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CKAPTtJl I 

INmODUCTXON 

This study examines the effect of price and income on the 

pattern of food consumption in Indonesia. There is a general belief 

that a large proportion of the population in Indonesia is suffering 

f rom malnut r i t ion . In a compara t i ve study, Knudsen and 

Scandi2zo(1982) argue that 40 percent of the populat ion in 

Indonesia have calor ie consumpt ion levels wel l below the 

recommendations of the Food and Agriculture Organization (FAO) and 

the World Health Organization (WHO) of the United Nations. A similar 

study by Chernichovsky and Meesook(1983) strongly suggests that 

there are widespread deficiencies of all nutrients in Indonesia. On 

the other hand, as pointed out by KIumper(1985), the present food 

supply in Indonesia exceeds the minimum requirements by more than 

20 percent. Therefore, it appears that the problem is more likely one 

of the maldistribution than of an overall shortfall in the availability 

of foods. Obviously, there is scope for government intervention in 

the form of food and nutrition policies. To evaluate the social 

welfare effects of public policies such as tax reforms or subsidy 

programs on food items, it is important to determine how a 
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consumer will be affected by changes in relative prices and income. 

Since all welfare measures presume a knowledge of consumer 

demand functions, the first step is to correctly specify and 

estimate a system of commodity demands. Subsequently, attention 

should be given to the estimation of price and income elasticities. 

This is, in fact, the major underlying reason motivating this study. 

Applied researchers have been attempting to explain consumer 

behaviour for a long time. A consumer in this context is defined to 

be either an individual or a group with a common purpose (e.g. a 

family). Commodities are assumed to be non-negative, finite and 

perfectly divisible. They include all possible goods and services in 

the consumer choice set. Barten(1968) and Yoshihara(1969) suggest 

that demand studies of this kind may be classified into two broad 

categories. One is concerned with specifying a demand equation 

explaining the quantity consumed for a single commodity. The other 

addresses the problem of reallocating total expenditure to an 

exhaustive set of different commodities. In this study we shall 

adopt the second approach, the empirical analysis of a complete 

demand system. 

Demand analysis has a well establ ished theoretical and 

empirical literature. Brown and Deaton(1972) presented an early 

survey of the topic. Elementary but comprehensive texts about the 
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theory and its application have been written by Phlips(1974) and 

Powell(1974). A masterpiece in the literature has been provided by 

Theil(1975 &1976), and a concise review of complete demand theory 

can be found in Barten(1977). Deaton and Muellbauer(1980a) also 

presented a general text on consumer behaviour. Another 

examination of the consumer theory was given by Barten and 

Bohm(1982). Two modern contributions to the empirical aspects of 

demand analysis have been writ ten by Deaton(1986a) and 

Bewley(1986). A new text on applied demand analysis written by 

Theil and Clements(1987) is due to be published soon. 

Generally, there are at least two basic, distinct, but related 

questions, of interest. First, given various market parameters such 

as prices and income, what commodities and in what quantities will 

the consumer purchase? Secondly, how are these decisions affected 

by changes in the parameters? To answer these questions, it is 

essential to specify and estimate a demand model. To estimate price 

elasticities, time series data are usually used. But few developing 

countries such as Indonesia possess long enough runs of comparable 

data to permit sensible estimation. However, many developing 

countries possess good household survey data (cross-sectional) on 

demand pattern. In this study, a cross-sectional approach is used to 

examine food consumption behaviour in Indonesia, a developing 
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country in the Asian Pacific region. The cross-sectional data 

referred to are a collection of household budgets giving all 

expenditures on consumer goods and services made by individual 

fami l ies over a specif ic short period of t ime. Using the 

cross-sectional approach has some advantages. For example, in 

empirical demand analysis, one should be conscious of the implicit 

assumption that the utility function remains unchanged over the 

observation period. While this restriction is unacceptable over time, 

it is not an unreasonable assumption for a cross-sectional study. 

Hence we assume we can ignore changing preferences. 

When estimating a system of demand functions, it is not 

unusual to reject the restrictions of demand theory; examples 

include Barten(1969), Byron(1970), Deaton(1972), Christensen, 

Jorgensen and Lau(1975), Deaton and Muellbauer(1980b). In this 

study, we find that demand conditions are significantly rejected. 

Instead of assuming, over-optimistically, the acceptance of the 

underlying demand theory (Phlips[1974]), or on the contrary, strictly 

rejecting its validity (Christensen, Jorgensen & Lau[1975]), we 

would question the reasons why the conditions are rejected. In 

particular, is the model suffering from any statistical weaknesses 

which affect inference results? We adopt an unusual practice in 
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demand analysis, that is, we apply rigorously a series of diagnostic 

checking and correcting procedures to the maintained demand model. 

Surprisingly, to the author's knowledge, this kind of exercise has 

never been applied to empirical demand analysis and in fact, is 

found to be extremely important and useful. As a result of using 

these procedures we find that the test statistics are greatly 

improved. However, all the demand restrictions are still rejected. 

Another possible reason for rejection is small sample bias in 

the asymptotic test statistics. Therefore, size correcting methods 

are also considered. In addition, a new "distribution free" approach 

is examined to determine the validity of asymptotic tests in finite 

samples. As a result, the asymptotic test statistics are found to be 

justif iable in this particular finite sample. Further, a Monte-Carlo 

experiment is used to examine the impact of non-normality on 

hypothesis testing, it shows that its effects on inference are not as 

serious as one might expect. 

Although all the results are negative, we are not able to 

conclude that the theory is invalid. As argued by Simons and 

Weiserbs(1979) and Mattei{1986), the demand models may not be 

adequately specified and therefore we need a more realistic model 

before we can make a firm conclusion. Possible areas for 

improvement in model specification are also outlined in this study. 
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Due to the limited time and space of this thesis, we are unable to 

deal with those suggestions empirically. But at least we would like 

to point out the direction for future studies and investigation in 

similiar area. 

The structure of this study is as follows. In Chapter II, we 

review some aspects of basic demand theory. Phlips(1974) argues 

that since prices should be constant for a short time span in a 

cross-sectional survey, all restrictions (i.e. homogeneity, symmetry 

and negativity of the own substitution effect) of demand theory in 

terms of price derivatives disappear, the only restriction remaining 

being the adding-up condition. However, this need not be the case in 

practice because geographical and regional variations in prices still 

exist within the sample. As pointed out by Deaton(1986b), because 

of high transport costs, there is substantial spatial variation in 

prices especial ly in many developing countr ies. If dif ferent 

households in the budget study face different prices then estimating 

a complete demand system using budget data is not much different 

from using time series (Pollak and Wales[1978]). Hence, all demand 

restrictions will be considered. One should note that in a study 

confined to the demand for food there is an implicit assumption of a 

weakly separable utility function between dif ferent group of 

commodities. This condition will also be discussed in the chapter. 
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The data is described in Chapter ill. They are found originally in 

the Indonesia household survey records, the SUSENAS tapes. 

As pointed out by Brown and Deaton(1972), the choice of the 

demand model itself has important implications as strong apriori 

notions are built into the analysis by the choice of model and these 

wil l interact with the data to yield results which, to some extent, 

wil l be af fected by the model chosen. Also, as i l lustrated by 

Park(1969), the parameters and estimated elasticit ies can be very 

sensi t ive to the model specif ied. Hence, in Chapter IV, we will 

discuss, estimate and evaluate the performance of several demand 

models to determine the maintained model. Based on the empirical 

results, we examine the usual elasticity est imates and test the 

validity of the underlying demand theory. 

In Chapter V, an unusual exercise in diagnostic checking of the 

maintained model is presented. As will be argued, it is dangerous to 

accept a model without subjecting it to proper diagnostic testing. 

Surpr is ingly, this kind of exercise has never been appl ied to 

empirical demand analysis. 

Apar t f rom the s tandard parametr ic techn iques , a new 

"distr ibution free" approach on testing demand restrictions will be 

discussed in Chapter VI. This type of non-parametric technique is 

becoming more popular in appl ied studies, especial ly when the 

7 [ Chapter 1 ; 



i^v'-i.-r p^fMetric • ;afrd: A 

• 

% ^ 

iQ^^Kism;:' 



CHAPTtJl XX 

B ^ S X C D E n ^ D m E O R y 

The origin of dernand theory lies in the development of two 

basic concepts: utility and optimisation of consumption. Utility 

refers to the satisfaction associated with consumption. As pointed 

out by Katzner(1970), it was Edgeworth(1881) who expressed 

utility as a general function of all commodities. The concept of 

demand goes back at least to King(1696), who computed a demand 

schedule for wheat and derived the famous "King's Law" which is an 

inverse stat ist ical relat ionship between price and quant i ty. 

Walras(1874) was the first to succeed in bridging the gap between 

utility and demand. From utility maximization, he derived demand as 

a function of all prices and initial endowments. Marshall(1890), 

with the assumption that all other commodity prices held constant, 

derived demand functions depended only on the prices of the 

commodity in question and income. He also demonstrated that such 

hypotheses imply demand curves are downward sloping. Then it was 

Slutsky(1915) who finalized the theory and transformed "Classical" 

demand theory into what it is today. The practical difficulty of this 

Classical demand approach is to specify explicit ly a given 
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individual's utility function. In this chapter, the theory of utility 

and the complete demand system approach will be reviewed briefly. 

We will examine some general and specific restrictions on demand 

functions. In addition, another important aspect in modelling demand 

functions, the flexible functional form approach, will also be 

discussed. 

2.1 The Ut i l i ty Funct ion 

Assume that for each consumer there exists a continuous 

utility function, p., for a finite number of commodities, n. 

}i = f(q^, qg, .... qj, .... q^) (2.1) 

where qj is the quantities consumed of commodity i. Thus, }i is a 

numerical representation of a preference ordering. 

While the term commodities should be characterized by strictly 

non-negative numbers and should be perfectly divisible, the 

specif ication of preferences is assumed to be comparable, 

t rans i t i ve , con t inuous , mono ton ic , s t r ic t ly convex and 

differentiable. In other words, the consumer is able to judge 

whether a commodity (or commodity bundles) is (are) preferred. His 

preferences are assumed to be rational and consistent. He always 

prefers more to less (i.e. non-satiable). Also, if two commodity 
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bundles are indifferent, then a linear combination of the two 

bundles is always preferred to either one of the single bundle. 

From these, the utility function j i is assumed to be : 

1) a continuous function of the quantities consumed. In a 

commodity set Q where QQ is any commodity or bundle, 

the set of bundles not preferred to qQ and the set of 

bundles to which qg is not preferred are both closed in Q, 

for any qQ. 

2) a strictly increasing function of the quantities consumed 

3) a strictly quasi-concave function. That is 

j i (a*q-,+(1-a)*qo) > .u(qo) 

where j i ( q Q ) = ^ ( q ^ ) and 0 < a < 1 

4) a twice differentable function where the first order 

partial derivative, 3 | i /3qj , is called the marginal utility 

of good i. Because of the assumed monotonicity, marginal 

utility is always positive. Also, from Young's Theorem, 

the matrix of the second order derivatives, the 

Hessian, is symmetric, i.e. 

5^ ] i /3a jaq j = a^} i /9qj3qj 

In addition, the Hessian is non-singular and negative 
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definite because the utility function is (strictly) quasi-

concave. 

5) a function defined up to a monotonic increasing 

transformation. This means that it is always defined to 

be ordinal. 

As pointed out by Deaton{1986a), it is common in empirical 

work, to assume that the utility function is strictly Quasi-concave 

so that for 0 < a < 1, the equality in statement (3) above is strict. 

But it is restrictive in a sense that strictly quasi-concavity rules 

out the possibility of perfect substitutes. 

2.2 The Compiete Demand Svstem Approach 

The complete systems approach to demand analysis constitutes 

a joint analysis of the expenditure or consumption volume of those 

commodities which make up total private consumption. On the basis 

of a system of demand functions, mostly developed from Classical 

demand theory, demand is explained by income and price changes. 

The main advantage of the complete systems approach compared to 

an analysis of each single commodity is the increased efficiency of 

the estimation. The aggregation, homogeneity and symmetry 

constraints of Classical demand analysis add degrees of freedom to 
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the analysis. When est imating a complete demand system, joint 

t rea tment of all commodi t ies also makes it possible to take 

advantage of the correlat ion between commodi t ies. This will be 

examined in more detail in Chapter 4. 

Let 

qj = f(p^,p2. ..., Pj, ..., Pp, y) (2.2) 

where qj = quantities consumed for the i'th commodity 

pj = quantity price per unit of the i'th good 

y = income or total expenditure 

by definition 

y = ^ iP i ^ i (2.3) 

Since consumers are price-takers, they are unable to influence 

prices. Therefore prices are assumed to be exogenous. Also, income 

y is f ixed. The definit ion in (2.3) makes (2.2) a complete set of 

demand functions. 

Appl ied consumpt ion analysis is mainly concerned with the 

estimation of the parameters of one or all equations in (2.2). For a 

long time, researchers have been attempting to specify and estimate 

such demand systems. Examples of this activity are, the Linear 

Expenditure System within the utility framework proposed by Klein 

and Rubin(1947) and implemented by Stone(1954), the Translog 

1 3 [ Chapter 2 ] 



System by Christensen, Jorgensen and Lau(1975), and the Almost 

Ideal Demand System by Deaton and Muellbauer(1980b). 

There are some basic assumptions used in complete demand 

analysis. First, income is measured by summing the expenditure for 

an exhaustive set of different commodities and we are discussing 

models concerning with the allocation of total expenditure to that 

particular set of commodities. This implies that the utility of the 

services yielded by saving and those yielded by current consumption 

are separable. Hence saving need not be considered. 

The second assumption relates to the problem of identification. 

The supply functions are supposed to contain determinants which 

are absent from equation (2.2). It is implicitly assumed that at 

given fixed existing prices, consumers can buy what they can afford 

and the demand equations are then written with quantity dependent 

on prices and income. Otherwise, the function estimated may be a 

supply curve or a mixture of demand and supply. 

Thirdly, it is generally assumed that the commodities are 

weakly separable. It is this condition that justifies the commodity, 

hence, makes demand studies empir ical ly operat ional. This 

assumption will be discussed in further detail in section 2.4 of this 

chapter. 

Also equation (2.3) provides a budget constraint on equation 
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(2.2). Further restrictions from the consumer demand theory are 

assumed so as to arrive at results which can be given a theoretical 

interpretation, and to reduce the dimensionality of the estimation 

problem. The more restrictive are the conditions, the greater the 

chances are that the model will be rejected by the data and the 

greater is the confidence we may attach to our estimates if they 

nevertheless turn out to be valid. 

2.3 General Restrictions on Demand Functions 

2.3.1 Homogeneity Condition 

Every demand equation must be homogeneous of degree zero in 

income and prices. That is, if all prices and income are multiplied by 

a positive constant k, real income and relative prices would not 

change and the quantity demanded remains unchanged. 

Suppose q = f(y, p) and 

q* = f(yk, pk), 

then q is homogeneous of degree r in y and p if 

q* = k"" f(y, p) = k^ q 

In this case r = 0. 

In applied work, only those mathematical functions which have 

this property can be considered as demand functions. 
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The homogeneity condition is based on the assumption that the 

individual consumer makes his decision irrespective of the 

monetary unit of account. It implicitly means that q in equation 

(2.2) does not contain pure monetary goods. The use of this condition 

has the consequence of eliminating the effect of inflation. That is, 

consumer demand is assumed insensitive to inflationary movements. 

The absence of money illusion is an attractive property for demand 

functions but it may nevertheless be untrue. 

To make the condition operational, apply Euler's Theorem that, 

if a function, z = f(q,y) is homogenous of degree r, then 

q(az/aq) + y(3z/ay) = rz 

Applying this theorem to demand equation qj = f(p-| ,p2 ... p^, y) 

gives, in general 

I jPjCaqj/apj) + y(aqj/ay) = 0 (2.4) 

Dividing all elements in (2.4) by qj, we obtain, 

S j [ (p j /q j ) (3q i /app ] = -(y/qi)Oqi/ay) 

That is, the sum of all direct and cross elasticities with respect to 

prices of any commodity i has to be equal to the minus of its income 

elasticity. The relationship can be denoted as 

I j ejj = - Ej (2.5) 

It is worth emphasizing that the demand equations will 
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automatically satisfy the homogeneity restriction (as well as the 

other general restrictions) when the demand system is obtained by 

constra ined maximizat ion of an algebraical ly specif ied utility 

funct ion. 

2.3.2 Adding-up Condition 

The budget constraint in (2.3) has to be satisfied over the 

observed or predicted range of variation of prices and income. 

Therefore, the demand equations have to be such that the sum of the 

estimated or predicted expenditure on the different commodities 

equals total expenditure in any period, i.e. equation (2.3) must hold. 

Differentiating the budget constraint with respect to y, we get 

l i P j O q / a y ) = I i (3(P|qj) /ay) = 1 (2.6) 

where 3(pjqj)/3y is called the marginal propensity to consume good 

i, or its marginal budget share. According to equation (2.6), the 

marginal propensities to consume must sum to one. In other words, 

an increase in total expenditure must be entirely allocated to the 

different commodities. Note that the adding-up condition will be 

automatical ly satisf ied if the demand system is derived by 

constrained maximization of a specific utility function. 

2.3.3 Symmetry Condition 
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The basic idea is that the price derivatives of a demand 

equation can be decomposed, as developed by Slutsky(1915), into an 

income effect and substitution effect. In mathematical form, the 

total effect of price change is, 

a q / a p j = ( dq /dppy . + [ - (aqi /3y)(dy/dpj ) ] 

where (dqj/dpj)y. , known as the income compensated substitution 

effect, is the response of qj to a compensated price change, 

evaluated at y' = y + dy. However, the compensation is such that 

dy /dp j = qj. Therefore, denoting the substitution effect as Ky, the 

equation can be written as, 

a q / a p j = Kjj + [ - qj(aqi/ay) ] (2.7) 

i.e. Total effect = Substitution effect + Income effect 

Equation (2.7) is known as the "Slutsky Equation". 

The symmetry condit ion is the restriction related to the 

substitution effect of price changes, Ky. If the consumer is to 

behave consistently the income compensated substitution effect on 

the number of units bought of good i in response to a change in the 

price per unit of good j must be the same as the substitution effect 

on good j of the same change in the price per unit of good i, no 

matter how the units are defined. That is 
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Kjj = Kji 

It should be noted that the sign of the cross substitution effect 

K jj is not determined. Following a standard defini t ion by 

H icks(1 936) , Ky is positive if i and j are substitutes and is 

negative if they are complementary. If i and j are independent of 

each other Ky is zero. 

On the other hand, there is no general restriction on the sign of 

the income derivative 3 q j / 3 y . It is negative if i is an inferior good 

and positive if it is not. Notice that the income derivative and the 

income effect always have the opposite signs. 

2.3.4 Neaativitv 

This condit ion implies that the substitution matrix K is 

negative semi-definite, i.e. the diagonal elements must be negative 

K i i < 0 

The proof is based on the fact that the utility function is 

quasi-concave and continuous. Hence the matrix K is symmetric and 

negative semi-definite. The condition directly implies an increase 

in price with utility held constant must cause demand for that good 

to fall. This is the famous 'Law of Demand' which states that the 
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own price compensated elasticities of demand are negative, or that 

compensated demand curves can never slope upwards. Even Kjj is 

always negative we still cannot determine the sign of the total 

effect on price change in (2.7) because the income effect may be 

positive, which happens only if the income elasticity is negative 

(i.e. the commodity i is an inferior good). Thus a positive price 

derivative (uncompensated) can only occur if the good is highly 

inferior and if it is purchased in large quantities. It means that its 

positive income effect is greater than the negative substitution 

effect in absolute term. Such a good is known as a "Giffen good" and 

indeed is extremely rare. Note that while all Giffen goods must be 

inferior, the converse is not true. 

To summarize the four basic general properties of demand 

functions: they add up, they are homogenous of degree zero in prices 

and total expenditure, and their compensated price responses are 

symmetric and form a negative semi-definite matrix. While the 

adding-up and homogeneity conditions are consequences of the 

specif ication of a linear budget constraint, the symmetry and 

negativity conditions are derived from the existence of consistent 

preferences and the fact that utility is maximized. Violation of the 

symmetry and negativity conditions means that consumers are 
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i rrat ional as they made inconsistent cl ioices and they failed to 

maximize their utility (or minimize their costs). 

2.4 Some Speci f ic Rest r ic t ions 

2.4.1 Separabi l i ty. Uti l i tv-tree Approach 

The concept of separabil i ty arises from the independent work 

of Leont ie f (1947) and of Sono(1961) . The usefu lness of this 

condit ion is to partit ion the consumption set into subsets which 

w o u l d inc lude commod i t i es that are c loser subs t i tu tes or 

complements to each other. Commodities may be grouped in such a 

way that goods which interact closely in the yielding of utility are 

grouped together while goods which are in different groups interact 

only in a general way. For example, different types of food may go 

into one group while other types (e.g. related to entertainment) go 

into another. It is expected that if there exists a relationship 

between one type of food and one type of entertainment, then that 

relat ionship will be much the same for all pairs of commodit ies 

chosen from the two groups. 

That is, 

j i = f(q-,, q2, q3, Qs) 

may be expressed as 
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= F(A, B) 

where A = f3(q^,q2) 

This implies that a grouping of the variables should not modify 

.11, since if this is not the case, the utility function, is not 

separable. 

There are two definitions of the separable utility function, 

proposed by Strot2(1959). They are summarised below. 

2.4.1.a Weak Separability (Leontief.1947) 

Let the n commodities be partitioned into m mutually exclusive 

and exhaustive branches or groups and let there be n̂  (r=1,...,m) 

commodities in each group such that n = I^n^ 

The utility function, |i, in (2.1) is weakly separable if it can be 

expressed as 

ji = f(q-| ̂  n1 >̂ 21 '•••'^2n2'---'^r1 '•••'^rnr'-"'^m1 '•••'̂ mnm)> 

or .u = F[f^(q^),f2(q2).-,Mqr)'- '^m(qm) ] (2.8) 

where each f̂  is a branch utility function or specific satisfaction 

function of group r, and each q̂  is a function of q̂ ^ ,qr2,•••.qrnr• 
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Maximizat ion of the overal l i i implies maximizat ion of the 

branch utility functions, fj(qj), where i=1,..., m. Hence, it implies the 

existence of subgroup demands, i.e. 

qi = Q\{y\< Pj) j = 1. 2, ..., nr 

where yj is the expenditure spent on group i. 

The necessary and sufficient condit ion for a function to be 

weakly separable is that the marginal rate of substitution between 

any two variables belonging to the same group be independent of the 

value of any variable in any other group. That is, 

8 [ (3 | i / aq r j ) / (a } i /3q r j ) ] / aqsk = 0 

where q^j, q^j refer to commodity i and j of the same group, R, and 

qg[^ refers to commodity k in group S where S ^ R 

2.4.1.b Strong Separabil ity 

A utility funct ion, in (2.1) is strongly separable (block 

independent) in the branches if it can be written as (2.8) such that 

the marginal rate of substitution between any two goods belonging 

to two different groups is independent of the consumption of any 

good in any third group. That is, 

[ O n / 3 q r i ) / 0 | i / a q s k ) ] / ^ ^ t l = ^ 
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where refers to commodity I of group T, and q^j and Qg,̂  refer to 

commodity i and k of group R and S respectively and R ^ S T. As a 

resul t , the marginal uti l i ty of a commodi ty in one group is 

independent of the consumption of any good in any other group. 

If there are only two branches, weak and strong separability 

are identical. If this is not the case, the weak and strong conditions 

d i f f e r . 

Assuming no homogenei ty , a uti l i ty funct ion with strong 

separabil i ty may be transformed into an additive function which is 

wri t ten as 

)i = f^ (q^) + f2(q2) + ... + fm(qm) 

and is referred as an additive separable utility function. 

Although additivity in each individual commodity is known to 

have unacceptable empir ical implications, it is less str ingent to 

assume that a util ity funct ion is addit ive in branch uti l i t ies 

(addi t ively separable) than in the uti l i t ies of each and every 

commodi ty (Strotz[1959]). 

Separabil i ty is important to the hypothesis of the utility tree 

as the demand for a commodity in a branch can be expressed as a 

function of the prices in and the budget allotment to that branch. 

That is, 
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qr i = y) = ^riiPr Vr) 

where p is the vector of all prices, 

y is total income or expenditure, 

Pp is the vector of commodity prices in group r, and 

y^ is the budget allotment to group r. 

It is not the case that the quantities demanded in one branch 

are independent of the prices of commodities in other branches or of 

total expenditure. More accurately, total income and the prices of 

goods in the branch only transmit their effect on the budget 

allotment to that branch. Therefore, when the budget allotment to 

the branch is known, the prices of goods outside the branch can be 

ignored as their impacts felt through the income effects. 

Another implication of (weak) separability is its consistency 

with the two-stage maximizat ion procedure d iscussed by 

Strotz(1957). The (weakly) separable utility function appears, in the 

terminology of Strotz, as a utility tree with branches corresponding 

to f^, •••' ^m- Households are assumed to proceed in two steps. 

The first is an optimal income allocation process among broad 

commodity groups. The second step is to decide the optimal spending 

of each budget allotments in the branch. Weak separability is both 

necessary and sufficient for the second stage of this two-stage 
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budgeting process. 

Under sepa rab i l i t y , the p rob lem of a g g r e g a t i o n over 

commodi t ies finds a natural solution. It justi f ies the application of 

commodit ies grouping in empirical analysis. 

Separabil i ty assumptions have been used frequently, but their 

usefulness depends on the ability to classify goods into groups for 

which the separabi l i ty assumption may be considered empirically 

va l id . 

Gorman{1959) argues that, in order to make the budgeting 

process justif iable, it is necessary to go further and assume that a 

utility function falls into two parts, the first of which is additively 

separable, while the second is a function of homogeneous (of degree 

one) specif ic satisfaction functions. If a utility function is said to 

be weakly separable, the marginal rates of substitution between any 

two i tems in the same group must be independent of the 

consumption of goods in the other group. Additivity merely extends 

this postulate to i tems from a pair of di f ferent groups. If the 

speci f ic sat is fact ion funct ions have to be homogeneous, it is 

inappropr ia te to group luxur ies, near- luxur ies and necessi t ies 

together . 
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2.4.2 Aggreaation Problem 

There are two types of aggregation problem. One is aggregation 

of demand function over individual demands and the other is 

aggregation over commodities. Both are examined below. 

2.4.2.a Aggregation Over Individuals 

The theoretical basis of systems of demand functions is based 

on the theory of optimization behaviour for individual agents. But 

the statistical data used for empirical applications usually refer to 

markets in which several individuals operate (e.g. the household 

budget survey) or the demand for consumer goods in a whole 

economy (e.g. in time series study). A question of concern is to what 

extent micro theory can be considered relevant for the description 

of aggregate demand behaviour. Aggregation over individuals clearly 

creates some problems, as is demonstrated below. 

Let the subscript h(1... H) refer to individual behaviour, the 

absence of the subscript indicating the corresponding average. 

By definition 

q = (1/H)* Sh^h (2.9) 

y = (1/H)* I h / h = ( 1 / H ) * I h a i P i q i h ) = SiPiqi 

Micro theory is relevant for the individual demand system 
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^h = fh (P l - P2' •••• Pn- Vh) (2.10) 

While in empirical work, one is interested in the aggregated system 

of the economy as a whole, which is 

q = f(Pl, P2. Pn. y) (2.11) 

Substituting (2.10) into (2.9), we have 

q = ( 1 / H ) * I h f h ( P i , P 2 , Pn.yh) (2.12) 

Equations (2.12) and (2.11) are only equivalent under restrictive 

assumptions that the variations in y^ and across individuals 

are the same. If this is the case, then the averaged consuming unit 

can be regarded as a representative household. Assume that the 

representat ive household al located its expenditure so as to 

maximize welfare. As a consequence, the representative household 

behaves in the same way as an individual maximizing a utility 

funct ion. 

Another so called the convergence approach to the aggregation 

of linear equations is examined by Theil(1975). Suppose an 

individual h has a behavioural equation of the form 

Vh = «h + Ph^h + ®h h = 1,..., H 

To derive a linear equation in per capita variables, 

i.e. 7 = ( 1 / H ) S h y h x = (1 /H) IhXh 
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we have the following, 

y = a + (1/H) Z^^p^Xh + (1/H) Sf^e^ 

y = a + ( I h P h X h / I h X h ) ^ + (^/H) Se^ 

where a = (1/H) S ^ a ^ 

By treating the H individuals as independent random drawings 

from a population, the associated distribution of p's is then the 

theoret ica l counterpar t of a discrete cumulated distr ibut ion 

function (by pre-arranging p's according to increasing magnitude). If 

the mean and the standard deviation of this theoretical distribution 

are respect ively (3 and CT^, and by assuming that the x's are 

non-stochast ic and Pj and pj are independent if i j, the slope 

coefficient of x is then a random variable with expectation 

P ^ h ^ h / V h = P 

and variance 

( ( T p 2 /H ) * { 1 + [ ( 1 / H ) I h ( X h - x ) 2 ] / x 2 } 

The variance of the slope coefficient converges to zero as H tends to 

in f in i ty . It fo l lows f rom Chebyshev 's inequal i ty ' ' that the 

coefficient of x converges in probability to its expectation p. All 
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these cond i t ions imply that for H suff ic iently large, the linear 

equation in per capita variable can be simplified to 

y = a + (1/H) I^e^ 

A l though the result is extremely attractive because of its 

s impl ic i ty , the approach suf fers from some l imitat ions which 

should be kept in mind. As pointed out by Theil(1975), the approach 

bas i ca l l y d epend s on the c ruc ia l a s sumpt ion that there is 

i ndependence of the factors determining the behav iour of the 

individuals (the values taken by the micro variables) and the way in 

which they react to these factors (the micro parameters). 

2.4.2.b Aggreaation Over Commodit ies 

One of the justifications for this type of aggregation is due to 

the Composi te Commodity Theorem which asserts that if a group of 

prices move in parallel, the corresponding group of commodities can 

be treated as a single good. Deaton and Muellbauer(1980a, Chapter 

5.1) prove that if 

Pi = k p f , Pj = kpj* (2.13) 

where pj*. Pj* are base period prices for good i and j, and 

k is a fixed ratio which varies with time but is common to 

both prices, then 
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Pi/Pj = Pi /Pj • 

Provided that (2.13) holds, Pj and Pj can be treated as composite 

commodi ty prices and the new preferences will lead to the same 

choices as the original ones. 

The usefulness of this theorem is that if relative prices are 

stable and largely independent of the pattern of demand, then 

commodity groups should be chosen so that close substitutes are 

grouped together. Barten and Turnovsky(1966) demonstrate that for 

composi tes of any number of elementary commodit ies, all macro 

parameters are sums of the corresponding micro parameters only if 

there is no specific interaction between elementary commodit ies of 

di f ferent composi te exists. 

The other justif ication for commodit ies aggregation is due to 

the hypothesis of separable preference (preference independence) 

analysed above, if that condit ion holds, the commodit ies can be 

part i t ioned into groups so that preferences within groups can be 

described independently of the quantities in other groups. 

It may be important to note that the empirical significance of 

possible distortion caused by aggregation errors is largely unknown. 

2 .5 Flexible Functional Forms 
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The advantage of using a flexible form is its capability of 

providing a (local) second-order approximation to any unknown 

arbitrary utility function. The basic idea (Deaton[1986]) is that the 

choice of functional form should be such as to allow at least one 

free parameter for the measurement of each effect of interest. For 

example, the basic linear regression model with intercept is a 

flexible functional form. Even if the true data generation process is 

not linear, the linear model without parameter restrictions can 

offer a first-order Taylor approximation around at least one point. 

Flexible functional forms can be constructed by approximating 

preferences or demands. By Shephard's Lemma, an order of 

approximation in prices or quantities, but not in utility, is lost by 

passing from preferences to demands, so that in order to guarantee 

a first-order linear approximation in the demands, second-order 

approximation must exist in preferences. Beyond that, one can 

choose to approximate the direct utility function, the indirect 

utility function or the cost function. 

The definit ion of second-order approximation is given by 

* 

Barne t t (1983) . In mathemat ics , V is a second-order local 

approximation to V at the point VQ if 

[V*(v) - V(v)] / ||V-VQ '2 
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tends to 0 as V tends to VQ where |1 . |I designates the Euclidian norm. 

Barnet t (1983) demonst ra te that the two def ini t ions of 

s e c o n d - o r d e r a p p r o x i m a t i o n in economics p roposed by 

Diewer t (1971) , Chr is tensen, Jorgensen and Lau(1973) and 

Chr is tensen(1975) are equivalent to the usual mathematical 

definition. These are now considered. 

2.5.1 Definition orooosed bv Diewert(1971) 
* 

Define V to be a second order approximation to V at VQ if 

(1) V*(vo) = V(vo) 

(2) 9v*/av |V=VQ = av/av |V=VQ 

(3) A2V* /3v3v ' | V = V 0 = a^V/avSv' | V = V Q 

* 

If V possesses these capabilit ies at VQ for any V, then 

* 

Diewert(1971) calls V a (locally) flexible form. This is regarded as 

the standard definition. 

2.5.2 Definition oroposed bv Christensen. Jorgensen and Laud9731 

and Christensenfl975) 

This refers to the existence of some neighbourhood J of VQ and 

some constant k such that 
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V (v)-V(v)| < k | |V-VQ | |2 / | |VO|P for all V belongs to J. 

The use of flexible functional forms might be rationalized as a 

convenient method for summarizing market behaviour. But they do 

not necessarily provide a good approximation over a range of 

observations, as measured by their ability to satisfy the regularity 

condit ions required for utility maximization. Wales(1977) argues 

that the extent to which the flexible form will satisfy the desired 

regularity conditions depends on the parameters of the true utility 

function, the particular choice of functional form, and on variation 

in the determin ing var iables. For example, the Translog 

approximations are generally better the smaller the variation in the 

independent variables. This suggests that the use of flexible forms 

with aggregated time series data may be more appropriate than is 

the case with cross-sectional data. 

Apart from the common Taylor's series approximation, there is 

another method, which is known as the general class of Fourier 

series approximations suggested by Gallant(1981). He argues that 

Taylor's theorem only applies locally, and that the theorem fails as 

a means of understanding the statistical behaviour of parameter 

estimates and test statistics. Consequently, tests of hypotheses 

based on Taylor approximation propert ies may be seriously 

34 [Chapter 2 ] 



misleading. The reason (White[1980b]) is that when parameters are 

est imated by least squares methods the OLS est imates do not 

necessari ly provide reliable information about the local properties 

(der iva t i ves , e last ic i t ies) of unknown funct ions. Besides, the 

inexactness of the Taylor approximation interpretation is evidenced 

by a lack of agreement about the point of expansion. Usually, the 

approx imat ion is cons idered to be taken at the mean of the 

explanatory variables. Gallant(1981) explains this failure as being a 

consequence of the fact that statistical regression methods expand 

the true funct ion in a general Fourier series, (not in a Taylor's 

series). The former attempts to minimize the average prediction 

bias arbitrarily by increasing the number of terms in the expansion. 

Although this form seems to be essentially unbiased, as argued by 

Gal lant(1981), its highly non-linear and complex structure imposes 

a heavy computa t iona l burden. It is worth comment ing that 

W h i t e ( 1 9 8 0 ) and Ga l l an t (1981 ) d id ove rs ta te the i r case. 

White's(1980) numerical example, which Gallant(1981) uses as his 

numerical just i f ication, was incorrect. Byron and Bera[1983] show 

that, when ari thmetic errors are corrected. White's approximation 

is actually quite good. 

Despite the possible disadvantage of the Taylor expansion, it is 

the most commonly used method in demand theory. The best known 
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of these approx imat ions is the Trans log model , which is a 

second-order approximat ion to a utility funct ion. Another f lexible 

form, the Almost Ideal Demand System (AIDS model), which is 

simil iar to the Translog model, is the second-order approximation 

to a cost function. Although the Translog considerably predates the 

AIDS model, the latter is a good deal simplier to estimate. Both 

Trans log and AIDS models yield demand funct ions which are 

f i rst-order f lexible. Another interesting property for the models is 

the capabil i ty of testing the validity of demand conditions described 

above. This will be discussed in more detail in Chapter 4. 
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footnotes 

1. Chebyshev's inequality: 

Let X be a (scalar) random variable with mean u. and variance p 
a^ and let k > 0 be a real number. Then 

Pr { I X - I > k } < a^ / k^ 

The proof of this proposition can be found from Dhrymes(1978). 
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CKAPTBJl 111 

mt DATA SET 

The original data file is from SUSENAS tapes which records a 

large-scale nation wide cross-sectional family budget survey in 

Indonesia for the year 1981. A brief description of the data tapes 

can be found in Byron(1983). 

There are 18 types of information stored in the tapes, of which 

record type 10 and type 21 are the most relevant to our analysis. 

Record type 10 is "Household Identifier". It gives social and 

demographic information about the household, such as urban/rural 

area, province, Kabupaten (a large municipal unit), number of 

household members, and household income. Record type 21 is "Food 

Purchase and Consumption", and records each individual household's 

expenditure on every food item and the value of home produced food 

for own private consumption, during the week prior to the survey. 

For a detailed breakdown of the two information types, refer to 

Appendix 1. 

It is useful to have a general understanding of Indonesia before 

beginning our investigation. An overview of relevant aspects is 

presented in section 3.1. A second section describes the data. 
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3-1 I n d o n e s i a , a Genera l D e s c r i p t i o n 

Indonesia can be regarded as "a developing country and is 

located in the Southern Asia region on the equator. It is a tropical 

is land country and with a populat ion of 151 million people (in 

1981)' ' and an average annual population growth rate of about 2.2%. 
The country consists of 6 main groups of islands, they are: 

Sumatra, Java, Nusa Tenggara, Kalimantan, Sulawesi, and Maluku and 

Irian Jaya (they are referred as islands for simplicity). Each island 

composes several provinces, of which in total there are 27 

provinces. Appendix 2 shows the detail break down of provinces in 

each island and a general map of Indonesia is presented in Appendix 

3. Each province is sub-divided into Kabupatens (equivalent to a 

large municipal unit), of which there are a total of 246 Kabupatens 

in the country. Each of these can be separated into urban and rural 
regions. In 1978, there were about 27,777,000 households living in 

Indonesia, of which 17% were in the urban regions and 83% were in 

rural regions. The SUSENAS sample also provide a representative 

g e o g r a p h i c a l d i s t r i bu t i on of the popu la t i on in Indones ia 

(Chernichovsky and Meesook[1983]). 

Table 3.1 gives the percentage of area and population density of 

Indonesia, by island, in 1980. Kalimantan is the largest island in 
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Indonesia, but it has the second lowest percentage of population. On 

the other hand, whiie Java is the second smallest major island, it is 

the most populated area, being occupied by 62% of the total 

population. Consequently Java has the highest population density in 

Indonesia, while Maluku and Irian Jaya the lowest. 

Table 3.2 gives the percentage of land area which was utilized 

for residential purpose in 1980. It shows that, on average, only 

about 3.5% of the total land area in Indonesia was in residential 

usage, and Java alone had the largest percentage of almost 13% 

compared to its area. 

Religion is an important influence in Indonesia. Since 87% of 

the total population in Indonesia are Islamic, most Indonesians do 

not drink alcohol. 

Also relevant to consumption patterns is racial make-up. The 

country is dominated by two groups, the Malay (Asian origin) and the 

Native (Non-Asian origin). The majority of the Asians live in the 

western part of Indonesia while the Non-Asian group are mainly in 

the eastern and southern islands. General ly speaking, the Asian 

people have higher income than the Non-Asians. Further, their diets 

are different. For example, rice is the major food crop for the Malay 

while tubers are the main crop for the Native. In fact, this may be 

due to their differences in customs, habits and income level. 
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3.2 The Data 

The raw information on food expenditure is classified into 188 

different food items in the SUSENAS survey (refer to Byron[1983]). 

in order to facilitate the discussion, it is necessary to aggregate 

those commodity items into a smaller and more manageable size, 

say in this case, 17 mutually exclusive and exhaustive food groups 

(with altogether 156 different sub-items). This categorization is 

based on the assumption that the utility function is additive 

separable (the rationale for which is considered below). Twelve 

"sub-totals" and twenty "other" items were excluded, the latter 

because there is no quantity information was provided. They account 

for only about 6 per cent of the total consumer expenditure on food. 

For a detail description of this reclassification, see Appendix 4. 

Since the SUSENAS survey only records the quantity of and 

expenditure on each item (note that it is the usual practice in 

budget surveying), individual prices are calculated by dividing 

expenditure over quantity consumed, which means that derived 

prices differ between consumers. Prices are zero if no expenditures 
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are reported for those items. Also, when aggregat ing 156 

commodit ies into 17 groups, group prices are constructed using 

value weights, pjqj, as follows, 

P = 1 = 1 2 17 ^ ' ' ) I ' 

where P| is the weighted group price for group I, and 

pj is the price of the i'th item in group I, and 

Qj is the quantity consumed on commodity i in group I. 

In calculating the index number, as a basic rule, quantity 

weights are used to weigh together average prices (of goods of the 

same kind) whereas value weights relating to the reference base 

period are used to weigh together price relatives or index number 

(from different kinds of goods)^. For the same reason, since the 

sub-items in a group are not necessarily of the same kind, the 

quantit ies are not directly comparable. Using quantity weights 

seems implausible and inappropriate, therefore the value weights 

have been preferred when measuring group prices. 

Note that it is quite common for an agricultural household to 

have a combine production and consumption decision. As pointed out 

by Strauss(1984), households may produce commodities solely or 
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partly for their own consumption and sell the surplus. Therefore the 

"quant i ty consumed" and "quantity purchased" differ. For our 

purposes, we record quantities expenditure, the amount and value of 

the househo ld 's own product ion cont r ibut ing to its total 

consumpt ion. Hence, the household's production for its own 

consumption is added to the amount of quantity and value purchased. 

In order to reduce the complexity of the data, only part of the 

household information is selected. The variables are region (urban or 

rural), subround (quarter), province, Kabupaten, total number of 

household members, total number of adult household members, 

household income and expenses. Every household record contains the 

household information listed above and 17 commodity group prices 

and quantities consumed during the survey week. The SUSENAS tapes 

recorded about 59,000 different households^. Zero group prices are 

possible as households need not consume each and every food group 

during the survey week. 

Obviously, the sample size at this stage is far from manageable 

in part because individual household expenditure information is 

highly disaggregated. To reduce the dimension of the data matrix and 

deal with the problem of zero expenditures on individual items in 

the recording period, we aggregate individual households according 

to Kabupaten (village) and region (urban/rural), henceforth, referred 
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as " location". All the household information, such as number of 

members, number of adult members, income, expenses, commodity 

group prices and quanti t ies consumed, are aggregated without 

regard to their subround. While households' commodity group prices 

are averaged by the number of non-zero prices so as to generate 

representab le group prices for each locat ion, all the other 

aggregated figures are normalized by the number of households in 

that locat ion . Af ter aggregat ion the sample conta ins 424 

observat ions and every observat ion can be regarded as a 

representative household of the corresponding location. Although the 

aggregation will average out some of the variation between the 

households within the same location, it should still reflect the 

genera l character is t ics of individual household 's consumpt ion 

behaviour. 

The notion of a representative consumer has to be stressed 

again. As emphasized by Hicks(1956): 

"The statist ical information on consumers' behaviour, 

which is available to us, always relates to the behaviour 

of groups of individuals - such, for instance, as the 

consumers of a particular commodity in a particular 

region. It is always material of this chapter which we 

have to test: and indeed it is material of this kind which 
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we want to test, for the preference hypothesis only 

acquires a prime facie plausibility when it is applied to 

a statistical average. To assume that the representative 

consumer acts like an ideal consumer is a hypothesis 

worth testing; to assume that an actual person, the Mr. 

Brown or Mr. Jones who lives round the corner, does in 

fact act in such a way does not deserve a moments' 

considerat ion." 

This argument is theoret ical ly hard to just i fy (Deaton and 

Muel lbauer[1980a]) . However, when considering the practical 

difficulty in empirical analysis, we may have to live with this 

weakness even it is theoretically vulnerable. 

Another question is the treatment of zero prices. Even though 

prices are averaged, some zero group prices still exist. The data 

reveal that some of the commodity groups, for example chicken and 

alcohol are not consumed in some locations during the survey week. 

To eliminate those zero prices, they are replaced by the closest 

non-zero substitute. Following the geographical hierarchy, the 

replacement value of each zero locational price is searched level by 

level, beginning from the regional (urban/rural) price of the 

corresponding Kabupaten. If that is zero then the average mean price 

of that Kabupaten is used. If that is zero again the mean price of the 
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corresponding province is used. The justification for grouping the 

Items into 17 commodity groups is now considered. 

While rice and grain are the most important food crops in most 

Asian countries, tubers are the second most fundamental crop type. 

Tubers are normally inferior to rice and grain in the sense that they 

are a secondary kind of crop and consumers apparently prefer rice 

and grain. It is important to examine the actual relationship 

between these two types of food. 

Clearly, it is an advantage to possess a rich natural resource in 

marine products. Fish naturally is one of the most common 

foodstuffs in an island country such as Indonesia. Further, having 

dried fish is a common practice in most developing countries simply 

because of the ease of storage. 

In Indonesia, rearing poultry, especially chicken, for private 

consumption is not uncommon. It is logical and acceptable to 

separate chicken from the meat group even though it is almost a 

standard practice to group them together in food analysis. The same 

argument is also applied to the separation between eggs and milk, 

and vegetables and legumes. Besides, the consumption of milk by 

Asians is generally less than that of Westerners (an outcome that is 

probably due to differences in custom and culture). Hence combining 

milk with eggs would bias the estimates as they are dissimilar 
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goods. 

In a t ropical country like Indonesia, there is a favourable 

cl imate for the production and consumption of fruit. It is expected 

that f ru i t is one of the basic foods in dai ly consumpt ion . 

Condiments, cooking oil, addit ives and prepared food each occupy 

only a minor portion of the total expenditure, but they are regarded 

as basic ingredients for daily cooking and diet. 

