}, \Phi_{C}) \to (A_{C}, \Phi_{C})$ be the image of a map in \underline{C} under L. Then $\delta. \phi C. \eta i = \delta. \lambda C. \alpha = \lambda C'. \alpha = \phi C'. \eta i$. We can cancel the map ηi to show that ϕ : Di $\to U^{D}L$ is natural, and hence there is a map γ : Di $\to A$ such that $\lambda C. \gamma = \phi C$ for all $C \in \underline{C}$. Clearly we have that $\gamma \in \Phi i$ and $\gamma. \eta i = \alpha$. The uniqueness of γ with this property follows, since if $\gamma'.\eta i = \alpha$ then $\lambda C.\gamma'.\eta i = \lambda C.\alpha = \phi C.\eta i$ and hence $\lambda C.\gamma' = \phi C$.

To see that λ : $(A, \Phi) \rightarrow L$ is a limit of L, consider any μ : $(B,\Gamma) \rightarrow L$. Then there is a unique τ : $B \rightarrow A$ such that $\mu C = \lambda C.\tau$ for all $C \in \underline{C}$. This morphism τ is a \mathcal{D} -morphism from (B,Γ) to (A,Φ) since $\lambda C.\tau,\Gamma i = \mu C.\Gamma i \subseteq \Phi_C i$ and hence $\tau.\Gamma i \subseteq \Phi i$.

Suppose Φ' is another structure on A such that the maps λC ($C \in \underline{C}$) are \mathcal{D} -morphisms. Then $\Phi' \mathbf{i} \subseteq \Phi \mathbf{i}$ ($\mathbf{i} \in \mathbf{I}$), and so $\Phi' = \Phi$.

We introduce the five axioms for the basic situation (BS) in two parts, as we need to develop extra notions to express some of them. Those theorems which hold in the basic situation are indicated by writing THEOREM (BS). It will be obvious that many of them hold under much weaker conditions.

2.1.3 AXIOMS <u>BS(1)</u> <u>A</u> is in <u>Cat</u>, and the index set I of X is a small set.

<u>BS(2)</u> <u>A</u> is small complete.

<u>BS(3)</u> For any object A in A there is a small representative set of monomorphisms with codomain A. That is, if $\{\alpha_j : A_j \rightarrow A; j \in J\}$ is the set of monomorphisms with codomain A, then there is a small set $K \subseteq J$ such that to each $j \in J$ there is a $k \in K$ and an isomorphism $\beta : A_i \rightarrow A_k$ such that $\alpha_k \cdot \beta = \alpha_j$.

2.1.4 DEFINITION Let $(\alpha_k : A_k \to A; k \in K)$ be a family of morphisms with codomain A. Then let $\beta : B \to A$ be a monomorphism such that

each α_k (k \in K) factors through β ; that is, there exist maps γ_k (k \in K) such that $\alpha_k = \beta \cdot \gamma_k$. Let $\{\beta_j : B_j \rightarrow A; j \in J\}$ be the set of all such monomorphisms β . Then the intersection of $\{\beta_j; j \in J\}$ (determined up to isomorphism) is written as $\bigcup \alpha_k : \bigcup (A_k, \alpha_k) \rightarrow A$, and is called the union of the family $k \in K$ $k \in K$). In the basic situation the union does exist since we can choose a small representative set S of morphisms in $\{\beta_j; j \in J\}$. The intersection of S, which is a small limit, is then easily seen to be the intersection of $\{\beta_i; j \in J\}$

2.1.5 THEOREM (BS) Consider families of morphisms $\begin{pmatrix} \beta_j & B_j \rightarrow A \\ j & j \end{pmatrix} A ; j \in J$ $(\gamma_k : C_k \rightarrow A ; k \in K)$. Then

(1) there is a unique morphism q_j : $B_j \rightarrow \bigcup (B_j, \beta_j)$ such $j_1 \quad j_1 \quad j \in J$

that $\bigcup_{j \in J} \beta_j \cdot q_j = \beta_j$; further $\bigcup_{j \in J} q_j = 1$; $j \in J$

(2) if to each $j \in J$ there is a $k \in K$ such that β_j factors through γ_k , then there is a unique morphism $u : \bigcup_{\substack{j \in J \\ j \in J}} (B_j, \beta_j) \rightarrow \bigcup_{\substack{k \in K \\ k \in K}} (C_k, \gamma_k)$

such that $\bigcup_{k \in K} \gamma_k \cdot u = \bigcup_{j \in J} \beta_j;$

(3) if β is monic then $\bigcup \beta = \beta$.

PROOF (1) β_k factors through each of the monomorphisms of which U β_k is the intersection. The second part is also straightforward. $k \in K$ (2) There are fewer monomorphisms through which each of $(\gamma_k; k \in K)$ factors, than through which each of $(\beta_j; j \in J)$ factors.

(3) Clear.

2.1.6 AXIOMS <u>BS(4)</u> There exists a small cardinal κ with the following property: for any family $(\alpha_k : A_k \to A; k \in K)$, and for any morphism $\beta : Xi \to \bigcup (A_k, \alpha_k)$ with $Xi \in X$, there is a subset $J \subseteq K$ $k \in K$ with $|J| < \kappa$, and a morphism $\gamma : Xi \to \bigcup (A_j, \alpha_j)$, such that β is the composition of γ and the canonical morphism $\bigcup (A_j, \alpha_j) \to \bigcup (A_k, \alpha_k)$ described in 2.1.5. If X has this property $j \in J$ is ranked, with rank $\leq \kappa$.

<u>BS(5)</u> For any small family $(A_k; k \in K)$ of objects in \underline{A} , consider all unions in \underline{A} of the form $\bigcup_{k \in K} (A_k, \alpha_k)$. There is a small representative set S of such objects. That is, any object of the form $\bigcup_{k \in K} (A_k, \alpha_k)$ is isomorphic to an object in S, and S is a small $k \in K$ set.

It is clear that for many familiar categories $\underline{\underline{A}}$, any functor X : I $\rightarrow \underline{\underline{A}}$, with I a small set, satisfies the conditions of the basic situation. We shall discuss some examples in 2.1.19.

commute, $\bigcup v_j = 1_B$, and δ is a monomorphism, then there exists $j \in J$

a λ : B \rightarrow C such that $\delta \cdot \lambda = \gamma$ and $\lambda \cdot \nu j = \beta j$ ($j \in J$).

PROOF Form the pullback diagram

The morphism p is monic. For suppose that $pr_1 = pr_2$; then $\gamma \cdot pr_k = \delta \cdot qr_k$ (k = 1,2) and, since δ is mono, $qr_1 = qr_2$. Hence by the universal property of pullback diagrams $r_1 = r_2$. All the morphisms $\forall j$ factor through p, again by the pullback property, and since $1 : B \rightarrow B$ is the intersection of a set of morphisms including p, there is an $r : B \rightarrow E$ such that $p \cdot r = 1$. Hence $\delta \cdot (qr) = \gamma p \cdot r = \gamma$, and so we may take λ to be qr.

2.1.8 REMARK In <u>Sets</u> and other familiar categories we have the useful factorization of morphisms into epimorphisms and monomorphisms. To take the place of this, in the basic situation we have that any map $\alpha : A \rightarrow B$ factorizes as $A \stackrel{\beta}{\rightarrow} \cup (A, \alpha) \stackrel{\cup \alpha}{\rightarrow} B$ where β is the canonical map. The map $\cup \alpha$ is monic, and the map β has the property that $\cup \beta = 1$. Now Lemma 2.1.7 shows that any factorization of α into a map whose union is 1 and a monomorphism is essentially isomorphic to the above factorization. (Such a factorization we call a <u>standard</u> <u>factorization</u>.) For if the following diagram

commutes, with $\forall \gamma = 1_C$ and δ monic, the lemma supplies maps $\lambda : C \rightarrow \bigcup(A, \alpha)$ and $\lambda' = \bigcup(A, \alpha) \rightarrow C$ which are clearly inverse, and $\forall \alpha . \lambda = \delta$, $\lambda \gamma = \beta$.

Other properties which maps whose union is 1 have in analogy with epimorphisms are:

(1) if α, β have union 1 then so does $\beta \alpha$.

(2) if $\beta \alpha$ has union 1 then so does β .

For a discussion of generalized epimorphisms see [14].

We next prove two useful lemmas.

2.1.9 LEMMA Consider a family of maps $(\alpha_j:A_j\to A\ ;\ j\in J)$ and a map $\beta:A\to B$. Then

$$\bigcup_{j \in J} (\beta \alpha_j) = \bigcup (\beta \cup \alpha_j) ,$$

$$j \in J \qquad j \in J \qquad j \in J$$

PROOF Clearly any monomorphism in $\underline{\mathbb{A}}$ through which $\beta.~\cup~\alpha,~$ factors, $j\in J~^{j}$

has the property that each $\beta \alpha_{j}$ factors through it. Conversely, consider a monomorphism $\gamma : C \rightarrow B$ through which each $\beta \alpha_{j}$ factors; say $\gamma \delta_{j} = \beta \alpha_{j}$. Further let $\alpha_{j} = \bigcup \alpha_{j} \cdot \varepsilon_{j}$. Then by Lemma 2.1.7, $j \in J^{j} \quad j \in J^{j} \quad j_{j} \in J^{j}$ such that $\beta \cdot \bigcup \alpha_{j} = \gamma \cdot \lambda \cdot j \in J^{j}$ So the monomorphisms through which $\beta \cdot \bigcup \alpha_{j}$ factors are the mono- $j \in J^{j}$ morphisms through which each of $\beta \alpha_{j}$ factors, which yields our result.

2.1.10 LEMMA If \mathcal{D} -morphism $\alpha : (A_1, \Phi_1) \rightarrow (A_3, \Phi_3)$ factorizes in $\underline{\underline{A}}$ as $\gamma\beta$, where $\gamma : (A_2, \Phi_2) \rightarrow (A_3, \Phi_3)$ is a \mathcal{D} -morphism and monic in $\underline{\underline{A}}$, then β is also a \mathcal{D} -morphism.

PROOF Certainly if $\phi_1 \in \phi_1$ i we have that $\gamma \beta \phi_1 \in \phi_3$ i. Now there is a $\phi_2 \in \phi_2$ i such that ϕ_2 .ni = $\beta \phi_1$.ni. Then $\gamma \phi_2$.ni = $\gamma \beta \phi_1$.ni and so $\gamma \phi_2 = \gamma \beta \phi_1$. Since γ is monic we deduce that $\beta \cdot \phi_1 i \subseteq \phi_2 i$.

2.1.11 DEFINITION The map $\alpha : A \rightarrow B$ generates $\beta : (C, \Psi) \rightarrow (B, \Phi)$ in (B, Φ) if β is the intersection of all \mathcal{D} -morphisms which are monic in \underline{A} , with codomain (B, Φ) , and through which α factors.

We say that α generates (B, Φ) if it generates $1 : (B, \Phi) \rightarrow (B, \Phi)$.

Notice that in the basic situation, using BS(3) we can show, much as we did in 2.1.4, that given any $\alpha : A \rightarrow B$ and any \mathcal{P} -algebra (B, Φ), there exists a β generated by α in (B, Φ).

If α generates β , it follows, since $U^{\mathcal{V}}$ preserves intersections, that α factors through β , say $\alpha = \beta \gamma$. A simple consequence of the definition is that γ so defined generates (C, Ψ).

In the next theorem we see another simple consequence of the definitions.

2.1.12 THEOREM (BS) If the diagram

commutes and α generates (B, Φ), then $\beta = \gamma$.

PROOF Consider the equalizer $\varepsilon : (E,\Gamma) \rightarrow (B,\Phi)$ in $\underline{\mathbb{A}}^{\mathcal{D}}$ of β and γ . Then ε is also an equalizer in $\underline{\mathbb{A}}$, and so α factors through ε . Since ε is monic and α generates (B,Φ) , there is a map $f: B \rightarrow E$ such that $\varepsilon f = 1$. Hence $\beta = \beta \varepsilon f = \gamma \varepsilon f = \gamma$.

2.1.13 CONSTRUCTION (BS). Given a map $\alpha : A \rightarrow (B, \Phi)$, we describe a construction for the \mathcal{D} -morphism generated by α . For each ordinal n we define a map $\alpha_n : A_n \rightarrow B$ as follows: (1) $\alpha_0 = \cup \alpha$.

(2) If n is a limit ordinal then

$$\alpha_n = \bigcup_{m < n} \alpha_m \cdot$$

(3) The map α_{n+1} is defined in terms of α_n as follows. Consider all $u : Xi \rightarrow A_n$ for all $i \in I$, and let ϕ_u be the map in Φi such that $\phi_u \cdot \eta i = \alpha_n u$. Then α_{n+1} is the union of all the ϕ_u together with α_n .

If τ is an infinite cardinal, the successor of a cardinal greater than κ , write β : C \rightarrow B for α_{τ} .

Then if we define Ψ by

 $\Psi i = \{ \psi : Di \rightarrow C ; \beta \psi \in \Phi i \}$

we claim that β : $(C, \Psi) \rightarrow (B, \Phi)$ is the \mathcal{D} -morphism generated by α .

PROOF First it is clear that

$$\beta.\Psi_{i_1}.\Delta(i,i_1) \subseteq \Phi_{i_1}.\Delta(i,i_1) \subseteq \Phi_{i_1}$$

and so $\forall i_1 . \Delta(i, i_1) \subseteq \forall i$. Consider any μ : Xi \rightarrow C. We know that C = $\bigcup_{n < \tau} (A_n, \alpha_n)$, and so, by BS(4), that μ is the composition of a map $\lambda : Xi \rightarrow \bigcup_{k \in K} (A_k, \alpha_k)$ and the canonical map $\nu : \bigcup_{k \in K} (A_k, \alpha_k) \rightarrow C$, where $K \subseteq \tau$ and $|K| < \kappa$. Let m be the set-theoretical union of K. Clearly $m < \tau$.

Now it is easy to prove by induction that α_m factors through α_n for any ordinals $m \le n$. So if $m \in K$ we have that $\bigcup_{k \in K} (A_k, \alpha_k) = A_m$. If m is not in K then clearly it is a limit $k \in K$

ordinal and $\bigcup_{k \in K} (A_k, \alpha_k) = \bigcup_{n < m} (A_n, \alpha_n) = A_m$. In both cases,

 λ : Xi \Rightarrow A $_m$ and ν : A $_m$ \Rightarrow C . Consider the following diagram:

We can find a $\phi \in \Phi i$ so that the outer square commutes. The map βv is α_m by the defining property of the canonical map v. Therefore by the definition of α_{m+1} , there exists a δ with $\alpha_{m+1}\delta = \phi$. Now since $\beta = \alpha_{\tau}$ and $m + 1 < \tau$, there exists a $\gamma : A_{m+1} \rightarrow C$ with $\beta \gamma = \alpha_{m+1}$. Hence

$$\beta \mu = \phi.\eta i = \alpha_{m+1} \delta.\eta i = \beta \gamma \delta.\eta i$$

and since β is monic, $\mu = \gamma \delta$.ni. It is clear that $\gamma \delta \in \Psi$ i. The uniqueness is guaranteed by β being monic. Hence (C, Ψ) is a D-algebra and β is a D-morphism.

To see that α generates β in (B, Φ) , consider any other \mathcal{D} -morphism ε : $(E, \Gamma) \rightarrow (B, \Phi)$, which is monic in <u>A</u> and through which α factors. We wish to show that α_n factors through ε for all ordinals n, and hence that β factors through ε . By 2.1.7, α_0 factors through ε . The union of any set of maps, each of which factors through ε , also factors through ε . Suppose α_n factors through ε , then consider

where $\varepsilon \omega = \alpha_n$ and the outer square commutes. The map α_{n+1} is the union of maps like ϕ_u together with α_n . Now we can find a γ in Γ i such that $\gamma.\eta i = \omega u$ and hence that $\varepsilon \gamma = \phi_u$. That is, ϕ_u factors through ε , and hence so does α_{n+1} .

Now suppose $\beta_1 : (C_1, \Psi_1) \rightarrow (B, \Phi)$ is generated by α . Then β_1 factors through β in $\underline{A}^{\mathcal{D}}$. But, by the last paragraph, β factors through β_1 in \underline{A} . Since β and β_1 are monic in \underline{A} , this is enough to show that they are isomorphic in $\underline{A}^{\mathcal{D}}$, and hence β is generated by α .

2.1.14 THEOREM (BS) For any object A in \underline{A} there is a small representative set of \mathcal{D} -algebras generated by maps with domain A.

PROOF We prove this by considering the construction 2.1.13 and using

BS(1) and BS(5). We prove that for each small ordinal n, as we vary the maps α with domain A and the structure on their codomains, there is a representative set of objects A_n . Then to each $A_{\tau} = C$, since I is a small set, there is at most a small set of different structures. Certainly, by BS(5), our statement is true for A_0 . Suppose n is a small limit ordinal. Since $\{A_m; m \in n\}$ is a small set, if we suppose that for each $m \in n$ there is a small set of possibilities for A_m , then, again by BS(5), there is a small set of possibilities for A_n . Finally A_{n+1} is a union of a small set of maps with domains A_n and (Di; $i \in I$) and hence, again by BS(5), is one of a small set of possibilities.

2.1.15 THEOREM Consider two devices \mathcal{D}_1 and \mathcal{D}_2 in $\underline{\mathbb{A}}_1$ and $\underline{\mathbb{A}}_2$ respectively, and functors $G: \underline{\mathbb{A}}_2^{\mathcal{D}_2} \rightarrow \underline{\mathbb{A}}_1^{\mathcal{D}_1}$ and $\mathbb{H}: \underline{\mathbb{A}}_2 \rightarrow \underline{\mathbb{A}}_1$ with $U^{\mathcal{D}_1}G = HU^{\mathcal{D}_2}$. If \mathbb{H} has a left adjoint \mathbb{H}' and X_2 and $\underline{\mathbb{A}}_2$ are in the basic situation, then G also has a left adjoint.

PROOF Since $\underline{\mathbb{A}}_2$ has small limits, so does $\underline{\mathbb{A}}_2^{\mathcal{D}_2}$. Consider a $\underline{\mathbb{C}}$ -limit $\lambda : \underline{\mathbb{A}} \to \mathbb{L}$, where λ is natural from $\underline{\mathbb{A}} : \underline{\mathbb{C}} \to \underline{\mathbb{A}}_2^{\mathcal{D}_2}$ to $\mathbb{L} : \underline{\mathbb{C}} \to \underline{\mathbb{A}}_2^{\mathcal{D}_2}$ and $\underline{\mathbb{A}}$ is a constant functor. Then $\mathrm{HU}^{\mathcal{D}_2 \lambda} : \mathrm{HU}^{\mathcal{D}_2 \underline{\mathbb{A}}} \to \mathrm{HU}^{\mathcal{D}_2 \mathbb{L}}$ is a limit in $\underline{\mathbb{A}}_1$. However, $\mathrm{HU}^{\mathcal{D}_2 \lambda} = \mathrm{U}^{\mathcal{D}_1} \mathrm{G} \lambda$. Hence, as we saw in our discussion of limits in 2.1.2, since $\mathrm{U}^{\mathcal{D}_1} \mathrm{G} \lambda$ is a limit, we have that $\mathrm{G} \lambda$ is a limit in $\underline{\mathbb{A}}_1^{\mathcal{D}_1}$. That is, G preserves limits.

We only need the solution set condition to use Freyd's adjoint

functor theorem. Consider (A_1, Φ_1) in $\underline{A_1}^{\mathcal{D}_1}$. Then, by 2.1.14, there is a small representative set, S, of \mathcal{D}_2 -algebras generated by \underline{A}_2 -maps with domain H'A₁. We take this set to be the solution set corresponding to (A_1, Φ_1) . Consider any \mathcal{D}_1 -morphism α : $(A_1, \Phi_1) \rightarrow G(A_2, \Phi_2)$ where (A_2, Φ_2) is a \mathcal{D}_2 -algebra. If n': $1 \rightarrow HH'$ is the natural transformation of the adjoint pair, H and H', then α factorizes in \underline{A}_1 as $H\beta.n'A_1$ where β : $H'A_1 \rightarrow A_2$. Then in S there is an algebra (A_2', Φ_2') such that $\beta = \beta_2\beta_1$ where β_2 : $(A_2', \Phi_2') \rightarrow (A_2, \Phi_2)$ is a \mathcal{D}_2 -morphism, monic in \underline{A}_2 . We have the diagram:

Now since H has a left adjoint, $H\beta_2$ is monic. Further, $H\beta_2 = HU^{\mathcal{D}_2}\beta_2 = U^{\mathcal{D}_1}G\beta_2$. We can apply Lemma 2.1.10 to see that $H\beta_1 \cdot n'A_1$ is a \mathcal{D}_1 -morphism from (A_1, Φ_1) to $G(A'_2, \Phi'_2)$. Hence S is a solution set.

