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ABSTRACT

This thesis is a theoreticalvin?estigation of thé structure of
the faqtory town. The study considers both the positive and normative
economic aspects of an»isolated town. The optimﬁm industrial state,
consistin§ of a factory town and its economically associated égricultural

zone, is also investigated.

The structure of the residential zone of the town is expressed
in terms of household preferences in respect to consﬁmption of the
factory produced good, the services of‘résidential space and leisure time,
the allocation of land to transpoft and trénsport éongestion. The.areas
of the factory and the town and the population of the town are ébtained
as implicit functions of the values of the mafgihal products of land and
town population. Expressions for returns to scale in factory prqduction.

at the optimum and equilibrium points are derived.

Some comparative static analyses of the optimum town are pres-
ented using the opportunity cost of land, a transport parameter and popul-

ation density as shift parameters.

Conditions for equilibrium in a company town are derived, and
it is shown that a general equilibrium involving production in factories

cannot be competitive.
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CHAPTER 1

‘INTRODUCTION

From the beginninés of thé industrial revolution there has
been a steady decline in the relative importance of the rural‘sector,
and a major shift towards urban economi.c éctivity in almost all qountries.
Industrial production has moved out of the home and into the factory.
Yet eéonomic theory has remained almost untouched by this important
change in economic structure. Except for the specialized field of urban
economics (which, in any case, hés béen more concerned with the applic—
ation of existing theory to urban problems than with the exfension of
that theory), economics has not been structured to take account of how

production and consumption are modified by the urban environment.

It is not altogether surprising that economic theory has not
been developed in this direction. It appéérs to be a specialization
which would not modify the substance of most branches of economics. 1In
macroeconomig theory, for example, we already make heroic assumptions in
respect to the aggregation of commodities, yet obtain important and mean-
ingful conclusions. It is unlikgly, therefore,.that'coﬁsideration of the

fine structure of urban areas will give added depth to this theory.

Nevertheless, it is easy to miscalculate the narrowness of the
specialization. In respect to the theory of value, the Arrow-Debreu

Theorem is confined in its application to:
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"elementary regions......small enough for all the
points of one of them to be indistinguishable from
the point of view of the analysis.“_1
In other words, it applies only to regions in which all economic activity,

that is, production, marketing and consumption, are uniformly distrib-

uted. By contrast, a crucial feature of the economics of urban regions

is the spatial distribution of these three economic activities. Produc-

tion takes place in factories, consumption takes plaée in households,
perforce locaﬁed outside the factory area, and there is transportation
of producers and consumers to and from the market places. Clearly, the
Arrow-Debreu Theorem is not a valid descripfion of economic equilibrium

in an urban environment.

At the same time, this same competitive equilibrium theorem
fails to accommodate the increasing returns to scale which are pervasive
in factory operations. It is necessary to assume constant returns, at
least in some neighborhood of equilibrium:

"If competition is perfect, and if no frictions
prevent firms from growing to their equilibrium size,
then falling average costs for the individual firm

cannot occur."?

"Yet on an empirical level, nobody doubts that in
any economic activity which involves the processing or
transportation of basic materials - in other words, in
industry - increasing returns dominate the picture

ll3

Equilibrium theories developed within these spatial and prod-
uction limitafions have not been immune from criticism. In particular,
Kornai [1971] and Kaldor [1972] have declared all such equilibrium theory
to be irrelevant és a means of describing the operation of economic
forces, and they call for its demolition. Xornai's wide ranging attack
includes a strong explicit criticism of the assumption of éonstaﬁt

returns. Xaldor concentrates most of his attack on this same assumption.

1 pebreu [1959, p.29].
2 Joan Robinson [1932, p.544].

3 Kaldor [1972, p.1242].
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However, both are silent in respect to the spatial assumption. This is
surprising for the following reasons. We have a theory in which, for
conceptual, not merely technical reasons, we have to assume that returns
to scale in production are constant (or at least non-increasing), and we
observe that, in this regard, the theory ofteﬁ fails to describe produc-
tion in factories. At the same time, the theory postulates a spatial
uniformity which conflicts with the spatial structure that is observed
to be associatéd with factory production. One would expect that the
critics of equilibrium theory wouid'look fér a nexus between these two

contradictions of reality by the theory.

That they have noﬁ is probably related to a widespread belief
among economists that the costs of thebfransport systems, which ére nec-
essary to bring the spatially'separated’parts‘of an economy together,

" are no more than passive economic forces, that is, "frictions", which
simply retard and modify the apptoach towards competitive equilibrium,
and do not actively drive the system awa& from‘it. This belief has prev-
ailed notwithstanding Sraffa's very clear warning of 50 years ago. that

it may not be valid.! sraffa was writing about any phenoﬁenon which

gave firms éomparative.advantages with respect to some market places, and
was arguing for the abandénmenf of the concept of perfect competition so
thaf the co—existencebof equilibrium and increasing returns in production
could be explained. The monopoly power derived from transport costs,
specifically, had been explored 100 years earlier by von Thinen, whose
theory of agricgltufal rent is derivea in‘terms Qf the cost of transport-

ing output per acre.?

In regard to consideration of economies of scale in production

and locational effects, normative economics has been somewhat further

}  sraffa [1926, p.188].

2 For a translation of von Thiinen's works see Wartenberg [1966].
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developed than its positive counterpart. Starrett [1974] has presented
a theory of optimal location which takes into consideration transport
costs. In particular, he obtains a relationship between the optimal
average degree of increasing returns in production and the transport
functiori. However, Starrett's model consists‘of a system of zones, in
each of which production and consumption are independent of location.
This describes the essential features of aﬂ agricultural economy in which
specializatioﬁ takes place,‘or Qf cottage industfy, but it does not
capturevurban economic activity where production and consumption must be
sepﬁrated. In other words, it cannot be claimed that Starrett has
solved the problem of finding the‘optimﬁm'allocation of resources Qhen

production takes place in factories.

A promising means of introducing urban stiucture into the
theory of resource allocation (positive or normative) is by the use of
the presently evolving theory of the factory town. Mills and MacKinnon
[1973] have called this theory the "ﬁew Urban Economics". It examines
the fundamental economic forces which operate in an urban area using a
simple abstraction of a factory town of the following basic structure.
The circular core of the town, called the central business district
(CBD), is wholly occupied.by a single factory. This factory produces a
conSumption good froﬁ‘inputs of land and labor. The CBD is surrounded
by an annular residential zdne, thelland of which israllocated either to
transport or to residential.purposes. The féctory workforce lives in
the residential area and derives utility from the consumption of the
producedbgood, residential space (or housing services) and perhaps leis-

ure.

The theory of the factory town has proved very useful in stud-
ying the structure of the residential zone, particularly in investigating
the problems of allocating land between household residential space and

the transport system. However, in its present form, it is not suffic-
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iently general to be used for a definitive investigation of returns to
scale invproduction at either the optimum or equilibrium points. This
is because the mathematical probleﬁs of using the area of the CBD and
the population of the town as control parameters‘have not been solved.
Consequently, the land input to factory production pius CBD transport
and the workforce (although not the_labof input to production) have hith-

erto always been taken as given.

The primary aim of this thesis is to use economic theory to
investigate the interrelatiénships between the location of economic
activity, transport costs and returns to scale in productién, particul-
arly in an urban environment. The model used is the factory town, and
to achieve this primary aim it is generalized to make CBD size and.town.

population free parameters.

Secondary aims are to generalize current knowledge of the struc-
ture of the residential zone and to examine the structure of the optimum

isolated state of the von' Thiinen type.

The point-by-point approach is used throughout. That is to
say, each model used is made as simple as pos;ible by omitting consider-
ation of all influences which are thought to be extraneous to the relat- .
ionships‘being investigated. This approacﬁ comes under fire from time
to time; Within urban economics, Richardson [1973], for ekample, has
criticized early models of the optimum town for the large number of
‘important phenomena they have failed to take into considerétion. At the
same £ime, the approach has had many defeﬁders. Mirrlees [1973] and
Solow [1973c], the authors of thé earl& models, acted as their own apolog—‘
ists against Richardson's direct attack. A generél'case for using the
point-by-point approach -has been made by Nagel [1963]. He divides
unrealistic theoretical statements into three different types. It is

his third type which interests us here, and in respect to it he argues:



"In many sciences, relations of dependence
between phenomena are often stated with reference
to so-called "pure cases" or "ideal types" of the
phenomena being investigated. That is, such theor-
etical statements (or "laws") formulate relations
specified to hold under highly "purified" conditions
between highly "idealized" objects or processes,
none of which is actually encountered in experience.
For example, the law of the lever in physics is
stated in terms of the behavior of absolutely rigid
rods turning without friction about dimensionless
points: similarly, a familiar law of pricing in
economics is formulated in terms of the exchange
of ‘perfectly divisible and homogenous commodities
under conditions of perfect competition. State-
ments of this kind contain what have previously
been called "theoretical terms", which connote
what are in effect the limits of various non-termin-
ating series and which are not intended to designate
anything actual. Such statements may be said to be
unrealistic but in a sense different from the two
previously noted. For they are not distinguished
by their failure to provide exhaustive descriptions,
nor are they literally false of anything; their
distinguishing mark is the fact that when they are
strictly construed, they are applicable to nothing
actual. o

However, laws of nature formulated with refer-
ence to pure cases are not therefore useless. On
the contrary, a law so formulated states how phenom-
ena are related when they are unaffected by numerous
factors whose influence may never be completely
eliminable but whose effects generally vary in mag-
nitude with differences in the attendant circumstan-
ces under which the phenomena actually recur.
Accordingly, discrepancies between what is asserted
for the pure case and what actually happens can be
attributed to the influence of factors not mentioned
in the law."!

In Nagel's language, we wish to formulate laws telating transport costs,
production and urban structure, and in using the point-by-point approach
our formulation is in terms of "pure cases"; none of our models will

attempt to depict a real town because of factors not considered in their

formulations.

The thesis is divided into eight chapters, ﬁhe first of these

being this introduction, and the last a summary of the main conclusions.-

Chapter 2 surveys the published literature. It is convenient

1 Nagel [1963, p.215].



7:

to divide this literature into three topics, although many articles span
more than one of them. The first topic is the deveiopment of the von
Thiinen theory of land rent. The second topic is the equilibrium factqry
town, and the third is the optimum town. ‘It becomes clear that the CBD
and residential zones are von Thilnen "rings" in an expandea form of his

theory of the Isolated State.

The nexﬁ tﬁree chapters examine the optimum town. Historic-
ally, the theory of the equilibrium town was developed before that ofv’
the optimum town. However,‘as is se frequently the case, nermetive
models are easier to formulate and solve than pesitive models, and it is
for this reason that the optimum town is explored first. Chapter 3 exam-
ines the optimum town in which the household's leisure time is.heid coh-
stant. This leisure constraint is convenﬁional in the literature. Like
earlier researchers, we find that, unless some kind of "morality" is
bu#lt into the model, equals are not treated equally in the optimum town.
To explore around this result the alternative polar case is examined,
that is, the case in which equality is deemed to be paramount. An inter-
eéting feature of the chepter is,the extent to which the two cases can

" be handled with a single calculus.

Leisure time as a variable in the‘optimization process is
introduced in Chapter 4. Most interesting here is the secondbbest town
in which factory work hours are fixed, because of its accord with the
real world. In this model leisure time»is a sﬁate variable- in -the sol-
ution. - This solution is a further polar case te be compared with the
models of Chapter 3. We find that several of-the strong unambiguous res-

ults obtained in Chapter 3 are not robust to the change in the constraint.

Chapter 5 is a comparative static analysis of the optimum town
using the opportunity cost of land, the inverse of transport velocity
and the population density as shift parameters. Throughout this chapter

population density is taken to be independent of location,and the house-
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holder's leisure time is held fixed. The analysis is conducted in a gen-

eral equilibrium framework, and some of its conclusions contradict earlier,

partial equilibrium analyses.

In Chapter 6 the constant density, constant leisure model is
extended to include the cost of transporting an agricultural good consum-

ed by the urban households. The extension leads us to generalize from

the optimum fown to the optimum Isolated State. There are three "rings"

in this von Thiilnen model: the CBD; the residential zone; and the

agricultural zone.

_Chapter.7 contains our only sortie into positive ecqnomics
(although we earlier showed that market realizations of some optima are
possible). We examine the structuie'of a typical town in a gene¥al
equilibrium model of a large economy. We‘make all markets "as near to
perfect as they can be", and we discoVer»that at equilibrium our town
will be wholly owned by a single firm;,>Furthermore; competitive equil-
ibrium cannot occur, even when goods trénsport costs a:e'neglected.
Inevitably, there is an "apparent” monopsony in the factory labor market
and monopolistic competition in the urban land market. Returns to scale
in factory production are.increasing at equilibrium, but there is no
income distribution problem, because the factory-employed factors. are

not paid the values‘of their marginal products.

Altogether, the research described in Chapters 3 to 7 gives a
set of theoretical statements which relate factory production, the struc-
ture of the residential area, per capita utility, the spatial structure

of the agricultural hinterland and transport costs.

In the residential zone we find, as did earlier writers, that
equals are treated unequally in the optimum town if the area of the
household's residential site is an instrument of optimization. Further-

more, under the usual assumptions on the shape of the utility function,
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the household allocation of every consumption good increases with the
distance of residential location from the centre of the town. The cause
underlyingvthese resuits is explained in terms of the transport costs
which are saved by moving the centre point of the location of every

household toward the centre of the town and the positive sign of the

- cross partial derivatives of the utility function.

When an equality constraint is imposed upon the model, the
structure of the residential zone depends crucially upon whether
household leisureé time is assumed to be constant or is treated as an

instrument of optimization.

The conclusions reached in respect to returns tb scale in féct—
ory production in both the equilibrium and optimum towns are ne&. They
contradict the intuitively derived results of earlier writers that trans-
port can be internalized into factofyvproduction so as to obtain constant
returns to scale inlthe aggfegate production. In fact, returns to scale
in both factory‘and aggregate production in both the optimum and equil-
ibrium towns may be decreasing, constant or increasing,depending upon

the structure of the model.

When the tfansport‘costs of agricultural goods from the town's
hinterland are included in the model, the nature of the central business
district and the residential zone,as von Thiinen "rings" of production,
becomes clear. 1In this context the residential zone is identified as the
ring in which labor  is produced for use in the .factory production of the
CBD, and von Thiinen's model of the isolated state is'generalized so as to

give the town a more extensive role than that of a simple market.

Finally, the comparative static results obtained from a general
equilibrium model of the optimum town refute those obtained from partial
equilibrium analyses. We find ambiguity of sign in almost all our res-

ults. These ambiguities are explained in terms of shifts in the optimum



10.

degree of increasing returns to scale combined with the shifts in the

optimum factor proportions.



CHAPTER 2

THE STRUCTURE OF THE FACTORY TOWN:.
THE LITERATURE

In this chapfer we survey literature directly rélated to the
theory of the factory town. Two earlier surveys,of this field are
available. Goldstein and Moses [1973] presented a comprehensive apprais-
al of theoretical urban economics, tﬁe,sécond section of their paper sur-
veying housing and land values, and the thirdAsection, being on intra-
urban land use, togethef review most Qf the literature on the structure
of the factory town, then published. Mills and MacKinnon [1973] have a
much shorter analysis intended primarily to give an overview of models

of the factory town.

It is convenient to divide this cha?ter into three parts. The
first reviews the development of the von Thinen theory of land rent in
its applicafién to ufban areas. Thevsecond part surveys equilibrium
‘models of the facfory town, and the third examines normative models and

comparisons between the structures of equilibrium and optimum towns.

2.1 THE THEORY OF URBAN LAND RENT

Broadly speaking, the theory of the factory town is concerned
with the allocation of land in urban areas. Therefore, a land rent funct-
ion, dependent upon a location variable and the characteristics of the

transport system, will normally be a crucial part of the solution to any
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urban model. It is the development of this type of rent theory that we

now review.

The theory of land rent can be traced béck at least to the
Physiocrats of the 18th century. At the beginning of the 19th century
Ricardo presented his well known treatment of land rént, based upon soil
fertility, which is the foundation of modern agricultural land rent
theory. Although he and Adam‘Smith‘béforeAhim recognised that location
with respect to markets would influgnce land values,.the credit for orig-
inating the formal treatment of agriculturél rent arising from transporf

costs and location belongs to Johann von Thinen.

Writing over the period 1826-1863, von Thiinen analysed the
problem of the efficient allocation of uniformly fertile agricultural

1 rhe land rent is obtained in the

land around a single market place.
solution to his problem as the producer's surplus per unit area of prod-
uction net of ffeight costs to the market. The main thrust of the von
Thiilnen theory can be captﬁréd by a simple model. Assume fixed coeffic—
ient production functions, and let all producers be price takers in the
goods and labor markets. In general, mére than one good can be produced

from the land. We consider the ith

of the set of possible goods. For
this good let the freight rate (tﬁat is, the cost of transporting unit
quantity unit distance), be Ti, a constantf Furthermore, let area si be-
required to produce unit qﬁantity of it. Then, the producer's surplus
per unit area under crop i is a linear function of the distance from the
market of slope‘-Ti/si. The landowner ma#imizes his-profit by thé alloc-
ation of his land between crops. The agricultural land rent, r(x) say,
wheré X is the‘distance from the market, is the envelope of the set of

producer's surplus functions. If we number crops outward from the market,

this envelope will be made up of straight line segments whose slopes

1 see Wartenberg [1966].
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-Ti/si, i=1,2,..., decrease in absolute magnitude with x when profits
are maximized. The envelope, r(x), génerates the so-called von Thiinen
"rings" of production, because, associated with each segment of r(x),

there is an annulus of land which is allocated exclusively to the product-

ion of a single crop. The process is illustrated in'Figure 1.

For each ring we can writel

r (%)

- ring 1 ring 2 ring 3 . ring 4 X
Figure 1
r(x) = - 1./s.. ‘ ’ (2.1)
i’ 7i

The integral of (2.1) depends upon the prices of neighboring crops, and
therefore, the dimensions of each "ring“{ depénd, among other things,
upon commodity prices. All land is allocated out to the distance at

which the von Thinen rent becomes zero.

Beckmann [1972] introduced neo-classical production functions

1 Throughout this thesis we will use the convention ¥ =

ar
ax’
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into the von Thiinen model. He showed that the land.continues to be
allocated in discrete rings. The major effect of the substitution bet-
ween factors, that the neo-classical production function allows, is to
make the producgr's surpluses downwarq sloping, strictly convex functions
(for a constant freight rate),'and this, of course,implies the possibil-
ity that one good might be produced in two separated rings. The rent
function continﬁes to be the envelope of the producer's surplus-functions.

Some details of Beckmann's analysis were re-examined by Renaud [1972].

Strangely, almdst exactly 100 years were to pass between von
Thilnen's last publication and the first application of his theory to res-
idential areas in an attempt to explain the character of urban land rent.
In the interim, attempts Qere made to develop a theory of rent for retail
premises based upon the "profitability" of location. These attempts had
only limitéd explanatory power, because profitability was treated as

being determined exogenously from the model.

Alonso [1964] h;s given a brief review of these theories.! It
is sufficient here to take a critical lopk at a representative.example,
the retailiﬁg rent theory presénted by Chamberlin [1948]. . This Qriter
examines the retailing industry in isolation. He afgues that the land
rent for retailing premises is determined by the favorable location of
the site in respect to préfitability in trading. He regaras this rent as
being different in kind from agricultuxal :ent, becausé the agricultural-
ist is always at a distancé from the market, whereas the retailer is the
market:

"The ordinary rent reasoning does not fit at all.

Rent is not paid in order to save transportation

charges. It is paid in order to secure a larger
volume of sales.”

1 Alonso [1964, Ch.1].

2 Chamberlin [1948, p.243].
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However, in treating regailing in isolation, Chamberlin fails
to take into consideration the transport costs of buyers. Clearly, from
an economic point of viéw, 1t does not matter whethér it s the buyer or
the seller who travels to the market. 1In Chamberlin's model buyers'
transport costs are implicit in his concept of exogenously determined
profitability, but in a general eéuilibrium modelbcontaining both retail-
ers and buyers{ the land rent is aetermined by the competition‘among the
buyers for housing f;vorably located relative to the market place, as
well as by the competition SetWeen éhe retailers themselves for the mar-
ket locations. Given a perfect land market, the rent én retailing land
must equal the residential rent at the boundary of the market area. The
rent function generated by this competition»is not different in kind
from,'bﬁt is precisely a von Thiinen rent, and, in a market town without
induétrial production{ the boundary of the market is the limit of the

first von Thiinen ring.

Muth [1961] examined this von Thﬁnen type rent function within
- the residential zone and at its boundary with the rural area. In a pure
model, the residential zone is the second von Thiinen ring. Muth's method
was to find equilibrium conditions for housing production. A land rent
function can be obtained from these conditions. »However, the transport
costs, which determine the favorable quality of each location, are sub-
sumed in an exogenous housing demand function in’his.model, and, as a
consequence, his solution‘lacks'generality. He does, however, obtain a

housing rent profile.

It wastlonso [1964] who developedhthe theory of the von Thiinen
rent, which is generated by the demand for residential space in relation
to the location of some centre of economic activity. He expressed demand
for land by a series of "bid-price" curves. We.limit our interest to the
monocentric factory town, and invthis simple médel, his theory can be

succinctly stated in the following way. Consider a large number of ident-
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ical households living in a monocentric factory‘town. We assume that the
typical household derives utility from the consumption of a vector of
produced goods, fi, and the enjoyhent of residential space of area, s.

We also assume that every household must travel to the centre of the town
(to the factory) each day to derive an income w. The household budget,

therefore, will have the form

X
pX pifi + r(x)s + J T(z)dz = w, ' : (2.2)
0 v N -

where the pi are prices, r(x) is‘the reSidential landbrent, T(x) is the
cost of travelling unit distance at x, and x is the distance between the
- residential site and the centre of the town. Household utility maximiz-
ation is effected by the usual choices of the quantities consumed of the
produced goods and of residential space, and, in addition, by the  choice

of residential location. This choice of residential location implies

the equilibrium condition

r(x) = - ) E (2.3)

Comparison between (2.1) and (2.3) shows that the Alonso urban rent is a
von Thiinen rent, and that the residential zone is a von Thinen ring. .In
the context of theivon Thilnen model, this ring is used for the production

of labor for sale at the central market.

The integration of (2.2) requires the complete solution of the
equilibrium conditions. This leads us into an examination of models of

the equilibrium factory town.

2.2 THE EQUILIBRIUM FACTORY TOWN

Throughout this section and the next we will assume that the
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land on which the town is located is perfectly uniform in quality; In
the literature, several authors made their towns pié-slice in shape,
implying that a regularly shaped section of the land, viz. the remainder
of the pie, is perfectly inaccessibie. This is a very simple and
straightforward generalization (requiring no more than the substitution
of 2m by 8 < 27 whenever it occurs), but not a very powerful one, and
for the sake of clarity in the exposition, we do not consider it when

reviewing the individual articles.

Equilibrium models examine the interactions of some or all of

the following economic activities:

(i) househoid.consumption;

(ii) factory production;
(iii) housing services production;
(iv) transport production;

(v) land transactions.

There has been a tendency amongst authors to specify the functional form
of some of these activities. Usually the Cobb-Douglas function with con-
stant returns to scale is chosen. The solution is then obtained as a set

of functional relationships of specified forms.

All the models have the folloWing fgatures in common. First
the opportunity cost of land, identified as the agricultural rent, is
iﬁdependent of the size and population of the town, and is paid to absen-
tee landlords. We will represent thié opportunity cost by the rent, r,-
Second, the populatioh of the town is an exogenously determined constant,
which is measured as the number of identical households living in the
town. We represent this number by N. Each of fhe households occupies‘its
own residential site and sells one unit of labor to the town. . The only
reason for tra&el in the town, which is considered in the models, is to

supply labor to the factory. Third, the form of the transport production
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function is always such that, given the uniformity of land quality, it
guarantees c¢ircular symmetry in the structure of the town. This sym-
metry makes possible the designation of location by a single variable, x,
ﬁhe distance between the location and the centre of the town. Finally,
the area of the central business district, CBD,‘is assumed constant. We
designate the radius of the CBD by X - The area between xcband the town

boundary, x, say, is the residential zone.

" In the first model of the factory town of which I am aware,
Mills [1967] used Cobb-Douglas funé£ions of land, labor and capital to
represent the factory good and housing productions. Returns to scale
are constant in both activities. The factory has a monopoly, and all its
profits pass to the urban landlords. The housing indust;y is competitive.

Transport production is proportional to the single input, land.

The demand side of his model is represented by the following
assumptions. Demand for the factory good is characterized by constant
own-price elasticity and éero cross elasticities. The demand for housing
is uniform across the residential zone and independent of price. TraQel—.
lers pay the cést of their transport, and their demand is insensitive to

price.

Mills obtained equilibrium conditions for the allocation of CBD ‘
land between transport and the factory and showed that the area of land
allocated to transport per annulus 6f unit width increases at an increas-
ing rate with x, while the area allocated to the factory increases at a
decreasing rate; For the residential zone, househoid residential site

area increases linearly with x.

Colin Clark [1951] plotted population density data for 20 cities
of the world.against distance from the city centre, and showed that, in
practically every case, the population density outside the CBD approxim-

ated closely to a negative exponential function of distance from the centre



19.

of the city. No special case of Mills' model predicts this functional

form, although his population density function is strictly decreasing.

The land rent function for the residential zone that Mills
obtained is a decreasing convex function of x, which decreases more
steeply than exponential. It is, however, a negative exponential funct-

ion of x when land is the only input to housing.

Mills [1969] abandoned the concept of a CBD and examined the
implications of the dispersion of p;odﬁction throughout the town. His
transport productién function is Cobb—Douglas and the demand for trans-
port at a given location is proportioﬁal to the output of the produced
good at that location. The rent profile he obtains in the solution to

this model is of the same functional form as that described in Mills [1967].

Muth [12969] used partial'equilibfium‘analysis to examine three
aspects 6f the structure of the residential zone of a simple town. First,
he assumed household utility to be derived‘from the consumption of.a
factory produced good and‘housing services, and found the first and second
order coﬁditions for household equilibripm. In this model the household's
transport cost is assumed to depend upon the distance travelled and house-
hola income. The price of the fadtory‘good, and the housing services
supply function are exogenous fo the model. Muth showed that the pricé
of housihg is a decreasing function of disﬁance, which is strictly convex

if the equilibrium is stable.

