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CHAPTER O

§1 INTRODUCTION.

The concepts, remarks and results presented in this thesis are
in four distinet directions in Model Theory and Universal Algebra.
Since every chapter has a detailed introductory part of its own,
in this Introduction we shall only meke very brief remarks to point
out to the directions taken up in the present work.

In Chapter 1 we deal with the following fundamental gquestion:
When should two classes of structures be regarded as 'essentially' the
same? We define the concept of isotopic equivalence and make it
seem plausible by an example that varieties of algebras can look fairly
similar under isotopic equivalence.

In Chapter 2 we note that the form of sentences of an axiom
system X , the categorical properties of the category 5(2) (of
structures satisfying ¥ and homomorphisms between them) and order-
theoretic properties of certain partially ordered sets
L(l(z);Y) can have simple connections. Some times these connections
can be close enough to provide characterizations of certain types of
elementary classes of structures. Thus we characterize the following
universel classes of algebras: negative assemblies, negationally
defined assemblies, quasi-varieties, semi~-varieties.

In Chapter 3, which is very closely related to §3 of Chapter 2,

we glve some properties of what were called quasi-free classes of




structures by Mal'cev [17].

In Chapter 4 we continue with the application of some categorical
concepts to Model Theory. We obtain a simple and general principle
about categories of structures that admit free structures ou all sets
such that free structures on isomorphic sets are isomorphic.

Chapter 5 is concerned with constructions that obtain elementary
(universal) classes (of structures) from elementary (universal)
classes.

In Chapter 6 we define some languages and structures with
non-finitary relations and operations for which many of the results of

Model Theory (stated usually for finitary structures) can be generalized.

§2. NOTATION AND TERMINOLOGY

This work is nearly éelf-sﬁfficient as far as notations are
concerned —— few notations are used without explicitly mentioning
the objects for which thej stand. However, quite naturally, this is
not so as far as terms are concerned — we shall use some standard
concepts from Universal Algebra, Logic, Model Theory, lattice Thed;y,
Category Theory, Set Theory etc. without explicit definitions.
Thus for example we shall not define a monomorphism or & language of the
first order predicate caleulus. For all such hasic concepts used
but not defined here we refer the reader to such standard works as
[31, [4], (5], (6], [9], [20] and [24]. We remark that sometimes

we shall define even some of the most standard and fundamental concepts.
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This can be so, for example, when we use an unconventional notation or term.
We now set up a basic part of the notation and terminology

employed in the present work. Terms and notations of more special

nature will be defined as they arise.

By a predicate system we shall understand an ordered triplet

(P,0,h) , where P, Q are sets and h is a function from P U @
into an infinite ordinal such that h(p) is non-zero for all

peP. Forevery { e PUQ we refer to h(f{) as the arity of ¢ ..
The letter R will always denote a predicate system. We write

P(R) , Q(R) , h(R) for the first, second and third member of a
predicate system R respectively. A predicate system f will be :
called restricted if the range of h(R) 1s the set of non-negative

integers; otherwise R 1is called unrestricted. Except in the last

chapter we shall only deal with the restricted predicate systems
without explicit mention.

We write o®(R) for thé set of formulae of the first order
language with:

P(R) aé the set of relational symbols,

Q(®) as the set of operational symbols,

[h(R)1(t) as the arity of t e PU Q,

X = {x],...,xn,...\} as the set of variables,

V(or), A (and), ~ (not), —> (implies) , .

<—> (is equivalent to) as the connectives,

V(for all), & (there exists) as the quantifiers,
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( ) (parentheses) as an auxiliary symbol ,

and

= as the symbol for equality.

In writing ©®(R) we have not depicted the dependence of ¢(R) on
and other sets of symbols because we shall assume these fixed.

For every ¢ ¢ ®(R) we write [h(R)](¢) for the number of
free variables in ¢ .

For every non-negative integer n we write @n(ﬁ) for the
set of those formulae in ®(R) that involve at most n free
variables. Thus QOQE) is the set of all sentences in o(R) .
We shall sometimes refer to members of o(R) and QOOR) as
fR-formmulae and R-sentences respectively.

By an R-structure we shall understand an ordered pair
A = (A,a) , where the carrier (Cf. [21]) A of A is a set
(possibly empty) and the make o of A is a function from
P(R) U Q(R) into the set of relations and operations over A such
that a(p) is a relation of arity [h(R)](p) for all p ¢ P and
o(w) 1is an operation of arity [h(R)](w) forall we Q .

The gpecies of an R-structure is the predicate system ‘R . An

f-structure is called relational or operational according as

RR) =P or PR) =9 , where P is the null set. Operational

structures are also called algebras or algebraic structures.

It is well known that algebras can be described as relational

structures but due to their special nature and importance it is
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advantageous and much more convenient to include operational symbols
in our languages. An important example of an R-algebra is the
following. Let P(R) = and let Y be a set. We define

Wn(lR;Y) inductively as follows:
wo(@;Y) =Y,

Wn_',](ﬁ.;Y) = (W-I '-'Wk“"; W];---ka € Wn(R3Y),w e O k = [h(ﬁ)](w)} )

Un

m=0 Wn(R;Y) ‘

Let W(R;Y) = U _ W (R;Y) . We now define W(R;Y¥) to be the

fR-algebra whose carrier is W(R;Y) and whose make o 1is defined by:

(w1,...,wk)a(w) = w].'..wkw , k= [h(&%)](w) ,we Q.

The members of W(R;Y) are called R-words in Y ,‘ and the algebra

W(R;Y) is called the R-word algebra on Y . We observe that if

W, , W, are R-words in X then w, =W,

172
An R-structure A =(A,®) is called trivial if A is a

is an R~formulae.

singleton ({a} , Qa(p) consists of the [h(R)](p)-tuple
(ay...58) forall peP and {a,...,a)a(w) =a forall we Q.
All trivial R-structures are isomorphic so that we can talk of 'the'
trivial R-structure.
A structure A = (A,a) is said to be a structure on the set A .
Our notation for R=-structures comes from [21] except that in

[21] the role of h is not emphasized.
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In our notation we can describe fundamental concepts like
those of substructures, homomorphisms between structures, congruences
over algebras etec. We shall not explicitly give this description in

all cases but only give two examples. By an R-homomorphism between

two R-structures 4, = (A] ,a]) and A= (A2 ,0'2) is understoo@ a
function T : A1 _ A2 such that

(a],...,a.h(p)) e a (p) implies (f(a]),...,f(ah(p))) € O’g(p) and
{a.l,...,ah(w))oz] (w) =a dimplies (f(a]),...,f(ah(w)))aa(m) = f(a)
for all ByseeesBy () 5 BrBpseeesBy (€ A, pe P(R), we QR) ,
where we have abbreviated h(R) as h . Our second example is that
of an R'-reduct of an R-structure. For predicate systems

R , R we write R' =R if PR') c PR) , aR') c aR ) and,
h(R') is the restriction of h(R) to P(R') U oR') . Iet

R' =R and let A' = (A,a') be an R'-structure and A = (A,a) be
an R-structure. We shall say that A' is an R-reduct of 3

if o' is the restriction of o to P(R') U Q(R') .

Iet ¢ be an R-formula with X, ,...,Xx as the free variables

J] 'jn

and let Tc o (R) . ILet A= (A,q) be an R-structure and let

Biyesesd € A, Then the phrases ' A satisfies ¢ at

(X, joeesx, ) = (875+0+58_ ) ' and ' A satisfies 3 ' or T A
I jn 1 n - -

is amodel of T ' or 'EX holds in A ' have well-understood

meanings that we shall not describe here (see, however, Chapter 6).

Two R-structures are called elementarily equivalent if every

R =-sentence that holds in one of them also holds in the other.
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We shall denote by A the class of all ordered pairs A such
that A 1is an R-structure for some predicate system R . The
class of all R-structures for a given R will be denoted by \_1_(@) .
For L C <I>0(6%) we write Z(Z) for the class of all models of ¥ .

For V¢ Y__(ﬂ) we write Z(V) for the set of all o e @ (R) such

o

that o holds in every structure of V . A subclass

<

of V(R)

is said to be definable by T c ¢ (R) if ¥ is V() . Classes

of the form V(Z) will be called elementary. An elementary class

_\_{(Z) is called universal 1f £ 1s equivalent to a set of universal

sentences, 1i.e., sentences of the form Vx‘l""’xn(@) s Where o

is free of quantifiers and involves no variables other than x.I e ,xn .
We shall denote by § the category of all functions and by

go the class of all sets. Note that go is not contained in i .

However if we agree to make no distinction between a set and the

corresponding identity function we can say that go < g and that

S 1is the category of sets and functions. In this work we agree

to do so.

By a category of structures we shall understand a category
\I={ whose obJjects are structures. The category of structures
consisting of all R-structures and R-homomorphisms will be denoted
by KR) . The category K(R) is complete and cocomplete [20].
The trivial R=-structure is the terminal or null object [20] of §(ﬁ)
vwhile the empty R-structure (i.e., the R-structure on the empty set)

is the coterminal or conull object..
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Morphisms in most categories of structures usually considered
are functions but other types of morphisms could be useful for the
study of structures. We give an example. By a functopism
from a set Y.‘ into another set Y2
countable sequence = <f1’f2”"’fn""> of functions from Y

we shall understand a

1
into Y2 . The product of two functopisms £t : Y1 _ Y2 s

T 1Y, —>Y; 1is defined to be the functopism

g+f+ = (g] £ysee .,gnfn,...) » Where we have taken

= <f1""’fn”") , g = (g],...,gn,...) . Denote by §+

the category of all functopisms. By an R-homotopism from an
R-structure (A, »0,) into another R-structure (A,,a,) we shall
understand a functopism £t = (f1""’fn""> from A, into A,
such that for all a,,..+,a ... in A 1if (a,,...,8.) e o (p)
then (f] (a]),...,fk(ak)) € 02(9) for pe P, k=[h(R)](p)

and if (a] 5o .‘.,ak)oz] (w) = a

k41 then

(£, (a)) 50051 (3 )t (W) = £y (8q) for wea, k=[h@R](W .
The concept of R®-homotopisms is a natural generalization of that of
fR-homomorphisms since an R-homomorphism f can be regarded as the
fR~homotopism (f;...,f,...) . Write §+(ﬂ) for the category of all
fR-structures and R-homotopisms.

For a subclass ¥V of V(R) we define K(V) to be the
category of all structures in X and all homomorphisms between them.
If Y = V(Z) for some I c o (R) we writeK(Z) for K(V) . Define

similarly §+(z) to be the category of structures of V and all
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homotopisms between them. Write §+(Z) for §+(E(Z)) .
Iet 5 be a category of structures whose morphisms are functions.

We define the forgetful functor F(K;-) : K —>S of K to be

the functor which takes structures to their carriers and morphisms to

the corresponding functions. For a category of structures K

whose morphisms are functopisms we define F+(§;-) : K—> +

R

to be the functor which takes structures to their carriers and
morphisms to the corresponding functopisms. The functor F+(£;-)
willl still be called the forgetful functor of 5 . Write F(R;~)
and F+(R;-) for F(g;-) and F+(£+;-) respectively when
K=KR), K =K®) .

If P(R) =@ we can define a functor W(R3-) : 5 —> 1=<(5e)
in the following natural way: For a set Y define W(R;Y) to be
the R-word algebra on Y (see page 5 ) and for a function
f :Y —>Y, define W(R;f) to be the R-homomorphism from
W(R;Y,) dinto W(R;Y,) whose restriction to Y, is f .

The functors F(R;-) and W(R;-) are related in an important
way which is described by saying that F(R;-) and W(R;-) form a
pair of adjoint functors. Seée, for example, [20] for details on
adjoint functors. Adjoint functors are useful in describing and
studying 'freeness' (see Chapter 4).

We conclude this chapter by making some general remarks on the

notation used in this thesis.
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Iet f be a function and let y be in Dom(f) (i.e., domain of

f) . We shall usually write f(y) for the image of y wunder f .
However at a few places we shall find it much more convenient to

write yf for f(y) . TFor example we have already written

(page 5 ) (w],,..,wk)a(w) for [a(w)]((w],...,wk)) . At all

such places our meaning will be clear from the context. The composition

of two functions f : Y, —> Y

1 s 8 Y, ——>'Y3 will always be
denoted by gf . We write Ran(f) for the range of f . If

Y' < Dom(f) we write f |Y' for the restriction of f to Y' .
Similar notation holds for relations.

We shall quite closely follow the following convention about the
use of different letters for denoting different types of mathematical
objects. In adopting this convention we have kept in mind the
suggestions put forward in [1, p. xiv]. Our convention is that we
shall usually use:

A,B,C, X, Y, Zetc. for sets and corresponding small

letters for their elements,

a; B, v ete. and f , g , h etec. for functions,

k,4,m, n etc. for ordinals,

¢,V , 0 etc. for sets of formulae of a language,

A,B,M, I etc. for structures

1>
‘e

o

lle
=

s K, U,V etc. for classes and categories

2

(of structures).
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If in some context we talk about structures A , M , I etc.
then in the same context we shall use, without explicit reference,
A, M, I etc. for the corresponding carriers and o , p , ¢ etc.

for the corresponding makes.
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CHAPTER 1.

SOME EQUIVALENCES BETWEEN CLASSES OF STRUCTURES

Algebraists tend to make no real distinction between the
classes of Boolean algebras and Boolean rings although the
algebraic structures in the two classes appear so different.

This is because almost all information about Boolean rings can be
translated, in a simple way, into that about Boolean algebras and
vice versa. The relation between classes of Boolean algebras
and Boolean rings, which we shall make precise under the term

nomial equivalence, is particularly strong. Classes of structures

may be related in other ways that could enable us to translate a
considerable part of information about ome class into that about

the other. It is important to study such ways so that we may not
have to do separate studies of the same or nearly the same class

in different disguises. However not many equivalences between
classes of structures have been studied. Perhaps the only two
equivalences about which observations have been made are the rational
and structural equivalences that we shall shortly define precisely.
Roughly speaking, two classes of structures are rationally equivalent
if first order statements about one class can be translated in a
certain simple manner into first order statements about the other.

On the other hand structural equivalence does not explicitly give

a way of translating informastion about one class into that
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about the other. Instead, it arises from the realization that

we can talk a great deal about a class of structures in terms

of the homomorphisms between the structures, so that if a
transformation of structures leaves homomorphisms unchanged then

it must also leave unchanged something very essential about the
structures. In the present chapter we also define homotopic
equivalence using homotopisms in the way in which structural equivalence
uses homomorphisms. A special case of homotopic equivalence is the
isotopic equivalence under which every structure in any one of the
equivalent classes is an isotope of some structure in any other.

We give two varities of groupoids that are isotopically equivalent.
One of these two varieties is the variety of abelian groups
(regarded as groupoids with subxtraction as the binary operation).

An easy result of Mal'cev (see Theorem 1 below) shows that under
certain condifions any two structurally equivalent classes are
rationally equivalent so that we can find an explicit way of
translating first order statements about one class into those about
the other. In the case of the two isotopically equivalent varieties
glven here we can find a simple way of franslating second order
statements about one variety into those about the other. In general
we do not know of any conditions under which for any two homotopically
or lsotopically equivalent classes we can find a way of translating
second order statements holding for structures of one class into

those holding for the structures of the other.
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We now give precise definitions. Ilet R = (P,Q,h) . For
all &4 €Y(R) , ¢ e ®R) we write R(A;9) for the h(g)-ary

relation over A consisting of all h(g)-tuples

)

@y 5ee 02y o)) e A%® Such that @ holds in A at

. . = coe h . gyees . th
(xj1, ’th(q>)> (a], ’ah(cp)) , where xJ] , ,th(q)) are the

variables freely occurring in ¢ . Let V, ¢ Y_(R]) » e \_f(ﬁ,‘,) 5.

R, = (P],Q] ,h.‘) » Ry = <P2’Q2’h2) . We shall say that V, , V,are

rationally equivalent if there exist functions f] 5 B U o N G’(RE)

f, : R, U0, —> @(R1) and F :V, —>V, such that:
(1) F  is one-to-one and onto and carrier (4) = carrier (F(4))

for all AeV

1
(i1) For all p e P,j s, J=1,2, the formula fj(p) involves

Xyree "xhj(p) as free variables and for all w ¢ QJ. tke

formula fj (w) involves x..,...,xhj(w)_’_] as free variables.
(i1i) ILet A = (A,oz]) eV, , A= F(._gl)= (A,qa) eV, and
let Q]eP]UQ.‘, §2eP2U§22. Then

o (6) = R(Ay;E, (§1)) 5 ap (L) = R(A,55E,(8,)) -

We shall call \=f] ’ \=I2 nomiglly equivalent if in sddition to

(1) - (iii) the following also holds:

(1v)  For all we Q.

