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CHAPTER O

INTRODUCTION AND PRELIMINARIES

§0.1 Introduction.

There are two well-known ways of generalizing classical universal
algebra to an abstract categorical setting. The most obvious approach
is to generalize the concept of operation. In a category A with
products, an 'm-ary operation'" on an object A is defined to be a
morphism from A" to A . It is easy to see that with this definition
the concepts of "algebra', "homomorphism'" and 'variety of algebras"
can be defined categorically. This is the approach elaborated by
Lawvere [16] and Linton [18]. A quite different generalization is
suggested by the observation that the free alpebras of a variety contain
all the information about the variety. 1In the place of the free algébras
we have the categorical notion of a ”triple in A", and Eilenberg and
Moore [6] have shown how to use this notion to define "algebra" and
"homomorphism'" in A .

In this thesis we explore a variation of the second approéch which
leads to a rather different development of universal algebra in a

category. It is perhaps more suitable than the method of triples for

simulating the classical situation where the operations are ranked.



In Chapter I we define and develop simple properties of the concept

of a "device in a category"

and the corresponding 'category of algebras:
of a device'. We also discuss the relationship between triples and
devices and between their corresponding algebras. In the second chapter
we develop some analogues of conventional results in universal algebra
under various conditions on the category. For example, there is a
theorem guaranteeing that the functor which forgets the structure of
the algebras has a left adjoint. Another theorem gives conditions for
recognizing when a functor is the forgetful functor corresponding to
gome device. This theorem is used to give a version of Birkhoff's
Theorem on the subvarieties of a variety.

Each device in a category A has associated with it a functor
X : I~>A whose domain is a set. We define a category Dev (A,X)
whose objedts are all devices in A with associated functor X , and
we define a functor U : Dev (A,X) - é} . In Chapter IIT we prove
under certain conditions on A and X that U is the forgetful

functor of some device in AI . This chapter also includes descriptions

of devices and their algebras in Sets.
The reader needs only a knowledge of elementary category theory,
and of elementary universal algebra. He need not know about triples

since they are defined in this chapter, and throughout the thesis no

appeal is made to theorems about triples.



§0.2 The language.

The discussions of this thesis take place in a set theory with
universes, as described for example in [4]. Throughout the thesis we

consider two fixed universes M1 and M2 with Ml€ M2 . The sets

in Ml are called small sets, and the category of all small sets is
written as Sets. A category defined in M2 is called an Mz-category,

1249
of objects in A the morphisms from A1 to A2 form a small set, is

called a locally~small category. The category of all locally-small

while a category A , which has the property that for each pair A

Mz-categories is written as Cat, and the category of all small categories

is called Kit.

We assume that the reader is familiar with elementary category
theory, as contained for example in the early chapters of [22], [7]
or [26]. In the following sections we shall indicate our notations
and recall some well-known definitions and results which are basic to

the thesis.

§0.3 Some notation.

Categories will usually be denoted by symbols A,B,C,... ;

objects by A,B,C,... or A,B

sCy¢.. 3 morphisms by a,B,y,... and
f,g,hy... ; functors by F,G,H,U,... ; and natural transformations

by n,MsAs... . The composition of morphisms o tA>B and B : B-=+>C



will be written RBo : A~> C . If f is a function and a an element
of its domain, f evaluated at a will be written fa or f(a) .

The set of all A-morphisms from A to Aziswritten éjAl,Az) . The

1
set of objects of A we write as obj A , and the opposite categoryas

A°P

. The category of functors from B to A is written é% .

If n is a natural transformation from G : A+ B to H: A->B

and F: C>A,K:B~>D, themn nF : GF » HF is the natural trans-

1>

formation defined by nF(C) = n(FC) , and Kn : KG -~ KH is the natural
transformation defined by Kn(A) = K(nA) .

A morphism o : Al > A2 is a split epimorphism if there exists
a morphism B : A2 > A1 such that af =1 : A2 > A2 3 Dually we have

the notion of split monomorphism.

§0.4 Universal arrows and adjoint functors.

0.4.1 DEFINITIONS Let U : B> A be a functor and A an object

of A . Then a universal arrow from A to U is a pair (o : A > UB,B)
with B an object of B , such that for any A-morphism oy ¢ A~ UB1 ’
there is a unique B-morphism B : B -+ B such that o, = UB.o .

1 1

We often say in this situation that "B is free on A , or that

o : A~ UB freely generates B .

A universal arrow from U to A 1is a pair (B, o : UB » A)

such that for any morphism a, ¢ UBl + A there is a uhique morphism



B : B >B in B such that o.UB = a

1 1

0.4.2 DEFINITION A functor U : B> A "has a left adjoint" if
for every A in A there is a universal arrow from A to U .

If U has a left adjoint we can indeed define a functor F : A +
which we call a left adjoint of U . F 1is determined up to natural .

equivalence and we say that U 1is a right adjoint of F .. Further,

the pairs F,U so obtained can be characterized in other nice ways.

B

For example, associated with F and U are two natural transformations

U

For an arbitrary pair of functors F,U the existence of such natural

n : lA + UF and e : FU > lB satisfying €eF.Fn = 1F and Ue.nU =1
transformations guarantees that F 1is a left adjoint of U . Further,
a functor F : A > B has a right adjoint if and only if to each B

in B there is a universal arrow from F to B .

0.4.3 DEFINITIONS Consider a functor G : C +> A , and consider the
diagonal functor d : A ~ é% defined by dA : (y : C1 -> Cz) v (1
and da(C) = o . We often confuse such a constant functor dA with
the object A . Now if there is a universai arrow (A, X : dA » G)
from d to G , then we call the universal arrow, or just the natural
transformation X : dA > G, a limit of G . Thus X : dA~> G 1is a

limit of G 1if for every natural transformation A, : dA, -~ G there

1° 1

is a unique morphism o : A1 -+ A such that AC.a = AIC for all

A > A




CEC . A colimit of G is a universal arrow from G to d . A
category A 1is said to have C-limits if each functor G : C > A has
a 1iﬁit; that is, if d : A - é§= has a right adjoint. If for all
small categories C the category A has C-limits, then A is small

complete. A functor H : A > B is said to preserve limits if when-

ever A : A~> G is a limit of a functor with codomain A , then HA
is a limit of HG . The functor H creates limits if for each functor
G with codomain A and each limit u : B > HG of HG there exists
a unique natural transformation A : A > G such that HA =y ; and

’

moreover A 1is a limit of G .
We frequently use the following theorem of P. Freyd.

0.4.4 THEOREM Let A,B be locally small categories where B is
small complete. Then a functor U : B > A has a left adjoint if and
only if (1) U preserves small limits and (2) for each A in A

there is a small set SA of objects in B such that for any map

o : A~>UB there is a B1 in SA , amap B : B

such that o = UB.cx1

17 B, and a map

oy ¢ A~ UB1

Condition (2) is called the solution set condition for U , and

SA is called a solution set for A .



§0.5 2-categories.

0.5.1 DEFINITION (Bénabou [2]) A 2-category % is a set of elements-
d,B,Y,... called 2~cells, equipped with two partial operations;

(1) the weak composition whose effect is denoted o°*B , and (2) the
strong composition whose effect is denoted o * B . The operations
satisfy the following conditions.

(1) The 2-cells constitute a category with respect to the strong
composition. We will denote this category by é . Its objects are
called vertices.

(2) For each pair of vertices A,B the set é(A,B) is a
category with respect to the weak composition. The objects of this
category are called arrows. The weak composition is not defined for
2-cells with different domain or codomain in é . ‘

(3) If S 4is an arrow of é(A,B) and T 4is an arrow of
%(B,C) then T * S is an arrow of %(A,C) .

(4) (o % B) » (y #6) =(a = v) % (B 8) if both sides are
defined. .

.

For other ways of describing 2-categories see [10].
///S~\“
We can write a 2-cell ¢ as A o+ B where A and B are

T
the domain and codomain of o in é ,and S and T are the domain

and codomain of ¢ in Q(A,B) .



The most familiar 2-category is the following nice structure on
natural transformations. If n : ¥F> G : A-+3B and u : G+ H are
natural transformations then the weak composition of n and p 1is
just uyn . If v :K~>L: B~ is a natural transformation then
the strong composition of n and v is v * n = Ln.vF = vG.Kn . The
2-category of all natural transformations between functors in Cat is

denoted Cat.
v

§0.6 Triples in a category.

0.6.1 DEFINITION (Godement [8]) A triple in a category A consists

of three things; a functor T : A~> A, and two natural transformations

n 1A + T and 4y : T2 + T , which are required to satisfy three axioms;

namely (1) u.nT =1

T (2) u.Tn = 1T , and (3) u.Tpy = p.uT . We

denote the triple so defined as T (Tyn,u) .
If we have an adjoint situation as described in 0.4.2 then

(UF,n,UeF) 1is a triple in A , and in fact any triple may be so

obtained from an adjoint situation.

0.6.2 DEFINITION (Eilenberg-Moore [6]) Let T = (T,n,u) be a
triple in A . Then a T-algebra is a pair (A,&) with A an object
of A and & : TA >~ A, satisfying the requirements (1) &.nA = 1A

and (2) E.TE = E£.uA .



A T-morphism from (Al,gl) to (AZ,EZ) is a morphism o : A1 > A2
with the property (1) £y-Ta = a.g) .

T-algebras and T-morphisms with the obvious composition form a
category éj . The functor which takes a : (Al,gl) > (Az,gz) to
a Al > A2 is written UT : éj - A .
0.6.3 DEFINITION A functor U : B -~ A is tripleable if there exists
a triple T in A and an isomorphism of categories K : B ~»> éT such
that UTK =U.

There is another meaning of tripleable which requires only that

K be an equivalence.

0.6.4 DEFINITION A triple-map from T1 to T2 is a natural

transformation A : T, - T such that A.n

1 9 and A.ul =,u2.(k % A)

1M

For some idea of the scope of recent literature on triples see

[291.

§0.7 Adequacy.

0.7.1 DEFINITION A family of objects X = (Xi; 1€I) in a category

A 1is called a generating family if for any two different maps

a,B‘: A->B In A there is an i€TI and a map y : Xi ~ A such that



10

oy + By .

0.7.2 DEFINITION (Isbell [13]) A generating family ¥ = (Xi; i€ 1I)
is said to be adequate in A if, for any pair of objects A,B in A,
and any family of functions (fi; i €1I) with properties

(1) fi : A(Xi,A) > A(Xi,B) and (2) for any ¢ : Xi1 > Xi ,

6 : Xi > A it is true that fi(¢).e = fi1(¢e) , then there exists a map

o : A>B such that fi(-) = a.(-) (all 1i€T1)

In [13] the above property is called the left adequacy of the full

subcategory of A with objects {Xi; i€1} .

§0.8 The classical notion of variety. (see [4], [9], [30] or [27])

0.8.1 DEFINITIONS To define abstract algebras we need a small set
9 of "formal operations" with a small set aw assigned to each w
in Q@ called the "arity" of w . (In [4], [9] and [27] aw is always

a finite ordinal, and in [30], an ordinal.) Then an Q-algebra A is

a small set A and to each w in § an operation w, : A%® > a

A

A homomorphism from A to B is amap X : A > B such that for

all w in Q and all o : aw - A we have X.wA(a) = wB(Aa)

All Q-algebras and all homomorphisms form a cétegory Q-Alg.

There is a clear forgetful functor U : @2-Alp -~ Sets which has a
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left adjoint F .

Now an i~law in variables X 1is a pair of elements of UFX . An
Q-algebra A satisfies the law (tl,tz) if at, = at, for all
homomorphisms o : FX > A . Given A , a set of Q-laws in variables
X , then the set V = V(A) of all algebras satisfying these laws is

called a variety. There is an obvious category Cat(¥) and an obvious

forgetful functor U : Cat(V) -+ Sets which again has a left adjoint.

0.8.2 REMARKS It has been recognized that this way of defining
varieties of algebras is not completely satisfactory. For example,
with this definition, the variety of groups defined in terms of multi-
plication, inverse, and identity,; is different from the variety of
groups defined in terms of right division and identity, where we would
like them to be the same. The particular operations used to define a
variety are less important than the "abstract clone of operations" of
the variety, a concept we define in the next paragraph.

/

0.8.3 DEFINITIONS ~(P. Hall, see [4] p 132) Let S be a set. An

abstract S-clone consists of the following data: an S-tuple of sets

. = . i1 . c .
(AS, s €S) ; specified elements (dsyS 3 sy s) in AS ; and a

function which associates with each u : $1 > AS and each o in A

51

an element denoted oa(u) in AS . ‘Using this last function we can

define toany u : s, A and any v : s, > A a function
1 s 2 Sy
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v{u) s s, A.S by v(u)(t) = (vt)(u) for all tE€s, . Then the data -

2
are required to satisfy the following axioms where wGEAs and v,u
2
are as above. (1) w(v)(w = w(v(w) . (2) d (W = u(s,)
s3,81 3

A homomorphism from S-clone A to S-clone A' is a family of
functions (fS : As > A; ; s€5S) wifh the properties
(1) fs(a<u)) = (fslu)(fs.u) and (2) fsds&,s = déﬁ,s .

Now from any variety ¥V we can form an abstract Ml-clone of
operations as follows. Let U be the forgetful functor for ¥V , and
F a‘left adjoint of U with associated natural transformation

n: 1> UF . Then take the family of sets to be (UFX ; XEEMI) s take

the specified elements in UFX to be X&) ;3 x€X) ;3 for u

’

X - UFY
and w in UFX take w(u) to be Ua(w) where a : FX > FY 1is the
homomorphism determined by Ua.nX = u .

A different left adjoint yields an isomorphic clone of operationms.
The name '"clone of operations" arises since each element of the
X-component of the clone induces an X-ary operation on every algebra of

the variety.

0.8.4  REMARKS CONTINUED The operations in the clone of operations
of UV may be thought of as all the operations 'derived" from the .
defining operations, and it is our contention that two varieties should
be considered essentially the same if they have isomorphic clones of

operations.
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Let us call functors Uy 4 >B and U, : A, > B strictly

isomorphic if there is an isomorphism K : A, - A, such that UK =1T

1 = 2 1°
For any Sets-valued functor with a left adjoint we can derive an
Ml-clone in much the same way as described in 0.8.3 above. A functor
strictly isomorphic to U : Cat(l) > Sets yields a clone isomorphic

to the clone of ¥V . Thus we may regard any functor strictly isomorphic

to U : Cat(¥) - Sets as containing the essential information of ¥ .

This discussion is contained implicitly in Linton [18] in terms

of "theories' rather than clones of operations.
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CHAPTER I

DEVICES 1IN A CATEGORY

As we remarked in §0.1, a triple in a category may be regarded
as an analogue of '"the set of all free algebras of a variety".

Then the Eilenberg-Moore construction of the category of algebras of
a triple amounts to the construction of the vafiety from its free
algebras. In this chapter we define a notion, "device in a
category', which is an abstraction of "a family 6f free algebras of

a variety'" and hence is a generalization of triple. There is a
corresponding construction of "the category of algebras of a device"
which in the special case of triples is equivalent to the construction
of Eilenberg and Moore.

Also in this chépter we prove some simple properties of devices
and their algebras. We define "morphisms of devices" and then, in
the last section, weugive an alternative global description of
devices and their algebras.

‘The reader who would like to see devices in action in simulating
conventional universal algebra might well read only the first two

sections of this chapter before proceeding to Chapter II.

§1,1 Devices and the device construction.

1.1.1 DEFINITION Let A be a category. A device D in

>

consists of the following data:

e

(1) a family X = (Xij;i € I) of objects of
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(2) a family n = (ni ;i € I) of maps of A, where the
domain of ni is Xi and we write the codomain as Di;

(3) a family A = (A(il,iz);il,i e I) of sets A(il,iz) of

2

maps of A, where each map in A(il’iz) has domain Dil and codomain

Di

2‘
The data are required to satisfy the following axioms for all
i, 17, 15, 1; in I.
The identity axiom: 1_, e A(i,i).

Di
The closure axiom: A(iz’l3)‘A(ll’12) E'A<1l’13)'

The universality axiom: for each u : Xil - Di2 there is a

unique § € A(ll,lz) such that G,nll = U,
We ‘denote the device defined above by (X,n,A) or just
(n,A). The set I is called the index set, and X " is called the

object family of - D. The special case when I 1is a set of objects

of A and Xi =1 for all i e I occurs frequently. In this

case we say that D has a set of objects, and we identify I and X.
We say that a device is full if it has a set of-objects consisting

of all the objects of A.

‘ Unless otherwise indicated we adhere to the following convention.
The device D will always be (n,A) with index set I and object
family X. The map ni will always have codomain Di, If D
is decorated in any way, for example as Dl or D%, then we shall

decorate the various parts of the device in the same way.
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1.1.2 EXAMPLE Let V be a variety of algebras, with
forgetful functor U, Let (Fij;i € I) be any family of free
algebras of V with Fi freely gene;ated by set Xi, Write
the insertions of the free generating sets as ni : Xi - UFi.
Then, if we take A(il,iz) to be the set of homomorphisms from
Fi1 to Fiz, it is easy to see that (n,A) is a device in Sets.

More generally, let U : B~ be a functor and

S = ((ni,Fi)3i € I) a family of universal arrows to U. Then if
we take A(il,iz) to be ‘UE(Fil,FiZ), clearly (n,A) is a device.
From any A-valued functor with a left'adjoint‘we can obtain a

full device.

1.1.3 DEFINITIONS Let U be a device in A.- Then a D-algebra
consists of an object A in A and, to each i in I, a set

¢i of morphisms from Di to A, satisfying the following axioms

for all i, iz in T,
, fome c
The closure axiom: ¢12.A(il,iz) __¢il.
The universality axiom: to each u : Xil > A there is a

unique ¢ € @il such that ¢.nil = U,

We denote the D-algebra defined above by (A,%). ‘The.
object A 1is called the carrier and ¢ is called the structure
of the D-algebra (A,9).

A D-morphism from (Al,él) to (A2,¢2) is a morpﬂism

o Al'+ A2 such that a.Qli E_@zi for all i in 1I. Then
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D-algebras and D-morphisms form a category év‘ if the composition
of D-morphisms is defined in the obvious way. There is a forgetful

functor UD : év + A defined by:

D

0 e (A, > (A,00) v (@t A > A,
Notice that if A and I are in Cat then so is QD.
The definitions of 1.1.1 and 1.1.3 appear in [31] with

a slightly different notion of device,

1.1.4  EXAMPLE  If D is the device obtained from a family of
free algebras of variéty V as in 1.1.2, then giveh any algebra
A of ¥ with underlying set A, we can form a D—aigébra with
object A, and with maps ¢i taken to be the'homomofphisms from
Fi to A. A homomorphism from éq to éé clearly yields a
D-morphism from (A l,@ ) to (A2,®2). These observations

describe a functor from Cat(g) to AP which is an isomorphism

provided we have taken a suitably large family of free algebras of
V. A full description of devices and their algebras in the category

of Sets is given later in Chapter III.

1.1.5  EXAMPLE Suppose X 1is any family of objects of A. Then

take ni to be lXi and A(il,iz) to be é(Xil’XiZ)' This yields

a device D which we call the initial device on' X. It is easy to

see that in this case UD : A + A is an isomorphism,
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1.1.6 EXAMPLE Suppose A has an initial object O. Then
if we take X = {0} and n(0) = 0 -~ A, and the maps from A
to A to be just the identity map, then we have a device which
can be described by the diagram 0 - A_:D 1. Algebras are
single morphisms o : A - Al" and a morphism from o to

B : A~ A2 is amap y : Al - A2 such that Yoa = B. In

other words, the category of algebras is the category of objects

under A,

1.1.7  EXAMPLES In a category with a terminal object 1-

there is also a very simple way of making a device with a

single object, For any object A of é the diagram

A'*};;)l describes a device. If A~ 1 is an epimorphism,
the only possible structure on an ofject B ~is the set of all
maps from 1 to B, and hence the category of algebras may

be considered, by an abuse of language, to be a full subcategory
of " A. In Kit, if we take A to be the category with two
objects and a single map between them, then the category of |
algebras is Sets. 1In the category of abelian groups, if we take
A to be a cyclic group of order p (prime), then the algebras
are the groups with no element of order p. We can enlarge this
device to get just torsion-free gfoups in the following way.

Let I =1{2,3,5,..05Ps-+.+ and Xp = Cp (the prime cycle).

Further let np = Cp + 1 and A(p,q) = {1}.
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This gives us a device with the torsion-free groups as algebras.

In Kit take X to be {é} where é is the category
a
1G A, BIL1 with og =1, Ba=1. Take nA to be
B generaled by
>

G : A~> B where

(R~}

is the categorjA lC:éﬁDa with again

. B
o8 =1, Ba =1, and Ga =a, GB = R. Then, if the maps

A(A,A) are taken to be all the endofunctors'of A, we have

a device in Kit whose algebras are the skeletal (small) categories.

1.1.8 EXAMPLE Consider the category P{Y) of all subsets

of a set Y (with inclusions as morphisms).  Any closure

operator J on Y yields a device with object set the finite
subsets - {X 2,..‘} of Y if ’nXl is taken to be the

hap X, > JX) and A(Xl,XZ) to be P(Y)(JXl,JXZ). ~ An algebra

is a subset A such that if X c A then JX'C A, Hence if J

is an algebraic closure operator (see [4] pagé 45 ') the algebras
é?e just the closed subsets, There is a precise correspondence
between algebraic closure operators on Y and devices in P (Y)

with object set the finite subsets of Y. Of course, there is a

well-known correspondence between closure operators on Y and

triples in P(Y).
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§l,2 Devices and universal arrows.

As we remarked in 1.1.,2 any family of universal arrows
to a functor U: B > A gives rise to a device in A just
as adjoint functors give rise to triples, In this section it is
shown that all devices arise in this way, again in énalogy with the

triple-adjoint functor situation.

