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Abstract

For many years, various methods for the identification and estimation of parameters in linear, discrete-time transfer functions
have been available and implemented in widely available Toolboxes for MatlabTM. This paper considers a unified Refined
Instrumental Variable (RIV) approach to the estimation of discrete and continuous-time transfer functions characterized by
a unified operator that can be interpreted in terms of backward shift, derivative or delta operators. The estimation is based
on the formulation of a pseudo-linear regression relationship involving optimal prefilters that is derived from an appropriately
unified Box-Jenkins transfer function model. The paper shows that, contrary to apparently widely held beliefs, the iterative
RIV algorithm provides a reliable solution to the maximum likelihood optimization equations for this class of Box-Jenkins
transfer function models and so its en bloc or recursive parameter estimates are optimal in maximum likelihood, prediction
error minimization and instrumental variable terms.

Key words: System identification, Box-Jenkins model, maximum likelihood, optimal instrumental variable, en-bloc
estimation, recursive estimation.

1 Introduction

Instrumental Variable (IV) methods of parameter esti-
mation have a long history in the statistical and con-
trol engineering literature. IV estimation has its roots
in statistics and econometrics [32] and is discussed in
some detail by Kendall and Stuart [19]. Some early
publications in the control engineering literature in-
clude [43,27] and [44]. Comprehensive treatments of
ordinary and optimal IV methods applied to the esti-
mation of parameters in discrete-time transfer function
models then appeared almost simultaneously in two
early books [35,46]. More recent papers in this general
field include [12,8,42,21,48,22,40,34]. The present pa-
per concerns the optimal Refined Instrumental Variable
(RIV) approach to the unified estimation of parameters
in both discrete and continuous-time transfer function
models. The basic RIV algorithm was first suggested
by the present author [45] for discrete-time models and
then thoroughly evaluated and extended to multivari-
able and continuous-time models [52,16,53,46]. Over
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the subsequent years, it has been developed in various
ways, with recent publications on this topic including
[9,51,47,48,11,10]. The present paper follows the above
references and considers estimation in the time domain.
Alternative IV approaches formulated in the frequency
domain (see e.g. [30]) have received much less attention,
although recent research [13] is moving in this direction.

Unlike standard IV algorithms, the RIV approach is not
based on an IV modification of a linear least-squares so-
lution to the estimation problem, or an approximate ap-
proach to prediction error minimization. Rather, as this
paper will show, it is an iterative Pseudo-Linear Regres-
sion (PLR) algorithm that is derived directly from the
conditions required for optimization of the Maximum
Likelihood (ML) function associated with a unified Box-
Jenkins (BJ) transfer function model. Upon convergence
of this iterative procedure, therefore, its parameter esti-
mates are optimal in maximum likelihood, prediction er-
ror minimization and instrumental variable terms. This
is a rather elegant solution because it not only provides
en-bloc estimates that maximize the likelihood function
but it can also produce recursive estimates that are iden-
tical to the repeated, stage-wise en bloc estimates, as in
linear least squares estimation. Indeed, this was one of
the primary motivations for developing the algorithm in
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the iterative pseudo-linear form where, at each iteration,
the estimates are obtained from a linear least squares so-
lution that can be either en-bloc or recursive. Normally,
however, the recursive estimates are only required by the
user at the final iteration, where they relate to the con-
verged, en-bloc parameter estimates. Here, the recursive
estimates are useful for visually appraising the nature of
the convergence and associated uncertainty at the final
iteration, as illustrated later in the example of Section
6.1.

The first aim of the paper is to emphasize the inher-
ent ML derivation of the RIV parameter estimation al-
gorithm and so heighten awareness of this derivation.
The second is to show how this solution is a unified one
that can be applied to discrete-time and continuous-time
transfer function models that includes models defined
in terms of the backward shift, δ and derivative opera-
tors. The acronym RIV will be used to refer to the gen-
eral, unified algorithm, while RIVD, RIVC and RIVδ
will refer to the specific operator versions. For simplic-
ity, the associated analysis will be presented for the case
of a single input, single output, stochastic system. This
is, of course, easily extended to a multiple input system
where the transfer functions share a common denomina-
tor; and RIV algorithms for multiple input models with
different denominators in each input channel have been
developed for discrete [15] and continuous-time [9] mod-
els: these are described fully in these references, so they
will not be considered here.

A third aim is to show that the iterative optimization
procedure used in the standard implementation of the
RIV algorithm can be considered in an entirely equiva-
lent ‘iterative updating’ form of the Gauss-Newton (GN)
kind, demonstrating again that it is based on an im-
plicit prediction error minimization procedure. This GN
interpretation demonstrates how the iterative optimiza-
tion strategy is seeking out a local maximum of the log-
likelihood cost function via prediction error minimiza-
tion. As such, it provides an alternative to standard iter-
ative prediction error minimization that is both robust
under difficult estimation conditions and, as mentioned
above, yields inherent recursive estimates of the model
parameters because of the pseudo-linear nature of the
estimation model. The paper will argue that these recur-
sive parameter estimates can provide a useful diagnostic
tool for evaluating both the identifiability of the model
and the quality of the associated parameter estimates,
as well as providing an obvious link with real-time recur-
sive RIV estimation of time-variable parameters [24,48].

The next Section 2 of the paper introduces the unified
BJ model; while the maximum likelihood estimation of
the parameters in this model is considered in Section 3.
Section 4 shows how maximum likelihood estimation of
the unified BJ model can be accomplished by transform-
ing the system and noise sub-models into pseudo-linear
regression models, whose iterative estimation within the

RIV framework yields maximum likelihood estimates of
the full model parameters. Section 5 outlines the main
aspects of the RIV algorithm and discusses its initia-
tion, convergence and optimality in instrumental vari-
able terms. Finally, Section 6 presents two simulation
studies that reasonably exemplify the performance of the
unified RIV algorithm when applied to backward shift,
derivative and δ operator transfer function models.

2 The Unified Box-Jenkins Model

This paper is concerned with the estimation of the pa-
rameters that characterize a Single-Input, Single-Output
(SISO), linear, time-invariant and stable transfer func-
tion model from uniformly sampled input-output data
{u(k), y(k)}, k = 1, 2, . . . , N , where the argument k
denotes the kth sample from an underlying continuous-
time system. In particular, let us consider the stochastic
SISO transfer function model first conceived and pro-
moted by Box and Jenkins [5,6] for discrete-time sys-
tems, which can be unified and written, at any sampling
instant k, in the following decomposed form 1 :

System TF Model : x(k) =
B(µ−1)

A(µ−1)
u(k − τ) (1a)

Noise TF Model : ξ(k) =
D(µ−1)

C(µ−1)
e(k);

e(k) = N(0, σ2)

(1b)

Output Observation : y(k) = x(k) + ξ(k) (1c)

where τ is a pure time delay and µ is a unified opera-
tor that, in the present paper, can be interpreted as the
forward shift operator, denoted here by z; the derivative
operator, denoted here by s; or the delta operator, δ.
The ‘noise-free’ output x(k) plays an important part in
the subsequent analysis and establishes the link between
maximum likelihood and instrumental variable estima-
tion. Given the possible interpretations of the unified
operator µ, it is important to note that this model is in-
formal and represents a ‘snapshot’ of the system at the
kth sampling instant.

