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Abstract: We explore how and by how much the values of elasticities of substitution affect 
estimates of the cost of emissions reduction policies in computable general equilibrium 
(CGE) models. We use G-Cubed, an intertemporal CGE model, to carry out a sensitivity and 
factor decomposition analysis. The decomposition analysis determines the contributions of 
changes in average abatement costs and changes in baseline emissions to the change in total 
mitigation costs. The latter has not previously been considered. Average abatement cost rises 
non-linearly as elasticities are reduced. Changes in the substitution elasticities between 
capital, labor, energy, and materials have a greater impact on mitigation costs than do inter-
fuel elasticities of substitution. The former have more effect on business as usual emissions 
and the latter on average abatement costs. As elasticities are reduced, business as usual 
emissions and GDP growth also decrease so that there is not much variation in the total costs 
of reaching a given target across the parameter space. Our results confirm that the cost of 
climate mitigation policy is at most a few percent of global GDP. 
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1 Introduction 

Most countries recognize the need to transition to a low carbon economy in response to the 

threat of global climate change due to emissions of anthropogenic greenhouse gases. 

Growing global energy demand relative to the availability of fossil fuels, concerns over 

energy security, and countries’ desires to lead the alternative energy technology industry are 

also driving alternative energy and energy efficiency policies around the world (Sunstein, 

2007-2008; Houser et al. 2008; Boyd, 2012; Kennedy, 2013). 

How difficult will such a transition be? Existing research and policy analysis provides a wide 

range of answers. For example, Tim Jackson and Nicholas Stern, both advisors to the British 

Government, take completely different positions. Jackson (2009) argues that the transition to 

a low carbon economy is so hard that, in order to have any chance of sufficiently 

decarbonizing, economic growth must stop. But the Stern Review (N. Stern, 2007) concluded 

that a global climate policy that limits greenhouse gas concentrations to 550 parts per million 

(ppm) of carbon dioxide equivalent (CO2e) will only reduce global GDP through 2100 by 1% 

of what it otherwise would be (Dietz and N. Stern, 2008). Using an endogenous growth 

model with resource constraints, Acemoglu et al. (2012) similarly claimed that ambitious 

climate policies could be conducted without sacrificing long-run growth. However, Hourcade 

et al. (2011) argued that the elasticity of substitution between “clean” and “dirty” sectors that 

Acemoglu et al. (2012) used to produce these results is far too large and unrealistic. They 

found that “with a more plausible value of ε = 0.5 (elasticity of substitution), climate control 

(in the model) is impossible without halting long-term growth”. 

Though the conclusions of the Stern Review are based on an integrated assessment model, not 

all such models find that the costs of emissions reductions are that low. The 22nd Energy 

Modeling Forum revealed a wide range of costs across the participating integrated assessment 

models (Tavoni and Tol, 2010). At the extreme, the SGM model finds Indian GDP to be 66% 

lower than it otherwise would be in 2100 for one of the 550 ppm CO2e scenarios. 

Additionally, most of these models failed to simulate the most stringent target - an 

atmospheric concentration of no more than 450 ppm CO2e (Clarke et al., 2009). Thus there is 

great uncertainty about the costs of climate change mitigation. 

Despite such model comparison exercises as EMF22, because models are so different from 

each other and are so complex, it is very hard to understand what really drives such 
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differences in estimated costs. It would be easier to understand the impact of changes in 

assumptions by carrying out a sensitivity analysis of a single climate policy model, which we 

do in this paper. 

There has been extensive work on modeling the costs of climate change mitigation and 

adaptation using the tools of computable general equilibrium (CGE) models (e.g. Garnaut, 

2008; Treasury, 2008). The elasticities of substitution between energy and other inputs and 

among fuels have been claimed to be “the single most important parameters that affect the[ir] 

results.” (Bhattacharya, 1996, 159). Furthermore, “in the economic literature, there is little 

consensus about different elasticities for energy products” (Bhattacharya, 1996, 159). A 

meta-analysis (Stern, 2012) found much variation in the estimated elasticities of substitution 

between fuels and that estimates based on time-series such as those used in the G-Cubed or 

IGEM (Goettle et al., 2007) models tend to underestimate the long-run possibilities of 

substitution between inputs. Similar results were found by a meta-analysis of the substitution 

possibilities between energy and capital (Koetse et al., 2008). Most leading climate policy 

CGE models assume that substitution possibilities in production are quite limited (Pezzey and 

Lambie, 2001). By contrast, Beckman and Hertel (2009) argue that studies based on the 

GTAP-E model understate the cost of meeting mitigation targets due to overstating the price 

elasticity of demand for oil. 

Though there has been extensive research comparing the results of different climate change 

policy evaluation models (e.g. Clarke et al., 2009; Kriegler et al., 2015), there have been few 

published systematic sensitivity analyses of individual CGE models.1 Those that do exist 

mostly address issues other than climate change (e.g. Abler et al., 1999; Belgodere and 

Vellutini, 2011), aspects of climate change other than the costs of mitigation policies (e.g. 

Elliott et al., 2012), or the effects of parameters other than the elasticities of substitution (e.g. 

McKibbin et al., 1999). Systematic sensitivity analyses of much simpler aggregated 

integrated assessment models such as Nordhaus’ (1993) DICE model are of course more 

common (e.g. Butler et al., 2014).   

In apparently the first systematic sensitivity analysis of an individual CGE model, Jorgenson 

et al. (2000) found that reducing substitution elasticities in production in the IGEM model to 

                                                
1 It does seem to be becoming more common to report tests of sensitivity to few key 
parameters in papers using CGE models (e.g. Dessus and O’Connor, 2003; Meng et al., 2013; 
Schenker, 2013; Lanzi and Wing, 2013).  
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zero from their time-series estimated values resulted in a quadrupling of the estimated carbon 

permit price over the policy period and a doubling to quadrupling of the resulting change in 

Gross Domestic Product. Jacoby et al. (2006) provide some limited evidence on the effect of 

elasticities of substitution on the costs of mitigation policies in a global model. They find that 

the results are most sensitive to the energy-value added elasticity of substitution, but neither 

in this nor in later papers (e.g. Webster et al., 2012) do they provide much detail. Babonneau 

et al. (2012) carry out a Monte-Carlo analysis of the GEMINI-E3 CGE model assuming that 

the standard deviation of the elasticities of substitution is 30% of their mean values. They 

find that increased flexibility lowers the carbon price and the welfare cost and that the results 

are more sensitive to the substitution elasticity between capital, labor, energy, and materials, 

than to the interfuel elasticities of substitution. Though they target absolute emissions 

reductions, they calibrate the rates of technical progress associated with each factor so that 

baseline economic growth and energy consumption match those in the World Energy 

Technology Outlook (European Commission, 2007). Thus they “filter out” the effect of 

changes in the elasticities of substitution on business as usual (BAU) emissions. 

In this paper, we explore how, and by how much, assumptions about elasticities of 

substitution affect estimates of the cost of emissions reduction policies in CGE models by 

using G-Cubed (McKibbin and Wilcoxen, 1999), an intertemporal CGE model, to carry out a 

sensitivity and factor decomposition analysis. McKibbin et al. (1999) carried out a sensitivity 

analysis of the Armington elasticities and the capital adjustment cost parameters in G-Cubed. 

These had important impacts on the size of international capital flows and exchange rates in 

simulations but did not change the overall insights of the G-Cubed model. But there are no 

published results for the sensitivity of the G-Cubed model to the elasticities of substitution in 

production and consumption. 