As ment ioned earlier, most of the population in Indonesia is 

Islamic (about 87 percent in 1980). Given their religion, most of the 

people do not drink alcohol. Hence it is wise not to put alcohol and 

tobacco in one group even though this is a common practice in 

demand analysis. 

The desc r i p t i ve s ta t i s t i cs of each commod i t y g roup 's 

expenditure are presented in Table 3.3. Note that rice occupies the 

largest share in total expenditure on food, accounting for almost 

28%. Surprisingly, tobacco is the second largest with a share of 

16%. This is fo l lowed by addit ives, vegetables, f ish, etc. As 

expected, alcohol has the smallest share among all the food groups. 

A lso , for re fe rence purpose , the desc r ip t i ve s ta t is t i cs of 

commodit ies' prices and quantity consumed are given in Table 3.4 

and Table 3.5 respectively. 

47 [ Chapter 3 



Tootnotzs 

1. All stat ist ical f igures in this section are sourced from " The 
Statistical Pocketbook of Indonesia, 1983 ". 

2. Sourced from the Austral ian Bureau of Statist ics' publication, 
M Guide to CP I \ 1981. 

3. After delet ing the mistaken records, there are about 55744 
households remained. I have to thank Dr. R.P. Byron for providing 
the original data tapes. 
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Table 3.1 
Percentaae of Area and Pooulatinn npn<;ih/ nf inHnnoda iQpn 

Percentage Percentage (per km^) 

Island 
{km^) of Total of Total Population 

Island Area Are^ Poou ation Density 

Sumatra 473,606 24.67 19.00 59 
Java 132,187 6.89 61.88 690 
Nusa Tenggara 88,488 4.61 5.76 96 
Kalimantan 539,460 28.11 4.56 12 
Sulawesi 189,216 9.85 7.05 55 
Maluku & Irian Jaya 496,486 25.87 1.75 5 

Indonesia 1,919,443 100 100 100 

source : "The Statistical Pocketbook of Indonesia, 1983" 

Table 3.2 
Land Utilization for Residential Usage, bv Island. 1980 

(measured in hectare, 1 hectare = .01 km^) 

Percentage 
Household of Total Total 

Island Compounqi Land Land Area 

Sumatra 1,668,698 3.6 45,851,234 
Java 1,553,665 12.8 12,173,465 
Nusa Tenggara 125,919 1.9 6,579,269 
Kalimantan 627,146 1.3 46,696,556 
Sulawesi 567,592 3.03 18,723,862 
Makulu & Irian Jaya n.a. n.a. n.a. 

Indonesia 4,543,020 3.5 130,024,000 

* Timor Timur is not included 
source: "The Statistical Pocketbook of Indonesia, 1983" 
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Table 3.3 
Descriotive Statistics of Commoditv Exoenditures 

Mean Standard Minimum Maximum Budget 
No. Grogp Exoenditure Deviation Exoenditure Exoenditure Share % 

1 Rice 2801.4 779.73 921.06 7000.4 27.825 
2 Tuber 177.26 201.43 0.0000 2003.9 1.7606 
3 Fish 839.23 721.02 0.0000 3493.7 8.3356 
4 Dri. Fish 542.11 379.15 11.405 1987.6 5.3845 
5 Meat 285.64 324.00 0.0000 2709.1 2.8371 
6 Chicken 145.65 141.30 0.0000 1234.0 1.4467 
7 Eggs 179.11 127.79 0.0000 674.37 1.7790 
8 Milk 93.421 112.93 0.0000 804.45 0.9279 
9 Vegi. 849.55 437.62 102.92 3078.8 8.4381 
10 Legumes 279.15 195.75 0.0000 824.52 2.7725 
11 Fruit 368.65 209.84 16.119 1456.8 3.6616 
12 Condi. 300.60 135.43 78.989 116.82 2.9857 
13 Cook. Oil 341.61 146.42 0.0000 1102.2 3.3930 
14 Additive 1004.0 416.14 234.11 2753.8 9.9722 
15 Pre. Food 232.25 574.60 0.0000 5769.6 2.3068 
16 Alcohol 8.4115 29.619 0.0000 334.96 0.0836 
17 Tobacco 1620.4 891.85 31.983 5184.9 16.095 

Total Exp. 10068. 3542.0 3319.5 21992. 100.00 
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Table 3.4 
DescriPtivfi Statistic;^ nf Commoditifi.g Prirp^ 

Mean Standard Minimum Maximum 
No. Group Price Deviation Price Price 

1 Rice 2.2987 .31857 1.3357 3.3941 
2 Tuber 1.2850 .67259 .25750 4.4231 
3 Fish 6.8520 1.9980 2.3506 13.429 
4 Dried Fish 2.0428 1.1848 .63090 8.0772 
5 Meat 19.505 5.8234 5.0000 40.320 
6 Chicken 14.956 4.2184 3.8333 31.667 
7 Eggs .75584 .18120 .43570 1.4825 
8 Milk 12.692 2.8909 2.5000 24.356 
9 Vegetable 1.3277 .39329 .65450 2.6918 
10 Legumes 4.1704 1.1450 1.7441 9.4000 
11 Fruit 2.0034 .63003 .53940 4.2454 
12 Condiment .72362 .19480 .21710 1.5995 
13 Cook oil 5.6648 .69154 3.6681 7.7348 
14 Additive 1.1248 .30363 .61080 3.4030 
15 Pre. Food .91374 .35628 .14410 4.4650 
16 Alcohol 7.8805 2.4928 1.8055 27.091 
17 Tobacco 1.0612 .44533 .24120 2.3308 
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Table 3.5 
Descriptive Statistics of Quantity Cnn.< îimed for ^anh r.ommoditv Grnun 

Mean Standard Minimum Maximum 
No. Group Quantity Deviation Quantity Quantity 

1 Rice 1219.6 301.56 415.92 2767.6 
2 Tuber 182.19 236.20 .00000 1576.9 
3 Fish 131.03 127.68 .00000 1044.1 
4 Dried Fish 273.58 163.98 5.6818 879.67 
5 Meat 16.424 24.271 .00000 265.53 
6 Chicken 9.6125 8.6520 .00000 56.250 
7 Eggs 236.94 164.73 .00000 914.87 
8 Milk 7.1063 8.2471 .00000 68.571 
9 Vegetable 635.53 249.68 88.362 1859.6 
10 Legumes 75.038 59.922 .00000 247.30 
11 Fruit 188.86 111.90 13.073 1199.0 
12 Condiment 427.22 183.76 124.78 1310.1 
13 Cook oil 60.947 26.679 .00000 195.91 
14 Additive 927.15 380.31 71.142 2313.7 
15 Pre. Food 305.73 838.52 .00000 9383.4 
16 Alcohol 1.1110 3.9040 .00000 51.754 
17 Tobacco 1834.3 1208.0 15.125 6120.0 
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CHAPJtti IV 

nODZL ESTXn^TlON AJSD EVALUATION 

Demand analys is is an intensively studied area in the 

economics literature, and there are many demand models developed 

and proposed by applied researchers. However not all of them are 

useful for this study. For example, the Translog and Rotterdam 

models are not suitable for the analysis, and reasons will be 

discussed later in this chapter. Three basic demand models are 

invest igated. They are the Linear Expendi ture System, the 

Double-Log System, and the Almost Ideal Demand System. 

Estimation methods such as the Maximum Likelihood or the 

Zel lner(1962) variant of General ized Least Squares (Seemingly 

Unrelated Regression) are the most widely used estimators in 

demand analysis. Such simultaneous estimation approaches require 

the existence of a non-singular covar iance matrix est imator. 

However as explained by Barten(1977), the budget constraint in 

equation (2.3) implies a linear dependence of the joint distribution 

of the disturbances if y and p are exogenous. Consequently, in 

theory, the covariance matrix is singular. This problem is usually 

solved by deleting an equation from the system. One can delete any 
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of the n relations from equation (2.2) without losing information on 

the demand behaviour for the good. As well, the estimates are 

invariant to the particular equation which is selected for omission. 

Barten(1964) has shown that the resultant estimates from the Full 

Information Maximum Likel ihood procedure are invariant with 

respect to the equation deleted"". However, the requirement that the 

estimated covariance matrix of the reduced system is non-singular 

implies that the number of observations be at least as large as the 

number of equations in the system, thus setting a natural upper 

limit to the degree of commodity disaggregation. 

Di f ferences in model speci f icat ion, est imat ion method, 

definition of commodities and data compilation may help to explain 

the sometimes conflicting results. A general finding is that the 

parameters and estimated elasticities are very sensitive to and 

highly dependent on the model specified. Park(1969) estimated 

several different demand systems using the same data and found 

that the elasticities varied substantially with the model estimated. 

Kiefer and Mackinnon(1976) suggest such a difference may have two 

explanations. One is the structuralist reason that the demand 

systems which have been estimated simply do not describe the data 

adequately, either because the functional forms are too restrictive, 

or because aggregation across individuals, simultaneity with the 
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supply side of the economy, durable goods and other complications 

have been ignored. The other explanation is stochastic; that the 

functional forms are in fact good enough to characterize the true 

model but the modest number of observations and fairly small 

relative price variation in the data series cause the estimates to be 

imprecise. They experimented with the Linear Expenditure System 

and Translog model using a simulation study with the same data (40 

observations) and found that if the true system is not known, 

estimates are likely to be biased and unreliable. Their findings 

reinforced the structuralist explanation and suggested that demand 

systems such as the Linear Expenditure System or Translog models 

cannot be expected to perform well when the data were not 

generated by those models. 

Another general finding by Klevmarken(1981) is that in most 

studies models which do not imply an additive utility function show 

a closer fit to the data than those in which such a function is 

implied. Also, the constant elasticity of demand system or the 

double logarithmic model usually obtain a relatively good fit. 

Generally, the use of expenditure shares as the dependent variable is 

more stable than using expenditure, volume, or rate of change in 

volume. 

In compara t i ve studies by Brown and Deaton(1972) , 
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Deaton(1974) and Theil(1975), it is argued that variables on the left 

hand side of the competing models should be comparable. In the 

present study, this recommendation is not totally followed because 

of the structural difference in their functional forms. Instead each 

model is judged in its most commonly applied form, which implies 

that the stochastic structure may vary from one model to another. 

In this chapter several estimated models are reported and each 

of them is tested against the demand theory. The model which 

explains the data best will be chosen as the maintained model for 

further analysis. In order to validate the model, it is necessary to 

rely on some test stat ist ics which are appl icable to the 

mult ivariate situation. These hypothesis testing techniques are 

discussed below. 

4.1 Hypothesis Testing 

Engle(1984) argues that: 

" If the confrontation of economic theories 

with observable phenomena is the objective of 

empirical research, then hypothesis testing is 

the primary tool of analysis. " 

This view is the fundamental objective of most applied demand 

researchers. Undoubtedly it is also one of the main goals of this 
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paper, which is to test the validity of demand theory with reference 

to the data set described in the previous chapter. 

Since a demand equation system deriving from maximizing a 

specif ic util ity function subject to the budget constraint will 

automat ica l ly satisfy the basic demand condit ions such as 

adding-up, symmetry and homogeneity, it is therefore impossible to 

test these hypotheses with the well known Linear Expenditure 

System (LES model). But there are many other demand models which 

enable us to test the theory. Among them is the Almost Ideal 

Demand System (AIDS model). As well, the Double-Logarithmic 

Demand System (DLOG model) is another candidate. Each of these 

models will be discussed in more detail later in this chapter. 

The statistical tests commonly used in demand analysis are 

based on the Wald (W), Likelihood Ratio (LR) or Lagrange Multiplier 

(LM) principles. Since all of the three test statistics rely on 

Maximum Likelihood methods, only asymptotic properties can be 

expected for these tests. Note that Nonlinear Least Squares 

estimates are equal to Maximum Likelihood estimates if the error 

disturbances are normally distributed. 

4.1.1 The Wald. Likelihood Ratio and Lagrange Multiplier Tests 

The Wald test is based upon Wald's(1943) elegant analysis of 
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the general asymptot ic test ing problem. It is the asymptotic 

approximation to the familiar t and F tests. 

The Likelihood Ratio test is based upon the difference between 

the maximum of the l ikelihood under the null and under the 

al ternat ive hypotheses. Wilks(1938) was the first to derive its 

general l imiting distr ibution. 

The Lagrange Multiplier test is derived from the constrained 

maximization principle and is based upon the Lagrange Multipliers 

by Aitcheson and Silvey(1958) and Silvey(1959). It is identical to 

that based upon the score as originally proposed by Rao(1948). 

The three principles are based upon different statistics which 

measure the distance between the null and the alternative 

hypotheses. The Lagrange Multipl ier test starts at the null 

hypothesis and evaluates whether movement toward the alternative 

would be a significant improvement, while the Wald approach starts 

at the alternative and considers movement towards the null. The 

Likelihood Ratio method compares the two hypotheses directly on an 

equal basis. Engle(1984) provided a clear and detailed explanation 

and comparison of the three statistical tests in the context of 

univariate model. 

In the case of multivariate linear regression model, the three 

test statistics can be calculated as follows (Berndt and Savin 
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[1977]): 

LR = T * In [ |Q| / | a | ] 

W = T * a - S ) ] 

LM = T * tr [ Q - ^ ( Q - Q ) ] 

where Q and Q are the unrestr icted and restricted variance 

covariance matrix of the residuals. The random disturbance are 

assumed to be independently and, identically normally distributed 

with zero mean vector and unknown but positive definite covariance 

matrix Q. 

The three test statistics all have the same limiting 

distribution, and hence they employ the same asymptotic critical 

region. That is, they are all asymptot ical ly distr ibuted as 

Chi-square with k degrees of freedom, where k is the number of 

restrictions imposed. Under general conditions, it is proved that the 

proper t ies of the three test stat is t ics are asymptot ica l ly 

equivalent and are different only for finite samples (Engle[1984]). 

Also, on statistical grounds no one test procedure is uniformly most 

powerful against all alternatives. In fact, they all share the 

property of being asymptot ical ly locally most powerful and 

invar iant . 

There is a well known numerical inequality among the test 
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statist ics, which was originally established by Savin(1976) and 

Berndt and Savin(1977). The relationship is: 

W > LR > LM 

Generally, the inequality holds for single equations or systems of 

linear equations, but its validity for non-linear models has not yet 

been established and appears unlikely to hold. 

As illustrated by Berndt and Savin(1977) the Wald criterion has 

the largest size, followed by the Likelihood Ratio and Lagrange 

Multiplier criteria. The three criteria will have the same value only 

when the null hypothesis is exactly true in the sample. It implies 

that in practice there will always exist a level of significance for 

which these tests will yield conflicting inferences. However, when 

the null hypothesis is true, the dispersion between the test 

statistics will tend to decrease as the sample size increases. 

4.1.2 GJ. an analog of the LR Test 

Apart from the three common test statistics mentioned above. 

Gallant and Jorgenson(1979) have developed a test statistic, 

denoted as GJ, which is an analog of the likelihood ratio test in the 

case of a system of simultaneous and non-linear equations based on 

three stage least square estimators. The test statistic is also valid 

in the situation of non-linear SUR estimation. 
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The test statistic GJ is 

GJ = ( rs) - (rS) 

where T is the number of observations, 

S and S denote the unrestricted and restricted minimums of 

the objective function 3(9) respectively, 

in a non-linear SUR model 

Y = f{90) + e 

the objective function 3(9) is defined as 

3(9) = (1/T) * ( Y - f(9) )' ( a ® I ) ( Y - f(9) ) 

GJ is distributed asymptotically as Chi-square with (r-s) degrees of 

freedom under the null where r and s are the numbers of estimated 

parameters in the unrestricted and restricted models. 

As emphasized by Gallant and Jorgenson, the estimated 

covariance matrix Q must be fixed throughout when computing the 

/N 

test statistic, GJ. It means that Q of the unrestricted and 

restricted models are forced to be the same. The test statistic can 

be easily calculated using the econometric package 3AS/ETS, 

version 5. The estimated covariance matrix is stored from the first 

regression of the unrestricted model, then carried to the second 

regression of the restricted model and fixed during estimation. The 

test statistic GJ will be equal to the difference of the two T*S(9) 
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values generated from the estimations. 

The four test statistics, the Wald, the LR, the LM and the analog 

of the LR (GJ), are reported frequently in the chapter. Each 

estimated model is now examined. 

4 .2 The Naive 

According to basic demand theory, the quantity demanded for 

commodity i depends on its own price, other commodities' prices 

and consumers' income (or total expenditure). That is: 

qj = f(Pi , P2, ..., Pj Pn, y) (4.1) 

Deaton(1986) points out that even a linear function with an 

intercept is a flexible form and the linear model without parameter 

restrictions can offer a first-order Taylor approximation around at 

least one point. Expanding the function in (4.1) using a first-order 

Taylor series, gives 

qj = |3jo+ I j3q j /ap j (P j -P jo) + 5qi /3y(y-yo) + ©i 

where i,j = 1, 2..., n 

By setting pjg and YQ equal to zero, the expansion becomes a 

first-order MacLaurin series and we may estimate the simple linear 

model of the following format 
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qj = 3i0 + IjPjjPj + ttjy + ej (4.2) 

where i = 1, 2, .... n and n = 17 in this case. 

The technique used to estimate the model is the single equation 

Ordinary Least Squares (OLS) estimator. Consider a model: 

Yi = XiPi + Uj i = 1,2, ..., n 

where Yj is a vector of sample observations of the dependent 

variable with dimension (TM), 

Xj is a non-stochastic design matrix of all explanatory 

variables with dimension (T*Kj), and 

pj is a vector of unknown parameters with dimension (Kj*1) 

Uj is an unobservable random disturbance vector with 

dimension (T*1) and is approximated by the residuals 

component e, where 

®i = Yi - XiPi 

and assuming the residuals possess the properties that 

E(e) = 0, and E(ee') = 

There are n equations in the model. Thus, 

Y = XB + u 
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where the dimensions of Y, X, (3, and u are, respectively, (nT*1), 

(nT*K), (K*1), ( n n ) , with K = I j K j . In this case T=424, n=17 and 

K j = 1 9 ( 1 7 prices, income and a constant term) for all i. 

Assume that there is correlation between the error terms e in 

different equations. In time series studies, the correlation at a 

given point in time is known as contemporaneous correlation. There 

is no reason why this cannot be applied in a cross-sectional study 

with t referring to individuals. The assumption of contemporaneous 

disturbance correlation, but no correlation over time, implies that 

= ^ i j but = 0 if t^is. Alternatively, E(ej,ej) = ayl^ = 

(j) = Q®!^^ where Q is the variance-covariance matrix of residuals 

and is positive definite and non-singular. 

Applying the single equation OLS estimator, P Q L S 

commodity, 

P O L S = (X'X)-^XY 

yields the minimum variance, linear unbiased estimator for each 

separate equation. Efficiency is gained by jointly considering all the 

equations using the Generalized Least Squares (GLS) estimator, 

PQLS' 'S a wider class of linear unbiased estimators. GLS can 
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improve the estimation because it both allows for the correlation 

between ej and error vectors of the other equations and uses 

information on explanatory variables that are included in the system 

but excluded from a single equation. 

By definition the linear GLS estimator is 

PGLS = (X'(Q"^®I)X)-"'X'(Q-''®I)Y 

Since in most applications Q is unknown we can only apply the 

Estimated Generalized Least Squares (EGLS) estimator, P ^ g l S ' 

which replaces Q by Q where the estimator Q is based on LS 

/ N 

residual e,. It has elements given by 

ajj = T"'' ej'Sj i,j = 1, 2, n. 

The est imator P e G L S frequently referred to as 

Zellner(1962)'s Seemingly Unrelated Regression (SUR) estimator, 
/ N 

PSUR-

SUR will be more efficient than OLS provided that the 

correlation between the disturbances in different equations is not 

too low and the regression matrixes for different equations are 

suf f ic ient ly d i f ferent (Judge, Hill, Gr i f f i ths, Luthepohl and 
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Lee[1982]). But in this case, P j ^ s u R - t h e i'th vector component of 

P S U R is identical to P j ^ o L S ^ ^ ^ ^^ere is no gain in efficiency 

because Xi=X2=... =X^=XQ SO that: 

X = (lm®Xo). 

Hence, the SUR estimator becomes: 

P s u R = C ( I®Xq) ' (Q- ' '®I ) ( I®Xo) ]•"• * ( i®Xo) ' (a - ' '® i ) )Y 

= [ Q®{Xo'XQ)-'' ] * ( Q - ' ' ® X O ) Y 

= ( l®(Xo'Xo)-^Xo)Y 

= (X'X)-"'X'Y 

= POLS 

Therefore, in this case the SUR estimator, P s U R ' identical to the 

single equat ion OLS 

est imator, P q l S there is no gain 

e f f i c iency . 

The simple linear model was estimated with single equation 

OLS and the results of the estimated model are presented in Table 

4.1. The F statistics show that the explanatory variables are jointly 

signif icant in each equation but the R^ statistics vary from 0.14 

(prepared food) to 0.75 (tobacco). The estimated coefficients in the 66 [ Chapter 4 ] 
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table are the derivatives of quantity consumed with respect to 

prices and income. We may then calculate price and income 

e las t i c i t i es . 

Define ey as the price elasticity of the demand for commodity 

i with respect to the price of commodity j, so that: 

®ij = ( ) M Pj / qj ) 

Also let Ej as the income (total expenditure) elasticity of 

commodity i where: 

Ei = O q j / a y ) * ( y / q j ) 

Somet imes Ej > 1 and Ej < 1 are used to define luxuries and 

necessities, respectively. The justification will be discussed later 

when we look at the univariate Double-Logarithmic model. Also if Ej 

< 0, it means the purchase of the commodity declines absolutely (not 

just proportionally) as y increases. The commodity is referred to as 

an "Inferior Good". 

The cross and own price elasticities and income elasticities 

(calculated at means) for the simple linear model are presented in 

Table 4.2. We may calculate the Slutsky Substitution Coefficient Kjj 

between commodity i and j using the "Fundamental Equation" in 

(2.7), and we can also measure the income effect. Both results are 
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recorded in Table 4.3. 

From the tables, it is encouraging to find that all the own 

substi tut ion coeff ic ients are signif icantly negative; that is, the 

negativity condition is satisfied comfortably. On the contrary, most 

of the elasticity figures are not significantly different from zero. 

For example, only rice's own price elasticity (uncompensated) is 

significantly negative and inelastic meaning that it is a normal and 

necessity commodity. This hypothesis is further supported by its 

significantly positive income elasticity which is less than one in 

absolute term. All the other commodities' own price elasticities are 

insignificantly negative. Milk is found to be quite abnormal as its 

own price is (insignificantly) positive meaning it has an upward 

sloping demand curve. But it is not inferior (hence not a Giffen good 

neither) since its income elasticity is non-negative. Besides, its 

own substitution effect and income effect are respectively -0.05 

and -.011. The total price effect is therefore negative and 

contradictory to its positive own price elasticity. This unusual 

finding may be due to the simplicity of the model which cannot 

describe the data adequately. Another unusual finding is that the 

income elasticity for vegetables is significantly greater than one 

implying that it is a luxury good. With the exception of legumes, all 

goods have positive income elasticities indicating that they are 
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normal goods. Legumes are an inferior good and a necessity because 

the income elasticity is negative (but insignif icant) with an 

absolute value less than one. This is not too surprising as legumes 

are a basic kind of agricultural food crop in Indonesia. Once a family 

can afford better, it may change to other, higher quality, substitutes 

such as rice. As the total price effect of legumes is still negative, 

they are not "Giffen good". Also, fish, meat, chicken, milk, 

vegetables, prepared food, alcohol and tobacco are luxuries as their 

income elasticities are all greater than one (and insignificantly 

different from zero except for vegetables). 

From the 136 pairs of cross substitution coefficients, 81 have 

inconsistent signs, 38 are positive (substitutes) where 18 of them 

are statistically significant, and 17 are negative (complements) 

where 8 of them are significant. There are some expected results 

from the figures. For example, rice and tubers are significant 

substitutes, as are rice and legumes. But the relationship between 

tubers and legumes is inconclusive. On the other hand, fish and dried 

fish are also significant substitutes. Interestingly fish and eggs, 

and dried fish and eggs, are both substitutes (and statistically 

signif icant too) meaning that fish, dried fish and eggs are all 

substitutes for each other. This implies an interesting question : If 

good A and B are substitutes, and good B and C are also substitutes. 
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does it follow that A and C are also substitutes? While it seems 

logical to accept this hypothesis, theoretically it is not true. We 

cannot be conclus ive wi thout referr ing to the subst i tut ion 

c o e f f i c i e n t s . Empi r i ca l f i nd ings pos i t i ve ly re jec ted this 

relationship. For instance we found that all fish, dried fish and egg, 

and fish, dried fish and legumes are two groups of significant 

subs t i t u tes . But eggs and legumes are ( ins ign i f i cant ) 

complementaries. Further fish and legumes, and fish and prepared 

food are significant substitutes, but legumes and prepared foods are 

complements (statistically significant too). 

Apart from the simple linear model, we may modify model (4.2) 

by taking the natural logarithm on each variable and estimate the 

equations with an univariate double-logarithmic demand model 

given by: 

In qj = ajo + I j e y In pj + Ej In y + ej (4.3) 

i,j = 1, 2, ..., m 

where ejj is the cross-price elasticity of the j'th price on 

commodity i, Ej is the income elasticity of i, and ej is the error 

term (the term "In" is referred as the natural logarithm). 

The double-log demand model can be treated as a single 
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equation approach to modelling commodity demand individually. This 

method has the great advantage of flexibility and is the best way of 

modell ing the demand for an individual commodity in isolation. 

Martin and Porter(1985) applied the model to investigate the 

demand for meat in Australia. The model can be estimated by using 

the OLS procedure as explained above with the estimated results 

with reference to Indonesian data being presented in Table 4 . 4 . Own 

price elasticities are again negative except for milk. Though it is 

statistically insignificant, it supports the earlier finding that milk 

has an upward sloping demand curve in the range of the data. 

Legumes are inferior as their income elasticity is (insignificantly) 

negative (income effect therefore is positive) which also confirms 

the results from the simple linear model. 

The associated substitution matrix was calculated and is given 

in Table 4.5. Among 136 pairs of cross substitution coefficients, 76 

are inconsistent in sign, 40 are substitutes and 20 are complements. 

Surprisingly only 2 pairs of those consistent substitutes are 

statistically significant. They are rice and additive, and additive 

and condiment. Negativity was not satisfied because milk has a 

posit ive own substitut ion effect of 0.1028 but is statistically 

ins ign i f i can t . Whi le its income ef fect is -0 .015 (again 

insignificant), it is not inferior. This result is inconsistent with the 
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previous result from the simple linear model. Also, the combined 

own price effect is 0.0878 which is positive, meaning its demand 

curve is upward sloping in the range of the data. This confirms the 

observed positive own price elasticity referred to earlier in the 

simple linear model. 

If expressing (4.3) into budget share form, we have: 

in Wj = aj + (Ej-1)ln y + (ejj+1)ln Pj + I j ^ ^ j eĵ ^ in p,̂  

(4.4) 

We can see that the budget share of a good will increase (or 

decrease) with total expenditure y as Ej is greater than (or less 

than) unity. Therefore, if Ej > 1, it is defined to be luxury and is a 

necessity if Ej < 1. From Table 4.4, fish, meat, chicken, egg, milk, 

vegetables, fruit, prepared food and tobacco, are luxuries and 

signif icant which is also consistent with the finding from the 

simple linear model except that they are inconsistent before. 

For a single equation demand function, we can test the 

homogeneity condition equation by equation, but not across equation 

restrictions such as the symmetry or the adding-up condition. 

Homogeneity requires the i'th equation to satisfy the condition in 

(2.5). To test homogeneity on a single equation model, it is 

necessary to impose the restriction: 
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I jG j j H- Ej = 0 

on the univariate double-log model. The condition can be tested 

using standard F test statistics. The results are shown in Table 4.6. 

Only 3 of the 17 equations significantly rejected the condition. 

4 .3 The Linear Expenditure System 

Stone's (1954) Linear Expenditure System (LES model) is the 

system of demand equat ions der ived from the wel l known 

Stone-Geary (or Klein-Rubin) utility function, which is: 

ja = X j Pj log(qj-yj) (4.5) 

with the normalizing assumption that I j p j = 1. The function is 

directly additive in nature. 

Maximizing the utility function, )i, in (4.5) subject to the usual 

budget constraint, we can derive Stone's LES model in budget share 

fo rm, 

Wj = [PjYi + Pj (y - I j P j y p i / d j P j q j ) (4.6) 

where Wj = P jq /d iP jq i ) and i,j = 1, 2, ..., n. 

Stone's LES model is the first practical model to be based 

entirely upon the theory and it is the only type of the LES model 

global ly compat ib le with the maximizat ion of a classical utility 

funct ion. It automat ical ly satisf ies the constraints of classical 
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demand theory, i.e. homogeneity, adding-up, and symmetry. 

The parameter yj's are often interpreted as minimum required 

quantities, or subsistence quantities, so that (4.6) has a very simple 

interpretat ion. It is that the committed expenditures pjY,- are 

purchased first, leaving a residual "supernumerary expenditure", (y -

I jP jYj) , which is allocated between the goods in a fixed proportion 

Also, the ordinary (uncompensated) price elasticities evaluated 

at the mean can be calculated as follows : 

The own price elasticity ejj is given by: 

eii = [ (1- Pi)yi / qi ] -1 

while the cross price elasticity ejj is given by: 

®ij = - ( Pi y-j Pj) ' ( Pi ^ i ) 

Further, the income elasticity for commodity i is: 

Ei = ( I 3 i / P i ) M y / q i ) 

Obviously the ease of interpretation of the LES model makes it 

one of the most widely used demand models. There are, however, 

several problems with the model. 

The first is that it has too few parameters to give it a 

reasonable chance of f itt ing the data. As pointed out by 
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Deaton(1986) , the L E S model does little more than fitting a 

bivariate regression between purchases and total expenditure. 

The second problem is that the structure of the LES model does 

not al low complements or inferior goods. The non-satiety axiom of 

demand theory requires that: 

a|i/aqj > 0 

Applying this condition to the Stone-Geary utility function, we get: 

Pi(qrYi)-^ > 0 

The function is defined only if q,- > y-, therefore (qj-yj)"'' is positive. 

Hence, it requires that (3j > 0. The cost function of (4.6) is: 

C(}i,p) = IjPjYj + (4.7) 

which is concave provided both that all Pj's are non-negative and q 

is not less than IjPjy,- so that qj > yj for all i, hence (qj-yj) > 0. From 

the "Fundamenta l Equat ion of Va lue Theory" of Hicks(1946) in 

equation (2.7), the Slutsky substitution coefficient is: 

Kjj = Kjj = aqj/apj + qj (3qj/3y) 

Applying this to the LES model, 

K j j = f3i (qj-yj) / Pj 

As (qj-yj), f3j and pj are all positive, the substitution term Kjj is 

75 [ Chapter 4 ] 



posit ive unambiguously. For concavity no two goods may be 

complements, so all goods must be substitutes. Also, inferiority can 

only occur for goods with pj negative, but this violates the condition 

in the LES model and consequently rules out the existence of 

inferior goods. 

The third problem of the LES model is that it is derived from a 

utility function belonging to the directly additive class. It implies 

that the marginal utility of one commodity is independent of every 

other commodity, that there are no specific substitution effects^ 

and that the own price elasticity is approximately proportional to 

the income elasticity (Deaton[1974]). Houthakker(1960) has shown 

tha t under d i rec t ly add i t i ve p re fe rences , compensa ted 

cross-subst i tut ion effects are directly proport ional to income 

der ivat ives. 

All these disadvantages of Stone's LES model imply that the 

approach is very restrictive and, thus critical attention should be 

paid when applying the model. 

Although Stone's LES model involves non-linear estimation, it 

is not diff icult to implement. Broadly speaking, there are two 

standard est imating procedures we may use. Consider, for 

simplicity, a univariate non-linear model with additive error, 

y = f(x,(3) + e 

76 [Chapter 4; 



where |3 is the parameter vector, and e is the random errors which 

are independently and identically distributed with mean zero and 

finite but unknown variance CT^. 

If the errors are normally distributed, we may apply the 

Maximum Likelihood estimation technique. The estimates are chosen 

such that the logarithm of a specific distr ibution function is 

maximized (or minimized). The likelihood function is based on the 

joint probability density of the sample and thus requires an exact 

knowledge of its distribution. Therefore, e is usually assumed to be 

normally distributed with mean zero and finite variance a^ . 

But if the exact form of the error distribution is unknown and 

we are not willing to assume normality, Non-Linear Least Squares 

(NLLS) estimation is an appropriate method. The estimates are 

chosen such that the sum of square error function, S(|3), is 

minimized. 

We find that in a household budget data, the error distribution 

is highly non-normal. Therefore, normality is too strong apriori 

assumption to be made. Consequently, the least squares method is 

preferred. 

The asymptot ic properties of the NLLS estimator were 

r igorously examined by Jennrich(1969) and Malinvaud(1980). 

Jennrich(1969) proves that the NLLS estimator is asymptotically 
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numerically stable and strongly consistent (p converging to the true 

values, pQ, almost surely). Malinvaud(1980), on the other hand, 

demonst ra tes its weak consis tency (p converging to pg in 

probability). Weak consistency is more common in the econometric 

literature and is often called by the simpler name of consistency. 

The (weak) consistency of p is proven by showing that plim r ' ' s { P ) 

is minimized at the true values P q ^ . Strong consistency is proven by 

showing instead, that the same holds for the almost sure limit of 

T ' " ' s ( p ) . As was proved by Amemiya(1983), strong consistency 

implies weak consistency. Intuitively, it seems obvious that if 

T"''S(P) is close to plim r ' ' s ( p ) and if the latter is minimized at 

/ N 

pQ, then p, which minimized the former, should be close to pQ. Also, 

Jennrich(1969) rigorously proved the asymptotic normality of NLLS 

est imator . 

Pindyck and Rubinfeld(1976) argue that, since qj is a non-linear 

function of Pj, the linear least square theory is no longer valid. The 

statistical tests used to evaluate the linear regression equation are 

not directly applicable to a non-linear regression. The reason, as 

explained, is that we cannot obtain an unbiased estimate of CT^. Even 
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if the random disturbance term, u, is normally distributed with zero 

mean, the residual, e^, given by: 

e^ = y^ - f{x^, p) 

will not be normally distributed (nor will it have zero mean). Thus 

the sum of square residuals will not fol low a Chi-square 

distribution. Hence, the estimated coefficients themselves will not 

be normal ly d ist r ibuted, and standard t- tests and F-tests, 

therefore, cannot be applied. It can also be argued that since the 

true covariance matrix is unknown, instead of using t and F 

distributions for testing hypotheses, we should use, respectively, 

the standard normal and distr ibution, because the t(T-k) 

distribution converges to the standard normal distribution and the 

F(J,T-k) distribution converges to a multiple (1/J) of the 

distr ibution. In terms of asymptotic properties this is a valid 

argument, however, in terms of the finite sample performance of 

the tests the t and F distribution may be preferrable (Judge, Hill, 

Griffiths, Luthepohl & Lee[1982]). The arguments by Pindyck and 

Rubinfeld(1976) can be downplayed, given the f indings of 

Amemiya(1983). He points out that in the process of proving 

asymptot ic normality of NLLS estimator, it has shown that, 

asympto t i ca l l y , 
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- (G'G)' ' 'G'e 

where G = (3f/8p)po- Note that the condition exactly holds in the 

linear case, 

'•e. P-PQ = ( x ' x r ' l x ' e 

where X = (3f/3p)pQ. The practical consequence of the approximation 

is that all the results for the linear regression model are 

asymptotically valid for the non-linear regression model if we treat 

G as the regressor matrix. In particular, we can use the usual t and F 

statistics with an approximate precision. 

Since there is in general no explicit formula for the NLLS 

estimation, the minimization of the objection function, S((3), must 

usually be carried out by some iterative method. A brief description 

of the non-linear estimation techniques can be found from Goldfeld 

and Quandt(1972), Judge, Griffiths, Hill and Lee(1980), and Judge, 

Hill, Griff i ths, Lutkepohl and Lee(1982). Two NLLS estimating 

procedures were tried for the LES model with both converging to the 

same solution^. These are considered below. 

The first method was the standard non-linear estimation 

technique using the Gradient method and the optimization procedure 

used is the Newton-Raphson algorithm(or simply the Newton 
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algorithm). It is an iterative procedure moving from one trivial set 

of coefficient values for Pĵ  say to a new set, say in such a 

way that the objective function, S(P), is minimized. The objective 

function is the sum of square errors, which is: 

S(P) = Det[ y - f(x,P) ]' [ y - f(x,(3) ] / T (4.8) 

where T is the number of observations and in this case T = 424. 

The iterative procedure can be summarized as: 

+ (4.9) 

where Ck = " k̂ ^k 9k - ^^^ 

is known as step, 

is known as step length and is set to 1 for Newton algorithm, 

is direction and is equal to the inverse of the Hessian of S(p) 

atPk, 

and is the gradient, is equal to 3S/3(3 

The process iterates to convergence. Since the equations may have 

different local solutions, there is no guarantee that it will converge 

to a global minimum. Since different starting values may yield 

different solutions, using alternatives is one way to locate the 

global min imum. Two problems have been pointed out by 
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Maddala(1977). First, if the starting value is far from the minimum, 

the Newton-Raphson method may not converge and can keep moving 

in the wrong direction. The starting values are required to be 

sufficiently close to the true values (Jennrich[1969]). This can be 

resolved by estimating the model using a subset of the sample so 

that consistent and reliable starting values could be obtained. 

Second, the method requires the calculation of the second 

der ivat ives, the Hessian matrix, which causes substant ial 

comput ing diff iculty. 

The estimation for Stone's LES model is constructed using a 

Fortran program of non-linear least squares procedure^ on the 

Sperry Univac 1100 computer. The estimated model is presented in 

Table 4.7. Analytic derivatives were employed to calculate the 

gradient vector and the direction matrix The equation for 

Tobacco (equation 17) was dropped to avoid singularity. Three 

different sets of starting values were arbitrarily chosen for pj and 

Yj. The first set of values for pj and yj being respectively 1/17 and 

the averaged mean quantity consumed for all i. The second set of 

values are 1/17 and the minimum non-zero quantity consumed for i. 

The final set are fixed at the values 0.5 and 100, respectively, for 

all i. Importantly, all three set of values converged to the same 
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solution. The cross and own price, and income elasticities are given 

in Table 4.8. All own price elasticities except legumes are negative. 

Legumes are ins ign i f icant ly posi t ive and elast ic. Income 

elasticities are positive implying that all goods are normal ( as 

mentioned earlier, no inferior goods can be included in the LES 

model). The luxury items included tubers, fish, dried fish, meat, 

chicken, egg, milk, vegetables, fruit, cooking oil, additive, prepared 

food, alcohol and tobacco, except that rice and condiment are 

necessit ies. Among them, only rice, vegetable, condiment and 

addit ive are statistically significant. 

Table 4.9 shows the substitution and income effect of the LES 

model. All own substitution coefficients are negative therefore 

satisfying the negativity condition as expected. But only one of them 

is statistically significant. Cross substitution coefficients are all 

positive (they are not reported in the table) indicating the goods are 

all substitutes for each other, which supports the theory that no 

complementary items can be included in the model. 

Apart from the Gradient method, the technique using Step-wise 

Least Squares procedure was used® (it is similar to the earlier 

approach used by Stone(1954) to estimate the LES model). This 

iterative procedure is, basically, divided into two steps, examined 

below. 
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The first step is to assume yj are known parameters and to 

estimate Pj for the n-1 equations. The model is: 

(PjQj - pjYj) = [3j ( y - I jP jY j ) + Uj 

As the regressors on the right hand side are the same for each 

equation, single equation OLS will suffice. 

If p j a n d Q are est imated for p j and the residual 

variance-covariance matrix, the second step is to estimate yj given 

these results. The model is: 

(PiXj - (3iy) = [ Pi(1-Pi) j y j + S j ^ i |3iPjyj- + Uj 

or Aj = W jy + Uj where i = 1,..., n-1 

Suppose there are only two equations to be estimated, then 

A^ = W^ y + u^ ,and 

A2 = W2 y + U2 

The Generalized Least Squares estimator for y is: 

The two steps iterative process continued until the solutions 

converged. The results derived from this estimator are not 

presented as the method converged to the same solution obtained 
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from the Gradient method. Both estimators generate identical 

resu l ts . But the Step-wise Least Squares procedure is 

computat ional ly much faster. In this particular example, it took 

about 25 minutes (CPU time) to estimate the LES model using the 

Gradient method. But with the step-wise process, it took only about 

4 minutes (CPU time). 

The LES model was also estimated by the Seeming Unrelated 

Non-Linear Regression estimator (non-linear SUR) using a common 

statistical package, the SAS/ETS version 5, on the FACOM M360 

main frame computer. The FACOM is a virtual memory machine and is 

powerful enough to handle problems with a maximum of about 9000K 

whereas the SAS/ETS package is a fairly common statistical 

software which is able to solve systems of both linear and 

non-linear regression models. 

The Non-linear SUR estimator, with a standard Gauss-Newton 

algorithm chosen as the optimization procedure, is an extension to 

Zellner's(1962) SUR method with the exception that non-linear 

response functions and non-linear parametric constraints are 

incorporated. The estimator is strongly consistent, asymptotically 

normal ly d istr ibuted {Q. unknown), and asymptot ical ly more 

ef f ic ient than the single equation least squares estimator 

(Gal lant[1975]). 
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Consider the estimation of the parameters of a set of n 

non-linear regression equations with additive error disturbances, 

with the responses contemporaneously but not serially correlated. 

That is: 

Vti = fi{xti, Pj) + e î i=i,..., n and t=1,..., T 

The n-variate errors are assumed to be independent, each having a 

mean of zero, the same distribution function (not necessary normal) 

and posit ive definite variance-covariance matrix (Q). In other 

words, the errors are independent but identically distributed. The 

estimation procedure of non-linear SUR is as follows: 

(1) The first step is to obtain the least squares estimator pj 

by minimizing 

Si(Pi) = 1/T * [yi-f i(Pi)] ' [yi-f i(Pi)] 

equation by equation. 

(2) The second step is to form the residual vectors 

Si = yi - fi(Pi) 

and to obtain the estimate of the residual covariance 

matrix Q. by estimating the elements ay where 

Sij = [1/(T-k)] * Sj'ej i,j = 1,..., m 

and k is the number of parameters 
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(3) The third step is to estimate the system 

y = m + e 

in a single regression using the Aitken type estimator 3 

by minimizing 

S(P) = 1/T * { [y-f(P)] ' [n-1®|][(y-f(p)]} (4.10) 

where y = ( y ^ y 2 ' , y^- ) ' which is (Tm*1), 

^(P) = [ f i ' ( P i ) - •••' ^m'(Pm)r which is (Tm*1), 

and e = (e^', eg', e^^') which is (Tm*1). 

(4) The final step is to obtain an estimate of the covariance 

matrix of parameter estimates 

^ = (1/T) [ F(P) F(P) ] 

where F(p) = afjCxj, pj)/api 

The opt imizat ion procedure adopted is the Gauss-Newton 

Method (or simply the Gauss Method), in this algorithm the Hessian 

matrix is approximated by: 

Z(|3)'QZ(f3) 

where Z(p) = 3f/3p. Its iterative principle is similar to the Gradient 

Method with Newton Algorithm in (4.9) except that: 

(1) the step length, t^, is set to 1/2 
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(2) the direction matrix is 

dk = [ r ^ 

where = and Q = \ j 

(3) the gradient 

Qk = = -Z(|3kr[ y-f(x,3^) ] 

The Gauss-Newton method also involves extra computational effort 

in comput ing and inversing the Hessian matrix Z (P) 'nZ( |3 ) . 

To estimate Stone's LES model, previous starting values were 

tried. Also a trial run based on the first 100 observations was tried 

in order to obtain a set of reliable starting values. Interestingly, 

both results converged to the same solution point which was 

different from the previous convergence point. The most likely 

explanation of this result is the difference in the specification of 
/ 

the objective function, S(p), since equation (4.10) is different from 

(4.8). This can change the optimal profile when minimizing the 

objective function. Hence, even though the two approaches yield 

global minima their optimal solutions are different. This possibility 

was conf i rmed by substituting the optimal solution from one 

object ive function into the other. As expected, the resulting 

solution is exactly the same as the one generated previously by the 

function. The estimates of the model using SAS/ETS are presented 
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in Table 4.10. Comparing the results with Table 4.7, it was found 

that the beta coeff icients are fairly similar but the gamma values 

are d i f ferent . Apart f rom the large di f ference in magnitude, 

opposite signs are observed for vegetables and tobacco. 

The associated elasticit ies, substitution and income effects 

are given in Table 4.11 and Table 4.12, respectively. The 

significance of own price elasticities is greatly improved as more 

than half of the equations are significantly different from zero. The 

demand curve for legumes is once again found to be upward sloping 

(but statistically insignif icant). Income elasticities are all positive 

(hence income effects are all negative) but only few of them are 

significant. Negativity is also satisfied. As expected, no goods are 

inferior or complementary. Almost all commodit ies are luxury, 

except for rice and condiment which are necessities. Only rice, 

vegetables, condiments and additives are statistically significant. 

Comparing with Table 4.8 and Table 4.9, results are largely 

consistent except the own price elasticity for legumes is now 

positive. The difference in the estimated coefficients is due to the 

difference in estimation techniques. One is the standard Gradient 

method using Newton-Raphson algorithm and the other is non-linear 

SUR estimator using Gauss-Newton method. Most important is the 

di f ference in the specif ied object ive funct ions. Therefore, the 
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confl icting results occur because of the differences in objective 

function used. Since the SAS/ETS package will be used extensively 

in this study, for the sake of consistency, the non-linear SUR 

results are preferred. 

4.4 The Doub le -Loaar i thmic Demand Svstem 

In the early section of this chapter, the results of the single 

equation double-log demand functions are reported. Although it is 

possible to test the homogeneity restriction equation by equation, it 

is structurally impossible to test across equation restrictions for 

the symmetry, adding up and the system-wide homogeneity 

conditions. Hence it is necessary to reconstruct the demand function 

in (4.3) and to set up a system of double-log demand models which 

allows a test of general demand theory^. 

