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INTRODUCTICH

This thesis is conerned with the extension of the classical
theory of martingales of real random variables as contained in Doob [4]
to the abstract theory of martingales of random variables whose values
lie in a real Banach space., Extensions of almost all the convergence
theorems in [4] for discrete parameter martingales can be found in Chatterji
[1] and [2], Scalora [10], Tulcea and Tulcea [12], and Driml and Hans [5].

In addition to extending the existing theory this thesis also attempts
to further the correlation between the abstract and classical theories.

To pursue this aim I follow much of the development of [4] and show how
frequently its proofs can be abstracted in a straight-forward manner.

To do this satisfactorjly: it has been necessary to define and use a type
of measurability for a Banach-valued function analogous to the type of
measurability for a real-valued function used in [4]. In chapters 2 and 3
I demonstrate the properties of such a measurable function and those of its
conditional expectations.

As might be expected certain additional restrictions are frequently
required in the extended theory. Two attitudes have been adopted towards
the nature of these restrictions: either they are placed on the Banach
space itgelf or on the martingale. {1}, [2), [10], and [12] often
require the Banach space to be reflexive but not necessarily separable,
though in theorem 4 [12] reflexivity can be replaced by the condition that
the space be separable and be the conjugate space of a Banach space. On
the other hand Driml and Hans [5] tends to place restrictions on the

martingale itself: however they always deal with separable Banach spaces.



The first of these attitudes is better suited to my purpose of
correlating the abstract and classical theories. Because of this [5]
is not regarded as a basic reference. On the other hand the method of
proving the existence of the conditional expectation of a Bochner
integrable function in [5] is more natural than that used in [10] and
is similar to my own. The device is a common one in integration theory.

In Chapter 1 I have defined those terms whose definitions are
independent of concepts which occur later on in the paper. I have also
included indexes of symbols and terms.

In Chapter 2 I define and develop two types of measurability one
of which is essentially different from those in common use (Dunford
and Schwartz [6] and Hille and Phillips [9]) but which bears a far closer
resemblance to the type of measurability for a real-valued function used
in [4]. The relationships among these types of measurability and those
in [6] and [9] are discussed. A relationship between the concepts of
integrability in [6] and [9] is also given together with those properties
of Bochner integrable functions which are required in this thesis.
In Chapter 3 1 demonstrate the existence and properties of conditional
expectations of measurable functions which are also Bochner integrable
and define martingales of such functions. The development in Chapters
2 and 3 does not exploit the relevant work in Hans [8] and [10}:
however it seems to me that my treatment is more basic and unified than

the alternative of incorporating results in [8)] and [10] piecemeal.



2a.

In Chapter 4 I extend the concept of a separable stochastic process
and several theorems pertaining to it. Andin Chapter 6 results in [4]
on optional skipping and sampling are extended.

In Chapter 5 I deal with martingale convergence theorems. This
chapter is comprised of three sections. Firstly, several theorems in
§4 chapter VII [4] are extended. Next I extend the theorems in the
first section to martingales with linear uncountable parameter sets.
Finally, several theorems in §11 chapter VII [4] on "continuous parameter
martingales are extended.

I have also included an appendix containing various results on
real-valued intggrable functions, o-filelds, and separable sets whose
statements or proofs do not appear in those texts with which I am familiar.

The definitions, theorems, notations, and remarks of which the text
is composed are numbered serially in a single system that proceeds by
sections. Chapters 1 and 4 each have only one section, while chapters
2, 3, 5, and 6 are divided into several sections. Accordingly, the
second numbered item in chapter 4, in this case a notation, is denoted
by notation 4.2; and the third item (a theorem) in section 2 of
chapter 5 is denoted by theorem 5.2.3. The theorems, definitions, and

remarks in the appendix are denoted, for instance, theorem 1 of the appendix.



CHAPTER 1

Preliminary Definitions and Notation

This chapter consists of the definitions, or references for the
definitions, of basic concepts together with some basic notatior.
[41, [6], [7], and [9] are used throughout this thesis as references

not only for results but also for the definitions of many concepts.

Notation 1.1:

(i) I+ denotes the set of positive integers and I  the set
of negative integers.

(ii) For each n ¢ I+, the set
{m € I+l < n} 1is denoted by J -

(i1i1) R denotes the real line.

Notation 1.2: Let W be a non-empty abstract space.

(i) If A 1is a subset of W and if C 1is a non-empty class
of subsets of W, then the class {C/ A|C € C} is denoted by C /N A,
1) If A is a non-empty subset of W and if D is a nonrémpty

class of subsets of A, then the minimal o-field of subsets of A

(II1.4.2 [6]) which contains U 4is denoted by GA(Q). That is,
GA(D) is the o-field relative to A which is generated by 0.

ow(ﬂ) is written o(D).



(1ii) 1If 1 4is a topology for W, then o(r) is denoted by
B(W). B() is the Borel field of (W,r) and its elements are the
Borel subsets of (W,t).

(iv) If A is a subset of W, then A denotes the closure
of A in (W,7).

W) If A and B are subsets of W, then A A B denotes the

symmetric difference (ANB) U (BNA) and occasionally AN B is written

AB.
(vi) 1f {Hn,n € f+} is a sequence of disjoint subsets of W, then
0 [+
if it is desirable to emphasize the disjointness [} M is written z M
n=1 n=1

and AiL) Aj is written Mi + ﬂj.

(vii) If A is a subset of W, then define

IA cxeW-» |1 4if x e A

0 1f x ¢ Al.

(viii) ¢ always denotes the empty set.

Notation 1.3: (Q,I',P) 1is used to denote the underlying measure space,

which is a complete probability space (pp.31, 73, and 191 Halmos [7]),

in this thesis. An arbitrary element of £ will be denoted by w.

Definition 1.4:

(i) An element A of T is said to be P-negligible if PA = 0.



(ii) A o~field of subsets of  which is contained in T is
called a o-subfield of T.

(1i1) A o-subfield ¢ of T d1s said to be complete if every
subset of every P-negligible element of ¢ is an element of ¢.

(iv) A o-subfield ¢ of T is said to be P-complete if every
P-negligible element of T 1is an element of ¢.

(v) If ¢ is a o-subfield of TI', then the o¢~subfield of T
which is generated by ¢ and the class of P-negligible elements of T

is called the P-completion of ¢.

Notation 1.5:

i) If ¢ is a o-subfield of I, then its P-completion is
denoted by ¢'. The notation of a dash superscript on a o-subfield of
I' will always denote its P-completion.

(11) If ¢ is a o-subfield of T, then P¢ denotes the restriction

of P to ©o.

Remark 1,6:
(i) Clearly TI' =T,
(ii) If ¢ is a o-subfield of I', then A' is an element of

' 1f, and only if, there exists an element A of ¢ such that

P(A' A A) = 0.
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(iii) Plainly the smallest P-complete o-subfield of T which
contains the o-subfield ¢ of T is ¢'.
(iv) Clearly ¢' 1is complete: however it is in general strictly

larger than the smallest complete o-subfield of T which contains ¢.

Notation 1.7: Let X be a real Banach space (linear space over the

reals with a norm || ||) and let & be a function on @ into ZX.
1) The additive identity of X is denoted by 6.
(i1) ||x]] denotes the value of || || at x e X.
(11i) |]|&|| denotes the real-valued composite function
[ {leog:a>nr

(iv)  The conjugate space of X (II.3.7 [6]) is denoted by X*

and an arbitrary element of X% by g%,
v) <x,E%*> denotes the value of £% ¢ X* at x ¢ X.

(vi) A norm is defined on X* by
He#|] = 1oubo{]<x,e% ||| |x]] < 1}.
{(vii) <f,E% denotes the real-valued composite function

£ 0 £ : Q> R.
(viii) Sr(x) denotes an open sphere in X with centre x ¢ X
and radius r > 0, Similarly, S_[x] denotes a closed sphere in X

with centre x € X and radius ¢ 0.

A



Remark 1.8:

(i) All the Banach spaces which appear in this thesis are assumed
implicitly to be real.

(i1) The definition of a B-subspace of a Banach space is given

in definition 10 of the appendix.

Definition 1.9: Let X be a Banach space and let £ be a function on

Q into X.

(1) If £(Q) 41is a finite subset of X, then & is said to be

finitely-valued.

(ii) If £(Q) 1is a countable subset of X, then & is said to

be countably-valued.

Definition 1.10: Let X be a Banach space, (Q,T,P) a complete
probability space. |

1) If a proposition is valid outside of a P-negligible element
of a o-subfield & of T, then the proposition is said to be valid
PQ a.e.. P a.e. 1s written for PQ, a.e. and PF a.e..

(i) A function £ : @ > X d1s said to be PQ a.e. separably-
valued 1f there exists a P-negligible element A of ¢ such that
E(QN\A) 1is a separable subset of X.

(111) Convergence everywhere or P, a.e, signifies pointwise

®

convergence everywhere or P, a.e. respectively.

®



(iv) Let £ : § > X and let {gn,n € I+} be a family of
functions on @ to X. The sequence {gn} is saild to converge to

£ almost uniformly relative to ¢ if to every & > 0 there is an element

Ag of ¢ such that
PAg < &

and '{En} converges uniformly to £ on QA

Definition 1.11: Let X be a Banach space, (Q,I',P) a complete

probability space. If £ : Q@ +~ X, then the P-equivalence class of £,

denoted [610, is defined by

(g1, ={, :29>X|p=£ P_ a.e.}.

L

Write [£] for [g]é, and for [g}r.

Definition 1.12: The concepts of measurable and integrable real-valued

functions used in this thesis are as in Halmos [7]. However, since a real-
valued measurable function is always defined on Q, if it is measurable
with respect to the measurable space (8,9) where & is a o-subfield

of T, then the function is said to be measurable with respect to @&.

Notation 1.13: If £ 1is an integrable real-valued function, then E(f)

will frequently be used to denote f £dP. Occasionally this notation will
Q




be used in the generalized sense: that is, if f 1s a real-valued
measurable function, then E(lfl) <o {f, and only 1if, £ 1is

integrable.
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CRAPTER 2

Measurability and Integrability

The object of this chapter is threefold; firstly, to define a type
of measurability for a Banach-valued function analogous to the type of
measurability for a real-valued function used in [4]; secondly, to
demonstrate some of the relationships among several types of measurability;
thirdly, to collate those results which are required in later chapters.

Two types of measurability are introduced in section 2.1 and some of
the relationships between them are discussed. One of these types of
measurability is effectively strong measurability with respect to a
probability space which is not necessarily complete. There are also
included in section 2.1 several miscellaneous definitions and results
on measurability which are required in this thesis.

Theorem 2.2.1 demonstrates the equivalence under certain conditions
of several types of measurability. It is then proved in theorem 2.2.3
that the concepts of integrability in [6] and [9] coincide if (Q,r,P)
is the underlying measure space. There then follow several miscellaneous
definitions and theorems on integrable functions and on the convergence in
measure of a sequence of measurable functions. Finally there are included

several results on the uniform integrability of a family of integrable

functions.

2.1 Measurability

Let X be a Banach space, (2,I';,P) a complete probability space,

and ¢ a o~subfield of T.
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Definition 2.1.1: A function £ : @ + X 1s said to be X-measurable

with respect to ¢ if

@ £l e o for every A e BX)

and (ii) £ 1is PQ a.e. separably-valued.

Notation 2.1.2: If a function & 1is X-measurable with respect

to ¢, write £ 18 an X r.v.9. X r.v.l will be written Xr.v. .

The plurals will be given no inflexion.

Definition 2.1.3: A function £ : Q » X 1s said to be SX-measurable

with respect to ¢ 1f there exists a sequence '{gn,n € I+} of finitely-

valued Xr.v.¢ which converges P¢ a.e, to E.

Notation 2.1.4: If a function E 1is SX-measurable with respect to ¢,

write £ 1s an SXr.v.d. SXr.v.I' will be written SXr.v. .
The plurals will be given no inflexion.

The relationships between the concepts of X-measurability and
SX-measurability will now be summarized. One of these is proved directly
below. The rest are separate theorems, stated and proved later in this

section.

Summary 2.1.5:

(1) If & is an Xr.v.9, them £ is an SXr.v.o.
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(ii) £ is an SXr.v.9' if, and only if, £ 1s an Xr.v.9'.

(111) If & 1s an Xr.v.9' and if p € [E], then p is an
Xr.v.o'.

(iv) If £ is an Xr.v.®', then there exists p ¢ [&] éuch
that p is an Xr.v.o.

) If & is an SXr.v.d, then there exists p ¢ [E]Q such

that p 1is an Xr.v.o.

Proof: Parts (i) and (ii) follow immediately from theorems 2.1.16 and
2,1.17. Part (iii) is implied by part (ii); nevertheless it will be
proved independently.

If £ is an Xr.v.9', then there exists a P-negligible element
Ay of T such that E(Q‘xAl) is separable. Also if p e [£], then

there exists a P-negligible element A, of T such that

2

p = E on 9\[\20
Therefore, since it follows from theorem 7 of the appendix that

p@N (A; U A,))) is separable, p 4is P a.e. separably-valued.

Moreover if A e B(X), then
eTH ) = [T N @NADTU [0 )y A
= E@N @ANIU @ N

e &',



13.

Therefore p 1is an Xr.v.e'.
Finally theorem 2.1.18 and remark 2.1.12 are restatements of parts

(iv) and (v) respectively.

Theorem 2.1.6: A function £ : >+ X is an Xr.v.d if, and only
if,

(1) E_l(F) e ¢ for every closed set F in X
and (11) £ dis Pq) a.e. separably-valued.
Proof: Since B(X) 1is generated by the nomm topology for X and
since an ianverse mapping preserves all set operations, this theorem is

equivalent to the definition of an ZXr.v.¢.

Theorem 2.1.7: If & 1is a finitely-valued Xr.v.3', then there

exists a finitely-valued Xr.v.¢ p such that

p=&tP a.e. .

Proof: By definition there exist n ¢ I+9 {xi,i £ Jn} € X, and

{Al,ie T} o', where A}N A' =¢ 4f 1 # j, such that
i n = i 3j

Ii
£ = x, I, «
=1 1A
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For each 1¢J, remark 1.6(ii) implies that there exists Ay €@

such that P(Ai A A') = 0. Therefore the function

i
)

p = I
Ly Ty

where M, = Al and M, = Ai\_L} A, for i =2,...,n

j<i i

is a finitely-valued Xr.v.? which equals & P a.e. .

Theorem 2.1.8: Let El and gz be ZXr.v.o. If A 1is an element of

¢ and Y is a countable subset of X such that
£ @\N) CY for i=1,2,
then for every a > {

@\ 1) N {o]] lgl(w) - E,@)|] < a} e 0.

Proof: Put Y into a sequence, {yn,n € I+} say. Then for every

a>0
@) N {ol]g, @) ~ g,@)|]| < a} =

@MU wlllg @ -yl <a-2

n>2;4

NtellE,w - y,|] <2
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Remark 2.1.9:

(i) Clearly there can always be found a P-~negligible A and
a Y which satisfy the conditions of theorem 2.1.8.

