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CHAPTER 0

§1 INTRODUCTION.

The c o n c e p ts , rem arks and r e s u l t s  p re s e n te d  in  t h i s  t h e s i s  a re  

in  fo u r  d i s t i n c t  d i r e c t io n s  in  Model Theory and U n iv e rsa l A lg eb ra ,

S ince  ev e ry  c h a p te r  has a  d e t a i l e d  in t ro d u c to ry  p a r t  of i t s  own, 

in  t h i s  I n tro d u c t io n  we s h a l l  on ly  make v e ry  b r i e f  rem arks to  p o in t  

ou t to  th e  d i r e c t io n s  ta k e n  up in  th e  p r e s e n t  work.

In  C h ap te r 1 we d e a l  w ith  th e  fo llo w in g  fun d am en ta l q u e s tio n :

When sh o u ld  two c la s s e s  o f s t r u c tu r e s  be re g a rd e d  as 'e s s e n t i a l ly *  th e  

same? We d e f in e  th e  co n cep t o f i s o to p ic  e q u iv a le n c e  and make i t  

seem p la u s ib le  by an exam ple t h a t  v a r i e t i e s  o f a lg e b ra s  can look  f a i r l y  

s im i la r  u n d er is o to p ic  e q u iv a le n c e .

In  C hap ter 2 we n o te  t h a t  th e  form  o f se n te n c e s  o f an  axiom 

system  Z , th e  c a t e g o r ic a l  p r o p e r t ie s  o f th e  c a te g o ry  K(e ) (o f 

s t r u c tu r e s  s a t i s f y i n g  Z and homomorphisms betw een them ) and o rd e r -  

th e o r e t i c  p r o p e r t ie s  o f c e r t a i n  p a r t i a l l y  o rd e red  s e t s  

L(V(Z) ;Y) can have s im p le  co n n ec tio n s . Som etim es th e s e  co n n ec tio n s  

can be c lo s e  enough to  p ro v id e  c h a r a c te r i z a t io n s  o f  c e r t a i n  ty p e s  of 

e lem en ta ry  c la s s e s  o f s t r u c t u r e s .  Thus we c h a r a c te r i z e  th e  fo llo w in g  

u n iv e r s a l  c la s s e s  o f a lg e b r a s :  n e g a t iv e  a s s e m b lie s ,  n e g a t io n a l ly

d e f in e d  a s s e m b lie s ,  q u a s i - v a r i e t i e s ,  s e m i - v a r i e t i e s .

In  C h ap te r 3 .? which i s  v e ry  c lo s e ly  r e l a t e d  to  §3 of C hapter 2 ,  

we g iv e  some p r o p e r t ie s  o f what w ere c a l l e d  q u a s i - f r e e  c la s s e s  o f



structures by Mal'cev [17]-

In Chapter 4 we continue with the application of some categorical 

concepts to Model Theory. We obtain a simple and general principle 

about categories of structures that admit free structures on all sets 

such that free structures on isomorphic sets are isomorphic.

Chapter 5 is concerned with constructions that obtain elementary 

(universal) classes (of structures) from elementary (universal) 

classes.

In Chapter 6 we define some languages and structures with 

non-finitary relations and operations for which many of the results of 

Model Theory (stated usually for finitary structures) can be generalized.

§2. NOTATION AND TERMINOLOGY

This work is nearly self-sufficient as far as notations are

concerned --- few notations are used without explicitly mentioning

the objects for which they stand. However, quite naturally, this is

not so as far as terms are concerned --- we shall use some standard

concepts from Universal Algebra, Logic, Model Theory, Lattice Theory, 

Category Theory, Set Theory etc. without explicit definitions.

Thus for example we shall not define a monomorphism or a language of the 

first order predicate calculus. For all such basic concepts used 

but not defined here we refer the reader to such standard works as 

[3], [4], [5]* [6], [9], [20] and [24]. We remark that sometimes 

we shall define even some of the most standard and fundamental concepts.
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This can be so, for example, when we use an unconventional notation or term.

We now set up a basic part of the notation and terminology 

employed in the present work. Terms and notations of more special 

nature will be defined as they arise.

By a predicate system we shall understand an ordered triplet 

<P,ß,h) , where P , ft are sets and h is a function from P U (1 

into an infinite ordinal such that h(p) is non-zero for all 

p € P . For every f e P U ft we refer to h(^) as the arity of £ . 

The letter ft will always denote a predicate system. We write 

P(ft) , ft(ft) , h(ft) for the first, second and third member of a 

predicate system ft respectively. A predicate system ft will be 

called restricted if the range of h(ft) is the set of non-negative 

integers; otherwise ft is called unrestricted. Except in the last 

chapter we shall only deal with the restricted predicate systems 

without explicit mention.

We write $(ft) for the set of formulae of the first order 

language with:

P(ft) as the set of relational symbols, 

ft(ft) as the set of operational symbols,

[h(ft)](£) as the arity of £ e P U ft ,

X = {x.|,... ,x ,...) as the set of. variables,

V  (or), f\ (and), ~ (not), — > (implies) ,

<— > (is equivalent to) as the connectives,

V(for all), a (there exists) as the quantifiers,



- 4 -

( ) (parentheses) as an auxiliary symbol , 

and

= as the symbol for equality.

In writing 0(ft) we have not depicted the dependence of o(ft) on X 

and other sets of symbols because we shall assume these fixed.

For every cp e $(ft) we write [h(ft)](cp) for the number of 

free variables in cp .

For every non-negative integer n we write Ô Oft) for the

set of those formulae in $(ft) that involve at most n free

variables. Thus 0 (ft) is the set of all sentences in $(ft) .o
We shall sometimes refer to members of $(ft,) and $ (ft) aso
ft-fornmulae and ft-sentences respectively.

By an ft-structure we shall understand an ordered pair 

A =s (A,oc) , where the carrier (Cf. [21]) A of A is a set 

(possibly empty) and the make a of A is a function from 

P(ft) U ft(ft) into the set of relations and operations over A such

that a(p) is a relation of arity [h(ft)](p) for all p e P and

a(co) is an operation of arity [h(ft)](w) for all w e f t .

The species of an ft-structure is the predicate system ft . An 

ft-structure is called relational or operational according as 

Sl(ft) = f) or p(ft) - j where f> is the null set. Operational 

structures are also called algebras or algebraic structures.

It is well known that algebras can be described as relational 

structures but due to their special nature and importance it is
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advan tageous and much more c o n v en ien t to  in c lu d e  o p e ra t io n a l  symbols 

in  ou r la n g u a g e s . An im p o rtan t example o f an  f t-a lg e b ra  i s  th e  

fo llo w in g . L et P(ft) = f) and l e t  Y he a s e t .  We d e f in e  

W (ft;Y) in d u c t iv e ly  as  fo llo w s :

Wq («;Y) = Y ,

Wn + 1 ^ ; Y  ̂ =  CwT ” wk “ ; wl ' " ' - ’wk  e  wn f e j y ^ “  €  n ,  k  =  [ h ( f t ) ] ( u ) }  u

Um=o Vß;Y) •
L et W(ft;Y) = 'U”_ q . We now d e f in e  W(ft;Y) to  be th e

f t-a lg e b ra  whose c a r r i e r  is  W(ft;Y) and whose make a  i s  d e f in e d  by:

(w ^ ,. . .  ,wk )o'(w) = w ^...w ^w  , k = [h(ft) ] (w) , a) e ft .

The members o f  W(ft;Y) a re  c a l le d  ft-words in  Y ,  and th e  a lg e b ra  

W(ft;Y) i s  c a l le d  th e  ft-word a lg e b ra  on Y . We observe  t h a t  i f  

ŵ  , w  ̂ a r e  ft-w ords in  X th e n  ŵ  = w  ̂ i s  an ft-form ula*

An f t - s t r u c tu r e  A = (A,a)  i s  c a l l e d  t r i v i a l  i f  A i s  a 

s in g le to n  {a} , o:(p) c o n s is t s  o f th e  [h ( f t) ] ( p ) - tu p le

( a , . . . , a )  f o r  a l l  p e P and ( a , . . .  ,a )a (w ) = a f o r  a l l  w e f t »  

A ll  t r i v i a l  f t - s t r u c tu r e s  a re  isom orph ic  so t h a t  we can t a l k  o f ’the* 

t r i v i a l  f t - s t r u c tu r e .

A s t r u c t u r e  A = (A ,a) i s  s a id  to  be  a  s t r u c t u r e  on th e  s e t  A 

Our n o ta t io n  f o r  f t - s t r u c tu r e s  comes from  [21 ] ex ce p t t h a t  in  

[21] th e  r o le  o f h i s  n o t em phasized .
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In our notation we can describe fundamental concepts like 

those of substructures, homomorphisms between structures, congruences 

over algebras etc. We shall not explicitly give this description in 

all cases but only give two examples. By an ft-homomorphism between 

two ^-structures = (Â  ) and A^= (A^,^) is understood a

function f : Â  — > A^ such that

(a-j,...^^) € Oj (p) implies (f (a]),... ,f )) € c^(p) and

{a1,...,ah ^ ) a 1 (w) = a  implies (f (a1),... ,f ) )c^ (w) = f (a)

for all ,... ,a^ ̂  ̂ , a,a^,... ,a^^^€ Â  , p e P(ft)> uj e fi(ft) ,

where we have abbreviated h(ft) as h . Our second example is that

of an (ft*-reduct of an ft-structure. For predicate systems

ft’ , ft we write ft' ^ ft if P(ft1) c P(ft) , ft(ft’) c ft(ft ) and,

h(ft') is the restriction of h(ft) to P(ft') U ft(ft') . Let

ft' ^ ft and let A 1 = (A,a') be an ft'-structure and A = (A,a) be

an ft-structure. We shall say that A' is an ft-reduct of

if a' is the restriction of a to P(ft') U ft(ft') .

Let cp be an ft-fomrula with x . ,... ,x . as the free variables
J 1

and let Z c  $ (ft) . Let A = (A,a) be an ft-structure and let

a.j,...,a € A . Then the phrases ’ A satisfies cp at

(x. ,...,x. ) = (a,,...,a ) ’ and ' A satisfies z ’ or ' A
°n 1 n

is a model of Z ' or ’ Z holds in A ' have well-understood 

meanings that we shall not describe here (see, however, Chapter 6).

Two ft-structures are called elementarily equivalent if every 

ft -sentence that holds in one of them also holds in the other.
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We s h a l l  d en o te  by A th e  c la s s  o f a l l  o rd e red  p a i r s  A such

th a t  A i s  an  f t - s t r u c tu r e  f o r  some p re d ic a te  system  ft . The

c la s s  o f a l l  f t - s t r u c tu r e s  f o r  a g iv e n  ft w i l l  be deno ted  by V(ft) .

F or Z c  $ (ft) we w r i te  V(e ) f o r  th e  c la s s  of a l l  models o f £ .

For V c: V(ft) we w r ite  E(V) f o r  th e  s e t  o f a l l  a e 0 (ft) such  = — = —  o

th a t  a  h o ld s  in  ev e ry  s t r u c t u r e  o f V . A s u b c la s s  V o f V(ft)

i s  s a id  to  be d e f in a b le  by £ c  G> (ft) i f  V i s  V(£) . C la sse s

o f th e  form  V(Z) w i l l  be c a l le d  elem e n ta ry .  An e lem en ta ry  c la s s

V(Z) i s  c a l le d  u n iv e r s a l  i f  £ i s  e q u iv a le n t  to  a  s e t  o f u n iv e r s a l

s e n te n c e s ,  i . e . ,  s e n te n c e s  o f th e  form  Vx^, . . .  ,x  (c p )  , where cp

is  f r e e  of q u a n t i f i e r s  and in v o lv e s  no v a r ia b le s  o th e r  th a n

We s h a l l  d en o te  by S th e  c a te g o ry  o f a l l  fu n c tio n s  and by

S th e  c la s s  o f a l l  s e t s .  Note t h a t  S i s  n o t c o n ta in e d  in  S .=o =o =

However i f  we ag ree  to  make no d i s t i n c t i o n  betw een a s e t  and th e  

c o rre sp o n d in g  i d e n t i t y  fu n c t io n  we can say  t h a t  S c  S and t h a t
=rO — =

g is  th e  c a te g o ry  o f s e t s  and fu n c t io n s .  In  t h i s  work we ag ree  

to  do so .

By a c a te g o ry  o f s t r u c tu r e s  we s h a l l  u n d e rs ta n d  a c a teg o ry
\

whose o b je c ts  a r e  s t r u c t u r e s . '  The c a te g o ry  o f s t r u c tu r e s  

c o n s is t in g  o f a l l  f t - s t r u c tu r e s  and ft-homomorphisms w i l l  be deno ted  

by K(ft) . The c a te g o ry  K(ft) i s  com plete  and cocom plete [2 0 ],

The t r i v i a l  f t - s t r u c tu r e  i s  th e  te rm in a l  o r n u l l  o b je c t  [20] o f K(ft) 

w h ile  th e  empty f t - s t r u c tu r e  ( i . e . ,  th e  f t - s t r u c tu r e  on th e  empty s e t )  

i s  th e  c o te rm in a l o r  c o n u l l  o b je c t .
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Morphisms in most categories of structures usually considered 

are functions but other types of morphisms could be useful for the 

study of structures. We give an example. By a functopism 

from a set Y-j into another set Y^ we shall understand a 

countable sequence f+ = (f^f^,... ,f ,...) of functions from Ŷ  

into Y2 . The product of two functopisms f+ : Ŷ  — > Y^ , 

g+ : Y2 — > Y^ is defined to be the functopism 

g f = (g^f^, . . . • • . )  ) where we have taken 

f = (f-j } •.. jf̂ .» •••')> S = (§■] > • • • * * * ) * Denote by S

the category of all functopisms. By an fö-homotopism from an 

fö-structure (A.j ,0̂  ) into another ^-structure we shall

understand a functopism f+ = (f^,...,f ,...) from into A^

such that for all â  ,... ,a ,... in Â  if (a^,...,a^) e cXj (p) 

then (a1),...,fk (ak)) e (p) for p e P , k = [h(ft)](p)

and if <â  ,... ̂a^)a-| (w) — ait+-) then

<f1 ( a - j f R (ak) >0:., (w) = fk+1 (ak+1) for <*>€ fi, k = [h(ft) ] (w) .

The concept of fö-homotopisms is a natural generalization of that of

ift-homomorphisms since an ift-homomorphism f can be regarded as the

ift-homotopism (f,...,f,...) . Write K+ (ift) for the category of all

^-structures and ift-homotopisms.

For a subclass V of V(ft) we define K(V) to be the

category of all structures in V and all homomorphisms between them.=

If V = V(Z) for some Z c: $ ($,) we write K(z) for K(V) . Define =  =  —  o =  =  =

similarly K+ (V) to be the category of structures of V and all
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homotopisms between them. Write K+ (Z) for K+ (V(z)) .

Let K be a category of structures whose morphisms are functions. 

We define the forgetful functor F(K;-) : K — > S of K to be 

the functor which takes structures to their carriers and morphisms to 

the corresponding functions. For a category of structures K 

whose morphisms are functopisms we define F+(K;-) : K — > S+ 

to be the functor which takes structures to their carriers and 

morphisms to the corresponding functopisms. The functor F+(K;-) 

will still be called the forgetful functor of K . Write F(ift;-) 

and F+(ift;-) for F(Kj-) and F+ (K+;-) respectively when 

K = K(ß), g+ = K+(R) .

If P(fö) = 0  we can define a functor W(fö;-) : S — > K(ift) 

in the following natural way: For a set Y define W(fö;Y) to be

the ift-word algebra on Y (see page 5 ) and for a function 

f : Y-j — > Yg define W(ift;f) to be the ift-homomorphism from 

W(ift;Y.|) into W(fö;Y2) whose restriction to Ŷ  is f .

The functors F((ft;-) and W(ift;-) are related in an important 

way which is described by saying that F(<&;-) and W(ift;-) form a 

pair of adjoint functors. See, for example, [20] for details on 

adjoint functors. Adjoint functors are useful in describing and 

studying ’freeness’ (see Chapter 4).

We conclude this chapter by making some general remarks on the

notation used in this thesis.



Let f be a function and let y be in Dom(f) (i.e., domain of 

f) . We shall usually write f(y) for the image of y under f . 

However at a few places we shall find it much more convenient to 

write yf for f(y) . For example we have already written 

(page 5 ) <w1,... ,wk)a(w) for [a(w) ] (fy ,... ,wfc)) . At all

such places our meaning will be clear from the context. The composition 

of two functions f : , g : will always be

denoted by gf . We write Ran(f) for the range of f . If 

Y 1 c= Dom(f) we write f J Y * for the restriction of f to Y 1 .

Similar notation holds for relations.

We shall quite closely follow the following convention about the 

use of different letters for denoting different types of mathematical 

objects. In adopting this convention we have kept in mind the 

suggestions put forward in [1, p. xiv]. Our convention is that we 

shall usually use:

A , B , C , X , Y , Z  etc. for sets and corresponding small 

letters for their elements,

a, T etc. and f , g , h etc. for functions, 

k , t , m , n etc. for ordinals,

cp , \|/ , o etc. for sets of formulae of a language,

A , B , M , I etc. for structures 

and

A , I , C , K , U , V etc. for classes and categories 

(of structures).



n

If in some context we talk about structures A , M , I etc. 

then in the same context we shall use, without explicit reference,

A , M , I etc. for the corresponding carriers and a , \i , t etc. 

for the corresponding makes.
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CHAPTER 1 .

SOME EQUIVALENCES BETWEEN CLASSES OF STRUCTURES

A lg e b ra is ts  te n d  to  make no r e a l  d i s t i n c t i o n  betw een th e  

c la s s e s  o f Boolean a lg e b ra s  and Boolean r in g s  a lth o u g h  th e  

a lg e b r a ic  s t r u c tu r e s  in  th e  two c la s s e s  ap p ea r so  d i f f e r e n t .

T his i s  because  a lm o st a l l  in fo rm a tio n  abou t Boolean r in g s  can be 

t r a n s l a t e d ,  in  a  s im p le  way, in to  t h a t  about Boolean a lg e b ra s  and 

v ic e  v e r s a .  The r e l a t i o n  betw een c la s s e s  o f Boolean a lg e b ra s  

and Boolean r in g s ,  w hich we s h a l l  make p r e c is e  u n d er th e  te rm  

nom ial e q u iv a le n c e , i s  p a r t i c u l a r l y  s t r o n g .  C la sses  of s t r u c tu r e s  

may be r e l a t e d  in  o th e r  ways t h a t  cou ld  en ab le  us to  t r a n s l a t e  a 

c o n s id e ra b le  p a r t  o f  in fo rm a tio n  ab o u t one c la s s  in to  t h a t  abo u t 

th e  o th e r .  I t  i s  im p o rtan t to  s tu d y  such  ways so t h a t  we may no t 

have to  do s e p a ra te  s tu d ie s  o f th e  same o r n e a r ly  th e  same c la s s  

in  d i f f e r e n t  d i s g u is e s .  However n o t many e q u iv a le n c e s  betw een 

c la s s e s  of s t r u c tu r e s  have been  s tu d ie d .  Perhaps th e  o n ly  two 

e q u iv a le n c e s  ab o u t which o b se rv a tio n s  have been  made a re  th e  r a t i o n a l  

and s t r u c t u r a l  e q u iv a le n c e s  t h a t  we s h a l l  s h o r t ly  d e f in e  p r e c i s e ly .  

Roughly sp e a k in g , two c la s s e s  o f s t r u c tu r e s  a r e  r a t i o n a l l y  e q u iv a le n t  

i f  f i r s t  o rd e r  s ta te m e n ts  ab o u t one c la s s  can be t r a n s l a t e d  in  a 

c e r t a in  s im p le  manner in to  f i r s t  o rd e r  s ta te m e n ts  abo u t th e  o th e r .

On th e  o th e r  hand s t r u c t u r a l  e q u iv a le n c e  does n o t e x p l i c i t l y  g iv e  

a way o f t r a n s l a t i n g  in fo rm a tio n  abo u t one c la s s  in to  t h a t



about the other. Instead, it arises from the realization that 

we can talk a great deal about a class of structures in terms 
of the homomorphisms between the structures, so that if a 

transformation of structures leaves homomorphisms unchanged then 

it must also leave unchanged something very essential about the 

structures. In the present chapter we also define homotopic 

equivalence using homotopisms in the way in which structural equivalence 
uses homomorphisms. A special case of homotopic equivalence is the 

isotopic equivalence under which every structure in any one of the 

equivalent classes is an isotope of some structure in any other.
We give two varities of groupoids that are isotopically equivalent.

One of these two varieties is the variety of abelian groups 
(regarded as groupoids with substruction as the binary operation).

An easy result of Mal’cev (see Theorem 1 below) shows that under 
certain conditions any two structurally equivalent classes are 
rationally equivalent so that we can find an explicit way of 
translating first order statements about one class into those about 
the other. In the case of the two isotopically equivalent varieties 
given here we can find a simple way of translating second order 

statements about one variety into those about the other. In general 

we do not know of any conditions under which for any two homotopically 

or isotopically equivalent classes we can find a way of translating 

second order statements holding for structures of one class into 

those holding for the structures of the other.



We now g iv e  p r e c is e  d e f i n i t i o n s . L et ft = (P ,f t ,h )  . F or

a l l  A 6  V(ft) , cp € 4>(ft) we w r i te  R(A;cp) f o r  th e  h(cp)-ary  

r e l a t i o n  ov er A c o n s is t in g  of a l l  h (cp )-tu p le s

<a l , * * * ' a h(cp)>  6 A
h(cp) such  th a t  cp h o ld s  in  A a t

(x .  . . . .  , x .  ) = ( a . . . . . . a ,  / \ )  , where x .  . .  . .  ,x  . a re  th e
J l  Jh(cp)  1 h ( c p ) ' 3 , ’ j h ( q ) ,

v a r ia b le s  f r e e l y  o c c u rr in g  in  cp . L et c  V(ft^) , c= V(ftg) , . 

