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ABSTRACT 

This is a theoretical study of some of the basic problems 
associated with the intertemporal conservation and use of exhaustible 
resources. 

The emphasis throughout the thesis is on issues of social 
welfare — in particular we are concerned to find out how an economy 
should manage its resources in order to maximize the stream of returns 
which it receives from exploiting them over some time period. To this 
end a number of optimal control models are applied to the following 
questions: 

(i) When will a community find it optimal to use up all of a 
scarce depletable asset? 

(ii) For what duration of time should exploitation of such an 
asset continue? 

(iii) Wliat is the optimal intertemporal pattern of exploitation of 
the resource? 

(iv) How are the decisions implicit (i) - (iii) affected by the 
community's set of preferences and the physical constraints 
to which the economy is subject? 

(v) How is the optimal use pattern of the resource affected by: 
(a) the length of the economy's planning; 
(b) the size of the initial stock of the resource; 
(c) the economy's choice of discount rate? 

(vi) What structural changes in the economy are required as the 
resource is depleted? 

(vii) How and when should the economy respond to the prospect of 
exhaustion of a key resource? Wlien will the economy find it 
optimal to develop substitutes? 

(viii) Wliat are the implications for a two-sector economy's 
specialization patterns over time when one of its two 
commodities is produced using an exhaustible resource? 



CHAPTER 1 
INTRODUCTION 

Although economics has frequently been called the science of 

scarcity, through some strange oversight most economists have, until 

recently, ignored the most basic form of scarcity which economics can 

experience — that which arises from the ultimately finite supply of 

those natural resources which have become the foundation of industrial 

civilization. Indeed, it is only in the last decade, as the ultimate 

scarcity of such resources as petroleum, iron ore, gold and mercury has 

become evident that economists have felt a pressing need to find out 

more about the nature of such scarcity and how it should affect our 

present economic decisions. The reasons for the previous indifference 

to the problem are not hard to identify. In particular, ultimate 

scarcity had not (at least in the early 60's) made itself felt through 

significant price rises. Indeed, as though to allay all fears, a series 

of empirical studies^ appearing in the late 50's and early 60's seemed 

to confirm that most key resources were becoming "cheaper" over time and 

that therefore scarcity was receding into the future. Herfindahl [17] 

concluded that in the case of the non-ferrous metals, "the deterioration 

in the underlying natural resource conditions has not been great enough 

to counterbalance the cost reduction that has taken place over the 

years." Barnett and Morse [6], using the same data source as Herfindahl 

went further and found the hypothesis "that the cost of extractive output 

^ Herfindahl [17], Barnett and Morse [6], Fisher and Potter [12]. 



would have increased had it not been for sociotechnical progress in the 

economy as a whole" to be generally invalid. Hence it was concluded 

that, in the long run, in the absence of general technological change 

(which had previously been thought the main reason for declining prices) 

the cost of most extractive outputs would still have fallen, thus 

indicating that scarcity was not making its presence felt. Fisher and 

Potter [12] concluded that for metallic minerals in particular "there 

are fair degrees of assurance for supplies at least as far as the year 

2000." Beyond 2000 they were fairly confident that rising costs would 

induce substitution and technological progress at an accelerating rate 

for some time. Whenever the question of ultimate exhaustion of certain 

resources was raised the usual reaction was that the phasing in of 

substitutes would be induced by market forces. In a mood of such 

prevailing optimism, economists could hardly be blamed for shelving the 

problem for a few more years. Nevertheless, within a few more years the 

mood was to change from one of calm optimism to one of pessimism and 

panic. Works such as the Club of Rome's "Limits to Growth" (Meadows et 

al. [23]) were to appear and be widely read by an increasingly aware 

public. Alarm about a so-called impending "energy crisis" was also to 

become widespread. A pre-echo of this alarm was to be found in several 

of the papers published in 1969 by the National Academy of Sciences 

Committee on Resources and Man [24]. Lovering, in particular, in his 

paper, "Mineral Resources from the Land" ([24] Ch. 6), expressed the 

view that: 

(i) Already known commercial deposits would become ore through 

technical innovations, future availability of cheaper 

transportation, or rise in price. 



(ii) Deposits not yet discovered would be discovered in the 

relatively near future because of rapidly developing 

discovery techniques. 

(iii) Such discoveries would take place at a diminishing rate as 

scarcity becomes imminent, and when scarcity appears the 

resultant rise in price might be sudden rather than gradual. 

(iv) Ample lead time would be needed for technology to mitigate 

such scarcity so that research into obtaining more reliable 

estimates of reserves and more complete information on 

substitution possibilities could be initiated. 

(v) More recent statistics show that, contrary to the findings 

of Barnett and Morse, technology is barely keeping pace 
2 with increasing costs in extractive industries. 

Cloud, in "Mineral Resources from the Sea" ([24] Ch. 7), 

cautioned against being misled into anticipating an abundant variety of 

resources to be extracted from the sea when land reserves are exhausted 

and stressed the technical difficulties and uncertainty associated with 

mineral extraction from the sea. 

Hubbert, in "Energy Resources" ([24] Ch. 8) predicted that 90% 

of estimated crude oil reserves would have been extracted by 2032 at the 

latest. Hubbert's predictions are based on a bell-shaped time profile 

of extraction of resources which assumes that (i) the steady rates of 

growth sustained while a resource is plentiful cannot be maintained for 

longer periods of time, (ii) in the initial stages of resource use a 

positive exponential rate of increase is fairly inevitable and (iii) in 

the final stages an exponential rate of decline of production is 

2 [24], pp.124-5. 



indicated. Hubbert's projections are therefore bound to be more 

optimistic than those obtained using the Club of Rome's exponentially 

increasing extraction curve. 

In the light of the prevailing concern over the future of 

economies which are operating subject to almost inescapable resource 

constraints, it is the aim of this thesis to develop further what has 

become known as the economic theory of exhaustible resources. 

Because any work of finite length must necessarily be limited 

in scope it is as well at this stage to define the scope of this work. 

To begin with it is important that the reader should realize 

that the thesis will confine itself to the study of exhaustible or 

non-renewable resources (such as petroleum, metals, etc., in contrast to 

renewable resources such as fisheries, forests). Ciriacy-Wantrup [9] 

defines this type of resource as one whose "total physical quantity does 

not increase significantly with time" ([9], p.35) subject to a spatial 

constraint. In some ways the terminology is bad: renewable resources 

may be exhausted, as evidenced in the extinction of various animal 

species. However, the term "exhaustible" has historically come to be 

identified almost exclusively with minerals, so we shall adhere to 

tradition and use Ciriacy-Wantrup's definition here. 

Secondly, the thesis will be entirely theoretical. It is felt 

that the gaps in the existing economic theory of exhaustible resource 

use are so large as to provide material for a library of theses. It is 

important (and urgent) that any empirical studies which are embarked on 

in the future should have a good body of theoretical literature to draw 

on. It is hoped that the present work will go some of the way towards 

filling these needs. 



Thirdly, the range of problems to be analysed will also be 

limited. Most of the problems which are discussed will be concerned 

with the general problem of "conservation" as it was defined by an 

Australian geologist: 

"Conservation is the effort to ensure to society the maximum 

present and future benefit from the use of natural resources. 

It involves the inventory and evaluation of natural resources 

and requires the substitution where possible of renewable or 

inexhaustible resources for those which are non-renewable, and 

of the more abundant non-renewable resources for the less 

abundant ones. It thus appears that conservation involves the 

balancing of natural resources against human resources and the 

rights of the present generation against the rights of future 
3 generations." 

Because the author regards the conservation problem as the 

important underlying problem in all policy problems involving the use of 

exhaustible resources, all models presented in the thesis will be 

intertemporal models. Furthermore, because the issue of conservation 

carries with it a connotation of social welfare the emphasis throughout 

will be on models which describe social optimizing and social (or 

centralized) planning. 

The thesis is divided into seven chapters. Of these, 

chapter 1 is this introduction and chapter 7 is a summary of the main 

conclusions of the thesis. The remaining chapters may be outlined as 

follows: 

^ See [11], pp.15-16. 



Chapter 2 surveys the theoretical literature which predates 

the recent spate of papers. Noting that the theory has its roots in 

early work by Malthus and Ricardo, it traces through some extensions of 

their theories. It also contains a survey of some models of production 

in natural resource industries and outlines the early work on 

intertemporal planning and resource depletion (Hotelling, Gray) and some 

more recent extensions (Scott, Gordon, Herfindahl). 

Chapter 3 presents a basic single resource model which may be 

used to synthesize and extend some of the earlier intertemporal models. 

It attempts to answer at a basic level the questions which are 

fundamental to the whole thesis: 

(i) How should a community distribute its use of an exhaustible 

resource over time so as to maximize the present value of 

the stream of returns from its extraction? 

(ii) When will it be optimal to exhaust the resource? 

(iii) When will it be optimal to cease extraction of the resource? 

These questions are examined using various assumptions about 

the economy's production relationships and the community's set of 

preferences. 

Chapter 4 is concerned with disaggregation of the basic model 

of chapter 3. The first section of chapter 4 disaggregates the economy 

into two, and then three, sectors to study the structural changes 

necessitated by sound resource management. In the second section, the 

resource is no longer assumed to be homogeneous in quality and a model 

containing two different grades of the same resource is developed. 

Chapter 5 extends the "two-resource" case looked at in the 

second sector of chapter 4, and emphasizes the mechanism whereby one 



resource may be replaced by another substitute resource. Section II of 

this chapter allows for the "development" of a substitute by investment 

in either physical-capital or technical know-how. Section III presents 

a brief treatment of uncertainty. 

Chapter 6 allows for importing and exporting the resource in a 

world where the terms of trade are given. The problem is solved firstly 

assuming that international payments are balanced at every point in time 

and secondly assuming that they are merely balanced over the whole 

planning period. In both cases the changes in the economy's structure 

and specialization are noted. 



CHAPTER 2 
THE EARLY LITERATURE-

Although the current high level of interest in the economic 

theory of scarcity is of recent origin (the last two or three years) the 

study of exhaustible resource problems dates back a long way and has 

produced a substantial body of literature which considerably pre-dates 

the current spate of papers. It is the aim of this chapter to survey 

these important contributions and to use them as a means of illuminating 

the modern approach to the problems. 

The chapter attempts to present the development of the subject 

by adhering as closely as possible both to the chronological and logical 

sequence in which the theoretical framework has been developed. 

Accordingly, the chapter is divided into three sections reflecting the 

three main stages in which economic thinking on resource problems was 

developed: the classical Malthusian and Ricardian approach (framed in 

terms of land rather than depletable resources), depletion and 

production in resource industries, and intertemporal analysis of 

resource use. 

During the period in which the author has been working on this thesis 
there has been a boom in research on the economic theory of 
exhaustible resources. Because some of the work contained in this 
thesis pre-dates most of the recent work (Chapters 3, 4 and 6), while 
the remaining parts of the thesis have proceeded concurrently with 
the recent research by others, it therefore seems convenient to 
Isolate the literature available prior to commencement of the thesis 
in this chapter, and discuss more recent contributions in footnotes 
elsewhere. 



1. THE CLASSICAL ECONOMISTS 

The first important economic analysis of scarcity was due to 

Malthus [22] and while it did not have anything to say on exhaustible 

resources other than land, his ideas are worth brief mention for the 

light they throw on later developments. The basic thesis is familiar 

enough: Economic scarcity derives from the incompatibility of a finite 

amount of agricultural land with provision of subsistence to an ever 

growing population, which leads to an ultimate fall in output per head 

and a cessation of growth. For Malthus, scarcity is inherent in the 

finitude of man's stock of resources. It is notable however, that 

despite this resource (= land) limitation, Malthusian scarcity does not 

become apparent until all of the available land is in use. Then 

scarcity will be reflected in an increasing incremental labour-capital 

cost per unit of output. 

This basic approach to the problem was extended by David 

Ricardo [27], whose model differs from the Malthusian one in two 

important respects: 

(a) it drops the assumption that a given resource is homogeneous, 

and postulates that use of a resource will proceed according 

to grade, better grades being used first, poor grades later 

(b) at no stage does Ricardo stipulate a finite limit to resource 

supplies (although each grade is in limited supply, recourse 

can always be had to a lower grade). Thus, as more of the 

resource is brought into use and the highest grade becomes 

fully utilized the incremental capital-labour cost per unit of 

^ See the discussion of the Herfindahl model for the case of two grades 
of resource in Section III. 
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output will begin to rise. When it rises to the level 

associated with the next lowest grade that will be the signal 

to switch to the lower grade. 

The Ricardian model may be formulated algebraically as 

follows:^ 

It has an aggregate production function of the form: 

(2.1) Y = F(Ki, (1)(K2)) , 

where Ki is the amount of a variable input (capital or labour 

or some amalgam of the two) used directly in the production of 

final output and Ka is the amount of that input used in the 

process of "resource conversion" whereby "unhomogeneous" 
4 

resources are converted into "homogeneous" resources (E) 

according to: 

E = (p(K2) . 

The Ricardian assumption that resources (land) are used in 

order of declining economic quantity implies that (p is a strictly 

concave function of Ka. 

The expansion path followed by the economy as the total 

endowment of K increases is the solution to the problem: 

Max F(Ki, (t)(K2)) 

Ki ,K2 

9 
See Barnett and Morse [6], Ch. 5. 

o 
See Barnett and Morse [6], p.110. 

^ This may simply mean that a certain amount of the input is needed to 
make the unhomogeneous resource as effective in production as some 
predetermined "standard" resource. 
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s.t. K > Ki + Ka , 

where K is the total endowment of the main input, 

The locus of the expansion path is: 

Along it, it may be shown that: 

dY 
dK 

d^Y 

> 0 

(declining resource quality), so the Ricardian claim of diminishing 

returns in production is verified. It is also easily shown that the 

production function, F, must exhibit decreasing returns to scale when it 

is regarded as a function of E and K, with the consequence that it 

becomes optimal to substitute a growing stock of K for "standard" or 

"homogeneous" resources. 

The Ricardian model proves to be an extremely useful one for 

giving us ideas about the formulation of scarcity models and the sort of 

problems we might wish to encompass. The resource conversion function 

as developed by Barnett and Morse has many possibilities, not least of 

which is its possible use as a device for incorporating recycling into a 

theory of resource use (regarding scrap as a non-standard resource which 

may be effectively converted into a standard resource by the application 

of labour-capital, K). On the whole however, both the Ricardian and 

Malthusian models are rather unsatisfactory depictions of the scarcity 

issue in the modern world and tell us as much about the problems by what 

they omit as by what they include. 
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In the first place they are both framed in terms of a single 

resource — agricultural land, which differs from the main classes of 

"exhaustible" resources in that it cannot, in the strict sense of the 

word, be termed depletable. Its continued use does not entail a 

significant fall in the total stock available. Secondly, both models 

take no account of economic foresight. In the extreme Malthusian case 

scarcity does not affect the economy's calculations until the point of 

complete utilization is reached. It would seem more reasonable for 

firms to foresee exhaustion of an asset and bid up its price. 

Thirdly, the Ricardian model is based on the unrealistic 

assumption that producers have the information, opportunity and 

inclination necessary to exploit resources in order of declining 

economic quality. There is of course no guarantee that the best 

resources will be discovered first and in fact there does not seem to be 

any reason why the reverse should not be trueo 

II. DEPLETION AND PRODUCTION 

A useful synthesis and extension of the classical models was 

presented by Barnett and Morse [6], Their main contribution is an 

extension of Ricardo's theory to incorporate depletion. 

This entails rewriting the resource conversion function as: 

(2.3) E^ = X^) , ^x ^ ° ^ 

where A - \ ~ " "S^^t^ 

for some increasing function g. 

^ See [6], pp.118-120. 
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X^ = stock of resources available at time t 

E^ H current input of resources (homogeneous) 

and E^ . 

If we have a social production function of the form (2.1) with 

the new resources function (2.3) substituted in for E, then we can 

easily check the effects of resource depletion on optimum output when K 

is constant: 

using (2.2) 

so that as the resource is depleted we are forced to produce a smaller 

output with the same endowment of K. 

If the aggregate supply of K is assumed to adjust so as to 

maintain constant production for the economy we find that 

dK. 
i r ' o 1 = 1, 2 . 

Hence for output to be held at an optimally (myopic) constant level in 

the face of depletion it is necessary for the labour/capital input in 

both sectors to be increased — up to the point where the marginal 

product of K, is zero. As that point is approached the economy will be 

forced to put more and more of its additional labour/capital into 

resource conversion and negligible amounts into producing final product. 

It is clear that an economy suffering depletion of its resources must 

eventually be prepared to substitute large amounts of labour/capital for 

the resource if it is to adhere to a myopic decision-making rule. If 

depletion is too rapid (or more precisely if production is particularly 
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sensitive to the depletion effect) then the economy may be unable to 

induce a sufficiently high rate of growth of K and so will be forced to 

reduce output. 

This model continues to adhere to the Ricardian assumption 

that resources will be used in order of declining economic quality. It 

also assumes that the stock of capital is exogenously given. If one 

considers the problem in a broader macroeconomic framework and supposes 

that production of capital goods is likely to impose a further drain on 

(possibly different) depletable resources, then it must be conceded that 

reliance on the Barnett and Morse model is likely to lead to overly 

optimistic conclusions. The model is, of course, based entirely on a 

myopic view of resource-use decisions and as such effectively ignores 

the finite nature of exhaustible resource stocks. Nevertheless, we are 

left with a useful synthesis and extension of the classical model which 

gives us a sound basis for the production side of otherwise more 

realistic models. The theory of production from natural resources is 

further developed by Smith [29] who develops a general model of 

production to be applied to resources as superficially dissimilar as 

fisheries and petroleum. His model seems to represent the first attempt 

to incorporate externalities (in particular, crowding and common 

ownership in the fishing industry) into the relevant production 

functions. However, the main emphasis in his paper is on renewable 

resources (particularly fisheries, see also Smith [30]) and 

externalities in petroleum production (for example) are not discussed at 

great length.^ Smith allows for movement in and out of the relevant 

^ An interesting discussion of petroleum production and its associated 
externalities in terms of the theory of user costs may be found in 
Khoury [20]. 
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industry by having the capital stock in the industry change in 

proportion to current profits, a behavioural assumption which amounts to 

assuming myopic decision-making. This assumption is, of course, fairly 

reasonable for the case with which Smith is primarily concerned 

(fisheries), but for industries such as mining and petroleum most 

interest attaches to the intertemporal aspects of their use. It is 

these intertemporal issues with which this thesis is primarily 

concerned and we now turn to a consideration of their treatment by 

earlier authors. 

III. INTERTEMPORAL MODELS 

As noted already we are taking exhaustible resources to mean 

resources whose "total physical quantity does not increase significantly 
Q 

with time". Associated with their current use is an opportunity cost 

of future consumption foregone. This opportunity cost, which may also 9 
be defined as a user cost, is clearly a cost over and above the costs 

of processing and extraction and its existence constitutes the main 

difference between industries such as mining and ordinary manufacturing 

industries. The first serious attempts to acknowledge this difference 

and embody it in a coherent theory are to be found in two important 

papers by Gray [15] and Hotelling [19]. 

Gray's paper provides an illuminating introduction to the 

problem, framed, as it is, in terms of an extension of the traditional 

Ricardian notion of rent to account for depletion. Gray observes that 

while the Ricardian idea of rent as "a payment for the original and 

Q 

See Ciriacy-Wantrup [9], p.35. 

^ See Scott [28], p.35. 
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indestructible qualities of the soil"^^ is appropriate when applied to, 

say, urban land, it is inadequate in the case where exhaustible 

resources are mined from the soil. In such a case, it is generally 

impossible to separate the value of the exhausted properties from the 

value of the inexhaustible properties, and Gray concludes that the real 

economic rent of such resources comprises the "entire net return from 

the rent-bearer, including the so-called royalty".^^ 

Hotelling's paper outlines the basis of what has become the 

modern approach to resource questions. Using the calculus of variations 

he analyses a series of models of resource use under different economic 

regimes (competition, monopoly, social control). Most of the time he is 

dealing with specific functions. However, his conclusions embody some 

measure of generality and are worth noting. The four main results are: 

1. The resource will be exhausted in a finite time if and only if 

zero demand for the resource good occurs at a finite price; 

2. a socially efficient path for resource prices will be identical 

to the efficient path under perfect competition (as long as no 
12 externalities or common property phenomena are present); 

3. in the case of common property resources exploitation may occur 

too rapidly; 

4. monopolistic control of the industry will in general produce a 

longer period of exploitation than is socially optimal. 

In particular, Hotelling introduces the "rule" that along an efficient 

path for a competitive industry (net) prices should rise at the rate of 

Gray [15], p.246. 

^^ Gray [15], p.446. 
1 o 

This result has been proven as a general proposition in a recent 
paper by Sweeney [32]. 
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discount (6). As will be seen in later chapters of this thesis this 

rule is only applicable to the most basic depletion models. On the 

other hand it does form a basis for constructing the intertemporal price 

rules for more general models. It has also been given some emphasis in 
13 

the more recent literature. It would therefore seem worthwhile to 

spend some time understanding the intuitive basis of the Hotelling rule. 

At its simplest, as a rule for the individual competitive 

firm, it is merely an illustration of Jevons' formula for interest ("the 

rate of increase of the produce divided by the whole produce") discussed 

in some detail by Wicksell [35].^^ In terms of the problem facing an 

individual mining firm it may be explained as follows: Suppose such a 

firm wishes to maximize the present value of its stream of profits over 

some optimal time horizon at the end of which it will have just 

exhausted its initial endowment (X) of the resource. Clearly the firm 

will find it optimal (if feasible) to adjust its output so that the 

present value of profits earned from the extraction of an additional 

unit of the resource will be the same for all periods. Marginal profits 

will be a measure of both the net price of the resource and the user 

cost associated with extraction of an additional unit of the resource at 

a particular point in time. One case dealt with in some detail by 

Gordon [14] and Herfindahl [18] is that of the constant cost perfectly 

competitive firm. Such a firm has no control over the size of its own 

marginal profits and is entirely dependent on the movement of industry 

price. Its marginal profits can only grow at the rate of discount if 

industry price rises sufficiently rapidly. On the other hand, it is an 

^^ In particular Solow [31] and Nordhaus [25]. 

^^ See Wicksell [35], pp.172-184. 
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easy matter to show (see Gordon [14], p.279) that a firm with variable 

costs should, in general, produce the required rate of marginal profits 

growth by lowering its output over time.^^ 

Suppose now that we have a competitive industry containing n 

firms, each possessing a given, finite endowment (X^, i = 1, ..., n) of 

the resource. If all of these firms are faced with variable costs then 

output for each firm will be determinate. Price will rise in such a 

way that demand for the resource (given by the industry demand function) 

will fall to zero at the same time as the resource is exhausted. 

Individual firms will adjust output in such a way as to ensure the 

correct rate of growth (6) of net price. On the other hand, when firms 

are faced with constant costs it is not clear that net price should 

still rise at the rate of discount. Suppose, however, that industry 

price is growing at a rate faster than that which would produce a rate 

of growth, 6, in net price. Then all firms in the industry would defer 

production until the "excessive" growth in profits ceases. This would 

produce a market disequilibrium which would cause the market price in 

the earlier parts of the plan to rise. A series of instantaneous 

adjustments can be envisaged which would continue until the correct path 

(net price growing at rate 5) is attained. A similar argument rules out 

the case where net price is growing at a lower rate than 6. Thus 

Hotelling's "rule" is established.^^ 

^^ This question is also discussed in a verbal-diagrammatic context by 
Scott [28]. 

16 This rule may also be verified by noting that, in the case where net 
price is growing faster than 6, the present value_of profits will_be 
increased by waiting as p increases towards p (= P - C) = g(0) - C) 
at which point the present value will be zero. If net price were to 
grow at a lower rate than 6, all production would be in the present 
and price would be driven to zero, thus again yielding zero profits. 
In either case, the solution is non-optimal. 
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Herfindahl carries the analysis further by examining the 

effects of varying some of the parameters in the constant cost 

competitive model. 

His model may be formulated algebraically as follows. 

Let the industry demand curve be denoted by 

D(t) = f(P(t)) 

with an inverse P(t) = f"^(D(t) Eg(D(t)) so that at the end of the plan, 

(2.4) P(T) = P E g(0) . 

Initial price is defined as the solution Pq to 

(2.5) g(0) = (Po - + C , 

where C is the level of (constant) per unit costs. 

Also, since the resource is just exhausted at time, T, we 

have: 

T 

(2.6) D(t)dt = X E X(0) . 

0 

For market equilibrium D(t) = total extraction at time t. (2.6) may be 

written as 

(2.7) f{(Po - + Cldt = X . 

0 

Thus (2.5) and (2.7) will jointly determine Pq and T, while 

P(T) is determined directly by (2.4). We may rewrite (2.7) in a 

modified form as: 

(2.8) f(t, Po, C, 6, e)dt = X , 

0 

where e is a shift parameter for the demand function. Differentiating 
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(2.8) totally gives the relationship between changes in the variables 

and parameters: 

(2.9) dPo f (t)dt + dC r 0 f-(t)dt + d6 fg(t)dt 
0 0 

+ de f^(t)dt = dX (since f(T) = 0) . 
0 

Using (2.9) it is a straightforward matter to determine the effect of 

changes in the parameters on initial price. For example, setting all 

variables except Pq and <S constant in (2.9), we find that: 

dPo ^ _ 0 
d6 

0 
fp/t)dt 

< 0 since f^(t) < 0 , 

fr, (t) < 0 . 

- 6T -Differentiating f((Po - C)e + C) = 0 we obtain 

d6 = - sgn 
dPo 
d6 + (Po - C)T 

and 

dPp 
d6 + (Po - C)T > (Po - C)T - (Po - C)T 

Thus d6 < 0 . 

f'(P)e^^dt 

= 0 

Thus a fall in the rate of discount implies a rise in the initial price 

level and a lengthening of the period of exploitation. 

Similarly it may be shown that: 

(a) A rise in the quantity of available deposits will make price 

lower at each point in time and so lengthen the period of 

exploitation; 
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(b) A fall in unit costs implies a fall in initial price and a 

shortening of the period of exploitation; 

(c) An increase in demand (change in c) will always shorten the 

period of exploitation provided the new demand curve does not 

cross the old one at any feasible point. 

In addition, Herfindahl examines the Ricardian situation where 

different grades of a resource are available in limited quantities and 

concludes that if all such deposits are known beforehand they will be 

exploited separately (this conclusion depends in some measure on 

Herfindahl's formulation of the problem— see [18], p.72) in order of 

declining economic quality. The Scott-Herfindahl-Gordon model which we 

have been discussing in this section has been extended by Cummings [10], 

Cummings contributes two important additions to the theory: 

(a) the incorporation of a depletion effect in the cost function; 

and (b) an analysis of common property phenomena in intertemporal 

planning. 

In particular he shows that if the present value of marginal 

profits at t is less than marginal profits at time zero minus the 

present value of the total change in costs that results from the fall in 

resource stocks between t = 0 and t (the cumulative influence of the 

depletion effect over all periods up to t ), then the firm will extract 

none of the resource at t. If the present value of marginal profits at 

t is greater than marginal profits at time zero minus the cumulative 

depletion effect then it will pay the firm to produce at its maximal 

rate at time t. 

In his analysis of common property resources, Cummings assumes 

an industry with n firms extracting from a common pool, each firm making 
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its decisions on the assumption that all other firms will use the 

resource at each point in time at rates which minimize the present value 

of the profits of the firm in question. Under this behavioural 

assumption he deduces the following optimal rule for firm j: 

"At any t, produce if possible at a rate such that the present 

value of marginal profits at t equals the difference between 

the present value of the change in firm j's costs at t 

resulting from resource use (at t) by the other (n-1) firms 

and the opportunity cost associated with an increment of the 

resource left in stock at t."^^ 

If the relationship specified in this rule cannot hold with 

equality over the feasible range of output, then output will be either 

zero or the maximal rate of production. 