Compared to Jorgenson et al. (2000), our analysis is innovative in using a global rather than 

national model. Results may differ across countries as well as being different in a global 

general equilibrium model than in a single country model. Also, in contrast to Jorgenson et 

al. (2000), we use absolute rather than relative emissions reduction targets, though our 

analysis allows us to draw conclusions about the costs of relative targets too. In contrast to 

Babonneau et al. (2012), we allow changes in the elasticities of substitution to affect business 

as usual economic and emissions growth. This turns out to have very important effects on the 

results. We then carry out a decomposition analysis to determine how the change in costs can 
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be attributed to changes to the business as usual emissions scenario and changes to average 

abatement costs. Also, while Babonneau et al. (2012) only test the effect of changing all 

production side elasticities simultaneously, we examine the effect of varying elasticities of 

substitution across different productions sectors as well as in consumption. As we use a 

carbon tax rather than carbon permits, our results are not affected by the wealth effects of the 

distribution of permits. This is also the reason that we focus on GDP rather than consumption 

as our measure of cost. Consumption losses are strongly affected by how climate policy is 

implemented. Finally, in contrast to Babonneau et al. (2012), we also assess the effects of 

weaker policy goals than the objective of a 2.1ºC increase in temperature by 2100. 

In our sensitivity analysis, we assess the effects of variation in the following key parameters: 

• Elasticities of substitution in production between fuels. 

• Elasticities of substitution in production between capital, labor, energy, and materials. 

• Elasticities of substitution in consumption for both these categories. 

We assess the costs of climate change mitigation globally and in the eleven G-Cubed model 

regions using changes in GDP relative to BAU. We evaluate three possible absolute 

emissions reduction targets for each set of parameter values. The paper is structured as 

follows. The second section, following this introduction, discusses the default assumptions of 

the G-Cubed model that are most relevant to our sensitivity analysis. The third section 

describes the theory of measuring the effect of elasticities of substitution on mitigation costs 

and the decomposition method used to analyze the results of our experiments. The fourth 

section describes the research design in terms of policy targets and parameter variations. 

Section 5 reports the results and the sixth section concludes. 

2 Default Assumptions 

The G-Cubed model is a global intertemporal CGE model that has been used for both climate 

policy and macro-economic analysis that uses nested constant elasticity of substitution (CES) 

functions to model production and consumption opportunities and assumes that technological 

change is exogenous and factor-specific. The version of G-Cubed that we use in this study is 

version 110D, in which the world is divided into 11 regions. The parameter values provided 

in this version of the model are the default parameters that we then perturb in our sensitivity 
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analysis. The regional and sector aggregation is described in Tables I and II. A more detailed 

description of the model structure is presented in the Appendix. 

We implement climate policy scenarios using an economy-wide carbon tax per unit of carbon 

emitted in all production sectors. Carbon emissions are computed by multiplying each energy 

good with a fixed carbon coefficient. Though G-Cubed can also model permit trading 

schemes, we do not model such a scheme here because that would create an additional 

potential policy dimension - the initial permit allocation - which would result in substantial 

wealth transfer between economies in a global model like G-Cubed. 

McKibbin and Wilcoxen (1999, 2013) describe how the default parameters in G-Cubed are 

estimated econometrically using a consistent time series (at 5 year intervals) derived from US 

input-output tables and other data sources. To obtain an estimate of the inter-fuel elasticity of 

substitution for each industry they estimated a system of cost share equations derived from an 

energy unit cost function for each industry together with the unit cost function. Similar 

approaches were used for the inter-material, inter-factor, and consumption elasticities of 

substitution. These estimates assume no technical change and as the input-output data are 

pentennial the time series are very short and in the case of the top tier, capital is assumed to 

be fixed in the short run in the estimation procedure. Additionally, time series estimates tend 

to converge to short-run rather than long-run elasticities of substitution (Stern, 2012). 

Therefore, the elasticities would generally be smaller than those from empirical studies that 

attempt to estimate long-run elasticities and the small samples may be associated with high 

sampling variability. Furthermore, these US elasticity estimates are applied in all countries, 

though the distribution parameters of the CES functions vary between regions and are 

estimated using the GTAP input-output database. Therefore, it is very plausible that the true 

parameters could deviate significantly from the default parameters used in G-Cubed. Table 

III provides a summary of these default values for the parameters of interest. What would 

happen when we allow these parameters to vary across regions is an interesting question, 

which we do not address in the current research. 

The top tier substitution elasticities of all the sectors are broadly within the range of Koetse et 

al. (2008)’s meta-analysis, which indicates that the energy-capital substitution elasticity is 

between 0.4 (short-run) and 1.0 (long-run) for North America and between 0.2 (short-run) 

and 0.8 (long-run) for Europe. The main exceptions are in the coal-mining sector and the 

agriculture, forestry, fishing and hunting sector. 
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Stern’s (2012) meta-analysis showed that the inter-fuel substitution is greater than one, but 

the estimates on the macro-level are smaller than those on the sub-industry level; and 

elasticities estimated using time series data are smaller than those estimated using cross-

section data. All the default interfuel elasticities of substitution in G-Cubed are less than 

unity. The electricity sector is of most interest as it covers a significant portion of energy use 

and the elasticities are quite small - both the interfuel and interfactor elasticities of 

substitution are assumed to be 0.2. Note that we only explicitly model fossil fuels and generic 

electricity in G-Cubed. A solar technology is modeled as an electricity generation technique 

that uses lots of capital and little fossil fuel to generate electricity (Pezzey and Lambie, 2001). 

3 Business as Usual Scenarios, Policy Targets, Cost Metrics 

A Business as Usual (BAU) scenario is a projection of future economic variables and 

emissions based on various assumptions about the future without a climate policy. In 

assessing a specific policy, the results are usually reported in terms of deviations from BAU. 

In this study, the BAU scenario changes every time we change the elasticities of substitution. 

Therefore, there are three issues in designing an effective and valid way of carrying out 

policy experiments for this study. First, is there any real world economic implication of 

changes in the BAU scenario due to the change of elasticity parameters? Second, what kind 

of policy and policy target should we use in the study? Third, since the BAU scenarios vary, 

how can we decompose the effect of changed parameters on the BAU scenario and on the 

measure of mitigation costs? As we will see below, these questions are interconnected. 

Elasticities of substitution and rates of technological change have two main effects on the 

costs of climate mitigation policy in a CGE model-based analysis – they alter the BAU 

scenario and they change the cost of cutting emissions by a given amount from any particular 

initial level. In general, the more flexible the economy is and the faster technological change 

is, the higher GDP is in the BAU scenario. The latter is an obvious implication of standard 

growth theory. The former is an implication of the de La Grandville (1989) hypothesis, which 

proposes that the rate of economic growth is faster the higher the elasticity of substitution 

between capital and labor. 

In the G-Cubed model, the CES functions are normalized in order to fit the data on input and 

output quantities and prices in the initial year (the baseline point). When the elasticities of 

substitution are set to different values, given the levels of technology remain unchanged, the 
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distribution parameters (𝛿!
!/! , 𝑗 = 𝐾, 𝐿,𝐸,𝑀) as in equation (A1) in the Appendix will vary in 

order to match the data at the baseline point. However, this only constrains the baseline point 

and quantities and prices in other years of the BAU scenario change systematically. Existing 

studies avoid consideration of the change in the BAU scenario by either only considering 

abatement in percentage terms relative to BAU (Jorgenson et al., 2000) or by adjusting other 

model parameters so that the BAU scenarios under the alternative parameter sets are the same 

as under the default parameter set (Babonneau et al., 2012). Our approach differs from both 

these approaches, as we use absolute targets and we allow the BAU scenario to change as we 

change the parameters of interest. Rather than keeping the required percentage reduction in 

emissions constant as the parameters are changed, our decomposition analysis allows us to 

decompose the change in GDP losses into the change due to the change in required abatement 

and the change in average cost of abatement. The problem with preventing variation in the 

BAU scenario across different parameter sets is that, various parameters can be used to keep 

the BAU scenario the same as the default model. This raises the issue as to how to justify 

which parameters should be chosen and how the choice will affect the policy scenarios 

quantitatively. Additionally, only several key variables such as GDP and emissions will be 

the same in the default and adjusted BAU scenario while other variables such as the structure 

of production might change. We think that making these additional changes complicates 

interpretation of the decomposition as now multiple additional parameters are being changed 

and we can no longer assess the impact of the elasticities of substitution alone. 

