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9 Abstract Y-doped ceria–zirconia (Ce0.8Zr0.12Y0.08O2-d,

10 CZY) and ceria–lanthana (Ce0.8La0.12Y0.08O2-d, CLY)

11 ternary oxide solid solutions were synthesized by a facile

12 coprecipitation method. Structural, textural, redox, and

13 morphological properties of the synthesized samples were

14 investigated by means of X-ray diffraction (XRD), induc-

15 tively coupled plasma-optical emission spectroscopy (ICP–

16 OES), Raman spectroscopy (RS), UV–visible diffuse re-

17 flectance spectroscopy (UV–vis DRS), X-ray photoelectron

18 spectroscopy (XPS), temperature-programmed reduction

19 by hydrogen (H2-TPR), high resolution transmission elec-

20 tron microscopy (HRTEM), and Brunauer–Emmett–Teller

21 surface area (BET SA) techniques. The formation of

22 ternary oxide solid solutions was confirmed from XRD,

23 RS, and UV–vis DRS results. ICP–OES analysis confirmed

24 the elemental composition in the ternary oxide solid solu-

25 tions. HRTEM images revealed irregular morphology of

26 the samples. RS, UV–vis DRS, and XPS results indicated

27 enhanced oxygen vacancies in the Y doped samples. H2-

28 TPR profiles confirmed a facile reduction of CZY and CLY

29 samples at lower temperatures. BET analysis revealed an

30 enhanced surface area for CZY and CLY samples than the

31 respective CZ and CL undoped mixed oxides. All these

32factors contributed to a better CO and soot oxidation per-

33formance of CZY and CLY samples. Particularly, the CLY

34sample exhibited highest catalytic activity among the var-

35ious samples investigated.

36Graphical Abstract

CZ CZY CL CLY

630

665

700

735

770

805

 T
50

 for CO Oxidation

 T
50

 for Soot Oxidation

 Oxygen Vacancies (A
V

o

/A
F

2g

Ratio)

Catalysts

T
5

0 
(K

) 
fo

r 
C

O
/S

o
o

t 
O

x
id

a
ti

o
n

0.1

0.2

0.3

0.4

O
x

y
g

e
n

 V
a

c
a

n
c

ie
s

 (
A

V
o

/A
F

2
g R

a
ti

o
)

383839

40Keywords Ternary oxides � Solid solutions � Oxygen

41vacancies � CO oxidation � Soot oxidation

421 Introduction

43Carbon monoxide and soot are serious pollutants generated

44by various combustion processes, causing worldwide

45problems to our environment. Hence, catalytic oxidation of

46these pollutants is a promising avenue both technologically

47and scientifically to overcome the problem [1, 2]. Ceria

48(CeO2) is well recognised as one of the most efficient

49oxidising catalysts due to its unique oxygen storage
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50 capacity (OSC), outstanding redox property, and abundant

51 oxygen-vacancy defects [3–5].

52 Despite many merits, there are several disadvantages

53 associated with pristine ceria. CeO2 mainly suffers from

54 poor thermal stability and low specific surface area thereby

55 limited oxygen vacancies which retard the elevated tem-

56 perature activity demands for catalytic applications. As a

57 solution, different transition and rare-earth metal ions were

58 doped into the ceria cubic structure and the resulting ma-

59 terials were investigated systematically with an aim to

60 overcome the disadvantages of pure CeO2 [6–10]. Forma-

61 tion of dopant incorporated ceria-based solid solutions

62 normally modifies the structural, textural, redox, and cat-

63 alytic properties of ceria. It has been widely established

64 that the properties of CeO2 could be significantly improved

65 by the incorporation of Zr4? cations, and the resulting

66 CexZr1-xO2 (CZ) solid solution was found to show an

67 excellent catalytic activity for various oxidation reactions

68 [11, 12]. For instance, Fornasiero et al. reported that the

69 reduction behaviour of CeO2 significantly improves by Zr

70 doping [13]. Thammachart et al. also reported that cubic

71 phase Ce0.75Zr0.25O2 solid solution with high reducibility

72 exhibits good catalytic activity for CO oxidation [14].

73 Atribak et al. studied the effect of ZrO2 doping on the

74 catalytic activity of CeO2 and indicated that Zr4? doping

75 greatly enhance the catalytic ability for soot oxidation [12].

76 Aneggi et al. also showed an improved oxidation of soot

77 particles by surface active oxygens donated by different

78 compositions of CZ solid solutions [15].

79 A similar strategy to enhance the catalytic activity of

80 CeO2 was explored by employing lanthanum as an additive

81 into the ceria lattice and producing ceria–lanthana (CL)

82 solid solution. Extensive work from our group confirmed

83 an enhanced soot and CO oxidation activity over CL solid

84 solutions in comparison to CZ [8, 16].

85 Propitiously, it has been found that the catalytic per-

86 formance of CeO2-based binary oxide solid solutions was

87 further improved upon the introduction of additional tran-

88 sition or rare earth (RE) cation dopants [17, 18]. For ex-

89 ample, Hari Prasad and co-workers have investigated the

90 influence of RE dopants on the catalytic properties of CZ

91 solid solutions for CO oxidation [19]. They confirmed that

92 Ce0.65Zr0.25RE0.1O2-d exhibits superior catalytic activity

93 compared to undoped Ce0.75Zr0.25O2-d solid solution.

