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Abstract

We study a new variant of consensus problems, termed ‘local average consensus’, in networks of agents. We consider the task
of using sensor networks to perform distributed measurement of a parameter which has both spatial (in this paper 1D) and
temporal variations. Our idea is to maintain potentially useful local information regarding spatial variation, as contrasted
with reaching a single, global consensus, as well as to mitigate the effect of measurement errors. We employ two schemes for
computation of local average consensus: exponential weighting and uniform finite window. In both schemes, we design local
average consensus algorithms to address first the case where the measured parameter has spatial variation but is constant in
time, and then the case where the measured parameter has both spatial and temporal variations. Our designed algorithms
are distributed, in that information is exchanged only among neighbors. Moreover, we analyze both spatial and temporal
frequency responses and noise propagation associated with the algorithms. The tradeoffs of using local consensus, as compared
to standard global consensus, include higher memory requirement and degraded noise performance. Arbitrary updating weights
and random spacing between sensors are also analyzed in the proposed algorithms.
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1 Introduction

Consensus of multi-agent systems comes in many varieties
(e.g. [12, 19, 21]), and in this paper, we focus on a particu-
lar variety, namely average consensus (e.g. [5, 22, 24]). This
refers to an arrangement where each of a network of agents
is associated with a value of a certain variable, and a process
occurs which ends up with all agents learning the average
value of the variable. Finding an average of a set of values is
apparently conceptually trivial; what makes average consen-
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sus nontrivial is the fact that an imposed graphical structure
limits the nature of the steps that can be part of the aver-
aging algorithm, each agent only being allowed to exchange
information with its neighbors, as defined by an overlaid
graphical structure. Issues also arise of noise performance,
effect of time delay, agent/link loss, etc ( [13, 15,17]).

Finding an average also throws away much information. In
many situations, one might well envisage that a local aver-
age might be useful, retaining the characteristics of local in-
formation meanwhile mitigating the effect of measurement
error. For instance, one thousand weather stations across a
city, instead of giving a single air pollution reading, might
validly be used to identify hotspots of pollution, i.e. localities
with high pollution; thus, instead of a global average, a form
of local averaging, still mitigating the effects of some noise,
might be useful. We term this variant ‘local (average) con-
sensus’, and distinguish it from the normal sort of consensus,
termed here by way of contrast ‘global (average) consensus’.

In local average consensus, each agent i aims to compute the
linear combination ai,ixi + (ai,i−1xi−1 + ai,i−2xi−2 + · · · ) +
(ai,i+1xi+1+ai,i+2xi+2+ · · · ), where xj (j = i, i±1, i±2, ...)
are measurements and ai,j are weights that reflect local in-
formation around i in some reasonable sense. Accordingly,
defining a local average amounts to choosing appropriate
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weights ai,j and is by no means unique. We consider two
schemes for defining a local average, both assigning large
weights to locally measured information (precise definitions
are given in Section 2 below). One involves the use of expo-
nential weights, to reflect ‘closeness’ of the variable measured
in both topological and geographical distance (viz. the fur-
ther a neighbor is, the lesser its value will affect the agent’s
computation of its ‘local average’). The other scheme applies
uniform weights to all measurements within a finite win-
dow centered at each agent, to reflect locality and to reduce
computation burden. In addition, these two schemes have
an appealing feature that the weights involved may be pa-
rameterized using a single parameter; this renders our algo-
rithm amenable for technical analysis as well as convenient
for practical use.

In both schemes, we design local consensus algorithms to
first address the case where the measured variable has spatial
variation but is constant in time, and then the case where the
measured variable has both spatial and temporal variations.
In this paper we consider spatial variation in 1D for simplic-
ity. Our designed algorithms have the following properties:

• The algorithms are distributed: i.e. information exchange
is allowed only among neighboring agents.

• The algorithms will respond to time-variation of measured
variables without delay.

• The algorithms contain a single parameter (corresponding
to the one for respective weights in each scheme) which con-
trols the distance over which effective local averaging occurs.

• The algorithms are robust against errors in spacing, as well
as against errors in measured variables.

As we will see, these algorithms have higher memory require-
ment than that of a global consensus algorithm (the latter
can be made memoryless). Moreover, we study two general-
izations of the local consensus algorithms, one with arbitrary
weights and the other with random spacing between sensors.

We also analyze the spatial and temporal frequency re-
sponses of the designed local consensus algorithms, and noise
propagation associated with these algorithms. To obtain a
fully analytical result we limit our study to a 1D sensor
network, which can find its application in power line mon-
itoring, canal/river monitoring, detection of border intru-
sions, structural monitoring of railways/bridges/pipelines,
and road traffic control [1, 7, 9, 11, 25]. One example of
road traffic control is to monitor vehicular density along a
long stretch of highway, a parameter naturally spatial- and
temporal-varying. Suppose there are a number of sensors
spread along the highway; the vehicular density at each
measurement point is correlated and the correlation reduces
with the distance from the measurement point. Local aver-
age consensus may help identify congested sections of the
highway and their time shifts, whereas global consensus is
much less useful in this context.

We note that [20] proposed a “consensus filter” which allows
the nodes of sensor networks to track the average of their
time-varying noisy measurements. This problem is called
“dynamic average consensus”, which is later further stud-
ied in e.g. [3, 8], and also in [2, 6, 10] under a different name
“coordinated average tracking”. These works, however, deal
still with global average consensus, because all nodes are
required to track the same time-varying average value. By

contrast, our goal of local average consensus is to have each
node track the time-varying average value only within its
spatial neighborhood, thereby retaining characteristics of lo-
cally measured information.

Also related is the work on distributed estimation of (time-
varying) multi-dimensional parameter; different approaches
have been proposed, notably consensus plus Kalman filter-
ing [18], consensus plus least-mean-square adaptation [16],
and consensus plus innovation [14]. The first main difference
between our work and the above is the approach to reducing
noise effect: In [14,16,18] the filtering/adaptation/innovation
part serves to reduce noise; by contrast, our approach uses
(local) averaging itself to reduce noise. As a consequence, the
algorithms designed in [14, 16, 18] require constantly mak-
ing new measurements no matter the parameter is time-
varying or not. By contrast, our algorithms needs only the
initial measurements in the case of time-invariant parame-
ter, and for time-varying parameter, new measurements are
made solely for the purpose of tracking temporal variation
of the parameter, not for reducing noise. In addition, our
algorithms contain a single parameter which can be easily
tuned for noise and tracking performance; this feature ren-
ders our algorithms more convenient to use as compard those
in [14,16,18] having more parameters.