1.2,1 THEOREM Given device 0D, then FDi = (Di,A(-,1))
is a D-algebra where A(~i)(il) = A(il,i). - Further if
(A,®) is any other algebra then the D-morphisms from FDi to

(A,®) are precisely the morphisms in &i.

., PROOF  Checking that FDi is an. algebra, we note that:
(1) a0 EDAE,,1L) = AEDAGE,1L) € AE,,1) =

A(—;i)(iz); (2) given any u : Xil -+ Di there is a

unique & in A(il,i) = A(—,i)(il) such that G.nil = u.

Each ¢ in @i dis a D-morphism since

@i.A(-,iXil) = @i.A(il,i) C oi. To see that any D-morphism

a FDi + (A,®) belongs to @¢i, note that

o = a.lDi € a.A(-,1) (1) c ¢i.
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The notation FDi ‘will be used throughout this thesis

for the algebra (Di,A(~,1)).

1.2.2 THEOREM Consider device 7?7 in A. There is a

family of universal arrows, indexed by I, to UD such that the

device obtained from these arrows as in 1.1.2 is just D,

PROOF  The i-th universal arrow is (ni,FDi). It is a
universal arrow since if (A,9) € QD and ﬁ is any map from
Xi to A, then y° factors uniquely through ni in &i,
and %i, by 1.2.1, is UDéD(FDi,(A,Q)). To see that the
device oBtained from these arrows is 0, note that by 1.2.1

TR I INCIERN

We shall presently describe universal arrows' to a much simpler

functor which lead to D.

1.2.3 DEFINITION . Consider device D in° A. The Kleisli
‘catégorz‘of D, which we denote by Ay, 1is the category
constructed as follows: the objects of éD are the ordered pairs
(i,Di)(i € I); the set of morphisms in \év from (i,Di) to
(il,Dil) is A(i,il); composition is the same as in A,

That is a catego is an obvious consequence of the properties
a gory q prop

of device. (The name comes from the category defined by Kleisli in[15].)
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There is a functor UD : éD + A defined by
UD ¢ (8 + (i,D1i) ~» (il,Dil)) e (§ 2 DL+ Dil). We denote
the object (i,Di) by FDi.
The definition of device leads immediately to the following

result.

1.2,4 THEOREM There is-a family of universal arrows to
UD : éD > A such that the device obtained as in 1.1.2 from

these arrows is D.

The two functors UD and UD have a very special position
among A-valued functors which have a family of universal

arrows leading to the device 7. Before explaining this

remark we prove a useful lemma,

1.2,5 ©LEMMA Let D be a device in A and (A,¢l), (A,@z)
two D-algebras. If for all i in the index set I of D we

Zi’ then ¢, = .. That is, for maps o in éD

have ¢.i C ¢ 1 2

1

we have that UDu is an identity in A 1if and only if o 1is an

identity.

2 l1 such that

¢l.n1 = ¢2.ni. But both ¢l and ¢2 are in - 9

PROOF  For any ¢2 € .1 we can find ¢l e 9

1i, so the
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uniqueness part of the universality condition: for algebras gives us

that ¢l = ¢2 and hence @1 =9

2.
1.2,6  THEOREM Consider functor U : B> A and a family of
universal arrows ((ni,Fi);i € I) to U with associated

device D = (n,A). Then there is a unique functor K : B ~» év

such that UD.K = U and K(Fi)= FDi for all i in I,
Further, there is a unique functor K' : év'+ B such that

UXK' = Uy and K'(Fpi)= Fi for all i e I.

The situation is summarized in the following diagram

where the families FD’F and FD are here regarded as functors,
PROOF (a) Let ¢&i = UE(Fi,B). Then K is defined by:

K : B v (UB,8), and

K: (¢ : Bl +‘B2) s (Ua @ KBl - KBz).
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Since the universal arrows to U yield 0, we must have
UE(Fi,Fil) = A(i,il). Thus (UB,%) is an algebra, since
@) ¢i.A(il,i) = UE(Fi,B).UE(Fil,Fi) E_Ug(Fil,B) = ®il and
(2) any U : Xi > UB factorizes uniquely through ni in
UB(Fi,B). Similarly Ua : KB, + KB, 'is a D-morphism.
That K is a functor is obvious, and K clearly takes Fi
to (Di,A(-,i)).

Consider another functor Kl : B~ év with
UDKl = U and Kl(Fi)= FDi for all i e I. Then

KlB = (UB,¥) for some structure V., Further
UB(Fi,B) = UDKlg(Fi,B) S_UDQD(FDi,(B,W)) = vi,

However, we have seen above that (UB,UQ(Fi,B)) is.a D-algebra,

and hence by Lemma 1.2.5 we have Yi = UB(Fi,B). Thus K.

1
. . D D D . .

agrees with K on objects. Since U Kl = UK and U ' is faithful,
it is clear that Kl also agrees with K on morphisms.
(b) The functor K' is defined by

K' : (i,Di) Fi

lé s 16'
(1;,Di,) | Fi,




where §' 1is determined by US'.ni = §.ni. Clearly K'
must act in this way to have the desired properties since
K'S§.ni = UDG.ni = 8.ni. Now US' € A(i,il) since the device

associated with U dis D. Hence US' =68 and so UD = U.K',

§1.3 The enlargement of devices.
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1.3.1 DEFINITIONS Given a device D with index set I, and a

subset Il of I, then DlIl = (n|Il,A|Il) is a device with
index set I1 if n|Il is defined by. n]Il(ii) = n(il)

O } = . <1 «
and (AlIl)(i l) . A(ll,ll) for all i,,i} in I The

1t 1° 71 1
device DIIl is called the restriction of D to I,, and
D is called an enlargement of DlIl to. I, |

D1
There is an obvious functor U(Il) : éD > A 1 defined

as follows:
UL ¢ (4,8) v (A,0[1) and U(L) :a wea,

where @[Il is a family indexed by I, and defined by

1
(@]Il)(il) = ¢i,. Again, that (A,@IIl) is a Uill-algebra
is clear, as is the functorial nature of U(Il).

If U(Il) is an isomorphism, then'we‘say that- D is an

inessential enlargement of D|Il. Call two devices equivalent

if there is a device which is an inessential enlargement of each of
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them. We will see in 1.3.3 that equivalence is indeed an

equivalence relation,

1,3.2 THEOREM Let 0 be a device on A with index set I,
and let S(I) = ((ni,FDi);i ¢ I) be the derived family of

universal arrows to UD. Suppose I1 > I, and there is a family

S(Il) of universal arrows to UD indexed by I which, when

1’
restricted to I, is S(I). Let Dl be the device associated
with the family S(Il). Then Dl is an inessential enlargement
of D. Further any inessential enlargement of 0 may be

obtained in this way.

D

PROOF  Clearly Dl|I =D. We want to show that U = U(I) : A 1, A

is an isomorphism. = Notice first that if (nli1 P Xd, > Dlil,Fil)

is the universal arrow corresponding to i, in S(Il) then

Fi, = (Dlil,Al(-,il)|I) since Al(i,il) is the set of

morphisms from FDi to Fil.
That U is faithful is clear. To sgee that U is onto
objects, consider (A,0) in éD. Define @l by
d.i. = UDAP(Fi (A,3)) for all i, ¢ I
171 = 12 1 1°

D
Notice that ¢l|I =9, so that if (A,@l) e A 1 then

certainly U(A,@l) = (A,0). But



6yip0,(1,,1,) = s’ (F1, (4,0)) . v’a? (Fi,,Fi)

in

Pl re,, a,00) = 0) 1,

Further given any u : Xil + A, the fact that (nil,Fil)

is a universal arrow enables us to factor u wuniquely through

niy in ¢1il

To see that U is one-to-one on objects, consider

D
(A,Wl) in A l. It is sufficient to show for all il in

. _ DD, _.
Il that Wlll = U'A (Fll,U(A,Wl)). We know that

l 1° Al(i i) ¢ Wli But the morphisms in Al(i,il)

(i in 1I) are the structure maps of the D-algebra Fil

from Di, and so ¥, consists of D-morphisms from Fi,
to U(A,Y.). That is l 1 & C. UDAD(Fl U(A,%)). But as we
have seen above UDAP(F(—),U(A,W )) is a Dl—structure for A,

and hence by Lemma l 2.5 we have that wlil = UDAD(Fl U(A,Wl)).

D
Finally, to see that U : A L - ép is full, consider
ot (4,0) > (B,¥) in AV,
DD

UDAD(Fil,(A ®)) CU A (Fil,(B ¥)) which is clear.

We need to show that

The second part of the theorem is easy since if 01 is an
y D
inessential enlargement of 0 then U 1 is strictly isomorphic

D

to U . Hence corresponding to universal arrows to U L there

. D I . .
are universal arrows to U  which lead to the same device.

27
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1.3.3 COROLLARY Devices Dl and DZ in A are equivalent
D D. -
if and only if U 1 and U 2 are strictly isomorphic.

D D
PROOF If U 1 and U 2 are strictly isomorphic then, as we

remarked at the end of th; proof of 1.3.2, a family Sl
of universal arrows to U may be carried across via the isomorphism
to a family S2 of universal arrows to UD2 with the same associated
device as Sl’ It is clear from this and Theorem 1.3.2 how to
obtain a device D in A which is a common inessential

enlargement of Dl and Dz.

Next we give a theorem that allows us to reduce the object

family of a device while still retaining an équivalent device.

1.3.4 THEOREM Consider device D, If I, €¢I, and to each i

1
in I there is an il in Il and a split epimorphism Xil - Xi,
then DIIl is equivalent to D.
p Pl
PROOF To see that U(Il) tA > A is an isomorphism consider

Dl1
(A,0) in A l. Then if o  is the promised epimorphism from

Xi, > Xi (i¢11) for which there is a map B with oaB =1,
and Y 1is defined by Vi =‘¢il.DB and WIIl = ¢ then
(A,¥) 1is a D-algebra. Further it is the one and only D-algebra

going to (A,%) wunder U(Il). To see that (A,¥) 1is an algebra
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we first observe that

@il.A(i,il) = @il.A(i,il).Da.DB E_@il.A(il,il)DB = @il.DB.

The closure condition follows easily from this. Consider
Mo Xi-> A, There exists a ¢ in ¢il such that

¢.nil = Ua. Then ¢.DB.ni = ¢.nil°8 = paf = u.

Suppose for two maps ¢l’¢2 in ¢i, we have that

1
¢1.D8.n1 = ¢2.D8.n1. Then

¢1.DB.Da.nil = ¢1.D6.ni.a = ¢2.DB.ni.u = ¢2.DB.Da.n%.
and hence ¢rDB.Da = ¢2.DB.D0L° It follows that
¢IDB = ¢1.DB.Du.DB = ¢2.DB.Da.DB = ¢2.DB.

Suppose (A,Y¥.) 1is another algebra going to (A,%)

under U(Il). Then certainly Qil.DB E_Wli. But, as we have

seen, @il.DB is part of a structure for A, and hence
@il.DB = Wli. It is easy to see that U(Il) is full, and

hence is an isomorphism.

1.3.5 COROLLARY Given device 0, there is a subset Il' of

i! in I if Xi, = Xi! then i, = i!

I such that for all i1 19 1 1 1 1°



and further 0 1is equivalent to DIIlm

1.3.6 REMARKS Consider device 0 and a bijection
a Il + 1, If we define Ny by nlil = n(uil)
and Al by Afil’ii) = A(ail,aii) then Dl so defined is
a device which for most purposes is indistinguishable
from 7. Any statement about Dl can be trivially translated
into one about D, If we are prepared to overlook the
difference between these two devices then Corollary 1.3.5 states
that any device is equivalent to a device with a set of
objects.

Not all devices can be enlarged so that their object
family includes all the objects of the category in which they
are defined. For example consider the category described by

the diagram

a
Then the diagram A -~ B ;)]_ describes a device with one object

A, which cannot be enlarged to the object C,.

30
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§1.4 Devices and triples.

As we remarked in §0.6, any triple in a category A
arises from an adjoint pair of functors; and, as we know,
any adjoint pair leads to universal arrows from each object

of

x>

, and hence to a device with object set all the objects

of . Conversely any full device arises from an adjoint

>

pair of functors and hence from a triple, This suggests a
correspondence, which we make precise in the following theorem,

between triples and full devices in A.

1.4.1 THEOREM Let T = (T,n,u) be a triple in A, If we

define A(Al’AZ) to be {p A .Ta; o : A > TAZ}’ then

2 1
D = (n,A) 1is a device with object set all the objects of A.

Conversely, given such a device U in A we can define a triple
in A as follows: the functor T is defined by the requirementé

(@D) TA = DA and (2) if o : A, > A

1 2 then To € A(Al,Az) and

Toa.nA, = nAZ.a; the function n of the device D 1is then a natural

1

transformation from 1A to T U defined by uA € A(DA,A)

and upA.nTA = lTA is natural from T2 to T. These two

processes, from triples to full devices, and from full devices to

triples, are inverse to one another.



PROOF (a) To see that (n,A) . (as defined in the first part

of the statement) is a device, we observe the following facts.,

(1) 1, € A(A,A) since wA.TrA =1,. (2) If

€ A(Al,AZ) and € A(AZ,A3) then 6§, = pA,.To and

S1 Sy 1 2

62 = uA3.TB for some «,B. Further,

HA,.TB.uA,.Ta = uA3.uTA .TZB.Ta

3 2 3

aTZB.TOL

[}

uA, . TuA

3 3

= uAS,T(uABQTB.a) € A(Al’AB)'
(3) Given a : Ay > TA2 then (queTa).nAl = quonTAzaa = 0,
Furthermore it is clear that o determines the map uAZ.Ta in
A(Al’A2)°

(b) To see that (T,n,u) (as defined in the second part

of the statement of 1.,4.1) 1is a triple we need to consider the
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following facts. (1) T 4is well defined in view of the defining

properties of device. It is clear then, by a well known argument,

that- T 1s a functor, and trivially that n : 1 >~ T 4is natural.

(2) Again yu : T2 > T 1is well defined, by the definition of

device, Further u is natural since for each o : Al - A2

we have

2 B
uAZ.T a,nTAl = qu.nTAz.Ta = To = Ta.uAl.nTAl,



and since both uAZ.TZa and Ta.uAl

we may cancel the nTAla (3) That u.nT = lT follows

belong to A(TAl,AZ)

immediately from the definition of . 4) Since for each

A € A we have

A.nA

HA.TnA.nA = pA.nTA.nA = lT

and both uA.TnA and 1TA belong to A(A,A), we may cancel

nA to obtain w.Tn = lT. (5) Finally, since for each object

A in é

uA.TuA,nTZA = YA, nTA.nA =pA = uA.uTA.nTZA

and since both upA.TuA and uA.uTA belong to A(TZA,A),

we may cancel nT2A to obtain uy.Ty = p.uT,

(c) To see that the two processes described in the
are inverse, suppose first that (T,n,u) is taken by the

process to (n,A) and this device is taken by the second

(Tl,nl,ul). We notice'immediately that n, = n and that T

"1

on objects is the .same as T on objects. Now Tla for

is the unique map in A(Al,AZ) satisfying T.,a.nA

1

Further A(Al,AZ) = {uAZ,TB; B : Ay~ TAZ}’ so

1

theorem

first

to

1
o.: A

= nAz.a.
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To = pA. . TnA,.Ta = quaT(nAz.a) £ A(Al,AZ).

2 2

= nA,.o we must have Tlu = Ta. Finally ulA

Since Ta.nA 2

1

is the unique map in A(TA,A) satisfying ulenTA = lTA'

Clearly upA satisfies this equation and further
uA,T(lTA) = pA € A(TA,A). So (Tl,nl,ul) = (T,n,u).

Secondly, suppose that the second process takes the device
(n,A) to the triple (T,n,u) and the first takes this triple to
(nl,Al). Again, it is clear that ny; = n. Now Al(Al’AZ) =
{uAZ.TB; B : Al > AZ} and HA,. T8 belongs to A(Al,Az). Hence
Al(Al,AZ) E.A(Al’A2)° Given § ¢ A(Al,AZ) there exists a »

61 € Al(Al,Az) such that §,.nA;, =.6.nA Since §. ¢ A(Al’AZ)

1" 1° 1

this implies that 61 = §, and hence Al(Al’AZ) = A(Al,AZ).
Thus the two functions are inverse, and we may speak of the

triple in A corresponding to a full device, and vice versa.

1.4.2 THEOREM 1If 0 is the full device in A corresponding

to triple T, then UD is strictly isomorphic to UT.

PROOF We construct a pair of functors L : éT - =D and
L' : AD -> éT such that UDL = UT, L'L =1 and LL' = 1.

The functor L is defined by:

L: (a: (Al,¢l) > (A2,¢2)) s (ot (A1,®l) > (AZ’QZ))’
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where QjA = {¢.Ty; v : A~ Aj} (j = 1,2)., The functor

L' 4is defined by:
L' : (o (Al,Ql) > (AZ,QZ)) v (o s (Al,¢l) > (A2,¢2))

where ¢j is determined by ¢j £ QjAj and ¢j.nAj = lAj (G =1,2).

To see that L 1is a functor, we need to check first that if

D

(A ) € éT, then L(A ) € A", @D Any

1291 1241
§ ¢ A(A',A) 1is of the form uA.TA for some X : A' + TA, and

any Y € oA 1is of the form ¢.Ty for some vy : A > A.. Hence

1 1

P8 = ¢.Ty . uA.TA = ¢.uAl.sz.TA = ¢.T¢.sz.Tk

and so @lA.A(A',A) S.QlA" (2) For any v : A~ Al we have
¢.Tv.nA = ¢.nAl,v = v and clearly ¢.T» is unique in ©¢A
satisfying this equation.,

We also need to check that if a : (Al,¢l) > (A2,¢2) is
in éT tﬁen o s (Al,él) -> (AZ,QZ) is in 'év, But notice
that for any vy : A > Al we have a.¢leTY = ¢2°Ta.Ty, and so
a.@l(A) S_@z(A).

Similarly, to see that L' is a functor, first consider

L'(A,9) = (A,0). Clearly o¢.nA = lA. Further ¢.T¢p.nTA =

d.nA.d = ¢ =¢.uA.,NTA and we can cancel the morphism nTA to
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complete the proof that (A,¢) belongs to éT. Consider
D
ot (Al,él) > (Az,éz) in A", and let L'(a) =

a e (Al,¢1) > (A2,¢2). Then
¢5.TaunA, = ¢2.nA2.a =g = u.¢l.nAl.

We can cancel the morphism nAl‘ to see that L'(a) is a
morphism in éT.

Finally, let (A’¢l)‘ be the image of (A,¢) wunder L'L
and let (A,¢l) be the image of (A,9) wunder LL'. Then ¢,

is the unique map in {¢.Ty; vy : A > A} satisfying

¢l.nA = lA. The map ¢ clearly has these properties, so
(A,¢l) = (A,9). Further @lAl = {Y.Ty; vy : Al > A}
where ¢ ¢ ¢A and Y.nA =1, and so ¢1Al S_@Al. This

is enough to prove that (A,@l) = (A,9). Hence L and L'

are inverses.

1.4,3 REMARKS It is clear from 1.3.2 and 1.3.6 that a
device U 1is equivalent to (the full device corresponding to)

a triple if and only if UD has a left adjoint; In fact, in most
interesting cases UD does have a left adjoint, so one might
suppose thal nothing is gained by discussing devices rather than

triples. However many of the theorems and concepts of this thesis
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are not "preserved under equivalence" since they make essential
use of properties of the families of objects of the devices
involved. This might be considered the special advantage of our
approach.

Notice that (the forgetful functor of) the Kleisli category
of a full device, as defined in 1.2.3, is strictly isomorphic to
(the forgetful functor of) the usual Kleisli category, defined in
[15], of the corresponding triple. One could prove thisvby
producing an explicit isomorphism, or by using the two comparison
theorems, namely our Theorem 1.2.6 and the observation of Huber
[12]. This second method of proof could have been employed for
Theorem 1,4.2, using in this case the comparison theorem of (61,
but we preferred to give the above explicit verification

independent of [6].

§1.5 Morphisms of devices.

In this section we defined and discuss morphisms between devices

with the same object family.

1.5.1 DEFINITIONS Consider devices Dl = (nl,Al) and
DZ = <n2’A2)’ both with the same index set I and object

family X. Then a morphism from Dl to D, is a family of

2

maps (Ai; i ¢ I), where Ai : Dli > D,i, satisfying for all

i,il eI
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(1 Aiongi = n,di, and

(2)  Ag.8,(,10) € A, (E,1)) 00,

The category of devices in A with object family X, where
the composition of morphisms is the obvious one, will be
denoted by Qgg(é,x), or just Qgng) or Dev when these
are unambiguous, Notice that if I is small and A is in Cat
then Qggjé,x) is in (Cat. There is a clear forgetful functor

U : Dev(A,X) ~ éI defined by

U: (A (”l’Al) - (nz,AZ)) s (A e Dl > DZ)‘ i
When X is the set of objects of A, we would like to see that

morphisms correspond to morphisms of triples.

1.5.2 THEOREM If Dl’DZ are the full devices corresponding to

triples Tl’TZ’ then ) : Dl > D, is a morphism from

Dl to 02 if and only if it is a morphism from Tl to TZ’

PROOF Consider morphism A : Dl > 02. Now for any

2

AAZ.Dla = G.XAl say, and hence

o ¢ A1 > A2 in A we have )A .Dla € AZ(Al’AZ);AAl;v that is
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S,nzAl = S,AAl.nlAl = AAZ.Dla.nlAl = AAz.nlAz.u = nZAz.a
= Dza.nzAl.
It immediately follews that Dza = §, and so
AAZ.Dla = Dzu.AAl. Hence )X is natural from T1 to T2.