When firms in the common property situation submit to the 

direction of a central authority the authority would regulate extraction 

by each firm so that marginal costs of all firms are equal. Cummings 

shows that there is a divergence between the optimal decentralized and 
18 centralized solutions. 

An attempt to equip the basic Hotelling model with a more 

elaborate system of production was made by Burt and Cummings [8] in a 

discrete-time framework using dynamic programming. Their paper attempts 

to incorporate such additional features of the problem as investment in 

resource industries, depletion effects in production of the resource 

^^ Cummings [10], p.28. 
1 Q 

This question has been given more detailed scrutiny in a paper by 
Quirk and Smith [26] in the context of renewable resources. 
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good, renewability of the resource and capital depreciation. The 

underlying production relationships owe much to the paper by Smith 

(discussed in section II of this chapter), however, the model is framed 

in terms of a social objective function and reproduces the Scott-

Herfindahl decision in a social context: viz. user cost equals marginal 

social benefits. In this case user cost consists of two components, one 

"the discounted marginal value of a unit of resource retained in stocks 

instead of being used in current production" (as in the Scott and 

Herfindahl papers) and the other "the discounted marginal value of 

capital stocks consumed by increment to current production". However, 

beyond this generalization of the basic model, Burt and Cummings' paper 

breaks little new theoretical ground. Its main use lies in its possible 

application to empirical studies. It is, however, too general to yield 

any specific a priori theoretical conclusions. 

An alternative approach to that of the abovementioned authors 

is adopted by Anderson [1] who adds exhaustible resources as a third 

factor input to the Ramsey-Shell optimal growth model. Anderson assumes 

that the stock of the resource is depleted at a rate proportional to 

output (X(t) = -e F(K(t), L(t), where a is the rate of exogeneous 

technical change). Although one would expect the addition of an extra 

differential equation to the Shell model to lead to insurmountable 

difficulties, it turns out that the state equation for the capital-

labour ratio (k) and its associated co-state (ip) equation separate out 

nicely from the rest of the system so that Anderson is able to examine 

the optimal paths in the k-ip plane. When a terminal constraint on the 

resource is imposed (X(T) > X^ for some X^), Anderson finds that Shell's 

solution to the problem is no longer optimal (because it will require 

more resources than the above constraint will allow). When the rate of 
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technical change exceeds the population growth rate plus the social 

discount rate, the optimal solution with a resource constraint will 

approach the solution for the unconstrained case (the technical change 

offsets the resource scarcity). On the other hand the general effect of 

the resource constraint is to make it optimal to postpone capital 

accumulation in order simultaneously to keep the growing workforce 

employed and meet the resource constraint. If the rate of population 

growth plus the social discount rate is sufficiently in excess of the 

rate of technical progress the economy will proceed along the path of 

minimum resource use and postpone all capital accumulation until the end 

of the planning period. 

CONCLUSION 

The models surveyed above provide what is essentially the 

background to the present study. While, taken collectively, they all 

touch on a large number of the important aspects of the resource 

problem, their approach is piecemeal and none provides a very unified 

view of the problem. It would, for example, be interesting to answer 

questions such as: 

(a) What is the optimal intertemporal allocation of economic 

effort between sectors in a vertically integrated, resource-

based economy? 

(b) How is the optimal intertemporal resource use path affected 

by the range of possibilities available after the resource is 

exhausted (e.g. existence of a "backstop technology")? 

(c) At what point, and on what scale should an economy prepare (if 

at all) for the exhaustion of the resource? 
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(d) How does a depletion effect influence the amount of the 

resource left ultimately unexploited? 

It is the intention of this thesis to develop the theory to encompass 

these and other interesting questions. The next chapter is devoted to 

synthesizing and extending the basic Hotelling model. 
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CHAPTER 3 
THE BASIC SINGLE RESOURCE MODEL-

It is the aim of this chapter to provide a framework for 

synthesizing and extending some of the models discussed in the previous 

chapter. The relatively simple model presented here will serve as a 

basis for subsequent analysis and also as a means of directly answering 

some fundamental questions associated with resource scarcity. Some of 

the more interesting such questions which will be examined here are: 

(i) when will a community find it optimal to use up all of a 

scarce depletable asset? 

(ii) for what duration of time should exploitation of such an 

asset continue? 

(iii) what is the optimal intertemporal pattern of exploitation 

of the resource? 

(iv) how are the decisions implicit in (i) - (iii) affected by 

the community's set of preferences and the physical 

constraints to which the economy is subject? 

(v) how is the optimal use pattern of the resource affected by 

(a) the length of the economy's planning horizon, 

(b) the size of the initial stock of the resource? 

The chapter is divided into three sections. In Section I the 

basic model will be presented and the forms of the functions of the 

This chapter is a generalized version of another paper by the 
author [33]. The author wishes to thank John Pitchford and Ngo Van 
Long for comments. 
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model discussed. Section II will examine the problem of exploiting a 

non-renewable resource so as to maximize the present value of utility 

derived from the future stream of consumption produced by using the 

resource. In Section III we will extend the analysis of Section II to 

incorporate an explicit conservation motive on the part of consumers 

and/or a depletion effect in production. 

I. THE BASIC MODEL 

In this section we shall formulate the problem of how to 

distribute exploitation of a fixed stock of an exhaustible asset over 

time in an optimal fashion. In establishing the foundations of the 

model it will be necessary to examine closely the properties of the main 

functions involved. 

For the time being we will only discuss the functions relevant 

in Section II; those relevant to Section III will be discussed there. 

To begin let us simply note that social welfare (W) is a 

strictly concave function of total consumption (C): 

(3.1) W = v(C); v'(C) > 0 v"(C) < 0 

V e c^ . 

So that total consumption for the economy will never be zero (even when 

all of the resource has been used up) we assume that there is an 

alternative source of consumption in the economy which is not produced 

from the resource and which is permanently at a constant level, C. 

This allows us to abstract from the question of what the community might 

and should do after the resource has been exhausted, a question which 

itself raises a whole range of other issues and will in any case be 

discussed in Chapter 5. By assuming this alternative source of 
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consumption we also provide ourselves with a convenient simplification 

of the relevance of the rest of the economy to the resource-use 

decision,^ 

Production of consumption goods from resources (C^) is 

assumed to be a function of the amount of the resource extracted (E), so 

that: 

C^ = (j)(E) . 

Thus total consumption is given by: 

C = C^ + C = (})(E) + C , 

and it is possible to regard the utility function simply as a function 

of E, which we shall denote u(E). Before we proceed we would like to 

know how the form of u is affected by the form of (}). We see that 

u' = v'(p' 

u" = v"((t)')2 + v'(P" . 

For all the functions we shall consider, it is assumed that ({)' (E) > 0 so 

that u'(E) > 0. Also for the standard concave production function with 

< 0 we have u" < 0 in which case u has the same curvature properties 

as V. When 4> is smoothly convex for low values of E and concave for 

higher values (Figure 3.1(a)) then for all but low values of E u will be 

concave, but it may be convex for low E. While there is the slight 

possibility that u may in this case have more than one point of 

inflexion we shall ignore this contingency here. 

^ The questions of (a) the economy's behaviour after a resource ceases 
to be economical to extract and (b) disaggregation of the economy 
into resource production and resource-use sectors, are to be 
discussed in Chapters 5 and 4 respectively. 
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"X 

Figure 3.1(a) Figure 3.1(b) 

It is also possible to envisage a production function of the form 

illustrated in Figure 3.1(b) and defined formally by: 

( 3 . 2 ) 

E > Eq 4)(E) > 0; (})'(E) > 0; 4)"(E) < 0; 

0 < E < Eo (t)(E) = 0 

for some Eg > 0 . 

This form of production function would be relevant in a 

situation where a certain minimum level of extraction (Eq) is needed 

before any consumption goods can be produced. In this case the u 

function will have the same general form as ()) (although the horizontal 

segment may correspond to negative values of u). For our purposes it 

will be convenient to distinguish three classes of u-function. They 

are illustrated in Figure 3.2 below. 

(a) A class I u-function is defined by: 

u " ( E ) > 0 U " ( E ) < 0 V G > 0 

(b) A class II u-function is defined by: 

u' (E) > 0 V^ > 0 
11 

U"(E) > 0 0 < E < Eq 

< 0 E > En 

(Figure 3.2(a)) 

(Figure 3.2(b)) 
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E 0 

Figure 3.2(a) Figure 3.2(b) Figure 3.2(c) 

(c) A class III u-function is defined by: 

u' (E) E 0 0 < E < EQ 

u'(E) > 0; u"(E) < 0; for E > EQ J 

(Figure 3.2(c)) 

This completes our specification of the functions involved. 

Before examining the workings of the model it remains to specify the 

dynamic equation for the system and state the optimization problem. 

If the stock of the resource in the ground at time t is X(t) 

and extraction at time t is E(t), then the depletion of X proceeds 

according to 

(3.3) X(t) = -E(t) X(0) = Xn . 

We are concerned with the problem of selecting a time path for 

E(t) and a value for X(T) which will maximize the present value of the 

stream of consumption from time 0 to time T. Formulated mathematically 

the problem is to find E(t) and X(T) to 

T 
(3.4) Max 

E(t),X(T) 
(S t u(E)e dt 6 > Oy constant 

0 
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s.t. X(t) = -E(t) X(0) = Xo 

X(t) > 0 

E(t) ̂  0 

X(t) = 0 when X(t) = 0 

Applying Pontryagin's Maximum Principle (see Athans and Falb 

[4], Theorems 5.9 and 5.11, and Arrow and Kurz [3], Chapter 2, 

Propositions 4 and 7) the necessary conditions which must be satisfied 

by a solution to this problem are: 

a a continuous function, Ĵ̂, such that (omitting time where it 

appears as an argument): 

£ = u(E) - + AiX + X2E , 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

- ^ = >P = ipS , 
3E = 0 ij; = u' (E) + A2 - Ai , 

iJ;(T) X(T) = 0 

' Xi > 0, XiX = XiX = 0, X > 0 

Xz > 0, X2E = 0, E > 0 

II. ANALYSIS OF THE MODEL 

As we proceed it will become clear that there is a dichotomy 

of results between the model with class I u-functions on the one hand 

and the model with class II and III u-functions on the other. We will 

begin by looking at the most basic case, that of a zero discount rate. 

^ See Arrow and Kurz [3], Proposition 5, part (g) and preceding 
discussion. 

^ Condition (3.7) is only a necessary condition when optimal T turns 
out to be finite. If T is infinite then we cannot use (3.8) as a 
necessary condition (see Arrow and Kurz [3], p.46). 
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Case 1: 6 = 0 : 

(a) Class I u-function: 

It follows from (3.5) and (3.6) that the rate of exploitation 

is constant throughout the programme. Because of the necessary 

continuity of we can easily deduce from (3.6) that it is never optimal 

to jump from a strictly positive E to E = 0 for X > 0 (it would lead to 

an upward jump in . For X = 0 however such a jump in the E variable 

is permissible since the multiplier Xi can become positive and preserve 

the continuity of \p (see Arrow [2] p.9, discussion prior to statement of 

Proposition 4). (3.7) tells us that when T is finite X(T) = 0 (since 

^(t) > 0 V^). All of this gives us a clear picture of the optimal plan 

when T is any finite number. E will be set at some constant positive 

level until the resource is exhausted when it will fall to zero. What 

will be the optimal level of E? This may be determined by inspecting 

the present value integral: 

P E u(E)dt 
0 

T' 
u(E)dt + u(0)dt , 

0 T' 

where T' is the time at which X is exhausted and therefore equals ^^^^. 

u(E) - u(0) Tu(0) + X(0) 
{ ^ J 

and so maximizing P entails choosing E to maximize ^ "(0) ̂  

a class I function the relevant value of E is zero. Accordingly P will 

be maximized by choosing E to have as small a value as is consistent 

with resource exhaustion within the time available — this will be the 
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value of E which spreads exploitation of the resource over the whole 

planning period from time 0 to time T, just exhausting the resource at 

time T. As the planning period, T, is lengthened, the optimal value of 

E will fall (see Figure 3.3) and as T ^ optimal E 0. So that in 

the limiting case, T = there is no optimal solution. Any positive 

extraction path is dominated by a path with lower extraction while a 

zero extraction path (the limiting case) is dominated by any positive 

extraction path. This is of course a result which emerged from the 

Gale "cake-eating" example in [13]. 

Figure 3.3 

(b) Class II and III u-functions: 

As before, when T is finite X(T) = 0. Now, we define E to be 

the value of E which maximizes 

u(E) - u(0) 
E 

(in particular E will satisfy u'(E) = " )• Because the 

Hamiltonian is non-concave for some values of E in this case the 
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Pontryagin necessary condition that the constrained Hamiltonian be 

maximized at each point in time must be approached from first 

principles. Simply, we wish to 

Max H(E) = u(E) - ipE 
E 

s.t. E > 0 . 

4 It is easily shown that when \p < u'(E), optimal E will be the 
•s 

solution to (jj = u'(E) with E > E (it can be seen diagrammatically with 

the aid of Figure 3.4 drawn for a class II u-function: in the diagram 

ip̂  > u'(E), ip̂  = u'(E) and ip̂  < u'(E)). When ^ > u'(E), 
H(E) < u(0)V^ > 0, H(0) = u(0), and E = 0 consequently maximizes H. E 
UTien ip = u' (E) the maximum value of H is u(0) and this is attained when 

/N 

either E = 0 or E = E. Thus it is clearly never optimal to operate in 

the interval 0 < E < E. Moreover E cannot jump from a value greater 

than E to zero for X > 0 for this would require a jump in so for 

paths which involve E > E at some stage, E will be constant at that 
5 /N level until X = 0. It may be shown that for E ̂  E paths associated 

If il; < u'(E), and H(E) - u(E) - i|;E, then E f^ 0, since if it were: 
H(E) > u(E) - u'(E).E = u(E) - (u(E) - u(0)) = u(0) = H(0). 

Also, for E e (0, E), 
H(E) - H(E) = (u(E) - u(0)) - (u(E) - u(0)) - i|;(E - E) 

> (u(E) - u(0)) - (u(E) - u(0)) - u'(E)(E - E) 
> (u(E) - u(0)) - I (u(E) - u(0)) - u'(E)(E - E) 
= [(u(E) - u(0)) - E.u'(E)] = 0. E 

So we can assume an interior solution and differentiate H to obtain 
u'(E) = ip < u'(E)^and E > E (since H'(E) = u'(E) - > 0 in some 
neighbourliood of E) . 

For E > E, [u(E) - u(0)]/E is a decreasing function of E. Since the 
present value integral equals 

'u(E) - u(0) Tu(0) + X(0) E 
this will be greater the lower is E, so long as E > E. 
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Figure 3.4 

with lower values of E have a higher present value integral than paths 

for which E is high. Since X(T) is necessarily zero, for low values of 

T (T < X(0)/E) the optimal path will entail E being set at that 

constant level consistent with exhausting the resource at time T. When 

T = X(0)/E, then E will be set at E for the whole programme just running 

X to zero at time T. For longer planning horizons (T > X(0)/E) clearly 
/N 

the appropriate positive level of extraction is E (since E dominates all 

higher values of E when it is feasible, and lower values of E have 

already been shown to be non-optimal). This will mean however, that for 

some of the programme E should be zero. Moreover, since when = u (E), 

H(0) = H(E) = u(0) both E = 0 and E = E will maximize H and there is 
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therefore, nothing to stop E jumping to zero before X is exhausted, 

later jumping back up to E, etc. until X = 0. Clearly all such paths 

(and there are an infinite number of them) yield the same present value 

for the stream of utility and are all optimal solutions to (3.4). There 

is no unique optimal path. However, the path for which E = E until 

exhaustion will do as well as any. 

Before proceeding to the case of a positive discount rate let 

us briefly assess the results obtained above: 

The non-existence of an optimal solution for a class I 

u-function when T = is the result of two factors: 

(i) The type of u-function involved prevents us from finding a 

positive E which maximizes 

u(E) - u(0) 
E 

Because this expression, which we will term "average excess 

utility" (AEU),^ is always greater than marginal utility, it 

is a decreasing function of E so that the same number of 

total units of extraction would yield more "total excess 

utility" (TEU) 

TEU E (u(E) - u(0))dt 

0 

^ This concept of average excess utility has significance here for two 

reasons: 

(i) We are interested in the excess of utility from extraction over 

the utility derived when all consumption is derived from the 

alternative source (C) ; 

(ii) Because we are trying to find the intertemporal allocation of 
resource extraction which gives us the highest total utility 
summed over all periods and because all periods are valued 
equally, we would like to know whether each unit of extraction 
is yielding as much excess utility as possible — i.e. is 
u(E) - u(Ol maximized? 

E 
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if spread as thinly as possible over the given time than if 

concentrated in a shorter interval of time (the AEU being 

higher in the former case). The TEU is therefore seen to 

rise as E moves closer to the E which maximizes AEU (E 0) . 

Wlien a positive E can be found to maximize AEU (as in the 

case of class II and III u-functions) it constitutes the 

optimal extraction level for long time horizons. 

(ii) The absence of a discount rate with the present generation 

wanting the same benefits for all future generations as for 

itself means that when a class I u-function is involved the 

TEU over all periods will be greater the lower the level of 

extraction at any point in time to the point where extraction 

is zero in all periods. Given the scarcity of the resource, 

a positive discount rate may well be needed to help ration 

the limited stock of the resource among generations. 

The absence of discounting is also responsible for the 

indeterminacy arising in the case of class II and III functions. Quite 

simply, without a discount rate we have no criterion for choosing 

between points in time and therefore no criterion for establishing one 

policy as uniquely optimal. We now turn to the case of a positive 

discount rate. 

Case 2: 6 > 0: 

As we would expect we again find that the class I and class 

II-III functions yield results which are superficially different but 

which are nevertheless related. In case 1 above, because a community 

faced with a class I function was prevented from attaining an interior 
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m a x i m u m for average excess u t i l i t y , in the infinite horizon case it 

attempted to approach that ideal situation by running the level of 

extraction to zero (a boundary maximum for AEU) and there was no optimal 

s o l u t i o n . For a different reason there were an infinite number of 

o p t i m a l solutions for class II-III functions. Naturally the 

introduction of a positive discount rate changes this s i t u a t i o n . 

(a) Class I u-function: 

The interior solution to (3.5), (3.6) and (3.8) is 

characterized by the following relationships: 

E > 0 = ^ A i = A 2 = 0 

lî  = 

and ip = u' (E) . 

Hence 

E = ^ ^ < 0 for 6 > 0 . 
u (L) 

Thus E falls over time as the resource is depleted. For all finite T 

X(T) = 0 . It turns out to be optimal for large T to run E(t) 

continuously to zero so that it reaches zero at the time at which X is 

e x h a u s t e d . In the ip-X phase-plane (Figure 3.5(a) shows some of the 

paths satisfying the necessary conditions in i p - X space) the optimal 

trajectory is the highest feasible path on or below path a in 

Figure 3.5(a). Optimality is established using the following comparison 

of integrals proof: 

Let asterisk superscripts denote the path claimed to be 

optimal (viz. the longest exhaustion path feasible in the time 

a v a i l a b l e ) . Then we compare the present value integral along this path 
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(P*) with the present value along any other feasible Pontryagin path 

(i.e. some lower path in Figure 3.5(a)). 

P* - P E 
T 

_ r [u(E*) - u(E)]e '̂ d̂t 
0 

u'(E*)(E* - E)e" ^dt 

(since u is strictly concave in E) 

u' (E*) (E* - E)e"'̂ '̂ dt 
0 

(where T* is the time at which X is exhausted along the path claimed to 

be optimal; since this is the longest feasible exhaustion path 

E*(t) = E(t) = 0 V^ e (T*, T]) 

T r _ r 
iĵ *(t)e (E'̂  - E)dt 

0 

- X*) = 0 since X(T) = X^(T) = 0 

and X(0) = X*(0) = 0 . 

Thus, in terms of Figure 3.5(a) the optimal trajectory will be the 

highest feasible path on or below path a. For a time horizon of Ti say, 

(Figure 3.5(b)) path y will be optimal. For a longer time horizon, say 

T2 it will be feasible to spread extraction more over time so that path 

3 is optimal. For time horizons greater than or equal to T3, path a is 

optimal. In particular as T ^ path a remains optimal. Provided 

u'(0) < °° (which is the likely situation when C > 0) the resource will 

be exhausted in a finite time. This follows because 
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Figure 3.5(a) Figure 3.5(b) 

and when 

i>(t) = liJoe^^ = u'(E) + A2 - Aj 

E > 0 = u'(E) ; 

therefore E cannot be positive for an infinite period of time since 

lim ip(t) = 
t ; ->oo 

Finally it is noted again that for long time horizons optimal 

E will fall continuously to zero reaching zero at the time (finite) at 

which X reaches zero. For the remainder of the programme the economy 

will gain all its consumption from C, the alternative source. In the 

case where C = 0 and u'(0) = °° the exploitation of the resource will be 

spread over an infinite time period with E going asymptotically to zero, 

As an intuitively appealing conjecture it would seem that as the 

7 
After X = 0, if any of the programme remains, the multipliers A^ and 

A2 can change in such a way that ip continues to grow exponentially 

over time. 
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alternative source of consumption, C, falls the period of exploitation 

should increase. 

(b) Class II and III u-functions: 

Certain results proven for the case 5 = 0 carry over 

automatically here. In particular regardless of the magnitude of the 

discount rate it is still true that: 

(i) When ip < u'(E) optimal E is the solution to = u'(E) with 

E > E; 

(ii) when > u'(E), E = 0 maximizes H; 

(iii) when ip = u'(E) the maximum value of H is u(0), attained when 

E = 0 or E = E; 

(iv) it is never optimal to operate in the interval (0, E). 

Wlien 6 > 0 for long time horizons the optimal path is the one 

for which E declines steadily to E reaching E at the time at which the 

resource is exhausted (path a in Figure 3.6). E then jumps to zero and 

consumption is C until the end of the plan. For shorter time horizons 

(when there is insufficient time for exhaustion of the resource along 

path a) the longest feasible exhaustion path will be optimal (This will 

be the highest path — say path 6 — below path a in Figure 3.6(a)). 

Optimality is established as follows. Let asterisks denote 

the path claimed to be optimal (the longest feasible exhaustion path on 

or below a in Figure 3.6(a)) and let T* denote the exhaustion time along 

the said optimal path and T° the exhaustion time along some other 

arbitrarily chosen path. Then comparing present values: 
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u'(E) 

Figure 3.6(a) Figure 3.6(b) 

P-A _ p [u(E>^) - u(E)]e~^^dt 
0 

u'(E*)(E* - E)e '̂ '̂ dt 
0 

r p O 

0 

- E)dt + 

= 0 Q.E.D. 

III. DEPLETION OF A NON-RENEWABLE ASSET: 
UTILITY FUNCTION INCORPOMTING A 
CONSERVATION MOTIVE AND/OR DEPLETION EFFECT 

The simple form of utility function assumed, in section II, 

ignores an important phenomenon which is often associated with the 

depletion of a resource — a tendency to value the resource for its own 

sake independently of its value as a source of future consumption. Such 
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a "conservation motive" (as we will refer to it) may be taken into 

account by employing a utility function of the following form: 

u = v(C, X) > 0 < 0 

(3.10) > 0 < 0 

V e c^ > 0 > 0 

Formulation (3.10) for the utility function is of relevance to 

a wide range of cases where externalities are present. Where the 

resource is associated with leisure its depletion may cause existing 

consumption (produced by depleting it) to be valued less highly (e.g. 

rutile mining and the defacing of beaches). Alternatively, the 

independent X in the utility function may be a dummy variable reflecting 

the uncertainty which the community feels about the feasibility of 

finding a substitute resource for producing its consumption goods when 

the present resource has been exhausted. 

In addition there is the possibility of incorporating a 

de-pletion effect into the production function to reflect the increasing 

difficulty of extraction and/or the recourse to lower grades of the 

resource as it is depleted. This may be achieved by defining the 

production from resources as: 

C^ = 4)(E, X) ^x ^ ° ' '^XX ^ ° E ° 

({) e ^ee ^ ° ' 

8 
^EX ^ '^XE ^ ° ' 

X) = (1)^^(0, X) = 0 . 

8 
Note that, unlike the utility function, the production function is 

not allowed to be additively separable. Additive separability may be 

justified for a utility function but does not seem reasonable for a 

production function. Hence the assumption = > 0. 
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It is possible to subsume this depletion effect in the utility 

function and treat it in much the same way as the conservation motive. 

This is done as follows: 

Let u = v((})(E, X) + C, X) E u(E, X). 

It is easily checked that sgn û ^ = sgn u^ > 0, u^^ < 0 and 

"XX < 

However because: 

u = u = v d)d) + v d) + V d) EX XE CC'^E^X CX^E C^EX 

the cross partials may be either positive or negative. Certainly, in 

the absence of a depletion effect we can say that sgn u^^ = sgn and, 

if we follow the not unreasonable assumption of section II that (j)̂  > 0, 

then = > 0. However, in such a case u = u = 0 if and only EX XE At 
V = V, = 0, so that if there is no depletion effect then the CX XC 

u-function is additively separable if and only if the v-function is 

additively separable. We will initially confine our attention to this 

case in order to understand the basic structure of the problem. The 

optimization problem here is simply stated as that of selecting E(t) and 

X(T) to: 
T 

(3.11) Max 
E(t),X(T) 

u(E, X)e "̂ d̂t 6 > 0 constant 
0 

s.t. X(t) = -E(t) X(0) = X 

X(t) > 0 

E(t) > 0 

X(t) = 0 when X(t) = 0 . 

C 
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The necessary conditions to be satisfied by a solution to this 

problem are: 

3 a continuous function, ip, such that: 

(3.12) ^ = ipS - u 
X 

(3.13) ijj = Ug(E, X) + A2 - Ai , 

(3.14) ip(T)X(T) = 0 for T < , 

(3.15) 
Aj > 0 AjX = AiX = 0 , X > 0 , 

. A^ > 0 A2E = 0 , E > 0 . 

(3.12) and (3.13) imply that when E > 0: 

u. 
(3.16) E = u EE u. u E 

and when u is additively separable in E and X: 

(3.17) 
-u. 

E = u EE 
X - 6 and 

(3.18) sgn E = sgn X - 6 

Equation (3.18) simply states that E will tend to rise over 

time if the conservation motive is stronger than the preference for 

current consumption over future consumption (the discount motive) 

[u.. > 6u„] and E will tend to fall if the discount motive predominates, X E 

We consider two cases: 
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Case 1: u^(0) < 6u^(0): A £ 

This case may be thought of as that of a relatively weak 

conservation motive (weak relative to the discount motive). The graph 
9 of E = 0 is shown in Figure 3.7(a) for u^(0) < 6u^(0) in the E-X plane A b 

together with the paths which satisfy conditions (3.12) - (3.15). 