The model polynomials in µ that characterize the model
(1) are defined as follows,

A(µ−1) = 1 + a1µ
−1 + a2µ

−2 + . . . + anµ
−n

B(µ−1) = b0 + b1µ
−1 + b2µ

−2 + . . . + bmµ
−m

C(µ−1) = 1 + c1µ
−1 + c2µ

−2 + . . . + cpµ
−p

D(µ−1) = 1 + d1µ
−1 + d2µ

−2 + . . . + dqµ
−q

(2)

1 Note that the nomenclature used for transfer functions
here is that used for RIV estimation since 1976 [45,48]; in
this unified context, models intended for PEM estimation in
MatlabTM would use C(µ−1)/D(µ−1) for the ARMA noise
model; and/or B(µ−1)/F (µ−1) for the system model.
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Although these definitions are required for the devel-
opment of the unified results and apply directly to the
polynomials of the backward shift operator model, where
µ−1 = z−1, the polynomials used in the subsequent de-
velopment of RIVC and RIVδ algorithms, are defined in
terms of µ (see later, Section 4.3.1), i.e.,

A(µ) = µn + a1µ
n−1 + a2µ

n−2 + . . . + an

B(µ) = b0µ
m + b1µ

m−1 + b2µ
m−2 + . . . + bm

(3)

which does not, of course, change the model. Also, for
reference in the next Section,

e(k) = [e(1) e(2) . . . , e(N)]
T

; e(k) = N(0, σ2I) (4)

where N is the number of samples available for estima-
tion. The structure of the above model will be denoted
by the pentad [n m τ p q] and, for simplicity of exposi-
tion, the time delay τ will be set initially to zero, with-
out any loss of generality; and the µ−1 argument will be
dropped from the polynomials.

Finally, note that, while this unified Box-Jenkins (BJ)
model assumes the stochastic white noise source e(k)
is normally distributed, this is not an essential require-
ment for the application of the resultant RIV algorithms,
although it is essential to the optimality of the ML ap-
proach used in the derivation of the RIV algorithm that
follows below in the next two Sections.

3 Maximum Likelihood Estimation

Following the ML approach [3,24,30], as considered in
[45,46], the log-likelihood function for the N observa-
tions {y(k), u(k)}, k = 1, 2, . . . , N , associated with the
model (1), can be written as follows:

L(a,b, c,d, σ2,y,u) = −N
2

loge(2π) −

N

2
loge σ

2 − 1

2σ2

[
C

D
y − BC

AD
u

]T [
C

D
y − BC

AD
u

] (5)

where,

a = [a1 a2 . . . , an]
T

; b = [b0 b1 . . . , bm]
T

c = [c1 c2 . . . , cp]
T

; d = [d1 d2 . . . , dq]
T

y = [y(1) y(2) . . . , y(N)]
T

; u = [u(1) u(2) . . . , u(N)]
T

Maximization of this log-likelihood function clearly re-
quires the minimization of the final term on the right
hand side of (5), which will be recognized as simply the
sum of the squares of the prediction errors e(k) where,
considered from a control theoretic standpoint, these can
be defined as follows:

e(k) =
C

D

[
y(k)− B

A
u(k)

]
, k = 1, 2, . . . , N. (6)

or, alternatively,

e(k) =
C

DA
[Ay(k)−Bu(k)] , k = 1, 2, . . . , N. (7)

which is important in the subsequent pseudo-linear re-
gression analysis.

In the present context, the ML and PEM optimization
problems are identical: it is necessary to find those es-
timates of the parameters in the polynomials (2), to-
gether with the variance σ2, which minimize the third
term in the log-likelihood function (5), namely, the sum
of squares of the prediction errors, which is a classical
but clearly nonlinear least squares problem. More for-
mally this optimization requires:

θ̂ = arg min
θ

J(θ , y , u) (8)

where

J(θ , y , u) =

N∑
k=1

e2(k) (9)

and
θ = [aT bT cT dT σ2]T (10)

is the vector of unknown parameters in the model. The
conditions for this are obtained in the usual manner
by partially differentiating the log-likelihhood function
with respect to all the parameters, in turn, and setting
these derivatives to zero. This yields the following five
equations:

∂L

∂ai
=

1

σ2

N∑
k=1

[
C

D
y(k) − BC

AD
u(k)

]
×

BC

A2D
µ−iu(k) = 0; i = 1, 2, ..., n

(11a)

∂L

∂ bi
=

1

σ2

N∑
k=1

[
C

D
y(k) − BC

AD
u(k)

]
×

C

AD
µ−iu(k) = 0; i = 0, 1, ..., m

(11b)

∂L

∂ ci
=

1

σ2

N∑
k=1

[
C

D
y(k) − BC

AD
u(k)

]
×[

1

D
µ−iy(k) − B

AD
µ−iu(k)

]
= 0; i = 1, ..., p

(11c)

∂L

∂ di
=

1

σ2

N∑
k=1

[
C

D
y(k) − BC

AD
u(k)

]
×[

− C

D2
µ−iy(k) +

BC

AD2
µ−iu(k)

]
= 0; i = 1, ..., q

(11d)

∂L

∂σ2
= −N

σ2
+

1

σ4

N∑
k=1

[
C

D
y(k) − BC

AD
u(k)

]2
= 0 (11e)
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Most published work on this topic has considered purely
discrete-time models and the most common method of
obtaining estimates of the BJ model parameters that sat-
isfy these conditions is to search the parameter space in
some manner. The best known and most computation-
ally efficient approach is to use gradient-based schemes
that follow from those originally employed by Box and
Jenkins [5] for the BJ model, or Aström and Bohlin [4]
for the alternative AutoRegressive Moving Average eX-
ogenous variables (ARMAX) model.

A very interesting property of the ML estimates for the
BJ model was revealed by the analysis of Pierce [29], who
showed that the ML estimates of the parameters in the
discrete-time model polynomialsA(z−1) andB(z−1) are
asymptotically independent of the estimates of the pa-
rameters in the ARMA noise model polynomials C(z−1)
and D(z−1), so that the associated error covariance ma-
trix for θ is block diagonal, with the off-diagonal blocks
zero. This is particularly important in the development
of the pseudo-linear regression approach to estimation
discussed in subsequent Sections because it is exploited
to facilitate the iterative optimization approach used in
the RIV algorithm.

4 The Iterative Pseudo-Linear Regression Ap-
proach to Maximum Likelihood Optimization

The RIV algorithm is a pseudo-linear regression ap-
proach to the maximum likelihood estimation of the uni-
fied BJ model, as defined in Sections 2 and 3, that in-
volves separate but linked sub-algorithms for estimating
the parameters in the system and noise models defined
by equations (1a) and (1b), respectively. Before describ-
ing the RIV algorithm, however, it is necessary to con-
sider the development of the PLR models that are ex-
ploited in these sub-algorithms.

4.1 The System Model

The pseudo-linear regression estimation procedure for
the system model parameters becomes apparent if we
consider equation (7) and define the following discrete-
time ‘prefiltered’ variables

yfρ(k) =
C

DA
y(k); ufρ(k) =

C

DA
u(k)

xfρ(k) =
B

A
ufρ(k)

(12)

where the subscript fρ indicates that these are prefilters
required for the estimation of the system parameter vec-
tor

ρ = [a1 a2 . . . , an b0 b1 . . . , bm]
T

(13)

Here, the subscript fρ is necessary because a different
prefilter is required for estimating the noise model: see
subsequent sub-Section 4.2.