94 Various transition metal (Fe, Co) ion doped CZ solid so-

95 lutions showed improved OSC which promote the catalytic

96 performance of supported Pd-only three-way catalysts in

97 automotive emission control applications [20]. Very re-

98 cently, our group also reported that incorporation of Hf, Pr,

99 and Tb cations into the CZ solid solution shows better

100 catalytic activity towards CO oxidation in comparison to

101 undoped sample [21]. The trivalent cation dopants (e.g.,

102 La3?, Y3?, or Pr3?) are expected to improve the OSC and

103redox ability of CZ solid solutions [22]. Interestingly, Y3?

104cation has been proven to be one of the good dopants to

105improve the catalytic activity of CZ solid solutions for soot

106oxidation [23]. He et al. showed that the addition of small

107amounts of Y3? to Zr4? doped RE (RE = Ce, Pr) oxides

108results in the formation of RE0.6Zr0.35Y0.05O2 ternary oxide

109solid solutions with improved oxygen vacancies, lattice

110oxygen mobility, OSC, and redox properties than undoped

111RE0.6Zr0.4O2 (RE = Ce, Pr) binary oxide solid solutions

112[24–26]. However, to date, there are only a few reports

113concerning the development of CeO2–La2O3–Y2O3 (CLY)

114ternary oxide solid solutions for catalytic applications.

115These results have led us to think that Y3? is an ideal

116dopant that could improve the textural and structural

117properties of ceria–zirconia and ceria–lanthana solid solu-

118tions for oxidation reactions. Thus, the present study

119mainly aimed to understanding the influence of Y dopant

120on the structural, textural, and redox properties of ceria–

121zirconia and ceria–lanthana solid solutions for CO and soot

122oxidations. Accordingly, we have prepared Y3? doped Ce–

123Zr–O and Ce–La–O solid solutions by a facile copre-

124cipitation method. Undoped Ce–Zr–O and Ce–La–O solid

125solutions and pure CeO2 were also prepared for com-

126parison. The physicochemical properties of the prepared

127samples were characterized by means of XRD, ICP–OES,

128Raman, UV–vis DRS, XPS, H2-TPR, HREM, and BET SA

129techniques.

1302 Experimental

1312.1 Catalyst Preparation

132Y-doped ceria–zirconia and ceria–lanthana samples with the

133optimized composition of Ce0.8Zr0.12Y0.08O2-d (thereafter

134denoted as CZY) and Ce0.8La0.12Y0.08O2-d (thereafter de-

135noted as CLY) were prepared via a simple coprecipitation

136method. Ce(NO3)3�6H2O, ZrO(NO3)2�xH2O, La(NO3)3-
1376H2O, and Y(NO3)3�6H2O were used as the metal precur-

138sors. Firstly, an appropriate amount of thesemetal precursors

139were dissolved in deionized water and mixed together with

140vigorous stirring for 30 min. Subsequently, excess aqueous

141NH3 solution was slowly dropped into the above mixed so-

142lution until the pH reached*8.5. The resulting suspension

143was kept stirring for another 12 h, aged for 24 h and then

144filtered and washed several times with distilled water until

145free from anion impurities. The obtained precipitates were

146oven dried overnight at 373 K, followed by calcination at

147773 K for 5 h at a heating rate of 5 K min-1. The reference

148pure ceria, ceria–zirconia (hereafter denoted as CZ), and

149ceria–lanthana (hereafter denoted as CL) solid solutions

150were also prepared by adopting the same method for

151comparison.
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152 2.2 Catalyst Characterization

153 X-ray diffraction measurements were performed on a Ri-

154 gaku Multiflex diffractometer equipped with a nickel-fil-

155 tered Cu-Ka (1.5418 Å) radiation source and a scintillation

156 counter detector. The diffraction patterns were recorded

157 over a 2h range of 10–80� with a 0.021 step size and using

158 a counting time of 1 s per point. The XRD phases present

159 in the samples were identified with the help of Powder

160 Diffraction File from the International Centre for Diffrac-

161 tion Data (PDF-ICDD). The mean crystallite size (D) was

162 measured by applying the Scherrer equation. The lattice

163 parameter was calculated by a standard cubic indexation

164 method with the intensity of most prominent peaks using

165 the relation a = d(h2 ? k2 ? l2)1/2 where a is the lattice

166 parameter and d is the interplanar spacing calculated from

167 Bragg equation.

168 The chemical analysis of the prepared samples was

169 performed by inductively coupled plasma optical emission

170 spectroscopy (ICP–OES, Thermo Jarrel Ash model IRIS

171 Intrepid II XDL, USA) to confirm the respective concen-

172 tration of elements in the system. For ICP analysis, ap-

173 proximately 50 mg of the sample was dissolved in a

174 solution of 25 mL aqua regia and 475 mL distilled water.