(1i) If &y and £, are Xr.v.? such that gl(n) and
52(9) are separable, then theorem 2.1.8 implies that |]§1e£2|l
is an Rr.v.%. |

(ii1) 1If El and 52 are ZXr.v.®', then clearly it follows

from theorem 2.1.8 and remark 2.1.9 (i) that {lgl*gzl[ is an Rr.v.s'.

Theorem 2,1.13: If {En,n € I+} is a sequence of Xr.v.$ such that
gn(n) is separable for every n ¢ I+, then M = {mllﬁngn(m) exists} € 0.

oo

Proof: It follows from remark 2.1.9 (ii) and theorem A §20 [7] that

for each m ¢ f+ the real-valued function 8 defined by
g, :WE Q - lim||£n+m(m) - En(w)ll if the limit exists
1n->re
a # 0 otherwise

is an Rr.v.é. Therefore, since

M =’{w|lim||5n+m(m) - En(m)ll =0 for every m ¢ I+},
n->-o

M= () g hOD)

m=1
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Theorem 2.1.11: If {gn,n € I+} is a sequence of Xr.v.¢ and if W
is any element of ¢ such that
N C{w|limf (v) exists},
e O

then the function

oy uwe Q -+ limgn(w) if we N
\ v
b if wé N

where b 1is any element of X, 1is an Xr.v.¢.

Proof: Let F be any closed set in X. For every natural number

r let
F_ = {x|x ¢ X and g.l.b]|x-y|| <,
T =r
yeF
It follows that
-1 , 1
oy MAN=NY N e FINN
r=1 m nom
e ®
-1 N b
and that oN (F) ~N= |2 NN if e F

Hence 1if F 1is any closed set in X, then

pgl(F) e 9.
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It follows from theorem 8 of the appendix that Py is Pd> a.e.
separably~-valued. Therefore, since p, satisfies the conditions of

theorem 2,1.6, it is an Xr.v.?o.

Remark 2.1.,12: Theorem 2.1.11 implies that if a sequence of Xr.v.d

converges P_ a.,e., then there exists an Xr.v.¢ to which it

&
converges PQ a.e. .
The statements and proofs of theorems 2.1,13 -~ 2.1,16 are based on

those of theorem 1I.1(2), proposition I1I.13, proposition II.14, and

theorem II.2 in Dinculeanu [3] respectively.

Theorem 2.1.13: If '{En,n € I+} 1s a sequence of Xr.v.?¢ which converges

P¢ a.e. to a function &, then {gn,n £ I+} converges to £ almost

uniformly relative to ¢,

Proof: Given & > 0. We shall construct an element Mg of & such

that
P(Q\Mg) < &
and
{En} converges uniformly to £ on M.
By theorem 8 of the appendix there exist a P-negligible element

A of ¢ and a countable subset Y of X with the following properties:
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(a) gn(Q 4) g? for every n ¢ I+,
and (b) '{gn} converges to & everywhere on Q~A.

It is an immediate consequence of theorem 2.1.8 that

M= @) N (N o]t @ - £ ] <3h
n,r p,q>n P q T

e ¢ for every pair of natural numbers (n,r).

For every r, (b) dimplies that {Mn ot € I+} is monotone

s
increasing as n increases and that
-3
asA = U Mo
n=1

Given § > 0. Then for each r ¢ i+ there exists nr € I+ such that

o1 <k
P[(Q~\A)\\Aj’r] < x for every j 2 n_.
i % = K,
Define M, = () L.
r=1 'r
e &.

This set clearly has the asserted properties.

Theorem 2.1.14: If E is a countably-valued Xr.v.d, then there

exists a sequence '{En,n € f+} of finitely-valued ZXr.v.9 with the
following properties:
(1) ‘{gn} converges to £ everywhere,

and (i1) |lgn|| < |1g]] everywhere for every mn e 1.



+
Proof: Put the elements of £(Q) into a sequence, {xn,n e I'} say.
he sequence {En,n € I+} defined by
r

n
E,fweQ-~ £{w) if we }Z& E—l({xi})

PN

noo-1
0 if wié U g UxD)
! 1=1 J

for every n ¢ f+, is a sequence which satisfies the requirements of

tihhe theoren.

Theorem 2,1.15: If £ dis an ZXr.v.®, then there exist a P-negligible

element A of ¢ and a seauence {En,n € I+} of countably-valued
Xr.v.® with the following properties:
(i) {En} converges uniformly to £ on 0NA,

and (1i) ||En|| < |lg]| everywhere for every n e t.

Proof: There exist a P-negligible element A of ¢ and a countable

subset Y of X such that
E@~A) C Y.

Put the elements of Y into a sequence, {yp,p > I+} say.

Clearly Mn

H

-1
D @~nNe (SL[YP])
3n

€ ¢ for every pair of natural numbers (n,p).
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For each n € I+, define a sequence {Nn p'P € I+} of mutually
?

disjoint elements of ¢ by

p-1
anl - Mn,l and anp - "'Inap\H. Mnsi for p=2,3,... .

Clearly [ Nn = QA for each n ¢ I+.
po1 WP

Put a = g.l.b ||£(m)|! for n,p = 1,2,... .
P weN
»

For each n ¢ I+, define the funcjtion

a
. n, N =1..
En cwe Q> yp 1T3;iﬁ- if we "n,p for p 1.2,...
p
e if we A
%n
taking as a convention that yP TT;ifT is to be 8 if y = 8.
P

Clearly {En} satisfies requirement (ii) of the theorem.

It follows from the construction of {En} that for each n,p e I+,

weN implies that
n,p

9
2
He @ - el ¢ 5 -
Hence for each n e’I+, the real function [Ign—gjl satisfies

-]
1
e Il << on pLg}l N, o= aNA.

This establishes claim (i) of the theorem.

The next result uses most of the foregoing.
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Theorem 2.1.16: If & 4is an Xr.v.¢, then there exists a sequence

{En,n € I+} of finitely-valued Xr.v.¢ with the following properties:

1) {En} converges PQ a.e. to &,
and (i1) ||£n|‘ < |l£|| everywhere for every n e I+.

Proof: It follows from theorem 2.1.15 and its proof that there exist

a P-negligible element A of ¢ and a sequence {pn,n € I+} of

countably~valued Xr.v.9® such that

!IE-pnll <-% on Q~A for every n ¢ I+,

and [Ipn|[ < ||g]] everywhere for every n e A
Theorem 2.1.14 implies that there exists, for each n ¢ I+, a sequence

sP € I+} of finitely-valued Xr.v.$¢ such that

{
®n,p
{o pe ! converges to p_ everywhere
n,p’ n
and
+
flo. Il < |le.|| everywhere for every p e I'.
n,p'' = n
Accordingly theorem 2.1.13 implies that for every pair of natural
numbers (n,m) there exists an element Mn n of ¢ such that
2
1 1
; —= ., =
P(Q\‘In,m) < ,nm
and {p »P € I+} converges uniformly to o on M for every
n, a n,m
m € I+o
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Let Mm = e o for each m ¢ I+.

Iy
n,m
n=1 ’

+,
Then for each m ¢ I+, POANIL) < 1 and {p ,p € I } converges
m m n,p
-+
uniformly to p, on I-Em for every ne I .
Lo
Let ¥ =1/ "L~\A
m=1

and

k
- +
N, = }1;1 dm\A for each ke I.

Then QNN is a P-negligible element of ¢. {Nk,k £ I+} is a
monotone increasing sequence of elements of ¢, and {pn,p"p € I+}
converges uniformly to p, on Nk for all n,k ¢ I+. Accordingly,
for each n € I+, there exists P, such that

1 .
Hpn(m) - pnspn(w)H <= for every we M.

And so
|l€“pn,pL|

He-e 11 + tle e, o 1l

n n
Py

A

2 on Nn for every n ¢ I+.

Denoting the diagonal sequence

{p LM € ™ by {£_,ne I+},
n,p n

it follows that {gn} is a sequence of finitely-valued ZXr.v.¢ which
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converges to £ on N. That is, {gn} converges P¢ a.e. to E£.

Moreover ||pn[l < |lg]| everywhere for every n e 1,
and Ilpn pl| < ||pn|| everywhere for all n,p e I'.
Hence

||£n|| < |lg]| everywhere for every n e I

Therefore {En,n € I+} satisfies the requirements of the theorem.

Theorem 2.1.17: If & is an SXr.v.%¢', then £ is an Xr.v.¢'.

Proof: Since £ is an SXr.v.®', there exist a sequence {gn,n € I+}
of finitely-valued Xr.v.¢' and a P-negligible element N of ¢’
such that {gn} converges everywhere to £ on Q\N.

Theorem 2.1.11 implies that the function ; defined by

p twe N> |lim En(w) if we Q\N
n-ce
0 if we N

is an Xr.v.9’'. Thus if A e 5(X),

then
et = ¢ twwm v et nw
= e twm u e tw N

e o',
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‘loreover theorem 8 of thie appendix implies that £ is P a.e.'separably~

valued. Therefore £ 1is an Xr.v.9'.

Theorem 2.1.18: 1If, £ i3 an Xr.v.?', then there exists p € [£]

such that p is an Xr.v,o.

Proof: Theorem 2.1.16 implies that there exists a sequence
{En,n e T} of finitely-valued ZXr.v.¢' which converges P a.e. to
£. Accordingly it follows from theorem 2.1.7 that there exists a sequence

{pn,n eI} of finitely-valued Xr.v.® such that
=& P a.e. for eve ne I+
Pn n °Te ry ’

Clearly {pn,n e 1) converges P a.e. to £. And so theorem

2.1.10 implies that il = {w|limq5w) exists} is an element of ¢ which
oo
is of prohability one. Therefore it follows from theorem 2.1.11 that

the function p defined by

p s we N> limpn(w) if we
re
<) w ¢V

satisfles the requirements of the theorem.

Theorem 2.1.12: If £ d4s an Xr.v.®, then, for any a > 1, ||g||®

is an Rr.v.%.



Proof: TFor a >1 and c € R, the set

:
{wllle@)|lg et = ¢ if ¢ <0

) if ¢

\
€ %.

=0

-1
g (Sclla[e]) if e¢> 9

25.

[N

J

Theorem 2.1.20: If & is an Xr.v.®, then there exist a separable

B-subgpace L of X and an dr.v.? p such that

and

p(R) C L.

Proof: There exists a P-negligible element A of
countable subset Y of X such that

E@N\A) < Y.

Let L be the closed linear manifold determined by

¢ and a

Y. Then definition

10 and remark 11 (ii) of the appendix imply that L 1is a separable

B~subspace of X. Since L& BX), M= Q\\E—I(L)

is clearly a P-

negligible element of ¢. ‘loreover & (Q\M) = Egl(L)

CL.

Then the subspace 1L and the function
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p st we -+ E(w) if w e O\ M

0 if we M

are as asserted.

Notation 2.1.21: If &£ 1is an ZXr.v., then o(gnl(A)|A e B(X)) will

be denoted by B(&). Clearly if & 4is an Xr.v.¢, then B(§) C 9o.

Theorem 2.1.22: If & is an Xr.v., then & 1s an Xr.v.B(E).

Proof: Obviously if A ¢ B(X), then
-1 ,
£ T(A) e B(®).

Accoxrdincly it remains to be shown that £ is PB(E) a.e. separably-
valued. Since & 1is an Xr.v., there exists a P-negligible element
A of T such that E£(QN\A) 1is separable. Let Z = E(Q~A).
Then M = Q\\£~1(Z) is clearly a P-negligible element of B(E).
Moreover E(Q\M) = EE”l(Z)

C z.
Therefore it follows from theorem 7 of the appendix that & i1s P

B(E)

separably-valued.

Notation 2.1.23: 1If {ﬁt,t € T} 1is a family of Xr.v., then

o (Wt eT and Ac BEX))
will be denoted by

B(gt,t e T).
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Clearly B(%;t € T) is a o-subfield of T and clearly B(Et) S;B(Et,t e T)
for every t e T. Accordingly it follows from tlheorem 2,.1.22 that

{Et,t € T} 1is a family of Xr.v.B(g,,t € T).

2.2 Integrability
In this section I establish conditions under which results in [6]
and [®] can be transliterated into my nomenclature. This has permitted

me to omit many proofs and simply to refer to the corresponding results

in [6] and [9].

Let X be a Banach space, (2,I,P) a complete probability space,and ¢ a

o-subfield of T.

Theorem 2.2.1: The following three statements are equivalent:

(1 £ is an Xr.v.0'.

(1i1) g is P

¢,~measurab1e with respect to (ﬂ,@',P¢,)

(111.2.10 [6])
(i1ii) & 1is strongly measurable with respect to (ﬂ,@',?¢,)

(Definition 3.5.4 [2]).

Proof: 1I1.6.9 [°] dimplies that (i) and (ii) are equivalent.
And 1t follows from theorem 2.1.15 that (i) dimplies (iii) and from

remark 2.1,12 and summary 2.1.5 (iii) that (1ii) dimplies (i).
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It follows from theorem 2.2.1 that it is meaningful to say that an
Xr.v. is Bochner integrable with respect to (Q.I',P) (Definition
3.7.3 [9]). And similarly it is meaningful to say that an Xr.v. is
P-integrable with respect to (Q,T,P) (III1.2.17 [6]). It will be
assumed in future that (Q,I,P) is the underlying measure space for

both types of integration.

Remark 2.2,.,2: Clearly a real-valued function is P-measurable with

respect to (2,I',P) 41if, and only if, it is an Rr.v. and is
P-integrable if, and only if, it is Lebesgue integrable (cf.

§25 Halmos [7]).

Theorem 2.2.1 implies that the class of Xr.v., the class of
functions which are P-measurable with respect to (2,I,P), and the
class of functions which are strongly measurable with respect to
(Q,I',P) are identical. Accordingly it remains to be shown that the
concepts of Bochner integration and P-integration coincide for (Q,I',P)

and this will be done in the next theorem,

Theorem 2.2.3: Let & be an ZXr.v. .

(1) € 1is Bochner integrable if, and only if, & is P-
integrable.

(11) If & is Bochner integrable then (D.S ) [EdP = (B)fedP
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for every A € ' where the integrals are those of [6] and [9] respectively.

Proof: The validity of (i) 1is an immediate consequence of remark
2.2.2, theorem 3.7.4 [9], and III.2.22 (a) [5]. (That is, that & is
Bochner (and P-) integrable if, and only if, ||E|I is Lebesgue
integrable.)

I11.2.13 [4] and definition 3.7.2 [9] dimply that every finitely-

valued Xr.v. p 1is Bochner (and P-) integrable and that
(D.S) f p dP = (B)fde for every A e T,

Yoreover theorem 2.1,16 implies that there exists a sequence

{En,n e I'} of finitely-valued Xr.v. such that

{£n} converges P a.e. to £

and

llEnl' < |lge]] everywhere for every n ¢ .
Accordingly it follows from II1I.2.22 (a) [6] and III1.6.16 [6] that

1im (D.S) flle;-gnH P = 0
e Q
which implies that

lim (D.S) [€ dP = (D.S) [EdP for every A e T.

