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Abstract

The method of describing a group by means of generators and relations
is an old one. A question which arises when using this method is what is the
minimum number of relations required to describe a given group. Schur (1907)
provided a lower bound for the number of relations required, in terms of a
group invariant known as the Schur multiplicator. It would be interesting to
know which finite groups have a presentation achieving the Schur bound on the
number of relations required, but this remains an open question. It is known

that the Schur bound is not achievable for some finite groups.

We consider the problem of finding a minimal presentations for a number of
finite groups. In Chapter Three and Appendix A we give minimal presentations
for the groups of order less than or equal to 84 and minimal presentations for
some families of groups having composition length less than five and order
greater than 84. Some of the techniques for working with finitely presented
groups are illustrated by proving that the groups defined by some families of

deficiency zero presentations are finite.

In Chapter Four, we give presentations for several finite groups having
soluble length five and six, and deficiency zero presentations for two infinite
families of finite groups, one family having soluble length six, and the other
having soluble length five; we also give a deficiency one presentation for a finite

preimage of a group having soluble length seven.

Finally, in Chapter Five we give some minimal presentations for some

quasi-simple groups.
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Chapter One

Introduction and Background

Coxeter and Moser (1980) in the preface to Generators and relations for
discrete groups state “When we began to consider the scope of this book, we
envisaged a catalogue supplying at least one abstract definition for any finitely-
generated group that the reader might propose. But we soon realized that more
or less arbitrary restrictions are necessary, because interesting groups are so
numerous.” We will consider the problem of constructing a finite presentation
for a given group (or family of groups) having the property that the number of

defining relations is a minimum.

Let X be a set, let Fix be the free group freely generated by X, and let
R be a set of words over X U X~!. The normal closure of R in Fx will be
denoted by R.

The pair (X; R) determine a group G, namely Fx /R, and we will say
that G is presented by the pair (X;R) or that G has a presentation (X; R).
We will write G = (X; R) to indicate that G is the group associated with the
presentation (X; R). If X is finite, G is finitely generated; if both X and R are
finite, G is finitely presented. Every finite group is finitely presented. We will
only be concerned with finitely presented groups. The elements of R are called
relators. We will also describe a presentation by giving a set of equations of the
form u; = vy,...,u, = v,, where the u;i,v; are words over X U X 1. This de-
scription corresponds to the presentation (X;{ujvi?,...,unv;'}). Equations
of this form are called relations and we will also mix the two notations. In
giving a presentation, we will often specify only the set of relators or relations.
In such cases, the generating set X consists of the symbols occurring in the
elements of R; we will not be concerned with the cases when a generator does

not occur in any element of R.

The deficiency of a presentation is |R| — |X|. (Note that some authors
take the negative of this to be the definition of deficiency.) The deficiency of a
group is then defined as

def(G) = min(def(P)),

where P ranges over all the presentations for G. A minimal presentation (X; R)

for a group G is one having deficiency equal to def(G).
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If a group G is associated with a presentation having negative deficiency,
then clearly the quotient of G by the derived group is infinite, and hence G
is infinite. An interesting boundary case occurs when def(@) is zero. Schur
(1907) provided a lower bound on the number of relations required to present
a finite group, and hence a lower bound on the deficiency of a finite group.
He introduced an important group invariant, M (@), of a finite group G which
has become known as the Schur multiplicator. Suppose that G is presented by

(X;R). We define M(G) as
M(G) = (Fx NR)/|Fx, R,

where Fly is the derived subgroup of Fx. (Here [Fx, R] is the group generated
by elements of the form [f,7] = f~'r~fr, where f € Fx and r € R.) Schur
showed that if G is finite, then M(Q) is independent of the presentation used
to define G, and that if G is finite and presented by (X; R), then |R| > |X| +
rank(M(G)). We will say that a finite group G is Schur-efficient (or has a
Schur-efficient presentation) if G = (X; R) and |R| = | X |+ rank(M(@)). Swan
(1965) showed that not all finite groups are Schur-efficient. A lower bound
on the number of relations required to define a finite group G = (X;R) is
max(n(ﬁ/ﬁlﬁp)), where p ranges over all the primes dividing |G|, and n(M)
is the number of generators for the module M (see Gruenberg (1976)). It is

still an open question whether this bound is achieved for all finite groups.

Deficiency zero presentations for finite groups having trivial Schur multi-
plicator, and, more generally, minimal presentations for groups have long been
sought (see Neumann (1955)), and the problem of determining which finite
groups are Schur-efficient is far from solved. Both Schur-efficient and minimal

presentations are known for a small number of families of groups together with

some individual results.

It is easy to see, as follows, that finite abelian groups are Schur-efficient.

Let K be a finite abelian group. K is isomorphic to a direct product of cyclic

groups
K~ H Cd..
=1

where the d; are integers such that di|ds|...|d,, and C;j is a cyclic group of

order j. There are elements z;,zs,...,2, of K which generate K and satisfy
the relations
1=z;,2;] (1 <i<j<n),

— 81 _ da _ — ln
=2y =2yt = .. =2z




To see that this is a Schur-efficient presentation, we make use of the Schur-

Kiinneth formula for the multiplicator of a direct product of two finite groups
(see Beyl and Tappe (1982))

M(G x H) = M(G) x M(H) x (G® H),

where G ® H is the tensor product of G and H and G®@ H = G/G' ® H/H'.
For abelian groups 4,B,C, (Ax B)® C = (A® C) x (B ® C) and for cyclic
groups Cq, C} of orders a and b,

Coa® Cy = Clap)

where (a,b) is the greatest common divisor of @ and b. An inductive argument
shows that

i—1
M(K) =[[csi?.
=2
(Here C’,(cn) denotes the direct product of n copies of Cy.) This result was first
proved by Schur (1907), and may also be found in Wiegold (1982). The rank

of M(K) is n(n—1)/2, so the presentation given above is a Schur-efficient one.

Neumann (1955) has shown that all groups of square-free order are Schur-
efficient. This is a special case of a result showing that all metacyclic groups
are Schur-efficient. A group G is metacyclic if it has a normal subgroup N

such that both N and G/N are cyclic. G is generated by two elements z and
y which satisfy the relations

3
™ =1, z¥=2", y" =2z’

where 7" = 1(mod m) and rs = s(mod m). These relations show that the rank
of the Schur multiplicator is at most one. Wamsley (1970) and Beyl (1973) have
determined the Schur multiplicator for metacyclic groups. Beyl (1973) showed
that

h=(m,r—1)(m,1+r+... +r"7)/m

is an integer, and that there is an integer [ such that s = Im/(m,r — 1). The
order of the Schur multiplicator is then (I, k). In the case that G is metacyclic
and has trivial Schur multiplicator, they have shown that G has a Schur-efficient

presentation with defining relations

y =2, [y, =™,
where ™ = 1(mod m) and s = m/(m,r — 1). There are integers u and v such

that (m,r — 1) = u(r — 1) + vm. Let w be the largest factor of m coprime to
u, and let ¢t = u + ws.



It is not known whether all finite nilpotent groups are Schur-efficient. The
groups of order 2" for n < 6 (Sag and Wamsley (1973)) are known to be Schur-
efficient. Keane (1976) has given a list of Schur-efficient presentations for the
groups of order 37,n < 6. However, this list is incomplete. Robertson (1980)
and Wiegold (1989) give families of two generator finite nilpotent groups having
deficiency zero and unbounded nilpotency class. Johnson and Robertson (1978)
in their survey of finite groups of deficiency zero give more examples of finite
nilpotent groups having deficiency zero. All nilpotent groups known to them
at that time to have deficiency zero have soluble length less than or equal to
four. Havas and Newman (1983) give a number of examples of finite 2-groups
(non-trivially) generated by four elements having five defining relations. The

Golod-Safarevi¢ Theorem (in Johnson (1990, p.186)) states

Theorem. If G = (X;R) is a finite p-group with |X| = d,|R| = r and d is
minimal, then r > d?/4.

This result shows that the Havas-Newman result is the best possible for finite
p-groups. No examples are known of finite groups having four generators and

four defining relations. It is conjectured that no such examples exist.

Examples of infinite families of finite soluble non-nilpotent groups having
Schur-efficient presentations are known, for example, see Johnson and Robert-
son (1978) and Kenne (1990). Johnson and Roberston (1978) observed that
the derived length of all known finite soluble groups having deficiency zero
was less than or equal to four, and asked whether the derived length of a finite
soluble group having deficiency zero was bounded. This question remains unan-
swered. However, examples of finite soluble groups with deficiency zero having
derived length five and six have been given by Kenne (1988, 1990), Newman
and O’Brien (19xx) and A.Wegner (Newman, private communication). Further

examples of such groups are given in Chapter Four.

A group G is semi-simple if it is perfect and G/Z(G) is a direct product
of nonabelian simple groups. A number of results about minimal or Schur-
efficient presentations for semi-simple groups are known. Zassenhaus (1969)
gave an Schur-efficient presentation for PSL(2,p) for p a prime greater than 3.
This result was extended by Sunday (1972), who proved
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Theorem. For p a prime greater than 3, PSL(2,p) is generated by elements

a and b satisfying the relations

a? = 1,b% = (ab)?,
1 = (a'ba*b)?,

where 2t = 1 (mod p).

The results of Zassenhaus and Sunday were incomplete, and have been cor-

rected by Beyl (1986).

Campbell and Roberston (1980a) showed that SL(2,p) is Schur-efficient
by showing that SL(2,p) is generated by elements z and y satisfying

2’ = (zy)°,
1= (xy4myt)2ypz2k’

where t = (p+ 1)/2 and k is the integer part of p/3.

In the case of the simple groups other than PSL(2,p™), p a prime, very
much less is known. All the simple groups of order less than one million (with
the exception of PSL(3,5) and PSp(4,4)) are known to be efficient. See Camp-
bell and Robertson (1982a,1984b), Kenne (1986), Jamali (1988), Campbell,
Robertson and Williams (1989) and Jamali and Robertson (1989) for details

of these presentations.

The other general result related to finite simple groups concerns direct
powers. In the case of a direct power of a perfect group, the multiplicator
of the power is simply the corresponding direct power of the multiplicator
of the group. Wiegold has asked whether def(G") — oo as n — oo and
suggested examining the deficiency of PSL(2,5)% and SL(2,5)* as an initial
approach to the problem. Kenne (1983) showed that PSL(2,5)* is Schur-
efficient. Campbell et al. (1986) showed that SL(2,5)* is Schur-efficient by
giving a zero deficiency presentation for it. The only general result in this area

is due to Campbell, Robertson and Williams (1990b):

Theorem. For p a prime greater than 3, G = PSL(2,p) x PSL(2,p) is Schur-
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efficient. G is generated by a and b with defining relations

a¥? = (ba™' ),
b = (ab'P 1/ 2q ),
aP = (ba(p_l)/zb—la_4)2,

bp+1 — ap—lbap—l'

If p= —1( mod 6) replace p by —p.

It is not known whether SL(2,p) x SL(2,p) has a deficiency zero presentation
for all odd primes p. It is known to be Schur-efficient for p = 5 (Campbell et

al. (1986)) and we give a deficiency zero presentation for SL(2,7) x SL(2,7)
in Chapter Four.

Most of the above presentations have two generators and two relations.

The first (non-trivial) presentations for finite groups having three generators
and three relations were given by Mennicke (1959). Additional examples are
given by Johnson and Roberston (1978) and Post (1978).

In subsequent chapters, we

(Chapter Three) give minimal presentations for the groups of order less
than or equal to 84; we also give minimal presentations for some families

of groups having composition length less than five and order greater than

84;

(Chapter Three) illustrate some of the techniques for working with finitely
presented groups by proving the finiteness of a number of infinite families

of finite groups of deficiency zero;

(Chapter Four) give presentations for several finite groups having soluble
length five and six, and deficiency zero presentations for two infinite fam-
ilies of finite groups, one family having soluble length five, and the other
having soluble length six; we also give a deficiency one presentation for a

finite preimage of a group having soluble length seven;

(Chapter Five) give minimal presentations for various semi-simple groups,
including a deficiency zero presentation for SL(2,7) x SL(2,7), which was

previously not known to be Schur-efficient.
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In dealing with finitely presented groups, one is faced with the general
problem of manipulating words to show that pairs of words represent the same
element. It would have been convenient if such manipulations were algorithmic.
Unfortunately, Novikov (1955) and Boone (1955) have shown that the word
problem is algorithmically unsolvable. That is, there is no uniform algorithm
which will determine whether an arbitrary word in a finitely presented group
defines the identity element. Similarly, there is no uniform algorithm to deter-
mine whether the two groups determined by the two arbitrary presentations

(X; R) and (Y; S) are isomorphic. This is the isomorphism problem.

It can be difficult is to perform calculations within a (given) finitely pre-
sented group unless the presentation is particularly ‘nice’ in some way. Meth-
ods for addressing this problem usually involve finding a permutation or matrix
representation for the group to perform calculations. With luck, such a rep-
resentation will be faithful. These methods are most useful when the group
being presented is a preimage of a known group. In the case when one has a

totally unknown presentation to deal with, they do not prove to be very useful.

Notwithstanding the unsolvability results, methods have been developed
for the manipulation of presentations, both by hand and by computer. One
such method , which plays an important role here, is coset enumeration, first
described by Todd and Coxeter (1936). The method described by Todd and
Coxeter gives a systematic procedure for enumerating the cosets of a subgroup
H of finite index in a group G, given the defining relations of G and a set of
words (in the generators of G) generating H. We describe coset enumeration,

and some techniques based on it below.

Computer implementations of various techniques have been used exten-
sively to obtain some of the results in this thesis, and the question of the
accuracy of such calculations compared to hand calculation arises. The major-
ity of the results are based on the use of coset enumeration to show in each
case that a particular finitely presented group is finite. This finiteness is used
to establish that the group is in fact isomorphic to a ‘known’ group. The other
calculations are checkable by hand. Many of the calculations in this thesis have
been performed using the Cayley system (see Cannon (1984) and also below).
Cayley output is provided of all coset enumerations so it is possible to check

independently the enumerations.



Cannon et al. (1973), Neubiiser (1982) and Havas (1991) provide descrip-
tions of coset enumeration and details of various computer implementations of
differing methods of coset definition. We will call this style of coset enumeration
simple enumeration. The possibility of error exists when performing a hand
coset enumeration, as does the possibility of an error in the implementation of
coset enumeration. Such errors may lead to an incorrect index being calculated,
and such errors have been reported in the literature (see Leech (1977)). The
input for coset enumeration is two finite sets of words: the defining relations
for a group and a set of subgroup generators. If the process terminates the
output is the index of the subgroup in the given group, and a coset table over
the subgroup. Little is known about the theoretical performance of various
coset enumeration methods; there is no useful bound in terms of the length of
the input and the index of the subgroup to the number of cosets which need to
be defined for an enumeration to complete. In addition, Sims (Havas, private
communication) has shown that there is no polynomial bound in terms of the
maximum number of cosets for the number of coset tables which can be derived
by simple coset enumeration procedures like those used in coset enumeration
programs. A criticism of coset enumeration has been that any error in the
implementation may not be obvious, and that it provides no mechanism for
checking the result. Another criticism has been that considerable information
about the structure of the group or subgroup is available in some sense during
the enumeration and none of this information is available at the termination of
the process. Such criticisms have prompted refinements to simple enumeration
described by Leech (1977) and Neubiiser (1982), in which the enumeration pro-
cess is modified to provide also additional relations which hold in the group,
together with a method for proving relations which hold in the group. The
advantages claimed for these methods are that they provide a proof which may
be checked by hand (or machine), and that such proofs may be (sometimes)
generalized. We provide examples of such proofs in Chapter Three, where an
incomplete coset table is used to derive information in an infinite group, and
the proof is generalized to a family of finite groups. Leech provides several
examples of the methods used, Havas (1976) uses similar methods to deter-
mine the structure of a Fibonacci group and we give a number of examples of
use of the method below. All of the coset enumeration based proofs appear to
suffer from the problem that they are ‘unintuitive’, difficult to generalize and
provide little or no other useful information about the group structure. We
give some examples of such proofs in Chapter Three. Arrell and Robertson
(1984) describe a modified coset enumeration process which, through the use

of Tietze transformations, is used to obtain a presentation for a subgroup in



terms of a given set of generators. The process described provides presentations
which are considerably shorter than those obtained by using the Reidemeister-
Schreier method (which we describe in Chapter Two). Their method is based
on the earlier work of Arrell et al. (1982) and McLain (1977).

Another coset enumeration based technique for the investigation of finitely
presented groups is the low-index subgroup algorithm (see Dietze and Schaps
(1974)). This algorithm accepts as input a finite set of words over some al-
phabet which is taken as the presentation for a group, and an integer n. The
output of the algorithm is a list of all subgroups having index less than or equal
to n. Each subgroup in the list is specified by its generators. The algorithm is

easily modified to find the subgroups having index in a given range.

Other methods have been described by Knuth and Bendix (1970). In
contrast to the techniques described above, Wos et al. (1979) describe an

automated theorem proving system and use it to answer questions such as

e of the five axioms for a ternary Boolean algebra, which, if any, are depen-

dent axioms?

e does there exist a finite semigroup that admits a nontrivial antiautomor-
phism but that does not admit any nontrivial involutions? If such semi-

groups exist, what is the order of the smallest?

Wos (1989) describes a theorem proving system, OTTER (a descendant
of the 1979 system), which may also be used to prove theorems in algebraic
structures (including groups). Examples are given of the use of these systems
to prove results in group theory. However, the results proved are things such
as “if a group has exponent two, the the group is abelian”, which are not
very difficult to prove ‘manually’. The literature describing other aspects of
logic programming, such as Prolog, also contains examples of theorem provers
which are applied to finitely presented groups. However, these types of theorem
proving systems have not had a great deal of use (or success) in group theory,
partly because of the extreme generality of the language which is used to express
axioms and deductive processes, and perhaps also partly because of the limited

access that workers in finitely presented groups have had to such systems.

By far the most successful techniques are largely ad-hoc and are coset



enumeration based, and involve methods such as trying to enumerate the cosets
of G over the identity or some identified subgroup; similarly, working down a
chain of subgroups, either found by using the low index subgroup algorithm
or by some other means (working down the derived series for example). At
each stage, Reidemeister-Schreier rewriting may occur, and Tietze or Nielsen
transformations may be used to modify a presentation to obtain one which
is more amenable to currently available coset enumeration implementations.
Other techniques available are the integer matrix diagonalization, see Havas et

al. (1979) for a description of the use of these tools.

Rutherford (1989) has implemented a collection of coset enumeration based
techniques, together with a set of heuristics to apply them, and an application
of these techniques is described in Robertson and Rutherford (1991).

Computer algebra systems designed specifically for modern algebra ( group
theory, ring theory, polynomial rings etc.) exist. Two such systems are Cayley,
described by Cannon (1984), and the GAP system (Niemeyer et al. (1988)).
Both systems provide similar functionality, although the underlying philoso-
phies differ somewhat. Both provide the user (a mathematician) with an Algol
or Pascal like language together with suitable primitives (or built in functions)
to be able to express their problems (for example, both have functions allowing
the user to define alternating groups, both have language constructs to allow
the manipulation of sets of group elements represented as permutations, ma-
trices or abstract words). The systems differ in that GAP is implemented as
a small kernel of system dependent or time critical functions, together with a
‘library’ of algorithms expressed in the GAP language. The approach adopted
in the Cayley system differs in that most of the algorithms are not implemented

in the Cayley language, but in C (which is the implementation language for

the entire system).
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Chapter Two

Mathematical Preliminaries

In this chapter we give more results used in subsequent chapters, usually
with reference. We will assume the notation and results given in Chapter One.
Further general information may be found in the books of Johnson (1990),
Magnus, Karrass and Solitar (1976) or Suzuki (1982).

A group G is a semidirect product of a normal subgroup N and a subgroup
Tif G=NT and NN T = 1. The structure of G is determined by N, T and
the action of T on N by conjugation. There is a map o : T' — Aut(N), with
the action of elements of T' defined by n? = a(t)(n). Suppose that N = (X; R)
and T = (Y; S); G has a presentation

(XUY;RUSU{y oy = 0,(z)}),

where the y range over the elements of Y, & range over the elements of X and

8, is the automorphism of N corresponding to y. For example, if
N = ({a,b};{a?,b°,ab = ba}), T = ({c},{c’}),

the direct product of N and T has a presentation with generating set {a,b,c}
and relators

2 12 —1p-— - -1 . —1z.p-1
a%, B, a b ab, %, claca™t, clheb .

(The direct product corresponds to the case when the action of each y is trivial.)
Another example (with nontrivial action) is the case when ¢ corresponds to the

automorphism of N which maps @ to b and b to a. In this case G has relators
a®, 8%, a7 ‘b lab, 2, ¢ tacht, ¢ tbea™l.

Both of these presentations define groups of order eight. The direct product is
the elementary abelian group of order eight, and second group is isomorphic to

the dihedral group of order eight.

If G = (X;R), then every factor group H of G has a presentation (X;5)
with R C S. We call G a preimage of H.

Let G = (X;R) and let H be a group, and ¢ a mapping from X to H. If
for all z € X, r € R the result of substituting ¢(z) for z in 7 yields the identity

11



of H, ¢ extends to a homomorphism of G into H. If such an extension exists,

it is unique. This result is called the substitution test by Johnson (1990, p.44).

(Tietze transformations). Let G = (X, R), and let w,r € Fx andr € R\R.
If y is a symbol not in X then both (X;R U {r}) and (X U {y};RU {yw})
are isomorphic to (X; R). These isomorphisms provide a means for adjusting
a given presentation for a group to another presentation of the same group. A
standard example of Tietze transformations shows that the von Dyck groups
D(l,m,n) and D(n,m,l) are isomorphic. D(I,m,n) is the group generated by
z and y with relations

=z! =y" = (ey)".

This example appears in Johnson (1990, p.47). Introduce a new generator

a = zy so that 1 = a™,z = ay™?,(ay~!)' = 1 and the presentation reduces to
1=a"=(ay™) =y™.
Introducing another new generator b = y~!, the presentation reduces to
1=a" = (ab)' = b™.

Programs implementing Tietze transformations have been written by a number
of authors, and are described by Havas et al. (1984) and Rutherford (1989).

The method described as “systematic enumeration of cosets” was first
described by Todd and Coxeter in 1936. It is a mechanical process which,
given as input sets X, R defining a group, and a set Y of words over X which
define a set of subgroup generators , produces as output the index of H (where
H is generated by Y) in G if it is finite. We now give a brief description of
coset enumeration.

We first describe the case when H is the trivial subgroup of G and Y is
empty. If X = {z;,...,2;}, for each relator r = r;...r, € R (where each r;
is of the form z; or zj_l , where j depends on 1), a table is drawn having n + 1
columns with the number of rows being unspecified. The symbol 1 is entered
in the first and last places of the first row of each table, with the other places
remaining empty. Initially we have |R| tables of the form

T Te ... T

1 1

An empty space next to some 1 is filled with the symbol 2. Suppose for definite-

ness that 71 = z;. and that the space immediately to the right of z; is chosen.

12



We record this definition 1z; = 2 in another table, which we will call the coset
table. The coset table consists of 2¢ columns, headed by a:l,ml_l,:cg, - ,a:t_l

and has the same number of rows as each of the relator tables. Whenever a
new symbol j is defined by an equation of the form iz = j, a new row labelled
7 is added to the coset table, and two new entries are made in the table: a j is
entered at the meet of the i row and the z column, and an 7 entry is made at
the meet of the j row and the z~! column. We also add a new row to each of
the relator tables, and insert the new symbol j in the first and last position of
this new row. The symbols 1 and 2 correspond to the cosets H and Hz; of G.
Having defined the symbol 2, a new row with 2 in the first and last positions
is added to each of the relator tables, and a row labelled 2 is also added to the
coset table. We also enter the symbol 2 in any relator table where the symbol
1 occurs to the immediate left of the symbol z1, or a 1 to the immediate right
of an occurrence of z;*. This is called the scan phase of the enumeration. At

this stage the tables are of the form

’

™1 T2 .. Tn
1 2 1
2
and the coset table is
z :cl_l T :cz_l
1 2
2 1

All spaces which may be filled by the symbol 2 are completed, and then the sym-
bol 3 is entered in an empty space adjacent to a filled space (and the definition
iz = 3 is recorded). All possible spaces which may be filled with the symbol
3 are completed, and then in a similar fashion, the symbol 4 is introduced.
During the course of defining new symbols for entry into the relator tables, we
may arrive at the situation when a row has one empty space remaining. For
example, there is a relator table of the form

Tp Tp+1

] k

where 7, = T, Tp+1 = Tn, and we define the symbol j by iz, = 5. We obtain
another piece of information, namely kz ! = j, which we will call a deduction.
It is also possible that the deduced information may be inconsistent with what
is already known, and we give an example to illustrate this. Suppose that
R = {22,2°%}, so that the group defined by R is trivial. Enumerating the cosets
of the trivial subgroup, we define 1z = 2. After this definition, we are able to

13



deduce that 2z = 1. Before processing the deduction 2z = 1, the relator tables
are

x x
2 =1
2 2
and - - -
1 2 *
* 1 2,

where the = indicates the place where a deduction was made. Note that the
gaps marked * may be filled by two different symbols; by processing the de-
duction 2z = 1 applied to the middle z, the gap should be filled with a 1, if
the deduction is applied to the rightmost z, the gap should be filled with a 2.
We conclude that the symbols 1 and 2 represent the same coset, and replace
all instances of 2 by 1 throughout the tables. At this stage, the tables are
complete, and we conclude that the group has order one. The situation where
a gap may be filled by several symbols is known as a coset coincidence, and in
general the inconsistent information is of the form iz = j, iz = n with j # n
for some i and z. We proceed as follows. We conclude that j = n and replace
the greater of j and n by the smaller throughout all the tables (both the rela-
tor tables and the coset table). This may yield further coincidences which are
processed in the same way until all inconsistent information has been removed.
All rows of the relator tables which begin with the larger of each coincident
pair of symbols are then removed, and the remaining symbols are renamed to
form a set of integers beginning with 1. If the group defined by the relations
is finite, the process will terminate when there are no more empty spaces in
the relator tables. However it is possible for the process not to terminate. In
practice, when performing coset enumerations either by hand or by computer,
a limit is placed on the number of rows allowed in the relator tables. Imposing
such a limit guarantees termination. If the tables are complete, the number of

rows in each relator table is equal to |G|.