2.1.16 COROLLARY (BS) The functor U^{D} has a left adjoint.

PROOF In 2.1.15 take $\underline{A}_2 = \underline{A}_1 = \underline{A}$, $\mathcal{P}_2 = \mathcal{D}$ and \mathcal{P}_1 an initial device in \underline{A} .

In order to obtain another application of Theorem 2.1.15 we need the following lemma. 2.1.17 LEMMA If \mathcal{D} is a device in $\underline{\mathbb{A}}$ and $\underline{\mathbb{U}}^{\mathcal{D}}$ has a left adjoint, and $\underline{\mathbb{C}}$ is a small category, there is a device \mathcal{D}_1 in $\underline{\mathbb{A}}^{\underline{\mathbb{C}}}$ such that there is an isomorphism $K : (\underline{\mathbb{A}}^{\underline{\mathbb{C}}})^{\mathcal{D}_1} \to (\underline{\mathbb{A}}^{\mathcal{D}})^{\underline{\mathbb{C}}}$. Further $\underline{\mathbb{U}}^{\mathcal{D}_1}K^{-1}$ takes $L : \underline{\mathbb{C}} \to \underline{\mathbb{A}}^{\mathcal{D}}$ to $\underline{\mathbb{U}}^{\mathcal{D}}L$.

PROOF By Remark 1.4.3 we may consider a triple $T = (T, \eta, \mu)$ in \underline{A} in the place of device \mathcal{D} . Then we can define a triple $T_1 = (T_1, \eta_1, \mu_1)$ in $\underline{A}^{\underline{C}}$ as follows: T_1 takes $L : \underline{C} \rightarrow \underline{A}$ to TL; T_1 takes $\alpha : L_1 \rightarrow L_2$ to $T\alpha$; $\eta_1(L) : L \rightarrow TL = \eta L$; $\mu_1(L) : T^2L \rightarrow TL = \mu L$. If (L,ξ) is a T_1 -algebra, the functor K mentioned above is defined at (L,ξ) by:

$$K(L,\xi) : C_1 \qquad (LC_1,\xi C_1)$$

$$\alpha + \cdots + L\alpha$$

$$C_2 \qquad (LC_2,\xi C_2) .$$

If $\lambda : (L_1, \xi_1) \rightarrow (L_2, \xi_2)$ is a \mathcal{T}_1 -morphism then $K\lambda$ is defined by $K\lambda(C) = \lambda C$.

It is straightforward to show that K is a functor with the required properties.

2.1.18 COROLLARY (BS) If \underline{C} is a small category and \underline{A} has \underline{C} -colimits, then so does $\underline{A}^{\mathcal{D}}$.

PROOF In 2.1.15 take $\underline{A}_2 = \underline{A}$, $\underline{A}_1 = \underline{\underline{A}}^{\underline{C}}$ and $\mathcal{D}_2 = \mathcal{D}$. Further take \mathcal{D}_1 to be the device provided by Lemma 2.1.17, and take G and H to be the diagonal functors (see §0.4).

Once we have proved that U^{D} has a left adjoint, we can use theorems available for triples; see for example the work of Linton [20]. However the results we have just given do not appear to be included in those of Linton.

2.1.19 COUNTEREXAMPLE There is a category \underline{A} in <u>Cat</u> which is small complete, and a device \mathcal{P} in \underline{A} , such that $U^{\mathcal{P}}$ does not have a left adjoint.

PROOF Define \underline{A} as follows. The objects of \underline{A} are the small ordinals together with three other objects denoted X_1 , X_2 and DX_1 . From A_1 to A_2 of \underline{A} , there is at most one morphism; the composition of morphisms is forced by this requirement. If m and n are ordinals then there is a morphism from m to n if and only if $m \ge n$. Further, from each of X_1 , X_2 , DX_1 to each ordinal, there is a morphism. The only other morphisms are identity morphisms, and morphisms from X_1 to DX_1 and X_1 to X_2 . The device \mathcal{D} has a single object X_1 , $n(X_1) = X_1 \rightarrow DX_1$, and $\Delta(X_1, X_1) = \{1_{DX_1}\}$. To each of the following objects there is precisely one algebra with that object as underlying object: DX_1 , m (m an ordinal). These are all the algebras, and the morphisms between algebras are precisely the morphisms between the underlying objects. It is easy to check that there is no universal arrow from X_2 to $U^{\mathcal{D}}$; there is no map at all from X_2 to DX_1 , and for each map $X_2 \rightarrow m$ there is a map $X_2 \rightarrow n$ where $n \geq m$ but no corresponding map from m to n.

2.1.20 EXAMPLES We return to some of the concrete examples we gave in Chapter I. If X is any small family of objects in <u>Sets</u>, or in Cat (\underline{V}) for any variety \underline{V} , or in <u>Kit</u>, then we are in the basic situation. Thus in Example 1.1.4, U^{D} has a left adjoint. Further, in 1.1.7, the functor which embeds torsion free groups in the category of groups has a left adjoint, as do the two functors involving <u>Kit</u>. Again, we are in the basic situation for any device in the category P(Y) described in 1.1.8. This allows us to see that any device in P(Y) amounts to a closure operator on Y (since the axioms for a triple in P(Y) are the axioms for a closure operator on Y).

Finally in this section we give some more properties of the notion defined in 2.1.11.

2.1.21 THEOREM (BS) (1) Consider the following diagram:

 $(B', \phi') \xrightarrow{\beta} (B, \phi)$ \downarrow^{γ} ε δ

If this diagram commutes (in \underline{A}), $\beta \alpha$ generates β in (B, Φ) and $\delta \epsilon$ generates δ in (C, Ψ), then there is a D-morphism λ : (B', Φ ') \rightarrow (C', Ψ ') such that $\lambda \alpha = \epsilon$ and $\delta \lambda = \gamma \beta$. (2) Consider map α : A \rightarrow B and D-morphism β : (B, Φ) \rightarrow (C, Γ). If α generates (B, Φ) and the union of β in \underline{A} is l, then $\beta \alpha$ generates (C, Γ).

(3) Consider maps $\alpha : A \rightarrow B$ and $\beta : B \rightarrow (C,\Gamma)$. If $\beta \alpha$ generates (C, Γ) then so does β .

(4) Consider $\alpha : A \rightarrow (B, \Phi)$, $\beta : (B, \Phi) \rightarrow (C, \Psi)$ where β is a *D*-morphism monic in <u>A</u>. Then $\beta \alpha$ generates β in (C, Ψ) if and only if α generates (B, Φ) .

PROOF (1) We consider the construction 2.1.13. For each ordinal n, let $\beta_n : B_n \to B$ and $\delta_n : C_n \to C$ be the maps defined for that ordinal in 2.1.13, and let $\beta \alpha = \beta_n \alpha_n$, $\delta \varepsilon = \delta_n \varepsilon_n$. Now we want to prove that for each n there is a map $\lambda_n : B_n \to C_n$ such that $\lambda_n \alpha_n = \varepsilon_n$ and $\delta_n \lambda_n = \gamma \beta_n$. Lemma 2.1.7 assures us that this is true for n = 0. If n is a limit ordinal then $-U(\gamma, U \beta_m) = U(\gamma \beta_m)$ $= U(\delta_m \lambda_m)$ (by Lemma 2.1.9). Now $\gamma \cup \beta_m = \gamma \beta_n$ factors through $U(\gamma, \bigcup \beta_m)$ and $\bigcup (\delta_m \lambda_m)$ factors through $\bigcup \delta_m = -\delta_n$; so we have m < n = 0. Now β_{n+1} is the union of β_n and all maps ϕ in the structure of (B, Φ) for which $\phi.\eta i$ factors through β_n . $\gamma\phi.\eta i$ factors through δ_n ; the maps $\gamma\phi$ go into the construction of δ_{n+1} . Hence it is clear that $\gamma\beta_{n+1}$ factors through δ_{n+1} . We use Lemma 2.1.10 to see that λ_{τ} is a \mathcal{D} -morphism.

(2) This is a simple application of (1).

(3) Clear.

(4) Suppose α generates (B, Φ), and consider any

 γ : (D, Γ) \rightarrow (C, Ψ), monic in <u>A</u>, through which $\beta\alpha$ factors. Then $\beta\alpha$ factors through the intersection of β and γ . Consider the diagram:

The \mathcal{D} -morphism δ must be an isomorphism since it is monic in <u>A</u> and 1 : (B, Φ) \rightarrow (B, Φ) factors through it. This means that β factors through γ , and it follows that $\beta\alpha$ generates β .

§2.2 Algebra in the elaborate situation.

In this section we shall give some more axioms on X and $\underline{\underline{A}}$, which <u>together with the axioms for the basic situation</u> form the definition of the elaborate situation (ES).

2.2.1 DEFINITION A map $\alpha : A \rightarrow B$ in A is <u>X-surjective</u> if for any map $\beta : Xi \rightarrow B$ (Xi \in X) there exists a map $\gamma : Xi \rightarrow A$ such that $\alpha\gamma = \beta$.

We will see in 2.2.8 that in the elaborate situation a map is X-surjective if and only if its union is 1. In the next few theorems we develop analogues of conventional results about surjective and injective homomorphisms.

2.2.2 AXIOM <u>ES(1)</u> The family X is adequate in <u>A</u>.

2.2.3 THEOREM (ES) Consider \mathcal{D} -morphism $\alpha : (A_1, \Phi_1) \rightarrow (A_2, \Phi_2)$. (1) α is a monomorphism in $\underline{\mathbb{A}}^{\mathcal{D}}$ if and only if $\alpha : A_1 \rightarrow A_2$ is a monomorphism in $\underline{\mathbb{A}}$.

(2) α is an $\mathbb{F}^{\mathcal{D}}$ -surjection in $\underline{\mathbb{A}}^{\mathcal{D}}$ if and only if $\alpha : \mathbb{A}_1 \to \mathbb{A}_2$ is an X-surjection in $\underline{\mathbb{A}}$.

PROOF (1) Suppose α is a monomorphism in $\underline{\mathbb{A}}^{\mathcal{D}}$ and that $\alpha\gamma = \alpha\delta$ where γ , δ : $B \rightarrow A_1$. If $\gamma \neq \delta$, there is a morphism ε from some Xi in X to B such that $\gamma\varepsilon \neq \delta\varepsilon$. There exist \mathcal{D} -morphisms ϕ , ψ : $F^{\mathcal{D}}i \rightarrow (A_1, \phi_1)$ such that $\phi.ni = \gamma\varepsilon$ and $\psi.ni = \delta\varepsilon$. Then $\alpha.\phi.ni = \alpha.\psi.ni$, and hence $\alpha\phi = \alpha\psi$. However it is clear that $\psi \neq \phi$, giving us a contradiction.

(2) If α is X-surjective, then consider any \mathcal{D} -morphism

 $\beta : F^{\mathcal{D}}i \to (A_2, \Phi_2)$ Certainly there is a map $\gamma : Xi \to A_1$ such that $\alpha\gamma = \beta.ni$. Further, there is a $\phi \in \Phi_1 i$ such that $\phi.ni = \gamma$. Then $\alpha\phi.ni = \beta.ni$ and we may cancel the map ni to obtain the required result. If α is $F^{\mathcal{D}}$ -surjective and β is a map from Xi to A_2 , then $\beta = \phi.ni$ for some $\phi \in \Phi_2 i$, and there is a map $\phi' : F^{\mathcal{D}}i \to (A_1, \Phi_1)$ such that $\alpha\phi' = \phi$. Hence $\alpha\phi'.ni = \beta$.

2.2.4 THEOREM (ES) (1) X-surjective maps are epic in \underline{A} . F^D-surjective D-morphisms are epic in \underline{A}^{D} .

(2) If $\alpha : A_1 \to (A_2, \Phi_2)$ is a monomorphism in \underline{A} , then there is at most one structure on A_1 which makes α a \mathcal{D} -morphism. (3) If $\alpha : (A_1, \Phi_1) \to A_2$ is X-surjective in \underline{A} , then there is at most one structure on A_2 which makes α a \mathcal{D} -morphism.

PROOF (1) Consider X-surjective map $\alpha : A_1 \rightarrow A_2$ and map γ , δ such that $\gamma \alpha = \delta \alpha$. If $\gamma \neq \delta$ there is a map ε from some Xi in X to A_2 such that $\gamma \varepsilon \neq \delta \varepsilon$. But by the definition of X-surjective, there is a map $\mu : Xi \rightarrow A_1$ such that $\alpha \mu = \varepsilon$ and hence $\gamma \alpha \mu = \gamma \varepsilon \neq \delta \varepsilon$ $= \delta \alpha \mu$, a contradiction. Since we have used only ES(1) here, the second part of (1) will follow when we prove in 2.2.5, without any further axioms, that $F^{\mathcal{D}}$ is adequate in $\underline{A}^{\mathcal{D}}$. (2) Suppose Φ_1 is a structure on A_1 which makes α a \mathcal{D} -morphism. Define Ψ_1 by $\Psi_1i = \{\psi : Di \rightarrow A_1 ; \alpha \psi \in \Phi_2i\}$. Then clearly
$$\begin{split} & \Phi_1 \mathbf{i} \subseteq \Psi_1 \mathbf{i} \ . \ \text{Given any } \mu : \mathbf{X} \mathbf{i} \Rightarrow \mathbf{A}_1 \quad \text{we can certainly factor } \mu \quad \text{through} \\ & \text{ni} \quad \text{in } \Phi_1 \mathbf{i} \quad \text{and hence in } \Psi_1 \mathbf{i} \ . \ \text{Suppose } \Psi_1 \cdot \mathbf{n} \mathbf{i} = \Psi_2 \cdot \mathbf{n} \mathbf{i} \quad (\Psi_1, \Psi_2 \in \Psi_1 \mathbf{i}) ; \\ & \text{then } \alpha \Psi_1 \cdot \mathbf{n} \mathbf{i} = \alpha \Psi_2 \cdot \mathbf{n} \mathbf{i} \quad \text{and hence } \alpha \Psi_1 = \alpha \Psi_2 \ . \ \text{Since } \alpha \quad \text{is monic} \\ & \Psi_1 = \Psi_2 \ , \text{ and so any } \mu : \mathbf{X} \mathbf{i} \Rightarrow \mathbf{A}_1 \quad \text{factors uniquely through } \mathbf{n} \mathbf{i} \quad \mathbf{i} \mathbf{n} \\ & \Psi_1 \mathbf{i} \ . \ \text{We need only the closure property to see that } \Psi_1 \mathbf{i} \quad \mathbf{i} \mathbf{s} \mathbf{a} \\ & \text{structure for } \mathbf{A}_1 \quad \text{and hence by Lemma 1.2.5 that } \Phi_1 = \Psi_1 \ . \ \text{But} \\ & \alpha \cdot \Psi_1 \mathbf{i} \cdot \Delta(\mathbf{i}_1, \mathbf{i}) \subseteq \Phi_2 \mathbf{i} \cdot \Delta(\mathbf{i}_1, \mathbf{i}) \subseteq \Phi_2 \mathbf{i}_1 \quad \text{and hence } \Psi_1 \mathbf{i} \cdot \Delta(\mathbf{i}_1, \mathbf{i}) \subseteq \Psi_1 \mathbf{i}_1 \ . \end{split}$$

Notice from our proof that there exists a suitable structure on A_1 if and only if to each $\phi \in \Phi_2$ i we have that ϕ factors through α if and only if $\phi.\eta i$ factors through α .

(3) Suppose Φ_2 is a structure on A_2 which makes α a \mathcal{P} -morphism. Define Ψ_2 by $\Psi_2 \mathbf{i} = \alpha \cdot \Phi_1 \mathbf{i}$. Clearly $\Psi_2 \mathbf{i} \subseteq \Phi_2 \mathbf{i}$. We will prove that Ψ_2 is a structure for A_2 and hence, by Lemma 1.2.5, that $\Phi_2 = \Psi_2$. The closure condition is trivial. Consider any μ : Xi $\Rightarrow A_2$. Then there is a map β : Xi $\Rightarrow A_1$ such that $\alpha\beta = \mu$. Find ϕ in $\Phi_1 \mathbf{i}$ with $\phi \cdot \eta \mathbf{i} = \beta$. Then $\alpha\phi$ in $\Psi_1 \mathbf{i}$ has $\alpha\phi \cdot \eta \mathbf{i} = \mu$. The uniqueness part of the universality condition follows since $\Psi_2 \subseteq \Phi_2$.

Notice that there exists a suitable structure on A_2 if and only if the following condition holds: to each $\phi_1, \phi_2 \in \Phi_1$, we have that $\alpha \phi_1 = \alpha \phi_2$ if and only if $\alpha . \phi_1 . ni = \alpha_1 \phi_2 . ni$.

We prove next the promised result that $F^{\mathcal{D}}$ is adequate in $\underline{\mathbb{A}}^{\mathcal{D}}$.

2.2.5 THEOREM If X is adequate in <u>A</u> then $F^{\mathcal{D}}$ is adequate

in $\underline{\underline{A}}^{\mathcal{D}}$.

PROOF To see that $F^{\mathcal{D}}$ is a generating family in $\underline{\mathbb{A}}^{\mathcal{D}}$, consider two distinct \mathcal{D} -morphisms α , β : $(A_1, \Phi_1) \rightarrow (A_2, \Phi_2)$. There is a map γ from some Xi in X to A_1 such that $\alpha\gamma \neq \beta\gamma$. Now $\gamma = \phi$.ni for some $\phi \in \Phi_1$ i, and so $\alpha\phi$.ni $\neq \beta\phi$.ni. Clearly this implies that $\alpha\phi \neq \beta\phi$.

To see that $F^{\mathcal{D}}$ is adequate in $\underline{\mathbb{A}}^{\mathcal{D}}$, consider a family of functions fi : $\underline{\mathbb{A}}^{\mathcal{D}}(F^{\mathcal{D}}i, (A_{1}, \Phi_{1})) \rightarrow \underline{\mathbb{A}}^{\mathcal{D}}(F^{\mathcal{D}}i, (A_{2}, \Phi_{2}))$ with the property that for each $\delta \in \Delta(i_{1}, i)$ and each $\phi \in \underline{\mathbb{A}}^{\mathcal{D}}(F^{\mathcal{D}}i, (A_{1}, \Phi_{1}))$ we have that fi(ϕ). $\delta = fi_{1}(\phi\delta)$. Define gi : $\underline{\mathbb{A}}(Xi, A_{1}) \rightarrow \underline{\mathbb{A}}(Xi, A_{2})$ by gi : ϕ .ni $\cdots \rightarrow fi(\phi)$.ni for each $\phi \in \Phi_{1}i$. If μ : $Xi_{1} \rightarrow Xi$, and $\delta' \in \Delta(i_{1}, i)$ is defined by $\eta i. \mu = \delta'. \eta i_{1}$ then

 $gi(\phi.ni).\mu = fi(\phi).ni.\mu = fi(\phi).\delta'.ni_{1} = fi_{1}(\phi\delta').ni_{1}$ $= gi_{1}(\phi.\delta'.ni_{1}) = gi_{1}(\phi.ni.\mu) .$

Since X is adequate in \underline{A} , there exists a map $\alpha : A_1 \rightarrow A_2$ such that $gi(\phi.ni) = \alpha.\phi.ni$; that is, $fi(\phi).ni = \alpha.\phi.ni$. Suppose $fi(\phi) \neq \alpha\phi$. Then for some i_2 in I there is a map $\psi.ni_2 : Xi_2 \rightarrow Di \quad (\psi \in \Delta(i_2, i))$ such that $fi(\phi).\psi.ni_2 \neq \alpha\phi\psi.ni_2$. But $fi(\phi).\psi.ni_2 = fi_2(\phi\psi).ni_2 = gi_2(\phi.\psi.ni_2) = \alpha\phi\psi.ni_2$, a contradiction. Clearly α is a \mathcal{D} -morphism with the required property.

Notice that Isbell in [13] discusses the adequacy of free algebras

in a category of algebras. His result is not contained in 2.2.5.