The model in (4.3) is: 

In qj = ttjo + I j ey In Pj + Ej In y 

Following Byron's(1968) approach, we multiply (4.3) by budget share 

Wj on both sides and get: 

Wjln qj = a j Q W j + Sj e^Wjln pj + WjEjIn y 

then add and subtract the term, I j EjWjWj In pj, on the right hand 

90 [Chapter 4 



side, we have: 

or 

W|ln Qj = ajQWj + I j (e j jWj + WjWjEj)in pj + WjEjIn y -

IjWjWjEjIn Pj 

Wjin qj = ajQWj + I ja j j in pj + bj(ln y - IjW|ln pj) 

(4.11) 

where ajj = ejjWj + WjWjEj and bj = WjEj. 

The model in (4.11) is the unrestricted multivariate double-log 

demand system (DLOG model). Although the system is linear in 

nature, it was estimated using the non-linear SUR estimator from 

the S A S / E T S package. The reason is that across equation 

restrictions can then be imposed. Also the GJ test statistic (analog 

of the LR) is only available in the non-linear option. The estimated 

results are presented in Table 4.13. 

We may now test demand theory based on the DLOG system. The 

adding-up condition requires the sum of the marginal propensity to 

consume (or the marginal budget share) to be equal to one. Applying 

the DLOG model means that: 

I j WjEi = 1 ( o r I j b i = 1 ) 

which can be incorporated into model (4.11) straight-forwardly. 

Next, the homogeneity condition requires that: 
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I jGy + Ej = 0 

Since a^ = eyWj + WjWjEj, by taking the summation on both sides, 

we have: 

I j a j j = S j e j j W i + I j W i W j E i 

= W j l p y + E jWj l jW j 

= Wj l j e j j + EjWj ( as I jW j = 1 ) 

= Wjd je i j + Ej) 

= 0 ( homogeneity requires Zjey + Ej = 0 ) 

The last restriction is the symmetry condition with the substitution 

coef f ic ients Kjj. By definition: 

K|j = Oqj/apj) + qjOqj/3y) 

As Kjj is invar iant to monotonic increas ing transformation®, 

multiplying the equation by the term (pj/qj)(y/pjqj), it becomes 

K j j = (aqj/aPj)(P j /q i ) (y/Pjq j ) + qj(aqj/ay)(Pj/qj)(y/Pjqj) 

K j j = ejj/Wj + Ej 

The symmetry condition 

K j j = Kjj 

means that: 
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e y / W j + Ei = e j j / W j + Ej 

Wje j j + WjWjEi = WjSji + WjWjEi 

or ay = aji 

Each demand condition is tested using the techniques mentioned 

in section A of this chapter. The results in Table 4.14 show that 

each demand condition was rejected significantly. The joint validity 

of the adding-up, symmetry and homogeneity conditions cannot be 

empirically tested in the DLOG model due to insufficient memory. A 

maximum memory size of 9000K was tried using the FACOM M360 

machine but it still failed. Since each demand condit ion was 

rejected separately, the joint test should also be rejected. The 

elasticities associated with the unrestricted model are reported in 

Table 4.15. While all own price elasticities are negative, income 

elast ic i t ies are posit ive except for tubers and alcohol which 

implies that the last two are inferior (but are insignificant). As 

well, no significant luxury goods can be found from the model. 

The substitution and income effects are presented in Table 

4 .16 . S ix ty - f i ve pairs have incons is ten t c ross -subs t i t u t i on 

coef f ic ients, 38 are substi tutes (of which 19 are stat ist ical ly 

s igni f icant) and 32 are complements (only 6 are signif icant). 
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Negat iv i ty appeared to be sat is f ied as all own subst i tu t ion 

coefficients are negative. Although tubers and alcohol have negative 

income elasticit ies (inferior), they are not "Giffen goods" because 

the negative own substi tut ion effect is greater than the positive 

income effect. Therefore the demand curves are still downward 

sloping. 

4 . 5 The Almost Ideal Demand System 

The Almost Ideal Demand System (AIDS model) proposed by 

Deaton and Muellbauer(1980b) is a flexible model which gives an 

arbitrary f i rst-order approximat ion to any demand system. The 

demand system is der ived from a general cost funct ion or 

expenditure function which is a flexible form and general enough to 

act as a second-order approxim.ation to any arbitrary cost function. 

The cost funct ion itself is derived from a specif ic c lass of 

preferences known as the PIGLOG class (Muellbauer[1975] & [1976]) 

which permits exact aggregation over consumers. These preferences 

are represented via the cost function c()i,p) which defines the 

minimum expenditure necessary to attain a specific utility level at 

given prices. Define the PIGLOG class by: 

In c(}i,p) = (1-)i) In a(p) + )i In b(p) 

Deaton and Muellbauer(1980b) take the specific functional forms for 
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a(p) and b(p) as: 

In a(p) = ao + I ^ ^ k ' ^ Pk + pj^ln p̂  

In b(p) = In a(p) + PoRkP^P^ 

From the fundamenta l property of the cost funct ion its price 

derivatives are the quantity demanded 

ac (^ ,p ) /ap j = qj 

By multiplying both sides by pj/c(^,p), we find that: 

ain c(]a,p)/ain Pj = pjqj/c(} i ,p) = Wj 

where Wj is the budget share of good i. Hence the demand function in 

budget share form derived from the cost function is: 

Wi = ttj + I jT j j ln Pj + p j ^pQnPk^^ (4.12) 

Since | i can be expressed as a function of p and y (the indirect 

utility function), by substituting that into (4.12) we can derive the 

AIDS demand functions in budget share form, 

Wj = a j + I jY j j In Pj + Pi ln(y/P) (4.13) 

where P is a price index defined by: 

In P = ttQ + Ikcx^ ln P;̂  + 1 / 2 T k I j y k j ' " Pk'^ Pj 

Given that the a, parameters act as intercepts, the AIDS model can 

thus provide a local f irst-order approximation to any true demand 
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system, whether derived from utility maximizing behaviour or not. 

The adding-up condition requires that: 

I i a j = 1, l i y i j = 0, I j p j = 0 

Since, by construction, the data add up automatically, this condition 

is not testable. Since the sum of the budget shares equals one, it 

follows that the contemporaneous covariance matrix is singular, a 

problem which is solved by deleting one redundant equation. In this 

case equation 17, the demand for tobacco, is dropped. Its 

coefficients can be recovered from the rest of the estimates. 

The homogeneity condition requires that: 

I j T i j = 0 

The last condition, symmetry, requires that: 

Tij = Yji 

In situations where prices are highly collinear, Deaton and 

Muellbauer(1980b) suggest that it may well be adequate to 

approximate P in (4.13) as proportional to some known index P , i.e. 

P = (f)P . One of the candidates is Stone's(1953) price index: 

it 

In P = I^w^^ln 

Then the model becomes: 
Wj = (ttj - Pjln + I jY j j ln pj + Pjin (y/P*) (4.14) 
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Let ttj = ttj - pjin (}). Note that as P were approximated by the known 
* 

index P , the model is linear in parameters oc, p and y. It is shown by 

Deaton and Mueilbauer(1980b) that the model in (4.14) provides an 

excellent approximation to the true model in (4.13). The 

approximated linear AIDS is commonly used in applied work. For 

example Ray(1980). 

The Hicksian price and income elasticities for the AIDS model 

9 
are^: 

The own price elasticity 

ejj = -1 + (Tjj/Wj) - Pi 

, and the cross price elasticity 

ejj = (Yjj/Wj) - pj (Wj/Wj) 

, and the income elasticity 

E i = 1 + (Pj/Wj) 

Note that the changes in real expenditure operate through pj 

coefficients. Hence, pj < 0 for necessity (as Ej < 1) and pj > 0 for 

luxury (Ej > 1). 

Since we are dealing with 17 commodities, by following the 

true model in (4.13), we will have 17*17 = 289 cross price products 

in the true price index P. In order to reduce the complexity and the 
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size of the model, we adopted the linear approximated model in 

(4.14). 

The estimated coefficients for the unrestricted AIDS model are 

presented in Table 4.17. The model was first estimated using a 

standard linear SUR e s t i m a t o r " ' T h e n the model was re-estimated 

using linear and non-linear SUR estimators from the SAS/ETS 

package. The estimates all converged to the same solution. 

Since the adding-up condition is automatically satisfied when 

constructing the AIDS model, we can only test symmetry and 

homogeneity conditions. From Table 4.18, the test statistics are 

much larger than the critical values, and consequently the individual 

and joint restr ict ions are signif icantly rejected by the data. 

Espec ia l l y , the test s ta t is t ics are ext remely large for 

across-equation restrictions which are about 5 times larger than 

the critical values. The elasticities for the unrestricted model are 

shown in Table 4.19. All own price elasticities except milk are 

negative. Milk has a positive but insignificant own price elasticity. 

It is not an inferior but a luxury because its positive income 

elasticity is greater than one. But it is insignificantly different 

from zero. However, its total price effect (substitution effect plus 

income effect) is insignificantly negative. This finding is the same 

as the result from the simple linear model mentioned earlier. 
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Generally, the income elasticit ies, except for meat and legumes, are 

all positive, indicating the goods are normal. Meat and legumes are 

in fer ior but i ns ign i f i can t . Luxury i tems inc lude f ish, mi lk , 

vegetables, prepared food, alcohol and tobacco. This results is 

supported by both values of pj and Ej. Substitution coeff icients and 

income effects of the unrestr icted model are given in Table 4.20. 

The negativity condition is again satisfied though only 4 of them are 

signif icant. Among the 136 pairs substitution coefficients, 75 are 

inconsistent in signs, 45 are substi tutes (only one of them is 

significant) and 16 are complements (all insignificant). 

4 . 6 The Transcendental Logarithmic Model 

This model was introduced by Christensen, Jorgenson and 

Lau(1975). They used a Taylor second order expansion series to 

approximate the negat ive of the logarithm of the direct utility 

funct ion by a funct ion quadrat ic in logarithm of the quanti ty 

consumed. That is: 

- In U = ttQ + I j In q| + (1/2) * I | Z j Py In qj In qj (4.15) 

Maximizing the utility function in (4.15) subject to the normal 

budget constraint: 

l i PiQi = y 
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yields the demand equations in budget share form of 

Wj = ( a; + I j Pjj In q p / ( af^ + S j In q̂  ) (4.16) 

where j = 1, 2 17 

^M = ^ k " k 

^Mi = ^ k Pki 

The budget share equations can also be derived using the 

duality approach. In this case, they approximated the logarithm of 

the indirect utility function by a function quadratic in the logarithm 

of the ratio of prices to the value of total expenditure. If we replace 

the term " In qj " in (4.15) and (4.16) by " In (p/y) we can then 

obtain the budget share equations corresponding to the indirect 

translog utility function. We can also test the validity of demand 

theory by imposing symmetry, addit iv i ty and homogeneity 

condit ions. 

However, several empirical problems should be noted. The 

number of parameters increase rapidly with the number of goods 

with the actual number of parameters to be estimated in an 

unrestricted Translog model of n commodities being (n*n)+(n-1). For 

a demand system of 17 commodities (only 16 are estimated because 

one of them is redundant), there will be 305 unrestricted 

parameters. 
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Based on a simulation exercise, Guilkey(1978) shows that the 

accuracy of the Translog approximation was promising as its 

per formance deteriorates by only a small amount when the 

underlying true functional form becomes more complex. On the 

contrary, Kiefer and MacKinnon(1976) found that the Translog 

function could not approximate the priori specified underlying the 

LES function suggesting that the flexibility of the Translog function 

is doubtful. As well, the quality of the Translog approximation 

deteriorates rapidly with increased dispersion in the regressors 

(Wales[1977]). On the other hand, an efficient parameter estimator 

is general ly more diff icult to obtain if the variation in the 

independent variables is small. There is an obvious conflict between 

features desirable for approximation and efficient estimation, in 

this regard, the use of the Translog approximation may not be 

appropriate with cross-sectional d a t a " ' . 

The next problem is due to the non-linear nature of the demand 

system. Unlike the AIDS model, the Translog system cannot be 

approximated by a linear model. When dealing with a large demand 

system of 17 commodities, the non-linear structure causes a heavy 

computational burden. It is practically impossible to estimate such 

a system using standard econometric packages. Test runs on the full 

model using respectively the SAS/ETS and SHAZAM on the FACOM 
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M360 and UNIVAC 1100 mainframe computers were unsuccessful due 

to insufficient memory. One possible solution is to use self-written 

computer programmes. However a difficulty is that the analytic 

derivatives of the Translog model are not easily defined, as a result, 

the Translog model was not used in this study. 

4.7 The Rot terdam Model 

The model was first proposed by Thei l (1965) and 

B a r t e n ( 1 9 6 6 ) ' ' i t jg derived by total differentiating a general 

demand function for good i (i is assumed to be the first commodity 

without loss of generality), which is: 

Qj = K Pj. P2 Pm- y ) 

and let k = 2, 3 m. 

If we totally differentiate the model, we get: 

d q; = (aq/apj) d Pj + (^q/^Pk) d Pk 

+ (aq/ay) d y (4.17) 

Since d Xj = Xj d In Xj, (4.17) then becomes: 

qj d In q, = (aqj/apj)(pj d In Pj) + I j ^ [(aqi/3Pk)(Pk ^ 'n pj^)] 

+ (aq/9y)(y d in y) 

By multiplying both sides by the term (p/y), we have: 
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Wj d In q j = O q i / a p i ) ( p j 2 / y ) d In Pj + S j ^ [ O q i / a P k ) ( P k P i / y ) d In p , , 

+ ( a q / a y ) P j d In y ( 4 . 1 8 ) 

E x p a n d i n g k , t h e n a d d a n d s u b t r a c t t h e t e r m s 

" q j ( a q j / a y ) ( P j P j / y ) d In p j " w i t h j = 1 , 2 , . . , m . E q u a t i o n ( 4 . 1 8 ) 

b e c o m e s : 

W j d In q, = ( a q i / y ) ( p j d In y) + ( a q j / a p j ) ( P j P j / y ) d In Pj 

+ q i ( a q j / a y ) ( P j P j / y ) d In p, - q j ( a q i / a y ) ( P j P j / y ) d In pj 

+ ( a q i / a p 2 ) ( P i P 2 / y ) d in P 2 + q 2 ( 5 q / 9 y ) ( P j P 2 / y ) d In P 2 

- q 2 ( 9 q / 3 y ) ( P i P 2 / y ) d In P 2 + . . . 

+ 0 q i / a p ^ ) ( p j p ^ / y ) d In p ^ + q m ( a q i / a y ) ( p j p ^ / y ) d In p ^ 

- q ^ ( a q ^ / a y ) ( p | p ^ / y ) d In p ^ 

N o t e t h a t t h e t e r m 

( a q j / a p j ) ( p j p j / y ) d In Pj + q j ( a q j / a y ) ( P i P j / y ) d In p j 

= [ ( a q / a p j ) + q j ( a q i / a y ) ] ( P j P j / y ) d In pj 

= K j j ( P j P j / y ) d In p j 

w h e r e j = 1 , 2 , . . . , m a n d K j j i s t h e s u b s t i t u t i o n c o e f f i c i e n t . 

L e t B j = p j ( a q j / a y ) . T h e e q u a t i o n b e c o m e s : 

W j d In qj = B j d In y + K j j ( p j p j / y ) d In Pj + K j 2 ( P j P 2 / y ) d In P 2 
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+ In p ^ - B i ( p j q / y ) d In p j 

- B i ( P 2 q 2 / y ) d In P 2 - . . . - B j ( p ^ q ^ / y ) d In p ^ 

L e t S j j = K j j ( p j p j / y ) . T h e e q u a t i o n f i n a l l y b e c o m e s : 

Wj d In qj = Bj[ d In y - I j ( W j d In Pj) ] + I j ( S j j d In pj) (4.19) 

which is the Rotterdam model. 

The Rotterdam model is a first-order approximation to any 

unknown demand system. For example, it can be derived from the 

Stone-Geary utility function. 

By treating Bj and Sy as constants, the model becomes linear 

and can be estimated by OLS equation by equation (Phlips[1973]). But 

as pointed out by Byron(1984), this linearization assumes Bj and Sy 

to be constants but they can vary and differ at each observation. 

This results in the exclusion of terms from the equations which 

leads to biased and inconsistent estimation, although the bias in the 

parameter estimates is minimal if the coefficients are relatively 

constant. 

Also, the Rotterdam model is derived from a differential 

equation and is a discrete approximation to a continuous time model. 

Therefore, we consider the model is theoretically implausible in a 

cross-sectional survey. However, Theil & Clements(1987) have 

applied it to international cross-section data. As pointed out by 
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Deaton(1974), the model may be integrated into any utility function 

over a sufficiently small time period and also when infinitesimal 

changes can be observed. This may probably be another practical 

weakness of the model. 

4.8 Model Evaluation 

To compare different demand systems is not straightforward. 

As efficiency will not be achieved in unrestricted models, we may 

use single equation R^s when comparing models, a common practice 

by demand researchers. Or we may compute the system R^ statistic. 

By definition, the system R^ is: 

S r 2 = 1 - ( |e'e| / ly'yl ) 

Both single equation R^ and system R^ are not directly comparable 

as they do not account for the differences in degrees of freedom. 

Also they can not be used to evaluate models with different 

dependent variables. It means that we need an indicator to measure 
/ 

the goodness of fit for a demand system as a whole. Theil(1971) 

/ N 

proposed a measure known as "Average Information Inaccuracy", I, 

which is calculated as: 

r = I t 4 /424 

where = I j Wĵ  In { Wj^/Wj^ ) 

w jt and Wjt are, respectively, the true and estimated budget shares 
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of commodity i for the f t h observation. But since Ps are not 

directly comparable, correction has to be made for the loss of 

degrees of freedom. As well, the statistic is biased as it does not 

dist inguish the effects of over-predict ion and under-predict ion. 

Over-predicted budget shares will cause the logarithmic terms to 

become negative and vice versa for under-prediction. The two 

opposi te ef fects wil l part ial ly average out the total effect. 

Thei l(1971) also suggested the "Corrected Average Information 

Inaccuracy", IC which is: 

IC = (1/2Tr Wj^] 

where = ( w ^ - Wĵ ) 

The corrected information inaccuracy measures eliminate the 

averaging effect mentioned earlier and, therefore, can be used as a 
) 

general indicator when evaluating demand systems. Naturally, the 

smaller the inaccuracy, the better the fit. 

Also average information inaccuracy can be computed for each 

individual commodity. Denoting IGj as the average information 

inaccuracy for group i, it is calculated by: 

IGi = ( ^ t W I T 
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where Ij^ = wj^ * In (Wj^/Wit) + (^ '^ i t ) [ (1-Wit) / (1-^ i t ) : 

To discriminate between different demand models, we may use 

a non-nested procedure such as the Cox test statistic proposed by 

Pesaran and Deaton(1978). The test was first applied by 

Pesaran{1974) to single equation linear regression models which 

was then extended to multivariate non-linear models by Pesaran and 

Deaton(1978), and applied to demand analysis by Deaton(1978). It is 

explained as follows: 

Suppose that there are two competing hypotheses, 

Hq : yt = VP) + e°t 

: yt = gt(7) + 

where e^^ and e''^ are assumed to be serially independent and to be 

multi-normally distributed as N(0,nQ) and N(0,Q^) under Hq and H^, 

respectively. The Cox test statistic NQ is computed by first 

calculat ing 

T Q = (T/2) In (det S Q / det Q ^ Q ) 

where Q-|Q is the estimated expectation of Q-J under HQ. It can be 

computed by an auxiliary regression in which the predicted values 

from Hg are used in H-|. The resulting covariance matrix is added to 
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Qq which will give Q ^ q . Then Tq is normalized by dividing by its 

variance. The resulting Cox test statistic Nq is asymptotically 

distributed as N(0,1), but the calculation of the variance of Tq is 

complicated and interested readers should refer to the original 

papers. An example on the application of the Cox tests can be found 

in Murray(1984) who investigated the retail demand for meat in 

Austral ia. 

Davidson and MacKinnon(1980) also proposed a simpler test 

statistic P^ using an artificial compound model which is: 

yit • ^it = ^i t 'B + ahj^ + ejt 

where hj^ is an element of 

h = Q o ^ r ( 9 - f ) 

where g and f are the predicted values from the two competing 

models. Fj^ denotes the derivatives of fj^(P) with respect to (3, 

evaluated at p. The test statistic P^ is the t-statistic on a . 

Davidson and MacKinnon(1980) proved that the test statistic is 

asymptotically distributed as N(0,1) under Hg, and showed it to be 

asymptotically equivalent to the Cox test""^. 
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As well as the Cox test statistic being complicated to compute, 

the P^ test is only discriminating a particular equation in the 

regression models and does not test the competing models as a 

whole. Also, they both require the dependent variables of the 

competing models to be the same. While the LES model can be 

expressed in either quantity or budget share form, the AIDS model is 

in budget share form and the DLOG model is a product of budget 

share and logarithm of quantity. Hence their usefulness for this 

particular demand analysis is doubtful. 

Even though it is practically possible to test between the LES 

and AIDS, there is little theoretical justification to do so. The LES 

is obtained from maximizing an arbitrary Stone-Geary utility 

function with the demand equations automatically satisfying all the 

demand conditions. Further, it is additive in nature, implying an 

approximate proportional relationship between the own price and 

income elasticities. On the other hand AIDS is derived from a 

flexible functional form and the resulting demand equations are 

first order approximation to the unknown true model. Besides, it is 

indirectly nonadditive (Blanciforti and Green[1983]). While the LES 

model is not testable, we can test the AIDS model against each 

demand condi t ion except adding-up which is sat isf ied by 

construction. The difference in the nature of the functional form 
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makes it of l itt le value for model discr iminat ion. Also, the 

restrictiveness of the LES model as explained in section B of the 

chapter concludes that the model is inferior to the AIDS model. 

Since we cannot practically discriminate between the AIDS and 

DLOG models using non-nested procedures, we can evaluate their 

performance in term of the goodness of fit using the crude measures 

described earlier in this section. 

Compari sons of individual information inaccuracy measures for 

each model are made in Table 4.21. The LES model is the worst 

among the three models. The DLOG model performs better than the 

AIDS model for most of the equations except milk and alcohol. While 

the information inaccuracy for the unrestricted DLOG and AIDS 

models are presented in Table 4.14 and Table 4.18, the average and 

corrected information inaccuracy for the LES model are 100.3 and 

533.4, respectively. Although the DLOG model has the lowest 

average information inaccuracy in absolute terms, after correction, 

the AIDS model is far superior to the other two models in terms of 

corrected inaccuracy measures. 

The AIDS and DLOG models were again compared with the 

demand restrictions imposed. Based on the corrected information 

inaccuracies reported previously, the AIDS model once again shows 

superiority to the DLOG model even both restricted models rejected 
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the demand theory. 

Moreover, the AIDS model also possess advantages over the 

other two on theoretical issues. The LES model is too restrictive in 

the sense that no complementary or inferior goods can be included. 

The DLOG model belongs to a class of constant elasticity of 

substitutio n which implies the Engel curves will be straight lines 

from the origin. Also the double-log demand system is consistent 

with utility maximizat ion only if the utility function is linear 

logarithmic. But the AIDS model does not have these limitations and 

its flexible form allows first-order approximation to any demand 

system. Also, it is a special case of the PIGLOG class which allows 

perfect aggregation over individuals, it is simple to estimate (in the 

linear approximation form) and provides a tool to test the validity 

of demand theory. For these reasons, the AIDS model will be chosen 

as the maintained model. 

4.9 Size Correct ion 

Homogeneity and symmetry conditions are frequently rejected 

in applied demand studies. Deaton(1972) argues that symmetry is 

" fundamental ly a weak hypothesis" so that rejection of these 

restrict ions is "intuitively implausible" (Bewley[1983]). It would 

appear that the reason for rejecting such restrictions would be 
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because of the inappropr iate nature of the test statist ics. 

Laitinen(1978) demonstrates that the standard test for homogeneity 

is seriously biased towards rejection. He argues that the large 

sample criteria is highly misleading and the test statistic is in fact 

distr ibuted as Hotell ing's T ^ , which is distributed as a multiple 

"[(n-1)(T-n-1)]/(T-2n+1)' ' of F[(n-1 ),(T-2n+1)] degrees of freedom. 

Meisner(1979), using a simulation experiment, shows that the 

standard test statistic for Slutsky symmetry is also biased towards 

rejection of the null hypothesis, particularly for large demand 

systems. The bias as illustrated by Meisner(1979) is due to the use 

of the estimator Q. rather than the true yet unknown covariance 

matrix Q. 

As asymptotic tests are biased toward over-rejection, a size 

correction has been suggested to adjust the critical values of 

asymptot ic test. The idea is to center the distribution of the 

observed test statistic by multiplying a correction factor so that 

the test statistic coincides more closely with its hypothetical 

distribution. Arbitrarily chosen factors have been proposed by 

different people. For example, Bohm, Rieder and Tintner(1980) 

suggested the factor (T-k)/T where k is the number of parameters in 

each demand equation. The rationale is as follows : 

Suppose that there is a linear system of n equations: 
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Y = X(3 + U ( 4 9 8 ) 

Y is ( r n ) , X is ( r k ) , (3 is (k*n) and U is ( r n ) where U ~ N(O,a0l^). 

Imposing m linear restrictions 

R[3 = g 

where R is (m*nk) and g is (m*1). 

As pointed out by Bewley(1983), if the covariance matrix Q is 

known, the exact F test statistic is: 

F = { t r [Q- ' ' (U 'U-U'U) ] /m } / { tr [n-1 (0'U)] /(T-k)n } 

(4.99) 
* 

If a is unknown and replaced by the estimate n , the test 

statistic is: 

W* = (T-k) 

which is distributed as asymptotic x^ with m degrees of freedom. In 
* 

fact, W can be defined with a small sample correction factor, 

(T-k)/T, times the Wald statistic W. Similarly, the correction factor 

can be applied to the LR and LM statistics and generate the 
* * 

corrected statistics LR and LM . It also follows that the inequality 

remain valid, ie, 

w ' > LR' > LM* 

Bera, Byron and Jarque(1981) argue that the size correction 

factor (T-k)/T is inadequate especially for large demand system. 
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They propose a factor which is equal to the ratio of the asymptotic 

5% critical value to the empirical critical value. This method will 

be discussed in Chapter 6. 

Later, Byron and Rosalsky(1985) proposed an Edgeworth 

correction method to approximate the true tests. The suggested 

method appears to be fairly useful, but the computational cost is 

quite heavy especially for large SUR systems with a large number of 

restrictions. In addition, the reliability of Edgeworth corrections 

has yet to be established. 

Deaton(1972) also suggests another test statistic which 

approximate the F statistic in (4.99) with a known covariance 

matrix by 

and formed an asymptotic statistic 

D r = { (T-k) t r [ Q r - r ' ' ( S r - " ) ] } / n r [ Q r . r ^ S ] / n } 

(4.100) 

It is based upon the constrained Iterative Zellner Efficient (IZEF) 

method, a terminology by Kmenta and Gilbert(1968). Say for the 

model in (4.98), the constrained one-step GLS residuals U^ = Y - xp, 

can be used to form a revised estimate of the covariance matrix Q.| 
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and subsequently a revised estimate of the constrained parameter 

matrix p g . This r-step iterative procedure will generate a 

constrained estimator which is identical to the ML estimator, and 

the associated covariance matrix is (T-k)/T times the one from the 

ML estimator. 

The limiting value of D,. is: 

D* = LM* / { 1 - [ LM* / (T-k)n ] } 

Bohm, Reider & Tintner(1980) noted an inequality of the form: 

W * > D p > L M * (4.101) 

but no general statement can be made about the alternative 

magnitude of D^ and LR*. 

The size corrected test statistics from Table 4.14 and Table 

4.18 are presented in Table 4.22. All W*, LR*, LM* and D* statistics 

strongly rejected the demand theory except for the homogeneity 

condit ion in the DLOG model. Homogeneity restrictions are 

* • 

marginally accepted using the LM and D statistics in the DLOG 

model. The relationship of the test statistics in (4.101) is also 

sa t is f ied . 

4.10 S u m m a r y 
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Since the demand conditions are rejected by the maintained 

AIDS model, is it possible to conclude that consumers do suffer 

from money illusions and are irrational as they do not maximize 

their util ity? Rejection of demand theory is not an uncommon 

finding in empirical research, but does it mean that the demand 

theory is in invalid and inappropriate in reality? Simmons and 

Weiserbs(1979) argue that given that the approximation of the true 

utility function is exact only at one point (the base point of 

approximation), it is only possible to test the true restrictions on 

the true utility at that point. But explicit restrictions on the 

approximated utility function can be tested over any subset of the 

data observed and will be considered at all points of the sample. 

Hence even though a restriction or a specification is rejected, this 

does not imply a conclusion can be reached concerning the validity 

of the theory. It does not mean that well behaved consumer 

preferences do not exist. Rather, it is probably the case that other 

specifications may perform better. This argument motivates the 

following analysis on diagnostic testing of the specification of the 

maintained model. 
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Footnotes 

1. Pollak and Wales(1969) show that if using least squares 
method to minimize sum of square reisduals, the estimates 
will depend on which equation is omitted. That is n sets of 
parameters estimates are obtained by estimating the system 
with a different equation omitted each time. But if MLE is used, 
the procedure yields estimates which are independent of which 
equation is omitted. They also show that the least squares 
method yield ML estimates if the disturbance associated with 
all but the omit ted expendi ture equat ion are mutual ly 
independent, and the variance associated with the distribution 
in the retained equation are equal and constant over time. 

2. Kjj can be expressed into: (from Phlips[1974]) 

K j j = - [ X / ( d X / d y ) ] O q i / 3 y ) ( a q j / a y ) 

where the first term on the RHS is the specific substitution 
and the second term is the general substitution. 

X is the marginal utility of money and is equal to 
^ = 1/Pi O^i/aqj) 

ji'^ denotes the ij element of the inverse of the Hessian matrix 
u-1 . 

3. It was i l lustrated in p.337 of Amemiya's(1983) art ic le, 
"Non-Linear Regression Model" in Handbook of Econometrics, Vol 
I, edited by Z. Griliches & M.D. Intrilgator. 

4. Maximum Likel ihood est imat ion method is not preferred 
because the condition of multi-normally distributed errors is 
too strong a priori assumption in a cross-sectional study. 
Nevertheless, the Least Squares estimators becomes MLE if 
normality is satisfied. 

5. I am thankful to Dr. R. Byron for his assistance in computer 
programming. 

6. I am indebted to Dr. Byron for allowing me to use his 
computer program. 
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7. Similiar exercises on complete demand model were carried out 
by Byron(1968) with reference to Australia and Byron(1970) 
using Barten's 16 commodity consumer expenditure data for 
Holland. 

8. Kjj is invariant under monotonic increasing transformation. 

PrQQf : 
Expressed Ky into (from footnote 2 above) 

K j j - [ U 0 A . / 3 y ) ] (aqi /3y)Oqj /3y) 

If is transformed into A|i where A is a positive constant, 
then X is transformed into 

A}i = A (aii/3qj) {1/pi), 

and is transformed into (1/A) 
and (3>./3y) will be transformed into A(3X/3y) 
while (3qj/3pj) and (9qj/3y) are invariant. 

So after monotonic increasing transformation, Kjj becomes 

K j j * = [ A^ (1/A) ^I'i ] - [ A^ / (A(3Uay)) ] (3qi/3y) (Bq/By) 

= - [ : i /(9?i/ay) ] (3qj/3y) (9qj/3y) 

= Kij 

9. Referenced from Beggs(1987). 

10. I have to thank Dr. Ji-Chu Ryu for using his computer program. 

11. The flexibility of the Translog functional form is well studied 
by Wales(1977), Guilkey(1978), and Simmons & Weiserbs(1979) 
and will not be discussed in this paper. 

12. The original paper by Barten(1966) was in Dutch. The 
mathmatical derivation of the model can also be found from 
Barten's(1968) paper. 

13. A brief review on testing non-nested alternatives was given by 
MacKinnon(1983). 
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Table 4.1 
The Simple Linear Mnd^l 

q 2 
Rice/Grain Tubers Fish Dried Rsh 

Constant 1766 .4 (11.5) 358 .46 (2.46) 133.31 (2.31) 281.28 (2.89) 
Pi -423.24 (8.69) 94 .075 (2.03) -25 .105 (1.37) -46.461 (1.50) 
P2 24 .922 (1.00) -96.202 (4.07) 21 .450 (2.30) -28.004 (1.77) 
P3 14 .118 (2 .10 ) -26 .277 (4.11) -32.633 (12.9) 21.571 (5.04) 
P4 -34 .783 (11.3) 20 .018 (1.89) 3 .0854 (0.72) -42.889(5.95) 
P5 -5 .0068 (2.13) -2 .1098 (0.94) - .91073 (1.03) - .13617(0 .09) 
P6 - .88774 (0.27) 6 .8817(2 .21 ) .95898 (0.78) 5 .2278 (2.50) 
P7 -68 .575 (0.77) -39 .096 (0.46) 59 .492 (1.78) 93.121 (1.65) 
Ps -6 .0762 (1.59) -1 .4387 (0.40) -3.3401 (2.32) -3 .6687 (1.51) 
P9 -64 .924 (1 .31 ) -68 .582 (1.46) 22 .190 (1.19) 32.861 (1.04) 
PlO 17 .695 (1.50) -13 .397 (1.19) 16.316 (3.67) 24.025 (3.20) 
P l 1 -62 .976 (2.76) -28.371 (1.31) -15 .555 (1.81) -44.528 (3.07) 
P12 -334 .34 (5.69) -180 .92 (3.24) -63 .615 (2.88) -70.758 (1.89) 
P l 3 -3 .1350 (0.19) -4 .4846 (0.28) 8 .8620 (1.40) -34.436 (3.22) 
P14 127.46 (3.18) 89 .724 (2.36) -60 .428 (4.01) -34.716 (1.36) 
P l 5 -17.960 (0.56) 88 .717(2 .91) , 40 .422 (3.35) 14.648 (0.72) 
P l 6 9 .9488 (2.29) -2 .8480 (0.69) - .85534 (0.52) -2 .2405 (0.81) 
P l 7 93 .849 (3.68) 26 .263 (1.08) 11 .658 (1.22) 57.9.34 (3.57) 

y .06969 (12.3) .00288 (0.53) .01995 (9.35) .01480 (4.11) 

T 4 2 4 424 424 424 
F statistics 24 .224 9.191 36 .637 11.645 
R2 0 .4970 0 .2585 0 .6026 0 .3118 

Absolute t-ratios are in parenthesis 
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Table 4.1 (continued) 
The Simple Linear MndPl 

^7 ^8 
Meat Chicken Egg Milk 

Constant 11.057 (0.78) 9.8532 (1.91) 86.413 (1.14) -3.4822 (0.86) 
P1 -2.9611 (0.66) -.54628 (0.33) 22.601 (0.94) -1.1245 (0.87) 

P2 2.3476 (1.03) 1.9263 (2.30) 61.880 (5.03) 1.1923 (1.80) 

P3 .62861 (1.01) .38786(1.71) 14.495 (4.35) -.10162 (0.57) 

P4 -.58249 (0.56) .04026 (0.11) 2.2611 (0.40) .71661 (2.38) 

P5 -1.1137(5.12) -.11169 (1.41) .85670 (0.73) .12308 (1.96) 

P6 -.63521 (2.10) -.33106(3.00) -2.3818(1.47) -.10431 (1.20) 

P7 -14.461 (1.76) -9.1629 (3.06) -477.28(10.8) -4.1791 (1.77) 

P8 .92751 (2.63) .29612(2.30) 5.5575 (2.94) -.06119(0.60) 

P9 -3.3814(0.74) -4.2272 (2.53) 18.001 (0.73) -.14143 (0.11) 

PlO -3.7687 (3.46) -.44557 (1.12) -4.3538 (0.74) -.64560 (2.05) 

Pl1 2.9585 (1.41) 1.0681 (1.39) 25.200 (2.23) 1.1538 (1.90) 

Pl2 -10.069 (1.86) -6.1626 (3.11) 1.7538 (0.06) 4.6252 (2.96) 

Pl3 -.49991 (0.32) .22326 (0.39) 6.0554 (0.73) -.39257 (0.88) 

Pl4 18.710 (5.07) 3.3388 (2.48) -2.3192 (0.12) .13504 (0.13) 

P15 -1.1475 (0.39) 1.2941 (1.20) -5.2681 (0.33) .28260 (0.33) 

Pl6 .55353 (1.38) -.22010 (1.51) -2.1986(1.02) -.06753 (0.59) 

P17 -2.3057 (0.98) -2.9756 (3.47) -69.846 (5.53) -2.1558 (3.18) 

y .00386 (7.39) .00145 (7.58) .02297 (8.18) .00157 (10.4) 

T 424 424 424 424 
F statistics 13.047 11.393 34.335 26.837 

r 2 0.3389 0.3066 0.5865 0.5237 

Absolute t-ratios are in parenthesis 
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Table 4.1 (continued) 
The Simple Linear Model 

<59 ^ 1 0 ^11 q i 2 
Vegetable Legumes Fruit Condiment 

Constant 6 7 6 . 8 6 (5.87) 114.11 (4.15) 169 .54 (2.70) 3 6 9 . 5 6 (3.42) 

Pi 9 9 . 0 8 5 (2.70) 2 7 . 7 3 6 (3.17) 67 .989 (3.40) 16 .008 (0.47) 

P2 106 .30 (5.68) 5 . 1 2 1 2 ( 1 . 1 5 ) 2 0 . 1 3 6 (1.98) 3 0 . 4 3 4 ( 1 . 7 4 ) 

P3 -4 .1126 (0.81) 2 . 0 2 9 4 ( 1 . 6 8 ) -2.0001 (0.73) -3 .0591 (0.65) 

P4 - 1 6 . 2 1 4 ( 1 . 9 0 ) 1.6201 (0.80) 4 .9001 (1.05) - 1 5 . 5 5 6 (1.95) 

P5 - . 2 3 8 3 5 (0.13) . 7 6 7 9 5 ( 1 . 8 1 ) -3 .2644 (3.38) - . 4 8 3 0 4 (0.29) 

P6 .18693 (0.08) .92306 (1.57) . 7 6 9 4 5 (0.57) 1 . 7 9 2 2 (0.77) 

P7 - 6 8 . 1 3 6 (1.02) -65.941 (4.13) -26 .879 (0.74) - 5 . 7 4 1 2 (0.09)' 

P8 - 2 . 3 3 4 2 (0.81) . 49707 (0.72) -1 .4393 (0.92) - .47211 (0.18) 

P9 - 3 9 3 . 5 0 (10.5) -26 .446 (2.97) - 2 8 . 6 3 4 ( 1 . 4 1 ) - 1 6 . 5 0 4 (0.47) 

PlO - 1 8 . 7 6 4 (8.90) -20 .410 (9.61) -5 .4857 (1.13) - 7 . 6 3 7 4 (0.92) 

P l 1 - 2 . 1 2 9 5 (0.12) 2 0 . 0 0 7 (4.88) -73 .552 (7.85) -16 .148 (1.00) 

P l 2 10 .426 (0.24) 61 .646 (5.84) -27 .723 (1.15) -227 .44 (5 .49 ) 

P l 3 - 3 7 . 5 9 8 (2.96) - .74909 (0.25) 3 .4519 (0.50) -1 .5600 (0.13) 

P l 4 -63 .186 (2.10) -1 .7265 (0.24) -1 .1157 (0.07) -51 .236 (1.81) 

P l 5 -62 .540 (2.59) -14 .800 (2.57) 7 . 6 7 9 6 (0.58) 3 0 . 9 6 5 (1.37) 

P l 6 -1 .1327 (0.35) - .71820 (0.92) -3 .0279 (1.78) . 0 8 5 8 2 (0.03) 

P l 7 4 2 . 4 8 5 (19.2) -36 .957 (8.07) -17 .916 (10.5) 18 .013 (1.00) 

y . 06367 (14.9) - . 0 0 1 1 7 ( 1 . 1 5 ) .01763 (7.57) . 0 2 9 4 5 (7.36) 

T 4 2 4 4 2 4 4 2 4 4 2 4 
F statistics 3 3 . 9 1 4 3 4 . 6 3 9 15 .687 1 2 . 3 3 4 

R2 0 . 5 8 3 4 0 . 5 8 8 7 0 .3846 0 . 3 2 5 4 

Absolute t-ratios are in parenthesis 
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Table 4.1 (continued) 
The Simple Linear ModftI 

^ 1 3 ^ 1 4 ^ 1 5 ^16 
"Cooking oil Additive Pre. food Alcohol 

Constant 5 7 . 7 1 2 ( 4 . 8 9 ) 8 9 9 . 4 6 (5.30) - 9 6 6 . 7 9 (1.74) 4 .8929 (1.92) 
P1 1 6 . 7 7 8 (4.46) . 12774 ( .002) 1 1 3 . 3 2 (0.64) -3 .0399 (3.76) 

P2 6 . 5 4 2 3 (3.41) -24 .286 (0.88) -58 .946 (0.65) - . 92924 (2.25) 

P3 - . 6 6 8 4 5 (1.29) - 2 6 . 4 1 2 ( 3 . 5 4 ) 2 4 . 6 2 5 ( 1 . 0 1 ) - .05062 (0.45) 

P4 - 2 . 2 4 8 0 (2.57) 8 . 1 3 1 0 ( 0 . 6 5 ) -47 .036 (1.14) .54619 (2.90) 

P5 . 36850 (2.03) - .65803 (0.25) 8 . 6 7 2 9 (1.01) - .06298 (1.61) 

P6 - . 8 3 5 7 9 (3.30) 2 . 4 6 1 8 ( 0 . 6 8 ) -24 .353 (2.04) . 12992 (2.38) 

P7 -17 .851 (2.60) -215 .56 (2.19) -396 .37 (1.23) 5 . 9 7 8 2 (4.05) 

P s .13861 (0.47) 4 .4821 (1.06) 14.741 (1.06) .07263 (1.14) 

P9 - 4 . 0 0 5 3 (1.05) 5 2 . 1 5 4 (0.95) -464 .04 (2.58) - .98001 (1.19) 

PlO - 1 . 1 1 6 8 (1.23) 3 .9546 (0.30) -83 .517 (1.94) .20526 (1.05) 

P l1 2 . 8 6 7 7 (1.63) -67 .718 (2.68) 2 4 1 . 9 3 (2.91) 1 .1038 (2.91) 

P12 -9 .2640 (2.04) 187 .70 (2.88) 199.01 (0.93) -3 .0088 (3.08) 

P l 3 -8.5722 (6.60) 9 . 4 2 9 4 (0.51) 114 .03 (1.86) - .61556 (2.20) 

P l 4 -6 .8421 (2.22) -576.28 (13.0) 8 3 . 2 6 0 (0.57) - .13869 (0.21) 

P l 5 .88711 (0.36) 2 5 . 9 9 5 (0.73) -299.94 (2.57) - .43977 (0.83) 

P l 6 . 5 7 5 6 4 (1.72) 5 .2388 (1.09) 13 .038 (0.83) -.11837(1.64) 

P l 7 - 9 . 2 1 9 7 (4.69) -100 .93 (3.57) -30 .450 (0.33) .83180 (1.96) 

y . 0 0 5 3 7 (12.3) . 08502 (13.5) . 1 1 1 4 8 (5.40) .00020 (2.09) 

T 4 2 4 4 2 4 4 2 4 4 2 4 
F statistics 38 .881 37 .959 4 .791 5 . 8 4 2 

0 .6171 0 .6113 0 . 1 3 8 9 0 .1709 

Absolute t-ratios are in parenthesis 
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Table 4.1 (continued) 
The Simple Linear Model 

^ 1 7 
T o b a c c o 

Cons tant 1 2 7 0 . 4 (2.91) 

Pi - 1 3 7 . 2 7 (0.99) 

P2 - 2 2 0 . 9 3 (3.12) 

P3 - 9 . 2 7 4 7 (0.48) 

P4 - 1 1 1 . 8 7 (3.46) 

P5 14 .043 (2.09) 

P6 - 2 . 8 3 4 2 (0.30) 

P7 1311.1 (5.17) 

P8 - 4 . 4 8 1 6 (0.41) 

P9 1 7 5 . 9 5 (1.25) 

P10 2 9 . 1 3 6 (0.87) 

P l1 - 2 4 . 9 3 3 (0.38) 

P12 170 .16 (1.02) 

P i s - 2 4 . 6 4 4 (0.51) 

P14 2 7 . 1 8 0 (0.24) 

P l 5 17 .909 (0.20) 

P l 6 -31 .970 (12.4) 

P17 - 1 6 3 6 . 7 (22.5) 

y . 19299 (11.9) 

T 
F statistics 
r 2 

424 
69.664 

0.745 

Absolute t-ratios are in parenthesis 
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Table 4.2 
Price and Income ElR<^ticities for the Simple I inear Model 

q 2 ^ 3 ^ 4 ^ 5 ^ 6 ^ 7 ^ 8 

Pi -.849* 2 . 9 0 7 - 1 . 5 8 - . 6 6 9 - 1 . 5 2 - . 2 5 4 . 4 0 5 0 - 1 . 1 4 

P2 - . 2 1 6 -1.94 . 6 3 1 8 - . 2 0 9 .5311 . 4 2 1 4 . 4 8 6 5 . 5 2 9 3 

P3 . 0 8 3 8 * - 2 . 4 9 -6.59 .9261 . 9 3 5 7 . 5 2 1 7 . 7 3 3 9 - . 290 

P4 - . 0 6 2 . 6 1 4 5 . 1 3 7 9 -.588 - . 2 2 9 . 0 1 6 2 . 0 3 2 6 . 5 3 1 9 

P5 - . 0 8 6 * - . 5 6 7 - . 5 1 3 - . 0 1 6 -4.97 - . 4 7 2 . 1 1 9 6 1 . 0 3 9 

P6 - . 0 1 2 * 1 . 3 9 6 . 3 9 0 9 . 4 7 7 9 - . 2 1 8 -.991 - . 2 8 3 - . 6 5 2 

P7 - . 0 4 5 * - . 4 0 5 1 . 1 5 6 . 4 3 2 9 - 2 . 5 2 - 1 . 3 9 -.284 - 1 . 3 7 

P s - . 0 6 8 * - . 2 4 6 -1 .30 - . 3 1 6 2 . 6 2 3 . 7 7 8 8 . 5 5 4 8 .3508 

P9 - . 0 7 4 * - 1 . 2 8 . 7 0 4 5 . 2 7 0 7 -1.01 - 1 . 1 0 .1811 - . 0 7 8 

PlO . 0 6 3 1 * - .761 1 . 6 6 6 . 5 9 7 8 - 3 . 6 2 - .381 - . 1 4 2 - 1 . 2 2 

P l 1 - . 1 1 0 * - . 8 0 3 - . 876 - . 5 8 8 1 .211 . 4 1 3 2 . 3 5 2 7 .9351 

P l 2 - . 2 1 6 * - 1 . 7 4 - 1 . 4 7 - . 336 -1 .76 - . 969 . 0 0 9 7 1 . 5 0 0 

P l 3 - . 0 1 6 * - . 3 3 9 1 . 4 8 2 - 1 . 2 9 - . 6 7 5 . 2 6 7 4 . 2 7 9 4 - 1 . 0 8 

P14 . 1 2 2 9 * 1 . 3 2 5 - 2 . 0 2 - . 2 5 7 4 .791 . 7 6 1 7 - .021 . 0 7 2 8 

P15 - . 0 1 4 * 1 . 0 3 9 1 . 0 1 0 . 0 8 9 5 - . 2 4 8 . 2 4 8 7 - . 0 3 9 . 1 1 9 0 

P l 6 . 0 6 7 6 * - . 3 0 0 - 2 . 0 4 - . 123 1 . 0 6 3 - . 376 - .141 - . 266 

P l 7 . 0 8 4 7 * . 3 6 6 6 . 3 5 3 3 .3721 - . 6 3 5 - . 6 8 4 - . 6 8 8 - 1 . 1 5 

y . 5 8 8 2 * . 4011 4 .451 . 8656 7 . 7 9 4 2 . 5 9 4 1 . 6 6 9 6 . 0 5 6 

Significant at 5% 
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Table 4.2 (continued) 

^ 1 0 ^11 

lui u ic; oi l 

q i 2 

Muic 

^13 

ir Moaei 

^ 1 4 ^15 ^16 
— . 