>

It also follows from theorem 3.7.9 [9] that
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lim (B) [g_dP = (B) [£dP for every A e T.
> ~ 0 ~
Therefore, since
+
P = P -
®.8 ) Igndk (B) [gnd_ f6r every A el and nme I ,

it follows that

(D.S) [edP = (B) [edP for every A e T.

Notation 2.2.4:

(i) If & 1is a Bochner integrable Xr.v. and 4if £ is an
Xr.v.® write & is a BXr.v.9. BXr.v.I' will be written BXr.v.
(ii) The integrals of a BXr.v.f{ will be written thus:
{Ed? for A e T.

FE(g) will frequently be used to denote fgdP.
Q

Theorems 2.2.1 and 2.2.3 enable us to attribute properties of PQ,»
measurable functions and strongly measurable functions to Xr.v. and
properties of P-integrable and Bochner integrable functions to 3Xr.v.

Those properties which will be used in this paper will be transliterated

below. The reference for each result will be placed after its enumerator.

Remark 2.2.5:

(i) (Theorem 3.5.4 [9]). 1Let g be an Rr.v.d' and let a

and b be elements of R. If & and p are Xr.v.d', then af + bp amnd



31.

gp are Ir.v.o'.
(i1) (Definition 3.7.1 [2] and p.80 [2].) If ¢ is a BXr.v.,

then
<fedP,e%> = [<g,E%>dP for every A e ' and £% ¢ X%,

(iii) (Theorem 3.7.4 [2].) 1If & 4is an Xr.v., then £ 1is a
BXr.v. 4if, and only if , E(||&]]) < =.
(iv) (Theorem 3.7.5 [9}.) 1If {gi,i € Jn} is a set of BXr.v.

and 1if {ai,i € Jn} is a subset of R, then

n
X aiﬁi is a BXr.v.

i=1
and
n n
l 1£1 154 121 ag[e dP for every pe .
) (Tﬁeorem 3.7.6 [9].) 1If & is a BXr.v., then

||f£dP|| < fllg]] d? for every A e T.

(vi) It follows from part (v) that if & is a BXr.v. and if 7

is a P—negiigible element of T, then
fear = 0.

(vii) (Theorem 3.7.7 [e1.) 1f {gn,n € I+} is a family of BXr.v.

such that
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lim E(
m, e

le-gl1) =0,
then there exists a BXr.v. £ such that

1im E(I'p~§nl‘) = 0 1if, and only if, p ¢ [E].
n>o

Finally,

1im [gndP = [gdP for every A e T.
N>

(viii) (II1.6.16 [6].) Let 1< p <= andlet {f_,ne ™
be a sequence of BXr.v. converging Pa.e. to & : Q-+X. Suppose

that E(l]gnilp) <® for every ne I' and that there exists a BXr.v..

such that

E( ol [P < =

and

l|€n|l < llpl] P a.e. for every n e I+.
Then & 1is a DBXr.v. such that

E(HE]P) < =

and lim E(I{g-gn]lp) =0,
>0

It i1s sufficient to demand the existence of a non-negative BRr.v. g

such that

F(gP) <
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and

eIl ¢ & P a.e. for every ne 1t

Since if x is any element of X such that ||x|| =1, then p
can be taken to be gx.
(ix) (Theorem 3.7.10 {92].) Let {Hn,n € I+} be a set of

disjoint elements of T. 1f & 1is a BXr.v., then

[ gap = ] [ eap.
M n=lM
n n
%) (Theorem 3.7.11 [2].) If & 4is a BXr.v., then
A(h) = [EdP 1s a strongly absolutely continuous set function on T.

The next theorem is the extension of summaries 2.1.5 (iii) and (iv).

Its proof is trivial and so will not be given.

Theorem 2.2.6:

(1) If & ds a BXr.v.®' and if p e [E], then p 1is a

BXr.v.%'.

(11) If £ is a BXr.v.?¢', then there exists p € [£] such

that p 1is a BXr.v.?.

The following theorem is an immediate consequence of theorems 2.1.20

and 2.2.6 (1) .

Theorem 2.2.7: If & 4s a BXr.v.9, then there exist a separable B-

subspace L of X and a BXr.v.? p such that
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p = £ P¢ a.e.

and

p(Q) € L.

The following theorem 1s my result; however the proof is similar

to that of lemma 3 [5].

Theorem 2.2.8: Let £ be a BXr.v.d. Then

JedP = 8 for every A e ¢
if, and only if,

£ = €P¢ a.e. .

Proof: Remark 2.2.5 (v) implies that if £ = SPQ a.e., then
fEdP=6 for every A e T > 9.

So assume that f&dP =0 for every A e ¢.

Then remark 2.2.5 (ii) implies that
f<£,£*>dP = 0 for every A e & and &% ¢ X%,
It follows from theorem 1 of the appendix that

<€,8% =0 P, a.e. for every E* e X*.
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Clearly there exist a P-negligible element A, of ¢ and a count-

0
able subset Y of X such that E(Q\Ib) C Y.

Accordingly theorem 9 of the appendix implies that there exists

{Eg,n € I+} c X*
such that

[|e@)]] = 1.u.b.|<g(m),£:>l for every w e O\A,.
n
Clearly for each n ¢ I+, there exists a P-negligible element A

of & such that
<g,g;’<l> =0 on Q\An.
It follows that

|le@)|] = 0 for every we @\ {/ A
n=0 ~

Clearly J An is a P-negligible element of ¢.
n=0

Therefore £ = eP‘D a.e. .

Theorem 2.2.9: Let £ and p be BXr.v.0'. Then
fgdP = fde for every A e ¢
if, and only if,

E=p P a.e. .
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Proof: It follows from remark 2.2.5 (dv) that
[gdP = fpdP for every A e ®
is equivalent to

[(E-p)dP = 8 for every A e o.

A

Also remarks 2.2.5 (i) and (iv) imply that (£-p) is a BXr.v.o'.

And so it remains to be shown that
[(E—p)d? =0 for every A e o
implies that
[(E-p)dP =0 for every A ¢ o'

for then the conclusion of the theorem will follow from theorem

2.2.8.
Let N be any element of ¢°F. Then there exists an element
M of ¢ such that WN M and M\ are P-negligible elements of

Accordingly it follows from remarks 2.2.5 (vi) and (ix) that

| €-p)ar = f (E-p)dp
N N+ \ N)

= f (E-p)dP
M (I \ M)

= [(€p)ap
M

= e'
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Therefore, since 1 was an arbitrary element of &',

f(E-p)dP =6 for every A ¢ ¢'.

Pemark 2.2.10: The device of considering the values of an integral

over the elements of ¢ instead of over the elements of &' will

be used in future without comment.

Theorem 2.2.11: Let L bLe a B-subspace of X. Then a function

£E:Q2>L is an Lr.v.¢ 41if, and only if, £ is an ZXr.v.o.

Moreover & is a BLr,v. if, and only if, & is a Blr.v.o.

Proof: Theorem 13 of the appendix states that the Borel field of the
Banach space L 1s identical with the class B(X) O L. Since
Le BX), B < 3X). Accordingly if & 1is an ZXr.v.%, then

A ¢ B(L) dimplies that
£ty ¢ o.

Also 1f & is an Lr.v.%, then A ¢ B(X) implies that

~1

el = e lan v e tas

£l n L)

e &,
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Therefore it follows from remark 11 (i) of the appendix that § is

an Lr.v.® 1if, and only if, £ 4is an ZXr.v.o¢. The final statement of

the theorem follows immediately from remark 2.2.5 (iii).

Definition 2.2.12: Let M be an element of T and let £ be an

Xr.v. . £ 41s said to be Bochner integrable on M if, and only if, the

function p defined by

p s we > |Ew) if weM

) if wé M

is a BXr.v. . That is, & is Bochner integrable on ™ if, and

only if, EIM is a BXr.v. .

Definition 2.2.13: (II1.2.7 [6].) A sequence {sn,n £ I+} of

Xr.v. 1is said to converge in measure to an Xr.v. & if

lim Plw]]|& W) - En(m)H > §} = 0.
>

The convergence in measure of {En,n € I+} to & is denoted by

p;}im £ =¢.

£ 1s called the stochastic limit of {En,n € I+}.

Remark 2.2.14: Let {En,n eI} bea sequence of ZXr.v. .
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(1) (Theorem 3.5.1 [9].)
If there exists an Xr.v. £ such that {gn,n € I+} converges
P a.e. to £, then £ 1is also the stochastic limit of {gnpn £ I+}.
(i1) (I11.6.4 [6] and III.6.3 [6].) If
P"lim (Em—gn) = 09
m,n>®
then there exist an Xr.v. & and a subsequence
+ +
{Eﬂfi eI} of {gn,n € I} such that
p-lim g =&
o

and

limg =& P a.e.
n,
>0 i

Let Z be the set of all P-equivalence classes of Xr.v. and d

the function Z x Z -» R defined by
d: (Ig],0p]) € Z x Z > g.1.b.{&|P{u] | [E)-p W)]]| > 8} < &}

where & and p are arbitrary elements of [£] and [p]., Clearly d
is well-defined. The proof of the next theorem is gtraight-forward

and so will not be given.

Theorem 2.2.15: (Z,d) 1s a complete metric space where the metric

convergence is equivalent to the convergence in measure of arbitrary

elements of the P-equivalence classes.
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Theorem 2.2.16: Let {gt;t ¢ T} be a family of Xr.v. whose parameter
set T 1is a subset of the extended reals. Suppose that to is a
limit point of T from the left (right) andthat there exists an

Xr.v. €, _(gt +) which is the stochastic limit of every sequence
0 0

{¢ s,n € I+} whose parameter set {sn,n € I+} is a subset of T such
n

that

+
8 < to (sn> to) for every ne I

and
lims =¢t_ .
nre O

Then p-lim & =§ (p~lim & = & ).
stt, ° 0 sty ° et

Proof: The proof will only be given for when to is a limit point of T
from the left, since the proof for when to is a limit point of T
from the right is analagous.

For each n ¢ I+, define
I = |(t L t.) 1f t. is finite
0n’0 0
(n,to) if t, = +=

0

and, for any & >0, define, for each n € I+,
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Clearly for each n ¢ I+, there exists an S, € InI such that

K L
n

N[

pallle, € 11> 6 2
0 “n

Accordingly there exists {ES o0t € I+} such that
n

+
s, < t0 for every ne 1l |

and

1 +
P{m|||§t_—ﬁs [l > &} >3 Kn for every ne I .
o B

And so the hypothesis of the theorem implies that 1lim Kn = 0,
F v asd

Therefore, since & > 0 was arbitrary,

p~lim E_=§&__
s+ t s t0

.

Definition 2.2.17: A family {st,t e T} of non-negative BRr.v. is said

to be uniformly integrable if the following conditions are

satisfied:

(i) E(xt) is uniformly bounded in ¢t

and (1) 1lim [ x
PA>0 *

th = 0 wuniformly in t.
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That is, the set functions f xth for A e T are uniformly

absolutely continuous.

Remark 2.2.18: (p.629 [4].)

(i) It is sufficient for uniform integrability that E(x:)
be uniformly bounded in t for some a > 1.

(i1) 1f {xn,n € I+} is a sequence of non-negative BRr.v.
converging P a.e. to x with expectations converging to the finite
limit X, then E(x) < K There 1is equality if, and only if,

{xn,n e I} s uniformly integrable.

Definition 2.2.19: A family {ﬁt,t e T} of BXr.v. 1s said to be

uniformly integrable 1if {I|§t||,t e T} 1is uniformly integrable.

Theorem 2.2.20: (III.6.15 [6].) Let {gn,n € i+} be a sequence
of Xr.v., which converges P a.e. to an Xr.v. £ . I1f, for some

=

a > 1, E(||5n||a) <® for every ne I, then

E(|1g]]%) < =

and

lin E(||g-¢_[[*) =0
>

if, and only if,
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lim f e ||adP = 0 uniformly in n.
PA>0 © T

The next theorem is a corollary of theorem 2.2.20,.

Theorem 2.2.21: Let {En,n € I+} be a sequence of BXr.v. which converges
P a.e, to an Xr.v. § . If {En,n € I+} is uniformly integrable, then

& 1ds a BXr.v. and 1lim fEndP = f £ dP for every A e T.

n-rco
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CHAPTER 3

Conditional Expectations and X-martingales

In section 3.1 the concept of the conditional expectation of a
BXr.v. relative to a o-subfield of I' 1is defined. The definition
in this thesis of a conditional expectation is different from the usual
one in that a conditional expectation is a class of BXr.v. rather
than any element of a class of BXr.v. . That is, the conditional
expectations are elements of the separated space assoclated with the
space of all BXr.v. .

In section 3.2 the concepts of an X-stochastic process and an
X-martingale are defined. Several miscellaneous definitions and
results concerning these concepts are also included in this section.
Remark 3.2.6 (i) is equivalent to theorem 2.1 chapter III [10].
Theorem 3.2.7 and remark 3.2.8 are extensions of results contained in

theorem 1.1 chapter IV [10].
3.1 Conditional Expectations
Let X be an arbitrary Banach space and (Q,I',P) a complete

probability space.

Definition 3.1.1: Let & be a BXr.v. and let ¢ be a o-subfield

of T. If an Xr.v.%¢' p has the following property:
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(1) JodP =] g dP for every A e @

A ~

then it is said to be an element of the conditional expectation of £ relative

to @. If there exists an Xr,v.¢' p satisfying (i), then it is

said that the conditional expectation of & relative to ¢ exists.

Remark 3.1.2: Let E be a BXr.v. whose conditional expectation

relative to ¢ exists.

(1) Clearly the relation 3.1.,1 (i) implies that every element
of the conditional expectation of £ relative to ¢ is a BXr.v.¢'.

(ii) If Py and p, are any two elements of the conditional
expectation of & relative to ¢, then theorem 2.2.9
implies that Py =P, P a.e. . And if p ¢ &i] = bZ , then theorems
2.2,6 (1) and 2.2.9 imply that p is an element of the conditional
expectation of £ relative to ¢. Therefore, if the conditional
expectation of a BXr.v. relative to a o¢-subfield of T exists, then it
is a P-equivalence class.

(i11) 1If g is a BRr.v., then clearly for any o¢-subfield

¢ of TI' the conditional expectation of g relative to & exists.

Notation 3.1.3:

(1) Let & be a BXr.v. and let { be an element of T.
If the conditional expectation of & relative to ¢ exists, then this

P-equivalence class is denoted by [E(£|¢)]. Since L, is a BRr.v.,

o
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[E(Imlé)] exists and is written [P(M]@)].
(11) n(E|¢) and P(M{®) are frequently used to denote arbitrarily
chosen elements of [E(E|¢)] and [P(M|®)].
(114i) Let. £ be a BXr.v. and let {Et,t e T} be a family
of Xr.v. where T is a subset of the extended reals. If
[E(ng(Et,t < t?))] exists, then this P-equivalence class will be

denoted by [E_(t;lgt,t < tHl.

Remark 3.1.4:

1) Let £ bea BXr.v. . If p e [£], then [E(£|®)] exists
if, and only if, [E(p!@)] exists and 1if they exist, they are identical.

