Ecography

Exploring co-occurrence of closely-related guild members in a fragmented landscape subject to rapid transformation

David B. Lindenmayer ${ }^{1,2}$, Alan Welsh ${ }^{3}$, Wade Blanchard ${ }^{1}$, Philip Tennant ${ }^{1,2}$, Christine Donnelly ${ }^{1}$, Philip Barton ${ }^{1}$
${ }^{1}$ Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 0200, Australia
${ }^{2}$ Long-term Ecological Research Network, Fenner School of Environment and Society, The Australian National University, Canberra, ACT, 0200, Australia
${ }^{3}$ Centre for Mathematics and its Applications, The Australian National University, Canberra, ACT, 0200, Australia

Corresponding author: David Lindenmayer, email: david.lindenmayer@anu.edu.au phone: +612 61250654 , fax: +61 261250757

Running Head: Landscape change and co-occurrence patterns

Word count: Abstract 298; Text 6199 words; Refs 58

Abstract

Quantifying biotic responses to landscape transformation is a major research focus. Most past studies have explored co-occurrence of entire communities of a given group (e.g. birds) within largely intact ecosystems or over a limited time-frame. By contrast, here we use data from a 15-year experimental study, to explore intra-guild co-occurrence of six closely-related and functionally-similar sets of birds within 55 woodland fragments. Areas surrounding these remnants are undergoing transformation from grazed paddocks to Pinus radiata plantations, leading to a novel assemblage of forest and woodland birds. We sought to determine if the occurrence of a given species in a guild influenced the occurrence of other closely-related species in that guild, and through this relationship whether there was evidence of cooccurrence between species.

After controlling for environmental and habitat variables which can affect species occurrence like time since commencement of landscape transformation, patch size and vegetation type, we found the occurrence of a given species was influenced by the occurrence of a closelyrelated species in the same guild. Co-occurrence varied among bird guilds and included: (1) positive co-occurrence in which occurrence of one species within fragments positively affected the occurrence of another closely-related guild member (e.g. Eastern and Crimson Rosellas); and (2) negative co-occurrence in which the occurrence of one species was negatively associated with the occurrence of another within the same guild (e.g. Willie Wagtail and Grey Fantail).

We also identified interactions between patch size and species recording frequency within members of two guilds. For example, modelling of conditional recording frequency revealed the Eastern Rosella increased with increasing recordings of the Crimson Rosella in large patches, but decreased with increasing recordings of the Crimson Rosella in small patches.

25 Our results provide empirical evidence of co-occurrence among guild members and 26 underscore the complexity of biotic responses to landscape transformation.

27 Keywords: Co-occurrence; birds; landscape change; plantation; woodland fragments.

INTRODUCTION

The occurrence of species in human-modified landscapes can be influenced by an array of factors (Zuidema et al. 1996), many of which can be intimately inter-related (Lindenmayer and Fischer 2006). These include habitat loss (Fahrig 2003), habitat fragmentation (Collinge 2009), temporal changes in habitat suitability (Felton et al. 2003), the size of remaining patches of habitat (Hanski 1994), edge effects (Ries et al. 2004), the condition of and changes in the matrix surrounding habitat patches (Driscoll et al. 2013), and altered key ecosystem processes (Galetti et al. 2013).

Species occurrence in rapidly transforming landscapes also may be influenced by the presence and abundance of other species (Maron and Kennedy 2007, Ovaskainen and Soininen 2011, Godsoe and Harmon 2012, Mac Nally et al. 2012). This may arise because of increased aggressive interactions between species (Mac Nally et al. 2012), increased levels of parasitism (Smith et al. 2003), and disrupted mutualisms (Bascompte and Jordano 2007). However, most studies of co-occurrence focus on entire communities of a given group of organisms (e.g. birds or mammals), have not taken place in landscapes undergoing rapid transformation, and/or are conducted either at one point in time or over a limited time-frame (2-3 years) (but see Heske et al. 1994, Sebastian-Gonzalez et al. 2012). Here we take a different approach by exploring the tendency of two species to occur together (or apart), after controlling for other factors that affect the occurrence of the species. We do this using systematic bird surveys from a 15 year observational study in a rapidly transforming landscape to examine co-occurrence among sets of closely-related, morphologically-similar and functionally-similar bird species.

Our study area was characterized by 55 fragments of temperate eucalypt woodland around which the landscape was undergoing marked and ongoing transformation from grazed paddocks to stands of densely-spaced Radiata Pine (Pinus radiata) plantation trees. The
landscape is therefore a mosaic (sensu Bennett et al. 2006) of woodland patches embedded within an extensive exotic plantation. In Australia, temperature eucalypt woodland ecosystems are recognized as a distinctly different environment from native eucalypt forest ecosystems because of differences in: (1) dominant tree, understorey and ground cover plants, (2) vegetation structure (Specht and Specht 1999), and (3) animal biota (Lindenmayer et al. 2010). In earlier work, we found that some forest-associated bird species have colonised the exotic Radiata Pine stands and then spilled over to also occupy adjacent woodland fragments (Lindenmayer et al. 2008). As a result, the woodland fragments support a novel assemblage (sensu Hobbs et al. 2006) of woodland bird and forest bird species that does not occur elsewhere in the region's forests or in the region's temperate woodlands (Lindenmayer et al. 2008). For a number of bird guilds, the woodland species and the forest species are closely related and morphologically and functionally similar (see Appendix 1). Given this, the primary question which underpinned our investigation was:

Is the occurrence of a given species in a guild influenced by the occurrence of another closely related species in that guild?

We recognized three possible broad kinds of co-occurrence for this study. These were: (1) Positive co-occurrence in which the occurrence within woodland patches of one species in a given guild had a positive effect on the occurrence of another closely related species in that same guild. (2) Negative co-occurrence in which the presence of one species was negatively associated with the presence of another within the same guild. And (3) An absence of positive or negative patterns of co-occurrence. That is, where there was no evidence of significant positive or negative influence of one species on the occurrence of one or more members of the same guild.