With these definitions, note that equations (11a) and
(11b) can be rewritten conveniently in terms of the pre-
filtered variables:

N∑
k=1

[Ayfρ(k) − Bufρ(k)]µ−ixfρ(k) = 0 (14a)

N∑
k=1

[Ayfρ(k) − Bufρ(k)]µ−iufρ(k) = 0 (14b)

These equations are linear in the parameters ai, i =
1, 2, . . . , n and bi, i = 0, 1, . . . , m, provided we assume
knowledge of the prefiltered variables yfρ(k), ufρ(k) and
xfρ(k) in (12).

Now, if we combine the three equations in (1) and ma-
nipulate the model to the form,

C

DA
Ay(k) =

C

DA
Bu(k) + e(k) (15)

then it can be written as follows in terms of the pre-
filtered variables,

Ayfρ(k) = Bufρ(k) + e(k) (16)

This can then be represented conveniently as the follow-
ing regression-like model,

yfρ(k) = φTfρ(k)ρ+ e(k) (17)

where,

φTfρ(k) = [−µ−1yfρ(k) · · · − µ−nyfρ(k)

ufρ(k) · · · µ−mufρ(k)]
(18)

is a data vector defined in terms of the prefiltered vari-
ables. Now, equations (14) can be written in the alter-
native vector-matrix form:[

N∑
k=1

φ̊fρ(k)φTfρ(k)

]
ρ−

[
N∑
k=1

φ̊fρ(k)yfρ(k)

]
= 0 (19)

where

φ̊fρ(k) = [−µ−1xfρ(k) · · · − µ−nxfρ(k)

ufρ(k) · · · µ−mufρ(k)]T
(20)

is a data vector defined in the same way as φfρ(k) but
with the prefiltered output variables replaced by the sim-
ilarly prefiltered but unobserved, noise-free output vari-
ables xfρ(k) defined in (12).

Of course, the regression-like model (17) cannot be con-
sidered as a basis for direct estimation because it is not a
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true regression relationship; it is a pseudo-linear regres-
sion equation involving prefiltered variables that depend
on the parameters to be estimated. Before considering
how this problem is circumvented, however, the devel-
opment of a similarly motivated PLR equation for the
noise model is considered in the next sub-Section.

4.2 The Noise Model

In all three operational transfer functions considered
in this paper, the ARMA noise model is considered in
purely discrete-time terms because of the well known
problems of directly estimating the parameters in a
purely continuous-time ARMA process (see e.g. [20]).

There are various methods available for the estimation
of parameters in such a discrete-time ARMA model (see
e.g. [31], page 359 et seq) but, in order to achieve unifor-
mity in RIV estimation, we require an approach that is
based on pseudo-linear regression and so can yield recur-
sive estimates if these are required. The pseudo-linear
regression estimation method utilized in the RIV algo-
rithm is the Instrumental Variable ARMA (IVARMA)
algorithm [48], which is actually applied to the inverse
noise model,

e(k) =
C

D
ξ(k), (21)

under the initial assumption that both e(k) and ξ(k)
are available for measurement. Then the following pre-
filtered variables are introduced:

efη (k) =
1

D
e(k); ξfη (k) =

1

D
ξ(k) (22)

where the subscript fη indicates that these filters are
required for the estimation of the noise model parameter
vector η defined later in equation (26). Now, after some
manipulation of the ML equations [46], (11c) and (11d)
can be rewritten conveniently in terms of the prefiltered
variables:

N∑
k=1

[Cξ(k) − D∗e(k)] µ−iξfη = 0 (23a)

N∑
k=1

[Cξ(k) − D∗e(k)] µ−iefη = 0 (23b)

for i = 1, 2, . . . , p, where here µ−i is the backward shift
operator z−i

D∗ = D∗(z−1) = d1z
−1 + d2z

−2 + . . . + dqz
−q

These equations are linear in the ci and di parameters,
again provided we assume knowledge of the prefiltered
variables in (22).

Noting that the pseudo-linear relationship between the
noise model parameters can be obtained as follows [48]:

C(z−1)

D(z−1)
ξ(k)− e(k) =

C(z−1)ξfη (k)−D(z−1)efη (k)

(24)

The underlying estimation model in this case is then:

efη (k) = ψ̊
T

fη (k)η (25)

in which,

ψ̊
T

fη (k) = [ξfη (k) · · · ξfη (k − p) −
efη (k − 1) · · · − efη (k − q)]

η = [1 c1 · · · cp d1 · · · dq]T
(26)

Now, if indeed ξ(k) and e(k) were available for measure-
ment, the equations (23a) can be written in the alterna-
tive vector-matrix form:[

N∑
k=1

ψ̊fη (k)ψ̊
T

fη (k)

]
η −

[
N∑
k=1

ψ̊fη (k)efη (k)

]
= 0 (27)

Of course, ξ(k) and e(k) are not directly available for
measurement and so, as in the case of the system model,
they must be replaced by estimated variables in the it-
erative pseudo-linear regression solution.

4.3 Refined Instrumental Variable Estimation

The RIV estimation algorithm is an iterative method of
jointly solving the optimization equations for the sys-
tem and noise model parameters derived in the previ-
ous Sections. Referring to the ideal normal equations in
(19), upon convergence of the iterations, the final RIV
estimate ρ̂ is given by,

ρ̂ =

[
N∑
k=1

φ̂fρ(k)φTfρ(k)

]−1 [ N∑
k=1

φ̂fρ(k)yfρ(k)

]
(28)

where φfρ(k) is the data vector in equation (18) and

φ̂fρ(k) is an iteratively updated estimate of the ‘noise-

free’ vector φ̊fρ in equation (20), in which x̂fρ(k) is an

iteratively updated estimate of xfρ(k). In instrumental

variable terms, φ̂fρ(k) is the IV vector,

φ̂fρ(k) = [−µ−1x̂fρ(k) · · · − µ−nx̂fρ(k)

ufρ(k) · · · µ−mufρ(k)]T
(29)
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where x̂fρ(k) is generated as the output of the auxiliary
model equation in the RIV algorithm, i.e.,

x̂fρ(k) =
B̂

Â
ufρ(k) (30)

in which Â and B̂ are the iteratively updated estimates
of the A and B polynomials.

Similarly, referring to the ideal normal equations (27)
of the noise model, the final converged estimate of the
ARMA noise model parameter vector η̂ is given by,

η̂ =

[
N∑
k=1

ψ̂fη (k)ψTfη (k)

]−1 [ N∑
k=1

ψ̂fη (k)ẽfη (k)

]
(31)

where ψfη (k) is the data vector in equation (26) and

ψ̂fη (k) is the IV vector,

ψ̂fη (k) = [ξ̂fη (k) · · · ξ̂fη (k − p) −
êfη (k − 1) · · · − êfη (k − q)]T

(32)

in which
ξ̂fη (k) = yfρ(k)− x̂fρ(k) (33)

and êfη (k) is generated as the output of the ‘inverse
noise’ auxiliary model equation

êfη (k) =
Ĉ

D̂
ξ̂fη (k) (34)

where Ĉ and D̂ are the iteratively updated estimates
of the C and D polynomials. Finally, ẽfη (k) in (31) is
generated from an independent estimate of e(k) obtained
as the residual of high order AR estimation, as discussed
below.

