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ABSTRACT

This thesis is a theoretical investigation of the structure of 

the factory town. The study considers both the positive and normative 
economic aspects of an isolated town. The optimum industrial state, 

consisting of a factory town and its economically associated agricultural 
zone, is also investigated.

The structure of the residential zone of the town is expressed 

in terms of household preferences in respect to consumption of the 
factory produced good, the services of residential space and leisure time, 
the allocation of land to transport and transport congestion. The areas 
of the factory and the town and the population of the town are obtained 
as implicit functions of the values of the marginal products of land and 
town population. Expressions for returns to scale in factory production 
at the optimum and equilibrium points are derived.

Some comparative static analyses of the optimum town are pres
ented using the opportunity cost of land, a transport parameter and popul

ation density as shift parameters.

Conditions for equilibrium in a company town are derived, and 

it is shown that a general equilibrium involving production in factories

cannot be competitive.
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CHAPTER 1
INTRODUCTION

From the beginnings of the industrial revolution there has 

been a steady decline in the relative importance of the rural sector, 

and a major shift towards urban economic activity in almost all countries. 

Industrial production has moved out of the home and into the factory.

Yet economic theory has remained almost untouched by this important 

change in economic structure. Except for the specialized field of urban 

economics (which, in any case, has been more concerned with the applic

ation of existing theory to urban problems than with the extension of 

that theory), economics has not been structured to take account of how 

production and consumption are modified by the urban environment.

It is not altogether surprising that economic theory has not 

been developed in this direction. It appears to be a specialization 

which would not modify the substance of most branches of economics. In 

macroeconomic theory, for example, we already make heroic assumptions in 

respect to the aggregation of commodities, yet obtain important and mean

ingful conclusions. It is unlikely, therefore, that consideration of the 

fine structure of urban areas will give added depth to this theory.

Nevertheless, it is easy to miscalculate the narrowness of the 

specialization. In respect to the theory of value, the Arrow-Debreu 

Theorem is confined in its application to:
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"elementary regions.....small enough for all the
points of one of them to be indistinguishable from 
the point of view of the analysis."1

In other words, it applies only to regions in which all economic activity, 

that is, production, marketing and consumption, are uniformly distrib
uted. By contrast, a crucial feature of the economics of urban regions 

is the spatial distribution of these three economic activities. Produc

tion takes place in factories, consumption takes place in households, 

perforce located outside the factory area, and there is transportation 

of producers and consumers to and from the market places. Clearly, the 

Arrow-Debreu Theorem is not a valid description of economic equilibrium 

in an urban environment.

At the same time, this same competitive equilibrium theorem 

fails to accommodate the increasing returns to scale which are pervasive 
in factory operations. It is necessary to assume constant returns, at 
least in some neighborhood of equilibrium:

"If competition is perfect, and if no frictions 
prevent firms from growing to their equilibrium size, 
then falling average costs for the individual firm 
cannot occur."2 3

"Yet on an empirical level, nobody doubts that in 
any economic activity which involves the processing or 
transportation of basic materials - in other words, in
industry - increasing returns dominate the picture»I 3

Equilibrium theories developed within these spatial and prod
uction limitations have not been immune from criticism. In particular, 
Kornai [1971] and Kaldor [1972] have declared all such equilibrium theory 
to be irrelevant as a means of describing the operation of economic 
forces, and they call for its demolition. Kornai's wide ranging attack 
includes a strong explicit criticism of the assumption of constant 
returns. Kaldor concentrates most of his attack on this same assumption.

1 Debreu [1959, p.29].
2 Joan Robinson [1932, p.544].
3 Kaldor [1972, p.1242].
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However, both are silent in respect to the spatial assumption. This is 

surprising for the following reasons. We have a theory in which, for 
conceptual, not merely technical reasons, we have to assume that returns 

to scale in production are constant (or at least non-increasing), and we 
observe that, in this regard, the theory often fails to describe produc

tion in factories. At the same time, the theory postulates a spatial 

uniformity which conflicts with the spatial structure that is observed 

to be associated with factory production. One would expect that the 
critics of equilibrium theory would look for a nexus between these two 

contradictions of reality by the theory.

That they have not is probably related to a widespread belief 

among economists that the costs of the transport systems, which are nec
essary to bring the spatially separated parts of an economy together, 

are no more than passive economic forces, that is, "frictions", which 
simply retard and modify the approach towards competitive equilibrium, 
and do not actively drive the system away from it. This belief has prev
ailed notwithstanding Sraffa's very clear warning of 50 years ago that 
it may not be valid.1 Sraffa was writing about any phenomenon which 
gave firms comparative advantages with respect to some market places, and 
was arguing for the abandonment of the concept of perfect competition so 
that the co-existence of equilibrium and increasing returns in production 
could be explained. The monopoly power derived from transport costs, 
specifically, had been explored 100 years earlier by von Thiinen, whose 

theory of agricultural rent is derived in terms of the cost of transport

ing output per acre.2

In regard to consideration of economies of scale in production 

and locational effects, normative economics has been somewhat further

1 Sraffa [1926, p.188].
2 For a translation of von Thiinen's works see Wartenberg [1966].
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developed than its positive counterpart. Starrett [1974] has presented 
a theory of optimal location which takes into consideration transport 
costs. In particular, he obtains a relationship between the optimal 

average degree of increasing returns in production and the transport 
function. However, Starrett's model consists of a system of zones, in 

each of which production and consumption are independent of location.
This describes the essential features of an agricultural economy in which 

specialization takes place, or of cottage industry, but it does not 
capture urban economic activity where production and consumption must be 

separated. In other words, it cannot be claimed that Starrett has 
solved the problem of finding the optimum allocation of resources when 

production takes place in factories.

A promising means of introducing urban structure into the 
theory of resource allocation (positive or normative) is by the use of 
the presently evolving theory of the factory town. Mills and MacKinnon 
[1973] have called this theory the "New Urban Economics". It examines 
the fundamental economic forces which operate in an urban area using a 
simple abstraction of a factory town of the following basic structure.
The circular core of the town, called the central business district 
(CBD), is wholly occupied by a single factory. This factory produces a 
consumption good from inputs of land and labor. The CBD is surrounded 
by an annular residential zone, the land of which is allocated either to 

transport or to residential purposes. The factory workforce lives in 
the residential area and derives utility from the consumption of the 
produced good, residential space (or housing services) and perhaps leis

ure .

The theory of the factory town has proved very useful in stud
ying the structure of the residential zone, particularly in investigating 

the problems of allocating land between household residential space and 

the transport system. However, in its present form, it is not suffic-
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iently general to be used for a definitive investigation of returns to 

scale in production at either the optimum or equilibrium points. This 
is because the mathematical problems of using the area of the CBD and 

the population of the town as control parameters have not been solved. 
Consequently, the land input to factory production plus CBD transport 

and the workforce (although not the labor input to production) have hith

erto always been taken as given.

The primary aim of this thesis is to use economic theory to 

investigate the interrelationships between the location of economic 

activity, transport costs and returns to scale in production, particul

arly in an urban environment. The model used is the factory town, and 

to achieve this primary aim it is generalized to make CBD size and town 

population free parameters.

Secondary aims are to generalize current knowledge of the struc

ture of the residential zone and to examine the structure of the optimum 
isolated state of the von' Thünen type.

The point-by-point approach is used throughout. That is to 
say, each model used is made as simple as possible by omitting consider
ation of all influences which are thought to be extraneous to the relat
ionships being investigated. This approach comes under fire from time 
to time. Within urban economics, Richardson [1973], for example, has 
criticized early models of the optimum town for the large number of 

important phenomena they have failed to take into consideration. At the 

same time, the approach has had many defenders. Mirrlees [1973] and 
Solow [1973c], the authors of the early models, acted as their own apolog

ists against Richardson's direct attack. A general case for using the 

point-by-point approach has been made by Nagel [1963]. He divides 
unrealistic theoretical statements into three different types. It is
his third type which interests us here, and in respect to it he argues:
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"In many sciences, relations of dependence 
between phenomena are often stated with reference 
to so-called "pure cases" or "ideal types" of the 
phenomena being investigated. That is, such theor
etical statements (or "laws") formulate relations 
specified to hold under highly "purified" conditions 
between highly "idealized" objects or processes, 
none of which is actually encountered in experience.
For example, the law of the lever in physics is 
stated in terms of the behavior of absolutely rigid 
rods turning without friction about dimensionless 
points: similarly, a familiar law of pricing in
economics is formulated in terms of the exchange 
of perfectly divisible and homogenous commodities 
under conditions of perfect competition. State
ments of this kind contain what have previously 
been called "theoretical terms", which connote 
what are in effect the limits of various non-termin
ating series and which are not intended to designate 
anything actual. Such statements may be said to be 
unrealistic but in a sense different from the two 
previously noted. For they are not distinguished 
by their failure to provide exhaustive descriptions, 
nor are they literally false of anything; their 
distinguishing mark is the fact that when they are 
strictly construed, they are applicable to nothing 
actual.

However, laws of nature formulated with refer
ence to pure cases are not therefore useless. On 
the contrary, a law so formulated states how phenom
ena are related when they are unaffected by numerous 
factors whose influence may never be completely 
eliminable but whose effects generally vary in mag
nitude with differences in the attendant circumstan
ces under which the phenomena actually recur.
Accordingly, discrepancies between what is asserted 
for the pure case and what actually happens can be 
attributed to the influence of factors not mentioned 
in the law."-1

In Nagel's language, we wish to formulate laws relating transport costs, 

production and urban structure, and in using the point-by-point approach 

our formulation is in terms of "pure cases"; none of our models will 

attempt to depict a real town because of factors not considered in their 

formulations.

The thesis is divided into eight chapters, the first of these 

being this introduction, and the last a summary of the main conclusions.

Chapter 2 surveys the published literature. It is convenient

1 Nagel [1963, p.215].
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to divide this literature into three topics, although many articles span 

more than one of them. The first topic is the development of the von 
Thünen theory of land rent. The second topic is the equilibrium factory 

town, and the third is the optimum town. It becomes clear that the CBD 

and residential zones are von Thünen "rings" in an expanded form of his 

theory of the Isolated State.

The next three chapters examine the optimum town. Historic
ally, the theory of the equilibrium town was developed before that of 

the optimum town. However, as is so frequently the case, normative 
models are easier to formulate and solve than positive models, and it is 

for this reason that the optimum town is explored first. Chapter 3 exam

ines the optimum town in which the household's leisure time is held con

stant. This leisure constraint is conventional in the literature. Like 
earlier researchers, we find that, unless some kind of "morality" is 
built into the model, equals are not treated equally in the optimum town. 
To explore around this result the alternative polar case is examined, 
that is, the case in which equality is deemed to be paramount. An inter
esting feature of the chapter is the extent to which the two cases can 
be handled with a single calculus.

Leisure time as a variable in the optimization process is 
introduced in Chapter 4. Most interesting here is the second best town 
in which factory work hours are fixed, because of its accord with the 
real world. In this model leisure time is a state variable in the sol
ution. This solution is a further polar case to be compared with the 

models of Chapter 3. We find that several of the strong unambiguous res
ults obtained in Chapter 3 are not robust to the change in the constraint

Chapter 5 is a comparative static analysis of the optimum town 
using the opportunity cost of land, the inverse of transport velocity 

and the population density as shift parameters. Throughout this chapter 
population density is taken to be independent of location,and the house-
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holder's leisure time is held fixed. The analysis is conducted in a gen

eral equilibrium framework, and some of its conclusions contradict earlier, 
partial equilibrium analyses.

In Chapter 6 the constant density, constant leisure model is 

extended to include the cost of transporting an agricultural good consum

ed by the urban households. The extension leads us to generalize from 

the optimum town to the optimum Isolated State. There are three "rings" 

in this von Thiinen model: the CBD; the residential zone; and the
agricultural zone.

Chapter 7 contains our only sortie into positive economics 

(although we earlier showed that market realizations of some optima are 

possible). We examine the structure of a typical town in a general 
equilibrium model of a large economy. We make all markets "as near to 
perfect as they can be", and we discover that at equilibrium our town 
will be wholly owned by a single firm. Furthermore, competitive equil
ibrium cannot occur, even when goods transport costs are neglected. 
Inevitably, there is an "apparent" monopsony in the factory labor market 
and monopolistic competition in the urban land market. Returns to scale 
in factory production are increasing at equilibrium, but there is no 

income distribution problem, because the factory-employed factors are 

not paid the values of their marginal products.

Altogether, the research described in Chapters 3 to 7 gives a 

set of theoretical statements which relate factory production, the struc

ture of the residential area, per capita utility, the spatial structure 

of the agricultural hinterland and transport costs.

In the residential zone we find, as did earlier writers, that 

equals are treated unequally in the optimum town if the area of the 
household's residential site is an instrument of optimization. Further
more, under the usual assumptions on the shape of the utility function,
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the household allocation of every consumption good increases with the 

distance of residential location from the centre of the town. The cause 

underlying these results is explained in terms of the transport costs 

which are saved by moving the centre point of the location of every 

household toward the centre of the town and the positive sign of the 

cross partial derivatives of the utility function.

When an equality constraint is imposed upon the model, the 

structure of the residential zone depends crucially upon whether 
household leisure time is assumed to be constant or is treated as an 

instrument of optimization.

The conclusions reached in respect to returns to scale in fact

ory production in both the equilibrium and optimum towns are new. They 

contradict the intuitively derived results of earlier writers that trans
port can be internalized into factory production so as to obtain constant 

returns to scale in the aggregate production. In fact, returns to scale 
in both factory and aggregate production in both the optimum and equil
ibrium towns may be decreasing, constant or increasing,depending upon 

the structure of the model.

When the transport costs of agricultural goods from the town's 

hinterland are included in the model, the nature of the central business 
district and the residential zone,as von Thünen "rings" of production, 

becomes clear. In this context the residential zone is identified as the 
ring in which labor is produced for use in the factory production of the 
CBD, and von ThUnen's model of the isolated state is generalized so as to 

give the town a more extensive role than that of a simple market.

Finally, the comparative static results obtained from a general 

equilibrium model of the optimum town refute those obtained from partial 

equilibrium analyses. We find ambiguity of sign in almost all our res

ults. These ambiguities are explained in terms of shifts in the optimum
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degree of increasing returns to scale combined with the shifts in the 

optimum factor proportions.



CHAPTER 2
THE STRUCTURE OF THE FACTORY TOWN: 

THE LITERATURE

In this chapter we survey literature directly related to the 
theory of the factory town. Two earlier surveys of this field are 

available. Goldstein and Moses [1973] presented a comprehensive apprais

al of theoretical urban economics, the second section of their paper sur
veying housing and land values, and the third section, being on intra

urban land use, together review most of the literature on the structure 
of the factory town, then published. Mills and MacKinnon [1973] have a 
much shorter analysis intended primarily to give an overview of models 
of the factory town.

It is convenient to divide this chapter into three parts. The 
first reviews the development of the von Thünen theory of land rent in 
its application to urban areas. The second part surveys equilibrium 
models of the factory town, and the third examines normative models and 
comparisons between the structures of equilibrium and optimum towns.

2.1 THE THEORY OF URBAN LAND RENT

Broadly speaking, the theory of the factory town is concerned 
with the allocation of land in urban areas. Therefore, a land rent funct

ion, dependent upon a location variable and the characteristics of the 

transport system, will normally be a crucial part of the solution to any
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urban model. It is the development of this type of rent theory that we 

now review.

The theory of land rent can be traced back at least to the 
Physiocrats of the 18th century. At the beginning of the 19th century 
Ricardo presented his well known treatment of land rent, based upon soil 

fertility, which is the foundation of modern agricultural land rent 
theory. Although he and Adam Smith before him recognised that location 

with respect to markets would influence land values, the credit for orig

inating the formal treatment of agricultural rent arising from transport 

costs and location belongs to Johann von Thünen.

Writing over the period 1826-1863, von Thünen analysed the 

problem of the efficient allocation of uniformly fertile agricultural 
land around a single market place.^ The land rent is obtained in the 
solution to his problem as the producer's surplus per unit area of prod

uction net of freight costs to the market. The main thrust of the von 
Thünen theory can be captured by a simple model. Assume fixed coeffic
ient production functions, and let all producers be price takers in the 
goods and labor markets. In general, more than one good can be produced

+- V»from the land. We consider the i of the set of possible goods. For 
this good let the freight rate (that is, the cost of transporting unit 
quantity unit distance), be x^, a constant. Furthermore, let area s^ be 

required to produce unit quantity of it. Then, the producer's surplus 

per unit area under crop i is a linear function of the distance from the 

market of slope -x./s.. The landowner maximizes his profit by the alloc-l i

ation of his land between crops. The agricultural land rent, r(x) say, 
where x is the distance from the market, is the envelope of the set of 
producer's surplus functions. If we number crops outward from the market, 

this envelope will be made up of straight line segments whose slopes

1 See Wartenberg [1966].
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-T./s.r i = 1,2,..., decrease in absolute magnitude with x when profits l l

are maximized. The envelope, r(x), generates the so-called von Thiinen 

"rings" of production, because, associated with each segment of r(x), 

there is an annulus of land which is allocated exclusively to the product

ion of a single crop. The process is illustrated in Figure 1.

For each ring we can write*

r (x)

r „ (x)

r „ (x)

ring 3 ring 4ring 2ring 1

Figure 1

r(x) = - t ./s .. (2.1)l l

The integral of (2.1) depends upon the prices of neighboring crops, and 

therefore, the dimensions of each "ring", depend, among other things, 

upon commodity prices. All land is allocated out to the distance at 

which the von Thiinen rent becomes zero.

Beckmann [1972] introduced neo-classical production functions

ci1 Throughout this thesis we will use the convention r E — .
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into the von Thiinen model. He showed that the land continues to be 
allocated in discrete rings. The major effect of the substitution bet

ween factors, that the neo-classical production function allows, is to 

make the producer's surpluses downward sloping, strictly convex functions 
(for a constant freight rate), and this, of course,implies the possibil

ity that one good might be produced in two separated rings. The rent 
function continues to be the envelope of the producer's surplus functions. 

Some details of Beckmann's analysis were re-examined by Renaud [1972].

Strangely, almost exactly 100 years were to pass between von 
Thünen's last publication and the first application of his theory to res
idential areas in an attempt to explain the character of urban land rent. 
In the interim, attempts were made to develop a theory of rent for retail 

premises based upon the "profitability" of location. These attempts had 
only limited explanatory power, because profitability was treated as 

being determined exogenously from the model.

Alonso [1964] has given a brief review of these theories.^ It 
is sufficient here to take a critical look at a representative example, 
the retailing rent theory presented by Chamberlin [1948]. This writer 
examines the retailing industry 'in isolation. He argues that the land 
rent for retailing premises is determined by the favorable location of 
the site in respect to profitability in trading. He regards this rent as 
being different in kind from agricultural rent, because the agricultural
ist is always at a distance from the market, whereas the retailer is the 

market:
"The ordinary rent reasoning does not fit at all.
Rent is not paid in order to save transportation
charges. It is paid in order to secure a largerovolume of sales."

* Alonso [1964, Ch.l].
2 Chamberlin [1948, p.243].
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However, in treating retailing in isolation, Chamberlin fails 
to take into consideration the transport costs of buyers. Clearly, from 
an economic point of view3 it does not matter whether it is the buyer or 

the setter who travets to the market. In Chamberlin's model buyers' 
transport costs are implicit in his concept of exogenously determined 

profitability, but in a general equilibrium model containing both retail

ers and buyers, the land rent is determined by the competition among the 

buyers for housing favorably located relative to the market place, as 

well as by the competition between the retailers themselves for the mar

ket locations. Given a perfect land market, the rent on retailing land 

must equal the residential rent at the boundary of the market area. The 
rent function generated by this competition is not different in kind 

from, but is precisely a von Thiinen rent, and, in a market town without 

industrial production, the boundary of the market is the limit of the 
first von Thiinen ring.

Muth [1961] examined this von Thünen type rent function within 
the residential zone and at its boundary with the rural area. In a pure 
model, the residential zone is the second von Thiinen ring. Muth's method 
was to find equilibrium conditions for housing production. A land rent 

function can be obtained from these conditions. However, the transport 

costs, which determine the favorable quality of each location, are sub
sumed in an exogenous housing demand function in his model, and, as a 

consequence, his solution lacks generality. He does, however, obtain a 

housing rent profile.

It was Alonso [1964] who developed the theory of the von Thünen 
rent, which is generated by the demand for residential space in relation 

to the location of some centre of economic activity. He expressed demand 
for land by a series of "bid-price" curves. We limit our interest to the 
monocentric factory town, and in this simple model, his theory can be 

succinctly stated in the following way. Consider a large number of ident-
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ical households living in a monocentric factory town. We assume that the 

typical household derives utility from the consumption of a vector of 

produced goods, f , and the enjoyment of residential space of area, s.

We also assume that every household must travel to the centre of the town 

(to the factory) each day to derive an income w. The household budget, 

therefore, will have the form

E p . f . + r (x) s + l l x(z)dz = w, (2.2)

where the p_̂  are prices, r (x) is the residential land rent, t (x) is the 

cost of travelling unit distance at x, and x is the distance between the 

residential site and the centre of the town. Household utility maximiz

ation is effected by the usual choices of the quantities consumed of the 

produced goods and of residential space, and, in addition, by the choice 

of residential location. This choice of residential location implies 

the equilibrium condition

r (x) t (x) 
s (2.3)

Comparison between (2.1) and (2.3) shows that the Alonso urban rent is a 

von Thünen rent, and that the residential zone is a von Thiinen ring. In 

the context of the von Thünen model, this ring is used for the production 

of labor for sale at the central market.

The integration of (2.2) requires the complete solution of the 

equilibrium conditions. This leads us into an examination of models of 

the equilibrium factory town.

2.2 THE EQUILIBRIUM FACTORY TOWN

Throughout this section and the next we will assume that the
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land on which the town is located is perfectly uniform in quality. In 

the literature, several authors made their towns pie-slice in shape, 
implying that a regularly shaped section of the land, viz. the remainder 

of the pie, is perfectly inaccessible. This is a very simple and 

straightforward generalization (requiring no more than the substitution 

of 2tt by 0 < 2tt whenever it occurs) , but not a very powerful one, and 

for the sake of clarity in the exposition, we do not consider it when 

reviewing the individual articles.

Equilibrium models examine the interactions of some or all of 

the following economic activities:

(i) household consumption;
(ii) factory production;

(iii) housing services production;
(iv) transport production;
(v) land transactions.

There has been a tendency amongst authors to specify the functional form 
of some of these activities. Usually the Cobb-Douglas function with con
stant returns to scale is chosen. The solution is then obtained as a set 
of functional relationships of specified forms.

All the models have the following features in common. First 
the opportunity cost of land, identified as the agricultural rent, is 
independent of the size and population of the town, and is paid to absen
tee landlords. We will represent this opportunity cost by the rent, r .

3.

Second, the population of the town is an exogenously determined constant, 
which is measured as the number of identical households living in the 

town. We represent this number by N. Each of the households occupies its 
own residential site and sells one unit of labor to the town. The only 

reason for travel in the town, which is considered in the models, is to 
supply labor to the factory. Third, the form of the transport production
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function is always such that, given the uniformity of land quality, it 
guarantees circular symmetry in the structure of the town. This sym
metry makes possible the designation of location by a single variable, x, 
the distance between the location and the centre of the town. Finally, 

the area of the central business district, CBD, is assumed constant. We

designate the radius of the CBD by x . The area between x and the townc c
boundary, x̂_ say, is the residential zone.

In the first model of the factory town of which I am aware,

Mills [1967] used Cobb-Douglas functions of land, labor and capital to 
represent the factory good and housing productions. Returns to scale 

are constant in both activities. The factory has a monopoly, and all its 
profits pass to the urban landlords. The housing industry is competitive. 

Transport production is proportional to the single input, land.

The demand side of his model is represented by the following 

assumptions. Demand for the factory good is characterized by constant 
own-price elasticity and zero cross elasticities. The demand for housing 
is uniform across the residential zone and independent of price. Travel
lers pay the cost of their transport, and their demand is insensitive to 

price.

Mills obtained equilibrium conditions for the allocation of CBD 
land between transport and the factory and showed that the area of land 

allocated to transport per annulus of unit width increases at an increas
ing rate with x, while the area allocated to the factory increases at a 

decreasing rate. For the residential zone, household residential site 

area increases linearly with x.

Colin Clark [1951] plotted population density data for 20 cities 

of the world against distance from the city centre, and showed that, in 

practically every case, the population density outside the CBD approxim

ated closely to a negative exponential function of distance from the centre
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of the city. No special case of Mills' model predicts this functional 
form, although his population density function is strictly decreasing.

The land rent function for the residential zone that Mills 

obtained is a decreasing convex function of x, which decreases more 

steeply than exponential. It is, however, a negative exponential funct

ion of x when land is the only input to housing.

Mills [1969] abandoned the concept of a CBD and examined the 

implications of the dispersion of production throughout the town. His 

transport production function is Cobb-Douglas and the demand for trans
port at a given location is proportional to the output of the produced 

good at that location. The rent profile he obtains in the solution to 

this model is of the same functional form as that described in Mills [1967].

Muth [1969] used partial equilibrium analysis to examine three 
aspects of the structure of the residential zone of a simple town. First, 
he assumed household utility to be derived from the consumption of a 
factory produced good and housing services, and found the first and second 
order conditions for household equilibrium. In this model the household's 
transport cost is assumed to depend upon the distance travelled and house
hold income. The price of the factory good, and the housing services 

supply function are exogenous to the model. Muth showed that the price 
of housing is a decreasing function of distance, which is strictly convex 

if the equilibrium is stable.