Theory and empirical studies suggest the existence of positive co-occurrence in some ecosystems but negative co-occurrence in others (Ovaskainen et al. 2010, Andersen et al.
2013). Positive co-occurrence might occur because functionally similar and/or closely related taxa might be adapted to similar environments (Ovaskainen et al. 2010) or gain mutual benefits (like enhanced foraging opportunities in mixed-species feeding flocks) (Bell 1980, Sridhar et al. 2012). An additional reason for positive co-occurrence could be that a given species might choose habitat using information gleaned from other species present at a location (Smith and Hellman 2002, Sebastian-Gonzalez et al. 2012), particularly a species that is very similar to itself (Seppänen et al. 2007). Alternatively, two or more morphologically and/or functionally similar species may exhibit negative co-occurrence because of competition (e.g. see Alatalo et al. 1986, Lovette and Hochacka 2006, Steen et al. 2014), particularly when resources are limited (Newton 1998). Given the potential manifestation of processes such as competition versus inter-specific attraction, we focused this study on six closely-related, morphologically similar, and functionally similar guilds of species to maximize the chances of detecting positive or negative co-occurrence (see Gaston 1996).

We were acutely aware that two species within a guild may co-occur in an area for reasons other than the influence of one species on the other (e.g. by having similar habitat requirements (Ovaskainen et al. 2010)). Therefore, a novel feature of our study was to explore patterns of co-occurrence while accounting for habitat and environmental variables that we believe also may influence the occurrence of particular species. These included vegetation type and the time elapsed since the start of transformation of the landscape surrounding the remnant woodland patches. We also recognized that the potential for the occurrence of one species to affect the occurrence of another might be influenced by factors like patch size. This may arise because, for example, large patches may support more resources (see Zanette et al. 2000)) or more heterogeneous than small patches (Lindenmayer and Fischer 2006). More resources and/or greater heterogeneity may make it possible for
closely related species to co-exist (Jeltsch et al. 1998) such as in large heterogeneous patches but not in smaller, more homogeneous patches. Therefore, a second question we addressed in this study was:

If the presence of a given species is influenced by the occurrence of another closely-related species from the same guild, does that relationship change with patch size? That is, is there evidence of an interaction between the occurrence of a predictor species and patch size?

METHODS

Study area

Our study region is called the Nanangroe area and it is $10-20 \mathrm{~km}$ south-east of the town of Jugiong in southern New South Wales, south-eastern Australia (Fig. 1). Nanangroe lies approximately 70 km north-west of Canberra (coordinates $34.9^{\circ}-35.0^{\circ} \mathrm{S}$ and $148.4^{\circ}-148.5^{\circ} \mathrm{E}$, altitudinal range: $250-750 \mathrm{~m}$ asl) and is characterised by a temperate climate (hot summers and relatively cool winters). The original vegetation cover in the study area included several temperate woodland vegetation types. Over 80 per cent of the vegetation cover in the study area has been cleared in the past 150 years, primarily for domestic stock grazing (McKernan 2010). Vegetation in these heavily cleared paddocks is dominated by exotic pasture grasses and isolated single trees that are the remnants of past woodland vegetation cover. Prolonged periods of livestock grazing in the region meant that understorey vegetation of Acacia spp. and other plants was largely absent from all areas of woodland in the study area. In several parts of the region, an emerging pine plantation now surrounds patches of remnant woodland that escaped earlier waves of land clearing. Further details of the study area can be found in Lindenmayer et al. (2008).

The design of the Nanangroe study

In 1998, prior to commencement of landscape transformation to a pine-dominated system, we randomly selected 55 of the 70 remnant woodland patches stratified by vegetation
class and woodland patch size. These woodland patches were exempt from clearing while plantation establishment in the surrounding areas was undertaken. The 55 remnant woodland patches varied in dominant vegetation type, including Yellow Box (Eucalyptus melliodora), Red Box (E. polyanthemos), White Box (E. albens), Blakely's Red Gum (E. blakelyi), Apple Box (E. bridgesiana) and Long-leaf Box (E. goniocalyx). In addition, there were patches dominated by Red Stringybark (E. macrorhyncha), Broad-leaved Peppermint (E. dives), and River Oak (Allocasuarina cunninghamiana).

The size of the patches in our study ranged from 0.5 to 28.8 ha (median $=1.5$ ha, 32 remnants $<2 \mathrm{ha}$) and they were typically located at least 500 m apart. Although our investigation included some larger remnant patches (e.g. eight >5 ha), numerous large woodland patches were not available for study because of the extent of past land clearing for agriculture and domestic livestock grazing in this part of Australia (McKernan 2010). However, we note that over the past decade, in many patches, including the small patches, there is strong evidence of breeding by many of the 15 species of birds we have targeted in this study.

Between 1997 and 2011 grazing by domestic livestock continued throughout the pine plantation and the 55 patches of remnant woodland at Nanangroe. This was important to ensure that grazing and landscape context effects were not confounded.

Bird surveys

To survey birds, we established a permanent 200 m long transect randomly within each of the 55 woodland patches. For each survey, two observers each visited three points at 0 m , 100 m and 200 m along the transect on different days; typically 2-4 days apart. At each point, the observer recorded which species were detected in a 5 minute interval within the woodland patch and within 50 m of the point. The above layout of point-interval count stations within a site was consistent across the study except in some of small patches where the third station
was placed closer than 100 m to the second station. In the few instances where a portion of the station's 50 m radius was not confined within the woodland patch, our field protocols restricted the recording of birds to only those within the patch (i.e. not in the adjacent pine plantation). We completed field surveys in early November of the following years- 1999, 2001, 2003, 2005, 2007, 2009, and 2011. Early November is the peak breeding season in the study region, when summer migrants are present and birds have established territories and exhibit strong patterns of site fidelity (Lindenmayer et al. 2008). Detections were made between 5.30-9.30am and were not undertaken on days of poor weather (rain, high wind, fog or heavy cloud cover). The order in which particular sites were surveyed on any given day was varied so that if birds were sampled, for example, late in the morning on a site on one day, that site was surveyed early in a subsequent survey.