175 Then 10 mL of the above solution was diluted to 250 mL.

176 Raman spectra were obtained at room temperature using

177 a LabRam HR800UV Raman spectrometer (Horiba Jobin–

178 Yvon) fitted with a confocal microscope and liquid-nitro-

179 gen cooled charge-coupled device (CCD) detector. Sam-

180 ples were excited with the emission line at 632 nm from an

181 Ar? ion laser (Spectra Physics) which was focused on the

182 sample under the microscope with the diameter of the

183 analyzed spot being *1 lm. The acquisition time was

184 adjusted according to the intensity of Raman scattering.

185 The wavenumber values obtained from the spectra are

186 precise to within 2 cm-1. UV–vis DRS measurements were

187 performed by using a GBSCintra 10e UV–vis NIR spec-

188 trophotometer with an integration sphere diffuse re-

189 flectance attachment. BaSO4 was used as the reference and

190 spectra were recorded in the range 200–800 nm.

191 XPS measurements were performed on a Shimadzu

192 ESCA 3400 spectrometer using Mg–Ka (1253.6 eV) ra-

193 diation as the excitation source at room temperature. The

194 samples were maintained in a strict vacuum typically on

195 the order of less than 10-8 Pa to avoid a large amount of

196 noise in the spectra from contaminants. The obtained

197 binding energies were corrected by referencing the spectra

198 to the carbon (C 1s) peak at 284.6 eV.

199 The reducibility of the catalysts was studied by H2-TPR

200 analysis using a thermal conductivity detector of a gas

201 chromatograph (Shimadzu). Prior to the reduction, ap-

202 proximately 30 mg of the sample was loaded in an

203 isothermal zone of the reactor and pre-treated in a helium

204gas flow at 473 K and then cooled to room temperature.

205Then, the sample was heated at a rate of 10 K min-1 from

206ambient temperature to 1100 K in a 20 mL min-1 flow of

2075 % H2 in Ar. The hydrogen consumption during the re-

208duction process was estimated by passing the effluent gas

209through a molecular sieve trap to remove the produced

210water and was analyzed by a gas chromatography using the

211thermal conductivity detector.

212Transmission electron microscopy studies were carried

213out on a JEM-2100 (JEOL) microscope equipped with a

214slow-scan CCD camera at an accelerating voltage of

215200 kV. Samples for TEM analysis were prepared by

216crushing the materials in an agate mortar and dispersing

217them ultrasonically in ethyl alcohol for 5 min. Afterward a

218drop of the dilute suspension was placed on a perforated-

219carbon-coated copper grid and allowed to dry by

220evaporation at ambient temperature. BET surface areas

221were determined by N2 physisorption at liquid N2 tem-

222perature on a Micromeritics Gemini 2360 instrument using

223a thermal conductivity detector. Prior to analysis, the

224samples were degassed at 393 K for 2 h to remove the

225surface adsorbed residual moisture.

2262.3 Catalytic Activity Studies

227CO oxidation reaction was studied with the catalysts

228granulated to 1 mm mesh size after shaping to cylindrical

229tablets. About 0.3 g of the catalyst was supported between

230glass wool plugs and flanked by inert porcelain beads in the

231middle of a specially designed quartz reactor. The samples

232were activated in air at 573 K for 1 h prior to the reaction

233studies. The inlet gas was a calibrated mixture of 5 % O2,

2341 % CO in N2. Gas flow was adjusted to a space velocity of

23530,000 h-1. The composition of the gas exiting the reactor

236was monitored by a gas chromatography.

237Catalytic activity for soot oxidation was determined by a

238thermogravimetric (TG) method with a Mettler Toledo,

239TGA/SDTA 851e instrument. Activity measurements were

240performed with O2 in ‘‘tight contact’’ (ground in agate

241mortar) conditions with catalyst–soot mixtures in 4:1 w/

242w ratio. The model soot, Printex U, used in this work was

243provided by Degussa. A weighed amount of sample was

244placed in a TG crucible and the oxidation experiments con-

245sisted of heating the soot–catalyst mixtures at 10 K min-1

246from RT to 1273 K in 100 mL min-1 flow of air.

2473 Results and Discussion

2483.1 Characterization Studies

249Figure 1 displays the X-ray diffraction patterns of pure

250CeO2, undoped (CZ and CL), and Y-doped CZ and CL

Enhanced CO and Soot Oxidation Activity

123
Journal : Large 10562 Dispatch : 3-3-2015 Pages : 11

Article No. : 1507
h LE h TYPESET

MS Code : CATLET-2014-1114 h CP h DISK4 4

A
u

th
o

r
 P

r
o

o
f



U
N
C
O
R
R
E
C
T
E
D
P
R
O
O
F

251 (CZY and CLY) samples calcined at 773 K. For all sam-

252 ples, the XRD phase analysis showed only the presence of

253 single phase cubic CeO2 fluorite structure (PDF-ICDD

254 34-0394) without extra characteristic lines associated with

255 ZrO2, La2O3 and Y2O3. However, in comparison to pure

256 CeO2, the (111) reflection in the diffraction patterns of CZ

257 is slightly shifted to higher angle side, while it is slightly

258 shifted to lower angle side in the case of CL sample

259 (Table 1 and enlarged view in Fig. 1). These changes can

260 be attributed to the formation of CZ and CL solid solutions

261 with the replacement of Ce4? (0.97 Å) ions by the smaller

262 Zr4? (0.84 Å) and larger La3? (1.17 Å) ions, respectively.

263 Interestingly, the (111) peak position of CZ and CL is

264 slightly shifted towards lower and higher angle side, re-

265 spectively, upon doping with the Y3? (1.04 Å) ions (shown

266 in Table 1 and enlarged view of Fig. 1). This result sup-

267 ports the formation of uniform CZY and CLY solid solu-

268 tions by successful incorporation of Y3? ions into the

269 lattices of CZ and CL, respectively.

