Collins

ACCOUNT AND ANALYSIS PRODUCTS ARE AVAILABLE IN THESE STYLES

“3880” SERIES ACCOUNT BOOKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>Leaf A4, Cased-In Red Oyster Covers</td>
</tr>
<tr>
<td>10849</td>
<td>Day Book – Paged</td>
</tr>
<tr>
<td>10856</td>
<td>Journal – Paged</td>
</tr>
<tr>
<td>10863</td>
<td>Treble Cash – Paged</td>
</tr>
<tr>
<td>10870</td>
<td>4 Money Column</td>
</tr>
<tr>
<td>10877</td>
<td>5 Money Column</td>
</tr>
<tr>
<td>10884</td>
<td>6 Money Column</td>
</tr>
<tr>
<td>10891</td>
<td>7 Money Column</td>
</tr>
<tr>
<td>10898</td>
<td>Double Ledger – Paged & Indexed</td>
</tr>
<tr>
<td>10905</td>
<td>Minute – Paged</td>
</tr>
<tr>
<td>10912</td>
<td>Minute Index – Paged</td>
</tr>
<tr>
<td>10919</td>
<td>Feint – Paged</td>
</tr>
<tr>
<td>10926</td>
<td>Indexed Through</td>
</tr>
<tr>
<td>10940</td>
<td>3 Quire Feint</td>
</tr>
<tr>
<td>10947</td>
<td>4 Quire Feint</td>
</tr>
</tbody>
</table>

“61” SERIES ANALYSIS BOOKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>84</td>
<td>Leaf A4, Cased-In Green Oyster Covers</td>
</tr>
<tr>
<td>13061</td>
<td>8 Money Column</td>
</tr>
<tr>
<td>13068</td>
<td>9 Money Column</td>
</tr>
<tr>
<td>13075</td>
<td>10 Money Column</td>
</tr>
<tr>
<td>13082</td>
<td>11 Money Column</td>
</tr>
<tr>
<td>13089</td>
<td>12 Money Column</td>
</tr>
<tr>
<td>13096</td>
<td>13 Money Column</td>
</tr>
<tr>
<td>13103</td>
<td>14 Money Column</td>
</tr>
<tr>
<td>13110</td>
<td>15 Money Column</td>
</tr>
<tr>
<td>13117</td>
<td>16 Money Column</td>
</tr>
<tr>
<td>13124</td>
<td>17 Money Column</td>
</tr>
<tr>
<td>13131</td>
<td>18 Money Column</td>
</tr>
<tr>
<td>13138</td>
<td>Petty Cash, 2 Credit & 11 Debit Columns</td>
</tr>
</tbody>
</table>

“700” SERIES ANALYSIS BOOKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>Leaf A3.5 (297 x 315), Cased-In Forest Green Covers</td>
</tr>
<tr>
<td>13259</td>
<td>24 Money Column</td>
</tr>
<tr>
<td>13266</td>
<td>27 Money Column</td>
</tr>
<tr>
<td>13273</td>
<td>32 Money Column</td>
</tr>
<tr>
<td>13287</td>
<td>Petty Cash 3 Credit & 17 Debit Columns</td>
</tr>
<tr>
<td>13280</td>
<td>Petty Cash 4 Credit & 9 Debit Columns</td>
</tr>
<tr>
<td>13294</td>
<td>Petty Cash 4 Credit & 16 Debit Columns</td>
</tr>
<tr>
<td>13301</td>
<td>Feint Only</td>
</tr>
</tbody>
</table>

“800” SERIES ANALYSIS BOOKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>96</td>
<td>Leaf A3 (297 x 420), Cased-In Forest Green Covers</td>
</tr>
<tr>
<td>13238</td>
<td>24 Money Column</td>
</tr>
<tr>
<td>13245</td>
<td>27 Money Column</td>
</tr>
<tr>
<td>13252</td>
<td>32 Money Column</td>
</tr>
</tbody>
</table>

