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Abstract

This thesis presents some geometric insights into three di�erent types of two player pre-
diction games – namely general learning task, prediction with expert advice, and online
convex optimization. These games di�er in the nature of the opponent (stochastic, ad-
versarial, or intermediate), the order of the players’ move, and the utility function. The
insights shed some light on the understanding of the intrinsic barriers of the prediction
problems and the design of computationally e�cient learning algorithms with strong
theoretical guarantees (such as generalizability, statistical consistency, and constant
regret etc.). The main contributions of the thesis are:

• Leveraging concepts from statistical decision theory, we develop a necessary
toolkit for formalizing the prediction games mentioned above and quantifying
the objective of them.

• We investigate the cost-sensitive classification problem which is an instantiation
of the general learning task, and demonstrate the hardness of this problem by
producing the lower bounds on the minimax risk of it.
Then we analyse the impact of imposing constraints (such as corruption level,
and privacy requirements etc.) on the general learning task. This naturally
leads us to further investigation of strong data processing inequalities which is a
fundamental concept in information theory.
Furthermore, by extending the hypothesis testing interpretation of standard pri-
vacy definitions, we propose an asymmetric (prioritized) privacy definition.

• We study e�cient merging schemes for prediction with expert advice problem
and the geometric properties (mixability and exp-concavity) of the loss functions
that guarantee constant regret bounds. As a result of our study, we construct two
types of link functions (one using calculus approach and another using geometric
approach) that can re-parameterize any binary mixable loss into an exp-concave
loss.

• We focus on some recent algorithms for online convex optimization, which exploit
the easy nature of the data (such as sparsity, predictable sequences, and curved
losses) in order to achieve better regret bound while ensuring the protection
against the worst case scenario. We unify some of these existing techniques to
obtain new update rules for the cases when these easy instances occur together,
and analyse the regret bounds of them.
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Chapter 1

Introduction

A well-posed learning problem can be stated as follows: A learning algorithm is said to
learn from experience E with respect to some task T and some performance measure
P , if its performance on T , as measured by P , improves with experience E (Mitchell
[1997]). Pattern recognition, regression estimation and density estimation are the three
main learning problems described by Vapnik [1998].

Developing learning algorithms is very challenging in complicated problem settings
with very high dimensional datasets. These challenges are both theoretical (tight error
bounds relative to the best hypothesis in the benchmark class, generalizability, and
statistical consistency) and computational (e�cient formulation of the optimization
problem, optimal memory usage and running time). Generally, in the machine learn-
ing literature, these two challenges are considered independently. Understanding the
connection between these two aspects of the learning problem to better understand
the problem itself and to develop e�cient learning algorithms, is an important and
challenging research topic.

Several important problems in machine learning and statistics can be viewed as a
two player prediction game between a decision maker and nature. This thesis presents
some geometric insights into three di�erent types of two player prediction games -
namely general learning task, prediction with expert advice, and online convex opti-
mization. These games di�er in the nature of the opponent (stochastic, adversarial, or
intermediate), the order of the players’ move, mode of the game (batch or sequential),
and the utility function. These insights shed some light on the understanding of the
intrinsic barriers of the prediction problems and the design of computationally e�-
cient learning algorithms with strong theoretical guarantees (such as generalizability,
statistical consistency, and constant regret etc.).

There are many di�erent objects which help us understanding the learning prob-
lems better. These include loss function, regularizer, information, risk measure, regret,
and divergence. Systematically studying various representations (weighted average of
primitive elements, variational and dual) of these objects and connections between
them proves very useful in developing modular based solutions to learning problems
(Reid and Williamson [2011]). Certain properties of these objects are necessary for
strong theoretical guarantees, whereas some other properties are useful in developing
computationally e�cient learning algorithms. Thus by studying the geometric charac-
terization of the problem w.r.t. these notions, we may be able to design solutions which

1



2 Introduction

are computationally e�cient as well as having strong theoretical guarantees.
The rest of this chapter provides the background to, and a road map for, the rest

of this thesis.

1.1 Thesis Outline

Chapter 2 introduces the general learning task which covers many practical problems
in machine learning and statistics as special instantiations. The goal of the learner is to
find the functions which reflect relationships in data and thus best explain unseen data.
Using the decision theoretic concepts, we set up an abstract language of transitions to
formalize this general learning task. Then we define several quantities associated with
the performance of a learning algorithm for this task such as conditional risk and full
risk, and some measures of the hardness of the task such as minimum Bayes risk and
minimax risk.

Next we consider a specific instantiation of the general learning task - namely multi-
class probability estimation problem. Finally we discuss the binary class probability
estimation problem or classification (which is an instantiation of the multi-class prob-
ability estimation problem with m = 2) in detail.

The next three chapters contain the contributions of this thesis.
Chapter 3 mainly deals with the cost-sensitive classification problem, which is also

an instantiation of the general learning task. This problem plays a crucial role in
mission critical machine learning applications. We study the hardness of this problem
and emphasize the impact of cost terms on the hardness.

Chapter 3 investigates the intrinsic barriers of the general learning task subject
to constraints such as privacy, noisy transmission (with minimum corruption level),
and resource limitation. This naturally leads us to the investigation of strong data
processing inequalities. Despite extensive investigation tracing back to the 1950’s, the
geometric insights of strong data processing inequalities are still not fully understood. A
comprehensive survey paper providing an overview of strong data processing inequal-
ities was written by Raginsky [2014]. We continue existing investigations on strong
data processing inequalities, and make a significant progress in the direction of filling
this gap by focusing on the weighted integral representation of f -divergences. This
guides us in the channel design for cost-sensitive constrained problems. Furthermore
we propose a cost-sensitive privacy definition by extending the standard local privacy
definitions, and provide a hypothesis testing based interpretation for it.

Chapter 4 considers the classical problem of prediction with expert advice (Cesa-
Bianchi and Lugosi [2006]), in which the goal of the learner is to predict as well as
the best expert in a given pool of experts, on any sequence of T outcomes. This
framework encompasses several applications as special cases (Vovk [1995]) such as
classifier aggregation, weather prediction etc. The regret bound of the learner depends
on the merging scheme used to merge the experts’ predictions and the nature of the
loss function used to measure the performance. This problem has been widely studied
and O(

Ô
T ) and O(log T ) regret bounds can be achieved for convex losses (Zinkevich

[2003]) and strictly convex losses with bounded first and second derivatives (Hazan et al.
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[2007a]) respectively. In special cases like the Aggregating Algorithm (Vovk [1995]) with
mixable losses and the Weighted Average Algorithm (Kivinen and Warmuth [1999])
with exp-concave losses, it is possible to achieve O(1) regret bounds.

Even though exp-concavity trivially implies mixability, the converse implication
is not true in general. Thus by understanding the underlying relationship between
these two notions we can gain the best of both algorithms (strong theoretical perfor-
mance guarantees of the Aggregating Algorithm and the computational e�ciency of
the Weighted Average Algorithm). We study the general conditions on mixable losses
under which they can be transformed into an exp-concave loss through a suitable link
function. Under mild conditions, we construct two types of link functions (one using
calculus approach and another using geometric approach) that can re-parameterize any
binary mixable loss into an exp-concave loss.

Chapter 5 focuses on the online convex optimization problem which plays a key
role in machine learning as it has interesting theoretical implications and important
practical applications especially in the large scale setting where computational e�ciency
is the main concern (Shalev-Shwartz [2011]). Early approaches to this problem were
conservative, in which the main focus was protection against the worst case scenario.
But recently several algorithms have been developed for tightening the regret bounds in
easy data instances such as sparsity (Duchi et al. [2011]), predictable sequences (Chiang
et al. [2012]), and curved losses (strongly-convex, exp-concave, mixable etc.) (Hazan
et al. [2007b]).

We unify some of these existing techniques to obtain new update rules for the cases
when these easy instances occur together. First we analyse an adaptive and optimistic
update rule which achieves tighter regret bound when the loss sequence is sparse and
predictable. Then we explain an update rule that dynamically adapts to the curvature
of the loss function and utilizes the predictable nature of the loss sequence as well.
Finally we extend these results to composite losses.

Finally, Chapter 6 contains the conclusion of this thesis, and a discussion of possi-
bilities for further research. Chapter 6 concludes and contains a summary of the key
contributions of this thesis.

The following work was completed during the thesis: Bhatia et al. [2016]. In this
work, we present and analyze a polynomial-time algorithm for consistent estimation
of regression coe�cients under adversarial corruptions. But it has been excluded from
the thesis as it does not fit as well with our theme.

Some definitions are repeated, and there are slight variations in notation for each
chapter. Ultimately, there is no single best notational system, the e�ort has been
placed into using the notation that best suits the contents of the chapter.
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Chapter 2

Elements of Decision and
Information Theory

The focus of this chapter is the abstract formulation of the general learning task,
where a decision maker uses observations from experiments to inform her decisions.
We present a rigorous mathematical language for making decisions under uncertainty,
and quantifying the hardness of the problem. The concepts or results that we review
here are based upon both classical works in decision theory [Blackwell, 1951; DeGroot,
1962; Le Cam, 1964; Von Neumann and Morgenstern, 1944; Wald, 1949] as well as
recent contributions [Dawid, 2007; Grünwald and Dawid, 2004; Le Cam, 2012; Reid
and Williamson, 2011; Torgersen, 1991]. They serve as a necessary background for the
rest of the thesis.

The chapter proceeds as follows. In section 2.2 we introduce the general learning
task, formalize it using the language of transitions, and define some decision theoretic
measures associated with the hardness of the problem. Then in section 2.3 we study
the multi-class probability estimation problem, which is a specific instantiation of the
general learning task. Finally in section 2.4 we review more specific problem of binary
class probability estimation in detail, by introducing several decision theoretic notions
associated with it.

2.1 Notation and General Definitions

We require the following notation and definitions for chapter 2 and chapter 3. Other
notation will be developed as necessary.

Vectors and Matrices The real numbers are denoted R, the non-negative reals R
+

and the extended reals R = R fi {Œ}; the rules of arithmetic with extended real num-
bers and the need for them in convex analysis are explained by Rockafellar [1970].
The integers and non-negative integers are denoted by Z and Z

+

respectively. A
superscript prime, AÕ denotes transpose of the matrix or vector A, except when ap-
plied to a real-valued function where it denotes derivative (f Õ). We denote the ma-
trix multiplication of compatible matrices A and B by A · B, so the inner prod-
uct of two vectors x, y œ Rn is xÕ · y. Let [n] := {1, . . . , n}, and the n-simplex

5



6 Elements of Decision and Information Theory

Dn := {(p1, . . . , pn)
Õ : 0 Æ pi Æ 1, ’i œ [n], and

q

iœ[n] pi = 1}. If x is an n-vector,
A = diag(x) is the n ◊ n matrix with entries Aii = xi , i œ [n] and Aij = 0 for i ”= j.
We use en

i to denote the ith n-dimensional unit vector, en
i = (0, . . . , 0

¸ ˚˙ ˝

i≠1

, 1, 0, . . . , 0
¸ ˚˙ ˝

n≠i

)

Õ when

i œ [n], and define en
i = 0n when i > n. The n-vector 1n := (1, . . . , 1

¸ ˚˙ ˝

n

)

Õ.

Convexity A set S ™ Rd is said to be convex if for all ⁄ œ [0, 1] and for all points
s1, s2 œ S the point ⁄s1 + (1 ≠ ⁄)s2 œ S. A function „ : S æ R defined on a convex
set S is said to be a (proper) convex function if for all ⁄ œ [0, 1] and points s1, s2 œ S
the function „ satisfies

„
(

⁄s1 + (1 ≠ ⁄)s2) Æ ⁄„
(

s1) + (1 ≠ ⁄)„
(

s2) .

A function is said to be concave if ≠„ is convex.
Given a finite set S and a weight vector w, the convex combination of the elements

of the set w.r.t the weight vector is denoted by cowS, and the convex hull of the set
which is the set of all possible convex combinations of the elements of the set is denoted
by coS (Rockafellar [1970]). If S, T µ Rn, then the Minkowski sum S � T := {s + t :
s œ S, t œ T}.

The Perspective Transform and the Csiszár Dual When „ : R
+

æ R is convex, the
perspective transform of „ is defined for · œ R

+

via

I„ (s, ·
)

:=

Y

_

_

_

_

_

]

_

_

_

_

_

[

·„
(

s/·
)

· > 0, s > 0
0 · = 0, s = 0
·„

(

0
)

· > 0, s = 0
s„ÕŒ · = 0, s > 0,

where „
(

0
)

:= limsæ0 „
(

s
)

œ R and „ÕŒ is the slope at infinity defined as

„Õ
Œ := lim

sæ+Œ
„
(

s0 + s
)

≠ „
(

s0)

s
= lim

sæ+Œ
„
(

s
)

s

for every s0 œ S where „
(

s0) is finite. This slope at infinity is only finite when
„
(

s
)

= O
(

s
)

, that is, when „ grows at most linearly as s increases. When „ÕŒ is finite
it measures the slope of the linear asymptote. The function I„ :

[

0, Œ
)

2 æ R is convex
in both arguments Hiriart-Urruty and Lemaréchal [1993] and may take on the value
+Œ when s or · is zero. It is introduced here because it will form the basis of the
f -divergences.

The perspective transform can be used to define the Csiszár dual „ù :
[

0, Œ
)

æ R

of a convex function „ : R
+

æ R by letting

„ù
(

·
)

:= I„ (1, ·
)

= ·„
3 1

·

4



§2.1 Notation and General Definitions 7

for all · œ (0, Œ) and „ù
(

0
)

:= „ÕŒ. The original „ can be recovered from I„ since
„
(

s
)

= I„ (s, 1
)

.
The convexity of the perspective transform I„ in both its arguments guarantees

the convexity of the dual „ù. Some simple algebraic manipulation shows that for all
s, · œ R

+

I„ (s, ·
)

= I„ù
(

· , s
)

.

This observation leads to a natural definition of symmetry for convex functions. We
will call a convex function ù-symmetric (or simply symmetric when the context is clear)
when its perspective transform is symmetric in its arguments. That is, „ is ù-symmetric
when I„ (s, ·

)

= I„ (· , s
)

for all s, · œ
[

0, Œ
)

. Equivalently, „ is ù-symmetric if and
only if „ù

= „.

Probabilities and Expectations Let W be a measurable space and let µ be a prob-
ability measure on W. Wn denotes the product space W ◊ · · · ◊ W endowed with the
product measure µn. The notation X ≥ µ means X is randomly drawn according to the
distribution µ. Pµ [E]

and E
X≥µ

[

f
(

X
)]

will denote the probability of a statistical event
E and the expectation of a random variable f

(

X
)

with respect to µ respectively. We
will use capital letters X, Y, Z, . . . for random variables and lower-case letters x, y, z, . . .
for their observed values in a particular instance. We will denote by P

(

X
)

the set of
all probability distributions on an alphabet X and by Pú (X )

the subset of P
(

X
)

consisting of all strictly positive distributions.

Metric Spaces The Hamming distance on Rn is defined as

flHa (x, xÕ
)

:=
n

ÿ

i=1
Jxi ”= xÕ

iK, (2.1)

where JP K = 1 if P is true and JP K = 0 otherwise. Define the p-norm of x œ Rn as

ÎxÎp :=
A

n
ÿ

i=1
|xi|p

B1/p

. (2.2)

Let ¸n
p =

1

Rn, Î·Îp

2

and Bn
p denote the unit ball of ¸n

p . ¸nŒ is Rn endowed with the
norm

ÎxÎŒ := sup
1ÆiÆn

|xi|. (2.3)

Let LŒ (

W
)

be the set of bounded functions on W with respect to the norm

ÎfÎŒ := sup
ÊœW

|f
(

Ê
)

| (2.4)

and denote its unit ball by B
(

LŒ (

W
))

. For a probability measure µ on a measurable
space W and 1 Æ p Æ Œ, let Lp (µ) be the space of measurable functions on W with a
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finite norm
ÎfÎLp(µ) :=

3

⁄

|f |pdµ
41/p

. (2.5)

YX represents the set of all measurable functions f : X æ Y. For a set X define the
functions idX (x) = x, and 1X (x) = 1. The set of all real-valued measurable functions
on X is denoted by RX ; RX

++

and RX
+

are the subsets of RX consisting of all strictly
positive and nonnegative measurable functions, respectively. Define c := 1 ≠ c, for
c œ

[

0, 1
]

. We write x · y := min
(

x, y
)

. A mapping t ‘æ sign
(

t
)

is defined by

sign
(

t
)

=

Y

]

[

1 if t Ø 0
≠1 otherwise

.

Throughout this thesis all absolute constants are denoted by c, C, or K.

2.2 General Learning Task

A general learning task in statistical decision theory can be viewed as a two player
game between the decision maker (statistician or learner) and nature (environment or
opponent) as follows: Given the parameter space Q, observation space O, and decision
space A, and the loss function ¸ : Q ◊ A æ R

+

,

• Nature chooses ◊ œ Q, and generates the data O ≥ P◊ œ P
(

O
)

, where P◊ is the
distribution determined by the parameter ◊,

• the decision maker observes the data O, makes her own decision a œ A (deter-
ministic or stochastic), and incurs loss with ¸

(

◊, a
)

.

Throughout the thesis we assume Q to be finite and A to be closed, compact, set in
order to provide a clear presentation by avoiding the measure theoretic complexities.
This ensures that infimum of all the quantities defined can be replaced by minimum.
Note that all the results presented in the thesis are applicable to general cases as well,
under suitable regularity assumptions. Torgersen [1991] (Theorem 6.2.12) shows how
results for finite Q can be extended to those for infinite Q.

In order to formalize the above game, we develop an abstract language using the
decision theoretic concepts. We start with the central object of this language called a
transition.

2.2.1 Markov Kernel

We define a Markov kernel (also known as a transition or a channel) as follows:

Definition 2.1 ([Le Cam, 2012; Torgersen, 1991]). A Markov kernel from a finite set
X to a finite set Y (denoted by T : X  Y) is a function from X to P

(

Y
)

, the set of
probability distributions on Y.
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A Markov kernel T : X  Y acts on probability distributions µ œ P
(

X
)

by

T ¶ µ := E
X≥µ

[

T
(

X
)]

œ P
(

Y
)

or on functions f œ RY by

(

Tf
) (

x
)

:= E
Y ≥T (x)

[

f
(

Y
)]

, x œ X .

The composition of two Markov kernels T1 : X  Y and T2 : Y  Z, denoted by
T2T1 : X  Z, is defined by

T2T1f = T1 (T2f
)

, f œ RZ .

Denote the set of all Markov kernels from X to Y by M
(

X , Y
)

. If X and Y are
finite, we can represent the distributions P œ P

(

X
)

by vectors in R|X |, Markov kernels
T : X  Y by column stochastic matrices (|Y| ◊ |X | positive matrices where the sum
of all entries in each column is equal to 1), and composition by matrix multiplication.
We can also verify that M

(

X , Y
)

is a closed convex subset of R|Y|◊|X |, the set of all
|Y| ◊ |X | matrices. Note that the transition T : X  Y induces a class of probability
measures PT (

Y
)

:= {Px := T
(

x
)

œ P
(

Y
)

: x œ X }. For a transition T : X  Y,
define T

(

y | x
)

:= PT (x) [Y = y
]

, where T
(

x
)

œ PT (

Y
)

.
A function f : X æ Y induces a Markov kernel F : X  Y with F (x) = ”f (x),

a point mass distribution on f(x). For every measure space X , there are two special
Markov kernels, the completely informative Markov kernel induced from the identity
function idX : X æ X (where idX (

x
)

= x), and the completely uninformative Markov
kernel induced from the function •X : X æ • (where •X (

x
)

= •, ’x œ X and • œ Y).
Given µ œ P

(

X
)

, and T : X  Y, let D := µ ¢ T œ P
(

X ◊ Y
)

denotes the
joint probability measure of

(

X, Y
)

œ X ◊ Y with PD [

X = x
]

= Pµ [X = x
]

, and
PD [

Y = y | X = x
]

= PT (x) [Y = y
]

.
We will now use this abstract language of transitions to formulate the general

learning task introduced in the beginning of this section. This will enable us to analyse
the intrinsic barriers or capacity of the task in a more generic way. Later, by using
appropriate instantiations, we will derive important practical problems in machine
learning and statistics.

2.2.2 Decision Theoretic Notions

The general learning task described above can be represented by the following transition
diagram:

Q O AÁ

Experiment
A

Decision rule

T := A ¶ Á , (2.6)
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where

• Experiment (denoted by Á : Q  O) is a Markov kernel from the parameter
space Q to the observation space O. If the true hypothesis is ◊ œ Q, then
the observed data is distributed according the probability measure Á

(

◊
)

. The
class of probability measures associated with this experiment is given by PÁ :=
{P◊ := Á

(

◊
)

: ◊ œ Q}.

• Stochastic Decision rule (denoted by A : O  A) is a Markov kernel from the
observation space O to the action space A. Upon observing data o œ O, the
learner will choose an action in A according to the distribution A

(

o
)

.

Remark 2.2. We will depict the transitions (experiment and decision rule) associated
with the learning task in a transition diagram, and we call it the ‘transition diagram
representation of the learning task’ throughout the thesis.

Loss and Regret: The quality of the composite relation T := A ¶ Á : Q  A is
measured by a loss function

¸ : Q ◊ A –
(

◊, a
)

‘æ ¸
(

◊, a
)

œ R
+

. (2.7)

The general learning task can more compactly be represented as the pair (¸, Á) where
A, Q, O can be inferred from the type signatures of ¸ and Á. We usually encounter the
loss relative to the best action defined formally as the regret

D¸ : Q ◊ A –
(

◊, a
)

‘æ D¸
(

◊, a
)

:= ¸
(

◊, a
)

≠ inf
aÕœA

¸
(

◊, aÕ
)

œ R
+

. (2.8)

Conditional Risk: The quality of the final action chosen by the decision maker when
they use the composite relation T : Q A (in fact the stochastic decision rule A : O 
A for a given experiment Á : Q O) can be evaluated using the notion of conditional
risk (defined with an overloaded notation for the loss):

¸ : Q ◊ M
(

Q, A
)

–
(

◊, T
)

‘æ ¸
(

◊, T
)

:= E
A≥T (◊)

[

¸
(

◊, A
)]

œ R
+

, (2.9)

where the term inside the expectation is the loss (2.7) of a random variable A when the
true parameter is ◊. We use the overloaded notation with a reason, which will become
clear in section 2.3. Similarly we can define the conditional risk in terms of regret as
follows (again with an overloaded notation for the regret):

D¸ : Q ◊ M
(

Q, A
)

–
(

◊, T
)

‘æ D¸
(

◊, T
)

:= E
A≥T (◊)

[

D¸
(

◊, A
)]

œ R
+

, (2.10)

where the term inside the expectation is the regret (2.8) of a random variable A when
the true parameter is ◊.

For any fixed (unknown) parameter ◊ œ Q, we can calculate the conditional risk of
any composite relation T , and the goal is to find an optimal composite relation (in fact
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an optimal stochastic decision rule for a given experiment). Two main approaches to
find the best composite relation (or the best decision rule) are:

• Bayesian approach (average case analysis), which is more appropriate if the de-
cision maker has some intuition about ◊, given in the form of a prior probability
distribution fi, and

• Minimax approach (worst case analysis), which is more appropriate if the decision
maker has no prior knowledge concerning ◊.

The conditional Bayesian risk and conditional max risk are defined as,

L¸ : P
(

Q
)

◊ M
(

Q, A
)

–
(

p, T
)

‘æ L¸ (p, T
)

:= E
Y≥p

[

¸
(

Y, T
)]

œ R
+

, and (2.11)

Lı
¸ : M

(

Q, A
)

– T ‘æ Lı
¸ (T )

:= sup
◊œQ

¸
(

◊, T
)

œ R
+

, (2.12)

respectively. We measure the di�culty of the general learning task by the conditional
minimum Bayesian risk and conditional minimax risk defined as,

L¸ : P
(

Q
)

– p ‘æ L¸ (p) := inf
T œM(Q,A)

L¸ (p, T
)

œ R
+

, and (2.13)

Lı
¸ : · ‘æ Lı

¸ := inf
T œM(Q,A)

Lı
¸ (T )

œ R
+

, (2.14)

respectively.

Remark 2.3. By replacing ¸ by D¸ in (2.11), (2.12), (2.13), and (2.14) , we obtain
LD¸, Lı

D¸, LD¸ and Lı
D¸ respectively. One can do this transformation for all the concepts

that we introduce below and obtain the ‘regret’ based notions.

Full Risk: In the conditional quantities defined above, we have abstracted away the
observation space O (i.e. no data setting). Now we consider the practical scenario with
observations, and define the full risk of a stochastic decision rule A : O A as follows

L¸ : Q ◊ M
(

Q, O
)

◊ M
(

O, A
)

–
(

◊, Á, A
)

‘æ

L¸ (◊, Á, A
)

:= ¸
(

◊, A ¶ Á
)

= E
O≥Á(◊)

C

E
A≥A(O)

[

¸
(

◊, A
)]

D

œ R
+

, (2.15)

where ¸
(

◊, A ¶ Á
)

is the conditional risk (2.9) of the composite relation A ¶ Á. Note that
A : O  A is a function of the observation in O which is distributed according the
probability distribution associated with a parameter in Q.

As in the conditional case, we define the full Bayesian risk, full minimum Bayesian
risk, full max risk, and full minimax risk as follows:

R¸ : P
(

Q
)

◊ M
(

Q, O
)

◊ M
(

O, A
)

–
(

fi, Á, A
)

‘æ R¸ (fi, Á, A
)

:=
E

Y≥fi
[

L¸ (Y, Á, A
)]

œ R
+

,

R¸ : P
(

Q
)

◊ M
(

Q, O
)

–
(

fi, Á
)

‘æ R¸ (fi, Á
)

:=
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inf
AœM(O,A)

R¸ (fi, Á, A
)

œ R
+

,

Rı
¸ : M

(

Q, O
)

◊ M
(

O, A
)

–
(

Á, A
)

‘æ Rı
¸ (Á, A

)

:=
sup
◊œQ

L¸ (◊, Á, A
)

œ R
+

, and

Rı
¸ : M

(

Q, O
)

– Á ‘æ Rı
¸ (Á) :=

inf
AœM(O,A)

Rı
¸ (Á, A

)

œ R
+

respectively.
Let Y and O be random variables over Q and O respectively. Also let ◊ œ Q and o œ

O. The experiment Á (in (2.6)) and a prior fi on Q induces a joint probability measure D
on Q ◊ O and thus a transition ÷D : O Q (given by ÷D (

◊ | o
)

:= PD [

Y = ◊ | O = o
]

)
and a marginal distribution MD on O (given by MD (

o
)

:= PD [

O = o
]

). That is if
Q ◊ O –

(

Y, O
)

≥ D, then we have

PD [

Y = ◊, O = o
]

= PD [

Y = ◊
]

· PD [

O = o | Y = ◊
]

= fi
(

◊
)

· Á
(

o | ◊
)

= PD [

O = o
]

· PD [

Y = ◊ | O = o
]

= MD (

o
)

· ÷D (

◊ | o
)

.

Thus we can use the pairs
(

fi, Á
)

and
(

M , ÷
)

interchangeably. We can define the full
Bayesian risk and full minimum Bayesian risk in terms of

(

M , ÷
)

as follows:

‚R¸ : P
(

O
)

◊ M
(

O, Q
)

◊ M
(

O, A
)

–
(

M , ÷, A
)

‘æ ‚R¸ (M , ÷, A
)

:=

E
O≥M

C

E
Y≥÷(O)

[

¸
(

Y, A
(

O
))]

D

œ R
+

‚R¸ : P
(

O
)

◊ M
(

O, Q
)

–
(

M , ÷
)

‘æ ‚R¸ (M , ÷
)

:=

inf
AœM(O,A)

‚R¸ (M , ÷, A
)

œ R
+

At this point we note the following facts:

• Since

E
(Y,O)≥D

[

¸
(

Y, A
(

O
))]

= E
O≥M

C

E
Y≥÷(O)

[

¸
(

Y, A
(

O
))]

D

= E
Y≥fi

C

E
O≥Á(Y)

[

¸
(

Y, A
(

O
))]

D

we have that ‚R¸ (M , ÷, A
)

= R¸ (fi, Á, A
)

and ‚R¸ (M , ÷
)

= R¸ (fi, Á
)

.

• ‚R¸ (M , ÷, A
)

= E
O≥M

[

L¸ (÷ (O)

, A
(

O
))]

and ‚R¸ (M , ÷
)

= E
O≥M

[

L¸ (÷ (O))]

.

By using the minimax theorem (Komiya [1988]), we obtain the following result that
relates the full minimum Bayesian risk and the full minimax risk.

Theorem 2.4. Let Q to be finite and A to be closed, compact, set with ¸ a continuous
function. Then for all experiments Á,

Rı
¸ (Á) = sup

fiœP(Q)

R¸ (fi, Á
)

.
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2.2.3 Repeated and Parallelized Transitions

Transitions can be repeated. For P , Q œ P
(

X
)

, denote the product distribution by
P ¢ Q. For any transition T œ M

(

X , Y
)

we denote the repeated transition Tn œ
M

(

X , Yn
)

, n œ Z
+

, with,

Tn (x) = T
(

x
)

¢ · · · ¢ T
(

x
)

= T
(

x
)

n , (2.16)

the n-fold product of T
(

x
)

. Note that the transition Tn induces a probability space
PTn (

Yn
)

:= {P n
x := T

(

x
)

n œ P
(

Y
)

n : x œ X }.
Transitions can also be combined in parallel. If Ti œ M

(

Xi, Yi) , i œ
[

k
]

, are
transitions then denote,

k
p

i=1
Ti œ M

1

◊k
i=1Xi, ◊k

i=1Yi

2

(2.17)

with
ok

i=1 Ti (x) = T1 (x1)¢ · · · ¢ Tn (xn). For any transition T œ M
(

X , Y
)

we denote
the parallelized transition T1:n œ M

(

X n, Yn
)

, n œ Z
+

, with,

T1:n (x) =
n

p

i=1
T
(

x
)

. (2.18)

2.3 Multi-Class Probability Estimation Problem

We will now consider the special case when the prediction space is Q =

[

k
]

, and the
action space is also A =

[

k
]

. In this case, the loss function is written as

¸ : [k] ◊ [k] –
(

y, ‚y
)

‘æ ¸
(

y, ‚y
)

œ R
+

. (2.19)

The resulting problem is called the k-class probability estimation (CPE) problem
(

¸, Á
)

and can be represented by the following transition diagram:

[

k
]

O
[

k
]

Á A

T := A ¶ Á . (2.20)

Define T := A ¶ Á :
[

k
]

 
[

k
]

. As in the general learning problem, we define the
conditional risk as follows (with overloaded notation):

¸ : [k] ◊ M
(

[k], [k]
)

–
(

y, T
)

‘æ ¸
(

y, T
)

:= E
Y≥T (y)

[

¸
(

y, Y
)]

œ R
+

, (2.21)

where term inside the expectation is the loss (2.19) of a random variable Y given that
the actual parameter is y. In this setting, it is common in the literature to refer the
conditional risk as the loss function of the problem (it is also said to be multi-CPE
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loss), and that’s why we purposefully use overloaded notation for them. In fact, in
Chapter 4 we call the conditional risk as the loss function of prediction with expert
advice problem.

The conditional Bayesian risk and the conditional minimum Bayesian risk of this
k-class probability estimation problem can be written as follows:

L¸ : Dk ◊ M
(

[k], [k]
)

–
(

p, T
)

‘æ L¸ (p, T
)

:= E
Y≥p

[

¸
(

Y, T
)]

œ R
+

, and (2.22)

L¸ : Dk – p ‘æ L¸ (p) := inf
T œM([k],[k])

L¸ (p, T
)

œ R
+

(2.23)

respectively.

2.4 Binary Experiments

In this section we consider the k-class probability estimation problem with k = 2. Such
a problem is known as a binary experiment. Here we review some important notions
associated with the binary experiments such as loss, risk, ROC (Receiver Operating
Characteristic) curves, information, and distance or divergence between probability
distributions.

For consistency with much of the literature, we let Q = {1, 2}, P = Á
(

1
)

, and
Q = Á

(

2
)

. Thus a binary experiment can be simply represented
(

P , Q
)

. The densities
of P and Q with respect to some third reference distribution M over O will be defined
by dP = pdM and dQ = qdM respectively. A central statistic in the study of binary
experiments and statistical hypothesis testing is the likelihood ratio dP /dQ.

2.4.1 Hypothesis Testing

In the context of a binary experiment
(

P , Q
)

, a statistical test is any function that
assigns each instance o œ O to either P or Q. We will use the labels 1 and 2 for P and
Q respectively and so a statistical test is any function r : O æ {1, 2}. The classification
rates defined by a given test r are:

1. True positive rate TPr := P
!O1

r

"

2. True negative rate TNr := Q
!O2

r

"

3. False positive rate FPr := Q
!O1

r

"

4. False negative rate FNr := P
!O2

r

"

where O1
r := {o œ O : r

(

o
)

= 1} and O2
r := {o œ O : r

(

o
)

= 2}. Since P and Q are
distributions over O = O1

r fi O2
r and the positive and negative sets are disjoint we have

that TP + FN = 1 and FP + TN = 1.
For a given binary experiment

(

P , Q
)

, we define the following important quantities
or notions associated with a statistical test r:

• The power —r := TPr.
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• The size –r := FPr.

• A test r is said to be the most powerful (MP) test of size – œ [0, 1] if, –r = –
and for all other tests rÕ such that –rÕ Æ – we have 1 ≠ —r Æ 1 ≠ —rÕ .

• The Neyman-Pearson function for the dichotomy (P , Q) (Torgersen [1991])

—
(

–
)

= —
(

–, P , Q
)

:= sup
rœ{1,2}O

{—r : –r Æ –} .

2.4.2 ROC curves

Often, statistical tests are obtained by applying a threshold ·0 to a real-valued test
statistic · : O æ R. In this case, the statistical test is r

(

o
)

= 2 ≠ J·
(

o
)

Ø ·0K. This
leads to parameterized forms of prediction sets Oy

· (·0) := Oy
J·Ø·0K for y œ {1, 2}, and

the classification rates TP· (·0), FP· (·0), FN· (·0), and TN· (·0) which are defined
analogously. By varying the threshold parameter a range of classification rates can
be achieved. This observation leads to a well known graphical representation of test
statistics known as the receiver operating characteristic (ROC) curve.

An ROC curve for the test statistic · is simply a plot of the true positive rate of
these classifiers as a function of their false positive rate as the threshold ·0 varies over
R. Formally,

ROC(· ) := {
(

FP· (·0) , TP· (·0)) : ·0 œ R} µ [0, 1]2.

A graphical example of an ROC curve is shown as the solid black line in Figure 2.1.
The Neyman-Pearson lemma (Neyman and Pearson [1933]) shows that for a fixed

experiment
(

P , Q
)

, the likelihood ratio ·ı
(

o
)

= dP /dQ
(

o
)

is the most powerful test
statistic for each choice of threshold ·0. This guarantees that the ROC curve for
the likelihood ratio ·ı

= dP /dQ will lie above, or dominate, that of any other test
statistic · as shown in Figure 2.1. This is an immediate consequence of the likelihood
ratio being the most powerful test since for each false positive rate (or size) – it will
have the largest true positive rate (or power) — of all tests (Eguchi and Copas [2001]).
Thus ROC(dP /dQ) is the maximal ROC curve.

2.4.3 f -Divergences

The hardness of the binary classification problem depends on the distinguish-ability of
the two probability distributions associated with it. The class of f -divergences ([Ali
and Silvey, 1966; Csiszár, 1972]) provide a rich set of relations that can be used to
measure the separation of the distributions in a binary experiment.

Definition 2.5. Let f :
(

0, Œ
)

æ R be a convex function with f(1) = 0. For all
distributions P , Q œ P

(

O
)

the f-divergence between P and Q is,

If (P , Q
)

= E
Q

5

f
3

dP

dQ

46

=

⁄

O
f

3

dP

dQ

4

dQ
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Figure 2.1: ROC curve for (a) an arbitrary statistical test · (middle, black curve), (b)
an optimal statistical test ·ı (top, blue curve), and (c) an uninformative statistical test
(dashed red line).

when P is absolutely continuous with respect to Q and equals Œ otherwise.