^  = (P-j ,h^ ) , ftp = . We s h a l l  say  t h a t  a re

r a t i o n a l l y  e q u iv a le n t  i f  th e re  e x i s t  fu n c tio n s  f^ j( P U ftj __> ^(ft^)

f 2 : P2 U Qg — > 0 (ft1 ) and F : such  t h a t :

( i ) F i s  o n e -to -o n e  and on to  and c a r r i e r  (A) = c a r r i e r  (F(A))

Lor a l l  A e V. .— =1

(Ü ) F or a l l  p e P . , j  = 1 ,2 , th e  fo rm ula f  . (p) 
J 0

in v o lv es

x  ̂ , . . .  ,x^  ^  as  f r e e  v a r ia b le s  and f o r  a l l  w e th e
j

formula f . (w) involves x̂  , . . . , x^  (co)+l aS r̂ee vari ahles
j

( i i i )  L et Aj = <A,ctj > e V] , A  ̂ = F ( ^  ) = <A,c^) € and 

l e t  ^  € P-| U 0, , ^2 € P2 U ^  . Then 

(C,) = RC^jf, (?,)) , <^(^) = R (A ,;f2 (52 )) .

We s h a l l  c a l l  n o m ia lly  e q u iv a le n t  i f  in  a d d i t io n  to

( i )  - ( i i i )  th e  fo llo w in g  a l s o  h o ld s :

( iv ) For a l l  w € 0 j  = 1 ,2  , th e  fo rm ula  f  . (u) i s  o f  th e
<]

form  w = x, / \ . , where w i s  a word in
y  •

X1 '  • • • ' V  (u)  •

I f  , Vg a re  e lem en ta ry  c l a s s e s ,  d e f in e d  by E-| c  $ ( f tj) ,
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Eg e $>o(iftg) respectively, then the rational equivalence between 
Vi , Vg can be defined as a ’logical' relation between 

Zi , Eg in the following way. We can suppose, without loss of 
generality, that (P̂  U Oj) fl (Pg U f̂ ) = 0 . Write 

U ßg = (Pi U Pg, 0| U &>, hi U hg) , where

hl U h2 I P1 U = h l 9 h l U hg I Pg U ^  = hg . For £ € P U ßj ,

j = 1 ,2 , we write eu (£) for the atomic ift.-formulaot. J
J

^(x] ,...,xh ^)) or Xi«..^ = \  (^)+1 according as
J  V  J

£ € Pj or £ € fh . Now the two elementary classes , Vg are
rationally equivalent if and only if there exist functions 

fl : Pi U &i — > 0(i^i) , fg : Pg U — > $(ßg) satisfying (ii) 
such that

Eg U (vxi,...,xk (^ (0 <— > fi (0);  ̂e P1 U flj, k = h, (^))} 
and

Ei U (vxi ,...,xk (Ê  (£) <— > fg (£)); £ e Pg U k = hg(^(^)) }

are equivalent as sets of U ^g-sentences.
The study of rational equivalence is cicsely related to what 

is called [1, pp. 170-176] the theory of definition.
A large part of the information about many important classes 

of structures can be presented as categorical properties of the 
corresponding category of homomorphisms. It is therefore natural 
to use these categories to define a concept of equivalence between 
classes of structures. In this direction the first concept that
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will strike ta anyone is that of loose homomorphic equivalence.

We define two classes to he loosely homomorphically

equivalent if the categories K(V^) , K(Vg) are equivalent

[20, p. 32]. However, the loose homomorphic equivalence does not

seem to connect the classes closely enough. A more appropriate

concept is that of structural equivalence defined by Mal’cev [17] as

follows. Two classes V, , V_ are called structurally equivalent=1 ~ d

if there is an isomorphism F : K(V^ ) — > K(Y^) such that 

f , F(f) are the same functions for all f e K(Vn) . We can 

slightly relax the condition of this definition of structural 

equivalence and obtain homomorphic equivalence. We define two 

classes V-j , Yg to be homomorphically equivalent if there exists 

an equivalence [20, p. 32] F : K(V, ) — > K(V0) and one-to-one and 

onto functions t)(A) : carrier (A) — ■> carrier (F(a )) , A € ,

such that for all f : Â  — > A^ in K(V) we have r)(Â )f = F(f)Tj(A^) 

There is another way of defining homomorphic equivalence. Let us 

define two functors F̂  : Â  — > B-j ,

if there exist equivalences : Â  — > A^ , ^  such

that F^H^ , H^F^ are naturally equivalent [20, p. 59]* Now 

, Vg are homomorphically equivalent if and only if the 

forgetful functors F(K(V.j);-) : K(V^) — > §. and 

F(K(Vg)j-) : K(^) — ■> S. are similar.

The following result is a slight modification of Theorem 6 

of [1 7 ] and is proved similarly.

to be similar
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THEOREM J_. Let V.| , be two abstract classes of algebras of

species |5̂ , ^  respectively. Let , Vg admit free algebras 

on all sets. Then , Vg are nomially equivalent if and only 

if , Vg are homomorphically equivalent.

Theorem 1 shows that under reasonably simple conditions 

homomorphic equivalence provides a very close connection between 

classes of algebras.

No simple conditions are known under which loose homomorphic 

equivalence implies rational equivalence. Nor do we know of two 

loosely homomorphically equivalent varieties that are not 

homomorphically equivalent.

The way we have used homomorphisms to define loose homomorphic 

equivalence and homomorphic equivalence can also be applied to other 

types of morphisms to get different concepts of equivalences. Thus 

if we consider homotopisms we arrive at loose homotopic equivalence 

and homotopic equivalence. The classes of loops and quasi-groups 

are homotopically equivalent - in fact they are isotopically 

equivalent in the sense that eveiy structure in one class is an 

isotope (isomorphic in the category of homotopismg) to a structure 

in the other.

For homotopic equivalence we do not know of anything like

Theorem 1 which can tell us how similar homotopically equivalent 

classes can be. We only know of an example that shows that varieties 

of algebras can be fairly closely connected by isotopic equivalence.
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We now p re s e n t  t h i s  exam ple.

Due to  th e  s p e c i a l  n a tu re  of th e  r e s u l t  t h a t  fa llo w s  i t  

w i l l  be much more c o n v en ien t to  u se  some s im p l i f ie d  and u s u a l  

n o ta t io n s  d i f f e r e n t  from  th o se  in tro d u c e d  in  C hap ter 0. Thus 

we s h a l l  w r i te  a g roupo id  as (A ,w ), where w i s  a b in a ry  o p e ra t io n  

over A . In  w r i t in g  u n iv e r s a l  se n te n c e s  we s h a l l  o f te n  om it 

th e  u n iv e r s a l  q u a n t i f i e r .  In  a d d i t io n  to  x ^ x ^ , . . .  we s h a l l  

a l s o  u se  x , y , z , t , x ^  , , t^ e t c .  as  v a r i a b le s .

THEOREM 2 . The v a r i e t i e s  of g roupo ids d e f in e d  by th e  laws

( i )  y = xtcjxzojyzuojtcüü)

and

( I I )  y = xxz(d,yza),GO, u>,

a re  i s o to p i c a l ly  e q u iv a le n t  b u t no t hom om orphically  e q u iv a le n t .

The p ro o f  o f th e  theorem  i s  d iv id e d  in to  th e  fo llo w in g  fo u r  

lemmas.

LEMMA 1 . A g roupo id  s a t i s f y i n g  ( i )  i s  a q u a s i-g ro u p .

PROOF. In  ( I )  r e p la c e  t  by y^zw , y  by y and x by xzoj . 

We g e t th e  law

y-j = xzojy^zaxjjxzojzcjy  ̂zcoajŷ zcju) .

I f  we w r i te  w f o r  th e  word xzwzwy^ zcocoŷ zcow and u f o r  th e  word 

xww th e n  t h i s  l a s t  law  to g e th e r  w ith  ( i )  g iv e s
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y2 = xwojx z ojy2 z oxjwu) = xwĉ ŷ  w = uy-j w .

Hence (i) implies that Vy-| ,y2 at (tŷ  aj = ŷ ) . This can he 

expressed by saying that the equation ty^w = y2 has a solution 

in t in every groupoid satisfying (i) for all ŷ  , y2 . The 

equation y-jtw = y2 is also solvable. This can be seen as follows. 

We have just proved that we can find x , t̂  such that 

xt.j w = y.| . Then by (i)

y]xzay2zaxjjt1 cow =  y2

and if we put t = xzâ ztowt-j oxo we have y^tw = y2 .

We now prove the ’cancellation laws’. Let t̂  , y , t2 

be such that t̂ yo) = t2yoo . Then, by (i) ,

t̂  = xtcjxyot ̂ yojojtoxj = xtcaxycjt2yuxotwoj = t2

and the right cancellation law holds. Next let t̂  , y , t2 be

such that yt-jU = yt2w . Find x , z , ŷ  , y2 such that y = xzgj , 

t] = y-jZw , t2 = y2zw . Then

y  ̂ =  xtcjxzuy^ zuxjjtodu) = xt^y-t^ ojtww

= x ta y t2 wtaxjj = x t(^ z a y2zuxut(jjoj =  y2

so that t̂  = t2 and the left cancellation law also holds. This 

completes the proof of the lemma.
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LEMMA 2 . The law ( i )  i s  e q u iv a le n t  to  th e  fo llo w in g  s ta te m e n t .  

There e x i s t s  e such  th a t :

(2 .1 )  xeweoo = x

(2 .2 )  xzojyzo) oj = xycoeo)

(2 .3 ) xeoixywu) — y

PROOF. ( i )  im p lie s  (2 .1 )  - ( 2 ,3 )

We h av e , by ( i )

X =  XtOJXZWXZtÖWtUJW .

By Lemma 1 xzw can be any e lem ent t^ f o r  s u i t a b le  z t Hence

(2 .4 )  x = xtut-j t^  (dtoxi) , f o r  a l l  x , t^  , t  .

This g iv e s

xx cj = xxGjtcaxxüjtüXü

and i f  t  i s  such t h a t  xxutü) = y th e n

xxo) = yyw = e , some f ix e d  e lem en t.

We can now w r i te  (2 .4 )  in  th e  form 

x = xtcjetoxo .

In  th e  l a s t  e q u a tio n  i f  t  i s  ta k e n  e q u a l to  e we a r r iv e  a t  ( 2 . 1 ) .
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To prove (2 .2 ) we n o te  t h a t

y = xtwxz^ cjyz^ wcjtojo)

=  XtlxiKZ^üjyZ^üXütüJüJ  .

Hence by Lemma 1

xz^ cjyz  ̂ujoj = xz^ojyz^ojoj

so t h a t  xzcjyzGjo) =  xy.ojyyuw =  xyw eu . This p roves (2 .2 ) 

By ( I )  , (2 .1 )  and (2 .2 )

y = xecjxywyyuxjoea)

= xeojxyuKJ .

T his p roves ( 2 .3 ) .

Now we show t h a t  (2 .1 )  -  (2 .3 ) im ply ( I )  « 

We have

XtüKZWyZWCdtUJG)

= xtuKyLüewtcjü) 

= xewxyüjeüjeuu) 

= xeojxyaxo

=  y

, by (2 .2 )

, by (2 .2 )

, by (2 .1 )

, by (2 .3 )  •

Hence ( i )  h o ld s  and th e  lemma i s  p roved .
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LEMMA 3 » A g ro u p o id  (A ,go) s a t i s f i e s  ( i )  i f  and o n ly  i f  

(A ,go' )  s a t i s f i e s  ( i l )  and

(3 .1 )  xyu  = xyGo'y , f o r  some y and a l l  x ,y  e A

where xyoj' = xywxxGJO) f o r  a l l  x , y £ A and y i s  an in v o lu t io n  o f 

(A , go' )  . (We r e c a l l  t h a t  y i s  c a l le d  an in v o lu t io n  i f  y i s

an autom orphism  and y2 i s  th e  i d e n t i t y  map.)

F u r th e r  a g roupo id  (A ,go' )  s a t i s f i e s  ( i l )  i f  and on ly  i f  

(A,co) s a t i s f i e s  ( i )  and

(3*2) xyu)’ = xycjxxojoj , f o r  a l l  x ,y  e A ,

where go i s  d e f in e d  by (3 .1 )  f o r  some in v o lu t io n  y o f (A ,go' )  . 

PROOF. P a r t  1 . Let (A ,go' )  s a t i s f y  ( i l )  and (A ,go) be d e f in e d  

by ( 3 .1 ) .  Then (A ,go) s a t i s f i e s  ( i )  . F o r,

Xt GJXZ OJyZ GOGOtGJGO

=  x tw 'y x zw 'y y zw 'y w 'y tc j’yw 'y , "by (3 .1 )

= xtGo'xzGo'yzGo'Go'tGo'Go' , s in c e  y i s  an  i n v o lu t io n

= y •

In  t h i s  l a s t  s te p  we have used  th e  r e s u l t  [10] t h a t  ( i l )  c h a r a c te r iz e s  

a b e l ia n  groups in  term s o f th e  o p e ra t io n  o f s u b t r a c t io n .

P a r t  2 .  Let (A ,go) s a t i s f y  ( i )  and go' be d e f in e d  by (3*2). 

Then (A ,go' )  s a t i s f i e s  ( i l )  . Forf by th e  p ro o f o f Lemma 2 

xxgo = e f o r  some e and a l l  x in  A and hence
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xxzw 'yzoj’w'a)'

xxzcjjeoyzGjecjweoxoeoj
y Ly (3 .2 )

xxz uy z oxje (je ojcje oj y Ly (2 .2 )

xxzcjyzoxjjeo) y Ly (2 .1 )

xecxjxzojyzaxjeoj y Ly (2 .2 )

y y Ly (I)

P a r t  3 . Let <A,w) s a t i s f y  ( i )  and l e t  (A ,u)') be d e f in e d  

by ( 3 .2 ) .  We show t h a t  (3 .1 )  h o ld s  f o r  some in v o lu t io n  y o f (A,u>') .

D efine  y by xy = xew where e i s  th e  c o n s ta n t  v a lu e  o f xxco in  

(A,U)). Then y i s  an in v o lu t io n  of <A,cj’ ) . For

xyw’y = xywewew

= xeojyewoiew , by (2 .2 )

= xyyycjeoj 

= xyyycj'

and

xyy = xewew = x , by (2.1 ) .

The in v o lu t io n  y s a t i s f i e s  (3 *1 ); xyw’y = xyajecoew = xyw, by (2 .1 ) .

P a r t  4 . Let (A_,u)’ ) s a t i s f y  ( i l )  and (A.,io) be d e f in e d  by- (3*1 )•  

We show t h a t  gj , w' a r e  r e l a t e d  by ( 3 .2 ) .  T his i s  e a sy :
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xyüKxu) =  xyix)' y x x u  ’ y~Gd * y  

= xyco’xxw’u)'

= xyu)T .

Here we have used the fact that go' is an operation of subtraction 

in an abelian group and the assumption that y is an involution of 

(A,t o ' )  .

The proof of the lemma is complete.
We observe that Part 3 of the proof of Lemma 3 shows that if 

(A,w) satisfies (i) and w' is defined by 3-2 then (A,go') is an 

isotope of (A,w). In view of this remark Lemma 3 shows that the 

varieties defined by (i) and (II) are isotopically equivalent.

It is clear from Lemma 3 that every second order statement holding 

for groupoids satisfying (i) can be translated into a second order 

statement holding for groupoids satisfying (il) and vice versa.

LEMMA 4. The varieties defined by (i) and (il) are not 

homomorphically equivalent.

PROOF. Suppose that the lemma is not true. By Theorem 1 the 

varieties defined by (i) and (il) are nomially equivalent. This 

means that there exists an Gj-word w^t(x,y) and an u'-word 

w ,(x >y) such that (i) together with xyu' <— > w  , (x,y) is 

equivalent to (il) together with xyGd <— > w (x,y) . Using theGd
familiar notation from group theory we write w (x,y) as
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k^x + k^y where k^ , k^ a re  in te g e r s .  S u b s t i tu t in g  k^x + k^y 

f o r  xycj in  ( i )  we f in d  k^k^ = + 1 . This shows t h a t  ( i )  

im p lie s  e i t h e r  ( i l )  o r  th e  law :

( I I  ) y  = zywzxoxjjxco .

However th e r e  e x i s t  g ro u p o id s  t h a t  s a t i s f y  ( i )  b u t n o t ( i l )  o r  ( I I* )  . 

An example is  th e  g ro u p o id  c o n s is t in g  of fo u r  e lem en ts  0 , 1  , 2 , 5  

in  w hich th e  m u l t ip l i c a t io n  i s  d e f in e d  by th e  t a b l e :

0 1 2 3

0 0 3 2 1

1 5 0 2 1

2 2 1 0 3

5 1 2 5 0

T his c o n t r a d ic t io n  p roves th e  lemma and Theorem 2 .

I n c id e n ta l ly  th e  law  ( i )  has th e  i n t e r e s t i n g  p ro p e r ty  t h a t  i f  

(A,w) s a t i s f i e s  ( i )  th e n  so  does th e  d u a l g roupo id  (A,w ) where 

xyw = yxw f o r  a l l  x ,y  e A . The law ( i l )  does n o t have t h i s

p r o p e r ty .
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CHAPTER 2

CHARACTERIZATIONS OF SOME CLASSES OF ALGEBRAS

The nature of very many results in Algebra and Model Theory

is somewhat like this --- classes V(z) of structures are defined

in terms of sets Z of sentences of languages of some calculus (often 

first order predicate calculus) and then something syntactical, 

grammatical or logical about the sets E is connected with 'something 

structural' about the classes V(z) . An important observation made 

in this century is that this 'something structural' about V(z) 

is almost always something categorical about some category associated 

with V(E) . We illustrate our remark about the nature of model- 

theoretic results by a couple of examples.

We can immediately mention Theorem 1 of Chapter 1 which relates 

nomial equivalence between E-j , Z^ with the categorical concept 

of homomorphic equivalence between V(Z-j ) > V ^ )  . Before giving

our second example we call V c V(ift) hereditary if V contains all 

substructures of all of its structures. Now a result due to 

A. Robinson{2^] states that V(z) is hereditary if and only if Z is 

equivalent to a set of universal sentences. Note that heredity 

is a categorical property of V(z) and Robinson's result relates it 

to the form of sentences in Z . In this connection one may profit 

by thinking of the following analogy. Compare E with a set of 

equations and V(z) with the curve or surface defined by this set
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in a geometrical space. Many results in Geometry (after Descartes) 

relate analytical forms of equations with purely synthetic properties 

of the configurations defined by them. A simple example is this: 

a surface in three dimensional space is defined by an equation of the 

form (x - a)2 + (y - b )2 + (z - c)2 = d2 if and only if there is 

a point (a,b,c) in the space that is at a constant distant d from 

every point of the surface and every point at a distance d from 

(a,b,c) is on the surface. Note the anology between this result 

and Robinson's result mentioned above and some of the theorems that 

follow.

What is the significance of the geometrical and analogous 

model theoretic results we have exemplified above? Answer: They

connect two widely different ways of talking about the same objects 

and hence enable us to use almost twice as much of our intuition 

as we would have used if there were only one way at our disposal. 

Geometry has exploited to a large extent Descartes 1 idea of connecting 

equations with configurations of points. Unfortunately the analogous 

study of the connections between syntactical forms of sentences and 

the categorical properties of the classes of structures defined by 

them has not been intensive enough to result in some deep general 

principles about structures. I feel that a more systematic and 

conscious study in this direction may prove useful in Mathematics.

In this chapter we consider sets E of first order sentences of 

some simple forms and give some categorical properties of V(e ) •
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The categorical properties of V(E) considered are categorical 

statements about the corresponding category of homomorphisms.

In this chapter we fix arbitrarily a predicate system

.

§1 . A GENERAL RESULT ON UNIVERSAL CLASSES OF ALGEBRAS.

The following result gives some of the most important properties 

of universal classes of algebras.

THEOREM 1 . Let Z c be a set of universal sentences.

Then the category K(Z) of all homomorphisms between ft-structures in 

V(E) has the following properties:

(1.1) For every monomorphism — > A^ in K(fö) if e K(z)

then e K(Z) .

(l .2) Inverse limits in K(£) of inverse systems [2Cl in K(Z)=  =

are in K(E) .

(1 .2) Direct limits in K(ift) of direct systems [20] in K(z) are 

in K(Z) .

PROOF. The statement (1.1) is obvious.

To prove (1.2) let (f^ * A^ — >A^.}_j^ be an inverse system 

in K(Z) , where i,j e I and I is downward directed by the partial 

ordering , that is, for all i, ,i0 e I there exists i, € I suchI d p

that ix ^ i, ,i0 • The inverse limit A of fA.— >A.l. . is the

subalgebra of the cartesian product CIL  ̂A^ with carrier
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A = {g j g € Cni £ l  A. , f ^ g C i )  = g(-j) f o r  i  g j}  . We v e r i f y  

t h a t  A s a t i s f i e s  Z . C le a r ly  Z i s  e q u iv a le n t  to  a  s e t  of 

se n te n c e s  of th e  form

(1 ) v  v - - - p q [ (vi ^ V1 v - - - v  = S  v - v wm = wp ]

where v , , . . .  ,v , v ' , . . . ,v ’ , w, , . . . , w , w*, . . . w1 * * * * a re  ift-words p 1 p 1 '  m 1 m

in  x . , . . .  ,x  . Assume t h a t  (1) h o ld s  in  A. f o r  a l l  i  € I  •I n —l

Let he a r b i t r a r y  e lem en ts  o f A . We have to  show t h a t

th e  fo rm ula

0  ')  (v1 ± v f v  . . .  v  v | )  V (w1 = Wj v  . . .  v  wm = w^)

h o ld s  in  A a t  ( x^ , . . . , x^)  = (g^ , . . . , g^ )  . Suppose o th e rw ise .