Second, the conditions for equilibrium in housing production 

under conditions of perfect competition are obtained, given a housing 
demand function. Land and labor are the factors of production. The first 

order conditions derived by Muth can be separated into two classes. The 

first class is the well known pair of conditions which relate factor 
prices to the value of the marginal products. In this urban model these 
relationships are location dependent. The second class is an additional
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condition which is necessary for locational equilibrium. This condition 

is also a function of location. Muth showed that, at any location,land 
rent is an increasing function of the price of housing and a decreasing 

function of the wage rate. It is also a decreasing function of the dis

tance x.

Finally, making assumptions in respect to the price elasticity 

of demand for housing, the equilibrium conditions derived from the first 
two models were used to obtain the equilibrium population density function. 

This function is a negative exponential (and thus accords with the empir
ical results of Clark [1951]) when the housing price elasticity is -1 and 

the housing production function is Cobb-Douglas with constant returns to 
scale.

Hochman and Pines [1971] used a model very similar to Mills 
[1967] to examine the effects of the commuter's choice of the quantity 
of transport purchased upon the equilibrium rent and population density 
functions. Their exogenously determined demand for housing function has 
the same constant elasticity form as that used by Mills, and the transport 

and housing production functions are Cobb-Douglas with constant returns 
to scale. The cost of a household's transport per unit distance is made 
up of two terms. The first is proportional to the quantity of transport 
purchased. This term is entirely standard. The second term is proport

ional to the reciprocal of the quantity purchased, and it represents the 
opportunity cost of travel time. Thus, speed of transport is assumed to 
increase with the quantity of transport consumed, so that an increase in 

the quantity of transport purchased reduces travel time and, hence, the 

opportunity cost of travel.

The authors obtained a solution to their model in terms of spec
ific functions. Qualitatively, their rent and density functions do not 
differ significantly from those obtained by Mills [1967] and Muth [1969].
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Hochman and Pines generalized the treatment of household trans

port, but their approach did not enable them to examine the important 

urban problem of traffic congestion. This is because transport velocity 

in their model depends only upon the quantity of transport purchased, 

and is independent of the number of travellers. Mills [1972] introduced 

the transport price function

P(x) = PQ + P-l

into a model similar in essentials to that used by Mills [1967]. In (2.4) 

p(x) is the price charged for transporting one traveller unit distance 

at x, and pQ , a constant, is this price when travel is uncongested. In 

the second term of the right hand side n(x) is the number of travellers 

at x, g^(x) is the land input to the transport facility at x, and p^ and 

a are positive constants. This term, therefore, represents the cost of 

congestion. The functional form of p(x) was first suggested by Vickrey 

[1965].

Mills obtained some numerical solutions to his model for the 

rent function and the price of transport, but he was unable to find an 

analytical solution.

Solow [1972] presented a model which is demand orientated. His 

household utility function is a transform of the Cobb-Douglas function, 

and its arguments are a vector of produced goods and residential site 

area. Utility maximization gives the equilibrium values for the total 

demand for produced goods, the land rent and the household residential 

site area, each expressed as a function of income net of expenditure on 

transport, which itself is a function of location. He shows that goods 

consumption per household and the rent function are both downward sloping 

functions of x, while the residential site area has a positive slope.

n(x) 
g, (x) (2.4)

This means that households substitute residential area for goods consump-
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tion as the distance of their residential location from the centre of the 

town is increased.

In formulating his model, Solow assumed that, at all locations, 

a constant proportion of land is allocated to transport, and he used the 

Vickrey transport price function (2.4), but set pQ = 0. The solution to 

his model was obtained in the form of Bessel functions.

To simplify his analysis, Solow used parameter values which he 

considered to be unrealistic. Later, Solow [1973a] used more realistic 

values and obtained numerical solutions to the model. These and his 
earlier solutions suggested that transport congestion increases the con

vexity of the rent function.

In all the models reviewed so far, it has been assumed that 
households are identical and receive the same income. Beckmann [1969] 
investigated the locational distribution of income in a factory town. He 
used a demand-oriented model similar to Solow [1972] except that location, 
x, was included as an explicit argument of the utility function. He 
assumed household income to have a Pareto distribution with respect to 
population. His transport cost per unit distance is constant.

Beckmann showed that household income increases unambiguously 

with x. That is to say, the richer households live further from the 
factory than the poorer households.

Delson [1970] and Montesano [1972] showed that Beckmann's anal
ysis was faulty. Montesano re-examined the Beckmann model. He confirmed 
Beckmann's conclusions for the case of non-free transport, but showed 
that an ambiguity, not recognised by Beckmann, appears in the polar case 

of free transport.*

1 The assumption, in this model, that households derive utility from 
location (with < 0) is the raison d'etre for a residential zone,

d X

rather than the dispersion of households, when transport is free.
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The investigation of transport congestion and of traffic nuis

ance costs have been carried forward in two articles by Oron, Pines and 
Sheshinski. The first of these studies compares equilibrium and optimum 

towns. It is convenient, therefore, to defer discussion of these articles 

until we have reviewed the development of normative models in the next 

section of this chapter.

Comparative static analysis of the factory town is clearly an 
important aspect of the study of urban structure. However, as we will 

see from the work of Oron, Pines and Sheshinski [1973], this analysis is 
made difficult by the need to use general equilibrium models and the com

plexity of the functional dependences between the variables which describe 
the structure of the town. They showed that partial equilibrium analyses 

which do not take account of some of these dependences may lead to erron
eous conclusions. We outline their discussion in the next section of 
this chapter.

Only one extensive comparative static analysis of the equilib
rium town appears to be available. This is a partial equilibrium analysis 
presented by Wheaton [1974]. He examined the effects of parameter shifts 

on the structure of the residential area of two equilibrium towns. His 
basic model is demand orientated with households consuming a factory prod
uced good and the services of residential space. In his first town pop
ulation is fixed, and his shift parameters are household income, populat

ion, agricultural rent and the price of transport. He investigates the 
effects of shifts in these parameters on the rent and population density 
profiles and on household utility. In the second town household income 
is fixed, and the causal relationship between household utility and 

population is reversed.

Wheaton obtains unambiguous signs for all his derivatives. 
However, his partial equilibrium framework, particularly his assumption

that household income is independent of the population of the town, ser-
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iously limits the generality of his conclusions.

With the exception of the two Oron, Pines and Sheshinski art

icles referred to above, this completes our review of the published art
icles on equilibrium models of the factory town. The state of knowledge 

of the equilibrium town can be summarized as follows. The spatial struc

ture of the residential zone of a town of fixed population is now fairly 

well understood. The shapes of the rent and population density functions 

have been investigated, as has the allocation of land between residential 

use and transport under conditions of traffic congestion.

There remain, however, a number of aspects of the equilibrium 

factory town which require more extensive investigation. For example, 
in all the models reviewed CBD size and population are fixed. These 
models are therefore unsuitable for an investigation of equilibrium in 
the goods production sector. Consequently, this aspect of urban struct
ure remains untouched. It has significance, because, when land quality 
is uniform, there must be economies of scale in factory production to 
justify the transport costs inevitably associated with the existence of 
the town. The relationships at equilibrium, between returns to scale, 
transport costs and the wage rate is of fundamental importance to our 
understanding of city size.

Furthermore, each of the several economic activities of the 

town is assumed to be controlled by an independent entrepreneur. However, 

in a locational model, one activity may create monopoly power in another. 
For example, factory production creates monopoly power for the land and 

transport suppliers. Therefore, equilibria in which a single entrepren
eur controls several activities in an attempt to obtain monopoly profits 

are of special interest. A polar case of this horizontal integration is 
the company town. An examination of the economic structure of the com
pany town is, therefore, of considerable interest.
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The incompleteness of our knowledge of comparative static anal

ysis has already been mentioned. A final point we might make is that 

authors have assumed the agricultural rent at the boundary of the town 
to be independent of town size. However, the town must be viewed as a 

market for agricultural products, and given non-zero freight costs, the 

agricultural rent must depend upon town size and population. The need to 
integrate the town and its agricultural hinterland into a single von 

Thünen model remains.

2.3 NORMATIVE MODELS

We now turn to a survey of the development of the theory of 

the optimum town. A convenient starting point is a model due to Solow 

and Vickrey [1971]. This model is different from all others in two res
pects. Firstly, it has no residential zone. Secondly, the CBD is long 
and narrow, and is treated as having only one dimension. All other models 
are circular in form, and tend to concentrate upon the structure of the 
residential zone. The Solow and Vickrey model examines the relationship 
between freight costs and the allocation of land between production and 

transport. The supply of- labor and its transport cost is not considered.

It is assumed that each unit of land area allocated to product
ion generates a fixed amount of goods for transport. The destinations of 
these goods are uniformly distributed over the land allocated to product
ion. The authors found the conditions for optimal land allocation.

Later, Hochman and Pines [1972] showed that the Solow and Vickrey analysis 

was incomplete. Combining the two sets of results, we find that there 

is an optimum length for the town, and that, within this optimum town, 

transport land (i.e.,the "road") is of a symmetric cigar shape. That is, 
the width of the road decreases at an increasing rate with distance from
the centre of the town. A shadow rent function is also derived. Kanemoto
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[1975] presented a similar analysis for a circular CBD.

The minimization of the congestion costs of passenger transport 

in a circular town has been the subject of four articles. Consider a CBD 
in which land is allocated either to factory production or (road) trans

port, and a surrounding zone in which land is allocated either to resid
ential sites of uniform size or to transport, and let the population be 

fixed. Assume that the household's transport cost per unit distance is 
given by (2.4) with p^ set to zero. The problem to be solved is: what

is the road width profile which minimizes total transport cost in the 
town?

Mills and de Ferranti [1971] solved this problem for the resid
ential area only, given a CBD of fixed area. Later, Livesey [1973] and 

Sheshinski [1973] independently extended this solution to encompass a 
CBD of optimum size.

It is found that the optimum road width is a strictly increas
ing, convex function of x in the CBD, and a strictly decreasing, concave 
function in the residential zone. The road width is zero at the centre 
of the CBD and at the town boundary, and at no point does it occupy all 
available land. It is also found that optimum congestion increases lin
early from the centre of the town to the CBD boundary, after which it 

decreases linearly to the town boundary.

Legey, Ripper and Varaiya [1973] introduced capital into this 
congestion cost model to derive the profile of the intensity of land use 

for transport across the town.

The explanatory power of the models used in all these analyses 

is limited by their failure either to include goods production, or to 
optimize household utility. The role of the factory town is to produce 

goods for household consumption. Congestion minimization has a role in 
the maximization of household utility in a town, but this role is only a
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part of the process, and models which do not include production and the 
utility derived from the consumption of that production are necessarily 

incomplete.

The first examination of the structure of the town in which 

household utility is maximized is due to Mirrlees [1972]. In his model 
household utility is a function of the consumption of a produced good, 

residential space and distance from the town centre. The last of these 

arguments serves as a proxy for transport costs. There is no CBD or fact

ory production, and population and total income are fixed. The residen
tial site area, however, is a control variable in the optimization. In 
the previous models it was assumed constant.

Mirrlees derived a downward sloping shadow rent profile, but 
he was unable to find the slope of the population density function.* He 
showed that competitive realization of his optimum town was possible 
through an appropriate distribution of income. However, in general, equals 
are not treated equally in his town, and household utility depends upon 
the distance between the residential site and the centre of the town.

The discovery that equals are treated unequally in the optimum 
town has evoked considerable comment in the literature. It is well known 
that, when the consumption set includes choice of location, the feasible 
set is non-convex.1 2 Levhari, Oron and Pines [1972] discuss the consequence 
of this non-convexity, and argue that a lottery for location would ensure 
a priori equality of treatment. Stern [1973] has discussed utility funct

ions which, in the context of the Mirrlees model, would lead to equal 
treatment.

Riley [1972] derived an expression for the income distribution

1 There is an error in the derivation of his equation (23).
2 See, for example, Malinvaud [1972, p.22].
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necessary for competitive realization of the optimum town when the util

ity function is Cobb-Douglas and the product of household utilities is 

maximized. In his model goods and transport production require no land 

inputs, and their outputs are linear functions of their labor inputs.
The distribution of household income with respect to population for com

petitive realization was shown to be a truncated gamma function.

A feature of Riley's model is that leisure time is an argument 
of the household utility function. There has been a tendency in other 

models to assume that all households are allocated the same, exogenously 

determined amount of leisure per day, so that each provides a fixed 

amount of time to the town in the form of the sum of its travel and labor 

times. Given that households enjoy leisure, Riley generalizes the optim

ization process by allocating leisure optimally.

Riley [1974] introduced proxies for congestion and transport 
technology into the model. He found that, in treating equals unequally, 
household allocations of all consumer goods increase with distance from 
the centre of the town.

Dixit [1973] explored the implications of unequal treatment
t Inusing the minimization of- the sum of the m powers of the reciprocals of 

the household utilities as the criterion of optimality. In his model m is 
treated as a parameter, and in the limit, m tends to infinity, his criterion 
becomes equivalent to the maximization of household utility when equals 

are treated equally by constraint. In the analytical solution he obtain

ed, Dixit's town contains a CBD of fixed area, which is wholly allocated 

to the factory. Transport is free in the CBD. In the residential zone 

the time spent in travelling unit distance is given in the form of the 
Vickrey equation (2.4). Household utility is a Cobb-Douglas function of 
the consumption of the factory produced good and of residential space.

Dixit obtained an analytical solution for the optimum town when
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the population is fixed. He obtained rent and density profiles across 
the residential zone and the optimal allocation of land to transport.

We now turn to comparisons between optimum and equilibrium 

towns. Oron, Pines and Sheshinski [1973] found the solution to the equil

ibrium town in the presence of transport congestion, and compared this 

solution with the price structure for competitive realization of the 

optimum town when equals are treated equally. In this model households 

derived utility from the consumption of the factory good and housing ser

vices. Housing services are produced from inputs of land and labor.
Travel in the CBD is free and the size of the CBD (which is equal to the 

area of the factory) is fixed. The population of the town is also fixed.
The household's cost of travel is the opportunity cost of its travel 

time plus a congestion toll imposed by the transport authority. Trans
port services are produced from an input of land only.

The authors formulate a similarly structured normative model 
in which household utility is maximized subject to an equality constraint. 
They do not find the solution to this normative problem, although they 
are able to show that, if the optimum exists, it could be realized by a 
competitive price system in which the traveller is charged a congestion 

toll equal to the external congestion cost of his journey. In the equil

ibrium model it is shown that efficient allocation of resources requires 
that the congestion toll shall have this same value. The authors call 

it the warranted congestion toll.

Using their equilibrium model, Oron,Pines and Sheshinski make 

a comparison of the conclusions derived from partial and general equilibrium 
analyses of the way in which population density varies with the magnitude 
of the congestion toll. In the partial equilibrium analysis the price of 

the factory good and household income are assumed fixed as the toll 
varies. In the general equilibrium model these quantities are endogen-
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ously determined. The authors show that, in the partial equilibrium 

model, increasing the congestion toll to its warranted value induces a 
fall in population density at the CBD boundary. They were not able to 

solve the equivalent general equilibrium model analytically, but their 
computed solutions show that, contrary to the conclusion from the partial 
equilibrium model, increasing the congestion toll to its warranted value 

results in an increase in the population density at the CBD boundary.

Of course, the partial equilibrium model fails to take into consideration 

the fact that an outward migration of population results in increased 

transport time, and therefore, reduced factory production. In this res

pect it fails to provide an adequate description of the equilibrium town. 

We referred to these results when discussing comparative static analyses 

in the previous section of this chapter.

In a second article, Oron, Pines and Sheshinski [1974] extend 

their treatment of traffic nuisance by including environmental quality 
and leisure time among the arguments of the household utility function.
In this model residential site area replaces housing services as a con
sumption good. Environmental quality is assumed to be a function of the 

distance from the centre of the town and of the number of travellers.

The authors show that, given no tax on traffic nuisance, house
hold utility in an equilibrium town can be increased by re-locating all 

households closer to the centre of the town. Furthermore, if the utility 
function is Cobb-Douglas, and if the environmental quality is defined as 

the reciprocal of the traffic density, the equilibrium town, in which 
the congestion toll is less than the external cost of the traveller's 

journey, is always greater in area than the town in which household 

utility is maximized. In other words, a town in which travellers pay 

less than the marginal social cost of their travel will always be sub- 
optimal, and it will always be more dispersed than the optimum town.
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This completes the survey of the normative models of the fact

ory town. It is clear that the comments made at the end of the last 
section in respect to the state of knowledge of the equilibrium town are 

equally valid for the optimum town. No comparative static analysis 

appears to be available and in every model the agricultural rent at the 

boundary is an exogenously determined constant. The CBD size (but not 

the population) is a control parameter in the Livesey [1973] and 

Sheshinski [1973] models. However, there is no goods production in these 

models, and hence they throw no light on optimum factory output.

To conclude this survey we consider the role of "housing 

services" in both the equilibrium and optimum towns. It is clear that 
there has been a growing tendency to use residential site area as a 

proxy for housing services as the theory has developed, although this 
trend is not commented upon in the literature. However, the concept of 

housing services as a single commodity implies that consumers would not 
make separate choices of land space and capital structure in an equil
ibrium or optimum town.1 Not only does this appear to be contrary to 
experience, but also the production of housing services complicates the 
structure of the model. It appears more realistic and more convenient, 

therefore, firstly, to use residential site area as a control variable 
in its own right and not as a proxy for housing services, and secondly, 
to introduce the services of capital as an additional consumption good. 

However, we will show in the next chapter that malleable capital adds 
very little to the power of the model of the factory town, and having 

established this fact, capital will be ignored throughout the remainder 

of this thesis.

1 The earlier writers' inclusion of labor among the factors of product
ion of housing services seems to have arisen from a confusion between 
house building and housing services. Clearly, the labor input to 
housing services, in which the residential structure is the capital 
input, is negligible.



CHAPTER 3
THE OPTIMUM S IZ E  FOR A FACTORY TOWN

In this chapter we attempt to extend the research of Mirrlees 

[1972] and Oron, Pines and Sheshinski [1973] in the examination of the 
structure of the optimum factory town. These writers used a model in 

which the population is given, and they maximized total utility. Average 

utility in their solutions is, of course, 1/N times the total utility 

they obtain. We will treat population as a control parameter in the 
optimization, and use average utility as the welfare function. Thus, our 
optimum town will be a dipect extension of their work.

In solving our model, we have three primary aims. The first 
of these is to examine household consumption patterns and the distrib
ution of household utility throughout the residential zone of the optim
um factory town. We will compare the results of this examination with 

those obtained by Mirrlees and Oron, Pines and Sheshinski. Our second 
aim is to examine optimal transport congestion and the optimal allocation 

of land to transport in the residential zone. The results of this exam
ination will be compared with those obtained by Mills and de Ferranti 

[1971], Livesey [1973] and Sheshinski [1973], who derived conditions for 

transport congestion minimization in a monocentric town. Our third aim 

is to find the optimum size for the factory town, and to find expressions 
for optimal returns to scale in factory production. We have already 

referred to the role of population in earlier models, and stated that it 
will be treated as a control parameter in ours. However, optimum size for
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a factory town involves consideration of spatial dimensions as well as 

population, and it is therefore necessary for us also to treat CBD area 

as a control parameter. There is no CBD in Mirrlees' model, and Oron, 

Pines and Sheshinski assumed its area to be fixed. So far as optimum 

size is concerned, our treatment is new. In examining optimal returns to 

scale in factory production, we will find it necessary to develop new 

concepts in marginal productivity.

3.1 THE MODEL

We assume that land is perfectly uniform in quality. Its oppor

tunity cost is r per unit area, which, in this model, is assumed to be a
independent of the size and population of the town. To fix ideas we will 

describe r^ as the agricultural rent. This rent is paid to absentee land

lords .

The town has circular symmetry. It consists of a central bus

iness district (CBD) of area L and radius x in which factory productionc
takes place. The CBD is surrounded by an annular residential zone of 

outer radius x̂ _. The area of the town is A. Thus,

L = ttx2, (3.1)c

2A = TTX .t (3.2)

Given the circular symmetry of the town, a location can be spec

ified by its distance from the centre of the CBD. We use the variable x 

to designate this distance and location.

The population of the town is divided into households which are 

identical in the sense that their attitudes to work and their utility 

functions are the same. These households reside in the residential zone,
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where each occupies a residential site. They are the suppliers of labor 

for production in the town. Each provides just one laborer, who commutes 

daily to work in the CBD. Given our assumptions in respect to the house

holds, we can define the household as the unit of population. Let this 

population be N. It follows that there are N laborers in the town's 

workforce.

In respect to transport costs, we concentrate our attention in 

this model upon the commuting costs of the workforce. We assume that 

transport in the CBD is free. This assumption is to some extent justified 

by the observation that central business districts are small compared 

with their associated residential zones. Put another way, workers are 

observed to require much more residential space than work space.

We assume that the labor input to transport in the residential 

zone, T say, is given by

T

xt
n (x) t (x) dx,

xc

(3.3)

where n(x) is the number of commuters travelling beyond x and t(x) is the 

time taken for a journey from x to the CBD boundary.* If we set

T (x) = t (x) , (3.4)

we can integrate (3.3) by parts to obtain

n(x)T(x)dx, (3.5)

since t(x ) = 0 and n(x ) = 0. In (3.4) t (x) is the time taken for one c t

1 This time includes the time of the return journey. Throughout this 
thesis our transport relationships will refer to the round trip.
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commuter to travel unit distance at x. We assume that

t (x) = t (n (x) , g (x) ) (3.6)

where g^(x) is the "width" of the transport facility. That is,

27ig^(x)dx is the land input to transport in the thin ring lying between 
x and x + dx.

The transport time function t (x) defined in (3.6) captures con
gestion effects. It is clear that we can set t > 0, t < 0.1n gx

Land in the residential zone is allocated either to transport 

or to residential purposes, or it may be left vacant. Let 2irg2(x)dx be 
the land in the thin ring between x and x + dx, which is allocated to 

residential purposes. Then,

x - g (x) - g2 (x) >_ 0. (3.7)

The non-negativity constraints

g1 (x) > o, g2U) 1 0, (3.8)

must apply, however, we will assume that travel is not possible without 
transport land, and therefore, the shape of x(n,g^) will ensure that 
g^(x) is strictly positive except, possibly, at x^,where it may be zero, 

because no travel occurs through that point.

We write the factory production function in the form F = F(L,W) 
where L is defined in (3.1) and W is the labor input to production. We 
assume that both marginal products are strictly positive.

1 We adopt the convention of using subscripts to denote partial derivat
ives. Furthermore, we will assume that all necessary derivatives exist.

We will consider capital as a factor of production later when analys
ing the solution to our model.
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To find the labor input to factory production we assume that 

all households are allocated the same fixed amount of leisure time. Let 

the worker resident at supply unit labor to the factory. Then,

N - W - T > 0, (3.9)

that is,

N W

xt
n (x) T (n,g ) dx _> 0,

xc

(3.10)

with the equality holding when all labor is employed.

Households derive utility from the consumption of the factory 

good and the services of residential space. We will discuss the role of 

housing capital in consumption later on. Let f and s be the household's 

allocations of the factory good and residential space, respectively.

Then we write the household's utility as

u (x) = u (f (x) , s (x) ) ,

and assume that the marginal utilities are strictly positive and diminish

ing. We wish to exclude the possibility of a household being allocated 

zero consumption or occupying zero residential space, so we will assume 

that the shape of u(f,s) guarantees f > 0, s > 0 in the optimum town.

We can now write

n(x) = 2 ttp (x) g^ (x) , (3.11)

n(x ) = N, n(x ) = 0, (3.12)c t

where, for convenience of presentation, we have introduced the population
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density function p(x) = l/s(x).

Using the factory good as numeraire, the income constraint on 

the town is

F - Ara

xt
2ttp (x) g^ (x) f (x) dx 0.

xc

(3.13)

This completes the formulation of the model.

3.2 THE WELFARE PROBLEM

The selection of a welfare function necessarily takes us beyond 

economics and into the realm of politics. However, if we assume that our 

optimum town is the archetype of so large a number that no household is 

excluded from living in optimum conditions, and if we further assume that 

maximization of utility is the ultimate goal of the typical household, 

maximization of average utility is an interesting and plausible criterion 

of optimality for a factory town.

Nevertheless, the selection of a criterion of optimality for 

the factory town poses an additional problem not normally found in econ

omic theory. Mirrlees, assuming population to be fixed, maximized total 

household utility, and found that equals are treated unequally in his 

optimum town. We will maximize average utility, and confirm that equals 

are also treated unequally in our optimum town. The additional problem 

is associated with an implicit assumption underlying the Mirrlees criter

ion (and ours) to the effect that households are influenced only by the 

absolute values of their individual consumptions, and are indifferent 

to the utility derived by others. This seems to be an implausible repres

entation of human behavior. Rather, households appear to take a moral

stance in respect to inequality,particularly when it is they who are under-
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priveleged, with respect to those they judge to be their peers. This 

being so, a welfare function, which, when used in conjunction with a model 

containing the assumption u = u(f,s), yields an optimum in which equals 

are treated unequally, cannot be entirely convincing.

Of course, the assumption that the consumer is indifferent to 

the utility of others is widespread in economics, as is the adoption of wel

fare functions based upon total or average utility. However, in almost 
all problems, convexity assumptions can be, and are, made that ensure 

that optimization results in equality among equally endowed consumers.
We will show that our model contains an intrinsic non-convexity, which 

removes us from the general run of normative economics. It is this non
convexity which lies at the basis of our difficulty in finding a fully 

convincing welfare function.