Second, thé conditions for équilibrium in housing productioh
under conditions bf perfect competition are'obtained, given a housing
demand function. Land and labor are the factors of production. The first
opder conditions derived by Muth can be separated into two classes.A The
first class is the well known pair of conditions whiqh relate factor
prices to the value of the marginal products. In this urbaﬁ model thesé

relationships are location dependent. The second class is an additional
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condition which is necessary for locational equilibrium. This condition
is also a function of location. Muth showed that, at any location,land
rent is an increasing function of the price of housing and a decreasing
function of the wage rate. It is also a decreasing function of the dis-

tance x.

Finally, making assumptions in respect to the price elasticity
of demand for housing, the equilibrium conditions derived from the first
two models were used to obtain theveqhilibrium population density function.
This function is a negative exponential (and thus accords with the empir-
ical results of Ciark [1951]) when thé housing price elasticity is -1 and

the housing production function is Cobb-Douglas with constant returns to

scale.

Hochman and Pines [1971] used a model very similar to Mills

[1967] to examine the effects‘of‘the commuter's choice of the quantity
of transport purchased upoh the equilibrium rent and population density
functions. Their exogenoﬁsly determined demand for housing function has
‘the same constant elasticity form as that used by Mills, and the transport
and housing product}on functions are Cobb—DOuélas with constant returns
to scale. bThe cost of a household's transport per unit distance is made
up of two terms. The first is proportional to the quantity of transport
purchased. This term is entirely stand;rd.' The second term is proport-
ional to the reciprocal of the quantity purchaséd,'and it represents the
opportunity cost of travel time. Thus, speed of transport is assumed to
increase with the quantity of transport consumed, so that an increase in
the quantity of transport purchased reduces travel time and, hence, the

opportunity cost of travel.

The authors obtained a solution to  their model in terms of spec-
ific functions. Qualitatively, their rent and density functions do not

differ significantly from those obtained by Mills [1967] and Muth [1969].
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Hochman and Pines generalized the treatmgnt of hoﬁsehold trans-
port, but their approach did not enable them to examine thé important
urban problem of traffic congestion. This is because transport velocity
in their model depends only upon the quantity of transport purchased,
and is independent of the number of travellers. Mills [1972] introduced
the transport price function

' n(x) %
p(x) = p0+pl[m) o (2.4)
. 9y _ :

into a model similar in essentials to that used by Millé [1967]. In (2.4)
p(x) is the price charged for transporting one traveller unit distance
at x, and po, a constant, is this price when travel is uncongested. in
the second term of the right hand side n(x) is the number of travéllers
at x, gl(x) is the land input to the transport.facility at x, and_pl énd
0 are positive constaﬁts. This £erm, therefore,.répresents the cost of

congestion. The functional form of p(x) was first suggested by Vickrey

f1965].

Mills obtained some numerical solutions to his model for the
rent function and the price of transport, but he was unable to find an

analytical solution.

Solow [1972] presented a model which is' demand oiientated. His
household utility functionris a transform of the Cobb-Douglas fuﬁction,
and its arguments are a vector of produced goods and residential site
area. Utility maximization gives the equilibrium vaiues for the total
demand for produced goods, the land rent and‘the household residential
site area, each expressed as a function of income net of expenditgre on
transport, which itself is a functipn of location. He shows that goods
consumption per household and the rent function are both downward sloping
functions of x, while thé residential sité area has a positive slope.

This means that households substitute residential area for goods consump-
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tion as the distance of their residential location from the centre of the

town is increased.

In formulating his model, Solow assumed that, at all loéations,
a constant proportion of land is allocated to transport, and he used the
Vickrey transport price function (2.4), but set PO = 0. The solution to

his model was obtained in the form of Bessel functions.

To simplify his analysis, Solow used parameter values which he
considered to be unrealistie. Later, Solow [1973a] used more realistic
values and obtained numerical solutions to the model. These and his‘
earlier solutions sugdgested that tfansport congestion increases the con-

vexity of the rent function.

In all the models reviewea so far, it has been assumed that
houséholds are identical and receive the éame_incoﬁe. Beckmann [1969]
investigated the locational distribution of income in a factory town. He
used a demand-oriented model similar to Solow [1972] éxcept that location,
X, was included as an.explicit argument of the utilityvfunction. ‘He
assumed household income to have a Pareto distribution wiﬁh respect to

population. His transport cost per unit distance is constant.

Beckmann showed that household income increases unambiguously
with x. That is to say, the richer households live further from the

factory than the poorer households.

Delson [1970] and Montesano [1972] showed that Beckmann's anal-
ysis was faulty. Montesano re-examined the Beckmann model. He confirmed
Beckmann's conclusions for the case of non-free transpoft, but showed
that an ambiguity, not recognised by Beckmann, appears in the polar case

of free transport.l

1 The assumption, in this model, that households derive utility from

. - 0 . . . .
location (with 5§-< 0) is the raison d'etre for a residential zone,

rather than the dispersion of households, when transport'is free.
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The investigation of‘transport congestion and of traffic nuis-
ance costs have been carried fofward in two articlés by Oron,‘Pines and
Sheshinski. The.first of these studies compares equilibrium and optimum
towns. It is convenient, therefore, to defer discussion of these articles
until we have reviewed the develépment of normative ﬁodels in the next

section of this chapter.

Comparative static analysis of the factory town is clearly an
important aspect of the study of urban structure. However, as we will |
see from the work 6f Oron, Pines and Sheshinski [1973], this analysis is
Made.difficult by the need to use general_equilibrium models and the com-
plexity of the functional dependences between the variables which describe
the structure of the town. They shoﬁed that partial equilibrium analyses
which do not take account of some of these dependences may lead to erron-
eous conclusions. We outline their d15cussion in the next section ofi

this chapter.

Only one extensive coﬁparativebstatic,analysis of the equilib;
rium town appears to be available. This is a partial equilibrium analysis
presented by Wheaton [1274]. He examined'Fhe effects of parameter shifts
on the strucfure of the residential area of two equilibrium towns. His
basic model is demand orientated with households consuming a factory prod-
uced good and the services of residential‘space.bblh his first town pop-
ulation is fixed, and his shift parameters are household income, populat=-
ion, agricuitural rent and the price‘of transport. He investigates the
effects of shifts in these parameters on the rent and population density
profiles and on household utility. In the second town household income
is fixed, and the caﬁsal relationsghip betwe¢n household utility and |

population is reversed.

Wheaton obtains unambiguous signs for all his derivatives.
However, his partial equilibrium framework, particularly his assumption

that household income is independent of the population of the town, ser-
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iously limits the generality of his conclusions.

With the exception of the two Oron, Pines and Sheshinski art-
icles referred to above, this completes our review of the published art-
icles on equilibrium models of the factory towe. The state of knowledge-
of the equilibrium town can be summarized as follows. .The spatial struc-
" ture of the resideniial zone of e townbof fixed population is now fairly
well understood. The shapes of the ren£ and pepulation density functions
have been investigated, as has the allocation of land between residential

use and transport under conditions of traffic congestion.

There remain, however, a number of aspects of the equilibrium
factory town which require more‘extensive investigation. For example,
in all the models reviewed CBD size and population are fixed. These
models are therefore unsuitaﬁle fof an investigation of equilibrium in
the goods production sector. Consequently, this aspect of urban struct-
ure remains untouched. It has significance, beeause, when land quality
is uniform, therevmust be.economies of scale in factory production to
justify the transport costs'inevitabiy associated with: the existenee of'
the town. The relationships at equilibfium, between returns to scale,
transport costs and the wage rate is of fundamental importance to our

understanding of city size.

Furthermore, each of the several economic activities of the
town is assumed to be controlled by an independent entrepreneur. However,
in a locational model, one activity may create monopoly power in another.
For example, faetory production creates monopoly perr for the land and
transport suppliers. Therefore, equilibria in which a single entrepren-
eur controls several activities in an attempt to obtain monopoly profits
are of special interest. A polar case of this horizontal integration is
‘the company town. An examination of the economic structure of the com-

pany town is, therefore, of considerable interest.
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The incompleteness of our knowledge of comparative static anal-
ysis has already been mentioned. A final point we might make is that
authors have assumed the agricultural rent at the boundary of the town
to be independent of town size. However, the town must be viewed as a
market for agricultural products, and given non-zero freight costs, the
agricultural rent must depend upon town size and population. The need to
integrate the‘town and its agricultural hinterland into é single von

Thiinen model remains.

2.3 NORMATIVE MODELS

We now turn to a survey of the development of the theory of

the optimum town. A conﬁenient starting point is a model due to Solow
and Vickrey [1971]1. This model is different from all others in two res-
pects. Firstly, it has no residential zone. Sécondly, the CBD is long
and narrow, and is treated as having only éne dimension. All other models
are circular in form,‘and.tend‘to concentrate upon .the structure of the
residential zone. The Solow and Vickrey model examines the relationship
between freight costs and the allocation of land between production and

transport. The supply of labor and its transport'cost is not considered.

It is assumed that each unit of land area allocated to product-
ion generates a fixed amount of goods for transéort. The destinations of
these goods are uniformly distributed over the land allocated to product=
ion. The authors found the'cqnditiohs for optimal laﬁd allocation.

Later, Hochman énd'Pines {1972] showed that the Solow and Vickrey énaleis
was incoﬁplete. Combining the two sets of resulfs, we find that there

is an optimum.length for the town, and that, within this optimum town,
transport land (i.e.,the "road") is of a symmetric cigar shape. That is,
ﬁhe width of the road decreases at an increasing rate with distance from

the centre of the town. A shadow rent function is also derived. Kanemoto



26.

[1975] presented a similar analysis for a circular CBD.

The minimization of the congestion costs of passenger transport
ip a circular town has been the subject of four articles. Consider é CBD
in which land is allocated either to factory production or (road) trahs-
port, and a surrounding zone in which land is alloéated either to resid-
ential sites of uniform size or to transport, and let the population be
fixed. Assume that the household's transport cost per unit distance is
given by (2.4) with po set to zero: The problem to be solved is:  what
is the road widtﬁ profile which minimizes total transport cost in the

town?

Mills and de‘Ferrénti [19711 solved‘this problem for the resid-
ential area‘only, given a CBD of fixed area. Later, Livesey [1973] and
Sheshinski [1973] independently extended this solution to encompass a

CBD of optimum size.

.It is found that the optimum road width is a strictly increas-
ing, convex function of x in thevCBD, and a strictly decreasing, concave
fuﬁction in the residential zone. The road width is zero at the.centre
of the CBD and at the towh boundary, and at no point does it occupy all
available land. It is also found that optimum congestion increases lin-
early from the centre of the town to the CBD boundary, after which it

decreases linearly to the town boundary.

Legey, Ripper and Varaiya [1973] introduced capital into this
congestion cost model to derive the profile of the intensity of land use

for transport across the town.

The explanatory power of the moggls used in all these analyses
is limited by their failure either to include goods production, or to
optimize household utility. The role of the factory town is to produce
goods for household-consumption. Congestion minimization has a role in

the maximization of household utility in a town, but this role is only a
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part of the process, and models which do not include production and the

utility derived from the consumption of that production are necessarily

incomplete.

The first examination of the structure of the town in which
household utility is maximized is due to Mirrlees [1972]. In his model
household utility is a function of the consumption of a produced good,
residential space and distance ffom the tdwn centre. The last of these
arguments serves as a proxy for tra?sport costs. There is no CBD or fact-
ory production, and population and total income are fixéd. The residen-
tial site area, however, is a control Qariable in the optimization. In

the previous models it was assumed constant.

Mirrlees derived a downward sloping shadow rent profile, but
he was unable to find the slope of the population density function.! He
showed that competitive realization of his optimﬁm town was possible
through an appropriate distribution of income. However, in general, equals
are ﬁot treated eqﬁally iﬁ his town, and houséhold utility depends upon

the distance between the residential site and the centre of the town.

The discovery that equals are treated unequally in the optimum
town has evoked considerable comment in the literature.. It is well known
that, when the consumption set includes choice of location, the feasible

set is non-convex.2

Levhari, Oron and Pines [1972] discuss the consequence
of this non-convexity, and argue that a lottery for location would ensure
a priori equality of treatment. Stern [1973] has discussed utility funct-

ions which, in the context of the Mirrlees model, would lead to equal

treatment.

Riley [1972] derived an expression for -the income distribution

! There is an error in the derivation of his equation (23).

2 See, for example, Malinvaud [1972, p.22].
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necessary for competitive realization of the optimum town when the util-
ity function is Cobb-Douglas and’the product of houéehold utilities is
maximized. In his model goods and transport ptoduction require no land
inputs, and their outputs are linear functions of their labor inputs.
The distribution of household income with respect to population for com-

petitive realization was shown to be a truncated gamma function.

A feature of Riley's model is that leisure time is an axgument
of the household utility function. There has been a tendency in other
models to assume that all househola; are allocated the same, exogenously
determined amount of leisure per.day, so that each provides a fixed
amouht of time to the town in the form of the sum of its travei and labor
times. Given that households enjoy leisure, Riiey generalizes the optim—

ization process by allocating leisure optimally.

Riley [1974] introduced proxies for congestion and transport
technology into the model. He found that, in treating equals unequally,

household allocations of all consumer goods increase with distance from

the centre of the town.

Dixit [1973] explored the impiications‘of unequal treatment
using the minimization of. the sum of the mth powers of the reciprocals of
the household utilities as the criterion of‘optimality.v In his model m is
treated as a parameter, and in the limit, m tends to infinity, his criterion
becomes equivalent to the maximizatipn of household utility when equals
are treated equally by constraint. In the énalytiCal solution heiobtain—
ed, Dixit'é town dontains a CBD of fixed area, whiéh-is wholly allocated
to the‘factory. Transport is free in the CBD. In the residential zone
the time spent in travelling unit distance is given in the form of the
Vickrey equation (2.4). Household utility is a Cobb-Douglas function of

the consumption of the factory produced good and of residential space.

Dixit obtained an analytical solution for the optimum town when
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the population is fixed. He obtained rent and density profiles across

the residential zone and the optimal allocation of land to transport.

We now turn to comparisons between optimum and equilibrium
towns. Oron, Pines and Sheshinski [1973] found the solution to the equil-
ibrium town in the presence of transport congestion, and compared this
solution with the price structure for competitive realization of the
optimum town when equals are treated equally. In this model households
derived utility from the consumptiqp of the factory good and housing éerf
vices.‘ Housing services are produced from inputs of land and labor.
Travel in the CBD is free and the size of the CBD (which is equal to the
area of the faétory) is fixed. The population of the town is also fixed.
The household's cost of travei is the opportunity cost of its travel
time plus a congestion toll imposed by the transport authority. bTrans-

port services are produced from an input of land only.

The authors formulate a similarly structured normative model
in which household utilit& is maximized subject to an equality constraint.
They do not find the QOIQtion to this normative problem, although they
are able toishow that, if the optimum exists, it could be realized by a
competitive price sYstem in which the traveller is charged a congestion
toll equai tobthe external congestion cost of his‘journey. In the equil-
ibrium model it is shown that efficiept ailocation of resources requires
that the congestion tqll shall have this same value. The authors call

it the warranted congestion toll.-

Using their equilibrium model, Oron,Pines and Sheshinski make
a-comparison of the conclusions derived from partial and general equilibrium
analyses of the way in which popuiation density varies with the magnitude
of the congestion toll. In the partial equilibrium énalysis the price of
the factory good and household income are assumed fixed as the toll:

varies. In the general equilibrium model these quantities are endogen-
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ously determined. The authors show that, in the partial equilibrium
model, increasing the céngestion toll to its warrantedvvalue induces a
fall in population density at the CBD boundary. They were not able to
solve therequivalent general equilibrium model analytically, but their
computed solutions shpwbﬁhat, contrary to the conclusion from the partial
equilibrium model, increasing the congéstion toll to its warrantedrvalue'
results in an~increase in the population density at the CBD boundary.

Of course, the partial equilibrium model fails to take into consideration
the fact that an outward migration of population results in increased
transport time, and therefore, reduced factory production. In this res-
pect it fails to provide an adequate deécription of the equilibrium town.
We referred to these resuits when discussing comparative static analyses

in the previous section of this chapter.

In a second article, Oron, Pines and Sheshinski [1974] extend
their treatment of traffic nuisance by including environmental quality
and leisure time among the arguments of thebhousehold utility fﬁnction.
In this model residential site area-replaces housing services as a con-.
sumption good. Environmental quality is assumed to be a function of the

distance from the centre of the town and of the number of travellers.

The authors show that, giyen no tax on traffic nuisance, house-
hold utility in an equi;ibrium town can‘be increased by re-locating all
householas closer.to the centre of the town. Furthermore, if the utility
function is Cobb-Douglas, and if the énvironmental_quality is defined as
the reciprocal of the traffic density, the equilibrium town, in which
the congestion toll is less than the external cost of the traveller's
journey, is always greater in area than the town in which household
utility is maximized. In other words, a town in which travellers pay
less than the marginal social cost of their travel will always be sub-

optimal, and it will always be more dispersed than the optimum town.
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This completes the survey of the normative models of fhe fact-
ory town. It is clear that the comments made at the end of the last
section in respect to the state of knowledée of the equilibrium town are
equally valid for the optimum town. 'No comparative static analysis
appears to be available and in every model the agricultural rent at the
boundary is an exogenously determined constant. The CBD size (but not
the population) is'é control parameter in the Livesey [1973] and
Sheshinski [1973] models. However, there is no goods production in these

models, and hence they throw no light on optimum factory output.

To conclude this survey we consider'the role of "housing
services" in both the equilibrium and optimum towns. It is clear that
there has been a growiﬁg tendency to use residential site area as a
proxy for housing serviceé as the theory has developed, although this
trend is not commented upon in the literature. However, the concept of
housing services as a single commodity implies that consumers would not
make separate choices of land space and capital structure'in'an equil-
ibrium_or optimum town.! Not only does this appear to be contrary to
experience; but also the production of housing services complicates the
structure 6f the model. It appears more realistic and more convenient,‘
therefore, firsﬁly, to use residential site area as a -control variable.
in its own right and not as a proxy for housing services, and secondly,
to introduce the services of capital as an additional consumption good.
However, we will show in the next chapter that malleable capital adds
very little to the power of the model of the factory town, and having
established this fact, capital will be ignored throughout the remainder

of this thesis.

The earlier writers' inclusion of labor among the factors of product-
ion of housing services seems to have arisen from a confusion between
house building and housing services. Clearly, the labor input to

" housing services, in which the residential structure is the capital
input, is negligible. o



 CHAPTER 3

THE OPTIMUM SIZE FOR A FACTORY TOWN

In this chapter wé aﬁtemp£ tovextend the research of Mirrlees
[1972] and Oron, Pines and Sheshinski [1973] in the examination of the
structure of the optimum factory town. These writers used a model in
- which the population is given, and they maximized total utility. Average
utility in their solutions is, 6f course,_l/N times the total utility
they obtain. We will treat‘population as a control parameter in the
optimization, and use average utilityvas the welfare function. Thus, our

optimum town will be a direct extension of their work.

In solving our model, we have three primary aims. The first
of these is to examine househdld consumption patterns and the distrib-
ution of househoid utility throughout the residentiai zone of the optim-
uh factory town. We will compare the results of this examination with
those obtained by Mirr;ees and Oron, Pines and Sheshinski. Our second
aim is to examine optimal transport congestion and the optimél allécation
of land to tranéport in the residential zone. The results of this exam-
ination will be compared with those obtained by Mills aﬁd de Ferranti
[1971]1, Livesey [1973] and Sheshinski [1973], who derived conditions for
transport congestion minimization in a monocentric town. ‘Our third aim
is to find the optimum size for the factory town, and to find expressions
for optimal returns to scale in factory‘production. We have already
referred to the role of population in earlier models, and stated that it

will be treated as a control parameter in ours. However, optimum size for
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a factory town involves consideration of spatial dimensions as well as
population, and it is therefore necessary for us also to treat CBD area
as a control parameter. There is no CBD in Mirrlees' model, and Oron,
Pines and Sheshinski assumed its areé to be fixed. So far és optimum
size is concerned, our treatment is new. In examining optimal returns to
scale in factory production, we will find it’necessary to develop new

concepts in marginal productivity.

3.1 THE MODEL

' We assume that land is perfectly uniform in quality. Its oppor-
tunity cost is r_ per unit area, which, in this model, is assumed to be
independent of the size and population of the town. To fix ideas we will

describe r as the agficultural rent. This rent is paid to absentee land-

lords.

The town has circular symmetry. - It consists of a central bus-
iness district (CBD) of area L and radius xc in which factory production
takes place. The CBD is surrounded by an annular residential zone of

outer radius X, - The area of the town is A. Thus,

L = 7%, _ ' (3.1)
2 . : :

= . . 3.2

A X, | ( )

Given the circular symmetry of the town, a location can be spec-
ified by its distance from the centre of the CBD. We use the variable x

to designate this distance and location.

The population of the town is divided into households which are
identical in the sense that their attitudes to work and their utility

functions are the same. Thesexhbuseholds reside in the residential zone,
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where each dccupies a residential site. They are the suppliers of labor
for production in the town. Each provides‘justAone>laborer, who commutes
daily to work in the CBD. Given,our assumptions in respect to the house-~
holds, we can define the household as the unit of population. Let this
population be N. It follows that there are N laborers in the town's

workforce.

In respect to t;ansport costs; we concentrate our attention in
this model upon the commutipg costs of the workforce. We assume that
transport in the CBD is freef This assumption is to some extent justified
by the observation that central business districts arebsmall compared
with their associated residential zones. Put another way, workers are

observed to require much more residential space than work space.

We assume that the labor input to transport in the residential

zone, T say, is given by
y
t .
T = - J n (x) t (x)dx, _ ‘ _ (3.3)

- X
C

where n(x) is the number of commuters travelling beyond x and t(x) is the

time taken for a journey from x to the CBD boundary.1 If we set
T(x) = t(x), (3.4)

we can integrate (3.3) by parts to obtain

X

t .
T = J n(x) 7 (x)dx, (3.5)
J .
c
since t(xc) = 0 and n(xt) = 0. In (3.4) 1(x) is the time taken for one

! This time includes the time of the return journey. Throughout this
thesis our transport relationships will refer to the round trip.
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commuter to travel unit distance at x. We assume that

T(x) = t(n(x), gl(x)) _ (3.6)

where gl(x) is the “width" of the transport facility. That is,

2ﬂgl(x)dx is the land input to transport in the thin ring lying between

x and x + dx.

The transport time function T(x) defined in (3.6) captures con-

gestion effects. It is clear that we can set Tn > 0, Tg < 0.1
1

Land in the residential zone is allocated either to transport
or to residential purposes, or it may be left vacant. Let 2ﬂgz(x)dx be
the land in the thin rinq between x and x + dx, which is allocated to

residential purposes. Then,
- - > 0. ' ' © (3.7
x - g, (x) g,(x) >0 | (3.7)

The non-negativity constraints

9, >0, g,(x) >0, ' (3.8)

must apply, however, we will assume that travel is not possible without
transport land, and therefore, the shape of T(n,gl) will ensure that
gl(x) is strictly positive except, poésibly, at xt,where it may be zero,

because no travel occurs through that'point.

We write the factory production function in the form F = F(L,W)
where L is defined in (3.1) and W is the labor input to production.2 We

assume that both marginal products are strictly positive.

We adopt the convention of using subscripts to denote partial derivat-
ives. Furthermore, we will assume that all necessary derivatives exist.

We will consider capital as a factor of productioh later when analys-
ing the solution to our model.
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To find the labor input to factory production we assume that
all households are allocated the same fixed amount of leisure time. Let

the worker resident at X supply unit labor to the factory. Then,

N-W-T>0, » (3.9)
that is,
X
N - W - J n(x)T(n;gl)dx >0, ‘ (3.10)
E , .
c

with the equality holding when all labor is employed.

Households derive utility from the consumption of the factory
good and the services of residential space. We will discuss the role of
housing capital in consumption later oﬁ.b Let £ and s be the household's
allocations of the factory good and residential space, respectively.

Then we write the household's utility as
u(x) = ul(f(x),s(x)),

and assume that the marginal utilities are strictly positive and diminish-
ing. We wish to exclude the possibility of a household being allocated
zero consumption or occupying zero residential space, so we will assume

that the shape of u(f,s) guarantees £ > 0, s > 0 in the optimum town.

We can now write
n(x) = 2mp (x) g, (x), 7 (3.11)

n(x ) =N, n(x,) = 0, ' (3.12)
c t - :

where, for convenience of presentation, we have introduced the population
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density function p(x) = 1/s(x).

Using the factory good as numeraire, the income constraint on

the town is

X
t

F - Ar - J_Zﬂp(x)gz(x)f(x)dx > 0. _ (3.13)
X

c

This completes the formulation of the model. -

3.2 THE WELFARE PROBLEM

The selection of a welfare function necessarily takes us beyond
economics and into the realm of politics. Howéver, if we assume that our
optimum town is éhe archetype of‘so large a number that no household is
excluded from living in optimum conditions, and if we further assume that
maximization of utility is the ultimate éoal of the typical household,
maximization of average utility is an interesting and plausible criterion

of optimality for a factory town.

Nevertheless, the selection of a criterion of optimality‘for
the factory town poses an additibnal problem not normally found in econ-
omic theory. Mirrlees, assuming population to be fixed, maximized ﬁota;
household utility, and found that equals are treated unequaily in his
optimum townf We will maximize average utility, and confirm that equals
are also treated gnequally in our optimum town. The additional problem
is associated with an implicit assumption underlying the Mirrlees criter-
ion (and ours) to the effect that households are influenced only by the
absolute values of their individual consumptions, and are indifferent
to the utility derived by others. This seems to be an implausible repres-'
entation of human behavior. Rather, households appear to. take a moral

stance in respect to inequality,particularly when it is they who are under-
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priveleged, with respect to those they judge to be their peers. This
being so, a welfare function, which, when used in conjunction with a model
containing the assumption u = u(f,s), yields an optimum in which equals

are treated unequally, cannot be entirely convincing.

