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ABSTRACT 

 

Hematopoiesis occurs throughout the lifespan of an organism and involves the 

formation of blood cells from hematopoietic stem cell (HSC) which are self-renewing 

multipotent progenitors. The hematopoietic niche environment comprises non-

hematopoietic cells, extracellular matrix components and soluble regulatory factors 

which contribute to the quiescence, dormancy, self-renewal and differentiation of HSC. 

While multiple HSC niches have been described in bone marrow, as endosteal, vascular 

and perivascular, niches which support hematopoiesis in other sites like spleen remain to 

be elucidated. Previous studies in this lab have described unique splenic stroma cell 

lines 5G3 and 3B5 which can support hematopoiesis and reflect HSC niches. In 

addition, previously obtained transcriptome data has shown that 5G3 and 3B5 stroma 

express many genes in parallel with perivascular cells described in bone marrow. This 

information forms the basis of the current study. 

 

In this thesis, both 5G3 and 3B5 stroma have been shown to share a 

mesenchymal lineage origin with perivascular cells in bone marrow, including 

mesenchymal stem cells and C-XC motif ligand 12 (CXCL12)-abundant reticular cells. 

5G3 and 3B5 express many cell surface markers in common with these cells including 

CD105, CD29, VCAM1, Sca-1, CD51, CD140a and Thy1.2. In addition, the concept of 

niches for hematopoiesis in spleen has been advanced. Splenic stromal cells with the 

phenotype of Sca-1+gp38+Thy1.2+CD29+CD51+ were found to be important for in vitro 

hematopoiesis. Their phenotype reflects cells of mesenchymal lineage, consistent with 

our primary hypothesis that HSC niches involve at least perivascular reticular cells 

resembling the stromal line models of 5G3 and 3B5. Stromal cells expressing gp38 or 

Thy1.2 appear to be associated with some HSC in spleen identified through section 

staining, although this is restricted to neonatal spleen in the case of gp38+ stromal cells. 

Restricted hematopoiesis giving rise to L-DC and myeloid cells was replicated in vivo 

following grafting of splenic stromal cell lines including 5G3 and 3B5 under the kidney 

capsule. While L-DC production was clearly shown to occur within 3B5 grafts, 5G3 was 

difficult to engraft and then formed niches which appeared to support hematopoietic 

cells with a transformed phenotype. Specific signaling pathway inhibitors added into in 

vitro stromal co-cultures involving lineage-depleted bone marrow over 5G3 stroma, was 

also used to identify the important role of SCF but not CXCL12 in supporting in vitro 

hematopoiesis. In similar experiments, the DAPT inhibitor of Notch signalling was used 
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to identify a role for Notch signalling in the development of L-DC from MPP added into 

co-cultures over 5G3 stroma in vitro.  

 

This study has improved our current understanding of HSC niches in spleen and  

identified some of the molecular regulators of hematopoiesis. Information obtained in 

this thesis verifies the existence of HSC niches in spleen and will be important for 

development therapies involving spleen as an extramedullary niche for hematopoiesis. 

The amplification of existing splenic niches or the ability to generate ectopic niches 

could be used to support enhancement of hematopoietic output, in immunocompromised 

patients or following HSC transplantation.  
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1.1 INTRODUCTION 

 

Hematopoiesis is the process of blood cell formation from self-renewing, 

multipotent hematopoietic stem cells (HSC) which are crucial for blood homeostasis of 

all living organisms (Seita and Weissman, 2010). This developmental process has two 

distinct phases, primitive and definitive hematopoiesis. In mice, the primitive phase of 

hematopoiesis occurs in the yolk sac at embryonic (E) day 7.5 (Hirschi, 2012; Ueno and 

Weissman, 2006; Baron, 2003; Haar and Ackerman, 1971). It results in the production 

of primitive hematopoietic cells including mainly large, nucleated erythroblasts, some 

megakaryocytes, and primitive macrophages needed for embryonic growth (Hirschi, 

2012; Ueno and Weissman, 2006; Baron, 2003; Haar and Ackerman, 1971). The 

definitive phase of hematopoiesis in mice begins in the extra-embryonic yolk sac at 

E8.25 (Hirschi, 2012; Medvinsky and Dzierzak, 1996). Development in this phase is a 

hierarchical process, with two main lymphoid and myeloid lineages forming, from 

which all blood cells develop. The lymphoid lineage comprises T and B lymphocytes 

and natural killer cells that arise from a common lymphoid progenitor (CLP). In 

contrast, the myeloid lineage comprises granulocytes (neutrophils, eosinophils, mast 

cells and basophils), monocytes, erythrocytes, megakaryocytes, platelets and dendritic 

cells (DC), all developing from a common myeloid progenitor (CMP). The multipotent 

HSC resides at the apex of this hematopoietic hierarchy (Doulatov et al., 2012; Seita 

and Weissman, 2010).  