In an investigation of unequal treatment of equals in his study 

of the optimum factory town, Dixit [1973] introduced a measure of 
"morality" into his criterion of optimality. Like Mirrlees, he treated 
population as fixed, and he optimized by minimizing the sum of the -in'*1 
powers of the household utilities. The exponent, m, is a parameter of 
his model, and its role is to provide a weight to each household's utility 
in the summation. Oron, Pines and Sheshinski [1973] chose to maximize 
average utility, subject to equals being treated equally. This is equiv
alent to assuming that equality is paramount, that is, to be realized 
without regard to price. The approach we will adopt is to consider two 
polar cases. The first of these being to assume that households are indif

ferent to the utility of others. This case is directly related to the 

criterion adopted by Mirrlees. The second polar case is that in which 

equality is assumed to be paramount. This case is directly related to 
the criterion adopted by Oron, Pines and Sheshinski. Dixit's polar case, 

where m tends to infinity, is equivalent to the equality paramount case, 

but his model does not capture the equality indifferent case.
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To distinguish between the two cases we will refer to the equal

ity indifferent case as FIBOT, this being an acronym of first best optimum 

town, and to the equality paramount case as SEBOT, because it represents 

a second best optimum town in the mathematical sense that an additional 

constraint is imposed in its formulation.

The two welfare problems are contained in the following formal 

statement. Let u be average household utility. Then, we wish to

max u ;
g (x ),g (x),f(x),s(x),u,W,A,L,N

subject to:

xt
2ttp (x ) g^ (x) u (f, s) dx - u = 0; 

xc

1_
N (3.14)

u (f,s) - u = 0; (3.15)

the constraints (3.7), (3.8), (3.10), (3.11) and (3.13) and the boundary

conditions (3.12). The FIBOT solution is obtained from this formulation 

by setting the Lagrange multiplier associated with the constraint (3.15) 

identically equal to zero.

We define the Lagrangian of the systems

/

- A n(x)x(n,g ) + y (x){u(f,s) - ü}

+ y2 (x){x - g (x) - g2 (x)} + y3 (x)g2 (x), (3.16)

£ (x) = 2ttp (x ) g2 (x) —  u(f,s) - A f (x) - <j>(x) N 2

and the function



40.

J = (1 - AJu + A {F - Ar } + A (N - w}, (3.17)1 2 a 3

where (p (x) is the co-state variable associated with the state variable 

n(x), A^, A^ and A^ are the constant Lagrange multipliers associated with 

the integral constraints (3.14), (3.13) and (3.10), respectively, and

y^(x), (x) and y^(x) are the variable Lagrange multipliers associated

with the constraints (3.15), (3.7) and (3.8), respectively.1

The maximization is a standard problem in optimal control 

theory.2 The first order necessary conditions for a maximum are equation 

(3.11) and

c{> (x) A {t (n,g ) + n (x )t }, 3 1 n (3.18)

f X2irp (x) j u (f ,s) - A f(x) “ <MX)1/ y2 (x) + y^(x) = 0, (3.19)

- A n(x)T - y (x) = 0, 3 g1 2 (3.20)

h l27Tp(x)g„(x) ■{ —  u(f,s) - A f (x) - i|)(x)s(x)u - 4> (x) A = 0, (3.21)M. 2 s J

2ttp (x ) g2 (x) {ijj (x) uf - A } = 0 (3.22)

y (x){u (f,s) - u} = 0, (3.23)

y2 (x) > 0, y2 (x) {x - g (x) - g2 (x) } = 0, (3.24)

1 We have neglected to include the constraint g^(x) > 0 because the 
impossibility of travel without transport land means that the shape 
of x(n,g1) ensures that it cannot fail to hold.

2 See, for example, Long and Vousden [1977].
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where

U3 (x) 1 0, 3̂ (x) ̂2 (x) = °' (3.25)

1 - X. (x)dx, (3.26)

- X F  +  X^ =  0,2 2 3 (3.27)

V a  t> = °' (3.28)

■ X2F1 + •£(Xc) = °'c
(3.29)

\  .
*3 + ♦ ‘V  = TT U ' (3.30)

x2 > o, x < f Ara 2ttp (x ) g2 (x) f (x) dx 0, (3.31)

X3 > °, X3 i N - W - n(x)T(n#gi)dxj = 0, (3.32)

X y (x)
iMx) = —  +N 2ttp (x) g2 (x) (3.33)

In (3.29) and (3.27) we have used F^ and F2 to denote and dF
8W

respectively. This is desirable, because we wish to reserve the symbol 

which we will see is of fundamental significance in theF for L
dF
dL

optimum towns.
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3.3 EMPLOYMENT IN THE OPTIMUM TOWNS

We now prove that factors are fully employed, and that all 

income is consumed in the optimum towns.

Divide (3.22) by u^ and integrate over the residential zone. 

Then, using (3.26) and (3.33),

2frg2 (x) p (x)
1. (3.34)

Therefore, > 0. It follows from (3.27) that A^ > 0 and by (3.20) that 

y2 (x) > 0 throughout the residential zone (except, possibly, at x̂ _) . Now, 

from (3.24), (3.31) and (3.32) ,

x - g (x) - g2 (x) = 0, (3.35)

N - W - n (x)T (n,g^)dx = 0,

F - Ar - a 2ttp (x) g2 (x) f (x) dx = 0,

which proves the proposition.

(3.36)

(3.37)

3.4 THE EMPLOYMENT OF CAPITAL

We digress briefly to examine the employment of capital in the 

optimum towns. Let K be the input of capital to factory production, and 

let k(x) be the capital value of the housing structure occupied by the
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household resident at x. Assume that capital is borrowed from external 

sources at a fixed price,i. The income constraint (3.37) now becomes

F - Ar a K.l 2?rp (x)g^ (x) {f (x) + ik(x)}dx 
xc

0. (3.38)

In the maximization process we obtain the two additional first order 

conditions:

2np(x)g (x){^(x)u - X i} = 0; (3.39)
u  rv ^

F - i = 0. (3.40)K

Using (3.22), (3.39) becomes

\—  - i = 0. (3.41)
Uf

Equations (3.40) and (3.41) are standard conditions for profit 

and utility maximization. Thus, we see that the theory of the factory 

town adds nothing that is new to our knowledge of the optimal employment 

of capital. This result is easily predicted. Land has locational unique

ness, and labor must live at one location and work at another. Neither 

of these properties is considered in conventional theories of the alloc

ation of scarce resources, and we would expect that the theory of the 

factory town would provide new results in respect to the employment of 

land and labor. Capital, on the other hand, has no such special property 

in the factory town, and as a consequence, entirely standard conditions 

for its optimal employment are derived.

In many of the earlier models housing services has been treated
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as a single good produced from inputs of land, labor and capital. This 

treatment complicates the mathematical structure of the models. However, 

apart from its mathematical inconvenience, this approach is open to crit

icism on two scores. First, the inclusion of labor among the factors of 

production is inappropriate. Housing is made up of a capital structure 

called a house which is located upon a residential site. The only labor 

input to housing services is for such minor issues as the time taken to 

collect rents and the time taken to oversee maintenance. Second, it 

does not correctly portray the consumer's problem in normative and equil

ibrium studies. This is because in either the optimum town or the equil

ibrium town consumers will choose their consumptions of the services of 

housing capital and residential land area separately, subject only to the 

budget constraints. Thus, our treatment of the services of residential 

site area as a separate consumption good in the optimum town is not a 

limitation on the generality of our model, but is a more satisfactory 

formulation of the consumer's problem than those which assume that house

hold utility is a function of housing services.

The employment of capital will not be considered in the rem

ainder of this thesis.

3.5 HOUSEHOLD CONSUMPTION

In this section it is convenient to treat the two towns separ

ately.

In FIBOT y (x) = 0. Therefore, by (3.26), X^ = 1, and, by

(3.33), ip(x) = — . Consumption occurs only at locations where g„ (x) > 0, N 2
and at these locations, (3.21) and (3.22) give

i U (x) X f (x) - s (x) u = <J> (x) , 2 N s (3.42)
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Differentiating (3.43) totally with respect to x,

(3.43)

U f(x) + u s(x) = 0. (3.44)f f f s

Differentiating (3.42) and substituting from (3.44)

s (x) ~ T ~  u = -N (j) (x) , (3.45)dx s

which on expanding out the derivative and substituting from (3.44) gives

u _ _ U - u f f s s f ŝ s (x) uffN 
s (x) (x) (3.46)

We have assumed u(f,s) to be strictly concave, and it is clear from (3.18)

that 4> > 0, therefore, s > 0. It now follows from (3.44) that f has the

same sign as û _ . Furthermore, differentiating u(f,s) totally with rests
pect to x and using (3.44) to eliminate f(x),

ü (x) s (x) . (3.47)

If we restrict ourselves to the interesting case of u,_ > 0, wef s
have shown that consumptions of both the factory good and the services of 

residential space increase with distance from the centre of the town, and 

that equals are treated unequally in FIBOT. We will discuss further this 

unequal treatment in the next section. In SEBOT,

u = fu. + su = 0 .  (3.48)f s

Eliminating ip (x) from (3.21) by use of (3.22), differentiating totally 

with respect to x and using (3.48),
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s (x) _d_
dx (3.49)

Expanding out the derivative and using (3.48) again to eliminate f(x),

s (x) (x) . (3.50)

The assumption of strict concavity of the utility function 

ensures that u(f,s) is quasi-concave, which, in turn, ensures that the 

coefficient of s(x) on the left hand side of (3.50) is non-positive. 

Equation (3.18) shows that <J> (x) is strictly positive. Therefore, s(x) is 

strictly positive, and by (3.48), f is strictly negative. Thus we con

clude that, in SEBOT, consumption of the services of residential site 

area increases and consumption of the factory good decreases with distance 

of residential location from the centre of the town. This result is indep

endent of the sign of u_ ■.f s

We see from (3.43) that the household's marginal utility in 

factory good consumption is constant in FIBOT. This conventional result 

is to be expected. In the optimum town in which households are concerned 

only with their absolute levels of consumption the factory good will be 

consumed to the point where its marginal utility equals its shadow price, 

and, since goods transport is free, this shadow price must be independent 

of location. However, we see from (3.22), that u^ is location dependent 

in SEBOT. If we multiply (3.33) by 27Tp(x)g^(x) and integrate across the 

residential zone,

xt
2np (x) g^ (x) iJj (x) dx = 1, (3.51)

xc

by (3.26). Thus, î (x) is a weighting function on household consumption,
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and (3.22) implies that each household consumes the factory yood to the 
point at which the weighted household marginal utility of the factory 

good is constant. Integrating (3.22) across the residential zone, the 

average marginal utility of the factory good, u^ say, is given by

üf = N A , (3.52)

which is the SEBOT analogue of (3.43) of FIBOT.

Finally,a comparison between (3.45) and (3.49) using (3.43) 
shows that (3.49) is valid for both towns.

3.6 THE UNEQUAL TREATMENT OF EQUALS

Mirrlees [1972] was first to show that equals are treated 

unequally in the optimum town. So far as I am aware, a fully satisfact
ory explanation of this result has not yet been presented. The result 
arises from the fact that households who occupy inner locations impose an 
external resource cost, in the form of transport, upon the town as a whote. 

Outer residents have to travel beyond these inner residents, and the town, 
including the inner residents, has to bear the cost of this transport. 

Inequality in the optimum town is the manifestation of the internalization 
of this externality, and the presence of non-convexity in the consumption 
set is the reason that the inequality does not conflict with conclusions 

derived from conventional, non-locational economic theory.

To explain the optimality of inequality it is convenient first

to consider a factory town containing only two households.-^ Referring

to Figure 2, assume that x and x are exogenously determined constants,c t
and that the residential site areas s^ and ŝ  are equal. Now, if we

1 I am grateful to Neil Vousden for suggesting this model.
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increase s^ and decrease ŝ , both households move closer to the CBD, and 
therefore, the resource cost of transport to the town is decreased. This 

implies that factory production is increased. At the same time, u > 0 
implies that average utility will be increased if household 2, whose resid

ential site area is greater than that of household 1, is allocated more of 

the factory good than household 1. In other words, average utility will 

be increased if household 2 derives a higher level of utility than house

hold 1. There is a trade-off in the process described if the utility

Location 2
Area s

Location 1
Area s

Figure 2

function is strictly concave, because decreasing marginal utility implies 

that the increment in the allocations to household 2 necessary to compen

sate for the decrease in the utility derived by household 1 become 
increasingly greater as the difference between the two utilities increases. 

Thus, average utility will be maximized when household 2 derives greater 

utility than household 1, but,given a strictly concave utility function, 
it will not be optimum to give household 2 all consumption and household
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1 none at all.

It is easy to extend this explanation to the town of fixed x̂ _ 

and x in which there are N households, because, by analogy, we can see 

that, starting from the configuration in which all residential site areas 

are equal, an inward migration of the centrepoints of all residential 

sites will result in a reduction in the resource cost of transport. Again 

the trade-off process between increased factory output and diminishing 

marginal utility will result in household utility being an increasing 

function of x in the optimum town.

In developing our explanation of the optimality of inequality, 

we have had to depend upon strict concavity of the utility function to 

justify non-zero allocations to more than one household. In this regard, 

it is interesting to note that our FIBOT model fails when the utility 

function is linear homogeneous. Equation (3.21), for example, implies 

that <j> (x) = 0 in FIBOT for linear homogeneous utility functions. To antic

ipate the next section, <J> (x) is related to transport cost. Thus, super

ficially at least, a linear homogeneous utility function implies zero 

transport costs. The reason for this anomalous result is that, without 

the trade-off described in the preceding paragraph, the residential area 

does degenerate so that N - 1 households are allocated f = 0, s = 0 at 

x ,while the remaining household is allocated f = F - A r ,  s = A - L  alsoC cl

at x . No transport is then required. However, this analysis is not c
rigorous. Equation (3.21) was derived on the assumption that p(x) was

everywhere finite, whereas it is unbounded at x in this special case.c
The assumption of finite p(x) was justified by our requiring the utility 

function to reflect the need of a household for both living space and the 

consumption of the factory good. This requirement is not satisfied by the 

linear homogeneous function,because u^ and u^ may be finite at (0,0).

It remains to identify the nature of the non-convexity in our 

model. It is well known that, when a household's consumption is confined
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to fewer than the total available locations, the consumption set is non- 
convex.1 In our model the typical household's feasible consumption of 

the factory good is not affected by its residential location, but it can 

occupy only one location. Starting with a town with a population of 2 

households, the consumption set is illustrated in Figure 3. A household

f

Plane 1

Figure 3

may live at location 1 where it can consume the factory good and resid

ential space on plane 1, or it may live at location 2 and consume on 
plane 2. Consumption off these planes is infeasible, because it implies 
residing at both locations. Therefore, the feasible consumption set is 

non-convex.

The two planes are, of course, orthogonal, and share the f axis. 
When the population is N households, the feasible consumption set can be 

represented geometrically by N orthogonal, two dimensional plane surfaces

1 See, for example, Malinvaud [1972, p.22].
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in N + 1 dimensional space, and it is, therefore, also non-convex. Note 
that the non-convexity does not depend upon the household being limited 

to only one location. It exists so long as the permissible number of 
residential locations per household is less than the total number of loc

ations available.

3.7 THE MEANING OF THE CO-STATE VARIABLE AND THE SHADOW RESIDENTIAL 
RENT

Arrow and Kurz have given an intuitive proof that a co-state 
variable at any point is equal to the marginal contribution of its state 

variable to the maximum value of the objective functional.1 In our model 
the state variable, n(x), is the number of travellers at x, and the 

objective functional is average household utility. We would, therefore, 
expect our co-state variable <J) (x) to be related to the socially valued 
cost of adding one more traveller at x in the optimum town.

To explore this relationship we first note from (3.43) and 
(3.52) that NA^ is the conversion factor between value measured in marg
inal social terms (averaged over all locations in the case of SEBOT) and 
in terms of the numeraire good. It follows from (3.27) that NA^ is the 
marginal social value of labor, and hence of travel time. Furthermore,
NA^n(x)t (x)dx is the marginal social value of the time spent by all trav-

gellers while crossing the thin ring between x and x + dx, and NA^dx-^-(nT) 

is the increase in this value caused by adding one more traveller to the 
optimum transport system. However, from (3.18)

NA dx-^- (nx) = N (J) (x)dx. (3.53)3 dn

1 In Arrow and Kurz [1970, pp.33-37].
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Therefore, integrating,

x
<f> (x) - (f) (x ) = A c 3

xc

(nx)dzdn (3.54)

is the socially valued marginal commuting cost from x to the CBD on the 

optimum transport system.

Later we will need to identify the economic meaning of

t— (4> (x ) — 4> (x )} . We have shown that all land in the residential zone A2 t c

is allocated. Therefore, if one more household is added to the optimum 

town, cetevis pa.V'ibus, this additional household must be located at x̂ _, 

and its contribution to the total transport cost in the town, T^ say, is 

given by

TN (nx)dx.
xc

Therefore, by (3.27) and (3.54),

(3.55)

F T 2 N <Mxt) - <J> (x ) c (3.56)

Equation (3.56) makes the economic meaning of -— { <j> (x ) - <J> (x ) } clear;X2 t c
it is the marginal household's cost of transport in the optimal town. 

However,we need to stress that the meaning of T which has been derived 

from our solution,is such that, in performing the partial differentiation, 

both L and the structure of the residential zone as a function of x are 

held constant. The dimensions of the optimum town, however, are not held 

constant, since x̂ _ must increase to accommodate the marginal household. 

Finally, it is obvious that



In both towns the shadow residential rent, r(x) say, can be

defined as

u
r (x) = s (3.58)uf

Therefore, from (3.49)

r (x) = (3.59)

— T - r  F ~  (n(x)x(x)), s(x) 2 dn (3.60)

by (3.54). Clearly, r(x) is a von Thlinen rent.

Equations (3.58) and (3.60) are necessary conditions for house

hold equilibrium in the competitively realised optimum town, provided each 

household pays the marginal social cost of its travel. These equations 

plus the budget constraint (3.13), form the sufficient conditions for 

competitive realization if the area of the CBD and the population of the 

town are fixed. The proof of sufficiency is not substantially different 

from that given by Mirrlees [1972]. Thus, we have established that, if 

x^ and N are fixed, competitive realization of both towns is possible. 

There does not seem to be a sufficiency theorem available for the case 

where both end points, x and x , are free.

and the optimum town formulated, but not solved, by Oron, Pines and 

Sheshinski [1973] shows that their optimum town is similar to SEBOT. Both 

have a form similar to their equilibrium town in which each household pays 

the marginal cost of travel from its residential location.

Comparison between SEBOT, with fixed CBD size and population,



54.

It is clear from (3.18), (3.58) and (3.59) that the shadow rent
is a strictly positive, strictly decreasing function of the distance from 

the centre of the town. The sign of its second derivative depends upon 
the second order partial derivatives of x(n,g ). In the next section of 

this chapter we will assume i(n,g^) to have the Vickrey form given in 

equation (2.4), and show that r(x) is positive for the special case x^ = 0. 

If Xq > 0, the sign of r(x) cannot be determined without reference to the 

second order sufficiency conditions for maximization. Thus, x^ = 0 

implies that the shadow rent is a positive, decreasing convex function 

of x. This result is in qualitative agreement with the empirical results 

of Clark [1951].

This is a convenient point at which to pause and review the 
results obtained so far. In both towns we have found the expression for 
the downward sloping von Thünen shadow rent. This downward sloping rent 
expresses the fact that the shadow price of land, relative to the shadow 
price of the factory good, falls with distance from the centre of the 
town. The falling relative price implies that there will be a substit
ution of land for the factory good in consumption, which is an increasing 
function of x. In other words, we have shown r(x) < 0 and s(x) > 0 in 

both towns. In FIBOT, s(x) > 0 implies f (x) >0 if the second order cross 
partial derivatives are positive. In SEBOT, u(x) = 0 implies f(x) < 0 

when s(x) > 0, irrespective of the sign of u . These results summarise 
the location dependent structure of consumption patterns in our two 

optimum towns.

3.8 OPTIMAL CONGESTION AND ROAD WIDTH

To solve for optimal congestion it is necessary to specify the 

transport function. We select the Vickrey form given in (2.4), but 

expressed in terms of travel time. That is,
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T = T + X 0 , 
0  1  '

(3.61)

where x . xn and a are positive constants and 0 = -------- .0 1  g (x)

Now, in regions where g^(x) > 0, (3.18), (3.27) and (3.61)

imply that (3.60) can be written

s(x)r(x) = - F 2 ( xQ + (a + l)x 0 (x) } . (3.62)

Also, (3.19), (3.20) and (3.25) give

2ttp (x ) V---  - A f (x) - tj) (x)N 2
, Qa+1ax^A.^0 (x) , (3.63)

and, from (3.21) and (3.22),

—  u(x) - A (f(x) + s (x) r (x) ) - <j>(x) = 0, (3.64)

From (3.63) and (3.64),

ax F, x 1 2  na + l , %r (x) = — ---- 0 • (x)2 TT (3.65)

Differentiating (3.65) and using (3.62) to eliminate r,

0 (x) = - —  p (x) ( 1 + ------- -------  } . (3.66)
a  ̂ x (a+1) iT0a (x) '

The right hand side of (3.66) is strictly negative, therefore optimal 

congestion is a decreasing function of distance from the centre of the 

town.

It is interesting to note that Mills and de Ferranti [1971] 

and later writers found that optimal congestion is a linear function of
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x when is zero. They assumed residential site area constant, and we see 

from (3.66) that the linear relationship they derived depends upon their 

assumption of the constancy of s. In our model it is easy to see that 

t = 0 implies *0 (x) > 0. Furthermore, (3.65) then implies that r(x) > 0. 

This result was anticipated in the previous section of this chapter.

When Tq = 0, (3.66) can be integrated by quadrature. We write

the integral in the form

0(x) 2 7T 
a p(z)dz - 2ir

a p (z) dz + 0 (x̂ _) (3.67)

To evaluate 0 (x ) , (3.16) and (3.28) yield

P (* )g~ (x ) r A u(x )
A r = -------------S ---------- A f (x ) - <j> (x ) \ ,2 a x N 2 t t (3.68)

from which we see that g^ (x̂ _) > an<  ̂ hence, our analysis is valid in 

the neighborhood of x̂ _. In fact, g^ (x̂ _) must equal x^, because, by (3.58), 

r(x) is strictly positive at x^. However, n(x^_) = 0, and therefore by 

(3.65), r(x^_) > 0 implies g_̂ (x̂ _) = Thu s ' (3.68) simplifies to

—  u (x ) - A { f (x ) + s(x )r } - <j>(x. ) = 0. N t 2 t t a t (3.69)

Comparison between (3.64) at x̂ _ and (3.69) shows that

r (x ) = r . t a (3.70)

That is, the residential and agricultural rents are equal at the boundary

of the town. Putting r(x ) = r in (3.65) , we obtaint a

0 (x^) = <
2frr

“T1F2

a+1
(3.71)



57.

Therefore, congestion is non-zero at x for the case t =0.t 0

To examine the slope of g^(x), in regions where g^(x) ü  g,

0 (x) d
dx

n (x) 
g± (x)

2ttp (x ) (x - g (x)) g (x)
gi (x) g1 (x)

0 (x) (3.72)

Therefore, eliminating 0 from (3.66),

2-np (x) . . ( . V 1 (X)
g i = - ^ T  a x  "  ( a  +  1) g i ( x ) V1̂ (01+1)716 (x)

(3.73)

From (3.16) and (3.29),

A u (x )
2ttx A F = 2ttp (x )g (x ) -j ---— ^-- A f (x ) - 4> (x )c 2 1  c 2 c I N 2 c  c

- A Nx(x ) 3 c (3.74)

Therefore, g^(x^) > 0' and our analysis is valid in the neighborhood of

x . Equations (3.63) at x and (3.74) yield c c

A 2
2ttx -—  F = ax g (x )0(x )a - Nx (x ), c A ^ l  1 2 c c c

+ 1  f Tn g i ^1,6 (x ) ox - (a + l)g (x ) - —  — --—  !• . (3.75)
1 C I C 1 C h  6<x )“c

The right hand side of (3.75) is strictly positive, and hence, by (3.73),

g (x) < 0 at x . Furthermore, if x^ = 0, g (x) can change sign only if 1 c 0 1
ax - (a + l)g^(x) changes sign. However, the sign of the slope of

ax - (a + l)g_, (x) changes only when g (x) > — — 1 1 a+1 It follows that

ĝ (x) < 0 and g^(x) < x throughout the residential zone. In the more general 

case where x q > 0 an ambiguity exists in the sign of g^(x). Furthermore,
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within the residential zone. In the following analysis we will restrict

that their result depends upon their assumption that p(x) is constant.

This completes our analysis of the structure of the residential 

zone of the optimum towns. We will now obtain implicit relationships 

between their geographical dimensions and populations and the value of 

the variables of the system at the boundaries.

3.9 BOUNDARY VALUES IN THE OPTIMUM TOWNS

aries of the optimum towns, and relate these values to the value of the 

marginal products in factory production at the optimum point. Note that, 

in equation (3.70), we have already shown that the residential rent is 

equal to the agricultural rent at the town boundary.

our attention to solutions in which g^(x) < x everywhere.

Livesey [1973] and Sheshinski [1973] were able to show that,

for Tq = 0, g^(x) is a concave function. Differentiation of (3.73) shows

We now examine the value of variables at the CBD and town bound

Consider first the marginal product of labor, F^* Equations

(3.27) and (3.30) give

(3.76)

Dividing (3.21) by A , using (3.22) to eliminate ip (x), and integrating,

A
u = f + r(x)s(x) - ~  4>,A

i (3.77)NA 2

where the bars denote values averaged over all households. Therefore,
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F = f + r(x)s(x) + -—  { <f) — 4> (x ) } = w.2 A2 (3.78)

At equation (3.54) we showed that — —  { cj> (x) - 4> (x )} is the marginal cost
X2

of commuting from x to the CBD. Therefore, ~ {  cj) — 4> (x )} is the aver-
X2

age of these marginal commuting costs, and w is the average shadow wage 

when the shadow price of transport is equal to its shadow marginal cost.