Of course, the assumption that the consumer is indifferenﬁ_to
the utility of others is widespread in ecohomics, as is the adoption of wel-
fare functions based upon total or average utility. However, in almost
all problems, convekity assumptions can be, and are, made that ensure
that optimization results in equality'among equally endowed consumers.
We will show that our modelrcontains an intrinsic non-convexity, which
removes us from the éeneral run of normatiﬁe economics. It is this non-
convexity which lies at_the basis of our difficulty in finding a fully

convincing welfare function.-

In an investigation of unequal treatment of equals in his study
of the optimum factory town, Dixit [1973] introduced a measure of
"morality" into his crite;ion of optimality. Like Mirrlees, he treated
population as fixed, and he optimized by minimizing the sum of the —th
powers of the household utilities. The exponent, m, is a parameter of
hisAmodel, and its roie is to provide a weight to each household's utility
in the summation. Oron, Pines and Sheshinski [1973] chose to maximize
average utility, subject to equals béing treated equally. This is equiv-
alent to assuming that equality is paramount, that is, to be realized
without regard to price. The approach we will adopt is to consider two
polar cases. The first of these being to assume thét households are indif-
ferent to the utiiity of others. This case is directly related to the
criﬁerion adopted by Mirrlees. .The second polar case is that in-which
equality is assumed to be paramount. This case is directly related to
the criterion adopted by Oron, Pines and Sheshinski. Dixit's polar case,
where m tends to infinity, is equivélent to the equality paramoﬁnt case,

but his model does not capture the equality indifferent case.
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To distinguish between the two cases we will refer to the equal-
ity indifferent case as FIBOT, this being an acronym of first best optimum
town, and to the equality paramount case as SEBOT, because it represents
a second best optimum town in the mathematical sense that an additional

constraint is imposed in its formulation.

The two welfare problems are contained in the following formal

statement. Let u be average household utility. Then, we wish to

max u ;
gl (x) 192 (x),£(x),s(x),q,w,A,L,N

subject to:

X
t

% J 2np(x)g2(x)u(f,s)dx - u= 0; (3.14)
X ' ‘
C

u(f,s). - u = 0; (3.15)

the constraints (3.7), (3.8), (3.10), (3.11) and (3.13) and the boundary
conditions (3.12). The FIBOT solution is obtained from this formulation
by setting the Lagrange multiplier associated with the constraint. (3.15)

identically equal to zero.

We define the Lagrangian of the systems

. A o .
L(x) = 2ﬂp(x)gz(x)-{7%-u(f,s) - Azf(x) - ¢(x)}

- Ap(x)Tin,g,) +:u1(x){u(f,5) - G}

+ uz(X){x —,gl(x) - gz(X)} + u3(x)g2(x), (3.16)

and the function
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o8]
i

(1 - Al)u + AZ{F - Ara} + A3{N‘- W}, - (3.17)

where ¢ (x) is the co-state variable associated with the state variable
n(x), Xl, XZ and A3 are the constant‘Lagrange multipliers associated with
the integral constraints (3.14), (3.13) and (3.10), respectively, and

ul(x), uz(x) and u3(x) are the variable Lagrange multipliers associated

with the constraints (3.15), (3.7) and (3.8), respectively.1

The maximization is a standard problem in optimal control

theory.2 The first order necessary conditions for a maximum are equation

(3.11) ‘and

d(x) = h3{T(n,gl) + n(x)rn}, ] : . (3.18)

A . .
2mp (%) {-ﬁk u(f,s) —'Azf(x) - ¢ (%) } - uz(x) + uB(g) = 0, (3.19)

- }3n(x)rgl - uz(X) = 0, (3.20)

)\ . .
2np(X)gz(x)-{i%-u(f,s) - Xzf(x) - Ll;(x)s(x)us - ¢(x)}' =0, (3.21)

2mp (x)g, ) {Y (K)ug, = A} =0 7 (3.22)
w ) {ulf,s) -8} =0, o (3.23)
Hy(x) >0, pz(x){x -9, (x) - gz(x)} = 0, ©(3.24)

We have neglected to include the constraint gj(x) > O because the
impossibility of travel without transport land means that the shape
of t(n,g;) ensures that it cannot fail to hold.

See, for example, Long and Vousden [1977].
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u3(x) > 0, u3(x)gz(x) = 0,

t
1 - Al = J ul(x)dx,
b4
c
- + =
)\2F2 >\3 0,
1
AZ a  2mx £(xt) =0
t
S AF. +—=—L(x) =0
21 2mx c !
N
- 1=
X3 + ¢(xc)>— N u,

t
13 > 0, )\3{N - W - [ p(x)r(n,gl)dx
X
C
where
A ul(x)

P(x) = +

N an(x)gz(x)

1

In (3.29) and (3.27) we have used F. and F2 to denote

.

{SF

.O'.

oL

] » and
W

(3.25)
(3.26)
(3.27)
(3.28)
(3.29)
(3.30)

(3.31)

(3.32)

(3.33)

(&)
oW L

respectively. This is desirable, because we wish to reserve the symbol

L

optimum towns.

' dr . . . » . s .
F_ for [EEJ which we will see is of fundamental significance in the
N :
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3.3 EMPLOYMENT IN THE OPTIMUM TOWNS

We now prove that factors are fully employed, and that all

income is consumed in the optimum towns.

Divide (3.22) by ug and integrate over the residential zone.

Then, using (3.26) and (3.33),

X

t 2ﬂg2(x)p(x)
A J —_—dx = 1. (3.34)
2 ug : .
X

(o]

Therefore, AZ > 0. It follows from (3.27) that 13 > 0 and by (3.20) that
uz(x) > 0 throughout the residential zone (except, possibly, at xt). Now,

from (3.24), (3.31) and (3.32),

X - gl(x) - gzcx) =.0, ' (3.35)
x
t
N-W- J n(x)T(n,gl)dx =0, : © (3.36)
. .
C
X
t .
F - Ara - [ 2wp(x)g2(x)f(x)dx = 0, , (3.37)
X
c

which proves the proposition.

3.4  THE EMPLOYMENT OF CAPITAL

We digress briefly to examine the employment of capital in the
optimum towns. Let K be the input of capital to factory production, and

let k(x) be the capital value of the housing structure occupied by the
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household resident at x. Assume that capital is borrowed from external
sources at a fixed price,i. The income constraint (3.37) now becomes

X
t

F -.Ara - Ki - J 2np(x)gz(x){f(x) + ik(x)}dx = 0. (3.38)

X
C

In the maximization process we obtain the two additional first order

conditiohs:
2np(x)gz(x){w(x)uk - Azi} = 0; (3.39)
FK - i = 0. | (3.40)

Using (3.22), (3.39) becomes

X _5 - o ' : (3.41)

u
U

Equations (3.40) and (3.41) are standard conditioné for profit
and utility makimization. Thus, we see that the theory of the factory
town adds nothing that is new to our knowledge of the optimal employment
of capital. This result is easily predicted. Land has locational unique-
ness, and labor must live at one location and work at another. Neither
of these'properties is considered in conventional theories of the alloc-
ation of scarce resources, and we would expect that the theory of the
factory town would provide new resultsvin respect to the employment of
land and labor. Capital, on-the other hand, has no such speéial property -
in the factory town, and as a consequence, entirely standard conditions

for its optimal employment are derived.

In many of the earlier models housing services has been treated
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as a single good produced from inputs of land, labor and capital. This
treatment complicates the mathematical structure of the models. However,
apart from its mathematical inconvenience, this approach is open to crit-
icism on two scores. First, the inclusion of labor among the factors of
production is inappropriate. Housing is made up of a capital structure
called a house which is located upon a residential’site. ‘The only labor
input to housing services is for such.minor issues as the time taken to
collect rents and the time taken to oversee maintenance. Second, it
does not cérrectly portray £he consumer's problem in normative and equil-
"ibrium studies. ‘This is because in either the optimum town or the equil-
ibrium town consumers will chéosebtheir consumptions of the services of
housing capital and residéntial land area separately, subject only to the
budget constraints. Thus, our treatmeht of the services of residential
site area as a separate cénsumption good ‘in the optimum town is not a
limitation on the generality of our model, but-is a more satisfactpry
formulation of the consumer's problem than those which assume that housef

hold utility is a function of housing services.

The employment of capital will not be considered in the rem-

ainder of this thesis.

3.5 HOUSEHOLD CONSUMPTION

In this section it is convenient to treat the two towns separ-

ately.

In FIBOT ul(x) = 0. Therefore, by (3.26), Al = 1, and, by
(3.33), ¥(x) = %ﬁ Consumption occurs onlyrat locations where gz(x) > 0,

and at these locations, (3.21) and (3.22) give

Su) - A6 -

2=

s(x)uS = ¢(x), » s _ (3.42)
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= . : ' ' )
5 2 ‘ ‘ (3.43)
Differentiating (3.43) totally with respect to x,

f%(x) +u. s(x) = 0. (3.44)

Ue fs

Differentiating (3.42) and substituting from (3.44)

s(x)ad;us = =N ¢(x), B | (3.45)

which on expanding out the derivative and substituting from (3.44) gives

N
u u - u2 é(x) = - uff
ff “ss fs s (x)

b (x). | (3.46)

We have assumed u(f,s) to be strictly concave, and it is clear from (3.18)
that $ > 0, therefore, é > 0. It now follows from (3.44) that f has the
same sign as Ug - Furthermore, differentiating u(f,s) totally with res-

pect to x and using (3.44) to eliminate f(x),

- - uf -
u(x) = [us - ug ——§J s(x). (3.47)
Ues

If we restrict ourselves to the interesting case of u > 0, we

fs
have shown that consumptions of both the factory good and the services of
residential space increase with distahce from the ceptre of the town, and
that equals are treated unequally in FIBOT. We will discuss further this
unequal treatment‘in'the next section. In SEBOT;

ﬁ = %u + su = 0. : ’ (3.48)
£ s :

Eliminating Y (x) from (3.21) by use of (3.22), differentiating totally

with respect to x and using (3.48),
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b (x) . . (3.49)

n

Z
&1
—
=] Imﬁ
L ——

i

|

1
A2
Expanding out the derivative and using (3.48) again to eliminate f(x),

>\2 2 -2 . .
s (x) _E{iuf u_ + u_ U - Zuf u_ ufs}-s(x) = - ¢(x). (3.50)

The aésumption of strict concavity of the utility function
ensures that u(f,s) is quasi—conca&é, which, in turn, ensures that the
coefficient of é(x) on the left hand side of (3.50) is non-pésitive.
Equation (3.18) shows that i(x) is strictly positive. Thgrefdre, é(x) is
strictly positive, and by (3.48), £ is strictly negative. Thus we con-
clude that, in SEBOT, consumption of the services of residential site
area increases and consumption of thé factory}good decreases with distance
of residential location from the centre of the town. This result is indep-

endent of the sign of ufsu

We see from (3.43) that the household's.marginal utility in
factory.good consumption is constant in FIBOT. This conventional result
is to be expected. In the optimum town in which households are concerned
only with their absolute levels of consumption the factory good will be
consumed to the point where its marginal utility equals its shadow price,
and, since goods transport is free, this shadow price must be,indepeﬁdent

of location. However, we see from (3.22), that u_ is location dependent

f
in SEBOT. If we multiply (3.33) by 2ﬂp(x)g2(x) and ‘integrate across the

residential zone,

X
t

J 2ﬂp(x)gz(x)w(x)dx =1, : (3.51)

X
c

by (3.26). Thus, Y(x) is a weighting function on household consumption,
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and (3.22) implies that each household consumes the factory good to the
point at which the weighted household marginal utility of the factory
good is constant. Integrating (3.22) across the residential zone, the

average marginal utility of the factory good, u say, 1s given by

f

£ 5 , ‘ (3.52)

which is the SEBOT analogue of (3.43) of FIBOT.

Finally,a comparison between (3.45) and (3.49) using (3.43)

shows that (3.49) is valid for both towns.

3.6 THE UNEQUAL TREATMENT OF EQUALS

Mirrlees [1972] was first to show that ‘equals are treated
unequally in the optimum town. So far as I am aware, a fully satisfact-
ory explanation of this result has not yet been presented. ' The result

arises from the fact that households who occupy inner locations impose an

external resource cost, in the form of transport, upon the town as a whole.

Outer residents h;ve to travel beyond these inner residents, and the town,
including the inner residents, has to bear the cost of this transport.
Inequality in the optimum town ié the manifestation of the internalization
of this externality, and the presence of non-convexity in the consumption

- set is the reason that the inequality does not conflict with conclusions

derived from conventional, non-~locational economic theory.

To explain the optimality of inequality it is convenient first
to considexr a factory town containing only two households. ! Referring
to Figure 2, assume that xc and xt are exogenously determined constants,

and that the residential site areas sl and 52 are equal. Now, if we

1 1 am gfateful to Neil Vousden for suggesting.this model.
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increase 52 and decrease sl, both households‘mdve closer to the CBD, and
therefore, the resource cost of transport to the toﬁn is decreased. This
implies that factory production is increased. At the same time, ufs >0
implies that gverage.utility will be’increased if household 2, whose resid-
ential site area is greater than that of household 1, is allocated more of
the factory good than household 1. Iﬁ other words, average utility will

be increased if household 2 derives a higher level of utility than house-

hold 1. There is a trade-off in the process described if the utility

Location 2

Area s
2

‘Location 1
Area s

Figure 2

function is strictly cbncave[ becausé decreasing marginal utility implies
that the increment in the allocations to household 2 necessary to compen-
sate for the decrease in the utility derived by household 1 become
increasingly greater as the difference between the t&o utiiities increases.
Thus, averaée utility will bé maximized when houéehold 2 derives greater
utility than household 1, but,given a strictly concéve utility function,

it will not be optimum to give household 2 all consumption and household
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1 none at all.

It is easy to extend this explanation to the town of fixed xc
and xt in which there are N households, because, by analogy, we can see
that, starting from the configuration in which all residential site areas
are.- equal, an inward migration of the centrepoints of all residential
sites will result in a reduction in the resourcebcost of transport. Again
the trade~off~pr§cess between increased factory output and diminishing
marginal utiliﬁy wili result in household utility being an increasing

function of x in the optimum town.

In developing our explanation of the optimality of inequality,
wé have had to depend upon strict concavity of the utility function to
justify non-zero allocations to more tﬁan one household. In this regara,
it is interesting to note that our FIBOT model fails when the utility

function is linear homogeneous. . Equation (3.21), for example, impliesb

i

that ¢(x) = 0 in FIBOT for linear homoéeneous utility functions. To antic-
ipate the next section, ¥(x) is related to transport cost. Thus, super-
ficially at least, a linear hombgeneous utility function impliesvzero
transport costs.> The reason for this anomalous result - is that, without
the trade-off described in the preceding paraéraph, the residential area
does degenerate so that N - 1 households are allocated £ = 0, s = 0 at
xc,whilé the remaining household is allocated f = F - Ara, é = A - L also
’ atbxc. No transport is then required. However, this analysis is not‘
rigorous. Equation (3.21) was derived on the assumption that p(x) was
everywhere finite, whereas it is unboundgd at X in fhis special case.~
The assumption of finite p(x) was justified by our requiring the utility
function to reflect the need of a houéehold for both living épace and the
consumption of thg facto#y good. This requirement is not satisfied by the

linear homogeneous function,because u_ and u_ may be finite at (0,0).

£
It remains to identify the nature of the non-convexity in our

model. It is well known that, when a household's consumption is confined
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to fewer than the total available locations, the consumption set is non-

convex.l

In our model the typical household's feasible consumption of
the factory good is not affected by its residential location, but it can

occupy only one location. Starting with a town with a population of 2

households, the consumption set is illustrated in Figure 3. A household

Figure 3

may live at location 1 where it can consume the factory gdod and resid-
entiai space on plane 1, or it may live at location 2 and consume on

plane 2. Cbnsumption off these planes is infeasible, because it implies
residing at both locations. Therefore, the feasible consumptioh set is

non-convex.

The two planes are, of course, orthogonal, and share the f axis.
When the population is N households, the feasible consumption set can be

represented geometrically by N orthogonal, two dimensional plane surfaces

1 See, for example, Malinvaud [1972, p.22].
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in N + 1 dimensional space, and it is, therefore, also non-convex. Note
that the non-convexity does not depend upon the household being limited
to only one location. It exists so long as the permissible number of

residential locations per household ié less than the total number éf loc-

ations available.

3.7 THE MEANING OF THE CO-STATE VARIABLE AND THE SHADOW RESIDENTIAL

RENT

Arrow and Kurz haQe given an intuitive proof that a co-state
variable at any point is equal to the marginal contribution of its state
variable to the maximum value of the objective functional.! In our model
the state variable, n(x), is the number of travellers at x, and the
objective functional is average househola.utility. We would, therefore,
expect our co-state variable ¢(x) to be relatéd to the socially valued

cost of adding one more traveller at x in the optimum town.

To explore this relationship we first ﬂote from (3.43) and.
(3.52) thaﬁ Nxz is the conversion factor between value measured in marg-
inal social terms (averaggd over all locations in the case of SEBOT) and
in terms of the numeraire good. It follows from (3.27) that NA3 is the
marginal social value qf labor, and hence of travelvtime. Furthermore,
NA3n(x)T(x)dx is the marginal social value of the time spent by'éll'trav—
ellers while crossing the thin ring between x and x + dx, and Nk3<ixE%;(nT)

is the increase in this value caused by adding one more traveller to the

optimum transport system. However, from (3.18)

3 . .
N>\3 dx—ag (nT) = N¢ (x)dx. (3.53)

1 In Arrow and Kurz {1970, pp.33-37].
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Therefore, integrating,

x
J éi-(nT)dz , (3.54)
n

X
C

¢ (x) - ¢(xc) = >\3

is the socially valued marginal commuting cost from x to the CBD on the

optimum transport system.

Later we will need to identify the economic meaning of

1 . .
af-{¢(xt)-¢(xc)} . We have shown that all land in the residential zone
2 .

is allocated. Therefore, if one more household is added to the optimum
town, ceteris paribus, this additional household must be located at X 0

and its contribution to the total transport cost in the town, TN say, is

given by

X
t

] .
TN = J ™ (nT)dx. | : - (3.55)
b'4
c

Therefore, by (3.27) and (3.54),
PP o= b(x.) - ¢(x) (3.56)
2N A, t c : » )

Equation (3.56) makes the economic meaning of J;{ o (x

Az ) - ¢(xc) } clear;

t
it is the marginal household's cost of transport in the'optimal'town.
However,we need to stress that the mganing of TN,which has beén derived
from our solution,is such that; in performing the partial différentiation,
both L and the structure of the residential zone as a function of x are
held éonstant. The dimensions of the optimum town, however, are not held
conétant,_since xt must increaée to accommodate the marginal household.

Finally, it is obvious ‘that
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T
- = > 0. . -
TN N 0 (3.57)

In both towns the shadow residential rent, r(x) say, can be

defined as

r(x) = —. (3.58)
u N

Therefore, from (3.49),

. ‘ 1 . .
rlx) = - XS (%) ¢ (x), : (3.59)
1 : '
= TS0 T2 BT, (3.60)

by (3.54). Clearly, r(x) is a von Thiinen rent.

Equations (3.58) and (3.60) are‘necessary conditions for house-
hold equilibrium in the cgmpetitively realiéed optimum town, provided each
household pays the marginal social cost of its travel. These equations
plus the budget constraint (3.13), form the sufficient conditions for
competitive realization if the area of the CBD and the population of the
town are fi#ed. The proof of sufficiency is not substantially different
from that given berirrlees [1972]. Thus, we have éstablished that, if
xc and N are fixed, competitive’realization of both towns is possible.
There does'not seem to be a sufficiency theorem available for the case

where both end points, Xc and xt, are free.

Comparison between SEBOT, with fixed CBD size and populatién,
and the optimum town formulated, but not solved, by Oron, Pines and
Sheshinski [1973] shows that their optimum town is similar to SEBdT. Both
have a'form similar to their equilibrium town in which each household pays

the marginal cost of travel from its residential location.
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It is clear from (3.18), (3.58) and (3.59) that the shadow rent
is a strictly positive, strictly decreasing function of the distance from

the centre of the town. The sign of its second derivative depends upon

the second order partial derivatives of T(n,gl). In the next section of

this chapter we will assume I(n,gi) to have the Vickrey form given in
equation (2.4), and show that r(x) is positive for the special case TO =
If Ty > 0, the sign of ¥ (x) cannqt be determined without reference to the
second order sufficiency condition§ fqr maximization. Thus, TO =0

implies that the shadow rent is a positive, decreasing convex function

of x. This result is in qualitativeyagreement with the empirical results

of Clark [1951].

This is a convenient point at which to pause and review the
resultsbobtained so far; In both towns we have found the expression for
the dqwnward sloping von Thiinen shadow rent. This downward‘sloping rent
expresses the fact that the Shéde price of land, relative to the shadow:
price of the factory géod, falls with distance from the centre of the
town. The falling relative price implies'that there will be a substit-
ution of land forvthe.factory good in cénsumption, whi;h'is an increasing
function of x. In other words, we have shown f(x) <0 ana é(x) > 0 in
both towns. In FIBOT, s(x) > O implies f(x):io if the second order cross
partial derivatives are positive. 1In SEBOT, ﬁ(x)v= 0 implies f(x) <0

when s(x) > 0, irrespective of the sign of u_ . These results summarise

fs
the location dependent structure of consumption patterns in our two

optimum towns.

3.8 OPTIMAI CONGESTION AND ROAD WIDTH

To solve for optimal congestion it isvnecessary to specify the
transport function. We select the Vickrey form given in (2.4), but

expressed in terms of travel time. That is,

0.
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T=1_+ 1.6, , ‘ (3.61)

n (x)
‘gl(x)v

where o Ty and o are positive constants and 6 =

Now, in regions where g2(x) > 0, (3.18), (3.27) and (3.61)

imply that (3.60) can be written
‘e _ _ a B -
s(x)r(x) = Fz{'co + (a ‘+ D6 (x) }. (3.62)
Also, (3.19), (3.20) and (3.25) give
Au
- 1 _ a+l '
2np(x)-{—ﬁ—- - Azf(x) - ¢(X)}- = atll36 (x), . (3.63)

and, from (3.21) and (3.22),

A

Ul - A£G+ s(0xx) - $) = 0. (3.64)

From (3.63) and (3.64),

r(x) = 0 T (x). , ' (3.65)

Differentiating (3.65) and using (3.62) to eliminate f,

’T
0
T, (0+1) 0% (x)

8 (x) =—3'"—o(x){1+ 1. (3.66)
-« [
The right hand side of (3.66) is strictly negative, thexefo;e.optimal

congestion is a decreasing function of distance from the centre of the

town.

It is interesting to note that Mills and de Ferranti [1971]

and later writers found that optimal congestion is a linear function of
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X When To is zero. They assumed residential site area constant, and we see

from (3.66) that the linear relationship they derived depends upon their

assumption of the constancy of s. 1In our model it is easy to see that

TO = 0 implies B(x) > 0. Furthermofe, (3.65) then implies that Y(x) > 0.

This result was anticipated in the previous section of this chapter.
When To = 0, (3.66) can be integrated by quadrature. We write
the integral in the form

X
t

X
2T J p(z)dz - EE'I p(z)dz + B(x, ). (3.67)
o t
X
c

0(x) = —
o

X
(o}

To evaluate,e(xt), (3.16) and (3.28) yield

t

B D(Xt)gz(xt).{klu(x )

%o " - Azf(xt) - ¢(xt)} ' (3.68)

N
t

from which we see that g2(xt) > 0, and hence, our analysis is valid in
the neighborhood of xt. In fact, gz(xt) must equal X s because, by (3.58),
r(x) is strictly pOsitiVe at X, - However, n(xt) = 0, and therefore by

(3.65), r(xt) > 0 implies gl(xt)_= 0. .Thus, (3.68) simplifies to

A .
1 _ .
i;-u(xt) - Az{ f(xt) + s(xt)ra} - ¢(xt) = 0. (3.69)

Comparison between (3.64) at X, and (3.69) shows that

r(xt) = ra. (3.70)

That is, the residential and agricultural rents are equal at the boundary

of the town. Putting r(xt) =r in (3.65), we obtain

6 (x,) = . o (3.71)
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Therefore, congestion is non-zero at xt.for the case TO = 0.

To examine the slope of gl(x), in regions where gz(x) > 0,

) N 2mp (x) (x - g, (x)) g (x)
Bx) = ;_x[ n((xx))]“ TR l(x) 8 6. (3.72)
91 9 %1
Therefore, eliminating ® from (3.66),
‘ . T g (x)
gl=-2%$%%L ox - (o + l)gfx)— 0’1 o . (3.73)
abix . T, (e+1) T8 (x)
From (3.16) and (3.29),
Alu(xc)
2ﬂxc}2Fl ='2wp(xc)g2(xc) {-wii—~—_- Azf(xc) - ¢(xc) }
- ANT(x ). (3.74)
3, c

Therefore, g2(xc) > 0, and our analysis is valid in the neighborhood of -

'xc. Equations. (3.63) at kc and (3.74) yield

2 a+l
x 1 arlgz(xc)e(xc) - Nr(xc),

N
3
X

Q

|
tj
i

S - T, 9. (x )y
T8 (x )“+1w{ax - (@ + g (x) - =2 —1——51—}. (3.75)
e} C 1

n

1 ™16 (x)
c
The right hand side of (3.75) is strictly positive, and hence, by (3.73),.

él(x) < 0 at xc.- Furthermore, if T

0= 0, él(x) can change sign only if

ox - (o + l)glbd changes sign. However, the sign of the slope of
ox - (o + l)gl(x) changes only when gl(x) > E%I-. It follows that

é (x) < 0 and g_(x) < x throughout the residential zone. In the more general
1 1(

case where T > 0 an ambiquity exists in the sign of él(x). Furthermore,
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we cannot rule out the possibility that gl(x) = x for some locations
within the residential zone. In the following analysis we will restrict

our attention to solutions in which gl(x) < x everywhere.

Livesey [1973] and Sheshinski [1973] were able to show that,
for Ty = 0, gl(x) is a concave function. Differentiation of (3.73) shows

that their result depends upon their assumption that p(x) is constant.

This completes our analysis of the structure of the residential
zone of the optimum towns. 'We will-now obtain implicit relationships
between their geographical dimensions’ and populations and the value of

the variables of the system at the boundaries.

3.9 BOUNDARY VALUES IN THE OPTIMUM TOWNS

We now examine the value of variables at the CBD and town bound-
aries of the optimum towns, and relate these values to the value of the
marginal products in factéry production at tﬁe optimum point. Note that,
in equatioh (3.70), we have already shown that the residential rent is

equal to the agricultural rent at the town boundary.

