Photonic quasicrystal nanopatterned silicon thin film for photovoltaic applications

H Ren1,2, Q G Du1,3,*, F Ren4,5,* and C E PNG1

1Institute of High Performance Computing, 1 Fusionopolis Way, #16-16 Connexis North, Singapore 138632

2Electrical Engineering, California Institute of Technology, 1200 E, California Blvd, Pasadena, CA 91125, USA

3Department of Physics, University of Toronto, 60 ST. George St., Toronto, Ontario, M5S 1A7, Canada

4Department of Electronic Materials Engineering, Research School of Physics and Engineering, The Australian National University, Canberra, ACT 0200, Australia

5School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China

* Author to whom correspondence should be addressed, electronic mail: qingguodu@gmail.com; fangfang.ren@anu.edu.au;
Abstract

In this letter, the authors numerically studied the optical properties of silicon photonic quasicrystal (PQC) nanohole array for photovoltaic applications. With the same active layer thickness, the ultimate efficiency of a solar cell integrated with an optimized PQC nanohole array can be enhanced by 9.01% and 1.40% as compared to that with an ordered square lattice of nanohole array and a random nanohole array respectively. The absorptance enhancement is mainly due to the higher-order rotational symmetry in PQC structures, which leads to the presence of additional resonant modes, broadening of existing modes, and reduction of surface reflectance. The angular response for both transverse-electric and transverse-magnetic modes are also analyzed in details.
Solar energy is one of the most promising renewable energies, which has provided 0.7% of the world’s total energy in the year of 2013 [1]. However, the solar cell market seems to be close to saturation owing to the high price of crystalline silicon which accounts for around 40% of the total cost of the solar modules [2]. Most commercially available silicon (Si) solar cells are made of bulk Si wafer, with an active layer thickness ranging from 200 µm to 300 µm. Tremendous effort has been devoted to reducing the thickness of Si active layer to a few micrometres or even sub-micrometre in order to lower the cost of solar cell modules [3]. While thin active layer is more efficient in charge-carrier transport, the obvious drawback is that the light absorption is weak especially in the long wavelength range near the band edge of Si [4]. Therefore, different light trapping techniques have been explored and employed to enhance light absorption in the active layer. For example, top and back surface texturing is intensively used for light trapping, including grating couplers [5,6], randomly textured structures [7-9], and plasmonic nanostructures [10-12]. On the other hand, directly texturing active layer into nanostructures also has been widely used to trap the light such as nanowire structure [13-16], nanohole structure [17-20], nanocone structure [21] and nano-cone-hole structure [22]. Another strategy to introduce better light absorption is to manipulate the randomness of nanostructures to achieve additional supported guided resonant modes and broadening of existing resonant modes [20, 23-26]. Recently, quasiperiodic structures, which exhibit higher rotational symmetry, have been reported for solar cell application assisted with plasmonic effects [12] or transparent electrode patterning [27]. However, to the best of our knowledge, the light absorption enhancement using quasiperiodically textured nanostructure in active layer has not been studied in details.

In this letter, we proposed a new type of thin film solar cells integrated with photonic quasicrystal (PQC) nanohole (NH) array textured crystalline silicon (c-Si) active layer. The optical properties, including
absorptance, reflectance and transmittance, were numerically investigated by comparing with other nanostructured architectures, e.g., ordered square lattice NH array and random NH array. For simplicity, the PQC NH array, ordered square lattice NH array and random NH array are named as PQC, Ordered and Random structures in the following text.

Figure 1 shows the schematic illustration of the PQC structure for the study. The three-dimensional (3D) view and two-dimensional (2D) top view of the PQC structure are shown in Figs. 1(a) and 1(b) respectively. The PQC structure has 12-fold symmetry, which is generated using the Stampfli inflation rule [28, 29]. In this method, offspring dodecagons are generated from dodecahedral parent cells with a factor of $2 + \sqrt{3}$. The computing domain of $(4 + \sqrt{3})a$ is chosen in both x and y directions in order to exhibit the long range 12-fold symmetry, suitable for simulation using supercell theory in quasicrystal structures [30]. There are $N_q = 33$ cylinders in the simulation area, the filling factor of the PQC structure is then defined as $f_q = N_q \pi r^2 / (4 + \sqrt{3}) a^2$, in which a is the distance between each nanohole [Fig. 1(b)].

