Wavelength-Independent Mode-Selective Couplers for Few-Mode Fibre Networks

John D. Love and Nicolas Riesen
Physics Education Centre, The Australian National University, Canberra, ACT 0200, Australia
John.Love@anu.edu.au

Abstract Summary
A novel type of tapered fibre coupler is proposed and simulated that enables wavelength-independent directional coupling between a higher-order mode and a fundamental mode for application to few-mode optical fibre networks.

Keywords- couplers, mode multiplexing, optical fibres.

I. BACKGROUND
Currently there is growing interest in the use of few-mode fibres for significantly increasing the data rates of long-distance optical systems. In these systems, each mode of the few-mode fibre is individually excited and detected at the beginning and end of the fibre, providing an independent data channel. Several mode multiplexing/demultiplexing methods have already been suggested based on bulk optics or gratings and symmetric couplers [1]. Here a new type of asymmetric coupler is proposed that allows for the excitation/detection of higher-order modes, largely independent of wavelength.

II. MODE-SELECTIVE COUPLER (MSC)
A MSC has three cores whose cross-section is shown in Fig. 1 and is uniform along its length. The centre core is the few-mode fibre surrounded in a uniform cladding by two identical single-mode cores whose angular offset ϕ is determined by the particular asymmetric higher-order mode of the few-mode fibre [2]. For the anti-symmetric LP$_{11}$ mode the two single-mode cores must be at right angles to one another ($\phi = \pi/2$) to ensure 100% coupling for an arbitrary value of the angle α.

By matching the three modal propagation constants and using an appropriate coupler length, this arrangement ensures all the power in one single-mode core couples to the higher-order mode. Conversely, all the power in the higher-order mode is coupled to either or both of the two single-mode cores. This happens regardless of the orientation of the higher-order mode that will be arbitrarily rotated after propagating the length of a practical few-mode fibre in a long-distance optical transmission system.

III. WAVELENGTH-INDEPENDENT MODE-SELECTIVE COUPLERS
The uniform MSC in Fig. 1 is designed for operation at or very close to the nominal source wavelength. The MSC can be made wavelength-independent by appropriate tapering of each of the cores [3]. The few-mode fibre core is down-tapered, as shown in Fig. 2(a), and the single-mode cores are up-tapered. Although not shown here, the second outer core would be out of plane (i.e. 90 degrees relative to the first) for the case of LP$_{11b}$ mode (i.e. $\alpha = \pi/2$) coupling.

Coupling occurs between the centre core LP$_{11a}$ mode and the fundamental mode of the outer core provided the propagation constants of the two modes match somewhere along the device. In a DWDM system coupling will occur automatically for each channel wavelength albeit at marginally different positions along the coupler's length.

REFERENCES