The method described above extends easily to computing the finite index
of a subgroup H specified by a set of generating words ¥ over X U X 1. The
modification involves adding another set of tables, one for each element of Y.
These new tables are constructed in the same way as the relator tables , with
the letters of y separating adjacent columns, except that they have only one
row, beginning and ending with the symbol 1. The method then proceeds as
above, with the subgroup generator tables being completed according to the

same rules as the relator tables. As above, if a limit is imposed on the number
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of rows allowed in the relator tables, the process will terminate. If there are
no more empty spaces in the relator and subgroup generator tables when the

process terminates, the number of rows in each relator table is the index of H

in G.

We now enumerate the cosets of a subgroup in an infinite family of groups
defined by a parameterized presentation. Existing implementations of coset
enumeration are unable to perform such enumerations. Let G = ({z,y}; {z* =
¥ 2’ = [z, y]}) where n is an integer and let H be the subgroup generated by
y?,zy’z ! and 2y~ 'zy. We will show that H has index 6 in G for all nonzero
n. Assume that n is nonnegative (the case when n is negative is similar). We
have three subgroup generator tables and two relator tables. Initially, each row

starts and ends with a 1 and there are no other entries.

and

1 1

and

We define 1y = 2, adjoin a row starting and ending with a 2 but is otherwise
empty to each of the relator tables and commence a scan. Note that the row
of the y? subgroup generator table is complete and we deduce 2y = 1. In the
scan phase, we are able to fill in all but two entries of the first two rows of the

y®"z~? table. Following this definition-and-scan phase, the tables look like



where the = sign denotes the place where a deduction occurred. The other

subgroup generator tables are

and

The relator tables are now

8n
y oy y y ozt 2t 2!
1 2 1 1 1 1
2 1 2 1 2
and
y~ ! y~? z Y z~! Yy x
1 2 1 1
1 ’
and the coset table is
z z7! ) y—l
1 2 2
2 1 1

Defining 1z = 3 generates no deductions, nor does it give any coincidences.
Defining 3y = 4 next allows the zy?z~! table to be completed by giving the
deduction 4y = 3. We are also able to deduce that 4z = 2 from the single
row of the zy~!zy table. Performing a scan through the relator tables gives
no coincidences and no further deductions. Following these definition-and-scan

phases, the subgroup generators tables are

and



The relator tables are

8)?3

y y y y z~! z™! z ™!
1 2 1 1 2 1 3 1
2 1 2 2 1 2 4 2
3 4 3 3 4 3 1 3
4 3 4 4 3 4 2 4

and
y~! y~! z y z~1 Yy z

1 2 1 3 4 1

2 1 2 3 4 2

3 4 3 2 1 3

4 3 4 2 1 4

At this stage, one empty space remains in the first row of the y®"z~3 table.
We complete this row by defining 127! = 5 and deduce that 5z~! = 3. We
complete the second row of the y8"z~3 table by defining 4z~! = 6, and from
the same row deducing that 6z~! = 2. During the scan phase we deduce that
6y = 5 from the first row of the y~2zyz~'yz table and that 5y = 6 from the
third row of this table. There are no coincidences and the tables are complete.

Thus H has index six in G. The final relator tables are

8n

y oy y y oz} z~? g~
1 2 1 1 2 1 5 = 3 1
2 1 2 2 1 2 4 6 = 2
3 4 3 3 4 3 1 5 3
4 3 4 4 3 4 6 2 4
5 6 5 5 6 5 3 1 5
6 5 6 6 5 6 2 4 6

and
y~! y~! z y z~! Y z

1 2 1 3 4 6 = 5 1

2 1 2 6 5 3 4 2

3 4 3 5 = 6 2 1 3

4 3 4 2 1 5 6 4

5 6 5 1 2 4 3 5

6 5 6 4 3 1 2 6
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and the coset table is

¢ 27!y y7!
13 5 2 2
2 6 4 1 1
35 1 4 4
42 6 3 3
51 3 6 6
6 4 2 5 5

The coset table provides a representation for G on the cosets of H. In this
case, G is represented by the permutations (1, 3,5)(2,6,4) and (1,2)(3,4)(5, 6).
(If H is trivial, or core-free, the coset table provides a faithful permutation
representation of G.) Coset enumeration also provides sufficient information to
show that H is a normal subgroup of G. The symbols 1,2,3,4,5,6 represent
the cosets of H in G and we may obtain a set of coset representatives by
finding a set of words w;,...,ws such that 1w; = 1. Bach w; is of the form
Ti1Ti2 . . . Tin;, Where z;; is z,y,2 7! or y~!. Applying w; to the symbol k means
(.- ((kzi1)zi2) ... )Tin;, where the action of a generator (or its inverse) on a
symbol is determined from the coset table. For example, the following table

shows the result of applying the word z2y~'zyz~! to the symbol 1:

To test whether H is a normal subgroup, form the conjugates of each of the
subgroup generators by each of the group generators, and apply the resulting
words to the symbol 1. If the result of each application is again 1, the sub-
group is normal. In the example above, each of the conjugates of the subgroup

generators applied to 1 results in 1, showing that H is a normal subgroup of
G.

The above descriptions of coset enumeration do not specify fully the way
to choose the next gap to define a coset, the method to use to perform a scan
of the relator and subgroup generator tables, and the order in which to process
coincidences. All of these factors influence the performance of any implemen-
tation of coset enumeration, and can affect considerably the number of cosets
which are to be defined. The choices of appropriate strategy for performing
coset enumeration have been studied and are reported by Cannon et al. (1973)
and more recently by Havas (1991). Beetham and Campbell (1976) have de-

scribed a variation of coset enumeration which uses the deduced information
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to provide a presentation for the subgroup H in terms of the elements of Y.
Leech (1977) has described an extension of coset enumeration which “allows
the user to deduce formal proofs of relations whose proofs are implicit in the
working of the coset enumeration, and as far as possible to have these proofs
derived by the computer itself.” Havas (197 6) has given a computer generated
proof using methods similar to those described by Leech that the Fibonacci
group F(2,7) has order 29. We also give a number of examples of such proofs
in Chapter Three, and provide illustrations of how such a machine generated
proof may be generalised. As Leech remarks, “Rather frequently, especially in
the more complicated cases involving many cosets, the formal proofs are long
and far from perspicuous. Sometimes human editing can ease this and lead to
perspicuous proofs. On other occasions it is likely that no such comprehensible
proof is possible.” Examples of coset enumeration based proofs are given in

Chapter Three. Many of these are “far from perspicuous”.

We now list without proof some results about the Schur multiplicator of

a finite group G. These results may be found in Wiegold (1982) or Huppert
(1967).

(Schur, 1904) Let G be a group and Z(G) be the centre of G. If G/Z(G)
is finite, then the derived subgroup @' of G is finite.

This theorem is used extensively in later chapters to show that a group G

with a finite central quotient and a finite abelian quotient is finite.

Schur (1904) also showed that if H is a central subgroup of G then G' N H
is isomorphic to a subgroup of M(G/H).

A group G* is a covering group of G if there is a subgroup A of G* such
that A is contained in both centre Z(G*) and in the derived subgroup of G*,
A ~ M(G) and G ~ G*/A. Schur showed that a group G has at least one

covering group.

M(G) is a finite group, whose elements have order dividing the order of G
and M(G) =1if G is cyclic.

Let G be a finite nilpotent group, and let Si,...,S, be all the Sylow
subgroups of G. Then M(G) = M(S1) x ... x M(S,).
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If F is a free group and G = F/R, then (F' N R)/[F, R] is the torsion part
of R/[F,R].

Let S, be the symmetric group of degree n and let A, be the alternating
group of degree n. Schur showed

1, ifn<3,
M(Sn) = { C; otherwise;
d also that
and also tha 1 ifn<3
M(An):{()’g, ifn>4,n+#6,T,
Cﬁ, n = 6,7

If G is finite, H is a group with a central subgroup 4 and G ~ H/A, then
H'N A is isomorphic to a homomorphic image of M(G). A pair of finite groups
(H,A) is called a defining pair for the group @ if G ~ H/A and A is contained
in H' N Z(H). The rank of M(G) is greater than or equal to the rank of A.

Let G be of order p™, p prime, and be generated by d generators and have
r relators. Then

pd(d—l)/z < [M(G)HGII Spn(n—l)/2,

and

r>d(d+1)/2 - d(@),

where d(G") is the minimum number of generators required for G'. If G/®(G)
has order p/ (here ®(G) is the Frattini subgroup of @) and G’ has order p”,
then

|M(G)| < p PV M(G/G),
and

|M(G)| < p(n—h)(n—h—l)/z.

If G is an extra-special group of order p?"*!, with n > 1, M(G) is an
elementary abelian group of order p>»°~"~!. Beyl and Tappe (1982) show that
if G is non-abelian of order p® and p is an odd prime, M(G) = C)p x C, if the
exponent of G is p and M(G) is trivial otherwise.

Coset enumeration also provides sufficient information to obtain the pre-
sentation of a subgroup. Let U be a transversal for H in G. A set of generators

for H is given by {uzp(uz)~'}, where v € U,z € X and ¢(y) is the coset
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representative of y in U. (See Theorem 2.7 of Magnus et al. (1976), p.89.)
The following result is Theorem 2.8 of Magnus et al. (1976), and is due to
Reidemeister. A set of relators for H is given by

r(uru™t),

where the u range over U, r € R, and 7 is a mapping from H to H, which we
define below. Let

— m€1.,,€2 €n
W =altzs? ...z}

where each e; is either 1 or -1, and define a sequence of elements (relative to

W) by

-1 -1 .
uy = Liuipr = o(uizi) ™, 0 = wizzup, for 1 <i <m.

Define (W) to be [];_, a;. The mapping 7 is called a Reidemeister rewriting
process.

A set of coset representatives for which any initial segment of a repre-
sentative is again a representative is called a Schreier system. A Reidemeis-
ter rewriting process using a Schreier system is called a Reidemeister-Schreier
rewriting process. In general, the Reidemeister-Schreier rewriting process gives
a presentation which is not in terms of the originally specified subgroup genera-
tors. Beetham and Campbell (1976), McLain (1977) and Arrell and Robertson
(1984) have given methods to obtain a presentation for H in terms of the

original subgroup generators.

This method may be applied to the calculation of the Schur multiplicator,
and is described by Johnson (1990). Let G; be the group with generating set
X and relations {[x,r]|z € X,» € R} and let H be the subgroup generated by
R. This subgroup is central, and hence abelian. Since H is finitely generated,

H ~ A x T, where A is free abelian and T is finite. The Schur multiplicator of
G is precisely T.
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Chapter Three

Some Interesting Groups of Low Order

Introduction

In this chapter we give minimal presentations for a number of interesting groups
of ‘low order’. In this context, ‘low order’ means that the composition length
of the group is small (in most cases less than five and the order is less than
85), and a group is interesting if it is not metacyclic and it is not abelian. We
also give some deficiency zero presentations for some infinite families of two

generator groups which do not overlap with other known families.

Minimal presentations for the groups of order 36, 48, 54, 60, 72 and 84 are
given in Appendix A.

These groups provide examples of the techniques used to perform calcula-
tions in finitely presented groups, and examples of the techniques used to prove

theorems about finitely presented groups.

The groups are classified according to their composition length. Since
groups of composition length less than three are either abelian or metacyclic,

they are omitted, so are groups of square-free order.

Composition length three

We follow the notation of Neubiiser (1967) in describing the soluble groups
of composition length three. In the presentations given below, p and g denote

distinct primes. The presentations for the groups of composition length three
are

(pg x p) AP? = B? = [A,B] =1
(p°9q) AP’ =1
(Dpq X p) 1=A?=B*=C"?
= [AaB] = [A70] =1,
[B,C] = Bz—l,

22



where z # 1(mod ¢), z? = 1(mod q), plg—1

(Gp2y) 1= AP = BY, C? = 4,
1=[A,B] =[4,C],
[B,C] = B*1,

where z # 1(mod ¢), z? = 1(mod q), plg—1
(Hp2,) A7 = B? =1, [A,B] = A*71,

where z? # 1(mod q), z*° = 1(mod gq),

(A4) A’ =B =(BA® =1
(Dpq % q) 1=A7=B?=C?
= [A, B] = [A3 0]7

[B,C] = B* 1,

where z # 1(mod ¢), z? = 1(mod q), plg —1

(Kpg2) A?=B1=CP=[4,B] =1,
[4,C] = 4*1, [B,C] = B>,

where ¢ # 1(mod ¢), z? = 1(mod g), plg—1

(Lpqg2(s)) - A'=B1=C?=[A,B] =1,

[4,0) = 47, [B,C] = B~ 7,
where ¢ # 1(mod q), z? = 1(mod ¢), s Z0, 1(mod q), plg—1, p>2, ¢> 3.
There are (p — 1)/2 non-isomorphic groups Lpg2(s). Lye2(s) ~ Lpga(s') if and
only if s = s'(mod p) or ss' = 1(mod p).

(M,,2) AT =B? =1, [A,B] = 4>},

where z # 1(mod ¢?), z? = 1(mod ¢*), plg— 1.

(Npg2) 1= A7 =B!=C"
= [Aa B])
(4,C] = A™'B,

[B,C] — A—leq+z-—1,
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where z is an element of order p in GF(q?), plg+ 1, p # 2.

(»*) 1= A? = B? = C?,
C = [4,B],
1=1[4,0] = [B,C].

Of these groups, only A4, K24, Kpg2, Lpg2(8), Npg2 and p® are interesting.
Since the multiplicator of A4 has order 2, the presentation given above is an
efficient one.

The group G generated by a,b and ¢ with defining relations

c? = alb?,
1= [a,b],
a®t! = ¢71a%,

patl — C_lbac,

where o = (¢ — 1)/2 is clearly a preimage of K,,2. It can be shown to be
isomorphic to K2 as follows. Since ¢? is central,

a® = (aa)cz — (C——laac)c
— C—laa-}—lc — (aa)cac
_ aa+1ac

9

and so a° = a~!; from this we have (a®)° = a~%, but (a®)° = a**t?, so

bl
a=®=a%"t!, ie. a? = 1.

We will show that the group K defined by the relations

1= A% = B = C?,
X = [4, B],
AC — A_l, BC :B——l,
1=[4,X] = [B,X] = [C,X]
= X1,

has order 2¢® and together with the group generated by X is a defining pair
for K,,2. This shows that the multiplicator of Ky, has rank at least one. The

presentation given above for G is thus a Schur-efficient presentation for K,z.
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Let £ = A,y = B and z = X. We use the modified coset enumeration
method of Beetham and Campbell (1976) to find a presentation for the sub-
group H generated by z,y and z. From the requirement that each of the sub-
group generators fix coset 1, we deduce that 14 = z1,1B = y1 and 1X = z1.
Applying these deductions to the relators gives no further deductions and no
coincidences. Defining 1C = 2 gives the following deductions: 2C' = 1 from
C? =1, 24 = 2712 from C~'ACA = 1, 2B = y~!2 from C"'BCB =1
and 2X = z7!2 from [C, X] = 1. These deductions lead to no coincidences
and result in a complete coset table, showing that H has index two in K. A

presentation for H on generators z,y and z is

1 =21
=y,
z = [z,y),

1=[z,2] =[y,7]

= 29,

(The relations C? = 1,A° = A~! and B¢ = B~! lead to trivial relations

in H.) This is clearly a presentation for a group of order ¢°.

The groups L,,2(s) have order greater than 100, and are not considered
here. Of the groups N,,: only the smallest (with p = 3,4 = 5) is of interest

here, and it has a presentation

1=A4=B°=¢C?

= {Aa B]
[4,C] = A7'B,
[B,C] = A"1B3.

Let K be the group with the following relations
1= A5 T _ B5ﬂ72
=C?®
= [4,Bla™?
=[4,C]B 4y
= A™'B3[C, B]

and @, and v are central. From the presentation, « is both in the derived

subgroup of K and in the centre of K. Provided that « is not trivial, K is a

25




central extension of Nj52, and K’ N Z(K) is a homomorphic image of M (N3s: ).
A coset enumeration shows that K has order 375, and thus the multiplicator

has rank at least one. The group with presentation
(3-0) (a,c;a° = (ca)®,c® = (ca™')® =1),
is clearly a preimage of N3s:. (Use Tietze transformations to eliminate the
generator B.) Another coset enumeration shows that the order of the group
defined by (3 - 0) is 75, and thus (3 - 0) is a minimal presentation for Njs2.
The quaternion group Qs has a well known deficiency zero presentation:
(a,b;bab = a,aba = b),

for example, see Coxeter and Moser (1980).

Let G, be the group generated by z and y with defining relations

1

2P = yP

= [[=,9],9]

= [z, y],2],
where p is an odd prime. It is easy to verify that G, is a preimage of the group
p®, for example, under the mapping z — A,y ~— B. The order of G, divides
p® and so G, is isomorphic to p® and p® is presentable with a 2 generator, 4

relation presentation. Since the multiplicator of p® is elementary abelian of

order p?, we have an efficient presentation for p3.

Composition length four

In this section, we consider some of the groups of order p%, p odd, 2%¢,
g > 1 and g odd. The groups of order p* were first classified by Holder (1893),
and Burnside (1911) has given presentations for these groups. The groups of
order p*q have been classified by Western (1899).

The groups of order 23¢q, with ¢ > 1 and ¢ odd

The only non-abelian and non-metacyclic groups of order 8¢ are the fol-
lowing:

(3-1) l=a?=p>=+*=§



= [aaﬂ] = [0"7] = [a,é]
= [ﬂ,7] = [/8,5]’
87 =671,

This group is (9) in Western’s list.

(3-2) 1= at =g ="

= [77ﬁ]$
of =a7l, 4% =7

This group is (11) in Western’s list.

(33) 1:0‘4::84:737
2 2
a =g,

ot —aﬁa a’ =g,
BT =ap

This group is (17) in Western’s list, and is isomorphic to SL(2,3). The group

defined by these relations has order at most 24, and there is an isomorphism

defined by
0 1 2 2 0 2
aly o) Bl 1)1 2);
(3'4) 1:a4:ﬁ2:73’
ot =df, () =8,
BY = B,
7* =78

This group is (18) in Western’s list, and is isomorphic to the symmetric group
Ss. The mapping a — (1,2,3,4),8 — (1,2)(3,4),7 — (1,4,2) extends to a
homomorphism to (3 - 4) onto Sy, and a coset enumeration shows that (3-4)

has order 24, and so is isomorphic to Ss.

(3-5) l=a>=p=+*=¢,
1:[a,:6]:[a’7]_[:8,7]’
of = ’ ﬂ(s:’}', 76:‘1:8

This group is (19) in Western’s list.
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The groups SL(2,p), p an odd prime have zero deficiency (Campbell and

Roberston (1980)), so (3-3) is efficient. Sy has long been known to be efficient,
with defining relations

(3-6) at = b = (ab)? = 1,

for example, see Coxeter and Moser (1980).

The group (3-5) of order 56 is a cyclically presented group with deficiency
zero found by Johnson and Mawdesley (1975):

(3 : 7) L6 = T1Lg, T3 = T4T1, L2 = T3T6,

L5 = T3, T4 = T5T2, L1 = L2Ts,
which may be simplified to a two generator, two relation presentation

(3-8) 1 = z?yzy®

= yzxyms,
where z = ¢, and y = z4. We have found another zero deficiency presentation

(3-9) a> =",
| (abab™')? = abab~3ab?,

where the correspondence between this presentation and (3 - 8) is given by

a=z"'y and b = y~!. Coset enumeration shows that (3 - 9) has order 56.

Let Wy(q) be the group defined by (3 - 1), let ¢ be an odd prime, and let
K, be the group defined by the relations

1=2%=y% =22
= (29)* = (2271)? = yzyz 1.
We now show that K, is isomorphic to Wy(g). From the relations, it is clear that
y commutes with both z and z, and also that zzz = ™. Thus every element
of K, may be written in the form z"y*z?, with 0 < r < 2¢, 0 < s,t < 2,
so K, has order dividing 8q. There is a homomorphism of K4 onto Wy(q)
defined by z — ab,y — B,z — 7, so K, is isomorphic to Wy(g). It is clear
that Wy(q) is the direct product of the subgroups (e, ) and (v,6), so that
M(Wa(9)) = M((e,8)) x M((7,6)) % ({a8) ® (,6)). Now, M((a,B)) = C,
and the tensor product is isomorphic to Cy x Cs, so the rank of M(Wy(q)) is
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at least three, but the presentation given above for K, shows that it is no more

than three, and that Wy(q) is a family of Schur-efficient groups.

Let g be an odd integer greater than one, and let G, be the group defined
by
1= ‘,L,z — y4 — (ym)q-fl(y—lw)q—l.
We show that G, is isomorphic to the group (3 - 2) in Western’s list of groups

of order 8¢. Consider the group K generated by t,c,3 and v with defining

relations .

t=a",
1=p6% =41
= [7,8,
of =a7l, ¥ =471,
1=1[t,8] = [t,7].

We show below that this group, together with the subgroup generated by £ is a
defining pair for (3-2), and this shows that the multiplicator of (3 -2) has rank

at least one, and thus the groups defined by G, have minimal presentations.

The quotient by the derived group of K is elementary abelian of order
four. Let a = a?, b =1t and ¢ = 4. It is easy to see that a,b and c generate the
derived group of K. We use the method of Beetham and Campbell (1976) to
obtain a presentation for K'. From the requirement that each of the subgroup
generators fix coset 1, we obtain the deductions 1¢ = b1 and 14 = cl. Defining
la = 2, we deduce 2o = al from the subgroup generator tables, 2¢™! = 4722
from the relation t = a* and 2y = ac™'a2 from the relation v® = 7. At this
stage, no further deductions are possible and no coincidences have been found.
Defining 18 = 3, we deduce 38 = 1, 3y = ¢3 and 3t = b3. No further deductions
are possible at this stage, so define 23 = 4. This gives the deductions 48 = 2,
4y = ac™'a7'4,3c = a7'4,4a = 3 and 4t~ = a24. At this stage, the coset
table is complete, and there are no coincidences, and no further deductions.
This shows that K’ has index four in K.

Rewriting the relations of K, we obtain the following presentation for K':
1=a’b=¢?
= [a,c] =[b,]
= a*.
This clearly defines a group of order 2%q, and thus K has order 2*g, and is

therefore a covering group of (3 - 2).
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In G, we have
1= (zy™") 3 (2y) ey ey

and
e = (yz)’(ytz)?  (yz)! %y,

we have

1= (2zy™) (zy)™ - (y2)* (v ) (ye) Py y ey
= (zy™")1 3 (ey) ™+ (y2)? (y 1) (y2)? 0.

Conjugating this relation by (zy~*)?7%(zy)?* gives 1 = (zy)%(yz)® = (zy?)*.

In particular, we find that y? is central.

Let b = (zy)?, then

b = (zy)ley(ey)?™}
= (zy)?(yz)* (v~ 2)T 7 (y2) 2y  (ey)? 7,

and as y? is central we obtain

b2 = (ey)' 2zyle(y te)! (yz) ! % (zy)?
= (zy)? 2 (y " 2)? " (yz)? 2 (ey) T Y°
=y 'a(yz) " (2y) "y’

Since ¢ is odd and greater than one, we also have that

(y2)? 2 (zy)?~" = (y2)? °(zy)? "
= (yz)?*(zy)*°
= (yz)(yz)’

= zy°.

So b = ylazzy®y’ = 1. Let Q = (ey)?"', then Q7 = 1. Let a =
(yz)?'y~1; then
a = (yz)q_lm(ym)q"zy—l
= (yz)? 2y(yz)? 2y}
= (yz)? *y(ye) "’y
= (yz)* *y(yz)? ty
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so that a? is central and a* = 1. Also,

ba = (zy)?(ye)! "y
= (ey)? (yz)* 2Py
= (zy)? 2 (y2)" *yty "
= (ey)* (ya)y* a2y
=2y(y’)ly ™

— xy2(q—1)

=T

since g is odd, so that (ba)? = 1. Note that

a"'QaQ = y(zy ™) (zy)? " (y2) 1y (y)? Y,

and then , y 5
(zy)? (yz)T ! = (zy)? 2 (yz)? " 2y?