(i1) Clearly if £ is a BXr.v., then [E(E|¢)] exists if, and
only if, [E(EI@’)] exists and if they exist, they are identical.

(iii) If £ 4is a BXr.v. whose [E(£|¢)] exists, then

relation 3.1.1 (i) implies that
n(E(E]e)) = E(E).

(iv) If £ is a BXr.v.¢', then [E(£]¢)] exists and is
identical with [&].
) Accordingly 1f & is a BXr.v., then [E(E|r)] exists

and is identical with [E].

Theorem 3.1.5: Let {ai,i £ JN} be a subset of R and let



47.

{Ei,i € Jn} be a set of BXr.v, . If [E(§i|®)] exists for each

ieJ , then
n

n n
[E(izl ag l0)] = [121 a, B |0)].

Proof: Remarks 2.2.5 (i) and (iv) imply that

n
X a,t is a BXr.v.
i=1 1°1i

and that

n .

Y a,E(E,|¢) is a BXr.v.o'.
=1 L+ 71

Accordingly remark 2.2.5 (iv) implies that

n n
f Z a, g, dP = a E, dP for every A £ O
~qmp 11 121 1]

n
= ¥ a, f E(giIQ)dP for every A e @
i=1 ~

n
={ 7 aiE(gilé)dP for every A e 9.
=1

Theorem 3.1.6: If x e X and T e T, then

[E(Tx|e)] = [RGr|e)x].

Proof: Remark 2.2.5 (ii) implies that
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I

f <E(IMx|¢),E*>dP f <IMx5£*>dP for every A ¢ & and g% ¢ X%

({ IMdP)<x,g*> for every A e & and E* ¢ L%

(f P(M|®)dP)<x,t*> for every A e & and g* ¢ X*

[<P(|®)x,£%>dP for every A e & and &% ¢ X%,

Since PG%I@) is a B2r,v.¢' and since
Hrotle)x|| = |pM]e)|||x|| everywhere,

it follows from remarks 2.2.5 (i) and (iii) that P(M|é)x is a

BXr.v.%*. Theorem 1 of the appendix then implies that
<E(1M;|¢) - PM|®)x,E% = 0 P a.e. for every E* ¢ X*.

Therefore the conclusion of the theorem follows from an application

of theorem 9 of the appendix similar to that used in the proof of theorem

2.2.8.

Theorem 3.1.7: If £ is a BXr.v. whose [1(£]|9)] exists, then

lHeElo)]| < zdlellle) P a.e. .



Proof: Theorem 2.2.7 and remark 1 (i) of the appendix imply that

there exist
g' € [£] and p e [T(g]®)]

such that E£'(Q) and p(R) are separable. Accordingly it follows
from theorem 8 of the appendix that there exists a countable subset

Y of X such that
@U@ c¥.
Theorem ¢ of the appendix then implies that there exists
{e*,n ¢ T o xx
such that

[fer )| = l.u.b.|<£'(m),£§?| for every w e Q
n

and

[le )]} = 1.u.b.|<p(m),£§>l for every w € Q.
n

It follows from remarks 3.1.2 (ii) and 3.1.4 (i) that

[odP =/ E'dP for every A e d.

-~ -

Therefore remark 2.,2.5 (ii) implies that
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II<p,E§>dP| [[<g',g:>d?| for every A e ¢ and n e il

A

+
f]<£',E§>ldP for every A e ® and ne I

A

[l'g'[ldP for every A e &

= [E(]|£']|]|2)dP for every A e o.
llence theorem 2 of the appendix implies that

I<D,E§?| E(]|g']||]¢) P a.e. for every n e I+.

A

And so ||eo]] < =(]|&"||]®) P a.e. . Therefore remark 3.1.2 (ii) implies

A

that

[lzEle)|| < E(|ell]e) P a.e.

The proof of the next theorem was derived from theorem 2.2(4) of

chapter II [10]; however it is similar to that of lemma 8 [5].

Theorem 3.1.8: If there exist a sequence {En,n £ I+} of BXr.v. whose

[E(&nl¢)]'s exist and a non-negative BRr.v. g with the following

properties;
1) {En,n € I+} converges P a.e. to a limit function &
and (ii) Ilgnll <g Pa.e. for every nce I+,

then & 4is a Bir.v. whose [E(£]|®¢)] exists. Moreover



51.
{E(EHIQ), n e f+} converges P a.e. to E(&i@).

Proof: Remark 2.2.5 (viii) implies that £ is a BXr.v. and that
1im [ EndP = I EdP for every A e T.
o ‘

Accordingly

'|€m~£n|! for all m,n ¢ il
and

'IE-En|| for every n ¢ I+

are BRr.v. .
It follows from (i) that

+
{!lE~€n|l, nell} converges P a.e. to zero and from (ii) that

|l€m-€n|| < 2g P a.e. for all m,n ¢ I

and that

'lE“En'I <2 Pa.e. for every ne .

Accordingly C,. p.23 [4] implies that

5

(| Ie-e:nlllqp) >0 P a.e. .

Also

A

E(lle e 1) < mdlfe-g |1]e)

+ E(Hg-gnllio) P a.e. for all mne I'
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since clearly

[ E(||£m—£nl||¢)dP = [ ||£m—£nl|dP for every A € ¢
< [ Hegellae + [ [le-g | a2
= [ E(||e-¢ || ]e)ap + [ E(]|e-¢ |][o)aP

= [ (E(le-g 1l 1e) + u(||e-g |][e)}1ap
+
for evexy A e ¢ and all myne I .

Therefore theorems 3.1.5 and 3.1.7 imply that

|2 _lo) - E¢_|o)]]| = [|EG -£_|®)]] P a.e.

A

E([le,€ 1112) P a.e.

A

E('Ig‘ngI‘Q) + E(l'E-Enlll¢) P a.e.

+ 0 as my,n-> o

Hence remark 2.1.12 implies that there exists an Xr.v.®' p which is a
limit function of {E(gnl¢),n € 143. Moreover theorem 3.1.7 and (ii)

above imply that
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A

HEE [ < E(lg [I]e) P a.e.

E(g|¢) P a.e. for every n e .

nA

Therefore remark 2.2.5 (viii) implies that

p is a BXr.v.¢'

and that

f pdP

A

1im f E(EnIQ)dP for every A e ¢
o °

lim f EndP for every A € ¢
me °

f £EdP for every A e 9.

~

Therefore [E(EI@)] exists and satisfies

lim E(gnlw) = E(g|9) P a.e. .
b o]

The following theorem is the existence theorem for conditional

expectations. Its proof is similar to that of theorem 1 [5].

Theorem 3.1.9: If & is a BXr.v., then [E(E|®)] exists.

Proof: Theorem 2.1.16 implies that there exists {En,n e T} of

finitely-valued Xr.v. with the following properties:
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(i) {En,n € I+} converges P a.e. to &

and (ii) Ilgn[l < ||g]| everywhere for every n e 1.

It follows from theorems 3.1.5 and 3.1.6 that [E(gnié)] exists for
every n ¢ I+. Therefore the conclusion of the theorem follows from
theorem 3.1.8.

The following theorem contains extensions of (10.8) and theorem
8.1 chapter I [4]. ©Part (i) is equivalent to the corollary of

theorem 2.3 chapter II [10], from the present context.

Theorem 3.1.10: Let & and ¢ be o-subfields of T such that

1 2
<1>i_c_:<1>é.

(1)  If £ is a BXr.v., then
(EEled) = [E@Ee){e)]

[ECaE2,)]9)].
(ii) 1f E(gl@z) is a BXr.v.¢!, then
[x(ele)] = [EE|e)].
Proof:

(1) It follows from remark 3.1.4 (i) that these relations are

well-defined. And so since E(El@l) is clearly a BXr.v.¢), remark
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3.1.4 (iv) implies that [E(E(g|e,)[0,)] = [E(]o))].

Now let A be any element of @i. Then

I 2(E(g|e )| e )ap = [ E(g|e,)dP

= [ gdp

A

= [ E(g]o,)dp.

Therefore, since A was an arbitrary element of @i and since both

E(E(gl@z)[él) and E(g|o1) are BXr.v.¢!, theorem 2.2.9 implies

that
E(E(EIQZ)IQl) = E(£|¢l) P a.e. .
(ii) Remark 3.1.4 (iv) implies that
[E(EE]e,)]0)] = [EE[2,)].

Therefore the desired result follows immediately from part (i).

Theorem 3.1.11: If & is a BXr.v., then there exists a separable

B-subspace L of X such that for every o-subfield ¢ of I there

exists an element of [E(£|¢)] whose values lie in L.
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Proof: Theorem 2,2.7 imnlies that there exist a separable B-subspace

L of X and a BXr.v.. p such that

p = EP a.e.
and

p(@) c L.

Theorem 2.2.11 implies thwat p 1is also a BLr.v. and so it follows
from theorem 2.1.16 that there exists a sequence {pn,n € i+} of

finitely-valued BLr.v. such that

+
{pn,n € I'} converges P a.e. to p

and
||pn!| < |lell everyuhere for every n e .
+ m
Clearly for each ne I, p_ is of the form | I x,  where
n =1 Mgl

{s,,1 ¢ Jm} €L and {A ;,ieJ} 1is a set of mutually disjoint
elements of TI'. Theorem 2.2.11 implies that I is a BXr.v. for

every n ¢ I+. Therefore, taking the conditional expectations of the

P, S as BXr.v., it follows from theorems 3.1.5 and 3.1.6 that, for

any o-subfield ¢ of T, there exists for each n ¢ I+ an element

of

m
[E(pn|<x>)] = [121 P(Ai|¢)xi]
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whose values lie in L.  Accordingly, since L is a closed set in X,
the conclusions of the theorem follow from theorems 3.1.8, 2,1.11, and

2.2.6 (1) and remark 3.1.4 (i).
3.2 X-martingales.
Let X be an arbitrary Banach space and (Q,I',P) a complete

probability space.

Definition 3.2.1: A family of ZHr.v. {gt,t e T} d1s said to be an

X-stochastic process (with parameter set T). If the gt’s are

BXr.v., then '{gt,t € T} 1s said to be a BX-stochastic process.

Definition 3.2.2: Let {gt,t e T} be an X-stochastic process. A
function of t ¢ T obtained by fixing © in gt(m) and letting t

vary is called a sample function of thie process. 1f there exists a

P-negligible element A of T such that every sample function which
corresponds to an w € Q\A has a certain property, then it is said

that almost all sample functions have that property.

Hotation 3.2.3: Let {gt,t e T} be an Z -stochastic process with

linear parameter set T. (That is, the parameter set is a subset of the

extended reals.) For each ¢t ¢ T,B(gt,,t' < t) will be denoted by

Bt.
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Definition 3.2.4: Let {gt,t e T} be a BX~stochastic process with

linear parameter set T and let {@t,t € T} be a family of

o-subfields of T. {gt,t ¢ T} is sald to be an X-martingale relative

to the @t's if the following conditions are satisfied:
(1) @S gtbt for all s,t ¢ T such that s < t,
(11) B(gt) S@E for every t e T,
and (iii) [ES] = [E(§t|¢s)] for all s,t € T such that s g t.

Such an X-martingale will be denoted by {Et,Qt,t e T}.

Notation 3.2.5: If {Et,Bt,t e T} 41s an X-martingale, then it will

be denoted by {gt,t e T}.

Remark 3.2.06:

(1) if {&t,Qt,t € T} is an X-martingale, then condition

3.2.4 (ii1) 1is equivalent to the demand that

P = P e
[ gsd" [ gtd« for every A e @S,

for all s,t ¢ T such that s < t.
(ii) If {gt,Qt,t e T} is an X-martingale, then remark

3.2.6 (i) implies that
E(gs) = E(gt) for all s,t e T.

(11i) If {Et,Qt,t e T} is an X-martingale, then theorem

3.1.10 implies that
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{g .t € T} is an X-martingale.

Theorem 3.2.7: If {Et,ét,t e T} dis an X-martingale, then

{|‘Et||,¢t,t e T} 1is a real-valued semi-martingale (p.294 [4]).

Proof: It follows from theorem 2,1,19, remark 2.2.5 (iii), and condition

3.2.4 (11) that

B(|le [1) €B(,) c o for every teT

and that

E(||gt]l) < » for every t g T.
Condition 3.2.4 (iii) and theorem 3.1.7 imply that

||EB|| < E(IIEtIIIQS) P a.e. for all s,t€ T such that s < t.

Therefore the conclusion of the theorem follows from the definition of

a real-valued semi-martingale.

Remark 3.2.8: Let {Et,¢t,t € T} be an X-martingale.

1) Theorem 3.2.7 and theorem 3.1 (i) chapter VII [4] imply

that

A

E(IIESII) < E(||€t||) for all s,t € T such that s ¢ t.
(i1) 1f t, € T, then theorem 3.2.7 and theorem 3.1 (iii)

chapter VII [4] imply that {Et;t < tl} is uniformly integrable.
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For each o > 1, define a real function of the real variable X thus:

f tAeR> [0 4f A <0

A if oA o] .

Clearly for each o > 1, fa is monotone non-decreasing and convex.
Therefore the following theorem is an immediate consequence of theorem

3.2.7 and theorem 1.1 (i) chapter VII [4].

Theorem 3.2.9: Let {Et,¢t,t € T} be an X-martingale. If, for

some o >1 and some t e T, E(Ilgtolla) < w, then {Ilstlfa,ét;t < £}

is a real-valued semi-martingale,

The next theorem follows from theorem 3.2.9 and theorems 3.1 (i)

and (1ii) chapter VII [4].

Theorem 3.2.10: Let ({§ t € T} be an X-martingale. If, for

t’Qt’

some o > 1,

E(Ilgtlla) < » for every te T,

then

1) {||£t||a,¢t,t € T} is a real-valued semi-martingale,

(11) E(Ilﬁsllu) < E(IIEtII“) for all s,t ¢ T such that s < t,
and (iii) {||£t||a,t < t;} is uniformly integrable for every t, & T.
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CHAPTER 4

Separable X-stochastic Processes

This chaptevr extends the concept of a separable stochastic
process (pp.51 and 52 [4]) to that of a separable X-stochastic process
where X is a real Banach space.

The definition of an X-stochastic process, which is separable
relative to a subclass of B(X), is given. The main results of this
chapter provide conditions under which sequential convergence of a
family of Xr.v. can be replaced by ordinary convergence, and conditions

for the existence of a separable modification of an X-martingale.

Let X be a Banach space, let {Et,t e T} be an X-stochastic
process with linear parameter set T, let Q be any subclass of B(¥), and

let (Q,T',P) be a complete probability space.

Notation 4.1: If UCLT and w € @, then the range of the sample function

of the process at w, restricted to UCT,
{xlguﬁm) = x for some u e U},
will be denoted by (U;w) with the convention that (¢:w) = ¢.

The closure of (U;w) in X will be denoted by [U:w].

Notation 4.2: If UCT and A e B(X), then

{mlau(m) € A for every uce U}
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will be denoted by {U;A} with the convention that {¢;A} = Q.