Further, for any A in A we have

A.TZAA.AT A.n T A = uzA.T

Mo 14115 MM 272

Also AA.u,A.n.T_A = AA, Now there exists a morphism
17171

AZ(T1 A,A) such that AA.ulA = G.ATlA. Then

uzA.TZXA.nZTlA = G.ATlA.anlA = G.nleA

and so uzA.TZAA. = 5. Hence as required

uzA.ATZA.Tle = uZA.szA.ATlA = 6.AT1A = AA.ulA, and so
is a triple morphism from Tl to TZ'
Consider morphism X : Tl > TZ' To see that

AA (A AZ) c A (A A2).XA for all A ,A, in A,

2+01(4ys B8y, 1 124

remember that Aj(Al,Az) = {ujA .Tja; a : A~ TjAZ}

2 1

Then the inclusion follows from

AAZ.ulAZ.Tlu = uzA T AA AT A .T.a

AM.n. T A =u2A.n T AMA =

AA,

in

A

(G =1,2).

AT AA . T 0. AA

20 B AR & T MRy e Ay ety 1°
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1.5.3 DEFINITION = The category Alg(A,X) has as objects
categories of algebras ép together with specified devices D

where the devices are required to have object family X,

2 D

A morphism from A to (where the devices are understood)

2 0, 2

A
DZ
is a functor G : é -> é such that U G =10U ", Such functors

are called algebraic functors.
1.5.4 THEOREM  (Alg(A,X))°P = Dev(4,X).

PROOF We define functors K, from categories to devices, and

1
KZ in the opposite direction. They are the obvious functions
on objects, namely Kl(év) =70 and KZ(D) = év. Given an
Dl DZ -

algebraic functor G : A~ >~ A, we form a morphism

KlG =)\ DZ - Dl as follows: to each Xi € X we solve the

diagram
n,i
Xi<————ié————> Dzi
I
:Ai
n,i v
1
Dli
Dl
for Xi, a structure map of GF "1i. We check that A so defined
D
is a morphism of devices. The structure of GF li is
DZ DZ Dl
A “(F "(-),GF "i) = ¢, say, so clearly Al(il,i).kil C oi

1‘




Further, given any ¢ ¢ ®il we can solve the outer triangle of

¢.nyiy -

for 6 ¢ Al(il,i) and hence, by uniqueness, ¢ = G.Ail and

@11 = Al(il,l).kll. Now, since Ai e ¢i, we have

Ki.Az(ll,i) E_@ll, and so Al.Az(il,i) E_Al(il,i).kil.

It is easy to see that K. 1is functorial.

1
To define K, on morphisms consider X : D. - D,. Then
2 D D 1 2
KZA is the functor H : A 2 > A L defined by

H: (@i (A,0) > (4,,0,)) s (ot (A1,00) > (A,,0,0)).

To check that (A,%\) is a Dl—algebra if (A,®) is a

Dz-algebra, note first that

o108 (1),1) € 01,4, (1 ,1) My € o1 .

1 171
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Further for any u : Xi > A we can solve for ¢ € 1 1in the outer

triangle of
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and hence 1y factors through i in ¢i.xi. The

]

uniqueness is clear,

Finally we shall prove that K1 and K2 are inverse to

each other. On objects this is trivial. Consider

. Then X,1i 1is the structure
1 1 D
map of KZA(F li) satisfying Kli.nli = nzi. But KZA(F li) =

P Dl - 02 and suppose KK =2

(Dli,A(-,i).k(-)), and so Ai 1is such a structure map. Consider

1 DZ
~ A 7, and suppose K2K1G = Gl'

We only have to check Gl on objects since its action on morphisms

D
algebraic functor G : A

is then determined. Now Gl(A,Q) = (A,%)) where )i is in the
D

structure of GF 1i and Aianzi = nli. But an argument similar

to that in the first paragraph of this proof establishes that the

structure of G(A,®) is ¢A. Hence G = Gl'

Of course this theorem has as a special case the corresponding

statement for triples given, for example, in [23] p.39.

The next theorem shows that every algebraic functor is the forgetful
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functor associated with some device,

’ D
1.5.5 THEOREM Given any algebraic functor G : A =~ + A

DZ DZ DZ
there is device D3 in A with object family F ~ = (F i3

Dl DZ D
such that A is isomorphic to (A

iz € Iz)

) 3, and G 1is strictly isomorphic

D | D
to U 3. Conversely, given any device 93 in A with object

D
family F 2, then there exists a device Dl in A on X2 such

Dl DZ 03
that U is strictly isomorphic to U "U 7,

PROOF  Consider the situation in the first part of the statement.

By Theorem 1.5.4 there is a morphism X : DZ > Ul corresponding

D
to G. Now we define a device D3 in A 2 as follows:

D D ‘
put n3i : F 2i + GF li = Ai for all i in the common index set I

Dl Dl
of Dl and DZ’ and take A3(1,11) : GF "1 > GF ‘il to be

Al(i,il). To see that 03 is a device, notice that for any

D D D

D,-morphism u : F 2i -+ GF l;P since GF li

" = (01,8, (=1 A=)

1 171’71

is a Dz-algebra, then, by Theorem 1.2.1, the morphism . u is
of the form §.Ai with & in Al(i’il)' The uniqueness of

§ follows by considering the equations
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S.nli = Gaki.nzi = u.nzi

and the properties of device Dl'
D, D D

The isomorphism L from (A 2) 3 to A 1 is then

defined by

L : ((A,0),¥) s (A,¥), and

L : o v g .

To justify this definition we first show that if ((A,®),¥) is

DZ 03 ‘ Dl
in (A7) then (A,¥) is in A", The closure condition

for algebras is clearly satisfied by (A,Y¥). Consider any
p ¢ Xi > A, Then there is a ¢ € i with $.nyi = u,
and corresponding to the Dz—morphism ¢ there is'a ¢ e ¥i such
that ¢.A1 = ¢. Heﬁce there is a ¢y in V¥i with
w.nli = U, The uniqueness of ‘w is easily checked.
Notice that we have the inclusion &i C ¥i.xdi.

Further, as we have seen in our proof of 1.5.4, Ai 1is a
P &1
Dz-morphism from F "i to GF "i and, since Vi consists of
D
Dz—morphisms from GF li to (A,%), we have that Vi.)i ¢ ¢i and

hence ¢i = V¥i,\i. In the opposite direction it is easy to check
0y DZ D, :

that if (A,¥) € A 7, then ((A,¥)\),¥) ¢ (A ") ~. Hence L'

D D 03 B -

é 1 -> (é 2) defined by
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L' : (A,¥) v ((A,¥0),¥) and

L' : a v g

D
is the inverse functor of L. Clearly GL =1U 3

Now consider the situation in the second part of the theorem.

We define device Dl with object family X,
D

.. . c (arr 2p g .
Ny, ¢ X212 > D112( U D312) equal to n312.n212, and put

in A as follows:

put
. s 1 = . [ .

Al(lz,lz) A3(12,12). We need only check the universality

condition.  Given wu : X,i, - Dlié’ consider the diagram

n,i n.i D
. 272 372 2
X1, ————> Di, ——=—> U “D,i,
I 7
Ve
! s
I /
¢ s
7
u : L7 8
//
v y2
1
D1y

D .
We can find ¢ : F ziz - D3i£ so that the left~hand triangle

commutes., Then we can find 6§ ¢ A3(iz,i£) so that the right-

hand triangle commutes and hence G.nli2 = u, The uniqueness of

§ 1is easily checked., Now it is not hard to see that Dl’DZ’ and
D3 are in the same situation here as in the first part of our
proof, with Ny here taking the place of A. That is, that

ny is a morphism from DZ to Dl’ and that DB here has the
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properties which determined 93 in the earlier section.,

Hence we may use the proof of the first part of the theorem to

2 3 DZ Dl
conclude that U .U is strictly isomorphic to U ".G =T

where G 1is the algebraic functor corresponding to the device

morphism Nge

T would not exﬁect the triple~theoretic version of the first
part of this theorem to be true; namely, that élgeﬁraic functors
between categories of algebras of triples are themselves
tripleable. Thefe are, of course, theorems in this direction,
for example in [20]. As far as the second part of the theorem
is concerned,bit is certainly not true that the product of

tripleable functors is tripleable.

'§1,6 Operations.

We have not made any mention so far of the notion of operation,
which is, of course, basic to cléssical universal algebra, In this
section we introduce a generalized notion of éperation which
corresponds to the usual one in the case of Sets. We shall see that
in terms of this notion some of the concepts introduced otherwise

in this thesis have a more familiar appearance.

1.6.,1 DEFINITIONS Let Z be a specified set of objects in

A, and D a device in A. Then any map w  from some object
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Zl in Z to some object Di (i € I) is called a formal

operation of D or just an operation of D. Then given a

D- algebra (A,9)

A the operation corresponding to w in A

o

is the map

3

>

: A(Xi,A) » é(zl,A) defined by

w, : d.ni A ¢w for all ¢ e o1,

>

A formal operation w with codomain Di is called Xi-ary,
and we write aw = Xi. The set Z 1is called the ‘base of the

operations of U,

The idea is to keep Z fixed in the category A. For example,
in Sets, to get the usual notion of operation, take Z = {1} where
1 is some singleton@' Certainly then to each w.: 1> Di we

get a conventional Xi-ary operation Wy

Usually we shall need extra conditions on Z to have behaviour which

in any algebra A.

simulates the usual behaviour of operations. We give here two

examples of the use of operations.

1.6.2 THEOREM Suppose Z 1is a generating set in A,
Amap o : A~> B is a D-morphism from (A,%) = A to

(B,¥) = B~ if and only if, for each i e I, and each Xi-ary
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operation w of 0, and each p : Xi > A, we have

aeyé(u) = Yg(uu).
PROOF If o is a D-morphism and ﬁ = ¢.,ni (¢ € ¢i) then

certainly

aové(u) = a¢w =,W§Fae¢,ni) =,Y£(au)
since o¢ € ¥Yi, Conversely, suppose o satisfies this‘equation
for all w and all u : aw - A, Then, if for any ¢ ¢ oi we

have a.t¢.ni =y ni (b e ¥i), it follows that

adw = aowA(¢.ni) =.wB(un¢oni) = YW .

Since this holds for any w, and Z:  is a generating set, we may

cancel the w to get o.¢i ¢ ¥i, and hence o 1is a D-morphism,

1.6,3 ~THEOREM Suppose that Z is a generating set in A

and that Dl and DZ are devices in A with index set I and
with common family of objects X, _Then a family of morphisms
01 Dli - Dzi; i € I) is a morphism of devices if and only if

for each 1i, il e I, (1) Mien,i = nzi and (2) for each Xi.-ary

onl l

operation w of D and each yu : Xil + D;i we have
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AlowFli(u) = (Xilow)in(Alou),

Dl DZ
where we have written F i as Fli and F "1 as in.

PROOF If A 'is a device morphism and ﬂ = Gnnlil where

§ € Al(il,i), and Ai.$ 6',Ail for some &' ¢ Az(il,i)

then certainly

. ' = 1 .
MWy i(u) AM.S.w = 8 AW (Ailow)F i(aonzll)

1 2

n

(All.W)in(Xiaﬁonlil) = (xil.w)in(xi.p)o
Conversely, if A saﬁisfies this equation for all operations

w in D and all appropriate maps u : Xil - Dli, then for any

§ € Afil,i) we have

A. 8w = AiowFli(Ganlél = (Xilaw)in(Aicéonlll)

= 1 = ] .
(Xilow)in(G anzil) §ToAi W
1 . . . . . . . = 1 .
for some &' ¢ Az(ll,;) determined by Atedangiy = 6'enyise
Again, since this holds for all operations w, and Z is a
generating set, we can cancel the w to obtain

Ai.Al(ll,i) E.Az(ll,l).Xile
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§1,7 A global description of devices and algebras.,

Essentially we have described devices and algebras set-theoretically
and internally in a category A. In this section we give a
categorical and external description of devices and algebras.
Our field of operation is the 2-category, Cat, although some of

our discussion applies to an arbitrary 2-category.

1.7.1 DEFINITIONS Let A be a vertex of 2-category A, Then

the 2-category of vertices over A, denoted Q/A, is defined

as follows, Its vertices are arrows with codomain A; if

G, : B, >A and G, : B, >~ A are two vertices of A, then an
1 1 2 2 A

arrow (n,H) : Gl > G2 is an arrow H : B1 > B2 and a

2-cell n : Gl - G2H° A 2-cell in é/A from

(nl,Hl) : G1 -> G2 to (nZ,Hz) : Gl > G2 is a 2-cell of é
uos Hl - H2 such that qu.nl =Mn,. If My g,(nl’Hl) - (nz,Hz)
Gl - G2 and My d (Al,Kl) - (AZ,KZ) : G2 > G3 are 2-cells in
é/A, then their strong composition is defined to be

* . .
oyt OH on K H)D) > QLHyon, ROH)) 2 G > Gy If
Mg 3 (nZ’HZ) > (n3,H3) : G, > G, is another 2-cell in A/A  then
the weak composition of My and Mg is defined to be u3.ul :
(nl,Hl) > (n3,H3) : G~ ng We can visualize these 2-cells

as diagrams



Strong composition amounts to pasting two of these together

at a common vertical edge; weak composition amounts to pasting
together at a éommon vertical face, (In the definition of A/A,
we could just as easily have taken the arrows to be things like
> G

(n,H) Gl - G2, where n : G,H +- G, rather than n : G H,

2 1 1 2
However, we are not interested here in this alternative meaning
for A/A.)
It is not hard to verify that A/A 1is a 2-category.

There is a corresponding definition of A/é, the 2-category of

vertices under A,

Its vertices are arrows with domain A; its arrows from

G, : A~>B

1 to G, : A~ B, are diagrams like

1 2 2

51
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A
¢,
\2
-B
. 2

(Notice the direction of the arrow,) It is clear what the 2-cells
and compositions must be, (Again there is an alternative meaning
available for A/é; again we are not interested in this meaning
here.)

Notice that a "triangle", that is, a diagram of the form

can be regarded both as an arrow in A/% and as an arrow in %/B“
Hence we shall use the non-committal notationw.(n;Gl; G2,G3)
for such a triangle. Unless we state otherwise, if Tl and T2
are triangles, then TZ*Tl is the composite under the strong

operation in A/A where A is the common "apex" of Ty and TZ'

The basic notion we need for our global description is the

"initial triangle".
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1.7.2 DEFINITION An initial triangle in a 2-category A

is a triangle

NG

A€—38
U
which when considered as an arrow in é/A is initial in the

category A/A(X,U). The vertex I is called the apex of T.
g ¥

1.7.3 EXAMPLE 1In Cat if we take I to be a set and
U:B~>4A a functor with a family of universal arrows to it,
indexed by I, namely ((Xi—ﬂi*~UFi,Fi); i e I), then

(n,X; F,U) 4is an initial triangle, Furthermore, any initial
triangle in g%&, with I being a set, is of this form. We will

prove this below. This clearly allows us to attach to any

initial triangle (with I a set) a device D in A.

PROOF Consider a triangle T constructed as above from
universal arrows. Consider any other arrow

(n',F'") : X+ U in Q%E/Q(X,U). Then to n'i : Xi » UF'i,

by the properties of the universal arrow (ni : Xi - UFi,Fi),
there ig a unique &i : Fi > F'i such that Uéini = n'i. That

is, there is a unique natural transformation & : F > F' such that
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Ué.n =n'. This is precisely the meaning of initial in

S%E/Q(X,U), The other statement in the example is now clear.

We next consider initial triangles in which the apex

I is fixed as arrows in the 2-category I/é.

1.7.4 THEOREM Initial triangles with apex I form a category
with respect té the strong composition in I/ég * Further, if T

*
and T, are arrows of I/é, and both T, and T, Tl are

initial triangles, then so is TZ'

PROOF If H: I > A is a vertex of I/é then it is easy to see

that (1H,H; H,lA) is an initial triangle. . Consider two initial

triangles Tl = (nl,Gl; GZ’Hl) and T2 = (nZ’GZ; G3,H2),

where G, : I>A, G, : I>B and G, : I > C. Then T._*T

1 2 3 2 71
is (Hpnyen sy GpHiH)).  Let (u,K) @ G > HiH,
be any arrow in é/A(Gl,HlHZ). By the fact that Tl is an
initial triangle, there is an § : G, » HZK such that ng Ny = He

Now (&,K) : G2 > H2 is an arrow in é/B(GZ,HZ) and hence, éince

T, 4is an initial triangle, there is an g' : G, > K such that

3

Hy6'en, = &. Then

1 = ' = =
HlHZg .Hlnz.nl = Hl(HZE 'nZ)fnl = ng.nl = U.
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The uniqueness of &' follows from the uniqueness at each stage.
For the proof of the second statement of the theorem

consider triangles Tl and T2 as above, but assume only that

Tl and TZ*Tl are initial triangles. Then consider

(ul,Kl) : G2 - H2 in é/B(GZ’HZ)' Clearly

(Hlul.nl,Kl) : G, > HH, dis in é/A(Gl,HlHZ) and hence, since

T,*T; 1is initial, there exists an & Gy > K; such that

HlHZE.Han.nl = Hlul,nl; that is, such that

Hl(H2g°n2)‘nl =‘Hlpl.n1. By the uniqueness property of initial

triangle Tl we have H25.n2 = Hqe The uniquenesé of & is

clear,

1.7.5 DEFINITIONS Given an arrow G : I > A we define a
category It(G) as follows. Its objects are initial triangles
1 to '1‘2 =

(nz,G; HZ’KZ) is a triangle T =,(1’H1; H2,K) such that

T*Tl = TZ' The composition of morphisms in It(G) is also the

like T1 = (nl,G; Hl’Kl)' A morphism from T

strong composition in I/é.

In this category we want to consider the notion of "local
initial object" and the dual notion of "local terminal object".
By a local initial object in a category A we mean an object A
such that given any diagram

A
o)
B+—C

B
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there is just one map from A to C.

We say that A has enough local initial (terminal) objects
if to each B in A there is amap A~> B (B > A) where A 1is
a local initial (terminal) object.

The local terminal objects in 1t(G) are called Kleisli
triangles or KL-triangles and the local initial objects

are called Eilenberg-Moore triangles or EM-triangles.

1.7.6 LEMMA If A has enough local initial objects then it
is a union of disjoint subcategories in such a way that each
local initial object is initial in the subcategory containing

it,
PROOF Clear.

1,7.7 THEOREM If we define 1t(G) in Q%E where the domain I
of G 1is a set, then there ére enough local initial and terminal
objects. Further, eacﬁ of the subcategories Sf It(G) described
in 1.7.6 consists of all the initial triangles corresponding to

some device (see 1.7.3).

PROOF First we prove that if T : T, >~ T, is a morphism in It(G)
then the device corresponding to Tl is the same as the device

corresponding to T For let T, = (n,G; H,K) and

2.
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and T = (lH,H; J,L) where H=H :I->3B and J =

J :I~>C. Then T, = (n,G,J,KL) and the device corresponding

to Tl is (n,KE(H-,H-)), and that corresponding to T2

is (n,KLC(J-,J-)). Clearly KLC(Ji,Ji,) € KB(Hi,Hi) (i,i; e I).

1
Consider ¢ ¢ E(Hi,Hil). By Theorem 1.7.4 the triangle T 1is

initial, and so there exists a morphism +y : Ji > Ji, with

1

§ = LY'lﬂi = Ly. Hence the two devices are the same.
We next remark that Theorem 1.2.6 states that if D

is a device in A, then the triangle (n,X;FD,UD) is a local

initial object in It(X) and (n,X;F ’UD) is a local terminal

object, This is easily checked. In fact, Theorem 1.2.6 tells

us more; siﬁce every initial triangle in Jt(X) has a suitable

device associated with it, we see that It(X) has enough local

initial and terminal objects.

1.7.8 THEOREM 1In Cat, Eilenberg~Moore triangles with -apex I,
a set, form a category with respect to the strong composition in
I/é. Further if Tl and Tz*Tl are EM-triangles, then so 1is

TZ'

PROOF In view of Theorem 1.7.7 this is just a restatement of

Theorem 1.5.5,
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1.7.9 DEFINITIONS The category EM(G), where G is the arrow
G:I~>A in A, has objects the EM-triangles in It(G) and
morphisms from Tl to T2 the triangles T with T*T1 = T2°

The category KL(G) has objects the KL-triangles in It(G),

and morphisms from Tl = (nl,G; Hl,Kl) to T2 = (nz,G; HZ?KZ)
are triangles T = (u,Kl; L’KZ) such that T*Tl is T2 where

the composition is the strong composition in Q/A.

1.7.10 THEOREM 1In Cat, if X : I > A is a functor with

domain a set, then KL(X) is equivalent to EM(X).

PROOF  The full subcategory K of KL(X) with objects being
initial triangles (n,X; FD,ﬁD) is equivalent to KL(X),

and the full subcategory E of EM(X) with objecté being
(n,X,FD,UU) is equivalent to EM(X). If we show that K is
isomorphic to Dev(A,X) and EOP is isomorphic to Alg(A,X),
then by Theorem 1.5.4 we will have the required result,

The objects of K and Dev(A,X) are in obvious one-to-one

correspondence; namely, Dl = (nl,Al) corresponds to

T, = (n,X,Fpl,UDl). Let A be a morphism from Dl to DZ'

1

Then we can define a functor H : éD > éD as follows:
1 2
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H Fn i F, i
Dl 2

8 V> 8!

F, i Fq i

Dl 1 D2 1

where kil.d = §'.A1. That there is such a §' follows since
X 1is a morphism of devices, Thaf §' 1is uniquely determined
by this equation follows from the observation that

6'.Xi;nli = 6'.n2i and the properties of devices. It is easy
to check that H is functorial, and that X 1is a natural
transformation from UD to UD'H' Clearly also H'FD =

F
1 2 1%

and AFDl.nl = Ny Hence TA = (A,UDl; H’UD ) is a morphism

in K from TD to TD . The function defined by

1 2
D T
1 Dl
Al A TA
D T
2 DZ

can be shown to be functorial, and, in fact, an isomorphism from

Dev(A,X) to K.