P1 .4164 3 .798 1.098 .0979* .7892 .0004 8.562 -8.46 

P2 .2341 .3246 .0673 .0994 .1516 - .039 -2.06 -1.18 

P3 -.051 .7163 -.096 - .056* -.091 - .236 5.199 -.365 

P4 - .061 .1564 .0668 -.083 - .087 .0204 -3.03 1.007 

P5 - .009 .7487 -.465 - .026* .1399 - .017 5.262 -1.48 

P6 .0051 .8187 .0798 .0707* - .256 .0479 -11.8 1.963 

P7 - .095 -2.97 -.141 - .012* - .275. - .212 -.950 5.147 

P8 - .055 .3511 -.133 - .016* .0369 .0754 6.552 1.083 

P9 -.978 -2.01 -.258 -.057* - .105 .0885 -20.4 -1.47 

P10 - .146 -5.80 -.161 -.084* - .095 .0212 -12.2 1.068 

P11 - .008 2.055 -1.06 - .086* .1117 -.178 15.23 2.505 

P12 .0139* 2.279 -.144 -.459 - .139 .1723* 5.025 -2.55 

P13 - .402 - .255 .1409 -.024* -1.04 .0712 23.11 -4.49 

P14 - .134 - .126 -.009 -.155* - .169 -.963 3.374 -.188 

P15 -.111 -.870 .0502 .0752* .0175 .0315 -11.3 -.393 

P16 - .017 - .372 -.176 .0018* .0952 .0553 3.755 -2.45 

P17 .0857 - .298 -.138 .0508 -.231 -.150 -1.17 .9097 

y 1.117* - .663 1.133 .7506* 1.025 1.046 33.18 2.016 

* Significant at 5% 
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Table 4.2 (continued) 
Price and Income Elasticities for the Simple Linear Model 

^17 

P-, -.334 

p2 -.269 

P3 -.064 

P4 -.220 

P5 .2609 

Pq -.043 

Py .9999 

P8 --057 

Pg .2270 

P1O -1220 

p-11 -.048 

P12 •'•262 

P13 --^52 
P14 .0337 
p^5 .0205 

PI6 -•29'^ 

P17 -2.49 

y 1.725 

* Significant at 5% 
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Table 4.3 
Slutskv Substitution Coefficients and IncorriR Fffprj 

for tlie Siniple l inear Model 

(1) (2) (3) (4) (5) (6) (7) (8) 

Rice/Grain -338.* 
if 

97.59* 
if 

-.774 ̂  -28.4* 1.747 1.222* 50.62* .7903^ 
Tubers 37.62 

ig 
-95.7 

if 
25.08* -25.3*^ 3.051* 2.191* 66.06* 1.478* 

Fish 23.25 -25.9^ -30.0*^ 23.51* 1.134* .5779* 17.50* .1041^ 
Dried fish -15.7 

if 
20.81^* 8.543* -38.8* .4735^ .4370 8.545* 1.146] 

Meat -3.86 -2.06*^ -.583 ̂  -1.12^ -1.05* -.088* 1.234* .1489* 
Chicken -.218 

if 
6.909^* 1.151* 5.370* -.598* -.317* -2.16* -.089] 

Egg -52.1 
if 

-38.4^ 64.22* 96.63* -13.5*^ -8.82* -471.*^ -.381 ] 
Milk -5.58 -1.42* -3.20*^ -3.56*^ .9549* .3064* 5.721* -.050* 
Vegetable -20.6 

if 
-66.8* 34.87* 42.27* -.928^ -3.31* 32.60* .8564* 

Legumes 22.92 
if 

-13.2* 17.81 *̂ 25.14* -3.48*^ -.337*^ -2.63 -.528*^ 
Fruit -49.8^ -27.8* -11.8* -41.7* 3.688* 1.342* 29.54] 1.450] 
Condiment -304.* -179.] -55.1*^ -64.4* -8.42^ -5.54*^ 11.57* 5.296* 
Cooking oil 1.112^ -4.31*^ 10.08* -33.5* -.265*^ .3116* 7.455] -.297*^ 
Additive 192 . r 92.39* -41.9* -21.0* 22.29* 4.683* 13.98* 1.591* 
Pre. food 3.346^ 89.60^* 46.52* 19.17 .0326^ 1.737 1.755 .7626 
Alcohol 10.03* -2.85*^ -.833*^ -2.22*^ .5578* -.218* -2.17* -.066* 
Tobacco 221.7* 31.55* 48.25* 85.08* 4.775 -.316 -27.7 .7241 

Income 
Effect -85.0* -.525 -2.61 -4.05 -.063 -.014 -5.44 -.011 

Significant at 5% 
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Table 4.3 (continued) 
Slutskv Substitution Cnefficients and Income Effer.t 

for the Simple Linear Mnrif:̂ ! 

(9) (10) 

Rice/Grain 176.7* 26.31* 
Tubers 117.9* 4.908* 
Fish 4.230 1.876* 
Dried fish 1.205 1.300* 
Meat .8074 .7487* 
Chicken .7990 ^ .9118* 
Egg - 5 3 . 1 * - 6 6 . 2 
Milk -1.88* .4888* 
Vegetable -353.* -27.2* 
Legumes -14.0* -20.5*^ 
Fruit 9.895 19.79* 
Condiment 37.63^* 61.15* 
Cooking oil -33.7* -.820* 
Additive -4.15 -2.81* 
Pre. food -43.1^ -15.2* 
Alcohol -1.06*^ -7.18* 
Tobacco 159.3* -39.1* 

Income 
Effect -40.5* .0878 

(11) (12) (13) (14) (15) (16) 

89.49* 51.93* 23.33* 103.8* 249.3* -2.80* 
23.35 35.80* 7.521* -8.80 -38.6^ -.893* 
.3099 .7997 .0352 -15.3^ 39.23* -.024^ 
9.723 

if 
-7.50 -.779 ̂  31.39* -16.5^ .6009 *̂ 

-2.97 .0006 .4567* .7383^ 10.50 *̂ -.060*^ 
.9389 ^ 2.075* -.784* ̂  3.279*^ -23.3*^ .1318* 
-22 .7* 1.237 -16 .6* -195 . * -369 . * 6.026 
-1.31* -.263 .1768* 5.086* 15.53 *̂ .0741^ 
-17.4* 2.212 -.593 106.2* -393.* -.853*^ 
-4.16* -5.43* -.714*^ 10.33 *̂ -75.2*^ .2203* 
-70.2* -10.6* 3.882* -51.7\ 263.0* 1.142* 
-20.2*^ -214.* -6.97* 224.0* 246.6* -2.92* 
4.526* .2349^ -8.24* 14.61 *̂ 120.8] -.603* 
15.23* -23.9* -1.86 -497.* 186.6 *̂ .0467 
13.07 39.97 2.529 51.99 -266.* -.379* 
-3.01* .1185^ .5816* 5.333* 13.17* -.118*^ 
14.42 72.03* .6305 55.02 174.0 1.199* 

-3.33 -12.6* -.327* -78.8* -34.1 -•.0002 

* Significant at 5% 
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Table 4.3 (continued) 
Slutskv Substitution Coefficients and Income Effsnt 

for the Simple Linear Model 

(17) 

Rice/Grain 98.10^ 
Tubers -185.* 
Fish 16.01 
Dried fish -59.1 ^ 
Meat 17.21* 
Chicken -.979 ^ 
Egg 1356.* 
Milk -3.11 ^ 
Vegetable 298.6* 
Legumes 43.62 
Fruit 11.52^ 
Condiment 252.6^* 
Cooking oil -12.9* 
Additive 206.1 
Pre. food 76.91^ 
Alcohol -31.8*^ 
Tobacco -1282/ 

Income 
Effect -354.0 

Significant at 5% 
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Table 4.4 
The Univariate Double 1 oaarithmic MnriPl 

Inq-i Inqg In qg In q4 
Rice/grain Tubers Fish Dried fish 

Constant 2.0560 (4.47) -.48864 (0.24) -6.9637 (4.00) .13787 (0.08) 
In p^ -.95025 (10.7) 1.1442 (2.87) -1.6895 (5.01) -.39997(1.26) 
In P2 -.01872 (0.77) -.82866 (7.58) .23649 (2.56) -.06498 (0.75) 
In P3 .10085 (2.93) -.58283 (3.78) -1.5543(11.9) .45106 (3.67) 
In P4 -.03052 (1.40) -.08559 (0.88) .43577 (5.30) -.29855(3.85) 
In P5 -.05706 (1.81) .17451 (1.24) -.02742 (0.23) .20810 (1.85) 
In pg -.00893 (0.24) .24672(1.49) -.05555 (0.40) .16661 (1.26) 
In py -.04515 (0.81) -.13748 (0.55) .79026 (3.72) .36135 (1.81) 
In Pg -.06165 (1.62) -.20747 (1.21) -.33337 (2.31) -.34527 (2.54) 
In Pg -.05855 (1.07) -.72652 (2.97) .83401 (4.04) .16098 (0.83) 

'n Pio .07761 (1.87) -.17791 (0.96) .78063 (4.97) .56809 (3.84) 
In p^^ -.05282 (1.48) -.40287 (2.52) -.52195 (3.86) -.58483 (4.59) 
In p^2 -.17678 (5.38) -.13821 (0.94) -.44944 (3.62) -.00836 (0.07) 
In p^3 -.12378 (1.69) -.36046 (1.10) -.32962 (1.19) -1.1733 (4.48) 
In Pi4 .11694 (2.72) .68265 (3.54) -.94394 (5.80) .08576 (0.56) 
In -.01046 (0.42) .34291 (3.07) .30848 (3.26) .01891 (0.21) 

In Pi6 .06924 (2.19) .06486 (0.46) -.05393 (0.45) -.20578 (1.82) 
In .07245 (3.70) .02695 (0.31) .13759 (1.86) .22762 (3.26) 

In y .64485 (14.0) .64827 (3.15) 1.7839 (10.2) .74726 (4.55) 

T 424 424 424 424 
F statistics 29.581 15.213 61.804 11.709 
R2 0.5488 0.3769 0.7212 0.3131 

Absolute t-ratios are in parenthesis 
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Table 4.4 (continued) 
The Univariate Double I oaarithmic MOHPI 

In qg In qg In qy In qg 
Meat Chicken Egg Milk 

Constant -13.383 (5.25) -12.243 (5.60) -6.6454 (3.99) -15.263 (7.30) 
In p^ .92863 (1.88) -.19219 (0.45) -.32556 (1.01) .78680 (1.94) 
In P2 .39206 (2.90) .38774 (3.35) .26906 (3.05) .29649 (2.67) 
In P3 .39068 (2.05) .29619 (1.81) .54513 (4.38) .08431 (0.54) 
In P4 .17208 (1.43) -.04903 (0.48) -.10105 (1.29) -.00445 (0.05) 
In P5 -.95479 (5.47) -.18173 (1.22) .32238 (2.83) .31449 (2.20) 
In pg -.26657(1.30) -.37084 (2.11) -.23151 (1.73) .07873 (0.47) 
In py -1.6253 (5.23) -.86625 (3.25) -1.4298 (7.05) -.26494 (1.04) 
In Pg .45068 (2.13) .27399(1.51) .04431 (0.32) .15602(0.90) 
In Pg -.74033 (2.45) -.98848 (3.82) .17559 (0.89) .04417(0.18) 

'n P i o -.45217(1.97) .08433 (0.43) -.08885 (0.59) -.52484 (2.78) 
In p^^ .66092 (3.34) .45965 (2.71) .60655 (4.70) .50731 (3.13) 
In p^2 -.44137 (2.43) -.56751 (3.64) .46354 (3.90) .52817(3.54) 
In p^3 -.25656 (0.63) -.09766 (0.28) -.01245 (0.05) -.34204 (1.03) 

In Pi4 .86665 (3.64) .63180 (3.09) .14509 (0.93) -.17907 (0.92) 
In p^5 -.16716(1.21) .14190 (1.20) -.12162(1.35) .07717(0.68) 

Pi 6 -.19607(1.12) -.31070 (2.07) -.08039 (0.70) -.09020 (0.63) 
In -.28029 (2.59) -.28289 (3.05) -.36953 (5.23) -.26911 (3.03) 

In y 1.8206 (7.14) 1.5966 (7.31) 1.1153 (6.70) 1.6995 (8.13) 

T 424 424 424 424 
F statistics 19.103 13.433 29.173 33.634 
R2 0.4351 0.3460 0.5452 0.5814 

Absolute t-ratios are in parenthesis 
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Table 4.4 (continued) 
The Univariate Double Loaarithmin MOHPI 

In qg 'n q io In q^^ I nq i2 
Vegetable Legumes Fruit Condiment 

Constant -3.5669 (4.77) 5.3811 (2.39) -3.7890 (3.56) -.09224 (0.11) 
In p^ .62316 (4.30) .48824(1.12) .02600 (0.13) .14116 (0.88) 
In P2 .16007 (4.04) .14599 (1.22) .24762 (4.39) .08197 (1.86) 
In P3 .03421 (0.61) .13466 (0.80) -.01103 (0.14) -.04896 (0.79) 

In P4 -.15076 (4.27) -.04352 (0.41) -.01634 (0.33) -.09243 (2.10) 

In P5 .02560 (0.50) .51168 (3.32) -.22476 (3.09) .03011 (0.53) 

In pg -.06487 (1.08) -.04469 (0.25) -.00980 (0.11) .07083 (1.06) 

In py -.25432 (2.79) -.99115(3.61) -.16769 (1.29) -.13350 (1.32) 

In pg .02403 (0.39) .13466 (0.72) -.04232 (0.48) -.05462 (0.79) 

In Pg -.97905 (11.0) -.05224 (0.20) -.02507 (0.20) -.00551 (0.06) 

'n Pio -.04072 (0.60) -1.6818 (8.28) -.21582(2.25) -.01049 (0.14) 

in .03671 (0.63) .91065 (5.21) -.76809 (9.31) -.11588 (1.80) 

In p^2 .10032 (1.88) .83162 (5.18) .05852 (0.//) -.36137(6.10) 

In p^3 -.32576 (2.74) -.66016 (1.84) .03930 (0.23) .01572 (0.12) 

In Pi4 .03037 (0.43) .14883 (0.71) -.06920 (0.70) -.10646(1.37) 

In Pi5 -.05580 (1.38) -.26534 (2.17) .02612(0.45) .07412(1.65) 

In Pi 6 -.02011 (0.39) -.22339 (1.44) -.11887(1.63) .06126 (1.07) 

In .03719 (1.17) -.56755 (5.93) -.10276 (2.27) .01341 (0.38) 

In y 1.1240 (15.0) -.06730 (0.30) 1.1586 (10.9) .62668 (7.55) 

T 424 424 424 424 
F statistics 32.449 25.900 24.595 14.752 

R2 0.5723 0.5145 0.5010 0.3692 

Absolute t-ratios are in parenthesis 
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Table 4.4 (continued) 
The Univariate Double I oaarithmin MoHp 

lnq^3 In q i 4 lnq^5 q i6 
Cooking oil Additive Pre. food Alcohol 

Constant -.24783 (2.27) -1.0810 (1.55) -19.656 (5.19) -4.3874 (1.99) 
In p^ .56917 (2.69) .15482 (1.15) .87330 (1.19) -1.1415(2.67) 
In P2 .09686 (1.67) -.01620 (0.44) -.21149 (1.05) -.04779 (0.41) 
In P3 -.19264 (2.36) -.18600 (3.56) .33667 (1.19) -.11492 (0.70) 
In P4 -.10875 (2.11) -.02998 (0.91) -.58439 (3.27) .09636 (0.92) 
In P5 .27927 (3.74) -.08836 (1.85) .58050 (2.24) -.41938 (2.77) 
In pg -.30607 (3.48) .02595 (0.46) -.51336 (1.68) .29192(1.64) 
In py .06004 (0.45) -.08368 (0.99) -.18848 (0.41) .94843 (3.52) 
In Pg -.00231 (0.03) .05156 (0.89) .21107 (0.67) .30534 (1.67) 
In Pg -.05657 (0.44) .16187(1.96) -.80212(1.79) -.51917(1.99) 

Pio .04342 (0.44) -.01817 (0.29) -.31961 (0.94) .09806 (0.49) 
In .30447 (3.60) -.10432 (1.93) 1.2263 (4.17) .38909 (2.27) 
In p^2 .04402 (0.57) .29857 (6.00) .52966 (1.96) -.40597 (2.58) 
In p^3 -.91563 (5.26) .15608 (1.41) .25421 (0.42) -.61035(1.74) 

In Pi4 -.35047 (3.43) -1.1948 (18.3) .83155 (2.35) -.47056 (2.28) 
In p i5 .04301 (0.73) .06494(1.72) -1.1361 (5.53) .08945 (0.75) 

'n Pi6 .03814(0.51) .05151 (1.07) .05040 (0.19) -.63901(4.21) 

In -.18117(3.90) -.16609 (5.61) -.24235 (1.51) .10106 (1.08) 

In y .84612(7.75) .87298 (12.5) 2.3328 (6.16) .82094 (3.72) 

T 424 424 424 424 
F statistics 24.758 52.644 11.798 5.885 
R2 0.5027 0.6873 0.3148 0.1721 

Absolute t-ratios are in parenthesis 
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Table 4.4 (continued) 
The Univariate Douhlf^ Loaarithmin MndPi 

Inq^y 

Tobacco 

Constant -5.2034 (4.89) 
In p^ -.33930 (1.65) 

In P2 -.33093 (5.86) 

In P3 -.07352 (0.92) 

In P4 -.07262 (1.45) 

In P5 .27480 (3.77) 

In pg -.02520 (0.29) 

In py .54776 (4.22) 

In Pg .08480 (0.96) 

In Pg .10691 (0.85) 

'n P10 .07648 (0.80) 

In p^^ .00607 (0.07) 

In p^2 .16635 (2.19) 

In p^3 -.06899 (0.41) 

In Pi4 .01037 (0.10) 

In p^5 -.18681 (3.23) 

In Pi6 -.23910 (3.27) 

In p-,7 -.93237 (20.6) 

In y 1.3819 (13.0) 

T 424 
F statistics 67.201 
R2 0.7380 

Absolute t-ratios are in parenthesis 
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Table 4.5 
Slutskv Coefficient.^ and Income Fffprt fnr tha 

Univariate DouhlP-Loaarithmir. MnriPl 

(1) (2) (3) (4) (5) (6) (7) (8) 

Rice/Grain -408.* 110.8 -67.4 -21.2 10.23 1.080 -2.02 3.541 
Tubers -7.03 -194. 33.02 -13.8 6.246 3.552 56.80 1.664 
Fish 29.62 -18.4 -30.9 21.74 1.287 .5981 21.62 .2317 
Dried Fish -.484 -8.05 37.98 -43.2 2.316 .1069 -6.74 .2599 
Meat -2.81 2.375 .0799 3.591 -.921 -.065 4.519 .1353 
Chicken -.031 3.482 -.321 3.348 -.269 -.232 -3.53 .0491 
Egg -58.0^ -34.1 138.3 136.4 -34.9 -10.9 -460. -2.07 
Milk -5.82* -3.25 -3.52 -7.83 .6190 .2251 1.060 .1028 
Vegetable -5.60 -108. 92.05 47.04 -7.13 -6.33 49.19 .9631 
Legumes 30.08 -7.84 24.31 39.50 -1.69 .3276 -2.78 -.786 
Fruit -20.6^ -44.4 -34.2 -85.4 6.083 2.550 75.56 1.915 
Condiment -294.* -36.2 -81.8 5.332 -10.2 -7.64 167.5 5.643 
Cooking oil -22.3*^ -11.1 -6.26 -56.5 -.574 -.073 1.173 -.356 
Additive 204.8* 124.7 -92.2 40.42 14.59 6.823 56.94 -.048 
Pre. food 3.986^ 75.25 49.47 10.87 -2.43 2.203 -27.1 1.111 
Alcohol 11.54* 1.662 -.916 -7.65 -.439 -.420 -2.64 -.086 
Tobacco 237.1 23.34 59.38 103.5 -.643 -.708 -63.6 -.178 

Income 
Effect -106.* -7.42 -5.10 -7.57 -.124 -.024 -8.39 -.015 

Significant at 5% 
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Table 4.5 (continued) 
Substitution Coeffinient and Incnm^ Fffprt 

for the Univariate Double-Loaarithmic Model 

(9) (10) (11) (12) (13) (14) (15) (16) 

Rice/Grain 261.6* 15.65 29.01 60.04* 21.04* 160.7* 183.8 -.438 
Tubers 110.6 10.89 49.16 39.47 6.222 .8371 -44.3 -.017 
Fish 11.83 1.515 2.842 .1738 -1.16 -16.5 20.00 -.006 
Dried fish -40.3 -2.31 4.114 -14.1 -2.50 5.152 -93.3 .0806 
Meat 2.065 1.980 -2.24 1.183^ 1.028 -3.44^ 10.16 -.026 
Chicken -2.22^ -.248 .0856 2.385^* -1 . n \ 2.447* -10.3 .0207 

Egg -205.' -108. -37.8 -71.0* 6.231* -86.3*^ -57.9 1.225 
Milk 1.758 .8139 -.516 -1.76 .0265 4.498* 5.559 .0276 
Vegetable -453. -3.83 10.38 15.70 .7307 170.3* -148. -.342 
Legumes -.467 ̂  -35.8 -8.55 .9617 1.087 2.711 -18.5 .0293 
Fruit 26.18* 35.15 -79.4 -21.9 10.70 -36.8^ 181.9 .2177 
Condiment 126.3^ 85.30 26.43 -223. ^ 6.170^ 437.0* 248.5 -.751 
Cooking oil -32.9* -9.02 2.658 2.818* -9.77* 30.87^ 17.75 -.117 
Additive 85.64 10.31 8.431 67.31* -15.1* -987.* 294.7 -.383 
Pre. food -23.5 -28.6 11.60 46.14 4.773 97.37^ -377. .1365 
Alcohol -1.68 -2.37 -3.07 3.584 .3235 6.586* 2.192 -.102 
Tobacco 152.3 -58.9 15.67 53.54 -3.82 -35.6 26.32 .2612 

Income 
Effect -51.3 .0762 -5.17 -13.0 -.346 -84.2 -144. -.001 
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Table 4.5 (continued) 
Substitution Coefficient and Income Fffprt 
for the Univariate Double LoQarithmic Model 

(17) 

Rice/Grain 28.60 
Tubers -510. 
Fish 10.55 
Dried fish -9.13 
Meat 31.52 
Chicken -8.37 
Egg 1359. 
Milk • 14.51 
Vegetable 300.5 
Legumes 54.88 
Fruit 51.43 
Condiment 545.2 
Cooking oil -6.84 
Additive 254.0 
Pre. food -358. 
Alcohol -61.1 
Tobacco -1797. 

Income 
Effect -586. 
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Table 4.6 
Test Homoaeneitv Condition on the Simple MnrlPk 

(Univariate Donhle-Loaanthmin MnriPl.c;) 

Equation Double-Log Model 
T F, Wall 

(1) Rice -4.36^ 18.98 
(2) Tubers -.601^ .3617* 
(3) Fish -1.46* 2.143* 
(4) Dried fish -.203*^ 0.041* 
(5) Meat .4630^ 0.214* 
(6) Chicken -.063* 0.004* 
(7) Egg 2.177 , 4.738*' 
(8) Milk 5.424^ 29.42^ 
(9) Vegi 1.592*^ 2.535* 
(10) Legumes -2.24*** 5.027*' 
(11) Fruit -.793*^ 0.629] 
(12) Condiment .9240* 0.853* 
(13) Cook oil .7560*^ 0.571* 
(14) Additive - .276* 0.076 
(15) Pre. food 3.336 11.13^ 
(16) Alcohol 

*** -2.18^ 4.730* 
(17) Tobacco 1.421* 2.018* 

T is distributed as t (405) 
F is distributed as F (1, 405) 
Wald is distributed as 

Critical Values 
T(2 sided) 
F 
Wald 

0.1 0.05 0.01 
1.645 1.96 2.576 

2.7 3.84 6.63 
2.7 3.84 6.63 

a 

significant at a = 0.1 
significant at a = 0.05 
significant at a = 0.01 
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Table 4.7 
Stone's Linear Expenditure Svc;tfim  

fusing Non-linear anri Rfpp-wise L eagt .qguares Prnrpdnrpc;) 

Budget Share 
Wj Group 3i 

1 Rice .0946(10.2) 918.15(25.9) 
2 Tubers .0241(8.93) -15.833(1.04) 
3 Fish .1419(21.8) -26.618(3.24) 
4 Dried fish .0421(12.0) 117.04(9.70) 
5 Meat .0567(18.3) -7.1785(5.74) 
6 Chicken .0195(10.3) 0.3184(0.32) 
7 Egg .0246(15.4) -6.8754(0.40) 
8 Milk .0193(16.1) -3.6364(5.19) 
9 Vegetable .1050(21.0) 47.938(1.40) 
10 Legumes .0114(3.80) 38.914(7.29) 
11 Fruit .0423(20.1) 26.662(3.12) 
12 Condiment .0232(16.6) 172.67(11.6) 
13 Cooking oil .0340(22.7) 14.599(6.67) 
14 Additive .1062(27.2) 170.80(6.01) 
15 Pre. food .0495(7.28) -145.54(2.50) 
16 Alcohol .0019(6.33) -0.5983(1.88) 
17 Tobacco .2037( — ) 78.011(1.34) 
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Table 4.8 
Price and Income Elasticities for thp 

Linear Expenditure System 

— — • — — — - — 

W 2 W3 W 4 W 5 Wg W y Wg 

Rice/Grain -.274 -.565^ -1.29 -.365 -1.59 -.631 -.568 -1.68 
Tubers .0007 

if 
-1.21* .0098 .0029 .0117 .0049 .0042 .0120 

Fish .0065 .0477 -1.68 .0315 .1291 .0526 0.466 .1343 
Dried fish -.008 -.066 -.116 -.265 -.151 -.071 -.056 -.150 
Meat .0052 .0363 .0883 .0238 -2.58 .0456 .0349 .1057 
Chicken -.0002* -.001 -.003 -.001 -.004 -.934* -.013 -.004 
Egg .0002^ .0014 .0030 .0009 .0040 .0015 -1.05* .0040 
Milk .0017 *̂ .0125 .0320 .0087 .0343 .0143 .0128 -2.72 

Vegetable -.002* -.017 -.034 -.010 -.049 -.018 -.016 -.047 
Legumes -.006* -.043 -.089 -.026 -.126 -.049 -.043 -.135 
Fruit -.002* -.014 -.033 -.010 -.035 -.015 -.013 -.039 
Condiment -.005* -.034 -.091 -.023 -.010 -.041 -.034 -.100 
Cooking oil -.003* -.023 -.056 -.016 -.067 -.026 -.024 -.073 
Additive -.007*^ -.051 -.134 -.035 -.151 -.058 -.055 -.168 
Pre. food .0048* .0340 .0841 .0234 .1121 .0418 .0377 .1064 
Alcohol .0002 *̂ .0013 .0033 .0009 .0039 .0015 .0013 .0042 
Tobacco -.003* -.023 -.055 -.015 -.077 -.027 -.027 -.075 

Income .3422* 2.668 4.886 1.524 6.836 2.572 2.426 6.958 

The first column refers to prices and income 

* Significant at 5% 
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Table 4.8 (continued) 
Price and Income Elasticities for the 

Linear Expenditure Svetem 

Wg ^10 ^11 ^ 1 2 ^13 ^14 ^15 ^16 

Rice/Grain -.326 -.323 -.339 -.189* -.261 -.257* -4.02 -.454 
Tubers .0028 .0026 .0028 .0017^ .0022 .0024 0.320 .0038 
Fish .0277 .0245 .0284 .0162* .0219 .0224 .3328 .0380 
Dried fish -.035 -.029 -.036 -.021 ^ -.027 -.027 -.407 -.041 
Meat .0221 .0185 .0231 .0125* .0165 .0175 .2612 .0314 
Chicken -.001 -.001 -.001 -.0004*^ -.001 -.001*^ -.009 -.001 
Egg .0008 .0008 .0008 >0005* .0006 .0006* .0093 .0011 
Milk .0074 .0067 .0077 ;0042* .0059 .0057* .0936 .0097 
Vegetable -.919* -.009 -.010 -.006* -.008 -.008] -.118 -.013 
Legumes -.025 1.269 -.026^ -.015* -.020 -.020* -.317 -.035 
Fruit -.008 -.007 -.815* -.005* -.006 -.007] -.098 -.011 
Condiment -.020 -.016 -.021 -.543* -.016^ -.015* -.254 -.027 
Cooking oil -.013 -.013 -.014 -.008* -.700* -.010* -.170 -.019 
Additive -.031 -.034 -.032 -.018 -.026 -.796* -.395 -.042 
Pre. food .0217 .0228 .0224 .0120 .0174 .0162 -5.92 .0252 
Alcohol .0008 .0008 .0008 .0004 .0006 .0006 .0099 -.178 
Tobacco -.014 -.017 -.014 -.008 -.012 -.011 -.165 -.017 

Income 1.401* 1.444 1.423 .8566* 1.148 1.140* 16.62 1.842 

The first column refers to prices and income 

* Significant at 5% 
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Table 4.8 (continued) 
Price and Income Elasticities for thP 

Linear Expenditure Expenditiirp 

^ 1 7 

Rice/Grain -.390 
Tubers .0034 
Fish .0327 
Dried fish -.042 
Meat .0246 
Chicken -.001 
Egg .0009 
Milk .0084 
Vegetable -.011 
Legumes -.029 
Fruit -.009 
Condiment -.023 
Cooking oil -.016 
Additive -.036 
Pre. food .0272 
Alcohol .0009^ 
Tobacco -.932* 

Income 1.608 

The first column refers to prices and income 

* Significant at 5% 
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Table 4.9 
Own Substitution Coefficients and Income Effort fnrthP 

Linear Expenditure System 

Group Substitution Coefficient Income Effect 

Rice/Grain -119. -51.3* 
Tubers -240. -5.86 
Fish -20.8 -3.28 
Dried fish -89.6 -7.16 
Meat -1.26 -.062 
Chicken -.635 -.014 
Egg -322. -8.06 
Milk -.766^ -.011^ 
Vegetable -422.' -54 . r 
Legumes -10.9 -.242 
Fruit -89.5 -4.66 
Condiment -384. -15.7^ 
Cooking oil -8.07 -.376* 
Additive -652. -95.2 
Pre. food -273. -22.7 
Alcohol -.187 -.0003 
Tobacco -1869. -520. 
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Table 4.10 
Estimates for the Linear Expenditure System 

Using Non-Linear SUR Procedure from SAS/FTR 

Group 13: Ti 

Rice/Grain .1535(16.0) 633.4(16.4) 
Tubers .0238(8.61) -16.6(.960) 
Fish .1346(20.2) -58.2(7.01) 
Dried Fish .0391(12.7) 84.34(7.48) 
Meat .0409(15.7) -4.58(4.79) 
Chicken .0147(9.17) .4688(.560) 
Egg .0212(14.2) -19.1(1.21) 
MWk .0104(10.8) -.701(1.38) 
Vegetable .1004(20.8) -41.9(1.21) 
Legumes .0195(5.67) 32.21(5.09) 
Fruit .0386(18.9) 8.366(1.05) 
Condiment .0172(14.0) 198.4(17.0) 
Cooking oil .0334(23.3) 7.798(4.13) 
Additives .1027(26.9) 86.86(3.33) 
Pre. Food .0371 (7.49) -117.(2.99) 
Alcohol .0017(6.50) -.915(3.96) 
Tobacco .2109( ---) -229.(4.30) 

144 ; Chapter 4 



Table 4.11 
Own Price and Income Elasticities 
for the Linear Expenditure System 

Estimated using Non-Linear SUR Procedure in SAS/ETS 

Own Price Elasticity Income Elasticity 

* * 

Rice/Grain -.532^ .5553 
Tubers -1.22* 2.635 
Fish -2.50 4.635 
Dried Fish -.469 1.416 
Meat -2.03^ 4.931 
Chicken -.902* 1.939 
Egg -1.15* 2.091 
Milk -1.33^ 3.750^ 
Vegetable -1.07* 1.340* 
Legumes .8624 

if 
2.471 

Fruit -.942 1.299 
if 

Condiment -.472] .6350 
Cooking oil -.840* 

•h 

1.128 
* 

Additives -.896 1.102 
Pre. Food -5.01 12.46 
Alcohol -2.19^ 1.648 
Tobacco -1.20* 1.665 

Significant at 5% 
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Table 4.12 
Own Substitution Cnefficients and Income Fffpr^ 

For the Linear Expenditure Sv<^tftm 
Estimated using Non-Linear SUR from SAS/ETS Version 5 

Substitution Coefficient Income Effect 

Rice/Grain -216. -83.2 
Tubers -241. -5.78 
Fish -25.5 -3.11 
Dried Fish -110. -6.65 
Meat -1.19 -.045 
Chicl<en -.633 -.010 
Egg -340. -6.95 
Milk -.576^ -.006^ 
Vegetable -491.* -51.7* 
Legumes -12.4 -.415 
Fruit -99.7 -4.25 
Condiment -349. -11.3^ 
Cooking oii -9.25 -.369* 
Additives -725. -92.1 
Pre. Food -331. -17.1 
Alcohol -.202 -.0003 
Tobacco -2130. -539. 

Significant at 5% 
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Table 4.13 
Unrestricted Do[jhlp>-LoQ Demand Svstsm 

Rice/Grain 
w^ In q^ 

Tubers 
W2ln q2 

Fish 
wgln q3 

Dried Fish 
W4ln q4 

Wj 7.979(355.) 7.055(249.) 6.044(165.) 6.613(264.) 
In p^ - . 1 9 9 ( 7 . 8 8 ) - .002( .340) .0591(3.48) -8.8E-4(.12) 
In P2 .0576(8.49) - . 0 1 4 ( 8 . 3 4 ) .0107(2.42) .0052(2.66) 
In P3 .0095(.950) .0021 (.820) - . 076 (1 1.5) .0033(1.1 1) 
In P4 .0173(2.74) .0067(4.31) - .015(3.62) - . 045 (23 .4 ) 
In P5 - .073(8.46) - .007(3.16) - .015(2.74) - .017(6.89) 
In PQ .0022(.210) -1.3E-4( .05) .0054(.770) .0082(2.64) 
In py .0814(5.30) .0028(.740) .0058(.580) .0161(3.63) 
In pg - .041(3.81) -4.0E-4( .15) - .002(.260) - .002(.770) 
In pg .1053(7.01) .0152(4.12) - .009(.960) .0163(3.78) 

'n P io .0136(1.13) .0008(.280) - .013(1.63) .0054(1.54) 

In p^^ - .007( .690) .0055(2.13) .0198(2.91) .0063(2.05) 

In p i 2 .0079(.830) - .004(1.83) .0134(2.20) - .001(.510) 
In p^3 - .094(4.57) - .004( .770) .0089(.680) - .016(2.73) 

In P i 4 - .008( .660) - .007(2.28) .0055(.660) - .007(1.94) 

In p^5 - .005( .680) - .001( .630) -6.8E-4(.14) -3.9E-4(.19) 

If̂  Pi 6 - .035(3.91) - .006(2.64) - .011(1.82) - .006(2.19) 

In .0115(1.99) -5.4E-4( .38) - .002(.410) .0019(1.14) 

Income Ratio .0477(7.25) -3.2E-4( .20) .0097(2.27) .0043(2.27) 
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Table 4.13 (continued) 
Unrestricted Double-Loa Demand System 

Meat 
wgln qg 

Chicken 
wgin qg 

Egg 
Wyin q j 

Milk 
WgIn qg 

Wj 4.393(98.0) 3.500(1 18.) 6.550(235.) 3.521(97.2) 
In p^ - .034(3 .41) .0029(.870) .0054(2.00) - .007(2.50) 
In P2 - .005(1 .88) .0003(.280) .0029(3.93) -9.8E-4(1.4) 
In P3 - .005(1 .16) -9 .2E-4( .69) - .001(1.10) - .002(1.69) 

In P4 - .004(1 .76) .001 1(1.30) .0024(3.61) .0023(3.55) 
In P5 - . 0 2 4 ( 7 . 0 1 ) - .002(1 .39) - .006(6.73) -9.1E-4(1.0) 
In Pq - .005(1.1 1) - . 0 1 2 ( 8 . 3 5 ) .0002(.190) -5.2E-4(.46) 

In py .0322(5.18) .0022(1.06) - . 0 1 2 ( 7 . 1 9 ) .0013(.800) 

In pg - .001( .270) -4 .6E-4( .32) -3.1E-4( .27) - . 0 0 9 ( 8 . 3 9 ) 

In Pg .0225(3.79) .0096(4.85) .0057(3.58) .0029(1.89) 

P 1 0 - .008(1 .75) - .003(1 .94) .0015(1.15) .0024(1.95) 

In - .004( .960) - .002(1 .46) - .001(1.01) - .003(2.81) 

In p^2 -6 .3E-4( .17) .0022(1.78) .4 .7E-4( .47) - .001(1.42) 

In p^3 - .008(1 .06) .0017(.640) - .006(2.54) -9.1E-4(.43) 

In p^4 .0021 (.400) - .002(1 .34) -3 .6E-4( .27) .0017(1.34) 

In p^5 .0067(2.33) .0003(.300) .0004(.520) -6.2E-4(.82) 

Pi 6 .0056(1.58) -1 .1E-4( .09) - .003(2.77) .0008(.910) 

In .0074(3.21) .0010(1.36) .0015(2.31) .0016(2.58) 

Income Ratio .0135(5.19) .0030(3.43) .0008(1.10) .0028(4.05) 
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Table 4.13 (continued) 
Unrestricted Douhlft-Log Demand Sv?;tfim 

• Vegetable Legumes Fruit Condiment 
wgin qg w i o ' n q i o w^^ ln q^^ q i 2 

w 7 . 4 1 9 ( 3 8 3 . ) 5 . 3 2 4 ( 1 7 6 . ) 6 .319 (252 . ) 7 .150(302. ) 
In Pi . 0062 ( .750 ) . 0195 (3 .38 ) .0096(2 .19 ) .0094(2.41) 

In P2 .0168 (7 .58 ) . 0051 (3 .34 ) .0041(3 .48 ) • .0075(7.17) 
In P3 - . 001 ( .340) . 0012 ( .510 ) - . 0 0 1 ( . 6 6 0 ) .0013( .850) 

In P4 .0102 (4 .93 ) . 0025 (1 .75 ) .0034(3 .09) .0034(3.51) 

In P5 - . 0 1 6 ( 5 . 9 0 ) - . 0 0 9 ( 4 . 5 0 ) - . 0 0 8 ( 5 . 6 9 ) - . 008 (6 .51 ) 

In P6 .0018( .530 ) . 0032 (1 .32 ) .0028(1 .51) - . 002 (1 .49 ) 

In P7 .0284 (5 .67 ) . 0137 (3 .83 ) .0133(4 .99) .0179(7.58) 

In P8 - . 0 1 5 ( 4 . 2 5 ) - . 0 0 6 ( 2 . 6 6 ) - . 0 0 5 ( 2 . 7 7 ) - . 006 (3 .65 ) 

In P9 - . 0 4 2 ( 8 . 5 7 ) - . 0 0 2 ( . 4 8 0 ) .0103(3 .97) .0156(6.77) 

In P10 .0017( .450 ) - . 0 2 0 ( 7 . 2 2 ) .0060(2 .87) .0008( .460) 

In P l 1 .0004 ( .110 ) - . 0 0 2 ( . 9 1 0 ) - . 0 3 5 ( 1 9 .3 ) .0019(1.16) 

In Pi 2 . 0013 ( .430 ) . 0012 ( .550 ) .0016(1 .02 ) - . 0 3 2 ( 2 1 . 3 ) 

In Pi 3 - . 0 3 2 ( 4 . 8 4 ) . 0023 ( .490 ) - . 0 1 2 ( 3 . 4 9 ) - . 014 (4 .48 ) 

In Pi 4 - . 0 1 1 ( 2 . 6 6 ) - . 0 0 7 ( 2 . 3 5 ) - 9 . 0 E - 4 ( . 4 1 ) - . 002 ( .790 ) 

In Pi 5 . 0003 ( .110 ) 1 .5E-5 ( .01) - . 0 0 1 ( . 8 7 0 ) - . 001 (1 .04 ) 

In Pi 6 - . 0 1 0 ( 3 . 4 2 ) - . 0 0 2 ( 1 . 0 5 ) - . 0 0 3 ( 1 . 9 0 ) - . 005 (3 .95 ) 

In Pi 7 . 0061 (3 .23 ) - 3 . 8 E - 4 ( . 2 8 ) .0017(1 .69) .0016(1.83) 

Income Ratio . 0102 (4 .73 ) . 0031 (2 .05 ) .0033(2 .91) .0026(2 .57) 
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Table 4.13 (continued) 
Unrestricted Douhle-Log Dempind System 

Cooking Oil Additives Pre. Food Alcohol 
w^3ln Wi4ln w^5ln q^s 

Wj 4.972(206.) 7.696(347.) 8.340(184.) 3.057(73.4) 
in p^ .0136(3.62) .0205(1.91) - .006(.280) -8.4E-4(.89) 
In P2 .0076(7.64) .0177(6.19) .0043(.820) -2.3E-4(.93) 
In P3 .0022(1.46) .0021 (.500) - .007(.910) .0002(.440) 
In P4 .0025(2.67) .0087(3.28) .0141(2.81) .0001 (.470) 
In P5 - .010(7.75) - .025(6.85) -.009(1.40) .0008(2.68) 
In pg .0007(.480) .0013(.290) .0015(.170) .0004(.930) 
In py .0042(1.86) .0359(5.53) -.005(.430) -7.4E-4(1.3) 
In Pg - .004(2.24) - .016(3.46) 7.3E-5(.01) -1.0E-4(.25) 
In Pg .0107(4.86) .0407(6.43) .0150(1.27) .0009(1.60) 

'n P10 .0016(.880) .0068(1.34) -.009(.980) .0003(.660) 
In p^^ - .003(1.67) .0032(.710) -.023(2.80) -2.5E-4(.65) 
In p i 2 - .001( .750) .0044(1.09) -.002(.240) .0002(.480) 

In p^3 - . 0 4 1 ( 1 3 . 6 ) - .039(4.52) - .006(.390) .0026(3.35) 

In P i4 .0039(2.11) - . 090 ( 17 .0 ) - .015(1.53) .0006(1.37) 

In .0006(.610) - .003(.940) - . 010 (1 .71 ) -3.6E-4(1.3) 

P16 - .004(2.99) - .014(3.59) .0018(.250) -7.5E-4(2.3) 

In .0022(2.54) .0035(1.41) .0064(1.40) -2.7E-6(.01) 

Income Ratio .0077(7.93) .0101(3.62) .0032(.620) -8.6E-4(3.5) 
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Table 4.13 (continued) 
Unrestricted Double-Log PemRnd .qy.< t̂pm 

Tobacco 
w-iyln 

Wj 8.301(250.) 