Bird observers with a minimum of ten years of experience completed surveys of forest and woodland birds. These observers varied in their ability to detect some groups of birds but Lindenmayer et al. (2009) showed that pooling counts of two or more observers at the same plot point could compensate for extra variability due to observer heterogeneity. The 15 species we investigated in this study were readily recognizable taxa with distinctive calls. Moreover, we were familiar with them from many previous studies in a range of environments in south-eastern Australia (Lindenmayer et al. 2009). We therefore assumed that mis-identification was low for the species in the six guilds included in this study.

Bird guilds

We selected six groups of birds for study using three key criteria. First, the members of a group were closely related - almost always congeneric, always from the same family, and always from the same dietary guild (see Appendix 1). Birds in the same group also were similar in body size. Second, the six groups represented different foraging guilds, diets, breeding strategies and other life history attributes. Therefore, our analyses enabled us to
determine if patterns of co-occurrence were consistent across groupings. A third criterion for selection was that at least one member of a given set of birds was a woodland or opencountry species, whereas one or more of the others was a forest-associated species This enabled us to explore whether there was avoidance by woodland-associated taxa of forest birds in the respective groups of birds as the pine plantation stands surrounding the woodland patches matured.

Bird data used in statistical analyses

We obtained bird species presence/absence data by pooling the six point-interval counts per site for each survey year. We also examined a recording frequency index which was the proportion of plots (out of a maximum of six in any given survey year) at which a given species was recorded.

We made comparisons of bird taxa only within groups of similar species so the interpretation of the recording frequency was the same for each species in a given group. Finally, we used the same field methodology through time so the comparisons within groups of similar species were meaningful.

Statistical analyses

We conducted our statistical analyses in a series of steps. First, we completed graphical analyses to examine patterns in species occurrence and our recording frequency in relation to plantation age, vegetation type and the presence and abundance of other guild member species. Second, we used a univariate two-part binomial model to examine the factors influencing the occurrence and conditional abundance of birds. Third, we fitted the Bayesian multivariate logistic regression model of O'Brien and Dunson (2004) to determine the consistency of results obtained from the univariate two-part models.

Welsh et al. (1996) used a two-part model to examine fauna abundance data. The first component of their model estimates the probability of a species being present using binary
logistic regression and the second component models abundance, conditional on the animal being present. The two-part model was developed using a zero-truncated Poisson or Negative Binomial distribution for the second (conditional) part of the model (Welsh et al. 1996). We have not measured abundance directly in this investigation, but adopt this general modelling framework and substitute a truncated Binomial distribution for the second part of the model to describe the recording frequency in lieu of a direct measure of abundance. We refer to the second part of the model as the (mean) conditional recording frequency. The vglm() function in the R VGAM package was used, with the second conditional part of the model fit using the posbinomial (zero-truncated binomial) distribution family (see Appendix 2 and Yee 2012). The two-part modelling approach allows for over-dispersion and both parts of the model allow for serial dependence by including the lagged value of the response as an explanatory variable. The lagged value is the response recorded in the previous survey two years beforelagged presence for the first part of the model and lagged recording frequency for the second part of the model. We used a lagged value of two years to account for the fact that our field surveys were conducted two years apart.

A number of factors can influence species response in a complex, fragmented agricultural environment. To more clearly identify the role that fellow-guild member species may play in species occurrence (and through this, co-occurrence), it was advantageous to include some key environmental covariates in the analysis. We fitted four types of two-part binomial models which differed in their complexity or number of covariates.
(1) The base model included the lagged value of the response, guild member predictor species, years since planting, and \log patch size. The idea was that the potential explanatory variables for guild member species captured positive (or negative) co-occurrence with a positive coefficient (or a negative coefficient) and the years since planting captured change through time as the Radiata Pine plantation surrounding the woodland patches matured. With
respect to the guild member predictor species term in the model, species presence is used for the first (occurrence) part of the model and the recording frequency is used for the second, conditional recording frequency stage. For all models, the focus was on the occurrence part of the model but we also were interested to see if the conditional recording frequency revealed any patterns among the species.
(2) The vegetation model included the same terms as the base model but also included a four level factor for vegetation type which described the dominant vegetation community of the remnants. The possible values for vegetation community type were: (i) Scribbly Gum (Eucalyptus rossii)-stringybark (E.macrorhyncha)-silvertop ash (E. sieberi); (ii) Swamp Gum (E. ovata)-Snow Gum (E. pauciflora); (iii) Yellow Box (E. melliodora)-Blakely's Red Gum (E. blakelyi)-River Oak (Casuarina cunninghamiana); and (iv) a White Box (E. albens) dominated community with associated Yellow Box and Blakely's Red Gum. Vegetation type was coded to provide contrasts for each level against the baseline reference level Scribbly Gum-stringybark-silvertop ash.
(3) The interaction model included an interaction term between guild member predictor species (presence or conditional recording frequency) and log patch size in addition to the terms included in the base model. And,
(4) A composite model which included vegetation type and the interaction terms, as well as the terms included in the base model. We used the Bayesian (Schwarz) information criteria (BIC) to choose between the four types of models for each bird species response (Schwarz 1978) (Appendix 4A).