Consider first fhe marginal product of labor, F2. Equations
(3.27) and (3.30) give
A
1 - 1
F = — - — . 3.7
5 NAZ u A2¢ (Xc) ( 6)

Dividing (3.21) by Az,,using (3.22) to elininate Y(x), and integrating,

M

NA

G=F + r(x)sx) - Xl— ¢, (3.77)
2 ) .2

where the bars denote values averaged over all households. Therefore,
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- —_— 1 - -

F.=f +rx)s(x) + — {¢ - d(x)} =w. (3.78)

2 A c
2
At equation (3.54) we showed that iL-{¢(x) - ¢(xc)} is the marginal cost
2 .
of commuting from x to the CBD. Therefore,'f;{ 5 - ¢(xc)} is the aver-
2

age of these marginal commuting costs, and w is the average shadow wage

when the shadow price of transport is equal.to its shadow marginal cost.

In SEBOT it is not necessary to integrate (3.21), and we are

able to conclude that

L= £(x) +r(0s(x) - %{cb(x) - 6(x )} = wix) =w.  (3.79)

Equation (3.79) is the conventional relatignship obtained in
the non-locational theory of the firm. At first sight its meaning seems
straightforward, but this étraightforwafdness is fortuitous, and'arises
from the fact that, so f;r as labor in SEBOT is concerned, the shadow
marginél factor price, the shadow-marginal factor price from each resid-
ential location, and.the shadow average factor price are all equal.
Equation (3.79) is, therefore, equivocal. The importaﬁce of recognising
the ambigﬁity of meaning of (3.79) becomes clear when we examine (3.78),
because, in‘respect to FIBOT, this is a relationship>between the marginal
product and a shadow factor price which is the average of the shadow
marginal factor prices at each location. We conclude, therefore that,
notwithstanding.the simplicity of form of (3.78) éna (3.79), we‘have not,
in féct, obtained a direét and conventional relationship between shadow

price and marginal product.

The failure of (3.78) to. express a conventional relationship
is not altogether surprising. It is not lZabor which is allocated to the

town, but population. 1In order to increase the labor input to factory
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production it is necessary to add households. These, in turn, incfease
transport costs in the town. Thus, the partial derivative, F2, is not
fundamental in the optimal factory town, but somewhat contrived. The
marginal product of population, on the other hand, does have a fundament-

al economic meaning.

We define the marginal product of population as the partial
derivative of F with respect to N when L and the structure of the resid-
ential zone>as a function of x are held constant. In this definition W
and the dimension A of the town are functions of N, and it is consistent

with the partial derivative with respect to N defined in (3.55). Thus,

_oF , (aw - f
N3t [dN} Fo (3.80)
= (1 - T)F, . (3.81)

Equation (3.81)‘simply‘states‘that 1/ —'TN) households must be added to

the optimum town to increase factory labor by one unit.

In FIBOT, (3.56), (3.79) and (3.81) give

F_=w -’f;{ ¢(xt) - ¢(xc)}, ‘ (3.82)

I
Hhi

+ s -3 {66) - 5. | (3.83)
2

Equations (3.21) with x = x,» (3.77) and (3.83) yield

1
Fyg = - oo tulxg

. ) —ult + f(xt) + ras(xt). » (3.84)

In SEBOT,
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FN = f(xt) + ras(xt), . ' (3.85)

so that (3.84) holds in both optimum towns.

Unlike (3.78), the meaning of (3.85) is straightforward. The
right hand side is equal to the shadow cost of the marginal household's
consumption, that is, the marginai cost»of a household to the town.
Therefore, (3;85) simply states that'thé value of the marginal pfoduct
of population is equal to its ﬁarginal‘cost in the optimum town. There

is an additional term,—-£{ u(x
» u
f

FIBOT. This term takes account of thevmarginal household making a more

t) - u}, in (3.84), which is non-zero in

than average contribution to the total utility in FIBOT. This is an
interesting result because it means that, in FIBOT, the marginal house-

hold produces less than the value of its own consumption.

Later it will be convenient to have the marginal conditions in

a different form. Integrate (3.37), and divide by N,

£ = = —2 - & -2, (3.86)

where s is the average area of a residential site and R is the land area
allocated to the transport system. From (3.84) and (3.86),
F - Lr
T a

. 1 - =
S uf{u(xt) Sulk ) - f

+r {s(x)-s} - —=. (3.87)
a t .

To make clear the economic meaning of (3.87) and some results
which follow, we define the following functions: 1let U be the sum of all

household utility in the optimum town, and let V- be the shadow cost to



62.

the town of all household consumption. Then

u = oo u(xt) = UN' (3.88)
X, X,

vV = J 2ﬂp(x)gz(x)f(x)dx + ré f 2ngz(x)dx, (3.89)
e _ Xe

f+rs= v f(x) +r s(x) =V (3.90)

a N’ £ Ta ¢ N’ T

where the subscript N denotes a partial differentiation with respect to

N which is consistent with our earlier usage.

Now (3.87) may be written

. . |
»+ r {R - —ﬁ—} = (@ -TJ)F,. (3.91)

In (3.91) we have included the term raRN to complete the symmetry. This

is possible because

2R , 3R A

N ON %A oN ' (3‘92)_

because gl(xt) = 0. We will use (3.91) in the next section of this

chapter.

We now find the marginal product of factory land in the optimum

towns. After some manipulation, (3.16), (3.29) and (3.69) yield
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F. =r +
1 a X
c

g.(x)p(x) A ’
2 ¢ c {- N)\lz{u(xt) - u(xc)} + f(Xt) - f(Xc)'

-1
+ ra{s(xt) - s(xc)} + g{(b(xt) - ¢(XC)}}

gl(xc)ra FZNT(XC)

- X - 2Tx : (3.93)

c c

The first term on the right hand side of (3.93) is the opport-
unity cost of factory land to the town. The second last term is the
saving in rent on transport land when one unit of land is transferred

from the residential area to the CBD. That is,

9 (Xc)ra
Rr =-—>-2 . (3.94)

The last term is the valué.of the travel time saved when, without regard
to the location of households, unit area‘is transferred from the resid-
ential area to the CBD. To understand the remaining terms observe that
b(xc)gz(xc)/xC is the number of households resident on unit area of the‘
residential zone at the CBD boundary. If unit area is transferred to the
CBD, and the structure of the residential zone is unchanged, this number

of households is displaced from X to xt. It can now be deduced that the

term

p(x )gz(x) , v
—C 2 S fu(x) —ux)}=u (3.95)
X, t c

Ll
where the partial derivative implies N and the structure of the residen-
tial zone constant, but not W. This term is non-zero only in FIBOT, and

its coefficient in (3.93) is then equal to l/uf. Furthermore,
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p(x )g2(xc) » :
———-g—————-{f(x ) - f(x ) +r {s(x) - s(x )}} =v., (3.96)
xc t c a t c L
p(x )g_(x ) F_Nt(x )
1 2 ¢ - -2 ¢ _
5 ” - o) = 0(x )} e = FoTp- (3.97)
2 c ‘ c
Equation (3.93) may now be written .
., _ 1 |
Fl = ra uf UL + VL + F2 TL + RLra° (3.98)

The meaning of (3.98) is that, in the optimum town, when labor is held
constant; land is employed in factory production to the point where the.
value of its marginal product is equal to the opportunity cost of land
plus its marginal contributions to the shadow cost of household consump-~
tion and transport and minus the shadow’value of its marginal contrib-
ution to the total utility of the town.

There are two terms in Fl which require further discussion.

Fer(x )

These are RLra and . These terms arise from our assumption that

2nxd
transport is free in the CBD, and they introduce én.ambiguity in the

signs of terms on the right hand side of (3.98). This is because, as the
~ CBD area increases, the width of the annular residential zone, ceteris
paribus, decreases, and with transport in the CBD free, transport costs
may thus fall. The assumption of‘free CBD transport is unrealistic. It
is made for mathematical convenience, and had we made the much moré pléus—
ible assumption of continuity of transport velocity across the CBD bound-
éry,‘the two terms under discussion would have been negligible. We can,
therefore, attach no theoretical significance to the ambiguity of sign

which flows from their existence. As a consequence, where the ambiguity

arises, we will facilitate our exposition by ignoring it.
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We have already defined FN. Its pair is

dF aw
= |=| = + | = +
L [dL]N L [dL]NFz TatL

F. - T F_ +

17 L r’aRL'

=r——l—U +V_ +rR (3.99)
u. L L a L’ ' :

Equation (3.99) states that, giVen constant population. and residential
structure in the optimum town, the value of the marginal product of land
is equal to the opportunity cost of land plus the marginal change in the
shadow cost of total household‘consumption plus the value of the marginal
change in the land allocated to transport minuS's; times the marginal»

£
change in total utility in the optimum town.

3.10 RETURNS TO SCALE IN PRODUCTION

It has frequently been observed . that fhere must be economiés

of scale in factory érodﬁction to justify the costs of urban transport.
This point cannot be disputed, and in any case, our model is not suitable
for discovering corﬁer solutions. However;’this necessity for economies
of scale to justify the existencé of a town has frequently been assumed
to imply that returns to scale must be increasing at the optimaz point,
and Starrett [1974, pp.420-1] has given an intuitive "proof" that returns
to scale ih factory production net of transport costs must be constant in
the optimum town. Nevertheless, upon reflectionAwe can see that it is
not obvious that the needbfpr economies to justify the existence of the
optimum town precludes the possibility of their being exhausted at the

optimum point, and Starrett's proof contains unrecognized assumptions
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which seriously limit the generality of his conclusions.

In this section we evaluate returns to scale using two measures.
In the first case we obtain the measure whieh is conventionalbin non-
locatiqnal models. This is returns to scale in terms of the factors di:ect-
ly employed in the factory. The resoufces necessary to assemble labor at
the factory each day are ignored in this measure, and it can, therefore,
be described as returns to scale in gross féctory production (gross of
transport costs). The second measure is returns fo scale in net factory

production.

In the neighborhood of the optimum point we write

W ’ = + = + - . v .
O(L,W)F(L,W) LFl WF2 LFl NF2 TF2 (3.100)

Equations (3.91), (3.98) and (3.100) yield

1
- 1)F = -— + - U} + LV + -V
] ) u {fou, + NUg - U} + LV + NV A

+ + - + + = . (3.
F2 {LTL NTNY T} ra{LRL NR R} .(3.101)

We see from (3.101) that the local degree of increasing returns to scale
with respect to the factors L and W, at the optimum point, is expressed
in terms of the degree of homogeneity of U, V, T and R, expressed as

functions of L and N. From (3.88) and (3.90),

.

mz{u(xt) -ul} + {f(xt) -F) + ra{s(xt) - s}

+A1—2{¢(>xt) -3,

= r(x)s(x) - raE > 0, . (3.102)
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by (3.21). Furthermore,

X
c 1 )
——————{ - — LU + LV, + F_LT_}
p(xc)g2(xc) uf L L 2 L
Al .
= - @{u(xt) - u(xc) } o+ f(xt) - f(xc)
+ ra{ s(xt) - s(xc) } o+ K;{cb(xt) - <l>(xc) },
= (r(x ) - r )s(x ) >0. (3.103)
C a [o] .
However,
r {LR + NR - R} < 0. (3.104)

It follows that returns to scale in gross factory production may be
decreasing, constant or increasing in the neighborhood of the optimum
point. The ambiguity arises from the economies of scale which exist in

the use of the transport network.

We now examine returns to scale in net factory production. Anal-

ogous to (3.100) we write

@(LfN)F(L,N) = LFL + NFN. , (3.105) -

From (3.91), (3.99) and (3.105),

1 .
- - + - + + -
(o 1)F(L,N) uf {LUL ] NUN U} LVL NVN v

+ - . 3.106)
+ra{LRL NR R} (.
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Now define
SAL,N) = F(L,N) - Rr_. _ (3.107)

Then F(L,N) is factory production net of all transport costs, and from

(3.106) and (3.107),

1
L%+N3§—>"——G—{LU

+ - + + - V. .
. L NUN‘ Ul LV, NVN V. (3.108)

From (3.21),
u(x) - uf{ f(x) + ras(x)}== N¢(x) + (us - rauf)s(x). (3.109)

Differentiating (3.109) totally, and using (3.45), we find that in FIBOT -

51'{u(x)’— u_{f(x) - r s(x)}} =(u -ru )é(x) > 0, (3.110)
dx f a , s a £ . —

with equality holding at 2t only.

In SEBOT, ﬁ(x) =0, hence,
d . . .
—{f(x) +rs(x)} = f +r s(x),
dx a : a
= - {r00 - r )50 <o, (3.111)

again with equality holding only at X, -

Tt follows from the definitions of U and V that

-1y o+ <o, ' A (3.112)
u L -
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-—l-{NU -U} + NV_ -V <0, _ - (3.113)
uf N N

and

o -1 < 0. (3.114)

Therefore, returns to scale in net factory prbduction in the neighborhood
of the optimum point are unamb'zlguousl.y decreasing. The reason for this
result is as follows. As we move outwards in the residential zone the
relative érice of residéntial space falls. There is, therefore, an
increasing substitution of residential space for the factory good in
hoﬁsehold cdnsumption as x incfeases. In SEBOT, this substifution has a
form such that the shadow cost to the towh of a household's consumption
falls with x, and it is optimal to increase population béybnd the point
where economies of scale are exhausted. In FIBOT the explanation is sim-
ilar, but involves additional discussion concerning the household's con—v
tribution to total utility in the town. 1In his proof that returns to
scale in net production are constant in the optimum town, Starrett [1974]
failed to take into consideration the substitution of living spacé'for
the factory good in household consumption. If this substitution does
not také place)Starrett's conclusion is cqrrect. In fact, in Chapter 5,
where we assﬁme s constant, we will see that returns to scale in net

factory production are indeed constant.

This concludes the discussion of the optimum towns in which

household leisure is constant.

3.11 CONCLUSIONS

In some respects our analysis has confirmed the conclusions of

earlier normative studies of urban areas. For example, in respect to the
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structure of the residential zone, we confirm the conclusions of Mirriees
[1972] andvbixit [1973] that, unless an equality constraint is imposed
upon the town, equals will be treatedvunequally at the optimum. However,
we are also able to make some new, quite general Statements with respect.
to population density as a function of distance from the centre of the
town. Furthermore, we are able to solve the normative model of the fact-
ory town in which equals are treated equally. This model has not, hither-
to, been solved in a general form, although Dixit's polar case is a

restricted formulation of it.

Our results in respect to household consumption in the optimum
towns may be summarised as follows. In both towns r(x) < 0 and s(x) > O.
In FIBOT f(x) > 0 and ﬁ(x) > 0. 1In SEBOT ﬁ(x) = 0 by constraint and

£(x) < 0.

Also in the residential zone, we confirm the conclusions of
Mills and de Ferranti [1971], Livesey [1973] and Sheshinski [1973] in
respect to optimum COngegtion and the optimum allocation of land to the
'transport network. Some éf their strong results, however, are shown to
depend upon their simplifying assumptions. For example, their conclusion
that optimal congestion is a linear function of distance from.the centre
of the town depends upon their assumption that residential site area is
independent of location. Also, their conclusion that not all 1and will
.be allocated to roadé dépends upon their assumption that ‘uncongested

travel takes zero time.

dur conclusions in respect.to town size, population and factory-
production are entirely new. ' In this field Starrett has offered an
intuitive proof that returns to scale in factory production net of trans-
port costs are constaht. We show that this proof contains an implicit
assumption which significantly reduces its generality. We find, in fact,

that returns to scale in gross factory production may be increasing,
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constant or decreasing, but returns in net factory production are unambig-
uwously decreasing. However, if the households are constrained to live on
residential sites of exogenously determined area, Starrett's proof is

valid, and returns to scale in net production are constant.

Throughout this chapter we have assumed that leisure time is
constant with respect to household location. In the next chapter we will
examine the role of leisure in the optimum town, and discover how our

- present conclusions depend upon this assumption of the constant leisure

time.



CHAPTER 4

THE ROLE OF LEISURE IN THE OPTIMUM TOWN

In Chapter 3 we éssumed éhat households are allocated the same,
-exogenously determined amount of leisure time regardless of their resid-
ential locations. This has become a standard assumption in the literat-
ure, and it probably has its origin in the implicit assumption that
‘travel time is indistinguishable from work time to the iéborer, since
they both represent leisure time foregone. Nevertheless, the relevence
of the uniform leisure time constraint to the theory of the optimum fact-
ory toﬁn remains debatable for two reasons. First, leisure time is
consumed by households in the same sense as they consume the factory
good and the services of residential spacé, and, by symmetry, it should
be treated as a control variable in the optimization process. Second,
if leisure time is not té be treated as a control variable, the optimum
towns in which it is constrained to be independent of household location
are second best optima of subordinate interest when viewed as represent-
ations of reality, because factory laborers are commonly observed to work
fixed hours, independent of their residential locations, rather than
enjoy fixed leisure time.‘ In other words, the second best towhs in which
laborers work fixed hours are probably of mofe relevence to reality than

the FIBOT and SEBOT analyzed in Chapter 3.

One writer who has not followed the general trend, but has

treated leisure time as a control variable is Riley.1 In two articles

1 "1n Riley [1973] and Riley [1974].
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he has developed a model of the first best optimum town assuming house=-

hold utility to be a function of the factory good, residential site area
anq leisure time. However, the generality of his conclusions is limited
by his use of functions of specific form in his model. Furthermore, CBD.
size and population are constants in his model, and as a consequence, he

does not derive relationships between marginal products and factor

shadow costs.

In this chapter We will extend the model of Chapter 3 so. as to
treat leisure as a consumption good. To begin witﬁ we will reformulate
the Riley problem in a more general context, and show that Riley's basic
conclusions remain valid. We will find thatrthe strﬁcture of his resid-
ential zone is not very different from the structure of FIBOT, excepf
that leisure time, rather than being constant, is a strictly increasing
function of distance from the centre ofbthe town. This means that those
households which live furtheét from the CBD, and therefore spend most

time in commuting, are allocated the greatest amount of leisure time.

The generalized Riley town is, strictly speaking, the optimum
factory town, and therefore to be regarded as the datum against which.
the second best solutions are to be measured. For this reason we will
derive the marginal products of popuiatién‘and factory land, and eval-
uate returns t§ scale in net factory production at the optimum point to
confirm that these relationships have a functional form qualitatively

similar to those derived for FIBOT and SEBOT.

We will then go on to examine‘the second best optimum in which
equals are treated equally by constraint and every household contributes
the same fixed amount of.labor to the factoiy. Thié is the model which
seems to correspond most closely to reality. However, its interest does
not end there, because it also serves as another polar case, to be  compar-

ed with the polar case, SEBOT, in which leisure time is fixed and equals
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are treated equally.

In the solution to this fixed labor time model we will find
that, so far as the structure of the residential zone is conce:ned, some
of the unambiguous conclusions we obtained in Chapter 3 no longer hold;
We will continue to find that the shadow residential rent is unambig-
uously strictly decreasing with respeét to distance from the centre of
the town. This, of course, is as it»mﬁst be, since the residential rent
is a von Thiinen rent. However, household reéidential site area and con-
sumption of the factory good may each be of either slope in some parts
of the residential zone. Furthermore, the shadow price of leisure and
optimal congestion may be either inéreasing or decreasing within the
residential zone. Finally, returns to scale in net factory production

will be found to be increasing at the optimum point, and not decreasing

as we have hitherto found.

We concentrate our attention on the solution to the equality
case, because it seems to.be the more interesting,>and because we wish
to avoid repetitious analysis. vThe methgd of solving the model when the
equality constraint is relaged is straightforward. . However, for cdmplete—
ness, towards the end of this éhapter, Qe state the major results obtained
from the model of the optimum factory town when work hours are fixed and

equals are not necessarily treated equally.

4.1 THE GENERALIZED RILEY PROBLEM

Using the notation established in Chapter 3, we assumé that a
consumption good is produced in a factory of area L = ﬂxi aécording to
the production function F(L,W), and that the time taken for a laborer to
commute across unit distance at x is T(n(x),gl(x)). These are the assumpt-

ions we made in Chapter 3. We choose the day as the unit of time. The
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time constraint on the town is, therefore,1

xt xt

N ~-W - J n(x)T(n,gl)dx - J an(x)gz(X)l(x)dx = 0, (4.1)
X b'e
c c

where 2(x) is the amount of leisure time allocated to the household resid-
ing at the CBD boundary. 1In Chapter 3 we assumed % to be constant, and

defined the unit of time so as to make £ = O.

In (4.1)
%
T = J n(x)T(n,gl)dx, ' . (4.2)
- .
c

is the total commuting time in the town, and

X
t

A= J 2mp (x) g, (x) R (x)dx, , (4.3)

X
C

is the total leisure time.

The income and land constraints on the town continue to be
Xe

F - Ara - J 2np(x)g2(x)f(x)dx = 0, (4.4)
X
c

x = g, (x) - g,(x) = 0. | . (4.5)

'Furthermore,'equation (3.11) must continue.to hold. That is,

1 Following the analysis of Chapter 3, we will take as proven the prop-
osition that it is always optimal to employ factors fully and to

distribute all output.
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n(x) = - 2mp (x)g, (x). . (4.6)

However, now we assume that households derive utility from the consump-
tion of the factory good, the services of residential site area and leis-

ure time. That is to say, u = u(f,s, ).

Therefore, choosing the maximization of average household util-

ity as the criterion of optimality, Riley's problem becomes: we wish to

%
max j
gl (X)92 (x) If(x)ls(x) P 2(x) IiLI»AINIw : xc

2 |-

2mp (x) 9, (x)u(f,s,2)dx,

subject to the constraints (4.1) and (4.3) - (4.6).

Defining1

) ul(f,s,8) _ o
L(x) = 2wp(x)g2(x)'{ . Alf(x) Azz(x) Q(x)}

- Anx)Thn,g) Fu) {x - g (x) - g,(x)}, - @
g =M (F -Ar) + A, (N —:W), : : (4.8)

the first order conditions for the maximum are:

uf .
— - ‘= ) 4.
u

2 .
L = 4.10
v }\2 0, ‘ ( | )

To avoid repetition of analysis, we will take as proven that

gy (x) > O except at X, when it is zero, and limit our analysis to
solutions in which gz(x) > 0. Thus, we are able to omit the non-
negativity constraipts on gl(x) and g2(x).
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u (x) ' s(X)us '
T —. )\lf (x) - }\ZQ(X) - ¢(X) - T = 0, (4.11)
>\2r1(x)rgl - u{x) = o, _ (4.12)
u(x) - | N _ s(x)u(x) _
N le(x) : le(x) ¢ (x) o = 0,‘ (4.13)
. 5 . _
d(x) = )‘2 0 (n(x)T(n.gl)), (4.14)
Ale - A2 = 0, (4.15)
1 ~ , .
MEL - oo £(xc) =0, o (4.16)
1 _ ' -
Ax, = £(x't) =0, (4.17)
X+¢(x)—-£—0 : ‘ | (4.18)
2 e N T T ' . *

In equations (4.7) to (4.18), ¢(x) is the co-state variable and u(x), Al

and 12 are the Lagrange multipliers.

We sée from (4.9), (4.10) and (4.15) that the shadow price of

leisure,

= — = F ’ (4.19)

is constant across the residential zone and equal to the marginal product

of labor.

Differentiating (4.11) totally with respect to X, and using

(4.9) and (4.10)
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ce0T00 = s [os] o L % (%) - (4.20)
dx {u A ! .
f 1
- p > (1) <0 (4.21)
=P on ! :

by (4.14). Similarly differentiating (4.9) and (4.10), and expanding

‘ u
out the derivative 11-[—§} in (4.20),

dx uf

( ] r ‘r

Yer Yes Y £ ) ° W

AN
' . . E 2 3
= - — . 4,

Ust Yss Yse S s(x) 9n (n7) (4.22)
u u u i )
| ef gs 2 ) {7 | o J

Equation (4.22) has the same form as the eqﬁivalent matrix
equation derived by Riley [1974, p.236]. Thus, Riley's basic qualitative
‘resulfs concerning the slopes of f£(x), s(x), 2(x) and r(x) in the resid-
ential zone are valid in a much more general context. 'The rent function
is downward sloping, and é(x) > 0. Furthermore, if we continue to make
the quite reasonable assumption that the second order cross partial
derivatives are all positive, %(x) and i(x) are both strictly positive,
and so,bthereforé, is ﬁ(x). In other words, equals. are treated unequally

in Riley's optimum town.

The continuation ofzthé soiution to the Riley model is straight-
forward. It produces‘no results which are qualitatively different from
the results obtained in Chapter 3, and therefore, we will not pursue the
solution in detail. However, given‘thét the Riley town is the first best
town, and therefore of fundamental importance, we will evaluate the
marginal products FL and FN and the local degree of returns to scale in

the neighborhood of the optimum point. These results are of particular
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interest, because, although they do not differ significantly from those
obtained in Chapter 3, where we assumed leisure time to be uniférm and
exogenously determined, they are different in form from the results we
are to obtain when we constrain the work time to be fixed independent of

household location.

From (4.15) and (4.18) we find, as we did in Chapter 3, that

u . ,
F, = § ~ ¢(xc). , o , (4.23)
However, now, from (4.1) - (4.3),

T
I

{1~ TN - AN }F2

1
iz{d’(xt) - ¢(xc)} - px(xt). _ o (4.24)

Therefore, from (4.11), (4.23) and (4.24)

u(x ) ‘
FN = - +.f(xt) + ras(xt)
f
F - Lr : '
- a _ 1. _U Vv - R
= v uf{UN N} +‘[vN N} + ra{RN N},(425)

where U and V are defined in (3.88) and (3.89), R is the land area alloc-

ated to transport and, as we showed in (3.92), RN = 0. Similarly,

F =r -—y +V +rR, - . ' (4.26)
L a

and it is now easy to show that returns to scale in net factory product-

ion are unambiguously decreasing in the neighborhood of the optimum point.
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4.2 THE OPTIMUM TOWN WITH FIXED WORKING HOURS AND EQUALITY BY

CONSTRAINT

We now examine the structure of the optimum town in which fact-
ory hours are exogenously determined, and independent of the worker's
residential location. Non-working time per day is shared between leisure

and travel. Therefore,
L(x) + tln,g) = 0. ‘ (4.27)

In addition, we can choose the unit of labor so as to make W = N. There-

fore, the production function can be written F = F(L,N).