Then ( ! ’) f a i l s  to  h o ld  in  A a t  (x.j , . . .  , x  ) = ( g ^ . . . , g  ) i f  and 

on ly  i f  v p (g] ( i ) , . . . , g n ( i ) )  = v ^ ( g ] ( i ) , . . . , g n ( i ) ) f o r  a l l  p , i  ,

1 e I  , 1 ^ P ^ I  and w^(6 l ( i ^ ) , . . . , gn ( i ^ ) ) £  w^(g1 ( i ^ ) , . . . gn ( i q ) )

f o r  some i  € I  and a l l  q , 1 ^ q £ m . S ince  I  i s  downwardq 7

d i r e c te d  we can f in d  j  e I  such  t h a t  j  ^ i , . . . . . i  . Then

fo r  such a  j  we have t h a t  v (g1 (j ) , . . . , g Q( j ) ) = v ^ ( g ] ( j ) , . . . , g n ( j ) )

f o r  a l l  p ,  1 ^ P ^ l  , and w^(g1 ( j ) , . . .  , gn ( j ) ) w^(g ( j ) , . . .  , g ß ( j ) )

f o r  a l l  q , 1 ^ q ^ m ; t h i s  i s  because  f  . i s  a homomorphism
1q J

such th a t  f  .g, (J) = g, ( i  ) f o r  a l l  k , q , 1 £  k £ n ,
1 J K. ^ 1

1 ^ q ^ m . Hence A. does n o t s a t i s f y  ( i )  a t
J

( x ^ , . . . , x  ) = (g-j ( j )  > • • . jg  ( j ) ) . T his c o n t r a d ic t s  our assu m p tio n

t h a t  (1) h o ld s  in  /L f o r  a l l  i  e I  . The p ro o f o f (1.2)  i s

th e r e f o r e  com ple te .
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The p ro o f of (l .2 ) % which i s  a c a t e g o r ic a l  d u a l of (1 .2 ) ,

i s  n o t e n t i r e l y  'd u a l '  to  th e  p ro o f of ( 1 . 2 ) .  L et I  he a s e t  

upward d i r e c te d  hy th e  p a r t i a l  o rd e r in g  ^ . L et

{ f . .  : A. — > A.}.  . .  . . he a d i r e c t  system  in  K(z) . We s h a l lj i  —l  —l  j e l  =

assume t h a t  Q does n o t c o n ta in  o -a ry  o p e r a t io n a l  sym bols, th e  

p ro o f b e in g  e s s e n t i a l l y  th e  same f o r  th e  g e n e ra l  c a s e .  The sum 

S in  K(fö) of can he c o n s tru c te d  as fo llo w s . We can

assume w ith o u t lo s s  of g e n e r a l i t y  t h a t  th e  c a r r i e r s  A^ o f th e

a lg e b ra s  A. = (A^,Qh) a re  d i s j o i n t .  L et A,- t

S1 = So U “  6 fl ’ 8 l " " ' sh (u)  6 So '

hu t  s ̂  , . . . ,  s
h(u>)

do n o t b e lo n g  to  th e  same A^}

Sn+1 -  Csl ’ " - , s h ( u ) “  ; “  £ a  ’S1 • • ’ Sh(u)  £ Sn 5 U Sn ’

U S , n=o n 7

where s^ . .  . s ^ ^ ^ w  i s  j u s t  a seq u en ce . C le a r ly  S i s  a s e t  of 

ift-words in  So

make (S) = cr by :

ift-words in  S We ta k e  S to  be th e  c a r r i e r  o f S and d e f in e
o  —

<V-"'Bh(«)>9(w) = (s i > • • • ,sh(u) » i f  i  e I

!h (u ) € AiS1 > • • • >sv r .* \  e >

s ^ . . . s ^ ^ wjU , o th e rw ise .



The algebra S so defined is the sum of in K(fö) . Over

S we define a congruence k as follows. For every set r of

ordered pairs write sym(r) for the set {(s,t) ; (t,s) or (s^t)e r}

and tran(r) for the set of ordered pairs (s,t) such that there

exists a sequence s ,...,s satisfying s = s , s = t ando m o m
(s ,s,),...,(s ,,s ) e r . Letv o 1 ' m-1 ’ m'

ro = {<ai,f Ji(ai) > ; i e I , a. € A.} ,

kq = tran(sym(rQ))

V l  = Kn U {«S,,...,8h(u)>o(M), (S -,...,S^(u))

U K  a, <S1,S1'>,...,(Sh (u), S ^ u)> € Kn ) ,

Kn+1 = ^ran(sym (rn+i)) ,

U K n=o n

Thus k is the least congruence over S containing r^ . We show

that {y. : A. — •> S — > S/k ) . is a direct limit of <3 J  J S  -L
ff.. : A. — > A.}.^. , where A. — > S is the inclusion map and Ji -i J -o
S_ — > SJk is the canonical homomorphism which sends s e S to the

equivalence class [s]k determined by s under k . First note that

[a.]* = [f..(a.)]K for all a. e A. and hence y.f.. = y. for all

i , j , i ^ j in I . Next let : A_ — > M)j€j ano^ er

family of homomorphisms satisfying B^f^ = 6^ . We have to show

that there is a unique homomorphism e such that ey. = 6. for all
0 J



j > j € I . Let M, be the subalgebra of M generated by the union
5 '.

of the images of the 6. so that 6. : A. — > M, ----> M ,J J -J “I
where M, — > M is the inclusion map and 6'f .. =5* tor all0 J
i y j € I , i  ̂j . Moreover, since S is the sum of {A.}. ,J J S -L
the algebra is isomorphic to S/k ' for some congruence k '

over S . We can assume without loss of generality that =S/ k’ and

51 (a.) = 5. (a.) = [ajrc for all j e I and a. € A. . EyJ J 0 0 J J J
5 ^ ^  = 5^ we conclude that (â , (a^)) e k ' for all i,j , a^ ,

i  ̂j in I and a. e A. . Hence r c k ’ , where r is one

of the relations entering the definition of k . Therefore k e k'

and the canonical homomorphism exists. Take e to be the map S/k — > S/k'

— M , where S/k* — >M is the inclusion map. Then it is readily verified
that ey.-6. for all je I . The uniqueness of e is also obvious.

Hence S/k together with the maps y. provides a direct limitJ
in Kfe) of •

Now we prove that S/k is in K(z) . Before doing this we 
a ~

need to learnsfew facts about the •

(1.3 The relation kq consists of ordered pairs (â ,â ) , ai e *

a. e A. such that there exist a k e I satisfying k  ̂i,j and J J

■ki'-i' - “k ’ say- Then < V ak> ’fki(ai} = fkj(aj} = a- 
<a^,a^ e rQ , (a±>\) > (ak>aj) 6 sym (rQ) > (a±’aj) € tran(sym(rQ))
= . Conversely let (â ,â .) gkq . Then if (a^a^) € sym(rQ)

we can take k = j or i according as (â ,a.) e r̂  or (a.̂ â ) e rQ
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In the case when (a^,a ) ^ sym(ro) there exist

a. € A. , ...,a. € A. such that a. = a . , a. = a. and.l l i l l l i j0 o m m o m
(a. ,a. (a. ,a. ) e sym(r ) . We can find k.. ,. .. ,k such1 i, ' l , l ' o 1 ’ mo I m-1 m
that f , (a. ) = fk. k l *.1 o o k, i 3 ai 3 ’" ' ’fk , i , âi , ' " fk i  '"i(a. ) . 

m m  mm-1 m-1 m-1
Find k € I such that k ^ k, ,... ,k . Then f. .(a.) = f. .(a.)1 m ki l kj j

because f. . f . = f. . ,... ,f f. . = f . This proves (1 .3) •kk. k, l ki kk k i ki .1 1 o o m m m m

(1.4) For every non-negative integer n the relation is a

'congruence over the partial subalgebra ' of S , that is,

is an equivalence relation over and if

€ Kn and s = (Sl,...,sh(u))a(u) 6 Sn ,

s' = <sj,...,s^wpa(u)) e Sn then <s,s'> € kr .

We use induction to prove (1.4). It follows directly from

(1.3) and the definition of S that k is a congruence over S— o o
Assume (1.4) for all n̂  ^ n . The symmetry and reflexivity of Kn

implies the symmetry and reflexivity of r .j as may be directly seen

by the definition of r^+1 . This shows that Kn+1 = tran(rn+ )̂ and

that k  ̂ is a reflexive relation over . Transitivity of

is immediate. For symmetry let (s ,s .| ) € Kn+i so

there exist s. ,...,s suchthat (s ,s, (s ,s = r  , . But1 m ' o 1 ' x nr m+1 ' n+1
then <sm+1 ,sm),...,<s1 ,s q) € rn+1 , since rn+] is symmetric.

Hence (sm+-j >sq) G tranCr^) = Kn+1 * proves that k -| is

an equivalence relation over Sn+1 *
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Before proving the congruence property for k ■, we need to

show that the restriction of k , to S is k Letn+l n n
(s, s *) e k , , s.s' e S  . Let s ,...,s be one of the' 9 ' n+l ’ n o m
shortest sequences such that s q = s , s^ = s ' ,

<s ,s. (s .,s ) € r . . Suppose s. & S for some £ >o \ x m-1 nr n+l £ r n

1 < £ < m . Then we can write

s£-1 ŝ-e.-i ,hCto)>CT(a,) »

s-t,+l = ’

where w , w' e Q

ŝl, p,s-t+l ,p) e Kn
definition of r ,, n+l

< s ^ s ^ + l >  e  r n + l •
S« 4 S and •t r o

and (s^_1 p,s^ p) e *n for 1 g p £ h(w) and 

for 1 g p g h(w') . This is immediate from the

since s0 d S and (s„ ,^s) .

Now, by the definition of S , we find that

s£ ’%h(o>)>a M ,s£,h(u)’)>a(oj')

together imply w = w' and s« = s! for 1 £ p £ h(ij) . Thus*wP b, p

s-t-l = ’ S-t+l = ŝi+l,1,’" ,St+l,h(u)^a(“) '
and (s^  ̂ p^s ,̂+i p) e Kn for 1 - P - h(u) . Hence

(s...s0l1) e r  , . This contradicts the assumption that s , ...,s£-1 £+1 n+l o m
is one of the shortest sequences of a certain type. Hence s.  ̂Sn
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is false for all t- , 1 < -£ < m , so that s ,...,s € So m n
Again (s ,s.j ) e r .j - Kn implies that 

So = (so,l” - - So,h(U}>t’(u)

for some o>e fl and £ Kn . Since

s ,s.j have been shown to be in we have, by the congruence

property of Kn , that (s0>si) 6 Kn * Hence and similarly 
(s ,sn (s t ,s ) e k which implies that (s ,s ) =  (s ,s1) e ic y

as was to be proved.

We conclude the proof of (1 .4) by showing that if s,sf e ^n + ] >

s = <s] ,...,sh ^)a(w) , s ’ = (s^,. ••>sh(w) and

<S1 ’S1 ><sh (co)’sh(u>)> £ Kn+1 then <s’s ’>£ Kn+1 • Clearly
s ^  ... ,sh ^  ,sj ,... jS ^ ^ j € and, by what we proved in the last

paragraph, (s] ,8^ >,..., <sh ̂  ,s^ w) > € *n . Hence

(s,s!) e rn+  ̂ cz and (1.4) is proved.

(1.5) The restriction of k to Sn is for every non-negative

Let (s,s 1) € K , s,s' e S 7 n • Let m be the least integer n

such that <s,s') € Km . If m > n then s,s' e S , and since by m-1
the proof of (1.4) the restriction of Km t0. Sm-1 iS V - l  Wecu
conclude that (s,s’) e k , . This contraction proves that m £ n 

'  ‘ m-1

and that (s,s') e . Hence (1.5)*
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(1.6) For every finite subset (s^,...,s ) of S there exist

i , a, »...»a such that i e I , a,....,a e A. and7 1 m 1 m l
( s , ),..., (s ,a ) g k •' l l '  ' ' m m '

Again we use induction. Let s, ,...,s € S so that° 1 m o
s, e A. ,...,s € A. for some i.,...,i e l .  Find i e I1 i, 7 m l 1 7 7 m1 m
such that i ^ i, ..... i . Let a, = f.. (s.. ),... ,a = f.. (s ) .17 7 m 1 li, l 7 7 m n  m1 m
Then (s,.a,),..., (s .a ) e k and a1,...,a e A. . Now assume ' 1 1 ' 7' m7 m' 17 7 m l
(1.6) for all finite subsets of S and let s,.....s e S , .n 1 7 7 m n+1
If e we can find î  € I , a| e A. ; such that (ŝ  ,a.J) e k • 

Otherwise we can write ŝ  = (ŝ  ,̂...,8̂  for some

a) € Ü and ŝ  ^...,s^ h(w) 6 ^n * ^y the in<̂ uc'tion hypothesis

<S1,1 ,al ,l>," ‘, ŝl,h(u))’al,h (w) > £ K for some 6 1 ’
a.j  ̂,... ,â  e • Since k is a congruence, (s^a^') e k ,

where â' = (a.j  ̂,... ,â  ^(w))a(w) e A^ . Similarly

<s2,â ), ... ̂ (Sm^a^) e k for some a.̂ e A± ,... e A± ,
2 m

i0,...,i e l .  Find i such that i ^ i, ,....i and let2 m 1 m
a, = f.. (a*),...,a = f.. (a ) . Then 1 li.. 1 7 7 m li m1 m
(s.,a_),...,(s ,a ) e k , a, .....a e A. . This completes the 1 1 '7 7 ' m m' 1 m l
proof of (1 .6).

We are now ready to prove that S/k e K(z) .

Let the sentence

= W1 V(1) VXy. (v-j / vj v ... v v^ ^ v|) v (w1
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hold in for all i e I . We show that (1) also holds in

S/k . For this we need to show that for all s.j,...,6 e S 

either (v (s] ,... ,sn), vp(s-| , • • • >sn) ) j. k for some p ,

1 ^ p ̂  l  , or <w (si,...,sn), w^(s1 .,sn)) e k for some

q_ , 1 ^ q. ^ m . Suppose otherwise and let s^,...,s e S be

such that (v (s1 . ->sn )> vp(si''* *'sn)> € K for a11 P 9 
1 ^ p £ l  , and (w (s] ,... ,sn), w^(s] ,... ,sq) ) ft k for all q. ,

1 ^ q_ ̂  m . Using (1 .6) find i , â  ,... ,a^ such that i e I ,

a,,...,a e A. and (s,,a,),..., (s ,a } e k - Then 

(vp (ai > • • • >a n ) ) v^(av ...,an)> e k ,

<w (a],...,an), w^)(a1 ,...,an)> { k for all P , q. , U p ^ l ,  

l ^ q ^ m .  Write b = v (a1,...,an) , bp = Vp(al9 ** *,an) 

so that b , V  e A. , (b ,b') e k for all p , 1 ^ p £ £ .p 7 p l 3 ' p7 p'
By (1.5) and (1 .5), for all p , M  p I i , we can find j e I

such that f. . (b ) = f . . (V) . Let j e I be such thatj l p j i p°p °p
j 1 j for all p , 1 ^ p I l . Then f .. (b ) = f .. (b') for° P jix p ji p
all p , 1 — P — ^ • Let c ̂ = f ̂ ̂ (a.j ) ,... , c^ = fj^(a^) *

Then, since f .. is a homomorphism, we have

vP (cl f .. (b ) Ji P f .. (b ') Ji P v ' (c 
P 1

1 ^ p ^ l  ,

and since (by (1.3)) (c1,a1),...,(c^,an) e K i we have
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w (c., ,... ,c ) 4 w' (c, , . .. ,c ) 1 g q g m .q l' n ' q 1 n ' ^

Since c, ,...,c e A. this contradicts our assumption that A.1 n j * -j
satisfies (1 ) . This proves that every sentence of the form

(1) that holds in every A also holds in S/k • In particular,
S/k e K(Z) . This completes the proof of (1.2) and the theorem.

For every set Y and subclass V of V(ift) we write

L(V;Y) for the partly ordered set of congruences k over W(ft;Y)

such that W(&;Y)/k is isomorphic to an algebra in V . We

write L(fö;Y) for L(V;Y) when V = V(ft) . The following result=  =

is a consequence of Theorem 1.

THEOREM 2 . For every universal class V of fö-algebras and every 

set Y the following conditions hold.

(2.1) The meet in L(lft;Y) of a downward directed subset of 

L(V;Y) is in L(VjY) .

(2.1) * The join in L(ift;Y) of an upward directed subset of L(V;Y)

is in L(V;Y) .

PROOF. Let I be a downward directed subset of L(V;Y) . Consider 

the inverse system {f : W(iR;Y)/k, — > W(iR,;Y)/ku } T ,
^2^1 * ^ k *|

where f is the canonical map which sends the equivalence class
K2 K1

[w ]k  ̂ to [w]Kg for all w e W((R;Y) . Let & = g.b.b. (i) .

Then (f „} _ is an inverse limit of (f ) T .
kk* K£I KgKi ^iE k2,k1 * k2£I

For W(iR;Y)/k* is isomorphic to the subalgebra of the cartesian



-  39 -

p ro d u c t CTI ^ (W fe jY ) /* )  d e f in e d  by (g ^ g ^ f tc )  = [w ]K ; 

w e W(ift;Y)), k e 1} w hich i s  an in v e rs e  l i m i t  o f th e  in v e rse  

system  under c o n s id e r a t io n ,  by th e  c o n s tru c t io n  of in v e rs e  system s 

g iv en  in  th e  p ro o f o f Theorem 1 . In  v iew  o f (1 .1 ) and (1 .2 ) 

o f Theorem 1 t h i s  im p lie s  t h a t  Wfe;Y)/ic* e V and hence 

k* e L(V;Y) . T his p roves ( 2 .1 ) .

The p ro o f o f (2 .1 )  i s  s im i la r  and i s  o m itte d .

Let us c a l l  a  d iagram  in  an a r b i t r a r y  c a te g o ry  mono (e p i ) 

i f  a l l  o f i t s  morphisms a re  monomorphisms (ep im o rp h ism s). Then 

(2 .1 )  i s  c l e a r ly  e q u iv a le n t  t o  (1 .2 )  (o f Theorem 1) f o r  e p i 

d i r e c t  sy stem s. T his s p e c ia l  case  o f (1 .2 ) has a s im p le r  d i r e c t  

p ro o f and was s t a t e d  in  [16 ] . The g e n e ra l  p ro p e r ty  (1 .2 ) was g iv en  

f o r  some u n iv e r s a l  c la s s e s  w ith o u t d e t a i l e d  p ro o f in  [2 7 ] and [2 8 ] .

§2 . ASSEMBLIES OF ALGEBRAS.

A u n iv e r s a l  c la s s  V(Z) i s  c a l le d  an assem bly  i f  £ i s  e q u iv a le n t 

to  a s e t  o f se n te n c e s  o f  th e  forms

(2) v  X . , . .  . , x  (w. = w’ v  • • .  V/ w = w’)v v 1'  n l  1 m m

and

(5) VÄ1, . . .  >xn (w1 ±  wj V' • • • V wm t  w^) .

An assem bly  V(Z) i s  c a l le d  p o s i t iv e  o r n e g a tiv e  a c c o rd in g  as 

Z i s  e q u iv a le n t  to  a s e t  of se n te n c e s  o f th e  form  (2) o r  (3) 

o n ly . An assem bly  d e f in a b le  by a s e t  o f e q u a tio n s  o r  law s,
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i.e., sentences of the form

(4) Vx] ,...,xn(w1 «= wp ,

is called an equationally defined assembly or a variety. A 

negative assembly definable by a set of sentences of the form

(5) Vxir..,xn(w1  ̂wp

is called a negationally defined assembly; a sentence of the form 

(5) is called a negation. Negations arise quite commonly in Number 

Theory. The most well-known example of a number theoretic negation 

is the 'Fermat's negation' yx.| (x^ + x^ / x^) which Fermat

conjectured to hold for n ^ 3 for the algebra of positive integers 

under ordinary addition and multiplication. Whether a systematic 

study of assemblies defined by equations and negations could be of 

any use to Diophantine Analysis is anybody's guess.

The following result characterizes negative assemblies in 

terms of the corresponding categories of homomorphisms.

THEOREM 3 » A class V of ift-algebras is a negative assembly if and 

only if:

(3*1) For every monomorphism Â  — > A^ in K($) if A^ e K(V)

then A, e K(V) .— 1 =  =

(3*2) For every epimorphism Â  — > A^ in K(ift) if A^ e K(V) 

then A1 € K(V) .



(3 .3 )  D ire c t l im i t s  in  K(ft) o f d i r e c t  system s in  K(V) a re  in  K(V) 

\We prove Theorem 3 in  th e  fo llo w in g  form .

THEOREM 4 . A c la s s  V o f f t- a lg e b ra s  is  a n e g a t iv e  assem bly  i f  and 

on ly  i f :

(4 .1 ) A e V i f  and o n ly  i f  ev ery  f i n i t e l y  g e n e ra te d  su b a lg e b ra  

o f A i s  embeddable in  an a lg e b ra  o f V .

(4 .2 ) The jo in  in  L(ft;X) o f an upward d i r e c te d  su b se t o f L(V;X) 

i s  in  L(V;X) .