The behavior of f is not specified at the endpoints of
(

0, Œ
)

in the above definition.
This is remedied via the perspective transform of f , which defines the limiting behavior
of f . Given convex f :

(

0, Œ
)

æ R such that f(1) = 0 the f-divergence of P from Q
is

If (P , Q
)

:= E
M
[

If (p, q
)]

= E
O≥M

[

If (p (O)

, q
(

O
))]

, (2.24)

where If is the perspective transform of f .
Many commonly used divergences in probability, mathematical statistics and infor-

mation theory are special cases of f -divergences. For example:

1. The Kullback-Leibler divergence (with KL
(

u
)

= u log u)

IKL (

P , Q
)

= D
(

P || Q
)

= E
Q

5

dP

dQ
log dP

dQ

6

2. The total variation distance (with TV
(

u
)

= |u ≠ 1|)

ITV (

P , Q
)

= dTV (

P , Q
)

= E
Q

5

-

-

-

-

dP

dQ
≠ 1

-

-

-

-

6

.

Also for general measures µ and ‹ on O, we define dTV (

µ, ‹
)

=

s |dµ ≠ d‹|.
3. The ‰2-divergence (with ‰2

(

u
)

= (u ≠ 1)2)

I‰2 (P , Q
)

= ‰2
(

P || Q
)

= E
Q

C

3

dP

dQ
≠ 1

42D
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4. The squared Hellinger distance (with He2
(

u
)

= (

Ô
u ≠ 1)2)

IHe2 (P , Q
)

= He2
(

P , Q
)

= E
Q

S

U

A

Û

dP

dQ
≠ 1

B2T

V

We note the following properties of f -divergences:

• If (P , Q
)

Ø 0 for all P and Q by Jensen’s inequality

• If (Q, Q
)

= 0 for all distributions Q since f(1) = 0

• If (P , Q
)

= Ifù
(

Q, P
)

for all distributions P and Q (where fù is the Csiszár dual
of f) due to the symmetry of the perspective If . An f -divergence is symmetric
if If (P , Q

)

= If (Q, P
)

for all P , Q.

• Let f :
(

0, Œ
)

æ R be a convex function. Then for each a, b œ R the convex
function g(x) := f(x) + ax + b satisfies Ig (P , Q

)

= If (P , Q
)

for all P and Q.

• The weak data processing theorem states that for all sets O, ‚O, all transitions
T œ M

1

O, ‚O
2

, all distributions P , Q œ P
(

O
)

and all f -divergences,

If (T ¶ P , T ¶ Q
)

Æ If (P , Q
)

.

Intuitively, adding noise never makes it easier to distinguish P and Q.

Remark 2.6. Here we give a more general definition for f-divergence. Let „ : [0, Œ)

k æ
R be a convex function with „

(

1k) = 0, for some k œ Z
+

. For all experiments
Á :

[

k
]

 X (with the parameter space
[

k
]

and the observation space X ) the f-divergence
of the experiment Á is,

I„ (Á) := E
X≥Á(k)

[

„
(

t
(

X
))]

, (2.25)

where t : X æ [0, Œ)

k is given by

t
(

x
)

:=
3

dÁ
(

x | 1
)

dÁ
(

x | k
)

, · · · , dÁ
(

x | i
)

dÁ
(

x | k
)

, · · · , 1
4

, for x œ X .

By defining f
(

t
)

:= „
(

t, 1
)

(with k = 2), we recover the binary f-divergence (Defini-
tion 2.5) for binary experiments Á :

[

2
]

 X .

Integral Representations of f -divergences: Representation of f -divergences and loss
functions as weighted average of primitive components (in the sense that they can be
used to express other measures but themselves cannot be so expressed) is very useful
in studying certain geometric properties of them using the weight function behavior.
The following restatement of a theorem by Liese and Vajda [2006] provides such a
representation for any f -divergence (confer Reid and Williamson [2011] for a proof):
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Theorem 2.7. Define c := 1 ≠ c, for c œ
[

0, 1
]

, and let f be convex such that f(1) = 0.
Then the f-divergence between P and Q can be written in a weighted integral form as
follows:

If (P , Q
)

=

⁄ 1

0
Ifc (P , Q

)

“f (c) dc, (2.26)

where
fc(t) = c · c ≠ c · (ct) (2.27)

and
“f (c) :=

1
c3 f ÕÕ

3

c

c

4

. (2.28)

For c œ
[

0, 1
]

, the term Ifc(P , Q) in (2.26) is called the c-primitive f-divergence
and can be written as

Ifc(P , Q) =

⁄

;

c · c ≠ c ·
3

c
dP

dQ

4<

dQ (2.29)

= c · c ≠
⁄

cdQ · cdP (2.30)

= c · c ≠ 1
2 +

1
2

⁄

|cdP ≠ cdQ| (2.31)

=

1
2dTV (

cP , cQ
)

≠ 1
2 |1 ≠ 2c|, (2.32)

where the first equality (2.29) is due to the definition of f -divergence and (2.27), and
the third equality (2.31) is due to the following observation:

⁄

|p ≠ q| =

⁄

qØp
q ≠ p +

⁄

q<p
p ≠ q

=

⁄

qØp
q +

⁄

q<p
p ≠

⁄

p · q

= 1 ≠
⁄

q<p
q + 1 ≠

⁄

qØp
p ≠

⁄

p · q

= 2 ≠ 2 ≠
⁄

p · q.

Comparison between f -Divergences: Consider the problem of maximizing or min-
imizing an f -divergence between two probability measures subject to a finite number
of constraints on other f -divergences. Given divergences If and Ifi , i œ [m] and non-
negative real numbers –1, . . . , –m, let

U
(

–1, . . . , –m)

:= sup
P ,Q

{If (P , Q
)

: Ifi (P , Q
)

Æ –i, ’i œ [m]} , and

L
(

–1, . . . , –m)

:= inf
P ,Q

{If (P , Q
)

: Ifi (P , Q
)

Ø –i, ’i œ [m]} ,

where the probability measures on the right hand sides above range over all possible
measurable spaces. These large infinite-dimensional optimization problems can all be



§2.4 Binary Experiments 19

reduced to optimization problems over small finite dimensional spaces as shown in the
following theorem 2.8.

Define

Un (–1, . . . , –m)

:= sup
P ,QœP([n])

{If (P , Q
)

: Ifi (P , Q
)

Æ –i, ’i œ [m]} , and

Ln (–1, . . . , –m)

:= inf
P ,QœP([n])

{If (P , Q
)

: Ifi (P , Q
)

Ø –i, ’i œ [m]} ,

where P
([

n
])

denotes the space of all probability measures defined on the finite set
[n].

Theorem 2.8 (Guntuboyina et al. [2014]). For every –1, . . . , –m Ø 0, we have

U
(

–1, . . . , –m)

= Um+2 (–1, . . . , –m)

Further if –1, . . . , –m are all finite, then

L
(

–1, . . . , –m)

= Lm+2 (–1, . . . , –m)

.

Suppose that If is an arbitrary f-divergence and that all divergences Ifi , i œ [m] are
c-primitive f-divergences (2.32). Then

L
(

–1, . . . , –m)

= Lm+1 (–1, . . . , –m)

.

Now we introduce a closely related concept - namely the joint range.

Definition 2.9 (Joint Range). Consider two f-divergences If (P , Q
)

and Ig (P , Q
)

.
Their joint range is a subset of R2 defined by

J := {
(

If (P , Q
)

, Ig (P , Q
))

: P , Q œ P
(

X
)

where X is some measurable space} ,
Jk := {

(

If (P , Q
)

, Ig (P , Q
))

: P , Q œ P
(

[k]
)

} .

The region J seems di�cult to characterize since we need to consider P , Q over all
measurable spaces; on the other hand, the region Jk for small k is easy to obtain. The
following theorem relates these two regions (J and Jk).

Theorem 2.10 (Harremoes and Vajda [2011]). J = conv
(

J2) .

By Theorem 2.10, the region J is no more than the convex hull of J2. In certain
cases, it is easy to obtain a parametric formula of J2. In those cases, we can system-
atically prove several important inequalities between two f -divergences via their joint
range. For example using the joint range between the total variation and Hellinger
divergence, it can be shown that ([Tsybakov, 2009; Polyanskiy and Wu, 2016; accessed
March 30, 2017]):

1
2He2

(

P , Q
)

Æ dTV (

P , Q
)

Æ He
(

P , Q
)

Û

1 ≠ He2
(

P , Q
)

4 . (2.33)
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Figure 2.2: Joint range (J2) of Hellinger distance and a c-primitive f -divergence (c=0.7)
(· · · ), convex hull of J2 (—), and a parametric curve

(

c · c
)

· He
(

P , Q
)

Ò

1 ≠ He2
(P ,Q)

4
(—).

We extend the above result to the c-primitive f -divergence as follows:

Ifc (P , Q
)

Æ
(

c · c
)

· He
(

P , Q
)

Û

1 ≠ He2
(

P , Q
)

4 . (2.34)

We use a mathematical software to plot (see Figure 2.2) the joint range between the
c-primitive f -divergence and the Hellinger divergence which is given by the convex hull
of

J2 :=
;

2
!

1 ≠ Ô
pq ≠ Ô

pq
"

, 1
2 (

|cp ≠ cq| + |cp ≠ cq| ≠ |2c ≠ 1|
)

: p, q œ
[

0, 1
]

<

.

Then using this joint range, we verify that the bound given in (2.34) is indeed true.
We also note that the bound in (2.34) is not tight but su�cient for our purposes (for
analysing the hardness of the cost-sensitive classification problem in Chapter 3).

Sub-additive f -Divergences: Some f -divergences satisfy the sub-additivity property,
which will be useful in analyzing the hardness of learning problems with repeated
experiments (samples). The following lemma shows that both total variation and
squared Hellinger divergences satisfy this property.
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Lemma 2.11. For all collections of distributions Pi, Qi œ P
(

Oi), i œ [k]

dTV

A

k
p

i=1
Pi,

k
p

i=1
Qi

B

Æ
k

ÿ

i=1
dTV (

Pi, Qi),

and

He2
A

k
p

i=1
Pi,

k
p

i=1
Qi

B

Æ
k

ÿ

i=1
He2

(

Pi, Qi).

Proof. Firstly
(

P , Q
)

‘æ dTV (

P , Q
)

is a metric. Thus

dTV

A

k
p

i=1
Pi,

k
p

i=1
Qi

B

= dTV

A

P1 ¢
A

k
p

i=2
Pi

B

, Q1 ¢
A

k
p

i=2
Qi

BB

Æ dTV

A

P1 ¢
A

k
p

i=2
Pi

B

, Q1 ¢
A

k
p

i=2
Pi

BB

+ dTV

A

Q1 ¢
A

k
p

i=2
Pi

B

, Q1 ¢
A

k
p

i=2
Qi

BB

= dTV (

P1, Q1) + dTV

A

k
p

i=2
Pi,

k
p

i=2
Qi

B

,

where the second line follows by definition, the third follows from the triangle inequality
and the forth is easily verified from the definition of dTV (

·, ·
)

. To complete the proof
proceed inductively.

Let µ be a product measure on O1 ◊ O2, written as µ = µ1 ¢ µ2, where µi := µ ¶ fii

denotes the image measure of the projection fii : R2 –
(

x1, x2) ‘æ fii (x1, x2) = xi w.r.t.
µ. Also let P = P1 ¢ P2, and Q = Q1 ¢ Q2. Define p := dP

dµ , q := dQ
dµ , p1 := dP1

dµ1
,

p2 := dP2
dµ2

, q1 := dQ1
dµ1

, and q2 := dQ2
dµ2

. Then, by Tonelli’s theorem,

1 ≠ 1
2He2

(

P , Q
)

=

⁄ Ô
pqdµ

=

⁄ Ô
p1q1dµ1 ·

⁄ Ô
p2q2dµ2

=

3

1 ≠ 1
2He2

(

P1, Q1)

4

·
3

1 ≠ 1
2He2

(

P2, Q2)

4

.

Thus we have

He2
(

P , Q
)

= 2 ≠ 2
3

1 ≠ 1
2He2

(

P1, Q1)

4

·
3

1 ≠ 1
2He2

(

P2, Q2)

4

= He2
(

P1, Q1) + He2
(

P2, Q2) ≠ 1
2He2

(

P1, Q1)He2
(

P2, Q2)

Æ He2
(

P1, Q1) + He2
(

P2, Q2) .

To complete the proof proceed the above process iteratively.
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Chapter 3

Asymmetric Learning Problems

The central problem of this chapter is the cost-sensitive binary classification problem,
where di�erent costs are associated with di�erent types of mistakes. Several important
machine learning applications such as medical decision making, targeted marketing,
and intrusion detection can be formalized as cost-sensitive classification setup (Abe
et al. [2004]).

The chapter proceeds as follows. In section 3.1 we show that the abstract language
of transitions introduced in chapter 2, is general enough to capture many of the exist-
ing practical problems in statistics and machine learning including the cost-sensitive
classification problem. Then in section 3.2 we study the hardness of the cost-sensitive
classification problem by extending the standard minimax lower bound of balanced
binary classification problem (due to Massart and Nédélec [2006]) to cost-sensitive
classification problem.

In section 3.3 we study the hardness of the constrained learning problem (specif-
ically constrained cost-sensitive classification), which naturally leads us to a detailed
investigation of strong data processing inequalities. After reviewing the known results
in strong data processing inequalities, we make some novel progress in the direction of
strong data processing inequalities for binary symmetric channels. We also extend the
well-known contraction coe�cient theorem (Cohen et al. [1993]) for total variational
divergence to c-primitive f -divergences.

Finally in section 3.4 we study the local privacy requirement as a form of constraint
on learning problem. We review the decision theoretic reduction of the local privacy
requirement, and based on that we propose a prioritized (cost-sensitive) privacy defi-
nition.

3.1 Preliminaries and Background

General Learning Task: Consider the General Learning Task represented by the fol-
lowing transition diagram:

Q On AÁn A

(3.1)

23
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where Q, O, and A are parameter, observation, and action spaces respectively. The
transitions Án and A denote repeated experiment of Á : Q  O and algorithm respec-
tively. Note that the repeated experiment Án induces the class of probability measures
given by PÁn (

On
)

:= {Án (◊) := Á
(

◊
)

n : ◊ œ Q} (see Section 2.2.3). We recall the fol-
lowing objects introduced in Chapter 2 :

Loss ¸ : Q ◊ A æ R

Regret D¸
(

◊, a
)

:= ¸
(

◊, a
)

≠ inf
aÕœA

¸
(

◊, aÕ
)

Full Risk R¸ (Án, ◊, A
)

:= E
On

1 ≥Án(◊)

C

E
a≥A(On

1 )
[

¸
(

◊, a
)]

D

RD¸ (Án, ◊, A
)

:= E
On

1 ≥Án(◊)

C

E
a≥A(On

1 )
[

D¸
(

◊, a
)]

D

Full Minimax Risk Rı
¸ (Án) := inf

A
sup
◊œQ

R¸ (Án, ◊, A
)

Rı
D¸ (Án) := inf

A
sup
◊œQ

RD¸ (Án, ◊, A
)

.

One needs to carefully distinguish between the risk (and related notions) in terms of
loss and regret based on the subscript (see Remark 2.3). The general learning task is
compactly denoted by the tuple

(

¸, Án).
In order to demonstrate the generality of the language of transitions, below we

discuss some specific instantiations (supervised learning, multi-class probability esti-
mation, binary classification, and parameter estimation) of this general learning task.

Supervised Learning Problem: Let X ◊ Y be a measurable space, and let D be an
unknown joint probability measure on X ◊ Y. The set X is called the instance space,
the set Y the outcome space. Let S = {

(

Xi, Yi)}m
i=1 œ

(

X ◊ Y
)

m be a finite training
sample, where each pair

(

Xi, Yi) is generated independently according to the unknown
probability measure D. Then the goal of a learning algorithm is to find a function
f : X æ Y which given a new instance x œ X , predicts its label to be ‚y = f

(

x
)

.
Here we rely on the fundamental assumption that both training and future (test)

data are generated by the same fixed underlying probability measure D, which, al-
though unknown, allows us to infer from training data to future data and therefore to
generalize.

In order to measure the performance of a learning algorithm, we define an error
function d : Y ◊ Y æ R

+

, where d
(

y, ‚y
)

quantifies the discrepancy between the pre-
dicted value ‚y and the actual value y. The performance of any function f : X æ Y
is then measured in terms of its generalization error, which is defined as the expected
error:

erd (f , D
)

:= E
(X,Y)≥D

[

d
(

Y, f
(

X
))]

, (3.2)

where the expectation is taken with respect to the probability measure D on the data
(

X, Y
)

. The best estimate fı
D œ YX is therefore the one for which the generalization
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error is as small as possible, that is,

fı
D := arg min

fœYX
erd (f , D

)

. (3.3)

The function fı
D is called the target hypothesis.

In order to avoid functions which over-fit the training sample and do not generalize
well on the test data, one usually imposes constraints on the function f . One way to
impose constraints is by restricting the possible choices of functions to a fixed class
of functions from which the learning algorithm chooses its hypothesis. This function
class is called the hypothesis class. Given a fixed hypothesis class F ™ YX , the goal of
a learning algorithm is thus to choose the hypothesis function fı in F which has the
smallest generalization error on data drawn according to the underlying probability
measure D,

fı
D,F := arg min

fœF
erd (f , D

)

. (3.4)

We will assume in the following that such an fı
D,F exists.

The supervised learning problem can be derived from the general learning task (3.1)
with the following instantiation:

• the observation space is O = X ◊ Y, where X ™ Rd,

• the action space is A = F ™ YX ,

• the learning algorithm is A =

‚f , and

• the loss function is

¸d : Q ◊ F –
(

◊, f
)

‘æ ¸d (◊, f
)

:= erd (f , Á
(

◊
))

œ R
+

,

where Á
(

◊
)

is the probability measure associated with the parameter ◊ œ Q. One
needs to carefully distinguish between the error function d : Y ◊ Y æ R which
acts on the observation space, and the loss function ¸d : Q ◊ A æ R which acts
on the parameter and decision spaces.

Then the transition diagram for this supervised learning problem
(

¸d, Án) is

Q
(

X ◊ Y
)

n FÁn
‚f

. (3.5)

Binary Classification: When Y = {≠1, 1}, the supervised learning task (3.5) is called
binary classification, which is a central problem in machine learning (Devroye et al.
[2013]). A common error function for binary classification is simply the zero-one error
defined by d0≠1 (y, ‚y

)

= J‚y ”= yK. In this case the generalization error of a classifier
f : X æ {≠1, 1} w.r.t. a probability measure D is simply the probability that it
predicts the wrong label on a randomly drawn example:

erd0≠1 (f , D
)

:= E
(X,Y)≥D

[

d0≠1 (Y, f
(

X
))]

= P
(X,Y)≥D

[

f
(

X
)

”= Y
]

.
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The optimal error over all possible classifiers f : X æ {≠1, 1} for a given probability
measure D is called the Bayes error (minimum generalization error) associated with
D:

erd0≠1 (D)

:= inf
fœ{≠1,1}X

erd0≠1 (f , D
)

. (3.6)

It is easily verified that, if ÷D (

x
)

is defined as the conditional probability (under D)
of a positive label given x, ÷D (

x
)

= PD [

Y = 1 | X = x
]

, then the classifier fı
D : X æ

{≠1, 1} given by

fı
D (

x
)

=

Y

]

[

1 if ÷D (

x
)

Ø 1/2
≠1 otherwise

achieves the Bayes error. Such a classifier is termed a Bayes classifier. In general, ÷D

is unknown so the above classifier cannot be constructed directly.

By defining ¸d0≠1 : Q ◊ F –
(

◊, f
)

‘æ ¸d0≠1 (◊, f
)

:= erd0≠1 (f , Á
(

◊
))

œ R
+

, the
binary classification problem

!

¸d0≠1 , Án
"

can be represented by the following transition
diagram:

Q
(

X ◊ {≠1, 1}
)

n FÁn
‚f

. (3.7)

Note that the repeated experiment Án above induces the class of probability measures
given by PÁn ((

X ◊ {≠1, 1}
)

n
)

:= {Án (◊) := Á
(

◊
)

n œ P
(

X ◊ {≠1, 1}
)

n : ◊ œ Q}. Us-
ing the Bayes rule, the distribution PÁ(◊) can be decomposed as follows:

PÁ(◊) [X = x, Y = 1
]

= PÁ(◊) [X = x
]

· PÁ(◊) [Y = 1 | X = x
]

= MÁ(◊) (x) · ÷Á(◊) (x) ,

where MÁ(◊) (x) := PÁ(◊) [X = x
]

and ÷Á(◊) (x) := PÁ(◊) [Y = 1 | X = x
]

. For simplicity
we will write PÁ(◊), MÁ(◊), ÷Á(◊), and fı

Á(◊) as P◊, M◊, ÷◊, and fı
◊ respectively.

Cost-sensitive Binary Classification: Suppose we are given gene expression profiles
for some number of patients, together with labels for these patients indicating whether
or not they had a certain form of a disease. We want to design a learning algorithm
which automatically recognizes the diseased patient based on the gene expression profile
of a patient. In this case, there are di�erent costs associated with di�erent types of
mistakes (the health risk for a false label “no” is much higher than for a false “yes”),
and the cost-sensitive error function (for c œ (0, 1)) can be used to capture this:

dc : Y ◊ Y –
(

y, ‚y
)

‘æ dc (y, ‚y
)

:= J‚y ”= yK · {c · Jy = 1K+ c · Jy = ≠1K} ,

where c := 1 ≠ c. Then the performance measure (loss function) associated with the
above cost-sensitive error function is given by

¸dc : Q ◊ F –
(

◊, f
)

‘æ ¸dc (◊, f
)

:= erdc (f , Á
(

◊
))

œ R
+

,
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where

erdc (f , Á
(

◊
))

:= E
(X,Y)≥Á(◊)

[

dc (Y, f
(

X
))]

= E
(X,Y)≥Á(◊)

[

Jf
(

X
)

”= YK · {c · JY = 1K+ c · JY = ≠1K}
]

.

For any ÷ : X æ
[

0, 1
]

, and f : X æ {≠1, 1}, define the conditional generalization
error (given x œ X ) as

erdc (f , ÷; x
)

:= E
Y≥÷(x)

[

dc (Y, f
(

x
))]

= c · ÷
(

x
)

· Jf
(

x
)

”= 1K+ c · ÷
(

x
)

· Jf
(

x
)

”= ≠1K,

where ÷
(

x
)

:= 1 ≠ ÷
(

x
)

. Then erdc (f , ÷; x
)

is minimized by

fı
(

x
)

:= arg min
fœ{≠1,1}X

E
Y≥÷(x)

[

dc (Y, f
(

x
))]

= sign
1

c · ÷
(

x
)

≠ c · ÷
(

x
)

2

= sign
(

÷
(

x
)

≠ c
)

,

since erdc (f
ı, ÷; x

)

= c · ÷
(

x
)

· c · ÷
(

x
)

. In order to find the optimal classifier for
each ◊ œ Q (associated joint probability measure Á

(

◊
)

on X ◊ {≠1, 1}) w.r.t. the cost-
sensitive loss function, we note that

inf
fœ{≠1,1}X

¸dc (◊, f
)

= inf
fœ{≠1,1}X

erdc (f , Á
(

◊
))

= inf
fœ{≠1,1}X

E
X≥M◊

C

E
Y≥÷◊(X)

[

dc (Y, f
(

X
))]

D

= E
X≥M◊

C

inf
fœ{≠1,1}X

E
Y≥÷◊(X)

[

dc (Y, f
(

X
))]

D

= ¸dc (◊, fı
◊ ) ,

where M◊ (x) := PÁ(◊) [X = x
]

, ÷◊ (x) := PÁ(◊) [Y = 1 | X = x
]

, and fı
◊ is given by

fı
◊ (

x
)

:=

Y

]

[

1, if ÷◊(x) Ø c

≠1, otherwise
. (3.8)

We instantiate the following objects related to the cost-sensitive classification prob-
lem

Regret D¸dc (◊, f
)

:= ¸dc (◊, f
)

≠ ¸dc (◊, fı
◊ )

Full Risk RD¸dc

1

Án, ◊, ‚f
2

:= E
{(Xi,Yi)}n

i=1≥Án(◊)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

[

D¸dc (◊, f
)]

T

V
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Full Minimax Risk Rı
D¸dc

(

Án) := inf
‚f

sup
◊œQ

RD¸dc

1

Án, ◊, ‚f
2

.

The following lemma from Scott et al. [2012] will be used later.

Lemma 3.1 (Scott et al. [2012]). Consider the binary classification problem (3.7). For
any f œ F and c œ (0, 1),

D¸dc (◊, f
)

=

1
2 · E

X≥M◊

[

|÷◊ (X) ≠ c| · |f
(

X
)

≠ fı
◊ (

X
)

|
]

,

where fı
◊ is given by (3.8).

Proof. Consider a fixed x œ X . Recall that

fı
◊ (

x
)

= arg min
fœ{≠1,1}X

E
Y≥÷◊(x)

[

dc (Y, f
(

x
))]

= sign
(

÷◊ (x) ≠ c
)

.

Therefore inffœ{≠1,1}X E
Y≥÷◊(x)

[

dc (Y, f
(

x
))]

= E
Y≥÷◊(x)

[

dc (Y, fı
◊ (

x
))]

. This implies

E
Y≥÷◊(x)

[

dc (Y, f
(

x
))]

≠ E
Y≥÷◊(x)

[

dc (Y, fı
◊ (

x
))]

= c ÷◊ (x) Jf(x) ”= 1K+ c ÷◊ (x)Jf(x) ”= ≠1K

≠
Ó

c ÷◊ (x) Jfı
◊ (x) ”= 1K+ c ÷◊ (x)Jfı

◊ (x) ”= ≠1K
Ô

= Jf(x) ”= fı
◊ (x)K|÷◊ (x) ≠ c|

=

1
2 · |f(x) ≠ fı

◊ (x)| · |÷◊ (x) ≠ c|.

Then the proof is completed by noting that

¸dc (◊, f
)

≠ ¸dc (◊, fı
◊ ) = E

X≥M◊

C

E
Y≥÷◊(X)

[

dc (Y, f
(

X
))]

≠ E
Y≥÷◊(X)

[

dc (Y, fı
◊ (

X
))]

D

=

1
2 E

X≥M◊

[

|f
(

X
)

≠ fı
◊ (

X
)

| · |÷◊ (X) ≠ c|
]

.

Parameter Estimation Problem: The main goal of a parameter problem is to ac-
curately reconstruct the parameters of the original distribution from which the data
is generated, using the loss function of the type fl : Q ◊ Q æ R. This problem is
represented by the following transition diagram (with A = Q, and A =

‚◊):

Q On Q
Án ‚◊

. (3.9)

Let ◊ : P
(

O
)

æ Q denote a function defined on P
(

O
)

, that is, a mapping
P ‘æ ◊

(

P
)

. The goal of the algorithm ‚◊ is to estimate the parameter ◊
(

P
)

based
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on observations On
1 drawn from the (unknown) distribution P . In certain cases, the

parameter ◊
(

P
)

uniquely determines the underlying distribution; for example, in the
case of mean (◊) estimation problem from the normal distribution family P

(

O
)

=

Ó

N
(

◊, S
)

: ◊ œ Rd
Ô

with known covariance matrix S, the parameter mapping ◊
(

P
)

=

E
O≥P

[

O
]

uniquely determines distributions in P
(

O
)

. In other scenarios, however, ◊

does not uniquely determine the distribution (confer Duchi [2016; accessed March 30,
2017] for general treatment with this broader viewpoint of estimating functions of dis-
tributions). In this chapter we consider the one-to-one function P ‘æ ◊

(

P
)

.
Observe that the class of probability measures induced by the repeated experiment

Án is written as PÁn (

On
)

:= {Án (◊) := Á
(

◊
)

n œ P
(

O
)

n : ◊ œ Q}. Let fl : Q ◊ Q æ R

be a pseudo metric (that is, it satisfies symmetry and the triangle inequality) on Q.
Then the minimax risk of this problem is defined as

Rı
fl (Án) := inf

‚◊
sup
◊œQ

E
On

1 ≥Án(◊)

C

E
◊̃≥‚◊(On

1 )

Ë

fl
1

◊, ◊̃
2È

D

. (3.10)

Hardness of a Problem via minimax lower bounds: Understanding the hardness
or fundamental limits of a learning problem is important for practice for the following
reasons:

• They give an estimate on the number of samples required for a good performance
of a learning algorithm.

• They give an intuition about the quantities and structural properties which are
essential for a learning process and therefore about which problems are inherently
easier than others.

• They quantify the influence of parameters and indicate what prior knowledge is
relevant in a learning setting and therefore they guide the analysis, design, and
improvement of learning algorithms.

Note that the “hardness” here corresponds to lower bounds on sample complexity (and
not computational complexity). We demonstrate the hardness of a learning problem
(3.1) (and the instantiations of it) by obtaining lower bounds for the minimax risk
Rı

¸ (Án) of it.
In section 3.2 we review and extend techniques due to Le Cam [2012] and Assouad

[1983] for obtaining minimax lower bounds for learning problems. Both techniques
proceed by reducing the learning problem to an easier hypothesis testing problem
[Tsybakov, 2009; Yang and Barron, 1999; Yu, 1997], then proving a lower bound on
the probability of error in testing problems.

Le Cam’s method, in its simplest form, provides lower bounds on the error in simple
binary hypothesis testing problems, by using the connection between hypothesis testing
and total variation distance.

Consider the parameter estimation problem (3.9) with Q = {≠1, 1}m for some m,
where the objective is to determine every bit of the underlying unknown parameter
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◊ œ {≠1, 1}m. In that setting, a key result known as Assouad’s lemma says that the
di�culty of estimating the entire bit string ◊ is related to the di�culty of estimating
each bit of ◊ separately, assuming all other bits are already known.

3.2 Hardness of the Cost-sensitive Classification Problem

In this section we follow the presentation of Raginsky [2015; accessed March 30, 2017].
Before studying the hardness of the cost-sensitive classification, we study the hardness
of the auxiliary problem of parameter estimation (3.9).

3.2.1 Minimax Lower Bounds for Parameter Estimation Problem

We derive the cost-dependent lower bound for Rı
fl (Án) (defined in (3.10)) by extending

the standard Le Cam and Assouad’s techniques. We start with the two point method
introduced by Lucien Le Cam for obtaining minimax lower bounds.

Proposition 3.2. For any c œ
(

0, 1
)

, the minimax risk Rı
fl (Án) (given by (3.10)) of the

parameter estimation problem (3.9) with (pseudo metric) loss function fl : Q ◊ Q æ R

is bounded from below as follows:

Rı
fl (Án) Ø sup

◊ ”=◊Õ

)

fl
(

◊, ◊Õ
)

·
(

c · c ≠ Ifc (Án (◊) , Án (◊
Õ
)))

*

,

where fc is given by (2.27).

Proof. Let c œ
(

0, 1
)

be arbitrary but fixed. Consider any two fixed parameters ◊, ◊Õ œ
Q s.t. ◊ ”= ◊Õ and an arbitrary estimator ‚◊ : On  Q. Let P n

◊ := Án (◊), and
P n

◊Õ := Án (◊Õ
)

(associated probability densities can be written as dP n
◊ and dP n

◊Õ). For
an arbitrary (but fixed) set of observations on

1 œ On, when c · dP n
◊Õ (on

1 ) Ø c · dP n
◊ (

on
1 ),

we have

c · dP n
◊ (

on
1 ) E

◊̃≥‚◊(on
1 )

Ë

fl(◊, ◊̃)
È

+ c · dP n
◊Õ (on

1 ) E
◊̃≥‚◊(on

1 )

Ë

fl(◊Õ, ◊̃)
È

= c · dP n
◊ (

on
1 ) E

◊̃≥‚◊(on
1 )

Ë

fl(◊, ◊̃) + fl(◊Õ, ◊̃)
È

+

(

c · dP n
◊Õ (on

1 ) ≠ c · dP n
◊ (

on
1 )) E

◊̃≥‚◊(on
1 )

Ë

fl(◊Õ, ◊̃)
È

(i)
Ø c · dP n

◊ (

on
1 ) E

◊̃≥‚◊(on
1 )

Ë

fl(◊, ◊̃) + fl(◊Õ, ◊̃)
È

(ii)
Ø c · dP n

◊ (

on
1 ) fl

(

◊, ◊Õ
)

, (3.11)

where (i) is due to c · dP n
◊Õ (on

1 ) Ø c · dP n
◊ (

on
1 ), and (ii) is due to the triangle inequality.

Similarly, for the case where c · dP n
◊Õ (on

1 ) Æ c · dP n
◊ (

on
1 ), we get

c · dP n
◊ (

on
1 ) E

◊̃≥‚◊(on
1 )

Ë

fl(◊, ◊̃)
È

+ c · dP n
◊Õ (on

1 ) E
◊̃≥‚◊(on

1 )

Ë

fl(◊Õ, ◊̃)
È

Ø c · dP n
◊Õ (on

1 ) fl
(

◊, ◊Õ
)

.

(3.12)
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By combining (3.11) and (3.12), and summing over all on
1 œ On, we get, for any two

◊, ◊Õ œ Q and any estimator ‚◊,

c · E
On

1 ≥P n
◊

C

E
◊̃≥‚◊(On

1 )

Ë

fl(◊, ◊̃)
È

D

+ c · E
On

1 ≥P n
◊Õ

C

E
◊̃≥‚◊(On

1 )

Ë

fl(◊Õ, ◊̃)
È

D

(3.13)

Ø fl
(

◊, ◊Õ
)

·
⁄

cdP n
◊ · cdP n

◊Õ

= fl
(

◊, ◊Õ
)

·
(

c · c ≠ Ifc (P
n
◊ , P n

◊Õ)) , (3.14)

where the last equality follows from the definition of c-primitive f -divergences (2.30).
By taking the supremum of both sides over the choices of ◊, ◊Õ (since then the two terms
in (3.13) collapse to one), we have

sup
◊œQ

E
On

1 ≥P n
◊

C

E
◊̃≥‚◊(On

1 )

Ë

fl(◊, ◊̃)
È

D

Ø sup
◊ ”=◊Õ

)

fl
(

◊, ◊Õ
)

·
(

c · c ≠ Ifc (Án(◊), Án(◊
Õ
)

))

*

.

The proof is completed by taking the infimum of both sides over ‚◊.

By setting c =

1
2 in Proposition 3.2, we recover Le Cam’s (Le Cam [2012]) minimax

lower bound for parameter estimation problem (3.9):

Rı
fl (Án) Ø 1

2 sup
◊ ”=◊Õ

;

fl
(

◊, ◊Õ
)

·
3

1 ≠ 1
2dTV (

Án (◊) , Án (◊
Õ
))

4<

,

since If 1
2
(

P , Q
)

=

1
4dTV (

P , Q
)

(from (2.31) with c =

1
2). Now we provide an auxiliary

result which will be useful in deriving the cost-dependent minimax lower bounds via
Assouad’s lemma (Assouad [1983]).

Corollary 3.3. Let fi be any prior distribution on Q, and let µ be any joint probability
distribution of a random pair (◊, ◊Õ

) œ Q ◊ Q, such that the marginal distributions of
both ◊ and ◊Õ are equal to fi. Then for any c œ

(

0, 1
)

, the minimax risk Rı
fl (Án) (given

by (3.10)) of the parameter estimation problem (3.9) is bounded from below as follows:

Rı
fl (Án) Ø E

(◊,◊Õ
)≥µ

[

fl
(

◊, ◊Õ
)

·
(

c · c ≠ Ifc (Án (◊) , Án (◊
Õ
)))]

Proof. First observe that for any prior fi

Rı
fl (Án) Ø inf

‚◊
E

◊≥fi

C

E
On

1 ≥Án(◊)

C

E
◊̃≥‚◊(On

1 )

Ë

fl(◊, ◊̃)
È

DD

,

since the minimax risk can be lower bounded by the Bayesian risk (see Theorem 2.4).
Then by taking expectation of both sides of (3.14) w.r.t µ and using the fact that,
under µ, both ◊ and ◊Õ have the same distribution fi, the proof is completed.