Continuing to make the maximization of average household util-
ity the criterion of optimality, we can now state our welfare problem in

the following way. We wish to:

max a,
gl (x) 192 (x) ,£(x),h(x),u,L,A,N.

subject to: (4.2), (4.3), (4.4), (4.27) and

X
t

%—J 2np(x)gz(x)u(f,s,l)dx -.u= 0, (4.28)
x
c

u(f,s,2) - u = 0. , (4.29)

We now have a problem in optimal control theory in which there are two

state variables, n(x) and %£(xX). The Lagrangian is defined as
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u(f,s, )
N

L(x) = 2mp (x) g, (x) { X, - M) - d)l(x)}

- ¢2(x)t(n.gl) + ul(x){ X - gl(x) - gz(x)}
+ uz(x) {u(f,s,2) -ul}, (4.30)

and
J=zu(-x)+ A {F(L,N) - Ar } . (4.31)
-0 A § a .

In equations (4.30) and (4.31) we have again made use of the essential
non-negativity of gl(x) with gl(xt) = 0, and assumed that gz(x) is
strictly positive. We have also continueé to ﬁse the nofation established
in Chapter 3 for the Lagrange multipliers, but nowbthere‘are two co=-state

variables, ¢l(x) and ¢2(x) associated with the state variables n(x) and

2(x), respectively.

The first order necessary conditions for a maximum are:

¢2(x)1gl + ul(x) = 0, . (4.32)
2mp (x) LA 2 = AE(x) - 6. ()} - . (x) =0 (4.33)
. AN T M 1 1% ' 4

Vug - A, = 0, | ’ (4.30)

ulx) _ - - B

Ao N Alf(x) ¢CX)s(x)uS ¢l(X) = 0, (4.35)
by (x) = ¢ (x)1n, | ~ | (4.36)
by(x) = - 2mp (g, VKU, | (4.37)
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e , |
1 - AO - J uz(x)dx = 0, (4.38)
b4
c
u. —_—
AlFN - AO E-+ ¢l(xc) = 0, | (4.39)
p(x g, (x) -
- c 2 ¢ L Y-
>\lFL - X, . {AO N Alf(xc) 4>l(?{c)}'

1
27X
c

¢2(xc)r(xc)) (4.40)

u

Alra = p(xt)'{ko N klf(xt) - ¢l(xt)}

) .
- 2ﬂxt ¢2(xt)r(xt), (4.41)
where
o) = 39_ . uz(x)s(x) a2
N '2ng2(x) ) .

2ﬂp(x)gz(x)
Multiplying (4.34) by e —— using (4.42) and integrating
f

across the reSidential zone, thep using (4.38), we find Al > 0. It

follows from (4;34) that PY(x) > 0. ©Now, from (4.35’,

AO %—— Alf(x) - ¢l(x) > 0, and, ﬁence, b&v(4.33), ul(x) ; 0. Furthermore,

.from (4.32), ¢2(x) > 0 throughout the residential zone. Now, dividiné
(4.35) by (4.34), and differentiating,

u .
(x) = <30 -1 I B) AP T- N
s(x)r(x) = s(x)dx [uf } = Xl{.¢l(x) + Alf(x) + r(x)s(x)f.(4.43)
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However,
L3 Ey) 408 + px)Lix) = 0, (4.44)
uf dx
Yy
where p(x) = T Therefore, by (4.27), (4.43) and (4.44),
£
s(x)r(x) = - )\—l-{cb (x) + A p(x)T(x)} <o0. (4.45)

Using the definition of r(x) and (4.44),

0 uf us 0 uf uZ
. _ . ) . <ol
uer (x) U Uge g | S(X) U Ugp Uy | Ax) <0
us usf uss us usf sf

(4.46)

The utility function is quasi-concave, therefore, the determinant coeffic-
ient of é(x) is non-negative. However, we cannot put a sign on the
coefficient of £(x), and therefore s(x) can take either sign. It follows,

again because ﬁ(x) = 0, that f(x) can take either sign.

We haverproved that, although the price of reéidential land
falls unambiguqusly with distance frdm_thé centre of the town, residential
site area does not necessarily increase. The possibility of s(x) <0
arises from the fact that household ieisﬁre decreases unambiguously, and
the way in which the optimum consumption bundle varies with distance to
maintain equality depends upon the relafive magnitudes Qf the second

order partial derivatives of the utility function.

If we represent the coefficient of é(x) by A, expand out the
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coefficient of %, and use (4.27) and (4.45), equation (4.46) may be

written

As(x) = -{‘ufusufl + ufulufs - usuzuff]'ﬁ(x)
u3 u
£ - 2 [ 1
+ Als ¢1(X) - uf{ s usl}'m(x)' (4‘47)

Thus, a sufficient condition for é(x) > 0 is

Y
- u -

) oo
s s s

which is equivalent to the ihequality

u :
ii.[ _&_J < 0. . : , : (4.48)
ds s - ,

In other words, é(x) will certainly be positive if the shape of the house-
hold utility function is_ such as to ensure that the marginal utility of
leisure time per unit of residential area is a monotone decréasing funct-

ion of residential site area. However, there does not seem to be any

particular reason why the utility function should necessarily have this

shape.
. u 2
Since p(x) = —,
u
f
0 uf ui 0 uf u2
u3 p(x)= - |u u u i( Yy -1{u u u é(x)
g P = £ Vgg e |V £ Ugf pf :
TS A T s Yfs  Ygs

(4.49)
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In (4.49) é(x) and its coefficient can take either sign, and therefore,
SO can é(x). Comparing (4.46) and (4.49), we see that it is only in the
special case where the coefficient of ﬁ(x) in (4.46) is zero that the

signs of p(x) and S(x) are determined to be unambiguously positive.

We will now assume that (3.61) holds. That is, .

t(n,g) = T, + 1,00 (m,9)), (4.50)

where 6 ='n(x)/gl(x), and T., T, and o are positive constants. Congest-

0 1

ion must be bounded within the residential zone. Assume, further, that

it is bounded at X, where n(x) and gl(x) are both zero. Then, lim 0(x)
. , ‘ XX

t
is bounded above, and therefore,
lim T (X) = = o, . ' (4.51)
x+xt- 1

Now putting x = xt in (4.32), (4.33) and (4.35), we find ¢2(xt) = 0.

Equation (4.37) may now be integrated to give
¢,(x) = A n(x) p(x), ' : ‘ (4.52)
where

X
n(x) p(x) = J 2wp(z)gz(z)p(z)dz. : (4.53)
X

By definition, p(x) = um(x)/uf(x) is the subjective value of leisure, at
the margin, to the household which resides at x. Therefore n(x)ﬁ(x) is

the total subjective value of the leisure time lost when all dommuters
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passing through x are delayed by unit time, and DP(x) is the marginal sub-
jective value of leisure averaged over all those households which commute

through x. It follows that f; ¢2(x)Tn(x)dx is that part of the shadow
-1

cost of adding one more commuter between X and x + dx which is external

to that marginal commuter. That is to say, it is the congestion cost

imposed upon the rest of the town by the marginal commuter's trip from x

to x + dx.

‘Using (4.306), and using an argument similar to that used in

Section 7 of Chapter 3, we deduce that

X
t
1 v )
| )‘1 {¢l(xt) - ¢1(xc)} + J p(x)T(n,gl)dx = FyTy (4.54)
X
c

is the marginal transport cost of population. As in Chapter 3, this

partial derivative with respect to N implies that L and the structure of

the residential zone remain constant.

Equations (4.36), (4.45) and (4.52) yield
SR r(x) = —‘{ﬁ(x)T(x) + n(x)rnﬁ(x)} . (4.55)

Also, from (4.32) - (4.35), (4.50) and (4.52),

Ty o+l
r(x) = o 0 (x)p(x). : » (4.56)
From (4.52)
d - _ n(x) [ = _ ‘ .
e (p(}f)) = n(x) {p(x) p(x)}. (4.57)

Therefore, differentiating (4.56),
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aT

r(x) = 7;}(u-+1)e“kx)é(x)5(x) _ nx) ga+l

) (x){p(x) - p(x)}.

(4.58)
Eliminating r(x) from (4.55) and (4.58)
L e+ o) = - 100% @B (x) - pE) T
o7 o(a T,p(x x) 8 (x = Tl p(x P T
g.. (x) o -
- oty EIT;TG (x{px)-px)}.
(4.59)

From (4.53), p (%) > 0 implies p(x) zvﬁ(x). Therefore, by
(4.59), p(x) > 0 implies é(x) < 0, unambiguously. However, if é(x) <0,
the sign of é(x) may be positive. In other words, we are unable to rule
out the possibility, as we were in Chapter 3, that optimal congestion
could increase with distance from the centre of the town. However,
optimal congestion can bé upwards sloping only where the shédow_price of

leisure is downward sloping.

Our results suggest that, in‘regions where the shédow price of
leisure is falling,'it'may be optimal to increase.the allocation of land
to residential purposes and decrease the allocation ofvland to transpdrt,
even though cqngestion and hence travel time ber unit distance may be thus

increased.

4.3 RETURNS TO SCALE IN FACTORY PRODUCTION

We have already shown that returns to scale in net factory
production in Riley's optimum town are unambiguously decreasing. This

result agrees in qualitative terms with the results obtained for FIBOT
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and SEBOT in Chapter 3. We now derive expressions for the marginal prod-
ucts of land and population at the optimum point when all households

supply the same exogenously determined amount of labor to the factory.
We have proven that ¢2(Xt) = 0. It follows from a comparison

of (4.35), when x = xt, and (4.41) that

r(xt)

I
a

) (4.60)
Equations (4.34), (4.35), (4.39) and (4.60) yield

L

A

F_= o+
f(xt) + ras(xt) .

N (o, =) - ¢l(xc)} . (4.61)
In the notation of Chapter 3, the firStIEwo terms on the right hand side
of (4.61) gqual VN' and, given that household utility is independent of
location in our present town, these are the.terms we obtained for the
Riley town at equation (4.25), and foerIBOT and ‘SEBOT in Chapter 3.
However, we now have an additional te;m on the right hand side, which,
‘after (4:53), we identified as being that part of the marginal household's
shadow cost of transport-that is external to it. The meahing of (4.61),
therefore, is that the‘shadow value of the marginal product of labor is
equal to the shadow value of fhe marginal household’s cohsﬁmption 5%u3

" the shadow congestion cost the marginal household imposes upon the other
households of the town.A The differeﬁce between our_earlier results and
this present result arises from the fact that the uniform»working hours
constraint implies an identity between the marginal product of labor and
the marginal product‘of population, which did not exist in ouf earlier
models. 1In the earlier models, the marginal product of population was
defined in terms of output per day, while the marginal product of labor

was defined in terms of output per working hour. When travel times were
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increased by the addition to the town of the marginal household, labor
hours were reduced, either because 1eisﬁre was constrained to remain
constant, or because the subjective price of leisure was constant. As

a result F2 incrgased and FN decreased. Now there is a fixed relation-
ship between the hour and the day, and working time cannot be adjusted
to compensate for the disutility experienced by households when their
travel times are increased by the addition of the marginal household.
The marginal household must, therefore, éroduce the shadow value of this

lost utility in addition to the shadow value of its own consumption.

The marginal product of factory land, FI' is obtained directly
from (4.40). Adding (4.41) to (4.40), after setting¢2(xt) = 0, and

using (4.52), we obtain

F.=r +

L a

p(x Vg (x )
..'__C__Q__C__{f(x ) = £lx ) +r ls(x) - s(x )}
t c a 't ¢

C

1 ) : gl(xc)
* Ao L8y (xg) - ¢1(Xc)}} T x  F

1 c a

- o f)(xc)'r(xc) . » ' (4.62)°
c .
p(x g _(x)
_ 1 c "2 ¢ _
=r +V, f N ————:;;————-{¢l(xt) ¢1(xc)}
- 2“Xc p(xC)T(xc) - raRLf | (4.63)

Compared with equations (3.98) and (4.25) we have the additional terms

p(x )g_(x ) ‘ ’
1 T c T2 ¢ _N_ =
—7\—; —————;c—-——{ d)l(xt) - ¢1(XC)} - 2‘7Txc P(XC)VTF(XC)

in (4.63). These terms represent those transport shadow costs, which are gene:
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ated by transferring unit area of land from the residential zoneito the
CBD, and which are external to the p(xc)gz(xc)/xc households who are
displaced from X to xt by the transfer. It is only the external costs
which appear in (4.63), because the loss of the displaced households'
leisure time is compensated for in the change in their consumptions.

This latter change is implicit in the term v

We can use (4.61) and (4.63) to evaluate the local degree of

increasing returns to scale at the optimum point. We let

OF = wE+N%V E (4.64)
where
F =F - r_R. (4.65)
Then, neglecting the terﬁ

21rxc p(x.c)T(Xc)'

because it has no theoretical interest,

- = + -
(¢ = 1F v, + N -V

o(xc)gz(xc)

N L '
+ {_—.+ X—-_——_::_——-—} {¢l(xt) - ¢l(xc)}. (4.66)
1M c | |

’

To evaluate the sign of & - 1 we have, using (4.35) and (4.36),
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v 1 1 )
VN - ﬁ. X—-{¢ (x ) - ¢l(xc)} > f(xt) + ras(xt) + XI'¢1(Xt)
- _ 1 -
-{f+ r s+ T ¢ }
1
=r(x)s(x) -r_s,
a
X
t N .
= J 2mp (x)gz(x) {rx) - ra} s (x)dx,
- )
c
>0. | | (4.67)
Similarly,
x plx Vg (x )
c 1 c 2 ¢ _
px g, (x )i{vi X X {¢l(xt) ¢l(xc)}} !
c 2 ¢ 1 c

= f(x ) + r, (x ) + ——-¢l(x )

‘ 1 ;
—-[f(xc) +.ras(xc) + KI ¢l(xc)},

= (r(x) -r )s(x ) > 0. - (4.68)
It follows that

(® - 1) >0, ' : ©(4.69)

and returns to scale in net factory production are increasing in the neigh-

borhood of the optimum point. This is a fundamentally different result
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from those obtained from our earlier models, where returns to scale were
found to be unambiguously decreasing. We will discuss this difference

in Section 4.5.

4.4 THE OPTIMUM TOWN WITH FIXED WORKINGFHOURS AND NO EQUALITY

CONSTRAINT

We will now state the main results~aerived from the model of
the optimum town in which working ﬁéurs are fixed and no equality
constraint is imposed in respect td the treatheht of the resident house-
holds. The necessary conditions for an optimum in this case can be deriv-

ed from equations (4.32) - (4.42) by setting uz(x) = 0.

From (4.27), (4.34) and (4.35) we then obtain

Yrr Yes Y £(x) 0
of uSS usl s(x) = -X(x) (4.70)
0 0 1 px) | | -Y(x)

where X and Y are strictly positive functions of x. Solving (4.70), we
find that é(x) and f(x) can take either sign. These are the conclusions

we obtained when the equality constraint was imposed.

In respect to the value of the marginal products in the optimum

town, we find that, analogous to (4.61),

1 -
FN = - G;{ u(xt) -ul + f(xt)>+ ras(xt)
P00 x) - 6. (x) ) (4.71)
Xl 177t 1 "¢ !

and analogous to (4.62),
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p(x )g_ (x )
F. =1 +.___£l_i£_il_{...l;{ ulx,) - u(x )}
L a xc uf t o]

+ »f‘(xt) - f(xc) + ra'{ s(xt) - s(xc) }

' : (x )
1 91
3 { ¢l(xt) - ¢l(xc) }} et Y
1 , c v
- Znx_ p(xc)r(xc). (4.72)

Equations (4.71) and (4.72) differ in form from (4.61) and>(4.62) only
in the terms in (u(xt) - ) and'{u(xt)~; u(xc)}, which, of course, are
zero when the equality constraint is imposed. Finally, it follows from
(4.71) and (4.72) that returns to scale in factory production net of
transport costs are‘increasing at the optiﬁum point. This is the result
we obtained for the case where working hours are figed and equality of

treatment of households is imposed as a constraint.

4.5 CONCLUSIONS

This is an appropriate point to make comparisons between the
solutions we have obtained frﬁm our four main models. Firstly, comparing
the Riley town with FIBOT, we observe that leisure time is allocated to
households differently. In FIBOT, the equality of leisure constraint is
equivalent fo assuming that an exogenoﬁsly determined amount of leisure
is paramount to each household, and, as a conseqQuence, a shadow price of
leisure is not discovered in the solution. In the Riley town, on .the
other hand, leisure time is allocated optimally, apd because it is optimal
to treat households unequally, the leisure allocation is a strictly

increasing function of distance from the centre of the town. Furthermore,
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the shadow price of leisure is discovered in the solution. Since leisure
has no special locational properties this price is found to be indepcndent
of location. BApart from these differences, FIBOT and the Riley town are

seen to have the same qualitative form.

Comparing FIBOT and SEBOT, we find that, apart from the obvious
difference that household utility,is.locétion dependent in FIBOT and
location independent in SEBOT, the two solutions differ qualitatively
only in so far as the housghold al%oéation of the factory good increases
with respect to distance in FIBOT, énd decreases in SEBOT. This differ-
ence is directly related to the inequaiity in FIBOT, and the equality

in SEBOT.

In all three models compared so far, the functions representing
household allocations of the consumption goods and transport congestion
in.the residential zone have been shown to have slopes whose signs can be
determined unambiguously for the quite general production, utility and
transport functions we héve used. Furthermore, returns to scale in net

factory production are found to be strictly decreasing.

In our foufth model, that is, the town in which labor works
fixed‘hours and equals are treated equally; the strong results with -
respect to the structure of the residential zoné are not obtained. In
fact, the only unambiguous result we obtain in our description of the
residential zone is that the von Thiinen, residential rent is strictly
decreasing. This result, of course,vwas an inevitable consequence of oﬁr
observation that t(x) > 0. In addition, returns to scale in net factory

production are shown to be strictly increasing.

The ambiguities in the structure of the residential zone can
be directly related to the Working hours constraint. That constraint
implies that leisure time falls with distance from the centre of the

town. With a downward sloping leisure time allocation, household utility
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may be held constant within the residential zone by upward sloping fact-
ory goods and residential sité area allocations, or by making just one
of these upward sloping and the other downward sloping. The shapes of
the optimal allocations from these three possibilities will depend upon
the shape of the household utility function. The ambiguities arise from
this dependence. None of these ambigquities could océur in the earlier
models, becau;e leisure time is constant in FIBOT and SEBOT, and the
optimality of inequality ensures that all-allocations increase“with dis-

tance from the centre of the town in Riley's optimum town.

The difference found in optimal returns to scale in net prod-
uction arises from the way in which household utility is adjusted against
fhe transport congestion costs imposed by the marginal household. 1In
FIBOT and SEBOT leisure time is fixed, and therefore, transport congest-
ion is reflected in working hours énd the marginal product of labor.

The marginal household must produce the value of its consumption (Qith

an adjustment for differénces in household utility in the case of FIBOT)
while working comparatively short hours. In the Riley optimum town the .
process is much thé same, since the shadow price of leisure is equated

to the marginal product of labor. .In our féurth model, however; the
constant working hours constraint rule§ out any adjustment process through
maintaining leisure time. The transport congestion costs imposed upon
the town by the marginal household can only be compensated for by prod-
uction of the factory good by thé marginal household. However, in this
case the marginal household wé;ks cbmparatively long hdurs.» The_marg-
inal product of factory land is expressible in terms of the way in which
laﬁd allocation to the factory forces ;he disélacement of residents from
the CBD boundary to the town boundary, thus making them "marginal" house-
" holds. For this reason we find that FL for the fourth model contains a
transport congestion term which makes it different in form from that’

found for the first three models. We then find that these additional
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terms in the marginal conditions ensure that the local returns to scale
at the optimum point are strictly increasing when working hours are

fixed.

This concludes our analysis of the optimum factory town.



CHAPTER 5

COMPARATIVE STATIC ANALYSES OF THE

OPTIMUM TOWN

We now turn to some comparative static analyses of the optimum
factory town. During our Survey of ﬁhe literature we recorded that
Wheaton [1974] has presentéd comparative static analyses of two equil-
ibrium towns. In one of these the population is determined exogenously
and the town is closed to the movement of househblds. The other is an
open town, and population is determined endogenously. In his closed town
Wheaton uses household income, the opportunity cost of land, population
and the transport rate (that is,the cost of transporting one household
unit distance) as shift parameters, and he examines the effects of these
shifts on the residential rent and the population density, both of which
are variables in his model; and on the household utility and the town's
radius, which are parameters. 1In his open town he changes the roles of
population and household utility. That is to séy, household utility is

used as a shift parameter and population is endogenous.

It is‘noteworthy that Wheaton is able to put unambiguous signs
on all his results. However, this lack of ambiguity seems very largely to
be a consequence of the assumptions which underlie his model. For example,‘
his assumption that per capita income is exogenously determined (and there-~
fore independent of population) is too strong. It rules out justification
for the existence of the town in the usual sense, because, if CBD size

were ehdogenously determined, transport costs could be saved without red-
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uction in per capita income by limitiﬁg thé population of the town to one
household. That is, by organizing the economy for individual production
by households. Therefore{ Wheaton's result, that the derivative of house-
hold utility with respect to population is negative for all values of
population in the equilibrium town, appears to be almost a re-statement
of his income assumption, and several more of his results appear also to

rest directly upon the lack of justification for the existence of the

town.

In this chapter we will attempt to avoid this pitfall by setting
up a simple model in which per capita income is determined endogenously,
and use it for some comparative static analyses. Normative models are
usually easier to formulate and to solve than equilibrium models, and, for
this reason, we will restrict ourselves to an examination of £he optimum
town. However, subject to some restrictions, competitive reali;ation of
the optimum town has been shown to be ppssible, hence our results will

have fairly general application.

Since income must be endogenous, it is necessary to use a model
in which the‘lana input to factory production‘and the populatioﬁ are also
endogenous. This implies complexity in the structure of the model. How-
ever, considerable simplification of the models developed in Chapters 3
and 4 is possible. For the purpose of establishing principles we will
~use FIBOT, because we have seen that optimél consumption of leisure does
not add much of signiﬁicance to the model. Furthermbre, we will»assume
that the population density in the residential zone, p(x), is_equal.to
the»constant p, independent of location. We will assume there is‘no land
input to transport, and that thé time taken for a household to travel unit

distance at x is T, also independent of location. This relation holds in
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the CBD as . well as the residential zone.!

Our simplifying assumptions are not entirely artificial. The
assumption of uniform population density has been used by Mills and de
Ferranti [1971}, Livesey [1973] and Sheshinski [1973] in their studies
"of optimal congestion costs. The optimum town in which popu;ation density

.1s uniform is an interesting second best tqwn in its own right, because
when we observe new towns or new suburbs of old towns, we tend to find a
unifo:mity in resideptial site area,which is equivalent to a uniform pop-
ulation-density. This uniformity arises,‘not so much from the market.
forces which detefmine the residential land rent, but from the controls
of planning authoritieé. It would be going too far to argue that a resid-
ential area which was develbped during a period of constant planning
fashion has precisely uniform population density, but we do find that
population densities can be fairly easily fitted into a very few classes;
low density detéched housing, medium density low rise apartment.housing
and high density high rise apartment housing for.example. Given this
observation, the uniform residential density optimum town becomes .a first
approximation to the optimum town underAplanningbcontrol - one more polar

case.

The assumption that land is not an. input to transport is also
of interest, beéause, given uniform population density, it is equivalent
to assuming that each household requires the same road area. We very
quickly reach the point of indivisibility in the design of residentiél
streets. The large majority of roadways in residenﬁial areas are two
lanes wide because they cannot be narrower. Therefore, in assuming that

there is no land input to transport, and choosing a population density

In much of our analysis we could generalize by putting T = T(x). How=
ever, this device does not alter in any substantial way the results

we obtain. We could ‘also generalize by considering the case where
laborers travel only to the CBD boundary, and the case where worker
density in the CBD is constant. Again it can be shown that these
cases do not add to our conclusions.
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which takes into consideration a constant road area per household, we

capture much of the effects of indivisibilities in roadways.

5.1 THE OPTIMUM TOWN

In adopting FIBOT to our purposes,equations (3.1) and (3.2)

continue to hold. That is,

L = 7mx, ' (5.1)

N

A= . | - (5.2)

However, if we assume that all workers commute to the centre of the town,

we now have
5 . .‘
T = J 2mxpdx, ‘ : (5.3)

because the time taken for a household resident at x to commute -to the
X o v

centre of the town is J 7dz = Ttx. The population constraint on FIBOT
: .

continues to be

I

N-W-T=0. ' : (5.4)

All households reside in the residential zone. Therefore, the residential

land constraint may be written

p(A - L) - N = 0. . ’ (5.5)
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Households derive utility from the consumption of the factory
good and the services of residential site area. However, since the resid-

ential density is constant, household utility is a function of the single

variable f(x). That is,u = u(f(x)). The income constraint on the town
is
e
F - Ara - [ 2mpxf(x)dx = 0. (5.6)
X
c

The welfare problem can now be stated as: we wish to

max
f(x),w,A,L,N

Z |+

X

t

J 2mpxu (£ (x) ) dx,
(o4

subject to the constraints (5.3) - (5.6).

It is easy to show that one of the necessary conditions for the

maximization implies
£(x) = 0. | - | (5.7)

That is, factory output net of rent payments to absentee landlords must

be equally distributed between households. This implies
u(x) = 0. : (5.8)

Equals are treated equally in this optimum town. We would have expected
to obtain this result, since the inward movement of the centres of house-
hold residential sites, which reduced transport costs; and thus made it
dptimal to treat equals unequally in the general FIBOT, cannot occur

when the population density is constrained to be uniform across the resid-
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ential zone.

The necessary conditidn (5.7) makes it possible for us to re-
state the welfare problem in a form which will enable us to derive the
second order sufficiency conditions. Average utility is maximized if
we |

F - Ara

max - ———,
w,A,L,N

subject to the constraints (5.3) - (5.5).

Before proceeding to the solution it will be useful to set down

some notation. We continue to use F. and F_ to represent the partial

1 2

derivatives of F(L,W) with respect to its arguments. However, we can
use (5.4) to eliminate W, in which case we can obtain the derivatives
oF _

8 .

OF _ 3 F _ 8 Lo
A - oa F(L,A,N), vl R F(L,A,N). (5.9)

The derivatives FL and FN defined in Chapter 3 may now be written

FL 5[%%} = %i—+g—§,‘ ’ ~ (5.10)
N
Similarly,
T, = [S—E—}N = 2_2 +- % ' (»-5.1'2)‘

. |
_(ar) _ 13T 5.13
By [dN)L EREYY (-13)
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The welfare problem is a simple problem in constrained maximiz-~

ation. The first order necessary conditions are by now familiar:

F = +TF; ' (5.14)

(1 - TN)F2 = —— (5.15)

It is obvious from these conditions that returns to scale in gross fact-

ory production are unambiguously increasing.