For the univariate two-part models, we interpreted co-occurrence as significant coefficients in paired sets of regressions within a set of guild models. For example, within a guild, species B and C may have a positive effect on the probability of occurrence of the response, species A. In a second, corresponding model, the probability of occurrence for
species B may be positively influenced by species A but not species C (viz: an absence of cooccurrence). Here, we interpret this complementary result as evidence that species A and B co-occur. The models will have one less predictor species than there are guild members: for a guild with two members like the rosellas, there will be one predictor species and for the fourmember thornbill guild there will be three predictor species in each model. We note that the second, conditional recording frequency part of the two-part model may also provide evidence of co-occurrence under this interpretation, where a matching or reciprocal relationship in regression coefficients is present.

The log patch size variable and vegetation type were of interest because occurrence and recording frequency may depend on the size and dominant vegetation of a patch. As is usual in transition models for longitudinal data, the lagged response variable was intended to capture serial dependence and was not of interest in its own right. We examined spatial dependence among sites for each response variable using variograms of the Pearson residuals from each of the logistic regression models.

In the Bayesian multivariate logistic regression analysis, we modelled the joint probability of occurrence of each species in a given guild. For each response component, we fitted the lagged species occurrence indicator (as defined above for the two-part model) for each species to capture the serial dependence, the years since planting of the surrounding Radiata Pine plantation, and the logarithm of the patch size. Here, the co-occurrence effects were obtained directly from the pairwise correlations between the different response components on the logistic scale (O'Brien and Dunson 2004). For other applications of the approach taken by O'Brien and Dunson (2004), see Ovaskainen et al. (2010) and SebastianGonzalez et al. (2012). Bayesian P-values (bpv) were reported to provide a measure of the strength of evidence for individual terms in the model. All statistical analysis was done using R (R Development Core Team 2013).

RESULTS

We summarize our data on the number of woodland patches occupied by each of the 15 species in the six guilds in each survey year in Table 1. These data highlight marked interspecific differences and temporal changes in the number of occupied patches. Our graphical approach revealed patterns in occurrence and recording frequency between species within a guild. For example, there was increasing recording frequency of the Brown Thornbill with increasing time since planting with some evidence that the rate or magnitude of increase may differ among vegetation types. The frequency of recording of the Yellowrumped Thornbill appeared to decrease with increasing time since planting (Appendix 3).

The use of BIC to select from our four main groups of models resulted in the base model being preferred in all but a few cases (see Appendix 4A). The results of univariate two-part modelling provided evidence for positive co-occurrence in five pairs of species, negative co-occurrence in one pair of species, and an absence of (positive or negative) cooccurrence patterns in seven pairs of species. Positive co-occurrence occurred among members of three guilds - the rosellas, flycatchers, and thornbills. Conversely, we found evidence of negative co-occurrence among two members of the flycatcher guild. There was no discernible pattern of (positive or negative) co-occurrence for the two members of the treecreeper group, nor for the two members of the whistler group.

Rosellas

For the rosellas, the presence/absence component of the two-part model contained evidence of co-occurrence (Fig. 2), and the probability of occurrence of the Eastern Rosella decreased with years since planting ($\mathrm{p}=0.019$, Fig. 2). For the Eastern Rosella, we identified an interaction between log patch size and recording frequency of the guild member species the Crimson Rosella ($\mathrm{p}<0.002$); as the recording frequency of the Crimson Rosella increased,
the conditional recording frequency of the Eastern Rosellas fell for small patches but increased in larger patches.

Flycatchers

In the flycatcher group, the Willie Wagtail and the Restless Flycatcher exhibited positive patterns of co-occurrence while the Willie Wagtail and the Grey Fantail showed negative co-occurrence (Fig. 3).

Thornbills

From the presence/absence component of the two-part models, we inferred patterns of co-occurrence among the Striated Thornbill and the Brown Thornbill, the Striated Thornbill and the Buff-rumped Thornbill, and the Buff-rumped Thornbill and the Yellow-rumped Thornbill (Fig. 4). There was a positive interaction between log patch size and the guild member predictor species - the Striated Thornbill ($\mathrm{p}<0.005$) and the Yellow-rumped Thornbill ($\mathrm{p}=0.03$). As the numbers of the Striated or Yellow-rumped Thornbill increased, the conditional recording frequency of the Buff-rumped Thornbill decreased in small patches but increased within large patches. There was no evidence of a reciprocal interaction for either the Striated or Yellow-rumped Thornbill. We note that both the Brown Thornbill and the Buff-rumped Thornbill, and the Striated Thornbill and the Yellow-rumped Thornbill exhibited no evidence of co-occurrence.

Honeyeaters

Although the paired regression coefficients were not significant for the honeyeaters (indicating co-occurrence), we found weak evidence that the probability of occurrence of the White-plumed Honeyeater was reduced when the Yellow-faced Honeyeater was present ($\mathrm{p}=0.064$, Fig. 2) and that the conditional recording frequency of the Yellow-faced Honeyeater decreased as the conditional recording frequency of the White-plumed Honeyeater increased $(\mathrm{p}=0.013)$.

Results obtained from fitting Bayesian multivariate logistic regression models (as per O'Brien and Dunson 2004) were broadly consistent with those from the univariate two-part binomial models and are summarized in Figure 5 and supplementary material (Appendices 4D and 4E)

We have focused the reporting of our results on evidence for co-occurrence. However, our modelling also indicated that the presence and/or conditional recording frequency of almost all species also was significantly influenced by factors such as time since planting, log patch size, vegetation type or the presence and/or conditional abundance of fellow-guild member species. The full results are listed in Appendices 3B and 3C. Examination of variograms of Pearson residuals revealed no substantial, systematic spatial dependence among the sites in our dataset.

DISCUSSION

Landscape change and habitat fragmentation are major land management issues worldwide and understanding their impacts on biota is critical for developing informed strategies for biodiversity conservation (Lindenmayer and Fischer 2006). Similarly, quantifying patterns of co-occurrence and understanding the factors that influence such patterns remains one of the most enduring and controversial issues in ecology (Sfenthourakis et al. 2005, Ovaskainen et al. 2010, Sridhar et al. 2012, Andersen et al. 2013, Steen et al. 2014). Indeed, Dammhahn and Kappeler (2008, p. 473) noted that" Understanding the cooccurrence of ecologically similar species remains a puzzling issue in ecology".