Figure 3.7(b) shows these paths in the ip-X phase plane. As in Section 

II, it is also optimal here to exhaust the resource when the planning 

horizon is finite (via (3.14) — along non-exhaustion paths we know that, 

in particular, i/j(T) > 0 and so (3.14) would be violated if X(T) were not 

zero) and it may be shown that in Figure 3.7(b) the highest feasible 

path on or below path a (in terms of Figure 3.7(a) the lowest path on or 

above a) yields a higher present value of the stream of utility than all 

other feasible^^ paths satisfying the necessary conditions and is 

therefore optimal (see Appendix for proof). For sufficiently large T, 

path a is optimal. Thus for long planning periods the optimal course is 

to exhaust the resource, running the level of extraction continuously to 

zero, E reaching zero at the same time as X. This solution will be less 

likely to be feasible the smaller is 6u (0) - u (0). In the limiting E X 
case where 5u (0) = u (0), along path a the relative strength of the £ X 

conservation motive postpones exhaustion indefinitely meaning that 

exhaustion would take an infinite time if this path were followed, a 

"Y "^y^FF ^F^YY Let L(E,X) = — - 6. Then L^ = / > 0, and L^ = , ft < 0 so u E ("p) ^ 

dE that dX 

10 

-L 

E=0 ^E 
^ > 0. 

As before some of the paths satisfying the necessary conditions may 
not exhaust the resource in the time. 
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Figure 3.7(a) Figure 3.7(b) 

fact which may be verified by noting that in this case the endpoint is 

the stationary solution for ip and X. In such a case a more rapid 

exhaustion path will have to be followed for a finite horizon plan, 

although a would still be optimal if T were infinite. Clearly the 

stronger the conservation motive, the longer will be the optimal period 

of exploitation (assuming T is large enough to permit such flexibility 

of choice). 

Case 2: u^(0) > 6u (0): X ij 

With a strong conservation motive the E = 0 locus will cut the 

X-axis to the right of the origin (Figure 3.8(a)). The path here which 

is comparable to path a for Case 1 will be 3 (Figures (3.8(a) and 3.8(b)) 

which leads to the equilibrium point P. 

Obviously path 3 cannot be optimal for a finite horizon since 

it will take an infinite time even to reach P along it and for T finite 
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= 0 

Figure 3.8(a) Figure 3.8(b) 

we have already observed that X(T) = 0. It may be shown (see Appendix) 

that the lowest path in Figure 3.8(a) above 3 will be optimal (i.e. the 

highest path below 3 in Figure 3.8(b)) for T finite and path 3 will be 

optimal for T infinite. This means that although for all finite time 

horizons it is optimal to exhaust the resource, when the planning period 

is infinite it is optimal to leave a stock, X, of the resource 

unexploited. The apparent paradox embodied in this result is resolved 

when the nature of the optimal path for a finite horizon is examined 

more closely. For a particular finite horizon the optimal path may be 

path Y (Figure 3.8). Along this trajectory extraction will initially 

decline (in the earlier stages of the programme the discount motive is 

naturally stronger than the conservation motive) but will eventually 

rise. The ultimate rise in E is attributable to a combination of: 

(a) as time goes on the conservation motive increases in 

importance (u (X) rises) relative to the discount motive — 
A 
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this tends to make it attractive to defer extraction into the 

future; 

(b) because the programme is finite there is no incentive for 

leaving a positive stock of the resource unexploited at the 

end of the plan — on the contrary there is a definite 

incentive to run X to zero. 

(b) and (a) together imply that as time T is approached, E 

will rise so as to meet the exhaustion requirement as well as the 

conservation motive. 

As T is increased the date of exhaustion is naturally moved on 

into the future so that the time at which E will have to start 

increasing in order to exhaust X is deferred (this is seen by noticing 

that for longer time horizons E will necessarily have to be spread more 

thinly over time; this will increase the valuation placed on an extra 

unit of current consumption relative to future consumption, 6u„(E), and L 
so X will be smaller by the time u (X) becomes sufficiently large to 

cause E to rise over time). As T the exhaustion date for X is 

deferred indefinitely — there is thus no constraint on E to increase in 

the "final" stages of the programme. The thin intertemporal spread of 

E combined with the conservation motive, slows extraction down to the 

extent tliat E asymptotes to 0 over an infinite period of time and leaves 

an unexploited stock X > 0 at T = 

It is now time for us to see whether the above results still 

hold when we allow for u to be non-separable either because v is non-

separable or because there is a depletion effect in production. We 

shall continue our taxonomic approach here and look initially at the 

cae where there is no depletion effect but v is non-separable and then 
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we shall discuss the case where there is a depletion effect in 

production. 

(a) V non-separable (v^^ = v^^ > 0) , no depletion effect ((p̂  E 0): La LA A 

Now that the cross derivations enter the picture the bX 
behaviour of paths in the equivalent diagrams to Figures 3.7(a),3.8(a) 

in the E-X plane is difficult to determine. However we can be fairly 

explicit about the behaviour of the system in the ^-X plane. The two 

main loci are = 0 and E = 0. The E = 0 locus is ip = u^(0, X) and E 
clearly has a positive slope. For the \p = 0 locus: 

6 0 
^^ "EE 

^ _ "ee"xx ' "xe"ec 

(if u is concave in E and X). 

diL Thus dX < 0 . 

As for the separable cases we consider two alternatives: 

Case 1: u^(0, 0) < 6u^(0, 0): 
A E 

m 

In this case (see Figure 3.9), ip = 0 lies completely below 

E = the only possible point of intersection in the two loci being 

11 * 
Suppose this is not the case and = 0 intersects E = 0. Then 
above the E = 0 locus by definition E = 0 and (]; = iJj6 - u (0, X) . 

u^(0, 0) 
Then ijj = 0 cuts the vertical axis at ^ and so 
u (0, 0) > 6u (0, 0) which is a contradiction. X E 
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UgCO, 0) 

E = 0 

X) 

-X 

Figure 3.9 

on the vertical axis (and this is only possible in the limiting case, 

0) = 6u^(0, 0)). 

It is proven in the Appendix that the optimal path here is the 

highest path on or below path a in Figure 3.9. 

For long time horizons it will be optimal to follow trajectory 

a exhausting the resource in a finite time (except when 

u,,(0, 0) = 6u„(0, 0) when an infinite time is required) and consuming C X h 

for the last stage of the programme when the path moves up the vertical 

axis. Along path a 

sgn E = sgn _ 5 _ "ex^ 
u. u. 

• A 
But along a, iĵ  > 0 so that using (3.12) and (3.13) 6 < 0 and so 

E < 0. 
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Thus for long time horizons E will decline continuously to 

zero reaching zero at the time X = 0. For shorter time horizons (along, 

say, path 3 in Figure 3.9) E will decline initially and for more of the 

programme than when u was separable, but its subsequent behaviour is 

indeterminate without more information. 

Case 2: u^(0, 0) > 6u^(0, 0): A h 

12 
Here ijj = 0 cuts the vertical axis above E = 0 (Figure 3.10). 

The point of intersection (P) is an equilibrium for the system. As for 

a separable u-function, the path leading to it (3 in Figure 3.10) is 

optimal for an infinite horizon plan, while the highest path below it 

which is feasible for a given finite horizon is optimal for that horizon. 

As in Case 1, E declines continuously to zero along 3 and a positive 

stock X remains at T = Along the optimal path for a finite period 

plan, X(T) = 0. Thus the results for a separable v-function carry over 

when V is non-separable and there is no depletion effect in production. 

(b) No conservation motive, depletion effect in production: 

If we assume that u^(0, X*) = 0 for some X* > 0, (it is likely 

that as X is severely depleted costs will rise to the point where the 

marginal cost of production exceeds the marginal product of the resource) 

then the boundary of the region E = 0 (namely = Ug(0, X) will cut the 

X-axis at X- > 0 (Figure 3.11). The exact form of ijj = 0 is not 

^^ Suppose ijj = 0 does not pass above E = 0 then 3 E > 0: 
u,,(E, 0) X < u^(0, 0). But u^(E, 0) > u (0, 0). Thus 
6u.(0, 0) > 6u (0, 0) which is a contradiction. E X 
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^ = X) 

Figure 3.10 

i|;=Ug(0, X) 
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immediately clear. However, As E ^ 0, u (E, X) 0 and ij; iĵS, so that X 
i = 0 the X-axis. For E > 0, i = 0 if and only if ipS = ^^ ^ 

In addition it is reasonable to suppose that X) 0 as X °° (i.e. X 
the depletion effect is irrelevant when the resource is not scarce). 

Thus the ip = 0 locus will have the form shown in Figure 3.11. There is 

clearly a unique equilibrium for the system of differential equations in 

ip and X. This is not especially surprising since 0) = 0 and is 

greater than 6u (0, 0) which is negative. Thus the sufficient condition 
HI 

for a unique equilibrium established for (a) above is satisfied here and 

similar results are obtained. In this case there is no possibility of 

exhaustion being optimal since it is impossible to cross the locus 

= u (0, X). The resource becomes increasingly costly to extract until 

a point is reached where it is not worth continuing to extract it. Thus 

for a finite time horizon, the transversality condition (3.14) implies 

that iJ>(T) = 0, and the optimal path is therefore that for which 

reaches zero at time T. As T the optimal path tends to path a 

(Figure 3.11). The larger is T the lower will be the terminal stock of 

X, however there will always remain a terminal stock of at least X*. 

Throughout the programme a positive shadow price is attached to the 

resource - however this social valuation eventually declines over time 

until the end of the programme at which point the resource is deemed 

worthless. 
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(a) Conservation motive, no depletion effect; 
T 

pjSc _ p = 
0 
T 

0 
T r 

0 
T 

[u(E*, X*) - u(E, X)]e"̂ d̂t 

[u(E*, X*) - u(E, X*) + u(E, X*) - u(E, X)]e '̂ d̂t 

X*).(E* - E) + û (E, X*).(X* - X)]e ̂ d̂t E A 

(since X*(t) > X(t), E*(t) < E(t) V̂  and û ^ = û ^ > 0, without a t Ea aE 
depletion effect). 

T 
-6t 

0 
T 

{[ip* - A* + A*](E* - E) + - ilJ-'̂lCX* - X)e" dt 

- E)e '̂'̂dt - '̂'̂(X* - X) Ĵ  

T r 

0 
T 
X* Ee'^^dt 

= i(;*(T)e - X(T) ] - A* Ee '̂'̂dt 
0 

= i|;*(0)[X*(T) - X(T)] - A* Ee "̂ d̂t . 
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(i) Wlien T is finite X*(T) = X(T) = 0 and A* = 0 along the 

longest feasible exhaustion path. Hence P* - P > 0. 

(ii) Wlien T is infinite, either = X(T) = 0 and A* = 0 

(6u^(0, 0) > 0)), or 6ug(0, 0) < 0), in which 
-6T 

case there is an equilibrium in ijj-X space and i|;*(T)e 0 

as T Also, in such a case A* = 0 for the entire 

programme, so P'̂  - P > 0. 

(b) No conservation motive, depletion effect in production: 

Because only one path satisfies all of the necessary 

conditions. Proposition 5 in [2] may be invoked to establish optimality, 
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CHAPTER 4 
DISAGGREGATION OF THE BASIC MODEL 

In the previous chapter simplifying assumptions were made 

concerning: (a) the nature of the economy's resource stock; (b) the 

structure of the economy itself; and (c) the nature of the process 

whereby natural resources are used in production. The particular 

assumptions which interest us here are: 

(i) the resource stock is essentially homogeneous in quality; 

(ii) the economy consists of a single sector; 

(iii) there are no possibilities explicitly acknowledged for 

substitution between the resource and another factor. 

In this chapter these assumptions will be relaxed and a more 

complex picture of the resource depletion problem will be given. 

In Section I, two two-sector models of resource extraction 

will be analysed. In the first of these one of the two sectors will be 

a resources sector and the other will be a manufacturing sector. The 

resource sector sells its commodity to the other sector which uses it as 

an input for producing the economy's only consumption good. In the 

other model, there will be two consumption goods sectors, only one of 

which uses the resource. The two sectors are assumed to employ labour 

as the other productive input. 

In Section II, a model containing two resources will be 

presented. Each resource may be used to produce the same consumption 

good. 
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TWO-SECTOR ECONOMIES 

In this section we retain the assumption made in Chapter 3 

that the resource is homogeneous in quality and examine the implications 

of disaggregating such a single resource economy into two-sectors. As 

already suggested we shall develop our model in two stages. In the 

first instance (so as to understand the optimal workings of a vertically 

integrated economy using a resource) we shall consider the case where 

one sector extracts the exhaustible resource and sells it all as an 

intermediate good to the other (manufacturing) sector. In this case the 

outcome of industrial activity is a single consumption good. The two 

sectors involved in its production are assumed to draw from a labour 

supply which is fully mobile between them so that an allocation of 

labour to processing the resource into a finished good is viewed as a 

substitute for an allocation of labour into producing the resource 

input. 

In the second model presented the sector which extracts the 

resource also produces a final consumption good from it; within this 

sector labour and the resource input are complementary. The other 

sector in the economy produces another consumption good without using 

the resource. Thus, in this case the trade-off is between labour being 

used to produce one or the other of the two consumption goods. 

1. THE RESOURCE AS AN INTERMEDIATE GOOD 

We assume two productive inputs: labour and an exhaustible 

resource. Both inputs are used to produce the economy's single 

consumption good, however only labour is used in the extractive sector. 
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We also allow for a depletion effect in the extractive sector, 

reflecting the additional amount of the variable factor needed to 

produce a given extractive output as the resource becomes more scarce. 

This depletion effect is allowed for as in Chapter 3 by including the 

remaining unexploited stock of the resource at any time t (X(t)) as an 

independent argument in the extractive sector's production function. 

The extraction of the resource in period t (-X(t)) is used up 

immediately as an input in the production of consumption goods. Labour 

is assumed to be indispensable in both sectors. The production 

relationships for the two sectors are given by: 

( 4 . 1 ) C = F ( L i , - X ) 

(4.2) X = -G(L2, X) , 

where C E consumption 

L^ E labour input into the ith sector. 

In the light of the assumptions specified above and the 

assumptions which it is usual to make, the functions F and G have the 

following properties: 

fF. > 0 , F.. < 0 , F.. > 0 , ± ̂  3 i,j = 1,2 
1 ' 11 ' ij 

( 4 . 3 ) -

F(0, X) = F2(0, X) E 0 

G^ > 0 , G^^ < 0 , G _ > 0 , i j i,j = 1>2 

( 4 . 4 ) G ( 0 , X ) = G 2 ( 0 , X ) E 0 ^ x ^ ° 

G(L2, 0) = Ga(L2, 0) = 0 V^^ G [0, L] . 

The total labour supply is assumed to be fixed and equal to L: 

( 4 . 5 ) L i + L2 < L . 
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The conventional static allocation problem to be solved here 

would involve selecting non-negative Li and L2 (subject to (4.5)) for 

given X, so as to maximize: 

u(F(Li, G(L2, X))) , 

where u'(C) > 0 , u"(C) < 0 V > 0 . 

The necessary conditions to be satisfied by a solution to this 

problem are: 

u'Fi + = u'F2GI + A2 = A3 

Xi > 0 Li > 0 AjLI = 0 

X2 > 0 L2 > 0 A 2 L 2 = 0 

A3 > 0 L - Li - L2 > 0 A3(L - Li - L2) = 0 . 

As is usual in these problems A3 > 0 (for X > 0) and 

Li + L2 = L. Thus: 

Li = L and L2 = 0 when Fi(L, 0) >¥^(1, 0).G^(0, X) , 

Li = 0 and L2 = L when Fi(0, G(L, X)) <F2(0, G(L, X)).Gi(L, X) 

and Li,L2 each lies between 0 and L when: 

(4.6) Fi(Li, G(L2, X)) = F2(LI, G(L2, X)).GI(L2, X ). 

In other words, when an interior solution is possible labour 

will be allocated between the sectors so as to equalize the direct 

marginal product of labour in the manufacturing sector (Fi) to the 

indirect marginal product of labour in that sector when the labour is 

channelled through the extractive sector ( F 2 G 1 ) . This static optimum 

will bear some relevance to the solution of the dynamic problem which we 

are to examine. 



61 

The intertemporal problem to be solved involves finding the 

allocation (Li(t), LaCt)) of labour between the sectors over time which 

will maximize the present value of the stream of utility from 

consumption from time 0 until time T, where T is parametrically fixed. 

The terminal stock, X(T), of the resource is endogenous. We thus wish 

to: 

(4.7) Max 
Li(t), LaCt), X(T) 

u(C) e '̂ '̂ dt 
0 

s.t. X = -G(L2. X) 

Li > 0 

L2 > 0 

L - Li - Lz > 0 

X > 0 

C = F(Li, G(L2, X)) . 

The necessary conditions for the existence of such an optimal programme 

are that 3 a continuous , such that: 

£ = u(F(Li, G(L2, X))) - i|̂ G(L2, X) + AiLi + X2L2 

(4.8) 

(4.9) 

(4.10) 

+ XaCL - Li - L2) - X^G(L2, X) 

i = i|;(6 + G2) - U'F2G2 + X4G2 

u'Fi + Ai = A3 = u'F2GI - i|JGi + A2 - A4GI 

i|;(T) X(T) = 0 for T < 

(4.11) 

Xi > 0 

A2 > 0 

A3 > 0 

X^ > 0 

Li > 0 

L2 > 0 

L - Li 

X > 0 

- L. > 0 

AiLi = 0 

A2L2 = 0 

A3(L - Li 

A i4X — A 4X 

L2) 

0 . 

= 0 
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There are three alternative policies open to the economy: 

Policy A: Li = L ; L2 = 0 

Policy B: Li = 0 ; L2 = L 

Policy C: Li > 0 ; L2 > 0 . 

A phase diagram showing the paths satisfying conditions (4.8) - (4.11) 

is given in Figure 4.1. The equation of the AC/CA switching surface is 

given by 

= u'(F(L, 0))[F2(L, 0).GI(0. X) - Fi(L, 0)] 
Gi(0, X) 

and is positively sloped in ip-X space. 

CA 
F2(L, 0).GI(0, X) 

Figure 4.1 
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For a switch from policy A to policy C it is necessary that 

ijj < 0 at the switching surface and for a switch from C to A it is 

necessary that > 0 at the surface. Switches between A and B are non-

optimal because they involve a jump in ip (since F^ - F2G1 is a 

continuous decreasing function of Li). 

Equation (A.10) tells us that for all finite time horizons 

either the resource is exhausted or iĵ CT) = 0. However the condition, 

G(L2, 0) = 0, means that exhaustion of the resource along any Pontryagin 

path will take an infinite time. Thus, for any finite T, iJj(T) = 0. 

Because ip < 0 whenever < 0 (and for some ip > 0) this endpoint 

requirement immediately rules out all paths for which < 0 for any 

t T. In particular, because of the additional assumption that labour 

is indispensable in manufacturing production, this rules out policy B 

(hardly surprising considering that policy B involves all labour being 

allocated to resource extraction — a rather pointless activity under the 

circumstances). It is also non-optimal for C to switch into A above the 

X-axis, for that would involve ip(T) > 0 and X(T) > 0 (since ij; = for 

policy A). The optimal path will be the one for which ip declines to 

zero in the time available. For short time horizons a path such as 

trajectory 3 in Figure 4.1 would be chosen. For a longer time horizon 

trajectory 2 would be optimal. As T ^ °° the optimal trajectory will 

approach trajectory 1 which takes an infinite time to reach its endpoint 

(point P in Figure 4.1). Along all these paths policy C will be 

followed to the endpoint and the shadow price of the resource will fall 

over time. This falling marginal social valuation of the resource as an 

input corresponds to the rising labour requirements needed to extract a 

given number of units of the resource good as the resource is depleted. 

On the other hand it is impossible to say definitely in which direction 
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the labour allocation will be moving although later we will attempt to 

identify the factors influencing the way in which labour moves from one 

sector to another over time. 

It is interesting to note that for all time horizons the 

endpoint is the static optimum (Fi = F2G1), and as the limiting case, 

T = 0, is approached the economy's optimal starting point would approach 

this static optimum (t|i(0) 0). There is thus a continuity of results 

between the myopic (T = 0) and intertemporal (T > 0) planning cases. We 

can also note that for the intertemporal problem the labour input into 

the extractive sector is less than the static optimum level at each 

point in time before the endpoint for the level of the resource stock 

(X) prevailing at the time (this follows from the fact that along policy 

C, sgn ip = sgn(F2Ga - Fi) and also from the fact that F2G1 - Fi is a 

decreasing function of L2). 

It is also worth noting that in this model the conserving of a 

positive stock of the resource at the end of the programme is a 

consequence of the limited labour supply together with the assumption 

that the resource is dispensible in the production of manufacturing 

goods. In Figure 4.1, the vertical line, F2(L, 0).Gi(0, X) = Fi(L, 0), 

lies to the right of the ili-axis, reflecting the dispensibility of 

resources in the consumption goods sector. As the resource becomes less 

dispensible this locus moves to the left and in the limiting case where 

it coincides with the vertical axis the resource is completely 

indispensible (F(L2, 0) = Fi(L2, 0) = 0 ^ . This case is 

illustrated in Figure 4.2. It is seen to be qualitatively the same as 

the case already examined, the only difference being the optimality of 

exhaustion over an infinite time. 
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0 
X 2 ( T ) X s C T ) 

F i g u r e 4 . 2 

One q u e s t i o n w h i c h r e m a i n s u n a n s w e r e d c o n c e r n s t h e t i m e p a t h s 

o f L j a n d L 2 a n d t h e f a c t o r s d e t e r m i n i n g t h e i r b e h a v i o u r . 

I t i s a r o u t i n e m a t t e r t o c h e c k t h a t 

( 4 . 1 2 ) L 2 = - - " 

+ G i G U " F 2 G 2 ( F 2 G I - F i ) } + I G u ' G I F 2 G I 2 

w h e r e A = u " G i ( F 2 G 1 - F i ) ^ + u ' G j ( F 2 2 ( G i ) ^ + F ^ - 2 F 1 2 G 1 ) + u ' F i G n 

< 0 . 
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Thus, the first of the two terms on the R.H.S. of (4.12) is 

positive and the second term is negative, so that the sign of La is 

ambiguous. 

On the other hand using (4.12) it may be shown that when G is 

of the special form: 

G = g(L2) <t>iX) , then 

(4.13) b = J {(Gi)' i|;6(F2Gi - Fi) - u'GG2(FIGiiF2 + G1F11F2 

- F1G1F12 - (Gi)^ F21F2 - (GI)2 FiF22)) 

< 0 

and the result obtained in Chapter 3 for a single sector model carries 

over into this two-sector framework. 

The ambiguity concerning the direction of movement of L2 may 

be explained as follows. For a given X, throughout the plan L2 is less 

than the static optimum level and is moving closer to it as time goes 

on. If there were no depletion effect then the only way in which the 

static optimum would be approached as t T would involve L2 rising over 

time (as is easily verified using (4.12), in such a case 

L2 = (Gi)̂ ii)/A > 0; this, of course, is not to say that this represents 

the optimal behaviour of the system when there is no depletion effect — 

a separate problem which will be examined shortly). However because of 

the depletion effect, as X declines there may be a tendency for 

F2G1 - Fi to fall independently of L2 (if this happens the implication 

of the depletion effect is obviously that the amount of labour which it 

is optimal to use in resource extraction is lower because costs in that 

sector are relatively higher) and so in order for the static optimum to 

be reached at time T, L2 may have to decline for part or all of the 
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programme. Certainly as T LaCt) 0 as t T. Increasing 

extraction costs make it optimal to make production of the consumption 

good increasingly labour intensive. 

When there is no depletion effect in the model the whole 

outcome is somewhat different and has much in common with the model in 

section II, Chapter 3. It is proven in Appendix 4.1 that the optimal 

path is the longest feasible path of exploitation for which ip > 0. 

There are two cases to distinguish. They are: 

(i) F2(L, 0) Gi(0) > Fi(L, 0) , and 

(ii) F2(L, 0) Gi(0) < Fi(L, 0) . 

In the second of these two cases there is a net loss in output 

incurred from the first unit of labour allocated to extraction. Not 

surprisingly in such a case it is never optimal to extract the resource. 

The optimal course is to follow policy A and set = 0 for the whole 

plan. X is never run below its initial level. In the case (i) however, 

output may be increased by allocating some labour to extraction. For 

very short time horizons it will not be possible to exhaust the resource 

in the time available with ijj > 0. The transversality condition (4.10) 

will be satisfied by setting = 0 for the whole programme. Thus when 

the planning period is short the resource is relatively plentiful and 

may be viewed in the same way as any other good. Accordingly the 

dynamic and static optima will coincide. For somewhat longer time 

horizons setting i|j = 0 for the whole plan will exhaust the resource 

earlier than is necessary. The optimal path will be the highest path on 

or below path a in Figure 4.3 which exhausts the resource in the time 

available, ijj will be positive and rising over time while the labour 

allocation to the extractive sector will fall over time. Policy C is 

operative until X = 0. 
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> 

F2(L, 0)GI(0 • - F i ( L , 0) 
Policy A 

Policy C 

X 

Figure 4.3 

As for the model with depletion effect policy B is 

automatically ruled out once it is established that i|> ^ 0 along the 

optimal path. However here, with the possibility of exhaustion, the 

economy moves away from the static optimum over time rather than towards 

it. 

2. A SECOND CONSUMPTION GOOD 

Let us now extend our analysis to allow for a second 

consumption good in the economy. Consumption good no. 1 is produced 

using the resource according to: 

(4.14) Ci = F(Li, G(L2, X)) 

(4.15) X = -G(L2, X) . 

Consumption good no. 2 is produced without the resource, according to: 

(4.16) C2 = H(L3) 

(4.17) L ^ Lj + L2 + L3 . 

We will assume the standard concave utility function for two goods; 
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(A.18) u = u(Ci, C2) Ul > 0 , U2 > 0 , 

ui1 < 0 , U22 < 0 , 

U12 = U21 
,(2) u 

The problem to be solved here involves finding time paths for 

Li, L2, L3 and a value for X(T) so as to maximize: 

T 
(4.19) u(Ci, C2) e~ ^dt 

0 

s.t. X = -G(L2, X) 

X > 0 

Li, L2, L3 > 0 

and Ci and C2 are defined as above. 

The necessary conditions to be satisfied by a solution to this 

problem are that 3 continuous i|j(t) for which 

ijj = ijj(6 + G2) - U1F2G2 + A5G2 (4.20) 

(4.21) 

(4.22) 

ilj = UI(F2GI - Fi) + A2 - Xi - X5G1 
^ Gi 

^ = U1F2G1 - U2H' + A2 - A3 - A5G Gi 

(4.23) uiFi = U2H' + A3 - Ai 

(4.24) ii;(T) X(T) = 0 (T < <») 

(4.25) 

Ai > 0 Li ^ 0 AiLI = 0 

A2 > 0 L2 > 0 A2L2 = 0 

As ̂  0 L3 > 0 A3L3 = 0 

A. ̂  0 L - LI -L2 -L3 > 0 A^L -Li -L2-L3) = 0 

As > 0 X > 0 A5X = A5X = 0 . 
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W e shall assume that both Ci and C2 are indispensible for 

consumers (ui(0, •) = °° = U 2 ( ' , 0 ) ) . W e also assume (i) it is possible 

to produce Ci w i t h labour o n l y , and (ii) labour is indispensible in the 

p r o d u c t i o n of both the resource good (G(L2, X)) and C 2 . This means that 

the only policies feasible for the economy are: 

Policy A: Li > 0 , L2 = 0 , L3 > 0 ; and 

Policy B: Li > 0 , L2 > 0 , L3 > 0 . 

Narrowing the problem down in this w a y enables us to focus on 

the interesting question of how the labour allocation between a resource-

dependent sector (Li + L2) and a non-resource-dependent sector (L3) 

should change over time in order to get the "most" out of the 

exhaustible a s s e t . In order to "dissect" the problem even further w e 

shall examine firstly the case w h e r e there is no depletion effect 

(CI = F ( L I , G ( L 2 ) ) . 