The objects of Alg(A,X) and E are in obvious one-to-one
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cbrrespondence; namely, éD corresponds to TD = (n,X; FD,UD).
- Dl DZ
Consider an algebraic functor G : A~ + A 7, Since
DZ DZ D
T ™ = (nZ,X;F ,U ") is an initial triangle, there is a
DZ D
(unique) natural transformation & : F —=G.F such that
DZ G DZ Dl
U E.nz =n;. From this we see that T = (§,F "3 F 7,G)
DZ Dl
is a morphism from T to T ~. Again, the function from

Alg(é,x) to EOP defined by:

D D
é 1 T 1
G N> TG
D D
é 2 T 2

can be shown to be functorial and an isomorphism.

It is clear now that the use of the notion of Kleisli
triangle instead of device, and Eilenberg-Moore triangle instead
of category of algebras, leads to a global and more suggestive
description of the basic notions of this thesis.

If we remove the restriction in the preceding discussion that
I be a set, then we do not necessarily have that enough local

initial objects exist,
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In the final theorem of this section we give a "structure-
semantics adjointness" theorem, which is a generalization of a
theorem of Maranda [25]. For a very general discussion of
structure-semantics adjointness theorems see Linton [21].

First we need a new category.

1.7,11 DEFINITION Let G : I » A be an arrow in A.

Then the category II(G) is defined as follows:

its objects are initial triangles of the form

T, = (nl,G; Hl,Kl). A morphism from Tl to T, = (nZ,G,Hz,KZ)

is a triangle T = (n,Hl; HZ’K) such that T*T1 = TZ'

1.7.12 THEOREM If X : I - A is a functor in Cat with
domain a set, then EM(X) is a coreflective subcategory of

,:I;I;(X) o

PROOF  Clearly IM(X) 1is a full subcategory of II(X).

Consider an object Tl of II(X). By Theorem 1.7.7, there is an

EM-triangle E and a morphism T : E, > Tl in It(X).

We will show that this map ‘T is the coreflection of Tl.

Suppose T2 : E2 + Ty 1is any morphism in IT(X) with domain
an EM-triangle. Now again by Theorem 1.7.7, T2 factors as
T'*E3 where T' is an It-morphism and Ey is an EM-triangle.

(By an It-morphism I mean a triangle whose first component is an

identity natural transformation.) Hence we have the situation
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. ‘ r . * N
Now both T : El - Tl and T' : E3 E2 > Tl are morphisms

in It(X), and by Theorem 1.7.8, E3*E2 ‘'is an EM-triangle.

Hence there is an isomorphism T" : E,*E, > E, in LX)

with T*T" = T', ., Then T"*E3 :E,>E is a morphism in

IT(X) with T*(T"*E3) = T2. That E = T"*E3 is unique

with this property follows since any other E' : E2 - El
with T#*E' = T*E is first of all an EM-triangle, by Theorem

1.7.8, and hence E and E' are isomorphic, say E' = T,*E,

Clearly Ta*E*E2 = E*Ez, and hence T, =1 and E' = E,
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CHAPTER IT

ALGEBRAYWITH DEVICES

In this chapter we discuss some notions and results of conventional
universal algebra in a tategory A equipped with a device D . In most
of the chapter we need to impose conditions on- A and X ; that is, on
the functor X : I - A . We consider algebra in the 'basic situation",
the conditions for which are given in section 1, and algebra in the
"elaborate situation", which is discussed in section 2. Our main
adjoint functor theorem is in section 1. In section 3 we develop some
theorems which help in recognizing when a functor is strictly isomorphic
to UD : é?t+vé: for some device 0 . 1In the final section of the

chapter we give a version of a theorem of G. Birkhoff on the

subvarieties of a variety.

§2.1 Algebra in the basic situation.

2.1.1 REMARK Suppose there is a morphism o : A1 -> A2 in A such

that there are no morphisms from any objects in X to A Then

9

clearly a : (Al,ﬂl) > (A2,¢2) is a morphism in é?W‘if $. and ¢2

1
are the empty structures (which are of course the only possible

structures on A1 and A2 ). In other words, in regions of A

inaccessible to X the objects and morphisms are reproduced exactly
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in é? . Hence it would seem that the most natural conditions on

A and X would involve only the fegion of A that can be reached
from X . For example, in proving that Upﬂ has a left adjoint one
should not need any information about the remote regions of A .
However in this thesis, for the sake of simpler presentation, our
theorems are stated in terms of stronger, and less natural conditions.

The first result is true quite generally.

2.1.2 THEOREM The functor UD : é? + A creates limits.
PROOF  Consider a functor L : c~ é? and let A : A > Upﬁ " be a

D

limit of U'L in A (where A : C~+ A is a constant functor).
Let @C be the structure of‘ LC for C in C . Then we form an
algebra (A,®) (confusing A with its image) b& taking ®i to be
all ¢ : Di »~ A with AC.¢€E¢Ci for all C in C . Clearly if
(A,®) 1is a D-algebra then the morphiSm AC is a D-morphism from

(A,8) to LC . We have that Ac.cpi.A(il,i) Co and

. . c
Cl.A(ll,i)__ QCil

hence @i.A(il,i) < ¢i, . Further, consider a : Xi > A . For each

CEC there exists a ¢CE o such that ¢C.ni = AC.a . Let

§ : (AC,QC) -> (AC,,QC,) be the image of a map in C under L . Then
§.4C.ni = §.AC.a = AC'.a = ¢C'.ni . We can cancel the map ni to
show that ¢ : Di » UDL is natural, and hence there is a map vy : Di > A

such that AC.y = ¢C for all CEL . Clearly we have that Y€ ¢i and

y.ni =a . The uniqueness of y with this property follows, since if
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y'.ni = o then AC.y'.ni = AC.a = ¢C.ni and hence AC.y' = ¢C .

To see that X : (A,0) » L is a limit of L , consider any
p : (B,I) > L . Then there is a unique T : B > A such that
puC = AC.t for all CE€C . This morphism <t is a D-morphism from
(B,I) to (A,%) since AC.7,li = uC.Ti < 0.3 and hence T.TH C oi .

Suppose &' is another stfucture on A such that the maps
AC (CE€L) are D-morphisms. Then ¢'i € ¢i (i€I) , and so o' = ¢ .
| We introduce the five axiomé for the basic situation (BS) in
two parts, as we need to develop extra notions to express some of them.
Those theorems which hold in the basic situation are indicated by
writing THEOREM (BS). It will be obvious that many of them hold

under much weaker conditioms.

2.1.3 AXIOMS BS(1) A is in Cat , and the index set I of X is

a small set.
BS(2) A is small complete.

BS(3) For any object A in A there is a small representative

set of monomorphisms with codomain A . That is, if {uj t A, > A JET}

A

is the set of monomorphisms with codomain A , then there is a small

set K<€ J such that to each j€J there is a k€K and an isomorphism

B Aj > A such that ak.B =, .

k j

2.1.4 DEFINITION Let (uk : Ak + A ;3 k€EK) be a family of morphisms

with codomain A . Then let B : B > A be a monomorphism such that
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each oy (k€K) factors through B8 ; that is, there exist maps

(k€K) such that a, = B.y, . Let {Bj : Bj ~A 3 J€EJ} Dbe the

set of all such monomorphisms B . Then the intersection of

Yk

'{Bj ; J€EJ} (determined up to isomorphism) is written as

U a U (Ak_,ak_) + A , and is called the union of the family
k€K k€K

(ak ; KEK) . In the basic situation the union does exist since we

can choose a small representative set S of morphisms in '{Bj ; J€EJY .

The intersection of S , which is a small limit, is then easily seen

to be the intersection of {Bj ; j€JL

2.1.5 THEOREM (BS) Consider families of morphisms (Bj : Bj + A 3 J€J)
(Y, : C, > A 3 kEK) . Then

(1) there is a unique morphism qj B, > U (Bj,Bj) such

1 1 jeg

that U B..q. =B, 3 . further U q.

13

(2) 1if to each 3jF€J there is a k€K such that Bj factors

through Yy o then there is a unique morphism u : U (B,,8.,) - U (C

3 Yy )
jeg 373 pex KK

such that U Yyt = Uu B,
kKEK jeg d

.
b

(3) if B is monic them UB =B .

PROOF (1) Bkb factors through each of the monomorphisms of which

U Bk is the intersection. The second part is also straightforward.
kEK
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(2) There are fewer monomorphisms through-which each of (Yk ; kKEK)
factors, than thrdugh which each of (Bj s JEI) factors.

(3) Clear.

2.1.6 AXIOMS BS(4) There exists a small cardinal « with the
following property: for any family (uk : Ak + A ; k€K) , and for any

morphism B : Xi - U (Ak,uk) with Xi€X , there is a subset J C K
k€K :

with {Jl <k , and a morphism y : Xi > U (A,,a,) , such that B
jeJ

is the composition of <y and the canonical morphism

U (Aj,aj) +~ U (Ak?ak) described in 2.1.5. If X has this property
jEJ kEK

in A we say that X is ranked, with rank < « .

BS(5) For any small family (A kEK) of objeets-in A ,

k H
consider all unions in A of the form 1J (Ak,ak) . There is a small
N kEK

representative set S of such objects. That is, any object of the

form U (A, ,a,) 1is isomorphic to an object in S , and S 1is a small
KEK k> 7k

set.
It is clear that for many familiar categories A , any functor
X: I->A, with I a small set, satisfies the conditions of the basic

situation. We shall discuss some examples in 2.1.19.
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2.1.7 LEMMA (BS) If the diagrams (j€J)

v]
A — S B

BJ Y
$
C —>D
commute, U vy= lB , and § 1is a monomorphism, then there exists
jEI

a A : B~ C such that 8.2 =y and A.vj=8j (FEJI) .

PROOF  Form the pullback diagram

p
. >

E B
C 8 D

—_—

The morphism p 1is monic. For suppose that Pr; = pPIr, 3 then
Y-PL, = S.qu (k = 1,2) and, since & is mono, qr; = qr, . Hence

by the universal property of pullback diagrams r;=r

morphisms vj factor through p , again by the pullback property, and

2 * All the
since 1 : B> B is the intersection of a set of morphisms including
p , there isan r : B+ E such that p.r =1 . Hence

§.(qr) = yp.r =y , and so we may take A to be qr .

2.1.8 REMARK 1In Sets and other familiar categories we have the use-
ful factorization of morphisms into epimorphisms and monomorphisms.

To take the place of this, in the basic situation we have that any map
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o : A~> B factorizes as A E U(A,a) qg B whe:e B 1is the canonical
map. The map Ua is monic, and the map B8 has the property that

UB =1 . Now Lemma 2.1.7 shows that any factorization of a into a
map whose union is 1 and a monomorphism is essentially isomorphic to
the above factorization. (Such a factorization we call a standard

factorization.) For if the following diagram

A —>U(A,0)

Y Ua

$

C —> B

commutes, with Uy = 1C and § monic, the lemma supplies maps
A: C~->U,a) and A' = U(A,a) >~ C which are clearly inverse, and
Us. A =8 , Aoy =8 .

Other properties which maps whose union is 1 have in analogy
with epimorphisms are: | |

(1) if o, have union 1 then so does BRa .

(2) if Ba has union 1 then so does B

For a discussion of generalized epimorphisms see [14].

We next prove two useful lemmas.

b

2,1,9 LEMMA Consider a family of maps (aj t A, >A ; jE€J) and

amap B : A-> B . Then

U (Ba,) = U@B. U a,) .
jeg jesd
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PROOF Clearly any monomorphism in A through which 8. U aj factors,
jE€J

has the property that each Saj factors through it. Conversely, con-

sider a monomorphism y : C - B through which each Ba factors;

J
say Y8, = Ba, . Further let a,= U a,.e, . Then by Lemma 2.1.7,
N 3 3 yesd g

there exists a map A : U (a

,0,) > C such that B. U a, = yv.A .

jeq

So the monomorphisms through which Rg. U aj factors are the mono-
j&J

morphisms through which each of Ra factors, which yields oﬁr(

j

result.

2.1.10 LEMMA If D-morphism a : (Al,él) > (A3,®3) factorizes in

=

as - yB , where vy : (A2,®2) -> (A3,¢3) is a D-morphism and monic in
A , then B 1is also a D-morphism.

PROOF Certainly if ¢1€<I>li we have that y6¢l€<1> i . Now there

3
is a ¢2€EQ21 such that ¢2.ni = B¢1.ni . Then Y¢2.ni = YB¢l.ni and

S0 Y¢2 = YB¢1 . Since vy is monic we deduce that B.@li g_@zi .

2.1.11 DEFINITION The map o : A > B generates B : (C,¥) - (B,9)
in (B,%) if B 1is the intersection of all P—morphisms which are
monic in A , with codomain (B,§),and through which o factors.

We say that o generates (B,®) if it generates 1 : (B,%) - (B,d) .

|
|
|
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Notice that in the basic situation, using BS(3) we can show,
much as we did in 2.1.4, that given any o : A > B and any P-algebra
(B,®) , there exists a B generated by o in (B,9) .

If o generates B , it follows, since UD preserves intersections,
that o factors through B , say o = By . A simple consequence of
the definition is that vy so defined generates (C,Y) .

In the next theorem we see another simple consequence of the

definitions.

2.1.12 THEOREM (BS) If the diagram
' a
A ————-—-—%(B’(D)

o B

(B’Q)—Y———-> (CQT)

commutes and o generates (B,%) , then B = vy .

PROOF Consider the equalizer ¢ : (E,I') > (B,®) in Av of B and

Y . Then € 1is also an equalizer in A , and so a factors through

€ . Since € is monic and o generates (B,®) , there is a map

f : B+ E such that e€f =1 . Hence B = Bef = yef = vy .

2.1.13 CONSTRUCTION (BS). Given a map o : A > (B,%) , we describe
a construction for the D-morphism generated by o . For each ordinal

n we define a map a : An -+~ B as follows:
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1) ay = Ua .

(2) If n 1is a limit ordinal then

(3) The map « is defined in terms of a as follows.

n+l
Consider all u : Xi » An for all i€1 ,‘'and let ¢u be the- map in
®i such that ¢ .ni = o u . Then o is the union of all the
u n n+l
¢u together with o
If 1 1is an infinite cardinal, the successor of a cardinal greater

than k , write B : C > B for aT

Then if we define V¥ by
¥i ={y : Di > C ; BYE ¢i}
we claim that B : (C,¥) - (B,%) is the D-morphism generated by a .
PROOF  First it is clear that
B.¥i . A(i,1)) C 0ij.A(1,1)) C oi

and so Wil.A(i,il) CV¥i ., Consider any u : Xi -~ C . We know that

c= U (An,an) , and so, by BS(4) , that u is the composition of a
n<t



73

map X : Xi-> U (Ak,ak_) and the canonical map v : IJ (Ak,cxk) -~ C,
k€K k€K '

where KC 1 and |K| <k . Let m be the set-theoretical union of

K. Clearly m< 1t .

Now it is easy to prove by induction that o factors through

o for any ordinals m =n . So if m€K we have that

U (A ,0,) =A . If m is not in K then clearly it is a limit
k’> 7k’ m :
k€K
ordinal and U (Ak,ak)_ = U (An,ocn) = A . In both cases,
kEK n<m
A Xi > Am and v : Am -+ C . Consider the following diagram:
A v
Xf —=> A —= ¢
m /
v ‘ 1
Di ¢ > B .

We can find a ¢€ @i so that the outer square commutes. The map
Bv is a by the defining propefty of the canonical map v .

Therefore by the definition of a there exists a ¢§ with o § = ¢ .

m+l

Now since B = o and m+ 1 < 1, there exists a vy : Am_'_1 »+ C with

m+l

By = o Hence

ml

Bu = ¢.ni = ocm+16.ni = ByS.ni
and since B is monic, p = y8.ni . It is clear that y8§E€Y¥i . The
uniqueness is guaranteed by B being monic. Hence (C,¥) is a

D-algebra and B is a D-morphism.
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To see that o generates B in (B,?) , consider any other
D-morphism € : (E,I') -~ (B,%) , which is monic in A and through which
a factors. We wish to show that o factors through e for all

ordinals n , and hence that B8 factors through € . By 2.1.7, «a

0
factors through € . The union of any set of maps, each of which
factors through € , also factors through e . Suppose o factors
through € , then consider

Tooou W
X{i ——————> A ——> E
n 7
//’
ni Y .~ €
////¢
T~
Di L B ,
where ew = a and the outer square commutes. The map o is the
union of maps like ¢u together with o . Now we can find a y in
I'i such that +y.ni = wu and hence that ey = ¢u . That is, ¢u
factors through € , and hence so does e 41 -
Now suppose 61 : (Cl,Wi) + (B,®) 1is generated by o . Then
81 factors through B in é? . But; by the last paragraph, B
factors through Bl in A . Since B and B, are monic -in A , this
is enough to show that they are isomorphic in é? , and hence B 1is

generated by o .

2.1.14 THEOREM (BS) For any object A in A there is a small

representative set of D-algebras generated by maps with domain A .

PROOF We prove this by considering the construction 2.1.13 and using
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BS(1) and BS(5) . We prove that for each small ordinal n , as we vary
the maps o with domain A and the structure on their codomains, there
is a representative set of objects An . Then to eacﬁ AT = C , since

I is a small set, there is at most a small set of different structures.
Certainly, by BS(5) , our statement is true for AO . Suppose n is

a small limit ordinal. Since {Am ; mEn} is a small set, if we

suppose that for each m€n there is a small set of possibilities for
Am , then, again by BS(5) , there is a small set of possibilities for
An . Finally An+1 is a union of a small set of maps with domaiﬁs An

and (pi; i€ I) and hence, again by BS(5) , is one of a small set

of possibilities.

2.1.15 THEOREM Consider two devices D. and D in A, and A

0 Dl 2 =1 =
respectively, and functors G : A, 2 > 4, 1 and H: A, >4 with
UUIG = HUDZ . If H has a left adjoint H' and X2 and éﬁ are in

the basic situation, then G also has a left adjoint.

p 2
7 D
C-limit X : A-> L , where ) is natural from A : C > A 2 to

PROOF ~ Since A, has small limits, so does . Consider a

= =)
D D D
L:C~> équ and A 1is a constant functor. Then HU ZA : HU %§-+ H 2L
. U D2 D1
is a limit in gl . However, HU “"A = U "GA . Hence, as we saw in our
‘ D :
discussion of limits in 2.1.2, since U 1

G\ is a limit, we have that
D
GA 1is a limit in éﬂ 1 | That is, G preserves limits.

We only need the solution set condition to use Freyd's adjoint
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functor theorem. Consider (A1,®1) in éivl . Then, by 2.1.14, there

is a small representative set, S , of Dz—algebras generated by

A,-maps with domain H'A1 . We take this set to be the solution set
corresponding to (Al,él) . Consider any Dl-morphism a (A1,®1)+-G(A2,®2)
where (A2,¢2) is a Dz—algebra. If n' : 1> HH' is the natural
transformation of the adjoint pair, H and H' , then o factorizes

in A, as HB.n'A1 where B : H'A1 >~ A, . Then in S there is an
algebra (A',@é) such that B8 = 8261 where 82 : (A',@é) - (A2,®2)

is a Dz-morphism, monic in A, . We have the diagram:

A,
o
Ay > HA,
n'A¢ HR HBQ
HB
HE'A, —>m

Now since H has a left adjoint, H82 is monic. Further,

D
HBZ = HU 282 =U 1G62 . We can apply Lemma 2.1.10 to see that HBl.n'Al
is a Dl—morphism from (A1,¢1) to G(A',@é) . Hence S is a solution

set.
2.1.16 COROLLARY (BS) The functor Up has a left adjoint.

PROOF In 2.1.15 take éQ = éi =A, DZ =D and Dl an initial device

in

>

In order to obtain another application of Theorem 2.1.15 we need

the following lemma.
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2.1.17 LEMMA If D is a device in A and UD has a left adjoint,
and C 1is a small category, there is a device Dl in é§= such that

Dy -1
there is an isomorphism K : (égapl > (AP)Q=. Further U g takes

L:g»év to UDL.

PROOF By Remark 1.4.3 we may consider a triple T = (T,n,u) in. A

in the place of device D . Then we can define a triple,.T1 = (Tl,nl,ui)

in é% as follows: T, takes L : C+>A to TL

1 3 T, takes

1
a:L »L, to Ta; nl(L):L->TL=nL'; ul(L):TzL->TL=uL.
If (L,8) is a Tl—algebra, the functor K mentioned above is defined

at (L,&) by:

a4+ AN + La
02 (LCZ,ECZ)

If A : (Ll,gl) > (L2,£2) is a Tl—morphism then K\ 1is defined by

Kx(C) = AC .

It is straightforward to show that K is a functor with the

required properties.

2.1.18 COROLLARY (BS) If C 1is a small category and A has

C-colimits, then so does é?
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PROOF In 2.1.15 take éq =A,A = é% and 02 = 0 . Further take
Dl to be the device provided by Lemma 2.1.17, and take G and H to

be the diagonal functors (see §0.4).

Once we have proved that UD has a left adjoint, we can use
theorems available for triples; see for example the work of Linton
[20]. However the results we have just given do not appear to be

included in those of Linton.

2.1.19 COUNTEREXAMPLE There is a category A in Cat which is

D

small complete, and a device P in A , such that U does not have

a left adjoint.

PROOF Define A as follows. The objects of A are the small ordinals
together with three other objects denoted X1 ’ X2 and DX1 . From

A1 to A2 of A, there is at most one morphism; the cdmposition of
morphisms is forced by this requirement. If m and n are ordinals
then there is a morphism from m to n if and only if m = n .

Further, from each of X X, , DX

10 %9 1 to each ordinal, there is a
morphism. The only other morphisms are identity morphisms, and morphisms
from X1 to DX1 and X1 to X2 . The device D has a single object
X1 . n(Xl) = X1 > DX1 , .and A(lexl) = {lel} . To each of the follow-
ing objects there is precisely one algebra with that object as underlying

object: DX1 » m (m an ordinal). These are all the algebras, and the
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morphisms between algebras are precisely the morphisms between the
underlying objects. It is easy to check that there is no universal
arrow from X2 to UD ; there is no map at all from- X2 to DXl ’

and for each map X2 > m there is a map X2 +n where n2m

but no corresponding map from m to n .