270 As shown in Table 1, the lattice parameter of CZ is

271 decreased to 0.5354 nm from 0.5415 nm of pure CeO2,

272 while it increased to 0.5488 nm for CL. This phenomenon

273could be associated with the contraction and expansion of

274CZ and CL crystal lattices, respectively, which is induced

275owing to the smaller (Zr4?) and larger (La3?) cation radius

276of the dopants relative to the Ce4? ion. Furthermore, the

277calculated lattice parameter of CZY (0.5392 nm) is greater

278than that of CZ (0.5354 nm). This finding is consistent with

279the lattice expansion due to the larger ionic radius of Y3?

280than the Zr4? dopant, since it could replace the Ce4? ions

281during the formation of CZY solid solution. On the other

282hand, the lattice parameter of CLY is smaller than that of

283CL (Table 1), which is primarily due to the fact that the

284ionic radius of Y3? is smaller than that of La3? dopant.

285Therefore, the incorporation of Y3? into the lattice of CeO2

286leads to contraction of the lattice. The doping of Y3? ions

287thus likely induced the distortion of the CZ and CL lattices,

288enhancing the oxygen vacancies in CZY and CLY samples,

289respectively. These results again confirm the formation of

290solid solutions. The crystallite sizes of all samples are

291found to be 5–8 nm. The elemental composition of the

292CZY and CLY samples were confirmed by ICP–OES

293technique (Table 2).

294Raman spectroscopy is an effective tool to detect the

295changes in the vibrational structure of CeO2 caused by the

296doping which supports some of the conclusions drawn from

297XRD analysis [27]. The information on metal–oxygen

298bond arrangement and/or oxygen vacancies thereby rela-

299tive OSC of CeO2-based oxides can be obtained by Raman

300spectroscopy [28]. Figure 2 demonstrates the Raman

301spectra of all samples. The spectrum of pure CeO2 exhib-

302ited a most prominent peak at 465 cm-1, which can be

303attributed to the F2g vibration of the fluorite-type structure.

304This mode further corresponds to the symmetric vibration

305of oxygen ions around Ce4? ions in the CeO8 octahedra

306which is very sensitive to any disorder in oxygen sublattice

307[29]. The peak positions of CZ and CL samples shifted to

308higher and lower frequencies, respectively, when compared

309to the peak position of pure CeO2 (Table 1). These shifts

310can be ascribed to the lattice contraction and expansion

311related to the replacement of Ce4? (0.97 Å) with smaller

312Zr4? (0.84 Å) and larger La3? (1.17 Å) ions, respectively.

313In addition, the main band showed a shift towards lower

314energies in CZY compared to CZ, indicating that the cell
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Fig. 1 Powder X-ray diffraction patterns of pure CeO2, undoped and

Y-doped ceria–zirconia and ceria–lanthana solid solutions (inset

expanded view of selected region)

Table 1 The physical and chemical properties of investigated samples

Sample 2h Crystallite size (nm) Lattice parameter (nm) BET SA (m2/g) F2g (cm
-1) AV0

/AF2g [Ce3?]/[Ce3? ? Ce4?] %

CeO2 28.56 7.3 0.5415 41 465.2 – 25.8

CZ 28.98 4.7 0.5354 84 475.6 0.05 41.7

CZY 28.65 7.6 0.5392 115 462.6 0.16 43.7

CL 28.18 8.3 0.5488 66 448.1 0.16 43.5

CLY 28.40 5.6 0.5436 123 453.3 0.36 45.5
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315 expansion due to Y3? (1.04 Å) doping slightly prevails

316 with regard to the contraction due to Zr4? doping. On the

317 other hand, doping of Y3? ions into CL resulted in an

318 increase of the peak position, which implies lattice con-

319 traction in the CLY induced by the incorporation of smaller

320 Y3? ions than the La3? dopant into the CeO2. Therefore,

321 the changes in lattice parameter values as measured from

322 XRD explain the Raman shifts very well [29]. Further, the

323 shift of F2g mode from 465 cm-1 clearly suggests the

324 formation of solid solutions, which is again in good

325 agreement with the XRD results [28].

326 Besides the F2g mode, the Raman spectra of CL, CLY,

327 CZY samples showed two additional modes at *562 and

328 *614 cm-1. On the other hand, for CZ sample, only one

329 additional band appeared at *614 cm-1 (inset of Fig. 2).