From our simulations with G-Cubed, we find that emissions also grow more rapidly when the 

economy is more flexible. This makes sense, as we would expect higher energy use when 

GDP is higher if the supply of fossil energy is largely unconstrained as it is in our model. 

Similarly, faster labor augmenting technical change would be expected to increase energy 

use. Faster energy augmenting technical change would be expected to reduce energy use and 

hence emissions. But due to the rebound effect the reduction is less than one might naively 

expect; and the higher the elasticity of substitution between energy and the other factors of 

production the greater the rebound (Saunders, 1992). This means that, the more flexible the 

economy and the faster the rate of labor augmenting technical change, the greater the amount 

of emissions that will have to be cut to reach a given policy target in terms of an absolute cut 

in emissions relative to a base year.  



 
 

9 

We decompose mitigation costs as follows. For an absolute emissions target, given the vector 

of elasticities of substitution, 𝜎!, we can decompose the GDP losses relative to BAU as 

follows: 

 Δ𝐺
𝐺!"#

≡
Δ𝐺/𝐺!"#
Δ𝐸/𝐸!"#

×
Δ𝐸
𝐸!"#

≡
Δ𝐺
Δ𝐸×

Δ𝐸
𝐸!"#

×
𝐸!"#
𝐺!"#

 (1) 

 
where we define !!

!!
  as the average cost of abatement,  !!/!!"#

!!/!!"# 
as the cost elasticity of 

abatement,  !!
!!"# 

is abatement relative to BAU, and !!"#
!!"#

 is BAU emissions intensity. In our 

analysis, the loss in GDP is measured as the net present value of the accumulated changes in 

GDP from 2013 to 2030, using a discount rate of 4%.2 Of course, the decomposition of GDP 

losses that we use here is not unique and decompositions into further factors are possible. For 

example, changes in GDP might be decomposed into the contributions of the different inputs 

to production to highlight the roles of adjustment in capital stocks versus interfuel and inter-

material substitution. But this decomposition is much more complex and difficult to compute 

and so we only consider the simple decomposition in equation (1). 

Defining 𝑔 = !!
!!"#

,  𝐶 = !!
!!

, 𝐴 = !!
!!"#

, and  𝐼 = !!"#
!!"#

, equation (1) can be rewritten as: 

𝑔 ≡ 𝐶×𝐴×𝐼. Define ∆𝑔! = 𝑔 𝜎! − 𝑔 𝜎!  as the difference between the percentage GDP 

losses associated with a parameter set 𝜎! and those associated with the default parameter set 

𝜎! given a policy scenario. Then we can decompose the difference in percentage GDP losses 

into the contributions of the changes in the three factors, C, A, and I due to the change in the 

parameters.  

As discussed by Ang (2004), a decomposition method without residuals is preferable. Among 

the popular methods, the Logarithmic Mean Divisia Index (LMDI) method (Ang and Liu, 

2001) has no unexplained residual and is the most elegant from a theoretical point of view 

(Ang, 2004). Therefore, we use the LMDI (additive) method as the decomposition method to 

analyze the contribution of each of the three factors to the differences in percentage GDP 

losses between different parameter sets. The formula for LMDI (additive) decomposition is 

given as follows: 

                                                
2 The choice of discount rate is discussed in the Appendix. 
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 ∆𝑔! = 𝑔 𝜎! − 𝑔 𝜎! = ∆𝐶! + ∆𝐴! + ∆𝐼! (2) 

where: 

 
∆𝐶! =

𝑔 𝜎! − 𝑔 𝜎!
𝑙𝑛 ! !!

! !!

×𝑙𝑛
𝐶!

𝐶 𝜎!
,  

 
∆𝐴! =

𝑔 𝜎! − 𝑔 𝜎!
𝑙𝑛 ! !!

! !!

×𝑙𝑛
𝐴!

𝐴 𝜎!
, (3) 

 
∆𝐼! =

𝑔 𝜎! − 𝑔 𝜎!
𝑙𝑛 ! !!

! !!

×𝑙𝑛
𝐼!

𝐼 𝜎!
,  

The proportional change in the loss of GDP due to the change in parameters can be obtained 

by dividing both sides of (2) by 𝑔 𝜎! : 

 ∆!!
! !!

= ! !! !! !!
! !!

= ∆!!
! !!

+ ∆!!
! !!

+ ∆!!
! !!

  (4) 

When expressed in percentage terms, the decomposition shows the percentage contributions 

from 𝐶!, 𝐴!, and 𝐼! to a given percentage change in 𝑔!. 

4 Design of Experiments: Targets, Policy Scenarios, and Variation of Parameters 

The simulation experiments involve several steps: first, we build a default model, which uses 

the standard assumptions used in G-Cubed for generating a BAU scenario; second, we 

impose a set of absolute targets and simulate the default model to find policy paths that 

achieve these absolute targets; third, we build a new model and corresponding BAU time 

path by changing the values of a set of parameters of interest while keeping all the other 

assumptions unchanged; finally, we simulate the new model to achieve the same absolute 

targets that we impose in the default model. The last two steps are repeated for various 

perturbed sets of parameters. 

We look at the consequences of policies up till 2030 only as the G-Cubed model is designed 

primarily for shorter-term analysis. The absolute global emissions targets in 2030 are set as 

follows:  

(i) 20% below the 2010 global emissions level (Scenario 1, Target 1); 
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(ii) Constant emissions at the 2010 global level (Scenario 2, Target 2); 

(iii) 20% above the 2010 global emissions level (Scenario 3, Target 3). 

The experiments are not designed to exactly follow any existing policy scenarios, such as the 

EMF22 scenarios (Clarke et al., 2009) or the IPCC’s new Representative Concentration 

Pathways or RCPs (van Vuuren et al., 2011), because: (i) the former scenarios are designed 

to target concentrations of carbon dioxide equivalent greenhouse gases but G-Cubed is not an 

integrated assessment model and neither incorporates GHGs other than CO2 nor any method 

of computing atmospheric concentrations; (ii) even though RCPs have corresponding CO2 

emissions paths for each scenario, exactly following the path will give us a carbon price path 

that fluctuates significantly over time, which is not the economically optimal path. Therefore, 

the above targets allow us to derive a smooth carbon price trajectory to achieve the CO2 

reduction target by 2030. 

While the emission paths do not exactly follow the RCPs, our targets for emissions 

reductions are broadly consistent with the growth of emissions to 2030 relative to 2010 in the 

RCP scenarios. RCP8.5 is a relatively energy intensive BAU scenario where no policy action 

is taken (Riahi et al., 2011; Moss et al., 2010). Our BAU emissions projection in the default 

case is close to RCP8.5 until around 2050 (see Figure 1). We calculate the percentage change 

of the emissions in 2030 relative to the 2010 level for each RCP. The range is between -

18.87% (RCP 2.6) and +27.25% (RCP 4.5) (see Figure 1). Therefore, our targets for the 

scenarios are representative of this range.  

We make three assumptions about the policy scenarios adopted in the experiments. First, we 

assume a global carbon tax that applies to each region in the model such that the global 

emissions target can be achieved in 2030. Second, we use a Hotelling (1931) -type rule to pin 

down the carbon price path. That is, the carbon price increases by 4% (the discount rate in the 

model) per annum from 2013 to 2100.3 Such a policy rule is common in both the climate 

policy literature and policy practice (see, for example, Bosetti et al., 2009; Calvin et al., 

2009; Edmonds et al., 2008; Gurney et al., 2009; Tol, 2009; Carraro et al., 2011; McKibbin 

et al. 2011; Saveyn et al., 2012; Lu et al., 2013). Finally, the carbon tax revenue is returned 

                                                
4 Though we only assess the impact of the policy up to 2030, as agents in G-Cubed are 
forward looking it is important to model the path of the carbon price after 2030. 
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to households as a lump-sum transfer, which is a simple and commonly used assumption in 

climate policy analysis. 