2.1.20  EXAMPLES We return to some of the concrete examples we gave
in Chapter I. If X 1is any small family of objects in Sets, or in

Cat () for any variety ¥V , or in Kit , then we are in the basic

DS

situation. Thus in Example 1.1.4,» U” has a left adjoint. Further,
in 1.1.7, the functor which embeds torsion free groups in the category
of groups has a left adjoint, as do the two functors involving Kit .
Again, we are in the basic situation for any device in the category
P(Y) described in 1.1.8. This allows us to see that any device in
P(Y) amounts to a closure operator on Y (since the axioms for a

triple in P(Y) are the axioms for a closure operator on Y ).

Finally in this section we give some more properties of ‘the notion

defined in 2.1.11.

2.1.21 THEOREM (BS) (1) Consider the following diagram:
B,0)—F 5 (8,0)
A lY
\ 6

: (C',‘i")————-———) (C,\P) .
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If this diagram commutes (in A ), Ba generates B in (B,®) and
8¢ generates 6 in (C,¥) , then there is a D-morphism
A : (B',0") > (C',¥') such that Ao =¢ and &A= yB .

(2) Consider map o : A > B and D-morphism B8 : (B,®) - (C,I) . If

o generates (B,®) and the union of B in A 1is 1, then Bo generates

c,r) .

(3) Consider maps o : A>B and B : B~ (C,I') . If Ba generates
(C,I') then so does B .

(4) Consider o : A~ (B,%) , B : (B, - (C,¥) wherev B is a
D-morphism monic in A . Then Ba generates B in (C,¥) if and

only if o generates (B;®) .

PROOF (1) We consider the construction 2.1.13. For each ordinal

n , let Bn : Bn -+ B and Gn : Cn + C be the maps defined for that

ordinal in 2.1.13, and let Ro = Bnan , 8e =& € Now we want to

prove that for each n there is a map Aﬁ : Bn - Cn such that

Ao =€ and § X
nn n nn

YBn . Lemma 2.1.7 assures us that this is true
for n=0. If n is a limit-oerdimal then--U{y.-U Bm)<? 'U-(YBm)
- .m<n m<n

= U (6m)m) (by Lemma-2.1.9). Now ¥y Uksﬁ = yBﬂ— facters through
m<n m<n

UCy. U Bm) and U (émxm)- factors-through U Gm =‘5ﬁ s so we have
m<n m<n m<n

our assertion for n . Now B8 ., is the union of B, and all maps
¢ in the structure of (B,%) for which ¢.ni factors through Bn .

For such maps ¢ , the maps y¢ are structure maps in ¥ such that
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y¢.ni factors through Gn ; the maps vy¢ go into the construction

of ¢ . Hence it is clear that Y8

o+l factors through 6n+1 . We

n+l
use Lemma 2.1.10 to see that AT is a D-morphism.

(2) This is a simple application of (1).

(3) Clear.

(4) Sﬁppose o generates (B,%) , and consider any
y + (O,I') » (C,¥) , monic in A , through which Ba factors. Then
Ba factors through the intersection of B and y . Consider the
diagram:

A ¢ (B,9) & C,¥)

~
N

(®,I)

The D-morphism &§ must be an isomorphism since it is monic in A
and 1 : (B,%) » (B,?) factors through it. This means that B

factors through vy , and it follows that 8o - generates 8 .

§2.2 Algebra in the elaborate situation.

In this section we shall give some more axioms on X and A ,

which together with the axioms for the basic situation form the

definition of the elaborate situation (ES).
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2.2.1 DEFINITION A map o : A->B in A is X-surjective if for

any map B : Xi > B (Xi€X) there exists a map vy : Xi - A such

that ay B .

We will see in 2.2.8 that in the elaborate situation a map is
X-surjective if and only if its union is 1. In the next few theorems
we develop analogues of conventional results about surjective and

injective homomorphisms.

2.2.2 AXIOM ES(l) The family X is adequate in

1>

2.2.3 THEOREM (ES) Consider D-morphism a : (Al,¢l) > (A2,©2) .

(1) o is a monomorphism in é? if and only if «a : A1 - A2 is a

monomorphism in A .

(2) o 1is an Fv—surjection in é? if and only if o : A1 - A2 is

an X-surjection in A .

PROOF (1) Suppose o is a monomorphism in é? and that ay = ad
where y , § ¢ B ~»> A1 . If ¥ + § , there is a morphism ¢ from some
Xi in X to B such that vye % 8¢ . There exist D-morphisms

o ¢ : FDi’+ (Al,Ql) such that ¢.ni = y¢ and ¢Y.ni = 8¢ . Then
a.¢.ni =a.p.ni , and hence oa¢p = ay . However‘it is clear that

1 + ¢ , giving us a contradiction.

(2) If o is X-surjective, then consider any D-morphism
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B : FDi > (A2,@2) . Certainly there is a map vy : Xi +—Al such that

ay = B.ni . Further, there is a ¢€&.1i such that ¢.ni =y . Then
1

ap.ni = B.ni and we may cancel the map ni to obtain the required

result. If o 1is Fv—surjective and B 1is a map from Xi to A2 s

then B = ¢.ni for some ¢€5®2i , and there is a map ¢' : Fvi > (Al,®l)

such that o¢' = ¢ . Hence oad'.ni =28 ..

2.2.4 THEOREM (ES) (1) X-surjective maps are epic in A .
FD-surjective D-morphisms are epic in é? .
(2) If o : A1 > (A2,®2) is a monomorphism in A , then there is at

most one structure on Al which makes o a D-morphism.

(3) If a: (Al,él) +~A2 is X-surjective in A , then there is at

most one structure on A2 which makes o a D-morphism.

PROOF (1) Consider X-surjective map o : A1 - A2 and map vy , §

such that vyo = 6a . If vy + § rthere'iS'a map € from some Xi in

X to A2 such that vye + 8e . But by the definition of X-surjective,
there is a map- u ¢ Xi - A1 such that aop = € and hence yap = ye +‘6€
= Sau , a contradiction. Since we have used only ES(l) here, the

second part of (1) will follow when we prove in 2.2.5, without any

D

further axioms, that FD is adequate in A

(2) Suppose ®1 is a structure on Ai which makes o a D-morphism.

Define ¥, by ¥i = {v : Di >A 3 ap € @21} . Then clearly
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@11 E_Wli . Given any p : Xi ~» Al we can certainly factor u through
ni in ¢11 and hence in Wll . Suppose wl.nl = wz.nl (wl,w2€‘¥11) H
then uwrni = awz.ni and hence awl = awz . Since o is monic

v, =y, , and so any u : Xi > A, factors uniquely through ni in
1 2 1

Wli . We need only the closure property to see that Wli is a
structure for A1 and hence by Lemma 1.2.5 that @1 = Wl . But

. 3 3 C . 3 . . . 3 c . R
a.?ll.A(ll,l) __@21.A(11,1) S_@zll and hence Tli.A(ll,l) __Ylll

Notice from our proof that there exists a suitable structure on

A, 1if and only if to each ¢€¢

1 ,1 we have that ¢ factors through

a if and only if ¢.ni factors through o .

(3) Suppose @2 is a structure on A2 which makes o a D-morphism.

Define Wz by Wzi = u.@li .  Clearly Wzi c @21 . We will prove that

Wz is a structure for A2 and hence, by Lemma 1.2.5, that ’@2 = Wz .
The closure condition is trivial. -Consider any u : Xi +>A2’. Then
there is a map B : Xi - A1 such that B = pu . Find ¢ 1in @li with

¢.ni =8 . Then ad in Wli has o¢.ni = p . The uniqueness part

of the uniﬁersality condition follows since V¥, C ¢

2 2"
Notice that there exists a suitable structure on Az‘ if and only
if the following condition holds: to each ¢1,¢2€ @11 » we have that

u¢1 = a¢2 if and only if a.¢1.ni = u1¢2.ni .
We prove next the promised result that FD is adequate in é? .

2.2.,5 THEOREM 1If X 4is adequate in A then FD is adequate
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in

>

PROOF | To see that FD' is a generating family in é? » consider two
distinct D-morphisms o , B : (A1,®1) > (A2,¢2) . There is a map ¥
from some Xi in X to A1 such that ay + By . Now vy = ¢.ni  for
some ¢€5®11 , and so a¢.ni + Bp.ni . Clearly this'implies that

ad F B .

To see that F' is adequate in é? , consider a family of functions
fi s éP(FDi , (A1,©1)) -> é?(FDi s (A2,¢2)) with the property that for
each &€ A(il,i) and each ¢€5é?(FDi , (Al,Ql)) we have that
fi(¢).8 = fil(¢6) . Define gi : éin,Al) > éin,Aé) by
gi : ¢.ni’®&¢+ fi(¢).ni for each ¢€E@li . If uo: Xi1 -+ Xi , and
G'ESA(il,i) is defined by ni.u = 6'.n11 then

gi(¢.ni)u= £fi(¢).ni.u ='fi(¢)-6'.nil = fil(¢6')-ni1

gi (¢.8".ni;) = gi,(¢.ni.w)
Since X 1is adequate in A , there exists a map a : A1 > A2 such
that gi(¢.ni) = a.¢.ni ; that is, fi(¢).ni =a.¢.ni . Suppose

£i(9) + a¢ . Then for some i2 in I there is a map
p.ni, : Xi, > Di ($€A(i,,1)) such that £i(4).y.ni, + agy.ni, . But
fi(¢).w.niz = fiz(¢w).ni2 = g12(¢.¢.niz) = a¢w.niz , a contradiction.

Clearly o 1is a D-morphism with the required property.

Notice that Isbell in [13] discusses the adequacy of free algebras
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in a category of algebras. His result is not contained in 2.2.5.

2.2.6 THEOREM (ES) (1) Consider an X-surjection o : A > B and
amap B : A~>C . Then B factors through o 1if and only if, for
each pair of maps ”1 » W, with common domain in X , we have that

amy = au, implies that Bul = sz .

(2) A map which is X-surjective and monic is an isomorphism.

PROOF (1) Consider the function fi : A(Xi,B) -~ A(Xi,C) defined by
fi : ap AT Bu (p ¢ Xi >4 . This is clearly an unambiguous defin-
ition. Further, if ¢ : Xi1 -> Xi , then fil(aue) = Bue = fi(on).e .
Hence there exists a map 7y : B+ C such that vyou = Bu for all

p s Xi>A . Since X 1is a generating family we have further that

Yo =8 .

(2) Let a : A~> B be X-surjective and monic. ~Then apply (1) to

o and %A . There is amap o' ¢+ B+ A such that a'a =1, and

hence, since o 1is epic, it follows that o is an isomorphism.

In the next theorem we develop results about factorization of

maps into X-surjections and monomorphisms. First another axiom.

2.2.7 AXIOMS ES(2) Every map in A is the composition of an

X-surjection and a monomorphism.
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2.2.8 THEOREM (ES) (1) If o =vyYB , and B 1is ZX-surjective, and
Y 1is monic, then this factorization of o is a standard one (see
2.1.8), and hence two such factorizations are '"isomorphic'.

(2) Any D-morphism has an essentially unique factorization into an
FD-surjection and a D-monomorphism.

(3) A map in é? which is both Fp—surjective and monic is an

isomorphism.

PROOF (1) Suppose €8 1is a standard factorization of. o . Then’
use Lemma 2.1.7 to supply a map X such that yA =¢ , A6 = B8 . Now
it is clear that if the composition of two maps is X-surjective, then
so is the second map. Thus A 1is X-surjective. Further X is monic
since ¢ is monic, and hence, by 2.2.6 (2), X is an isomorphism.

(2) Consider any D-morphism a : (Al,Qi) - (A2,®2) . Eactor o into
an X-surjection B : A1 > A, and a monomorphism vy : A +-A2 . Define

3 3
¢3 by ®3i = B.@li . To see that ¢3 is a structure for A3 we
need only check the uniqueness part of the universality condition (see
the proof of 2.2.4°(3)). Suppose B¢.ni #‘B¢'.ni (¢ , ¢'€ @11) .
Then vyBé.ni = yBé'.ni 3 so YBd = YRe' -and hence B¢ = Bo' . Clearly
with this structure on A, both B and Yy are D-morphisms.

3

(3) Clear, since FD is adequate in AD .

Next we give some properties of generation (2.1.11) in the elabor-

ate situation.
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2.2.9 THEOREM (ES) (1) A D-morphism generates its codomain if and
only if it is an FD-surjection.

(2) 1If o : A~> B is an X-surjection, and B : B -+ (C,9)

generates (C,®) then RBo generates (C,%) .

(3) 1If (nl,Fl) is a universal arrow to UD then N generates F1 .
PROOF (1) If o : (A1,¢1) -> (A2,¢2) is Fv-surjective then Ua =1
in A, and since Uo is the intersection of more maps than is the
D-morphism generated by a , clearly Uo factors through this
D-morphism. Hence o generates (A2,¢2) . The converse implication
is also easy.

(2) Using 2.1.7 it is not hard to see that any D-monomorphism which
Bo factors through, is factored through by B .

(3) Consider any D-morphism o : (A,9) ~ F1 , monic in A , which

ny factors through in A ; say n, = ot . There is a.D-morphism

B : F1 + (A,®) such that B.nl = 1 ., Clearly oB =1 and hence

oBa = o . Since o 1is monic we have also Ba =1 , and hence o is

an isomorphism.
Before introducing another axiom of the elaborate situation we
show that BS(5) and BS(3) hold for FD and é? when X and A are

in the elaborate situation.

2.2.10 THEOREM (ES) (1) Consider a family of D-morphisms
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(aj : (Aj,Qj) > (B,¥) 5 §j€J) . The union in é? of this family.is

the D-morphism generated by U a, in (B,Y) .

(2) BS(5) holds for FD and A .

(3) BS(3) holds for F and é? .

PROOF (1) Suppose that the union of the family in AD"is

g : (C,T) >~ (B,¥) , that the D-morphism generated by U aj is
JEJ

e : (E,A) > (B,¥) , and that o, = BA, = ev, . Now -U. o, , being
3 3 3 ceg 3
J
the intersection of more maps than is B8 , factors through B . Clearly
this implies that the D-morphism e generated by U o, factors
j€ I
through B 1in é? . But, by Lemma 2.1.10, each aj factors through

e in é? , and hence B factors through e 1in é? . Since both

B and € are monic in é? this is sufficient to prove (1).

Py

(2) Consider a small family ((Aj,Qj) ; J€J) of objects of .

Then if we consider families of maps (aj ;) JEI) in- é?. where the

domain of uj is (A ®j) we want to show that there is a small

5’
representative set of unions in é? of such families. But by BS(5)"
there is a small representative set of unions in" A of such families.
And to each such union, by Theorem 2.1.14, there is a small represent-
ative set of D-algebras generated by maps with domain that union.

. . o . D,
However, as we have just seen in (1), any union in ‘A is generated

by a union in A , and so our result follows.
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D

(3) Consider (A,2)€A" . Then there is a small representative set

S of monomorphisms in A with codomain A . Since there is at most
one structure on the domqin of each of these making it into a D-morphism,
we can select a subset of S to be a representative set for

D-monomorphisms with codomain (A, %) .
Next we give a further axiom of the elaborate situation.

2.2.11 AXIOM ES(3) There exists a small cardinal number «k = 2
which, in addition to ﬁaving property BS(4), has the following
property: - given any family of maps :(uj i §€J) where |J| <« ,
the domain of "each aj belongs’to X ,and all of the maps have
codomain A , then there exists an Xi€X and a map a : Xi > A

such that each aj factors through o .

Using this condition and the factorization properties  ES(2) and
2.2.6 (2), we can give a new and simpler construction for the algebra

generated by a map.

2.2.12 CONSTRUCTION (ES) Consider a map o : A - (B,?) . Consider
all ¢ in ¢&i such that ¢.ni factors through o . Let the union
of all such ¢  for all i€I be B : C~+> B, and define V¥ by

¥i = {y : Di>C ; PBYE®i} . Then B : (C,¥) > (B,d) is a D-morphism,
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and is the morphism generated by o in (B,%)

PROOF That B 1is a D-morphism follows immediately if ¥ is a
structure. From the proof of 2.2.4 (2) we need only consider the
existence part of the universality condition. Consider up : Xi > C .

Then by BS(4). u is the composition of a map u : Xi » U (Di.,¢j)

j&€J
where |J| <k ,and amap v : U (Di,,¢.,) > C . Further, by
jeg 73
ES(3), there is an iIEZI and a map w : Xi1 + A such that if
¢j.nij = a.vj , then each vj (j €J) factors through w . Hence
if aw = ¢,.ni, , each ¢, factors through ¢, , and so U ¢,
1 1 i 1 j€J 3j
factors through U¢l . Consider the diagram:
u B
Xi c —>B
t
| \
|
' .
nt ' U @i,,6,) T
E; jey J\
$ v A
Di—---—- >Di, > U(Di,;,9,)

where BT = U¢1 and BT\ = ¢1 . Since X 1is X-surjective, it follows

that the map Xi >~ U (@Di.,¢.) ~ U®i,,¢,) = Ae for some .€ : Xi » Di, .

The map S €A (i,il) makes the left-hand triangle commute. Hence
TA8.ni =y and PBTASEIL .
Next, we wish to see that B : (C,¥) = (B,9?) is the intersection

of all D-monomorphisms through which o factors. First, to see that
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d factors through B , factor o into an X-surjection A > L and a
monomorphism L - B , and form the intersection E > B =E > L + B
=E~>C->B of L->B and B . Now if we can show that E > L is
an X-surjection, then it is an isomorphism and L - B factors through
C > B, and hence so does o . Consider any pu : Xi - L . Then since
A > L 1is an X-surjection, Xi - L =Xi > A > L for some map Xi » A .
Now by the construction of g , there isa map Xi > C suchbthat
Xi A > L~>B=2Xi~>C~B . Hence by the defining property of
intersections, Xi > A ; L = Xi >~ L factors through E > L , and hence
E > L 1is an X-surjection.

Finally, consider any D-monomorphism B' : (C',¥') - (B,®) which
o factors through ; say o = B'b . Then consider ¢€ o1 such'that
¢.ni factors through o ; say ¢.ni =ar . Find Y'E€V¥'i such that
Y'.ni =br . Then B'Y'.ni =0t = ¢.ni , and so ¢ factors through
B' . Hence B factors through B8' (in é? by Lemma 2.1.10) and

this is enough to ensure our result.
Next we prove two useful lemmas.

2.2.13 LEMMA (ES) Suppose the map o : A - (B,?) generates (B,%) .
Then any map u : Xi > (B,%) (i€ 1) factors through some structure

map ¢1 : Di1 + B which has the property that ¢l.ni factors

1
through o .
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PROOF Considering the construction 2.2.12 and BS(4) we see that
factors into a map u : Xi > LJ»(Di.,¢j) with |J| <k , and ‘a map-
j€J

v: U (Di,.,¢,) > B... The maps ¢, are-in- &i.--and-have-the-pro~
jeg 1771 - 3 3

perty that ¢j.nij factors through o : A+ B . As in the proof of
2.2,12, there is a ¢1 : Dilv+ B such that ¢1.nil factors through

o , and U ¢j factors through U¢1 . Consider the diagram:
j€J
u v
Xi ——> B

|

i

i

|

|

v R

X-surj've
. ' .
D11 J(D11,¢1)

Clearly u factors through ¢1 , and we have our result.

2.2.14 LEMMA (ES) Consider maps o : A+ B and B : A > C where
a 1is an X-surjection. Then B factors through o if and only if

for each map p with domain in X and codomain A we have that Bu

factors through au .

PROOF By 2.2.6 we need only show that if HpsHy Xi > A and

auy = o, then Bul = Buz . By ES(3) there is a map. p with domain

in X such that ui = uel and My = HE, for some €;,¢c

12€ - But by

our assumption 8u = yop for some vy . Hence

Buy = Buey = youey = yopy = you, = youe, = Bue, = Bu, .



94

Next in this section we introduce an axiom which enables us to

mimic the classical theory of congruences. First we need two definitions.

2.2.15 DEFINITION A family of maps (aj ; j€J) with common codomain

A is called a codiscriminating family for A if, for each

pair of maps B:# Y with domain A , there is a j€J such that

B.aj ¥ v.of .

I learnt of this notion from B.H. Neumann [27].

2.2.16 DEFINITION (ES) An X-congruence on A is a family

R = (Ri ; i€I) of equivalence relations, where Ri is a relation on
A (Xi , A) , which has the following additional properties.)If
is any map in A (Xil,Xi) and o , B are in A (Xi,A) then Ri (a,B)
implies that Ri1 (ou,Bu) .
(2) If (ajb: Xij +~ Xi ;3 j€J) is a discriminating family for Xi ,
and B,y : Xi = A, then Rij (B.aj 5, Yy.aj) for all j in J dimplies

Ri (B,Y) .

Corresponding to each map y : A > B there is an obvious X-congru-

ence RY on A defined by: RYi (a,B) if and only if vya =‘y8 .

2.2.17  AXIOM ES(4) To each X-congruence R on A there isan

X-surjection vy with domain A with the property that Ri (a,B) if
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and only if +vyo = yB ; that is, R = RY .

2.2.18 THEOREM (ES) The axiom ES(4) holds for FD and AD .

PROOF  Consider an FD—congruence R, on (A,%) in é? . Define for
each i in I a relation R2i on A (Xi,A) by: R2 (¢1.ni,¢2.ni)
if ‘and only if R1 (¢1,¢2) (¢1,¢2€<®i) . Consider 1y : Xi1 > Xi .