J
form w = xhj(w)ﬂ, , WwWhere w 1is a word in

, J=1,2, the formula fj(w) is of the

xl""’ﬁj(w) .

If 11 s \_b_ are elementary classes, defined by I, © QO(R-l) ’
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22 c Qo (ﬁe) respectively, then the rational equivalence between

Y, » ¥, can be defined as a ’losigal' relation between

Z] ’ 22 in the following way. We can suppose, without loss of
generality, that (P, U Q]) N (Pé U fé) =0 . Write

® UR.2=(P] UP,, o UQy, by Uh2> , Where

hyUh, [P, U@ =h , hy Uh, [P, UQ =h, . For el U,
J=1,2, vewrite g (¢) for the atomic ﬁj-formula
§(x1,...,xhj(c)) or x]...xhj(c)g = xhj(§)+] according as

£ e Pj or € e Qj . Now the two elementary classes Y] y ZQ are
rationally equivalent if and only if there exist functions
£, : Py UR, — o®,) » f, : P, U Q, —> 0(R,) satisfying (ii)

such that

%, U ?V"w“”‘k(%] (¢) <—> £,(t)); L e P, U Q, k =h (%1(0)}

and
g, U [vx},...,xk(sﬁa(g) <—>f£,(t)); t e B, U@, k =h2(§?2(§))}

are equivalent as sets of ﬁ] U RQ-sentences.

The study of rational equivalence is clceely related to what
is called [1, pp. 170-176] the theory of definition5

A large part of the information about many important classes
of structures can be presented as categorical properties of the
corresponding category of homomorphisms. It is therefore natural
to use these categories to define a concept of equivalence bétween

classes of structures. In this direction the first concept that
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will strike Em anyone is that of loose homomorphic equivalence.

We define two classes X] 3 \=_/_'e to be loosely homomorphically
equivalent if the categories 5(11) 5 K(ZQ) are equivalent
[20, p. 32]. However, the loose homomorphic equivalence does not

seem to connect the classes closely enough. A more appropriate

concept 1s that of structural equivalence defined by Mal'cev [17] as

‘ follows. Two classes \=I] » Vﬁ are called structurally eguivalent
if there is an isomorphism F : 5(\__{1) — 5(\__{2) such that

f , F(f) are the same functions for all f € E('_\T_:]) . We can
slightly relax the condition of this definition of structural

equivalence and obtain homomorphic equivalence. We define two

=] =2

classes V, , V, to be homomorphically equivalent if there exists
an eq_uivalehce [20, p. 32] F : g(y_]) _— E(V£) and one-to-one and
onto functions 1(4) : carrier (A) —> carrier (F(A)) , A e v,
such that for all f : A, —> A, in g(l) we have n(ée)f = F(f)n(é]) .
There is another way of defining homomorphic equivalence. Let us
define two functors F.l : é’l —> B, » F2 : 1=x2 — & to be similar
if there exist equivalences H, 1__\_1 —>§ » H2 : E] —_ Eb.. such
that FQH] s H2F1 are naturally equivalent [20, p. 59]. Now
\__[] 3 ‘:./:2 are homomorphically equivalent if and only if the
forgetful functors F(K(V,);-) : K(V;) —>§ and
F(K(V,)5-) @ K(V,) —> g are similar.

The following result is a slight modification of Theorem 6

of [17] and is proved similarly.
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THEOREM 1. ILet V. V, be two abstract classes of algebras of

=l ’ =2
species ﬁﬁ » @2 respectively. Let §h s Xé admit free algebras
on all sets. Then Yq ’ 2é are nomiélly equivalent if and only

if gh " Zé are homomorphically equivalent.

Theorem 1 shows that under reasonably simple conditions
homomorphic equivalence provides a very close connection between
classes of algebras.

No simple conditions are known under which loose homomorphic
equivalence implies rational equivalence., Nor do we know of two
loosely homomorphically equivalent varlieties that are not
homomorphically equivalent.

The way we have used homomorpﬁisms to define loose homomorphic
equivalence and homomorphic equivalence can also be applied to other
types of morphisms to get different concepts of equivalences. Thus

if we consider homotopisms we arrive at loose homotopic equivalence

and homotopic equivalence. The classes of loops and quasi-groups

are homotopically equivalent - in fact they are isotopically

equivalent in the sense that every structure in one class is an
isotope (isomorphic in the category of homotopismg to a structure
in the other.

For homotopic equivalence we do not know of anything like

Theorem 1 which can tell us how similar homotopically equivalent

classes can be. We only know of an example that shows that varieties

of algebras can be fairly closely connected by isotopic equivalence.
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We now present this example.

Due to the special nature of the result that fwllows it
will be much more convenient to use some simplified and usual
notations different from those introduced in Chapter O. Thus
we shall write a groupoid as (A,w), where w is a binary opefation
over A . In writing universal sentences we shall often omit
the universal quantifier. In addition to X %5500 WE shall

alsouse x ,y, 2, t, Xy 0¥ 5 2y t1 etc. as variables.

THEOREM 2. The varieties of groupoids defined by the laws

(1) ¥ = XbuXZuyzuwbuw
and
(11) y =

XXzWw'yzw'w'w'

are isotopically equivalent but not homomorphically equivalent.
The proof of the theorem is divided iﬁto the following four
lemmas.
LEMMA 1. A groupoid satisfying (I) is a quasi-group.
PROOF. In (I) replace t by Yp2w , ¥ by y, and x by xzg .

We get the law
V| = XZWY,ZWUKZWZWY, ZWWY,ZW0 .

If we write w for the word XZW2 WY ZWWY, 2 60 and u for the word

xww then this last law together with (I) gives
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Vp = XWUKZWY, 20000 = XWWY, 0 = WW .

Hence (I) implies that VyysY, &t (ty]w = yE) . This can be
expressed by saying that the equation ty]w = Yo has a solution

in t in every groupoid satisfying (I) for all Yy 2 Vs - The
equation y.ltw =Y is also solvable. This can be seen as follows.
We have Jjust proved that we can find x , 't:1 such that

xt,w =y, . Then by (1)
y1xzuwazumt]um = ¥

and if we put t = xzwygzww’c1uxn we have y1tw =Yy -
We now prove the 'cancellation laws'. Let tl Y te

be such that t,yw = t,yw . Then, by (1) ,
t] = xtwcyat]yumtw = xtwcywtayumtm = t2

and the right cancellation law holds. Next let t] > Y » t2 be

such that yt]w = y‘bew . Find x, 2z , Y2 ¥ such that y = x2w ,

t] =Y,20 , t2 = V2w . Then

¥y xthzwy.l Zwwtww = x‘cmy‘c1 whww

xtuw'tzurtuxn = xtumzuyezuxntw = ¥

so that t] = t2 and the left cancellation law also holds. This

completes the proof of the lemma.
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IEMMA 2. The law (I) is equivalent to the following statement.

There exists e such that:

(2.1) Xewew = X
(2.2) XZWYZW W = Xywew
(2.3) XeuxXyww = y

PROCF . (I) implies (2.1) -(23) :-

We have, by (I)
X = Xtuxzuxzwwtuww .

By Lemma 1 xzw can be any element +t, for suitable z , Hence

1
(2.4) x = xtwt,tywtww , for all x,t.,t .
This gives

xxw = xxwbuxxwbow
and if t is such that xxwtw =y then

XXW = yyw = e , some fixed element.
We can now write (2.4) in the form

X = Xxtwetww .

In the last equation if t 1is taken equal to e we arrive at (2.1).
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To prove (2.2) we note that

<
i

xthz.] wyz, wwbuww

Il

xtumzzwzemtw» .
Hence by Lemma 1
X2, W2 W0 = X2, WY Zo W

so that XZWyzww = XFWyyww = Xywew . This proves (2.2) .

By (I), (2.1) and (2.2)

d
i

XeWXYuyy wwew

i

XeWXyww .

This proves (2.3).
Now we show that (2.1) - (2.3) imply (I) .
We have
Xtz wyz wwbww
= xtuxywewtww , by (2.2)
= xeuxyweweww , by (2.2)

KWKy o , by (2.1)

= v ’ by (2-5) .

Hence (I) holds and the lemma is proved.
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LEMMA 3. A groupoid (A,w) satisfies (I) if and only if

(A,w') satisfies (II) and
(3.1) Xyw = xyw'y , for some y and 81l X,y € A

where xyw' = Xywxxww for all x , y ¢ A and y is an involution of
(A,w') . (We recall that y is called an involution if  is
an automorphism and y* is the identity map.)

Further a groupoid (A,w') satisfies (II) if and only if

(A,w) satisfies (I) and
(3.2) xyw' = XxXyuwxxww , for all X,y e A,

where  is defined by (3.1) for some involution y of (4,w') .
PROOF. Part 1. Iet (4,w') satisfy (II) and (A,w) be defined

by (3.1). Then (A,w) satisfies (I) . For,

XEUX2Z Wy Z wwt ww

= xtw'vxzw'vyzo'vw'vtw'yw'y , by (3.1)

= xtw'xzw'yzw'ew'tw'w' , since y is an involution
= y‘ -

In this last step we have used the result [10] that (II) characterizes
abelian groups in terms of the operation of subtraction.

Part 2. Iet (A,w) satisfy (I) and w' be defined by (3.2).
Then (A,w') satisfies (II) . For, by the proof of Lemma 2

xxw =¢€ for some e and all x in A and hence
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xxzw'yzw'w'w'

= XXZWeWYZWeWwe e w , by (3.2)
= XXZUYZULEWSWWRW , by (2.2)
= XXZWYZWWEW » by (2.1)
= xé@zwzmw , by (2.2)
=y » by (I)

Part 3. Let (A,w) satisfy (I) and let (A,w') be defined
by (3.2). We show that (3.1) holds for some involution y of {(A,w') .
Define Yy by xy = xew where e 1is the constant value of xxw in

(A,w). Then y is an involution of (A,w') . For
Xyw'y = Xywewew
= Xewyewwew , by (2.2)
= XYyrwew

= Xyyyw'
and

XYy = Xewew = X , by (2.1) .

The involution y satisfies (3.1); xyw'y = Xywewew = xyw, by (2.1).

Part 4. Iet (A,w') satisfy (II) and (A,w) be defined by (3.1).

We show that w , w' are related by (3.2). This is easy:
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XYWXXW = Xyw'yxxw'yw'y
= xyw'xxw'w'

= xyw' .

Here we have used the fact that w' is an operation of subxtraction
in an abelian group and the assumption that y is an involution of
(A,w') .

The proof of the lemmg ig complete.

We observe that Part 3 of the proof of Lemma 3 shows that if
(A,w) satisfies (I) and w' is defined by 3.2 then (A,w') is an
isotope of (A,w). In view of this remark Lemma 3 shows that the
varieties defined by (I) and (II) are isotopically equivalent.
It is clear from Lemma 3 that every second order statement holding
for groupoids satisfyiné (I) can be translated into a second order

statement holding for groupoids satisfying (II) and vice versa.

IEMMA 4. The varieties defined by (I) and (II) are not
homomorphically equivalent.

PROCF. Suppose that the lemma is not true. By Theorem 1 the
varieties defined by (I) and (II) are nomially equivalent. This
means that there exists an w-word Ww,(x,y) and an w'-word
%&g)smhmm(ﬂt%ﬂMrmm WWéﬁww&J)is
equivalent to (II) together with xyw <—> ww(x,y) . Using the

familiar notation from group theory we write ww(x,y) as
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k]x + k2y where k] s k2 are integers. Substituting k]x + k2y
for xyw in (I) we find kk, =+1 . This shows that (1)

implies either (II) or the law:
¥*
(I1°) VY = ZYWZXWWXW .

However there exist groupoids that satisfy (I) but not (II) or (xr*) .
An example is the groupoid consisting of four elements O , 1 ,2 , 3

in which the multiplication is defined by the table:

This contradiction proves the lemma and Theorem 2.

Incidentally the law (I) has the interesting property that if
(A,w) satisfies (I) then so does the dual groupoid (A,w*) where
xyw* = yxw for all x,y € A . The law (II) does not have this

property.
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CHAPTER 2

CHARACTERIZATIONS OF SOME CLASSES OF AIGEBRAS

The nature of very many results in Algebra and Model Theory
is somewhat like this —— classes 1(2) of structures are defined
in terms of sets X of sentences of languages of some calculus (often
first order predicate calculus) and then something syntactical,
grammatical or logical about the sets ¥ is connected with 'something
structural' about the classes X(Z) . An important observation made
in this century is that this 'something structural' about l(z)
is almost always something categorical about some category associated
with l(z) . We illustrate our remark about the nature of model-
theoretic results by a couple of examples.

We can immediately mention Theorem 1 of Chapter 1 which relates
nomial equivalence between 21 B Zé with the categorical concept
of homomorphic equivalence between l(z]), Z(ZE) .  Before giving
our second example we call Zg:_ X(ﬂ) hereditary if V contains all
substructures of all of its structures. Now a result due to
A. Robinson{2}] states that V(2) is hereditary if and only if 3z is
equivalent to a set of universal sentences. Note that heredity
is a categorical property of Z(Z) and Robinson's result relates it
to the form of sentences in % . In this connection one may profit
by thinking of the following analogy. Compare/ 5 with a set of

equations and V(Z) with the curve or surface defined by this set
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in a geometrical space. Many results in Geometry (after Descartes)
relate analytical forms of equations with purely synthetic properties
of the configurations defined by them. A simple example is this:
a surface in three dimensional space is defined by an equation of the
form (x-2a)2 + (y -b)%2 + (2 - ¢)®2 =ad® if and only if there is
a point (a,b,c) in the space that is at a constant distant d from
every point of the surface and every point at a distance d from
(a;b,c) is on the surface. Note the anology between this result
and Robinson's result mentioned above and some of the theorems that
follow.

What is the significance of the geometrical and analogous
model theoretic results we have exemplified above? Answer: They
connect two widely different ways of talking about the same objects
and hence enable us to use almost twice as much of our intuition
as we would have used if there were only one way at our disposal.
Geometry has exploited to a large extent Descartes' idea of connecting
equations with configurations of points. Unfortunately the anglogous
study of the connections between syntactical forms of sentences and
the categorical properties of the classes of structures defined by
them has not been intensive enough to result in some deep general
principles about structures. I feel that a more systematic and
conscious study in this direction may prove useful in Mathematics.

In this chapter we consider sets. ¥ of first order sentences of

some simple forms and give some categorical properties of '[(Z) .
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The categorical properties of \_I_(Z) considered are categorical
statements about the corresponding category of homomorphisms.

In this chapter we fix arbitrarily a predicate system

R = {($,2h) .

§1. A GENERAL RESULT ON UNIVERSAL CLASSES OF ALGEBRAS.

The following result gives some of the most important properties

of universal classes of algebras.

THEOREM 1. Iet £ < ®{R) be a set of universal sentences.
Then the category _I_S(Z.) of all homomorphisms between g-structures in
l(Z) has the following properties:

(1.1) For every monomorphism A —> A, in .E.(R) if A e _Ig_(z)
then A, € K(z) .

(1.2) Inverse limits in K(R) of inverse systems [20] in E(Z)

are in g():‘.) .

(1 .2)* Direct limits in K(R) of direct systems [2C] in E{__(Z) are

in 5(2‘.) .

PROOF. The statement (1.1) is obvious.

To prove (1.2) let {fji : A

A —> éj]iéj be an inverse system

in K(£) , where i,je I and I is downward directed by the partial
ordering = , that is, for all i] ,i2 € I there exists 15 € I such
that is s 1,,i, . The inverse limit A of ({\_i-—-> A,j]i <3 is the

subalgebra of the cartesian product CnieI éi with carrier
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A=1{g;ege Cl 1 A > fjig(i) =g(3) for is j} . We verify
that A satisfies Z . Clearly I 1is equivalent to a set of

sentences of the form

(1) Vx],...,xn[(v] #v]' v...\,ngévi) \/'(w] =W \/...vwm=wr;l)]

where v],...,vp , v{,...,vﬁ 3 Wsee W w{,...wa are R®-words
in Xy peeesX - Assume that (1) holds in éi forall ie1I.