We take G-Cubed’s standard parameter values as the default assumption so that the default 

model is consistent with previous G-Cubed studies. Table IV lays out the design of our 

experiments. In particular, we vary the elasticities in production, capital production, and 

household sectors in separate experiments. By doing so, we can further look at the effect of 

parameter changes on different parts of the economy. The alternative parameter sets in Table 

IV can be grouped in three blocks: A1-A3 include changes in the goods production block; 

A4-A6 include changes in the capital production block; A10-A12 include changes in the 

household block. A7-A9 are different combinations of the goods production block and capital 

production block. More generally, A1-A9 represent changes in production elasticities, A10-

A12 changes in consumption elasticities, and A13 is a case in which all the elasticities of 

interest are changed. The variation of parameter values is symmetric in percentage terms. The 

range of ±50% will give us a good variation as the inputs in some sectors will turn from poor 

(good) substitutes to good (poor) substitutes. To incorporate some insights from empirical 

studies, we also test four special parameter sets. Table IV. “C” denotes Clements where all 

the relevant elasticities of substitution are 0.5, (see Clements, 2008). “S” denotes Stern where 

the top tier elasticities are 0.5 and the inter-fuel ones are 1, which is generally consistent with 

Stern’s (2012) estimates. Compared to the default model, the top-tier elasticities are a bit 

tighter on average in the Clements assumption while the inter-fuel substitution is a bit more 

relaxed. The Stern assumption further relaxes the inter-fuel elasticities of substitution. “EL” 

and “EH” denotes, respectively, “extremely low” where we assume all the elasticities are 

only 0.1, and “extremely high” where all the elasticities are assumed to be 2. These two 

parameter sets are unrealistic, but illustrate some extreme scenarios. We also ran some 

models where we also changed the elasticities of substitution that aggregate materials into 

material bundles. The results were almost identical to the A13 scenario and so we do not 

report these. 

5 Results 

5.1 Scenarios Using the Default Parameter Set 

In the default parameter setting, the initial carbon taxes in 2013 range from $37 per tonne of 

carbon ($10 per tonne of CO2) to $63 per tonne of carbon ($17 per tonne of CO2) across the 
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three policy scenarios. Figure 2 compares the converted CO2 prices in 2020 in 2005 US 

dollars with the prices simulated in EMF22 (Clarke et al., 2009). Our simulated carbon prices 

are within the range of the carbon prices from the EMF22 scenarios.4 This indicates that our 

default results are within a sensible range among the various models in this field.  

Table V. summarizes the discounted cumulative GDP losses and cumulative emissions 

reduction relative to BAU from 2013 to 2030 as well as the present value of average 

abatement cost expressed in terms of loss of GDP per tonne of carbon abated. The average 

abatement cost measured by ∆!
∆!

 is almost constant across the different scenarios, around $103 

per tonne of carbon. The GDP losses for each region and the world in 2030 relative to BAU – 

how much lower GDP is in 2030, rather than the discounted sum of losses to 2030 - are 

presented in Table VI. The cost, on both the regional and world level, decreases consistently 

as the target becomes looser. As expected, costs are highest in energy exporting developing 

countries (EEB and OPEC) and also in energy exporting developed countries (Australia and 

Canada). Among other developed countries costs are highest in Japan and lowest in the US, 

which is counter to the predictions of Stern et al. (2012) but may be explained by tax 

interaction effects (Paltsev and Capros, 2013). As predicted by Stern et al. (2012) costs are 

higher for developing countries than developed countries on the whole, but again 

unexpectedly they are relatively low in India compared to China.5 

5.2 Factor Decomposition of GDP Losses Under Alternative Parameter Sets 

We first present results for the world as a whole, and then do some comparisons across 

regions. 

                                                
4 As most participating models failed to simulate the EMF22 450CO2e scenario (comparable 
to RCP2.6), we compare our default carbon prices with the “Full participation and not-to-
exceed” scenarios of 650CO2e (comparable to RCP4.5) and 550CO2e targets (comparable to a 
path somewhere between RCP2.6 and RCP4.5).  
5 However, in terms of average abatement costs (GDP losses/emissions abated), India ($80 
per tonne of CO2) has a similar cost to China ($87 per tonne of CO2) in 2030. BAU emissions 
intensity is higher in China – in 2030 it is 1.29 kg of CO2 per dollar vs. 0.91 kg of CO2 per 
dollar in India. The latter does increase costs in China. The main difference, however, is from 
the amount of abated emissions. The cut in emissions in percentage terms as a result of the 
common carbon tax is much less in India. As a result the loss of GDP is much less in India. 
There may be various reasons for this difference including differences in industrial structure, 
which we do not explore further. 
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5.2.1 World Level 

Table VII provides an overview of the changes in the discounted GDP losses using each 

parameter set across the three policy scenarios.  

The most noticeable features of these results are as follows. First, the changes in the GDP 

losses under the alternative parameter sets compared to the default parameter set are mostly 

quite small. The largest increase in cost is when we use the EH parameter set under Scenario 

3 resulting in an increase in the GDP loss of 0.68 percentage points relative to its BAU. 

Second, higher flexibility does not necessarily mean lower GDP losses relative to BAU; on 

the contrary, in most cases, less flexible economies give us lower GDP losses relative to 

BAU and more flexible economies have higher costs. The EL parameter set has the lowest 

costs of all. For Scenarios 2 and 3 the carbon tax is in fact negative and so we have not 

reported a GDP loss. Decomposition analysis can help explain these counter-intuitive results 

and show us how much the elasticity parameters affect each factor that contributes to the 

change of GDP losses. 

Figure 3 visualizes the decomposition in percentage terms for the most and least stringent 

policy scenarios and for more and less flexible (than the default) parameter sets in separate 

graphs. To provide some intuition, a negative (positive) value for Δg implies that GDP losses 

are lower (higher) in absolute terms with this parameter set than when using the default. This 

is because 𝑔 𝜎!  in Equation (4) is negative, so that a negative value for ∆!!
! !!

 implies that the 

GDP loss is less in absolute terms under the alternative parameter set than under the default 

parameter set and a positive value indicates that costs have increased. The bars for ∆C, ∆A, 

and ∆I indicate the contributions to the change in the loss of GDP (Δg) from the change in the 

average abatement cost factor, the change in abatement relative to BAU, and from the change 

in the BAU intensity factor, respectively. From these results, we can make several 

observations. 

First, the changes in GDP losses are mainly due to the change in abatement cost per tonne of 

carbon, positive ∆C, under the less flexible parameter sets while it is mainly affected by the 

change in the amount of emissions to be abated (ΔA) under the more flexible parameter sets. 

However, the effects in terms of GDP losses (∆g) of changing elasticities of substitution in 

different sectors (or blocks) vary a lot. The effect of the elasticities in the capital producing 

sector (A4-A6) on GDP is negligible while the effect is large in the goods production sectors 
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(A1-A3). The impact of inter-fuel substitution (A2) on the variation of GDP losses (∆g) is 

mainly due to the response of average abatement cost (∆C) whereas the abatement factor 

(∆A) dominates the other factors in the household consumption sector (A10). Furthermore, 

from Table VIII, we can see that as policy scenarios become more stringent, the contribution 

from average abatement cost (∆C) grows while the contribution from abatement (∆A) 

diminishes. Generally, the contribution from the change in BAU intensity (∆I) is quite small 

compared to that of other factors.  