2.2.6 THEOREM (ES) (1) Consider an X-surjection $\alpha : A \rightarrow B$ and a map $\beta : A \rightarrow C$. Then β factors through α if and only if, for each pair of maps μ_1 , μ_2 with common domain in X, we have that $\alpha \mu_1 = \alpha \mu_2$ implies that $\beta \mu_1 = \beta \mu_2$.

(2) A map which is X-surjective and monic is an isomorphism.

PROOF (1) Consider the function fi : $\underline{A}(Xi,B) \rightarrow \underline{A}(Xi,C)$ defined by fi : $\alpha \mu \leftrightarrow \beta \mu$ (μ : $Xi \rightarrow A$). This is clearly an unambiguous definition. Further, if ε : $Xi_1 \rightarrow Xi$, then fi_1($\alpha \mu \varepsilon$) = $\beta \mu \varepsilon$ = fi($\alpha \mu$). ε . Hence there exists a map γ : $B \rightarrow C$ such that $\gamma \alpha \mu = \beta \mu$ for all μ : $Xi \rightarrow A$. Since X is a generating family we have further that $\gamma \alpha = \beta$.

(2) Let $\alpha : A \rightarrow B$ be X-surjective and monic. Then apply (1) to α and l_A . There is a map $\alpha' : B \rightarrow A$ such that $\alpha' \alpha = 1$, and hence, since α is epic, it follows that α is an isomorphism.

In the next theorem we develop results about factorization of maps into X-surjections and monomorphisms. First another axiom.

2.2.7 AXIOMS <u>ES(2)</u> Every map in <u>A</u> is the composition of an X-surjection and a monomorphism.

2.2.8 THEOREM (ES) (1) If $\alpha = \gamma\beta$, and β is X-surjective, and γ is monic, then this factorization of α is a standard one (see 2.1.8), and hence two such factorizations are "isomorphic". (2) Any \mathcal{D} -morphism has an essentially unique factorization into an $F^{\mathcal{D}}$ -surjection and a \mathcal{D} -monomorphism.

(3) A map in $\underline{\mathbb{A}}^{\mathcal{D}}$ which is both $\mathbf{F}^{\mathcal{D}}$ -surjective and monic is an isomorphism.

PROOF (1) Suppose $\varepsilon \delta$ is a standard factorization of α . Then use Lemma 2.1.7 to supply a map λ such that $\gamma \lambda = \varepsilon$, $\lambda \delta = \beta$. Now it is clear that if the composition of two maps is X-surjective, then so is the second map. Thus λ is X-surjective. Further λ is monic since ε is monic, and hence, by 2.2.6 (2), λ is an isomorphism. (2) Consider any \mathcal{D} -morphism α : $(A_1, \Phi_1) + (A_2, \Phi_2)$. Factor α into an X-surjection $\beta : A_1 + A_3$ and a monomorphism $\gamma : A_3 + A_2$. Define Φ_3 by $\Phi_3 \mathbf{i} = \beta \cdot \Phi_1 \mathbf{i}$. To see that Φ_3 is a structure for A_3 we need only check the uniqueness part of the universality condition (see the proof of 2.2.4 (3)). Suppose $\beta \phi \cdot n \mathbf{i} = \beta \phi' \cdot n \mathbf{i}$ ($\phi , \phi' \in \Phi_1 \mathbf{i}$). Then $\gamma \beta \phi \cdot n \mathbf{i} = \gamma \beta \phi' \cdot n \mathbf{i}$; so $\gamma \beta \phi = \gamma \beta \phi'$ and hence $\beta \phi = \beta \phi'$. Clearly with this structure on A_3 both β and γ are \mathcal{D} -morphisms. (3) Clear, since $\mathbf{F}^{\mathcal{D}}$ is adequate in $\mathbf{A}^{\mathcal{D}}$.

Next we give some properties of generation (2.1.11) in the elaborate situation.

2.2.9 THEOREM (ES) (1) A D-morphism generates its codomain if and only if it is an F^{D} -surjection.

(2) If $\alpha : A \rightarrow B$ is an X-surjection, and $\beta : B \rightarrow (C, \Phi)$ generates (C, Φ) then $\beta \alpha$ generates (C, Φ) .

(3) If (n_1, F_1) is a universal arrow to U^D then n_1 generates F_1 .

PROOF (1) If $\alpha : (A_1, \Phi_1) \rightarrow (A_2, \Phi_2)$ is $\mathbb{P}^{\mathcal{D}}$ -surjective then $U\alpha = 1$ in $\underline{\mathbb{A}}$, and since $U\alpha$ is the intersection of more maps than is the \mathcal{D} -morphism generated by α , clearly $U\alpha$ factors through this \mathcal{D} -morphism. Hence α generates (A_2, Φ_2) . The converse implication is also easy.

(2) Using 2.1.7 it is not hard to see that any \mathcal{D} -monomorphism which $\beta\alpha$ factors through, is factored through by β .

(3) Consider any \mathcal{D} -morphism α : $(A, \Phi) \rightarrow F_1$, monic in \underline{A} , which n_1 factors through in \underline{A} ; say $n_1 = \alpha \tau$. There is a \mathcal{D} -morphism β : $F_1 \rightarrow (A, \Phi)$ such that $\beta \cdot n_1 = \tau$. Clearly $\alpha\beta = 1$ and hence $\alpha\beta\alpha = \alpha$. Since α is monic we have also $\beta\alpha = 1$, and hence α is an isomorphism.

Before introducing another axiom of the elaborate situation we show that BS(5) and BS(3) hold for F^{D} and \underline{A}^{D} when X and \underline{A} are in the elaborate situation.

2.2.10 THEOREM (ES) (1) Consider a family of \mathcal{D} -morphisms

 $(\alpha_j : (A_j, \phi_j) \to (B, \Psi) ; j \in J)$. The union in $\underline{A}^{\mathcal{D}}$ of this family is the \mathcal{D} -morphism generated by $\bigcup_{i \in J} \alpha_i$ in (B, Ψ) .

(2) BS(5) holds for
$$F^{\mathcal{D}}$$
 and $\underline{\mathbb{A}}^{\mathcal{D}}$.
(3) BS(3) holds for $F^{\mathcal{D}}$ and $\underline{\mathbb{A}}^{\mathcal{D}}$.

PROOF (1) Suppose that the union of the family in $A^{\mathcal{D}}$ is β : (C, Γ) \rightarrow (B, Ψ), that the \mathcal{D} -morphism generated by $\bigcup_{j \in J} \alpha_{j}$ is $j \in J^{j}$

 ε : $(E,\Lambda) \rightarrow (B,\Psi)$, and that $\alpha = \beta\lambda = \varepsilon\nu$. Now $\bigcup_{i \in I} \alpha_i$, being the intersection of more maps than is $~\beta$, factors through $~\beta$. Clearly this implies that the \mathcal{D} -morphism ε generated by $\bigcup_{i \in I} \alpha_i$ factors through β in $\underline{\mathbb{A}}^{\mathcal{D}}$. But, by Lemma 2.1.10, each α_{i} factors through ϵ in \underline{A}^{D} , and hence β factors through ϵ in $\underline{A}^{\widetilde{D}}$. Since both β and ε are monic in $\underline{\underline{A}}^{\mathcal{D}}$ this is sufficient to prove (1). (2) Consider a small family $((A_{j}, \Phi_{j}); j \in J)$ of objects of $\underline{A}^{\mathcal{D}}$. Then if we consider families of maps $(\alpha_{j}; j \in J)$ in $\underline{A}^{\mathcal{D}}$ where the domain of α_i is (A_i, ϕ_i) we want to show that there is a small representative set of unions in $\underline{\underline{A}}^{\mathcal{D}}$ of such families. But by BS(5) there is a small representative set of unions in $\underline{\underline{A}}$ of such families. And to each such union, by Theorem 2.1.14, there is a small representative set of \mathcal{D} -algebras generated by maps with domain that union. However, as we have just seen in (1), any union in $\underline{A}^{\mathcal{D}}$ is generated by a union in $\underline{\mathbb{A}}$, and so our result follows.

(3) Consider $(A, \Phi) \in \underline{A}^{\mathcal{D}}$. Then there is a small representative set S of monomorphisms in \underline{A} with codomain A. Since there is at most one structure on the domain of each of these making it into a \mathcal{D} -morphism, we can select a subset of S to be a representative set for \mathcal{D} -monomorphisms with codomain (A, Φ) .

Next we give a further axiom of the elaborate situation.

2.2.11 AXIOM <u>ES(3)</u> There exists a small cardinal number $\kappa \ge 2$ which, in addition to having property BS(4), has the following property: given any family of maps $(\alpha_j; j \in J)$ where $|J| < \kappa$, the domain of each α_j belongs to X, and all of the maps have codomain A, then there exists an Xi \in X and a map α : Xi \rightarrow A such that each α_j factors through α .

Using this condition and the factorization properties ES(2) and 2.2.6 (2), we can give a new and simpler construction for the algebra generated by a map.

2.2.12 CONSTRUCTION (ES) Consider a map $\alpha : A \rightarrow (B, \Phi)$. Consider all ϕ in Φ i such that ϕ .ni factors through α . Let the union of all such ϕ for all $i \in I$ be $\beta : C \rightarrow B$, and define Ψ by $\Psi i = \{\psi : Di \rightarrow C ; \beta \psi \in \Phi i\}$. Then $\beta : (C, \Psi) \rightarrow (B, \Phi)$ is a D-morphism, and is the morphism generated by α in (B, Φ).

PROOF That β is a \mathcal{D} -morphism follows immediately if Ψ is a structure. From the proof of 2.2.4 (2) we need only consider the existence part of the universality condition. Consider μ : Xi \rightarrow C. Then by BS(4) μ is the composition of a map u: Xi $\rightarrow \bigcup (\text{Di}_j, \phi_j)_{j \in J}$ J = J = J = J = J = Jwhere $|J| < \kappa$, and a map $v : \bigcup (\text{Di}_j, \phi_j) \rightarrow C$. Further, by $j \in J$ $j \in J$ and a map $w : \text{Xi}_1 \rightarrow A$ such that if $\phi_j \cdot ni_j = \alpha \cdot v_j$, then each v_j $(j \in J)$ factors through w. Hence if $\alpha w = \phi_1 \cdot ni_1$, each ϕ_j factors through ϕ_1 , and so $\bigcup_{j \in J} \phi_j$ factors through $\cup \phi_j$.

where $\beta \tau = \bigcup \phi_1$ and $\beta \tau \lambda = \phi_1$. Since λ is X-surjective, it follows that the map $Xi \rightarrow \bigcup (Di_j, \phi_j) \rightarrow \bigcup (Di_1, \phi_1) = \lambda \varepsilon$ for some $\varepsilon : Xi \rightarrow Di_1$. The map $\delta \in \Delta$ (i,i_1) makes the left-hand triangle commute. Hence $\tau \lambda \delta.\eta i = \mu$ and $\beta \tau \lambda \delta \in \Phi i$.

Next, we wish to see that β : $(C, \Psi) \rightarrow (B, \Phi)$ is the intersection of all *D*-monomorphisms through which α factors. First, to see that α factors through β , factor α into an X-surjection $A \rightarrow L$ and a monomorphism $L \rightarrow B$, and form the intersection $E \rightarrow B = E \rightarrow L \rightarrow B$ $= E \rightarrow C \rightarrow B$ of $L \rightarrow B$ and β . Now if we can show that $E \rightarrow L$ is an X-surjection, then it is an isomorphism and $L \rightarrow B$ factors through $C \rightarrow B$, and hence so does α . Consider any μ : Xi $\rightarrow L$. Then since $A \rightarrow L$ is an X-surjection, Xi $\rightarrow L = Xi \rightarrow A \rightarrow L$ for some map Xi $\rightarrow A$. Now by the construction of β , there is a map Xi $\rightarrow C$ such that Xi $\rightarrow A + L \rightarrow B = Xi \rightarrow C \rightarrow B$. Hence by the defining property of intersections, Xi $\rightarrow A \rightarrow L = Xi \rightarrow L$ factors through $E \rightarrow L$, and hence $E \rightarrow L$ is an X-surjection.

Finally, consider any \mathcal{D} -monomorphism β' : $(C', \Psi') \rightarrow (B, \Phi)$ which α factors through; say $\alpha = \beta'b$. Then consider $\phi \in \Phi i$ such that ϕ .ni factors through α ; say ϕ .ni = $\alpha \tau$. Find $\psi' \in \Psi'i$ such that ψ' .ni = $b\tau$. Then $\beta'\psi'$.ni = $\alpha \tau = \phi$.ni, and so ϕ factors through β' . Hence β factors through β' (in $\underline{A}^{\mathcal{D}}$ by Lemma 2.1.10) and this is enough to ensure our result.

Next we prove two useful lemmas.

2.2.13 LEMMA (ES) Suppose the map $\alpha : A \rightarrow (B, \Phi)$ generates (B, Φ) . Then any map $\mu : Xi \rightarrow (B, \Phi)$ ($i \in I$) factors through some structure map $\phi_1 : Di_1 \rightarrow B$ which has the property that $\phi_1 \cdot \eta i_1$ factors through α .

PROOF Considering the construction 2.2.12 and BS(4) we see that μ factors into a map $u : Xi \rightarrow \bigcup (Di_j, \phi_j)$ with $|J| < \kappa$, and a map $j \in J$ $v : \bigcup (Di_j, \phi_j) \rightarrow B$. The maps ϕ_j are-in ϕ_i and have the project $j \in J$ j, η_j factors through $\alpha : A \rightarrow B$. As in the proof of 2.2.12, there is a $\phi_1 : Di_1 \rightarrow B$ such that $\phi_1.\eta_1$ factors through α , and $\bigcup \phi_j$ factors through $\bigcup \phi_1$. Consider the diagram: α , and $\bigcup \phi_j$ factors through $\bigcup \phi_1$.

Clearly μ factors through ϕ_1 , and we have our result.

2.2.14 LEMMA (ES) Consider maps $\alpha : A \rightarrow B$ and $\beta : A \rightarrow C$ where α is an X-surjection. Then β factors through α if and only if for each map μ with domain in X and codomain A we have that $\beta\mu$ factors through $\alpha\mu$.

PROOF By 2.2.6 we need only show that if μ_1, μ_2 : Xi \rightarrow A and $\alpha \mu_1 = \alpha \mu_2$ then $\beta \mu_1 = \beta \mu_2$. By ES(3) there is a map μ with domain in X such that $\mu_1 = \mu \epsilon_1$ and $\mu_2 = \mu \epsilon_2$ for some ϵ_1, ϵ_2 . But by our assumption $\beta \mu = \gamma \alpha \mu$ for some γ . Hence $\beta \mu_1 = \beta \mu \epsilon_1 = \gamma \alpha \mu \epsilon_1 = \gamma \alpha \mu_2 = \gamma \alpha \mu \epsilon_2 = \beta \mu \epsilon_2 = \beta \mu_2$. Next in this section we introduce an axiom which enables us to mimic the classical theory of congruences. First we need two definitions.

2.2.15 DEFINITION A family of maps $(\alpha j ; j \in J)$ with common codomain A is called a <u>codiscriminating family</u> for A if, for each pair of maps $\beta \neq \gamma$ with domain A, there is a $j \in J$ such that $\beta \cdot \alpha j \neq \gamma \cdot \alpha j$.

I learnt of this notion from B.H. Neumann [27].

2.2.16 DEFINITION (ES) An <u>X-congruence</u> on A is a family R = (Ri ; i \in I) of equivalence relations, where Ri is a relation on <u>A</u> (Xi , A) , which has the following additional properties.⁽¹⁾ If μ is any map in <u>A</u> (Xi₁,Xi) and α , β are in <u>A</u> (Xi,A) then Ri (α , β) implies that Ri₁ ($\alpha\mu$, $\beta\mu$).

(2) If $(\alpha j : X_{ij} \to X_{i}; j \in J)$ is a discriminating family for Xi, and $\beta, \gamma : X_{i} \to A$, then $\operatorname{Ri}_{j}(\beta, \alpha j, \gamma, \alpha j)$ for all j in J implies Ri (β, γ) .

Corresponding to each map $\gamma : A \rightarrow B$ there is an obvious X-congruence R_{γ} on A defined by: $R_{\gamma}i$ (α,β) if and only if $\gamma\alpha = \gamma\beta$.

2.2.17 AXIOM <u>ES(4)</u> To each X-congruence R on A there is an X-surjection γ with domain A with the property that Ri (α,β) if

and only if $\gamma \alpha = \gamma \beta$; that is, $R = R_{\gamma}$.

2.2.18 THEOREM (ES) The axiom ES(4) holds for $\mathbf{F}^{\mathcal{D}}$ and $A^{\mathcal{D}}$.

PROOF Consider an $\mathbb{P}^{\mathcal{D}}$ -congruence \mathbb{R}_{1} on (\mathbb{A}, Φ) in $\underline{\mathbb{A}}^{\mathcal{D}}$. Define for each i in I a relation \mathbb{R}_{2}^{i} on $\underline{\mathbb{A}}$ (Xi, A) by: \mathbb{R}_{2} (ϕ_{1} .ni, ϕ_{2} .ni) if and only if \mathbb{R}_{1} (ϕ_{1}, ϕ_{2}) ($\phi_{1}, \phi_{2} \in \Phi_{1}$). Consider μ : Xi₁ \rightarrow Xi. If $\delta. ni_{1} = ni.\mu$ ($\delta \in \Delta$ (i_{1}, i_{1})) then $\phi_{1}. ni.\mu = \phi_{1}.\delta. ni_{1}$ and $\phi_{2}. ni.\mu = \phi_{2}.\delta. ni_{1}$. Since \mathbb{R}_{1} is an $\mathbb{P}^{\mathcal{D}}$ -congruence it follows that: \mathbb{R}_{2}^{i} ($\phi_{1}.ni,\phi_{2}.ni$) $\Rightarrow \mathbb{R}_{1}^{i}$ (ϕ_{1},ϕ_{2}) $\Rightarrow \mathbb{R}_{1}^{i}i_{1}$ ($\phi_{1}\delta,\phi_{2}\delta$) $\Rightarrow \mathbb{R}_{2}^{i}i_{1}$ ($\phi_{1}.ni.\mu,\phi_{2}.ni.\mu$).

Given a codiscriminating family $(\alpha j : Xi_j \rightarrow Xi ; j \in J)$ for Xi in \underline{A} , if we define $\delta j : F^{D}i_j \rightarrow F^{D}i$ by $\delta j \cdot ni_j = ni \cdot \alpha j$, then it is easy to see that $(\delta j ; j \in J)$ is a codiscriminating family for $F^{D}i$ in \underline{A}^{D} . Hence $R_{2}i_{j}$ $(\phi_{1} \cdot ni \cdot \alpha j, \phi_{2} \cdot ni \cdot \alpha j)$ for all $j \in J$ implies $R_{2}i_{j}$ $(\phi_{1} \cdot \delta j \cdot ni_{j}, \phi_{2} \cdot \delta j \cdot ni_{j})$ for all $j \in J$, which implies $R_{1}i_{j}$ $(\phi_{1} \cdot \delta j, \phi_{2} \cdot \delta j)$ for all $j \in J$, and hence $R_{1}i$ (ϕ_{1}, ϕ_{2}) . Thus R_{2} is an X-congruence and there is an X-surjection $\gamma : A \rightarrow B$ such that $R_{2}i$ $(\phi_{1} \cdot ni, \phi_{2} \cdot ni)$ if and only if $\gamma \phi_{1} \cdot ni = \gamma \phi_{2} \cdot ni$. Suppose $\gamma \phi_{1} \cdot ni = \gamma \phi_{2} \cdot ni$ but $\gamma \phi_{1} \neq \gamma \phi_{2}$. Then for some $i_{2} \in I$ there is a map $\delta_{2} \cdot ni_{2}$ $(\delta_{2} \in \Delta (i_{2}, i))$ such that $\gamma \phi_{1} \delta_{2} \cdot ni_{2} \neq \gamma \phi_{2} \delta_{2} ni_{2}$. But $R_{1}i_{2}$ $(\phi_{1} \delta_{2}, \phi_{2} \delta_{2})$, and so $R_{2}i_{2}$ $(\phi_{1} \delta_{2} \cdot ni_{2}, \phi_{2} \delta_{2} \cdot ni_{2})$, a contradiction. Hence $R_{1}i$ (ϕ_{1}, ϕ_{2}) if and only if $\gamma \phi_{1} = \gamma \phi_{2}$. Further γ can be made into a \mathcal{D} -morphism by defining a structure Ψ on B as follows: $\Psi i = \gamma \cdot \Phi i$. The only thing we need to check is that if $\gamma \phi_1 \cdot \eta i = \gamma \phi_2 \cdot \eta i$ $(\phi_1, \phi_2 \in \Phi i)$ then $\gamma \phi_1 = \gamma \phi_2$, and we have already proved this.