Iet 81reer8 be arbitrary elements of A . We have to show that

the formula

) (v] #v]' NETTRY. VL%VL) v (w] =w]' NETIRY wm=wn’1)

holds in A at (xl,...,xn) = (gT,...,gn) . Suppose otherwise.
Then (1') fails to hold in A at (x],...,xn) = (g],...,gn) if and
only if vp(g1(i),-.-,gn(i)) = V§(g](i),---,gn(i)) for all p, i,
- s 3 ' i LN i
ieI, 1'sps4 and wq(g](iq),---,sn(lq)) # wq(s](lq),- gn(lq))
for some iCl €l andall g, 1 £Sgsnmnm. Since I is downward

directed we can find j e I such that Jj = i] ,...,im . Then

. v s — 1
for such a j we have that vp(g] (j),...,gn(g)) = vp(g1 (3),.. -,gn(.j))
forall p, 1sps4, and v (g(3),..,8,(3)) #v (e (3),...,,(3)
forall g, 1 £q £m; this is because fi 5 is a homomorphism

q
) = <
such that f, J.gk(J) gk(iq) forall k,q, 1sksn,

q
1S$qg=m. Hence 1_\.j does not satisfy (i) at
(x] yeo .,xn) = (g] (3)sees ,gn(j)) . This contradicts our assumption
that (1) holds in A, for all i e I . The proof of (1.2) is

therefore complete.
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The proof of (1.2)* , which is a categorical dual of (1.2) ,
is not entirely 'dual' to the proof of (1.2). Iet I be a set
upward directed by the partial ordering = . Let
(g0 08 >4 hig5 4,51
assume that  does not contain o-ary operational symbols, the

be a direct system in K(£) . We shall

proof being essentially the same for the general case. The sum
S in K(R) of {éi}iel can be constructed as follows. We can

assume without loss of generality that the carriers Ai of the

algebras A; = (Ai,ai) are disjoint. .Let 5, = Uit A; 5

S] = So U [s],...,sh(wfﬂ; we Q, 81""’sh(m) € SO y

but 51""’sh(w) do not belong to the same Ai]
Sn+1 = {s],...,sh(w)w s we Q, s],’...,sh(w) € Sn} U Sn R
S = U s ,

where s1...sh(w)w is just a sequence. Clearly S 1is a set of

R-words in S_ . We take S %o be the carrier of S and define

make (8) = o= Dby :
(s],...,sh(w))o(w) = (s],...,sh(w))ai(m) , if ie1I,

S]’oon,sh(w) € Ai F ]

= 81"'Sh(w)w , otherwise.
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The algebra S so defined is the sum of (A;}; ; 1in K(R) . Over
S we define a congruence k as follows. For every set r of
ordered pairs write sym(r) for the set ({(s,t) ; (t,s) or (s,t)er}
and tran(r) for the set of ordered pairs (s,t) such that there
exists a sequence 8 reeaSy satisfying 8, =8, 8 = t and

(so,s]),...,(sm‘.],sm) er . Iet

r, = {(ai,fji(ai)) ;iel, a; €A,
k, = tran(sym(r ))
T = Ky U [((s],...,sh(w))o(w), (s]',...,sr'l(w))a(w)) H

we Q (s],s]'),...,(sh(w),sﬂ(w)) € Kn} ’

Koy = tran(sym(rn+])) s

Thus k 1is the least congruence over S containing roo- We show
that {r, : A, —> 8 —> 8/k]) is a direct limit of

J o =d = Jel
{fji : éi -_— A.j}ié,j , Where _I_X_j —> 35 is the inclusion map and
S —> 8/k 1is the canonical homomorphism which sends s € S to the
equivalence class [s]k determined by s under « . First note that
[ai]n = [fji(ai)]n for all a, e A, and hence ijji =7y for all
i, J, 12§ in I . Next let (83.:1&J
family of homomorphisms satisfying ijji = 61 .
that there is a unique homomorphism g such that erj = aj for all

—> M}, be another
=’ Jel

We have to show
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jJ,JdeI. let M1 be the subalgebra of M generated by the union
5t
of the images of the Sj so that Sj : éﬁ d M,
where —> M is the inclusion map and B'!f.. =38! for all
4 = P 3at =%

i,jel, isyJ. Moreover, since S is the sum of [éj}

> M,

jel ’

the algebra g& 1

over S . We can assume without loss of generality that M] = _/K' and

is isomorphic to §/n' for some congruence g

Bs(aj) = Bj(aj) = [aj]n for all je I and as e Aj . By

Bly.. =
‘JJJi

is=yj in I and a,; € Ai . Hence r o< k' , where ro is one

1 3 !
8! we conclude that (ai,gji(ai)) e k' forall 1,3, a, ,
of the relations entering the definition of «k . Therefore x < k'

and the canonical homomorphism exists. Take € to be the map S/k —> S/«'
—> M , vhere 8/k' —>M is the inclusion map. Then it is readily verified
that srd= Sj for all Je I . The uniqueness of g 1is also obvious.

Hence §S/k together with the maps yj provides a direct limit

in EG%) of {fji]iéj .
Now we prove that 8/k is in K(£) . Before doing this we
A =

need to learn[few facts about the Kp
(1.3 The relation k, consists of ordered pairs (ai,aj) > 8y €A,
aJ € Aj such that there exist a k € I satisfying k 2z i,j and
fr1(ay) = i 5(ay)

Let fki(ai) = fkj(aj) =a, , say. Then (a;,8,) ,
(aj,ak € T, (ai,ak) R (ak,aj) € sym(ro) s (ai,aj) € tran(sym(ro))
=k _ . Conversely let (ai,aj) ek, . Then if (ai,aj) € sym(ro)

we can take k = j or i according as (ai,aj) er  or (aj’ai) er, -
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In the case when (ai,aj) ¢ sym(ro) there exist

a, €A, ,...,a. €A, such that a, =a, , a =a_, and
i i i i i i
o o m m o m

(aio,ai]),...,(a s8y ) € sy'm(ro) . We can find k;,...,k such

1m-1 m 1

that f, (ai ) = £y (ai ),...,fk i (ai ) = £y (ai ) .
1T o 1 1 m-1"m-1 m-1 mm m

Find k € I such that k 2 k],...,km . Then fki(ai) = fkj(aj)

because f, f, . =1 seeesfig fk i =%y - This proves (1:3).
1 17 o) m mm m .

(1.4) For every non-negative integer n the relation Ky is a
'congruence over the partial subalgebra Sn ' of S8, thatis,

Ky is an equivalence relation over Sn and if
! 1 —
(S]’51)""’<Sh(w)’sh(w)> ek, and s = (s],...,sh(w))d(m) €8,

S' = (S]',-..,Sr'l(w))o'(w) € Sn then (s’s'> € K.n .

We use induction to prove (1.4). It follows directly from
(1.3) and the definition of S that Ko is a congruence over S0 .
Assume (1.4) for all n, €n . The symmetry and reflexivity of
implies the symmetry and reflexivity of r,y 8smay be directly seen

by the definition of r . This shows that & = tran(rn_n ) and

n+l n+l

that « is a reflexive relation over Sn+ Transitivity of

n+1 1

K is immediate. For symmetry let (so,sm_H) € k 5 60 that

n+l

there exist Sqseees8 such that (so,s]),...,(sm,s But

m+1 ) = T4l

then <Sm+1’sm)""’(sl ,so) er since r ., 1is symmetric.

n+l ?

Hence <Sm+] ,so) € tran(rn+]) = K . This proves that g is

n+1 a4+l

an equivalence relation over Sn a0
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Before proving the congruence property for Kog Ve need to

show that the restriction of &« to S is k_ . Let

n+l n n
! ! . .o be o f the
(s,8') € Koy » Bs8' €8 Let s y...58 ne of th
shortest seguences such that 8, =8, B = s',

(so,s]),...,(sm_1,sm) er ., - Suppose 5y ¢ §, for some &4,

1<4<m. Then we can write
Sg-1 T (s&_] AR LS IR ,h(w))c(w) ’

s, = <S&,1""’s&,h(w))°(w) = (sé’,],...,si,h(w,))o(m') s

S&_'*..l = (S&-H’],...,S“],h(m,))ﬂ(w‘) ’

1
vhere @ , w' e @ and (s, .8, ) ek, for 1sps n(w) and
) 1] + n .
<S&,.p’s&+1,p) er, for 1 =ps h(w') . This is immediate from the

definition of r

] since Sp ¢ Sn and (s&_1:5) 3

<s&,s&+]) €er , - Now, by the definition of § , we find that

sy ¢ s, and

S‘fz = (S&,],..-,S&,h(w))ﬂ(w) = (Si,])n--:SL,h(wt)>U(w’)

together imply w=w' and s, for 1 spsh(w . Thus

sl
P 4,p

.

21 = (B0 0B (@29 5 Sp = (B 108 () 290

Sps .
and (s&_]’P,s£*]’p) € k for 1sps=h(w Hence

(S&_],S&*]) er ., - This contradicts the assumption that s ,...,s_

is one of the shortest sequences of a certain type. Hence Sp ¢ Sn
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is false for all £, 1 <4 <m, so that 8 seees8 € Sn .

Again (so,s]) €r ., -k, implies that
sO = (SO,] ,-.-a,so’h(w))G(W)
] ."._‘. (S] ,.I,oco’s.l ,h(w))c(w)

for some we @ and (80,1’81,1>""’<So,h(w)’s1,h(uﬂ) €k, . Since
so,s] have been shown to be in Sn we have, by the congruence

property of «k_, that (so,s]) € K Hence and similarly

n*®

(80’81)""’(Sm-1’sm) ¢ v, vhich implies that (s,08,) = (s,8") € K »

n
as was to be proved.

We conclude the proof of (1.4) by showing that if s,s' ¢ S

n+l ?

s = (s],...,sh(m))c(m) , s!' = (s{,...,sﬁ(w))a(m) and
(51’sf>""’<sh(w)’sﬂ(w)) €k ., then (s,s')e.nn+] . Clearly

4 ! 3
B]”"’Sh(m)’sl""’sh(m) € Sn and, by what we proved in the last
paragraph, (s],s{),...,(sh(w),sﬁ(w)) € k, . Hence

(s;8') er = and (1.4) is proved.

n+1 n+l

(1.5) The restriction of & to Sn is Kp for every non-negative

Iet (s,s') ek, s,8'c¢€ S, - Iet m be the least integer n .

such that (s,s') e Ky * If m>n then s,s' ¢S and since by

m-1

the proof of (1.4) the restriction of Ko t; Sm-1 is g, _, Wwe
£

conclude that (s,s') e k _ This contrgction proves that m s n

1
and that (s,s') e k, - Hence 1.5).
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(1.6) TFor every finite subset (&,,...,8 of 8 there exist
1 m
i, a],...,am such that i e I, a],...,am € Ai and
(s],a]),...,(sm,am) € K -
Again we use induction. Let SyseesB € So so that

S-I € Ai ,..-,Sm € Ai fOI‘ some i],o.o,im € I . Find i € I
1 m
i 2 i i = . e = L]
such that 12 4i,,...,i . Let a, fii](s1)" say fiim(sm)

Then (s],a]),...,(sm,am) €x and a;,...,8 cA; . Nov assume

(1.6) for all finite subsets of S_ and let 8,,...,5_ € S
n 1 m n+l

If s, €8 wecanfind i, €I, al €A, , such that (s,,8]) ¢ & .

Otherwise we can write 8y = (s]’],...,s],h(m))o(w) for some
we N and s]’],...,s],h(w) € Sn . By the induction hypothesis
<S1,1’a1,1>""’<S1,h(w)’a1,h(w)) € x for some i, ¢I,

] 1
31,1”"’a1,h(m) € Ai1 . Since ® 1s a congruence, (s],a]) €K,
L—
vhere a) = (a]’],...,a],h(w))o(w) € Ai1 . Similarly

(se,aé),.,.,(sm,ai) € © for some aé € Ai ,,,.,aﬁ € Ai 5
2 m

12""’im € I . Find i such that 1 =z i],...,im and let
—_ 1 —
8, = fii](a1)""’am = fiim(am) . Then
(s],a]),,..,(sm,am) €k, 8 ,...8 €A . This completes the
proof of (1.6).
We are now ready to prove that S/k € K(Z) .

Let the sentence

(1) VX],-,o-,Xn[(V] %v]' VAT vv&aévi) \V; (w] =Wy e V-wm=wx;1)]
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hold in éi for all i e I . We show that (1) also holds in

S/k . For this we need to show that for all s,,...,6 €S

either (vp(s],...,sn), vé(s],...,sn)) ¢ ¢ for some p ,

1sps4d, or (Wq(s1""’sn)’ w&(s],...,sn)) € k for some

q 1sSqgs=m. Suppose otherwise and let yse0s8 € S be

such that (vp(s],...,sn), vﬁ(s1,...,sn)) ¢ k for all p,

1<sps4i, and (Wq(s],...,sn),w&(s],...,sn)),{n for all q ,

12£qg=m. Using (1.6) find 1 , 8yseeesB) such that i ¢ I,

8se-+58 €A, and (s],a1),...,(sn,an) € k - Then

(vp(a],...,an), vﬁ(a1,...,an)) €K ,

(wp(a],...,an), wﬁ(a1,...,an)) ¢k forall p,q, 1 sps4i,
< 3 — | []

1sqgsm. Write bp = vp(a],...,an) , b! = vp(a1,...,an)

P

so that bp P bé € Ai B (bp’bﬁ) ek forall p, 1 spsi.

By (1.5) and (1.3), forall p, 1 sps=4, we can find jp eI

— 1
such that fjpi(bp) = fjpi(bp) . Let jeI be such that

i 2 3 s s . = !

Jz i, forall p, 1sps4 Then fji(bp) fji(bp) for
< £ = PR = .

all p, 1spsd. ILet c fji(a1), e, fJi(an)

Then, since fji is a homomorphism, we have

— —— 1 — ]
vp(c1,...,cn) = fji(bp) = fji(bp) = vp(c],...,cn) ,

1sps1,

and since (by (1.3)) (c],a]),...,(cn,an) € k » Wwe have




e
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A
o)
[}
B

.

wq(c],...,cn) #wé(c],...,cn) , 1

Since CrsecesC € Aj this contradicts our assumption that é,j

satisfies (1) . This proves that every sentence of the form

(1) that holds in every A also holds in S/k . In particular,

S/ € K(£) . This completes the proof of (1 .2)* and the theorem.
For every set Y and subclass V of _\_{(ﬁ) we write

L(V;Y) for the partly ordered set of congruences & over W(R;Y)

such that W(R;Y)/k 1is isomorphic to an algebra in V. Ve

write L(R;Y) for L(Y__;Y) when }__l=l(ﬁ,) . The following result

is a consequence of Theorem 1,

THEOREM 2. For every universal class l of R-algebras an_d every
set Y +the following conditions hold. |

(2.1) The meet in L({R;Y) of a downward directed subset of

L(\__[;Y) is in L(Z;Y) .

(2.1)*  The join in L(R;Y) of an upvard directed subset of L(V;Y)
is in L(\=I;I) .

PROCF. Iet I be a downward directed subset of L(g;Y) . Consider

the inverse system (f_  : WR;Y)/k, —> HR;Y)/x,)

= O T N e

2
where fn K is the canonical map which sends the equivalénce class
21
[W]K..l to [w]n2 for all we WR;Y) . Iet w= g.l.b.(I) .
Then (f is an inverse limit of (f ' .
( nx*]rceI ( KoKy ]K]§K2:K],K2€I

For WR;Y)/k* 1is isomorphic to the subalgebra of the cartesian
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product CIIKGI(H(R;Y)/K) defined by {gw;gw(n) = [w]k ;

w e WR;Y)), «k € I} which is an inverse limit of the inverse
system under consideration, by the construction of inverse systems
given in the proof of Theorem 1. In view of (1.1) and (1.2)

of Theorem 1 this implies that W(R;Y)/k* ¢ V and hence

K¥% € L(}_/’_;Y) . This proves (2.1).

The proof of (2.1)° is similar and is omitted.

Let us call a diagram in an arbitrary category mono (epi)
if all of its morphisms are monomorphisms (epimorphisms). Then
@.1)" is clearly equivalent to (1.2)% (of Theorem 1) for epi
direct systems. This special case of (1.2) has a simpler direct
proof and was stated in [16]. The general property (1 .2)* was given

for some universal classes without detailed proof in [27] and [28].

§2. ASSEMBLIES OF ALGEBRAS.

A universal class V(Z) is called an assembly if § is equivalent

to a set of sentences of the forms

— 1 — 1
() \7')(1,...,xn(w.I = W) V...vwm..wm)
and
(3) V-:x],...,xn(w] ;éw]' Vieee vV ;éwl;l) .

An assembly V(Z) is called positive or negative according as
T is equivalent to a set of sentences of the form (2) or (3)

only. An assembly definable by a set of equations or laws,
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i.e., sentences of the form
- 1
(&) VX],-N,Xn(’vq =w1) s

is called an equationally defined assembly or a variety. A

negative assembly definable by a set of sentences of the form
1
(5) Vx],...,xn(w] # w])

is called a negationally defined assembly; a sentence of the form

(5) 1s called a negation. Negations arise quite commonly in Number
Theory. The most well-known example of a number theoretic negation
is the 'Fermat's negation'’ 'Vx],xe,XB(x? + xs £ xg) which Fermat
conjectured to hold for n 2 3 for the algebra of positive integers
under ordinary addition and multiplication. Whether a systematic
study of assemblies defined by equations and negations could be of
any use to Diophantine Analysis is anybody's guess.
The following result characterizes negative assemblies in

terms of the corresponding categories of homomorphisms.