(4 .3 ) I f  n o t . ,  k e L(ft;X) and e L(V;X) th e n  K e L(V;X) .
—  I I =  =

PROOF. In  view  o f Theorem 2 th e  'o n ly  i f '  p a r t  of th e  p re s e n t  

theorem  i s  f a i r l y  s t r a ig h t f o r w a r d .  For th e  second p a r t  l e t  X 

be th e  s e t  o f a l l  s e n te n c e s  o f th e  form

(3) V X, , . .  . >xn (w) /  x ’V • • • V wm ) .

t h a t  h o ld  in  a l l  th e  a lg e b ra s  in  V . Let A be any f t-a lg e b ra  which 

s a t i s f i e s  Z . By (4 .1 ) we can assume t h a t  A i s  f i n i t e l y  

g e n e ra te d  and ta k e  A to  be W(ft;X)/ic f o r  some k e L(ft;X) ; so 

t h a t  we have to  show t h a t  k e L(V;X) . Let

r =  {(w1 ;W j ) , . . . , ( w m;¥]Ji) } c  k , where w] , . . .  ,wffl , w^, . . .  ,w^ € W(ft;X) . 

Then th e  se n te n c e  (3) does n o t h o ld  in  A and th e r e f o r e  dpes no t 

b e lo n g  to  Z . T his im p lie s  t h a t  th e r e  i s  an a lg e b ra  A e V which
" “ I *  —

does n o t s a t i s f y  (3) .  C le a r ly  th e r e  i s  a f i n i t e l y  g e n e ra te d  

su b a lg e b ra  A^ o f A^ w hich does n o t s a t i s f y  (3) .  By (4.1)
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th e  c la s s  V i s  a b s t r a c t  so t h a t  we can  f in d  e L(V;X) such

th a t  W(<Rj X )/k^ i s  isom orphic to  A3 and th e r e f o r e  does no t

s a t i s f y  (3 ) . T his means t h a t  th e r e  e x i s t  , • . . , u  € W(ft;X)

such  t h a t  (w . (u, , . . . , u  ) ,  w’ (u.. , . . . , u  ) )  e k ' f o r  1 g j  g m .

Let A3] be th e  su b a lg e b ra  o f A3 g e n e ra te d  by

] k ^ ,  . .  . , [ u  ] k .̂ . Then A^ i s  isom orphic to  W(iR,;X )/k^ fo r

some k" e L(V;X) such th a t  (w .fx . . . . . . x  ) ,  w’. (x. , . . .  ,x  ) )  e k" r  '=  J 1 n O ' n  ‘ r
f o r  a l l  j  , 1 ^ j  ^ m . Let k t  be th e  l e a s t  congruence over

W(fö;X) c o n ta in in g  r  . Then c  k ” and hence by (4 .3 )  we have 

t h a t  e L(V;X) . The s e t  ( k^ ; r  i s  a f i n i t e  su b se t o f k)

i s  an upward d i r e c te d  su b se t o f L(V;X) whose jo in  in  L(fö;X) 

i s  k . Hence, by ( 4 . 2 ) ,  k e L(V;X) and th e  p ro o f of th e  theorem  

i s  co m p le te .

Theorem 3 i s  now a d i r e c t  consequence o f Theorem 1, Theorem 2 

and Theorem 4.

The fo llo w in g  r e s u l t  ab o u t a sse m b lie s  i s  o b v io u s.

THEOREM 3 » Let V be an assem bly . Then:

(5.1)  For ev e ry  monomorphism Aj — >

A2 € I ®  th e n  A] € K(V) .

(5 .2 ) F or epim orphism s Â  — > Ag and A ^ — > A*  ̂ in  

g(ft) i f  A1 ,Af € K(V) th e n  Ag e K(V) .

(5*3) In v e rse  ( d i r e c t )  l im i t s  o f in v e rs e  ( d i r e c t )  system s in  

K(V) a re  in  K(V) .

Ag in  K(ft) i f
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W hether ( 5 ^ ) ,  (5*2) and (5 .3 ) c h a r a c te r i s e  a ssem p lie s  is  

n o t known. Nor do we know o f any s im p le  c a t e g o r ic a l  c h a r a c te r i z a t i o n  

o f  p o s i t iv e  a s s e m b lie s .

For u n iv e r s a l  V th e  p a r t l y  o rd e red  s e t  L(VjY) has maximal

and m inim al e lem en ts  f o r  ev e ry  Y . This fo llo w s  from  ( 2 .1 ) ,

/  \ *(2 .1 ; and Z o rn ’s lemma. B ir k h o f f 's  theorem  [2] ab o u t 

v a r i e t i e s  shows t h a t  f o r  p o s i t iv e  a sse m b lie s  V th e  m inim al 

e lem en ts  of L(V;Y) c o l la p s e  to  a l e a s t  e lem en t i f  and only  

i f  V i s  e q u a t io n a l ly  d e f in e d .  However, i t  i s  n o t t r u e  t h a t  f o r  

n e g a tiv e  a sse m b lie s  V th e  p a r t l y  o rd e red  s e t  L(V;Y) has a 

g r e a t e s t  e lem ent f o r  a l l  s e t s  Y i f  and on ly  i f  V i s  n e g a t iv e ly  

d e f in e d . Indeed  th e  on ly  n e g a tiv e  assem bly  V f o r  which 

L(VjY) has a g r e a t e s t  e lem en t f o r  a l l  s e t s  Y i s  th e  c la s s  

V(ft) o f a l l  if t-a lg e b ra s . To see  t h i s  assume t h a t  Y i s  i n f i n i t e .  

Let A be a  f i n i t e l y  g e n e ra te d  a lg e b ra  in  V and w. ,w^ be 

a r b i t r a r y  words in  Y . We can c l e a r ly  f in d  K^Kg € L(ft;Y) 

such t h a t  W(&jY )/k  ̂ , W(ft;Y)/Kg a re  isom orph ic  to  A and

(w .j,y) e k.| , (v2 ,y )  e , where y e Y and y does n o t e n te r

W-J o r w2 S ince  A e Y. th e n  € L(V;Y) . I f  k i s

th e  g r e a t e s t  e lem ent o f L(V;Y) th e n  k. , k0 c  k , so  t h a t  

,y )  , (w2 ,y )  € K w hich im p lie s  t h a t  (w ^w ^) e k . S ince  

w ,v  were a r b i t r a r y  words of W(ift;Y) we see  t h a t  

k = W(£;Y) X W(fö;Y) . By ( 4 ,3 ) ,  t h i s  im p lie s  t h a t  i f  V is  a 

n e g a tiv e  assem bly  th e n  L(V;Y) = L(ft;Y) f o r  a l l  i n f i n i t e  Y .
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But every ift-algebra is isomorphic to an algebra of the form 

W(ft;Y)/K , where k e L(<ft;Y) and Y is infinite. Hence 

V = V(ft) .

The following result gives a necessary and sufficient 

condition for a negative assembly to be negationally defined.

THEOREM 6. A negative assembly V is negationally defined if 

and only if:

(6.1) If the join k in L(fö;X) of a family >

k  ̂e L(V;X) , coincides with the set-theoretic union Û, j k  ̂ then 

k £ L(V;X) .

PROOF. Let V be negationally defined and let the join k in 

L(ft;X) of € L(V>X) > coincide with .
To show that k e L(V;X) we need to prove that every negation that 
holds in every algebra of V also holds in W(iR;X)/k . Let 

Vx^,...,xn(w ̂  w') be such a negation. For all 

u^...,un e W(fö;X) and all i e I we have that

(w(u.| ,... ,un), w'(u^,... ,u ))  ̂Ki . Since k is the set-theoretic 

union of the we see that (w(u^,...,u^), w*(u^,...^u^))  ̂k

for all u^,...,un € W(ft;X) . Hence Vx.j ,... ,x̂  (w ^w') holds 

in W(fc;X)/K .

Conversely let (6.1) hold and let E be the set of all 

negations that hold in every algebra in V . Let A e V(ift)
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and let A satisfy £ . As in the proof of Theorem 4 we 

can take A to he W(R;X)/k for some k € L(ift;X) 

and prove that for every r € k the least congruence Kr 

containing r is in L(V;X) . But then k is the set-theoretic 

union of : r e k } . Hence, by (6.1), k € L(V;X) and

therefore A e V . Thus V is negationally defined and the 

theorem is proved.

Condition (6.1) also enters a characterization of semi­

varieties (see next section).

However, (6.1) is not an order-theoretic condition and 

therefore, perhaps, cannot be translated into a categorical 

property of K(V) . We leave open the problem of characterizing 

negationally defined assemblies (and semi-varieties) in categorical 

terms. A solution of this problem may involve considering a 

category different from K(R) .

The results, concepts and problems of this section form part 

of [28].

§3. QUASI-VARIETIES AND SEMI-VARIETIES.

A universal class V(z) , £ <= $>̂ R) , is called a quasi-variety

[6] if £ is equivalent to a set of sentences of the form

(6) v x ],...,xn ((w1 = A  A  wm = — > w = w ') >

where w, ,... ,w ,w’,... ,w ’ ,w,w‘ are R-words in x-,...,x l m l m I n
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A sen ten c e  o f th e  form  (6) i s  c a l le d  an  im p l ic a t io n . A u n iv e r s a l  

c la s s  V(E) i s  c a l le d  a s e m i-v a r ie ty  i f  E i s  e q u iv a le n t  to  a 

s e t  of im p lic a tio n s  of th e  s im p le r  form

(7) Vx1, . . . , xq (w1 = v j  — > w = w ’) .

In  t h i s  s e c t io n  we g ive  c h a r a c te r i z a t i o n s  of q u a s i - v a r i e t i e s  and 

s e m i - v a r i e t i e s . R ath er s im p le  c a t e g o r ic a l  c h a r a c te r i z a t io n s  of 

q u a s i - v a r i e t i e s  a re  g iv en  h u t we a re  u n ab le  to  c h a r a c te r iz e  

s e m i- v a r ie t ie s  in  a s im i la r  way.

We b eg in  by d e f in in g  an  o r d e r - th e o r e t i c  c o n c e p t. Let Lj be a  

su b se t of a  p a r t l y  o rd e re d  s e t  L w ith  ^ as th e  p a r t i a l  o rd e r .

By an  L̂  -c o v e r of an e lem en t z of L we s h a l l u n d e rs ta n d  an

elem ent z of Li such t h a t z £ z and i f  z < z * th e n  z £

Not every  elem ent o f  L may have an Lj -c o v e r . I f L.| i s  a  !

th e n  th e r e  i s  a t  most one -c o v e r  of ev e ry  e lem en t o f  L .

THEOREM 7 « L et V be a b s t r a c t  and h e r e d i t a r y .  Then th e  fo llo w in g  

th r e e  c o n d itio n s  a re  e q u iv a le n t .

(7«l )  Every k e L(fö;Y) has an L (V ;Y J-cover f o r  ev e ry  s e t  Y .

(7 *2 ) The c a te g o ry  K(V) i s  a  c o r e f l e c t i v e  [2 0 ] su b c a te g o ry  of K(fö) 

(7 .3 ) C a r te s ia n  p ro d u c ts  o f f a m i l ie s  of a lg e b ra s  in  V a r e  in  V 

and th e  t r r v i a l  a lg e b ra  i s  in  V .

PROOF. Let (7 .1 )  h o ld . For ev e ry  r  c  W(ft;Y) x Wfe;Y) we 

w r i te  x (V ;r) f o r  th e  L (V ;Y )-cover o f th e  l e a s t  congruence over
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W(ft;y) containing r . We write' x(&;r) for X(V;r) when

V = V(fö) so that x(fö;r) is the least congruence over W(ift;Y) 

containing r . For every A = (A,a) e K(fö) define 

R(A) = W(&;A)/X(V;k (A)) , where

k (A) = {{u],u^) ; u1,u2 e W(&;A) , in A} . Since

k (A) c: x (V;k (A)) there is an epimorphism f (A) A — > R(A)

which takes a e A to the equivalence class [a]x(V; k (A))

determined by Ta ’ under X(V;k (A)) . Let e : A — > A 1 be any

homomorphism in K(fö) with A* e V . Then the function

g : R(A) — ■> A ’ which takes [a]x(V; k (A)) into e(a) , a e A , is

clearly such that the following diagram commutes:
A

g

That g is a well-defined homomorphism can be seen as follows.

Clearly by the abstractness and heredity of V we can assume e to 

be onto, A ’ to be W(^;A)/k and e(a) = [a ]k for some k e L(V;A) . 

Then k (A) c: k and by the definition of x (V;k (A)) we have that 

x (Y;k (A)) c: k . This shows that g is indeed an homomorphism. 

Further, it is clear that if e is given then g is the only map that 

makes the above diagram commute. Hence R(A) together with the 

morphism f(A) provides a coreflection of A in K(V) . This



-  48 -

proves that (7*1) implies (7*2).

Now assume (j.2). By Proposition 5.1 of [20] concerning 

full coreflective subcategories we see that products of families of 

objects in K(V) are in K(v) . But products in K(ift) coincide 

with cartesian products and therefore the first part of (7*3) holds. 

Let E be the trivial fö-algebra and let ROE) together with the 

map E — > BCE) provide a coreflection of E . Since every

homomorphism from E is a monomorphism E is a subalgebra of 

R(E) . But R(E) e K(V) and V is hereditary. Hence E e K(V) . 
This proves that (7*3) holds if (7-2) holds.

Finally assume (7.3)* We first note that for all sets Y the 

meet in L(fö;Y) of a subset of L(V;Y) is in L(V;Y) . For

let k . e L(V;Y) , where i ranges over an index set I , and letX —

k = . Then W(^;Y)/k is isomorphic to a subalgebra

of the cartesian product of ( W ( f ö ; Y ) our assumption 

cartesian products of families of algebras in V are in V .
Hence, since V is abstract and hereditary, W(&;Y)/k e V ; 

so that k € L(V;Y) . Next note that since V contains the trivial 

algebra the greatest element k = W(ft;Y) X W(<R;Y) of L(iR,;Y) 

is in L(V;Y) . Now let k e L( ,̂;Y) . Then the meet of the

non-empty set {k '; k c  k ’ , k ‘ e L(V.;Y) } is the L(V;Y)-cover

pf k . This proves that (7*3) implies (7»1)• The proof of 

the theorem is complete.
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THEOREM 8 . Let V e  V(ft) . Then V i s  a q u a s i - v a r i e ty  i f  and 

on ly  i f  :

(8 .1 )  For ev e ry  monomorphism — > A  ̂ in  K(ift) i f  e K(V)

th e n  A, € K(V) .
— I =  =

(8 .2 ) D ire c t  l im i t s  in  K(fö) of d i r e c t  system s in  K(V) a re
=  =  S S

in  K(V) .

(8 .3 )  The c a te g o ry  K(V) i s  a c o r e f l e c t i v e  su b c a te g o ry  of Kfe) .

PROOF. Let V be a q u a s i - v a r i e ty .  Then ( 8 .1 ) ,  (8 .2 )  fo llo w  

from  Theorem 1 and (8 .3 )  fo llo w s  from Theorem 7 s in c e  i t  i s  w ell-know n 

(and easy  to  show) t h a t  q u a s i - v a r i e t i e s  a re  a b s t r a c t ,  h e r e d i ta r y  and 

s a t i s f y  (7 -3 ) .

C onverse ly  assume ( 8 .1 ) ,  (8 .2 ) and (8 .3 )»

Theore*m 5 of D6] t e l l s  us t h a t  (8.1),  (8.2) and (7*3) im ply 

t h a t  V i s  u n iv e r s a l .  Hence by Theorem 7 we conclude th a t  i f  V 

s a t i s f i e s  ( 8 .1 ) ,  (8 .2 )  and (8 .3 )  th e n  V i s  u n iv e r s a l .  Now th e  

c o r o l l a r y  4 .4  on page 235 of [6] t e l l s  us t h a t  a u n iv e r s a l  c la s s  V 

i s  a  q u a s i - v a r i e ty  i f  and on ly  i f  (7*3) h o ld s .  In  view  o f th e  

e q u iv a le n c e  of (7*3) and (8 .3 )  t h i s  com pletes th e  p ro o f o f Theorem 8 .

A d i f f e r e n t  p ro o f o f Theorem 8 i s  in d ic a te d  in  [ 2J] ,

We can o b ta in  two more c h a r a c te r i z a t io n s  of q u a s i - v a r i e t i e s  by 

r e p la c in g  (8 .3 ) by (7 .1 )  o r  (7*3).

We now g iv e  a  c h a r a c te r i z a t i o n  of s e m i - v a r i e t i e s .
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THEOREM 9 « A q u a s i - v a r i e t y  V i s  a  s e m i - v a r i e ty  i f  and o n ly  i f :  

(9 .1 )  = (6 .1 )  . I f  th e  j o i n  k of  , k± e L(V;X) ,

c o in c id e s  w ith  th e  s e t - t h e o r e t i c  un ion  of th e  k . th e n  k € L(V;X) .l  =

PROOF. Let V be a  s e m i - v a r i e t y  d e f in e d  by X and l e t

k = be th e  j o i n  in  L(fö;X) o f  {u^}^ ^ > Kj_ € L(V;X) .

We have to  show t h a t  k e L(VjX) . Let

(7) Vx1 , . . . , xq (w1 = wj —> w  = w’)

be d e d u c ib le  from X . Let u ^ , . . . , u  e W(fö;X) and 

(w] (U] , . . . , un ) ,  wj ( U] , . . . , u n ) ) e k . Then

(w. ( u . . . . . .u ) ,  w*(u, . . • .  .u  ) )  e k . f o r  some i  e I  , because' l l  n i l n ' l

k = ^ . S ince  W f ä j X ) / ^  s a t i s f i e s  (7) we have t h a t

(w(u.|, . . .  ,u  ) ,  w* (u-j j • • • ;U^) ) e K± and hence

(w (u . | , . . .  ,u  ) ,  w* , . . .  ,u  ) )  e k ; so  t h a t  W(iR,;X)/k s a t i s f i e s

e v e ry  se n te n c e  o f  th e  form (7) t h a t  i s  d e d u c ib le  from X . Hence 

W(<R;X)/k e V(X) o r  k € L(VjX) .

C onverse ly  l e t  V be a q u a s i - v a r i e t y  d e f in e d  by X and l e t  V 

s a t i s f y  (9*1) .  Let X̂  be th e  s e t  o f  a l l  im p l ic a t io n s  of th e  form 

(7) t h a t  a r e  d e d u c ib le  from X and w r i t e  = V(X^) . We show 

t h a t  Y-| ~-X.  • But f i r s t  we need t o  prove th e  fo l lo w in g  s ta te m e n t  . 

(9*2) The im p l i c a t io n

(6) v x 1 , . . .  , x n ( (w1 = wj /x . . .  /y wm = w^) — > w = w*)
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is  d e d u c ib le  from  E i f  and o n ly  i f  (w /w ')  e X (V ; r )  , where

r  =  { (w. , w ( w  ,w ’ ) }  .I 1 m m

Assume th a t  (6) is  d e d u c ib le  from  E . Then W (ift;X)/K 

s a t i s f ie s  (6) where k = X .(V ;r) . S ince r  c  k t h i s  im p lie s  

t h a t  (w ,w ’ ) e k and one p a r t  o f  (9 *2 ) is  p roved .

Now l e t  (w ,w ')  e X .(V ;r) . We show th a t  (6) h o ld s  in  e ve ry  

a lg e b ra  o f V . S ince  V is  a u n iv e rs a l c la s s  i t  is  s u f f i c i e n t  

to  show th a t  W(iR ; X ) / k s a t is f ie s  (6) f o r  e ve ry  k e L (V jX ) .

L e t u . j , . . . , u n be a r b i t r a r y  e lem ents o f  W(ift;X) such th a t  

(w ( U ! , . . . , U ) ,  w>(U l , . . . , u n ) )  e k f o r  1 ^  i  ^  m . We have to  

show th a t  (w (u ^ , . . .  ,u. ) ,  w ’ (u ^ , . . .  ,u  ) )  e k . L e t A be th e  

su ba lg e b ra  o f  W(iR ;X ) /k gene ra ted  by [u^ ] k , • .  • > [u  ] k • Then 

A is  iso m o rp h ic  t o  an a lg e b ra  W (ift;X )/i^  w ith  an isom orphism  

f  : W ^ jX j/c j — > A ünd«r-\4iü±i [x^ ] k1 , . .  • ,  [x  ] k-j g o t o  

[u.j ] k , .  . . , [ u r] k. r e s p e c t iv e ly .  Then

(w -^ w p  = <wi (x 1 , . . . , x n ) ,  w j( x 1 , . . .  , x n ) ) e k1 f o r  1 £ i  £ m , so 

t h a t  r  c  k . S ince  V is  a b s t ra c t  and h e r e d ita r y  .€ L (V ;X ) . 

Hence X (V ; r )  e  and th e re fo re  (w(x^ , . . .  , x ^ ) , w r (x^ , . . . ,x ^ )  ) € k-j • 

A p p ly in g  th e  isom orph ism  f  we g e t (w (u ^ , . . . ,u  ) ,  w * ( u ^ , . . . , u ^ ) ) e k 

Th is  com pletes th e  p ro o f o f  ( 9 * 2 ) .

We r e tu r n  to  p ro v in g  th a t  =  V . R e c a ll t h a t  E-j is  

d e d u c ib le  fro m  E and th e re fo re  V, = V ( Z , ) 3  V = V (e ) . T h is
— 1 I — —

c le a r ly  im p lie s  th a t  L (V ,;X )  z> L (V ;X ) and th a t
—  I —
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X(Yjr) 3 ;r) for all r c W(ft;X) x W(lft;X) . If

r = {(w^w^1)} then X(V;r) = X(V^ ;r) , for all ŵ  £ W(ift;X) .

For let (w,w’) e X(V;r) . Then by (9*2) the sentence

(7) v x 1,...,xn (w1 = wf — > w = w ’)

is deducible from X . where x.,...,x are all the variables that 

occur in w , w* , or wj . This means that (6) is in Z-j 

and therefore again applying (9*2) we see that (w,w*) eX(V ;r) . 