330 These modes are related to the local vibrations of different

331 oxygen vacancies (Vo). The *562 cm-1 band is ascribed

332 to extrinsic oxygen vacancies introduced into the CeO2 in

333 order to maintain charge neutrality when Ce4? ions are

334replaced with trivalent cations such as La3? and/or Y3?.

335Further, the mode at *614 cm-1 originates from the ex-

336istence of intrinsic oxygen vacancies due to the Ce3? ions,

337which can be created by the substitution of Ce4? ions with

338different size dopants (Zr4?, La3?, Y3?) [30, 31]. The ratio

339between the peak areas of V0 (AV0
) and F2g (AF2g) reflects

340the relative concentration of oxygen vacancies which can

341be directly linked to the OSC of the materials [28]. The

342calculated AV0
/AF2g values of the samples were listed in

343Table 1. The AV0
/AF2g ratio for pure CeO2 was not calcu-

344lated due to the negligible intensity of oxygen vacancy

345peak. It could be observed from Table 1, the AV0
/AF2g

346values of the samples are ranked in the order: CLY[C-

347ZY & CL[CZ. The result suggests that the amount of

348oxygen vacancies in CZ and CL were significantly en-

349hanced upon doping with Y3? ions, which is important for

350catalytic reactions and particularly for enhancing the CO

351and soot oxidation activity. CLY sample showed an im-

352proved concentration of oxygen vacancies than CZY. This

353implies that the different ionic radius and oxidation states

354of both La3? and Y3? dopants compared to that of Ce4?

355increased the two kinds of oxygen vacancies in CeO2 lat-

356tice. Conversely, in the case of CZY samples, since Zr4?

357ion is isovalent with Ce4?, only Y3? dopant can enhance

358the two types of oxygen vacancies. The AV0
/AF2g value of

359CZ was lower than that of CL. Due to the different ionic

360radius and oxidation state of La3? dopant than Ce4?, two

361types of oxygen vacancies were generated in CL sample.

362On the contrary, in CZ, Zr4? is isovalent with Ce4? and

363hence only intrinsic oxygen vacancies were created owing

364to different ionic size of Zr4? than Ce4?.

365The UV–vis DR spectra of pure CeO2, undoped (CZ and

366CL) and Y-doped CZ and CL (CZY and CLY) samples are

367displayed in Fig. 3. The broad absorption band is observed

368for all samples in the 225–480 nm region which could be

369due to the charge-transfer transition from the O 2p to Ce 4f

370orbitals in CeO2. According to the literature, pure CeO2

371shows three distinct absorption peaks at*255,*285, and

372*340 nm which are assigned to O2-
? Ce3? and

373O2-
? Ce4? charge transfer (CT), and interband (IB)

374transitions, respectively [32]. Therefore, the broad band of

Table 2 The elemental composition and surface atomic ratios of investigated samples

Sample Nominal composition Elemental composition from ICP–OES analysis Surface atomic ratios from XPS

Ce Zr La Y Ce Zr La Y Ce/Zr Ce/La Ce/Zr ? Y Ce/La ? Y

CZ - - - - - - - - 0.90 - - -

CZY 0.80 0.12 - 0.08 0.78 0.13 - 0.09 - - 1.38 -

CL - - - - - - - - - 1.35 - -

CLY 0.80 - 0.12 0.08 0.78 - 0.13 0.09 - - - 1.67

200 400 600 800

In
te

n
s

it
y

 (
a

. 
u

.)

Raman shift (cm
-1
)

CZY
CZ
CeO

2

CLY
CL

500 600 700

614 cm
-1

562 cm
-1

465.2 cm
-1

Fig. 2 Raman spectra of pure CeO2, undoped and Y-doped ceria–

zirconia and ceria–lanthana solid solutions (inset expanded view of

selected region)
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375 all samples can be attributed to the overlap of CT and IB

376 transitions, indicating the coexistence of Ce3? and Ce4?

377 ions in the samples. Furthermore, the absorption bands of

378 ZrO2, La2O3 and Y2O3 are not detected during the UV–vis

379 DRS experiment, indicating the formation of solid solu-

380 tions which is in agreement with XRD and Raman analysis.

381 Interestingly, Y-doping into CZ and CL caused a blue shift

382 in the absorption edge. The reason may be that the

383 Y-doping induced a significant increase in the Ce3? frac-

384 tion (oxygen vacancies) on the surface compared with the

385 undoped CZ and CL samples which leads to an increase in

386 the charge-transfer gap between O 2p and Ce 4f orbitals

387 and consequently the blue-shift of absorption spectrum for

388 CZY and CLY [9]. CLY exhibited a blue shift more

389 prominently than CZY, indicating the higher oxygen va-

390 cancy concentration in CLY than in CZY. Moreover,

391 similar absorption edges of CZY and CL may suggest

392 similar concentrations of oxygen vacancies in the two

393 samples. These results are strongly consistent with the

394 Raman measurements.

395 To identify the surface composition and oxidation states

396 of the elements, X-ray photoelectron spectroscopy char-

397 acterization is performed in the Ce 3d, Zr 3d, La 3d, Y 3d,

398 and O1s regions. The Ce 3d XPS patterns of CeO2, CZ, CL,

399 CZY, and CLY samples are shown in Fig. 4a. For all

400 samples, it can be found that the Ce 3d level exhibited ten

401 peaks which correspond to five pairs of spin–orbit doublets

402 of 3d5/2 and 3d3/2, labelled as v0, v, v
0, v00, v¢¢¢ and u0, u, u

0,

403 u00, u¢¢¢ peaks, respectively. The peaks of u0, u
0, v0, and v0

404 are assigned to Ce3? species, whereas the u, u00, u¢¢¢, v, v00,

405 and v¢¢¢ peaks are characteristic of Ce4? species [32–34].