 

Most of our present knowledge on hematopoiesis stems from decades of 

research on bone marrow (BM), in part due to the clinical relevance of BM as the main 

site for hematopoiesis in adults. However, there is cumulating evidence to suggest that 

the spleen can adopt extramedullary hematopoiesis in both the steady-state and during 

disease and inflammation. While very little is understood about extramedullary 

hematopoiesis, there portends to be huge potential for regenerative medicine if the 

hematopoietic capacity of spleen could be harnessed. For example, the hematopoietic 

output of spleen could be experimentally enhanced on BM transplantation using either 

in vivo or in vitro means.  
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1.2 HEMATOPOIETIC STEM CELLS 

  

HSC are multipotent adult stem cells, capable of differentiating to give all 

mature blood cell types, while still maintaining a pool of stem cells due to their unique 

ability to self-renew (Trumpp et al., 2010). Definitive hematopoiesis in mice occurs at 

E8.5 and is detected experimentally at E10.5 in the aorta-gonad-mesonephros region of 

the embryo (Li et al., 2012; Palis et al., 1999; Medvinsky and Dzierzak, 1996; Müller et 

al., 1994). At E11.5, HSC appear in fetal liver where they exhibit high proliferative and 

differentiative potential with cell number expansion (Ema and Nakauchi, 2000). HSC 

appear in fetal spleen at E13-14 and undergo proliferation and differentiation to form 

mature blood cells (Godin et al., 1999). At E17.5, HSC then proceed to BM, the major 

hematopoietic site in adults where they are maintained during postnatal life (Dzierzak 

and Speck, 2008). 

 

HSC in murine BM represent a heterogeneous population characterised 

phenotypically by the absence of lineage (Lin)-specific markers and high expression of 

Sca-1, also known as lymphocyte antigen 6 complex (Ly6A), and the c-Kit tyrosine 

kinase receptor (c-Kit). Within the Lin-Sca-1+c-Kit+ cell subset, HSC can be further 

delineated as CD150+CD34-Flt3-CD244-CD48- long-term reconstituting HSC (LT-HSC) 

and CD150-Flt3-CD48- short-term reconstituting HSC (ST-HSC) (Kiel et al., 2005; 

Yang et al., 2005; Christensen and Weissman, 2001). The adoptive transfer of HSC to 

reconstitute the hematopoietic system of lethally irradiated mice remains the gold 

standard assay to distinguish ST-HSC from LT-HSC (Muller-Sieburg et al., 2012). 

While LT-HSC are able to sustain reconstitution of the hematopoietic system over more 

than 25 weeks, and even a lifetime (Spangrude et al., 1988), ST-HSC provide short-term 

reconstitution for only ~6 weeks (Yang et al., 2005). 

 

1.3 THE FATE OF HSC 

 

HSC can adopt several fates throughout the lifetime of an organism, including 

quiescence, dormancy, self-renewal and differentiation. Quiescence refers to a state of 

inactivity, whereby most HSC are in the G0/G1 phase of cell cycle and are not dividing 

(Eliasson and Jonsson, 2010). It is believed that keeping HSC in the quiescent state is 

necessary for long-term maintenance of the HSC compartment, in part due to reduced 

stress associated with cellular respiration and DNA replication (Eliasson and Jonsson, 
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2010). Signalling involving the TGF-β/SMAD pathway has been implicated in the 

maintenance of quiescence in HSC (Sitnicka et al., 1996), and the addition of TGF-β to 

in vitro cultures of LT-HSC can inhibit cell proliferation. The state which involves HSC 

in long-term quiescence is called dormancy (Wilson et al., 2008). Self-renewal is the 

process by which HSC undergo symmetrical or asymmetrical cell division to produce 

one or more daughter stem cells (He et al., 2009). This process leads to expansion of 

stem cell numbers during development, and restores the stem cell pool after injury (He 

et al., 2009). Self-renewal, along with quiescence, prevents the depletion of stem cells. 

Differentiation then involves specialisation of multipotent HSC to give mature blood 

cells, and is needed to replenish the hematopoietic system since most mature 

hematopoietic cell types are short-lived.  