If G.nil'= ni.u (€A (il,i)) then ¢l.ni.u = ¢1.6.nil and

¢2.ni.u =.¢2.6.nil . Since R1 is an FD4congruence it follows that:

Ryi (4;.ni,6,.n1) = Rii (9,,6,) = Ryd,  (616,6,8)

= Rzi

Given a codiscriminating family (aj : Xij +Xi ;3 j€J) for Xi in

A , 1if we define §&j : FDij - FDi by ‘Gj.nij = ni.oj , then it is

1 (¢1.ni.u,¢2.ni.u) .

easy to see that (8j ; jE€J) is acodiscriminating family for Fvi

in AP . Hence Rzij (¢1.ni.uj,¢2.ni.aj) for all j€J implies

R21j (¢1.6j.n1j,¢2.6j.nij) for all j€J , which implies
Rlij (¢1.635¢2.6j) for all j€J , and hence Rll (¢1;¢2)

Thus R2 is an X-congruence and there is an X-surjection y ¢ A+ B
such that Rzi (¢1.ni,¢2.ni) if and only if y¢1.ni = y¢2.ni .

Suppose ’Y¢1.ni = Y¢2.ni but y¢1 + y¢2 . Then for some 'ize I there
is a map 62.n12 (62€5A (iz,i)) such that Y¢162.ni2 + y¢262niz . But
R112 (¢162,¢262) , and so R212 (¢162.n12,¢2§2.n12) » a contradiction.

Hence Rli (¢1,¢2) if and only if Y¢1 = y¢2 . Further vy can be
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made into a D-morphism by defining a structure ¥ on B as follows:
¥Yi = y.%1i . The.only thing we need to check is that if Y¢1.ni = y¢2.ni

(¢,,6,€¢1) then y¢, = v, , and we have already proved this.

2.2.19 DEFINITION  Consider an object A in A and a family
R = (Rj ; J€J) of families of binary relations indexed by I where

Rji is a relation.on A (Xij;A) . The intersection . R,  of the

jeJ
families is defined by (- N Rj) i (a,B) if and only if" Rji (0,B)
j€J
for all j din J . If R1r1R2 = R1 then we write R1 = R2 . This

establishes a partial ordering on such families of binary relatioms.
2.2.20 THEOREM The intersection of any family of X-congruences on
A is an X-congruence. Thus, given any family R = (Ri ; i€ I) of
binary relations, where Ri 1is a relation on A (Xi,A) , there is a

least X-congruence R' with R' = R .

PROOF  Easy.

2.2.21 THEOREM The axiom ES(2) is implied by ES(l) together

with ES(4).

PROOF Consider any map o ¢ A~> B . By ES(4) there is an X-surjection
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B with RB = Ru . By 2.2.6 (1) o factors through R , say o = YyB .
Suppose YE| = YE, - If € + €y there is a map v with domain in
X such that €1V + PR Since B 1is X-surjective there exist maps

HysHy such that eV = Bul and ezv = Buz . Then since R, =R we

B o
must have yelv = YBul = aul + duz = YBuz = YEZV , and so yel + YEy
a contradiction. Hence y is a monomorphism.

The final result of this section is that FD and é? are in the

elaborate situation if X and A are. First we give the final axiom

of the elaborate situation.

2.2.22 AXIOM ES(5) There is a set J with I C J 4 and a family
Y= (Y] ; j€J) of objects of A with the following properties:

Y|I = X ; any composition Xi » Yj > A factors as Xi > Yj - Xil > A
for some ile I , the second map being X-surjective; for each A

in A there is an X-surjection Yj > A for some j€J . We call such

a family Y an extension of X .

2,2.23 THEOREM (ES). ¢D) FD and é? satisfy ES(3).

(2) FD and - é? satisfy BS(4).
D D .
3) F and ‘A" satisfy ES(5).
D D , . .
A" are in the elaborate situation.

(4) F° and

PROOF (1) Consider a family of D-morphisms (¢j t F ij > (A,®) 3 FE€J)
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with [J| < « . Then (¢j.nij ; J€J) 1is a family of morphisms in A
whose domains are in X . Hence there isa map o : Xi ~ A for some

i €I such that each ¢j.nij factors through o ; say ¢j.nij = a.Bj .

Let 6j.nij = ni.Bj (5jezA (ij,i)) . Then if ¢.ni = o (4€ ¢i) we

have ¢j = ¢.6j as we require.
(2) Consider a family of D-morphisms (aj ; J€J) , with common
codomain (B,¥) , and let the domain of aj be (Aj,éj) . Write

U (A,,®,) , o.) = (A,®) . Then, consider a map B : FDi - (A,9)

ey 173 h

J

for some i€I . We-know that-there -is a-map- vy : U (A,,a,) > A
jeg

which generates (A,%) (see 2.2.10). Hence by Lemma 2.2.13, for some

ile'l there is a map ¢ in ¢i1 such that -B.ni factors through

¢ , say ¢8 = B.ni , and further ¢.ni1 factors through vy , say

You = ¢.nil . Consider the diagram

Xi U Fvi i > (A, d)
| \
|
o {
Fi, —-=-=3> U (A _,9.) Y
e keKAk K
nil T

Xil-—————€> U Ak-—————ﬁ> U A, .
kKEK jegd

The bottom edge is the factorization of u provided by BS(4). The

composite U Ak - U A, X-(A,@) + (B,Y¥) .generates.the union in
kEK JEJ
D

g

f

of (ak ; KEK) , which factors through (A,®) . We may cancel the

monomorphism (A,%) > (B,¥Y) to see that the lower right-hand region
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commutes. Then we solve for structure map in the lower left square,
and then for the structure map in the upper left square. Since the

lower region commutes, the composite

Fi, - = =~> U (@A, ,%,) > (A,9)
1 KE K k’ 'k
must be ¢ . Hence it follows that the upper right triangle commutes,

as desired.
(3) Suppose Y = (Yj ; §J€J) 1is an extension of X . Then we
will show that G = (Gj ; J€EJ) is an extension of FD if there is
a universal arrow of the form (nj : Yj - UDGj,Gj) for each jE€J .
Certainly by Corollary 2.1.16 such universal arrows exist, and so there
D

is an extension G of F . Consider a pair of D-morphisms

FQi+ Gj + (A,%) , and the diagram:

Xi—sFlf —> Gy . > (A, 0)
/ A N 7
N /
N Id
~ v
E A // .
D, D
F i, F i2 (2)
(1)
% » X-surj'n .
i, Y} Xl2 .
The left-hand portion of the diagram is supplied from the map

Xi »> FDi - Gj by Lemma 2.2.13 and the fact that Yj - Gj generates

Gj (see Theorem 2.2.9 (3)). By the pfoperty of extensions

Xi1 - Yj -> Gj -+ (A,®) factors as Xi, - Yj > Xi, » (A,®) . Solve

1 2
for D-morphisms in regions (1) and (2). It is easy to see by 2.1.20
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and 2.2.9 that Gj - Fpi2 is Fv—surjective. Finally it is clear that
D D

F i~ Gj > (A,0) = F i~ FDi1 - Gj > FDi2 - (A,0) .
2.2.24 REMARK  If we take X to be any small family of sets where
the least cardinal greater than the cardinalities of the sets in X
is an infinite regular cardinal, then X and Sets satisfy the axioms
for the élaborate situation. Theorem 2.2.23 provides further examples
of the elaborate situation.

Suppose X and A are in the elaborate situation and A has
an initial object which is in X . If n 1is a small set and we define
a family Y = (Yj s € ") of objects in é? by Yj(m) = X(jm)

n . . .
(m€n) , then Y and A" are in the elaborate situation.

§2.3 Recognition Theorems.

In this section we develop conditions for recognizing when a
functor U : B+ A is strictly isomorphic to a functor UD for some
device 0 in A . Of course, in the triple case there are several
theorems of this type;‘ notably Beck's theorem (for which the standard
reference seems to be [ 1] but which is more easily found in [23]) and
some theorems of Linton [19]. Other conditions occur in [5 ] and [28].
Our main interest is in recognizing functors isomorphic to Uv' where

the object family of D is small. First however we obtain some quite
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general theorems.

2.3.1 DEFINITION Consider a functor U : B> A and a family Y
of objects in B . We say that B is saturated with respect to Y

and U if the following condition holds. Consider any o : A1 > A2

and any Bl’BZ in B with UB1 = A1 and UB2 = A2 . If for all

B : Yj >~ B, in B with YjEEY there exists a R' : Yj +~ B, 1in

lie

2

such that o.UB = UR' , then there isa 8" : B, - B, in B such that
1 2 =

a = UR" .

2.3.2 THEOREM Consider a functor U : B+ A and families of objects
X in A and F in B both indexed by I . Then if there are
universal arrows (ni : Xi > UFi , Fi) for each i€ I , and if U is
faithful, and if B 1is saturated with respect to F and U , then B
is equivalent to a full subcategory of é? for some device D with
object family X (and U corresponds under the equivalence to then

forgetful functor UD restricted to this subcategory).

PROOF The basic tool in all these recognition theorems is the first

part of the comparison theorem 1.2.6. From now on K will always

D D

mean the canonical functor B - A" with the properties (1) U'.K=1U
and (2) KF = FD . The device D 1is that corresponding to the universal

arrows (ni,Fi) . To prove our theorem we need only show that, under

the given conditions, K is full and its image is a subcategory of A .
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To see that the image of K 1is a category we only need to show that

if 8, :+ By > B, and B, + By > B, arein 3B, and KB, = KB, then

there exists a 8 : B, ~» B, in B such that UB = UB,.UB, . If

KB2 = KB3 then UB (Fi,Bz) = UB (Fi,B3) for all i€1I . Consider

é : Fi ~» 32 and the corresponding ¢' : Fi - B, which has U¢" = Us .

3

- L Yy v .
Then UBZ.U¢ = UBZ'?¢ U(82¢ ) . Hence there exists a Bz : B2 > B4

such that UBé = U82 and so U(BéBl) = UBé.UBl = UBZ.UBI .

To see that K is full, consider any a : KB, > KB, 1in é? .
If ¢, : Fi>B;, in B then U, : FDi > KB, in gv , and so
a.U¢1 : FDi - KB2 in é? . That is, in é=,a.U¢1 : Di ~» UB2 . By the

universélity of the arrow (ni,Fi) ~there is a morphism ¢2 : Fi > B2
such that U¢2}ni = a.U¢1.ni . But AU¢2» can be considered a morphism
from FDi to KB2 in é? . Then by the universality of (ni,FDi)

this last equation means that U¢2 = u.U¢1 . Hence by the fact that

B 1is saturated with respect to F and U , there exists a map

B : Bl - B2 such that U8B =o in A . Thus KB =a in é? .

2.3.3 DEFINITION Consider a functor U : B+ A and a family S

of universal arrows ((ni : Xi > UFi, Fi) ;3 i€ I) . Then a U,S-suitable
X-surjection is an X-surjection o : UB - A (ﬁeg , AEA) in A
with the property that to each ¢1,¢2 : Fi -+ B we have that u.U¢1 = a.U¢2
if and only if a.U¢1.ni = a.U¢2.ni .

This definition is motivated by the proof of 2.2.4 (3).
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2.3.4 THEOREM Consider a functor U : B> A and a family X of
objects of A indexed by I . Suppose that for each A in A there
is an 1€1 with an X-surjection from Xi to A . Then U is strictly
isomorphic to UD for some device 0 with object family X if and
only if the following conditions hold.

(1) There is a family S of universal arrows to U , namely
S = ((ni: Xi » UFi,Fi) ; i.GI)‘. The family F = (Fi ; i€1I) 1is
required to have the following additional properties.

(2) U is faithful, and B is saturated with respect to F and

(3) Consider any BE€B and any U,S-suitable X-surjection
o ¢ UB~>A . Then there exists a unique map g : B > B1 in B such

that URB =a .

PROOF The device D 1is that associated with the family of universal
arrows. In the light of Theorem 2.3.2 we need only show that any object
in é? is the image of an object'under‘ K , and thét ‘K is one-one on
objects. Consider (A,@)EEéP . Let o : Xi A be an X-surjection
assured by the conditions of the theorem. Then ¢ ¢ Di ~ A in ¢i is
an X-surjection if ¢.ni = o , and hence ¢ : FDi > (A,?) 1is an
Fv—surjection. Consider maps HysHy ¢ Xi1 + Di for some 11€ I.

If ¢Pl = ¢u2 then ¢61 = ¢62 where 61,626 A (il’i) and

Gl.nil = ul,éz.nil = My . Thus there exists a morphism B8 : Fi - B

in B such that UB = ¢ . Further KB = ¢ : FDi -+ (A,Y) for some
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structure Y . But we have seen in Theorem 2.2.4 (3) that there is at
most one structure on A making ¢ a D-morphism. Hence KB = (A4,%) .
Suppose B1 is another object of B with KB1 = (A,9) . Then

since K 1is full, there is amap y : B+ B such that Ky =1 .

1

This gives us another map B : Fi - B1 in B which goes to ¢ : Di > A

under U , a contradiction if B # B1 .
Notice that even this simple theorem is quite helpful for proving
that functors are tripleable. For example, it is not hard to check the
conditions of this theorem when U is the forgetful functor from compact
Hausdorff spaces to Sets and X is all sets. We next prove a recognition

theorem for the elaborate situation. But first, a definition.

2.3.5 DEFINITION Consider a functor U : B> A and a family of
universal arrows S = ((ni : Xi » UFi,Fi) ; i€ I) . Then a U,S-suitable
monomorphism is a monomorphism in A,a : A> UB (A€A , BEB) with
the additional property that if ¢ is any morphism in B from Fi > B
then U¢ factors through o if and only if U¢.ni factors through

o .

For the motivation for this definition see the proof of 2.2.4 (2).

2.3.6 THEOREM (ES) Given X and A in the elaborate situation,
then-a functor U : B> A is strictly isomorphic to UD for some

device 0 in A with object family X if and only if the following
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conditions hold: (1), (2) and (3) of Theorem 2.3.4 and
(4) To any U,S-suitable monomorphism o : A > UB there is a unique

morphism B8 : B, > B in B with UR =a .

1

(5) B has small products, and U preserves them.

PROOF Of course the device 0 1is the one associated with the universal
arrows ((ni,Fi) ;3 i€I) . Then in view of Theorem 2.3.2 we have only

to show that the comparison functor K : B > gv is bijective on objects.
Consider (A,®) in é_v and let Y = (Yj ;- J€J) be an extension

(see 2.2.22) of X . Then there is an X-surjection Yj +~ A for some
j€J . Consider all maps ‘from Yj to A and forrﬁ the factorizations

o B8 .
Yj £ (Ap,<I>P) P (A,9) (pEP) where Bp.ocp generates Bp in (A,0) .

Let Q be the subset of P for which the maps Bq.ccq (q€ Q) factor

X-surj'n .
as follows for some i€T1 : Bq.aq = Yj ————> Xi - A . Now both
sets P and Q are small, so we can form products | | (A_,® ) and
pcp PP
(A, ) . Suppose that Tk Y, » ]_T_(A , ) and
qeq ¢ 9 pep PP
T, : Y, > || (A ,0 ) are the maps induced by the o's , and let
2 3 co 9 4 :
q€Q

T, =Y, > @Ae) 5 [ (A ,® ) and Ty =Yy S @a",e" = Tl (. ,%)

3 bEP | ) q€q ¢ d
where T, generates My (k = 1,2) . We would like to show. that

(A',0') is isomorphic to (A",0"). . Let us assume that this is true
for the moment. Then, for each q€Q there is a map Xi > Aq (some

i €I) which generates (Aq,(bq) , and hence there is a corresponding
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X-surjection UFi - Aq (see 2.2.9 (1)). This X-surjection being actually
a D-morphism is easily seen to be U,S-suitable, and hence there is map
Fi - B in B whose image under U is Di -+ Aq . Clearly the image
of this map Fi >+ B under K is FDi - (Aq,Pq) for some structure
Fq which we may identify by 2.2.4 (3) as being ¢q . Thus each
(A ,& ) dis the image of an object under K . If B goes to (A ,% )
q q q -9 q
under K , then consideration of the action of U and K on the family

('TT Bq - Bq ; ¢ €Q) of projections, together with the knowledge that -
q€Q

UD creates limits, leads to the conclusion that at least one model of
'TT (A ,0 ) is in the image of K.. Now since M, is a D-morphism,
q€Q d : :

it is easy to check. that- vaz : A" > U] B_. is a U,S-suitable

q€q 1
monomorﬁhism.and;hence there is a B-morphism B1-+ T—T B with
| : qeq ¢
U(Bl > WB ) = My o Clearly, by 2.2.4 (2), KB1 = (A",9") . Similarly

q€q 4

(A',9') , being a subobject of -rT-(A ¢ ). is in the. image of K .

q€Q qQ° .q

Now since among the maps Bpap there is an X-surjection, there is a map
A' > A which is an X-surjection, and being a D-morphism from (A',2')
to (A,®) it is U,S-suitable. Hence (A,?) is in the image of K .

Suppose KB1 = KB2 = (A,%) . Then since K is full there is a map

B : B1 -> Qz such that KR =1 : (A,d%) > (A,®) . Then 1 : A - UB2
is a U,S-suitable monomorphism and, since U(1 : B, > Bz) =1:
A ~> U32 = UB , it follows that B1 = B2 .

We still have one point to check, namely that (A',9') is
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isomorphic to (A",®") . First, to see that there is a D-morphism
1
(A',0') > (A",2") such that Yj > (A',0') > (A",0") = AZ , consider

the diagrams:

A H .1
2 2 roj n
7y ———> @) ——> T @,0) —2215) ,0)
q€Q q" q
4

proj'n.u1

\ /

(A'%")

The outer triangle commutes for each corresponding pair of projections.
We can find a D-morphism f such that the right-hand triangles commute,

and so uz.kz = f.Al . The D-morphism g such that the left-hand

triangle commutes, is supplied by 2.1.20 (1).
2 by a

D-morphism we could find a D-morphism (A",2") - (A',0') with
A
Yj . @am",o")y ~ (A',9') = A; . For we would have diagrams
A My ’
YJ————>(A cp')———————> TT (a_,0 )

(AU @!

Now if we could factor each ap (p€EP) through X

proj' (A o )

commuting for each projection, and we could use exactly the same argu-
ment as that given above. We will prove that each ap (p€ P) does

factor through Az .
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Let Fj be a free D-algebra generated by nj : Yj - UDFj , and

let 22 and ap be D-morphisms such that Rz.nj = Az and a_.nj = ap .

2

2.2.9 (1), 22 is an FD—surjection and so, since FD and A are in

All we need is that we can factor each ap through £

d

the elaborate situation, by 2.2.14 we need only solve

2
s
FDi - Fj 2 > (A",(D")
' i
s i
|
ap ']
Fi (A_,9)
J p’p

for each i€ I and each § : Fvi + Fj . Now by Lemma 2.2.13, to the

map ¢6.ni there corresponds an i,€1I and a factorization

0. % p % :
§=F1i -~ F i1 -+ Fj such that 62.ni1 factors through nj ; say

éz.ni1 = nj.d2 . Now by the property of extensions,

do X-surj'n

: = : — i .
ap.dz Xi1 > Yj > Ap Xi1 > Yj X12 > Ap for some iZETI
The algebra generated by X12 - (AP,QP) is easily seen to be (Aq,@q)

o
q
for some € and so Y, » Xi, > (A ,9® =Y, > (A ,2)~> (A,®
1€ Q § 7RG (B0) = Yy () v (6

Clearly it follows from this that ap.nj.'d2 factors through lz.nj.d2
0 . P
in A" . Hence ap.Gz.nll factors through Qz.dz.nll , and so

8, .

a 8§ = ap6261 factors through 126 = 2262 1

P

This is sufficient, as we have seen, to supply the map
@a",e") > (a',0")

It is now easy, using the fact that kl generates (A',2') and

A, generates (A",9") and Theorem 2.1.12, to show that the maps
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@a",e")y - (A',¢') and (A',0') > (A",9") are inverse to each other.

Notice from the proof that the uniqueness parts of conditions.
(3) and (4) are not both needed; one is superfluous. In fact we can
delete both of the uniqueness requirements if we add the condition:

(6) UB=1 (B in B) implies that B =1 in B .

§2.4 Birkhoff's Theorem.

The theorem of G. Birkhoff we are interested in states that a set
of algebras is a subvariety of some variety if and only if it is closed
under subalgebras, quotient algebras and small products (see [ 4]
Theorem IV.3.1). Now, these conditions are similar to some of the
conditions of Theorem 2.3.6, and in fact 2.3.6 is a direct generalization
of Birkhoff's Theorem. Our version of Birkhoff's Theorem is in 2.4.4

and 2.4.6.

2.4.1 THEOREM (ES) Consider device 7 in A for which the maps

ni (i€1I) are X~surjective. Then UD is a full embedding.

PROOF Let (A,®) be a D-algebra. Then given p : Xi - A there is
at most one ¢ in A (Di,A) such that ¢.ni = u . Hence oi =.

é(Di,A) . Clearly if (A1,®1) is.also a D-algebra, any morphism from
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A to A1 is a D—morphism from (A,%) to (A1,¢1) .
2.4.2 DEFINITIONS (ES) (1) A variety V of D—algebras is the set
of all D-algebras in the image of a functor UD1 » where Dl is a
device in é?“ whose object family is FD and whose maps nli are
Fv-surjections. The set V 4is also called a subvariety of ,AD

(2) A subcategory éq of A 1is said to be closed under subobjects,
quotient objects and small products if the following. conditions hold.

(@) 1If A-> A is a monomorphism and A,€A., then A€A

1 1 = 17
(b) If A1 + A is an X-surjection and Ale él then AE _A_=1 .
(e) If (Aj ; J€J) 1is a small family of objects of éﬂ » then
TW_Aj (calculated in A) is in -

jeT

2.4.3 THEOREM (ES) Let A, be a full subcategory of A . Then

D

1
the inclusion of the subcategory él is strictly isomorphic to U
for some device P on X , and each map ni (HE€I) of D isan
X-surjection, if and only if él

objects and small products in A .

is closed under subobjects, quotient

PROOF  Clearly él has limits and the inclusion functor preserves
them. So we can hope to use Freyd's adjoint functor theorem to obtain

a family of universal arrows from X to the inclusion of A, . Given
X-surj've

monic
Eél) , factor it as A > A ->

any map A > A, (A€A, A A1 A1

1 1
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Then Ai€5é=1 , and by BS(5) we can find a small representative set of
objects Ai formed as above from A . This set is a solution set, and
so we have the desired family S = ((ni : Xi > Di , Di) ; i€1I) of

universal arrows, with associated device- 0 . Factor -ni- as

X-surj've .. .monic . . L
Xi A1 Di . Then there exists a map Di - A1 such
monic
—> Di=1 and

ni
that Xi - A1 = Xi » Di ~» A1 . Clearly Di ~» A1
so A1 + Di 1is an isomorphism and ni is X-surjective.