In the following, Section 2 presents local average consensus
algorithms for the case where the measured variable has spa-
tial variation but is constant in time. Section 3 and Section 4
investigate spatial frequency response and noise propaga-
tion of the designed algorithms. Section 5 studies arbitrary
weights and random spacing in the proposed local averaging
algorithms. Section 6 presents local consensus algorithms for
the case where the measured variable has both spatial and
temporal variations. This allows the treatment of Section 7
of the frequency response associated with time variations. Fi-
nally, Section 8 states our conclusions. The conference prede-
cessor of this paper is [4]. This paper differs from [4] through
inclusion of proofs of results, development of material on the
frequency response to time-variation in measured variables,
and analysis of random spacing and arbitrary weights in the
proposed algorithms.

2 Distributed Local Consensus Algorithms

Consider a variable whose values vary in 1D space, and/or in
addition vary in time. Suppose we have a (possibly infinite)
chain of sensors to be placed (uniformly) along the 1D space.
Each sensor i has two variables: a measurement variable xi

and a consensus variable yi. At each time k = 0, 1, 2, ... each
sensor i takes a measurement xi(k) (potentially noisy) of the
variable. Our goal is to design distributed algorithms which
update each sensor i’s consensus variable yi(k), based on
xi(k) and information only from the two immediate neigh-
bors i − 1 and i + 1, such that yi(k) converges to a value
which reflects spatial-temporal variations of the variable.

In this section, we focus on the case where all local measure-
ments are time-invariant, i.e. xi(k) = xi (a constant) for all
i, k. The time-varying case will be addressed in Section 6,
below. We consider two types of weighting schemes: expo-
nential weighting and uniform finite window.

2.1 Exponential Weighting

For computing a local average at sensor i, it is natural to
assign larger weights to information that is spatially closer
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to i. One way of doing so is to assign an exponential weight
ρj , ρ ∈ (0, 1) and j a nonnegative integer, to a measurement
taken at distance j from i. For this scheme, we formulate the
following problem, adopting the reasonable assumption that
there is a bound M < ∞ such that measurement variables
|xi| < M for all i.

Problem 1. Let ρ ∈ (0, 1). Design a distributed algorithm to
update each sensor i’s consensus variable yi(k) such that

lim
k→∞

yi(k) =
1− ρ

1 + ρ

(
xi +

∞∑
j=1

ρj(xi−j + xi+j)

)
. (1)

Thus, exponentially decaying weights, at the rate ρ, are as-
signed to the information from both forward and backward
directions. Note that the limit of yi(k) exists because all
xi are assumed bounded. The scaling constant 1−ρ

1+ρ
ensures

that, if all xi are the same, yi(k) is in the limit equal to xi.

We propose the following distributed algorithm to solve
Problem 1. For every i,

yi(0) =
1− ρ

1 + ρ
xi (2a)

yi(1) = yi(0) + ρ(yi−1(0) + yi+1(0)) (2b)

yi(2) = yi(1) + ρ(yi−1(1)− yi−1(0))+ (2c)

ρ(yi+1(1)− yi+1(0))− ρ22yi(0)

yi(k + 1) = yi(k) + ρ(yi−1(k)− yi−1(k − 1))+ (2d)

ρ(yi+1(k)− yi+1(k − 1))− ρ2(yi(k − 1)− yi(k − 2)), k ≥ 2.

Each sensor i needs information only from its two immediate
neighbors: yi−1(k) and yi+1(k), k = 0, 1, .... At each iteration
k (≥ 2), the quantities used to update yi(k) are yi−1(k) −
yi−1(k− 1), yi+1(k)− yi+1(k− 1), and yi(k− 1)− yi(k− 2).
Thus more memories are required in this local consensus
algorithm than in a global consensus algorithm, though the
increase is obviously modest.

Theorem 1 Algorithm (2) solves Problem 1.

Proof. We will show by induction on k ≥ 1 that

yi(k) = yi(k − 1) + ρk(yi−k(0) + yi+k(0)), ∀i. (3)

This leads to

yi(k) = yi(0) +

k∑
j=1

ρj(yi−j(0) + yi+j(0))

=
1− ρ

1 + ρ

(
xi +

k∑
j=1

ρj(xi−j + xi+j)

)
, ∀i.

The second equality above is due to (2a). Then taking the
limit as k →∞ yields (1). That the limit exists follows from
the fact that |xi| < M < ∞ and ρ ∈ (0, 1).

First, it is easily verified from (2b), (2c) that (3) holds when
k = 1, 2. Now let k ≥ 2 and suppose (3) holds for all k′ ∈
[1, k]. According to (2d) we derive

yi(k + 1) = yi(k) + ρ(ρk(yi−k−1(0) + yi+k−1(0)))+

ρ(ρk(yi−k+1(0) + yi+k+1(0)))−
ρ2(ρk−1(yi−k+1(0) + yi+k−1(0)))

= yi(k) + ρk+1(yi−k−1(0) + yi+k+1(0)).

(4)

Therefore, (3) holds for all k ≥ 1. ¥
Note from the derivation in (4) that in the scheme (2d),
yi−1(k)− yi−1(k−1) produces new information yi−k−1(0)+
yi+k−1(0) (resp. yi+1(k)− yi+1(k− 1) produces yi−k+1(0) +
yi+k+1(0)), and yi(k−1)−yi(k−2) is a correction term which
cancels the redundant information yi−k+1(0) + yi+k−1(0).

Remark 2 An extension of Algorithm (2) is immediate.
Each sensor i weights information from the backward direc-
tion differently from the forward direction, using exponential
weights ρb and ρf ∈ (0, 1), respectively. Here we assume that
each sensor may distinguish backward direction from forward
one, by means of e.g. using a one-bit compass for a line graph.
Then revise Algorithm (2) as follows (omitting the similar
initialization steps):

yi(k + 1) = yi(k) + ρb(yi−1(k)− yi−1(k − 1))+ (5)

ρf (yi+1(k)− yi+1(k − 1))− ρbρf (yi(k − 1)− yi(k − 2)),

k ≥ 2.

This revised algorithm yields

lim
k→∞

yi(k) =
(1− ρb)(1− ρf )

1− ρbρf

(
xi +

∞∑
j=1

(ρj
bxi−j + ρj

fxi+j)

)
.

