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Abstract 

Understanding and quantifying terrestrial salt cycling is central to scientific 

fields such as sedimentary geology, mineral exploration, water resources, 

palaeontology, atmospheric chemistry and limnology. Dissolved chlorine and bromine 

concentrations have been utilised for decades as individual tracers or as a ratio to trace 

geochemical processes in saline environments. The stable isotope variations of these 

two elements have also been found to be useful for understanding and quantifying 

geochemical processes. However, both hydrogeochemical techniques could benefit 

from being applied in new environments and the collection of further data on a local 

and continental scale, as well as developing quantitative methods to provide further 

value to their use. This thesis presents findings based on theoretical analysis, large-

scale monitoring and a targeted field investigation to improve the understanding of 

how chlorine and bromine can be utilised as tracers of terrestrial salt cycling. 

Firstly, bench-top salt dissolution experiments were used to verify a previously 

established quantitative mixing model that utilises chloride/bromide ratios to correct 

chloride- or bromide-based tracer methods for other chloride sources. The results 

show that the model can predict the percentage of alternate salt sources accurately 

after analytical and endmember uncertainties are considered. The results are used to 

extend the understanding of the uncertainties and sensitivities of the mixing models, 

providing scientists with a guide to which environments and scenarios the mixing 

model would be most appropriate. The mixing model correction provides a useful and 

cheap method for scientists to improve their use of chloride- or bromide-based tracer 

techniques in catchment studies. 
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Secondly, a continental-scale dataset of wet deposition compositions spanning 

six and half years was analysed to identify spatial and temporal trends in 

chloride/bromide ratios. A recently developed imputation algorithm was applied to 

estimate the high proportion of censored bromide values, as well as the other eight 

analytes, based on the multivariate relationships of nine analytes. Chloride/bromide 

ratios of wet deposition decrease with distance inland following a logarithmic 

regression. The observations provide further confidence in the findings presented in 

previous studies that have shown that chloride/bromide ratios systematically decrease 

with increasing distance from the coast. 

Lastly, chlorine and bromine tracer techniques were applied in a case study of 

the Lake George Basin, NSW, to trace modern salt cycling proximal to a saline lake, 

and to investigate how hydrogeochemical signatures can elucidate palaeohydrologic 

processes. The Lake George Basin was chosen as the field site because of its long, 

near-continuous sequence of Cenozoic lake sediments, and its complex salt cycling 

regime. The chlorine- and bromine-based tracer methods, in combination with other 

geochemical information, have provided a better understanding of the modern salt 

cycling regime within the catchment, and have also provided useful constraints on the 

timing of the recession of the mega-lake that existed in the basin during the last 

glacial maximum. This study also illustrated the utility of chlorine- and bromine-

based tracer methods to delineate salt cycling processes in saline lake environments. 
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“You must be patient in investigation, 

accurate in measurement, cautious in 

accepting results, content to stand one in a 

long series who, for the good of humanity, 

are striving to interpret the laws of Nature.” 

–Henry C. Russell, 1885, President’s

address to the annual general meeting of the 

Royal Society of New South Wales 
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1. Rationale

Earth’s near-surface cycling of salt and dissolved solutes (from herein referred to

collectively as salt cycling) has important implications for several disciplines of the 

earth and environmental sciences (e.g., sedimentary geology, mineral exploration, 

atmospheric chemistry, water resources, oceanography, etc.). Of relevance to the 

research presented in this thesis, observing, quantifying and predicting salt cycling 

processes is key in water resources studies for understanding and regulating the 

concentration of elements that may be beneficial or detrimental to human health [e.g., 

Ghassemi et al., 1995; Lollar, 2014 and references therein], and in palaeoenvironmental 

studies where the distribution of some elements can be used to infer processes that 

occurred in the distant (or not-so-distant) past [e.g., Cerling, 2014; Mackenzie, 2014 and 

references therein].  

Hydrogeochemical methods such as tracing dissolved ionic species and 

interpreting variations in stable isotope ratios can be utilised to quantify and interpret 

salt cycling processes between Earth’s hydrosphere, lithosphere and atmosphere 

[Appelo and Postma, 2005; Deocampo and Jones, 2014; Vengosh, 2014]. Dissolved 

chlorine and bromine concentrations (predominantly in the form of halides: chloride and 

bromide, respectively) have been utilised for many decades as individual tracers or 

together as a ratio to trace geochemical processes in saline environments (e.g., salt 

accumulation, solute transport and evaporite dissolution/precipitation [Davis et al., 

1998]). More recently, the stable isotope variations of these two elements have also 

been found to be useful for quantifying and interpreting geochemical processes (e.g., 

solute transport, geochemical provenancing, evaporite dissolution/precipitation and 

oxidation reactions [Eggenkamp, 2014]). However, their applications are limited 
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because we need to understand better how chloride and bromide concentrations and 

isotopes vary on local and regional spatial and short- to long-term temporal scales, plus 

to develop more robust quantitative methods of interpretation and prediction. A 

combination of experimental, mathematical modelling and field studies is used in this 

thesis to enhance our current understanding. 

The Lake George Basin, NSW (Figure 1), is chosen as the field site for this 

research for two reasons. Firstly, the Lake George Basin contains one of the longest, 

near-continuous sequences of Cenozoic lake sediments in Australia [Abell, 1985; 

Macphail et al., 2015; Macphail et al., 2016; McEwan Mason, 1991]. Consequently, 

numerous researchers have studied the basin over the last century, and many parts of its 

geologic history have been uncovered. Thus, many processes that would be unknown in 

other settings are well-constrained at Lake George. Secondly, the Lake George Basin is 

known to have a complex salt cycling regime, where salt, which is estimated to have 

accumulated over the last two million years, diffuses through its low-permeability 

lakebed sediments as well as being dispersed by wind erosion during dry periods 

[Jacobson et al., 1991]. As such, the Lake George Basin represents a unique 

opportunity to investigate salt cycling and solute transport processes in a small 

endorheic basin using novel geochemical techniques, especially those that use chlorine 

and bromine geochemistry. 
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Figure 1: Location map of the Lake George Basin with respect to Australia (insert). 
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2. Aims

The research aims of this thesis are to:

1. improve the understanding of how chloride/bromide ratios can be quantitatively

and semi-quantitatively used to investigate global and regional salt cycling;

2. identify continental-scale trends in atmospheric halide deposition;

3. improve the understanding of how stable halogen isotope ratios can be utilised

to trace salt cycling in saline lake environments; and

4. delineate and quantify salt cycling processes around the Lake George Basin.

3. Objectives

The above aims are addressed using the following methods:

1. reviewing the literature review to establish the current knowledge of the

geochemistry of chlorine, bromine and stable halogen isotopes in natural waters,

and Australian saline lakes;

2. assess the uncertainties and sensitivities of using chloride/bromide ratios as a

quantitative tool in catchment hydrology;

3. investigate the continental-scale variation of chloride/bromide ratios in

atmospheric deposition; and

4. apply chloride/bromide ratios and stable halogen isotope ratios to a saline lake

basin to demonstrate the utility of the above techniques and understanding.

4. Thesis structure

This thesis is comprised of a compilation of stand-alone thesis chapters, some of

which have been submitted or accepted manuscripts of which I am either the primary 

author of or to which I made a significant contribution. Chapters that contain inputs 
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from co-authors are preceded by a foreword declaring my contribution and the 

contribution made by each of the co-authors. 

4.1. Chapter 1: Chlorine and bromine hydrogeochemistry 

This chapter provides the background and scientific rationale for the research 

undertaken during my Ph.D. candidacy, and to identify research gaps that I have aimed 

to address in this thesis. It is a summary of the current scientific knowledge regarding 

chlorine and bromine geochemistry in natural waters with a focus on how new stable 

isotope techniques are improving our understanding of the hydrogeochemistry of these 

two elements, including the physical and chemical processes that affect their 

concentrations, ratios and isotope compositions. 

4.2. Chapter 2: Chloride and bromide sources in water: Quantitative model 

use and uncertainty

Chapter 2 is included because the model and uncertainties discussed in the 

manuscript have made a significant contribution to how scientists will use 

chloride/bromide ratios in catchment hydrology studies. This chapter also presents the 

key concepts of the use of chloride/bromide ratios that are later utilised in Chapters 3 

and 5. 

It is based on a journal article that was produced as a co-author with Kyle Horner 

and Bear McPhail. The article was published in Journal of Hydrology in early-2017 

[Horner et al., 2017]. The initial development of the article was work undertaken by 

Kyle Horner during his Ph.D. candidacy, where he developed the idea and mathematical 

model for new equations to use the chloride/bromide ratio quantitatively. I made a 

significant contribution to this work by assisting with the development of simple bench-

top experiments to verify the model, undertaking the experiments, analysing the 
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experimental samples, and providing the interpretation and discussion about 

uncertainties associated with the model, based on analytical methods and end member 

compositions.  

4.3. Chapter 3: Continental-scale variation in chloride/bromide ratios of wet 

deposition 

Chapter 3 is included because it makes a significant contribution to the scientific 

understanding of how chloride and bromide are transported into terrestrial catchments, 

on regional to continental scales. It builds upon the work presented in Chapter 2 that 

discussed current limitations in researchers understanding of end member 

chloride/bromide compositions. 

It is based on a journal article that I have produced as the senior author with 

Patrice de Caritat and Bear McPhail. The article was published in Science of the Total 

Environment online in early-2017 [Short et al., 2017].  

This chapter presents North American wet deposition chloride/bromide ratio data 

that have recently been collected by the National Atmospheric Deposition Program 

(NADP). The findings of the analysis presented in the manuscript have helped to 

improve the understanding of the global cycling of chlorine and bromine. The findings 

are of importance for how hydrologists can better use the chloride/bromide ratio to 

assist with land and water resource investigations, and for how atmospheric chemists 

account for halogen sources and sinks in global models. The study also utilised new 

statistical methods in a novel way to overcome shortcomings in the dataset. 

4.4. Chapter 4: The Lake George Basin 

Chapter 4 includes detailed description of the field site investigated in Chapter 5, 

Lake George, and identifies salt cycling processes that are known and unknown to occur 
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at this field site. It provides a summary of the geographic setting, geology, hydrology, 

climate and salt cycling processes of the Lake George Basin. 

It also introduces the key concepts regarding the development of saline lakes and 

general processes that are important in salt cycling in these environments. This section 

has been included to clearly demonstrate the unique geochemical processes that occur in 

these unique geochemical environments and the importance of research in this field to 

the wider science community. 

4.5. Chapter 5: Tracing salt cycling in the Lake George Basin 

Chapter 5 is a synthesis of the work I have undertaken throughout my Ph.D. 

candidacy and demonstrates the developed techniques and new geochemical 

understandings to a unique field site. It builds on the findings of the previous chapters, 

and presents the findings of field sampling from the Lake George Basin over two and a 

half years, where chloride/bromide ratios and stable halogen isotope ratios were used, in 

combination with other major ion geochemistry techniques, to better understand the 

rates and pathways of salt cycling within the Lake George Basin.  

4.6. Appendices 

The appendices contain supplemental data that support the content of the thesis. 

They include tables of data that are not referred to directly in the body of the thesis but 

are worthy of recording for future reference. 
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Chapter 1: Chlorine and bromine 

hydrogeochemistry 
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Chlorine and bromine are ubiquitous in Earth’s natural waters and are widely 

studied because of their importance in biogeochemical cycling, utility as applied and 

environmental tracers, and occurrence in common contaminants. Chloride and bromide 

(Cl– and Br–), the most common form of Cl and Br in the near-surface environment, are 

two of the most conservative ions found in aqueous environments owing to their high 

solubility in water, weak affinity for mineral surfaces, and very low concentrations in 

common rock-forming minerals [Davis et al., 1998; Flury and Papritz, 1993]. As a 

result, Cl– and Br– are useful to hydrogeochemists in three main ways: (1) Cl– is one of 

the most commonly used environmental tracers in hydrology for investigating 

groundwater recharge, groundwater flow and groundwater-surface water interactions 

[e.g., Allison et al., 1994; Healy, 2010; Scanlon et al., 2002]; (2) Br– is a useful applied 

tracer because of its low toxicity and low natural abundance, in addition to its high 

solubility and near-conservative behaviour [e.g., Davis et al., 1998; Flury and Papritz, 

1993]; and (3) the ratio of Cl– and Br– is a popular parameter for tracing 

hydrogeochemical evolution of water sources [e.g., Bloch and Schnerb, 1953; 

McCaffrey et al., 1987], groundwater and surface water salinisation mechanisms [e.g., 

Alcalá and Custodio, 2008b; Bennetts et al., 2006; Cartwright et al., 2006; Herczeg and 

Leaney, 2011; Macumber, 1991] and identifying pollution sources [e.g., Dailey et al., 

2014; Davis et al., 1998; Katz et al., 2011]. 

Stable chlorine and bromine isotope compositions are also now utilised thanks to 

advances in mass spectrometry to further refine our understanding of the 

biogeochemical cycles of these two elements, for enhancing their utility as chemical 

tracers, and as forensic tools for investigating water contamination. The initial 

investigations into stable chlorine isotope variations (δ37Cl) were focused on dissolved 

Cl– in porewaters [e.g., Desaulniers et al., 1986; Kaufmann et al., 1984]. However, the 
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stable isotope composition of Cl– has now been used as an environmental tracer for 

investigating many hydrogeochemical processes (e.g., diffusion, evaporite 

dissolution/precipitation, solute mixing, salinisation mechanisms and chemical 

evolution/cycling [e.g., Eastoe et al., 2007; Eggenkamp et al., 1995; Groen et al., 2000; 

Li et al., 2012; Rebeix et al., 2014; Richard et al., 2011; Sie and Frape, 2002; 

Yamanaka et al., 2014; Zhang et al., 2007]). 

1. Chlorine and bromine in natural waters

Chlorine and bromine are both members of Group 17 of the periodic table (i.e.,

the halogens) along with fluorine and iodine, which are also found in aqueous 

environments. The halogens are characterised by their very high electronegativity, 

which is due to their outer electron shell being only one electron short of a noble gas 

configuration. Chlorine has an atomic number of 17, an atomic mass of ~35.5, one main 

and six minor oxidation states (–1 and 0, +1, +3, +4, +5, +7, respectively) [Haynes, 

2015], an estimated upper continental crust concentration of ~370 μg g–1 [Rudnick and 

Gao, 2014], an estimated oceanic crust concentration of 20 – 2,800 μg g–1 [Jambon et 

al., 1995], and a mean seawater abundance of 19,400 μg g–1 [Millero, 2014]. Bromine, 

by contrast, has an atomic number of 35, an atomic mass of ~79.9, five main oxidation 

states (–1, +1, +3, +5, +7) [Haynes, 2015], an estimated upper continental crust 

concentration of ~1.6 μg g–1 [Rudnick and Gao, 2014], an estimated oceanic crust 

concentration of 0.1 – 1.3 μg g–1 [Jambon et al., 1995], and a mean seawater abundance 

of 67 μg g–1 [Millero, 2014]. Chlorine and bromine are enriched in Earth’s hydrosphere 

relative to their crustal abundance (by factors of up to 970 and 670, respectively) 

because they are volatile and prefer to exist predominantly as highly soluble halides 

[Graedel and Keene, 1996]. 
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1.1. Chloride/bromide ratios 

The key geochemical differences of Cl– and Br– can provide researchers with vital 

qualitative and quantitative information relating to geochemical reactions in catchments 

and basins. Consequently, the ratio of dissolved Cl– and Br–, as a molar or mass ratio 

(from herein mass ratios are adopted; [Cl–/Br–]molar = 2.254´[Cl–/Br–]mass), has become a

widely quantitative and semi-quantitative parameter in the field of hydrogeochemistry 

[e.g., Alcalá and Custodio, 2008b; Cartwright et al., 2006; Davis et al., 2004; Davis et 

al., 1998; Edmunds, 1996; Herczeg and Edmunds, 1999] and sedimentary (evaporite) 

geochemistry [e.g., Cendón et al., 2004; Holser, 1966; Holser, 1970; McCaffrey et al., 

1987; Taberner et al., 2000; Valyashko, 1956]. In the context of saline environments, 

Cl–/Br– ratios have utility for identifying evaporite dissolution/precipitation, quantifying 

salt additions/losses and delineating salt sources. 

Seawater, the primary reservoir for Cl– and Br–, has a relatively uniform Cl–/Br– 

ratio of approximately 288 [Millero, 2014], and a similar ratio is typically observed in 

coastal rainfall. However, chemical fractionation at the ocean surface during marine 

aerosol development causes oceanic aerosols of variable sizes to have Cl–/Br– ratios 

deviating from the mean ocean water ratio, and studies have found that Br– tends to be 

enriched in the smaller aerosols [Zhou et al., 1990]. A possible explanation for this is 

the observation that halide ions have a tendency to cluster near the air-water interface 

and that this tendency increases with an ion’s polarisability [Jungwirth and Tobias, 

2002]. The approximately 30% higher polarisability of Br– than that of Cl– means that 

Br– is likely to be found in greater proportions in smaller oceanic aerosol particles 

because of their greater surface area to volume ratio [Davis et al., 2004]. As a result, it 

is hypothesised that the Cl–/Br– ratio of atmospheric aerosols will decrease with distance 

inland and with increasing elevation because of washout effects and the ability of 
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smaller aerosols to be transported over greater distances and elevations [Davis et al., 

2004]. The few available rainwater and groundwater data from continental and 

countrywide studies tend to find that inland Cl–/Br– ratios are lower than that of 

seawater, which supports this hypothesis [e.g., Alcalá and Custodio, 2008b; Crosbie et 

al., 2012; Davis et al., 2004; Davis et al., 1998]. 

Halite (NaCl) has a high Cl–/Br– ratio because of the exclusion of all but trace 

quantities of Br– from the crystal lattice [Holser, 1970] and the much higher solubility 

of Br– [Davis et al., 2004; Davis et al., 1998]. Bulk halite has been observed to have a 

Cl–/Br– ratio range of approximately 2 000 – 10 000 [Davis et al., 2004; Davis et al., 

1998], and individual crystals can be found with ratios as high as 100 000 [Davis et al., 

1998]. It is only once potassium begins to replace sodium in the crystal lattice of 

evaporites during brine evaporation (i.e., formation of sylvite and carnallite), that 

bromine is readily incorporated and Cl–/Br– ratios of precipitates begin to fall to 400 

[Alcalá and Custodio, 2008b; Taberner et al., 2000]. During the precipitation of 

evaporite minerals, bromine is enriched in the residual brine, and Cl–/Br– ratios have 

been found to fall as low as 30 – 80 [Birkle et al., 2009; McCaffrey et al., 1987; 

Taberner et al., 2000]. These chemical fractionation characteristics of Cl– and Br– make 

Cl–/Br– ratios an excellent parameter to utilise in environments where evaporite 

dissolution/precipitation and subsequent brine evolution are expected, making this 

technique especially attractive in salt lake environments, of either marine or non-marine 

origin [Eugster and Jones, 1979; Holser, 1970; Macumber, 1991].  

Anthropogenic pollution sources have also been found to contain varying Cl–/Br– 

ratios [e.g., Cendón et al., 2015; Davis et al., 2004; Davis et al., 1998; Sollars et al., 

1982; Vengosh and Pankratov, 1998]. Sewage effluent typically has an elevated Cl–/Br– 

ratio (approximately 400 – 900) because of the widespread domestic use of table salt 
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[Vengosh and Pankratov, 1998]. In contrast, urban runoff can have a wide range of Cl–

/Br– ratios. In the United Kingdom, Sollars et al. [1982] found that during winter 

months, urban runoff had a high mean Cl–/Br– ratio (approximately 1200) because of the 

use of de-icing salt on roadways. However, during the summer months, runoff had a 

lower mean Cl–/Br– ratio of approximately 20, which was interpreted to be caused by 

the dissolution of Br– containing additives in dust expelled from the exhausts of cars 

fuelled by leaded petrol. The effect of car exhaust aerosols on the Cl–/Br– ratio of urban 

runoff is likely to have diminished in the decades since the phasing-out of leaded petrol 

in the 1980s, like reductions in lead pollution on roadways [e.g., MacKinnon et al., 

2011; Wang et al., 2006]. However, road de-icing salts are still widely used in countries 

that experience heavy snow, and Cl–/Br– ratios are commonly used to identify where the 

quality of surface water and groundwater may be impacted by this activity [e.g., Dailey 

et al., 2014]. In agricultural soils and water, a potentially large source of anthropogenic 

Br can be introduced by Br-containing fertiliser and pesticide, the degradation of which 

releases Br– into the environment [Flury and Papritz, 1993].  

2. Stable halogen isotope geochemistry

Chlorine has two stable isotopes: the more abundant 35Cl (75.76%) and the less

abundant 37Cl (24.24%) [Berglund and Wieser, 2011]. Bromine also has two stable 

isotopes that have a relatively even natural distribution: 79Br (50.69%) and 81Br 

(49.31%) [Berglund and Wieser, 2011]. With the rapid development of analytical 

methods for analysing stable isotope ratios over the last half-century, researchers have 

been able to assess the isotopic variations of natural materials for many of the elements. 

These methods have become particularly popular in the earth and environmental 

sciences because they are useful for elucidating many physical and biogeochemical 
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processes that chemical composition alone cannot identify (see Eiler et al. [2014] for a 

recent review of the state-of-the-science). Notation for describing stable halogen isotope 

ratio variations follows the standard delta convention used for other stable isotopes, 

where variations are reported as per mil (‰) deviations from a standard:  

(1) 

and: 

(2) 

where SMOC and SMOB denote the commonly used natural reference standards 

for stable halogen isotope compositions: Standard Mean Ocean Chloride and Standard 

Mean Ocean Bromide, respectively [Eggenkamp, 2014; Jochum and Enzweiler, 2014]. 

Both standards are not officially assigned; however, studies have found ocean water to 

be adequately homogenous with respect to its stable chlorine isotope ratio [Godon et al., 

2004; Kaufmann et al., 1984]. Seawater also represents a cheap and convenient natural 

reference material that is easily obtained and shared amongst laboratories. A large-scale 

intercomparison study of seawater is yet to be undertaken for stable bromine isotopes; 

however, seawater is considered an appropriate standard because its oceanic residence 

time (~130 Ma) is even greater than Cl– (~84 Ma) [Eggenkamp, 2014; Eggenkamp and 

Coleman, 2000]. A recent study presenting data for five seawaters had an overall range 

of <0.1 ‰ [Du et al., 2013], which is similar to the analytical precision of many Br 

isotope laboratories. 

Variations in δ37Cl values in nature have been found to be caused by fluid mixing 

[e.g., Beekman et al., 2011; Groen et al., 2000; Shouakar-Stash et al., 2007], molecular 

diffusion [e.g., Appelo and Postma, 2005; Desaulniers et al., 1986; Lavastre et al., 
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2005] and evaporite dissolution/precipitation [e.g., Eastoe et al., 1999; Eastoe et al., 

2007; Eggenkamp et al., 1995]. Kaufmann et al. [1984] hypothesised that stable 

chlorine isotopes were likely to be fractionated by molecular diffusion because kinetic 

effects should cause the lighter 35Cl to diffuse at a faster rate than 37Cl. Once analytical 

methods advanced to the point that variations in δ37Cl were discernible beyond 

analytical uncertainty, molecular diffusion through low-permeability glacial deposits in 

northern America was the first instance of theoretical fractionation modelling being 

supported by field data [e.g., Desaulniers et al., 1986]. Desaulniers et al. [1986] 

provided evidence to support the hypothesis that Cl– in underlying saline formation 

water was migrating upwards through the glacial tills by showing that 35Cl was enriched 

relative to 37Cl with decreasing depth. This study confirmed that in environments where 

diffusive transport of solutes occurs, stable chlorine isotopes are very effective tracers 

because of the conservative nature of Cl–. Since the discovery of fractionation during 

diffusion, stable chlorine isotopes have become widely used to identify and quantify 

solute transport through low-permeability units, and are particularly popular in studies 

assessing the suitability of sites for nuclear waste storage [e.g., Lavastre et al., 2005; 

Mazurek et al., 2011; Rebeix et al., 2014]. 

Soon after the discovery that stable chlorine isotope abundances were not 

homogeneous in nature, researchers began work to define fractionation factors for 

evaporite mineral formation. The first study published with data from laboratory-based 

fractionation experiments was Eggenkamp et al. [1995], where fractionation factors 

between brine and Cl– bearing evaporite minerals were determined. This study found 

that early and late stage evaporites exhibit varying fractionation factors such that early 

stage evaporites (e.g., halite) have positive fractionation factors (i.e., 37Cl is precipitated 

preferentially) and vice versa for late stage evaporites (e.g., sylvite and bischofite). The 



Chapter 1: Chlorine and bromine geochemistry 

Tracing terrestrial salt cycling using chlorine and bromine 
M. A. Short (2017)

21 

values of the laboratory-determined fractionation factors were supported by 

geochemical data from an evaporite sequence core containing both early and late stage 

evaporite minerals (e.g., halite, bischofite, carnallite and kainite). Since the work of 

Eggenkamp et al. [1995], numerous studies have been published highlighting the 

variations of stable chlorine isotopes in evaporite deposits [e.g., Eastoe et al., 2001; 

Eastoe et al., 2007; García-Veigas et al., 2009; Peryt et al., 2005]. 

Luo et al. [2014] published a recent study revisiting chlorine isotope fractionation 

during evaporite formation because of the perception that corrections were required to 

improve the methodology (i.e., allowing complete evaporation of experiments before 

sampling) of Eggenkamp et al. [1995] and Eastoe et al. [1999]. Luo et al. [2014] found 

that at all stages of evaporite formation, fractionation factors between brine and 

precipitate were positive. This result contradicts the work of Eggenkamp et al. [1995] 

and Eastoe et al. [1999] but is consistent with field data from other studies of evaporite 

sequences [e.g., Eastoe et al., 2007; Luo et al., 2012], where late stage evaporites 

display δ37Cl values that are much lower than early stage evaporites. Eggenkamp et al. 

[2016] recently presented an experimental study that measured the δ37Cl and δ81Br 

variations of numerous Cl– and Br– salts from saturated solutions. The authors 

concluded that the fractionation factor was solely dependent on the cation of the 

precipitating salt but could not identify a mechanism for the large differences. These 

contrasting experimental results, and subsequent communication between researchers 

[i.e., Eggenkamp, 2015; Luo et al., 2015], highlight that the field of chlorine stable 

isotope geochemistry is still in its infancy and specific fractionation processes still need 

to be understood [Eggenkamp et al., 2016; Kharaka and Hanor, 2014]. Furthermore, 

these lab-based experimental studies do not incorporate the large-scale, both spatial and 

temporal, processes that lead to the formation of natural evaporite deposits (e.g., steady-
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state vs. transient hydrologic systems, variable solute sources, basin restriction and if 

total desiccation is achieved). The current estimated range of δ37Cl values in natural 

samples is approximately –8.0 – +8.0 ‰ [Shouakar-Stash, 2008]. 

The study of stable bromine isotope variations in the earth sciences is in its 

infancy and only a handful of studies have been published so far [e.g., Boschetti et al., 

2011; Cameron and Lippert Jr, 1955; Eggenkamp and Coleman, 2000; 2009; Frape et 

al., 2007; Gelman and Halicz, 2011; Shouakar-Stash, 2008; Shouakar-Stash et al., 

2007; Shouakar-Stash et al., 2005b; Stotler et al., 2010; Xiao et al., 1993; Zakon et al., 

2014]. Field investigations of brines and evaporites have typically used δ81Br 

compositions in conjunction with δ37Cl because of the expected similarities between the 

two. However, Eggenkamp and Coleman [2000] found that stable halogen isotopes 

fractionated in different directions in oilfield brine samples, with δ37Cl values ranging 

from –0.27 to –4.96 ‰ SMOC had δ81Br values ranging from +0.08 to +1.27 ‰. 

Although the authors could not explain the observed differences, it led them to conclude 

that the combined use of stable chlorine and bromine isotopes could provide a 

complementary insight into solute pathways and brine evolution. This conclusion was 

further supported by Shouakar-Stash et al. [2005b] who found distinct δ37Cl and δ81Br 

signatures of brine from three Canadian basins. Later, Shouakar-Stash et al. [2007] 

reported the δ37Cl and δ81Br compositions of brine, brackish and fresh water from the 

across the Siberian Platform. The authors found that each of the water types had distinct 

isotopic signatures but found it difficult to explain the differences, except for mixing 

between different water types. 

Molecular diffusion is also expected to be a mechanism of stable bromine isotope 

fractionation in natural systems [Eggenkamp and Coleman, 2000; 2009]. Fractionation 

of stable bromine isotopes during diffusion would be expected to be less than chlorine 
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because the mass difference between stable bromine isotopes is approximately half the 

difference of chlorine isotopes (2.5% and 5%, respectively). Researchers have 

investigated the diffusion of stable bromine isotopes in molten bromine compounds 

(PbBr2 and ZnBr2) in the middle of the twentieth century [e.g., Cameron et al., 1956; 

Lundén and Lodding, 1960]. However, it was not until a recent study by Eggenkamp 

and Coleman [2000] that estimates of stable bromine isotope diffusivities (D) were 

reported for experiments undertaken with conditions similar to those found in near-

surface hydrologic systems. The authors used polyacrylamide gel with varying 

concentrations of NaBr (50 – 160 g L–1) and temperatures (2 – 80 °C) to replicate Br– 

diffusion through a low-permeability geological formation. The reported range of 

isotopic fractionation factors for stable bromine isotopes (D79/D81) was 1.00064 – 

1.00098, which is half the range of fractionation factors the authors found for stable 

chlorine isotopes (D35/D37) under the same experimental conditions (1.00128 – 

1.00192). However, stable bromine isotope fractionation during diffusion has not yet 

been confirmed during field studies. 

Variations in δ81Br fractionation factors have been experimentally determined for 

precipitating Br– salts from saturated solutions [Eggenkamp et al., 2016]. Like δ37Cl 

fractionation factors determined from the same study, δ81Br fractionation factor 

variations during mineral precipitation are dependant of the cation of the salt. However, 

it was found that δ81Br fractionation factors during mineral precipitation were very 

small, and were unlikely to cause large differences between salt and brines [Eggenkamp 

et al., 2016]. The current estimated range of δ81Br variations observed in natural 

systems is –0.80 – +3.35 ‰ [Shouakar-Stash, 2008]. Unfortunately, most field studies 

have found it difficult to attribute observed δ81Br compositions to specific processes 

[e.g., Boschetti et al., 2011; Eggenkamp and Coleman, 2000; Frape et al., 2007; 
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Shouakar-Stash, 2008; Shouakar-Stash et al., 2007; Stotler et al., 2010], emphasising 

the need for more targeted field studies of specific processes. 

The research presented in this thesis aims to address some of the knowledge gaps 

associated with the use of chlorine and bromine to trace salt cycling. Specifically, this 

thesis will address some of the uncertainties associated with using chlorine and bromine 

to quantify salt cycling, and use recent datasets to investigate the spatial and temporal 

variability of the input of these elements into catchments on a regional and continental 

scale. Furthermore, chlorine and bromine tracer techniques are applied to an Australian 

saline lake (i.e., Lake George Basin) in order to demonstrate their utility in improving 

the understanding of salt cycling and transport in natural environments. The 

measurement of stable halogen isotope compositions at Lake George represents one of 

the first (for chlorine) and only (for bromine) field datasets in Australia, which should 

provide valuable information about their utility for investigating salt cycling in 

Australia’s unique environment. 
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Foreword 

The following chapter is based on an article that was published in Journal of 

Hydrology in early-2017 [Horner et al., 2017]. The article is titled ‘Chloride and 

bromide sources in water: Quantitative model use and uncertainty’ with the following 

authorship: Horner, K.N., Short, M.A. and McPhail, D.C.  

Much of the work presented in the manuscript was undertaken by Kyle Horner 

during his Ph.D. candidacy at the Australian National University [Horner, 2013]. The 

idea for the paper was his and he was the primary author of the sections relating to the 

concept background (Section 1), model development (Section 2) and constraining 

chloride/bromide ratio tracer studies (Section 5). My contribution was to help design the 

bench-top halite dissolution experiments, and then undertake geochemical analyses of 

the experimental samples (Section 3). I was also the primary contributor to sections on 

the model sensitivity (Sections 4.1 and 4.2) and initial composition uncertainty (Section 

4.3). Bear McPhail helped to review the model development and experimental results, 

provided guidance on the manuscript structure and content, and assisted with editing. 
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1. Introduction

Chloride (Cl–) is a widely-used geochemical tracer for characterising the origin,

movement, and discharge of surface water, porewater, and groundwater. Dissolved Cl– 

is used because of its ubiquity, ease of sampling and analysis, low concentration in 

common rock-forming minerals, and near-conservative behaviour in the environment 

[Davis et al., 1998]. A number of chloride-based tracer techniques have been 

developed, such as: vertical Cl– profiling in the vadose zone to estimate recharge rates 

[e.g., Cook et al., 1989; Scanlon et al., 2007; Tyler et al., 1996; Zhu et al., 2003]; Cl– 

delineation in streams and aquifers to trace contaminant migration [e.g., Gasser et al., 

2010; Perera et al., 2013; Shaw et al., 2012; Stigter et al., 2011]; and, R36Cl surveys 

along flow paths to calculate flow rates, residence times, and recharge variability [e.g., 

Bird et al., 1989; Cartwright et al., 2006; Love et al., 2000; Scheiber et al., 2015; Stone 

and Edmunds, 2016]. 

These techniques are underpinned by the assumption that dissolved Cl– behaves 

conservatively in the environment, with no unaccounted Cl– sources or sinks affecting 

its concentration. Therefore, changes in a solution’s Cl– concentration as a result of 

dissolution/precipitation of natural salts (e.g., evaporites) or anthropogenic salts (e.g., 

fertilisers or deicing agents), or mixing of waters of different Cl– concentrations (e.g., 

via stream confluence, preferential flow, vertical leakage, or seawater intrusion) present 

sources of error in chloride-based tracer techniques unless such Cl– inputs/outputs are 

identified and compensated for in calculations [Davis et al., 1998; Love et al., 2000; 

Scanlon, 2000]. 

When mineral dissolution or water mixing is suspected and end-member 

compositions are known, mass-balance calculations can be used to compensate for 
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changes in Cl–, removing this source of error [e.g., Alcalá and Custodio, 2008b]. 

However, in natural environments (especially arid climates), fluid mixing and salt 

dissolution often coincide with evapotranspiration (ET). In such cases, multiple 

processes act concurrently to change dissolved Cl– concentrations, complicating mass 

balance calculations. As the extent of evapotranspiration and the timing of salt 

dissolution are often unknown, they cannot readily be compensated for in the mass 

balance calculations.  

Instead, differentiating the effects of such processes requires measurement of 

additional parameters to confirm the cause of observed Cl– concentration changes. 

While this has been accomplished by other workers using a combination of stable and 

radioisotopes [e.g., Love et al., 2000] or major and trace cations [e.g., Johnson et al., 

2015], dissolved bromide (Br–) offers an alternative and potentially more cost effective 

alternative to these methods to not only identify but to quantify the extent of such 

processes. 

Cl– and Br– behave in a similar manner in the environment as they are both halide 

ions. Distinct differences in their natural abundances in surface water, groundwater, and 

minerals make the Cl– and Br– ratio (the Cl–/Br– ratio) a useful and versatile 

environmental tracer [e.g., Bennetts et al., 2006; Cartwright et al., 2006; Davis et al., 

1998; Herczeg et al., 2001; Johnson et al., 2015; McInnis et al., 2013; Petrides et al., 

2006; Vengosh and Pankratov, 1998]. 

Cl–/Br– ratios are most effective as tracers when end-members have strongly 

contrasting compositions. Relative to natural waters, halite typically has a very high Cl–

/Br– ratio due to the exclusion of all but trace quantities of Br [Siemann and Schramm, 

2000]. Similarly, leakage of waste water from urban or industrial sources or leaching of 

deicing salts into streams or aquifers can be identified by localised deviations of Cl–/Br 
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ratios [Dailey et al., 2014; Johnson et al., 2015; Katz et al., 2011; McArthur et al., 

2012; Mullaney et al., 2009]. 

In this chapter, a series of equations are derived to quantitatively use Cl–/Br– ratios 

quantitatively to correct the dissolved Cl– concentration in a water for inputs from 

mineral dissolution and/or binary water mixing, and to demonstrate that the equations 

can be applied to waters also modified by evapotranspiration. The equations can be used 

to determine the proportional Cl– contributions from each end-member to a solution 

providing there has been no precipitation of chloride-bearing minerals and the Cl–/Br– 

ratio of each end-member is known. The validity and sensitivity of the equations are 

evaluated via bench-top experiments simulating a common environmental process: 

halite dissolution in a near-surface environment subject to concurrent 

evapotranspiration. In addition, we discuss the sensitivity of the equations to end-

member compositions and analytical uncertainty, and provide an example illustrating 

how use of the equations can reduce uncertainty when using Cl–-based tracer techniques 

to evaluate recharge rates and groundwater age. 

1.1. Cl–/Br– ratios in the environment 

Bulk Cl–/Br– ratios from 1900 to more than 8700 have been reported for Cl– salt 

beds and domes around the world [Alcalá and Custodio, 2008b; Cartwright et al., 2004; 

Davis et al., 1998]. Sequential mineral dissolution/precipitation cycles can result in Cl–

/Br– ratios in individual salt crystals exceeding 100 000 as Br– is progressively excluded 

from minerals such as halite [Siemann and Schramm, 2000]. There may also be a large 

amount of heterogeneity in Cl–/Br– ratios of halite samples due to the distribution and 

abundance of fluid (i.e. brine) inclusions, which can be enriched in Br– [e.g., Moretto, 

1988] and cause bulk halite (i.e. solid phase plus inclusions) compositions to be 

markedly different from the solid phase compositions. 
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Seawater, in contrast, has a mean Cl–/Br– ratio from 284 – 293 [Berner and 

Berner, 1996; Eggenkamp, 2014; McCaffrey et al., 1987; Quinby-Hunt and Turehian, 

1983]. Marine aerosols are the primary sources of solutes in coastal rainfall and 

precipitation often has ocean-like ion/ion ratios [Appelo and Postma, 2005]. As a result, 

many low-salinity coastal aquifers exhibit Cl–/Br– ratios similar to seawater due to 

recharge by rainwater [Alcalá and Custodio, 2008b; Davis et al., 1998]. However, this 

is not always the case, as illustrated in a recent study presented in Cendón et al. [2014], 

where shallow, coastal groundwater Cl–/Br– ratios were found to be markedly elevated 

(>400 by mass for some samples) relative to seawater despite the aquifer having little 

anthropogenic inputs or contact with evaporite minerals. 

As atmospheric moisture moves inland, differential rain-out of Cl– and Br– and 

dissolution of continentally-derived sediments, agricultural products, and smoke from 

fires or fossil fuel combustion can modify rainfall Cl– and Br– concentrations [Alcalá 

and Custodio, 2008b; Davis et al., 2004; Davis et al., 1998; Keywood et al., 1997]. 

Typically, there is a proportional increase in Br– and inland rainwater tends to have 

lower Cl–/Br– ratios than seawater, although dissolution of aeolian salts can increase 

meteoric Cl–/Br– ratios [Davis et al., 1998]. 

Following rainfall, concentrations of dissolved Cl– and Br– can be further modified 

via anthropogenic impacts (e.g., fertiliser and deicing salt dissolution), fluid mixing 

(e.g., stream confluence), and mineral dissolution at the land surface or in the 

unsaturated zone [e.g., Cartwright et al., 2009; Davis et al., 1998; Kaushal et al., 2005; 

Kelly et al., 2008; Vengosh and Pankratov, 1998]. Cl–/Br–ratios between 10 and 100 000 

have been measured in surface water and groundwater around the world, illustrating the 

marked impacts these processes can have on Cl–/Br– ratios throughout the water cycle 

[e.g., Alcalá and Custodio, 2008b; Cartwright et al., 2009; Herczeg et al., 2001]. 
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Biogeochemical processes in the unsaturated zone such as plant uptake and clay 

sorption, as well as anion exchange on clays and organic matter, have been shown to 

have a strong effect on soil water and groundwater composition [Edwards and Webb, 

2009; Scanlon et al., 2009]; however, Cl– and Br– are not affected strongly. For 

instance, Clifford et al. [2011] illustrated the preferred sorption order for anions to 

activated alumina (a soil analogue) to be: 

OH– > H2AsO4
– > F– > SO4

2– >> HCO3
– > Cl– > NO3

– > Br– 

As preferentially-sorbed ions such as fluoride, sulfate, and bicarbonate are often 

present in surface water and groundwater, anion sorption will not have a significant 

effect on Cl– and Br– concentrations in many natural systems. 

1.2. Impacts of concurrent mixing/dissolution and evapotranspiration on Cl–

/Br– 

Binary mixing and mineral dissolution will modify both dissolved Cl– and Br– in 

proportion to the quantity of each end member in the final admixture. Accordingly, as 

demonstrated by Alcalá and Custodio [2008b], Cl–/Br– ratios offer an inexpensive and 

straightforward method to identify and quantify dissolved Cl– inputs where ET is not 

suspected to be signficant. However, ET often cannot be discounted and, as qualitative 

discussions of Cl–/Br– ratios show [e.g., Davis et al., 1998; Lenahan et al., 2011], failure 

to account for it will introduce error when interpreting dissolved Cl–/Br– ratios. The 

significance of this error is demonstrated in Table 1, which summarises the quantity of 

halite (mass Cl–/Br– = 5 000) required to raise the Cl–/Br– ratio of a hypothetical coastal 

rainwater (Cl– = 10 mg kg–1, mass Cl–/Br– = 290) to a final ratio of 500 at progressive 

stages of ET. 
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Table 1: Solute concentrations of an initial solution at 
progressive stages of evapotranspiration (ET), the amount of Cl– 
and Br– from halite dissolution (mg kg–1 solution) required to 
raise the Cl–/Br– ratio of a unit mass (1 kg) of the concentrated 
solution from 290 to 500 (ClI = 10 mg kg–1; RH = 5 000), and the 
proportion of halite-derived Cl– and Br– in the final solution 
(mass %). 

 Initial Solution 
(RI = 290) 

Halite Added (RH 
= 5000) 

Final Solution 
(RF = 500) 

ET ClI BrI ClH BrH ClH BrH 
(%) mg kg–1 mg kg–1 mg kg–1 mg kg–1 (%) (%) 

0 10.00 0.0345 8.046 0.0016 44.6 4.5 
10 11.11 0.0383 8.940 0.0018 44.6 4.5 
25 13.33 0.0460 10.73 0.0021 44.6 4.5 
50 20.00 0.0690 16.09 0.0032 44.6 4.5 
75 40.00 0.1379 32.18 0.0064 44.6 4.5 
90 99.99 0.3448 80.45 0.0161 44.6 4.5 
95 200.0 0.6895 160.9 0.0322 44.6 4.5 
99 999.0 3.445 803.8 0.1608 44.6 4.5 
99 1996 6.883 1606 0.3212 44.6 4.5 

 

The timing of dissolution or mixing processes and the extent of ET undergone by 

an environmental water sample are often unknown, so to avoid problems resulting from 

volume changes the results in Table 1 are presented as concentrations (solute mass per 

kilogram of evapoconcentrated solution) rather than as total mass (or volume). This is 

also an advantage because chemical compositions are the data available to investigators. 

As shown in Table 1, dissolved Cl–/Br– ratios in the evapoconcentrated solution remain 

constant if the solution is not sufficiently concentrated for Cl–- and/or Br–-bearing 

minerals to precipitate. If mineral saturation is reached, Cl–/Br– ratios would change as 

dissolved Cl– and Br– partition into the solid phase [e.g., Siemann and Schramm, 2000]. 

Below saturation, however, ET ‘entrenches’ the Cl–/Br– ratio of a solution. That is, 

with increasing ET, greater masses of halite (or other halide-bearing minerals) are 

required to increase the Cl–/Br– ratio proportionally to a unit mass or volume of the 

evapoconcentrated solution. Thus, the absolute quantity of halite required to increase 
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the Cl–/Br– ratio of a given mass of solution by a fixed amount is dependent upon the 

initial solution composition, the extent of ET, and the timing of halite dissolution. 

Crucially, the relative quantities (wt. %) of Cl– and Br– in the final solution 

contributed by halite dissolution are constant, regardless of the degree of 

evapotranspiration (Table 1). Instead, the relative quantities depend upon the 

differences in the Cl–/Br– ratios of the end-members: the initial solution (RI); halite (RH); 

and, the final solution (RF). 

This leads to three important observations. First, where evaporation or 

transpiration occur the absolute quantity of dissolved halite cannot readily be inferred 

through a qualitative review of Cl–/Br– ratios. Second, small changes in dissolved Cl–

/Br– ratios can signify large proportional Cl– contributions via mineral dissolution or 

binary mixing if the end members have strongly contrasting Cl–/Br– ratios. For the case 

of the hypothetical solution in Table 1, 44.6 wt.% of the final dissolved Cl– load is 

derived from halite dissolution but the Cl–/Br– ratio only increased by 210 in all 

instances. Third, it is possible to use Cl–/Br– ratios to calculate the proportion of 

dissolved Cl– from each end-member in a chloride salt solution or binary water mixture, 

providing no Cl–- and Br–-containing salts have precipitated. These calculations can be 

applied to correct dissolved Cl– concentrations for external inputs, reducing uncertainty 

in many Cl–-based tracer calculations. 

2. Dissolved Cl– correction factors

The Cl–/Br– ratio of a solution or mineral is defined as:

(3)
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where Cl– and Br– are expressed in the same concentration units. If the mass of 

water remains constant as the Cl–/ Br– ratio in the solution changes from an initial value 

(RI) to a final value (RF) due to, for example, dissolution of a chloride salt such as halite, 

then: 

(4) 

where ClI and BrI are the initial concentrations and ClH and BrH are the 

contributions of Cl– and Br– from halite dissolution. Assuming congruent dissolution, 

ClH and BrH are constrained by the Cl–/ Br– ratio of halite (RH): 

(5) 

Using these relationships δClH, the proportion of dissolved Cl– resulting from 

halite dissolution (here expressed as a percentage), can be calculated: 

(6) 

Once the proportion of dissolved Cl– contributed to the final solution from mineral 

dissolution is known it can be compensated for and the quantity of dissolved Cl– from 

the initial solution can be readily determined: 

(7) 

Multiplying the final dissolved Cl– concentration by δClI will return a corrected 

Cl– concentration suitable for use in chloride-based tracer calculations.  

The proportions of Br– from halite dissolution and the bromide correction factor 

can be determined in the same manner: 
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(8) 

(9) 

Molar Cl–/Br– ratios should be used to determine a molar correction factor, while 

mass Cl–/Br– ratios should be used to determine a mass correction factor. Once 

calculated, the correction factor can be applied to analytical results to correct dissolved 

Cl– or Br– concentrations for contributions from halite dissolution, allowing chloride-

based tracer techniques to be used in regions where salt dissolution and ET have 

concurrently or sequentially modified a solution’s composition. 

2.1.  Binary mixing 

Equation (6) and Equation (7) can also be used to calculate the proportion of 

dissolved Cl– in a mixture contributed from two waters with different Cl–/Br– ratios. By 

replacing the halite terms in Equation (6) and Equation (7) with RA, the Cl–/Br– ratio of 

an added solution, binary mixing equations can be formulated and the proportional 

contributions of both end members can be determined (Equations (10) and (11)). Once 

the relative contributions of Cl– in the final solution are determined, a mass-balance 

approach can be used to calculate the mixing fraction of the end members. 

(10) 

(11)
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3. Experimental and analytical methods

A series of bench-top experiments were conducted to validate the mathematical

model and to assess the sensitivity of the model to heterogeneous halite compositions 

and analytical uncertainty. We accomplished this by dissolving three different halite 

samples with contrasting Cl–/Br– ratios into a series of solutions with initial Cl– and Br– 

concentrations and Cl–/Br– mass ratios within the range commonly reported for natural 

environments. 

The three halite samples used in the experiments were: Saxa Pink Himalayan table 

salt (Cerebos Australia Ltd., Australia); Lake Deborah ‘bubble salt’ (WA Salt Group, 

Australia); and, Searles Lake halite (California, USA; The Australian National 

University museum collection, ID 37341). 

3.1. Halite dissolution experiment 

Cl– and Br– concentrations were determined using a Dionex ICS-5000 Reagent-

Free ion chromatograph (IC; Thermo Scientific, USA) at the Australian Centre for 

Research on Separation Science (ACROSS) laboratories of the University of Tasmania, 

Australia. The IC was run using a gradient potassium hydroxide elution with an IonPac 

AS-19 analytical column and suppressed conductivity detection. Analytical precision, 

determined by replicate analysis of samples and calibration standards, was better than 

5% for all Cl– and Br– analyses. 

The Cl–/Br– ratio of each halite sample was determined prior to the batch 

experiments by dissolving three aliquots of each halite sample in ultra-pure water 

(18.2 MΩ cm–1 at 25°C Milli-Q; Merck Millipore, Germany) and filtering through 0.2 

μm nylon syringe filters. Cl–/Br– ratios in the Saxa Pink Himalayan (SPH), Lake 

Deborah (LD) and Searles Lake (SL) halite sample replicates are shown in Table 2. 
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Table 2: Measured mass Cl–/Br– ratios for halite aliquots used in 
experiments. 

Searles Lake Lake Deborah Saxa Pink Himalyan 
Replicate A 27 100 ± 2 700 44 400 ± 4400 15 400 ± 1 500 
Replicate B 22 200 ± 2 200 42 200 ± 4200 30 000 ± 3 000 
Replicate C 20 000 ± 2 000 54 400 ± 5400 15 000 ± 1 500 

Batch experiments were then conducted simulating halite dissolution into a low-

salinity water (0% ET, ClI = 49.9 mg kg–1; BrI = 0.26 mg kg–1; mass RI = 193) and in 

higher-salinity water representing progressive stages of evapoconcentration (50, 75, 90 

and 99 wt.% evaporated, Table 3). The 99 wt.% stock (ClI = 4940.8 mg kg–1; BrI = 

24.56 mg kg–1; mass RI = 201) was made using analytical grade NaCl (Merck Pty. Ltd. 

‘AnalaR’ 99.5% NaCl; batch number 36158) and laboratory grade sodium bromide 

(‘Unilab’ 99.5% NaBr; Ajax Finechem Pty. Ltd. batch number F1K217) dissolved in 

ultrapure water. The remaining initial solutions for each stage of evapoconcentration 

were prepared from the maximum salinity stock (99 wt.%) by serial dilution with 

ultrapure water to the required salinity. Once the initial solutions were prepared, a series 

of solutions were generated for each halite sample by dissolving approximately 50 mg 

(accurately weighed) of halite into a separate aliquot of each initial solution (Table 3). 
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Table 3: Initial solution composition, mass of added halite, final solution composition, and measured and calculated δClH values for batch experiments. 

Sample Solution ClI BrI RI Halite added ClF BrF RF Measured δClH Calculated δClH (wt. %) 
% ET (g) (mg kg–1) (mg kg–1) (mass) (mg) (mg kg–1) (mg kg–1) (mass) (wt. %) Replicate A Replicate B Replicate C 

Searles Lake halite 
0.0 99.7 49.9 ± 2.5 0.259 ± 0.013 193 ± 19 48.7 310 ± 16 0.243 ± 0.012 1 280 ± 130 83.9 ± 1.6 85.5 ± 3.0 85.7 ± 3.0 85.7 ± 3.0 

49.4 99.2 102 ± 5 0.511 ± 0.026 200 ± 20 52.2 273 ± 14 0.495 ± 0.025 552 ± 55 62.7 ± 3.7 64.2 ± 7.4 64.3 ± 7.4 64.4 ± 7.4 
74.6 100.0 197 ± 10 0.982 ± 0.049 201 ± 20 51.3 494 ± 25 0.909 ± 0.046 543 ± 54 60.1 ± 4.0 63.5 ± 7.5 63.6 ± 7.5 63.6 ± 7.6 
89.8 100.3 507 ± 25 2.49 ± 0.13 204 ± 20 56.5 816 ± 41 2.36 ± 0.12 346 ± 35 37.9 ± 6.2 41.4 ± 12.0 41.4 ± 12.0 41.5 ± 12.0 
99.0 100.0 4 940 ± 250 24.6 ± 1.2 201 ± 20 48.4 5230 ± 260 25.0 ± 1.3 209 ± 21 5.6 ± 9.5 3.9 ± 19.6 3.9 ± 19.6 3.9 ± 19.6 

Lake Deborah 'Bubble' salt 
0.0 100.1 49.9 ± 2.5 0.259 ± 0.013 193 ± 19 52.0 343 ± 17 0.217 ± 0.011 1 580 ± 160 85.5 ± 1.5 88.2 ± 2.5 88.2 ± 2.5 88.1 ± 2.5 

49.4 100.0 102 ± 5 0.511 ± 0.026 200 ± 20 50.3 370 ± 19 0.442 ± 0.022 837 ± 84 72.4 ± 2.8 76.4 ± 4.8 76.5 ± 4.8 76.4 ± 4.8 
74.6 100.0 197 ± 10 0.982 ± 0.049 201 ± 20 48.6 486 ± 24 0.844 ± 0.042 576 ± 58 59.5 ± 4.1 65.4 ± 7.1 65.4 ± 7.1 65.3 ± 7.1 
89.8 100.1 507 ± 25 2.49 ± 0.13 204 ± 20 63.2 884 ± 44 2.36 ± 0.12 375 ± 38 42.7 ± 5.7 45.8 ± 11.0 45.8 ± 11.0 45.8 ± 11.0 
99.0 100.1 4 940 ± 250 24.6 ± 1.2 201 ± 20 57.6 5 500 ± 280 24.6 ± 1.2 224 ± 22 10.2 ± 9.0 10.3 ± 18.2 10.3 ± 18.2 10.3 ± 18.2 

Saxa Pink Himalayan 
0.0 103.8 49.9 ± 2.5 0.259 ± 0.013 193 ± 19 48.2 335 ± 17 0.230 ± 0.012 1 460 ± 150 85.1 ± 1.5 87.9 ± 2.7 87.3 ± 2.7 87.9 ± 2.6 

49.4 103.0 102 ± 5 0.511 ± 0.026 200 ± 20 45.1 402 ± 20 0.433 ± 0.022 928 ± 93 74.6 ± 2.5 79.5 ± 4.4 79.0 ± 4.4 79.5 ± 4.4 
74.6 104.0 197 ± 10 0.982 ± 0.049 201 ± 20 53.4 510 ± 26 0.863 ± 0.043 591 ± 59 61.4 ± 3.9 66.9 ± 7.0 66.4 ± 6.9 66.9 ± 7.0 
89.8 103.9 507 ± 25 2.49 ± 0.13 204 ± 20 57.1 866 ± 43 2.48 ± 0.12 349 ± 35 41.5 ± 5.9 42.1 ± 12.0 41.8 ± 11.9 42.1 ± 12.0 
99.0 104.0 4 940 ± 250 24.6 ± 1.2 201 ± 20 47.3 5 480 ± 270 24.1 ± 1.2 227 ± 23 9.9 ± 9.0 11.6 ± 18.1 11.5 ± 18.0 11.6 ± 18.1 
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3.2. Data evaluation 

Halite contributions to dissolved Cl– loads in the final solutions were first 

determined directly by subtracting the initial Cl– concentration from the final 

concentration (measured δClH). Initial and final Cl–/Br– ratio results from the 

experiments were then used as input values for the mathematical model, and halite 

contributions to dissolved Cl– loads in the final solutions were calculated (calculated 

δClH). 