In SEBOT it is not necessary to integrate (3.21), and we are 

able to conclude that

F = f (x) + r(x)s(x) - -— { <j> (x) - <J) (x )} = w (x) = w. 2 X2 c (3.79)

Equation (3.79) is the conventional relationship obtained in 

the non-locational theory of the firm. At first sight its meaning seems 

straightforward, but this straightforwardness is fortuitous, and arises 

from the fact that, so far as labor in SEBOT is concerned, the shadow 

marginal factor price, the shadow marginal factor price from each resid

ential location, and the shadow average factor price are all equal. 

Equation (3.79) is, therefore, equivocal. The importance of recognising 

the ambiguity of meaning of (3.79) becomes clear when we examine (3.78), 

because, in respect to FIBOT, this is a relationship between the marginal 

product and a shadow factor price which is the average of the shadow 

marginal factor prices at each location. We conclude, therefore that, 

notwithstanding the simplicity of form of (3.78) and (3.79), we have not, 

in fact, obtained a direct and conventional relationship between shadow 

price and marginal product.

The failure of (3.78) to express a conventional relationship 

is not altogether surprising. It is not labor which is allocated to the 

town, but population. In order to increase the labor input to factory
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production it is necessary to add households. These, in turn, increase 

transport costs in the town. Thus, the partial derivative, F , is not 

fundamental in the optimal factory town, but somewhat contrived. The 

marginal product of population, on the other hand, does have a fundament

al economic meaning.

We define the marginal product of population as the partial 

derivative of F with respect to N when L and the structure of the resid

ential zone as a function of x are held constant. In this definition W 

and the dimension A of the town are functions of N, and it is consistent 

with the partial derivative with respect to N defined in (3.55). Thus,

= (1 - T )F . (3.81)N 2

Equation (3.81) simply states that 1/(1 - T ) households must be added to 

the optimum town to increase factory labor by one unit.

In FIBOT, (3.56-), (3.79) and (3.81) give

F = w - ~ ~  { <J) (x ) - <J> (x ) } ,N t C

= f + r (x) s (x) - /-{ ij>(x ) - <i> } .
A2

Equations (3.21) with x = x^, (3.77) and (3.83) yield

F = - —  ( u ( x ) - u } + f ( x ) + r s ( x ) .  (3.84)N u t  t a t

(3.82)

(3.83)

In SEBOT,
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F = f (x ) + r s (x ), (3.85)N t a t

so that (3.84) holds in both optimum towns.

Unlike (3.78), the meaning of (3.85) is straightforward. The 

right hand side is equal to the shadow cost of the marginal household's 

consumption, that is, the marginal cost of a household to the town. 

Therefore, (3.85) simply states that the value of the marginal product 

of population is equal to its marginal cost in the optimum town. There 

is an additional term,-— -{ u(x ) - u}, in (3.84), which is non-zero inUf t

FIBOT. This term takes account of the marginal household making a more 

than average contribution to the total utility in FIBOT. This is an 

interesting result because it means that, in FIBOT, the marginal house

hold produces less than the value of its own consumption.

Later it will be convenient to have the marginal conditions in 

a different form. Integrate (3.37), and divide by N,

F - Ar F - Lr- a  a sra (3.86)

where s is the average area of a residential site and R is the land area 

allocated to the transport system. From (3.84) and (3.86),

F - Lr
—  { u(x ) - u} + f(x ) - fuf t t

+ r { s (x ) - s } a t
Rr _a
N (3.87)

To make clear the economic meaning of (3.87) and some results 

which follow, we define the following functions: let U be the sum of all

household utility in the optimum town, and let V be the shadow cost to
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the town of all household consumption. Then

u(x ) = U ,t N (3.88)

2iTp (x) g (x) f (x) dx + r2 ci
2irg2 (x) dx, (3.89)

f + r s = —  , a N f (x ) + r s (x ) = V , t a t  N (3.90)

where the subscript N denotes a partial differentiation with respect to 

N which is consistent with our earlier usage.

Now (3.87) may be written

FN " }  + { V  N N

+ (1 - T ) F . N 2 (3.91)

In (3.91) we have included the term r R to complete the symmetry. Thisa N
is possible because

RN
3R 3R 3a  
3N + 3A 3N (3.92)

because g^(x^) 

chapter.

0. We will use (3.91) in the next section of this

We now find the marginal product of factory land in the optimum 

towns. After some manipulation, (3.16), (3.29) and (3.69) yield
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F1 ra
g (x )p(x ) 2 c c

xc
\- - {  u(xt) - u(xc)} + f(xt) f (X ) c

+ r {s(x ) - S (X )} + { <J) (x ) - (j) (x )}t c t c

g, (x )r F Nx(x )l e a  _ 2 c
x 2ttx (3.93)

The first term on the right hand side of (3.93) is the opport

unity cost of factory land to the town. The second last term is the 

saving in rent on transport land when one unit of land is transferred 

from the residential area to the CBD. That is,

g (x ) r
R r  = ------^--- . (3.94)L a  xc

The last term is the value of the travel time saved when, without regard 

to the location of households, unit area is transferred from the resid

ential area to the CBD. To understand the remaining terms observe that

P (x )g (x )/x is the number of households resident on unit area of the c 2 c c
residential zone at the CBD boundary. If unit area is transferred to the

CBD, and the structure of the residential zone is unchanged, this number

of households is displaced from x to x . It can now be deduced that thec t
term

P(x ) g (x ) c 2 c
xc

{ u (x ) - u(x ) } t c (3.95)

where the partial derivative implies N and the structure of the residen

tial zone constant, but not W. This term is non-zero only in FIBOT, and 

its coefficient in (3.93) is then equal to 1/u^. Furthermore,
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p(x ) g (x ) c 2 c
xc

f (x ) f (x ) + r { s (x ) c a t s (xc V , (3.96)

1 p (x ) g (x )
--------- —  { <J>(x ) - <f) (x ) }x t cc

F Nt(x )2 c „ m--------- = F T .27tx 2 Lc
(3.97)

Equation (3.93) may now be written

F = r -- —  U + V + F T  + R r . (3.98)1 a uf L L 2 L L a

The meaning of (3.98) is that, in the optimum town, when labor is held 

constant, land is employed in factory production to the point where the 

value of its marginal product is equal to the opportunity cost of land 

plus its marginal contributions to the shadow cost of household consump

tion and transport and minus the shadow value of its marginal contrib

ution to the total utility of the town.

There are two terms in F^ which require further discussion.
F NT(x )2 cThese are R r and — ------  . These terms arise from our assumption thatL a 2ttxc

transport is free in the CBD, and they introduce an ambiguity in the 

signs of terms on the right hand side of (3.98). This is because, as the 

CBD area increases, the width of the annular residential zone, ceteris 

paribus, decreases, and with transport in the CBD free, transport costs 

may thus fall. The assumption of free CBD transport is unrealistic. It 

is made for mathematical convenience, and had we made the much more plaus

ible assumption of continuity of transport velocity across the CBD bound

ary, the two terms under discussion would have been negligible. We can, 

therefore, attach no theoretical significance to the ambiguity of sign 

which flows from their existence. As a consequence, where the ambiguity 

arises, we will facilitate our exposition by ignoring it.
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We have already defined F . Its pair is

dF
dL F + L

dW
dL F + r R , 2 a L

F., - T F + r R , 1 L 2 a L

r ----U + V + r R .a u^ L L a L (3.99)

Equation (3.99) states that, given constant population and residential

structure in the optimum town, the value of the marginal product of land

is equal to the opportunity cost of land plus the marginal change in the

shadow cost of total household consumption plus the value of the marginal
change in the land allocated to transport minus — - times the marginal

Uf
change in total utility in the optimum town.

3.10 RETURNS TO SCALE IN PRODUCTION

It has frequently been observed that there must be economies 
of scale in factory production to justify the costs of urban transport. 
This point cannot be disputed, and in any case, our model is not suitable 
for discovering corner solutions. However, this necessity for economies 

of scale to justify the existence of a town has frequently been assumed 
to imply that returns to scale must be increasing at the optimal point, 

and Starrett [1974, pp.420-1] has given an intuitive "proof" that returns 
to scale in factory production net of transport costs must be constant in 

the optimum town. Nevertheless, upon reflection we can see that it is 
not obvious that the need for economies to justify the existence of the 

optimum town precludes the possibility of their being exhausted at the 
optimum point, and Starrett's proof contains unrecognized assumptions
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which seriously limit the generality of his conclusions.

In this section we evaluate returns to scale using two measures. 

In the first case we obtain the measure which is conventional in non- 

locational models.This is returns to scale in terms of the factors direct

ly employed in the factory. The resources necessary to assemble labor at 

the factory each day are ignored in this measure, and it can, therefore, 

be described as returns to scale in gross factory production (gross of 

transport costs). The second measure is returns to scale in net factory 

production.

In the neighborhood of the optimum point we write

0 (L, W) F (L, W) = LF^ + WF2 = LF + NF^ - TF . (3.100)

Equations (3.91), (3.98) and (3.100) yield

(0 - 1) F ----- {LU + NU - U } + LV + NV - Vu L N L N

+ F^ { LT + NT - T } + r {LR + NR - R } . (3.101) 2 L N a L N

We see from (3.101) that the local degree of increasing returns to scale 

with respect to the factors L and W, at the optimum point, is expressed 

in terms of the degree of homogeneity of U, V, T and R, expressed as 

functions of L and N. From (3.88) and (3.90),

^ {UN
U V , T T— } + V ---+ F ( T ---- }N N N 2 N N

— —  {u(x ) - u} + {f(x ) - f } + r (s(x) - s} NA„ t t a t

+ — { <J> (x ) - } ,
*2 fc

r(x)s(x) - r s > 0,d (3.102)
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by (3.21). Furthermore,

{ - —  LU + LV + F LT }p(x ) g (x ) u L L 2 Lc 2 c f

However,

-T— {u(x ) - u (x ) } + f (x ) - f (x ) NA„ t c t c

+ r { s (x ) - s (x ) } + — { <J>(x ) - (j> (x ) },a t  c A^ t c

(r (x ) - r ) s (x ) > 0. c a c (3.103)

r { L R  + NR - R> < 0.a L N (3.104)

It follows that returns to scale in gross factory production may be 

decreasing, constant or increasing in the neighborhood of the optimum 

point. The ambiguity arises from the economies of scale which exist in 

the use of the transport network.

We now examine returns to scale in net factory production. Anal

ogous to (3.100) we write

$ (L, N) F (L,N) = LF + NF .L N (3.105)

From (3.91), (3.99) and (3.105),

(<*> - 1)F(L,N) = --{ LU + NU - U } + LVt + IW - Vuf L N L N

+ r { L R  + NR - R } . a L N (3.106)
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Now define

^(L,N) = F(L,N) - Rr .a (3.107)

Then6^(L,N) is factory production net of all transport costs, and from 

(3.106) and (3.107),

+ NoP - 3̂  L N —  { LU + NU - U } + LV + NV - V. (3.108) u^ L N L N

From (3.21),

u(x) - u_ { f(x) + r s(x)} = N<J)(x) + (u - r u)s(x). (3.109)f a s a f

Differentiating (3.109) totally, and using (3.45), we find that in FIBOT

, , u (x) - u_{f(x) - r s(x)}dx f a (u - r u )s(x) > 0, (3.110)s a t  —

with equality holding at x̂ _ only.

In SEBOT, u(x) = 0, hence,

—  { f (x) + r s(x) } = f + r s(x), dx a a

- { r(x) - r }s(x) < 0, a — (3.111)

again with equality holding only at x̂ _.

It follows from the definitions of U and V that

—  LU + LV < 0, uf L L (3.112)
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-- - { NU - U } + NVuf N N V < 0 (3.113)

and

$ - 1 < 0. (3.114)

Therefore, returns to scale in net factory production in the neighborhood 

of the optimum point are unambiguously decreasing. The reason for this 

result is as follows. As we move outwards in the residential zone the 

relative price of residential space falls. There is, therefore, an 

increasing substitution of residential space for the factory good in 

household consumption as x increases. In SEBOT, this substitution has a 

form such that the shadow cost to the town of a household's consumption 

falls with x, and it is optimal to increase population beyond the point 

where economies of scale are exhausted. In FIBOT the explanation is sim

ilar, but involves additional discussion concerning the household's con

tribution to total utility in the town. In his proof that returns to 

scale in net production are constant in the optimum town, Starrett [1974] 

failed to take into consideration the substitution of living space for 

the factory good in household consumption. If this substitution does 

not take place ,Starrett's conclusion is correct. In fact, in Chapter 5, 

where we assume s constant, we will see that returns to scale in net 

factory production are indeed constant.

This concludes the discussion of the optimum towns in which 

household leisure is constant.

3.11 CONCLUSIONS

In some respects our analysis has confirmed the conclusions of

earlier normative studies of urban areas. For example, in respect to the
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structure of the residential zone, we confirm the conclusions of Mirrlees 
[1972] and Dixit [1973] that, unless an equality constraint is imposed 

upon the town, equals will be treated unequally at the optimum. However, 

we are also able to make some new, quite general statements with respect 

to population density as a function of distance from the centre of the 

town. Furthermore, we are able to solve the normative model of the fact

ory town in which equals are treated equally. This model has not, hither

to, been solved in a general form, although Dixit's polar case is a 
restricted formulation of it.

Our results in respect to household consumption in the optimum 

towns may be summarised as follows. In both towns r(x) < 0 and s(x) > 0. 

In FIBOT f(x) > 0 and u(x) >0. In SEBOT u(x) = 0 by constraint and 
f (x) < 0.

Also in the residential zone, we confirm the conclusions of 
Mills and de Ferranti [1971], Livesey [1973] and Sheshinski [1973] in 
respect to optimum congestion and the optimum allocation of land to the 
transport network. Some of their strong results, however, are shown to 
depend upon their simplifying assumptions. For example, their conclusion 

that optimal congestion is a linear function of distance from the centre 
of the town depends upon their assumption that residential site area is 
independent of location. Also, their conclusion that not all land will 

be allocated to roads depends upon their assumption that uncongested 
travel takes zero time.

Our conclusions in respect to town size, population and factory 
production are entirely new. In this field Starrett has offered an 
intuitive proof that returns to scale in factory production net of trans

port costs are constant. We show that this proof contains an implicit 
assumption which significantly reduces its generality. We find, in fact, 

that returns to scale in gross factory production may be increasing,
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constant or decreasing, but returns in net factory production are unambig

uously decreasing. However, if the households are constrained to live on 

residential sites of exogenously determined area, Starrett's proof is 

valid, and returns to scale in net production are constant.

Throughout this chapter we have assumed that leisure time is 

constant with respect to household location. In the next chapter we will 

examine the role of leisure in the optimum town, and discover how our 

present conclusions depend upon this assumption of the constant leisure

time.



CHAPTER 4
THE ROLE OF LEISURE IN THE OPTIMUM TOWN

In Chapter 3 we assumed that households are allocated the same, 

exogenously determined amount of leisure time regardless of their resid

ential locations. This has become a standard assumption in the literat

ure, and it probably has its origin in the implicit assumption that 

travel time is indistinguishable from work time to the laborer, since 
they both represent leisure time foregone. Nevertheless, the relevence 

of the uniform leisure time constraint to the theory of the optimum fact
ory town remains debatable for two reasons. First, leisure time is 
consumed by households in the same sense as they consume the factory 
good and the services of residential space, and, by symmetry, it should 
be treated as a control variable in the optimization process. Second, 
if leisure time is not to be treated as a control variable, the optimum 
towns in which it is constrained to be independent of household location 
are second best optima of subordinate interest when viewed as represent
ations of reality, because factory laborers are commonly observed to work 
fixed hours, independent of their residential locations, rather than 

enjoy fixed leisure time. In other words, the second best towns in which 
laborers work fixed hours are probably of more relevence to reality than 

the FIBOT and SEBOT analyzed in Chapter 3.

One writer who has not followed the general trend, but has 

treated leisure time as a control variable is Riley.* In two articles

1 In Riley [1973] and Riley [1974].
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he has developed a model of the first best optimum town assuming house

hold utility to be a function of the factory good, residential site area 
and leisure time. However, the generality of his conclusions is limited 

by his use of functions of specific form in his model. Furthermore, CBD 

size and population are constants in his model, and as a consequence, he 
does not derive relationships between marginal products and factor 
shadow costs.

In this chapter we will extend the model of Chapter 3 so as to 
treat leisure as a consumption good. To begin with we will reformulate 

the Riley problem in a more general context, and show that Riley's basic 

conclusions remain valid. We will find that the structure of his resid
ential zone is not very different from the structure of FIBOT, except 

that leisure time, rather than being constant, is a strictly increasing 
function of distance from the centre of the town. This means that those 

households which live furthest from the CBD, and therefore spend most 
time in commuting, are allocated the greatest amount of leisure time.

The generalized Riley town is, strictly speaking, the optimum 
factory town, and therefore to be regarded as the datum against which 
the second best solutions are to be measured. For this reason we will 

derive the marginal products of population and factory land, and eval
uate returns to scale in net factory production at the optimum point to 

confirm that these relationships have a functional form qualitatively 

similar to those derived for FIBOT and SEBOT.

We will then go on to examine the second best optimum in which 
equals are treated equally by constraint and every household contributes 

the same fixed amount of labor to the factory. This is the model which 

seems to correspond most closely to reality. However, its interest does 

not end there, because it also serves as another polar case, to be compar

ed with the polar case, SEBOT, in which leisure time is fixed and equals
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are treated equally.

In the solution to this fixed labor time model we will find 

that, so far as the structure of the residential zone is concerned, some 

of the unambiguous conclusions we obtained in Chapter 3 no longer hold.

We will continue to find that the shadow residential rent is unambig

uously strictly decreasing with respect to distance from the centre of 

the town. This, of course, is as it must be, since the residential rent 

is a von Thünen rent. However, household residential site area and con

sumption of the factory good may each be of either slope in some parts 

of the residential zone. Furthermore, the shadow price of leisure and 

optimal congestion may be either increasing or decreasing within the 

residential zone. Finally, returns to scale in net factory production 

will be found to be increasing at the optimum point, and not decreasing 

as we have hitherto found.

We concentrate our attention on the solution to the equality 

case, because it seems to be the more interesting, and because we wish 

to avoid repetitious analysis. The method of solving the model when the 

equality constraint is relaxed is straightforward. However, for complete

ness, towards the end of this chapter, we state the major results obtained 

from the model of the optimum factory town when work hours are fixed and 

equals are not necessarily treated equally.

4.1 THE GENERALIZED RILEY PROBLEM

Using the notation established in Chapter 3, we assume that a
2consumption good is produced in a factory of area L = ttx^ according to 

the production function F(L,W), and that the time taken for a laborer to 

commute across unit distance at x is x (n (x) ,g (x) ) . These are the assumpt

ions we made in Chapter 3. We choose the day as the unit of time. The
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time constraint on the town is, therefore,

N - W - n(x)x (n,g )dx - 2irp (x) (x) £ (x) dx = 0, (4.1)

where £ (x) is the amount of leisure time allocated to the household resid

ing at the CBD boundary. In Chapter 3 we assumed £ to be constant, and 

defined the unit of time so as to make £ = 0.

In (4.1)

T = n (x)t (n,g )dx, (4.2)

is the total commuting time in the town, and

2ttp (x) g 2 (x) £ (x) dx, (4.3)

is the total leisure time.

The income and land constraints on the town continue to be

F - Ara 2frp (x) g2 (x) f (x) dx = 0, (4.4)

x - g (x) - g (x) = 0. (4.5)

Furthermore, equation (3.11) must continue to hold. That is,

Following the analysis of Chapter 3, we will take as proven the prop
osition that it is always optimal to employ factors fully and to 
distribute all output.
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n(x) = - 2ttp (x)g2 (x) . (4.6)

However, now we assume that households derive utility from the consump

tion of the factory good, the services of residential site area and leis

ure time. That is to say, u = u(f,s,£).

Therefore, choosing the maximization of average household util

ity as the criterion of optimality, Riley's problem becomes: we wish to

max
g (x)g (x),f(x),s(x),£(x),L,A,N,W 1 2  x

2Tip (x) g2 (x) u (f, s, Z) dx,

subject to the constraints (4.1) and (4.3) - (4.6)

Defining

<£(x) = 2ttp (x) g2 (x) I --" X2Ji(x) - <|>(x)j

- X2n(x)x(n,g ) + y (x) {x - g (x) - g2 (x)} , (4.7)

J 5 X, (F - Ar ) + X (N - W) , (4.8)1 a 2

the first order conditions for the maximum are:

uf
N \  = 0 , (4.9)

u
£
N (4.10)

To avoid repetition of analysis, we will take as proven that 
g-̂  (x) > 0 except at xt when it is zero, and limit our analysis to 
solutions in which g2 (x) 0. Thus, we are able to omit the non
negativity constraints on g^(x) and g2 (x).

1
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, v s(x)u
---A f (x) - A £ (x) - (J) ( x ) ------ -— —  = 0,N I 2 N (4.11)

A n (x) t - y (x) = 0, 
2 gi

u(x) A-̂ f (x) - A^£ (x) - (J) (x) s (x) y (x) 0,

4>(x) A —  (n (x) x (n,g )), 2 dn 1

X1F2 * A2 ■ °'

X,F, - ---- X (x ) = 0,1 1 2ttx c ‘c

A, r — £ (x ) — 0,1 a 27TXt

A2 + * (V  " N = °'

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)

(4.18)

In equations (4.7) to (4.18), <p (x) is the co-state variable and y (x) , A^ 

and A^ are the Lagrange multipliers.

We see from (4.9), (4.10) and (4.15) that the shadow price of

leisure,

(4.19)

is constant across the residential zone and equal to the marginal product 

of labor.

Differentiating (4.11) totally with respect to x, and using

(4.9) and (4.10)
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s(x)r(x) = s(x)
u

4> (x) / (4.20)

p —  (nx) < 0, (4.21)

by (4.14). Similarly differentiating (4.9) and (4.10), and expanding

f U  'i

out the derivative —dx in (4.20),

f  \u _ u u r  m  \f r  \0ff fs f£
V  au _ u u „ s = (nx)sf ss s£ s(x) 3n

U„_ n u„„ i£f £s ££ j w , i o  J
(4.22)

Equation (4.22) has the same form as the equivalent matrix 

equation derived by Riley [1974, p.236]. Thus, Riley's basic qualitative 

results concerning the slopes of f(x), s(x), % (x) and r(x) in the resid

ential zone are valid in a much more general context. The rent function 

is downward sloping, and s(x) > 0. Furthermore, if we continue to make 

the quite reasonable assumption that the second order cross partial 

derivatives are all positive, f(x) and £(x) are both strictly positive, 

and so, therefore, is u(x). In other words, equals are treated unequally 

in Riley's optimum town.

The continuation of the solution to the Riley model is straight

forward. It produces no results which are qualitatively different from 

the results obtained in Chapter 3, and therefore, we will not pursue the 

solution in detail. However, given that the Riley town is the first best 

town, and therefore of fundamental importance, we will evaluate the

marginal products F and F and the local degree of returns to scale inL N
the neighborhood of the optimum point. These results are of particular
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interest, because, although they do not differ significantly from those 

obtained in Chapter 3, where we assumed leisure time to be uniform and 

exogenously determined, they are different in form from the results we 

are to obtain when we constrain the work time to be fixed independent of 

household location.

From (4.15) and (4.18) we find, as we did in Chapter 3, that

F. = £  - <J>(x ) • (4.23)2 N c

However, now, from (4.1) - (4.3),

{ 1 - T - A } F

t—  { <j> (x ) - (|) (x ) } - p£(x ).A ̂  t C t (4.24)

Therefore, from (4.11), (4.23) and (4.24)

FN
u(xt)

+ f(x ) + r s (x ) a t

(4.25)

where U and V are defined in (3.88) and (3.89), R is the land area alloc

ated to transport and, as we showed in (3.92), R^ = 0. Similarly,

F = r — —  U + V + r R , (4.26)L a u L L a L

and it is now easy to show that returns to scale in net factory product

ion are unambiguously decreasing in the neighborhood of the optimum point.
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4.2 THE OPTIMUM TOWN WITH FIXED WORKING HOURS AND EQUALITY BY 

CONSTRAINT

We now examine the structure of the optimum town in which fact

ory hours are exogenously determined, and independent of the worker's 

residential location. Non-working time per day is shared between leisure 

and travel. Therefore,

£(x) + T(n,g^) = 0. (4.27)

In addition, we can choose the unit of labor so as to make W = N. There

fore, the production function can be written F = F(L,N).

Continuing to make the maximization of average household util

ity the criterion of optimality, we can now state our welfare problem in 

the following way. We wish to:

max
gi(x),g2(X) ,f ̂  ,h(x)rü,L,A,N

subject to: (4.2), (4.3), (4.4), (4.27) and

2-rrp (x)g2 (x)u(f,s,£)dx - u = 0, (4.28)

u(f,s,Z) - u = 0. (4.29)

We now have a problem in optimal control theory in which there are two 

state variables, n(x) and i(x). The Lagrangian is defined as
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X (x) = 2up (x) g (x) { X —  X f (x) - <J> (x) }2 0 N 1 1

- <j>2 (x) t (n,g ) + p (x) { x - g (x) - g2 (x) }

+ y (x) { u(f,s,£) - u } , (4.30)

and

J = u(l - X ) + X. { F(L,N) - Ar } .0 1 a (4.31)

In equations (4.30) and (4.31) we have again made use of the essential 

non-negativity of g^(x) with g^(x ) = 0, and assumed that g2 (x) 

strictly positive. We have also continued to use the notation established 

in Chapter 3 for the Lagrange multipliers, but now there are two co-state 

variables, <j) (x) and <j> (x) associated with the state variables n(x) and 

Z (x), respectively.