In more specific terms, the iterative RIV algorithm
blends the separate algorithms for the estimation of
the system and noise parameters using a ‘bootstrap’
approach. Here, at the jth iteration, the system model
parameter estimate ρ̂j−1 obtained at the previous iter-
ation by the solution of the RIV normal equations (28),
or their recursive equivalent, provides the information
required to form the auxiliary model. This is then used
both to generate the instrumental variable x̂(k) from
u(k) (cf the third equation in (22)) and to provide an

estimate ξ̂(k) of the noise ξ(k), i.e.,

Estimation of x(k) : x̂(k) =
B̂(ρ̂j−1)

Â(ρ̂j−1)
u(k)

Estimation of ξ(k) : ξ̂(k) = y(k)− x̂(k);

(35)

Obtaining an estimate of e(k) is more difficult but it
is well known that a high order AR model of ξ(k), as

estimated by en bloc or recursive linear least squares,
yields residuals that provide a good estimate ẽ(k) of e(k)

(see e.g. [7,14]). The estimates ξ̂(k) and ẽ(k) obtained

in this manner are then prefiltered by fη = 1/D̂, where

D̂ is the iteratively updated estimate of MA polynomial
D, and these prefiltered variables are used to construct
the following vector,

ψ̃fη (k) = [ξ̂fη (k) · · · ξ̂fη (k − p) −
ẽfη (k − 1) · · · − ẽfη (k − q)]T

(36)

which provides an iteratively updated estimate of the

unobservable vector ψ̊(k) in equation (26). The estimate
of the ARMA noise model parameter vector is then given
by reference to equation (31): i.e.,

η̂ =

[
N∑
k=1

ψ̃fη (k)ψTfη (k)

]−1 [ N∑
k=1

ψ̃fη (k)ẽfη (k)

]
(37)

with ψ̃fη (k) replacing ψ̂fη (k). This is the basis of the
IVARMA algorithm.

4.3.1 Special aspects of the RIVC and RIVδ estimation

As pointed out previously in Section 2, in the implemen-
tation of the hybrid continuous-time (RIVC) and delta
operator (RIVδ) versions of the above RIV algorithm,
theA andB polynomials are made functions of µ, rather
than µ−1. This is because, in these cases, the pseudo-
linear regression estimation equation (17) is considered
in the alternative form,

µnyfρ(k) = φTfρ(k)ρ+ e(k), (38)

as obtained by multiplying through the equation by µn,
where now,

φTfρ(k) = [−µn−1yfρ(k) · · · − yfρ(k)

µmufρ(k) · · · ufρ(k)]
(39)

In other words, the ‘dependent’ variable in the pseudo-
linear regression is the filtered nth order derivative of
the measured output, in continuous or discrete-time. In
the same way, the instrumental variable vector in (29)
is defined as

φ̂fρ(k) = [−µn−1x̂fρ(k) · · · − x̂fρ(k)

µmufρ(k) · · · ufρ(k)]T
(40)

5 The Unified RIV Algorithm

The major steps in the current standard implementation
of the RIV algorithms are summarized below. For com-
pleteness, the time delay τ and appropriate arguments
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are re-introduced here. The RIV algorithm is a unified
one in the sense that its basic operations are defined
in terms of the unified operator µ−1. However, there
are small differences, depending on the specific operator
model being considered. These specific algorithms will
be referred to by the acronyms RIVD, RIVδ and RIVC
for, respectively, backward shift, δ and derivative opera-
tor transfer function models. Also, it is necessary to ini-
tiate the algorithm and this initiation also depends to
some extent on the specific operator model concerned.
In order to not obscure the nature of the basic unified
algorithm, therefore, these are discussed in the next sub-
Section 5.1. A diagram of the unified RIV algorithm is
given in Figure 1, where the estimated parameter vec-

tor θ̂ (see Section 3), with σ2 removed because it is es-
timated separately (see below), is shown in partitioned
form as the combination of the system and noise model
parameter vectors, i.e.

θ̂ =
[

âT b̂T ĉT d̂T
]T

=
[
ρ̂T η̂T

]T
(41)

Major Steps in the Unified RIV Algorithm

Step 1. Initialization: This provides an initial estimate
of the TF system model parameter vector ρ̂0 (see sub-
Section 5.1).

Step 2. Iterative or recursive-iterative IV estima-
tion with adaptive prefilters:

for j = 1: convergence

(1) Generate the IV series x̂(k) from the system ‘aux-
iliary model’:

x̂(k) =
B̂(µ−1, ρ̂j−1)

Â(µ−1, ρ̂j−1)
u(k − τ)

with the polynomials based on the estimated pa-
rameter vector ρ̂j−1 obtained at the previous iter-
ation of the algorithm; for j = 1, ρ̂0 is the estimate
obtained in Step 1.

(2) Obtain the latest estimate η̂j of the noise model
parameter vector based on the estimated noise

sequence ξ̂(k) = y(k) − x̂(k) using the en bloc
IVARMA estimation algorithm (37) or the recur-
sive equivalent of this.

(3) Prefilter the input u(k), output y(k) and instru-
mental variable x̂(k) signals by the filter

fρ(z
−1, ρ̂j−1, η̂j) =

Ĉ(z−1, η̂j)

D̂(z−1, η̂j)Â(µ−1, ρ̂j−1)

with the polynomials based on the estimated pa-
rameter vector ρ̂j−1 obtained at the previous iter-
ation of the algorithm and η̂j obtained in Step (2);
for j = 1, ρ̂0 is the estimate obtained in Step 1.

(4) Based on these prefiltered data, compute the esti-

mate ρ̂j of the TF system model parameter vector
using the en bloc solution (28) or the recursive IV
equivalent of this.

end

Step 3. Error covariance matrix evaluation: After
convergence, compute the estimated parametric error
covariance matrices associated with the parameter esti-
mates, from the following expressions that follow from
the theorem by Pierce [29,18].

P∗
ρ = σ̂2

[
N∑
k=1

φ̂fρ(k)φ̂
T

fρ(k)

]−1

P∗
η = σ̂2

[
N∑
k=1

ψ̃fη (k)ψ̃
T

fη (k)

]−1
(42)

where σ̂2 is estimated by reference to condition (11e) of
equation (11) as

σ̂2 =
1

N

N∑
k=1

ê2(k) (43)

and ê(k) are the estimated ARMA model residuals. P∗
ρ

is also generated naturally from the ‘symmetric’ ver-
sions of these algorithms, so that they can be accessed
straightforwardly by adding such a symmetric update
subsequent to convergence (see page 183 in [46] and later
Section 5.2). Note that the definitions (42) assume that
the off-diagonal blocks in the full error covariance matrix
for θ are zero, following the Pierce theorem (see Section
3).