Using the above corollary and extending the standard Assouad’s lemma, we derive
the cost-dependent minimax lower bound for the parameter estimation problem (3.9).



32 Asymmetric Learning Problems

Theorem 3.4. Let d œ N, Q = {≠1, 1}d and fl = flHa, where the Hamming distance
flHa is given by (2.1). Then for any c œ

(

0, 1
)

, the minimax risk of the parameter
estimation problem (3.9) satisfies

Rı
flHa (Án) Ø d

A

c · c ≠ max
◊,◊Õ:flHa(◊,◊Õ

)=1
Ifc (Án (◊) , Án (◊

Õ
))

B

.

Proof. Recall that flHa(◊, ◊Õ
) =

qd
i=1 fli(◊, ◊Õ

), where fli(◊, ◊Õ
) := J◊i ”= ◊Õ

iK, and each fli

is a pseudo metric. Let fi(◊) = 1
2d , ’◊ œ {≠1, 1}d. Also for each i œ

[

d
]

, let µi be the
distribution in Q ◊ Q such that any random pair (◊, ◊Õ

) œ Q ◊ Q drawn according to
µi satisfies

1. ◊ ≥ fi

2. fli(◊, ◊Õ
) = 1, and flHa(◊, ◊Õ

) = 1 (◊ and ◊Õ di�er only in the i-th coordinate).

Then the marginal distribution of ◊Õ under µi is
ÿ

◊œ{≠1,1}d

µi(◊, ◊Õ
) =

1
2d

ÿ

◊œ{≠1,1}d

J◊i ”= ◊Õ
i and ◊j = ◊Õ

j , j ”= iK = 1
2d

= fi(◊Õ
),

since by construction of µ, flHa (◊, ◊Õ
)

= 1 and for each ◊Õ there is only one ◊ that di�ers
from it in a single coordinate. Now consider

Rı
flHa (Án)

(i)
Ø inf

‚◊
E

◊≥fi

C

E
On

1 ≥Án(◊)

C

E
◊̃≥‚◊(On

1 )

Ë

flHa
1

◊, ◊̃
2È

DD

(ii)
= inf

‚◊

d
ÿ

i=1
E

◊≥fi

C

E
On

1 ≥Án(◊)

C

E
◊̃≥‚◊(On

1 )

Ë

fli

1

◊, ◊̃
2È

DD

Ø
d

ÿ

i=1
inf
‚◊

E
◊≥fi

C

E
On

1 ≥Án(◊)

C

E
◊̃≥‚◊(On

1 )

Ë

fli

1

◊, ◊̃
2È

DD

(iii)
Ø

d
ÿ

i=1
E

(◊,◊Õ
)≥µi

[

fli (◊, ◊Õ
)

·
(

c · c ≠ Ifc (Án (◊) , Án (◊
Õ
)))]

(iv)
=

d
ÿ

i=1
E

(◊,◊Õ
)≥µi

[(

c · c ≠ Ifc (Án (◊) , Án (◊
Õ
)))]

Ø
d

ÿ

i=1
min

◊,◊Õ:flHa(◊,◊Õ
)=1

(

c · c ≠ Ifc (Án (◊) , Án (◊
Õ
)))

= d

A

c · c ≠ max
◊,◊Õ:flHa(◊,◊Õ

)=1
Ifc (Án (◊) , Án (◊

Õ
))

B

,

where (i) is due to the fact that the minimax risk is lower bounded by the Bayesian risk
(see Theorem 2.4), (ii) is due to flHa(◊, ◊Õ

) =

qd
i=1 fli(◊, ◊Õ

), (iii) is by Corollary 3.3,
and (iv) is by the fact that fli(◊, ◊Õ

) = 1 under µi for every i.



§3.2 Hardness of the Cost-sensitive Classification Problem 33

If we re-normalize Ifc (·, ·
)

by c · c, and define Iú
fc
(

·, ·
)

:= 1
c·cIfc (·, ·

)

, then the
minimax lower bound in Theorem 3.4 can be written as follows:

Rı
flHa (Án) Ø d ·

(

c · c
)

C

1 ≠ max
◊,◊Õ:flHa(◊,◊Õ

)=1
Iú

fc
(

Án (◊) , Án (◊
Õ
))

D

.

Also note that, by setting c =

1
2 in Theorem 3.4, we recover the standard Assouad’s

lemma (Assouad [1983]):

Rı
flHa (Án) Ø d

2

A

1 ≠ 1
2 max

◊,◊Õ:flHa(◊,◊Õ
)=1

dTV (

Án (◊) , Án (◊
Õ
))

B

.

We use the following two properties of the Hellinger distance He2
(

P , Q
)

(shown in
Chapter 2) to derive a more practically useful version of Assouad’s lemma:

• Ifc (P , Q
)

Æ
(

c · c
)

· He
(

P , Q
)

, for all distributions P , Q œ P
(

O
)

(refer (2.34))

• He2
1

ok
i=1 Pi,

ok
i=1 Qi

2

Æ qk
i=1 He2

(

Pi, Qi), for all distributions Pi, Qi œ
P
(

Oi), i œ [k]

Armed with these facts, we prove the following version of Assouad’s lemma:

Corollary 3.5. Let O be some set and c œ [0, 1]. Define

PÁ (O)

:=
Ó

Á
(

◊
)

œ P
(

O
)

: ◊ œ {≠1, 1}d
Ô

be a class of probability measures induced by the transition Á : {≠1, 1}d  O. Suppose
that there exists some function – :

[

0, 1
]

æ R
+

, such that

He2
(

Á
(

◊
)

, Á
(

◊Õ
))

Æ –
(

c
)

, if flHa (◊, ◊Õ
)

= 1,

i.e. the two probability distributions Á
(

◊
)

and Á
(

◊Õ
)

(associated with the two parameters
◊ and ◊Õ which di�er only in one coordinate) are su�ciently close w.r.t. Hellinger dis-
tance. Then the minimax risk of the parameter estimation problem (3.9) with parameter
space Q = {≠1, 1}d and the loss function fl = flHa is bounded below by

Rı
flHa (Án) Ø d · (c · c) ·

3

1 ≠
Ò

–
(

c
)

n
4

. (3.15)

Proof. For any two ◊, ◊Õ œ Q with flHa (◊, ◊Õ
)

= 1, we have

Ifc (Án (◊) , Án (◊
Õ
))

Æ
(

c · c
)

· He
(

Án (◊) , Án (◊
Õ
))

Æ
(

c · c
)

·
ˆ

ı

ı

Ù

n
ÿ

i=1
He2

(

Á
(

◊
)

, Á
(

◊Õ
))

Æ
(

c · c
)

·
Ò

–
(

c
)

n
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Substituting this bound into Theorem 3.4 completes the proof.

The number of training samples n appear in the minimax lower bound (3.15). Thus
the hardness of the problem can be expressed as a function of the sample size along
with other problem specific parameters.

3.2.2 Minimax Lower Bounds for Cost-sensitive Classification Problem

A natural question to ask regarding cost-sensitive classification problem is how does the
hardness of the problem depend upon the cost parameter c œ

[

0, 1
]

. Let F ™ {≠1, 1}X

be the action space and h œ
[

0, c · c
]

be the margin parameter whose interpretation
is explained below. Then we choose a parameter space Qh,F (thus the experiment
Áh,F : Qh,F  (

X ◊ {≠1, 1}
)

) such that:

1. ’◊ œ Qh,F , fı
◊ œ F , where fı

◊ is given by (3.8). That is we restrict the parameter
space s.t. the Bayes classifier associated with each choice of parameter lies within
the predetermined function class F .

2.
|÷◊ (X) ≠ c| Ø h a.s. ’◊ œ Qh,F . (3.16)

This condition is a generalized notion of Massart noise condition with margin h œ
[

0, c · c
]

(Massart and Nédélec [2006]). The motivation for this condition is well
established by Massart and Nédélec [2006]. They have argued that under certain
“margin” type conditions ([Vapnik and Chervonenkis, 1974; Tsybakov, 2004])
like this, it is possible to design learning algorithms for the binary classification
problem, with better rates compared to the case where no such condition is
satisfied.

Thus we consider the problem represented by following transition diagram

Qh,F (

X ◊ {≠1, 1}
)

n FÁn
‚f

, (3.17)

and the minimax risk (in terms of regret) of it given by

Rı
D¸dc

(

Án) := inf
‚f

sup
◊œQh,F

E
{(Xi,Yi)}n

i=1≥Án(◊)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

[

D¸dc (◊, f
)]

T

V. (3.18)

The following is a generalization of the result proved in [Massart and Nédélec, 2006,
Theorem 4] for c =

1
2 .

Theorem 3.6. Let F be a VC class of binary-valued functions on X with VC dimension
(refer section 3.6.1) V Ø 2. Then for any n Ø V and any h œ [0, c · c], the minimax
risk (3.18) of the cost-sensitive binary classification problem (3.17) is lower bounded as
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follows:

Rı
D¸dc

(

Án) Ø K · (c · c) · min

Q

a

Û

(c · c)V

n
, (c · c) · V

nh

R

b

where K > 0 is some absolute constant.

Proof. Instantiate Q = A = B := {≠1, 1}V ≠1, O = X ◊ {≠1, 1}, and A =

‚b in the
general learning task (3.1). Then the resulting parameter estimation problem can be
represented by the following transition diagram:

B On B
Án ‚b

.

Let PÁn (

On
)

:= {Án (b) := Á
(

b
)

n œ P
(

O
)

n : b œ B} be the class of probability mea-
sures induced by the experiment Án. Then the minimax risk of this problem w.r.t.
Hamming distance flHa is given by

Rı
flHa (Án) = inf

‚b
max
bœB

E
On

1 ≥Án(b)

C

E
bÕ≥‚b(On

1 )
[

flHa (b, bÕ
)]

D

.

Observe that PÁ(b) [X = x, Y = y
]

= PÁ(b) [X = x
]

· PÁ(b) [Y = y|X = x
]

for b œ B
(by Bayes rule). For simplicity, we will write PÁ(b) [·] as Pb [·]. Now we will construct
these distributions.

Construction of marginal distribution Pb [X = x
]

, x œ X : Since F is a VC
class with VC dimension V , ÷ {x1, ..., xV } µ X that is shattered, i.e. for any — œ
{≠1, 1}V , ÷f œ F s.t. f(xi) = —i, ’i œ

[

V
]

. Given p œ
[

0, 1/(V ≠ 1)
]

, for each b œ B,
let

Pb [X = x
]

=

Y

_

_

]

_

_

[

p, if x = xi for some i œ
[

V ≠ 1
]

1 ≠ (V ≠ 1)p, if x = xV

0, otherwise
(3.19)

A particular value for p will be chosen later.
Construction of conditional distribution Pb [Y = y|X = x

]

, y œ {≠1, 1} , x œ
X : For each b œ B, let

÷b (x) := Pb [Y = 1|X = x
]

=

Y

_

_

]

_

_

[

c ≠ h, if x = xi for some i œ
[

V ≠ 1
]

, and bi = ≠1
c + h, if x = xi for some i œ

[

V ≠ 1
]

, and bi = 1
0, otherwise.

(3.20)
Then the corresponding Bayes classifier can be given as follows:

fı
b (x) =

Y

_

_

]

_

_

[

≠1, if x = xi for some i œ
[

V ≠ 1
]

, and bi = ≠1
1, if x = xi for some i œ

[

V ≠ 1
]

, and bi = 1
≠1, otherwise

(3.21)
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Now we show that {Á
(

b
)

: b œ B} ™ {Á
(

◊
)

: ◊ œ Qh,F}. First of all, from (3.20) we see
that |÷b (x) ≠ c| Ø h for all x (indeed, |÷b (x) ≠ c| = h when x œ {x1, ..., xV ≠1}, and
|÷b (x)≠ c| = c otherwise). Second, because {x1, ..., xV } is shattered by F , there exists
at least one f œ F , such that fı

b (x) = f(x) for all x œ {x1, ..., xV }. Thus, we get
B µ Qh,F .

Reduction to Parameter Estimation Problem: We start with the following
observation

Rı
D¸dc

(

Án) Ø inf
‚f

max
bœB

E
{(Xi,Yi)}n

i=1≥Án(b)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

[

¸dc (b, f
)

≠ ¸dc (b, fı
b )]

T

V,

since B µ Qh,F . Define M◊ (x) := P◊ [X = x
]

, and ÷◊ (x) := P◊ [Y = 1 | X = x
]

, for
x œ X . By Lemma 3.1, for any classifier f : X æ {≠1, 1} and any ◊ œ Qh,F , we have

¸dc (◊, f
)

≠ ¸dc (◊, fı
◊ ) =

1
2 · E

X≥M◊

[

|÷◊ (X) ≠ c| · |f
(

X
)

≠ fı
◊ (

X
)

|
]

.

If ◊ œ Qh,F , then using the above equation and the margin condition (3.16) we get

¸dc (◊, f
)

≠ ¸dc (◊, fı
◊ ) Ø h

2 · E
X≥M◊

[

|f
(

X
)

≠ fı
◊ (

X
)

|
]

=

h

2 · Îf ≠ fı
◊ ÎL1(M◊)

,

where ÎfÎL1(M◊)
is given by (2.5) with p = 1 and µ = M◊. Since there is no confusion,

we can simply drop M◊ and write the L1 norm as Î·ÎL1
. Hence we have

inf
‚f

max
bœB

E
{(Xi,Yi)}n

i=1≥Án(b)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

[

¸dc (b, f
)

≠ ¸dc (b, fı
b )]

T

V

Ø h

2 · inf
‚f

max
bœB

E
{(Xi,Yi)}n

i=1≥Án(b)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

Ë

Îf ≠ fı
b ÎL1

È

T

V.

Define
bf := arg min

bœB
Îf ≠ fı

b ÎL1
.

Then for any b œ B,
.

.

.

fı
bf

≠ fı
b

.

.

.

L1
Æ

.

.

.

fı
bf

≠ f
.

.

.

L1
+ Îf ≠ fı

b ÎL1
Æ 2 Îf ≠ fı

b ÎL1
,

where the first inequality is due to the triangle inequality and the second follows from
the definitions of bf and fı

◊ . Thus we have

inf
‚f

max
bœB

E
{(Xi,Yi)}n

i=1≥Án(b)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

[

¸dc (b, f
)

≠ ¸dc (b, fı
b )]

T

V

Ø h

4 · inf
‚f

max
bœB

E
{(Xi,Yi)}n

i=1≥Án(b)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

5

.

.

.

fı
bf

≠ fı
b

.

.

.

L1

6

T

V
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=

h

4 · inf
‚b

max
bœB

E
{(Xi,Yi)}n

i=1≥Án(b)

S

U E
bÕ≥‚b

(

{(Xi,Yi)}n
i=1)

Ë

Îfı
bÕ ≠ fı

b ÎL1

È

T

V.

For any two b, bÕ œ B, we have

Îfı
bÕ ≠ fı

b ÎL1
=

⁄

X
|fı

bÕ(x) ≠ fı
b (x)|Pb [X = x

]

dx

= p
V ≠1
ÿ

i=1
|fı

bÕ(xi) ≠ fı
b (xi)|

= p
V ≠1
ÿ

i=1
|bÕ

i ≠ bi|

= 2p · flHa (b, bÕ
)

,

where the second and third equalities are from (3.19) and (3.21). Finally we get

inf
‚f

max
bœB

E
{(Xi,Yi)}n

i=1≥Án(b)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

[

¸dc (b, f
)

≠ ¸dc (b, fı
b )]

T

V

Ø ph

2 · inf
‚b

max
bœB

E
{(Xi,Yi)}n

i=1≥Án(b)

S

U E
bÕ≥‚b

(

{(Xi,Yi)}n
i=1)

[

flHa (b, bÕ
)]

T

V

=

ph

2 · Rı
flHa (Án) . (3.22)

Applying Assouad’s Lemma: For any two b, bÕ œ B we have

He2
(

Á
(

b
)

, Á
(

bÕ
))

=

V
ÿ

i=1

ÿ

yœ{≠1,1}

3

Ò

Pb [X = xi, Y = y
]

≠
Ò

PbÕ
[

X = xi, Y = y
]

42

= p
V ≠1
ÿ

i=1

ÿ

yœ{≠1,1}

3

Ò

Pb [Y = y|X = xi] ≠
Ò

PbÕ
[

Y = y|X = xi]

42

= p
V ≠1
ÿ

i=1
Jbi ”= bÕ

iK
I

1Ô
c ≠ h ≠ Ô

c + h
22

+

3

Ò

c ≠ h ≠
Ò

c + h
42

J

= 2p
1

1 ≠


c2 ≠ h2 ≠


c2 ≠ h2
2

flHa (b, bÕ
)

,

where the second and third equalities are from (3.19) and (3.20). Thus the condition
of the Corollary 3.5 is satisfied with

2p
1

1 ≠


c2 ≠ h2 ≠


c2 ≠ h2
2

Æ 4p
h2

c · c
=: –

(

c
)

,
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where the inequality is from Lemma 3.7 (see below). Therefore we get

inf
‚f

max
bœB

E
{(Xi,Yi)}n

i=1≥Án(b)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

[

¸dc (b, f
)

≠ ¸dc (b, fı
b )]

T

V

Ø ph(V ≠ 1)
2

Q

ac · c ≠ c · c ·
Û

4p
h2

c · c
n

R

b

=

ph(V ≠ 1)
2

!

c · c ≠ 2h
Ô

c · c · pn
"

,

where the first inequality is due to (3.15) and (3.22). If we let p =

c·c
9nh2 , then the term

in the parentheses will be equal to c·c
3 , and

inf
‚f

max
bœB

E
{(Xi,Yi)}n

i=1≥Án(b)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

[

¸dc (b, f
)

≠ ¸dc (b, fı
b )]

T

V Ø (c · c)2
(V ≠ 1)

54nh
,

assuming that the condition p Æ 1/(V ≠ 1) holds. This will be the case if h Ø
Ò

c·c(V ≠1)
9n . Therefore

Rı
D¸dc

(

Án) Ø (c · c)2
(V ≠ 1)

54nh
, if h Ø

Û

c · c(V ≠ 1)
9n

. (3.23)

If h Æ
Ò

c·c(V ≠1)
9n , we can use the above construction with h̃ =

Ò

c·c(V ≠1)
9n . Then,

because Qh̃,F ™ Qh,F whenever h̃ Ø h, we see that

inf
‚f

sup
◊œQh,F

E
{(Xi,Yi)}n

i=1≥Án(◊)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

[

¸dc (◊, f
)

≠ ¸dc (◊, fı
◊ )]

T

V

Ø inf
‚f

sup
◊œQh̃,F

E
{(Xi,Yi)}n

i=1≥Án(◊)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

[

¸dc (◊, f
)

≠ ¸dc (◊, fı
◊ )]

T

V

Ø (c · c)2
(V ≠ 1)

54nh̃

=

(c · c)
3
2

18

Û

V ≠ 1
n

, if h Æ
Û

c · c(V ≠ 1)
9n

. (3.24)

Observe that (c·c)2
(V ≠1)

54nh Æ (c·c)
3
2

18

Ò

V ≠1
n if h Ø

Ò

c·c(V ≠1)
9n , and (c·c)2

(V ≠1)
54nh > (c·c)

3
2

18

Ò

V ≠1
n

otherwise. Then combining (3.23) and (3.24) completes the proof.

Lemma 3.7. For h œ
[

0, c · c
]

, we have 1 ≠ Ô
c2 ≠ h2 ≠ Ô

c2 ≠ h2 Æ 2 h2

c·c .

Proof. Let A = 1 ≠ Ô
c2 ≠ h2 ≠ Ô

c2 ≠ h2. Take series expansion of A w.r.t. h to get

A =

1
2

31
c
+

1
c

4

h2
+

1
8

3 1
c3 +

1
c3

4

h4
+

1
16

3 1
c5 +

1
c5

4

h6
+

5
128

3 1
c7 +

1
c7

4

h8
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+

7
256

3 1
c9 +

1
c9

4

h10
+

21
1024

3 1
c11 +

1
c11

4

h12
+

33
2048

3 1
c13 +

1
c13

4

h14
+ · · · .

Now 1
2

1

1
c +

1
c

2

Æ 1
c ‚ 1

c =

1
c·c (since average is less than maximum). Thus

A Æ h

C

h

c · c
+

1
4

h3

(

c · c
)

3 +

1
8

h5

(

c · c
)

5 +

5
64

h7

(

c · c
)

7 +

7
128

h9

(

c · c
)

9 +

21
512

h11

(

c · c
)

11 + · · ·
D

.

Now we have

h Æ c · c =∆ h

c · c
Æ 1

=∆
3

h

c · c

4–

Æ h

c · c
, ’– Ø 1.

Thus

A Æh
5

h

c · c
+

h

c · c

;1
4 +

1
8 +

5
64 +

7
128 +

21
512 + · · ·

<6

Æh
5 2h

c · c

6

=

2h2

c · c
,

where the second inequality follows from the fact that (can be shown with the aid of
computer or using the properties of gamma function)

1
4 +

1
8 +

5
64 +

7
128 +

21
512 + · · · Æ 1.

When h = 0 (or being too small), we get a minimax lower bound of order
(

c · c
)

3
2 ·

Ò

V
n , and when h = c · c, we obtain a bound of the order

(

c · c
)

· V
n .

When c = 1/2 in Theorem 3.6, we recover the standard minimax lower bounds for
balanced binary classification (with zero-one loss function) presented in [Massart and
Nédélec, 2006, Theorem 4]:

Rı
D¸0≠1 (Án) Ø K Õ · min

Q

a

Û

V

n
, V

nh

R

b ,

for some constant K Õ > 0.
It would be interesting to study the hardness of the following classification problem

settings which are closely related to the binary cost-sensitive classification problem that
we considered in this thesis:

1. Cost-sensitive classification with example dependent costs ([Zadrozny and Elkan,
2001; Zadrozny et al., 2003]).

2. Binary classification problem w.r.t. generalized performance measures (Koyejo
et al. [2014]) such as arithmetic, geometric and harmonic means of the true posi-
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tive and true negative rates. These measures are more appropriate for imbalanced
classification problem ([Cardie and Nowe, 1997; Elkan, 2001]) than the usual clas-
sification accuracy.

3.3 Constrained Learning Problem

In the normal theoretical analysis of the learning problem (3.1), it is assumed that the
decision maker has access to clean data (in On), that their observations are from the
pattern they are expected to predict. In the real world, this is usually not the case,
data is normally corrupted or needs to be corrupted to meet privacy requirements. We
can formalize these constraints (noisy data and privacy requirements) in the language
of transitions by introducing the channel T : O  ‚O, where ‚O is the new observation
space for the decision maker. The Constrained learning task (denoted by

(

¸, Án, T1:n),
where Án is the repeated experiment (2.16), and T1:n is the parallelized transition
(2.18)), can be represented by the following transition diagram:

Q On
‚On AÁn T1:n A

Á̃n :=
(

T ¶ Á
)n . (3.25)

For convenience we define the corrupted experiment Á̃ := T ¶ Á, and denote the re-
peated corrupted experiment by Á̃n. We study the hardness of this constrained learning
problem (3.25) by producing the minimax lower bounds of it. From the Weak Data
Processing Inequality (If (Á̃n) Æ If (Án)), we have

Rı
¸ (Á̃n) Ø Rı

¸ (Án) ,

i.e. the constrained problem is harder than the original unconstrained problem. Then
the minimax lower bounds for the unconstrained problem (3.1) are applicable to this
constrained task as well. However, this provides us with no means to compare various
choices of channel T for a given problem.

For some T , the weak data processing theorem can be strengthened, in the sense
that one can find a constant called the contraction coe�cient ÷f (T )

< 1 (formally
defined in Definition 3.8) such that If (Á̃n) Æ ÷f (T )

If (Án), for all experiments Á : Q 
O. The strengthened inequality is called the Strong Data Processing Inequality. The
contraction coe�cient ÷f (T )

provides a means to measure the amount of corruption
present in T . For example if T is constant and maps all input distributions to the same
output distribution, then ÷f (T )

= 0. If T is an invertible function, then ÷f (T )

= 1.
Together with the minimax lower bounds of unconstrained problem, this strong data
processing inequality leads to meaningful lower bounds that allow the comparison of
di�erent corrupted experiments. In what follows we will present some new results on
strong data processing inequalities. Specifically, we will derive an explicit closed form
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for the contraction coe�cient of any channel w.r.t. c-primitive f -divergence, and obtain
e�ciently computable lower bounds for the contraction coe�cients of binary symmetric
channels w.r.t. symmetric f -divergences.

3.3.1 Strong Data Processing Inequalities

Consider a channel T : X  Y, with finite input (X ) and output (Y) spaces (also
let |X | Ø 2 and |Y| Ø 2). Observe that T can also be viewed as an experiment with
a di�erent parameter space X . The classes of probability measures generated by the
experiment Á and the channel T are given by PÁ (O)

:= {Á
(

◊
)

œ P
(

O
)

: ◊ œ Q} and
PT (

Y
)

:= {T
(

x
)

œ P
(

Y
)

: x œ X } respectively.
Strong data processing inequalities has become an intensive research area in the

information theory community recently (see Raginsky [2014] and references therein).
Early work includes Ahlswede and Gács [1976] and Dobrushin [1956a] (see Cohen et al.
[1993] for further history).

Below we formally define the contraction coe�cient ÷f (T )

of the channel T w.r.t.
f -divergence. Recall that Pú (X )

means the set of all strictly positive distributions
over X .

Definition 3.8. Given a transition T : X  Y and µ œ Pú (X )

, we define

÷f (µ, T ) := sup
‹ ”=µ,‹œP(X )

If (T ¶ ‹, T ¶ µ
)

If (‹, µ
)

÷f (T ) := sup
µœPú(X )

÷f (µ, T ).

If ÷f (µ, T ) < 1, we say that T satisfies the strong data processing inequality (SDPI) at
µ w.r.t. f-divergence i.e.

If (T ¶ ‹, T ¶ µ
)

Æ ÷f (µ, T )If (‹, µ
)

for all ‹ œ P
(

X
)

. Moreover if ÷f (T ) < 1 we say that T satisfies the SDPI w.r.t.
f-divergence i.e.

If (T ¶ ‹, T ¶ µ
)

Æ ÷f (T )If (‹, µ
)

for all ‹ œ P
(

X
)

and µ œ Pú (X )

.

Cohen et al. [1993] showed that the contraction coe�cient ÷f (T ) of any channel
T with respect to any f -divergence is universally upper-bounded by the so-called Do-
brushin’s coe�cient of T [Dobrushin, 1956a,b]. Dobrushin’s coe�cient is extensively
studied in the context of Markov chains (see Paz [1971] and Isaacson and Madsen [1976]
for detailed discussions).

Theorem 3.9. Define the Dobrushin’s coe�cient [Dobrushin, 1956a,b] of a channel
T œ M

(

X , Y
)

as
Ë
(

T
)

:=
1
2 max

x,xÕœX
dTV (

T
(

x
)

, T
(

xÕ
))

. (3.26)
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Then the contraction coe�cient of the channel T w.r.t. any f-divergence is bounded
above as follows

÷f (T )

Æ ÷TV (

T
)

= Ë
(

T
)

, (3.27)

where ÷TV (

T
)

is the contraction coe�cient of the channel T w.r.t. total variation
divergence (i.e. TV

(

x
)

= |x ≠ 1|).
We are interested in the question of how loose the bound in Theorem 3.9 can be. For

this we study the contraction coe�cients w.r.t. c-primitive f -divergences (2.32). Recall
that any f -divergence can be written as a weighted integral of c-primitive f -divergences
as given in Theorem 2.7.

As a starting point, we define the generalized Dobrushin’s coe�cient of a channel
T : X  Y as follows

Ëc(T ) :=
1

c · c
· max

x,xÕœX
Ifc (T (x), T (xÕ

)

)

, (3.28)

where c œ
(

0, 1
)

and Ë0(T ) = Ë1(T ) := 0. Note that when c =

1
2 , this gives the

standard Dobrushin’s coe�cient. From the definition (3.28) we can note the following
properties of Ëc(T ):

1. For a given T , Ëc(T ) is symmetric in c about 1
2 i.e. Ëc = Ëc.

2. For the fully-informative channel we have Ëc(Tid) = 1 (can be easily shown from
the definition), and for the non-informative channel Ëc(T•X ) = 0. Thus for any
channel T we have 0 Æ Ëc(T ) Æ 1.

3. For two channels T1 and T2, it is possible that Ëc(T1) > Ëc(T2) and ËcÕ
(T1) <

ËcÕ
(T2) i.e. optimal channel choice based on contraction coe�cient will depend

on c (see Figure 3.1).

We have plotted the generalized Dobrushin’s coe�cient for binary channels T :
[

2
]

 
[

2
]

, and ternary channels T :
[

3
]

 
[

3
]

. Based on those observations (see
Figure 3.1), we conjecture the following properties of Ëc(T ):

1. For a given T , and for any 0 < c < cÕ < 0.5, Ëc(T ) Æ ËcÕ
(T ).

2. The maximum point of the curve Ëc(T ) always occurs at c =

1
2 (this matches

the fact that ÷TV(T ) upper bounds the contraction coe�cient ÷f (T ) of any f -
divergence).

We now relate the contraction coe�cient ÷fc(T ) w.r.t. c-primitive f -divergence to
the generalized Dobrushin’s coe�cient Ëc(T ) defined above.

Theorem 3.10. For any T œ M
(

X , Y
)

, and c œ
[

0, 1
]

we have

÷fc (T )

= Ëc (T )

where ÷fc (T )

is the contraction coe�cient of the channel T w.r.t. c-primitive f-divergence.
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1

1

T = T•X

T = Tid

T = T1

T = T2
c

Ëc(T )

Figure 3.1: Generalized Dobrushin’s coe�cient of two arbitrary channels T1 =

C

0.8 0.2
0.2 0.8

D

(—) and T2 =

C

0.1 0.6
0.9 0.4

D

(—), fully-informative channel Tid (—), and

non-informative channel T•X (—).

Proof. We follow the proof of Theorem 3.1 in [Raginsky, 2014].
We start with the following generalization of strong Markov contraction lemma from

Cohen et al. [1993]: for any signed measure ‹̃ on X , any c œ
[

0, 1
]

and any Markov
kernel T œ M

(

X , Y
)

, we have

ÎT ¶ ‹̃ÎTV Æ Ëc (T )

Î‹̃ÎTV +

(

1 ≠ Ëc (T ))

|‹̃
(

X
)

|, (3.29)

where the total variation norm Î‹̃ÎTV of signed measure ‹̃ is given by Î‹̃ÎTV :=
q

xœX |‹̃
(

x
)

|. This can be shown by simply following through the steps of the proof
of Lemma 3.2 in Cohen et al. [1993]. Let ‹̃ = c‹ ≠ cµ, where ‹ and µ are probability
measures on X . Then T ¶ ‹̃ = cT ¶ ‹ ≠ cT ¶ µ and |‹̃

(

X
)

| = |2c ≠ 1|. By using (3.29)
and the definition of c-primitive f -divergence (2.32), we get

dTV (

cT ¶ ‹, cT ¶ µ
)

Æ Ëc (T )

dTV (

c‹, cµ
)

+

(

1 ≠ Ëc (T ))

|2c ≠ 1|
=∆ dTV (

cT ¶ ‹, cT ¶ µ
)

≠ |2c ≠ 1| Æ Ëc (T )

{dTV (

c‹, cµ
)

≠ |2c ≠ 1|}
=∆ Ifc (T ¶ ‹, T ¶ µ

)

Æ Ëc (T )

· Ifc (‹, µ
)

.

Now it remains to show that this bound is achieved for some probability measures µ
and ‹.

To that end, let us first assume that |X | > 2. Let x0, x1 œ X achieve the maximum
in (3.28), pick some ‘1, ‘2, ‘ œ (0, 1) such that ‘1 ”= ‘2, ‘1 + ‘ < 1, ‘2 + ‘ < 1, and
consider the following probability distributions:

• ‹ that puts the mass 1 ≠ ‘1 ≠ ‘ on x0, ‘1 on x1, and distributes the remaining
mass of ‘ evenly among the set X \ {x0, x1};

• µ that puts the mass 1 ≠ ‘2 ≠ ‘ on x0, ‘2 on x1, and distributes the remaining
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mass of ‘ evenly among the set X \ {x0, x1}.

Then a simple calculation (using a mathematical software) gives

Ifc (‹, µ
)

=

1
2

Ó

|c‘1 ≠ c‘2| + |c
(

‘1 + ‘
)

≠ c
(

‘2 + ‘
)

| +
(

|X | ≠ 2
)

· |c‘ ≠ c‘| ≠ |2c ≠ 1|
Ô

Ifc (T ¶ ‹, T ¶ µ
)

=Ëc (T )

· Ifc (‹, µ
)

.

For |X | = 2, the idea is the same, except that there is no need for the extra slack ‘.

From the above theorem, for any T œ M
(

X , Y
)

and for all P , Q œ P
(

X
)

, we have

Ifc (T ¶ P , T ¶ Q
)

Æ Ëc (T )

Ifc (P , Q
)

.

Thus for any general f -divergence (using the weighted integral representation) we get

If (T ¶ P , T ¶ Q
)

=

⁄ 1

0
“f (c) Ifc (T ¶ P , T ¶ Q

)

dc

Æ
⁄ 1

0
Ëc (T )

“f (c) Ifc (P , Q
)

dc (3.30)

Æ Ë 1
2
(

T
)

· If (P , Q
)

,

where the last inequality is due to the fact that Ëc (T )

Æ Ë 1
2
(

T
)

. Even though this
doesn’t fully answer the question of how loose the universal bound (3.27) can be, (3.30)
along with the Figure 3.1, sheds some light in that direction.

Remark 3.11. Let f be a convex function with f
(

1
)

= 0, which can be written in the
following form

f(u) = –u + —u2
+

⁄ Œ

0

3

tu

1 + t2 ≠ u

u + t

4

v(dt),

where – œ R, — Ø 0, and v is a non-negative measure on R
+

such that
s Œ

0
1

1+t2 v(dt) <
Œ. Note that for such function f , we have

f ÕÕ
(u) = 2— + 2

⁄ Œ

0

t

(u + t)3 v(dt)

and thus

“f (c) =

2
c3 f ÕÕ

3

c

c

4

=

2
c3

Q

c

a

— +

⁄ Œ

0

t
1

c
c + t

23 v(dt)

R

d

b

. (3.31)

Raginsky [2014] has shown that for this class of functions, ÷f (T ) = S(T )

2, where

S(T ) := sup
µ

sup
f ,g

E
(X,Y)≥µ¢T

[

f(X)g(Y)
]

,

for E
[

f(X)
]

= E
[

g(Y)
]

= 0 and E
#

f(X)2$

= E
#

g(Y)2$

= 1. Still it is hard to compute
S(T ) for any non-trivial channels.
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Following divergences are generated from the functions that satisfy the above men-
tioned conditions:

• KL-divergence satisfies (3.31) with “KL (

c
)

=

1
c2c , — = 0, and v

(

dt
)

= dt.

• ‰2-divergence satisfies (3.31) with “‰2 (c) = 1
c3 , — = 1, and v

(

dt
)

= 0.

• squared Hellinger divergence satisfies (3.31) with “He2 (c) =

1
2(cc)

3
2

, — = 0, and

v
(

dt
)

=

2
fi

Ô
t
dt.

3.3.2 Binary Symmetric Channels

Despite the extensive research in the strong data processing inequalities, an e�ciently
computable closed form for the contraction coe�cient of a channel w.r.t. most of the
f -divergences are not known. Indeed it is not understood at least for the simplest case
of symmetric channels. Here we point to a technical report Makur and Polyanskiy
[2016], which attempts to find simpler criteria for a given channel T being dominated
by a symmetric channel W (in the sense that IKL (

W ¶ µ, W ¶ ‹
)

Ø IKL (

T ¶ µ, T ¶ ‹
)

,
’µ, ‹ œ P

(

X
)

). This suggests that obtaining an e�ciently computable closed form for
the contraction coe�cient of symmetric channels might guide us in upper bounding
the contraction coe�cient of general channels.