As the mathematical models developed here require input of a single Cl–/Br– ratio, 

sensitivity of the models to natural variability in the halite samples’ composition results 

were assessed by calculating δClH using the values for each halite replicate (A, B, C; 

Table 2). The measured and calculated results were then compared (Table 3). 

Uncertainties for measured δClH values were calculated using the uncertainties 

package for the Python programming language (version 2.4.6.1 [Lebigot, 2014]), and 

are based on an analytical precision of ±5% for measured halide concentrations. The 

uncertainty of results produced by the mathematical model due to the analytical 

precision of input parameters is discussed further in Section 4.1. 

4. Results and discussion

The results show very good agreement, with all calculated δClH values varying by

only 0 – 6% from the measured δClH values (Figure 2), indistinguishable when 

compared to the uncertainties associated with both the measured and calculated δClH 

values. Triplicates of the calculated δClH values (Table 3), calculated using the three 
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reported values of RH for each halite sample (Table 2), also show good agreement, with 

all calculated values falling well within the range of their associated uncertainty.  

The results demonstrate that the mathematical model is a robust tool for 

determining the proportional contributions of dissolved Cl– and Br– from halite 

dissolution with concurrent evapotranspiration. 

Figure 2: Calculated and measured δClH at 
different stages of evapotranspiration for 
(a) Searles Lake (SL); (b) Lake Deborah (LD);
and (c) Saxa Pink Himalayan (SPH) halite
dissolution experiments. Values calculated
using replicate halite analyses (Table 2).

4.1. Mathematical model sensitivity analysis 

The sensitivity of the mathematical model to contrasts in Cl–/Br– ratios between 

the initial solution and dissolving halite was evaluated numerically. Simulations were 

run by calculating the progressive evolution of Cl–/Br– ratios when adding halite with 
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differing Cl–/Br– ratios to a series of solutions with uniform initial compositions. The 

simulations assessed Cl–/Br– ratio contrasts between 2´ (i.e., RH twice RI) to 50´ (Figure

3). 

To compare results between simulations, data were normalised to the proportion 

of halite dissolved. This was achieved by calculating a ratio of the actual change in Cl–

/Br– ratio (RF-RI) to the maximum possible change for a given simulation (RH-RI), and 

denoted as δRH, to serve as a proxy for halite dissolution (Figure 3a). 

Figure 3a shows that the δClH value has a strong dependence on the magnitude of 

the Cl–/Br– contrast. During dissolution of halite with a low Cl–/Br– contrast (2´) the

δClH of the solution evolves in a close-to-linear manner, while the trend becomes 

increasingly hyperbolic with increasing Cl–/Br– contrasts. For the low-contrast Cl–/Br– 

system, halite-derived Cl– becomes the dominant (>50%) source of dissolved Cl– when 

the Cl–/Br– ratio has changed by more than 33% of the maximum possible. For the 

highest-contrast Cl–/Br– systems (50´), halite-derived Cl– is the dominant source of

dissolved Cl– after Cl–/Br– ratios change by 2% percent of the maximum possible. 

For a real-world system where a low-salinity water (mass Cl–/Br– = 250) is 

modified by dissolution of halite with mass Cl–/Br– of 5 000, halite-derived Cl– would 

dominate the solution once the solution’s Cl–/Br– ratio exceeded 487.5. This again 

illustrates the substantial contributions halite dissolution can make to dissolved Cl– 

loads without markedly changing a solution’s Cl–/Br– ratio. 
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Figure 3: (a) Calculated proportions of halite-derived Cl– 
relative to total dissolved chloride (δClH), as a function 
halite dissolute extent (RF-RI)/(RH-RI). (b) Uncertainty 
associated with calculated δClH values for ranges of 
analytical precision and RH values. 

For the various Cl–/Br– contrasts depicted in Figure 3a, differences in calculated 

δClH are greatest at low halite dissolution extents but the magnitude of the difference 

decreases with an increasing difference between RH and RI. Thus, the sensitivity of 
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Equation (7) to uncertainty in RH values decreases with increasing contrast in the Cl–

/Br– ratio of the initial solution and the dissolving halite. The results for the Saxa Pink 

Himalayan salt dissolution experiment demonstrate this clearly. Due to the large 

discrepancy between the halite sample and the initial solution, a δClH difference of only 

0.6 – 0.7% was calculated despite the two-fold range of RH in the dissolving halite 

(Table 3). 

As halite Cl–/Br– ratios are commonly >10´ those of surface water and

groundwater, the sensitivity analysis demonstrates that uncertainty or heterogeneity in 

the Cl–/Br– ratio of dissolving halite would only produce an error of a few percent in 

calculated δClH. Therefore, in natural systems where the Cl–/Br– ratio of dissolving 

halite can be inferred to be much higher than the initial solution, δClH can be estimated 

without knowing the precise Cl–/Br– ratio of the dissolving halite.  

At each step of the simulations described above, the uncertainty associated with a 

given δClH value was also calculated (Figure 3b). The uncertainty, as a percentage of 

the calculated δClH value, is reported as the uncertainty based on an analytical precision 

of ±5% for both Cl– and Br–, and was calculated using the Python error propagation 

package, uncertainties. The plot shown in Figure 3b visually demonstrates three main 

points. First, at a given δRH, the uncertainty of calculated δClH values decreases in the 

form of an inverse power law that is proportional to the difference between RH and RI 

(i.e., an increasing difference between RH and RI results in increasingly smaller 

uncertainties). Second, the uncertainty of calculated δClH values decrease in the form of 

an inverse power law that is proportional to δRH (i.e., higher δRH values result in 

increasingly smaller uncertainties). Third, at a given value of δRH, the uncertainty of 

calculated δClH values decreases such that a doubling of analytical precision of Cl– and 

Br– measurements results in a doubling of the calculation uncertainty. The second point 
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is highlighted by the results the salt dissolution experiments (Figure 2): for the low-

salinity samples (i.e., no ET) the added salt results in δRH values of 0.026 – 0.086 and 

uncertainties of ±1 – 3% of the calculated δClH values. By contrast, the same amount of 

dissolved salt results in relatively small δRH values of <0.002 for the high-salinity 

samples (i.e., ET = 99 wt.%) and greater uncertainties of ±77 – 254% of the calculated 

δClH values. The combination of experimental results (Figure 2) and simulated 

examples (Figure 3) provide guidance on which situations will result in more robust 

results after application of the equations derived here. 

4.2. Initial composition uncertainty 

Uncertainty in the initial dissolved Cl–/Br– ratio of the initial solution is likely to 

be a significant source of error when applying the mathematical model to field data. For 

some investigations, the initial water source may be surface water (i.e., creeks, rivers or 

lakes) or groundwater from adjacent formations. In these situations, constraining the 

initial Cl–/Br– ratio should be straightforward (e.g., sampling upstream waters or bores 

screened in adjacent aquifers). However, in many catchments (especially arid and semi-

arid catchments) direct recharge from precipitation is a major source of water. In the 

absence of precipitation chemistry data, many studies quote the seawater ratio as an 

approximation for water entering a catchment when assessing observed Cl–/Br– ratios of 

groundwater [e.g., Cartwright et al., 2013; Dogramaci et al., 2012; Hofmann and 

Cartwright, 2013; Kim et al., 2003; Skrzypek et al., 2013]. This assumption may be 

particularly tempting for coastal catchments where sea spray could reasonably be 

assumed to be the major source of solutes [Short et al., 2017]. However, findings from 

several studies around the world suggest that complex reactions occurring during the 

production of marine aerosols may alter the Cl–/Br– ratio significantly from the seawater 

ratio [e.g., Ayers et al., 1999; Bloch et al., 1966; Duce et al., 1965; Zhou et al., 1990]. 
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Limited data for Cl–/Br– ratios in precipitation (including snow) from around the world 

demonstrate the widely varying Cl–/Br– ratios that may be found in local precipitation 

(Figure 4) [Alcalá and Custodio, 2008b; Bloch et al., 1966; Cawse, 1987; Crosbie et al., 

2012; Duce et al., 1965; Harriss and Williams, 1969; Jacobi et al., 2012; Liljestrand 

and Morgan, 1981; C Neal et al., 1990; M Neal et al., 2007; Short et al., 2017; Simpson 

et al., 2005]. 

Figure 4: Global variability of reported Cl–/Br– mass ratios for 
rain (stars) and snow (circles). Data sources shown in the 
figure. 

A useful example to demonstrate the potential for error when assuming a seawater 

Cl–/Br– ratio for precipitation is given by data from Cape Grim in Tasmania, Australia. 

The Cape Grim Baseline Air Pollution Station has been used to monitor atmospheric 

pollution for more than four decades and is considered to be unaffected by major 

pollution sources because of its location on the isolated northwest coast of Tasmania 

[Ayers et al., 1999; Ayers and Gras, 1983]. In addition to sampling atmospheric gases, 

the site has also been used for collecting precipitation samples for major and minor ion 
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analysis [e.g., Ayers and Ivey, 1988; Crosbie et al., 2012], and investigating the 

composition of marine aerosols [e.g., Ayers et al., 1999]. Precipitation sampled at this 

location is primarily comprised of moisture and solutes from the Southern Ocean [Ayers 

et al., 1999; Ayers and Ivey, 1988]. Ayers et al. [1999] used data from Cape Grim to 

support an autocatalytic model for loss of Cl– and Br– from marine aerosols. The authors 

found that Cl– loss from marine aerosols (relative to seawater) was at most a few 

percent while Br– loss averaged 30 – 50% annually.  

More recently, Crosbie et al. [2012] reported precipitation composition for Cape 

Grim for the period May 2007 to December 2011, although March 2010 through to 

December 2011 was the only period when continuous Cl– and Br– data were available. 

During this period, the precipitation amount-weighted average Cl–/Br– mass ratio was 

355 and Cl–/Br– ratios of individual monthly samples ranged from 229 to 1140. 

Therefore, if an assumed initial Cl–/Br– ratio of 290 (i.e., seawater) was used at Cape 

Grim to calculate a Cl– correction factor for a groundwater sample that resembles local 

precipitation (i.e., RF = 355), it would be erroneously concluded that 19.4% of Cl– in the 

groundwater sample is contributed from sources other than precipitation (assuming a RH 

of 5 000). This demonstrates that the Cl– correction factor (Equation (7)) should only be 

applied when the Cl–/Br– ratio of the recharge water is confidently known. 

4.3. Uncertainty in Cl–/Br– ratios 

When determining the uncertainty in a ratio calculated from two parameters with 

individual uncertainties, error propagation results in the calculated ratio (R) having a 

greater error than the numerator or denominator. The relative error of a ratio is 

determined by: 
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(12) 

where Δ denotes the absolute uncertainty of the indicated parameter [Ellison and 

Williams, 2012; Farrance and Frenkel, 2012]. For example, the relative analytical 

uncertainty for measurements presented here is ±5% for both Cl– and Br–, and the 

relative uncertainty in the calculated Cl–/Br– ratio is ±7.1%. 

Left-censoring of solute concentrations (i.e., where solute concentrations are less 

than the quantitation limit of the analytical method) present a practical limit to the 

determination of Cl–/Br– ratios. At solute concentrations at or slightly great than the 

quantitation limit, Cl–/Br– ratios can be determined by analytical factors such as baseline 

noise and signal interferences increase uncertainty, requiring calculation of an expanded 

uncertainty interval if sufficient information is available [Ellison and Williams, 2012]. 

Such expanded uncertainty intervals propagate into calculated ratios, increasing the 

error for any ratio where either the numerator or denominator is near the quantitation 

limit. 

In most natural systems Cl– is more abundant than Br– and, therefore, the accurate 

measurement of dissolved Br– may be the limiting factor in calculating Cl–/Br– ratios. 

Where insufficient analytical data are available to calculate an expanded uncertainty 

interval for solute concentrations near the quantitation limit, it is not recommended that 

quantitative interpretation of Cl–/Br– ratios be attempted. 

5. Constraining uncertainty in Cl–-based tracer calculations

Potential Cl– contributions by unknown or unquantified processes are a

frequently-cited source of uncertainty for Cl–-based tracer techniques. Even in cases 
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where these processes are recognised, the method chosen to correct Cl– concentrations 

can greatly influence the tracer calculations.  

For example, work by Bentley et al. [1986], Torgersen et al. [1991], and Love et 

al. [2000] uses a trio of 36Cl-based age models to estimate apparent groundwater ages 

along transects through the eastern [Bentley et al., 1986] and western [Love et al., 2000] 

Great Artesian Basin (GAB) in Australia (Figure 5). As groundwater residence times in 

the GAB can exceed one million years, a long-lived radioisotope is required for 

groundwater age calculations. 

Figure 5: 36Cl/Cl versus mass Cl–/Br– mass ratio for northern 
and southern transect groundwater samples from unconfined 
and confined aquifers reported by Love et al. [2000]. 

36Cl has a half-life of 3.01 × 105 years, making it a viable tracer in the GAB. 36Cl 

concentrations or the 36Cl/Cl ratio along a hydraulic gradient can be used to estimate 

groundwater ages on timescales of up to 1.5 × 106 years provided that sources and sinks 

of 36Cl and Cl– can be accounted for. However, as explained in Bentley et al. [1986] and 
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Love et al. [2000], it is difficult to determine the initial 36Cl/Cl ratio in recharge water 

when using 36Cl age dating techniques in the GAB. 

These difficulties are evident from the variable 36Cl/Cl, dissolved Cl–, and Cl–/Br– 

ratios along the GAB transects (Table 4). For one eastern transect, Bentley et al. [1986] 

identifies interlayer leakage and introduction of Cl– from underlying formations as a 

possible mechanism which may cause such variability. Along two western transects, 

Love et al. [2000] noted that Cl–/Br– results for groundwater samples are consistent with 

initial evapoconcentration of infiltrating rain water (ClI = 2 mg L–1) to between 250 and 

500 mg L–1 and subsequent modification by dissolution of halite. However, Love et al. 

[2000] discounted halite as a significant source of Cl– due to low (<1 000) Cl–/Br– ratios 

in groundwater samples and the absence of evaporite deposits in the study area. 

As demonstrated in Table 1 and Section 4, though, where ET and potential halite 

sources coincide, low Cl–/Br– ratios cannot be considered prima facie evidence that 

halite dissolution is not a significant Cl– source. Although the final concentration of 

dissolved Cl– in groundwater samples along the GAB transects is determined by the 

extent of evapotranspiration, halite dissolution may still be a significant source of the 

dissolved Cl– being concentrated. It also does not necessarily need to be a halite source 

that has caused the changes to the groundwater compositions. This trend could also be 

attributed to mixing with another water source with an elevated Cl–/Br– ratio. 

Indeed, despite the spatially variability along the Love et al. [2000] transects, an 

inverse relationship between 36Cl/Cl and Cl–/Br– ratios is present (Figure 5), suggesting 

that the observed decrease in 36Cl/Cl along the transects may not be entirely attributable 

to 36Cl decay.  
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Table 4 Calculated maximum halite contributions to dissolved Cl– concentrations and modelled groundwater ages along Love et al. [2000] transects through 
the western Great Artesian Basin. Initial Cl–/Br– ratios taken from first sample collected along each transect. Locations are shown in Love et al. [2000]. δClH 
calculated assuming ClH = 5 000. 

Bore Distance TDS 36Cl/Cl Cl– Br– Cl–/Br– δClH Eqn. (13) Eqn. (14) 
number Name (km) (mg L–1) (× 10–15) (mg L–1) (mg L–1) (mass) (%) (ka) (ka) 

North Transect 
574400015 Lambina Homestead 47 2334 129 ± 8 866 3.6 241 0.0% 
574400003 Warrungadinna 61 2916 132 ± 10 1130 4.4 257 8.3% 
574400004 Lambina Soak 71 2954 108 ± 7 1110 4.5 247 3.3% 
584300025 Marys Well 3 129 2039 102 ± 8 674 2.6 259 9.5% 58 60 
584300026 Murdarinna 2 145 1923 109 ± 10 644 2.4 268 13.6% 47 14 
594300017 Midway Bore 154 1899 89 ± 4 621 2.2 282 19.5% 160 84 
594200001 Oodnadatta Town Bore 1 203 1902 52 ± 5 676 1.6 423 56.7% 380 150 
604200021 Watson Creek 2 246 2623 25 ± 3 1040 2.3 452 61.6% 550 498 
614200004 Duckhole 2 261 2228 31 ± 4 848 1.8 471 64.4% 540 361 

South Transect 
574100007 CB Bore 6 1470 115 ± 8 530 2.1 252 0.0% 
574100014 Ross Bore 33 4035 54 ± 6 1620 5.7 284 15.0% 
574100049 Evelyn Downs Homestead 43 4087 54 ± 5 1420 4.7 302 22.0% 
584100053 Woodys Bore Windmill 67 5642 47 ± 5 2410 6.5 371 42.7% 
584100050 Robyns Bore 2 80 5596 41 ± 4 2440 6.8 359 39.7% 46 365 
584100011 Ricky Bore 2 89 4997 37 ± 3 2070 6.6 314 26.1% 110 480 
594100003 Paulines Bore 95 4452 40 ± 4 1700 4.8 354 38.4% 230 384 
594100017 Nicks Bore 114 3960 46 ± 5 1460 4.2 348 36.6% 280 322 
594100013 Leos Bore 136 3442 53 ± 5 1130 3.3 342 35.2% 320 261 
594100006 Fergys Bore 141 2751 61 ± 1.2 940 2.9 324 29.6% 330 218 
604100037 Lagoon Hill Drill Hole 15 183 2451 29 ± 3 937 2 469 61.7% 710 419 
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As Figure 5 illustrates, the proportion of 36Cl systematically decreases as Cl–/Br– 

ratios increase along both transects. This indicates spatially or temporally variable Cl– 

input may have occurred from one or more sources with elevated Cl–/Br– ratios and 

depleted 36Cl/Cl ratios relative to recharge water. As vertical leakage has been 

discounted as a significant process along the western transects by Love et al. [2000], the 

trend in Figure 5 may be the result of diffusion of Cl– and Br– from the saline aquitard 

overlying the aquifer (with 36Cl/Cl ratios reflecting secular equilibrium conditions), or 

the result of dissolution of temporally-variable quantities of wind-borne halite during 

recharge (with similarly depleted 36Cl/Cl ratios).  

Although determining which of these two scenarios is most probable is beyond 

the scope of this chapter, the potential impact of this input on measured Cl– 

concentrations can be constrained using Equation (7). If the low Cl–/Br– ratio of 

groundwater at the start of the transect can be considered indicative of recharge water 

compositions prior to modification by halite dissolution, calculations (Table 4) show 

that halite dissolution could account for up to 64.4% of total dissolved Cl– reported by 

Love et al. [2000]. 

This is important because the three 36Cl/Cl-based age models (e.g., Section 5.5 of 

Love et al. [2000]) applied in the GAB studies are founded on differing assumptions 

about the extent of dissolved Cl– inputs, and use different approaches to correct 36Cl/Cl 

ratios for these inputs. The first model assumes no Cl– addition and 36Cl/Cl ratios are 

taken at face value. The second model relies solely on 36Cl concentrations, with no 

dependence on dissolved chloride concentrations or correction for external input. Only 

the third model (Equation (13)) corrects for chloride inputs, and therefore represents a 

scenario where dissolution of halite and evapotranspiration coincide during recharge. 
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(13) 

Here, λ36 is the decay constant for 36Cl, Clm is the chloride concentration measured 

in a groundwater sample, ClET is the estimated chloride concentration “governed by ET 

only and free of subsurface Cl addition”, R is the 36Cl/Cl ratio measured in groundwater 

samples along the transects, Rse is the 36Cl/Cl ratio at secular equilibrium, and R0 is the 

initial 36Cl/Cl value. 

The ages calculated by the three models used by Bentley et al. [1986] and [Love et 

al., 2000] exhibit no systematic relationship and differ in magnitude by two to ten times 

for a given water sample. Therefore, for the GAB transects, groundwater age estimates 

are significantly influenced by the choice of age model. A temporal variability in halite 

dissolution is suggested by the 36Cl and Cl–/Br– relationship in Figure 5. Accordingly, 

Equation (13) may best represent conditions along the western transects through the 

GAB while results from the other 36Cl age models should be interpreted with a grain of 

salt. Furthermore, Park et al. [2002] noted the limitations of 36Cl-based groundwater age 

determinations in saline environments: “In models of simple flow regimes the 36Cl 

method fails to predict groundwater age accurately where groundwater chlorinity 

exceeds ~75 – 150 mg kg–1.”  

When applying Equation (13), Love et al. [2000] set ClET as the lowest dissolved 

Cl– concentrations measured in the confined portion of each aquifer transect. One may 

alternatively calculate the ClET term on a sample-by-sample using Cl–/Br– ratios to 

correct for possible halite inputs (ClET = δClI ´ Clm). Groundwater ages for each sample

along a given transect can then be recalculated (Equation (14)) by setting the lowest Cl–

/Br– ratio (which happens to be the first sample) on each transect as the initial recharge 

condition (Table 4). 
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 (14) 

As shown in Table 4, even when Cl– input is identified, the choice of correction 

technique can result in significant discrepancies in tracer-based calculations. In this 

case, differences in corrected Cl– values between Equations (13) and Equation (14) 

yield up to an eight-fold difference in estimated groundwater ages. Although no one 

method is suitable for every application, the equations presented here can be used to 

rapidly assess the potential extent of such inputs, and constrain the uncertainty they may 

introduce when using Cl–-based tracer techniques. 

6. Conclusions 

There may be increased uncertainty in the results from chloride-based 

geochemical tracer techniques if Cl– contributions via mineral dissolution or mixing is 

not identified and quantified. In this chapter it was demonstrated that, under a range of 

conditions, Cl–/Br– ratios can be used effectively to differentiate between the inputs 

from various dissolved Cl– and Br– sources to a water undersaturated with respect to 

halide-bearing salts if the proportions of dissolved Cl– and Br– contributed by salt 

dissolution are considered rather than the absolute quantity. The resultant mathematical 

models provide a rapid method to identify and correct for the spatial or temporal 

variability of common dissolved Cl– sources. 

The equations presented here permit the differentiation of a solution’s dissolved 

Cl– concentration into the component inputs from processes such as mineral dissolution 

and/or binary mixing. This enables rapid calculation of correction factors (δClI) for total 

dissolved Cl– concentrations which can be applied without a priori knowledge of the 

extent of evaporation, transpiration, mixing, or salt dissolution. Furthermore, accurate 



Chapter 2: Quantitative model use and uncertainty associated with chloride/bromide ratios 

Tracing terrestrial salt cycling using chlorine and bromine 
M. A. Short (2017)

56 

δClI values may be determined in the absence of robust information on halite 

composition if the discrepancy between the Cl–/Br– ratios of the initial solution and 

dissolving halite can be inferred to be large (>10´), as is commonly observed in natural

systems. 

Given the prevalence of chloride-based tracer techniques and the range of 

environments where evaporation, transpiration, and salt dissolution occur, dissolved Br– 

concentrations should routinely be measured to enable correction of dissolved Cl– 

concentrations for external inputs using the methods presented here.



Tracing terrestrial salt cycling using chlorine and bromine 
M. A. Short (2017)

57 

Chapter 3: Continental-scale 

variation in chloride/bromide ratios 

of wet deposition 



Chapter 3: Continental-scale variation in chloride/bromide ratios of wet deposition 

Tracing terrestrial salt cycling using chlorine and bromine 
M. A. Short (2017)

58 

Foreword 
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1. Introduction

The cycling of chlorine (Cl) and bromine (Br) at the Earth’s near-surface is

central to the interests of atmospheric chemists and catchment hydrologists (e.g., 

climate variability, acid rain, water movement, carbon and nitrogen cycles, and 

pollutant cycling). Chlorine has an atomic number of 17, an atomic mass of ~35.5, one 

main and six minor oxidation states (–1 and 0, +1, +3, +4, +5, +7, respectively) 

[Haynes, 2015], an estimated upper continental crust concentration of ~370 μg g–1 

[Rudnick and Gao, 2014], an estimated oceanic crust concentration of 20 – 2 800 μg g–1 

[Jambon et al., 1995], and a mean seawater abundance of 19 400 μg g–1 [Millero, 2014]. 

Bromine, by contrast, has an atomic number of 35, an atomic mass of ~79.9, five main 

oxidation states (–1, +1, +3, +5, +7) [Haynes, 2015], an estimated upper continental 

crust concentration of ~1.6 μg g–1 [Rudnick and Gao, 2014], an estimated oceanic crust 

concentration of 0.1 – 1.3 μg g–1 [Jambon et al., 1995], and a mean seawater abundance 

of 67 μg g–1 [Millero, 2014]. Chlorine and bromine are enriched in Earth’s hydrosphere 

relative to their crustal abundance by factors of up to 52 and 42, respectively, because 

they are highly volatile and exist predominantly as the highly soluble halides, chloride 

(Cl–) and bromide (Br–) [Graedel and Keene, 1996]. The ubiquity and near-conservative 

character of Cl– and Br– in the hydrosphere has meant that catchment hydrologists and 

aqueous geochemists have developed methods to utilise them as naturally occurring 

tracers of water and solute movement [Davis et al., 1998; Edmunds, 1996; Herczeg and 

Edmunds, 1999]. The Cl–/Br– ratio – we have adopted mass-ratios unless explicitly 

stated otherwise; molar-ratios are a factor of 2.25 higher – has been found to be 

particularly useful because a wide range of values are observed in nature as a result of 

differences in the physico-chemical properties, redox behaviour, and natural abundance 

of the individual elements [Davis et al., 1998]. As a result, scientists are able to utilise 
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variations in Cl–/Br– values of natural substances to throw light on various natural and 

anthropogenic processes such as delineating water flow, solute transport, mineral 

dissolution/precipitation and identifying pollution sources [Davis et al., 1998; Flury and 

Papritz, 1993]. Furthermore, this ratio is also used to identify activation of reactive 

halogens, which efficiently destroy ozone molecules, in snowpack, sea ice and aerosols 

during ozone depletion events in the spring polar boundary layer of the Arctic and 

Antarctic [Saiz-Lopez and von Glasow, 2012; Simpson et al., 2007; von Glasow and 

Crutzen, 2014]. 

Chlorine and bromine are two of the more reactive elements in the atmosphere 

despite occurring in only trace amounts (3.4 ´ 10–3 μg g–1 and 2.0 ´ 10–5 μg g–1,

respectively) [Seinfeld and Pandis, 2006]. Atmospheric halogen species (e.g., 

chlorofluorocarbons, halogen oxides and methyl halides) including those containing Cl 

and Br, are highly destructive to ozone molecules in the stratosphere [Molina and 

Rowland, 1974]. Halocarbons emitted through anthropogenic activity contribute to 

ozone destruction [von Glasow and Crutzen, 2014]; consequently, there have been 

numerous scientific studies undertaken to understand atmospheric halogen chemistry 

[e.g., Daniel et al., 1999; Keene et al., 1999; McElroy et al., 1986; Montzka et al., 1999; 

von Glasow and Crutzen, 2014] and there have been international actions (e.g., the 1987 

Montreal Protocol) to minimise anthropogenic emissions of destructive chemicals [e.g., 

Haas, 1991]. As a result of the increased interest in the impacts of anthropogenic Cl and 

Br, these elements have also been found to be key components of natural elemental 

cycles of other more abundant atmospheric constituents such as nitrogen (N), carbon 

(C) and sulfur (S) [von Glasow and Crutzen, 2014].

A common natural source of Cl and Br to catchments and atmosphere is sea-salt

aerosol (SSA) produced by breaking waves and bursting bubbles at the surface of 
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Earth’s oceans [Berner and Berner, 1996; Carroll, 1962; Sander et al., 2003; von 

Glasow and Crutzen, 2014]. Following SSA production, chemical reactions on the 

surface of SSA can result in the emission of gaseous Cl and Br species into the 

atmosphere [Sander et al., 2003; Vogt et al., 1996]. These reactions also alter the Cl–

/Br– ratio of SSA relative to that of the ocean because they preferentially emit/retain one 

element over the other depending on SSA particle size and the presence of other gases 

[Davis et al., 2004; Sander et al., 2003; Vogt et al., 1996]. For example, autocatalytic 

reactions that involve these halides have been observed to result in a greater loss of Br 

relative to Cl in super-micrometre-sized SSA particles [Sander et al., 2003]. In contrast, 

Br can be enriched in sub-micrometre-sized SSA particles resulting in Cl–/Br– ratios that 

are lower than seawater [Sander et al., 2003; Virkkula et al., 1999]. The mechanism for 

Br enrichment in smaller SSA particles is unclear but Davis et al. [2004] hypothesised 

that it may be due to differences in polarisabilities of Cl and Br that have the potential to 

result in Br being enriched in smaller particles during aerosol production [Jungwirth 

and Tobias, 2002; Virkkula et al., 1999; Zhou et al., 1990]. 

The processes that modify Cl–/Br– ratios of SSA are also of interest to catchment 

hydrologists because many of the common applications for using the Cl–/Br– ratio as a 

hydrological or geochemical tracer require a robust knowledge of the composition of 

atmospheric solute sources. In many catchments, especially in arid and semi-arid 

environments, a major source of solutes is atmospheric deposition (e.g., wet and dry 

deposition) [e.g., Appelo and Postma, 2005; Blackburn and McLeod, 1983; Carroll, 

1962; Feth, 1981; Herczeg et al., 2001; Herczeg and Edmunds, 1999; Nimz, 1998; 

Stallard and Edmond, 1981]. However, the very low concentration of Br– in 

atmospheric deposition (commonly below analytical detection limits that range from 50 

to 5 μg L–1) [e.g., Crosbie et al., 2012; Dogramaci et al., 2012; NADP, 2013] is a major 
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hindrance, which has resulted in very few regions having well-constrained Cl–/Br– ratios 

of atmospheric deposition. There are three noteworthy exceptions: 1) the Plynlimon 

region of Wales [e.g., C Neal et al., 1990; M Neal et al., 2007] where Cl– and Br– 

concentrations of precipitation have been used to identify solute sources in groundwater 

and streamflow, and as part of method comparisons; 2) Spain [e.g., Alcalá and 

Custodio, 2008a; Alcalá and Custodio, 2008b], where Cl– and Br– concentrations of 

atmospheric deposition have helped to delineate Cl– sources and salinisation 

mechanisms in groundwater; and, 3) a small compilation (n = 168) of Cl–/Br– ratios of 

North American precipitation [Davis et al., 1998] that cover various time-scales and 

collection methods, which was used to speculate about possible mechanisms for 

continental variations. 

As an alternative to direct measurement of atmospheric deposition compositions, 

Davis et al. [2004] presented findings based on a survey of low-salinity groundwater 

(i.e., Cl– < 10 mg L–1) from sites across the United States. They found that Cl–/Br– ratios 

of low-salinity groundwater rapidly decreased from values similar to seawater at coastal 

locations (i.e., ~288) [Millero, 2014] to approximately 50 at sites located >1,000 km 

inland. The authors hypothesised that these observations were due to either a decreasing 

contribution of sea-salt aerosol (SSA) with distance inland and an increasing 

contribution of tropospheric aerosol (i.e., a ratio of ~50), or differences in the Cl–/Br– 

ratios of different sized SSA particles and the ability of different sized SSA particles to 

be transported inland from the coast [Davis et al., 2004 and references therein]. 

Although the former is a plausible hypothesis, the large-scale variations of Cl–/Br– ratios 

of atmospheric deposition are likely to be a result of a complex combination of physical 

transport (i.e., weather patterns), atmospheric chemistry (i.e., aerosol surface reactions) 
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and additional natural (i.e., wild fires, biological emissions) or anthropogenic (i.e., fuel 

combustion, industrial emissions) sources. 

Despite the increasing amount of available data for atmospheric deposition, Cl– 

and Br– compositions and general understanding of the chemistry of atmospheric Cl and 

Br, a continental-scale assessment of atmospheric deposition has not been possible 

because of a lack of spatially and temporally extensive datasets. In this study, findings 

are presented that are based on six and a half years of wet deposition compositional data 

collected at over 280 sites across North America. Like many previous datasets, there is 

a large proportion of Br– censoring due to many samples having concentrations below 

detection levels, and we overcome this limitation by using the statistically robust 

compositional data technique of expectation maximisation to predict the likely spatial 

variation of these two ions in wet deposition across North America. The results of this 

study are important for interpreting catchment salt sources and constraining 

sources/sinks of atmospheric Cl and Br. 

2. Data source

Data used in this study were supplied by the National Atmospheric Deposition

Program (NADP). The NADP is a collaborative atmospheric deposition monitoring 

program run by various government and non-government agencies, universities, and 

private companies across the Americas [Lamb and Van Bowersox, 2000]. Data used in 

this study are for wet deposition samples collected by the NADP’s National Trends 

Network (NADP/NTN) for the period June 2009 (when Br– was added by the NADP as 

a routine analyte) through December 2015. The NADP/NTN includes weekly wet 

deposition collection sites located at 286 sites (Figure 6) across the USA (279), Canada 

(5), Puerto Rico (1), the Virgin Islands (1), plus one in Argentina, which was not 
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included in this study. The geographic information, data, photographs, etc. for the 

individual sampling sites can be sourced from the NADP’s website 

(http://nadp.sws.uiuc.edu/data/sites/list/?net=NTN).  

Between June 2009 and December 2015, data were reported for a total of 56 347 

composite weekly samples that are considered valid (i.e., results of each routine analyte 

was reported, no contamination was noted, and rainfall amounts were recorded). The 

samples were collected using automated wet-only deposition samplers [Dossett and 

Bowersox, 1999], which remain closed to the atmosphere in the absence of precipitation 

and open after activation of a precipitation sensor. The number of weekly samples at 

individual sites ranged from 1 to 306, which was dependent on when sampling at a site 

was initiated/concluded, if precipitation occurred during the sampling period, and if 

contamination was suspected. Samples used in this study were analysed for Br–, Cl–, 

calcium (Ca), potassium (K), magnesium (Mg), sodium (Na), ammonium (NH4
+), 

nitrate (NO3
–) and sulfate (SO4

2–). The detection limits for each of the analytes (Table 5) 

varied through the dataset depending on whether a sample was diluted prior to analysis 

and instrument performance. Bromide had the greatest censoring at 78.3% (Table 5), 

with all other analytes having a low proportion of censoring (i.e., ranging from Mg at 

4.7% to SO4
2– at <0.1%). The percentage of censored Cl–/Br– ratios (i.e., samples where 

Cl– and/or Br– are below detection levels) in the NADP dataset was also 78.3%. 



Chapter 3: Continental-scale variation in chloride/bromide ratios of wet deposition 

Tracing terrestrial salt cycling using chlorine and bromine 
M. A. Short (2017)

65 

Figure 6: Location map of NADP/NTN sites included in this 
study. Symbol colours indicate the percentage of weekly wet 
deposition samples at each site with measured Cl–/Br– ratios. 
Polygons delineate the transects used in Guelle et al. [2001] 
and Davis et al. [2004]. 

Table 5: Number, percentage of censored samples for each analyte and Cl–/Br– 
ratios of weekly wet deposition, and detection limit range and mode (i.e., most 
common detection limit) at NADP/NTN sites. Total number of valid samples was 
56 347. 

Analyte Censored 
samples (n) 

Censoring 
rate (%) 

Detection limit 
range (μg L–1) 

Detection limit 
mode (μg L–1) 

Br– 44 118 78.3 5 – 33 5 
Cl–/Br– 44 129 78.3 – – 
Mg 2 637 4.7 1 – 54 9 
NH4

+ 2 057 3.7 6 – 190 16 
Ca 1 578 2.8 4 – 165 27 
Na 990 1.8 1 – 26 6 
K 618 1.1 1 – 14 3 
Cl– 167 0.3 3 – 48 9 
NO3

– 82 0.1 5 – 94 5 
SO4

2– 4 <0.1 5 – 58 – 

The data supplied by NADP are considered reliable because the NADP undergo 

regular scrutiny of their sampling methods and quality assurance of analytical methods 

used at their laboratory (Central Analytical Laboratory at the Illinois State Water 

Survey, Champaign, USA). Internal NADP quality assurance reviews [e.g., Gartman, 

2014] have found that their data comply with reported targets for analytical precision, 
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reproducibility and blank concentrations [NADP, 2016]. External audits by the US 

Geological Survey have concluded that data collated as part of the NADP/NTN, 

“continue to be of sufficient quality for the analysis of spatial distributions and time 

trends of chemical constituents in wet deposition across the United States” [Wetherbee 

and Martin, 2014; Wetherbee et al., 2014]. Recent NADP data (i.e., analyte 

concentrations and precipitation measurements) also show no significant biases when 

compared to the Canadian Air and Precipitation Monitoring Network, which have co-

located samplers at three sites [Wetherbee et al., 2010]. Readers are directed to the 

Publications page of the NADP’s website (http://nadp.sws.uiuc.edu/lib/) for more 

information on the QA/QC procedures and the performance of the NADP’s laboratory 

and field sampling methods, and Gartman [2014] for more information regarding the 

analytical techniques used at the Central Analytical Laboratory. 

The geographic information and the mean and median wet deposition 

compositions for each site are presented in Appendix I. 

3. Statistical methods 

Censored Cl– and Br– concentrations of the wet deposition data were imputed 

using the multRepl and lrEM functions of the recently developed R statistics package, 

zCompositions (version 1.0.3 [Palarea-Albaladejo and Martín-Fernández, 2015]). The 

routines are named multRepl and lrEM because the former uses simple multiplicative 

replacement to imputed values, whereas the latter uses a log-ratio expectation-

maximisation technique. The parameters used for the imputation of the NADP data are 

presented in Table 6.  



Chapter 3: Continental-scale variation in chloride/bromide ratios of wet deposition 

Tracing terrestrial salt cycling using chlorine and bromine 
M. A. Short (2017)

67 

Table 6: Input parameters used in this study to implement the lrEM and 
multRepl functions of the zCompositions R package (see text). 

Function argument lrEM multRepl Input 
delta default (0.65) default (0.65) - 
rob Yes No TRUE 
ini.cov Yes No complete.obs 
tolerance Yes No 0.1 
max.iter Yes No 50 
rlm.maxit Yes No 150 

The multRepl routine imputes censored values by simple multiplicative 

replacement of the reported detection limit. The default setting for the multRepl routine 

is to impute censored values at 0.65 times the reported detection limit. The lrEM routine 

imputes censored values with their expected values based on the covariance structure of 

the dataset after log-ratio transformation [e.g., Aitchison, 1982; Pawlowsky-Glahn and 

Buccianti, 2011]. This routine allows for the option of implementing MM-estimation 

(i.e., a maximum likelihood algorithm) for a robust, computationally efficient method 

[e.g., Yohai, 1987] of imputing censored values. This option was selected so that 

outliers in the NADP data had minimal impact on the results. To seed the algorithm 

under robust estimation conditions, an initial estimate of the covariance structure is 

required. The two options for this initial estimate are: 1) ‘complete.obs’, which uses the 

subset of the samples with no censored values for any analyte (11 496 samples for the 

NADP dataset); or 2) ‘multRepl’, which uses the multRepl (i.e., multiplicative 

replacement) routine to produce an initial estimate based on simple multiplicative 

replacement of the censored values. We use the results of the ‘complete.obs’ option 

because it is more reasonable to use measured values than using a fixed arbitrary 

proportion of the detection limit for the initial estimates (i.e., the ‘multRepl’ initial 

estimate method). Furthermore, the mean difference between imputed values calculated 

by the two methods was only 2.0% for Br– and <0.1% for Cl–. To satisfy the 

requirement of the algorithm that at least one analyte had measured values for all 
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samples, we removed the four samples from the NADP dataset that had censored SO4
2– 

concentrations. Where only one measured analyte exists for a sample (i.e., SO4
2–) the 

lrEM routine reverts to a simple multiplicative replacement with a default delta value of 

0.65. 

4. Results and discussion

4.1. Measured data 

Measured Cl– and Br– concentrations, and Cl–/Br– ratios of wet deposition samples 

were inversely correlated with increasing distance inland (i.e., orthogonal distance) 

from the coast (Figure 7). This is consistent with numerous other studies that have 

found that the salinity of atmospheric deposition typically decreases away from coastal 

regions, especially the concentrations of seawater-derived ions (i.e., Cl–, Br–, K, Na and 

Mg) because of SSA ‘washout’ [Carroll, 1962; Guelle et al., 2001; Hutton, 1976; Junge 

and Werby, 1958; Keywood et al., 1997; Vet et al., 2014]. The NADP data were also 

consistent with the small North American precipitation dataset that was presented Davis 

et al. [1998], the generalised envelope of which is shown in Figure 7. 

The rate of censoring of Cl–/Br– ratios also had an inverse correlation with 

increasing distance inland from coast (Figure 6). The percentage of samples with 

censored Cl–/Br– ratios at sites <200 km from the nearest coastline was 68.1%, 

compared to 83.1% at sites >1 000 km from the nearest coastline. This observation is 

unsurprising given the generally low concentration of all analytes in wet deposition 

samples combined with the rapid decrease of the overall salinity of samples with 

increased distance inland. The spatial pattern is clear despite using orthogonal distance 

(i.e., does not account for topography or prevailing weather patterns), even though it 

might be expected to introduce noise. 
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The strong influence of SSA is further highlighted when measured Cl– and Br– 

concentrations of wet deposition are plotted (Figure 7). There are two distinct groups of 

samples on this plot. The first group includes the samples with Cl– concentrations <1 

mg L–1 and a wide range of Br– concentrations (approximately 0.001 – 0.5 mg L–1). The 

Cl– and Br– concentrations of these samples show no distinct bivariate relationship and 

they have Cl–/Br– ratios with a range of approximately 300 to <1. The sample locations 

in this first group are mainly >1 000 km inland; however, there are still many samples 

from sites located <200 km from the coast (Figure 7). The second distinct group on the 

Cl– vs. Br– plot is comprised of samples with Cl– concentrations of >1 mg L–1 and the 

same range of Br– concentrations as the first group (i.e., approximately 0.001 – 0.5 mg 

L–1). Unlike the first group of samples, however, the Cl– and Br– concentrations of this 

second group generally had a distinct bivariate relationship, which is close to the 

seawater 288:1 ratio (Figure 7). The majority of samples in this group were collected 

from sites <200 km from the coast, and there were only a handful of samples from sites 

located further inland. 
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Figure 7: Measured Cl– and Br– concentrations (mass and 
molar) of weekly wet deposition samples collected at the 286 
NADP/NTN sites between June 2009 and December 2015. 
Symbol colours indicate the orthogonal distance of the 
sample site from the nearest coastline. Lines of equal Cl–/Br– 
ratios are included for reference (dotted lines), including the 
seawater ratio (black dotted line). The red polygon delineates 
the generalised envelope that Davis et al. [1998] presented 
for their compilation of North American precipitation. 
Imputed values are not included. 

 

These two features are also seen in the other seawater-derived ions/elements 

(Figure 8). Samples with higher ion or element concentrations tend to plot along the line 

of the seawater-like ratios, whereas samples with lower ion or element concentrations 

typically had no discernible bivariate relationship. Furthermore, a similar trend is 

observed for the geographic locations of the samples in these groups (i.e., samples 

displaying seawater-type ratios were generally collected <200 km from the coast and 

more inland samples deviate from it). The behaviours of Na and Cl– were exceptions to 

this because they tend to act much more conservatively (i.e., there is much less 
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deviation from the seawater ratio) relative to the other seawater-derived ions across all 

sites. However, samples with low Na and Cl– concentrations still deviate from the 

seawater-type ratio, albeit to much lesser degree compared to the other seawater-derived 

ions or elements. 

Figure 8: Bivariate scatterplots of measured concentrations of seawater-derived ions/elements 
for weekly wet deposition samples collected at the 286 NADP/NTN sites from June 2009 
through December 2015. Black dashed lines represent the seawater ratios of ion/element pairs. 
Symbol colours indicate the orthogonal distance of the sample site from the nearest coastline. 
Imputed values are not included. 

4.2. Imputation 

Two sets of imputed data were produced using the lrEM and multRepl routines 

described above. Censored values were imputed for all analytes, not just Br–, as a result 
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156 samples had imputed Cl– and Br– values. Hereafter, only the lrEM results are used 

because the multRepl results suffered from shortcomings, such as producing an 

artificially high frequency of Br– concentrations of exactly 0.65 times the most common 

detection limit of 5 µg L–1. An example artificial feature can be seen in Figure 9 where 

there is a clustering of Br– concentrations at 5 μg L–1, which have been produced 

because there was only one measured analyte for these samples or the lrEM routine 

failed to produce a stable result. The second shortcoming of the multRepl routine is that 

it uses an arbitrary multiplier rather than utilising the covariance relationships of the full 

available dataset. In addition, and even with the shortcomings, the multRepl results were 

broadly consistent with those calculated with the lrEM routine (even if the delta value 

was varied from 0.01 and 0.95; results not shown). We acknowledge that it is difficult 

to quantitatively assess the accuracy of the imputed values because only data with much 

less censoring (i.e., obtained with improved lower limits of detection), which are not yet 

available, will be able to show any underlying biases in the imputation method. 
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Figure 9: Measured (grey symbols) and imputed (solid 
symbols) weekly Cl– and Br– concentrations (mass and 
molar) of wet deposition collected at the 286 NADP/NTN 
sites between June 2009 through December 2015. Imputed 
values were calculated using the lrEM routine of the 
zCompositions package. Symbol colours indicate the 
orthogonal distance of the sample site from the nearest 
coastline. Lines of equal Cl–/Br– ratios are included for 
reference (dotted lines), including the seawater ratio (black 
dotted line). 

4.3. Spatial trends 

From here on, Cl– and Br– compositions of wet deposition are presented as wet 

deposition rates (i.e., kg ha–1) instead of concentrations, and Cl–/Br– ratios are presented 

as deposition ratios (i.e., kg ha–1/ kg ha–1) not concentration ratios. This conversion was 

performed to account for precipitation amounts when discussing the statistical features 

of the dataset, which is not possible when using wet deposition concentrations because 

individual samples are given equal weighting even though they represent widely 

varying precipitation amounts (i.e., 0.25 – 366 mm week–1). The deposition rates were 
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calculated using reported precipitation depths or, in the absence of depths, total sample 

mass and sampler intake diameter. 

Mean Cl–/Br– ratios of wet deposition show a distinct spatial pattern when plotted 

against distance from the coast (Figure 10). The Cl–/Br– ratios of wet deposition at 

coastal sites (i.e., <100 km) are close to the seawater ratio but rapidly decrease with 

increasing distance from the coast. Further inland, Cl–/Br– ratios continue to decrease 

with distance inland but at a reduced rate. Logarithmic regressions produced the best fit 

to the mean Cl–/Br– ratios, and were fitted separately to both the measured-only values 

and the combined measured/imputed values. The coefficients for the regressions and r-

squared values are listed in Table 7. The shape of the regression curves is similar for the 

measured-only values and the combined values; however, the regression based on 

measured-only values consistently produces Cl–/Br– ratios that are lower than those of 

the combined values (Figure 10). This is likely to be a result of bias from higher Br– 

concentrations in the measured-only values (i.e., detectable concentrations), which leads 

to a bias from lower Cl–/Br– ratios. This observation provides confidence in our 

rationale for, and results from, the imputation because it suggests that the elevated 

measured concentrations exert a greater influence on calculated mean weekly 

compositions than the much lower censored values. However, it also indicates that the 

absolute values obtained by imputation techniques have produced values that are offset 

from the measured data and cannot currently be verified. Thus, the imputed data and 

regression should be used with caution and under the full understanding of their 

limitations until further data are available. 

The lrEM imputation also produced compositions that are consistent with the data 

presented the low-salinity groundwater data in Davis et al. [2004], and the SSA 

deposition in Guelle et al. [2001] (Figure 11). Along the west-east transect (Figure 11a), 
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mean Cl–/Br– ratios of wet deposition decrease rapidly from values similar to seawater 

between 125°W and 115°W longitude, and then continue to decrease more slowly 

eastward until 87°W. Cl–/Br– ratios of low-salinity groundwater are also similar to 

seawater on the western side of the transect and decrease with distance east, albeit at a 

less rapid rate than the wet deposition compositions. Along the south-north transect 

(Figure 11b), the decrease in Cl–/Br– ratios with increasing distance is more consistent 

and follows a power-law trend. This pattern is matched by the decrease in sea-salt 

deposition reported in Guelle et al. [2001] and the shape of the trends are similar to the 

low-salinity groundwater data reported in Davis et al. [2004]. However, similar to the 

west-east transect, the rate of decrease in Cl–/Br– ratios of low-salinity groundwater is 

reduced relative to that of wet deposition and SSA deposition. A possible cause for the 

variation in the rates of decrease across the two transects is differences in precipitation 

patterns. Along the west-east transect, most of the precipitation, and subsequent 

‘washout’ of larger SSA particles, occurs close to the western margin of the transect 

near the Cascade Range [NOAA, 2015]. In contrast, decrease in precipitation across the 

south-north transect is much more gradual and may account for lower rate in decrease in 

Cl–/Br– ratios of wet deposition. 
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Figure 10: Mean weekly Cl–/Br– ratios of wet deposition 
calculated using a combination of measured and imputed 
(lrEM) values with distance from the nearest coastline. Circle 
colours and sizes indicate the percentage of measured Cl–/Br– 
ratios of wet deposition and number of weekly samples used to 
calculate the mean at each site, respectively. Lines represent 
best fits of values (in the form y = aln(x) + b); coefficients 
reported in Table 7 for the mean wet deposition data: the solid 
black line is the regression for the combined measured/imputed 
dataset (i.e., the plotted data), and the solid red line is for the 
measured-only data. The Cl–/Br– ratio of seawater is included 
for reference (horizontal dotted line). 

 

 

Table 7: Coefficients and r-squared values for the logarithmic regressions 
(in the form y = aln(x) + b) fitted to the mean Cl–/Br– ratios of wet 
deposition in Figure 10. 

Dataset a b r-squared 
Measured-only values –23.55 ± 1.18 174.5 ± 5.7 0.588 
Combined values (lrEM) –29.52 ± 1.21 229.5 ± 6.9 0.676 
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Figure 11: Variations in Cl–/Br– ratios of low-salinity 
groundwater (triangles) reported in Davis et al. [2004] 
and mean Cl–/Br– ratios of weekly wet deposition 
(including imputed values) presented in this study 
(circles) along the west-east (a) and south-north (b) 
transects shown in Figure 6. Cl–/Br– ratios are plotted with 
the sea-salt deposition rates (crosses) calculated by Guelle 
et al. [2001]. Circle colours and sizes indicate the 
percentage of measured (i.e., not imputed) Cl–/Br– ratios 
of wet deposition and number of weekly samples used to 
calculate the mean at each site, respectively. The Cl–/Br–

ratio of seawater is included for reference (horizontal 
dotted line). 

Although the pattern of variation of Cl–/Br– ratios was similar for wet deposition 

and low-salinity groundwater along both transects, the absolute values of imputed Cl–

/Br– ratios of wet deposition are consistently less than the low-salinity groundwater 
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reported in Davis et al. [2004]. There are several possible explanations for the 

difference. One is that there may be a potential bias from the imputation methods as 

discussed previously, which may have produced artificially high Br– concentrations, 

hence lower Cl–/Br– ratios. However, when imputed Br– concentrations only are plotted 

against distance (data not shown), values do not appear to be biased towards higher 

values. A second explanation is anthropogenic contamination. For instance, sewage 

effluent, which has been found to have elevated Cl–/Br– ratios (i.e., intermediate 

between seawater and halite) because of the use of halite, in the form of table salt in 

cooking, and its subsequent discharge into sewage systems and potentially the 

environment [Davis et al., 1998; Katz et al., 2011; Panno et al., 2006; Vengosh and 

Pankratov, 1998]. Although this is a possibility, the groundwater samples presented in 

Davis et al. [2004] were pre-screened to remove samples that displayed signs of 

anthropogenic contamination, such as elevated salinities and nutrient concentrations. 

Therefore, we do not believe that Davis et al. [2004] low-salinity groundwater data is 

displaying signs of sewage contamination. A third is that groundwater compositions 

may also be affected by solutes introduced by dry deposition [e.g., Tyler et al., 1996], 

which the wet deposition samplers of the NADP and the data presented in  Guelle et al. 

[2001] were specifically designed to exclude. Dry deposition, such as aeolian dust, 

commonly consists of aggregates of silicate minerals, organic matter and evaporite 

minerals such as halite (i.e., NaCl) [e.g., Shiga et al., 2011; Tyler et al., 1996], which 

have Cl–/Br– ratios much greater than seawater (typically >5000) because of the 

exclusion of all but trace amounts of Br– from their crystal lattice [Davis et al., 1998]. 

Thus, even a small contribution of dust to the solute load of the low-salinity 

groundwater would result in elevated Cl–/Br– ratios relative to wet deposition. Although 

the NADP data are collected such that dry deposition is avoided as much as possible, it 
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is near-impossible to completely exclude some dry deposition additions to the samples. 

Thus, non-sea-salt (NSS) Ca, Mg and K (as proxies for mineral contributions) are likely 

to provide a semi-quantitative assessment of dust contribution. We examined this 

possibility by calculating the NSS proportions of these elements, all relative to Na as a 

reference ion, of mean wet deposition at the NADP sites. Proportions of NSS Ca, Mg 

and K all increase with distance inland, suggesting that an increasing dust contribution 

is a plausible explanation. Furthermore, groundwater has been hypothesised to contain 

varying proportions of solutes derived from dry deposition in many regions based on 

isotopic and ion ratio data [Appelo and Postma, 2005; Herczeg and Edmunds, 1999; 

Nimz, 1998], and is likely to be responsible for some of the observed difference. 

A map depicts the mean weekly wet deposition results (Figure 12), highlighting 

the spatial pattern in Cl–/Br– ratios of wet deposition. There is a distinct ‘coastal rim’ on 

the map where sites <100 km of the coast have elevated Cl–/Br– ratios that are similar to 

seawater. In contrast, the Cl–/Br– ratios of inland sites are greatly reduced and tend to 

decrease with increasing distance inland. Localised elevated Cl–/Br– ratios of wet 

deposition proximal to the Great Salt Lake appear to show a contribution of aeolian-

derived solutes. A site at Logan (site UT01), which is proximal to the Great Salt Lake, 

Utah, has a much greater mean Cl–/Br– ratio (193) relative to other sites in this region. 

For example, the Murphy Ridge site (site UT08), located ~80 km east-southeast of the 

Logan site, and the Craters of the Moon National Monument site (site ID03), located 

~240 km northwest of Logan, have mean Cl–/Br– ratios of 45 and 51, respectively. The 

Great Salt Lake is known for its economic deposits of halite on the surface of its 

lakebed [Jones et al., 2009], and it has also been observed to emit large quantities of 

aeolian dust into the atmosphere of the local region [e.g., Hahnenberger and Nicoll, 

2012]. As discussed previously, dust that includes even a small amount of halite in its 
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composition has the potential to increase the Cl–/Br– ratio of low-salinity water such as 

wet deposition because of the very high Cl–/Br– ratios found in halite. By applying the 

simple mixing/dissolution equation presented in Horner et al. [2017], and assuming a 

halite Cl–/Br– ratio of 1900 – 8700 [e.g., Horner et al., 2017] and ‘true’ Logan wet 

deposition Cl–/Br– ratio of 48 (i.e., the mean of UT08 and ID03), it is possible that dust 

from the lakebed could account for 76 – 77% of dissolved Cl– observed in wet 

deposition at Logan. 