The Simplified Refined Instrumental Variable (SRIV) al-
gorithm is a very useful, reliable and computationally
efficient version of the RIV-type algorithm obtained in
the case where the additive noise is purely white (i.e.
C = D = 1.0), so removing completely the need to es-
timate the ARMA noise model. The resulting SRIVD,
SRIVC and SRIVδ algorithms are optimal under these
special conditions but they also function well in practice,
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Â(µ−1)

Fig. 1. Block diagram of the unified RIV estimation algorithm.

maintaining consistency even if the noise is coloured be-
cause of the IV-type solution; or even if the noise does
not conform to the ARMA type description. In effect,
the SRIV algorithms are the pseudo-linear regression
equivalent of standard ‘Output Error’ (OE) estimation
but they can sometimes produce superior estimation re-
sults (e.g. [9,25]). Note also that if the denominator of
the ARMA noise model is constrained equal to the sys-
tem transfer function denominator, the RIV algorithm
can be used for the estimation of ARMAX models (see
[18] which also discusses RIV estimation of other trans-
fer function model forms).

Finally, the recursive equivalent of the en bloc solution
(28) is well known [48] and will not be discussed here. It
is sufficient to note that the unified recursive equations
take the form:

ρ̂(k) = ρ̂(k − 1) + g(k)[yfρ(k)− φTfρ(k)ρ̂(k − 1) ]

g(k) = P̂ρ(k − 1)φ̂fρ(k)×
[1 + φTfρ(k)P̂ρ(k − 1)φ̂fρ(k)]−1

P̂ρ(k) = P̂ρ(k − 1)− g(k)φTfρ(k)P̂ρ(k − 1)

(44)

where the third equation is a recursive update of the
inverse IV cross-product matrix

P̂ρ(k) =

[
k∑
i=1

φ̂fρ(i)φ
T
fρ(i)

]−1

(45)

that avoids matrix inversion. Recursive estimation takes
a little longer than en-bloc estimation so, although it
could be used at each iteration, it is computationally
more efficient to use it only at the final iteration, as
mentioned previously in Section 1 and illustrated later
in the example of Section 6.1.

5.1 Initiation

The initiation of the RIV/SRIV algorithms requires the

specification of A(z−1, ρ̂0), A(s, ρ̂0) or A(δ, ρ̂0). In the
case of the RIVD/SRIVD algorithm, it is standard prac-
tice to use initial linear least squares estimation of an
ARX model. While the parameters of this model are
normally biased, they are nearly always sufficient to de-
fine an initial estimate that induces subsequent conver-
gence of the RIV algorithm. Note that if the estimated
ARX model is unstable, then the unstable eigenvalues of
the estimated denominator polynomial are reflected into
the stable region of the complex z−1 plane (e.g. using
the Matlab routine polystab). Normally, this estimate is
employed to initiate the simpler SRIVD algorithm (see
above) and then the resulting estimated parameter vec-

tor is used to define the initial A(z−1, ρ̂0) for final, full
RIVD estimation. Of course, a facility could be added
that allows the user to specify A(z−1, ρ̂0) on the basis of
prior knowledge; or to employ the ‘state variable filter’
approach that is used in the RIVC algorithm.

The initiation of the RIVC algorithm is discussed fully in
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[51,48] but the two simplest approaches are: (i) estimate
an ARX model in discrete-time, as in the RIVD case, and
convert this to continuous-time form in the conventional
manner, so providing an initial A(s, ρ̂0c); or (ii) select a
single breakpoint parameter λ (breakpoint frequency in
radians/time unit) of the State Variable Filter (SVF):

f(s,ρ0c) =
1

A(s,ρ0c)
=

1

(s+ λ)
n (46)

This latter SVF approach, which is normally superior,
was suggested a long while ago [44] but has proven pop-
ular ever since. When used in practice, it is necessary
to find a λ value that induces satisfactory convergence.
This is chosen so that it is equal to, or larger than,
the bandwidth of the system to be identified. However,
the choice is not critical since convergence occurs over a
fairly wide range of values (see example 2, Section 6.2).
These same two approaches can also be used for initia-
tion of the RIVδ algorithm but, naturally, in relation to
the specification of the initial A(δ, ρ̂0) polynomial.

5.2 Convergence

A recent, quite comprehensive analysis of convergence
for RIVC algorithm is given in [23], who refer to the ear-
lier analysis of Stoica and Söderström [39,36] in relation
to the Steiglitz-McBride algorithm [38]. Here, we will
consider the local convergence of the unified RIV algo-
rithm in rather simpler terms using an alternative ‘in-
cremental’ implementation of the algorithm that is com-
pletely equivalent to the standard RIV iterative update.

The standard RIV algorithm outlined in Section 5 is one
way of implementing the pseudo-linear regression type of
optimization based on the ideas presented in Sections 4.1
to 4.3. But there are other possibilities provided that the
resulting RIV algorithm is based on the PLR approach
with the basic prefiltering carried out as described. One
possibility is to consider how the parameter vector is
updated at the jth iteration based on its estimate at
the previous (j− 1)th iteration. In order to develop this
incremental iterative updating, equation (28) is written
in the following vector-matrix terms at iteration j:

ρ̂jN =
[
Φ̂
T

j−1Φj−1

]−1

Φ̂
T

j−1yj−1, (47)

Here, ρ̂jN is the estimate based on all N samples in the
data set at the jth iteration; Φj−1 is a N ×m + n + 1
data matrix with rows defined in (18) or (39), depend-
ing of the specific form of the algorithm, with the pre-
filters defined at iteration j − 1; Φ̂j−1 is a similarly
formed and prefiltered instrumental variable product
matrix, with rows defined in (29) or (40); and yj−1

is the N × 1 prefiltered output vector with elements
yfρ,j−1

(k) or µnyfρ,j−1
(k), k = 1, 2, . . . , N , where the

subscript fρ,j−1 denotes the prefiltering operation at it-
eration j − 1. However, yj−1 can be defined in terms of
the previous iteration estimates, i.e.,

yj−1 = Φj−1ρ̂
j−1
N + ej−1 (48)

where ej−1 is the N × 1 vector of recursive residuals
ê(k), k = 1, 2, . . . , N . Combining these equations shows
that

ρ̂jN = ρ̂j−1
N +

[
Φ̂
T

j−1Φj−1

]−1

Φ̂
T

j−1ej−1 (49)

When considering these updating equations, it is impor-
tant to emphasize that the updating algorithm (49) is
entirely equivalent to the standard RIV iterative update
(47) and so it can be used to evaluate the convergence
of the standard RIV iterations. Also, this equation is
of the Gauss-Newton (GN) type (see e.g. [24]), except
that the cross-product matrix in the square brackets is
not symmetric because of the IV formulation (cf. the
equivalent symmetric Hessian matrix within a standard
GN context). Nevertheless, it will be very close to sym-
metric because the source of the instrumental variables
(the output of the auxiliary model) is an estimate of the
noise-free output x(k) and it can be shown [48] that,

p. lim
1

N

[
Φ̂
T
Φ
]

=
1

N

[
Φ̂
T
Φ̂
]

(50)

where p. lim is the probability in the limit as N → ∞.
Moreover, in RIV estimation x̂(k)→ x(k) , so that

p. lim
1

N

[
Φ̂
T
Φ
]

=
1

N

[
Φ̊
T
Φ̊
]

where Φ̊(k) is aN×n+m+1 matrix with rows φ̊
T

(i), i =
1, 2, . . . , N , as defined previously in terms of the noise-
free output and input variables by equation (20). Con-
sequently, we see that, in these probabilistic terms, the
symmetry is implicit in the RIV algorithm. The GN na-
ture of the RIV algorithm becomes even more obvious
if a ‘symmetric gain’ version of the RIV algorithm (see
above, Step 3 in Section 5) is utilized, i.e.,

ρ̂jN = ρ̂j−1
N +

[
Φ̂
T

j−1Φ̂j−1

]−1

Φ̂
T

j−1ej−1 (51)

where the Hessian is now symmetric. It is then clear from
the ML formulation of the algorithm and the Pierce the-
orem [29] that the update is indeed the product of the
Hessian and gradient of the ML cost function. Indeed,
this is the reason why the standard implementation of
the RIV algorithms includes a final iteration using this
symmetric gain version of the solution. Originally, the
symmetric gain form of the RIV algorithm was recom-
mended [52], however, it is not now used until the final
iteration because it has been found, by practical applica-
tion of the RIV algorithm over many years [18,48], that
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it is more robust to use the standard asymmetric RIV
solution (28) (i.e. the en-bloc equivalent of (49)).