ANALYSIS PADS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A3</td>
<td>(297 x 420)</td>
</tr>
<tr>
<td>23122</td>
<td>12 Money Column</td>
</tr>
<tr>
<td>23129</td>
<td>13 Money Column</td>
</tr>
<tr>
<td>23136</td>
<td>14 Money Column</td>
</tr>
<tr>
<td>23143</td>
<td>18 Money Column</td>
</tr>
<tr>
<td>A3.5</td>
<td>(297 x 630)</td>
</tr>
<tr>
<td>23157</td>
<td>24 Money Column</td>
</tr>
<tr>
<td>23164</td>
<td>27 Money Column</td>
</tr>
<tr>
<td>23171</td>
<td>32 Money Column</td>
</tr>
</tbody>
</table>

“4394” SERIES ACCOUNT BOOKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Quire (192 leaves), A4, Sewn Sections</td>
</tr>
<tr>
<td>11110</td>
<td>Journal – Paged</td>
</tr>
<tr>
<td>11116</td>
<td>Minute – Paged</td>
</tr>
<tr>
<td>11122</td>
<td>Feint – Paged</td>
</tr>
</tbody>
</table>

“A24” SERIES BOOKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>24 Leaves, Stapled</td>
</tr>
<tr>
<td>10200</td>
<td>Account Books – Red Cover</td>
</tr>
<tr>
<td>10201</td>
<td>Day</td>
</tr>
<tr>
<td>10202</td>
<td>Journal</td>
</tr>
<tr>
<td>10203</td>
<td>3 Money Column (Treble Cash)</td>
</tr>
<tr>
<td>10204</td>
<td>4 Money Column</td>
</tr>
<tr>
<td>10230</td>
<td>Double Ledger</td>
</tr>
<tr>
<td>10232</td>
<td>Minute</td>
</tr>
<tr>
<td>10208</td>
<td>Analysis Books – Green Cover</td>
</tr>
<tr>
<td>10210</td>
<td>8 Money Column</td>
</tr>
<tr>
<td>10212</td>
<td>12 Money Column</td>
</tr>
<tr>
<td>10213</td>
<td>13 Money Column</td>
</tr>
<tr>
<td>10214</td>
<td>14 Money Column</td>
</tr>
<tr>
<td>10218</td>
<td>18 Money Column</td>
</tr>
</tbody>
</table>

“A60” SERIES BOOKS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A4</td>
<td>60 Leaves, Sewn Sections</td>
</tr>
<tr>
<td>10300</td>
<td>Account Books – Red Cover</td>
</tr>
<tr>
<td>10301</td>
<td>Day</td>
</tr>
<tr>
<td>10312</td>
<td>Journal</td>
</tr>
<tr>
<td>10303</td>
<td>3 Money Column (Treble Cash)</td>
</tr>
<tr>
<td>10304</td>
<td>4 Money Column</td>
</tr>
<tr>
<td>10330</td>
<td>Double Ledger</td>
</tr>
<tr>
<td>10332</td>
<td>Minute</td>
</tr>
<tr>
<td>10334</td>
<td>Indexed Through</td>
</tr>
</tbody>
</table>

USEFUL CASH BOOK FOR SMALL BUSINESS

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>10400</td>
<td>Cash Book for Small Business</td>
</tr>
</tbody>
</table>
Locating Eth Floyd Pressure Gauge

Dimensions from Floyd 14-10-03 for 100cm
Borden pressure gauge, direct vent, rear entry, 3/8 BSP, range 0-1000 bar.

Enquiry made to Technical Projects for a female to female coupling — presumably AFF-10-446B
(10,000 psi, 690 bars, should cope with test to 730 bars). Previously we machined down one of the old HP couplings

Instead of 1975 indicated in MN book 91.

Bracket 170-51-6546.2
im pressure system

4" = 10/6
previous gauge fitted into
1/2" hole in door
2 3/4" wide gap they haven't changed.

The edge of the door coincides with the inside edge of the 90x90x8 angle.

Pressure
doors
170-51-6546.2
in ASI Housing,
safe.
Height of Pressure gauge mount 170.5 to 5325.1

The drawing as present shows 165 for the height of the gauge mount centre. Leave it at 165 and use 3mm spacers if necessary, amending drawing later.
Hence drill holes for pressure gauge support:

Holes $\phi 10$

Edge gauge mount will be 167 from inside of angle.