406 These observations clearly indicate the coexistence of Ce3?

407 and Ce4? species on the surface of all samples.

408More importantly, the presence of Ce3? is associated

409with the formation of oxygen vacancies which are closely

410linked with OSC [28, 35]. In order to estimate the quantity

411of surface oxygen vacancies, the relative concentration of

412Ce3? ions was calculated from the integrated areas (Ai) of

413the respective peaks as [Ce3?]/[Ce3? ? Ce4?] =

414(Au0 ? Au
0
? Av0 ? Av

0)/(Au ? Au
00
? Au¢¢¢ ? Av ? Av-

415? Av¢¢¢) [36]. The calculation results were listed in

416Table 1. It can be seen that the relative concentration of

417Ce3? ions for CeO2, CZ, CL, CZY, and CLY follows the

418sequence: CLY (45.5 %)[CZY (43.5 %) & CL

419(43.7 %)[CZ (41.7 %)[CeO2 (25.8 %). This order

420demonstrates that CZ and CL have more oxygen vacancies

421than pure CeO2. Interestingly, the concentration of oxygen

422vacancies was further increased after doping of Y into CZ

423and CL. In addition, CZY had a lower amount of oxygen

424vacancies than CLY and showed a similar quantity of

425oxygen vacancies to that of CL. These observations

426strongly support the conclusions drawn from Raman

427spectroscopy. The higher oxygen vacancy concentration of
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428 CLY would be greatly benefited for the higher activity in

429 CO and soot oxidation.

430 The O 1s XP spectra of all samples are depicted in

431 Fig. 4b, which is mainly composed of two components.

432 The main peak detected at 529.2–530.5 eV is related to the

433 lattice oxygen of the metal oxides. The distinct shoulder

434 peak at the higher binding energy (531.3–533.2 eV) is at-

435 tributed to surface carbonates, hydroxyl groups, surface

436 oxygen ions, and water [9, 28].

437 The Zr 3d XP spectra of CZ and CZY samples are

438 presented in Fig. 5a. It could be observed that two peaks at

439 *182.3 and*184.7 eV is attributed to the Zr 3d5/2 and Zr

440 3d3/2 levels, respectively. The splitting energy between

441 these two components is calculated to be approximately

442 2.4 eV, which is in agreement with the literature [37].

443 From the La 3d core level spectra of CL and CLY samples

444 (Fig. 5b), it could be seen that four peaks at *834.3 and

445*838.4, and*851 and*855.2 eV are related to La 3d5/2
446and La 3d3/2 levels, respectively. The splitting in La 3d5/2
447and La 3d3/2 levels is due to spin orbit interaction and

448charge transfer from O 2p to La 4f. Moreover, the observed

449difference in 3d5/2 and 3d3/2 binding energies is

450*4.1–4.2 eV, which is well supported by the previous

451reports [8]. The XPS pattern of Y 3d of CZY and CLY

452samples is further illustrated in Fig. 5c and it consists of an

453asymmetrical peak that could be decomposed to two

454components at binding energies *157.1 and *159.2 eV.

455The peaks at the higher and lower binding energies can be

456assigned to Y 3d3/2 and Y 3d5/2, respectively [38]. The

457results reveal that the La and Y ions are present in 3?

458states whereas Zr is in 4? oxidation state. The calculated

459atomic ratios at the surface of the samples are also listed in

460Table 2. The obtained atomic ratios clearly indicated the

461enrichment of the dopants at the surface region of the
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462 samples. The highest atomic ratio of Ce/dopant(s) can be

463 found on the surface of CLY (1.67), followed by CZY

464 (1.38), CL (1.35), and CZ (0.9).

465 The reducibility of all the samples was evaluated by H2-

466 TPR experiments and the profiles obtained are compiled in

467 Fig. 6. It is important to notice that the H2 consumption

468 must be attributed to Ce4? reduction, since Zr4?, La3?, and

469 Y3? ions are hardly reduced. However, the Zr4?, La3?, and

470 Y3? dopants can modify the reduction behaviour of CeO2.

471 Pure CeO2 presents the well-known profile consisting of a

472 surface reduction peak at *755 K and a bulk reduction

473 peak at *1005 K [27, 39]. With the doping of Zr4? and

474 La3? ions, the bulk peak intensified and shifted to lower

475 temperatures from*1005 K for the pure CeO2 to*845 K

476 and *829 K for CZ and CL, respectively. Moreover,

477 compared with pure CeO2, the surface reduction of CZ is

478 negligible, whereas for CL it shows a less intense peak.

479 These results suggest that Zr4? and La3? doping definitely

480 favors the bulk reduction at a lower temperature than for

481 pure CeO2.