Hence X(V;r) c x(V, jr) . The opposite inclusion is true anyway—  —- —  I

and therefore X(i;r) = ;r) when r is a singleton of the form

{(w^,w^‘)) . We use this to prove that X(V;r) = X(V^ ;r) for every 

subset r of W(ift;X) x W(ift;X) . We can write

X(V. ;r) = UX(V. jr’) , where U extends over all r* of the form-— I —  I
{(w-j ;Ŵ  >) , (w-| ;wj ) e X(V^ ;r) . But X^jr') = x(V;r') if

r* = {(w^,w^)} . Hence X(V^ ;r) is a set-theoretic union of 

congruences in L(VjX) . By (9.1) this means that 

X(V, ;r) € L(V;X) . Hence x(V, ;r) 3 X(V;r) and therefore—  I —  =  I ~  —

X(V ;r) = X(Vjr) . In view of (9«2) the equation—  I —
=X(V;r) implies that every implication deducible from 

one of the sets X y Ẑ  is deducible from the other. Hence Z , Z-j 
are equivalent and V( = ) is a semi-variety. The proof of the

theorem is complete.

Theorem 9 is proved in [28].
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CHAPTER 3

GALAXIES OF ALGEBRAS.

The c o n d itio n s  o f ' c o r e f l e c t i v i t y ,  a b s t r a c tn e s s  and h e r e d i ty  

e n te r in g  th e  c h a r a c te r i z a t i o n  of q u a s i - v a r i e t i e s  g iv en  in  §3 o f  

C hap ter 2 seem to  form  an in t e r e s t i n g  and f a i r l y  r i c h  s e t  o f c o n d i t io n s .  

The c la s s e s  of a lg e b ra s  s a t i s f y i n g  th e s e  th r e e  c o n d itio n s  seem to  

d ese rv e  in d ep en d en t s tu d y . We g iv e  them a  name - g a lax y  of 

a lg e b ra s .  More p r e c i s e ly ,  we f i r s t  d e f in e  a g a lax y  in  a  c a te g o ry  

A to  be a  c o r e f l e c t i v e  su b c a te g o ry  Â  such  t h a t  f o r  every  

monomorphism A — > A' in  A i f  A' € A-j th e n  A e Â  . I f  

V c  V.| c  V(ift) th e n  V i s  d e f in e d  to  be a  g a lax y  in  ^  i f  

K(V) i s  a  g a lax y  in  K(V, ) . A g a la x y  in  V(ift) w i l l  be s im ply
—  - -  - - -  - - I ZZL

c a l le d  a  g a lax y  o f fö -a lg e b ra s . By Theorem 7 (Chap. 2 ) g a la x ie s  

of fö -a lg e b ras  a re  p r e c i s e ly  what were c a l le d  'q u a s i - f r e e  c la s s e s  of 

a lg e b r a s ' in  [1 7 ]- But o u r d e f i n i t i o n  i s  c o n c e p tu a lly  d i f f e r e n t  

and len d s  i t s e l f  to  more g e n e ra l  s i t u a t i o n s .

In  t h i s  c h a p te r  we g iv e  some p r o p e r t i e s  o f g a la x ie s  o f 

^ - a lg e b r a s . We s h a l l  assume ift to  be a r b i t r a r i l y  f ix e d .

We b e g in  by c o l l e c t i n g  some im m ediate consequences o f our 

d e f i n i t i o n s .

THEOREM 0 . Let ^  , Vg , c  V(ift) . Then:

( 0 .1 ) I f  V, i s  a g a la x y  in  V0 and V0 i s  a g a lax y  in  V,
=  I -= d —j

th e n  V-j i s  a  g a lax y  in  .



-  5 4  -

( 0.2) If V-] cz and are galaxies in then

V is a galaxy in Yj~> .

( 0.5) Let V be a galaxy. Then K(V) is complete and 

cocomplete [20, p. 44] and limits in K(ift) of diagrams in K(v) are 

in K(Y) • Moreover the partly ordered set L(V;Y) is a complete 

lattice for every set Y .

( 0.4) if is a galaxy in contains an algebra

generated by a set Y and admits a free algebra on Y then

V-j also admits a free algebra on Y .

PROOF. (* 0.1) and ( 0.2) follow easily from the definition of a

galaxy. Categorical part of ( 0.3) follows from well-known

[20, pp. 129-130] properties of coreflective subcategories in general.

For the other part of (.0.3) let k . e L(V;Y) ; where i ranges1 —
over an index set. The L(VjY)-cover of U. k . exists by Theorem 7 

of Chap. 2 and is clearly the join of in L(V;Y) .

Moreover W(ift;Y)/rL is a subalgebra of the cartesian product

of (W(ft;Y)/Ki)igI (Cf. proof of Theorem 7 of Chap.2)and hence by (7*3) 
of Theorem 7 of Chap. 2 W(fö;Y)/tc^ej  ̂ is in V which means that 

H e L(V;Y) . Hence L(V;Y) is a complete lattice.

( 0.4) can be proved as follows.

Let F^(Y) be the free algebra in on Y and let

F̂  (Y) , f : Fg(Y) — > F.J (Y) provide a coreflection of F^(y ) 

in . By our assumption we can find A e such that A is
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generated by Y . Let g : F^ (Y) — * A be the unique homomorphism 

that extends the inclusion map from Y into A = carrier(A) .

By the definition of coreflection there exists a unique map 

e : F.j (Y) — > A such that the diagram

commutes. Since g|Y

is one-to-one we see from the commutativity of the above diagram that 

f IY is also one-to-one. Hence we can assume that Y c carrier (F̂  (Y)) 

and that f extends the inclusion map from Y into carrier (F̂  (Y)) .

As in the proof of Theorem 7 of Chap. 2 we can further assume that f is onto

Since F^(Y) is generated by Y these assumptions imply that F̂  (Y)

is also generated by Y . Let A, be an arbitrary algebra in

Y-j . We complete the proof of ( 0.4) by showing that any function

d : Y — > Aj can be uniquely extended to a hpmomorphism

ê  : F-j (Y) — > Â  . Surely we can uniquely extend d to a

homomorphism ĝ  : F^ (Y) — > Â  . Let ê  : F̂  (Y) — > A-j "be the

f x g

V
F, (Yj e A

unique homomorphism which makes the diagram



- 56 -

commute. Then it is clear that ê  extends d . Let ê  also 

extend d . Then ĝ  = e^f is such that ĝ  j Y = d . Since 

F0 (Y) is free in V~ and A, e V. c V0 this shows that g* = g.
C. = d  — \ =1 —  rad I I

*which in turn implies that ê  = ê  because the commutativity of 

the last diagram uniquely determines ê  for given g-j . Hence 

F̂  (Y) is free in . The proof of the theorem is complete.

Let S be the category of sets and functions and let P 

be the category of partly ordered sets and order preserving functions. 

Given V c V(ift) we have already defined an object L(V;Y) of P 

for every object Y of S . When V is a galaxy (in V(ft)) we

can also define a map L(V;f) of P for eve.ry map f : Y-j — > Y^ 

of S . For this let us define [L(Yjf)](K) , for every 

k e L(V;Y.|) , to be the L(V;Y2)-cover of
p

k = {(f(u^),f(u2)); (u1,u2 ) € k ) y Where f = W(fö;f) is the unique 

homomorphism that extends f to W(fö;Y-j) • The function 

L(Y;f) : L(V;Y^) — > L(V;Y2) is clearly order preserving. We 

have thus defined, for every galaxy V , a function L(V;-) : S — > P
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In  f a c t ,  as we s h a l l  now show, L (V ;-) i s  a f u n c to r .

THEOREM . 1 . Let V he a g a lax y  of fö -a lg e b ra s . The L(V;-) i s  a

f u n c to r  from S in to  P .

PROOF. Let f  : Y-j — ■> > g : Y2 — > Y^ be a r b i t r a r y  maps in  S .

We have to  prove t h a t  L(V;gf) = L(V jg)L(V ;f)  . For t h i s  i t  i s  

co n v en ien t  ' t o  in t ro d u c e  th e  fo l lo w in g  a b b r e v i a t i o n s .  We w r i te  

Lf  and Lf  f o r  th e  fu n c t io n s  L (V ;f) and L(ift;f) = L(i£(ift);-) 

r e s p e c t i v e l y .  For every  s e t  Y we w r i t e  Xy f o r  th e  f u n c t io n  t h a t

ta k e s  k e L(ft;Y) t o  th e  L(V ;Y )-cover o f  k • We need some f a c t s
, * 

abou t th e  f u n c t io n s  Xy , Lf  , Lf  .

For two maps ^  : (Lj ,£ )  — > ( I ^ , ^ )  we w r i te  ^  ^  i f

(z) ^ X2 (z) f o r  a l l  z e  L̂  .

( 1 . 1 )  *Y2 Lf  " Lf^Y^

Let k € L(fö;Y^) . W rite  k+ = Xy (k) , k* = L *(k) ,

(k+) = L*(k+) and (k ) + = X y  ( k ) . To prove ( .1 .1 )  we must show
1 *2 "X* -f- -f-

t h a t  (k ) 3  (k ) . Let W (^;Y ^)/k — > W(&;Y2 ) / k be th e

homomorphism u n d e r  which th e  e q u iv a le n c e  c l a s s  [u ] k goes upon 

[ f (u ) ]K  f o r  a l l  u e W(<ft;Y.j) , where f  = W(fö;f) . Let 

W(&;Y-|)/k — > W(i^;Y] ) / k+ and W(&;Y2 ) / k* — > W(ft;Y2 ) / ( K*) + be th e  

c a n o n ic a l  homomorphisms ( t h a t  a r e  w e l l  d e f in e d  b e c a u se ,  by

d e f i n i t i o n ,  k c  k , k c  (k ) ) .  Now, by th e  p ro o f  of Theorem 7 o f  Chap42 

W((Rj Y ^ ) /k+ and W(&;Y.j ) / k — > W(fö;Y-j ) / k+ p ro v id e  a c o r e f l e c t i o n  of
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W (^;Y ^)/k i n  K(V) and th e r e f o r e  t h e r e  e x i s t s  a (unique) 

homomorphism W(i& ;Y^)/k+ — > WfejYg) / ( k*) + such t h a t  th e  

fo l lo w in g  d iagram  commutes:

WCftjyp/n ---------------> w(ft;Y2 ) / K*

I

i
V v

W(R;Y1) / k+---------------- > Wfe;Y2 ) ( K*) +

From th e  com m uta t iv i ty  of th e  above diagram  and th e  d e f i n i t i o n s  of 

th e  t h r e e  maps W f e ^ ) / *  — > W(^;Y2 ) / k* , WfftjY^/ic — > W(iR;Y1) / k+ , 

W((R;Y2 ) / k* — > W(^;Y2 ) / ( k* ) + we see  t h a t  th e  f o u r th  map 

W(î ;Y ^ ) / k — >W(&;Y2 ) / ( k ) of our d iagram  must ta k e  [u ] k upon

[ f (u ) ] ( ic  ) + f o r  a l l  u € W(ft;Y^) . This im m edia te ly  shows t h a t
4-  *  4-

i f  (u1 ,Ug) € K th e n  ( f ) , f ( u ^ ) ) e ( k ) . Hence

(K+) f  = { ( f  (u1 ) , f  (ug ))  ; (u ^ U g )  e k+ ) c  (K* ) + • This im p lie s  

t h a t  (k+)* c  (k J + , s i n c e ,  by d e f i n i t i o n ,  (k+)* i s  th e  l e a s t  

congruence over W(fö;Yg) c o n ta in in g  (k+)^ . This com pletes  th e  

p ro o f  of ( ' 1 . 1 ) .

( 1 .2) L*L* = L* and L L  I  L „ .
g f  g f  g f  gf

For eve ry  f u n c t io n  e : Y — > Z and s e t  r  c  W(ift;Y) x W(ift;Y) 

we w r i te  r S f o r  th e  s e t  {(e (u^) , e  ( u g ) );  (u^,Ug) e r ] ,  where 

e = W(ft;e) . Let k be an a r b i t r a r y  congruence in  L(iR;Y  ̂ ) .

S ince  W(ift;-) i s  a  f u n c to r  we have t h a t
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gf = W(fö;g)W(ift;f) = W(fö;gf) = gf . From here it follows directly 

that Kgf = (K^)g . Since c  (k) c= L^(k) this gives 

Kgf c (Lf (K))S c (Lf (K))g . The inclusion c (L^U))6
* *tells us that L" (k) c  L^L^ k) and the inclusion c (LpC*))^g-*- g ■*-

gives L f(k) c: L L (k) . We complete the proof of ( 1.2) hy gi g t
proving the inclusion L L (k) c  L „(k) . For this we first makeg 1 ĝ-
a trivial observation. Let Y be any set and let r c: W(fö;Y) x W(|ft;Y) 

Write for the least congruence over W(ft;Y) containing r .

Then (v,v') e if and only if the equality v = v ' is deducible

from e(r) = {u = u' ; (u,u’) e r} . Moreover, if e is a function 

from Y and v = v ’ is deducible from e(r) then e(v) = e(v’) is 

deducible from S(re) , where as before e = W(ift;e) and 

rG = ( (e (u), e (u’) ) ; (u,u') € r} . Now let (w,w’) e L*L*(k) .s **•
Then w = w ’ is deducible from (g(v) = g(v’); (v,v’) e L^(k) } •

* fSince L^(k) is the least congruence containing k then

(v,v') e L̂ ,(k ) if and only if v = v ’ is deducible from

(f(u) = £(u’) ; (u,u') € k ) . Hence for our

~\ We can regard v = v ’ as a sentence in the language obtained 

from by adding members of Y as constant symbols, that

is, the language <J>(fö’) , where ft’ = < U Y ,h’) , 

h ’ I 0, = h , h(Y) = 0 . Then by the ’deducibility of v = v ’ 

from S(r) ’ we mean the ’deducibility of v = v ’ from S(r) 

in the language 0 (ift ’) ’.
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a r b i t r a r y  member (w,wf ) o f L L ( k) th e  e q u a l i ty  w = w*
S

is  d e d u c ib le  from  (£ f (u )  = g f ( u 1) ; ( u ,u ')  € k ) • But we have a lre a d y

n o ted  t h a t  g f  = g f  . Hence w = w’ i s  d e d u c ib le  from

(g f (u )  = g f ( u ' ) ;  (u jU * > e k) , so  t h a t  (w ,w ') i s  in  L*f (iJ  

/ g f \( th e  l e a s t  congruence c o n ta in in g  k ) . This p roves t h a t
•X* -X-

L ^L f(k) c  L ^ ( k) and th e  p ro o f of ( 1 .2 ) is  co m p le te .

The l a s t  f a c t  w hich we need to  know abou t th e  fu n c tio n s  x̂ - >

, I-£ e t c .  i s  an im m ediate consequence of th e  d e f in i t i o n s  of th e se  

fu n c tio n s  and r e q u ir e s  no p ro o f .

( 1 .3 ) Xy Lf  .

I t  i s  now easy  to  p rove t h a t  L (V ;-) i s  a f u n c to r ,  i . e . ,
=

L L = L f . By ( 1 . 1 ) ,  ( 1 . 2 ) ,  ( 1 . 3 )  and th e  obvious f a c t  
g i  g i

t h a t  X̂ . = f o r  a l l  s e t s  Y we have

v*= %vVfs %V®L*f= V*gf = v  s v* •
Hence L L  = L f  and th e  p ro o f of th e  theorem  i s  com ple te .

8  ̂ g^

THEOREM 2 . Let V, , V0 be g a la x ie s  such t h a t  V. 3  V0
=  1 =5C = 1  —  '= d .

Then

th e r e  i s  a  n a t u r a l  t r a n s fo rm a tio n  from  L(V^ ; - )  to  ^(V ^.;-) •

PROOF. Let tjy : L ^  ;Y) — > L (^ ;Y )  be th e  o rd e r  p re s e rv in g  map 

under w hich k e L(V^ ;Y) goes to  th e  L ( ^ ;Y ) - c o v e r  of k .

We prove th e  theorem  by showing th a t  th e  d iagram
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L-(v, ;f)

' t !
i

L ^ J Y , )
L(Vgjf)

V
-> L ( ^ ;Y 2 )

commutes f o r  every  f  : Y-j — > in  S . For t h i s  we f i r s t

in tro d u c e  some a b b re v ia tio n s  s im i la r  to  th o se  used  in  th e  p ro o f of
*7T

Theorem ' 1 . We w r i te  Ly , y and f o r  th e  maps

L(fö;f) , L(V.| ; f ) and L ( ^ ; f )  r e s p e c t iv e ly ,  where f  i s  an

a r b i t r a r y  map in  §. . For ev e ry  s e t  Y and -t = 1 ,2 we w r ite

X,, __ f o r  th e  o rd e r  p re s e rv in g  fu n c tio n  L(fö;Y) — > L(V ;Y) which 
l ’ Y  Hie

sends k in  L(ift;Y) t o ^  L (V ^;Y )-cover of k • I t  i s  c l e a r  t h a t

V  = *2 Y I ^^-1 f ° r s e ^s ^ a nd th e com m utativity of our

diagram  i s  e q u iv a le n t  to  th e  e q u a l i ty  fHy = %  f  *

f o r  ev ery  k e L(V.. ;Y, ) we have = I 1

Now

^ ^ f ^  ( k) -  I^^fX2j>Y1 * s i n c e  ~  X2 ,Y1 I L^1 , Y )  ^

—  Xg y y K̂ ̂  *  ty   ̂  ̂ • 3 )

-  *2,Y * 2 ,Y  Lf  ^  > "by ( 1 -1 )

= )<2,Y2Lf^^ ’
*

s in c e  ^  = %

-  ^  Y LfX2,Y  ^  ’ s in c e  *2,Y ^  -  K

^ f 1̂  (k) j by ( 1 . 3 )  .



Hence

( 2.1) *
^ f 1̂  = ^2,Y2 Lf

On the other hand for every k e L(V^ jY^) we have

nY2 Ll , f ^  =  ’ since T)y^ =  *2,Y2 1 L ^Sl ;Y2^

=  ,Y2 Lf ̂ , Ly ( 1 .3)

Hence

=  *2,Y2 Lf ’
since V. z> V0 and therefore =l —  =ü

’<2 )Y2 X1,Y2 =  *2,Y2 ‘

( 2.2) XY2 Ll,f =  *2,Y2 Lf ‘

By comparing (.2.1) and ( 2.2) we find

^ Y 2 L l , f  ^ f 1^  *

As mentioned earlier this is enough to prove the theorem.

THEOREM 3 « Let V be a galaxy of ift-algebras. Then L(V;f) 

preserves joins for all functions f : — > Y2 .

PROOF. We use the abbreviated notations introduced in the proof of

Theorem 1. Let k . e L(V;Y.) , where i ranges over an index set
1  —  •

I , and let k  ̂ be the joins of j_ej > ^f^Ki^igI

in L(V;Y^) , L(V;Y2 ) respectively. We have to show that
■X* ^ "X"

k2 = Lf (K1) . Let K1 , k2 be the joins of {Kj_}ieI > L̂f^Ki ^ j €I
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i n  Lfe jY  ̂ ) } L(fö;Yg) r e s p e c t i v e l y .  Then k-j = Xy ( k* )  ,

Kg = Xy (Kg) (Cf. p ro o f  of Theorem 0 )• Before p ro cee d in g  to  th e  

p ro o f  of Kg = L^,(k-|) we need to  show th e  fo l lo w in g :

(3*1) k2 = Lf  (Ki ) *

To prove ( .3*1) vr use th e  o b s e rv a t io n  made in  th e  p ro o f  of

Theorem 1 (see page 59)* I f  ( v , v ' ) e  k-j th e n  v = v 1 i s

d e d u c ib le  from { u =  u* ; ( u , u ' )  e  ̂ k^} and hence f ( v )  = f ( v ’ ) 

i s  d e d u c ib le  from ( f ( u )  = f ( u ’) ; ( u , u ’ ) e LL j  k^} • Thus th e  

s e t s  6^ = ( f ( u )  = f ( u ' )  ; ( u , u f ) e k-j } and 

Cg = ( f ( u )  = f ( u ' )  ; ( u , u ' J  e ^ k^} a r e  e q u iv a le n t .  But
-K* -K-

(w,w‘ ) € L (K] ) i f  and only  i f  w = w* i s  d e d u c ib le  from gj

and (w,w*) e Kg i f  and only  i f  w = w‘ i s  d e d u c ib le  from Sg .

The e q u iv a le n c e  of 6^ and £g now shows t h a t  Kg = L ^ (k-j ) and 

( 3 • "I) i s  p ro v e d .

Now we can prove t h a t  Kg = L ^ k^) . We have

bf (K i ) — X̂  (K i ) y

= \ Lt \ (KP

S  W  £  (k? )  >
*2 2

*  /  *  \

=  ^SfgLf  Ki ’ ■

=  Xy ( Kg ) y 

l 2

by ( 1 .3)

by ( 1 .1)

s in c e
*2

by ( .3 .1 )
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Hence Lf  (k  ̂ ) c  . On th e  o th e r  hand

Lf  (k-, ) = ^  L *(k ) 
i 2

3  Y L* (K?) , 
2

s in c e  k 3  k*

=  Xy ( Kp ) y

2
"by ( 3 - 1 )

= Kp .

Hence (k-j ) d  , so t h a t  = L ^ k-j ) . T his com pletes th e  

p ro o f o f th e  theo rem .