If the GN update (51) was being applied to a pure re-
gression rather than a pseudo-linear regression model,
then it would constitute a Newton algorithm and so con-
verge in one step. In the present context, however, it con-
stitutes an efficient gradient descent algorithm and, de-
pending on the provision of a suitable initial estimate, as
discussed above in sub-Section 5.1, it will converge to a
local minimum or stationary point and can be compared
to the ‘damped’ GN algorithm normally used for PEM
optimization [24], except that there is no ‘step-size’ pa-
rameter. Indeed, as Van den Hof and Douma point out
in relation to the SRIVC algorithm [41], unlike this clas-
sic GN algorithm, updates such as (49) and (51) do not
rely on an approximate Taylor series expansion for their
formulation and may, therefore, have improved conver-
gence properties. In other words, at each iteration of
the RIV algorithm the pseudo-linear regression model is
automatically linearized by the introduction of the pre-
filters and, therefore, provides a very suitable basis for
GN-type updating. This is certainly borne out by prac-
tical experience with RIV algorithms over many years,
as well as simulation results (e.g. [47]) which show that
RIV can have advantages over PEM, particularly when
applied to data from ‘stiff’ systems that have a wide
range of eigenvalues. Of course, the PEM approach is
much more general than RIV estimation and has advan-
tages in other areas, such as the estimation of multiple
input models with a different denominator in each con-
stituent transfer function, where the RIV ‘backfitting’
approach [15,9] is less efficient.

5.3 RIV optimality in Instrumental Variable Terms

Söderström and Stoica [37] develop a general framework
for instrumental variable estimation that they term Ex-
tended Instrumental Variable (EIV) estimation. This in-
cludes the use of prefilters that depend on the form of
the transfer function model being considered and, in the
case of the BJ model considered here, these prefilters
are the same as those considered in the previous Sec-
tions of this paper (see also [12,11]). In particular, using
the nomenclature of the present paper, this EIV formu-
lation considers IV estimation in terms of the following
optimal solution:

ρ̂ = arg min
ρ
‖E(k)‖2 (52)

where,

E(k) =

[
N∑
k=1

φ̂fρ(k)φTfρ(k)

]
ρ−

N∑
k=1

φ̂fρ(k)yfρ(k) (53)

and optimization of this criterion with respect to ρ then
yields the RIV solution (28), i.e.,

ρ̂ =

[
N∑
k=1

φ̂fρ(k)φTfρ(k)

]−1 [ N∑
k=1

φ̂fρ(k)yfρ(k)

]
,

Moreover, Söderström [34], in considering “How accu-
rate can instrumental variables become”, concludes that,
upon convergence of the iterations, the prefilters used
in this RIV solution are optimal from EIV and PEM
standpoints. In other words, not only are the RIV es-
timates optimal in maximum likelihood and prediction
error terms, but also the RIV algorithm is an optimal
instrumental variable estimator.

6 Simulation Examples

Recently, a number of publications by the author and his
colleagues have provided simulation and real examples
of RIV-type estimation and have compared the results
with those obtained by other methods (see e.g. [47,48]).
Here, therefore, we will consider only two simulation ex-
amples that reasonably exemplify the performance of the
unified RIV algorithm. In these examples, generic names
will be used for the various algorithms but routines from
the CAPTAIN Toolbox 2 for MatlabTM will be used
for RIV model identification and parameter estimation.
These are the rivbjid and rivbj routines that implement
RIVD model structure identification and parameter es-
timation, respectively; and the analogous rivcbjid and
rivcbj routines in the case of RIVC. A similar imple-
mentation of RIVC is available in the CONTSID Tool-
box 3 . For comparison, the pem and tfest routines from
the Matlab SID Toolbox are used for PEM estimation of
discrete and continuous-time models, respectively. The
results for δ operator model estimation are obtained us-
ing a recently updated version of an algorithm developed
some years ago [50] but not available in the CAPTAIN
Toolbox.

Although model structure identification will not be dis-
cussed in these examples, such identification has been
used in all cases using the rivbjid and rivcbjid routines in
CAPTAIN and based on well known order identification
criteria such as AIC [1], BIC [2,33] and YIC (see [48]
and the prior references therein), as well as reference to
the recursive estimation results (see e.g. section 7.3 of
chapter 7 in [48]). However, the degree to which a model
explains the measured output data will be specified by

2 The CAPTAIN Toolbox can be downloaded free via http:
//captaintoolbox.co.uk/Captain_Toolbox.html
or http://www.es.lancs.ac.uk/cres/systems.html
3 The CONTSID Toolbox can be downloaded free from www.
cran.uhp-nancy.fr/contsid/
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the following coefficient of determination:

R2
T (x) = 1− {σ2

ex/σ
2
x} (54)

where σ2
x is the sample variance of the noise-free out-

put x(k); and σ2
ex is the sample variance of the error

ex(k) = x(k) − x̂(k) between the noise-free output and
the simulated noise-free output of the model. In other
words, R2

T (x) measures how much of the noise-free out-
put variance is explained by the model.

6.1 Simulation Example 1: Discrete-Time Example

This example is concerned with the following, fourth
order, backward shift operator TF model [55]:

y(k) =
z−1 + 0.5z−2 − 2.0z−3 + z−4

1− 1.5z−1 + 0.7z−2 + 0.3z−3 − 0.2z−4
u(k)

+
1− 0.6z−1 + 0.4z−2

1− 0.95z−1 + 0.9506z−2
e(k)

e(k) = N(0, σ2)

where σ2 is selected so that the noise/signal ratio, in
relation to the noise-free output, is 0.2 by variance or
0.447 by standard deviation (equivalent to a signal/noise
ratio (SNR) of 8.7 dB, using the standard SNR defini-
tion). The system and noise models are highly oscillatory
with natural frequencies that are quite close together at
0.676 and 1.060 radians per time unit; and the associated
damping factors are 0.102 and 0.238. The input signal
is a 1000 sample, pseudo-random binary signal between
0 and 1 with a switching period of 10 samples and an
adequate ‘run-in’ of 20 zero samples to avoid the well
known problems that can occur because of the sharp step
changes in the input. This is quite a difficult example
with considerable data distortion entering via the rea-
sonable level of additive, highly coloured and oscillatory
noise.