In P1 .0325(1.53) 

in P2 .0356(6.14) 

In P3 -.004(.490) 

In P4 .0072(1.36) 

In P5 -.048(6.78) 

In P6 -.008(.940) 

In P7 .0838(6.32) 

In P8 -.038(4.25) 

in P9 .0674(5.39) 

In PlO -.001(.140) 

In P l 1 -.004(.490) 

In P12 .0119(1.51) 

In P i s -.049(2.85) 

In P l 4 -.023(2.20) 

In P l 5 .0047(.760) 

In Pi 6 -.018(2.35) 

In Pi 7 - . 125 (25 .6 ) 

Income Ratio .0276(4.88) 
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Table 4.14 
Hypothesis Testing of the Multivariate Double-Loa Model 

Unrestricted Homogeneity Symmetry Adding-up 

Parameter 323 306 187 322 
Objective *T 6688.85 6700.99 5890.41 6372.51 
Det 11 2.3517E-68 2.5755E-68 6.7500E-67 2.2651 E-66 

Informat ion 
Inaccuracy 

1 " 1000 -3.88 -3.81 -4.65 -3.45 
IC * 1000 9463.11 10227.31 8251.94 6039.93 

Asy. x ^ Tests for 
Restrictions 

Wald — 43.34 3780.55 39960.7 
LR — 38.54 1423.36 1936.69 
LM — 34.14 774.95 422.54 
GJ — 57.38 977.1 1466.84 
Degree of freedom 17 136 1 

Critical values : 
P p p 

a ^ (1) (17) ^ (136) 

0.1 2.705 24.769 157.52 
0.05 3.841 27.587 164.22 

*** 0.01 5.024 33.409 177.28 
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Table 4.15 
Uncompensated Own Price and Income 

for the Multivariate Dnuhle-Loo System 

Own Price Income 

Rice/Grain - .770* .1725 
Tubers -1.54 -.0.35 
Fish -2.61 .3354 
Dried Fish -1.64 .1562 
Meat -2.93 1.632 
Chicken -1.58 .3943 
Egg -1.18 .0768 
Milk -3.49 1.000 
Vegetable - .567* .1354 
Legumes -2.54 .3913 
Fruit -1.19^ .1124 
Condiment -1 .19* .0961 
Cooking oil -1.40^ .2601 
Addit ives - .981* .1083 
Pre. Food -3.33 1.089 
Alcohol - .726 -.839 
Tobacco -1.01 .2178 

Significant at 5% 
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Table 4.16 
Substitution CoefficiRnts and Inrnme Effect fnrthP 

Multivariate Double-Lng Ry^tPm 

(1) (2) (3) (4) (5) (6) (7) (8) 

Rice/Grain -377.* 
It 

-8.67* 39.80* -2.27* -8.24 .8448* 31.52* -2.29* 
Tubers 237.2 -154. 16.44 32.26 -2.78 .1651 36.85^ -.725 
Fish 6.403 3.152 -20.1 3.127 -.411 -.097 -2.48*^ -.217 
Dried fish 44.54 

If 
40.93 -14.3 -189. -1.47 .4374 19.45 *̂ 1.098 

Meat -18.1 -3.78 -1.42 -5.98 -.897 -.061 -4.72*^ -.042 
Chicken .6865 -.095^ .5946^ 3.474 -.186 -.610 .2094* -.029^ 
Egg 474.7 35.68* 12.18* 129.7* 23.84 1.964* -220.* 1.363* 
Milk -14.8 -.313 -.234^ -1.18 -.053 -.026 ̂  -.341*^ -.680 ^ 
Vegetable 352.2 115.5 -11.4* 78.33 9.484 4.993 *̂ 59.92* 1.801* 
Legumes 14.57 1.953 -4.94* 8.062 -1.14 -.503* 4.944* .4779* 
Fruit -16.7^ 29.25 17.07 20.63 -1.22 -.721 -7.99* -1.29 
Condiment 51.14* -60.4^ 31.53^ -12.4^ -.537 2.236^ -9.33* -1.67^ 
Cooking oil -71.9* -6.36* 2.478* -16.9* -.843 .2048* -13.2* -.129*^ 
Additive -33.0* -60.3* 7.902* -38.1* 1.021 -1.37* -4.43* 1.289* 
Pre. food -26.6* -13.1 -1.28 -2.92 4.495 .2418 6.718^ -.616 
Alcohol -20.7* -7.42 -2.23 -4.53 .4299 -.010 -4.86* .0928 
Tobacco 57.82 -5.59 -2.72 12.65 4.657 .8255 22.88 1.452 

Income 
Effect -25.8 .0778 -.225 -.734 -.015 -.002 -.255 -.002 

* Significant at 5% 
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Table 4.16 (continued) 
Substitution Coefficients and Incnme Effect fnr thP 

Multivariate Dnuble-Lon .Sv.gtPm 

(9) (10) (11) (12) (13) (14) (15) (16) 

Rice/Grain 20.71* 20.73* 22.29* 60.30* 10.45* 81.71* -28.8* -.177 
Tubers 127.6 11.94 

if 
22.05 105.6 12.5l[ 152.5* 48.49 -.106 

Fish -1.34 .4402 -.987 3.080 .5969* 3.034* -13.2 .0126 
Dried fish 48.80 

if 
3.717 11.13 30.39 2.593* 47.72* 102.5 .0312 

Meat -7.27 
if 

-1.26 
if 

-2.75 -7.63 -1.01 ̂  -12.9*^ -6.33 .0250 
Chicken 1.018 

i , 
.5506 

if 
1.066^ -2.59 ̂  .0950* .8590* 1.254 .0128 

Egg 298.8 
if 

45.68^ 95.83* 355.8* 10.05 *̂ 448.9 *̂ -85.5 -.485 
Milk -9.54 

if 
-1.32* -2.32*^ -7.58*^ -.529*^ -12.2*^ -.073 -.004 

Vegetable -261. 
if 

-3.19* 43.05* 177.8* 14.64* 292.8* 143.1 .3335 
Legumes 3.404 

if 
-12.9^ 7.939* 3.123* .6825 *̂ 15.58* -28.4 .0357 

Fruit 1.514^ -2.87*^ -110. 15.16 -2.42* 15.59* -147. -.064 
Condiment 15.01^ 4.310* 13.60^ -772.^ -2.77* 59.69 *̂ -31.9 .1304 
Cooking oil -44.2* .9988 *̂ -11.7* -37.7* -13.3*^ -65.1* -13.6 .2296 
Additive -77.8* -15.0* -4.44* -20.7* 6.453* -806.* -171. .2880 
Pre. food 2.512^ .0451^ -7.12 -21.4 1.439 -33.8 -180. -.211 
Alcohol -10.5* -.715* -2.15 -11.1 -.966* -17.2* 2.950 -.059 
Tobacco 54.20 -1.11 10.20 27.69 4.559 37.49 93.21 -.001 

Income 
/ 

Effect -5.23* -.066 -.368 -1.70 -.085* -9.05 -1.49 .0001 

* Sigificant at 5% 
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Table 4.16 (continued) 
Substitution Coefficient.^ and Incnmp Effect fnrthP 

Multivariate Double-Lon Sy^tPm 

(17) 

Rice/Grain 163.1 
Tubers 369.8 
Fish -7.26 
Dried fish 47.09 
Meat -31.6 
Chicken -6.99 
Egg 1298. 
Milk -36.7 
Vegetable 600.9 
Legumes -4.06 
Fruit -25.5 
Condinnent 203.7 
Cooking oil -101. 
Additive -247. 
Pre. food 68.97 
Alcohol -29.3 
Tobacco -2177 

Income 
Effect -70.5 

Significant at 5% 
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Table 4.17 
Unrestricted Almost Ideal Dfimqnd System 

Rice/Grain Tubers Fish Dried Fish 

— 
W2 W3 W4 

Constant 1.249(9.97) .0953(1.95) .0963(1.01) .1330(2.17) 
In Pi -.002(.090) .0215(2.19) -.128(6.72) -.015(1.23) 

In P2 -.014(2.09) .0006(.220) .0234(4.47) -.008(2.61) 

In P3 .0166(1.66) -.019(4.99) -.032(4.16) .0233(4.76) 

In P4 -.018(2.89) .0004(.160) .0226(4.73) .0244(7.94) 

In P5 -.014(1.51) -2.7E-4(.08) -.018(2.64) .0048(1.10) 

In P6 -7.2E-4(.07) .0036(.860) .0139(1.71) .0057(1.09) 

In P7 -.005(.290) .0014(.220) .0435(3.48) .0148(1.84) 

In P8 -.016(1.42) -.002(.410) -.019(2.23) -.013(2.44) 

In P9 -.029(1.89) -.011(1.91) .0545(4.67) .0137(1.84) 

In PlO .0114(.960) -.012(2.59) .0501(5.52) .0132(2.27) 

In P11 -.018(1.80) -.006(1.45) -.027(3.44) -.019(3.83) 

In Pi 2 -.052(5.46) -.011(3.02) -.022(3.02) -.003(.570) 

In Pi 3 -.029(1.36) .0059(.720) .0167(1.03) -.032(3.12) 

In Pi 4 .0335(2.67) .0081(1.66) -.061(6.36) -.001(.210) 

In Pi 5 -.007(1.03) .0103(3.64) .0174(3.13) .0023(.640) 

In Pi 6 .0201(2.19) .0004(.100) .0056(.800) -.003(.570) 

In Pi 7 .0103(1.79) .0024(1.08) .0076(1.74) .0095(3.35) 

Income Ratio -.106(8.71) -.006(1.29) .0118(1.26) -.007(1.29) 
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Table 4.17 (continued) 
Unrestr icted Almost Idpgi PfimanH .ciY^tom 

Meat Chicken Egg Milk 
W 5 W g W y W 3 

Constant .1151(2 .20) .0267(1 .05) -.002(.100) - .031 (1.84) 
In Pi .0285(2 .72) .0032( .620) .0048(1.30) .0092(2.73) 
In P2 .0121(4 .22) .0052(3 .69) .0052(5.12) .0037(4.03) 
In P3 .0059(1 .42) .0046(2 .28) .0063(4.27) .0004(.340) 
In P4 .0029(1 .12) .0012( .970) -9 .9E-4 (1 .06) .0010(1.19) 
In P5 - . 015 (4 .02 ) - . 004 (2 .11 ) .0017(1.32) .001 1(.880) 
In P6 - . 002 ( .400 ) .0058(2 .68) - .001( .900) -6 .2E-4( .44) 
In P7 - . 025 (3 .65 ) - . 008 (2 .40 ) - .009(3 .78) - .005(2 .39) 
In P8 .0091(1.97) .0032(1 .40) .0029(1.79) .0066(4.48) 
In P9 .0017( .270) - . 004 (1 .30 ) .0019(.830) .0032(1.57) 

In PlO - .009 (1 .97 ) - . 002 ( .850 ) - .001( .580) - .003(1 .82) 

In P l 1 .0115(2.66) .0029(1 .36) .0047(3.06) .0017(1.22) 

In Pi 2 - . 006 (2 .66 ) - . 006 (2 .95 ) .0007(.470) .0031(2.47) 

In Pi 3 - . 005 ( .650 ) .0011( .250) .0032(1.01) 1.8E-5(.010) 

In Pi 4 .0237(4.52) .0060(2.36) .0004(.230) .0002(.140) 

In Pi 5 - . 003 (1 .00 ) .0019(1.26) -3 .41E-4( .32) -1 .2E-4( .13) 

In Pi 6 - . 002 ( .440 ) - . 003 (1 .74 ) - .002(1 .40) - .001( .980) 

In Pi 7 - . 007 (3 .13 ) - . 004 (3 .31 ) - .006(7 .21) - .003(3 .72) 

Income Ratio - . 011 (2 .18 ) - . 004 (1 .71 ) - .001( .790) .0018(1.11) 
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Table 4.17 (continued) 
Unrestricted Almost Ideal Demand System 

Vegetable 
Wg 

Legumes 

^ 1 0 

Fruit 

^ 1 1 

Condiment 

^ 1 2 

Constant . 0 6 8 4 ( 1 . 2 5 ) . 2 2 9 0 ( 5 . 6 2 ) . 1 2 5 6 ( 3 . 9 4 ) . 0 7 8 6 ( 2 . 9 0 ) 
In Pi . 0 4 3 5 ( 3 . 9 7 ) . 0 2 5 2 ( 3 . 0 8 ) . 0 0 9 2 ( 1 . 4 4 ) - 7 . 2 E - 4 ( . 1 3 ) 
In P2 . 0 1 4 9 ( 4 . 9 9 ) - . 0 0 2 ( . 7 1 0 ) . 0 0 7 9 ( 4 . 5 1 ) . 0 0 0 4 ( . 2 5 0 ) 
In P3 . 0 0 1 4 ( . 3 3 0 ) - 3 . 4 E - 4 ( . 1 1 ) - . 0 0 2 ( . 8 0 0 ) - . 0 0 2 ( . 7 5 0 ) 
In P4 - . 0 0 9 ( 3 . 5 0 ) - . 0 0 5 ( 2 . 3 1 ) . 0 0 1 5 ( . 9 8 0 ) - . 0 0 3 ( 2 . 4 9 ) 
In P5 . 0 0 2 9 ( . 7 3 0 ) . 0 0 8 9 ( 3 . 0 5 ) - . 0 1 2 ( 5 . 3 4 ) .001 1( .590) 
In P6 - . 0 0 3 ( . 7 0 0 ) . 0 0 2 8 ( . 8 1 0 ) . 0022 ( .820 ) . 0 0 2 2 ( . 9 3 0 ) 
In P7 - . 0 1 9 ( 2 . 6 3 ) - . 0 2 0 ( 3 . 7 6 ) - . 0 0 3 ( . 8 1 0 ) - . 0 0 5 ( 1 . 3 2 ) 

In P8 - 6 . 1 E - 4 ( . 1 3 ) . 0 0 3 5 ( . 9 8 0 ) - . 0 0 3 ( . 9 7 0 ) . 0 0 0 2 ( . 0 8 0 ) 
In P9 . 0 0 7 6 ( 1 . 1 5 ) - . 0 1 5 ( 2 . 9 8 ) . 0019 ( .500 ) - . 0 0 3 ( 1 . 0 5 ) 

In PlO - . 0 0 4 ( . 7 3 0 ) - .021 (5 .30 ) - . 0 0 5 ( 1 . 5 9 ) - . 0 0 2 ( . 8 8 0 ) 

In P l 1 . 0 0 2 5 ( . 5 5 0 ) . 0 1 5 6 ( 4 . 6 3 ) . 0080 (3 .05 ) - . 0 0 3 ( 1 . 4 3 ) 

In Pi 2 . 0 0 4 8 ( 1 . 1 6 ) . 0 1 9 2 ( 6 . 1 9 ) . 0 0 1 4 ( . 5 9 0 ) . 0 1 9 2 ( 9 . 3 0 ) 

In Pi 3 - . 0 2 4 ( 2 . 6 5 ) . 0 0 1 4 ( . 2 0 0 ) - 6 . 9 E - 4 ( . 1 3 ) . 0 0 1 9 ( . 4 3 0 ) 

In Pi 4 - 1 . 9 E - 6 ( . 0 0 ) - . 0 0 5 ( 1 . 2 0 ) - . 0 0 5 ( 1 . 6 0 ) - . 0 0 4 ( 1 . 5 4 ) 

In Pi 5 - . 0 0 3 ( . 8 5 0 ) - . 0 0 7 ( 3 . 0 5 ) . 0004 ( .240 ) . 0 0 1 8 ( 1 . 1 5 ) 

In Pi 6 - . 0 0 2 ( . 5 5 0 ) - . 0 0 4 ( 1 . 4 3 ) - . 0 0 3 ( 1 . 2 2 ) . 0 0 1 3 ( . 6 5 0 ) 

In Pi 7 . 0 0 5 7 ( 2 . 2 9 ) - . 0 1 6 ( 8 . 7 1 ) - . 0 0 4 ( 2 . 9 0 ) 6 .3E-5 ( .05 ) 

Income Ratio . 0 0 3 0 ( . 5 7 0 ) - . 0 2 7 ( 6 . 7 8 ) - . 0 0 6 ( 1 . 9 4 ) - . 0 0 5 ( 2 . 0 0 ) 
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Table 4.17 (continued) 
Unrestricted Aimo.st Ideal Demand System 

Cooking Oil Addit ives Pre. Food Alcohol 
^ 1 3 Wi4 ^ 1 5 ^ 1 6 

Constant . 0 8 7 2 ( 3 . 7 8 ) . 1 9 9 3 ( 3 . 2 4 ) - . 8 6 1 ( 8 . 7 6 ) - . 0 0 5 ( . 8 7 0 ) 
In Pi . 0 1 9 6 ( 4 . 2 5 ) . 0 1 3 8 ( 1 . 1 2 ) . 0 0 2 5 ( . 1 3 0 ) - . 0 0 3 ( 2 . 5 3 ) 
In P2 . 0 0 3 7 ( 2 . 9 4 ) - . 0 0 3 ( . 8 8 0 ) - . 0 0 3 ( . 5 8 0 ) - 3 . 8 E - 4 ( 1 . 3 ) 
In P3 - . 0 0 3 ( 1 . 4 4 ) - . 0 1 6 ( 3 . 3 0 ) . 0 1 2 3 ( 1 . 5 7 ) . 0002( .360 ) 
In P4 - . 0 0 4 ( 3 . 6 9 ) - . 0 0 5 ( 1 . 5 9 ) - . 0 0 7 ( 1 . 3 8 ) . 0002 ( .910 ) 
In P5 . 0 0 5 2 ( 3 . 1 5 ) - . 0 0 6 ( 1 . 4 1 ) . 0 1 5 1 ( 2 . 1 5 ) - 7 . 7 E - 4 ( 2 . 0 ) 
In P6 - . 0 0 6 ( 3 . 3 5 ) . 0 0 3 5 ( . 6 6 0 ) - . 0 1 7 ( 2 . 1 0 ) . 0012 (2 .57 ) 
In P7 - . 0 0 4 ( 1 . 5 0 ) - . 0 1 0 ( 1 . 2 4 ) - . 0 2 3 ( 1 . 8 0 ) . 0021 (3 .01 ) 
In P8 . 0 0 0 7 ( . 3 6 0 ) . 0 0 5 7 ( 1 . 0 5 ) . 0 1 3 8 ( 1 . 5 9 ) . 0006(1 .29 ) 
In P9 3 . 9 E - 5 ( . 0 1 ) . 0 1 2 5 ( 1 . 6 6 ) - . 0 3 4 ( 2 . 8 3 ) - 9 . 3 E - 4 ( 1 . 4 ) 

In P10 - 5 . 6 E - 4 ( . 2 6 ) - . 0 0 3 ( . 4 6 0 ) - . 0 1 9 ( 2 . 1 0 ) . 0010(2 .02 ) 
In P l 1 . 0 0 2 7 ( 1 . 3 9 ) - . 0 1 3 ( 2 . 4 6 ) . 0 3 2 9 ( 4 . 0 5 ) . 0014(3 .18 ) 

In Pi 2 - . 0 0 2 ( . 9 3 0 ) . 0 2 6 9 ( 5 . 7 5 ) . 0 0 5 3 ( . 7 1 0 ) - . 0 0 2 ( 3 . 7 8 ) 

In Pi 3 . 0 0 4 8 ( 1 . 2 5 ) . 0 1 9 1 ( 1 . 8 3 ) . 0 2 8 0 ( 1 . 6 8 ) - . 0 0 2 ( 1 . 7 7 ) 

In P14 - . 0 0 6 ( 2 . 5 6 ) - . 0 1 7 ( 2 . 7 3 ) . 0 1 8 1 ( 1 . 8 4 ) - 4 . 3 E - 4 ( . 8 1 ) 

In Pi 5 - 1 . 0 E - 4 ( . 0 8 ) . 0 0 5 0 ( 1 . 4 0 ) - 7 . 6 E - 5 ( . 0 1 ) - 3 . 8 E - 6 ( . 0 1 ) 

In Pi 6 . 0 0 0 2 ( . 1 2 0 ) . 0 0 6 4 ( 1 . 4 3 ) . 0 0 9 9 ( 1 . 3 8 ) ' - 2 . 4 E - 5 ( . 0 6 ) 

In Pi 7 - . 0 0 6 ( 5 . 5 0 ) - . 0 1 6 ( 5 . 8 0 ) . 0 0 3 7 ( . 8 3 0 ) . 0004 (1 .54 ) 

Income Ratio - . 0 0 8 ( 3 . 8 2 ) - . 0 1 3 ( 2 . 1 5 ) . 091 (9 .43 ) . 0007 (1 .27 ) 
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Table 4.17 (continued) 
Unrestricted Almost Ideal Demand System 

Tobacco 

^ 1 7 

Constant - .605 
In p^ - .002 

In P2 - .045 
in P3 - .008 

In P4 - .002 

In P5 - .007 

In pg - .011 
In py .0742 
In Pg .0073 
In Pg - .0001 

In P io .0059 
In .0022 
In p^2 .0234 
In p^3 .0106 

In P i 4 .0094 

In p^5 - .018 

In Pi 6 - .023 
In p^^ .0223 

Income Ratio .0857 
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Table 4.18 
Hypothesis Testing nf the AIDS 

Unrestricted 
Homogeneity & 

Homogeneity Symmetry Symmetry 

Parameter 
Objective *T 
D e t l l 

In format ion 
Inaccuracy 

I * 1000 
IC * 1000 

Asy. Tests for 
Restrictions 

304 288 184 168 
6480.00 6496.00 601 1.0 6023.59 
2.1792E-60 2.4258E-60 1.2519E-59 1.8168E-59 

60.07 
404.44 

60.87 
409.64 

76.86 
436.72 

78.34 
446.53 

Waid 50.12 898.99 1114.95 
LR 45.47 741.28 899.19 
LM 41.24 623.16 742.03 
GJ 63.99 854.19 1033.46 
Degree of freedom 16 120 136 

Critical values : 
a v2 ^ (136) 

0.1 

0.05 
0.01 

23.54 
26.30 
32.00 

140.23 
146.57 
158.95 

157.52 
164.22 
177.28 
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Table 4.19 
Own Prinfi and Innnme Elasticities for thR 

Almost Ideal Demand Systpm 

Own Price Income 

Rice/Grain - .902* .6139 
Tubers - .929* .3187 
Fish -2.11 1.406 
Dried Fish -.110 .7207 
Meat -2.80 - .344 
Chicken - .225 .4365 
Egg -1.91 .8581 
Milk 1.385^ 1.651 
Vegetable - .910* 1.041 
Legumes -3.57^ -2.42 
Fruit - .724* .7973 
Condiment - .285^ .8037 
Cooking oil - .827* .7099 
Addit ive -1 .17* .8610 
Pre. Food -1 .12* 31.41 
Alcohol -1 .02* 1.643 
Tobacco - .904* 1.706 

Significant at 5% 
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Table 4.20 
Substitution Coefficients and Income Effect for the 

Almost Ideal Demand Sv^tfim 

(1) (2) (3) (4) (5) (6) (7) (8) 

Rice/Grain -381.* 105.4 -69.2* -9.18 8.084 1.735* 53.41* 4.057* 
Tubers 4522. -225. 18.61 -23.1 7.688 3.549* 69.68* 2.817 
Fish 271.8 -27.2 -28.7 25.51 .7570 .5688* 15.45* .1607 
Dried fish 1128. 8.049 21.38 -57.4 2.212 .6844 -2.26 .6668 
Meat 356.2 .7976 -3.89 3.536 -1.58 -.129 1.759^ .0624 
Chicken 422.6 3.448 -.512 3.972 .0025^ -.377* -1.05* -.027^ 
Egg 6751. 32.19 67.19 143.8 -16.9*- -.699 -490. -5.32* 
Milk 1898. 2.363 -7.94 ̂  -2.09^ 1.053 .2191^ 3.608^ -.091 
Vegetable 386.8 -76.7 72.47* 81.53* 1.446 -1.65* 34.01* 2.485* 
Legumes 1702. -23.2 9.514 26.69 -.909 -.258 ̂  -1.27^ -.501* 
Fruit 768.7 -26.6 -24.1 -56.6 3.842 1.172* 37.31* .8637 
Condiment 2144. -148. -58.0 -5.26^ -4.31 -5.42*^ 22.49* 4.074 
Cooking oil 246.2 10.91* 4.372 -31.5* -.433 ̂  .1760* 9.013* .0553 
Additive 607.0 82.15 -74.7* 15.09 12.69* 4.305 25.92 .9529 
Pre. food 23278. 144.5 -32.8 72.31 1.076 2.190 5.183 .1422 
Alcohol 5333. 4.586 -10.9 18.26 .8107 -.185 -2.48 -.147 
Tobacco 531.6 43.62 37.66 103.1 -2.98 -1.86 -53.9 -1.02 

Income 
Effect -106. -9.95 -3.13 -8.82 -.056 -.012 -7.05 -.010 

* Significant at 5% 
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Table 4.20 (continued) 
Substitution Coefficients and Income Effect for the 

Almost Ideal Demand System 

(9) (10) (11) (12) (13) (14) (15) (16) 

Rice/Grain 228.3* 28.08* 40.40* 39.59 20.52* 155.3* 169.3 -.411 
Tubers 110.7 5.546 49.32 22.25 8.813 184.5 -629. -.133 
Fish 8.677 .5890 .7479 1.093 -.073 -6.03 6.749 .0315 
Dried fish -32.8 -1.93 10.64 -18.3 -2.66 36.07 -219. .1053 
Meat 1.255 1.611 -3.08 2.167 .7417 10.46 -.229 -.019 
Chicken -2.65^ 1.431^ 1.403 3.358 -.590 16.97 -45.7 .0416 
Egg -205.* -55.9* -14.1 -72.9 -7.66* 55.01 • -643. 1.399 
Milk -6.86^ 3.154 .3867 3.615 .9187 45.65^ -26.0 .0260 
Vegetable -421.* -26.3* 18.61 -16.0 3.273 155.5* -277. -.258 
Legumes -7.20 -33.3 ^ -3.61 -2.81 .5296 33.09 -99.8 .1314 
Fruit 19.97^ 22.19* -80.3 -18.0 3.697 -21.7 ̂  181.8 .3796 
Condiment 74.16^* 74.65* 21.43 -170. ^ -1.22 473.2* -37.3 -1.12 
Cooking oil -30.5*^ 1.220 .6203 7.878* -9.06 43.95^* 46.30 -.136 
Additive 60.33* -8.35 -10.1 -23.5 -5.24 -950.* 280.5 -.086 
Pre. food -85.3 63.33 24.22 83.69 9.567 738.2 -398. .0394 
Alcohol -23.3 13.45 2.298 11.33 2.671 134.2 -484. -.162 
Tobacco 165.1 -42.4 2.383 62.62 -3.51 -15.8 262.9 .4432 

Income 
Effect -47.2 -.558 -3.80 -17.3 -.314 -84.8 -103. -.001 

Significant at 5% 
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Table 4.20 (continued) 
Substitution Coefficients and Income Effect fnrthP 

Almost Ideal Demand Svf^tfim 

(17) 

Rice/Grain 131.8 
Tubers -4061. 
Fish -74.5 
Dried fish -659. 
Meat -217. 
Chicken -309. 
Egg -1881. 
Milk -1108. 
Vegetable -114. 
Legumes -613. 
Fruit -462. 
Condiment -1233. 
Cooking oil -121. 
Additive 93.74 
Pre. food -15430 
Alcohol -2969. 
Tobacco -1721. 

Income 
Effect -653. 

* Significant at 5% 
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Table 4.21 
Average Information Inaccuracy for Individual Grnnp'' 

1. Average Information Inaccuracy * 1000 
2. Unrestricted model 

LES DLOG^ AIDS' 

Rice/Grain 8.825 .1169 5.387 
Tubers 8.040 .2634 5.787 
Fish 16.46 .7363 9.669 
Dried Fish 8.248 .1423 5.605 
Meat 8.781 3.995 6.749 
Chicken 3.717 .7140 2.851 
Egg 2.668 .0794 1.603 
Milk 3.134 5.196 1.808 
Vegetable 3.679 .0463 2.918 
Legumes 10.72 .5929 4.404 
Fruit 2.662 .1011 2.163 
Condiment 1.584 .0272 1.581 
Cooking Oil 1.671 .0528 1.191 
Additive 4.630 .1805 3.083 
Pre. Food 20.78 .8299 16.65 
Alcohol -.582 5.085 1.505 
Tobacco .1379 
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Table 4.22 
Size Correction for th^ AIDS and ni QG MnriPl.g 

A. DLOG^ 

Homogeneity Symmetry Adding-up 

W ^ 
LR* 
LM^ * 
D 

41.397877 
36.812972 
32.610142^^^ 
32.765332*" 

3611.1386 
1359.5774 
740.22347 
829.39364 

38170.008 
1849.9044 
403.60542 
428.73850 

a. n=17 
insignificantly different from zero at a = .01 

B. AIDS^ 

Homogeneity Symmetry 
Homogeneity 
& Symmetry 

W ^ 
LR* 
lm ' * 
D 

47.874057 
43.432429 
39.391981 
39.632910 

858.70507 
708.06226 
595.23538 
655.44257 

1064.9876 
858.89611 
708.77866 
795.82561 

b. n=16 
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THE nAimAlTSZD nODEL -

DIAGNOSTIC TESTING ^ D COflllECTlONS 

Based on the information inaccuracy measures in Chapter 4, 

AIDS was chosen as the maintained model. Since all demand 

condit ions are rejected, perhaps the next step is to determine 

whether an adequate representation of the data has been achieved in 

AIDS. Is it possible for any misspecification to be present in the 

model or in the error component? The test statistic used to check 

the correctness of the model is called a diagnostic. It is the main 

objective of this chapter to look at any possible source of error in 

the maintained model and to carry out appropriate correction. 

Different diagnostic procedures will be examined. 

5.1 Diagnostic Tests 

There are four important assumptions embodied in a classical 

linear regression model. 

(1) The conditional mean of e^ is zero, reflecting the belief 

that both the functional form and the regressors are 
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correctly specif ied. 

(2) Coefficient constancy. Both p and a ^ are fixed over the 

sample period. 

(3) Serial independence in e .̂ 

(4) e^ is assumed to be normally distributed. 

As might be expected, violation of these assumptions generally 

has some deleterious effects upon model performance. Therefore it 

is important to apply diagnostic checking to determine the extent to 

which the assumptions are violated in any given context''. 

There are many well developed diagnostic checking procedures 

in the present econometric literature to detect the "health" of a 

regression model. Most of them are in the context of single equation 

analysis, such as Ramsey's(1969) RESET test for model 

misspecification, Chow's(1960) test for parameter constancy and 

s t ruc tu ra l change , the Breusch-Pagan 's (1979) Test for 

he te roscedas t ic i t y , Jarque-Bera 's (1980) test for normal i ty . 

Extensive reviews on the topic can be found in Pagan and Hall(1983), 

Pagan(1983), McAleer and Deistler(1986) and Beggs(1987). 

In general, little attention have been paid to the testing 

procedures in a system framework. Also, very little is known about 

it too. It is unusual to have diagnostic checking in demand studies. 

The reason are two-fold. First, there has been little research on 
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testing a demand model, possibly due to its complexity. Secondly, 

most of appl ied demand research ignores the importance of 

diagnostic checking, concentrating mainly on discriminating among 

competing demand models and carrying out the usual elasticity 

analysis (e.g. Klevmarken[1981]). Accepting a model without going 

through the proper diagnostic checking is, however, dangerous. One 

reason is that the presence of heteroscedasticity generates 

inefficient estimates. As well, non-normal error distributions will 

produce misleading inference results. 

The AIDS model under examination is of the SUR type. This 

means the error d isturbance terms are contemporaneously 

correlated over different equations in the model but uncorrelated 

over different observations. While the OLS estimator is still 

unbiased, it is inefficient relative to the SUR estimator. The SUR 

estimator, however, is not best linear unbiased. In fact, its finite 

sample properties are not, in general, easy to derive. Therefore, only 

asymptotic results are justified. The SUR estimator is consistent 

and asymptotically normal. It is asymptotically more efficient than 

the least squares estimator. SUR is asymptotically superior, or at 

least not inferior, to OLS in the sense that there is a possible gain 

in ef f ic iency through jo int considerat ion of the equations, 

especially when the errors among different equations are highly 
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correlated or when across-equation restrictions are imposed. 

The SUR estimator reduces to OLS if the regressors in each 

equation are identical. Hence, if no across equation restrictions are 

imposed, SUR is identical to OLS and there will be no gain in 

efficiency from its use. 

Since OLS estimates in an unrestricted SUR model are unbiased, 

it is val id to apply single equation diagnostic tests to the 

unrestr icted AIDS model. Even though the OLS estimator is 

inefficient relative to SUR, it is still consistent. It may also be 

relatively inefficient due to multicollinearity of the price variables. 

However, inefficiency only reduces the power of the diagnostic 

tests and therefore does not invalidate their appl icat ion^. 

Nevertheless, it is important to stress that the test statistics used 

here apply only to single equations. How the single equation results 

extend to a system of equations is not yet known. To what extent 

the poor equations will contaminate the whole system is also 

unknown. Obviously, no clear cut conclusions can be reached in the 

absence of a definitive theory. However, by applying the diagnostic 

checking procedure to each and every equation, we may at least have 

an insight into the causes of rejection. 

Beggs(1987) suggests the undertaking of diagnostic evaluation 

of each equation to establish their reliability before applying 
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systems estimation to improve the overall efficiency. He also 

argues that poor equations in a demand system contaminate good 

equations. Although diagnostic checking is necessary to evaluate the 

performance of each equation, we have to be careful that it shotjid 

not be used to exclude poorly performing equations without any 

theoretical justif ication. From an economic viewpoint, it is 

generally accepted that a food demand system can be thought of as a 

second stage in Strotz's(1959) two-stage budgeting process (e.g. 

Blanciforti and Green[1983]). It is the weak separability assumption 

that made the two-stage budgeting process possible. Once the 

optimal income allocation to the food group is decided, it will be 

allocated to the commodities within the group so that optimal 

utility is achieved. Hence, the commodities should always be 

considered in a complete manner. In addition, the OLS estimates are 

poorly determined because of collinearity in the prices, and 

consequently any tests will have negligible power. Using the poorly 

determined OLS estimates for specification checking, for example, 

is therefore quite hazardous^ and should be interpreted with some 

caution. 

5.1.1 Functional Form Missoecification Test 

In the standard regression framework 
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Y = xp + e 

there is a stochastic specification which is referred as the 

orthogonality assumption. This is that the conditional mean of e is 

zero, 

i.e. E(e/X) = 0 

or in large sample, 

plim (1/T) X'e = 0 

implying X and e are independent. Failure of this condition means 

that the functional form is incorrectly specified. Misspecifying the 

functional form of an econometric model will, in general, lead to 

biased and inconsistent parameter estimates and consequently, 

inconsistent estimates of marginal effects and elasticities. 

The functional form testing literature generally deals with two 

types of comparison (Beggs[1987]). One is with a non-specific 

alternative model, and other is to a specific non-nested alternative 

model. Generally, as pointed out by Godfrey, McAleer and 

McKenzie(1986), if there is information about the likely nature of 

misspecif ication, then the general tests for a non-specific 

alternative are likely to be less powerful than tests for the specific 

alternative which use this information. Since the latter type of 

non-nested testing procedures have already been discussed in 

Chapter 4, it will not be repeated here. There are several tests 
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designed to detect funct ional form misspecif ication; they are 

discussed below. 

Basically, misspecification tests are based upon a technique 

known as "Variable Addition". Detailed and extensive discussion on 

the topic is given by Pagan(1983) and Godfrey, McAleer and 

McKenzie(1986). 

Suppose the true linear model is 

= + (5.1) 

and assume the disturbance u^ ~ NID(0,a^) (the term "NID" stands 

for normally and independently distributed). Also, assume a 

potentially misspecified model of 

Y^ = X '̂p + Z^'a + v^ 

A natural way to test for correct specification would be to 

regress u against Z and test if a = 0. Unfortunately, the disturbances 

u are unknown and subsequently the least squares residuals e must 

be used. As explained by Pagan and Hall(1983), the shift from 

disturbance to residuals means the estimator a will generally be an 

inconsistent estimator of a unless a = 0. As well, even if the model 

is known to be misspecified the variable Z may not be known. In this 

/ N 

case, a proxy of Z has to be used. The disadvantage of using proxy Z 
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rather than Z lies in the fact that the power of the F or t statistic 

for a = 0 depends upon the correlation of Z and Z. When Z is 

uncorrelated with Z poor power performance is likely (Pagan[1983]). 

Generally, cases where Z are totally unrelated to Z are rare, and 

add 

ing Z to the model will at least yield some information 

concerning model adequacy. 

The most simple and commonly applied diagnostic test for 

om i t t ed va r iab les and/or incor rec t func t iona l form is 

Ramsey's{1969) Regression Specification Error Test (RESET)^, in 

which powers of the predictions are added to the regression 

equation and tested for their significance using the usual t or F 
s ta t i s t i c^ . Y^^, Y^^ and higher powers are proxies for the actual 

misspecification. The rationale for such a procedure is obvious in 

that we should expect all of the additional terms to be insignificant 

if the model is correctly specified. We denote the tests as RESET2, 

RESETS and RESET23 (with both and Y^^ included). 

A different specification test was proposed by Hausman(1978). 

The test statistic is constructed by comparing the OLS estimator, 

which is consistent and efficient under the null hypothesis of no 

misspecif icat ion, with an instrumental variables (iV) estimator, 

which is consistent under the alternative. A substantial difference 
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between the two estimators implies the functional form is highly 

likely to be misspecified. 

Hausman's(1978) testing procedure can be generalized into a 

single regression if the explanatory variables correlated with e can 

be identi f ied. Suppose X^ are possibly correlated with e while X2 

are uncorrelated, then the procedure is to construct an augmented 

model by adding an extra variable X^ such that 

where X^ = P^X^ and P^ = Z(Z'Zy^Z'. Z are instrumental variables 

which should include X2. Testing Hq: a = 0 would indicate whether 

the model is misspecified. 

White(1980b) also suggested a functional form test which is, 

in principle, similar to Hausman's(1978) specification test. Instead 

of analysing the OLS and IV estimators, it compares the OLS with 

the Weighted Least Squares (WLS) estimator. The test can be 

general ized into an artificial regression 

Y = X3 + (Q- " ' x )a + v 

White(1980b) suggests using weights that are the reciprocal of the 

squared prediction under the null hypothesis. That is, run 

Y = X p + (X/Y2)a + v 
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and test for the additional term by seeing if a = 0. 

The three testing procedures, Ramsey's(1969) RESET test, 

Hausman's(1978) specification test and White's(1980b) functional 

form tests are all very similar and it is therefore difficult to select 

among them. A Monte Carlo study conducted by Godfrey, McAleer and 

McKen2ie(1986) shows that RESET and White's(1980) test are well 

behaved in terms of size, and are similar in terms of power. 

However they found that RESET is more robust against non-normal 

error distribution. Together with its simplicity, RESET is therefore 

more useful and the results of RESET tests are reported in Table 5.1. 

Only 6 of the total 17 equations passed all RESET tests easily. This 

implies the existence of serious functional form misspecification in 

the maintained model. Although the form of misspecification is 

unknown, it may be related to the omission of relevant explanatory 

variables. The possible variables omitted are urban/rural dummy and 

5 island dummies®. In addition, misspecification of the error 

component (e.g. heteroscedasticity in the error variance) is another 

possible problem. Both possibilities will be examined later in this 

chapter. 

5.1.2 Parameter Constancy Test 

As reliable inference in econometric models generally depends 
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upon certain parameters remaining constant over a set of 

observations, parameter constancy tests have an important role in 

model l ing. Assuming there is a known switch point for all 

parameters in the model, parameter inconstancy tests can be 

applied. They are considered below, 

(i) In the context of the univariate mnHPl 

Chow(1960) developed two well known tests for parameter 

constancy and structural stability for the general model in (5.1). 

Since the stability test is only associated with a time series study, 

we will look at the parameter constancy test and refer it as the 

"Chow test". 

The Chow test determines whether the whole structure of a 

regression model has changed between one set of data and another. 

The test itself looks at the entire set of coeff icients and 

determines whether or not the regression surface has changed. It 

may be explained as follows. 

Suppose we have g observations in one group of data and h 

observations in the other. The total number of observations is (g+h) 

= T. Given k regressors, including the intercept term, Chow's(1960) 

F-ratio test statistic can be computed as follows: 

(1) fit a regression using the same k regressors to each set of 

data separately and calculate SSE(g) and SSE(h), which are 
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the sum of squares error for the models with g and h 

observations respectively. 

(2) Fit another regression with the same regressors to the 

pooled g+h=T observations and calculate SSE(T). 

(3) Chow's test statistic is calculated as 

C = { [ SSE(T) - [SSE(g)+SSE(h)] ] / [ SSE(g) + SSE(h) ] } * 

{ ( T-2k ) / k } 

which is distributed as F(k, T-2k). 

A significantly large value of F leads us to reject the null 

hypothesis and to conclude that there is parameter inconstancy in 

the set of regression coefficients considered as a whole. Also, to 

ensure positive degrees of freedom, we must have T > 2k, g > k and h 

>k. 

(ii) In the context of multivariate model 

Based upon the LR principle, Anderson and Mizon(1983) 

considered an extension of the univariate Chow test to dynamic, 

non-l inear s imul taneous equations. Denote the simultaneous 

equations analogues of Chow test statistic as AM. By definition 

AM = -2 ( L j - Lg - Lh ) 

which is distr ibuted as + n(n+1)/2) where p and n are 

respectively the total number of parameters and the number of 
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equations to be estimated in the model. Lg and L^ are the log 

likelihood functions with reference to T, g and h observations 

respect ively. 

Harvey(1981) shows that the joint density function of the SUR 

system with n equations at t is given by 

The log likelihood function for all T observations is therefore 

Lj = (-Tn/2 * log 2:i ) - {T/2 * log in | ) - [ 1/2 * 

I t ( Y t - x ^ p y a - ^ c Y t - x ^ p ) ] 

Note that the last summation term on the right hand side is exactly 

the term " objective * T " generated by the SAS/ETS. 

Both univariate and multivariate testing procedures have been 

applied to AIDS. The results of the univariate Chow test for urban 

and rural samples are presented in Table 5.2. This shows that 10 out 

of the 17 equations significantly rejected the null hypothesis, 

implying the problem of parameter inconstancy exists between the 

urban and rural samples. 

Two estimations of the multivariate AIDS were carried out 

with respect to the urban and rural samples. The results are given in 

Table 5.3. All demand conditions were strongly rejected in both 
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samples by the Wald, LR and LM statistics. The Anderson and 

Mizon 's (1983) AM test stat ist ics were ca lcu lated for the 

unrestricted and restricted models and the results were reported in 

Table 5.4. As the statistics are significantly different from the 

crit ical values, for the demand system as a whole there is 

inconstancy in parameters between urban and rural regions in all 

unrestricted and restricted models. The results support the earlier 

findings from the univariate models. 

The immediate and conventional correction for parameter 

inconstancy is to include a dummy variable in the model. In this 

case, a urban/rural dummy is suggested. Also it is possible that the 

six groups of islands themselves may contr ibute to the 

misspecification. Unfortunately we are unable to test for parameter 

constancy among islands because one of the six main islands, Makulu 

and Irian Jaya, has only 11 observations, violating the condition of 

positive degrees of freedom. Consequently, we re-estimated the 

equations with an urban/rural dummy and a set of 5 island dummies. 

Notice that the dummies are just shift effects and have no effect on 

slope coefficients. 

The augmented models with added dummy variables were again 

tested using RESET2 and RESET3 and the results are reported in 

Table 5.5. Ten out of the 17 equations are misspecified even with 
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both urban and island dummies included. Comparing the results with 

Table 5.1, no striking improvement is observed. In order to test for 

the usefulness of adding dummies in the model, we applied a simple 

F-ratio statistic to test for their joint significance (Hebden [1983]) 

in the univariate models. The test statistic is calculated as follows 

^(p,q) = with dummies - R^ without dummies) / p ] * 

[ q / (1 - with dummies) ] 

where p is the number of dummies in the model and 

q = { no. of observations - no. of dummies - no. of parameters) 

The R^ statistics for each model are presented in Table 5.6 and the 

F-ratio test statistics are reported in Table 5.7. Significantly large 

F values imply the dummies are statistically significant in the 

model. Surprisingly, this shows that in most of the situations the 

dummies are significantly different from zero. Including both urban 
/ 

and island dummies, 16 of the 17 equations show statistical 

improvement. 

As well, the unrestricted and restricted SUR systems were 

estimated with the dummies included and tested for demand 

conditions. The results are given in Table 5.8, Table 5.9 and Table 

5.10 for the model with urban dummy, island dummies, and both 

kinds of dummies respectively. Although the test statistics strongly 

rejected the demand conditions, there is significant improvement 
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after incorporating dummies. Based on the calculated information 

inaccuracy measures, I and IC, inclusion of an urban dummy reduced 

the inaccuracy by 3% to 6% compared to the maintained model in 

Table 4.18. The island dummies, on the other hand, improved the 

model by 20% to 24%. By incorporating both urban and island 

dummies, there is an average improvement of 21% to 25%. Examining 

the Wald, LR, LM and GJ statistics, inclusion of dummies has 

general ly reduced the test statistics to an extent that varied 

between restrictions and the type of dummies included. The urban 

dummy alone reduced the statistics for the symmetry condition by 

7% to 10% but, on the contrary, increased the statistics for 

homogeneity by 7% to 13%. The island dummies have reduced the 

statistics by 7% to 10% for the homogeneity condition, and a large 

extent of 40% to 47% for the symmetry condition. Inclusion of both 

kinds of dummies decreased the homogeneity statistics by 10% to 

12% and a striking decrease of 46% to 57% for the symmetry 

condition. Even though there is such a large reduction, the demand 

condi t ions are sti l l s ignif icant ly rejected by the statist ics. 

Nevertheless, the inclusion of dummies is encouraging both in terms 

of the fitness of the models and the inference statistics. 

Another LR statistic is constructed to test for the joint 

significance of those dummy variables in the SUR system. The LR 
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formula is the same as the one reported in Chapter 4, except the 

unrestricted and restricted regressions are now referring to the 

models with and without dummy variables. The results are also 

given in Table 5.8, Table 5.9 and Table 5.10. The dummies are found 

to be signif icantly different from zero in every situation. Once 

again, this reinforced the importance of the dummy variables. 

Therefore it is apparent that it. is necessary to include both urban 

and island dummies in AIDS. 

5.1.3 Heteroscedasticitv Test 

Another possible source of misspecification is from the error 

component. As stated, one of the stochastic specifications of a 

classical model is that the error disturbance is distributed with 

constant but unknown variance, 

i.e. Var(e/X) = a^ j 

sometimes referred to as the sphericality assumption. If the 

disturbances do not have constant variance for each observation, 

they are said to be heteroscedastic. Applying OLS when the 

sphericality condition is violated will lead to inefficient but still 

unbiased parameter estimates. In addition, we are likely to obtain a 

biased estimator of the covariance matrix of the estimates which 

leads to mis leading stat is t ical inferences. Goldfeld and 
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Quandt(1972) provide a clear exposition of the likely effects and the 

possible detecting methods of heteroscedasticity (e.g. the Goldfeld 

and Quandt Test, the Ramsey Test and the Peak Test). Assuming a 

linear model in (5.1), there are two simple diagnostic procedures to 

test for the presence and source of heteroscedasticity and are 

discussed below. 