The proof of this claim is similar to that of Theorem 1.

2.2 Uniform Finite Window

An alternative to exponential weighting is to have a finite
window for each sensor such that every agent’s information
within the window is weighted uniformly, and the informa-
tion outside the window discarded. For time-invariant mea-
surements, this is to compute the average of measurements
within the window. We formulate the problem.

Problem 2. Let L ≥ 1 be an integer, and 2L+1 the length of
the finite window of sensor i; i.e. sensor i uses measurement
information from L neighbors in each direction. Suppose i
knows L. Design a distributed algorithm to update each i’s
consensus variable yi(k) such that

yi(L) =
1

2L + 1

(
xi +

L∑
j=1

(xi−j + xi+j)

)
. (6)

Thus it is required that the average of 2L+1 measurements
be computed in L steps.

A variation of Algorithm (2) will solve Problem 2:

yi(0) =
1

2L + 1
xi (7a)

yi(1) = yi(0) + (yi−1(0) + yi+1(0)) (7b)

yi(2) = yi(1) + (yi−1(1)− yi−1(0))+ (7c)

(yi+1(1)− yi+1(0))− 2yi(0)

yi(k + 1) = yi(k) + (yi−1(k)− yi−1(k − 1))+ (7d)

(yi+1(k)− yi+1(k − 1))− (yi(k − 1)− yi(k − 2)),

k ∈ [2, L− 1].
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The memory requirement of this algorithm is the same as
Algorithm (2): i.e. yi−1(k)−yi−1(k−1), yi+1(k)−yi+1(k−1),
and yi(k − 1) − yi(k − 2) are needed to update yi(k) for
k ∈ [2, L − 1]. Note, however, that the present algorithm
terminates after L steps because of finite window as well as
static measurements. When measurements are time-varying
(see Section 6.2 below), by contrast, the corresponding algo-
rithm will need to keep track of temporal variations.

Theorem 3 Algorithm (7) solves Problem 2.

Proof. Similar to the proof of Theorem 1, we derive for k ∈
[1, L] that

yi(k) = yi(k − 1) + (yi−k(0) + yi+k(0)), ∀i. (8)

This leads to

yi(L) = yi(0) +

L∑
j=1

(yi−j(0) + yi+j(0))

=
1

2L + 1

(
xi +

L∑
j=1

(xi−j + xi+j)

)
, ∀i.

The second equality above is due to (7a). ¥
Remark 4 Individual sensors may have different window
lengths, Li ≥ 1. In this case, we impose the condition that
the neighboring lengths may differ no more than one, i.e.

|Li − Li+1| ≤ 1, |Li − Li−1| ≤ 1, ∀i (9)

and replace L by Li throughout Algorithm (7). Then from
(7d) and when k = Li − 1 (the final update), we have

yi(Li) = yi(Li − 1) + (yi−1(Li − 1)− yi−1(Li − 2))+

(yi+1(Li − 1)− yi+1(Li − 2))− (yi(Li − 2)− yi(Li − 3)).

Condition (9) ensures that both yi−1(Li−1) and yi+1(Li−1)
exist. Hence the same argument as that validating Algo-
rithm (7) proves that the revised algorithm with Li computes

yi(Li) =
1

2Li + 1
xi +

Li∑
j=1

(
1

2Li−j + 1
xi−j +

1

2Li+j + 1
xi+j).

We have designed local consensus algorithms using two dif-
ferent schemes: exponential weighting and uniform finite
window weighting. A simulation is displayed in Figure 1 to
illustrate the performance of the algorithms (2) and (7) for
different values of the respective parameters, ρ or L. In ex-
ponential weighting, if ρ is too small (e.g. ρ = 0.5), the
algorithm has poor noise performance; while large ρ (e.g.
ρ = 0.9) substantially smooths out noise, it lowers the algo-
rithm’s performance of tracking local information. Small L
(e.g. L = 1) and large L (e.g. L = 15) have similar effects on
the performance of the finite window algorithm. Moreover,
it is plausible to establish a certain relation between ρ and
L under which the two algorithms have (roughly) the same
tracking and noise performance. We will study these perfor-
mance issues in the next two sections, by analyzing the al-
gorithms’ spatial frequency response and noise propagation.
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(a) Exponential weighting
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Fig. 1. Simulation example: performance of algorithms (2)
and (7) for difference values of ρ or L, respectively. 50
agents are aligned to measure a physical parameter having
a parabola spatial distribution (black curve). Measurements
(green curve) are corrupted by (independent) noise of mean
zero and variance one. Plots for 3 different values of ρ and
L are displayed, showing different tracking and noise perfor-
mance of the respective algorithms. Global average smooths
out noise but throws away local information.

3 Spatial Frequency Response

The whole concept of local consensus is based on the precept
that global consensus may suppress too much information
that might be of interest. In effect, global (average) consen-
sus applies a filter to spatial information which leaves the
DC component intact, and completely suppresses all other
frequencies. Our task in this section is to study the extent to
which local consensus in contrast does not destroy all infor-
mation regarding spatial variation, and the tool we use to do
this is to look at a spatial frequency response. Further, there
is a trade-off in using local consensus, apart from additional
computational complexity as noted in Section 2: there is less
mitigation–obviously–of the effect of noise. We also consider
this point in the next section.

We associate with the measured variable and consensus vari-
able sequences {xi,−∞ < i < ∞} and {yi,−∞ < i < ∞}
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their spatial Z-transforms X (Z),Y(Z) defined by

X (Z) =

∞∑
−∞

xiZ
−i Y(Z) =

∞∑
−∞

yiZ
−i (10)

Spatial Z-transforms capture spatial frequency content, and
are a potentially useful tool for analysing the relationship
between measured variables and consensus variables.

Our aim is to understand how, when the measured variable
sequence has spatially sinusoidal variation at frequency ω,
the steady state values of the consensus variables yi depend
on ρ and ω. In a practical situation, spatial variation may
not necessarily be sinusoidal. The benefit of the sinusoidal
analysis is that it leads to a transfer function and hence to a
concept of bandwidth for the average consensus algorithm,
i.e. a notion of a spatial frequency below which variations
can be reasonably tracked even when the algorithm is op-
erating, while spatially faster variations will be suppressed
or filtered out in deriving the local average consensus. We
shall first consider local consensus with exponential weight-
ing, and then local consensus with a uniform finite window.