The first order necessary conditions for a maximum are:

(J) (x) T + y (x) = 0,2 g1 1 (4.32)

2-rrp (x) { X —  - X f (x) U N  1 4̂  (x)) P1 (x) = o, (4.33)

<l»(x)u - X = 0, (4.34)

X —  X f (x) - 4j(x )s (x )u - (j) (x) = 0,0 N 1  s i (4.35)

^(x) = (p (x) Tn, (4.36)

4>2 (x ) = - 2irp (x)g (x)ip (x)u , (4.37)
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1 P2 (x)dx = 0, 
xc

(4.38)

A F - A —  + d> (x ) I N  O N  yl c 0, (4.39)

A F 1 L
p (x ) g (x ) c 2 c A —  - A f (x ) - <p (x ) O N  1 c 1 c

1
2trxc

(x )t (x ) , c c (4.40)

A r 1 a p(Kt) 0 N - Alf(xt) - *1(xt)

4>2 (xt )T(Xt ), (4.41)

where

A y (x)s(x)
ij;(x) = —  + ----7— —N '2Trg (x) (4.42)

2irp (x) g2 (x)
Multiplying (4.34) by -----—------, using (4.42) and integrating

across the residential zone, then using (4.38), we find A^ > 0. It 

follows from (4.34) that if) (x) > 0. Now, from (4.35),

A —  - A f(x) - (j> (x) > 0, and, hence, by (4.33), y (x) > 0. Furthermore, 0 N 1 1 1

from (4.32), (x) >_ 0 throughout the residential zone. Now, dividing

(4.35) by (4.34), and differentiating,

s (x) r (x) = s (x) ^-|(|)1 (x) + A^f (x) + r (x) s (x) j. (4.43)
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However,

1 du 
uf dx f(x) + r(x)s(x) + p(x)£(x) = 0, (4.44)

where p(x) = — . Therefore, by (4.27), (4.43) and (4.44),
uf

s (x) r (x) = - — -j (f)̂ (x) + A^p (x) t (x) )• < 0, (4.45)

Using the definition of r(x) and (4.44),

ufr(x)

0 u r uf s 0 uf U£

U„ u__ u s (x) - U,. u rr u _ „f ff fs f ff f £

u u u u u _ u „s sf ss s sf s£

£ (x) < 0.

(4.46)

The utility function is quasi-concave, therefore, the determinant coeffic

ient of s(x) is non-negative. However, we cannot put a sign on the 

coefficient of £(x), and therefore s(x) can take either sign. It follows, 

again because u(x) = 0, that f(x) can take either sign.

We have proved that, although the price of residential land 

falls unambiguously with distance from the centre of the town, residential 

site area does not necessarily increase. The possibility of s(x) < 0 

arises from the fact that household leisure decreases unambiguously, and 

the way in which the optimum consumption bundle varies with distance to 

maintain equality depends upon the relative magnitudes of the second 

order partial derivatives of the utility function.

If we represent the coefficient of s(x) by A, expand out the
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coefficient of £, and use (4.27) and (4.45), equation (4.46) may be 

written

As(x) = -{ ufu u ft + uf V f s  - usu£uff } £(x)

+ r-^~ i (x) - u t  ( —  - u (- £(x) . A s 1 f [ s sJl (4.47)

Thus, a sufficient condition for s(x) > 0 is

U£ U£ 9u£ n----u = — ------ > 0,s s£ s 3s —

which is equivalent to the inequality

_ 3_
3s

f u
< 0. (4.48)

In other words, s(x) will certainly be positive if the shape of the house

hold utility function is.such as to ensure that the marginal utility of 

leisure time per unit of residential area is a monotone decreasing funct

ion of residential site area. However, there does not seem to be any 

particular reason why the utility function should necessarily have this 

shape.

U£Since p(x) = —  , u r

P (x)

(4.49)



85.

In (4.49) s(x) and its coefficient can take either sign, and therefore, 

so can p(x). Comparing (4.46) and (4.49), we see that it is only in the 

special case where the coefficient of £(x) in (4.46) is zero that the 

signs of p(x) and s(x) are determined to be unambiguously positive.

We will now assume that (3.61) holds. That is,

T(n,g ) t q + 1^0 (n,g1) , (4.50)

where 0 = n(x)/g^(x), and t , and a are positive constants. Congest

ion must be bounded within the residential zone. Assume, further, that

it is bounded at x where n(x) and g (x) are both zero. Then, lim 0 (x)
t 1 x_>xt

is bounded above, and therefore,

lim t (x) = - °°. (4.51)
x+xt ^1

Now putting x = x̂ _ in (4.32), (4.33) and (4.35), we find (j)̂ (x̂ _) =

Equation (4.37) may now be integrated to give

^2 (x ) = ^1n (x ) P (x) f (4.52)

where

n(x) p (x) 2-rrp (z) g2 (z)p (z) dz. 
x

(4.53)

By definition, p(x) = u^(x)/u^(x) is the subjective value of leisure, at 

the margin, to the household which resides at x. Therefore n(x)p(x) is 

the total subjective value of the leisure time lost when all commuters
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passing through x are delayed by unit time, and p(x) is the marginal sub

jective value of leisure averaged over all those households which commute

through x. It follows that — ■ 4>(x )t (x)dx is that part of the shadow2 n

cost of adding one more commuter between x and x + dx which is external 

to that marginal commuter. That is to say, it is the congestion cost 

imposed upon the rest of the town by the marginal commuter's trip from x 

to x + dx.

Using (4.36), and using an argument similar to that used in 

Section 7 of Chapter 3, we deduce that

1 4>, (x ) - <j> (x ) I t  1 c

Xt
+ p(x)t (n,g^)dx
xc

F T . N N (4.54)

is the marginal transport cost of population. As in Chapter 3, this 

partial derivative with respect to N implies that L and the structure of 

the residential zone remain constant.

Equations (4.36), (4.45) and (4.52) yield

s (x) r (x) = — { p (x) t (x) + n (x) t p(x)}n (4.55)

Also, from (4.32) - (4.35), (4.50) and (4.52),

r (x) = — - 0a+1(x)p(x). 2tt (4.56)

From (4.52)

d
dx (p (x) ) n (x) f 

n (x) \ p(x) - p(x) (4.57)

Therefore, differentiating (4.56),
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r(x) = — (a + 1) 0a (x) 0 (x) p (x) - n-~q~ 9a 1(x){p(x) - p(x)}.2tr n(x)

(4.58)

Eliminating r(x) from (4.55) and (4.58)

—  (Y +  l " CL ——  a (a + 1) T p (x) 9 (x) 0 (x) = - T a0 (x)p(x) - p (x) x (x)2 TT 1 1

g (x)
- ax  7— r-0a (x){ p(x) - p(x)} .1 g (x)

(4.59)

From (4.53), p(x) >_ 0 implies p(x) >^p(x). Therefore, by
(4.59), p(x) >_ 0 implies 0 (x) < 0, unambiguously. However, if p(x) < 0, 
the sign of 0 (x) may be positive. In other words, we are unable to rule 
out the possibility, as we were in Chapter 3, that optimal congestion 
could increase with distance from the centre of the town. However, 
optimal congestion can be upwards sloping only where the shadow price of 

leisure is downward sloping.

Our results suggest that, in regions where the shadow price of 

leisure is falling, it may be optimal to increase the allocation of land 

to residential purposes and decrease the allocation of land to transport, 

even though congestion and hence travel time per unit distance may be thus 
increased.

4.3 RETURNS TO SCALE IN FACTORY PRODUCTION

We have already shown that returns to scale in net factory 
production in Riley's optimum town are unambiguously decreasing. This 
result agrees in qualitative terms with the results obtained for FIBOT
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and SEBOT in Chapter 3. We now derive expressions for the marginal prod

ucts of land and population at the optimum point when all households 

supply the same exogenously determined amount of labor to the factory.

We have proven that <\>̂ (x̂ ) =0. It follows from a comparison 

of (4.35), when x = x , and (4.41) that

r(x ) = r . (4.60)t a

Equations (4.34), (4.35), (4.39) and (4.60) yield

F = f (x ) + r s (x ) + t—  { <J) (x ) - <f) (x )} . (4.61)N t a t  A ̂ I t  l c

In the notation of Chapter 3, the first two terms on the right hand side
of (4.61) equal V , and, given that household utility is independent of N
location in our present town, these are the terms we obtained for the 
Riley town at equation (4.25), and for FIBOT and SEBOT in Chapter 3. 
However, we now have an additional term on the right hand side, which, 
after (4.53), we identified as being that part of the marginal household's 
shadow cost of transport that is external to it. The meaning of (4.61), 

therefore, is that the shadow value of the marginal product of labor is 
equal to the shadow value of the marginal household's consumption plus 

the shadow congestion cost the marginal household imposes upon the other 
households of the town. The difference between our earlier results and 

this present result arises from the fact that the uniform working hours 

constraint implies an identity between the marginal product of labor and 

the marginal product of population, which did not exist in our earlier 
models. In the earlier models, the marginal product of population was 

defined in terms of output per day, while the marginal product of labor 

was defined in terms of output per working hour. When travel times were
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increased by the addition to the town of the marginal household, labor

hours were reduced, either because leisure was constrained to remain

constant, or because the subjective price of leisure was constant. As

a result F increased and F decreased. Now there is a fixed relation- 2 N
ship between the hour and the day, and working time cannot be adjusted 

to compensate for the disutility experienced by households when their 

travel times are increased by the addition of the marginal household.

The marginal household must, therefore, produce the shadow value of this 

lost utility in addition to the shadow value of its own consumption.

The marginal product of factory land, F , is obtained directly
Jj

from (4.40). Adding (4.41) to (4.40), after setting ̂ (x^.) = 0, and 

using (4.52), we obtain

p(x )g (x )
F = r + --------- — ■{ f (x ) - f(x ) + r {s(x ) - s(x )}L a  x I t  c a t  c

1 j W+ 7—  { <j>, (x ) " 4»-, (x )} r -------- rA, 1 t 1 c I x a1 J c

P (x ) T (x ) ,2ttx c cc
(4.62)

P (x )g (x )
r + V + ------ ------ —  { 4> (x ) - 4> (x ) }a L x 1 t 1 c1 c

---- p (x ) t (x ) - r R .2ttx c c a Lc
(4.63)

Compared with equations (3.98) and (4.25) we have the additional terms

p(x )g (X ) N
T-------- -----{<|> (x) - <|> (x )} - ---- p(x )t (x )x 1 t 1 c 2ttx c c1 c c

in (4.63). These terms represent those transport shadow costs, which are gene:
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ated by transferring unit area of land from the residential zone to the
CBD, and which are external to the p(x )g (x )/x households who arec 2 c c
displaced from x to x by the transfer. It is only the external costs c t
which appear in (4.63), because the loss of the displaced households' 

leisure time is compensated for in the change in their consumptions.

This latter change is implicit in the term V .
Li

We can use (4.61) and (4.63) to evaluate the local degree of 

increasing returns to scale at the optimum point. We let

= L ?  + NJ? , (4.64)L N

where

= F - r R. a

Then, neglecting the term

N
2ttxc

P (x ) T (x ) , c c

because it has no theoretical interest,

(4.65)

($ - 1)3? = LV + NV - V L N

+ f_N_ L P<Xc>g2(Xc)W+ Ai { w " w}- (4.66)

To evaluate the sign of $ - 1 we have, using (4.35) and (4.36),
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+ ~ 4>-, (* ) ) > f ( x )  + r s (x ) + —  <$>, (x )N N 1 t l c  t a t  A l t

- { f  + r s + r ^ - J }  a A

= r (x) s (x) - r s, a

xt
2ttp (x ) g (x) (r(x) - r } s(x)dx, 

2. a
xc

> 0. (4.67)

Similarly,

xc
P (x ) g (x ) c 2 c VL + X { 4) (X ) - <J> (x )} I t  1 c

f (x ) + r (x ) + t <*> (x ) t a t  1 t

- { f (x ) + r s (x ) + — - 4> (x )}, c a c 1 c

(r (x ) - r ) s (x ) > 0. c a c (4.68)

It follows that

( $ - ! ) >  0, (4.69)

and returns to scale in net factory production are increasing in the neigh

borhood of the optimum point. This is a fundamentally different result
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from those obtained from our earlier models, where returns to scale were 

found to be unambiguously decreasing. We will discuss this difference 

in Section 4.5.

4.4 THE OPTIMUM TOWN WITH FIXED WORKING HOURS AND NO EQUALITY 

CONSTRAINT

We will now state the main results derived from the model of 

the optimum town in which working hours are fixed and no equality 

constraint is imposed in respect to the treatment of the resident house

holds. The necessary conditions for an optimum in this case can be deriv

ed from equations (4.32) - (4.42) by setting y (x) - 0.

From (4.27), (4.34) and (4.35) we then obtain

uff ufs u f£ 'f(x)' 'o

u _ u u „sf ss s£ s (x) = -X (x)

0 0 1 v > i (x) _- Y (x) ,

where X and Y are strictly positive functions of x. Solving (4.70), we 

find that s(x) and f(x) can take either sign. These are the conclusions 

we obtained when the equality constraint was imposed.

In respect to the value of the marginal products in the optimum 

town, we find that, analogous to (4.61),

F = - —  {u(x ) - u} + f(x ) + r s(x ) N uf t t a t

+ t —  { <J). (x ) — 4> (x ) > ,1 t 1 C (4.71)

and analogous to (4.62),
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r + a
p (x ) g (x ) c 2 c —  { u(x ) 

Uf fc
u(x ) } c

+ f(x ) - f(x ) + r { s(x ) - s(x ) } t c a t  c

+ I 7 { W  ‘ V xc>}}
g, (x )1 c

Xc
ra

N
2ttxc

P (x ) T (x ) . c c (4.72)

Equations (4.71) and (4.72) differ in form from (4.61) and (4.62) only

in the terms in (u(x ) - u) and {u(x ) - u(x )}, which, of course, aret t c
zero when the equality constraint is imposed. Finally, it follows from 

(4.71) and (4.72) that returns to scale in factory production net of 

transport costs are increasing at the optimum point. This is the result 

we obtained for the case where working hours are fixed and equality of 

treatment of households is imposed as a constraint.

4.5 CONCLUSIONS

This is an appropriate point to make comparisons between the 

solutions we have obtained from our four main models. Firstly, comparing 

the Riley town with FIBOT, we observe that leisure time is allocated to 

households differently. In FIBOT, the equality of leisure constraint is 

equivalent to assuming that an exogenously determined amount of leisure 

is paramount to each household, and, as a consequence, a shadow price of 

leisure is not discovered in the solution. In the Riley town, on the 

other hand, leisure time is allocated optimally, and because it is optimal 

to treat households unequally, the leisure allocation is a strictly

increasing function of distance from the centre of the town. Furthermore,
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the shadow price of leisure is discovered in the solution. Since leisure 

has no special locational properties this price is found to be independent 

of location. Apart from these differences, FIBOT and the Riley town are 

seen to have the same qualitative form.

Comparing FIBOT and SEBOT, we find that, apart from the obvious 

difference that household utility is location dependent in FIBOT and 

location independent in SEBOT, the two solutions differ qualitatively 

only in so far as the household allocation of the factory good increases 

with respect to distance in FIBOT, and decreases in SEBOT. This differ
ence is directly related to the inequality in FIBOT, and the equality 
in SEBOT.

In all three models compared so far, the functions representing 

household allocations of the consumption goods and transport congestion 
in the residential zone have been shown to have slopes whose signs can be 

determined unambiguously for the quite general production, utility and 
transport functions we have used. Furthermore, returns to scale in net 
factory production are found to be strictly decreasing.

In our fourth model, that is, the town in which labor works 
fixed hours and equals are treated equally, the strong results with 
respect to the structure of the residential zone are not obtained. In 
fact, the only unambiguous result we obtain in our description of the 
residential zone is that the von Thünen, residential rent is strictly 

decreasing. This result, of course, was an inevitable consequence of our 
observation that t (x) > 0. In addition, returns to scale in net factory 

production are shown to be strictly increasing.

The ambiguities in the structure of the residential zone can 

be directly related to the working hours constraint. That constraint 

implies that leisure time falls with distance from the centre of the 
town. With a downward sloping leisure time allocation, household utility
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may be held constant within the residential zone by upward sloping fact
ory goods and residential site area allocations, or by making just one 

of these upward sloping and the other downward sloping. The shapes of 

the optimal allocations from these three possibilities will depend upon 
the shape of the household utility function. The ambiguities arise from 

this dependence. None of these ambiguities could occur in the earlier 

models, because leisure time is constant in FIBOT and SEBOT, and the 

optimality of inequality ensures that all allocations increase with dis

tance from the centre of the town in Riley's optimum town.

The difference found in optimal returns to scale in net prod

uction arises from the way in which household utility is adjusted against 
the transport congestion costs imposed by the marginal household. In 
FIBOT and SEBOT leisure time is fixed, and therefore, transport congest
ion is reflected in working hours and the marginal product of labor.

The marginal household must produce the value of its consumption (with 
an adjustment for differences in household utility in the case of FIBOT) 
while working comparatively short hours. In the Riley optimum town the 
process is much the same, since the shadow price of leisure is equated 
to the marginal product of labor. In our fourth model, however, the 
constant working hours constraint rules out any adjustment process through 
maintaining leisure time. The transport congestion costs imposed upon 

the town by the marginal household can only be compensated for by prod

uction of the factory good by the marginal household. However, in this 

case the marginal household works comparatively long hours. The marg

inal product of factory land is expressible in terms of the way in which 
land allocation to the factory forces the displacement of residents from 

the CBD boundary to the town boundary, thus making them "marginal" house

holds. For this reason we find that F for the fourth model contains a
J_j

transport congestion term which makes it different in form from that 
found for the first three models. We then find that these additional
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terms in the marginal conditions ensure that the local returns to scale 
at the optimum point are strictly increasing when working hours are 
fixed.

This concludes our analysis of the optimum factory town.



CH A P T E R  5
COMPARATIVE STATIC ANALYSES OF THE 

OPTIMUM TOWN

We now turn to some comparative static analyses of the optimum 

factory town. During our survey of the literature we recorded that 
Wheaton [1974] has presented comparative static analyses of two equil

ibrium towns. In one of these the population is determined exogenously 
and the town is closed to the movement of households. The other is an 

open town, and population is determined endogenously. In his closed town 
Wheaton uses household income, the opportunity cost of land, population 
and the transport rate (that is,the cost of transporting one household 
unit distance) as shift parameters, and he examines the effects of these 

shifts on the residential rent and the population density, both of which 
are variables in his model, and on the household utility and the town's 
radius, which are parameters. In his open town he changes the roles of 
population and household utility. That is to say, household utility is 
used as a shift parameter and population is endogenous.

It is noteworthy that Wheaton is able to put unambiguous signs 
on all his results. However, this lack of ambiguity seems very largely to 

be a consequence of the assumptions which underlie his model. For example, 

his assumption that per capita income is exogenously determined (and there
fore independent of population) is too strong. It rules out justification 

for the existence of the town in the usual sense, because, if CBD size
were endogenously determined, transport costs could be saved without red-
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uction in per capita income by limiting the population of the town to one 

household. That is, by organizing the economy for individual production 

by households. Therefore, Wheaton's result, that the derivative of house

hold utility with respect to population is negative for all values of 
population in the equilibrium town, appears to be almost a re-statement 

of his income assumption, and several more of his results appear also to 

rest directly upon the lack of justification for the existence of the 
town.

In this chapter we will attempt to avoid this pitfall by setting 
up a simple model in which per capita income is determined endogenously, 

and use it for some comparative static analyses. Normative models are 
usually easier to formulate and to solve than equilibrium models, and, for 

this reason, we will restrict ourselves to an examination of the optimum 
town. However, subject to some restrictions, competitive realization of 
the optimum town has been shown to be possible, hence our results will 
have fairly general application.

Since income must be endogenous, it is necessary to use a model 
in which the land input to factory production and the population are also 
endogenous. This implies complexity in the structure of the model. How

ever, considerable simplification of the models developed in Chapters 3 
and 4 is possible. For the purpose of establishing principles we will 
use FIBOT, because we have seen that optimal consumption of leisure does 
not add much of significance to the model. Furthermore, we will assume 
that the population density in the residential zone, p(x), is equal to 

the constant p, independent of location. We will assume there is no land 

input to transport, and that the time taken for a household to travel unit 

distance at x is x, also independent of location. This relation holds in
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the CBD as well as the residential zone.*

Our simplifying assumptions are not entirely artificial. The 
assumption of uniform population density has been used by Mills and de 

Ferranti [1971], Livesey [1973] and Sheshinski [1973] in their studies 
of optimal congestion costs. The optimum town in which population density 

is uniform is an interesting second best town in its own right, because 

when we observe new towns or new suburbs of old towns, we tend to find a 
uniformity in residential site area,which is equivalent to a uniform pop

ulation density. This uniformity arises, not so much from the market 

forces which determine the residential land rent, but from the controls 
of planning authorities. It would be going too far to argue that a resid
ential area which was developed during a period of constant planning 
fashion has precisely uniform population density, but we do find that 
population densities can be fairly easily fitted into a very few classes; 
low density detached housing, medium density low rise apartment housing 
and high density high rise apartment housing for example. Given this 
observation, the uniform residential density optimum town becomes a first 
approximation to the optimum town under planning control - one more polar 

case.

The assumption that land is not an input to transport is also 

of interest, because, given uniform population density, it is equivalent 
to assuming that each household requires the same road area. We very 

quickly reach the point of indivisibility in the design of residential 
streets. The large majority of roadways in residential areas are two 

lanes wide because they cannot be narrower. Therefore, in assuming that 
there is no land input to transport, and choosing a population density

* In much of our analysis we could generalize by putting x = x(x). How
ever, this device does not alter in any substantial way the results 
we obtain. We could also generalize by considering the case where 
laborers travel only to the CBD boundary, and the case where worker 
density in the CBD is constant. Again it can be shown that these 
cases do not add to our conclusions.
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which takes into consideration a constant road area per household, we 

capture much of the effects of indivisibilities in roadways.

5.1 THE OPTIMUM TOWN

In adopting FIBOT to our purposes,equations (3.1) and (3.2) 

continue to hold. That is,

L = (5.1)

2A = 7TX . t (5.2)

However, if we assume that all workers commute to the centre of the town, 

we now have

T

xt „ 2 2ttx pdx,
xc

(5.3)

because the time taken for a household resident at x to commute to the
x

centre of the town is

continues to be

xdz = ix.
j0

The population constraint on FIBOT

N - W - T = 0. (5.4)

All households reside in the residential zone. Therefore, the residential 

land constraint may be written

p (A - L) - N = 0. (5.5)
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Households derive utility from the consumption of the factory 

good and the services of residential site area. However, since the resid

ential density is constant, household utility is a function of the single 

variable f(x). That is,u = u(f(x)). The income constraint on the town 

is

F Ar - 2Trpxf (x) dx = 0. (5.6)

The welfare problem can now be stated as: we wish to

max
f (x) , W, A, L , N

xt
1
N 2-rrpxu (f (x) ) dx,
xc

subject to the constraints (5.3) - (5.6).

It is easy to show that one of the necessary conditions for the 

maximization implies

f (x) = 0. (5.7)

That is, factory output net of rent payments to absentee landlords must 

be equally distributed between households. This implies

u (x) = 0. (5.8)

Equals are treated equally in this optimum town. We would have expected 

to obtain this result, since the inward movement of the centres of house

hold residential sites, which reduced transport costs, and thus made it 

optimal to treat equals unequally in the general FIBOT, cannot occur 

when the population density is constrained to be uniform across the resid-
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ential zone.

The necessary condition (5.7) makes it possible for us to re

state the welfare problem in a form which will enable us to derive the 

second order sufficiency conditions. Average utility is maximized if 

we

max
W,A,L,N

subject to the constraints (5.3) - (5.5).

Before proceeding to the solution it will be useful to set down 

some notation. We continue to use and to represent the partial 

derivatives of F(L,W) with respect to its arguments. However, we can 

use (5.4) to eliminate W, in which case we can obtain the derivatives

9F
9l

_3_
9L F(L,A,N), 9F

9A
_9_
9A F (L, A, N) , 9F

9N F(L, A, N). (5.9)9N

The derivatives F and F defined in Chapter 3 may now be written L N

9F 9F 
9L + 9A ' (5.10)

9F 1 9F
9N p 9A * (5.11)

Similarly,

TL
9T 9t 
9L + 9a (5.12)

TN
1 9T 
P 9A *

dr
dN (5.13)
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The welfare problem is a simple problem in constrained maximiz

ation. The first order necessary conditions are by now familiar:

F = r + T F ; 1 a L 2 (5.14)

F - Lr
(1 - T )F = ------ -N 2 N (5.15)

It is obvious from these conditions that returns to scale in gross fact

ory production are unambiguously increasing.

The conditions (5.14) and (5.15) can be re-stated as

F = r ,L 3.
(5.16)

F - Lr
(5.17)

which means that returns to scale in net factory production are constant. 

Again, this could be expected, since household substitution between con

sumption goods cannot occur.

Finally, the second order sufficient conditions are obtained 

in the standard way. We find these reduce to

f l l f n n
(5.18)

F < LL 0 , F < NN 0 , (5.19)

That is F(L,N) must be strictly concave. For the remainder of this chap

ter we will assume that (5.18) and (5.19) hold, and that F > 0.LN —
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5.2 COMPARATIVE STATIC ANALYSES

5.2.1 The Opportunity Cost of the Land

If the population of the town is fixed, differentiating (5.16) 

with respect to r gives

dL
dr < 0. (5.20)

Hence,

dW
dr

dLT —  > 0,L dra
dA—  < dra

0. (5.21)

Similarly, when the area of the CBD is fixed, (5.17) yields

dN
dra

1 L
F N NN

0 , (5.22)

dW
dr (1 - y o o. (5.23)

The meanings of the results (5.20) - (5.23) are straightforward: 

an increase in the opportunity cost of land, ceteris paribus, will always 

result in a decrease in the land/labor ratio in factory product

ion at the optimum. However, this does not mean that the town will occupy 

less land. If the area of the CBD is fixed, the land/labor ratio in prod

uction is decreased by increasing the population of the town. This 

implies an increase in the residential zone, and hence, in the area of 

the town.