 

While the hematopoietic system has a high daily rate of cell turnover, most HSC 

are quiescent and divide very rarely. This raises the perplexing question of how the 

hematopoietic system can produce such large numbers of mature blood cells from 

slowly dividing HSC. The answer lies in the balance between the various HSC fates of 

quiescence, dormancy, self-renewal and differentiation, such that tight regulation occurs 

between these fates to ensure that HSC are both maintained for the life of an organism, 

and sufficient mature blood cells are produced to meet the demands of the organism. 

The importance of this balance is highlighted in disease states such as leukaemia which 

result from abnormal HSC development. 

 

1.4 NICHES FOR HSC 

 

In the 1970s, Schofield introduced the concept of the HSC ‘niche’ after 

observing that once HSC were removed from the BM microenvironment, they quickly 

lost the capacity to self-renew and to reconstitute the hematopoietic system (Schofield, 

1978). The HSC ‘niche’ involves a microenvironment comprising non-hematopoietic 

stromal cells, extracellular matrix and soluble regulatory factors that regulate the 

different fates of HSC (Morrison and Spradling, 2008; Schofield, 1978). To date, three 

stromal cell types have been found to contribute to the HSC niche, namely endosteal, 

vascular and perivascular cells (Bianco, 2011; Nagasawa et al., 2011; Kiel and Morrison, 

2008). However, it is still not known to what extent these distinct niches function 

independently of each other, and the extent of hematopoietic support contributed by 

each cell type is not clear.  
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 The endosteal niche comprises a heterogeneous group of osteoblastic cells 

residing close to the endosteal lining of trabecular bone where they interact with HSC. 

The role of osteoblastic cells in HSC maintenance has been demonstrated in studies 

which vary the number of osteoblastic cells experimentally (Calvi et al., 2003). In 

experimental mouse models, it was shown that expression of a constitutively active 

form of parathyroid hormone (PTH) or the PTH-related protein receptor (PPR) 

important for calcium regulation under control of the type 1 collagen α1 promoter, gave 

a marked increase not only in number of osteoblastic cells but also in HSC (Calvi et al., 

2003). Osteoblastic cells maintain and regulate HSC through secretion of cytokines like 

angiopoietin-1 (ANGPT1), thrombopoietin (THPO) and osteopontin (SPP1), which 

bind to cell surface receptors on HSC, namely endothelial-specific receptor tyrosine 

kinase (TEK), myeloproliferative leukemia virus oncogene (MPL), and either CD44 or 

integrins including α4β1, α5β1, α9β1, and α4β7 (Lilly et al., 2011; Qian et al., 2007; 

Nilsson et al., 2005). A role for THPO and ANGPT1 in HSC maintenance was 

demonstrated in studies which showed a reduction in the number of HSC in the BM of 

Thpo-/- and Angpt-/- mutant mice (Lilly et al., 2011; Qian et al., 2007; Nilsson et al., 

2005). Similarly, Spp1-/- mice showed a marked increase in the number of HSC cycling, 

consistent with osteopontin (SPP1) being a negative regulator of HSC proliferation 

(Nilsson et al., 2005). In addition, osteoblastic cells express Jagged1, which leads to the 

inhibition of HSC differentiation, and the enhancement of HSC self-renewal when 

engaged with Notch receptors on HSC (Calvi et al., 2003).  

 

 However, the direct involvement of osteoblastic cells as a niche element was 

challenged when researchers failed to observe a change in HSC numbers after depletion 

of osteoblasts using ganciclovir treatment or biglycan deficiency (Kiel et al., 2007; 

Visnjic et al., 2004). In vivo imaging studies also revealed only few HSC in direct 

contact with osteoblastic cells (Lo Celso et al., 2009). In addition, findings from a 

genetic modification study further complicate the current understanding of an endosteal 

niche. That study reported occurrence of myelodysplasia and acute myelogenous 

leukemia as a result of a deletion of Dicer1 in osteolineage cells, but not mature 

osteocalcin+ osteoblastic cells (Raaijmakers et al., 2010). Whether osteoblastic cells 

reflect a key niche element is a question requiring further investigation.   
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 The vascular niche is an alternative HSC niche located in the vicinity of blood 

vessels and in close proximity with sinusoids in BM (Kiel et al., 2005). The vascular 

niche is associated with rapid mobilisation of HSC into the bloodstream after 

administration of granulocyte colony-stimulating factor (G-CSF) (Kiel et al., 2005). 