3.1 Exponential Weighting

The calculation using Z-transforms proceeds as follows.
Starting with the steady state equation (cf. (1))

yi =
1− ρ

1 + ρ
(xi + ρxi−1 + ρ2xi−2 + · · ·+ ρxi+1 + ρ2xi+2 + · · · )

(11)

one has

Z−iyi =
1− ρ

1 + ρ
[xiZ

−i + Z−1ρxi−1Z
−(i−1) + Z−2ρ2xi−2Z

−(i−2)

+ · · ·+ Zρxi+1Z
−(i+1) + Z2ρ2xi+2Z

−(i+2) + · · · ] (12)

Summing from i = −∞ to ∞ yields

Y(Z) =
1− ρ

1 + ρ
[1 + Z−1ρ + Z−2ρ2 + · · ·+ Zρ + Z2ρ2 + · · · ]X (Z)

=
1− ρ

1 + ρ
[1 +

ρZ−1

1− ρZ−1
+

ρZ

1− ρZ
]X (Z)

or

Y(Z) =
(1− ρ)2

(1− ρZ−1)(1− ρZ)
X (Z) (13)

For future reference, define the transfer function

H(Z) =
(1− ρ)2

(1− ρZ−1)(1− ρZ)
(14)

For Z = exp(jω), H(Z) is real and positive. However, for
arbitrary Z in general its value is complex. It has two poles
which are mirror images through the unit circle of each other.

Now suppose that the measured variable sequence xi is sinu-
soidal, thus xi = exp(jiω0), where j =

√−1. The associated
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Fig. 2. Plot of H(exp(jω0)) in (17) near origin for different
values of ρ

Z-transform X (Z) is formally given by
∑∞

i=−∞ xiZ
−i. When

Z = exp(jω), there holds X (exp(jω)) =
∑∞

i=−∞ exp(ji(ω−
ω0)) = 2πδ(ω − ω0), where we are appealing to the fact
that the delta function δ(x) is the limit of a multiple of the
Dirichlet kernel

DN (x) =

N∑
i=−N

exp(jix) =
sin((N + 1

2
)x)

sin(x/2)
(15)

i.e. δ(x) = 1
2π

limN→∞DN (x) = 1
2π

∑∞
i=−∞ exp(jix). In for-

mal terms, it follows from (13) and (14) that the associated
Z-transform of the consensus variable, i.e. Y(Z), is given by

Y(exp(jω)) = H(exp(jω))2πδ(ω − ω0) (16)

Equivalently, the consensus variable is also sinusoidal at fre-
quency ω0 and with phase shift and amplitude defined by
H(exp(jω0)). The phase shift is easily checked to be zero for
all ω0, and the amplitude is in fact the value of H itself, viz.

H(exp(jω0)) =
(1− ρ)2

1 + ρ2 − 2ρ cos ω0
(17)

Observe that if ω0 = 0, i.e. the measured variable is a con-
stant or spatially invariant, then H(1) = 1 irrespective of ρ,
i.e. the consensus variable is the same constant – as we would
expect. Observe further that for fixed ω0 6= 0, as ρ → 1,
H(exp(jω0)) → 0, which is consistent with the fact that
with ρ = 1, the average value of the measured variable, viz.
0, will propagate through to be the value everywhere of the
consensus variable.

Observe that if ρ is close to 1, i.e. 1− ρ is small, a straight-
forward calculation shows that with ω0 = 1 − ρ, the value
of H is approximately 1/2. Thus crudely, ρ (for values close
to 1) determines the bandwidth as O(1−ρ). More generally,
we observe from the Figures 2 and 3 (which show behavior
near the origin and over [0, π], respectively), that

(1) For any ρ, H(exp(jω0)) is monotonic decreasing in ω0,

from a value of 1 at ω0 = 0 to a value of (1−ρ)2

(1+ρ)2
at ω0 = π.

(2) For values of 1 − ρ between zero and at least 0.2,
H(exp(jω0)) takes a value of about 1

2
when ω0 = 1− ρ.
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Fig. 3. Plot of H(exp(jω0)) in (17) over [0, π] for different
values of ρ. The colour coding is as for Figure 2.

The above calculations assume that there are an infinite
number of measuring agents. When the number is finite, it
is clear that the results will undergo some variation. When
the hop distance to the array boundary, call it d, from a
particular agent, is such that ρd is very small, the error will
obviously be minor. In the vicinity of the boundary, the errors
will be greater, and a kind of end effect will be observed.
The results for an infinite number of agents are accordingly
indicative of the results for a finite number.

3.2 Uniform Finite Window

From (6), the steady-state equation in this case is

yi =
1

2L + 1

L∑

k=−L

xi+k (18)

and it is straightforward to establish that

Y(Z) =
1

2L + 1

L∑

k=−L

ZkX (Z) (19)

The transfer function H(Z) is simply 1
2L+1

∑L
k=−L Zk so

that

H(exp(jω)) =
1

2L + 1

sin((L + 1
2
)ω)

sin(ω/2)
(20)

The shape of the Dirichlet kernel is well known; H assumes
its maximum value of 1 at ω = 0, and the bandwidth is
roughly 1.7

L+1/2
, adjustable by L. Evidently, the bandwidths in

the exponential weighted case and the uniform finite window
case are of the same order when

1− ρ =
1.7

L + 1/2
. (21)

Put another way, and roughly speaking, a window length
of 2L + 1 allows spatial variation of a bandwidth Ω to pass
through the averaging process when LΩ is about 1.7.

4 Noise Propagation

As mentioned already, the noise performance when local con-
sensus is used will be worse than that when global consensus

is used. To fix ideas, suppose that for each i, measurement
agent i has its measurement contaminated by additive noise
εi of zero mean and variance σ2, with the noise at any two
agents being independent. Note that bias is zero.

Then if there are N agents, the error in the average will be

(1/N)
∑N

i=1 εi, which has variance σ2

N
. Obviously this goes

to zero as N → ∞. When the uniform finite window of
length 2L + 1 is used, this same thinking shows that the

error variance is σ2

2L+1
. Thus the signal-to-noise ratio (SNR)

at each i is
y2

i (2L+1)

σ2 , with the signal yi in (18).