Definition 4.3: {gt,t ¢ T} is sald to be separable relative to Q

if there exist a countable subset S of T and a P-negligible
element A of T such that if A is any element of Q@ and if I is

any open interval with finite or infinite endpoints, then
{IS;A}N{IT:;A} C A.

If Q 41s the class Qo of all closed spheres in X, then separable

will be written instead of separable relative to QO’

Remark 4.4:
(1) If {Et,t e T} 1is separable relative to Q,
then

{IT:A} e T

for every A € Q and every open interval 1I. If SCT is a countable
subset whose existence is guaranteed by definition 4.3, then S 1is necessarily
dense in T.

(i1) Since the concept of separability has only been defined for
X-stochastic processes whose parameter sets are linear, when it is written
that an X-stochastic process is separable relative to Q it will be
assumed implicitly that its parameter set is linear.

(iii) If Q1 and Q2 are subclasses of B(X) such that
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ng; QZ’ then an X-stochastic process which is separable relative
to Q2 is necessarily separable relative to Ql.
(iv) Let T and T' be subsets of the extended reals such

that
TC T and T'N\NT is countable.

If {Et,t € T'} is an X-stochastic process and if {Et,t e T} 1is
separable relative to Q, then clearly {Et,t e T'} 4is separable
relative to Q.

The following theorem will permit sequential convergence of Xr.v.
to be replaced by ordinary convergence in certain circumstances.
It is an analogue of theorem 2.2.16 to P a.e. convergence. This
theorem is effectively an extension of theorem 2.3 chapter II [4], to

the present context; however its proof is independent of Doob's.

Theorem 4.5: Let X be an arbitrary Banach space and let
{Et,t e T} be a separable X-stochastic process. Suppose that T
is a limit point of T{t|t>t} (T{t|t<t}). If there exists an
Xr.v. p such that for any monotone decreasing (increasing)
sequence {tn,n £ i+} in T, which converges to 1,

limEt =p P a.e.,

n* n

then 1im£t =p P a.e, (limgt =p P a,e.).
t¥t tit
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Proof: The proof for the increasing case will be omitted since it is

an analogue of the proof for the decreasing case. Since the process is
separahble, there exist a countable subset S8 of T and a P-
negligible element A of T such that for every closed sphere A in

X and every open interval I
{IS;AIN {IT;A} C A.
+
For each ne 1 , define

I = (t,t +-%) if 1t is finite

(t,-n) if 1 = -,

Since T is a limit point of T{t|t>t}, there exists a monotone
decreasing sequence {sn,n € I+} in IIS which converges to T.
The hypothesis implies that 1imgs =p P a.e. . Moreover, since IIS

n n
is a countable subset of T, it follows from remark 2.1.9 (iii) that

{llp-ESII, s e 1,5}

is a real geparable stochastic process (pp.46 and 51[4]). Accordingly
theorem 2.3 chapter II [4] implies that
lim ||o-£ || = 0 P a.e.
]
stT
where s ¢ I;S. Therefore there exists a P-negligible element M

of T such that
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l:l.mgs(w) = p(w) for every w e Q\1l where
sy T

s € I].’S' Clearly ¥ = AU M 1s P-negligible.
If Ae QO (the class of closed spheres in X), then for each

+
negl,

AD (Inl'.»w) <=> € {InT;A}
and

A D (I Siw) <= w e {I S;A}.
Also if A ¢ Qo and 1f w ¢ A, then for each n ¢ I+,
w e {InS;A} <=> @ e {InT;A},

by definition 4.3.

Accordingly 1f A ¢ Q0 and w ¢ A, then for each n ¢ I+,
(1) AD (InS;.m) <=> A D (In'l“,w).

Plainly if w ¢ M, then the diameter of [IDS;w] converges nonotonically
to zero since the hypothesis implies that InS 1s non-empty
for every n ¢ I+. And so if w ¢ 7i, then there exists m(w) € I+
such that [InS;'.w] is bounded for every n > m(w). Therefore w £ 1f

and n > m(w) imply that there exists Un 0 € QO which covers

9
[InS;w] and whose radius equals the diameter of [InS;m]. It
follows from (I) that if w # ¥ and if n > m(w), then the diameter

of [InS;m] is greater than or equal to half the diameter of [In'}.‘;m}.
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Hence if w £ 1, then {[Ini;m], ne I+} is an infinite descending
sequence of non-empty closed sets with diameters tending to zero.
Therefore if «w ¢ M, then theorem 12-C Simmons [11] implies that

[+ ]

[] [InT;w] consists of one and only one clement. Clearly this element
n=1
must be p(w). We have thus shown that

1lim gt(m) = p(w) for every w e Q\N,
t¥t

as required.

The following theorem is an extension of lemma 2.1 chapter 1II [4].

Its proof is analogous to Doob's and so will not be given.

Theorem 4.6: Let X be an arbitrary Banach space and let
'{gt,t ¢ T} be an X-stochastic process. To each element A of
B(X) there corresponds a countable subset S of T such that for

every te T
{S;A1 N {wlgt(m) ¢ A}

is a P-negligible element of T.

More generally, let Yo be a countable subclass of B(X) and
let V be the class of sets which are intersections of sequences of
elements of VO' Then there is a countable subset S of T such that

to each t & T there corresponds a P-negligible element At of T such

that
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{s:81N {w|£t(w) ¢ A} C A, for every Ace V.

The next theorem is an extension of theorem 2.4 chapter II [4].
Its proof can be accomplished analogously to Doob‘s and will not be
given., However we note that when applying theorem 4.6 (lemma 2.1
chapter II [4]) V0 is here taken to be {X\~Gngn € I+} where
{Gn,n € f+} is a countable open base forvthe topology of X.
Although the present extension only pertains to a separable Banacl: space,
a further extension will be given in theorem 4.8 for a non-separable

Banach space.

Theorem 4.7: Let X be a separable Banach space and let {gt,t ¢ T}
be an X-stochastic process with linear parameter set T. There is
then an X-stochastic process {gt,t e T} which is separable relative

to the class of closed sets, with the property that
P{wlit(w) = Et(m)} =1 for every t ¢ T.

Theorem 4.8: Let X be an arbitrary Banach space and let

{gt,¢t,t ¢ T} be an X-martingale. If there exists a BXr.v. p such

that

(e} = [EG|E)] for every te T,

then there exists an X-martingale



{Et,Qt,t e T}

which is separable relative to the class of closed sets, with the

property that

P{w!%t(w) =& (W} =1 for every t e T.

Proof: Theorem 3.1.11 implies that there exists a separable B-
subspace L of X such that for ecach t e T, g;, a BRXr.v. @;
exists and has the following properties.

]
Et(Q) CL
and

£, € [E(pl¢t>].

It follows from theorem 2.2.11 that {E;,t g T} dis an L-stochastic
process. Accordingly theorem 4.7 implies that there exists an
L-stochastic process {Et,t e T} wvhich is separable relative to the

class of closed sets in L, with the property that
P{w[gt(w) = Eé(m)} =1 for every t ¢ T.

Theorem 2.2.11 dimplies that {gt,t e T} 4is an X-stochastic process.
Clearly [Et] = [Et] for every t e T.
Therefore {it,ét,teT} is an X-martingale such that P{gt(m) = gt(m)} =1

for every t ¢ T. All that remains to be shown is that
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{gt9t e T} is separable relative to the class of closed sets in X.
Since {gt,t ¢ T} 1s separable relative to the class of closed
sets in L, there exist a countable subset S of T and a

P-negligible element A of T such that for every open interval I

and every closed set F in L
{IS;F}\{IT:F} C A.

Clearly if H is any closed set in S, then HN L is closed in L.
Accordingly, since {gt,t ¢ T} 4is an L-stochastic process, if

H 1s any closed set in X and if I is any open interval, then

C{IS:EIN{IT;H} = {IS'HN LI\ {IT;:ENL}

€ A.

Remark 4,9: Let X be a Banach space and let '{Et,Qt,t € T} be an
X-martingale.
1) If b = l.u.b.t € T, then gb clearly satisfies the

teT
requirements of theorem 4.8 for o.
(ii) If X 1s reflexive, then conditions will be given in

theorem 5.2.1 under which the process satisfies the requirements of

theorem 4.8,
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Chapter 5

X-martingale Convergence Theorems

This chapter is divided into three sections. The first gives
extensions of theorems 4.1, 4.2, and 4.3 chapter VII [4], which are
convergence theorems for discrete parameter martingales. The second
extends the theorems of the first section to X-martingales with non-
denumerable parameter sets. Alternatively theorems 5.2.1 (1) and 5.2.3
can be considereﬁ as extensions of (theorem 4.1) and (theorem 4.3) in
section 11 of chapter VII [4]. The third section consists of extensions
of theorems 11.1, 11.2, and 11.4 chapter VII [4], which are several
results concerning continuous parameter martingales.

In section 5.1 it is necessary to use theorem 4 [12] and theorems
4 and 5 [2]. If it is assumed that the probability space in [2]
is complete and that the o-fields in the X-martingale triples in [2]
and {l2] are P-complete, then it follows from theorem 2.2.1 and theorem 3
of the appendix that theorem 4 [12] and theorems 4 and 5 [2] are
equivalent to theorem 5.1.1 (1), the second part of theorem 5.1.3, and
the first part of theorem 5.1.2 respectively. Since the only use that
is made of the hypothesis that the Banach space is reflexive is the
application of theorem 4 [12] in theorem 5.1.1 (i), it follows from a
comment in [12] that this hypothesis can always be replaced by the
hypothesis that the Banach space is separable and is the conjugate space

of a Banach space.

(Q,T,P) denotes a complete probability spacc.
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5.1 Discrete Parameter X-martingales

The first theorem of this section is an extension of theorem

4.1 chapter VII [4].

Theorem 5.1.1: Let X be a reflexive Banach space, let

{Ensén,n € I+} be an X-martingale, let K be the (not necessarily

finite) lim E(||gn||), and let ¢ =o(Ue ).
o n

(1) If K < », then there exists a BXr.v.Q; £, such
that

+
{gq,n e I'} converges P a.e. to €

and

B(|lg 1) ¢ k.

(i1) The following conditions are equivalent:

(a) K< » and {gn,Qn,n € I+uw {»}} 1is an X-martingale.
(b) {gn,n € I+} is uniformly integrable.
(c) K<w and E(||g_||) =K.
(d) K<o and lim E(||5w~gn‘l) = 0.
Te>oo

(11i) 1f for some a > 1, lim E(IIEﬂ]Ia) < =, then the conditions
>

of (ii) are satisfied,

EC([e_|1%) < =,

and

lim E(| '%‘%' |*) = o.
oo
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Conversely, if the conditions of (ii) are satisfied and if

E(|l£&||a) < o for some o > 1, then

(e 1% g 2(|lg ||®) for every ne 1.

Proof: Remark 3.2.8 (i) implies that

Lb 2(][g [ 1) = 1m (] [£ ]
nai+ e

1) This part follows immediately from theorem 4 [12] and
remark 2.2.18 (di).

(i1) It follows from definition 2.2.17 (i) that (b) implies
that K < «, Thus statements (a) - (d) of (ii) either imply or
suppose that K < =, so that £ _ is defined in each case.  Remark
2.2,18 (i1) implies that (b) and (c) are equivalent, and theorem
2.2.20 implies that (b) and (d) are equivalent. It follows from
remark 3.2.8 (11i) that (a) implies (b) and so it remains to be
shown that (b) dimplies (a).

If {En,n e T’} is uniformly integrable, then theorem 2.2.21
implies that

lim f EndP = f £ dP for-every A eT.
e A -

Hence, since for each m ¢ I+
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—
7Y
=]
&
1]

[ EmdP for every A\ ¢ L and n > m,

>

clearly

[ g ap

-

[ EmdP for every A ¢ @m.

Therefore, since m was arbitrary and since g, 1s a BXr.v.@;,

(b) implies (a).

8

(111) If, for some o > 1, Lim E(J|£_||%) < =, then theorem
>

3.2.9 implies that
o +
E([Ignll ) <o for every ne I .

Accordingly the limit relaﬁion above nnd theorems 3.2.9 and 3.2.10

(i1) imply that E(!lgnlla) is uniformly bounded in n. It follows
from remark 2.2.18 (i) that {gn,n € f+} is uniformly integrable and so
the conditions of (ii) are satisfied. Hence gw is defined.

From theorem 3.2.10 (iii), condition (a) of (ii) implies that

{'|§n||a,n € f+} is uniformly integrable. Accordingly theorem 2.2.20
implies that

E(HE ) < =

and

lim E([]gw—gnlla) = 0,
nro

Conversely, if the conditions of (ii) are satisfied and if
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E(Ilgwlla) < ® for some o > 1, then theorems 3.2.9 and 3.2.10 (ii)

imply that E(Ilgnlla) < a(lle || for every ne .

The next theorem extends theorem 4.2 chapter VII [4].

Theorem 5.1.2: Let X be an arbitrary Banach space, let

{gn,Qn,n ¢ I} be an X-martingale, and let
s =1} o -
n
Then there exists a BXr.v.@img_w such that {En,n e T } converges
P a.e. to & _ and (gn’@n’n e I v {-=}} is an X-martingale.
{gn,n e I U {-»}} is uniformly integrable, and
(1) E(lle_j I =1m =(l|e [1) ¢ ... 2 2le 1D 2 B4,
n>—co
1f, for some o > 1, E(||5_1||a) < =, then

(11) L E(|{g_5 %) = 0.
=00

Proof: The existence of a EXr.v.@lm E_, suci: that {gn,n e I}
converges P a.e. to E__ and {En,¢n,n eI U {~»}} 1s an X~
martingale follows from theorem 5 [2]. Remark 3.2,8 (ii) implies
that {gn,n e I U {~=}}is uniformly integrable. Accordingly remarks
2.2.18 (11) and 3.2.8 (i) and theorem 2.2.20 imply (I), and (II) for

o =1,
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If, for some o > 1, E(||§“l|!a) < ®w, then (II) for o > 1

follows from theorems 3.2.9, 3.2.10 (iii), and 2.2.20.

The next theorem is an extension of theorem 4.3 chapter VII [4].

It is an immediate consequence of theorem 5.1.2 and theorem 4 [2].

Theorem 5.1.3: Let X be an arbitrary Banach space, let p be a

BXr.v. and let ...¢ ,C¢ . Cco, C¢ be g-subfields of T.

2 1 1 2"
Let o¢_ = N ¢ and ¢ = a({J Qn). Then
n n

lim E(|e ) = E(ple_)) P a.e.
=0
and

lim E(pl@n) = E(pl@w) P a.e.
oo

5.2  Continuous Parameter X-martingales I

Theorem 5.2.1: Let X be a reflexive Banach space and let {gt,@t,t e T}

be an X-martingale. Suppose that b = l.u.b. t ¢ T where b may
teT
be finite or infinite. Also let K be the (not necessarily finite)

lim E(]|£, ]]) and let o, = o(ls,).
b t b ot

) If K < », then there exists a BXr.v.@é

E(Ilgbll) < K, such that, 4f {s ,ne¢ 1} s a sequence in T,

gb, with

lim s, = b dimplies that
0

lim ¢ =, P a.e.
<o s, b
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1f the Et process is separable, this limit relation can be strengthened

to the relation 1lim Es = P a.e. .