= (zy)? 3 (yz)? "y
= (y*)1"
=1,

s0 a7'QaQ = y(zy 1)1y~ zy)?"!, and by above, a 1QaQ = 1. We also
show that Qa™! = y.

Qa™" = (zy)" y(ey™1)*?
= (zy)" 2y ey )1y
= (ey)! Py My )1y’

=y.

The above calculations show that a,b and @ generate Gy, and that they
satisfy the relations a* =8> = Q9 =1, Q® = Q! and a® = a™'. Since b and
Q are both powers of zy it is clear that they commute. This shows that G, is
a quotient of (3 - 2). To see that G is isomorphic to (3 - 2), it is easy to check
that the mapping of G, onto (3 - 2) given by z — Ba and y — ya ! extends
to a homomorphism of G, onto (3 - 2).

The groups of order p*

The following presentations for the groups of order p*, p an odd prime are
given in Burnside (1911):

(3-10) 1=p?r’ =Qr, pQ= pi+r’
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This group is (6) in Burnside’s list.
(3-11) 1=PP =Qr = RP,
QP? = R™'QR, [P,Q) = [P,R] =1.

This group is (7) in Burnside’s list.
(3-12) 1= P =Qr' pQ_ pltr,
This group is (8) in Burnside’s list.
(3-13) 1=PP = QP = RP,

PP = PR, [P,Q]=[Q,R| =1.
This group is the direct product of (Q) and (P, R) and is (9) in Burnside’s list.
(3-14) 1=P? = Qr = R,

PQ=P" [P,Q|=[Q,R =1
This group is (10) in Burnside’s list.
(3-15) 1=Pp? =Qr,

Pt? = pQ [P,R] = Q,
1=[Q,R|, R? = P°?,

where there are three isomorphism types of groups with a = 0, « = 1 and «

any nonsquare modulo p. These groups are (11) in Burnside’s list.

(3-16) Iy )
R®=RP, Q° =Q,
P*=P Q% =q,
PR=p pPe=p
This group is the direct product of (Q) and (P, R, S) and is (14) in Burnside’s
list.
(3-17) 1=PP=Qr =R’ = 87,
[R,S] = Q, @, 8] = PB,[P,S] =1,
[Q’R] = [P,R] = [P,Q] =1,

if p > 3, ((15) in Burnside’s list), and if p = 3

(3-18) 1=P =@*=R?
= [P,Q]: Q = [P,R]v
[Q,R] = Q™'P%Q.
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This group is (16) in Burnside’s list.

Of these groups, (3-10) and (3-12) are metacyclic. The groups defined by
(3-13) and (3 -16) are direct products. In the case (3 -13), the group (P, R) is

the non-abelian metacyclic group of order p®, and has an efficient presentation
p?* = g, PR = pi+r,
and so a presentation for (Q) x (P, R) is
1=QP, P" = g7, PR = pltp,
1=[P,Q] =[R,Q]

Since the multiplicator of (3 - 13) has rank two, the presentation given above

for (3 -13) is an efficient one.

In the case (3-16), the group (P, R, S) is the non-abelian, non-metacyclic
group of order p® and exponent p. It has an efficient presentation
1=RP =5?=1S,[R, S]]
= S?RST'R™*S7'R,
where P = [R, S]. The direct product then has a presentation
1=RP =57 =[S,[R, S]]
=S’RST'R™*S7'R
= Q" =[Q,R] =[Q, 5]

The rank of the multiplicator of this group is four, and so the presentation

given above is an efficient one.

Let K be the group with defining relations

(3-20) 1=Py=@Q*8=R?
= [P,Qla™" = [P, RIQ™*
= Q7'P°Q[R,Q] = [P,q]
=[@,a] = [R,a] = [P, ]
= [@,8] = [R, 8] = [, f]
= [P,7] = [Q,7] = [R,"]
= [a,7] = [B,7].
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Coset enumeration shows that this group has order 3%, and directly from the
presentation, the group generated by a, 3 and + is seen to be contained in both
the derived subgroup of K and the centre of K, and the quotient K/(a,83,7) is
isomorphic to the group (3-18). A calculation with Cayley shows that K'NZ(K)
has order nine and exponent three, and so the multiplicator of (3-18) has rank

at least two. Clearly z = P and y = R generate (3-18) and satisfy the relations
1=y’ =(2y)’ = (ey™")* = [=*,y],

and coset enumeration verifies that the group defined by these relations has

order 3%, and thus this is a minimal presentation for (3 - 18).

Let Gp.14 be the group generated by a and b with the defining relations:

1=a? =t
= [a, [a,8]] = [[a, 8], D]
Let G be be group defined by (3-14). The order of M(G/G') is p, and ®(G) is

Cp x Cp, so that by the results of Chapter Two, the order of M(G) is p*. To
see that the rank of M(G) is two, consider the group G* defined by

1:pp2.__Qp:Rp,
PQ:PR, [PvQ] =, [Q’R] ::8,
1=[P,a] = [P,p]

=[@,2] =[Q,8]
= [R, o] = [R, ]

= [, f]

=P = ﬂp

= [P?,Q] = [P”, R]
= [P?,a] = [P”,B].

It is clear that G* has order dividing p® (for example, by considering the lower
central series). We show that G* has order p®. Let z = PP,y = Q,z = R,w = o
and H be the subgroup of G* generated by z,y,z and w. We (again) use the
method of Beetham and Campbell (1976) to show that H has index p in G*,
and to obtain a presentation for H. From the subgroup generators, we deduce
that 1Q = y1,1R = 21 and la = wl. Fori =1,2,...,p — 1, define coset 7 + 1
by iP =i+ 1. We deduce that pP = z1. From the a 1P~ 1aP relator table,
we deduce that pa = zwz~!p from the first row, and that ia™! = w~!s for

2 <1 < p—1. The p—th row is also complete, but yields no new information,
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nor does it give any coincidences. We deduce that 137! = [z,y]1 from the first
row of the 8~1[Q, R] table. (In this coset enumeration, we only use the first row
of this table to obtain a deduction.) From the 3= P~!8P table, we deduce that
pB = z[z,yle'p from the first row, and that ;37! = [z,yli for 2 < i <p—1.
The last row is again complete, but yields no other deductions, nor does it give
any coicidences. Similarly, we deduce that pQ~! = zwy 'z 'p from the first
row of the o~ 1[P, Q] table, and that iQ = yw*~'i for 2 <7 < p— 1. As above,
the last row yields no coincidences or new deductions. Using the Q [P, R
table gives pR™! = zyz 'z~ !p from the first row and :R = z Hi':o ywi, for
2 <4 < p—1. These words may be simplified by observing that w is a central
elements of G*, so that for 2 < ¢ < p — 1 we have iR = zyt~1w*(V{ where
s(3) = i(s — 1)/2. Similarly, the last row gives no other information. At this
stage the coset table is complete, and applying the information in the coset
table to the other relator tables gives no new deductions, nor does it give any

coincidences, and thus H has index p in G*.

A presentation for H is terms of z,y,2z and w is

]_:a;p:yp::wp:zp
= [z,y]P

= [z’y][y,zyi—l] for 1 = 2’3)“-7?

and z,w and [z,y] are central elements of H. From this presentation, it is
easy to see that the quotient of H by the derived group is elementary abelian
of order p*, and hence G* is of order at least p°. The method above may be
used to show that the subgroup of H generated by z,w and [z,y] has index
p? in H, and is elementary abelian of order p®, showing that G* has order pS.
A more direct way to see that H has order p° is to observe that there is a

homomorphism ¢ from H onto the group ®(1°) of order p® (see James (1980))
which has defining relations:

Qg = [al ) ao]

and as, s and a4 are central in ®(1%). The homomorphism ¢ is defined by

p(z) = as
o(y) = a4
p(z) = ao
p(w) = a.
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It is also clear that a and 3 are both contained in (G*)' N Z(G*). We have
that G ~ G*/(«, ), and this suffices to show that the rank of M(G) is two.
Gp.14 is a pre-image of (3 - 14), and so it remains to show that Gp.14 has order

dividing p* to give an efficient presentation.

As [a,b] is central,
1 = [a,b?] = [a,b""!][a,b][a,b,b" ] = [a, b]".
This completes the proof for this case.

Let Gp.17 be the group generated by a and b with the defining relations
1 =a? = (ab)?
= [b,a,b]
= [b,a,a,aqal;
Gpa7 is a pre-image of (3 - 17). Using the notation of Havas and Richardson
(1983), define c3 = [b,a],cs = [c3,a],c5 = [c3,b],¢6 = [ca,al,c7 = [cq,b],68 =
[c5,b]. To show that G,.;7 has class at most three, it suffices to show that
c6 = ¢ = cg = 1 (see Havas and Richardson (1983)). Newman (private
communication) has pointed out the result of Sims (1987), where a procedure
based on string rewriting rules is described to verify the nilpotence of finitely

presented groups. This procedure may also be used to perform calculations

similar to those given below.

It is obvious that ¢ = 1. We also have ¢5 = [c3,b] = [b,a,b] =1,s0¢c3 =1,

and it remains to show that c; = 1.

Consider
[b,a,ab] = [b,a,b][b,a,a]d,a,a,b]

= [b, a, a] [ba a,a, b]

= C4C7
Also,
[b,a,ab] = [b,a,bala,b]]

[b a,la, b]|[b,a ba][a'b]

= [[b, al, [, b]][5, a, ba]l*"

= [b, a, ba]l* ¥}

{[b a a][b a, b)[b, a, b, a]} !
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-1 —
So c3eqc;” = cqc7, 50 €7 = [cay c; 1]. We also have

cr = [c4, b]
= [eq, (abez)a™?]
= [ca,a" ][ca, abes]®
= [cq,abes]®  (since [cs,a] = 1)
(lea, bes)[es, a2y
[c‘;,bc,q,]“_1
[ea, cs][ea, b))
[ea es]fes)
= a[C4,C3]03—16763a_

=1

= (
= (

1

because ¢7 = [c4,c;!], and so Gp.7 is of class at most three, and thus Gp.17

has order dividing p?.

Let Gp.15 be the group defined by the relations

a? = [u,a,a],1 = uP,
1=u,a,ul.
Gp.15 is a preimage of the the group defined by (3-15) in the case when a = 0.
(The mapping @ — P,u +— R extends to a homomorphism of Gp.15 onto (3-15).)

It is clear that [u,a,a,a] =1 and also that [u,a,u,a] = 1.

It follows from the argument used above that [u,a,a,u] =1, so Gp.15 is of

class 3. Let ¢ = [u,a]. We want to show that |G,.15] < p*.

Now, [t,a] = a? is central, so

1 =[t,a”)
= [t,a . ap~1]
= [t,a®"|[t, a][t,a,aP?]
= [t,a?"!][t, q] since G,.15 is class 3
= [t,a??][t, a]?
= [t,q]

Also, let z = [t71,a], so that ¢ = a™?, so 7, is cyclic of order at most p,

and Gp.15 has order dividing p*. To complete the proof, from the presentation
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(3-15), the derived group is of order p?, and hence the multiplicator has order
at most p(4=2)(4~2-1)/2 p; also, the multiplicator has order at least p, and so
the presentation given above is a minimal one. These bounds on the order of

the multiplicator also apply in the cases when o is non-zero in the presentation

(3 -15). Let Gp.154 be the group defined by

a? = [u,a,a],a®? = u?

1=[u,a,u],
where a is non-zero. It is clear that the mapping a — P,u — R extends to
a homomorphism of Gp.15¢ onto (3 - 15). The argument used above to show

that Gp.15 is of order p* and class 3 is also applicable in this case, and so the

presentation given for G,.15, is a minimal one.

Some Other Groups

In this section we present a number of families of two generator, two rela-
tion groups which are shown to be finite, non-metacyclic, and are not wholly

contained in the known families of finite deficiency zero groups.

The groups are presented as follows:

Gi(n) = ({=z,y};2* = ysn,myz = zz¥),

2

Gg(n) = ({w,y};ms = an’my = [z’y])7
G3(n) = ({:l:,y};:z:z = y—s,my"’ = mnmy),
Ga(n) = ({z,y};2% = y",y* = zyaya),

where n is a non-zero integer.

The structure of G1(n)

Let n be a positive integer (we show below that G;(n) ~ Gi(—n)), let
G = G1(n), and let A be the preimage of G with relations

2V’ = zz?, [z, y] = 1.

(A is an infinite group, with A/A’ free abelian of rank 1.) We show that the
relation z* =1 holds in 4, and hence in G. The proof below was produced by

a computer program (which we have written, and is based on one implemented
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by Havas and Alford) which implements a method described by Leech (1977)

to prove relations in groups. We have

1=zyz ey 'z

— wzyz_ly-lw_lyzwy—lw_ly_lm

— m2ym——1y—2m—1y2mymy—1z-—ly—lzz

= 2ty 2 2y eyzy te "yl

= 2y lz 2yl Ly e

= 23y~ lz 2y e?yeLye 2y 3z

_ :r,sy_lm_zym3ym_1yw_lyaz—2y_3m

_ zsy_la:_zymsyw_lyw"lymy_lz_3y_2
= 2dy e tyzlyley le 3y 2z

= 2%y leyz lyley le 3y 2

— yzly 2zyelytzyle 3y 2z

_ y:csy_zzy:c—lysa:y_lm_zy_la:y_l

2 1 1

= yz’y Zzyz lyzyz Py lzy”

1 1

= y2’y Zzyz lyzyz Cy ley”

= yzdy~2zyzlyely~!
= ywsytla

and thus 23 = 1 in 4, and G.

Let w = z, v = z¥, and let H = (u,v). It is easy to see that H is a
normal subgroup of G, and from the presentation of G, G/H is cyclic of order
8|n|. By the above, it’s obvious that u® = 1 holds in H; as v is a conjugate
of u, and wv is a conjugate of v, the relations v*® = (uv)® = 1 follow. Using
the relation z¥° = zz?, we have myz(m“l)y = z, and conjugating by y~' gives

1 -1

—_ . — -1 . —
ezl =2¥ ,ie vu~! =z¥ , and the relation (uv~!)® =1 follows.

This shows that the group 3% is a preimage of H, and so G has order
dividing 2333 |n|.

Let a and b be elements of order 3 which generate 3°, and let K be the
split extension of 3% by a cyclic group of order 8n generated by ¢, with the
action of ¢ given by a® = b, b° = ab. We show below that G is isomorphic to K.
K is generated by a and ¢, has order 2%3%n, and the following relations hold:

a® =" (=1),
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and

It is easy to see that the mapping of G onto K given by z — a, y — ¢
extends to a homomorphism of G onto K, and this establishes the isomorphism.

Observe also that G1(n) = G1(—n).
The Structure of G»(n)

Let G = G2(n). In this section we show that G is finite of order dividing

283|n|3 by using coset enumeration and the Reidemeister-Schreier algorithm
( see Johnson (1990) ).

Let H be the subgroup of G generated by y?,zy?z~,zy 'zy. H is a

normal subgroup of G ( see Chapter Two ), and a transversal for H in G is
easily seen to be the set

{1,y,z,yz" 1,27, yz}.

Applying the Reidemeister-Schreier algorithm then gives the following presen-
tation for H

1=cd tag™

1=cg 'bd™ =ag™'f e
=ef lg7lb=ce 'd af
= cfbd~le?
a=b=c",
1= a(de)™" = a(fg) ™",
b= (ca)™ = (o),
where a = z3,b = yzly !, c = y%,d = zyzy~',e = (yx1)?, f =z lyz "y,

and g = (yz)?.

Eliminating b, f and g from the presentation, and using the fact that a is

central, a simplified presentation for H is:

1=[ctad™ ] = [ae,cd 7]

a = [d"l, e'l]
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= led,c] = ¢*"
= (edc a7 tde )"
= (a7 'dc tedc 1)

= (de)~*".

Hence H/H' = ({c,d,e};c*" = d*™ = e*" = 1, abelian ) and |H/H'| = 2%|n|?,
and so |G| is divisible by 273|n|®. Note that since H/(a) = H/H', we have
(a) = H'.

To complete the proof of the finiteness of G, we show that z° = 1 in G by
considering the (infinite) preimage K of G defined by the relations

xyz = [way]a
1=yl
In K,

1=yz ‘yey 2z

2, -2 -2
=yryr 'y T
= y:czy:c"ly_zwy:c—ly_l:c

— yzZy—la:yz—ly—lzyw—ly——lw

= a:aya:_ly_lmyw_l y_1 a:ya:_ly'"lm

— wSym—ly—lwym—ly—-lxy—-lmy
— x3ym—1y—-1wy-—1m2y
— m3y—lw3y

Since a = 2%, H' is of order 2, and so @ is finite of order dividing 283|n|>.

We now consider the structure of G/H and H. It is easy to see that G/H
is isomorphic to the symmetric group on three letters. Let a = ¢,8 = c¢d™?,

and v = cdle; then H = (a,B,7) and a presentation of H in terms of o, 3,y

18
8n 8n 8n
l_a _ﬂ =7

a= (o)™ =" = o' = [v,0],

1= [7,ﬂ] = [aMB]
= [a, 0] = [a, 8] = [a,7]
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The structure of G3(n)

Let n be a non-zero integer, and G = G3(n), where

Gs(n) = ({z,9}, {e? =y 7%,z =2"z¥}).

We show that G is finite, and of order 233|n| when n is odd. G/G' is of order
3|n|, and cyclic when n is odd. If |n| is even, z™ is a central element, and
from the second relation we get y~2zy = 2"y 'z, and so y~*zy = 2! and
thence [z,y] = z". This relation shows that the subgroup generated by z is
normal, and so G3(n) is metacyclic. From now on, suppose that n is odd. The
subgroup (z*) is normal and it may be seen by either coset enumeration, or
directly, that G/(z*) is of order 24; thus G is finite, and we obtain an upper
bound on the order of G, by showing that the relation z*" =1 holds . In G,

1= y:czy2

2 —n_—2 2
=y Yy ryry
n, —1

= g2z "y~ lz "y 2ayzy’

— wa—ny—lx—ny—2wy—1w—ly2

— yZm-—ny——lmny3n—2wy—lm—1y2

-2 - - -1 -
2n, —2 n—1,3n—2 111312

=y’ "y 2y P 2y y

— ySnmyzn—lyIin—Zwy—-lm—lyZ

— y3nwy$n—1y3n—2$y—1$-—1y—1m—2
— y3nmywn—1y3n~—2w—n+1y—2wyw—zy—lw—z
— ySnmyzn—ly3n—2m—n+1y—2my3w—2
— zymn—lyﬁn—zm—n+1y—2wy3$—2
wn—1y6n+1m——n+1y—2m-‘1

-1 - - -2
n l:B 4nyw 'n.+1y 2

=zy
= yx
— m_4n:z:n_1y$_n+1y—1
=g 4z 47,

Since all even powers of z are central, z*" = 1, and |G| divides 233|n|.

Let @ = (a,b) be the quaternion group, and A = (a) be of order 3t, t odd.
Let H be the split extension of @ by A with the presentation



[az’a] = [a’z’b] = [as,a] = [asvb] =1.

Let S =a?,and T = a~'o?, where

)\ = -3(t+1)/2, ift=—1(mod 4),
= \13(t—1)/2, ift=1(mod 4).

Then a” is a central element of H, and we show that H = (S,T) and that
S, T satisfy the relations §73% = T2,TS2 =T*TS.

Suppose that ¢ = —1(mod 4); then a = Sa? and o* = S*a~?* as a? is
central. Now, —2X = 3(¢ + 1) = 0(mod 4) and a~?* = 1; hence o> = §*. We
also have @ = o*T~! = §*, and a = ST2S5~?*. Thus S and T generate H.

Also, S73 = a7%a?, T? = (a7 'a?)? = a7 2a®* = a’a™® = §7%, and so,
2 —
i (T_l)s = a2a oM a?a ana®

-2 -1
= a oax

Thus Tt = a "t = a1, and TS* = T'TS.

For t = 1(mod 4), similar arguments show that S and T generate H, and

that the two relations hold. Thus H is a quotient of G, and |G| = 24|n| when
n is odd.

The Structure of G4(n)

Let H be the group defined by

({z,3}; [z%,9] = 1,3* = zyzyz);

then H is infinite since H/H' is the direct product of a group of order 3, and
a free abelian group of rank 1. We show that H' is a quotient of Qs.

Let a = yzy 'z~ !,b = zy 'z~ !y. From the second relation of H, and as
2? is central, we have @ = y~'z%y,and b = yz®y~!; thus a® = b%> = 2°. Firstly

we show that (a,b) = H'.

43



It is obvious that a¥ = b; B¥ = y lzy 'z~ 1y? = y ley ez lzyzyx

—_ 2 — _ _ —
'alyz = 2° e lyyey Ttz = oyt

z3 = Y.

1,..-1

, and, ba = zy~ z lzyzyzzy ™! =

Before showing that z normalizes (a,b), we show that a* = 1:

1 1 2 1 1

7! = YyTyy m“lymy" -
— ya:y:c_ly_lm_ly“l:c—lm_lywy”lx'l

a’ = yey le lyzy~

_ :c“zy:cy:c"ly_zz_l
= 3

and so a* = 21?2 = 1.

Similarly,
o =z lyzy ™t = 27 yzy~y
=z gz ly 1z ly sy
— az_zy_lm_ly — w—zy—lm—Zmy — m—4yy—2wy
=z y(zyeye) ey =z tye Ty iz
— a:Syw—ly—lm—l
— mﬁywy—lm—l
=a’a=a"!,
and,

b = y_lzc_ly:c = a:_zy'lzcy:c

-2, -2
=z “yy “zyz

=z *y(zyzyz) lzyz

- -1 =
=T "yx 1y1

=z yz Yy
=z *yz " (zyzyz) 'y
=zt lylp

— wa—ly—lm—ly

— 1126.’By_1€l!—1y

=b*b =071

This shows that (a,b) is a normal subgroup of H; we now show that (a,b)
is a quotient of Qs by showing that ba = a~1b.
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3

From above, ba = z*, and

(l_lb — y—lw—Syywﬁly——l

1 1

=y :c_3:cy:z:yzc:c3y"
= mymmy‘l

= 1123.

Since H/(a,b) = H/H', (a,b) = H', and the proof is complete.

Applying the above result to G = G4(n) shows that since |G/G'| < 3[n],
|G| < 2°3|n|. Assume now that n is positive (the case when n is negative is
similar). Observe that both y™ and y® are central elements of G4(n). When n
is relatively prime to three, G4(n) is abelian of order 3|n|. When = is divisible
by three, there is a homomorphism ¢ of G4(n) onto the group of order 2°3n

with defining relations

1= a4 — Yﬁn,
(1,2 — b2 — Y3n,
ba = a0,

a¥ =b, b¥ =ba

given by p(z) =Y 1bY ~"*! and p(y) = Y, showing that |G4(n)| = 233n.
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Chapter Four

Some New Efficient or Nearly Efficient Soluble Groups

Johnson and Robertson (1978) gave a survey of the finite groups of de-
ficiency zero known up to 1976. They observed that all known finite sol-
uble groups of deficiency zero had soluble length less than five, and con-
jectured that the soluble length of a finite group having deficiency zero is
bounded. Subsequent work on groups of deficiency zero ( Campbell and
Robertson (1978,1980ab,1982ab,1984abc)), Campbell, Robertson and Thomas
(1987abc,1988), Campbell and Thomas (1987), Campbell et al (1986),
Kenne (1983,1986), Mennicke and Neumann (1987), Neumann (1985,1987) and
Robertson (1980,1982)) did not provide an example of a finite group of defi-

ciency zero with soluble length five or greater.

The first example of a finite group of soluble length five having deficiency
zero was given by Kenne (1988). Additional examples of individual groups of
soluble length five having deficiency zero are given below. The first example of
an infinite family of finite groups of soluble length five having deficiency zero is
given in Theorem 1. Newman and O’Brien (19xx) have also given an example
of a finite group of soluble length five having deficiency zero which is distinct
from all the examples given in this chapter. Theorem 3 gives an infinite family
of groups of soluble length six having deficiency zero, and Theorem 4 gives a

further example of a finite group of soluble length six having deficiency zero.

The more general problem remains open. Parts of this chapter have ap-
peared as Kenne (1988,1990). We also give an example of a deficiency one

presentation for a finite preimage of a group of soluble length seven.

Soluble length five

In this section, we give a number of examples of finite groups having de-
ficiency zero and soluble length five. The structure of these examples is quite
similar (semi-direct products of extra special groups with relevant linear groups,

and direct products of such groups with cyclic groups).

The following theorem exhibits (disjoint) families of finite groups of soluble

length five having deficiency zero. We first establish some notation.
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Let E, be the non-abelian group generated by « and y having exponent p

and order p® where p is a prime. E, is presented by

(41) 1:mp:yp:[z,y]p

= [z, [z,y]] = [y, [z, y]].

There are automorphisms «, 3 of E; defined by

a(z) =y e,
a(y) =y 2y,
B(z) = yzy,
Bly) =1y~

We now show that the group generated by a and 8 is isomorphic to SL(2,3),
the 2-dimensional special linear group over the field of three elements. Observe
that SL(2,3) is generated by

1 1 0 1
A:(O 1) andB—(2 O)

and that 4 and B satisfy the following relations:

1= A% =B* = AB(4B™')?
(4-2)
= AB*A"'B2.