THEOREM 3. A class X of R-algebras is a negative assembly if and
only if:

(3.1)  For every monomorphism A —> A in I-{___(ﬂ_,) if % € E(\Q
then A, e K(V) .

(3.2) TFor every epimorphism A -—->_A_2 in _K_(R) if .‘32 € g(l)

then A, e K(V) .
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(3.3) Direct limits in g(ﬁ%) of direct systems in K(V) are in K(V) .

We prove Theorem 3 in the following form.

THEOREM 4. A class X of R-algebras is a negative assembly if and
only if: |
(4.1) Ae l if and only if every finitely generated subalgebra

of A 1s embeddable in an algebra of X .

(4.2) The join in L(R;X) of an upward directed subset of L(Z;X)
is in L(V;X) .

(4.3) If k<, ke LR;X) and ky € L(;X) then k e L(V3X) .

PROCF . In view of Theorem 2 the 'only if' part of the present
theorem is fairly straightforward. For the second part let %

be the set of all sentences of the form

(3) Vx],...,xn(w] #x]'\/...vwm;éw;l) .
tkat hold in all the algebras in V . Iet A be any R-algebra which
satisfies £ . By (4.1) we can assume that A is finitely

generated and take A to be W({R;X)/k for some k e L(R;X) ; so

that we have to show that k e L(V;X) . Iet

r= {(w] ,w]’),...,(wm,wél)} Sk, Where Wi,...,W x,v]',...,w,wl;l e WR;X) .
Then the sentence (3) does not hold in A and therefore dpés not
belong to Z . This implies that there is an algebra ér € l which
does not satisfy (3). Clearly there is a finitely generated

subalgebra Al of A which does not satisfy (3). By (k.1)
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the class V 1is abstract so that we can find Kx" € L(Z;X) such
that W_(@;X)/K}; is isomorphic to 9._1" and therefore does not
satisfy (3). This means that there exist Wpseees € W(R;X)
such that (Wj(ul"”’un)’ wé(u],...,un)) € Kz" for 1 s jsm.

Let AI'I be the subalgebra of é; generated by

[u1]Kx"""’[un]K1" . Then .f\_; is isomorphic to E(R;X)/n; for
some K.:'r: € L(\=I;X) such that (Wj(x],...,xn), w&(x],...,xn)) € n;',
forall j, 1= jsn. Iet L be the least congruence over
WR;X) containing r . Then k. S nx'f and hence by (4.3) we have
that k. € L(l;x) .  The set {nr ; r is a finite subset of «k}
is an upward directed subset of L(V;X) whose join in L(R;X)
is &k . Hence, by (4.2), &k e L(V;X) and the proof of the theorem
is complete.

Theorem 3 is now a direct consequence of Theorem 1, Theorem 2

and Theorem k4.

The following result about assemblies is obvious.

THEOREM 5. Let X be an assembly. Then:

(5.1) For every monomorphism A, —> A, in E(ﬂ) if

A, € K(¥) then A, eK(¥) .

(5.2) For epimorphisms f\—‘l —>52 and !_\2 —_ 1—_\'1 in
KR) if AAY € K(V) then A e K(V) .

(5.3) Inverse (direct) limits of inverse (direct) systems in

K(V) are in K(V) .
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Whether (5.1), (5.2) and (5.3) characterise assemplies is
not known. Nor do we know of any simple categorical characterization
of positive assemblies.

For universal V the partly ordered set L(X;Y) has maximal
and minimal elements for every Y . This follows from (2.1),
(2.'1)* and Zorn's lemma. Birkhoff's theorem [2] about
varieties shows that for positive assemblies \=I the minimal
elements of L(X;Y) collapse to a least element if and only
if Z is equationally defined. However, it is not true that for
negative assemblies V the partly ordered set L('\=7;Y) has a
greatest element for all sets Y if and only if Y; is negativély
defined. Indeed the only negative assembly Z for which
L(X;Y) has a greatest element for all sets Y is the class
l(ﬁ) of all R-algebras. To see this assume that Y is infinite.
Iet A De a finitely generated algebra in Y_= and LA be
arbitrary words in Y . We can clearly find KysKy € LR;Y)
such that X_J_(R;Y)/n] , ‘_J_(R;Y)/ne are isomorphic to A and
(w] ,Y) € Ky s (we,y) €k, , where y eY and y does not enter

w, or W, Since A eV then k,,k, € L(Z;Y) . If g is

1 2
the greatest element of L(V;Y) then Kysky © k , 8o that

(w] sY) (we,y) € k which implies that (w],we) € k . Since

=

9%, Were arbitrary words of W(R 3Y) we see that
kK =WR;Y) X WR;Y) . By (4,3), this implies that if V is a

negative assembly then L(V;Y) = L(R;Y) for all infinite Y .
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But every R-algebra is isomorphic to an algebra of the form
WR;Y)/k , where k e LR;Y) and Y 1is infinite. Hence
V=Y®R) .

The following result gives a necessary and sufficient

condition for a negative assembly to be negationally defined.

THEOREM 6. A negative assembly V is negationally defined if
and only if':

(6.1) If the join k in L(R;X) of a family {ni]ieI P

K; € L(V;X) , coincides with the set-theoretic union U then

ieI ®1
k € L(V;X) .

PROQF. Iet V¥V be negationally defined and let the join g in

LR;X) of ({(r Ky € L(X;X) , coincide with U

slier ieI "1 °

To show that k € L(V;X) we need to prove that every negation that
holde in every algebra of V also holds in W(R;X)/k .« Let
vx],...,xn(w # w') be such a negation. For all

Wy seees € WR;X) and all 1 e€ I we have that

(w(u],...,un), w’(u],...,un)) ¢ k; » Since k is the set-theoretic
union of the k; we see that (w(u],...,un), w'(u],...,un)) ¢ r

for all u;,.--,u € WR;X) . Hence Vx],...,xn(w #w') holds

in WR;X)/k .

Conversely let (6.1) hold and let be the set of all

< ™

negations that hold in every algebra in . Ilet AeV(R)
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and let A satisfy £ . As in the proof of Theorem 4 we

can take A to be W({R;X)/k for some k e L(R;X)

and prove that for every r € k  the least congruence Kp
containing r 1is in L(X;X) . But then k 1s the set-theoretic
unién of {nr ; rer} . Hence, by (6.1), « ¢ L(X;X) and
therefore A € V. Thus vV is negationally defined and the
theorem is proved.

Condition (6.1) also enters a characterization of semi-
varieties (see next section).

However, (6.1) is not an order-theoretic condition and
therefore, perhaps, cannot be translated into a categorical .
property of g(x) . We leave open the problem of characterizing
negationally defined assemblies (and semi-varieties) in categorical
terms. A solution of this problem may involve considering a
category different from K(R) .

The results, concepts and problems of this section form part

of [28].

§3. QUASI-VARIETIES AND SEMI-VARIETIES.

A universal class V(&) , T ¢ Q&R)_, is called a quasi-variety

[6] if T is equivalent to a set of sentences of the form
— 1 — 1 PR — 1
(6) Vx1,...,xn((w] _w.'/\.../\wm_wm) S>w=w'),

1 1 1
where Wy s W oWy e e W, W, W are fR=words in XyseeesX -
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A sentence of the form (6) is called an implication. A universal

class g(z) is called a semi-variety if ¥ is equivalent to a

set of implications of the simpler form
— | _— H
(7) ‘Vx],...,xn(w] =w] —>W=uv ) .

In this section we give characterizations of quasi-varieties and
semi-varieties. Rather simple categorical characterizations of
quasi~-varieties are given but we are unable to characterize
semi-varieties in a similar way.

We begin by defining an order-theoretic concept. let Iﬂ be a
subset of a partly ordered set L with = as the partial order.
By an Iﬂ-cover of an element 2z of L we shall understand an
element 2z of L, such that z = z and if 2z <z' then z #12z'.
Not every element of L may have an Iﬁ-cover. If Iﬁ is a lattice

then there is at most one Iﬁ-cover of every element of L .

THEOREM T-. Let V De abstract and hereditary. Then the following
three conditions are equivalent.

(7T.1) Bvery &« € L{R;Y) has an LC&;Y)-Cover for every set Y .

(7.2) The category K(V) is a coreflective [20] subcategory of K(R) -
(7.3) Cartesian products of families of algebras in l are in 1

and the trivial algebra is in V .

PROOF. Let (7.1) hold. For every r < W(R;Y) X WR;Y) we

write X(X;r) for the L(V;Y)-cover of the least congruence over
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W(R;Y) containing r . We write' X(R;r) for X(V;r) when
V=Y@®R) so that X(R;r) is the least congruence over W(R;Y)
containing r . For every A = (A,a) € K(R) define

R(A)

WRsA)/x(Vsk(A)) , vhere

k(A)

I

{(u],ue) 5w U, € W(R;A) , w, =u, in A} . Since

k(4) < X(¥;x(A)) there is an epimorphism £(4) : A —> R(A)

which takes & € A to the equivalence class [a]X(\__f,‘n({\._))
determined by 'a' under X(l;n(g._)) . Iet e : A—>A' be any
homomorphism in YK(R) with A' e V. Then the function

g : R(A) —> A' which takes [a]X(Y__;n(Ii)) into e(a) , aeA, is

clearly such that the following diagram commutes:
A

£(A)

\
Al < R(é)

That g 1is a well-defined homomorphism can be seen as follows.

Clearly by the abstractness and heredity of \__/’__ we can agssume e to
be onto, A' to be W(R;A)/x and e(a) = [a]nA for some g ¢ L(Y__;A) .
Then k(A) € k and by the definition of X(X;K(_A_)) we have that
X(V;k(A)) < k . This shows that g is indeed an homomorphism.
Further, it is clear that if e is given then g 1is the only map that
makes the above diagram commute. Hence R(._l_l._) together with the

morphism f(A) provides a coreflection of A in K(V) . This
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proves that (7.1) implies (7.2).

Now assume (7.2). By Proposition 5.1 of [20] concerning
full coreflective subcategories we see that products of families of
objects in g(\__ﬁ) are in _K_(_Z) . But products in Ié(ﬁ) coincide
with cartesian products and therefore the first part of (7.3) holds.
Iet E be the trivial R-algebra and let R(E) together with the
map E —> R(E) provide a coreflection of E . Since every
homomorphism from E is a monomorphism E is a subalgebra of
R(E) . But R(E) e E(X) and V is hereditary. Hence E ¢ I=((\_l_) .
This proves that (7.3) holds if (7.2) holds.

Finally assume (7.3). We first note that for all sets Y the
meet in L(R;Y) of a subset of L(V;Y) is in L(V;Y) . For
let Ky € L(X;Y) , Wwhere 1 ranges over an index set I , and let

k=N Then W({R;Y)/k is isomorphic to a subalgebra

ijer 1 °

of the cartesian product of (W(R;Y)/x By our assumption

i]ieI ’
cartesian products of families of algebras in V are in V.
Hence, since V is abstract and hereditary, W(R;Y)/k € V ;

so that k e L(V;Y) . Next note that since V contains the trivial

algebra the greatest element &k = WR;Y) X W(R;Y) of L(R;Y)

is in L(¥;Y) . ©Now let k e L(R;Y) . Then the meet of the
non-empty set {(k'; kS x' , k' e L(V;Y)} 1is the L(Z;Y)-cover
of k . This proves that (7.3) implies (7.1). The proof of

the theorem is complete.
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THEOREM 8. ILet X'E.X(R) . Then V is a quasi-variety if and
only if :

(8.1)  For every monomorphism A —> A, in I__E_(R) if A e E(Y_:)
then A, e g(z) .

(8.2) Direct limits in K(R) of direct systems in 5(1) are
in K(V) .

(8.3) The category K(V) 1is a coreflective subcategory of K(R) .

PROCF. Let V be a quasi-variety. Then (8.1), (8.2) follow
from Theorem 1. and (8.3) follows from Theorem 7 since it is well-known
(and easy to show) that quasi-varieties are abstract, hereditary and
satisfy (7.3).

Conversely assume (8.1), (8.2) and (8.3).
Theorexm 5 of [16] tells us that (8.1), (8.2) and (7.3) imply
that V 1is universal. Hence by Theorem 7 we conclude that if Z
satisfies (8.1), (8.2) and (8.3) then V is universal. Now the
corollary 4.4 on page 235 of [6] tells us that a universal class v
is a quasi-variety if and only if (7.3) holds. In view of the
equivalence of (7.3) and (8.3) this completes the proof of Theorem 8.

A different proof of Theorem 8 is indicated in [27].

We can obtain two more characterizations of quasi-varieties by
replacing (8.3) by (7.1) or (7.3).

We now give a characterization of semi-varieties.
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THEOREM 9. A quasi-variety V 1is a semi-variety if and only if:

(9.1) = (6.1) . If the join k of [k k; € LX) ,

i}ieI ’

coincides with the set~theoretic union of the Ky then &k € L(\_{;X) .

PROQF. let V be a semi-variety defined by I and let

kK = UieI k; be the join in L{R;X) of (ui}ieI s Ky € L(l;X) .

We have to show that k e L(V;X) . Let
— | I — 1
(7) Vx],...,xn(wl = W/ >w=uw'")

be deducible from £ . ILet Upseeesl € W({R;X) and
(w](u],...,un), w]’(u],...,un))en . Then
(w] (u],...,un), W) (u],...,un)) e ky for some ie I, because

£k =U Since V_{(R;X)/ni satisfies (7) we have that

eI "1 -
(w(u1 ,...,un), w' (u.l 5o ..,un)) € k; and hence

_ (w(u],...,un), w'(u],...,un)) € k ; 5o that W(R;X)/x satisfies
every sentence of the form (7) that is'deducible from £. Hence
WR;X)/x € Y(2) or k e L(V;X) .

Conversely let V be a quasi-variety defined by I and let \__I__

satisfy (9.1). Iet X, be the set of all implications of the form

1

(7) that are deducible from ¥ and write V

v, =¥(z,) . We show

that _y:] =Y. But first we need to prove the following statement .

(9.2) The implication

(6) \7'x],...,xn((w1 =w]’/\.../\wm=wx;l) —_ W o=w')
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is deducible from ¥ if and only if (w,w') € X(\_I__;r) , Wwhere
r = {(Wl’w‘”""’(wm’wr:x)} .

Assume that (6) is deducible from £ . Then W(R;X)/k
satisfies (6) where « =X(Y;r) . Since rc x this implies
that {(w,w') € k and one part of (9.2) is proved.

Now let (w,w') e X(Y;r) . We show that (6) holds in every
algebra of Y . Since V¥ is a universal class it is sufficient
to show that W(R;X)/k satisfies (6) for every « e L(__Y_;X) .
Let uy,...,u be arbitrary elements of W(R;X) such that
(wi(u],...,un), wi(u],...,un)) ek for 1 sism. We have to
show that (w(u.l,...,un), w'(u],...,un)) € k. Let A be the
subalgebra of W(R;X)/k generated by [U-,]n,-.-,[un]n . Then
A 1is isomorphic to an algebra W(R;X)/ k, With an isomorphism
f K(R;X)/k.l —> A undervhith [x]]n],...,[xn]zc] go to
[u]]n,...,[un]n respectively. Then

(wi,wi) = (wi(x],...,x ) wi(xv...,xn)) ek, for 1sism, so

n

that rc«k Since ¥V 1is abstract and hereditary &, .e L(V;X) .

] .

Hence X (V;r) € k, and therefore (w(x1,...,xn), w'(x],...,xn)) € Ky -

1
Applying the isomorphism f we get (w(u],...,un), w’(u],...,un)) €K -
This completes the proof of (9.2).

We return to proving that \=I] =V. Recall that % is

deducible from I and therefore V, = V(Z.1) >V=Y(z) . This

]
clearly implies that L(\l] 3X) o L(V;X) and that
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X(Lir) 2 X(Y,5r) for all rc W(R;X) x WR;X) . If
r = {(w] ,w]‘)} then X(V;r) = X(\=I];r) , for all w,,w e WR;X) .