We conclude t h i s  c h a p te r  by a sk in g  two q u e s tio n s  t h a t  we have 

n o t been  a b le  to  answ er. We see  from 0 .3  t h a t  L(V;Y) i s  a com plete 

l a t t i c e  fo r  g a la x ie s  V and s e t s  Y . Are th e r e  s e m i- v a r ie t ie s  V , 
o th e r  th a n  v a r i e t i e s ,  such t h a t  L(V;Y) i s  a  com plete s u b la t t i c e  

o f L(ift;Y) f o r  a l l  s e t s  Y ? We a l s o  le a r n  from  Theorem 3 th a t  

L(V;f)  p re se rv e s  jo in s  f o r  g a la x ie s  V and fu n c tio n s  f  . For 

what q u a s i - v a r i e t i e s  V i s  th e  map L(V;f)  a  com plete  l a t t i c e  

homomorphism f o r  a l l  fu n c tio n s  f  ?



CHAPTER b

A THEOREM ON RANKED CATEGORIES OF STRUCTURES

In the last two chapters we have given some applications of 

the categorical concept of coreflection to the study of algebraic 

structures. In the present short chapter we apply this important 

concept again and obtain a very general and simple principle 

about ranked categories of structures which says that all categories, 

that admit free algebras and are bigger than a ranked category, 

are themselves ranked.

We begin by describing what we mean by a ranked category 

of structures.

Let K be an arbitrary category of structures. We shall 

assume in this chapter that morphisms of K are functions although 

our considerations are applicable to other situations (e.g., to 

categories of structures whose morphisms are functopisms (see p. 8 )). 

Categories of structures considered by Freyd in [1, pp. 107-120] 

satisfy our assumption about K .

We shall say that K admits free structures if the forgetful 

functor F(£;-) from K into S has a left adjoint G . The 

structure G(y ) , determined within isomorphism, by Y alone, 

may be called the free structure on Y . Freyd [1 , pp. 1 07-120] has 

shown how this concept of ’freeness' translates the usual idea of

’freeness'.



Note that if morphisms of K could he functopisms we could 

have defined freeness by considering the forgetful functor 

F+ (Kj-) : K — > S+ defined on page 9 •

We shall say that K is ranked if K admits free structures 

and free structures on two sets are isomorphic if and only if the 

sets themselves are isomorphic (i.e., have the same cardinality).

A class V of (^-structures is said to be ranked (to admit free 

structures) if K(V) is ranked (admits free structures). Many

familiar algebraic systems like groupoids, loops, abelian groups, 

Boolean algebras form ranked classes. All quasi-varieties admit 

free algebraic structures but there are [11] quasi-varieties 

(in fact, varieties) that are not ranked. All non-trivial varieties

of groups are ranked [22, p. 12]. In fact it is easy to deduce 

from the result just quoted that all classes of groups, other than 

the trivial variety, that admit free groups are ranked.

In this chapter we prove the following simple and general 

principle about ranked categories of structures.

THEOREM 1 . Let be categories of structures that admit

free structures. Let K. 

is ranked.

The above theorem is an immediate consequence of Theorem 2 

below which is a purely categorical and more general result.

Then *2 is ranked if 5

To state Theorem 2 we need few definitions. A functor
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F : A — > B is called ranked if F has a left adjoint G such 

that for all € B the objects G(B^), G(E^) are isomorphic

in A if (and only if) B-j , B^ are isomorPhic in B . For 

two functors F̂  : — > B , Fg : ^  we write F̂  ^

if a , a  k > g1 e h
and F̂ is the restriction of F2 to A,

THEOREM 2 . Let F1 ■ & — > B , F2 : A^ — > B admit left

adjoints. Let F1 S F 2 . Then Fg is ranked if F̂ is ranked.

PROOF. Let G-j : B — > A-j , G^ : B — > A^ be the left adjoints

of F-j , F^ respectively. By the defining property of adjoint

functors, for all A e Â  , B e B there exists a one-to-one onto 

function (B,A) : Hom-j (Ĝ  (b ),A) — •> Hom(B,F.| (A)) such that 

for all morphisms a , ß , y , 5 the diagram

commutes if and only if the diagram
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F1 (A) F1 (a)

[t)] (b,a) ] (r)=r-| (B',A')](b )

commutes, where A , A' e Â  , B , B' € B and Hom^ (Ĝ  (B),A)

is the set of all morphisms in Â  from G-j (B) to A while

Hom(B,F.| (A)) is the set of all morphisms in B from B to F̂  (A) .

The functors F^ , G^ similarly determine a function (B,A) for

all B € B , A € ^  . For every object B € B write

jt : B — > F G. (B) for the image of the identity b I I
1G (B) : G1 (B) — > G, (B) under r^'B.G^B)) . Let

t : (G_ (B) — > G, (B) be the inverse image of nTj under B d I B
(B,G-| (B)) . t b exists because G1 (B) e ^  and F̂  Ĝ  (B) = FgG-j (B) 

We show that G-j (B) together with the map Tß is a coreflection of 

G2 (b) in A-j . Let a : G^ (B) — > A be a map in and let

A € A We have to show that we can find a unique map

£ : G-j (B) — > A such that the diagram

g2(b)

G1 (B)

(I)
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commutes. To do t h i s  l e t  ß : B — > F^(A) he th e  image of a 
under (B,A) . S ince  F-j ^ F^ and A e ^  we have F^ (A) = F̂  (A) 

Hence ß has an in v e rs e  image £ , s a y , under rj-j (B,A) . We show

0 . 1)

th e  map we were lo o k in g  f o r .  B efore

r e l a t i o n s  betw een d i f f e r e n t  morphisms

*B [»! (B’ G1 (B))]0Oi (B))

*B = [ t>2 (B,G-| (B )](t b )

ß = [rt2 (B ,A )](a )

ß = [t1i (b , a )] (i)

Now £ is  c l e a r ly  in  Â  . From th e  co m m u ta tiv ity  of th e  d iagram

G, (B) 7 ^  IG, (B)
1 G-j (B) 1

th e  d e f in in g  p ro p e r ty  o f a d jo in t  fu n c to rs  m entioned  above and (1 .!■),

we see  t h a t  th e  d iagram
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F-| G-j (B) F ^ l )

( II )

commutes. Let be th e  map w hich makes th e  d iagram

commute. Then

V ( B )  G2 (B)

( I I I )

F2G1 (b ) f2 (s ) f2 (a )

ß-] = 1^2 (BjA) ] (ô  )

B

a ls o  commutes, by th e  d e f i n i t i o n  o f  a d jo in t  fu n c to r s  and th e  r e l a t i o n

betw een th e  maps tt , t  g iv en  in  (1 .1 ) .  S ince F, S  F0 andJ3 I d

(B) , I € we se e  t h a t  th e  d iagram
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F-| G] (B) F1 (S) F] (A)

(IV)

i s  com m utative. Comparing (IV) and ( i l )  we f in d  t h a t  3 = 3 ^  .

S ince  ß] = [r^  (B,A) ] (c^ ) , ß = [r^  (B,A) ] (a) and t)2 (B,A) 

i s  o n e -to -o n e  we conclude  t h a t  a  = a  ̂ . S u b s t i t u t in g  a  f o r  

in  ( i l l )  we see  t h a t  ( i )  commutes. To f i n i s h  p ro v in g  th a t  (B) i s  

a c o r e f l e c t i o n  of (B) in  Â  we e s t a b l i s h  th e  un iq u en ess  o f th e  

map Ĝ  (B) — > A w hich makes ( i )  commute. Let |  ’ e be any 

map such th a t  th e  d iag ram

commutes. Then, as b e f o r e ,  u s in g  th e  d e f in in g  p ro p e r ty  of a d jo in t

fu n c to rs  and (1 .1 ) we se e  t h a t
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f2g1(b ) f2 (|') f2 (a )

is connnutative. Hence, since ^ F^ and A , G-j (B) , £’e Â  ,

the diagram

F1G1 (B) F^l') F,(A)

also commutes. This implies that

1 G.| (B) G1G, (B)

is commutative; so that § = |1 and it is proved that (B) is

a coreflection of G~(B) in A. .
d  =i
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We a re  now in  a p o s i t io n  to  conclude th e  p ro o f . Let 

Gg (B.j ) , Gg(Bg) be isom orph ic  in  ^  f o r  some e B ,

Then G, (B, ) , G, (EL)  a re  isom orphic in  A, because  c o r e f le c t io n s  

o f isom orphic o b je c ts  a re  iso m o rp h ic . S ince i s  ranked  t h i s

im p lie s  t h a t  B, , B0 a re  isom orphic in  B . Hence F0 i s  ranked

and th e  theorem  i s  p roved .

Theorem 1 - now fo llo w s  from  Theorem 2 by n o tin g  t h a t  K is  

ranked  i f  and on ly  i f  F (K ;-)  i s  ran k ed .

P ro fe s s o r  G ra tz e r  has p o in te d  ou t to  me t h a t  th e  s p e c ia l  

case  of Theorem 1 , when , Kg a re  o f th e  form K(V^) ,

K(V0 ) f o r  some c la s s e s  V , V o f if t-a lg e b ra s , can be d i r e c t l y  

deduced from Theorems 31*1 and 31*5 o f h is  book [9]*
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CHAPTER 5

PRODUCTS OF RELATIONAL STRUCTURES

A very important and fundamental part of the study of 

mathematical objects of a certain type involves constructions or 

processes that obtain objects of that type from other objects of 

the same type. Elementary classes of structures form an important 

type of classes and it is worthwhile to know of ways of obtaining 

elementary classes from other elementary classes. Some such ways 

are known. For example let , V_ c  Y.(fö) be elementary; then 

V.| fl VQ is also elementary. A more sophisticated example is 

provided by a theorem of Vaught [31 ] which shows that the class 

S- CR (V) of all substructures of cartesian products of families 

of structures in V is elementary (in fact universal) if V is 

elementary.

In this chapter we give some general typeß of constructions of 

elementary classes and compact classes from compact classes. Our 

definitions, remarks and results generalize many of the concepts and 

results of [7]> [12], [l4], [19] and [31] and answer a question of 
Feferman (See Math. Reviews'32, 0 966), 5512) for a certain 

type of ordinal products. Our last result (Theorem 6) suggests 

the possibility of a categorical study of at least some of the 

products of relational structures.

The background for our constructions is provided by [7] where a
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very general concept of 'generalized products' of relational 

structures is defined which comprehends many of the products arising 

in Mathematics. Roughly speaking, a generalized product of 

a family (A^)^ ^ of relational structures is a structure A 

such that carrier (A) = A is the cartesian product Cniej A^ 

of the A^ = carrier (A^) and the make of A not only depends 

on the makes of the A. hut also on the make of a structure on the
— l

power set S(l) of I . In this chapter we first describe the 

products of [7] in a somewhat different set-up which involves not a 

structure on S(l) but on I itself. Our description makes 

it possible to generalize the concept of 'generalized products' 

to what we shall call higher order products. The concept of the 

order of a product, which our description brings out, seems as 

important as that of the order of a language. Thus first 

order products (like first order languages) seem to distinguish 

themselves as specially important type of products. As we shall 

see, first order products share with the cartesian product the 

properties given by Makkai [l4] and Vaught [51]» We observe

that the cartesian product and the ordinal product are first order 

products as are the regular products of Mal'cev [19]*

We now give precise descriptions.

Let ft1 = <Pn ,0,hn > , ^  = (P2 ,0,h2 ) , ^  = (P5,0,h5 ) be

arbitrarily fixed predicate systems. For every <p e we

think of a new symbol p which does not belong to any one of
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the sets , P2 , . Write ift+ = (P+,0,h+) , where

P+ = Pg U (p ; cp €$(fii|)) and h+ coincides with ĥ  on P̂  

while h+ (p ) = 1 for all cp e 0 (ift-j) .

By an (fi-j ,(jQ-complex of structures we shall understand 

an ordered pair A = ({Ai)i ,̂1) , where I = (I, i) € Vfeg) ,

/L = (A^ca) € V(£̂  ) , i € I . Denote by £(&. the class of

all (<&i y 1̂ 2)-complexes. Let x. , —  ,x . € X and

f f e Cn. T A. . 1 k lei l
Jr 3k

By the graph of A at

(x . ,... ,x . ) = (f ,... ,f ) we shall understand the ^-structure 
J1+ Jk K

(l,i ) defined as follows: i | P̂  = i and for all cp e
+the unary relation i (p ) is the set of all i e I such that

V.x . j .. . }x . (cp) holds in A. at 
Jk+1 Jn 1

(x v ••;X . ) = <f, (i),...,t. (i)) , where x ,...j are the
'1

variables that may occur freely in cp .

We are now in a position to define our products. Let 

t : P,. — > 0Q(ift+) satisfy the requirement: For all p e P̂  the 

formulae such that p^ occurs in t (p) together involve 

just x-| > • •. >x̂   ̂  ̂as free variables. Now the first order product 

of type t is defined to be the function IIT : — > V(fö̂ )

such that for A =  ({A^]^e I.) the (^-structure IIT(a) 

is (A,a.) , where A = CIL^ A^ , and for all p e P̂  .and 

fl9 * * * >fh- (p) € A we have (pj) e a(p) if and only if

t (p) holds in the graph of A at (x-j ,... ,x̂  = (f 1,... ,f̂  ( )) •
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We s h a l l  o f te n  w r ite  nTI_(A^) f o r  IIT (a) .

F or ev e ry  p o s i t iv e  in te g e r  n we can d e f in e  n th  o rd e r  p ro d u c ts  

by u s in g  n th  o rd e r  languages in  a  way e x a c t ly  s im i la r  to  th e  

one we have used  f i r s t  o rd e r  languages to  d e f in e  f i r s t  o rd e r  

p ro d u c ts .  We om it th e  obvious d e t a i l s .  Our i n t e r e s t  h e re  in  

t h i s  c h a p te r  i s  in  th e  f i r s t  o rd e r  p ro d u c ts  o n ly  and we s h a l l  

make on ly  th e  fo llo w in g  two rem arks ab o u t h ig h e r  o rd e r  p ro d u c ts .

F i r s t l y ,  i t  fo llo w s  d i r e c t l y  from  th e  r e s p e c t iv e  d e f in i t i o n s  t h a t

’g e n e ra liz e d  p ro d u c ts ' o f [7] a re  second o rd e r  p ro d u c ts  b u t no t

e v e ry  second o rd e r  p ro d u c t i s  a  'g e n e ra l iz e d  p r o d u c t '.  S econd ly ,

th e  B asic  Theorem o f [7] and th e r e f o r e  a l l  th e  g e n e ra l  r e s u l t s  of

[7] to g e th e r  w ith  th e  an alo g u es o f Theorem 2 and Theorem 3 below  h o ld  f o r

p ro d u c ts  o f any o rd e r  and can  be proved s im i la r l y .

We now r e tu r n  to  f i r s t  o rd e r  p ro d u c ts  and i l l u s t r a t e  our 

d e f i n i t i o n  o f th e s e  p ro d u c ts  by d e s c r ib in g  c a r t e s i a n ,  o rd in a l  

and r e g u la r  p ro d u c ts  as f i r s t  o rd e r  p ro d u c ts . Let

= ^2 = ^3 = anc  ̂ f ° r  ev e ry  p e P l e t  r ( p )  be th e

se n te n c e  v x ^ p ^ (x ^ )  , where cp i s  th e  a tom ic fo rm ula  

p (x^ , . . . , x^^ ^) . Then T? l (A^)  i s  m ere ly  th e  c a r t e s ia n  p ro d u c t o f 

th e  A^ . F o r th e  case  o f o r d in a l  p ro d u c ts  suppose t h a t

= ^2 = ^3 = ŵ e re  P c o n s is t s  o f a s in g le  b in a ry

r e l a t i o n a l  symbol p so  t h a t  h(p)  = 2  . T his tim e ta k e  r ( p )  

t o  be th e  se n te n c e

^ 1  (pcp (X- |)A V X g l p O ^ x - , )  — :> PCp2 x̂2 ^ ^  '
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where cp , cp2 are the formulae p(x^x2) and x̂  = x^ respectively. 

It is a simple matter to verify that nTl(A.) is the ordinal 

product of the as defined in [7]* Finally, regular products

of [19] are obtained as first order products if the function 

t entering our definition is restricted in the following way:

For every p e the sentence r(p) involves only the unary 

relational symbols of the form , cp e  $(fö.|) , and (possibly) the 

symbol for equality = . In other somewhat less exact words, 

regular products are precisely those first order products that do 

not involve a structure on the set indexing the families of 

structures to which the products are to be applied.; so that the image 

of ander a regular product IIT is independent of the

second member of the ordered pair. Observe that the cartesian 

product is a regular product while the ordinal product is not.

For classes <z V(ift̂  ) , c. V ^ )  we write

for the class of ,(5̂ )-complexes ( { A >

where I e V~ and A. e V, for all i e I . Let us write — =2 -1 =1
n (V^Vg) for the class of fö^-structures of the form IIT (a ) , where 

A e C/V-j ,Vg) . By SIIT (V^,^) we shall denote the class of all 

^-structures that are embeddable in a structure of HT (V^,^) .

We now give some properties of first order products.

Our first result follows from the Basic Theorem of [7]> since 

every first order product is a 'generalized product'. Before 

stating this result we bring out its contents. Let cp be an
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a to m ic  fo rm u la  o f  th e  fo rm  p (x . , . . . , x  . ) , k = h ,,(p )  , p e P .
+ J 1 Jk ^ ^

W rite  t (cp) f o r  th e  ift - s e n te n c e  o b ta in e d  from  r ( p )  by

r e p l a c i n g  e v e ry  p^ t h a t  o c c u rs  in  t (p ) by  p , , w here \jr’ i s

o b ta in e d  from  by  s u b s t i t u t i n g  x . , . . . , x  . f o r  x , . . . ,x,
J - |  J k  K

r e s p e c t i v e l y . .  Then o u r d e f i n i t i o n  o f  n T im m e d ia te ly  t e l l s  us t h a t  

g iv e n  e C ( ^  ,fR^) and f ^ , . . . , ^  e C I L ^  Ai  th e  a to m ic

fo rm u la  9  h o ld s  in  HTI  ( A. ) a t  (x . , . . . , x  . ) = ( f  , . . . , f  ) i f
1  J - j  ‘ ^

and o n ly  i f  t "* (cp) h o ld s  i n  th e  g ra p h  o f

(x  . , . . .  , x  . ) = ( f . , . . . , f T ) . Now Theorem  1 below  m ere ly  sa y s  
J 1 Jk + k

t h a t  a  s e n te n c e  t (9 ) w ith  th e  above p r o p e r ty  can  be d e f in e d  f o r  

a l l  9 e •

THEOREM 1 . 9 € and l e t  x .  , . . . ,x .
0 J 1

be th e  v a r i a b l e s

f r e e l y  o c c u r r in g  in  9 . Then t h e r e  e x i s t s  a  s e n te n c e  

T+ (9) e 0 (tö+) , d e te rm in e d  e f f e c t i v e l y ,  su ch  t h a t :

( 1 . 1 )  The fo rm u la e  \jr e w ith  p o c c u r r in g  i n  t + (9 )

t o g e t h e r  in v o lv e  o n ly  x .  , . . . , x ,  a s  f r e e  v a r i a b l e s .
" j

(1 .2 )  G iven A =  ( ( ( A ^ a . ) ) . ^ ,  ( I , t ) )  e and

f ,  e CII. _ A. th e  fo rm u la  cp h o ld s  in  IIt (a ) a t

(x  . , . . . , x  . ) = ( f  , . . . , f  ) i f  and o n ly  i f  t + (9 ) h o ld s  i n  
J 1 Jk 1 h

th e  g rap h  o f  A a t  ( x . , . . . , x  . ) =  ( f  , . . . , f  ) .
Jl Jk 1 k

As m en tio n e d  e a r l i e r  Theorem  1 i s  a  s p e c i a l i z a t i o n  o f  th e  

B a s ic  Theorem  o f [7l * The fo l lo w in g  c o r o l l a r y  i s  a  s p e c i a l i z a t i o n  

o f  Theorem  5*1 o f  [7]«
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COROLLARY 1 . Let A = , A' = ({A^.^,1)

be ,(Rq ) -complexes such that iL and Ad are elementarily 

equivalent for all i e I . Then JIT (a ) and HT (A*) are 

also elementarily equivalent.

Theorem 1 gives us a procedure for deciding whether a given

-formula holds in II^CA^) for given values of the variables

involved. For ^-sentences this procedure can be simplified by

usiftg the following method of Mal'cev [19]•

Let A = ((Ai)ieI^I} e C(^,^) . We can find

A' = ((Ad such that the A^ are pair-wise

disjoint and A^ , A d  are isomorphic for all i e I . In view

of this we can assume that our typical ) -complex

A = ({A.}. _,l) is such that the carriers A. of the A. are —i iel — l -l
pair-wise disjoint. It is also no loss of generality to assume that

the sets , P2 , P^ are pair-wise disjoint. Unless otherwise

stated these assumptions will be tacit in all that follows.

Let e be a new binary relational symbol and write

P* = P1 U P2 U {e},ift* = <P*,h*> , where h*|P] = h] , h*|P2 = h2

and h (e) = 2 . Consider A = ({A^}^ej>I.) e ,1^) . Let

A = U A^ . We define an (ft -structure A = (A,a) as follows.

First of all o:(b) is the equivalence relation over A with the

A^ as equivalence classes. Next, if p e P-j then

a(p) = U a (p) . Finally, for all p e P2 and

a . ,... ,a. e A , k = h (p) , if a e A ,...>a e A
1 xk ^ H  k \



th e n  (a.  , . . . , a .  ) e a ( p)  i f  and on ly  i f  ( i  , . . . , i  ) e i (p) ,
X1 \  I K

where i comes from A . We s h a l l  r e f e r  to  th e  s t r u c tu r e  A as th e

index  o f A and deno te  i t  by Ind(A) .