A somewhat tedious calculation shows that a and 8 also satisfy the relations

1=0'=p*=af(ep™')

(43) — aﬁZa—lﬂ—Z

and so the order of (e, ) divides 24. Since 8%(z) = yz~'y~', we have that
the order of 3 is four. This suffices to show that the order of (a,3) is 24 since

SL(2,3) has a unique minimal normal subgroup of order two generated by B.
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Let E3S be the semi-direct product of E; and SL(2,3) with the action
given above. E3S is a group of order 648 and soluble length five. We show
that E3S has a deficiency zero presentation. The direct product of E3S with
a cyclic group C}, of order k is presented by

1=2" =9’ =[z,9)°
= [33)["373/]] = [y,[:c, y]]

= ab(ab™!)?
=ab’a"1572,
(4-4) e* =y lz7t,
y* =y ey,
T =yry,
yb — .’B_l -—1,
1=e,a] = [c, b

= [e,2] = [e, ).

Theorem 1. Let G be the direct product of E3S and the cyclic group of

order k, where k is coprime to 12; G}, is a group of soluble length five having
deficiency zero.

We prove Theorem 1 by establishing the following lemmas:

Lemma 1a. Let G1(a) be defined by the relations

(AB)3 = B47

(45) 3 pa 4—1 pa+l a+2
1= ABY4~1Bot1 gBo+?,

where o = 1(mod 4); Gy () is isomorphic to the direct product E3S x C|3o+4|-

Lemma 1b. Let G2(c) be defined by the relations

AB = (B*A™1)?,

(4-6) \
1= A*B*AB*" 14" 1B>~2

where o = 3(mod 4); G3(a) is isomorphic to the direct product E3S x C|3o42)-
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Proof

The deficiency zero presentation for Gy when k = 5(mod 12) or k =
7(mod 12) is the presentation for G;(a) where k = |3a + 4|, and in the cases

when k = 1(mod 12) or k = 11(mod 12), is the presentation for G2(«), where
k=|3a+2|.

We will first prove Lemma la. The quotient by the derived group of
G1(a) is cyclic of order 3|3a + 4|. To show that G1(e) is finite, observe that

B* is central and consider the quotient G(c)/(B*) which is presentable with
relations

1 =(AB)* = B*,

(4D — A’BAT1Bot 4Bt

Since B has order 4, this presentation defines a single group, and a coset enu-
meration using Cayley shows that this group has order 216 and soluble length
four). This completes the finiteness proof for G1(a).

Let n = |3a + 4|. Since n is relatively prime to 3, there are integers u and
v such that 3u + nv = 1. Put ¢ = —u, and note that there is a homomorphism

61 of G1(c) onto E3S x C|3n44| given by

6;(A) =ba"'ct,
01(B) = b_lyc“l.

To see that 6; is onto E3 x Csjqia)y let @ = 61(2?) = ba~! and R =
Q7101 ((zy~1)?) = Q 'ba'y~1b. We then have that b = QRQ?R™'Q which

shows that 6; is onto.

The proof of Lemma 1b is similar. Again, B* is a central element of G2(a),
and the quotient Gx(a)/(B*) presented by

1=B*
(4-8) = A*B“AB*'A7'B*?,
| AB = (B*A™1)?

defines a single group, not an infinite family. This group has order 216 and
soluble length four. As the quotient to the derived group is of order 3|3a + 2|,
G2(a) is finite for all & = 3(mod 4).
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As for Lemma 1a, observe that there is a homomorphism 6, of G2(e) onto

E3S x C|3q42 given by

0:(A) = abac®,
0:(B) =y a6 laz "l

To see that 6, is onto E3 x C|3aa), let V = 62(AP) = (aba)? and W =
02(B?) = (y~'a"'b7laz"!)P. Since (aba)® = (y~la"1blaz"1)!2 = 1 and
P = 1(mod 12) or p = —1(mod 12), we have that V = aba or V = (aba)™?,
depending upon the value of p. There is a similar situation for W. In the
case that V = aba and W = y~la~'b"'az ™!, we have that y = V" IW2VW?2,
a=VWV72W~!andb=VW2V-!W~!, showing that 8, is onto. The other

cases are similar.
This completes the proof of Theorem 1.

The groups defined in Theorem 1 are not the only finite groups having

soluble length five and deficiency zero. Theorem 2 below provides further ex-

amples of such groups.

Let G be the group generated by « and v with the defining relations

1= u'vz(u'v_l)2

(4-9)

= (u?v)?u " tvu?(vuv)~?,

let G2 be the group generated by u and v with the defining relations

1 = w?v tuvuleo2

4.1

( 0) 2. -2 —1 -3 92 -1 -1
=u‘v ‘v v Cuv uT e,

let G3 be the group generated by u and v with the defining relations

o u? = ((w)’)’

— (v—3)u_1'o"1,

let G4 be the group generated by u and v with the defining relations

1=ulv lu oty 1yt
(4 . 12)

= u3vu2v_1uv“3,
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let G5 be the group generated by v and v with the defining relations

3 1

1 =ulvu"tvu"to

(4-13)

— 2 —
= v duvulv Tt

and, G¢ be the group generated by u and v with the defining relations
1 =u?vu"tou o tur?

= w2v tuv Tuvu 102,

Theorem 2. Each of the groups Gy,G3,Gs,G4,Gs and G is finite and has
soluble length five.

Proof:

Let Es be generated by z and y. It is straightforward to check that there
are automorphisms a, 3 of E5 defined by

a(z) = zy~a?,
a(y) = «*yz,

B(z) ==z 'y’ey ™!,
Bly) ==".

A straightforward calculation shows that o and [ satisfy the relations

1=0o’=p*=af(ep™’)

(4 ) 14) — a’BZa—lﬂ—Z

and so the order of (a,3) divides 24. Since 3%*(z) = zy 'z~ ’y, we have that
the order of A3 is four. This suffices to show that («, ) is 24 since SL(2,3) has

a unique minimal normal subgroup of order two generated by B.

Let E5S be the semi-direct product of Es and < a,8 >, with the action
of o and B as given above. E5S has order 3000, and is of soluble length 5. It
has the following defining relations
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1=2°%= y5 = [a:,y]s = [-’E,[m’y]] = [y) [(B,y]]
= o® = ' = af(af ™)’

= af?a"187?
(4-15) z® = zy~lz?,
y* = mZyw,
2f =z ly’ay?,
y’ =271

Put v = ay™'z7'Ba and v = za"'ya~1B. EsS is generated by u and v
-3,-1_ — - —-1,,— -2, — — ayayhay—2
because a = v v w72, B = vty 2,z = u v 2uvu2v "1y and y = uviu2v.
. . . . b
Defining relations for E5S in terms of  and v were constructed using Cannon’s

algorithm and were found to be

1 = uv?(uv™t)?

= (uv)3uv—2

(4 -16)

= (v®v)?utvu? (vuv) ™,

A coset enumeration shows that the preimage of Es5S generated by u and

v with the defining relations

1= uv®(uv™?)?

(4-17)

= (v?v)?u " vu?(vuv) 7t

has order 3000, and thus E5 S has a deficiency zero presentation. This completes
the proof for G;.

We now consider G;. Let E5SC be the direct product of E5S with a cyclic
group C of order 13 generated by c.

Let G be the group generated by X and Y having the defining relations
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1=X’Y ' XY?X?Y?
(4-18) .
= XY X'y XYy TPX Y L

Coset enumeration shows that G has order 39000. There is a homomorphism
v : Go — E5SC defined by

v(X) = z?Bza1c8,
1(Y) = aypet,

which is onto E5SC because

r = 7(X4Y—1X2Y:c”1Y_1),

y=1(Y XY XY 7?),
a=y(YIXTYXT'Y XY P,
B=yXY'X}YXY X,
c=7((XY)*).

Since E5SC has soluble length five, this completes the proof for G».

Another example of a finite group of soluble length five having deficiency

zero with a structure slightly different from those given above is shown below.

Let E3S be the semi-direct product of E3 and SL(2,3) with the action given
above. E3S is a group of order 648 and soluble length five. We show that E3S
has a deficiency zero presentation. Let G3 be the group generated by a and b

subject to the defining relations

a® = ((ab)*)’
(4-19) _ e,

In a similar manner to that above, we show that G is isomorphic to E3.S

in two stages. A coset enumeration over the identity shows that G3 has order
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648, and to complete the proof, note that there is a homomorphism é from G
onto F3S defined by

§(a)=p"",
§(b) = B tza™1p L.

To see that 6 is in fact onto E3S, observe that ¢ = §(baba='b"2a"!) and
y = 8(a’b?). In the next section, we provide another proof of the finiteness of

G3 by exhibiting it as the derived group of a finite group of soluble length six
and deficiency zero.

Using similar methods to those above (which are not recorded here), we

show that G, and G5 are direct products of E3S with cyclic groups.

A presentation for the direct product of E3S and a cyclic group of order
five is given by

-1, -1 -1 -1 —1
1=ubv "o 1o ,
4-20
( ) — w32, =1, —3
=uvu‘v Tuv °,

where v = c?a7'b%a%b and v = a~ 111, (The cyclic group of order five is

generated by c; @ and b are the generators of E;S.)

A presentation for the direct product of E3$ and a cyclic group of order
seven is given by

3

-1, -1
1 =wdvu"tou"to,

(4-21)

-3 2, —1
= wd v uvulv Tl

where u = ab®c? and v = ab~lab~laZc 3.

Let G be the group generated by z,y,a and B8 subject to the defining
relations
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1=2% =¢y° =[z,y]

— a4 — (aﬂ)zaﬂ_l
(4'22) = [a,ﬂz]’
z® =271, 2P = zy,
y® = 2%y~2 yf = g2yl

G is the semidirect product of the elementary abelian group of order 25 with
a group of order 96 having soluble length four. G has soluble length five.

Finally, let G¢ be the group generated by X and Y with the defining
relations

1=X?YXlyx-ly-lxy~—2
4.23
( ) = XY lXYy"'Xyx-ly2.

There is a homomorphism w : G¢ — G defined by

w(X)=z"'pa"4,
w(Y) = 2?B.

and w is onto G because

¢ =w(Y?2X 'Y 2X),
y=w(X™),
a=w(Y1XY?),
B =w(XY2X3}Y ™).

A coset enumeration shows that G has order 2400 and is thus isomorphic

to G.

In summary, Theorems 1 and 2 have provided deficiency zero presentations

for the split extensions of E3 and Es by SL(2,3), and for some direct products
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of these groups by cyclic groups of odd order. An exceptional case is the split
extension of C5 x C5 by a group order 96.

Soluble length six

The following theorem exhibits an infinite family of finite groups of defi-
ciency zero having soluble length six.

Theorem 3. Let G(k) be the group generated by a and b subject to the
defining relations

(ab)® = 8"

4.24
( ) 1=a*b"1ab*a"1.

If k = 3(mod 6), G(k) is a group of order 1296|k + 8| and has soluble length
six. G(k) is isomorphic to a direct product H x C|k+s|, where H is a group of
order 1296, and C,, is the cyclic group of order n.

Proof:

Observe that the quotient by the derived group is cyclic of order 2|k + 8|.
Since (ab)® is a power of b, it commutes with b, and since it clearly com-
mutes with ab, it is a central element of G(k). To establish that G(k) is finite,
we appeal to a theorem of Schur (see Chapter Two). Consider the quotient
G*(k) = G(k)/((ab)?). When k = 3 (mod 6), G*(k) has the defining relations

1 = (ab)® = b°

4.25
( ) =a*b lab®a"tb.

A straightforward coset enumeration using Cayley shows that this quotient has
order 1296, completing the finiteness proof for G(k), k = 3 (mod 6).

Let G = (z,y) be the non-abelian group of order 27 with exponent 3; then
G has defining relations

(4-26) 2’ =y’ = (zy)’ = (2y7!)’ =1,

and it is easy to see that there are automorphisms «, 3 of G given by a(z) =
T, a(y) = yz_la ﬁ(m) =y, B(y) = =.
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A calculation using Cayley shows that a and 3 generate a group isomorphic
to GL(2,3), the two dimensional general linear group over the field of three
elements, of soluble length four. Let H be the semidirect product of G and

(a, B), with the action of o and 3 given above. H is a group of order 1296 and
soluble length 6.

Let H(k) be the direct product of H with a cyclic group of order |k + 8|
generated by g. A generating set for H(k) consists of z,y,c, and g. This
generating set satisfies the relations

1=2® = ¢ = (ay)° = (ay™)°
=o' =% = ((a)’Ba’)’,

¥ = Z, ya = yz_la
(4'27) mﬁ:ya yﬂ:m,
1= glk+8|
= [z,9] = [y, 9]
= [a,g] = [ﬂ,g]'

There is a homomorphism 8: G(k) — H(k) defined by
f(a) = Ba"lg?,
6(b) = Bz a1 Bag™ .
If w = 6(a) and v = 6(b), then
a:g_5 = uv  udviu?
yg~" = (wv ) uviuv?
ag_5 = v?v ruvu v
Bg% = vu tvuv?,
and so g® = (vu~lvu?v~1)"2. Since g!**3l is trivial and k¥ = 3 (mod 6), the
order of g is relatively prime to 6, and so g is in the group generated by » and

v. This establishes that 6 is onto H(k); thus G(k) is a finite group with soluble
length at least six.

Observe that ker(f) is contained in the derived group of G(k). It is also
contained in the centre of G(k). To see this, the structure of G*(k) needs to

be determined. In a manner similar to that above, there is a homomorphism

6,: G*(k) — H defined by
91(0) = lBa_l,
6,(b) = Bz a1 Be.
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Similar computations to those above show that 8, is onto H, and since coset
enumeration shows that G*(k) has order 1296, #; is an isomorphism. This
suffices to show that ker(8) is contained in the centre of G(k). We have shown
that (G(k),ker(0)) is a defining pair for H(k). By a result of Jones and Wiegold
(Wiegold (1982)), ker(6) is an epimorphic image of the Schur multiplicator of
H(k), which is trivial, and so § is an isomorphism. We have established that

G(k) is a finite group of soluble length six. This completes the proof of the
theorem.

As a generalization of the family G(k) described above, let G(i,k) be the
group generated by a and b subject to the defining relations:

(ab)? = bt

4.28
( ) 1= a*btab*a=1b.

Imposing similar conditions to those above, consider only the case when i =
5(mod6) and k = 3(mod6). In this case there is some computational evidence
that G(7,k) is a finite group of soluble length at least six. However, it is not

known in general, whether G(3, k) is a finite group. Observe that G(5,k) defines
the same family as G(k).

In attempting to establish the finiteness of G(i,k), the method used is
similar to that above. Observe that the quotient to the derived group is cyclic
of order 2|k 4 2i — 2|. Again, (ab)? is a central element of G(i, k). To establish
that G(i,k) is finite, we want to appeal as above to a theorem of Schur and
Baer. It remains to show that the quotient G*(i,k) = G(3,k)/ < (ab)? > is
finite. When £ =3 (mod 6), G*(i, k) has a presentation

1 = (ab)® = b'*?

4.29
( ) = a*b rab*a" 1.

For a given i, the order of b is bounded above, and there are only |z +1)/6]
(possibly non-isomorphic) groups in the family G*(i, k).

For 5 <4 < 47 we have verified using the Cayley that G*(i,3) is finite of
order 1296.

We now show that the group G(—9) of order 1296 and soluble length six
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also has a deficiency zero presentation on a generating set where the orders of

the generators are different from those above.

Let Hy be the group G(—9) described above; Hy is a group of order 1296,
soluble length 6 and nilpotent length 4.

Let ap = a 'z and by = zBa~'. Since z8 = aZboaobyt, ao and by
generate Hy. Using an algorithm due to Cannon (1973), Hy is found to have a
presentation with the relations

1= (boay)?

— 8
= a

4-30
(4-30) .

= b(z,aglboagbo_lao_lboag.
A moderately difficult coset enumeration by computer shows that the preimage
of Hy with a presentation on ao and b, with relations

(4.31) 1=(b0a'0—)5

8 _ 12 -1 -1_-1 2

has order 1296, and thus is a deficiency zero presentation for Hy.

The subgroup of Hy generated by a; = a3 and by = ay b;l has index 2, and
is thus the derived group of Hy. A two generator, two relation presentation for

H; = (a1,b:) is obtained by using a modified form of coset enumeration ( see

Beetham and Campbell (1976)):

Hy = (a1,b1]a? = ((a15:)*)™,

4.32 —1;-1
( ) ‘_‘(1’1_3)a1 b )7

and so we also have a deficiency zero presentation for a finite group of soluble

length five. This is the group G3 defined in the previous section.

Continuing down the derived series of Hy, H! = (a;,b%,bya:b7") is of
order 216 and has soluble length four. Using computer implementations of
the Reidemeister-Schreier algorithm and Tietze transformations, a deficiency
zero presentation for H] of order 216 is obtained on generators a; = a; and
by = by 1a1b;, with relations

27—-1 -2 -1
1=a2b2 agbz a, bg

(4-33)

-1 _27-1_— -1
= agb2 1azb2 1a,2 2bgazb2 .
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The following theorem provides another example of a finite group of de-

ficiency zero having soluble length six. This group has a somewhat different

structure from those given earlier in this section.

Theorem 4. Let G be generated by « and y with the following defining rela-
tions:

(4-34) 1=2a*y™*

1 1

= zzywya:y“ m"ly_ :z:"zy.

G is a group of order 312000 having soluble length six.

Proof:

Coset enumeration over the identity shows that G' has order 312000. We
determine the structure of G below. The derived group G’ of G is generated
by yz,zy, and y"'zy® and has index eight in G. We will show that G’ is

isomorphic to G2, of order 39000, defined in the previous section.

A set of Schreier generators for G’ is

a=vyz,b=u2y,
c=a%,d=0b"",
e=c", f=¢€",
g=fh=d",

i = 8.

and using the Reidemeister-Schreier algorithm, a presentation for G’ is

1 = bghd = cefg = dfgh

272 2 -2 -1
=efgh =a’b"*c=a’c "¢
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= ab’d™? = acefi™?
(4-35) = acei ‘b = aci~'db

= ai"'hdb = bd*h ™2

= e fl = 222

= dh2g~Yi~lg 11

— f2(i—lg—1)2i—lh—1i

This presentation contains many redundant generators and relations. We now
simplify the presentation. Using the first relation to eliminate h = g~*b~1d~!

and simplifying the presentation, we obtain

1=0f""1

=ag liTl =ai7lg?

=bf e ld = cefg

=die '™ = @%b 2
(4-36) =a’c e = ab’d?

=acei b =b%f1f?

=c?e 2f ! = aif?e?

= agd 2b1d™Y

= bd?(dbg)?

Next we eliminate f and simplify the presentation to obtain

1=14=de?
=ag il =ai7lg?
= bgce = die 1i™?
(4-37) = a’b72c = a’c 27!
= ab’d™% = acei b

=be’c™? = aib’e le?!
=agd b7 1d™ i

= bd>dbgdbg
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Observe that we have now obtained a proof that z® = 1 holds in G.
Eliminate ¢, e and ¢ to obtain

1 = acdb
=a’b7%c
(4 -38) = a’c2d7?
= ab’d™?

= bd?c2

Using the first relation to eliminate d

1=a%b"2%¢
(4 -39) = a’c %bac
= ab3achac

= acbacb™1c%b

From the first relation, ca? = b%. Substituting this into the second rela-
tion, we obtain ab?c2b = 1. From the third relation, we have acbac = b~ 3a.
Substituting this into the fourth relation, we also obtain ab?c~2b = 1, and so

we obtain a deficiency zero presentation on three generators.

1=a%"2¢c
(4 - 40) = ab’c™?b

= ab’bacbac

Finally, eliminate ¢ to obtain

(4-41) 1 =a’b"lab’a?b?

=a’b 2¢ 0 %ab 20" 1p !
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This is a presentation for the group G5 of order 39000 described in the

previous section, and so G is a finite group of deficiency zero having soluble
length six.

A further calculation with Cayley shows that G is isomorphic to a semidi-
rect product of G, and Cy generated by X. The action of X is given by

lmy_l ) yX = w—Zy,

X = Yy
aX = :z:ya_lﬁ_l,

B¥ = azfla Ty,

The following theorem is due to A.Wegner (Newman, private communica-
tion), who has shown that there are two other non-isomorphic groups of order

1296 with soluble length six having deficiency zero.

Theorem 5. Let Gy be presentable with defining relations

(4-42) 1 = ababab 2a™'b

= a’ba"%ba’b™?
and let G be presentable with defining relations

(4-43) 1 = aba"'ba"1bab?

= a’ba" b3 ab?.

G and G, define non-isomorphic groups of order 1296 having soluble length
Six.

Proof:

(Due to A.Wegner.) Coset enumeration shows that both groups are of
order 1296. The Cayley program and output given in Appendix C show that
they are not isomorphic. Cayley is used to compute the conjugacy classes of
both groups and since they have different numbers of elements of order three,
the groups cannot be isomorphic. Note that neither group is isomorphic to

G(—9) of order 1296 and soluble length six defined in Theorem 3 above. This
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may be seen again by considering the class structure of G(—9). This completes
the proof of Theorem 5.

Soluble length seven

A calculation with Cayley shows that the permutations z and y below
generate a group G of order 82944(= 2'°3*) having soluble length seven.

= =(1,66,38,41,15, 56,28, 32)(2, 65, 37, 42, 16, 55, 27, 31)
(3,7,58,25,5,13,71,48)(4,8, 57, 26, 6,14, 72, 47)

(9,36,46,30)(10, 35,45,29)(11,17, 39, 52, 12, 18, 40, 51)
(19,21,64,53,62,43,24,70)(20, 22, 63, 54, 61, 44, 23, 69)
(33,68,50,59,34, 67,49, 60),

y =(1,22)(2,21)(3,29)(4, 30)(5,6)(7, 62)(8,61)(9,10)(11,42)(12, 41)
(13,14)(15,35)(16, 36)(17, 66)(18, 65)(19, 28)(20, 27)(23, 49)(24, 50)
(25,52)(26,51)(31, 48)(32,47)(33, 54)(34, 53)(37, 38)(39, 67)(40, 68)
(43,45)(44,46)(55,69)(56, 70)(57, 60)(58, 59)(63, 72)(64, 71).

These permutations satisfy the following relations (which were constructed
by using Cannon’s algorithm)
(4 ' 44) yza m87(a’y—1)61
elyz 2yzlyz Pyzyz lyz Ty,
(2Pyzyz~ly)%.
A coset enumeration shows that these words suffice to present G, so we have
a deficiency three presentation for G. A further coset enumeration shows that

the relation (zy~!)® may be omitted, giving a deficiency two presentation for

G. This immediately gives us a deficiency one presentation for the finite group
G* presented by

(4 . 45) 238 et yz,
ztye " lyz Py Pyryz lyz Ty,
(2Pyzyz " 'y)®.

To see that G* is finite, we use the (by now familiar) theorem of Schur.
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Chapter Five

Presentations for Semi-simple Groups and Their Products.

This chapter gives a number of minimal presentations for some semi-simple
groups and their products.

The motivation for the following theorem comes from a question of Wiegold
(1982). He asked what happens to def(G") as n — oo, where G™ is the direct
power of n copies of G. This question remains unanswered in general, and
Wiegold considered the simplest case, namely when G is a perfect group. In
this case, M(G™) is the direct power of n copies of M(G). Wiegold asked if
SL(2,5) x SL(2,5) is Schur-efficient, and suggested that a suitable method
for approaching this problem would be to consider whether As x As is Schur-
efficient or not. Parts of this chapter have appeared in Kenne (1983); (4) has
independently been proved by Campbell, Robertson and Williams (1990a); (7)
has been proved by Campbell and Robertson (1980a); (8) has been proved by
Campbell,Robertson and Williams (1990b).

Theorem. The following groups are Schur-efficient:
(1) As x As,
(2) As x A,
(3) As x Ax,
(4) As x As x As,
(5) As x SL(2,5),

(6) the direct product of two copies of SL(2,5) with amalgamated central
subgroups,

(7) SL(2,p), where p is an odd prime,

(8) SL(2,5) x SL(2,5),
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(9) SL(2,7) x SL(2,7).

(10) A7 for any n.
(11) A5 X A5 X A.5 X A5.

Proof:

(5) Let H be generated by z and y subject to the defining relations

1= y6 — m4yz—1y—3m—1y—1

= (ey*)?e "y (ay 1)’
It is easy to see that H is perfect. Coset enumeration shows that H has
order 7200. Sandlobes (1981) has determined all the perfect groups of
order less than 10%. There are two isomorphism classes of perfect groups
of order 7200, namely A5 x SL(2,5) and the direct product of two copies of

SL(2,5) with amalgamated central subgroups. To see that H is isomorphic

to A5 x SL(2,5), observe that SL(2,5) is generated by u and v with the
defining relations

(5-1)

u® =v* = (uv)?,

and there is a homomorphism 8 mapping H onto SL(2,5) defined by
0(z) = cd
O(y) =d.

This completes the proof of (5).

(1) Let H* be the group generated by = and y with defining relations

(5-2) =ztyz ly ey !