In this study, we have examined a topic that lies at the intersection of these two substantial arenas of ecological research by exploring co-occurrence among closely related (intra-guild) sets of bird species in a landscape subject to major and rapid change. Our primary question was: Is the occurrence of a given species in a guild influenced by the occurrence of another closely related species in that guild? The answer to this question was
yes for some of the members of several guilds- with the results of our landscape experiment indicating that, after controlling for key factors like the time elapsed since landscape transformation, there were effects of the presence or recording frequency of a given species on the occurrence of other, closely-related and functionally-similar species in the same guild. The existence of positive or negative co-occurrence varied among some sets of species and also between species within the same guild, including for those cases where three or more taxa were considered.

An interesting result of our investigation was an interaction between patch size and recording frequency for the members of two bird guilds; with the conditional recording frequency of one species in a group increasing with increasing frequency of another member of the guild in large patches, but decreasing with increasing frequency in small patches. Thus, the answer to our second question posed at the outset of this study - Does the influence that one species has on the presence of another change with patch size? - also was yes, albeit not for all species. We further discuss these and other findings in the remainder of this paper.

Broad kinds of co-occurrence

Positive co-occurrence patterns

A key aim of our study was to explore the types of co-occurrence among species in the same guild in a rapidly transforming landscape, while at the same time controlling for other factors which can influence species like time since landscape transformation commenced, patch size and vegetation type. This novel environmental and habitat filtering approach provided evidence of positive co-occurrence in three groups - the rosellas, flycatchers and thornbills. For example, the probability of occurrence of the Eastern Rosella increased significantly when the Crimson Rosella was present and the reverse (i.e. reciprocal) pattern also was present. That is, the probability of occurrence of both species was positively influenced by the presence of the other in the respective, paired models. Similarly, the
probability of occurrence of the Striated Thornbill increased significantly when the Brown Thornbill was present. The complementary relationship also occurred. That is, the probability of occurrence of the Brown Thornbill increased significantly when the Striated Thornbill was present. Similar complementary relationships to those for the Striated and Brown Thornbills were found for the Striated and Buff-rumped Thornbills, and the Buff-rumped and Yellowrumped Thornbills.

Several factors may explain the positive co-occurrence patterns that we observed in this study. In the case of the thornbills, earlier studies of this group have shown that several species of thornbills often form mixed feeding flocks (Bell 1980). Sridhar et al. (2012) showed in an analysis of a global dataset that positive patterns co-occurrence can arise among bird species which share similar taxonomy, body size and foraging methods. This may occur because of co-operative benefits like the discovery of food resources or recognition of alarm calls - that result from being a member of such kinds of flocks, especially when there is a high level of similarly among species (Sridhar et al. 2012). Notably, other studies have found that among some species such as breeding waterbirds, there is heterospecific attraction leading to positive co-occurrence (Ovaskainen et al. 2010). Such patterns may arise because of calling behaviour that alerts another species to the presence of predators or the location of high quality habitat (Catchpole and Slater 1995, Smith and Hellman 2002). An additional or alternative explanation for positive co-occurrence could be that a given species might choose habitat using information gleaned from other species present at a location (Smith and Hellman 2002, Sebastian-Gonzalez et al. 2012). This is particularly true for a species that is very similar to itself (Seppänen et al. 2007) as occurs for many of the intra-guild members examined in this investigation. However, a novel feature of our study was to explore patterns of co-occurrence while accounting for habitat and environmental variables. This was important as two species within a guild may co-occur because of similar habitat requirements
(Ovaskainen et al. 2010) and thus we attempted to account for this prior to exploring the influence of one or more intra-guild members on another guild member. Negative cooccurrence patterns

We recorded negative co-occurrence among two species in the flycatcher guild. We found that after accounting for \log patch size and years since planting, the probability of occurrence of the Grey Fantail declined when the Willie Wagtail was present. The reciprocal relationship also occurred in which (after accounting for other explanatory variables), the occurrence of the Willie Wagtail declined when the Grey Fantail was present. Both these species can be relatively aggressive and are known to attack other birds and this may explain the negative co-occurrence or avoidance patterns we observed in this study. Notably, such relationships were not observed with the third member of the flycatcher guild - the Restless Flycatcher, suggesting asymmetrical co-occurrence patterns among group members reinforced by the positive co-occurrence inferred from the model between the Willie Wagtail and Restless Flycatcher. The Willie Wagtail and Restless Flycatcher are typically woodland birds whereas the Grey Fantail is generally a forest-associated species. Indeed, the Willie Wagtail and the Restless Flycatcher are common co-inhabitants of remnants of temperate eucalypt woodland throughout large parts of inland eastern Australia. Conversely, it is possible that the development of the novel ecosystem in the Nanangroe area has led to an aggressive woodland species (the Willie Wagtail) avoiding an aggressive forest species (the Grey Fantail).

There was weak evidence that the probability of occurrence of the White-plumed Honeyeater was reduced when the Yellow-faced Honeyeater was present and that the conditional recording frequency of the Yellow-faced Honeyeater decreased as the conditional recording frequency of the White-plumed Honeyeater increased. These two species have similar habitat, nesting and dietary requirements and it is possible that the negative
relationships in conditional abundance and occurrence (Fig. 2) reflects competition between them. Notably, other authors have identified negative associations between the Yellow-faced and White-plumed Honeyeaters (Kinross and Nicol 2008), although unlike this investigation, they did not account for the effects of other important habitat-related factors such as vegetation type that can influence occurrence.