T h e switching surface for a switch from policy B to policy A 

is in this case: 

,, . - U I ( F ( L I , 0 ) , H ( L 3 ) ) ( F 2 ( L I . O ) . G ' ( O ) - F I ( L I , 0 ) 
( 4 . 2 6 ) ip -

( 4 . 2 7 ) U i ( F ( L i , 0 ) , H ( L 3 ) ) F , ( L , , 0 ) = U 2 ( F ( L , , 0 ) , H ( L 3 ) ) . H ' ( L 3 ) 

( 4 . 2 8 ) L I + L 3 = L . 

It may be shown that along policy B: 

(^^29) L3 = - u i F i p G O - U M F I ( F , G I - FI ) + U2 IH'(F2G1 - FI ) ^^^^ 

,, ,,, ; {uiiF.FzGi - u i 2 H ' ( F 2 G I + Fi ) + uiFi 2G1 + U22 (H' ) ' + U2H"} ^ 
( 4 . 3 0 ) L I - _ U J ^ F I ( F 2 G I - F I ) + U 2 H ' ( F 2 G I - F I ) + U I F I I - U I F I 2 G I 

,, ,,, • ( u . H " - 2 u . , F , H ' + u , F M + U M ( F i ) N ^ 
(4.31) Lz - - F i ) -U2iH'(F2GI - F I ) - U 1 F 1 1 + U 1 F 1 2 G 1 

= f u , H " - 2 u 2 i F i H ' + u i F n + u i i ( F i ) ^ j ^^^^ ^ 

where A is a n e g a t i v e e x p r e s s i o n . 

3 
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Thus L2 is falling over time for policy B. The optimal path 

will be the longest exhaustion path feasible. For long time horizons, 

the economy will find it optimal to run L2 continuously to zero, and, 

when L2 reaches zero, to switch into policy A, producing both 

consumption goods with the appropriate quantities of labour (these will 

be the solutions, Li and La.to eqns. (4.27) and (4.28)). 

While X is being exploited (policy B) the direction of 

movement of Li and L3 is not clear. In the single consumption good 

model there was no difficulty in signing Li because the only important 

considerations were technological. However when another consumption 

good is introduced into the model, the consumer's relative preferences 

for the two consumption goods also become important. So far as L3 is 

concerned, if production relationships alone were important (in 

particular if ui1 = U21 = 0^), then it would be optimal to increase L3 

as the resource is depleted. In other words, there should be a movement 

of the variable factor away from the resource-based sector (1 + 2) as 

time goes on and the resource is depleted. However the relative 

preferences for the resource good (which will become stronger as the 

resource is depleted and Lz falls) will tend to offset the increase in 

La warranted by production considerations. The relative strength of 

these two influences ((uiF^ - U1F12G1) represents the influence of 

production and the remaining two terms in the numerator of the R.H.S. of 

(4.29) represent the influence of preferences) will determine whether L3 

should rise or fall as exploitation of X proceeds. 

Similarly, if we were simply to consider the production 

aspects of the problem Li should be falling over time, reflecting the 

^ This would, for example, be the case if u(Ci, C2) - C1+PC2 for some 
p > 0 . 
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general scaling down of activity in the resource based sector (this 

influence is represented by U1F12G1 in the numerator on the R.H.S. of 

(4.30)), however innate preferences for the resource based good together 

with a diminishing marginal product of labour in the production of C2 

(represented by the remaining terms in the numerator on R.H.S. of 

(A.30)) will be working to prevent Li from falling. Again, the net 

result is indeterminate without more precise information about the 

functions involved. 

When a depletion effect is Introduced tlie model becomes even 

more complicated. We are not even able to say that the depletion effect 

will definitely cause the variables to move one way or the other. Now 

we must add to the expression in (4.29) for L3 two terms, a long 

expression C/A which is negative and a second 

(4.32) {G12F11 - G12F12 + G11F12G2} > 0 . 

Again, in terms of i)ure production considerations one would expect the 

depletion effect to make it optimal to shift labour out of the resource-

based industry in order to escape increasing costs of extraction as the 

resource is depleted (the expression in (4.32)). On the other hand 

there will again be an offsetting term (C/A, in this case) representing 

the community's desire to maintain production of Ci. Clearly the 

optimal movement of labour between the two main sectors of the economy 

(3 and combined 1-2) is more indeterminate than ever. However if we 

assume, for example, that utility is measured as some weighted sum of Ci 

and C2, say Ci + pC2 for some constant p > 0, and that the production 

function, F, for Ci exhibits constant returns to scale then C will be 

zero and the sole influence of the depletion effect will be to shift 

some labour out of the resource-based Industry as time goes on. 
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Nevertheless the final outcome is a far cry from the easily identified 

factor movements envisaged by Barnett and Morse [6] and which were 

discussed in Chapter 2. 

As far as the general structure of the solution is concerned, 

the surface for switches between policies A and B is now given by: 

, ̂  ui(F(Li, 0 ) , H ( L 3 ) ) ( F 2 ( LI, 0 ) . GI ( 0 , X) - F i ( L i , 0 ) ) 
^ G i ( 0 , X) 

ui ( F ( L i , 0 ) , H ( L 3 ) ) . FI ( LI , 0) = U 2 ( F a i , 0) , H ( L 3 ) ) . H ' ( L 3 ) 

L i + L3 = L . 

This surface has slope given by: 

dlĵ  _ U1F1G12 . n. 
dX " (Gi)2 ^ ^ 

and is illustrated in Figure 4.4. 

Figure 4.4 
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X(T) is determined as the intersection of the optimal 

trajectory and = 0. The optimal trajectory will be the one along 

which ip(t) reaches zero at t = T. As T X(T) X*, which is defined 

as the X-solution to the system: 

F 2 ( L I , 0 ) . G I ( 0 , X ) = F I ( L I , 0 ) 

u i ( F ( L I , 0 ) , H ( L 3 ) ) . F ( L I , 0 ) = U 2 ( F ( L I , 0 ) , H ( L 3 ) ) . H ' ( L S ) 

L I + L 2 = L „ 

Because of the difficulties which arise when working with 

three sectors it is natural to ask whether there is a valid, convenient 

way of aggregating the two sectors involved in the production of Ci into 

a single sector and thereby reduce the above model to a two-sector model. 

This would have the advantage of both simplifying the exposition and 

making more precise the dichotomy between a resource-based sector and a 

non-resource-based sector. 

Aggregation of sectors 1 and 2 should necessarily assume some 

specific optimizing behaviour within those two sectors and unfortunately, 

aggregation on the basis of intertemporal optimization (using the first 

model presented in this section), at each point in time is as difficult 

a problem to formulate as it is to solve. It may however, be 

interesting to make tlie simplifying assumption that sectors 1 and 2 

combined, in responding to a given allocation of labour (Li + L2) 

determine the allocation within their sector on the basis of myopic 

maximization. One would not expect aggregation on this basis to lead to 

the same optimal rules as for those derived above for the underlying 

three sector model. Indeed, one would expect tlie optimal path derived 

for the new two-sector model to constitute some sort of second best 

solution. Nevertheless let us proceed with our new assumption and see 

where it leads us. 
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To begin wltli we shall redefine some variables. Writing 

Ci = F(L*, G(L*, X)) and C2 = H(L*) , 

we diMiote 

Li = L* + L* and L2 = L* . 

The next step is to derive a production function for the new 

vertically integrated sector 1 relating its output (Ci) to its total 

labour supply (Li). If the sector wishes to allocate L*,L* so as to 

maximize Ci subject to given Li at any point in time, then either 

L* = L^ or L* = Li or Lj' and L* are both between 0 and Lj. Our 

assumption that F2(0, X) = 0 rules out the possibility that L* = 0 and 

L* = Lj. Wlien L* = Lj , Cj = F(Lj , 0) and the production relationship 

beLweeu Cj and Lj is iimiiediately established. it remains for us to 

clieck the cane wliere G (0, L,). In this case, condition (A.6) 

will hold and we find tliat: 

il^ F22(Ci)^ + F2G11 - F12G1 
DLi ° Fii - 2F12G1 + F22(Gi)2 + F2G11 ' 

and 

F 2 2 G 1 G 2 + F 2 G 1 2 - F 1 2 G 2 
8X ~ Fii - 2F12G1 + F22(Gi)2 + F2G11 • 

It may then be shown that if F and G are each homogeneous of degree 1; 

Thus, in general we can write: 

(A.33) Ci = f(Li, X) , 

where 

^ The assumption that F and G are homogeneous of degree 1 is only 

axSLi required to prove ^ ^ ^ > 0; the other results are true in general. 
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fi > 0 , fa > 0 , 

fll < 0 , f22 < 0 , 

fi2 = f2i > 0 , f E C 

f(Li, 0) = 0 , 

(2) 

and we have a production function for the single vertically integrated 

sector relating that sector's output to its labour input and the stock 

of the resource. We now have a two sector economy with production 

relationships described by (4.33) and 

(A.34) C2 = H(L2) . 

Now, for convenience, we define the stock of the resource (X) 

to be measured In terms of the amount of tlie consumption good which it 

3 
will produce. Then: 

(4.35) X = -C' 

Noting that L = Li + L2, it is possible to write L2 = k(Ci, X) 

and using (4.34): 

(4.36) C2 = 4)(Ci, X) 4>i < 0 , 4>2 > 0 , 

< 0 , <P22 < 0 , 

( p i 2 > 0 , (p e c ^ ^ ^ 

^2(0, X) = 0 

lim (pi(0, X) = . 
X-^0 

(4.36) is simply the usual sort of equation for a concave production 

frontier in a two sector economy. The frontier, relating output of one 

This is essentially tlie same assumption as we were making implicitly 
in tlie first model presented in this chapter, where X represented the 
total amount of E which it would produce according to E = G(L2, X). 
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sector to output of tlie other contracts inwards as the resource Is 

depleted (Figure 4.5). 

X, > X2 > X3 

Figure 4.5 

The problem to be solved here involves finding a time path for 

Ci(t) and a value for X(T) so as to maximize 

T 
(4.37) J 0 

u(Ci, C2) e ^^dt 

s.t. X = -Ci 

C2 = (l>(Ci, X) 

Ci ,C2 0 

X > 0 , 

where T is parametrically fixed and u has the properties listed in 

(4.18). 

The set of necessary conditions are: 
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(4.38) i|) = i|j(S _ - A2(j)2 

(4.39) \p = ui(J)i + U2 + Aacf)! + Ai - A3 

(4.40) ij;(T) X(T) = 0 

Ai > 0 Ci > 0 

(4.41) j A2 > 0 ({)(Ci, X) > 0 

[ A3 > 0 X > 0 

The possible policies are:^ 

AjCi = 0 

Ai(j)(Ci, X) = 0 

A3X = A3X = 0 

by: 

Policy A: Ci = f(L, X) , C2 = 0 

Policy B: Ci = 0 C2 = <})(0, X) E ^ 

Policy C: Ci > 0 C2 > 0 . 

The switching surface between policy B and policy C is given 

ip = o).(i)i(o, X) + U2(i, 0) E n(x) . 

If we assume (not unreasonably) that 3 X > 0 for which 

n(X) > 0 , the assumption that lim (l)i(0, X) = ensures that 3 X* > 0, 
X->0 

s.t. n(x*) = 0, and the surface is as in Figure 4.6. 

Policies A and C are both confined to regions below the n(X) 

locus. Paths for which ij; < 0 are exhaustion paths, however, they take 

an infinite time to run X to zero and thus cannot satisfy the 

transversality conditions (4.40). Thus, as we found for the previous 

model (and by the same reasoning), the optimal path will be the one for 

which i|j(t) > 0 V^ < T and i|̂ (T) = 0 (e.g. path 1 in Figure 4.6 for some 

finite T; the optimal path path 2 in Figure 4.6 as T «-) . In 

particular we again find that it is always optimal to leave a positive 

In this model w e are not assuming (as we did for the three sector 

model) that both Ci and C2 are indispensible consumption goods (i.e. 

we are not specifically assuming ui(0, •) = U2(', 0) = . 
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Figure 4.6 

stock of X unexploited. This arises naturally because the increasing 

labour allocation to the resource-based sector required to offset the 

depletion effect in that sector squeezes consumption of C2. This cannot 

proceed beyond the point at which the marginal social valuation of the 

resource equals zero. Now, ij; = 0 if iiZ. 
ui 

-(I)I, which in a 

coiiipetitivt; system would represent a static optimum. Thus "extraction" 

(C2) is initially less than the static optimum level. But as time 

passes and resource depletion sliifts the production frontier inwards the 

origin (Figure 4.7), the economy moves towards the static optimum, 

reaching it at the end of the programme. Figure 4.7 shows a possible 

path (PQR) in terms of the shifting production frontier (as X falls from 

X3 to X2 to Xi). Ci may be rising or falling over time depending on the 

properties of the functions involved. Policy C is followed for the 

entire programme. 



80 

't'iC,) 

X3 > X2 > Xj 

Figure 4.7 

In the event that U2((}), 0) = <», the locus, n(X), will lie 

above the X-axis V„ > 0, and for finite T, the optimal path will be like 
A 

path 1 in Figure 4.8 and will tend to path 2 (for which X(T) = 0) as 

T -v 00. 

n(x) 

Figure 4.8 
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It is Interesting to note that if ri(X) < 0 , V ^ 0, then the 

only "path" satisfying the transversality condition (4.40) is ip(t) = 0, 

\ e [0, T], apd X(t) = X(0), V^ e [O, T], in other words, it will be 

optimal to observe the static optimum for the whole programme, the 

static optimum in such a case being the boundary solution, Ci = 0. 

Policy B is followed for the whole programme. The same course would be 

optimal in the case illustrated in Figure 4.6 if X(0) < X*. In such 

cases resource extraction is so uneconomical that production of the 

resource good cannot be contemplated and all economic activity is 

concentrated in the other sector. This of course also depends upon 

consumers being willing to forego the resource good. In the extreme 

case where uaĈ j), 0) = (and n(X) > 0 V ) they will not, and both goods X 
will be produced for the entire programme regardless of depletion 

effects and the initial endowment of the resource. 

In concluding this section of the chapter it is worth noting 

that the production function (f) obtained by aggregating sectors 1 and 2 

of the three sector model, while obtained by assuming myopic decision 

making within the vertically integrated resource sector, is of the same 

form as the original production function (G) for extraction of the 

resource and so may have some intuitive appeal. We can merely say that 

myopic decision making within the aggregated resource sector is 

sufficient for the form (4.33) of the production function. Such an 

aggregation may be validated by many other behavioural assumptions 

including some forms of intertemporal decision making. 
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II 

NON-HOMOGENEOUS RESOURCES 

At this stage it is probably as well to stop for a moment and 

reassess things. It should by now be clear that the scarcity inherent 

in exhaustible resources arises not from one cause, but from many. 

Firstly, there is the elementary scarcity implied by the finitude of the 

stock of the resource. Secondly, there is the intensifying of scarcity 

via depletion effects which reflect the increasing costs encountered as 

less accessible deposits are mined. Thirdly, there are the extra 

limitations imposed on the supply of the resource to future generations 

by planning with a positive discount rate. Finally, there is the usual 

type of scarcity associated with the production of any economic good 

derived from the limited supply of other factors of production. This 

type of scarcity will imply, in the case of resources, that some 

resource deposits will exhibit lower unit costs of extraction than 

others (possibly because of different transport costs, or different 

geological formations, etc.). It is this innate difference in costs 

together with the relative strengths of depletion effects at different 

stages of exploitation which constitutes the main economic distinction 

between "grades" of a resource. Such differences will of course also 

tell us something about the relative valuations of different resources. 

In this section we intend to pursue these considerations in the context 

of a one-sector, "two-resource" planning model. The two resources are 

assumed to be perfect substitutes in the production of a single 

consumption good. It is also assumed that each resource is itself 

homogeneous in quality. 

Let X(t) be the unexploited stock of one resource and R(t) the 

corresponding stock of the other. Let Ei(T) denote extraction of 
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resource at time t and EaCt) the corresponding extraction of resource R. 

Y(t) denotes gross output of the consumption good at time t, produced 

using El and E2 according to: 

Y = F(Ei + E 2 ) , F' > 0 , F" < 0 . 

The cost functions, Vi and V2, for the extraction of X and R 

respectively are given by: 

(4.42) Vi = aEi (1)(X) < 0 , (j)" > 0 , (t)(0) = «> , 

(4.43) V2 = bE2 n(R) n' < 0 , n" > 0 , n(0) = °° . 

The functions (f) and n represent the depletion effects 

associated with the extraction of X and R respectively. Total and 

marginal costs of extraction become infinite as the resource approaches 

exhaustion. 

Net output of the consumption good is clearly given by: 

(4.44) C = F(Ei + E2) - aEi 4)(X) - bE2 n(R) 

Now, suppose the economy is planning over a parametrically 

fixed time horizon and wishes to select time paths for Ei(t) and E2(t) 

and terminal resource stocks, X(T) and R(T), so as to maximize the 

present value of the stream of consumption, i.e. 

Max 
E i , E 2 , X ( T ) , R ( T ) ^ 

Ce-̂ *̂  dt 

s.t. C = F(Ei + E 2 ) - aEi 4)(X) - bE2 1 (R) 

In Chapter 3, it was possible to simply write net output as a 
function F(E) because a single homogeneous resource was involved. 
The non-homogeneity considered in this section makes it important to 
specify the components of net output (viz. gross output and the 
respective costs). 
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X = -El 

R = -E2 

El,E2,X,R > 0 . 

The necessary conditions to be satisfied by a solution to this problem 

are that 3 continuous functions of time, ipi and \p2, and a function, X', 

such that: 

£ = F(Ei + E2) - aEi (|)(X) - bEa n(R) - - ipẑ z 

+ ip l E i + A 2 E 2 - A a E j - A 4 E 2 

( 4 . 4 5 ) = i|>i6 + a E i ( K ( X ) 

( 4 . 4 6 ) 
• 

= 1P26 + b E z n ' ( R ) 

( 4 . 4 7 ) = F ' ( E i + E 2 ) - a 4 ) ( X ) + A i - A 

( 4 . 4 8 ) = F ' ( E i + E 2 ) - b n ( R ) + A2 - A 

( 4 . 4 9 ) ( T ) X ( T ) = i |>2(T) R ( T ) = 0 ( T 

' A i 0 E l > 0 A i E i = 0 

A2 > 0 E 2 > 0 A 2 E 2 = 0 
( 4 . 5 0 ) 

A3 > 0 X > 0 A 3 X = A 3 X = 0 

> 0 R > 0 A ^ R = = 0 

There are four policies open to the economy. They are set out 

in Table 4.1. 

Table 4.1 

Control 
Policy 

A 
B 
C 
D 

El 

> 0 
0 

> 0 
0 

E2 

0 
> 0 
> 0 
0 
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The necessary conditions for the various policy switches are 

set out In Table 4.2. The derivation of these conditions is presented 

in Appendix 4.2. The information contained in Table 4.2 assumes that 

A3 = = 0 . In the event that either R = 0 or X = 0, or both, then 

some switches may take place under more general conditions. These 

switches will be taken acount of in the sufficiency proof in Appendix 

4.3. 

Table 4.2 

Necessary conditions for policy switches 

Switches into 

A B c D 

A • ac})(X) < bn(R) a(j)(X) < bn(R)"'" F' (0) > a(j)(X) 

B a(J)(X) > bn(R) • a(f)(X) >bn(R)''" F' (0) > b n ( R ) 

Switches ^ 
out of 

a())(X) > bn(R)* a4)(X) < bn(R)* • 

F' (0) > acl)(X) 

F' (0) > b n ( R ) 

D F' (0) < a(j)(X) F'(0) < bn(R) 
F' (0) < a(j)(X) 

F' (0) < bn(R) 

• 

* A condition which must hold Immediately after a switch takes place. 

^ A condition which must hold immediately before a switch takes place. 

Policy C is a single trajectory in the (R, X) plane with 

equation a(})'(X) = bn'(R) and turns out to be part of the optimal 

programme for most sets of initial conditions (X(0), R(0)). With this 

in mind we define an avterial path to be a Pontryagin path which 

ultimately meets and moves along path Yi (Figure 4.9(a)) if a(()(0) >bn(0) 

or path Y2 (Figure 4.9(b)) if a(f)(0) < b n ( 0 ) . 
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R R 

a(j)(X) = b n ( R ) 

Figure 4.9(a) 

30(0) > bri(O) 

B 

f 

Region I 

Y2 

a(t>(X) = b n ( R ) 

Region II 

Figure 4.9(b) 

a4)(0) < bn(0) 

X 

Paths Yi snd Y2 are switched into from above via policy B and 

from below via policy A . An example of a set of arterial paths is 

illustrated in Figure 4.10 for the case a(p(0) > bri(O). There is a 

unique arterial path for each set of initial conditions (X(0), R(0)). 

Assuming that for X sufficiently large F'(0) > a(})(X) and for R 

sufficiently large F'(0) > bri(R), then 3 X': F'(0) = a4)(X') and R': 

F'(0) = b n(R'). In addition, the assumptions that (JJ(0) = «> = n(0) imply 

that exhaustion of either resource would take an infinite time. Hence 

for all finite T , iĵi (T) = ipziT) = 0. The optimal path will be the 

appropriate arterial path (for the relevant (X(0), R(0))), and the time 

profiles of extraction of X and R will be determined by the requirement 

that ipi and ip2 ^^e run to zero at time T . In particular as T «>, Ej (T) 
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R 

Figure A.10 

and E2(T) will ^ 0 and the endpoint (X(T), R(T), iĵi (T), i|;2(T)) will 

approach (X', R', 0, 0) where X ' and R* are defined as above. The lower 

the cost coefficient (a) for resource X , say, the lower will be the 

ultimate terminal stock of the resource (X'). 

It is clear that above policy C (in region I — Figure 4.9) is 

a region of relative surplus of R while to the right of it (region II) 

is a region of relative surplus of X. We see that the optimal course 

for the economy if it is initially situated in region I is to produce 

all output using R (policy B) until a situation of balance is reached in 

which marginal costs of extraction are equated (a(j)(X) = bri(R)). Wlien 

such a point is reached, policy C should become operative (exploiting 

both resources so that their marginal costs of extraction are kept 

equal). 

When there are no depletion effects involved in the extraction 

of the two resources the marginal costs of extraction (a and b) are 
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given constants and cannot be manipulated by controlling the time paths 

of extraction. It is not surprising that in such a model it is never 

optimal to operate policy C for more than an instant.^ 

It is actually possible to show that the optimal course when 

there are no depletion effects present is to exhaust the cheaper of the 

two resources before extracting any of the other resource. This of 

course is the standard Ricardian result referred to by Solow in [31] 

(p.4). Resources are exploited in order of declining economic quality. 

The proof of this proposition proceeds as follows. Firstly, it is 

reasonable to assume that both resources are economic (i.e. F'(0) - a 

and F'(0) - b are both positive), otherwise we have a trivial problem. 

Then tpj and \p2 are both positive for the entire programme. It follows 

from the transversality condition that X(T) = R(T) = 0. Since C can 

only hold for a moment we have to decide when the remaining policies 

should operate. We shall consider the case where a < b (i.e. X is the 

cheaper grade of resource). It is not optimal to switch out of A before 

X is exhausted (since it is impossible to switch back from D or B into A 

— a fact which is easily verified by inspecting the movement of ipi — if 

it is not possible to switch back X cannot be exhausted). In addition, 

the only time when it is possible to switch out of B is when R is 

exhausted. (For policy B, iĵi + a > tjj2 + b and (ijĵ  + a) > (ip̂  + b) 

— a switch into A is only possible when Ai, can become positive and 

preserve the continuity of the co-states; also if B switches into D 

before R is exhausted it cannot later switch back, so that the 

exhaustion requirement is violated.) Thus the optimal policy sequence 

Policy C involves having + a = + b. For this equation to 
continue to hold h = 'Pz ̂  = <> fpi = ip2 ̂  a = h, which will 
only be true for a homogeneous resource, a case we are not interested 
in here. 
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must be ABD or BAD, with each resource being exhausted before 

exploitation of the other one begins. Our contention here is that since 

X is the cheaper resource, the sequence will be ABD. For an AB switch 

it is possible for A2 to decline to zero while policy A is in operation 

and Xi to increase from zero during policy B. That such a case is 

optimal may be verified by comparing integrals (letting asterisk 

superscripts denote the path claimed to optimal). We have: 

T 

{F(Ei + E*) - aE? - bE^) - (F(Ei + E2) - aEi - bE2)}e '̂ '̂ dt 
0 

- Ei)dt + ilJ*(0)(E* - E2)dt 

0 

+ „ -6t Aj Eie dt + 
0 0 

A* E^e'^^dt 

> 0 . 

It is now clear that when one resource is cheaper to extract than 

another it will be optimal to exploit that resource exclusively. When 

there are no depletion effects this will simply involve exhausting one 

resource deposit and then commencing on the next most costly one. 

However, when extraction is characterized by depletion effects, it is 

possible to control extraction costs to some extent. If resource X is 

initially cheaper than R (i.e. a(()(Xo) < bri(Ro)) it will initially be 

exploited exclusively. However as depletion effects set in, the cost 

advantage of X will be eroded. Wlien the two marginal costs are the same 

net returns over time are increased if both resources are exploited 

simultaneously, keeping their marginal costs equal and postponing the 

full force of the depletion effect for each of them. 
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Having concunLrated up Lo this point on t?ie production aspects 

of the two-resource problem it would be interesting now to turn our 

attention to the social welfare problem where the community has its own 

innate valuation of each resource. This problem was examined in 

Chapter 3 for tlie case of a single resource by incorporating a 

"conservation motive" in the utility function. Here we generalize this 

procedure by defining a social welfare function of the form: 

u = u(C, X, R) "c ^ ° ' "CC ° ' 

"X > 0 ' "XX < ° ' 

"XC = "CR = "RC = - ° ' 

"XR ^ "RX ^ ° • 

This utility function is assumed to be strongly separable between 

consumption and the two resources. This of course means that we can 

write: 

u(C, X, R) = f(C) + g(X, R) . 

We shall assume that f'(0) is finite and that g is concave in 

X and R. To keep the analysis manageable we shall have to ignore 

depletion effects and also assume tliat both resources are characterized 

by identical (constant) unit costs (a). This means that C will now be 

written as: 

C = FCKi + Il2) - a(Ei + E2) . 

It is obviously convenient to write u in the form u(E, X, R), where 

E = El + E2. Tlie properties of u with respect to E are the same as its 

properties with respect to C. 

We now wish to solve problem (4.44) with C replaced inside the 

integral sign by u(E, X, R). The necessary conditions are: 



91 

(A.51) 

(4.52) 

(4.53) 

(4.54) 

(4.55) 

ipi = ipiS - u^(X, R) 

h = - R) 

ipi = u^(E) + Xi - A3 

= û (̂E) + A2 - A., 

i|;i(T) X(T) = (T) K(T) = 0 

(4.56) 

Ai > 0 

A2 > 0 

A3 > 0 

X^ > 0 

El > 0 

Ez > 0 

X > 0 

R > 0 

AiEi 

A2E2 

A3X 

A4R 

0 

0 

A3X 0 

0 

The policies available in the economy are as set out in 

Table 4.1. The necessary conditions for the policy switches (for X > 0, 

R > 0) are set out in Table 4.3. 