= (zy*)’z 7y (zy ')

(Note that H* is perfect.) A coset enumeration shows that H* has order 3600
and is therefore A5 x As.

(2) Let « = (1,3,5,4,6)(7,8,10) and b = (2,3)(4,5)(8,11)(9,10). These

permutations generate As X A¢ since aba"*ba"lba®bd = (1,2,3),
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baba~1ba’ba = (3,4,5) and baba2baba~2ba = (1,2)(3,4,5,6). Using a
program to determine relations satisfied by these permutations, it is found

that a and b satisfy the following relations

1:a15:b2

(5-3) = (ab)® = (a’b)*

= a’ba"3ba"ba"3b.

A coset enumeration shows that the group generated by b has index 1440 in
(a,b). This is sufficient to show the relations above provide a defining set
for A5 x Ag. Another machine based coset enumeration shows that the group
generated by b has index 1440 in the preimage obtained by omitting the relation
1 = (a®b)*. This provides a two generator, four relation presentation for As x
Ag. Since the multiplicator of this group is just the direct product of M(A4s)
and M(Ag), this completes the proof of (2).

(3) Let a = (1,5,3,2,4)(6, 10,9,11,8) and b = (1, 3)(2,5)(6,10,7,9,12,11,8).
These permutations generate a subgroup of A5 x A7. Relations satisfied

by these permutations are

1=d° =b" =ab?alba" b 2ab?!
= aba 'bablab"la b tab?
(5-4) ~ (o,
= (a’b7!)%ab*ab™!

=a%ba’b a0 200 20 0L,

(These relations were constructed by using a program to find relations satisfied
by a pair of permutations.) Coset enumeration shows that the subgroup gener-
ated by a has index 30240 in the group with the above defining relations. This
shows that a and b generate the whole of A5 x A;. Another coset enumeration

shows that the group generated by a has index 30240 in the preimage with
relations
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1=aq®

= aba"lbab lab la"1b " lab~!
= (a’b7)%ab*ab™?

= a?ba’b a0 207020107,

(5-5)

This establishes that the preimage has order dividing 151200 (= 60 x 2520 =
5 x 30240), and thus A5 x A7 has an efficient presentation.

(4) Let
a=(1,3,2,4,5)(6,9,7)(11,12,13,14,15)
b= (2,3)(4,5)(7,8)(9,10)(11, 14)(12, 15).

These permutations generate a subgroup of 45 x As x A5 and satisfy the
relations

1=a® ="
= a*ba"'ba*baba ' ba"'ba’bab
= a*ba'b(ab)* (a7 1b)%a b
= (a*b)*(a®b)*(ab)?a'b.

(5-6)

The group generated by a has index 14400 in (a, ), and so these relations define
A5 X A5 X A5.

Independently, Campbell, Robertson and Williams (1990a) have also
shown A5 x As x As to be Schur-efficient.

(6) B.H. Neumann (private communication) has asked whether the group K

generated by z and y with defining relations
210 — oS
(5-7) 1=ztyz ly 327y !

= (zy?*)’z 'y (ey™)?

is the other perfect group of order 7200 i.e. the direct product of two copies
of SL(2,5) with amalgamated central subgroups (denoted by P, by Sandlobes
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(1981)). Coset enumeration shows that K has order 7200. The normal sub-
group lattice of K was calculated using Cayley, and it was found that K has
no normal subgroup of order 60. This shows that K is isomorphic to P;. To
see that (5:7) is a Schur efficient presentation, observe that the direct product

of two copies of SL(2,5) is a covering group of K.
(7) See Campbell and Roberston (1980a) for details.
(8) See Campbell,Robertson and Williams (1990b) for details.

(9) SL(2,7) x SL(2,7) is generated by the matrices

6 0 0 O 6 4 0 0
|5 6 0 0 {4 4 00
*“loos 4)°YTloo 15
0 050 0 0 01
These matrices satisfy the following relations
1=z*yz %y =z
5.8 = 23422y’ oy
= 2%y’ e Ly ey~ y !

= (2y")’ = (ey’= "1y’

Let G be the group generated by z and y subject to the above relations. G
is a preimage of SL(2,7) x SL(2,7). A coset enumeration shows that the
subgroup generated by z has index 8064 in G, showing that G is isomorphic
to SL(2,7) x SL(2,7). Another coset enumeration over z shows that the last
two relations may be omitted.

Another coset enumeration shows that the group generated by z and y
with defining relations
1=2%yz3y
(5-9)

= $3y2wy5 :l?yz .
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also has order 112896, and so we have shown SL(2,7) x SL(2,7) to be Schur-

efficient.

(10) Campbell (private communication) has reported this result.

(11) Campbell (private communication) has reported this result.
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Appendix A
The groups of order 36, 48, 54, 60, 72 and 84

This appendix contains Cayley output showing minimal presentations for
the interesting groups of order 36, 48, 54, 60, 72 and 84. Appendix B lists the
groups of these orders as supplied with the Cayley system. These presentations
were originally listed by Neubiiser (1967). The numbering given here does not
correspond to Neubiiser’s as the abelian groups are not included in the Cayley
libraries. For each group, the correspondence between the generating set given
here and the generating set in the Cayley library is given. A bound on the
rank of the multiplicator for each group was determined by use of the Cayley
function DARSTELLUNGSGRUPPE, which computes for its argument G a
group K with the property that G ~ K/A, where A = K' N Z(K). The kernel
A is a homomorphic image of M(G), and if a presentation can be found having
deficiency equal to the rank of A, that presentation is a Schur-efficient one.
Presentations were constructed by using Cannon’s algorithm (Cannon (1973))
to find a set of defining relations. If the deficiency of the presentation thus
found is equal to the rank of A, the presentation is a Schur-efficient one. If
the deficiency is greater, the presentation was manipulated to obtain a Schur-
efficient one (in all cases except for the group g54n7 below). The manipulations
were fairly simple — coset enumeration was used to check if a relator could be
omitted from a presentation, or if the quotient of two relators could be formed

to obtain a new presentation with reduced deficiency.

The group ¢g54n7 has trivial Schur multiplicator (and minimally requires
three generators). However, this group cannot have a deficiency zero presen-
tation. Suppose that it has a deficiency zero presentation on n generators.
The subgroup of index two (which is the non-abelian group of exponent three)
would have a presentation on 2n — 1 generators and at most 2n relators. This
group of order 27 is known to have deficiency two, which is inconsistent with
having a deficiency one presentation. (This proof is due to Beyl (private com-
munication).)

SUN/UNIX CAYLEY V3.7.3 Fri Jun 28 1991 11:16:10 STORAGE 200000

o

>g36n3

> x=ab,y=d

o

>g=free(x,y);

>g.relations:
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>x76,(y*x"=1)"3,y " 3=y*x" 2%y ~1%x"-2;
>print order(g);

36

>clear;

T

>g36én4d

> x=b,y=d

s

>

>g=free(x,y);
>g.relations:
>x°2,y°9,y"3=(x*y)"3;
>print order(g);

36

>clear;

su

>g36n5

> x=ac”-1,y=ab,z=adb
su

>g=free(x,y,z);
>g.relations:

> 272, (x*z"-1)"2,x*y*x " -1*xy~-1=x"3%y"-3,(y*z"~1) "2=x"6;
>print order(g);

36

>clear;

S

>g36n6

> x=b"-1 y=c”-1 z=d
S

>g=free(x,y,z);
>g.relations:

> z74=y"3,(x,y),(x*y~4) "z=x"2%y"5, (x"4%y~5) "z=x"5*y~7;
>print order(g);

36

>clear;

T

>g36n9

> x=ad,y=bc

Y

>g=free(x,y);
>g.relations:

> x°6=(y*x)"2,y"6,(y*x"-1)"2;

>print order(g);
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36

>clear;

Sh

>g36n10

> x=ab,y=d

S

>g=free(x,y);
>g.relations:

> X"3=y 2%x*y"-2%x,y"4, (y*x) “2=x"-1%yxx*y;
>print order(g);
36

>clear;

>bye;

END OF RUN.
0.550 SECONDS

SUN/UNIX CAYLEY V3.7.3 Sun Jun 23 1991 15:42:17 STORAGE 200000
>ll

> g48nil
>x=Dy=Cz=EA"-1
>||

>g=free(x,y,z);

>g.relations:

>x"4, y°2, z°6,
dzry*z -1y,
>zexkz " -1%*x,
Syxxky*x”-1;

>print order(g);

48

>clear;

St

> g48n2
>x=Dy=Ez-=C¢CA"-1
S

>g=free(x,y,z);
>g.relations:

>z°6, (z,y), (z,x),
>Xx"2%y~-2,
Sy*x*y*x--1;

>print order(g);

48

>clear;

S

> g48n3;
>x=Cy=DC-12z=EA"-1
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N1l

>g=free(x,y,z);
>g.relations:

>z°6, (z,x), (y,x),
>zry*z " ~1xy,

>y 2*xx"-2;

>print order(g);

48

>clear;

su

> g48n4;
>x=Dy=4A"-1E-1
N1

>g=free(x,y);
>g.relations:

>x72, yT12, y 2%xxy~-2=x,
>(y*x) 2% (y~-1%x)"2;
>print order(g);

48

>clear;

su

> g48n10;

>x = AD-1

i

>g=free(x,b,c,e);
>g.relations:

>»"2, ¢*2, 72,
>(b,x), (c,x), (e,x"3),
>x"e*x,

>(b,c), (b,e), (c,e);
>print order(g);

48

>clear;

su

> g48ni1;
>x=CD-1

N

>g=free(x,b,e);
>g.relations:

>b"4, o2, (b,e),
>(b,x), (e,x"3),
>x"e*x;

>print order(g);
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48

>clear;

Sut

> g48n12;
>x=Ey=Bz=¢CD-1
Sh

>g=free(x,y,z);
>g.relations:

>x"4, y°2, z°6,
Sxyxx~-1%y,
dxkzkx " =-1%z,
Sy*zy*z=-1;

>print order(g);

48

>clear;

S

> g48ni7;
>x=AE-1y=BC
N1l

>g=free(x,y);
>g.relations:

>y~2, x°6,
>y#x#ytx‘-1*ytx*y*x‘-1,
Dy*x~3%*y%x~-3;
>print order(g);

48

>clear;

S

> g48n18;
>x=BCEy=BDE
s

>g=free(x,y);
>g.relations:
>(x*y~-1)"2, x°12,
>XT2%y " -2%x"~1%y;
>print order(g);

48

>clear;

Sh

> g48n19;
>x=Dy=Ez=BC-1
S

>g=free(x,y,z);

>g.relations:
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>x°2, y°2, z°6,
>X*zZkx*z" -1,
>(y*z)~2, (x*y)-4;
>print order(g);

48

>clear;

S

> g48n20;
>x=Dy=Ez=BC-1
sh

>g=free(x,y,z);
>g.relations:

>x"4, y°2, z°6,
>(x*y)-2, (x,z),
>(y*z)"2;

>print order(g);

48

>clear;

Sn

> g48n21;
>x=Dy=Ez=BC-1
sh

>g=free(x,y,z);
>g.relations:
>zayrzry-1, (z,x),
>y~2%x"-2, y*x*y*x~-1,
>z"6;

>print order(g);

48

>clear;

N1l

> g48n22;
>x=Ey=DC-1

Si

>g=free(x,y);
>g.relations:

>x"4,

>y -6y 2%kxky~2%x"-1,
DYykX" 2%y -1%x"-2,
>(y*x)-2%(y -1%x"-1)"2;
>print order(g);

48

>clear;
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S

> g48n23;
>x=Ey=C-1D"-1E
sn

>g=free(x,y);
>g.relations:

>x"2, y°4,

>y T2%x¥y”-2%x,
>(y*x)"6*(y~-1%x)"6;
>print order(g);

48

>clear;

Sh

> g48n24;
>x=Ey=C-1D-1
su

>g=free(x,y);
>g.relations:

>x"4,

>y 2xx*xy 2xx"-1,

>y ~5%x*y%x;

>print order(g);

48

>clear;

S

> g48n26;
>x=Ey=DB"-1z=BCE
Sn

>g=free(x,y,z);
>g.relations:

>x"2,

>(x*y)"2,

>yT-2%z"2,
dykzxy~-1x%z,
>(x*z)“3*(x"-1%z"-1)"3;
>print order(g);

48

>clear;

S

> g48n29;
>x=BE-1y=D"-1E"-1
Su

>g=free(x,y);

>g.relations:
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Dy 2kxky ~1%x,

DYy T2xx"-2%y -1%x"-2;
>print order(g);

48

>clear;

S

> g48n30;
>x=AE-1y=BC
S

>g=free(x,y);
>g.relations:
Sy*x~3*xy*x~-3,
Syxxxykx - 2%ykx*y*x~-1;
>print order(g);

48

>clear;

s

> g48n31;
>x=Ey=ABED
>n

>g=free(x,y);
>g.relations:

>x"2, y 4,

Sy 2kxwyRx Ky -2k XKy kY,
>(y*x)"3%(y--1%*x)"3;
>print order(g);

48

>clear;

Sh

> g48n32;
>x=D"-1y=BCE-1
Sh

>g=free(x,y);
>g.relations:

>x"3,

DYy T =4ny 2% xky -2%xx" -1,
>(y*x) “2x(y~-1#*x)"2;
>print order(g);

48

>clear;

S

> g48n33;

>x =B"-1D"-1
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Su
>g=free(x,c,e);
>g.relations:
>x"12,
>x"c*x"-7,
>x"e*x"7,

>c"2, 72, (c,e);
>print order(g);
48

>clear;

S

> g48n34;
>x=B-1D-1y=Cz=E
Sn
>g=free(x,y,z);
>g.relations:
Sy~axz"-2,
>x"6xy~-2,
>(y,2),
Sy*xxy*x~-1,
>(z*x"-1)"2%y~2;
>print order(g);
48

>clear;

N1l

> g48n35;

>x =B"-1D"-1
S
>g=free(x,c,e);
>g.relations:
>x"12%c"-2,
>x"6%e"-2,
>x"c*x"-T7,
>x"e*x"7,
>(c,e);

>print order(g);
48

>clear;

S

> g48n36;

>x =B"-1D"-1
sh
>g=free(x,c,e);

>g.relations:



>x"12%(c,0)" -1,
>c"-2%x"6,
>e"-2%x76,
>x"c*x"-T7,
>x"ex*xx"7;

>print order(g);
48

>clear;

St

> g48n40;
>x=EB"-1y=ED
S

>g=free(x,y);
>g.relations:
>y~-2%x76,
>(y*x~-2)"2,
>(y*x) 4x(y*x~-1)"4;
>print order(g);
48

>clear;

N

> g48n41;
>x=EB°-1y=0D
S

>g=free(x,y);
>g.relations:

>y~ 3=x#y*x,

>X 6=y 2%x*y~2%x"-1;
>print order(g);
48

>clear;

Su

> g48n42;

>x =B"-1E-1y=0D
Sh

>g=free(x,y);
>g.relations:
>(y*x)"2,

>y 3%kx"-2%y%kx"4;
>print order(g);
48

>clear;

>II
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> g48n43;

>x =B"-1 E*-1y=0D

S

>g=free(x,y);

>g.relations:

Dy -3%kx*y*x,

>y 2%x*y~2%x"-1%(y*x"3*y*x~-3)"-1;

>print order(g);

48

>clear;

>Il

> g48n44;
>x=EC-1y=BED
>II

>g=free(x,y);

>g.relations:

>y 2%x”-1%y~2%x" -1,
Sy*xky*(x*y*x)"-1;
>print order(g);

48

>clear;

i

> g48n4s5;
>x=BEy=AD-1
s

>g=free(x,y);
>g.relations:

Dy -2%x*yx*xx,

DX =3%ky*x*y;

>print order(g);

48

>clear;

s

> g48n46;
>x=E-1y=Bz=¢C
S

>g=free(x,y,z);

>g.relations:
>x°3, y°2, z72,
>(z*y) -2,
>(z*x"-1)"3,
>(y*x~-1)"3,

>(z*x"-1%y*x)"2;
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>print order(g);

48

>clear;

N1l

> g48n47;

>x =By=E-1

su

>g=free(x,y);
>g.relations:

>x"4*»y~-3,

>(y*x)"3,

>(y*x~-1)"3;

>print order(g);

48

>clear;

>bye;

END OF ROUN.

2.170 SECONDS

SUN/UNIX CAYLEY ¥3.7.3 Sun Jun 30 1991 10:48:50 STORAGE 200000
Su

>g54n1
>x=¢"-1y="5bvd"-1

sn

>g=free(x,y);
>g.relations:

>x°3, y°6, (x*y) 2xxxy--2,
>x*y 2% (x*y~-1)"2;
>print order(g);

54

>clear;

Su

>g54n3

>x = a"~-1c"-1 y = db"~-1
Su

>g=free(x,y);
>g.relations:

>x73, (x*y)-2*(x"-1xy~-1)"2, (x,y"2)*y"6;
>print order(g);

54

>clear;

N1

>g54nb

> x = abdc y = abcd z = abc
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Sn
>g=free(x,y,z);

>g.relations:

>z"3, x"2%y~-2,
>(x*z"-1)"2%x"~2%z*x"-2%z"-1,
>(y*z"=1) “2%xkyrxhry -1kx -1%y~-1;
>print order(g);

54

>clear;

S

>g54n7

>x =b"-1y=c"-1z=da"~1

S

>g=free(x,y,z);

>g.relations:

>x"3kykzkynz -1,

>y~3, xkzxx*z -1,

>z -2%(x,y);

>print order(g);

54

>clear;

S

>g54n8

>x =b"-1 y = dac"-1

N

>g=free(x,y);

>g.relations:

>x"3%y~6,

OX¥YRXT—1hyRxRy“-2,
dxXykx"=1%y"-2kx"-1ky;

>print order(g);

54

>clear;

S

>g54n11

>

>x =ab"~1 y = ac"-1 z = bda w = bec
S

>g=free(x,y,z,w);

>g.relations:

> z72%x"3, y3x(x,w), w 3x*(y,w),
> (x,y), (x*z°-1)"2, (y*z--1)-2,
> (z*w)"2;
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>print order(g);
54

>clear;

Su

>g54n11

>

> x = abdc y = abcd z = abc
S
>g=free(x,y,z);
>g.relations:
>x"2%(x*y)"3,
>(x*z)"2%z"9,
>y°2, (y*z)°2;
>print order(g);
54

>clear;

>bye;

END OF RUN.

2.059 SECONDS
SUN/UNIX CAYLEY V3.7.3 Fri Jun 28 1991 10:08:11 STORAGE 200000
S

>g6é0n3;

> x=ab y=d

S

>g=free(x,y);
>g.relations:

> y°3,(y*x~-1)"2*y=x"3,(y,x)(y,x"-1);
>print order(g);
60

>clear;

su

>g6é0ong

> x=db"~-1 y=ca”2d
s

>g=free(x,y);
>g.relations:

> x"6=(y*x)"2,y"10,(y*x"-1)"2;
>print order(g);
60

>clear;

Y

>g60nii;

>x=ab y=b

84



Si
>g=free(x,y);
>g.relations:

> x°6,y°3,(x*y)"2;
>print order(g);
60

>clear;

>bye;

END OF RUN.

0.219 SECONDS

SUN/UNIX CAYLEY V3.7.3 Sun Jun 23 1991 17:35:08 STORAGE 200000
>II

>g72n5

>x =AC-1D"-1y=EC-1z=4ABD-1
>Il

>g=free(x,y,z);
>g.relations:
>(x*y-'1)-2s(X,Z),y*z*y'-ltz,x‘G,(x‘2*y)‘2,x*y“-1*z‘2tx"-1*y;

>print order(g);

72

>clear;

S

>g72n9

>x =Ey=ABDE
sn

>g=free(x,y);

>g.relations:
>x"3=xkykx -1kykx -1ky ~1kx*y~-1,y"6, (x*y) "2%x*y”-2;

>print order(g);

72

>clear;

su

>g72n10

>x =B E-1y=A4CB-1
N

>g=free(x,y);

>g.relations:
>XT3%ky"2,y76, x*yRx -1 aykxhy -1hx"-1ky"-1;
>print order(g);

72

>clear;

Su

>g72n11
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>x = AC-1y=Ez=BD"-1

T

>g=free(x,y,z);

>g.relations:
>y°2,(x*y"-1)"2,x*z*x"-1%z"-1,(y*z)"2,x"6,2°6;
>print order(g);

72

>clear;

S

>g72n12

>x =C¢"-1y=BC-1E-1z=DC-1E-1
su

>g=free(x,y,z);

>g.relations:

>y 4,y 22272, x*z*x*z" - 1=(y*z) "3 (y -1%z"-1)"3,x " 3=xkykx*y~-1;
>print order(g);

72

>clear;

S

>g72n13

>x = AC°-1y=EB-1z=CDE
su

>g=free(x,y,z);

>g.relations:

>z72, xxy*x*y~-1,
>(x*z"-1)"2=x"3%y~-2,

>y~ 4=(y*z) " 3%(y~-1%z)"3;

>print order(g);

72

>clear;

NT

>g72ni4

> x=d"-1e"-1,y=ac,z=ad

S

>g=free(x,y,z);

>g.relations:

>(y,2)=y 3%z =3, xkykx -1y xkzkx -1%z X 4ky"-3;
>print order(g);

72

>clear;

s

>g72n19

>x =Ey=DB"-1C"-1
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s

>g=free(x,y);

>g.relations:
>x°2,776, (x*y) "2%(x*y~-1)"2;

>print order(g);

72

>clear;

S

>g72n22

>x =Ey =B"-1D"-1
su

>g=free(x,y);
>g.relations:
>x"3,(x*y) "3, x*y " 2%x" 1%y~ =2;
>print order(g);

72

>clear;

Sl

>g72n23

> x=be"-1,y=e"-1d

S

>g=free(x,y);
>g.relations:
>x73=y"3,x 2%y " ~ixxxykxxy”-1;
>print order(g);

72

>clear;

S

>g72n24

>x = A"-1 D"-1 y=CE
S

>g=free(x,y);
>g.relations:
>x°3,y"4, (x*y) "2%x"-1%y " ~1xx"-1%y;
>print order(g);

72

>clear;

i

>g72n26

> x=c¢"~1d"-1,y=aeb"~1
Su

>g=free(x,y);

>g.relations:
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DX 2%ykx 2%y -1,y"6,x " 3xyxx"~3*y;
>print order(g);

72

>clear;

sn

>g72n27

>x = ¢°-1 D°-1 y = E B~-1

su

>g=free(x,y);

>g.relations:
>(x*y)"2,(x*y~-1)"2,x 5%y " -5%x"-1*y;
>print order(g);

72

>clear;

S

>g72n28

> x=e,y=adb

>

>g=free(x,y);

>g.relations:
>Y°2,x74,(x*y"-1)"4=(x*y*x"-1%y)~3;
>print order(g);

72

>clear;

N1l

>g72n29

>x =Ey=ABE-1

s

>g=free(x,y);

>g.relations:

DX 3kykx"~1ky XHy Ikxky-1,x 3%y -1kx" -1xy -1kx"-1xy~-1;
>print order(g);

72

>clear;

S

>g72n30

> x=de,y=cb"~1,z=adb"~1

st

>g=free(x,y,z);

>g.relations:

>y~ 3=xay*x -1%y,(x*z) "2=2"6,x 4=y*z*y -1*z"-1, (x*z"-1)"2;
>print order(g); ‘
72
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>clear;

T

>g72n31

> x=b"-1,y=e,z=c"~1d4"-1
N

>g=free(x,y,z);
>g.relations:
>y°2,(y*z)"2,x"3=x*zrx"-1%z" -1, (x*y~-1)"2=2"12;
>print order(g);

72

>clear;

su

>g72n32

>x =B*-1y=Ez=C-1D-1
su

>g=tree(x,y,z);
>g.relations:
>xky*xhy“-1, yhzky -1xz,
>x"3=y-4,
>(x,2z)=y"2%z"-6;

>print order(g);

72

>clear;

Su

>g72n33

> x=bdc"-1,y=bcde

Sn

>g=free(x,y);
>g.relations:

>x72,y718, (x*y~2) "2=(x*y) 2% (x*y~-1)"2;
>print order(g);

72

>clear;

Su

>g72n36

> x=dc¢”-1,y=abce

S

>g=free(x,y);
>g.relations:
>XT6=X"2%yRx 2%y =1,y " 6=xky " 2kx -1y 2, (x*y) 2% (x -1y~ -1)"2;
>print order(g);

72

>clear;
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Sn

>g72n37

> x=eb"-1,y=c"-1d"-1
su

>g=free(x,y);
>g.relations:
>(x*y)~2=x"6,(x*y"-1)"2,y"12;
>print order(g);

72

>clear;

su

>g72n38

> x=bec,y=bcd

sh

>g=free(x,y);
>g.relations:

DX 3kykx"-3%y , x*yRX*y"-5;
>print order(g);

72

>clear;

N1

>g72n40

> x=ba"-1,y=ed"-1

S

>g=free(x,y);
>g.relations:
>XT6=X"2%ywx 2%y ~-1,y 6, xkykx"~1ky " -2%x"-1%y;
>print order(g);

72

>clear;

Su

>g72n41

> x=e,y=bdb -1

su

>g=free(x,y);
>g.relations:

>y°2, (x*y*x"-1%y)~2,x"4=(x*y"~1)"6;
>print order(g);

72

>clear;

su

>g72n42

> x=ae,y=ade"-1

90



s

>g=free(x,y);

>g.relations:

DY 4,xT2%y 28X - 1%y - 1%x - 1%y  xkykXRYy " ~1RxRyRX"-1%Y;
>print order(g);

72

>clear;

su

>g72n43
>x=D"-1y=BEz=CDEA
sn

>g=free(x,y,z);

>g.relations:
>y~2=x"3,z"2=(y*z) "3, xkykzkxkzkx " ~1%y, (x*y~-1)"4;
>print order(g);

72

>clear;

T

>g72n44

> x=cd”-1,y=abe

su

>g=free(x,y);

>g.relations:

>y°2,(x"3%y) "2=(x*y~-1)"4,x"9;
>print order(g);

72

>bye;

END OF RUN.