Let 0 (x) be an ft -fo rm u la  w ith  x as one o f  i t s  f r e e
•X*

v a r ia b le s .  L et ij; be a n o th e r  ft - fo rm u la . We w r i te

[ 0 (x) ] \Jr f o r  th e  r e s u l t  o f r e l a t i v i s i n g  \|r w ith  r e s p e c t  to  0 (x ) .

S e m a n tic a lly  [0(x)]\J/ can be i n t e r p r e te d ,  ro u g h ly  sp e a k in g , as

sa y in g  th a t  ' \|/ h o ld s  in  th e  s u b s t ru c tu r e  c o n s is t in g  of a l l  x

such t h a t  0 (x ) ’ . For ev ery  a e 0 (ft-.) we d e f in e  t (a)
o p

to  be th e  ft - s e n te n c e  o b ta in e d  from r  (a) by r e p la c in g  every  

fo rm ula  of th e  form  p (x .)  t h a t  o ccu rs  in  t + (cj) by [0(x)]\[r ,
v J

where 0 (x) s ta n d s  f o r  e ( x . ,x )  . The fo llo w in g  r e s u l t ,  which
J

g e n e ra l iz e s  Theorem 4 of [19]> i s  an im m ediate consequence of 

Theorem 1 .

THEOREM 2 . For a l l  a e 0Q(ft^) and A e C(ft^ ,ft^)

th e  s t r u c t u r e  IIT (a) s a t i s f i e s  a i f  and o n ly  i f  Ind(A) s a t i s f i e s

t* (a)

With Theorem 2 a t  o u r d is p o s a l  we can  now ap p ly  th e  method

of K o g a lo v sk ij [12] to  g e n e ra l iz e  th e  r e s u l t s  of Makkai [ l 4 ]  and

Vaught [31] on c a r t e s i a n  p ro d u c ts  to  th e  f i r s t  o rd e r  p ro d u c ts .

For Y-| c  V(ft ) , c  V(ft ) . l e t  I n d ^ , ^ )  d en o te  th e  c la s s  
*

o f a l l  ft - s t r u c tu r e s  of th e  form  Ind(A) , where  A = ( ^ ^ ,1 )  ,

I  € , A. e V, . Compare th e  fo llo w in g  r e s u l t  w ith  Lemma 1
—  — 1  =  I
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of [12] .



THEOREM 3 ■ I f  V] c  cz V fe g )  a r e  e l e m e n t a r y  ( u n i v e r s a l )

t h e n  Ind(V-j ,Vg) i s  a l s o  e l e m e n t a r y  ( u n i v e r s a l ) .

PROOF. L e t  Z ’ , Z" , Z f , Z^ b e  s e t s  o f  i f t* - s e n te n c e s  d e f i n e d  a s

f o l l o w s :  Z ’ c o n s i s t s  o f  t h e  s e n t e n c e  t h a t  s a y s  t h a t  g i s  

an  . e q u i v a l e n c e  r e l a t i o n  an d  o f  t h e  s e n t e n c e s

V X 1 ’ ■ ■ ■ (p )  >x i 1 • ■ ■ >**2 ( p ) [ e ( x l ,X 1 ) A  • • • A S  (x^ (p) ( p ) ) — >

(p (xi ' - - - \ ( p) ) ’

w h e re  p e ; s o  t h a t  Z* s a y s  t h a t  1 e  i s  a  r e l a t i o n  o f  

e q u a l i t y  f o r  r e l a t i o n s  o f  P2 ' .  Z" i s  t h e  s e t  o f  s e n t e n c e s

* V - ” '  x hl (p)

[ p ( x 1 , . . . , x ^ (p ) ) — :> e ( x 1 , x 2 ) A  . . .  / x e f x ^ X b  ( p ) ) ]  ,  p € P,

s o  t h a t  Z 1 s a y s  t h a t  r e l a t i o n s  i n  c a n  h o l d  b e tw e e n  t h o s e  e l e m e n ts

o n l y  t h a t  a r e  e q u a l  u n d e r  s ' .  Z-| i s  t h e  s e t  o f  s e n t e n c e s

Vx1 ( [ 0 ( x ) ] a )  ,

w h e re  a  e Z (V ^ ) a n d  0 (x) s t a n d s  f o r  s ( x ^ , x )  ; s o  t h a t  Z-j s a y s  

t h a t  1 Z (V^) h o l d s  i n  t h e  s u b s t r u c t u r e s  fo rm e d  b y  e q u i v a l e n c e  

c l a s s e s  u n d e r  s  ’ .

Z2 i s  t h e  s e t  o f  s e n t e n c e s  a S , w h e re  a e z (V g )  an d  a 6 i s  

o b t a i n e d  f ro m  a b y  r e p l a c i n g  e v e r y  a t o m i c  f o r m u l a  o f  t h e  fo rm
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x. = x. occurring in a by s(x. ,x. ) .
J-j J2 2̂

It is clear that Z = Z ’ U E" U L  U Ẑ  defines Ind(V^ ,Vg) . 

Further Z is equivalent to a set of universal sentences if 

Y-] } Yq are universal. This proves the theorem.

We can now state and prove the following generalization of the 

compactness theorems of [12] and [l4]. We recall that a class V of 

ift-structures is called compact if for every Z c (fö) there is a 

model of Z in V provided that every finite subset of Z has a 

model in V .

THEOREM 4. If V.| c V(^ ) is compact and c V(iftg) is elementary 

then nT(V],Vg) is compact.

PROOF. Let V̂' be the elementary class defined by z(V̂  ) so that 

V-j' consists of all -structures that are elementarily equivalent to 

structures of Y-j • We first show that II (V-|,Yg) is compact.

Let every finite subset Z' of Z c $o(ift̂) have a model in 

H (V* ,Yc>) > we to show that Z has a model in H (V1 ,VC)) .— I — Cl — I — Cl

*X-By Theorem 2 we see that (t (a); a e Z'} has a model in Ind(V.J,Vg)

for every finite Z* c Z . Since, by Theorem 3 , Ind(V̂ 1 ,V^) is

compact this implies that {t (a ) ; a e Z) has a model in Ind (V.| ,Vg) , 

say, Ind (A) , where A = , A± e V-,* , I e Vg •

Another use of Theorem 2 now immediately shows that Ht (a ) satisfies

Z . Since iT (a ) e nT (V1’,^) we conclude that nT(Vj,^) is
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compact. Compactness of nT (V-|,Vg) now follows by Corollary 1 

which tells us that every structure in nT ( V ^ i s  elementarily 

equivalent to a structure in nT (Vj,^) . This completes the 

proof of the theorem.

We observe that the above theorem can also be proved by the 

method of Makkai [l4j or of Onarov [23].

In Theorem 4 if we take = V(för>) and take nT to be a

regular product we obtain the compactness result of [12] for regular

products. We now apply Theorem 4 to a situation where the
results of [12] are not applicable. Let be the class of all

ordered sets and let be a compact class of binary relational

structures. Then, by Theorem 4, n°r (̂V-| ,Vg) is compact where 
ordII is the ordinal product. We do not know what happens if 

is the class of all well-ordered sets but it seems reasonable to 

conjecture that in this case compactness of does not imply

the compactness of nord(V^,Vg) . These remarks are relevant to 

the question of Feferman mentioned in the introductory part of this 

chapter.

From Theorem 4 we obtain the following generalization of a theorem 
of Vaught [31]•

THEOREM 3- If V1 c V(ft ) , Vg c  Vfeg) and V] , ^  are 

elementary then SH (V̂  ,Vg) is universal.
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PROOF. We use the standard method of diagram. Let

= SnT ,Vg) and let an ^-structure A = (A,a) satisfy £ • 

It is enough to show that A e V • For every a e A think of
” 3

a new symbol p and letcl P = (pa ; a e A} , ft,’ =  >

p i =  P, U P ,  h1'|P1 =  ^ y h' (P) =  1 , «4j =  ( P y M j )  >

P* = Pj U P , h^|P3 = h? y hj(P) =  1 . Let A' = (A,a 1) } where

a '|Pj =  a and a'(pa ) = {a} for a e A . Write for the class

of all £ ' -structures M such that the (Sij -reduct of M is in h

and M satisfies and v x-| >x2 [p (x-|) A  p(x2) — > xi = x2 ]
for all p e P . Then is elementary and every universal

-sentence that holds in every structure of V' also holds in A ’ .1 =5 -

Let the diagram A of A be defined as the set of (^-sentences 

of one of the forms-

axl,,,,'xk[Pa (X1) /\ • • • A  Pa ( ^ A  p (x v “ m \)] j 1 k
p e P̂  , k = h^(p), <a],...,afc) e a(p) ,

a x-, > • • • ;xktPa (x-,) A  • • • A  Pa (xk) A  ~ P (x-, j • • • ,xk) ] >
1 k

p e P̂  , k = h^ (p) , (a1,... ,â )  ̂a(p) .

Let t ' be a function from P̂  such that t * |P̂ = t and T*(p) 

is v^P^(x]) for all p e P , where \Jr stands for the formula 

p (x̂ ) . Thus the product TI behaves like II for relational 

symbols in P̂  and like the cartesian product for those in P .
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From t h i s  i t  i s  im m ediate t h a t  Vi- = HT (V,,V0 ) and hence t h a t
—J  = 1  = d

A e i f  and on ly  i f  A has a  model in  . By Theorem 4 ,

V' i s  com pact. T h is red u ces  th e  p ro o f of- th e  theorem  to  showing 

t h a t  ev e ry  f i n i t e  s u b se t A1 o f A has a m odel. L et cr be th e  

n e g a tio n  of th e  c o n ju n c tio n  o f th e  se n te n c e s  in  A1 so t h a t  a ’ i s  

e q u iv a le n t  to  ~ a . S ince  o is  a u n iv e r s a l  s e n te n c e  t h a t  does n o t 

h o ld  in  A’ we conclude t h a t  a ^ Z* ; so t h a t  ~ cr and hence 

A’ has a model in  V' . This p roves our theorem .
— J

Our l a s t  r e s u l t  i s  in  an  e n t i r e l y  d i f f e r e n t  d i r e c t i o n .  L et 

A = ( (A_ )̂ j i f.) } A = ( {A  ̂j }^ t  ̂j  t ) i  ) ) -com plexes .

By a complex homomorphism from  A in to  A' we s h a l l  u n d e rs ta n d  

an o rd e red  p a i r  f  = ( >  where f^  : A^ — f ( i )  a 

homomorphism fo r  i  e I  and f  : I_ — > I '  i s  an  isom orphism . I f  

J§' — ({g.! } j I ^ g 1) i s  a n o th e r  complex homomorphism from  A' to  

A" we d e f in e  th e  p ro d u c t ^  f  to  be th e  complex homomorphism 

<{gf  (jjf-j_ )i € l j g f ) • Denote by K(iR,̂  , (R̂ ) th e  c a te g o ry  of

(ift-! -com plexes and complex homomorphisms . V/ith our t y p i c a l  

complex homomorphism f  we can a s s o c ia te  a fu n c tio n

cn ( f )  : CII A^ — > C I L , ^ ,  A^, as fo llo w s : F or ev e ry  e e CU ^

th e  image e '  o f e u n d er CH(f) i s  such t h a t  e ’ Ci ’) = f . ( e ( i ) )
~  1

f o r  a l l  i  , i* , i  e I  , i '  e I '  , f ( i )  = i* . The fu n c tio n  

Cn(f)  i s  in  f a c t  a homomorphism from C IL^^A ^) in to  ^IL A ^, . 

We d e f in e  a c la s s  of f i r s t  o rd e r  p ro d u c ts  t h a t  sh a re  th e  above
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p ro p e r ty  w ith  th e  c a r t e s i a n  p ro d u c t.

Let ift = (P ,0 ,h )  he any p r e d ic a te  system  and l e t  P* c  P .

An ^ -fo rm u la  cp w i l l  he c a l l e d  p o s i t iv e  w ith  r e s p e c t  to  P* i f  

cp i s  e q u iv a le n t  to  a fo rm ula  of th e  form

Q1 x 1 . .  *Qnxn [ ( l 1 ■] cp-j i v  • • • V  ^  ^  ^ ) A • * * A., q>̂  \ /  • • • v  ^

where a re  q u a n t i f i e r s  and f o r  j  , k ,  1 ^ j  H  ,

1 ^ k ^ , q — + 1 ,  + Icp.^. an(  ̂ “ 1 cp s ta n d  f o r  cp.̂ . and

~cp., r e s p e c t iv e ly ,,  cp , i s  an  atom ic fo rm ula and q = + 1 i f
JK JxC. JK

c p i n v o l v e s  a r e l a t i o n a l  symbol of P* . Now we d e f in e  a 
JK

g e n e ra liz e d  c a r t e s i a n  p ro d u c t to  he a f i r s t  o rd e r  p ro d u c t nT w ith  

t r e s t r i c t e d  in  th e  fo llo w in g  way: For ev e ry  p e P^ i f  occurs

in  r ( p )  th e n  \|r i s  an  atom ic  fo rm ula  and r (p )  i s  p o s i t iv e  in  p^

We can  im m ediate ly  m ention  th e  c a r t e s i a n  p ro d u c t and th e  o r d in a l  

p ro d u c t as exam ples of g e n e ra liz e d  c a r t e s i a n  p ro d u c ts .  For ev ery  

f i r s t  o rd e r  p ro d u c t we ex ten d  th e  domain of d e f i n i t i o n  o f HT

from C t o  K(fö, hy d e f in in g  HT (f)  = C ll(f) ,  f o r  ev e ry

complex homomorphism f  e , ^ )  . We den o te  t h i s  fu n c tio n  from

K (^  f t i lg) by th e  same symbol IIT . The fo llo w in g  theorem  g e n e ra liz e s  

th e  p ro p e r ty  o f th e  c a r t e s i a n  p ro d u c t n o ted  e a r l i e r .

THEOREM 6 . I f  n T i s  a g e n e ra l iz e d  c a r t e s i a n  p ro d u c t th e n  nT i s  a

fu n c to r  from K(fö, in to  K
— \ d  —
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PROOF. Let A =  <{A.}ieI,I> , A ! = < (A’, ,  ,1 * > be

,ßg)-complexes and let f = (( f ^ , f ) Le a complex homomorphism

from A to A ’ . Without loss of generality we can assume that f

is an identity homomorphism so that A' = (( A ^ ^>1) • Let

HT (A) = (A,a) , nT (A’) = (A',a') so that A = CHieI A ± ,

A' = cRiej A^ . Let p € P̂  , h^(p) = k , e^,... ,e^ e A . We

have to show that if (e^,-..,e^) e cu(p) then (ê  ,...,e^) e a ’ (.p) ,

where e^,... ,e^ are the images under IIT (f) of ê  ,... ,ê

respectively. This is equivalent to showing that if r(p) holds in the

graph of A at (x.,...,x ) = (e,, ...,e, ) then t (p) also holds in

the graph of A* at (x^,...,x ) = (ej, .  But t (p)

involves relational symbols in P = Pn U (p, ; p, enters in t (p)}o d \|r \|/
only. Hence we need to show only that if r(p) holds in

I = (I,l ) then t (p) also holds in I1 = (I.i1) , where I ,—o o o ' o' —o
I’ are the ß -reducts of the graphs of A , A ’ at—o o
<x],...,xk> = <e1,...,ek) and (x],...,xR) = (e^,...,e£) respectively

and ß = (P ,0,h+ |p ) . Now by the definition of HT(f) and

our assumption that f is an identity function we see that

e£(i) = f^(e^(i)) Per all 1 , t , l e i ,  1 ^ t g k . Since

f^ is a homomorphism for all i e I , this shows that if

i e i (p.) then i e l r (p,) for all i e I and for all p. e P o v o \|r \Jr o
Moreover f is an isomorphism from I onto I_ so that 

<ir - " ' 1h2 (p2)) 6 to(p2) if and only if < V  ■11 (p^> £
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f o r  a l l  e Pn . i ,  , . . . , i ,  , n e I  . From t h i s  and our2 2 9 h2 (p2 ;
assu m p tio n  t h a t  t (p) i s  p o s i t iv e  w ith  r e s p e c t  to  th e  u nary

r e l a t i o n a l  symbols p i t  i s  now easy  to  see  t h a t  r ( p )  h o ld s  in  1^

i f  t (p) h o ld s  in  I  . T his p roves t h a t  IIT (f )  : HT (A) — > if1"(A')
— o  ~

i s  a homomorphism so t h a t  IIT i s  a fu n c tio n  in to  K(fö^) . The
T

f u n c t o r i a l  c h a r a c te r  o f II i s  c l e a r .  This p roves th e  theorem .

We conclude t h i s  c h a p te r  by r a i s i n g  a  q u e s t io n .  Let 

lfi| = &2 = and l e t  UC(fö) deno te  th e  s e t

(E(V) ; V c. V(ift) and V i s  u n iv e rs a l}  . We can r e f e r  to  UC(ift)

a s  th e  's e t  o f u n iv e r s a l  c la s s e s  of ^ - s t r u c t u r e s ’} a l th o u g h  such a 

s e t  does n o t e x i s t  in  G ödel-B em ays s e t  th e o ry  w hich is  th e  b a s is  of t h i s  

work. We can d e f in e  a  u nary  o p e ra to r  SCII over UC(ift) by : 

scn(z) = Z(SCIl(V fo))) , where SCn(Vfc)) i s  th e  c la s s  o f a l l  

s u b s t ru c tu r e s  of c a r t e s i a n  p ro d u c ts  of f a m i l ie s  o f  s t r u c tu r e s  in  

V(Z) . We s h a l l  r e f e r  to  UC (ift) to g e th e r  w ith  th e  unary  o p e ra to r  

SCII as V au g h t's  a lg e b ra  of u n iv e r s a l  c l a s s e s . Theorem 5 en ab le s  

us to  d e f in e  b in a ry  o p e ra t io n s  SIIT over UC (ft) as fo llo w s :

s i f t e ,  , 1 )̂ = E(siiT (v(z;1 ) , v t e 2) ) )  .

The a lg e b ra  o b ta in e d  in  t h i s  way may be c a l le d  th e  f i r s t  o rd e r  a lg e b ra  

of u n iv e r s a l  c l a s s e s . S ince  (STIC)2 = SHC V au g h t's  a lg e b ra  i s  n o t 

m onogenic. We r a i s e  th e  fo llo w in g  q u e s tio n  w hich we have n o t been 

a b le  to  answ er. I s  th e  f i r s t  o rd e r  a lg e b ra  monogenic?
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The work described in the present chapter is in [29].

In this chapter as in the last two we restricted our attention 

to restricted predicate systems. The purpose of the next chapter 

is to see how far our results can be carried to unrestricted 

predicate systems.



- 91 -

CHAPTER 6

COMPACTNESS THEOREM FOR A MORE GENERAL TYPE OF LANGUAGES

With every restricted predicate system (ft we associated in 

Chapter 0 a language 0(ft) of the first order predicate calculus.

One of the most important properties of first order languages is given 

by the compactness theorem which states [15] that a set Z in such 

a language possesses a model if every finite subset of E possesses 

one. Many results in first order model theory come from this 

compactness theorem; Theorem 4 of Chapter 5 is a handy example.

In this chapter we extend the definition of o(ft) to unrestricted 

(ft . More precisely, for every predicate system ft, we obtain a 

language O'(ft) such that O ’ (ft) is essentially o(ft) when ft is 

restricted and prove the compactness theorem for O'(ft) . This work 

was published in [26] in a different form.

We observe that compactness theorem has been proved for some 

other generalizations of first order languages. Thus Führken [ 8 ] 

has proved the compactness theorem for languages obtained from the 

first order languages by adding a new quantifier which is interpreted 

as ’there exists at least countable'.

We begin with the description of O'(ft) . This description is 

very much similar to that of the first order languages which is well- 

known. We exploit this situation and occasionally sacrifice formality 

and explicitness for the sake of convenience.



Let Ift = (P ,f i ,h )  and l e t  X be a s e t  o f c a r d i n a l i t y  e q u a l to  

t h a t  o f th e  range Ran(h) o f h . For ev e ry  fö we assume th e  cho ice

o f X h av in g  been  made. We need th e  fo llo w in g  n o ta t io n s .

YFor s e t s  Y , Z we w r i te  Z f o r  th e  s e t  o f a l l  fu n c tio n s

f  : Y —■> Z and Z ^  f o r  th e  s e t  of fu n c tio n s  f  : Y — > Z such

t h a t  f(Y ) i s  f i n i t e .  A sequence i s  a  fu n c tio n  o f th e  form

s : n — > Z where n i s  an  o r d in a l  c a l le d  th e  le n g th  o f th e

sequence s . We s h a l l  o f te n  d e p ic t  s as fz ) o r asnr men

z . . . z  . . . .  m e  n , where s(m) = z . I f  y i s  a s e t  and o m m

z . . . z . . . . m e n  i s  a  sequence th e n  yz . . . z  . . . . m e n  and 
° m o m er  nt\

z . . . z m>. . y  , m e n d e p ic t  obvious sequences o f le n g th  n and n + 1

r e s p e c t iv e ly .  For ev ery  sequence z . . . z ^ .  . .  and ev ery  s e t  V

we w r i te  \ /  z f o r  th e  sequence d e p ic te d  by z \ /  . . .  \ /  z V  .• •men m ^ J o m

in  th e  obvious way.