Large emissions of dust from inland salt lakes have also been observed in other 

regions such as North America [e.g., Reynolds et al., 2007; Zlotnik et al., 2012], 

Australia [e.g., Blackburn and McLeod, 1983; Prospero et al., 2002; Shiga et al., 2011], 

Africa [e.g., Prospero et al., 2002], Asia [e.g., Liu et al., 2011] and South America 

[e.g., Prospero et al., 2002]. Thus, similar solute contributions to wet deposition can 

reasonably occur in these regions. 
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Figure 12: Dot map of mean weekly Cl–/Br– ratios of wet deposition calculated for 
NADP/NTN collection sites. Mean values include imputed and measured values. Symbol 
colours and sizes are proportional to mean Cl–/Br– ratios. 

Aerosols emitted by spray droplets from the large, perennial Niagara Falls also 

appear to contribute to solute loads of local wet deposition, based on the high mean 

ratios of the two NADP sites that are closest to the falls (Figure 12). The Rochester (site 

NY43) and Amherst (site NY92) sites have mean Cl–/Br– ratios of 166 and 115, 

respectively. In contrast, the Chautauqua site (site NY10), located ~90 km southwest of 

Amherst, and Aurora Research Farm site (site NY08), located ~90 km southeast of 

Rochester, have mean Cl–/Br– ratios of 26 and 21, respectively. No literature currently 

exists regarding Niagara Falls as a potential source of atmospheric solutes to the 

surrounding region; however, Cl– and Br– concentrations of the Great Lakes surface 
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water, collected by researchers who have previously investigated pollution sources to 

the Great Lakes, display an increase in the Cl–/Br– ratio and Cl– concentration along the 

surface flow path of the lakes [Tiffany et al., 1969]. From upstream to downstream, the 

observed mean Cl–/Br– ratios of the lakes were 120 (Lake Superior; n = 12), 330 (Lake 

Michigan; n = 15), 280 (Lake Huron; n = 6), 670 (Lake Erie; n = 14) and 510 (Lake 

Ontario; n = 8). Niagara Falls lie between Lake Erie and Lake Ontario, which have the 

highest Cl–/Br– ratios of the Great Lakes. Widespread use of road salt (halite) during the 

winter months is a known pollution source and is likely to be responsible for the overall 

increase in salinity and Cl–/Br– ratios in the Great Lakes [e.g., Eyles and Meriano, 2010; 

Eyles et al., 2013; Tiffany et al., 1969]. The road salt is transported by surface runoff 

into the catchments surrounding the Great Lakes, as well as many of the catchments 

across the northern USA and much of Canada, and is subsequently discharged into the 

Great Lakes and emitted as soluble aerosol particles by the water falls. As a result, the 

mean Cl–/Br– ratios of wet deposition proximal to Niagara Falls appear to be affected by 

road salt pollution via spray droplets from the falls. 

The logarithmic regressions discussed in section 4.3 (Figure 10 and Table 7) were 

recalculated with the three anomalous sites removed to evaluate the affect they have on 

the general spatial trend. However, the resulting coefficient changed only slightly (i.e., 

by less than the reported errors) for both the measured-only and combined datasets. 

4.4. Enrichment factors 

Enrichment factors (EF) were determined for Cl– and Br–, relative to their ratios to 

Na in seawater, in order to investigate the differences in behaviour of the two ions (e.g., 

preferential enrichment or depletion of one species over the other). The EFs are 

calculated by: 
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(15)

where X denotes either Cl– or Br–, and RX is the X/Na ratio of wet deposition (WD) 

and seawater (SW), respectively. Mean EFs were determined for each site (Figure 13) 

using the mean weekly Cl– or Br– wet deposition rates (i.e. kg ha–1), which include 

lrEM-imputed data.  

The calculated EFs indicate that the variation in Cl–/Br– ratios of wet deposition 

appear to be mostly due to an enrichment in Br– relative to Cl–; inland sites have EFBr- 

up to 10 compared with a mean EFCl- of ~0.8. The opposing directions of 

enrichment/depletion (i.e., EFBr->1 and EFCl-<1) also help to increase the inland 

variation in Cl–/Br– ratios of wet deposition. 

Enrichment of Br– is consistent with the hypothesis of Davis et al. [2004], i.e., 

decreasing Cl–/Br– ratios with inland distance for low-salinity groundwater is likely to 

be caused by smaller SSA particles, which have been found to be more enriched in Br–

relative to Cl– [e.g., Sander et al., 2003; Virkkula et al., 1999], being transported further 

inland than larger particles. However, as mentioned earlier, there are other potential 

processes that may affect the ratios (e.g., weather patterns, chemical cycling, and 

additional natural or anthropogenic sources). It is not possible to distinguish the 

individual effects with the currently available data. 
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Figure 13: Enrichment factors (relative to seawater) for 
mean Cl– and Br– compositions of wet deposition (including 
imputed data) of NADP sites with distance from the coast. 

4.5. Temporal patterns 

The imputed (lrEM) results were also grouped seasonally and by distance (<200, 

200 – 1,000 and >1,000 km from a coastline) to investigate temporal differences in 

weekly Cl– and Br– wet deposition rates, and Cl–/Br– ratios of weekly wet deposition 

samples (Figure 14). The means of all seasonal subsets for each of the three distance 

ranges were significantly different from each other (i.e., p<0.05 using unequal variances 

t-tests) except for winter and autumn weekly Cl– wet deposition rates for the distance

intervals of <200 and 200 – 1,000 km (i.e., no significant differences; p>0.05). Weekly 

Cl– and Br– wet deposition rates were observed to have similar temporal patterns (Figure 

14a and Figure 14b), namely that wet deposition rates were typically more elevated 

during the spring and summer months, and lower during the autumn and winter months. 

However, the difference between seasons of greatest and lowest wet deposition was 

greater for weekly Br– wet deposition rates than it was for Cl–. Weekly Br– wet 

deposition rates varied throughout the year by factors of 1.6, 2.5 and 7.1, compared to 
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weekly Cl– wet deposition rates, which varied throughout the year by factors of 1.5, 1.6 

and 4.5 for the distance ranges <200, 200 – 1 000 and >1 000 km, respectively. These 

results also indicate that the seasonality is more pronounced with increasing distance 

inland. Because of the observed variation in magnitude of the seasonality of Cl– and Br– 

wet deposition, Cl–/Br– ratios of weekly wet deposition also displayed seasonality 

(Figure 14c). The Cl–/Br– ratios of wet deposition were greatest during the winter 

months and lowest during the summer months. Unlike Cl– and Br– wet deposition rates, 

the absolute variation in Cl–/Br– ratios of wet deposition decreased with distance inland 

from the coast, with Cl–/Br– ratios of wet deposition varying throughout the year by 

factors of 2.1, 1.9 and 1.6 for the distance ranges <200, 200–1 000 and >1 000 km, 

respectively. 

A possible explanation for the elevated deposition rates of Cl– and especially Br– 

is through transport and re-deposition of atmospheric halogen species activated during 

‘bromine explosion’ events during the polar spring, where photochemical reactions 

activate particulate Br species, and to a lesser degree Cl, at the surface of snow, ice and 

water in polar regions during the spring [Biegalski et al., 1997]. Biegalski et al. [1997] 

found that Br concentrations in aerosol collected at a site north of Lake Huron exhibited 

a high during March, and used back trajectory modelling to identify the source air as 

coming from the Arctic. Thus, the elevated wet deposition of Br– during the spring and 

summer, and to a lesser degree increase in wet deposition of Cl–, at inland sites may 

represent long-range transport of halogen species produced in the Arctic boundary 

layer. Other potential sources that could explain the greater increase in the wet 

deposition of Br– compared to Cl– in the spring and summer months could be emissions 

of methyl bromide by wildfires, emissions from pesticide use during growing season 

(under a Critical Use Exemption because of restrictions of the Montreal Protocol) or 
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through natural emissions from salt lakes and marshes [EPA, 2016; Manö and Andreae, 

1994; Rhew et al., 2014; Stutz et al., 2002]. 

Figure 14: Box and whisker plots of seasonal 
variation of weekly wet deposition rates of Cl– (a) 
and Br– (b), and mean weekly Cl–/Br– ratios of wet 
deposition (c) at the 286 NADP/NTN sites between 
June 2009 through December 2015. Data include 
imputed (lrEM) values. Symbol colours indicate the 
distance of the sample site from the nearest coastline, 
horizontal dashed lines indicate annual means, and 
the horizontal black dotted line indicates the seawater 
ratio (c only). Box ranges are from the 1st to the 3rd 
quartile and whisker ranges are from the 1st to the 
99th percentile. 

4.6. Environmental implications 

The spatial patterns presented here will provide catchment scientists with a much 

greater understanding of the likely Cl–/Br– ratio of wet deposition for different regions 

across the USA. The logarithmic regression presented in Figure 10 and coefficients 

reported in Table 7 provide a useful tool to estimate of Cl–/Br– ratios of wet deposition 
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at a given distance from the coast in the absence of site-specific data. The Great Lakes 

region provides a useful example of where this information can be utilised. As 

discussed previously, it has long been established that runoff containing dissolved road 

salt is contributing to increasing salinity in the lakes. If a mean Cl–/Br– ratio of Lake 

Ontario was assumed to be 49 (obtained using a distance of 450 km in the logarithmic 

regression fitted to the combined dataset; Table 7) then it can be seen that road salt 

pollution has resulted in a ten-fold increase Lake Ontario’s Cl–/Br– ratio (~510). These 

end-member values can then be used in modelling to predict the total solute load 

contributed by road salt pollution in this region. For example, if the above ratios are 

assumed, along with a generalised road salt Cl–/Br– ratio range of 1900 – 8700 [e.g., 

Horner et al., 2017], a simple Cl–/Br– ratio mixing calculation presented in Horner et al. 

[2017] estimates that approximately 90 – 92% of Cl– dissolved in Lake Ontario exists as 

a result of road salt pollution. 

These findings will also have implications for catchments that are located near 

coastlines that are highly responsive to sea-level variations (i.e., those with shallowly 

sloping coastal bathymetry). Given that the majority of Earth’s groundwater is found to 

have recharge ages that are pre-modern (i.e., >50 years) and commonly >10 000 years 

in semi-arid and arid regions [e.g., Cook and Herczeg, 1999; Gleeson et al., 2015; 

Phillips, 2013], it is likely that Cl–/Br– ratios of groundwater in such catchments will be 

a mixture of water recharged during times when the catchment was near and far from a 

coastline. In well-mixed systems, this may limit the quantitative use of Cl–/Br– ratios for 

investigating solute budgets over long timescales because of difficulty in assessing 

variations in the timing and fluxes of incoming solutes. However, in poorly-mixed 

systems, Cl–/Br– ratios of groundwater may be able to be used effectively with other 

groundwater tracers to investigate palaeohydrological processes. 
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The spatial patterns in Cl–/Br– ratios of wet deposition are significant for more 

than just the application of Cl–/Br– ratios in North American catchments because similar 

spatial variations of the rate of sea-salt deposition have been observed [e.g., Ballance 

and Duncan, 1985; Mahalinganathan et al., 2012] or predicted [e.g., Fan and Toon, 

2011; Vet et al., 2014] over other Earth landmasses. Therefore, it is likely that the 

spatial variations in Cl–/Br– ratios of wet deposition observed across North America is 

repeated over other continents. The absolute change in the Cl–/Br– ratio atmospheric 

deposition for the other continents will have their own unique spatial and temporal 

patterns depending on regional weather patterns, atmospheric chemistry, and site-

specific landscape features or industrial areas that have the potential to act as a source of 

Cl–- or Br–-bearing aerosol to the lower atmosphere. 

5. Conclusions

We have presented findings of the first continental-scale assessment of the spatial

variations in Cl–/Br– ratios of wet deposition. Our results rely, in part, on imputing 

censored data, due to many Br– concentrations reported as below detection; however, 

the Cl–/Br– ratios of wet deposition across North America decrease systematically from 

values similar to seawater near the coast to values of more than a factor of 20 less than 

the seawater ratio at inland sites. These observations are consistent with a previous 

survey of the variations in Cl–/Br– ratios of low-salinity groundwater [Davis et al., 2004] 

and a small compilation for precipitation across the USA [Davis et al., 1998], 

suggesting that the composition of these ions/elements in groundwater are strongly 

associated with wet deposition but may also include a component of aeolian solutes at 

inland sites. The variations seem to be closely associated with variations in SSA 

deposition rates and the atmospheric physico-chemical processes that affect Br 
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compositions in SSA during production and inland transport. However, seasonal 

variations that act to increase Br– wet deposition more than Cl– at inland sites suggest 

that the variations may also be partly caused by Br– contributions from other source than 

SSA, such as Artic air-masses, wildfires, natural emissions or pesticide applications. 

Our findings should serve as a caution to scientists who utilise this ratio to 

investigate catchment hydrogeochemical processes, mainly because catchments located 

further than ~100 km from a coastline are likely to be receiving atmospheric deposition 

that has a Cl–/Br– ratio that is considerably less than the seawater ratio. In the absence of 

site-specific data, in North America, the regression: 

(16) 

can be used to estimate the mean Cl–/Br– ratios of wet deposition. Distance, km, 

used in Equation (16) is the orthogonal distance from the coast.  

The increase in available data being accumulated for Cl– and Br– concentrations of 

atmospheric deposition by the NADP will continue to extend our knowledge of changes 

in Cl–/Br– ratios and increase the ability to use this ratio quantitatively in North 

American catchments. Furthermore, new techniques such as stable halogen isotope 

ratios (i.e., δ37Cl and δ81Br), which have been used to identify solute sources in a range 

of environments [e.g., Eggenkamp, 2014], may help to identify the processes that are 

contributing to the spatial variations in Cl–/Br– ratios of atmospheric deposition. 
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The aim of this chapter is to provide readers with a thorough background about 

the unique geologic, hydrologic and palaeoenvironmental processes of the Lake George 

Basin, which make it attractive for applying chlorine and bromine tracer techniques to 

better understanding its salt cycling history. The chapter begins with descriptions of the 

environmental features of saline lakes, such as Lake George, that make them important 

for understanding terrestrial salt cycling. 

1. Saline lakes

Saline lakes are landscape features that occur on all of Earth’s continents and they

play a crucial role in biogeochemical cycling and salinity regulation in the environments 

in which they appear [Deocampo and Jones, 2014; Rosen, 1994]. The 

hydrogeochemistry of saline lakes is of interest to earth and environmental scientists 

because it can throw light on the meteorological (i.e., rainfall, evaporation and weather 

patterns), geological (i.e., tectonic, hydrothermal and sedimentary environments), 

biological (i.e., land cover and production), and hydrological (i.e., surface and 

subsurface) conditions and histories of their local and regional environments. In the 

context of coastal saline lakes, hydrogeochemical compositions can assist with 

determining the timing and duration of coastal inundation, sea-level variation, and 

tectonic movement by assessment of evaporite mineral assemblages [e.g., Warren, 

2010; 2014]. However, the hydrogeochemistry of coastal saline lakes is dominated by 

the ionic composition of seawater, which makes it difficult to discern information about 

alternate solute sources or subtle geochemical processes. In contrast, the 

hydrogeochemistry of continental saline lakes is much more sensitive to variations in 

drainage lithology, biology, atmospheric inputs (i.e., wet and dry deposition) and 

hydrothermal activity [Deocampo and Jones, 2014; Warren, 2010]. This sensitivity to 
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the local environments enables continental saline lakes to act as natural laboratories 

where researchers can gain valuable information about geologic and climatic processes 

[Eugster and Jones, 1979]. 

In the following sections, continental saline lakes – particularly Australian saline 

lakes – are focussed on because of the field site investigated in later chapters of this 

thesis. 

1.1. Australian saline lakes 

The landscape of Australia’s arid and semi-arid interior is typified by the 

occurrence of numerous large inland saline lake systems. Some of the most notable 

Australian saline lake provinces are those located within the ‘Wheatbelt’ of Western 

Australia, the large endorheic basins of central Australia, and the central Murray-

Darling Basin [Bowler, 1981]. However, many other significant saline lake systems 

occur across the arid interior of mainland Australia, and even in the cooler climate of 

Tasmania [e.g., De Deckker and Williams, 1982]. These large, mostly dry, lakes have 

been known for decades to be important for numerous palaeoenvironmental [Torgersen 

et al., 1986], economic [Mernagh, 2013; Williams, 1981], hydrogeological [Macumber, 

1991], ecological [De Deckker, 1983] and cultural [Williams, 2002] reasons. Research 

into Australia’s saline lakes reached a peak during the 1980s and 1990s when the Salt 

Lakes, Evaporites and Aeolian Deposits (SLEADS) project was active at the Australian 

National University [Chivas and Bowler, 1986]. The researchers involved in this project 

published work that is still being used today as a benchmark by international researchers 

for expanding the conceptual and quantitative understanding of the geological, 

meteorological and ecological evolution of saline lakes [e.g., Burrough et al., 2009; 

Deocampo and Jones, 2014; Kohfeld et al., 2013; Sim et al., 2006].  
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A recent investigation by Geoscience Australia into Australia’s saline lakes has 

again highlighted their mineral resource and economic value for deposits such as 

potash, halite, boron, lithium and uranium [Mernagh, 2013; Mernagh et al., 2016]. 

Moreover, this recent work has made it clear that research into Australia’s saline lakes 

could benefit greatly from further research using modern techniques. One key 

recommendation in Mernagh [2013] was to work towards a better understanding of the 

hydrogeochemical processes that occur within and proximal to saline lakes. The authors 

noted that this aspect was one of the key components for properly understanding the 

potential resource significance of these lakes. In addition to resource significance, it has 

been found that constraining hydrogeochemical pathways around saline lakes is vital for 

understanding how saline lakes affect nearby land and water resources [e.g., Bowler, 

1986; Deocampo and Jones, 2014; Lyons et al., 1995; Macumber, 1991; Rosen, 1994]. 

1.2. Hydrogeochemical development of saline lakes 

The development of saline lakes is primarily controlled by three key 

geomorphologic and climatic features, as defined in Deocampo and Jones [2014]. 

Firstly, outflow from saline lake basins is typically absent or severely restricted, such 

that evaporation is the primary means of discharge. This condition is typically observed 

in areas of current or past tectonic or volcanic activity (e.g., Lake Eyre, Lake George, 

Caspian Sea, Dead Sea and Great Salt Lake) where established drainage systems are 

altered or impeded by significant landscape alterations. Secondly, evaporation typically 

exceeds inflow from rainfall, streams and groundwater for at least half of the year. This 

condition is observed in the semi-/arid interiors of many of the large continents (e.g., 

Australia, Asia and the Americas). Thirdly, sufficient inflow into saline lake basins by 

rivers or groundwater should be able to maintain a surface water body, at least 

intermittently. Consequently, saline lakes rarely occur in the extremely arid interiors of 
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deserts because very low annual rainfall and recharge cannot sustain any permanent, or 

even ephemeral, water bodies. Bowler [1981] also noted that the ratio of a basin’s 

catchment area to its lake area (Ac/Al) is a strong determinant of whether or not a saline 

lake will contain water (Figure 15). Bowler related the Ac/Al ratio to a climate function 

(FC), which is defined by: 

(17) 

where E is annual pan evaporation (L, e.g., mm; converted to open-water

evaporation using a generalised factor of 0.8), P is annual precipitation (L, e.g., mm)

and f is the basin’s runoff coefficient (i.e., the proportion of rain that reaches the lake as

runoff). The hydrologic threshold in Figure 15 is defined as a lake in steady state – lakes 

that fall to the left of the line are permanent lakes and lakes that fall on the right of the 

line are dry lakes. Lakes with higher Ac/Al ratios tend to be permanent water bodies 

under a range of different climatic conditions except in very arid regions. As the Ac/Al 

ratio of a lake decreases, permanent surface water can only be maintained under 

increasingly humid conditions. Figure 15 illustrates this relationship with reference to 

several of Australia’s saline lakes. 

!" = 0.8' − )
)* + 1
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Figure 15: Relationship between the ratio of catchment area to lake area (Ac/Al), climate 
function and hydrologic conditions. Reproduced and modified from Mernagh [2013]. 

 

Saline lake basins can receive solutes from a wide range of different sources such 

as atmospheric deposition, surface water inflow, groundwater inflow or hydrothermal 

activity (Figure 16). The absence or presence of sources, and the variations in source 

geochemistry, gives each saline lake system a very distinct geochemical signature and 

evolutionary pathway [Deocampo and Jones, 2014]. Of the pathways depicted in Figure 

16, atmospheric deposition and mineral weathering are the dominant solute sources 

[Deocampo and Jones, 2014]. Atmospheric deposition (i.e., precipitation and aerosols) 

contributes a large proportion of total salinity in many catchments [Blackburn and 

McLeod, 1983; Crosbie et al., 2012; Deocampo and Jones, 2014; Junge and Werby, 

1958]. Solutes derived from the atmosphere are not only deposited directly on to the 

lake surface, but are also carried by discharging streams and groundwater. Continental 

rainfall typically exhibits seawater-type ion signatures (e.g., Na+/Cl– = 0.56, Cl–/Br– = 

288 by mass [Millero, 2014]) because marine aerosols are the primary contributor to the 
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solute composition of precipitation [e.g., Blackburn and McLeod, 1983; Junge and 

Werby, 1958]. However, continental chemical signatures derived from dust may be 

dominant in atmospheric deposition in regions proximal to sources such as saline lakes 

or deserts, and regions far from coastlines [Junge and Werby, 1958; Shiga et al., 2011]. 

Figure 16: Schematic of the potential solute sources and pathways 
in a saline lake system. Reproduced from Deocampo and Jones 
[2014]. 

The other dominant source of solutes to saline lake basins is mineral weathering. 

This solute source can be an even more dominant source than atmospheric deposition 

depending on the susceptibility of the catchment lithology to weathering and the 

residence times of surface water and groundwater [Deocampo and Jones, 2014]. 

Mineral weathering contributes solutes of widely varying compositions due to 

variations in catchment lithology. This process is primarily responsible for the wide 

range of water types found in saline lake basins [Deocampo and Jones, 2014; Eugster 

and Jones, 1979]. The major ions contributed by mineral weathering are commonly the 
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alkali and alkaline-earth metals (Na+, K+, Mg2+ and Ca2+), bicarbonate/carbonate and 

silica [Appelo and Postma, 2005]. 

Like most hydrologic systems, the composition of saline lake basins is dominated 

by only a few major ions including Na+, K+, Ca2+, Mg2+, Cl–, SO4
2–, HCO3

–, CO3
2– and 

SiO2 [Deocampo and Jones, 2014]; however, the relative abundance of these solutes can 

be significantly altered by processes such as evaporation, biological activity and mineral 

dissolution/precipitation (Figure 16). Evaporation acts to concentrate ions in the residual 

water and may cause various evaporite minerals to precipitate at different stages of 

evapoconcentration [Deocampo and Jones, 2014; Eugster and Jones, 1979]. Alkaline-

earth carbonates, such as calcite and aragonite, are the first minerals to precipitate, 

followed by sulfates, sodium carbonates and chlorides. However, different evolutionary 

pathways, known as ‘chemical divides’, are followed depending on the initial water 

composition [Eugster and Jones, 1979]. Figure 17 illustrates an idealised case of brine 

evaporation in a closed-system (loosely analogous to a terminal lake) showing brine 

composition and precipitation products of different water types. The distinct chemical 

divides during brine evolution produce diagnostic mineral assemblages in saline lake 

evaporite deposits, which can enable researchers to determine past and present solute 

sources to saline lakes [Deocampo and Jones, 2014; Eugster and Jones, 1979]. 
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Figure 17: Flow chart of idealised brine evolution and 
mineral precipitation during evaporation (evapoconcentration 
increases downward) for different water types in a closed 
system. Brine composition is depicted by the flow lines and 
precipitates are depicted by cylinders. Solute concentrations 
are in equivalents and CO3 refers to total carbonate species in 
solution. Reproduced from Deocampo and Jones [2014]. 

A major limitation of the idealised brine evolution depicted in Figure 17 is that it 

does not account for interactions with groundwater, surface water or biological activity 

during evapoconcentration [Deocampo and Jones, 2014]. Of these processes, 

interactions with groundwater is one of the most relevant for Australian saline lakes 

[Mernagh, 2013; Rosen, 1994]. Rosen [1994] described the key configurations between 

saline lakes and groundwater (Figure 18). The first configuration is a dry lake that has 
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little or no exchange with the underlying groundwater system (Figure 18a). This type of 

lake is known a ‘through-flow playa’ because it is likely to occur in basins where 

groundwater is discharged to adjacent basins. The second configuration is known as a 

‘recharge playa’ because the lakebed acts as a localised recharge zone when it contains 

water (Figure 18b). The third and fourth configurations are known as ‘discharge playas’ 

because the lake surface acts as a local groundwater discharge zone, where water is lost 

by evaporation from within the lakebed sediments (Figure 18c) or from surface water 

(Figure 18d). 

 
Figure 18: Diagrammatic representation of four 
generalised saline lake – groundwater 
relationship configurations: (a) ‘through-flow 
playa’; (b) a ‘recharge playa’; (c) a ‘discharge 
playa’ without permanent surface water; and (d) 
a ‘recharge playa’ with permanent surface 
water. Reproduced from Rosen [1994]. 
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2. The Lake George Basin

The Lake George Basin is an endorheic basin with a catchment area of

approximately 950 km2 located ~40 km northeast of Canberra, Australia (Figure 19). 

The basin is delineated to the east by the Great Dividing Range and to the west by the 

Lake George Fault escarpment. To the north and south, the basin is delineated by low 

saddles in the topography, which consist of artificial drainage lines and swampy 

lagoonal areas [Abell, 1985]. The basin contains the two small townships of Collector 

and Bungendore, which are situated to the north and south of Lake George, 

respectively. These towns, and surrounding industries (agriculture and viticulture), are 

heavily reliant on groundwater because of the lack of sustainable potable surface water 

resources in the basin. 

The Lake George Basin has been the focus of scientific studies since its discovery 

by European settlers in 1820, and has included research related to its geology [e.g., 

Abell, 1985; Macphail et al., 2015; Macphail et al., 2016; Taylor, 1907]; hydrology 

[e.g., Burton, 1972; Burton and Wilson, 1973; Jacobson et al., 1991; Jacobson and 

Schuett, 1979; Noakes, 1951; Russell, 1886]; and the palaeoenvironmental conditions of 

the region [e.g., Churchill et al., 1978; Fitzsimmons and Barrows, 2010; Macphail et 

al., 2015; Macphail et al., 2016; Singh and Geissler, 1985; Singh et al., 1981]. These 

studies have all shown that Lake George has immense potential for scientific discovery. 

Henry Russell, government astronomer, made the following observation on the value of 

Lake George as an unique environment for scientific investigation in his 1877 text on 

the climate of New South Wales [Russell, 1877, p. 182]: 

“… the history of Lake George is instructive, situated as it is 

in the mountains, with a well-defined catchment area, and no 
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outlet. It forms a sort of rain-gauge, and should afford valuable 

information.” 

 
Figure 19: Location map of the Lake George Basin with respect to Australia (insert). See 
Figure 20 and Figure 26 for geologic cross section A-A’ and hydrogeologic cross section 
A-A’’, respectively. 
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2.1. Geology 

The Lake George Basin is a tectonically formed half-graben, which was shaped 

by faulting during the Pliocene [Macphail et al., 2015; Macphail et al., 2016] – possibly 

as a result of the rejuvenation of Late Palaeozoic faults [Abell, 1985]. The basin’s 

basement geology consists of marine turbidite sediments of Middle to Upper 

Ordovician age, which are overlain unconformably by Late Silurian acid volcanics and 

intruded by Siluro-Devonian granite. The units were then folded, faulted and weakly 

metamorphosed by a series of Palaeozoic earth movements, giving a strong north-south 

trend to the basement geology (Table 8 and Figure 20 from Abell [1985]). 

Table 8: Stratigraphy of the Lake George Basin. Adapted from Taylor [1907], Abell [1985], 
McEwan Mason [1991], MacPhail et al. [2015] and MacPhail et al. [2016]. 

Formation Lithology Facies Age Palaeo-
hydrology 

Hydraulic 
properties Vegetation 

Bungendore 
Formation Clay/silt Lacustrine Pleistocene 

Cenozoic 

Closed 
catchment Aquitard 

Open forest and 
grassland Ondyong 

Point 
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Top of 

Clay/ 
silt/ 
sand 

deep 

Fluvio-
lacustrine 

weathering 

Late-
Pliocene to 

early-
Pleistocene 

profile 

Transitional: 
open – 
closed 
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poor aquifer 
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Gravel/ 
sand/ 

silty clay 
Fluvial Early-

Pliocene 
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catchment 
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Figure 20: Geologic cross section of the line section A-A” in Figure 19. Reproduced from Abell 
[1985]. 

Lake George’s lakebed consists of ~165 m (at its deepest known point) of fluvio-

lacustrine sediment (Figure 20) that has been deposited since the early-Pliocene 

[Macphail et al., 2015; Macphail et al., 2016]. The Cenozoic sequence is divided into 

three stratigraphic units: 

1. the Gearys Gap Formation, which is the oldest of the Cenozoic sequence, is

estimated to be early-Pliocene in age at its base [Abell, 1985; Macphail et al., 

2015; Macphail et al., 2016; McEwan Mason, 1991], and consists of deeply 

weathered fluvial gravel and sand. The fluvial lithology associated with the 

Gearys Gap Formation was deposited while the basin was part of a large 
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westward flowing drainage system. Palaeochannels of the old drainage system 

have been interpreted beneath the lakebed [Abell, 1985]. 

2. The Ondyong Point Formation, which is in the middle of the Cenozoic

sequence, has been dated to be late-Pliocene in age at its base [Abell, 1985;

Macphail et al., 2015; Macphail et al., 2016], and consists of fluvial sands and

lacustrine clay and silt. The sediments of the Ondyong Point Formation were

deposited unconformably on top of a deep weathering profile and are associated

with closed drainage conditions [Abell, 1985; Macphail et al., 2015; Macphail

et al., 2016].

3. The Bungendore Formation, which is the youngest of the Cenozoic sequence, is

dated to be late-Pleistocene in age at its base [McEwan Mason, 1991], and

consists of lacustrine clay and silt. The sediments of the Bungendore Formation

were deposited conformably on top of the Ondyong Point Formation and are

associated with a closed drainage system.

There are also Quaternary sediments in the basin that include colluvium along the 

base of hill slopes and the Lake George Fault escarpment, and lacustrine strandlines and 

aeolian deposits around the lake margin [Mason, 1995]. 
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Figure 21: Hypothesised palaeo-drainage 
network of the Lake George Basin prior to uplift 
of the Lake George fault. Reproduced from 
Abell [1985]. 
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and potential evapotranspiration (PET) means that the basin’s year-to-year aridity index 

has a range of 0.43 – 0.59. 

The range of mean maximum daily temperatures (Figure 22a) for the basin is 

from 12.2°C (July) to 29.2°C (January), and the range of mean minimum daily 

temperature is from 0.0°C (July) to 13.3°C (February). Temperatures are estimated for 

the basin (Figure 22) using the mean of daily temperature measurements recorded at the 

Australian Bureau of Meteorology (BoM) weather stations located at Goulburn airport 

(34.81°S, 149.73°E; data from 1991 in BoM [2015]) and Canberra airport (35.31°S, 

149.20°E, data from 2009 in BoM [2015]).  

Monthly rainfall is distributed relatively uniformly throughout the year (Figure 

22b) and ranges from 41 ± 35 mm (May) to 71 ± 34 mm (November). Mean annual 

rainfall, based on the last 30 years of rainfall data, is estimated to be 666 ± 145 mm. 

Precipitation for the basin is estimated using the mean of the precipitation recorded at 

the BoM rain gauges (Figure 19) located at the Bungendore Post Office (35.24°S, 

149.45°E; date from 1890 in BoM [2015]), Bungendore Gidleigh (35.31°S, 149.47°E; 

data for 1886 – 2011 in BoM [2015]), Bungendore Lockhart (35.33°S, 149.50°E; data 

for 2006 – 2012 in BoM [2015]), Collector Lerida (34.88°S, 149.36°E; data for 1961 – 

2012 in BoM [2015]) and Collector Winderadeen (34.94°S, 149.43°E; data from 1976 

in BoM [2015]).  

Annual PET for the basin, based on the four years of available data, is estimated 

to be 1310 ± 121 mm. The BoM have also published estimates of areal mean actual 

evapotranspiration rates, which are estimated based on PET and existing rainfall 

conditions of a given region. The Lake George Basin and surrounding regions are 

estimated to have a mean actual evapotranspiration rate of 550 – 600 mm year–1. 

Potential evapotranspiration for the basin is estimated using the mean of the daily PET 
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calculated for the Canberra (data from 2009) and Goulburn (data from 2009) airports 

[BoM, 2015]. Potential evapotranspiration is calculated using the Penman-Monteith 

equation [e.g., Allen et al., 1998] by staff at BoM based on meteorological data from 

their weather stations. Mean daily PET (Figure 22c) for the basin ranges from 1.2 ± 0.1 

mm (June) to 6.3 ± 0.7 mm (January).  

Mean daily pan evaporation (Figure 22d) for the basin varies from 1.2 ± 0.2 mm 

(June) to 7.1 ± 1.1 mm (January). Annual pan evaporation for the basin, based on the 

current 30-year mean, is estimated to be 1437 ± 158 mm. Annual open-water 

evaporation, which is estimated using a pan coefficient of 0.89 [McMahon et al., 2013] 

because of the differences in energy balance between an evaporation pan and a lake 

[e.g., Lim et al., 2013], for Lake George is estimated to be 1,278 ± 140 mm. 

Evaporation rates for the basin are obtained using the mean of daily Class A pan 

evaporation measurements recorded at BoM pan evaporation stations at Canberra 

Forestry (35.30°S, 149.10°E; data for 1957 – 1980 in BoM [2015]), Canberra airport 

(data for 1967 – 2013 in BoM [2015]), Canberra city (35.27°S, 149.12°E; data for 1974 

– 1988 in [BoM, 2015]) and Goulburn TAFE (34.75°S, 149.70°E; data from 1971 in 

BoM [2015]).  
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Figure 22: Mean daily maximum and minimum temperatures (a); mean monthly 
precipitation (b), mean daily potential evapotranspiration (c); and mean daily 
Class-A pan evaporation (d) for each month for the Lake George Basin. 
Uncertainty intervals indicate one standard deviation. All data from BoM [2015]. 

 

As illustrated by the wind roses in Figure 23, wind direction and speed across the 

lake varies during night- and day-time hours. During night-time hours, the prevailing 

wind is an east southeasterly with typical speeds of 0 – 5 m s–1. During daytime hours, 

the prevailing wind is west northwesterly and typically stronger (5 – 10 m s–1). The 

strong, persistent daytime winds experienced at Lake George, and the diurnal nature of 

the wind, has led the development of the Capital Wind Farm located on the eastern 

slopes of the basin. Wind speeds and directions in the Lake George Basin were recorded 

at the Icon Water weather station [pers. comm., 2015, T. Purves, Senior Engineer, Icon 



Chapter 4: The Lake George Basin 

Tracing terrestrial salt cycling using chlorine and bromine 
M. A. Short (2017)

110 

Water] at Rocky Point (Figure 19) from February 2006 until the site was 

decommissioned in August 2015. 

Figure 23: Wind roses showing the frequency, direction and speed of mean hourly wind 
recorded at the Rocky Point Icon Water monitoring station since February 2006 (n=67,872). 
Subplots show wind roses for all data (a) and time intervals 04:00-08:00 (b), 10:00-14:00 (c), 
16:00-20:00 (d) and 22:00-02:00 (e).  

2.3. Hydrology 

At the centre of the Lake George Basin lies Lake George, also known as 

Weereewa, meaning ‘bad water’ in the language of the local indigenous people [Singh 

and Geissler, 1985]. When full (i.e., the modern arbitrary boundary marked on maps 

corresponding to a surface elevation of 680 m AHD), the lake is the largest natural 

inland water body in New South Wales, occupying 16% (156 km2) of the Lake George 

Basin. The lake is the focus of drainage for five main sub-catchments (Figure 19): 

Collector/Currawang Creek in the north (catchment area of 262 km3), Allianoyonyiga 

Creek in the northeast (catchment area of 89 km3), Taylors Creek in the east (catchment 

area of 58 km3), Butmaroo Creek in the southeast (catchment area of 176 km3) and 

Turallo Creek to the south (catchment area of 188 km3). Runoff is also directed from the 

fault escarpment towards the lake by a series of small creeks (catchment area of 21 

km3). Butmaroo Creek and Collector Creek contain near-perennial surface water, 
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whereas Allianoyonyiga Creek, Taylors Creek and Turallo Creek are ephemeral and 

only flow after heavy rainfall [Jacobson et al., 1991; Jacobson and Schuett, 1979]. 

The Lake George hydrograph is one of the longest records of its type in the world 

[Churchill et al., 1978; Jacobson and Schuett, 1979]. Figure 24 is a compilation (this 

study) of Lake George water level records including the initial inferred and observed 

water levels recorded by Henry C. Russell between 1820 and 1886 [Russell, 1886], 

Australian Bureau of Mineral Resources [Burton and Wilson, 1973; Jacobson et al., 

1991; Jacobson and Schuett, 1979; Noakes, 1951], recent Icon Water measurements 

[pers. comm., 2015, T. Purves, Senior Engineer, Icon Water], and the measurements 

collected as part of this research. Long-term rainfall records, extending back to 1857, 

from in and around the Lake George Basin (Goulburn rainfall is used to reconstruct 

rainfall between 1870 and 1885) also enable previous long-term rainfall trends for the 

region to be investigated. The values of the black dashed line in Figure 24 are calculated 

as the cumulative deviation of each year’s annual rainfall from the overall mean. The 

slope of the black dashed line in Figure 24, rather than the absolute value, illustrates the 

long-term rainfall trend for the basin. Put simply, negative slopes indicate consecutive 

years of below mean rainfall (e.g., 1900 through 1950, and 2000 to present) and vice 

versa for positive slopes (e.g., 1950 through 2000). 

In addition to the rainfall record, Class A pan evaporation has been recorded in 

Canberra and Goulburn for the last 40 years [BoM, 2015]. The pan evaporation, 

calculated using the same method as the rainfall trend, is plotted as the grey dashed line 

on Figure 24. When compared to the hydrograph, the long-term lake level trends are 

primarily controlled by short- and long-term rainfall and evaporation trends. 



Chapter 4: The Lake George Basin 

Tracing terrestrial salt cycling using chlorine and bromine 
M. A. Short (2017)

112 

Figure 24: Water level fluctuations (solid and dashed black lines), cumulative rainfall residual 
(dashed blue line) and cumulative pan evaporation residual (dashed grey line) of Lake George 
from 1820, 1871 and 1958, respectively. 

The very flat bathymetry of Lake George is another major control on its 

fluctuating water levels. At low lake stages (670 – 675 m AHD water levels), small 

changes in lake volume (on the order of annual creek runoff variations) induce 

relatively large changes in surface area compared to higher stages (Figure 25). These 

variations in lake surface area greatly increase evaporation from the lake surface. This 

phenomenon is most evident on the lake hydrograph (Figure 24) during the periods 

1873 – 1903 and 1946 – 1972 when consecutive years of above mean rainfall, and 

presumably greater runoff, caused a rapid rise in lake stage, which was then followed by 

rapid reductions in lake stage because of increased evaporation from a greater lake 

surface. 
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Figure 25: Lake George’s area, volume and area/volume 
ratio with varying water depth. Bathymetry data was sourced 
from the shuttle radar data for the region [USGS, 2012]. 

The long records of hydrometeorological data for the basin and surrounding 

region enable some components of the basin’s water budget to be estimated (Figure 26). 

Rainfall for the basin is estimated using daily precipitation measurement from six rain 

gauges located within or proximal to the basin (Section 2.2). Evaporation directly from 

the lake and PET over land surfaces is estimated using corrected pan evaporation and 

calculated PET data, respectively. Jacobson and Schuett [1979] estimated mean annual 

creek discharge to Lake George to be approximately 50 GL. Accurate estimates for 

creek discharge are not available in the Lake George Basin because only one (Butmaroo 

Creek) out of the five main creeks is gauged, and the gauge is located 15 km away from 

the lake boundary. Groundwater recharge for the basin has been estimated as 1 – 8% of 

annual rainfall (7 – 53 mm year–1; ~6 – 51 GL year–1) based on chloride mass-balance 

calculations and values from similar catchments in the region [Beavis, 2011; Hydroilex, 

2005]. Current groundwater abstraction in the basin is estimated to be 700 – 1 100 ML 
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year–1 from the aquifer in alluvial embayments marginal to the lake, and is abstracted 

for Bungendore’s town water supply and regional agricultural/viticultural use [Beavis, 

2011; Hydroilex, 2005]. Based on a remote sensing analysis, Beavis [2011] estimated 

that farm dam storage for the basin is approximately 38.5 ML km–2 (37 GL for the 

basin), and the surface area covered by these dams represents 0.35% (3.3 km2) of the 

catchment area. However, this estimate has not been verified by alternate means, and is 

likely to contain a significant amount of uncertainty. 

Figure 26: Schematic water balance and hydrogeologic conceptual model of the Lake George 
Basin. Amounts represent annual volumes/depths. Modified from Jacobson et al. [1991]. See 
text for data sources. 

The current conceptual understanding of the Lake George Basin groundwater 

system consists of four main components (Figure 19 and Figure 26) described in Abell 

[1985] and Jacobson et al. [1991]: 

1. a surficial clay aquitard (the Bungendore Formation and large parts of the upper
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below the lakebed. The aquitard acts as a seal separating the lake’s surface 

water from the underlying gravel aquifers. However, positive pressure in the 

aquifers below the aquitard, caused by the basin’s topography being up to 200 

m above the lakebed, suggests that the lakebed may be a groundwater discharge 

zone for the basin; 

2. alluvial aquifers (the lower Ondyong Point Formation and Gearys Gap

Formation), which extend from the alluvial embayments of the basin’s creeks

to beneath the lakebed. The alluvial aquifers are unconfined marginal to the

lake and become confined by the Bungendore Formation beneath the lakebed.

Clay layers of the Ondyong Point Formation may form localised confining

units in some areas of the alluvial embayments. The alluvial aquifers are likely

to be recharged by rainfall and creek infiltration at the alluvial embayments and

may also receive water from the underlying fractured rock aquifer. Water levels

in regional bores indicate that groundwater flow in the alluvial aquifers is from

the hills surrounding Lake George towards the centre of the lake (Figure 27);

3. piedmont deposit aquifers at the base of the Lake George Fault escarpment,

which consist of colluvial and alluvial deposits. Water yields from these

deposits can be highly variable and they are likely to be highly heterogeneous.

Groundwater abstracted from water yielding zones of these deposits is typically

very fresh indicating a short transit time after recharge from precipitation and

creek infiltration from the fault escarpment. However, it is unclear if the Lake

George fault itself acts as conduit for flow or impedes it at greater depths; and

4. a regionally extensive fractured rock aquifer (the Pittman Formation), which

underlies the entire basin. Groundwater levels observed at regional bores

indicate that groundwater flow in the fractured rock aquifer, like the alluvial
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aquifers, is from the surrounding hills towards the centre of the lake. However, 

it is unknown whether there is significant exchange between the fractured rock 

and alluvial aquifers. It is also unclear if the basin acts a closed basin in the 

subsurface because current data are unable to provide evidence of flow into or 

out of adjacent catchments. 
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Figure 27: Potentiometric surface map of the alluvial sediments in 
the Lake George Basin. Reproduced and modified from Jacobson 
et al. [1991]. 

2.4. Hydrogeochemical pathways 

The hydrogeochemical evolution of the Lake George Basin was investigated by 

researchers from the Australian Bureau of Mineral Resources (BMR) during a dry phase 

71
0

70
069

068
0

71
0

70
0

69
0

730

72
0

710

700690680

680
690

680

690 700
710
720

730
740
750

760

740

73
0

72
071

070
069

0

68
0

0 5 km

35°20’

35°10’

35°00’

34°50’

149°20’ 149°30’ 149°40’

Lake

George

Catchment boundary
Creek
Piezometric surface (m AHD)
Data point



Chapter 4: The Lake George Basin 

Tracing terrestrial salt cycling using chlorine and bromine 
M. A. Short (2017)

118 

of the lake in the 1980s [summarised in Abell, 1985]. The dry lakebed enabled the BMR 

scientists to retrieve core samples from the middle of the lake and determine the 

chemistry of the underlying porewater. Unfortunately, there have been no further 

investigations of the basin’s hydrogeochemistry since the early study. 

Jacobson et al. [1991] classified five different water types within the basin: 

1. rainwater and recently recharged groundwater that is fresh with HCO3
– or Cl–,

and Na+ as the predominant anions and cations, respectively;

2. creek water is typically fresh to brackish with HCO3
– or Cl–, and Na+ or Mg2+ as

the predominant anions and cations, respectively. The freshest creek waters

have total dissolved solids (TDS) of 100 – 300 mg L–1 and are typically HCO3
––

Cl––Na+–Mg2+ type waters. The fresh to brackish creek waters (300 – 1,500 mg

L–1) are typically Cl––HCO3
––Mg2+–Na+ type waters, and the more saline creek

waters (>1,500 mg L–1) are typically Cl––Na+ type;

3. shallow groundwaters are fresh to brackish with TDS in the range of 150 – 2

000 mg L–1. Groundwater with TDS less than 200 mg L–1 is typically HCO3
––

Na+–Mg2+–Ca2+ type water. Groundwater evolves to HCO3
––Cl––Na+–Mg2+–

Ca2+ type waters in the TDS range of 200 – 400 mg L–1 and to Cl––HCO3
––Na+–

Mg2+–Ca2+ type waters at a TDS above 400 mg L–1. Groundwater within the

alluvial sediments beneath the lake is brackish (~3 – 6 g L–1 TDS) and is Cl––

Na+ type water;

4. lake water has the widest TDS range of 1 – 45 g L–1 and remain Cl––Na+ type

waters over most that range but also contain appreciable amounts of Mg2+ and

HCO3
– when brackish, and SO4

2– when more saline; and

5. lakebed porewaters are brackish to saline and have Cl––Na+ type waters with

little variation.
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Jacobson et al. [1991] also developed a conceptual model of the 

hydrogeochemical pathways during wet and dry lake periods. During wet periods, 

solutes are transported to the lake by direct rainfall and runoff from the surrounding 

sub-catchments. These solutes are subsequently concentrated as the lake begins to dry, 

and they begin to infiltrate into lakebed clay where they are restricted by the low 

permeability of the lakebed sediments. During both wet and dry periods, groundwater is 

transported from the recharge zones in the more elevated areas of the basin towards the 

lake. Along the groundwater flow paths, mineral dissolution contributes Na+, K+, Mg2+ 

(although data do not exist to confirm which mineral species contribute these ions), Ca2+ 

and SiO2 to the water and transpiration acts to concentrate these solutes. Solutes are also 

transported into the aquifer beneath the lake by diffusion from the saline lakebed 

porewater. According to the playa classifications described by [Rosen, 1994] (Section 

1.2 of this Chapter), Lake George could be classified intermittently as either a ‘through-

flow playa’ (i.e., under conditions where the water level falls below the ground surface 

and water a solutes move downwards through the lakebed; Figure 18a) or a ‘discharge 

playa’ (under conditions of a near-permanent lake; Figure 18c). 

One process that was not discussed at length by Jacobson et al. [1991] is wind 

erosion of thin salt crusts on the lake surface during dry periods. Wind erosion from the 

lake by the strong persistent westerly winds (discussed in Section 2.2 of this chapter) 

occurs during periods when the lake evaporates to dryness. There are no large inputs of 

groundwater to the lake surface, so thick salt crusts are unable to form but thin salt 

crusts are deposited during the final stage of evaporation [Jacobson et al., 1991]. This 

thin salt crust is subsequently eroded by wind erosion, which has been documented by 

some of the scientists who have studied the lake [e.g., Abell, 1985; Jacobson et al., 

1991; Jennings, 1981]. The dust is likely to be composed primarily of clay particles 
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from the top of the Bungendore Formation and a minor proportion of evaporites that are 

deposited during the drying out of the lake. The photograph in Figure 28, showing a 

dust cloud just south of Rocky Point in January 2014, is a recent example of wind 

erosion from the surface of Lake George after the lake dried completely in November 

2013. 

Figure 28: Photograph of wind erosion from surface of Lake George looking south of Rocky 
Point (Figure 19) on 6 January 2014. 

One of the most significant aspects of the hydrogeochemical cycling within the 

Lake George Basin is the large amount of dissolved salt stored within the lakebed (the 

Bungendore Formation). Jacobson et al. [1991] observed a concentration gradient in 

porewater solutes from two of the BMR cores from the Bungendore Formation (Figure 

29). The TDS of the porewater is similar to saline lake surface water at low levels (20 – 

30 g L–1) but rapidly increases with depth to a maximum of 30 – 40 g L–1 at 

approximately 10 – 12 m below the lake surface. An almost linear decrease in TDS is 

then observed from a depth of 12 to 50 m, which is the lower boundary of the 



Chapter 4: The Lake George Basin 

Tracing terrestrial salt cycling using chlorine and bromine 
M. A. Short (2017)

121 

Bungendore Formation. Jacobson et al. [1991] hypothesised that the linear decrease in 

TDS was likely to be caused by molecular diffusion through the low permeability 

sediments of the Bungendore Formation because of very low porewater advection. The 

lower salinity near the surface is believed to be due to dilution by superimposed 

brackish lake water and displacement of the diffusion profile downward. The hypothesis 

of diffusion through the Bungendore Formation is supported by fluid pressures and 

densities observed for the porewater within this formation. An imbalance in fluid 

pressure and density at depths less than 10 – 12 m suggests that there is a potential for 

downward fluid flow. However, a balance between fluid pressure and density below this 

depth suggests that fluid flow is minimal at depths below 12 m. Therefore, diffusion is 

likely to be the primary process transporting solutes downward beyond this depth. A 

solute mass-balance calculated by Jacobson et al. [1991] indicated that continual 

diffusion and salt accumulation within the Bungendore Formation has resulted in the 

accumulation of a total salt mass of approximately 100 Mt, and this may have taken 

place over the last two million years based on current diffusion rates. However, the 

estimates of Jacobson et al. [1991] only incorporate porewater concentrations that 

extend to the base of the Bungendore Formation and do not account for salt stored 

within the low-permeability sediments of the upper Ondyong Formation or the 

underlying aquifer. Therefore, the salt accumulation estimate of Jacobson et al. [1991] 

is likely to contain considerable uncertainty. 
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Figure 29: Profiles of total dissolved solids concentration with 
depth below the lakebed in porewater of cores C352 and C354 
(locations shown in Figure 19 and Figure 20). Data from 
Jacobson et al. [1991]. 
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Chapter 5: Tracing salt cycling in the 

Lake George Basin 
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This chapter presents the results and findings of applying various 

hydrogeochemical techniques, dominated by chlorine- and bromine-based ones, to 

uncover new knowledge about salt cycling at an Australian field site. The Lake George 

Basin was chosen because of its rich geological, hydrologic, hydrogeochemical and 

palaeoenvironmental record (Chapter 4), and it is currently the focus of an 

interdisciplinary scientific study to reinterpret and build on previous investigations to 

understand landscape evolution, changes in palaeoenvironments and human occupation 

history [e.g., Macphail et al., 2015; Macphail et al., 2016]. These make it especially 

worthy of application of the methods and principles discussed in previous chapters and 

to further demonstrate the utility of chlorine and bromine as tracers of terrestrial salt 

cycling. 

1. Introduction

Lake George is a brackish to saline lake located in southeast Australia that has a

rich hydrological history of fluctuating water levels. Recent water level fluctuations 

have been directly measured since the late nineteenth century and inferred back to the 

early nineteenth century from anecdotal records of local pastoralists (Figure 24; Chapter 

4) [Burton, 1972; Burton and Wilson, 1973; Jacobson et al., 1991; Jacobson and

Schuett, 1979; Noakes, 1951; Russell, 1886]. During that period, the lake rapidly filled 

and emptied several times to a maximum depth of ~8 m, which led to speculation 

amongst local residents regarding the source and fate of the water [e.g., unlikely 

subterranean connections to lakes in New Zealand, China or South America; Barrow, 

2012]. However, researchers have found that the lake’s water budget is easily explained 

by a balance of rainfall, evaporation and creek runoff within the catchment [Burton, 

1972; Burton and Wilson, 1973; Jacobson et al., 1991; Jacobson and Schuett, 1979]. 
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This sensitivity of the lake to climatic forcings, in particular rainfall, was noted by the 

New South Wales government astronomer, Henry Russell, in the late-nineteenth century 

when he wrote in his seminal work on the climate of New South Wales, “…the history 

of Lake George is instructive, situated as it is in the mountains, with a well-defined 

catchment area, and no outlet. It forms a sort of rain-gauge, and should afford valuable 

information” [Russell, 1877, p. 182]. In fact, the lake’s sensitivity to short- and 

medium-term variations in rainfall (Figure 24, Chapter 4) has been used as a 

hydroclimate proxy to compare to reconstructed River Murray flows [Gallant and 

Gergis, 2011]. 

In addition to recently recorded water level fluctuations, geomorphological 

features within Lake George basin [e.g., strandlines; Coventry, 1976; Coventry and 

Walker, 1977; Fitzsimmons and Barrows, 2010], and palaeontological features of the 

lakebed sediments [e.g., ostracods; De Deckker, 1982; Singh and Geissler, 1985; Singh 

et al., 1981] also provide evidence of even greater high stands of the lake, of up to ~36 

m above the current lakebed, during the Holocene. Coventry [1976] produced an 

estimated hydrograph of Lake George since the end of the last glacial maximum (LGM; 

~20 – 30 ka BP) based on relative age sequencing, and radiocarbon dating of charcoal 

within the strandline deposits. The reconstructed hydrograph suggests that water level 

of Lake George was ~36 m above the lakebed at the end of the LGM. Following the 

LGM, the water level of Lake George progressively decreased over the next ~6 ka, 

possibly to dryness. Coventry [1976] also found that geomorphological features of the 

basin indicated that there were four periods of ~1 ka each between 3 – 15 ka BP when 

the lake had water levels between approximately 12 – 26 m. Fitzsimmons and Barrows 

[2010] also produced an estimate of previous water levels from 15 ka BP to present 

based on optically stimulated luminescence (OSL) dating of shoreline sediments. The 
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authors found that the lake had three ‘permanent lake’ phases when the water level was 

15 – 18 m, interspersed with periods of lower water levels with unknown depths. The 

reconstructed hydrograph is presented in Figure 30. 

Figure 30: Lake George water levels since the last glacial maximum as estimated by Coventry 
[1976] and Fitzsimmons and Barrows [2010]. 

These previous studies have focussed on geomorphological and palaeontological 

evidence of past water level fluctuation as a means of uncovering information about the 

palaeo-environmental conditions of southeast Australia. However, Jacobson et al. 

[1991] focused on the Lake George basin groundwater system and hydrogeochemical 

evolution, which provided insight into the local salt cycling and transport. This aspect is 

also important to understanding the nature of Lake George during water level 

fluctuations and is worthy of further investigation using modern environmental tracer 

methods. The aim of this study is to better constrain salt and solute cycling within the 

Lake George basin to identify hydrogeochemical features that may provide insight into 

the palaeoenvironmental conditions of the basin. In addition, the results are used to 

assess any possible connection between the saline lakebed porewater and proximal 

freshwater aquifer that is utilised as a town water supply. This aim was addressed by 

applying various hydrogeochemical tracing techniques, mainly chlorine- and bromine-
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based tracer ones. This study also provides a further demonstration of the utility of these 

methods and principles in a unique environment. 