The conditions (5.14) and (5.15) can be re-stated as

FL = ra, _ (5.16)

~ F - Lrxr )
FN = _——?E—_— ' | (5.17)

which means that returns to scale in net factory production are constant.
Again, this could be expected, since household substitution between con-

sumption goods cannot occur.

Finally, the second order sufficient conditions are obtained

in the standard way. We find these reduce to

2 : ' :

= ) - ’ .18

5 FrooFaw ~ Fow = O o (5.18)
< 0, 0 ' 5.19

Fo 0 FNN < 0, , ( )

That is F(L,N) must be strictly concave. For the remainder of this chap-

ter we will assume that (5.18) and (5.19) hold, and that FLN > 0.
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5.2 COMPARATIVE STATIC ANALYSES

5.2.1 The Opportunity Cost of the Land

If the population of the town is fixed, differentiating (5.16)

with respect to r gives

-~ = < 0. ' (5.20)
dra FLL . ‘
Hence,
aw - _ dL da - )
T TL I > 0, I < 0. : (5.21)
a a a

Similarly, when the area of the CBD is fixed, (5.17) yields

a NN

aw dnN da

= - (1 - TN) ar > 0, ar > 0. ' (5.23)
a . a ) a .

The meénings of the results (5.20) -~ (5.23) are straightforward:
an increase in the opportunity cost of land, ceteris paribus, will always
result in a>decrease in the land/labor ratio in factory product-
ion at the optimum. However, this does not mean that the town will occupy
leSs land. If the area of thé CBD is fixed, the land/labor ratio in prod-
, uétion is decreased by increasing the population of the town. This
implieé an increase in the residential zone, and hence, in the area of

the town.

When both L and N are free, (5.16) and (5.17) yield
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dL 1

am— ———— + .
dra NIHI [.LFLN NFNN] ’ (5.24)
dn - -1

—_ _— + . ‘ .
dra N|H| [LFLL NFLN) (5.25)

The right hand sides of both (5.24) and (5.25) can be of either sign.
Equation (5.24), therefore, implies that an increase in r_ can result in

an increase in the use of land as a factor of production in the optimum

town. However,

] &

= - F + -
dr_ [ LFL "N ] !

F v ) F
7T FLL [LFLN +.NFNN} -7 FLL 1] %%
LN ‘ LN a

(5.26)

That is, if an increase in the opportunity cost of land induces an
increase in the use of land as a factor of production, it also induces

. . . ' .. dL .
an increase in the population of the town. Furthermore, if — > O,

dr
a
an
L o -1 > - LF. + NF > 0. ' " (5.27)
N dL F TLL LN :
- LN
dr
a

That is to say, if an increase in r, results in increased use of land as
a factor of production, this increase is always associated with a decrease
in the land/labor ratio in production. It follows that the land/popul-

ation ratio of the town also decreases.

d da .
It is easily shown that both ag— and ar can take either
a a

sign. We, therefore, conclude that, when both L and N are free, no
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general statement can be made concerniné those changes in the dimensions
and population of the optimum town which are induced by a change in ﬁhe
opportunity cost of land. Observe that we have one additional parameter
over those usually found in é problem‘in comparative statics. It is the
optimal degree of increasing returns to sééle. It can easily be checked

" that the induced change in this parameter due to an upward shift in the
opportunity cost of land can be of either sign. The implication of this
result is that a shift in ra not only induces é_change in the optimal
factor ratio in production, but it also induces a change in the scale

of production. It is this latter inducéd change which leads to the ambig-

uous results we obtain when both factors of production are free.

Using the labor and land constraints (5.4) and (5.5),

4 [F - Ara) , {F(L,A,N) - Ar_
a

N + R{D(AfL)-—N}},

A .
= e — < ’ 5.28
N 0 _ ( )

where A 1is the Lagfange multiplier associated with the constraint (5.5).
Thus, an increase in r always results in a fall in household consumption
of the factory produced good (and, therefore, in household utility),
irrespective 6f the signs of the changes in the stgucture of the town.

This result was, of course, to be expected.

5.2.2 Travel Time

We will now examine shifts in T, which represents the time taken

for a commuter to travel unit distance. Integrating (5.3)

T = = TpT [xi - x3} . : (5.29)
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Therefore,
TL = pr(x - xc), TN = Txt.
Using (5.16) and (5.17),
‘ ' : T_F
dL dN 9 T . L 2
F._ — — = - = = - + ,
LL drt LN dTt T FL T(F12‘-TLF52) T
TT
T l[ NN}
= F + =7 + F
T(-T) "IN T ('L 1-T 2
dr, dN 3 F
— + = — e - = I
Fiv at " T ar ?E[FN N) !
T
_ T Gl oz,
T(l—TN) NN T{ N N 1-T 2°
Therefore,
F T
§£‘= : Tt 1 gm FIn < O
Toru| N 4
. T TTNN .
N N 1-T “ NN
N
‘ v TT :
dN T Fy NN 20
dt  t(1-T.) FrL T * 17 < !
N |u| N
T rl"TNN
F T - =+
LN N N l—-TN

(5.30)

(5.32)

(5.34)

(5.35)
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aw _ (aw) dn  faw) v, 3w
dr dL N dt dN dt 9T
' TT
F_(1-T ) NN >
T d = .
- _Tdn 2 N F o Tt Top Y (5.36)
T dt N
v|u]
S e
LN NN l-T

Before we interpret these results, we note that, if L is fixed,

F T
an T 2 { T NN} >
= - + To- = 4+ L 2o, (5.37)
d - F - < e
T (1 TN) Tyl N N 1-T ,
However,
(1-T )F TT '
a2 oI, MW, (5.38)
drt NN N

The interpretation of (5.37) and (5.38) is straightforward. Referring to
(5.38) first, if L is fixed, an increase in T increases the shadow price
of labor. Therefore, the optimal labor input to factory production falls
unambiguously. Now referring tov(5.37), there gré two parts to the shift
in optimal population. Ceteris paribus, the fall in optimal labor implies
a fall in optimal population, but the increaselin T also implies that
commuters will spend more time travelling, and, ceteris paribus, this
effect causes an increase in optimal population. Theicombination of these’
two effects makes the induced shift in optimal population ambiguous in

sign.

Now returning to (5.34) ~ (5.36), an increase in 1 induces an
“unambiguous fall in optimal L. We have seen that, given constant L, optim-

al W falls. However, the fall in L, ceteris paribus, reduces the shadow
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price of labor, and, therefore, acts to increase optimal W. As a result,
the change in optimal W may be of either sign. Finally, the ambiguity of

. . dw . . . s . . aN
sign in a;-lmplles ambigquity in the sign of ac

It is interesting to note that, while %%—< 0 when population is

free, this ambiguity does not carry through to the fixed population case.

Fixing population, (5.31) becomes

T
dL T . L
—_ = — - + — ’
'FLL drt T (F12 TLF22) T F2
1 4.
- = 2 . 5.39
= dL.(TFz) . ( )

In (5.39), TF2 is the opportunity cost of the total travel time of the

. . 3 R dL
population of the town, and the meaning of the relationship is that I
: a

will be positive if and only if a marginal increase in L causes a decrease
in this opportunity cpst.‘ If returns to scale in gross factory product-
ion were non-increasing,the sign of the right hand side of (5.39) would
be unambiguously positive. 'However, returns to'scale are.increasing, and

F22 may, therefore, be positive. If it is, é%(TFZ) may be negative.

Finally,

a F‘—Ara 5 F-Ara :

Il
|
&)

- < 0, 5.40
er-o. | ( )

which impliés that. household consumption and utility always fall when the

unit travel time increases.
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5.2.3 Population Density

We can write

oM a, Fran, Pra, By
dp 9L dp 9N dp 9A dp ap '
oF oF

oy &, a w7 Ty

F + .
LN dp LN dp p2 A ap

dL dN N T
FLL dp INdp  p [TN N]

(5.41)

T
T - = T
- NN ¥ - W Lln (549
p1-T "IN 1-T p [T27
Similarly,
aL dN N T) 3 F
== — = - =|7 -=|—|F_-=! +4=|T_~.NT F
FIn dp NN dp p[ N N} aw[ N N] { N NN) 2!
T
NN TN 1 T NN
= - = F__+={27 =~ —=-~- F_. (5.43
pl-T_ NN p{ N N l-T}2( )

F
LN

- pF
pNN

NN

’ (5.44)
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F - F . .
f LN LL (5-45)

All the elements of the determinants are unambiguously positive with the

WT .
exception of l-{ZTN - g-- 1;¥N }, which may take either sign. Therefore,
© N
. dL d da aw
both — and —E-may take either sign. It can also be shown that — and —
- dp | dp - ' dp dp

can take either sign. Furthermore, none of these ambiguities is removed

when either N or L is assumed fixed.

The effectslof an increase in p can be divided into th parts.
The increased density increases the shadow residential rent and the opport-
unity cost of factory land. In this respect an increase in p is equival-
ént to.an ;ncrease in T. At the same time, however, the increase in
density, ceteris paribus, results in a decrease in the area of the resid-
ential zone, which implies a fall in the travel time of households. This
effect has no parallel in the case of a shift in the unit travel time.
Comparisons beiween (5.34) and (5.44), and between (5.35) and (5.45) show
a correépondence between the right hand sides of (5.34) and (5.35) and
some of the terms of .(5.44) .and (5.45), but (5.44) ana (5.45) contain
additional terms which arise from the second of the above effects. The
ambiguous results we have obtained are to some exteﬁ£ due to the fact that

the two effects tend to work in opposite directions.

However,
F - Ar ' F - Ar :
d ' a ) a ‘
— | —7] = —{——7= - 2A{p(a-1L)-N
dp[ < } Bp{ 5 {o( ) }},
-
F2

= = —— + AN. : (5.46)
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A can be evaluated by differentiating the Lagrangian with respect to A;

thus,

AN = —= + TF_ . _ (5.47)

Therefore,

gl
prmm—
]
|
2
o]
2]
~—_——
1]
r
N
——
L]
2
i
Z (3
———
[a

+—£—fi > 0. ‘ (5.48)

That is, in the optimum town, household consunmption of the factory prod-

uced good increases as the population density increases.

5.3 CONCLUSIONS

The striking difference between the results of our comparative
static analyses‘and those of Wheaton [1974] is that very few of our tes-
ults are unambiguous in sign, whereas all of his are. The reason for
this difference is that his is a partiallequilibrium analysis in the Sénse
that per capita income is treated as being exogenous, while.ours was
carried out in a general equilibrium framework. Having made this observ-
ation, it becomes clear‘that the most impqrtant lesson to be learned from
our analysis is how crucial it is always to regard a town as a single
indivisible unit. The importance of this essential unity on the results
of our analysis is émphasized by the existence of increasing returns to

scale at. the optimum point.

It is worthwhile to re-state our main results briefly. So far

as the opportunity cost of land is concerned, we find that, if population

is fixed, SE < 0,and, if CBD size is fixed, g%—->0. The effect of both of
" .
a a .
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these results is to make the factor ratio L/W decrease when the opportun-
ity cost of land increases. This result could easily be predicted. When
L and N are both free to vary, the sign of all induced shifts are ambig--
uous. This is because the local degree of increasing returns at the
optimum may change, however it does produce the apparently paradoxical
result that an increase in ra may lead to an increased use of land as a
factor of production. The paradox is only apparent, however, since we

dL . . . . .
show that I > 0 implies a fall in the land/labor ratio in  production.
a ' :

Using the time taken for a commuter to travel unit distance, T,
as a shift parameter we obtain one unambiguous result when L and N are
both free. This is that the area of the CBD decreases with an increase
. . aw . . L
in t. The sign of ac’ on the other hand, is ambiguous. The ambiguity
arises from the way in which the decrease in L reduces transport times

' . . dL . . .
for the laborers. When N is fixed, a;—can take either sign. It will
certainly be negative if there are constant returns to scale in product-

ion, but this condition is not necessary for an optimum. When L is

, aw : . . .
fixed, Frs < 0, because the shadow price of labor increases unambiguously.

Finally, using the population density in the residential area,
p, as a shift parameter, Qe obtain a series of ambiguous results. Popul-
ation density appears in two constraints on the optimization. In the pop¥
ulation constraint (5.4) its effect is identical to T, and it appears with
T in the slope of the von Thinen rent. It also appears in the constréint
(5.5) where it is the coefficient of‘propoftionality between residential
zone area and population. Its effect on the comparative static results
through onerof the constraints is in the opposite direction to its effect
through the other, and an intuitive analysis of the>compafative static

relationships becomes complex.



CHAPTER 6

THE OPTIMUM INDUSTRIAL STATE

In Chapter 2 we reviewed the development of the von Thiinen
theory of rent. . Writing over the period 1826-63, von Thinen examined
agricultural land use patterns around an isolated_market place when land
and labor are factors of pfoduction. Assuming both factors to be of
uniform qqality, he found that profit maximization requires that, at
equilibrium, the land will be divided into contiguous annular zones. In
each of these zones, one, and only one, crop will be produced. These
zones are the so-called von Thinen "rings", aﬁd they and the market make

up the von Thiinen Isolated State.

The von Thiinen analysis was based upon fixed coefficient prod-
uction functions. Quite recently, Beckmann [1971]Vintroduced.neoclassical
production functions into the von Thﬁngn model,and found that the "rings"
are robust to £his change in the model's‘structuré. However, he further
found that, within each ring, the land/labor ratioiincreases strictly
with distance from the market, and is continuous across the boundaries

of the rings when factor substitution can occur.

Apart from Beckmann;s contribution (re-examined in some details
by Renaud [1972]), the von Thiinen model, in its application to agricul=-
tural land, has remained almdst static for more than a century, notwith-
standing its limitations when judged on the standards of modern economic
theory. Prices in this Zsolated community continue to be assumed to be

exogenously determined, and the market place is located on a point, and
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has none of the other economic activities normally associated with a mar-
ket town. There is no urban production, no population and no residential
zone. 1In brief,the present status of the von Thunén Isolated State is

that of a purely agricultural community, whose only contact with the rest

of the world is at a market point, at which it is a price taker.

Just as the locational theory of agricultural land use over-
simplifies the role of the market town in the‘économy, the theory of urban
land use has been devéloped without regard to the structure ana role of
the t@wn's_agricultural environment. We have already noted that the-
residential zone and the CBD are typical von Thiinen "fings", but we have
not, so far, concerned ourselves with interactions bétwegn these rings
and tﬁe agricultural rings in the surrouﬁding rural area. We have repres-
ented the agricultural land rent by a constant independent of the size and
population of the town. In respect to the consumption of produced goods,
we have assumed that the residents of the town derive utility from the

factory good alone.

This sepération of the‘two theories is convenient in deveioping
pure theories, but it is artificial, and it omits to examine interesting
relationships éf dependence between fhe two sectors of the economy. A
most casual observation of reality reveals that towns and their agricul-
tural environments produce different goods, and that the economic inter—‘
dependence»between the two sectors is profound. There is a need, there-
fore, to integrate the two theQriesL'ahd to describe in formal terms the
structure of the isolated‘industrial state. Quite élearly, if we assume
a von Thilnen-like price for goods transpoft, the agricultural rent (includ-
ing the agricultural rent at the town boundary) will depend, inter alid,
upon the distance from the centre of the town, and if our state is truly
isolated, relative prices will be determined endogenously. In a normat-
ive context, these observations suggest to us that the optimum size for

the factory town in an isolated industrial state will depend upon the
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shadow costs of transporting agricultural goods to the urban market, and
that there must be an optimum size for the industrial state. We now proc-

eed to examine these ideas in a formal model of the optimum state.

6.1  THE MODEL

'In Chapters 3 and 4 we examihed in some detail the spatial
structure of the residential zone of the optimum town. There is no need
to re-traverse this ground, and at this point our problem can be simplif=-
ied by the use. of the model of the factory town introduced in Chaptgr 5.
This is the model in which populatidn density in the residential zone is
constant, and no land is reqﬁired for transport. The analytical conven-
ience of this model is manifest in three ways. Fifst, the constant resid-
ential density simplifies the analysis of the residential»zone. Second,
the fact that equals are treated equally in this optimum town simplifiés
the choice of a welfare criterion. Finally, we are able to avoid the
difficulties which exist in presenting'a suitable definition of the resid-
ential site area of a farm worker. These difficulties arise from environ-
mental differences between the town and rural areaé, because it-seems
probable that urban and farm households‘have different tastes in regard
to residential space. The urban household needs space for two reasons.
First,it needs living space in the direct sense. Second, it needs space
to separate itself from neighboring households, and thus obtain privacy.
The farming household requires iiving space>in the same way as the urban
household, but its privacy is obtained from the size of its farm.  Thus,
it would appear that farm households will demand less reéidential space
than an otherwise idéntical urban household. We avoid the issues raised
by this difference in taste by assuming that every household in the state
is allocated a residential site of area l/ph, where the subscript "h" is

used to denote. residential density on land allocated to household resid-
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ential purposes.

In setting up the model we will consider only one agricultural
good. Our staté, therefore, is made up of three zones: the CBD,which
contains the factory; the residential zone, which houses the factory work-
force; and the agricultural zone,which contains the farms and the resid-

ences of the farm workforce. Fbllowing our earlier notation we write
L = ﬂxc, A=1x,. S = nxs, . (6.1)

where L, A, xc and xt have the meanings alread? assigned to them in Chapter
3, and S and xS are the area and radius of the state, respecfively. The

factory production function is now written in the form F(L,Wu) where wu is
the (urban) labor input tq factory production. The factory good will again

be nominated as the numeraire good of the ‘state.

The population of the state is assumed to be N identical house-
holds. Each of these cont¥ibutes a total of unit time to:labor and
(possibly) travel in the state. Of the N households, Nu reside in the
reéidential zone of the town. This residential zone is wholly allocated

to residential purposes, therefore,
N - p. (A - L) = 0. (6.2)
u h _

We assume that the only input to‘the transportation of the factory work-
force is its travel time. Let tu(x) be the time takeﬁ for a laborer resid-
ent at x to make a round trip to the centre of the town. Then we assume
that the total travel time per day of the residents of the town is given

by

x
t
T = J 2mp. Xt (x)dx. (6.3)
u h™ a7
x
c
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The labor input to factory production is, therefore, given by

W =N -T. _ (6.4)

The agricultural good is produced»on farms from inputs of land
and labor. In our éxaminations of factory production we have had to take
into account the ecbnomies of scale which>mus£ exist to justify the éxist-.
ence of a town. 1In agricultural prqduction, however, the labor workforce
per productive unit is usually observed to be small (compared with the
factory workforce), and it does not have to‘travel to its place of work.

It seems reasonable, the;efore, to assume that,returns.ﬁo scale in agric-
ultural production are typically veiy nearly constant. Accordingly, we
will assume constant returns to scale in agriculture and write the prod-

uction function in the form
¢a(x) = ¢a(pa(x)), ‘ (6.5)

where ¢a is the output per acre from land allocated to farming and pa(x)
is the labor input per acre of farm land. Since farm laborers do not have
to travel to work,pa(x) is also the number of farm laborers per acre of

farm land. It is well known that, when returns to scale are constant,

1) :
“Ta
! = e— ] 3 f - - LI th :
¢a(pa(x)) apa is the marginal product o labor, and ¢a pa¢a is e
marginal product of land. We make the additional assumption that ¢;(pa)

is strictly negative.

We assume that ta(x) units of labor are required to transport
one unit of the agricultural good from x to the centre of the town. There-
fore, each acre of farm land requires ta(x)¢a(pa(x)) househqlds to trans-
port its output to market. Where should these agricultural transport

households be housed? . Since their journeys to market are always round
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trips, théy will not have to travel to work if they reside between the'
town centre and x. It will, however, be sub-optimal to locate them in
the residential zone of the town,'because,loéated within the town, they
will increase 'I‘u by displacing urban‘households outward from the CBD.
Furthermore, since the von Thiinen rent must be downward sloping, the
opportunity cést of their residential sites must decrease as their resid-
ential locations are moved outward. Therefore, we will locate them at
x. In this way we make the opportﬁnity cost  of agricultural transﬁort
workers' residential sites the 1ea;t it can‘be without our introducing
labor transport in the agricultﬁral zone. It follows tha£ the area of
residential land associated with one acre of farm at x is

{pa(x) + ta(x)¢a(x)}/ph, and the tofal‘output of the agricultural good,

@a say, is given by

P .
h
® = J 2wx-{ }¢ (x)dx. (6.6)
a ?h + pa(x) + ta(x)¢a(x) a A

Furthermore, the population density in the agricultural zone, pr(x) say;

is given by

ph{pa(x) + ta(x)¢a(x)}

p_(x) = , (6.7)
r ph_+ pa(x) + ta(x)¢a(x)

and the population of the agricultural zone, Na say, is given by,

X
S :
N = J 2mxp (x)dx. l : ’ (6.8)
. a r :
e
In deriving equations (6.4) - (6.8) we have not allocated labor

for the transport of goods from the market to the consumers. This is
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because, inAthe optimum state, urban households can combine shopping and
work journeys, while the transport systeﬁ set up to carry the agricul-
teral good to market can be used, without additional cost, to carry goods
from the market to the agricultural households. fhe population of the

state is, therefore,
N = N +N. v : (6.9)

The N identical heuseholds of the state are assumed to derive
utility from the consumption of the faetory and agricultural goods and
from the services of residential space. However, since~the area of resid-
ential eites is constant throughout the state we can write u = u(f(x),a(k)),
where f(x) and a(x) are the household's allocation of the factory and
agricultural good, respectively. - From the model developed in Chapter 5
it is easy to show that f and a are constant in the residential zone of
the town. Furthermore, there can be no discontinuity of price ratib or
of household utility across the town'beundary, because households are
identical and goods transport is costless. Therefore, we can write the
urban household's allocations as f(xt), a(xt), this representing the

allocations to an agricultural household located at x_.

Now, writing the agricultural household's allocations as f(x),
a(x), where x lies in the closed interval xt <x i_xs, the income con-

straints on the state can be written

X
F

F - SrH - Nuf(xt) - J Zﬂxpr(x)f(x)dx =0, (6.10)
X

t

and
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X

s | ph
J 2TX TG RGN ¢a(x)dx - Nua(xt)
< h a a a
t
x
s
- J 2ﬂxpr(x)a(x)dx = 0. (6.11)
‘xt

Finally, averége utility may be written

X
S

3= 3N ultx), alx)) + J 2mxp_(x)u(f,a)dx } . - (6.12)
N u t t -

X
t

This completes the specification of the model.

6.2 THE STRUCTURE OF THE AGRICULTURAL ZONE

We again choose as our criterion of optimélity the maximizat-
ion of average utility. The control variables in the maximization are
f(x), alx), pr(x) and pa(x) and the control parameters are L, A, S, N,
Nu' Na, Wu and Tu" The constraints on the maximizatioh are (6.2) - (6.4)

and (6.7) - (6.11). We define the Lagrangian

L (x) E21rxpr(x) {E%)— - )\lf,(x) - A2a(x) - A6}

Ap
2"h
+ 27X : ¢ (x)
ph + pa(x) + ta(x)¢a(x) a

0. (p (x) + t_(x)¢_(x)) '
h "a a a } , (6.13)

+ 2mxy (x) {pr(x) L pa(x) + ta(x)¢a(x)

p

and .the function
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J =

Z |~

Nuu(f(xt).a(xt)) + )\l{F - SrH - Nuf(xt) }

t (x)dx}
u .

X
t

- A2rﬂla(xt) +'X3.[Nu - ph(A - L)} + A4{ Tu - onxph
x
c

+ 2 {N - W - + - ~ .
| 5{u u Tu}+A6Na A7{N Na Nu}, (6.14)

where the A's are constant Lagrange multipliers and 2mx u(x) is a location

dependent Lagrange multiplier.

Choice of the variables f(x) and a(x) gives the necessary

conditions
L | _
FU M =0 A (6.15)
Su -, =o. - | | ' (6.16)

Differentiating (6.15) and (6.16) totally with respect to x, and using

the strict concavity of u(f,a),we obtain
£(x) = a(x) = O. , ’ (6.17)

So that equals are treated equally in the agricultural zone. This result
was to‘be expected, given the explanation in Chapter 3 of why equals are
treated gnequally. It also follows from (6.15) and (6.16) that the shadow
price of the agricultural good (at the market and to the consumer), P

say, 1is given by
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P, = 3 - : | , (6.18)
Choice of the parameters N.and Na give
. . g-. , (6.19)
Using (6.19),-choice of the variablefpr(x) gives
uix) = Alf + kz a, (6.20)

so that u is, in fact, a constant. Using (6.18) and (6.20), choice of

pa(x) gives

£+pal{l +t ()¢ )He +opo_(x) + ta(x)¢a(oa)}

o (x) + £ ()¢ (0 )HIL + t ()6 )}

pa[(b;(pa){ph +‘pa(X) * ta(x)¢a(9a)}

¢a(pa){1 + ta(x)¢;(pa)}], , (6.21)
which simplifies to

o, (£ + paa).{l_+ ta(x)<b;(x)} =p_ o, + pa(x)}¢;(x) -9 ],
(6.22)

Let w(x) be the shadow wage at x in the agricultural zone. Then the

shadow cost of transporting one unit of the agricultural good from x to
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the market is w(x)ta(x). The‘shadow value of the agricultural good at
the farm is, therefore, P - w(x)ta(x), and, therefore, pa-w(x)ta(x)

must be strictly positive in the agricultural zone. The value of the

marginal product of farm land at x is, therefbre,

{pa - W(X)ta(X)}{¢(x) - pa¢é(x)}. The shadow value of a residential site

is éL- times the value of the marginal product of farm land. Therefore,
h ,

' 1. ' »
wi(x) = £ + p_a + 5;~[pa - w(x)ta(x)}{¢a(x) - pa<x)¢;(x)}. (6.23)

Eliminating £ + p_a in (6.22) and (6.‘23)
o, {1+ £ (¢! ) Iw(x) = p_[{p, + 0 () (x) = ¢_(x)]
+lp, - Wit (03 60 =0 (09I + £ (¢ (],
=p_0! (x) [p + {¢a(x)A- p_(x)0! (x)}t_(x)]
- Wit (0 {¢_(x) - p%(x>¢;(x)}{1 e ea0). (6.24)

Therefore,
wix){1 + ta(:f)cb;(x)} = pa¢;, : (6.25)

which implies that the shadow wage at x is equal to the value of the marg-

inal product of farm labor at x. That is

wi(x) = {pé - Wit G0 : (6.26)
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It follows, from the properties of ¢(pa(x)), that the shadow rent at x is

equal to the value of the marginal product of farm land at x. That is,
_ _ . _ , . e
_r(x) ‘ {pa w(x)ta(x)}{d:a(x) pa(x)¢a(x)} (6 ,2 )

Furthermore, the shadow wage of transport labor is equal to the value of

its marginal product.