Vascular niches also play an important role during embryogenesis since HSC self-renew 

and differentiate at a stage of fetal development when BM cavities are not yet formed 

(Huber et al., 2004). Endothelial cells in the vascular niche express cell surface 

molecules that allow HSC and immune cells to move between the BM and the periphery 

(Sipkins et al., 2005). When hematopoietic cells enter tissues, the slow blood flow in the 

larger sinusoids allows blood-borne cells to interact with sinusoidal endothelial cells via 

adhesion molecules resulting in movement of cells through the sinus wall and into the 

extravascular space within BM (Quesenberry and Becker, 1998; Mazo et al., 1998; 

Frenette et al., 1998).  

 

Sinusoidal endothelial cells express gp130, a cytokine receptor essential for 

HSC self-renewal (Audet et al., 2001). The importance of endothelial cells expressing 

gp130 in hematopoiesis was demonstrated in reconstitution studies in mice where BM 

cells from gp130-/- mice could reconstitute the hematopoietic system of irradiated wild-

type mice, while wild-type BM cells were unable to reconstitute the hematopoietic 

system of gp130-/- mice (Yao et al., 2005). Moreover, the role of a vascular niche as a 

key regulator of hematopoietic integrity was further demonstrated by conditionally 

deleting the signalling protein vascular endothelial growth factor receptor 2 (VEGFR2) 

in adult mice (Hooper et al., 2009). This resulted in an inability of sinusoidal 

endothelial cells to develop after irradiation of mice, thus preventing reconstitution of 

the hematopoietic system (Hooper et al., 2009). E-selectin expressing endothelial cells 

in the vascular niche were also shown to promote HSC proliferation. An increase in 

HSC quiescence and self-renewal was noted in E-selectin knockout (Sele-/-) and in mice 

treated with an E-selectin antagonist (Winkler et al., 2012).  

 

Three populations of perivascular reticular cells expressing high levels of C-X-C 

motif chemokine ligand 12 (CXCL12) were initially identified as important perivascular 

niche elements for HSC in BM. They have been described as CXCL12-abundant 

reticular (CAR) cells (Sugiyama et al., 2006), nestin-GFP+ mesenchymal stem cells 

(Mendez-Ferrer et al., 2010) and leptin receptor (LepR)+ stromal cells (Ding et al., 

2012). CAR cells were characterised as bipotent adipo-osteogenic progenitors, which 
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develop around sinusoids (Omatsu et al., 2010; Sugiyama et al., 2006). By conditionally 

ablating CAR cells using transgenic mice with the diphtheria toxin receptor gene 

inserted into the Cxcl12 locus, CAR cells were shown to promote HSC proliferation 

while maintaining them in an undifferentiated state (Omatsu et al., 2010). The absence 

of CAR cells resulted in a reduction in HSC and progenitors, and early myeloid 

differentiation of HSC.  

 

Perivascular niches are also defined by nestin+ mesenchymal stem cells situated 

near the larger blood vessels in BM (Mendez-Ferrer et al., 2010). These cells were 

identified in close association with HSC through their nestin expression. When nestin+ 

mesenchymal stem cells were conditionally ablated from mice, the frequency of HSC 

decreased, indicating the importance of these cells as a perivascular niche element in 

BM (Mendez-Ferrer et al., 2010). The LepR+ stromal cells have also been identified as 

perivascular cells surrounding sinusoids. This subset expresses high levels of CXCL12 

and stem cell factor (SCF), and may overlap with other previously described 

perivascular reticular cell subsets. All three described perivascular subsets are an 

important source of SCF (Ding et al., 2012) a cytokine that binds to the c-Kit tyrosine 

kinase receptor expressed on hematopoietic stem/progenitor cells (McNiece and 

Briddell, 1995). A recent study demonstrated depletion of the HSC pool in Scf-/- mice, 

highlighting the importance of SCF as well as perivascular cells in HSC maintenance 

(Ding et al., 2012).  

 

A recent report by Kunisaki et al. (2013) has described two types of perivascular 

niche cells. First, the Nestin-GFP bright NG2+LepR- pericytes which surround Sca-

1hiVEGFR2+VEGFR3- arterioles, and secondly, the Nestin-GFP dim NG2-LepR+ cells 

which surround sinusoids. While NG2- stromal cells were shown to overlap with earlier 

described LepR+ stromal cells (Ding et al., 2012), NG2+ pericytes are unique niche cells, 

which are important for HSC quiescence (Kunisaki et al., 2013).  