3.890 SECONDS

SUN/UNIX CAYLEY V3.7.3 Fri Jun 28 1991 12:05:39 STORAGE 200000
>|I

>g84n3
>xrfabdy=acd
i

>g=free(x,y);
>g.relations:
>(x*y~~1)"2, x 2%y~ -2%x"-1xy, x~21;
>print order(g);

84

>clear;

s

>g84n10

> x=ad,y=bc
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su
>g=free(x,y);

>g.relations:

>x"14, (y*x) "2,y 6=(y*x"-1)~2;
>print order(g);

84

>clear;

i

>g84n11

> x=bc y=d

su

>g=free(x,y);

>g.relations:

>y7°3, (x*y) "3,y -1%x"2%y=x"4;
>print order(g);

84

>clear;

END OF RUN.

0.230 SECONDS



Appendix B
The groups of order 36, 48, 54, 60, 72 and 84 — the Cayley libraries

LIBRARY G36N1;

"Group of order 36: number 1."

"Group: G; Generators: a, b, ¢, d."

G: free(a, b, ¢, d);

G.relations: a“3 = b"2 * (a"-1) = ¢"3 =d"2 = (a, b) = (a, ¢) = (a, d) =
(b, ¢) = (b, d) = (¢, A) * (¢°-1) =1;

FINISH;

LIBRARY G36K2;

"Group of order 36: number 2."

"Group: G; Generators: a, b, ¢, d."

G: ftree(a, b, ¢, d);

G.relations: a3 = b2 % (a“-1) = ¢"3 =d°2 * (b"-1) = (a, b) = (a, ¢) =
(a, d) = (b, ¢) = (b, d) = (¢, &) * (c"-1) = 1;

FINISH;

LIBRARY G36N3;

"Group of order 36: number 3."

"Group: G; Generators: a, b, c, d."

G: free(a, b, ¢, d);
G.relations: a3 = b"2
(b, ¢) = (b, d) *b *x ¢
FINISH;

LIBRARY G36N4;

"Group of order 36: number 4."

¢c*2=d4"3=(a, b) = (a, ¢) = (a, d) =
(¢, d) b =1;

"Group: G; Generators: a, b, ¢, d."
G: free(a, b, ¢, d);
G.relations: a“3 = b2

¢"2 =4d°3 * (a*-1) = (a, b) = (a, ¢) = (a, d) =
(b, ¢) =(b, &) *b xc¢c =(c, A) xd =1;

FINISH;

LIBRARY G36N5;

"Group of order 36: number 5."

“Group: G; Generators: a, b, ¢, d."

G: free(a, b, ¢, d);

G.relations: a“2 =b"3 =¢"3=4d"2= (a, b) = (a, ¢) = (a, d) =

(b, ¢) = (b, d) * (b"-1) = (¢, 4) * (c"-1) = 1;

FINISH;

LIBRARY G36N6;

"Group of order 36: number 6."

"Group: G; Generators: a, b, ¢, d."

G: free(a, b, ¢, d);

G.relations: a"2 =b"3 =¢"3=d"2*a-=(a, db) =(a, ¢) =(a, d) =
(b, ¢) = (b, d) * (b"-1) = (¢, d) * (c"-1) = 1;

FINISH;

LIBRARY G36K7;

"Group of order 36: number 7."

"Group: G; Generators: a, b, ¢, d4."

G: free(a, b, ¢, d);

G.relations: a"2 = b"3 = ¢°3 * (b"-1) =d"2 = (a, b) = (a, ¢) = (a, d) =
(b, ¢) = (b, d) * (b™-1) = (¢, d) * b x (c"-1) = 1;

FINISH;

LIBRARY G36N8;
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"Group of order 36: number 8."

"Group: G; Generators: a, b, ¢, d."

G: free(a, b, ¢, d);

G.relations: a"2 =1b°3 =¢"3 * (b"-1) =d°2 * a = (a, b) = (a, ¢) = (a, d) =
(b, ¢) = (b, d) * (b°-1) = (¢, d) * b * (¢"-1) = 1;

FINISH;

LIBRARY G36N9;

"Group of order 36: number 9."

"“Group: G; Generators: a, b, ¢, d."

G: free(a, b, ¢, d);

G.relations: a3 = b3 =¢"2 =4d"2 = (a, b) = (a, ¢) * (a*-1) = (a, d) =

(b, ¢) = (b, d * (®-1) = (c, d) = 1;
FINISH;

LIBRARY G36N10;

"Group of order 36: number 10."

"Group: G; Generators: a, b, ¢, 4."

G: free(a, b, ¢, d);

G.relations: a3 =b3 =¢"2=4d"2 *%c¢ = (a, b) = (a, ¢) * (a"-1) =
(a, @) *a* (b°-1) = (b, ¢) * (b"-1) = (b, d) * a*xb = (c, A
FINISH;

LIBRARY G48N1;

"Group of order 48: number 1."

it
-
.

"Group: G; Generators: a, b, c, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"3 = b2 =¢"2=4"2*b=¢"2=(a, b) = (a, ¢) = (a, d) =
(a, ) = (b, ¢) = (b, d) = (b, &) = (c, d) = (c, ) = (d, e) * b =1;
FINISH;

LIBRARY G48N2;

"Group of order 48: number 2."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, 4, e);

G.relations: a"3 =b"2=c"2=d"2*b=e2%b=(a, b) =(a, ¢) =(a, d) =
(a, ) = (b, ¢c) = (b, d) = (b, &) = (¢, @) = (¢, ©) = (d, ) *b = 1;
FINISH;

LIBRARY G48N3;

"Group of order 48: number 3."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a“3 =b"2=c¢c"2*b=4d"2=e"2= (a, b) = (a, ¢) (a, d) =
(a, e) = (b, ¢) = (b, d) = (b, ) = (c, d) = (c, &) =(d, e) *b = 1;
FINISH;

LIBRARY G48N4;

"Group of order 48: number 4."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"3 =b"2=c¢"2=d4d2=e2%*c=(a, b) = (a, ¢) = (a, &
(a, ) = (b, ¢) = (b, d) = (b, @) =(c, d) = (c, &) = (d, o) * b = 1;
FINISH;

LIBRARY G48N5;

"Group of order 48: number 5."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"3 =b"2=c¢"2=d"2*b=¢e"2%c = (a, b) = (a, ¢) =(a, d) =
(a, @ = (b, ¢) = (b, d) = (b, @) =(c, d) = (c, e) = (d, @) *Db = 1;
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FINISH;

LIBRARY G48N6;

"Group of order 48: number 6."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, c, d, e);

G.relations: a“3 =b'2=¢"2*b=432=¢e"2% (¢c-1) = (a, b) = (a, ¢) =
(a, d) = (a, &) = (b, ¢) = (b, d) = (b, &) = (¢, d) =
(c, ) = (d, e) *»b = 1;

FINISH;

LIBRARY G48N7;

"Group of order 48: number 7."

[}

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a3 =b"2 =c¢"2 *x b
(a, d) = (a, &) = (b, ¢) = (b, d)
(c, @ *b = (d, e) * (¢c*-1) = 1;
FINISH;

LIBRARY G48N8;

"Group of order 48: number 8."

d°2 * b * (¢c°-1) = "2 = (a, b) = (a, ¢) =
(b, &) = (¢, d) =

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, 4, e);

G.relations: a"3 = b2 = c¢"2 * b = d"2 * (¢c*-1) = e"2 = (a, b) = (a, ¢) =
(a, d) = (a, e = (b, ¢) = (b, d) = (b, &) = (¢, d) =

(c, ) *b = (d, e) * (¢"-1) = 1;

FINISH;

LIBRARY G48N9;

"Group of order 48: number 9."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"3 = b"2 = ¢ 2 *xb=d"2 *x b *x (¢c*-1) = e"2 * b= (a, b) =
(a, ¢) = (a, d) = (a, ) = (b, ¢) = (b, d) = (b, &) =

(c, @) (c, e *b =(d, e) * (¢c™-1) = 1;

FINISH;

LIBRARY G48N10;

"Group of order 48: number 10."

"Group: G; Generators: a, b, c, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 = b2 =c°2=4d"3 = e"2 = (a, b) = (a, ¢) = (a, d) = (a, &) =
(b, ¢) = (b, d) = (b, &) = (¢, d) (c, o) = (4, e) * (d"-1) = 1;

FINISH;

LIBRARY G48N11;

"Group of order 48: number 11."

"Group: G; Generators: a, b, c, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 =b"2 *a=c¢"2=d3=¢e2=(a, b) = (a, ¢) =(a, d) =
(a, @) = (b, ¢) = (b, d) = (b, e) (c, ) = (c, &) = (4, &) * (d°-1) =1;
FINISH;

LIBRARY G48N12;

"Group of order 48: number 12."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 =b"2 =c¢"2 =d"3 = e"2 *x a = (a, b) = (a, ¢) = (a, d) =
(a, ) = (b, ¢) = (b, d) = (b, &) = (¢, d) = (c, o) = (d, &) * (d°-1) = 1;
FINISH;
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LIBRARY G48N13;

"Group of order 48: number 13."
"Group: G; Generators: a, b, c,
G: free(a, b, ¢, d, e);
G.relations: a"2 = b"2 * a = ¢"2
(a, e) = (b, ¢) = (b, d) = (b, e)
FINISH;

LIBRARY G48N14;

"Group of order 48: number 14."
"Group: G; Generators: a, b, c,
G: free(a, b, ¢, d, e);
G.relations: a"2 = b"2 *x a = ¢"2
(a, e) = (b, ¢) = (b, d) = (b, e)
FINISH;

LIBRARY G48N15;

"Group of order 48: number 15."
"Group: G; Generators: a, b, ¢,
G: free(a, b, ¢, d, e);
G.relations: a"2 = b"2 * a = ¢"2
(a, d) = (a, &) = (b, ¢) = (b, 4
(c, &) = (d, o) * (d°-1) = 1;
FINISH;

LIBRARY G48K16;

"Group of order 48: number 16."
"Group: G; Generators: a, b, ¢,
G: free(a, b, c, d, e);
G.relations: a"2 = b2 * a = ¢"2
(a, d) = (a, &) = (b, ¢) = (b, d)
(¢, d) = (c, &) = (4, o) * (d°-1)
FINISH;

LIBRARY G48N1i7;

"Group of order 48: number 17."
"Group: G; Generators: a, b, ¢,
G: free(a, b, ¢, d, e);
G.relations: a2 =b"2 = ¢"2 = 4°
(b, ¢) = (b, d) = (b, &) = (¢, d)
FINISH;

LIBRARY G48N18;

"Group of order 48: number 18."
"Group: G; Generators: a, b, c,
G: free(a, b, ¢, d, e);
G.relations: a2 = b"2 * a = ¢"2
(a, @) = (b, ¢) = (b, d) = (b, e)
(c, e) *¢c xd=1(d, e) * ¢ = 1;
FINISH;

LIBRARY G48N19;

"Group of order 48: number 19."
"Group: G; Generators: a, b, ¢,

G: free(a, b, ¢, d, e);
G.relations: a2 = b2 =¢"3 = 4"
(a, @) = (b, ¢) = (b, d) = (b, e)
(c, ) * (c°-1) = (4, e) * a =1;
FINISH;

LIBRARY G48N20;

d, e.”

d-3
(c, d)

a-"

b a
(c, d)

, ©.

d°3
(b, e)

d, e.

(b"-1)
(b, e)

, e.

2 "3

(c, ©)

d, e.

d“2
(c, &)

, ©.

= e"2
(¢, d)

2
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e°2 ¢ =(a, b) = (a, ¢) = (a, d) =
= (¢, ) = (d, e) * (da"-1) = 1;

3

e2 = (a, b) = (a, ¢) = (a, &
= (c, o) = (d, &) * (d°-1) 1;

"2 * (b"-1) = (a, b) = (a, ¢) =
= (c, d) =

=d°3 =¢2%c¢c = (a, b) = (a, ¢) =
= (a, b) = (a, ¢) = (a, d) = (a, &) =
*x¢c*xd=1(d, e) * ¢c = 1;

e°3 = (a, b) = (a, ¢) = (a, d) =

= (a, b) =(a, ¢) = (a, & =



"Group of order 48: number 20."

"Group: G; Generators: a, b, ¢, 4, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b"2=c"3=d"2*a=2e2=(a, b) = (a, ¢) =(a, d) =
(a, e€) = (b, ¢) = (b, d) = (b, &) = (¢, ) =

(c, &) x (c™-1) (d, e) * a = 1;
FINISH;

LIBRARY G48N21;

"Group of order 48: number 21."
"Group: G; Generators: a, b, c, d, e.
G: free(a, b, ¢, d, e);

G.relations: a"2 =b2=c"3=d2*a=¢2%*a=(a, b) =1(a, c)=1(, d=
(a, o) = (b, ¢) (b, d) = (b, e) = (¢, d) =

(c, @) * (¢c"~-1) = (4, e) * a =1;

FINISH;

LIBRARY G48KN22;

"Group of order 48: number 22."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 = b2 =c¢"3 =d"2=e"2 *xb = (a, b) = (a, ¢) = (a, d) =
(a, ) = (b, ¢) = (b, d) = (b, &) = (c, ) =

(c, &) * (¢c~-1) (d, @) * a =1;

FINISH;

LIBRARY G48N23;

"Group of order 48: number 23."

[}

"Group: G; Generators: a, b, ¢, 4, e."

G: free(a, b, c, d, e);

G.relations: a"2 =b"2=c¢"3=d"2*b=2e"2=(a, b) =(a, ¢) =(a, d) =
(a, ) = (b, ¢) = (b, d) = (b, e) (c, ) =

(c, &) * (¢c*-1) (d, o) * a = 1;

FIRISH;

LIBRARY G48N24;

"Group of order 48: number 24."

"Group: G; Generators: a, b, ¢, d, e."
G: free(a, b, ¢, d, e);

G.relations: a"2 =b"2=c¢"3=4"2*b =e"2%a=(a, b)
(a, o) = (b, ¢) (b, d) = (b, &) = (c, d) =

(c, ) * (¢"-1) = (d, o) * a = 1;

FINISH;

LIBRARY G48HN25;

"Group of order 48: number 25."

(a, ¢) = (a, @)

“Group: G; Generators: a, b, ¢, d, e."
G: free(a, b, ¢, d, e);

G.relations: a2 =b"2 =¢"3 =472 * a
(a, ) = (b, ¢) = (b, d) = (b, e)
(c, &) *x (¢"-1) (d, e) * a = 1;
FINISH;

LIBRARY G48N26;

"Group of order 48: number 26."

e"2 * b = (a, b)
(c, d) =

(a, ¢) = (a, d)

- "Group: G; Generators: a, b, ¢, d, e."
G: free(a, b, ¢, d, e);
G.relations: a2 = b2 * a = ¢"3
(a, e = (b, ¢) = (b, d) = (b, e)
FINISH;

42 = "2 = (a, b) = (a, ¢) = (a, d) =
(c, d) = (c, &) * (c°-1) = (4, @) * a = 1;
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LIBRARY G48N27;

"Group of order 48: number 27."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 =b"2 xa =c¢"3 =d°2 =e"2 * (b"-1) = (a, b) = (a, ¢) =
(a, d) = (a, o) = (b, ¢) = (b, d) = (b, &) = (¢, d) =
(c, @ * (¢c"-1) = (d, e) * a =1;

FINISH;

LIBRARY G48N28;

"Group of order 48: number 28."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 =b"2 *a=¢"3=d2*b=e"2=¢(a, b) =(a, ¢) =(a, d) =
(a, ) = (b, ¢) = (b, d) = (b, &) = (¢, d) =

(c, ) * (¢"-1) = (d, &) * a =1;

FINISH;

LIBRARY G48N29;

"Group of order 48: number 29."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, c, d, e);

G.relations: a"2 = b2 =c¢"2 *a =42 *a=e3=(a, b) =(a, ¢) =
(a, d) = (a, o) = (b, ¢) = (b, d) = (b, e) = (¢, d) * a =

(c, @) * a * (c*-1) * (d°-1) = (d, e) * a * (c"-1) = 1;

FINISH;

LIBRARY G48N30;

"Group of order 48: number 30."

"Group: G; Generators: a, b, c, d, e."

G: tree(a, b, ¢, d, e);

G.relations: a2 =b"2 xa=c"2*a=d"2%*a=¢e"3=(a, b) =(a, ¢) =
(a, d) = (a, e) = (b, ¢) = (b, d) = (b, &) = (c, d) * a =

(¢, &) * a * (c°-1) * (4°-1) = (4, e) * a * (c"-1) = 1;

FINISH;

LIBRARY G48N31;

"Group of order 48: number 31."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 = b2 =¢"2=4d"3 =072 = (a, b) = (a, ¢) = (a, d) =
(a, ) = (b, ¢) =(b, d) *b *x¢c =(b, e) * b *xc¢c =

(c, &) *b=(c, ) *b*xc = (d, e) * (d°-1)
FINISH;

LIBRARY G48K32;

"Group of order 48: number 32."

L}
-
e

"“Group: G; Generators: a, b, c, 4, e."
G: free(a, b, ¢, 4, e);
G.relations: a"2 =b"2 =¢"2=4d"3 =e"2 * a

(a, b) = (a, ¢) = (a, &) =
(a, ) = (b, ¢) = (b, d) *b *xc =(b, 6) * b *x ¢ =

(¢, d) *b =(c, e) * b *xc = (d, e) * (4a°-1) =
FINISH;

LIBRARY G48N33;

"Group of order 48: number 33."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

[
[y
e

G.relations: a"2 = b2 * a =c¢"2 =d°3 =e"2 = (a, b) = (a, ¢) = (a, d) =
(a, ) = (b, ¢c) *a = (b, d) = (b, &) = (c, d) =
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(c, ) = (d, e) * (d"-1) = 1;

FINISH;

LIBRARY G48N34;

"Group of order 48: number 34."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b°2 *a=¢"2 *xa=4d3=e2=¢(a, b) =(a, ¢) =(a, d) =
(a, @) = (b, ¢c) *xa= (b, d) = (b, &) = (¢, d) =

(c, @) = (a, o) * (d"-1) = 1;

FINISH;

LIBRARY G48N35;

"Group of order 48: number 35."

"Group: G; Generators: a, b, ¢, d, e.”

G: free(a, b, ¢, d, e);

G.relations: a2 =b2 xa=c"2=4d3=e"2*xa=(a, d) =(a, c)=(a, d) =
(a, ) = (b, ¢) *a = (b, d) = (b, &) = (¢, d) =

(c, o) =(d, ) * (da°-1) = 1;

FINISH;

LIBRARY G48N36;

"Group of order 48: number 36."

"“Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b2*a=c¢2*a=4d3=e2xa=(a,d =1(,c)=
(a, ) = (a, & = (b, ¢c) *a = (b, d) = (b, &) =

(¢, ) = (c, e) = (d, e) * (d4°-1) = 1;

FINISH;

LIBRARY G48N37;

"Group of order 48: number 37."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b"3 =c"2 *xa=4d"2%a* (¢c'-1) = 62 = (a, b) = (a, ¢c) =
(a, d) = (a, @) = (b, ¢) = (b, d) = (b, &) * (b"-1) =

(c, d) = (c, @) * a = (d, o) * (¢"-1) = 1;

FINISH;

LIBRARY G48N38;

"Group of order 48: number 38."

“Group: G; Generators: a, b, c, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 = b3 = ¢°2 *a=4d"2* (¢’-1) =2 = (a, b) = (a, ¢) =
(a, d) = (a, &) = (b, ¢) = (b, d) = (b, &) * (b™-1) =

(c, d) = (c, e) * a=(d, o) * (¢c™-1) =1;

FINISH;

LIBRARY G48N39;

"Group of order 48: number 39."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 =b3 =c2*a=4d"2*a* (c’-1) = e°2 % a=(a, b) =
(a, ¢) =(a, d) = (a, o) = (b, ¢) = (b, d) = (b, &) * (b"-1) =

(c, d) = (c, e * a=(d, ) * (¢c°-1) =1;

FINISH;

LIBRARY G48N40;

"Group of order 48: number 40."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

99



G.relations: a2 =b"3 =c¢°2 *a=4d2*ax*(c-1) =e2={(a, b) =(a, ¢c) =
(a, d) = (a, e) = (b, ¢) = (b, d) * (b"-1) = (b, e) =

(c, d) =(c, o) x a =(d, e) * (c"-1) =1;

FINISH;

LIBRARY G48H41;

"Group of order 48: number 41."

"Group: G; Generators: a, b, ¢, d, e."

G: tree(a, b, ¢, d, e);

G.relations: a°2 = b"3 = ¢"2 * a =42 * (¢*-1) = e"2 = (a, b) = (a, ¢) =

(a, d) = (a, @) = (b, ¢) = (b, d) * (b"-1) = (b, ) =

(c, d) = (c, e) * a=(d, e) * (¢c-1) = 1;

FINISH;

LIBRARY G48N42;

"Group of order 48: number 42."

"“Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 =b"3 =c¢"2 *a=4d"2 % (¢"-1) = e"2*a=(a, b) =(a, ¢) =
(a, d) = (a, ) = (b, ¢) = (b, d) * (b"-1) = (b, e) =

(c, d) = (c, o) * a = (d, e) * (¢c"-1) = 1;

FINISH;

LIBRARY G48N43;

"Group of order 48: number 43."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b"3 =c¢°2 *a=4d"2 % a* (¢c-1) =e’2*a=(a, b) =

(a, ¢) = (a, @) = (a, e) = (b, ¢) = (b, d) * (b"-1) = (b, &) =

(c, d) = (c, @) * a=(d, e * (c™-1) = 1;

FINISH;

LIBRARY G48N44;

"Group of order 48: number 44."

"“Group: G; Generators: a, b, ¢, 4, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b*2 *a=c"2 *xa=d3=e"2=(a, b) = (a, ¢) = (a, d) =
(a, ) = (b, ¢) * a= (b, d) * a * (b"-1) * (c"-1) =

(b, e) * (b"-1) * (¢"-1) = (c, d) * a * (b"-1)
(c, ) *a* (b--1) * (¢°-1) = (4, o) * (a°-1)
FINISH;

LIBRARY G48N45;

"Group of order 48: number 45."

1;

“Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b"2 *a=c¢"2*xa=d3=¢e2%*a-=(a, db)=1(a, ¢) =
(a, d) = (a, ¢) = (b, ¢) *a=(b, d) * a * (b"-1) * (c"-1) =

(b, @) * (b"-1) * (c*-1) = (c, d) * a * (b"-1)
(c, ) * a* (b™-1) * (¢”-1) = (d, e) * (d°-1)
FINISH;

LIBRARY G48N46;

"Group of order 48: number 46."

“Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b"2 =¢°2=4d"2=¢"3 = (a, b) = (a, ¢) = (a, 4) =
(a, ) * a *b = (b, ¢) (b, d) = (b, e) * a = (¢, d) =

(c, @) »c *xd=(d, e) * ¢c = 1;

FINISH;

*

*

1;
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LIBRARY G48N47;
"Group of order 48:
"Group:

number 47."
G; Generators:
G: free(a, b, ¢, d, e);

G.relations: a"2 =b"2 * a = ¢"2

(a, ) *a *x¢c = (b, ¢) = (b, d) = (b, e) *
(c, d) =(c, o) *a=(d, e) *x a * (b"-1) *x ¢ =

FINISH;
LIBRARY G54N1;

"Group of order 54: number 1."
"Group: G; Generators: a, b, ¢, d.
G: free(a, b, ¢, d);

G.relations: a3 =b"2 =¢"3 =473
(M, d) = (c, ) * (a"-1) = 1;
FINISH;

LIBRARY G54N2;

"Group of order 54: number 2."
"Group: G; Generators: a, b, ¢, d.
G: free(a, b, ¢, d);

G.relations: a"3 = b2 =¢"3 =473

(b, ¢) = (b, &) = (¢, d) * (a~-1)
FINISH;
LIBRARY G54N3;

"Group of order 54: number 3."
"Group: G; Generators: a, b, ¢, 4.
G: free(a, b, c, d);

G.relations: a3 = b"3 = ¢"3 =472

(b, d) = (¢, d) * (c"-1) = 1;
FINISH;

LIBRARY G54N4;
"Group of order 54: number 4."
"Group: G; Generators:
G: free(a, b, ¢, d);

G.relations:

a, b, c,

(b, ¢) = (b, d) = (¢, d) * (c"-1)
FINISH;

LIBRARY G54N5;
"Group of order 54: number 5."
"Group: G; Generators:
G: tree(a, b, c, d);

G.relations: a"3 = b"3 =

d.

a, b, ¢, d, e."

d"2 * ¢

]
L4

"3 = (a, b) = (a, ¢) = (a, d) =
(b"-1) * (d*-1) =
1;

[
*

"

(a, b) = (a, ¢) = (a, 4) = (b, ¢) =

* (a"-1) = (a, b) = (a, ¢) = (a, d) =

[

(a, b) = (a, ¢) = (a, d) = (b, ¢) =

a3 = b3 % (a"-1) = ¢"3 =d4°2 = (a, b) = (a, ¢) = (a, d) =

1;

a, b, ¢, 4."