Now suppose that exponential weighting is used. In local
average consensus the error will be

1− ρ

1 + ρ
[εi + ρεi−1 + ρ2εi−2 + · · ·+ ρεi+1 + ρ2εi+2 + . . . ] (22)

and the variance is given by

(1− ρ

1 + ρ

)2
[1 + 2ρ2 + 2ρ4 + . . . ]σ2 (23)

=
(1− ρ

1 + ρ

)2
[

2

1− ρ2
− 1]σ2 = (1− ρ)

1 + ρ2

(1 + ρ)3
σ2

This lies in the interval ( 1
4
(1−ρ)σ2, (1−ρ)σ2), and for ρ close

to 1, the error is approximately equal to the lower bound.
Indeed, the closer ρ is to 1, the less is the error variance. Note

that in this case the SNR at each i is
y2

i
σ2(1−ρ)

(1+ρ)3

1+ρ2 , with the

signal yi in (11). It is not hard to verify that a uniform finite
window of length 2L+1 and an exponential weighting of ρ =
2L−3
2L+1

yield the same variance. Equivalently, this condition is

1− ρ = 2
L+1/2

, which means that exponential weighting and

uniform finite window weighting, if they achieve the same
bandwidth (cf. (21)), also have approximately the same noise
performance. The same condition incidentally says that ρL ≈
e−1, implying that the finite window width with uniform
weighting has width determined by the number of steps over
which the exponential weighting dies off by a factor of e.
These observations also mean, unsurprisingly, that when L or
ρ are adjusted, noise variance is proportional to bandwidth.

5 Generalizations

5.1 Arbitrary Weighting

To this point, we have considered two special types of
weights. It is at least of academic interest to consider what
might happen with essentially arbitrary weights. These
might for example reflect known and nonuniform spacings
between agents. We adopt the following assumption.

Assumption 5 Let aij 6= 0 for all i, j. For every i, the sum
aiixi +

∑∞
j=1(ai,i−jxi−j + ai,i+jxi+j) is finite, and K :=

aii +
∑∞

j=1(ai,i−j + ai,i+j).

Problem 3. Design a distributed algorithm to update each
sensor i’s consensus variable yi(k) such that

lim
k→∞

yi(k) =
1

K

(
aiixi +

∞∑
j=1

(ai,i−jxi−j + ai,i+jxi+j)

)
.

(24)
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The constant 1/K ensures again that, if all xi are the same,
yi(k) is in the limit equal to xi.

To solve Problem 3, we consider a modified approach: Let
each sensor i have two additional consensus variables, yF

i (k)
and yB

i (k); yF
i (k) (resp. yB

i (k)) is updated based on xi and
information from the forward neighbor i+1 (resp. the back-
ward neighbor i−1). This approach separates the updates of
consensus variables between the forward and the backward
directions. As we will see, the separation effectively avoids
term cancelations needed in the algorithms in Section 2,
which we find difficult in the case of arbitrary weights.

Now using the two consensus variables yF
i (k) and yB

i (k), we
present the following distributed algorithm. For all i,

yF
i (0) = yB

i (0) =
1

K
aiixi (25a)

yF
i (1) = yF

i (0) +
ai,i+1

ai+1,i+1
yF

i+1(0) (25b)

yB
i (1) = yB

i (0) +
ai,i−1

ai−1,i−1
yB

i−1(0)

yF
i (2) = yF

i (1) +
ai,i+2

ai+1,i+2
(yF

i+1(1)− yF
i+1(0)) (25c)

yB
i (2) = yB

i (1) +
ai,i−2

ai−1,i−2
(yB

i−1(1)− yB
i−1(0))

yF
i (k + 1) = yF

i (k) +
ai,i+k+1

ai+1,i+k+1
(yF

i+1(k)− yF
i+1(k − 1))

(25d)

yB
i (k + 1) = yB

i (k) +
ai,i−k−1

ai−1,i−k−1
(yB

i−1(k)− yB
i−1(k − 1)), k ≥ 2.

In the above algorithm, each sensor i requires two consensus
variables and needs to know the weights used by its two
neighbors, in addition to the memory requirement of the
algorithms in Section 2. Finally, values of yF

i (k) and yB
i (k)

are glued together to produce yi(k) as follows:

yi(k) = yF
i (k) + yB

i (k)− 1

K
aiixi, ∀k ≥ 0. (26)

The last term above serves to correct that the initial
(1/K)aiixi value in (25a) is added twice.

Theorem 6 Let Assumption 5 hold. Then Algorithm (25)-
(26) solves Problem 3.

Proof. First, we show by induction on k ≥ 1 that for all i,

yF
i (k) = yF

i (k − 1) +
1

K
ai,i+kxi+k. (27)

It is easily verified from (25b), (25c) that (27) holds when k =
1, 2. Now let k ≥ 2 and suppose (27) holds for k. According
to (25d) we derive yF

i (k + 1) = yF
i (k) + 1

K
ai,i+k+1xi+k+1.

Therefore, (27) holds for all k ≥ 1, and leads to

yF
i (k) =

1

K

(
aiixi +

k∑
j=1

ai,i+jxi+j

)
, ∀i.

Similarly, for yB
i (k), we derive

yB
i (k) =

1

K

(
aiixi +

k∑
j=1

ai,i−jxi−j

)
, ∀i.

Now by (26),

yi(k) =
1

K

(
aiixi +

k∑
j=1

(ai,i−jxi−j + ai,i+jxi+j)

)
, ∀i.

Then taking the limit as k →∞ yields (24). That the limit
exists follows from Assumption 5. ¥

5.2 Random Spacing

If the arbitrary weights studied in the previous subsection
reflect nonuniform distances between successive sensors, we
may assume that these distances are random, in accordance
with some probability law. Two different possibilities are
that (a) they are Poisson distributed, say with intensity 1 for
convenience, or (b) the inter sensor distances are uniformly
distributed in an interval [1−η, 1+η] where η is known. Dif-
ferent physical mechanisms could typically lead to these two
situations. In the first case, sensor distances are independent.
In the second case, we make the explicit assumption that
inter sensor distances are independent random variables.

Based on the treatment already derived for the case corre-
sponding to uniform spacing in Section 2.1, where a weight-
ing of ρd applies at a given sensor to the measurement
passed to it and made at a sensor d units away, we sug-
gest that the relevant weighting to apply to the measure-
ment collected at sensor j and used at sensor i < j is
ρdij := ρdi,i+1+di+1,i+2+···+dj−1,j , with di,i+j denoting the
distance between sensors i and i + j.

The full expression for the average consensus variable at
node i is then

yi = K[xi +

∞∑
j=1

ρdi,i+j xi+j +

∞∑
j=1

ρdi,i−j xi−j ] (28)

Here K is a normalization constant. Next, we determine K.