Second, comparing A1 with A2, and A10 with A11, we see that the top tier elasticities of 

substitution have more impact on the average abatement cost (∆C) than inter-fuel elasticities 

of substitution do in both the production and household sectors. This result is consistent with 

Jacoby et al. (2006)’s finding that the elasticity of substitution between the energy and labor-

capital bundle turns out to be the most important parameter of those they test in terms of 

welfare cost. Similarly, Babonneau et al. (2012) find that the top-tier elasticity has a greater 

effect on the carbon price than the interfuel elasticity of substitution. 

Third, the effect of changes in the elasticities of substitution on average abatement cost is not 

symmetric. Generally a given percentage increase in flexibility leads to a smaller percentage 

decrease in average abatement cost than the percentage increase in cost resulting from the 

same percentage decrease in flexibility. This suggests that underestimation of elasticity 

parameters in CGE models like G-Cubed will cause a greater bias in estimated abatement 

cost than overestimation will. In summary, it is clear that the top tier elasticity of substitution 

has the largest impact on the average abatement cost and this impact is nonlinear. In terms of 

total GDP losses relative to BAU, further factor decomposition is needed to distinguish what 

drives the variation: whether it is from the changing average abatement cost in response to 

policy shock or from the varying BAU scenario due to varied flexibility. There are also 

different factors driving the results for different categories of elasticity of substitution. 

Table VIII provides a closer look at the alternative parameter set A13 and the four special 

parameter sets, where all the elasticities of interest are varied. In general, the Clements 

parameter set (C) and the Stern parameter set (S) lead to lower mitigation cost, compared to 

the default model. This suggests that relaxation of the elasticity of substitution in the 

electricity sector (from 0.2) is more important than the tightening of the elasticities of 

substitution in other sectors such as coal mining. The effects from the change in BAU 

emissions are very similar for both parameter sets, and the major difference is the effect of 
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average abatement cost. This indicates that inter-fuel substitution has little impact on the 

BAU projection, but a significant impact on the average abatement cost. When the economy 

is highly inflexible (EL) there is no need for mitigation policy under the less stringent targets. 

In fact, the optimal carbon tax is negative. It is interesting to note that while the extreme 

elasticity assumptions have a large impact on average abatement cost, they also have a 

significant impact on the BAU projection.  

5.2.2 Regional Comparison  

In our experiments, there are important differences between the behavior of regions and 

countries in the decomposition analysis. In the following analysis, we will compare some 

representative regions/countries from different groups, specifically developed vs. developing 

economies and energy importing vs. energy-exporting economies. 

In this version of G-Cubed, there are five developed regions and six developing regions. A 

closer look at the differences in the factor decomposition between the developed and 

developing regions reveals quite a few differences across regions. The US (USA), Japan 

(JPN), and the western part of the European Union (EUW) are typical energy-importing 

developed regions while China (CHI), Brazil (BRA), and India (IND) are typical energy-

importing developing regions. Figure 4 shows the decomposition results for the US and 

China under the most stringent policy scenario (Scenario 1).  

It is notable, that the effect of average abatement cost (ΔC) on the total cost variation is 

generally much larger for the US than for China, while the abatement relative to BAU (ΔA) 

and the BAU emissions intensity (ΔI) are more sensitive to changing elasticities for China 

than for the US. For the US, the greatest change in GDP losses occurs when the production 

sector is either more or less flexible (A3) and it is driven by increased or reduced average 

abatement cost. For China it occurs when the top tier of household consumption is more or 

less flexible (A10) and it is driven by the change of BAU emissions, which results in change 

in the required percentage reduction of emissions. It is also interesting to note, that GDP 

losses in developed regions are more sensitive to the substitution elasticities of the capital-

producing sector than are GDP losses in developing regions, although the effect is generally 

small for all regions. Developed regions are more capital intensive and the capital-producing 

sector is much larger than in developing regions. Therefore, these elasticities would be 
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expected to have a larger effect on the economy in developed regions. These observations 

mostly hold for other developed and developing regions too.  

It is also of interest to see how differently the energy-importing regions and energy-exporting 

regions respond to changes in the elasticities of substitution. Australia (AUS), Eastern Europe 

and the Former Soviet Union (EEB), and OPEC (OPC) are the major net energy-exporting 

regions while the US (USA), Japan (JPN), and the western European Union (EUW) are the 

major developed net energy-importing regions. 

It is clear from Figure 5, that as we would expect from Stern et al. (2012), the average 

abatement cost (C) in energy-exporting regions (AUS, EEB and OPC) is less sensitive to the 

elasticities of substitution than it is in energy-importing regions (USA, JPN and EUW). In 

addition, the change in total costs, g, in response to changes in the elasticities is also quite 

different for the two groups (see Table IX). When flexibility is increased, energy-exporting 

regions tend to have higher total mitigation cost relative to the default model while energy-

importing regions have exactly the opposite response. The change of total mitigation cost for 

energy-exporting regions is driven by the BAU effect (ΔA and ΔI) while it is driven by the 

average abatement cost effect (ΔC) for energy-importing regions (see Figure 6). 

There are probably two reasons for this. First, average abatement costs tend to be inversely 

related to total costs of abatement (Stern et al., 2012) as, ignoring other factors such as tax 

interaction effects, the former are low and the latter high in emissions intensive countries. 

Second, the major effect of global emissions mitigation on energy-exporting regions is likely 

to be due to lower demand for their exports of energy goods. In other words, the mitigation 

within energy-exporting regions is mainly accomplished by output reduction due to less 

external energy demand rather than from a domestic adjustment of production structure.  

Another observation from the decomposition analysis is that energy-exporting regions are 

less sensitive to the production sector’s elasticity of substitution, but more sensitive to the 

change of elasticities in household consumption and the change of all elasticities (A13). 

However, energy-importing regions have the opposite characteristics as demonstrated in 

Figure 6 that contrasts OPEC (energy-exporting region) to EUW (energy-importing region). 

The GDP losses in OPEC are mainly driven by changes in BAU emissions, which determine 

the percentage abatement needed. Changes in BAU emissions intensity due to more or less 

flexibility play a role in the EUW GDP losses, but the average abatement cost effect still 
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dominates. The flexibility in the household consumption bundle both at home and abroad 

seems important to energy-exporting regions as it will largely affect the global energy 

demand and through international trade, the net energy-exporters are affected more than 

energy-importing regions by mitigation elsewhere. 

6 Discussion and Conclusions 

In this section, we compare our results with previous relevant studies, provide some general 

conclusions, and then point out implications for future research and policy in this field.  

Regarding average abatement costs, our results are qualitatively consistent with Jorgenson et 

al. (2000) and Babonneau et al. (2012). The average cost of emissions reductions is generally 

higher when substitution is more restricted. In the model where we change all elasticities of 

substitution, A13, the average abatement cost at the world level increases (decreases) by 61% 

(38%) if the world economy is 50% less (more) flexible compared to our base case. These 

results also show the nonlinearity of average abatement cost in elasticities of substitution - the 

average abatement cost increases more when the elasticities of substitution are lowered than 

it decreases when the elasticities of substitution are increased by the same percentage. This 

finding implies that overestimation of mitigation cost due to underestimating the elasticities 

of substitution would be a more serious problem in CGE models than underestimation of cost 

due to overestimating the elasticities of substitution. Similarly, Pindyck (2013) and N. Stern 

(2013) argue that the benefits of climate policy have been underestimated because of 

uncertainties in climate impact parameters in integrated assessment models. In particular, the 

climate sensitivity to doubling carbon dioxide is uncertain more on the upper tail where 

impacts are larger than on the lower tail where impacts are lower. 

In common with Jacoby et al. (2006) and Babonneau et al. (2012), we find that average 

abatement costs are generally more sensitive to changes in top tier (labor, capital, energy, and 

materials) substitution possibilities than to changes in inter-fuel substitution possibilities. 