186.5

SCREWS 20FT M8X16
Space available for oil tank = 342.
Allow 3.25 mm clearance at X & Y, giving overall length = 335
inside length = 330

Amended 4/6/01 version of 170-57-5520 gives inside dimensions width of 115.

For 4009 litres (1000 gallon), oil depth then is: 4009000/(115x330) = 105.6 mm.

Length of ELESA column level indicator is 127 mm between screw attachments (112), ie 115 between screws. So this range is OK.

If we allow y = 24.5 mm, there is 22.2 mm between the inside of the flame angle and the end of the tank. The thickness of the indicator is 18 mm, so it fits in OK. It will be 18 + 8 = 26 mm behind the door.

24.5 - 18 + 8 = 14.5

Tank will overlap the back of the pressure gauge by 10 mm but will clear the pressure gauge mount by 16 mm.

ie the mounting holes are 48.5 from inside wall instead of 58 indicated in 17N book p1.

This reduces to 16 when 10 mm inner plate is allowed for.
Thus drilling for tank mounting:

SCREWS: 40x16 x 8 or 16 x 12
Can stay with $x = 28$? Then the centre of the top closure of sight glass will be 8.5 mm below top of slot, so it would be convenient to fill to 10 mm below this, i.e. 18.5 below top of slot. The total oil depth cement is 106 mm (4.18'), so the bottom oil position will be about 24.5 mm below top of slot, it 4.5 mm below bottom of slot.

Get more centralized viewing if $x = 24$. Make 24 & change tank depth 168 \rightarrow 165.
Oil connection pipes on tank.

The edge of the frame angle is 56.5 mm inside the tank frame, so we need a minimum of $56.5 + \frac{1}{2} (6.3)$ for vertical pipes to clear the angle, $= 59.7$ or 60 or 55 from the inside of the tank.

Present drawing shows 73 mm from the inside back wall of tank, so there is 18 mm clearance between the edge of the angle and descending pipes. — OK.
Haskel Oil Pump Mount

Catalogue shows a bracket with two $\phi 12$ holes spaced 100. This seems to correspond to the two holes $\phi 13$ spaced 100 in bottom front panel in drawing.

Not clear why we had to make a special bracket for most recent machines -- valve supplied without bracket??

Screws
2off
M10 x 16
(possibly M10 x 12)
90 buddles

190

3 3/4" from door edge
1 1/2 from inside jamb.

18.5

10.5

90 buddles

18.5

16

7.5

bottom of door

top of angle

screws 30off M6 x 30
20off M6 x 25

Need standoff 11mm thick
Approx $20

6

3.5

2.5

14.5

9/16

25
Attaching bubble block

Holes for bubble mount:
Holes for pipes next to intensifier:

Dill Ø10 hole in door in site with guide in Ø28 hole.

Fitting rear door bolt

Flange of angle

Lock nut

Ø28

Ø10

135

25

55

27 x 1.5

8
Back of Electronics Boxes

Boxes are 435 wide & screws in front panel = 465 apart

Should we introduce telescopic slides? Fatnell 329-4973/5

Clearance on box = 452 - 435 = 17 between high part of channel
 458 - 435 = 23
 = 11\(\frac{1}{2}\) each side, but
 telescopic slide is 12\(\frac{1}{2}\) deep, so have to cut into the channel
But RS have some with 9\(\frac{3}{4}\) in mounting space (only \(\frac{3}{4}\) withdrawn)

If we use telescopic slides, how is the cabling managed?
And where does it disconnect for shipping?
Door catches.

On the presence of temperature panels, we can use (as earlier) SoneCo 43-99-236-11 anti-clockwise (LH door) 43-99-124-11 clock-wise (RH door).

Can use the same catches on side door, electronics rack.

At rear...
Checking location of pull-lift eyebolt

For Pressure Vessel:
Location of Instrument Rack/Platform & Desk

Re-transmission Panel

Attach to panel - 65 24.1 on side of Rack/Platform, not bother with insetting it more.