In the deterministic case (Section 2.1), the normalization
constant ( 1−ρ

1+ρ
) was chosen to ensure that if all measured

variables had the same value, a say, then the average con-
sensus variable also took the value a. In the random case, we
can seek this requirement. But it turns out that we can only
assure that E[yi] = a. It would then be relevant to consider
the question of the variance in yi. This is also covered below.

Let us now assume a = 1 for convenience. Then

yi = K[1 +

∞∑
j=1

ρdi,i+j +

∞∑
j=1

ρdi,i−j ] (29)

Define two random variables

u =

∞∑
j=0

ρdi,i+j , v =

∞∑
j=0

ρdi,i−j (30)

(Take di,i = 0, so that the first summand in each case is 1.)
Then u, v have the same distribution and are independent.
It is obvious that

yi = K[u + v − 1] (31)
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This equation makes clear that yi is indeed a random vari-
able, so that K can only be chosen to ensure that E[yi] = 1.
Now observe further that

u = 1 + ρdi,i+1

∞∑
j=1

ρdi+1,i+j = 1 + ρdi,i+1w (32)

where, crucially, w evidently has the same distribution as
u, but is independent of the random variable ρdi,i+1 . Hence
there holds E[u] = 1 + E[ρdi,i+1 ]E[u], whence E[u] = (1 −
E[ρdi,i+1 ])−1 and then to assure E[yi] = 1, equation (31)
implies that we need

K =
1− E[ρdi,i+1 ]

1 + E[ρdi,i+1 ]
(33)

Now suppose the distribution of di,i+1 is Poisson with inten-
sity 1, for which the probability density is e−d. The expected
value of ρdi,i+1 is then [1− log ρ]−1, so that

K =
− log ρ

2− log ρ
(34)

We remark that when 1 − ρ is small, both K and the ex-
pression applicable in the deterministic case, viz. 1−ρ

1+ρ
, are

approximately 1
2
(1− ρ).

If the distribution of di,i+1 is uniform in [1− η, 1 + η], then
the expected value of ρdi,i+1 is 1

2η log ρ
[ρ1+η−ρ1−η], (the limit

of which is ρ when η → 0, as expected). The value of K is:

K =
2η log ρ− (ρ1+η − ρ1−η)

2η log ρ + ρ1+η − ρ1−η
. (35)

Once again, one can verify that when 1 − ρ is small, the
expression is approximately 1

2
(1− ρ).

Now since we can only assure in the event all xi assume the
value that E[yi] takes that value, rather than yi itself, it is
of interest to consider what the error might be. Guidance as
to the error follows from the variance E(yi−E[yi])

2. We can
work out the variance also, in the following way. From (31)
and the fact that u, v are independent but with the same
distribution, there follows, in obvious notation σ2

y = 2K2σ2
u.

Now if x, y are two independent random variables with z =
xy, there holds σ2

z = σ2
xσ2

y + σ2
xE[y]2 + E[x]2σ2

y, and using

this it follows from (32) and the fact that ξ := ρdi,i+1 and w
are independent, w having the same distribution as u, that
σ2

u = σ2
ξσ2

u + σ2
ξE[u]2 + E[ξ]2σ2

u, or

σ2
u =

σ2
ξE[u]2

1− σ2
ξ − E[ξ]2

=
σ2

ξE[u]2

1− E[ξ2]
(36)

It is straightforward to check that

E[ξ2] =
1

1− 2 log ρ
, σ2

ξ =
1

1− 2 log ρ
− 1

(1− log ρ)2
(37)

σ2
u =− 1

2 log ρ
, σ2

y = 2K2σ2
u = − log ρ

(2− log ρ)2

Thus σ2
y is of the order of − log ρ. When x := 1 − ρ, this

is approximately x. Comparing this variance with the error
variance arising in yi with deterministic spacing but error
variance σ2 = 1 of additive noise perturbing each measured
variable, we see that the error is of a similar magnitude.

6 Local Consensus with Time-Varying Mea-
surements

We have so far considered time-invariant local measure-
ments. In practice, however, most measured variables are
time-varying: e.g. temperature, pollution, and current in
power lines. In this section, we consider that each measure-
ment variable xi(k) is time-varying, i.e. a function of time
k, and design distributed algorithms to track temporal vari-
ations of measurements, in addition to spatial variations.

Note that in typical studies of global average consensus, it
is not common to postulate that local variables change over
time. Nevertheless, convergence rates are often considered,
being identified as exponential, and there are numerous re-
sults that seek to identify such rates (see e.g. [19, 23]). The
rates themselves are indicative of the bandwidth of variation
of measured variables whose average can be tracked by the
global consensus algorithms.

In the sequel, we will again consider the two schemes: first
exponential weighting, and then uniform finite window.

6.1 Exponential Weighting

Henceforth, we shall assume that there is a bound M < ∞
such that measured variables |xi(k)| < M for all i, k.

Problem 3. Let ρ ∈ (0, 1). Design a distributed algorithm to
update each sensor i’s consensus variable yi(k) such that

yi(k) =
1− ρ

1 + ρ

(
xi(k) +

k∑
j=1

ρj(xi−j(k − j) + xi+j(k − j))
)
.

(38)

By the assumption made above, |yi(k)| is finite for all i, k. In
(38), an exponential weight ρj is applied to measurements
from j steps away sensors in both directions with j time
delay. In this way temporal changes of xi are taken into
account. Note that yi(k) in (38) is identical to (1) in the
limit if the measurements are actually constant.

Extending Algorithm (2), we propose the following dis-
tributed algorithm, which differs from (2) by inclusion of
additional terms reflecting temporal changes in local mea-
surement values.

yi(0) = λxi(0), λ :=
1− ρ

1 + ρ
(39a)

yi(1) = yi(0) + ρ(yi−1(0) + yi+1(0)) + λ(xi(1)− xi(0))
(39b)

yi(2) = yi(1) + ρ(yi−1(1)− yi−1(0))+ (39c)

ρ(yi+1(1)− yi+1(0))− ρ22yi(0) + λ(xi(2)− xi(1))

yi(k + 1) = yi(k) + ρ(yi−1(k)− yi−1(k − 1))+ (39d)

ρ(yi+1(k)− yi+1(k − 1))− ρ2(yi(k − 1)− yi(k − 2))+

λ(xi(k + 1)− xi(k))− ρ2λ(xi(k − 1)− xi(k − 2)), k ≥ 2.