Table 4.3 

A 

Switches into 

B D 

A 

Switclies 
out of C 

D 6u„(0) < u^ 
Vj i\ 

u < u X K 

"x ' "k 

+ condition immediately before a switch. 

condition immediately after a switch. 
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As in the previous model, the optimal path will lie along one 

of the arterial paths defined in terms of Figure 4.9, with the 

difference that policy C now has as its equation u (X, R) = (X, R). It X 
will however still be positively sloped. Assuming again that F'(0) > a, 

we can deduce from (4.55) that for finite time horizons X(T) = R(T) = 0 

(since either > 0, i = 1,2, or < 0 in which case the 

appropriate one of X3,X^ would have to be positive). On the other hand 

when T = there would appear to be the possibility (as there was for 

the single resource model of Chapter 3) that it may not be optimal to 

exhaust the resource. This would be the case if it were optimal to 

switch into policy D permanently before both resources are exhausted. 

Because of its relative simplicity we will dispose of the case 

where T is finite first of all. It is proven in Appendix 4.3 that the 

optimal plan is the one which takes the longest time feasible to exhaust 

both resources moving along the appropriate arterial path (i.e. the one 

which satisfies the initial conditions). Thus when 0) > 0) 

the optimal policy sequence will be: 

(i) BCA if X(0) > X' (Figure 4.9(a) when (X(0), R(0)) is 

BA if X" < X(0) < X' for some X" > 0 V in region I 

BDA if X(0) < X" (Figure 4.9(a)) 

(ii) ACA when (X(0), R(0)) G region II . 

Similarly, when u^(0, 0) < u^(0, 0), the optimal policy 

sequence will be: 

(i) ACB if R(0) > R* (Figure 4.9(b) 

AB if R" < R(0) < R', for some R" > 0 

ADB if R(0) < R" 

(ii) BCB when (X(0), R(0) S region I. 

when (X(0), R(0)) is 

in region II 

(Figure 4.9(b)) 
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X' and R' are here defined as the respective solutions to 

0) = 0) and R) = R). It is clearly optimal for 

the economy, wherever possible, to move towards a situation where its 

intrinsic valuation of an additional unit of resource stock is the same 

for both resources (u^ = u_). It will exclusively exploit the less A K 
valued resource until this state of balance is achieved. We may also 

note that resource R will be exhausted first if and only if 

u^(0, 0) > 0) (i.e. the intrinsic valuation of the last unit of X, 

when there is no R left is greater than the intrinsic valuation of the 

last unit of R when X is exhausted). 

In analysing the case T = 0°, there are several cases to be 

distinguished and to facilitate the exposition we define: 

a(X, R) E 6ug(0) - Uĵ (X, R) 

3(X, R) E 6ug(0) - u^(X, R) . 

There are several cases to be considered: 

Case 1: a = 0 lies below B = 0 for some X > 0: 

We shall define (X, R) to be the solution of the equation 
/S 

system a(X, R) = 0 = B(X, R). The existence and uniqueness of (X, R) is 

guaranteed if we make the not unreasonable assumptions that 

lim u (X, R) = 0 V^ and lim u„(X, R) = 0 V^. (X, R, Jj, $2) constitutes 

an equilibrium of the system of differential equations: 

X = -El 

R = -E2 
= ip,6 - u^(X, R) 

h = - ' 

/\ /N 
where ijjj = 
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In Appendix 4.3 it is proven that the optimal course for the 

economy is as follows: 

(a) When (X(0), R(0)) G region I and X(0) > X (see Figure 4.11) a 

policy sequence BCD should be followed (say path P^ in 

Figure 4.11); exploitation of both resources continues for an 

infinite time and positive stocks (X and R respectively) of 

the two resources remain; for this to happen, E^(t) + 0 

(i = 1,2) as t ̂  (X(t), R(t), i|;i(t), i|>2(t)) ̂  (X, R, $2) 

as t 

(b) When (X(0), R(0)) E region II and R(0) > R, a policy sequence 

ACD is optimal (say Path P2 in Figure 4.11); as in case (a) 

above, it takes an infinite time for the economy to reach the 

equilibrium (X, R, $1, $2) and E^(t) 4- 0 (i.e. 1,2) as t ^ 

(c) If (X(0), R(0)) e region I and X(0) = X, then the economy 

follows BD (Path P3) and if (X(0), R(0)) G region II and 

R(0) = R, AD is optimal (Path P4). 

(d) If (X(0), R(0)) G region I above 3 = 0 and X(0) < X, then the 

economy should follow B down to 3 = 0, letting E2(t) ^ 0 and 

switch into D when the path ( P 5 , say) hits 3 = 0, at which 

point ii'2 = 0 and the subsystem of differential equations for R 

and i)2 is in equilibrium; the process will again take an 

infinite time. Because X(0) is less than the level of X which 

a more abundantly endowed economy would choose to conserve (X) 

more R has to be used up in order to compensate; similarly 

when (X(0), R(0)) G region II to the right of a = 0 with 

R(0) < R, A should be followed to a = 0 (Pe), with Ei (t) 4- 0 

and D becoming "operative" at t = when the path meets a = 0. 
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Figure 4.11 

(e) Finally we consider the case where X(0) < X, R(0) < R and 

(X(0), R(0)) lies between a = 0 and 3 = 0 . In this case the 

economy's resource endowments are below any level which the 

community regards as acceptable and so the optimal course is 

to do nothing — i.e. policy D is operative for the whole plan 

and X(t) = X(0), R(t) = R(0) V^. 

For all initial conditions considered here it is optimal to 

leave positive stocks of both resources unexploited at the endpoint. 

This result is a consequence of the relatively strong conservation 

motives assumed for both X and R. We are assuming in particular that 

one of the following three conditions holds: 

(a) 6m, (0) < u^(0, 0) and 6u^(0) < u„(X, 0) V^ > X for some h X ll K A 

X > 0, 
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(b) 6u (0) < u (0, 0) and 6u,,(0) < R) V„ >R for some K h X R — 
R > 0, 

(c) 6uj,(0) < 0) and 6uj^(0) < 0). 

These conditions are very similar to the non-exhaustion 

conditions derived for a single resource in section III of Chapter 3. 

In fact, if the utility function is also separable between X and R, then 

the conditions (a), (b) and (c) reduce to the single part of conditions 

< and 6uj^(0) < , a duplication of the single resource 

condition of Chapter 3. Also, with complete separability, if X(0) > X, 

it is never optimal to run X below X, and similarly for R. 

Having completed our analysis of the case where a = 0 lies 

below 3 = 0 for some X, we turn our attention to the remaining cases, 

where a = 0 lies everywliere above 3 = 0 in the (X, R) plane. 

Case 2: 6n,(0) < u^(0, 0): h X 

This assumption implies in particular that 6u (0) > u„(0, 0), L R 
so one would expect that the optimal path would involve exhaustion of R 

and non-exhaustion of X. This is established using the optimality proof 

of Appendix 4.3. The optimal path is the appropriate arterial path 

leading to X* (Figure A.12) provided X(0) > X*. This entails a policy 

sequence BCAD (BAD if X* < X(0) < X') or ACAD depending on whether the 

economy is initially in region I or II. R will be exhausted in a 

finite time (the longest such time feasible) after which the remaining 

stock of X will be exploited exclusively until t = °° when a positive 

stock X* of X remains. X* is the solution to 6uj^(0) = "x^^*' ^^' 

R = 0 and tlie economy is following policy A, the system of equations for 

the economy is: 
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a = 0 

B = 0 

Figure 4.12 

X = -El 

= ipifi - 0) 

= 

and this is an entirely self-contained system in the (X, ip) plane with 

(X, = (X*, u,, (0)) as its equilibrium. It will take an infinite time 

to attain this equilibrium and the path leading to it (with E^ (t) 4- 0 as 

t ->- will be the optimal path. Summing up, when X(0) > X*, the 

economy will find it optimal to: 

(a) exhaust R at the same time as X = X' (i.e. as late in the plan 

as is feasible) ; and 

(b) continue to exploit X forever but leave an amount, X*, 

unexploited at the end of the programme. 

When X(0) < X * , the economy will adopt the longest possible exhaustion 
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path for R, emi)loylng policy B until R = 0, at which point it will 

Hwitcli into policy D Cor the rest of the programme (a path such as P in 

Figure -((.l̂ ). We again note tlie Hlinllarlty to the results obtained in 

(Ihapter i for a single resource. 

Case 3: 6uj,,(0) < U|^(0, 0):^ 

This case is symmetrical to case 2 and involves exhaustion of 

X and non-exhaustion of R. The optimal path is: 

(a) the appropriate arterial path terminating at 

(X(c«), R(co)) = (0, R*) (see Figure 4.13), when R(0) > R*; the 

policy sequence is BCBD if (X(0), R(0)) E region I, and ACBD 

if (X(0), R(0)) G region II and R(0) > R' or ABD if 

R* < R(0) < R'. 

(b) the appropriate path, AD (say path ^ in Figure 4.13) if 

R(0) < R*. 

Case 4: 6u^(0) > u^(0, 0); > 0): 

Because the conservation motives for both resources are weak 

it turns out to be optimal to exliaust them both in a finite time 

(because ol tlie assumption that ii.,(0) < in Figure 4.14 (drawn on IJ 

the aHsumption tliat u^(0, 0) > Uj^(0, 0)), the optimal plan is the 

longest exhaustion palli for botli resources along tlie appropriate 

arterial path. As such, it coincides with the optimal exhaustion path 

for a long finite time horizon. Wlien both X and R have been exhausted 

^ This condition, together with the fact that a = 0 is assumed to lie 
above 3 = 0, implies that 6u^(0) > 0)-
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X 

Figure 4.13 

a= 0 

3 = 0 

Figure 4.14 
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(EjCt) 4 0 as X I 0 in the case illustrated in Figure 4.14), policy D 

becomes optimal for the remainder of the plan. 

The results of this model may be summarized as follows: 

(i) When T is finite, the optimal course is for both resources 

to be exhausted over the longest per:(.od feasible. 

(ii) Resource R would tend to be exhausted first if 

u^(0, 0) > Uj^(0, 0). 

(iii) When T is infinite, resource X will not be exhausted if 

6u (0) < u (0, 0). This is however only a sufficient E X 

condition for non-exhaustion. It is both necessary and 

sufficient if the utility function is strongly separable in 

all the variables. When 6u^(0) > 0) and 

6u (0) > u„(0, 0), it is optimal to exhaust hoth resources. E R 

The exhaustion and non-exhaustion conditions are thus seen 

to be very similar to those derived for a single resource in 

Chapter 3. 
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APPENDIX 4„1 
PROOF OF OPTIMALITY IN SECTION I 

As in other proofs of this type in the thesis we let * 
superscripts denote the path claimed to be optimal. The difference 
between the value of the present value integral along the optimal path 
(P*) and along any other Pontryagin path (P) is: 

P* - P = [u(C*) - u(C)]e '̂ ''dt 
0 
T 

0 
u*F*(Lt - Li)e "̂ d̂t + 

0 
By the concavity of G: 

G - G* < G*(L2 - L*) = G*(L* - L,) 

T 
Hence, 

p* - P > - u*F*(G* - G)e "̂ d̂t 
0 0 

ip* _ A^ + Ai + A* 
0 

G* G* (G* - G)e '̂ '̂ dt 

i)* e '̂ '̂ (G* - G)dt + 

0 
G* A*(G* - G)e~'^^dt 

T T 
(G* - G)dt - A^G e'̂ ^̂ dt 

0 0 
XT*. = lpJ[X(T) - X*(T)] 

= 0 along all the paths claimed to be optimal. 

QED 
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APPENDIX 4 . 2 
DERIVATION OF SWITCHING CONDITIONS IN SECTION I I 

AB: For policy A: ij;̂  = F'(E^) - a(j)(X) 

= F'CEj) - bri(R) + A2 

For policy B: ip̂  = F'(E^) - a(P(X) + - A3 

ip^ = F ' ( E 2 ) - b n ( R ) . 

When X > 0 and A3 = 0, for policy A , ip̂  ^ ip2 + bn(R) - a(t>(X), while for 

policy B, ip̂  > ip̂  + bn(R) - a(|)(X). In this case a switch can only take 

place if: 

• • • 

\pi > 4̂ 2 ~ a(j)'(X).X immediately before a switch 

ip^6 + aE^(p'(X) > ip^6 + a({)'(X)E^ 

^ a(p(X) < br)(R) . 

It may be similarly verified that this condition must also hold 

immediately after a switch. In addition, when X = 0, the multiplier, 

A 3 , can always jump to make a switch possible even if the above 

condition is not satisfied. 

When R > 0 , the condition for a BA switch is a(})(X) < bri(R), 

but when R = 0, A^ can always jump to make a switch possible regardless 

of this condition. These possibilities will be commented on in 

Appendix 4.3. 

AC: For A: ^ ip^ + b n ( R ) - a(i)(X), and for C: 

i p i = i p 2 + b n ( R ) - acj)(X). An AC switch therefore requires that 

ijji > ~ a4)'(X)X immediately before a switch occurs, so that we must 
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have a(t)(X) < bn(R) immediately before the switch. Similarly, a CA 

switch requires a4)(X) > bn(R) immediately after the switch occurs. 

AD: When R > 0, 

ipi < F'(0) - a(})(X) for A, and 

iĵi > F' (0) - a({)(X) for D . 

A switch requires iĵj > 0 at the switching surface. 

iĵi > 0 at the surface 

F' (0) > a(t)(X) . 

As for AB, when R = 0, may jump to preserve the continuity of and 

thus make the switch possible without the above restriction. 

The switching conditions for BC, BD and CD, etc., are derived 

similarly to the above. 
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APPENDIX 4,3 
IDENTIFICATION OF THE OPTIMAL PATH IN SECTION II 

P* - P = [u(E*, X*, R*) - u(E, X, R)]e '̂''dt 
0 

û (E*)(E* - E)e '̂'̂dt + û (X*, R*)(X* - X)e '̂'̂dt 
0 0 

0 
u (X*, R*)(R* - R)e" ̂dt K 

- A* + A*)(Et - + (ip* - X* + At)(E* - E,)e "^dt -6t 
0 0 

T 
+ (ip̂s - ^̂ (X* - X)dt + - '̂''(R* - R)dt 

(iP* + X*)(E* - E,)e ^^dt + -6t 
+ X*)(E* - E,)e '^^dt 

0 0 

-6t - [iP* e '̂ X̂* - X)]Q - [ip* e -(R* - R)]̂  
T 

+ e-'̂ X̂* - X)dt + \p* e '̂'̂(R* - R)dt . 
0 0 

Hence we have: 

(4.57) P* - P > ij;*(T)e '̂ '̂ (X(T) - X'̂ (T)) + iĵ*(T)e '̂ '̂ (R(T) - R*(T)) 

e-̂ 'Â Ê dt - e Â Ê dt . 
0 0 

Using this expression, we can identify the optimal path in each of the 
cases discussed in the text of the chapter. 
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1. T finite; When T is finite, along all Pontryagin paths 

X(T) = R(T) = 0 , so that P* - P reduces to: 

P* - p > _ \ E 2 e dt 

0 0 

and the optimal path is the longest feasible arterial exhaustion path 

for both resources. Along such a path exploitation of X (R) continues 

until time T in which case A* = 0 (A* = 0) for the whole programme, or 

exploitation ceases before the endpoint, in which case the longest 

arterial exhaustion path for X (R) is again chosen because along it A* 

(A*) will be zero for the whole programme. The sufficiency proof 

effectively rules out sequences such as AB in region I (path 3 in 

Figure 4.15 below). For such a path the AB switch requires that A* 

become positive and grow over time and this would prevent us from 

establishing tlie superiority of path 3. 

Figure 4.15 



This implies that ip* > u* > 0 , i = 1 , 2 , and so 
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2 . T = Each of the paths claimed to be optimal for cases 1 - 4 

in tlie text has the property that A* = A* = 0 for the whole programme. 

J > "J 
( 4 . 5 8 ) P* - P > -iiJ^(T) X^(T) - R*(T) e^ 

and for each of the paths claimed to be optimal one of the following 

w i l l hold: 

( i ) > ^ $2 (Case 1) 

( i i ) (l)*(t) ^ Ij), , = 0 (Case 2) 

( i i i ) ijj5(t) ^ $2 , X*(«') - 0 (Case 3) 

( Iv ) X*('") 0 -= l<*("') (Case 4) . 

in each of these cases the K . H . S . of ( 4 . 5 8 ) is zero and P* - P > 0 . 
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CHAPTER 5 
THE AVAILABILITY AND USE OF SUBSTITUTES 

Up to this point we have carefully ignored the nature of the 

process whereby one resource is replaced by another in the process of 

production. We have also not paid any attention to the way in which a 

particular resource may become an economic alternative to an exhaustible 

resource whose cost of extraction is rising. In this chapter allowance 

will be made for a substitute resource to be phased in at some stage of 

the programme. It will be incorporated into the basic model (Chapter 3) 

in a way which acknowledges some of the more crucial aspects of the 

"substitutes" problem. 

I 

THE BACKGROUND 

Tlie issue of the development and use of substitute natural 

resources as a means of mitigating scarcity of existing resources has 

had a curious role to play in most discussions of resource policy. It 

Is usually |)re.sent in tlie background when the question of imminent 

exhaustion of a key resource is discussed and in such cases it serves as 

a useful foil for the inherently optimistic economist who is apt to 

point out that while one resource may be approaching exhaustion the 

pattern of adaptive beliaviour induced by its increasing scarcity (rising 

costs of extraction and a resulting fall in profits) will bring forth a 

substitute resource to fill the breach. However, despite the importance 

placed on the development of substitutes by such economists, they have 

been reluctant to subject tlie process by which substitutes come into an 
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economic existence to detailed analysis. A typical statement of this 

generally optimistic point of view is: 

"the heritage of knowledge, equipment, and economic 

institutions that the industrial nations are able to transmit 

to future generations is sufficient to overcome the 

potentially adverse effects of continual and unavoidable 

shift to natural resources with properties which on the basis 

of past technologies and products would have been 

economically inferior".^ 

Those economists who have been more precise about the role of 

substitution in the mitigation of scarcity have generally kept their 

references to it brief and have not ventured beyond the realm of 

possibilities: 

"Exhaustion is not necessarily desirable. Just as machines 

can become obsolete before they wear out, extraction of 

minerals can become unnecessary before the supply is depleted. 

Scrap availability might make mining undesirable; solar 
2 

energy might displace mineral fuels". 

Although such statements as the above vastly oversimplify the 

situation, in the face of a shortage of more detailed appraisals, they 

have inevitably provided us with many of our impressions of the 

relationship between substitution and scarcity. 

As already noted (see Chapter 1) a recent work by William 

Nordhaus [25] is mainly devoted to an empirical analysis of the phasing 

^ Barnett and Morse [6]. 

^ Gordon [14]. 
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3 in of what he terms a "backstop technology". There is also an 

interesting paper by Heal and Dasgupta [16] in which the date of 

availability of the substitute (which may well be a backstop technology) 

is subject to uncertainty. Heal and Dasgupta use their model to argue 

againHt the use of an a priori certainty equivalent discount rate in 

resource planning because of tlie bias involved. However neither the 

Heal and Dasgupta nor Nordhaus papers are particularly concerned with 

the economic [jroceus whereby one resource is replaced by another in the 

production of a consumption good. This chapter represents an attempt to 

model this process. 

Tliere seem to be three tilings wliich clmracterize the problem: 

(i) A depletion effect in the production of the scarce resource 

makes that resource increasingly costly and provides one 

IiiceiiLlve for ILH rej)] acemcnt l)y sometlilng else; 

(11) The economic production of the substitute will require 

investment and the consequent building up of a stock of 

knowledge or pliysical capital; as this stock rises, the 

substitute should become cheaper to produce; 

(ill) There will be uncertainty about the date at which the 

substitute will become available. 

it is obviously impossible to incorporate all of these various 

aspects of tlie problem in a single model and so a series of models will 

be used. In Section 11 a simple certainty model is constructed in which 

two resources are perfect substitutes as an input into a consumption 

sector. One of the resources is in relatively short supply and its 

^ See also Solow [31], pp.4-5. 
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extraction is subject to a depletion effect. The other resource is 

plentiful but possibly costly to extract (a backstop technology). It is 

however, available to be extracted from the beginning of the programme. 

In Section III a two state variable model involving capital accumulation 

is used. Capital accumulation lowers the cost of the backstop 

technology. Section IV examines some other aspects of the Heal-Dasgupta 

formulation of the problem. 

II 

THE BASIC MODEL 

1. THE OPTIMAJ. PATH 

There are two resources in the model; the extraction of the 

first resource is Ei. This resource is in finite supply and its stock 

(X) changes according to: 

(5.1) X = -El . 

The other resource is not subject to any stock constraint and 

is thus regarded as being in abundant supply. It is accordingly 

unnecessary to specify an equation of the form (5.1) for the second 

resource. Its extraction is denoted as Ea. 

We shall assume for simplicity that the two resources are 

perfect substitutes and that the production of consumption goods may 

accordingly be written: 

(5.2) C = F(Ex + Ea) F' > 0, F" < 0, F'(«>) = 0, F(0) = 0 . 

The scarce resource is assumed to have its scarcity reflected 

in the fact that its cost of extraction rises at an increasing rate as 

it is depleted according to the following variable cost function: 



J1. 

• for Ej, X > 0 

(5.3) V = V(Ei, X) Vi > 0 , V2 < 0, 

Vii > 0, V22 > 0, 

V12 = V21 < 0, 

V22 (0, X) = V 2(0, X) = 0 = V(0, X), X > 0 

Vi(Ei, 0) = El > 0, 

V2 (Ej , X) 0 as X . 

The variable cost function for the other resource is simply: 

(5.4) S = S(E2) , S' > 0, S" > 0, S(0) = 0 . 

We assume that the economy wishes to select Ej(t), E2(t) and 

X(T) so as to maximize the present value of its stream of consumption up 

to a fixed time T. The problem is therefore to: 

(5.5) Max 
Ei(t),E2(t),X(T) 

Ce-^^dt 

s.t. C = F(E, + E2) - V(Ei, X) - S(E2) 

X = -E2 

0 

2 0 

X > 0 . 

The solution to the problem (5.5) must satisfy the following 

necessary conditions: 

a a continuous function ijj, s.t, 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

ip = IIj6 + V2(Ei, X) 

= F'(Ki + E2) - V,(E,, X) + Ai - X. 

F'(Ej + E^) - SVE^) + A2 = 0 

iMT)X(T) = 0 , T < 00 
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(5.10) 

Aj > 0 El > 0 AjEJ = 0 

> 0 0 A2E2 = 0 

A3 > 0 X > 0 A3X = A3X = 0 

The four policies open to the economy are: 

Policy A: El > 0 E2 = 0 

Policy B: El = 0 E2 > 0 

Policy C: El > 0 E2 > 0 

Policy D: El = 0 E2 = 0 

Tlie question may arise of whether consumption may become 

negative or zero (or In fact be always negative) along the optimal path, 

if we simply assume tliat l'''(0) > S'(0) (i.e. the backstop technology is 

always profitable by itself, even though it may be unprofitable relative 

to tlie exhaustible resource in the early stages when that resource is 

abundant and cheap to extract), tfien it follows that C will always be 

positive (since the backstop teclinology is always available as a source 

of positive C). 

Tlie switching surface for a switch from policy A to policy C 

in the (p-X plane is given by the equations: 

(5.11) 
ip = S'(0) - Vi(Ei, X) 

F'(Ei) = S'(0) . 

The switching surface between B and C has a similar form. It 

is given by the equations: 

' ijj = - V,(0, X) 

F'(E2) = S'(E2) . 
(5.12) 

A BC switch requires ijj < 0 and a CB switch ijj > 0. It is an easy matter 

to show that the AC switching surface lies below the CB surface. We 
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will assume that 3 Ea > 0 s.t. F'CEa) = S'CEa). Then policy D for which 

F'(0) < S'(0) is ruled out. This leaves two main cases to be considered. 

They are: 

(i) F'(0) > Vi(0, X) 

(ii) F'(0) < Vi(0, X) , 

• 

The form of = 0 presents some minor difficulties. However we can say 

that: 
* > (i) for case (ii) above ip = 0 o 4' ^ 0; 

(ii) for case (i) as X X*, ip ̂  ip6 and for X < X*, ip = 0 o ip = 0, 

where X* is the solution to S'(E2) = F'(E2) = Vi(0, X) (see 

Figure 5.1); 

(iii) for case (i) as X ^ 0 along = 0; and 

(iv) ip = 0 lies below the CB switching surface. 

This leads to a locus like that in Figure 5.1. For finite time horizons, 

iJj(T)X(T) = 0 which implies that ip(T) (as in Chapters 3 and 4) because of 

the assumption that lim Vi(Ei, X) = <» V > 0. The optimal path is 

identified as follows: 

(a) When F'(0) > Vi(0, X), the optimal path is that path for which 

ij;(T) = 0. Wlien X(0) > X* it is the path along which ip 

declines to zero, reaching zero at time T (e.g. path 1 in 

Figure 5.1). The policy sequence will be AC or possibly just 

A if initial X is relatively large and T is relatively small. 

The latter possibility arises because if X is large and T 

short, the scarcity of X is not very apparent. It will be 
I 

exploited at a level close to the static optimum tending to 

the static optimum as t T and there will be no need to 
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Figure 5.1 

contemplate using the substitute. However when X is more 

scarce and T is large, the rationing of the exploitation of X 

over time becomes important and as the cost of extraction of X 

becomes too great the substitute will be needed to alleviate 

the pressure on the cost of X. This point is reached when the 

user cost of the scarce resource plus the marginal cost of 

extraction of X equals the marginal cost of zero production of 

the substitute (ij; = S'(0) - Vj (E^, X)). Then the economy 

switches from A into C and exploits both resources until time 

T. As T oo, the optimal path tends to path 2 in Figure 5.1. 

When X(0) < X*, i|;(t) = 0 S Ej (t) for the whole programme. 
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Policy B Is operative. Clearly If the economy finds Itself 

initially in a situation where the marginal cost associated 

with zero extraction of X (ijj + X)) exceeds the 

associated marginal product (F'(E2)) it should content itself 

with just using the substitute. X will remain equal to X(0) 

for the whole programme. 

(b) Wlien F'(0) <Vi(0, X), it is immediately clear that any level 

of exploitation of X is uneconomical and regardless of the 

value of X(0) or T, the optimal course will be to simply 

exploit the substitute for the whole plan. is zero for the 

whole time reflecting the fact that there is no opportunity 

cost associated with using X at any time t because it is as 

economically valueless in the future as it is in the present 

(F'(0) < Vi(0, X)). 

As noted in Chapter 4, when T = 0, the myopic and inter-

temporal plans coincide. Furthermore, for the case F'(0) > Vĵ  (0, X) as 

T increases the terminal stock of X falls. This is simply because with 

a longer planning horizon with discounting the higher costs of 

exploitation of X as it is depleted carry less weight in the present if 

they occur near the end of the longer programme. 

2. COMl'AllATlVE DYNAMICS 

Let us now turn to the question of how different cost 

functions for E^ will affect the optimal path for an infinite horizon 

plan. In the next section a more "controlled" view of this problem will 

be taken with the cost of the substitute being deliberately reduced over 

time by means of investment. However here we are concerned with a 
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problem of comparative dynamics, with the optimal path being shifted in 

some way by a change in a cost parameter. Because it is difficult to 

obtain definite results for the variable costs case using general 

functions, for the remainder of this section we shall assume "constant" 

costs in production of both resources. Thus 

(5.13) V = aEi(|)(X) a > 0, constant 

(|)(0) = (|)'(0) = oo, (P'(X) < 0, (|)"(X) > 0 . 

(5.14) S = bE2 b > 0, constant . 

Before looking at the comparative dynamics of the model, we 

shall check the nature of the optimal paths for the constant costs model. 

We will do this for the case without a depletion effect as well as for 

the case where a depletion effect is present. 