In any case, since ÷f (T )

is not known in a computable form for any non-trivial
channels, we will now consider the binary symmetric channel (BSC) T :

[

2
]

 
[

2
]

. Let
X and Y be the input and output random variables of the channel respectively. This
BSC can be written in a matrix form as follows

T =

C

p 1 ≠ p
1 ≠ p p

D

, p œ
[

0, 1
]

where the rows represent the outputs of the channel, and the columns represent the
inputs. The (i, j)-th entry of the matrix represents P

[

Y = i | X = j
]

.
To better understand the insights of the contraction coe�cients of a BSC w.r.t.

f -divergences, we consider the restrictive setting of symmetric f -divergences with sym-
metric experiments. First we define the following classes:

Fsymm := {f :
(

0, Œ
)

æ R : f is convex, f(1) = 0, and f(x) = fù
(x), ’x} ,

Psymm :=
I

P : P =

C

p 1 ≠ p
1 ≠ p p

D

for some p œ
(

0, 1
)

J

.

We note the following properties of the function class Fsymm:
• If (P , Q

)

= If (Q, P
)

for all distributions P and Q and f œ Fsymm.

• For any f , g œ Fsymm and –, — œ R, we have –f + —g œ Fsymm.

• Defining a function f œ Fsymm only in the domain (0, 1] is su�cient, as we can
extend it for x œ [1, Œ) by using the symmetric property f

(

x
)

= fù
(x) =

x · f
1

1
x

2

.
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Define ftv (x) := |x≠1|, ftri (x) := (x≠1)2

x+1 , fHe (x) :=
(

Ô
x ≠ 1

)

2, ftvtri (x) := ftv(x)+ftri(x)
2 ,

ftvHe (x) := ftv(x)+fHe(x)
2 , and ftriHe (x) := ftri(x)+fHe(x)

2 . Here ftv, ftri, and fHe are
associated with total variation, triangular discrimination, and squared Hellinger diver-
gences respectively (Reid and Williamson [2011]). One can easily verify that ftv, ftri,
fHe, ftvtri, ftvHe, ftriHe œ Fsymm.

Note that the composition of the channel T =

C

t 1 ≠ t
1 ≠ t t

D

œ Psymm and the

symmetric experiment E =

C

e 1 ≠ e
1 ≠ e e

D

œ Psymm can be written as follows

T ¶ E =

C

te + (1 ≠ t)(1 ≠ e) t(1 ≠ e) + (1 ≠ t)e
t(1 ≠ e) + (1 ≠ t)e te + (1 ≠ t)(1 ≠ e)

D

=

C

s(t, e) 1 ≠ s(t, e)
1 ≠ s(t, e) s(t, e)

D

,

where s(t, e) := te+ (1 ≠ t)(1 ≠ e). The auxiliary notion that we are mainly interested
here is:

÷symm
f (

T
)

:= sup
EœPsymm

If (T ¶ E
)

If (E)

where f œ Fsymm, and T œ Psymm. (3.32)

Observe that ÷symm
f (

T
)

Æ ÷f (T )

for any BSC T (where ÷f (T )

is the contraction
coe�cient of T w.r.t. f -divergence). The above identity is simplified in the following
Lemma, using the symmetric nature of the objects involved:

Lemma 3.12. For any channel T =

C

t 1 ≠ t
1 ≠ t t

D

œ Psymm and f œ Fsymm, we have

÷symm
f (

T
)

= sup
eœ(0,1)

s(t, e) · f
1

1≠s(t,e)
s(t,e)

2

e · f
1

1≠e
e

2 , (3.33)

where s(t, e) := te + (1 ≠ t)(1 ≠ e).

Proof. For any binary symmetric channel A =

C

a 1 ≠ a
1 ≠ a a

D

(with a œ
(

0, 1
)

) and

f œ Fsymm, we have

If (A)

= If

AC

a
1 ≠ a

D

,
C

1 ≠ a
a

DB

=

⁄

f
3

dP

dQ

4

dQ

= f
3

a

1 ≠ a

4

·
(

1 ≠ a
)

+ f
31 ≠ a

a

4

· a

=

(

1 ≠ a
)

· a

1 ≠ a
· f

31 ≠ a

a

4

+ a · f
31 ≠ a

a

4

= 2a · f
31 ≠ a

a

4

,
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where the fourth equality is due to f
(

t
)

= fù
(

t
)

. Thus for any symmetric channel
T œ Psymm and symmetric experiment E œ Psymm, we get

If (E)

= 2e · f
31 ≠ e

e

4

If (T ¶ E
)

= 2s · f
31 ≠ s

s

4

,

where s = te+ (1 ≠ t)(1 ≠ e). Thus the proof is completed by taking the ratio between
the above two divergences.

We can better understand ÷symm
f (

T
)

by defining the following functions (for e, t œ
(0, 1))

Ff (e) := e · f
31 ≠ e

e

4

(3.34)

gf (t, e) :=
Ff (s(t, e)

)

Ff (e)
=

s(t, e) · f
1

1≠s(t,e)
s(t,e)

2

e · f
1

1≠e
e

2 . (3.35)

Therefore ÷symm
f (

T
)

can be compactly written as follows (from Lemma 3.12)

÷symm
f (

T
)

= sup
eœ(0,1)

gf (t, e). (3.36)

We attempt to characterize ÷symm
f (

T
)

, by studying the behavior of gf (t, e). First we
note the symmetric nature of Ff (e) in the following lemma:

Lemma 3.13. Let f œ Fsymm. Then Ff defined in (3.34) is convex, non-negative, and
symmetric about 1

2 with Ff

1

1
2

2

= 0.

Proof. First we show that f(x) Ø 0, ’x œ
(

0, Œ
)

by using the facts that f(1) = 0
and f(x) = fù

(x) = xf
1

1
x

2

. Observe that showing f(x) Ø 0, ’x œ
(

0, 1
)

is su�cient.
Suppose that ÷x œ (0, 1) s.t. f(x) < 0. Then for xÕ

=

1
x œ (1, Œ), we have f(xÕ

) =

fù
(xÕ

) = xÕf
1

1
xÕ

2

< 0. But f(1) = 0 and f is convex. This is a contradiction. Thus
f(x) Ø 0, ’x œ

(

0, 1
)

.
Consider

Ff

31
2 + ‘

4

=

31
2 + ‘

4

· f

Q

a

1 ≠
1

1
2 + ‘

2

1
2 + ‘

R

b

=

31
2 + ‘

4

· f

A 1
2 ≠ ‘
1
2 + ‘

B

and

Ff

31
2 ≠ ‘

4

=

31
2 ≠ ‘

4

· f

Q

a

1 ≠
1

1
2 ≠ ‘

2

1
2 ≠ ‘

R

b

=

31
2 ≠ ‘

4

· f

A 1
2 + ‘
1
2 ≠ ‘

B

.

Then using the property f(x) = xf
1

1
x

2

, one can easily see that Ff

1

1
2 + ‘

2

= Ff

1

1
2 ≠ ‘

2

.
Thus Ff (x) is even symmetric about 1

2 .
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• Ff

1

1
2

2

= 0 since f(1) = 0.

• Ff (x) Ø 0, ’x œ
(

0, 1
)

since f(x) Ø 0, ’x œ (0, Œ).

• Ff (x) is convex because it is a perspective transform of f which is convex.

Note that for any f , g œ Fsymm and –, — œ R, we have F–f+—g(x) = –Ff (x) +
—Fg(x). By using the symmetric nature of Ff (·), we can further simplify the iden-

tity ÷symm
f (

T
)

. Since ÷symm
f

AC

t 1 ≠ t
1 ≠ t t

DB

= ÷symm
f

AC

1 ≠ t t
t 1 ≠ t

DB

, hereafter we

assume t Ø 1
2 without loss of generality.

Lemma 3.14. For a given fixed channel T =

C

t 1 ≠ t
1 ≠ t t

D

œ Psymm with t Ø 1
2 (wlog)

and f œ Fsymm, define

„t
f (‘) :=

Ff

1

1
2 + ct‘

2

Ff

1

1
2 + ‘

2 , (3.37)

where ct = 2t ≠ 1 œ [0, 1) and ‘ œ
1

≠1
2 , 1

2

2

. Then we have

÷symm
f (

T
)

= sup
‘œ[0,1/2)

„t
f (‘). (3.38)

Proof. Let e =

1
2 + ‘ where ‘ œ

1

≠1
2 , 1

2

2

. Then we have

s(t, e) =

1
2 + ‘(2t ≠ 1) = 1

2 + ct‘, where ct = 2t ≠ 1 œ [0, 1)

gf (t, e) =

Ff (s(t, e)
)

Ff (e)
=

Ff

1

1
2 + ct‘

2

Ff

1

1
2 + ‘

2

= „t
f (‘) .

Observe that „t
f (‘) is symmetric about 0 since Ff (·) is symmetric about 1

2 . Then by
using (3.36) we get

÷symm
f (

T
)

= sup
eœ(0,1)

gf (t, e) = sup
‘œ(≠1/2,1/2)

„t
f (‘) = sup

‘œ[0,1/2)
„t

f (‘).

Let Lf (‘) := Ff (1/2 + ‘
)

. Then for fixed ct œ [0, 1) we have

„t
f (‘) =

Lf (ct‘)

Lf (‘)
, where ‘ œ [0, 1/2).



§3.3 Constrained Learning Problem 49

Note that Lf (0) = 0, Lf (·) Ø 0 and Lf is convex (for f œ Fsymm). Since we want to
study the behavior of „t

f (‘), we consider the derivative of it

1

„t
f

2Õ
(

‘
)

=

ˆ

ˆ‘
„t

f (‘) =
ctLÕ

f (ct‘)Lf (‘) ≠ Lf (ct‘)LÕ
f (‘)

Lf (‘)
2 .

Based on this we can observe two important behavior patterns of „t
f (‘) :

1. If
1

„t
f

2Õ
(

‘
)

Æ 0, ’‘ œ (0, 1/2), then „t
f (‘) is maximized at ‘ æ 0, minimized at

‘ æ 1/2. That is
lim

‘æ1/2
„t

f (‘) Æ „t
f (‘) Æ lim

‘æ0
„t

f (‘)

which is equivalent to

lim
eæ1

gf (t, e) Æ gf (t, e) Æ lim
eæ1/2

gf (t, e). (3.39)

2. If
1

„t
f

2Õ
(

‘
)

= 0, ’‘ Ø 0, then „t
f (‘) is equal for all ‘ œ (0, 1/2). That is

lim
‘æ1/2

„t
f (‘) = „t

f (‘) = lim
‘æ0

„t
f (‘)

which is equivalent to

lim
eæ1

gf (t, e) = gf (t, e) = lim
eæ1/2

gf (t, e). (3.40)

For the above two cases we have

÷symm
f (

T
)

= sup
eœ(0,1)

gf (t, e) = lim
eæ1/2

gf (t, e).

Note that gf (t, 1/2) is not well defined. But for the second case above, where
1

„t
f

2Õ
(

‘
)

=

0, ’‘ œ (0, 1/2), we can obtain an e�ciently computable closed form for ÷symm
f (

T
)

. The
following proposition characterizes the subclass of Fsymm which satisfies this condition.

Proposition 3.15. Define h– (

x
)

:= |1≠x|–
(1+x)–≠1 , for x œ (0, 1] and – œ R. Then

Fú
symm :=

Ó

f : (0, Œ) æ R : ’x œ (0, 1], f(x) = K · h–f (x) for some K > 0, –f Ø 1,

and ’x œ [1, Œ), f(x) = fù
(x)} ™ Fsymm.

For any T =

C

t 1 ≠ t
1 ≠ t t

D

œ Psymm (with t Ø 1
2) and f œ Fú

symm, we get

÷symm
f (

T
)

= lim
eæ1

gf (t, e) = (2t ≠ 1)–f .

Proof. For any f œ Fú
symm, we have f(1) = 0, f(x) = fù

(

x
)

, and f is convex (since
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h– is convex for – Ø 1). Thus Fú
symm ™ Fsymm.

If
ctLÕ

f (ct‘)

Lf (ct‘)
=

LÕ
f (‘)

Lf (‘)
,

then
1

„t
f

2Õ
(

‘
)

= 0, ’‘ œ (0, 1/2) (thus ÷symm
f (

T
)

= limeæ1 gf (t, e)). By letting Â =

log Lf , the above condition can be written as follows,

ctÂ
Õ
(

ct‘) = ÂÕ
(

‘
)

that is we require ÂÕ to be (≠1)-homogeneous. For a function ÂÕ
(

x
)

= –x≠1 which is
(≠1)-homogeneous, we have (for some constant K > 0)

ÂÕ
(

x
)

= –
1
x

, x Ø 0 (to enforce symmetry)

≈= Â
(

x
)

= – log x + log K = log Lf (x)

≈= Lf (x) = Kx–
= Ff (1/2 + x

)

≈= Ff (y) = K
(

y ≠ 1/2
)

–
= yf

31 ≠ y

y

4

, where y = 1/2 + x Ø 1/2

≈= f
(

z
)

= K · (1 ≠ z)–

(1 + z)–≠1 , where z =

1 ≠ y

y
Æ 1.

That is for any f œ Fú
symm, we have

1

„t
f

2Õ
(

‘
)

= 0, ’‘ œ (0, 1/2). Thus for any
f œ Fú

symm, we get

÷symm
f (

T
)

= lim
eæ1

gf (t, e) =
Ff (t)

limeæ1 Ff (e)
=

t · h–f

1

1≠t
t

2

limxæ0 h–f (x)
=

(2t ≠ 1)–f

1 .

Note that ftv, ftri œ Fú
symm with –ftv = 1 and –ftri = 2 (recall that ftv (t) =

|t ≠ 1|, and ftri (t) =

(t≠1)2

t+1 ). Thus from the above proposition and (3.40), for any

T =

C

t 1 ≠ t
1 ≠ t t

D

œ Psymm (with t Ø 1/2), we have

÷symm
ftv (

T
)

= lim
eæ1/2

gftv(t, e) = 2t ≠ 1

and
÷symm

ftri
(

T
)

= lim
eæ1/2

gftri(t, e) =

(

2t ≠ 1
)

2 .

gftv(t, e) and gftri(t, e) are shown in Figures 3.2 and 3.3 respectively.
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For fHe (t) =
1Ô

t ≠ 1
22

, we have

FfHe (e) = 1 ≠ 2
Ò

e · (1 ≠ e), e œ (0, 1)

LfHe (‘) = 1 ≠


1 ≠ 4‘2, ‘ œ [0, 1/2)

„t
fHe (‘) =

1 ≠
Ò

1 ≠ 4c2
t ‘2

1 ≠ Ô
1 ≠ 4‘2 , ct = 2t ≠ 1 œ (0, 1)

lim
‘æ0

„t
fHe (‘) = c2

t

lim
‘æ1/2

„t
fHe (‘) = 1 ≠

Ò

1 ≠ c2
t .

By using simple calculations, one can easily verify that (see Figure 3.4)

lim
‘æ1/2

„t
fHe (‘) Æ „t

fHe (‘) Æ lim
‘æ0

„t
fHe (‘) = (2t ≠ 1)2

= ÷symm
fHe

(

T
)

.

We observed that ftvtri, ftvHe, and ftriHe also satisfy (3.39) (see Figures 3.5, 3.6, and
3.7):

lim
eæ1

gftvtri(t, e) Æ gftvtri(t, e) Æ lim
eæ1/2

gftvtri(t, e) = ÷symm
ftvtri

(

T
)

= 2t ≠ 1

lim
eæ1

gftvHe(t, e) Æ gftvHe(t, e) Æ lim
eæ1/2

gftvHe(t, e) = ÷symm
ftvHe

(

T
)

= 2t ≠ 1

lim
eæ1

gftriHe(t, e) Æ gftriHe(t, e) Æ lim
eæ1/2

gftriHe(t, e) = ÷symm
ftriHe

(

T
)

= (2t ≠ 1)2.

Thus for all binary symmetric channels, and certain subset of symmetric f -divergences,
we are able to obtain a lower bound (of the form ÷symm

f (

T
)

Æ ÷f (T )

) on the contrac-
tion coe�cients. At this stage, we point out the following possible extensions for the
above exercise (some of them will follow through the above approach to certain level):

• relax the symmetric experiments restriction in ÷symm
f (

T
)

, to obtain ÷f (T )

for
f œ Fsymm and T œ Psymm.

• extend the study of ÷symm
f (

T
)

to k-ary symmetric channels and experiments with
k > 2.

• extend the study of ÷symm
f (

T
)

to non-symmetric f .

3.3.3 Hardness of Constrained Learning Problem

We now use the strong data processing inequalities and minimax lower bound tech-
niques to analyse the hardness of the constrained learning problem that we introduced
in the beginning of this section. First we generalize Le Cam’s (Proposition 3.2) and
Assouad’s (Theorem 3.4 and Corollary 3.5) results for the constrained parameter esti-
mation problem ((3.25) with Q = A, A =

‚◊, and ¸ = fl). Most of these generalizations
follows directly from the original versions, thus don’t require any proof.
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Figure 3.2: gftv(t, e) of a binary symmetric channel w.r.t. total variation divergence.

Figure 3.3: gftri(t, e) of a binary symmetric channel w.r.t. triangular discrimination
divergence.
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Figure 3.4: gfHe(t, e) of a binary symmetric channel w.r.t. symmetric squared Hellinger
divergence (sandwiched according to (3.39)).

Figure 3.5: gftvtri(t, e) of a binary symmetric channel w.r.t. Iftvtri (sandwiched according
to (3.39)).
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Figure 3.6: gftvHe(t, e) of a binary symmetric channel w.r.t. IftvHe (sandwiched accord-
ing to (3.39)).

Figure 3.7: gftriHe(t, e) of a binary symmetric channel w.r.t. IftriHe (sandwiched accord-
ing to (3.39)).
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Proposition 3.16. For any c œ
(

0, 1
)

, the minimax risk of the constrained parameter
estimation problem ( (3.25) with Q = A, A =

‚◊, and ¸ = fl) is lower bounded as

Rı
fl (Á̃n) Ø sup

◊ ”=◊Õ

;

fl
(

◊, ◊Õ
)

·
51

2 ≠ n
31

2 ≠ c · c
4

≠ Ëc (T )

n · Ifc (Á (◊) , Á
(

◊Õ
))

6<

.

Proof. From Proposition 3.2, we have that

Rı
fl (Á̃n) Ø sup

◊ ”=◊Õ

)

fl
(

◊, ◊Õ
)

·
(

c · c ≠ ·Ifc (Á̃n (◊) , Á̃n (◊
Õ
)))

*

.

Further from Lemma 2.11, we have that

dTV (

cÁ̃n (◊) , cÁ̃n (◊
Õ
))

Æ ndTV (

cÁ̃
(

◊
)

, cÁ̃
(

◊Õ
))

.

Thus we have

Ifc (Á̃n (◊) , Á̃n (◊
Õ
))

Æ nIfc (Á̃ (◊) , Á̃
(

◊Õ
))

+

3

c · c ≠ 1
2

4

· (1 ≠ n)

Æ Ëc (T )

nIfc (Á̃ (◊) , Á̃
(

◊Õ
))

+

3

c · c ≠ 1
2

4

· (1 ≠ n).

Theorem 3.17. Let Q = {≠1, 1}d and fl = flHa (defined in (2.1)). Then for any
c œ

(

0, 1
)

, the minimax risk of the constrained parameter estimation problem ( (3.25)
with Q = A, A =

‚◊, and ¸ = fl) is lower bounded as

Rı
flHa (Á̃n) Ø d

A

c · c ≠ max
◊,◊Õ:flHa(◊,◊Õ

)=1
Ifc (Á̃n (◊) , Á̃n (◊

Õ
))

B

Corollary 3.18. Let O be some set and c œ
(

0, 1
)

. Define

PÁ (O)

:=
Ó

Á
(

◊
)

œ P
(

O
)

: ◊ œ {≠1, 1}d
Ô

be a class of probability measures induced by the transition Á : {≠1, 1}d  O. Suppose
that there exists some cost-dependent constant –

(

c
)

> 0, such that

He2
(

Á
(

◊
)

, Á
(

◊Õ
))

Æ –
(

c
)

, if flHa (◊, ◊Õ
)

= 1.

The minimax risk of the constrained parameter estimation problem ( (3.25) with Q = A,
A =

‚◊, and ¸ = flHa) is lower bounded as

Rı
flHa (Á̃n) Ø d · (c · c) ·

3

1 ≠
Ò

–
(

c
)

÷He2 (T )

n
4

, (3.41)

where T is as per (3.25) and ÷He2 (T )

is the contraction coe�cient of T w.r.t. squared
Hellinger distance.
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Proof. For any two ◊, ◊Õ œ Q with flHa (◊, ◊Õ
)

= 1, we have

Ifc (Á̃n (◊) , Á̃n (◊
Õ
))

Æ
(

c · c
)

· He
(

Á̃n (◊) , Á̃n (◊
Õ
))

Æ
(

c · c
)

·
ˆ

ı

ı

Ù

n
ÿ

i=1
He2

(

Á̃
(

◊
)

, Á̃
(

◊Õ
))

Æ
(

c · c
)

·
ˆ

ı

ı

Ù

n
ÿ

i=1
÷He2 (T )

He2
(

Á
(

◊
)

, Á
(

◊Õ
))

Æ
(

c · c
)

·
Ò

–
(

c
)

÷He2 (T )

n

Consider the corrupted cost-sensitive binary classification problem represented by
the following transition diagram:

Qh,F (

X ◊ {≠1, 1}
)

n
(

X ◊ {≠1, 1}
)

n FÁn T1:n
‚f

,
(3.42)

and the minimax risk of it given by

Rı
D¸dc

(

Á̃n) := inf
‚f

sup
◊œQh,F

E
{(Xi,Yi)}n

i=1≥Á̃n(◊)

S

U E
f≥‚f

(

{(Xi,Yi)}n
i=1)

[

D¸dc (◊, f
)]

T

V. (3.43)

Theorem 3.19. Let F be a VC class of binary-valued functions on X with VC dimen-
sion V Ø 2. Then for any n Ø V and any h œ [0, c · c], the minimax risk (3.43) of the
corrupted cost-sensitive binary classification (3.42) is lower bounded as follows:

Rı
D¸dc

(

Á̃n) Ø K · (c · c) · min
A

Û

(c · c)V

÷He2 (T )

n
, (c · c) · V

÷He2 (T )

nh

B

where K > 0 is some absolute constant.

The number of samples that appear in the minimax lower bound of the original
learning problem is scaled by the contraction coe�cient ÷f (T ) in the case of corrupted
learning problem. Hence the rate is una�ected, only the constants. However, a penalty
of factor ÷f (T ) is unavoidable no matter what learning algorithm is used, suggesting
that ÷f (T ) is a valid way of measuring the amount of corruption.

3.4 Cost-sensitive Privacy Notions

Suppose a trustworthy data curator gathers sensitive data from a large number of data
providers, with the goal of learning statistical facts about the underlying population.
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A data analyst makes a statistical query on the sensitive dataset from the data curator.
Thus the main challenge for the data curator is to send back a randomized response such
that the utility of the task of the data analyst is increased while maintaining the privacy
of the data providers. This requires a formal definition of privacy, and di�erential
privacy has been put forth as such formalization (Dwork et al. [2006]). Di�erential
privacy requires that the data analyst knows no more about any individual in the
sensitive dataset after the analysis is completed, than she knew before the analysis was
begun. That is the impact on the data provider is the same independent of whether or
not he was in the analysis. It is possible to reduce the problem of enforcing di�erential
privacy to a statistical decision problem (Wasserman and Zhou [2010]). We exploit this
observation and extend it further (see section 3.4.2).

In a more restrictive requirement than the di�erential privacy, called “local privacy”
([Duchi et al., 2013; Warner, 1965]), the data providers don’t even trust the data curator
collecting the data. When the sensitive data to be protected is other than the value of a
single individual, it is common to consider di�erent definitions for privacy requirements.

A privacy mechanism is an algorithm that takes as input a database, a universe V of
data types (of the database), and optionally a set of queries, and produce a randomized
response. The privacy mechanism can be represented by a transition T : O ‚O. Below
we represent some of the privacy enforced settings via transition diagrams:

• We need to protect an abstract set of secrets X (for example geographical lo-
cations of army base points) from the data analyst, who wants to learn some
summary statistic about the probability distribution which generated the secrets
i.e. something about the actual parameter ◊ from the parameter space Q. This
setting is represented by the following transition diagram

Q X ZÁ T

, (3.44)

where T is the privacy mechanism and Z is the new outcome space observed
by the data analyst. When the outcome space Z = X , the resulting transition
diagram is

Q X XÁ T

. (3.45)

• We need to protect the entries of the database by releasing a sanitized database
(this approach is also referred to as non-interactive method). Let the database
universe be V. Then by repeatedly applying the privacy mechanism T in the
transition diagram (3.45) with X = V, over all the entries of the database, we
get

Q Vn Vn
Án T1:n

. (3.46)

• In comparison to the above non-interactive approach, it is possible to protect
the entries of the database by corrupting the response for the database query
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appropriately. This interactive (query dependent) method can be represented by
the following transition digram

Q X Y ZÁ f H

, (3.47)

where X = Vn is the database (with universe V) to be protected, f is a query on
the database, and H is the privacy mechanism over the query outcome space Y.
We need to enforce restrictions on the composite mechanism T = H ¶ f in order
to protect the elements of X . By appropriate tailoring, these restrictions can be
reduced to the restrictions on the mechanism H depending on f .

Based on the discussions above, without loss of generality, we only consider the privacy
definitions for the setting represented by the transition diagram (3.44), with finite X
and Z.

3.4.1 Symmetric Local Privacy

First we briefly review the (symmetric) local privacy notion which is well studied in the
literature ([Dwork, 2008; Duchi et al., 2013]). Consider the setting represented by the
transition diagram (3.44) with finite X and Z. The (symmetric) local privacy imposes
indistinguishability between pairs of secrets and protects all of them equally:

Definition 3.20 ([Duchi et al., 2013]). Given ‘ > 0, let M
(

X , Z; ‘
)

™ M
(

X , Z
)

denote the set of all ‘-locally private mechanisms where

T œ M
(

X , Z; ‘
)

≈∆ T (z | xi)

T (z | xj)
Æ e‘, ’xi, xj œ X , z œ Z. (3.48)

Below we provide a hypothesis testing based interpretation of the above definition,
essentially noted by Wasserman and Zhou [2010].

Hypothesis Testing Interpretation: Based on the random outcome in Z from the
privacy mechanism T , we want determine whether it is generated by the secret xi or
xj . Let the labels 1 and 0 correspond to the probability measures T

(

xi) and T
(

xj)

respectively. Consider a statistical test (recall from section 2.4.1) rij : Z æ {0, 1}.
Then the false negative and false positive rates of this test are given by

FNrij :=
ÿ

zœZ
T
(

z | xi) Jrij (z) = 0K, and (3.49)

FPrij :=
ÿ

zœZ
T
(

z | xj) Jrij (z) = 1K, (3.50)

respectively. The ‘-local privacy condition on a mechanism T is equivalent to the
following set of constraints on the false negative and false positive rates:
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Figure 3.8: Operational characteristic representation of ‘-local privacy mechanisms
(with ‘ = 0.7).

Theorem 3.21 ([Kairouz et al., 2014]). For any ‘ > 0, a mechanism T œ M
(

X , Z
)

is
‘-locally private if and only if the following conditions are satisfied for all xi, xj œ X ,
and all statistical tests rij : Z æ {0, 1}:

FNrij + e‘ · FPrij Ø 1, (3.51)
e‘ · FNrij + FPrij Ø 1. (3.52)

The above operational interpretation says that it is impossible to get both small false
negative and false positive rates from data obtained via a ‘-locally private mechanism.
The above characterization is graphically represented in Figure 3.8, where the shaded
region of the left side diagram (Figure 3.8(a)) can be mathematically written as follows

S
(

‘
)

:= {
(

FP, FN
)

: FN + e‘ · FP Ø 1, and e‘ · FN + FP Ø 1} . (3.53)

We define the privacy region of a mechanism T with respect to xi and xj as

S
(

T , xi, xj) := conv
1Ó1

FPrij , FNrij

2

: for all rij : Z æ {0, 1}
Ô2

, (3.54)

where conv
(

·
)

is the convex hull of a set. The following corollary, which follows imme-
diately from Theorem 3.21, gives a necessary and su�cient condition for a mechanism
to be ‘-locally private.

Corollary 3.22. A mechanism T is ‘-locally private if and only if S
(

T , xi, xj) ™ S
(

‘
)

for all xi, xj œ X .

3.4.2 Non-homogeneous Local Privacy

Now if we want to protect some secrets more than others we need to break the inherent
symmetry in the privacy definition of the previous section. Here we introduce an
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asymmetric privacy notion which is a simple extension of Chatzikokolakis et al. [2013].
We replace the undirected pairwise cost terms in the definition of Chatzikokolakis et al.
[2013] with directed cost terms in order to enforce asymmetry.

Definition 3.23. Define n := |X |. Given Rn◊n
+

matrix C (with (i, j)th entry given
by the ‘directed’ cost Cij œ

[

0, 1
]

), let M
(

X , Z; C
)

™ M
(

X , Z
)

denote the set of all
C-locally private mechanisms where

T œ M
(

X , Z; C
)

≈∆ T (z | xi)

T (z | xj)
Æ eCij , ’xi, xj œ X , z œ Z.

When C is a symmetric matrix with 0’s as the diagonal entries and ‘’s as the
o�-diagonal entries, we recover the usual ‘-local privacy requirement.

Suppose we want to prioritize only xiı ’s privacy and treat others equally. In this
case we can choose C be a symmetric matrix with 0’s as the diagonal entries, (c · ‘)’s
(where c œ

[

0, 1
]

) in the iı-th row (except the diagonal term), (c · ‘)’s in the iı-th
column (except the diagonal term), and (0.5 · ‘)’s in other places:

S

W

W

W

W

W

W

W

W

W

W

U

0 0.5 . . . c . . . 0.5
0.5 0 . . . c . . . 0.5
...

...
...

...
c c . . . 0 . . . c
...

...
...

...
0.5 0.5 . . . c . . . 0

T

X

X

X

X

X

X

X

X

X

X

V

· ‘.

Hypothesis Testing Interpretation: We extend the hypothesis testing based interpre-
tation of the ‘-local privacy definition, to this general case. Then the C-local privacy
condition on a mechanism T is equivalent to the following set of constraints on the
false negative and false positive rates:

Theorem 3.24. For any C œ Rn◊n
+

, a mechanism T œ M
(

X , Z
)

is C-locally private
if and only if the following conditions are satisfied for all xi, xj œ X , and all statistical
tests rij : Z æ {0, 1}:

FNrij + eCij · FPrij Ø 1, (3.55)
eCji · FNrij + FPrij Ø 1. (3.56)

Proof. From the definition of C-local privacy, for any statistical test rij : Z æ {0, 1},
we have

T
(

z | xi) Æ eCij · T
(

z | xj)

=∆
ÿ

zœZ
T
(

z | xi) Jrij = 1K Æ eCij ·
ÿ

zœZ
T
(

z | xj) Jrij = 1K

=∆ 1 ≠ FNrij Æ eCij · FPrij ,
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Figure 3.9: Operational characteristic representation of C-local privacy mechanisms
(with Cij = 1.05 and Cji = 0.45). Note that Cij > Cji. Observe that – =

eCji ≠1
e(Cij+Cji)≠1

and — =

eCij ≠1
e(Cij+Cji)≠1

.

and

T
(

z | xj) Æ eCji · T
(

z | xi)

=∆
ÿ

zœZ
T
(

z | xj) Jrij = 0K Æ eCij ·
ÿ

zœZ
T
(

z | xi) Jrij = 0K

=∆ 1 ≠ FPrij Æ eCji · FNrij .

The above characterization is graphically represented in Figure 3.9, where the
shaded region of the left side diagram (Figure 3.9(a)) can be mathematically written
as follows

S
(

C, xi, xj) :=
Ó

(

FP, FN
)

: FN + eCij · FP Ø 1, and eCji · FN + FP Ø 1
Ô

. (3.57)

Note that unlike Figure 3.8 which holds ’i ”= j, here in general we get a di�erent
picture for each choice of i and j. The following corollary, which follows immediately
from Theorem 3.24, gives a necessary and su�cient condition on the privacy region for
C-local privacy.

Corollary 3.25. A mechanism T is C-locally private if and only if S
(

T , xi, xj) ™
S
(

C, xi, xj) for all xi, xj œ X .

To facilitate the mechanism design, we define the following

S
(

C, xi) :=
‹

xjœX \xi

S
(

C, xi, xj), (3.58)
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Figure 3.10: Feasible region for T
(

· | xi) under C-local privacy. The point tı
i will

impact the optimal privacy mechanism’s T
(

· | xi).

using which we can design T
(

· | xi). This is illustrated in Figure 3.10.
Figure 3.11 is plotted for two di�erent C: one with Cij = 1.05 and Cji = 0.45, and

the other with Cij = Cji = 0.75. This diagram shows how much we lose by prioritizing
someone’s privacy than others. It can be observed that the permissible ROC region
for the privacy mechanism gets shrunk (compared to the equal privacy case) when we
enforce prioritized privacy for someone.

3.5 Conclusion

The cost-sensitive classification problem plays a crucial role in mission critical machine
learning applications. We have studied the hardness of this problem and emphasized
the impact of cost terms on the hardness.

Strong data processing inequalities (SDPI) are very useful in analysing the hard-
ness of constrained learning problems. Despite extensive investigation, the geometric
insights of the SDPI are not fully understood. This chapter provides some direction.
To this end, we have derived an explicit form for the contraction coe�cient of any
channel w.r.t. c-primitive f -divergence, and we have obtained e�ciently computable
lower bound for the contraction coe�cient of any binary symmetric channel w.r.t. any
symmetric f -divergence.

We pose the following open problems as future directions:

• There are some divergences other than f -divergences which satisfy the weak data
processing inequality, such as Neyman-Pearson –-divergences ([Polyanskiy and
Verdú, 2010; Raginsky, 2011]). Thus it would be interesting to study strong data
processing inequalities w.r.t. those divergences as well.

• Recently people have attempted to relate several types of channel ordering to the
strong data processing inequalities ([Makur and Polyanskiy, 2016; Polyanskiy
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Figure 3.11: Comparison between ‘-local privacy (with ‘ = 0.75) and C-local privacy
(with Cij = 1.05, and Cji = 0.45).

and Wu, 2015]). It would be interesting to study the relationship between the
statistical deficiency based channel ordering (Raginsky [2011]) and the strong
data processing inequalities.

• Wider exploration of asymmetric privacy notions.

3.6 Appendix

3.6.1 VC Dimension

A measure of complexity in learning theory should reflect which learning problems are
inherently easier than others. The standard approach in statistical theory is to define
the complexity of the learning problem through some notion of “richness”, “size”,
“capacity” of the hypothesis class.

The complexity measure proposed in Vapnik and Chervonenkis [1971], the Vapnik-
Chervonenkis (VC) dimension is a combinatorial measure of the richness of classes of
binary-valued functions when evaluated on samples. VC-dimension is independent of
the underlying probability measure and of the particular sample, and hence is worst-
case estimate with regard to these quantities.

We use the notation xm
1 for a sequence

(

x1, . . . , xm)

œ X m, and for a class of
binary-valued functions F ™ {≠1, 1}X , we denote by F|xm

1
the restriction of F to xm

1 :

F|xm
1
= {

(

f
(

x1) , . . . , f
(

xm))

| f œ F} .