170-51-8004
Mount for scissors on computer box

29\(\frac{3}{4}\) 48 16 11

scissors mount
7/197

scissors 7/196

500 - 2510 = 490
500 - 2500 = 2505

PLAN

487

487

392 321
Mini DIN rail is 15mm wide with 14 slots
Standard DIN rail is 35mm

Bracket for muddy bag switch

From p.24 all allowance 55
Wiring of an LH inside panel 6506?

rail for power/cooling/cooling

Thermocouple connector block (on DIN rail) M6 fixings

Furnace connector block (on DIN rail) M6 fixings

rail for running power cables up M4 fixings (7/6)

Conduit for thermocouple cable

attachment of thermocouple housing

for welding switch

60

70
Mains switch on front of housing under desk.
This is a residual current device. Paul's order (no 511) was for an MCB/RCD 2 pole 30-A 16A device (George Brown stock no 180223). But this may have been changed later, at least on the Poitiers machine, to a Farnell 321-1903 isolator.

Paul ordered a 4C4 surface mount enclosure with 12 MCB/RCD but George Brown man on phone said this is an Eclipse enclosure with various mounting holes but the farthest apart are 125 mm, whereas 140 mm is shown on VIEW 1 of Drawing 6501.
Enotherm controllers

For axial flow control, use Enotherm 2604

" temperature "

2404
Post fluid tubing length

The dimensions of the Tee are as follows:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>Length of tube</th>
</tr>
</thead>
<tbody>
<tr>
<td>Old NOVA</td>
<td>36</td>
<td>25</td>
<td>36</td>
<td>18</td>
<td>520.2433</td>
</tr>
<tr>
<td>New NOVA</td>
<td>31.8</td>
<td>22</td>
<td>51</td>
<td>25.4</td>
<td>TEE-70-4E</td>
</tr>
<tr>
<td>SITEC</td>
<td>32</td>
<td>22</td>
<td>32</td>
<td>16</td>
<td>720.1633</td>
</tr>
<tr>
<td>Old NOVA</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td>308</td>
</tr>
<tr>
<td>New NOVA</td>
<td>25.4</td>
<td></td>
<td></td>
<td></td>
<td>300</td>
</tr>
<tr>
<td>SITEC</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td>310 new needed.</td>
</tr>
</tbody>
</table>

Thermocouple length:

- Old NOVA : 474
- New NOVA : 487
- SITEC : 482, as estimated from dimensions opposite or 19.0" = 482.6
Drawing 5511 - Packing pieces under values:

NOVA-SWISS values had a body thickness 30mm, so packing piece is

\[\frac{19 - 30}{2} = 4 \text{ mm} \]

as a dry 5511

SITEC values body thickness 30.

So we do not need to change drawing 5511.
Revision of 17 for Approved Board - 1601
Previous Board was 130 wide.
If we put the connectors on top, we need a space between the boards to bring up the connectors. So if the board is 160 wide, there is a 30 gap - OK.

However, we could change to the arrangement opposite, with a board 210 long x 140 wide to mount the loudest etc. on, and a vertical board to mount the transformer etc on.

In the gap between the units there could be a rail for tying the cable to. If we keep to a 30 gap, then three units need 3 x (140+30) = 510 mm and four 4 x (140+30) = 680, inside the 150 x 90 angle, i.e. 600 and 770 from the left side of the housing. However, the pump etc start by at least 750 from the left side, so we may have to juggle a bit to be able to get a fourth amplifier unit - it is probably just possible. If needed, the cover could be indented.
Revision of Bourdon Gauge Mounting

There is a problem with the dimensions for the oil tank & gauge mounting on p. 2-10. It turns out that the gauge body (Φ100) interferes with the oil tank. As shown (p.5) there is only 41 between the axis of the gauge and the side of the oil tank, whereas the half-diameter of the gauge is 50.

Therefore we should move the gauge mounting 12mm to the left, as shown on p.4.