¢*3 =4°2 = (a, b) = (a, ¢) = (a, d) = (b, ¢) =

(b, d) * (b"-1) = (¢, d) * (c"-1) =1;

FINISH;

LIBRARY G54K6;
"Group of order 54: number 6."
"Group: G; Generators:
G: free(a, b, ¢, d);

G.relations:

a, b, ¢, d."

a’3 = b°3 =c¢"3 % (b°-1) =d"2 = (a, b) = (a, ¢) = (a, d) =

(b, ¢) = (b, d) * (b"-1) = (¢, d) * b * (¢ -1) = 1;

FINISH;
LIBRARY G54N7;
"Group of order 54:

"Group:

number 7."
G; Generators:
G: free(a, b, ¢, d);

a, b, ¢, d."
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G.relations: a"3 = b"3 = ¢~3
(b, ¢) *» (a~-1) = (b, d) = (b~
FINISH;

LIBRARY G54N8;
"Group of order 54:

"Group:

number 8.
G; Generators: a, b,
G: free(a, b, ¢, d);

a“3 =b"3 =¢"3
(b, ¢) * (a*-1) = (b, d) * (b~
FINISH;

LIBRARY G54N9;
"Group of order 54:
"Group:

G.relations:

9.
a, b,

number
G; Generators:
G: free(a, b, ¢, d);
a“3 = b"3 c"3
(a, &) * (a"-1) = (b, ¢) * (a°
FINISH;

LIBRARY G54N10;
"Group of order 54:
"Group:

G.relations:

G; Generators: a, b,
G: free(a, b, ¢, d);

a*3 = b3 =¢"3
(b, ¢) = (b, d) * (b"-1) = (c,
FINISH;

LIBRARY G54N1i;

"Group of order 54:

G.relations:

"Group: G; Generators: a, b,
G: free(a, b, ¢, 4d);
G.relations:
(a, d) * (a"-1) = (b, ¢) = (b,
FINISH;

LIBRARY G6ON1;
"Group of order 60: 1.

a, b,

number
"Group: G; Generators:
G: free(a, b, c, d);
a"2 = b5 =¢”3
(b, d) = (c, d) * (c"-1) = 1;
FINISH;

LIBRARY G6ON2;

"Group of order 60:

G.relations:

2.
a, b,

number
"Group: G; Generators:
G: free(a, b, c, d);
G.relations: a"2 = b5 = c¢"3
(b, & =(c, d) * (¢c"-1) = 1;
FINISH;

LIBRARY G6ON3;
"Group of order 60: number 3.
"Group: G; Generators:
G: free(a, b, ¢, d);
G.relations: a"5 = b"2 =
(b, d) *b *x ¢c =
FINISH;

LIBRARY G6ON4;

"Group of order 60:

c"2
(c, d) *b =

number 4.

a"3 =b"3 * (a*-1) = ¢"3 =d°2

a, b,

number 10."

number 11."

=4d°2 = (a, b) = (a, ¢) = (a, d) =

-1) = (¢, A) * (c"-1) =1;

c, 4."

=4°2 = (a, b) = (a, ¢) = (a, &) * (a°-1) =
-1) = (¢, d) = 1;

c, d."

* (a”-1) = d°2 = (a, b) = (a, ¢) =
-1) = (b, d) = (c, d) * a * (c-1) = 1;

c, d."
=4d°2 = (a, b) = (a, ¢) = (a, 4) * (a"-1) =
a) * (¢"-1) = 1;

c, d4."

= (a, b) = (a, ¢) =
d) *» a *x (b"-1) = (¢, 4) * (c™-1) = 1;

c, 4."
=4d°2 = (a, b) = (a, ¢) = (a, d) = (b, ¢) =
c, d."
=42 * a = (a, b) = (a, ¢) = (a, d) = (b, ¢)
c, d4."

=d°3 =(a, b) = (a, ¢) = (a, 4) = (b, ¢) =
1;

"
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"Group: G; Generators: a, b, ¢, d."
G: free(a, b, ¢, d);

G.relations: a"2 = b"3 = ¢°5 = 472
(b, d) = (¢, d) *x ¢"2 = 1;

FINISH;

LIBRARY G60ONS5;

(a, b) = (a, ¢) = (a, d) = (b, ¢) =

"Group of order 60: number 5."

"Group: G; Generators: a, b, c, 4."
G: free(a, b, ¢, d);

G.relations: a2 =b"3 =¢"5 =4d"2 * a
(b, d) = (c, d) * c"2 = 1;

FINISH;

LIBRARY G60ON6;

(a, b) = (a, ¢) = (a, d) = (b, ¢) =

"Group of order 60: number 6."
"“Group: G; Generators: a, b, ¢, d."
G: free(a, b, ¢, d);

G.relations: a"3 =b°5 =c°2=4d"2*c = (a, b) = (a, ¢) = (a, d) =

(b, ¢) * b2 = (b, d) * (b"-1) = (¢, d) = 1;

FINISH;

LIBRARY G6ON7;

"Group of order 60: number 7."

"Group: G; Generators: a, b, c, d4."

G: free(a, b, ¢, d);

G.relations: a"2 = b5 =¢"3 = d°2 = (a, b) = (a, ¢) = (a, d) = (b, ¢) =

(b, d) * b2 = (¢, d) * (c™-1) = 1;

FINISH;

LIBRARY G6ONS8;

"Group of order 60: number 8."

"Group: G; Generators: a, b, ¢, d."

G: free(a, b, ¢, d);

G.relations: a“2 = b5 =c¢"3 =d°2 * a = (a, b) = (a, ¢) = (a, d) = (b, ¢) =
(b, d) * b2 = (¢, d) * (c"-1) = 1;

FINISH;

LIBRARY G60ON9;

"Group of order 60: number 9."

"Group: G; Generators: a, b, ¢, d."

G: free(a, b, ¢, d);

G.relations: a"5 = b3 = ¢"2 =d°2
(b, ¢) * (b"-1) = (b, A) = (¢, d) =
FINISH;

LIBRARY G60R10;

"Group of order 60: number 10."
"Group: G; Generators: a, b, ¢, d."
G: free(a, b, ¢, d);

(a, b) = (a, ¢) * a"2 = (a, d) * a"2 =

-

G.relations: a"§ =b"3 =c¢"2=d"2*c¢ = (a, b) = (a, ¢c) * a”2 =
(a, d) * (a*-1) = (b, ¢) = (b, d) * (b"-1) = (¢, d) = 1;

FINISH;

LIBRARY G60N11;

"Group of order 60: number 11."

"Group: G; Generators: a, b."

G: free(a, b);

G.relations: a"2 = b"3 = (a * b)"56 = 1;

FINISH;

LIBRARY G72RH1;
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"Group of order 72: number 1."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, c, d, e);

G.relations: a"2 = b3 =c¢"3=4d"2% a=2e"2=(a, b) = (a, ¢) = (a, d) =
(a, &) = (b, ¢) = (b, d) = (b, ) = (¢, d) = (¢, e) = (d, &) * a = 1;
FINISH;

LIBRARY G72N2;

"Group of order 72: number 2."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 = b3 =c"3=4d°2*a=¢e"2%a=(a, d) =(,c)=(a, d) =
(a, ) = (b, ¢) = (b, d) = (b, e = (¢, d) = (c, @) = (d, e) * a =1;
FINISH;

LIBRARY G72KN3;

"Group of order 72: number 3."

"Group: G; Generators: a, b, c, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 = b3 =¢"3 % (b°-1) =d°2 *x a=e"2 = (a, b) = (a, ¢) =
(a, @) =(a, &) = (b, ¢) = (b, d) = (b, &) = (¢, d) =

(c, ) =(d, ) * a =1;

FINISH;

LIBRARY G72N4;

"“Group of order 72: number 4."

"Group: G; Generators: a, b, c, 4, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b"3 =¢"3 * (b"-1) =d"2*a=e"2*a=(a, b) =(a, ¢) =
(a, d) = (a, @) = (b, ¢) = (b, d) = (b, &) = (¢, d) =

(c, ) = (d, e) * a = 1;

FIRISH;

LIBRARY G72N5;

"“Group of order 72: number 5."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 = b"2 =c¢"3 =d°3 = e"2 = (a, b) = (a, ¢) = (a, d) = (a, e) =
(b, ¢) = (b, d) = (b, @) = (¢, d) = (c, e) = (d, e) * (d"-1) = 1;

FINISH;

LIBRARY G72N6;

"Group of order 72: number 6."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, c, d, e);

G.relations: a"2 =b"2 =¢"3 =43 =62 % a = (a, b) = (a, ¢) = (a, d) =
(a, o) = (b, ¢) = (b, d) = (b, e) (c, d) =

(c, e) = (4, e) * (d°-1) = 1;

FINISH;

LIBRARY G72N7;

"Group of order 72: number 7."

"Group: G; Generators: a, b, ¢, 4, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b"2 * a=¢"3 =d"3 =e"2 = (a, b) = (a, ¢) = (a, d) =
(a, &) = (b, ¢) = (b, d) = (b, e) (c, ) =

(c, ) = (d, e) * (d4°-1) = 1;

FINISH;

LIBRARY G72N8;

"Group of order 72: number 8."
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"Group: G; Generators: a, b, ¢, d,

G: free(a, b, ¢, d, e);
G.relations: a2 = b2 * a = ¢°3
(a, @) = (b, ¢) = (b, d) = (b, o) =
(c, &) =(d, e) * (d°-1) = 1;
FINISH;

LIBRARY G72N9;

"Group of order 72: number 9."
"Group: G; Generators: a, b, ¢, d
G: free(a, b, ¢, d, e);
G.relations: a2 =b"3 =¢"2 =472
(a, ) = (b, ¢) = (b, d) = (b, e)
(c, 8) *xc xd=(d, @) * ¢c = 1;
FINISH;

LIBRARY G72N10;

"Group of order 72: number 10."
"Group: G; Generators: a, b, ¢, d
G: free(a, b, ¢, d, e);

G.relations: a"2 = b"3 = ¢"2 =472
(a, @) = (b, ¢) = (b, d) = (b, e)
(c, ) x¢c xd=1(d, e) * ¢ = 1;
FINISH;

LIBRARY G72R11;

"Group of order 72: number 11."

""Group: G; Generators: a, b, ¢, d,

G: free(a, b, ¢, d, e);
G.relations: a"2 =b"2 =¢"3 =473
(a, &) = (b, ¢) (b, d) = (b, e)
(c, @) x (¢c™-1) = (d, e) » (d°-1)
FINISH;

LIBRARY G72H12;

"Group of order 72: number 12."
"Group: G; Generators: a, b, c, d
G: free(a, b, c, d, e);
G.relations: a"2 = b"2 =¢"3 =473
(a, &) = (b, ¢) = (b, d) = (b, @)
(c, e) * (c"-1) (d, e) * (d4°-1)
FINISH;

LIBRARY G72N13;

"Group of order 72: number 13."

L}

d"3 =e2*xb=(a, b) = (a, ¢) = (a, d) =
(¢, d) =

e."

=63 = (a, b) = (a, ¢) = (a, d) =
(c, d) =

e."

= e°3 * (b>-1) = (a, b) = (a, ¢) = (a, d) =
(¢, d) =

e."

= e°2 = (a, b) = (a, ¢) = (a, d) =
(¢, d) =
1;

, 8."

=e"2 *a=(a, b) = (a, ¢) = (a, d) =
(¢, 4) =
1;

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);
G.relations: a2 = b2 *x a = ¢"3
(a, e) = (b, ¢) (b, d) = (b, e)
(c, ) * (¢"-1) (d, e) * (a°-1)
FINISH;

LIBRARY G72N14;

"Group of order 72: number 14."

]
"

"Group: G; Generators: a, b, ¢, d,

G: free(a, b, ¢, d, e);
G.relations: a"2 = b"2 * a = ¢"3
(a, ) = (b, ¢) = (b, d) = (b, &) =
(c, o) * (c"-1) (d, o) * (a"-1)
FINISH;

d'3 =e"2=(a, b) = (a, ¢) = (a, d) =
(¢, d) =
1;

a‘"
43 =e2*b=2(a, b) = (a, ¢) = (a, d) =

(c, 4) =
1;
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LIBRARY G72N15;

"Group of order 72: number 15."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 = b°2 = ¢"3 = d°3 * (c°-1) = "2 = (a, b) = (a, ¢) = (a, d) =
(a, o) = (b, ¢) (b, d) = (b, e) = (¢, d) =

(c, e) * (¢"-1) = (d, @) * ¢ *x (d"-1) = 1;

FINISH;

LIBRARY G72H16;

"Group of order 72: number 16."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 = b"2 = ¢"3 = d°3 * (c*-1) = e"2 * (a"-1) = (a, b) = (a, ¢) =
(a, d) = (a, e) (b, ¢) = (b, d) = (b, &) = (¢, d) =

(c, ) * (¢°-1) = (d, o) * ¢ * (d°-1) = 1;

FINISH;

LIBRARY G72N17;

"Group of order 72: number 17."

"“Group: G; Generators: a, b, c, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b"2 *a=c¢"3 =d"3 * (¢c’-1) =e"2 = (a, b) = (a, ¢) =
(a, d) = (a, e) = (b, ¢) = (b, d) = (b, &) = (c, d) =

(c, @ * (c"-1) = (d, o) * ¢ * (d°-1) = 1;

FINISH;

LIBRARY G72N18;

"Group of order 72: number 18."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 = b"2 * a = c¢*3 =d°3 x (¢c*-1) = e"2 * (b"-1) = (a, b) =
(a, ¢) =(a, d) = (a, e = (b, ¢) = (b, d) = (b, &) = (¢, d) =

(c, @ * (c°-1) = (4, e) * ¢ » (d"-1) = 1;

FINISH;

LIBRARY G72N19;

"Group of order 72: number 19."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, c, d, o);

G.relations: a"2 =b"3 =¢"3 =d"2=¢"2 = (a, b) = (a, ¢) = (a, d) =
(a, @) = (b, ¢) = (b, d) = (b, &) = (c, d) =

(c, ) * (¢"-1) (d, e) *» a = 1;

FINISH;

LIBRARY G72N20;

"Group of order 72: number 20."

"“Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 =b3=c¢"3=d"2%a=¢e2=¢(a, b) =(a, ¢) =(a, ) =
(a, e) = (b, ¢) = (b, 4) = (b, &) = (¢, d) =

(c, ) * (¢c*-1) = (d, o) * a = 1;

FINISH;

LIBRARY G72N21;

"Group of order 72: number 21."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, 4, e);

G.relations: a"2 =b°3 =c¢"3=d2%*a=¢e2%a=2(a, b) =1(a, ¢)=(a, d) =
(a, ) = (b, ¢) = (b, d) = (b, &) = (¢, 4d) =
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(c, @) *» (¢°-1) = (d, e) * a = 1;

FINISH;

LIBRARY G72N22;

"Group of order 72: number 22."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, 4, e);

G.relations: a2 =b°3 =c¢"2 * a=d"2 * a =673 = (a, b) = (a, ¢) = (a, d)
(a, ) = (b, ¢) = (b, d) = (b, e) = (¢, d) * a =

(c, e *a* (c™~1) * (d"-1) = (d, e) * a *x (¢c™-1) = 1;

FINISH;

LIBRARY G72H23;

"Group of order 72: number 23."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 =b"3 =c 2 *a=d"2*a=2e"3x% (b--1) = (a, b) = (a, ¢)
(a, d) = (a, ) = (b, ¢) = (b, d) = (b, ) = (¢, d) * a =

(c, @) * a * (c"-1) * (d°-1) = (d, e) * a * (¢c™-1) = 1;

FINISH;

LIBRARY G72N24;

"Group of order 72: number 24."

“Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a3 =b"2 =c¢"2=d"3 =e"2 = (a, b) = (a, ¢) = (a, d) =
(a, @ = (b, ¢) =(b, d) *b*xc=(b, ) *b*xc=1(c, d) *b =

(c, e) *xb*xc=(d, e) *x (d°-1) = 1;

FINISH;

LIBRARY G72H25;

"Group of order 72: number 25."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 = b°3 = c¢"3 = 4°2 = e"2 = (a, b) = (a, ¢) = (a, 4) =
(a, &) = (b, ¢) = (b, d) * (b"-1) = (b, ) = (¢, d) =

(c, @) * (¢c°-1) = (d, o) = 1;

FINISH;

LIBRARY G72K26;

"Group of order 72: number 26."

“Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, 4, e);

G.relations: a2 =b"3 =¢"3=d2*a=e"2=(a, b) = (a, ¢) = (a, d) =
(a, @) = (b, ¢) (b, d) * (b"-1) = (b, &) = (¢, d) =

(¢, @) * (c™-1) = (d, e) = 1;

FINISH;

LIBRARY G72N27;

"Group of order 72: number 27."

“Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a*2 =b"3 =c"3=d"2*a=e2%a=(a, b =1(,c)=1(,d
(a, ) = (b, ¢) = (b, d) * (b"-1) = (b, &) = (¢, d) =

(c, e * (¢c°-1) (d, e) = 1;

FINISH;

LIBRARY G72N28;

"Group of order 72: number 28."

"Group: G; Generators: a, b, ¢, d, e."
G: free(a, b, ¢, 4, e);
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G.relations: a"2 =b"3 =¢°3=d2=e"2%d=(a, b) = (a, ¢) = (a, d) =
(a, @) = (b, ¢) = (b, d) * (b*-1) = (b, ) * b * (¢c"-1) =

(c, d) * (c°-1) = (c, &) * b *x ¢c = (d, e) = 1;

FINISH;

LIBRARY G72N29;

"Group of order 72: number 29."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 =b"3 =c¢c"3 =d"2 % a =202 * (d°-1) = (a, b) = (a, ¢) =
(a, d) = (a, e = (b, ¢) = (b, d) * (b"-1) = (b, &) * b * (¢c"-1) =

(c, d) * (¢"-1) = (c, e) * b xc = (d, e) = 1;

FINISH;

LIBRARY G72N30;

"Group of order 72: number 30."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 = b"3 =¢"3 =d4°2 =02 = (a, b) = (a, ¢) = (a, d) =
(a, ) = (b, ¢) = (b, d) = (b, ©) * (b"-1) = (¢, d) =

(c, e) * (¢°-1) = (d, &) * a = 1;

FINISH;

LIBRARY G72N31;

"Group of order 72: number 31."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a2 =Db3 =c¢"3=d"2*%a=2e"2=(a, b) = (a, ¢) = (a, d) =
(a, &) = (b, ¢) (b, d) = (b, &) * (b"-1) = (¢, d) =

(c, &) * (¢c°-1) = (d, o) * a = 1;

FINISH;

LIBRARY G72N32;

"Group of order 72: number 32."

“Group: G; Generators: a, b, ¢, 4, e."

G: free(a, b, ¢, d, e);

G.relations: a2 =b3=c¢c"3=d2*a=¢e2%a=2(a, b =(,c)=1(, d =
(a, ) = (b, ¢) = (b, d) = (b, &) * (b"-1) = (¢, d) =

(c, &) * (¢"~1) = (d, e) *x a = 1;

FINISH;

LIBRARY G72N33;

"Group of order 72: number 33."

"Group: G; Generators: a, b, ¢, 4, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 = b"3 =¢"3 * (b"-1) =d°2 = e"2 = (a, b) = (a, ¢) = (a, d) =
(a, ) = (b, ¢) = (b, d) = (b, e) * (b"-1) = (¢, d) =

(¢, @ Db *x (¢c"-1) = (d, e) *x a = 1;

FINISH;

LIBRARY G72N34;

"Group of order 72: number 34."

“Group: G; Generators: a, b, c, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 = b3 = ¢"3 * (b"-1) =d"2 * a =e"2 = (a, b) = (a, ¢) =
(a, d) = (a, ) = (b, ¢) = (b, d) = (b, &) * (b"-1) = (¢, d) =

(c, @ *b * (¢c"-1) = (d, e) * a = 1;

FINISH;

LIBRARY G72N35;

"Group of order 72: number 35."
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"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 = b"3 =c¢"3 * (b™-1) =d°2 *xa=¢e"2%*a=(a, b) = (a, ¢) =
(a, d) = (a, &) = (b, ¢) = (b, d) = (b, &) * (b"-1) = (¢, d) =

(c, @) *b * (¢c™-1) = (d, e) * a = 1;

FINISH;

LIBRARY G72N36;

"Group of order 72: number 36."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 = b3 =c¢"3 =4"2=¢"2= (a, b) = (a, ¢) = (a, d) =
(a, e) = (b, ¢) = (b, d) * (b-1) = (b, &) = (¢, d) =

(c, ) * (c"~1) = (4, o) * a = 1;

FINISH;

LIBRARY G72H37;

"Group of order 72: number 37."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b"3 =c"3 =d"2*a=¢e"2=(a, b) = (a, ¢) = (a, d) =

(a, e = (b, ¢) = (b, d) * (b"-1) = (b, &) = (¢, d) =

(c, e * (¢"-1) = (d, o) * a = 1;

FINISH;

LIBRARY G72N38;

"Group of order 72: number 38."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 =b"3=c¢"3=d2*a=¢e"2%*a=(a, b)=2_(a,c)=1(,d =
(a, ) = (b, ¢) = (b, d) * (b™-1) = (b, &) = (¢, d) =

(c, @ * (¢*-1) = (d, e) * a = 1;

FINISH;

LIBRARY G72NH39;

"Group of order 72: number 39."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a3 =b"3 =¢"2 =d"2 *c =672 * (d°-1) = (a, b) =

(a, ¢) * (a"-1) = (a, d) * b = (a, &) * a *x (b"-1) =

(b, ¢) * (b"-1) (b, d) * a » (b~-1) = (b, o) * (a*-1) * (b"-1) =

(c, d) = (c, o) = (d, o) = 1;

FINISH;

LIBRARY G72N40;

"Group of order 72: number 40."

"Group: G; Generators: a, b, ¢, d, e."
G: free(a, b, ¢, d, e);

G.relations: a"3 = b2 =¢"2 =473 = "2
(a, @) * (a"-1) = (b, ¢) = (b, d) *b * ¢
(¢, d) *»b = (c, e) = (d, &) = 1;

FINISH;

LIBRARY G72N41;

"Group of order 72: number 41."

(a, b)
(b, e)

(a, ¢) = (a, d) =

"Group: G; Generators: a, b, c, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"3 =b"3 =¢"2=d"2=e"2 % ¢ = (a, b)
(a, d) * a x (b°-1) = (a, ) *a xb = (b, ¢) * (b"-1)
(b, d) * (a"-1) * b (b, o) * (a"-1) * b =

(a, ¢) * (a-1) =

i
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(¢, d) = (c, e) = (d, @) * ¢c = 1;

FINISH;

LIBRARY G72N42;

"Group of order 72: number 42."

"Group: G; Generators: a, b, ¢, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"3 = b3 =c2=4d°2*c=¢e"2x*c = (a, b) = (a, ¢) * (a"-1)
(a, d) * a*b = (a, e) * (a~-1) * (b"-1) = (b, ¢) * (b"-1) =

(b, d) * (a"-1) * b = (b, &) * (a*-1) = (¢, d) =

(c, ) =(d, o) * c = 1;

FINISH;

LIBRARY G72H43;

"Group of order 72: number 43."

"Group: G; Generators: a, b, ¢, d, e."
G: free(a, b, ¢, d, e);

G.relations: a“3 =b"2 =¢"2 =d°3 = e°2
(a, o) * (a"-1) = (b, ¢) = (b, d) * b * ¢
(c, &) * b =(d, e) x (d°-1) = 1;

FINISH;

LIBRARY G72N44;

"Group of order 72: number 44."

(a, b) = (a, ¢) = (a, 4) =
(b, ) = (c, d) * b =

"Group: G; Generators: a, b, c, d, e."

G: free(a, b, ¢, d, e);

G.relations: a"2 = b2 = ¢"3 = d°3 * (¢*-1) = "2 = (a, b) = (a, ¢) =
(a, d) * (a~-1) * (b"-1) = (a, o) * (a"-1) * (b"-1) = (b, ¢) =

(b, d) *a=1(b, e) *xax*xb=(c, d = (c, ) * (¢"-1) =

(d, e) * ¢ * (d°-1) = 1;

FINISH;

LIBRARY G84N1;

"Group of order 84: number 1."

"“Group: G; Generators: a, b, ¢, 4."