 

1.5 SPLEEN AS A HEMATOPOIETIC ORGAN 

  

The spleen is the largest blood-filtering organ. It also contains structures which 

support lymphoid cell development and function, and in this respect spleen resembles a 

lymph node. The spleen is central to both hematopoiesis and immunity. Anatomically, it 

comprises red pulp, responsible for blood cell removal, and white pulp, which houses T 
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and B lymphocytes in discrete regions (Mebius and Kraal, 2005). Red and white pulp of 

murine spleen are separated by the marginal zone comprising marginal zone 

macrophages, B cells and DC, and a marginal sinus where the smallest arterial branches 

terminate (Mebius and Kraal, 2005). The white pulp is further divided into T cell zones 

and B cell follicles with germinal centres containing B cells (Mebius and Kraal, 2005). 

While murine and human spleens are largely similar in terms of their architecture, there 

are some notable differences (Mebius and Kraal, 2005). Unlike the murine spleen, the 

marginal sinus is not present in the human spleen, although human spleen does contain 

a perifollicular region, external to the marginal zone in the red pulp, which is absent in 

the murine spleen.  

 

1.5.1 Development of murine spleen 

  

Spleen organogenesis involves formation of the splanchnic mesodermal plate 

from lateral plate mesoderm at E9.5 (Brendolan et al., 2007; Hecksher-Sorensen et al., 

2004). The splanchnic mesodermal plate comprises epithelial-like cells arranged as an 

organised plate of cells at the right and left side of the foregut (Brendolan et al., 2007). 

The initial condensation of mesenchyme within the dorsal pancreatic mesenchyme 

occurs adjacent to the splanchnic mesodermal plate at E10.5 (Hecksher-Sorensen et al., 

2004). By E10.5, there is progressive loss of thickness on the right side of splanchnic 

mesodermal plate, causing it to be thicker at the left side (Hecksher-Sorensen et al., 

2004). In addition, the cells constituting the splenic condensing mesenchyme also 

acquire splenic cell fate (Brendolan et al., 2007). At the same time, leftward growth of 

pancreatic mesenchyme and spleen anlagen occur (Brendolan et al., 2007). By E11.5, 

the spleen anlage proper is formed laterally to the developing stomach (Burn et al., 2008; 

Brendolan et al., 2007). 

  

While the exact cellular requirements governing development of spleen remain 

poorly understood, it is widely known that the interaction between the non-

hematopoietic CD45-VCAM1+ICAM1+LTβR+ lymphoid tissue organiser (LTo) cells 

and hematopoietic CD45+CD3-CD4+cKit+LT+ lymphoid tissue inducer (LTi) cells is 

crucial for the development of secondary lymphoid organs such as lymph nodes and 

Peyer’s patches (Randall et al., 2008). This is due to the lymphotoxin LTαβ signalling, 

which occurs as a result of binding between lymphotoxin-α1β2 (Ltα1β2) expressed on 

LTi cells and the lymphotoxin-β receptor (LTβR) on LTo cells (Tan and Watanabe, 
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2010). Engagement of Ltα1β2 and LTβR induces the activation of two NFκB pathways 

which promote mesenchymal and endothelial cell differentiation (Dejardin et al., 2002). 

In addition, increased expression of adhesion molecules like vascular cell adhesion 

molecule 1 (VCAM1), intracellular adhesion molecule 1 (ICAM1), and mucosal 

vascular addressin cell adhesion molecule 1 (MAdCAM1), as well as homeostatic 

chemokines such as CXCL13, CCL19 and CCL21, ensues as part of the differentiation 

program of mesenchymal cells (Honda et al., 2001). These adhesion molecules and 

chemokines attract and retain additional hematopoietic cells at the formation site.   
 

The importance of Ltα1β2 signalling in secondary lymphoid organ development 

was first documented after the initial observation that all lymph nodes and Peyer’s 

patches failed to develop in LTα-/- mice (De Togni et al., 1994). Identification of what 

are currently known as LTi cells began with the search for the LTαβ-expressing cell 

which was first found in developing mesenteric lymph nodes (Mebius et al., 1997). 

These cells were later characterised as CD45+CD3-CD4+ cells. Insight into the role of 

LTαβ-expressing CD45+CD3-CD4+ cells in secondary lymphoid organ development 

came with the generation of two mutant mice that lacked CD45+CD3-CD4+ cells (Sun et 

al., 2000; Yokota et al., 1999). A detailed analysis of these two mutant mice revealed an 

absence of lymph node and Peyer’s patch development. However, the architecture of 

the T and B cell areas in spleen was unaffected (Zhang et al., 2003; Yokota et al., 1999), 

suggesting the existence of multiple subsets which provide instructions to splenic 

stromal cells.  