We tu r n  to  th e  d e s c r ip t io n  o f th e  fo rm ulae  of $ '(& ) . By 

an atom ic fo rm ula  we s h a l l  u n d e rs ta n d  a sequence of th e  form

x  , P ({x  }nrmeh ( p) ) o r ( ( x jnrmeh (w) )w = xh(w) 9 where p e P ,

to e ft x 1 e X f o r  m e h( p)  o r  m e h(o>) + 1 . By a

q u a n t i f i e r - f r e e  fc-fo rm u la  in  norm al form  we s h a l l  u n d e rs ta n d  a

sequence o f th e  ty p e  \ /  A  cp , where n. ,n0 e Ran(h) andJ Vm1 ea, /-Am^en2 2 c v

cp = cp' o r ~ cp' f o r  some atom ic fö-form ula cp' . An n^nig m1 u n ^

fc-form ula in  p renex  norm al form  i s  a sequence cp = Q0X0 * • *Qmxm* • «cp-, > 

where cp i s  a q u an t i f  i e r - f r e e  ^ -fo rm ula  in  norm al form c a l le d  th e  

m a tr ix o f cp , x^  e X a re  d i s t i n c t  and i s  e i t h e r  th e  'u n iv e r s a l
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quantifier' v or the 'existential quantifier' 3 . The occurrences

in cp of an atomic (ft-formula, a quantifier, a relational symbol

(member of P) etc. is to be understood in the obvious way. The

occurrence of the 'variables' x in the formulam
cp = Q^x^.. .Q,mxm . • •cp1 is by definition bound while all other variables

(members of X) occurring in cp̂ are said to occur freely in cp •

An E-formula cp in prenex normal form is called finitary if cp

satisfies the following finitary condition. Let e e and let
ecpi denote the ^-formula obtained from cp by replacing every x e X

occurring in cp1 by e(x), where cp is the matrix of cp • Then there
0are only finitely many atomic fö-formulae occurring in cp̂ . Moreover 

there are only finitely many occurrences of q in cp .

We define $' (ift) to be the set of all finitary ift-formulae in 

prenex normal form. An example of an infinitely long formula in 

$'(&) is the sequence

vxo vx1... vxm...p(xo,x1)v ... v p(xo,xJ V ... ,

where p is binary and m varies over an ordinal.

In the above description of O'(ift) , which can be obviously 

completely formalized in Gödel-Be mays ' set theory, we can regard y  

~ , ( , v , = etc as arbitrarily fixed sets independent of fö .

We also use = to identify two objects as usual and the context will 

make our meaning clear. Similar remark holds for parenthesis (,) . 

Clearly $'((ft) is essentially $(ift) when & is restricted
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b ecau se  th e n  ev ery  form ula of O(lft) i s  e q u iv a le n t  to  a form ula of 

O '(ft) .

A se n te n c e  o f O '(ft) i s  a  fo rm ula  of O '(ft) w ith o u t f r e e  

v a r i a b l e s .

We now g iv e  th e  sem an tic  i n t e r p r e t a t i o n  of th e  fo rm ulae of 0* (ft) .

By a f i n i t e l y  su p p o rted  ^ - s t r u c tu r e  we s h a l l  u n d e rs ta n d  a  p a i r

A = (A^a) where th e  c a r r i e r  A of A i s  a s e t  and th e  make a  of

A i s  a fu n c t io n  from  PU fi such  t h a t  a (p )  c  A ^ ^ ^  f o r  a l l  p e P

and a(oj) i s  a fu n c t io n  from A ^ ^ Ŵ  in to  A f o r  a l l  to e ft .
r x i

Let f  € AL j , cp e O'(ft) and l e t  A = (A ,a) be a f i n i t e l y  su p p o rted  

f t - s t r u c t u r e .  We d e s c r ib e  what we mean by sa y in g  t h a t  cp h o ld s  in  A 

a t  f  . We d is t i n g u is h  s e v e r a l  c a s e s .

( 1 )  I f  cp i s  an  atom ic ft-fo rm u la  x  =  x  th e n  cp h o ld s  in1 2
A a t  f  i f  and on ly  i f  f ( x , )  i s  i d e n t i c a l  w ith  f ( x  ) .

(2) I f  cp i s  an  atom ic ft-fo rm u la  o f th e  form

p ^ Xm^meh(p)^ ’ P e p > th e n  cp h o ld s  in  A a t  f  i f  and on ly  i f  

th e  sequence ( f ( xm) ) meh(p ) i s  in  a (p) •

(3) I f  cp i s  an  atom ic  ft-fo rm u la  of th e  form

(^Xm)m€h(w)^W = ^ (c o )  > w € ^ > th e n  °P h o ld s  in  A a t  f  i f  and 

on ly  i f  th e  image u n d er a(w ) o f {f ( x ^ )  ^  i s  f ( x ^ ^ )  •

( •̂) I f  cp = ~ cp' f o r  some a tom ic ft-fo rm u la  cp' th e n  cp h o ld s

in  A a t  f  i f  and on ly  i f  cp* does n o t h o ld  in  A a t  f  .

( 5 )  I f  cp =  V  A  cp . where n ,n  e Ran(h) andv n ^ e n / n^eiig Ym1m2 , 2

Cp = *cp T> o rm-, m1 m2
cp' f o r  some atom ic fo rm ula  cp* , th e nY m1m2 ^  m1m2
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cp h o ld s  in  A a t  f  i f  and on ly  i f  t h e r e  e x i s t s  m e n  ̂ such

t h a t  cp h o ld s  in  A a t  f  f o r  a l l  m e n
u n  m 2  —  2 2

(6) I f  cp = Vx . . .  vx . ..cp1 where cp1 i s  q u a n t i f i e r - f r e e  th e n

cp ho lds  in  A a t  f  i f  and on ly  i f  cpi ho ld s  in  A a t  g f o r  a l l

[ X]g e A such t h a t  f  = g on th e  s e t  of v a r i a b l e s  f r e e l y  o c c u r r in g  

in  cp .

(7) F i n a l l y  l e t  cp be any fo rm ula  of <j>’ ((ft) so t h a t  we 

can w r i te  cp in  th e  form

vx . . .  ax vx . . .  ax vx . . .  ax v x . . .  cpn o m, m -H m m +i in m , m1 1  2 2 P p+1

where q> i s  q u a n t i f i e r - f r e e ,  p = p(cp) i s  f i n i t e  and a  occurs  

on ly  w ith  th e  ’ m^th v a r i a b l e ' x f o r  1 £ k ^ p . With cp we
K

a s s o c i a t e  a r b i t r a r y  new s e t s  ^ , 1 ^ k ^ p-(cp) • We can r e f e r  t o

th e  s e t s  ^ as  th e  Skolem o p e ra to r s  a s s o c i a t e d  w ith  cp • Let 

h ° (^ p  be th e  o r d i n a l  number of th e  s e t  m^ - (m^, . . . ,m^  ̂ } of 

o r d in a l s  (which i s  c l e a r l y  w e l l -o rd e re d  by e ) . Let

fi° = ft U k ; cp e (ft) , 1 ^ k g p(cp)) .

W rite  ift° = (P ,f t ° ,h ° )  where Ran(h°) = Ran(h) , h° = h on P n ft

and h°(top = h°(w  f o r  a l l  cp , k such t h a t  cp e (ft) and

1 ^ k ^ p(cp) . W rite  s  , f o r  th e  a tom ic ft0 -form ulacp,K

( (xm W ( U J )ucp,k “  V  » 1 S k S p(tP} •cp, k k
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Let cp° denote the formula v xQ* • • ~£Cp \y ••• v  ̂ 6^ p V  cp1 •

We shall refer to cp° as the open form of cp . Now we shall say 

that cp holds in A at f if and only if there exists a finitely 

supported ft°-structure A° = (A^a0) such that a° =  a  on P U (l 

and cp° holds in A° at f . (Note that cp° falls under the case

taken care of by (6)).

We say that ’ cp € (ft) holds in A ’ if cp holds in A 

at f for all f 6 A ^  .

A set Z of sentences of $ ’(ft) is said to have a model if there 

exists a finitely supported ^-structure A such that a holds in 

A for all o e Z .

We are now in a position to state and prove the result of this 

chapter.

THEOREM 1 . A set Z of sentences of O'(ft) has a model if every 

finite subset of Z has one.

Proof. The theorem is trivially true if Z is finite. We

assume that the theorem is true for any Z which can be so well- 

ordered as to have an ordinal number less than another ordinal number 

N (so that the cardinal number of Z is less than N ). Let

N be the ordinal number of Z under a well-ordering < . We

prove the theorem for Z ; by transfinite induction this is enough 

to prove the theorem. Assume then that every finite subset Z' of 

Z has a model. We have to prove that Z has a model. We divide 

the proof of this in four parts. First two parts mainly set up the
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n o ta t io n s  t h a t  we need to  c o n s tr u c t  a model o f £ .

PART 1 . Let Y be any s e t .  We d e f in e  W(ift;Y) as fo llo w s :

W (ft;Y) = Y , i f  m = 0 m

= U , W , (ift;Y) , i f  m i s  a  l i m i t  o rd in a l  m'em m*

= W ^ f c Y )  U { ( s )u ;  u> e Cl, s e ( W ^  fe ;Y )) [h 1 ) ,

i f  m has a p re d e c e s s o r ,

W(ft;Y) = U W (ft;Y) , men m

where n i s  th e  l e a s t  o r d in a l  c o n ta in in g  th e  image of h . In  th e

above d e f i n i t i o n  o f W(ift;Y) we have w r i t t e n  (s)w  f o r  th e  sequence

(w . . . w  . . . ) w  , m e  h(p)  , w = s (m) . We s h a l l  u se  s im i la r  o m m

a b b re v ia tio n s  q u i te  o f te n  in  th e  r e s t  o f t h i s  p ro o f . When ift i s  

r e s t r i c t e d  W(lft;Y) i s  th e  s e t  o f ift-words in  Y as d e f in e d  in

C hap ter 0.

For ev e ry  s e t  Y we d e f in e  H(fö;Y) to  be th e  s e t  of sequences

of th e  form  p ( s )  , p e P , s e ; h e re  a g a in  we have

a b b re v ia te d  p ( s )  f o r  th e  sequence p (y  • • .ym*••)  , m e h(p)  , yffi € s(m)

Let k be a  b in a ry  r e l a t i o n  ov er W(ft;Y) and 

f  : H(lft;W(lft;Y)) — > {0,1 } =  2 be a  fu n c t io n  such  t h a t :

(1 .1)  k i s  an e q u iv a le n c e  r e l a t i o n  and i f  s., , s 2 e (W fe ;Y ))^ ^ w^  , 

w e ft and ( s 1 (m) , s2 (m)) e k f o r  a l l  m e h(co) th e n  

<( s l )w, (s2 )w) e k •
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(1.2) If B1 ,S2 e (W(fö;Y)) ̂  (p ) ] f p e P and (s1 (m) ,s2 (m)) € k 

for all m € h(p) then f(p(s1)) = f(p(s2)) .

Using properties (l.l) and (1.2) of k , f we define a finitely- 

supported ift-structure W(ift;Y, K,f) as follows.

For every u e W(ft;Y) write [u ]k for the equivalence class 

determined by u under k and let W(i&;Y)/k be the set of all 

such equivalence classes. For every p e P we define £ to be 

the set of s e (W(R,;Y)/k) such that f(p(s )) = 1 , where

s1 e (W(fö;Y))  ̂ is such that s (m) = [s1(ih)]k for all m e h(p) .

For every w we define w to be the function from (W(&;Y)/k) ̂  

into W(&;Y)/k which maps s e (W(iR,;Y)/k) upon [(s^)w ]k ,

where as before ŝ  e (W(ft;Y))^^^ is such that s (m) = [s1(m)]K 

for all m e h(p) . By (1 .1 ) the function u is unambiguously 

defined, i.e., the image of s under w as defined above does not 

depend on the choice of ŝ  . We now write W(ift;Y, K.>f) for the 

finitely supported ^-structure with W(iR;Y)/k as carrier and a as 

make where oc(p) = ^ , a(w) = u) for all p e P and w e Cl • It 

is fairly clear that every finitely supported ift-structure can be 

represented as a W(ft;Y,K,f) .

PART 2 . For every a € Z let Z^ denote the 'closed initial segment' 

(a1 ; a1 ^ a, a e Z) , where ^ is the well-ordering of Z which we 

fixed in the beginning of the proof. Let Z° denote the set 

(cr°; a1 e Zff} , where a° is the open form of a., • By our

induction hypothesis and the assumption that the ordinal number N
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of (£,<) is a limit ordinal it follows that £ has a model for

every a e £ . Hence, by our semantic interpretation (case (7)

on page 95 ), Z° has a model W(fö°;Y ,Ka>fa) t say> for every
0 e £ . For every W(ift°,Y,K, f) and Y* id Y we can find k ’ , f '
such that W(ift;Y' , k ’ , f ') is isomorphic to W(ift;Y,K,f) . Hence we
can find a set Y such that £° has a model of the form0
W(fö°;Y,Ka,fa) for every 0 e £. We arbitrarily fix such a set Y .
Since 1ft and hence fö° is also arbitrarily fixed we can omit explicit
mention of , Y in different notations. Thus we write

W = W(ift°;Y) , W(ic,f) = W(ift°;Y,K,f) , H = H(ß°;W) .
In what follows U , V will always denote non-empty finite subsets

of H . For every U we define U/P to be the smallest subset
Z of W such that U c H(R°;Z) . More explicitly

U/P = (s(m); s e W ^ ^ p^  , m e  h(p), p(s) e U} . We conclude this
part of the proof by defining the following important set. For
every U we define T^ to be the set of ordered pairs

such that k T = k I (U/P), fTT = f |u for some model W(k ,f ) of U 0' ' U 01 — 0 0
£° where 0 varies over £ .0
PART 3» In this part we prove the existence of a finitely supported 
ft°-structure W(*,f) such that (k |(U/P),f|u) e Ty for every U .
We do this by using an argument used in p] ] to prove the embedding 

theorem given there. First note that T^ is a non-empty finite set 
for all U . Finiteness of T^ follows from the fact that there are 
only finitely many binary relations over the finite set U/P and only
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f i n i t e l y  many fu n c tio n s  from th e  f i n i t e  s e t  U in to  th e  f i n i t e  s e t

{0 ,1 } . Suppose t h a t  i s  empty so  t h a t  f o r  ev e ry

t = ( k , f  ) , e  U/P x U/P , fy  : U — > {0,1} , we can f in d

a e E such th a t  f o r  ev e ry  model W(k , f  ) o f E° i t  i s  f a l s e  
t "  0T' aT aT

t h a t  K I (u /p ) k„  and f  IU Let a he th e  g r e a t e s t  o fU ‘ aT 1 ~ U

th e  f i n i t e l y  many 0 ^ 's  in  (E,<) . Let ^ ( k he a model o f

and l e t  t = ( ko I (u /P ) , f ^  I U) . Then s in c e  a  ̂ o

W(k yf )  i s  a  model o f E° c: E° . T his i s  a c o n t r a d ic t io n  to  th e
— 07 0 0T — 0

ch o ice  of a Hence T^ i s  non-em pty, N ext, f o r  V 3  U we

d e f in e  t ^  ^  : T̂ . — > T^ to  he th e  fu n c t io n  w hich maps e T^

upon ( kv I (u /P ) , f v  I U) ; t h a t  t h i s  l a s t  p a i r  i s  in  Ty fo llo w skV 1

d i r e c t l y  from  th e  d e f i n i t i o n  o f th e  s e t s  T. The s e t s  T,

to g e th e r  w ith  th e  fu n c tio n s  t V,U

U ’ ------------- *U

form  an in v e rs e  system  o f  non-em pty

compact H au sd o rff spaces  (under th e  d i s c r e t e  to p o lo g y  on T^ ) .

By a theorem  o f S tee n ro d  [30] th e  in v e rs e  l i m i t  o f such  a system  i s  

non-em pty so  t h a t  we can f in d  a fa m ily  , where U

v a r ie s  over th e  s e t  o f f i n i t e  su b se ts  o f H , e T^ and i f

V 3  U th e n  ( i ^ f y )  i s  th e  image u nder y o f (*v , f ^ )  f o r  a l l

f i n i t e  s u b se ts  U , V o f H . We choose one such  fa m ily

{ ( k̂ , ^ ) }  and d e f in e  k , f  a s  fo llo w s . L et u  e H ,

w ,w e W . F ind  U such  th a t  u  e U and w ,w e U/P . We
1 2  i 3 2 '

■K- «H*
s e t  f  (u) = f  (u) and p u t (wi ; w2 ) in  k i f  and on ly  i f

(w ,w ) € . I t  i s  easy  to  p rove t h a t  k , f  a r e  unam biguously

d e f in e d .  For t h i s  l e t  V be a n o th e r  f i n i t e  s u b se t  o f H such  th a t
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u e V and w1 ,w2 € V/P ; we have to show that f^(u) = f^(u) and

< V W2> 6 '̂  if and only if (w?,w2) *e kv • Let U' = U n V ,

U" = U Ü V so that u e U' , wi;w2 e U"/P . By the choice of

{(Ku^fu)} we see that f*t = f* U ’ = fv u ’ and hence
* / , * 
f u u = fu , (u) = f*(u) . Similarly II

* JP * I v - * tCy  ̂ Kyn |V Ky
-X*and therefore (w-|>w2) e if and only if (w-,>w2) € K^n and 

(w1>w2)e Ky if and only if (w1,w2 ) e k „ . This completes the 

proof of the unambiguity of the definition of the pair (k ,f ) . .

If we can show that k , f satisfy (l.l) and (1.2) respectively 

then W(k ,f ) would be clearly one of the ft -structures we started

to look for in this part. The proof of (l.l) and (1.2) for k*, f*

is easy.

Take for example (1.1): k is an equivalence relation over W
*because the restriction of k to every finite subset of W is an 

equivalence relation. Moreover let s1 ,sa € w£k(w)] , oj € ,

(s (m),s (m)) e k for all m € h(u) ; we have to show that

((s )w, (s2)w) e k . Take U such that (s1 )w, (s2)w, s (m), s2 (m) e

U/P for all m e h(u) . We can find such a U because the images

of ŝ  , s2 are finite. Since k | (ü/P) = we see that

(s. (m) ,s_ (m)) € ktt . But ktt = k (U/P) for some model W(k ,f )1 U U 0 — 0 0

of E° , where o is any sentence in £ . Now ,f^ satisfy (l.l).

Hence ((s1 )w,(s2)w) e k0 which gives ((s1 )w,(s2)w) e . In

view of k I (U/P) = Ky we get ((ŝ  )w, (s2) w) e k . This proves

(l.l) The proof of (1.2) is on similar lines.
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PART 4. In this last part of the proof we show that W(k , f )

(as constructed in Part 3) is a model of £° . By what has gone

before this will obviously complete the proof of the theorem.

Let a € Z and let c° = vx ... Vx ...cp > where cp isi m x
a quantifier-free finitary ß°-fomula. We have to show that cp holds

in W(**,f*) at g for all g e (W/k* V X  ̂ . This is clearly

equivalent to showing that cp' holds in W(k ,f ) at g for all

e e X'X  ̂ and g e (W/k* ) ^  , where cpe denotes (see page 93)

the formula obtained from cp by replacing x e X occurring in cp

by e(x) everywhere in cp . Let e € XL , g e (W/k )
0By our finitary condition cp involves only finitely many atomic

formulae, say, p1 (s1),... ,P^(s^), (s^) co, = x^ ,.. , (s£) 0^ = ,

S1,...,e^ , where t , k , q are finite, p. e P , si € X ^ pi^

for 1 ^ i ^ L , w e Cl° , s_! € X ^ ^ Wi^ for 1 ^ i ^ k and

is of the form x, = x , x ,x e X for 1 ^ i ^ q . Let

gt e y W  1̂ 0 such that g(x) = [g’(x)]K for all x e X . Find a

finite U c  H such that e U for 1 £ i £ t ,

(g's^)uu e u/P and g'(x) € u/P for every x e X , where g ’s^ ,

g's^ , as usual, denote the compositions of the functions involved;

such a U exists because all our functions have finite images.

By the definitions of k* , f* find a model W(k ,f ) of £° such
~ 0 o a

that k* I (U/P) = k* = K(J I (U/P) and f* | U = f* = f | U . From 

this and the definition of W(*,f) (page 98 ) we see that the function

gQ e (W/k^ ) ^  defined by gQ(x) = [g'(x)]ic is such that any
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one o f th e  a tom ic fo rm ulae p1 ( s l ) , . . .  , p ^ ( s ^ ) , ( s ^ ) ^  = x ’ , . . . ,  (s^ ) ^  = x£

h o ld s  in  W(k , f  ) a t  g i f  and on ly  i f  i t  h o ld s

in  W(KCT, f  ) a t  g^ . In  v iew  of our sem an tic  i n t e r p r e t a t i o n  t h i s

im p lie s  t h a t  cpe h o ld s  in  W ( ^ f * )  a t  g i f  and on ly  i f  cpe h o ld s

in  W(k , f  ) a t  g . But W(k , f  ) s a t i s f i e s  a° . Hence -  a 7 a a -  a a

cp h o ld s  in  W(k , f  ) a t  g . S ince e , g , a were a r b i t r a r y ,

t h i s  shows t h a t  o h o ld s  in  W(k , f  ) f o r  ev ery  a e £ . T his 

com pletes th e  p ro o f of th e  theorem .

W ith th e  compact language O'(ift) a t  our d is p o s a l  to  t a l k  abo u t 

f i n i t e l y  su p p o rted  fö - s tru c tu re s  we can now g e n e ra l iz e  to  th e se  

s t r u c tu r e s  many o f th e  r e s u l t s  of Model Theory th a t  a r e  s t a t e d  f o r  th e  

r e s t r i c t e d  s t r u c t u r e s .  In  p a r t i c u l a r  a l l  th e  r e s u l t s  on r e s t r i c t e d  

s t r u c t u r e s ,  p re se n te d  in  t h i s  t h e s i s ,  have g e n e r a l iz a t io n s  to  

f i n i t e l y  su p p o rted  s t r u c t u r e s .  The d e t a i l s  in  th e  u n r e s t r i c t e d  case  

in v o lv e  a t  most n o ta t io n a l  c o m p lic a tio n s  and we om it them .
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