When both L and N are free, (5.16) and (5.17) yield



los

dL 1 ’ \
+ NFNN Jdra N |h I

LFLN

dN -l + NFLN Jdra N 1 H 1 Lr LL

es.24)

(5.25)

The right hand sides of both (5.24) and (5.25) can be of either sign.

Equation (5.24), therefore, implies that an increase in r can result ina
an increase in the use of land as a factor of production in the optimum 

town. However,

dN
dr

= — LF + NF LL LN

LN

r \ FI LL I ILF + NF = -----IILN NN F 1 1LN
dL
dr (5.26)

That is, if an increase in the opportunity cost of land induces an

increase in the use of land as a factor of production, it also induces
dLan increase in the population of the town. Furthermore, if > 0,

a

L
N

dN
dr
dL
dr

1 > + NFLN > 0 . (5.27)

That is to say, if an increase in r results in increased use of land ascl

a factor of production, this increase is always associated with a decrease 

in the land/labor ratio in production. It follows that the land/popul

ation ratio of the town also decreases.

dW dAIt is easily shown that both —— and ——  can take eitherdr dra a
sign. We, therefore, conclude that, when both L and N are free, no
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general Statement can be made concerning those changes in the dimensions

and population of the optimum town which are induced by a change in the

opportunity cost of land. Observe that we have one additional parameter

over those usually found in a problem in comparative statics. It is the

optimal degree of increasing returns to scale. It can easily be checked

that the induced change in this parameter due to an upward shift in the

opportunity cost of land can be of either sign. The implication of this

result is that a shift in r not only induces a change in the optimala
factor ratio in production, but it also induces a change in the scale 

of production. It is this latter induced change which leads to the ambig

uous results we obtain when both factors of production are free.

Using the labor and land constraints (5.4) and (5.5),

d 
dra

= - -  < 0 , (5.28)N

F - Ar F (L, A, N) - Ar
+ X{p (A - L) - N}

where A is the Lagrange multiplier associated with the constraint (5.5).

Thus, an increase in r always results in a fall in household consumptiona
of the factory produced good (and, therefore, in household utility), 

irrespective of the signs of the changes in the structure of the town. 

This result was, of course, to be expected.

5.2.2 Travel Time

We will now examine shifts in t , which represents the time taken 

for a commuter to travel unit distance. Integrating (5.3)

3 3x - x t cT 2
3 nPT (5.29)
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Therefore,

T = px (x - x ) ,  T = tx . L t c N t

Using (5.16) and (5.17),

dL dN 3F -- + F -- = - ——  FLL di LN dx 3x L
TT . , L 2-  (F - T F ) + — — , x 12 L 22 x

T 1--------------  F +  —x (1—T ) LN x N
T + NN
L 1-TN

dL dN 9p _ _|_ p _ — _ _
LN dx NN dx 8x

FF - — N N

-------  F + —x (1-T ) NN x N
T -

TTT NN
N 1-T I

TvT J

Therefore,

dL
dx x H

T_ + 'NN
L 1-T

TTT NNT - —  + ----N N 1-T

LN

NN

< 0 ,

dN
dx x(1-T ) I N x H

T + NN
L 1-T

TTT , NN T - — +LN N N 1-T

>
T  0,

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)
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dW
dx

dL
dx

' dW j dN t DW
dN dx 9x

Jlj

T dL F 2 (1 V
=  —  —  -----  +  — ---------------T dX I Ix H

LN

TTNNT + ----L 1-T

T TTNN 
TN N + 1-T

>-  0, < (5.36)

Before we interpret these results, we note that, if L is fixed,

p / rprr ndN = ___T___ + T , Nn I > Q
dx t (i-tn) tfn n \ n n i-t n J < (5.37)

However,

dW
dx

(1-T )F N 2
= xFNN

TN (5.38)

The interpretation of (5.37) and (5.38) is straightforward. Referring to 

(5.38) first, if L is fixed, an increase in x increases the shadow price 

of labor. Therefore, the optimal labor input to factory production falls 

unambiguously. Now referring to (5.37), there are two parts to the shift 

in optimal population. Ceteris paribus, the fall in optimal labor implies 

a fait in optimal population, but the increase in x also implies that 

commuters will spend more time travelling, and, ceteris paribus, this 

effect causes an increase in optimal population. The combination of these 

two effects makes the induced shift in optimal population ambiguous in 

sign.

Now returning to (5.34) - (5.36), an increase in x induces an 

unambiguous fall in optimal L. We have seen that, given constant L, optim

al W falls. However, the fall in L, ceteris paribus, reduces the shadow
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price of labor, and, therefore, acts to increase optimal W. As a result, 

the change in optimal W may be of either sign. Finally, the ambiguity of 

sign in ^  implies ambiguity in the sign of

It is interesting to note that, while ^  < 0 when population is 

free, this ambiguity does not carry through to the fixed population case. 

Fixing population, (5.31) becomes

dL T , , LF -- = —  F - T F  ) + --F ,LL dx t 12 L 22 T 2

1 d ,-  —  (TF ) . T dL 2 (5.39)

In (5.39), TF^ is the opportunity cost of the total travel time of the
dLpopulation of the town, and the meaning of the relationship is that —

a
will be positive if and only if a marginal increase in L causes a decrease 

in this opportunity cost. If returns to scale in gross factory product

ion were non-increasing,the sign of the right hand side of (5.39) would 

be unambiguously positive. However, returns to scale are increasing, and

F may, therefore, be positive. If it is, —  (TF ) may be negative.
Z Z dL z

Finally,

+ A{p (A - L) - N}

(5.40)

which implies that household consumption and utility always fall when the

unit travel time increases.
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5.2.3 Population Density 

We can write

dF 3F , 3F  ̂ 3F , 3F__L _ __L dL __L dN __L dA __L
dp 3L dp 3N dp 3A dp 3p

, , 3F 3F
F + F - -S___ t  + _ tLN dp LN dp 2 3A 3p P

(5.41)

Therefore, total differentiation of (5.16) with respect to p yields

LL dp
dN N4- F --  = ---

r n TTT --- 3 TJ 1 h3 1 N T --- —LN dp p N N 3W l 1 L 2 J NN p JV
r WT I NN
l 1-T 1 N

T  'i
—  F . (5.42)P J 2

Similarly,

dL dNp __ p __
LN dp NN dp

N
P

TT --- _3_ F F 1+ —
r >
T - NTN N 3W l N N P N NN J

T
N (5.43)

After some manipulation, (5.42) and (5.43) yield

dL
dp H

2TN
T
N

TL
P

1_
P

2T N
T
N

WTNN I
x-tnJ

LN - pFNN

- FNN

(5.44)



dN
dp

T
N T

N . (5.45)N
P
TN
1 TN

+
F2
H

2TN
TL
P pF - F LN LL

FLN

All the elements of the determinants are unambiguously positive with the

WTT _ NN 
N 1-T , which may take either sign. Therefore,exception of —  < 2Tp

IN '

, , dL _ dN , . , . ,  ̂ dA , dWboth and ——  may take either sign. It can also be shown that ——  and —  dp dp dp dp

can take either sign. Furthermore, none of these ambiguities is removed 

when either N or L is assumed fixed.

The effects of an increase in p can be divided into two parts.

The increased density increases the shadow residential rent and the opport

unity cost of factory land. In this respect an increase in p is equival

ent to an increase in x. At the same time, however, the increase in 

density, ceteris paribus, results in a decrease in the area of the resid

ential zone, which implies a fall in the travel time of households. This 

effect has no parallel in the case of a shift in the unit travel time. 

Comparisons between (5.34) and (5.44), and between (5.35) and (5.45) show 

a correspondence between the right hand sides of (5.34) and (5.35) and 

some of the terms of (5.44) and (5.45), but (5.44) and (5.45) contain 

additional terms which arise from the second of the above effects. The 

ambiguous results we have obtained are to some extent due to the fact that 

the two effects tend to work in opposite directions.

However,

_d_
dp

r F - Ar ____ a
N

F - Ara
N A{p (A - L) - N>

'S

N + AN. (5.46)
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A can be evaluated by differentiating the Lagrangian with respect to A; 

thus,

An =
r

(5.47)

Therefore,

_d_
dp 0. (5.48)

That is, in the optimum town, household consumption of the factory prod

uced good increases as the population density increases.

5.3 CONCLUSIONS

The striking difference between the results of our comparative 

static analyses and those of Wheaton [1974] is that very few of our res

ults are unambiguous in sign, whereas all of his are. The reason for 

this difference is that his is a partial equilibrium analysis in the sense 

that per capita income is treated as being exogenous, while ours was 

carried out in a general equilibrium framework. Having made this observ

ation, it becomes clear that the most important lesson to be learned from 

our analysis is how crucial it is always to regard a town as a single 

indivisible unit. The importance of this essential unity on the results 

of our analysis is emphasized by the existence of increasing returns to 

scale at the optimum point.

It is worthwhile to re-state our main results briefly. So far

as the opportunity cost of land is concerned, we find that, if population

is fixed, —  < 0,and, if CBD size is fixed, >0. The effect of both ofdr dra a
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these results is to make the factor ratio L/W decrease when the opportun

ity cost of land increases. This result could easily be predicted. When 

L and N are both free to vary, the sign of all induced shifts are ambig

uous. This is because the local degree of increasing returns at the 
optimum may change, however it does produce the apparently paradoxical

result that an increase in r may lead to an increased use of land as aa
factor of production. The paradox is only apparent, however, since we

dljshow that -—  > 0 implies a fall in the land/labor ratio in production.
a

Using the time taken for a commuter to travel unit distance, T,
as a shift parameter we obtain one unambiguous result when L and N are

both free. This is that the area of the CBD decreases with an increase
dWin t . The sign of — , on the other hand, is ambiguous. The ambiguity

arises from the way in which the decrease in L reduces transport times
clLfor the laborers. When N is fixed, —  can take either sign. It willdx

certainly be negative if there are constant returns to scale in product
ion, but this condition is not necessary for an optimum. When L is 
fixed, < 0, because the shadow price of labor increases unambiguously.

Finally, using the population density in the residential area, 
p, as a shift parameter, we obtain a series of ambiguous results. Popul

ation density appears in two constraints on the optimization. In the pop
ulation constraint (5.4) its effect is identical to t , and it appears with 

t in the slope of the von Thiinen rent. It also appears in the constraint 
(5.5) where it is the coefficient of proportionality between residential 

zone area and population. Its effect on the comparative static results 

through one of the constraints is in the opposite direction to its effect 

through the other, and an intuitive analysis of the comparative static 

relationships becomes complex.



CHAPTER 6
THE OPTIMUM INDUSTRIAL STATE

In Chapter 2 we reviewed the development of the von Thünen 
theory of rent. Writing over the period 1826-63, von Thünen examined 

agricultural land use patterns around an isolated market place when land 

and labor are factors of production. Assuming both factors to be of 
uniform quality, he found that profit maximization requires that, at 
equilibrium, the land will be divided into contiguous annular zones. In 

each of these zones, one, and only one, crop will be produced. These 
zones are the so-called von Thünen "rings", and they and the market make 
up the von Thünen Isolated State.

The von Thünen analysis was based upon fixed coefficient prod
uction functions. Quite recently, Beckmann [1971] introduced neoclassical 

production functions into the von Thünen model,and found that the "rings" 

are robust to this change in the model's structure. However, he further 
found that, within each ring, the land/labor ratio increases strictly 

with distance from the market, and is continuous across the boundaries 
of the rings when factor substitution can occur.

Apart from Beckmann's contribution (re-examined in some details 
by Renaud [1972]), the von Thünen model, in its application to agricul

tural land, has remained almost static for more than a century, notwith
standing its limitations when judged on the standards of modern economic 
theory. Prices in this Isolated community continue to be assumed to be 
exogenously determined, and the market place is located on a point, and



115.

has none of the other economic activities normally associated with a mar

ket town. There is no urban production, no population and no residential 

zone. In brief,the present status of the von Thunen Isolated State is 

that of a purely agricultural community, whose only contact with the rest 

of the world is at a market point, at which it is a price taker.

Just as the locational theory of agricultural land use over

simplifies the role of the market town in the economy, the theory of urban 

land use has been developed without regard to the structure and role of 

the town's agricultural environment. We have already noted that the 

residential zone and the CBD are typical von Thunen "rings", but we have 
not, so far, concerned ourselves with interactions between these rings 

and the agricultural rings in the surrounding rural area. We have repres
ented the agricultural land rent by a constant independent of the size and 
population of the town. In respect to the consumption of produced goods, 
we have assumed that the residents of the town derive utility from the 
factory good alone.

This separation of the two theories is convenient in developing 
pure theories, but it is artificial, and it omits to examine interesting 

relationships of dependence between the two sectors of the economy. A 
most casual observation of reality reveals that towns and their agricul
tural environments produce different goods, and that the economic inter
dependence between the two sectors is profound. There is a need, there

fore, to integrate the two theories, and to describe in formal terms the 
structure of the isolated industrial state. Quite clearly, if we assume 
a von Thünen-like price for goods transport, the agricultural rent (includ
ing the agricultural rent at the town boundary) will depend, inter alia, 

upon the distance from the centre of the town, and if our state is truly 
isolated, relative prices will be determined endogenously. In a normat
ive context, these observations suggest to us that the optimum size for 

the factory town in an isolated industrial state will depend upon the



116.

shadow costs of transporting agricultural goods to the urban market, and 
that there must be an optimum size for the industrial state. We now proc
eed to examine these ideas in a formal model of the optimum state.

6.1 THE MODEL

In Chapters 3 and 4 we examined in some detail the spatial 

structure of the residential zone of the optimum town. There is no need 
to re-traverse this ground, and at this point our problem can be simplif

ied by the use of the model of the factory town introduced in Chapter 5. 

This is the model in which population density in the residential zone is 

constant, and no land is required for transport. The analytical conven

ience of this model is manifest in three ways. First, the constant resid
ential density simplifies the analysis of the residential zone. Second, 
the fact that equals are treated equally in this optimum town simplifies 
the choice of a welfare criterion. Finally, we are able to avoid the 
difficulties which exist in presenting a suitable definition of the resid
ential site area of a farm worker. These difficulties arise from environ

mental differences between the town and rural areas, because it seems 
probable that urban and farm households have different tastes in regard 
to residential space. The urban household needs space for two reasons. 

First, it needs living space in the direct sense. Second, it needs space 
to separate itself from neighboring households, and thus obtain privacy. 

The farming household requires living space in the same way as the urban 

household, but its privacy is obtained from the size of its farm. Thus, 
it would appear that farm households will demand less residential space 

than an otherwise identical urban household. We avoid the issues raised 
by this difference in taste by assuming that every household in the state 

is allocated a residential site of area 1/p, , where the subscript "h" is 
used to denote residential density on land allocated to household resid-
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ential purposes.

In setting up the model we will consider only one agricultural 

good. Our state, therefore, is made up of three zones: the CBD;which

contains the factory; the residential zone, which houses the factory work

force; and the agricultural zone,which contains the farms and the resid

ences of the farm workforce. Following our earlier notation we write

TTX 7TXt' TTX (6 .1)

where L, A, x^ and x̂ _ have the meanings already assigned to them in Chapter

3, and S and x are the area and radius of the state, respectively. The s
factory production function is now written in the form F(L,W ) where W isu u
the (urban) labor input to factory production. The factory good will again 

be nominated as the numeraire good of the state.

The population of the state is assumed to be N identical house

holds. Each of these contributes a total of unit time to labor and 

(possibly) travel in the state. Of the N households, reside in the 

residential zone of the town. This residential zone is wholly allocated 

to residential purposes, therefore,

N - p (A - L) = 0. (6.2)u h

We assume that the only input to the transportation of the factory work

force is its travel time. Let t (x) be the time taken for a laborer resid-u
ent at x to make a round trip to the centre of the town. Then we assume

that the total travel time per day of the residents of the town is given

by

xt
T = 2 ttp x t (x) dx. u J h u

cx
(6.3)



The labor input to factory production is, therefore, given by

W = N - T . (6.4)u u u

The agricultural good is produced on farms from inputs of land 

and labor. In our examinations of factory production we have had to take 

into account the economies of scale which must exist to justify the exist

ence of a town. In agricultural production, however, the labor workforce 

per productive unit is usually observed to be small (compared with the 

factory workforce), and it does not have to travel to its place of work.

It seems reasonable, therefore, to assume that returns to scale in agric

ultural production are typically very nearly constant. Accordingly, we 

will assume constant returns to scale in agriculture and write the prod

uction function in the form

4) (x) = <t> (p (x)) , (6.5)a a a

where <J> is the output per acre from land allocated to farming and p (x) a a
is the labor input per acre of farm land. Since farm laborers do not have

to travel to work,p (x) is also the number of farm laborers per acre ofa
farm land. It is well known that, when returns to scale are constant,

3<J>ad)1 (p (x) ) = —-- is the marginal product of labor, and 6 - p 4>1 is thea a 8p - - x r  a a a
3.

marginal product of land. We make the additional assumption that cf>" (p )a a
is strictly negative.

We assume that t (x) units of labor are required to transport a
one unit of the agricultural good from x to the centre of the town. There

fore, each acre of farm land requires t (x)<}> (p (x) ) households to trans-a a a
port its output to market. Where should these agricultural transport 

households be housed? Since their journeys to market are always round
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trips, they will not have to travel to work if they reside between the' 

town centre and x. It will, however, be sub-optimal to locate them in 

the residential zone of the town, because,located within the town, they 

will increase by displacing urban households outward from the CBD. 

Furthermore, since the von Thünen rent must be downward sloping, the 

opportunity cost of their residential sites must decrease as their resid

ential locations are moved outward. Therefore, we will locate them at 

x. In this way we make the opportunity cost of agricultural transport 

workers' residential sites the least it can be without our introducing 

labor transport in the agricultural zone. It follows that the area of 

residential land associated with one acre of farm at x is

{p (x) + t (x) (J) (x) }/p , and the total output of the agricultural good, a a a h
$ say, is given by a

$a 2ttx P + P (x) -h a + t (x)<j> (x) a a
4> (x)dx.
cl

(6.6)

Furthermore, the population density in the agricultural zone, p^(x) say, 

is given by

p (x) r
{p (x) + t (x) <f> (x) } i a________a____ a_____
+ p (x) + t (x) <f> (x) (6.7)

and the population of the agricultural zone, N say, a is given by,

Na

xs
2ttxp (x)dx. r

xt

(6 .8)

In deriving equations (6.4) - (6.8) we have not allocated labor 

for the transport of goods from the market to the consumers. This is
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because, in the optimum state, urban households can combine shopping and 

work journeys, while the transport system set up to carry the agricul

tural good to market can be used, without additional cost, to carry goods 

from the market to the agricultural households. The population of the 

state is, therefore,

The N identical households of the state are assumed to derive 

utility from the consumption of the factory and agricultural goods and 

from the services of residential space. However, since the area of resid

ential sites is constant throughout the state we can write u = u(f(x),a(x)), 

where f(x) and a(x) are the household's allocation of the factory and 

agricultural good, respectively. From the model developed in Chapter 5 

it is easy to show that f and a are constant in the residential zone of 

the town. Furthermore, there can be no discontinuity of price ratio or 

of household utility across the town boundary, because households are 

identical and goods transport is costless. Therefore, we can write the 

urban household's allocations as f (x̂ _) , a(x^), this representing the 

allocations to an agricultural household located at x^.

N = N + N . (6.9)u a

Now, writing the agricultural household's allocations as f(x),

a(x), where x lies in the closed interval xt < x < x , the income con- —  —  s
straints on the state can be written

xsr
F - Sr - N f(x ) H u t 2ttxp (x ) f (x) dx = 0, r (6 .10)

xt

and
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2rrx   ---T T T-- m — T T  4> (x)dx - N a(x )p, + P (x) + t (x) 4» (x) ra u th a  a a

2 ttxp ( x ) a ( x ) d x  = 0, r (6 .11)

Finally, average utility may be written

—  ( N u (f (x ) , a (x ) ) + N u t t 2 ttxp (x)  u ( f , a)  d x  } r (6 .12)

This completes the specification of the model.

6.2 THE STRUCTURE OF THE AGRICULTURAL ZONE

We again choose as our criterion of optimality the maximizat

ion of average utility. The control variables in the maximization are

f(x), a(x), p (x) and p (x) and the control parameters are L, A, S, N, r a
N , N , W and T . The constraints on the maximization are (6.2) - (6.4) u a u u
and (6.7) - (6.11). We define the Lagrangian

<£ (x)  = 2nxp (x) r
/ u(x) l N X f (x) X2a(x)

X„P,2 h , , .+ 2ttx ------- — — — —— T T T — 1 C ^p, + p (x) + t (x)4> (x) a

+ 2 n x y ( x ) p (x)  r
p. (p (x) + t (x) 4> (x)) 

h a  a  a
), + p (x) + t (x) 4> (x) h a  a a

(6.13)

and the function
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J ~  N u (f (x ) , a (x )) + X {F - Sr - N f (x ) } N u  t t 1 H u t

- A N a (x ) + A { N 2 u t 3 u - Ph (A - L)> + X4 { Tu

tX

2ttxo, t (x) dx} h u
xc

+ A i N  - W - T } +  A N  + A ( N - N - N } , (6.14)5 u u u  6 a 7 a u

where the A's are constant Lagrange multipliers and 2ttx y (x) is a location 

dependent Lagrange multiplier.

Choice of the variables f(x) and a(x) gives the necessary

conditions

1_
N uf (6.15)

(6.16)

Differentiating (6.15) and (6.16) totally with respect to x, and using 

the strict concavity of u(f,a),we obtain

f (x) = a (x) (6.17)

So that equals are treated equally in the agricultural zone. This result 

was to be expected, given the explanation in Chapter 3 of why equals are 

treated unequally. It also follows from (6.15) and (6.16) that the shadow 

price of the agricultural good (at the market and to the consumer), pa
say, is given by



123.

a A. (6.18)

Choice of the parameters N and N givea

X6 = A7 = N (6.19)

Using (6.19), choice of the variable p (x) givesr

y (x) = A^f + A2 a , (6 .20)

so that y is, in fact, a constant. Using (6.18) and (6.20), choice of

p (x) gives a

f + P a[{l + t (x)<j)'(p )}{p + p (x) + t (x)(j) (p )}a a a a h a  a a a

~{p (X) + t (X ) (j) (p )}{1 + t (X) (J) ' (p )}]a a a a a a a

= P [ 4>' (p ){p, + p  (x) + t  (x) 4) (p )} a a a h  a a a a

- (j) (p ){1 + t (x) 4> * (p )}], (6.21)a a a a a

which simplifies to

p (f + p a) {l + t (x)<J>'(x)} h a  a a p [{p + p (x)}<J>'(x) - 4 (x) ] .a h a a a

(6 .22)

Let w(x) be the shadow wage at x in the agricultural zone. Then the

shadow cost of transporting one unit of the agricultural good from x to



1 2 4 .

t h e  m a r k e t  i s  w ( x ) t  ( x ) . The shadow v a l u e  o f  t h e  a g r i c u l t u r a l  good a t
a

t h e  f a r m  i s ,  t h e r e f o r e ,  p -  w ( x ) t  (x) , a n d ,  t h e r e f o r e ,  p  - w ( x ) t  (x)
a  a  a  a

m u s t  be  s t r i c t l y  p o s i t i v e  i n  t h e  a g r i c u l t u r a l  z o n e .  The v a l u e  o f  t h e  

m a r g i n a l  p r o d u c t  o f  f a r m  l a n d  a t  x i s ,  t h e r e f o r e ,

{p -  w ( x ) t  (x)H<j)(x) -  p 6'  ( x ) } .  The shadow v a l u e  o f  a  r e s i d e n t i a l  s i t e  
a  a  a  a

i s  —  t i m e s  t h e  v a l u e  o f  t h e  m a r g i n a l  p r o d u c t  o f  f a rm  l a n d .  T h e r e f o r e ,  
ph

w( x)  = f  + p a  + —  { p  - w ( x ) t  (x)}(4> (x) - p  (x) <j)1 (x) }.  ( 6 . 2 3 )
a  p, a  a a  a ah

E l i m i n a t i n g  f  + p ^ a  i n  ( 6 . 2 2 )  an d  ( 6 . 2 3 )

p { l  + t  (x ) (J)1 (x) }w(x) = p  [{p + p (x) }(j) 1 (x) -  (p (x) ]
h a a  a l i a  a a

+ {p -  w ( x ) t  (x ) } {(j) (x) -  p (x) <J>1 (x) }{1 + t  (x)<j >' (x)},  
a  a  a  a  a  a a

P_4>* (x ) tp a  a  h
+ {<J> (x) -  p (x)<j> ' (x )} t  (x) ] a a  a a

-  w ( x ) t  (x) {<f> (x) -  p (x) (f>' (x) } { l  + t  ( x ) ( f ) ' ( x ) } .  ( 6 . 2 4 )
a  a  a a a  a

T h e r e f o r e ,

w ( x ) { l  + t  ( x) 4>' ( x) }  = p  <1>1 , ( 6 . 2 5 )
a a  a  a

w h i c h  i m p l i e s  t h a t  t h e  shadow wage a t  x i s  e q u a l  t o  t h e  v a l u e  o f  t h e  m a r g 

i n a l  p r o d u c t  o f  f a r m  l a b o r  a t  x .  T h a t  i s

W (X) = {p w ( x ) t  (x)}<J>'. ( 6 . 2 6 )
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It follows, from the properties of cf> (p (x) ) , that the shadow rent at x is
3

equal to the value of the marginal product of farm land at x. That is,

r (x) = (p - w (x) t (x) }{<J> (x) - p (x ) (J)' (x ) } . a a a a a (6.27)

Furthermore, the shadow wage of transport labor is equal to the value of 

its marginal product.