482 It could be clearly observed from Fig. 6 that CZY and

483 CLY exhibited different TPR profiles than that of CZ and

484 CL, respectively. Interestingly, the CLY sample shows only

485 one reduction peak at *570 K which may be due to the

486 concurrent reduction of surface and bulk of the sample. In

487 addition, the reduction temperature of CLY is obviously

488 much lower than the CZY and all other samples. The gen-

489 erally accepted argument to explain this type of behaviour is

490 that the creation of oxygen vacancies by the removal of

491 surface oxygen atoms during the reduction process. As a

492 result, concurrently bulk oxygen atoms move to the surface

493 and oxygen vacancies progress in the opposite direction. As

494 is known fromRaman andXPS results, the oxygen vacancies

495 are greatly enhanced by the Y-doping into CL lattice and

496consequently, boost up the mobility of oxygen in the lattice

497which can facilitate easier reduction of CeO2 in CLY sample

498[27]. Therefore, the presence of La and Y in CLY is

499beneficial for the easy formation of oxygen vacancies which

500are important for catalytic reactions.

501The TEM technique is performed to ascertain the mor-

502phology and crystallite growth of the samples. Figure 7

503displays the HRTEM images of CZ, CL, CZY, and CLY

504samples. It could be observed that all the samples are

505composed of irregular shapes with well-defined crystal

506facets of the particles. Further, the statistical analysis of the

507images revealed the average grain size of these samples is

508in the range of 4.8–8.6 nm, which is in good agreement

509with the results of XRD. The lattice fringes of all samples

510are clearly visible with a d spacing of 0.308, 0.315, 0.311,

511and 0.310 nm for CZ, CL, CZY, and CLY, respectively.

512This is attributed to the (111) plane of CeO2, indicating that

513the most frequently exposed crystal plane of these samples

514should be the (111) plane.

5153.2 Activity Studies

5163.2.1 CO Oxidation

517The catalytic activities for CO oxidation of all samples are

518presented in Fig. 8. As expected, the CO conversion in-

519creases with increasing reaction temperature for all sam-

520ples. The activity of samples is evaluated by the T50 (the

521reaction temperature for 50 % CO conversion) and corre-

522sponding values are summarized in Table 3. It can be seen

523that the T50 values for the CZ (693 K) and CL (635 K) are

524lower than that of the pure CeO2 (714 K), indicating that

525the CZ and CL samples exhibit a better activity towards

526CO oxidation. For Y-doped CZ and CL samples, the T50
527value is 618 K for the CLY and 635 K for the CZY, sug-

528gesting that the incorporation of Y further improves the

529catalytic performance for CO oxidation. It is also evident

530that the CLY sample shows higher catalytic activity com-

531pared to the CZY sample and the activity of CZY is similar

532to that of CL sample. In other words, at the T50 temperature

533of CLY, the CZY, CL, CZ, and CeO2 samples exhibited

534only 35, 35, 17, and 13.5 % conversions, respectively

535(Table 3). Hence, the sequence of catalytic activity ex-

536pressed as CO conversion is as follows:

537CLY[CZY & CL[CZ[CeO2. Interestingly, the dif-

538ference in T50 between CZY and CZ is very high (58 K)

539compared to that between CLY and CL which is only 17 K.

540This result clearly indicates that the Y3? dopant sig-

541nificantly effects on the activity of CZ than on the CL.

542In general, the catalytic activity of the materials is re-

543lated to their surface areas since catalysts with higher BET

544surface areas often exhibit higher catalytic activities. As

545shown in Table 1, the BET surface areas of the samples are
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546 123, 115, 84, 66, and 41 m2 g-1 for CLY, CZY, CZ, CL,

547 and CeO2, respectively. From these results it could be

548 concluded that the Y dopant greatly enhance the surface

549 area of CZ and CL samples compared to the undoped CZ

550 and CL samples, respectively. The CLY sample with the

551 highest surface area exhibited the best catalytic activity

552among the samples. However, the CZY and CL samples

553have similar activity (based on T50) and yet showed obvi-

554ous differences in their surface areas. Moreover, the CL

555sample shows higher activity than CZ although it has lower

556surface area than the CZ sample. Therefore, the order of

557BET surface areas of our samples is not consistent with the

558order of activity, implying that the surface area may not be

559the crucial factor determining the catalytic activity for CO

560oxidation.

561Generally, for CO catalytic oxidation over CeO2, the

562reaction proceeds via the Mars–Van Krevelen mechanism

563[8]. Firstly, CO is adsorbed on the catalyst surface through

564coupling with the adjacent Ce3? ions, since they serve as

565effective binding sites for CO adsorption. Then, these ad-

566sorbed CO molecules are oxidized by the surrounding

567lattice oxygen atoms, leading to oxygen vacancy creation;

568after that, gas-phase O2 reacts with the reduced surface to

569regenerate the surface oxygen atom. However, Ce3? ions

570are exclusively exposed by the presence of oxygen va-

571cancies. Therefore, the number of oxygen vacancies to

572adsorb the CO molecules should be an important factor in

573determining the tendency for CO oxidation. This means

574that the sample with more oxygen vacancies could provide

575more Ce3? adsorption sites to interact with CO and have

576higher catalytic activities. From Raman and XPS analyses,
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577 the concentration of oxygen vacancies for all samples is

578 calculated and it is consistent with the above observed

579 activity order. In addition, the H2-TPR experiment dis-

580 closes the enhanced reducibility and oxygen mobility for

581 CLY sample. Therefore, the oxygen vacancies can be re-

582 sponsible for the catalytic CO oxidation reaction and par-

583 ticularly, superior performance of CLY sample is thought

584 to be due to the combination of several factors such as

585 more oxygen vacancies, improved reducibility and en-

586 hanced surface area.