Using (6.27) we can re-write (6.26) in the form

f + paa

o' (x) =

———l ]
a p - wxt (x) +'p { ¢a(x) '.Da(x)¢a(x)}. (6.28)
a T Ta .

h

Differentiating (6.28) totally with iespect to x,

oa(x) f + p_a 4
b } B I (vt (01, (6.29)

{pa-w(x)ta(x)}

We ﬁave ¢;(x) < 0. Therefore, the slopg of the density of farm labor,
éa(x), is opposite in sign from the slope of the shadowicost

of transporting one unit of farm output to market. Béckmann fdund that
»5a(x) < 0 in his equilibrium model. 'He used fixed factor and commodity

. . . . d - d .
prices, so that, in his solution —w(x) t (x) = w—+t (x) > 0. In our
: dax a dx a

model further analysis is necessary beforé we can put a sign on pa(x).
Differentiating (6.23) totally,
w(x) [py + ta(X){cba(X) -p (x)¢] (x) H

= -w(x) ta(x){d)a(X) - Oa(x)cb;(x)}

—{pa - w(x)ta(x)}pa(x)pa(x)¢;(x). (6.30)
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Therefore,

oy *+t ({4 _(x) - pa(x)cb;(x)}%{w(x)ta(x)}

= p}IW(X)'ta(x) = {pa - w(x)ta(X)}pa(x)pa(x)¢;(x). (6.31)

Equations (6.29) and (6.31) yield
o (x) <0,  E{umt (x)} >o0. (6.32)
a dx a

Thus Beckmann's condition, 5a(x)‘< 0, also holds when all prices are endog-

enously determined. Furthermore,
Lo 0 -0 (90} <0, r(x) <O, (6.33)
dx ‘a a_ ''a : -

and by (6.30)
w(x) < O. - , ' (6.34)

In Beckmann's model &(x) was, of course, equal to zero. It is interesting
. . : a .
to note that, although w(x) < O in our model, EE(Wta)ls' nevertheless,

unambiguously negative.

The structure of the agricultural zone of the optimum industrial
state may, therefore, bebsummarized as follows. At all locations factors
-are employed to the point where the values of their marginal products are
equal to their shadow prices. Both shadow factor prices are then downward
sloping functions of distance‘frém the centre of the state. In addition,

the land/labor ratio in farming and the shadow cost of transporting unit
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output of the agricultural good to the market are both upward sloping
functions of x.
We now obtain an implicit expression for the radius of the

optimum state. Choice of S gives the condition

1T 2"XS £(xs) = 0. | (6.35)

Equations (6.13), (6.18) - (6.20) and (6.35) yield

tha¢a(xs)

¥ pa(xS) ” ta(xé)¢a(xé) = 0. (6.36)

-+ + -
rH pr(xs)(f paa) ph

Using (6.7) and (6.23), (6.36) may be written

p. + pa(xs) + ta(xs)¢a(xs) §
‘Oh . . H

h

= {Pa- (f+paa)ta(xs)}¢a(xs)

+ pa(xs)(f + paa),

£ (x )6 (x)
p

= {pa - w(xs)ta(xs)} o (x) + { ¢a(xs)-pa(xs)¢;(xs)}

h

¢_(x ) - oa("xs")%(xs)
+ pa(xs) {pa - w(xs)ta(xs)} 5

—w(xs)
h

(6.37)

Now, using (6.26), (6.37) may be written
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oy + pa(xs) + ta(xs)cba’(xs)

Dh rH - {Pa - w(xs)ta(xs)}

o (x ) = (x Do (x)

¢a(xs) + o ta(xs) ¢a(xs)

9, (x ) - p el (x)

p

+pa(xs) - pa(xs)tbé(xs) '

h

o +p (x) + t_(x)_(x)
- .h a_s 8 S 2 5 (p —wix )t (x)}
Dh a s a s

{¢a(»xs) - pa(xs)cbc;(xs) },

) R Da(xs) + ta(xs-)¢a(xs)
= r(x ).
Dh S

Therefore,

r(xs) = rH. ‘ ’ ' (6.37)

The meaning of (6.37) is that the optimum state expands until the shadow

rent equals the opportunity cost of land.

We hgvé assumed that returns to scale in agricultural product—
ion are constanf. Also, is is clear, from the form we have assumed, that
returns to scaie in agricultural transport are constant. We have a;sp
proved that factors are employed to the point where their shadow valués
are equal to the values of their marginal pxoducts in the agricultural
zone. It follows that, in éhadow terms, income in the agricultural zone .

is precisely distributed between factors. Therefore,
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+ - -p® = 0. .
(f + paa)Na (s A);:H P2 0 (6.38)

It follows from (6.38) and the income constraints (6.10) and (6.11) that

F - Ar . .
_.____.N - (f + paa) = 0. ‘ (6.39)

6.3 THE SIZE OF THE TOWN

Choices of the parameters Tu' Wu,'Nu and A yield

= 4= -— : .
A, = A+ Aa - A | (6.41)
APy ¥ AT () m Aye (X ) (E 4 p a)

Azph¢a(xt) :
h % pa(xt) * ta(Xt)¢a(xt)

+ = 0. (6.42)
p

Equations (6.40) - (6.42) yield
p_p. ¢ (xt)

a ha
+ oa(}ft) + ta(xt) ¢a(xt)

1
F.{1-t (x)}=f+pa+—
2 Lu ot a 1l Pn

- Or(Xt)(f + paa) . (6.43)

It is clear from the analysis following (6.36) that
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PP, o (x)
aha t
-p (x)(f +pa)=rx). (6.44)
Ph + pa(xt) + ta(xt)¢a(xt) Trt a t
Therefore, (6.43) reduces to
F, {1- tu(xt) } ='w(xt), » (6.45)

where w(xt) is the agricultﬁral wage at xt; 'Howéver, we know from our
study of the optimum town that the left hand side of (6.45) is also the
value of the marginal product of'population-in the town and hence the
facto;y wage. Therefore, the meaning of (6.45) is that the town expands
to the point where there is Continuity of wage across the town boundary.:
This is equivalent to saying that there is continuity of the value of

marginal product at the town boundary.

Equations (6.39) and (6.45) give

- H 1 - :
F_ = + tu(xt)F2 + 5 {r(xt) rH} . (6.46)

u h

Now,

d'I‘u ) .
t (x) = - ’ - (6.47)
u t dNu ‘

so that the first two terms on the right hand side of (6.46) are familiar
from our analysis of the optimum town. The final term is new, and arises
from the fact that the marginal household in the residential area of the

‘ 1
town displaces the agricultural activity which could take place on — acres

h
at x, from x to x .
ot t s
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Choice of L yields

+ = 0. ’ 5.
'AlFl + A3ph A4phtu(xc) 0 (6.48)

Equations (6.40) - (6.44) and (6.48) give

Foo=r(x )+ ph{ t (x) - tu(xc) }F,

=, + ph{tu(xt) - t’u(xc) }F2 + (r(xt~) - rH). (6.49)
In (6.49)
dr :
pH{tu(xt) - tu(xc)} = |5 , (6.50)
N
u

so that.the‘first two terms are‘familiar from our analysis of the optimum
town. However, as in (6.46), we have an additional term in (r(xt)-rH).
In‘this case it arises from the fact that an increase of one acre in the
area of the CBD causes a displacement of urban households from xC to Xt'
and, ultimately, one acre of agricultural activity displacéd from.xt to

X .
S

Now, using a notation similar to that established in Chapter 3,

ap ar
u
= | CE = - Y .51
L [dL) 1o v (6.51)
N
u N
u
. ar )
s u
= | = - N . 6.52
FN an F2(l e ) ( )
u u
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Therefore, from (6.46), (6.47), (6.49) - (6.52),

N
- _u . _ -
LFL + NuFNu -F = 5 (r(xt) rH) + L(r(,xt) rH).
= A(r(xt) - rH).‘ | (6.53)

We see from (6.53) that returns to scale in factory production net of
transport costs are increasing in the optimum state. The additional term,
compared with the relationship we obtained in Chapter 5 after equations
(5.16) and (5.17), that is, the term A(r(xt) ~'rH)' is the proauct of the
area éf the optimum town énd the difference between the opportunity cost
of land at the town boundary and in the hinterland. This term arises

from the transport cost of the agricultural good not being zero.

6.4 CONCLUSIONS

In this chapter we have examined the inter-relationship between
the factory town and its agriéultural environment when they make up an
optimum isolated industrial stéte. We find thaﬁ, given constant returns

»to scale in agricultural production, factors are employed in»the agricul-
tural zone to the point where their marginal prbducts‘are equal to their
shadow costs. Equél households afe treatedvequally throughout the optimum
state, and the shadow wage is éonstanf in the urban area and continuous
across the town boundary. However, in the agricultural zone, the‘house—
hold wage is a decreasing function of the distance from the centre of the
state to thé.réSidential location of the household. This is because the
shadow rent on residential land (which equals the shadow rent on farming
land at the same location) is a decreasing function of the same distance.

This decreasing land rent is a von Thinen rent which has its origins in
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the transport cost of the agricultural good. The downward sloping land
rent is associated with an upward sloping land/labor ratio in production.
This result implies that the opportunity cost of land decreases more

rapidly with distance than does the opportunity cost of labor.

The solution to the residential‘zone of the town is obtained
directly from the solution to the simplé model of Chapter 5. 1In respect
to the CBD, the expressions obtained for the marginal products of land
and labor continue to show that these factors are not paid the value of
their marginal products, although town households. are treated as equal to
the agricultural households. In Chapter 5 we found that, although returns
to scale in factory production gross of the transport costs of its work
force were increasing, returns to scale in net factory production were
cohstant. In our present model, however, we findbthat returns to scale
in net factory production are unambiguously increasing in the optimuﬁ staté.
The difference in the two results arises from the fact that in the optimum
state some of the‘shadow cost of transporﬁing the agricultural good is

"charged"” against factory production through a term involving the differ-

ence between the shadow rent at the town boundary and the opportunity

cost of land to the state.

Finally, we can interpret (6;38) and (6.39) as meaning that, in
the agricultural zone and the town separately, the shadow cost to the
state in the form of rent payments to absentee landlords and the shadow
value of household‘consumption is exactly equal to the shadow value of
output. In other words both productive zones separétely "pay their own

ways".

This completes our analysis of the optimum state and of normat-

ive models in general.



CHAPTER 7

EQUILIBRIUM AND RETURNS TO SCALE IN THE

COMPANY TOWN

In Chapter 1 we quoted the locational assumption upon which the
Arrow-Debr@u Theorem is based, and pointed out that this assumption
implies locational homogeheity of economic activity throughout the region
of application of the theorem. - We then went on to argue that, since the
factory is essentiaZZy an. example of locational inhémogeneity of economic
activity, application of the Arrow-Debrewu Theoreﬁ to the analysis of fact-
ory production cannot be valid. Competitive equilibriﬁm theory may have
relevence to agricultural production or to cottage industry, but so far
as factory production is concerned, a different, spatially structured

theory is required.

We also drew attenfidn to the way in which one prediction of
the Arrow-Debreu Theorem, i.e.,that‘returns to scale in production must
be constant at a competitive equilibrium, has been thought to be in con-
flict with observation - at least so far as multi-firm industrial (i.e.(
factory) production is concerned. Whenever many firﬁs partiéipate, it
has been supposed that an equilibrium mﬁst be, at lgast to a close approx-
imation, competitive. Yet at the same time, and as the quotation on page
2 attributed to Kaldor indicates, it is also widely believed that industr-
ial producers, in equilibrium, are freguently observed nét to have expand—‘
ed to the point where all the economies of scale available to them»are

exhausted. Apparently, there is a fundamental conflict between observat-
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ion and the theory of the firm in equilibrium.

This apparent conflict has led to a debate on the possibility
of the co—existence of increasing returns and competitive equilibrium,
and hence, by implication, the validity éf‘the Arrow—Débreu Theorem. Of
course, the debate pre-dates the development.of the formal statement of
the Arrow-Debreu Theorem. In fact, its origins go back at least fifty
years, and a very considerable literature has accumulated on the subject.1
The general consensus of this literature seems:to be that, separately
both increasing feturns in production and competitive equilibrium are
feasible, and that, subject to the effects of some passive forces, which
retard or modify the path to equilibrium, they are observed to occur
together in industrial production, notwithstanding the predictions bf the
Arrow-Debreu Theorem that such a state of affairs is not possible. The
conflict implicit in this éonsensus is summarized in the two quotations

given on page 2 of this thesis.

Sraffa [1926], however, adopted a fundamentally different stance
on this question. More than 50 years ago he argued that not all economic
forces could be dismissed as being merely passive in respect to the move-
ment towards a competitive equilibrium. Rather, some would actively
advantage a producer in some mafkets and disadvantage him in others. Such
forces are inimical to perfect competition, and, as a result, Sraffa
afgued, the explanation for the observed co-existence of equilibrium and
increasing returns lies in abandoning the belief that the equilibrium is
competitive. .Ihterestingly, in developing his arguﬁent, Sraffa was
describing product differentiation and its éssociated imperfect competit-~

ion before the formal theory of monopolistic competition was presented.2

1 For a recent contribution see Koopmans [1974].

2 See Chamberlin [1946, p.5n].
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Sraffa's ideas stimulated discussion,1 but in the long run he failed to
draw economic thought away from the acceptance of the feasibility of
competitive equilibrium in industrial production. It was generally
accepted that, while Sraffa may have explained some special cases, in
the majority of instances equilibria can be regarded as being.competit-
ive. Sraffa failed to identify an active economic force (or system of
forces) which was essentially associated with industrial»éroduction, and

as a result, his ideas could be regarded as being somewhat nebulous.

In his discussion of the relevance of competitive equilibrium
theory, Koopmans'[1974] suggested‘that, so far as the existence of
increasing returns to scale at competitive equilibrium are concerned:

"this important point can be met at least half

way, by introducing further assumptions that

bear on the way time and space enter into the

problem. ........ «.... A relevent spatial factor

is the cost of transporting the product from

producer to user."”

However, if the freight rate per unit distance is strictly positive,

the goods £ransport costs to which Koopmans refers are active, not pas-
sive forces. They create product differentiation based upon the produc-
er's locational advantage in respect to markets, and thus, monopolistic
competition. .They are, therefore, a particular example of the general
class of forces discussed by Sraffa, and where their magnitudes are
significant, an equilibrium cannot be competitive. Furthermore, the von

Thiinen rent, which has its origin in these transport costs, is the monop-

oly profit associated with the imperfect competition.

Nevertheless, there is room to doubt that goods transport
costs can explain, in quantitative terms, the degree of increasing ret-

urns to scale observed in factory production at equilibrium. This is

1 See, for example, "Increasing Returns and the Representative Firm.

A Symposium", Economic Journal, Vol. 40, 1930, pp.79-116.



137.

because such costs can be expected to affect the nature of the equilibrium
in an industry without regard to how production is organized. However,
returns to scale in agricultural production seem to be nearly constant at
equilibrium,bwhile in factory production, they seem often to be markedly
increasing. It would appear, therefore, that, while the costs of goods
transport, viewed as eéonomic forces, act in the right direction to explain
the co-existen;e of increasing returns and equilibrium in goods markets,
they are of the wrong magnitude. Otherwise, increasing returns would be
as likely to be observéd in'some agiicultqral production as they are in
industry. There is a need to explore the matter further in order to find
some active force, whiqh is peculiar to industrial production. Our stud-
ies of the optimum town and the optimum state suggest fhat the opport-
unity cost of the workforce's travel isAan important active force, which
is very much more important in industrial production than it is in
agricultural production, and in this chapter we will develop this idea

to examine the nature of a general equilibrium when production takes place
in factories, and markets are assumed to be as perfect as they can be.

We will start with an heuristic analysis in order to explore the nature

of the problem. We will conclude from this analysis that, given puré
competition, all industrial production takes place in companrny towns at
equilibrium. We will then move on to construct and solve a formal model
of the company town. - Throughout our analysis we will assume that all

goods transport is free.

7.1 HEURISTIC ANALYSIS

We consider a closed economy in which only two goods are prod—
uced, a factory good and an agricultural good. We will assume constant
returns to scale in the production of the agricultural good. We will

also assume that labor and land are of uniform quality, that there are
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large numbers of farms and factories, and make any other assumptions
necessary to ensure that the prices of the produced goods and the agric-
ultural wage and rent are competitively determined. Among these latter
assumptions will bevincluded the assumptions that farm laborers live at
their jobs and that labor is perfectly mobile between the manufacturing
and rural sectors and within each of thgse sectors. Our assumption Qf

free goods transport is, of course, crucial to the validity of our model.

Labor is supplied by identical households. Each householdv
contributes one laborer to the workforce, and he supplies one unit of
labor per day. Houéeholds aré thé only consumers in the economy. Théy
derive utility from the consumption of the two produced goods.and from
the enjoyment of leisure time and residentiélAspace. Each of these is
indispensible to the households. To simplify the exposition we will
assume that each household is allocated a residential site of fixed area,
and discuss a consequence of this assumption later. Households are

assumed to be indifferent to the choice of urban or rural life styles.

‘Factory laborers cannot live at their jobs. Therefore, to min-
imise labor transport costs, each factory will be surrounded by a compact
residential zone. Given homogeneous land, the factory and its assoc-
iated residential zone will make up a circular factory town. The only
labor transport cost we will consider is the subjective cost of commut-

ing time, which of course, applies only to the factory workforce.

Although we have been able to construct an economy in which
the market for agricultural labor is perfect, we cannot make.this assum-
ption in respect to the factory labor market. »This is because the marg-
inal urban household, that is,the household which supplies the marginal
unit of labor to the factory, has the choice of earning the agricultural
wage, wa éay, working on a farm, or of living at the boundary of a town

and earning the factory wage. If it chooses factory employment, it will
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fqrego some leisure in commuting, andbtherefore, it will be indifferent
to the choice if and only if the factory wage exceeds LA by its evaluat-
ion of the leisure time it foregoes. This excess will depend upoﬂ the
spatial dimensions of the town, which implies that it will depend upon
the size of the workforce and the area of the factory. Every laborer in
a town will demand the same wage, and hence, at equilibrium, the factory
wage is an inqreasing function of the éuantity of labor employed. In
respect to this relationship between the price of labor and the quantity
employed, each factory owner appea?s'to have a monopsony in the laborb
market. He faces a wage raté which increases with the quantity of labor
he employs, and he is able to effect cost minimization by choice of prod-
uction scale. However, the monopsony is apparent, not real. There are
no barriers to entry to factory production, labor is mobile, and hence,
entrepreneurs will set up factories to the point where the supernormal

profits, associated with monopsony power, vanish.

A necessary condition for equilibrium is that identical house-
holds muét derive equal utility. Given that all urban households will
receive the same wage, this condition will be realized through the resid-
ential lapd market. Households will bid for residential sites until
utility is uniform throughout the town. At the same time, any firm whiéh
does not own the town in which its faqtory is located will have to com-
pete in this same land market for factory space. The nature of the urban land
kmarket is, therefore, such that, if we view the households as prqducers
of labor, the residentiai rent is a von Thiinen rent, by means of which
the urban landlords extract all producer's surplus from the households.
Furthermore, no firm could survive by producing the factory good in a
town it did not own, because, so far as production costs are concerned,
it would be doubly disadvantaged with respect to company towns. First,
it would have to pay a rent on its factory land, which exceeded the agric-

‘ultural rent, second, it could not, itself, extract the producer's sur-
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plus frdm its workforce in ﬁhe way tﬁa£ a cémpany town can. Given the
perfect agricultural land market and the perfect mobility of households,
any firm could rent sufficient broad acres at the agricultural rent to
set up its own town, and hence, all towns in the equilibrium economy will

be company towns.

The structure of our general equilibrium can be summarized as
follows. In spatial terms the economy consists of a number of company
townsbset in an agricultural environment. Each company town consists of
a central, circular factory surrounded by an annular,residential zone.
The market structure is such that perfect competition prevails in the
goods markets and in the agricultural factor markets. There is monopol-
istic competition in the ﬁrban‘land market and an apparent monopsony in
the urban labor market. Additional conditions for equilibrium are that
the urban and rural household utilities must be equal, and the urban and
agricultural rents must be equal at town boundaries. Note that in intro-
ducing spatial considerations into the economy we have had to‘abandon
the éoncept of competitiﬁe equilibrium even though we have assumed goods
transport free. Notwithstanding this mbvement away from perfect compet-

ition, our general equilibrium has a fairly simple structure.

Before going on with our solution wé observe that, although we
have shown that all towns are company towns in our general equilibrium
model, there are, in reality, very few company towns.. Our pure model is,'
therefore,ﬂot a plausible description of the real world. - Why should this
be so? There appear to be many reasons. Our assumétion of perfect mobilQ
ity of labor is unrealistic. So also is the assumption, implicit in our
essentially static analysis, that new towns can be constructed instaptanf
eously. An effect of choosing more realistic assumptions in respect to
these facets of the model would be'to‘make the decision to set up a fact-

ory.in an existing town more attractive to a firm. In any case, there
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are many institutional barriers to the development of towns by the priv-
ate sector, and a firm which wished to construct its own town would prob-
ably find that government regulations prevented it from controlling the
town as a company town. In addition, we have assumed only one factory
produced good. In reality, there are many such goods, and economies of
agglomeration exist in their produ¢tion. As a result, the efficient unit
of industrial production is often a large city. Imperfections in the
capital market, uncertainty and the possibility of bankruptcy make it
difficult for a single firm to‘accumulate the capital represented by one

of these cities.

Given the evident lack of realism of. some of our assumptions,
the question arises as to whether our model has any relevance to the exam-~
ination of industrial production. The answer appears to be in the affirm-
ativef The cruciai differénce between agricultural and industrial prod-
uction lies in the fact that the factory can only increase its workforce
- by persuading laborers to'commﬁte from more remotely located households,
whereas the agricultural producer.can distribute his workforce uniformly
throughout his farm. In idealizing the>structqre of prban land and.labor
markets we may fail to identify where monopoly'profits go, but we do not

fail to capture this crucial difference.

Continuing with our analysis, we can use the factory good as

numeraire, and write the profit of the typical town-owning company as

I=F-Lr -wN-C(L,N), (7.1)
a a

where, as before, F is factory output and L and N are the land and laboxr
inputs to factory production, but now W is the exogenously determined
agricultural wage and C(L,N) is the total subjective value of the commut-

ing time of urban laborers. In formulating (7.1),we have taken into
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account the fact that every rural household will pay frém its wage, wa,

r multiplied by the area of its residential site for its consumption of the
services of residential space. This means that the term waN will include
all rent payments to absentee landlords for the residential zone of the
town. The form of the term C(L,N) arises from the fact that, in extract-
ing all. (labor) pfoducer's surplus from househoids, the company wiil pay
only the subjective value of commuting time, and not N times the subject-

ive value of the marginal household's commuting time.

Since there is perfect competition in the agricultural land
market (i.e.,the land market in which companies are buyers), and no bar-
riers to entry in factbry production, there can be no monopoly profits

to the companies,and we can set

I = o. : (7.2)

Companies will employ factors in factory production to the point where

the marginal conditions

= + , A . .
F ra . CL (7.3)

!
It

+ .
wa CN, ‘ (7.4)
hold. Equations (7.1) - (7.4) yield
+ NF,_ - F = + - C. - 7.
LFL N F LCL NCN C ‘ v( » 5)

Equation (7.5) can be written in the form

LE + Nai’\I - =0, _ (7.6)
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where £= F - C is factory output net of - transport costs.

In our model, in which the area of a residential site is con-
stant, the marginal household will make a greater than average contrib-
. ution to the total transport cost. Furthermore, we can realistically
assume that VL is positive; It follows that the right hand side of (7.5)
is strictly positive and that returns to scale in factory production are
increasing at equilibrium. However, we see from»(7.6) that returns to
scale in net factory production arg_constant at equilibrium. These res-
ults, which are derived from profit and utility maximization, are just
the results we obtained from our normative study when residential site
area was assumed constant and no land was reéuired for transport prod-
uétion. It is to be notea that our conclusion that the right hand side
of (7.5) is strictly positive is not necessarily true if households are
free to maximize utility by choice of residential site area. This is
because the resideﬂtial rent (i.e., the price ratio of consumption goods)
will, in general, depend upon the population of the town. Therefore,
when residential site area is a variable, a marginal increase in the pop-
ulation may induce a substitution of the factory good for residential

space such that the right hand side of (7.5) is negative.

7.2 MATHEMATICAL ANALYSIS

We now present a formal mathematical analysis of an equilibrium
company town. We will continue to assume perfect competition in all goods
and agricultural factor.markets, and that all goods transport is free.

We will continue to use the notation established in earlier chapters. The

The CBD and town radii and areas are xc, Xt' L and A, respectively, and

L = X, A=1x". : (7.7)
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The time taken to travel. unit distance at x is T(n(x),gl(X)). where,
n(x) = - 2mg, (x), : - (7.8)

the population density on land allocated to residential purposes, p, is

constant, and
X - gl(_X) - 92(X)‘= 0. ) ' - , (7.9)

At the factory gate each worker sells one unit of labor. The

remainder of his day, D say, is divided between leisure and travel. . Thus
b
D - 2(x) - f T(n,gl)dz =0, (7.10)
X
c

where 2(x) is the leisure available to a laborer who lives at x. The typ-
ical household utility function will be assumed to take the form

u = u(f,2). In this formulation we neglect to include the residential
site area, s = %— because it ié cbnstant. We could also have included
the household's consumption of the agricultural good,‘a say. However,
when goods transport is free, choice of the consumption, a(x), for house-
hold utility maximization will clearly give fhe standérd, non-locational

conditions, so it is not necessary to pursue this aspect of the urban

household's consumption.

Equilibrium in the company town requires that the following

conditions hold simultaneously:

(i) equilibrium between land markets, that is, r(xt) =1r ;

(ii)  maximization of company profit;

(iii) maximization of the urban household's utility;
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(iv) equality of the utility derived by urban and agricultural

workers.