The thickness of the thin film is defined as h [Fig. 1(a)] and radius of the NHs is indicated as r as shown in Fig. 1(b). The silicon dielectric function used in our analysis is taken from [31]. For Ordered structure, a square lattice model of area a by a with one cylinder is applied for optical property simulation and for Random structure, a randomized model of area $5a$ by $5a$ with 25 cylinders are generated for the simulation. The filling factors for Ordered and Random structures are $f_s = \pi r^2 / a^2$ and $f_r = N_r \pi r^2 / 5^2 a^2$ respectively, which are approximately identical to f_q. The random array used in our analysis is a general case position randomized array [25].

All the spectra simulations for PQC, Ordered and Random structures are calculated by employing a commercial software package (Lumerical FDTD Solutions) based on finite-difference time-domain
(FDTD) method. Sunlight is perpendicularly incident on the top of the thin film. Periodic boundary conditions are used in the x and y directions, and air-Si-air layers are used in the z direction with a perfectly matched layer boundary condition adopted above and below air layers. The reflectance (R) and transmittance (T) were calculated directly. The absorptance (A) is determined by $A = 1 - R - T$. Here, we fixed the hole distance of PQC structure at $a = 500$ nm according to our optimization (not shown). The thickness of c-Si film is fixed at $h = 300$ nm for all the simulations.

Figures 2(a)-(c) show the absorption, reflection, and transmission spectra of the PQC, Ordered, and Random structures when the ratio of radius of NH (r) to lattice constant (a), $r/a = 0.4$. The results of a bare c-Si thin film without any nanostructure are also provided for reference. The spectra of the PQC structure in Figs. 2(a)-(c) are the average of azimuth angle $\phi = 0^\circ$ (angle between E-field and x-axis) normal incident light and azimuth angle $\phi = 90^\circ$ normal incident light, to represent unpolarized sun light. The spectra of the Random structure in Figs. 2(a)-(c) are the average spectra of four different randomized NH arrays shown in the insets of Fig. 2(d), which were randomly generated by computer. We utilize such a physically meaningful treatment to avoid small probability event and represent the real situation with reference to the absorption spectra for all these four cases shown in Fig. 2(d). It is found that the absorption spectra of PQC, Ordered and Random structures almost coincide with each other in the range of short wavelengths. From $\lambda = 500$ nm onwards, the PQC structure exhibits more absorption peaks but with lower peak efficiencies and wider line width as compared to the Ordered one. It has been pointed out that the presence of the guided resonant modes in PQC and Ordered structures is responsible for the existence of peaks in the absorption spectra [15, 17]. We therefore believe that the PQC structure should support additional guided resonant modes rather than Ordered structure, since the former one has a
higher-order rotational symmetry. It should be noted that even in the case of Random structure, the solar
cells with nanostructures show higher absorption as compared to the bare thin film, especially in the long
wavelength range from 800 nm to 1100 nm where the absorption of the bare thin film is extremely low.
The corresponding reflectance and transmittance spectra are shown in Figs. 2(b) and 2(c). In the short
wavelength range, the absorptance is mainly determined by the reflectance due to the high material
absorption of Si, i.e., the lower the reflectance, the higher the absorptance is. For example, the
transmittance of the bare thin film is inhibited when $\lambda < 500$ nm, since the light which has not been
reflected will all be absorbed by Si. However, the thin film with nanostructures exhibits a lower
reflectance as compare to the bare film in this range, suggesting higher absorption efficiency as shown in
Fig. 2(a). In the long wavelength range, where the material absorption coefficient is reduced, the
absorptance will be affected by both of the reflectance and the supported guided resonant modes. For
instance, the reflectance of the Ordered structure approaches zero at the wavelength of 970 nm [Fig. 2(b)],
but the transmittance is quite high [Fig. 2(c)], which finally results in the relatively low absorption in Fig.
2(a). The PQC structure follows a similar behaviour as described above, despite the amplitude and
position modulation of absorption peaks.
To further clarify the absorption properties of the nanopatterned structures, electric- (E-) field intensity
distribution for the PQC, Ordered and Random structures at $\lambda = 624.6$ nm and 662.4 nm are depicted in
Fig. 3. These two wavelengths correspond to one absorption peak and the next dip for both PQC and
Ordered structures. As shown in Figs. 3(a) and 3(b), the resonant mode at 624.6 nm can be supported in
both PQC and Ordered structures but with weaker confinement in the PQC case, which indicates a guided
resonant mode with a lower quality factor (Q-factor) corresponding to a lower and broader peak in the
absorption spectrum. Meanwhile, the field intensity in Fig. 3(d) is stronger than that in Fig. 3(e) at the wavelength of 662.4 nm due to the broadening of guided resonant mode in PQC structure, which agrees well with the deeper absorption dip in Ordered structure rather than PQC case. By comparing the E-field intensity distribution in Figs. 3(a) and 3(c) or Figs. 3(d) and 3(f), we find that the PQC structure presents slightly stronger/weaker confinement at 624.6 nm/662.4 nm than Random structure, which is consistent with the observation in the absorption spectra as shown in Fig. 2(a). From Figs. 3(c) and 3(f), the E-field intensity distributions at these two wavelengths show similar features, which explain the flattened absorption spectrum of the Random structure.