2.2.19 DEFINITION Consider an object A in \underline{A} and a family $R = (R_j; j \in J)$ of families of binary relations indexed by I where R_j i is a relation on \underline{A} (Xi,A). The intersection $\bigcap_{j \in J} R_j$ of the $j \in J^j$ families is defined by $(\bigcap_{j \in J} R_j)$ i (α,β) if and only if R_j i (α,β) for all j in J. If $R_1 \cap R_2 = R_1$ then we write $R_1 \leq R_2$. This establishes a partial ordering on such families of binary relations.

2.2.20 THEOREM The intersection of any family of X-congruences on A is an X-congruence. Thus, given any family $R = (Ri ; i \in I)$ of binary relations, where Ri is a relation on <u>A</u> (Xi,A), there is a least X-congruence R' with $R' \geq R$.

PROOF Easy.

2.2.21 THEOREM The axiom ES(2) is implied by ES(1) together with ES(4).

PROOF Consider any map $\alpha : A \rightarrow B$. By ES(4) there is an X-surjection

The final result of this section is that $F^{\mathcal{D}}$ and $\underline{\underline{A}}^{\mathcal{D}}$ are in the elaborate situation if X and $\underline{\underline{A}}$ are. First we give the final axiom of the elaborate situation.

2.2.22 AXIOM <u>ES(5)</u> There is a set J with $I \subseteq J$, and a family Y = (Yj ; $j \in J$) of objects of \underline{A} with the following properties: Y | I = X ; any composition Xi \rightarrow Yj \rightarrow A factors as Xi \rightarrow Yj \rightarrow Xi₁ \rightarrow A for some $i_1 \in I$, the second map being X-surjective; for each A in \underline{A} there is an X-surjection Yj \rightarrow A for some $j \in J$. We call such a family Y an <u>extension</u> of X.

2.2.23 THEOREM (ES). (1) F^{D} and \underline{A}^{D} satisfy ES(3). (2) F^{D} and \underline{A}^{D} satisfy BS(4). (3) F^{D} and \underline{A}^{D} satisfy ES(5). (4) F^{D} and \underline{A}^{D} are in the elaborate situation.

PROOF (1) Consider a family of \mathcal{D} -morphisms $(\phi_j : F^{\mathcal{D}}_{j} \to (A, \Phi); j \in J)$

with $|J| < \kappa$. Then $(\phi_j \cdot ni_j; j \in J)$ is a family of morphisms in \underline{A} whose domains are in X. Hence there is a map α : Xi \rightarrow A for some $i \in I$ such that each $\phi_j \cdot ni_j$ factors through α ; say $\phi_j \cdot ni_j = \alpha \cdot \beta_j$. Let $\delta_j \cdot ni_j = ni \cdot \beta_j$ ($\delta_j \in \Delta$ (i_j, i)). Then if $\phi \cdot ni = \alpha$ ($\phi \in \Phi i$) we have $\phi_i = \phi \cdot \delta_i$ as we require.

(2) Consider a family of \mathcal{P} -morphisms $(\alpha_j; j \in J)$, with common codomain (B, Ψ) , and let the domain of α_j be (A_j, Φ_j) . Write $\bigcup ((A_j, \Phi_j), \alpha_j) = (A, \Phi)$. Then, consider a map $\beta : F^{\mathcal{P}}i \neq (A, \Phi)$ $j \in J$ for some $i \in I$. We know that there is a map $\gamma : \bigcup (A_j, \alpha_j) \neq A_j \in J^{(j)}$, which generates (A, Φ) (see 2.2.10). Hence by Lemma 2.2.13, for some $i_1 \in I$ there is a map ϕ in Φi_1 such that β .ni factors through ϕ , say $\phi \delta = \beta$.ni, and further ϕ .ni₁ factors through γ , say $\gamma \cdot \mu = \phi$.ni₁. Consider the diagram

The bottom edge is the factorization of μ provided by BS(4). The composite $\bigcup_{k \in K} A_k \xrightarrow{\gamma} \bigcup_{j \in J} A_j \xrightarrow{\gamma} (A, \Phi) \rightarrow (B, \Psi)$ generates the union in $\underline{A}_k^{(D)}$ of $(\alpha_k; k \in K)$, which factors through (A, Φ) . We may cancel the monomorphism $(A, \Phi) \rightarrow (B, \Psi)$ to see that the lower right-hand region commutes. Then we solve for structure map in the lower left square, and then for the structure map in the upper left square. Since the lower region commutes, the composite

$$Fi_{1} \xrightarrow{-} \xrightarrow{-} \bigcup_{k \in K} (A_{k}, \Phi_{k}) \xrightarrow{+} (A, \Phi)$$

must be $\ensuremath{\,\varphi}$. Hence it follows that the upper right triangle commutes, as desired.

(3) Suppose $Y = (Y_j; j \in J)$ is an extension of X. Then we will show that $G = (G_j; j \in J)$ is an extension of $F^{\mathcal{D}}$ if there is a universal arrow of the form $(n_j: Y_j \rightarrow U^{\mathcal{D}}G_j, G_j)$ for each $j \in J$. Certainly by Corollary 2.1.16 such universal arrows exist, and so there is an extension G of $F^{\mathcal{D}}$. Consider a pair of \mathcal{D} -morphisms $F^{\mathcal{D}}_{i} \rightarrow G_i \rightarrow (A, \Phi)$, and the diagram:

The left-hand portion of the diagram is supplied from the map $Xi \rightarrow F^{\mathcal{D}}i \rightarrow G_{j}$ by Lemma 2.2.13 and the fact that $Y_{j} \rightarrow G_{j}$ generates G_{j} (see Theorem 2.2.9 (3)). By the property of extensions $Xi_{1} \rightarrow Y_{j} \rightarrow G_{j} \rightarrow (A, \Phi)$ factors as $Xi_{1} \rightarrow Y_{j} \rightarrow Xi_{2} \rightarrow (A, \Phi)$. Solve for \mathcal{D} -morphisms in regions (1) and (2). It is easy to see by 2.1.20 and 2.2.9 that $G_j \rightarrow F^{\mathcal{D}}i_2$ is $F^{\mathcal{D}}$ -surjective. Finally it is clear that $F^{\mathcal{D}}i \rightarrow G_j \rightarrow (A, \Phi) = F^{\mathcal{D}}i \rightarrow F^{\mathcal{D}}i_1 \rightarrow G_j \rightarrow F^{\mathcal{D}}i_2 \rightarrow (A, \Phi)$.

2.2.24 REMARK If we take X to be any small family of sets where the least cardinal greater than the cardinalities of the sets in X is an infinite regular cardinal, then X and <u>Sets</u> satisfy the axioms for the elaborate situation. Theorem 2.2.23 provides further examples of the elaborate situation.

Suppose X and \underline{A} are in the elaborate situation and \underline{A} has an initial object which is in X. If n is a small set and we define a family Y = (Y_j; $j \in I^n$) of objects in \underline{A}^n by Y_j(m) = X(jm) (m \in n), then Y and \underline{A}^n are in the elaborate situation.

§2.3 Recognition Theorems.

In this section we develop conditions for recognizing when a functor $U: \underline{B} \neq \underline{A}$ is strictly isomorphic to a functor $U^{\mathcal{D}}$ for some device \mathcal{D} in \underline{A} . Of course, in the triple case there are several theorems of this type; notably Beck's theorem (for which the standard reference seems to be [1] but which is more easily found in [23]) and some theorems of Linton [19]. Other conditions occur in [5] and [28]. Our main interest is in recognizing functors isomorphic to $U^{\mathcal{D}}$ where the object family of \mathcal{D} is small. First however we obtain some quite

general theorems.

2.3.1 DEFINITION Consider a functor $U: \underline{B} \rightarrow \underline{A}$ and a family Y of objects in \underline{B} . We say that \underline{B} is <u>saturated</u> with respect to Y and U if the following condition holds. Consider any $\alpha : A_1 \rightarrow A_2$ and any B_1, B_2 in \underline{B} with $UB_1 = A_1$ and $UB_2 = A_2$. If for all $\beta : Y_j \rightarrow B_1$ in \underline{B} with $Y_j \in Y$ there exists a $\beta' : Y_j \rightarrow B_2$ in \underline{B} such that $\alpha.U\beta = U\beta'$, then there is a $\beta'' : B_1 \rightarrow B_2$ in \underline{B} such that $\alpha = U\beta''$.

2.3.2 THEOREM Consider a functor $U: \underline{B} \rightarrow \underline{A}$ and families of objects X in \underline{A} and F in \underline{B} both indexed by I. Then if there are universal arrows (ni: Xi \rightarrow UFi, Fi) for each $i \in I$, and if U is faithful, and if \underline{B} is saturated with respect to F and U, then \underline{B} is equivalent to a full subcategory of \underline{A}^{D} for some device D with object family X (and U corresponds under the equivalence to the forgetful functor U^{D} restricted to this subcategory).

PROOF The basic tool in all these recognition theorems is the first part of the comparison theorem 1.2.6. From now on K will always mean the canonical functor $\underline{B} \rightarrow \underline{A}^{\mathcal{D}}$ with the properties (1) $U^{\mathcal{D}}.K = U$ and (2) $KF = F^{\mathcal{D}}$. The device \mathcal{D} is that corresponding to the universal arrows (ni,Fi). To prove our theorem we need only show that, under the given conditions, K is full and its image is a subcategory of \underline{A} . To see that the image of K is a category we only need to show that if $\beta_1 : B_1 \rightarrow B_2$ and $\beta_2 : B_3 \rightarrow B_4$ are in \underline{B} , and $KB_2 = KB_3$ then there exists a $\beta : B_1 \rightarrow B_4$ in \underline{B} such that $U\beta = U\beta_2 \cdot U\beta_1$. If $KB_2 = KB_3$ then $U\underline{B}$ (Fi,B₂) = U\underline{B} (Fi,B₃) for all $i \in I$. Consider $\phi : Fi \rightarrow B_2$ and the corresponding $\phi' : Fi \rightarrow B_3$ which has $U\phi' = U\phi$. Then $U\beta_2 \cdot U\phi = U\beta_2 \cdot U\phi' = U(\beta_2\phi')$. Hence there exists a $\beta'_2 : B_2 \rightarrow B_4$ such that $U\beta'_2 = U\beta_2$ and so $U(\beta'_2\beta_1) = U\beta'_2 \cdot U\beta_1 = U\beta_2 \cdot U\beta_1$.

To see that K is full, consider any α : $KB_1 \rightarrow KB_2$ in $\underline{\mathbb{A}}^{\mathcal{U}}$. If ϕ_1 : Fi $\rightarrow B_1$ in $\underline{\mathbb{B}}$ then $U\phi_1$: F^Di $\rightarrow KB_1$ in $\underline{\mathbb{A}}^{\mathcal{D}}$, and so $\alpha.U\phi_1$: F^Di $\rightarrow KB_2$ in $\underline{\mathbb{A}}^{\mathcal{D}}$. That is, in $\underline{\mathbb{A}}, \alpha.U\phi_1$: Di $\rightarrow UB_2$. By the universality of the arrow (ni,Fi) there is a morphism ϕ_2 : Fi $\rightarrow B_2$ such that $U\phi_2.ni = \alpha.U\phi_1.ni$. But $U\phi_2$ can be considered a morphism from F^Di to KB_2 in $\underline{\mathbb{A}}^{\mathcal{D}}$. Then by the universality of (ni,F^Di) this last equation means that $U\phi_2 = \alpha.U\phi_1$. Hence by the fact that $\underline{\mathbb{B}}$ is saturated with respect to F and U, there exists a map β : $B_1 \rightarrow B_2$ such that $U\beta = \alpha$ in $\underline{\mathbb{A}}$. Thus $K\beta = \alpha$ in $\underline{\mathbb{A}}^{\mathcal{D}}$.

2.3.3 DEFINITION Consider a functor $U : \underline{B} \to \underline{A}$ and a family S of universal arrows ((ni : Xi \to UFi, Fi) ; i \in I). Then a U,S-suitable X-surjection is an X-surjection α : UB \to A (B \in \underline{B} , A \in \underline{A}) in \underline{A} with the property that to each ϕ_1, ϕ_2 : Fi \to B we have that $\alpha.U\phi_1 = \alpha.U\phi_2$ if and only if $\alpha.U\phi_1.ni = \alpha.U\phi_2.ni$.

This definition is motivated by the proof of 2.2.4 (3).

2.3.4 THEOREM Consider a functor $U: \underline{B} \rightarrow \underline{A}$ and a family X of objects of \underline{A} indexed by I. Suppose that for each A in \underline{A} there is an $i \in I$ with an X-surjection from Xi to A. Then U is strictly isomorphic to $U^{\mathcal{D}}$ for some device \mathcal{D} with object family X if and only if the following conditions hold.

(1) There is a family S of universal arrows to U, namely $S = ((ni : Xi \rightarrow UFi, Fi); i \in I)$. The family $F = (Fi; i \in I)$ is required to have the following additional properties.

(2) U is faithful, and \underline{B} is saturated with respect to F and U.

(3) Consider any $B \in \underline{B}$ and any U,S-suitable X-surjection $\alpha : UB \rightarrow A$. Then there exists a unique map $\beta : B \rightarrow B_1$ in \underline{B} such that $U\beta = \alpha$.

PROOF The device \mathcal{D} is that associated with the family of universal arrows. In the light of Theorem 2.3.2 we need only show that any object in $\underline{A}^{\mathcal{D}}$ is the image of an object under K, and that K is one-one on objects. Consider $(A, \phi) \in \underline{A}^{\mathcal{D}}$. Let α : Xi $\rightarrow A$ be an X-surjection assured by the conditions of the theorem. Then ϕ : Di $\rightarrow A$ in ϕ i is an X-surjection if $\phi.\eta i = \alpha$, and hence ϕ : $F^{\mathcal{D}}i \rightarrow (A, \phi)$ is an $F^{\mathcal{D}}$ -surjection. Consider maps μ_1, μ_2 : Xi₁ \rightarrow Di for some $i_1 \in I$. If $\phi \mu_1 = \phi \mu_2$ then $\phi \delta_1 = \phi \delta_2$ where $\delta_1, \delta_2 \in \Delta$ (i_1, i) and $\delta_1 \cdot \eta i_1 = \mu_1, \delta_2 \cdot \eta i_1 = \mu_2$. Thus there exists a morphism β : Fi \rightarrow B in \underline{B} such that $U\beta = \phi$. Further $K\beta = \phi$: $F^{\mathcal{D}}i \rightarrow (A, \Psi)$ for some
structure Ψ . But we have seen in Theorem 2.2.4 (3) that there is at most one structure on A making ϕ a D-morphism. Hence KB = (A, ϕ).

Suppose B_1 is another object of \underline{B} with $KB_1 = (A, \Phi)$. Then since K is full, there is a map $\gamma : B \rightarrow B_1$ such that $K\gamma = 1$. This gives us another map $\gamma\beta : Fi \rightarrow B_1$ in \underline{B} which goes to $\phi : Di \rightarrow A$ under U, a contradiction if $B \neq B_1$.

Notice that even this simple theorem is quite helpful for proving that functors are tripleable. For example, it is not hard to check the conditions of this theorem when U is the forgetful functor from compact Hausdorff spaces to <u>Sets</u> and X is all sets. We next prove a recognition theorem for the elaborate situation. But first, a definition.

2.3.5 DEFINITION Consider a functor $U : \underline{B} \to \underline{A}$ and a family of universal arrows $S = ((ni : Xi \to UFi, Fi) ; i \in I)$. Then a U,S-suitable monomorphism is a monomorphism in $\underline{A}, \alpha : A \to UB$ ($A \in \underline{A}, B \in \underline{B}$) with the additional property that if ϕ is any morphism in \underline{B} from Fi \rightarrow B then U ϕ factors through α if and only if U $\phi.ni$ factors through α .

For the motivation for this definition see the proof of 2.2.4 (2).

2.3.6 THEOREM (ES) Given X and \underline{A} in the elaborate situation, then a functor $U : \underline{B} \rightarrow \underline{A}$ is strictly isomorphic to U^{D} for some device D in \underline{A} with object family X if and only if the following conditions hold: (1), (2) and (3) of Theorem 2.3.4 and

(4) To any U,S-suitable monomorphism $\alpha : A \rightarrow UB$ there is a unique morphism $\beta : B_1 \rightarrow B$ in \underline{B} with $U\beta = \alpha$.

(5) <u>B</u> has small products, and U preserves them.

PROOF Of course the device $\mathcal D$ is the one associated with the universal arrows $((\eta i, Fi); i \in I)$. Then in view of Theorem 2.3.2 we have only to show that the comparison functor $K : \underline{B} \rightarrow \underline{A}^{\mathcal{D}}$ is bijective on objects. Consider (A, ϕ) in $\underline{\underline{A}}^{\mathcal{D}}$ and let $\underline{Y} = (\underline{Y}_j; j \in J)$ be an extension (see 2.2.22) of X . Then there is an X-surjection $Y_i \rightarrow A$ for some $j \in J$. Consider all maps from Y_j to A and form the factorizations $Y_j \xrightarrow{\alpha} (A_p, \Phi_p) \xrightarrow{\beta} (A, \Phi)$ $(p \in P)$ where $\beta_p \cdot \alpha_p$ generates β_p in (A, Φ) . Let Q be the subset of P for which the maps $\beta_q \cdot \alpha_q$ $(q \in Q)$ factor as follows for some $i \in I$: $\beta_q \cdot \alpha_q = Y_j \xrightarrow{X-surj'n} Xi \rightarrow A$. Now both sets P and Q are small, so we can form products $\prod_{p \in P} (A_p, \Phi_p)$ and $\prod_{q \in 0} (A_q, \Phi_q) \text{ . Suppose that } \tau_1 : \Upsilon_j \rightarrow \prod_{p \in P} (A_p, \Phi_p) \text{ and }$ $\tau_2: Y_j \rightarrow \prod_{\alpha \in O} (A_q, \Phi_q)$ are the maps induced by the α 's, and let $\tau_1 = Y_j \xrightarrow{\lambda_1} (A', \Phi') \xrightarrow{\mu_1} \prod_{p \in P} (A_p, \Phi_p) \text{ and } \tau_2 = Y_j \xrightarrow{\lambda_2} (A'', \Phi'') \xrightarrow{\mu_2} \prod_{q \in O} (A_q, \Phi_q)$ where τ_k generates μ_k (k = 1,2). We would like to show that (A', Φ ') is isomorphic to (A", Φ ") . Let us assume that this is true for the moment. Then, for each $q \in Q$ there is a map $Xi \rightarrow A_q$ (some $i \in I$) which generates (A_q, Φ_q) , and hence there is a corresponding

X-surjection UFi $\rightarrow A_{a}$ (see 2.2.9 (1)). This X-surjection being actually a \mathcal{D} -morphism is easily seen to be U,S-suitable, and hence there is map $Fi \rightarrow B$ in <u>B</u> whose image under U is $Di \rightarrow A_q$. Clearly the image of this map $Fi \rightarrow B$ under K is $F^{\mathcal{D}}i \rightarrow (A_{a},\Gamma_{a})$ for some structure Γ_q which we may identify by 2.2.4 (3) as being Φ_q . Thus each q (A_q, Φ_q) is the image of an object under K. If B_q goes to (A_q, Φ_q) under K, then consideration of the action of U and K on the family $(\prod_{q \in Q} B_q \rightarrow B_q; q \in Q)$ of projections, together with the knowledge that ${\tt U}^{\mathcal D}$ creates limits, leads to the conclusion that at least one model of $\prod_{q \in Q} (A_q, \Phi_q)$ is in the image of K. Now since μ_2 is a \mathcal{D} -morphism, it is easy to check that $U^{\mathcal{D}}_{\mu_2} : A^{\prime\prime} \to U \prod_{q \in O} B_q$ is a U,S-suitable monomorphism and hence there is a <u>B</u>-morphism $B_1 \rightarrow \prod_{q \in 0} B_q$ with $U(B_1 \rightarrow \prod_{q \in 0} B_q) = \mu_2$. Clearly, by 2.2.4 (2), $KB_1 = (A'', \Phi'')$. Similarly (A', Φ '), being a subobject of $\prod_{q \in Q} (A_q, \Phi_q)$, is in the image of K. Now since among the maps $\beta_{p} \alpha_{p}$ there is an X-surjection, there is a map $A' \rightarrow A$ which is an X-surjection, and being a \mathcal{D} -morphism from (A', Φ') to (A, Φ) it is U,S-suitable. Hence (A, Φ) is in the image of K. Suppose $KB_1 = KB_2 = (A, \Phi)$. Then since K is full there is a map $\beta : B_1 \rightarrow B_2$ such that $K\beta = 1 : (A, \Phi) \rightarrow (A, \Phi)$. Then $1 : A \rightarrow UB_2$ is a U,S-suitable monomorphism and, since $U(1 : B_2 \rightarrow B_2) = 1$: $A \rightarrow UB_2 = U\beta$, it follows that $B_1 = B_2$.