This means that we also have to move the window in the pressure door 12mm to the left, as in fig. 65.46.
Angles for anchor for support bolts for shipping:

From dimension opposite,

\[\theta_1 = \arctan \frac{292}{237} = 50.9^\circ \]

\[\theta_2 = \arctan \frac{292}{606} = 25.7^\circ \]
\[
\tan \theta = \frac{1}{52} \approx 18.5^\circ
\]

\[
\frac{49.10}{2} \quad \text{and} \quad RD 49.10
\]

\[
\alpha = 34 \text{ or } 35^\circ
\]

\[
\text{PCD: } 44.72 \quad \text{cirrmm: } 133.87 \text{ at } \sim 30 \text{ above hole stsr}
\]

\[
\text{PCD: } 44.72 \quad \text{cirrmm: } 140.49
\]

\[
\text{cirrmm. } 45^\circ - 1.75 = 15.81
\]

\[
\text{cirrmm. } 34^\circ + 1.5 = 14.77 \quad : \quad X = 1.04
\]

\[
\text{cirrmm. } 35^\circ + 1.5 = 15.16 \quad : \quad X = 0.65
\]
1000/10 N 4 Internal load Cell

Question of angular position of the φ3 inclined wiring hole.

It starts at PCD 40 & slants outward at 5° to axis.

Distance from start to break-out at the top is approx. 52
so PCD at the break-out is 52 tan 5° = 4.58 mm, so PCD at
top break-out is 49.10 mm.

Then distance of break-out from vertical = 49.10 sin 5°

\[\frac{13.73}{2} \text{ for } \alpha = 34° \]
\[14.08 \text{ for } \alpha = 35° \]

Face of LVDT hole is 12.5 mm from material.

So \(\alpha = 34° \), hole centre is 13.73 - 12.5 = 1.23 mm < ½. φ3.

So \(\alpha = 35° \) is better for free access to the hole in
front of the LVDT hole.

Question of whether the same wiring hole will intersect the wire cut.

Bottom of wire cut is ~30 mm up from beginning of hole, so
PCD of wiring hole is 40 + 2.30. \(\tan \alpha = \frac{1}{2} \), so 45.25

\[16.02 = 12.5 \times \frac{1}{2} = 0.70 \text{ mm for } \alpha = 30° \]
\[16.02 - 12.5 = 3.52 \text{ mm for } \alpha = 35° \]

Recalculating for 27 mm up (bottom of torque web)

\[\frac{13.73}{2} = 1.05 \text{ mm for } \alpha = 34° \]
\[0.65 \quad \alpha = 35° \]

So 35° is OK.
60.5
15
59.0

φ60.5
8.0
φ55.0

15°

54°2 (≈ 54°0)
Review groove dimensions on 1LC

Diameter $X = 55 \cdot \cos 7^\circ 5^\prime = 54.53 \text{ mm}$

So the groove bottom ϕ in 1LC of 54.2 should have adequate clearance, but 54.0 may be better.

The chord at the root of the spline is $61 \cdot \sin 7^\circ 5^\prime = 7.96 \text{ mm}$.

But at the level of $\phi 60.5$ (the OD of the 1LC) it is $60.5 \cdot \sin 7^\circ 5^\prime = 7.90 \text{ mm}$.

The width of the clearance grooves on the 1LC is 9.0 mm, so this is marginal.

Should make the width of the grooves 8.5 mm.

Chamfer on groove edges $\sim 0.7 \text{ mm}$, so width of groove at bottom of chamfer $= 59.1 \cdot \sin 7^\circ 5^\prime = 7.71$
Intracranial Components

Pressure regulator/filters

It should be a ¾ high flow, self-bled auto drain, 5 micron filter with gauge. Originally we used a Parker/Schneider 4599 BD with two rear-entry ½" connectors B45VU-200.

For GAS machine, we have P3KEA14ESABNGP

(see p30 of Parker Moduflex FRHs catalogue PDE 2501 TC UK-c edition 05.10

in www.jjp.co.uk/products/regulator/gpl-40-gpl-60.pdf.)

This needs two ½" rear entry connectors P3KK4AR4CR, p.5 above.

¾" Solenoid Air Valve for Oil Pump and Bleed Valve.

This is a ¾" solenoid pneumatic valve ¾ way normally closed 24 VAC 50 Hz.

Originally a Pongrass 7 - 5 M3 - 13.

For GAS machine we were supplied with a “value kit”

PHS 320S - 8 - 24 AC - D

described as R, ¾ ¾/2 N/C/SP Solen Valve 24 VSOH2 Nonlock O/IDE.