The conditions of Theorem 2.3.6 are now easily seen to be satisfied.

The converse implication is not difficult.

2.4.4 COROLLARY (ES) A set V of D-algebras is a subvariety of
D

A" if and only if it is closed under subobjects, quotient objects, and

small products in é? .

Manes [24] has a triple-theoretic version of this theorem.
To complete our treatment of Birkhoff's Theorem we will show that

varieties of D-algebras are setsof D-algebras defined by "laws".

2,4.5 DEFINITIONS Consider device 0 in A . A D-law is a pair
(o , B) of‘maps where o and B have common domain in X and
common codomain in (@i ; i€I) . If o , B : Xil -> Di2 we say that
(o , B) 1is an (il,iz)—law. A D-algebra (A,®) satisfies the

(il,iz)—law (o , B) 4if for every ¢ in ¢i2 it is true that
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¢o = ¢B .

2.4.,6 THEOREM (ES) A set of D-algebraé is a subvariety of év if
and only if it is the set of all D-algebras satisfying some specified
set of D-laws.

To prove this theorem we need the following concept.

2.4.7 -DEFINITIONS A family (Rj 3 §J€J) of X-congruences, where

Rj is a congruence on Aj , 1s called a fully-invariant family for

(Aj ; jJ€J) 4if for each j , jle.I , each 1y : Aj > Ajl » and each

a , B : Xi~ Aj it is a fact that Rji(a y B) implies lei(uu , HB)
Consider a family (Rk ; KEK) of families of X~congruences for

(Aj s J€J) . Then kgKRk is the family of X-congruences, indexed

by 3§ , defined by ( 0 RS, = 0 ®X)) . Again if R'nR? = R! we
KEK I keER 3

write R1 = R2 .

2.4.8 THEOREM The family of X-congruences N Rk is fully invariant
kEK

if each of the families Rk (k €K) 1is fully invariant. -

PROOF Clear.

2.4,9 THEOREM Let D be a device in A . If a family
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- . c . .
Ri (Ril1 H i1 I) of relations is defined by Riil(a , B) 1if

o, B Xi1 > X{ and ni.ac =ni.B , them R = (Ri ; 1€I) is a fully
invariant family of X-congruences. Conversely, any fully invariant
family of X—congruences'for X 1is obtained in this way from a device.

In fact, the device D may be chosen so that each ni is an X-surjection.

PROOF Each Ri (1€1) 1is clearly an X“congruence. Consider

no Xi-> Xi2 and o , B : Xi1 + Xi . Then niz.u = §'.ni for some

§'e Al (i,iz) , and so ni.o = ni.B implies niz.u.a = niz.u.B .

Thus Riil(a , B) dimplies Rizll(ua s HB) .
Conversely, suppose (Ri ; 1€I) 4is any fully invariant family of

X-congruences. . Then by ES(4) there are X-surjections ni : Xi - Di

such that Ri = Rni . Define A(i,12) to be A (Pi, D12) . Then

D = (n,A) so defined is a device. For, consider u : Xi - Di2 . Since

n12 is an X-surjection, there is a map v : Xi - X12 such that

1

R, i,(va , VB) , and hence ni.o
12 1

2.2.6 (1) there is amap & : Di ~» D12 such that &8.ni =y .

ni,.v = . Nowif a , B : Xi, > Xi then Riil(a , B) implies

ni.f implies that wupo = uf . By

2.4.10 THEOREM Consider device D in A , and set A of D-laws.
There exists a fully invariant family R of Fv—congruences for FD

such that D-algebra (A,®) satisfies the laws in A 1f and only if

8, FDi > FDi

for all i,i;, in I and for all pairs of D-morphisms 8,58, 1
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it is true that Riil(él,éz) implies that ¢51 = ¢62 for all ¢ in
®i . Further every fully invariant family of FD4congruences stands in

this relationship to some set of D-laws.

PROOF Take R to be the intersection of the fully invariant families
R' which have the following property: if (Gl.n%,éz.n%) is (il’i)_
. = . (N .
law in Av and 61,62 A (11,1) , then Rill(Gl,ﬁz) Suppose (A, )
satisfies the laws in A and consider the relation R;i1 on
D #Y; Fvi) defined by: R"i. (68,,8,) if ¢S, = ¢6 for all
= 1°? it1v1’ 2 1 2
$¢€®i . Then it is not hard to see that R'" = (R; ; 1€I) is a fully
invariant family of FD-congruences for FD . Further R" = R since
R" is one of the families of which R is the intersection. Hence
Riil(dl,éz) implies that ¢61 = ¢62 for all ¢ in ®i . The other
implication in the first part is simple.
If R 1is a fully invariant family of FD—congruences for FD .
take the (il,i)—laws in A to be the pairs (61.nil,62.nil) where
Riil(él,éz) . The proof of the second part of the theorem is then

clear.

2.4.11 PROOF OF 2.4.6 1In view of 2.4.9 and 2.4.10 we need only
prove the following statement. If Dl is a device in é? which has
object family FD and whose maps nli are Fp-surjections, and if R

is the fully invariant family of FD—congruences associated with Dl ’
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D
then the D-algebras in the image of U 1 are precisely those algebras
(A,®) for which Riil(él,ﬁz) implies ¢61 = ¢62 for all ¢ in &i .
Consider an algebra (A;®) in the image of UT)1 . Let Riil(dl,dz) R
that is nli.é1 = nli.62 . Now any ¢ : FDi -+ (A,9) factors through
1 = 1 ‘ = ' = ' i =
nis say ¢ ¢‘.nli . Hence ¢.61 0 .nli.Gl 0 .n11.62 ¢.62 .

Consider an algebra (A,%) for which Riil(dl,dz) implies

98, = ¢6, for all ¢ in @ i . That is n,i.6; = n;i.6, implies

1 2
¢61 = ¢62 . By 2.2.6 (1) there is a map ¢' such that ¢'.nli =¢ .

D
This is enough to ensure that (A,®) is in the image of U 1,
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CHAPTER IIT

THE CATEGORY OF DEVICES

The category of devices Dev(A,X) was defined in 1.5.1, as was
the corresponding forgetful functor U : Dev(A,X) » éI. In this
chapter we prove that under certain conditions the functor U
is strictly isomorphic to UD‘ for some device D in éI.

Thus devices themselves may be regarded as algebras, In Sets

the free devices are devices associated with the anafchic varieties;
that is, the varieties of algebras satisfying no non-trivial laws.
As we sketched in §0.8, the classical description of vgfiety
begins with a description of the anarchic varieties, and then laws
are introduced. Using free devices we are able to mimic this
procedure, and hence to show that in Sets the categories

éggg? correspond to conventional varieties. We also discuss
devices and their algebras over §g£§}, and using this information

we are able to show that the varieties of devices in Sets are the

varieties of clones defined by Philip Hall,

§3,1 Devices as algebras,

The first thing we need is an adjoint to the functor
U : Dev(A,X) » éI, and the first step to providing this is the

following theorem.
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3.1.1 THEOREM The functor U : Dev(A,X) ~ éI creates limits,

PROOF  Consider a diagram G : C - Dev(A,X). Let
X ¢: D> UG be a limit of UG in él. If Ei is the evaluation
(at i) functor which takes any functor L : I > A to Li,
then Ai : Di » Ei UG is a limit in A of EiUG. If C 1is an

object of C write the image of C under G as DC = (nC,AC).

We wish to make the objects Di into a device. Define ni

by XiC.ni ='nCi (C ¢ g) and define A(i,il) by § e A(i,il)

if and only if there exist maps GC £ AC(i,i ) for all Ce C

such that Ai C.6 = GC.AiC. It is clear that if D so defined
1

is a device, then it is the only device making A into a device
morphism, It is easy to check that, by the properties of limits,
ni is well defined, and further that A(il,iz).A(i,i ) E.A(i’iz)

for all i,i e I, Given v : Xi ~» Dil, then for each C

1212

in g we can solve for GC € AC(l,il) in AilC.v = Gc.ncl.

Now if u 1is a device morphism from DC to D which is the

Cl
image under G of amap in C, then I claim that
in

Sc,.pi = uil.dc. Certainly there is a S'C,

PR 1] : = .
AC,(l,ll) such that § cremi uil.GC, and this map has the

property that:

1 = &1 = .3 ,
§ C'°nC'i § C,.ui,nci ull.dc.ncl

= pi..A, Cov =2; C'.v
1 il H
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and hence § =4 From this property of the maps

'
c' c'’

. . . . = '
GC (C ¢ C) we immediately derive that ull.sc.XiC GC,.AiC .

Hence there exists a unique § e A(i,1 such that

1)

Xilceé = GC.XiC since Ail is a limit and (GC.AiC; Ce 0)

is a natural transformation from Di to Ei UG, This §&§ has
' 1

the property that Ailcoéani = GC.AiC,nl = Gcencl = AilC.v for

all C in g and hepce §.ni = v, The uniqueness of 6§ in
A(i,il) with this property is easy. The definition of A
immediately gives us that )C = (AiC; iel) is a device morphism

from D to D and it is further clear that

c?
A= (AC; Ce C) is natural from D to G. We would like to show
that X is a limif for G. Consider a natural transformation

A' : D' > G, Then there is at most one device morphism

g : D' > D with AC.6 = \'C for all C e C, since if we apply

U to this equation we get XC.& = A'C for all C in C,

and & is determined by the universal property of Ao If we take

& as determined by this equation A.& = \', then we need only check
that & 1is a device morphism to see that ) is a limit., First

AiC.gion'i = k'iC,n'i = nCi = A,C.ni for all C in C, and

i
hence 4i.n'i = ni. Secondly, consider §' ¢ A'(i,il). Then

L { - U :
Xi Cmgila6 A 1 C.§ GC.A iC for a uniquely determined §

1 1 C




in Ac(i,il)a Again it is easy to check that

(GC,XiC; C e C) 1is natural from Di to E, UG, and so
1

there exists a &§ ¢ A(i,i,) with A, C.8§ = §,.A,C. Then
1 11 Cc*"1i

A ccsii.s' = §

' = = i
i C.x iC GcaxiC.éi Ai C.6.61 and hence

1 1

we have our result,

3.1.2 THEOREM (BS) The functor U : Dev(éX) - éI

has a left adjoint.

PROOF  Only the solution set condition needs to be checked
before we can apply Freyd's theqrem to obtain our result.
Consider a morphism o : A+ D in éI where D = UD. For
each ordinal n we define a map a ¢ A, > D as follows.

The map % is the union of o and n. At limit ordinal n,
the map oy is the union of all preceding o The map
an+li‘ is the union of ani and all maps G.anil where

§ € A(il,i) and §oniy factors through uni. If 1 1is the

same cardinal as that mentioned in 2,1,13, then we rewrite uTi

as Al : Dli - Di, It is clear that ni factors through ani
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and hence through Al; say ni = Ai.nli. We would like to make

Dl into a device and we do so by defining Al(i,il) to be all

those maps 61 :+ D.i - D,i, such that Ail.a = §.A1 for some

1 171 1
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§ € A(d,1i,). We will prove that Dl = (nl,Al) is a device.

Clearly Al(iz,i3).Al(il,iz) E_Al(il,i3) for all il,iz,i3 e I.

Consider any map u : Xi - Dlil. Since BS(4) holds and
is a limit ordinal, u factors as Xi > kgK(Akll,akll) - Dlll

where |K| < «. Let m be the set-theoretical union of XK.
Clearly m < T, If me K then it is easy to see that

kLiK(Akil,ockil) = Amil since all a (n < m) factor through a .

If m is not in K then clearly it is a limit ordinal and

| = = 1 '
J (Ak,ak) .U (An,an) Am. In both cases Mg factors through
kekK n<m

o 1

i1 Let Ail,u = §.ni where § e A(di,i

1)+ Then if n is any

ordinal with m < n < 1, from the definition of «a we have

n+1

that 6,ani factors through o and hence through

o+l 1
aTil = Ail. Further, using Lemma 2.1.9, we see that

§. U (ani) = §.2i factors through AMys say 8. o= Ail.él.
mEN<T

Clearly 6, € Al(i,i ) and Ail.dl.hli = Xil.u. Since

Xil is monic, Gl,nli = U, Further it is clear from the

definition of A, that 2 : Dl + D 4is a device morphism.

Now corresponding to A € éI the various devices Dl

obtained as above for different maps o with domain A make up
a solution set, but not necessarily a small one. However, from
our construction and BS(5) it is not hard to see that there is

a small representative set of such devices 0. .and this representative

1
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set is a satisfactory solution set, enabling us to use Freyd's

theorem to obtain our result,

Now we have two theorems asserting that the functor
U : Dev(é,X) > éI arises from a device; one in the basic

situation and one in the elaborate situation. The first is

3.1.3 THEOREM (BS) The functor U : Dev(A,X) » éI is

tripleable if A has finite coproducts.

PROOF We apply our recognition theorem 2.3.4 to Y and él,

where the family Y of objects in éI is the set of all objects

in éI. Then Y-surjections are split epimorphisms. Let F

be a left adjoint to U, and consider a map

A UUl - UDZ in éI which has the property that for all device
morphisms FA - Dl the composite UFA - UDl i UD2 is in the
image of U. We can find a devicevmorphism v ot FUD1 > Dl

with a right inverse u in éI, namely that corresponding to the
identity UDl - UDl under the adjunction. Write FUD1 =7,

To see that A is a device morphism consider the diagram:

_—vi— A

:
Mrs—yt —"1t = Dyt
I

8" : 8 8!

|
|
|
v _ |
S —

Le—pi, — 1t !
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If § is in Al(i,il) we need a &' in Az(i,il) such that the
right-hand square commutes. Choose &" in A(i,i,) such that

§".ni = uil.é,vigni = uiledanli. Then we have that

vil.d" = Sl.vi for some ¢, ¢ Al(i,i ), and so

= = " = - ,
Gl.nli = Glcvisni v1106 ni Vil°uil'6°nli G.nli,
Hence 61 = § and vil.G" = §,vi., Now, since v 1is a

device morphism, we have that Ai,.vi 8" =8" Ai.vi for

1

some §' € Az(i,il), and hence
. = N . FR—. . . " s — ot . . s (] i
All.é All.é,vl.ul X1l.v11,6 Mi =68 Ai.vicud 6 JAl.

Further n,1i = Ai.vi.ni =2i.n;i and hence A:Dl -> DZ is a
morphism of devices, and so Dev(A,X) is saturated with
respect to (FA;‘ A e A) and U,

All that remains to be checked is condition (3) of 2.3.4.

Consider a U,S-suitable map A:UDl -~ D, in éI (where

2

S 1is the set of universal arrows associated with the
adjunction) and suppose )\ has a right inverse A'. Then

we would like to show that D, = UD, for some device DZ’

2

and 2 : Dl > DZ is a device morphism. Define n, by

= . . = . . )
nzi Al.nli ‘and Az by Az(i,i ) All.Al(i,ll).k i

(i,il e I). The closure property for devices clearly holds

for DZ = (nZ,AZ) in view of the following fact: if

§ ¢ Al(i,i ) then Ail.G.k'i.ki = Ail.ﬁ. To see this consider

the fdlowing diagram.
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ri 3§§§}3'i.x1
£t M
) > .
Di = 4 Dll —_—— DZi
2
8! s A 604
g1, My
Di Dlll D21l
ti; 1
D1y

The device D is FUDl and ¢ is the canonical map
UDl - UFUDl. The map El is the device morphism With
El.c = 1, while gz is the device morphism with
Ezi.ci =bh'i.ki (all i e I). Define §' in A(i,il)

by 6&'.ni = i,.6.n;i, and define 6,,5, in Al(i,i

2 l)
T . T
by Elil°6 = 61,511 and 5211.6 = 62.£21. Then
¢ : | ST - = : =
danll = 511198 .ni Gl.Eli.ni Gl.nli and so 61 6.»
Further, since Ai.A'i.Ai = Ai.1 we have Ai.Eli = Ai.gzi
= A1 3 ' = 14 ' = 149
and Ail.é.éli All.Elll.G -All’gzil's »kll.ﬁz.gzi. Hence

— - . . = . ]
Xil.é = Ail.éogli.ci A11a62.£21GC1, All.GZA i.ad.

. = [ . s - .
So All.G,Eli Xil.éz.k 1.A1,Ell Al .S

BN . . = o .
1 Z.A 1.A1.£21 All.é.gzl .



= = i i = '
Finally Xil.é Ailoﬁ.gli.ci All.G.Ezl.ci Ail.éal iad

as we required.
‘We can now continue to check that 02 is a device.

. . . . [ =
Consider u : Xi - D211. Then A i,.¢ S.nli for some

s ' = 4 ' =
S € Al(i,il) and hence xll.d.x i.nzi = Ai..8.A i.Xi.nli

1
% B
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1 .nli = U, To check the uniqueness part of the universality

. ] s = . [
condition, suppose Ailsﬁl.k i.n21 A11.62.A 1.n21 where

61,62 € Al(i,l ). Then A11.6l.nli = Ail.éz.nl

following diagram when i # i:
D1 |
zi . 1
/Ekl ~N A
Di —> D, i—> D.i

2

~ T

kMt

The device D 1is FA where Ail = Xi and Aiz = Dli2 for

all other '12 in "I, Again ¢ is the canonical map

z ¢+ A~> UFA, If we define

i, Consider the

Gps0y 3 A~ Dl by akil = Gk.nl
(k = 1,2) and akiz = 1 for any other i2 in I, then
£,»E, are the device morphisms defined by EleeC = 0y (k=1,2).

Then since A.gl.; = X.Ez.c it follows that . A.gl = A.gz.

Define & in A(i,il) by &.ni = zi, and define
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§',8", 1np (H1,1) by gi,.6 = 68" .51 (k=1,2).

1 - ] o s = . = . s

Then § k.nli =g k.Ekl.nl Ekll.é.ni ‘£k11,C1 6k°nli
L = =

and hence § Kk Gk (k = 1,2). Hence AMg.8, =

Kll,61.£11.§i = Ail.ilil.é.ci = Xll.Ezil.G.Ci = Ail.éz,

. LIE R [ TR
and so All.Sl.X i }11.62.A i. When 1 1l we need a

different proof, Let ry ot Dli +Z, 1, t Xi> Z be the

canonical maps of the coproduct of D

2

li and Xi. Then there are

maps qli,qzi HEVARS Dli with the following properties:

q i.ry = 1, qli.r2 = Sl.nli, .qzi.rl =‘l, qzi.r2 = 52.nli.
Consider the diagram:
i

Ex
pi ————> .1

1

8 61 l
Ekl 5

1

DN

Z

)
AL
i D.i

The device D is FA where Ai = 72 and Ai2 = Dli2 for all

other i2 in I. Again r 1is the canonical map A - UFA. If
9y (k = 1,2) are defined as above at i, and elsewhere as 1,
then Ek (k = 1,2) are the device morphisms determined by

gkmg = q. The map § in A(i,i) satisfies &.ni = ci.rz.

] 1 ] . . . 1 - . =
Define § 1,6 , in Al(l,l) by § Eki = ikl.G (k =1,2).

ko
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' = ' = i i = i i, = i
Then § k.nli § k'gki°ni Ekl.d.nl gkl.il Ty qkl.r

= &1 =
k.nli. Hence Gk =§ K (k = 1,2). Since
Xigili.ci = Xl.izi.ci we must have Ai.Eli = XiGEZi

2
=38

and hence X1,61 = Aiudl.gli.ci,r

Ai@gziod,;igrl = Ai.GZ.Eziaci,r

= Ai.&lisé.cierl =

as required.

1
1 - Xi.éz,
We have shown that A : Dl > DZ is a device morphism which
under U becomes A : UDl -> DZ' The uniqueness of the device
DZ with this property is fairly clear. The maps Ail..é.k'i
with § in Al(i,il) must be in Az(i,il) and we have shown

that they suffice.

Next we give a theorem giving the more precise information

available in the elaborate situation.