Define the m-th shatter coe�cient of F as follows:

Sm (

F
)

:= max
xm

1 œX m
|F|xm

1
|.
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Definition 3.26. Let F ™ {≠1, 1}X and let xm
1 =

(

x1, . . . , xm)

œ X m. We say xm
1 is

shattered by F if |F|xm
1

| = 2m; i.e. if ’b œ {≠1, 1}m, ÷fb œ F s.t.
(

fb (

x1) , . . . , fb (

xm))

=

b. The Vapnik-Chervonenkis (VC) dimension of F , denoted by VCdim
(

F
)

, is the car-
dinality of the largest set of points in X that can be shattered by F :

VCdim
(

F
)

= max {m œ N | Sm (

F
)

= 2m}.

If F shatters arbitrarily large sets of points in X , then VCdim
(

F
)

= Œ. If VCdim
(

F
)

<
Œ, we say that F is a VC class.



Chapter 4

Exp-concavity of Proper
Composite Losses

Loss functions are the means by which the quality of a prediction in learning problem is
evaluated. A composite loss (the composition of a class probability estimation (CPE)
loss with an invertible link function which is essentially just a re-parameterization) is
proper if its risk is minimized when predicting the true underlying class probability (a
formal definition is given later). In Williamson et al. [2016], there is an argument that
shows that there is no point in using losses that are neither proper nor proper composite
as they are inadmissible. Flexibility in the choice of loss function is important to tailor
the solution to a learning problem (Buja et al. [2005], Hand [1994], Hand and Vinciotti
[2003]), and it could be attained by characterizing the set of loss functions using natural
parameterizations.

The goal of the learner in a game of prediction with expert advice (which is formally
described in section 4.1.5) is to predict as well as the best expert in the given pool
of experts. The regret bound of the learner depends on the merging scheme used
to merge the experts’ predictions and the type of loss function used to measure the
performance. It has already been shown that constant regret bounds are achievable for
mixable losses when the Aggregating Algorithm is the merging scheme (Vovk [1995]),
and for exp-concave losses when the Weighted Average Algorithm is the merging scheme
(Kivinen and Warmuth [1999]). We can see that the exp-concavity trivially implies
mixability. Even though the converse implication is not true in general, under some
re-parameterization we can make it possible. This chapter discusses general conditions
on proper losses under which they can be transformed to an exp-concave loss through a
suitable link function. In the binary case, these conditions give two concrete formulas
(Proposition 4.1 and Corollary 4.8) for link functions that can transform —-mixable
proper losses into —-exp-concave, proper, composite losses. The explicit form of the
link function given in Proposition 4.1 is derived using the same geometric construction
used in van Erven [2012].

Further we extend the work by Williamson et al. [2016], to provide a complete
characterization of the exp-concavity of the proper composite multi-class losses in terms
of the Bayes risk associated with the underlying proper loss, and the link function.
The mixability of proper losses (mixability of a proper composite loss is equivalent

65
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to the mixability of its generating proper loss) is studied in Van Erven et al. [2012].
Using these characterizations (for the binary case), in Corollary 4.8 we derive an exp-
concavifying link function that can also transform any —-mixable proper loss into a
—-exp-concave composite loss. Since for the multi-class losses these conditions do not
hold in general, we propose a geometric approximation approach (Proposition 4.2)
which takes a parameter ‘ and transforms the mixable loss function appropriately on
a subset S‘ of the prediction space. When the prediction space is Dn, any prediction
belongs to the subset S‘ for su�ciently small ‘. In the conclusion we provide a way
to use the Weighted Average Algorithm with learning rate — for proper —-mixable but
non-exp-concave loss functions to achieve O(1) regret bound.

The exp-concave losses achieve O(log T ) regret bound in online convex optimization
algorithms, which is a more general setting of online learning problems. Thus the exp-
concavity characterization of composite losses could be helpful in constructing exp-
concave losses for online learning problems.

The chapter is organized as follows. In Section 4.1 we formally introduce the loss
function, several loss types, conditional risk, proper composite losses and a game of pre-
diction with expert advice. In Section 4.2 we consider our main problem — whether
one can always find a link function to transform —-mixable losses into —-exp-concave
losses. Section 4.3 concludes with a brief discussion. The impact of the choice of sub-
stitution function on the regret of the learner is explored via experiments in Appendix
4.4.1. In Appendix 4.4.2, we discuss the mixability conditions of probability games with
continuous outcome space. Detailed proofs are in Appendix 4.4.3.

4.1 Preliminaries and Background

This section provides the necessary background on loss functions, conditional risks,
and the sequential prediction problem.

4.1.1 Notation

We use the following notation throughout this chapter. A superscript prime, AÕ denotes
transpose of the matrix or vector A, except when applied to a real-valued function
where it denotes derivative (f Õ). We denote the matrix multiplication of compatible
matrices A and B by A · B, so the inner product of two vectors x, y œ Rn is xÕ · y.
Let [n] := {1, ..., n}, R

+

:= [0, Œ) and the n-simplex Dn := {(p1, ..., pn)
Õ : 0 Æ pi Æ

1, ’i œ [n], and
q

iœ[n] pi = 1}. If x is a n-vector, A = diag(x) is the n ◊ n matrix
with entries Ai,i = xi , i œ [n] and Ai,j = 0 for i ”= j. If A ≠ B is positive definite
(resp. semi-definite), then we write A º B (resp. A < B). We use en

i to denote
the ith n-dimensional unit vector, en

i = (0, ..., 0, 1, 0, ...0)Õ when i œ [n], and define
en

i = 0n when i > n. The n-vector 1n := (1, ..., 1)Õ. We write JP K = 1 if P is true
and JP K = 0 otherwise. Given a set S and a weight vector w, the convex combination
of the elements of the set w.r.t the weight vector is denoted by cowS, and the convex
hull of the set which is the set of all possible convex combinations of the elements of
the set is denoted by coS (Rockafellar [1970]). If S, T µ Rn, then the Minkowski sum
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S � T := {s + t : s œ S, t œ T}. YX represents the set of all functions f : X æ Y. We
say f : C µ Rn æ Rn is monotone (resp. strictly monotone) on C when for all x and
y in C,

(f(x) ≠ f(y))Õ · (x ≠ y) Ø 0 resp. (f(x) ≠ f(y))Õ · (x ≠ y) > 0;

confer Hiriart-Urruty and Lemaréchal [1993]. Other notation (the Kronecker product
¢, the Jacobian D, and the Hessian H) is defined in Appendix A of Van Erven et al.
[2012]. Df(v) and Hf(v) denote the Jacobian and Hessian of f(v) w.r.t. v respectively.
When it is not clear from the context, we will explicitly mention the variable; for
example Dṽf(v) where v = h(ṽ).

4.1.2 Loss Functions

For a prediction problem with an instance space X , outcome space Y and prediction
space V, a loss function ¸ : Y ◊ V æ R

+

(bivariate function representation) can be
defined to assign a penalty ¸(y, v) for predicting v œ V when the actual outcome is
y œ Y. When the outcome space Y = [n], n Ø 2, the loss function ¸ is called a multi-
class loss and it can be expressed in terms of its partial losses ¸i := ¸(i, ·) for any
outcome i œ [n], as

¸(y, v) =
ÿ

iœ[n]
Jy = iK¸i(v).

The vector representation of the multi-class loss is given by ¸ : V æ Rn
+

, which assigns
a vector ¸(v) = (¸1(v), ..., ¸n(v))Õ to each prediction v œ V. A loss is di�erentiable if all
of its partial losses are di�erentiable. In this thesis, we will use the bivariate function
representation (¸(y, v)) to denote a general loss function and the vector representation
for multi-class loss functions.

The super-prediction set of a binary loss ¸ is defined as

S¸ := {x œ Rn : ÷v œ V, x Ø ¸(v)},

where inequality is component-wise. For any dimension n and — Ø 0, the —-exponential
operator E— : [0, Œ]

n æ [0, 1]n is defined by

E—(x) := (e≠—x1 , ..., e≠—xn
)

Õ.

For — > 0 it is clearly invertible with inverse

E≠1
— (z) = ≠—≠1

(ln z1, ..., ln zn)
Õ.

The —-exponential transformation of the super-prediction set is given by

E—(S¸) := {(e≠—x1 , ..., e≠—xn
)

Õ œ Rn : (x1, ..., xn)
Õ œ S¸}, — > 0.

A multi-class loss ¸ is

• convex if f(v) = ¸y(v) is convex in v for all y œ [n],
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• –-exp-concave (for – > 0) if f(v) = e≠–¸y(v) is concave in v for all y œ [n]
(Cesa-Bianchi and Lugosi [2006]),

• weakly mixable if the super-prediction set S¸ is convex (Kalnishkan and Vyugin
[2005]), and

• —-mixable (for — > 0) if the set E—(S¸) is convex (Vovk and Zhdanov [2009]; Vovk
[1995]).

The mixability constant —¸ of a loss ¸ is the largest — such that ¸ is —-mixable; i.e.

—¸ := sup {— > 0 : ¸ is —-mixable}.

If the loss function ¸ is –-exp-concave (resp. —-mixable) then it is –Õ-exp-concave for
any 0 < –Õ Æ – (resp. —Õ-mixable for any 0 < —Õ Æ —), and its ⁄-scaled version (⁄¸) for
some ⁄ > 0 is –

⁄ -exp-concave (resp. —
⁄ -mixable). If the loss ¸ is –-exp-concave, then it

is convex and –-mixable (Cesa-Bianchi and Lugosi [2006]).
For a multi-class loss ¸, if the prediction space V = Dn then it is said to be multi-

class probability estimation (CPE) loss, where the predicted values are directly inter-
preted as probability estimates: ¸ : Dn æ Rn

+

. We will say a multi-CPE loss is fair
whenever ¸i(en

i ) = 0, for all i œ [n]. That is, there is no loss incurred for perfect
prediction. Examples of multi-CPE losses include

1. the square loss ¸sq
i (q) :=

q

jœ[n](Ji = jK ≠ qj)
2,

2. the log loss ¸log
i (q) := ≠ log qi,

3. the absolute loss ¸abs
i (q) :=

q

jœ[n] |Ji = jK ≠ qj |, and

4. the 0-1 loss ¸01
i (q) := Ji /œ arg maxjœ[n] qjK.

4.1.3 Conditional and Full Risks

Let X and Y be random variables taking values in the instance space X and the outcome
space Y = [n] respectively. Let D be the joint distribution of (X, Y) and for x œ X ,
denote the conditional distribution by p(x) = (p1(x), ..., pn(x))Õ where pi(x) := P (Y =

i|X = x), ’i œ [n], and the marginal distribution by M (x) := P (X = x). For any
multi-CPE loss ¸, the conditional Bayes risk is defined as

L¸ : Dn ◊ Dn – (p, q) ‘æ L¸(p, q) = EY≥p[¸Y(q)] = pÕ · ¸(q) =
ÿ

iœ[n]
pi¸i(q) œ R

+

, (4.1)

where Y ≥ p represents a Multinomial distribution with parameter p œ Dn. The full
Bayes risk of the estimator function q : X æ Dn is defined as

‚R¸(M , p, q) := E
(X,Y)≥D[¸Y(q(X))] = EX≥M [L¸(p(X), q(X))].
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Furthermore the minimum full Bayes risk is defined as

‚R¸(M , p) := inf
qœ(Dn

)

X
‚R¸(M , p, q) = EX≥M [L¸(p(X))],

where L¸(p) = infqœDn L¸(p, q) is the minimum conditional Bayes risk and is always
concave (Gneiting and Raftery [2007]). If ¸ is fair, L¸(e

n
i ) = ¸i(en

i ) = 0. One can
understand the e�ect of choice of loss in terms of the conditional perspective (Reid and
Williamson [2011]), which allows one to ignore the marginal distribution M of X which
is typically unknown.

4.1.4 Proper and Composite Losses

A multi-CPE loss ¸ : Dn æ Rn
+

is said to be proper if for all p œ Dn, L¸(p) =

L¸(p, p) = pÕ · ¸(p) (Buja et al. [2005], Gneiting and Raftery [2007]), and strictly proper
if L¸(p) < L¸(p, q) for all p, q œ Dn and p ”= q. It is easy to see that the log loss, square
loss, and 0-1 loss are proper while absolute loss is not. Furthermore, both log loss and
square loss are strictly proper while 0-1 loss is proper but not strictly proper.

Given a proper loss ¸ : Dn æ Rn
+

with di�erentiable Bayes conditional risk L¸ :
Dn ‘æ R

+

, in order to be able to calculate derivatives easily, following Van Erven et al.
[2012] we define

D̃n :=
I

(p1, . . . , pn≠1)
Õ : pi Ø 0,

n≠1
ÿ

i=1
pi Æ 1

J

(4.2)

PD : Rn
+

– p = (p1, . . . , pn)
Õ ‘æ p̃ = (p1, . . . , pn≠1)

Õ œ Rn≠1
+

(4.3)

P≠1
D : D̃n – p̃ = (p̃1, . . . , p̃n≠1)

Õ ‘æ p = (p̃1, . . . , p̃n≠1, 1 ≠
ÿn≠1

i=1
p̃i)

Õ œ Dn (4.4)

L̃¸ : D̃n – p̃ ‘æ L¸(P
≠1
D (p̃)) œ R

+

(4.5)
˜̧ : D̃n – p̃ ‘æ PD(¸(P≠1

D (p̃))) œ Rn≠1
+

. (4.6)

Let Ẫ : D̃n æ V ™ Rn≠1
+

be continuous and strictly monotone (hence invertible) for
some convex set V. It induces Â : Dn æ V via

Â := Ẫ ¶ PD. (4.7)

Clearly Â is continuous and invertible with Â≠1
= P≠1

D ¶ Ẫ≠1. We can now extend
the notion of properness to the prediction space V from Dn using this link function.
Given a proper loss ¸ : Dn æ Rn

+

, a proper composite loss ¸Â : V æ Rn
+

for multi-class
probability estimation is defined as ¸Â := ¸ ¶ Â≠1

= ¸ ¶ P≠1
D ¶ Ẫ≠1. We can easily see

that the conditional Bayes risks of the composite loss ¸Â and the underlying proper loss
¸ are equal (L¸ = L¸Â ). Every continuous proper loss has a convex super-prediction
set (Williamson et al. [2016]). Thus they are weakly mixable. Since by applying a link
function the super-prediction set won’t change (as it is just a re-parameterization), all
proper composite losses are also weakly mixable.
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4.1.5 Game of Prediction with Expert Advice

Let Y be the outcome space, V be the prediction space, and ¸ : Y ◊ V æ R
+

be the
loss function, then a game of prediction with expert advice represented by the tuple
(Y, V, ¸) can be described as follows: for each trial t = 1, ..., T ,

• N experts make their prediction v1
t , ..., vN

t œ V
• the learner makes his own decision vt œ V
• the environment reveals the actual outcome yt œ Y

Let S = (y1, ..., yT ) be the outcome sequence in T trials. Then the cumulative loss
of the learner over S is given by LS,¸ :=

qT
t=1 ¸(yt, vt), of the i-th expert is given by

Li
S,¸ :=

qT
t=1 ¸(yt, vi

t), and the regret of the learner is given by RS,¸ := LS,¸ ≠ mini Li
S,¸.

The goal of the learner is to predict as well as the best expert; to which end the learner
tries to minimize the regret.

When using the exponential weights algorithm (which is an important family of
algorithms in game of prediction with expert advice), at the end of each trial, the
weight of each expert is updated as wi

t+1 _ wi
t · e≠÷¸(yt,vi

t) for all i œ [N ], where ÷ is
the learning rate and wi

t is the weight of the ith expert at time t (the weight vector
of experts at time t is denoted by wt = (w1

t , ..., wN
t )

Õ). Then based on the weights
of experts, their predictions are merged using di�erent merging schemes to make the
learner’s prediction. The Aggregating Algorithm and the Weighted Average Algorithm
are two important algorithms in the family of exponential weights algorithm.

Consider multi-class games with outcome space Y = [n]. In the Aggregating Algo-
rithm with learning rate —, first the loss vectors of the experts and their weights are
used to make a generalized prediction gt = (gt(1), ..., gt(n))Õ which is given by

gt := E≠1
—

1

cowt{E—

1

(¸1(v
i
t), ..., ¸n(v

i
t))

Õ2}iœ[N ]

2

= E≠1
—

Q

a

ÿ

iœ[N ]

wi
t(e

≠—¸1(vi
t), ..., e≠—¸n(vi

t)
)

Õ
R

b .

Then this generalized prediction is mapped into a permitted prediction vt via a sub-
stitution function such that (¸1(vt), ..., ¸n(vt))

Õ Æ c(—)(gt(1), ..., gt(n))Õ, where the in-
equality is element-wise and the constant c(—) depends on the learning rate. If ¸ is
—-mixable, then E—(S¸) is convex, so co{E— (¸(v)) : v œ V} ™ E—(S¸), and we can al-
ways choose a substitution function with c(—) = 1. Consequently for —-mixable losses,
the learner of the Aggregating Algorithm is guaranteed to have regret bounded by log N

—
(Vovk [1995]).

In the Weighted Average Algorithm with learning rate –, the experts’ predic-
tions are simply merged according to their weights to make the learner’s prediction
vt = cowt{vi

t}iœ[N ]

, and this algorithm is guaranteed to have a log N
– regret bound for

–-exp-concave losses (Kivinen and Warmuth [1999]). In either case it is preferred to
have bigger values for the constants — and – to have better regret bounds. Since an
–-exp-concave loss is —-mixable for some — Ø –, the regret bound of the Weighted
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Average Algorithm is worse than that of the Aggregating Algorithm by a small con-
stant factor. In Vovk [2001], it is noted that (¸1(cowt{vi

t}i), ..., ¸n(cowt{vi
t}i))

Õ Æ
gt = E≠1

—

!

cowt{E—
!

(¸1(vi
t), ..., ¸n(vi

t))
Õ"}i

"

is always guaranteed only for —-exp-concave
losses. Thus for –-exp-concave losses, the Weighted Average Algorithm is equivalent
to the Aggregating Algorithm with the weighted average of the experts’ predictions as
its substitution function and – as the learning rate for both algorithms.

Even though the choice of substitution function will not have any impact on the
regret bound and the weight update mechanism of the Aggregating Algorithm, it will
certainly have impact on the actual regret of the learner over a given sequence of out-
comes. According to the results given in Appendix 4.4.1 (where we have empirically
compared some substitution functions), this impact on the actual regret varies depend-
ing on the outcome sequence, and in general the regret values for practical substitution
functions don’t di�er much — thus we can stick with a computationally e�cient sub-
stitution function.

4.2 Exp-Concavity of Proper Composite Losses

Exp-concavity of a loss is desirable for better (logarithmic) regret bounds in online con-
vex optimization algorithms, and for e�cient implementation of exponential weights
algorithms. In this section we will consider whether one can always find a link func-
tion that can transform a —-mixable proper loss into —-exp-concave composite loss —
first by using the geometry of the set E—(S¸) (Section 4.2.1), and then by using the
characterization of the composite loss in terms of the associated Bayes risk (Sections
4.2.2, and 4.2.3).

4.2.1 Geometric approach

In this section we will use the same construction used by van Erven [2012] to derive an
explicit closed form of a link function that could re-parameterize any —-mixable loss
into a —-exp-concave loss, under certain conditions which are explained below. Given
a multi-class loss ¸ : V æ Rn

+

, define

¸(V) := {¸(v) : v œ V}, (4.8)
B— := coE—(¸(V)). (4.9)

For any g œ B— let c(g) := sup {c Ø 0 : (g + c1n) œ B—}. Then the “north-east” bound-
ary of the set B— is given by ˆ1nB— := {g + c(g) : g œ B—}. The following proposition
is the main result of this section.
Proposition 4.1. Assume ¸ is strictly proper and it satisfies the condition : ˆ1nB— ™
E—(¸(V)) for some — > 0. Define Â(p) := JE—(¸(p)) for all p œ Dn, where J =

[In≠1, ≠1n≠1]. Then Â is invertible, and ¸ ¶ Â≠1 is —-exp-concave over Â(Dn
), which

is a convex set.
The condition stated in the above proposition is satisfied by any —-mixable proper

loss in the binary case (n = 2), but it is not guaranteed in the multi-class case where
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A 

B 

C 

Figure 4.1: Ray “escaping”
in 1n direction. More evi-
dence in Figure 4.12 in Ap-
pendix 4.4.4.

Figure 4.2: Adding “faces”
to block rays in (almost)
all positive directions.

1 

1 O 

Figure 4.3: Sub-exp-
prediction set extended by
removing near axis-parallel
supporting hyperplanes.

n > 2. In the binary case the link function can be given as Â(p) = e≠—¸1(p) ≠ e≠—¸2(p)

for all p œ D2.
Unfortunately, the condition that ˆ1nB— ™ E—(¸(V)) is generally not satisfied;

an example based on squared loss (— = 1 and n = 3 classes) is shown in Figure
4.1, where for A and B in E—(¸(V)), the mid-point C can travel along the ray of
direction 13 without hitting any point in the exp-prediction set E—(¸(V)). Therefore
we resort to approximating a given —-mixable loss by a sequence of —-exp-concave losses
parameterised by positive constant ‘, while the approximation approaches the original
loss in some appropriate sense as ‘ tends to 0. Without loss of generality, we assume
V = Dn.

Inspired by Proposition 4.1, a natural idea to construct the approximation is by
adding “faces” to the exp-prediction set such that all rays in the 1n direction will
be blocked. Technically, it turns out more convenient to add faces that block rays
in (almost) all directions of positive orthant. See Figure 4.2 for an illustration. In
particular, we extend the “rim” of the exp-prediction set by hyperplanes that are ‘
close to axis-parallel. The key challenge underlying this idea is to design an appropriate
parameterisation of the surrogate loss ˜̧‘, which not only produces such an extended
exp-prediction set, but also ensures that ˜̧‘(p) = ¸(p) for almost all p œ Dn as ‘ ¿ 0.

Given a —-mixable loss ¸, its sub-exp-prediction set defined as follows must be
convex:

T¸ := E—(¸(Dn
))� Rn

≠ = {E—(¸(p)) ≠ x : p œ Dn, x œ Rn
+

}. (4.10)

Note T¸ extends infinitely in any direction p œ Rn≠. Therefore it can be written in
terms of supporting hyperplanes as

T¸ =
‹

pœDn

H
“p
≠p, where “p = min

xœT¸

xÕ · (≠p), and H
“p
≠p := {x : xÕ · (≠p) Ø “p}. (4.11)

To extend the sub-exp-prediction set with “faces”, we remove some hyperplanes in-
volved in (4.11) that correspond to the ‘ “rim” of the simplex (see Figure 4.3 for an
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illustration in 2-D)

T ‘
¸ :=

‹

pœDn
‘

H
“p
≠p, where Dn

‘ := {p œ Dn : min
i

pi > ‘}. (4.12)

Since ‘ > 0, for any p œ Dn
‘ , E≠1

— (H
“p
≠p fl Rn

+

) is exactly the super-prediction set
of a log-loss with appropriate scaling and shifting (see proof in Appendix 4.4.3). So it
must be convex. Therefore E≠1

— (T ‘
¸ fl Rn

+

) =

u

pœDn
‘

E≠1
— (H

“p
≠p fl Rn

+

) must be convex,
and its recession cone is clearly Rn

+

. This guarantees that the following loss is proper
over p œ Dn [Williamson, 2014, Proposition 2]:

˜̧‘(p) = arg min
zœE≠1

— (T ‘
¸ flRn

+

)

pÕ · z, (4.13)

where the argmin must be attained uniquely (Appendix 4.4.3). Our next proposition
states that ˜̧‘ meets all the requirements of approximation suggested above.

Proposition 4.2. For any ‘ > 0, ˜̧‘ satisfies the condition ˆ1nB— ™ E—(¸(V)). In
addition, ˜̧‘ = ¸ over a subset S‘ ™ Dn, where for any p in the relative interior of Dn,
p œ S‘ for su�ciently small ‘ i.e. lim‘¿0 vol(Dn \ S‘) = 0.

Note Î ˜̧‘(p)≠ ¸(p)Î is not bounded for p /œ S‘. While the result does not show that
all —-mixable losses can be made —-exp-concave, it is suggestive that such a result may
be obtainable by a di�erent argument.

4.2.2 Calculus approach

Proper composite losses are defined by the proper loss ¸ and the link Â. In this section
we will characterize the exp-concave proper composite losses in terms of (HL̃¸(p̃), DẪ(p̃)).
The following proposition provides the identities of the first and second derivatives of
the proper composite losses (Williamson et al. [2016]).

Proposition 4.3. For all i œ [n], p̃ œ ˚̃Dn (the interior of D̃n), and v = Ẫ(p̃) œ V ™
Rn≠1

+

(so p̃ = Ẫ≠1
(v)),

D¸Â
i (v) = ≠(en≠1

i ≠ p̃)Õ · k(p̃), (4.14)
H¸Â

i (v) = ≠
1

(en≠1
i ≠ p̃)Õ ¢ In≠1

2

· Dv[k(p̃)] + k(p̃)Õ · [DẪ(p̃)]≠1, (4.15)

where
k(p̃) := ≠HL̃¸(p̃) · [DẪ(p̃)]≠1. (4.16)

The term k(p̃) can be interpreted as the curvature of the Bayes risk function L̃¸

relative to the rate of change of the link function Ẫ. In the binary case where n = 2,
above proposition reduces to

(¸Â
1 )

Õ
(v) = ≠(1 ≠ p̃)k(p̃) ; (¸Â

2 )
Õ
(v) = p̃k(p̃), (4.17)

(¸Â
1 )

ÕÕ
(v) =

≠(1 ≠ p̃)kÕ
(p̃) + k(p̃)

ẪÕ
(p̃)

, (4.18)
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(¸Â
2 )

ÕÕ
(v) =

p̃kÕ
(p̃) + k(p̃)

ẪÕ
(p̃)

, (4.19)

where k(p̃) =
≠L̃

ÕÕ
¸ (p̃)

ẪÕ
(p̃)

Ø 0 and so d
dv k(p̃) = d

dp̃k(p̃) · d
dv p̃ =

kÕ
(p̃)

ẪÕ
(p̃)

.
A loss ¸ : Dn æ Rn

+

is –-exp-concave (i.e. Dn – q ‘æ ¸y(q) is –-exp-concave for all
y œ [n]) if and only if the map Dn – q ‘æ L¸(p, q) = pÕ · ¸(q) is –-exp-concave for all
p œ Dn. It can be easily shown that the maps v ‘æ ¸Â

y (v) are –-exp-concave if and only
if H¸Â

y (v) < –D¸Â
y (v)

Õ · D¸Â
y (v). By applying Proposition 4.3 we obtain the following

characterization of the –-exp-concavity of the composite loss ¸Â.

Proposition 4.4. A proper composite loss ¸Â
= ¸ ¶ Â≠1 is –-exp-concave (with – > 0

and v = Ẫ(p̃)) if and only if for all p̃ œ ˚̃Dn and for all i œ [n]

1

(en≠1
i ≠ p̃)Õ ¢ In≠1

2

·Dv[k(p̃)] 4 k(p̃)Õ · [DẪ(p̃)]≠1 ≠–k(p̃)Õ · (en≠1
i ≠ p̃) · (en≠1

i ≠ p̃)Õ ·k(p̃).
(4.20)

Based on this characterization, we can determine which loss functions can be exp-
concavified by a chosen link function and how much a link function can exp-concavify
a given loss function. In the binary case (n = 2), the above proposition reduces to the
following.

Proposition 4.5. Let Ẫ : [0, 1] æ V ™ R be an invertible link and ¸ : D2 æ R2
+

be a
strictly proper binary loss with weight function w(p̃) := ≠HL̃¸(p̃) = ≠L̃

ÕÕ
¸ (p̃). Then the

binary composite loss ¸Â := ¸ ¶ P≠1
D ¶ Ẫ≠1 is –-exp-concave (with – > 0) if and only if

≠ 1
p̃
+ –w(p̃)p̃ Æ wÕ

(p̃)

w(p̃)
≠ ẪÕÕ

(p̃)

ẪÕ
(p̃)

Æ 1
1 ≠ p̃

≠ –w(p̃)(1 ≠ p̃), ’p̃ œ (0, 1). (4.21)

The following proposition gives an easier to check necessary condition for the binary
proper losses that generate an –-exp-concave (with – > 0) binary composite loss given
a particular link function. Since scaling a loss function will not a�ect what a sensible
learning algorithm will do, it is possible to normalize the loss functions by normalizing
their weight functions by setting w(

1
2 ) = 1. By this normalization we are scaling the

original loss function by 1
w(

1
2 )

and the super-prediction set is scaled by the same factor.
If the original loss function is —-mixable (resp. –-exp-concave), then the normalized
loss function is —w(

1
2 )-mixable (resp. –w(

1
2 )-exp-concave).

Proposition 4.6. Let Ẫ : [0, 1] æ V ™ R be an invertible link and ¸ : D2 æ R2
+

be a strictly proper binary loss with weight function w(p̃) := ≠HL̃¸(p̃) = ≠L̃
ÕÕ
¸ (p̃)

normalised such that w(

1
2 ) = 1. Then the binary composite loss ¸Â := ¸ ¶ P≠1

D ¶ Ẫ≠1 is
–-exp-concave (with – > 0) only if

ẪÕ
(p̃)

p̃(2ẪÕ
(

1
2 ) ≠ –(Ẫ(p̃) ≠ Ẫ( 1

2 )))
Q w(p̃) Q ẪÕ

(p̃)

(1 ≠ p̃)(2ẪÕ
(

1
2 ) + –(Ẫ(p̃) ≠ Ẫ( 1

2 )))
, ’p̃ œ (0, 1),

(4.22)
where Q denotes Æ for p̃ Ø 1

2 and denotes Ø for p̃ Æ 1
2 .
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Figure 4.4: Necessary but not su�cient region of normalised weight functions to ensure
–-exp-concavity and convexity of proper losses (— – = 4; — – = 2; — convexity).

Proposition 4.5 provides necessary and su�cient conditions for the exp-concavity
of binary composite losses, whereas Proposition 4.6 provides simple necessary but not
su�cient conditions. By setting – = 0 in all the above results we have obtained for exp-
concavity, we recover the convexity conditions for proper and composite losses which
are already derived by Reid and Williamson [2010] for the binary case and Williamson
et al. [2016] for multi-class.

4.2.3 Link functions

A proper loss can be exp-concavified (– > 0) by some link function only if the loss is
mixable (—¸ > 0) and the maximum possible value for exp-concavity constant is the
mixability constant of the loss (since the link function won’t change the super-prediction
set and an –-exp-concave loss is always —-mixable for some — Ø –).

By applying the identity link Ẫ(p̃) = p̃ in (4.21) we obtain the necessary and
su�cient conditions for a binary proper loss to be –-exp-concave (with – > 0) as given
by,

≠ 1
p̃
+ –w(p̃)p̃ Æ wÕ

(p̃)

w(p̃)
Æ 1

1 ≠ p̃
≠ –w(p̃)(1 ≠ p̃), ’p̃ œ (0, 1). (4.23)

By substituting Ẫ(p̃) = p̃ in (4.22) we obtain the following necessary but not su�cient
(simpler) constraints for a normalized binary proper loss to be –-exp-concave

1
p̃(2 ≠ –(p̃ ≠ 1

2 ))
Q w(p̃) Q 1

(1 ≠ p̃)(2 + –(p̃ ≠ 1
2 ))

, ’p̃ œ (0, 1), (4.24)
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Figure 4.5: Necessary and su�cient region of unnormalised weight functions to ensure
–-exp-concavity of composite losses with canonical link (— – = 2; — – = 4; — – = 8).

which are illustrated as the shaded region in Figure 4.4 for di�erent values of –. Observe
that normalized proper losses can be –-exp-concave only for 0 < – Æ 4. When – = 4,
only the normalized weight function of log loss (w¸log(p̃) = 1

4p̃(1≠p̃) ) will satisfy (4.24),
and when – > 4, the allowable (necessary) w(p̃) region to ensure –-exp-concavity
vanishes. Thus normalized log loss is the most exp-concave normalized proper loss.
Observe (from Figure 4.4) that normalized square loss (w¸sq

(p̃) = 1) is at most 2-exp-
concave. Further from (4.24), if –Õ > –, then the allowable w(p̃) region to ensure
–Õ-exp-concavity will be within the region for –-exp-concavity, and also any allowable
w(p̃) region to ensure –-exp-concavity will be within the region for convexity, which
is obtained by setting – = 0 in (4.24). Here we recall the fact that, if the normalized
loss function is –-exp-concave, then the original loss function is –

w(

1
2 )

-exp-concave. The
following theorem provides su�cient conditions for the exp-concavity of binary proper
losses.

Theorem 4.7. A binary proper loss ¸ : D2 æ R2
+

with the weight function w(p̃) =

≠L̃
ÕÕ
¸ (p̃) normalized such that w(

1
2 ) = 1 is –-exp-concave (with – > 0) if

w(p̃) =

1
p̃

1

2 ≠ s 1/2
p̃ a(t)dt

2 for a(p̃) s.t.

5

–(1 ≠ p̃)

p̃
≠ 2

p̃(1 ≠ p̃)

6

+

1
p̃(1 ≠ p̃)

⁄ 1/2

p̃
a(t)dt Æ a(p̃) Æ ≠ –, ’p̃ œ (0, 1/2],



§4.2 Exp-Concavity of Proper Composite Losses 77

and

w(p̃) =

1

(1 ≠ p̃)
3

2 ≠ s p̃
1
2

b(t)dt
4 for b(p̃) s.t.

5

–p̃

(1 ≠ p̃)
≠ 2

p̃(1 ≠ p̃)

6

+

1
p̃(1 ≠ p̃)

⁄ p̃

1/2
b(t)dt Æ b(p̃) Æ ≠ –, ’p̃ œ [

1
2 , 1).

For square loss we can find that a(p̃) = ≠1
p̃2 and b(p̃) = ≠1

(1≠p̃)2 will satisfy the above
su�cient condition with – = 4 and for log loss a(p̃) = b(p̃) = ≠4 will satisfy the
su�cient condition with – = 4. It is also easy to see that for symmetric losses a(p̃)
and b(p̃) will be symmetric.

When the canonical link function Ẫ¸(p̃) := ≠DL̃¸(p̃)
Õ is combined with a strictly

proper loss to form ¸Â¸ , since DẪ¸(p̃) = ≠HL̃¸(p̃), the first and second derivatives of
the composite loss become considerably simpler as follows

D¸Â¸
i (v) = ≠(en≠1

i ≠ p̃)Õ, (4.25)
H¸Â¸

i (v) = ≠[HL̃¸(p̃)]
≠1. (4.26)

Since a proper loss ¸ is —-mixable if and only if —HL̃¸(p̃) < HL̃¸log(p̃) for all p̃ œ ˚̃Dn

(Van Erven et al. [2012]), by applying the canonical link any —-mixable proper loss will
be transformed to –-exp-concave proper composite loss (with — Ø – > 0) but – = — is
not guaranteed in general. In the binary case, since ẪÕ

¸(p̃) = ≠L̃
ÕÕ
¸ (p̃) = w(p̃), we get

w(p̃) Æ 1
–p̃2 and w(p̃) Æ 1

–(1 ≠ p̃)2 , ’p̃ œ (0, 1), (4.27)

as the necessary and su�cient conditions for ¸Â¸ to be –-exp-concave. In this case
when – æ Œ the allowed region vanishes (since for proper losses w(p̃) Ø 0). From
Figure 4.5 it can be seen that, if the normalized loss function satisfies

w(p̃) Æ 1
4p̃2 and w(p̃) Æ 1

4(1 ≠ p̃)2 , ’p̃ œ (0, 1),

then the composite loss obtained by applying the canonical link function on the un-
normalized loss with weight function worg(p̃) is 4

worg(
1
2 )

-exp-concave.
We now consider whether one can always find a link function that can transform

a —-mixable proper loss into —-exp-concave composite loss. In the binary case, such a
link function exists and is given in the following corollary.