13
s+b b

(ii) The following conditions are equivalent:

(a) ¥. < » and {Et,ét,t e TV {b}} is an X-martingale.
(b) {Et,t € T} is uniformly integrable.
(c) K < ®» and E(llgbll) = ¥,
(d) K<o and lim B(|[g~£[[) = 0.
s
s+b

If these conditions are satisfied and if the Et process 1is
separable, then {gtgt e T U {b}} is separable.
(111) If, for some o > 1, m E(|{g ||%) <=,
t+b
then the conditions of (ii) are satisfied,
a
5|15, 11%) < =

and

1m E(| g, -2 ||*) = o.
&b b ’s

Conversely, if the conditions of (ii) are satisfied and if E(||gb{]a) < @

for some o > 1, then E(||gt]|a) < E(||5b||a) for every t ¢ T.

Proof:

(i) if {sn} is a sequence of parameter values which converges

monotonely to b, then clearly {ES ,@S S E I+} is an X-martingale.
n n
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Accordingly, since lim E(l{gs [|) =X < =, theorem 5.1.1 (1) and
o n

theorems 3 (ii) and (iv) of the appendix imply that there exists a BXr.v.@é

Eb such that {Es LNl € I+} converges P a.e. to 5b and
n

m(E D g %

Eb riust be independent of the monotone sequence ’{sn}, neglecting

values on P-negligible sets, because any two sequences {sn} can be
conbined into a single one which corresponds to a sequznce of BXr.v. which
converges P a.e. . Moreover, the limit must also exist P a.e. 1if

the sequence '{sn} is convergent to b, but is not necessarily monotone,
because such a sequence can be reordered to be monotone.

Therefore Eb satisfies the requirements of the theorem.

If the Et process is separable, then theorem 4.5 implies that

lim £ = P a.e. .
s

s>b gb
(ii) It follows from definition 2.2.17 (i) that (b) implies
that K < =, Thus statements (a) - (d) of (ii) either imply or
suppose that X < o, so that Eb ‘is defined in each case. It follows
from remark 3,.,2.8 (ii) that (a) implies (b). Let {sn,n € f+}
be any monotone sequence of parameter values which converges to b.

If (b) 1is valid, then {ES o0l € I+} is uniformly integrable. Hence,

n
theorem 5.1.1 (1i) implies that E([lgbll) =K and so (b) implies (c).
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If (¢) is wvalid, then theorem 5.1.1 (ii) implies that

{ES’SQS ,N € U {=}} where s =Db is an X-martingale.
n n

Accordingly {gtsét,t ¢ TU {b}} must be an X-martingale and so

(c) implies (a). If (d) holds, then lim E(’]gb—gs [1) =0 and
e n

so (d) implies (c) by theorem 5.1.1 (ii). It remains to be shown that
(d) is implied by any one of the other three conditions.

For each n ¢ I+, define

I = (b —-%,b) if b is finite
(n,b) 1if b = 4+
and define K_ = l.u.b. E(||g, £ [|). Assume that (c)
n bt
teI T .
n
is valid. Then Kn < 2K <= for every n ¢ I+. Clearly there

+ +
exists {sn,n e I'} such that for each neg I ,

Sn € InT

and
= 2'n

B(|g-e, 11 2 3K, -
n

+
{sn,n e I'} can be reordered in such a way that it becomes a monotone
sequence which converges to b, {s&,m € I+} say. It follows from

theorem 5.1.1 (ii) that (c) implies that

lim E(]|g,~€_.[]) = 0.
m>o m
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Accordingly, for any & > 0, there exists m(§) ¢ I+ such that
E(IIEb-ES,Il) < & for every m > m(8).
m

lloreover there exists n(§) e f+ such that
¥
s, 2 Sa(8) for every n > n(8)

which implies that

1 T

5 in< & for every n > n(é).
Therefore, since & > 0 was arbitrary,
lim Kn = 0,
>
Accordingly (¢) implies (d).

The last statement in (1i) 1s an immediate consequence of (a)

and remark 4.4 (dv).

(ii1) 1If, for some o > 1, lim E(llgtH“) < ®,
t+b

then theorem 3,2.9 implies that

E(||€t||u) < o for every t e T.

By theorem 3.2.10 (ii) and the limit relation above, E(|l£t|[a) is

uniformly bounded in t. It follows from remark 2.2.18 (i) that
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{Et,t e T} 1is uniformly integrable and so the conditions of (ii) are
satisfied. Hence gb is defined. It follows from theorem 3.2.1D
(1ii) that condition (a) of (ii) implies that {Ilgt‘|a,t e T} 1is
uniformly integrable and szc if {sn,n € I+} is any monotone sequence
of parameter values which converges to b, then {!Igs [%mn e a8

n
is uniformly integrable. Accordingly theorem 2.2.20 implies that

E( g, 1™ < =

and

lim B(][g~£_ [|%) = 0.
e n

Therefore, since {snyn £ I+} was arbitrary, it can be shown in the
same way as in (ii) that
Lim (] g€ | %) = o.
s+b
Conversely, if the conditions of (i1i) are satisfied and if E(fliblla) < ®

for some o > 1, then theorems 3.2.9 and 3.2.10 (ii) imply that

A

E(l‘itlla) E(||£b|la) for every t ¢ T.

Theorem 5.2.2: Let X be an arbitrary Banach space and let

'{gt,¢t,t € T} be an X-martingale. Suppose that a = g.l.b.t £ T
teT

where a may be finite or infinite and let ¢ ={) o, .
t
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i) Then there exists a BXr.v.@é £a such that, if
{sn,n € I+} is a sequence in T, lims = a
e O

implies that

1imE = g P a.e..
ne op a

{Et’Qt’t e T u{a}} 1s an ZX-martingale.

(ii) If, for some o > 1 and some t1 e T,
E(lg, |17 <=,
1
then
1im £() g - ||%) = o.
sva a’s
If the Et process is separable, tien
lim & =& P a.e.,
s*a S a
and
{Et,t e TV {a}} 1is separable.
Proof:
(1) This part follows from theorem 5.1.2 in the same way that

theorem 5.2.1 (i) follows from theorem 5.1.1 (i).
(ii) If o =1, then E(I]Etlla) < o for every te T

and so remark 3.2.8 (i11i) implies that for any t, ¢ T

1

{Et,t < tl} is uniformly integrable.
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If, for some o > 1 and some t T,

le
E<I|atlll“> <o

then theorem 3.2.9 implies that

E(Hgtlla) < efor every t g t.

Accordingly it follows from theovem 3.2.10 (iii) that
{||€t|lu,t < t;} is uniformly integrable. And so

theorem 2.2,20 implies that if {sn,n € i+} 1s any monotone saquence

in T which converges to a and 1f, for some o 2 1 and some tl e T,

E(l |Et1‘ ‘a) < %,

then

im o g _-€_ [|*) = 0.
n

n=>0

These expectations may be undefined for o > 1 and s, > tl;

however, for a sufficiently large n', s 2t for every n > n'.

It follows by a method similar to that used in theorem 5.2.1 (ii)
that

lim E(| € € ||*) = 0.
s*a a 's

The last statement of the theorem follows immediately from theorem

4.5 and remark 4.4 (iv).
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Theorem 5.2.3: Let X be an arbitrary Banach space, let p be a

BXr.v., and let {@t,t € T} be a family of o-subfields of T with

linear parameter set T and with
@sgg ¢t for every s,t ¢ T such that s < t.

Let a = g.l.b.t. and b = l.u.b.t. and define ®a+ = (\<bt
teT teT t

and @b = o(L)@ ). Then an element p,_ of [E(pl@ )1 can be
- ¢ t t t

chosen for each t € T in such a way that

lim p_ = E(pl@ ) Pa.e.
t+a t at

and
lim p_ = E(p|o, ) P a.e. .
t>b t b

Proof: Theorem 3.1,10 implies that

{E(p|¢t),®t,t e T} is an X-martingale and so it follows
from theorem 4.8 that there exists a separable X-martingale

{pt,Qt,t ¢ T} such that

P, € {E(plét)] for every t e T.

Theorem 5.1.3 and theorem 3 of the appendix imply that if t goes

to its limit along a sequence of values, then the limit equations are true
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for any choice of elements. Accordingly it follows from theorem 4.5
that the P, DProcess exhibited above satisfies the requirements of the

theorem.

5.3 Continuous Parameter X-martingales IT

The first theorem of this section is an extemnsion of theorem
11.1 chapter VII [4]. Its proof is analogous with Doob's although
his "metric” space is only a semi-metric space. However, if the
space (Z,d) of theorem 2.2.15 and the function f : T - Z, defined

by
f:teT~> [gt]:

are used, then the proof of theorem 5.3.1 is reduced to Doob's and so

will not be given.

Theorem 5.3.1: Let X be an arbitrary Banach space, let {gtpt e T}
be an X-stochastic process with linear parameter set T, and let

Tl be a set of limit points of T. Suppose that, if t ¢ T at

19

least one of the stochastic limits

p-lim ES = Etu, p-1lim E;S = £

sit st t+

exists.,



There is then an at most countable subset ‘I‘0 of Tl such that,

if t e Tl\\To, then both stochastic limits gt_ and

are defined, and
P a.e.

Be. T et

= gt P a.e. if t e T,

Definition 5.3.2: Let X be a Banach space and let {gt,t e T}

be an X-stochastic process with linear parameter set T, A point

tO ¢ T is said to be a fixed point of discontinuity of the process

if it 1is false that whenever s - t., lim £ = £ P a.e..
n 0 s t
o n 0

If the process is separable, it follows that t_. is a fixed point of

0
discontinuity if, and only if, it is false that

lim & = E P a.e. .
s>ty 8 %

The next theorem is an extension of theorem 11.2 chapter VII [4].

Theorem 5.3.3: Let X be an arbitrary Banach space, let {Et,t e T}
be an X-martingale, and let a and b be respectively the minimum
and maximum values of the closure of T. Define T' as the set of

limit points of T, except that b is to be excluded from T’

unless b ¢ T.
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(1) To each point t ¢ T' which is a limit point of T
from the left (right) there corresponds a BXr.v. Et_ (gt+) such
that, if s >t with s <t (s > t) and s ¢ T, then

n n n n

1im gs = gtﬁ(lim gs = §t+) P a.e. .

o Tp me o n
If the Et process is separable, these sequential limits can be replaced
by ordinary limits

limg =§¢ (img_ =¢_.) P a.e. .

sttt s t stt 8 &+

(i1) Except possibly for the points of an at most countable

subset of T', for each t ¢ T' the following equation holds P a.e.-

between as mahy of the three members as are defined:

In particular, at most countably many parameter points are fixed points

of discontinuity.

Proof: Let t ¢ T' be a limit point of T from the left. Then
there exists t1 e T such that ¢t < tl. Let {sn} be a monotone
increasing sequence which converges to t. For an arbitrary choice
of elements of the conditional expectations theorem 5.1.3 implies that

lim E(¢_ |B_ )
o tl *a
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is equal P a.e. to a BXr.v. . Therefore lim ES
me T n

is equal P a.e. to a BXr.v. .

Accordingly part (i) follows by an argument similar to that in the
proof of theorem 5.2,1 (1). If t € T' dis a limit point of T from
the right then part (i) follows in a similar manner. Part (ii) follows

from remark 2.2.14 (i) and theorems 2.2.16 and 5.3.1.

Remark 5.3.4: If X 1is reflexive and if 1l.u.b. E(||gt||) < o in
teT

theorem 5.3.3, then b can be allowed in T°, even if it does not
belong to T. The proof of theorem 5.3.3 (i) would then follow from
theorems 5.2.1 (i) and 5.2.2.

The next theorem is an extension of theorem 11.4 chapter VII [4].
It shows that it can be assumed, without loss of generality, that the

parameter set of an X-martingale is an interval.

Theorem 5.3,5: Let X be an arbitrary Banach space, {Et,¢t,t e T}

an X-martingale, and I the closed interval whose endpoints are the
maximum and minimum values of the closure of T, except that the right-
hand endpoint is to be excluded from I unless this endpoint is in T.
Then it is possible to define gt and Qt for every t ¢ INT in such

a way that '{Et,ét,t € I} 1s an X-martingale.
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Proof: If t e INT and if t is a limit point of T from the

rightdefine

E, =B ond 0 = N o

St

t+

Theorem 5.2.2 implies that the process with the thus enlarged parameter
set 1s an X-martingale. If t e INT implies that t is a limit
point of T from the right, then we are finished, and so it will be

assumed that this is not the case.

Let [c,d] be a non-degenerate closed interval whose endpoints but

no other points lie in the closure of T. Then Ed and ¢d are

already defined. Define

E. = Ed and @t = @

t for t e (c,d)

d

and if Ec and ¢d are not already defined, then define Ec = Ed

and Qc =9, Then {Et,ét,t e I} 1is clearly an X-martingale.

Remark 5.3.6: If X is reflexive and if {Et,t e T} is uniformly
integrable in theorem 5.3,5, then the maximum value of the closure of

T need not be excluded from I even if it does not belong to T.
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Chapter 6
Optional Skipping and Sampling

This chapter follows up a remark in [2] that "for reflexive spaces,
all classical martingale convergence theorems including those involving
stopping rules etc. (as in Doob [4]) can be extended”. Because they
are merely special cases of results concerning optional sampling for
general linear parameter sets, results concerning optional sampling for
discrete parameter sets and optional stopping are not discussed here.
Extensions are given for results on optional skipping (pp.309-311 [4])
and on optional sampling (pp.365-379 [4]). The main results of the
chapter are theorems 6.1.6 and 6.2,13 which give conditions under which
the martingale properties are preserved under optional skipping and

sampling. It has not been found necessary to impose the condition of

reflexivity.

1. Optional Skipping
Let X be a Banach space and (2,T,P) a complete probability
space.
+ +
Let {pn,Qn,n € T} denote a BX-stochastic process {pngn eI}
together with a sequence {Qn,n e T’} of o-subfields of T.

Let {pn,¢n,n e T} have the following properties:



[i] ¢ c¢ if m<n for all myne I+,,
[14] B(pn) - <I>r'1 for every n ¢ I+,

and [iii] [E(pn+1|¢>n)] = [8] for every n ¢ I+.

Let {mn,n € I+} be a seguence of Zr.v. taking on integral values

and having the following properties:

[iv] 1<ml<m2<...< © P a.e.
and [v] {wlmj (w) = k} ¢ (I’{c-l if k> j for every j e I+; ke I+\{1}.

NMotation 6.1,1: The following shorthand notation will be used in this

section.

Define for all n.j ¢ I"'9

2 (1) = {u|m_@) = j},

2.1 = {olm @) < 33,
2 _(<3) = {mlmn(w) < il,
2, ¢3) = {u|n ) > j},
and 2 (1) = {w|n_ () 2 3}.

For each n ¢ I+, define

P twe > p%{(ﬂ?(w)
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Definition 6.1.2:

~ -+
{pn,Qn,n € i+} is said to be transformed into {pngn e I}

by optional skipping.