3,1.4 THEOREM (ES) Let J be all functions from I to I
and let Z = (Zj; j € J) be the family of objects of ‘él with
Zj(1) = X(ji). Suppose A contains an initial object O which

is in X and to each pair Xi,Xi. of objects in X there is

1
a model of their coproduct in X. Then U : Dev(a,X) ~ A" is
strictly isomorphic to UD for some device D with family of

objects Z.
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PROOF We intend to use recognition theorem 2.3,6., As we
remarked in 2.2.24, Z and éI are in the elaborate

situation. The functor U : Dev(A,X) - éI has a left adjoint
and hence there exists a family S = ((nj : 2j - UFj,Fj); j e J)
of universal arrows from Z to U. To see that Dev(A,X) is
saturated with regpect to (Fj; j € J) and U, consider a
morphism A : UDl > UDZ in él; and suppose that if

£E : Fj > Dl is a device morphism then )£ is a device morphism,
We want to show that for ény 61 in Al(i,il) there exists a
62 in Az(i,il) such that Ail.sl = 6,.Ai. Assume first that

2

i# iI We will show that 62 defined by 62.n21’= Ail.Sl.nli

has this property. Consider the diagram:

ii///Xl \\Q;s
1
_.i__%D

Y i
Di 11-———--; Dzi
: |
'
]
5: 61 j :62
v Eil Ail ¢
Dil Dlil----————-—-> Dzil
CN X.n i
1 . 1°'1
Xi

Since X 1is a generating set in A it is sufficient to show
for any map T with domain Xl in X and codomain Dli that
Xil.GlQTl = GZ.Aiarl. Now we form the free device D = Fj

where Zj(i) = Xl’ Zj(il) = Xi and Zj(iz) = 0 for all other

12 e I, The device morphism § 1s defined by £z = 1T where
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i = T1s ril = Sl.nli and Tiz = 0 for other i2 e I, The
map 6 in A(i,il) is defined by &.ni = Ziq. Then if

Eil.é = §'.£1 we have
6'.nli = 6" Ei.ni = Eilas.ni = Eil.cil = Sl.nli,

and so §' = §,. Since Ag dis a device morphism, for some 8"

. . — 1" . .
in Az(i,il) we have Xil,ill.é = §".Ai.£i.  But then

‘ P . PR . = an : "o_
)\ilodlwnll - Ailaglluaanl 6 o)\iegltni 6 enzi and SO 6 629

Finally Ail.életl = Ail.gil.é.ci = Gz,kieii.gi = GZ.Ai.Tl

as desired. If i = il we have to vary the argument as we did in

the proof of 3.1.3. Instead of taking the free device as

indicated we find a map v : X3 > Dli (with X3

which both T and §1.mpd factor. Then we form the free

in X) through

device on Al where Ali = X3 and Ali' = 0 for other

i' € I. It is not hard to see that the above argument can be
modified in this way to yield again the desired result.
To check condition (3) of 2.3.6 consider a Z-surjection

Ao UDl + D, of the type considered in that condition where D

2 2

is not known to be in the image of U, To make D2 into a device
let Az(i,il) be all the maps. 62 such that there exists a

61 in Al(i,l )‘ with Ail.sl =l62.Ai, and put ny = knl.

First we check that to each 61 in A(i,il) there is such a 62,
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By 2.2.6(1) this will follow if to each pair of maps t,t' with

common domain X' in X and with codomain Dli we have that

Ai.t = Ai.t'" implies that AMj.8q.t = Ail.ﬁl.t'. Now assume
i# i1 and Ai.t = Ai.t', and consider D' = FA' where
A'i = X', A'il = Xi and A' is trivial elsewhere. We
define device morphisms £1582 by Ek.;' =t (k = 1,2)

= = = ' =
where tli t, tlil Gl.nli, tzi t', tzil él.nli and
both t1 and t2 are trivial elsewhere. Then again if we define
§ in A(i,il) by &§.ni = g'il it follows that

= = 1 = 1
gkil,é Gl.aki (k = 1,2), Now since X,El.c ,x.gz.c

we have that AeE, = AeE.. Thus Ai..S8,.t = Al
1 2

1°°1°
. s . [ j . .
Ail.gzll.G,E i AllQGZ,t as required. If i # i; we can

v
1“5111‘5°¢ i
modify this proof.

Now it is clear that Az(il,iz).Az(l,il) E_Az(i,iz). Further,
given u : Xi » D,i,, we can factor u as Ail.u' since kil
is X-surjective, and we can solve Gl.nli =qu', Hence since
Ail.dl =,620Ai for some '62 in Az(i,;Q we have
Gz,nzi = 62,Ai°nli = Ailaél,nli = U, The uniqueness part of the
universality condition requires another argument using U,S-
suitability similar to those given above. Hence (nZ,AZ) is
a device and ) : Dl > Dz is a device morphism. It is easy to

see that (nZ,AZ) is the unique device on D, making A a

device morphism,
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Finally we have to check condition (4) of 2.3.6. Suppose
Az Dy~ UDZ is a U,S-suitable monomorphism. We define

Ay by 8y € Aj(i,1) if Aip.8; € A,(i,i7).Ai.  We define

Ny by Aionli = nzim To see that such an Ny exists, notice

that the free device on A,, where A,i =0 for all i e I,

is (ny,b,) where n,i=1:Xi> XL and A,(1,1,) = A(XL,Xi

D D
Then O ~» Dzi factors through Ai for each i € I and hence,

by U,S-suitability, so does i. The only difficulty in showing

2
that Dl = (nl,Al) is a device lies in the universality condition.

Given yp: Xi ~» Dlil we can solve 62.nzi'= All.u for 62. in

Az(i,i Yo Now assume i # il’ and to each k € T form the free

device D% = D*k on A* where A*i = Xk, A*il= Xi and A* is

trivial elsewhere. To each 1T : Xk - Dli let £* = E*% be the

device morphism such that Eg*g* = v where vi = Xi.t and vil = kil.u.

Define & in A%(i,i;) by &.n*i = g*i . Then if E*i 6 = 8',.E%1

we have G'Z.nzi = g*iloé.ni = E*il.c*il = kil.u = Gz.nzi and

hence 5*1196 = Sz.i*io Now since v factors through A,

by U,S-suitability so does £*; say &* = \\*, Then we can
define a function fk : é(Xk,Dll) > é(Xk,Dlil) by taking

fkT = X*iladoc*i. If we can apply adequacy to the functions f

k
(k € I) then there exists a map.- 6, : D,i ~> D 1 such that

1 1 171
611 = A*ilaé.c*i for each 1 and corresponding \%*, %,
= * * = & X = {
Hence lil.GlT £ il.d.c i 762.5 i.0%d 62.A1.T, and we can

cancel 1 to get Ail.él = 62.A1. Further Ail.dlonli =
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62°nzi = Ailau and since kil is monic we have § i=u.

1'™M
So we have to prove for each §& : Xkl + Xk that (fkT).5 =

fk (18). I omit this proof, as well as the proof when i = il°
1

It is clear that Al, as we have defined it, is the only possible

way of making Dl into a device so that X becomes a device

morphism,

3,1,5 REMARKS It is clear from 2.2.24 how to find many examples
where the conditions of Theorem 3.1.4 apply. An example of a family
of objects in a category satisfying the conditions of 3.1.3 but not
necessarily of 3.1.4 is any small family in P(Y) (see 1.1.8).

Before we leave the elaborate situation for the concrete
theorems of §3.2 we note some topics of iﬁterest not developed in
this thesis.

One of the things suggested by the fact that devices are
algebras is the possibility of classifying devices by the laws they
satisfy. In Sets there are existing results in this direction;
see for example [17].

Given any device morphism X : Dl > DZ there are interesting
morphisms from Dl—algebras to Dzéalgebras defined as follows:

a i Ay > Az‘ is a A-morphism from (Al,él) to (A2,¢2) if
for all 1 e I we have d.@li g_ézi.ki.’ One can treat isotopy
in the theory of loops ’[3] in terms of these types of morphisms.

In this connection it is of interest that Dev(A,X) can be made into

a 2-category via the isomorphism Dev(é,X) = (Alg(é,X))oP.
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3.1.6 COUNTEREXAMPLES To indicate the limitations of 3.1.3
and 3.1.4 we give two counterexamples.

) It is not true that the category Iriples of triples
over Sets is tripleable over ggggf where § = obj Sets. In
fact the functor U : Triples - ég;g? does not even have a left
adjoint, For suppose F 1is a left adjoint to U and consider
FW where WS = 1 (a singleton) for each set S, Consider small
ordinal n, Let Tn be the triple corresponding to the
category of all Q-algebras, where § has one operation of each
arity m € n. Using the operational interpretation of device
mofphism (1.6.3) one can show’that for eachv n there is a triple
morphism kn : FW »> Tn where each component AnS (S eSS is a
surjection, But |Tnl| increases unboundedly as n increases
through the small ordinals, and is FW!l cannot be a small set.

2) It is not hard to see that U from the category of full
devices in Finite Sets to Finite Sets also does not have a left
adjoint. We can prove this by showing that to any finite ordinal n
there is a triple T in Finite Sets which is "generated" by a

single unary operation and which has- |Tl| > n.

§3.2 Devices and algebras in Sets™.

By Sets™ we mean the functor category where n 1is a small

set, We first discuss the free devices in Sets? and their algebras
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To do this we need an extension due to P,J. Higgins [11] of
the conventional notion of algebra, (Our presentation of the
extended notion is rather different from that of Higgins.)

Proofs in this section are sometimes omitted or only sketched.

3.2.1 DEFINITIONS Consider a small set n fixed thfoughout

the following discussion. A formal n-operation .is a set

together with an n-tuple of sets aw which called the arity

of w and a specified element rw in n called the target

of w. Let § be a small set of formal n-operations, Then an

Q-algebra A is an n-tuple of sets A = (Am; m € n) and to each
. ‘ n

w in Q@ an n-operation wy Sets (aw,A) ~ Arw"

A homomofphism from A to B is a mOrphisﬁ

X : A->B in §g£§F such that X.wA(u) =_wB(Aﬁ) for all

U e §§£§?(aw,A)e Again we name tﬂzbcatego;Q of Q-algebras

and homomorphisms {=~Alg, and it is clear that by taking n to

be a singleton Wé get the conventional notions as a special case.
It is straightfbrWArd to extend many of the results of

conventional universal algebra to this new situation. In the

next section we describe the free algebras in -Alg,

3.2.2 CONSTRUCTION Consider an object Y in Sets”. Then
the free algebra in {-Alg on Y may be defined as follows.
For each small ordinal k define sets ka (m € n) by the

following requirements.
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(2) At limit ordinals ka is the union of all previous
Dk'm‘

(3) If uy 1is the graph of a morphism from aw to Dk
then the formal symbol w[p] belongs to L whenever ruw = m.

For sufficiently large small ordinals k the sets ka
(m € n) become simultaneously stationary, and it is the stationary
value of ka that we name Dm. For convenience if u is the
graph of a morphism which occurs in construction of D = (Dm; m e n)
we attach to it the codomain D to make it a morphism in égggf.
The canonical map n : Y ; D is just the inclusion map.

Then D is the carrier of the free algebra F generated by
n if we define the operations of F by: wF(ﬂ) = m[ﬁ]
(0 : aw > D). |

We can define the length of an elemenf in Dm as the least
ordinal k for which the element is in ka. Many of our proofs

are by induction on the 1ength of an element.

3,2.3 THEOREM The obvious forgetful functor U : 2-Alg - Sets"
(where Q is a set of formal n-operations) is strictly isomorphic

D

to U : ép + A for some device D in Sets™= A,

PROOF Let X be a small family of sets containing the empty set

and, to each w e 2, m e n, a set with cardinality greater than
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the cardinality of aw(m). Further, suppose X satisfies the
conditions described in 2.2.24. Let Y = (Yjij ¢ ™ ~be the family
of objects in gggg? defined in terms of X as in 2.2,24, Let
Fj be the free algebra generated by nj : Yj - Dj  as described
in 3.2,2, Then the device 0 obtained from the universal

arrows ((nj,Fj); j € I™) has the property stated in the theorem.
To prove this we use our recognition theorem 2.3.6. Condition

(2) is an immediate consequence of the definition of homomorphism.
Condition (3) follows from the fact that congruences determine
quotient algebras, and condition (4) from the fact that subsets
closed under the operations determine subalgebras. If is clear

how to construct products,

3.2.4 THEOREM Let Y and § be two functors from I to

gggéf. Then a free device in ngjggggF,Y) on § may be described
as follows. Make 9 into a set of formal n-operations by
specifying that aw =7Yi if w e Qi, and rw =m if w e Qi(m).
Then the free device 0 1is the device associated with the universal
arrows from Y to U : Q-Alg - Sets". The canonical map

z ¢+ Q+>D 1is defined by zi(m) :w &mmetu[ni].

PROOF Let Dl be any device in Dev(Setsn,Y). We wish to show
that for any map o : Q - Dl there is a unique device morphism

P D'+£i such that Ua.z = a. This can be accomﬁlished by
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considering the operational description of device morphism given in
1.6,3. Take as a base of operations the n objects Z = {Zmjym ¢ n}
of §g£§? defined by Zm(m) = {@}, Zm(ml) =0 if my # m.

Then the elements of the sets Di(m) become formal operations in
the sense of §1.6, Further, if w e Qi(m) and u : Yi > Di

and Fil is Fvil then (uu[ni])Fi () = wlul, again in the

1

1

sense of §1.6. Now by 1.6.3 the maps Ai must have the following
two properties: Ai(m) : y WS nli(m)(y) (y € Yi(m)) and
Al(m) @ wlp] v (ocil(m)(w))Fli (i.p) 4if u: Yil - Dli,

D1

w e Qil(m) and Fli =TF i, These two conditions clearly determine
a unique family (Ai; 1 € I) of maps from D to Dl’ with the
property that A.z = a. To see that the operational

conditions of 1.6.3 are satisfied by this A requires an induction

argument which we omit,

With this information about free devices in Sets we can now

digscuss, using §2.4, the algebras of small devices in Sets.,

3,2,5 THEOREM Let D be a device with a small family of

objects in Sets. Then there is a conventional vériety of algebras

V such that the forgetful functor U :.Cattg) -+ Sets is

strictly isomorphic to UD. Further, the forgetful fuhctor of any
conventional variety is strictly isomorphic to UD for some such device

D.
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PROOF Consider small device 0. Make an inessential enlargement

Dl of D wusing 2,1.16 and 1.3,2 SO that X, satisfies the

1

conditions for X described in 2.2.24, Then there is a device

morphism XA :' D% > Dl from the free device D* on Q = (Dlil; i€ Il),

and each i (ii e'Il) is a surjection. Now, by 1.5.4 and

" D 0y
1.5.5 there is a device DZ in Sets with n, =21 and U

px D) D
is strictly isomorphic to U .U “., By 2.4.1 the functor U
is a full embedding, and so U ! is strictly isomorphic to
D% ' D3 D*
U Ié where A. 1is the image of U ~. Now U is

1 1

sfrictly isomorphic to U : 9-Alg + Sets for some @ and we have
seen in 204.6 that sgch categories él consist of all élgebras in
éD* satisfying certain "laws". These "laws" are not Quite the
conventional laws'descfibed in §0.8, but it is easy to see that
the difference is immaterial.

In the ofher direction consider a variety V defined in terms
of operations 2 and laws A. Let I be a set including the
arities of the operations in Q, fhe lengths of the laws in A,
and satisfying the conditions on X descfibed in 2.2,24, Then
 may be regarded as a famiiy Q=(i; 1ieI) where we Qi if
aw = i, Form the free device D* on iﬁ Dev(Sets, I).

Let Dl be the quotient device of D% determined by laws A.

D
Then clearly U L is strictly isomorphic to U : Cat(V) - Sets.
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Notice that different "presentations'" of a device in terms of
a free device and laws yield different interpretations of the
algebras., Our theorem is inadequate in that it does not show
that all presentations yield interpretations.

Almost all the résults in this thesis concern small devices.,
However the next two results are devoted to showing that

any device in Sets is equivalent to a triple.

3.2,6 THEOREM Suppose BS(2) and BS(3) hold for X and
A, and let D be a device with object family X. Suppose

further that I, > I and there is a family X, of objects in

1 1.

é indexed by .I1 such that to each i1 € Il there is an i e I

and a split epimorphism Xi - Xil. Then there is a device Dl

on Xl such that DIII is equivalent to D,

PROOF For each i1 in I define X,i, - D.1i as follows.,

1 Mt M1t 7 Y1t
Choose a pair of maps o : Xi » X i and B : X.i, > Xi with

. 171 171
aB = 1. If il e I take o and B to be 1. Let ni.B
mi, O DB 9 - '
factor as Xlil————+ F il———+ F'i where ni.B generates
1 )
DlB : F i1 -+ F i, When il e I take D16 to be 1, Define

D, D, 1 '
A, by Al(il,iz) = A" (Fi,F iz).Dle, We want to show that Dl

gso defined is a device. Clearly then DllI = 0 and we can apply

Theorem 1.3.4 to obtain the desired result. . The closure property
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is immediate. Consider yu : Xi; ~ Dliz. Let ¢ be the map

p,p, P
A" (F'1,F iZ) such that ¢.ni = pa. Then ¢.DlB.niil = ¢.ni.B =

voB =y, The uniqueness part of the universality condition follows

Dl
il generates F "i_.

from 2.1.12 and the fact 1

N1
3.2.7 THEOREM Let D be a device in Sets. Then UD is
== ==

tripleable,

PROOF If the cardinalities of the objects in X are bounded,
then by 1.3.4 we can omit all but a small set of objects from
X and still retain an equivalent device, But then by 2,1,.16
the functor UD has a left adjoint.

If the cardinalities are unbounded then to each small set
S # § there is a split epimorphism Xi > S for some i ¢ I, and
hence by 3,2.6 D can be enlarged inegsentially to include all
except possibly the empty set. Further it is possible to show

by a special argument that if @ > FDl generates (B,¥) - FDl

then tﬂ + B,(B,¥)) is a universal arrow to UD.

The final result of this thesis is a theorem identifying
small devices in Sets with the clones of Philip Hall; a result

presumably known by Hall when he defined clones,
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3.2,8 THEOREM ©Let I be any set such that I and Sets
satisfy the conditions imposed on X and A in Theorem 3.1.4.
Then U1 : Dev(Sets,I) -~ ég;g}v is strictly isomorphic to

U2 : Cl - SetsI where Cl is the category of abstract I-clomes,

_= @

PROOF By Theorem 3,1.4 the functor Ul is strictly isomorphic
to UD where D = (z,A'") is a device on J = IIe The nature
of zj : j > Dj is described in Theorem 3.2.4. ‘Each Dj arises
from a device D0j = (nj,Aj) with object set I. 1In order to
interpret the algebras of 0 we will present 0 as the quotient

of a free device D* = (n*,A*) as follows., Let Q = (Qj(i);

ieI, jeJ) bedefined by: (1) 1if ji =0 for all i eI

then Qj(i) =1i; (2) if 3ji 4is trivial except Whep i= il’ié
where 1, # 12,’ ji; =1, #0 and ji, = i, then 0j (1,) =

{w} (a special symbol) and Qj(i) = @ for all i # 12;

(3) if ji is trivial except when i =1, and 3i; =i, + 1, (a
specified model of the coproduct), then 8j (1) = {w} and

Qi) =@ if i # i3 (4) in all other cases Qj(i)r= 1)

for all i ¢ I. The opefations in cases (2) and (3)

are very similar, For this reason from now on we omit mention of
case (3). . It will always be easy to put in extra details to
include this case., Let D* = (n*,A*) be the free device,

With family of objects II in ég;g} generated by ¢* : Q - D%,

Define the map o : @ > D by (1) if ji =@ for all i then
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Qi) =1i and oj(@) =nj@d); (2) if jil = il, ji2 = il #0
and elsewhere j is trivial, then Qj(iz) = {w} and
uj(iz) : W NS (Cj(il)(k))[Cj(iz)], where k is a selected
element in il° Then consider the device ﬁorphism
A : D% > D defined by X.z* = a, Using the nature of o and
the fact that A.n = ¢ one can show by an induction argument that
each Aj(i) 1is surjective. Hence we may apply Theorem 2.4.6
to interpret D-algebras as * D*-algebras satisfying certain laws.

The laws A are all the pairs of elements of D*j(i) for
all i e I, j eJ which have a common image under Aj(i). As
we discussed in §2.4, if (tl,tz) is a law, where tysty € D*j(i),
and § ¢ A*(j,jl) then (éi(tl),6i(t2)) is also a law. It is
clear that any D*-algebra satisfying law (tl,tz) must also
satisfy (Si(tl),éi(tz)). Now consider the set of laws Al
defined as follows. (1) If w e Qj(iz), ji2 = il, k dis the
selected element of i. described earlier, u : i, > i, is the

1 1 1
constant function with value k, then (w[n*j],w[v]) € Al where
e = *- . I3 = *
voi, = J(1l)°u and vi, =n j(iz). (2) Suppose
W e Qj(lz) and Jiz = il. Let ig € J bé the map with 3ol = )
for all i ¢ I, and LU il > il be a constant map whose image
is kle Let 60 be the single map in A*(jo,j). Then
*I' ] = *. (]
(wlul,n J(iz)(kl))eAl where uiy GO.C 30(11),ul and
e wes (4 . < (1
Hi, = j(12)a (3) Suppose w belongs to 931(13), 932(13)

and Qj3(12) where jli3 = il, jzi3 = 12 and j312 = il. Let
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PR} . . () = 4 P ) = 1
j' : T > 1 be the map which has j =1, 374, =4 and

[y
]

3 i2 and which is trivial elsewhere, For each s € il

let o, : i, > 1 be the constant map with image s. Let
. feat . . = S |

By *dy D*j' be the map defined by 8512 n*j (izlas and

BsiB = n*j'(i3). Let y : j; > D*j' be the map defined by

yi3(s) = w[Bs], vi; = n*j'(il). Finally let wu : j, > D*j' be the

map defined by ui, = n*j'(i3) and ui, dis the constant map with

image w([v] where: v : j3 > D*¥j' has vij = n*j'(il) and
vi, = n*j'(iz). Then (wl[yl,w[n]) belongs to Al.
It is not hard to prove that Ai c A Further the set of

D*-algebras which satisfy the laws in A, may be interpreted via

1

Theorem 3.2.3 as the set of all abstract I-clones. Thus only one
thing remains to be proved; namely that any D*-algebra which
satisfies Al must satisfy A. To see this consider the set

A2 of laws satisfied by all 0D*-algebras which satisfy Al.

Consider further the family of sets N = (Nj(i); 1 eI, j e J),
with Nj(i) € D*j(i), defined by (1) jic Nj(1); (2) if

. oaa *s . . . . .
By 8 3i, > D 31(12) and the image of u is contained in NJl(il),

and if My ot jil > D*jl(il) is a constant map which factors through

n*jl(il), and further if w € Qj(iz) and  ji, =i then

l’
wlu] € le(iz) where u : j »> D*j1 is defined by uil = Uy,

uiz = uy3 and (3) if jO € J is defined by j,i = ¢ for all

0
ielI, 60 is the single map in A*(jo,j), and k € I, then

GObC*jO(i)(k) is in Nj(i). Now the following two facts can be
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proved by induction: (1) to every w e D*j(i) there is a
w' € Nj(i) such that (w,w') € hys (2) if (wl,wz) € A and

WsW, € Nj(i), then W) = W, These facts are sufficient

to prove that A2 2 A,
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