Using (6.27) we can re-write (6.26) in the form

f + P aa 1' (x) = ------- 7— r—— 7— r + —  {if (x) - p  (x)<t>'(x)}.a p - w (x ) t (x) p, a a aa a h
(6.28)

Differentiating (6.28) totally with respect to x,

P (x)
p (j)" ( x H  1 + — ---a a I p,

f + P ^ a rl------------------{w(x)t (x)}. (6.29)
{p -w(x)t (x)}2 dx a a

We have <j>" (x) < 0. Therefore, the slope of the density of farm labor,3

p (x), is opposite in sign from the slope of the shadow cost a
of transporting one unit of farm output to market. Beckmann found that

p (x) < 0 in his equilibrium model. He used fixed factor and commodity a
d dprices, so that, in his solution — w(x) t (x) = w ——  t (x) > 0. In ourdx a dx a

model further analysis is necessary before we can put a sign on p (x).3

Differentiating (6.23) totally,

w(x)[p, + t (x ) {(J) (x) - p (x ) (J) 1 (x) }] h a a a a

- w(x) t (x) {cj) (x) a a p (x) <f>' (x) } a a

- {p - w(x)t (x) }p (x)p (x)4>"(x). (6.30)a a a a a
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Therefore,

p + t (x) {(j) (x) - p (x) (j) 1 (x)} ~~ { w (x) t (x) } h a a a a dx a

= p w(x) t (x) - {p - w (x ) t (x) }p (x ) p (x) (p" (x) . (6.31)h a  a a a a a

Equations (6.29) and (6.31) yield

p (x) < 0, ~~ { w (x) t (x) } > 0. (6.32)a dx a

Thus Beckmann's condition, p (x) < 0, also holds when all prices are endog-a
enously determined. Furthermore,

~  { (f> (x) - p (x)cf)'(x)} < 0, r(x) < 0, (6.33)dx a a a

and by (6.30)

w(x) < 0. (6.34)

In Beckmann's model w(x) was, 

to note that, although w(x) < 

unambiguously negative.

of course, equal to zero. It is interesting

0 in our model, —  (wt ) is, nevertheless, dx a

The structure of the agricultural zone of the optimum industrial 

state may, therefore, be summarized as follows. At all locations factors 

are employed to the point where the values of their marginal products are 

equal to their shadow prices. Both shadow factor prices are then downward 

sloping functions of distance from the centre of the state. In addition, 

the land/labor ratio in farming and the shadow cost of transporting unit
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output of the agricultural good to the market are both upward sloping 

functions of x.

We now obtain an implicit expression for the radius of the 

optimum state. Choice of S gives the condition

A r 1 H 2ttx £ (x ) s 0. (6.35)

Equations (6.13), (6.18) - (6.20) and (6.35) yield

r + p (x ) (f + p a) H r s a
P, P 4> (x )__________ h a a s__________  _ t/" \

p + p (x ) + t (x )<J> (x ) " u * h a s  a s a s

Using (6.7) and (6.23), (6.36) may be written

p, + p (x ) + t (x H  (x )h a s  a s a s {p - (f + p a) t (x ) )4> (x ) a a a s a s

+ p (x ) (f + p a) , a s  a

{p - w(x )t (x )} a s a s
t (x ) <J> (x )

<J) (x ) + — ---— ---{ cf> ( x ) - p  (x ) <j>' (x ) }a s  p, a s a s a sh

+ P (x ) {p a s  a
4) (x ) - p (x ) (f> ' (x )

w (x ) t (x ) } -------------------------w (x )s a s p s

(6.37)

Now, using (6.26), (6.37) may be written
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P + p (X ) + t (X ){j) (x )h a s  a s a s {p - w(x )t (x ) } a s a s

<t> (x ) - p (x ) <J>' (x )
(J) (x ) + -----------------------  t (X ) 4> (x )a s  p a s a sh

+ p (x ) a s
<f> (x ) - p (x ) <f> ' (x ) a s  a s a s - p (x ) (j) ' (x ) a s a s

o 4- n (x ) + t (x } <+i (x )

- w(x ) t (x ) } s a s

{(j) (x ) - p (x ) <{>1 (x ) }, a s  a s a s

p + p (x ) + t (x )(J) (x ) n a s  a s a s r (x ) . s

Therefore,

r(x ) = r . (6.37)S H

The meaning of (6.37) is that the optimum state expands until the shadow 

rent equals the opportunity cost of land.

We have assumed that returns to scale in agricultural product

ion are constant. Also, is is clear, from the form we have assumed, that 

returns to scale in agricultural transport are constant. We have also 

proved that factors are employed to the point where their shadow values 

are equal to the values of their marginal products in the agricultural 

zone. It follows that, in shadow terms, income in the agricultural zone 

is precisely distributed between factors. Therefore,
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(f + p a)N + (S - A) r - p $ = 0.a a H a a (6.38)

It follows from (6.38) and the income constraints (6.10) and (6.11) that

F - Ar
-----— - - (f + p a) = 0.N au

(6.39)

6.3 THE SIZE OF THE TOWN

Choices of the parameters T , W , N and A yieldu u u

\ F2 ■ h ■ V (6.40)

X3 = V  + A2a - V (6.41)

A p + A p t  (x ) - A p (x ) (f + p a) 3 h  4 h u t  l r t  a

V h W
p, + P (x ) + t (x )cf> (x ) h a t  a t a t

0. (6.42)

Equations (6.40) - (6.42) yield

F i 1 - t (x ) } = f + p a + —  2 u t a p,h

p p <J> (x ) a h a  t
p, + P (x ) + t (x ) <j> (x ) h a t  a t a t

- p  (x ) (f + p a) . r t a (6.43)

It is clear from the analysis following (6.36) that
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- p (x ) (f + p a) = r(x ). (6.44)r t a t

Therefore, (6.43) reduces to

F ( 1 - t (x ) } = w(x ) ,2 u t t (6.45)

where w(x̂ _) is the agricultural wage at x̂ _. However, we know from our

study of the optimum town that the left hand side of (6.45) is also the 

value of the marginal product of population in the town and hence the 

factory wage. Therefore, the meaning of (6.45) is that the town expands 

to the point where there is continuity of wage across the town boundary. 

This is equivalent to saying that there is continuity of the value of 

marginal product at the town boundary.

so that the first two terms on the right hand side of (6.46) are familiar 

from our analysis of the optimum town. The final term is new, and arises 

from the fact that the marginal household in the residential area of the

Equations (6.39) and (6.45) give

F - Lr
N (6.46)
u

Now,

dT
t (x ) u (6.47)u t dNu

L
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Choice of L yields

A F + A p + A p t  (x ) = 0. 1 1  3 h  4 h u c (6.48)

Equations (6.40) - (6.44) and (6.48) give

F = r(x ) + p { t (x ) - t (x ) } F 1 t h u t  u c 2

r + p { t (x ) - t (x ) } F + (r (x ) - r ) . (6.49)H h u t  u c 2  t H

In (6.49)

PH { t (x ) - t (x ) } u t u c (6.50)

so that the first two terms are familiar from our analysis of the optimum

town. However, as in (6.46), we have an additional term in (r(x ) - r  ).t H
In this case it arises from the fact that an increase of one acre in the

area of the CBD causes a displacement of urban households from x to x ,c t
and, ultimately, one acre of agricultural activity displaced from x to

x .s

Now, using a notation similar to that established in Chapter 3,

(6.51)

(6.52)
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Therefore, from (6.46), (6.47), (6.49) - (6.52),

N
F = —  (r(x ) - r ) + L(r(x ) - r ), p t H t Hu

= A (r (x ) - r ) . t H (6.53)

We see from (6.53) that returns to scale in factory production net of

transport costs are increasing in the optimum state. The additional term,

compared with the relationship we obtained in Chapter 5 after equations

(5.16) and (5.17), that is, the term A(r(x ) - r ), is the product of thet H
area of the optimum town and the difference between the opportunity cost 

of land at the town boundary and in the hinterland. This term arises 

from the transport cost of the agricultural good not being zero.

6.4 CONCLUSIONS

the factory town and its agricultural environment when they make up an 

optimum isolated industrial state. We find that, given constant returns 

to scale in agricultural production, factors are employed in the agricul

tural zone to the point where their marginal products are equal to their 

shadow costs. Equal households are treated equally throughout the optimum 

state, and the shadow wage is constant in the urban area and continuous 

across the town boundary. However, in the agricultural zone, the house

hold wage is a decreasing function of the distance from the centre of the 

state to the residential location of the household. This is because the 

shadow rent on residential land (which equals the shadow rent on farming 

land at the same location) is a decreasing function of the same distance. 

This decreasing land rent is a von Thünen rent which has its origins in

In this chapter we have examined the inter-relationship between
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the transport cost of the agricultural good. The downward sloping land 

rent is associated with an upward sloping land/labor ratio in production. 

This result implies that the opportunity cost of land decreases more 

rapidly with distance than does the opportunity cost of labor.

The solution to the residential zone of the town is obtained 

directly from the solution to the simple model of Chapter 5. In respect 

to the CBD, the expressions obtained for the marginal products of land 

and labor continue to show that these factors are not paid the value of 

their marginal products, although town households are treated as equal to 

the agricultural households. In Chapter 5 we found that, although returns 

to scale in factory production gross of the transport costs of its work 

force were increasing, returns to scale in net factory production were 

constant. In our present model, however, we find that returns to scale 

in net factory production are unambiguously increasing in the optimum state. 

The difference in the two results arises from the fact that in the optimum 

state some of the shadow cost of transporting the agricultural good is 

"charged" against factory production through a term involving the differ

ence between the shadow rent at the town boundary and the opportunity 

cost of land to the state.

Finally, we can interpret (6.38) and (6.39) as meaning that, in 

the agricultural zone and the town separately, the shadow cost to the 

state in the form of rent payments to absentee landlords and the shadow 

value of household consumption is exactly equal to the shadow value of 

output. In other words both productive zones separately "pay their own 

ways".

This completes our analysis of the optimum state and of normat

ive models in general.



CHAPTER 7
E Q U IL IB R IU M  AND RETURNS TO SCALE IN THE 

COMPANY TOWN

In Chapter 1 we quoted the locational assumption upon which the 

Arrow-Debr€*4 Theorem is based, and pointed out that this assumption 
implies locational homogeneity of economic activity throughout the region 

of application of the theorem. We then went on to argue that, since the 
factory is essentially an example of locational inhomogeneity of economic 

activity, application of the Arrow-Debreu Theorem to the analysis of fact
ory production cannot be valid. Competitive equilibrium theory may have 
relevence to agricultural production or to cottage industry, but so far 
as factory production is concerned, a different, spatially structured 

theory is required.

We also drew attention to the way in which one prediction of 
the Arrow-Debreu Theorem, i.e.,that returns to scale in production must 
be constant at a competitive equilibrium, has been thought to be in con

flict with observation - at least so far as multi-firm industrial (i.e., 
factory) production is concerned. Whenever many firms participate, it 
has been supposed that an equilibrium must be, at least to a close approx

imation, competitive. Yet at the same time, and as the quotation on page 

2 attributed to Kaldor indicates, it is also widely believed that industr
ial producers, in equilibrium, are frequently observed not to have expand

ed to the point where all the economies of scale available to them are 
exhausted. Apparently, there is a fundamental conflict between observat-
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ion and the theory of the firm in equilibrium.

This apparent conflict has led to a debate on the possibility 

of the co-existence of increasing returns and competitive equilibrium, 
and hence, by implication, the validity of the Arrow-Debreu Theorem. Of 

course, the debate pre-dates the development of the formal statement of 
the Arrow-Debreu Theorem. In fact, its origins go back at least fifty 

years, and a very considerable literature has accumulated on the subject.1 2 

The general consensus of this literature seems to be that, separately 

both increasing returns in production and competitive equilibrium are 

feasible, and that, subject to the effects of some passive forces, which 

retard or modify the path to equilibrium, they are observed to occur 
together in industrial production, notwithstanding the predictions of the 

Arrow-Debreu Theorem that such a state of affairs is not possible. The 
conflict implicit in this consensus is summarized in the two quotations 

given on page 2 of this thesis.

Sraffa [1926], however, adopted a fundamentally different stance 
on this question. More than 50 years ago he argued that not all economic 
forces could be dismissed as being merely passive in respect to the move
ment towards a competitive equilibrium. Rather, some would actively 
advantage a producer in some markets and disadvantage him in others. Such 
forces are inimical to perfect competition, and, as a result, Sraffa 
argued, the explanation for the observed co-existence of equilibrium and 

increasing returns lies in abandoning the belief that the equilibrium is 

competitive. Interestingly, in developing his argument, Sraffa was 

describing product differentiation and its associated imperfect competit- 

ion before the formal theory of monopolistic competition was presented.

1 For a recent contribution see Koopmans [1974].

2 See Chamberlin [1946, p.5n].
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Sraffa's ideas stimulated discussion,^ but in the long run he failed to 

draw economic thought away from the acceptance of the feasibility of 

competitive equilibrium in industrial production. It was generally 

accepted that, while Sraffa may have explained some special cases, in 

the majority of instances equilibria can be regarded as being competit

ive. Sraffa failed to identify an active economic force (or system of 

forces) which was essentially associated with industrial production, and 

as a result, his ideas could be regarded as being somewhat nebulous.

In his discussion of the relevance of competitive equilibrium

theory, Koopmans [1974] suggested that, so far as the existence of

increasing returns to scale at competitive equilibrium are concerned:

"this important point can be met at least half 
way, by introducing further assumptions that 
bear on the way time and space enter into the
problem...............A relevent spatial factor
is the cost of transporting the product from 
producer to user."

However, if the freight rate per unit distance is strictly positive, 

the goods transport costs to which Koopmans refers are active, not pas

sive forces. They create product differentiation based upon the produc

er's locational advantage in respect to markets, and thus, monopolistic 

competition. They are, therefore, a particular example of the general 

class of forces discussed by Sraffa, and where their magnitudes are 

significant, an equilibrium cannot be competitive. Furthermore, the von 

Thlinen rent, which has its origin in these transport costs, is the monop

oly profit associated with the imperfect competition.

Nevertheless, there is room to doubt that goods transport 

costs can explain, in quantitative terms, the degree of increasing ret

urns to scale observed in factory production at equilibrium. This is

1 See, for example, "Increasing Returns and the Representative Firm. 
A Symposium", Economic Journal, Vol. 40, 1930, pp.79-116.
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because such costs can be expected to affect the nature of the equilibrium 

in an industry without regard to how production is organized. However, 
returns to scale in agricultural production seem to be nearly constant at 

equilibrium, while in factory production, they seem often to be markedly 
increasing. It would appear, therefore, that, while the costs of goods 

transport, viewed as economic forces, act in the right direction to explain 
the co-existence of increasing returns and equilibrium in goods markets, 

they are of the wrong magnitude. Otherwise, increasing returns would be 

as likely to be observed in some agricultural production as they are in 

industry. There is a need to explore the matter further in order to find 

some active force, which is peculiar to industrial production. Our stud
ies of the optimum town and the optimum state suggest that the opport

unity cost of the workforce's travel is an important active force, which 
is very much more important in industrial production than it is in 

agricultural production, and in this chapter we will develop this idea 
to examine the nature of a general equilibrium when production takes place 
in factories, and markets are assumed to be as perfect as they can be.
We will start with an heuristic analysis in order to explore the nature 
of the problem. We will conclude from this analysis that, given pure 
competition, all industrial production takes place in company towns at 

equilibrium. We will then move on to construct and solve a formal model 
of the company town. Throughout our analysis we will assume that all 

goods transport is free.

7.1 HEURISTIC ANALYSIS

We consider a closed economy in which only two goods are prod

uced, a factory good and an agricultural good. VJe will assume constant 

returns to scale in the production of the agricultural good. We will 
also assume that labor and land are of uniform quality, that there are
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large numbers of farms and factories, and make any other assumptions 
necessary to ensure that the prices of the produced goods and the agric

ultural wage and rent are competitively determined. Among these latter 

assumptions will be included the assumptions that farm laborers live at 

their jobs and that labor is perfectly mobile between the manufacturing 

and rural sectors and within each of these sectors. Our assumption of 

free goods transport is, of course, crucial to the validity of our model.

Labor is supplied by identical households. Each household 

contributes one laborer to the workforce, and he supplies one unit of 
labor per day. Households are the only consumers in the economy. They 

derive utility from the consumption of the two produced goods and from 
the enjoyment of leisure time and residential space. Each of these is 
indispensible to the households. To simplify the exposition we will 
assume that each household is allocated a residential site of fixed area, 

and discuss a consequence of this assumption later. Households are 
assumed to be indifferent to the choice of urban or rural life styles.

Factory laborers cannot live at their jobs. Therefore, to min
imise labor transport costs, each factory will be surrounded by a compact 
residential zone. Given homogeneous land, the factory and its assoc

iated residential zone will make up a circular factory town. The only 
labor transport cost we will consider is the subjective cost of commut
ing time, which of course, applies only to the factory workforce.

Although we have been able to construct an economy in which 
the market for agricultural labor is perfect, we cannot make this assum

ption in respect to the factory labor market. This is because the marg
inal urban household, that is,the household which supplies the marginal 
unit of labor to the factory, has the choice of earning the agricultural

wage, w say, working on a farm, or of living at the boundary of a town 
3

and earning the factory wage. If it chooses factory employment, it will
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forego some leisure in commuting, and therefore, it will be indifferent 

to the choice if and only if the factory wage exceeds w by its evaluat-3.

ion of the leisure time it foregoes. This excess will depend upon the 

spatial dimensions of the town, which implies that it will depend upon 

the size of the workforce and the area of the factory. Every laborer in 

a town will demand the same wage, and hence, at equilibrium, the factory 

wage is an increasing function of the quantity of labor employed. In 

respect to this relationship between the price of labor and the quantity 

employed, each factory owner appears to have a monopsony in the labor 

market. He faces a wage rate which increases with the quantity of labor 

he employs, and he is able to effect cost minimization by choice of prod

uction scale. However, the monopsony is apparent, not real. There are 

no barriers to entry to factory production, labor is mobile, and hence, 

entrepreneurs will set up factories to the point where the supernormal 

profits, associated with monopsony power, vanish.

A necessary condition for equilibrium is that identical house

holds must derive equal utility. Given that all urban households will 

receive the same wage, this condition will be realized through the resid

ential land market. Households will bid for residential sites until 

utility is uniform throughout the town. At the same time, any firm which 

does not own the town in which its factory is located will have to com

pete in this same land market for factory space. The nature of the urban land 

market is, therefore, such that, if we view the households as producers 

of labor, the residential rent is a von Thiinen rent, by means of which 

the urban landlords extract all producer's surplus from the households. 

Furthermore, no firm could survive by producing the factory good in a 

town it did not own, because, so far as production costs are concerned, 

it would be doubly disadvantaged with respect to company towns. First, 

it would have to pay a rent on its factory land, which exceeded the agric

ultural rent, second, it could not, itself, extract the producer's sur-
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plus from its workforce in the way that a company town can. Given the 

perfect agricultural land market and the perfect mobility of households, 
any firm could rent sufficient broad acres at the agricultural rent to 
set up its own town, and hence, alt towns bn the equ'i'l'ibvtwn economy whtl 

be company towns.

The structure of our general equilibrium can be summarized as 

follows. In spatial terms the economy consists of a number of company 
towns set in an agricultural environment. Each company town consists of 

a central, circular factory surrounded by an annular,residential zone.

The market structure is such that perfect competition prevails in the 
goods markets and in the agricultural factor markets. There is monopol

istic competition in the urban land market and an apparent monopsony in 

the urban labor market. Additional conditions for equilibrium are that 
the urban and rural household utilities must be equal, and the urban and 

agricultural rents must be equal at town boundaries. Note that in intro
ducing spatial considerations into the economy we have had to abandon 
the concept of competitive equilibrium even though we have assumed goods 
transport free. Notwithstanding this movement away from perfect compet
ition, our general equilibrium has a fairly simple structure.

Before going on with our solution we observe that, although we 
have shown that all towns are company towns in our general equilibrium 

model, there are, in reality, very few company towns. Our pure model is, 

therefore,not a plausible description of the real world. Why should this 
be so? There appear to be many reasons. Our assumption of perfect mobil

ity of labor is unrealistic. So also is the assumption, implicit in our 

essentially static analysis, that new towns can be constructed instantan

eously. An effect of choosing more realistic assumptions in respect to 

these facets of the model would be to make the decision to set up a fact

ory in an existing town more attractive to a firm. In any case, there
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are many institutional barriers to the development of towns by the priv
ate sector, and a firm which wished to construct its own town would prob
ably find that government regulations prevented it from controlling the 

town as a company town. In addition, we have assumed only one factory 

produced good. In reality, there are many such goods, and economies of 

agglomeration exist in their production. As a result, the efficient unit 

of industrial production is often a large city. Imperfections in the 

capital market, uncertainty and the possibility of bankruptcy make it 

difficult for a single firm to accumulate the capital represented by one 

of these cities.

Given the evident lack of realism of some of our assumptions, 
the question arises as to whether our model has any relevance to the exam

ination of industrial production. The answer appears to be in the affirm
ative. The crucial difference between agricultural and industrial prod
uction lies in the fact that the factory can only increase its workforce 
by persuading laborers to commute from more remotely located households, 
whereas the agricultural producer can distribute his workforce uniformly 
throughout his farm. In idealizing the structure of urban land and labor 
markets we may fail to identify where monopoly profits go, but we do not 

fail to capture this crucial difference.

Continuing with our analysis, we can use the factory good as 

numeraire, and write the profit of the typical town-owning company as

TI = F - Lr - w N - C(L,N), (7.1)a a

where, as before, F is factory output and L and N are the land and labor
inputs to factory production, but now w is the exogenously determineda
agricultural wage and C(L,N) is the total subjective value of the commut
ing time of urban laborers. In formulating (7.1), we have taken into
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account the fact that every rural household will pay from its wage, w ,cl

r multiplied by the area of its residential site for its consumption of theci

all rent payments to absentee landlords for the residential zone of the 

town. The form of the term C(L,N) arises from the fact that, in extract

ing all (labor) producer's surplus from households, the company will pay 

only the subjective value of commuting time, and not N times the subject

ive value of the marginal household's commuting time.

market (i.e.,the land market in which companies are buyers), and no bar

riers to entry in factory production, there can be no monopoly profits 

to the companies,and we can set

Companies will employ factors in factory production to the point where 

the marginal conditions

Since there is perfect competition in the agricultural land

n = 0. (7.2)

(7.3)

(7.4)

hold. Equations (7.1) - (7.4) yield

LF + NF L N F = LC + NC - C. L N (7.5)

Equation (7.5) can be written in the form

L0* + Ns/ - o* = 0,L N N (7.6)
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where 3? = F - C is factory output net of transport costs.

In our model, in which the area of a residential site is con

stant, the marginal household will make a greater than average contrib

ution to the total transport cost. Furthermore, we can realistically

assume that V is positive. It follows that the right hand side of (7.5)L
is strictly positive and that returns to scale in factory production are 

increasing at equilibrium. However, we see from (7.6) that returns to 

scale in net factory production are constant at equilibrium. These res

ults, which are derived from profit and utility maximization, are just 

the results we obtained from our normative study when residential site 

area was assumed constant and no land was required for transport prod

uction. It is to be noted that our conclusion that the right hand side 

of (7.5) is strictly positive is not necessarily true if households are 

free to maximize utility by choice of residential site area. This is 

because the residential rent (i.e.,the price ratio of consumption goods) 

will, in general, depend upon the population of the town. Therefore, 

when residential site area is a variable, a marginal increase in the pop

ulation may induce a substitution of the factory good for residential 

space such that the right hand side of (7.5) is negative.

7.2 MATHEMATICAL ANALYSIS

We now present a formal mathematical analysis of an equilibrium

company town. We will continue to assume perfect competition in all goods

and agricultural factor markets, and that all goods transport is free.

We will continue to use the notation established in earlier chapters. The

The CBD and town radii and areas are x , x , L and A, respectively, andc t

L 2
TTX , C

A 2
TTX .t (7.7)
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The time taken to travel unit distance at x is t (n (x) ,g (x) ) , where,

n (x) = - 27ipg2 (x) , (7.8)

the population density on land allocated to residential purposes, p, is 

constant, and

x - g (x) - g (x) = 0. (7.9)

At the factory gate each worker sells one unit of labor. The 

remainder of his day, D say, is divided between leisure and travel. Thus

D Z (x) t (n,g )dz 0 ,

xc

(7.10)

where &(x) is the leisure available to a laborer who lives at x. The typ

ical household utility function will be assumed to take the form 

u = u(f,£). In this formulation we neglect to include the residential

site area, s = — , because it is constant. We could also have included P
the household's consumption of the agricultural good, a say. However, 

when goods transport is free, choice of the consumption, a(x), for house

hold utility maximization will clearly give the standard, non-locational 

conditions, so it is not necessary to pursue this aspect of the urban 

household's consumption.

Equilibrium in the company town requires that the following 

conditions hold simultaneously:

(i) equilibrium between land markets, that is, r(x̂ _) = r a >

(ii) maximization of company profit;

(iii) maximization of the urban household's utility;
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(iv) equality of the utility derived by urban and agricultural 

workers.