Without a depletion effect the optimal path looks, predictably, 

like that shown in Figure 5.2. 

Policy B 
b-a 

Policy A 

X 

KlK'iro 5.2 
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The resource is exploited exclusively, exhausted in a finite 

time, and then replaced by the substitute. The rate of exploitation of 

X does not run continuously to zero as in Chapter 3; instead Ei falls 

to a positive level E* which is the solution to F'(E*) = b. At that 

point the substitute is introduced into the productive process and 

exploited at a rate equal to E* until t = 

When a depletion effect is present, the situation is as shown 

in Figure 5.3. 

= b - a(j) (X) 

Policy A 

Figure 5.3 

Again as one would expect when constant costs are involved, it 

is never optimal for the economy to produce both resources at once. It 

follows policy A initially, exploiting X exclusively, until E^ falls to 

level E*, given now as tfie solution to 

F'(E*) = b . 
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At tliat point X will equal X'̂  (in this case the solution to 

b = a<i)(X*)) and the economy should switch into policy B, using the 

substitute at a rate E2 = E^ for the remainder of the plan. In contrast 

to the model with variable costs, X will be run down to its terminal 

level (X*) in a finite time. 

Our main concern now is to analyse the effects of a change in 

b on the optimal path. There are two cases to be considered separately: 

( i) No (Ic-pluLlon effect: 

Tlirouf̂ '.liout tlie remainder of this section path 1 will denote 

the opLliuai i)aLli UHsociated with a lower cost substitute (b 1) and path 2 

will be the optimal path for a higher cost substitute (b2 > b^). When 

there is no depletion effect characterizing the extraction of the 

exhaustible resource, extraction of X will be lower at all points of 

time along path 1 until X is exhausted. In addition E2 will be higher 

along path 1 and t*, the time of exhaustion of X, will be sooner. These 

clalniH may be easily verified as follows: 

ip = F'(Ei) - a and = , 

together imply that 

dEiCO diN dij;(t) = -agn = -sgn . 

From F'(Ei(t*)) = b we find that 

dt* 1 . n 
^ ^ tit"- F"(Ei(t)).£z(t) ° • 

Now, if we compare oi)tlmal plans for two values of b, and if we let t* 

repreHCMil Hit- (.-xha unL 1011 lime of X on patli J. (nee Figure 5.A), tlien 

X(L*) will l>e lower on jiath 1 than on path 2. Consequently path 1 must 
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K, 

Lower Cost 
^ ^ — ^ Substitute 1 

Higher Cost Substitute 

1 

Path 2 

Figure 5.4 

lie above path 2 for some t. Therefore it must lie above it for all t 

(since sen = -sgn ̂ ^ which is the same V^). db db t 

(ii) Depletion effect: 

In this case things are a little more difficult. However it 

is still possible to gain a fairly clear picture of the change in the 

time profile of Ej. As in the previous case the date at which the 

economy should switch into the backstop technology is brought forward 
4 

when b is lowered (path 1 in Figure 5.5). In addition the terminal 
I 

stock (X*) of the exhaustible resource is increased when b is lowered.' 

On the other hand in contrast to case (i) above, Ej is not higher for 

t̂ ' is defined by b = a(|)(X(t*)) so that 
dt* 
db = lim 

t-^t*-

- 1 
a(j)'(X(t))Ei(t) > 0 . 

db a(|)'(XA) < 0 . 
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Figure 5.5 

all values of t along path 1. In fact in the earlier stages of the 

programme we can expect it to be lower. This may be verified as 

follows: 

At the switching time between policies A and B, 

Xn - X* = Ei(t)dt 
0 

t* 
-dX* ^ ^ 
db db Ei(t*) + dEi(t) 

db dt 

t* 

0 

dEi(t) 
db dt = 0 . 

This last result implies that if we are comparing paths for 

two values of b, when X(t*) = X* along path 1, XCt*) will also equal X* 

along path 2, i.e. = 0. 
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In addition since = 0 on path 1 and tpCtp > 0 on path 2, 
dt(tt) > 0 

db 

Now, 

db ^ t->tY 
db ^ v-v-// ^^ 

= lim [F"(Ei(t)) ^ ^ ^ 
t-̂ t* db 

dE (t*) So ^̂ ^ ̂ ' < 0 and therefore lowering the cost of the substitute raises 

the rate of use of X immediately prior to switching out of it. But 
clX(t^) dE (t) since — ~ —db~^ must be positive for some t earlier in the 

programme: In simpler terras this would mean that the availability of 

cheaper substitutes makes it optimal to use less of an exhaustible 

resource in the earlier stages of a plan. This would seem to run 

counter to the prevailing intuition which says: "cheap substitutes will 

be available in the future, so why conserve our resources now". 

Obviously such arguments ignore depletion effects. In the case where 

there are no depletion effects, the popular view is supported — 

extraction of the exhaustible resource should be higher at all points of 

time until it is exhausted. The availability of a relatively cheap 

substitute renders the exhaustible resource less of a scarce commodity 

and results in it being used up more quickly. When a depletion effect 

is introduced, the popular view is supported in so far as, the "scarce" 

resource being more dispensible, less of it is ultimately used. 

Moreover it is optimal both to cease exploiting it sooner and to use 

more of it at some points of time. However precisely because it is 

optimal to use more of it at some points of time it is also optimal to 

delay the onset of depletion effects as long as possible. This involves 

lowering extraction in the earlier stages of the plan so as not to drive 
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up costs too rapidly. Naturally there may be other constraints in the 

economy which will prevent E^ from being lowered, but we are concerned 

here with the basic mechanism of the resource planning process. Having 

exhausted the implications of this simple model, we shall now proceed to 

analyse the more complicated problem of making a substitute an economic 

alternative by means of investment. 

Ill 

DEVELOPMENT OF A SUBSTITUTE 

The previous section presented a very simplified view of the 

substitution problem. In particular it assumed that the cost function 

for production of the substitute is unchanging over time. This clearly 

ignores one important aspect of the economic "birth" of substitutes — 

namely the role of investment in making the substitute a better economic 

proposition by lowering its cost function over time. In this section we 

are concerned with incorporating the development of the substitute 

resource into the model of Section II. 

The basic model to be used is that of Section II. Once again 

the substitute resource is assumed to be in abundant supply in the sense 

that sufficiently large stocks of it are in the ground for depletion to 

make no difference to its average or marginal costs of production. It 

is of course highly unlikely that an economic agent would even consider 

developing a replacement for a scarce resource which is characterized by 

similar depletion effects in the medium to short run. Nevertheless, 

especially in the early stages of the resource's development, certain 

inelasticities are bound to affect the costs of producing the new 

resource. In particular, costs of production may remain prohibitively 
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high until the economy has a sufficiently high stock of the type of 

capital equipment used in extracting and processing the substitute. In 

addition low cost production of the substitute may depend on the 

acquisition of a certain minimum level of technical knowledge. Denoting 

the stock of capital associated with extraction of resource 2 as K (it 

may ref 6r either to physical equipment or a form of technical progress) 

we may write the variable cost function for this resource as 

(5.15) S = S(E2, K) 

S E 

Si > 0 Sii > 0 

S2 < 0 S 2 2 > 0 

1 2 = S 2 1 < 0 for E2, K > 0 

S(E2, O) = Si(E2, O) = oo 

S(0, K) = 82(0, K) = 8 2 2 ( 0 , K) = 0, K > 0 . 

The stock of capital, K, is assumed to change according to: 

(5.16) K = I 

where I denotes gross investment which is subject to an adjustment cost 

function: 

(5.17) A = g(I) g' > 0, g" > 0 

Because we are largely concerned with a situation where 

capital will have to be accumulated, we are ignoring the form of the 

Since the firm is likely to be in the position of holding a stock of 
capital idle for some time, the conventional exponential depreciation 
assumption is inappropriate here. Depreciation would need to be some 
function of output of E2. As introducing such an hypothesis would 
make the analysis rather more complicated than it is already, it has 
been omitted from the model. 

The marginal cost of investment is increasing, reflecting the fact 
that large bursts of investment spending at a point in time will be 
unprofitable. The firm is forced to spread its investment spending 
over time. This captures part of the essence of the problem of 
development of a substitute: the need for investment substantially 
in advance of production of the substitute. 
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adjustment cost function for I < 0, and we impose a non-negativity 

constraint on I. The optimization problem to be solved by the economy 

is 

(5.18) Max 
Ei(t),E2(t),I(t)J 

X(T) K(T) 

5 t Ce~ dt T parametrically fixed. 
0 

s.t. C = F(Ei + £2) - V(Ei, X) - S(E2, K) - g(I) 

X = -El X(0) = Xo 

K = I K(0) = Ko 

El > 0 

Ez > 0 

1 > 0 

X > 0 . 

The necessary conditions are: 

a a continuous ij;(t) such that: 

(5.19) = iPi6 + V2(EI, X) 

(5.20) h = 1P26 + S2(F2, K) 

(5.21) iPi = F'(Ei + E2) - VI(EI, X) + AI - A,, 

(5.22) 1P2 = g'(I) - A3 

(5.23) F'(Ei + E2) = Si(E2, K) + X2 = 0 

(5.24) \Iji(T) X(T) = ip2(T) K(T) = 0 , T < 

(5.25) 

Ai > 0 El > 0 AiEi = 0 

A2 > 0 E2 > 0 A2E2 = 0 

A3 > 0 I > 0 A3I = 0 

A. > 0 X > 0 A^X = A4X = 0 . 

There are eight possible policies open to the economy. They are 
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sununarized in Table 5.1. These policies are briefly analysed in 

Appendix 5.1. Table 5.2 summarizes the necessary conditions which must 

be satisfied in order for one specified policy to switch into another 

specified policy. These conditions are derived in Appendix 5.2. 

Table 5.1 

Control Variable 
Policies 

Ea El 

A > 0 0 0 
B 0 > 0 0 
C 0 0 > 0 
D > 0 > 0 0 
E > 0 0 > 0 
F 0 > 0 > 0 
G > 0 > 0 > 0 
H 0 0 0 

Since X(T) 0 for all finite T (since exhaustion of X would take an 

infinite time in view of our assumption that Vi(Ei, 0) = Ei > 0), 

i|Ji(T) = 0 for T < Also whenever K(T) ^ 0. ^2(T) = 0. If K(T) = 0, 

ii;2(T) may be | 0. If K(T) > 0, then the condition, ipzCT) = 0, requires 

that at the endpoint (and indeed for a time before the endpoint, since 

g'(0) > 0) the economy must be operating under either policy B or policy 

D. In other words if the economy finds it optimal to accumulate capital 

it will attain its final target capital stock and cease investment before 

the end of the programme and will be producing the substitute at the end 

of the programme. Clearly for capital accumulation to be worthwhile 

there must be a period (the final stage of the programme) during which 

the accumulated capital "pays for itself". This is a consequence of 



126 

assuming: 

(a) a fixed finite time horizon; 

(b) g'(0) > 0; and 

(c) the capital stock has zero scrap value. 

Assumption (c) is not unreasonable if the development expenditure (I) is 

devoted towards building up a stock of specialized teclinical know-how. 

It remains for us to decide between policies B and D as the endpoint 

policy when K(T) > 0. As is seen from Table 5.2, B can only be switched 

into from one of policies D, F and G. It cannot however, be switched 

into as an endpoint policy via D or G when T is finite since as the 

surface for such a switch is approached from either D or G, we have 

= \pi6 + V 2 ( E i , X) and ipi 0 , V a C E i , X) ^ 0 . This process must 

necessarily take an infinite period of time. It remains for us to 

examine a switch into policy B via F . Along policy F , Ez is growing so 

that F ' ( E 2 ) is falling. In order to have il̂i (T) = 0, F ' ( E 2 ) must be less 

than V i ( 0 , X) for policy F (E2 being the solution to F ' ( E 2 ) = S i ( E 2 , K ) ) . 

This means that when F ' ( E 2 ) < V j ( 0 , X q ) , ( F ' ( E 2 ) = S i ( E 2 , Kq)) (i.e. to 
/s 

the left of the unbroken curve XMPQ in Figure 5.6) policy B is operative 

in the final stage of the programme (including the endpoint). On the 

other hand, when F'(E2) > V i ( 0 , Xq) ( F ' ( E 2 ) = S i ( E 2 , Kq) (i.e. to the 

right of XMPQ), policy D is optimal for the final stage of the programme. 

This all, of course, assumes that K(T) > 0. When K(T) = 0 the optimal 

policy at T is either policy A if F'(0) > Vi(0, X(T)) or policy H if 

F'(0) <Vi(0, X(T)). The question of when optimal K(T) should be 

positive and when it should be zero will be discussed as we proceed. To 

assist the exposition Figure 5.6 illustrates possible optimal paths when 

K(0) = 0 and T is finite. In analysing the optimal paths we distinguish 

two cases, which depend on the initial value of the resource stock. 



Table 5.: 

Into 
Out 

of 

A • 0 F'(0)>Vi(0,X) 

S;(0,K)>Vi(E:,K) 

F'(E;)=S;(0,K) 
Ui=g'{0) 0 

SI(0,K)>V;(E;,X) 

F'(Ei)=Si(0,K) 

F'(0)>VI(0,X) 

B 0 • 0 

F'(E:)<V:(0,X) 

F'(£-)=S:(E:,K) 
0 

g'(0)6>-S2(E2,K) 

F'(E2)=SJ(E,,K) 

BF+BD 
conditions 

0 

C 0 0 • 0 F'{0)<V,(0,X) At F'(0)=Si(0,K) 

At F'(0)=S;(0,K) 

F'(0)<V.(O.K) 

0 

D 
F' 

=Si(0,K)-V,(Ei,X) 

(EI)=SI(0,K) 

F'(E2)>VI(0,X) 

F'(E2)=Si(E2,K) 

0 • 

4-1=52 (O.K)-Vi (El .X) 

F'(Ej)=5j{0.K) 

F'(E2)>VI(0,X) 

F'(EJ)=SI(E2,K) 

g'(0)<5>-S2(E2,K) 

g'(0)5>-S2(E2,K) 

SI(E2,K)=F'(E,+E2) 

0 

E 0 0 F'(0)>Vi(0,X) 0 • 0 
SI(0,K)">V, (EI.X) 

F'(EI)=SI(0,K) 
0 

F 0 

g'{0)6<-S2(E2,K) 

F'(E2)=SI(E2,K) 
0 

F'(E:)<Vi(O.X) 

F'(E,)=S,(EJ,K) 

g'(0);<-Sj(E;,K) 

0 • 
F'(E2)<VI(0,K) 

F'(E2)=S;(E2,K) 
0 

G 0 
DB+FB 

conditions 
0 

g'(0)C<-S2(E2,K) 

S,(Ej,K)=F'(E,+Ej) 

Vi=S,(0,K)-Vi(Ei,X) 

F'(EJ)=SJ(0,K) 

F'(E2)>VI(0,X) 

F'(E2)=SJ(E2,K) 

* 0 

H F' (0)<VI(0,X) 0 'i'2 = g'(0) 0 F'(0)<V,(0,X) 0 0 • 
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F ' ( E 2 ) = V i ( 0 , X ) 

= S i ( E 2 , K ) 

(0, K ) = F ' ( E i ) 

= V i ( E i , X ) 

( 0 ) 6 = S 2 ( E 2 , K ) 

= S i ( E 2 , K ) 

Figure 5.6 

Case 1; F'(0) > Vi(0. X): 

In this case extraction of X is still economical and all 

policies used involve a possible Ei. There initially appears to be some 

difficulty in identifying the optimal path, because for any T, there are 

two paths satisfying (5.19) - (5.25). In terms of Figure 5.6, there 

will be a path like path III which takes the same time to reach its 

endpoint as a path like II. Both paths satisfy conditions (5.19) -

(5.25). Nevertheless, on closer inspection we find that path III does 

not yield a maximum, for it does not satisfy the Pontryagin condition 
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that the Hamiltonian be maximized at all points in time: the 

maximization of the Hamiltonian with respect to I amounts to maximizing 

- g(I)> an expression which is greater if ipz = g'(I) when I > 0 than 

when 1 = 0 . Thus, paths such as III are not Pontryagin paths if a path 

with I > 0 exists which satisfies conditions (5.19)- (5.25). There is 

thus a unique Pontryagin path for every T and Proposition 6 in Arrow and 

Kurz [3] may be invoked to establish optimality. We thus establish that 

a path which is developing the substitute from the outset is better than 

a path which postpones such development provided the former path 

satisfies all of the Pontryagin conditions (5.19) - (5.25). In other 

words, if an EGD policy sequence satisfies all of these conditions it 

will be optimal. That there are circumstances where an EGD policy does 

not satisfy all of the necessary conditions may be verified by noting 

that for short time horizons there may not be sufficient time to build K 

up above the level, K (Figure 5.6), at which it becomes economic to 

exploit the substitute. In such a case it is not possible to switch 

into a terminal policy satisfying the transversality conditions (5.24) 

for 0 < K < K.® Thus for such short programmes the only possibility is 

to leave K zero for the whole programme and concentrate on extracting X 

for as long as possible. This would mean following policy A with > 0 

and falling to zero at time T and ip2 = 0. The preceding analysis may be 

summarized in the following conclusion: Unless the planning period is 

long enough to permit optimal aocumulation of an eaonomically worthwhile 

stock of capital (K > K) it is better not to accumulate any capital and 

just exploit the existing resource deposits for the whole programme. 

® The only possible such policies are C and E both of which involve 
> Q and growing - it is not possible to switch back into H or A 

via C or E once K has become positive. 
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This suggests that short term planning will neglect the development of 

substitutes where long term planning would provide for it. This result 

is naturally dependent on the assumption that the capital in the system 

lias zero scrap value, an assumption discussed briefly earlier in this 

section. Clearly for longer time horizons there is time for K to exceed 

K, but also for the accumulated capital to be used in the production of 

E2 and thus to "pay for itself". The longer the time horizon the higher 

will be the optimal level of the terminal capital stock (path II in 

Figure 5.6 is for a longer time horizon than is path I). When it is 

feasible to have K(T) satisfying F'(0) > Si(0, K(T)) the optimal path 

will be the unique one satisfying all the necessary conditions and 

employing a policy sequence EGD. Logically enough in the early stages 

(until F'(0) > Si(0, K)) capital for producing the substitute will be 

accumulated at the same time as X is extracted, then when the substitute 

is an "economic" proposition the resource good will be supplied from 

both sources. Ultimately there will be enough capital and because the 

"end of the world" (T) is in sight there is nothing to be gained from 

further accumulation so development expenditure will cease before the 

endpoint and policy D will become optimal. As was the case in the model 

of section II the assumption that the depletion effect for X can be made 

infinitesimally small by making Ei arbitrarily small makes it optimal to 

spread extraction of X indefinitely. As T -> the terminal point for 

the prograimne will tend to point P in Figure 5.6 and the terminal policy 

will be policy B. Point P represents an equilibrium for the autonomous 

system of differential equations in ( i p i ( t ) , i p z C t ) , X(t), K(t)) and at P, 

I g . (0)6 = - S 2 ( E 2 , K) , F ' ( E 2 ) = S i ( E 2 , K) , 1P2 = g ' ( 0 ) , ( ^ 2 = 0 , K = 0) 

F ' ( E 2 ) = V i ( 0 , X) = S i ( E 2 , K) , ((f̂ i = 0 , X = 0), 

Thus as t °° 
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X(t) X (t) 0 

K(t) ^ K ^2(t) ^ g'(0) . 

It is easy to check for this limiting endpoint that 

^ - g'(0)(F" - Sii) 
d<S S11S22 - S12S21 - F"S22 

which is negative if S is convex at the point (X, K), and 

M = F"Si2 ^ 
d6 Vi2(F" - Sii) d6 

is also negative. Thus, as we might expect, if the future is discounted 

more heavily the optimal terminal capital stock as T ->• °° will fall and 

more of the exhaustible resource should be used. Finally, we should 

note the important conclusion that if the substitute is worth developing, 

as it will be if the economy is committed to sufficiently long-term 

planning, then it should be developed from the outset regoj'dless of the 

initial stock of the exhaustible resource. 

Case 2: F'(0) < Vi(0, Xp): 

As for case 1, if T is not large enough to permit K to rise 

above K, no investment at all should be undertaken. However here policy 

A would involve ipi(t) < 0 V^ and so is non-optimal. So for small T the 

economy will find it optimal to do nothing at all — i.e. follow policy H 

for the whole programme with lîi = 0. When T is large enough to permit K 

to rise above K along a Pontryagin path, the economy will build up its 

stock of Ki initially via policy C (iĵi = 0), switching into policy F 

when K = iC and producing the substitute until the endpoint. Policy B is 

switched into at some time before the endpoint, thus allowing ipz to fall 

to zero. Production of Ei is inefficient so that no X is exploited. 
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IV 

UNCERTAINTY AND RESOURCE SUBSTITUTION 

In this section we analyse the question of substitution of one 

resource input for another when there is uncertainty concerning the date 

at which the second, more plentiful resource is to become available. 

For the sake of mathematical viability the capital accumulation 

incorporated into the model of Section III is ignored here and a 

probability distribution is added to the certainty formulation of 

Section II. It is assumed that planning takes place over an infinite 

time horizon and that conditional upon a substitute ever becoming 

available, one "becomes available" at time t with probability, w(t). 

The essence of this formulation derives from a paper by Heal and 

Dasgupta [16]. In addition we define the variable 

fi(t) E w(T)dT , 
t 

and denote ri ̂  1 as the probability that the substitute will ever become 

available. ri is assumed parametrically fixed. 

Then if we denote 

Ci E F(Ei) - V(Ei, X) 

C2 = F(Ei + Ez) - V(Ei, X) - S(E2) , 

the optimization problem to be solved is to select time paths for Ei and 

E2 and a terminal value for X, so as to maximize the expected value of 

the discounted stream of consumption from both resources over all time 

periods, viz: 

(5.26) Max 
Ei(t),E2(t),X(co) 

{(1 - n)Ci +n[fi(t)Ci + (l-fi(t))C2]}e"'^^dt 
0 
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s.t. X = -El E l > 0 

E . J > 0 X > 0 . 

The Pontryagin conditions which must be satisfied by a 

solution to this problem are that 3 a continuous satisfying 

(5.27) ip = i|>6 + V2(EI, X) 

(5.28) Ip = (1 - n + nf2(t))F'(Ei) + n d - f2(t))F'(Ei + Ea) 

- Vi(Ei, X) + Ai - Ai 

(5.29) n(l - fi(t))[F'(Ei + Ea) - S'(E2)] + Xa = 0 

(5.30) 

Ai > 0 E l > 0 AiEi = 0 

> 0 E 2 > 0 A2E2 = 0 

[ X 3 > 0 X > 0 A 3 X = A 3 X = 0 . 

As in Section II, there remain four policies open to the 

economy. We list them again here: 

Table 5.3 

Control Variable 
Policy 

El E2 

A 
B 
C 
D 

> 0 
0 

> 0 
0 

0 
> 0 
> 0 
0 

The introduction of a time-dependent probability function into 

the model gives us a non-autonomous system of differential equations in 

ip and X and is therefore difficult to describe in iJ;-X space. On the 

other hand it is possible to say that: 



134 

(i) the switching surface between A and C lies below and to the 

right of the switching surface between C and B; however, the 

AC surface is not time dependent like the CB surface; 

(ii) the equilibrium solution for the system constitutes the 

optimal endpoint and is here given by iĵ  = 0, Ei = 0, and X 

defined as the solution to 

(1 - n)F'(o) + nF'(E2) = Vi(o, X) 

where 

F'(E2) = S'(E2) ; 
/S 

it is easily verified that ^ reflecting the intuitively appealing 

conclusion that the more certain the ultimate availability of the 

substitute (the higher is n) the higher will be the optimal terminal 

stock of X. Clearly as it becomes more likely that a substitute will 

never be found (n becomes small) the economy will feel the need to push 

production of X into less efficient stages and extract deposits which 

are either of a lower grade or are more inaccessible and costly to 

extract so as to compensate for the unlikely availability of the 

substitute. In the limiting case as n 0, we are back to the last 

single-resource model presented in Chapter 3, Section III. When n = 1 

we have the other extreme case in which the substitute is certain to 

become available ultimately. The terminal stock of the resource is the 

same as for the case examined in Section II, where the second resource 

was available with certainty from the beginning of the programme. This 

result is hardly surprising for once the resource is available with 

certainty before t = °° the optimal terminal stock of X is determined by 

technological considerations only, independent of the probability 

distribution w(t). 
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APPENDIX 5.1 
Al^ALYSIS OF POLICIES IN MODEL OF SECTION III 

Policy A: = ij;i6 + V2 (Ei , X) 
ipz = ipz^ 

iPi = F'(Ei) - Vi(Ei, X) 
= g'(0) - A3 

F'(Ei) - Si(0, K) + A2 = 0 

Policy B: lîi = i|ji6 
11̂2 = + S2(E2, K) 
ilj, = F'(E2) - Vi(0, X) + Ai 

= g'(0) - A3 
F'(E2) = Si(E2, K) 

This last equation implies that F'(0) > Si(0, K). 

Policy C: = i|>i6 
lp2 = 

= F'(0) - Vi(0, X) + Ai 
ip2 = g'(I) 
F'(0) - Si(0, K) + A2 = 0 
F' (0) < Si(0, K) 

Policy D: ii;i = ipiS + V2(Ei, X) 
= + S2(E2, K) 
= F' (El + E2) - Vi(Ei, X) 

2̂ = 8'(0) - A3 
F' (El + E2) = Si(E2, K) 
=> F'(0) > Si(0, K). 
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A l s o t h e s o l u t i o n E* o f F ' ( E i + E*) = S iCE* , K) i s l e s s 

than t h e s o l u t i o n Ez of F ' ( E 2 ) = S i ( E 2 , K ) . 

P o l i c y E: i^i = i|Ji6 + V z C E i , X) 

ipz = 

= F ' ( E i ) - V i ( E i , X) 

= g ' ( I ) 

F ' (El ) - S i ( 0 , K) + A2 = 0 

P o l i c y F: = ii;i6 

= iPzS + S2(E2, K) 

= F ' ( E 2 ) - V i ( 0 , X) + Xi 

Ipz = g ' ( I ) 

F ' ( E 2 ) = S i ( E 2 , K) 

=> F ' ( 0 ) > S i ( 0 , K) 

P o l i c y G: = + V 2 ( E I , X) 

{pz = ipzS + S2(E2, K) 

= F ' ( E i + E2) - V i ( E i , X ) 

1P2 = g ' ( I ) 

F ' ( E l + E2) = S i ( E 2 , K) 

=> F ' (0) > Si (0, K) 

P o l i c y H: /̂i = ijJiS 

iz = 

ip, = F ' ( 0 ) - V i ( 0 , X) + Xi 

IIJ2 = g ' ( 0 ) - A3 

F ' ( 0 ) = S i ( 0 , K) - A2 

F ' (0) < Si (0, K) . 
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APPENDIX 5.2 
DERIVATION OF SWITCHING CONDITIONS: MODEL OF SECTION III 

For policy A ipi < Si(0, K) - Vi(0, X) , and for policy B 

ipi > Si(0, K) - Vi(0, X) . 

Thus a switch between A and B involves a jump in ipi and so is non-

optimal. 

For A: ipi < F'(0) - Vi(0, X); ij>2 < g'(0); and for C: 

ipi > F'(0) - Vi(0, X); ip2 > g'(0). 

For a switch to take place it is necessary that: 

(i) ijJi > 0 at surface 

i.e. > 0 at surface 

i.e. F'(0) > Vi(0, X) at surface 

(ii) i|J2 > 0 at surface which is always true. 