 

1.5.2 The red pulp regulates erythrocyte turnover 

  

The red pulp region has a very specialised function as a blood filter. This region 

contains many splenic cords formed by red pulp fibroblasts and reticular fibres where 

blood first enters via the afferent splenic artery (Mebius and Kraal, 2005). Blood then 

enters venous sinuses lined by endothelium with a discontinuous structure (Mebius and 

Kraal, 2005; Drenckhahn and Wagner, 1986). Slits formed in the endothelium of the 

sinuses allow the passage of most blood cells but not aged or damaged platelets and 

erythrocytes. These are phagocytosed by red pulp macrophages in the cords (Mebius 

and Kraal, 2005; Bratosin et al., 1998).    
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In addition to the filtration of blood, the red pulp is involved in recycling iron. 

Phagocytosis of aged erythrocytes by splenic macrophages results in release of haem 

from haemoglobin which is converted into biliverdin and ferrous iron (Mebius and 

Kraal, 2005; Knutson and Wessling-Resnick, 2003). The resultant iron is either stored 

or released as ferritins from cells. Plasmablasts and plasma cells are also present in the 

red pulp for antibody production (Mebius and Kraal, 2005).  

 

1.5.3 The white pulp facilitates T and B lymphoid responses 

   

The white pulp of spleen contains the T cell zones and B cell follicles. In T cell 

zones, fibroblastic reticular cells encircle the central arterioles and form a network that 

connects the T cell zones to the marginal zone (Bajénoff et al., 2008; Anderson and 

Shaw, 1993). This network serves to guide T cells in their migration from marginal 

zone to T cell zones (Bajénoff et al., 2008; Anderson and Shaw, 1993). It is in the T cell 

zone where T cells interact with DC and passing B cells. In contrast, B cell follicles 

comprise activated B cells undergoing clonal expansion, isotype switching and somatic 

hypermutation. They also house specialised antigen handling cells called follicular 

dendritic cells which form the architectural framework of the follicles and are involved 

in retaining and presenting antigens to activated B cells in the germinal centre. 

 

1.5.4 Multiple subsets of DC exist in spleen 

  

Dendritic cells are specialised antigen presenting cells that are capable of 

inducing an adaptive immune response (Shortman and Naik, 2007). They do so by 

acquiring, processing and presenting antigens on major histocompatibility complex 

(MHC) molecules to naïve T cells. While all DC possess the capacity for antigen 

acquisition, processing and presentation, they are heterogeneous and their subtypes 

differ in location, migratory pathway, cell surface marker expression and 

immunological function (Shortman and Naik, 2007). The definition of a DC is therefore 

not straightforward, although most DC are phenotypically marked by high expression of 

CD11c and MHC-II (Miloud et al., 2010). 

  

The commonly described DC subsets in murine spleen include conventional DC 

(cDC), plasmacytoid DC (pDC), regulatory DC (DCreg) and monocyte-derived DC 

(mo-DC) (Merad et al., 2013; Geissmann et al., 2010). Conventional DC represent 
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steady-state, mature DC with CD11chiMHC-IIhi marker expression that can be further 

classified into CD8α+ and CD8α- subsets (Merad et al., 2013). CD8α+ cDC are 

phenotypically distinguishable as CD11c+CD11b-CD8α+MHC-II+B220- cells, while 

CD8α- cDC are CD11c+CD11b+CD8α-MHC-II+B220- cells (Merad et al., 2013; Vremec 

et al., 2000). Plasmacytoid DC exist as less mature DC precursors in the steady-state, 

producing natural type I interferon (IFN-α) upon viral exposure.  They can be 

distinguished from other DC subsets by expression of Ly6C, B220, and low expression 

level of the CD11c marker (Merad et al., 2013; Asselin-Paturel et al., 2001). Under 

certain inflammatory conditions, monocytes as phagocytic myeloid cells, are induced to 

differentiate into mo-DC for antigen presentation (Cheong et al., 2010). These cells can 

be distinguished from other DC by CD64 (FcR) expression.  

 

1.5.5 Lineage origin of splenic DC 

 

With high heterogeneity within the DC lineage, an important question is whether 

each subset is developmentally distinct. Early studies provided direct evidence for a 

myeloid origin of DC following reconstitution of cDC and pDC in the spleen and 

thymus when mouse BM-derived CMP were transplanted into irradiated recipients (Wu 

and Liu, 2007). It is now well established that all leukocytes originate from BM-derived 