To evaluate the absorption performance of the thin film solar cell, the ultimate efficiency, \(\eta \), needs to be calculated, which is defined as the efficiency of a photovoltaic cell when each photon with energy greater than the material band edge generate an electron-hole pair. \(\eta \) can be written as [32]

\[
\eta = \frac{\int_{\lambda_{\text{min}}}^{\lambda_{\text{max}}} I(\lambda) A(\lambda) \frac{\lambda}{\lambda_g} d\lambda}{\int_{280\text{nm}}^{4000\text{nm}} I(\lambda) d\lambda}
\]

where \(I(\lambda) \) is the solar intensity per wavelength interval, using the Air Mass 1.5 (AM1.5) spectrum [33], \(A(\lambda) \) the absorptance, \(\lambda \) the wavelength, and \(\lambda_g \) the wavelength corresponding to the band edge. The ultimate efficiency of the PQC, Ordered, and Random structures shown in Fig. 4(a) is calculated under normal incidence for various ratios of \(r/a \). It is found that the efficiency from nanostructured thin film ranges from 12.23% to 17.42%, while the bare thin film only has a lower efficiency of 5.64% (indicated as dashed line in Fig. 4(a)), which confirms the improvement of the light trapping and absorption. As \(r/a \) increases from 0.2 to 0.35, the efficiency of thin films with all these types of nanostructures will be increased, although the effective absorbing area is decreased. In the special range of 0.2 < \(r/a < 0.25 \), the
PQC structure is optimal among other designs due to the highest absorption. When $r/a = 0.35$, i.e., $r = 175$ nm, the efficiencies from all nanostructures reach the maximum point, which is 17.42% for the PQC structure, 1.40% higher to the Random structure (17.18%), and 9.01% higher than the Ordered structure (15.98%). After $r/a = 0.35$, the ultimate efficiencies of all three structures start to decrease because of the remarkable reduction of absorbing materials. It is also worthy to mention that the efficiency of PQC and Random structures is always larger than that of Ordered structure from $r/a = 0.2$ to 0.4, which clearly demonstrates the advantage of PQC and Random nanostructures in the photovoltaic applications.

In Figs. 4(b)-(d), we numerically investigated the dependence of ultimate efficiencies on the incident angles for optimized PQC, Ordered, and Random structures under transverse-electric (TE, no electric field in z direction) or transverse-magnetic (TM, no magnetic field in z direction) polarized state. It can be seen that the efficiency under TE and TM illumination drops rapidly in Ordered structure when the incident angle is increased, mainly due to the momentum mismatch between the guided modes and the incident light. However, in PQC and Random structures, the efficiency of TE polarization will be reduced more slowly and the efficiency of TM mode will be relatively stable with incident angle varying from 0° up to 60°. Such a good angular response is critically important for solar energy collecting where expensive solar tracking system is not used.