Because > 0 a CA switch is impossible. 

For A: ipi < Si(0, K) - Vi(Ei, X); 

for D: ipi > Si(0, K) - Vi(Ei, X) 

where F'(Ei) = Si(0, K). 

A switch requires that at the switching surface: 

h > -V12E1 

i.e. [Si(0, K) - Vi(Ei, X)]6 > - V2(Ei, X) - Vi2(Ei, X)Ei 

Si(0, K) > Vi(Ei, X) . 

It is not possible to be so specific about the conditions for a DA 

switch. 
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AH: Thia merely requires tliat at the switching surface " g'(0) > 0 

which is always true and HO AE is possible anywhere and EA is 

imposHihle. 

AF: A switch either way involves a jump in ipi, for the same reasons as 

AB, and so no switch is optimal. 

AG; The switching conditions are easily seen to be a combination of 

those for AD and AE. GA is impossible. 

AH; Similar to AC. A switch requires F'(0) > VjCO, X) at the switching 

surface. 

bC; For policy li, F'(0) > Si(0, K) and K is constant. The economy is 

either in this region or outside it and it cannot move into it 

from outside or vice versa. Thus no switch is optimal, 

j^; For 11; iĵi > F'(E2) - Vi(0, X); 

for D; < F'(E2) - Vi(0, X) 

where F'(E2) = SjCEz, K) at the switching surface. Now a BD switch 

requires 

< 0 

i.e. tj;i < 0 

i.e. F'(E2) < Vi(0, X) where F'(E2) = Si(E2, K) . 

BE; A switch between B and E necessarily involves a jump in tjji. Hence 

this switch is non-optimal. 

BF; A switch requires that tj;2 > 0 at the surface 

i.e. g'(0)6 > -S2(E2. K) 

where F'(^2) = K) . 
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BG; The conditions here are a combination of the BF and BD switching 

conditions. 

BH: This is ruled out for the same reason as a switch between B and C 

was judged non-optimal. 

CD; Ruled out for same reason as BC and BH. 

For C: ijji > F'(0) - Vi(0, X); 

for E: iJJi < F'(0) - Vi(0, X) . 

A switch requires i]ji < 0 iĵi < 0 

^ F'(0) < Vi(0, X). 

CF; A switch must occur at F'(0) = Si(0, K). FC is ruled out since 

rising K causes the economy to leave policy C, not enter it. 

CG; A combination of CE and CF conditions. Clearly GC is non-optimal. 

CH: HC merely requires > 0 at the surface. 

i.e. g'(0) > 0, which is immediately satisfied. 

CH is clearly non-optimal. 

The remaining conditions are derived similarly to the above. 
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CHAPTER 6 
INTERNATIONAL TRADE 

I. INTRODUCTION 

In this chapter we relax the assumption that the economy we 

are considering is closed, and allow it to both import and export the 

resource good. Once we move into this broader framework the way is 

opened for a series of questions beyond the basic one of how a country 

should distribute exploitation of an exhaustible asset over time. In 

particular we may also ask: 

(a) How much of this asset should be exported (or imported) and 

how these exports should change over time; 

(b) What should be the pattern of specialization in production of 

the country in question; 

(c) how the optimal time path of production and consumption 

relates to the levels of production and consumption in the 

standard static competitive trade model; and 

(d) what tax policy will bring the competitive model into line 

with the centrally controlled system. 

To this end a planning model of a two sector economy (with a 

resources sector and a manufacturing sector) is formulated. This model 

is based on the formulation developed at the end of Section I, Chapter 4. 

Sections II - IV of the chapter are based on the assumption that the 

economy is in balance of payments equilibrium at every point in time 

while in the remaining sections this assumption is replaced by an 
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intertemporal balance of payments constraint. For the first of these 

two models the findings may be summarized as follows: It turns out that 

for sufficiently short planning horizons and sufficiently large initial 

resource endowments the optimal solution for the centralized model 

coincides with the solution for the static competitive model, while for 

longer time horizons and lower initial resource endowments the optimal 

level of extractive production will be less than the static optimum and 

will decline over time until the resource is exhausted. More 

particularly it is shown that the optimal policy sequence for the 

economy depends crucially on its terms of trade and the properties of 

its social welfare function. Depending on these two factors the optimal 

policy sequence will be one of the following: 

(a) Produce both goods and export some of the resource 

import the resource 

import the resource at the maximal rate 

-*• complete specialization in manufacturing production and 

import the resource at a maximal rate; 

(b) Produce both goods and export some of the resource 

->• complete specialization in manufacturing production and 

no trade; 

(c) Produce both goods and export some of the resource 

import the resource 

complete specialization in manufacturing production and 

consume both goods. 

Sequence (a) is optimal if consumption of the resource good is 

intrinsically preferred or if it is relatively cheap. 

Sequence (b) arises when the relative preference is for consumption of 

the manufacturing good or if the resource good is relatively expensive. 
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Sequence (c) coincides with the case where there is no clear relative 

preference for either good. 

For the subsequent model, where there is allowance made for 

foreign borrowing, the results appear qualitatively similar to those 

obtained when no borrowing is allowed. 

Throughout the paper it will be assumed as a first 

approximation that the terms of trade facing the country in question are 

given and constant. It is only on this basis that we can compare 

results with those of the traditional trade model. In addition, to keep 

the analysis manageable, we are forced at this stage to ignore resource 

stocks in the rest of the world. We are effectively assuming that they 

are relatively abundant and are therefore imposing no pressure on world 

prices. 

II. THE BASIC MODEL 

We again consider an economy which possesses a finite stock 

(X) of a depletable resource. It extracts this resource at a rate E, 

so that: 

(6.1) X = -E . 

The economy uses a single mobile factor (labour) to produce 

two goods, a resource good, E (extraction) and a manufacturing good, Z. 

The quantities of these outputs producible with a given labour supply 

are related by a transformation surface of the conventional form (derived 

for a more general case in Chapter 4, equation (4.36)): 

Z = (j)(E) (})' < 0 , f < 0 . 

E is defined as the maximum extraction possible at any point in time (i.e. 

<p(E) =0). We let C^ denote the consumption of the resource good 
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and C2 the consumption of the manufacturing good. Either good may be 

exported or alternatively the domestic consumption of each may be 

augmented by means of imports. Thus, 

(6.2) Ci = E + M - S 

(6.3) C2 = 4)(E) + M' - S' 

where M E imports of good 1 M' 5 imports of good 2 

S E exports of good 1 S' E exports of good 2 . 

In order to avoid a situation where a commodity is simultaneously 

imported and exported it is assumed that MS = 0 and M'S' = 0 (i.e. M and 

S cannot be simultaneously positive, etc.). 

The country's international payments are assumed to be in 

balance: 

(6.4) p(M - S) + (M' - S') = 0 

where p E the world price of the resource good in terms of the 

manufacturing good. p is assumed constant over time and the country in 

question is assumed to be a price taker (although the world market in 

the resource good may not be competitive). 

Social welfare (u) is given by a strictly concave, separable 

utility function 

(6.5) u = u(Ci, C2) ui > 0 uii < 0 

U2 > 0 U 2 2 0 

Ul2 = U21 = 0 

Using (6.2), (6.3) and (6.4) we may write (6.5) as 

u = u(E + M - S, (pCE) - p(M - S)) . 
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Before stating the main problem to be solved it is convenient 

to define another piece of notation. We denote E as the solution to the 

problem: 

max (pE + 4)(E)) 
E 

s.t. E > 0 

E - E > 0 . 

This is the problem which will be solved collectively by producers in a 

competitive system. 

The basic problem which is to be considered in this chapter is 

that of selecting a terminal stock of the resource, X(T), and time paths 

for production (E), imports (M) and exports (S) of the resource good so 

as to maximize the present value of the stream of utility from 

consumption of the two goods from time 0 to time T (fixed). 

Stated algebraically we wish to: 

T 

Max 
X(T) E(t), M(t), S(t) 

u(E + M - S, (1)(E) - p(M - S))e~'^^dt 

0 

6 > 0, constant , 

subject to X = - E X(0) = Xq 

E - S > 0 

(|)(E) - pM > 0 

IS > 0 

M > 0 

S > 0 

E - E > 0 

X = 0 wlien X = 0 . 
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A solution to the above problem must satisfy the following necessary 

conditions: 

a a continuous function of time, il̂, such that 

X = u(E + M - S, (|)(E) - p(M - S)) - ll̂E + XiE + A2M 

(6.6) ip = ip6 -

+ A3S + A4(e - S) + A5((})(E) - pM) + XeCE - E) 

U 

- X7E 

ijj == \p6 

(6.7) 

(6.8) 

(6.9) 

dE 

U 

= 0 ijj = U1 + u24)' + Ai + Alt + Asc})' - Ae - A? 

= 0 ui - pu2 + A2 - pAs = 0 

= 0 ui - pu2 - A3 + A4 = 0 

(6.10) X(T) = 0 

(6.11) 

A i > 0 E > 0 A j E = 0 

A 2 > 0 M > 0 A2M = 0 

A s > 0 S > 0 A b S = 0 

Ai, > 0 E - S > 0 A,,(E - S) = 0 

A s > 0 (pCE) - pM > 0 A5((!)(E) - pM) = 0 

Ae > 0 E - E > 0 A 6 ( E - E) = 0 

Ay ^ 0 X> 0 A 7 X = A 7 X = 0 . 

A number of policies are available to the economy. They are enumerated 

in Table 6.1. Two possible situations are considered, the first being 

that for which the static trade optimum would involve production of both 

goods and the second where static optimization would require complete 

specialization in production of the manufacturing good. 
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Table 6.1 
List of possible policies 

Policy 
Control Variable 

E M 

A > 0 > 0 0 
B > 0 c|)(E)/p 0 
C > 0 0 > 0 
D > 0 0 E 
E 1 0 > 0 
F E 0 E 
G 0 > 0 0 
H 0 (|)(0)/p 0 
I > 0 0 0 
J E 0 0 
K 0 0 0 

III. THE OPTIMAJ. PATH FOR THE ECONOMY 

l; -(1/(0) < p < -(|/(E): 

From equation (6.6) it is easily seen that i p , the marginal 

social cost associated with present depletion of the resource, will 

either be always positive, always zero or always negative. Policies A, 

B, C, D, G, H, I and K are consistent with ip > 0. In addition it can be 

shown that for policies A, B, C, D and I, sgn ip = sgn(p +(})'(E)). In 

other words, when there is a positive social cost attached to depletion, 

the relevant domain of operation for the economy is to the left of E 

(Figure 6.1). A zero social cost of depletion means that the resource 

is regarded as being economically the same as a non-depletable asset and 

in such a case E = E (for X > 0). < 0 for policies A, B, C, D, E, F 

and J (X > 0) as well as G, H and K when X = 0. When X > 0 we see that 
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+ pE = Y 

Z = <J>(E)N\ 

I/J > 0 = = 0 \ 

ip<o \ N w 

Figure 6.1 

a negative social cost of depletion involves more rapid extraction than 

in the static competitive case (there is a loss associated with 

deferment of some extraction towards the future (\p < 0) and so more 

rapid extraction in the present is appropriate). Our task is to 

determine which of the above three situations (ip = 0) applies. The 

easiest one to dismiss Is \p < 0. There is nothing Inherent in the model 

(as there may be in a microeconomic model of exploitation of a common 

property resource with threat of entry) which would make it attractive 

to produce at higher rates than the competitive optimum. On the other 

hand the valuation placed on the future combined with the scarcity of 

the resource may make it optimal to produce at a level lower than the 

competitive optimum (tp > Q) . There are two situations in which the 
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intertemporul Bociul production optimum coincides with fi for the whole 

programme. If either the planning horizon Is sufficiently short or if 

the resource is initially very plentiful (Xo is sufficiently large) then 

it would be possible to extract the resource at rate E for the whole 

planning period. This means that in terms of the time period Involved 

there is no scarcity inherent in the resource (thus ip = 0) and it is 

therefore natural to regard it as economically equivalent to any other 

output and to produce it at the level E until time T. For larger T or 

smaller Xq, the resource may be exhausted before the end of the 
A 

programme without extracting more tlian E at any point of time. Its 

scarcity is therefore evident and it is natural for a social user cost 

(tĵ  > 0) to be associated with its depletion. Mineral exploitation will 

be retarded relative to the competitive solution. Obviously the 

borderline between the cases = 0 and ip > 0 Is marked by the 

relationship TE = Xo, which describes the situation in which 

exploitation at rate E for the whole programme results in the resource 

just being exhausted at time T. The results hinted at in the preceding 

discussion are stated formally as follows (they are proven in Appendix 

6.3): 

(1) E(t) < E V^ e [0, T] 

(11) E(t) = E V^ G [0, T] for T < Xq/^ 

(ill) E(t) < E V^ G [0, T] for T > X q / E . 

Now, because ip > 0 along the optimal path we have no further 

Interest in policies E, F and J. The necessary conditions for the 

various switches to take place between the remaining policies are 

summarized in Table 6.2. Some of the more difficult derivations of 

these conditions are contained in Appendix 6.1. The synthesis of the 

optimal solution depends crucially on 
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(a) the relative price, p, and 

(b) the properties of the utility function. 

To clarify the relevance of these two factors we distinguish three 

cases: 

Case 1: ui > pU2(0) 

This states that the value of the marginal utility (VMU) 

associated with maximum imports of the resource good (no home 

production) exceeds the VMU of zero consumption of the manufacturing 

good. The situation is one either of intrinsic consumer preference in 

favour of the resource good or a low relative price of the resource 

good. 

Case 2; pu2((})(0)) > ui(0) 

Here the VMU of consuming maximal production of the 

manufacturing good (pu2(({'(0)) exceeds the VMU of zero consumption of the 

resource good and there is either a relative preference for the 

manufacturing good or the manufacturing good sells relatively cheaply. 

Case 3; ui (0) > pu2(4'(0)); puaCO) > ui 

The two inequalities state that the VMU associated with zero 

consumption of each commodity exceeds the VMU associated with the 

maximal consumption possible of the other good when E = 0. In this case 

there is no clear preference for either commodity which either is 

intrinsic or arises from the structure of relative prices. 



Table 6.2 

Necessary conditions for policy switches 

Switches 
to 

Switches 
from 

A B D G H I K 

A • l|̂ =pui (0)Xi 0 1|>=PU2(0)X 0 0 

B 0 • 0 0 X 0 0 
. P J 

C 0 0 0 0 (Eo)XO 0 

D 0 0 • 0 0 0 iP=pu2 ( ( p ( 0 ) ) x 

I ( E o ) x 0 0 0 0 • 0 

(i) Eg is solution of U J C EQ ) = pu2((})(Ep)) 

= PU2(0) (ii) Ej is solution of Uj 

(iii) Ej is solution of u^ (0) = pu2((})(E2) + pEa) 

(iv) Mp is solution of U J C M Q ) = pu2((})(0) - pM^) 

(V) Xo 

(vi) Xi 

(vii) X2 

(viii) X 

1 + 'l̂ '(Eo) 

P 
p 

1 + <P'(E2) p 

p 

o 
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For each of these three cases necessary conditions for certain 

policy switches are violated and it is possible to work out which 

policies will be operative in the respective cases. This analysis is 

presented in Appendix 6.2. The phase diagrams showing the Pontryagin 

paths for Cases 1, 2 and 3 are shown in i|;-X space (\p > 0) in Figures 6.2, 

6.3 and 6.4 respectively. 

ui(0)x 

PU2(0)X) 

ui(Eo)Xo 

Figure 6.2 

Figures 6.2 and 6.4 are drawn on the particular assumption that Xq 
and Xi ^re both positive. There does not seem to be anything 
inherent in the definition of either Xo Xi to prevent one or both 
of them being negative, so that it is possible that in Case 1, it 
will be optimal to commence with policy B and in Case 3, with 
policy A. X is always positive. 
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4' 

PU2 ( 4 ) ( 0 ) ) X 

Policy K 

Policy D 

a 

X 

Figure 6.3 

In Figure 6.2 all paths below path a will switch into policy H 

as soon as they hit the axis (because when X = 0 the multiplier Xy can 

become positive to preserve the continuity of ijj). Similarly in Figures 

6.3 and 6.4 paths below path a will switch into policies K and G 

respectively when they hit the axis. As indicated already it may be 

shown (Appendix 6.3) that when T < XQ/E the optimal path lies along the 
2 

horizontal axis in each of the above diagrams. When T > XQ/E the 

optimal path lies above the horizontal axis and it is shown in Appendix 

6.3 that the highest path on or below path a which exhausts the resource 

is optimal. 

Wlien the optimal path lies along the horizontal axis it is clearly 
possible to have X(T) > 0 (since ijj(T) = 0 ensures that the 
transversality condition (6.10) is satisfied) and this is a likely 
outcome for a short planning horizon and/or a large initial resource 
endowment (i.e. T < XQ/E). 
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Ui(Mo)X 

(Eo)Xo Policy I 

Figure 6.4 

The results contained in Figures 6.2 - 6.4 may be interpreted 

as follows: 

(i) For Case 1, where the economy has a clear preference for 

oonaumption and against produotion of the resource good 

(this latter because the terms of trade are adverse to 

prcjduction of the resource), the economy may find it optimal 

initially to export the resource for a short while (policy 
3 

C), but at an early stage of the programme it should switch 

into importing the resource (still domestically producing 

At the Hurtuce i|J - ui(Eo) 1 + wliere Eq satisfies 
Ui(l':o) " pu2((Klio))- will I'e quite higli (and hence ip quite low, 
possibly negative) since: 

ui(Ko) = pu2(flj(Eo)) < PU2(0) < ui ±(01 
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it), and ultimately should import as much as is consistent 
to" with existing domestic production of the resource 

P 
until the resource is exhausted, at which point there will 

be complete specialization in production of the 

manufacturing good and all mineral supplies will be imported, 

(ii) When the economy clearly prefers consumption of the 

manufacturing good and production of the resource good 

(Case 2), the optimal course is to export all of the mineral 

produced at each point in time (because the other good is 

preferred for consumption and because the resource sells at 

a good price in world markets) until the resource is 

exhausted and then concentrate all production in the 

manufacturing sector (with no international trade), 

(iii) For Case 3 it is optimal to export some of the minerals 

while the resource is plentiful (reflected in a relatively 

low ; as rises and X becomes increasingly scarce, a 

switch into importing a part of domestic mineral supplies 

will prove optimal, and ultimately when all domestic 

deposits of the resource have been exhausted all resource 

supplies will be imported. However, unlike Case 1 some of 

domestic production of the manufacturing good will be 

consumed domestically. There is no overwhelming preference 

for either commodity so that even after exhaustion of the 

resource domestically both goods will be consumed. 

2: P < (0): 

In the static production model this would be the case of 

complete specialization in the production of the manufacturing good and 
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we find that this is also the case in the dynamic model being considered 

here. The sufficiency proof in Appendix 6.3 is extended to cover this 

case and shows that the optimal course will be one in which E = 0 (and 

ij; < 0) for the entire programme. For example, in Case 1, the optimal 

course will be to follow policy H for the entire programme exporting all 

manufacturing output to supply imports of the resource good (which is 

essentially preferred and cheaply available via imports). In Cases 2 

and 3 the respective policies followed will be K and G. 

iV. PIJI5LJC J'OJJCY 

We have seen that for long time horizons and for 

(0) < p < -(|j'(K), tlie Hociully optimal path for extraction will 

diverge from the static competitive solution and it is logical to 

enquire: what public policies will bring the two solutions into line? 

Certainly, in the context of this model, an optimum tariff policy is not 

relevant (or, to put it another way, since the elasticity of the foreign 

offer curve is assumed to be infinite, the optimum tariff on minerals is 

zero). On the other hand if we concern ourselves with a tax on mineral 

production it is easy to determine a tax formula which will induce the 

social optimum in a competitive system. There is obviously no need to 

impose a tax once the resource has been exhausted so that a tax is only 

relevant during the period for which policies A, B, C, D and I would be 

operative in the socially optimal programme. 

Suppose that a tax is imposed on mineral production at rate T. 

Then in a competitive system the problem which will be solved by 

producers will be that of selecting E to maximize: 
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(6.12) (p - T)E + <|)(E) 

8 . t . E > 0 

E - E > 0 . 

The solution to this problem will satisfy the following conditions: 

(6.13) T - p + (|)' (IJ) + Ml - IJ2 

> 0 E > 0 MiE « 0 1 
(6.14) 

U2 > 0 E - E > 0 |J2(ii - ) 0 = 0 J . 

Kor tlie cune we ure dealing with here it is obvious that Mj " M a " 0 so 

that 

(6.15) T - p + (K) . 

The information linking (6.15) to the necessary conditions for a social 

optimum ((6.6) - (6.11)) and the optimum tax formulae for policies A, B, 

C, D, and I are contained in Table 6.3. 

Table 6.3 

Condition for Social Optimum Tax 
° ^^ Production Optimum Formula 

A 

B 

U 1 U 2 Ui U2 

= p + ())• T = ^ Ul ' ^ Ul 

Ul U2 "2 

U2 ^ "2 

Ul U2 Ul U2 
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The tax rate which induces a competitive system to produce at 

socially optimal levels will also lead to the socially optimal solution 

for consumption of both goods. It may be easily seen that, provided E 

is the same in both models, the competitive and centralized solutions 

for imports and exports will be the same."̂  Thus the tax formulae 

summarized in Table 6.3 will be optimal and should be followed in the 

sequence suggested in Figures 6.2 - 6.4. Thus, when a particular policy 

is socially optimal the tax formula associated with that policy should 

be followed. From (6.15) it is easily shown that the tax rate should 

rise over time; this is what we would expect for we have already seen 

that social and competitive solutions diverge over time, so long as 

there is a positive stock of the resource left. 

V. FOREIGN BORROWING 

In this section we replace the assumption that international 

payments are always balanced with the assumption that payments are 

balanced over the duration of the planning period. The economy may now 

borrow and lend foreign exchange on world markets. This involves us 

writing the constraint as: 

For example for policy A: M > 0, S = 0 and uj (E + M) = pu2(())(E) - pM) 
for both competitive and centralized models, and thus there is a 
common solution for M once E is determined. For policy B: 
= mi g = 0, and if E is the same for both models M will also P * 

have a common value. This equivalence between the necessary 
conditions for the consumers' problem in both the static and dynamic 
models is not surprising. The only source of divergence between the 
two models is the scarcity of the resource and this is essentially 
part of the production side of the models. There is no reason why 
the two consumers' problems should lead to different sets of 
conditions. 
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(6.16) [(pYi + Y2) - (pCi + C2)]e ""̂ dt = -Do 
0 

where Dq is the initial level of debt facing the economy and r is the 

(constant) interest rate for both foreign borrowing and lending. We 

wish to: 

Max 
E(t),Ci(t),C2(t),X(T) 

6 > 0, constant 
0 

s.t. X = -E 

E > 0 

Ci > 0 

C2 > 0 

[p(E - Ci) + ((t)(E) - C2)]e"''''dt = -D 

This form of the constraint may be seen to be equivalent to the 
requirement that debt at time T be zero. If we let 
B = (pYi + Y2) - (pCi + C2) and D(t) denote debt at time t, we have 
that: 

D = B + rD 

(6.17) (B + rD)dt = D(T) - Do = -Dq . 
0 

But it is also true that: 
T 
De""dt = fDe"̂ *̂  + 

0 
rDe"^'^dt . 

0 
Thus 

f„-rt.. L -rtl Be dt = De = D(T)e"^^ - Do = -Do , 
0 0 

so that (6.17) is equivalent to (6.16). 
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This is an optimal control problem with an isoperlmetrlc side constraint 

(6.16) and the interested reader may check the method of solution by 

referring to Bryson and Ho [7]. 

The necessary conditions for a solution to the above problem 

are that there exist a continuous function of time, ^(t), a constant 

multiplier, (j, and multipliers A^ (i = 1-5), satisfying: 

(6.18) ij; = 

(<S-r)t, (6.19) ij; = Ai - Xi, - As + lie (P + (}̂ '(E)) 

( 6 . 2 0 ) U + = 

( 6 . 2 1 ) M2 + A3 = 

( 6 . 2 2 ) ' M T ) X ( T ) - 0 

^ A i > 0 E > 0 A i E - 0 

A2 > 0 Ci > 0 A 2 C 1 - 0 

( 6 . 2 3 ) A3 > 0 C2 > 0 A 3 C 2 . 0 

A^ > 0 E - E > 0 A ^ ( E - E ) = 0 

A5 > 0 X> 0 A 5 X = = A 5 X = 0 . 

There are twelve possible policies open to the economy (Table 6.4). 

Jn wliaL follows we slialL assume that (0) < p < <t>'(li) 

(incomplete Hpecialization in the conventional static two-sector trade 

model). Tills implies in particular that ĵJ < 0 for policies B, D, l' and 

II. Jt will conmitute part of the optlmality proof in Appendix 6.5 to 

show that ^ 0 along the optJnuil path. WLth this additional knowledge 

and the fact tliat ip never changes sign (from (6.18)) we can ignore 

policies B, D, F and H and confine our attention to the remaining eight 

policies. We can note the other general properties of the optimal path, 

Firstly, the transversallty condition (6.22) tells us that either the 
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Table 6.4 

Control Variable 
Policy 

Ci 

A 0 0 0 < E < E 
B 0 0 E 
C > 0 0 0 < E < E 
D > 0 0 E 
E 0 > 0 0 < E < E 
F 0 > 0 E 
G > 0 > 0 0 < E < E 
H > 0 > 0 E 
I 0 0 0 
J 0 > 0 0 
K > 0 0 0 
L > 0 > 0 0 

resource is exhausted (X(T) = 0) or il̂ (T) = 0, in which case = 0 

V^ G [0, T]. This means, for example, that if it is impossible to 

exhaust the resource before the end of the planning period, a zero user 

cost will be associated with the resource's depletion at all points in 

time. Secondly, it is shown in Appendix 6.4 that the higher the initial 

value of the costate (or equivalently, the higher the value of the 

constant multiplier, y) the lower will be the initial level of 

extraction and the slower will be the process of depletion of the 

resource. In Appendix 6.5 (for the case -(j)'(0) < p < -())'(E)) the 

slowest extraction path for > 0 ±s shown to be optimal. This is in 

keeping with results already obtained in Chapters 3 and 4 and section III 

of this chapter. We also find that the results proven earlier in this 

chapter for a static balance of payments constraint are valid for the 
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less binding constraint assumed here. More precisely, the following 

results are demonstrated in Appendix 6.5: 

(1) E(t) < E " V^ G [0, T] 

(11) E(t) = E V^ E [0, T] for T < XQ/E 

(ill) E(t) < E Vj. e [0, T] for T > XQ/E . 

As before, the rate of extraction declines over time, so that, 

if we look, at the optimal course for extraction in terms of the 

conventional two sector trade diagram (Figure 6.5), either the economy 

should locate at the static competitive optimum (E) for the entire 

programjne or move along the production frontier to the left of E towards 

the vertical axis. 

Figure 6.5 

^ E is as defined in section II of this chapter. 
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Other properties of the optimal path will depend on the terms 

of trade and the form of the utility function. However an additional 

consideration here is the relationship between the social discount rate 

and the rate of interest on foreign borrowing and lending, and we must 

analyse separately the cases 6 > r, 6 = r and 6 < r. 

1: 6 > r; 

We are able to divide this case further into two subcategories, 

ui(0) > pu2(0) and u^(0) < pu2(0). We consider these in order. 