Corollary 4.8. Let w¸(p̃) = ≠L̃
ÕÕ
¸ (p̃). The exp-concavifying link function Ẫú

¸ defined
via

Ẫú
¸ (p̃) =

w¸log(
1
2 )

w¸(
1
2 )

⁄ p̃

0

w¸(v)

w¸log(v)
dv, ’p̃ œ [0, 1] (4.28)

(which is a valid strictly increasing link function) will always transform a —-mixable
proper loss ¸ into —-exp-concave composite loss ¸Âú

¸ , where ¸
Âú

¸
y (v) = ¸y ¶ P≠1

D ¶ (Ẫú
¸ )

≠1
(v).
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For log loss, the exp-concavifying link is equal to the identity link and the canonical
link could be written as

s p̃
0 w¸(v)dv. If ¸ is a binary proper loss with weight function

w¸(p̃), then we can define a new proper loss ¸mix with weight function w¸mix(p̃) =

w¸(p̃)
w

¸log (p̃)
. Then applying the exp-concavifying link Ẫú

¸ on the original loss ¸ is equivalent
to applying the canonical link Ẫ¸ on the new loss ¸mix.

The links constructed by the geometric and calculus approaches can be completely
di�erent (see Appendix 4.4.4, 4.4.5, and 4.4.6). The former can be further varied by
replacing 1n with any direction in the positive orthant, and the latter can be arbitrar-
ily rescaled. Furthermore, as both links satisfy (4.21) with – = —, any appropriate
interpolation also works.

4.3 Conclusions

If a loss is —-mixable, one can run the Aggregating Algorithm with learning rate —
and obtain a log N

— regret bound. Similarly a log N
– regret bound can be attained by

the Weighted Average Algorithm with learning rate –, when the loss is –-exp-concave.
Vovk [2001] observed that the weighted average of the expert predictions (Kivinen
and Warmuth [1999]) will be a perfect (in the technical sense defined in Vovk [2001])
substitution function for the Aggregating Algorithm if and only if the loss function
is exp-concave. Thus if we have to use a proper, mixable but non-exp-concave loss
function ¸ for a sequential prediction (online learning) problem, an O(1) regret bound
could be achieved by the following two approaches:

• Use the Aggregating Algorithm (Vovk [1995]) with the inverse loss ¸≠1 (Williamson
[2014]) as the universal substitution function.

• Apply the exp-concavifying link (Ẫú
¸ ) on ¸, derive the —¸-exp-concave compos-

ite loss ¸Âú
¸ . Then use the Weighted Average Algorithm (Kivinen and War-

muth [1999]) with ¸Âú
¸ to obtain the learner’s prediction in the transformed do-

main (vavg œ Âú
¸ (D̃

n
)). Finally output the inverse link value of this prediction

((Âú
¸ )

≠1
(vavg)).

In either approach we are faced with a computational problem of evaluating an inverse
function. But in the binary class case the inverse of a strictly monotone function
can be e�ciently evaluated using one sided bisection method (or lookup table). So in
conclusion, the latter approach can be more convenient and e�cient in computation
than the former.

When n = 2, we have shown that one can always transform a beta-mixable proper
loss into beta-exp-concave proper composite loss using either geometric link function
(Proposition 4.1) or calculus-based link function (Corollary 4.8). When n > 2, we
observed that the square loss (which is a mixable proper loss) cannot be exp-concavified
via the geometric link. And by the calculus approach, it is hard to obtain an explicit
form for exp-concavifying link function when n > 2. Thus when n > 2, characterization
of proper mixable losses that are exp-concavifiable still remains an open problem. For
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Figure 4.6: Super-prediction set (S¸) of a binary game ({≠1, 1}, [0, 1], ¸), where a
generalized prediction is represented by (g(≠1), g(1)).

this, we may need to consider other possible ways to construct link functions Williamson
[2014].

4.4 Appendix

4.4.1 Substitution Functions

We consider the following choices of substitution functions — Best look ahead, Worst
look ahead, Inverse loss (Williamson [2014]) and Weighted average (Kivinen and War-
muth [1999]). The first two choices are just hypothetical ones as they look ahead the
actual outcome first and then choose their predictions to incur low and high loss re-
spectively, still they give us an idea about how well or worse the Aggregating Algorithm
performs over a given outcome sequence. The weighted average is a computationally
e�cient and easily implementable substitution function, but it is applicable only for
exp-concave losses.

For a binary game represented by
(

{≠1, 1}, [0, 1], ¸
)

and shown in the Figure 4.6,

• If the outcome y = ≠1, the Best look ahead and the Worst look ahead will
choose the predictions v2 and v1 and incur losses ¸≠1(v2) and ¸≠1(v1) = g(≠1)
respectively; and if y = 1, they will choose v1 and v2 and su�er losses ¸1(v1) and
¸1(v2) = g(1) respectively.

• The Inverse loss will choose the prediction vinv such that ¸1(vinv)
¸≠1(vinv)

=

g(1)
g(≠1) and will

incur a loss ¸(y, vinv), and the Weighted average will choose vavg =

q

i wivi (where
wi and vi are the weight and the prediction of the i-the expert respectively) and
will incur a loss ¸(y, vavg).
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Further if the loss function ¸ is chosen to be the square loss (which is both 2-mixable
and 1

2 -exp-concave), then we have v1 =

Ò

g(≠1) (since ¸≠1(v1) = v2
1 = g(≠1)), v2 =

1≠
Ò

g(1) (since ¸1(v2) = (1≠v2)2
= g(1)), and vinv =

Ô
g(≠1)Ô

g(≠1)+
Ô

g(1)
(since (1≠vinv)2

v2
inv

=

g(1)
g(≠1) ). Thus for a binary square loss game over an outcome sequence y1, ..., yT , the
cumulative losses of the Aggregating Algorithm for di�erent choices of substitution
function are given as follows:

• Best look ahead:
qT

1
1

1 ≠
Ò

gt(≠yt)

22

• Worst look ahead:
qT

1 gt(yt)

• Inverse loss:
qT

1

3

yt ≠
Ô

gt(0)Ô
gt(0)+

Ô
gt(1)

42

• Weighted average:
qT

1 (

yt ≠ q

i wt
iv

t
i)

2

Some experiments are conducted on a binary square loss game to compare these
substitution functions. For this, binary outcome sequences of 100 elements are gen-
erated using the Bernoulli distribution with success probabilities 0.5, 0.7, 0.9, and
1.0 (these sequences are represented by {yt}p=0.5, {yt}p=0.7, {yt}p=0.9 and {yt}p=1.0
respectively). Furthermore the following expert settings are used:

• 2 experts where one expert always make the prediction v = 0, and the other one
always makes the prediction v = 1. This setting is represented by {Et}set.1.

• 3 experts where two experts are as in the previous setting, and the other one is
always accurate expert. This setting is represented by {Et}set.2.

• 101 constant experts where the prediction values of the experts are from 0 to 1
with equal interval. This setting is represented by {Et}set.3.

The results of these experiments are presented in the figures 4.7,4.8,4.9, and 4.10. From
these figures, it can be seen that for the expert setting {Et}set.1, the di�erence between
the regret values of the worst look ahead and the best look ahead substitution functions
relative to the theoretical regret bound is very high, whereas that relative di�erence is
very low for the expert setting {Et}set.3. Further the performance of the Aggregating
Algorithm over a real dataset is shown in the Figure 4.11. From these results for
both simulated dataset (for all three expert settings) and real dataset, observe that
the di�erence between the regret values of the inverse loss and the weighted average
substitution functions relative to the theoretical regret bound is very low.

4.4.2 Probability Games with Continuous outcome space

We consider an important class of prediction problem called probability games (as
explained by Vovk [2001]), in which the prediction v and the outcome y are probability
distributions in some set (for example a finite set of the form [n]). A special class of
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Figure 4.7: Cumulative regret of the Aggregating Algorithm over the outcome sequence
{yt}p=0.5 for di�erent choices of substitution functions (Best look ahead(—), Worst look
ahead(—), Inverse loss(—), and Weighted average(—)) with learning rate ÷ and expert
setting {Et}i (theoretical regret bound is shown by - - -).

(a) ÷ = 0.1, {Et}set.1 (b) ÷ = 0.3, {Et}set.1 (c) ÷ = 0.5, {Et}set.1

(d) ÷ = 0.1, {Et}set.2 (e) ÷ = 0.3, {Et}set.2 (f) ÷ = 0.5, {Et}set.2

(g) ÷ = 0.1, {Et}set.3 (h) ÷ = 0.3, {Et}set.3 (i) ÷ = 0.5, {Et}set.3
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Figure 4.8: Cumulative regret of the Aggregating Algorithm over the outcome sequence
{yt}p=0.7 for di�erent choices of substitution functions (Best look ahead(—), Worst look
ahead(—), Inverse loss(—), and Weighted average(—)) with learning rate ÷ and expert
setting {Et}i (theoretical regret bound is shown by - - -).

(a) ÷ = 0.1, {Et}set.1 (b) ÷ = 0.3, {Et}set.1 (c) ÷ = 0.5, {Et}set.1

(d) ÷ = 0.1, {Et}set.2 (e) ÷ = 0.3, {Et}set.2 (f) ÷ = 0.5, {Et}set.2

(g) ÷ = 0.1, {Et}set.3 (h) ÷ = 0.3, {Et}set.3 (i) ÷ = 0.5, {Et}set.3
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Figure 4.9: Cumulative regret of the Aggregating Algorithm over the outcome sequence
{yt}p=0.9 for di�erent choices of substitution functions (Best look ahead(—), Worst look
ahead(—), Inverse loss(—), and Weighted average(—)) with learning rate ÷ and expert
setting {Et}i (theoretical regret bound is shown by - - -).

(a) ÷ = 0.1, {Et}set.1 (b) ÷ = 0.3, {Et}set.1 (c) ÷ = 0.5, {Et}set.1

(d) ÷ = 0.1, {Et}set.2 (e) ÷ = 0.3, {Et}set.2 (f) ÷ = 0.5, {Et}set.2

(g) ÷ = 0.1, {Et}set.3 (h) ÷ = 0.3, {Et}set.3 (i) ÷ = 0.5, {Et}set.3
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Figure 4.10: Cumulative regret of the Aggregating Algorithm over the outcome se-
quence {yt}p=1.0 for di�erent choices of substitution functions (Best look ahead(—),
Worst look ahead(—), Inverse loss(—), and Weighted average(—)) with learning rate
÷ and expert setting {Et}i (theoretical regret bound is shown by - - -).

(a) ÷ = 0.1, {Et}set.1 (b) ÷ = 0.3, {Et}set.1 (c) ÷ = 0.5, {Et}set.1

(d) ÷ = 0.1, {Et}set.2 (e) ÷ = 0.3, {Et}set.2 (f) ÷ = 0.5, {Et}set.2

(g) ÷ = 0.1, {Et}set.3 (h) ÷ = 0.3, {Et}set.3 (i) ÷ = 0.5, {Et}set.3

Figure 4.11: Cumulative regret of the Aggregating Algorithm over the football dataset
as used by Vovk and Zhdanov [2009], for di�erent choices of substitution functions (Best
look ahead(—), Worst look ahead(—), Inverse loss(—), and Weighted average(—)) with
learning rate ÷ (theoretical regret bound is shown by - - -).

(a) ÷ = 0.1 (b) ÷ = 0.3 (c) ÷ = 0.5
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loss functions called Bregman Loss Functions (defined below) would be an appropriate
choice for the probability games.

Given a di�erentiable convex function „ : S æ R defined on a convex set S µ Rd

and two points s0, s œ S the Bregman divergence of s from s0 is defined as

B„(s, s0) := „(s) ≠ „(s0) ≠ (s ≠ s0)
Õ · D„(s0),

where D„(s0) is the gradient of „ at s0. For any strictly convex function „ : D̃n æ R,
di�erentiable over the interior of D̃n, the Bregman Loss Function (BLF, Banerjee et al.
[2005]) ¸„ : Dn ◊ Dn æ R

+

with generator „ is given by

¸„(y, v) := B„(ỹ, ṽ) = „(ỹ) ≠ „(ṽ) ≠ (ỹ ≠ ṽ)Õ · D„(ṽ); y, v œ Dn, (4.29)

where ỹ = PD(y), and ṽ = PD(v). Since the conditional Bayes risk of a strictly
proper loss is strictly concave, any di�erentiable strictly proper loss ¸ : Dn æ Rn

+

will
generate a BLF ¸„ with generator „ = ≠L̃¸. Further if ¸ is fair, ¸i(v) = ¸„(en

i , v); i.e.
reconstruction is possible. For example the Kullback-Leibler loss given by ¸KL(y, v) :=
qn

i=1 y(i) log y(i)
v(i) , is a BLF generated by the log loss which is strictly proper.

The following lemma (multi-class extension of a result given by Haussler et al.
[1998]) provides the mixability condition for probability games.

Lemma 4.9. For given ¸ : Dn ◊ Dn æ R
+

, assume that for all ỹ, ṽ1, ṽ2 œ D̃n (let
y = P≠1

D (ỹ), v1 = P≠1
D (ṽ1), and v2 = P≠1

D (ṽ2)), the function g defined by

g(ỹ, ṽ1, ṽ2) =
—

c(—)
¸(y, v1) ≠ —¸(y, v2) (4.30)

satisfies
Hỹg(ỹ, ṽ1, ṽ2) + Dỹg(ỹ, ṽ1, ṽ2) · (Dỹg(ỹ, ṽ1, ṽ2))

Õ < 0. (4.31)

If
÷ṽú œ D̃n s.t. ¸(y, vú

) Æ ≠c(—)

—
log

⁄

e≠—¸(y,v)P (dṽ) (4.32)

holds for the vertices ỹ = en≠1
i , i œ [n], then it holds for all values ỹ œ D̃n (where

y = P≠1
D (ỹ), vú

= P≠1
D (ṽú

) and v = P≠1
D (ṽ)).

Proof. From (4.32)

—

c(—)
¸(y, vú

) + log
⁄

e≠—¸(y,v)P (dṽ) Æ 0.

By exponentiating both sides we get

e
—

c(—)

¸(y,vú
) ·

⁄

e≠—¸(y,v)P (dṽ) Æ 1.
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Denoting the left hand side of the above inequality by f(ỹ) we have

f(ỹ) =
⁄

eg(ỹ,ṽú,ṽ)P (dṽ).

Since the Hessian of f w.r.t. ỹ given by

Hỹf(ỹ) =
⁄

eg(ỹ,ṽú,ṽ)
(

Hỹg(ỹ, ṽú, ṽ) + Dỹg(ỹ, ṽú, ṽ) · (Dỹg(ỹ, ṽú, ṽ))Õ
)

P (dṽ)

is positive semi-definite (by (4.31)), f(ỹ) is convex in ỹ. So the maximum values of f
for ỹ œ D̃n occurs for some ỹ = en≠1

i , i œ [n]. And by noting that, (4.32) is equivalent
to f(ỹ) Æ 1 for ỹ = en≠1

i , i œ [n], the proof is completed.

The next proposition shows that the mixability and exp-concavity of a strictly
proper loss is carried over to the BLF generated by it.

Proposition 4.10. For a strictly proper fair loss ¸ : Dn æ Rn
+

, and the BLF ¸„ :
Dn ◊ Dn æ R

+

generated by ¸ with „ = ≠L̃¸ , if ¸ is —-mixable (resp. –-exp-concave),
then ¸„ is also —-mixable (resp. –-exp-concave).

Proof. From (4.30) and (4.29), for the BLF ¸„ we have

g(ỹ, ṽ1, ṽ2) =
—

c(—)
{„(ỹ) ≠ „(ṽ1) ≠ (ỹ ≠ ṽ1)

Õ · D„(ṽ1)}

≠ —{„(ỹ) ≠ „(ṽ2) ≠ (ỹ ≠ ṽ2)
Õ · D„(ṽ2)},

Dỹg(ỹ, ṽ1, ṽ2) =
—

c(—)
{D„(ỹ) ≠ D„(ṽ1)} ≠ —{D„(ỹ) ≠ D„(ṽ2)},

Hỹg(ỹ, ṽ1, ṽ2) =
—

c(—)
H„(ỹ) ≠ —H„(ỹ).

And since x · xÕ < 0, ’x œ Rn, (4.31) is satisfied for all ỹ, ṽ1, ṽ2 œ D̃n when c(—) = 1,
which is the mixability condition (in addition requiring ṽú

=

s

ṽP (dṽ) in (4.32) is the
exp-concavity condition). Then by applying Lemma 4.9 proof is completed.

As an application of Proposition 4.10, we can see that both Kullback-Leibler loss
and log loss are 1-mixable and 1-exp-concave.

4.4.3 Proofs

Proof. (Proposition 4.1) We first prove that the set Â(Dn
) is convex. For any p, q œ

Dn, by assumption there exists c Ø 0 and r œ Dn such that 1
2 (E—(¸(p)) + E—(¸(q))) +

c1n = E—(¸(r)). Therefore 1
2 (Â(p) +Â(q)) = Â(r), which implies the convexity of the

set Â(Dn
).

Let T : Rn≠1 – (e≠—z1 ≠ e≠—zn , ..., e≠—zn≠1 ≠ e≠—zn
)

Õ æ (e≠—z1 , ..., e≠—zn
)

Õ œ [0, 1]n.
Note this mapping from low dimension to high dimension is well defined because if
there are two di�erent z and z in ¸(V) such that JE—(z) = JE—(z), then there must
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be c ”= 0 such that E—(z) + c1 = E—(z). This means z > z or z < z, which violates
the strict properness of ¸.

Since for any v = Â(p) = JE—(¸(p)) we have p = ¸≠1
1

E≠1
— (Tv)

2

, the link Â is
invertible (¸ is invertible if it is strictly proper (Williamson et al. [2016]), and E— is
invertible for — > 0).

Now ¸ ¶ Â≠1 is —-exp-concave if for all p, q œ Dn

E—

3

¸ ¶ Â≠1
31

2 (Â(p) + Â(q))
44

Ø 1
2E—

1

¸ ¶ Â≠1
(Â(p))

2

+

1
2E—

1

¸ ¶ Â≠1
(Â(q))

2

.
(4.33)

The right-hand side is obviously 1
2 (E—(¸(p)) + E—(¸(q))). Let r = Â≠1

1

1
2 (Â(p) + Â(q))

2

œ
Dn. Then

JE—(¸(r)) = Â(r) =
1
2 (

JE—(¸(p)) + JE—(¸(q))) .

Therefore 1
2 (E—(¸(p)) + E—(¸(q))) = E—(¸(r)) + c1n for some c œ R. To establish

(4.33), it su�ces to show c Æ 0. But this is guaranteed by the condition assumed.

Proof. (Proposition 4.2) We first show that for a half space H
“p
≠p defined in (4.11)

with p œ Dn
‘ , E≠1

— (H
“p
≠p fl Rn

+

) must be the super-prediction set of a scaled and shifted
log loss. In fact, as pi > 0, clearly “p = minxœT¸ xÕ · (≠p) < 0. Define a new loss
˜̧log
i (q) = ≠ 1

— log(≠“p

pi
qi) over q œ Dn. Then S ˜̧log ™ E≠1

— (H
“p
≠p fl Rn

+

) can be seen from

ÿ

i

(≠pi) exp(≠— ˜̧log
i (q)) =

ÿ

i

(≠pi)(≠“p

pi
qi) = “p. (4.34)

Conversely, for any u such that ui > 0 and (≠p)Õ · u = “p, simply choose qi = ≠uipi
“p

.
Then q œ Dn and E—(

˜̧log
(q)) = u. In summary, E≠1

— (H
“p
≠p fl Rn

+

) is the super-prediction
set of ˜̧log.

To prove Proposition 4.2, we first show that for any point a œ T ‘
¸ and any direction

d from the relative interior of the positive orthant (which includes the 1n direction),
the ray {a + rd : r Ø 0} will be blocked by a boundary point of T ‘

¸ . This is because
by the definition of T ‘

¸ in (4.12), the largest value of r to guarantee a+ rd œ T ‘
¸ can be

computed by

rú := sup{r Ø 0 : a + rd œ T ‘
¸ } = sup{r Ø 0 : (a + rd)Õ · (≠p) Ø “p, ’p œ Dn

‘ } (4.35)

must be finite and attained. Denote x = a + rúd, which must be on the boundary of
T ‘

¸ because

≠xÕ · p Ø “p, for all p œ Dn
‘ , (4.36)

and ≠ xÕ · pú
= “pú for some pú œ Dn

‘ (not necessarily unique). (4.37)

In order to prove the first statement of Proposition 4.2, it su�ces to show that for any
point x on the north-east boundary of T ‘

¸ , there exists a q œ Dn such that E—(
˜̧‘(q)) = x.

Suppose x satisfies (4.36) and (4.37). Then consider the (shifted/scaled) log loss ˜̧log

that corresponds to H
“pú
pú . Because log loss is strictly proper, there must be a unique
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q œ Dn such that the hyperplane H0 := {z : qÕ · z = qÕ · E≠1
— (x)} supports the super-

prediction set of ˜̧log (i.e., E≠1
— (H

“pú
≠pú fl Rn

+

)) at E≠1
— (x). Since E≠1

— (T ‘
¸ fl Rn

+

) is a
convex subset of E≠1

— (H
“pú
≠pú fl Rn

+

), this hyperplane also supports E≠1
— (T ‘

¸ fl Rn
+

) at
E≠1

— (x). Therefore E≠1
— (x) is an optimal solution to the problem in the definition of

˜̧‘(q) in (4.13). Finally observe that it must be the unique optimal solution, because if
there were another solution which also lies on H0, then by the convexity of the super-
prediction set of ˜̧‘, the line segment between them must also lie on the prediction
set of ˜̧‘. This violates the mixability condition of ˜̧‘, because by construction its
sub-exp-prediction set is convex.

In order to check where ¸(p) =

˜̧‘(p), a su�cient condition is that the normal
direction d on the exp-prediction set evaluated at E—(¸(p)) satisfies di/

q

j dj > ‘.
Simple calculus shows that di Ã pi exp(—¸i(p)). Therefore as long as p is in the relative
interior of Dn, di/

q

j dj > ‘ can always be satisfied by choosing a su�ciently small ‘.
And for each fixed ‘, the set S‘ mentioned in the theorem consists exactly of all such
p that satisfies this condition.

Proof. (Proposition 4.5) When n = 2, (4.17), (4.18) and (4.19) and the positivity of
ẪÕ simplify (4.20) to the two conditions:

(1 ≠ p̃) kÕ
(p̃) Æ k(p̃) ≠ – ẪÕ

(p̃) k(p̃)2
(1 ≠ p̃)2,

≠p̃ kÕ
(p̃) Æ k(p̃) ≠ – ẪÕ

(p̃) k(p̃)2 p̃2,

for all p̃ œ (0, 1). These two conditions can be merged as follows

≠1
p̃
+ – ẪÕ

(p̃) k(p̃) p̃ Æ kÕ
(p̃)

k(p̃)
Æ 1

1 ≠ p̃
≠ – ẪÕ

(p̃) k(p̃) (1 ≠ p̃), ’p̃ œ (0, 1).

By noting that k(p̃) = w(p̃)
ẪÕ

(p̃)
and kÕ

(p̃) = wÕ
(p̃)ẪÕ

(p̃)≠w(p̃)ẪÕÕ
(p̃)

ẪÕ
(p̃)

2 completes the proof.

Proof. (Proposition 4.6) Let g(p̃) =

1
w(p̃) and so gÕ

(p̃) = ≠ 1
w(p̃)2 wÕ

(p̃), g(v) =

s v
1
2

gÕ
(p̃)dp̃ + g( 1

2 ) and g( 1
2 ) =

1
w(

1
2 )

= 1. By dividing all sides of (4.21) by ≠w(p̃)

and applying the substitution we get,

1
p̃

g(p̃) ≠ –p̃ Ø gÕ
(p̃) ≠ FẪ(p̃)g(p̃) Ø ≠ 1

1 ≠ p̃
g(p̃) + –(1 ≠ p̃), ’p̃ œ (0, 1), (4.38)

where FẪ(p̃) := ≠ ẪÕÕ
(p̃)

ẪÕ
(p̃)

. If we take the first inequality of (4.38) and rearrange it we
obtain,

≠ – Ø
3

gÕ
(p̃)

1
p̃

≠ g(p̃)
1
p̃2

4

≠ FẪ(p̃)
g(p̃)

p̃
=

3

g(p̃)

p̃

4Õ
≠ FẪ(p̃)

3

g(p̃)

p̃

4

, ’p̃ œ (0, 1).
(4.39)
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Multiplying (4.39) by e≠
s p̃

0 FẪ(t)dt will result in,

≠–e≠
s p̃

0 FẪ(t)dt Ø
3

g(p̃)

p̃

4Õ
e≠

s p̃

0 FẪ(t)dt
+

3

g(p̃)

p̃

4

e≠
s p̃

0 FẪ(t)dt
(≠FẪ(p̃))

=

3

g(p̃)

p̃
e≠

s p̃

0 FẪ(t)dt
4Õ

, ’p̃ œ (0, 1). (4.40)

Since
≠

⁄ p̃

0
FẪ(t)dt = ≠

⁄ p̃

0
≠ ẪÕÕ

(t)

ẪÕ
(t)

dt =
⁄ p̃

0
(log ẪÕ

(t))Õdt = log ẪÕ
(p̃)

ẪÕ
(0)

,

(4.40) is reduced to

≠–
ẪÕ
(p̃)

ẪÕ
(0)

Ø
A

g(p̃)

p̃

ẪÕ
(p̃)

ẪÕ
(0)

BÕ
, ’p̃ œ (0, 1)

∆ ≠–ẪÕ
(p̃) Ø

3

g(p̃)

p̃
ẪÕ
(p̃)

4Õ
, ’p̃ œ (0, 1).

For v Ø 1
2 we thus have

≠–
⁄ v

1
2

ẪÕ
(p̃)dp̃ Ø

⁄ v

1
2

3

g(p̃)

p̃
ẪÕ
(p̃)

4Õ
dp̃, ’v œ [1/2, 1)

∆ ≠–(Ẫ(v) ≠ Ẫ(
1
2 )) Ø

A

g(v)

v
ẪÕ
(v) ≠ g( 1

2 )
1
2

ẪÕ
(

1
2 )

B

=

3 1
w(v)v

ẪÕ
(v) ≠ 2ẪÕ

(

1
2 )

4

, ’v œ [1/2, 1)

∆ w(v) Ø ẪÕ
(v)

v(2ẪÕ
(

1
2 ) ≠ –(Ẫ(v) ≠ Ẫ( 1

2 )))
, ’v œ [1/2, 1).

Also by considering v Æ 1
2 case as above, we get

ẪÕ
(v)

v(2ẪÕ
(

1
2 ) ≠ –(Ẫ(v) ≠ Ẫ( 1

2 )))
Q w(v), ’v œ (0, 1).

Finally by following the similar steps for the second inequality of (4.38), the proof will
be completed.

Here we provide an integral inequalities related result (without proof) due to Bee-
sack and presented in Dragomir [2000].

Theorem 4.11. Let y and k be continuous and f and g Riemann integrable functions
on J = [–, —] with g and k nonnegative on J . If

y(x) Ø f(x) + g(x)
⁄ x

–
y(t)k(t)dt, x œ J ,
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then
y(x) Ø f(x) + g(x)

⁄ x

–
f(t)k(t) exp

3

⁄ x

t
g(r)k(r)dr

4

dt, x œ J .

The result remains valid if
s x

– is replaced by
s —

x and
s x

t by
s t

x throughout.

Using the above theorem, we get the following simplified test for the conditions in
Theorem 4.7:

≠–+

–

2p̃2 ≠ 2
p̃2 Æ a(p̃) =∆

5

–(1 ≠ p̃)

p̃
≠ 2

p̃(1 ≠ p̃)

6

+

1
p̃(1 ≠ p̃)

⁄ 1/2

p̃
a(t)dt Æ a(p̃)

and

–p̃

(1 ≠ p̃)
+

2–p̃≠–≠4
2(1 ≠ p̃)2 Æ b(p̃) =∆

5

–p̃

(1 ≠ p̃)
≠ 2

p̃(1 ≠ p̃)

6

+

1
p̃(1 ≠ p̃)

⁄ p̃

1/2
b(t)dt Æ b(p̃).

Above two identities are proved in the following proof of Theorem 4.7.

Proof. (Theorem 4.7) The necessary and su�cient condition for the exp-concavity
of proper losses is given by (4.23). But from (4.39), we can see that (4.23) is equivalent
to

3

g(p̃)

p̃

4Õ
Æ ≠–, ’p̃ œ (0, 1), (4.41)

and
≠

3

g(p̃)

1 ≠ p̃

4Õ
Æ ≠–, ’p̃ œ (0, 1), (4.42)

where g(p̃) = 1
w(p̃) with w(

1
2 ) = 1; i.e. (4.23) if and only if (4.41) & (4.42).

Now if we choose the weight function w(p̃) as follows

w(p̃) =
1

p̃
1

2 +
s p̃

1/2 a(t)dt
2 , (4.43)

such that a(t) Æ ≠–, then (4.41) will be satisfied (since (4.43) =∆ 2 +
s p̃

1/2 a(t)dt =
1

w(p̃)p̃ =

g(p̃)
p̃ =∆ a(p̃) =

1

g(p̃)
p̃

2Õ
). Similarly the weight function w(p̃) given by

w(p̃) =
1

(1 ≠ p̃)
1

2 ≠ s p̃
1/2 b(t)dt

2 , (4.44)

with b(t) Æ ≠– will satisfy (4.42) (since (4.44) =∆ 2 ≠ s p̃
1/2 b(t)dt =

1
w(p̃)(1≠p̃) =

g(p̃)
1≠p̃ =∆ ≠b(p̃) =

1

g(p̃)
1≠p̃

2Õ
). To satisfy both (4.41) and (4.42) at the same time (then

obviously (4.23) will be satisfied), we can make the two forms of the weight function
((4.43) and (4.44)) equivalent with the appropriate choice of a(t) and b(t). This can
be done in two cases.

In the first case, for p̃ œ (0, 1/2] we can fix the weight function w(p̃) as given by
(4.43) and choose a(t) such that,
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• a(t) Æ ≠– (then (4.41) is satisfied) and

• (4.43) = (4.44) =∆ b(t) Æ ≠– (then (4.42) is satisfied).

But (4.43) = (4.44) for all p̃ œ (0, 1/2] if and only if

p̃

A

2 ≠
⁄ 1/2

p̃
a(t)dt

B

= (1 ≠ p̃)

A

2 +
⁄ 1/2

p̃
b(t)dt

B

, p̃ œ (0, 1/2]

≈∆ p̃

1 ≠ p̃

A

2 ≠
⁄ 1/2

p̃
a(t)dt

B

≠ 2 =

⁄ 1/2

p̃
b(t)dt, p̃ œ (0, 1/2]

≈∆ p̃

1 ≠ p̃
a(p̃) +

1
(1 ≠ p̃)2

A

2 ≠
⁄ 1/2

p̃
a(t)dt

B

= ≠b(p̃), p̃ œ (0, 1/2],

where the last step is obtained by di�erentiating both sides w.r.t p̃. Thus the constraint
(4.43) = (4.44) =∆ b(t) Æ ≠– can be given as

p̃

1 ≠ p̃
a(p̃) +

1
(1 ≠ p̃)2

A

2 ≠
⁄ 1/2

p̃
a(t)dt

B

Ø –, p̃ œ (0, 1/2]

≈∆ a(p̃) Ø
5

–(1 ≠ p̃)

p̃
≠ 2

p̃(1 ≠ p̃)

6

+

1
p̃(1 ≠ p̃)

⁄ 1/2

p̃
a(t)dt, p̃ œ (0, 1/2]

≈∆ a(p̃) Ø f(p̃) + g(p̃)
⁄ 1/2

p̃
a(t)k(t)dt, p̃ œ (0, 1/2],

where f(p̃) =

Ë

–(1≠p̃)
p̃ ≠ 2

p̃(1≠p̃)

È

, g(p̃) =

1
p̃(1≠p̃) =

1
p̃ +

1
(1≠p̃) and k(t) = 1. Now by

applying Theorem 4.11 we have

a(p̃) Ø f(p̃) + g(p̃)
⁄ 1/2

p̃
f(t)k(t) exp

3

⁄ t

p̃
g(r)k(r)dr

4

dt, p̃ œ (0, 1/2].

Since
⁄ t

p̃
g(r)k(r)dr =

⁄ t

p̃

1
r
+

1
(1 ≠ r)

dr = [ln r ≠ ln(1 ≠ r)]tp̃ = ln
3

t

(1 ≠ t)

(1 ≠ p̃)

p̃

4

,

⁄ 1/2

p̃
f(t)k(t) exp

3

⁄ t

p̃
g(r)k(r)dr

4

dt =

⁄ 1/2

p̃
f(t)

t

(1 ≠ t)

(1 ≠ p̃)

p̃
dt

=

(1 ≠ p̃)

p̃

⁄ 1/2

p̃

5

–(1 ≠ t)

t
≠ 2

t(1 ≠ t)

6

t

(1 ≠ t)
dt

=

(1 ≠ p̃)

p̃

⁄ 1/2

p̃
– ≠ 2

(1 ≠ t)2 dt

=

(1 ≠ p̃)

p̃

5

–t ≠ 2
1 ≠ t

61/2

p̃

=

(1 ≠ p̃)

p̃

5

–

2 ≠ 4 ≠ –p̃ +
2

1 ≠ p̃

6

,
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we get

a(p̃) Ø
5

–(1 ≠ p̃)

p̃
≠ 2

p̃(1 ≠ p̃)

6

+

1
p̃(1 ≠ p̃)

(1 ≠ p̃)

p̃

5

–

2 ≠ 4 ≠ –p̃ +
2

1 ≠ p̃

6

, p̃ œ (0, 1/2]

= ≠– +

–

2p̃2 ≠ 2
p̃2 , p̃ œ (0, 1/2].

Similarly in the second case, for p̃ œ [1/2, 1) we can fix the weight function w(p̃)
as given by (4.44) and choose b(t) such that,

• b(t) Æ ≠– (then (4.42) is satisfied) and

• (4.43) = (4.44) =∆ a(t) Æ ≠– (then (4.41) is satisfied).

But (4.43) = (4.44) for all p̃ œ [1/2, 1) if and only if

p̃
3

2 +
⁄ p̃

1/2
a(t)dt

4

= (1 ≠ p̃)
3

2 ≠
⁄ p̃

1/2
b(t)dt

4

, p̃ œ [1/2, 1)

≈∆
⁄ 1/2

p̃
a(t)dt =

1 ≠ p̃

p̃

3

2 ≠
⁄ p̃

1/2
b(t)dt

4

≠ 2, p̃ œ [1/2, 1)

≈∆ a(p̃) = ≠1 ≠ p̃

p̃
b(p̃) ≠ 1

p̃2

3

2 ≠
⁄ p̃

1/2
b(t)dt

4

, p̃ œ [1/2, 1),

where the last step is obtained by di�erentiating both sides w.r.t p̃. Thus the constraint
(4.43) = (4.44) =∆ a(t) Æ ≠– can be given as

1 ≠ p̃

p̃
b(p̃) +

1
p̃2

3

2 ≠
⁄ p̃

1/2
b(t)dt

4

Ø –, p̃ œ [1/2, 1)

≈∆ b(p̃) Ø
5

–p̃

(1 ≠ p̃)
≠ 2

p̃(1 ≠ p̃)

6

+

1
p̃(1 ≠ p̃)

⁄ p̃

1/2
b(t)dt, p̃ œ [1/2, 1)

≈∆ b(p̃) Ø f(p̃) + g(p̃)
⁄ p̃

1/2
b(t)k(t)dt, p̃ œ [1/2, 1),

where f(p̃) =

Ë

–p̃
(1≠p̃) ≠ 2

p̃(1≠p̃)

È

, g(p̃) =

1
p̃(1≠p̃) =

1
p̃ +

1
(1≠p̃) and k(t) = 1. Again by

applying Theorem 4.11 we have

b(p̃) Ø f(p̃) + g(p̃)
⁄ p̃

1/2
f(t)k(t) exp

3

⁄ p̃

t
g(r)k(r)dr

4

dt, p̃ œ [1/2, 1).