We suggest that because we have controlled for factors like vegetation type in our study, then the negative intra-guild co-occurrence patterns we observed are likely to be driven by competition and resource availability. Transformation of the Nanangroe landscape has altered the matrix around the remnants, and likely then altered the resources available to species within the patches (Driscoll et al. 2013). This leads to altered competitive dynamics among similar species, leading to "winners and losers" and in turn, changes in the bird community over time to produce the novel assemblages (sensu Hobbs et al. 2013) observed in the Nanangroe landscape (Lindenmayer et al. 2008).

Patch size effects

Our analyses revealed a significant interaction between \log patch size and conditional recording frequency for the Eastern Rosella and the Buff-rumped Thornbill with respective guild members. In both cases, the patterns of increasing conditional recording frequency that were accompanied by increasing recording frequency of guild member species in large patches of woodland surrounded by maturing pine stands were reversed in small patches. The reasons for these patch size effects remain unclear. However, at the outset of this study, we postulated (see Question 2) that interactions between patch size and occurrence and/or recording frequency patterns may occur because large patches may be more resource rich and/or more heterogeneous than small patches. This may make it possible for closely-related species to influence each other in small (less resource rich and more homogeneous) patches but not in larger, more heterogeneous and more resource-rich patches. This postulate would
be consistent with work by authors such as Jeltsch et al. (1998) who have found that finescale habitat heterogeneity can facilitate co-existence. Similarly, competition between species might be particularly pronounced when resources are limited (Ford 1979, Newton 1998). On this basis, a key future research task will be to carefully measure the structural and floristic variability of the woodland patches in our study area and determine if larger patches are in fact more heterogeneous than small patches. Such work, together with additional studies of the habitat requirements of bird species, would aim to determine if measures of microheterogeneity can help explain patterns of occurrence and/or recording frequency.

Some of the temperate woodland patches in our investigation were smaller ($<1 \mathrm{ha}$) than the territory size of individuals of the species we examined. Given this, it is possible these birds were using resources from multiple woodland patches or used such patches as stepping stones (see Fischer and Lindenmayer 2002). Such spatially dispersed multiple patch use may have provided opportunities for species within the same guild to co-occur. Conversely, patterns of negative co-occurrence observed for some members of particular guilds still imply that apparently competitively inferior species are using small patches less often, including as stepping stones to other patches.

Conservation implications

Plantation forestry is increasingly recognised as a major driver of landscape change around the worldwide (Felton et al. 2010, Hulvey et al. 2013). Many plantations are being established in areas where patches of original native vegetation cover are retained (Bauhus et al. 2010). This study has revealed that these retained patches support some key elements of biota, but changes in the surrounding matrix can lead to significant changes in biodiversity, including the development of novel assemblages (Lindenmayer et al. 2008). After controlling for factors like time since plantation establishment and vegetation type, our results indicated that the occurrence and abundance of a particular species in rapid transforming plantation
landscapes can be influenced by the occurrence and abundance of other closely-related and functionally-similar species. Surprisingly, the majority of co-occurrence patterns were positive, suggesting that novel assemblages of typically forest and woodland-associated birds may promote the development of behaviours like mixed feeding flocks that might otherwise not have occurred. However, because some of the observed co-occurrence patterns were contingent upon patch size, we have identified potential "winners and losers" resulting from plantation-generated landscape transformation. For example, the competitively inferior Eastern Rosella (relative to the Crimson Rosella) and Buff-rumped Thornbill (relative to the Striated and Yellow-rumped Thornbills) are likely losers in small patches of woodland embedded within the maturing plantation-dominated landscape. From a conservation perspective, this may, in turn, lead to elevated local and region extinction risks that are not due to localised changes in habitat, but rather localised changes in competition among similar species (within the same guild) as reflected by patch size mediated effects on co-occurrence patterns. Such patch size mediated effects have significant implications for plantation design. This is because they highlight the need to ensure the retention and subsequent maintenance of large patches of remnant vegetation during plantation establishment (reviewed by Lindenmayer and Hobbs 2004) and thereby avoid elevated levels of competition between closely related species within small patches.

We argue that a better understanding of associations between species is important to prevent problems like inter-linked extinctions (Saterberg et al. 2013) such as those of particular species which result from losses of co-dependent or closely associated species (sometimes termed co-extinction cascades; Koh et al. 2004, Bascompte 2009). This is also useful to improve the ability to quantify the effects of landscape transformation and habitat fragmentation on biota (Meyer and Kalko 2008) as well as better predict the potential distributions of species (Elmendorf and Moore 2008), including species distribution patterns
in human-modified environments (Lindenmayer and Fischer 2006). Finally, we suggest that the kind of work reported here is important as many studies recognize the need to conserve not only species themselves, but also the associations among species as these are also critical in the functioning and assembly of ecological communities (Bascompte and Jordano 2007, Tylianakis et al. 2010).

Concluding remarks

We found that after controlling for factors like time since landscape change, vegetation type and other factors, the occurrence and abundance of a particular species in landscapes undergoing rapid transformation can be influenced by the occurrence and recording frequency of other closely-related and functionally-similar species. Co-occurrence can be either positive or negative and may also vary between different groups of species, even within a given guild. Co-occurrence also can be influenced by factors like patch size, sometimes in quite unanticipated ways. Together, our findings underscore the complexity of biotic responses to rapid large-scale landscape transformations, like plantation expansion, and indicate that some responses can be unexpected.

ACKNOWLEDGMENTS

The work at Nanangroe has been possible only because of the support of the Australian Research Council, the Rural Industries Research and Development Corporation, the Murrumbidgee Catchment Management Authority, and the now sadly defunct organisation Land and Water Australia. Nanangroe is part of a Long-term Ecological Research Site and receives limited funding through the Terrestrial Ecosystem Research Network. Claire Shepherd assisted with editing and manuscript preparation. We thank Dr. M. Mönkkönen and two anonymous referees for constructive comments which greatly improved an earlier version of the manuscript.