The model is identified with the correct [4 4 1 2 2] struc-
ture and the RIVD estimation is evaluated by Monte
Carlo Simulation (MCS) experiments involving 200 ran-
dom realizations. For each realization, the RIVD algo-
rithm is initiated using standard ARX model estimation
(see Section 5.1). The results are given in Table 1, which
compares the performance of the RIVD algorithm with
the PEM algorithm. The results for the noise model are
omitted because of space limitations in the table. Also
shown are the results obtained when the GN-type up-
dating (see Section 5.2), referred to here as ‘trimming’, is
applied subsequent to convergence of the standard RIVD
algorithm. It is clear that these two RIVD results are
almost identical, as expected. The PEM results are also
similar, although there were nine failures where the esti-
mated parameters were far from the true values. These
were removed in calculating the statistics for Table 1.

The estimates obtained in a typical single realization are
as follows, where the figures in parentheses are the es-
timated standard errors, which we see agree reasonably
with the standard deviations obtained in the MCS anal-
ysis.

â1 = −1.498(0.037) â2 = 0.697(0.067)

â3 = 0.298(0.065) â4 = −0.194(0.033)

b̂0 = 1.047(0.032) b̂1 = 0.442(0.079)

b̂2 = −2.006(0.084) b̂3 = 1.022(0.036)

ĉ1 = −0.942(0.012) ĉ2 = 0.948(0.012)

d̂1 = −0.587(0.033) d̂2 = 0.367(0.033)

(55)

The associated R2
T (x) = 0.9998; i.e. 99.98% of the noise-

free output variance is explained by the model. The es-
timates obtained for the worst realization in these terms
are:

â1 = −1.490(0.043) â2 = 0.694(0.070)

â3 = 0.295(0.068) â4 = −0.192(0.038)

b̂0 = 0.981(0.035) b̂1 = 0.544(0.083)

b̂2 = −1.982(0.088) b̂3 = 0.967(0.039)

ĉ1 = −0.955(0.012) ĉ2 = −0.941(0.012)

d̂1 = −0.524(0.034) d̂2 = 0.357(0.034)

(56)

where R2
T (x) = 0.995. Of course, this is at the extremity

of the long tailedR2
T (x) distribution, which has a median

value of R2
T (x) = 0.9990. Even in this case, however, the

associated step and frequency responses are very similar
to the true ones.

As pointed out previously, one advantage of the RIV ap-
proach to estimation is that it is straightforward to gen-
erate the recursive estimates, if these are required. Fig-
ure 2 shows the recursive estimates for each of the param-

eters â1(k) and b̂2(k), as obtained from the final iteration
(see Section 5) of four random realizations (represented,
respectively, by full, dashed, dash-dot and dotted black
lines), using a longer data set of 3000 samples. The grey
regions in Figure 2 indicate the changing estimated 95%
confidence bounds for the estimates shown by the black
line and reveal that the estimate of a1 is much better de-
fined than b2. The recursive estimates provide the user
with an excellent visualization of the uncertainty in the
parameters, considerable enhancing the standard error
estimates that are returned at the end of the data set
after en bloc estimation. Taking the uncertainty bounds
in Figure 2 into account, at least 1000 samples are re-
quired to obtain reasonable estimates of the b2 param-
eter. In other words, although the model is identifiable,
the recursive estimates show that estimation, particu-
larly of the transfer function numerator parameters, is
made difficult because of the highly oscillatory noise ef-
fects; and they suggest that, if the numerical values of
the parameters are important for the application being
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Parameter â1 â2 â3 â4 b̂0 b̂1 b̂2 b̂3 Failures

True Values -1.5 0.7 0.3 -0.2 1.0 0.5 -2 1

RIVD mean -1.504 0.704 0.299 -0.201 1.002 0.488 -1.992 0.999 0

SD 0.034 0.062 0.063 0.035 0.032 0.079 0.084 0.035

PEM Mean -1.503 0.704 0.298 -0.200 1.001 0.489 -1.992 0.998 9

SD 0.034 0.062 0.064 0.035 0.032 0.080 0.084 0.035

RIVD with GN ‘trimming’ mean -1.504 0.704 0.299 -0.201 1.002 0.488 -1.992 0.999 0

SD 0.034 0.062 0.064 0.035 0.032 0.079 0.084 0.035

Table 1

MCS estimation results obtained by the RIVD, PEM and RIVD with additional GN ‘trimming’ (based on 200 realizations;
‘mean’ and ‘SD’ denote the mean values and standard deviation of these MCS realizations)
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Fig. 2. Four realizations of the RIVD recursive estimates of
the a1 and b2 parameters, shown as full, dashed, dash-dot
and dotted black lines, with the grey regions showing the
95% confidence bounds for the full line estimates.

considered, then it would be desirable to base single re-
alization estimation (often the practical situation) on at
least 2000 samples in order to ensure well converged es-
timates. In all of the cases shown in Figure 2, however,
R2
T (x) > 0.999 after 1000 samples, so the models would

be appropriate for applications such as forecasting. Note
that recursive estimates are even more useful in cases
where the model is poorly identifiable, for example be-
cause of over-parameterization: here, the recursive esti-
mates do not show any clear convergence, whatever the
sample size, but tend to wander about because of the
ill-defined minimum in the cost function hypersurface.
Example 7.4 of [48] shows typical results in this regard.

Finally, although this is a discrete-time model, it is in-
teresting to note that the RIVC algorithm is able to pro-
duce a reasonable explanation of the data: e.g. in a typ-
ical single run, the best identified model has a structure
pentad [4 4 0 2 2] and the time delay is accommodated by
a small non-minimum phase effect. This yields a model
with a coefficient of determination, based on the noise

free output, of R2
T (x) = 0.994.

6.2 Simulation Example 2: Continuous-Time Model

This is a modified version of a difficult benchmark ex-
ample prepared for the IFAC SYSID’06 Symposium in
Newcastle, NSW, Australia, in which the simple white
additive noise of the original is replaced by ARMA noise,
making it still more difficult. The example is the follow-
ing fourth order system with widely separated modal
frequencies and an ARMA(2,1) noise model:

x(k) =
−120s2 − 1560s+ 3600

s4 + 30.2s3 + 3607s2 + 750s+ 3600
u(k)

+
1 + 0.5z−1

1− 1.4z−1 + 0.7z−2
e(k);

e(k) = N (0, 0.0025)

(57)

The input signal is a maximal length pseudo-random bi-
nary sequence (±1.0); and the complete data set con-
sists of 6138 input-output samples with a sampling in-
terval of ∆t = 0.005 time units (i.e. total time 30.69 time
units). The noise level at the output is high: in relation
to the noise-free output, the noise-signal-ratio is 0.64 by
variance or 0.8 by standard deviation (equivalent to a
SNR=1.94 dB).