Changes in flexibility in the capital-producing sector are also important for developed 

(capital-intensive) economies. For energy exporting regions, household consumption 

substitution has a greater effect on total mitigation cost (GDP losses) than substitution in the 

production sector; but the average abatement cost is more sensitive to substitution in the 

production sector than in the household consumption sector. From our decomposition 

analysis, we notice that changing the elasticity of substitution in consumption changes BAU 

emissions a lot in these regions, but does not affect the average abatement cost much. This is 
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due to reduced global demand for the energy exported from these regions when consumers 

globally have less flexibility in consumption choices. 

We also find that inter-fuel substitution elasticities have a significant impact on average 

abatement cost, but not on BAU emissions. Top-tier (KLEM) elasticities of substitution 

strongly affect BAU emissions. As predicted by de La Grandville (1989), less flexible 

economies grow more slowly and as a result also have less emissions growth. The total costs 

of mitigation are, therefore, lower in these economies than in more flexible economies. In the 

case of our extreme low flexibility parameter set (all relevant elasticities are 0.1), there is 

little GDP or emissions growth at all, and no need for mitigation actions under the two less 

stringent policy scenarios. Though we set out to test whether the costs of mitigation policies 

might be very high in less flexible economies we found seemingly paradoxically that there is 

less need for climate policy in such economies because emissions grow more slowly under 

BAU. 

Although the quantitative results in this study are derived from a particular model, the results 

suggest that it is important to reduce the uncertainty regarding substitution possibilities in 

climate policy assessment and to differentiate between the costs of relative and absolute 

targets and between marginal, average, and total costs as already argued by Stern et al. 

(2012). Our results show that, if we are interested in the total costs of mitigation policy then 

accurate estimates of substitution elasticities are not that important. If we are interested in 

marginal or average costs, then accurate parameter estimates are important. 

Our findings need to be taken into account when interpreting the results of model comparison 

exercises. Most model comparisons, such as EMF22 (Clarke et al., 2009), show a wide range 

of mitigation costs across models for common absolute targets. But each of these models has 

a different BAU emissions projection. It is then important to identify whether the variation of 

these mitigation costs is due to the varying BAU scenarios in each model or from the induced 

costs of mitigation policy. There is a necessity for sensitivity and decomposition analysis to 

provide further policy recommendation using CGE models.  
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Figure 1. RCPs and emissions targets (percentage relative to 2010 level) 

 

	

Figure 2. CO2 prices in 2020 from EMF22 and G-Cubed default 
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Figure 3. LMDI decomposition (index) of world GDP losses under Scenarios 1 and	3	

 

 
Figure 4. The LMDI decomposition (index) of US and China (Scenario 1) 
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Figure 5. Energy exporting regions vs. energy importing regions:  

average abatement cost component (ΔC, %) under parameter set (A13) and Scenario 1 

 
Figure 6. The LMDI decomposition (index) of OPEC and EUW (Scenario 1) 
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(a) Production Nesting 

 

 
(b) Consumption Structure 

Figure A1. Production and consumption structure in G-Cubed 
	 	



Table I. Regional aggregation of the model (G-Cubed, version D) 
Region Name Region Code  Region Description 

USA USA United States 

Japan JPN Japan 

Australia AUS Australia 

Europe EUW European Union 

Rest of the 
Advanced 
Economies 

OEC Canada and New Zealand 

China CHI China 

India IND India 

Brazil BRA Brazil 

OPEC OPC Oil Exporting and other Middle Eastern 
Countries 

EEFSU EEB Eastern Europe and the former Soviet 
Union 

ROW ROW Rest of the World 

 



Table II. Sector aggregation in the model (G-Cubed, version D) 
Number Sector Definition 

1 Electric Utilities 

2 Gas Utilities 

3 Petroleum Refining 

4 Coal Mining 

5 Crude Oil Extraction 

6 Gas Extraction 

7 Mining 

8 Agriculture, Forestry, Fishing and 
Hunting 

9 Durable Manufacturing 

10 Non-Durable Manufacturing 

11 Transportation 

12 Services 

13 Capital Producing Sector 

14 Household Capital Producing 
Sector 

 



Table III. Key elasticities of substitution in G-Cubed 

 Sectors Top tier (O) Energy tier 
(E) 

σi (i=O, E) 	

1. Electric utilities 0.20 0.20 

2. Gas utilities 0.81 0.50 

3. Petroleum refining 0.54 0.20 

4. Coal mining 1.70 0.16 

5. Crude oil extraction 0.49 0.14 

6. Gas extraction 0.49 0.14 

7. Mining 1.00 0.50 

8. Agriculture, forestry, fishing and 
hunting 1.28 0.50 

9. Durable manufacturing 0.41 0.50 

10. Non-durable manufacturing 0.5 0.50 

11. Transportation 0.54 0.50 

12. Services 0.26 0.32 

σiR (i=O, E) Capital producing sector 1.10 0.5 

σiH (i=O, E) Household consumption 0.8 0.5 

Note: O denotes the top tier nesting between Capital (K), Labor (L), Energy (E) and 
Materials (M). E denotes the energy level nesting between the 6 energy goods corresponding 
to the first 6 sectors in Table II. 



Table IV. Simulation experiments design 
 Default Variations Alternative Parameter Sets Special Assumptions 

+50% -50% A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 C S EL EH 

 

S 1 0.20	 0.30	 0.10	 X  X    X  X    X 

0.5	

0.5	

0.1	 2	

S 2 0.81	 1.21	 0.41	 X  X    X  X    X 
S 3 0.54	 0.81	 0.27	 X  X    X  X    X 
S 4 1.70	 2.56	 0.85	 X  X    X  X    X 
S 5 0.49	 0.74	 0.25	 X  X    X  X    X 
S 6 0.49	 0.74	 0.25	 X  X    X  X    X 
S 7 1.00	 1.50	 0.50	 X  X    X  X    X 
S 8 1.28	 1.93	 0.64	 X  X    X  X    X 
S 9 0.41	 0.62	 0.21	 X  X    X  X    X 

S 10 0.50	 0.75	 0.25	 X  X    X  X    X 
S 11 0.54	 0.81	 0.27	 X  X    X  X    X 
S 12 0.26	 0.38	 0.13	 X  X    X  X    X 

 

S 1 0.20	 0.30	 0.10	  X X     X X    X 

1	

S 2 0.50	 0.75	 0.25	  X X     X X    X 
S 3 0.20	 0.30	 0.10	  X X     X X    X 
S 4 0.16	 0.24	 0.08	  X X     X X    X 
S 5 0.14	 0.21	 0.07	  X X     X X    X 
S 6 0.14	 0.21	 0.07	  X X     X X    X 
S 7 0.50	 0.75	 0.25	  X X     X X    X 
S 8 0.50	 0.75	 0.25	  X X     X X    X 
S 9 0.50	 0.75	 0.25	  X X     X X    X 

S 10 0.50	 0.75	 0.25	  X X     X X    X 
S 11 0.50	 0.75	 0.25	  X X     X X    X 
S 12 0.32	 0.48	 0.16	  X X     X X    X 

 1.10	 1.65	 0.55	 	   X  X X  X    X 0.5	

 0.50	 0.75	 0.25	 	    X X  X X    X 1	

 0.80	 1.20	 0.40	 	         X  X X 0.5	

 0.50	 0.75	 0.25	 	          X X X 1	
Note: (1) “X” indicates a change of parameter value from the default case. (2) “S+ a number from 1 to 12” in Column 2 corresponds to sector number as shown in Table II 
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Table V. Global discounted GDP losses and cumulative emissions abatement 

Policy 
Scenario 

World Discounted GDP Losses World Cumulative Abatement World Average 
Cost (2010 

USD/tonne of 
carbon) 

Absolute value 

(Trillions of 2010 
USD) 

Percentage 
(%) 

Absolute value  

(Billions of tonnes of 
carbon) 

Percentage 
(%) 

Scenario 1 
(Target 1) -34.0 -3.02 -329.1 -41.76 103.35 

Scenario 2 
(Target 2) -26.8 -2.38 -259.5 -32.93 103.24 

Scenario 3 
(Target 3) -19.6 -1.74 -190.1 -24.12 103.14 

Note: GDP losses are net present value discounted at 4% per year. 