Since land has a non-zero cost, and nobody travels at Xt' profit maximiz-

ation by the company ensures that

g, (x.) = 0. ’ (7.11)

Let w be the factory wage. Then the income constraint on the

household at x is
w - f - sr(x) = 0. ) (7.12)

Utility maximization is. effected by choice of £, 2 and x, subject to the
constraints (7.10) and (7.12). The first order necessary conditions

give:

r(x) = - pp(x)T(x), (7.13)

I

p(x) p(f(x),2(x)) = ul/uf, (7.14)

and equations (7.10) and (7.12). In equations (7.13) and (7.14), p(x) is
the household's marginal subjective price of leisure. It is eaéy to see.
that these first order conditions ensure that ﬁ(x) = 0, which implies

that the company extracts all producer's surplus from the households, its

producers of labor.

All agricultural workers, and the factory workers who reside
at xc, have leisure time D. Equality between the utilities of these house-
holds, therefore implies that they consume the same quantity of the

factory good, fa say. Thus,
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w - sr(x ) = w - sr(x, ). ' (7.15)
c a t

Equations (7.13) and (7.15) imply

X
t

W=+ J P (%) T (x)dx, | ©(7.16)

X
C

which means that the factory wage exceeds the agricultural wage by the
subjective value of the marginal urban household's commuting time. We

derived this relationship intuitively in the previous section of this

chapter.

It will be convenient to have (7.10) and (7.12) in differential

equation form. That is,

L) = - T(x), ' (7.17)

£ (x)

p(x)T(x). : _ (7.18)

The company's profit is given by

X
t

N = F - wN - raA +'J 2ﬂg2(x)r(x)dx, : (7.19)

X
C

and its instruments for profit maximization are gl(x), gz(x), w, N, L
and A. To determine the conditions for equilibrium in the company town,

therefore, we must solve the following ﬁroblem in Control Theory:

Max II,
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subject to (7.8), (7.9), (7.13), (7.14), (7.16) - (7.19). We have four

state variables in this problem: n(x), r(x), 2(x) and f(x).

The Lagrangian is defined as
L(x) = 2ﬂpg2(x){ sr(x) - ¢l(x)}

- T(n,gl) {pop(£,0)¥(x) + ¢2(x)}

+ uix) { x - gl(x) - gz(x) Y. | | (7.20)
where
Yi(x) = ¢3(x) - s¢4(x) + As.- (7.21)
We also define
JEF -wN-Ar_+Aw=-w). (7.22)

In equations (7.20) and (7.22) we have again neglected the non-negativity
constraints on gl(x) and gz(x), used A tovindicate the constant Lagrange
multiplier and u(x) to indicate the variable multiplier. The ¢i(x),i =
1,2,3,4, are the co-state variables associated with the state variables

n(x), 2(x), r(x) and f(x), respectively.

The first order conditions for equilibrium are:

T {pp(f, V¥ X) + ¢_(x)} + ui(x) = 0; (7.23)
9, 2

2mp { sr(x) -~ ¢1(X) } - ux) = 0; . (7.24)
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A =N = 0; (7.25)
F -w+ ¢l(xc),= 0; (7.26)
g.(x) ' :
1 _ _ 2 ¢ _
FL ~ Sy £(xc) =F {r(xc) pd, (x) }
. C C
T(x )
+—= {pp(x )¥(x ) + ¢_(x )} = 0; (7.27)
2ﬂxc c c 2 %¢ !
, T(x, ) .
r, - 2 oC(xt) = p¢l(xt) + 2, {pp(xt)‘i’(xt) + ¢2(xt) } = 0;
(7.28)
¢l(x) = rn{ pp(x)y(x) + ¢2(x) }; ' (7.29)
; - p . . '
b0 = pT(¥(x) 2B | (7.30)
pd>3(x) = - 2ﬂpgz(x); ’ ;7.31)
. o _8_2
¢4(x) PT (X) Y (x) 5 , (7.32)
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Using (7.14), (7.17), (7.18), (7.30) and (7.32),

: - %, . % _ s ; _ i
plx) = 322 + af_f =3 {p(x)¢4(x) ¢2(x) }. (7.33)
Now,
. Xt . . .
[:pp(x)W(x) + ¢2(x):} = J pp(z)¥(z) + pp(z)¥(z) + ¢2(z)}dz,
X X
(7.34)

therefore, using (7.22), (7.33) and (7.34),
pp(x) V¥ (x) + ¢2(x) = { pp(xt)W(xt) + ¢2(xt)}
%
- f pp(z)$3(z)dz. (7.35)
3 :

In earlier chapters we assumed that the form of T(n,gl) is such that

lim 1 = - . . (7.36)
XrX 1
t

Continuing this assumption, we see from (7.23) that

PRIX ¥ (x ) + ¢, (x) = O. ' (7.37)
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Therefore, (7.35) reduces to

pp(x)¥Y(x) + ¢2(x) = - J pp(z)¢3(z)dz,
X

x
t
[ 2ﬂpgz(z)p(z)dz, (7.38)
X

In Chapter 4 we identified the right hand side of (7.38) as the total
_.subjective value of the leisure time lost when all workers travelling

through x are delayed by unit time. Therefore, using (7.29) and (7.38),

2ﬂpg2(z)p(z)dzdx, _ (7.39)

4
©
'_l
Y
a
I
—_—
,_‘
X
o

is the value of the leisure time lost by all other commuters when, ceteris
paribus, one more household is added to the town. ‘The value of the marg-

inal household's leisure time lost in commuting is

X

[ p(x) T ({x)dx,

X
C

therefore,

%

- ¢l(xc) + J'p(X)T(x)dx = CN, | (7.40)

X
C

where C is the total subjective value of leisure time lost in commuting
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in the equilibrium town, and the subscript N refers, as it has done

throughout this thesis, to partial differentiation with respect to N with

L and the functional structure of the residential zone held constant.

In the heuristic analysis we did not consider a land input to

transport. However, in this formal model, the area of transport land, R,

is given by

X

R = J 2ngl(x)dx,

%
C

SO that, once again,
Ry = O
because gl(xt) = 0. Equations (7.26), (7.40) and (7.42) yield

F.=w + C.+rxr
N a N aEN'

which is analogous to (7.4 ).

Equation (7.27) may be written in the form-

pg. (x ) '
- 2 c |1 o k) } -
Fo= ?:a + - {p { r(xc) r(xt) } ¢l(xc)}
T(x ) g.(x )
c 1 ¢
- Zﬂxc { pp(xc)W(xc) + ¢2(Xc) - % T

Integrating (7.13), (7.44) becomes

(7.41)

(7.42)

(7.43)

(7.44)
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x
t
g, (x )

FL = ra + ———;_Ji—{ - ¢l(xc) + ( p(x)T(x)dx]
¢ X
c

T(x ) ' gl(xc)
- ey {pp(xc)\v(xc) - ¢2(x)}— ——x-c——— r . | (7.45)

The last term on the right hand side of (7.45) is familiar from

earlier chapters. We can write

raRL = = *—}2——— ra. | (7.46)

The second last term is also familiar. It and the second term represent

CL. Therefore, (7.45) can be written
= + + , : .
FL ra CL raRL (7.47)

which is analogous to (7.3).

Using (7.43), (7.47) and the profit equation
I=F-Lr -R =-wN- C(L,N), (7.48)
a a a _
we obtain the analogue of (7.5). That 1is,
+ - F = - + - . 7.
LF + NF - F=1IC +NC -C+ {r. NR R}ra ( 49)

If we ignore the ambiguity of sign in CL and the term LRLra, the sign of
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the right hand side of (7.49) remains ambiguous, because -Rra is of
opposite sign to {LCL + NCN - C}. This is the conclusion we reached in
Chapter 3; returns to scale in gross factory production may be increas-
ing, decreasing or constant, because there are economies of séale in the

use of the transport network. However, net factory production, 3, is

given by

3#=F - C - r R, ’ ' , (7.50)
and

Lsi + N:{I -3F = 0. (7.51)

In other words,returns to scale in net factory production are constant
in the equilibrium factory town. Of course, we know from Chapters 3 ‘and
4 that the lack of ambiguity of this last result depends crucially upon

our assumption that residential site area is independent of location.

To this point our solution has been concerned exclusively with
production in the equilibrium companyvtown. Looking at the residential
zone, it is clear from (7.13) that é(x) < 0,and from (7.17) and (7.18)
that h(x) < 0 and %(x) > 0. Furtheréore, having identified the meaning
of pp(x)¥ + ¢, (x) in (7.38), it is clear from (7.23) and (7.24) that
land is allocated to tranéport in the equilibrium company town according
to the same ecoﬁomic criteria as apply in the optimum town éf Chapter 4.
Thus, apart from the loss of genérality which arises from our assumption
»Qf constant household residential site area, our equilibrium company
town has the same qualitative formlas the optimum town in which equals
are'tfeated equally and every hopsehold provides the same exogenously

determined amount of labor to the factory.
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7.3 CONCLUSIONS

In this chapter we set out to examine the nature of equilibrium
in a pure model of industrial production when markets are as perfect as
they can be. A particular aim was to examine the nature of returns to
scale in factory production at the eqhilibrium point. We find that, if
markets are as perfect as they can be, all towns are company towns, and
the urban factor markets are necessarily imperfect. There is monopol-
istic competition iﬁ the urban lanq“market, which is to say that the res-
idential rent is a von Thilnen rent. Furthermore, there is a relationship
between thé urban wage rate and the quantity of labor employed,which
gives the urban labor market the mathematical fqrm of monopsony. As a
result we are forced to abandon the concept of competitive equilibrium.
We also find that returns to scale in gross factory production will not

in general be constant-at equilibrium.

We did, however,'show that, in our model, returns to scale in
‘net factory production aré constant at equilibrium. TIf that result were
generally true, the relevagnce of competitive equilibrium theory to
industrial production could be eétablishéd by treating the company town
as the fundamental and indivisible unit of production. However, know-
-ledge gained from the nofmative analyses of Chapters 3 and 4 suggests
that returns to scale will not be constant, in general, at equilibrium,
and that the conclusion of this chapter-depends crucially on the .simplify-
ing assumption that residential site area is. constant across the residen-
tial zone. Certainly, the proof we presented that réturns to scale are
constant at equilibrium depended upon site area being constant. In other
words, if we assume away all goods transport costs,lif we redefine the
problem so that the town is the unit of production, and if we assume all mar-
kets to be perfect; we are still unable to show that returns to séale in

production will, in general, be constant at equilibrium.
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If we go back to the Arrow-Debreu Theorem we can see that this
result is predictable. The very strong assumption on the spatial homogen-
eity of economic activity is crucial to the proof of this theorem,.- and
cannot be weakened without loss of generality. Therefore, when we exam-
ine the spatial structure of an economy, we cannot expect that the conclus-
ions of the Arrow-Debreu Theorem will hold in the large scale when the
economy is spatially non-homogeneous in the small scale.b The imperfect
urban factor markets, which have been subsumed in the production unit, the
company town, continue to influence-the préduction scale which maximizes

company profit.

This concludes our analysis of the equilibrium company town and

of the factory town in general.



CHAPTER 8

CONCLUSION

" The aim of this thesis has been to investigate the structure of
the factory town, and to discover how production in factories modifies
the conclusions derived from the theory of thé firm. The. thesis is,
therefore, a study of some aspects of the way in which therlocatioﬁ of
economic activities influences the conclusions of microeconomic theory.
The basic model which has been used is that of a monocentric toﬁn divided
into two zones. The circular, inner zone is whqlly occupied by a factory
which produces a single good. The annular, outer zone is the residential
area of the factory's workforce, and its land is allocated either to

residential purposes or to transport facilities.

The land on which the town is located is of uniform quality, and
the labor supplied by the resident households of the.town is perfectly
homogeneous. These are the factors of production employed in the town's
factory. We did introduce capital as a factor employed in factory and
housing services production in Chapter 3, but showed that the criteria
which determine its optimal employment were not different from those deriv-
ed from the conventional,'non—locational theory of production. For this

reason it was excluded from examination in the remainder of the thesis.

Both positive and normative economic aspects of the factory town
have been considered, and these two parts of the study are brought

together by our showing that, subject to some limitations on the general-
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ity of the model, competitive realization of the optimum town is possible.
The reduced generality in this regard arises from an apparent lack of a
suitable sufficiency theorem when both the inner and outer radii of the
residential zone are control parameters in the optimization. However,
when the land area of the factory is constant, it was shown in Chapter 3
that the optimum town in which equals are treafed»equally is the equil-
ibrium town ip which all labor is paid the same wage and each commuter
pays a transport toll equal to the value of the external transport cost
imposed upon the rest of the comﬁu;ity by the marginal traveller's journey .

from his residential location to the central business district.

We chose as our criterion of optimality the maximization of
average household utility, and assumed that household utility is derived
from the consumption of the factory good, the services of residential
space and leisure time. It is implicit in this éssumption of the form
of the household utility function that each household is indifferent to
the level of utility derived by its peers. We confirmed that, in general,
it is optimal to treat equal households unequally. Although this result
is, by now, familiar in normative studies of the factory town, it is not
normally discovered in conventional, non-locational investigations into
microeconomic theory. Usually, convexity assumptions in non-locational
models guarantee that average household utility is maximized when equals
are treated équally. However, in a‘locational model non-convexity arises
from the locational uniqueness of land. In Chapter 3 we described the
nature of the locational non-convexity in our model in terms of the non-
convex household consumption set. This consumption set takes the form of
N mutually orthogonal 2-dimensional plane surfaces in N + 1 dimensional
space, whe;e N is the number of hbusehold locations available in the town.
Pbints not on these planes do not belong to the consumption set, because
they require residence at more than one location, and this is not permit-

ted in the model.
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The lack of familiarity of uneqﬁal treatment of equals in conven-
tional economic theory gives it a special interest when it is discovered
in a study df the optimum factory town. We attempted to examine its
implications by investigating polar cases. We studied two cases in res-
pect to the criterion of optimality. First, we examined the case where
each household is assumed to be indifferent to the utility derived by
others. This is the case already alluded to. The second case, where it
differs from the first, is the case where equals are treated equally Ey

constraint.

In setting out the results of these studies it is convenient to
divide the description of the structure of the optimum town into three
parts. These are:

(i) the distribution of household consumption allocations as
functions of residential distance from the centre of the town;

(ii) the allocation of land to transport, and tfansport congest~
ion across the residential zone; and

(iii) the values of the marginal products of factors employed in

the factory.

It was shown in Chaptefs 3 and 4 thét, unless equals are treated
equally by constraint, it is optimal to make household allocations of
all conéumption goods, which are treated as control variables in the
optimization process, strictly increasing functions of distance from the
centre of the town. This result holds irrespective of whether household
leisure time is treated as a variable or a constant, and is subject only
to the additional assumption (as a sufficient condition) that the second
order cross partial derivatives of the utility function are all positive.
The reason for this result was presented in Chapter 3. Since the shadow
residential rent is a von Thiinen rent, it must be a decreasing function.

of distance. It will, therefore, be optimal to allocate residential site
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area as an increasing function of distance. However, if the second order
cross partials of the utility function afe positive, the optimality of an
upward sloping residential site area function implies upward sloping
allocations of all other consumption goods. In a non-locational model in
which the utility function is strictly donvex, this argument is negated
by the optimality of equaiity. However, we showed that the upward Siop-
ing residential site area function results in a saving in the resource
cost of transport, which résults in‘a trade-off against the sub-optimality

of unequal treatment when transport is free.

When the equality constraint is imposed upon the optimization of
average utility and householdrleisure time is fixed, it continues to be
true that the residential site‘area is a strictly increasing function of
distance, and equalify of househéld utility is abhieved by the household
allocation of the factory good being a decreasing function of distance.
However, we found in Chapter 4 that, when factory work hours, rather than
leisure time, are fixgd, fhese unambiguous conclusions are not necessar-
ily valid. Leisure time, in this model, is necessarily a decreasing
function of distance, and substitution between the three consumption gobds
depends upon the shape of the utility function to the extent that there
may be regions within the reéidential zone where residential site area
decreases with distance from the town centre, notwithstanding the fact
that the residential rent is unambiguously downward slopiné. It was also
found that this same ambiguity appears in.the town of unequals when work

hours are fixed.

It was shown in Chapter 5 that, when residential site area is
fixed, equals are treated equally in the optimum town. The reason for
this result is that fixing the residential site area rules out the possib-
ility of the trade-off between'savings in transport resource cost and

the sub-optimality of ceteris paribus unequal treatment.
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Our analysis of the optimal allocation of land to transport was
presented in Chapters 3 and 4. It was found that, if leisure time is a
control variable or is fixed, optimal transport congestion is unambig-
uously downward sloping with respect to distance from the centre of the
town. Furthermore, for the simple specific transport congestion funcfion
examined,the land allocated to transport is also downward sloping. It is
never optimal to allocate all land to transport at the boundary of the

central business district.

When factory working hours are fixed by constraint, the lack of
ambiguity in the slope of the transport congestion function is lost, and
it may be optimal for congestion to increase with distance in some reg-
ions of the residential zone. The ambiguity in this result is associated
with ambiguity in the slope of the shadow price of leisure function. A
downward sloping shadow price of leisure function is a necessary condition

for the optimal transport congestion function to have a positive slope.

The marginal proaucts of factors employed in factory production
were also evaluated in Chapters 3 and 4. Tt was argued that the ma;ginal
product of labor is a contrived concept, and is not of fundamental import-
ance in the optimum factory town. The basis of this argumént is that,
whereas the marginal product of labor is derived from the effect of an
increment in the labor input to production, all other things remaining
constant, in our models the labor input to production is increased through
an increase in population, and this increase in population affeéts travel
time in the towﬁ. Accordingly, we have placed most interest in the marg-

inal products of population and factory area.

The marginal product of population was shown to be equal to the
shadow value of the marginal household's consumption in the optimum town
in which equals are treated equally.' This simply means that households

are added to this town to the point where the marginal household just
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produces the value of its consumption. This resqlt is, perhaps, a pred-
ictable extension of the conventional theory of the firm. However, when
the equality constraint is removed we find‘an additional term appears in
the equation for the marginal product of population. This term is prop-
ortional to the difference between the‘utilities of the average and marg-
inal households. Its effect is to ensure that, in this optimum town, the

marginal household produces less than the value of its consumption.

When equals are treated qually by constraint and factory work
hours are fixed, the value of the marginal product of population was
shown, in Chapter 4, to bé‘equal to the value of the consumption of the
marginal household plus the value of the transport congestion caused by
the marginal journey from the.bOundary of the town to the CBD. Since
every householder works fixed hours in this model, regardless of his travel
time, the entry of the marginal household into the town results in a red-
uction in the consumption of leisure time by the rest of the town. House-
hold utility can only. be maintainéd by a substitution of the factory good
and/or.résidential space for leisure time. The marginal household, there?
fore, must not only produce the value of its own consumption, but also’
the value of the reduction in the town's leisure time its commuting has

caused.

» Compared with the predictions of the coﬁventional theory of the
firm, the value of the marginal product of land derived from the theory
of the oétimum factory town contains additional terms. These ariée from
the necessity of displacing households from residential locations at the
CBD boundary to the boundary of the town in order to increase the land
area allocated to factory production. Thus, in all our models we found
that, at the optimum, the vélue of theAmarginal product of land equals
the opportunity cost of land‘to the town plus terms which are proportional
to the differences between the values of the consumptions and utilities

of the households which reside at the town and CBD boundaries. When. work



162.

hours are fixed, there is one further term, which is proportional to the
increase in transport congestion brought about by this displacement of

households.

Several measures of the degree of increasing returns to scale
can be'obtained from these evaluations of the marginal products of lénd
and population. The measure most directiy significant to economic theory
is probably the local degrée of homogengity, at the optimum point, of
the production‘function net of all transport costs. We founa from this
measure that, except for the town ih which work hours are fixed, returns
to scale in the optimum town are decreasing regardless of whether or not
equals are treated equally by cdnstraint. We found, in Chapter 5,.that
if residential site area is constant, these returns to scale are constant.
Removing this constraint, we found, in. Chapters 3 and 4, that returns to
scale are strictly decreasing. However, we also found in Chapter 4 that,
when factory work hours are fixed, returns to scale in net factory.prodv
uction are strictly increasing. 1In all our models, returns to scale are
iexpressed in terms of marginal products which refer to outputs per day.
The introduction of the fixed work hours constraint results in the marg-
inal products having somewhat different meanings, because, in the other
modéls, the labor input per day could vary. This completes the summary

of conclusion in respect to the structure of the optimum town.

A number of comparative static results in respect to the optimum
town were obtained in Chapter 5. 1In contrast to earlier studies in which
household incomé was assumed to be constant, almost all of these results
were ambiguous in sign. This ambigquity can be related to the existence
of increasing returns to scale in gross factory output. The optimum
degree of increasing returns to scale'may change in either direction in
response to a change in a shift parameter. Thus, the scale of produétion

may increase or decrease, and this, of course, implies that factor inputs,
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town size and population may increase or decrease.

Using the opportunity cost of land as a shift parameter, we found
that the induced changes in the optimum values of the areas of the factory
and the town, the population and the workforce are all ambiguous in sign.
In respect to the area of theAfactory,~this means that an increase in the
price of land may induce an inérease in the employment of land. However,
this result is not paradoxical, because we‘were able to show that, if the
area of the factory increased, labo; also increased, and in such a way

that the land/labor ratio decreased.

The time taken for a commuter to travel unit distance and the’
population density, both gssumed to be constants with respect to location,
were also used as shift parameters, and the induced changes in the fact-
ory and ;he town areas, the‘population and the workforce were evaluéted.
All of these results wefé found to be ambiguous in sign with the single
exception that an increase in the transport time induces an unambiguous

decrease in the area of the factory in the optimum town.

It is well known that the factory town is a von Thiinen model;
the factory and the residential zone being two von Thiinen "rings". How-
ever, these rings had not, hitherto, been integrated into a model contain-
ing the_classical, agricultural rings. This was done in Chapter 6, in a

normative context, in order to examine the optimum industrial state.

The constant residential density model formulated in Chapter 5
was used with one agricultural ring added. It was shown that the town
and the agricultural zone each separately "paid its own way". The agric-
ultural production function was assuﬁed to exhibit constant returns to
scale, and marginal productivity conditions of standard form in respect
to shadow prices were derived. However, the shadow prices of the factors
employed in this zone were shown to be location dependent. Household

utility is constant across the profile of the state, but the shadow wage
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rate in the agricultural zone is a decreasing function of .distance from'
the centre of the state. This is because the von Thiinen, agricultural
‘rent is a downwards sloping function of distance‘from the market, and
therefore, the residential rents of the agricultural workers must beAdown-
ward sloping. Thus, the shadow wage of agricultural labor must be down-

ward sloping when the household utility is constant.

The equilibrium town was examined in Chapter 7.  The ultimate
purpose of this examination was to‘make a contribution to the long stand-
ing debate on the possibility of the co-existence of increasing returns
to scale and competitive equilibrium. For this purpose a pure model of
an industrial economy in which markets are "as perfect as they can be"
was chosen. It was shown that, at equilibrium, all towns are company towns,
and, while the goods and agricultural factor markets may be competitive
if freight costs are zero, imperfections in the urban factor markets are
inevitable. This is because homogeneous labor must be paid the same wage
in the equilibrium town, notwithstanding the fact that a worker's travel
timebdepends upon the location of his residential site. The market imper-
fections are manifest, in a pure model,ras an apparent monopsony in the
urban labor market and monopolistic competition in the urban land market.

These imperfections mean that the équilibrium cannot be competitive.

It was shown that returns to scale in gross facﬁory production -
the measure of production usually considered in diécussions on the co-
existence of increasing returns and equilibrium - may be increasing, con-
stant or decreasing. However, since the debate has been based upon the
assumption that observed equilibria are approximately competitive; thé
debate is misconceived, and no anomaly between observation and theory in
respect to competitive equilibrium and returns to scale has been- demon-

strated.

This completes our summary of the results obtained in this thesis.
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It remains to suggest some directions for further work. Three different

lines for further research are apparent.

First, in respect to the models in this thesis, there is a need
for further examination of the relationship between the optimum and equil-
ibrium towns. It appears that this programme would require further_dével-
opment of control theo;y, either by extending the generaiity of sufficiency
and existence theorems or by treating the central business district and
residential zone together in the foxmuiation of the welfare function.

This latter approach implies that the lower limit of the welfare function
is constant at zero, but it introduces mathematical difficulties in res-
pect tobthe description of the state variables. " In a similar mathematical
vein, there is a need to generalize the company town by making household
residential site area a control variable. It could be treated either as
an instrument of company profit maximization or of household utility
maximization. We saw in Chapters 3 and’4 compared with Chapters 5 and 6
that, when site érea is a variable, relationships in the optimal town take
more general forms. However, we also saw that this genefalization is
associated with greater complexity in thé mathematical analysis. Second,
our models were all based upon the assumption'of uniform land quality.
There is a need to apply the téchniques developed in the theory of the
factory town to the Weberian point location theory.b This theory is based
upon differences in the spatial distribution of resources, but, being a
point theory, fails fo provide a satisfactory rent theory. 2n integration
of these two approaches to spatial economics would offer significant

advances to our present knowledge of economic theory.

Finally, our purely theoretical approach begs the question of how
our conclusions may be applied by policy makets in the discovery of solut-
ions to urban problems. A great deal has been said about the need to

improve urban life style, but we might suspect that many of the current
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ad hoc remedies, which involve subsiaies, serve to aggravate the problems
they are intended to cure. For example, New York, a large, heavily trané-
port dependent city is said by its administrators to face bankruptcy, and
therefore, to require suﬂsidy. Our results suggest that there is an
optimum size for such a city, and that this size depends upon transport
cost. Our limited view of transport can be exténded in a qualitative Qay
to include such costs as garbage removal and the reticulation of other
services, and we mus£ suspect that the size of New York is very much great-
er than optimum, and that this exce;sive size is the fundamental cause of

its financial problems.

Of course, the non—malleability of urban capital precludes the
possibility of the rapid réstructuring of New York into the optimum to&n,
However,»if our theory has application, it suggesﬁs that subsidies intendgd
directly to overcome New York's immediate problems will compound them by
encouraging further expansion. If our theory supports the policy of
subsidization at all, that support would be for subsidizing the transfer
of industry from New York to new towns. In other words, for subsidizing

the contraction of New York.
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