I can’t find this in a catalogue.

¾” Solenoid Air Valve for Gas Booster Pump.

This is a ¾” solenoid pneumatic valve normally closed 24 VAC 50 Hz.

Originally a Pongrass 4 - 5 BC - 6 DB.

For GAS machine we were supplied with a valve

121 K3306

described as ¾” BE 2½ NC 6mm FKM, and a coil kit

H82725 3D

described as DIN - 32 mm 8W 230VAC, see below.

The valve is listed on p14 of www.jjp.co.uk/PDF/Parker%20Solenoid.pdf under general application valves ¾” direct operated.

The “3306” has a 5 bar “admissible differential pressure”. I think we should have

3106 with 7 bar
The coils are listed in "New Honeywell, Inc., sensing, catalog, Parker, Inc." Part IV, pdf, p.342 (25-985) where 482725 is listed as with plug and 481885 as without plug.

The voltage code table, p.377 (60-985) lists:
- A2 for 24.50
- B2 for 24-60
- 3D for 220, 230/50

for 481885, no listing for 482725.
Diaphragm Mounting

We have recently been clamping the gauge mount on the Sitec adapter. However, there seem to be continuing changes in the dimensions of the Floyd gauge & this no longer works.
The current Floyd gauge dimensions are at the left.
It would now seem most sensible to have a 16 mm thick support, instead of the 25 mm currently used, and clamp it directly on the spine of the gauge.
Then the mounting column should be located 21 mm from the inside edge (69 mm from the face) of the jutting angle iron, instead of the current 80 from the front face.

The height of the gauge connection is 166.3, say 166 mm which is 1 mm higher than the current mounting (55251).
So drawing 55251 should be modified to be 166.0 length and 16 width.
And drawing 65013 section EE should be modified so that the two mounting holes 35 mm spacing should be 69 mm from the front face instead of 80.
Cross-section
of 100 series

\[R = 2.38 \ (\frac{3}{8}"") \]

\[\text{Circum} = \pi \times (3.7 \times 2) \]

\[= 23.19 \]
O-ring seal on oil tank connection block

Circumference of curved corner

\[= 2.5 \times 2 \times \pi \times 71 = 157.7 \text{ mm} \]

Long sides between curved corners

\[= 158 \times 2 \]

Short sides

\[= 33 \times 2 \]

Total circumference of ID of O-ring

\[= 157 + 316 + 66 = 397.7 \]

So ID of O-ring

\[= 126.6 \]

The exact fit of O-ring would therefore be -159, which has an ID of 127 mm.

In practice, a no -157 seemed to fit well.
Oil seal in Floyd Brandon gauge adapter

The gauge adapter 5176C 720.3432 supplied for the C&G machine had a vent hole in the R3/8" B5 and this time, which we don't remember being there for previous machines. So it appears to need a line-mig or similar to make a seal to the gauge, as follows:

[Diagram of adapter end with dimensions and angles]
Locating Floyd pressure gauge - see p. 12
Oil tank
Solaroid bleed valve mount
Bubbled block
Floors for pipe; fitting near doorbolt
Electronics rack
Door latches
Locating pull-toft eyebolt
Locating instrument tank/platform/disk, retrans. panel
Mounting pressure
Wiring kit inside panel
Main switch
Fay fluid connection taking length + T/C length
Packing under valve
Rewin motor amplifer board
Rewine Bourdon gauge mounting see p 54
Angles for shipping support bolt anchors
Inclined hole in 1050/10 N L/C's.
Rewine H/S L/C grove dimension
Pneumatic component
Rewin Bourdon gauge mounting
Oil seal in oil tank connection block
Oil seal in Floyd gauge adaptor
Any Year Calendar

The number opposite each of the hundred years in the list below indicates which of the following calendars is the one for that year. Thus the number opposite 1994 is 7, so calendar 7 can be used for 1994. Leap years occur in years exactly divisible by four, except that years ending in 00 must be divisible by 400 to be leap years. Thus, 1600, 1984 and 2000 are leap years, but 1800 and 1900 are not.

Easter Day is currently determined as the first Sunday after the full moon on or after March 21.