We still have one point to check, namely that (A', Φ') is

isomorphic to (A'', Φ'') . First, to see that there is a \mathcal{D} -morphism $(A', \Phi') \rightarrow (A'', \Phi'')$ such that $Y_j \xrightarrow{\lambda_1} (A', \Phi') \rightarrow (A'', \Phi'') = \lambda_2$, consider the diagrams:

The outer triangle commutes for each corresponding pair of projections. We can find a \mathcal{D} -morphism f such that the right-hand triangles commute, and so $\mu_2 \cdot \lambda_2 = f \cdot \lambda_1$. The \mathcal{D} -morphism g such that the left-hand triangle commutes, is supplied by 2.1.20 (1).

commuting for each projection, and we could use exactly the same argument as that given above. We will prove that each α (p \in P) does factor through λ_2 .

Let Fj be a free D-algebra generated by nj : $Y_j \rightarrow U^D F_j$, and let ℓ_2 and a_p be D-morphisms such that $\ell_2 \cdot nj = \lambda_2$ and $a_p \cdot nj = \alpha_p$. All we need is that we can factor each a_p through ℓ_2 in \underline{A}^D . By 2.2.9 (1), ℓ_2 is an F^D -surjection and so, since F^D and A^D are in the elaborate situation, by 2.2.14 we need only solve

 $\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$

 $\begin{array}{l} \alpha_{p}.d_{2} : \mbox{Xi}_{1} \rightarrow \mbox{Y}_{j} \rightarrow \mbox{A}_{p} = \mbox{Xi}_{1} \xrightarrow{\mbox{Y}_{j}} \mbox{Y}_{j} \xrightarrow{\mbox{X-surj'n}} \mbox{Xi}_{2} \rightarrow \mbox{A}_{p} \mbox{ for some } i_{2} \in \mbox{I} \ . \end{array}$ The algebra generated by $\mbox{Xi}_{2} \rightarrow (\mbox{A}_{p}, \mbox{\Phi}_{p})$ is easily seen to be $(\mbox{A}_{q}, \mbox{\Phi}_{q})$ for some $q \in \mbox{Q}$ and so $\mbox{Y}_{j} \rightarrow \mbox{Xi}_{2} \rightarrow (\mbox{A}_{p}, \mbox{\Phi}_{p}) = \mbox{Y}_{j} \xrightarrow{\mbox{\alpha}q} \mbox{(A}_{q}, \mbox{\Phi}_{q}) \rightarrow \mbox{(A}_{p}, \mbox{\Phi}_{p}) \ .$ Clearly it follows from this that $\mbox{a}_{p}.\mbox{nj.d}_{2}$ factors through $\mbox{\ell}_{2}.\mbox{nj.d}_{2}.\$

This is sufficient, as we have seen, to supply the map $(A'', \Phi'') \rightarrow (A', \Phi') \ .$

It is now easy, using the fact that λ_1 generates (A', Φ ') and λ_2 generates (A", Φ ") and Theorem 2.1.12, to show that the maps

 $(A'', \Phi'') \rightarrow (A', \Phi')$ and $(A', \Phi') \rightarrow (A'', \Phi'')$ are inverse to each other.

Notice from the proof that the uniqueness parts of conditions (3) and (4) are not both needed; one is superfluous. In fact we can delete both of the uniqueness requirements if we add the condition: (6) $U\beta = 1$ (β in <u>B</u>) implies that $\beta = 1$ in <u>B</u>.

§2.4 Birkhoff's Theorem.

The theorem of G. Birkhoff we are interested in states that a set of algebras is a subvariety of some variety if and only if it is closed under subalgebras, quotient algebras and small products (see [4] Theorem IV.3.1). Now, these conditions are similar to some of the conditions of Theorem 2.3.6, and in fact 2.3.6 is a direct generalization of Birkhoff's Theorem. Our version of Birkhoff's Theorem is in 2.4.4 and 2.4.6.

2.4.1 THEOREM (ES) Consider device \mathcal{D} in \underline{A} for which the maps ni (i \in I) are X-surjective. Then $U^{\mathcal{D}}$ is a full embedding.

PROOF Let (A, Φ) be a \mathcal{D} -algebra. Then given μ : Xi \rightarrow A there is at most one ϕ in \underline{A} (Di,A) such that $\phi.\eta i = \mu$. Hence $\Phi i =$ $\underline{A}(\text{Di,A})$. Clearly if (A_1, Φ_1) is also a \mathcal{D} -algebra, any morphism from A to A_1 is a \mathcal{D} -morphism from (A, Φ) to (A_1, Φ_1) .

2.4.2 DEFINITIONS (ES) (1) A <u>variety</u> V of \mathcal{P} -algebras is the set of all \mathcal{P} -algebras in the image of a functor $U^{\mathcal{P}_1}$, where \mathcal{P}_1 is a device in $\underline{A}^{\mathcal{P}}$ whose object family is $F^{\mathcal{P}}$ and whose maps n_1 i are $F^{\mathcal{P}}$ -surjections. The set V is also called a <u>subvariety</u> of $A^{\mathcal{P}}$.

(2) A subcategory \underline{A}_{1} of \underline{A} is said to be closed under subobjects, quotient objects and small products if the following conditions hold.

(a) If $A \to A_1$ is a monomorphism and $A_1 \in \underline{\underline{A}}_1$ then $A \in \underline{\underline{A}}_1$.

(b) If $A_1 \to A$ is an X-surjection and $A_1 \in \underline{\underline{A}}_1$ then $A \in \underline{\underline{A}}_1$.

(c) If $(A_j; j \in J)$ is a small family of objects of \underline{A}_1 , then $\prod_{j \in J} A_j$ (calculated in \underline{A}) is in \underline{A}_1 .

2.4.3 THEOREM (ES) Let $\underline{\mathbb{A}}_1$ be a full subcategory of $\underline{\mathbb{A}}$. Then the inclusion of the subcategory $\underline{\mathbb{A}}_1$ is strictly isomorphic to $U^{\mathcal{D}}$ for some device \mathcal{D} on X, and each map ni (i \in I) of \mathcal{D} is an X-surjection, if and only if $\underline{\mathbb{A}}_1$ is closed under subobjects, quotient objects and small products in $\underline{\mathbb{A}}$.

PROOF Clearly $\underline{\mathbb{A}}_{1}$ has limits and the inclusion functor preserves them. So we can hope to use Freyd's adjoint functor theorem to obtain a family of universal arrows from X to the inclusion of $\underline{\mathbb{A}}_{1}$. Given any map $A \rightarrow A_{1}$ ($A \in \underline{\mathbb{A}}$, $A_{1} \in \underline{\mathbb{A}}_{1}$), factor it as $A \xrightarrow{X-\operatorname{surj've}} A'_{1} \xrightarrow{\operatorname{monic}} A_{1}$. Then $A'_1 \in \underline{A}_1$, and by BS(5) we can find a small representative set of objects A'_1 formed as above from A. This set is a solution set, and so we have the desired family $S = ((ni : Xi \rightarrow Di , Di); i \in I)$ of universal arrows, with associated device-D. Factor ni as $Xi \xrightarrow{X-surj've} A_1 \xrightarrow{monic} Di$. Then there exists a map $Di \rightarrow A_1$ such that $Xi \rightarrow A_1 = Xi \xrightarrow{ni} Di \rightarrow A_1$. Clearly $Di \rightarrow A_1 \xrightarrow{monic} Di = 1$ and so $A_1 \rightarrow Di$ is an isomorphism and ni is X-surjective. The conditions of Theorem 2.3.6 are now easily seen to be satisfied. The converse implication is not difficult.

2.4.4 COROLLARY (ES) A set V of \mathcal{P} -algebras is a subvariety of A^D if and only if it is closed under subobjects, quotient objects, and small products in $\underline{A}^{\mathcal{D}}$.

Manes [24] has a triple-theoretic version of this theorem.

To complete our treatment of Birkhoff's Theorem we will show that varieties of \mathcal{D} -algebras are sets of \mathcal{D} -algebras defined by "laws".

2.4.5 DEFINITIONS Consider device \mathcal{P} in $\underline{\mathbb{A}}$. A $\underline{\mathcal{P}}$ -law is a pair (α, β) of maps where α and β have common domain in X and common codomain in (Di; i \in I). If α, β : Xi₁ \rightarrow Di₂ we say that (α, β) is an (i_1, i_2) -law. A \mathcal{P} -algebra (\mathbb{A}, Φ) satisfies the (i_1, i_2) -law (α, β) if for every ϕ in Φ i₂ it is true that

2.4.6 THEOREM (ES) A set of \mathcal{D} -algebras is a subvariety of $\underline{\underline{A}}^{\mathcal{D}}$ if and only if it is the set of all \mathcal{D} -algebras satisfying some specified set of \mathcal{D} -laws.

To prove this theorem we need the following concept.

2.4.7 DEFINITIONS A family $(R_j; j \in J)$ of X-congruences, where R_j is a congruence on A_j , is called a <u>fully-invariant family</u> for $(A_j; j \in J)$ if for each $j, j_1 \in J$, each $\mu : A_j \rightarrow A_j$, and each $\alpha, \beta : Xi \rightarrow A_j$ it is a fact that $R_ji(\alpha, \beta)$ implies $R_ji(\mu\alpha, \mu\beta)$. Consider a family $(R^k; k \in K)$ of families of X-congruences for $(A_j; j \in J)$. Then $\bigcap_{\substack{R \\ k \in K}} R^k$ is the family of X-congruences, indexed $k \in K$ by j, defined by $(\bigcap_{\substack{R \\ k \in K}} R^k)_j = \bigcap_{\substack{R \in K \\ k \in K}} (R^k_j)$. Again if $R^1 \cap R^2 = R^1$ we write $R^1 \leq R^2$.

2.4.8 THEOREM The family of X-congruences $\bigcap \mathbf{R}^k$ is fully invariant $\mathbf{k} \in \mathbf{K}$ if each of the families \mathbf{R}^k ($\mathbf{k} \in \mathbf{K}$) is fully invariant.

PROOF Clear.

2.4.9 THEOREM Let \mathcal{D} be a device in <u>A</u>. If a family

 $R_i = (R_i i_1; i_1 \in I)$ of relations is defined by: $R_i i_1(\alpha, \beta)$ if $\alpha, \beta: Xi_1 \rightarrow Xi$ and $\eta i.\alpha = \eta i.\beta$, then $R = (R_i; i \in I)$ is a fully invariant family of X-congruences. Conversely, any fully invariant family of X-congruences for X is obtained in this way from a device. In fact, the device \mathcal{D} may be chosen so that each ηi is an X-surjection.

PROOF Each R_i (i \in I) is clearly an X^{\lambda} congruence. Consider μ : Xi \rightarrow Xi₂ and α , β : Xi₁ \rightarrow Xi. Then $\eta i_2 \cdot \mu = \delta' \cdot \eta i$ for some $\delta' \in \Delta_1$ (i,i₂), and so $\eta i \cdot \alpha = \eta i \cdot \beta$ implies $\eta i_2 \cdot \mu \cdot \alpha = \eta i_2 \cdot \mu \cdot \beta$. Thus $R_i i_1(\alpha, \beta)$ implies $R_{i_2} i_1(\mu \alpha, \mu \beta)$.

Conversely, suppose $(R_i; i \in I)$ is any fully invariant family of X-congruences. Then by ES(4) there are X-surjections $ni : Xi \rightarrow Di$ such that $R_i = R_{ni}$. Define $\Delta(i,i_2)$ to be \underline{A} (Di , Di₂). Then $\mathcal{D} = (n, \Delta)$ so defined is a device. For, consider $\mu : Xi \rightarrow Di_2$. Since ni_2 is an X-surjection, there is a map $\nu : Xi \rightarrow Xi_2$ such that $ni_2 \cdot \nu = \mu$. Now if α , $\beta : Xi_1 \rightarrow Xi$ then $R_i i_1(\alpha, \beta)$ implies $R_{i_2} i_1(\nu \alpha, \nu \beta)$, and hence $ni \cdot \alpha = ni \cdot \beta$ implies that $\mu \alpha = \mu \beta$. By 2.2.6 (1) there is a map $\delta : Di \rightarrow Di_2$ such that $\delta \cdot ni = \mu$.

2.4.10 THEOREM Consider device \mathcal{D} in $\underline{\mathbb{A}}$, and set Λ of \mathcal{D} -laws. There exists a fully invariant family \mathbb{R} of $\mathbb{F}^{\mathcal{D}}$ -congruences for $\mathbb{F}^{\mathcal{D}}$ such that \mathcal{D} -algebra (A, Φ) satisfies the laws in Λ if and only if for all i,i₁ in I and for all pairs of \mathcal{D} -morphisms $\delta_1, \delta_2 : \mathbb{F}^{\mathcal{D}}_{i_1} \to \mathbb{F}^{\mathcal{D}}_{i_1}$ it is true that $R_{i1}(\delta_1, \delta_2)$ implies that $\phi \delta_1 = \phi \delta_2$ for all ϕ in ϕi . Further every fully invariant family of $F^{\mathcal{D}}$ -congruences stands in this relationship to some set of \mathcal{D} -laws.

PROOF Take R to be the intersection of the fully invariant families R' which have the following property: if $(\delta_1 \cdot ni_1, \delta_2 \cdot ni_1)$ is $(i_1, i) - 1$ law in Λ and $\delta_1, \delta_2 \in \Lambda$ (i_1, i) , then $R_1 \cdot i_1 (\delta_1, \delta_2)$. Suppose (A, Φ) satisfies the laws in Λ and consider the relation $R_1''i_1$ on $\underline{A}_1^{\mathcal{D}}(\mathbf{F}^{\mathcal{D}}i_1, \mathbf{F}^{\mathcal{D}}i)$ defined by: $R_1''i_1(\delta_1, \delta_2)$ if $\phi \delta_1 = \phi \delta_2$ for all $\phi \in \Phi i$. Then it is not hard to see that $\mathbf{R}'' = (\mathbf{R}_1''; i \in \mathbf{I})$ is a fully invariant family of $\mathbf{F}^{\mathcal{D}}$ -congruences for $\mathbf{F}^{\mathcal{D}}$. Further $\mathbf{R}'' \geq \mathbf{R}$ since \mathbf{R}'' is one of the families of which R is the intersection. Hence $\mathbf{R}_1 \cdot i_1(\delta_1, \delta_2)$ implies that $\phi \delta_1 = \phi \delta_2$ for all ϕ in Φi . The other implication in the first part is simple.

If R is a fully invariant family of F^{D} -congruences for F^{D} , take the (i_{1},i) -laws in Λ to be the pairs $(\delta_{1}.\eta i_{1},\delta_{2}.\eta i_{1})$ where $R_{i}i_{1}(\delta_{1},\delta_{2})$. The proof of the second part of the theorem is then clear.

2.4.11 PROOF OF 2.4.6 In view of 2.4.9 and 2.4.10 we need only prove the following statement. If \mathcal{D}_1 is a device in $\underline{\mathbb{A}}^{\mathcal{D}}$ which has object family $\mathbf{F}^{\mathcal{D}}$ and whose maps \mathbf{n}_1 i are $\mathbf{F}^{\mathcal{D}}$ -surjections, and if R is the fully invariant family of $\mathbf{F}^{\mathcal{D}}$ -congruences associated with \mathcal{D}_1 ,

then the \mathcal{D} -algebras in the image of $U^{\mathcal{D}_1}$ are precisely those algebras (A, ϕ) for which $R_{i1}(\delta_1, \delta_2)$ implies $\phi \delta_1 = \phi \delta_2$ for all ϕ in ϕi .

Consider an algebra (A, ϕ) in the image of $U^{\mathcal{D}_1}$. Let $R_1 i_1(\delta_1, \delta_2)$; that is $n_1 i.\delta_1 = n_1 i.\delta_2$. Now any ϕ : $F^{\mathcal{D}_1} \rightarrow (A, \phi)$ factors through $n_1 i$; say $\phi = \phi'.n_1 i$. Hence $\phi.\delta_1 = \phi'.n_1 i.\delta_1 = \phi'.n_1 i.\delta_2 = \phi.\delta_2$. Consider an algebra (A, ϕ) for which $R_1 i_1(\delta_1, \delta_2)$ implies $\phi\delta_1 = \phi\delta_2$ for all ϕ in ϕ i. That is $n_1 i.\delta_1 = n_1 i.\delta_2$ implies $\phi\delta_1 = \phi\delta_2$. By 2.2.6 (1) there is a map ϕ' such that $\phi'.n_1 i = \phi$. This is enough to ensure that (A, ϕ) is in the image of $U^{\mathcal{D}_1}$.

CHAPTER III

THE CATEGORY OF DEVICES

The category of devices Dev(A,X) was defined in 1.5.1, as was the corresponding forgetful functor U : $\underline{\text{Dev}}(\underline{A}, X) \rightarrow \underline{A}^{I}$. In this chapter we prove that under certain conditions the functor U is strictly isomorphic to $U^{\mathcal{D}}$ for some device \mathcal{D} in \underline{A}^{I} . Thus devices themselves may be regarded as algebras. In Sets the free devices are devices associated with the anarchic varieties; that is, the varieties of algebras satisfying no non-trivial laws. As we sketched in §0.8, the classical description of variety begins with a description of the anarchic varieties, and then laws Using free devices we are able to mimic this are introduced. procedure, and hence to show that in Sets the categories correspond to conventional varieties. We also discuss Sets devices and their algebras over <u>Sets</u>^I, and using this information we are able to show that the varieties of devices in <u>Sets</u> are the varieties of clones defined by Philip Hall.

§3.1 Devices as algebras.

The first thing we need is an adjoint to the functor $U : \underline{\text{Dev}}(\underline{A}, X) \rightarrow \underline{A}^{I}$, and the first step to providing this is the following theorem. 3.1.1 THEOREM The functor U : $\underline{\text{Dev}}(\underline{A}, X) \rightarrow \underline{A}^{I}$ creates limits.