HSC. In the early stages of hematopoiesis, successive commitment steps result in the 

divergence of lymphoid and myeloid lineages, generating CLP and CMP (Liu and 

Nussenzweig, 2010). The CLP give rise to B, T and natural killer cells, whilst CMP 

give rise to macrophage/DC progenitors (MDP), identified as Lin-CX3CR1+CD11b-

CD115+cKit+CD135+ cells (Liu and Nussenzweig, 2010). These subsequently give rise 

to either common DC progenitors (CDP) or two monocyte subsets distinguishable as 

Ly6C+ and Ly6C- cells (Geissmann et al., 2010; Liu et al., 2009). In contrast to the 

developmental flexibility of MDP in terms of ability to produce cDC, pDC and 

monocytes, CDP are restricted to producing cDC and pDC (Liu et al., 2009). It has also 

been shown that adoptive transfer of either CMP or MDP can give rise to CDP and 

monocytes, indicating that CDP are downstream of CMP or MDP (Liu and 

Nussenzweig, 2010).  

 

While monocytes and pDC have been found to exit BM as mature cells, cDC 

leave as immature precursors that further differentiate and mature within lymphoid 

organs (Liu et al., 2009). In mouse blood, two populations of DC precursors have been 
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described as CD11cintCD11b+CD45RA- and CD11cloCD11b-CD45RAhi cells that 

differentiate to give mature CD8α- cDC in the presence of TNF-α and GM-CSF, and 

IFN-α producing pDC in the presence of GM-CSF and CpG (Naik et al., 2007). CD8α- 

cDC are able to stimulate T cells to produce IL-2 in response to microbial stimuli, while 

pDC weakly stimulate T cells by producing large quantities of IFN-α (Wu and Liu, 

2007). A recent study reported the identification of the most immediate cDC precursors 

(pre-DC) in spleen with a CD11cintCD45RAloCD43intSIRP-αintCD4-CD8α- phenotype 

(Wu and Liu, 2007). Progenitors in BM give rise to pre-DC which enter the spleen 

where they differentiate further to give cDC and p-pre-DC.  

 

1.6 EXTRAMEDULLARY HEMATOPOIESIS IN SPLEEN 

 

The spleen can support hematopoiesis, and this finding is based on early 

evidence documenting the recovery of mice lethally irradiated with a shielded spleen 

(Rugh and Grupp, 1960). This process is termed extramedullary hematopoiesis since it 

occurs in sites other than the bone medullary cavity. Extramedullary hematopoiesis can 

be viewed as an active or a passive process. While extramedullary hematopoiesis is an 

active natural process during fetal development and also during infection, passive 

extramedullary hematopoiesis occurs due to impairment of hematopoiesis in the BM 

(Kim, 2010). An active process is supported by evidence that the low number of 

hematopoietic stem/progenitor cells present in murine spleen in steady-state increases 

quickly following inflammation (Massberg et al., 2007; Wolber et al., 2002). The 

presence of hematopoietic stem/progenitor cells in the steady-state is however not 

restricted to murine spleen since spleens of pigs, baboons and humans were also found 

to retain a low number of hematopoietic stem/progenitor cells under steady-state 

conditions (Dor et al., 2006). Moreover, in cell tracing experiments, spleen cells derived 

from both neonatal and adult mice were able to provide hematopoietic reconstitution of 

lethally irradiated host mice following adoptive transfer (Tan and O'Neill, 2012; Tan et 

al., 2010). These findings confirm that spleen can adopt a role in extramedullary 

hematopoiesis, at least during times of stress or inflammation. Evidence, which suggests 

the role of spleen in hematopoiesis, also raises the possibility of a splenic niche that 

supports the maintenance of HSC in the resting state.  
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1.7 SPLENIC STROMAL CELL NETWORK 

 

HSC niches in spleen have not been well investigated although at least six 

distinct stromal cell types have been mapped to different regions of murine spleen. 

These include gp38+ fibroblastic reticular cells in the T cell zones, CD35+ follicular 

dendritic cells in the B cell follicles, MAdCAM1+ marginal reticular cells in the 

marginal zone, and red pulp fibroblasts, lymphatic endothelial cells and vascular 

endothelial cells in the red pulp (Mueller and Germain, 2009). 

   

Fibroblastic reticular cells are mesenchymal cells, which along with reticular 

fibres and fibrous extracellular matrix bundles, are required for the formation of a 

reticular network that serves as a scaffolding for the three-dimensional structure of 

secondary lymphoid organs (Gretz et al., 1997). In addition to creating a network in the 

T cell areas of spleen which serves to guide T lymphocytes in their migration from 

marginal zone to the T cell zones (Bajénoff et al., 2008; Anderson and Shaw, 1993), 

fibroblastic reticular cells are also involved in creating a conduit system that selectively 

allows molecules of low molecular mass such as chemokines and antigens to enter the T 

cell zone (Lokmic et al., 2008; Nolte et al., 2003; Gretz et al., 1997). Large molecules 

are trapped in the cortical sinuses by subcapsular sinus macrophages (Lokmic et al., 

2008; Nolte et al., 2003; Gretz et al., 1997). Such a conduit system offers an opportunity 

for different types of signals to be delivered in secondary lymphoid organs for 

optimisation of immunity to different pathogens (Nolte et al., 2003).  