Since
⁄ p̃

t
g(r)k(r)dr =

⁄ p̃

t

1
r
+

1
(1 ≠ r)

dr = [ln r ≠ ln(1 ≠ r)]p̃t = ln
3

p̃

(1 ≠ p̃)

(1 ≠ t)

t

4

,

⁄ p̃

1/2
f(t)k(t) exp

3

⁄ p̃

t
g(r)k(r)dr

4

dt =

⁄ p̃

1/2
f(t)

p̃

(1 ≠ p̃)

(1 ≠ t)

t
dt

=

p̃

(1 ≠ p̃)

⁄ p̃

1/2

5

–t

(1 ≠ t)
≠ 2

t(1 ≠ t)

6

(1 ≠ t)

t
dt
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=

p̃

(1 ≠ p̃)

⁄ p̃

1/2
– ≠ 2

t2 dt

=

p̃

(1 ≠ p̃)

5

–t +
2
t

6p̃

1/2

=

p̃

(1 ≠ p̃)

5

–p̃ +
2
p̃

≠ –

2 ≠ 4
6

,

we get

b(p̃) Ø
5

–p̃

(1 ≠ p̃)
≠ 2

p̃(1 ≠ p̃)

6

+

1
p̃(1 ≠ p̃)

p̃

(1 ≠ p̃)

5

–p̃ +
2
p̃

≠ –

2 ≠ 4
6

, p̃ œ [1/2, 1)

=

–p̃

(1 ≠ p̃)
+

–p̃

(1 ≠ p̃)2 ≠ –

2(1 ≠ p̃)2 ≠ 2
(1 ≠ p̃)2 , p̃ œ [1/2, 1).

Proof. (Corollary 4.8) We have to show that Ẫú
¸ will satisfy (4.21) with – = —, for

all —-mixable proper loss functions. Since

(Ẫú
¸ )

ÕÕ
(p̃)

(Ẫú
¸ )

Õ
(p̃)

=

wÕ
¸(p̃)w¸log (p̃)≠w¸(p̃)wÕ

¸log (p̃)

w
¸log (p̃)

2

w¸(p̃)
w

¸log (p̃)

=

wÕ
¸(p̃)

w¸(p̃)
≠ wÕ

¸log(p̃)

w¸log(p̃)
=

wÕ
¸(p̃)

w¸(p̃)
≠ (log w¸log(p̃))Õ,

(4.45)
by substituting Ẫ = Ẫú

¸ and – = — in (4.21) we have,

≠1
p̃
+ —w¸(p̃)p̃ Æ wÕ

¸(p̃)

w¸(p̃)
≠ (Ẫú

¸ )
ÕÕ
(p̃)

(Ẫú
¸ )

Õ
(p̃)

Æ 1
1 ≠ p̃

≠ —w¸(p̃)(1 ≠ p̃), ’p̃ œ (0, 1)

≈∆ ≠1
p̃
+ —w¸(p̃)p̃ Æ (log w¸log(p̃))Õ Æ 1

1 ≠ p̃
≠ —w¸(p̃)(1 ≠ p̃), ’p̃ œ (0, 1)

≈∆ ≠1
p̃
+ —w¸(p̃)p̃ Æ ≠1

p̃
+

1
1 ≠ p̃

Æ 1
1 ≠ p̃

≠ —w¸(p̃)(1 ≠ p̃), ’p̃ œ (0, 1)

≈∆ — Æ 1
p̃(1 ≠ p̃)w¸(p̃)

=

w¸log(p̃)

w¸(p̃)
, ’p̃ œ (0, 1),

which is true for all —-mixable binary proper loss functions. From (4.45)

1

log (Ẫú
¸ )

Õ
(p̃)

2Õ
= (log w¸(p̃))

Õ ≠ (log w¸log(p̃))Õ
=

3

log w¸(p̃)

w¸log(p̃)

4Õ
,

∆
Ë

log (Ẫú
¸ )

Õ
(p̃)

Èp̃

1/2
=

5

log w¸(p̃)

w¸log(p̃)

6p̃

1/2
,

∆ log (Ẫú
¸ )

Õ
(p̃) ≠ log (Ẫú

¸ )
Õ
31

2

4

= log w¸(p̃)

w¸log(p̃)
· w¸log(

1
2 )

w¸(
1
2 )

,

it can be seen that a design choice of (Ẫú
¸ )

Õ
1

1
2

2

= 1 is made in the construction of this
link function.
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4.4.4 Squared Loss

Figure 4.12: Projection of the exp-prediction set of square loss (— = 1) along the 13
direction. By the apparent lack of convexity of the projection, the condition ˆ1nB— ™
E—(¸(V)) in Proposition 4.1 does not hold in this case.

In this section we will consider the multi-class squared loss with partial losses given
by ¸sq

i (p) :=
q

jœ[n](Ji = jK ≠ pj)
2. The Bayes risk of this loss is L̃¸sq(p̃) = 1 ≠

qn≠1
i=1 p2

i ≠ (1 ≠ qn≠1
i=1 pi)

2. Thus the Hessian of the Bayes risk is given by

HL̃¸sq(p̃) = 2

Q

c

c

c

c

a

≠2 ≠1 · · · ≠1
≠1 ≠2 · · · ≠1
...

... . . . ...
≠1 ≠1 · · · ≠2

R

d

d

d

d

b

.

For the identity link, from (4.16) we get kid(p̃) = ≠HL̃¸sq(p̃) and Dv[kid(p̃)] = 0 since
DẪ(p̃) = In≠1. Thus from (4.20), the multi-class squared loss is –-exp-concave (with
– > 0) if and only if for all p̃ œ ˚̃Dn and for all i œ [n]

0 4 kid(p̃) ≠ –kid(p̃) · (en≠1
i ≠ p̃) · (en≠1

i ≠ p̃)Õ · kid(p̃)

≈∆ kid(p̃)
≠1 < –(en≠1

i ≠ p̃) · (en≠1
i ≠ p̃)Õ. (4.46)

Similarly for the canonical link, from (4.25) and (4.26), the composite loss is –-exp-
concave (with – > 0) if and only if for all p̃ œ ˚̃Dn and for all i œ [n]

kid(p̃)
≠1

= ≠[HL̃¸sq(p̃)]≠1 < –(en≠1
i ≠ p̃) · (en≠1

i ≠ p̃)Õ. (4.47)

From (4.46) and (4.47), it can be seen that for the multi-class squared loss the level of
exp-concavification by identity link and canonical link are same. When n = 2, since
kid(p̃) = 4, the condition (4.46) is equivalent to

1
4 Ø –(en≠1

i ≠ p̃) · (en≠1
i ≠ p̃)Õ, i œ [2], ’p̃ œ (0, 1)
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Figure 4.13: Exp-concavifying link functions for binary boosting loss constructed by
Proposition 4.1 (—) and Corollary 4.8 (—).

≈∆ – Æ 1
4p̃2 and – Æ 1

4(1 ≠ p̃)2 , ’p̃ œ (0, 1)

≈∆ – Æ 1
4.

When n = 3, using the fact that a 2 ◊ 2 matrix is positive semi-definite if its trace and
determinant are both non-negative, it can be easily verified that the condition (4.46)
is equivalent to – Æ 1

12 .
For binary squared loss, the link functions constructed by geometric (Proposition

4.1) and calculus (Corollary 4.8) approach are:

Ẫ(p̃) = e≠2(1≠p̃)2 ≠ e≠2p̃2 and Ẫú
¸ (p̃) =

4
4

⁄ p̃

0

w¸sq
(v)

w¸log(v)
dv = 4

A

p̃2

2 ≠ p̃3

3

B

,

respectively. By applying these link functions we can get 1-exp-concave composite
squared loss.

4.4.5 Boosting Loss

Consider the binary “boosting loss” (Buja et al. [2005]) with partial losses given by

¸boost
1 (p̃) =

1
2

Û

1 ≠ p̃

p̃
and ¸boost

2 (p̃) =
1
2

Û

p̃

1 ≠ p̃
, ’p̃ œ (0, 1).

This loss has weight function

w¸boost(p̃) =
1

4(p̃(1 ≠ p̃))3/2 , ’p̃ œ (0, 1).
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By applying the results of Van Erven et al. [2012], we can show that this loss is mixable
with mixability constant 2 (since —¸ = inf p̃œ(0,1)

w
¸log (p̃)
w¸(p̃)

).
Now we can check the level of exp-concavification of this loss for di�erent choices

of link functions. By considering the identity link Ẫ(p̃) = p̃, from (4.23)

≠1
p̃
+ –w¸boost(p̃)p̃ Æ wÕ

¸boost(p̃)

w¸boost(p̃)
, ’p̃ œ (0, 1)

∆ ≠1
p̃
+ –w¸boost(p̃)p̃ Æ 6w¸boost(p̃)

Ò

p̃(1 ≠ p̃)(2p̃ ≠ 1), ’p̃ œ (0, 1)

∆ –p̃ ≠ 6
Ò

p̃(1 ≠ p̃)(2p̃ ≠ 1) Æ 1
w¸boost(p̃)p̃

, ’p̃ œ (0, 1)

∆ – Æ 8
Û

1 ≠ p̃

p̃
(p̃ ≠ 1/4), ’p̃ œ (0, 1)

∆ – Æ 0,

we see that the boosting loss is non-exp-concave. Similarly from (4.27)

– Æ 1
w¸boost(p̃)p̃2 = 4

Û

1 ≠ p̃

p̃
(1 ≠ p̃), ’p̃ œ (0, 1) (4.48)

it can be seen that the RHS of (4.48) approaches 0 as p æ 1, thus it is not possible
to exp-concavify (for some – > 0) this loss using the canonical link. For binary boost-
ing loss, the link functions constructed by geometric (Proposition 4.1) and calculus
(Corollary 4.8) approach are:

Ẫ(p̃) = e
≠

Ò

1≠p̃
p̃ ≠ e

≠
Ò

p̃
1≠p̃ and Ẫú

¸ (p̃) =
4
2

⁄ p̃

0

w¸boost(v)

w¸log(v)
dv =

1
2 arcsin(≠1 + 2p̃),

respectively (as shown in Figure 4.13). By applying these link functions we can get
2-exp-concave composite boosting loss.

4.4.6 Log Loss

By using the results from this paper and Van Erven et al. [2012] one can easily verify
that the multi-class log loss is both 1-mixable and 1-exp-concave. For binary log loss,
the link functions constructed by geometric (Proposition 4.1) and calculus (Corollary
4.8) approach are:

Ẫ(p̃) = elog p̃ ≠ elog 1≠p̃
= 2p̃ ≠ 1 and Ẫú

¸ (p̃) =
4
4

⁄ p̃

0

w¸log(v)

w¸log(v)
dv = p̃,

respectively.



Chapter 5

Accelerating Optimization for
Easy Data

The Online Convex Optimization (OCO) problem plays a key role in machine learn-
ing as it has interesting theoretical implications and important practical applications
especially in the large scale setting where computational e�ciency is the main con-
cern. [Shalev-Shwartz, 2011] provides a detailed analysis of the OCO problem setting
and discusses several applications of this paradigm - online regression, prediction with
expert advice, and online ranking.

Given a convex set W ™ Rn and a set F of convex functions, the OCO problem
can be formulated as a repeated game between a learner and an adversary. At each
time step t œ [T ], the learner chooses a point xt œ W, then the adversary reveals the
loss function ft œ F , and the learner su�ers a loss of ft(xt). The learner’s goal is to
minimize the regret (w.r.t. any xú œ W) which is given by

R({ft}T
t=1 , xú

) :=
T

ÿ

t=1
ft(xt) ≠

T
ÿ

t=1
ft(x

ú
).

For example, consider the online linear regression problem ([Shalev-Shwartz, 2011]
(Example 2.1)). At each time step t, the learner receives a feature vector xt œ Rd, and
predicts pt œ R. Then the adversary reveals the true value yt œ R, and the learner
pays the loss |yt ≠ pt|. When the learner’s prediction is of the form pt = Èwt, xtÍ, and
she needs to compete with the set of linear predictors, this problem can be cast in the
OCO framework by setting ft (wt) = |Èwt, xtÍ ≠ yt|.

Abernethy et al. [2008] analyzed the OCO problem from a minimax perspective
(where each player plays optimally for their benefit), and showed that R({ft}T

t=1 , xú
) ¥

W
1Ô

T
2

for arbitrary sequence of convex losses {ft}T
t=1, and for any strategy of the

learner. But the adversary choosing ft need not to be malicious always, for example
the ft might be drawn from a distribution.

There are two main classes of update rules which attain the above minimax regret
bound O

1Ô
T

2

(thus called minimax optimal updates), namely Follow The Regularized
Leader (FTRL) and Mirror Descent. In this work we consider the latter class. Given a
strongly convex function (formally defined later) Â and a learning rate ÷ > 0, standard

97
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mirror descent update is given by

xt+1 = arg min
xœW

÷Ègt, xtÍ + BÂ(x, xt), (5.1)

where gt œ ˆft(xt) and BÂ(·, ·) is Bregman divergence (formally defined later). Shalev-
Shwartz [2011] provides a comprehensive survey of analysis techniques for this non-
adaptive algorithm family, where the learning rate is fixed for all rounds and chosen
with knowledge of T .

Easy Data Instances: It is well understood that the minimax optimal algorithms
achieve a regret bound of O(

Ô
T ), which cannot be improved for arbitrary sequences

of convex losses [Zinkevich, 2003]. But in practice there are several easy data instances
such as sparsity, predictable sequences and curved losses, in which much tighter regret
bounds are achievable. These tighter bounds translate to much better performance in
practice, especially for high dimensional but sparse problems (McMahan [2014]). Even
though minimax analysis gives robust algorithms, they are overly conservative on easy
data. Now we consider some of the existing algorithms that automatically adapt to the
easy data to learn faster while being robust to worst case as well.

[Duchi et al., 2011] replaced the single static regularizer Â in the standard mirror
descent update 5.1 by a data dependent sequence of regularizers. This is a fully adap-
tive approach as it doesn’t require any prior knowledge about the bound on the term
given by

qT
t=1 ÎgtÎ2 to construct the regularizers. Further for a particular choice of

regularizer sequence they achieved a regret bound of the form

R({ft}T
t=1 , xú

) = O

Q

amax
t

Îxt ≠ xúÎŒ
n

ÿ

i=1

ˆ

ı

ı

Ù

T
ÿ

t=1
g2

t,i

R

b ,

which is better than the minimax optimal bound (O
1

G
Ô

T
2

, where G is the worst case
magnitude of gradients) when the gradients of the losses are sparse and the prediction
space is box-shaped.

[Chiang et al., 2012; Rakhlin and Sridharan, 2012] have shown that an optimistic
prediction g̃t+1 of the next gradient gt+1 at time t can be used to achieve tighter regret
bounds in the case where the loss functions are generated by some predictable process
e.g. i.i.d losses with small variance and slowly changing gradients. For the general
convex losses, the regret bound of this optimistic approach is O

3

Ò

qT
t=1 Îgt ≠ g̃tÎ2

ú

4

.
But this is a non-adaptive approach since one requires knowledge of the upper bound
on

qT
t=1 Îgt ≠ g̃tÎ2

ú to set the optimal value for the learning rate. Instead we can employ
the standard doubling trick to obtain similar bound with slightly worst constants.

Online optimization with curved losses (strong-convex, exp-concave, mixable etc.)
is easier than linear losses. When the loss functions are uniformly exp-concave or
strongly convex, O(log T ) regret bounds are achieved with appropriate choice of regu-
larizers [Hazan et al., 2007a,b]. But this bound will become worse when the uniform
lower bound on the convexity parameters is much smaller. In that case [Hazan et al.,
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2007b] proposed an algorithm that can adapt to the convexity of the loss functions, and
achieves O(

Ô
T ) regret bounds for arbitrary convex losses and O(log T ) for uniformly

strong-convex losses.

Chapter Outline: Even though [McMahan, 2014] has shown equivalence between mir-
ror descent and a variant of FTRL (namely FTRL-Prox) algorithms with adaptive reg-
ularizers, no such mapping is available between optimistic mirror descent and optimistic
FTRL updates. Recently [Mohri and Yang, 2015] have combined adaptive FTRL and
optimistic FTRL updates to achieve tighter regret bounds for sparse and predictable
sequences. In section 5.2 we extend this unification to obtain adaptive and optimistic
mirror descent updates. We obtained a factor of

Ô
2 improvement in the regret bound

compared to that of [Mohri and Yang, 2015], because in their regret analysis they could
not apply the strong FTRL lemma from [McMahan, 2014].

In section 5.3 we consider the adaptive and optimistic mirror descent update with
strongly convex loss functions. In this case we achieve tighter logarithmic regret bound
without a priori knowledge about the lower bound on the strong-convexity parameters,
in similar spirit of [Hazan et al., 2007b]. We also present a curvature adaptive optimistic
algorithm that interpolates the results for general convex losses and strongly-convex
losses.

In practice the original convex optimization problem itself can have a regularization
term associated with the constraints of the problem and generally it is not preferable
to linearize those (possibly non-smooth) regularization terms. In section 5.4 we extend
all our results to such composite objectives as well.

The main contributions of this chapter are:

• An adaptive and optimistic mirror descent update that achieves tighter regret
bounds for sparse and predictable sequences (Section 5.2).

• Improved optimistic mirror descent algorithm that adapts to the curvature of the
loss functions (Section 5.3).

• Extension of the unified update rules to the composite objectives (Section 5.4).

Omitted proofs are given in section 5.6.1.

5.1 Notation and Background

We use the following notation throughout. For n œ Z+, let [n] := {1, ..., n}. The ith
element of a vector x œ Rn is denoted by xi œ R, and for a time dependent vector
xt œ Rn, the ith element is xt,i œ R. The inner product between two vectors x, y œ Rn

is written as Èx, yÍ. The gradient of a di�erentiable function f at x œ Rn is denoted
by Òf(x) or f Õ

(x). A superscript T , AT denotes transpose of the matrix or vector
A. Given x œ Rn, A = diag(x) is the n ◊ n matrix with entries Aii = xi , i œ [n]
and Aij = 0 for i ”= j. Similarly given B œ Rn◊n, A = diag(B) is the n ◊ n matrix
with entries Aii = Bii , i œ [n] and Aij = 0 for i ”= j. For a symmetric positive
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definite matrix A œ Sn
++

, we have that ’x ”= 0, xT Ax > 0. If A ≠ B œ Sn
++

, then we
write A º B. The square root of A œ Sn

++

is the unique matrix X œ Sn
++

such that
XX = A and it is denoted as A

1
2 . We use the compressed summation notation Ha:b as

shorthand for
qb

s=a Hs, where Hs can be a scalar, vector, matrix, or function. Given a
norm Î·Î, its dual norm is defined as follows ÎyÎú := sup

x:ÎxÎÆ1
Èx, yÍ. For a time varying

norm Î·Î
(t), its dual norm is written as Î·Î

(t),ú. The dual norm of the Mahalanobis
norm ÎxÎA :=

Ô
xT Ax is given by ÎyÎA≠1 =



yT A≠1y.
Given a convex set W ™ Rn and a convex function f : W æ R, ˆf(x) denotes

the sub-di�erential of f at x which is defined as ˆf(x) := {g : f(y) Ø f(x) + Èg, y ≠
xÍ, ’y œ W}. A function f : W æ R is –-strongly convex with respect to a general
norm Î·Î if for all x, y œ W

f(x) Ø f(y) + Èg, x ≠ yÍ + –

2 Îx ≠ yÎ2 , g œ ˆf(y).

The Bregman divergence with respect to a di�erentiable function g is defined as follows

Bg(x, y) := g(x) ≠ g(y) ≠ ÈÒg(y), x ≠ yÍ.

Observe that the function g is –-strongly convex with respect to Î·Î if and only if for
all x, y œ W : Bg(x, y) Ø –

2 Îx ≠ yÎ2. In this chapter we use the following properties of
Bregman divergences

• Linearity: B–Â+—„(x, y) = –BÂ(x, y) + —B„(x, y).

• Generalized triangle inequality: BÂ(x, y)+BÂ(y, z) = BÂ(x, z)+ Èx≠y, ÒÂ(z)≠
ÒÂ(y)Í.

The following proposition [Srebro et al., 2011; Beck and Teboulle, 2003] is handy
in deriving explicit update rules for mirror descent algorithms.

Proposition 5.1. Suppose Â is strictly convex and di�erentiable, and y satisfies the
condition ÒÂ(y) = ÒÂ(u) ≠ g. Then

arg min
xœW

{Èg, xÍ + BÂ(x, u)} = arg min
xœW

BÂ(x, y).

5.2 Adaptive and Optimistic Mirror Descent

When the sequence of losses ft’s (in fact their sub-gradients gt’s) are predictable,
many authors have recently considered variance (regret) bounds (Hazan and Kale
[2010]) that depend only on the deviation of gt from its average, or path length (re-
gret) bounds (Chiang et al. [2012]) in terms of gt ≠ gt≠1. Rakhlin and Sridharan [2012]
present an optimistic learning framework that yields such bounds for any mirror descent
algorithm. In this framework, the learner is given a sequence of ‘hints’ g̃t+1(g1, ..., gt)

of what gt+1 might be. Then the learner chooses xt+1 based on the optimistically pre-
dicted sub-gradient g̃t+1 along with already observed sub-gradients g1, ..., gt. For the
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Algorithm 1 Adaptive and Optimistic Mirror Descent
Input: regularizers r0, r1 Ø 0, scheme for selecting rt for t Ø 2.
Initialize: x1, ‚x1 = 0 œ W.
for t = 1 to T do

Predict ‚xt, observe ft, and incur loss ft(‚xt).
Compute gt œ ˆft(‚xt) and g̃t+1(g1, ..., gt).
Choose rt+1 s.t. r0:t+1 is 1-strongly convex w.r.t. Î·Î

(t+1).
Update

xt+1 = arg min
xœW

Ègt, xÍ + Br0:t(x, xt), (5.2)

‚xt+1 = arg min
xœW

Èg̃t+1, xÍ + Br0:t+1(x, xt+1). (5.3)

end for

optimistic sub-gradient prediction choices of g̃t+1 =

1
t

qt
s=1 gs (reasonable prediction

when the adversary is iid) and g̃t+1 = gt (reasonable prediction for slow varying data),
we obtain the variance bound and the path length bound respectively.

Given a 1-strongly convex function Â, and a learning rate ÷ > 0, the optimistic
mirror descent update is equivalent to the following two stage updates

xt+1 = arg min
xœW

÷Ègt, xÍ + BÂ(x, xt)

‚xt+1 = arg min
xœW

÷Èg̃t+1, xÍ + BÂ(x, xt+1).

Adaptive and Optimistic mirror descent update is obtained by replacing the static reg-
ularizer Â by a sequence of data dependent regularizers rt’s, which are chosen such that
r0:t is 1-strongly convex with respect to Î·Î

(t) (here we use the compressed summation
notation r0:t (x) =

qt
s=0 rs (x)). The unified update is given in Algorithm 1. Note that

the regularizer rt+1 is constructed at time t (based on the data observed only up to
time t) and is used in the second stage update (5.3). Also observe that by setting g̃t = 0
for all t in Algorithm 1 we recover a slightly modified adaptive mirror descent update
given by xt+1 = arg min

xœW
Ègt, xÍ + Br0:t(x, xt), where rt can depend only on g1, ..., gt≠1.

In order to obtain a regret bound for Algorithm 1, we first consider the instanta-
neous linear regret (w.r.t. any xú œ W) of it given by È‚xt ≠ xú, gtÍ. The following lemma
is a generalization of Lemma 5 from [Chiang et al., 2012] for time varying norms, which
gives a bound on the instantaneous linear regret of Algorithm 1.

Lemma 5.2. The instantaneous linear regret of Algorithm 1 w.r.t. any xú œ W is
bounded from above as follows

È‚xt ≠ xú, gtÍ Æ Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1) +
1
2 Îgt ≠ g̃tÎ2

(t),ú .
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Proof. Consider

Ègt, ‚xt ≠ xúÍ = Ègt ≠ g̃t, ‚xt ≠ xt+1Í + Èg̃t, ‚xt ≠ xt+1Í + Ègt, xt+1 ≠ xúÍ. (5.4)

By the fact that Èa, bÍ Æ ÎaÎ ÎbÎú Æ 1
2 ÎaÎ2

+

1
2 ÎbÎ2

ú, we have

Ègt ≠ g̃t, ‚xt ≠ xt+1Í Æ 1
2 Î‚xt ≠ xt+1Î2

(t) +
1
2 Îgt ≠ g̃tÎ2

(t),ú .

The first-order optimality condition [Boyd and Vandenberghe, 2004] for

xú
= arg min

xœW
Èg, xÍ + BÂ(x, y)

is given by

Èxú ≠ z, gÍ Æ BÂ(z, y) ≠ BÂ(z, xú
) ≠ BÂ(x

ú, y), ’z œ W.

By applying the above condition for (5.3) and (5.2) we have respectively

È‚xt ≠ xt+1, g̃tÍ Æ Br0:t(xt+1, xt) ≠ Br0:t(xt+1, ‚xt) ≠ Br0:t(‚xt, xt),
Èxt+1 ≠ xú, gtÍ Æ Br0:t(x

ú, xt) ≠ Br0:t(x
ú, xt+1) ≠ Br0:t(xt+1, xt).

Thus by (5.4) we have

Ègt, ‚xt ≠ xúÍ
Æ 1

2 Î‚xt ≠ xt+1Î2
(t) +

1
2 Îgt ≠ g̃tÎ2

(t),ú + Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1) ≠ Br0:t(xt+1, ‚xt)

Æ 1
2 Îgt ≠ g̃tÎ2

(t),ú + Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1)

where the second inequality is due to 1-strong convexity of r0:t w.r.t. Î·Î
(t).

The following lemma is already proven by [Chiang et al., 2012] and used in the
proof of our Theorem 5.8.

Lemma 5.3. For Algorithm 1 we have, Î‚xt ≠ xt+1Î
(t) Æ Îgt ≠ g̃tÎ

(t),ú.

The following regret bound holds for Algorithm 1 with a sequence of general convex
functions ft’s:

Theorem 5.4. The regret of Algorithm 1 w.r.t. any xú œ W is bounded by

T
ÿ

t=1
ft(‚xt) ≠ ft(x

ú
) Æ 1

2

T
ÿ

t=1
Îgt ≠ g̃tÎ2

(t),ú +
T

ÿ

t=1
Brt(x

ú, xt)+Br0(x
ú, x1)≠Br0:T (x

ú, xT+1).

Proof. Consider

T
ÿ

t=1
ft(‚xt) ≠ ft(x

ú
)
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Æ
T

ÿ

t=1
Ègt, ‚xt ≠ xúÍ

Æ
T

ÿ

t=1

1
2 Îgt ≠ g̃tÎ2

(t),ú + Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1),

where the first inequality is due to the convexity of ft and the second one is due to
Lemma 5.2. Then the following simplification of the sum of Bregman divergence terms
completes the proof.

T
ÿ

t=1
Br0:t(x

ú, xt) ≠ Br0:t(x
ú, xt+1)

= Br0(x
ú, x1) ≠ Br0:T (x

ú, xT+1) +
T

ÿ

t=1
Brt(x

ú, xt)

Now we analyse the performance of Algorithm 1 with specific choices of regularizer
sequences. First we recover the non-adaptive optimistic mirror descent [Chiang et al.,
2012] and its regret bound as a corollary of Theorem 5.4.

Corollary 5.5. Given 1-strongly convex (w.r.t. Î·Î) function Â, define R
max

(xú
) :=

maxxœW BÂ(xú, x)≠minxœW BÂ(xú, x) = maxxœW BÂ(xú, x). If rt’s are given by r0(x) =
1
÷ Â(x) (for ÷ > 0) and rt(x) = 0, ’t Ø 1, then the regret of Algorithm 1 w.r.t. any
xú œ W is bounded as follows

T
ÿ

t=1
ft(‚xt) ≠ ft(x

ú
) Æ ÷

2

T
ÿ

t=1
Îgt ≠ g̃tÎ2

ú +
1
÷

R
max

(xú
).

Further if
qT

t=1 Îgt ≠ g̃tÎ2
ú Æ Q, then by choosing ÷ =

Ò

2R
max

(xú
)

Q , we have

T
ÿ

t=1
ft(‚xt) ≠ ft(x

ú
) Æ

Ò

2R
max

(xú
)Q.

Proof. For the given choice of regularizers, we have r0:t(x) =
1
÷ Â(x) and Br0:t(x, y) =

1
÷ BÂ(x, y). Since r0:t is 1-strongly convex w.r.t. 1Ô

÷ Î·Î, we have Î·Î
(t) =

1Ô
÷ Î·Î and

Î·Î
(t),ú =

Ô
÷ Î·Îú. Then the corollary directly follows from Theorem 5.4.

In this non-adaptive case we need to know an upper bound of
qT

t=1 Îgt ≠ g̃tÎ2
ú in

advance to choose the optimal value for ÷. Instead we can employ the standard doubling
trick to obtain similar bounds with slightly worst constants.

By leveraging the techniques from [Duchi et al., 2011] we can adaptively construct
regularizers based on the observed data. The following corollary describes a regularizer
construction scheme for Algorithm 1 which is fully adaptive and achieves a regret
guarantee that holds at anytime.
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Corollary 5.6. Given W ™ ◊n
i=1[≠Ri, Ri], let

G0 = 0 (5.5)
G1 = “2I s.t. “2I < (gt ≠ g̃t)(gt ≠ g̃t)

T , ’t (5.6)
Gt = (gt≠1 ≠ g̃t≠1)(gt≠1 ≠ g̃t≠1)

T , ’t Ø 2 (5.7)

Q1:t = diag
3 1

R1
, ..., 1

Rn

4

diag
(

G1:t)
1
2 .

If rt’s are given by r0 (x) = 0 and rt (x) =
1

2
Ô

2 ÎxÎ2
Qt

, then the regret of Algorithm 1
w.r.t. any xú œ W is bounded by

T
ÿ

t=1
ft(‚xt) ≠ ft(x

ú
) Æ 2

Ô
2

n
ÿ

i=1
Ri

ˆ

ı

ı

Ù“2
+

T ≠1
ÿ

t=1
(gt,i ≠ g̃t,i)

2.

Proof. By letting ÷ =

Ô
2 for the given sequence of regularizers, we get r0:t (x) =

1
2÷ ÎxÎ2

Q1:t
. Since r0:t is 1-strongly convex w.r.t. 1Ô

÷ Î·ÎQ1:t
, we have Î·Î

(t) =
1Ô
÷ Î·ÎQ1:t

and Î·Î
(t),ú =

Ô
÷ Î·ÎQ≠1

1:t
. By using the facts that diag

(

–1, ..., –n)
1
2
= diag

(

Ô
–1, ..., Ô

–n)

and diag
(

—1, ..., —n) · diag
(

“1, ..., “n) = diag
(

—1“1, ..., —n“n), the (i, i)-th entry of the
diagonal matrix Q1:t can be given as

(

Q1:t)ii =
1

Ri

ˆ

ı

ı

Ùdiag
A

“2I +

t≠1
ÿ

s=1
(gs ≠ g̃s)(gs ≠ g̃s)

T

B

ii

=

1
Ri

ˆ

ı

ı

Ù“2
+

t≠1
ÿ

s=1
(gs,i ≠ g̃s,i)

2.

Now by Theorem 5.4 the regret bound of Algorithm 1 with this choice of regularizer
sequence can be given as follows

T
ÿ

t=1
ft(‚xt) ≠ ft(x

ú
) Æ 1

2

T
ÿ

t=1
Îgt ≠ g̃tÎ2

(t),ú +
T

ÿ

t=1
Brt(x

ú, xt).

Consider

1
2

T
ÿ

t=1
Îgt ≠ g̃tÎ2

(t),ú

=

1
2

T
ÿ

t=1
÷ Îgt ≠ g̃tÎ2

Q≠1
1:t

=

÷

2

T
ÿ

t=1

n
ÿ

i=1
(

gt,i ≠ g̃t,i)
2
(

Q1:t)
≠1
ii
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=

÷

2

T
ÿ

t=1

n
ÿ

i=1
(

gt,i ≠ g̃t,i)
2 Ri

Ò

“2
+

qt≠1
s=1 (gs,i ≠ g̃s,i)

2

Æ ÷

2

n
ÿ

i=1
Ri

T
ÿ

t=1

(

gt,i ≠ g̃t,i)
2

Ò

qt
s=1 (gs,i ≠ g̃s,i)

2

Æ ÷
n

ÿ

i=1
Ri

ˆ

ı

ı

Ù

T
ÿ

t=1
(gt,i ≠ g̃t,i)

2

Æ ÷
n

ÿ

i=1
Ri

ˆ

ı

ı

Ù“2
+

T ≠1
ÿ

t=1
(gt,i ≠ g̃t,i)

2,

where the first and third inequalities are due to the fact that “2 Ø (gt,i ≠ g̃t,i)
2 for all

t œ [T ], and the second inequality is due to the fact that for any non-negative real
numbers a1, a2, ..., an :

qn
i=1

ai
Ò

qi

j=1 aj

Æ 2


qn
i=1 ai. Also observing that

T
ÿ

t=1
Brt(x

ú, xt)

=

T
ÿ

t=1

1
2÷

Îxú ≠ xtÎ2
Qt

=

1
2÷

T
ÿ

t=1

n
ÿ

i=1
(

xú
i ≠ xt,i)

2
(

Qt)ii

Æ 1
2÷

n
ÿ

i=1
(

2Ri)
2

T
ÿ

t=1
(

Qt)ii

=

2
÷

n
ÿ

i=1
R2

i (Q1:T )ii

=

2
÷

n
ÿ

i=1
Ri

ˆ

ı

ı

Ù“2
+

T ≠1
ÿ

t=1
(gt,i ≠ g̃t,i)

2

completes the proof.

The regret bound obtained in the above corollary is much tighter than that of
[Duchi et al., 2011] and [Chiang et al., 2012] when the sequence of loss functions are
sparse and predictable. Consider an adversary that is benign and sparse (having non-
zero components in fixed locations). In this case, the predictor can learn the non-zero
locations of the actual gradient after few iterations. Then g̃t will also be mostly zero
in the locations where gt is zero.

Since we are using per-coordinate learning rates implicitly we get better bounds
for the case where only certain coordinates of the gradients are accurately predictable
as well. Even when the loss sequence is completely unpredictable, the above bound
is not much worse than a constant factor of the bound in [Duchi et al., 2011]. For
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constructive examples confer [Mohri and Yang, 2016, Section 2.2].
By using Proposition 5.1 we can derive explicit forms of the update rules given by

(5.2) and (5.3) with regularizers constructed in Corollary 5.6. For yt+1 = xt ≠ Ô
2Q≠1

1:t gt

and ‚yt+1 = xt+1 ≠ Ô
2Q≠1

1:t+1g̃t+1, the updates (5.2) and (5.3) can be given as xt+1 =

arg min
xœW

1
2 Îx ≠ yt+1Î2

Q1:t
and ‚xt+1 = arg min

xœW

1
2 Îx ≠ ‚yt+1Î2

Q1:t+1
respectively.

The next corollary explains a regularizer construction method with full matrix
learning rates, which is an extension of Corollary 5.6. But this approach is computa-
tionally not preferable, especially in high dimensions, as it costs O(n2

) per round of
operations.

Corollary 5.7. Define D := sup
x,yœW

Îx ≠ yÎ2. Let Q1:t = (

G1:t)
1
2 , where Gt’s are given

by (5.5),(5.6) and (5.7). If rt’s are given by r0 (x) = 0 and rt (x) =
1Ô
2D

ÎxÎ2
Qt

, then
the regret of Algorithm 1 w.r.t. any xú œ W is bounded by

T
ÿ

t=1
ft(‚xt) ≠ ft(x

ú
) Æ Ô

2D tr
(

Q1:T ) .

The improvement is a bit more subtle in this case, and it is problem dependent
as well. Since this method is not computationally e�cient we haven’t discussed it in
detail. Please confer [Duchi et al., 2011, Section 1.3] for an example.