5.1.3.a A General LM Test for Heteroscedasticity 

Assume the variance of the error term is has the relationship 

It fo l lows that the LM test for an unspeci f ied form of 

heteroscedasticity as illustrated by McAleer and Deistler(1986) is 

calculated by regressing the squared OLS residual, e^^, on a 

constant and the source of error variance Z^ ' . If Y^ is used as a 

proxy to Zp the auxiliary regression becomes 

= a + yY^ + v^ 

which is similar to the variable addition approach. The LM test 

2 

statistic to test for y = 0 is obtained by multiplying the R^ from the 

auxil iary regression by the number of observations T and is 
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distributed as under the null hypothesis of homoscedasticity. 

Besides, the test statistic is, generally, robust to non-normality 

(Goldfeld, McAIeer & McKenzie[1986]). 

The test has been applied to each commodity equation in four 

different AIDS models, the maintained AIDS without any dummy 

variable, the AIDS with an urban dummy, AIDS with island dummies, 

and AIDS with both urban and island dummies. The results are given 

in Table 5.11. They show that a majority of the equations do have an 

heteroscedastic problem given that 11 of the 17 equations in the 

maintained model significantly rejected the null hypothesis of 

homoscedasticity. The situation is slightly worse after including 

the dummy variables. Thirteen equations imply heteroscedasticity 

when incorporating both urban and island dummies. In order to 

determine its source, another test statistic has to be used. 

5.1.3.b Breusch-Paaan Test: a Specific Test for Heteroscedasticity 

The LM test above is simple and general enough to compute, but 

the source of heteroscedasticity is still undetermined. If we have 

some idea about the nature of the variance, that is, if Z^ is known, 

we can then apply the Breusch-Pagan(1979) test. 

To calculate the test statistic 

- run OLS on the original model to obtain the estimated 
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variance of the model a^, and the squared residual e^^. 

- then run an auxiliary regression of (e^^/a^) on the suspected 

source of variance Z^ (with a constant term included). 

- the Breusch-Pagan LM test statistic is obtained by 

multiplying the explained sum of squares from the auxiliary 

regression by 1/2 with the statistic being distributed as 

% (q) under the null hypothesis where q is the number of Z^ 

(excluding the constant term). 

The suspected source in this case may come from some 

exogenous factors, such as the number of members in the household, 

the number of adults, total household income, total household 

expenditure, and the total expenditure on food items. The logarithm 

of each of the variables, signified respectively as LKTHH, LKTAH, 

LKTY, LKTE and LEXP, are tested separately in the four AIDS models. 

The results are given in Table 5.12, Table 5.13, Table 5.14 and Table 

5.15. For the maintained model (Table 5.12), heteroscedasticity 

present in the majority of the 17 equations in relating to LKTY, LKTE 

and LEXP. similar results are observed in Table 5.13, Table 5.14 and 

Table 5.15, reinforcing the finding that the possible sources of error 

variance are LKTY, LKTE and LEXP. 

Another source of heteroscedasticity is originated from the 
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nature of grouped data (Johnston[1983] and Kmenta[1971]). Since 

each observation in the study is a representative household in each 

geographical location (as was explained in Chapter 3), it is a 

grouped average of individuals' information. Suppose a regression 

model 

Vt = a + px^ + e^ t = 1, 2, ... n 

where e^ is homoscedastic. If the data have been averaged within G 

groups, where ng indicates the number of observations in the g'th 

group and g = 1, 2, ... G, then the appropriate model is 

yg= a + pxg + eg 

and clearly 

E( ig) = E[(1/ng)(e^g+e2g+... = 0 

and Var ( ig ) = +0^) = (nga2)/(ng2) = a^/ng 

It means that unless the number of observations is the same in 

every group, the disturbance for grouped data is heteroscedastic. 

Kmenta(1971) also demonstrates that by grouping the observations 

and estimating the regression coefficients from group means rather 

than from the individual observat ions, we are losing some 

information contained in the sample, namely the information about 

the variation of observations within each group. Therefore, there 
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would be some loss of efficiency in going from estimation based on 

all individual observations to estimation based on group means 

unless there is no variation of the values of X within each group. 

Further, the loss of efficiency will be small if the variation in X 

within group is small compared with the variation of the group 

means of X around the overall mean (Kmenta[1971]). This conclusion 

holds whether the groups contain the same number of observations 

or not. In other word, having groups of equal size would make eg 

homoscedastic but would not prevent a loss of efficiency as a result 

of grouping. 

Detecting the existence of heteroscedasticity in a system of 

equations is very difficult. Kelejian{1982) has proposed a large 

sample test if heteroscedasticity is associated with one or more 

equations in a linear simultaneous equations system (assuming the 

exact specification is unknown). The testing procedure is simple 

only if heteroscedasticity is presented in only one equation of the 

system. It involves two auxiliary regressions of the squared 

residuals on the source elements (which are assumed to be 

contained in the regressors), and on a single constant term. Suppose 

the concern for heteroscedasticity relates only to the i'th equation 

and the remaining equations are assumed to be trouble-free. 

Specifically, suppose that var(e^j) is a bound function of some or all 
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of the elements of the non-stochastic exogenous variables, say 

G(Xt ) . Suppose also that the exact specification of the function is 

not known, but that the approximation 

is considered, where P^j is a ( r q j ) vector of observable functions 

of the relevant elements of X .̂ Let RSSg' and RSSr ' be. respectively, 

the error sums of squares from the least squares regression of e^j^ 

on (1. P^j), and of e^j"^ on only the constant term. The large sample 

test for heteroscedasticity is 

Kj = [ - ( r ^ l S ^ ^ ) J (RSSp'-RSSe') 

which is distributed as x^(qi) . 

But if heteroscedasticity is suspected to be existed in more 

than one equation, the computation of the test statistic is very 

complicated. Generalizing, suppose only the disturbance terms in the 

first r equations are heteroscedastic. Suppose also that 

^ i j t ^ - ^ij + Pij t^i j ' ' 2 

where S denotes the set of r combinations considered and Pjj^ is a 

(1*qj j) vector of observations on q^ functions of the elements of 
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X^. Basical ly, the procedure will be to jointly estimate the 

parameter vector, ajj, say a' = (a'j^j.^ a^ j r ) . by a GLS procedure 

based on the estimated values of the squares and cross products of 

the corresponding disturbance terms, and then establish a large 

sample test for HQ by testing for a = 0. Let 

/ S 

Vt = [ (®t i1®t j l ) ' (®tiretjr) ] 

be an estimate of the covariances Under HQ, let 

E{¥t) = ^ 

/N / > /% 

and E[(vt-Tl)'(¥t-Tl)] = V ^ 

Also, let V ^ be any consistent estimator of V ^ , which is the 

covariance of Under HQ, one such estimator is 

/ > / > 

T 

where r| = + ... + ^ j ) / T 

The large sample test for heteroscedasticity is 

K = a' (PV'^P) a 

where a = (P-Vg-"" P)""'p-Vg-"" vec(v), 
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/ N 

v e c W = ). 

and P = cl iag(PiSjs). The test statistic K is distributed as ^ ^ ( h ) 

where h = (qj^j^ + - + ^ j r ) -

The calculation of the test statistic K is so inefficient and 

complicated that its feasibility is doubtful. 

5.1.3.C Weighted Least Square Procednre 

Wh i te (1980a ) po in ts out an impor tant aspect of 

cross-sectional surveys, which is that the stochastic regressors X^ 

and e^ are independent but not necessary identically distributed 

(i.n.i.d.). While the non-linear least square estimator is proved by 

Jennr ich(1969) to be strongly consistent and asymptotically 

normally distr ibuted, it is based on the condition that the 

stochastic regressors X^ and e^ are independent and identically 

distributed (i.i.d.). It is therefore important to ensure that these 

properties can be retained even under the condition of i.n.i.d.. 

White(1980a) suggests an estimated weighted least squares method 

and found that the estimators are both strongly consistent and 

asymptotically normal. The difficult question is how to correctly 
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specify the weights. 

White{1980a). implicitly assuming the source of error variance 

is known, suggests that partitioning the full data set into fixed 

finite number of cells, say Cj where j = 1, 2, .... J, for which the 

error variances differ, and follows. 

First, obtain a consistent estimate by solving 

min r ^ S Ŷ  . )2 

Secondly, consistently estimate Sjp 

= St^c j ( Y t - f ( X , , 9 n ) ) 2 

and let Wj^ = 1 / Sjn^ , t £ Cj, j = 1, 2, ..., J 

And finally, obtain the consistent estimated WLS estimator, by 

solv ing 

min r ^ I t ( ^t - f(Xt,9) )2 ŵ î 

Generally, as pointed out by White(1980a), the non-linear WLS 

will not be asymptotically efficient. But if the errors are normally 

distributed with zero mean and are independent of the regressors, 

the WLS becomes the Maximum Likelihood Estimator and is 

asymptot ical ly efficient. 

The question still remains of what criteria should one subset 
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the sample observations. This means the source of the error 

variance has to be identified before subsampling the full samples. In 

fact, this is the problem encountered given correction for 

heteroscedast ic i ty using the standard weighted least square 

procedure. 

Basically, the presence of heteroscedasticity in the error 

component is one of the phenomena of i.n.i.d.. If errors exhibit 

dif ferent variances across samples, their distributions are not 

identical. Hence, the suggestion by White(1980a) of using the 

weighted least squares method is not surprising. 

The simplest form of WLS estimation is as follows: 

Assume heteroscedasticity is presented in a linear model, 

Yt = X^p + et 

with the relationship 

E(et2) = a2 Z^ 

where Z^ is known and exogenous. Then divide every dependent and 

independent variables in the equation by the square root of Z^. 

Applying OLS to the transformed equation produces efficient 

estimates if the assumed form of heteroscedasticity is correct. It 

can be demonstrated as follows: 

Suppose Y^ = X^p + e^ where = a^Z^ 
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Then Y^/ (Z^1/2) = (x^/ (z^1/2)) . ^ ^ ^^ ^^^^^ ^^^ ^^^ 

Hence £(£^2) = z^) . * = (l/Z^) * a^Z^ = 

If heteroscedasticity results from several explanatory factors, 

then the correction of the procedure is as follows: 

(1) assume 

^ = aQ + a^Z^^ + ^^ ^ t2 

(2) calculate e^ = Y^ - X^p 

(3) regress = uq + a^Z^^ + 

(4) calculate = Sq + S^Z^i + 

(5) divide each observation by the weight which is the 

square root of and then apply the usual least squares 

procedure to the transformed model. 

From the earl ier Breusch-Pagan Test results and the 

Illustration by Johnston(1983) and Kmenta(1971), there is evidence 

to show that the possible explanatory factors of heteroscedasticity 

are LEXP, LKTY, LKTE and the inverse of the number of observations 

in each group, GHH. The reciprocal of their square roots are 

separately used to weight the two AIDS models. The first model is 
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the maintained AIDS model without any dummy variables. The second 

AIDS model includes both urban and island dummies. The weighted 

models are tested against heteroscedasticity using the general LM 

test statistics, and the results are presented in Table 5.16 and 5.17. 

From the results, it is obvious that the inverse of GHH is not the 

major cause of heteroscedasticity relative to income factors, LEXP, 

LKTY or LKTE. Among the three income factors, eleven equations in 

the weighted maintained model were characterised by rejection of 

the null hypothesis of homoscedasticity. Inclusion of dummies has 

only marginally improved the situation. Comparing the results with 

those in column two and column five of Table 5.10 (the unweighted 

models), it is clear that both weighted and unweighted results are 

almost identical. Generally, there is no major improvement in 

correcting heteroscedasticity in the use of the weighted approach. 

Also the results are invariant to the choice between the three 

weighting factors. 

The same weightings were then applied to two multivariate 

AIDS models, the maintained model, with and without the dummies. 

The inference results are recorded in Tables 5.18 and 5.19. Yet the 

demand conditions are strongly rejected. But it is important to 

compare the two tables with Tables 4.18 and 5.10 (the unweighted 

AIDS model excluding and including dummies), since this illustrates 
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the usefulness of the weighted approach and the dummies. 

Comparing Table 4.18 with Table 5.18, and Table 5.10 with 

Table 5.19, the effects of incorporating the weighting factors with 

reference to the multivariate models with and without dummies. 

There is a dramatic improvement in Theil's(1971) inaccuracy 

measures given that the corrected information inaccuracy values, 

IC, are sharply reduced by 67% to 70%. This means the performance 

of the models are significantly improved by using weighting factors, 

and the choice of the weights have been found to be unimportant. On 

the other hand, there is no improvement in the test statistics 

themselves. The test statistics for the within equation restriction, 

homogeneity, are only reduced by about 1% by excluding dummies and 

about 3% by including dummies, with the other statistics being 

increased by a small proportion (about 0.8%). This implies the 

weighting does not help when testing demand conditions. 

On the other hand, comparing Tables 4.18 with 5.10 (unweighted 

AIDS model with and without dummies), and Tables 5.18 with 5.19 

(weighted AIDS model with and without dummies) revealed a 

different story. While the corrected inaccuracy measures are 

improved by about 20% to 26%, the test statistics are also reduced. 

The homogeneity test statistics decreased by 12% to 14% and the 

others are reduced by a large magnitude, about 48% to 57%. This 
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leads us to the conclusion that while weighted factors have 

significantly improved the overall fit of the model, the inclusion of 

dummies has reduced the test statistics by a large proportion. Even 

so, all the demand conditions are rejected. Hence, the weighted AIDS 

model with urban and island dummy variables is preferred. The 

inaccuracy measures show that the weighting factor, the inverse of 

the square root of LKTY, is marginally superior to the other, and is 

therefore the preferred weight ing factor. Subsequent ly, the 

weighted AIDS model with urban and island dummies and weighting 

factor, the inverse of the square root of LKTY, is chosen as the new 

maintained model. 

The parameter estimates for the new maintained model are 

presented in Table 5.20. The associated own price and income 

elasticities of the model are shown in Table 5.21. Except chicken, 

milk and prepared food have (insignificant) positive own price 

elasticities, all own price elasticities are negative. Comparing the 

Table 5.21 with the results from the unweighted AIDS model in 

Table 4.19, we find that the results are fairly similar. The only 

difference is the signs of the own price elasticities of chicken and 

prepared food which are now positive (but insignificantly different 

from zero). Meat and legumes remained as inferior items but 

statistically insignificant. Rice, dried fish, egg, vegetable, fruit, 
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condiment, cooking oil and additives are necessities (statistically 

significant). The only luxury item which is statistically significant 

is milk. The substitution and income effects are given in Table 5.22. 

The negativity condition is satisfied but only three of the terms are 

significant. Among the 136 pairs of substitution coefficients, 68 

are consistent in sign, of which 52 are substitutes (only 3 are 

significant) and 16 are complements (all insignificant). 

The averaged information inaccuracies are calculated and 

reported in Table 5.23. Comparing with the results of the 

unweighted AIDS model in Table 4.21, there is obvious improvement 

after incorporating dummies and weighting factor. The joint 

significance tests for the urban and island dummies using the LR 

principle are recorded in Table 5.24. The test statistics, once again, 

confirm the joint significance of dummies in every situation. Size 

corrected statistics for the new maintained mode! are presented in 

Table 5.25. Even the size corrected test statistics are reduced, they 

are still far too large to accept the restrictions. 

5.1.4 Normalitv Test 

In a classical linear regression model 

Y = Xp + e 

Suppose this satisfies the four basic assumptions described early in 
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this chapter. Given normality, the OLS estimator is BLUE since it 

attains the Cramer-Rao bound. Unfortunately, the effects of 

departures from normality are not easily or clearly understood 

(Gnanadesikan[1977]). But, generally, the estimator will have poor 

efficiency and is no longer BLUE (White and MacDonald[1980]). 

Unlike the Maximum Likelihood Method, the Non-linear Least 

Squares Estimator does not require the errors to be normally 

distributed. But the Wald, LR, LM and GJ test statistics all require 

normality. Otherwise, the tests are, strictly speaking, invalid. 

As well, the diagnostic tests presented earlier assume the 

normality condition. Although RESET tests are found to be robust 

against a non-normal distribution, the LM tests, in general, are not 

part icular useful since they can be very unrel iable when 

disturbances are not normally distributed (Godfrey, McAleer and 

McKenzie[1986]). 

Basically, the classical method of evaluating univariate 

normality is by measuring skewness and kurtosis. The measures may 

be utilized individually or can be combined into an omnibus test 

stat ist ics. Gnanadesikan(1977) has briefly discussed several 

univariate normality test statistics while their properties are 

examined by White and MacDonald(1980) using simulation 

techniques. Jarque and Bera(1980)'s normality test, based on the 
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Lagrange Multiplier principle, will now be examined. 

Normal disturbances have the property that the third moment 

(mg) is zero and the forth moment (m4) about the mean is three 

times the square of the second moment, the variance (a^) . The 

normality hypothesis can be tested by considering the joint 

hypothesis 

mg = 0, 

and m^ - = 0 

in the system of SUR equations. 

The test statistic for normality derived by Jarque and 

Bera(1980) is given by 

LMN = { Y a ^ / e S ^ ^ . £ ^ 2 / 2 4 3 8 ) 

which is distributed as 

where 73 = r " " e^^, and 

Jarque and Bera's(1980) normality test is performed on each single 

equation of four different AIDS models, the unweighted and 

weighted models with and without dummies. The test results are 

reported in Table 5.26. Only one of the 17 equations, the budget 

share of tobacco, has satisfied totally the normality condition in 
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every model. 

Jarque and McKenz ie (1983) fo l lowed Mardia 's(1970) 

multivariate measures of skewness and kurtosis and suggested a 

mult ivariate normality test statistic which can be applied to 

simultaneous equations models. The statistic, denoted as JM, is 

calculated as follow, 

JM = T { b^/6 + [b2-n(n+2)]2/[8n*(n+2)] } 

b i = 1/T2 e - Q - ^ e p ^ 

b2 = 1 /T* Z i (e i ' a -1e i )2 

where n is the number of equations in the model, ej and ej are mean 

adjusted (n*1) residuals vector with i,j = 1, 2, ..., T, and n = 

Sj (e je j7T) . The JM test statistic is asymptotically distributed as 

X^(r) where r = [n*(n+1 )*(n+2)/6]+1. If n=1, JM would reduce to the 

univariate Jarque and Bera's LM test statistic. As pointed out by 

Jarque and McKen2ie(1983), the JM test has not been shown to 

satisfy any optimality condition. Therefore, its power properties 

are unknown. However, univariate techniques can also be used to 

eva lua te mu l t i va r ia te non-normal i ty . Gnanades ikan(1977) , 

Mardia(1980) and Jarque and McKenzie(1983) all claim that although 

marginal normality does not necessary imply joint normality, the 

presence of multivariate non-normality will be reflected by the 
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marginal distribution and is therefore likely to be detected by 

univariate techniques. Naturally when there is a need for tests that 

explicitly exploit the multivariate nature of the data so as to yield 

more conclusive analysis, statistics such as JM test statistic are 

required. But in this case, statistical results from the univariate 

Jarque and Bera's{1980) normality test suggest that the errors are 

multivariate non-normal. It is well known that violation of the 

normal i ty assumpt ion may lead to inaccurate inferencial 

statements, and hence, the inference results obtained should be 

exercised with care. In general, the RESET test and the LM test with 

* 2 

T*R principle are robust to non-normality (Godfrey, McAleer & 

McKenzie[1986]). 

5.2 Additivitv of Diagnostics 

Strictly speaking, the univariate heteroscedastic tests (the 

general LM and the Breusch-Pagan tests) discussed previously are 

incorrect in this case because they are, naturally, "one-directional 

tests". They have optimal properties only when all other standard 

under ly ing assumpt ions are sat isf ied. For example, the 

heteroscedastic residual tests explicitly assume the error to be 

normally distributed. Similarly, the Jarque-Bera's normality test 

assumes the presence of homoscedastic residuals. Most of the 
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uni-directional tests are designed to verify the validity of one 

particular specification at a time and are not. in general, robust in 

the presence of other misspecification. As noted by Bera and 

Jarque(1982). it is analytically difficult to examine the robustness 

of uni-directional tests when the required assumptions are violated. 

They examined the problem extensively using a simulation study and 

found that when fewer-directional tests are applied than actually 

required, inferences will not be reliable due to the lack of 

robustness of the smaller directional tests (Bera and Jarque named 

this phenomenon "undertesting"). Similarly, "overtesting" occurs 

when applying higher-directional tests than is required and may 

affect the power and the significance level of the tests. Simulation 

results reported by Bera and Jarque(1981) show that the 

consequences of overtesting are not very serious, whereas those of 

undertesting can lead to highly misleading results. Also, for 

one-directional tests, violation of maintained assumptions can lead 

to a loss of power, incorrect conclusions and inefficient testing 

procedures. 

The question now is: how are the uni-directional tests 

coordinated to reflect the multi-directional departures possible 

from the standard regression assumptions? One of the possible 

solution is to construct an omnibus test (e.g. a joint test) for all 
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specification errors deemed likely. The potential for simplification 

is that by assuming independence under the null hypothesis, 

uni-directional tests may be added to produce an omnibus test. 

Jarque and Bera{1980) and Bera and Jarque(1982) propose a LM 

p rocedu re to der ive e f f i c ien t jo in t test for normal i ty , 

homoscedast ic i ty and serial independence. The independence 

property of diagnostics is derived from the block diagonality of the 

inverse information matrix® (Pagan[1983] and Pagan and Hall[1983]). 

It is a multi-directional test and is simple to compute because of 

its "addi t ive" nature. The joint test itself, in fact, is the 

combination of the uni-directional tests and is distributed as x ^ 

with k degree of freedom where k is the sum of degrees of freedom 

from the uni-directional tests. Jarque and Bera{1980) claim that 

the test is asymptotically equivalent to the LR test and has 

maximum local power for large samples, and proposed a multiple 

comparison procedure (Bera and Jarque[1982]) to identify the 

sources of departure from the null. This test relies on the repetition 

of a random sampling process to derive empirical critical values 

which are then used to evaluate the statistics computed from the 

original data. This multiple comparison process is found to perform 

reasonably well in their study. 

But the simple solution of adding the diagnostic tests to form a 
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joint test on misspecif ication has not been utilized extensively, 

possibly because of the belief that the tests would not be 

independently distributed. As argued by Pagan and Hall(1983), " ... 

the major disadvantage to an examination of additivity properties 

through the information matrix resides in the fact that this quantity 

is based upon a set of specific distributional assumptions, and 

independence may therefore be reflecting nothing more than the 

chosen distribution". Pagan and Hall(1983) developed the conditions 

required for independence of diagnostic test statistics based on a 

residuals approach. Essentially, the tests can be separated into two 

blocks. The first one includes tests for misspecification, serial 

correlation and heteroscedasticity, while the second contains the 

normality test. Their finding is that the two blocks are always 

additive but additivity within the first block does not always hold. 

In a cross-sectional survey, serial independence must be 

satisfied. But if following Bera and Jarque's approach, to test 

he te roscedas t i c i t y and normal i ty , we should adopt a 

"two-directional" joint test, LM|_j[^, which is. 

LMhn = LMH + LMjvj 

and is distributed as LM|_| and LM^ refer to the Breusch-Pagan 

test of and Bera and Jarque Test of respectively. 
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Due to the fact that both one-directional tests all rejected the 

null hypothesis of homoscedasticity and normality, we expect the 

sanne findings from the joint tests. 

Since the normality condition is violated, the question arises 

is: to what extent is the rejection of demand theory due to the 

non-normal nature of the residuals? In order to answer the question, 

we have to construct a Monte-Carlo experiment, "Parametric 

Bootstrapping", a methodology to be discussed in the following 

chapter. 
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f o o t n o t e s 

1. Ass^^^^ption (3). is naturally satisfied in a cross-sectional 

2. I am grateful to Dr. M. McAleer for his helpful comment. 

3. I am thankful to Dr. R. Byron for this argument. 

4. The test was modified later by Ramsey and Schmidt(1976). 

5. As distinguished by Pagan(1983), three options can be used to 
test that a = 0. Two of them are now discussed. 

The first option is to fit the augmented model 

Y = Xp + Za + V 

and test a = 0 using the t or F statistic. 

The second option involves the subtraction of X(3, the predicted 
value, from both sides and yields a model 

Y - X p = S = X(3-p) + Za + v 
Then regress the above model and test if a = 0 using the t or F 
s ta t is t ic . 

Since the transition from the first to the second option only 
involves the subtraction of the same quantity from both sides, 
the estimator of a and the associated t or F statistic from the 

, models must be identical. Accordingly, both give identical 
answers to the hypothesis of a = 0. In this study, the second 
option is chosen when applying RESET tests. 

6. Indonesia is composed of six main groups of islands, but to 
avoid singularity, one of the six island dummies is redundant 
and is therefore excluded. 

7. The procedure is originated by White(1980) which involves 
regressing the squared OLS residuals from the estimation of 
the null model on the cross-products of the regressors. 

8. The block diagonality and subsequently the independence will 
fail in the presence of lagged dependent variable. 
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Table 5.1 
RESET Tfists on thft Maintained Ain.9 

Equation RESET2 RESET3 RESET23^ 

Rice/Grain - .362* - .358* .0660* 
Tubers 3.914^ 2.532^ 20.25 
Fish .2025* - .552* 5.976 
Dried fish -2.25 ^ -2.86 ^ 9.274 
Meat 1.481* 1.022* 3.264 
Chicken - .134* - .711* 3.663 
Egg 2.308 2.052* 3.200 
Milk 5.537-^ 5.554^ 15.85^ 
Vegetable 1.880* 1.867* 1.769* 
Legumes 5.967^ 4.107 31.86^ 
Fruit 1.812* 1.676* 2.636* 
Condiment 1.564* 1.648* 1.567* 
Cooking oil -2.63^ -2.72^ 3.963^ 
Additives -1 .29* -1.38* 1.888* 
Pre. food 14.22 14.50 114.4 
Alcohol 10.44^ 14.85^ 117.8^ 
Tobacco - .137* - .196* .1568* 

a. Distributed as F(2,403) 

Insignificantly different from zero at a = .05 
critical value for F{2,403) = 3.0181 
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Table 5.2 
Chow Te< t̂ for Pary^meter Cnn^^tanry 

for the Maintained AIDR 

Equation SSE(n+m) SSE(n) SSE(m) F(19,386) 

Rice/Grain .9672 .2159 .6259 3.027 
Tubers .1475 .0146 .1175 2.383 
Fish .5624 .1897 .3118 2.466 
Dried fish .2314 .0672 .1398 2.372 
Meat .1683 .0083 .0544 4.541 
Chicken .0403 .0215 .0155 

* • * 

1 .864 
Egg .0213 .0103 .0082 3.089 
Milk .0172 .0116 .0027 4.232 
Vegetable .1838 .0745 .0884 2.606 
Legumes .1022 .0367 .0513 3.280 
Fruit .0625 .0205 .0357 2.243 
Condiment .0453 .0201 .0227 1 . 2 0 4 " 
Cooking oil .0327 .0078 .0219 1.953 ^^ 
Addi t ive .2335 .0820 .1381 1 .238** 
Pre. food .5945 .3579 .1855 

* * * 

1.910^ 
Alcohol .0017 .0006 .0011 .7815* 
Tobacco .9959 .3416 .5803 

* * • 

1 .631 

n = samples in urban regions = 185 
m = samples in rural regions = 239 
number of parameters including constant = 19 

insignificantly different from zero at 10% 
insignificantly different from zero at 5% 

*** insignificantly different from zero at 1% 

critical values 
1.4526 
1.6154 
1.9529 
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Table 5.3 
Unrestricted and Rp^^trirtod E^timptinnc for thP Ain.q 

with re^nprt tn I irhan and Ri.r^i campi^c 

A. Urban Regions ( Sample = 185 ) 

Unrestricted HomoaenftitY 

Parameter 304 288 
Ob jec t i ve * ! 2656 
De t l l l 2.4817E-6 

Wald 
LR 
LM 

Log Likelihood 
Function 8859.61 

Homogeneity & 
Svmmetrv' Symmetry 

2672 2507.29 2519.6 
2.8664E-61 1.6078E-60 1.8143E-60 

73.8201 1022.46 1086.49 
61.1116 792.244 843.474 
50.2237 628.099 670.421 

8838.28 8761.12 8743.79 

= 239 ) 
Homogeneity & 

Homoaeneitv Symmetry Symmetry 

288 184 168 
3536 3232.56 3234.34 

1.4046E-61 8.7128E-61 1.3845E-60 

52.9343 1037.84 1322.03 
45.8800 819.710 1016.09 
39.6004 663.946 804.452 

Parameter 304 
Ob jec t i ve * ! 3520 
De t l l l 1.2605E-61 

Wald 
LR 
LM 

Log Likelihood 
Function 1 1482.24 1 1394.93 11461.30 11338.70 

Critical values : a 

* .1 23.54 140.23 157.52 
* * .05 26.29 146.57 164.22 
* * * .01 32.00 158.95 177.28 
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Table 5.4 
Multivariate Paramfttf:>r Coni^tanrY Tp<;t 

for the Maintained Ain.9 

Homogeneity & 
Unrestricted Homogeneity Symmetry Symmetry 

Log Likelihood 

L j (Total)^ 19648.30 19617.57 19512.1 1 19426.92 

Lg (Urban) 8859.61 8838.28 8761.12 8743.79 

Lh (Rural) 11482.24 1 1461.30 1 1394.93 1 1338.70 

AM Statistic 

- 2 ( L j - L g - L h ) 1387.09 1364.01 1287.88 1311.15 

degrees of freedom 440 424 320 304 

a. Calculated from Table 4.18 

213 [Chapters] 



Table 5.5 
RESET Tests for the AIDS with PiimmiPQ 

Equation Urban Island Urban & Island 
RESET2 RESET3 RESET2 RESET3 RESET2 RESET3 

Rice/Grain .458 .485 1.07^ .861 2.38* 2.20* 
Tubers 4.75 3.37 2.31* .641 3.10* 1.38 
Fish .212 -.55 -.10 -.53 -.13 -.56 
Dried fish -2 .1 -2 .7 -.36 ^ -.82 ^ -.05 ^ -.53 ^ 
Meat 3.29 3.40 3.68* 3.09* 4.81* 4.56* 
Chicken -.02 ^ -.05 ^ 1.77^ .844^ 1.78^ .968^ 
Egg 2.39* 2.24* 3.01* 2.59* 3.24* 2.90* 
Milk 5.82* 5.94* 6.45* 6.21* 7.07* 7.28* 
Vegetable 1.98 1.97 -2 .1* -1.9 ^ -2.0 -1.8 
Legumes 5.85 3.87 3.84^ 3.13* 4.26^ 3.40^ 
Fruit 1.77 1.65 2.83* 2.86* 2.68* 2.61* 
Condiment 1.68 1.74^ 1.91^ 1.98^ 1.78^ 1.84^ 
Cooking oil -2 .7* -2 .9* -4 .4* -4 .3* -4.4* -4 .4* 
Addit ive -1.8 ^ -1.9 ^ .298^ .139^ -.14 -.31 
Pre. food 14.6* 15.0* 14.6* 14.3* 15.3 15.3 
Alcohol 10.2* 14.3* 11.7* 12.2* 11.6 12.2 
Tobacco -.28 -.35 -.61 -.74 -.62 -.76 

significantly different from zero at 5% 
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Table 5.6 
R-gqu^rg vSratiStics fnr Models With and Withnnt n.immioc 

No Urban Island Urban & Ij 
Equation Dummy Dummy Dummies Dummie 

1 .5316 .5610 .6177 .6431 
2 .2507 .2654 .3654 .3775 
3 .5409 .5409 .6981 .6983 
4 .3653 .3849 .4326 .4430 
5 .3043 .3934 .4676 .5218 
6 .2197 .2410 .3095 .3202 
7 .4561 .4793 .4769 .4970 
8 .3934 .4522 .4202 .4732 
9 .2362 .2377 .4377 .4382 
10 .6364 .6572 .7488 .7637 
11 .2046 .2103 .2680 .2696 
12 .3252 .3313 .3441 .3483 
13 .2698 .2779 .3242 .3317 
14 .2701 .2801 .3119 .3239 
15 .2690 .2705 .3045 .3082 
16 .1508 .1513 .2094 .2100 
17 .3092 .3099 .3939 .3943 
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Table 5.7 
Joint Sionificancp T^sts for thP 

Inclusion of Dummips in thft Ain.9 

Equation 
Urban 
F(1,404) 

Island 
F(5,400) 

Urban & Island 
F(6,399) 

Rice/Grain 27.06 18.02 20.78 
Tubers 8.043 14.46 13.55 
Fish 0.000 41.66 34.69 
Dried fish 12.87 9.489 9.277 
Meat 59.34 24.54 30.25 
Chicken 11.34 10.40 9.831 
Egg 18.00 3.181 5.407 
Milk 43.36^ 3.698 10.07 
Vegetable .7950* 28.67 23.91 
Legumes 26.63 ^^ 36.37 36.33 
Fruit 2.916^** 6.929^ 5.918 
Condiment 3.685** 2.305** 2.357 
Cooking oil 

# • • 
4 .532 6.440 6.159 

Addit ive 
• * # 5.612^ 4.860 5.292 

Pre. food .8307* 4.083 3.768 
Alcohol .2380* 5.930 4.983 
Tobacco .4098* 11.18 9.343 

insignificantly different from zero at 10% 
insignificantly different from zero at 5% 

insignificantly different from zero at 1% 

Critical values 

a 0.1 
0.05 
0.01 

Ff1.404) 
2.7181 
3.8645 
6.7002 

Ff5.400) 
1.8942 
2.2677 
3.0803 

Ff6.3991 
1.8096 
2.1407 
2.8556 
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Table 5.8 
Estimations of thP Ainc; with i irhnn ni.mmy 

Unrestricted Homogeneity Symmetry 
Homogeneity & 

Symmetry 

Parameter 320 304 200 184 
Objective *T 6460.00 6480.00 6015.53 6027.27 
DetiS 1.5933E-60 1.7897E-60 7.8269E-60 1.0795E-59 

Informat ion 
Inaccuracy 

I * 1000 59.21 60.02 73.48 72.25 
IC * 1000 391.48 397.06 416.43 , 420.65 

Asy. Test for 
restriction 

Wald - - - 54.56 806.53 979.87 
LR — 49.29 674.90 811.23 
LM - - - 44.53 573.92 682.78 
GJ — 72.11 796.90 949.19 
Degrees of freedom — 16 120 136 

Joint Test for dummies 
LR 132.78 128.94 199.14 220.73 
Degrees of freedom 16 16 16 16 

Critical values : 
a v 2 X (16) 

v 2 
^ (136) 

0.1 23.54 140.23 157.52 
0.05 26.30 146.57 164.22 
0.01 32.00 158.95 177.28 
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Table 5.9 
Estimations of thR Ain.q with I.^IppH Pummift.g 

Unrestricted Homogeneity Symmetry 
Homogeneity & 

Symmetry 

Parameter 
Objective 
Det 2 

384 
6400.00 
3.6671 E-61 

368 
6416.00 
4.0448E-61 

264 248 
6052.72 6047.89 
9.6244E-61 1.2463E-60 

Information 
Inaccuracy 

1 * 1000 
IC * 1000 

50.59 
319.09 

51.70 
329.46 

57.85 
332.24 

56.71 
• 339.35 

Asy. Test for 
restriction 
Wald 
LR 
LM 
GJ 
Degrees of freedom ---

45.67 
41.57 
37.83 
59.19 
16 

478.32 
409.12 
355.71 
522.23 
120 

613.54 
518.72 
446.14 
623.57 
136 

Joint Test for dummies 
LR 755.63 
Degrees of freedom 80 

759.52 
80 

1087.79 
80 

1136.10 
80 

Critical values : 
a v2 

^ (80) 
v2 X (16) v2 

^ (120) ^ (136) 

0.1 
0.05 
0.01 

96.58 
101.88 
112.33 

23.54 
26.30 
32.00 

140.23 
146.57 
158.95 

157.52 
164.22 
177.28 
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Table 5.10 
Estimations of the AIDS with Urban & Island DummiP':^ 

Unrestricted 
Homogeneity & 

Homogeneity Symmetry Symmetry 

Parameter 
Objective *T 
Det 121 

400 384 280 264 
6384.00 6400.00 6058.25 6044.62 
2.8380E-61 3.1199E-61 6.3767E-61 7.7416E-61 

Informat ion 
Inaccuracy 

I * 1000 
IC * 1000 

49.72 
319.54 

50.48 
323.74 

55.93 
326.90 

54.67 
333.46 

Asy. X Test for 
restriction 
Wald 
LR 
[M 
GJ 
Degrees of freedom 

44.04 382.84 477.77 
40.15 343.25 425.48 
36.58 309.90 381.35 
57.55 461.14 548.55 
16 120 136 

Joint Test for dummies 
LR 864.30 869.60 ' 1262.33 1337.99 
Degrees of freedom 96 96 96 96 

Critical values 
a 

0.1 
0.05 
0.01 

v2 ^ (96) 

114.13 
119.81 
131.14 

23.54 
26.30 
32.00 

140.23 
146.57 
158.95 

v2 ^ (136) 

157.52 
164.22 
177.28 
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Table 5.11 
The General LM T^st for Hfiterosced?^<;tirity 

for the Unrestricted Ain.9 

Equation 
No 

Dummy 
Urban 
Dummy 

Island Urban & Island 
Dummies Dummies 

Rice/Grain 18.57 18.06 15.90 12.89 
Tubers 28.96 32.56 65.38 59.87 
Fish 23.24 23.24 32.44 32.56 
Dried fish 12.68 13.48 7.844 8.353 
Meat 27.31 29.55 44.94 42.19 
Chicken 15.39 

ir ir it 
18.02 ^^^ 28.87 ^^^ 32.01 

Egg 4 .706 5 .639 * * * 6 .233* * * • 6.954 
Milk 11.74^ 12.68^ 12.72 ^^^ 13.06 
Vegetable 0.000* .0424* 5 .003* * * 4 .876 
Legumes 12.04^ 13.78 25.95 26.12 
Fruit .1224* 3 .731** 8.098^ 8.353^ 
Condiment 1.611* 1.738* 1.314* 1.569^ 
Cooking oil 1.654* 1.738* 0.000* o.ooo' 
Addit ive .0424* .2968* .1272* o.ooo' 
Pre. food 80.26 79.50 88.36 87.22 
Alcohol 35.70 35.62 44.73 45.33 
Tobacco 15.31 15.56 26.08 25.91 

insignificantly different from zero at 10% 
insignificantly different from zero at 5% 

insignificantly different from zero at 1% 

critical values 
2.706 
3.841 
6.635 
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Table 5.12 
Breusch-Paoan for Soenifir Heterosnfida<;tiritY 

for the MaintainpH AinQ 

LKTHH LKTAH LKTY LKIb 1 FXP 

Rice/Grain 1.626* 9.039^ 9.630 22.50 12.39 
Tubers .0351 .0416* 131.8^ 83.94^ 34.29 
Fish . 9.045 

it it it 
2.371* .1856* .6461* 1.649' 

Dried fish 4 . 6 2 6 7.771 
* * 

6 .476 9.088 2.639 
Meat 23.32 25.08^ 21.67 ^ 22.70 28.24 
Chicken .0965 1.059* 5 .976* * * 9.813 7.899 
Egg .0003 1.098* 

* * • 

4 .759 6.756 2.032 
Milk 18.64 7.863^ 62.77^ 97.61 ^ 21.29 
Vegetable .2188^ .7337* .2292* .2623* .9857 
Legumes 2.263* .2596* 22.56^ 18.66^ 24.84 
Fruit .3273*^^^ .1600* .4203* .0529* 3.099 
Condiment 6 .621 *** 7.669^ 1.846*^^^ 1.140* 1.401 
Cooking oil 3 .117** .1312* 5 .305* * * 7.314 1.395 
Additive 2.133* 2.536* 2 .902** 6.766 2.138 
Pre. food 2.102* 2.542* 21.35 36.05 48.16 
Alcohol 78.99^ 

it it it 

5.704^ 19.89^ 37.36^ 94.30 
Tobacco 2.103* 2.356* 1.448* 1.632* .0877 

insignificantly different from zero at 10% 
insignificantly different from zero at 5% 

insignificantly different from zero at 1% 

critical values 
2.706 
3.841 
6.635 
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Table 5.13 
Breusch-Paaan T^st for Soedfir Hetern.qnftHa<;tiritY 

for the orininal AIDS with Urban Dummy 

LKTHH LKTAH LKTY LKTE 1 FXP 

Rice/Grain .6927* 7.477^ 8.197 21.19 11.94 
Tubers .0877 .0959* 133.2^ 88.48^ 36.48 
Fish 8.976 

* # 
2.335* .1856* .6445* 1.639' 

Dried fish 4 . 1 2 4 8.409 7.340 10.65 2.905 
Meat 21.27 25.98^ 17.79 22.44 25.81 
Chicken .1620 .9181* 

ir It it 

5 . 5 7 4 9.238 6.892 
Egg .0008 1.167* • 8.228 10.15 4 .303 
Milk 21.21 9.184^ 79.34^ 112.3^ 19.96 
Vegetable .2451 

ir # 
.6444* .3795* .4164* 1.235' 

Legumes 2.929^ 1.508* 22.44^ 21.08^ 26.81 
Fruit .5981* .0417* .6205* .0576* 3.286 
Condiment 6.911 ^^ 6.985^ 2.098* 1.282* 1.711' 
Cooking oil 3 .196** .1449*^ 

* * * 5.012^^ 7.793 1.590' 
Additive 2 .958** 2.913** 2 .821** 6.657 2.019' 
Pre. food 2.505* 2 .894**^ 20.18 34.21 46.81 
Alcohol 79.01 ^ 5.553^*** 19.36^ 36.88^ 93.45 
Tobacco 2.210* 2.566* 1.082* 1.651* .0994' 

* * 

insignificantly different from zero at 10% 
insignificantly different from zero at 5% 
insignificantly different from zero at 1% 

critical values 
2.706 
3.841 
6.635 
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Table 5.14 
Brggggh-P^qan Test for Sp^nifir HQterQsrftrta.<^tiritY 

for the orininal AIDS with l.glgnd DummiP.g 

LXTHH LKTAH LKTY LKTE 1 FXP 

Rice/Grain 2 .486* 
* * * 

4 . 8 1 9 10.13 21.98 14.81 
Tubers .5885 

it 
.1393* 150.5^ 108.5^ 63.79 

Fish 1 .154 
•k it it 

.6370* .7164* 1.302* 1.540 
Dried fish 6 . 4 5 6 9.937 13.40 20.68 12.12 
Meat 12.27 

if 7.197 ^^ 10.34 ^^^ 11.59 18.66 
Chicken .0083 

if 2 .849* * 6 . 3 2 0 * * * 11.12 9.457 
Egg .1479 .2068* 

* • * 
4 . 1 9 6 

* * * 
6 . 0 1 7 2.348 

Milk 19.96 
if 9.294^ 60.19^ 86.78^ 16.18 

Vegetable 1.328 
if if if 

.0180* .5098* .0821* .1537 
Legumes 6.371^ 1.769* 43.76 32.72^ 43.04 
Fruit .3697* .2151* .8635] .0018* 1.264 
Condiment 8.458 ^^ 9.673^ 1.879*^^^ 1.063* .9495 
Cooking oil 2 . 8 5 7 * * 1.071* 4 . 4 4 0 * * * 

• • * 
6.554^^^ 1.554 

Addit ive 1 .704* 2 .240* 2 .862* * 5 . 4 6 9 * * * 1.747 
Pre. food 1.341* .8824* 19.92 34.60 45.53 
Alcohol 86.88^ 10.72^ 13.47^ 28.07^ 76.34 
Tobacco .7227* 1.318* 1.817* 1.946* .0224 

insignificantly different from zero at 10% 
insignificantly different from zero at 5% 
insignificantly different from zero at 1% 

critical values 
2.706 
3.841 
6.635 
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Table 5.15 
Breusch-Paoan Test for Soenifin Heterosppriagtirity 
for the original Ain.q with Urban ^nH island niimmip<; 

LXTHH LKTAH LKTY LKTE 1 FXP 

Rice/Grain 1.598* 
* * * 

4 . 3 9 7 8.976 20.04 13.79 
Tubers 1.696 .4160* 157.4 117.2^ 69.87^ 
Fish 1.146 

it ir ir 
.5566* .6718* 1.296* 1.526* 

Dried fish 5 . 6 6 9 9.804 12.91 20.42 10.94 
Meat 13.18 

if 
10.97^ 10.28 ^^^ 14.38 19.85 

Chicken .0003 2 .361* 6 . 2 9 9 * * * 10.91 8.744 
Egg .0360 .2898* 6.784 8.575 

* * * 

4 .320 
Milk 19.48 9.024^ 74.34^ 99.52^ 15.90^ 
Vegetable 1.304 .0174*^^^ .6076* .1131* .1211* 
Legumes 8.242 3.966^*** 48.91 ^ 38.16^ 47.16^ 
Fruit .4775 .0038* 1.012* .0013* 1.338* 
Condiment 8.883 ^^ 9.293^ 2.057*^^^ 1.214* 1.241* 
Cooking oil 2 .767* * •>•243*^ 4 . 0 6 2 * * * 6.681 1.572* 
Addit ive 2.619^ 2 .799* * 2.587* 5 . 3 5 7 * * * 1.655* 
Pre. food 1.943* 1 .269* 18.39 31.61 43.34 
Alcohol 86.76^ 10.54^ 13.13^ 27.85^ 75.76^ 
Tobacco .7722* 1.456* 1.836* 2.017* .0209* 

insignificantly different from zero at 10% 
insignificantly different from zero at 5% 
insignificantly different from zero at 1% 

critical values 
2.706 
3.841 
6.635 
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Table 5.16 
General LM Test for Heterosnfiriaf^tirity 

for the Weighted AIDS Model without Dummy V^^riahiPQ 

Equation 
Wgt = 

Sqrt(GHH) 
Wgt = Inv 

(Sqrt(LEXP)) 
Wgt = Inv 

(Sqrt(LKTY)) 
Wgt = Inv 
(Sqrt(LKTE)) 