587 3.2.2 Soot Oxidation

588 The activity of CeO2, CZ, CL, CZY, and CLY samples is

589 also studied for soot oxidation and the corresponding

590 profiles are shown in Fig. 9. For comparison, the oxidation

591 of soot without catalyst is also included. In order to clearly

592 compare the catalytic activity of the catalysts for soot

593 oxidation, we have defined the temperature value T50 at

594 which the 50 % of soot conversion was obtained and the

595 results are illustrated in Table 3. Compared to that without

596 any catalyst, the T50 for soot oxidation decreased with

597 catalyst in the following order: CLY (732 K)[CL

598 (742 K) & CZY (743 K)[CZ (795 K)[CeO2

599 (874 K)[ no catalyst (922 K). This trend clearly indicates

600 that the Y dopant significantly improved the soot oxidation

601 activity of CZ and CL samples. Moreover, CLY exhibits

602 higher activity than the CZY and it lowered the T50 re-

603 markably by 190 K in comparison with that of soot alone.

604 Noticeably, CZY, CL, CZ, and CeO2 samples showed only

605 44.4, 44.4, 18.9, and 9.6 % conversion at T50 temperature

606 of CLY (Table 3). This improved catalytic performance

607 can be attributed to a higher surface area of the CLY

608 sample. However, the T50 of CL is similar to that of CZY

609 while it is lower than the CZ, although its surface area is

610 much lower than the CZY and CZ samples. These results

611 indicate that, besides surface area, there are some other

612 factors affecting the catalytic activity for soot oxidation

613 which are described in the following paragraph.

614It is known that the oxygen vacancies are the other

615important active sites for soot oxidation which are able to

616promote adsorption–activation of reactant molecule (O2)

617[15]. The oxygen vacancy concentration follows the above

618observed activity order confirmed from Raman and XPS

619analyses. Therefore, similar to CO oxidation, oxygen va-

620cancies are more favourable to improve the catalytic ac-

621tivity for soot oxidation. In particular, the higher catalytic

622performance of CLY among the samples is ascribed to the

623improved reducibility and more oxygen vacancies along

624with the increased surface area. Additionally, the differ-

625ence in T50 is only 10 K between CLY and CL, whilst a

626remarkable difference (49 K) is observed between CZY

627and CZ. This result suggests that, similar to CO oxidation,

628Y dopant strongly effects on the soot oxidation activity of

629CZ compared to that of CL sample.

Table 3 Catalytic performance for CO and soot oxidation over investigated samples

Sample T50 (CO) (K)
a Cco (618 K) (%)b T50 (Soot) (K)

c CSoot (732 K) (%)d

CeO2 714 13.5 876 9.6

CZ 693 17 796 18.9

CZY 635 35 743 44.4

CL 635 35 742 44.4

CLY 618 50 732 50

a The temperature for CO 50 % conversion
b CO conversion at the 50 % conversion temperature of CLY
c The temperature for Soot 50 % conversion
d Soot conversion at the 50 % conversion temperature of CLY
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630 4 Conclusions

631 Y-doped CZ (Ce0.8Zr0.12Y0.08O2-d, CZY) and CL (Ce0.8-
632 La0.12Y0.08O2-d, CLY) ternary oxide solid solutions were

633 synthesized using a coprecipitation method and character-

634 ized by XRD, ICP–OES, RS, UV–vis DRS, XPS, H2-TPR,

635 HRTEM, and BET SA techniques. XRD, Raman and UV–

636 vis DRS characterizations suggested that the Y3? ions were

637 successfully doped into the CZ and CL samples by the

638 formation of ternary oxide solid solutions. HRTEM ana-

639 lysis revealed the average particle sizes in a range of

640 4.8–8.6 nm in line with XRD results. RS, UV–vis DRS,

641 and XPS studies disclosed that Y-doped CZ and CL sam-

642 ples had an increased quantity of oxygen vacancies com-

643 pared to the undoped CZ and CL solid solutions,

644 respectively. Moreover, H2-TPR and BET results con-

645 firmed that Y doping improved the reducibility and surface

646 area of CZ and CL samples, respectively. Based on these

647 favorable properties, it is concluded that CO and soot

648 oxidation performance was greatly improved upon

649 Y-doping into the CZ and CL samples. Particularly, it was

650 found that the CLY showed the best catalytic activity

651 among the investigated samples, which contributed to the

652 highest amount of oxygen vacancies, the highest

653 reducibility as well as the enhanced surface area.
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