5.3 Optimistic Mirror Descent with Curved Losses

The following theorem provides a regret bound of Algorithm 1 for the case where ft

is Ht-strongly convex with respect to some general norm Î·Î. Since this theorem is an
extension of Theorem 2.1 from [Hazan et al., 2007b] for the Optimistic Mirror Descent,
this inherits the properties mentioned there such as : rt’s can be chosen without the
knowledge of uniform lower bound on Ht’s, and O(log T ) bound can be achieved even
when some Ht Æ 0 as long as H1:t

t > 0.

Theorem 5.8. Let ft is Ht-strongly convex w.r.t. Î·Î and Ht Æ “ for all t œ [T ]. If
rt’s are given by r0(x) = 0, r1(x) =

“
4 ÎxÎ2, and rt(x) =

Ht≠1
4 ÎxÎ2 for all t Ø 2, then

the regret of Algorithm 1 w.r.t. any xú œ W is bounded by

T
ÿ

t=1
ft(‚xt) ≠ ft(x

ú
) Æ 3

T
ÿ

t=1

Îgt ≠ g̃tÎ2
ú

H1:t
+

“

4 Îxú ≠ x1Î2 .

Proof. For the given choice of regularizers, we have r0:t(x) =
H1:t≠1+“

4 ÎxÎ2 and

Br0:t(x, y) =
H1:t≠1 + “

4 Îx ≠ yÎ2 .

Since r0:t is 1-strongly convex w.r.t.
Ò

H1:t≠1+“
2 Î·Î, we have Î·Î

(t) =

Ò

H1:t≠1+“
2 Î·Î and
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Î·Î
(t),ú =

Ò

2
H1:t≠1+“ Î·Îú. Thus for any xú œ W we have

ft(‚xt) ≠ ft(x
ú
)

Æ Ègt, ‚xt ≠ xúÍ ≠ Ht

2 Î‚xt ≠ xúÎ2

Æ 1
2 Îgt ≠ g̃tÎ2

(t),ú + Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1) ≠ Ht

2 Î‚xt ≠ xúÎ2

=

Îgt ≠ g̃tÎ2
ú

H1:t≠1 + “
+

H1:t≠1 + “

4 Îxú ≠ xtÎ2 ≠ H1:t≠1 + “

4 Îxú ≠ xt+1Î2 ≠ Ht

2 Î‚xt ≠ xúÎ2 ,

where the first inequality is due to the strong convexity of ft, and the second inequality
is due to Lemma 5.2. Observe that

T
ÿ

t=1

H1:t≠1 + “

4
Ó

Îxú ≠ xtÎ2 ≠ Îxú ≠ xt+1Î2
Ô

=

T
ÿ

t=1
Îxú ≠ xt+1Î2

;

H1:t + “

4 ≠ H1:t≠1 + “

4

<

+

“

4 Îxú ≠ x1Î2 ≠ H1:T + “

4 Îxú ≠ xT+1Î2

Æ
T

ÿ

t=1

Ht

4 Îxú ≠ xt+1Î2
+

“

4 Îxú ≠ x1Î2 ,

and
T

ÿ

t=1

Ht

4 Îxú ≠ xt+1Î2 ≠ Ht

2 Î‚xt ≠ xúÎ2

=

T
ÿ

t=1

Ht

4
Ó

Îxú ≠ ‚xt + ‚xt ≠ xt+1Î2 ≠ 2 Îxú ≠ ‚xtÎ2
Ô

Æ
T

ÿ

t=1

Ht

2 Î‚xt ≠ xt+1Î2

Æ
T

ÿ

t=1

H1:t≠1 + “

2 Î‚xt ≠ xt+1Î2

Æ 2
T

ÿ

t=1

Îgt ≠ g̃tÎ2
ú

H1:t≠1 + “
,

where the first inequality is obtained by applying the triangular inequality of norms
the fact that (a+ b)2 Æ 2a2

+ 2b2, the second inequality is due to the facts that Ht Æ “
and H1:t≠1 Ø 0, and the third inequality is due to Lemma 5.3.

Now by summing up the instantaneous regrets and using the above observation we
get

T
ÿ

t=1
ft(‚xt) ≠ ft(x

ú
) Æ 3

T
ÿ

t=1

Îgt ≠ g̃tÎ2
ú

H1:t≠1 + “
+

“

4 Îxú ≠ x1Î2
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Æ 3
T

ÿ

t=1

Îgt ≠ g̃tÎ2
ú

H1:t
+

“

4 Îxú ≠ x1Î2 ,

where the last inequality is due to the fact that Ht Æ “.

In the above theorem if Ht Ø H > 0 and Îgt ≠ g̃tÎú Æ 1 (w.l.o.g) for all t, then
it obtain a regret bound of the form O

1

log
qT

t=1 Îgt ≠ g̃tÎ2
ú
2

, using the fact that if
at Æ 1 for all t œ [T ], then

qT
t=1

at
t = O

1

log
qT

t=1 at

2

. When H is small, however, this
guaranteed regret can still be large.

Now instead of running Algorithm 1 on the observed sequence of ft’s, we use the
modified sequence of loss functions of the form

f̃t(x) := ft(x) +
⁄t

2 Îx ≠ ‚xtÎ2 , ⁄t Ø 0, (5.8)

which is already considered in [Do et al., 2009] for the non-optimistic mirror descent
case. Given ft is Ht-strongly convex with respect to Î·Î, f̃t is (Ht +⁄t)-strongly convex.
Also note that ˆf̃t(‚xt) = ˆft(‚xt) because the gradient of Îx ≠ ‚xtÎ2 is 0 when evaluated
at ‚xt [Do et al., 2009]. Thus in the updates (5.2) and (5.3) the terms gt and g̃t+1
remain unchanged, only the regularizers rt’s will change appropriately. By applying
Theorem 5.8 for the modified sequence of losses given by (5.8) we obtain the following
corollary.

Corollary 5.9. Let 2R = sup
x,yœW

Îx ≠ yÎ. Also let ft be Ht-strongly convex w.r.t. Î·Î,

Ht Æ “, and ⁄t Æ ”, for all t œ [T ]. If Algorithm 1 is performed on the modified
functions f̃t’s with the regularizers rt’s given by r0(x) = 0, r1(x) =

“+”
4 ÎxÎ2, and

rt(x) =
Ht≠1+⁄t≠1

4 ÎxÎ2 for all t Ø 2, then for any sequence ⁄1, ..., ⁄T Ø 0, we get

T
ÿ

t=1
ft(‚xt) ≠ ft(x

ú
) Æ 2R2⁄1:T + 3

T
ÿ

t=1

Îgt ≠ g̃tÎ2
ú

H1:t + ⁄1:t
+

“ + ”

4 Îxú ≠ x1Î2 .

In the above corollary if we consider the two terms that depend on ⁄t’s, the first term
increases and the second term deceases with the increase of ⁄t’s. Based on the online
balancing heuristic approach [Hazan et al., 2007b], the positive solution of 2R2⁄t =

3 Îgt≠g̃tÎ2
ú

H1:t+⁄1:t
is given by

⁄t =

Ú

(H1:t + ⁄1:t≠1)
2
+

6Îgt≠g̃tÎ2
ú

R2 ≠ (H1:t + ⁄1:t≠1)

2 .

The resulting algorithm with the above choice of ⁄t is given in Algorithm 2. By using
the Lemma 3.1 from [Hazan et al., 2007b] we obtain the following regret bound for
Algorithm 2.

Theorem 5.10. The regret of Algorithm 2 on the sequence of ft’s with curvature
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Algorithm 2 Curvature Adaptive and Optimistic Mirror Descent
Input: r0(x) = 0 and r1(x) =

“+”
4 ÎxÎ2.

Initialize: x1, ‚x1 = 0 œ W.
for t = 1 to T do

Predict ‚xt, observe ft, and incur loss ft(‚xt).
Compute gt œ ˆft(‚xt) and g̃t+1(g1, ..., gt).

Compute ⁄t =

Ò

(H1:t+⁄1:t≠1)
2
+

6Îgt≠g̃tÎ2ú
R2 ≠(H1:t+⁄1:t≠1)

2
Define rt+1(x) =

Ht+⁄t
4 ÎxÎ2.

Update

xt+1 = arg min
xœW

Ègt, xÍ + Br0:t(x, xt),

‚xt+1 = arg min
xœW

Èg̃t+1, xÍ + Br0:t+1(x, xt+1).

end for

Ht Ø 0 is bounded by

T
ÿ

t=1
ft(‚xt) ≠ ft(x

ú
) Æ “ + ”

4 Îxú ≠ x1Î2
+ 2 inf

⁄ú
1,...,⁄ú

T

I

2R2⁄ú
1:T + 3

T
ÿ

t=1

Îgt ≠ g̃tÎ2
ú

H1:t + ⁄ú
1:t

J

.

Thus the Algorithm 2 achieves a regret bound which is competitive with the bound
achievable by the best o�ine choice of parameters ⁄t’s. From the above theorem we
obtain the following two corollaries which show that Algorithm 2 achieves intermediate
rates between O

3

Ò

qT
t=1 Îgt ≠ g̃tÎ2

ú

4

and O
1

log
qT

t=1 Îgt ≠ g̃tÎ2
ú
2

depending on the
curvature of the losses.

Corollary 5.11. For any sequence of convex loss functions ft’s, the bound on the regret
of Algorithm 2 is O

3

Ò

qT
t=1 Îgt ≠ g̃tÎ2

ú

4

.

Proof. Let ⁄ú
1 =

Ò

qT
t=1 Îgt ≠ g̃tÎ2

ú, and ⁄ú
t = 0 for all t > 1.

2R2⁄ú
1:T + 3

T
ÿ

t=1

Îgt ≠ g̃tÎ2
ú

H1:t + ⁄ú
1:t

= 2R2

ˆ

ı

ı

Ù

T
ÿ

t=1
Îgt ≠ g̃tÎ2

ú + 3
T

ÿ

t=1

Îgt ≠ g̃tÎ2
ú

0 +
Ò

qT
t=1 Îgt ≠ g̃tÎ2

ú

=

1

2R2
+ 3

2

ˆ

ı

ı

Ù

T
ÿ

t=1
Îgt ≠ g̃tÎ2

2.
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Algorithm 3 Adaptive and Optimistic Mirror Descent with Composite Losses
Input: regularizers r0, r1 Ø 0, composite losses {Ât}t where Ât Ø 0.
Initialize: x1, ‚x1 = 0 œ W.
for t = 1 to T do

Predict ‚xt, observe ft, and incur loss ft(‚xt) + Ât(‚xt).
Compute gt œ ˆft(‚xt) and g̃t+1(g1, ..., gt).
Construct rt+1 s.t. r0:t+1 is 1-strongly convex w.r.t. Î·Î

(t+1).
Update

xt+1 = arg min
xœW

Ègt, xÍ + Ât(x) + Br0:t(x, xt), (5.9)

‚xt+1 = arg min
xœW

Èg̃t+1, xÍ + Ât+1(x) + Br0:t+1(x, xt+1). (5.10)

end for

Corollary 5.12. Suppose Îgt ≠ g̃tÎú Æ 1 (w.l.o.g) and Ht Ø H > 0 for all t œ [T ].
Then the bound on the regret of Algorithm 2 is O

1

log
qT

t=1 Îgt ≠ g̃tÎ2
ú
2

.

Proof. Set ⁄ú
t = 0 for all t.

2R2⁄ú
1:T + 3

T
ÿ

t=1

Îgt ≠ g̃tÎ2
ú

H1:t + ⁄ú
1:t

= 0 + 3
T

ÿ

t=1

Îgt ≠ g̃tÎ2
ú

Ht + 0

= O

A

log
T

ÿ

t=1
Îgt ≠ g̃tÎ2

ú

B

,

where the last inequality is due to the fact that if at Æ 1 for all t œ [T ], then
qT

t=1
at
t =

O
1

log
qT

t=1 at

2

.

The results obtained here can be extended to the applications discussed in [Do
et al., 2009; Orabona et al., 2010] to obtain much tighter results.

5.4 Composite Losses

Here we consider the case when observed loss function ft is composed with some non-
negative (possibly non-smooth) convex regularizer term Ât to impose certain constraints
on the original problem. In this case we generally do not want to linearize the additional
regularizer term, thus in the update rules given by (5.2) and (5.3) we include Ât and
Ât+1 respectively without linearizing them. This extension is presented in Algorithm 3.

The following lemma provides a bound on the instantaneous regret of Algorithm 3.

Lemma 5.13. The instantaneous regret of Algorithm 3 w.r.t. any xú œ W can be
bounded as follows

{ft(‚xt) + Ât(‚xt)}≠{ft(x
ú
) + Ât(x

ú
)} Æ 1

2 Îgt ≠ g̃tÎ2
(t),ú +Br0:t(x

ú, xt)≠Br0:t(x
ú, xt+1).
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Proof. The instantaneous regret of the algorithm can be bounded as below using the
convexity of ft

{ft(‚xt) + Ât(‚xt)} ≠ {ft(x
ú
) + Ât(x

ú
)} Æ Ègt, ‚xt ≠ xúÍ + {Ât(‚xt) ≠ Ât(x

ú
)} .

Now consider

Ègt, ‚xt ≠ xúÍ = Ègt ≠ g̃t, ‚xt ≠ xt+1Í + Èg̃t, ‚xt ≠ xt+1Í + Ègt, xt+1 ≠ xúÍ. (5.11)

By the fact that Èa, bÍ Æ ÎaÎ ÎbÎú Æ 1
2 ÎaÎ2

+

1
2 ÎbÎ2

ú, we have

Ègt ≠ g̃t, ‚xt ≠ xt+1Í Æ 1
2 Î ‚xt ≠ xt+1Î2

(t) +
1
2 Îgt ≠ g̃tÎ2

(t),ú

The first-order optimality condition for xú
= arg min

xœW
Èg, xÍ + f(x) + BÂ(x, y) and for

z œ W,

Èxú ≠ z, gÍ Æ Èz ≠ xú, f Õ
(xú

)Í + BÂ(z, y) ≠ BÂ(z, xú
) ≠ BÂ(x

ú, y).

By applying the above condition for (5.10) and (5.9) we have respectively

È ‚xt ≠ xt+1, g̃tÍ Æ ÈÂÕ
t( ‚xt), xt+1 ≠ ‚xtÍ + Br0:t(xt+1, xt) ≠ Br0:t(xt+1, ‚xt) ≠ Br0:t( ‚xt, xt)

Èxt+1 ≠ xú, gtÍ Æ ÈÂÕ
t(xt+1), xú ≠ xt+1Í+Br0:t(x

ú, xt)≠ Br0:t(x
ú, xt+1)≠ Br0:t(xt+1, xt).

Thus by (5.11) we have

Ègt, ‚xt ≠ xúÍ + {Ât(‚xt) ≠ Ât(x
ú
)}

Æ 1
2 Î ‚xt ≠ xt+1Î2

(t) +
1
2 Îgt ≠ g̃tÎ2

(t),ú + Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1) ≠ Br0:t(xt+1, ‚xt)

+ Ât(‚xt) ≠ Ât(x
ú
) + ÈÂÕ

t( ‚xt), xt+1 ≠ ‚xtÍ + ÈÂÕ
t(xt+1), xú ≠ xt+1Í

Æ 1
2 Îgt ≠ g̃tÎ2

(t),ú + Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1)

+ Ât(‚xt) + ÈÂÕ
t( ‚xt), xt+1 ≠ ‚xtÍ + ÈÂÕ

t(xt+1), xú ≠ xt+1Í ≠ Ât(x
ú
)

Æ 1
2 Îgt ≠ g̃tÎ2

(t),ú + Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1)

+ Ât(xt+1) + ÈÂÕ
t(xt+1), xú ≠ xt+1Í ≠ Ât(x

ú
)

Æ 1
2 Îgt ≠ g̃tÎ2

(t),ú + Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1) + Ât(x
ú
) ≠ Ât(x

ú
)

=

1
2 Îgt ≠ g̃tÎ2

(t),ú + Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1)

where the second inequality is due to 1-strong convexity of r0:t w.r.t. Î·Î
(t), and the third

and fourth inequalities are due to the convexity of Ât at ‚xt and xt+1 respectively.

From the above lemma we can observe that the instantaneous regret of Algorithm 3
is exactly equal to that of the non-composite version (Algorithm 1). Thus all the
improvements that we discussed in the previous sections for the non-composite case
are also applicable to composite losses as well.
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5.5 Discussion

Early approaches to the OCO problem were conservative, in which the main focus was
protection against the worst case scenario. But recently several algorithms have been
developed for tightening the regret bounds in easy data instances such as sparsity, pre-
dictable sequences, and curved losses. We have unified some of these existing techniques
to obtain new update rules for the cases when these easy instances occur together. First
we have analysed an adaptive and optimistic update rule which achieves tighter regret
bound when the loss sequence is sparse and predictable (Algorithm 1). Then we have
analysed an update rule that dynamically adapts to the curvature of the loss function
and utilizes the predictable nature of the loss sequence as well (Algorithm 2). Finally
we have extended these results to composite losses (Algorithm 3).

We also note that the regret bounds given in this chapter can be converted into
convergence bounds for batch stochastic problems using online-to-batch conversion
techniques [Cesa-Bianchi et al., 2004; Kakade and Tewari, 2009].

5.6 Appendix

5.6.1 Proofs

Proof. (Proposition 5.1) Observe that

arg min
xœW

BÂ(x, y)

= arg min
xœW

Â(x) ≠ Â(y) ≠ ÈÒÂ(y), x ≠ yÍ

= arg min
xœW

Â(x) ≠ ÈÒÂ(y), xÍ

= arg min
xœW

Â(x) ≠ ÈÒÂ(u) ≠ g, xÍ

= arg min
xœW

Èg, xÍ + Â(x) ≠ Â(u) ≠ ÈÒÂ(u), x ≠ uÍ

= arg min
xœW

Èg, xÍ + BÂ(x, u).

Proof. (Lemma 5.3) Since r0:t is 1-strongly convex w.r.t. Î·Î
(t) we have

Br0:t(‚xt, xt+1)

= r0:t(‚xt) ≠ r0:t(xt+1) ≠ ÈÒr0:t(xt+1), ‚xt ≠ xt+1Í
Ø 1

2 Î‚xt ≠ xt+1Î2
(t) ,

and
Br0:t(xt+1, ‚xt)

= r0:t(xt+1) ≠ r0:t(‚xt) ≠ ÈÒr0:t(‚xt), xt+1 ≠ ‚xtÍ
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Ø 1
2 Îxt+1 ≠ ‚xtÎ2

(t) .

Adding these two bounds, we obtain

Î‚xt ≠ xt+1Î2
(t) Æ ÈÒr0:t(‚xt) ≠ Òr0:t(xt+1), ‚xt ≠ xt+1Í. (5.12)

Suppose yt+1 and ‚yt satisfy the conditions Òr0:t(yt+1) = Òr0:t(xt)≠gt and Òr0:t(‚yt) =

Òr0:t(xt) ≠ g̃t respectively. Then by applying Proposition 5.1 to the updates in (5.3)
and (5.2) of Algorithm 1, we obtain

xt+1 = arg min
xœW

Br0:t(x, yt+1)

‚xt = arg min
xœW

Br0:t(x, ‚yt).

By applying the first order optimality condition for the above two optimization state-
ments, we have

ÈÒr0:t(xt+1) ≠ Òr0:t(yt+1), ‚xt ≠ xt+1Í Ø 0
ÈÒr0:t(‚xt) ≠ Òr0:t(‚yt), xt+1 ≠ ‚xtÍ Ø 0,

respectively. Combining these two bounds, we obtain

ÈÒr0:t(‚yt) ≠ Òr0:t(yt+1), ‚xt ≠ xt+1Í Ø ÈÒr0:t(‚xt) ≠ Òr0:t(xt+1), ‚xt ≠ xt+1Í.

By combining the above result with (5.12), we obtain

Î‚xt ≠ xt+1Î2
(t)

Æ ÈÒr0:t(‚yt) ≠ Òr0:t(yt+1), ‚xt ≠ xt+1Í
Æ ÎÒr0:t(‚yt) ≠ Òr0:t(yt+1)Î

(t),ú Î‚xt ≠ xt+1Î
(t) ,

by a generalized Cauchy-Schwartz inequality. Dividing both sides by Î‚xt ≠ xt+1Î
(t), we

have

Î‚xt ≠ xt+1Î
(t)

Æ ÎÒr0:t(‚yt) ≠ Òr0:t(yt+1)Î
(t),ú

= Î
(

Òr0:t(xt) ≠ g̃t) ≠
(

Òr0:t(xt) ≠ gt)Î
(t),ú

= Îgt ≠ g̃tÎ
(t),ú .

Proof. (Corollary 5.7) By letting ÷ =

DÔ
2 for the given sequence of regularizers,

we get r0:t (x) =

1
2÷ ÎxÎ2

Q1:t
. Since r0:t is 1-strongly convex w.r.t. 1Ô

÷ Î·ÎQ1:t
, we have

Î·Î
(t) =

1Ô
÷ Î·ÎQ1:t

and Î·Î
(t),ú =

Ô
÷ Î·ÎQ≠1

1:t
. By Theorem 5.4 the regret bound of
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Algorithm 1 with this choice of regularizer sequence can be given as follows

T
ÿ

t=1
ft(‚xt) ≠ ft(x

ú
) Æ 1

2

T
ÿ

t=1
Îgt ≠ g̃tÎ2

(t),ú +
T

ÿ

t=1
Brt(x

ú, xt).

Consider

1
2

T
ÿ

t=1
Îgt ≠ g̃tÎ2

(t),ú

=

1
2

T
ÿ

t=1
÷ Îgt ≠ g̃tÎ2

Q≠1
1:t

=

÷

2

T
ÿ

t=1
(

gt ≠ g̃t)Q≠1
1:t (gt ≠ g̃t)

T

=

÷

2

T
ÿ

t=1
(

gt ≠ g̃t)

1

“2I + G2:t

2≠ 1
2
(

gt ≠ g̃t)
T

Æ ÷

2

T
ÿ

t=1
(

gt ≠ g̃t) (G2:t+1)
≠ 1

2
(

gt ≠ g̃t)
T

Æ ÷ tr
A

G
1
2
2:T+1

B

Æ ÷ tr
A

1

“2I + G2:T

2

1
2

B

= ÷ tr
(

Q1:T ) ,

where the first inequality is due to the facts that “2I < Gt+1 and A < B < 0 ∆ A
1
2 <

B
1
2 and B≠1 < A≠1, the second inequality is due to the fact that

qT
t=1 aT

t

1

qt
s=1 asaT

s

2≠ 1
2 at Æ

2 · tr
3

1

qT
t=1 ataT

t

2

1
2
4

(see Lemma 10 from [Duchi et al., 2011]), and the third inequal-

ity is due to the fact that “2I < GT+1. Also observing that

T
ÿ

t=1
Brt(x

ú, xt)

=

T
ÿ

t=1

1
2÷

Îxú ≠ xtÎ2
Qt

Æ 1
2÷

T
ÿ

t=1
Îxú ≠ xtÎ2

2 ⁄max (Qt)

Æ 1
2÷

T
ÿ

t=1
Îxú ≠ xtÎ2

2 tr
(

Qt)
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Algorithm 4 Adaptive Mirror Descent
Input: regularizers r0 Ø 0.
Initialize: x1 = 0 œ W.
for t = 1 to T do

Predict xt, observe ft, and incur loss ft(xt).
Compute gt œ ˆft(xt).
Construct rt s.t. r0:t is 1-strongly convex w.r.t. Î·Î

(t).
Update

xt+1 = arg min
xœW

Ègt, xÍ + Br0:t(x, xt). (5.13)

end for

Æ 1
2÷

T
ÿ

t=1
D2tr

(

Qt)

=

D2

2÷
tr
(

Q1:T ) .

completes the proof.

5.6.2 Mirror Descent with —-convex losses

Given a convex set W ™ Rn and — > 0, a function f : W æ R is —-convex, if for all
x, y œ W

f(x) Ø f(y) + Èg, x ≠ yÍ + — Îx ≠ yÎ2
ggT , g œ ˆf(y).

As in Theorem 5.8, we can obtain regret bound for the case when the loss function
ft is —t-convex (which is broader class than exp-concave losses) as well. But for the
resulting bound we cannot apply Lemma 3.1 from [Hazan et al., 2007b] to obtain a
near optimal closed form solution of ⁄t.

Lemma 5.14. The instantaneous linear regret of Algorithm 4 w.r.t. any xú œ W can
be bounded as follows

Èxt ≠ xú, gtÍ Æ Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1) +
1
2 ÎgtÎ2

(t),ú .

Proof. By the first-order optimality condition for (5.13) we have,

Èx ≠ xt+1, gt + Òr0:t(xt+1) ≠ Òr0:t(xt)Í Ø 0 (5.14)

Consider

Èxt ≠ xú, gtÍ
= Èxt+1 ≠ xú, gtÍ + Èxt ≠ xt+1, gtÍ
Æ Èxú ≠ xt+1, Òr0:t(xt+1) ≠ Òr0:t(xt)Í + Èxt ≠ xt+1, gtÍ
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= Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1) ≠ Br0:t(xt+1, xt) + Èxt ≠ xt+1, gtÍ
Æ Br0:t(x

ú, xt) ≠ Br0:t(x
ú, xt+1) ≠ Br0:t(xt+1, xt) +

1
2 Îxt ≠ xt+1Î2

(t) +
1
2 ÎgtÎ2

(t),ú
Æ Br0:t(x

ú, xt) ≠ Br0:t(x
ú, xt+1) +

1
2 ÎgtÎ2

(t),ú ,

where the first inequality is due to (5.14), the second equality is due to the fact that
ÈÒÂ(a) ≠ ÒÂ(b), c ≠ aÍ = BÂ(c, b) ≠ BÂ(c, a) ≠ BÂ(a, b), the second inequality is due
to the fact that Èa, bÍ Æ ÎaÎ ÎbÎú Æ 1

2 ÎaÎ2
+

1
2 ÎbÎ2

ú, and the third inequality is due to
the 1-strong convexity of r0:t w.r.t. Î·Î

(t).

Theorem 5.15. Let ft is —t-convex, ’t œ [T ]. If rt’s are given by

rt(x) = ÎxÎ2
ht

, where h0 = In◊n and ht = —tgtg
T
t for t Ø 1, (5.15)

then the regret of Algorithm 4 w.r.t. any xú œ W is bounded by

T
ÿ

t=1
ft(xt) ≠ ft(x

ú
) Æ 1

4

T
ÿ

t=1
ÎgtÎ2

h≠1
0:t

+ Îxú ≠ x1Î2
2 .

Proof. For the choice of regularizer sequence {rt} given by (5.15), we have r0:t(x) =

ÎxÎ2
h0:t

and Br0:t(x, y) =

1
2

1Ô
2 Îx ≠ yÎh0:t

22
. Since r0:t is 1-strongly convex w.r.t.Ô

2 Î·Îh0:t
, we have Î·Î

(t) =
Ô

2 Î·Îh0:t
and Î·Î

(t),ú =

1Ô
2 Î·Îh≠1

0:t
.

For any xú œ W

ft(xt) ≠ ft(x
ú
)

Æ Ègt, xt ≠ xúÍ ≠ —t Îxú ≠ xtÎ2
gtgT

t

Æ Br0:t(x
ú, xt) ≠ Br0:t(x

ú, xt+1) +
1
2 ÎgtÎ2

(t),ú ≠ Îxú ≠ xtÎ2
—tgtgT

t

= Îxú ≠ xtÎ2
h0:t

≠ Îxú ≠ xt+1Î2
h0:t

≠ Îxú ≠ xtÎ2
ht
+

1
2 ÎgtÎ2

(t),ú ,

where the first inequality is due to the —t-convexity of ft(·), and the second inequality
is due to Lemma 5.14. By summing all the instantaneous regrets we get

T
ÿ

t=1
ft(xt) ≠

T
ÿ

t=1
ft(x

ú
)

Æ
T

ÿ

t=1

Ó

Îxú ≠ xtÎ2
h0:t

≠ Îxú ≠ xtÎ2
h0:t≠1

≠ Îxú ≠ xtÎ2
ht

Ô

+ Îxú ≠ x1Î2
h0

≠ Îxú ≠ xT+1Î2
h0:T

+

1
2

T
ÿ

t=1
ÎgtÎ2

(t),ú

Æ Îxú ≠ x1Î2
2 +

1
4

T
ÿ

t=1
ÎgtÎ2

h≠1
0:t

.
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Now instead of running Algorithm 4 on the observed sequence of ft’s, we use the
modified sequence of loss functions of the form

f̃t(x) := ft(x) + ⁄tg(x), ⁄t Ø 0, (5.16)

where g(x) is 1-convex. By following the proof of Theorem 5.15 for the modified
sequence of losses given by (5.16) we obtain the following corollary.
Theorem 5.16. Let g(x) be a 1-convex function, A2

= sup
xœW

g(x) and

B = sup
xœW

.

.gÕ
(x)

.

.

(

gÕ
(x)gÕ

(x)T
)

≠1 .

Also let ft be —t-convex (—t Ø 0), ’t œ [T ]. If Algorithm 4 is performed on the modified
functions f̃t’s with the regularizers rt’s given by

rt(x) = ÎxÎ2
ht

, where h0 = In◊n, and ht = —tgtg
T
t + ⁄tg

Õ
(xt)g

Õ
(xt)

T , for t Ø 1,
(5.17)

then for any sequence ⁄1, ..., ⁄T Ø 0, we get

T
ÿ

t=1
ft(xt) ≠ ft(x

ú
) Æ

A

A2
+

B2

2

B

⁄1:T +

1
2

T
ÿ

t=1
ÎgtÎ2

h≠1
0:t

+ Îxú ≠ x1Î2
2 .

Proof. Since ft is —t-convex and g is 1-convex, for any xú œ W we have

{ft(xt) + ⁄tg(xt)} ≠ {ft(x
ú
) + ⁄tg(x

ú
)}

= ft(xt) ≠ ft(x
ú
) + ⁄t {g(xt) ≠ g(xú

)}
Æ Ègt, xt ≠ xúÍ ≠ —t Îxú ≠ xtÎ2

gtgT
t
+ ⁄t

Ó

ÈgÕ
(xt), xt ≠ xúÍ ≠ Îxú ≠ xtÎ2

gÕ
(xt)gÕ

(xt)
T

Ô

= Ègt + ⁄tg
Õ
(xt), xt ≠ xúÍ ≠ Îxú ≠ xtÎ2

—tgtgT
t +⁄tgÕ

(xt)gÕ
(xt)

T .

By following the similar steps from the proof of Theorem 5.15 we get

T
ÿ

t=1
ft(xt) + ⁄tg(xt)≠

I

T
ÿ

t=1
ft(x

ú
) + ⁄tg(x

ú
)

J

Æ 1
4

T
ÿ

t=1

.

.gt + ⁄tg
Õ
(xt)

.

.

2
h≠1

0:t
+ Îxú ≠ x1Î2

2 .

By using the facts that Îx + yÎ2
A Æ 2 ÎxÎ2

A + 2 ÎyÎ2
A, h0:t < ht < ⁄tgÕ

(xt)gÕ
(xt)

T , and
ÎgÕ

(xt)Î
(

gÕ
(xt)gÕ

(xt)
T
)

≠1 Æ B, we have

T
ÿ

t=1
ft(xt) + ⁄tg(xt) ≠

I

T
ÿ

t=1
ft(x

ú
) + ⁄tg(x

ú
)

J

Æ 1
2

T
ÿ

t=1

Ó

ÎgtÎ2
h≠1

0:t
+ ⁄2

t

.

.gÕ
(xt)

.

.

2
h≠1

0:t

Ô

+ Îxú ≠ x1Î2
2

Æ 1
2

T
ÿ

t=1

;

ÎgtÎ2
h≠1

0:t
+ ⁄2

t

.

.gÕ
(xt)

.

.

2
(

⁄tgÕ
(xt)gÕ

(xt)
T
)

≠1

<

+ Îxú ≠ x1Î2
2



118 Accelerating Optimization for Easy Data

Æ 1
2

T
ÿ

t=1
ÎgtÎ2

h≠1
0:t

+

B2

2 ⁄1:T + Îxú ≠ x1Î2
2 .

By neglecting the g(xt) terms in the L.H.S. and using the fact that g(xú
) Æ A2 we get

T
ÿ

t=1
ft(xt) Æ

T
ÿ

t=1
ft(x

ú
) + A2⁄1:T +

1
2

T
ÿ

t=1
ÎgtÎ2

h≠1
0:t

+ Îxú ≠ x1Î2
2 +

B2

2 ⁄1:T .

But we cannot apply Lemma 3.1 from [Hazan et al., 2007b] for the above regret
bound to obtain a near optimal closed form solution to ⁄t. One could employ an
optimization algorithm to find the optimal ⁄t.



Chapter 6

Conclusion

This thesis studied the problem of bounding the performance of machine learning
algorithms in both statistical and adversarial setting, and designing computationally
e�cient algorithms with strong theoretical guarantees.

The major contributions of this thesis are:

• An investigation of the influence of cost terms on the hardness of the cost-sensitive
classification problem by extending the minimax lower bound analysis for bal-
anced binary classification (Theorem 3.6).

• A relationship between the contraction coe�cient of a channel w.r.t. c-primitive
f -divergence, and a generalized form of Dobrushin’s coe�cient (Theorem 3.10).

• An increased understanding of contraction coe�cients of binary symmetric chan-
nels w.r.t. any symmetric f -divergence (Section 3.3.2).

• A complete characterization of the exp-concavity of any proper composite loss
(Proposition 4.4). Using this characterization and the mixability condition of
proper losses (Van Erven et al. [2012]), we showed that it is possible to re-
parameterize any —-mixable binary proper loss into a —-exp-concave composite
loss with the same — (Corollary 4.8).

• Analysis of unified update rules of the accelerated online convex optimization
algorithms (Sections 5.2 and 5.3). Improved regret bounds were achieved by
exploiting the easy nature of the sequence of outcomes.

By studying the geometry of prediction problems we have obtained insights into
the factors which conspire to make the problem hard. These insights have enabled us
to place bounds on the learning algorithm’s ability to accurately predict the unseen
data, and guided us in the design of better solutions.

Throughout the thesis, we have pointed out a number of open questions which we
feel are important. These include the following:

1. Extend the study of the contraction coe�cients of binary symmetric channels
(Section 3.3.2) w.r.t. symmetric f -divergences to k-ary symmetric channels (with
k > 2) and general f -divergences.
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2. There are some divergences other than f -divergences which satisfy the weak data
processing inequality, such as Neyman-Pearson –-divergences ([Polyanskiy and
Verdú, 2010; Raginsky, 2011]). Thus it would be interesting to study strong data
processing inequalities w.r.t. those divergences as well.

3. Recently people have attempted to relate several types of channel ordering to the
strong data processing inequalities ([Makur and Polyanskiy, 2016; Polyanskiy and
Wu, 2015]). It is worth to explore the relationship between the statistical defi-
ciency based channel ordering (Raginsky [2011]) and the strong data processing
inequalities.

4. It would be interesting to study the hardness of the cost-sensitive classifica-
tion with example dependent costs ([Zadrozny and Elkan, 2001; Zadrozny et al.,
2003]), and the binary classification problem w.r.t. generalized performance mea-
sures (Koyejo et al. [2014]) such as arithmetic, geometric and harmonic means of
the true positive and true negative rates.

5. Further study could be undertaken in applying the cost-sensitive privacy notion
to some real-world problems.

6. We illustrated the impact of the choice of substitution function in Aggregating
Algorithm with experiments conducted on a synthetic dataset and a number of
di�erent real-world data sets (Section 4.4.1). A theoretical understanding of the
choice of substitution functions would be very useful.

7. An e�ciently computable —-exp-concavifying link function for —-mixable multi-
class proper losses, is still not known. At least showing a negative result would be
worth, for example, showing that it is not possible to exp-concavify a multi-class
(with n > 2) square loss with same mixability constant.

8. Develop adaptive and optimistic variants of second order online learning algo-
rithms such as online Newton step (Hazan et al. [2007a]), e�ciently using sketch-
ing methods (Woodru� [2014]).

Exploring and exploiting the geometric structure of the learning problem will serve as
a guiding light in this future work.
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