Table VI. GDP losses (%) in 2030 for the three scenarios relative to BAU 

 Scenario 
1 

Scenario 
2 

Scenario 
3 

USA -1.28 -1.14 -0.93 

JPN -4.30 -3.61 -2.80 

AUS -4.50 -3.51 -2.54 

EUW -2.68 -2.24 -1.74 

OEC -4.36 -3.47 -2.57 

CHI -6.28 -4.56 -3.04 

IND -1.98 -1.40 -0.91 

BRA -0.99 -0.85 -0.68 

ROW -5.98 -4.76 -3.52 

EEB -10.62 -8.12 -5.77 

OPC -12.71 -9.94 -7.22 

World -4.20 -3.32 -2.44 

 



Table VII. Discounted GDP losses (%) on the world level using different parameter sets 

  Scenario 1 Scenario 2 Scenario 3 
Default -3.02 -2.38 -1.74 

Panel A: Less flexible by 50% 
A1  -3.02 -2.23 -1.44 
A2  -3.33 -2.62 -1.92 
A3  -3.34 -2.54 -1.64 
A4  -2.96 -2.31 -1.67 
A5  -3.02 -2.38 -1.74 
A6  -2.96 -2.32 -1.68 
A7  -2.92 -2.12 -1.32 
A8  -3.33 -2.62 -1.92 
A9  -3.34 -2.42 -1.52 
A10  -2.56 -1.87 -1.19 
A11  -3.06 -2.41 -1.76 
A12  -2.59 -1.89 -1.19 
A13   -2.67 -1.60 -0.55 

Panel B: More flexible by 50% 
A1  -3.09 -2.54 -2.00 
A2  -2.77 -2.18 -1.60 
A3  -2.87 -2.36 -1.85 
A4  -3.00 -2.36 -1.72 
A5  -3.02 -2.38 -1.74 
A6  -3.00 -2.36 -1.72 
A7  -3.27 -2.72 -2.17 
A8  -2.77 -2.18 -1.59 
A9  -2.96 -2.45 -1.94 
A10  -3.41 -2.81 -2.21 
A11  -2.98 -2.35 -1.73 
A12  -3.37 -2.78 -2.19 
A13  -3.23 -2.74 -2.26 

Special Assumptions 
C  -2.14 -1.60 -1.06 
S  -1.62 -1.20 -0.80 

EL  -1.54 NA NA 
EH  -2.85 -2.63 -2.42 

 



Table VIII. LMDI decomposition (index) of discounted world GDP losses in A13 and 

Special Assumptions 

 𝑔 𝜎! a Parameter 
setb 

∆𝑔!
𝑔 𝜎!

 
∆𝐶!
𝑔 𝜎!

 
∆𝐴!
𝑔 𝜎!

 
∆𝐼!
𝑔 𝜎!

 

Scenario 
1 -3.02 

A13 (-50%) -11.65 43.68 -38.72 -16.61 
A13 (+50%) 6.95 -26.87 20.28 13.54 

C -29.02 -14.29 -9.92 -4.80 
S -46.51 -33.09 -9.13 -4.29 

EL -48.92 67.58 -91.85 -24.66 
EH -5.72 -101.66 49.93 46.01 

Scenario 
2 -2.38 

A13 (-50%) -32.57 38.61 -56.58 -14.60 
A13 (+50%) 15.36 -28.03 29.32 14.07 

C -32.76 -13.90 -14.18 -4.68 
S -49.37 -32.39 -12.80 -4.19 

ELc NA NA NA NA 
EH 10.64 -110.22 71.00 49.86 

Scenario 
3 -1.74 

A13 (-50%) -68.29 27.97 -85.76 -10.50 
A13 (+50%) 29.83 -29.92 44.80 14.96 

C -39.13 -13.25 -21.41 -4.47 
S -54.22 -31.07 -19.14 -4.01 

ELc NA NA NA NA 
EH 38.83 -124.05 106.80 56.07 

Note: a The second column of the table gives the GDP loss in percentage terms using the 
default parameter set. The final four columns of the table give the terms of Equation (4) in 
percentages. b Parameter sets A13 (-50%) and A13 (+50%) are where all elasticities of 
interest are varied by -50% or +50% relative to the default case. The other four parameter 
sets are defined in the text. c In Scenarios 2 and 3, the BAU emissions projection from the 
parameter set “extremely low (EL) elasticities” is so low that there is no need for a carbon tax 
to achieve the targets. 

 



Table	IX.	Energy exporting regions vs. developed energy importing regions:  
Changes in discounted GDP losses (%) under alternative parameter sets  

  
∆!!
! !!

 under A13 (-50%) ∆!!
! !!

 under A13 (+50%) 

Energy-exporting 

regions 

AUS -27.59% 14.97% 

EEB -24.69% 16.24% 

OPC -26.80% 16.17% 

Energy-importing 

regions 

USA 83.44% -56.98% 

JPN -0.33% -26.95% 

EUW 8.85% -5.00% 

World -11.65% 6.95% 
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Appendix: The G-Cubed Model 

G-Cubed has some important features that make it particularly suitable for our analysis. G-

Cubed has various tiers of nesting on the production and consumption sides, which allows us 

to explore the substitutability of the economy at different levels (see Figure A1). In the 

following, we describe the features of the model that are most relevant to our sensitivity 

analysis. McKibbin and Wilcoxen (1999, 2013) provide a more complete description of the 

model. There are twelve production sectors where the top tier level of production is modeled 

as a CES function of capital, labor, energy and materials: 

 

𝑄! = 𝐴!! (𝛿!"! )
!
!!
!(𝐴!!𝑋!")

!!
!!!
!!
!

!!!,!,!,!

!!
!

!!
!!!

, (A1) 

where Qi is the output for sector i, Xij is the inputs for sector i; Ai
O, σi

O, and δij
O are parameters 

that reflect technology, elasticity of substitution, and input weights, respectively. Particularly, 

Aj
O (j = K, L, E, M) is the factor-specific technology parameter at the top tier. The energy (XiE) 

and materials (XiM) inputs in (1) are also modeled as CES functions of component energy 

carriers and materials: 

 

𝑋!" = (𝛿!"!)
!
!!
!(𝑋!"!)

!!
!!!

!!
!

!!!,…,!

!!
!

!!
!!!

 (A2) 

where X,iE is the aggregate energy used in sector i. The Xij
E represent outputs of the six energy 

producing sectors including: electricity, crude oil, coal, petroleum, natural gas and its utility; 

σi
E and δij

E are inter-fuel elasticity and input weights parameters, respectively. Similarly the 

aggregate material input is a CES aggregate of the outputs from the six “materials” producing 

sectors of the economy. Materials in fact include transportation and services inputs. Each of 

these lower tier inputs – both materials and energy - are a CES aggregate of domestic and 

imported commodities where the elasticity of substitution is the Armington elasticity. 
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In addition to the twelve ordinary industrial sectors, there are also a capital goods production 

sector, which has a similar nesting, with σOR and σER being the elasticity parameters in the two 

tiers.6 

In common with most studies using G-Cubed, the major sources of technological change are 

in the form of labor augmenting technical change and autonomous energy efficiency 

improvement (AEEI) (McKibbin and Wilcoxen, 1999; McKibbin et al., 2008). Our 

assumptions about the rates of labor productivity growth and AEEI are documented in Tables 

A1 and A2. These technological change parameters have an impact on both the BAU 

projections of GDP and emissions as well as on the costs of mitigation. The relative price of 

labor and energy will regulate the energy consumption and emissions path over time. The 

higher the prices of other factors of production are relative to the price of energy in the 

business as usual projection, the higher mitigation costs will be. Labor augmentation and 

capital-energy substitution can increase the amount of electricity produced per unit input of 

fossil fuels over time up to some limit of productivity as assumed.  