2. Environmental tracers

Environmental tracers are any measurable property that is naturally occurring

(e.g., dissolved constituents, isotope compositions and physicochemical parameters) or 

was not intentionally introduced into the environment for the purpose of tracing 

environmental processes (e.g., industrial gases and anthropogenic isotopes)[Cook, 

2015]. Researchers in the fields of hydrology and geochemistry have utilised 

environmental tracer techniques for several decades as a means of uncovering 

information on environmental processes that are hard to measure by other methods or to 

provide additional lines of evidence [e.g., Clark and Fritz, 1997; Cook and Herczeg, 

1999; Kendall and McDonnell, 1998]. In this study, concentrations of dissolved 

chloride and bromide, stable isotope ratios of chlorine and water, and chlorine-36 

compositions of waters from the Lake George Basin are utilised to delineate solute and 

water movement, and to uncover the palaeohydrologic evolution of Lake George. 

2.1. Chloride and bromide 

See Section 1 of Chapter 1. 

2.2. Stable Halogen isotopes 

See Section 2 of Chapter 1. 

2.3. Stable water isotopes 

The stable isotopic composition of the water molecule (δ2H and δ18O) has been 

one of the most widely used tracers in hydrology since the mid-twentieth century [e.g., 

Craig, 1961; Epstein and Mayeda, 1953]. The stable water isotope compositions are 
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useful in hydrologic studies because both hydrogen and oxygen partake in very few 

geochemical reactions at ambient temperatures and are only modified during phase 

changes of water [i.e., evaporation, condensation, freezing and sublimation; Clark and 

Fritz, 1997]. The pioneering work of Craig [1961] showed that the δ2H and δ18O 

composition of global precipitation, when plotted as δ2H against δ18O, delineate a 

global meteoric water line (GMWL). The equation for the GMWL is defined by a linear 

least square regression where the slope and intercept are approximately 8 and 10, 

respectively [Gat and Gonfiantini, 1981]. 

On a local scale, the relationship between δ2H and δ18O of precipitation can 

deviate from the slope and deuterium excess of the GMWL depending on climatic 

conditions [Gat and Gonfiantini, 1981]. Precipitation in relatively cool climate, high 

latitude, high altitude and inland areas will have more depleted isotopic compositions 

(i.e., values will plot lower on the LMWL), and vice versa for warm climate, low 

latitude, low altitude and coastal areas [Gat and Gonfiantini, 1981]. The slope of the 

LMWL is generally found to be close to 8 in most regions [Clark and Fritz, 1997; Gat 

and Gonfiantini, 1981]. However, smaller slopes can be observed in arid regions where 

raindrops regularly undergo evaporation during rainfall [Clark and Fritz, 1997]. 

The isotopic fractionation of stable water isotopes during evaporation also imparts 

distinct δ2H and δ18O signatures on the residual water. This is a particularly useful 

behaviour in catchments containing open water bodies (e.g., lakes, dams and rivers) or 

where soil water undergoes evaporation before being recharged to aquifers [Kendall and 

McDonnell, 1998 and references therein]. In systems that can loosely be considered 

closed (e.g., evaporation ponds or terminal lakes), the isotopic composition of 

evaporating water bodies will plot along a ‘local evaporation line’ (LEL) at successive 

stages of evaporation (Figure 31) [Clark and Fritz, 1997; Gat and Gonfiantini, 1981; 
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Kendall and McDonnell, 1998]. Evaporation under humid conditions will result in a 

greater slope for the LEL and vice versa for evaporation in arid regions [Gat and 

Gonfiantini, 1981]. This application is especially useful for identifying evaporation as a 

salinisation mechanism in systems such as salt lakes [e.g., Currell et al., 2010; 

Friedman et al., 1976]. 

Figure 31: Diagram of the generalised processes that affect the stable water 
isotope composition of precipitation. 

3. Site description

See Chapter 4.

4. Methods

4.1. Sampling 

Rain, creek water, lake water, groundwater and lakebed porewater samples were 

collected between August 2013 and July 2015. Rain was collected as approximately 
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monthly composite samples in samplers located at three sites around the Lake George 

Basin (denoted as BRW, RPRW and WRW; Figure 32 and Figure 33). The rain sampler 

design was modified from that used by the International Atomic Energy Agency 

[Gröning et al., 2012] that minimises the water’s interaction with the atmosphere 

without the need to add a layer of paraffin oil. The collection funnel was open to the 

atmosphere at all times during collection, which means that solute loads in the rain 

samples were a combination of wet (i.e., rain and hail) and dry deposition (i.e., dust and 

aerosol). Sample weights were recorded after collection and converted into precipitation 

depths based on funnel diameters. Creek water (denoted as ACSW, BCSW, CCSW, 

TCSW and TuCSW; Figure 32 and Figure 33) and lake water (denoted as LGSW; 

Figure 32) samples were collected directly from water sources using a HDPE beaker 

rinsed at least three times with the water to be sampled. Groundwater samples were 

collected from a series of town water supply monitoring piezometers (denoted as 100 – 

105, and AS/AD, BS/BD, C, D, E, FS/FD, G, KS/KD, LS/LD and M; Figure 32 and 

Figure 33), domestic and stock wells (Keatley’s, Dominic’s, Harry’s, Winderadeen and 

Osborne bores; Figure 32 and Figure 33), and a shallow (~1.5 m) piezometer installed 

in the lakebed sediments (named ‘Russell’s bore’ in this study; Figure 32) using a 

combination of a Bennett sample pump (Bennett Sample Pumps, USA), QED 

MicroPurge bladder pump (QED Environmental Systems, USA), plastic bailer and 

installed impeller pumps. All groundwater piezometers and bores were pumped until 

stable (±5%) physicochemical parameters (i.e., temperature, electrical conductivity, pH 

and dissolved oxygen) were recorded in three consecutive 15-minute intervals. 
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Figure 32: Location map of Lake George, sampling locations and line-sections for the cross-
sections presented in Figure 20 and Figure 26 (both in Chapter 4). The red box delineates the 
location map presented in Figure 33. 
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Figure 33: Location map of Bungendore township with 
sampling locations. See Figure 32 for the location relative to the 
wider Lake George Basin. 

Once collected, all water samples were filtered using 0.2 μm nylon membrane 

filters and split into sub-samples: one for physicochemical measurements, two 30 – 125 

mL HDPE bottles for anion analysis and elemental analysis (the latter was acidified to a 

pH of <2 using ultrapure HNO3), one 15 mL HDPE bottle for stable water isotope 

analysis, and 0.1 – 2 L HDPE bottles/containers for stable chlorine isotope analysis 

(volumes were dependent on expected Cl– contents). A sub-sample of rain was also 

collected for spectrophotometric ammonium analysis using the Nessler method [e.g., 

Galvão et al., 2013] with a Hach portable spectrophotometer (model DR 2800; Hach 

Company, USA). Sub-samples of creek water, lake water and groundwater were 
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collected for alkalinity titrations to a methyl orange endpoint (pH ~4) with 103 mM HCl 

using a Hach digital titrator (Hach Company, USA). Alkalinity was not determined for 

rain samples because of very low alkalinity and sample volume constraints. Instead, the 

alkalinity of rain samples was estimated using the geochemical modelling program 

PHREEQC (version 3 with the MinTEQ database version 2 [Parkhurst and Appelo, 

2013]) only where the samples had the majority of remaining dissolved species were 

determined (i.e., NH4
+, Cl–, SO4

2–, NO3
–, PO4

3–, F–, Br–, Na, Ca, Mg and K). A sub-

sample of each groundwater sample was collected for spectrophotometric sulfide 

analysis in the field using the methyl blue method [e.g., Lindsay and Baedecker, 1993] 

with a Hach portable spectrophotometer (model DR 2800; Hach Company, USA). All 

water samples were stored in the dark at ~4°C between sampling and laboratory 

analysis. 

Samples of interstitial salts in the Bungendore Formation were obtained for stable 

halogen isotope ratio analysis by sampling archived cores stored in the Geoscience 

Australia National Offshore Petroleum Data and Core Repository archive in Canberra, 

Australia. The cores were collected during the large geological study of the Lake 

George Basin in the 1980s discussed earlier (Chapter 4). The samples were originally 

saturated with water but have subsequently dried after three decades of storage. 

However, in situ major ion and element concentrations of porewater were obtained and 

were reported for squeezed core samples from two of the cores (C352 and C354; see 

Figure 20 and Figure 32) directly after collection [Jacobson et al., 1991]. During this 

study, ~200 g of dried core samples (~10 cm sections) were collected at 5 – 10 m 

intervals from the top section (i.e., 0 – 60 m; Bungendore Formation and upper 

Ondyong Point Formation) of cores C351, C352, C353, C354, C355 (Figure 20 and 

Figure 32). The samples were gently crushed in a tungsten carbide mill and mixed in a 
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ratio of approximately 40 g ultrapure water to 30 g of crushed sediment. The sediment 

slurries were then mixed on an orbital shaker for 24 hours, centrifuged and supernatants 

filtered through 0.2 μm nylon syringe filters into HDPE bottles. The crush/leach 

extracts were obtained to undertake stable chlorine isotope analysis; however, anion 

analyses were also carried out on each sample to ensure that Cl–/Br– ratios were similar 

to present-day porewater (see below) in order to indicate complete re-dissolution of Cl–. 

A small selection of samples was also analysed for stable bromine isotope ratios but the 

results were ambiguous and are not reported here (see Appendix II). Crush/leach 

samples were stored in the dark at ~4°C between sampling and laboratory analysis. 

In November 2015, a sediment core was collected from the surface of Lake 

George using sonic drilling methods during a dry phase (Gearys Gap core; Figure 32). 

Core sections 1.5 m long were extracted to a depth of 77.3 m below ground surface 

using sonic drilling methods. Drilling water was not used for depths <50 m; however, 

drilling water was used at depths >50 m. The drilling water was pushed down the 

outside of the casing and was spiked with D2O to detect any potential contamination 

from the drilling water. Cores were sealed in situ in plastic (Lexan) liners capped with 

LDPE covers. The capped liners were then inserted into cardboard tubes and the ends 

covered with opaque adhesive tape, which were then stored in a refrigerated room at ~4 

°C until splitting and sampling. Sediment samples (3-5 cm long) were collected from 

one half of the core, vacuum sealed in plastic bags to prevent any evaporation, weighed 

and stored in a refrigerator at ~4°C. Weights ranged from approximately 80 – 130 g.  

When ready to extract the water, the samples in the sealed bags were reweighed 

and found to be within the precision of the measurements (i.e., <0.2 g). Water was 

extracted from the sediment samples using hydraulic presses (Enerpac; Wisconsin, 

USA) at Geoscience Australia. The vacuum-sealed bags were opened and the sediment 
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placed into stainless steel vessels fitted with a paper filter and drain hole.  The samples 

were then covered with washed and dried Teflon disks and the whole assembly placed 

into the presses. After pressing residual air space out of the sample vessels, 15 mL 

sterile plastic syringes were inserted into the drain hole to collect the extracted water, 

minimising any contact with the atmosphere. The clay-rich sediments have very low 

permeability, so the water extraction typically took several hours and sometimes 

overnight. Water volumes ranged from approximately 5 mL to more than 15 mL, in 

which case a new, additional syringe was inserted to collect larger volumes. Water 

samples were filtered through 0.2 µm polyethersulfone syringe filters and collected in 

15 mL plastic centrifuge tubes (two for larger samples) for subsequent analysis of pH 

electrical conductivity, anion and elemental concentrations, and d2H and d 18O [pers.

comm., 2016, D. C. McPhail, Emeritus Faculty, The Australian National University]. 

4.2. Analysis 

Anion concentrations (F–, Cl–, Br–, NO3
–, SO4

2– and PO4
3–) of all water samples 

were analysed at the Research School of Earth Sciences (RSES), Australian National 

University (ANU), by suppressed conductivity detection using a Dionex ICS-5000 ion 

chromatography system fitted with an IonPac AS19 analytical column (Thermo Fisher 

Scientific, USA). Element concentrations (B, Na, Mg, Al, Si, K, Ca, Mn, Fe, Sr and Ba) 

of all water samples (except crush/leach core extracts) were analysed at RSES using a 

Varian Vista Pro axial inductively coupled plasma atomic emission spectrometer (ICP-

AES; Varian Inc., USA) at RSES, ANU. Analytical precision was found to be better 

than 5% for anion and elemental analyses based on replicate analyses of calibration 

standards, laboratory/field replicates, and charge balance error analysis. The accuracy of 

Cl–/Br– ratios were found to be better than 5% based on repeat analysis of a seawater 

sample. The accuracy of elemental analyses (Na, Mg, Al, K, Ca, Mn, Fe, Sr and Ba) 
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were found to be better than 3% based on repeat analyses of a certified reference 

material (SLRS-5 river water; National Research Council Canada). 

Stable water isotope ratio (δ2H and δ18O) analyses were carried out on all water 

samples (except crush/leach core extracts) using cavity ring-down spectroscopy (Picarro 

L1102-i Isotope Analyzer; Picarro Inc., USA) at the Research School of Biology, ANU. 

Stable water isotope ratios were calibrated using in-house standards that are routinely 

checked against certified reference materials (e.g., VSMOW and SLAP). Analytical 

precision for stable water isotope analyses were found to be ~0.2 ‰ and ~1.0 ‰ for 

δ18O and δ2H, respectively, based on repeat analyses of standards and samples.  

Stable halogen isotope ratio (δ37Cl and δ81Br) analyses were carried out on a 

selection of crush/leach samples (see Appendix II) at the University of Waterloo’s 

Environmental Isotope Laboratory using the isotope ratio mass spectrometer methods 

described in Shouakar-Stash et al. [2005a] and Shouakar-Stash et al. [2005b]. Stable 

halogen isotope ratios were calibrated using in-house standards that are routinely 

checked against reference materials (e.g., SMOC and SMOB). Analytical precisions for 

stable halogen isotope analyses were found to be 0.05 – 0.20 ‰ and 0.02 – 0.27 ‰ for 

δ37Cl and δ81Br, respectively, based on repeat analyses of standards and samples. 

Table 9 summarises the number of samples that were analysed for the various 

geochemical parameters. 
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Table 9: Summary of the number of Lake George Basin 
water samples analysed for geochemical parameters. 

Analysis Number of samples 
Major and minor ions/elements 144 
Cl–/Br– ratios only 64 
δ2H and δ18O 86 
δ37Cl 41 
δ81Br 10 

5. Results and discussion

See Appendix II for the tabulated hydrogeochemical results compiled as part of

this study. 

5.1. Basin-wide hydrogeochemical trends 

5.1.1. Major ions and elements 

Overall, the major ion hydrogeochemistry of Lake George Basin waters observed 

in this study was very similar to the results presented in Jacobson et al. [1991] The 

distribution of samples on a Piper diagram (Figure 34) indicates that all the waters 

within the basin had either no dominant cation or were sodium-type waters when more 

saline. However, two distinct evolutionary pathways were observed on the cation plot. 

Rainwaters evolved from more calcium-type waters towards the sodium corner. In 

contrast, creek waters and regional groundwaters evolved from more magnesium-type 

waters towards the sodium corner. This suggests that there is either a source of 

magnesium or a calcium sink within the lithology of the catchment.  

Of these two possibilities, a magnesium source, such as chlorite dissolution, has 

been suggested in previous investigations [e.g., Jacobson et al., 1991]. Furthermore, 

geochemical data for the sedimentary deposits of the Lake George Basin presented in 

Abell [1985] suggest that amphibole weathering, contained in the basin’s basic volcanic 

intrusions, is a magnesium source. However, the low TDS of the rainwaters means that 
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the magnesium source (or calcium sink, e.g., mineral precipitation, ion exchange, 

biological uptake) would not need to be large to modify the composition of rainwater to 

those displayed by creek waters and groundwater in the basin. 

For anion compositions, rainwater, creek water and groundwater within the Lake 

George Basin typically evolved from carbonate-type waters towards chloride-type but 

some of the rainwaters and creek waters also contained substantial sulfate. Lake water 

displayed an evolutionary pathway typical of evapoconcentration (i.e., the carbonate 

content of the lake water decreases as the water reaches saturation with respect to 

carbonate minerals, which leads to a subsequent increase in the chloride proportion). 

The lower proportion of sodium and higher proportion of sulfate for the more saline 

(i.e., TDS>22 g L–1) lakebed porewater collected from Russells bore, compared to lake 

water, suggests that sodium carbonates may have also been precipitated during the 

evapoconcentration of the lake water (e.g., the evolutionary pathway on the right-hand 

side of Figure 17 in Chapter 4). 
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Figure 34: Piper diagram representing the major ion and elemental 
compositions of various water sources within the Lake George Basin. 

The distinctive porewater salinity profile within the lakebed sediments presented 

by Jacobson et al. [1991] (Figure 29) was again observed for porewater extracted from 

the Gearys Gap core (Figure 35). The uppermost two samples show a rapid increase in 

salinity from the typical salinity of present-day lake water (i.e., <20 g L–1). A salinity 

maximum of 55.1 g L–1 is reached at a depth only 3.2 m below the surface. Below this 

point salinity decreases at a rate of approximately 0.55 g L–1 m–1 to a depth of ~36 m, a 

lower rate of ~0.19 g L–1 m–1 between 36 and 69 m, and then at an increased rate of 0.57 

g L–1 m–1 for the final 7.5 m of core. From this salinity distribution, and the approximate 

sediment dimensions used by Jacobson et al. [1991] (i.e., a mean porosity of 0.55 and 

150 km2 areal extent of sediment), an updated estimate of the total amount of dissolved 

salt stored within the upper 77 m of lakebed sediment is calculated as ~405 Mt. This 

equates to approximately 220 Mt of stored dissolved Cl– after conversion with the 
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typical Cl–/TDS mass ratio throughout the porewater profile (i.e., 0.54 with very little 

variation).  

Figure 35: Total dissolved solids concentration depth profile 
of porewater extracted from the Gearys Gap core. 

The mean atmospheric deposition rate of Cl– in rain samples collected during this 

study was found to be 0.51 t km–2 year–1 (i.e., 485 t year–1 for the entire 950 km2 area of 

the basin) based on the composite, approximately monthly, rain samples. Therefore, 

assuming that Cl– behaves conservatively and all Cl– deposited into the basin by rainfall 

is eventually transported to the lake sediments, the dissolved salts within the upper 77 m 

of lakebed sediments have taken approximately 0.45 Ma to accumulate. Although this 

estimate is likely to have a large amount of uncertainty associated with it (i.e., it doesn’t 

account for variations in deposition rates over long temporal scales, and it doesn’t 

include the salt stored within the lower ~80 m of the sedimentary sequence or the 

aquifers/soil surrounding the lake, or deflation of salt from the lake surface), it provides 
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a useful benchmark for the timescale of salt accumulation within the basin that is on the 

same order of magnitude as the estimated time that the sedimentary environment of the 

basin has been characterised by closed-drainage conditions (i.e., an environment with 

very little salt flushing to adjacent catchments [e.g., Macphail et al., 2015; Macphail et 

al., 2016]). 

The molar ratios of the dissolved major ions and elements in porewater within the 

lakebed (Figure 36) also provide insights into the salt cycling dynamics and 

palaeohydrologic history of Lake George. The Cl–/Na, Cl–/SO4
–2 and Cl–/Mg ratios 

(Figure 36a and Figure 36b, respectively) appear to show three distinct trends 

throughout the profile:  

1. Between the ground surface and a depth of 30 m, the approximately linear

increases in ratios with depth likely represent downward chemical

diffusion/dispersion. The depth to which this linear increase propagates to is

different for each of the three ratios – approximately 20, 30 and 10 m for the Cl–

/Na, Cl–/SO4
–2 and Cl–/Mg ratios, respectively. The differences suggest that the

elements/ions reached their highest proportions at different times, because of the

similar diffusion coefficients of Na, SO4
–2 and Mg in water [e.g., Appelo and

Postma, 2005]. A possible explanation for the different timing of ratio patterns,

considering independent sedimentary records that indicate a history of wet and

dry periods [e.g., Coventry, 1976; De Deckker, 1982; Fitzsimmons and Barrows,

2010; Singh et al., 1981], is progressive phases of precipitation/dissolution of

evaporite minerals during drying of the lake (e.g., the brine progression

presented in Figure 17 of Chapter 4). This is also consistent with the general

increase in salinity that was observed throughout the profile (Figure 35). An

alternate explanation is that the cation species may be affected by retardation (to
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varying degrees) during diffusion due to cation-exchange on the surface of the 

clay-rich sediments. However, that does not explain the strong patterns in other 

anions (e.g. SO4
–2), which are not as heavily influenced by that process as 

cations potentially are. It is also unlikely to affect ion ratios as strongly as it is 

observed in the Lake George profile because the porewater is brackish-saline to 

saline throughout the profile and dominated by Cl–-Na+ type water. Thus, cation-

exchange sites on clay mineral surfaces are likely to be saturated with Na+ ions, 

and any effect of cation-exchange on ionic ratios will be minor. 

The strong deviation from this trend for the Cl–/SO4
–2 and Cl–/Mg ratios in 

the shallowest two samples (0.6 and 1.6 m below the lakebed) may represent 

mixing with modern lake water, which was observed to have ranges of 18.7 – 

26.0 and 20.0 – 114, respectively. This was also observed in these two samples 

for the Cl–/Ca ratios, where they appear to show mixing between underlying 

porewater and modern lake water, which was found to have a ratio range of 61.2 

– 152. However, the Cl–/Na does not appear to behave in a similar fashion, with

both samples found to have greater ratios than both the modern lake water (i.e., 

0.64 – 0.97) and the underlying porewater. 

2. At depths greater than 20, 30 and 10 m (for Cl–/Na, Cl–/SO4
–2 and Cl–/Mg ratios,

respectively), to 65 m below the surface, each of the Cl–/Na, Cl–/SO4
–2 and Cl–

/Mg ratios remain approximately constant at 1.3, 16 and 10, respectively. This

may indicate a period of relatively stable hydrogeochemical conditions (i.e.,

element/ion proportions remained the same, although overall concentrations may

have still been increasing).

3. Between 65 and 77 m below the surface, the Cl–/Na, Cl–/SO4
–2 and Cl–/Mg ratios

again increase linearly to the bottom of the profile. Variations in the rate of
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salinity changes were observed at similar depth intervals (Figure 35) as 

discussed above.  

These three intervals are less apparent for the Cl–/Ca molar ratios of the lakebed 

porewater. However, systematic variations were still observed with ratios increasing 

with increasing depth at a (relatively) high rate to a depth of 15 m, then at a lower rate 

to a depth of 60 m, and remaining constant for the rest of the profile. 

The Cl–/K molar ratio showed no systematic trends and is quite ‘noisy’, unlike the 

other Cl– ratios, throughout the profile (Figure 36d). Cl–/K values did tend to cluster 

around ~200 with a typical variation of ±140 (1σ); however, they are not discussed 

further because their ambiguity suggests that they do not indicate systematic behaviour. 
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Figure 36: Major ion/element molar ratios (relative to Cl–) depth profiles of porewater 
extracted from the Gearys Gap core. 

5.1.2. Cl–/Br– ratios 

The five water types (i.e., rainwater, creek water, groundwater, lake water and 

lakebed porewater) were observed to have distinct Cl– and Br– compositions (Figure 

37). Rainwaters had low Cl– concentrations (0.13 – 9.2 mg L–1) and displayed the widest 

range of Cl–/Br– ratios (106 – 1 689) for the basin. Creek waters and groundwaters had 

Cl– concentrations within a range of 11.3 – 732 mg L–1. Creek waters had a relatively 

high range of Cl–/Br– ratios (218 – 522) compared to the groundwaters of the basin (154 

– 313). Lake waters and lakebed porewater were typified by lower Cl–/Br– ratios (186 –
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253) but were distinguished by differences in Cl– concentrations (0.29 – 4.2 g L–1 and

9.2 – 12.3 g L–1, respectively). 

Figure 37: Cl–/Br– ratios as a function of chloride concentrations of 
various water sources within the Lake George Basin. 

The mean Cl–/Br– ratio of rainfall (Figure 37) for the period between 1/8/2013 and 

20/1/2016 was 276. This value was calculated using a precipitation weighted mean of 

the Cl– and Br– concentrations. After considering the analytical precision associated 

with these Cl–/Br– ratios (i.e., 7.1%, which is based on an analytical precision of 5% for 

the individual ions), the present-day rainfall ratio at Lake George is indistinguishable 

from that of seawater. However, the large amount of scatter associated with individual 

composite rain samples suggests that solutes deposited over the Lake George Basin 

reflect a range of sources, and that marine aerosol is not necessarily the primary source 

despite having a similar mean Cl–/Br– ratio over the long-term. The observed variation 

in Cl–/Br– ratios of Lake George rain are likely to reflect a combination of differences in 
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prevailing weather systems (i.e., rain systems transported from the coast versus over the 

continent), seasonal variations (Chapter 3 [Short et al., 2017]), the proximity of Lake 

George to the NSW coast (i.e., a crude estimate of 88 – 102 is obtained using Equation 

(16) in Chapter 3; however, that equation is North America-specific and is unlikely to

be applicable to other continents), and local/regional sources of additional salt (e.g., 

dissolution and re-deposition of dust eroded from the lake surface or dust transported 

from Australia’s inland salt lakes). Furthermore, the years that sample collection took 

place were relatively dry compared to the mean (see average temperature and relative 

humidity recorded for the sampling periods in Appendix II), which meant that the lake 

was periodically dry, allowing for wind erosion from the surface. This may have 

resulted in some samples being influenced by salt from the surface of the lake being 

released into the atmosphere; however, there was no clear trend in the ratios of samples 

collected during the dry lake periods compared to when the lake was inundated. 

Lake water and shallow lakebed porewater (i.e., Russells bore) samples 

consistently displayed similar Cl–/Br– ratios (i.e., 186 – 253 and 188 – 207, respectively) 

that are below the observed present-day atmospheric deposition line. The small range of 

Cl–/Br– ratios for the lake water samples, relative to the other water-types, and the 

similarity to lakebed porewater rather than creek water suggests that the composition of 

lake water is dominated by mixing with the shallow porewater of the lakebed. 

Furthermore, the crush/leach samples from the archived cores and porewater samples 

from Geary Gap core were observed to have very little variation throughout the top 77 

m of lakebed sediments (Figure 38). This suggests that the lakebed Cl–/Br– ratio reflects 

the long-term (i.e., ka to Ma) mean of incoming solutes to the Lake George Basin and 

any short-term variations (i.e., decades to ka) have been smoothed out by mixing at the 

near-surface of the lake or by diffusion within the lakebed sediments. 
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Figure 38: Cl–/Br– mass ratios depth profiles of the 
crush/leach samples obtained from the archived BMR core 
and for a sample collected from Russells bore. 

Assuming that the mean Cl–/Br– ratio of the lakebed porewater is the long-term 

mean of solute inputs to the basin, it is unsurprising that this also appear to represent a 

lower bound for local groundwater compositions (Figure 37). Some of the sampled 

groundwater were observed to have intermediate Cl–/Br– ratios between the lakebed 

porewater and creek water, which is also unsurprising given that the ephemeral nature 

of the basin’s creeks suggests that they discharge into the underlying soil and 

groundwater. 

Most creek samples collected during this study were observed to have Cl–/Br– 

ratios elevated above that of rainfall for the same period. Only Allianoyonyiga Creek 

and Turallo Creek had, on average, Cl–/Br– ratios less than (i.e., 266 and 255, 

respectively) the mean rainfall composition. Butmaroo Creek, Collector Creek, 

Currawang Creek and Taylors Creek had, on average, Cl–/Br– ratios of 364, 326, 397 

and 381, respectively. A possible explanation for this is the dissolution of halite (i.e., 
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typical Cl–/Br– ratios of 5 000 – 10 000) from windborne dust, specifically dust eroded 

from the surface of a dry Lake George, which was observed during this study (Section 

2.4 and Figure 28). The elevated ratio of creek water is unlikely to be due to 

groundwater discharge, which is likely to occur along some of the creek reaches, 

because groundwater typically has a ratio that is lower than modern rainfall.  

If deposition and dissolution of dust in the basin’s creeks is occurring, then the 

mean Cl–/Br– ratios of the four creeks that were observed to have elevated ratios relative 

to rainfall may suggest that between 16% (i.e., Collector Creek) to 25% (i.e., Taylors 

Creek) of Cl– in the creek waters is due to this process. These values were calculated 

using Equation (6) in Chapter 2 with an assumed halite mass ratio of 5 000 and initial 

composition equal to mean rainfall. 

5.1.3. Stable water isotopes 

A total of 240 water samples from within the Lake George Basin, including 

rainwater, creek water, groundwater and porewater, were collected and analysed for 

their δ2H and δ18O compositions during this study. The results of the analyses are 

presented in Figure 39. The δ2H and δ18O values of the rainwater samples were used to 

calculate a LMWL for the Lake George Basin (blue line in Figure 39). The equation for 

the LMWL was determined using a precipitation amount weighted reduced major axis 

(RMA) regression [Hughes and Crawford, 2012]. The LMWL for the Lake George 

Basin is characterised by a slightly shallower slope (7.8) and elevated deuterium 

excesses (13.3) relative to the GMWL (solid black line in Figure 39). Jacobson et al. 

[1991] presented a LMWL for Canberra with a slope of 8.5 and a deuterium excess of 

15.2. Unfortunately, the authors did not provide information about the sampling 

procedure or duration of sampling so a direct comparison will not be made. 
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Figure 39: Stable water isotope compositions of various 
water sources within the Lake George Basin. 

Local evaporation lines were also developed for the creek waters and Lake 

George surface water for the period of sampling (green and black lines, respectively, in 

Figure 39). The slopes of the two lines (5.1 for creek water and 5.3 for lake water) are 

indicative of a mean relative humidity of 25 – 75% during open-air evaporation [Clark 

and Fritz, 1997], which is consistent with the observed mean relative humidity of 

approximately 56% [BoM, 2015] for the region during that period. The slopes of the 

two evaporation lines were also consistent with the slope of the evaporation line (5) 

calculated for this region using GNIP data by Gibson et al. [2008]. The linear regression 

fitted to the groundwater (red line in Figure 39), which has a slope 7.1, suggests that 

groundwaters have also undergone some evaporation during or since recharge. 

Jacobson et al. [1991] also made this conclusion based on their analysis of the basin’s 

groundwater. 
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The stable water isotope ratios of porewater extracted from the Gearys Gap core 

shows systematic variations throughout the entire profile (Figure 40). Both δ2H and 

δ18O compositions are relatively low (–25.1 and –3.81 ‰, respectively) at 0.5 m below 

surface, and then steadily increase (to –6.5 and –0.51 ‰, respectively) to a depth of 

22.5 m. Below 22.5 m, both water isotope ratios begin to decrease again (to –16.4 and –

2.4 ‰, respectively) until the deepest point sampled during the coring (i.e., ~76.5 m).  

The lower values at the top of the column are consistent with modern lake water 

values, which were observed to be –21.2 and –5.23 ‰, respectively, in this study during 

a period of filling from creek runoff (i.e., June 2013). These values are different to 

modern rainfall values (i.e., precipitation-weighted means of –38.2 and –6.6 ‰, 

respectively) because creek runoff is likely to contain a proportion of groundwater and 

is also likely to be partially evaporated. The steady rise in stable water isotope ratios 

from a depth of 0.5 to 20.5 m appears, based on the linear pattern, to be due to diffusion 

between the isotopically ‘lighter’ modern lake water signature and the isotopically 

‘heavier’ porewater [e.g., Batlle-Aguilar et al., 2016; Hendry and Wassenaar, 2004; 

2011]. Similarly, below a depth of 22.5 m, the steady decrease of stable water isotope 

ratios with depth also appears to be due to diffusion based on the systematic pattern. 

Note that the elevated δ2H values at a depth of 50 – 60 m show evidence of 

contamination with D2O-spiked drilling water; however, this does not appear to affect 

the δ18O values or the element/ion concentrations discussed previously. 
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Figure 40: Stable water isotope ratio depth profiles of 
porewater extracted from the Gearys Gap core. 

Both sections of the stable water isotope profile have similar δ2H against δ18O 

regression that are shallower than the modern LMWL (Figure 41). The shallow section 

of the stable water isotope profile has a steeper slope (5.68 ± 0.22) compared to the 

deeper section (5.38 ± 0.17; the four outlying samples at depths of 50.88, 52.21, 60.05 

and 66.05 m were omitted because they appear to be contaminated by drilling water). 

These slopes are similar to the modern open-water evaporation lines for lake water and 

creek water discussed above (i.e., 5.3 and 5.1, respectively). The direction of change in 

the shallow section of the profile is inconsistent with open-air evaporation because the 

shallowest water (i.e., recently recharged or diffused) shows a signature of an earlier 

stage of an evaporation and increased evaporation is evident with increasing depth to 

22.5 m. By contrast, the direction of change in the deep section suggests that the δ2H 

against δ18O relationship may be affected by simultaneous diffusion and progressive 

evaporation of an open water body at the surface. Thus, the pattern of the top section is 

likely to represent diffusion between the modern lake water and the previous porewater 
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composition, and the pattern of the bottom section is likely to represent a combination 

of diffusion and simultaneous evaporation.  

Figure 41: Stable water isotope compositions of 
porewater extracted from the Gearys Gap core. Colours 
represent the sample’s depth below ground. 

A possible hypothesis to explain these observations, which is consistent with the 

hypothesis proposed based on the trends in major ions/elements (Section 5.1.1), is a 

‘drying phase’ followed by a ‘filling phase’. The deeper isotopic pattern represents the 

simultaneous evaporation, possibly the mega-lake present at the end of the LGM, and 

diffusion between two different endmembers (i.e., the prior porewater and evaporated 

surface water). The shallow section represents recent diffusion between the post-LGM 

lake/creek/rain water isotope signature and the porewater of the shallowest ~23 m of 

sediment (i.e., the isotopic signature of the most evaporated stage of the prior mega-

lake). However, the recent ‘filling stage’ has not modified the Cl– concentrations 

markedly (Figure 35), which may indicate that the ‘drying phase’ resulted in complete 

or near-complete drying of the prior lake, such that the stable water isotope composition 
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of the subsequent shallower lake (i.e., Figure 30) dominated but still maintained a 

similar Cl– concentration to the preceding lake because of the lower volume of surface 

water. Near-complete drying is also consistent with the trends observed for the major 

ion/element ratios, which suggest that evaporite mineral dissolution/precipitation 

occurred in the later stages of the previous lake.  

However, there are deviations from the linear Cl– concentration pattern in the 

shallowest 20 m of the porewater profiles presented in Jacobson et al. [1991] and the 

GG core. These, deviations, towards lower concentrations, may indicate that there were 

lake stands during this period of re-filling that were long enough to begin to modify the 

underlying porewater but they were also offset by drying that continued to allow more 

saline water to migrate downwards. 

Finally, the tendency for both the stable water isotope composition and Cl– 

concentration of porewater in the top 1 – 2 m of the profile to deviate from the typical 

pattern of change indicates that physical mixing between porewater and lake water is a 

dominant process. This may be mediated by rapid surface water infiltration through 

vertical cracks formed at the lake’s surface during dry phases. This is supported by the 

hydrograph of Russells bore (data not shown), which responds rapidly to rainfall events. 

5.1.4. Stable halogen isotopes 

Stable halogen isotope ratios were measured on waters from around the Lake 

George Basin, as well as a selection of the crush/leach samples from the archived cores. 

A total of 12 modern water samples from the Lake George Basin were analysed for 

stable chlorine isotope ratios, and seven for stable bromine isotope ratios (Table 10, 

Figure 43 and Figure 43, Appendix II). The two composite rain samples that were 
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analysed show no systematic trend for positive or negative δ37Cl values. The creek 

waters sampled from the around the basin were all observed to have positive δ37Cl 

values; however, their δ81Br values had a range of positive and negative values. The 

composite 2013 lake water had a negative δ37Cl value but a positive δ81Br value, 

whereas the sample from Russells Bore (i.e., porewater from only ~1.5 m below the 

lakebed) was observed to have both positive δ37Cl and δ81Br values. The groundwaters 

that were analysed for δ37Cl were the more saline of those sampled from the 

Bungendore Alluvium aquifer, and all were found to have positive δ37Cl values. 

Table 10: Chloride and bromide concentrations, and stable isotope ratios for water samples from the 
Lake George Basin. 

Sample ID Water type Cl– Br– Cl–/Br– 
(mass) 

δ37Cl 
(‰ SMOC)1

δ37Br 
(‰ SMOB)1(mg kg–1) (μg kg–1) 

LGRWCl-12 Rainwater ~1 ~4 ~250 0.17 ± 0.11 – 
LGRWCl-23 Rainwater ~1 ~3 ~333 –0.29 ± 0.11 – 

ACSW-5 Creek water 732 3 310 221 0.73 ± 0.09 1.02 ± 0.18 
BCSW-8 Creek water 67.2 247 272 0.25 ± 0.05 –0.69 ± 0.20
TuCSW-6 Creek water 52.4 222 236 0.31 ± 0.06 –0.74 ± 0.20
CCSW-7 Creek water 113 383 295 0.64 ± 0.09 0.83 ± 0.26
TCSW-7 Creek water 160 432 370 0.93 ± 0.12 0.06 ± 0.01

LGSW-20134 Lake water 2 340 12 300 190 –1.58 ± 0.10 0.73 ± 0.02
PMB_G Groundwater 440 2 190 200 0.33 ± 0.10 – 

PMB_LD Groundwater 523 2 470 212 0.18 ± 0.16 – 
PMB_LS Groundwater 257 1 230 209 0.34 ± 0.12 – 

Russells Bore Porewater 11 900 62 100 192 0.23 ± 0.10 0.96 ± 0.27 
1Analytical uncertainties represent 1σ. 
2Composite rainwater for samples collected between 3/2/14 – 1/7/14, mixed in proportion to the rainfall depth 
recorded for the sample. Ionic compositions are estimated from individual sample compositions. 
3Composite rainwater for samples collected between 4/8/14 – 3//1/14, mixed in proportion to the rainfall depth 
recorded for the sample. Ionic compositions are estimated from individual sample compositions. 
4Composite lake water sample of all 2013 samples mixed in equal proportions. 

The bivariate relationship between δ37Cl and δ81Br values, for the samples where 

both were measured, shows no discernible trends (Figure 42); however, sampling 

constraints such as volume (i.e., porewaters) and low salinity (i.e., rainwater and 

groundwater) means that this dataset was very small, and more sampling and analysis of 

stable halogen isotope ratios may begin to uncover systematic relationships. 
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In contrast, the relationships between the stable halogen isotope ratios (chlorine in 

particular) and other parameters such as halide ion concentration and Cl–/Br– ratios 

(Figure 43) displayed some patterns that are consistent with the current understanding 

of the fractionation processes of these isotope systems, as well as potential salt cycling 

mechanisms within the Lake George Basin. The δ37Cl values of creek waters increase 

with both increasing Cl–/Br– ratios (Figure 43a and Figure 43c) and Cl– concentration. 

This is consistent with the hypothesis presented in Section 5.1.2 – elevated Cl–/Br– 

ratios of creek water may indicate a proportion of wind-blown dust. Halite, which is 

likely to be the component of dust that acts to increase the Cl–/Br– ratios of creek water, 

has also been found to typically have higher δ37Cl values due to the preferential 

partitioning of 37Cl into the solid phase during halite precipitation [Eggenkamp, 2014]. 

The likely residual water in the case of the Lake George Basin, is the very shallow (i.e., 

the top few centimetres) lakebed porewater and lake surface water. Thus, it is also 

consistent that the composite lake water sample from 2013 was observed to have a 

lower δ37Cl value relative to the creeks, such that halite precipitation and subsequent 

wind erosion has lowered the isotope signature. However, if this process occurs the 

influence on δ37Cl values does not appear to propagate to the deeper porewater (i.e., the 

1.5 m depth of Russells Bore intake). This is consistent with the Cl– concentration 

profile of the GG core (Figure 35), where the shallowest sample at ~0.5 m depth has a 

markedly different (i.e., anomalously low) Cl– concentration that does not fit with the 

pattern of the samples beneath it. This, as well as the ratio variations discussed in 

Section 5.1.1, may indicate that physical mixing of porewater and lake water suggested 

by Jacobson et al. [1991] only occurs in the top 0 – 2 m of sediment. 
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Figure 42: Stable chlorine (δ37Cl) and bromine (δ81Br) isotope 
ratios of creek, lake and Russells Bore water collected from the 
Lake George Basin between 2013 and 2015. 

There is a weak positive relationship between δ81Br values and Br– concentration 

of creek waters; however, there is no apparent relationship with Cl–/Br– ratio, which (in 

the absence of other information or improved understanding of bromine stable isotope 

fractionation mechanisms) makes the potential relationship difficult to interpret. 

However, it has recently been found that a range of biogeochemical processes (e.g., 

evaporite precipitation/dissolution, biological activity/decay and photochemical induced 

reduction [Eggenkamp, 1995; 2014; Eggenkamp et al., 2016; Eggenkamp and Coleman, 

2009; Hanlon, 2015; Horst et al., 2014]) can act upon bromine to modify its stable 

isotope composition. Investigation into the degree to which this fractionation occurs is 

still in its early days. 
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Figure 43: Stable halogen isotope ratios (δ37Cl and δ81Br) with respect to Cl–/Br– ratios 
(a and b) and concentrations of their respective halide ions (c and d) from water 
samples collected from the Lake George Basin between 2013 and 2015. 

Only three stable bromine isotope ratios analyses were obtained (see Appendix II) 

for crush/leach samples from the archived core because of sample size limitations and 

subsequent low total Br– masses. These samples had a stable bromine isotope ratio 

range of –0.29 – +1.49 ‰, which is in the current range of observed stable bromine 

isotopes from other regions (i.e. –0.80 – +3.35 ‰). There is insufficient resolution to 

make any inferences on solute transport or geochemical reactions within the lakebed 

sediments. 

Chapter 5: Tracing salt cycling in the Lake George Basin 



Tracing terrestrial salt cycling using chlorine and bromine 
M. A. Short (2017)

160 

Stable chlorine isotope ratios of the crush/leach samples from the archived cores 

were found to have a systematic pattern of variation throughout the vertical profile 

(Figure 44). Although the δ37Cl data are quite ‘noisy’ throughout the profile, the fitted 

linear regressions (all with r-squared values of >0.5; Table 11) indicate that there is both 

a trend of decreasing δ37Cl values with increasing depth and increasing distance towards 

the east (i.e., increasing core number corresponds to increasing distance to the west, 

separated by ~1 km; Figure 32). The former trend is consistent with the hypothesis 

presented by Jacobson et al. [1991] and in the previous discussion on ion/element 

trends and stable water isotopes that solute transport within the lakebed sediments is 

dominated by downward diffusion. The latter trend is one that has not been identified 

previously but is consistent with the data presented in Jacobson et al. [1991]. The Cl– 

concentration of the two cores presented in Jacobson et al. [1991] display a systematic 

difference with C352 (east) having a lower overall concentration (approximately 5 – 10 

g L–1 lower throughout the profile) compared to C354 (west). Furthermore, the GG core, 

which is located at a similar northing but further west (~500 m) than C354, was 

observed to have an even greater Cl– concentration (approximately 5 – 10 g L–1 higher 

throughout the profile). Therefore, it appears that solutes are migrating, predominantly 

by diffusive processes based on δ37Cl fractionation, both downwards and eastwards 

through the low-permeability lakebed sediments.  
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Figure 44: Stable chlorine isotope ratio (δ37Cl) depth profiles of 
the crush/leach samples obtained from the archived BMR core 
and for a sample collected from Russells bore. Lines are fitted 
linear regressions. 

Table 11: Parameters calculated for the linear regressions fitted 
to the stable chlorine isotope ratio depths profiles (Figure 44). 
Regressions are in the form: δ37Cl = a(depth) + c. 

Core Slope, a Intercept, c r-squared
C351 -17.5 ± 6.4 16.1 ± 5.9 0.65 
C352 -20.8 ± 4.3 18.9 ± 3.0 0.82 
C353 -20.7 ± 9.0 28.8 ± 4.2 0.57 
C354 -26.5 ± 9.2 34.2 ± 4.3 0.67 
C355 -40.1 ± 7.5 56.9 ± 5.8 0.88 

Although diffusion is likely to explain much of the vertical Cl– concentration and 

vertical δ37Cl trends, the horizontal trends are hard to explain by purely diffusion 

because of the much greater length-scale (i.e., ~5 km horizontal compared to 50 m 

vertical) especially if diffusion occurred on similar time-scales (i.e., if the same event is 

responsible for both patterns). To demonstrate this, a simple analytical solution to the 

one-dimensional (1D) diffusion equation was used to reproduce the observed data. In a 
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system where advection can be neglected (i.e., diffusion dominates), concentration 

changes due to diffusion as a function of time and space can be represented by Fick’s 

second law of diffusion [Fick, 1855]:  

(18) 

where C is the concentration ([amount of substance] L–3), t is time, De is the 

effective diffusion coefficient (‘effective’ because it relates to porous media in this 

study; L2 t–1) and z is the vertical position (L). For the condition of a fixed amount of 

substance being released at x = 0 and t = 0 into a column with a uniform initial 

concentration, Equation (18) can be solved to produce the analytical solution [e.g., 

Eggenkamp, 2014; Equation 7.6, pp. 77]: 

(19) 

where C(x,t) is the Cl– concentration (g L–1) at a given position and time, Ci is the 

initial Cl– concentration (g L–1) throughout the 1D column, and s is the amount of Cl– (g) 

released at t=0. 

It was assumed that the initial porewater Cl– concentration was 6 g L–1, a 

reasonable reproduction of the vertical concentration profile of core C352 was achieved 

(Figure 45a) using a time of 8 000 years (i.e., consistent with the post-LGM drying of 

Lake George), an effective diffusion coefficient  of 0.026 m2 year–1 (i.e., accounting for 

transport in similar clay-rich porous media [Batlle-Aguilar et al., 2016]), and a 

momentary release mass of Cl– of 600 g (this value was modified to reproduce the 

observed data). This set of parameters reproduces all but the shallowest 10 m of the 

profile, which is likely to represent a more recent and complex (i.e., beyond the scope of 
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an analytical solution) modification of the porewater concentrations by mixing and 

diffusion with less saline modern lake water. However, this combination of parameters 

does not come close to achieving a reasonable fit for the horizontal profile. In fact, a 

period of approximately 20 000 years is needed for the concentration at 1 km from the 

source to be modified by only ~1% from its initial value of 5 g L–1. 

The simple modelling described above results in a partial fit to the observed 

pattern of δ37Cl values (Figure 45b). That is, the shallowest 40 m of the profile 

approximately matches the direction and magnitude of isotopic change observed in the 

crush/leach samples from core C352. The deeper section deviates from the results 

calculated using a simple 1D representation of the system but there are only two isotope 

samples from this depth, so it is unclear if the results match at greater depths. The same 

parameters were adopted from the concentration modelling described above; however, 

the δ37Cl values needed to be offset by +0.3 ‰ from 0 ‰ SMOC to achieve more 

reasonable agreement with the observed data. Interestingly, this value of +0.3 ‰ was 

also observed in two of the analysed groundwater samples from the Bungendore 

Alluvium, which may provide guidance to the long-term mean δ37Cl value of incoming 

solutes to the basin.  

Chapter 5: Tracing salt cycling in the Lake George Basin 



Tracing terrestrial salt cycling using chlorine and bromine 
M. A. Short (2017)

164 

Figure 45: Observed and modelled Cl– concentrations 
(a) and δ37Cl values (b) of porewater and crush/leach
samples, respectively, from core C352.

An equally reasonable fit can be achieved to the C354 data by only modifying the 

endmember concentrations for that location. A crucial point to note from the simple 1D 

modelling, is that to get a close fit to the observed data, both the initial values of the 

porewater and the source concentrations must be offset equally for the different cores. 
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The varying of the source concentration may be explained by progressive stages of 

evaporation resulting in different source concentrations at different locations. As the 

mega-lake reached the final stages of drying the overall concentration would have 

increased but the lake’s footprint on the lakebed would have been decreasing, possibly 

focussed towards the western shore given the location of the highest salinity water. 

However, the seemingly equal horizontal increase Cl– concentration with increasing 

western distance suggests that the horizontal pattern was present long before the event 

that resulted in the vertical pattern. No current palaeoenvironmental evidence exists to 

provide an explanation of why this pattern may exist, mostly due to these features 

generally being deposited post-LGM.  

A recent review article Eastoe [2016] presented a series of hypothetical stable 

chlorine isotope scenarios for non-marine basins. A key finding of the review was that 

stable chlorine isotope can be cumulatively fractionated by simultaneous environmental 

processes in environments with ‘vadose playas’ that discharge solutes into their 

lakebeds (analogous to Lake George and the scenario depicted by Figure 18b in Chapter 

4). The enhanced fractionation of stable chlorine isotope ratios discussed by Eastoe 

[2016] is due to multiple cycles of wetting, drying, evaporite formation and diffusion. 

Eastoe [2016] noted that their model was simplistic but was useful for highlighting that 

multiple processes (i.e., evaporite formation, diffusion, changes in source, biological 

activity, etc.) are likely to occur in field environments, which modify stable halogen 

isotope ratios from those predicted by ideal models that account for only individual 

processes separately. 

Based on the data presented in this chapter, it is quite evident that stable halogen 

isotope variations within the Lake George Basin are worthy of further high-resolution 

investigation (i.e., seasonal variations, finer resolution porewater sampling, etc.). This 
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would attempt to address the recommendations of Eastoe [2016] – to carefully select 

field sites for further investigation of the cumulative fractionation of stable halogen 

isotopes by multiple simultaneous environmental processes. 

In the interest of understanding local processes at Lake George, the collection of 

further stable water isotope ratio porewater profiles at sites along an east-west lakebed 

transect would also provide useful data to cross-check whether the processes leading to 

chlorine variations have also acted to modify water isotopes. Furthermore, Cl– 

concentrations and stable halogen isotope ratios from the additional porewater profiles 

would also help to better constrain the pattern of horizontal salinity and isotope 

variations. The additional cores would only have to be a few metres deep, rather tens of 

metres like the GG core, to address these questions. However, obtaining δ37Cl 

measurements from the entire length of the GG core (at ~5 m intervals) would help to 

address whether the simple 1D modelling results presented above also matched the 

lower isotope profile. 

5.2. Salt cycling implications 

Overall, the hydrogeochemical parameters observed in this study are broadly 

consistent with the salt cycling regime hypothesised in Jacobson et al. [1991]. The five 

primary water-types of the Lake George Basin described in Section 2.4 of Chapter 4 are 

expanded upon here based on the observations presented in this chapter: 

1. Rainwaters are depleted in Mg relative to low-salinity groundwater and

creek water of the basin, suggesting that Mg is dissolved into water soon

after it interacts with the local geology, such as by weathering of Mg-

bearing minerals (e.g., biotite, chlorite, amphibole).
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The similar mean ion ratios of rainwater to seawater (i.e., Cl–/Br– and 

Cl–/Na) and δ37Cl values suggest that the atmospheric source of solutes is 

predominantly oceanic; however, months with much lower ion ratios may 

indicate that individual rain events can introduce solutes from continental 

sources. 

2. Creek water can generally be characterised as described by Jacobson et al.

[1991]; however, the  positive relationship between elevated Cl–/Br– ratios

and δ37Cl values with increasing salinity suggests that up to 25% of the

creek water Cl– could be contributed by halite. Based on the lower Cl–/Br–

ratios and lower δ37Cl values of lake water, a potential source of this halite

is via windborne dust eroded from salt crusts on the lakebed.

The stable water isotope composition of creek waters indicates open 

water evaporation, like lake waters, but with a markedly different slope to 

groundwater. The progression from the non-evaporated endmember 

towards the most evaporated compositions coincides with high and low 

streamflow conditions in the creeks, respectively. Furthermore, the isotope 

composition of the non-evaporated endmember is similar to mean winter 

rainfall, which suggests that creek water is predominantly composed of 

direct rainfall or very recent through flow. A single tritium result for 

Butmaroo Creek (Appendix II), which is similar to mean rainfall, also 

supports this suggestion. 

3. The fresh to brackish groundwaters of the alluvial plains are characterised

by similar stable water isotope and major ion/element composition to

creek and rain waters (except for the low proportion of Mg in rainfall).

However, the distinct (relatively lower) Cl–/Br– ratio of groundwaters in
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the alluvial plains suggests that these waters were either recharged during 

a time of different incoming composition (i.e., similar to the source of 

lakebed porewater) compared to modern rainwater, or alternatively, it 

could indicate that diffusion from the lakebed, which has a similar Cl–/Br– 

ratio, may have imparted its Cl–/Br– ratio on groundwater while not 

increasing its salinity markedly. 

4. Lake water is characterised by brackish-saline TDS concentrations. The

similar Cl–/Br– ratios of lake water to the underlying porewater, rather than

being similar to inflowing creek water or rain, suggests that solutes are

predominantly sourced by mixing between the low-salinity inflow water

(i.e., direct rainfall and creek runoff) with the saline porewater stored

within the underlying lakebed.

The progressive change in stable water isotope ratios during a drying 

phase of the lake during 2013 indicates that increases in salinity are 

predominantly due to evaporation rather solute input. These progressive 

variations also indicate that Lake George can be considered a quasi-closed 

system with respect to its stable water isotope composition, such that it 

appears that during the period in 2013, a single source endmember was 

progressively evaporated to dryness with minimal variations caused by 

non-evaporative water losses or additional inputs from other sources. 

The low δ37Cl mean value of 2013 lake water, relative to underlying 

porewater (i.e., Russells Bore) and creek water, may be further evidence 

that multiple cycles of wetting, drying and wind erosion under the modern 

hydrologic regime (i.e., Figure 24) have led to halite (in the form of dust) 
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being removed from the lake surface and redeposited in the wider 

catchment, and possibly into adjacent ones. 

5. Lakebed porewater is most readily identified by its much greater salinity

compared to most other water-types in the Lake George Basin. Near linear

trends in many of the dissolved ions/elements and stable water isotopes,

along with the negative fractionation of stable chlorine isotopes with

depth, indicate that solute transport within the lakebed is dominated by

chemical diffusion and that porewater advection is likely to be minimal.

However, distinct major ion/element, and isotopic compositions of the

shallowest samples (i.e., 0 – 2 m below the surface) indicate that physical

mixing (i.e., through vertical cracks in the dried lakebed or by pressure

driven flow), as well as diffusion, may take place with modern lake water

in this zone.

Although the lakebed porewater maintains a Cl– –Na composition 

throughout the profile, variations in proportions of the less predominant 

ions/elements were observed to have systematic variations that may 

elucidate parts of the complex palaeohydrologic and geochemical 

processes that have occurred in this basin. Furthermore, the large 

variations in stable water isotope ratios over the depth of the profile may 

provide evidence of past rainwater compositions and the timing of the 

evaporation of the post-LGM mega-lake. These aspects are discussed in 

the next section. 

The observation of higher porewater salinities on the western side of the lakebed, 

within 2 km of the Yass River catchment headwaters (i.e., a tributary of the River 

Murray), should provide motivation to better understand the groundwater flow and 
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solute transport across the Lake George Fault. Higher water elevations and lower 

salinities of groundwater in this zone [e.g., Abell, 1985; Jacobson et al., 1991] are likely 

to provide a buffer to migration of this salt into the Yass River catchment; however, 

there are no available data to rule out migration of the lakebed salt into adjacent 

catchments. 