Since land has a non-zero cost, and nobody travels at x̂ _, profit maximiz

ation by the company ensures that

g (x̂ ) =0. (7.11)

Let w be the factory wage. Then the income constraint on the 

household at x is

w - f - sr (x) = 0. (7.12)

Utility maximization is effected by choice of f, £ and x, subject to the 
constraints (7.10) and (7.12). The first order necessary conditions 

give:

r(x) = - pp(x)x(x), (7.13)

p(x) = p (f(x),£(x)) = u /u , (7.14)

and equations (7.10) and (7.12). In equations (7.13) and (7.14), p(x) is 
the household's marginal subjective price of leisure. It is easy to see 

that these first order conditions ensure that u(x) = 0, which implies 

that the company extracts all producer's surplus from the households, its 

producers of labor.

All agricultural workers, and the factory workers who reside

at x , have leisure time D. Equality between the utilities of these house- c
holds, therefore implies that they consume the same quantity of the
factory good, f say. Thus, a
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w - sr(x ) = w - sr(x ).c a t (7.15)

Equations (7.13) and (7.15) imply

w wa

xt
f

+ p(x)T(x)dx,
X c

(7.16)

which means that the factory wage exceeds the agricultural wage by the 

subjective value of the marginal urban household’s commuting time. We 

derived this relationship intuitively in the previous section of this 

chapter.

It will be convenient to have (7.10) and (7.12) in differential 

equation form. That is,

£ (x) = - t (x) , (7.17)

f (x) = p (x) T (x) . (7.18)

The company's profit is given by

II = F - wN

xt
r A + a 27Tĝ  (x) r (x) dx,

xc

(7.19)

and its instruments for profit maximization are g^(x), g^(x), w, N, L 

and A. To determine the conditions for equilibrium in the company town, 

therefore, we must solve the following problem in Control Theory:

Max IT,



147.

subject to (7.8), (7.9), (7.13), (7.14), (7.16) - (7.19). We have four

state variables in this problem: n (x), r(x), £(x) and f(x).

The Lagrangian is defined as 

<C(x) E 2irpg2 (x) { sr (x) - (j)̂ (x) }

- t (n ,g^) { pp(f,£)vF(x) + 4> (x) }

+ y (x) { x - g (x) - g (x) } , (7.20)

where

V (x) = <j) (x) - s(f) (x) + As. 3 4 (7.21)

We also define

J E F - wN - Ar + A(w - w ). (7.22)a a

In equations (7.20) and (7.22) we have again neglected the non-negativity 

constraints on g^(x) and g^(x), used A to indicate the constant Lagrange 

multiplier and y (x) to indicate the variable multiplier. The cj)̂ (x),i = 

1,2,3,4, are the co-state variables associated with the state variables 

n(x), £(x), r(x) and f(x), respectively.

The first order conditions for equilibrium are:

T { p p (f,£)Y(x) + <j) (x) } + y (x) = 0; (7.23)
gi 2

2Tip { sr(x) - <J) (x) } - y(x) = 0; (7.24)
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A - N = 0; (7.25)

F - w + <J) (x ) = 0; N 1 c (7.26)

F ------L 2ttx ■£ (x ) = Ft - c L
g2 (Xc >------- { r (x ) - p(f> (x ) }x c 1 c

T (x )
— — —  { pp(x )Y(x ) + <f> (x ) } = 0; 2ttx c c 2 c (7.27)

r d r £(xt1 ” p*i(xt) { pp(\)'1'(xt) + W } = 0:

(7.28)

<j)n (x) = t { pp (x) V (x) + 4> (x) } ; I n  2 (7.29)

i (x) = pr (x) Y (x) ;2 o 36 (7.30)

p 4>3 (x ) 27Tpg2 (x) ; (7.31)

<}>4 (x) = pi (x) Y (x) 7̂  . (7.32)
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Using (7.14), (7.17), (7.18), (7.30) and (7.32),

P(x) = + |f'f = f { P(x)<f>4 (x) - i2 (x) } .

Now,

x
PP (x) Y (x) + <j) (x) pp(z)'F(z) + pp(z)'Mz) + (J).

therefore, using (7.22), (7.33) and (7.34),

pp(x)H'(x) + <J>2 (x) = { pp (xfc) 4* (xfc) + <(> (x ) }

PP (z) <)> (z) d z .

In earlier chapters we assumed that the form of x(n,g is such

lim t
x->x gi t

Continuing this assumption, we see from (7.23) that

pp (X )V (X ) + (j) (x ) 
t t 2 t

0.

(7.33)

(z) }dz,

(7.34)

(7.35)

that

(7.36)

(7.37)
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Therefore, (7.35) reduces to

pp (x) Y (x) + <j> (x)
tx

pp (z) <J>. (z)dz,
x

xt(
I 2npg2 (z)p(z)dz.
x

(7.38)

In Chapter 4 we identified the right hand side of (7.38) as the total 

subjective value of the leisure time lost when all workers travelling 

through x are delayed by unit time. Therefore, using (7.29) and (7.38),

W (z)p(z)dzdx, (7.39)

commuters when, ceteris 

The value of the marg-

p (x) T(x)dx, 
xc

is the value of the leisure time lost by all other 

paribus, one more household is added to the town, 

inal household's leisure time lost in commuting is

therefore,

W p (x) T (x) dx
X c

(7.40)

where C is the total subjective value of leisure time lost in commuting
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in the equilibrium town, and the subscript N refers, as it has done 

throughout this thesis, to partial differentiation with respect to N with 

L and the functional structure of the residential zone held constant.

In the heuristic analysis we did not consider a land input to 

transport. However, in this formal model, the area of transport land, R, 

is given by

R 2Trĝ  (x) dx, 
xc

so that, once again,

(7.41)

«to =  0 , (7.42)

because g^(x^_) = Equations (7.26), (7.40) and (7.42) yield

F = w + C + r R , N a N a N (7.43)

which is analogous to (7.4 )

Equation (7.27) may be written in the form

P92 (Xc ) flF = r + --------■{ —  { r (x ) - r (x ) } - <J) (x )L a  x I p c t l c

t (x ) g (x )
— — —  { pp (x ) V ( x  ) + 4» (x ) } - ---- r .2ttx c c 2 c x a (7.44)

Integrating (7.13), (7.44) becomes
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pg (x )
F = r + -----—  { — 4> (x ) +L a  x 1 c p (x) t (x) dx }

t (x ) g (x )
■ ~ - C- { PP (x ) V (x ) - <J> (x) }------—  r .2ttx c c 2 x a (7.45)

The last term on the right hand side of (7.45) is familiar from 

earlier chapters. We can write

g, (x )
r R = - ----——  r . (7.46)a L x ac

The second last term is also familiar. It and the second term represent

C . Therefore, (7.45) can be written Li

F = r + C + r R ,  (7.47)L a L a L

which is analogous to (7.3).

Using (7.43), (7.47) and the profit equation

II = F - Lr - Rr - w N  - C(L,N), (7.48)a a a

we obtain the analogue of (7.5). That is,

LF + NF - F = LC + NC - C + { LR + NR - R> r . (7.49)L N L N L N a

If we ignore the ambiguity of sign in C and the term LR r , the sign ofL L a
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the right hand side of (7.49) remains ambiguous, because -Rr_ is of
cl

opposite sign to {LĈ  + NC^ - c}. This is the conclusion we reached in 
Chapter 3; returns to scale in gross factory production may be increas

ing, decreasing or constant, because there are economies of scale in the 

use of the transport network. However, net factory production, is 
given by

3*?= F - C - r R, (7.50)a

and

Lof + ^  = 0. (7.51)L N

In other words,returns to scale in net factory production are constant 
in the equilibrium factory town. Of course, we know from Chapters 3 and 
4 that the lack of ambiguity of this last result depends crucially upon 
our assumption that residential site area is independent of location.

To this point our solution has been concerned exclusively with 
production in the equilibrium company town. Looking at the residential 

zone, it is clear from (7.13) that r(x) < 0,and from (7.17) and (7.18) 
that £(x) < 0 and f(x) > 0. Furthermore, having identified the meaning 
of pp(x)vF + 4>2 (x) in (7.38), it is clear from (7.23) and (7.24) that 
land is allocated to transport in the equilibrium company town according 

to the same economic criteria as apply in the optimum town of Chapter 4. 

Thus, apart from the loss of generality which arises from our assumption 
of constant household residential site area, our equilibrium company 

town has the same qualitative form as the optimum town in which equals 

are treated equally and every household provides the same exogenously

determined amount of labor to the factory.
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7.3 CONCLUSIONS

In this chapter we set out to examine the nature of equilibrium 
in a pure model of industrial production when markets are as perfect as 

they can be. A particular aim was to examine the nature of returns to 

scale in factory production at the equilibrium point. We find that, if 
markets are as perfect as they can be, all towns are company towns, and 

the urban factor markets are necessarily imperfect. There is monopol

istic competition in the urban land market, which is to say that the res

idential rent is a von Thiinen rent. Furthermore, there is a relationship 
between the urban wage rate and the quantity of labor employed,which 

gives the urban labor market the mathematical form of monopsony. As a 
result we are forced to abandon the concept of competitive equilibrium.

We also find that returns to scale in gross factory production will not 
in general be constant at equilibrium.

We did, however, show that, in our model, returns to scale in 
net factory production are constant at equilibrium. If that result were 
generally true, the relevqace of competitive equilibrium theory to 
industrial production could be established by treating the company town 

as the fundamental and indivisible unit of production. However, know
ledge gained from the normative analyses of Chapters 3 and 4 suggests 

that returns to scale will not be constant, in general, at equilibrium, 

and that the conclusion of this chapter depends crucially on the simplify
ing assumption that residential site area is constant across the residen

tial zone. Certainly, the proof we presented that returns to scale are 

constant at equilibrium depended upon site area being constant. In other 

words, if we assume away all goods transport costs, if we redefine the 
problem so that the town is the unit of production, and if we assume all mar
kets to be perfect, we are still unable to show that returns to scale in

production will, in general, be constant at equilibrium.
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If we go back to the Arrow-Debreu Theorem we can see that this 

result is predictable. The very strong assumption on the spatial homogen

eity of economic activity is crucial to the proof of this theorem, and 

cannot be weakened without loss of generality. Therefore, when we exam

ine the spatial structure of an economy, we cannot expect that the conclus

ions of the Arrow-Debreu Theorem will hold in the large scale when the 

economy is spatially non-homogeneous in the small scale. The imperfect 

urban factor markets, which have been subsumed in the production unit, the 

company town, continue to influence the production scale which maximizes 

company profit.

This concludes our analysis of the equilibrium company town and 

of the factory town in general.



CHAPTER 8
CON CLUS ION

The aim of this thesis has been to investigate the structure of 
the factory town, and to discover how production in factories modifies 

the conclusions derived from the theory of the firm. The thesis is, 

therefore, a study of some aspects of the way in which the location of 
economic activities influences the conclusions of microeconomic theory.

The basic model which has been used is that of a monocentric town divided 
into two zones. The circular, inner zone is wholly occupied by a factory 
which produces a single good. The annular, outer zone is the residential 
area of the factory's workforce, and its land is allocated either to 
residential purposes or to transport facilities.

The land on which the town is located is of uniform quality, and 

the labor supplied by the resident households of the town is perfectly 
homogeneous. These are the factors of production employed in the town's 
factory. We did introduce capital as a factor employed in factory and 

housing services production in Chapter 3, but showed that the criteria 
which determine its optimal employment were not different from those deriv

ed from the conventional, non-locational theory of production. For this 

reason it was excluded from examination in the remainder of the thesis.

Both positive and normative economic aspects of the factory town 
have been considered, and these two parts of the study are brought

together by our showing that, subject to some limitations on the general-
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ity of the model, competitive realization of the optimum town is possible. 

The reduced generality in this regard arises from an apparent lack of a 

suitable sufficiency theorem when both the inner and outer radii of the 

residential zone are control parameters in the optimization. However, 

when the land area of the factory is constant, it was shown in Chapter 3 
that the optimum town in which equals are treated equally is the equil

ibrium town in which all labor is paid the same wage and each commuter 

pays a transport toll equal to the value of the external transport cost 

imposed upon the rest of the community by the marginal traveller's journey 

from his residential location to the central business district.

We chose as our criterion of optimality the maximization of 
average household utility, and assumed that household utility is derived 

from the consumption of the factory good, the services of residential 
space and leisure time. It is implicit in this assumption of the form 
of the household utility function that each household is indifferent to 
the level of utility derived by its peers. We confirmed that, in general, 
it is optimal to treat equal households unequally. Although this result 
is, by now, familiar in normative studies of the factory town, it is not 
normally discovered in conventional, non-locational investigations into 
microeconomic theory. Usually, convexity assumptions in non-locational 

models guarantee that average household utility is maximized when equals 
are treated equally. However, in a locational model non-convexity arises 
from the locational uniqueness of land. In Chapter 3 we described the 

nature of the locational non-convexity in our model in terms of the non- 

convex household consumption set. This consumption set takes the form of 

N mutually orthogonal 2-dimensional plane surfaces in N + 1 dimensional 
space, where N is the number of household locations available in the town. 

Points not on these planes do not belong to the consumption set, because 
they require residence at more than one location, and this is not permit

ted in the model.
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The lack of familiarity of unequal treatment of equals in conven
tional economic theory gives it a special interest when it is discovered 

in a study of the optimum factory town. We attempted to examine its 

implications by investigating polar cases. We studied two cases in res

pect to the criterion of optimality. First, we examined the case where 

each household is assumed to be indifferent to the utility derived by 

others. This is the case already alluded to. The second case, where it 

differs from the first, is the case where equals are treated equally by 

constraint.

In setting out the results of these studies it is convenient to 

divide the description of the structure of the optimum town into three 

parts. These are:
(i) the distribution of household consumption allocations as 

functions of residential distance from the centre of the town;
(ii) the allocation of land to transport, and transport congest

ion across the residential zone; and
(iii) the values of the marginal products of factors employed in 

the factory.

It was shown in Chapters 3 and 4 that, unless equals are treated 

equally by constraint, it is optimal to make household allocations of 
ai'i consumption goods, which are treated as control variables in the 

optimization process, strictly increasing functions of distance from the 
centre of the town. This result holds irrespective of whether household 
leisure time is treated as a variable or a constant, and is subject only 

to the additional assumption (as a sufficient condition) that the second 

order cross partial derivatives of the utility function are all positive. 

The reason for this result was presented in Chapter 3. Since the shadow 

residential rent is a von Thiinen rent, it must be a decreasing function 

of distance. It will, therefore, be optimal to allocate residential site
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area as an increasing function of distance. However, if the second order 
cross partials of the utility function are positive, the optimality of an 

upward sloping residential site area function implies upward sloping 

allocations of all other consumption goods. In a non-locational model in 

which the utility function is strictly convex, this argument is negated 

by the optimality of equality. However, we showed that the upward slop

ing residential site area function results in a saving in the resource 

cost of transport, which results in a trade-off against the sub-optimality 

of unequal treatment when transport is free.

When the equality constraint is imposed upon the optimization of 

average utility and household leisure time is fixed, it continues to be 

true that the residential site area is a strictly increasing function of 
distance, and equality of household utility is achieved by the household 
allocation of the factory good being a decreasing function of distance. 
However, we found in Chapter 4 that, when factory work hours, rather than 
leisure time, are fixed, these unambiguous conclusions are not necessar
ily valid. Leisure time, in this model, is necessarily a decreasing 
function of distance, and substitution between the three consumption goods 
depends upon the shape of the utility function to the extent that there 
may be regions within the residential zone where residential site area 
decreases with distance from the town centre, notwithstanding the fact 
that the residential rent is unambiguously downward sloping. It was also 

found that this same ambiguity appears in the town of unequals when work 

hours are fixed.

It was shown in Chapter 5 that, when residential site area is 

fixed, equals are treated equally in the optimum town. The reason for 

this result is that fixing the residential site area rules out the possib

ility of the trade-off between savings in transport resource cost and 
the sub-optimality of ceteris paribus unequal treatment.
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Our analysis of the optimal allocation of land to transport was 

presented in Chapters 3 and 4. It was found that, if leisure time is a 

control variable or is fixed, optimal transport congestion is unambig

uously downward sloping with respect to distance from the centre of the 

town. Furthermore, for the simple specific transport congestion function 

examined,the land allocated to transport is also downward sloping. It is 

never optimal to allocate all land to transport at the boundary of the 

central business district.

When factory working hours are fixed by constraint, the lack of 
ambiguity in the slope of the transport congestion function is lost, and 

it may be optimal for congestion to increase with distance in some reg
ions of the residential zone. The ambiguity in this result is associated 
with ambiguity in the slope of the shadow price of leisure function. A 

downward sloping shadow price of leisure function is a necessary condition 
for the optimal transport congestion function to have a positive slope.

The marginal products of factors employed in factory production 
were also evaluated in Chapters 3 and 4. It was argued that the marginal 
product of labor is a contrived concept, and is not of fundamental import

ance in the optimum factory town. The basis of this argument is that, 
whereas the marginal product of labor is derived from the effect of an 
increment in the labor input to production, all other things remaining 
constant, in our models the labor input to production is increased through 

an increase in population, and this increase in population affects travel 
time in the town. Accordingly, we have placed most interest in the marg

inal products of population and factory area.

The marginal product of population was shown to be equal to the 
shadow value of the marginal household's consumption in the optimum town 

in which equals are treated equally. This simply means that households 
are added to this town to the point where the marginal household just
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produces the value of its consumption. This result is, perhaps, a pred

ictable extension of the conventional theory of the firm. However, when 

the equality constraint is removed we find an additional term appears in 
the equation for the marginal product of population. This term is prop

ortional to the difference between the utilities of the average and marg

inal households. Its effect is to ensure that, in this optimum town, the 
marginal household produces less than the value of its consumption.

When equals are treated equally by constraint and factory work 

hours are fixed, the value of the marginal product of population was 
shown, in Chapter 4, to be equal to the value of the consumption of the 

marginal household plus the value of the transport congestion caused by 

the marginal journey from the boundary of the town to the CBD. Since 

every householder works fixed hours in this model, regardless of his travel 
time, the entry of the marginal household into the town results in a red

uction in the consumption of leisure time by the rest of the town. House
hold utility can only be maintained by a substitution of the factory good 
and/or residential space for leisure time. The marginal household, there
fore, must not only produce the value of its own consumption, but also 

the value of the reduction in the town's leisure time its commuting has 
caused.

Compared with the predictions of the conventional theory of the 

firm, the value of the marginal product of land derived from the theory 
of the optimum factory town contains additional terms. These arise from 

the necessity of displacing households from residential locations at the 

CBD boundary to the boundary of the town in order to increase the land 

area allocated to factory production. Thus, in all our models we found 

that, at the optimum, the value of the marginal product of land equals 
the opportunity cost of land to the town plus terms which are proportional 

to the differences between the values of the consumptions and utilities

of the households which reside at the town and CBD boundaries. When work
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hours are fixed, there is one further term, which is proportional to the 
increase in transport congestion brought about by this displacement of 

households.

Several measures of the degree of increasing returns to scale 

can be obtained from these evaluations of the marginal products of land 

and population. The measure most directly significant to economic theory 

is probably the local degree of homogeneity, at the optimum point, of 
the production function net of all transport costs. We found from this 

measure that, except for the town in which work hours are fixed, returns 
to scale in the optimum town are decreasing regardless of whether or not 

equals are treated equally by constraint. We found, in Chapter 5, that 
if residential site area is constant, these returns to scale are constant. 
Removing this constraint, we found, in Chapters 3 and 4, that returns to 
scale are strictly decreasing. However, we also found in Chapter 4 that, 
when factory work hours are fixed, returns to scale in net factory prod

uction are strictly increasing. In all our models, returns to scale are 
expressed in terms of marginal products which refer to outputs per day.
The introduction of the fixed work hours constraint results in the marg

inal products having somewhat different meanings, because, in the other 
models, the labor input per day could vary. This completes the summary 

of conclusion in respect to the structure of the optimum town.

A number of comparative static results in respect to the optimum 
town were obtained in Chapter 5. In contrast to earlier studies in which 
household income was assumed to be constant, almost all of these results 

were ambiguous in sign. This ambiguity can be related to the existence 
of increasing returns to scale in gross factory output. The optimum 

degree of increasing returns to scale may change in either direction in 
response to a change in a shift parameter. Thus, the scale of production 
may increase or decrease, and this, of course, implies that factor inputs,
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town size and population may increase or decrease.

Using the opportunity cost of land as a shift parameter, we found 

that the induced changes in the optimum values of the areas of the factory 
and the town, the population and the workforce are all ambiguous in sign. 

In respect to the area of the factory, this means that an increase in the 

price of land may induce an increase in the employment of land. However, 

this result is not paradoxical, because we were able to show that, if the 
area of the factory increased, labor also increased, and in such a way 

that the land/labor ratio decreased.

The time taken for a commuter to travel unit distance and the 

population density, both assumed to be constants with respect to location, 

were also used as shift parameters, and the induced changes in the fact
ory and the town areas, the population and the workforce were evaluated. 

All of these results were found to be ambiguous in sign with the single 
exception that an increase in the transport time induces an unambiguous 
decrease in the area of the factory in the optimum town.

It is well known that the factory town is a von Thünen model; 
the factory and the residential zone being two von Thünen "rings". How
ever, these rings had not, hitherto, been integrated into a model contain

ing the classical, agricultural rings. This was done in Chapter 6, in a 
normative context, in order to examine the optimum industrial state.

The constant residential density model formulated in Chapter 5 

was used with one agricultural ring added. It was shown that the town 
and the agricultural zone each separately "paid its own way". The agric

ultural production function was assumed to exhibit constant returns to 

scale, and marginal productivity conditions of standard form in respect 

to shadow prices were derived. However, the shadow prices of the factors 

employed in this zone were shown to be location dependent. Household 

utility is constant across the profile of the state, but the shadow wage
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rate in the agricultural zone is a decreasing function of distance from 

the centre of the state. This is because the von Thünen, agricultural 

rent is a downwards sloping function of distance from the market, and 

therefore, the residential rents of the agricultural workers must be down

ward sloping. Thus, the shadow wage of agricultural labor must be down

ward sloping when the household utility is constant.

The equilibrium town was examined in Chapter 7. The ultimate 

purpose of this examination was to make a contribution to the long stand

ing debate on the possibility of the co-existence of increasing returns 

to scale and competitive equilibrium. For this purpose a pure model of 

an industrial economy in which markets are "as perfect as they can be" 
was chosen. It was shown that, at equilibrium, all towns are company towns, 

and, while the goods and agricultural factor markets may be competitive 
if freight costs are zero, imperfections in the urban factor markets are 

inevitable. This is because homogeneous labor must be paid the same wage 
in the equilibrium town, notwithstanding the fact that a worker's travel 
time depends upon the location of his residential site. The market imper
fections are manifest, in a pure model, as an apparent monopsony in the 
urban labor market and monopolistic competition in the urban land market. 
These imperfections mean that the equilibrium cannot be competitive.

It was shown that returns to scale in gross factory production - 
the measure of production usually considered in discussions on the co

existence of increasing returns and equilibrium - may be increasing, con
stant or decreasing. However, since the debate has been based upon the 

assumption that observed equilibria are approximately competitive, the 
debate is misconceived, and no anomaly between observation and theory in 

respect to competitive equilibrium and returns to scale has been demon

strated .

This completes our summary of the results obtained in this thesis.
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It remains to suggest some directions for further work. Three different 
lines for further research are apparent.

First, in respect to the models in this thesis, there is a need 
for further examination of the relationship between the optimum and equil

ibrium towns. It appears that this programme would require further devel

opment of control theory, either by extending the generality of sufficiency 

and existence theorems or by treating the central business district and 

residential zone together in the formulation of the welfare function.

This latter approach implies that the lower limit of the welfare function 

is constant at zero, but it introduces mathematical difficulties in res

pect to the description of the state variables. In a similar mathematical 
vein, there is a need to generalize the company town by making household 

residential site area a control variable. It could be treated either as 
an instrument of company profit maximization or of household utility 
maximization. We saw in Chapters 3 and 4 compared with Chapters 5 and 6 
that, when site area is a variable, relationships in the optimal town take 
more general forms. However, we also saw that this generalization is 
associated with greater complexity in the mathematical analysis. Second, 

our models were all based upon the assumption of uniform land quality.
There is a need to apply the techniques developed in the theory of the 
factory town to the Weberian point location theory. This theory is based 

upon differences in the spatial distribution of resources, but, being a 
point theory, fails to provide a satisfactory rent theory. An integration 

of these two approaches to spatial economics would offer significant 

advances to our present knowledge of economic theory.

Finally, our purely theoretical approach begs the question of how 

our conclusions may be applied by policy makers in the discovery of solut
ions to urban problems. A great deal has been said about the need to 

improve urban life style, but we might suspect that many of the current
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ad hoc remedies, which involve subsidies, serve to aggravate the problems 

they are intended to cure. For example, New York, a large, heavily trans

port dependent city is said by its administrators to face bankruptcy, and 

therefore, to require subsidy. Our results suggest that there is an 

optimum size for such a city, and that this size depends upon transport 

cost. Our limited view of transport can be extended in a qualitative way 
to include such costs as garbage removal and the reticulation of other 

services, and we must suspect that the size of New York is very much great
er than optimum, and that this excessive size is the fundamental cause of 
its financial problems.

Of course, the non-malleability of urban capital precludes the 
possibility of the rapid restructuring of New York into the optimum town. 

However, if our theory has application, it suggests that subsidies intended 
directly to overcome New York's immediate problems will compound them by 
encouraging further expansion. If our theory supports the policy of 
subsidization at all, that support would be for subsidizing the transfer 
of industry from New York to new towns. In other words, for subsidizing 
the contraction of New York.
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