Theorem 6.1.3:

Po,(3) =0 4f 13§ forall 1,¢ A

nv

"

That is, Pﬂi(éi) 0 for every i ¢ f+.

Proof: The proof will be by induction. It follows from [iv] that
PQl(él) = 0., Take any n ¢ I+\\{1} and assume that

Pﬂn(én) = 0,
[iv] implies that

Q (k39 (3) P a.e. for eve j I+

n > n+l 3 a.e. ry Jj € .
Hence, since the induction assmmption implies that

mn(<j) = 0 for every j € Jn+1,

PQn+1(j) = 0. for every j ¢ Jn+l'

Therefore the conclusion of the theorem follows by induction.

Remark 6.1.4: Theorem 6,1.3 implies that condition [v] can be replaced

by



Qj(k) € Qirl for every 3 ¢ I+; k e I+\\{1}.

Clearly Qj(l) € ¢; for all 1i,j ¢ I+.

Theorem 6.1.5:

(1) {pn,n € I+} is an X-stochastic process.

(ii) If M 4is an element of B(pl,...,pn)9 then

. ; R “ +
i F\Qn+l(3) € ¢j~1 for every j e I'\{1}: ne 1.
Proof:
(1) For any n € I+ and any A ¢ B(X),
W = kzl e we @)

il

v, -1
G, )N a_x)
kzl k n

e T.

For each n € I+, there exists a P-negligible element An of TI' such
o

that pn(Q\\An) is separable. Clearly A = \J]An is a P-negligible
n=1

element of T. And so for each n e I+,

o_(AN1) = Sn(kzl @< 1) N 9_(1)

={J 0,2 _(K)N\A)
x=1 k''n
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which is separable by theorems 7 and 8 of the appendix. Accordingly,

A~

for each n ¢ I+, P is P a.e. separably-valued. Therefore

{pn,n £ I+} is an X-stochastic process.

(ii) If 1 ¢ Jn’ then ([iv] implies that
. _ . -+
PR, NN ) =0 for every j eI .

And so for any A e BX), j ¢ I+\;{1}, and i € Jn’ [1],

[ii], and remark 6.1.4 imply that

@wna @ = ] et N e, @)

k=1

it i
= 1<=z=1 P WNe e Gy, .
€ Qj-l

Accordingly if Cn = {Sll(A)li eJ and Ace B(X)}, then

c(CnﬂQm_l(j)) C ¢! for every j e T {1},

3-1 loreover, since

clearly Q ¢ Cn, theorem 4 of the appendix implies that for each j ¢ I+
0(Cn) A 9n+1(j) & O(Cnm Qn+1(j))'

Therefore part (ii) follows from the observation that

o) = B(ol,.-- 0 )e
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The following theorem is an extension of theorem 2.3 chapter

VIT [4]. Its proof is an extension of Doob's .

Theorem 6.1.6: 1If {an,n € I+} is a BX-stochastic process,
then

(1) {E(Bnﬂﬁl,...,;n)] = [6] for every ne I'.

(ii) {Sn,n € I+} is a BX-stochastic process if either of the
following conditions is satisfied.

C1 t Fach m, is bounded P a.e. .

k|
+
02 ¢ There is a finite number K such that, for each j e I,

E(||pn+1|||¢n) <K Pa.e. on @,(n).

3
Proof:

(i) If M 1s an element of B(;l,...,;n), then it follows
from theorem 6.1.3 that

M= MN 2 ,.(¢G) P a.e. .
j=§+2 ntl

oreover theorem 6.1.5 (ii) implies that

+
f ]
M Qn+l(j) > ¢j”1 for every j e I ~_ I

Accordingly [iii] dimplies that



.
S5
” .

I pn+ldP = I pj dap
MnNe Q

And so it follows from remarks 2.2.5 (vi) and (ix) that

n{[ BL J P 9P
) mOa_ . G)
J=n+2 nt+l
= o . .dP
jent2 I n+l
= Q.

Therefore, since M was arbitrary in B(pl,...,pn), theorem 2.2.8

implies that

[EG q1p15eee50 )1 = [0].

(11 The hypothesis of Cl implies that for each n ¢ I+, there

exists an integer Nn such that m o< Nn P a.e, .

And so



o

) J [1p, I 1aP
k=1
Q (k)

5l o |1

Y

I EIPRIT:
k=1
e (k)

Ny

EC( o D)
&y 21

A

< o for every n e I+.

Therefore theorem 6.1.5 (i) implies that {pn,n 3 I+} is a

BX-stochastic process.

Under C2, for each n e I+,
elogl) = T [ Hlollar
ol kzl o k) K
n
- [ Heyller s+ 1 [ Edlogl1ey par
a (1) 2 (k)
< ) Ko (k)

k=2

96.
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Therefore theorem 6.1.5 (i) implies that {;n,n € I+} is a BX-stochastic

process.

2, Optional Sampling
Let X be a Banach space, (Q,I',P) a complete probability
space, and T(§) and T(t) subsets of the extended reals.
The following hypotheses are now made.
[i] {gt,t e T(g)} is an ZX-stochastic process.
[ii] For each t ¢ T(f), there exists a g-subfield o of T
with the following properties:
(a) @sz ¢, for every s e T(f) such that s gt
and (b) B(gt)c_:_@":.
[1iii] Almost all sample functions of the g, Pprocess have limits

from the right,

£, = lim Es for every t e T(£).

t+ syt
[iv] {Efa e T(t)} 1is an R-stochastic process with the following
properties:
(a) for each o ¢ T(1), Ta(ﬂ) cT(E),
(b) Ta(m) is monotone non-decreasing in o for fixed w,
and (c) if o e T(r), then

{w|ta(m) <sle ¢; for every s e T(&).



98.

Notation 6.2.1: The following shorthand notation will be used in this

section.

Define for all a,B e T(t) and s,t e T(§),
5, = {t e T [Plu]r @) =t} > 03,
2 (s) = {u|t @) e s},
o (s) = {wlra(w) < s},

2, ()" = {wfr ) > s},

‘A

a (s,t) {wls < Ta(w) t},

Q (s)

a,B

2 (s) N ofs)’ .

Clearly Sa is countable for each o e T(7).

Consider, for each a ¢ T(1), a Ea : @ > X satisfying
) = 5 (@ i weR, ()

ETa(m)-g-w) if wd Qa(sa) and if such a limit exists| -

All the functions satisfying this are P-equivalent since they can
only differ from each other either on the P-negligible set corresponding
to those sample functions which may not have limits from the right at all
t e T(), or when Ta takes on (with probability zero) one of the at most

countably many values in T(§) which are not limit points of T(§) from
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the right. Since the choice, within P-equivalence, of a function is
unimportant in what follows, it will be assumed that a particular one

has been chosen for each o ¢ T(t). This function will be denoted by

£ .

o

Definition 6.2.2: {Et,ét,t e T(£)} 4is said tobe transformed into

{éa,a e T(t)} by optional sampling.

Theorem 6.2.3: ~{£a,a e T(t)} 1is an X-stochastic process.

Proof: Let o e T(t). For each gq ¢ I+, choose finitely many points
a(l,q) < a(2,q) < ... of T(g¢) in such a way that every point of
[-4,q91T(£) 4is within distance 1/q of some a(j,q), that the

infinite points of T(§), if any, are a(j,q)'s, and that if Sa is not
empty, then the first q points of Sa’ enumerated in some order, are

a(j,q)'s. Define

~ (

ga,q twe Q> ga(l,q)(w) if we Qa(a(l,q))
ga(j,q)(w) if we gﬁa(j—l,q),a(j,q)) for j > 1
6 if we Qq(max a(j,q))’

L J

It follows from [iv] (c) that ga q is a finitely-valued ZXr.v. . In
9

fact it is an Xr.v.4d . .
max a(j,q)
.“
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4
Moreover if u' ¢ Qu(Sa), then there exists q' ¢ I  such that

a,q(w') = E_[_a (w')(w')

ga(w') for every q ¢ I+Q‘Jq,.

~

Therefore lim g =g on Q (S).
oo 259 o o o

Define

M = {0}t W] <=, 1 () is a right
o a o

limit point of T(£), and lim gs(w)
s+t

exists for every ¢t ¢ T(g)}\ﬂa (Sa)'

Let ' ¢ M. Then there exists q' ¢ I such that
a

+
Ta(w') e [-q,q] for every qe I \\Jq..

Hence there exists a sequence {a(jq,q),q € I+\\Jq,} such that

\]

. +
w' € Qu(a(Jq—l,q),a(jq,q)) for every q ¢ I>\\Jq,

. = ]
and 1lim a(Jq,q) Ta(w ).

e

4ad 50 Lin £, @ = 1m 8 o)
- E:rm(w')'*'(m')
=E W

o]



101.

That is, 1lim ga, = ga on Ma.
q+oo

Therefore, since P(Qa(sa) L)bﬁx) =1, it follows that Ea is an SXr.v. .
Therefore, since o € T(r) was arbitrary, it follows from summary 2.1.5

(ii) that {ga, a eT(r)} is an X-stochastic process.

Remark 6.2.4: The notation developed in the proof of theorem 6.2.3 will

be used hereafter without comment.

o-fields will now be constructed with respect to which the gu’q's
and the ga's are X-measurable. The construction depends only on
[ii] (a) and [iv] and so is precisely the same as Doob's on p.367 [4].
Fix o € T(r). TFor each q ¢ I+, let @ , be the ¢-field

generated by the P-negligible elements of I and by those of the form
A {wla < Tu(w) < b}

where b e T(E), A e Qb’ a 1is not necessarily finite, no one
of the first q points of Su’ enumerated in some order, is an

interior point of (a,b], and arctan b - arctan a < 1/q. If

b=-=¢ T(§), then we understand by the above
AN {wlra(w) = ~»} where A e ®__

2 ST .
Clearly {Qa q,q € I'}] is a monotone non-increasing sequence of
s
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P-complete g-subfields of T. And so if Qa is defined as fm\é
q

then it follows from theorem 3 (iii) of the appendix that @a is a

Osq

P-complete o-subfield of T.
Since ga q is plainly an Xr.v. ¢ . for large enough ¢q, it
s 9
follows that Ea is an Xr.v. %gr for every r. Therefore ga is
an Xr.v. ¢ .
a
Moreover it is proved on pp.367 and 368 [4] that {&a,a e T(t)}

is a monotone non-decreasing sequence of o-subfields of T. Therefore

the triple
{Eas‘bu,a € T(T)]’

has the following properties:
(a) ‘{Qa,a e T(1)} 1is a monotone non-decreasing sequence of
P-complete og-subfields of T which have been constructed from the

elements of

{@t,t e T(E)} and {Tu,a e T(t)}

and (b) {Ea,a e T(t)} is an ZX-stochastic process such that

B(%a) géa for every o e T(t) .
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The following theorem is of major importance since it enables us
to utilise results in [4] and in so doing it allows us to refer to the
classical case for several proofs. Its proof is straight-forward and

so will not be given.

Theorem 6.2.5:

() If for every t e T(§), Et is replaced by ||£t|| in
[i] - [iv], then the resulting hypotheses are equivalent to
0S, - 0S, on p.365 [4].

(1i) {]Igt]',t e T(¢)} 1is transformed into {||ga||,a e T(1)}
by optional sampling.

(iii) {@a,a e T(t)} is identical with the corresponding class in

[4].
The next theorem is simply a restatement of lemma 11.1 chapter VII [4].

Theorem 6.2.6: If o € T(t), s e T(E), and A e 5&’ then

AD Qa(s) € @é.

Remark 6.2.7: In the proof of lemma 11.1 chapter VII [4], Doob only

considers the o-fields that are generated by sets of the form

A =M f){w|c1 < Ta(m) < cz}
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where c e T(§), c<c,, and M ¢ 2., whereas ®a q is generated not
- 9

only by these sets but also by the P-negligible elements of T.

Moreover if s ¢ T(f) and s >c then [iv] (¢) implies that

29

A f}Qa(s) € Q; not @s as Doob claims. Therefore it is necessary to

have Q; rather than @S in the statement of theorem 6.2.6; however

Doob does not indicate that this is so. On the other hand it seems likely

that when on p.366 [4] he states that it is no restriction to assume
that the elements of {@tgt e T(¢)} are P-complete he is in fact
indicating that this will be assumed in what follows.

It will be assumed hereafter that
{Et,¢t,t e T(§)}

is an X-martingale satisfying [i], [ii], and [iii], and that it is

transformed into

{Ea,Qa,a e T(t)}
by

{Ta,a e T(t)} satisfying [iv].

Remark 6.2.8: It follows from theorem 6.2.5 (i) and theorem 3.2.7

that {llgtlI’Qt’t e T(E)} is a semi-martingale of non-negative

BRr.v. which satisfies OSl - OS3 (p.365 [4]) and which dominates

(p.297 [4]) itself.
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The next theorem is an extension of lemma 1l.2 chapter VII [4] in
so far as it treats Xr.v. dinstead of Rr.v.; however it follows from
definition 2.2.12, theorem 6.2.5, and remark 6.2.8 that it is an

immediate consequence of Doob's result,

Theorem 6.2.9: If o € T(r) and s e T(¢), then ga is integrable

on Qa(s) and the integrability is uniform in «. If s 1s an

a(j;q) for every q e I+, then {Ea q sd € I+} is uniformly integrable
’

on Qa(s), and the degree of uniformity does not depend on o or on

the choice of the a(j,q)'s.

Remark 6.2.10: If b = l.u.b.t ¢ T(E), then we can put s =b in

teT(E)

theorem 6.2.9. It follows that if b = 1l.u.b.t ¢ T(§), then
teT(g)

{Eu,a e T(t)} 4is a uniformly integrable BX~stochastic process.
The following theorem is an extension of lemma 11.3 chapter VII [4].

Its proof is derived from Doob's.

Theorem 6.2.11: If a,8 € T(T), a < B, seT(), and A e gu’
then
. - d = ~
(i) f g dp ]gBdP + / g dp
AnQa(s) Aﬂﬂs(s) ANQ  (s)

0,8
and

(i1) fgap = [£_dp

AﬂQa(s) Ahﬂa(e)
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Proof: Choose a(j,q)'s to match both T, and Tgo so that both

~

3 and é are now defindd for every q e I+, so that
a9 8.9

lim £ =g P a.e.

oo lEoz,q Eoc
and

limt. =£ P a.e.
lm g o = &g :

and so that for each q, s is some a(j,q).

Define for each q ¢ I+,

—
1

- AN e (a,q)),

l,q
+
Aj q = AN Qa(a(j-—l,q),a(j,q)) for j e I {1},
’
= A Q 1
Al,l,q l,qn B(a( ,Q)),
. = A Q (a(k-1 ;a(k
jsk,q jsqn B( ( ,Q) ( ,CI))
-+ + .
for j e I'; ke I {1} such that k> j,
and
M, =A, Yo, (a(k,q))" for j,k e I+ such that k > j
jsksq 154 B =

A, A, R
J ’q\rtgk Js¥5q

Clearly the following relationships are valid for those j and m for

which the terms are defined.