This algorithm reduces to Algorithm (2) for time-invariant
measurements. Note that each sensor i needs information
only from its two immediate neighbors: yi−1(k) and yi+1(k),
k = 0, 1, .... Note that sensor i does not need its neighbors’
measurement variables xi−1(k) and xi+1(k). Compared to
Algorithm (2), two additional quantities (requiring further
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modest increase in local memory) are used to update yi(k):
xi(k + 1) − xi(k) and xi(k − 1) − xi(k − 2); both represent
changes in local measurements at different times. As we will
see below, xi(k +1)−xi(k) provides new information, while
xi(k − 1)− xi(k − 2) is used as a correction term.

Theorem 7 Algorithm (39) solves Problem 3.

Proof. It is easily verified from (39b) that yi(1) = λ(xi(1) +
ρ(xi−1(0) + xi+1(0))) and from (39c) that

yi(2) = yi(1) + ρ2(yi−2(0) + yi+2(0)) + λ
[
(xi(2)− xi(1))

+ ρ
(
(xi−1(1)− xi−1(0)) + (xi+1(1)− xi+1(0))

)]
(40a)

= λ
(
xi(2) + ρ(xi−1(1) + xi+1(1))

+ ρ2(xi−2(0) + xi+2(0))
)

(40b)

By (40a) we obtain the expressions of yi−1(2) − yi−1(1)
and yi+1(2) − yi+1(1); also by (39b) we have yi(1) − yi(0).
Substituting these three terms into (39d) yields

yi(3) = yi(2) + ρ3(yi−3(0) + yi+3(0)) + λ
[
(xi(3)− xi(2))

+ ρ
(
(xi−1(2)− xi−1(1)) + (xi+1(2)− xi+1(1))

)
+

ρ2((xi−2(1)− xi−2(0)) + (xi+2(1)− xi+2(0))
)]

. (41)

In deriving the second equality above, the terms ρ3((yi−1(0)+
yi+1(0))) and 2ρ2λ(xi(1) − xi(0)) are canceled. Now sub-
stituting the expression (40b) of yi(2) into (41), and
canceling the terms λxi(2), ρλ(xi−1(1) + xi+1(1)), and
ρ2λ(xi−2(0) + xi+2(0)), we derive

yi(3) = λ
(
xi(3) + ρ(xi−1(2) + xi+1(2))+

ρ2(xi−2(1) + xi+2(1)) + ρ3(xi−3(0) + xi+3(0))
)
.

By the same procedure, inductively we can derive yi(k) for
k = 4, 5, ..., and conclude that (38) holds for all k. ¥

6.2 Uniform Finite Window

The finite window case with time-varying measurements
is challenging, because all information outside the window
has to be discarded, and temporal variations of information
within the window have to be tracked. We state the problem:

Problem 4. Let L ≥ 1 be an integer, and 2L+1 the length of
the finite window of sensor i; i.e. sensor i uses measurement
information from L neighbors in each direction. Suppose i
knows L. Design a distributed algorithm to update each i’s
consensus variable yi(k) such that

yi(k) =
1

2L + 1


xi(k) +

k∑

j=1

(xi−j(k − j) + xi+j(k − j))




if k ≤ L;

yi(k) =
1

2L + 1


xi(k) +

L∑

j=1

(xi−j(k − j) + xi+j(k − j))




if k > L.

(42)

The explanation for the time arguments associated with
xi−j and xi+j on the right of (42) is as follows. At each time
step, values can be ‘passed’ by exactly one hop. Hence, it
takes j time instances for a measured variable at sensor i− j
to be perceived at sensor j. Therefore the consensus variable
yi(k) can depend on xi−j(k − j) (resp. xi+j(k − j) but no
later value of xi−j(k − j) (resp. xi+j(k − j)). Note that if
the measurements are actually constant, then yi(k) in (42)
is identical with (6) for all k ≥ L.

The distributed algorithm we design to solve Problem 4 has
several features. First, it needs an additional vector of vari-
ables zi = [zi0 zi1 · · · zi(L)]

T of L + 1 components for each
sensor i, and zi needs to be updated along with consensus
variable yi and communicated to the two immediate neigh-
bors i− 1 and i+1. Second, the scheme for each component
of zi is similar to Algorithm (7). Finally, we will see that
the jth component zij , j ∈ [0, L], contributes to tracking
all local measurements xl(k), l ∈ [i− L, i + L], in the finite
window for time k = j (mod L + 1).

We first present the update scheme for vector zi (c.f. Algo-
rithm (7)). For every j ∈ [0, L], if k < j,

zij(k) = 0; (43)

if k ≥ j and k = j (mod L + 1),

zij(k) =
1

2L + 1
xi(k), (44a)

zij(k + 1) = zij(k) + (z(i−1)j(k) + z(i+1)j(k)) (44b)

zij(k + 2) = zij(k + 1) + (z(i−1)j(k + 1)− z(i−1)j(k))
(44c)

+ (z(i+1)j(k + 1)− z(i+1)j(k))− 2zij(k)

zij(k + 3) = zij(k + 2) + (z(i−1)j(k + 2)− z(i−1)j(k + 1))
(44d)

+ (z(i+1)j(k + 2)− z(i+1)j(k + 1))− (zij(k + 1)− zij(k))

... (44e)

zij(k + L) = zij(k + L− 1)+ (44f)

(z(i−1)j(k + L− 1)− z(i−1)j(k + L− 2))+

(z(i+1)j(k + L− 1)− z(i+1)j(k + L− 2))−
(zij(k + L− 2)− zij(k + L− 3))

The update of each component zij , j ∈ [0, L], is periodic
with period L + 1 for k ≥ j. The following is the update
scheme for consensus variable yi.

yi(k) = zij(k) +

L∑

l=0,l6=j

(zil(k)− zil(k − 1)),

j = k (mod L + 1).

(45)

We now state the main result of this subsection.

Theorem 8 Algorithm (43)-(45) solves Problem 4.

Proof. First, at k = 0, we have from (43), (44a) that zi0(0) =
(1/(2L + 1))xi(0) and zij(0) = 0, j = 1, ..., L. So by (45)
yi(0) = zi0(0) = (1/(2L + 1))xi(0).