On the household side, the representative household utility function is given by: 

 
𝑈! = ln𝐶 𝑠 + ln𝐺(𝑠) 𝑒!!(!!!)𝑑𝑠

!

!

 (A3) 

where C is aggregate consumption and G is government consumption, which is intended to 

measure the provision of public goods; θ is the rate of pure time preference. Aggregate 

consumption C also has two layers of CES nesting: one is the top tier nesting of household 

capital, labor, energy, and materials; the lower tier consists of inter-fuel nesting for energy 

(with elasticity σEH) and nesting for material goods (with elasticity σMH). Therefore, the top 

tier consumption aggregate is as follows: 

 

𝐶 = (𝛿!"! )
!

!!
!"(𝑋!")

!!
!"!!

!!
!"

!!!,!,!,!

!!
!"

!!
!"!!

 (A4) 

                                                
6 There is also a household capital producing sector in a similar nesting; but the elasticity of 
substitution is not of interest here in this study. 
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in which σC
OH and δCj are the elasticity of substitution between the 12 consumption goods and 

the corresponding weights parameters, respectively. The elasticities: σi
O, σi

E, σOR, σER, σOH, 

and σEH are the parameters of interest in our sensitivity analysis. 

We set the rate of time preference to 2.2% and the annual growth rate of effective labor in the 

steady state to 1.8%.7 Since the quantity and value variables in the model are scaled by the 

number of effective labor units, the growth rate of effective labor units appears in the 

discount factor. These quantity and value variables must be converted back to their original 

form (McKibbin and Wilcoxen, 2013). Since utility is in a log-linear form as in equation 

(A3), the elasticity of marginal utility is 1 and our discounting rule is consistent with the 

modified Ramsey discounting rule in climate economic modeling (e.g. Tol, 2011). Therefore, 

G-Cubed assumes that the long-term real interest rate converges to 4% at the steady state, 

which is comparable to the discount rate of 4.3% in Nordhaus (2007)’s DICE model. This 

rate is used in computing the net present value of mitigation costs in our study.  

The G-Cubed model also features macro-economic characteristics such as partly rational 

expectations, price stickiness, and a central bank policy rule. These distinctive features that 

most recursive CGE models do not have, give the model rich short-run dynamics and make 

the model more suitable for short to medium term scenario analysis. While long-run 

consequences are the usual focus of climate scientists, the short-run to medium run (two to 

three decades) dynamics are probably more relevant to policy-makers and economists. G-

Cubed also features a comprehensive representation of international trade, which is important 

for issues in a global context, such as climate change. 

                                                
7 The growth rate of effective labor is the sum of the growth rate of population and the 
growth rate of technology, which is a steady state assumption. In G-Cubed, the model is 
computed till far in the future (i.e. 2130) to approximate the steady state, but the reported 
projection is only till 2100. In our analysis, we only look at the period till 2030. 



Table A1. Labor productivity assumptions 

USA 

Sector 1 and 2 and sector 7-12 grow at 1.8% per annum, and sector 3-6 grow at 
0.5% per annum. Sector 13 and 14 (financial sectors) grows at 1.8% per annum 
constantly. There’s cross-sectoral convergence at the rate of 0.03 (3%) per 
annum. 

JPN All sectors are of the same labor productivity as in USA. Catch-up rate is 2% 
per annum in all sectors. 

AUS 
Sectors 1-12 are 80% of the USA labor productivity, financial sectors 13 and 14 
are of the same labor productivity as in USA. Catch-up rate is 2% per annum in 
all sectors. 

EUW All sectors are of the same labor productivity as in USA. Catch-up rate is 2% 
per annum in all sectors. 

OEC 
Sectors 1-12 are 90% of labor productivity in USA, financial sectors 13 and 14 
are of the same labor productivity as in USA. Catch-up rate is 2% per annum in 
all sectors. 

CHI 

Sector 1-6 is 90% of the USA labor productivity, sector 7-12 are 20% of USA 
labor productivity. Sector 13 and 14 are of the same labor productivity as in 
USA. Catch-up rate starts from 1% in the initial year, and increase by 0.1 
percentage points per annum till 10 years after the initial year to reach 2% per 
annum and then it follows this rate afterwards. 

IND 

Sector 1-6 is 90% of the USA labor productivity, sector 7-12 are 20% of USA 
labor productivity. Sector 13 and 14 are of the same labor productivity as in 
USA. Catch-up rate starts from 1% in the initial year, and increase by 0.1 
percentage points per annum till 10 years after the initial year to reach 2% per 
annum and then it follows this rate afterwards. 

BRA 

Sector 1-6 is 90% of the USA labor productivity, sector 7-12 are 20% of USA 
labor productivity. Sector 13 and 14 are of the same labor productivity as in 
USA. Catch-up rate starts from 1% in the initial year, and increase by 0.1 
percentage points per annum till 10 years after the initial year to reach 2% per 
annum and then it follows this rate afterwards. 

ROW 
Sector 1-6 is 90% of the USA labor productivity, sector 7-12 are 14% of USA 
labor productivity. Sector 13 and 14 are of the same labor productivity as in 
USA. 

EEB 

Sector 1-6 is 90% of the USA labor productivity, sector 7-12 are 40% of USA 
labor productivity. Sector 13 and 14 are of the same labor productivity as in 
USA. Catch-up rate starts from 1% in the initial year, and increase by 0.1 
percentage points per annum till 10 years after the initial year to reach 2% per 
annum and then it follows this rate afterwards. Catch-up rate starts from 0.5% 
in the initial year, and increase by 0.1 percentage points per annum till 20 years 
after the initial year to reach 2% per annum and then it follows this rate 
afterwards. 



OPC 

Sector 1-6 is 90% of the USA labor productivity, sector 7-12 are 30% of USA 
labor productivity. Sector 13 and 14 are of the same labor productivity as in 
USA. Catch-up rate starts from 0.5% in the initial year, and increase by 0.1 
percentage points per annum till 20 years after the initial year to reach 2% per 
annum and then it follows this rate afterwards. 

 

  



Table A2. Autonomous Energy Efficiency Improvement (AEEI) assumptions 

USA 2% per annum in sector 1-2 and 7-12, no improvement in sector 3-6; household 
AEEI improves 3% per annum. 

JPN 2% per annum in sector 1-2 and 7-12, no improvement in sector 3-6; household 
AEEI improves 3% per annum. 

AUS 2% per annum in sector 1-2 and 7-12, no improvement in sector 3-6; household 
AEEI improves 3% per annum. 

EUW 2% per annum in sector 1-2 and 7-12, no improvement in sector 3-6; household 
AEEI improves 3% per annum. 

OEC 2% per annum in sector 1-2 and 7-12, no improvement in sector 3-6; household 
AEEI improves 3% per annum. 

CHI 2% per annum in sector 1-2, 6% per annum in sector 7-12, no improvement in 
sector 3-6; household AEEI improves 6% per annum. 

IND 2% per annum in sector 1-2, 6% per annum in sector 7-12, no improvement in 
sector 3-6; household AEEI improves 6% per annum. 

BRA 2% per annum in sector 1-2, 6% per annum in sector 7-12, no improvement in 
sector 3-6; household AEEI improves 6% per annum. 

ROW 2% per annum in sector 1-2 and 7-12, no improvement in sector 3-6; household 
AEEI improves 6% per annum. 

EEB 1% per annum in sector 7-12, no improvement in sector 1-6; household AEEI 
improves 1% per annum. 

OPC 1% per annum in sector 1-2 and 7-12, no improvement in sector 3-6; household 
AEEI improves 4% per annum. 

 