From a water management perspective, knowledge of the large mass of salt stored 

within the lakebed sediments and the direction of solute transport is useful. This 

information should be used to guide water management within the surrounding sub-

catchments, such that hydraulic gradients (i.e., groundwater flow directions) are 

maintained directed towards the lake so that salinity migration into the freshwater 

aquifers is not artificially enhanced by groundwater flow. 

5.3. Palaeohydrologic implications 

Based on the patterns of multiple hydrogeochemical parameters the following 

three major lake phases post-LGM are proposed:  

1. A period of evaporation and progressive drying of a mega-lake present at

the end of the LGM. This lake was likely to contain brackish water,

assuming that the concentration of the deepest porewater provides a lower

limit to the initial concentration (i.e., >10 g L–1 as TDS). The evaporation

of the ~38 m deep ancient mega-lake is likely to have occurred over a

period of approximately 8 000 years based on dating of ancient shorelines

(i.e., Figure 30) and simple 1D diffusion modelling of the vertical lakebed

salinity profile (i.e., Figure 45).

2. A period of partial re-filling of the lake, punctuated by multiple drying

phases (i.e., Figure 30). During this period water with a lower stable water
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isotope composition diffused into the lakebed. However, the average 

salinity of lake water during this period appears to have continued to 

increase, based on the continuing increase in porewater salinity with 

decreasing depth in top 10 m of lakebed sediments. This further highlights 

the lower volume present during the refilling of the lake. 

3. The modern ephemeral lake system. This period is characterised by the

occurrence of standing water only over years to decades of above average

rainfall (i.e., Figure 24). Thus, the surface water is typically brackish

because the short time periods that surface water is present are not long

enough for substantial amounts of salt to be re-mobilised into the water

column. This water also has an average stable water isotope composition

that is lower than during the LGM but has a wide range because the quasi-

closed nature of the wetting and drying cycles means that they are

modified predominantly by open-water evaporation.

The conceptual development of these three lake phases have been assisted by, 

and are consistent with, the previous palaeoenvironmental studies undertaken 

on the Lake George Basin. The timing and lake water level ranges are 

consistent with reconstructed water levels based on ancient shorelines 

[Coventry, 1976; Fitzsimmons and Barrows, 2010], and estimated salinities 

based on ostracod and pollen occurrences in the sedimentary sequence [De 

Deckker, 1982; Singh et al., 1981]. 

6. Conclusions

The systematic variations and trends of a combination of hydrogeochemical

parameters presented in this chapter have assisted in providing a clearer understanding 
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of a saline lake system that is important locally to water resources, and regionally for its 

rich palaeoenvironmental record. The findings presented in this chapter have been 

largely improved upon by the targeted use of Cl- and Br-based environmental tracer 

techniques; namely, the use of Cl–/Br– ratios and stable halogen isotope compositions. 

Although these techniques were useful in providing unique information that the other 

parameters could not elucidate, the other parameters also provide constraints where Cl- 

and Br-based methods were ambiguous or unavailable. Thus, the general findings 

regarding the use of Cl- and Br-based tracer techniques in the manner presented in this 

chapter do not stray far from the final remarks made by Davis et al. [1998; pp. 347-

348], which are worthy of repeating (the term ‘Cl–/Br– ratios’ can be replaced more 

generally by Cl- and Br-based tracer techniques):  

“The use of Cl–/Br– ratios is obviously not a general panacea 

for all intractable questions in hydrogeology. As always, no 

substitute exists for careful site-specific application of numerous 

scientific tools in an integrated approach to hydrogeologic 

problems. The utility of using Cl–/Br– ratios is so great, however, 

that we recommend their widespread use. Where possible, accurate 

bromide analyses should accompany chloride analyses in all 

routine as well as non-routine ground water investigations.” 

The combination of environmental tracers utilised in this study have helped to 

broadly confirm the salt cycling processes of the Lake George Basin described by an 

earlier pioneering study. However, in addition to those findings, our results expand 

upon that knowledge by providing evidence that, in this basin, wind erosion of lakebed 

surface crust may provide a source of salinity to local creeks, and potentially adjacent 

catchments. The isotopic results presented in this chapter have also confirmed that 
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solute transport within the lakebed sediments of Lake George, at least in the shallowest 

50 – 60 m, is predominantly controlled by chemical diffusion. 

The results presented here do, however, deviate from the palaeohydrologic history 

described in the earlier study, in which a hypothesis of continual salt accumulation over 

the last 2 Ma was presented to explain the pattern of porewater salinity. The results 

presented in this chapter suggest that the porewater profiles of the lakebed are instead 

best explained by a complex hydrogeochemical evolution of an evaporating mega-lake 

since the LGM. Three distinct lake phases were identified, which were in broad 

agreement with previous palaeoenvironmental findings: (1) an initial evaporation of a 

post-LGM mega-lake to near- or complete-dryness over approximately 8 000 years, (2) 

a period of cyclic partial re-filling and drying of a lake of substantially lower volume 

than the mega-lake, which lasted for ~10 000 – 20 000 years, and (3) the modern 

configuration of an ephemeral, very shallow and brackish water lake that only sustains 

standing water over years to decades depending on prevailing climatic trends. 
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This thesis has presented findings based on theoretical analysis, large-scale 

monitoring and a targeted field investigation to improve the understanding of how Cl 

and Br can be utilised as tracers of terrestrial salt cycling, more robustly than in 

previous studies. Dissolved Cl and Br concentrations have been utilised for many 

decades as individual tracers or together as a ratio to trace geochemical processes in 

saline environments. More recently, the stable isotope variations of these two elements 

have also been found to be useful for quantifying and interpreting geochemical 

processes. However, both hydrogeochemical techniques need to be developed and 

improved by applying them in new environments and the collection of further data in 

well-designed studies on a local and continental scale, as well as developing 

quantitative methods to provide further value to their use. 

Firstly, a bench-top salt dissolution experiments were used to verify a previously 

established quantitative mixing model that utilises Cl–/Br– ratios to correct Cl–- or Br–-

based tracer methods for other Cl– sources. The results show that the model can predict 

the percentage of alternate salt sources accurately after analytical and endmember 

uncertainties are considered. Further analysis of the uncertainties and sensitivities 

provide scientists with a guide to which environments and scenarios the use of the 

mixing model would be most appropriate. The mixing model correction provides a 

useful and cheap method for scientists to improve their use of Cl–- or Br–-based tracer 

techniques in catchment studies. 

Secondly, continental-scale spatial and temporal variations in Cl–/Br– ratios were 

presented, based on the interpretation of a dataset of wet deposition compositions 

spanning six and half years. A recently developed imputation algorithm was applied to 

estimate the high proportion of censored bromide values, as well as the other eight 

analytes, based on the multivariate relationships of nine analytes. Cl–/Br– ratios of wet 
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deposition decrease with distance inland following a logarithmic regression. The 

observations provide further confidence in the findings presented in previous studies 

that have shown that Cl–/Br– ratios systematically decrease with increasing distance 

from the coast. 

Lastly, Cl and Br tracer techniques were applied in a case study of the Lake 

George Basin, NSW, to trace modern salt cycling proximal to a saline lake, and to 

investigate how hydrogeochemical signatures can elucidate palaeohydrologic processes. 

The Lake George Basin was chosen as the field site because of its long, near-continuous 

sequence of Cenozoic lake sediments, and its complex salt cycling regime. The Cl- and 

Br-based tracer methods, in combination with other geochemical information, have 

provided a better understanding of the modern salt cycling regime within the catchment, 

and have also provided useful constraints on the timing of the recession of the mega-

lake that existed in the basin during the last glacial maximum. This study also illustrated 

the utility of Cl- and Br-based tracer methods to delineate salt cycling processes in 

saline lake environments. 

1. Recommendations

The following sections briefly outline specific recommendations that are made

based on the findings of the most substantial chapters of this thesis (i.e., Chapters 2, 3 

and 5), and are broadly characterised under the sub-heading ‘Quantitative use of 

chlorine and bromine’, ‘Near surface cycling of chlorine and bromine’, ‘Chlorine and 

bromine in saline lake environments’, and ‘Hydrogeochemistry of the Lake George 

Basin’. 
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1.1. Quantitative use of chlorine and bromine 

The work presented in Chapter 2 illustrated the simplicity and robustness of the 

combined use of Cl– and Br– to quantify salt sources and sources of error in Cl–-based 

tracer methods. However, this chapter also highlighted that both the precision of the 

chemical analysis, as well as the uncertainty, or natural variation, in endmember 

compositions can dramatically limit the use of these methods. Thus, the main 

recommendations from this section of the thesis are two-fold: 

1. Where Cl–/Br– ratios are being used for quantitative analysis using

equations such as those presented in Chapter 2, uncertainties resulting

from the chemical analysis should be accounted for. This can be achieved

simply by using freely-available error propagation software, such as

uncertainties [Lebigot, 2014], and yields valuable information about how

reliable these techniques are for a given situation. Failure to do so could

lead to misleading interpretations because the uncertainties can render

these methods inadequate as quantitative tools in some situations.

2. A detailed analysis of endmember compositions (i.e., spatial and temporal

variations) should always precede the application of Cl–/Br– ratios as a

quantitative tool. If the collection of new site-specific data is unfeasible,

then researchers should attempt to incorporate this uncertainty into their

results in a similar fashion to the point on analytical precision above.

1.2. Near surface cycling of chlorine and bromine 

The spatial and temporal analysis of wet deposition Cl–/Br– ratios presented in 

Chapter 3 demonstrates that researchers should not assume that all catchments receive 

atmospheric deposition with the same compositions. Cl–/Br– ratios of wet deposition 
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decrease logarithmically away from the coast, due to processes acting on large-scales 

(i.e., SSA transport, photochemical reactions and washout effects). This highlights the 

need for researchers to undertake site-specific sampling prior to applying Cl–/Br– ratios 

quantitatively. However, the systematic nature of the variations observed in these data 

suggest that in the absence of site-specific data (i.e., due to funding constraints, site 

access, etc.), an idealised equation may be used to provide a more reasonable estimate 

compared to assuming that rainfall maintains a seawater-like ratio regardless of 

location. The following recommendations are made regarding the future collection of 

continental-scale Cl–/Br– ratio datasets: 

1. Continue to improve the detection limits of Br– concentrations of water

samples. Even at the detection limits achievable by modern methods (i.e.

<0.1 ppb) some far inland sites may receive atmospheric deposition that

has Br– concentrations that are below the limits of detection. These

techniques should also account for the potentially low volume of

atmospheric deposition samples because of the opportunistic nature of

their collection.

2. Test the predictions made by the imputation technique applied to the

NADP dataset. This could be achieved by re-analysing stored samples

using methods that have a lower limit of detection. However, this would

potentially be affected by modification of halides during the storage

period. Additionally, the continued collection and analysis of wet

deposition samples by the NADP, especially as newer analysis methods

with lower detection limits are adopted as they become practicable, will

provide improved baseline data for interpreting the near-surface cycling of

these elements.
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3. Expand the network of countries undertaking large-scale atmospheric

deposition sampling and analysis. The assessment of Cl–/Br– ratio

variations presented in Chapter 3 is potentially limited by regional effects

that are unique to North America. The analysis of samples, collected in a

similar fashion, from other large continents would further strengthen the

understanding of near-surface Cl and Br cycling.

4. Undertake additional unorthodox spatial analyses like Davis et al. [2004]

(i.e., using low-salinity groundwater as a proxy for atmospheric

deposition) to provide additional lines of evidence regarding the

continental-scale transport processes of Cl and Br. Despite the seemingly

crude method adopted in by Davis et al. [2004], their findings appear to

have provided a cost-effective and accurate assessment of how Cl–/Br–

ratios are modified over large spatial scales.

5. Collect large volume atmospheric deposition samples (i.e., to obtain

sufficient mass of Cl and Br) with the aim of undertaking stable halogen

isotope ratio analyses. This would help to identify whether the variations

in Cl and Br cycling in atmospheric deposition are driven by physical

transport mechanisms or by chemical reactions that affect their stable

isotopes. It would also improve the understanding of endmember

compositions when applying stable halogen isotope ratio techniques in

catchment or hydrogeochemical investigations.

1.3. Chlorine and bromine in saline lake environments 

The field investigation presented in Chapter 5 demonstrated the great utility of 

chlorine- and bromine-based tracer methods, in combination with other geochemical 

methods, in saline environments. However, some of the results remain ambiguous 
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because of gaps in the current understanding of the geochemistry of Cl and Br, 

especially the processes that affect stable halogen isotope ratios. The following are four 

key areas of future research in the pursuit of understanding the geochemistry of Cl and 

Br in saline lake environments: 

1. The role of biological activity on how stable halogen isotope ratios are

modified and if these processes modify Cl–/Br– ratios (i.e., do organisms

preferentially remove one ion over the other?). These studies should

include impacts from plant, animal and microbial species.

2. Further investigate the impact of multiple cycles of wetting-drying-

leakage as outlined by Eastoe [2016] to determine the extent that this

effect can have on observed stable halogen isotope ratios in ‘vadose

playas’. Additionally, the effect of wind erosion at the playa surface

should be considered. The cumulative effect of processes could be further

understood by undertaking complex geochemical modelling, laboratory

experiments and targeted field investigations.

3. Attempts should be made to combine both Br and Cl stable isotope ratio

analyses on samples collected in saline lake environments. This would

continue to build the understanding of the degree to which these isotope

systems are related (or unrelated) to each other.

1.4. Hydrogeochemistry of the Lake George Basin 

Chapter 5 has further emphasised the rich palaeoenvironmental history that is 

recorded by the geologic features of the Lake George Basin. It has also highlighted that 

the hydrogeochemical signatures held within the porewater of the lakebed may 

potentially record the effects of environmental processes as effectively as other 
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geological features within the basin. The following recommendations with the aim of 

building upon the assessment presented in Chapter 5:  

1. Undertake stable chlorine isotope ratio analysis on a series of porewater

samples from the GG core to a depth below 60 m. This would determine

whether the simple 1D modelling was sufficient for predicting stable

halogen isotope ratios in the system. Accordingly, these additional data

would provide useful information on the final drying phase of the post-

LGM mega-lake.

2. Collect a series of shallow cores from the lakebed along and east-west

transect with the purpose of obtaining porewater samples for geochemical

analysis (i.e. stable halogen and water isotopes, and Cl– concentrations).

These additional datasets would help to broaden the analysis of porewater

solute transport from a 1D to a 2D (potentially 3D) analysis. It would also

help to investigate the hypotheses made in Chapter 5 regarding the

palaeohydrologic history of Lake George, as well as its salt cycling

mechanisms. These cores would only have to be a few metres, rather tens

of metres like the GG core, to address these questions.

3. Undertake complex solute transport/groundwater flow modelling of the

porewater within the lakebed sediments. This should be accompanied by

obtaining additional data regarding the hydraulic properties (i.e.,

permeability, porosity and solute transport characteristics) of the lakebed

sediments. This would provide researchers investigating the

palaeoenvironments of Lake George with a tool to input various scenarios

regarding the lake’s past to, as well as water resource managers who may
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want to better quantify the risk of salinisation of the local freshwater 

aquifers. 

4. Maintain the historical monitoring at Lake George. At a bare-minimum,

the hydrographic and precipitation records for Lake George should be

maintained to continue the almost 200-year records that currently exist.

However, studies continue to uncover the great scientific value of the Lake

George Basin for environmental research, especially hydrology and

climate. Thus, additional monitoring (i.e., meteorological, hydrographic,

hydrogeochemical, etc.) would be advantageous for studying these

processes in the Australian context and to build upon previous work.
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NADP wet deposition collection site summary statistics 

1. Collection site details

Site 
code Site name Latitude 

(DD) 
Longitude 

(DD) 
Elevation 

(m) 

Orthogonal 
inland 

distance (km) 

Number 
of 

samples 

Censoring (%) 

Ca Mg K Na NH4
+ NO3

2– Cl– SO4
2– Br– 

AK01 Poker Creek 65.155 –147.491 230 409 203 14.3 25.6 8.9 15.3 46.8 3.9 2.0 0.0 95.6 
AK02 Juneau 58.514 –134.784 25 2 209 25.4 12.9 2.4 0.5 59.3 0.0 0.0 0.0 78.5 
AK03 Denali National Park - Mt. McKinley 63.723 –148.968 661 243 205 19.0 26.8 21.5 19.5 58.0 5.9 5.4 0.0 93.7 
AK06 Gates of the Arctic National Park - Bettles 66.906 –151.683 630 343 178 8.4 17.4 13.5 11.2 45.5 3.4 1.7 0.0 89.9 
AK97 Katmai National Park - King Salmon 58.679 –156.666 50 23 194 10.3 5.2 1.0 0.5 25.8 0.5 0.0 0.0 75.8 
AL02 Delta Elementary 30.791 –87.850 66 18 27 0.0 0.0 0.0 0.0 3.7 0.0 0.0 0.0 77.8 
AL03 Centreville 32.903 –87.250 135 257 177 2.8 3.4 0.6 0.6 0.6 0.0 0.0 0.0 75.1 
AL10 Black Belt Research and Extension Center 32.458 –87.242 58 208 245 2.0 2.4 0.8 0.0 2.4 0.0 0.0 0.0 73.1 
AL19 Birmingham 33.553 –86.815 200 341 107 0.0 0.0 0.0 0.0 0.9 0.0 0.0 0.0 77.6 
AL24 Bay Road 30.475 –88.141 6 4 23 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 56.5 
AL99 Sand Mountain Research and Extension Center 34.289 –85.970 349 441 240 4.6 4.2 0.8 1.3 0.4 0.0 0.4 0.0 85.4 
AR02 Warren 2WSW 33.605 –92.097 76 420 201 1.5 1.5 0.0 0.5 1.5 0.0 0.0 0.0 69.7 
AR03 Caddo Valley 34.180 –93.099 71 513 201 1.0 2.5 0.0 0.0 2.5 0.0 0.0 0.0 73.1 
AR16 Buffalo National River - Buffalo Point 36.084 –92.587 311 698 212 0.9 3.8 0.0 1.9 1.4 0.0 0.5 0.0 81.1 
AR27 Fayetteville 36.101 –94.174 381 740 227 0.9 3.1 0.4 0.0 0.4 0.0 0.4 0.0 78.4 
AZ03 Grand Canyon National Park - Hopi Point 36.059 –112.184 2071 542 153 0.7 0.7 1.3 3.3 0.7 0.0 0.7 0.0 71.9 
AZ06 Organ Pipe Cactus National Monument 31.949 –112.802 501 93 96 2.1 3.1 3.1 1.0 3.1 0.0 0.0 0.0 31.3 
AZ97 Petrified Forest National Park - Rainbow Forest 34.822 –109.893 1707 513 144 0.0 4.9 0.7 1.4 0.0 0.0 0.0 0.0 67.4 
AZ98 Chiricahua 32.010 –109.389 1570 357 158 0.6 2.5 0.0 0.6 1.9 0.0 0.0 0.0 70.9 
AZ99 Oliver Knoll 33.071 –109.866 1176 369 127 0.0 4.7 0.8 1.6 0.8 0.0 0.0 0.0 59.8 
BC22 Haul Road Station 54.029 –128.702 10 57 129 4.7 10.1 1.6 0.0 14.7 0.0 0.0 0.0 80.6 
BC23 Lakelse Lake 54.377 –128.578 111 4 92 25.0 29.3 5.4 4.3 67.4 0.0 1.1 0.0 92.4 
BC24 Port Edward 54.223 –130.270 80 2 71 7.0 4.2 1.4 0.0 42.3 0.0 0.0 0.0 63.4 
CA28 Kings River Experimental Watershed 37.059 –119.182 2000 222 131 8.4 9.9 1.5 2.3 8.4 0.0 1.5 0.0 87.0 
CA42 Tanbark Flat 34.207 –117.762 853 62 104 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 54.8 
CA45 Hopland 39.005 –123.086 253 47 140 4.3 4.3 0.0 0.7 7.1 0.0 0.0 0.0 72.1 
CA50 Sagehen Creek 39.432 –120.240 1931 231 95 9.5 24.2 6.3 4.2 23.2 0.0 3.2 0.0 89.5 
CA66 Pinnacles National Monument - Bear Valley 36.483 –121.157 317 59 104 4.8 5.8 1.9 0.0 9.6 1.0 0.0 0.0 78.8 
CA67 Joshua Tree National Park - Black Rock 34.070 –116.389 1239 133 70 4.3 10.0 5.7 4.3 4.3 0.0 0.0 0.0 65.7 
CA75 Sequoia National Park - Giant Forest 36.566 –118.778 1921 232 108 3.7 8.3 0.9 2.8 4.6 0.0 0.9 0.0 80.6 
CA76 Montague 41.766 –122.480 799 129 156 5.8 12.2 2.6 2.6 3.8 0.6 0.0 0.0 91.0 
CA88 Davis 38.536 –121.776 18 67 110 2.7 0.9 0.0 0.0 0.0 0.0 0.0 0.0 71.8 
CA94 Converse Flats 34.194 –116.913 1724 110 127 6.3 6.3 3.1 3.1 2.4 0.0 0.0 0.0 70.9 
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Site 
code Site name Latitude 

(DD) 
Longitude 

(DD) 
Elevation 

(m) 

Orthogonal 
inland 

distance (km) 

Number 
of 

samples 

Censoring (%) 

Ca Mg K Na NH4
+ NO3

2– Cl– SO4
2– Br– 

CA96 Lassen Volcanic National Park - Manzanita Lake 40.539 –121.577 1754 204 158 12.0 15.2 7.0 5.7 18.4 0.6 1.3 0.0 89.9 
CA99 Yosemite National Park - Hodgdon Meadow 37.796 –119.858 1393 184 135 10.4 11.1 4.4 3.0 8.1 0.7 0.7 0.0 80.7 
CO00 Alamosa 37.442 –105.868 2285 965 146 0.7 3.4 0.7 0.0 2.1 0.0 0.7 0.0 67.8 
CO01 Las Animas Fish Hatchery 38.118 –103.316 1226 1178 143 0.0 0.0 0.0 0.7 0.0 0.0 0.0 0.0 76.2 
CO02 Niwot Saddle 40.055 –105.589 3520 1218 212 1.4 3.8 2.4 2.4 4.2 0.0 1.9 0.0 81.1 
CO08 Four Mile Park 39.403 –107.345 2502 1070 246 0.8 2.8 0.0 2.8 2.8 0.8 0.8 0.0 83.3 
CO09 Kawaneechee Meadow 40.827 –105.829 2633 1279 127 3.1 12.6 1.6 4.7 3.1 0.0 0.0 0.0 85.8 
CO10 Gothic 38.956 –106.986 2915 1041 195 1.5 7.7 6.2 2.6 4.6 0.0 2.1 0.0 80.0 
CO15 Sand Spring 40.508 –107.703 1998 1168 214 1.4 2.8 6.1 0.9 3.3 0.0 0.0 0.0 69.6 
CO19 Rocky Mountain National Park - Beaver Meadows 40.364 –105.581 2477 1248 228 1.8 4.8 2.6 2.6 3.9 0.0 2.2 0.0 76.8 
CO21 Manitou 39.101 –105.093 2362 1154 198 0.5 3.0 1.5 1.5 2.0 0.0 0.5 0.0 80.8 
CO22 Pawnee 40.806 –104.756 1641 1327 165 0.0 4.8 1.8 2.4 0.0 0.0 0.0 0.0 76.4 
CO89 Rocky Mountain National Park - Loch Vale 40.290 –105.660 3159 1236 186 1.6 12.4 1.6 2.7 1.6 0.0 1.6 0.0 81.7 
CO90 Niwot Ridge - Southeast 40.037 –105.544 3015 1218 220 1.8 8.2 2.3 4.1 2.3 0.0 0.9 0.0 80.9 
CO91 Wolf Creek Pass 37.469 –106.787 3287 917 234 3.4 7.7 1.7 3.0 0.9 0.0 0.4 0.0 78.2 
CO92 Sunlight Peak 39.426 –107.380 3218 1067 236 1.3 3.0 0.4 3.0 2.1 0.0 0.4 0.0 84.7 
CO93 Buffalo Pass - Dry Lake 40.535 –106.781 2538 1210 236 1.7 5.5 2.1 3.8 1.3 0.0 0.4 0.0 82.2 
CO94 Sugarloaf 39.994 –105.480 2524 1218 223 1.8 4.9 0.4 1.8 1.3 0.0 0.0 0.0 85.7 
CO96 Molas Pass 37.750 –107.689 3248 896 218 1.4 3.7 1.8 1.4 8.3 0.5 0.0 0.0 86.2 
CO97 Buffalo Pass - Summit Lake 40.538 –106.677 3234 1213 241 2.9 7.1 3.7 2.9 2.1 0.0 1.2 0.0 86.3 
CO98 Rocky Mountain National Park - Loch Vale 40.288 –105.663 3159 1236 235 1.7 9.4 3.4 3.8 0.9 0.0 2.1 0.0 86.4 
CO99 Mesa Verde National Park - Chapin Mesa 37.198 –108.491 2162 800 178 0.0 1.1 2.2 1.1 2.2 0.0 0.0 0.0 73.6 
CT15 Abington 41.840 –72.010 209 47 259 5.8 6.2 0.8 0.0 0.8 0.0 0.0 0.0 81.5 
FL03 Bradford Forest 29.975 –82.198 44 84 210 1.9 0.0 0.0 0.0 5.7 0.0 0.0 0.0 54.8 
FL05 Chassahowitzka National Wildlife Refuge 28.749 –82.555 3 9 241 0.8 0.0 0.4 0.0 2.9 0.0 0.0 0.0 50.2 
FL11 Everglades National Park - Research Center 25.390 –80.680 2 22 244 0.4 0.0 0.0 0.0 2.5 0.4 0.0 0.0 28.7 
FL14 Quincy 30.549 –84.600 60 60 237 1.7 0.4 0.0 0.4 5.5 0.4 0.0 0.0 61.6 
FL23 Sumatra 30.111 –84.990 14 39 256 7.0 1.2 0.4 0.4 5.1 0.0 0.0 0.0 66.0 
FL32 Orlando 28.593 –81.190 21 38 184 0.0 0.0 0.0 0.0 3.3 0.0 0.0 0.0 46.7 
FL41 Verna Well Field 27.380 –82.283 25 28 223 0.9 0.4 0.0 0.0 0.4 0.0 0.0 0.0 47.1 
FL96 Pensacola 30.550 –87.375 45 22 117 4.3 0.9 0.0 0.0 2.6 0.0 0.9 0.0 53.0 
FL99 Kennedy Space Center 28.543 –80.644 2 4 232 0.0 0.0 0.0 0.0 5.2 0.0 0.0 0.0 30.6 
GA09 Okefenokee National Wildlife Refuge 30.740 –82.128 45 65 250 2.0 1.2 1.2 0.0 8.0 0.0 0.0 0.0 66.4 
GA20 Bellville 32.085 –81.937 54 77 269 5.2 2.6 0.7 0.0 0.4 0.0 0.0 0.0 68.8 
GA33 Sapelo Island 31.396 –81.281 3 1 202 1.0 0.0 0.0 0.0 5.4 0.0 0.0 0.0 34.2 
GA41 Georgia Station 33.181 –84.810 267 354 228 7.9 2.6 0.4 0.0 1.8 0.4 0.0 0.0 77.2 
GA99 Chula 31.522 –83.548 108 170 238 2.9 2.1 0.8 0.0 0.0 0.0 0.0 0.0 78.6 
IA08 Big Springs Fish Hatchery 42.910 –91.470 229 1378 269 0.0 0.0 0.0 1.5 0.4 0.0 0.4 0.0 90.7 
IA23 McNay Research Center 40.963 –93.393 320 1295 229 0.0 0.4 0.9 1.3 0.0 0.0 0.4 0.0 86.0 
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Site 
code Site name Latitude 

(DD) 
Longitude 

(DD) 
Elevation 

(m) 

Orthogonal 
inland 

distance (km) 

Number 
of 
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Censoring (%) 

Ca Mg K Na NH4
+ NO3

2– Cl– SO4
2– Br– 

ID02 Priest River Experimental Forest 48.352 –116.840 726 389 211 6.6 10.9 1.9 2.4 2.4 0.0 0.0 0.0 92.4 
ID03 Craters of the Moon National Monument 43.461 –113.555 1807 803 160 2.5 10.6 8.8 5.0 1.9 0.6 1.3 0.0 76.9 
ID11 Reynolds Creek 43.205 –116.750 1200 576 157 1.3 8.3 2.5 1.3 3.8 0.0 1.3 0.0 69.4 
IL11 Bondville 40.053 –88.372 212 921 276 0.7 2.9 1.1 1.4 0.0 0.0 0.4 0.0 87.7 
IL18 Shabbona 41.841 –88.851 265 1047 252 0.4 0.4 1.2 1.2 0.4 0.0 0.4 0.0 86.5 
IL46 Alhambra 38.869 –89.622 164 965 248 0.0 2.8 0.4 0.8 0.4 0.0 0.0 0.0 87.5 
IL63 Dixon Springs Agricultural Center 37.436 –88.672 161 786 238 0.4 2.1 0.0 0.4 0.4 0.0 0.0 0.0 76.5 
IL78 Monmouth 40.933 –90.723 229 1121 249 0.0 0.4 0.0 0.8 0.0 0.0 0.0 0.0 89.2 
IL95 – 40.053 –88.372 212 921 9 0.0 0.0 11.1 11.1 11.1 0.0 0.0 0.0 88.9 
IN20 Roush Lake 40.840 –85.464 244 714 261 0.4 0.4 0.0 1.1 0.4 0.0 0.0 0.0 86.2 
IN22 Southwest Purdue Agriculture Center 38.741 –87.486 134 836 253 0.4 1.2 0.0 1.2 0.4 0.0 0.0 0.0 83.4 
IN34 Indiana Dunes National Lakeshore 41.632 –87.088 208 887 290 0.3 0.3 0.0 0.3 0.0 0.0 0.0 0.0 83.1 
IN41 Agronomy Center for Research and Extension 40.475 –86.992 215 819 271 0.0 1.1 0.4 0.7 0.0 0.0 0.0 0.0 86.7 
KS07 Farlington Fish Hatchery 37.651 –94.804 281 929 240 0.0 0.8 0.0 0.4 0.4 0.0 0.4 0.0 79.6 
KS31 Konza Prairie 39.102 –96.609 350 1121 232 0.0 1.7 0.4 2.2 0.0 0.4 0.0 0.0 79.3 
KS32 Lake Scott State Park 38.672 –100.916 863 1175 167 0.0 0.6 0.0 0.0 0.0 0.0 0.0 0.0 80.2 
KS97 Kickapoo Tribe - Powhattan 39.760 –95.636 367 1124 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 75.0 
KY03 Mackville 37.705 –85.049 293 647 278 0.7 4.7 0.4 0.7 0.4 0.0 0.4 0.0 86.3 
KY10 Mammoth Cave National Park - Houchin Meadow 37.132 –86.148 236 740 237 3.0 3.8 0.0 0.8 0.8 0.0 0.0 0.0 87.8 
KY19 Cannons Lane 38.232 –85.673 177 694 242 0.8 0.8 0.0 0.8 0.4 0.0 0.0 0.0 86.4 
KY22 Lilley Cornett Woods 37.078 –82.994 335 498 281 1.8 5.3 0.4 0.7 1.1 0.0 0.4 0.0 88.3 
KY35 Clark State Fish Hatchery 38.118 –83.547 204 515 196 0.5 2.6 0.0 0.5 0.5 0.0 0.0 0.0 87.8 
KY99 Mulberry Flat 36.903 –88.012 110 716 222 2.7 4.5 0.5 1.4 0.5 0.0 0.0 0.0 83.8 
LA12 Iberia Research Station 29.931 –91.717 6 20 90 0.0 1.1 0.0 0.0 4.4 0.0 0.0 0.0 51.1 
LA30 Southeast Research Station 30.782 –90.202 77 46 234 3.4 1.3 0.4 0.0 2.6 0.0 0.0 0.0 56.0 
MA01 North Atlantic Coastal Lab 41.976 –70.024 57 1 237 0.0 0.0 0.0 0.0 4.2 0.0 0.0 0.0 39.2 
MA08 Quabbin Reservoir 42.393 –72.344 306 103 279 6.1 7.2 0.7 0.0 3.2 0.0 0.0 0.0 82.4 
MA13 East 42.385 –71.215 190 14 53 0.0 0.0 1.9 0.0 1.9 0.0 0.0 0.0 62.3 
MA14 Nantucket 41.290 –70.175 16 1 59 0.0 0.0 0.0 0.0 3.4 0.0 0.0 0.0 28.8 
MA22 Boston University 42.350 –71.104 32 12 21 0.0 0.0 0.0 0.0 4.8 0.0 0.0 0.0 81.0 
MD07 Catoctin Mountain Park 39.647 –77.485 471 83 165 0.6 1.8 0.0 0.0 0.0 0.0 0.0 0.0 88.5 
MD08 Piney Reservoir 39.705 –79.012 769 201 267 2.6 9.4 1.1 1.1 1.1 0.0 0.0 0.0 89.5 
MD13 Wye 38.913 –76.153 6 0 264 5.3 3.4 0.0 0.0 0.0 0.0 0.0 0.0 68.6 
MD15 Smith Island 37.993 –76.035 2 1 269 3.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 53.2 
MD18 Assateague Island National Seashore - Woodcock 38.251 –75.159 0 1 246 4.1 0.0 0.4 0.0 2.0 0.0 0.0 0.0 54.9 
MD99 Beltsville 39.028 –76.817 46 24 251 3.6 5.2 0.4 0.4 0.8 0.0 0.0 0.0 74.5 
ME00 Caribou 46.868 –68.013 191 155 251 4.8 10.4 0.4 1.2 6.4 0.0 0.0 0.0 85.7 
ME02 Bridgton 44.108 –70.729 222 58 265 9.8 11.7 3.0 0.4 4.2 0.0 0.0 0.0 90.9 
ME04 Carrabassett Valley 45.003 –70.212 259 112 210 8.6 12.9 2.4 0.5 6.2 0.0 1.0 0.0 92.4 
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Site 
code Site name Latitude 

(DD) 
Longitude 

(DD) 
Elevation 

(m) 

Orthogonal 
inland 
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Ca Mg K Na NH4
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2– Cl– SO4
2– Br– 

ME08 Gilead 44.400 –71.010 212 97 201 7.0 11.4 1.0 1.0 5.5 1.0 1.0 0.0 84.1 
ME09 Greenville Station 45.489 –69.665 322 119 289 7.3 12.5 2.1 4.5 6.9 0.3 0.7 0.0 88.9 
ME94 Indian Township 45.244 –67.631 101 35 90 14.4 8.9 3.3 0.0 4.4 0.0 0.0 0.0 87.8 
ME96 Casco Bay-Wolfe's Neck Farm 43.833 –70.065 15 1 247 4.5 3.2 0.8 0.0 5.3 0.0 0.0 0.0 74.9 
ME98 Acadia National Park - McFarland Hill 44.377 –68.261 150 4 278 6.1 2.2 0.7 0.0 6.5 0.0 0.0 0.0 69.1 
MI09 Douglas Lake 45.561 –84.678 238 734 288 0.3 2.4 1.0 3.5 1.7 0.0 0.7 0.0 89.9 
MI26 Kellogg Biological Station 42.410 –85.393 288 788 268 0.4 1.1 0.0 1.1 0.4 0.0 0.0 0.0 90.3 
MI48 Seney National Wildlife Refuge - Headquarters 46.289 –85.950 220 698 271 1.1 5.2 2.6 0.7 1.5 0.0 0.7 0.0 87.1 
MI51 Unionville 43.614 –83.360 201 748 256 0.8 2.7 1.6 2.7 0.4 0.0 0.4 0.0 88.3 
MI52 Ann Arbor 42.416 –83.902 267 703 265 0.4 0.8 0.0 1.9 0.0 0.0 0.4 0.0 87.2 
MI53 Wellston 44.224 –85.819 292 912 263 0.8 1.9 0.0 2.3 0.8 0.0 0.0 0.0 92.4 
MI98 Raco 46.372 –84.746 272 643 188 0.5 1.1 0.0 1.6 1.1 0.0 0.0 0.0 89.4 
MI99 Chassell 47.105 –88.552 296 737 263 0.8 3.0 0.0 4.2 3.0 0.8 0.8 0.0 84.4 
MN01 Cedar Creek 45.402 –93.203 280 1121 249 0.0 2.8 0.8 2.8 0.4 0.0 0.0 0.0 88.8 
MN08 Hovland 47.847 –89.965 224 759 248 0.8 4.4 0.8 5.6 1.2 0.0 1.2 0.0 86.7 
MN16 Marcell Experimental Forest 47.531 –93.469 431 983 263 0.4 3.0 0.0 4.6 2.3 0.4 0.4 0.0 91.6 
MN18 Fernberg 47.946 –91.496 524 842 256 0.8 3.5 2.3 5.5 1.2 0.0 1.2 0.0 84.4 
MN23 Camp Ripley 46.249 –94.497 410 1129 244 0.0 1.6 0.4 2.5 0.4 0.0 0.0 0.0 89.8 
MN27 Lamberton 44.237 –95.301 367 1327 217 0.0 0.5 0.0 1.4 0.5 0.0 0.0 0.0 88.9 
MN28 Grindstone Lake 46.122 –93.000 350 1049 237 1.3 3.8 0.4 4.2 0.4 0.0 0.0 0.0 93.2 
MN32 Voyageurs National Park - Sullivan Bay 48.413 –92.831 421 886 247 2.4 5.7 2.8 7.7 2.0 0.0 0.8 0.0 89.9 
MN99 Wolf Ridge 47.384 –91.207 361 862 253 2.4 5.1 1.2 6.7 2.0 0.8 0.4 0.0 88.1 
MO03 Ashland Wildlife Area 38.754 –92.199 257 997 237 0.0 1.3 0.0 0.8 0.4 0.0 0.0 0.0 82.3 
MO05 University Forest 36.911 –90.319 165 754 234 0.4 1.3 0.0 0.4 0.4 0.0 0.4 0.0 81.6 
MS10 Clinton 32.307 –90.319 86 223 178 2.2 1.1 0.0 0.6 2.2 0.0 0.0 0.0 75.8 
MS12 Grand Bay NERR 30.429 –88.428 2 7 176 1.7 1.7 0.0 0.0 0.6 0.0 0.0 0.0 53.4 
MS19 Newton 32.327 –89.209 134 221 251 4.4 4.8 0.0 0.4 2.0 0.0 0.0 0.0 69.7 
MS30 Coffeeville 34.003 –89.799 134 419 210 2.4 3.3 0.5 0.0 2.9 0.0 0.0 0.0 81.9 
MT00 Little Bighorn Battlefield National Monument 45.570 –107.438 962 1099 220 1.4 3.6 0.9 0.0 0.5 0.0 0.5 0.0 79.5 
MT05 Glacier National Park - Fire Weather Station 48.510 –113.997 964 588 247 6.5 14.6 2.4 1.6 3.6 0.4 0.8 0.0 90.3 
MT07 Clancy 46.485 –112.065 1448 734 235 0.9 6.8 0.9 5.5 3.4 0.4 1.3 0.0 88.1 
MT96 Poplar River 48.315 –105.144 640 1208 131 0.8 1.5 2.3 3.1 0.8 0.0 0.8 0.0 71.8 
MT97 Lost Trail Pass 45.692 –113.968 2401 629 209 11.5 21.1 1.9 5.3 12.4 0.5 1.0 0.0 90.9 
MT98 Havre - Northern Agricultural Research Center 48.501 –109.798 819 884 193 0.0 0.5 1.0 3.1 0.0 0.0 0.5 0.0 88.6 
NC03 Lewiston 36.133 –77.171 22 38 270 3.3 1.5 0.0 0.0 1.1 0.0 0.4 0.0 73.7 
NC06 Beaufort 34.885 –76.621 2 8 244 2.5 0.8 0.4 0.0 2.5 0.0 0.0 0.0 50.0 
NC17 University Research Farm 36.067 –79.734 238 265 35 0.0 2.9 0.0 0.0 2.9 0.0 0.0 0.0 77.1 
NC25 Coweeta 35.061 –83.431 686 377 282 9.6 12.1 1.4 2.1 3.2 0.0 0.4 0.0 83.0 
NC29 Hofmann Forest 34.825 –77.323 14 24 274 1.1 0.7 0.7 0.0 2.9 0.0 0.0 0.0 58.8 
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NC34 Piedmont Research Station 35.697 –80.623 219 286 253 6.3 5.5 0.0 0.0 0.0 0.0 0.0 0.0 80.6 
NC35 Clinton Crops Research Station 35.026 –78.278 41 94 264 4.5 2.3 0.0 0.0 0.4 0.0 0.0 0.0 67.8 
NC36 Jordan Creek 34.971 –79.528 132 161 269 5.2 2.6 0.0 0.0 1.1 0.0 0.0 0.0 79.6 
NC41 Finley Farm 35.729 –78.680 120 148 284 6.0 2.8 0.4 0.0 0.0 0.0 0.0 0.0 78.9 
NC45 Mt. Mitchell 35.735 –82.286 1987 383 248 16.9 19.8 2.4 6.9 4.4 0.0 2.0 0.0 88.7 
ND00 Theodore Roosevelt National Park - Painted Canyon 46.895 –103.378 863 1342 210 0.5 2.4 1.4 0.0 1.0 0.0 0.0 0.0 87.6 
ND08 Icelandic State Park 48.782 –97.755 306 1002 186 0.0 0.0 0.0 2.2 0.5 0.0 0.0 0.0 87.6 
ND11 Woodworth 47.125 –99.238 578 1218 166 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 82.5 
NE15 Mead 41.153 –96.491 352 1330 214 0.0 1.4 0.0 0.0 0.0 0.0 0.0 0.0 82.2 
NE99 North Platte Agricultural Experiment Station 41.059 –100.746 919 1419 186 0.0 0.5 0.5 0.5 0.0 0.0 0.0 0.0 78.5 
NH02 Hubbard Brook 43.943 –71.703 250 112 273 7.7 13.6 0.4 1.8 5.1 0.7 0.0 0.0 87.9 
NJ00 Edwin B. Forsythe National Wildlife Refuge 39.473 –74.437 2 2 229 3.1 0.9 0.0 0.0 0.4 0.0 0.0 0.0 55.5 
NJ39 Cattus Island County Park 39.989 –74.134 1 0 108 6.5 0.0 0.9 0.0 0.9 0.0 0.0 0.0 41.7 
NJ99 Washington Crossing 40.315 –74.854 72 50 260 3.1 3.5 0.0 0.0 0.8 0.0 0.0 0.0 77.3 

NM01 Gila Cliff Dwellings National Monument 33.220 –108.235 1772 500 78 0.0 0.0 0.0 0.0 3.8 0.0 0.0 0.0 61.5 
NM07 Bandelier National Monument 35.779 –106.266 1997 808 169 0.6 5.3 1.2 4.7 1.8 0.0 0.0 0.0 75.1 
NM08 Mayhill 32.910 –105.471 2022 716 134 0.0 0.7 0.7 1.5 0.7 0.0 0.0 0.0 70.9 
NM12 Capulin Volcano National Monument 36.779 –103.981 2190 1032 82 0.0 1.2 1.2 0.0 2.4 1.2 0.0 0.0 62.2 
NV03 Smith Valley 38.799 –119.257 1501 263 114 2.6 11.4 0.9 2.6 0.0 0.0 2.6 0.0 82.5 
NV05 Great Basin National Park - Lehman Caves 39.005 –114.217 2066 671 170 0.6 1.8 0.0 1.8 1.8 0.0 0.0 0.0 62.4 
NY01 Alfred 42.228 –77.802 697 340 258 0.4 4.3 0.4 1.9 0.8 0.0 0.0 0.0 89.5 
NY06 Bronx 40.868 –73.878 68 5 103 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 62.1 
NY08 Aurora Research Farm 42.734 –76.660 249 312 272 2.2 6.3 1.1 2.2 0.0 0.0 0.4 0.0 89.3 
NY10 Chautauqua 42.299 –79.396 488 418 233 0.0 0.9 0.0 0.4 0.9 0.0 0.0 0.0 89.7 
NY20 Huntington Wildlife 43.973 –74.223 500 292 304 7.2 11.5 2.3 4.6 2.3 0.3 0.3 0.0 92.8 
NY22 Akwesasne Mohawk - Fort Covington 44.923 –74.481 70 325 246 1.2 3.7 0.0 2.4 0.4 0.0 0.4 0.0 92.3 
NY28 Piseco Lake 43.434 –74.500 519 288 123 5.7 13.0 1.6 4.9 2.4 0.0 0.0 0.0 93.5 
NY29 Moss Lake 43.787 –74.843 566 323 231 1.3 8.2 0.0 0.4 2.6 0.0 0.4 0.0 89.2 
NY43 Rochester 43.146 –77.548 136 396 96 0.0 0.0 0.0 1.0 1.0 0.0 0.0 0.0 85.4 
NY52 Bennett Bridge 43.528 –75.949 247 349 190 2.6 7.9 0.0 2.6 1.6 0.0 0.0 0.0 84.7 
NY59 Wanakena 44.146 –74.903 468 343 130 1.5 10.0 0.0 6.9 0.8 0.0 0.0 0.0 90.0 
NY68 Biscuit Brook 41.994 –74.503 634 135 286 2.1 7.0 0.3 0.0 1.4 0.0 0.3 0.0 88.8 
NY92 Amherst 42.993 –78.772 183 453 88 0.0 0.0 0.0 0.0 2.3 1.1 0.0 0.0 79.5 
NY93 Paul Smith's 44.434 –74.246 498 313 118 2.5 6.8 0.0 4.2 0.8 0.0 0.0 0.0 89.8 
NY94 Nick's Lake 43.683 –74.983 525 310 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
NY96 Cedar Beach - Southold 41.035 –72.389 1 7 247 0.4 0.0 0.0 0.0 1.6 0.0 0.0 0.0 38.5 
NY98 Whiteface Mountain 44.393 –73.859 610 282 300 2.7 10.3 0.7 6.3 1.3 0.0 0.0 0.0 92.0 
NY99 West Point 41.351 –74.048 211 52 247 1.6 2.8 0.4 0.4 2.4 0.4 0.0 0.0 85.0 
OH09 Oxford 39.531 –84.724 284 617 216 0.0 1.4 0.0 1.4 0.5 0.0 0.0 0.0 85.6 
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Site 
code Site name Latitude 

(DD) 
Longitude 

(DD) 
Elevation 

(m) 

Orthogonal 
inland 

distance (km) 

Number 
of 

samples 

Censoring (%) 

Ca Mg K Na NH4
+ NO3

2– Cl– SO4
2– Br– 

OH15 Lykens 40.550 –82.998 303 519 60 0.0 0.0 0.0 1.7 0.0 0.0 0.0 0.0 88.3 
OH17 Delaware 40.356 –83.066 285 516 269 0.7 2.6 0.4 1.9 0.4 0.0 0.0 0.0 90.3 
OH49 Caldwell 39.793 –81.531 276 376 279 0.0 1.4 0.4 1.8 0.4 0.0 0.4 0.0 84.6 
OH54 Deer Creek State Park 39.636 –83.261 267 504 251 1.6 3.2 0.0 2.4 0.8 0.0 0.0 0.0 86.1 
OH71 Wooster 40.781 –81.920 308 453 276 0.4 1.4 0.4 1.4 0.4 0.0 0.0 0.0 88.0 
OK00 Salt Plains National Wildlife Refuge 36.805 –98.201 345 874 191 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 73.8 
OK17 Kessler Farm Field Laboratory 34.980 –97.521 331 655 142 0.0 0.7 0.0 0.0 0.0 0.0 0.0 0.0 71.8 
OK29 Goodwell Research Station 36.591 –101.618 999 1001 154 0.0 1.3 0.0 0.0 0.0 0.0 0.0 0.0 77.3 
OK99 Stilwell 35.751 –94.670 299 643 3 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 66.7 
OR09 Silver Lake Ranger Station 43.119 –121.059 1338 250 98 3.1 8.2 2.0 5.1 9.2 3.1 0.0 0.0 92.9 
OR10 H. J. Andrews Experimental Forest 44.212 –122.256 443 140 237 20.3 14.3 3.0 1.7 29.5 0.0 0.4 0.0 83.5 
OR18 Starkey Experimental Forest 45.225 –118.513 1254 403 210 7.6 19.0 8.6 4.3 14.8 1.4 0.5 0.0 89.5 
OR97 Hyslop Farm 44.635 –123.190 69 66 217 8.3 4.6 0.5 0.0 0.5 0.0 0.0 0.0 77.0 
PA00 Arendtsville 39.923 –77.308 269 96 249 1.6 4.8 0.0 0.4 0.0 0.0 0.0 0.0 88.4 
PA02 Crooked Creek Lake 40.713 –79.514 294 289 159 0.6 6.9 0.0 0.0 3.1 0.6 0.0 0.0 73.6 
PA13 Allegheny Portage Railroad National Historic Site 40.457 –78.560 739 211 158 0.0 0.0 0.0 0.0 0.6 0.6 0.0 0.0 65.8 
PA15 Penn State 40.788 –77.946 393 210 266 1.9 6.8 0.0 0.4 0.0 0.0 0.0 0.0 88.3 
PA18 Young Woman's Creek 41.414 –77.680 272 255 254 0.0 5.1 0.0 2.0 2.4 0.0 0.0 0.0 85.0 
PA21 Goddard State Park 41.427 –80.145 385 380 164 0.0 3.0 0.0 0.0 1.2 0.0 0.0 0.0 76.2 
PA29 Kane Experimental Forest 41.598 –78.768 618 324 284 2.5 8.5 1.1 2.8 1.8 0.0 0.4 0.0 89.8 
PA30 Erie 42.156 –80.113 177 442 162 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.0 66.7 
PA42 Leading Ridge 40.658 –77.940 287 197 258 0.4 3.1 0.8 1.2 0.0 0.0 0.0 0.0 82.9 
PA47 Millersville 39.991 –76.386 84 58 209 1.4 3.3 0.0 0.5 0.0 0.0 0.0 0.0 81.3 
PA52 Little Pine State Park 41.364 –77.356 228 237 182 1.6 5.5 0.0 2.2 2.2 0.5 0.0 0.0 78.6 
PA60 Valley Forge 40.117 –75.883 46 51 176 1.7 2.3 0.0 0.0 0.6 0.0 0.0 0.0 69.9 
PA71 Little Buffalo State Park 40.460 –77.169 155 140 164 0.6 3.0 0.0 0.6 0.0 0.0 0.0 0.0 75.0 
PA72 Milford 41.327 –74.820 212 90 210 2.9 4.8 0.0 0.5 0.5 0.0 0.0 0.0 84.3 
PA83 Laurel Hill State Park 39.987 –79.254 594 229 161 1.2 7.5 0.0 0.0 1.2 0.0 0.0 0.0 79.5 
PA90 Hills Creek State Park 41.804 –77.190 476 274 183 1.1 5.5 0.0 1.6 2.2 0.0 0.0 0.0 84.2 
PA98 Frances Slocum State Park 41.345 –75.890 370 159 154 0.0 7.1 0.0 1.3 0.6 0.0 0.0 0.0 75.3 
PR20 El Verde 18.321 –65.820 380 10 306 0.7 0.0 0.0 0.0 24.2 0.0 0.0 0.0 24.8 
SC03 Savannah River 33.245 –81.651 90 115 157 3.8 3.2 0.0 0.0 1.3 0.0 0.0 0.0 69.4 
SC05 Cape Romain National Wildlife Refuge 32.943 –79.659 1 0 234 0.4 0.0 0.4 0.0 5.6 0.4 0.0 0.0 45.7 
SC06 Santee National Wildlife Refuge 33.539 –80.435 24 92 215 2.3 1.9 0.0 0.0 3.3 0.5 0.0 0.0 64.2 
SD04 Wind Cave National Park - Elk Mountain 43.558 –103.484 1292 1456 211 0.0 0.9 1.4 1.9 0.5 0.0 0.0 0.0 82.5 
SD08 Cottonwood 43.946 –101.855 733 1552 159 0.6 0.6 1.3 2.5 0.0 0.0 0.6 0.0 85.5 
SD99 Huron Well Field 44.335 –98.292 398 1496 185 0.0 1.1 0.5 0.0 0.0 0.0 0.5 0.0 82.2 
SK20 Cactus Lake 52.022 –109.862 790 971 126 0.0 0.0 0.0 0.8 0.8 0.0 0.0 0.0 81.7 
SK21 Hudson Bay 52.840 –102.380 367 756 128 0.0 3.1 0.0 2.3 0.8 0.0 0.0 0.0 78.9 
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Site 
code Site name Latitude 

(DD) 
Longitude 

(DD) 
Elevation 

(m) 

Orthogonal 
inland 
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of 
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Censoring (%) 