REFERENCES

Alatalo, R. V., et al. 1986. Interspecific competition and niche changes in tits (Parus spp.), evaluation of nonexperimental data. - Am. Nat. 127: 819-834.

Andersen, A. N., et al. 2013. Limited niche differentiation within remarkable co-occurrence of congeneric species: Monomorium ants in the Australian seasonal tropics. - Austral Ecol. 38: 557-567.

Bascompte, J. 2009. Disentangling the web of life. - Science 325: 416-419. Bascompte, J. and Jordano, P. 2007. Plant-animal mutualistic networks: the architecture of biodiversity. - Annu. Rev. Ecol. Evol. Syst. 38: 567-593. Bauhus, J., et al. 2010. Ecosystem Goods and Services from Plantation Forests. - Earthscan. Bell, H. L. 1980. Composition and Seasonality of Mixed-Species Feeding Flocks of Insectivorous Birds in the Australian Capital Territory. - Emu 80: 227-232. Bennett, A. F., et al. 2006. Properties of land mosaics: Implications for nature conservation in agricultural landscapes. - Biol. Conserv. 133: 250-264.

Catchpole, C. K. and Slater, P. J. 1995. Bird Song. Biological Themes and Variations. Cambridge University Press.

Collinge, S. K. 2009. Ecology of Fragmented Landscapes. - The John Hopkins University Press.

Dammhahn, M. and Kappeler, P. M. 2008. Small-scale coexistence of two mouse lemur species (Microcebus berthae and M. murinus) within a homogeneous competitive environment. - Oecologia 157: 473-483.

Driscoll, D. A., et al. 2013. Conceptual domain of the matrix in fragmented landscapes. Trends Ecol. Evol. 28: 605-613.

Elmendorf, S. C. and Moore, K. A. 2008. Use of community-composition data to predict the fecundity and abundance of species. - Conserv. Biol. 22: 1523-1532.

Fahrig, L. 2003. Effects of habitat fragmentation on biodiversity. - Annu. Rev. Ecol. Evol. Syst. 34: 487-515. Felton, A., et al. 2010. A meta-analysis of fauna and flora species richness and abundance in plantations and pasture lands. - Biol. Conserv. 143: 545-554.

Felton, A. M., et al. 2003. Orangutan population density, forest structure and fruit availability in hand-logged and unlogged peat swamp forests in West Kalimantan, Indonesia. - Biol. Conserv. 114: 91-101.

Fischer, J. and Lindenmayer, D. B. 2002. The conservation value of paddock trees for birds in a variegated landscape in southern New South Wales. 2. Paddock trees as stepping stones. - Biodiv. Conserv. 11: 833-849.

Ford, H. A. 1979. Interspecific competition in Australian honeyeaters - depletion of common resources. - Aust. J. Ecol. 4: 145-164.

Galetti, M., et al. 2013. Functional extinction of birds drives rapid evolutionary changes in seed size. - Science 340: 1086-1090.

Gaston, K. 1996. Biodiversity: A Biology of Numbers and Difference. - Blackwell Science. Godsoe, W. and Harmon, L. J. 2012. How do species interactions affect species distribution models? - Ecography 35: 1-10.

Hanski, I. 1994. Patch occupancy dynamics in fragmented landscapes. - Trends Ecol. Evol. 9: 131-135.

Heske, E. J., et al. 1994. Long-term experimental study of a Chihuahuan Desert Rodent community: 13 years of competition. - Ecology 75: 438-445.

Hobbs, R. J., et al. (eds). 2013. Novel Ecosystems: Intervening in the New World Order. Wiley.

Hobbs, R. J., et al. 2006. Novel ecosystems: theoretical and management aspects of the new ecological world order. - Glob. Ecol. Biogeogr. 15: 1-7.

Hulvey, K. B., et al. 2013. Benefits of tree mixes in carbon plantings. - Nature Climate Change 3: 869-874.

Jeltsch, F., et al. 1998. Modelling the impact of small-scale heterogeneities on tree-grass coexistence in semiarid savannas. - J. Ecol. 86: 780-793.

Kinross, C. and Nicol, H. 2008. Responses of birds to the characteristics of farm windbreaks in central New South Wales, Australia. - Emu 108: 139-152.

Koh, L. P., et al. 2004. Ecological correlates of extinction proneness in tropical butterflies. Conserv. Biol. 18: 1571-1578.

Lindenmayer, D. B. and Hobbs, R. J. 2004. Fauna conservation in Australian plantation forests - a review. - Biol. Conserv. 119: 151-168.

Lindenmayer, D. B. and Fischer, J. 2006. Habitat Fragmentation and Landscape Change. Island Press.

Lindenmayer, D. B., et al. 2009. Do observer differences in bird detection affect inferences from large-scale ecological studies? - Emu 109: 100-106. Lindenmayer, D. B., et al. (eds). 2010. Temperate Woodland Conservation and Management. - CSIRO Publishing.

Lindenmayer, D. B., et al. 2008. Temporal changes in vertebrates during landscape transformation: a large-scale "natural experiment". - Ecol. Monogr. 78: 567-590.

Lovette, I. J. and Hochacka, W. M. 2006. Simultaneous effects of phylogenetic niche conservatism and competition on avian community structure. - Ecology 87: S14-S28. Mac Nally, R., et al. 2012. Despotic, high-impact species and the subcontinental scale control of avian assemblage structure. - Ecology 93: 668-678.

Maron, M. and Kennedy, S. 2007. Roads, fire and aggressive competitors: Determinants of bird distribution in subtropical production forests. - Forest Ecol. Manag. 240: 24-31. McKernan, M. 2010. The Valley. A Story from the Heart of the Land. - Allen and Unwin.