PROOF Consider a diagram $G : \underline{C} \rightarrow \underline{Dev}(\underline{A}, \underline{X})$. Let $\lambda : D \rightarrow UG$ be a limit of UG in $\underline{A}^{\mathbf{I}}$. If $\mathbf{E}_{\mathbf{i}}$ is the evaluation (at i) functor which takes any functor $L : I \rightarrow A$ to Li, then λ_i : Di $\rightarrow E_i$ UG is a limit in $A = of E_i$ UG. If C is an object of \underline{C} write the image of C under G as $\mathcal{D}_{C} = (n_{C}, \Delta_{C})$. We wish to make the objects Di into a device. Define ni by $\lambda_i C.ni = n_c i$ ($C \in \underline{C}$) and define $\Delta(i, i_1)$ by $\delta \in \Delta(i, i_1)$ if and only if there exist maps $\delta_{C} \in \Delta_{C}(i,i_{1})$ for all $C \in \underline{C}$ such that $\lambda_{i_1}^{C.\delta} = \delta_{C}^{A_i}$. It is clear that if \mathcal{D} so defined is a device, then it is the only device making λ into a device morphism. It is easy to check that, by the properties of limits, ni is well defined, and further that $\Delta(i_1,i_2).\Delta(i_1,i_1) \subseteq \Delta(i_1,i_2)$ for all $i, i_1, i_2 \in I$. Given $v : Xi \rightarrow Di_1$, then for each C in \underline{C} we can solve for $\delta_{C} \in \Delta_{C}(i,i_{1})$ in $\lambda_{i_{1}}C.v = \delta_{C}.\eta_{C}i$. Now if μ is a device morphism from $\mathcal{D}_{\mbox{\scriptsize C}}$ to $\mathcal{D}_{\mbox{\scriptsize C}},$ which is the image under G of a map in C, then I claim that $\delta_{c'}$. $\mu i = \mu i_1 \cdot \delta_c$. Certainly there is a δ'_c , in $\Delta_{C'}(i,i_1)$ such that $\delta'_{C'} \cdot \mu i = \mu i_1 \cdot \delta_{C'}$, and this map has the property that:

$$\delta'_{C'} \circ \eta_{C'} = \delta'_{C'} \circ \mu i \circ \eta_{C'} = \mu i_{1} \cdot \delta_{C} \circ \eta_{C'} = \mu i_{1} \cdot \lambda_{i_{1}} \circ C \cdot \nu = \lambda_{i_{1}} \circ C' \cdot \nu$$

and hence $\delta'_{C'} = \delta_{C'}$. From this property of the maps δ_{C} (C $\epsilon \subseteq$) we immediately derive that $\mu i_{1} \cdot \delta_{C} \cdot \lambda_{i} C = \delta_{C} \cdot \lambda_{i} C'$. Hence there exists a unique $\delta \in \Delta(i,i_1)$ such that $\lambda_{i_1}^{C_0\delta} = \delta_{C_0}^{\lambda_i C} \text{ since } \lambda_{i_1} \text{ is a limit and } (\delta_{C_0}^{\lambda_i C}; C \in \underline{C})$ is a natural transformation from Di to E_{i_1} UG. This δ has the property that $\lambda_{i_1}^{C_0} c_0 n i = \delta_{C_0}^{\Lambda_1} c_0 n i = \delta_{C_0}^{\eta_0} c i = \lambda_{i_1}^{C_0} c_0$ for all C in <u>C</u> and hence $\delta \circ \eta i = v$. The uniqueness of δ in $\Delta(i,i_1)$ with this property is easy. The definition of Δ immediately gives us that $\lambda C = (\lambda_i C; i \in I)$ is a device morphism from \mathcal{D} to \mathcal{D}_{C} , and it is further clear that $\lambda = (\lambda C; C \in \underline{C})$ is natural from \mathcal{D} to G. We would like to show that λ is a limit for G. Consider a natural transformation $\lambda^{\, \prime}$: $\mathcal{D}^{\, \prime}$ \rightarrow G. Then there is at most one device morphism $\mathscr{E} : \mathcal{D}' \to \mathcal{D}$ with $\lambda C \cdot \mathscr{E} = \lambda' C$ for all $C \in \underline{C}$, since if we apply U to this equation we get $\lambda C \cdot \delta = \lambda' C$ for all C in C, and \mathscr{E} is determined by the universal property of λ_{\circ} . If we take \mathscr{E} as determined by this equation $\lambda \cdot \mathscr{E} = \lambda'$, then we need only check that & is a device morphism to see that λ is a limit. First $\lambda_{i}C.\mathcal{E}i.\eta'i = \lambda'_{i}C.\eta'i = \eta_{c}i = \lambda_{i}C.\eta i$ for all C in \underline{C} , and hence $\&i_n i = ni_n$. Secondly, consider $\delta' \in \Delta'(i, i_1)$. Then $\lambda_{i_1} C \cdot \delta_{i_1} \delta' = \lambda'_{i_1} C \cdot \delta' = \delta_{C} \cdot \lambda'_{i_1} C$ for a uniquely determined δ_{C}

in $\Delta_{C}(i,i_{1})$. Again it is easy to check that $(\delta C.\lambda_{i}C; C \in \underline{C})$ is natural from Di to $E_{i_{1}}$ UG, and so there exists a $\delta \in \Delta(i,i_{1})$ with $\lambda_{i_{1}}C.\delta = \delta_{C}.\lambda_{i}C.$ Then $\lambda_{i_{1}}C.\mathscr{E}i_{i}.\delta' = \delta_{C}.\lambda'_{i}C = \delta_{C}.\lambda_{i}C.\mathscr{E}i = \lambda_{i_{1}}C.\delta.\mathscr{E}i$ and hence

we have our result.

3.1.2 THEOREM (BS) The functor $U : \underline{\text{Dev}}(\underline{A}X) \to \underline{A}^{I}$ has a left adjoint.

PROOF Only the solution set condition needs to be checked before we can apply Freyd's theorem to obtain our result. Consider a morphism $\alpha : A \rightarrow D$ in \underline{A}^{I} where D = UD. For each ordinal n we define a map $\alpha_{n} : A_{n} \rightarrow D$ as follows. The map α_{0} is the union of α and η . At limit ordinal n, the map α_{n} is the union of all preceding α_{m} . The map α_{n+1} is the union of α_{n} i and all maps $\delta \cdot \alpha_{n} i_{1}$ where $\delta \in \Delta(i_{1}, i)$ and $\delta \cdot \eta i_{1}$ factors through $\alpha_{n} i$. If τ is the same cardinal as that mentioned in 2.1.13, then we rewrite $\alpha_{\tau} i$ as $\lambda i : D_{1}i \rightarrow Di$. It is clear that ηi factors through $\alpha_{n} i$ and hence through λi ; say $\eta i = \lambda i \cdot \eta_{1} i$. We would like to make D_{1} into a device and we do so by defining $\Delta_{1}(i, i_{1})$ to be all those maps $\delta_{1} : D_{1}i \rightarrow D_{1}i_{1}$ such that $\lambda i_{1} \cdot \delta_{1} = \delta \cdot \lambda i$ for some $\delta \in \Delta(i,i_1)$. We will prove that $\mathcal{D}_1 = (n_1, \Delta_1)$ is a device. Clearly $\Delta_1(i_2,i_3) \cdot \Delta_1(i_1,i_2) \subseteq \Delta_1(i_1,i_3)$ for all $i_1,i_2,i_3 \in I$. Consider any map μ : Xi \rightarrow D₁i₁. Since BS(4) holds and τ is a limit ordinal, μ factors as $Xi \rightarrow \bigcup_{k \in K} (A_k i_1, \alpha_k i_1) \rightarrow D_1 i_1$ where $|K| < \kappa$. Let m be the set-theoretical union of K. Clearly $m < \tau$. If $m \in K$ then it is easy to see that $\bigcup_{k \in K} (A_k i_1, \alpha_k i_1) = A_m i_1 \text{ since all } \alpha_n \quad (n < m) \text{ factor through } \alpha_m.$ If m is not in K then clearly it is a limit ordinal and $\cup (A_k, \alpha_k) = \bigcup (A_n, \alpha_n) = A_m$. In both cases $\lambda i_{1,\mu}$ factors through keK $\alpha_{m}i_{1}$. Let $\lambda i_{1} \cdot \mu = \delta \cdot \eta i$ where $\delta \in \Delta(i, i_{1})$. Then if n is any ordinal with $m \le n < \tau$, from the definition of α_{n+1} we have that $\delta \cdot \alpha_n i$ factors through $\alpha_{n+1} i_1$ and hence through $\alpha_{\tau}i_1 = \lambda i_1$. Further, using Lemma 2.1.9, we see that δ. U (α_n i) = δ.λi factors through λi_1 ; say δ.λi = $\lambda i_1 \cdot \delta_1$. m≤n<τ Clearly $\delta_1 \in \Delta_1(i,i_1)$ and $\lambda i_1 \cdot \delta_1 \cdot \eta_1 i = \lambda i_1 \cdot \mu$. Since λi_1 is monic, $\delta_1 \cdot n_1 i = \mu$. Further it is clear from the definition of Δ_1 that $\lambda : \mathcal{D}_1 \to \mathcal{D}$ is a device morphism.

Now corresponding to $A \in \underline{A}^{\mathbf{I}}$ the various devices $\mathcal{D}_{\underline{1}}$ obtained as above for different maps α with domain A make up a solution set, but not necessarily a small one. However, from our construction and BS(5) it is not hard to see that there is a small representative set of such devices $\mathcal{D}_{\underline{1}}$ and this representative set is a satisfactory solution set, enabling us to use Freyd's theorem to obtain our result.

Now we have two theorems asserting that the functor $U : \underline{\text{Dev}}(\underline{A}, X) \rightarrow \underline{A}^{I}$ arises from a device; one in the basic situation and one in the elaborate situation. The first is

3.1.3 THEOREM (BS) The functor $U : \underline{\text{Dev}}(\underline{A}, X) \rightarrow \underline{A}^{I}$ is tripleable if \underline{A} has finite coproducts.

PROOF We apply our recognition theorem 2.3.4 to Y and $\underline{\mathbb{A}}^{1}$, where the family Y of objects in $\underline{\mathbb{A}}^{I}$ is the set of all objects in $\underline{\mathbb{A}}^{I}$. Then Y-surjections are split epimorphisms. Let F be a left adjoint to U, and consider a map $\lambda : U\mathcal{D}_{1} \rightarrow U\mathcal{D}_{2}$ in $\underline{\mathbb{A}}^{I}$ which has the property that for all device morphisms $FA \rightarrow \mathcal{D}_{1}$ the composite $UFA \rightarrow U\mathcal{D}_{1} \xrightarrow{\lambda} U\mathcal{D}_{2}$ is in the image of U. We can find a device morphism $\nu : FU\mathcal{D}_{1} \rightarrow \mathcal{D}_{1}$ with a right inverse μ in $\underline{\mathbb{A}}^{I}$, namely that corresponding to the identity $U\mathcal{D}_{1} \rightarrow U\mathcal{D}_{1}$ under the adjunction. Write $FU\mathcal{D}_{1} = \mathcal{D}$. To see that λ is a device morphism consider the diagram:

121

If δ is in $\Delta_1(\mathbf{i},\mathbf{i}_1)$ we need a δ' in $\Delta_2(\mathbf{i},\mathbf{i}_1)$ such that the right-hand square commutes. Choose δ'' in $\Delta(\mathbf{i},\mathbf{i}_1)$ such that $\delta'' \cdot \mathbf{n} \mathbf{i} = \mu \mathbf{i}_1 \cdot \delta \cdot \nu \mathbf{i} \cdot \mathbf{n} \mathbf{i} = \mu \mathbf{i}_1 \cdot \delta \cdot \mathbf{n}_1 \mathbf{i}$. Then we have that $\nu \mathbf{i}_1 \cdot \delta'' = \delta_1 \cdot \nu \mathbf{i}$ for some $\delta_1 \epsilon \Delta_1(\mathbf{i},\mathbf{i}_1)$, and so $\delta_1 \cdot \mathbf{n}_1 \mathbf{i} = \delta_1 \cdot \nu \mathbf{i} \cdot \mathbf{n} \mathbf{i} = \nu \mathbf{i}_1 \cdot \mu \mathbf{i}_1 \cdot \delta \cdot \mathbf{n}_1 \mathbf{i} = \delta \cdot \mathbf{n}_1 \mathbf{i}$. Hence $\delta_1 = \delta$ and $\nu \mathbf{i}_1 \cdot \delta'' = \delta \cdot \nu \mathbf{i}$. Now, since $\lambda \nu$ is a device morphism, we have that $\lambda \mathbf{i}_1 \cdot \nu \mathbf{i}_1 \cdot \delta'' = \delta' \cdot \lambda \mathbf{i} \cdot \nu \mathbf{i}$ for some $\delta' \epsilon \Delta_2(\mathbf{i},\mathbf{i}_1)$, and hence

$$\lambda i_1 \cdot \delta = \lambda i_1 \cdot \delta \cdot v i \cdot \mu i = \lambda i_1 \cdot v i_1 \cdot \delta'' \cdot \mu i = \delta' \cdot \lambda i \cdot v i \cdot \mu i = \delta' \cdot \lambda i$$

Further $n_2 \mathbf{i} = \lambda \mathbf{i} \cdot \nu \mathbf{i} \cdot n \mathbf{i} = \lambda \mathbf{i} \cdot n_1 \mathbf{i}$ and hence $\lambda : \mathcal{D}_1 \to \mathcal{D}_2$ is a morphism of devices, and so $\underline{\text{Dev}}(\underline{A}, \mathbf{X})$ is saturated with respect to (FA; $A \in \underline{A}$) and U.

All that remains to be checked is condition (3) of 2.3.4. Consider a U,S-suitable map $\lambda: UD_1 \rightarrow D_2$ in \underline{A}^I (where S is the set of universal arrows associated with the adjunction) and suppose λ has a right inverse λ' . Then we would like to show that $D_2 = UD_2$ for some device D_2 , and $\lambda: D_1 \rightarrow D_2$ is a device morphism. Define n_2 by $n_2i = \lambda i \cdot n_1 i$ and Δ_2 by $\Delta_2(i,i_1) = \lambda i_1 \cdot \Delta_1(i,i_1) \cdot \lambda' i$ ($i,i_1 \in I$). The closure property for devices clearly holds for $D_2 = (n_2, \Delta_2)$ in view of the following fact: if $\delta \in \Delta_1(i,i_1)$ then $\lambda i_1 \cdot \delta \cdot \lambda' i \cdot \lambda i = \lambda i_1 \cdot \delta$. To see this consider the following diagram.

The device \mathcal{P} is FUP_1 and ζ is the canonical map $\mathrm{UP}_1 \rightarrow \mathrm{UFUP}_1$. The map ξ_1 is the device morphism with $\xi_1 \cdot \zeta = 1$, while ξ_2 is the device morphism with $\xi_2 \mathbf{i} \cdot \zeta \mathbf{i} = \lambda' \mathbf{i} \cdot \lambda \mathbf{i}$ (all $\mathbf{i} \in \mathbf{I}$). Define δ' in $\Delta(\mathbf{i}, \mathbf{i}_1)$ by $\delta' \cdot \mathbf{n} \mathbf{i} = \zeta \mathbf{i}_1 \cdot \delta \cdot \mathbf{n}_1 \mathbf{i}$, and define δ_1, δ_2 in $\Delta_1(\mathbf{i}, \mathbf{i}_1)$ by $\xi_1 \mathbf{i}_1 \cdot \delta' = \delta_1 \cdot \xi_1 \mathbf{i}$ and $\xi_2 \mathbf{i}_1 \cdot \delta' = \delta_2 \cdot \xi_2 \mathbf{i}$. Then $\delta \cdot \mathbf{n}_1 \mathbf{i} = \xi_1 \mathbf{i}_1 \cdot \delta' \cdot \mathbf{n} \mathbf{i} = \delta_1 \cdot \xi_1 \mathbf{i} \cdot \mathbf{n} \mathbf{i} = \delta_1 \cdot \mathbf{n}_1 \mathbf{i}$ and so $\delta_1 = \delta$. Further, since $\lambda \mathbf{i} \cdot \lambda' \mathbf{i} \cdot \lambda \mathbf{i} = \lambda \mathbf{i}_1 \cdot \xi_2 \mathbf{i}_1 \cdot \delta' = \lambda \mathbf{i}_1 \cdot \delta_2 \cdot \xi_2 \mathbf{i}$. Hence

$$\lambda \mathbf{i}_{1} \cdot \delta = \lambda \mathbf{i}_{1} \cdot \delta \cdot \xi_{1} \mathbf{i} \cdot \zeta \mathbf{i} = \lambda \mathbf{i}_{1} \cdot \delta_{2} \cdot \xi_{2} \mathbf{i} \cdot \zeta \mathbf{i} = \lambda \mathbf{i}_{1} \cdot \delta_{2} \lambda' \mathbf{i} \cdot \lambda \mathbf{i}.$$

So $\lambda i_1 \cdot \delta \cdot \xi_1 i = \lambda i_1 \cdot \delta_2 \cdot \lambda' i \cdot \lambda i \cdot \xi_1 i = \lambda i_1 \cdot \delta_2 \cdot \lambda' i \cdot \lambda i \cdot \xi_2 i = \lambda i_1 \cdot \delta \cdot \xi_2 i$.

Finally $\lambda i_1 \cdot \delta = \lambda i_1 \cdot \delta \cdot \xi_1 i \cdot \zeta i = \lambda i_1 \cdot \delta \cdot \xi_2 i \cdot \zeta i = \lambda i_1 \cdot \delta \cdot \lambda' i \cdot \lambda i$ as we required.

We can now continue to check that \mathcal{D}_2 is a device. Consider μ : Xi $\rightarrow D_2i_1$. Then $\lambda'i_1 \cdot \mu = \delta \cdot n_1i$ for some $\delta \in \Delta_1(i,i_1)$ and hence $\lambda i_1 \cdot \delta \cdot \lambda' i \cdot n_2i = \lambda i_1 \cdot \delta \cdot \lambda' i \cdot \lambda i \cdot n_1i =$ $\lambda i_1 \cdot \delta \cdot n_1i = \mu$. To check the uniqueness part of the universality condition, suppose $\lambda i_1 \cdot \delta_1 \cdot \lambda' i \cdot n_2i = \lambda i_1 \cdot \delta_2 \cdot \lambda' i \cdot n_2i$ where $\delta_1, \delta_2 \in \Delta_1(i,i_1)$. Then $\lambda i_1 \cdot \delta_1 \cdot n_1i = \lambda i_1 \cdot \delta_2 \cdot n_1i$. Consider the following diagram when $i \neq i_1$:

The device \mathcal{D} is FA where Ai₁ = Xi and Ai₂ = D₁i₂ for all other i₂ in I. Again ζ is the canonical map $\zeta : A \rightarrow UFA$. If we define $\alpha_1, \alpha_2 : A \rightarrow D_1$ by $\alpha_k i_1 = \delta_k \cdot n_1 i$ (k = 1, 2) and $\alpha_k i_2 = 1$ for any other i₂ in I, then ξ_1, ξ_2 are the device morphisms defined by $\xi_k \cdot \zeta = \alpha_k$ (k = 1,2). Then since $\lambda \cdot \xi_1 \cdot \zeta = \lambda \cdot \xi_2 \cdot \zeta$ it follows that $\lambda \cdot \xi_1 = \lambda \cdot \xi_2$. Define δ in $\Delta(i, i_1)$ by $\delta \cdot ni = \zeta i$, and define
$$\begin{split} \delta'_{1}, \delta'_{2} & \operatorname{in} \Delta_{1}(i_{1}, i_{2}) \quad \text{by} \quad \xi_{k} i_{1}, \delta = \delta'_{k}, \xi_{k} i \quad (k = 1, 2). \end{split}$$
Then $\delta'_{k}, n_{1}i = \delta'_{k}, \xi_{k}i, ni = \xi_{k}i_{1}, \delta, ni = \xi_{k}i_{1}, \zeta_{1} = \delta_{k}, n_{1}i$ and hence $\delta'_{k} = \delta_{k}$ (k = 1, 2). Hence $\lambda i_{1}, \delta_{1} = \lambda i_{1}, \xi_{1}i, \zeta_{1} = \lambda i_{1}, \xi_{1}i, \zeta_{1} = \lambda i_{1}, \xi_{1}i, \delta, \zeta_{1} = \lambda i_{1}, \xi_{2}i, \delta, \zeta_{1} = \lambda i_{1}, \delta_{2},$ and so $\lambda i_{1}, \delta_{1}, \lambda'i = \lambda i_{1}, \delta_{2}, \lambda'i$. When $i = i_{1}$ we need a
different proof. Let $r_{1}: D_{1}i \neq Z, r_{2}: Xi \neq Z$ be the
canonical maps of the coproduct of $D_{1}i$ and Xi. Then there are
maps $q_{1}i, q_{2}i: Z \neq D_{1}i$ with the following properties: $q_{1}i.r_{1} = 1, q_{1}i.r_{2} = \delta_{1}, n_{1}i, q_{2}i.r_{1} = 1, q_{2}i.r_{2} = \delta_{2}, n_{1}i.$ Consider the diagram:

The device \mathcal{D} is FA where Ai = Z and Ai₂ = D₁i₂ for all other i₂ in I. Again ζ is the canonical map A \rightarrow UFA. If q_k (k = 1,2) are defined as above at i, and elsewhere as 1, then ξ_k (k = 1,2) are the device morphisms determined by $\xi_{k} \cdot \zeta = q_{k} \cdot The map \delta$ in $\Delta(i,i)$ satisfies $\delta \cdot ni = \zeta i \cdot r_2 \cdot Define \delta'_1, \delta'_2$ in $\Delta_1(i,i)$ by $\delta'_k \cdot \xi_k i = \xi_k i \cdot \delta$ (k = 1,2). Then $\delta'_{k} \cdot n_{1}i = \delta'_{k} \cdot \xi_{k}i \cdot ni = \xi_{k}i \cdot \delta \cdot ni = \xi_{k}i \cdot \zeta i \cdot r_{2} = q_{k}i \cdot r_{2}$ = $\delta_{k} \cdot n_{1}i$. Hence $\delta_{k} = \delta'_{k}$ (k = 1,2). Since $\lambda i \cdot \xi_{1}i \cdot \zeta i = \lambda i \cdot \xi_{2}i \cdot \zeta i$ we must have $\lambda i \cdot \xi_{1}i = \lambda i \cdot \xi_{2}i$ and hence $\lambda i \cdot \delta_{1} = \lambda i \cdot \delta_{1} \cdot \xi_{1}i \cdot \zeta i \cdot r_{1} = \lambda i \cdot \xi_{1}i \cdot \delta \cdot \zeta i \cdot r_{1} =$ $\lambda i \cdot \xi_{2}i \cdot \delta \cdot \zeta i \cdot r_{1} = \lambda i \cdot \delta_{2} \cdot \xi_{2}i \cdot \zeta i \cdot r_{1} = \lambda i \cdot \delta_{2}$, as required.