Rice/Grain 52.15 20.77 21.33 21.45 
Tubers 38.80 29.43 30.74 29.93 
Fish 30.49 23.19 23.74 23.66 
Dried fish 39.47 13.14 13.48 13.53 
Meat 49.52 26.71 27.60 27.43 
Chicken 33.67 15.35 ^^^ 15.22 15.31 
Egg 10.43 ^^^ 4 .664* * * 

* * * 

4 .325 
* * * 

4.070 
Milk 5 .470* * * 11.62^ 11.28^ 11.07^ 
Vegetable 35.79 .0424* .0424* .0424* 
Legumes 50.29 13.69 13.40 13.40 
Fruit 12.97 3 .774** 

* • • 

4 .579 
• * * 

4.409 
Condiment 12.97 2.205*^ 2.035*^ 2.035*^ 
Cooking oil 14.71 1.145* 1.272* 1.145* 
Addit ive 11.41 .2968* .2544* .3816* 
Pre. food 109.6 78.48 79.25 78.86 
Alcohol 43.42 34.34 35.49 34.98 
Tobacco 44.52 14.59 15.14 15.56 

* 

* * insignificantly different from zero at 10% 
insignificantly different from zero at 5% 
insignificantly different from zero at 1% 

critical values 
2.706 
3.841 
6.635 
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Table 5.17 
General LM Test for HeteroscRdasticitv 

for the Weighted AIDS Model with Urban and Islands Dummy V^^jriahlpg 

Equation 
Wgt= Wgt = Inv Wgt = Inv Wgt = Inv 

Sqrt(GHH) (Sqrt(LEXP)) (Sqrt(LKTY)) (Sqrt(LKTE)) 

Rice/Grain 39.26 20.73 21.07 21.07 
Tubers 44.44 60.21 63.35 61.65 
Fish 29.47 33.16 33.75 33.84 
Dried fish 25.82 10.90 11.02 11.28 
Meat 51.52 40.28 41.00 40.83 
Chicken 45.79 29.68 29.04 29.55 
Egg 7.166 

ii ir it 
6.700 

• * • 

6 .275 6 .106 
Milk 6 .106 12.25 ^^ 12.08 ^^^ 11.91 
Vegetable 39.56 3 .816** 4 .070* * * 4 .155 
Legumes 80.05 28.70 28.24 28.45 
Fruit 28.92 6.911^ 8.056 7.590^ 
Condiment 13.61 2.374*^ 2.247*^ 2.290* 
Cooking oil 12.68 .0424* .0424* .0424' 
Addit ive 12.97 .0848* .0424* .1272' 
Pre. food 119.74 44.31 43.71 43.59 
Alcohol 47.45 44.22 45.54 45.07 
Tobacco 55.08 13.36 14.08 14.33 

insignificantly different from zero at 10% 
insignificantly different from zero at 5% 
insignificantly different from zero at 1% 

critical values 
2.706 
3.841 
6.635 
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Table 5.18 
Estimations of the Weighted AIDS without niimmip<; 

Unrestricted 
Homogeneity & 

Homogeneity Symmetry Symmetry 

A. W e i Q h t = l n v ( S a r t f L E X P ^ ^ 
Information Inaccuracy 

IC 
1000 

* 1000 
20.08 
133.36 

20.27 
135.01 

25.53 
144.01 

25.24 
147.26 

Asy. X Tests 
Wald 
LR 
LM 
GJ 

48.97 
44.47 
40.38 
62.89 

907.36 
746.18 
625.90 
858.39 

1123.07 
903.20 
743.66 
1037.65 

B. W e i a h t = l n v f S a r t ( L K T Y ^ > 
Information Inaccuracy 

I * 
IC 

1000 
* 1000 

18.11 
120.80 

18.28 
122.33 

23.07 
130.55 

22.92 
133.47 

Asy. X Tests 
Wald 
LR 
LM 
GJ 

50.03 
45.39 
41.18 
63.90 

907.22 
746.63 
626.72 
859.63 

1123.88 
904.36 
744.98 
1039.53 

C. WeiQht = l n v f S q r t ( L K T E ) ) 
Information Inaccuracy 

IC 
1000 

* 1000 
18.38 
121.91 

18.10 
123.44 

23.33 
131.67 

23.12 
134.61 

Asy. Tests 
Wald 
LR 
IM 
GJ 

49.44 
44.89 
40.74 
63.35 

907.88 
746.83 
626.67 
859.22 

1124.82 
904.86 
745.28 
1038.85 
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Table 5.19 
Estimations of the Weighted AIDS with Urban ^nd Island Dummiftf^ 

Unrestricted 
Homogeneity & 

Homogeneity Symmetry Symmetry 

A. We iah t= lnv (Sar t fLEXP)^ 
Information Inaccuracy 

I * 1000 16.49 
IC * 1000 104.90 

16.80 
106.22 

18.51 
107.25 

18.09 
109.39 

Asy. X Tests 
Wald 
LR 
LM 
GJ 

42.59 
38.88 
35.46 
56.18 

383.89 
343.96 
310.35 
462.13 

477.75 
425.23 
380.94 
548.92 

B. Weiaht = i n v ( S a r t f L K T Y n 
Information Inaccuracy 

I * 1000 14.88 
IC * 1000 95.12 

15.22 
96.34 

16.82 
97.42 

16.35 
99.33 

Asy. X Tests 
Wald 
LR 
\ M 

GJ 

43.76 
39.90 
36.36 
57.28 

387.85 
347.19 
313.02 
465.32 

482.06 
428.61 
383.63 
552.49 

C. We iqh t= lnv fSqr t fLKTE) ) 
Information Inaccuracy 

I * 1000 15.01 
IC * 1000 95.82 

15.35 
97.03 

16.93 
98.09 

16.48 
100.16 

Asy. x^ Tests 
Wald 
LR 
LM 
GJ 

42.83 
39.08 
35.64 
56.41 

385.26 
345.14 
311.38 
462.99 

479.24 
426.46 
381.99 
549.95 
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Table 5.20 
Unrestricted Almost Irieal Dftmanri •qY<;tPm  

With Weighting Factor InvfSortrLKTY^^ l l rh^n and l.c l̂̂ nH ni.mmipc 

Rice/Grain Tubers 
W2 

Fish 
W3 

Dried Fish 
W4 

Constant 
Urban 
Island 1 
Island 2 
Island 3 
Island 4 
Island 5 
In p^ 

1.239(10.3) 
- .032(5.34) 
.0911(5.80) 
.0464(2.73) 
.1003(5.75) 
.0480(3.09) 
.0652(4.13) 
.0050(.210) 

.1560(3.22) 
- .007(2.73) 
- .051(7.80) 
- .050(7.06) 
- .053(7.32) 
- .048(7.52) 
- .047(7.22) 
.0194(1.98) 

.3096(3.65) 

.0023(.540) 
- .067(6.06) 
- .107(8.90) 
- .084(6.78) 
- .048(4.42) 
- .013(1.18) 
- .089(5.32) 

.1180(1.87) 
-.009(2.75) 
.0355(4.31) 
.0296(3.31) 
.0176(1.92) 
.0456(5.60) 
.0314(3.78) 
-.017(1.37) 

In P2 - .013(1.90) .0037(1.26) .0071(1.43) -.004(1.24) 
In P3 .0153(1.67) - .013(3.42) - .013(1.98) .0190(3.95) 
In P4 - .017(3.07) -7.8E-4(.34) .0187(4.73) .0254(8.62) 
In P5 - .012(1.23) - .003(.680) .0042(.620) -.002(.380) 
In pg .0133(1.34) -2.2E-4(.05) .0054(.770) .0014(.260) 
In py .0201(1.31) - .007(1.10) .0156(1.44) .0144(1.79) 
In Pg - .015(1.49) .0014(.330) -8.9E-4(.13) -.012(2.31) 
In Pg - .038(2.65) - .010(1.79) .0329(3.26) .0044(.580) 

'n Pio - .006( .490) - .014(3.07) .0251(3.17) .0071(1.20) 
In p^^ - .001( .130) - .003(.800) - .002(.350) -.008(1.52) 
In p^2 - .036(3.94) - .011(2.95) - .012(1.85) -.010(2.19) 
In p^3 - .003( .160) .001 6(.200) - .012(.860) -.027(2.59) 

In p^4 .0234(2.01) .0055(1.14) - .048(5.84) -.001(.170) 
In - .009(1.31) .0086(3.14) .0021 (.450) .0032(.900) 

Pi 6 .0170(2.07) .0005(.160) - .003(.510) -.006(1.41) 

In - .010(1.80) .0011(.480) .0040(.980) .0064(2.13) 

Income Ratio - .118(10.2) - .007(1.49) - .013(1.59) -.005(.820) 
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Table 5.20 (continued) 
Unrestr icted Almost Ideal Dpmgnd System  

With Weighting Factor lnv(SQrtrLKTY^^ Prban and l.»;lpnd DummiP«; 

Meat 
W5 

Chicken 
Wq 

Egg 
Wy 

Milk 
W3 

Constant 
Urban 
Island 1 
Island 2 
Island 3 
Island 4 
Island 5 
In p^ 

.0887(1.88) 

.0160(6.73) 

.0021 (.340) 

.0049(.740) 

.0402(5.86) 

.0024(.390) 

.0048(.770) 

.0343(3.69) 

.0211( .810) 

.0033(2.51) 
- .002( .480) 
- .001( .390) 
.0127(3.35) 
.0024(.700) 
.0014(.410) 
.0065(1.27) 

- .002( .080) 
.0040(4.07) 
.0028(1.13) 
.0030(1.09) 
.0065(2.29) 
.0052(2.07) 
.0020(.800) 
.0043(1.12) 

- .023(1.39) 
.0054(6.42) 
- .001(.650) 
- .002(.700) 
- .004(1.67) 
- .005(2.19) 
-5.1E-4( .23) 
.0095(2.88) 

In P2 .0060(2.19) .0041(2.73) .0041(3.65) .0007(.690) 
In P3 .0053(1.48) .0051(2.57) .0055(3.69) .0006(.450) 

In P4 .0032(1.47) .0013(1.07) - .001(1 .11) .0007(.860) 

In P5 .0016(.420) .0025(1.22) .0037(2.39) .0016(1.19) 

In Pq .0059(1.53) .0078(3.64) - .001( .690) -3.3E-4(.24) 

In py - .017(2 .77) - .007(2 .12) - .008(3.1 1) - .005(2.10) 

In pg .0023(.590) .0011(.490) .0017(1.06) .0072(5.12) 

In Pg .0038(.670) - .005(1 .70) .0012(.520) .0048(2.40) 

In P io - .006(1 .34) - .003(1 .13) -3 .5E-4( .20) -7.1E-4( .45) 

In p^^ - .002( .410) .0006(.260) .0031(1.89) -7.4E-4( .52) 

In p ^ 2 .0044(1.24) - .002(1 .07) .0013(.900) .0036(2.83) 

In p ^ 3 - .016(2 .10) - .005(1 .06) .0011(.360) -1.1E-4( .04) 

In P i 4 .0194(4.25) .0038(1.50) .0002(.100) .0031(1.89) 

In - .001( .400) .0023(1.60) .0003(.320) -5.8E-4( .63) 

Pi 6 .0032(.990) - .002(1 .12) - .001( .800) -6 .8E-4( .59) 

In p ^ y - .002( .700) - .002(1 .64) - .005(5 .16) - .002(2.27) 

Income Ratio - .014(3 .10) - .0051(2 .02) - .002(1 .00) .0001(.090) 
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Table 5.20 (continued) 
Unrestricted Almn<;t ideal n^mand Sv.qtem 

With Weighting Factor InvfSortfLKTY^^ Urban and inland Dummie«^ 

Vegetable Legumes Fruit Condiment 
W g ^10 ^11 ^12 

Constant .2114(4.12) .1467(4.06) .1299(3.89) .0729(2.50) 
Urban .0013(.520) .0091(4.98) .0015(.890) -.002(1.58) 
Island 1 -.003(.400) -8.7E-4(.18) -.017(3.67) .0023(.590) 
Island 2 -.034(4.70) .0263(5.14) -.015(3.21) .0038(.930) 
Island 3 -.024(3.16) .0002(.050) -.009(1.87) -.002(.380) 
Island 4 -.037(5.57) .0004(.100) -.021(4.89) -.001(.360) 
Island 5 -.034(5.05) -.008(1.62) , -.009(2.13) -.004(.920) 
In p̂  .0263(2.60) .0134(1.89) .0147(2.23) ' -.005(.950) 
In P2 .0077(2.58) .0020(.970) .0058(2.98) .0021(1.26) 
In P3 .0051(1.31) -.006(2.28) .0009(.350) -.002(1.12) 

•n P4 -.013(5.29) -.004(2.14) .0009(.610) -.003(2.43) 
In P5 -.005(1.17) .0012(.430) -.008(3.07) -.003(1.29) 
In pg -.003(.600) .0029(.980) .0042(1.52) .0020(.830) 
In py -.004(.610) -.019(4.03) -.004(1.05) -.003(.880) 
In pg .0042(.990) -.002(.580) -.002(.700) -8.2E-5(.03) 
In Pg .0070(1.15) -.002(.500) .0052(1.32) -.002(.470) 

P io -.004(.810) -.006(1.86) -.004(1.32) -6.9E-4(.25) 
In p^^ .0050(1.17) .0015(.490) .0051(1.80) -.004(1.55) 

In p^2 .0136(3.50) .0116(4.25) .0054(2.15) .0178(8.07) 

In p^3 -.011(1.34) .0054(.900) -.003(.600) .0061(1.27) 

In P i4 .0015(.310) -.004(1.10) -.004(1.39) -.005(1.69) 

In -.005(1.63) -.003(1.35) -9.5E-4(.52) .0026(1.60) 

In Pi6 .0004(.120) -.001 (.440) -.002(1.03) .0015(.750) 

In -.004(1.75) -.009(5.34) -.004(2.28) -8.2E-4(.59) 

Income Ratio -.011(2.31) -.016(4.47) -.0078(2.40) -.004(1.28) 
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Table 5.20 (continued) 
Unrestricted Almost Ideal Demand System 

With Weighting Factor InvfSartfLKTYlV Urban and Island Dummies 

Cooking Oil Additives Pre. Food Alcohol 
^13 w i 4 ^15 ^ 1 6 

Constant 
Urban 
Island 1 
Island 2 
Island 3 
island 4 
Island 5 
In p^ 

.0834(3.45) 

.0026(2.15) 
-.004(1.30) 
-8.8E-5(.03) 
-.009(2.67) 
-.008(2.66) 
-.006(2.01) 
.0158(3.31) 

.1952(3.01) 

.0088(2.68) 

.0088(1.04) 

.0146(1.59) 
- .001(.120) 
.0266(3.18) 
.0128(1.49) 
.0120(.940) 

-.947(9.12) 
-.007(1.38) 
-.025(1.87) 
.0049(.330) 
-.009(.590) 
-.012(.920) 
-.020(1.44) 
-4.4E-4(.02) 

.0005(.080) 

.0001 (.530) 
-.003(3.48) 
-.003(3.82) 
-.003(3.37) 
-.004(5.21) 
-.003(3.97) 
-.003(2.72) 

In P2 .0032(2.25) -.003(.830) .0077(1.28) -6.5E-4(2.0) 
In P3 -.003(1.70) -.019(3.98) .0109(1.37) .0006(1.31) 
In P4 -.004(3.90) -.004(1.48) -.005(1.1 1) .0001 (.390) 
In P5 .0021(1.10) -.008(1.54) .0118(1.43) -8.5E-4(1.9) 
In pg -.007(3.39) -.002(.350) -.017(2.04) .0012(2.66) 
In p j -.004(1.29) -.014(1.74) -.030(2.28) .0022(3.11) 
In Pg .0009(.470) .0054(.990) .0080(.930) .0008(1.72) 
In Pg .0040(1.38) .0081(1.05) -.025(2.00) -5.3E-4(.81) 

'n P10 .0034(1.51) -.002(.300) -.013(1.34) .0012(2.36) 
In -3.2E-4(.16) -.012(2.22) .0252(2.88) -.0012(2.46) 
In p^2 -.003(1.69) .0196(4.00) -.001(.160) -.001 (2.56) 
In p^3 .0071(1.79) .0145(1.36) .0251(1.47) -.002(1.63) 
In P i4 -.004(1.68) -.013(2.12) .0113(1.12) -3.9E-4(.73) 
In p^5 6.04E-5(.05) .0060(1.68) .0035(.610) -1.6E-4(.53) 

'n P i6 .0008(.470) .0053(1.20) .0111(1.56) .0001 (.370) 
In -.005(4.46) -.012(3.75) .0093(1.87) .0002(.720) 

Income Ratio -.007(3.19) -.010(1.65) .1046(10.4) .0002(.420) 
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Table 5.20 (continued) 
Unrestricted Almost Ideal Demand System 

With WeiQhtina Factor InvfSartfLKTY)). Urban and Island Dummies 

Tobacco 

^ 1 7 

Constant - . 8 0 0 
Urban . 0 0 2 6 
Island 1 . 0 3 1 3 
Island 2 . 0 7 8 6 
Island 3 . 0 2 0 5 
Island 4 . 0 5 3 4 
Island 5 . 0 2 6 9 
In P-, - . 0 4 7 

In P2 - . 0 3 3 

In P3 - . 0 1 1 

In P4 . 0 0 2 4 

In P5 . 0 1 2 3 

In pg - . 0 1 4 

In py . 0 6 9 6 

In Pg - . 0 0 1 

In Pg . 0 1 1 3 

'n P10 . 0 2 2 4 

In p^^ - . 0 0 8 

In p^2 - . 0 0 1 

In p^3 . 0181 

In P i 4 . 0 1 1 5 

In p^5 - . 0 1 0 

'n P16 - . 0 2 4 

In . 0 3 4 3 

Income Ratio . 1 1 6 1 
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Table 5.21 
Own Price and Income Elasticities for tha 

New Maintained Almost Ideal Demand System 
With Weighting Factor InvfSartfLKTY)). Urban and Island Dummies 

Own Price Income 

Rice/Grain - .863 .5720 
Tubers - .589 .2069 
Fish -1.43 .5493 
Dried Fish - .076 .8192 
Meat - .797 - .707 
Chicken .0353 .3288 
Egg -1.76 .8145 
Milk 1.592^ 1.053 
Vegetable - .895* .8467 
Legumes -1.78^ -.983 
Fruit - .822* .7382 
Condiment - .339^ .8662 
Cooking oil - .752* .7480 
Addit ive -1 .13* .8885 
Pre. Food .0796 36.12 
Alcohol - .863^ 1.219 
Tobacco - .845* 1.917 

Significant at 5% 
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Table 5.22 
Substitution Coefficients and Income Effect for the 

New Naintained Almost Ideal Demand System 
With Weighting Factor InvfSartdKTY)). Urban and Island Dummies 

(1) (2) (3) (4) (5) (6) (7) (8) 

Rice/Grain -367.* 95.69 -46.6* -12.0 9.270 2.638 49.65* 4.029* 
Tubers 5022. -191. 35.89 -6.12 4.618 2.892 56.26* .5845 
Fish 297.5 -17.2 -23.7 21.47 .7182 .6095 13.62* .1584 
Dried fish 1255. .8241 25.30 -53.1 2.555 .6964 -2.46 .4818 
Meat 395.5 -.457 3.197 .6637 -.968 .1179 3.236 .0853 
Chicken 472.7 .9708 3.112 1.679^ .3224 -.277^ -.737 -.011^ 
Egg 7630. -72.3 64.61 134.2* -10.5 -6.09* -463. -4.59* 
Milk 2206. 5.418 6.166 -3.06^ .9096 .1101 2.335 -.051 ^ 
Vegetable 400.9 -71.0 48.06 37.16* 2.234 -2.32 26.56 3.378* 
Legumes 1866. -27.6 21.53 15.68 -.292 -.367 .9486^ -.081 
Fruit 894.3 -13.1 4.469 -20.1 -.142 .3418 25.93* -.181 
Condiment 2513. -145. -8.81 -76.9 ^ 5.113 -1.78 ^ 35.31*^ 4.566 
Cooking oil 294.3 3.828 -1.43 -25.9* -1.45 -.493^* 4.143* .0299 
Additive 606.1 58.49 -56 . r 17.60 10.42 2.857* 22.36 2.932 
Pre. food 25802. 129.2 81.72 61.38 3.100 2.604 17.11 -.316 
Alcohol 5910. 5.498 12.84 8.309 1.438 -.049 -.659 -.074 
Tobacco 456.9 28.75 27.38 85.69 .5039 -.489 -33.8 -.305 

Income 
Effect -100. -9.70 -2.56 -9.28 -.053 -.012 -6.91 -.009 

Significantly different from zero at 5% 

235 I Chapter 5 ] 



Table 5.22 (continued) 
Substitution Coefficients and Income Effect for the 

New Maintained Almost Ideal Demand System 
With Weighting Factor .Inv(SQrt(LKTY)V Urban and Island Dummies 

(9) (10) (11) (12) (13) (14) (15) (16) 

Rice/Grain 157.8 19.04 51.99 12.20 17.80 150.7 173.4 -.499 
Tubers 129.1 10.77 39.18 44.95 7.697 144.9 -602. -.260 
Fish 15.90 -1.74 3.192 -.739 -.192 -12.0 1.180 .0601 
Dried fish -28.2 -1.67 8.775 -17.6 -2.81 30.98 -235. .0600 
Meat 2.815 .4297 -1.63 -1.65 .4120 7.148 -4.12 -.022 
Chicken 4.883 1.085 2.253 2.978 -.635^ 10.75 -50.3 .0434 

Egg 58.46 -54.8* -20.3 -48.2 -6.51* -31.4 -802. 1.471 
Milk 29.33^ 1.089 1.163^ 2.285 .8496^ 37.36^ -38.0 .0341 
Vegetable -425.* -.499 31.93* 6.426 8.741* 123.2* -184. -.125 
Legumes 17.80^ -24.2 -2.28 2.265 2.242* 28.93 -86.4 .1547 
Fruit 42.85] 3.569^ -89.7 -22.7 .8878 -24.0 ^ 128.5 .3139 
Condiment 2M.\ 46.48* 54.48 -204. ^ -5.17 360.6* -176. -.779 
Cooking oil -8.18*^ 2.930* -1.79 18.86* -8.33 35.10^* 37.55 -.128 
Additive 69.50* -3.79 -7.76 -29.3 -1.81 -918.* 210.9 -.088 
Pre. food 271.7 42.55 19.97 85.34 8.870 620.4 -333. -.060 
Alcohol 80.30 8.265 3.933 9.008 2.468 107.8 -560. -.149 
Tobacco 62.91 -17.6 4.503 51.86 -1.76 37.92 368.0 .3050 

Income 
Effect , -39.8 -.799 -3.61 -18.4 -.327 -87.1 -110. -.001 

Significantly different from zero at 5% 
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Table 5.22 (continued) 
Substitution Coefficients and Income Fffect for the 

New Maintained Almost Ideal Demand System 
With WeiQhtina Factor InvfSQrtfLKTY)). Urban and Island Dummies 

(17) 

Rice/Grain 77.59 
Tubers -5002. 
Fish -129. 
Dried fish -841. 
Meat -299. 
Chicken -404. 
Egg -2884. 
Milk -1448. 
Vegetable -86.3 
Legumes -759. 
Fruit -679. 
Condiment -2138. 
Cooking oil -154. 
Additive 62.87 
Pre. food -19840. 
Alcohol -3842. 
Tobacco -1533. 

Income 
Effect -721. 

Significantly different from zero at 5% 
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Table 5.23 
Average Information Inaccurqny'' 

For the New Maintained Almost Ideal Demand System 
With Weighting Factor InvfSQrt(LKTY)). Urban and Island Dummies 

AIDS' 

Rice/Grain .9343 
Tubers 1.535 
Fish 1.846 
Dried Fish 1.454 
Meat 1.370 
Chicken .7117 
Egg .4431 
Milk .4758 
Vegetable .6031 
Legumes .8757 
Fruit .5854 
Condiment .4460 
Cooking Oil .3183 
Additive .7980 
Pre. Food 4.429 
Alcohol .3988 

1. Average Information Inaccuracy * 1000 
2. Unrestricted model 

238 [Chap te rs ] 



Table 5.24 
Size Correction for the New Maintained Ain.9 

With Weighting Factor InvfSQrtfLKTY)). Urban and Island Dummies 

Homogeneity 
Homogeneity Symmetry & Symmetry 

W^ 41.179811 364.98149 453.63665 
LR* 37.547406 326.71889 403.33818 
LM* 34.216132 294.56363 361.01031 
D* 34.400507 308.81252 382.64881 

a. n=16 
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Table 5.25 
Joint Significance Tests for Dummies 

in the Weighted AIDS Model 
Weighting Factor = InvfSartfLKTY^) 

Unrestr icted 
Homogeneity & 

Homogeneity Symmetry Symmetry 

With Dummies 
DetlS! 4.8651 E-78 5.3451E-78 1.1033E-77 1.3369E-77 

No Dummies 
Det|21 3.6677E-77 4.0821 E-77 2.1338E-76 3.0954E-76 

T 424 424 424 424 

Joint Test For Dummies 

LR Statistics 856.50654 861.99895 1255.9659 1332.2711 
Degree of 
Freedom 96 96 96 96 

Critical values : 
oc v2 

^ (96) 

0.1 
0.05 
0.01 

114.13 
119.81 
131.14 
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Table 5.26 
Bera & Jaroue Nnrmalitv Test for thP? Univariate AIDS 

Equation 
Unweighted 

No Dummy Urban & Island 
Weight = lnv(Sqrt(LKTY)) 

No dummy Urban & Island 

Rice/Grain 164.8 330.9 157.1 288.9 
Tubers 3731. 2170. 3970. 2151. 
Fish 78.89 70.39 79.59 77.31 
Dried fish 77.93 86.47 90.03 83.58 
Meat 594.9 550.5 560.6 440.0 
Chicken 364.4 250.1 361.6 276.2 
Egg 40.16 31.59 38.31 30.64 
Milk 13142. 19298^ 12629. 20015. 
Vegetable 12.29 

it it it 
4.122* 10.97 4.139* 

Legumes 9 .205 19.91 10.53 25.51 
Fruit 54.95 31.75 50.87 33.33 
Condiment 954.8 1060. 928.5 991.1 
Cooking oil 124.6 48.46 127.5 41.53 
Addit ive 28.64 26.44 30.65 23.68 
Pre. food 6231. 5711. 6222. 11824. 
Alcohol 47428.^ 41830. 50725.^ 45026. 
Tobacco 5.11 r * 3.942* 5 .080** 3.968* 

insignificantly different from zero at 10% 
insignificantly different from zero at 5% 
insignificantly different from zero at 1% 

critical values 
2.706 
3.841 
6.635 
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CHAPTEJl VI 

B O O T S T J l A P P X N a 

So far, the theory has not been supported. An attempt was made 

to correct for heteroscedasticity and parameter inconstancy using 

dummy variables and weighted least squares procedure. However, 

these corrections did not completely resolve the problem. 

The question arises, are the rejections of theory due to the 

m i s s p e c i f i c a t i o n of the er ror d i s t r i bu t i on or to the 

inappropr iateness of the asymptot ic test stat ist ics in f inite 

sample? To answer this question, it is necessary to set up a 

"bootstrapping" experiment, described below. Before any discussion, 

it is important to note that such a simulation experiment is 

computat ional ly very expensive. Therefore a fast algorithm is 

needed. Byron(1982) suggested an algorithm using the Lyapunov 

equation, an estimating technique which is examined below. 

As well, to test the appropriateness of the test statistics, it is 

necessary to construct Kolmogorov-Smirnov Two-sample tests 

which are considered below. 

6.1 Estimation using the Lvapunov Equation 
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In order to perform "bootstrapping" on a large demand system 

with a total of 17 commodities, a fast algorithm is necessary to 

minimize comput ing cost. Byron(1982) has demonstrated a 

computat ional ly eff icient method for handling large symmetric 

demand systems using Lyapunov equations. The method was 

demonstrated on Theil 's(1975) 14 sector Rotterdam model and 

revealed a 60 fold increase in speed over the conventional SUR 

solution. As well, significant storage savings were achieved. The 

new algorithm is encouraging and will be particularly useful in a 

simulation experiment such as bootstrapping. 

Consider the linear system 

Y = X(3 + U 

where [3 satisfies the symmetric condition that (3 = P'. There are n 

linear equations with n regressors and T observations. 

Subject to the symmetry condition, the first order conditions 

on the objective function 9 = 1/2 ( tr n " " ' u ' u ) are 

30/ap = + x v Q ' ^ = o 

Substituting U = Y - X(3 into the function, we get 

^^•"'(Y-XpyX + X'(Y-Xp)^i-'' = 0 

=> Y'X + X'YQ-"' = PX'X + X-Xpa-"" 

=> Q - ^ r X + X'YQ-^ = + px-x^i-"" (6.1) 
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Denote C = Q ' ^ Y X + X'YQ-' ' and A = X ' X Q ' ^ then equation (6.1) 

becomes 

C = A'B + BA 

which is a system of Lyapunov equations and can be solved using 

character ist ic equations. 

Proposition (Simultaneous Decomposit ion of semi-definite and 

definite matrices)"" : Let Q"' ' be a positive definite matrix and X'X 

be positive semi-definite matrix. Then there exists a non-singular 

matrix W such that 

A - ' ' = W ' W a n d X ' X = W ' A W 

where A is a diagonal matrix of the eigen values (characteristics 

roots) of X'X in the metric of Q'"*, and W is a non-singular matrix. 

Then (6.1) becomes 

W'WBW'AW + WAWBW'W = C 

Pre- and post-multiplying by the terms (W)'" ' and W"^ respectively, 

we get 

WBW'A + AWBW = (W')'' 'CW"'' 

Denote W B W as G, and (W')" ' 'CW' ' as H, we have 

GA + AG = H (6.2) 

From (6.2), the term G can be solved directly. For example, suppose 

n=2 for simplicity, then (6.2) becomes 
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G G 
11 12 

G G 
21 22 

^ 1 0 
0 

22 

^ 1 0 
0 

22 "2, "22 

"H H 11 12 
H H 

. 21 22. 

G G 11 12 
G G 

. 21 22. 

Since WBW = G, we can solve for (3 simply with the equation 

B = W""'GW'"'' (6-3) 

Now the question is how to find the non-singular matrix W that 

satisfies the conditions? 

Let E = and A = X'X. 

Proposition : For a positive definite matrix E, there exists a 

non-singular matrix P such that 

E = F-^P-^ 

or 

E-"" = PP' = 

Consequently, the eigen values of A in the metric of E are simply the 

usual eigen values of P'AP. 

Let Q be the (orthogonal) matrix of (ordinary) eigen vectors 
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(characteristics vectors) of P'AP. Thus, we have 

P'APQ = QA 

From that, it follows 

A = P'-"'QAQ'P-'' 

Hence, 

W = Q-P-I (6.4) 

Proposition : Since matrix Q is symmetric positive (semi) definite, 

let R denote the diagonal matrix of its (real) eigen values and V the 

associated (orthogonal) matrix of eigen vectors. We have 

aV = VR 

=> n = VRV 

Since Q = PP', then 

PP' = VRV 

Having found P, the non-singular matrix from (6.5), we can then 

solve for W in (6.4). Then we form the matrix H, which is the right 

hand side component of (6.2). Subsequently, we can solve for B using 

(6.3). The process simply involves the manipulation of the 

characteristic equations. 

generalizing, suppose the linear symmetric demand system of n 

equations is of the form 

Y = XB + z r + U 
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where B is (n*n) symmetric matrix and Z collects any other 

variables. Nuisance parameters, r , which are not part of the 

symmetric set may be concentrated out. 

The first order conditions on the objective function yield an 

equation of the form 

Z'U = 0 

Substituting U into the equation, we get 

Z'(Y - XB - z r ) = 0 

=> Z'Y - Z'XB - Z'Zr = 0 

/ N 
r = (Z'Z)-"'Z'Y - (Z'Z)-"'Z'XB (6.6) 

Substituting r into the original model, we have 

Y = XB + Z(Z'Z)-''Z'Y - Z(ZZ)-''Z'XB + U 

=> Y - Z(Z'Z)-''Z'Y = (X - Z(Z'Z)-''Z'X)B + U 

The concentrated model becomes 

Y* = X* B + U 

where Y* = (Y - Z(Z'Z)-''Z'Y) and X* = (X - Z(Z'Z)-''Z'X). 

Once B is solved r can be recovered from equation (6.6). A 

minor problem is the imposition of the within-equations 

restriction, homogeneity ( Sj By = 0 ). To introduce homogeneity by 

substitution with the elimination of the redundant variable is 

appropriate. Thus X is redefined as (X-|-Xp, X2-Xp X^.^-Xp,) and is 
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a T*(n-1) matrix. Y is T*(n-1) and B is symmetric {n-1)*(n-1). 

6.2 Kolmoaorov-Smirnov Two-Sample Test 

The test is used to compare two empirical distribution 

functions . For samples drawn independently from two populations 

with cumulat ive probabil i ty distr ibut ion F^(2) and Fy(z), the 

hypothesis is: 

HQ : Fx{z) = Fy(z) for all z 

H^ : Fj^(z) Fy(z) for some z 

The data consist of two mutually independent sets of random 

observations of size m and n, which are both ordinal. They are 

ordered in such a way that 

x^ < X2 < ... < x ^ , and 

yi < y2 < - < Vn-

Pooling, combined ordered arrangement of the (m+n) random samples 

may be formed, and is denoted as z. Then define two respective 

samples or empirical distribution functions as 

Sx(z) = (number of observations in the first sample, x, 

that are less than or equal to z) / m 

Sy(z) = (number of observations in the second sample, y. 
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that are less than or equal to z) / n 

The populat ion distr ibutions of x and y are the same, 

corresponding values of the empirical distribution functions, Sy(z) 

and Sy(z), should be small and there should be reasonable agreement 

between them for all values of z. The absolute values of the 

differences of S^(z) and Sy(z) are a measure of this disagreement. If 

the maximum absolute dif ference is small, then so are all 

differences. Hence, the largest absolute difference is the value of 

the Kolmogorov-Smirnov test statistic which is denoted as D. 

D is completely distribution-free for any continuous common 

population distribution. If m and n are large, the critical values, P, 

based on the asymptot ic probabi l i ty distr ibut ion, can be 

approximated by : 

a P 

0.1 1.07 * sqrt[ (m+n)/(m*n) ] 

0.05 1.22 * sqrt[ (m+n)/(m*n) ] 

0.01 1.36 * sqrt[ (m+n)/{m*n) ] 

(6.7) 

If the test statistic, D, is less than the critical value, P, we 

shall accept the null hypothesis that the two distributions are 

identical. 
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6.3 Non-Parametr ic Bootstrap 

So far, none of the models examined accept the demand theory 

even a f ter co r rec t i ng for pa ramete rs incons tancy and 

heteroscedasticity. It is important to understand why the rejections 

are so strong. Did those test statistics over-reject the hypothesis? 

Are they testing with the same empirical size as the actual nominal 

values? In order to answer these questions, it is necessary to 

construct a non-parametric bootstrap. 

The classical statistical techniques, whose justif ication in 

probability is based on specific assumptions about the population 

samples, are called parametric methods. A non-parametric method 

is a distribution-free procedure in which the analysis is based on 

some funct ions of the sample observat ions whose sampling 

distribution can be determined without knowledge of the specific 

distribution function of the underlying population. As explained by 

Efron and Gong(1983), a good parametric analysis, when appropriate, 

can be far more efficient than its non-parametric counterpart. 

Often, though, parametric assumptions are difficult to justify, in 

which case it is reassuring to have available the comparatively 

crude but trustworthy non-parametric techniques. 

Basically bootstrapping is a general technique for appraising 
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the properties of an estimator. It is distribution-free, that is, 

non-parametric, and it is intended to reproduce the appropriate 

finite sample behaviour for the estimator. Since the standard error 

is the traditional measure of accuracy, the bootstrap is a simulation 

procedure to estimate standard errors using Monte-Carlo 

experiments but with a non-parametric estimate of the underlying 

error distribution. The idea is to resample the original observations 

in a suitable way that we can construct "pseudo-data" on which the 

estimator of interest is exercised. 

Freedman and Peters(1984) presented a detailed description of 

the construction of the bootstrap with reference to an econometric 

equation. Also, Efron and Tibshirani(1986) review the bootstrap 

methods and its basic ideas and applications. For a simple 

exposition, see Efron and Gong(1983). 

For our purposes, we are part icularly interested in 

investigating the possibility of over-rejection. In other words, we 

are going to analyse the empirical sizes of the tests (or type I error, 

which is the probability of rejecting the true null hypothesis) using 

non-parametric bootstraps without knowledge of the specific 

distribution function of the underlying population. 

Generally, the construction involved continuous resampling of 

the estimated residual with replacement to find out the rejection 
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percentage. The procedure is as follows: 

First, use the actual data to estimate the demand model 

subject to the restr ict ions. Get est imates, p, and store the 

residuals, e. 

Secondly , resample e with replacement and inflate the 

residuals by multiplying the term ••sqrt[ T/(T-p) to form e*. ( p is 

the number of parameters in each demand equation ) 

Thirdly, generate "pseudo-data" for Y, 

i.e. Y* = Xp + e* 

and re-estimate the model with and without the restrictions 

imposed. 

Finally, repeat the resampling process at least 100 times and 

record the inference results. Efron and Tibshirani(1986) argue that 

50 to 200 replications are quite adequate for most situations. 

The questions of importance are: 

(1) Are the empirical test statistics distributed as 

(2) Are the empirical sizes of the test statistics the same as the 

actual (nominal) values? If they are different, what are the 

empirical crit ical values of the tests? Is the theory still 

re jected? 

252 [Chapters 



We estimated a system of Lyapunov Equations for the original 

AIDS model (unweighted and no dummies included) and experimented 

with the non-parametric bootstrap described above. With each 

demand restriction imposed separately and jointly, we followed the 

approach by Freedman and Peters(1984) and repeated the iteration 

process 100 times. Wald, LR and LM statistics were calculated. An 

illustration of estimating the Lyapunov Equations, with homogeneity 

and symmetry imposed, is given in Appendix 

The simulated test statistics were sorted in ascending order. 

Next, instead of dealing with 100 observations, a group of 20 

observations were drawn, each corresponding to a 5% cumulative 

frequency distribution beginning from the 5% point. The 100% point 

was replaced by the 99% point to avoid infinity. 

A true distribution with the appropriate degrees of freedom 

was generated corresponding to the simulated probability 

distribution selected earlier. Then the two distributions were 

compared using the Kolmogorov-Smirnov two-sample test described 

previously. The results are reported in Table 6.1. 

Since the Kolmogorov-Smirnov test statistics are significantly 

smaller than the critical values in all cases, we accept the null 

hypothesis that the two distributions are identical and conclude 

that the empirical distributions are distributed as y } . Notice that 
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the mean of a distribution should be equal to the number of 

degrees of freedom. Comparing the sample means of the empirical 

distributions (which are presented in Table 6.2) with the actual 

number of degrees of freedom, it is clear that the empirical 

distributions are not centred correctly. The problem is more serious 

when testing the homogeneity condition. Also, Wald statistics have 

the largest deviation from the actual means. LR statistics come 

second and LM statistics are the smallest. 

The number of rejections was counted for each restriction and 

compared with the true sizes, the results being presented in Table 

6.3. They reveal that the empirical sizes of the tests are, obviously, 

larger than the nominal values. This implies that the problem of 

over-rejection exists in the empirical testing procedures and is 

consistent with the general belief that the test statistics are 

biased towards rejection (Laitinen[1978) and Meisner[1979]). Since 

the stat ist ics are actually asymptot ic test cri teria, the 

over-rejection may be due to the fact that we are dealing with a 

small finite sample, which may not be large enough to justify 

asymptotic theory. This is the small sample bias as examined by 

Laitinen(1978). Another possible explanation is the consequence of 

replacing the true but unknown population covariance matrix by the 

unbiased least squares estimate. The empirical sizes of the three 
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statistics still satisfy the inequality developed by Berndt and 

Savin(1977). 

The empirical critical values are reported in Table 6.4, with 

the empirical figures being larger than the nominal values. The 

differences in percentages vary with the significant level a and the 

rest r ic t ions imposed^ . Interestingly for the within equation 

restriction of homogeneity, the differences increase as a increases. 

On the other hand, testing symmetry, the differences increase as a 

decreases. Generally, Wald statistics have the largest deviations 

from 11% to 25% for homogeneity, and 6% to 13% including 

symmetry. The LR statistics are second with 11% to 20% and 3% to 

8% respectively. The LM statistics have the smallest which are 

about 3% to 16% and 0.1% to 5% respectively for the homogeneity 

and symmetry conditions. If evaluating the actual statistics from 

Table 4.18 using the empirical critical values, it is clear that the 

demand conditions are still significantly rejected. 

There is an important implication from the non-parametric 

exercise. This is that the asymptotic test statistics all assume the 

satisfaction of normality condition, but in this study, the errors are 

non-normal. There is considerable uncertainty about the behaviour 

of the asymptotic test statistics. By using a simple and computer 

intensive technique, non-parametric bootstrapping, we observed 

255 [Chapter 6 ] 



that the test statistics are empirically asymptotic distributed, 

and found that the empirical means are mis-positioned by about 1% 

to 18% (evaluated from the actual means). Also, the problem of 

over-rejection (over-size) is noted. A question of importance is : to 

what extent is this due to the non-normal and heteroscedastic 

errors? This motivates the following experiment on parametric 

bootstrapping. 

6.4 Parametric Bootstrap (Monte-Carlo Experiments^ 

As the demand conditions have been consistently rejected by 

the data, perhaps another question is the appropriateness of 

asymptotic testing procedures in finite samples. Byron(1987) has 

suggested a method to test such a hypothesis in a demand model 

using "paramet r i c boo ts t rapp ing" . It is s imi lar to the 

non-parametr ic bootst rap d iscussed ear l ier except in its 

resemblance to a Monte-Carlo simulation technique, which is based 

on the condition that the assumed specific underlying probability 

distribution is satisfied. For example, the Wald, LR and LM 

statistics all require the errors to be normally distributed with 

zero mean and constant variance. Otherwise, the statistics are 

misleading and, strictly speaking, invalid. It is highly possible that 

this p rob lem exists in this par t icu lar s tudy. Univar iate 
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Jarque-Bera's normality tests on each single equation reported in 

Table 5.20 revealed that non-normal residuals exist in most of the 

equations in the original maintained model. This may explain the 

presence of over-rejection in the model. Therefore, we are 

concerned with the extent to which non-normality influences 

results. 

The process of setting up a parametric bootstrap is as follows: 

First, estimate the restricted demand model with the actual 

data, and store the estimated parameters [3 and the covariance 

matrix of residuals Q . These estimates are treated as the 

population parameters. 

Secondly, use the matrix Q to generate a new set of 
* 

disturbances V (which is a set of randomly generated numbers), in 

such a way that it satisfies the condition V* ~ N(0, H). This can be 

done by performing Cholesky's decomposition of the symmetric 

positive definite matrix. 

Thirdly, generate a new set of "pseudo-data" for Y 

Y* = Xp + v ' 

and re-estimate both unrestricted and restricted models. 
* 

Finally, repeat the generating process of V and re-estimate 

the model, at least 100 times. 
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Since the parameters of the generating function obey the 

restrictions and the residuals are normally distributed by 

construction, a test of the conventional assumptions of homogeneity 

and symmetry imply the question : Assuming normality is satisfied, 

do the (Wald, LR and LM) tests over-reject the hypothesis in the 

finite sample? Also, are the parametric results similar to the 

non-parametric results generated earlier? 

The Lyapunov Equations are estimated again with 100 

repetitions. Waid, LR and LM test statistics were also calculated. 

Note that by assuming the true variance-covariance matrix Q is 

known, the Wald and LM statistics are identical. They are calculated 

by 

Wald = LM = T * tr * (Q - Q)] 

where the true matrix Q is the constrained estimates from the 

original model. As the information of the assumed true 

variance-covariance matrix cannot be incorporated into the LR 

statistics, the statistics are different from the Wald and LM values. 

The Kolmogorov-Smirnov Two-sample tests are performed and 

the results are presented in Table 6.5. Again the 

Kolmogorov-Smirnov tests significantly accepted the hypothesis 

that the empirical distributions are The calculated sample 

means of the statistics are given in Table 6.6. As with the previous 
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finding, the empirical means are mis-centred and slightly skewed to 

the right. The skewness is more serious if homogeneity is imposed. 

Deviations from the actual means (in percentage terms) are 12 to 31 

for homogeneity, and are less than 6% for symmetry. 

The number of rejections in each case was counted to check if 

the empirical sizes are equal to the actual values. Table 6.7 notes 

the results and reveals that the problem of over-rejection still 

rema ins^ . This implies that the problem experienced previously in 

the non-paramet r i c boots t rap is not simply caused by 

non-normal i ty. 

Table 6.8 shows the calculated empirical critical values in 

each situation. Interestingly, evaluation of the actual statistics 

from the original maintained AIDS model given in Table 4.18 reveals 

that the homogeneity condition although rejected by the Wald and LR 

statistics, is marginally accepted by the LM criteria at a = 0 .01 . 

However the rejection of the joint validity of all demand conditions 

is once again confirmed. 

In Chapter 4, we mentioned a size correcting factor suggested 

by Bera, Byron and Jarque(1981) which is a ratio of the nominal 

(actual asymptotic) critical values and the empirical x ^ critical 

values from Monte Carlo simulation. The ratios are calculated with 

respect to each statistic at a=0.05. The calculated ratios (the 
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adjustment factors) and the adjusted test statistics are presented 

in Tables 6.9 and 6.10 respectively. Only the homogeneity condition 

is marginally accepted by the adjusted LM criteria. 