Meyer, C. F. and Kalko, E. K. 2008. Bat assemblages on Neotropical land-bridge islands: nested subsets and null model analyses of species co-occurrence patterns. - Divers. Distrib. 14: 644-654. Newton, I. 1998. Population Limitation in Birds. - Academic Press. O'Brien, S. M. and Dunson, D. B. 2004. Bayesian multivariate logistic regression. Biometrics 60: 739-746.

Ovaskainen, O. and Soininen, J. 2011. Making more out of sparse data: hierarchical modeling of species communities. - Ecology 92: 289-295.

Ovaskainen, O., et al. 2010. Modeling species co-occurrence by multivariate logistic regression generates new hypotheses on fungal interactions. - Ecology 91: 2514-2521. R Development Core Team. 2013. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. Ries, L., et al. 2004. Ecological responses to habitat edges: Mechanisms, models, and variability explained. - Annu. Rev. Ecol. Evol. Syst. 35: 491-522.

Saterberg, T., et al. 2013. High frequency of functional extinctions in ecological networks. Nature 499: 468-470.

Schwarz, G. E. 1978. Estimating the dimension of a model. - Ann. Stat. 6: 461-464. Sebastian-Gonzalez, E., et al. 2012. Testing the heterospecific attraction hypothesis with time-series data on species co-occurrence. - Proc. Roy. Soc. Lond. B 277: 2983-2990. Seppänen, J. T., et al. 2007. Social information use is a process across time, space, and ecology, reaching heterospecifics. - Ecology 88: 1622-1633.

Sfenthourakis, S., et al. 2005. Species co-occurrence: the case of congeneric species and a causal approach to patterns of species associations. - Glob. Ecol. Biogeogr. 15: 39-49. Smith, J. N. and Hellman, J. J. 2002. Population persistence in fragmented landscapes. Trends Ecol. Evol. 17: 397-399.

Smith, J. N., et al. 2003. How do Brown-headed Cowbirds (Molothrus ater) cause nest failures in Song Sparrows (Melospiza melodia)? A removal experiment. - Auk 120: 772-783. Specht, R. L. and Specht, A. 1999. Australian plant communities. Dynamics of structure, growth and biodiversity. - Oxford University Press.

Sridhar, H., et al. 2012. Positive relationships between association strength and phenotypic similarity characterize the assembly of mixed-species bird flocks worldwide. - Am. Nat. 180: 777-790.

Steen, D. A., et al. 2014. Snake co-occurrence patterns are best explained by habitat and hypothezied effects of interspecific interactions. - J. Anim. Ecol. 83: 286-295.

Tylianakis, J. M., et al. 2010. Conservation of species interaction networks. - Biol. Conserv. 143: 2270-2279.

Welsh, A. H., et al. 1996. Modelling the abundance of rare species: statistical models for counts with extra zeros. - Ecol. Model. 88: 297-308.

Zanette, L., et al. 2000. Food shortage in small fragments: evidence from an area- sensitive passerine. - Ecology 81: 1654-1666.

Zuidema, P. A., et al. 1996. Forest fragmentation and biodiversity: the case for intermediatesized reserves. - Environ. Conserv. 2: 290-297.

Table 1. Number of detections of each bird species in each year. The values in a given cell correspond to the number of eucalypt woodland remnants (out of 55) in which a particular species was recorded in a given year. Note that including a lagged value of the response resulted in data from 1998 and 2000 not being incorporated in the statistical modelling.

Species/ Year	$\mathbf{1 9 9 9}$	$\mathbf{2 0 0 1}$	$\mathbf{2 0 0 3}$	$\mathbf{2 0 0 5}$	$\mathbf{2 0 0 7}$	$\mathbf{2 0 0 9}$	$\mathbf{2 0 1 1}$
Brown Thornbill	19	16	20	31	45	49	51
Yellow-rumped Thornbill	13	11	7	6	6	10	7
Buff-rumped Thornbill	7	6	11	9	10	14	11
Striated Thornbill	12	13	11	25	24	26	36
Brown Treecreeper	8	5	4	3	5	3	3
White-throated	22	19	28	28	23	26	28
Treecreeper	27	32	35	33	39	42	41
Crimson Rosella	8	8	6	9	4	3	8
Eastern Rosella	8	4	7	11	11	16	16
Golden Whistler	0	29	29	40	41	39	43
Rufous Whistler	29	42					
White-plumed							
Honeyeater	18	28	15	15	15	9	3
Yellow-faced	30	36	43	54	53	51	55
Honeyeater	41	40	48	49	54	55	
Grey Fantail	32	17	16	13	6	12	4
Willie Wagtail	15						

Restless Flycatcher	4	8	3	1	4	2	3

651

652

Figure 1. Location map of Nanangroe study site

Figure 2. Regression co-efficient estimates for guild member species as predictor from the occurrence part of the two-part model. Estimates are presented in pairs where the response species is listed in the left-hand margin with the 'paired species' included as an indicator variable. Co-occurrence is inferred from the model where there are significant 'matching' terms for the predictor species variable within a guild member pair (e.g. rosellas).

663

Figure 3. Flycatcher regression coefficient estimates for guild member species as predictors for the occurrence part of the two-part model. With three guild member species there are two predictor species in each model. For example, negative co-occurrence or avoidance is inferred between the wagtail and the restless flycatcher due to reciprocal, significant negative terms for the predictor species variable for these two species.

Figure 4. Thornbill regression coefficient estimates for guild member species as predictors for the occurrence part of the two-part model. Each model has the occurrence of three guild member species as predictors. For example, positive co-occurrence is inferred between the Brown and Striated thornbills.

Figure 5. Correlation between paired species for the Bayesian multivariate logistic regression models. Six models were fitted - one for each guild. Comparing the outcome of Bayesian multivariate logistic regression modelling with the univariate two-part models showed that the results were largely consistent between the two kinds of data analysis.