We have shown that $\lambda : \mathcal{D}_1 \to \mathcal{D}_2$ is a device morphism which under U becomes $\lambda : U\mathcal{D}_1 \to D_2$. The uniqueness of the device \mathcal{D}_2 with this property is fairly clear. The maps $\lambda i_1 \cdot \delta \cdot \lambda' i$ with δ in $\Delta_1(i,i_1)$ must be in $\Delta_2(i,i_1)$ and we have shown that they suffice.

Next we give a theorem giving the more precise information available in the elaborate situation.

3.1.4 THEOREM (ES) Let J be all functions from I to I and let Z = (Zj; j ε J) be the family of objects of \underline{A}^{I} with Zj(i) = X(ji). Suppose \underline{A} contains an initial object 0 which is in X and to each pair Xi,Xi₁ of objects in X there is a model of their coproduct in X. Then U : $\underline{\text{Dev}}(\underline{A}, X) \rightarrow \underline{A}^{I}$ is strictly isomorphic to U^D for some device D with family of objects Z. PROOF We intend to use recognition theorem 2.3.6. As we remarked in 2.2.24, Z and \underline{A}^{I} are in the elaborate situation. The functor U : $\underline{\text{Dev}}(\underline{A}, X) \rightarrow \underline{A}^{I}$ has a left adjoint and hence there exists a family S = $((nj : Zj \rightarrow UFj,Fj); j \in J)$ of universal arrows from Z to U. To see that $\underline{\text{Dev}}(\underline{A}, X)$ is saturated with respect to (Fj; $j \in J$) and U, consider a morphism $\lambda : UD_1 \rightarrow UD_2$ in \underline{A}^{I} , and suppose that if $\xi : Fj \rightarrow D_1$ is a device morphism then $\lambda \xi$ is a device morphism. We want to show that for any δ_1 in $\Delta_1(i,i_1)$ there exists a δ_2 in $\Delta_2(i,i_1)$ such that $\lambda i_1 \cdot \delta_1 = \delta_2 \cdot \lambda i$. Assume first that $i \neq i_T$ We will show that δ_2 defined by $\delta_2 \cdot n_2 i = \lambda i_1 \cdot \delta_1 \cdot n_1 i$ has this property. Consider the diagram:

Since X is a generating set in \underline{A} it is sufficient to show for any map τ_1 with domain X_1 in X and codomain D_1 i that $\lambda i_1 \cdot \delta_1 \cdot \tau_1 = \delta_2 \cdot \lambda i \cdot \tau_1$. Now we form the free device $\mathcal{D} = Fj$ where $Zj(i) = X_1$, $Zj(i_1) = Xi$ and $Zj(i_2) = 0$ for all other $i_2 \in I$. The device morphism ξ is defined by $\xi\zeta = \tau$ where $\tau i = \tau_1, \tau i_1 = \delta_1 \cdot \eta_1 i$ and $\tau i_2 = 0$ for other $i_2 \in I$. The map δ in $\Delta(i,i_1)$ is defined by $\delta \cdot \eta i = \zeta i_1$. Then if $\xi i_1 \cdot \delta = \delta' \cdot \xi i$ we have

$$δ' \cdot n_1 i = δ' \cdot \xi i \cdot n i = \xi i_1 \cdot \delta \cdot n i = \xi i_1 \cdot \zeta i_1 = \delta_1 \cdot n_1 i_1$$

and so $\delta' = \delta_1$. Since $\lambda \xi$ is a device morphism, for some δ'' in $\Delta_2(\mathbf{i}, \mathbf{i}_1)$ we have $\lambda \mathbf{i}_1 \cdot \xi \mathbf{i}_1 \cdot \delta = \delta'' \cdot \lambda \mathbf{i} \cdot \xi \mathbf{i}$. But then $\lambda \mathbf{i}_1 \cdot \delta_1 \cdot \eta_1 \mathbf{i} = \lambda \mathbf{i}_1 \cdot \xi \mathbf{i}_1 \cdot \delta \cdot \eta \mathbf{i} = \delta'' \cdot \lambda \mathbf{i} \cdot \xi \mathbf{i} \cdot \eta \mathbf{i} = \delta'' \cdot \eta_2 \mathbf{i}$ and so $\delta'' = \delta_2$. Finally $\lambda \mathbf{i}_1 \cdot \delta_1 \cdot \tau_1 = \lambda \mathbf{i}_1 \cdot \xi \mathbf{i}_1 \cdot \delta \cdot \zeta \mathbf{i} = \delta_2 \cdot \lambda \mathbf{i} \cdot \xi \mathbf{i} \cdot \zeta \mathbf{i} = \delta_2 \cdot \lambda \mathbf{i} \cdot \tau_1$ as desired. If $\mathbf{i} = \mathbf{i}_1$ we have to vary the argument as we did in the proof of 3.1.3. Instead of taking the free device as indicated we find a map $\nu : X_3 \rightarrow D_1 \mathbf{i}$ (with X_3 in X) through which both τ_1 and $\delta_1 \cdot \eta_1 \mathbf{i}$ factor. Then we form the free device on A_1 where $A_1 \mathbf{i} = X_3$ and $A_1 \mathbf{i}' = 0$ for other $\mathbf{i}' \in \mathbf{I}$. It is not hard to see that the above argument can be modified in this way to yield again the desired result.

To check condition (3) of 2.3.6 consider a Z-surjection $\lambda : UD_1 \rightarrow D_2$ of the type considered in that condition where D_2 is not known to be in the image of U. To make D_2 into a device let $\Delta_2(\mathbf{i},\mathbf{i}_1)$ be all the maps δ_2 such that there exists a δ_1 in $\Delta_1(\mathbf{i},\mathbf{i}_1)$ with $\lambda \mathbf{i}_1 \cdot \delta_1 = \delta_2 \cdot \lambda \mathbf{i}$, and put $n_2 = \lambda n_1$. First we check that to each δ_1 in $\Delta(\mathbf{i},\mathbf{i}_1)$ there is such a δ_2 . By 2.2.6(1) this will follow if to each pair of maps t,t' with common domain X' in X and with codomain D_1 i we have that $\lambda i.t = \lambda i.t'$ implies that $\lambda i_1 \cdot \delta_1 \cdot t = \lambda i_1 \cdot \delta_1 \cdot t'$. Now assume $i \neq i_1$ and $\lambda i.t = \lambda i.t'$, and consider $\mathcal{D}' = FA'$ where A'i = X', $A'i_1 = Xi$ and A' is trivial elsewhere. We define device morphisms ξ_1, ξ_2 by $\xi_k, \zeta' = t_k$ (k = 1,2) where $t_1 i = t, t_1 i_1 = \delta_1 \cdot n_1 i, t_2 i = t', t_2 i_1 = \delta_1 \cdot n_1 i$ and both t_1 and t_2 are trivial elsewhere. Then again if we define δ in $\Delta(i,i_1)$ by $\delta.ni = \zeta'i_1$ it follows that $\xi_k i_1 \cdot \delta = \delta_1 \cdot \xi_k i$ (k = 1,2). Now since $\lambda \cdot \xi_1 \cdot \zeta' = \lambda \cdot \xi_2 \cdot \zeta'$ we have that $\lambda \cdot \xi_1 = \lambda \cdot \xi_2$. Thus $\lambda i_1 \cdot \delta_1 \cdot t = \lambda i_1 \cdot \xi_1 i_1 \cdot \delta \cdot \zeta' i =$ $\lambda i_1 \cdot \xi_2 i_1 \cdot \delta \cdot \zeta' i = \lambda i_1 \cdot \delta_2 \cdot t'$ as required. If $i \neq i_1$ we can modify this proof.

Now it is clear that $\Delta_2(i_1,i_2)\cdot\Delta_2(i,i_1) \leq \Delta_2(i,i_2)$. Further, given μ : Xi $\neq D_2i_1$, we can factor μ as $\lambda i_1 \cdot \mu'$ since λi_1 is X-surjective, and we can solve $\delta_1 \cdot n_1 i = \mu'$. Hence since $\lambda i_1 \cdot \delta_1 = \delta_2 \cdot \lambda i$ for some δ_2 in $\Delta_2(i,i_1)$ we have $\delta_2 \cdot n_2 i = \delta_2 \cdot \lambda i \cdot n_1 i = \lambda i_1 \cdot \delta_1 \cdot n_1 i = \mu$. The uniqueness part of the universality condition requires another argument using U,Ssuitability similar to those given above. Hence (n_2, Δ_2) is a device and $\lambda : D_1 \neq D_2$ is a device morphism. It is easy to see that (n_2, Δ_2) is the unique device on D_2 making λ a device morphism.

Finally we have to check condition (4) of 2.3.6. Suppose λ : $D_1 \rightarrow UD_2$ is a U,S-suitable monomorphism. We define Δ_1 by $\delta_1 \in \Delta_1(\mathbf{i}, \mathbf{i}_1)$ if $\lambda \mathbf{i}_1 \cdot \delta_1 \subseteq \Delta_2(\mathbf{i}, \mathbf{i}_1) \cdot \lambda \mathbf{i}$. We define n_1 by $\lambda i \cdot n_1 i = n_2 i$. To see that such an n_1 exists, notice that the free device on A_{\star} , where $A_{\star}i = 0$ for all $i \in I$, is (n_*, Δ_*) where $n_* i = 1 : Xi \rightarrow Xi$ and $\Delta_*(i, i_1) = \underline{A}(Xi, Xi_1)$. Then $0 \rightarrow D_2 i$ factors through λi for each $i \in I$ and hence, by U,S-suitability, so does n_2i . The only difficulty in showing that $\mathcal{D}_1 = (n_1, \Delta_1)$ is a device lies in the universality condition. Given $\mu: Xi \rightarrow D_1i_1$ we can solve $\delta_2 \cdot n_2i = \lambda i_1 \cdot \mu$ for δ_2 in $\Delta_2(i,i_1)$. Now assume $i \neq i_1$, and to each $k \in I$ form the free device $\mathcal{D}^* = \mathcal{D}^*_{L_r}$ on A^* where $A^*i = Xk$, $A^*i_1 = Xi$ and A^* is trivial elsewhere. To each τ : $Xk \rightarrow D_1i$ let $\xi^* = \xi^*_{\tau}$ be the device morphism such that $\xi \star \zeta \star = v$ where $vi = \lambda i \cdot \tau$ and $vi_1 = \lambda i_1 \cdot \mu$. Define δ in $\Delta^*(i,i_1)$ by $\delta \cdot \eta^* i = \zeta^* i_1$. Then if $\xi^* i_r \delta = \delta'_2 \cdot \xi^* i_r$ we have $\delta'_{2} \cdot \eta_{2} \mathbf{i} = \xi^{*} \mathbf{i}_{1} \cdot \delta \cdot \eta \mathbf{i} = \xi^{*} \mathbf{i}_{1} \cdot \zeta^{*} \mathbf{i}_{1} = \lambda \mathbf{i}_{1} \cdot \mu = \delta_{2} \cdot \eta_{2} \mathbf{i}$ and hence $\xi * i_1 \cdot \delta = \delta_2 \cdot \xi * i_0$. Now since v factors through λ , by U,S-suitability so does ξ^* ; say $\xi^* = \lambda \lambda^*$. Then we can define a function $f_k : \underline{A}(X_k, D_1i) \rightarrow \underline{A}(X_k, D_1i_1)$ by taking $f_k \tau = \lambda * i_1 \cdot \delta \cdot \zeta * i$. If we can apply adequacy to the functions f_k (k ε I) then there exists a map δ_1 : $D_1 i \rightarrow D_1 i_1$ such that $\delta_1 \tau = \lambda * i_1 \cdot \delta \cdot \zeta * i$ for each τ and corresponding $\lambda *, \zeta *$. Hence $\lambda i_1 \cdot \delta_1 \tau = \xi * i_1 \cdot \delta_2 \cdot \xi * i_2 \cdot \xi * i_$ cancel τ to get $\lambda i_1 \cdot \delta_1 = \delta_2 \cdot \lambda i$. Further $\lambda i_1 \cdot \delta_1 \cdot n_1 i =$

 $\delta_{2} \cdot n_{2}i = \lambda i_{1} \cdot \mu$ and since λi_{1} is monic we have $\delta_{1} \cdot n_{1}i = \mu$. So we have to prove for each &: $Xk_{1} \rightarrow Xk$ that $(f_{k}\tau) \cdot \& = f_{k_{1}}(\tau\&)$. I omit this proof, as well as the proof when $i = i_{1}$. It is clear that Δ_{1} , as we have defined it, is the only possible way of making D_{1} into a device so that λ becomes a device morphism.

3.1.5 REMARKS It is clear from 2.2.24 how to find many examples where the conditions of Theorem 3.1.4 apply. An example of a family of objects in a category satisfying the conditions of 3.1.3 but not necessarily of 3.1.4 is any small family in P(Y) (see 1.1.8).

Before we leave the elaborate situation for the concrete theorems of §3.2 we note some topics of interest not developed in this thesis.

One of the things suggested by the fact that devices are algebras is the possibility of classifying devices by the laws they satisfy. In <u>Sets</u> there are existing results in this direction; see for example [17].

Given any device morphism $\lambda : \mathcal{D}_1 \to \mathcal{D}_2$ there are interesting morphisms from \mathcal{D}_1 -algebras to \mathcal{D}_2 -algebras defined as follows: $\alpha : A_1 \to A_2$ is a λ -morphism from (A_1, Φ_1) to (A_2, Φ_2) if for all i ε I we have $\alpha \cdot \Phi_1 i \subseteq \Phi_2 i \cdot \lambda i$. One can treat isotopy in the theory of loops [3] in terms of these types of morphisms. In this connection it is of interest that $\underline{\text{Dev}}(\underline{A}, X)$ can be made into a 2-category via the isomorphism $\underline{\text{Dev}}(\underline{A}, X) \cong (\underline{\text{Alg}}(\underline{A}, X))^{\text{op}}$. 3.1.6 COUNTEREXAMPLES To indicate the limitations of 3.1.3 and 3.1.4 we give two counterexamples.

It is not true that the category Triples of triples (1)over <u>Sets</u> is tripleable over <u>Sets</u> where S = obj <u>Sets</u>. In fact the functor U : <u>Triples</u> \rightarrow <u>Sets</u> does not even have a left For suppose F is a left adjoint to U and consider adjoint. FW where WS = 1 (a singleton) for each set S. Consider small ordinal n. Let \mathcal{T}_n be the triple corresponding to the category of all Ω -algebras, where Ω has one operation of each Using the operational interpretation of device arity mεn. morphism (1.6.3) one can show that for each n there is a triple morphism $\lambda_n : FW \rightarrow T_n$ where each component $\lambda_n S$ (S ε S) is a surjection. But $|T_n|$ increases unboundedly as n increases through the small ordinals, and is FW^1 cannot be a small set.

(2) It is not hard to see that U from the category of full devices in <u>Finite Sets</u> to <u>Finite Sets</u> also does not have a left adjoint. We can prove this by showing that to any finite ordinal n there is a triple T in <u>Finite Sets</u> which is "generated" by a single unary operation and which has |T1| > n.

§3.2 Devices and algebras in <u>Sets</u>ⁿ.

By <u>Sets</u>ⁿ we mean the functor category where n is a small set. We first discuss the free devices in <u>Sets</u>ⁿ and their algebras

132

To do this we need an extension due to P.J. Higgins [11] of the conventional notion of algebra. (Our presentation of the extended notion is rather different from that of Higgins.)

Proofs in this section are sometimes omitted or only sketched.

3.2.1 DEFINITIONS Consider a small set n fixed throughout the following discussion. A <u>formal</u> n-<u>operation</u> is a set ω together with an n-tuple of sets a wwhich called the <u>arity</u> of ω and a specified element $r\omega$ in n called the <u>target</u> of ω . Let Ω be a small set of formal n-operations. Then an Ω -algebra <u>A</u> is an n-tuple of sets $A = (A_m; m \in n)$ and to each ω in Ω an n-<u>operation</u> $\omega_A : \underline{Sets}^n(a\omega, A) \rightarrow A_{r\omega}$.

A <u>homomorphism</u> from <u>A</u> to <u>B</u> is a morphism $\lambda : A \rightarrow B$ in <u>Sets</u>ⁿ such that $\lambda \cdot \omega_{\underline{A}}(\mu) = \omega_{\underline{B}}(\lambda\mu)$ for all $\mu \in \underline{Sets}^n(a\omega, A)$. Again we name the category of Ω -algebras and homomorphisms $\underline{\Omega}$ -Alg, and it is clear that by taking n to be a singleton we get the conventional notions as a special case.

It is straightforward to extend many of the results of conventional universal algebra to this new situation. In the next section we describe the free algebras in Ω -Alg.

3.2.2 CONSTRUCTION Consider an object Y in <u>Sets</u>¹¹. Then the free algebra in <u> Ω -Alg</u> on Y may be defined as follows. For each small ordinal k define sets D_k^m (m ε n) by the following requirements. (1) $D_0^m = Y_m^{-1}$.

(2) At limit ordinals D_k^{m} is the union of all previous D_k^{m} .

(3) If μ is the graph of a morphism from $a\omega$ to D_k then the formal symbol $\omega[\mu]$ belongs to $D_{k+1}m$ whenever $r\omega = m$.

For sufficiently large small ordinals k the sets D_k^m (m ε n) become simultaneously stationary, and it is the stationary value of D_k^m that we name Dm. For convenience if μ is the graph of a morphism which occurs in construction of $D = (Dm; m \varepsilon n)$ we attach to it the codomain D to make it a morphism in <u>Sets</u>ⁿ. The canonical map $\eta : Y \rightarrow D$ is just the inclusion map.

Then D is the carrier of the free algebra F generated by n if we define the operations of F by: $\omega_{\rm F}(\mu) = \omega[\mu]$ $(\mu : a\omega \rightarrow D)$.

We can define the length of an element in Dm as the least ordinal k for which the element is in D_km . Many of our proofs are by induction on the length of an element.

3.2.3 THEOREM The obvious forgetful functor $U : \underline{\Omega} - \underline{Alg} \rightarrow \underline{Sets}^n$ (where Ω is a set of formal n-operations) is strictly isomorphic to $U^{\mathcal{D}} : \underline{A}^{\mathcal{D}} \rightarrow \underline{A}$ for some device \mathcal{D} in $\underline{Sets}^n = \underline{A}$.

PROOF Let X be a small family of sets containing the empty set and, to each $\omega \in \Omega$, $m \in n$, a set with cardinality greater than the cardinality of $a \omega(m)$. Further, suppose X satisfies the conditions described in 2.2.24. Let $Y = (Yj; j \in I^n)$ be the family of objects in <u>Sets</u>ⁿ defined in terms of X as in 2.2.24. Let Fj be the free algebra generated by nj : Yj \rightarrow Dj as described in 3.2.2. Then the device \mathcal{P} obtained from the universal arrows ((nj,Fj); j $\in I^n$) has the property stated in the theorem. To prove this we use our recognition theorem 2.3.6. Condition (2) is an immediate consequence of the definition of homomorphism. Condition (3) follows from the fact that congruences determine quotient algebras, and condition (4) from the fact that subsets closed under the operations determine subalgebras. It is clear how to construct products.