(i) ui(0) > pu,(0); 

Among other things this assumption eliminates policies E and J 

from consideration. Table 6.5 gives the necessary conditions which must 

be satisfied for the various policy switches to take place. From the 

transversality condition (6.22) it follows that it is non-optimal to 

switch into a zero extraction policy before the resource is exhausted 

since it is not possible to switch out of such a policy back into a 

positive extraction policy. This means that when X > 0 the sequence in 

which policies will be followed along the Pontryagin paths will be GCA 

(incomplete specialization in consumption followed by complete 

specialization in consumption of the resource good followed by zero 

consumption of both goods). Unfortunately it is not possible to say a 

priori which of these policies will be followed (just G or just A or GC 

or CA or GCA, etc.), however we know that consumption of both goods is 

falling over time and if the resource is exhausted before the economy 

can switch into policy A, for a sufficiently long time horizon policy I 

will eventually be optimal. Furthermore, if the marginal utility of 

zero consumption of both goods is very large, then Cj and C2 will be 



Table 6.5 
* 

Switching table 
6 > r Uj(0) > pu2(0) 

Switches into 

K 

Switches 
out of 

A O"̂  'l> = a(t)[p + (^'(0)] 0 0 

pa(t)=ui(0) ui(0)=pa(t) 

U2(0)=a(t) U2(0)=a(t) 
G O 0 4̂  = a(t)[p + 4>'(0)] 

= U2 (0) [p + 4) • (E) ] ip = U2 (0) [p + (J) ' (0) ] 

K 0 0 ui(0)=pa(t) 0 

L 0 0 0 U2 (0) = a(t) 

Condition given is that to be satisfied at the switahing surface. 

A zero entry indicates that no switch is possible. 

OJ 
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positive for large values of y and ipQ (and correspondingly low Eq) with 

the result that policy G is optimal until the resource is exhausted. 

Certainly in the extreme case where ui (0) = U2(0) = Ci and C2 are 

both positive for the whole programme and in particular for the 

pre-exhaustion part of the plan. 

Because E is declining and [p + 0'(E)] > 0 it follows that 

pE + (j)(E) is falling. But pCi + C2 is also falling over time so we 

cannot generalize about what is happening to the balance of payments 

over time. Certainly for T < XQ/S, E is constant over the course of the 

programme and Cj and C2 are both declining so the surplus is increasing. 

The economy will move from deficit to surplus over the course of the 

programme. This result certainly accords with our intuition and with 

the conclusion reached with more rigid assumptions in a related model 

(see [5], p.103) and it is perhaps surprising that it does not 

automatically carry over to the case T > XQ/E. The reason it does not 

is actually quite simple. As a first approximation it would seem that 

if the social discount rate exceeds the rate of interest on foreign 

borrowing it would pay the country in question to borrow heavily in the 

early stages of the plan, taking advantage of the relatively low rate 

for borrowing and thus commence with a deficit which would be offset by 

a later surplus. However the economy also has an interest in obtaining 

the highest present value from its stream of consumption and because of 

the form of the balance of payments constraint this means (approximately) 

maximizing the present value of the stream of national production 

(discounted at rate r) and, for long time horizons, requires the level 

of extraction to fall over time. With production as well as consumption 

concentrated in the present the natural tendency to commence with a 

deficit and run to surplus later may be offset. On the other hand for 
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short time horizons the resource Is effectively not scarce. Is thus 

economically equivalent to an ordinary good, and in such cases (T < Xq/S) 

first impressions are correct. 

(ii) ui(0) < pu2(0); 

This case leads to similar results to l(i) above, with the 

exception that policies C and K are replaced by E and J respectively and 

the sequence of pre-exhaustion policies becomes GEA. Again when Ui(0) 

and U2(0) are large one may expect G to be operative up to the time of 

exhaustion. The domestic consumption preference in this case is for the 

second good (either intrinsic preference reflected in a relatively high 

value for U2(0) or a favourable terms of trade (p) for the mineral good) 

and it is consequently optimal to run consumption of the resource good 

to zero first (if, in fact, there is time to run consumption of either 

good to zero). The sequence in which post-exhaustion policies become 

relevant is LJI, although again it is impossible to say which of these 

policies should operate without further information about the functions 

of the model. If ui(0), U2(0) and T are high then the economy would run 

through all three policies in the sequence given. The switching tables 

for this and the subsequent cases are essentially similar to Table 6.5 

and are therefore omitted. 

2: 6 < r; 

(i) ui(0) > pu2(0): 

Here the sequence of pre-exhaustion policies of 1(1) is 

reversed to (ACG) although if ui(0) and U2(0) are large enough G will 

still be the only pre-exhaustion policy along the optimal path. 
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Consumption of both goods is growing over time and extraction is 

constant or falling. This implies that the balance of payments surplus 

is declining over time and the economy finds it optimal to move from 

surplus to deficit. The bias of the production time profile towards the 

present reinforces the bias of consumption towards the future, so that 

the result suggested by intuition for an ordinary two sector trading 

economy is strengthened when one of the goods is a resource. 

(11) u,(0) < pup(O); 

The sequence in which policies may become operative is AEG. 

Apart from this modification the other conclusions obtained for 2(i) 

carry over unchanged. 

3: 6 = r; 

(i) ui(0) > pu2(0): 

When the discount rate equals the borrowing rate the relevant 

system of differential equations becomes autonomous and is simpler to 

analyse. Consumption of both goods is constant over time but extraction 

is falling for T > XQ/E, causing the balance of payments surplus to fall 

over time. It is optimal to commence with a surplus, running to a 

deficit later in the plan. This is at variance with the result obtained 

from Bardhan's model in [5] to the effect that when the discount rate 

equals the borrowing rate the balance of payments is balanced at all 

points in time. This conclusion does not hold here for the simple 

reason that the scarcity of the resource makes it optimal to tilt the 

production of the resource towards the present away from a constant rate 

of production. Bardhan's conclusion does however hold here for T < XQ/E, 
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because for relatively short time horizons the resource is economically 

equivalent to an ordinary commodity. 

Because consumption of both goods is constant for the entire 

plan it is impossible to switch between policies A, C, E and G or 

between I, J, K and L. The policy sequence will be either AI or CK 

(only if ui(0) > pu2(0)) or EJ (only if uj(0) < pu2(0)) or GL. High 

values of ipg (and therefore y) will be associated with low values of E, 

Ci and C2. The highest such value which initiates a path leading to 

exhaustion of the resource will be optimal. Whether this path is 

associated with zero consumption of either or both goods will depend on 

the properties of the utility function and the production frontier. 

Again, if ui(0) and U2(0) are large the economy should follow GL. 

The following conclusions emerge from this model: 

(i) The optimal intertemporal structure of production in the 

model of this chapter closely resembles that in the more 

restrictive models presented in Chapter 3 and Sections II - IV 

of this chapter. For long time horizons extraction of the 

resource should decline steadily over time and be spread as 

thinly as is consistent with exhaustion of the resource. 

The level of extraction in such cases will always be less 

than the static competitive optimum of the standard two-

sector trade model. For short time horizons the static and 

intertemporal production optima coincide and extraction is 

constant for the entire programme. 

(ii) An effect of having one of the two sectors in the economy 

producing from an exhaustible resource is to increase the 
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tendency of the economy to run at a surplus in the early 

stages of the optimal plan. This is a simple consequence of 

the optimal time profile of resource exploitation being 

concentrated in the present. 

(iii) When the discount rate exceeds the borrowing rate, optimal 

consumption of both goods will decline over time. When the 

borrowing rate exceeds the discount rate consumption will 

rise and when the two rates are equal consumption is 

constant. Along the optimal path consumption is determined 

independently of production. 
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APPENDIX 6.1 
DERIVATION OF SWITCHING CONDITIONS 

We will analyse a selected number of switches to illustrate 

the techniques involved. 

AD: For policy A, ijj = pu2(4'(E) - pM) 
P J 

ui(E + M) 

For policy D, ip = pu2(<lj(E) + pE) 1 + P J 

> ui(0). 

Suppose that a switch from A to D is possible; i.e. suppose 

that ip is continuous at the switching surface. Then if the value of E 

for policy i is denoted E^, 

- PU2(<KE^) - pM) 1 + 

and - + pE^) 1 + 
r(E^) 

and as A U, ip̂ .̂ 

Then for given E^ immediately prior to a switch, E^ 

(immediately after the switch) will be strictly less than E^, or 

E^ > E,̂  + c. e > 0 . 

but 
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ip̂  > ui(0) 1 + 

> ui(0) 1 + + n , ri > 0 

> ui(E^ + M) 1 + + n 

= + n . 

Thus there is still a jump in ip in the transition from A to D 

so we have a contradiction. Hence no AD switch is possible. Similarly, 

no DA switch is possible. 

AH: For policy A: 

For policy H: 

Ip < PU2(0) 

Ip > PU2(0) 1 + 

p 

>'(0) 

For a switch to take place we need > 0. This will be 

satisfied for AH. On the other hand an HA switch requires ip < 0 which 

is never true. Thus an AH switch may occur at ip = pu2(0) 1 + ^ ^̂ ^ 
P 

while an HA switch is not possible. 

AI: For policy A: 

For policy I: 

ip < Ui(E) 

ip = Ui(E) 

P 

fi + iiii) 

For a switch to take place we must have 

(6.24) ip > 

For policy A: 

E = -

prior to a switch. 

tĴ 6(p̂ U22 + Ul l) 
Ui1U22P' 1 + -^j ̂  + (j)"(uiU22P + U2Un) 

Then (6.24) becomes 
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(6.25) Ul 1 1 + 
P (p(t)'u22 - Uii) > 0 

But the L.H.S. of (6.25) is always < 0. Hence no AX switch 

can occur. On the other hand lA is a feasible switch. 

GI: For policy G: fl-f i ^ l 
I P 

> ui(M) 1 P 

ui(M) = pu2((})(0) - pM) 

M = constant . 

For policy I: ^ = ui(E) p 

ui(E) = pu2(4)(E)) 

E = constant . 

It is possible to show M < E. Suppose M > E and consider 

f(E) 5 (()(E) + pE - 0(0) 

f'(E) = 4)'(E) + p > 0 , by assumption and 

f(0) = 0 . 

Hence f(E) > 0 for E > 0. But if 

M > E , ui (M) < Uj (E) 

4)(0) - pE > (p(0) - pM > (p(E) 

f(E) < 0 for some E > 0 

contradiction. 

Hence M < E, in which case 
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Ui(M) > Ui(E) + e , e > 0 

=> ijjg > ifjj + e 

=» no switch in either direction (discontinuity in ijj) 

GK: For policy G: M > 0 and 

(6.26) ui(M) = pu2((|)(0) - pM) . 

For policy K: M = 0 and 

(6.27) ui(0) < pu2(({)(0)) . 

Given that (6.26) holds and that 

[Ui(M) - pU2((j)(0) - pM)] = Uii + p^U22 < 0 

we have that Uj (0) > pu2(4>(0)) which contradicts (6.27). 



Case 1; Uj(0) > Uj 4>(0) 
P 

APPENDIX 6.2 

> pu^CO) > pu2(4)(0)) 

AB: A switch, if it takes place, will occur at 
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where 

(6.28) 

Since 

and 

^ = pu,(0) p 

Ui + i m 
p J = PU2(0) 

PU2 (0) < Uj i M 
p 

U, E + (P(E) < u, f<P(0) \ > 0 

so an AB switch is feasible in this case (i.e. a solution to (6.28) for 

E exists). 

AG: ip = Ui(M) 1 + >'(0) 

Ui(M) = pu2(ct)(0) - pM) 

at the switching surface. In this case 

u.(M) > u . f i M l 
P 

> PU2(0) > PU2(({)(0) - pM) 

Thus AG is not feasible in this case. 

AH: 

Here Uj 

A switch requires Uj (i)(0) 

4>(0) 
p 

= pu2(0) at the switching surface, 

> puj(0), thus ruling out this switch. 
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BH: At the switching surface we need u^ 1(1) 
P 

> pu2(0), which is 

not violated here, so that BH is admitted as a feasible switch. 

CD: A switch requires 

iP = ui(0) 1 
p 

where 

Here 

uj (0) = pu2((j)(E) + pE) 

Ui(0) > pu^CO) > pu2(4)(E) + pE) 

Here no switch can take place. 

CI: A switch requires 

^ = UjCEQ) 1 + tiMj 

where 

Here 

Uj (Eq) = pu2 ((j)(Eo)) 

pu2(<})(Eo)) < pu2(0) < Ui <P(0) 

P 

and for a switch to be feasible we need E„ > However such a 0 p 
value for Eo may be found and so CI is feasible. 

DK: At the switching surface we require Uj (0) <pu2(({)(0)) 

Here Uj (0) > pu2((l)(0)) so no switch is possible, 

lA: A switch requires 

'P = Ui(Eo) 
^ (j)'(Eo) 

P 

This is feasible for the same reason CI is infeasible, 



C a s e 2 : p u 2 ( 0 ) > p u 2 ( 4 ) ( 0 ) ) > UjCO) > Uj ^ ^ ^ 

AB: PU2 ( 0 ) > Uj 
P J P 

no s w i t c h . 

AG: pu2(( } ) (0) - M) > UjCO) > UjCM) 

=> no s w i t c h . 

AH: pu2(0) > Ui 

no s w i t c h . 

liM: Require u, 
P J 

PU2(0) 

no s w i t c h . 

CD: UjCO) < p u 2 ( ( } ) ( 0 ) ) < pu2((})(E) + p E ) 

no s w i t c h . 

C I : Ui(E) < pu2((})(0)) < pu2(4)(E)) 

=> no s w i t c h . 
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DK: Need Uj ( 0 ) < p u 2 ( 4 ) ( 0 ) ) ; t h i s i s s a t i s f i e d a n d s o a s w i t c h may 

o c c u r . 

C a s e 3 : u^ ( 0 ) > p u 2 ( r M 0 ) ) ; pu2 ( 0 ) > Uj 

Aii: E + M i l 
P J 

< u, i M PU2 ( 0 ) 

no s w i t c h . 



176 

AG: Uj(M) > Uj 
P PU2(<j)(0)) 

< pu2(<}>(0) - pM) . 

Thus AG is feasible for M sufficiently large. 

AH: No switch (as for cases 1 and 2). 

BH: No switch (as for cases 1 and 2). 

CD: ui(0) > pu2(0) > pu2(({)(E) + pE) 

=> no switch. 

CI: Ui(E) < ui(0); pu2((})(E)) > pu2(c()(0)) 

CI is feasible. 

DK: ui(0) < pu2(4'(0)) is violated 

=> no switch. 
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APPENDIX 603 
PROOF OF OPTIMALITY OF PATH IN 

MODEL OF SECTION III 

1: -4)' (0) < p < -(J)' (E): 

Let the path which is claimed to be optimal have its variables 

denoted with asterisk superscripts. Then comparing the present value of 

the stream of utility along this path (P*) with the corresponding 

present value (P) along any other path yields (using strict concavity of 

u and (J)) . 

T 
P* - P = [u(E* + M* - S*, (})(£*) - p(M* - S*)) 

0 

- u(E + M - S, ({)(E) - p(M - S))]e"'^^dt 

u* e'^^^LCE* - E) + (M* - S* - (M - S))]dt 

+ u* (E*) (E* - E) - p(M* - S* - (M - S))]dt 
0 

(u* + (J)'u*) (E* - E)e ""dt -6t 

0 

(u* - pu*)e"'^^(M* - S* - (M - S))dt 

_ X* - A* - A*4)' + Aj + ApCE'" - E)e "^dt -6t 

0 

(pAt - A* - A*)(M* - s* - (M - S))e '̂ d̂t 
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iJj*(E* - E)dt + [X*E + Xj(E + M - S) 
0 

-6t + X*((t)(E) - p(M - S)) + X*(E - E) - X*E]e""dt 

0 

T 
(E* - E)dt - X*Edt 

0 

= K[X(T) - X*(T)] - X*Edt . 
0 

It is claimed that the optimal path will be the one which entails the 

lowest level of extraction at any point in time among those paths 

satisfying conditions (6.6) - (6.11). To prove this assertion we 

consider separately the two possibilities identified in Section III, 

Part 1: 

(a) T<Xo/E: 

In this case our assertion amounts to saying that iĵ* = 0 

represents the optimal path (ijj > 0 will not exhaust the resource and so 

violates the transversality condition (6.10)). Trivially, 

l|;*[X(T) - X*(T)] = 0 and E = 0 along any other path before X* can become 

positive (since paths for ^ < 0 use up the resource more rapidly) so 

that X*E = 0. Hence P* - P > 0 and ip*(t) E 0 is optimal. Thus E(t) = E 

V^ G [0, T] is optimal. 

(b) T > XQ/E: 

If ilJ*(t) > 0 V^, X*(t) = 0 and the path chosen is that which 

takes longest to exhaust the resource (the highest path on or below path 

a in Figures 6.2 - 6.4) then E will have reached zero along other paths 
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before X* = 0 and thus before X* > 0. Thus we again have A*E = 0 and 

optimality is established. 

2. p<-(})'(0): 

Using similar reasoning to the above 

ipo < 0 ^(t) < 0 V^) 

and 

X*(T) = Xo(E(t) = 0 V ) => P* - P > 0 . 
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APPENDIX 6„4 
CAUSALITY IN THE MODEL OF SECTION V 

The balance of payments constraint may be used to show how Eg, 

li and ipo are related. We can write the constraint in the formi 

(6.29) [pE + (}>(E)]e ^^dt = (pCi + C2)e ^^dt . 
0 0 

Define E^ lim E(t). Then L.H.S. of (6.29) may be written: 
t->T 

L.H.S. tpE+^(E)]e -rt + 1 
r 

[p + <})•(£) ]e"" g dt 
0 

[pE^ + (p(E^)] pEo + <p(Eo) 

-f 1 r 
tp - Ai + Alt + A| -6t dE 

^ dF ^^ 
0 

Now the third term in the last expression equals 

T 

yr i/̂ odE + Mr (A, + As - AOe"'^' f dt . 
0 0 

Either 0 < E < E, in which case Aj = A^ = Aj = 0, or E = 0 or E, in 
dE 

which case — = 0 and so the second integral in the last expression dt 
vanishes, and: 
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pE^ + <j)(E^) [ p E + ({)(E iP^ 
L . H . S . i + — (E^ - E J 

r r p r ^ T C 

- r T 
PE„ + ({)(E„) [ p E ^ + ( P ( E ^ ) ] e [ p + - E ^ ) 

- r T , 
T ' T^ ' T ' 

Now, E^ i s d e t e r m i n e d b y 

+ < p ' ( E ^ ) ] = [ p + 4 > ' ( E o ) ] 

when 

X ( t ) = Xn - E ( T ) d T > 0 V^ < T 

When X ( t ) = 0 f o r some t < T , E^ = 0 . I n e i t h e r c a s e , we may w r i t e 

L . H . S . =» f ( E ( , ) w h e r e i t may b e shown t h a t f ' ( E ) > 0 . We now c o n s i d e r 

t h e r i g h t h a n d s i d e o f e q u a t i o n ( 6 . 2 8 ) : 

T 

R . H. S . ( p C i + C 2 ) e " ^ ' ^ d t 

0 

We h a v e t h a t 

a n d 

pCi = a ( u , t ) 

C2 = 6 ( y , t ) 

f r o m ( 6 . 2 0 ) and ( 6 . 2 1 ) . F o r C j > 0 : 

8Ci _ p e 
( S - r ) t 

u 11 

I . e . (X < 0 Ox - 0 f o r C, = 0 ) 

S l i i i l h i r l y l o r C^ ^ 0 ; 

'I'huB 

^ < 0 ((i - 0 f o r Cy = 0 ) 
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R.H,S. — h(y, t)dt E g(y) , 

where 

h(u, t) = [a(M, t) + 3(y, t)]e -rt 

g'(y) = t)dt 
0 

(ct̂  + < 0 

Thus, the balance of payments constraint may be written in the form: 

f(Eo) = g(y) 

with the result that: 

dE 
dy ̂ < 0 . 

Now: 

So 

ipo = y(p + 4)'(Eo)) . 

> 0 for il̂o > 0 . 

Thus higher initial values of the costate (•»• higher initial values of 

the constant multiplier, y) imply lower extraction and thus slower 

depletion of the resource. 
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APPENDIX 6o5 
PROOF OF OPTIMALITY FOR SECTION V 

We will consider only the case where 4)'(0) < p < (E) 

P* - P = u(ct, C*) - u(Ci, C2)]e "̂ d̂t 
0 

T 

0 

0 

[ui(C*)(Ct - Ci) + U2(Ct)(Cf - C2)]e '̂ d̂t 

= y -rt [p(C* - C,) + (C* - C2)]e "dt 

X̂ Ĉ e'̂ d̂t 

{[pE* + (})(E*)] - [pE + (j)(E)]}e"''''dt 
0 
T 

> y' [p(E* - E) + (})'(E*)(E* - E)]e ̂ d̂t -rt 

T r 
= y* (E* - E)(p + (t)'(E*))e"''̂ dt 

1 
= j (E* - + X* + X* -

> î *(X(T) - X*(T)) - X̂ Eê ^̂ dt . 
0 
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This last expression will be positive under the following circumstances: 

(i) T < X o / E : E*(t) = E V^ G [0, T] 

(ii) T > XQ/E: E*(t) < E V^ e [0, T] 

and the path chosen as optimal is that which takes longest to exhaust 

the resource. 
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CHAPTER 7 

CONCLUSION 

It has been the aim of this thesis to develop models which 

throw light on some of the basic questions associated with the 

intertemporal use of exhaustible resources. As foreshadowed in the 

introduction the main preoccupation has been with problems of 

"conservation", the trade-off between the present and the future being 

central to such problems. 

At the most basic level (Chapter 3) it was possible to see how 

the optimal time profile of exploitation of an exhaustible resource is 

affected by the form of the utility and production functions, the size 

of the discount rate and the length of the planning period. It was 

found that: 

(a) For an infinite time horizon a positive discount rate is 

needed to ration the stock, of the resource between 

generations; 

(b) If there is a region of increasing returns to the resource 

input, it will be optimal to operate beyond that region 

whenever the resource is being exploited (the case of class II 

and III u-functions) — consequently exhaustion of the resource 

in such a case will generally be more rapid than when there 

are always diminishing returns to the resource (a class I 

u-function; 

(c) The existence of a conservation motive and/or a depletion 

effect in extraction of the resource opens up the possibility 



186 

that it is not optimal to exhaust the resource (conditions 

under which the resource should be exhausted were derived). 

In addition the social analogue of the Hotelling "rule" that 

net price should rise at the rate of discount was found to hold when 

conservation motives and depletion effects were ignored. However, once 

these aspects of the problem were acknowledged the rule collapsed and 

there were found to be several situations where the social price of the 

resource should decline in the later stages of the period of 

exploitation. This was because the marginal net social value of the 

resource is eroded as depletion effects (for example) force up the costs 

of extraction. 

Chapter 3 was concerned with the most basic form of scarcity 

associated with exhaustible resources — that arising from the finite 

nature of their stock. Chapter 4 went on to incorporate a more 

conventional kind of economic scarcity into the problem — the limited 

supply of the variable factor of production (labour) which was to be 

used both in conjunction with the resource and in the extraction of the 

resource. The emphasis in the first part of Chapter 4 was on 

determining the best intertemporal way of allocating a given finite 

labour supply between sectors, given that some of it was to be used to 

extract the resource, and the rest was to be used to produce one or more 

consumption goods. It was possible to identify the following forces at 

work in the determination of a time path for the allocation. 

(a) When the only consumption good in the economy uses the 

resource as an input, consumption should decline over time and 

the economy should move towards the labour allocation which 

maximizes consumption at a point in time. 
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(b) The labour allocated to resource extraction should ultimately 

decline over time for very long time horizons, however when 

the planning period is short the movement of this variable is 

ambiguous — in order to approach the myopic rule as T is 

approached the labour allocated to extraction must rise, 

however the depletion effect will (because of the falling 

marginal product of labour in the resources sector) have the 

reverse effect; when there is no depletion effect, the labour 

in the resources sector should fall over time. 

(c) If the economy produces a second consumption good without the 

resource, then the relative preferences for the two 

consumption goods become important; without a depletion 

effect the labour allocated to resource extraction should 

still fall over time, however the time paths of labour going 

towards production of the two consumption goods will be the 

net outcome of two influences: (i) the innate preference for 

one consumption good (as embodied in the utility function) 

will tend to prevent the labour allocated to production of 

that good from falling, and (ii) the scarcity of the resource 

will work, to lower the allocation of labour to the resource 

based consumption good over time. 

The second part of Chapter 4 extended the basic Chapter 3 

model by considering the "relative scarcity" of two resource deposits. 

These deposits differed in both size and cost. A generalization of the 

"Ricardian" rule that resource deposits should be extracted in order of 

ascending costs was proven and it was noted that the presence of 

depletion effects makes it possible to manipulate these costs and (for a 

while) maintain a situation where the marginal (and average) costs of 
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extraction are the same for both deposits and both deposits are 

exploited simultaneously. The final part of Chapter 4 was devoted to an 

extension of the conservation motive model of Chapter 3 and a 

generalization of the exhaustion/non-exhaustion conditions obtained 

there. The conditions obtained for the disaggregated model are very 

similar to those obtained for a single resource. 

Having analysed the different types of scarcity which are 

relevant to the exhaustible resource planning problem the next step was 

to examine some ways in which the basic scarcity might be mitigated. 

Chapter 5 analysed the process whereby an increasingly 

expensive exhaustible resource is replaced by a substitute which is 

essentially inexhaustible. A comparative dynamic analysis revealed that 

the availability of cheaper such substitutes will make it optimal to use 

less of the exhaustible resource in the earlier stage of a plan, if 

depletion effects are present. In the absence of depletion effects, the 

prevailing intuition that "cheaper substitutes means conserve less now" 

was supported. 

The possibility of lowering the cost of using the backstop 

technology by investing in capital equipment and/or knowledge was then 

examined. It was found that: 

(a) Unless the planning period is sufficiently long, it would not 

be worthwhile to initiate such a development project; the 

economy is better off remaining with the original resource. 

(b) If it is worthwhile to invest in development of the substitute 

(i.e. the time horizon is long enough), such investment should 

date from the beginning of the plan, regardless of the initial 

stock of the resource. 
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If there Is no investment required for development of the 

substitute, but there is uncertainty concerning the date at which it 

will become available, it was found that the optimal amount of the 

exhaustible resource left unexploited should be higher the higher the 

probability that the substitute will eventually become available. 

Another way in which an economy may choose to relieve (or 

benefit from) resource scarcity is by importing (or exporting) the 

resource good. Chapter 6 presented a model in which a country facing a 

fixed terms of trade plans its pattern of trade and specialization over 

time so as to maximize the present value of its stream of returns. The 

nature of the optimal path was dependent on the economy's terms of trade 

and set of preferences. It was shown that for short time-horizons, the 

economy should operate at the static competitive optimum for a trading 

country while for longer time horizons the level of extraction should be 

less than this static optimum and falling. A set of taxes was devised 

to bring the competitive optimum into line with the social optimum. 

Wlien allowance was made for foreign borrowing, the introduction of an 

exhaustible resource into the conventional foreign borrowing model 

worked to increase any tendency the economy might have to move from 

surplus into deficit and offset any opposite tendency. 

Beyond the problems outlined above and discussed in the thesis 

there are a whole range of other interesting questions. Some of them 

(recycling, market failure, bias in certainty-equivalent planning, 

uncertainty about the size of resource deposits) are already being given 

close scrutiny by a number of economists. Others (exploration, tax 

policies, imperfect futures, markets, etc. and intertemporal resource 

price determination) have been generally neglected. It is to be 
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expected that the urgency of most of these problems will encourage more 

research in the future. When that happens, economics might finally be 

justly called a "science of scarcity". 
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