Finally, we briefly discuss the influence of the thin film thickness h on the ultimate efficiencies in PQC, Ordered and Random structures, which was fixed to be 300 nm in above for simplicity. By setting h to be 330, 300, and 270 nm, we performed the simulation of absorption spectra to check what the slight change of the thickness (±10%) does. The basic parameters are set as $r/a = 0.35$ and $a = 500$ nm. The calculated ultimate efficiencies for all the nanostructures are listed in
Table 1. When the thickness is increased from 270 nm to 330 nm, the ultimate efficiency of each nanostructure will be improved, mainly due to the increment of absorption length. For $h = 300$ nm and 330 nm, the PQC has the best performance rather than Random and Ordered structures. However, when h is decreased to 270 nm, the efficiency of PQC is still higher than the Ordered structure but lower than the Random structure. It indicates that the thickness of thin film is critical for the effectiveness of the PQC structure, and one should optimize it before practical fabrication.

In conclusion, optical properties of 12-fold PQC nanohole array, Photonic crystal ordered square lattice of nanohole array and Photonic crystal random nanohole array are theoretically studied for the application in solar cells. It is clearly shown that PQC structure has better absorption performance as compared to Ordered and Random structures due to the additional supported guided resonant modes, which is introduced by higher rotational symmetry. When $r/a < 0.25$, the PQC structure is optimal among other designs. At $r/a = 0.35$, the ultimate efficiency of PQC structure reaches the maximum value of 17.42%, which is 1.40% higher than the Random structure, and 9.01% higher than the Ordered structure. We also studied the angle dependence of efficiency under TE and TM polarizations. The PQC and Random structures exhibit higher stability against incident angle changes rather than the Ordered structure.

This work was supported by the Australian Research Council Discovery Early Career Researcher Award (DE 130101700), the National Natural Science Foundation of China (No. 11104130).
References:

11. H. A. Atwater and A. Polman, Nat. Mat. 9, 205-213 (2010).

Fig. 1

Fig. 1. (a) 3D schematic and (b) 2D top view of the silicon PQC structure with supercell simulation range.
Fig. 2

Fig. 2. (a) Absorptance, (b) reflectance, and (c) transmittance of PQC, Ordered and Random structures, and (d) absorptance of four different Random structures.
Fig. 3

Fig. 3. E-field intensity distributions (azimuth angle $\phi = 0^\circ$) in (a) PQC, (b) Ordered and (c) Random structures at $\lambda = 624.6$ nm. E-field intensity distributions in (d) PQC, (e) Ordered and (f) Random structures at $\lambda = 662.4$ nm.
Fig. 4. (a) Ultimate efficiency of the PQC, Ordered and Random structures for different ratio of radius of NH to lattice constant, \(r/a \). Angular response and polarization dependence of the ultimate efficiency of the (b) optimized PQC, (c) Ordered and (d) Random structures.
Table 1. Ultimate efficiencies of PQC, Random and Ordered nanostructures with film thickness $h = 330$ nm (10% increased), 300 nm (original thickness), and 270 nm (10% decreased).

<table>
<thead>
<tr>
<th>Film thickness</th>
<th>PQC structure</th>
<th>Random structure</th>
<th>Ordered structure</th>
</tr>
</thead>
<tbody>
<tr>
<td>330 nm (10% increased)</td>
<td>18.99%</td>
<td>18.30%</td>
<td>16.68%</td>
</tr>
<tr>
<td>300 nm (Original)</td>
<td>17.42%</td>
<td>17.18%</td>
<td>15.98%</td>
</tr>
<tr>
<td>270 nm (10% decreased)</td>
<td>15.98%</td>
<td>16.80%</td>
<td>14.30%</td>
</tr>
</tbody>
</table>