A, . +M, ., =4,
“353,9 jsd»q isa
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and

A. . + M, . =M, .
Jsjtm,q jsjtm,q jsj+m-1),q

Also [iv] (b) plainly implies that for any t e T(g)

7 (£) 20,(t)

and

QB,u(t) =¢ .

Moreover it follows from [ii] (a) and theorem 6.2.6 that for each

qe I+,

A for j e I+,

o' .,
isqa © “a(i,q)

A for j,k e I+ such that k

v

. Q' .
jsk,q € a(k’q) s

and

M for j,k ¢ I+ such that k

v

. 3 i
i.k,q ¢ “a(k,q) J

Using the martingale property of the process it follows that for
each q, o, and j

/ Easqu =] ga(j»q)dP

A, A,
REL NER

= Lai, %t J La, %

A, M, .
Jsdsq 353,49
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= | ogg,f® f [ Eagga,®
A M, .
jajsq 35359
= fai, % t I Sag41,)F
Aj,j,q Aj s3+l.q
+ [ Fage,®
M,
JsJ+19q

It can easily be shown by induction that for any integer N > j

such that a(N,q) exists that

N
Pra,g® = L0 ) fage® * T fame®
AL A, M.
jsq j.k;q jsN.q
= g ol m,p® -
M,
Aj’qﬂ QB(a(N,Q)) JsNyq

Choosing N so that a(N,q) = s and summing over j ¢ JN it follows

that

>
>

[ g, & = [ g, ap + { £ dp

Aﬂﬁa(s) A{\QB (s)
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According to theorem 6.2.9 the integrands are uniformly integrable in
over the indicated integration sets. And so it follows from theorem

2.2.21 that when q » «» the above relation becomes

i £dp = / £.dP  + / g dP
AN Qu(s) AN Q.B(S) AR Qa,B(S)

which is (i).

For each q ¢ I+, there exists an integer N such that

i
0]
L]

a(N,q) =

Thus for each j € J

—
[Ty
-]

|

dp
E%q R I ga(j,q)

jsa jsq

it

f ga(N’q)dP

A,
1,9

it

i £_dp
A,
isq

Summing over j e JN it follows that
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It follows from theorems 6.2,9 and 2.2.21 that when ¢q - « the

above relation becomes

[ gap= [ g
Anﬂa(s) A(‘ma(s)
which is (ii).

The next theorem is an extension of theorem 11.6 chapter VII [4].

Its proof is derived from Doob's.

Theorem 6.2.12: If b = l.u.b.t € T(§), then {Ea,¢a,u e T(t)}

is an X-marting2le with

~

E(Eu) = E(Et) for every o € T(t) and t e T(§).

Proof: It follows from theorem 6.2.11 (i) that

[EadP = [EBdP for every A e Qa and o > B
since [iv] (a) implies that

QY(b) =Q for every v e T(t).

Since this relation also implies that

>

A

EY is a BXr.v. @Y for every vy e T(t), it is

clear that {Ea,¢a,u e T(t)} possesses the requisite properties of an

X-martingale.
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It is an immediate consequence of theorem 6.2.11 (ii) that
E(ga) = E(gt) for every o e T(r) and t e T(§)

since both the ga process and the Et process are X-martingales.

The following theorem is the major result of the section. It
demonstrates conditions under which an X-martingale is transformed into
an X-martingale by optional sampling. It is an extension of theorem
11.8 chapter VII [4] except that condition C4 corresponds to
condition 04' of that theorem. The proof of part (i) is derived from

Doob's.

Theorem 6.2.13: Suppose that 1l.,u.b.t
teT(g)

b ¢ T(E).

(&Y 1f
() E(Ilgall) < » for every a ¢ T(1)

and it

(]

(II) lim inf / Tle lap =
s>b Qa(s),

for every o e T(1),

then {Ea,éu,a e T(t)} is an X-martingale with

E(éa) = E(g,) for every a e T(r) and t e T(E).
(ii) Each of the following conditions implies the

validity of (I) and (II).
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C1 : {gt,t e T(E)} is uniformly integrable.
C2 : Each T, is P a.e. bounded from above by a value in T(§).
C3 : There is a constant K > 0 with the following properties.

T(E) contains the integers > K (but not b = =), For each

integer n > K and each o ¢ T(1),
E(l|£n+l!|-||£nH|<I>n) <o Pa.e. on Qa(n)'.
Moreover E(|Ta|+Ta) < » for every o e T(1).

04 : (I) 4is valid and there are a non-negative BR r.v. 2z and a

sequence tl < t2 < ... such that

tn e T(§) for every n ¢ I+, tn + b,

and
palllE @1 2 g, @] - 2@y =1
n
+
for every ¢t > tn and ne I .
Proof:
(1) If s e T(E), a,8e T(t), a>8 , and A e @u, then

theorem 6.2.11 (i) implies that
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(1I1) i ;;adp = i ;;BdP + i £ dp .

Aﬂsza(s) A("\QB(S) AN Q Q’B(s)

b ¢ T({) implies that

Pﬂa(s)' -0 as s+ b
and

PQB(S)' + 0 as s> b.

Also, since (I) implies that gu and gB are BXr.v., it follows from

remark 2.2.5 (x) that the set functions | g,dP and / gBdP are strongly
M M

absolutely continuous on T'.  Therefore it follows from remark 2.2.5 (ix)

that

lim f g dp
s+b &
AN 2 (s)

]
—
Yy
[
av)

and

lim [ ?.de
sb
AN Qg (s)

i
>
Yy
a1
ja]

And so it follows from (III) and (II) that
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1 feae - fegarll = viml e = f Egeey]
AN g (s) ANR, (s)
= 1if;+§nf| lfgadp - ng ar| |
ANYQ (s) AMYQ , (8)
o B

L]

lim inf]|[g_dp]|
s>b s

Af‘ﬂass(s)

= 0.
Hence fgadP = ngdP for every A ¢ @u and a,B £ T(§) such that

A

It follows that {Ea,Qa,a e T(t)} posscsses the requisite properties
of an X-martingale.

Also theorem 6.2.11 (ii) implies that

f%adP = fgsdP for every s € T(§) and a € T(t).
Qa(s) Qu(s)
Accordingly
lEE) - BEDI] = [|[e a2 - [e_dp|]
Qa(S)' Qa(s)'

A

fearl| + ||fe av|

as)' age)
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Clearly
lin| | f£ dp|| =0
s>b
Q (s)'
a
and
lim 1nf|1fgsdpll =0
s>*b
]
2, (s)

Also plainly IIE(Ea) - E(gs)]I is a constant for every s e T(E)
since the gs process is an X-martingale.

Accordingly
l[E(%a) - E(ES){I =0 for every s e T(§).

Therefore E(ga) = E(Es) for every o e T(t) and s e T(§).

(ii) It follows from remark 6.2.8 that Cl’ CZ’ and C, are

3
implied by the corresponding conditions of theorem 11.8 chapter VII [4],

and that condition C4 is implied by condition C4 of theorem 11.8

chapter VII [4].
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Appendix

This appendix contains various results concerning BRr.v.,
o-fields, and separable sets. These results have been collected here
because they are required in the thesis, but are independent of its
development.

Although several of these results are well-known, in different
forms, it seemed desirable to restate and prove them here in the
terminology of this thesis. The statements or proofs of the remainder
are not contained in those references with which I am familiar.

(Q,T,P) denotes = complete probability space.

The first theorem of this chapter was derived from theorem E §25

Balmos [7].

Theorem Al: Let @ be‘a o—-subfield of T' and let f be a BRr.v.

I1f

ffdP =0 for every A € 9,

then

Proof: Clearly A, = {w|f(w) > 0} ¢ @

1

1

and

=
]

{w|f@) < 0} e @

and so



[ fdp =0

and

[ (-f)dp = 0.

Accordingly it follows from theorem D §25 [7]

are P-negligible. Therefore

f=20 PQ a.e. .
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2

Theorem A2: Let & be a a-subfield of T' and let f and g be

BR r.v. 9. If

[£dP > |[gdP| for every A e o,
then

£ > lg] PQ a.e. .

Proof: Clearly the hypothesis of the theorem implies that

[ (f-g)ap

v

0 for every A € ¢

and

f(f+g)dP

v

0 for every A e 9.

Accordingly it follows that

{w]fW) < g)} and {w|flw) < -gw)}
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are P-negligible elements of ¢. Therefore f > |l P® a.e. .

Theorem A3: Let {@t,t e T} be a family of o-~subfields of T with

linear parameter set T such that
¢ ¢ ¢ for all s,t e T such that s < t.

Suppose that a = g.l.b.t # T and b = l.u.b. t ¢ T.
teT teT

(i) If {sn,n e IT} is any sequence in T which converges

to a, then

ﬂ¢t=ﬁ@

teT n=1 °n
(i) If {sn,n € I+} is any sequence in T which converges to
by, then
/ [0] = o} .
teT t iég n

[eo]

Therefore o(U 0. ) = cr(U ® ) .
t s
teT n=l “n

i) ) el = N 2,)" .

teT teT

i ol o) = ) et
teT teT
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Proof: The proofs of statements (i) and (ii) are straightforward and

so will not be given.

(iii) Clearly ﬂ oL 2 (ﬂ @)’
teT teT

and so only the opposite inclusion will be demonstrated. Let {sn} be
a  monotone decreasing sequence in T which converges to a. It

follows from part (i) that it is sufficient to prove that

(e Sl e

n=1 n n

o

If A is any element of (”& Q; , then, for ecach n ¢ I+ there exists
n=1 n

and element An of @S such that
n

P(An AAY =0.

For each n ¢ I+, define

o

Moo=t () A -
% mEn kem

Clearly Mn € @S for every n ¢ I+, and Mm = Mn for all m,n € I+.

i

n
0
Therefore Ml { j @S . Moreover, since

n=l “n '



[U ﬂ (A\mu[(\ U (N a1,

m=1l k=m m=1
I =
P(Ml,A A) 0.

(o]

Hence A € (() o )* .  Therefore
n=1 °n

o

(Yol S(yo ).
n n=l “n

n=1

(iv) Clecarly O(t) @; (c(t} @'))7
teT teT

and so

oM o2 e .

Moreover, plainly

@l e N2 of .

teT teT

Accordingly it follows that

G e " 20k} o)) .

teT teT

Theorem A4: Let W be an arbitrary non-empty space.

I1f

subset of W and C is a non-empty class of subsets of W,

(1) (N A =0, Na)

and

120.

A idis a

then
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(ii) G(CIY A) ;)-UA(C(} A) if, and only if, A ¢ o(C £l A).

There is equality in (ii) 4if, and only if, A = W.

Proof:
1) Clearly o(C){YA is a o-field relative to A which
contains CfYA. Therefore o(C)flAD 9, (CT¥A). Define D as
- A

the class of subsets of W such that D e U implies that
DIYA e oA(CﬂA).

Plainly D is a o-field which contains C. Hence D Z¥ao(C).
Therefore o(C)(¥ACD 1A
Co A(C £l A,
(ii) The necessity of the condition is trivial and so is the
necessary and sufficient condition for equality. So it remains to

be shown that if A e o(C{)A), then
cCfia) o 0, a).

Part (i) implies that

it

sCHANA oA((cﬂ AN A

oA(cﬁA).

Moreover A € o(C AUN) implies that
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c(CfYAa) D> o(C N AN A,

Therefore o(CIYA) 3 GA(C N a).

Theorem A5: Let X be a Banach space and Y a subset of X. Then

is separable if, and only if,—f is separable.

Proof: The necessity is trivial. If Y is separable, then there

exists a countable subset Z of Y such that
Z =Y.

Clearly if Zg£ Y, then Y is separable and so the contrary will

be assumed. Put Z Y dinto a sequence, {zn} say. For each
+ —
nel, z € Y\Y and so for each pair of natural numbers (n,m)

1
there exists an element v of Y such that ||z ~v H <=,
,m n n,m m

Let V= (CZ{HY Y)Y U {vn m}. Plainly V is a countable subsct
n;m °

of Y such that V =Y. Therefore Y is separable.

Theorem A6: Let X be a Banach space and let Fl and F2 be closed

sets in X. If Fngl and if F1 is separable, then F2 is

separable.
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Proof: Since Fl is separable, there exists a countable subset

Z of F such that Z = F,. Put Z 1into a sequence, {zn} say.

Then for every pair of natural aumbers (n,m) such that sz\ Sl/m(zn) # ¢
choose an element Vn,m of this intersection. Let V be the set of

all v_ 's which are defined. Clearly V 4is a countable subset

of F2 such that V = FZ' Therefore F2 is separable.

The next theorem is a corollary of theorems 5 and 6 of the appendix.

Theorem A7: Let X be a Banach space. Then a subset of a separable

subset of X 1is separable.

The proof of the next theorem is straight-forward and so will not

be given.
Theorem A8: Let X be a Banach space and {Yn,n 3 I+} a family of

separable subsets of X. If '{Zn,n £ I+} is a family of countable sub-

+
sets of X such that, for each ne I,

and

then
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+
Moreover, since such a {Zn,n e I} always exists, () Yn and
n

L}1§£ are always separable.
n

The proof of the next theorem was derived from that of theorem 2,8.5

[91.
Theorem A9: Let X be a Banach space and Y a countable subset of X.
Then there exists
’ {e¥,n e ) C x*
such that if x ¢ Y, then

Hx]| = 1.u.b. |< x,£g>|.

nel

Proof: Put Y into a sequence, {yn,n € i+} say. By theorem 2.7.4

[9], for each n ¢ I+, there exists g; e X* such that

<y e% = ||y ||
and
ex]] = 1.
Let x be any element of Y. Then given §> 0 there exists m ¢ I+
such that

6> ey |12 sl -1y



125.

That is, [Iym|| > |]x]] - &.
Accordingly
%] 2 Jex,en]
2 <y ,E =<y —x,6%]

- iyl - Lyt
Ny 1] = gl
> |lx]] - 26.
since ||x|| > l<x,£§>| for every n e I', it follows that

1=

]

l.u.b.l<x,£§>| .

neI+

Let X be a Banach space and let its norm topology be denoted by
Ty If L is a closed linear manifold in X (p.36 [6]), then, since

clearly its relative topology is identical with its norm topology, T

2
say, (L,TZ) is a Banach space.
Definition Al0: (L,TZ) will be called a B-subspace of X.
Remark All:
(i) Clearly a subset A of L is separable in (L,Tz) if,

and only if, A 1is separable in (X,Tl).
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(ii) If L 1is determined by a countable set, then L 1is

separable (II.1.4 [6] and 1II.1.5 [6]).

Definition A12: BX)/1 L will be called the relative Borel field

of (L,t.).
Theorem Al3: The Borel field of (L,TZ) is identical with the relative
Borel field of (L,Tz). That is,

o (1)) = BE)fYL.

Proof: Since the relative topology of L is identical with = it

2’
follows that

T, = Tlf\]L

Therefore, since by notation 1.2(iii)
BX) = a(ry),

theorem 4 (i) of the appendix implies that

OL(TZ) = GL(TlfW L)

n

c(rl)fw L

BX) L.

]
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