The [4 3 0 2 1] model structure is correctly identified and
RIVC estimation is evaluated by MCS analysis in a sim-
ilar manner to the previous discrete-time example. In all
realizations, the RIVC algorithm was initiated with the
SVF breakpoint frequency λ = 0.1, although the same
results were obtained for λ between 0.00001 and 0.5. The
results are shown in Table 2. Also shown are the results
obtained using the tfest routine, recently introduced into
the MatlabTM SID Toolbox, which is initiated with a SID
implementation of SRIVC. Here, the mean estimates are
very similar to the RIVC algorithm estimates but the
standard deviations are marginally larger and there was
one failure (the estimates are far removed from their true
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Parameter â1 â2 â3 â4 b̂0 b̂1 b̂2 ĉ1 ĉ2 d̂1 Failures

True Values 30.2 3607 750 3600 -120 -1560 3600 -1.4 0.70 0.50

RIVC mean 30.2 3646 763 3641 -121 -1591 3646 -1.399 0.70 0.50 0

SD 6.55 281 68.6 282 18.5 145 288 0.010 0.010 0.013

TFEST Mean 30.3 3674 770 3668 -122.2 -1609 3671 - - - 1

SD 6.95 299 72.8 300 19.6 153 309

Table 2

MCS estimation results obtained by the RIVC and TFEST algorithms for the model (57) (based on 100 realizations; ‘mean’
and ‘SD’ denote the mean values and standard deviation of these MCS realizations)

values). Noise model estimates are not given by tfest 4 .

The RIVC estimated model from the closest realization
to the median of the R2

T (x) distribution from the MCS
analysis has the following parameter estimates, with the
estimated standard errors shown in parentheses:

â1 = 28.46(6.04) â2 = 3501(237)

â3 = 724(57.7) â4 = 3525(241)

b̂0 = −116(17.8) b̂1 = −1618(138)

b̂2 = 3364(241) ĉ1 = −1.401(0.010)

ĉ2 = 0.704(0.010) d̂1 = 0.512(0.012)

σ̂2 = 0.0025

(58)

where R2
T (x) = 0.999.

−80

−60

−40

−20

0

20

M
ag

ni
tu

de
 (d

B)

10−2 10−1 100 101 102 103
0

90

180

270

360

Ph
as

e 
(d

eg
)

 

 

Bode Diagram

Frequency  (rad/s)

True
Median realization
Worst realization

Fig. 3. Comparison of true and RIVC estimated Bode dia-
grams

The estimated standard errors are of the same order as
the standard deviations in Table 2. Figure 3 shows that
the Bode plots of the RIVC estimated model (dash-dot)
are hardly distinguishable from those of the true model

4 tfest is associated with the idtf routine, whose instructions
state that ‘unlike idss and idpoly, idtf uses a trivial noise
model and does not parameterize the noise’.

(full line). The initial SRIVC estimated model produced
very similar Bode plots. The estimates obtained for the
worst realization in terms of R2

T (x) are:

â1 = 29.1(7.58) â2 = 4246(332)

â3 = 974(86.3) â4 = 4238(336)

b̂0 = −109.1(20.3) b̂1 = −1969(188)

b̂2 = 4328(353) ĉ1 = −1.393(0.010)

ĉ2 = 0.693(0.010) d̂1 = 0.518(0.012);

σ̂2 = 0.0025

(59)

where R2
T (x) = 0.996. Once again, the same estimates

were obtained for all initiations with λ ranging between
0.00001 and 0.5. The Bode plots in this case are shown
as dashed lines in Figure 3.

If the Matlab c2d routine is applied to the continuous-
time model (57) it yields complex roots in the denomi-
nator polynomial at 0.9995± 0.00497j. These roots are
very close to the unit circle because the sampling rate
is very fast in this example and this leads to both the
RIVD and PEM algorithms failing to converge to satis-
factory discrete-time models. In control system terms, it
would be advantageous at this fast sampling rate to use
the associated δ operator model [28,50] obtained using
either conversion from the continuous-time to the delta
operator model, or direct estimation of this model using
RIVδ. The latter yields the model:

y(k) =
−115.5δ2 − 1546δ + 3526

δ4 + 47.6δ3 + 3608δ2 + 792δ + 3611
u(k)

+ ξ(k)
(60)

which explains the noise-free output well with R2
T =

0.998, marginally lower than the continuous-time model
(58).

7 Conclusions

This paper has presented the Refined Instrumental
Variable (RIV) approach to the estimation of a unified
transfer function model of the Box-Jenkins type that
subsumes transfer functions in the backward shift, δ
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and derivative operators as special cases. It has shown
how this RIV algorithm is formulated and developed
within the context of maximum likelihood optimization
and that the optimization strategy is based on itera-
tive solution of pseudo linear regression equations. It
has also shown that this strategy can be considered in
an entirely equivalent Gauss-Newton (GN) updating
form that overtly minimizes the sum-of-squares of the
stochastic model prediction errors. We see, therefore,
that in maximum likelihood estimation of Box-Jenkins
transfer function models, the RIV-type algorithm is
an effective alternative to prediction error minimiza-
tion using gradient-based numerical optimization. As
pointed out in Section 5, it can be used also, in a simply
constrained form, for the identification and estimation
of ARMAX and other transfer function model forms
[17,18]. A RIV algorithm for full, multivariable TF
model estimation has been developed and evaluated [16]
but it is complex to implement and use, so the amalga-
mation of separately estimated multiple input models is
recommended, even though this is not strictly optimal
in statistical terms.

The GN formulation of the RIV optimization in equa-
tion (49) has its attractions, particularly from a theoreti-
cal standpoint where it demonstrates that the algorithm
will converge to a local minimum of the ML cost func-
tion, requiring only an easily specified initial estimate of
the transfer function denominator polynomial. In more
practical terms, however, its full implementation (see e.g
[26]) removes the algorithm’s ability to easily generate
recursive estimates and can have other disadvantages
[49]. GN updates could be used to ‘trim’ the RIV esti-
mates subsequent to convergence of the standard RIV
iterations, but simulation and practical examples sug-
gest that this rarely makes any noticeable difference to
the estimates, although it may be worthwhile introduc-
ing it as a user option for the standard RIV algorithms.

The option to generate recursive estimates of the model
parameters is an important advantage of standard RIV
algorithmic family. Indeed, as far as the author is aware,
this RIV approach is the only, fully unified method of
transfer function model identification and estimation
that exploits a virtually identical algorithm for both
discrete and continuous-time transfer function models
while, at the same time, allowing for inherent recursive
estimation in which the recursive estimates are identi-
cal to those obtained by stage-wise en-bloc estimation.
It is also distinguished by its optimality in both max-
imum likelihood and instrumental variable terms, with
the instrumental nature of the algorithmic implementa-
tion providing robustness to violation of the statistical
assumptions associated with the noise model, as well as
an assurance of consistent parameter estimates even if
the additive noise does not have rational spectral den-
sity.

The paper has not described various additional RIV al-

gorithms that have been developed and are available in
the CAPTAIN and CONTSID Toolboxes. These include
multiple input models with either a common denomina-
tor in all constituent transfer functions or different de-
nominators [15,9], where the former is a trivial extension
of the single input case described in the present paper;
models within a feedback system [47,11]; Linear Parame-
ter Varying (LPV) models [21]; State Dependent Param-
eter (SDP) nonlinear models [54]; and frequency-domain
formulations [13]. Except for the latter approach, these
are described in [48], and the prior references therein.
This latter reference also discusses real-time recursive
estimation of time variable and state-dependent param-
eters which are, of course, most appropriate extensions
to constant parameter RIV estimation because of its in-
herent recursive estimation facility.
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[3] K. J. Åström. Maximum likelihood and prediction error
methods. Automatica, 16:551–574, 1980.
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