Let k ≥ 1 and fix j = k (mod L + 1). Similar to the proof of
Theorem 3, in particular Equation (8), we derive
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zij(k) =
1

2L + 1
xi(k) (again by (44a))

zi(j−1)(k) = zi(j−1)(k − 1) +
1

2L + 1
(xi−1(k − 1) + xi+1(k − 1))

zi(j−2)(k) = zi(j−2)(k − 1) +
1

2L + 1
(xi−2(k − 2) + xi+2(k − 2))

...

zi0(k) = zi0(k − 1) +
1

2L + 1
(xi−j(k − j) + xi+j(k − j)).

Now if k ≤ L (thus j = k), then by (43) zi(j+1)(k) = · · · =
zi(L)(k) = 0. Therefore by (45),

yi(k) = zij(k) +

j−1∑

l=0

(zil(k)− zil(k − 1))

=
1

2L + 1

(
xi(k) +

k∑
j=1

(xi−j(k − j) + xi+j(k − j))

)
.

This is the first part of (42).

If k > L, then again similar to Equation (8) we derive

zi(L)(k) = zi(L)(k − 1) +
1

2L + 1
(xi−j−1(k − j − 1)+

xi+j+1(k − j − 1))

...

zi(j+1)(k) = zi(j+1)(k − 1) +
1

2L + 1
(xi−L(k − L)+

xi+L(k − L)).

Therefore by (45),

yi(k) = zij(k) +

L∑

l=0,l6=j

(zil(k)− zil(k − 1))

=
1

2L + 1

(
xi(k) +

L∑
j=1

(xi−j(k − j) + xi+j(k − j))

)
.

This is the second part of (42), and the proof is complete. ¥
We have designed exponential weighting and uniform finite
window local consensus algorithms for time-varying mea-
sured variables. A simulation is displayed in Figure 4 to illus-
trate the performance of the algorithms (39) and (43)-(45)
for different values of the respective parameters, ρ or L. In
exponential weighting, if ρ is too small (e.g. ρ = 0.3), the
algorithm has poor noise performance; while large ρ (e.g.
ρ = 0.9) substantially smooths out noise, it causes time lag
for the algorithm to track local information. Small L (e.g.
L = 1) and large L (e.g. L = 15) have similar effects on
the performance of the finite window algorithm. In the next
section, we study these performance issues by analyzing the
frequency response for these two local consensus algorithms,
with respect to both spatial and temporal variations.
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Fig. 4. Simulation example: performance of algorithms (39)
and (43)-(45) for difference values of ρ or L, respectively.
A physical parameter to be measured has a parabola tem-
poral variation (black curve), assuming no spatial variation.
Time-varying measurements (green curve) are corrupted by
(independent) noise of mean zero and variance one. Plots for
3 different values of ρ and L are displayed, showing different
tracking and noise performance of the respective algorithms.
Global average smooths out noise but throws away local in-
formation.

7 Temporal Frequency Response

In this section, we consider the question of how changes in
the measured variables propagate to become changes in the
consensus variables. Specifically, we consider how sinusoidal
variations in measured variables reflects through, as a func-
tion of frequency, to time-variation of the local consensus
variables. As with the case of spatial variation, we are in-
terested in understanding what speed of variations might be
trackable by the local consensus algorithm, through the iden-
tification of a transfer function and associated bandwidth.
This question is rather understudied for global consensus.

We shall first consider a special situation, viz. one where
there is no spatial variation, but merely sinusoidal time-
variation, i.e. for all i, there holds xi(k) = ejω0k. Recall that
in studying spatial variation, we considered the special case
where there was no time-variation. Studying these special
situations allow clearer examination of the separate effects
of time-variation and spatial variation.
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Now when values are independent of the spatial index i,
equation (39d) yields

yi(k + 1) = (1 + 2ρ)yi(k)− (2ρ + ρ2)yi(k − 1) + ρ2yi(k − 2)

+
1− ρ

1 + ρ
[xi(k + 1)− xi(k) +−ρ2(xi(k − 1)− xi(k − 2))]

The transfer function linking the measured to consensus
variables is then

K(ejω) =

1−ρ
1+ρ

[1− e−jω − ρ2(e2jω − e3jω)]

1− (1 + 2ρ)e−jω + (2ρ + ρ2)e−2jω − ρ2e−3jω

=

1−ρ
1+ρ

[1− ρ2e−2jω]

(1− ρe−jω)2
(46)

Evidently, the transfer functions K(ejω) and H(ejω) in (17)
are not that different in terms of the way their magnitude
depends on ω and ρ. Indeed, once again one can verify that
if 1− ρ is small and ω = 1− ρ, then K is approximately 1/2.
So the spatial and temporal bandwidths are about the same.
This appears consistent with the assumption that a spatial
progression of one hop occurs in each time update, i.e. values
propagate with effectively unit velocity. Of course, the poles
and zeros for the spatial transfer function lie symmetrically
inside and outside the unit circle, in contrast to the time-
based frequency response.

The treatment of time variation when the uniform finite
window approach is being used is also simple. Analogously
to (46), we can obtain for

K′(ejω) =
1

2L + 1
[1 + 2(e−jω + · · ·+ e−Ljω)] (47)

When 2
L+1/2

is small (this corresponds to the condition 1−ρ

is small for the exponential weighting case), we derivethat
the frequency at which |K′(ejω)| assumes the value 1/2 is
approximately 4

L+1/2
.

We remark that the considerations applicable to spatial vari-
ation without temporal variation or to temporal variation
without spatial variation will apply (because of the linear-
ity of the whole system) to a situation where both types of
variation are present in the measured variables. Thus if the
measured variable variation places them in the spatial band-
width and outside temporal bandwidth, or the reverse, the
averaging process will attenuate or suppress the variation.

8 Conclusions

We have studied local average consensus in distributed mea-
surement of a variable using 1D sensor networks. Distributed
local consensus algorithms have been designed to address
first the case where the measured variable has spatial vari-
ation but is constant in time, and then the case where the
measured variable has both spatial and temporal variations.
In Table 1 we summarize the memory requirements of de-
signed algorithms. Two schemes for local average computa-
tion have been employed: exponential weighting and uniform
finite window. Further, we have analyzed temporal-spatial
frequency response and noise propagation associated to the
algorithms. Arbitrary updating weights and random spacing
between sensors have been analyzed in the algorithms.

In ongoing work we have studied two dimensional arrays.
With a uniform grid, results rather like those with fixed ρ and
L can be obtained, but for a general two dimensional array, a
theory appears needed and is currently under development.
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