6.5 BootstraPDina the New Maintained AIDS MoriP>l 

Both non-paramet r i c and parametr ic bootst raps were 

constructed with reference to the new maintained AIDS derived in 

chapter 5, which includes both urban and island dummies, and a 

weight ing factor , the inverse of "sqrtCLKTY)". From the 

non-parametric bootstrapping, it was found that the empirical 

distributions of the test statistics are still y } . As reported in Table 

6.11, they passed the Kolmogorov-Smirnov test easily even though 

the means are mis-positioned. Checking Table 6.12, the empirical 

distributions are positively skewed. The Wald statistics are about 

8% to 16% different from the actual means. The LR and LM statistics 

are respectively about 6% to 13% and 3% to 10% larger than the 

actual means. Over-rejections are again observed in Table 6.13. 

Evaluating the actual test statistics in Table 5.19 based on the 

empirical critical values reported in Table 6.14 reveals that all 

demand conditions are still rejected. 

Parametric bootstraps were also applied to the model. 

Kolmogorov-Smirnov test stat ist ics recorded in Table 6.15 
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indicated that the empirical statistics are distributed as x ^ in 

every case. Mis-positions of the means are again observed in Table 

6.16 but these are negligible. Even assuming the population 

covariance is known, over-rejection still remains (Table 6.17). When 

testing symmetry with Wald and LM principles, almost exact sizes 

are recorded. Surprisingly, under-rejection is observed if testing 

homogeneity using the LR criteria. Empirical critical values are 

calculated and reported in Table 6.18. Rejection of all restrictions 

are confirmed, even based on the empirical sizes. Adjusting the 

statistics with the size correcting factors presented in Table 6.19, 

which are the ratios of the nominal and empirical critical values 

suggested by Bera, Byron and Jarque(1981), the resulting size 

corrected statistics reported in Table 6.20 still significantly 

rejected all restrictions. 

6.6 Summary 

Examining the bootstrapping results of the original and new 

maintained AIDS models, one may observe the following: 

First, ignoring the error distribution for the moment, the 

asymptotic test statistics are appropriate in the analysis. Although 

the means of the empirical distributions are not positioned 

correctly and over-rejections are observed, they are empirically 

261 [Chapter 6 



distributed as x^- The reliability of the results may be questioned 

because of the number of replications of 100 was too small. The 

problem can be examined using the binomial theorem. Suppose a = 

0.05 (i.e. the population proportion of rejection is 5%) then the 

standard error of a is: 

SE^ = Sqrt [ (a*(1-a)) /R ] 

where R is the number of replications. If R equals 100, then the 

value for SE^^ is 0.02. This means that the proportion of rejections 

varies from 0.03 to 0.07. If R equals 500, then SE^^ becomes 0.01, 

and the percentage of rejections will fall in the range of 0.04 to 

0.06. Similarly, if R is set at 1000, SE^^ becomes 0.007 and the 

empirical a will vary from 0.043 to 0.057. Since R is set at 100 in 

this study, the variability of the outcomes will be misleading. In 

order to reach a firm conclusion, we should at least experiment 

with 500 or more bootstrap replications^. 

Secondly, small sample corrected statistics (either evaluated 

with empirical critical values or adjusting the statistics with some 

arbitrary factors) rejected the joint validity of demand conditions 

(although homogeneity condition is sometimes marginally accepted). 

This implies the problem of small sample bias is not the major 
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reason for the rejection of theory. 

Thirdly, non-normal errors, strictly speaking, invalidate the 

testing procedures, but the problem may not be serious. Comparing 

the results from non-parametric and parametric bootstraps 

indicated that the difference in inference is only small. Therefore, 

in this particular case, one may expect to obtain similar results 

even if the errors satisfy normality. 

Finally, although the new maintained AIDS model significantly 

improved the model performance (both in fit and inference 

measures), it still rejected the postulated demand theory. The 

results are the same with distribution-free approaches. This means 

the model may be inadequately specified, or may be due to the fact 

that the theory is inappropriate to this study. 
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1. 

Tootnotzs 

The propositions in this chapter can be referenced from 
Dhrymes(1978). 

2. The test appears in most of the texts relating to 
non-parametric techniques ( e.g. Gibbons[1971] & [1976] ). 

3. As explained by Freedman and Peters(1984), some inflation of 
the residuals may be desirable to compensate for the deflation 
of the residuals in fitting. 

4. The algori thm was first tested against Theil 's(1975) 
Rotterdam model using Barten's(1966) original Dutch data and 
yielded identical results. 

5. The empirical critical values should be exact. The discrepancy 
may be because of the number of repetition is too small. 
Perhaps 200 or even 500 repetitions would have been more 
appropriate. 

6. In fact, as the population covariance matrix is assumed to be 
known, it is expected that the problem will be eliminated if the 
number of repetitions is increased, say to 500 or more. 

7. I have to thank Dr. R. Byron for pointing this argument to me. 
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Table 6.1 
Non-Parametric Bootf^trao fOrininpl Maintained Ain.q) 

KolmoQorov-Smirnov Two-samnle TP'^t^^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald .20 .25 .25 

LR .20* .20* .15^ 

LM .20* .15* .10^ 

* accept null at 10% 
Critical values 

a = 0.1 .3383637 
= 0.05 .3857978 
= 0.01 .4300697 

a. sample size = 20 

Table 6.2 
Non-Parametric Bootstrap fOrioinal Maintained AIDS') 

Sample Means of the Statistics*^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 18.87(17.93)^ 130.46(8.72) 145.06(6.66) 

LR 18.41(15.06) 127.25(6.04) 141.28(3.88) 

LM 17.97(12.31) 124.18(3.48) 137.66(1.22) 

Actual D.F. 16 120 136 

b. sample size = 100 
c. parethesis are percentage deviations from actual (hypothetical) means 
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Table 6.3 
Non-Parametric Bootstrap fOrininal Maintained AIDS) 

Number of Reiection^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 
a = 0.1 

0.05 
0.01 

21 
16 
4 

29 
17 
6 

18 
16 
5 

LB 
a 0.1 

0.05 
0.01 

19 
15 
4 

20 
10 
3 

17 
8 
4 

LM 
a 0.1 

0.05 
0.01 

17 
14 
3 

15 
8 
3 

11 
6 
3 

a. sample size = 100 

Critical values 
a = 0.1 

0.05 
0.01 

23.54 
26.30 
32.00 

X2(120) 
140.23 
146.57 
158.95 

157.52 
164.22 
177.28 
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Table 6.4 
Non-parametric BoQt;^traD fOrininal Maintained AinP,) 

Empirical Critiral 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 
a = 0.1 

0.05 
0.01 

LB 
a 0.1 

0.05 
0.01 

29.2164(24.11) 
30.8628(17.35) 
35.6269(11.33) 

28.2538(20.02) 
29.7913(13.27) 
35.5175(10.99) 

150.2617(7.15) 
160.1772(9.28) 
177.1979(11.48) 

146.4746(4.45) 
154.9380(5.71) 
172.1386(8.30) 

167.9464(6.62) 
176.8345(7.68) 
200.0271(12.83) 

162.2443(2.99) 
171.9220(4.69) 
192.4435(8.55) 

LM 
a 0.1 

0.05 
0 .01 

27.3330(16.11) 
28.7687(9.39) 
32.8654(2.70) 

142.5858(1.68) 
149.7432(2.16) 
167.3076(5.26) 

157.6962(0.11) 
167.2298(1.83) 
185.3305(4.54) 

a. Parathesis are the percentage deviations from the actual critical values 
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Table 6.5 
Parametric Bootstrap (Original Maintained AIDS) 

Kolmoaorov-Smirnov Two-sample Tests^ 

Wald 

LR 

LM 

Homogeneity 

.25* 

. 2 0 * 

.25* 

Symmetry Homogeneity & Symmetry 

. 1 0 

,15' 

,10^ 

.10 

.15^ 

.10^ 

* accept null at 10% 
Critical values 

a = 0.1 .3383637 
= 0.05 .3857978 
= 0.01 .4300697 

a. sample size = 20 

Table 6.6 
Parametric Bootstrap (Original Maintained AIDS) 

Sample Means of the Statistics*^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 

LR 

LVI 

21.00(31.25)^ 

17.90(11.88) 

21.00(31.25) 

Actual degrees of 
freedom 16 

123.41(2.84) 

126.64(5.53) 

123.41(2.84) 

120 

137.22(0.89) 

141.16(3.79) 

137.22(0.89) 

136 

b. sample size = 100 
c. parathesis are percentage deviations from actual means 
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Table 6.7 
Parametric Bootstr?^r) fOriainal Maintained Ain.S) 

Number of Rejpr|inn^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 
a = 0.1 

0.05 
0.01 

34 
25 
11 

18 
12 
3 

13 
4 
2 

LB 
a = 0.1 

0.05 
0.01 

22 
9 
2 

21 
15 
3 

24 
11 
3 

LM 
a 0.1 

0.05 
0.01 

34 
25 
11 

18 
12 
3 

13 
4 
2 

a. sample size = 100 

Critical values 
a = 0.1 

0.05 
0.01 

23.54 
26.30 
32.00 

X^(120) 
140.23 
146.57 
158.95 

157.52 
164.22 
177.28 
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Table 6.8 
Parametric Bootstrap fOriainql Ma i n t a i ned Ain<^) 

Empirical Critical Valnpca 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 

a = 0.1 

0 .05 
0.01 

LB 
a 

LM 

a = 

0.1 
0 .05 
0.01 

0.1 

0.05 
0.01 

3 3 . 1 9 9 9 6 ( 4 1 . 0 4 ) 
3 7 . 5 6 4 5 7 ( 4 2 . 8 3 ) 
4 9 . 6 4 4 0 9 ( 5 5 . 1 4 ) 

147 .7294 (5 .35 ) 
148 .9947 (1 .65 ) 
169 .2074 (6 .45 ) 

2 6 . 2 0 9 2 9 ( 1 1 . 3 4 ) 150 .0668 (7 .01 ) 
2 7 . 1 0 9 8 0 ( 3 . 0 8 ) 1 5 4 . 1 9 4 5 ( 5 . 2 0 ) 
4 0 . 7 9 7 0 5 ( 2 7 . 4 9 ) 169 .8056 (6 .83 ) 

3 3 . 1 9 9 9 6 ( 4 1 . 0 4 ) 147 .7294 (5 .35 ) 
3 7 . 5 6 4 5 7 ( 4 2 . 8 3 ) 148 .9947 (1 .65 ) 
4 9 . 6 4 4 0 9 ( 5 5 . 1 4 ) 169 .2074 (6 .45 ) 

160 .7608(2 .06 ) 
163 .6727( - .33 ) 
182 .1315(2 .74 ) 

164 .6537(4 .53 ) 
170 .7362(3 .97 ) 
186 .8452(5 .39 ) 

160 .7608(2 .06 ) 
163 .6727( - .33 ) 
182 .1315(2 .74) 

a. Parathesis are the percentage deviations from the actual critical values 
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Table 6.9 
Size Correcting Fartnrs fOriainal Maintained AID.q^^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Waid 

LR 

LM 

.7001278 

.9701288 

.7001278 

.9837262 

.9505527 

.9837262 

1.003344 

.9618345 

1.003344 

a. Bera, Byron & Jarque's(1981) correcting factors at a=0.05 

Table 6.10 
Size Corrected Test Statistics fOriainal Maintained AIDSl^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 

LR 

LM 

35.090405 

44.111757 

2 8 . 8 7 3 2 7 0 

884.36002 

704.62571 

613.01882 

1 1 18.6783 

864.87205 

744.51127 

b. Bera, Byron & Jarque's(1981) correcting factor at a=0.05 
insignificantly different from zero at a=0 .01 
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Table 6.11 
Non-Parametric Bootstrap (New Maintained AIDS) 

Kolmoaorov-Smirnov Two-samole Tests^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 

LR 

LM 

.20 

.15* 

.15* 

.30 

.25' 

.20' 

.35 

.25 ' 

.20 ' 

accept null at a=0.1 
** accept null at a=0 .05 

Critical values 
a = 0.1 .3383637 

= 0.05 .3857978 
= 0.01 .4300697 

a. sample size = 20 

Table 6.12 
Non-Parametric Bootstrap (New Maintained AIDS1 

Sample Means of the Statistics^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 

LR 

LM 

18.597(16.23)° 133.02(10.85) 

18.139(13.37) 129.66(8.05) 

17.697(10.61) 126.43(5.36) 

148.12(8.91) 

144.19(6.02) 

140.43(3.26) 

b. 
c. 

sample size = 100 
parethesis are percentage deviations from actual (hypothetical) means 
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Table 6.13 
Non-Parametric Bootstrap (New Maintained AIDS) 

Number of Reiection^ 

Homogeneity Symmetry Homogeneity & Symmetry 

a = 0.1 
0.05 
0.01 

20 
15 
8 

33 
24 
5 

28 
20 
6 

LB 
a = 0.1 

0.05 
0.01 

19 
15 
5 

26 
20 
4 

21 
10 
4 

LM 
a 0.1 

0.05 
0.01 

18 
14 
3 

23 
11 
2 

13 
7 
2 

a, sample size = 100 

Critical values 
a = 0.1 

0.05 
0.01 

23.54 
26.30 
32.00 

140.23 
146.57 
158.95 

157.52 
164.22 
177.28 
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Table 6.14 
Non-oarametric Bootstrap fNew Maintained AIDS) 

Empirical Critical Values^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 
a = 0.1 

0.05 
0.01 

29.82857(26.71) 1 56.5965(11.67) 1 69.4211 (7.56) 
33.10423(25.87) 158.8700(8.39) 179.9863(9.60) 
38.20424(19.39) 169.5186(6.65) 191.0089(7.74) 

LR 
a = 0.1 

0.05 
0 . 0 1 

28.82609(22.46) 1 51.9464(8.35) 
31.87546(21.20) 1 54.'l 1 27(5.1 5) 
36.57993(14.31) 163.3727(2.78) 

163.7404(3.95) 
174.4353(6.22) 
184.3018(3.96) 

M 
a = 0.1 

0.05 
0.01 

27.86804(18.38) 
30.70677(16.76) 
35.04641(9.52) 

147.2853(5.03) 
149.6220(2.08) 
159.3641(0.26) 

158.4910(0.62) 
169.1717(3.02) 
177.9823(0.39) 

a. Parathesis are percentage deviations from the actual critical values 
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Table 6.15 
Parametric Bootstrap fNew Maintained AIDS) 

Kolmoaorov-Smirnov Twn-f^ample Test.q^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald .20 .05 .10' 

LR .15* .25* .25' 

LM .20* .05* .10' 

* accept null at 10% 
Critical values 

a = 0.1 .3383637 
= 0.05 .3857978 
= 0.01 .4300697 

a. sample size = 20 

Table 6.16 
Parametric Bootstrap fNew Maintained AIDS) 

Sample Means of the Statistics^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 18.1425(13.39)^ 121.43(1.19) 137.245(0.92) 

LR 16.7370(4.61) 127.96(6.63) 144.140(5.99) 

LM 18.1425(13.39) 121.43(1.19) 137.245(0.92) 

Actual degrees of 
freedom 16 120 136 

b. sample size = 100 
c. parathesis are percentage deviations from actual means 
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Table 6.17 
Parametric Bootstrap (New Maintained AID.Sl 

Number of Rejection^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wajd 
a = 0.1 

0.05 
0.01 

19 
9 
2 

11 
5 
1 

16 
6 
0 

LB 
a = 0.1 

0.05 
0.01 

8 
3 
1 

26 
13 
4 

25 
15 
1 

LM 
a = 0.1 

0.05 
0.01 

19 
9 
2 

11 
5 
1 

16 
6 
0 

a. sample size = 100 

Critical values 
a = 0.1 

0.05 
0.01 

23.54 
26.30 
32.00 

140.23 
146.57 
158.95 

X^(136) 
157.52 
164.22 
177.28 
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Table 6.18 
Parametric BQQt?̂ tr?ip (New M^ întqjned MDF,) 

Empirical Critical VPilnPQa 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 
a = 0.1 

0.05 
0.01 

LE 
a 

LM 
a = 

0.1 
0.05 
0.01 

0.1 
0.05 
0.01 

26.10350(10.89) 
28.67176(9.02) 
32.51500(1.61) 

22.80033(-3.14) 
24.37482(-7.32) 
31.48814(-1.60) 

26.10350(10.89) 
28.67176(9.02) 
32.51545(1.61) 

140.2548(0.02) 
146.5270(-.03) 
156.9398(-1.26) 

147.1203(4.91) 
156.5786(6.83) 
162.9452(2.51) 

140.2548(0.02) 
146.5270(-.03) 
156.8559(-1.26) 

162.4874(3.15) 
165.3816(.707) 
170.6417(-3.74) 

168.8939(7.22) 
172.2473(4.89) 
176.5087(-.44) 

162.4874(3.15) 
165.3816(.707) 
170.6417(-3.74) 
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Wald 

LR 

LM 

Table 6.19 
Size Correctinn F?^ctors fNew Maintained 

Homogeneity 

.9172788 

1.078982 

.9172788 

Symmetry Homogeneity & Symmetry 

1.0002935 

.93607930 

1.0002935 

.9929762 

.9533966 

.9929762 

a. Bera, Byron & Jarque's(1981) correcting factors at a=0.05 

Table 6.20 
Size Corrected Test Statistics (New Maintained AIDS^^ 

Homogeneity Symmetry Homogeneity & Symmetry 

Wald 

LR 

LM 

40.14012 

43.05139 

33.35226 

387.96383 

324.99737 

313.11187 

478.6741 1 

408.63532 

380.93546 

b. Bera, Byron & Jarque's(1981) correcting factor at a=0.05 
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C H A P T E J ^ Ull 

CONCLUSION 

In Chapter 4, we estimated several popular demand systems 

such as the LES, the Double-log system and the AIDS models. Based on 

the information inaccuracy measures, the AIDS model was chosen as 

the preferred model. After subjecting the system to a series of 

diagnostic tests in Chapter 5, a modified AIDS model was developed. 

However, the maintained model rejected demand theory. The causes of 

the rejection, to some extent, are directly related to certain 

statistical weaknesses such as the non-normal error distribution 

which invalidates the testing process (Jarque and McKenzie[1983]). 

Also, due to the fact that we are dealing with a small finite sample, 

the test statistics could be biased towards rejection (Laitinen[1978; 

and Meisner[1979]). But as illustrated in Chapter 6, the simulated 

results using the bootstrap indicate the effect of non-normality on 

inference was not particularly serious. Furthermore, the size 

corrected test statistics still rejected the conditions of demand 

theory signif icantly. 

If the demand conditions are indeed a "fundamentally weak 
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hypotheses" and it is "intuitively implausible" to reject these 

restr ict ions (Deaton[1972] & Bewley[1983]), it is important to 

examine the reasons for the rejection. These will be discussed below. 

A general belief is that rejection of consumer theory can be the 

result of aggregation (Kiefer and MacKinnon[1976], Deaton and 

Muellbauer[1980a] and Mattei[1986]). Econometric analyses cannot 

deal with each individual item and instead focus on a limited groups 

of commodit ies. The assumption necessitated (i.e. the weak 

separability condition), as argued by Deaton and Muellbauer{1980a), is 

by no means trivial. Secondly, the transition from the microeconomics 

of consumer behaviour to the analysis of market demand is a serious 

problem. Deaton and Mueilbauer(1980a) argue that there are few 

grounds to justify the argument by Hicks(1956) and Houthakker and 

Taylor(1970) that "the aggregation error" is negligible by assuming 

the variations in circumstances of individual household are averaged 

out in aggregate and only the systematic effects of variations in 

prices and budgets remain. 

It is probably the case that the aggregation problem is an 

inevitable dilemma between theoretical issues and empirical analysis 

in applied demand studies. To make the abstract theory operational 

with current consumer theory, it may be necessary to make 

non-trivial assumptions. However, this is unavoidable. 
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There are other possible reasons for rejecting the demand 

condi t ions (Deaton and Muellbauer[1980a]). For example, total 

expenditure or income is defined to be exogenous. But they are in fact 

choice variables affected by the prices of commodities. Furthermore, 

quantities supplied are assumed to be elastic so that the suppliers 

can meet whatever demand emerges at a predetermined price (set by 

the manufacturers themselves). But in the real world, there may be 

di f f icul t ies in satisfying demand in some places due to the 

non-availability of some goods. Price expectations are also important 

in determining the current consumption behaviour. In addition, 

measurement errors could be another major problem in empirical 

studies. 

Since the reasons for rejecting demand restrictions are largely 

unresolved, a conclusion cannot be reached concerning the validity of 

the theory. Clearly, there are different attitudes among researchers 

towards this issue. Some economists, such as Christensen, Jorgenson 

and Lau(1975), demonstrate the unambiguous rejection of demand 

conditions and conclude that the theory of demand is inconsistent 

with the data. On the other hand, other take a different view on this 

matter. For instance, as noted by Phlips(1974): 

"We find it difficult to take the results of these tests 

very seriously . . . Given that the demand equations have 
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to be specified in some way, a valid testing against 

unrestricted data is probably impossible. We therefore 

think that, if we want measurement to be meaningful, we 

must impose the general restrictions whatever the 

results of the sort of tests just referred to." 

Simons and Weiserbs(1979) also take an optimistic view. They argue 

that the chosen model may not be adequately specified and therefore 

rejection of restrictions does not mean that well behaved consumer 

preferences do not exist or that the theory is invalid. Clearly, it is 

a lways possib le for other speci f icat ions to perform better. 

Mattei's(1986) opinion is that a more "realistic" model of consumer 

behaviour is needed if we want a firm conclusion. 

If the rejection of demand theory is something to do with the 

specification of the model, then there are at least two aspects worth 

invest igat ing in future studies. These are: the treatment of 

demographic variables; and limited dependent variables. These are 

discussed briefly below. 

When modelling a demand system using family budget data, we 

should account for demographic factors such as: household size and 

composition; race and religion; age and education. One easy way to do 

this is to model per capita demand as a function of prices and per 

capita income. But this approach is too restrictive given that a child 
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is assumed to be equivalent to an adult in consumption, and this 

equivalence is assumed to be the same for each commodity. 

Alternatively, without any additional assumptions, the demand 

system can be applied to sub-samples of households with identical 

demographic profiles (this is referred to "unpooled" specification" 

later in this chapter). Such an approach does not require any specific 

form of relationship between the original model and the demographic 

variables. Other than these two methods, Pollak and Wales(1981) 

provide a detailed description of several general procedures for 

incorporating demographic variables into complete demand systems. 

The idea is to replace the original class of demand system by a 

related class which involves, for example, r demographic variables 

(S^, S2, ... Sp). Two of the most common procedures, translating and 

scaling, are briefly examined. 

Demographic translating was first employed by Pollak and 

Wales(1978) as follows: 

Denote the original class of demand system as 

qj = hj { p, y ) i = 1, 2, n 

Replacing the original model, hj, in such a way that 

hi*( p, y ) = dj + hj ( p, y -1 ,^ ) 
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where dj = Dj(S). For linear demographic translating, 

I^SirSr 

The second method of demographic scaling was first proposed 

by Barten(1964). The idea is to replace the original demand, hj, by 

* 

hj(p, y ) = mj+ hj ( p^m^, P2m2, .... Ppm ,̂, y ) 

where mj = Mj(S). For linear demographic scaling, 

Mi(S) = 1 + I rS j rS r 

Both translating and scaling add at most (n*r) independent 

parameters to the original system. If the original demand system is 

theoretically plausible, then so is the modified system'' . As 

suggested by Poliak and Wales(1981), the results from the two 

procedures can be compared with the "pooled" and "unpooled" 

specifications to test for the significance of incorporating 

demographic variables. Pooled specification combines data from 

different demographic variables and estimates a single demand 

system implicitly assuming that consumption patterns are 

independent of demographic variables. The unpooled specification 

estimates (S^ Gj.) separate demand systems (where Gj. is the number 

of the subset type in the demographic variable S,.), there being one for 
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each demographic variable type which implicitly assumes that 

demographic variables affect all demand system parameters. 

Comparison with the pooled and unpooled results will indicate 

whether the demographic variables significantly affect consumption 

patterns, and whether they affect all demand system parameters. 

Based on British household budget data from 1966 to 1972, 

Pollak and Wales(1981) applied the Generalized CES demand system 

and demonstrated that family size, for example, significantly affects 

consumption patterns. However, this variable affects only some of the 

demand system parameters. Similar results are confirmed by Barnes 

and Gillingham(1978) when estimating the QES using micro data from 

the 1972-73 Consumer Expenditure Survey in U.S. 

If applying these methodologies to the current study, it is 

sensible to reduce the dimension of the problem since the number of 

extra independent parameters depends on n and r. Thus, instead of 

dealing with 17 commodities, it may be necessary to aggregate the 

commodities into a more manageable number. Note that one has to be 

prudent when determining the appropriate demographic variables. One 

may fol low Strauss 's(1982) approach to determine which 

characteristic variables should enter the system. His suggestion is to 

run single equation demand regressions using all of the potential 

variables and all the possible subsets of independent variables are 
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examined and ranked by the adjusted R^. Equations having the highest 

adjusted R^ and including those variables should be chosen. 

The second issue worthy of attention is the treatment of 

limited dependent variables. It refers to situations when a model's 

dependent variable can take only a certain range of values (truncated) 

or when some range of responses is unobservable (censored). Suppose 

that a random variable, Y is N()i,a^) and that all the observations are 

for Y > S. We do not have any observations for Y < S. Then the density 

of Y is truncated and normally distributed. On the other hand, suppose 

we have a sample of size T, of which T2 observations are less than S 

and T.| =T-T2 observations are equal to or greater than S, and only for 

the T^ observations are the exact values known. This is the case of a 

censored distribution. To dist inguish the two concepts in the 

regression context, we may follow the simple dist inct ion by 

Maddala(1983). That is, in the case of the truncated regression model, 

we do not have any observations on either the explained variable Y or 

the explanatory variables X if the value of Y is above (or below) a 

threshold. In the case of the censored regression model we have data 

on the explanatory variables X for all the observations. As for the 

explained variable Y, we have actual observations for some, but for 

others we know only whether or not they are above (or below) a 
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certain threshold. 

In the analysis of household consumption data, zero responses 

for individual consumption items are not uncommon but very little 

attention has been paid to the problem. If we exclude the zero 

responses, the data is truncated. But if we included those zero 

responses, the data is censored. Regardless of whether or not the 

complete sample is used, applying OLS estimator in either case will 

generate biased and inconsistent estimates because the random 

disturbances have expectations which are not zeros and which depend 

upon the exogenous variables. In the case of a (single equation) linear 

truncated regression model, one may use the MLE (conditional on 

positive responses) which is consistent and asymptotically efficient. 

For the censored regression model, since the dependent variable has 

finite probability mass concentrated at some limit point, say zero, 

one should adopt the Tobit approach proposed by Tobin(1958). 

0lsen(1980) suggests a simple and easy way to approximate the 

maximum likelihood estimator of a truncated normal regression 

model with the results from the OLS regression. Based upon the known 

point of truncation, say zero (i.e to the left of zero are truncated), the 

mean and variance of the resulting incomplete normal distribution, 

can be used to calculate the mean and variance of the complete 

distribution using the method of moments by Pearson and Lee(1908). 
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After adjusting with a correcting factor, the OLS estimates can 

provide an approximation to the likelihood estimator. Greene{1981) 

considers a simple estimation of Tobin's(1958) limited dependent 

variable ( the Tobit model is essentially a linear censored regression 

model in which non-positive observations of the dependent variable 

are replaced by zeroes) in the following way: 

By assuming X^ and e^ are normally distributed, Greene(1981) 

shows that the bias of the OLS slope estimator can be corrected by 

multiplying it by the ratio T/T^, that is the reciprocal of the sample 

proportion of non-limit observation. The results are shown to provide 

good approximations to the the Maximum Likelihood estimates 

proposed by Tobin(1958). 

Deaton and lrish(1984) consider, in the context of single 

equation, a so called P-Tobit model in which the standard Tobit 

specification is supplemented by the operation of a single binary 

censor which randomly replaces a fraction of the observations 

generated by the Tobit model by zeroes. Their basic idea is to 

s tat is t ica l ly deal with the zero responses resul t ing from 

misrepor t ing^ by using a specifically defined log likelihood function 

which captures the standard regression likelihood function and the 

binary censoring effect. 
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In the context of a complete system of equations, Wales and 

WoodIand(1983) consider the problem of estimating a consumer 

demand system with binding non-negativity constraints. In their first 

approach they suggest the traditional method of directly maximizing 

a specif ic uti l i ty function subject to a set of non-negativity 

constraints using the Kuhn-Tucker conditions. The second method, the 

Amemiya-Tobin approach, is also considered to estimate systems of 

budget share or expenditure equations with the assumption that the 

observed shares or expenditures follow a truncated multivariate 

normal distribution. For more detailed explanation, one should refer 

to their original article. Generally speaking, in the Kuhn-Tucker 

model, the consumption vector for an individual is obtained by 

constrained maximization of a utility function, and may involve zero 

consumption of one or more goods. Randomness is incorporated by 

supposing that the parameters of the utility function are randomly 

distr ibuted over the population. In the Amemiya-Tobin model, 

individuals have the same utility function. An individual's observed 

consumption vector is the sum of the utility maximizing consumption 

vector plus a vector of random disturbances which has a truncated 

distribution. This truncation also allows the observed consumption 

vector to involve zero expenditures on one or more goods. 

In addition, there are several implications which can be found 
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in this study. First, our results reinforce the findings of Park(1969) 

and Kievmarken(1981) that the parameters and estimated elasticities 

are very sensitive to, and highly dependent on, the model specified. It 

becomes clear simply by comparing the elasticities generated from 

the multivariate DLOG and AIDS models (reported in Table 4.15 and 

4.19 respectively). Although the elasticity estimates from the two 

AIDS models (the old and new maintained models) are similar, they 

are inconsistent with those derived from the multivariate DLOG 

model. The differences are in terms of sign, magnitude and 

significance. The differerrt. estimation methods are also responsible 

for the conflicting results. This can be seen in the results on the LES 

model described in Chapter 4. Therefore, it is important to have the 

model correctly specified with an appropriate estimator. 

An interesting finding from this study is that the elasticities 

of rice are similar whatever the underlying demand model. The income 

and own price elasticities for rice are significant and inelastic. This 

is consistent with the fact that rice, the major food crop and source 

of most nutrients, is a basic necessity to the people in Indonesia. 

Another interesting question was whether or not luxuries are 

more price elastic than necessities. Following the approach of 

Clements, Kappelle and Roberts(1985), in which it was demonstrated 

that luxuries were relatively price elastic, we determined the 
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relationship between income elasticities and own price elasticities. 

Each pair of elasticities was weighted by the reciprocal of the 

standard error of the price elasticity, a weighting which gives less 

weight to those commodit ies with price elastici t ies est imated 

imprecisely. Certa in of fending observat ions, such as those 

commodit ies with positive price elasticities or negative income 

elasticities, were excluded. The weighted price elasticities were 

regressed against the weighted income elasticities for each demand 

system examined before. The results are reported in Table 7.1. 

Table 7.1 

and Income Elasticities 

With Constant No Constant 
Model Constant Slooe Slooe 

1. Simple Linear - .153 - .746 - .834 
(.682) (4.48) (7.74) 

2. Univariate DLOG -1.77 - .624 - .747 
(.918) . (4.06) (9.73) 

3. LES (NLLS) .041 -.521 - .519 
(.068) (11.5) (15.4) 

4. LES (SAS) .858 - .776 - .732 
(1.73) (20.5) (23.6) 

5. Multivariate DLOG - .352 -4.20 -4 .92 
(1.55) (6.34) (9.49) 

291 [ Chapter 7 



6. AIDS -12.8 - .408 - .444 
(No Dummies) (.435) (2.01) (2.38) 

7. AIDS - Weighted 2.679 -1.51 -1.48 
(With Dummies) (2.27) (48.5) (42.7) 

* Absolute t-ratios are in parentheses 

From the results of Table 7.1, the intercepts are always 

insignif icant except for the weighted AIDS model. The slope 

coefficients are, on the other hand, always significant. Generally 

speaking, there is a distinct tendency for the points to scatter around 

a negatively sloped line coming from the origin (the minus signs of 

the slope coefficients are a result of the opposite signs of price and 

income elasticities), which supports the proportionality hypothesis 

that luxuries are more price elastic than necessities. The result is 

consistent with those of Clements, Kappelle and Roberts(1985). 

From the basic food demand analysis, one may further 

investigate nutrition. Indonesia is generally thought to have a 

malnutrition problem among its population because of its poverty and 

lack of food education. In order to have a closer look at the 

seriousness of nutrient deficiencies in the country, one may follow 

the approach by Chernichnovsky and Meesook(1983). Basically, the 

food demand vector, Q, can be transformed linearly into a nutrient 
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vector, N, using a matrix of the nutrient factor, F, where the element 

Fjj can be interpreted as the amount of nutrient i contained in one 

unit of food j. That is 

N = F * Q 

where N is (m*1) vector of nutrient types, F is (m*n) matrix of 

nutrient content in each kind of food, and Q is (n*1) vector of quantity 

demanded for food. The nutrient vector N should reflect the general 

nutrient condition of the population. As pointed out by Klumper(1985), 

the food problem in Indonesia is essentially one of distribution rather 

than of non-availability. With the help of this kind of exercise, policy 

makers can understand not only the nutrient consumption level on 

average, but also are able to identify those population groups with 

nutrient deficiencies. Accordingly, effective intervention policies 

may be formulated. 

There are other areas in this study worthy of further 

examination. These are urban/rural and rich/poor differentials. As 

illustrated by Klumper{1985), the poorer households in Indonesia are 

much more sensitive to changes in prices or income than other 

population groups. Therefore, when formulating policies in regard to 

food consumption or malnutrition, it is important to analyse not just 

the average impact of a change in government policy, but also its 

effect on particular individual socio-economic groups. In the current 
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study, we incorporated an urban dummy variable into the weighted 

model which proved to be statistically significant. But this simple 

method only changes the intercept term of the equations and has no 

t 

direct effect on the slope coefficients. Perhaps unpooling the data and 

estimating the subset samples separately may give a better picture. 

Alternatively, interacting the dummy with the price and income 

variables can reveal the impact of the subject dummy variable. 

As a final brief conclusion, it is clear from this study that 

there is a well developed economic and statistical theory underlying 

the estimation of systems of demand functions. However, many 

empir ical problems remained unresolved. In this study, we 

significantly rejected the demand restrictions, but we are not 

prepared, at this stage, to conclude that the theory is invalid or 

inconsistent. We need, at very least, an adequately or realistically 

specified model before we could make such a firm conclusion. 
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Footnotes 

1. As explained by Pollak and Wales(1978), a complete system of 
demand equations is said to be "theoretically plausible" if it is 
der ived f rom a "wel l -behav ioured" ut i l i ty funct ion, or 
equivalently, if the demand equations are homogeneous of degree 
zero in prices and total expenditure, and the implied Slutsky 
matrix is symmetric and negative semi-definite. 

2. Zero responses can result from false reporting by either the 
respondent or the enumerator when conducting the survey. They 
may also arise if purchases are made infrequently so that no 
purchase is recorded for some households over the limited period 
of the survey. This is especially the situation for durable goods. 
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Appendix 1 
Description of the Data tvp^s 

Type 10 Household identifier 

1 10 type identifier 
2 urban/rural area 
3 subround 
4 province 
5 Kabupaten 
6 code number of SUSENAS sample 
7 code number of 1980 SP sample 
8 household serial number 
9 total number of household members 

10 total number of household members age 10 and older 
11 social and economic classification 
12 household income 
13 household expenses 
14 protein per household 
15 calories per household 

Type 21 Food Purchases and Consumption 

1 21 value & amount of food consumption during last week 
2 code of item (refer to appendix 4) 
3 amount purchased 
4 value of amount purchased 
5 amount of own production 
6 value of own production 
7 amount received as gift 
8 value of amount received as gift 
9 amount of total consumption 

10 value of total consumption 
11 protein per items per day 
12 calories per item per day 
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Appendix 2 
Provinces in Indonesia, bv Island 

Province Cod? 

Sumatra Daerah Istimewa Aceh 11 
Sumatera Utara 12 
Sumatera Barat 13 
Riau 14 
Jambi 15 
Sumatera Selatan 16 
Bengkulu 17 
Lampung 18 

Java D.K.I. Jakarta 31 
Jawa Barat 32 
Jawa Tengah 33 
D.I. Yogyakarta 34 
Jawa Timur 35 

Nusa Tenggara Bali 51 
Nusatenggara Barat 52 
Nusatenggara Timur 53 
Timor Timur 54 

Kalimantan Kalimantan Barat 61 
Kalimantan Tengah 62 
Kalimantan Selatan 63 
Kalimantan Timur 64 

Sulawesi Sulawesi Utara 71 
Sulawesi Tengah 72 
Sulawesi Selantan 73 
Sulawesi Tenggara 74 

Maluku & Irian Jaya Maluku 81 
Irian Jaya 82 

* SUSENAScode 
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Appendix 3 
Map of Indonesia, bv Province 

Cfterangan/Mote: 

Oaerah Istlmewa Aceh )0. J«Ma Barat Kalimantan Tengah 

2. Sumatera Utara n . JaM4 Tervgah eo. Kalimantan Selatan 

3. Sumatera Barat 12. Oaerah Istlmawa Yogyakarta 21. Kalimantan Timor 

4. Riau 13. Jawa Tifflur 22. Sulawesi Utara 

5. Jambi u . Ba l l 23. Sulawesi Tengah 

6. Sumatera Selatan I S . Nus4 Tenggara Barat 24. Sulawesi Selatan 

7. Sengkulu 16. Nusa Tenggara Hmur 25. Sulawesi Tenggara 

8. Latnpung 17. Timor Timur 26. Maluku 

9. OKI Jakarta 18. Kalimantan Barat 27. I r i a n Jaya 
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Appendix 4 
Classification of Food Commodities (with SUSFNAS code^ 

Group 1 Rice and Grain 
001 Imported rice 
002 Top-quality rice 
003 Local rice 
004 Glutinous rice 
005 Rice byproducts 
006 Fresh corn in husk 
007 Dried corn in husk 
008 Shelled corn 
009 Corn meal 
010 Wheat flour 

Group 2 Tubers 
013 Cassava 
014 Dried cassava 
015 Tapioca 
016 Cassava flour 
017 Sweet potatoes 
018 Potatoes 
019 Taro 
020 Sago 

Group 3 Fish 
023 Milkfish 
024 Yellowtail 
025 Tuna 
026 Skipjack 
027 Selar 
028 Anchovies 
030 Pike 
031 Mujair 
032 Carp 

Group 4 Dried Fish 
034 Salted fish 
035 Anchovies 
036 Selar 
037 Shrimp 
038 Squid 
040 Canned fish 
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Appendix 4 (continued) 

041 Canned shrimp 
042 Canned squid 
043 Canned crabs 

Group 5 Meat 
046 Beef 
047 Carabao meat 
048 Mutton 
049 Pork 
050 Horse meat 
051 Dried seasoned meat 
052 Corned beef 
053 Fried shredded meat 
054 Liver 
055 Entrails 
056 Bones 

Group 6 Chicken 
058 Chicken 

Group 7 EQQS 

061 Chicken eggs 
062 Duck eggs 
063 Salted eggs 

Group 8 Milk 
065 Fresh milk 
066 Milk from dairy 
067 Evaporated milk 
068 Powdered milk in cans 
069 Powdered milk in bulk 

Group 9 Vegetat^le? 
072 Spinach 
073 Kangkung spinach 
074 Cabbage 
075 Mustard greens 
076 Peas 
077 String beans 
078 Stew tomatoes 
079 Carrots 
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Appendix 4 (continued) 

080 Cucumbers 
081 Cassava leaves 
082 Egg plant 
083 Bean sprouts 
084 Squash 
085 Radish 
086 Soup greens 
087 Pickled vegetable 
088 Young jackfruit 
089 Young pawpaws 
090 Tree beans 
091 Fruit 
092 Shallots 
093 Garlic 
094 Red pepper 
095 Cayenne pepper 
096 Green chilli 
097 Canned vegetables 

Group 10 Legumes 
100 Peanuts 
101 Green beans 
102 Red beans 
103 Soybeans 
104 Black-eyed peas 
105 Bean curd 
106 Soybean cake 
107 Salted soybeans 
108 Peanut cake 
109 Soybean flour 
110 Guava 

Group 11 Fruits 
113 Citrus fruits 
114 Mangos 
115 Apples 
116 Avocados 
117 Rambutan 
118 Dukuh 
119 Durian 
120 Salak 
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Appendix 4 (continued) 

121 Pineapples 
122 Ambon bananas 
123 Raja bananas 
125 Papayas 
126 Sapodiila plums 
127 Belim'bing 
128 Spanish plums 
129 Watermelons 
130 Jackfruit 
131 Sweet tomatoes 
132 Canned fruit 

Group 12 Condiments 
135 Salt 
136 Candlenuts 
137 Coriander and caraway seeds 
138 White and black pepper 
139 Tamarind 
140 Nutmeg 
141 Cloves 
142 Vinegar 
143 Fish paste 
144 Soy sauce 
145 Coconuts 

Group 13 Cooking Oil 
146 Coconut oil 
147 Cooking oil 
148 Corn oil 
149 Butter 

Group 14 Additives 
150 Mixed spices 
151 Granulated sugar 
152 Refined sugar 
153 Tea 
154 Coffee 
155 Cocoa 
156 Fried shrimp chips 
157 Fried vegetable chips 
158 Wheat noodles 

302 Appendix 



Appendix 4 (continued) 

159 Rice noodles 
160 Macaroni 
161 Condiments and additives 

(sasa, miwon brands of monosodium glutamate.etc) 
162 Cordial 

Group 15 Prepared Food 
165 Iced cordial 
166 Lemonade and other canned beverages 
167 Biscuits 
168 Unsweetened bread 
169 Porridge of green beans 
170 Special vegetables 
171 Rice and side dishes 

Group 16 Alcohol 
174 Beer 
175 Wine 

Group 17 Tobacco 
178 Commodore cigarettes 
179 Kansas cigarettes 
181 Gudung garam clove cigarettes 
182 Bentoel clove cigarettes 
184 Cigars 
185 Tobacco 
186 Betel 
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Appendix 5 
An Illustration of Non-Paramf^tric Boot.qtrappmg 

with Lvapunov Solutions using Shazam Version 5 Software 

* this program is to construct non-parametric boostrap 
* total number of commodities is 17 
* total number of observations is 424 

par 900 

* read data from unit 14 and 15 
* shares.dat contains the dependent variables, budget shares 
* inc.dat contains the independent variables, prices and real income 

file 14 shares.dat 
file 15 inc.dat 
smpi 1 424 
dim y 424 16x424 19 
read(14) y / cols=16 
read(15) x/cols=18 

* generate the constant term 

genr x:19=1 

* budget shares in y, prices, income and constant in x 

dim bhat 19 16 u 424 16 uuhat 16 16 

* m-1 equations system, find unrestricted ols solutions 

mat bhat=inv(x'*x)*(x'*y) 
mat uuhat=((y'*y)-(x'*y)'*bhat)/424 

* this gives the unconstrainted residuals var-covar matrix 
* now set up the constrainted estimation with homogeneity and symmetry 
* imposed 
* first seperate nuisance variables, income and constant, place in z 

dim z 424 2 one 16 
mat one=diag(iden(16)) 
genr z:1=x:18 
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genr2:2=x:19 

* imposed homogeneity by substitution 

dim xs 424 16 ys 424 16 x2 424 16 
copy X xs / fcol=1 ;16 
matxs=xs-(x:17*one') 
copy xs x2 
mat ys=y 

* concentrate out the nuisance variables and to solve the Lyapunov 
* equations using characteristic equations 

mat xs=xs-z*(inv(z'*z)*(z'*xs)) 
mat ys=ys-z*(inv(z'*z)*(z'*y)) 
matc=inv(uuhat)*(xs'*ys)'+(xs'*ys)*inv(uuhat) 
mat v=eigvec(uuhat) 
mat r=eigval(uuhat) 
mat p=v*(diag(sqrt(r))) 
mat pap=p*((xs'*xs)*p) 
mat q=eigvec(pap) 
mat qval=eigval(pap) 
mat w=q'*(inv(p)) 
mat rhs=inv(w')*c*(inv(w)) 
mat g=rhs/(qval*one'+one*qvar) 
mat btit=inv(w)*g*(inv(w')) 
matgam=(inv(z'*z))*(z'*Y-z'"x2*btit) 
mat us=y-xs*btit-z*gam 
mat uutit=(ys'*ys+btit'*xs'*ys-ys'*xs*btit+btit'*(xs'*xs)*btit)/424 

* btit and gam are the constrainted estimates 
* uutit is the constrainted residuals covariance matrix 
* now calculate the test statistics 

mat wald=424*{trace(inv(uuhat)*(uutit-uuhat))) 
mat lr=424*log(det(uutit)/det(uuhat)) 
mat lm=424*(trace(inv(uutit)*(uutit-uuhat))) 

* to set up the bootstrap experiment for 100 repititions 

dim tv 1 3 tv2 100 3 newu 424 16 abhat 19 16 abtit 16 16 agam 2 16 
mat tv2=tv2' 
set nodoecho 

do $=1,100 
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mat newu=samp(us,424) 

* to inflate the residuals 

mat newu=newu*sqrt{424/(424-19)) 
mat y=x2*btit+z*gam+newu 

* repeat the unconstrainted and constrainted estimations desribed above 

mat abhat=abhat+bhat 
mat abtit=abtit+btit 
mat agam=agam+gam 
mattv:1=wald 
mat tv:2=lr 
mat tv:3=lm 
mat tv=tv' 
mat tv2:$=tv 
mat tv=tv' 

endo 

mat abhat=abhat/100 
mat abtit=abtit/100 
mat agam=agam/100 
smpi 1 100 
genr waldt=tv2:1 
genr Irt=tv2:2 
genr Imt=tv2:3 

^ abhat, abtit and agam are the averaged unconstrainted and constrainted 
* estimates 

* waldt, Irt and Imt are the simulated test statistics in each repetition 

stop 
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