Ca Mg K Na NH4
+ NO3

2– Cl– SO4
2– Br– 

TN00 Walker Branch Watershed 35.961 –84.287 341 509 94 0.0 0.0 0.0 0.0 1.1 0.0 0.0 0.0 91.5 
TN04 Speedwell 36.470 –83.827 384 544 277 3.2 6.1 0.4 1.1 0.4 0.0 0.0 0.0 87.0 
TN11 Great Smoky Mountains National Park - Elkmont 35.665 –83.590 640 447 276 5.1 14.1 0.0 3.3 2.5 0.0 0.0 0.0 89.9 
TN14 Hatchie National Wildlife Refuge 35.469 –89.171 117 565 191 2.6 5.2 0.0 0.5 1.6 0.0 0.5 0.0 88.0 
TX02 Muleshoe National Wildlife Refuge 33.956 –102.776 1144 827 77 1.3 1.3 0.0 0.0 1.3 0.0 0.0 0.0 59.7 
TX03 Beeville 28.467 –97.707 82 67 174 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 38.5 
TX04 Big Bend National Park - K-Bar 29.303 –103.178 1056 561 122 1.6 9.0 1.6 1.6 0.8 0.0 0.8 0.0 63.1 
TX10 Attwater Prairie Chicken National Wildlife Refuge 29.661 –96.259 54 117 176 0.0 0.0 0.0 0.0 0.6 0.0 0.0 0.0 43.8 
TX16 Sonora 30.261 –100.555 696 401 181 0.6 2.2 0.6 0.0 0.6 0.0 0.0 0.0 60.2 
TX21 Longview 32.379 –94.712 103 292 224 1.3 2.2 0.0 0.0 1.8 0.0 0.0 0.0 65.6 
TX22 Guadalupe Mountains National Park Frijole Ranger Station 31.907 –104.805 1705 707 148 0.7 1.4 2.0 0.7 1.4 0.7 0.0 0.0 61.5 
TX43 Cañónceta 34.880 –101.665 1057 850 151 0.7 2.0 0.7 2.0 0.0 0.0 0.7 0.0 70.9 
TX56 L.B.J. National Grasslands 33.392 –97.640 312 493 190 0.5 2.6 0.0 0.5 0.5 0.0 0.0 0.0 69.5 
UT01 Logan 41.666 –111.891 1370 954 201 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.3 
UT08 Murphy Ridge 41.359 –111.048 2146 986 87 0.0 0.0 1.1 1.1 1.1 0.0 0.0 0.0 69.0 
UT09 Canyonlands National Park - Island in the Sky 38.458 –109.821 1797 896 169 0.6 3.6 2.4 2.4 1.8 0.0 0.0 0.0 79.3 
UT98 Green River 39.000 –110.174 1256 917 125 0.0 1.6 0.8 0.8 0.0 0.0 0.0 0.0 81.6 
UT99 Bryce Canyon National Park - Repeater Hill 37.619 –112.173 2477 679 164 1.2 1.8 1.2 3.7 3.0 0.0 0.0 0.0 75.6 
VA00 Charlottesville 38.040 –78.543 172 106 262 3.8 6.1 0.0 0.4 1.1 0.0 0.0 0.0 76.0 
VA10 Mason Neck 38.629 –77.205 6 1 4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 75.0 
VA13 Horton's Station 37.329 –80.558 916 297 275 4.4 7.3 0.4 3.6 4.4 0.4 0.0 0.0 88.7 
VA24 Prince Edward 37.165 –78.307 150 112 263 6.5 6.5 0.0 0.0 1.5 0.0 0.0 0.0 84.4 
VA27 James Madison University Farm 38.303 –78.818 336 131 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
VA28 Shenandoah National Park - Big Meadows 38.523 –78.435 1072 91 263 9.5 12.2 2.7 2.7 2.3 0.0 0.8 0.0 90.9 
VA98 Harcum 37.531 –76.493 13 7 92 0.0 0.0 0.0 0.0 4.3 0.0 0.0 0.0 80.4 
VA99 Natural Bridge Station 37.627 –79.513 282 203 243 7.4 11.9 0.4 2.1 2.9 0.0 0.0 0.0 84.4 
VI01 Virgin Islands National Park - Lind Point 18.336 –64.796 56 0 250 0.0 0.0 0.0 0.0 14.8 0.0 0.0 0.0 12.4 
VT01 Bennington 42.876 –73.163 305 178 247 0.4 0.8 0.0 0.4 4.0 0.0 0.0 0.0 93.9 
VT99 Underhill 44.528 –72.868 399 230 285 1.4 4.9 0.4 4.6 1.8 0.4 0.0 0.0 92.3 
WA14 Olympic National Park - Hoh Ranger Station 47.860 –123.933 182 36 213 12.2 6.1 0.9 0.0 45.1 0.9 0.0 0.0 62.4 
WA19 North Cascades National Park - Marblemount Ranger Station 48.540 –121.446 124 69 238 14.3 10.1 1.7 0.0 23.1 0.0 0.0 0.0 84.5 
WA21 La Grande 46.835 –122.287 617 42 227 11.9 6.2 0.0 0.0 20.7 0.9 0.0 0.0 79.7 
WA24 Palouse Conservation Farm 46.761 –117.185 766 374 225 1.3 7.1 1.3 1.3 0.9 0.0 0.0 0.0 89.3 
WA98 Columbia River Gorge 45.569 –122.210 233 117 224 8.9 5.4 0.4 0.4 0.4 0.0 0.0 0.0 74.1 
WA99 Mount Rainier National Park-Tahoma Woods 46.758 –122.124 424 57 206 14.6 9.7 0.0 0.5 24.8 0.0 0.0 0.0 84.0 
WI08 Brule River 46.747 –91.606 207 944 60 0.0 0.0 0.0 6.7 1.7 0.0 0.0 0.0 91.7 
WI09 Popple River 45.796 –88.399 421 836 151 0.7 7.9 0.7 0.7 0.7 0.0 0.0 0.0 92.1 
WI10 Potawatomi 45.565 –88.808 570 878 265 0.4 4.2 0.4 5.7 1.1 0.4 1.1 0.0 89.8 
WI25 Suring 45.052 –88.373 262 902 193 1.0 4.7 0.5 1.0 0.0 0.0 0.0 0.0 88.1 
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WI28 Lake Dubay 44.707 –89.772 385 1007 173 1.2 5.8 0.6 0.0 1.2 0.0 0.0 0.0 83.2 
WI31 Devil's Lake 43.435 –89.680 389 1132 65 0.0 0.0 0.0 4.6 0.0 0.0 0.0 0.0 81.5 
WI35 Perkinstown 45.206 –90.598 472 1007 261 0.8 5.4 0.8 4.6 0.4 0.0 1.1 0.0 90.0 
WI36 Trout Lake 46.051 –89.654 509 880 263 1.9 4.2 0.0 5.7 1.1 0.4 0.0 0.0 89.7 
WI37 Spooner 45.823 –91.874 331 1017 238 0.4 2.5 0.4 5.0 0.0 0.0 0.0 0.0 89.9 
WI98 Wildcat Mountain 43.702 –90.569 386 1138 166 0.0 1.8 1.8 0.6 0.0 0.6 0.0 0.0 88.0 
WI99 Lake Geneva 42.579 –88.501 288 1049 178 0.0 1.7 0.0 0.0 0.0 0.0 0.0 0.0 90.4 
WV04 Babcock State Park 37.980 –80.953 753 323 163 1.8 3.7 0.0 1.8 0.6 0.0 0.0 0.0 90.8 
WV05 Cedar Creek State Park 38.879 –80.848 210 311 229 2.2 8.3 0.0 3.5 1.7 0.0 0.0 0.0 90.0 
WV18 Parsons 39.090 –79.662 505 216 292 2.1 4.8 0.0 2.1 0.7 0.0 0.0 0.0 87.0 
WY00 Snowy Range 41.376 –106.260 3269 1395 262 1.9 6.9 6.1 4.6 5.0 0.8 1.1 0.0 79.4 
WY02 Sinks Canyon 42.734 –108.850 2164 1145 192 1.6 7.8 4.7 7.8 2.1 0.0 3.1 0.0 76.6 
WY06 Pinedale 42.929 –109.788 2388 1067 175 2.9 10.3 10.3 6.3 5.7 0.6 0.6 0.0 63.4 
WY08 Yellowstone National Park - Tower Falls 44.917 –110.420 1912 910 251 2.8 10.8 5.2 6.4 1.6 0.0 1.2 0.0 78.9 
WY94 Grand Tetons National Park 43.833 –110.701 2107 950 143 0.7 3.5 1.4 2.8 0.7 0.0 0.0 0.0 81.8 
WY95 Brooklyn Lake 41.365 –106.241 3181 1395 269 1.5 8.2 3.7 5.2 6.3 0.4 0.4 0.0 81.4 
WY97 South Pass City 42.494 –108.832 2524 1157 153 1.3 7.2 2.6 3.3 3.3 0.0 0.7 0.0 73.9 
WY98 Gypsum Creek 43.223 –109.992 2428 1031 196 4.1 9.2 9.2 4.1 4.6 0.0 2.6 0.0 69.4 
WY99 Newcastle 43.873 –104.192 1466 1404 205 0.0 2.9 3.4 1.0 2.4 0.0 0.5 0.0 80.0 
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2. Chloride and bromide summaries

Site 
code 

Measured only Imputed (lrEM method) 
Median 

concentration 
(mg L–1) 

Mean weekly 
wet deposition 

(kg ha–1) 

Mean 
weekly wet 
deposition 

Cl–/ Br– 
(mass) 

Median 
concentration 

(mg L–1) 

Mean weekly 
wet deposition 

(kg ha–1) 

Mean 
weekly wet 
deposition 

Cl–/ Br– 
(mass) Cl– Br– Cl– Br– Cl– Br– Cl– Br– 

AK01 0.0270 0.0061 0.0037 0.0006 7 0.0270 0.0007 0.0037 0.0001 38 
AK02 0.1680 0.0034 0.0859 0.0013 67 0.1680 0.0012 0.0859 0.0006 150 
AK03 0.0240 0.0047 0.0028 0.0005 5 0.0240 0.0005 0.0027 0.0001 34 
AK06 0.0340 0.0079 0.0036 0.0006 6 0.0340 0.0007 0.0035 0.0001 27 
AK97 0.2525 0.0042 0.1038 0.0012 86 0.2525 0.0017 0.1038 0.0004 238 
AL02 0.3750 0.0051 0.1806 0.0009 198 0.3750 0.0034 0.1806 0.0011 158 
AL03 0.1870 0.0038 0.0970 0.0013 75 0.1870 0.0031 0.0970 0.0010 95 
AL10 0.2040 0.0041 0.0814 0.0012 66 0.2040 0.0031 0.0814 0.0009 94 
AL19 0.1710 0.0035 0.0851 0.0011 80 0.1710 0.0034 0.0851 0.0010 83 
AL24 0.6980 0.0081 0.5054 0.0045 113 0.6980 0.0044 0.5054 0.0028 181 
AL99 0.1130 0.0043 0.0487 0.0011 46 0.1125 0.0026 0.0485 0.0008 57 
AR02 0.2140 0.0046 0.0818 0.0010 82 0.2140 0.0034 0.0818 0.0010 83 
AR03 0.1740 0.0039 0.0818 0.0014 57 0.1740 0.0033 0.0818 0.0012 71 
AR16 0.1010 0.0048 0.0334 0.0011 29 0.1005 0.0030 0.0333 0.0007 45 
AR27 0.1175 0.0038 0.0450 0.0010 44 0.1150 0.0031 0.0449 0.0008 59 
AZ03 0.1165 0.0085 0.0163 0.0009 17 0.1160 0.0031 0.0163 0.0005 34 
AZ06 0.4475 0.0079 0.0720 0.0006 111 0.4475 0.0060 0.0720 0.0006 124 
AZ97 0.1500 0.0063 0.0106 0.0004 30 0.1500 0.0037 0.0106 0.0002 44 
AZ98 0.0965 0.0069 0.0158 0.0006 24 0.0965 0.0032 0.0158 0.0004 37 
AZ99 0.1430 0.0070 0.0118 0.0004 29 0.1430 0.0038 0.0118 0.0003 41 
BC22 0.2230 0.0029 0.2089 0.0020 106 0.2230 0.0015 0.2089 0.0010 207 
BC23 0.0560 0.0027 0.0288 0.0005 57 0.0555 0.0008 0.0285 0.0003 109 
BC24 0.4630 0.0031 0.3127 0.0020 160 0.4630 0.0023 0.3127 0.0012 257 
CA28 0.0740 0.0058 0.0229 0.0088 3 0.0740 0.0016 0.0225 0.0014 16 
CA42 0.5255 0.0061 0.1813 0.0013 140 0.5255 0.0042 0.1813 0.0009 201 
CA45 0.2895 0.0045 0.1629 0.0016 102 0.2895 0.0019 0.1629 0.0007 221 
CA50 0.0310 0.0108 0.0094 0.0017 6 0.0300 0.0007 0.0092 0.0003 30 
CA66 0.2700 0.0042 0.0639 0.0005 126 0.2700 0.0019 0.0639 0.0003 227 
CA67 0.1520 0.0064 0.0226 0.0003 84 0.1520 0.0020 0.0226 0.0002 105 
CA75 0.0870 0.0062 0.0270 0.0004 66 0.0835 0.0016 0.0268 0.0004 69 
CA76 0.0445 0.0067 0.0049 0.0004 14 0.0445 0.0009 0.0049 0.0001 42 
CA88 0.2790 0.0056 0.1003 0.0012 82 0.2790 0.0027 0.1003 0.0006 170 
CA94 0.1780 0.0071 0.0424 0.0009 47 0.1780 0.0024 0.0424 0.0004 97 
CA96 0.0495 0.0070 0.0167 0.0003 49 0.0490 0.0008 0.0165 0.0002 69 
CA99 0.0790 0.0042 0.0382 0.0007 55 0.0780 0.0017 0.0379 0.0005 83 
CO00 0.0630 0.0065 0.0037 0.0003 11 0.0625 0.0024 0.0037 0.0002 22 
CO01 0.0700 0.0062 0.0071 0.0006 12 0.0700 0.0033 0.0071 0.0003 21 
CO02 0.0495 0.0064 0.0053 0.0011 5 0.0490 0.0021 0.0052 0.0004 14 
CO08 0.0445 0.0066 0.0065 0.0005 12 0.0440 0.0019 0.0065 0.0003 23 
CO09 0.0420 0.0037 0.0051 0.0004 11 0.0420 0.0016 0.0051 0.0002 24 
CO10 0.0440 0.0067 0.0066 0.0007 9 0.0430 0.0018 0.0065 0.0003 22 
CO15 0.0535 0.0076 0.0043 0.0006 8 0.0535 0.0024 0.0043 0.0002 18 
CO19 0.0500 0.0071 0.0055 0.0006 9 0.0490 0.0020 0.0054 0.0003 19 
CO21 0.0600 0.0079 0.0065 0.0009 7 0.0590 0.0032 0.0065 0.0004 17 
CO22 0.0600 0.0070 0.0065 0.0004 15 0.0600 0.0030 0.0065 0.0003 22 
CO89 0.0360 0.0051 0.0056 0.0006 9 0.0345 0.0017 0.0055 0.0003 19 
CO90 0.0370 0.0057 0.0063 0.0014 5 0.0365 0.0018 0.0062 0.0005 14 
CO91 0.0470 0.0069 0.0108 0.0009 12 0.0465 0.0020 0.0108 0.0005 22 
CO92 0.0370 0.0063 0.0054 0.0005 10 0.0370 0.0014 0.0054 0.0002 23 
CO93 0.0360 0.0063 0.0053 0.0119 0 0.0360 0.0017 0.0052 0.0023 2 
CO94 0.0480 0.0052 0.0058 0.0008 7 0.0480 0.0022 0.0058 0.0003 18 
CO96 0.0480 0.0051 0.0081 0.0009 9 0.0480 0.0017 0.0081 0.0003 24 
CO97 0.0370 0.0049 0.0051 0.0009 6 0.0370 0.0017 0.0051 0.0003 18 
CO98 0.0390 0.0065 0.0059 0.0011 5 0.0380 0.0017 0.0058 0.0003 17 
CO99 0.0830 0.0067 0.0084 0.0005 17 0.0830 0.0032 0.0084 0.0003 28 
CT15 0.1770 0.0051 0.0709 0.0013 56 0.1770 0.0030 0.0709 0.0007 104 
FL03 0.3625 0.0045 0.1251 0.0011 113 0.3625 0.0034 0.1251 0.0011 116 
FL05 0.6530 0.0055 0.2116 0.0013 165 0.6530 0.0040 0.2116 0.0013 166 
FL11 0.9720 0.0067 0.3060 0.0019 161 0.9720 0.0054 0.3060 0.0017 178 
FL14 0.3430 0.0045 0.1270 0.0012 102 0.3430 0.0035 0.1270 0.0011 120 
FL23 0.4120 0.0044 0.1703 0.0019 89 0.4120 0.0034 0.1703 0.0013 135 
FL32 0.4985 0.0059 0.1933 0.0014 134 0.4985 0.0041 0.1933 0.0014 142 
FL41 0.5600 0.0050 0.1825 0.0014 129 0.5600 0.0040 0.1825 0.0013 142 
FL96 0.4755 0.0043 0.2798 0.0022 128 0.4700 0.0039 0.2774 0.0015 183 
FL99 0.9185 0.0070 0.3645 0.0019 191 0.9185 0.0052 0.3645 0.0017 219 
GA09 0.2975 0.0047 0.1168 0.0013 89 0.2975 0.0033 0.1168 0.0010 122 
GA20 0.2720 0.0044 0.0800 0.0009 90 0.2720 0.0033 0.0800 0.0008 106 
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Site 
code 

Measured only Imputed (lrEM method) 
Median 

concentration 
(mg L–1) 

Mean weekly 
wet deposition 

(kg ha–1) 

Mean 
weekly wet 
deposition 

Cl–/ Br– 
(mass) 

Median 
concentration 

(mg L–1) 

Mean weekly 
wet deposition 

(kg ha–1) 

Mean 
weekly wet 
deposition 

Cl–/ Br– 
(mass) Cl– Br– Cl– Br– Cl– Br– Cl– Br– 

GA33 1.1565 0.0074 0.3846 0.0020 194 1.1565 0.0055 0.3846 0.0016 237 
GA41 0.1500 0.0034 0.0531 0.0010 54 0.1500 0.0028 0.0531 0.0008 70 
GA99 0.2265 0.0043 0.0761 0.0009 87 0.2265 0.0028 0.0761 0.0008 100 
IA08 0.0655 0.0049 0.0164 0.0010 16 0.0650 0.0033 0.0163 0.0006 25 
IA23 0.0770 0.0046 0.0197 0.0013 15 0.0770 0.0033 0.0196 0.0007 27 
ID02 0.0390 0.0078 0.0092 0.0008 12 0.0390 0.0012 0.0092 0.0002 38 
ID03 0.0650 0.0064 0.0087 0.0004 23 0.0650 0.0016 0.0086 0.0002 51 
ID11 0.0570 0.0068 0.0075 0.0003 25 0.0570 0.0016 0.0074 0.0002 42 
IL11 0.0830 0.0053 0.0192 0.0011 18 0.0815 0.0033 0.0191 0.0006 31 
IL18 0.0780 0.0068 0.0159 0.0012 14 0.0780 0.0036 0.0158 0.0006 25 
IL46 0.0830 0.0046 0.0260 0.0011 24 0.0830 0.0031 0.0260 0.0007 36 
IL63 0.1000 0.0054 0.0406 0.0018 23 0.1000 0.0032 0.0406 0.0010 40 
IL78 0.0710 0.0040 0.0194 0.0009 21 0.0710 0.0030 0.0194 0.0006 30 
IL95 0.0850 – 0.0173 – – 0.0850 0.0023 0.0173 0.0003 67 
IN20 0.0800 0.0043 0.0192 0.0020 10 0.0800 0.0034 0.0192 0.0008 24 
IN22 0.0890 0.0049 0.0311 0.0021 15 0.0890 0.0034 0.0311 0.0010 30 
IN34 0.1110 0.0045 0.0281 0.0009 31 0.1110 0.0039 0.0281 0.0008 36 
IN41 0.0770 0.0041 0.0187 0.0013 14 0.0770 0.0033 0.0187 0.0007 28 
KS07 0.1120 0.0048 0.0365 0.0011 34 0.1115 0.0032 0.0363 0.0008 44 
KS31 0.0735 0.0050 0.0201 0.0013 16 0.0735 0.0030 0.0201 0.0007 30 
KS32 0.0580 0.0042 0.0105 0.0013 8 0.0580 0.0028 0.0105 0.0006 19 
KS97 0.1165 – 0.0256 – – 0.1165 0.0018 0.0256 0.0004 68 
KY03 0.0770 0.0052 0.0308 0.0027 12 0.0765 0.0029 0.0307 0.0010 31 
KY10 0.0760 0.0035 0.0357 0.0010 36 0.0760 0.0027 0.0357 0.0008 47 
KY19 0.1080 0.0036 0.0384 0.0032 12 0.1080 0.0033 0.0384 0.0011 34 
KY22 0.0585 0.0043 0.0190 0.0021 9 0.0580 0.0025 0.0189 0.0008 24 
KY35 0.0720 0.0059 0.0250 0.0017 14 0.0720 0.0032 0.0250 0.0009 29 
KY99 0.0910 0.0037 0.0421 0.0022 19 0.0910 0.0028 0.0421 0.0010 43 
LA12 0.4475 0.0052 0.2233 0.0019 117 0.4475 0.0041 0.2233 0.0017 131 
LA30 0.3225 0.0049 0.1648 0.0016 102 0.3225 0.0036 0.1648 0.0014 120 
MA01 1.4510 0.0081 0.5235 0.0027 196 1.4510 0.0047 0.5235 0.0019 274 
MA08 0.1110 0.0045 0.0410 0.0014 30 0.1110 0.0026 0.0410 0.0007 63 
MA13 0.3210 0.0080 0.2660 0.0027 100 0.3210 0.0036 0.2660 0.0015 180 
MA14 1.6720 0.0074 0.9027 0.0041 219 1.6720 0.0060 0.9027 0.0031 289 
MA22 0.4170 0.0066 0.1349 0.0019 73 0.4170 0.0027 0.1349 0.0007 197 
MD07 0.0890 0.0068 0.0453 0.0022 20 0.0890 0.0032 0.0453 0.0009 50 
MD08 0.0660 0.0065 0.0161 0.0018 9 0.0660 0.0026 0.0161 0.0006 28 
MD13 0.2590 0.0051 0.0761 0.0010 75 0.2590 0.0035 0.0761 0.0008 101 
MD15 0.8300 0.0064 0.2664 0.0015 177 0.8300 0.0043 0.2664 0.0011 234 
MD18 0.7415 0.0084 0.2821 0.0020 142 0.7415 0.0043 0.2821 0.0013 222 
MD99 0.1430 0.0049 0.0480 0.0011 44 0.1430 0.0033 0.0480 0.0008 64 
ME00 0.0620 0.0054 0.0197 0.0011 17 0.0620 0.0016 0.0197 0.0005 44 
ME02 0.0770 0.0059 0.0569 0.0017 33 0.0770 0.0020 0.0569 0.0006 103 
ME04 0.0585 0.0062 0.0373 0.0010 38 0.0580 0.0017 0.0370 0.0005 80 
ME08 0.0540 0.0053 0.0464 0.0017 27 0.0530 0.0021 0.0460 0.0007 69 
ME09 0.0560 0.0077 0.0284 0.0015 19 0.0560 0.0017 0.0282 0.0005 57 
ME94 0.1450 0.0032 0.0457 0.0006 82 0.1450 0.0017 0.0457 0.0004 128 
ME96 0.3180 0.0063 0.1466 0.0017 85 0.3180 0.0032 0.1466 0.0008 177 
ME98 0.3650 0.0060 0.1700 0.0018 94 0.3650 0.0029 0.1700 0.0009 185 
MI09 0.0475 0.0073 0.0086 0.0012 7 0.0470 0.0027 0.0085 0.0005 18 
MI26 0.0685 0.0064 0.0151 0.0013 12 0.0685 0.0034 0.0151 0.0006 24 
MI48 0.0430 0.0038 0.0063 0.0006 10 0.0430 0.0023 0.0063 0.0004 17 
MI51 0.0550 0.0049 0.0096 0.0014 7 0.0550 0.0031 0.0095 0.0005 18 
MI52 0.0700 0.0055 0.0142 0.0015 10 0.0700 0.0034 0.0142 0.0006 22 
MI53 0.0550 0.0102 0.0124 0.0020 6 0.0550 0.0030 0.0124 0.0006 20 
MI98 0.0425 0.0064 0.0089 0.0008 11 0.0425 0.0026 0.0089 0.0004 20 
MI99 0.0470 0.0070 0.0075 0.0013 6 0.0470 0.0023 0.0075 0.0005 16 
MN01 0.0630 0.0056 0.0112 0.0011 10 0.0630 0.0027 0.0112 0.0005 21 
MN08 0.0390 0.0043 0.0060 0.0010 6 0.0390 0.0024 0.0060 0.0004 14 
MN16 0.0330 0.0051 0.0053 0.0007 8 0.0330 0.0021 0.0053 0.0003 16 
MN18 0.0350 0.0052 0.0040 0.0004 9 0.0350 0.0019 0.0040 0.0003 15 
MN23 0.0480 0.0065 0.0084 0.0008 11 0.0480 0.0027 0.0084 0.0005 18 
MN27 0.0640 0.0047 0.0158 0.0006 27 0.0640 0.0032 0.0158 0.0005 33 
MN28 0.0380 0.0042 0.0071 0.0013 5 0.0380 0.0022 0.0071 0.0005 16 
MN32 0.0280 0.0062 0.0049 0.0010 5 0.0280 0.0017 0.0049 0.0004 14 
MN99 0.0390 0.0070 0.0061 0.0007 9 0.0390 0.0024 0.0061 0.0004 15 
MO03 0.0890 0.0049 0.0286 0.0019 15 0.0890 0.0031 0.0286 0.0009 32 
MO05 0.1130 0.0043 0.0539 0.0025 22 0.1130 0.0032 0.0536 0.0011 47 
MS10 0.2240 0.0043 0.0813 0.0015 54 0.2240 0.0034 0.0813 0.0010 82 
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Site 
code 

Measured only Imputed (lrEM method) 
Median 
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(mass) 
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(mg L–1) 
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wet deposition 

(kg ha–1) 
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weekly wet 
deposition 

Cl–/ Br– 
(mass) Cl– Br– Cl– Br– Cl– Br– Cl– Br– 

MS12 0.6780 0.0057 0.3490 0.0025 137 0.6780 0.0042 0.3490 0.0019 184 
MS19 0.1780 0.0037 0.0837 0.0014 60 0.1780 0.0028 0.0837 0.0010 86 
MS30 0.1550 0.0042 0.0585 0.0013 46 0.1550 0.0032 0.0585 0.0009 69 
MT00 0.0490 0.0095 0.0039 0.0022 2 0.0485 0.0019 0.0039 0.0006 7 
MT05 0.0290 0.0056 0.0051 0.0010 5 0.0290 0.0011 0.0051 0.0002 21 
MT07 0.0345 0.0088 0.0046 0.0004 10 0.0330 0.0014 0.0045 0.0002 26 
MT96 0.0475 0.0096 0.0052 0.0006 9 0.0470 0.0028 0.0052 0.0004 14 
MT97 0.0270 0.0038 0.0059 0.0007 8 0.0270 0.0007 0.0059 0.0002 35 
MT98 0.0400 0.0089 0.0039 0.0004 9 0.0400 0.0021 0.0039 0.0002 19 
NC03 0.2670 0.0046 0.0930 0.0010 93 0.2665 0.0034 0.0927 0.0007 128 
NC06 1.0665 0.0065 0.4204 0.0026 159 1.0665 0.0044 0.4204 0.0018 239 
NC17 0.1540 0.0032 0.1419 0.0043 33 0.1540 0.0023 0.1419 0.0014 102 
NC25 0.0870 0.0046 0.0487 0.0016 31 0.0870 0.0025 0.0485 0.0008 59 
NC29 0.4710 0.0060 0.2104 0.0016 133 0.4710 0.0039 0.2104 0.0012 182 
NC34 0.1280 0.0045 0.0426 0.0014 30 0.1280 0.0034 0.0426 0.0008 54 
NC35 0.3060 0.0044 0.0899 0.0010 95 0.3060 0.0034 0.0899 0.0007 124 
NC36 0.1780 0.0049 0.0783 0.0014 58 0.1780 0.0032 0.0783 0.0008 100 
NC41 0.1740 0.0041 0.0617 0.0012 51 0.1740 0.0029 0.0617 0.0007 89 
NC45 0.0440 0.0050 0.0236 0.0019 13 0.0430 0.0016 0.0232 0.0006 37 
ND00 0.0505 0.0062 0.0053 0.0005 11 0.0505 0.0021 0.0053 0.0002 23 
ND08 0.0470 0.0107 0.0052 0.0011 5 0.0470 0.0029 0.0052 0.0004 13 
ND11 0.0525 0.0063 0.0050 0.0005 10 0.0525 0.0031 0.0050 0.0003 16 
NE15 0.0620 0.0067 0.0173 0.0008 23 0.0620 0.0029 0.0173 0.0006 28 
NE99 0.0640 0.0056 0.0089 0.0044 2 0.0640 0.0031 0.0089 0.0012 7 
NH02 0.0660 0.0041 0.0270 0.0009 31 0.0660 0.0022 0.0270 0.0005 49 
NJ00 0.7750 0.0063 0.3747 0.0024 157 0.7750 0.0043 0.3747 0.0015 251 
NJ39 0.7185 0.0057 0.5686 0.0031 181 0.7185 0.0042 0.5686 0.0021 274 
NJ99 0.1980 0.0044 0.0813 0.0011 73 0.1980 0.0034 0.0813 0.0008 99 

NM01 0.0875 0.0083 0.0104 0.0006 16 0.0875 0.0034 0.0104 0.0004 25 
NM07 0.0680 0.0080 0.0062 0.0006 10 0.0680 0.0024 0.0062 0.0003 21 
NM08 0.0705 0.0050 0.0154 0.0009 17 0.0705 0.0027 0.0154 0.0006 27 
NM12 0.0790 0.0093 0.0137 0.0007 21 0.0790 0.0036 0.0137 0.0004 35 
NV03 0.0610 0.0075 0.0054 0.0004 15 0.0560 0.0013 0.0053 0.0001 42 
NV05 0.1235 0.0090 0.0134 0.0011 12 0.1235 0.0035 0.0134 0.0006 24 
NY01 0.0510 0.0093 0.0116 0.0022 5 0.0510 0.0027 0.0116 0.0007 18 
NY06 0.6270 0.0042 0.2533 0.0016 154 0.6270 0.0040 0.2533 0.0011 226 
NY08 0.0560 0.0058 0.0106 0.0012 9 0.0560 0.0028 0.0106 0.0005 21 
NY10 0.0630 0.0048 0.0222 0.0008 27 0.0630 0.0034 0.0222 0.0009 26 
NY20 0.0370 0.0048 0.0094 0.0009 11 0.0370 0.0018 0.0093 0.0004 23 
NY22 0.0430 0.0040 0.0086 0.0013 7 0.0430 0.0025 0.0086 0.0005 18 
NY28 0.0530 0.0036 0.0220 0.0010 22 0.0530 0.0024 0.0220 0.0005 41 
NY29 0.0410 0.0075 0.0139 0.0012 11 0.0410 0.0023 0.0139 0.0006 22 
NY43 0.1215 0.0031 0.1001 0.0005 204 0.1215 0.0037 0.1001 0.0006 166 
NY52 0.0540 0.0052 0.0175 0.0007 25 0.0540 0.0029 0.0175 0.0006 28 
NY59 0.0460 0.0033 0.0145 0.0008 18 0.0460 0.0024 0.0145 0.0005 28 
NY68 0.0700 0.0053 0.0335 0.0019 17 0.0700 0.0026 0.0334 0.0008 42 
NY92 0.1330 0.0033 0.0728 0.0005 146 0.1330 0.0039 0.0728 0.0006 115 
NY93 0.0550 0.0031 0.0153 0.0007 22 0.0550 0.0023 0.0153 0.0005 30 
NY94 0.0190 – 0.0044 – – 0.0190 0.0015 0.0044 0.0003 13 
NY96 1.9900 0.0108 0.6059 0.0028 213 1.9900 0.0056 0.6059 0.0020 297 
NY98 0.0350 0.0059 0.0105 0.0011 9 0.0350 0.0021 0.0105 0.0005 20 
NY99 0.1390 0.0045 0.0777 0.0019 41 0.1390 0.0034 0.0777 0.0010 79 
OH09 0.0910 0.0042 0.0339 0.0016 21 0.0910 0.0036 0.0339 0.0008 41 
OH15 0.0550 0.0079 0.0100 0.0003 38 0.0550 0.0033 0.0100 0.0005 19 
OH17 0.0690 0.0070 0.0189 0.0022 9 0.0690 0.0033 0.0189 0.0008 24 
OH49 0.0985 0.0060 0.0248 0.0018 13 0.0980 0.0038 0.0247 0.0009 27 
OH54 0.0670 0.0041 0.0182 0.0007 26 0.0670 0.0032 0.0182 0.0006 29 
OH71 0.0820 0.0068 0.0206 0.0018 11 0.0820 0.0035 0.0206 0.0007 28 
OK00 0.1680 0.0058 0.0428 0.0009 49 0.1680 0.0037 0.0428 0.0007 63 
OK17 0.1855 0.0054 0.0575 0.0014 41 0.1855 0.0039 0.0575 0.0010 56 
OK29 0.1360 0.0061 0.0319 0.0006 53 0.1360 0.0036 0.0319 0.0004 80 
OK99 0.1190 – 0.0714 – – 0.1190 0.0028 0.0714 0.0015 48 
OR09 0.0390 0.0062 0.0031 0.0001 22 0.0390 0.0012 0.0031 0.0001 38 
OR10 0.1255 0.0042 0.1288 0.0019 66 0.1220 0.0011 0.1283 0.0007 185 
OR18 0.0340 0.0050 0.0054 0.0004 14 0.0335 0.0008 0.0054 0.0001 36 
OR97 0.2950 0.0044 0.1358 0.0015 93 0.2950 0.0016 0.1358 0.0006 245 
PA00 0.1140 0.0054 0.0440 0.0013 35 0.1140 0.0032 0.0440 0.0007 60 
PA02 0.0870 0.0036 0.0220 0.0008 28 0.0870 0.0035 0.0220 0.0007 32 
PA13 0.2400 0.0044 0.0562 0.0007 80 0.2400 0.0041 0.0562 0.0008 67 
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PA15 0.0835 0.0037 0.0202 0.0008 24 0.0835 0.0032 0.0202 0.0006 32 
PA18 0.0820 0.0036 0.0226 0.0011 21 0.0820 0.0033 0.0226 0.0007 32 
PA21 0.1005 0.0038 0.0237 0.0009 25 0.1005 0.0036 0.0237 0.0007 33 
PA29 0.0480 0.0041 0.0143 0.0013 11 0.0480 0.0027 0.0143 0.0006 23 
PA30 0.1540 0.0044 0.0319 0.0007 43 0.1540 0.0041 0.0319 0.0008 41 
PA42 0.1125 0.0045 0.0258 0.0008 31 0.1125 0.0034 0.0258 0.0006 40 
PA47 0.1420 0.0050 0.0502 0.0011 44 0.1420 0.0034 0.0502 0.0008 65 
PA52 0.0990 0.0041 0.0224 0.0008 29 0.0990 0.0033 0.0224 0.0006 36 
PA60 0.2920 0.0045 0.0967 0.0010 92 0.2920 0.0037 0.0967 0.0008 114 
PA71 0.1515 0.0038 0.0438 0.0009 47 0.1515 0.0036 0.0438 0.0007 61 
PA72 0.1360 0.0052 0.0558 0.0021 27 0.1360 0.0033 0.0558 0.0010 57 
PA83 0.0880 0.0033 0.0245 0.0009 27 0.0880 0.0032 0.0245 0.0007 34 
PA90 0.0700 0.0038 0.0173 0.0007 25 0.0700 0.0031 0.0173 0.0005 33 
PA98 0.1050 0.0037 0.0226 0.0006 38 0.1050 0.0027 0.0226 0.0005 49 
PR20 2.2395 0.0092 1.4210 0.0054 263 2.2395 0.0075 1.4210 0.0047 305 
SC03 0.2290 0.0042 0.0812 0.0008 97 0.2290 0.0031 0.0812 0.0007 111 
SC05 0.7860 0.0065 0.2768 0.0019 147 0.7860 0.0044 0.2768 0.0015 191 
SC06 0.2300 0.0047 0.0879 0.0010 90 0.2300 0.0035 0.0879 0.0009 95 
SD04 0.0510 0.0056 0.0066 0.0004 16 0.0510 0.0022 0.0066 0.0003 21 
SD08 0.0490 0.0058 0.0063 0.0008 8 0.0490 0.0026 0.0062 0.0004 18 
SD99 0.0630 0.0057 0.0094 0.0010 10 0.0620 0.0620 0.0094 0.0005 19 
SK20 0.0640 0.0054 0.0063 0.0007 9 0.0640 0.0640 0.0063 0.0003 19 
SK21 0.0415 0.0039 0.0034 0.0002 15 0.0415 0.0415 0.0034 0.0002 15 
TN00 0.0915 0.0093 0.0406 0.0027 15 0.0915 0.0915 0.0406 0.0010 39 
TN04 0.0810 0.0040 0.0314 0.0015 21 0.0810 0.0810 0.0314 0.0007 43 
TN11 0.0595 0.0033 0.0231 0.0011 21 0.0595 0.0595 0.0231 0.0007 32 
TN14 0.1025 0.0060 0.0473 0.0026 18 0.1020 0.1020 0.0470 0.0010 48 
TX02 0.1170 0.0052 0.0224 0.0009 25 0.1170 0.1170 0.0224 0.0006 36 
TX03 0.9495 0.0077 0.1785 0.0033 54 0.9495 0.9495 0.1785 0.0023 77 
TX04 0.0950 0.0067 0.0080 0.0004 18 0.0950 0.0950 0.0080 0.0003 28 
TX10 0.7000 0.0065 0.1931 0.0013 152 0.7000 0.7000 0.1931 0.0012 164 
TX16 0.2180 0.0052 0.0338 0.0007 47 0.2180 0.2180 0.0338 0.0005 62 
TX21 0.2675 0.0044 0.0857 0.0012 70 0.2675 0.2675 0.0857 0.0009 90 
TX22 0.0970 0.0062 0.0172 0.0005 34 0.0970 0.0970 0.0172 0.0004 39 
TX43 0.0870 0.0052 0.0182 0.0007 27 0.0870 0.0870 0.0181 0.0005 37 
TX56 0.1570 0.0048 0.0626 0.0011 55 0.1570 0.1570 0.0626 0.0009 73 
UT01 0.3960 0.0081 0.0903 0.0006 141 0.3960 0.3960 0.0903 0.0005 193 
UT08 0.0910 0.0096 0.0110 0.0005 22 0.0910 0.0910 0.0110 0.0002 45 
UT09 0.0790 0.0081 0.0062 0.0004 15 0.0790 0.0790 0.0062 0.0002 26 
UT98 0.1030 0.0090 0.0062 0.0004 16 0.1030 0.1030 0.0062 0.0002 29 
UT99 0.0740 0.0079 0.0088 0.0007 13 0.0740 0.0740 0.0088 0.0003 27 
VA00 0.1070 0.0062 0.0491 0.0012 42 0.1070 0.1070 0.0491 0.0008 64 
VA10 0.1405 0.0328 0.0581 0.0001 520 0.1405 0.1405 0.0581 0.0008 75 
VA13 0.0700 0.0059 0.0164 0.0012 13 0.0700 0.0700 0.0164 0.0006 28 
VA24 0.0960 0.0042 0.0445 0.0009 47 0.0960 0.0960 0.0445 0.0006 76 
VA27 0.0880 0.0026 0.0036 0.0001 34 0.0880 0.0880 0.0036 0.0001 34 
VA28 0.0560 0.0064 0.0278 0.0044 6 0.0550 0.0550 0.0276 0.0008 33 
VA98 0.3620 0.0074 0.1956 0.0041 48 0.3620 0.3620 0.1956 0.0015 127 
VA99 0.0650 0.0044 0.0239 0.0010 23 0.0650 0.0650 0.0239 0.0006 41 
VI01 3.4625 0.0124 0.6860 0.0026 268 3.4625 3.4625 0.6860 0.0024 287 
VT01 0.0730 0.0048 0.0238 0.0034 7 0.0730 0.0730 0.0238 0.0008 30 
VT99 0.0390 0.0056 0.0131 0.0014 9 0.0390 0.0390 0.0131 0.0006 24 
WA14 0.3960 0.0052 0.7825 0.0063 125 0.3960 0.3960 0.7825 0.0029 272 
WA19 0.1145 0.0036 0.1005 0.0016 61 0.1145 0.1145 0.1005 0.0007 134 
WA21 0.2040 0.0038 0.0709 0.0009 82 0.2040 0.2040 0.0709 0.0005 157 
WA24 0.0580 0.0045 0.0082 0.0003 25 0.0580 0.0580 0.0082 0.0002 45 
WA98 0.2265 0.0039 0.1193 0.0013 91 0.2265 0.2265 0.1193 0.0007 162 
WA99 0.1870 0.0035 0.1247 0.0013 99 0.1870 0.1870 0.1247 0.0006 216 
WI08 0.0485 0.0026 0.0084 0.0001 88 0.0485 0.0485 0.0084 0.0004 24 
WI09 0.0460 0.0060 0.0064 0.0009 7 0.0460 0.0460 0.0064 0.0004 18 
WI10 0.0360 0.0054 0.0062 0.0012 5 0.0350 0.0350 0.0061 0.0004 15 
WI25 0.0470 0.0114 0.0083 0.0010 9 0.0470 0.0470 0.0083 0.0005 17 
WI28 0.0440 0.0056 0.0094 0.0013 7 0.0440 0.0440 0.0094 0.0006 16 
WI31 0.0570 0.0034 0.0135 0.0007 19 0.0570 0.0570 0.0135 0.0005 25 
WI35 0.0395 0.0045 0.0080 0.0010 8 0.0390 0.0390 0.0079 0.0005 16 
WI36 0.0400 0.0042 0.0072 0.0008 9 0.0400 0.0400 0.0072 0.0004 19 
WI37 0.0480 0.0043 0.0095 0.0010 10 0.0480 0.0480 0.0095 0.0005 20 
WI98 0.0460 0.0065 0.0103 0.0015 7 0.0460 0.0460 0.0103 0.0006 18 
WI99 0.0680 0.0078 0.0165 0.0012 14 0.0680 0.0680 0.0165 0.0007 24 
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Site 
code 

Measured only Imputed (lrEM method) 
Median 

concentration 
(mg L–1) 

Mean weekly 
wet deposition 

(kg ha–1) 

Mean 
weekly wet 
deposition 

Cl–/ Br– 
(mass) 

Median 
concentration 

(mg L–1) 

Mean weekly 
wet deposition 

(kg ha–1) 

Mean 
weekly wet 
deposition 

Cl–/ Br– 
(mass) Cl– Br– Cl– Br– Cl– Br– Cl– Br– 

WV04 0.0570 0.0052 0.0165 0.0014 12 0.0570 0.0570 0.0165 0.0007 24 
WV05 0.0590 0.0034 0.0177 0.0007 24 0.0590 0.0590 0.0177 0.0006 28 
WV18 0.0590 0.0068 0.0155 0.0023 7 0.0590 0.0590 0.0155 0.0008 19 
WY00 0.0460 0.0087 0.0041 0.0008 5 0.0445 0.0445 0.0041 0.0003 16 
WY02 0.0340 0.0081 0.0051 0.0006 9 0.0325 0.0325 0.0049 0.0002 20 
WY06 0.0625 0.0087 0.0057 0.0007 9 0.0620 0.0620 0.0057 0.0003 19 
WY08 0.0495 0.0055 0.0060 0.0003 19 0.0490 0.0490 0.0059 0.0002 36 
WY94 0.0970 0.0041 0.0131 0.0003 38 0.0970 0.0970 0.0131 0.0002 55 
WY95 0.0390 0.0063 0.0049 0.0007 7 0.0390 0.0014 0.0049 0.0003 19 
WY97 0.0485 0.0059 0.0063 0.0006 10 0.0480 0.0018 0.0062 0.0003 23 
WY98 0.0560 0.0090 0.0058 0.0006 9 0.0530 0.0018 0.0056 0.0003 21 
WY99 0.0505 0.0059 0.0055 0.0005 10 0.0500 0.0022 0.0055 0.0003 19 
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Lake George Basin hydrogeochemical data 

1. Rainwater
a. Site ID key

Site ID prefix Description Latitude (DD) Longitude (DD) 
RPRW Rocky Point rainwater sampling point –35.009 149.462 
BRW Bungendore Post Office rainwater sampling point –35.235 149.445 
WRW Winderadeen Homestead rainwater sampling point –34.940 149.427 
LGRW Lake George rainwater – a mixture of the three sampling points for element/ion and stable water isotope 

analyses 
LGRWT Lake George rainwater tritium – a mixture of the three sampling points for tritium analyses 
LGRWCl Lake George rainwater chlorine – a mixture of the three sampling points for stable chlorine isotope 

analyses 

b. Field parameters and major elements/ions (μg kg–1)

Site ID Date Rainfall 
(mm) 

Temp.1 
(°C) 

Temp.2 
(°C) 

Humidity3 
(°C) pH HCO3

– H2CO3 Ca Mg Na K SO4
2– Cl– Si NH4

+ NO3
2– NO2

– PO4
3– Br– F– 

RPRW-1 2/09/2013 18.6 17.0 8.4 70.2 6.67 – – 376 211 1 752 339 1 450 3 048 275 – 702 517 258 26 16 
BRW-1 2/09/2013 26.4 18.0 8.4 70.2 6.06 – – 882 236 959 426 1 356 1 412 502 – 685 6 001 469 13 16 
WRW-1 2/09/2013 31.6 17.2 8.4 70.2 5.77 – – 320 113 975 135 969 1 721 311 – 542 2 527 <1 14 15 
RPRW-2 1/10/2013 56.1 19.0 12.7 72.7 5.83 – – 165 53 420 120 557 723 241 – 381 3 192 57 3 16 
BRW-2 1/10/2013 85.6 18.0 12.7 72.7 5.91 1 300 4 000 249 61 231 139 519 485 233 232 269 168 26 2 14 
WRW-2 1/10/2013 53.0 18.0 12.7 72.7 5.56 – – 185 50 325 116 588 635 250 – 419 92 <1 3 11 
RPRW-3 28/10/2013 11.6 18.0 13.9 64.5 6.13 1 600 3 000 563 225 1 920 204 1 092 3 024 409 386 932 224 <1 10 6 
BRW-3 28/10/2013 12.4 – 13.9 64.5 7.51 – – – – – – 1 300 3 742 – – 68 63 <1 14 20 
WRW-3 28/10/2013 18.0 – 13.9 64.5 6.90 – – – – – – 1 716 2 628 – – 167 21 <1 11 15 
RPRW-4 2/12/2013 68.0 15.7 15.4 67.4 6.34 600 700 290 130 791 116 752 1 164 127 90 459 349 283 6 3 
WRW-4 2/12/2013 74.8 13.8 15.4 67.4 5.65 – – 175 49 419 220 634 1 019 118 – 441 38 <1 3 22 
RPRW-5 6/01/2014 10.9 22.1 19.7 62.2 6.82 – – 548 267 1 680 331 1 568 2 506 868 – 1 602 3 607 130 8 37 
BRW-5 6/01/2014 22.0 22.1 19.7 62.2 6.50 – – 475 136 1 573 834 352 1 154 1 367 – 2 743 11 170 2 6 
WRW-5 6/01/2014 18.9 23.0 19.7 62.2 6.07 – – 566 142 582 409 980 1 182 809 – 1 051 15 129 1 23 
RPRW-6 3/02/2014 6.7 26.5 22.9 55.9 7.03 – – – – – – 6 619 9 148 – – 2 706 345 4 120 18 40 
BRW-6 3/02/2014 8.2 26.5 22.9 55.9 7.03 – – – – – – 2 770 4 338 – – 1 231 190 1 304 9 27 
WRW-6 3/02/2014 8.0 26.5 22.9 55.9 7.03 – – – – – – 2 323 2 762 – – 2 070 260 246 8 32 

LGRW-14 3/02/2014 7.6 26.5 22.9 55.9 7.03 10 500 2 100 1 630 535 2 960 1 481 3 513 4 507 1 462 2 743 2 564 4 006 1 673 11 26 
RPRW-7 3/03/2014 76.4 20.1 20.1 68.2 6.25 4 500 6 000 451 183 1 076 230 1 120 1 707 220 1 442 1 242 1 672 2 6 22 
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Site ID Date Rainfall 
(mm) 

Temp.1 
(°C) 

Temp.2 
(°C) 

Humidity3 
(°C) pH HCO3

– H2CO3 Ca Mg Na K SO4
2– Cl– Si NH4

+ NO3
2– NO2

– PO4
3– Br– F– 

RPRW-7t 3/03/2014 76.4 18.0 20.1 68.2 6.42 4 100 3 900 382 131 678 176 1 053 1 376 223 1 288 714 118 166 4 23 
BRW-7 3/03/2014 75.8 21.4 20.1 68.2 6.37 9 800 9 800 458 112 809 459 1 575 1 627 185 2 911 739 93 482 4 13 
WRW-7 3/03/2014 147.0 18.3 20.1 68.2 5.73 1 300 6 000 283 42 385 139 874 1 888 <100 464 776 58 74 7 23 
RPRW-8 31/03/2014 88.6 15.5 18.3 80.4 5.96 600 1 800 247 48 309 70 495 566 <100 206 501 23 <1 3 11 
RPRW-8t 31/03/2014 88.6 15.8 18.3 80.4 5.83 1 700 6 500 343 51 310 66 542 410 <100 399 448 6 69 2 4 
BRW-8 31/03/2014 77.0 14.4 18.3 80.4 6.46 2 300 2 100 317 48 208 112 823 431 123 631 418 54 98 3 9 
WRW-8 31/03/2014 141.0 17.6 18.3 80.4 6.16 300 600 162 17 183 19 354 212 <100 193 389 4 <1 2 2 
RPRW-9 12/05/2014 79.8 16.0 13.1 83.4 5.44 1 000 9 200 153 29 306 25 403 500 <100 335 360 <1 1 2 3 
BRW-9 12/05/2014 90.8 17.6 13.1 83.4 5.91 1 100 3 300 221 15 212 43 280 279 124 258 246 <1 8 1 2 
WRW-9 12/05/2014 91.0 14.0 13.1 83.4 5.54 900 6 500 153 26 218 24 327 297 <100 232 282 <1 11 2 2 

RPRW-10 2/06/2014 25.4 16.4 11.8 86.5 5.34 1 000 11 800 191 41 348 112 555 614 121 296 537 17 10 6 5 
BRW-10 2/06/2014 29.3 16.5 11.8 86.5 5.93 2 300 6 800 391 90 764 280 377 898 172 167 374 14 <1 4 7 
WRW-10 2/06/2014 27.0 15.6 11.8 86.5 6.20 1 800 2 900 225 27 347 228 450 573 <100 515 467 27 <1 2 16 
RPRW-11 1/07/2014 37.7 13.8 7.8 92.4 6.17 900 1 600 141 41 522 101 249 1 036 <100 258 227 <1 <1 2 2 
BRW-11 1/07/2014 57.2 14.0 7.8 92.4 6.07 1 300 1 300 242 39 390 118 189 627 <100 155 117 2 <1 1 1 
WRW-11 1/07/2014 66.8 13.7 7.8 92.4 5.99 600 1 500 142 26 419 49 229 703 <100 90 147 <1 <1 3 1 
RPRW-12 4/08/2014 9.9 – 6.6 88.9 – – – – – – – 1 178 2 384 – – 845 50 <1 10 42 
BRW-12 4/08/2014 16.6 14.6 6.6 88.9 6.42 2 600 2 500 529 127 732 179 621 1 344 217 438 411 38 <1 5 4 
WRW-12 4/08/2014 27.2 13.8 6.6 88.9 6.73 2 300 1 100 223 60 623 116 488 1 195 <100 657 399 5 <1 3 3 
RPRW-13 1/09/2014 42.8 10.8 8.0 85.5 6.89 1 100 400 146 19 292 113 218 606 <100 296 192 <1 <1 2 2 
BRW-13 1/09/2014 51.2 10.0 8.0 85.5 5.99 1 000 2 900 255 33 254 118 267 539 <100 167 215 2 <1 2 2 
WRW-13 1/09/2014 61.3 10.8 8.0 85.5 5.93 800 2 600 99 25 210 71 160 432 <100 180 135 <1 <1 1 2 
RPRW-14 8/10/2014 36.1 13.1 11.9 78.8 6.58 6 200 4 300 378 224 1 047 781 1 233 1 774 143 2 473 435 2 189 550 4 4 
BRW-14 8/10/2014 41.5 13.8 11.9 78.8 5.86 1 600 5 900 519 136 543 464 444 1 385 260 116 249 19 <1 4 4 
WRW-14 8/10/2014 56.5 15.7 11.9 78.8 6.32 8 100 9 800 367 109 541 516 888 919 168 2 395 327 18 747 3 2 
RPRW-15 3/11/2014 29.6 17.5 15.4 70.3 6.02 2 200 5 200 262 76 401 191 340 697 151 528 258 8 <1 2 2 
BRW-15 3/11/2014 38.0 17.1 15.4 70.3 6.27 1 900 6 500 344 118 377 557 272 826 270 219 176 15 106 2 2 
WRW-15 3/11/2014 31.1 16.5 15.4 70.3 6.02 3 200 7 700 306 83 477 229 421 1 030 219 889 320 3 39 2 2 
RPRW-16 1/12/2014 37.5 21.7 19.3 66.5 6.92 8 300 2 400 393 246 811 845 1 710 1 657 211 2 885 776 51 1 650 7 6 
WRW-16 1/12/2014 36.6 22.5 19.3 66.5 6.35 4 400 4 500 391 142 663 460 721 1 772 236 1 442 753 10 294 4 5 
RPRW-18 9/02/2015 23.7 18.2 19.4 75.1 5.18 500 7 500 214 101 481 153 462 1 256 199 142 244 <1 90 2 3 
BRW-18 9/02/2015 67.5 18.2 19.4 75.1 5.85 5 100 17 600 208 66 233 238 523 631 158 1 507 265 4 185 2 2 
WRW-18 9/02/2015 54.6 18.2 19.4 75.1 6.4 6 300 6 100 564 258 472 875 1 900 1 341 198 3 786 674 2 255 1 365 4 3 
RPRW-19 23/03/2015 35.0 16.8 19.8 74.0 6.01 1 900 4 800 1 067 416 2 337 600 2 032 4 794 403 1 391 1 585 1 189 283 11 15 
BRW-19 23/03/2015 20.8 13.8 19.8 74.0 6.18 1 430 2 430 1 509 560 1 214 1 467 2 971 4 681 953 6 371 200 5 000 2 224 8 18 
WRW-20 22/07/2015 110.0 14.6 6.6 89.7 6.41 211 213 226 66 234 124 266 401 147 489 286 21 99 2 1 

1Field temperature of sample 
2Average atmospheric temperature recorded at Rocky Point over sampling period 
2Average atmospheric relative humidity recorded at Rocky Point over sampling period 
4Mixed samples from the three separate sites mixed in proportion to rainfall amounts  
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c. Trace elements (μg kg–1)

Site ID Date Latitude 
(DD) 

Longitude 
(DD) Fe Li B Al V Cr Mn Co Ni Cu Zn As Rb Sr Mo Sn Ba Pb U 

RPRW-1 2/09/2013 –35.009 149.462 <10 <0.1 4.9 44.5 <0.5 <1.0 5.6 <1.0 <0.5 2.5 33.5 0.2 0.2 2.5 <1.0 1.7 1.9 0.3 <0.1 
BRW-1 2/09/2013 –35.235 149.445 26.7 <0.1 6.2 60.9 <0.5 <1.0 16.5 <1.0 <0.5 2.1 61.8 0.1 0.4 3.5 <1.0 6.0 7.9 0.6 <0.1 
WRW-1 2/09/2013 –34.940 149.427 16.0 <0.1 4.0 41.7 <0.5 <1.0 5.1 <1.0 <0.5 <1.0 24.0 <0.1 0.2 2.1 <1.0 1.6 1.9 0.2 <0.1 
RPRW-2 1/10/2013 –35.009 149.462 12.0 <0.1 2.6 46.8 <0.5 <1.0 2.9 <1.0 <0.5 4.7 14.5 <0.1 0.1 1.2 <1.0 1.2 1.2 0.4 <0.1 
BRW-2 1/10/2013 –35.235 149.445 10.2 <0.1 2.7 45.8 <0.5 <1 4.6 <1 <0.5 3.4 11.1 <0.1 0.2 1.4 <1 2.5 2.6 0.3 <0.1 
WRW-2 1/10/2013 –34.940 149.427 12.6 <0.1 2.9 48.2 <0.5 <1 4.0 <1 <0.5 <1 6.0 <0.1 0.1 1.3 <1 1.3 1.1 0.2 <0.1 
RPRW-3 28/10/2013 –35.009 149.462 <10 <0.1 3.5 12.7 <0.5 <1 14.4 <1 <0.5 <1 17.8 0.1 0.2 4.1 <1 3.4 5.5 <0.1 <0.1 
RPRW-4 2/12/2013 –35.009 149.462 <10 <0.1 1.5 17.5 <0.5 <1 <0.5 <1 <0.5 <1 2.0 <0.1 <0.1 2.2 <1 <1 0.8 <0.1 <0.1 
WRW-4 2/12/2013 –34.940 149.427 <10 <0.1 1.5 11.9 <0.5 <1 5.8 <1 <0.5 <1 6.7 <0.1 0.1 0.9 <1 <1 0.8 0.1 <0.1 
RPRW-5 6/01/2014 –35.009 149.462 <10 <0.1 4.9 20.1 <0.5 <1 4.0 <1 <0.5 <1 3.8 1.1 0.2 3.2 <1 1.2 1.5 0.1 <0.1 
BRW-5 6/01/2014 –35.235 149.445 <10 <0.1 3.9 13.3 <0.5 <1 5.9 <1 <0.5 1.3 15.5 <0.1 0.5 2.4 <1 2.0 3.9 0.2 <0.1 
WRW-5 6/01/2014 –34.940 149.427 <10 <0.1 3.4 11.8 <0.5 <1 39.1 <1 <0.5 1.6 21.4 <0.1 0.3 2.6 <1 1.4 2.2 0.1 <0.1 