For let (w,w') ¢ X(’\=/','r) . Then by (9.2) the sentence
— | B — 1
(7) Vx.‘,...,xn(w] = w >w=w'")

is deducible from X , where Xyseee,X are all the variables that
occur in w , w' »W, or wy . This means that (6) is in %

and therefore again applying (9.2) we see that (w,w') ex(l] ;) .
Hence X(\=r;r) c X(\=/'] ;r) . The opposite inclusion is true anyway
and therefore X(Y;r) = X(y__] ;r) when r 1s a singleton of the form
{(W.l ,w]’)) . We use this to prove that X(y__;r) = X(Y-ﬂ ;r)  for every
subset r of W({R;X) X WR;X) . We can write

X(\=f1;r) = Ux(y_:];r’) , where U extends over all r' of the form
(wy,wi)) 5 (W) e XV 50) « But x(Y,5r') =x(Vr') if

r! = ((w1 ,w]')] .  Hence 'X(L ;r) 1s a set-theoretic union of
congruences in L(V;X) . By (9.1) this means that

X(\=I];r) € L(X;X) .  Hence X(g];r) QX'(X;r) and therefore

X(X];r) = X(\;[;r) . In view of (9.2) the equation

‘X(Y___] sr) = X(!;r) implies that every implication deducible from

one of the sets X , Z] is deducible from the other. Hence % , Z]
are equivalent and V( = l]) is a semi<variety. The proof of the

theorem is complete.

Theorem 9 is proved in [28].
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CHAPTER 3

GALAXIES OF ALGEBRAS.

The conditions of coreflectivity, abstractness gnd heredity
entering the characterization of quasi-varieties given in §3 of
Chapter 2 seem to form an interesting and fairly rich set of conditions.
The classes of algebras satisfying these three coﬁditions seem to
deserve independent study. We give them a name - galaxy of
algebras. More precisely, we first define a gglaxy in a category
é to be a coreflective subcategofy é] such that for every

monomorphism A —>A' in A if A' e é] then A e A It

2
YCU CYR) then ¥ is defined to be a galaxy in Y, 1if

i &

=

(V) 1is a galaxy in K(V,) . A galaxy in l@&) will be simply
called a galaxy of R-algebras. By Theorem T7(Chap. 2)galaxies
of R-algebras are precisely whaf were called 'quasi-free classes of
algebras' in [17]. But our definition is conceptually different
and lends itself to more general situations.

In this chapter we give some properties of galaxies of
fl-algebras. We shall assume R to be arbitrarily fixed.
We begin by collecting some immediate consequences of our

definitions.

THEOREM '0. Iet V, , Y, , 139_}_7_(&) . Then:

(0.) 1f V, isagalaxyin ¥, and ¥, is a galaxy in 25

then 21 is a galaxy in Yﬁ .



( 0.2) 1f l] EZQ and V., , V, are galaxies in V. then

=1 =2 5]

¥‘-‘l is a galaxy in ;/'_2 .

(0.3) Let V be a galaxy. Then g(\__f_) is complete and
cocomplete [20, p. 44] and limits in K(R) of diagrams in Ié(l) are
in K(¥) . Moreover the partly ordered set L(X;Y) is a complete
lattice for every set Y .

( 0.%) 1f V, is a galaxy in V, , ¥, contains an algebra

generated by a set Y and 22 admits a free algebra on Y then

\__I_] also admits a free algebra on Y .

PROOF.  ('0.1) and ('0.2) follow easily from the definition of a
galaxy. Categorical part of ( 0.3) follows from well-known

[20, pp. 129-130] properties of coreflective subcategories in genefal.
For the other part of (.0.3) let ky € L(Z;Y) ; where 1 ranges

over an index set. The L(Y-=3Y) -cover of UieI Ky exists by Theorem 7

of Chaﬁ,a and is clearly the Jjoin of {Ki}iel in L(Y__;Y) .

Moreover W(R;Y)/N is a subalgebra of the cartesian product

ieT "1

of {WR;Y)/k, (Cf. proof of Theorem T of Chap.2) and hence by (7.3)

1}ieI

of Theorem 7 of Chap 2 W(R;Y)/x is in V vhich means that

ieI 1

n € L(X;Y) . Hence L(Z;Y) is a complete lattice.

ieI *i
(:0.4) can be proved as follows.

Let F, (Y) be the free algebra in V, on Y and let

F](Y) , T3 FE(Y) —_ F](Y) provide a coreflection of Fé(Y)

in ¥V, . By our assumption we can £ind A eV, such that A is
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generated by Y . Iet g : F, (Y) = A be the unique homomorphism
that extends the inclusion map from Y into A = carrier(4) .
By the definition of coreflection there exists a unique map

e : F, (Y) —> A such that the diagram
5, (1)

\ A
F, (Y) e “A

commutes.  Since gIY

is one-to-one we see from the commutativity of the above diagram that

f |Y 1is also one-to-one. Hence we can assume that Y ¢ carrier (F.l (Y))
and that f extends the inclusion map from Y into carrier (F] (Y)) .

As in the proof of Theorem 7 of Chap.2 we can further assume that £ is onto
Since F, (Y) is generated by Y these assumptions imply that F, (Y)

is also generated by Y . Let _!_L.] be an arbitrary algebra in

¥, . We complete the proof of ( 0.4) by showing that any function

d Y —> é.] can be uniquely extended to a homomorphism

e :F](Y) —> A

1 1
homomorphism g, : F, Y) — A - Iet e

Surely we can uniquely extend d to a

- F] (Y) —> A be the

unique homomorphism which makes the diagram
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£y (1)
f g]
\7 N
F] (Y) e A_l

commute. Then it is clear that e] extends d , Let eT also

extend 4 . Then g;(' = eTf is such that g;e I Y=4a. Since

. . *
F, (Y) is free in V, and A e V, ¢V, this shows that g, =g

*
which in turn implies that e, = e because the commutativity of

the last diagram uniquely determines e] for given g - Hence

F] (Y) is free in y_] . The proof of the theorem is complete.

Let S be the category of sets and functions and let P

be the category of partly ordered sets and order preserving functions.

Given V¢ X(R) we have already defined an object L(\_/__;Y) of P
for every object Y of S . When V is a galaxy (in \_1_(5?,)) we
can also define a map L(X;f) of P for everymap f : Y, —>Y,
of S . For this let us define [L(¥;f)](x) , for every

k € L(L;Y,) , to be the L(V;Y,)-cover of

nf = {(;‘_(u1),_f_‘_(u2)); (u] ,u,a) € k} , where f =W(R;f) is the unique
homomorphism that extends f to K(R;Y]) : The function

L(Y;f) : L(X,'Y1) —_ L(\__I_;Ye) - is clearly order preserving. We

have thus defined, for every galaxy V , a function L(V;-) : 8 —>

P
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In fact, as we shall now show, L(V;-) is a functor.

THEOREM .1. Let V be a galaxy of R-algebras. The L(V;-) 1is a

functor from § into P .

PROCF . Iet f : Y.I —_— YE y 8 ¢ Y2 - Y5 be arbitrary maps in S .
We have to prove that L(V;gf) = L(V;g)L(V;f) . For this it is
convenient -‘to introduce the following abbreviations. We write

* )
L, and L, for the functions L(X;f) and L{R;f) = LR);-)
respectively. For every set Y we vwrite XY for the function that
takes k € L(R;Y) to the L(V;Y)-cover of k . We need some facts

. *
about the functions XY ’ Lf ’ Lf .

For two maps \,, : (L, ,S) —> »S) we write ), s if
1 1 1 2k

M (z) = )‘2(2) for all z € L, .

(1.1) xYaL; 2 L:,XY

+ * *
Iet k € L(R;Y]) . Write « =XY.' (k) , ® =Lf(i<) ’

1

*
(K+) = L;(rc+) and (n*)+ = Xy (n*) . To prove (.1.1) we must show
2

that (k)7 o (kN . ILet W(RsY,)/x —> W(R3Y,) /% be the

homomorphism under which the equivalence class [ulk goes upon

[g_(u)]u* for all uw e W(RY,) , where £ =W(R;f) . ILet

+

W@RsY,) /e —> W@sY,) /6 and W(RsY,)/x —> WRsY,)/(x)Y be the

canonical homomorphisms (that are well defined because, by

- % ks
definition, k< &k , k < (k) ). Now, by the proof of Theorem 7 of Chap,?2

H(R;Y])/n+ and E(R;Y])/n —_ K(R;Y])/K+ provide a coreflection of
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E(R;Y])/u in K(V) and therefore there exists a (unique)
homomorphism W(R;Y,)/k" —> W(R;Y,)/(x*)* such that the

following diagram commutes:

E(ﬂ;Yl)/K —_— W_(R;YE)/R*
i
|
Voo Yo %+
WRsY,) /e ———> WR;Y,) ()

From the commutativity of the above dia"a,ram and the definitions of
the three maps V_\[(R;Y])/n —_ E(R,'Yz)/n* y  WRsY,) /K —> K(R;Y])/n+ ’
K(R;Yg)/n* —_— E(R;YE)/(K*)+ we see that the fourth map
E(R;Y])/n+ —_> Y_/J_(ﬂ%,'Yg)/(n*)+ of our diagram must take [u]k’ upon
[g(u)](rc*)+ for all u e W(S%;Y]) . This immediately shows that
if (u] ,u2) e k' then (_f_’(u1),£(u2)) € (n%)+ . Hence

(") = (E0),20)) 5 (u,u) e k') («)% . This implies
that (k) < (k) %, since, by definition, (k*)* is the least
congruence over E(R;Ye) containing (n+)f . This completes the

proof of ("1.1).

(1.2) LI L 4 LIL 2 L
) gt T Ygr ¢ gf = “gf’

For every function e : Y —>Z and set rc WR;Y) x W(R;Y)
. e

we write r for the set [(g(u]),g_(ue)); (u, ,u2) e r}) , wvhere

e =W(Rse) . Let k be an arbitrary congruence in L(R;Y]) .

Since W(R;-) is a functor we have that
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gf = WR;e)W(R;f) = W(R;gf) = gf . From here it follows directly
that K& = (lcf)g . Since k¥ c L;.(n) c Lf(n) this gives

Kgf c (L;(K))gg (Lf(v:))g . The inclusion Kgf < (Lf(;c))g

tells us that L;f(n) c LZL;(K) and the inclusion k5@ c (Lf(n))g
gives Lgf(n) < LgLf(n) . We complete the proof of ( 1.2) by
proving the inclusion L;L: (k) < L;f(n) . For this we first make

a trivial observation. ILet Y be any set and let r < W(R;Y) x W(R;Y) .
Write k.. for the least congruence over W(R;Y) containing r .
Then (v,v') ¢ K. if and only if the equality v =v' is deducible T
from €(r) = {u=u'; (uu') e r} . Moreover, if e is a function
from Y and v =v' is deducible from €(r) then e(v) =e(v') is
deducible from €(r®) , where as before e = W(Rse) and

re = ({e(u), e(u')) 5 (u,u') e r} . DNow let (w,w') ¢ LZL;(K) .
Then w = w' is deducible from {g(v) =g(v'); (v,v') ¢ L;(n)} .
Since L;(n) is the least congruence containing nf then

(v,v') € L;(n) if and only if v =v' is deducible from

(f(u) = £(u') ; (uw,u') € vk} . Hence for our

‘]‘ We can regard v = v! as a sentence in the language obtained
from ®(@®) by adding members of Y as constant symbols, that
is, the language OR') , where R' = (40U Y ,h') ,
h'|@=h, h(Y) =0 . Then by the 'deducibility of v = v’
from €(r) ' we mean the 'deducibility of v =v' from &(r)

in the language OR') '.
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arbitrary member (w,w') of LgLf(nc) the equality w = w!'
is deducible from (gf(u) = gf(u') ; (u,u') € k} . But we have already
noted that gf = gf . Hence w = w' 1s deducible from
{(gf(u) =gf(u'); (u,u') e k} , 8o that (w,w') is in L;f(n)
(the least congruence containing ngf ) This proves that
L;L;(n) c sz(n) and the proof of ( 1.2) is complete.

The last fact which we need to know about the functions XY ’
L, » Lp

functions and requires no proof.

etc. is an immediate consequence of the definitions of these

: *
(1.3) L = % Lp -
2
It is now easy to prove that L(V;-) is a functor, i.e.,

LgLf = Lgf . By (1.1), (1.2), (.1.3) and the obvious fact

that )(.2Y =%y for all sets Y we have

% % *_% *
Lole = XYBLgXYQLf = XYBXYBLgI"f = XYj"[‘gf = Lgr = Tgls -

Hence LgLf =L and the proof of the theorem is complete.

gf

THEOREM 2. Iet V V, be galaxies such that V, oV Then

. Lo D L25-
there is a natural transformation from L(y_] 3=) to L(V. ;=) .
PROCF.  Let .7, : L(Y_];Y) _ L(XQ;Y) be the order preserving map
under which « € L(}/’_:1 ;Y) goes to the L(Vi;Y) -cover of g .

We prove the theorem by showing that the diagram
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L_(\__[_] ;E) .
L5y LY 5%p)
- "
Y]i ‘ Y,
v v
L(V,5Y,) By > L(S;?;Ya)
£’
commites for every f : Y, —>7Y, in § . For this we first

introduce some abbreviations similar to those used in the proof of
. . *
Theorem '1. We write Lf 5 L],_f and LQ,f for the maps
LR;£) , L(l];f) and L(V=2;f) respectively, where f 1is an
arbitrary map in S . For every set Y and &4 =1,2 we write
Xy for the order preserving function L(R;Y) — L(V ;Y) which
’ 1he =
sends k in L(R;Y) to[ L(X_L;Y)-cover of gk . It is clear that
Ty =% y |L(y_] ;¥Y) for all sets Y and that the commutativity of our
) -
diagram is equivalent to the equality 12’ fnyl = UYQL'I Fa Now

for every «k € L(K_] ;Y]) we have

T, sy, (e) = 2,2,y (e) since my =%y, | LY, ,Y,)
= xe,YeL’;xz,Yl («) , by (1.3)
. Li(e) , by (1.1)
S v, e,y v (
= Lo (k) i -
XE,Y2 p (K since "g,yg "2,Y2

* ,
c )(2,Y2fo2,Y1(K) , since XZ,Y] (k) D&

i

Lé,f“Y1 (r) , by (1.3) .



Hence

*
(2.1) Lé,f“Y] = X'a,Ysz

On the other hand for every « € L(E];Y1) we have

My Ly,ele) = gy Iy ple) o sdnee iy =%y | LYy 5Y5)

= &Jgh%%h), by (1.3)

= XE’YQL; R since V, 2V£ and therefore
2,151, = %y,
Hence
(:2.2) xYQth = X2,Y2L; .

By comparing (.2.1) and (:2.2) we find

“Y2L1,f = Ié,f“y] .

As mentioned earlier this is enough to prove the theorem.

THEOREM 3. ILet V be a galaxy of R-algebras. Then L(V;f)

preserves joins for all functions £ : Y] —_ Y2 .

PROOF. We use the abbreviated notations introduced in the proof of
Theorem .1. Let Ki € L(I;Y]) , where 1 ranges over an index set
I, and let Ky s Ky be the joins of {Ki}ieI s [Lf(ni))ieI
in L(l;Y]) s L(z;ya) respectively. We have to show that

* * . . *
kp = Lf(n]) . let Kk} , Ky, be the joins of (k;}y 1 > [Lf(ni) }i_(-:I
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in L@R®;Y,) , L(R;Y.,) respectively. Then & = Xy (k) ,
1 2 1 ) 1
*
Ky = XY (K.e) (Cf. proof of Theorem Q ). Before proceeding to the
2

proof of Ky = Lf(n]) we need to show the following:
* *, %
(3.1) fy = Lpley) -

To prove (.3.1) ve use the observation made in the proof of
Theorem 1 (see page 59). If (v,v')e K.T then v =v' is
deducible from f{uw=u' ; (u,u') ¢ UieI
is deducible from {f(u) = £f(u') ; {(w,u') e U

ni} and hence f£(v) = £(v')
ieI ni} . Thus the
sets €, = {(f(u) = £(u') ;5 (Wu') e K.T} and

— — 1 . 1
€, = (f(u) = £(u') ; (w,u') e Uier ni} are equivalent. But
(w,w') € L;(KT) if and only if w = w' is deducible from g
and (w,w') € 6y 1if and only if w=1w' is deducible from €, .

*

The equivalence of €, and €, now shows that &, = L;(KT) and
(".3.1) is proved.

Now we can prove that &, = Lf(n]) . We have
*

= L (kq)

Xy, ey
S X X Tplsy) , by (1.1)

2 2

%, ¥
= L.(ky) -. since =

XY'E £ )@2 XY?
= xye@ , by (.3.1)

K2.
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Hence L.(k,) S k, . On the other hand

*
Lote) = % Tye)
*, % *
) XYgLf(Kl) s since &, 2 K,
*
= XY (K'2) ’ by (3.1)
2
= KE .

Hence Lf(n]) 2Ky , S0 that =, Lf(n1) . This completes the
proof of the theorem.