3.2.4 THEOREM Let Y and Ω be two functors from I to <u>Sets</u>ⁿ. Then a free device in <u>Dev(Sets</u>ⁿ,Y) on Ω may be described as follows. Make Ω into a set of formal n-operations by specifying that $a\omega = Yi$ if $\omega \in \Omega i$, and $r\omega = m$ if $\omega \in \Omega i(m)$. Then the free device \mathcal{D} is the device associated with the universal arrows from Y to U: Ω -Alg \rightarrow Setsⁿ. The canonical map $\zeta : \Omega \rightarrow D$ is defined by $\zeta i(m) : \omega \longrightarrow \omega [ni]$.

PROOF Let \mathcal{D}_1 be any device in $\underline{\text{Dev}}(\underline{\text{Sets}}^n, Y)$. We wish to show that for any map $\alpha : \Omega \to D_1$ there is a unique device morphism $\lambda : \mathcal{D} \to \mathcal{D}_1$ such that $U\alpha.\zeta = \alpha$. This can be accomplished by

135

considering the operational description of device morphism given in 1.6.3. Take as a base of operations the n objects $Z = \{Zm; m \in n\}$ of <u>Sets</u>ⁿ defined by $Zm(m) = \{\emptyset\}$, $Zm(m_1) = \emptyset$ if $m_1 \neq m$. Then the elements of the sets Di(m) become formal operations in the sense of §1.6. Further, if $\omega \in \Omega i(m)$ and $\mu : Yi \rightarrow Di_1$ and Fi₁ is $F^D i_1$ then $(\omega[ni])_{Fi_1}(\mu) = \omega[\mu]$, again in the sense of §1.6. Now by 1.6.3 the maps λi must have the following two properties: $\lambda i(m) : y \rightsquigarrow n_1 i(m)(y)$ ($y \in Yi(m)$) and $\lambda i(m) : \omega[\mu] \rightsquigarrow (\alpha i_1(m)(\omega))_{F_1 i}$ ($\lambda i.\mu$) if $\mu : Yi_1 \rightarrow D_1 i$, $\omega \in \Omega i_1(m)$ and $F_1 i = F^D i$. These two conditions clearly determine a unique family (λi ; $i \in I$) of maps from D to D₁, with the property that $\lambda.\zeta = \alpha$. To see that the operational conditions of 1.6.3 are satisfied by this λ requires an induction argument which we omit.

With this information about free devices in <u>Sets</u> we can now discuss, using §2.4, the algebras of small devices in <u>Sets</u>.

3.2.5 THEOREM Let \mathcal{D} be a device with a small family of objects in <u>Sets</u>. Then there is a conventional variety of algebras \underline{V} such that the forgetful functor $U : Cat(\underline{V}) \rightarrow \underline{Sets}$ is strictly isomorphic to $U^{\mathcal{D}}$. Further, the forgetful functor of any conventional variety is strictly isomorphic to $U^{\mathcal{D}}$ for some such device \mathcal{D} . PROOF Consider small device \mathcal{D} . Make an inessential enlargement \mathcal{D}_1 of \mathcal{D} using 2.1.16 and 1.3.2 so that X_1 satisfies the conditions for X described in 2.2.24. Then there is a device morphism $\lambda : \mathcal{D}^* \to \mathcal{D}_1$ from the free device \mathcal{D}^* on $\Omega = (\mathcal{D}_1 \mathbf{i}_1; \mathbf{i}_1 \in \mathbf{I}_1)$, and each $\lambda \mathbf{i}_1$ ($\mathbf{i}_1 \in \mathbf{I}_1$) is a surjection. Now, by 1.5.4 and 1.5.5 there is a device \mathcal{D}_2 in <u>Sets</u> \mathcal{D}^* with $\mathbf{n}_2 = \lambda$ and \mathcal{U}_1 is strictly isomorphic to $\mathcal{U}^{\mathcal{D}^*, \mathcal{U}_2}$. By 2.4.1 the functor \mathcal{U}^3 is a full embedding, and so \mathcal{U}^1 is strictly isomorphic to $\mathcal{U}^{\mathcal{D}^*}|\underline{A}_1$ where \underline{A}_1 is the image of \mathcal{U}^3 . Now $\mathcal{U}^{\mathcal{D}^*}$ is strictly isomorphic to $\mathcal{U}: \underline{\Omega}-\underline{Alg} \to \underline{Sets}$ for some Ω and we have seen in 2.4.6 that such categories \underline{A}_1 consist of all algebras in $\underline{A}^{\mathcal{D}^*}$ satisfying certain "laws". These "laws" are not quite the conventional laws described in §0.8, but it is easy to see that the difference is immaterial.

In the other direction consider a variety \underline{V} defined in terms of operations Ω and laws Λ . Let I be a set including the arities of the operations in Ω , the lengths of the laws in Λ , and satisfying the conditions on X described in 2.2.24. Then Ω may be regarded as a family $\Omega = (\Omega i; i \in I)$ where $\omega \in \Omega i$ if $a\omega = i$. Form the free device \mathcal{D}^* on Ω in <u>Dev(Sets</u>, I). Let \mathcal{D}_1 be the quotient device of \mathcal{D}^* determined by laws Λ . Then clearly $U^{\mathcal{D}_1}$ is strictly isomorphic to $U: Cat(\underline{V}) + Sets$. Notice that different "presentations" of a device in terms of a free device and laws yield different interpretations of the algebras. Our theorem is inadequate in that it does not show that all presentations yield interpretations.

Almost all the results in this thesis concern small devices. However the next two results are devoted to showing that any device in <u>Sets</u> is equivalent to a triple.

3.2.6 THEOREM Suppose BS(2) and BS(3) hold for X and \underline{A} , and let \mathcal{D} be a device with object family X. Suppose further that $I_1 \supseteq I$ and there is a family X_1 of objects in \underline{A} indexed by I_1 such that to each $i_1 \in I_1$ there is an $i \in I$ and a split epimorphism $Xi \to Xi_1$. Then there is a device \mathcal{D}_1 on X_1 such that $\mathcal{D}_1 | I$ is equivalent to \mathcal{D} .

PROOF For each i_1 in I_1 define $n_1i_1 : X_1i_1 \rightarrow D_1i_1$ as follows. Choose a pair of maps $\alpha : Xi \rightarrow X_1i_1$ and $\beta : X_1i_1 \rightarrow Xi$ with $\alpha\beta = 1$. If $i_1 \stackrel{\alpha}{\in} I$ take α and β to be 1. Let $ni.\beta$ factor as $X_1i_1 \xrightarrow{n_1i_1} P_1i_1 \xrightarrow{D_1\beta} F^p_1$ where $ni.\beta$ generates $D_1\beta : F^1i_1 \rightarrow F^p_1$. When $i_1 \in I$ take $D_1\beta$ to be 1. Define Δ_1 by $\Delta_1(i_1,i_2) = \underline{A}_2^p(F^p_1,F^1i_2).D_1\beta$. We want to show that D_1 so defined is a device. Clearly then $D_1 | I = D$ and we can apply Theorem 1.3.4 to obtain the desired result. The closure property is immediate. Consider $\mu : Xi_1 \rightarrow D_1i_2$. Let ϕ be the map $\underline{A}^{\mathcal{D}}(\mathbf{F}^{\mathcal{D}}\mathbf{i}, \mathbf{F}^{\mathcal{D}}\mathbf{i}_2)$ such that $\phi.\eta\mathbf{i} = \mu\alpha$. Then $\phi.D_1\beta.\eta_1\mathbf{i}_1 = \phi.\eta\mathbf{i}_0\beta = \mu\alpha\beta = \mu$. The uniqueness part of the universality condition follows

from 2.1.12 and the fact n_1i_1 generates F_{i_1} .

3.2.7 THEOREM Let \mathcal{D} be a device in <u>Sets</u>. Then $U^{\mathcal{D}}$ is tripleable.

PROOF If the cardinalities of the objects in X are bounded, then by 1.3.4 we can omit all but a small set of objects from X and still retain an equivalent device. But then by 2.1.16 the functor U^{D} has a left adjoint.

If the cardinalities are unbounded then to each small set $S \neq \emptyset$ there is a split epimorphism $Xi \rightarrow S$ for some i ε I, and hence by 3.2.6 \mathcal{D} can be enlarged inessentially to include all except possibly the empty set. Further it is possible to show by a special argument that if $\emptyset \rightarrow F^{\mathcal{D}}1$ generates $(B,\Psi) \rightarrow F^{\mathcal{D}}1$ then $(\emptyset \rightarrow B, (B,\Psi))$ is a universal arrow to $U^{\mathcal{D}}$.

The final result of this thesis is a theorem identifying small devices in <u>Sets</u> with the clones of Philip Hall; a result presumably known by Hall when he defined clones.
3.2.8 THEOREM Let I be any set such that I and <u>Sets</u> satisfy the conditions imposed on X and A in Theorem 3.1.4. Then $U_1 : \underline{\text{Dev}(\text{Sets}, I)} \rightarrow \underline{\text{Sets}}^I$ is strictly isomorphic to $U_2 : \underline{\text{Cl}} \rightarrow \underline{\text{Sets}}^I$ where $\underline{\text{Cl}}$ is the category of abstract I-clones.

PROOF By Theorem 3.1.4 the functor U_1 is strictly isomorphic to $U^{\mathcal{D}}$ where $\mathcal{D} = (\zeta, \Delta')$ is a device on $J = I^{I}$. The nature of ζ_j : $j \rightarrow D_j$ is described in Theorem 3.2.4. Each D_j arises from a device $\mathcal{D}_j = (\eta_j, \Delta_j)$ with object set I. In order to interpret the algebras of \mathcal{D} we will present \mathcal{D} as the quotient of a free device $\mathcal{D}^* = (\eta^*, \Delta^*)$ as follows. Let $\Omega = (\Omega j(i);$ $i \in I, j \in J$) be defined by: (1) if $ji = \emptyset$ for all $i \in I$ then $\Omega j(i) = i$; (2) if ji is trivial except when $i = i_1, i_2$ where $i_1 \neq i_2$, $ji_1 = i_1 \neq 0$ and $ji_2 = i_1$ then $\Omega j(i_2) =$ $\{\omega\}$ (a special symbol) and $\Omega j(i) = \emptyset$ for all $i \neq i_2$; (3) if ji is trivial except when $i = i_1$ and $ji_1 = i_1 + i_1$ (a specified model of the coproduct), then $\Omega j(i_1) = \{\omega\}$ and $\Omega j(i) = \emptyset$ if $i \neq i_1$; (4) in all other cases $\Omega j(i) = \emptyset$ for all i c I. The operations in cases (2) and (3) are very similar. For this reason from now on we omit mention of case (3). It will always be easy to put in extra details to include this case. Let $\mathcal{D}^* = (\eta^*, \Delta^*)$ be the free device. With family of objects I^{I} in <u>Sets</u> generated by $\zeta^{*}: \Omega \rightarrow D^{*}$. Define the map $\alpha : \Omega \to D$ by (1) if $ji = \emptyset$ for all i then

 $\Omega_j(i) = i$ and $\alpha_j(i) = n_j(i)$; (2) if $ji_1 = i_1$, $ji_2 = i_1 \neq \emptyset$ and elsewhere j is trivial, then $\Omega_j(i_2) = \{\omega\}$ and $\alpha_j(i_2) : \omega \leftrightarrow \langle \zeta_j(i_1)(k) \rangle [\zeta_j(i_2)]$, where k is a selected element in i_1 . Then consider the device morphism $\lambda : \mathcal{D}^* \rightarrow \mathcal{D}$ defined by $\lambda_{\circ}\zeta^* = \alpha$. Using the nature of α and the fact that $\lambda_{\circ}n = \zeta$ one can show by an induction argument that each $\lambda_j(i)$ is surjective. Hence we may apply Theorem 2.4.6 to interpret \mathcal{D} -algebras as \mathcal{D}^* -algebras satisfying certain laws.

The laws Λ are all the pairs of elements of D*j(i) for all i ε I, j ε J which have a common image under λ j(i). As we discussed in §2.4, if (t_1,t_2) is a law, where $t_1,t_2 \in D^*j(i)$, and $\delta \in \Delta^*(j,j_1)$ then $(\delta i(t_1), \delta i(t_2))$ is also a law. It is clear that any D^* -algebra satisfying law (t_1, t_2) must also satisfy $(\delta i(t_1), \delta i(t_2))$. Now consider the set of laws Λ_1 defined as follows. (1) If $\omega \in \Omega j(i_2)$, $ji_2 = i_1$, k is the selected element of i_1 described earlier, μ : $i_1 \rightarrow i_1$ is the constant function with value k, then ($\omega[\eta*j], \omega[\nu]$) $\epsilon \Lambda_1$ where $v_{i_1} = n^{i_1}(i_1)_{\mu}$ and $v_{i_2} = n^{i_1}(i_2)_{\mu}$ (2) Suppose $\omega \in \Omega j(i_2)$ and $ji_2 = i_1$. Let $j_0 \in J$ be the map with $j_0 i = \emptyset$ for all i ε I, and μ_1 : $i_1 \rightarrow i_1$ be a constant map whose image is k_1 . Let δ_0 be the single map in $\Delta^*(j_0, j)$. Then $(\omega[\mu], \eta*j(i_2)(k_1)) \in \Lambda_1$ where $\mu i_1 = \delta_0 \cdot \zeta*j_0(i_1) \cdot \mu_1$ and $\mu i_2 = \eta * j(i_2)$. (3) Suppose ω belongs to $\Omega j_1(i_3)$, $\Omega j_2(i_3)$ and $\Omega j_3(i_2)$ where $j_1 i_3 = i_1$, $j_2 i_3 = i_2$ and $j_3 i_2 = i_1$. Let

j': $I \rightarrow I$ be the map which has $j'i_1 = i_1$, $j'i_2 = i_1$ and $j'i_3 = i_2$ and which is trivial elsewhere. For each $s \in i_1$ let $\alpha_s : i_2 \rightarrow i_1$ be the constant map with image s. Let $\beta_s : j_2 \rightarrow D^*j'$ be the map defined by $\beta_s i_2 = n^*j'(i_2)\alpha_s$ and $\beta_s i_3 = n^*j'(i_3)$. Let $\gamma : j_1 \rightarrow D^*j'$ be the map defined by $\gamma i_3(s) = \omega[\beta_s]$, $\gamma i_1 = n^*j'(i_1)$. Finally let $\mu : j_2 \rightarrow D^*j'$ be the map defined by $\mu i_3 = n^*j'(i_3)$ and μi_2 is the constant map with image w[v] where $v : j_3 \rightarrow D^*j'$ has $vi_1 = n^*j'(i_1)$ and $vi_2 = n^*j'(i_2)$. Then $(\omega[\gamma], \omega[\mu])$ belongs to Λ_1 .

It is not hard to prove that $\Lambda_1 \subseteq \Lambda$. Further the set of \mathcal{D}^* -algebras which satisfy the laws in Λ_1 may be interpreted via Theorem 3.2.3 as the set of all abstract I-clones. Thus only one thing remains to be proved; namely that any \mathcal{D}^* -algebra which satisfies Λ_1 must satisfy Λ . To see this consider the set Λ_2 of laws satisfied by all \mathcal{D}^* -algebras which satisfy Λ_1 . Consider further the family of sets $N = (Nj(i); i \in I, j \in J)$, with $Nj(i) \subseteq D^*j(i)$, defined by (1) $ji \subseteq Nj(i);$ (2) if $\mu_2 : ji_2 \rightarrow D^*j_1(i_2)$ and the image of μ is contained in $Nj_1(i_1)$, and if $\mu_1 : ji_1 \rightarrow D^*j_1(i_1)$ is a constant map which factors through $\eta^*j_1(i_1)$, and further if $\omega \in \Omega j(i_2)$ and $ji_2 = i_1$, then $\omega[\mu] \in Nj_1(i_2)$ where $\mu : j \rightarrow D^*j_1$ is defined by $\mu_1 = \mu_1$, $\mu_1 = \mu_2$; and (3) if $j_0 \in J$ is defined by $j_0i = \emptyset$ for all $i \in I$, δ_0 is the single map in $\Delta^*(j_0, j)$, and $k \in I$, then $\delta_0 \cdot \zeta^*j_0(i)(k)$ is in Nj(i). Now the following two facts can be

proved by induction: (1) to every $w \in D^*j(i)$ there is a w' $\in Nj(i)$ such that $(w,w') \in \Lambda_2$; (2) if $(w_1,w_2) \in \Lambda$ and $w_1,w_2 \in Nj(i)$, then $w_1 = w_2$. These facts are sufficient to prove that $\Lambda_2 \supseteq \Lambda$.

REFERENCES

[1]	BECK, J. Untitled manuscript. Cornell (1966)
[2]	BÉNABOU, J. Catégories relatives. C.R. Acad. Sci. Paris Sér. A-B <u>260</u> (1965) 3824-3827
[3]	BRUCK, R.H. A survey of binary systems. Springer, Berlin (1966, c1958)
[4]	COHN, P.M. Universal algebra. Harper and Row, New York (1965)
[5]	DUSKIN, J. Variations on Beck's tripleability criterion. Lecture notes in mathematics (Springer) <u>106</u> (1969) 74-129
[6]	EILENBERG, S. and MOORE, J.C. Adjoint functors and triples. Illionois J.Math. <u>9</u> (1965) 381-398
[7]	FREYD, P. Abelian categories. Harper and Row, New York (1964)
[8]	GODEMENT, R. Théorie des faisceaux. Hermann, Paris (1958) Appendice
[9]	GRATZER, G. Universal algebra. Van Nostrand, Princeton, N.J. (1968)
[10]	GRAY, J.W. The categorical comprehension scheme. Lecture notes in mathematics (Springer) <u>99</u> (1969) 242-312
[11]	HIGGINS, P.J. Algebras with a scheme of operators. Math. Nachr. <u>27</u> (1963) 115-132
[12]	HUBER, P.J. Review of H. Kleisli's paper [15]. Math. Reviews <u>31</u> (1966) *1289

- [13] ISBELL, J.R. Adequate subcategories. Illinois J. Math. <u>4</u> (1960) 541-522
- [14] KELLY, G.M. Monomorphisms, epimorphisms, and pullbacks. J. Austral. Math. Soc. <u>9</u> (1969) 124-142
- [15] KLEISLI, H. Every standard construction is induced by a pair of adjoint functors. Proc. Amer. Math. Soc. 16 (1965) 544-546
- [16] LAWVERE, F.W. Functorial semantics of algebraic theories. Proc. Nat. Acad. Sci. U.S.A. 50 (1963) 869-872
- [17] LINTON, F.E.J. Autonomous equational categories. J.Math. Mech. 15 (1966) 637-642
- [18] LINTON, F.E.J. Some aspects of equational categories. Proceedings of the conference on categorical algebra (La Jolla, 1965). Springer, Berlin, (1966) 84-94
- [19] LINTON, F.E.J. Applied functorial semantics, II. Lecture notes in mathematics (Springer) <u>80</u> (1969) 53-74
- [20] LINTON, F.E.J. Coequalizers in categories of algebras. Lecture notes in mathematics (Springer) <u>80</u> (1969) 75-90
- [21] LINTON, F.E.J. An outline of functorial semantics. Lecture notes in mathematics (Springer) <u>80</u> (1969) 7-52
- [22] MAC LANE, S. Categorical algebra. Bull. Amer. Math. Soc. <u>71</u> (1965) 40-106
- [23] MANES, E. A triple miscellany. Dissertation, Wesleyan University, Middletown, Conn. (1967)

- [24] MANES, E. A triple theoretic construction of compact algebras. Lecture notes in mathematics (Springer) 80 (1969) 91-118
- [25] MARANDA, J.-M. On fundamental constructions and adjoint functors. Canad. Math. Bull. <u>9</u> (1966) 581-591
- [26] MITCHELL, B. Theory of categories. Academic Press, New York. (1965)
- [27] NEUMANN, B.H. Special topics in algebra: Universal algebra. Courant Institute, New York University, New York (1962)
- [28] PARE, R.C. Absolute coequalizers. Lecture notes in mathematics (Springer) <u>86</u> (1969) 132-145)
- [29] Seminar on triples and categorical homology theory Lecture notes in mathematics (Springer) 80 (1969)
- [30] SŁOMIŃSKI, J. The theory of abstract algebras with infinitary operations. Rozprawy Mat. 18 (1959)
- [31] WALTERS, R.F.C. An alternative approach to universal algebra. Lecture notes in mathematics (Springer) <u>106</u> (1969) 64-73