LGRW-11 3/02/2014 – – <10 <0.1 12.0 54.6 <0.5 <1 27.2 <1 <0.5 8.3 29.6 0.3 0.9 9.6 <1 2.6 5.9 0.2 <0.1 
RPRW-7 3/03/2014 –35.009 149.462 <10 <0.1 5.1 47.2 <0.5 <1 3.9 <1 <0.5 <1 9.0 0.1 0.2 3.2 <1 <1 1.4 0.2 <0.1 
RPRW-7t 3/03/2014 –35.009 149.462 <10 <0.1 4.2 49.6 <0.5 <1 5.9 <1 <0.5 <1 27.6 <0.1 0.1 2.3 <1 5.1 24.1 0.1 <0.1 
BRW-7 3/03/2014 –35.235 149.445 <10 <0.1 4.4 47.2 <0.5 <1 <0.5 <1 <0.5 3.5 13.4 <0.1 0.3 2.3 <1 1.1 4.4 0.3 <0.1 
WRW-7 3/03/2014 –34.940 149.427 <10 <0.1 4.1 45.6 <0.5 <1 8.4 <1 <0.5 <1 14.5 <0.1 0.2 1.7 <1 <1 1.8 0.1 <0.1 
RPRW-8 31/03/2014 –35.009 149.462 15.1 <0.1 4.1 49.5 <0.5 <1 3.1 <1 <0.5 <1 6.9 <0.1 <0.1 1.5 <1 <1 1.0 0.1 <0.1 
RPRW-8t 31/03/2014 –35.009 149.462 11.3 <0.1 4.6 57.0 <0.5 <1 2.7 <1 <0.5 <1 15.7 <0.1 <0.1 1.6 <1 <1 13.7 0.1 <0.1 
BRW-8 31/03/2014 –35.235 149.445 <10 <0.1 4.0 40.1 <0.5 <1 1.6 <1 <0.5 <1 8.9 <0.1 <0.1 1.7 <1 <1 2.7 0.4 <0.1 
WRW-8 31/03/2014 –34.940 149.427 <10 <0.1 3.3 43.6 <0.5 <1 1.7 <1 <0.5 <1 8.7 <0.1 <0.1 1.0 <1 1.0 0.7 0.1 <0.1 
RPRW-9 12/05/2014 –35.009 149.462 <10 <0.1 3.3 49.3 <0.5 <1 2.7 <1 <0.5 1.2 6.1 1.1 <0.1 0.9 <1 <1 1.2 0.4 <0.1 
BRW-9 12/05/2014 –35.235 149.445 <10 <0.1 2.7 31.4 <0.5 <1 2.1 <1 <0.5 <1 5.9 <0.1 0.1 1.0 <1 2.3 1.6 0.2 <0.1 
WRW-9 12/05/2014 –34.940 149.427 <10 <0.1 2.3 20.3 <0.5 <1 1.3 <1 <0.5 <1 5.4 <0.1 <0.1 0.8 <1 <1 1.7 0.3 <0.1 

RPRW-10 2/06/2014 –35.009 149.462 <10 <0.1 3.8 60.4 <0.5 <1 2.6 <1 <0.5 <1 12.0 1.1 0.2 1.2 <1 <1 0.9 0.1 <0.1 
BRW-10 2/06/2014 –35.235 149.445 <10 <0.1 4.5 66.5 <0.5 <1 1.8 <1 <0.5 1.1 15.5 0.1 0.2 2.2 <1 <1 2.4 0.5 <0.1 
WRW-10 2/06/2014 –34.940 149.427 <10 <0.1 3.2 61.0 <0.5 <1 1.5 <1 <0.5 1.4 11.5 <0.1 0.2 1.2 <1 <1 0.8 0.3 <0.1 
RPRW-11 1/07/2014 –35.009 149.462 <10 <0.1 2.5 41.6 <0.5 <1 1.5 <1 <0.5 <1 8.2 1.0 0.1 0.9 <1 <1 0.8 <0.1 <0.1 
BRW-11 1/07/2014 –35.235 149.445 <10 <0.1 3.0 45.6 <0.5 <1 2.3 <1 <0.5 <1 11.3 1.1 0.1 1.2 <1 <1 2.2 0.1 <0.1 
WRW-11 1/07/2014 –34.940 149.427 <10 <0.1 1.8 40.3 <0.5 <1 1.0 <1 <0.5 <1 8.4 <0.1 0.1 0.9 <1 <1 0.7 0.1 <0.1 
BRW-12 4/08/2014 –35.235 149.445 <10 <0.1 4.8 49.1 <0.5 <1 3.7 <1 <0.5 1.4 32.2 1.1 0.2 2.7 <1 <1 4.5 0.6 <0.1 
WRW-12 4/08/2014 –34.940 149.427 <10 <0.1 3.3 50.7 <0.5 <1 2.1 <1 <0.5 <1 151.2 <0.1 0.1 1.5 <1 <1 1.1 0.1 <0.1 
RPRW-13 1/09/2014 –35.009 149.462 <10 <0.1 2.5 41.4 <0.5 <1 1.2 <1 <0.5 <1 11.3 1.0 0.1 0.8 <1 <1 3.9 <0.1 <0.1 
BRW-13 1/09/2014 –35.235 149.445 <10 <0.1 2.8 39.8 <0.5 <1 3.0 <1 <0.5 <1 15.7 1.1 0.1 1.3 <1 <1 3.3 0.1 <0.1 
WRW-13 1/09/2014 –34.940 149.427 <10 <0.1 1.5 39.8 <0.5 <1 2.9 <1 <0.5 2.2 20.4 0.1 0.1 0.7 <1 <1 0.7 0.2 <0.1 
RPRW-14 8/10/2014 –35.009 149.462 <10 <0.1 4.9 70.6 <0.5 <1 3.8 <1 <0.5 1.1 6.9 <0.1 0.2 2.2 <1 <1 0.6 0.2 <0.1 
BRW-14 8/10/2014 –35.235 149.445 <10 <0.1 6.3 75.2 <0.5 <1 10.8 <1 <0.5 8.8 24.1 1.1 0.4 2.6 <1 <1 4.4 0.2 <0.1 
WRW-14 8/10/2014 –34.940 149.427 <10 <0.1 5.3 76.6 <0.5 <1 6.4 <1 <0.5 1.1 11.3 <0.1 0.4 1.9 <1 <1 1.2 0.2 <0.1 
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Site ID Date Latitude 
(DD) 

Longitude 
(DD) Fe Li B Al V Cr Mn Co Ni Cu Zn As Rb Sr Mo Sn Ba Pb U 

RPRW-15 3/11/2014 –35.009 149.462 <10 <0.1 2.3 43.3 <0.5 <1 2.3 <1 <0.5 <1 4.1 <0.1 0.1 1.4 <1 <1 0.7 <0.1 <0.1 
BRW-15 3/11/2014 –35.235 149.445 <10 <0.1 4.1 48.7 <0.5 <1 3.6 <1 <0.5 <1 9.8 1.1 0.4 2.0 <1 <1 2.0 0.2 <0.1 
WRW-15 3/11/2014 –34.940 149.427 <10 <0.1 2.5 42.5 <0.5 <1 6.8 <1 <0.5 <1 8.5 <0.1 0.2 1.3 <1 <1 1.2 <0.1 <0.1 
RPRW-16 1/12/2014 –35.009 149.462 <10 <0.1 2.6 24.1 6.1 2.3 123.9 <1 <0.5 <1 5.0 <0.1 0.4 2.3 <1 <0.4 1.2 <0.1 <0.1 
WRW-16 1/12/2014 –34.940 149.427 11.0 <0.1 3.0 19.7 0.7 <1 18.2 <1 <0.5 <1 14.7 0.8 0.4 2.3 <1 <0.4 1.8 <0.1 <0.1 
RPRW-18 9/02/2015 –35.009 149.462 <10 <0.1 1.4 10.0 <0.5 0.0 7.2 <1 <0.5 34.6 18.4 <0.1 <0.1 1.2 <1 <0.4 0.9 0.2 <0.1 
BRW-18 9/02/2015 –35.235 149.445 <10 <0.1 1.9 20.7 <0.5 <1 4.8 <1 <0.5 5.7 23.8 0.3 0.1 1.1 <1 0.4 2.3 0.4 <0.1 
WRW-18 9/02/2015 –34.940 149.427 <10 <0.1 3.0 14.1 <0.5 <1 22.2 <1 <0.5 19.3 662.2 0.9 0.6 2.2 <1 1.0 2.8 0.3 <0.1 
RPRW-19 23/03/2015 –35.009 149.462 <10 <0.1 4.1 15.3 0.7 0.2 19.0 <1 <0.5 <1 22.6 0.9 0.3 6.2 <1 <0.4 2.3 <0.1 <0.1 
BRW-19 23/03/2015 –35.235 149.445 12.3 <0.1 8.2 20.4 <0.5 <1 10.6 <1 <0.5 4.0 22.3 0.2 0.8 6.6 <1 0.4 5.3 0.6 <0.1 
WRW-20 22/07/2015 –34.940 149.427 <10 <0.1 1.6 10.8 <0.5 <1 15.4 <1 <0.5 6.1 33.3 0.8 0.1 1.3 <1 5.4 1.2 <0.1 <0.1 
RPRW-21 20/01/2016 –35.009 149.462 <10 <0.1 3.2 23.3 <0.5 0.1 13.2 <1 <0.5 20.8 57.7 0.8 0.5 8.7 <1 2.4 5.2 0.4 <0.1 
BRW-21 20/01/2016 –35.235 149.445 <10 <0.1 4.6 24.2 <0.5 <1 1.9 <1 <0.5 6.0 30.8 <0.1 0.5 3.4 <1 2.2 5.4 0.2 <0.1 
WRW-21 20/01/2016 –34.940 149.427 <10 <0.1 3.7 15.7 <0.5 <1 1.7 <1 0.7 26.5 22.2 0.9 0.6 2.3 <1 10.0 1.8 0.2 <0.1 
1Mixed samples from the three separate sites mixed in proportion to rainfall amounts 

 

d. Isotopes 

Site ID Collection dates Latitude 
(DD) 

Longitude 
(DD) 

Rainfall 
(mm) 

Mean temperature 
(°C) 

δ2H  
(‰ VSMOW)1 

δ18Ο  
(‰ VSMOW)2 

δ37Cl  
(‰ SMOC)3 

3H activity  
(TU ± 1σ) 

RPRW-1 1/8/2013 – 2/09/2013 –35.009 149.462 18.6 8.4 –18.0 –3.62 – – 
BRW-1 1/8/2013 – 2/09/2013 –35.235 149.445 26.4 8.4 –22.0 –4.51 – – 
WRW-1 1/8/2013 – 2/09/2013 –34.940 149.427 31.6 8.4 –18.3 –3.77 – – 

LGRWT-14 1/8/2013 – 2/09/2013 – – 25.5 8.4 –19.4 –3.96 – 5.41 ± 0.26 
RPRW-2 2/09/2013 – 1/10/2013 –35.009 149.462 56.1 12.7 –47.1 –7.88 – – 
BRW-2 2/09/2013 – 1/10/2013 –35.235 149.445 85.6 12.7 –47.0 –8.36 – – 
WRW-2 2/09/2013 – 1/10/2013 –34.940 149.427 53.0 12.7 –38.4 –6.83 – – 

LGRWT-24 2/09/2013 – 1/10/2013 – – 64.9 12.7 –44.2 –7.69 – 4.01 ± 0.19 
RPRW-3 1/10/2013 – 28/10/2013 –35.009 149.462 11.6 13.9 1.0 –1.10 – – 
BRW-3 1/10/2013 – 28/10/2013 –35.235 149.445 12.4 13.9 11.0 0.11 – – 
WRW-3 1/10/2013 – 28/10/2013 –34.940 149.427 18.0 13.9 5.2 –0.66 – – 
RPRW-4 28/10/2013 – 2/12/2013 –35.009 149.462 68.0 15.4 –39.3 –6.57 – 3.77 ± 0.19 
WRW-4 28/10/2013 – 2/12/2013 –34.940 149.427 74.8 15.4 –38.9 –6.66 – – 
RPRW-5 2/12/2013 – 6/01/2014 –35.009 149.462 10.9 19.7 –0.5 –1.79 – – 
BRW-5 2/12/2013 – 6/01/2014 –35.235 149.445 22.0 19.7 –15.4 –4.05 – – 
WRW-5 2/12/2013 – 6/01/2014 –34.940 149.427 18.9 19.7 –10.3 –2.96 – – 
RPRW-6 6/01/2014 – 3/02/2014 –35.009 149.462 6.7 22.9 –37.2 –5.62 – – 
BRW-6 6/01/2014 – 3/02/2014 –35.235 149.445 8.2 22.9 –54.0 –7.97 – – 
WRW-6 6/01/2014 – 3/02/2014 –34.940 149.427 8.0 22.9 –33.4 –5.58 – – 
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Site ID Collection dates Latitude 
(DD) 

Longitude 
(DD) 

Rainfall 
(mm) 

Mean temperature 
(°C) 

δ2H 
(‰ VSMOW)1

δ18Ο 
(‰ VSMOW)2

δ37Cl 
(‰ SMOC)3

3H activity 
(TU ± 1σ) 

LGRWT-34 6/01/2014 – 3/02/2014 – – 7.6 22.1 –39.1 –6.61 – 4.49 ± 0.23
RPRW-7 3/02/2014 – 3/03/2014 –35.009 149.462 76.4 20.1 –11.2 –1.26 – –
RPRW-7t 3/02/2014 – 3/03/2014 –35.009 149.462 76.4 20.1 –39.7 –6.63 – 3.50 ± 0.20
BRW-7 3/02/2014 – 3/03/2014 –35.235 149.445 75.8 20.1 –40.4 –7.00 – –
WRW-7 3/02/2014 – 3/03/2014 –34.940 149.427 147.0 20.1 –30.9 –4.65 – –
RPRW-8 3/03/2014 – 31/03/2014 –35.009 149.462 88.6 18.3 –31.9 –6.04 – –
RPRW-8t 3/03/2014 – 31/03/2014 –35.009 149.462 88.6 18.3 –38.5 –6.76 – 2.70 ± 0.10
BRW-8 3/03/2014 – 31/03/2014 –35.235 149.445 77.0 18.3 –44.6 –7.26 – –
WRW-8 3/03/2014 – 31/03/2014 –34.940 149.427 141.0 18.3 –38.5 –6.68 – –
RPRW-9 31/03/2014 – 12/05/2014 –35.009 149.462 79.8 13.1 –50.0 –7.94 – 2.50 ± 0.10
BRW-9 31/03/2014 – 12/05/2014 –35.235 149.445 90.8 13.1 –45.9 –7.62 – –
WRW-9 31/03/2014 – 12/05/2014 –34.940 149.427 91.0 13.1 –43.9 –7.39 – –

RPRW-10 12/05/2014 – 2/06/2014 –35.009 149.462 25.4 11.8 –37.6 –6.77 – 3.10 ± 0.20
BRW-10 12/05/2014 – 2/06/2014 –35.235 149.445 29.3 11.8 –36.1 –6.67 – –
WRW-10 12/05/2014 – 2/06/2014 –34.940 149.427 27.0 11.8 –34.4 –6.61 – –
RPRW-11 2/06/2014 – 1/07/2014 –35.009 149.462 37.7 7.7 –47.0 –9.52 – 2.85 ± 0.14
BRW-11 2/06/2014 – 1/07/2014 –35.235 149.445 57.2 7.7 –50.4 –8.32 – –
WRW-11 2/06/2014 – 1/07/2014 –34.940 149.427 66.8 7.7 –43.7 –7.64 – –

LGRWCl-14 3/02/2014 – 1/07/2014 – – 370.3 14.2 – – 0.17 –
RPRW-12 1/07/2014 – 4/08/2014 –35.009 149.462 9.9 6.6 –23.9 –5.30 – –
BRW-12 1/07/2014 – 4/08/2014 –35.235 149.445 16.6 6.6 –23.7 –5.52 – –
WRW-12 1/07/2014 – 4/08/2014 –34.940 149.427 27.2 6.6 –30.4 –6.17 – –

LGRWT-44 1/07/2014 – 4/08/2014 – – 21.9 6.6 – – – 3.50 ± 0.18
RPRW-13 4/08/2014 – 1/09/2014 –35.009 149.462 42.8 7.6 –88.0 –12.55 – 3.13 ± 0.15
BRW-13 4/08/2014 – 1/09/2014 –35.235 149.445 51.2 7.6 –69.0 –10.23 – –
WRW-13 4/08/2014 – 1/09/2014 –34.940 149.427 61.3 7.6 –106.9 –14.81 – –
RPRW-14 1/09/2014 – 8/10/2014 –35.009 149.462 36.1 11.3 –18.4 –4.65 – 4.4 ± 0.19
BRW-14 1/09/2014 – 8/10/2014 –35.235 149.445 41.5 11.3 –15.1 –3.25 – –
WRW-14 1/09/2014 – 8/10/2014 –34.940 149.427 56.5 11.3 –20.5 –4.62 – –
RPRW-15 8/10/2014 – 3/11/2014 –35.009 149.462 29.6 15.4 –35.6 –6.20 – 3.24 ± 0.15
BRW-15 8/10/2014 – 3/11/2014 –35.235 149.445 38.0 15.4 –48.0 –7.69 – –
WRW-15 8/10/2014 – 3/11/2014 –34.940 149.427 31.1 15.4 –35.3 –5.97 – –

LGRWCl-24 4/08/2014 – 3/11/2014 – – 129.4 11.4 – – –0.29 – 
RPRW-16 3/11/2014 – 1/12/2014 –35.009 149.462 37.5 19.3 –13.6 –3.36 – – 
WRW-16 3/11/2014 – 1/12/2014 –34.940 149.427 36.6 19.3 –10.5 –2.72 – – 

LGRWT-164 3/11/2014 – 1/12/2014 – – 37.0 19.3 – – – 4.14 ± 0.18 
RPRW-18 12/01/2015 – 9/02/2015 –35.009 149.462 23.7 19.4 –39.1 –6.38 – – 
BRW-18 12/01/2015 – 9/02/2015 –35.235 149.445 67.5 19.4 –39.8 –6.58 – – 
WRW-18 12/01/2015 – 9/02/2015 –34.940 149.427 54.6 19.4 –23.4 –4.23 – – 

LGRWT-184 12/01/2015 – 9/02/2015 – – 61.1 19.4 – – – 2.70 ± 0.12 
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Site ID Collection dates Latitude 
(DD) 

Longitude 
(DD) 

Rainfall 
(mm) 

Mean temperature 
(°C) 

δ2H 
(‰ VSMOW)1

δ18Ο 
(‰ VSMOW)2

δ37Cl 
(‰ SMOC)3

3H activity 
(TU ± 1σ) 

RPRW-19 9/02/2015 – 23/03/2015 –35.009 149.462 35.0 19.8 –11.8 –3.08 – – 
BRW-19 9/02/2015 – 23/03/2015 –35.235 149.445 20.8 19.8 –11.8 –3.04 – – 
WRW-20 21/5/2015 – 22/07/2015 –34.940 149.427 110.0 6.6 –53.2 –8.89 – 2.06 ± 0.09

EV01 3/04/2014 – 5/04/2014 –35.101 149.375 38.0 15.6 –50.52 –7.00 – –
1Mean analytical precision was ±1.1 ‰ (1σ) 
2Mean analytical precision was ±0.17 ‰ (1σ) 
3Mean analytical precision was ±0.11 ‰ (1σ) 
4Mixed samples from the three separate sites mixed in proportion to rainfall amounts 

2. Creek water

a. Site ID key
Site ID prefix Description 
ACSW Allianoyonyiga Creek 
BCSW Butmaroo Creek 
CCSW Collector Creek 
CuCSW Currawang Creek  
TCSW Taylors Creek 
TuCSW Turallo Creek 

a. Field parameters and major elements/ions

Site ID Date Latitude 
(DD) 

Longitude 
(DD) 

Temp. 
(°C)1 pH Eh 

(mV) 
TDS2

(mg kg–1) 
O2 

(mg L–1) 
HCO3

– 
(mg L–1) 

Ca Mg Na K SO4
2– Cl– Si NO3

– PO4
3– Br– F– 

(mg kg–1) (μg kg–1) 
BCSW-1 14/8/2013 –35.183 149.439 12.0 8.45 131 483 11.03 161 22.0 29.5 88.2 3.33 33.2 142 2.27 450 <10 422 288 
BCSW-2 14/8/2013 –35.204 149.484 13.0 8.13 113 427 9.86 176 25.5 28.3 61.0 2.57 16.4 113 3.44 594 <10 289 262 
CCSW-1 2/9/2013 –34.939 149.430 15.3 7.24 343 265 7.59 59.9 16.3 19.6 36.8 6.28 19.9 101 3.34 1251 37 262 114 
TCSW-1 2/9/2013 –35.114 149.484 15.2 7.48 192 657 8.85 177 29.2 41.6 125 2.35 9.17 263 7.48 226 <20 789 371 
ACSW-1 1/10/2013 –35.248 149.536 17.4 7.29 – 948 7.29 263 78.0 78.3 90.4 1.14 117 307 10.8 281 <20 849 142 
TuCSW-1 2/10/2013 –35.248 149.437 13.1 7.36 – 283 4.75 143 20.4 15.4 35.3 3.07 5.79 50.0 9.08 817 83 193 150 
TuCSW-23 2/10/2013 –35.248 149.437 13.1 7.36 – 270 4.75 135 16.9 15.4 34.4 3.38 5.60 50.1 7.81 832 102 195 153 
BCSW-3 9/1/2014 –35.204 149.484 19.8 7.25 –65 421 3.74 206 26.5 26.1 58.5 3.18 0.287 91.9 7.42 154 <10 314 338 
CCSW-2 9/1/2014 –34.939 149.430 20.3 7.43 112 384 6.99 87.8 27.0 27.9 58.0 5.69 8.83 167 <1.5 426 <10 547 164 
TCSW-2 9/1/2014 –35.112 149.522 19.8 7.66 –13 424 6.98 138 22.1 26.4 75.7 1.44 2.65 150 6.76 197 <10 460 446 

TuCSW-3 9/1/2014 –35.246 149.433 19.2 7.17 –89 432 6.05 222 32.6 23.6 55.1 3.28 0.104 84.1 9.79 143 <10 385 234 
CCSW-3 21/2/2014 –34.939 149.430 20.6 7.59 205 355 5.98 89.7 23.5 24.3 51.9 6.18 9.42 147 1.75 109 70 461 157 

CuCSW-1 21/2/2014 –34.955 149.456 15.7 6.53 95 579 0.66 84.9 51.2 46.2 59.8 6.02 129 189 9.39 1 231 117 448 108 
TCSW-3 21/2/2014 –35.112 149.522 25.6 7.38 111 333 6.16 110 16.9 20.0 58.5 2.30 7.60 111 5.12 954 65 309 391 
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Site ID Date Latitude 
(DD) 

Longitude 
(DD) 

Temp. 
(°C)1 pH Eh 

(mV) 
TDS2

(mg kg–1) 
O2 

(mg L–1) 
HCO3

– 
(mg L–1) 

Ca Mg Na K SO4
2– Cl– Si NO3

– PO4
3– Br– F– 

(mg kg–1) (μg kg–1) 
BCSW-44 5/6/2014 –35.205 149.495 12.5 7.84 290 447 10.18 136 15.3 28.6 91.4 4.60 7.28 160 2.08 316 29 415 382 
BCSW-5 5/6/2014 –35.204 149.484 10.6 7.64 290 328 7.67 125 16.2 21.6 51.6 3.41 18.8 89.3 2.80 <10 <10 251 248 
ACSW-2 4/8/2014 –35.042 149.528 8.9 7.62 340 2 152 6.1 681 99.7 163 349 3.08 169 676 6.33 <60 <50 2 650 472 
BCSW-6 4/8/2014 –35.204 149.484 6.5 7.9 300 459 9 179 23.2 31.4 71.7 3.18 20.8 127 2.31 107 <10 357 263 
CCSW-4 4/8/2014 –34.939 149.430 9.4 7.32 366 204 6.1 59.0 13.0 14.3 30.9 3.66 8.86 67.5 4.25 1980 32 211 108 

CuCSW-2 4/8/2014 –34.955 149.456 6.0 7.21 360 621 4.8 128 46.3 57.0 68.0 1.33 71.7 243 4.24 388 <20 656 81 
TCSW-4 4/8/2014 –35.112 149.522 7.7 7.64 300 461 7.4 90.2 20.2 31.7 90.1 1.51 11.8 209 4.91 363 <20 522 302 

TuCSW-4 4/8/2014 –35.246 149.433 6.6 7.44 320 298 6.6 149 18.6 16.3 39.1 2.88 4.43 60.9 6.39 <10 <10 255 164 
ACSW-3 1/9/2014 –35.042 149.528 11.4 7.95 290 1 888 – 732 86.6 133 264 3.08 165 492 8.47 434 81 1 844 516 
BCSW-7 1/9/2014 –35.204 149.484 12.0 7.73 270 198 – 95.2 9.8 12.3 26.6 2.03 8.10 37.5 5.59 123 16 72 200 
CCSW-5 1/9/2014 –34.939 149.430 12.8 7.49 300 194 – 55.0 13.0 14.7 28.2 4.17 10.1 65.0 3.01 626 85 182 136 
TCSW-5 1/9/2014 –35.112 149.522 10.9 7.64 290 295 – 70.4 11.1 21.2 54.2 1.35 10.1 121 4.59 192 <10 239 229 

TuCSW-5 1/9/2014 –35.246 149.433 10.9 7.4 300 144 – 80.1 8.0 6.97 15.2 2.24 3.18 19.9 7.18 726 84 62 116 
ACSW-4 3/11/2014 –35.042 149.528 17.2 7.96 215 2 242 – 826 112 160 364 2.85 100 664 8.93 802 <70 2 966 571 
CCSW-6 3/11/2014 –34.939 149.430 18.7 7.71 230 303 4.45 91.2 21.9 21.9 45.1 3.32 9.85 108 0.54 153 52 363 159 
TCSW-6 3/11/2014 –35.112 149.522 21.2 7.39 215 436 6.92 115 22.2 28.4 82.2 0.98 5.10 175 5.74 <10 40 472 319 
ACSW-5 13/11/2014 –35.042 149.528 18.4 8.22 190 2 347 4.55 833 97.0 170 388 3.56 110 732 8.66 <70 <70 3 308 584 
BCSW-8 13/11/2014 –35.204 149.484 21.4 7.28 210 345 1.77 178 21.7 21.1 47.7 3.40 0.225 67.2 4.63 108 <10 247 302 
TuCSW-6 13/11/2014 –35.246 149.433 21.8 7.32 230 282 4.57 144 22.5 15.0 36.0 2.25 1.89 52.4 7.06 <10 <10 222 174 
CCSW-7 1/12/2014 –34.939 149.430 22.5 8.36 –20 323 4.8 104 22.9 23.1 48.2 3.33 6.97 113 0.61 <10 48 383 166 
TCSW-7 1/12/2014 –35.112 149.522 20.9 7.73 –10 394 3.9 104 20.4 24.3 73.0 1.38 3.31 160 5.72 192 <10 432 315 

1Field temperature 
2Total dissolved solids 
3Field duplicate of TuCSW-1 
4Collected from Dry Creek, a tributary of Butmaroo Creek 

b. Trace elements (μg kg–1)

Site ID Date Latitude 
(DD) 

Longitude 
(DD) Fe Li B Al V Cr Mn Co Ni Cu Zn As Rb Sr Mo Ba Pb U 

BCSW-1 14/08/2013 –35.183 149.439 135 <0.1 14.5 38 <0.5 6.0 23 <1 1.1 6.3 12.0 0.6 0.8 159 <1 38.1 0.3 0.8 
BCSW-2 14/08/2013 –35.204 149.484 1 096 <0.1 6.1 85 <0.5 5.4 21 <1 1.1 2.8 7.7 0.6 0.8 134 <1 36.2 0.4 1.2 
CCSW-1 2/09/2013 –34.939 149.430 725 0.2 9.5 28 1.0 2.1 45 <1 1.7 5.3 13.5 0.7 2.3 99 <1 49.3 0.8 0.1 
TCSW-1 2/09/2013 –35.114 149.484 23 0.4 10.2 19 <0.5 9.5 20 <1 0.8 2.8 11.3 0.8 1.1 248 <1 72.4 0.2 0.9 
ACSW-1 1/10/2013 –35.248 149.536 <50 <0.1 7.6 26 <0.5 10.0 4 <1 2.0 8.1 18.9 0.8 1.3 247 <1 55.4 0.5 0.3 
TuCSW-1 2/10/2013 –35.248 149.437 1255 0.5 10.5 124 0.8 3.3 217 <1 1.7 12.8 43.6 0.9 1.4 103 <1 35.5 0.9 0.5 
TuCSW-21 2/10/2013 –35.248 149.437 794 0.5 10.3 99 0.7 3.2 219 <1 1.7 8.6 29.4 0.9 1.4 105 <1 35.1 0.6 0.5 
BCSW-3 9/01/2014 –35.204 149.484 173 0.2 10.6 <10 <0.5 4.1 414 <1 0.8 9.7 23.5 0.8 1.0 145 <1 58.7 0.2 0.3 
CCSW-2 9/01/2014 –34.939 149.430 121 0.5 11.9 <10 <0.5 6.0 24 <1 1.3 4.8 13.9 1.0 2.7 176 <1 61.5 0.3 0.2 
TCSW-2 9/01/2014 –35.112 149.522 <30 <0.1 10.6 <10 <0.5 6.6 121 <1 0.8 3.6 9.4 0.7 1.3 163 <1 60.2 <0.1 0.4 
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Site ID Date Latitude 
(DD) 

Longitude 
(DD) Fe Li B Al V Cr Mn Co Ni Cu Zn As Rb Sr Mo Ba Pb U 

TuCSW-3 9/01/2014 –35.246 149.433 241 0.3 7.4 <10 <0.5 4.0 1 370 1.1 0.8 6.3 22.4 1.1 1.6 162 <1 42.0 0.3 0.2 
CCSW-3 21/02/2014 –34.939 149.430 163 0.4 13.4 <10 <0.5 5.1 32 <1 1.2 1.5 4.9 0.9 2.9 142 <1 49.9 0.1 0.1 

CuCSW-1 21/02/2014 –34.955 149.456 3 209 1.0 10.4 <10 <0.5 7.7 1 560 21.6 5.3 2.5 49.0 1.2 3.8 289 <1 111.7 0.2 0.1 
TCSW-3 21/02/2014 –35.112 149.522 504 0.5 13.6 164 <0.5 5.6 137 <1 1.2 1.9 4.7 0.6 1.8 133 <1 52.7 0.3 0.4 
BCSW-42 5/06/2014 –35.205 149.495 42 <0.1 13.5 80 <0.5 3.4 62 1.1 1.1 6.7 4.7 1.8 0.9 143 <1 82.0 0.2 1.3 
BCSW-5 5/06/2014 –35.204 149.484 726 <0.1 11.0 69 0.5 1.9 14 <1 1.0 2.3 4.0 1.6 0.8 102 <1 42.1 0.3 0.4 
ACSW-2 4/08/2014 –35.042 149.528 <50 <0.1 13.6 158 1.3 7.7 196 1.7 3.2 5.4 9.1 3.9 0.7 550 <1 68.7 0.3 20.3 
BCSW-6 4/08/2014 –35.204 149.484 136 <0.1 7.8 61 0.3 1.9 10 <1 0.9 1.3 3.0 1.5 0.7 140 <1 43.2 0.1 1.5 
CCSW-4 4/08/2014 –34.939 149.430 686 0.3 10.2 568 1.1 1.8 26 <1 1.4 5.7 6.1 0.6 1.8 88 <1 41.1 0.4 0.1 

CuCSW-2 4/08/2014 –34.955 149.456 63 0.2 8.9 62 <0.5 3.2 104 1.3 1.1 2.1 5.7 1.6 0.9 248 <1 77.3 <0.1 0.1 
TCSW-4 4/08/2014 –35.112 149.522 90 0.2 8.2 63 <0.5 2.9 201 1.1 0.8 0.9 3.6 1.2 1.0 178 <1 88.6 <0.1 0.2 

TuCSW-4 4/08/2014 –35.246 149.433 70 0.1 9.3 54 <0.5 1.1 293 <1 0.7 0.7 3.0 0.5 1.1 111 <1 39.5 <0.1 0.2 
ACSW-3 1/09/2014 –35.042 149.528 <50 <0.1 13.5 122 1.6 6.2 23 1.3 2.2 3.9 7.6 3.3 1.3 475 <1 74.9 0.2 7.7 
BCSW-7 1/09/2014 –35.204 149.484 778 <0.1 10.2 1 051 2.1 2.3 25 <1 1.8 2.8 4.0 1.6 1.3 59 <1 26.0 0.7 0.8 
CCSW-5 1/09/2014 –34.939 149.430 536 0.2 10.5 294 1.0 1.7 50 <1 1.5 3.0 4.1 0.7 1.8 85 <1 41.7 0.3 0.2 
TCSW-5 1/09/2014 –35.112 149.522 449 0.1 8.8 255 0.5 2.2 39 <1 1.2 2.3 3.4 0.5 1.1 110 <1 58.2 0.3 0.5 

TuCSW-5 1/09/2014 –35.246 149.433 956 0.2 9.3 411 1.3 1.7 63 <1 1.8 5.7 4.6 0.6 0.9 43 <1 22.1 0.6 0.6 
ACSW-4 3/11/2014 –35.042 149.528 <40 <0.1 15.4 117 1.7 7.8 245 2.2 4.2 5.2 7.2 4.4 1.0 591 1.2 78.4 0.2 15.9 
CCSW-6 3/11/2014 –34.939 149.430 456 0.1 10.5 48 <0.5 1.5 38 <1 1.2 3.2 2.8 0.8 1.6 119 <1 47.3 0.2 0.1 
TCSW-6 3/11/2014 –35.112 149.522 <10 0.2 8.7 43 <0.5 2.5 437 <1 0.9 1.4 3.5 0.6 0.9 166 <1 91.1 <0.1 0.2 
ACSW-5 13/11/2014 –35.042 149.528 <40 <0.1 12.5 54 2.8 <1 71 <1 3.1 10.8 7.2 3.2 1.2 760 1.7 101.2 0.1 17.1 
BCSW-8 13/11/2014 –35.204 149.484 294 <0.1 15.1 73 0.5 1.3 110 <1 1.0 2.5 3.0 2.0 1.1 110 <1 50.8 0.1 0.3 
TuCSW-6 13/11/2014 –35.246 149.433 422 0.2 11.2 58 <0.5 1.2 668 1.1 0.8 3.3 2.8 1.7 1.5 105 <1 23.9 0.1 0.2 
CCSW-7 1/12/2014 –34.939 149.430 360 <0.1 10.5 14 0.8 <1 16 <1 0.9 <1 2.7 1.0 1.8 157 <1 54.2 0.1 0.1 
TCSW-7 1/12/2014 –35.112 149.522 <10 0.2 9.1 – <0.5 3.1 416 <1 0.9 <1 4.0 0.9 1.5 180 <1 95.9 <0.1 <0.1 

1Field duplicate of TuCSW-1 
2Collected from Dry Creek, a tributary of Butmaroo Creek 

c. Isotopes

Site ID Date Latitude 
(DD) 

Longitude 
(DD) 

δ2H 
(‰ VSMOW)1 

δ18Ο 
(‰ VSMOW)2 

δ37Cl 
(‰ SMOC ± 1σ) 

δ81Br 
(‰ SMOB ± 1σ) 

3H activity 
(TU ± 1σ) 

BCSW-1 14/08/2013 –35.183 149.439 –38.1 –5.88 – – 3.27 ± 0.16 
BCSW-2 14/08/2013 –35.204 149.484 –37.8 –6.04 – – – 
CCSW-1 2/09/2013 –34.939 149.430 –32.8 –6.01 – – – 
TCSW-1 2/09/2013 –35.114 149.484 –41.4 –6.30 – – – 
ACSW-1 1/10/2013 –35.248 149.536 –40.5 –6.06 – – – 
TuCSW-1 2/10/2013 –35.248 149.437 –43.9 –6.94 – – – 
TuCSW-2 2/10/2013 –35.248 149.437 –46.7 –6.84 – – – 
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Site ID Date Latitude 
(DD) 

Longitude 
(DD) 

δ2H 
(‰ VSMOW)1 

δ18Ο 
(‰ VSMOW)2 

δ37Cl 
(‰ SMOC ± 1σ) 

δ81Br 
(‰ SMOB ± 1σ) 

3H activity 
(TU ± 1σ) 

BCSW-3 9/01/2014 –35.204 149.484 –16.2 –1.41 – – – 
CCSW-2 9/01/2014 –34.939 149.430 –15.0 –1.33 – – – 
TCSW-2 9/01/2014 –35.112 149.522 –26.7 –2.87 – – – 

TuCSW-3 9/01/2014 –35.246 149.433 –30.8 –3.86 – – – 
CCSW-3 21/02/2014 –34.939 149.430 –19.6 –1.84 – – – 

CuCSW-1 21/02/2014 –34.955 149.456 –39.4 –6.18 – – – 
TCSW-3 21/02/2014 –35.112 149.522 –26.2 –2.60 – – – 
BCSW-43 5/06/2014 –35.205 149.495 –23.6 –3.44 – – – 
BCSW-5 5/06/2014 –35.204 149.484 –27.1 –4.07 – – – 
ACSW-2 4/08/2014 –35.042 149.528 –34.5 –5.36 – – – 
BCSW-6 4/08/2014 –35.204 149.484 –27.9 –4.24 – – – 
CCSW-4 4/08/2014 –34.939 149.430 –28.3 –5.33 – – – 

CuCSW-2 4/08/2014 –34.955 149.456 –34.5 –5.70 – – – 
TCSW-4 4/08/2014 –35.112 149.522 –30.2 –4.96 – – – 

TuCSW-4 4/08/2014 –35.246 149.433 –36.0 –5.71 – – – 
ACSW-3 1/09/2014 –35.042 149.528 –41.4 –6.29 – – – 
BCSW-7 1/09/2014 –35.204 149.484 –52.5 –8.03 – – – 
CCSW-5 1/09/2014 –34.939 149.430 –77.0 –10.99 – – – 
TCSW-5 1/09/2014 –35.112 149.522 –45.4 –7.06 – – – 

TuCSW-5 1/09/2014 –35.246 149.433 –52.2 –7.88 – – – 
ACSW-4 3/11/2014 –35.042 149.528 –25.6 –3.59 – – – 
CCSW-6 3/11/2014 –34.939 149.430 –34.3 –4.97 – – – 
TCSW-6 3/11/2014 –35.112 149.522 –31.4 –4.62 – – – 
ACSW-5 13/11/2014 –35.042 149.528 –18.3 –1.92 0.73 ± 0.09 1.02 ± 0.18 – 
BCSW-8 13/11/2014 –35.204 149.484 –24.7 –3.25 0.25 ± 0.05 –0.69 ± 0.20 – 
TuCSW-6 13/11/2014 –35.246 149.433 –30.7 –4.51 0.31 ± 0.06 –0.74 ± 0.20 – 
CCSW-7 1/12/2014 –34.939 149.430 –25.9 –3.16 0.64 ± 0.09 0.83 ± 0.26 – 
TCSW-7 1/12/2014 –35.112 149.522 –23.3 –3.11 0.93 ± 0.12 0.06 ± 0.01 – 

1Mean analytical precision was ±1.1 ‰ (1σ) 
2Mean analytical precision was ±0.17 ‰ (1σ) 
3Collected from Dry Creek, a tributary of Butmaroo Creek
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3. Lake water 

a. Field parameters and major elements/ions (mg kg–1 unless otherwise stated) 
Site ID Date Latitude 

(DD) 
Longitude 

(DD) 
Temp. 
(°C)1 pH Eh 

(mV) TDS2 O2 
(mg L–1) HCO3

– CO3
2– Ca Mg Na K SO4

2– Cl– Si NO3
– PO4

3– Br– F– 

LGSW-1 20/05/2013 –35.089 149.465 12.4 9.57 262 8 217 6.3 377 228 53.9 136 2 871 22.1 469 4 026 0.88 7.36 1.23 21.3 1.14 
LGSW-2 20/05/2013 –35.091 149.464 12.5 9.41 252 8 541 6.8 521 223 56.4 140 2 971 17.9 479 4 102 0.88 4.35 1.02 21.4 1.17 
LGSW-3 20/05/2013 –35.092 149.464 12.2 9.42 227 8 239 6.5 500 213 53.5 132 2 870 16.8 462 3 963 0.88 3.80 1.08 21.0 1.12 
LGSW-4 25/06/2013 –35.089 149.465 10.7 9.25 302 1 164 9.9 90 11 6.32 10.4 411 4.55 66.7 560 <0.5 0.38 0.59 3.01 0.52 
LGSW-5 1/08/2013 –35.089 149.465 14.4 8.99 – 2 551 10.7 265 26 17.9 37.4 866 6.66 138 1 186 <0.5 1.21 0.29 6.18 0.50 
LGSW-6 2/09/2013 –35.089 149.465 20.1 9.11 179 3 335 10.3 265 42 25.6 51.2 1 140 8.55 193 1 598 <0.5 1.47 0.42 8.50 0.64 
LGSW-7 1/10/2013 –35.089 149.465 13.5 8.98 – 4 666 9.1 357 44 37.5 76.7 1 585 10.9 279 2 258 0.59 2.41 0.59 11.6 0.87 
LGSW-8 28/10/2013 –35.089 149.465 18.6 9.31 – 5 092 – 147 44 40.2 82.9 1 769 12.5 328 2 652 0.68 <0.2 0.74 13.8 0.98 
LGSW-9 2/12/2013 –35.089 149.465 31.1 9.86 355 8 595 9.9 246 380 42.7 142 3 065 20.0 511 4 158 0.87 3.84 0.79 22.0 1.17 

LGSW-10 2/06/2014 –35.089 149.465 14.8 9.31 300 1 363 14.9 134 19 4.61 4.91 491 5.57 81.0 618 <2.5 0.41 <0.04 3.14 0.73 
LGSW-11 1/07/2014 –35.089 149.465 11.0 8.78 280 1 135 – 236 9 5.31 4.19 387 4.53 55.5 430 <4.0 0.41 <0.04 1.76 0.53 
LGSW-12 4/08/2014 –35.089 149.465 14.6 9.09 290 3 296 9.9 408 53 17.2 28.3 1 145 10.7 205 1 420 <4.5 1.23 0.35 6.96 0.85 
LGSW-13 1/09/2014 –35.089 149.465 15.1 9.22 290 874 – 156 16 6.38 7.20 294 5.22 40.9 346 <1.5 0.27 0.10 1.47 0.41 
LGSW-14 8/10/2014 –35.089 149.465 26.3 9.52 – 2 903 5.7 114 43 11.2 19.6 1 058 11.5 190 1 446 <1.5 1.37 <0.1 6.98 0.93 
LGSW-15 12/01/2015 –35.089 149.465 21.9 9.73 170 599 2.3 91 31 2.67 1.73 260 3.20 39.7 286 2.18 <0.02 0.36 1.38 0.90 
LGSW-16 22/07/2015 –35.089 149.465 19.9 9.21 – 710 8.9 241 27 3.16 2.83 333 3.28 34.1 327 3.26 0.58 0.14 1.29 0.73 

1Field temperature 
2Total dissolved solids 

 
b. Trace elements (μg kg–1) 

Site ID Date Latitude 
(DD) 

Longitude 
(DD) Fe Li B Al V Cr Mn Co Ni Cu Zn As Rb Sr Mo Sn Ba Pb U 

LGSW-1 20/05/2013 –35.089 149.465 297 <1 816 455 43.4 39.1 8.3 <10 5.6 23.6 13.5 25.6 2.0 863 22.9 <10 161 <1 15.9 
LGSW-2 20/05/2013 –35.091 149.464 <10 <1 809 163 41.8 78.7 <5 <10 <5 19.7 17.8 26.0 1.2 838 22.3 <10 150 <1 8.0 
LGSW-3 20/05/2013 –35.092 149.464 <10 <1 754 141 39.0 57.0 12.6 <10 <5 14.0 13.5 25.4 1.2 801 21.0 <10 148 <1 6.9 
LGSW-4 25/06/2013 –35.089 149.465 <10 0.6 362 128 30.6 7.9 1.7 <2 1.9 8.9 5.1 8.5 0.6 101 4.3 <2 21 0.3 3.1 
LGSW-5 1/08/2013 –35.089 149.465 <10 <0.5 303 66 16.2 <5 <2.5 <5 <2.5 10.3 8.1 8.1 0.6 260 6.7 <5 44 <0.5 3.7 
LGSW-6 2/09/2013 –35.089 149.465 <10 2.6 479 218 28.0 <10 <5 <10 <5 18.0 13.0 9.9 1.4 432 11.7 <10 79 1.3 6.2 
LGSW-7 1/10/2013 –35.089 149.465 <10 3.0 590 182 33.1 <10 <5 <10 <5 16.5 14.8 14.3 1.5 743 15.2 <10 122 1.2 8.0 
LGSW-8 28/10/2013 –35.089 149.465 <10 3.1 699 186 42.9 <10 <5 <10 <5 15.5 10.3 16.1 1.7 731 17.4 <10 130 1.0 9.1 
LGSW-9 2/12/2013 –35.089 149.465 <10 4.0 1022 138 45.9 11.0 <5 <10 <5 16.7 12.0 24.7 1.9 914 24.5 <10 156 1.1 11.3 

LGSW-10 2/06/2014 –35.089 149.465 <10 0.6 362 152 32.9 7.6 2.1 <2 1.2 8.8 4.5 6.5 0.5 68 5.8 <2 15 0.2 6.0 
LGSW-11 1/07/2014 –35.089 149.465 <10 0.7 247 144 18.2 5.7 2.6 <2 2.1 16.0 10.8 6.1 0.6 63 4.2 <2 14 0.6 4.0 
LGSW-12 4/08/2014 –35.089 149.465 <10 1.5 382 74 31.8 1.5 0.9 <1 4.0 14.6 4.5 10.5 0.7 324 15.0 <5 58 0.2 17.2 
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LGSW-13 1/09/2014 –35.089 149.465 80 0.7 187 296 25.6 3.5 1.9 <2 1.6 9.3 3.5 3.0 0.6 83 3.3 <2 13 0.4 2.5 
LGSW-14 8/10/2014 –35.089 149.465 <15 1.5 567 477 71.7 13.9 <2.5 <5 <2.5 15.2 5.1 8.4 1.4 217 15.4 <5 42 0.7 8.4 
LGSW-15 12/01/2015 –35.089 149.465 <4 0.2 446 32 <0.5 <1 0.9 <1 1.0 11.6 2.1 10.4 0.4 36 3.5 <0.5 5 <0.1 2.8 
LGSW-16 22/07/2015 –35.089 149.465 <4 0.2 296 42 <0.5 <1 3.0 <1 1.7 23.3 1.7 9.0 0.3 40 3.2 <0.5 7 0.1 6.8 

c. Isotopes

Site ID Date Latitude 
(DD) 

Longitude 
(DD) 

δ2H 
(‰ VSMOW)1 

δ18Ο 
(‰ VSMOW)2 

δ37Cl 
(‰ SMOC ± 1σ) 

δ81Br 
(‰ SMOB ± 1σ) 

3H activity 
(TU ± 1σ) 

LGSW-1 20/05/2013 –35.089 149.465 21.3 3.29 – – – 
LGSW-2 20/05/2013 –35.091 149.464 23.5 3.38 – – – 
LGSW-3 20/05/2013 –35.092 149.464 22.5 3.45 – – – 
LGSW-4 25/06/2013 –35.089 149.465 –21.2 –5.23 – – – 
LGSW-5 1/08/2013 –35.089 149.465 –21.9 –4.33 – – 3.73 ± 0.18 
LGSW-6 2/09/2013 –35.089 149.465 –3.9 –1.37 – – – 
LGSW-7 1/10/2013 –35.089 149.465 14.9 1.83 – – – 
LGSW-8 28/10/2013 –35.089 149.465 29.9 4.67 – – – 
LGSW-9 2/12/2013 –35.089 149.465 37.1 6.76 – – – 

LGSW-20133 Jun – Dec 2013 –35.089 149.465 – – –1.58 ± 0.10 0.73 ± 0.02 – 
LGSW-10 2/06/2014 –35.089 149.465 –30.2 –5.88 – – – 
LGSW-11 1/07/2014 –35.089 149.465 –19.3 –4.10 – – – 
LGSW-12 4/08/2014 –35.089 149.465 7.6 0.05 – – – 
LGSW-13 1/09/2014 –35.089 149.465 –38.9 –5.26 – – – 
LGSW-14 8/10/2014 –35.089 149.465 38.3 5.28 – – – 
LGSW-15 12/01/2015 –35.089 149.465 –49.6 –6.66 – – – 
LGSW-16 22/07/2015 –35.089 149.465 –27.6 –4.44 – – – 

1Mean analytical precision was ±1.1 ‰ (1σ) 
2Mean analytical precision was ±0.17 ‰ (1σ) 
3Mixture, in equal parts, of the 2013 samples for stable halogen isotope analyses 
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4. Groundwater

a. Field parameters and sample details

Site ID Date Latitude 
(DD) 

Longitude 
(DD) 

Intake interval 
(m BGS1) 

Standing 
water level 
(m AHD2) 

Temp. 
(°C)3 pH EC 

(μS cm–1)4 
TDS5 

(mg kg–1) 
Eh 

(mV) 
O2 

(mg L–1) 
S2– 

(μg L–1)6
Fe2+ 

(mg L–1)6

GW085100 21/1/2014 –35.250 149.428 20–24 685.295 16.7 6.74 648 466 – 2.00 3 <0.01 
GW085100 22/11/2014 –35.250 149.428 20–24 684.835 15.2 6.93 657 436 190 1.50 <1 0.02 
GW085101 24/10/2013 –35.245 149.425 39–45 680.040 12.4 7.28 413 333 235 3.68 36 0.16 
GW085101 25/11/2014 –35.245 149.425 39–45 669.655 20.6 6.87 417 316 110 2.33 9 <0.01 
GW085102 24/10/2013 –35.245 149.425 48–54 680.260 15.6 7.21 523 421 253 2.31 4 0.44 
GW085102 25/11/2014 –35.245 149.425 48–54 665.896 19.4 7.16 516 410 130 1.45 9 0.04 
GW085103 24/10/2013 –35.245 149.425 8–11 684.370 15.2 7.18 954 760 192 0.27 4 0.44 
GW085103 25/11/2014 –35.245 149.425 8–11 684.342 15.7 7.25 983 742 30 0.35 <1 0.11 
GW085104 30/1/2014 –35.267 149.431 24–29 691.428 16.2 7.41 291 213 120 6.19 3 <0.01 
GW0851047 30/1/2014 –35.267 149.431 24–30 691.428 16.2 7.41 291 226 120 6.19 4 <0.01 
GW085104 24/11/2014 –35.267 149.431 24–30 691.418 17.0 7.56 294 216 150 3.96 3 0.01 
GW085105 30/1/2014 –35.267 149.431 3–5 691.466 17.7 6.53 499 352 – 3.43 <1 <0.01 
GW085105 24/11/2014 –35.267 149.431 3–5 691.446 15.0 6.87 388 267 170 3.36 <1 <0.01 
PMB_AD 21/1/2014 –35.245 149.437 11–17 684.144 19.7 6.08 727 428 120 0.20 <1 2.27 
PMB_AD 24/11/2014 –35.245 149.437 11–17 684.234 16.9 6.48 738 437 60 0.18 2 2.30 
PMB_AS 21/1/2014 –35.245 149.437 7–10 685.020 17.1 6.44 981 656 100 0.20 22 2.33 
PMB_AS 24/11/2014 –35.245 149.437 7–10 685.080 15.6 6.55 922 624 –200 0.08 10 2.33 
PMB_BD 2/10/2013 –35.243 149.443 51–60 685.980 16.1 6.77 502 320 23.1 0.12 4 0.25 
PMB_BD7 2/10/2013 –35.243 149.443 51–60 685.980 16.1 6.77 502 324 23.1 0.12 4 0.25 
PMB_BD 26/11/2014 –35.243 149.443 51–60 685.433 18.5 6.71 482 302 –150 0.19 2 0.44 
PMB_BS 21/1/2014 –35.243 149.443 15–18 686.089 16.9 6.17 706 481 57 3.88 2 0.03 
PMB_BS 26/11/2014 –35.243 149.443 15–18 686.064 16.0 6.14 710 450 –50 3.23 6 0.01 
PMB_C 28/1/2014 –35.241 149.418 9–18 686.176 18.1 7.31 635 512 –100 0.05 29 0.04 
PMB_C 21/11/2014 –35.241 149.418 9–18 685.847 16.0 7.32 650 503 –30 1.05 13 0.03 
PMB_D 28/1/2014 –35.260 149.437 11–14 688.982 15.2 7.35 206 173 195 8.80 17 <0.01 
PMB_D 21/11/2014 –35.260 149.437 11–14 689.062 15.4 7.30 221 174 230 6.75 23 0.02 
PMB_E 30/1/2014 –35.273 149.428 12–18 692.708 15.6 7.07 424 293 25 3.35 6 0.02 
PMB_E 22/11/2014 –35.273 149.428 12–18 692.797 15.6 7.13 407 272 260 3.20 6 0.03 

PMB_FD 23/1/2014 –35.205 149.495 46–58 686.690 16.7 6.82 469 363 –140 0.00 5 0.02 
PMB_FD 26/11/2014 –35.205 149.495 46–58 687.020 21.8 6.85 486 363 –140 0.65 <1 0.02 
PMB_FS 23/1/2014 –35.205 149.495 15–18 686.862 19.8 6.27 557 375 –110 0.30 17 1.73 
PMB_FS 26/11/2014 –35.205 149.495 15–18 687.062 16.0 6.24 546 341 –210 0.08 19 1.55 
PMB_G 23/1/2014 –35.206 149.503 28–40 689.671 16.5 6.61 1 978 1 289 –160 0.00 3 0.04 
PMB_G 26/11/2014 –35.206 149.503 28–40 689.433 18.4 6.72 1 991 1 252 60 0.27 36 0.05 
PMB_G7 26/11/2014 –35.206 149.503 28–40 689.433 18.4 6.72 1 991 1 252 60 0.27 36 0.05 
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Site ID Date Latitude 
(DD) 

Longitude 
(DD) 

Intake interval 
(m BGS1) 

Standing 
water level 
(m AHD2) 