We conclude this chapter by asking two questions that we have
not been able to answer. We see from 0.3 that L(Y__;Y) is a complete
lattice for galaxies l and sets Y . Are there semi-varieties Y_= s
other than varieties, such that L(X;Y) is a complete sublattice
of L(R;Y) for all sets Y ? We also learn from Theorem 3 that
L(\_l_;f) preserves joins for galaxies V and functions f . For
what quasi-varieties 1 is the map L(\__I_;f) a complete lattice

homomorphism for all functions £ ?
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CHAPTER &

A THEOREM ON RANKED CATEGORIES OF STRUCTURES

In the last two chapters we have given some applications of
the categorical concept of coreflection to the study of algebraic
structures. In the present short chapter we apply this important
concept again and obtain a very general and simple principle
about ranked categories of structures which says that all categories,
that admit free algebras and are bigger than a ranked category,
are themselves ranked.

We begin by describing what we mean by a rarked category
of structures.

Iet K be an arbitrary category of structures. We shall
assume in this chapter that morphisms of K are functions although
our considerations are applicable to other situations (e.g., to
categories of structures whose morphisms are functopisms (see p. 8 )).
Categories of structurea considered by Freyd in [1, pp. 107-120] ~
satisfy our assumption about 5 .

We shall say that K admits free structures if the forgetful

functor F(K;-) from K into 8 has a left adjoint G . The
structure G(Y) , determined within isomorphism by Y alone,

may be called the free structure on Y . Freyd [1, pp. 107-120] has
shown how this concept of 'freeness' translates the usual idea of

'freeness'.
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Note that if morphisms of g could be functopisms we could
have defined freeness by considering the forgetful functor
F'(K;-) : K—> 8" defined on page 9 .

We shall say that K 1is ranked if 5 admits free structures
and free structures on two sets are isomorphic if and only if the
sets themselves are isomorphic (i.e., have the same cardinality).
A class V of R-structures is said to be ranked (to admit free
structures) if §(X) is ranked (admits free structures). Many
familiar algebraic systems like groupoids, loops, abelian groups,
Boolean algebras form ranked classes. All quasi-varieties admit
free algebraic structures but there are [11] quasi-varieties
(in fact, varieties) that are not ranked. All non-trivial varieties
of groups are ranked [22, p. 12]. In fact it is easy to deduce
from the result just quoted that all classes of groups, other than
the trivial variety, that admit free groups are ranked.

In this chapter we prove the following simple and general

principle about ranked categories of structures.

THEOREM 1. Let 51 ) Eé be categories of structures that admit
free structures. Let El < & . Then _I__§2 is ranked if E]
is ranked.

The above theorem is an immediate consequence of Theorem 2
below which is a purely categorical and more géneral result.

To state Theorem 2 we need few definitions. A functor
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F .

=

—> B 1is called ranked if F has a left adjoint G such
that for all B, , B, € B the objects G(B1 ) G(Bg) are isomorphic
in A if (and only if) B, , B, are isomorphic in B . For

two functors F] : _A_] —_> E] s F2 : .l\,:2 —_ 22 we write F] s F2

if é] g_ée 5 =_]?31 c _]_§2 and F] is the restriction of F2 to ._A;]

THEOREM 2. Let F.' t A —>B, FQ : i —> B admit left

adjoints. lLet F] = F2 . Then F2 is ranked if F] is ranked.

PROCF. Iet G, : B—>A

=1

1
of F] s F2 respectively. By the defining property of adjoint

» Gy t B—> A, be the left adjoints

functors, for all A e é] » B e B there exists a one-to-one onto
function (B,A) : Hom, (G] (B),A) —> Hom(B,F] (A)) such that

for all morphisms & , B, v , & the diagram

A o A’
>
/N /N
Y 3}
G] (B) o Gl (B')
G, (8)

commutes if and only if the diagram
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F,(4) Fl@  F @)
N g /N
B B B’

commutes, where A , A' ¢ A

is the set of all morphisms in A, from G, (B) to A while

» B, B'eB and Hom, (G] (B),A)

Hom(B,F] (A)) is the set of all morphisms in B from B to F, a) .

The functors F, , G, similarly determine a function ne(B,A) for

all Be B, Ac é2 . For every object B € B write

my 1 B —>F,G, (B) for the image of the identity

]G1 (3) : G (B) —> G (B) under n,'B,G(B)) . ILet

Tg ! (G2 (B) —> G, (B) be the inverse image of np under

112(B,G] (B)) . g exists because G, (B) ¢ A, and F,G (B) = F,G, (B) .
We show that G, (B) together with the map Tp 1is a coreflection of
Gy (B) in A .

Ae é’l . We have to show that we can find a unique map

let o : GZ(B) —> A be amap in A, and let

E : G, (B) —> A such that the diagram

(1)
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commutes. To do this let B : B —>F, (A) be the image of ¢
urd er ng(B,A) . Since F, £F, and A e A we have FQ(A) =TF, (a) .
Hence B has an inverse image €& , say, under n](B,A) . We show

that & 1is the map we were looking for. Before doing this we

collect the relations between different marphisms we are dealing with.
(1.1) ty = [n,(B,6,(8)]0 ¢, ()

ty = [ny(B,G (B)](rp)

p = [n,(B,4)](c)

p = [n,(3,4)](s)

Now & 1is clearly in A

4 From the commutativity of the diagram

G, (8) 3 A
e, (B) A At
G, (B) < G, (B)
1 _ ]G](B) 1

the defining property of adjoint functors mentioned above and (1.1),

we see that the diagram
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8y
e (B) F, ig) F, (A)
\ /N\
o B (11)
B 1B B

commutes. Let o be the map which makes the diagram

G, (B) A
1 3 S
\ iy
B % (III)
G2 (i) ' ]GQ (B) G2 (B)

commte. Then

FoGy (B) F, ( gzl F, (a)
/N -
Ty By = [le(B,A)](a])
B B
s

also commutes, by the definition of adjoint functors and the relation

between the maps =, , T, given in (1.1). Since F, $F, and

A, G, (B) , & e A, we see that the diagram
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F. G (B) F, (€) .5 (4)

/
/N N
8 By (IV)
B 1 B
B

is commutative. Comparing (IV) and (II) we find that g = B -
Stnce By = [n,(B,M)1(@) , 8= [1,(8,4)](@) and r,(5,4)

is one-to-one we conclude that o = Qg - Substituting ¢ for o
in (III) we see that (I) commutes. To finish proving that G, (B) is
a coreflection of G, (B) in A, ve establish the uniqueness of the
map G, (B) —> A which makes (I) commute. Iet &' ¢ A be any

map such that the diagram

G'l (B) g A
/s
TB a
G2 (B) ]Gg (B) G2 (B)

commutes. Then; as before, using the defining property of adjoint

functors and (1.1) we see that



FoGy(B)  Fy(8)  F,(A)
\ 1\
ﬂB B
B 1B B

is commutative. Hence, since F, sF, and A, G (B) , ¢t'e A

the diagram

F, G, (B) F, (¢') F,(A)
/N M

n'B B
B < B

also commutes. This implies that

o® & A
JIN - /N

161 (B :

G] (B) 1G] (B) G'I (B)

is commutative; so that € = &' and it is proved that G, (B)

a coreflection of G, (B) in A, .

is
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We are now in a position to conclude the proof. Iet
G, (B1) s Gy (Be) be isomorphic in A, for some B, , B, ¢ B .
Then G, (B]) » G (BE) are isomorphic in A, because coreflections
of isomorphic objects are isomorphic. Since F] is ranked this
implies that B] 3 132 are isomorphic in 2 . Hence F2 is ranked
and the theorem is proved.

Theorem 1 - now follows from Theorem 2 by noting that K is
ranked if and only if F(Ié;-) is ranked.

Professor Gratzer has pointed out to me that the special
case of Theorem 1 , when K, , K, are of the form §(l]) s
5(_\:72) for some classes 11 s \é of R-algebras, can be directly
deduced from Theorems 31.1 and 31.5 of his book [9].
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CHAPTER

PRODUCTS OF RELATIONAL STRUCTURES

A‘very important and fundamental part of the study of
mathematical objects of a certain type involves constructions or
processes that obtain objects of that type from other objects of
the same type. Elementary classes of structures form an important
type of classes and it is worthwhile to know of ways of 6btaining
elementary classes from other elementary classes. Some such ways
are known.  For example let V. , V, < U(R) be elementary; then

1 =2
v, NY

v, v is also elementary. A more sophisticated example is
provided by a theorem of Vaught [31] which shows that the class

SEH (V) of all substructures of cartesian products of families
of structures in V is elementary (in fact universal) if vV is
elementary.

In this chapter we give some general types of constructions of
elepgentary classes and compact classes from compact classes. Our
definitions, remarks and results generalize many of the concepts and
results of (7], [12], [14], [19] and [31] and answer a question of
Feferman (See Math. Reviews 32, (966), 5512) for a certain
type of ordinal products. Our last result (Theorem 6) suggests

the possibility of a categorical study of at least some of the

products of relational structures.

The background for our constructions is provided by [7] where a
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very general concept of 'generalized products' of relational
structures is defined which comprehends many of the products arising
in Mathematics. Roughly speaking, a generalized product of

a family {éi}iel of relational structures is a structure A

such that carrier (A) = A 1is the cartesian product CnieI Ai

of the Ai = carrier (éi) and the make of A not only depends

on the makes of the éi but also on the make of a structure on the
power set S(I) of I . 1In this chapter we first describe the
products of [7] in a somewhat different set-up which involves not a
structure on S(I) but on I itself. Our description makes

it possible to generalize the concept of 'generalized products’

to what we shdll call higher order products. The concept of the

order of a product, which our description brings out, seems as
important as that of the order of a language. Thus first
order products (like first order languages) seem to distinguish
themselves as specially important type of products. As we shall
see, first order products share with the cartesian product the
properties given by Makkai [14] and Vaught [31]. We observe
that the cartesian product and the ordinal product are first order
products as are the regular products of Mal'cev [19].

We now give precise descriptions.
Let Ry = (P,fh) , Ry = (Byufhy) », R = (P5,¢,h3) be
arbitrarily fixed predicate systems. For every ¢ e ¢(ﬁ]) we

think of a new symbol p@ which does not belong to any one of



_76-

the sets P , B, , Py . Write R = (P',p,0") , vhere

+ + I .
P =E, U {pcp; P e@(ﬁq)} and h' coincides with h, on B,
while h+(pq)) =1 forall ¢e oR,) .

By an (6%] ,6?2 )-complex of structures we shall understand

an ordered pair A = ({éi)iel’l) , vhere I =(I,.) ¢ X(@z) ,

A, = (A,0) € \__7_(6%]) s ieI . Denote by g(&%] ,ﬁQ) the class of

all (ﬁ,.l ,ﬂg)-complexes. let xj] yoee ,x'jk e X and

"’fk e CII, A, . By the graph of A at

f iel i

17°

<X,j 3o "Xj Y = (f] seee ,fk) we shall understand the R'-structure
1 k :

(1, L+) defined as follows: L+] B, =t and for all ge @(@])
the unary relation L+(pcp) is the set of all i € I such that

V. seeesX; (@) holds in A, at

X,
Jk—i-'l Jn

X, seee,5X = (£, (i),...,% (i where X, ,...,X. are the
oy omeeiy )= (8 (W08, 3770
variables that may occur freely in o .

We are now in a position to define our products. Let

T: P3 —_— <I>o (@+) satisfy the requirement: For all p e P, the

3

formulae V¥ such that p y occurs in T(p) together involve

Jjust x yeresXy as free variables. Now the first order product
1 5 (p)
of type T is defined to be the function I : C(R,,R,) —> V(Rs)
, . T
such that for A = ({1_—\_13161,_]‘;) the Rz-structure I (A
is (A,x) , where A = CI, ¢
f],...,th(p) € A we have (f1"“"ff15(p)'> e alp) if and only if

A; , and for all p ¢ P3 ~and

holds in th h of A at = (£15000,F .
T(p) holds in the graph o at  (x, ,th(p)) (£:5 h5(p))
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We shall often write HTl(éi) for I (A) .

For every positive integer n we can define nth order products-

by using nth order languages in a way exactly similar to the
one we have used first order languages to define first order

products. We omit the obvious details. Our interest here in

this chapter is in the first order products only and we shall
make only the following two remarks about higher order products.
Firstly, it follows directly from the respective definitions that
'generalized products' of [7] are second prder products but not
every second order product is a 'generalized product’. Secondly,
the Basic Theorem of [7] and therefore all the general results of
[7] together with the analogues of Theorem 2 and Theorem 3 below hold for:
products of any order and qan be proved similarly.

We now return to first order products and illustrate our
definition of these products by describing cartesian, ordinal
and regular products as first order products. Let
Ry =Ry =Ry = (Pyp,h) and for every p e P let t(p) be the
sentence \fx]pm(x]) , where ¢ is the atomic formula
p(x],...,xh(p)) . Then HTzféi) is merely the cartesian product of
the éi . For the case of ordinal products suppose that
Ry =R, = R3 = (P,f,h) where P consists of a single binary
relational symbol p so that h(p) =2 . This time take (p)

to be the sentence

@{1 (pcp] (X] )/\ VXEID(XE’X]) g pCPg (XE))] b
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where ¢] ) @y are the formulae p(x],xe) and X, = x2 respectively.
It is a simple matter to verify that I'L(A;) is the ordinal
product of the éi as defined in [T7]. Finally, regular products
of [19] are obtained as first order products if the function
T entering our definition is restricted in the following way:
For every p € P3 the sentence 7(p) involves only the unary
relational symbols of the form Py 2 ® € Q(R]) , and (possibly) the
symbol for equality = . In other somewhat less exact words,
regular products are precisely those first order products that do
not involve a structure on the set indexing the families of
structures to which the products are to be applied; so that the image
of “éi.} ieI’D under a regular product II' is independent of the
second member of the ordered pair. Observe that the cartesian
product is a regular product while the ordinal product is not.

For classes ¥V, < YR,) , ¥,
c(y, ,;12) for the class of (6?,] ,Ra)-complexes ({éi}id,;) ,

c \=I(ﬂ2) we write

where I € and A, €V

¥ 1 €5
i (¥,,%,) for the class of Ry-structures of the form T'(A) , where

forall ieI. Let us write

Ae g(y_:] ,’\=72) . By s’ (Z'l ,V,) we shall denote the ¢lass of all
R3-.structures that are embeddable in a structure of IIT(Z_] ,V£) .
We now give some properties of first order products.

Our first result follows from the Basic Theorem of [7], since
every first order product is a 'generalized product'. Before

stating this result we bring out its contents. Iet @ Dbe an




- 79 -

atomic formula of the form p(x, ,...,x, ) , k=h(p) , peP; .
I Iy > 3
Write T (p) for the R'-sentence obtained from r1(p) by

replacing every Py that occurs in T(p) by Pyt 2 where ' is

obtained from V by substituting x. ,...,X, for x ,...,xk
Jy Jye !
respectively.. Then our definition of HT immediately tells us that

given <(éi}iel’£) € g@&l,ﬁz) and f.,...,f € CnieI A; the atomic

formula ¢ holds in HTI(A ) at (X, ,e.e5x, ) = (f,,...,5 ) if
=~ g Iy 1 k
and only if T () holds in the graph of ({4 D) 8t

(xj ,...,xj ) = (f1""’fk) . Now Theorem 1 below merely says
1

k
that a sentence T+(¢) with the above property can be defined for

all ¢ e @(RB) .

THECREM 1. Iet ¢ ¢ ¢0R3) and let X, ,...,X. Dbe the variables
_ J1 Jie
freely occurring in ¢ . Then there exists a sentence

w7 (@) € 0(RT) , determined effectively, such that:

(1.1) The formulae V ¢ 0@&1) with occurring in T+(¢)

Py
together involve only xj ,...,xj as free variables.
1 k

(1.2) Given A= <{<Ai’ai)}ieI’ (I,.)} € g(ﬂ]’ﬁg) and
. T
£,5-+05f € CI,__ A, the formila ¢ holds in I (A) at
(Xy yoeesx, ) = (f.,0..,£ ) if and only if  (p) holds in
j] Jk 1 k

the graph of A at X, ,e00,X, = (f.,...,f .
grapn o ( 3.’ ) Jk) < 12 P) k>

1
As mentioned earlier Theorem 1 is a specialization of the
Basic Theorem of [7]. The following corollary is a specialization

of Theorem 5.1 of [7].
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COROLLARY 1. ILet A= ({A;); 1,1}, A' = ({Aj}; o)

be’ (6?,1 ,6?,2 ) -complexes such that éi and éi are elementarily
equivalent for all ie I . Then I'(A) and X' (A') are
also elementarily equivalent.

Theorem 1 gives us a procedure for deciding whether a given
%-formula holds in I[T_I_(.éi) for given values of the variables
involved. For RB-sentences this procedure can be simplified by
usifig the following method of Mal'cev [19].