G: free(a, b, ¢, d);

G.relations: a“7 =b"2 =¢°3 =472
(b, d) = (¢, d) * (¢°-1) = 1;
FINISH;

LIBRARY G84N2;

"Group of order 84: number 2."
"Group: G; Generators: a, b, ¢, d."
G: free(a, b, ¢, d);

(a, b) = (a, ¢) = (a, d) = (b, ¢) =

G.relations: a'7 =b"2 =c¢"3=d"2*b=(a, b) = (a, ¢) = (a, d) = (b, ¢) =

(b, d) = (c, 4) * (c"-1) = 1;

FINISH;

LIBRARY G84N3;

"Group of order 84: number 3."
"“Group: G; Generators: a, b, ¢, d."
G: free(a, b, c, d);

G.relations: a“7 =b"2 =¢"2 =473
(b, d) *b *x¢c =(c, d) *b = 1;
FINISH;

LIBRARY G84N4;

"Group of order 84: number 4."

(a, b) = (a, ¢) = (a, d) = (b, ¢) =

"Group: G; Generators: a, b, c, d."
G: free(a, b, ¢, d);
G.relations: a"3 =b"2 = ¢°7 = d°2

(a, ) = (a, ¢) = (a, d) = (b, ¢) =
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(b, d) = (¢, d) * ¢"2 = 1;

FINISH;

LIBRARY G84N5;

"Group of order 84: number 5."

"Group: G; Generators: a, b, ¢, d."

G: free(a, b, ¢, d);

G.relations: a3 = b"2 =¢°7 =472 *b =
(b, d) = (c, d) * c*2 = 1;

FINISH;

LIBRARY G84K6;

"Group of order 84: number 6."

"Group: G; Generators: a, b, ¢, d."

G: free(a, b, ¢, d);

G.relations: a2 =b"2 =¢"7 = 4°3 = (a,
(b, d) = (c, &) * (c"-1) = 1;

FINISK;

LIBRARY GS84N7;

"Group of order 84: number 7."

"Group: G; Generators: a, b, ¢, d."

G: free(a, b, ¢, d);

G.relations: a2 = b2 *x a =¢"°7T =d°3 =
(b, d) = (¢, 4d) * (¢°-1) = 1;

FINISH;

LIBRARY GB84NS8;

"Group of order 84: number 8."

"Group: G; Generators: a, b, c, d."

G: free(a, b, c, d);

G.relations: a"2 = b7 =¢"3 =4d°2 = (a,
(b, ¢) * (b-1) = (b, d) * b2 = (¢, d)
FINISH;

LIBRARY G84N9;

"Group of order 84: number 9."

"Group: G; Generators: a, b, ¢, d."
G: free(a, b, ¢, d);

G.relations: a"2 = b°7 =¢"3 =472 * a
(b, ¢) * (b"~1) = (b, d) * b2 = (¢, d)
FINISH;

LIBRARY G84N10;

"Group of order 84: number 10."
"Group: G; Generators: a, b, ¢, d."
G: free(a, b, ¢, d);

G.relations: a"2 = b7 =¢°3 =d°2 = (a,
(b, d) *b2 = (c, d) * (¢™-1) = 1;
FINISH;

LIBRARY G84N11;

"Group of order 84: number 11."

"Group: G; Generators: a, b, c, d."
G: free(a, b, ¢, d);

G.relations: a"2 =b"7 =¢"3 =d°2 * a
(b, d) * b2 = (c, d) * (c™-1) = 1;
FINISH;

LIBRARY G84N12;

"Group of order 84: number 12."

"Group: G; Generators: a, b, c, d."

111

(a, b) = (a, ¢) = (a, @) = (b, ¢) =

b) = (a, ¢) = (a, &) = (b, ¢) =

(a, b) = (a, ¢) = (a, d) = (b, ¢) =

b) = (a, ¢) = (a, d) =

1;

(a, b) = (a, ¢) = (a, d) =
1;

b) = (a, ¢) = (a, d) = (b, ¢) =

(a, b) = (a, ¢) = (a, d) = (b, ¢) =



G: free(a, b, ¢, d);

G.relations: a"7 =b"3 =c¢"2 = d"2
(b, @) * (b"-1) = (c, d) = 1;
FINISH;

LIBRARY G84N13;

"Group of order 84: number 13."
"Group: G; Generators: a, b, ¢, d."
G: free(a, b, ¢, d);

G.relations: a"2 =b"2 =¢°7 =473
(b, d) * a=(c, d) * (¢c"-1) = 1;
FINISH;

(a, b) = (a, ¢) * a"2 = (a, d) = (b, ¢) =

(a, b) = (a, ¢) = (a, d) *xa*xb=(b, ¢) =
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Appendix C

This appendix contains the output from running various Cayley programs on a
number of presentations given in the text. The output is presented ordered by Chapter.

SUN/UNIX CAYLEY V3.8-531 Mon Jun 24 1991 18:38:02 STORAGE 200000

>g=free(a,c);

> (3.0) "

>" A group of order 75 "

>g.relations:

>a“5=(c*a)"3,c"3=(c*a"-1)"3=1;

>print order(g);

75

>clear;

>

>

>'" A covering group for the group of order 75 above "

>

>g=free(a,b,c,x,y,2z);

>g.relations:

>A°5%z°7, B 5xy*z"2,

>C"3,

>x=(4,B),

>(A,C)*B"-1xAxz,

>A"-1*B~3%(C,B),

>(x,a), (x,b),(x,¢),(x,y),(z,x),

>(y,a),(y,b),(y,c),(y,2),

>(z,a),(z,b),(z,¢);

>print order(g);

375

>clear;

>

>g=free(a,b);

>* (3.9) "

>" Another deficiency zero presentation for the group of

> order 56 found by Johnson and Mawdesly "

>

>g.relations:

>a“2=b"7,

>(a*b*a*b~-1) “2=a*bxa*b”-3%a*b"2;

>print order(g);

56

>clear;

>

> " A covering group for the group 3.20 of order 81 "

>

>g=free(p,q,r,x,y,2);

>g.relations:

>P 9%z, Q"3*y, R"3,

>(P,Q*x"-1,(P,R)*Q" -1,

>Q"-1»P"-3xQ*(R,Q), (P,x)

>,(Q,x),(R,x),(P,y)

>,@,7),R,7,&,y)

>,(P,2),(Q,2),(R,2)

>,(x,2),(y,2);
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>print order(g);

729

>bye;

END OF RUN.

3.559 SECONDS

SUN/UNIX CAYLEY V3.8-531 Tue Jun 11 1991 13:15:00 STORAGE 2000000
>library g4p2;

Library module found as ./g4p2
>print g;print order(g); clear;
GROUP G

RELATORS

X3

Y4

XYXY-1X7Y-1

X°-1 Y°-2 X Y°2

24

>library gép7;

Library module found as ./g4p7
>print g;print order(g); clear;
GROUP G

RELATORS

(A B)"3

B4

A°3 B A°-1 B2 A B"3

216

>library g4p8;

Library module found as ./g4p8
>print g;print order(g); clear;
GROUP G

RELATORS

B 4

A"3 B3 A B"2 A"-1 B

B"3 A°-1 B"3 A"-1 B"-1 A"-1

216

>library g4p9;

Library module found as ./g4p9
>print g;print order(g); clear;
GROUP G

RELATORS :

UvVv2U0VvV-10V-1

U2 VvVU2vVU-1VU2V-1U-1V"-1
3000

>library g4pio0;

Library module found as ./g4p10
>print g;print order(g); clear;
GROUP G

RELATORS

U2 v"-1 U V"2 U2 V°-2

U2 VvV-20U-1V-30V-2U"-1V"-1
39000

>library gépiil;

Library module found as ./gépil
>print g;print order(g); clear;
GROUP G
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RELATORS

V-1 UVUVUV2U-2

U-1 v'3U

2880

>library gépi2;

Library module found as ./g4pi2
>print g;print order(g); clear;
GROUP G

RELATORS :

U°3 vV°-1 U°-1 ¥V°-1 U*-1 V-1
U3 vU°2vV-10V"-3

3240

>library g4pi3;

Library module found as ./g4p13
>print g;print order(g); clear;
GROUP G

RELATORS

U3 vu-1vu-1v

U3 v-3uvu2yv-1

4536

>library g4pi4;

Library module found as ./g4pi4
>print g;print order(g); clear;
GROUP G

RELATORS
U°2VU-1VU-1V-1UV"=-2
U2 V-1 U0UV-1U0VU-1V"2
2400

>bye;

END OF RUN.

43.420 SECONDS

SUN/UNIX CAYLEY V3.8-531 Tue Jun 11 1991 11:35:58 STORAGE 200000
>

> " A group of order 1296 and soluble length six "
> " This presentation is due to Wegner "

>

>g=free(a,b);

>g.relations:

>axbxaxb*a*b~-2*%a -1x%b,

>a”2xbxa”~2%bxa"2%b"-2;

>print order(g),derived series(g);

1296

SEQ(

GROUP OF ORDER 648 = 2°3 * 3°4 IS A SUBGROUP OF G
GENERATORS AS WORDS IN SUPERGROUP

A"-1 B°-1 A B

A"~1 B A B"~1

,

GROUP OF ORDER 216 = 2°3 * 3°3 IS A SUBGROUP OF G
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GENERATORS AS WORDS IN SUPERGROUP

B A B -1 A°-1 B4

B*-1 A B A°-2 B A"-1

GROUP OF ORDER 54 = 2 * 3°3 IS A SUBGROUP OF G
GENERATORS AS WORDS IN SUPERGROUP

A*-2 B"3

A B -3 A"-1

B~-3

GROUP OF ORDER 27 = 3°3 IS A SUBGROUP OF G
GENERATORS AS WORDS IN SUPERGROUP

B*-1 A"-2 B

A"2 B"-6

GROUP OF ORDER 3 IS A SUBGROUP OF G

GENERATORS AS WORDS IN SUPERGROUP

B°6

,

GROUP OF ORDER 1 IS A SUBGROUP OF G

GENERATORS AS WORDS IN SUPERGROUP

IDENTITY

)

>print classes(g);

CONJUGACY CLASSES OF G

[1] ORDER
[2] ORDER
[3] ORDER

LENGTH 1 REP IDENTITY

LENGTH 9 REP A°2 B"-3 A°2
LENGTH 108 REP B -1 A"3 B
[4] ORDER 3 LENGTH 2 REP B"-6
{6] ORDER
{7] ORDER

LENGTH 54 REP B*-1 A B™-1 4
LENGTH 18 REP B--3

[8] ORDER
[9] ORDER

1
2
2
3
[5] ORDER 3 LENGTH 24 REP B"-1 A"2 B
4
6
6 LENGTH 216 REP B"-1 4 B
8 LENGTH 162 REP B~-1 A
{10] ORDER 8 LENGTH 162 REP A°-1 B A"-1 B A"-1 B
[11] ORDER 9 LENGTH 24 REP B~-2
[12] ORDER 9 LENGTH 24 REP B~ -4
[13] ORDER 9 LENGTH 24 REP A"2 B A"-1 B"-3 A
[14] ORDER 9 LENGTH 144 REP B"2 A~-2
[15] ORDER 12 LENGTH 108 REP A"2 B°-1 A B"2 A
[16] ORDER 18 LENGTH 72 REP B"-1
[17] ORDER 18 LENGTH 72 REP B~-5

[18] ORDER 18 LENGTH 72 REP B"-7
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>clear;

>

> " Another deficiency zero presentation for a group of "
> " soluble length six. The number of elements of order "
> " three show that this group is not isomorphic to the "
> " group above; nor is it isomorphic to the group G(-8) "
> " of Theorem 3 of Chapter Four (below) "

>

>g=tree(a,b);

>g.relations:

>a*b*a”-1%b*a"-1*b*axb"-2,

>a”"2%b*a”-1*b"-3%a*b"2;

>print order(g),derived series(g);

1296

SEQ(

GROUP OF ORDER 648 = 2°3 * 3°4 IS A SUBGROUP OF G
GENERATORS AS WORDS IN SUPERGROUP

A"-1 B°-1 A B

A"-1 B A B™-1

GROUP OF ORDER 216 = 273 * 3°3 IS A SUBGROUP OF G
GENERATORS AS WORDS IN SUPERGROUP

A"-1 BAB-1 A"-1 B A

A°2 B"-1 A B"2 A"-1

GROUP OF ORDER 54 = 2 * 3°3 IS A SUBGROUP OF G

GENERATORS AS WORDS IN SUPERGROUP

A"-2 B"-3

A B3 A°-1

B3

GROUP OF ORDER 27 = 3°3 IS A SUBGROUP OF G

GENERATORS AS WORDS IN SUPERGROUP

B°-1 A"-2 B

A"2 B°6

GROUP OF ORDER 3 IS A SUBGROUP OF G

GENERATORS AS WORDS IN SUPERGROUP

B"-6

GROUP OF ORDER 1 IS A SUBGROUP OF G

GENERATORS AS WORDS IN SUPERGROUP

IDENTITY

)
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>print classes(g);

CONJUGACY CLASSES OF G

[1] ORDER 1 LENGTH 1 REP IDENTITY
[2] ORDER 2 LENGTH 9 REP A~2 B"3 A°2
[3] ORDER

[4] ORDER

LENGTH 108 REP A"3
LENGTH 2 REP B"6

[6] ORDER 3 LENGTH 144 REP B A"2 B
[7] ORDER 4 LENGTH 54 REP A"2 B*-1 A°~1 B"-1 A
[8] ORDER

[9] ORDER

2
2
3
{5] ORDER 3 LENGTH 24 REP A"2
3
4
6 LENGTH 18 REP B"3
6 LENGTH 216 REP A
[10] ORDER 8 LENGTH 162 REP B2 A"-1
[11] ORDER 8 LENGTH 162 REP B A B"-1 A"-1 B"-1 4 B"-1
[12] ORDER 9 LENGTH 24 REP B-2
[13] ORDER 9 LENGTH 24 REP B"4
[14] ORDER 9 LENGTH 24 REP A"2 B~3 A2 B -1
[15] ORDER 12 LENGTH 108 REP A B A"-1 B
[16] ORDER 18 LENGTH 72 REP B
[17] ORDER 18 LENGTH 72 REP B°S
[18] ORDER 18 LENGTH 72 REP B"7
>clear;
>
> " G(-9) of Theorem 3, Chapter Four "
> " The class structure shows that this group is "

> " not isomorphic to either of the groups above "

>

>g=free(a,b);

>g.relations:

>(a*b)"2=b"6,

>a"4*b"-1%a*b -9%a"-1xb;

>print order(g),derived series(g);

1296

SEQ(

GROUP OF ORDER 648 = 2°3 * 34 IS A SUBGROUP OF G
GENERATORS AS WORDS IN SUPERGROUP

B A2 B

A"~1 B A B"-1

>

GROUP OF ORDER 216 = 2°3 *» 3°3 IS A SUBGROUP OF G
GENERATORS AS WORDS IN SUPERGROUP

A°3 B"2 A"-2 B A"-1

B A°-1 B A"2 B"-1 4 B"-1
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GROUP OF ORDER 54 = 2 * 3°3 IS A SUBGROUP OF G
GENERATORS AS WORDS IN SUPERGROUP

A"2 B A"-2 B A"-2 B

B A°-1 B"2 A"3 B

B A3 B"2 A"-1 B

GROUP OF ORDER 27 = 3°3 IS A SUBGROUP OF G
GENERATORS AS WORDS IN SUPERGROUP

A"3 B"3 A

A"-1 B A B°-1 A B 4"-1

GROUP OF ORDER 3 IS A SUBGROUP OF G
GENERATORS AS WORDS IN SUPERGROUP

(A"2 B"-1)"3

GROUP OF ORDER 1 IS A SUBGROUP OF G
GENERATORS AS WORDS IN SUPERGROUP

IDENTITY

)

>print classes(g);

CONJUGACY CLASSES OF G

[1] ORDER 1 LENGTH 1 REP IDENTITY

[2] ORDER 2 LENGTH 9 REP A"4

[3] ORDER 2 LENGTH 108 REP A B

[4] ORDER 3 LENGTH 2 REP A"2 B"-1 A"2 B"-1 A"2 B"-1
[5] ORDER 3 LENGTH 24 REP B~-2

[6] ORDER 3 LENGTH 24 REP B"-1 A B"-2 A B"-1

[7] ORDER 3 LENGTH 24 REP B A°-1 B"2 A"-2 B A°-1
[8] ORDER 3 LENGTH 24 REP A B"-1 A2 B"-1 A B"-1
{9] ORDER 4 LENGTH 54 REP A~2

[10] ORDER 6 LENGTH 18 REP A B"2 A"-1 B"2 A"2

[11] ORDER
[12] ORDER
[13] ORDER

LENGTH 72 REP B -1
LENGTH 72 REP A B"~1 A B™-2
LENGTH 72 REP A"2 B"2

[15] ORDER
[16] ORDER

6
6
6
6
[14] ORDER 6 LENGTH 216 REP B"-1 A B -1
8 LENGTH 162 REP A
8 LENGTH 162 REP A°-3
9

[17] ORDER 9 LENGTH 144 REP A4 B~-1

[18] ORDER 12 LENGTH 108 REP 4 B"-1 A B"2
>clear;

>bye;

END OF RUN.

6.969 SECONDS
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SUN/UNIX CAYLEY V3.7.3 Mon Jun 24 1991 18:52:47 STORAGE 200000
SUN/UNIX CAYLEY V3.7.3 Mon Jun 24 1991 18:52:47 STORAGE 4500000
>

> " A finite group of soluble length seven "

>

>g=perm(72);

>g.genera:

>x=(1,66,38,41,15,56,28,32)(2,65,37,42,16,55,27,31)
>(3,7,58,25,5,13,71,48)(4,8,57,26,6,14,72,47)
>(9,36,46,30)(10,35,45,29)(11,17,39,62,12,18,40,51)
>(19,21,64,53,62,43,24,70)(20,22,63,54,61,44,23,69)
>(33,68,50,59,34,67,49,60),
>y=(1,22)(2,21)(3,29)(4,30)(5,6)(7,62)(8,61)(9,10)(11,42)(12,41)
>(13,14)(15,35)(16,36) (17,66) (18,65) (19,28)(20,27) (23,49) (24,50)
>(25,52)(26,51) (31,48) (32,47) (33,54) (34,53)(37,38) (39,67) (40,68)
>(43,45)(44,46) (55,69)(56,70) (57,60) (58,59) (63,72) (64,71);
>print order(g);

82944

>ds= derived series(g);

>for i=1 to length(ds) do

> print i,order(ds[i]);

>end;

1 41472

2 13824

3 3456

4 1728

§ 192

6 64

71

>clear;

>set printi=true;

>g=free(x,y);

>wl=x"8;w2=y"2;

>W3=x"4xyx (X" =-2%y) “3xxxy*(x"-1%y) " 2;
SHa=(X"2%y*x " -2%y*x"-1%y) "3;

>g.relations:

>w1,w2,u3,w4;

>ind= todd coxeter(g,[x]);

>print ind*8;

82944

>bye;

END OF RUN.

73.180 SECONDS

SUN/UNIX CAYLEY V3.7.3 Sat Jun 29 1991 15:02:09 STORAGE 200000
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SUN/UNIX CAYLEY V3.7.3 Sat Jun 29 1991 15:02:09

N

>Perfect group isomorphic to A5 times SL(2,5)
)

>g=free(x,y);

>g.relations:

>y°6,
PXT4dykx 1%y -3%x 1%y~ -1,
>(x*y~2) "2%x " -1%y -1 (x*y~-1)"2;
>print order(g);

7200

>clear;

Sn

>A5 times AS

Si

>h=free(x,y);

>h.relations:

>x"10,y°6

>, X 4ky*x" ~1%y -3%x"~1%y " -1
>, (x*y~2) " 2%x -1y -1*(x*y~-1)"2;
>print order(h);

3600

>clear;

>" A5 times A6

sn

>g=perm(11);

>g.genera:
>b=(2,3)(4,5)(8,11)(9,10),
>a =(1,3,5,4,6)(7,8,10);
>print order(g);

21600

>clear;

>h=free(a,b);

>h.relations:

> a"15 , b°2

>,(a*b)"5 , (a"3%b)"4
>,a"2%b*a"-3%b*a~7*b*a"-3%b;
>print todd coxeter(h,[bl);
10800

>clear;

>h=free(a,b);

>h.relations:

> a’i6 , b"2

>,(axb) "6
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>,a"2*%b*a”-3xb*a” T*b*a"-3%b;

>print todd coxeter(h,[b]);

10800

>clear;

sn

>A5 times A7

S

>g=perm(12);

>g.genera:

>a=(1,5,3,2,4)(6,10,9,11,8),
>b=(1,3)(2,5)(6,10,7,9,12,11,8);

>print order(g);

151200

>clear;

>h=free(a,b);

>h.relations:

> a"5,b"14,a*b"2*a"-1xbxa"-1*b"-2*axb"-1
>,a*b*a”-1xb*axb " -1ka*b -1%a"-1%b -i*axb"-1
>,(a,b"2)"2

>,(a"2%b"-1) "2%a*b~4*a*b -1
>,a"2*b*a"2xb -1*%a"-1%b " -2%a"-1*b"-2*a"-1%b"-1;
>print todd coxeter(h,[al);

30240

>clear;

>h=free(a,b);

>h.relations:

> a’s
>,a*bxa”-1*b*a*b”~1%a*b -1%a"-1%b " -i*a*b -1
>,(a"2%b"-1) “2*axb 4*a*b" -1
>,a"2»b*a"2%b -1%a"~1%b"-2%a"-1x%b" -2*a"-1*b"-1;
>print todd coxeter(h,[al);

30240

>clear;

)

>AS times A5 times AS

N

>g=perm(15);

>g.genera:
>a=(1,3,2,4,5)(6,9,7)(11,12,13,14,15),
>b=(2,3)(4,5)(7,8)(9,10)(11,14)(12,15);
>print order(g);

216000

>clear;

>g=free(a,b);

122



>g.relations:

> a”15,b"2

>,a"4xb*a” -1xb*a" 3¥bxa*b*a"-1*b¥a"-1*b*a”3*b*a*b
>,a"4xb*a" -1xbx (a*b) “4*(a"-1%b) "2*a"-3x*b
>,(a"3%b) "2*(a"2*b) "4x(a"3%b) "2*a"-1%b;
>print todd coxeter(g,[al);

14400

>clear;

on

>Another perfect group of order 7200
s

>g=free(x,y);

>g.relations:

>x"10=y-6,

> X"4xyRx"-1%y" -3%kx"~1xy~-1

>, (x*y~2) " 2xx"-1xy -1x(x*y~-1)"2;
>print order(g);

7200

>print normal subgroups(g);

NORMAL SUBGROUPS OF G

[2] ORDER 2 GENERATING CLASSES: [2]
UNION OF: [1] [2]

[3] ORDER 120 GENERATING CLASSES: [4]

MAXIMALS: [2]

UNION OF: [1] [2] [4] [8] [11] [12] [17] [22] [23]
[4] ORDER 120 GENERATING CLASSES: [5]

MAXIMALS: [2]

UNION OF: [1] [2] [6] [7] [9] [10] [18] [20] [21]

[5] ORDER 7200 GENERATING CLASSES: [3]

MAXIMALS: [3] [4]

UNION OF: [1] [2] [3] (4] (5] [6] [71 [8]1 [s] [10] [11] [12]
[13] [14]1 [i5] [161 [17] [18] [19] [20] [21] [22]1 [23]
[24]1 [25] [26] [27] [28] [29] [30] [31] [32] [33] [34]
[35] [36] [37] [38] [39] [40] [41]

>clear;

o

>SL(2,7) times SL(2,7)

o

>g=matrix(4,gf(7));

>g.genera:

>x=mat (6,0,0,0:
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> 5,6,0,0:

> 0,0,5,4:

> 0,0,5,0),
>y=mat(6,4,0,0:

> 4,4,0,0:

> 0,0,1,5:

> 0,0,0,1);

>print order(g);
112896

>

> print x"4xy*x -3*y;
1000

0100
0010
0001

v

print x"14;
000
100
010
001

v © © o »

Print x" 3%y 2%x*y Sxxky 2;
000
100
010
001

v © © o =~

Print X“ 2%y 2#x " -1%y 2%x" -1¥y~ 2%x" 2%y -1%x"-1*y~-1;
000
100
010
001

vV © © O =

print (x"2%y~3)°3;
oo0o0
100
010
001

o O o =~

v

print (x*xy 2*x"-1*y~-1)"3;
1000
0100
0010
0001
>clear;
>g=free(x,y);
>g.relations:

>X 4xy*x"-3x%xy,
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>x"14,

>X" 3%y " 2%xky “Bkx*ky”2,
>XT2ky T 2kx T~ 1y T2k -1ky “2%x " 2%y -1%x"-1xy -1,
>(x"2%y~3)°3,

>(xxy 2xx"-1%y"-1)°3;
>print todd coxeter(g,[x]);
8064

>clear;

>g=tree(x,y);

>g.relations:
>X"4xy%x"-3%y,

>x"14,

DX 3wy " 2%xky " Exx*y~2,

DX 2Ky T 2kx -1y T 2%xX " -1y T 2%X " 2%y T -1kx -1y -1;
>ind = todd coxeter(g,[x]);
>print ind * 14;

112896

>clear;

>g=tree(x,y);

>g.relations:
>x"4ky*x”-3%y,

>X" 3%y " 2%xxy "Sxx*y”2;
>print order(g);

112896

>clear;

>bye;

END OF RUN.

338.929 SECONDS
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