Temp. 
(°C)3 pH EC 

(μS cm–1)4 
TDS5 

(mg kg–1) 
Eh 

(mV) 
O2 

(mg L–1) 
S2– 

(μg L–1)6
Fe2+ 

(mg L–1)6

PMB_KD 5/2/2014 –35.220 149.423 22–31 679.220 15.3 7.20 744 557 –60 0.09 10 0.31 
PMB_KD 27/11/2014 –35.220 149.423 22–31 679.460 15.8 7.26 708 538 –130 0.27 5 0.37 
PMB_KS 27/11/2014 –35.220 149.423 5–8 679.704 13.6 7.64 836 489 –200 0.50 4 2.20 
PMB_LD 5/2/2014 –35.221 149.438 15–18 681.137 16.0 6.73 2 689 1 757 –80 0.07 47 0.09 
PMB_LD 27/11/2014 –35.221 149.438 15–18 681.022 15.6 6.76 2 580 1 666 40 0.12 19 0.02 
PMB_LS 5/2/2014 –35.221 149.438 7–10 681.131 14.9 7.21 1 702 1 203 –125 0.00 7 0.04 
PMB_LS 27/11/2014 –35.221 149.438 7–10 681.011 15.1 7.23 1 658 1 176 40 0.48 4 0.02 
PMB_M 28/1/2014 –35.250 149.451 15–18 690.294 20.1 6.33 213 163 –150 0.14 7 0.04 
PMB_M 20/11/2014 –35.250 149.451 15–18 690.511 15.7 6.12 199 161 210 0.58 13 0.07 

Harrys bore 31/3/2014 –35.174 149.492 – – 17.0 7.57 1 222 835 240 8.00 – – 
Dominics bore 23/1/2014 –35.205 149.486 – – 14.8 6.59 518 347 –20 1.52 19 1.56 
GW0209108 23/1/2014 –35.195 149.487 – – 20.4 7.30 486 375 81 – – – 
GW0523109 20/5/2013 –35.092 149.496 18–40 – 17.2 8.18 1 147 894 290 3.30 – – 

Winderadeen bore 12/5/2014 –34.976 149.390 – – 13.2 7.74 2 039 1 465 200 6.59 67 0.58 
Russells bore 1 21/2/2014 –35.089 149.462 1.42 671.838 25.3 7.67 34400 24264 90 – – – 
Russells bore 2 3/3/2014 –35.089 149.462 1.42 671.794 23.2 7.73 32700 23669 275 6.21 – – 
Russells bore 3 31/3/2014 –35.089 149.462 1.42 672.111 19.4 7.55 37300 24328 300 6.42 – – 
Russells bore 4 12/5/2014 –35.089 149.462 1.42 672.508 14 7.90 34700 23855 5 8.14 – – 
Russells bore 5 2/6/2014 –35.089 149.462 1.42 672.475 13.9 7.92 33400 22643 360 9.76 – – 
Russells bore 6 1/7/2014 –35.089 149.462 1.42 673.137 16.3 7.94 43300 22455 370 – – – 
Russells bore 7 4/8/2014 –35.089 149.462 1.42 673.115 12.5 7.79 27000 22628 350 4.00 – – 
Russells bore 8 1/9/2014 –35.089 149.462 1.42 673.205 9.7 7.77 30100 22445 330 – – – 
Russells bore 9 8/10/2014 –35.089 149.462 1.42 673.114 13.6 7.92 33000 22181 200 2.92 – – 

Russells bore 10 3/11/2014 –35.089 149.462 1.42 672.516 18.4 8.00 27980 20559 210 2.48 – – 
Russells bore 11 1/12/2014 –35.089 149.462 1.42 672.352 21.5 8.01 31200 18845 130 3.64 – – 
Russells bore 12 9/2/2015 –35.089 149.462 1.42 673.004 18.2 7.67 34700 22915 236 3.96 – – 
Russells bore 13 21/05/2015 –35.089 149.462 1.42 672.515 14.5 8.16 35500 23269 510 8.41 – – 

1Below ground surface 
2Australian height datum
3Field temperature 
4Electrical conductivity
5Total dissolved solids 
6Determined using a portable spectrophotometer 
7Field duplicate 
8Osbournes bore 
9Keatleys bore
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b. Major ions/elements (mg kg–1 unless otherwise stated)

Site ID Date Latitude 
(DD) 

Longitude 
(DD) 

HCO3
–

(mg L–1) Ca Mg Na K Si SO4
2– Cl– Br– F– NO3

– PO4
3–

GW085100 21/1/2014 –35.250 149.428 201 41.0 38.5 42.8 0.775 13.1 19.5 106 0.408 0.265 2.63 <0.01 
GW085100 22/11/2014 –35.250 149.428 187 37.3 34.4 42.3 0.748 12.2 20.4 97.3 0.363 0.276 2.96 <0.01 
GW085101 24/10/2013 –35.245 149.425 204 25.4 16.4 41.7 0.610 4.27 17.4 22.2 0.111 0.607 0.105 0.023 
GW085101 25/11/2014 –35.245 149.425 185 25.3 15.7 43.5 0.584 4.00 17.9 22.5 0.108 0.625 0.329 0.030 
GW085102 24/10/2013 –35.245 149.425 248 33.5 17.2 56.9 0.716 4.44 21.7 37.8 0.170 0.662 <0.01 0.018 
GW085102 25/11/2014 –35.245 149.425 238 32.7 16.4 58.2 0.737 4.23 21.8 36.6 0.167 0.678 <0.01 0.057 
GW085103 24/10/2013 –35.245 149.425 395 40.9 29.2 133 1.34 11.6 57.5 90.1 0.410 0.358 0.172 <0.01 
GW085103 25/11/2014 –35.245 149.425 368 43.8 29.5 130 1.43 11.3 62.3 94.3 0.454 0.439 0.434 <0.01 
GW085104 30/1/2014 –35.267 149.431 117 12.1 8.76 36.1 0.692 5.58 9.36 22.1 0.131 0.697 0.485 0.045 
GW0851041 30/1/2014 –35.267 149.431 126 12.6 9.11 37.5 0.723 5.81 9.72 23.3 0.132 0.721 0.270 0.038 
GW085104 24/11/2014 –35.267 149.431 117 12.3 8.64 39.0 0.811 5.64 9.46 22.6 0.124 0.708 0.167 <0.01 
GW085105 30/1/2014 –35.267 149.431 147 27.4 22.1 39.6 0.430 10.5 26.4 73.5 0.394 0.220 4.30 <0.01 
GW085105 24/11/2014 –35.267 149.431 120 17.2 13.2 42.4 0.410 9.34 17.0 46.1 0.194 0.264 0.898 <0.01 
PMB_AD 21/1/2014 –35.245 149.437 96 32.2 28.2 58.7 2.07 20.7 18.1 169 0.840 0.100 0.163 <0.01 
PMB_AD 24/11/2014 –35.245 149.437 105 31.4 26.9 60.5 2.12 20.5 16.9 169 0.861 0.107 0.120 <0.01 
PMB_AS 21/1/2014 –35.245 149.437 231 43.1 35.2 106 1.59 16.1 51.6 162 0.760 0.089 4.62 <0.01 
PMB_AS 24/11/2014 –35.245 149.437 245 39.0 31.0 104 1.48 15.3 45.7 135 0.642 0.101 4.63 <0.01 
PMB_BD 2/10/2013 –35.243 149.443 106 15.6 19.2 48.3 2.49 15.0 13.1 99.0 0.472 0.190 0.119 <0.01 
PMB_BD1 2/10/2013 –35.243 149.443 106 16.3 20.2 50.0 2.63 15.8 13.0 98.4 0.479 0.188 0.618 <0.01 
PMB_BD 26/11/2014 –35.243 149.443 96 19.3 17.7 46.7 2.18 12.9 11.4 94.6 0.459 0.167 <0.01 <0.01 
PMB_BS 21/1/2014 –35.243 149.443 135 32.8 25.0 70.8 1.00 18.2 40.5 124 0.619 0.038 32.8 <0.01 
PMB_BS 26/11/2014 –35.243 149.443 112 31.5 23.1 71.9 1.01 17.2 38.7 119 0.594 0.038 34.0 0.023 
PMB_C 28/1/2014 –35.241 149.418 294 15.6 20.2 106 1.35 8.20 28.6 36.7 0.124 0.957 <0.01 <0.01 
PMB_C 21/11/2014 –35.241 149.418 286 18.0 18.2 101 1.14 8.83 29.4 38.6 0.123 1.02 <0.01 0.025 
PMB_D 28/1/2014 –35.260 149.437 103 9.33 8.02 22.8 1.02 5.78 4.97 11.3 0.061 0.919 5.52 <0.01 
PMB_D 21/11/2014 –35.260 149.437 98 11.3 7.70 23.3 0.952 6.30 4.97 13.4 0.069 0.909 7.26 <0.01 
PMB_E 30/1/2014 –35.273 149.428 113 20.2 15.8 43.3 0.998 8.96 10.4 71.2 0.326 0.469 8.66 <0.01 
PMB_E 22/11/2014 –35.273 149.428 108 18.4 13.9 42.9 0.976 8.75 13.9 57.4 0.280 0.503 6.89 <0.01 

PMB_FD 23/1/2014 –35.205 149.495 167 21.5 14.6 57.6 1.98 24.6 10.3 65.3 0.267 0.287 0.136 <0.01 
PMB_FD 26/11/2014 –35.205 149.495 170 21.7 14.1 58.5 1.99 22.4 9.74 63.7 0.264 0.274 0.332 0.054 
PMB_FS 23/1/2014 –35.205 149.495 119 15.1 17.7 73.9 0.856 17.7 10.2 118 0.407 0.193 0.116 <0.01 
PMB_FS 26/11/2014 –35.205 149.495 102 16.7 15.4 65.0 0.785 20.8 9.55 108 0.397 0.174 0.126 <0.02 
PMB_G 23/1/2014 –35.206 149.503 384 75.2 132 137 3.69 13.4 74.7 465 2.30 0.376 0.333 <0.03 
PMB_G 26/11/2014 –35.206 149.503 373 85.9 126 135 3.37 14.5 71.0 440 2.18 0.425 0.378 <0.03 
PMB_G1 26/11/2014 –35.206 149.503 373 85.9 126 135 3.38 14.4 71.2 440 2.20 0.423 0.352 <0.03 
PMB_KD 5/2/2014 –35.220 149.423 285 39.3 25.4 78.9 1.51 13.2 38.8 73.8 0.346 0.275 0.191 <0.01 
PMB_KD 27/11/2014 –35.220 149.423 267 38.0 24.1 81.0 1.60 12.8 40.7 71.9 0.334 0.394 0.114 <0.01 
PMB_KS 27/11/2014 –35.220 149.423 160 54.0 38.1 40.6 1.44 2.63 0.105 180 0.857 0.277 0.266 <0.01 
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Site ID Date Latitude 
(DD) 

Longitude 
(DD) 

HCO3
–

(mg L–1) Ca Mg Na K Si SO4
2– Cl– Br– F– NO3

– PO4
3–

PMB_LD 5/2/2014 –35.221 149.438 482 87.6 87.7 341 5.12 14.7 184 550 2.64 0.342 0.926 <0.04 
PMB_LD 27/11/2014 –35.221 149.438 445 79.9 79.7 338 4.99 13.3 177 523 2.47 0.443 1.63 <0.04 
PMB_LS 5/2/2014 –35.221 149.438 488 31.7 40.6 269 2.06 16.7 91.6 253 1.25 1.65 6.43 0.049 
PMB_LS 27/11/2014 –35.221 149.438 467 29.8 38.5 272 2.04 15.9 85.0 257 1.23 1.72 5.84 <0.02 
PMB_M 28/1/2014 –35.250 149.451 74 6.38 10.8 20.2 1.32 12.7 7.62 14.2 0.092 0.220 15.7 0.026 
PMB_M 20/11/2014 –35.250 149.451 46 7.11 11.3 17.5 1.04 12.2 13.0 16.5 0.090 0.136 36.7 0.027 

Harrys bore 31/3/2014 –35.174 149.492 397 32.3 36.2 169 1.27 15.4 20.5 158 0.766 0.911 2.92 <0.01 
Dominics bore 23/1/2014 –35.205 149.486 145 21.6 18.4 40.4 1.04 19.4 12.7 72.6 0.280 0.134 0.134 <0.01 
GW0209102 23/1/2014 –35.195 149.487 193 12.1 16.1 71.2 0.435 18.6 15.5 40.7 0.158 0.665 6.18 0.039 
GW0523103 20/5/2013 –35.092 149.496 426 22.6 19.4 201 2.30 17.1 21.9 140 0.829 0.772 40.8 0.172 

Winderadeen bore 12/5/2014 –34.976 149.390 564 41.2 26.8 370 3.46 11.4 0.136 439 2.23 4.33 0.231 <0.02 
Russells bore 1 21/2/2014 –35.089 149.462 722 195 906 7 452 31.6 1.14 2 862 11 978 62.4 2.0 27.1 <1 
Russells bore 2 3/3/2014 –35.089 149.462 501 182 927 7 173 29.8 1.16 2 836 11 895 62.6 2.0 32.6 <1 
Russells bore 3 31/3/2014 –35.089 149.462 460 170 947 7 353 29.5 1.17 2 949 12 306 65.2 2.0 19.3 <1 
Russells bore 4 12/5/2014 –35.089 149.462 748 194 858 7 179 29.0 1.11 2 796 11 933 62.1 2.1 29.3 <1 
Russells bore 5 2/6/2014 –35.089 149.462 396 167 883 6 955 26.4 1.05 2 672 11 428 59.1 2.0 32.0 <1 
Russells bore 6 1/7/2014 –35.089 149.462 341 163 870 6 758 25.5 0.991 2 684 11 498 57.2 1.9 33.7 <1 
Russells bore 7 4/8/2014 –35.089 149.462 516 165 877 6 759 24.4 0.883 2 674 11 496 57.0 1.9 36.5 <1 
Russells bore 8 1/9/2014 –35.089 149.462 434 168 876 6 803 24.6 0.831 2 657 11 363 56.2 1.9 40.3 <1 
Russells bore 9 8/10/2014 –35.089 149.462 524 192 785 6 672 25.9 0.853 2 640 11 220 55.5 1.9 41.9 <1 

Russells bore 10 3/11/2014 –35.089 149.462 611 177 601 6 229 25.0 0.784 2 521 10 290 50.4 1.8 29.1 <1 
Russells bore 11 1/12/2014 –35.089 149.462 555 176 699 5 712 25.5 0.865 2 335 9 208 44.5 1.8 64.1 <1 
Russells bore 12 9/2/2015 –35.089 149.462 476 186 821 6 999 28.6 1.06 2 740 11 553 61.2 2.0 24.6 <1 
Russells bore 13 21/05/2015 –35.089 149.462 490 180 830 7 026 28.4 1.08 2 799 11 807 63.0 2.0 23.9 <1 

1Field duplicate 
2Osbournes bore 
3Keatleys bore

c. Trace elements (μg kg–1)

Site ID Date Latitude 
(DD) 

Longitude 
(DD) Fe Li B Al V Cr Mn Co Ni Cu Zn As Rb Sr Mo Sn Ba Pb U 

GW085100 21/1/2014 –35.250 149.428 <30 0.9 8 <10 0.6 5 <0.5 <1 0.5 <1 2 0.3 0.4 238 <1 <1 27 0.1 0.3 
GW085100 22/11/2014 –35.250 149.428 <10 0.7 11 – 0.6 1 0.5 <1 3.5 <1 3 0.4 0.4 279 <1 <0.4 34 <0.1 0.3 
GW085101 24/10/2013 –35.245 149.425 <20 1.1 16 22 3.3 1 <0.5 <1 1.1 2 24 0.3 1.8 144 <1 <1 13 0.2 0.2 
GW085101 25/11/2014 –35.245 149.425 <10 0.7 14 – 3.1 <1 0.7 <1 1.1 <1 15 0.4 1.8 169 <1 <0.4 15 <0.1 <0.1 
GW085102 24/10/2013 –35.245 149.425 <20 4.4 16 21 0.5 <1 0.7 <1 0.7 <1 5 0.3 2.1 213 <1 <1 13 0.1 0.3 
GW085102 25/11/2014 –35.245 149.425 <10 3.7 14 – <0.5 <1 0.9 <1 6.7 <1 8 0.4 2.1 225 <1 <0.4 15 <0.1 0.2 
GW085103 24/10/2013 –35.245 149.425 418 0.8 14 22 1.3 4 43 1 1.0 <1 9 1.6 0.2 267 <1 <1 101 0.2 3.0 
GW085103 25/11/2014 –35.245 149.425 <20 0.7 13 – 1.7 1 21 1 1.1 1 7 1.3 0.1 343 <1 <0.4 138 <0.1 2.9 
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Site ID Date Latitude 
(DD) 

Longitude 
(DD) Fe Li B Al V Cr Mn Co Ni Cu Zn As Rb Sr Mo Sn Ba Pb U 

GW085104 30/1/2014 –35.267 149.431 <10 1.0 16 51 <0.5 1 0.6 <1 <0.5 <1 <0.5 0.1 0.3 106 <1 <1 5 0.1 0.2 
GW0851041 30/1/2014 –35.267 149.431 <10 1.0 16 47 <0.5 1 0.6 <1 <0.5 <1 <0.5 0.1 0.3 109 <1 <1 5 0.1 0.2 
GW085104 24/11/2014 –35.267 149.431 <10 0.7 15 – <0.5 <1 0.7 <1 <0.5 <1 5 0.3 0.2 131 <1 <0.4 8 <0.1 <0.1 
GW085105 30/1/2014 –35.267 149.431 <10 0.6 18 54 <0.5 3 <0.5 <1 <0.5 <1 3 0.3 0.2 251 <1 <1 72 0.1 <0.1 
GW085105 24/11/2014 –35.267 149.431 <10 0.3 15 – <0.5 <1 0.4 <1 <0.5 <1 3 1.0 <0.1 170 <1 <0.4 57 <0.1 <0.1 
PMB_AD 21/1/2014 –35.245 149.437 2 694 2.0 13 37 <0.5 8 7 105 31 5.9 1 32 1.0 0.2 216 <1 <1 460 0.2 0.1 
PMB_AD 24/11/2014 –35.245 149.437 2 669 1.8 14 – <0.5 3 6 625 <1 7.3 2 46 1.9 0.2 253 <1 <0.4 629 <0.1 <0.1 
PMB_AS 21/1/2014 –35.245 149.437 3 896 1.0 7 36 <0.5 6 709 6 2.8 <1 7 2.1 0.3 253 <1 <1 151 0.8 0.7 
PMB_AS 24/11/2014 –35.245 149.437 2 603 0.9 7 – 0.8 3 693 7 3.3 <1 8 3.2 0.3 279 <1 <0.4 194 <0.1 1.0 
PMB_BD 2/10/2013 –35.243 149.443 215 0.4 15 20 <0.5 4 1 099 2 0.9 <1 5 0.8 1.2 108 <1 <1 73 0.1 0.1 
PMB_BD1 2/10/2013 –35.243 149.443 213 0.4 14 20 <0.5 4 1 067 2 0.9 <1 5 0.8 1.1 105 <1 <1 72 0.1 0.1 
PMB_BD 26/11/2014 –35.243 149.443 407 0.2 15 – <0.5 2 1 686 2 7.1 <1 19 1.9 0.9 147 <1 <0.4 179 <0.1 <0.1 
PMB_BS 21/1/2014 –35.243 149.443 <10 1.1 4 <10 <0.5 5 0.8 <1 1.2 <1 5 0.3 0.3 210 <1 <1 118 <0.1 0.1 
PMB_BS 26/11/2014 –35.243 149.443 <10 1.0 5 – 0.8 3 0.9 <1 1.1 <1 7 1.3 0.3 243 <1 <0.4 146 <0.1 <0.1 
PMB_C 28/1/2014 –35.241 149.418 <10 0.5 22 36 0.7 1 36 <1 <0.5 <1 3 0.1 0.2 176 <1 <1 34 0.1 0.8 
PMB_C 21/11/2014 –35.241 149.418 <20 0.4 24 – 1.2 1 44 <1 <0.5 <1 3 1.0 0.2 200 <1 <0.4 45 <0.1 0.8 
PMB_D 28/1/2014 –35.260 149.437 <10 <0.1 25 44 <0.5 1 <0.5 <1 <0.5 <1 1 0.1 0.4 93 <1 <1 12 <0.1 0.1 
PMB_D 21/11/2014 –35.260 149.437 <10 0.0 21 – <0.5 1 0.4 <1 <0.5 <1 1 0.8 0.3 75 <1 <0.4 11 <0.1 <0.1 
PMB_E 30/1/2014 –35.273 149.428 <10 0.4 19 42 <0.5 3 <0.5 <1 <0.5 <1 2 0.2 0.4 205 <1 <1 29 <0.1 0.2 
PMB_E 22/11/2014 –35.273 149.428 <10 0.6 17 – <0.5 1 0.7 <1 <0.5 <1 1 0.2 0.3 197 <1 <0.4 28 <0.1 0.1 

PMB_FD 23/1/2014 –35.205 149.495 <10 0.4 30 37 0.7 3 864 <1 1.0 <1 3 0.4 1.1 140 <1 <1 85 0.1 0.5 
PMB_FD 26/11/2014 –35.205 149.495 <10 0.3 27 – 0.5 1 767 <1 1.8 <1 15 0.5 1.0 158 <1 <0.4 72 <0.1 0.4 
PMB_FS 23/1/2014 –35.205 149.495 1 671 0.6 9 39 <0.5 6 246 1 1.7 <1 18 1.3 0.4 130 <1 <1 142 0.1 <0.1 
PMB_FS 26/11/2014 –35.205 149.495 1 752 0.6 8 – <0.5 2 255 2 1.1 <1 8 1.6 0.5 129 <1 <0.4 152 <0.1 <0.1 
PMB_G 23/1/2014 –35.206 149.503 <10 0.8 15 39 <0.5 16 1 175 1 1.6 <1 6 1.4 2.9 595 <1 <1 143 0.1 3.5 
PMB_G 26/11/2014 –35.206 149.503 <20 0.8 13 – <0.5 7 1 384 2 3.0 2 22 1.5 3.3 714 <1 <0.4 180 0.2 4.0 
PMB_G1 26/11/2014 –35.206 149.503 <20 0.8 13 – <0.5 7 1 368 2 2.9 2 22 1.5 3.3 712 <1 <0.4 177 0.2 3.7 
PMB_KD 5/2/2014 –35.220 149.423 163 0.4 21 39 <0.5 4 149 <1 1.8 1 16 4.0 0.3 309 <1 <1 138 0.1 0.3 
PMB_KD 27/11/2014 –35.220 149.423 313 0.6 16 – <0.5 2 144 <1 3.9 <1 10 4.4 0.3 319 <1 <0.4 122 <0.1 0.3 
PMB_KS 27/11/2014 –35.220 149.423 9 971 0.1 4 – <0.5 2 1 001 <1 0.9 <1 13 2.1 0.6 419 <1 <0.4 119 <0.1 <0.1 
PMB_LD 5/2/2014 –35.221 149.438 <10 0.7 44 47 <0.5 17 913 3 1.9 1 11 1.5 0.2 518 <1 <1 82 <0.1 4.7 
PMB_LD 27/11/2014 –35.221 149.438 <40 0.7 50 12 0.9 <1 1 091 4 1.3 1 6 1.8 0.3 721 <1 <0.4 119 <0.1 4.8 
PMB_LS 5/2/2014 –35.221 149.438 <10 0.8 21 35 6.2 6 47 <1 1.0 <1 2 1.3 0.1 231 1 <1 34 <0.1 6.0 
PMB_LS 27/11/2014 –35.221 149.438 <40 0.7 21 11 7.4 <1 52 <1 1.6 <1 3 2.0 0.1 303 2 <0.4 46 <0.1 5.3 
PMB_M 28/1/2014 –35.250 149.451 22 0.6 12 63 <0.5 1 421 <1 1.5 3 22 0.3 0.4 61 <1 <1 11 0.2 0.1 
PMB_M 20/11/2014 –35.250 149.451 <10 0.7 9 48 <0.5 <1 372 <1 0.9 2 5 0.4 0.3 74 <1 <0.4 13 <0.1 <0.1 

Harrys bore 31/3/2014 –35.174 149.492 30 0.8 22 30 2.5 8 20 <1 0.9 3 4 0.6 0.3 258 1 <1 61 0.1 9.6 
Dominics bore 23/1/2014 –35.205 149.486 15 000 0.3 11 38 <0.5 4 522 <1 <0.5 191 5 0.5 0.5 139 <1 <1 88 0.1 <0.1 
GW0209102 23/1/2014 –35.195 149.487 <10 0.5 6 65 2.1 1 <0.5 <1 2.6 193 41 0.4 0.2 74 <1 <1 28 1.2 1.1 
GW0523103 20/5/2013 –35.092 149.496 270 1.8 51 17 5.7 7 2 <1 0.5 11 26 0.9 0.3 182 <1 <1 31 1.1 3.6 
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Site ID Date Latitude 
(DD) 

Longitude 
(DD) Fe Li B Al V Cr Mn Co Ni Cu Zn As Rb Sr Mo Sn Ba Pb U 

Winderadeen bore 12/5/2014 –34.976 149.390 480 <0.1 157 35 <0.5 2 18 <1 0.7 <1 12 1.8 3.0 1 594 <1 <1 434 <0.1 <0.1 
Russells bore 1 21/2/2014 –35.089 149.462 <1 000 4.9 1 121 77 26 36 127 <10 191 63 43 53 4 6 632 50 <5 92 <1 16 
Russells bore 2 3/3/2014 –35.089 149.462 <1 000 4.1 1 226 85 24 41 138 <10 344 321 50 53 4 7 040 41 <5 100 <1 22 
Russells bore 3 31/3/2014 –35.089 149.462 <1 000 3.6 1 127 73 16 35 231 <10 227 <10 47 46 3 6 545 40 <5 63 <1 23 
Russells bore 4 12/5/2014 –35.089 149.462 <1 000 3.0 1 066 91 11 38 92 <10 91 <10 38 47 3 6 452 39 <5 61 <1 20 
Russells bore 5 2/6/2014 –35.089 149.462 <1 000 2.9 995 55 12 42 106 <10 73 <10 41 48 3 6 599 37 <5 56 <1 20 
Russells bore 6 1/7/2014 –35.089 149.462 <1 000 2.7 953 69 12 40 71 <10 59 1 970 75 57 3 6 867 42 <5 64 4.5 19 
Russells bore 7 4/8/2014 –35.089 149.462 <1 000 2.0 815 75 13 35 27 <10 26 1 030 35 48 2 6 315 35 <5 43 <1 20 
Russells bore 8 1/9/2014 –35.089 149.462 <1 000 1.8 775 64 15 35 32 <10 18 973 31 47 2 5 964 35 <5 38 <1 20 
Russells bore 9 8/10/2014 –35.089 149.462 <1 000 3.3 781 93 14 <10 43 <10 – 396 27 40 2 6 497 37 <5 44 <1 18 

Russells bore 10 3/11/2014 –35.089 149.462 <1 000 3.3 767 187 28 <10 18 <10 – 621 31 44 2 5 201 33 <5 45 <1 16 
Russells bore 11 1/12/2014 –35.089 149.462 2 364 3.7 873 26 20 <10 37 <10 – <10 38 43 3 6 071 39 <5 43 <1 18 
Russells bore 12 9/2/2015 –35.089 149.462 <1 000 4.3 987 13 10 <10 107 <10 – <10 24 37 2 6 339 41 <5 41 <1 17 
Russells bore 13 21/05/2015 –35.089 149.462 <1 000 4.6 1 012 23 5 <10 69 <10 – 1 764 27 37 3 6 849 48 <5 41 <1 16 

1Field duplicate 
2Osbournes bore 
3Keatleys bore 

d. Isotopes 

Site ID Date Latitude 
(DD) 

Longitude 
(DD) 

δ2H 
(‰ VSMOW)1 

δ18Ο 
(‰ VSMOW)2 

δ13C 
(‰ VPDB)3 

14C 
(% modern carbon ± 1σ) 

δ37Cl 
(‰ SMOC ± 1σ) 

δ81Br 
(‰ SMOB± 1σ) 

3H activity 
(TU ± 1σ) 

GW085100 21/1/2014 –35.250 149.428 –43.5 –6.55 –12.0 97.94 ± 0.31 – – – 
GW085100 22/11/2014 –35.250 149.428 –42.7 –6.41 – – – – 0.82 ± 0.05 
GW085101 24/10/2013 –35.245 149.425 –46.3 –7.35 –10.5 30.42 ± 0.31 – – – 
GW085101 25/11/2014 –35.245 149.425 –47.0 –7.26 – – – – – 
GW085102 24/10/2013 –35.245 149.425 –47.5 –7.36 –11.4 17.11 ± 0.31 – – – 
GW085102 25/11/2014 –35.245 149.425 –47.2 –7.23 – – – – – 
GW085103 24/10/2013 –35.245 149.425 –45.2 –7.58 –9.9 90.03 ± 0.31 – – 2.18 ± 0.10 
GW085103 25/11/2014 –35.245 149.425 –47.4 –7.34 – – – – – 
GW085104 30/1/2014 –35.267 149.431 –48.9 –7.99 –8.9 35.72 ± 0.31 – – – 
GW0851044 30/1/2014 –35.267 149.431 –52.7 –7.88 – – – – – 
GW085104 24/11/2014 –35.267 149.431 –52.4 –7.77 – – – – – 
GW085105 30/1/2014 –35.267 149.431 –43.7 –6.77 –13.6 102.3 ± 0.47 – – 1.23 ± 0.06 
GW085105 24/11/2014 –35.267 149.431 –43.0 –6.60 – – – – – 
PMB_AD 21/1/2014 –35.245 149.437 –47.1 –6.85 –11.4 89.12 ± 0.31 – – – 
PMB_AD 24/11/2014 –35.245 149.437 –45.6 –6.87 – – – – – 
PMB_AS 21/1/2014 –35.245 149.437 –40.9 –6.41 –12.1 100.8 ± 0.31 – – 1.40 ± 0.07 
PMB_AS 24/11/2014 –35.245 149.437 –39.4 –6.14 – – – – – 
PMB_BD 2/10/2013 –35.243 149.443 –48.2 –6.90 –14.6 47.3 ± 0.31 – – – 
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Site ID Date Latitude 
(DD) 

Longitude 
(DD) 

δ2H 
(‰ VSMOW)1 

δ18Ο 
(‰ VSMOW)2 

δ13C 
(‰ VPDB)3

14C 
(% modern carbon ± 1σ) 

δ37Cl 
(‰ SMOC ± 1σ) 

δ81Br 
(‰ SMOB± 1σ) 

3H activity 
(TU ± 1σ) 

PMB_BD4 2/10/2013 –35.243 149.443 –43.6 –6.99 –14.3 – – – – 
PMB_BD 26/11/2014 –35.243 149.443 –46.8 –7.19 – – – – – 
PMB_BS 21/1/2014 –35.243 149.443 –45.6 –7.25 –12.0 100.7 ± 0.31 – – 1.14 ± 0.06 
PMB_BS 26/11/2014 –35.243 149.443 –46.2 –7.05 – – – – – 
PMB_C 28/1/2014 –35.241 149.418 –45.6 –7.21 –11.8 12.34 ± 0.31 – – – 
PMB_C 21/11/2014 –35.241 149.418 –46.0 –7.29 – – – – 0.26 ± 0.03 
PMB_D 28/1/2014 –35.260 149.437 –35.2 –6.10 –10.4 82.64 ± 0.31 – – 4.38 ± 0.19 
PMB_D 21/11/2014 –35.260 149.437 –35.5 –5.99 – – – – – 
PMB_E 30/1/2014 –35.273 149.428 –44.2 –6.77 –9.6 84.03 ± 0.31 – – 1.34 ± 0.07 
PMB_E 22/11/2014 –35.273 149.428 –42.4 –6.39 – – – – – 

PMB_FD 23/1/2014 –35.205 149.495 –45.8 –6.87 –15.9 46.6 ± 0.37 – – – 
PMB_FD 26/11/2014 –35.205 149.495 –44.7 –6.78 – – – – – 
PMB_FS 23/1/2014 –35.205 149.495 –42.9 –6.16 –14.0 96.85 ± 0.32 – – 1.16 ± 0.06 
PMB_FS 26/11/2014 –35.205 149.495 –41.7 –6.22 – – – – – 
PMB_G 23/1/2014 –35.206 149.503 –51.7 –7.56 –12.9 86.27 ± 0.31 – – 3.11 ± 0.14 
PMB_G 26/11/2014 –35.206 149.503 –50.4 –7.63 – – 0.33 ± 0.10 – – 
PMB_G4 26/11/2014 –35.206 149.503 –51.0 –7.54 – – – – – 
PMB_KD 5/2/2014 –35.220 149.423 –47.9 –6.86 –12.5 12.68 ± 0.31 – – – 
PMB_KD 27/11/2014 –35.220 149.423 –46.3 –7.07 – – – – – 
PMB_KS 27/11/2014 –35.220 149.423 –32.7 –4.82 – – – – – 
PMB_LD 5/2/2014 –35.221 149.438 –49.5 –7.56 –11.4 84.53 ± 0.31 – – – 
PMB_LD 27/11/2014 –35.221 149.438 –49.2 –7.39 – – 0.18 ± 0.16 – – 
PMB_LS 5/2/2014 –35.221 149.438 –47.6 –6.99 –14.2 94.63 ± 0.31 – – <0.15 
PMB_LS 27/11/2014 –35.221 149.438 –47.2 –7.04 – – 0.34 ± 0.12 – – 
PMB_M 28/1/2014 –35.250 149.451 –45.3 –7.31 –17.2 87.71 ± 0.31 – – 6.12 ± 0.27 
PMB_M 20/11/2014 –35.250 149.451 –42.7 –6.78 – – – – – 

Harrys bore 31/3/2014 –35.174 149.492 –28.0 –4.56 – – – – – 
Dominics bore 23/1/2014 –35.205 149.486 –29.5 –3.94 – – – – – 
GW0209105 23/1/2014 –35.195 149.487 –47.7 –7.17 – – – – – 
GW0523106 20/5/2013 –35.092 149.496 –37.8 –5.35 – – – – – 

Winderadeen bore 12/5/2014 –34.976 149.390 –49.3 –8.25 – – – – – 
Russells bore 1 21/2/2014 –35.089 149.462 –8.6 –0.60 – – – – – 
Russells bore 2 3/3/2014 –35.089 149.462 –7.0 –0.62 – – – – – 
Russells bore 3 31/3/2014 –35.089 149.462 –5.8 –0.72 – – – – – 
Russells bore 4 12/5/2014 –35.089 149.462 –6.5 –0.57 – – 0.23 ± 0.10 0.96 ± 0.27 – 
Russells bore 5 2/6/2014 –35.089 149.462 –8.3 –0.42 – – – – – 
Russells bore 6 1/7/2014 –35.089 149.462 –7.0 –0.72 – – – – – 
Russells bore 7 4/8/2014 –35.089 149.462 –6.3 –0.66 – – – – – 
Russells bore 8 1/9/2014 –35.089 149.462 –7.5 –0.63 – – – – – 
Russells bore 9 8/10/2014 –35.089 149.462 –7.1 –0.57 – – – – –
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Site ID Date Latitude 
(DD) 

Longitude 
(DD) 

δ2H 
(‰ VSMOW)1 

δ18Ο 
(‰ VSMOW)2 

δ13C 
(‰ VPDB)3 

14C 
(% modern carbon ± 1σ) 

δ37Cl 
(‰ SMOC ± 1σ) 

δ81Br 
(‰ SMOB± 1σ) 

3H activity 
(TU ± 1σ) 

Russells bore 10 3/11/2014 –35.089 149.462 –6.1 –0.78 – – – – – 
Russells bore 11 1/12/2014 –35.089 149.462 –6.5 –0.75 – – – – – 
Russells bore 12 9/2/2015 –35.089 149.462 –6.1 –0.73 – – – – – 
Russells bore 13 21/05/2015 –35.089 149.462 –5.8 –0.66 – – – – – 

1Mean analytical precision was ±1.1 ‰ (1σ) 
2Mean analytical precision was ±0.17 ‰ (1σ) 
3Mean analytical precision was ±0.36 ‰ (1σ) 
4Field duplicate 
5Osbournes bore 
6Keatleys bore 
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5. Gearys Gap porewater

a. Field parameters and major elements/ions (mg kg–1)
Sample 
depth 
(m)1

Temp. 
(°C)2 pH TDS Cl– SO4

2– Br– F– NO3
– PO4

3– Na Mg Ca K Sr 

0.56 23.7 8.36 20 255 10 805 2 098 52.2 4.2 bdl bdl 6 502 402 104 283 2.6 
1.60 25.5 8.11 44 897 23 779 5 738 116.8 6.5 41.1 bdl 13 045 1 919 190 48 12 
3.17 25.0 8.34 55 125 21 966 15 101 102.9 4.5 18.2 bdl 14 782 2 518 503 103 16 
4.82 22.5 7.63 48 904 20 992 11 941 99.7 3.7 bdl bdl 13 339 1 963 476 70 13 
6.05 24.4 7.83 44 414 19 976 10 001 96.0 3.1 13.7 bdl 12 249 1 689 305 68 9.8 
7.55 25.6 7.77 41 852 20 261 7 627 99.3 2.6 16.2 bdl 11 989 1 442 305 99 8.6 
9.10 19.7 7.73 43 597 21 114 7 626 106.6 2.1 12.5 bdl 12 818 1 500 359 46 9.2 

10.55 25.0 7.84 44 084 22 198 7 178 111.1 3.2 20.5 bdl 12 569 1 493 386 114 9.3 
12.05 24.5 7.80 44 667 22 545 6 762 112.7 bdl 21.9 bdl 13 170 1 530 423 89 9.4 
13.52 20.0 7.71 43 417 21 904 6 397 115.2 1.8 10.7 bdl 12 968 1 516 447 44 9.6 
15.05 24.9 8.20 41 676 21 412 6 190 107.9 3.7 18.9 bdl 11 883 1 528 440 80 9.8 
18.05 24.5 8.19 42 204 22 244 5 458 112.4 bdl bdl bdl 12 309 1 505 478 85 9.8 
19.55 24.4 8.07 38 721 20 860 4 904 106.3 bdl 20.8 bdl 10 577 1 625 511 103 10 
21.05 24.9 8.04 36 133 19 782 4 102 100.8 bdl 19.6 bdl 10 310 1 316 401 91 9.3 
22.52 24.8 7.80 36 606 20 632 3 632 108.7 bdl 15.5 bdl 10 439 1 227 438 102 8.1 
24.05 25.4 8.11 38 875 20 891 4 955 106.9 bdl 22.5 bdl 10 727 1 568 488 104 9.7 
25.55 22.8 7.90 35 325 19 832 3 650 106.3 bdl 12.7 bdl 9 893 1 322 458 39 8.4 
27.25 24.1 8.01 37 049 20 246 4 132 107.4 bdl 15.0 bdl 10 521 1 468 480 67 9.3 
28.55 23.9 8.22 33 764 18 970 3 208 99.7 2.3 19.6 bdl 9 615 1 293 475 69 8.1 
30.06 24.1 8.09 35 045 19 267 3 587 100.9 bdl 21.2 bdl 10 164 1 376 460 58 8.7 
31.62 24.1 8.16 32 113 18 212 3 074 96.5 bdl 15.6 bdl 8 869 1 292 473 70 8.2 
32.90 24.4 8.18 31 650 18 015 2 961 95.6 bdl 16.1 bdl 8 804 1 208 448 93 7.6 
32.90 24.5 8.22 31 771 18 173 2 951 96.8 bdl bdl bdl 8 834 1 198 435 75 7.4 
34.63 22.7 7.89 31 656 17 822 2 949 95.1 bdl 16.9 bdl 9 102 1 158 457 45 7.5 
36.05 24.4 8.10 29 739 16 914 2 847 89.7 bdl 14.2 bdl 7 958 1 357 502 47 8.4 
37.54 24.8 8.02 29 099 16 813 2 881 88.6 bdl 16.8 bdl 7 570 1 233 437 49 7.8 
39.05 24.0 8.02 28 956 16 430 2 833 86.6 2.8 16.5 bdl 7 702 1 323 498 53 8.3 
40.55 24.7 8.20 29 368 16 679 2 863 86.5 bdl 27.9 bdl 7 845 1 296 506 53 8.2 
42.05 24.8 7.34 28 753 16 147 2 685 89.4 1.0 7.0 bdl 8 224 1 095 465 30 7.4 
43.55 23.6 7.80 29 294 16 092 2 758 88.7 1.3 6.6 bdl 8 228 1 081 985 35 16 
44.93 24.2 7.72 28 479 15 820 2 640 82.1 bdl bdl bdl 8 294 1 108 467 59 7.4 
46.58 22.0 7.27 28 079 15 641 2 618 83.6 bdl 9.8 bdl 8 118 1 081 493 25 7.5 
47.94 24.3 7.86 28 141 15 650 2 606 81.3 bdl 17.7 bdl 8 084 1 099 507 86 7.6 
49.55 24.1 8.23 27 992 15 560 2 679 80.7 bdl 29.4 bdl 7 914 1 139 535 46 8.0 
50.88 24.3 8.10 26 488 14 616 2 442 76.4 bdl 16.1 bdl 7 857 944 462 66 6.7 
52.21 24.2 8.17 26 880 14 858 2 527 77.2 bdl 21.3 12.2 7 778 1 003 492 102 7.0 
54.05 24.2 8.03 25 790 14 405 2 476 74.3 bdl 22.0 11.8 7 275 978 478 61 6.9 
55.55 24.7 8.08 26 502 14 603 2 527 75.7 2.2 17.3 12.1 7 735 949 496 74 7.1 
57.19 24.2 8.04 27 092 14 759 2 603 77.4 2.0 13.6 7.9 8 009 1 009 532 70 7.5 
58.55 24.5 7.98 25 809 14 252 2 545 73.9 2.3 16.2 bdl 7 323 1 010 520 57 7.5 
60.05 24.4 7.84 24 284 13 460 2 331 70.3 2.2 13.8 8.4 6 760 1 058 516 55 7.5 
61.52 22.3 7.82 25 330 14 061 2 373 73.9 1.9 13.0 bdl 7 200 1 037 542 19 7.9 
62.91 24.6 8.00 25 188 14 082 2 333 73.1 2.8 20.0 10.2 7 103 970 515 71 7.5 
66.05 24.6 8.24 24 675 13 823 2 213 72.2 2.9 18.7 bdl 7 192 794 467 84 6.4 
67.55 24.7 8.13 23 687 13 208 2 181 68.2 2.3 17.8 9.4 6 641 975 526 50 7.6 
67.55 24.2 7.99 23 199 13 184 2 115 68.5 bdl 15.0 8.2 6 356 902 490 51 7.0 
69.05 24.1 7.93 23 727 13 246 2 194 68.5 2.6 14.4 7.6 6 712 901 501 71 7.2 
70.55 24.4 8.05 21 478 12 275 2 036 62.4 3.5 30.3 13.0 5 592 891 491 75 7.1 
72.05 24.1 7.96 21 132 12 060 1 933 61.1 2.6 18.5 10.4 5 679 828 463 69 6.7 
72.05 24.4 7.98 21 104 12 022 1 946 61.3 2.9 18.0 8.9 5 708 808 464 57 6.7 
73.55 25.7 8.05 20 444 11 664 1 758 59.2 2.9 21.5 13.9 5 721 686 426 84 6.1 
73.55 24.5 8.43 19 930 11 414 1 711 58.6 2.5 16.3 9.7 5 586 669 407 51 5.9 
75.05 25.0 7.98 18 931 10 877 1 604 55.8 2.2 12.1 7.5 5 248 649 400 69 5.7 
76.55 24.8 7.86 19 436 11 355 1 601 58.3 bdl 22.4 13.2 5 262 649 407 62 5.9 

1Depth below the lakebed
1Temperature recorded in the laboratory
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b. Trace elements (μg kg–1)
Sample depth 

(m)1 Al As B Ba Cu Fe Li Mn U Zn 

0.56 283 47 870 64 104 310 81 283 79 325 
1.60 401 84 1 318 47 190 416 143 48 77 201 
3.17 566 79 1 258 57 503 751 713 103 629 349 
4.82 271 80 1 199 31 476 393 628 70 37 187 
6.05 544 81 578 40 305 379 498 68 8 140 
7.55 459 73 864 28 305 283 489 99 25 77 
9.10 453 78 878 55 359 357 540 46 4 199 

10.55 402 78 732 33 386 336 543 114 7 128 
12.05 431 79 850 30 423 390 590 89 2 128 
13.52 449 87 771 47 447 383 637 44 9 145 
15.05 425 52 299 40 440 404 459 80 11 130 
18.05 468 64 270 36 478 289 395 85 4 57 
19.55 399 64 572 58 511 543 625 103 4 205 
21.05 463 79 232 48 401 411 539 91 96 77 
22.52 434 72 440 53 438 362 556 102 1 107 
24.05 302 58 413 41 488 295 490 104 3 65 
25.55 375 59 335 44 458 320 405 39 2 111 
27.25 348 61 310 55 480 388 410 67 10 141 
28.55 418 73 324 112 475 352 593 69 3 202 
30.06 359 80 241 63 460 365 619 58 8 132 
31.62 354 63 254 68 473 707 644 70 11 107 
32.90 300 72 242 61 448 239 569 93 2 56 
32.90 266 75 204 49 435 243 513 75 2 50 
34.63 265 68 215 143 457 379 555 45 2 199 
36.05 346 62 262 68 502 268 615 47 3 142 
37.54 405 64 188 61 437 399 584 49 3 142 
39.05 223 60 212 50 498 323 619 53 3 185 
40.55 408 59 280 48 506 277 700 53 bdl 174 
42.05 165 50 228 87 465 364 400 30 8 143 
43.55 279 49 124 73 985 304 485 35 11 90 
44.93 312 43 153 69 467 258 446 59 3 92 
46.58 118 45 208 68 493 264 456 25 bdl 128 
47.94 383 42 214 69 507 328 599 86 bdl 148 
49.55 254 43 261 98 535 222 486 46 3 54 
50.88 541 41 161 103 462 188 527 66 6 73 
52.21 351 40 197 74 492 204 499 102 9 43 
54.05 225 51 168 163 478 222 620 61 13 81 
55.55 429 55 189 132 496 339 701 74 4 106 
57.19 252 55 158 131 532 376 641 70 5 119 
58.55 165 53 118 92 520 614 606 57 3 139 
60.05 243 54 112 96 516 458 620 55 4 128 
61.52 178 22 17 85 542 188 79 19 7 121 
62.91 119 60 111 61 515 219 468 71 14 77 
66.05 109 37 142 126 467 272 427 84 55 55 
67.55 74 35 147 101 526 204 457 50 3 108 
67.55 118 44 48 95 490 175 600 51 2 59 
69.05 228 45 92 59 501 204 577 71 11 64 
70.55 144 44 158 68 491 613 591 75 24 259 
72.05 153 48 102 98 463 180 514 69 7 66 
72.05 120 32 160 81 464 297 bdl 57 7 95 
73.55 108 32 115 110 426 190 bdl 84 6 57 
73.55 130 33 37 63 407 143 bdl 51 5 37 
75.05 112 33 75 60 400 153 bdl 69 1 49 
76.55 99 30 100 79 407 164 bdl 62 bdl 55 

1Depth below the lakebed
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c. Isotopes
Sample depth 

(m)1
δ2H 

(‰ VSMOW)2 
δ18Ο 

(‰ VSMOW)3 
0.56 –25.13 –3.83
1.60 –17.57 –2.44
3.17 –23.14 –3.24
4.82 –23.31 –2.95
6.05 –21.24 –3.00
7.55 –19.23 –2.37
9.10 –17.43 –2.14

10.55 –13.42 –1.69
12.05 –13.40 –1.68
13.52 –12.48 –1.19
15.05 –11.72 –1.11
18.05 –7.65 –0.67
19.55 –9.49 –0.84
21.05 –7.96 –0.49
22.52 –6.43 –0.42
24.05 –8.38 –0.75
25.55 –6.47 –0.51
27.25 –7.49 –0.53
27.25 –7.13 –0.54
28.55 –7.38 –0.54
30.06 –7.74 –0.56
31.62 –7.14 –0.58
32.90 –7.40 –0.70
32.90 –7.37 –0.71
34.63 –7.50 –0.61
36.05 –7.67 –0.83
37.54 –8.54 –0.85
39.05 –6.75 –0.74
40.55 –6.87 –0.82
42.05 –7.75 –0.97
42.05 –8.32 –0.94
43.55 –8.98 –0.95
43.55 –7.40 –0.81
44.93 –8.89 –0.94
44.93 –8.50 –0.62
46.58 –9.12 –1.09
47.94 –9.57 –1.15
49.55 –9.57 –1.06
50.88 –5.31 –1.26
52.21 –5.75 –1.04
55.55 –8.72 –1.04
57.19 –10.25 –1.18
60.05 –8.54 –1.69
62.91 –12.14 –1.55
62.91 –11.88 –1.52
66.05 –7.38 –1.66
67.55 –13.95 –1.81
67.55 –14.71 –1.77
69.05 –14.39 –2.04
70.55 –16.49 –2.39
72.05 –15.95 –2.17
72.05 –15.65 –2.11
73.55 –15.93 –2.32
73.55 –15.82 –2.28
75.05 –16.15 –2.26
76.55 –16.37 –2.37

1Depth below the lakebed
2Mean analytical precision was ±1.1 ‰ (1σ) 
3Mean analytical precision was ±0.17 ‰ (1σ)
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6. Archived BMR core crush/leach samples

Sample ID1 Latitude 
(DD) 

Longitude 
(DD) pH @ 25°C EC2 @ 25°C 

(μS cm–1)
Cl– 

(mg kg–1) 
Br– 

(mg kg–1) 
Cl–/Br– 
(mass) 

δ37Cl 
(‰ SMOC ± 1σ) 

δ81Br 
(‰ SMOB ± 1σ) 

C351-5.7 –35.100 149.413 8.05 18 150 4 441 22.9 194 – – 
C351-10.8 –35.100 149.413 7.91 17 900 4 718 24.3 195 0.07 ± 0.11 – 
C351-15.1 –35.100 149.413 7.59 14 050 3 079 16.5 187 –0.30 ± 0.11 – 
C351-20.0 –35.100 149.413 8.13 11 950 2 602 12.4 210 – – 
C351-25.0 –35.100 149.413 8.17 6 850 1 528 7.08 216 –0.44 ± 0.09 – 
C351-30.0 –35.100 149.413 7.87 13 000 3 079 14.4 214 – – 
C351-35.0 –35.100 149.413 7.58 12 800 2 201 9.33 236 –1.62 ± 0.10 – 
C351-40.3 –35.100 149.413 8.01 4 700 1 070 4.93 217 –0.68 ± 0.08 – 
C351-45.0 –35.100 149.413 7.85 4 100 940 4.39 214 –1.30 ± 0.08 – 
C351-48.5 –35.100 149.413 7.72 3 950 1 026 4.92 208 – – 
C352-5.0 –35.099 149.413 7.94 11 700 2 543 12.8 199 – – 

C352-10.5 –35.099 149.413 7.96 17 500 4 363 22.4 195 0.30 ± 0.10 – 
C352-13.0 –35.099 149.413 8.08 17 450 3 319 15.8 210 – – 
C352-15.0 –35.099 149.413 7.71 15 450 2 609 12.3 212 0.03 ± 0.10 – 
C352-20.3 –35.099 149.413 7.71 15 100 3 686 18.7 197 – – 
C352-25.0 –35.099 149.413 7.84 10 550 2 835 14.3 198 –0.61 ± 0.08 – 
C352-30.0a –35.099 149.413 7.9 17 700 3 056 15.7 195 –0.06 ± 0.11 0.65 ± 0.07 
C352-30.0b –35.099 149.413 7.99 12 900 3 107 15.2 205 – – 
C352-35.0 –35.099 149.413 7.92 10 300 2 687 13.5 199 –0.85 ± 0.09 – 
C352-40.0 –35.099 149.413 7.60 15 850 2 888 12.9 224 –0.92 ± 0.11 – 
C352-44.3 –35.099 149.413 7.65 4 600 1 005 4.69 214 –1.12 ± 0.05 – 
C352-49.5 –35.099 149.413 7.81 4 500 942 4.41 214 – – 
C353-5.0 –35.097 149.402 7.97 25 700 4 667 22.3 209 – – 

C353-10.0 –35.097 149.402 7.74 25 450 4 633 8.85 524 0.68 ± 0.12 – 
C353-15.0 –35.097 149.402 7.77 22 700 3 975 14.3 278 0.28 ± 0.08 – 
C353-20.1 –35.097 149.402 7.99 11 025 2 118 9.85 215 – – 
C353-26.3 –35.097 149.402 7.89 9 450 2 333 11.8 197 –0.35 ± 0.07 – 
C353-30.8 –35.097 149.402 3.88 21 100 2 884 13.5 213 – – 
C353-35.4 –35.097 149.402 7.53 16 350 2 208 10.5 210 0.39 ± 0.05 – 
C353-40.5 –35.097 149.402 8.03 9 890 2 535 12.8 198 –0.35 ± 0.10 – 
C353-45.3 –35.097 149.402 7.66 18 350 3 366 16.1 209 –0.63 ± 0.07 – 
C353-51.0 –35.097 149.402 7.89 4 810 887 4.28 207 – – 
C354-5.4 –35.095 149.391 7.97 16 300 4 310 20.8 207 – – 

C354-10.5 –35.095 149.391 3.84 30 750 4 719 22.0 214 0.74 ± 0.09 – 
C354-13.0 –35.095 149.391 8.00 34 850 8 274 42.3 196 – 1.49 ± 0.06 
C354-14.7 –35.095 149.391 3.75 36 250 5 759 26.6 216 0.79 ± 0.08 – 
C354-20.7 –35.095 149.391 7.29 14 500 3 720 18.4 202 – – 
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Sample ID1 Latitude 
(DD) 

Longitude 
(DD) pH @ 25°C EC2 @ 25°C 

(μS cm–1)
Cl– 

(mg kg–1) 
Br– 

(mg kg–1) 
Cl–/Br– 
(mass) 

δ37Cl 
(‰ SMOC ± 1σ) 

δ81Br 
(‰ SMOB ± 1σ) 

C354-24.9 –35.095 149.391 7.43 20 000 4 768 22.2 215 0.14 ± 0.09 – 
C354-30.0 –35.095 149.391 7.79 15 250 3 713 18.6 200 –0.21 ± 0.14 –0.29 ± 0.03
C354-30.2 –35.095 149.391 3.93 31 750 6 087 28.1 217 – – 
C354-35.3 –35.095 149.391 6.83 10 300 2 651 12.5 211 – – 
C354-41.0 –35.095 149.391 7.62 13 850 3 660 17.6 208 0.16 ± 0.16 – 
C354-45.5 –35.095 149.391 7.66 13 400 3 226 15.0 215 –0.16 ± 0.016 – 
C354-50.5 –35.095 149.391 6.47 23 050 4 231 19.3 219 – – 
C355-5.0 –35.093 149.380 7.16 19 300 3 106 13.8 225 – – 

C355-10.0 –35.093 149.380 7.33 33 950 6 863 34.6 199 1.12 ± 0.15 – 
C355-15.0 –35.093 149.380 6.73 23 300 6 020 31.2 193 0.98 ± 0.09 – 
C355-20.0 –35.093 149.380 7.38 34 400 8 797 47.5 185 – – 
C355-26.0 –35.093 149.380 7.44 32 050 7 633 40.5 188 0.77 ± 0.17 – 
C355-30.0 –35.093 149.380 3.80 38 800 6 231 28.7 217 – – 
C355-35.0 –35.093 149.380 7.11 15 550 3 783 19.3 196 0.50 ± 0.20 – 
C355-40.7 –35.093 149.380 4.27 38 250 8 001 39.2 204 0.65 ± 0.22 – 
C355-45.0 –35.093 149.380 6.23 10 100 2 554 13.1 195 0.21 ± 0.15 – 
C355-50.0 –35.093 149.380 6.60 9 450 2 382 12.0 199 – – 

1Prefix represents the core number; suffix represents the mid-section of the core depth where the samples were collected from 
2Electrical conductivity 
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