Let A= ({4}, /1) ¢ g(R],ﬁe) . We can find
A = ([g_j’_}iGI,I) e’g(@] ,6?2) such that the A; are pair-wise
disjoint and éi , l_&'i are isomorphic for all 1 e I . In view
of this we can assume that our typical (&] Ry ) -complex
A= ({:l_x_i}iel,_l_) is such that the carriers Ai of the :9._1
pair-wise disjoint. It is also no loss of generality to assume that

are

the sets P] ,,P2 » Py are pair-wise disjoint. Unless otherwise

stated these assumptions will be taecit in all that follows.
Iet € be a new binary relational symbol and write

* * * ¥ * *

P =P, UPF, U{g),R =(P,h), where h |P] =h, , h |P = h,
* . .

and h (g) =2 . Consider A= ({éi}ieI’E) € Q__(R],ﬁ?,a) . Let
iel "1

First of all «(g) is the equivalence relation over A with the

A=U A, . We define an R -structure A = (4,a) as follows.

Ai as equivalence classes. Next, if p ¢ P] then

ap) = Uier Oti(p) . Finally, for all pe B, and

ai ,ooo,a. € A F] k =h2<p) ) if ai € Ai ,...,ai € A

1 ik 1 1 k 1

k
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then (ai],...,aik) e a(p) if and only if (1500051 ) € (o)
where t comes from A . We shall refer to the structure A as the
index of A and denote it by Ind(A) .

let 0(x) Dbe an ﬁ*-formula with x as one of its free
variables. Let ¥ be another R*-formula. We write
[6(x)]¥ for the result of relativising  with respect to 6(x) .
Semantically [6(x)]V can be interpreted, roughly speaking, as
saying that ' ¥ holds in the substructure consisting of all x
such that 6(x) '. For every o € @o(ﬂ%) we define 'r*(cr)
to be the R -sentence obtained Trom ) by replacing every
formula of the form p\','(xj) that occurs in -r+(q) by [0(x)]v ,

where 6(x) stands for s(xj,x) . The following result, which

generalizes Theorem 4 of [19], is an immediate consequence of

Theorem 1.

THEOREM 2.  For all o ¢ ® (Rz) and A e C(R,Ry)
the structure I (A) satisfies ¢ if and only if Ind(A) satisfies
™ (o)

With Theorem 2 at our disposal we can now apply the method
of Kogalovskij [12] to generalize the results of Makkai [lh] and
Vaught [31] on cartesian products to the first order products.
For ¥, © X_(@]) » Y © X(@a) et Ind(\=/'_],V£) denote the class
of all R -structures of the form Ind(A) , where A = (&) 1) 5
Ie ‘:’2 5 éi ey, . Ccmpare the following result with Lemma 1

éf [12].
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THEOREM 3. If ¥, cV@®,) , ¥, ¢ V(R,) are elementary (universal)

then Ind (X] ,Ze) is also elementary (universal).
PROOF. Iet ', 2", Iy s Iy be sets of R*-sentences defined as
follows: X' consists of the sentence that says that g is

an equivalence relation and of the sentences

VX]""’xhg(p)’x{""’xﬁz(p)[S(X]’Xf)/\ AN S(Xhe(p):xﬁg(p)) —_—>

{D(X-I:'“)xhe(p)) <> D(x]':-“)xk;?(p))}] ’

where p € P2 3 so that X' says that ' & is a relation of

equality for relations of E, '. =" 1is the set of sentences

Y e, Xh](p)
[D(X]:-'-)xh] (p)) —_ E(X]:XE.)/\ ERNVAN 8(X1’xh] (p))] ) P € P] ’

so that =" says that relations in P, can hold between those elements

only that are equal under g '. Z] is the set of sentences

where o € Z(X]) and 6 (x) stands for s(x],x); so that 3, says

1
that ! Z(l]) holds in the substructures formed by equivalence

classes under g '.

T, 1is the set of sentences o , where o e Z(‘_ie) and o° is

obtained from o¢ by replacing every atomic formula of the form
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x, =x, occurring in o by ex, ,x. ) .
9 Jo ® Y (31’32

. - 1 " +

It is clear that £ =2'UZ" U2, UZ, defines Ind (¥, ,12) .
Further I is equivalent to a set of universal sentences if
X] 3 \_12 are universal. This proves the theorem.

We can now state and prove the following generalization of the

compactness theorems of [12] and [14]. We recall that a class

n<

of
R-structures is called compact if for every = c @O(R) there is a

model of X in

<

provided that every finite subset of X has a

model in V .

THEOREM 4.  If v, < l(ﬁ]) is compact and 22 - X_(ﬁ?) is elementary
then I (V;,¥,) is compact.

PROOF. Iet V. be the elementary class defined by £(V,) so that
\=I.l' consists of all ﬁ1 -structures that are elementarily equivalent to
structures of ¥, . We first show that I (V!,¥,) is compact.

Iet every finite subset L' of ZC <I>o(6?3) have a model in

m (\=r]' ,\=/'2) ; we want to show that £ has a model in IIT(\;]',L/’Q)

By Theorem 2 we see that {'r* (6); 0 € '} has a model in Ind(\__f__]',Vﬂ)
for every finite I' < T . Since, by Theorem 3, Ind(y__]' ,V£) is
compact this implies that {-r* (A); 0 € £} has a model in Ind(g]' ,V£) s

say, Ind(A) , where A= ({A} I), A el

=i V£ ‘

Another use of Theorem 2 now immediately shows that 1" (A) satisfies

ieIl’=

$ . Since I (A) e T (V!,V,) we conclude that 1" (V Yy ) is

'l’=2



- 8k -

compact. Compactness of HT(X1’XQ) now follows by Corollary 1
which tells us that every structure in HT(EQ,XQ) is elementarily
equivalent to a structure in HT(X{,XQ) . This completes the
proof of the theorem.

We observe that the above theorem can also be proved by the
method of Makkai [14 or of Onarov [23].

In Theorem 4 if we take v = X(ﬁz) and take II' to be a
regular product we obtain the compactness result of [12] for regular
products. We now apply Theorem 4 to a situation where the
results of [12] are not applicable. Let XQ

ordered sets and let 21 be a compact class of binary relational

be the class of all

ord

structures. Then, by Theorem 4, II (YJ’ZQ) is compact where

Hord is the ordinal product. We do not know what happens if 22

is the class of all well-ordered sets but it seems reasonable to

conjecture that in this case compactness of V, does not imply

ord

the compactness of I (21,22) . These remarks are relevant to

the question of Feferman mentioned in the introductory part of this

chapter.

From Theorem 4 we obtain the following generalization of a theorem

of Vaught [31].

THEOREM 5. If ¥, < ¥(@®,) , ¥, cV([R,) end ¥V, , ¥, are

elementary then SHT(YH,ZQ) is universal.
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PROCF. We use the standard method of diagram. Let

_ T
X5 = SII (11 ’V£

It is enough to show that A e 15 For every a ¢ A think of

) and let an R,-structure A = (A,q) satisfy = .
5 -

a new symbol p_ and let P={p, ;aecA), R = (P{,;b,h.l') s
P =P, UP, h;lP] =h, , hi(p) =1, 5?3' = (P5',¢,h3') s

P’ P.

3

al IP5 =0 and (pa) = {a} for a e A . Write Y_]' for the class

of all R, -structures M such that the R,-reduct of M is in V,

up, h3'|P5= 5 5 h5'(P) 1. ILet A' = (A,@') , where

and M satisfies Vx]p(x]) and yx, ,xe[p(x1)/\ p(xe) —> %, = X,]
for all pe P. Then 21' is elementary and every universal
R]' -sentence that holds in every structure of V} also holds in A' .

Let the diagram A of A be defined as the set of ﬁ,j'-sentences

of one of the forms:

Ex],...,xk[pa] (x1) JANERRIVAN pak(xk)/\ p(x],...,xk)] )

pebP, k=h5(p), <a~|1""ak) (—:Ol(p) )

EX1""’xk[pa1 (x.l)/\ ...‘/\pak(xk)/\~p(x],...,xk)] s
pe P, k=h3(p) , (a1,...,ak)éot(p) .

Iet T' be a function from P5' such that T’|P3=1- and 7' (p)

is yvx (x]) for all p e P, where V stands for the formula

1Py
1
p(x]) . Thus the product I' behaves like II' for relational

symbols in P, and like the cartesian product for those in P .

3
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From this it is immediate that ¥_5‘ =T (\Ll U ) and hence that

é_e% if and only if A has a model in 25' .

Y-=5' is compact. This reduces the proof of  the theorem to showing

By Theorem U4,

that every finite subset A' of A has a model. et 0 be the
negation of the conjunction of the sentences in A' so that A' is
equivalent to ~ g . Since ¢ 1is a universal sentence that does not
hold in A' we conclude that o ¢ &' ; so that ~ ¢ and hence

A' has a model in V; . This proves our theorem.

Our last result is in an entirely different direction. Let
A= ({éi}iel’;-) ; Al = <(éj'.’}i'e:[”1’> be (R] )%)'complexes'

By a complex homomorphism from A into A' we shall understand

. — o — ' 2

an ordered pair f = ([fi]iieI’f) » vhere f. : A, >éf(i) is a
homomorphism for i e I and f : I —>1I' is an isomorphism. If
g' = ({gi }ieI,,g') is another complex homomorphism from A' to
A" we define the product g £ to be the complex homomorphism
<{gf(i)fi}iel’gf> . Denote by E(ﬁl ,ﬁ,a) the category of
(6%] ,ﬁe)-complexes and complex homomorphisms. With our typical
complex homomorphism f we can associate a function

. — 1 .
Cu(f) : CMy.p Ay —> CN;, g, A}, as follows: For every e ¢ CI ; A;
the image e' of e wunder CI[({) is such that e'(i') =fi(e(i))
forall i ,4i',ieI, i' e I', f(i) =1i' . The function

. . . 3 '
CI(f) dis in fact a homomorphism from CHieI(éi) into Cni'eI' Al .

We define a class of first order products that share the above
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property with the cartesian product.
Let R = (P,P,h) be any predicate system and let P' c P .

An R-formula ¢ will be called positive with respect to P' if

@ is equivalent to a formula of the form

Q,]X.l ...ann[ (q”q)” VARER vq]m]cp.'m]) A see AN (q‘u(p&.l \VARERVS q{m‘t(pm&>]

vwhere Ql""’Qn are quantifiers and for j , k, 1 £ Jj s+,

£k s = -
1 sk = o, qjk +1 , + 1¢jk and ijk stand for ¢jk and

respectively, ka is an atomic formula and qjk =+ 1 if

¢jk involves a relational symbol of P' . Now we define a

generalized cartesian product to be a first order product I’ with

T restricted in the following way: For every p € P3 if pW occurs
in T(p) then V¥ 1is an atomic formula and +(p) 1is positive in oy

We can immediately mention the cartesian product and the ordinal
product as examples of generalized cartesian products. For every
first order product I we extend the domain of definition of T

from C@R,,R,) to K(R,,R,) by defining I'(f) = CI(£) , for every
complex homomorphism f € EGR],QE) . We denote this function from
g@R],RQ) by the same symbol I . The following theorem generalizes

the property of the cartesian product noted earlier.

THEOREM 6. If II" is a generalized cartesian product then I' is a

functor from 5(6%1 ,R,Z) into E(RB) .
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PROCE. et A= ({4}, pI) , A" = ((A},);, qioI") De

(R],RE)-complexes and let f = ({fi} f) be a complex homomorphism

ieI’
from A to A' . Without loss of generality we can assume that f
is an identity homomorphism so that A' = ({Af}; I} . Let

I (A) = (A,@) , T (A') = (A',a') so that A = oI, 1 A,

| E— 3 —

A -CIIieIAi. Let pe Py, h5(p)_k, e.l,...,ekeA. We
have to show that if (e],...,ek) e a(p) then (e{,...,ei) e a'lp)
where e;,...,eé are the images under HT(Q) of eqseees€)
respectively. This is equivalent to showing that if =(p) holds in the

graph of A at (x],...,xk) = (e],...,ek) then T(p) also holds in
the graph of A' at (x],...,xk) = (e{,...,eﬁ) . But 7(p)

involves relational symbols in P_ =P, U {p v enters in T(p)}

H D\y
only. Hence we need to show only that if 7(p) holds in

= (I,Lo) then T(p) also holds in Ic'>=(I, Lé) , vhere I,
Ié are the Ro-reducts of the graphs of A, A' at

(x1,...,xk) = (e],...,ek) and (x],...,xk) = (e{,...,ei) respectively
and R = (Po,¢,h+|Po) . Now by the definition of T (f) and

our assumption that f is an identity function we see that

ei(i) = fi(e&(i)) forall i, 42, ieI, 1 s4sk. Since

fi is a homomorphism for all i ¢ I , +this shows that if

. . ' .
ie LO(pW) then 1 e Lo(pw) for all i ¢ I and for all Py € P, -

Moreover f 1is an isomorphism from I onto I so that

(i],.‘..,ihQ(pe)) € Lo(p2) if and cnly if (11,...,ih2(p2)) € L;(pz)




- 89 ~

for all Py € Pé s 11""’ih2(p2) eI. From this and our
assumption that T(p) is positive with respect to the unary
relational symbols pw i1t is now easy to see that T(p) holds in Ié
if T(p) holds in I, . This proves that IIT(JFV) s T (A) —> T (AY)
is a homomorphism so that II' is a function into 50&3) . The
functorial character of HT is clear. This proves the theorem.

We conclude this chapter by raising a question. Iet
Ry =Ry = Ry =R and let UC(R) denote the set
(Z(l) H X(R) and V is universal} . We can refer to uc(r)
as the 'set of universal classes of R-structures', although such a
set does not exist in Gddel-Bernays set theory which is the basis of this
work. We can define a unary operator SCI over UC(R) by:
SCI(2) = =(SCI(Y(2))) , where SCH(V(2)) dis the class of all
substructures of cartesian products of families of structures in
V(Z) . We shall refer to UC(R) together with the unary operator

SCII as Vaught's algebra of universal classes. Theorem 5 enables

us to define binary operations SI' over UC(R) as follows:
T
S (2,,%,) = Z(ST(V(%,),V(5,))) -

The algebra obtained in this way may be called the first order algebra

of universal classes. Since (SIC)Z = SIC Vaught's algebra is not

monogenic. We raise the following question which we have not been

able to answer. Is the first order algebra monogenic?
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The work described in the present chapter is in [29].

In this chapter as in the last two we restricted our attention
to restricted predicate systems. The purpose of the next chapter
is to see how far our results can be carried to unrestricted

predicate systems.
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CHAPTER 6

COMPACTNESS THEOREM FOR A MORE GENERAL TYPE OF ILANGUAGES

With every restricted predicate system R we associated in
Chapter O a language ®(R) of the first order predicate calculus.
One of the most important properties of first order languages is given
by the compactness theorem which states [15] that a set £ in such
a language possesses a model if every finite subset of % possesses
one. Many results in first order model theory come from this
compactness theorem; Theorem 4 of Chapter 5 is a handy example.
In this chapter we extend the definition of &(R) ‘to unrestricted
® . More precisely, for every predicate system R we obtain a
language ©®'(R) such that ©¢'(R) is essentially o®(R) when R is
restricted and prove the compactness theorem for ¢'(R) . This work
was published in [26] in a different form.

We observe that compactness theorem has been proved for some
other generalizations of first order languages. Thus Fithrken [ 8]
has proved the compactness theorem for languages obtained from the
first order languages by adding a new quantifier which is interpreted
as ‘'there exists at least countable'.

We begin with the description of o'(R) . This description is
very much similar to that of the first order languages which is well-
known. We exploit this situation and occasionally sacrifice formality

and explicitness for the sake of convenience.
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Let R = (P,9,h) and let X be a set of cardinality equal to
that of the range Ran(h) of h . For every R we assume the choice
of X having been made. We need the following notations.

For sets Y , Z we write ZY for the set of all functions
f:Y—>2Z and Z[Y:I for the set of functions f : Y —>2Z such
that f£(Y) 1s finite. A sequence is a function of the form
s :n—>27Z , where n 1is an ordinal called the length of the
sequence s . We shall often depict s as {z ]} or as

m-men

Z e++Zyeer; ME N, vhere s(m) = z - If y is a set and

Z +seZ_e.., M € n 1is a sequence then yz ...2_ ..., men and
o m o} m or n+l

ZoeerZoeedy ,mED depict obvious seguences of length n‘,{ and n + 1

respectively. For every sequence Zo' FLIER and every set
we write \/men z for the sequence depicted by Z Voeeo zm\/
in the obvious way.

We turn to the description of the formulae of @'(R) . By

an atomic R~formula we shall understand a sequence of the form

X =% p({xm]mc-:h(p)) or ({xm}meh(w))w = *h(w) ’ vhere p e P,

we O x

1%g0%, € X for meh(p) or me h(w) +1 . Bya

guantifier-free f~formula in normal form we shall understand a

sequence of the type \/m1 en, /\mzena ch1m2 , where n,,n, ¢ Ran(h) and
? =q' or ~ @' for some atomic R-formula ¢’ . An
oo I e R %, m,

- i =Q X ...Q X ..,
f-formula in prenex normal form is a sequence ¢ Qo o Qm m P 2

where ?, is a quantifier-free ®formula in normal form called the

matrix of o , X, € X are distinct and Qm is either the 'universal
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quantifier' v  or the 'existential quantifier' d . The occurrences
in ¢ of an atomic R-formula, a quantifier, a relational symbol
(member of P) etc. is to be understood in the obvious way. The
occurrence of the 'variables' X in the formula

P = Qoxo...mem...¢1 is by definition bound while all other variables

(members of X) occurring in @1 are sald to occur freely in ¢ .

An @R-formula ¢ in prenex normal form is called finitary if ¢

satisfies the following finitary condition. let e ¢ X[x] and let

¢$ denote the R-formula obtained from ?, by replacing every x € X
occurring in P, by e(x), where ?, is the matrix of ¢ . Then there
are only finitely many atomic ®-formulae occurring in @? . Moreover
there are only finitely many occurrences of # in ¢ .

We define ©®'(R) to be the set of all finitary R-formulae in
prenex normal form. An example of an infinitely long formula in

®'(R) 1is the sequence

W%V%.nVﬁf“p&&%)VJ-ﬂvp&&ﬁpv-“ ,

where p 1s binary and m wvaries over an ordinal.

In the above description of ®'(R) , which can be obviously
completely formalized in Godel-Bernays' set theory, we can regard 4/ ,
~, (,v,= etec as arbitrarily fixed sets independent of & .

We also use = to identify two obJjects as usual and the context will
make our meaning clear. Similar remark holds for parenthesis (,) .

Clearly ©&'(R) 4is essentially ®(R) when R is restricted
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because then every formula of &(R) is equivalent to a formula of
' R) .

A sentence of ¢'(R) is a formula of ¢'(R) without free
variables.

We now give the semantic interpretation of the formulae of ¢'(R)

By a finitely supported R-structure we shall understand a pair

A = (A,x) vhere the carrier A of A is a set and the make o of

A is a function from PU Q such that a(p) < LIS IPRET) peP
and Qa(w) 1is a function from A[h(w)] into A for all we Q .

Iet f ¢ A[X] » @ e ®R) and let A = (A,@) be a finitely supported
fR-structure. We describe what we mean by saying that ¢ holds in A
at f . We distinguish several cases.

(1) If ¢ is an atomic R-formula x, =x, then ¢ holds in
A at f if and only if f(x]) is identical with f(xz) .

(2) If ¢ is an atomic R-formula of the form
p({xm}meh(p)) », pe P, then ¢ holds in A at f if and only if
the sequence {f(xm) }meh(p) is in a(p) .

(3) If ¢ is an atomic R-formula of the form
({xm}meh(w))w-—-xh(w) , We Q, then ¢ holds in A at f if and
only if the image under oa(w) of [f(xm) }meh(m) is f(x‘h(w)) .

(4) If @ = ~¢' for some atomic R-formula ¢' then ¢ holds
in A at f if and only if ¢' does not hold in A at f .

(5) If o= \/ A where n ,n, € Ran(h) and

m,en,’ ‘m,en, q)m1m2 ’ 1

? =Y or ~ @' for some atomic formula o' then
mymy ~ 7 mym, ® mym mymy’
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¢ holds in A at f if and only if there exists moen such

that P . m, holds in A at f for all m,€n, .

(6) 1f o= VX ... VX ...Q, Vhere ¢ is quantifier-free then
® holds in A at f if and only if ?, holds in A at g for all

g e AlX

such that f = g on the set of variables freely occurring
in ¢ .
(7) Finally let @ be any formula of o'(R) so that we

can write ¢ 1in the form

VX ooe X VX ee. X VX eee X VX
) m, Tm A m, m,H mp+1 P

vhere ¢, is quantifier-free, p = p(p) 1is finite and # occurs

only with the ' m, th variable' xmk for 1sksp. With ¢ we

associate arbitrary new sets mq) x ? 1 =k s=s p'((p) . We can refer to
>
the sets wcp x @8 the Skolem operators associated with ¢ . Let
)
q)( ',k ) be the ordinal number of the set m_ - (m ,...,m  } of
ordinals (which is clearly well-ordered by e ) . ILet
° = QU(wcpk ;00 @R) , 1=k sple)) .
J

write R° = (P,0°,h°) where Ran(h®) =Ran(h) , W’ =h on PN Q
and ho(“cp,k) = hc(;(wq>,k) for all @ , k such that ¢ ¢ ¢'(R) and

1 sk sp(p) . Write g

0,k for the atomic ﬁ,o-formula
, .

(Ogdeno(u, )k = % » ¢ ®, 1 2ks20)

Bek R Repwmkr Kk Rxmuia
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Iet (po denote the formula on... me... “€CP,1 IVARRD VNEcp,pV ?,
We shall refer to CPO as the open form of ¢ . Now we shall say
that @ holds in A at f if and only if there exists a finitely
supported R °-structure {\._O = (A,ozo) such that o =q on P U @
and ¢° holds in A° at f . (Note that ¢° falls under the case
taken care of by (6)).

We say that '@ e ®'(R) holds in A ' if ¢ holds in A
at f for all £ ¢ A[X] .

A set I of sentences of @'(R) 1is said to have a model if there
exists a finitely supported R-structure A such that o holds in
A forall oe¢X.

We are now in a position to state and prove the result of this
chapter.

THEOREM 1. A set I of sentences of ¢'(R) has a model if every
finite subset of £ has one.

Proof. The theorem is trivially true if ¥ is finite. We
assume that the theorem is true for any % which can be so well-
ordered as to have an ordinal number less than another ordinal number
N (so that the cardinal number of % is less than N ). Let

N be the ordinal number of ¥ wunder a well-ordering < . We
prove the theorem for I ; by transfinite induction this is enough
to prove the theoremn. Assume then that every finite subset x' of

Y has a model. We have to prove that ¥ has a model. We divide

the proof of this in four parts. First two parts mainly set up the
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notations that we need to construct a model of % .
PART 1. Iet Y be any set. We define W(R;Y) as follows:
Wm(R;Y) =Y, if m=0
U W ,(R;Y) , if m is a limit ordinal

m'em m

Wm_]GR;Y) U{(B)w; we 0, 8 ¢ (Wm_]@%;Y))[h(w)]] ’

if m has a predecessor,

WR;Y) = Uen Wm(R;Y) ,

where n is the least ordinal containing the image of h . In the
above definition of W(R;Y) we have written (s)w for the sequence
(wo...wh...)w , meh(p), W, = s(m) . We shall use similar
abbreviations quite often in the rest of this proof. When R® 1is
restricted W(R;Y) is the set of R-words in Y as defined in
Chapter O,

For every set Y we define H(R;Y) to be the set of sequences
of the form p(s) , pe P, s ¢ Y[h(p)] ; here again we have
abbreviated p(s) for the sequence p(yo,..ym...) , me h(p) , Yy € s (m)

Let & be a binary relation over W(R;Y) and
f : HR;W(R;Y)) —> (0,1} =2 be a function such that:

(1.1) k 1is an equivalence relation and if 8,585 € (WOR;Y))[h(w)] s

we @ and (s,(m),s,(m)) e k for all me h(w) then

((s,)w, (5)0) € & -
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(1.2)  If 8,48, € (WOR;Y))[h(p)] s peP and (s ,(m),s,(m)) ¢
for all m e h(p) then f£(p(s,)) = £(p(s2)) .

Using properties (1.1) and (1.2) of k , £ we define a finitely
supported R-structure W(R;Y,k,f) as follows.

For every u € W(R;Y) write [ulk for the equivalence class-
determined by u wunder k and let WOR;Y)/n be the set of all
such equivalence classes. For every p € P we define p to be
the set of s € (WG%;Y)/K)[h(p)] such that f(p(s1)) =1, where
5, € (W@%;Y))[h(p)] is such that s(m) = [s,(m)]k for all m e h(p) .
For every w we define w to be the function from (W(R;Y)/K)[h(p)]
into W(R;Y)/k which maps s € GNG%;Y)/K)[h(p)] upon [(81)w]n ,
where as before s, € (WGR;Y))[h(p)] is such that s(m) = [s1ﬁn)]n
for all me h(p) . By (1.1) the function @ is unambiguously
defined, i.e., the image of s under w as defined above does got
depend on the choice of s, - We now write W(R;Y,k,f) for the
finitely supported R-structure with W(R;Y)/x as carrier and «a as
make where Ofp) =p , @(w) =w forall peP and we 0. It
is fairly clear that every finitely supported R-structure can be
represented as a W(R;Y,k,f) .
PART 2. For every o e I let Zc denote the 'closed initial segment’
(01; 0, S0, 0eL}, where = is the well-ordering of £ which we
fixed in the beginning‘of the proof. Let Zz denote the set
{c?; g, € Za] , where US is the open form of ¢, . By our

induction hypothesis and the assumption that the ordinal number N
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of (Z,<) 1is a limit ordinal it follows that £, has a model for
every o € & . Hence, by our semantic interpretation (case (7)
on page 95 ), Zg has a model EOROSYU:“O’fU) , say, for every
6eZ . For every ﬂ@RO,Y,n, f) and Y' DY we can find k' , f'
such that W(R;Y',x',f') is isomorphic to W(R;Y,k,f) . Hence we
can find a set Y such that 23 has a model of the form
E(RO;Y,ng,fU) for every o € ©. We arbitrarily fix such a set Y .
Since R and hence R° is also arbitrarily fixed we can omit explicit
mention of R° , ¥ in different notations. Thus we write
W=WR%Y) , W(k,f) =WR;Y,k,£) , H=HR"W .

In what follows U , V will always denote non-empty finite subsets
of H. For every U we define U/P to be the smallest subset
Z of W such that Uc HR®;Z) . More explicitly
U/P = {s(m); s ¢ W[h(p)] ,me h(p), p(s) e U} . We conclude this
part of the proof by defining the following important set. For
every U we define T, to be the set of ordered pairs (KU,fU)
such that Ky =k |(U/P), £; = £_|U for some model W(k ,£ ) of

o
EU where o0 varies over % .

PART 3. In this part we prove the existence of a finitely supported
R°-structure W(k,f) such that {(x|(U/P),f|U) T, for every U .
We do this by using an argument used in P1 ] to prove the embedding

theorem given there. First note that TU is a non-empty finite set

for all U . Finiteness of TU follows from the fact that there are

only finitely many binary relations over the finite set U/P and only
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finitely many functions from the finite set U into the finite set

{0,1}. Suppose that TU is empty so that for every

T = (KU,fU) » Ky S U/P X U/P , fy
o_ € T such that for every model W(k_ ,f ) of =°
T - UT U‘T 0'1.

Iet o Dbe the greatest of

: U —> (0,1} , we can find

it is false
that kg | (u/P) =k, and £, lu=z2,.
the finitely many o_'s in (z,<) . Let E(nd,fo) be a model of

o .
L, end let T = (nc I (U/P),f(I |U) . Then since ¢ 2 o

W(ky,%g) 1is a model of = <37 . This is & contradiction to the
T
choice of o - Hence TU is non-empty. Next, for V2 U we

define tV,U 2 Ty —> Ty to be the function which maps (Kv,fv) e Ty
upon  (xy I(U/P),fV |U) ; that this last pair is in Ty follows

directly from the definition of the sets T The sets T

U U
together with the functions tV,U form an inverse system of non-empty
compact Hausdorff spaces (under the discrete topology on ']:U ).

By a theorem of Steenrod [30] the inverse limit of such a system is
non-empty so that we can find a family {(KU,fU)} , Where U

varies over the set of finite subsets of H , (KU,fU) € TU and if
VDU then (RU,fU) is the image under tV,U of (kysfy) for all
finite subsets U , V of H. We choose one such family

{(n;,f;)} and define n*, £° as follows. 1Iet ueH s

wsW, €W . Find U such that ueU and w ,v, ¢ U/P . We

set f (w) = f;(u) and put (w,,w,) in & if and only if

*

*
(W_l ,w2) € Ky - It is easy to prove that «k , £ are unambiguously

defined. For this let V ©be another finite subset of H such that
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ueV and w,,W, € V/P ; we have to show that f;;(u) = f;(u) and
* , *

(W1:W2> € Ky if and only if (w,,v,) e ky + Let U'=Unv,

U"=UUV sothat ueU' , w,w e¢U"/P. By the choice of

((K;,f;)] we see that f;;, = f; U' = f; U!' and hence

f;(u) =1, () = fy() . Similarly e |U=r; 5 ke |V = Ky
and therefore (w] ’Wz) € K:.; if and only if (w_' ’W2> € %" and
(v, 5wy )€ n; if and only if (w,,w,) € n;., .
proof of the unambiguity of the definition of the pair (k ,£')..

This completes the

If we can show that n*, £ satisfy (1.1) and (1.2) respectively

*
then Wk ,f*) ‘would be clearly one of the Ro-structures we started
to look for in this part. The proof of (1.1) and (1.2) for n*, £*

is easy.

Take for example (1.1) : n* is an equivalence relation over W
because the restriction of n* to every finite subset of W 1is an
equivalence relation. Moreover let s,,s, € W[h(m)] )y We Q)
(s1 (m),s2 (m)) € k forall me h(w) ; we have to show that
((31)w, (sz)m) €k . Take U such that (s1)w, (sa)m, s, (m), Sa(m) €
U/P for all m e h(w) . We can find such a U because the images
of s, , s, are finite. Since « | (u/p) = u; we see that

* *
(s, (m),sa(m)) €Ky . But Ky = K‘.O_l (U/P) for some model E(Ka,fo)

of 22 ,' where o 1is any sentence in £ . Now kg 2T, satisfy (1.1).

o

Hence ((s,)w,(sy)w) € kg Which gives ((87)w,(s5)w) € K; . 1In
* * *

view of k I(U/P) =k, We get ((s_‘)w, (s,)w) € k . This proves

(1.1) The proof of (1.2) is on similar lines.
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PART 4. In this last part of the proof we show that W(k ,f)
(as constructed in Part 3) is a model of z° . By what has gone
before this will obviously complete the proof of the theorem.

Iet o e and let o = VX eeo VX 00eQ 5 where ¢ 1s
a quantifier-free finitary R°-formula. We have to show that ¢ holds
in WK,2%) at g forall ge (WkH)E) . mis is clearly
equivalent to showing that ¢° holds in E(n*,f*) at g for all
e € X[X} and g € (W/n*)[X] , where ¢° denotes (see page 93 )
the formula obtained from ¢ by replacing x € X occurring in ¢
by e(x) everywhere in @ . let e € X[X] , g€ (W/n*)[x] .
By our finitary condition <pe involves only finitely many atomic
formulae, say, p, (s.‘),...,..,.p&("s&), (8y)w, = x.,",..,(xsl’{)(.;K =X ,
81,.,.,8(1 , where 4 , k , g are finite, p; € P, s

for 1sisd, w eq°, st e xi(w;)]

i i
is of the form x, = x

1 2 ?
g' e.w.[X] be such that g(x) = [g'(x)]k for all x e X . Find a

for 1 =ik eand &

x,‘,xzeX for 1 =s1=q. Let

finite U< H such that pi(g'si) eU for 1sist,

(g'si_)wi € U/P and g'(x) € U/P for every x € X , where g's] ,
g's g2 as--usual, denote the compositions of the functions involved;
such a U exists because all our functions have finite images.

By the definitions of &k , £ find a model Wk ,2 ) of z‘; such
that « | (U/P) = n; =k, [(U/P) and £]U=£ = £ |U. Fron
this and the definition of W(k,f) (page 98 ) we see that the function

(X]

g, € '(.W/no) defined by gc(x) = [g' (x)];c(J is such that any
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one of the atomic formulae p, (81),...,;)&(8&), (s]')w_u =x':""’(sl'c)“k =x
§5+++»6, holds in W(k ,£') at g if and only if it holds

in W(k,f ) at g; . Inview of our semantic interpretation this

implies that ° holds in W(&)f ) at g if and only if ¢ holds

in K(nc,fa) at g, + But V_J_(no,fa) ‘satisfies o . Hence

Cpe holds in ]A_I_(nc*,f*) at g . Since e, g, o were arbitrary,

this shows that o¢° holds in E(K.*,f*) for every o e £ . This

completes the proof of the theorem.

With the compact language o'(R) at our disposal to talk about
finitely supported R-structures we can now generalize to these
structures many of the results of Model Theory that are stated for the
restricted structures. In particular all the results on restricted
structures, presented in this thesis, have generalizétions to
finitely supported structures. The details in the unrestricted case

involve at most notational complications and we omit them.
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