  

In addition to their structural role, fibroblastic reticular cells are also involved in 

regulation of the immune response. They secrete homeostatic chemokines such as 

CCL21, CCL19 and CXCL12 which attract naïve T cells expressing the chemokine 

receptors CCR7 and chemokine C-X-C motif receptor 4 (CXCR4) (Forster et al., 1999). 

Fibroblastic reticular cells also enhance the survival of naïve T cells in the steady-state 

by producing interleukin-7. This is important in increasing the probability that naïve T 

cells meet cognate antigen presented on antigen presenting cells. A recent study 

revealed that fibroblastic reticular cells stimulated the activation of cytotoxic T cells via 

alarmin secretion during viral infection (Bonilla et al., 2012).  

  

Marginal reticular cells represent a unique subset of stromal cells located in the 

marginal zone of the spleen. Despite expressing many common stromal cell surface 
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markers like ER-TR7, desmin, laminin, VCAM1 and MAdCAM1, marginal reticular 

cells also specifically express receptor activator of NF-ĸB ligand (RANKL) and secrete 

CXCL13 (Katakai et al., 2008). While RANKL has been found to be essential for 

lymph node development (Dougall et al., 1999), its function in spleen remains elusive. 

These stromal cells form a conduit system which can capture and deliver antigens to B 

cell follicles (Katakai et al., 2008).  

 

In the red pulp region, red pulp fibroblasts form the splenic cords necessary for 

filtration of blood (Mueller and Germain, 2009). They also control splenic blood flow 

and assist in removal of dead or dying red blood cells (Mueller and Germain, 2009). 

Additionally, red pulp fibroblasts are involved in the localisation of different cells in the 

red pulp of spleen through expression of the cell adhesion molecule ICAM1 that binds 

to lymphocyte function-associated antigen 1 (LFA1), a heterodimeric receptor protein 

found on lymphocytes (Williams and Barclay, 1988; Hynes, 1987). For instance, 

ICAM1-LFA1 interaction between red pulp fibroblasts and plasma cells results in 

movement of plasma cells into the red pulp region for secretion of antibodies into 

circulation (Ellyard et al., 2005).  

 

1.8 EVIDENCE THAT SPLENIC STROMA SUPPORTS HEMATOPOIESIS 

 

Evidence has now been obtained which shows that that spleen contains stromal 

cells which support in vitro hematopoiesis (Periasamy et al., 2013a; O'Neill et al., 2011; 

Periasamy et al., 2009; Ni and O'Neill, 1999). In particular, it was found that the stromal 

monolayer forming in long-term cultures (LTC) of 8-day old murine spleen supports 

maintenance of small progenitors and the production of a distinct class of large, 

immature DC, coined ‘LTC-DC’. These are produced continuously in LTC over years 

in the absence of added growth factors and cytokines (Periasamy et al., 2013a; O'Neill 

et al., 2011; Periasamy et al., 2009; Ni and O'Neill, 1999). When the small progenitors 

maintained in LTC were specifically sorted and co-cultured over STX3 stroma, large 

immature dendritic-like cells were produced (Wilson et al., 2000). STX3 stroma was 

isolated as a stromal line from one splenic LTC which had ceased production of 

dendritic-like cells after multiple passages, possibly due to the loss of progenitors (Ni 

and O'Neill, 1998). Interestingly, similar dendritic-like cells, termed ‘L-DC’ were also 

produced when STX3 was overlaid with lineage-negative (Lin-) BM cells (Despars and 

O'Neill, 2006b). L-DC, like LTC-DC, are large cells which express CD11b and CD11c 
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but not MHC-II and CD8α (Periasamy and O'Neill, 2013; Tan et al., 2011). These cells 

are highly efficient in endocytosis and cross presentation of antigen for CD8+ T cell 

activation, particularly after exposure to lipopolysaccharide (Periasamy and O'Neill, 

2013; Tan et al., 2011). 

 

In order to better understand the cellular composition of the heterogeneous 

STX3 stroma, the line was cloned to form 102 cloned splenic stromal cell lines 

(Despars and O’Neill, 2006a). These include the 5G3 clone which is able to support in 

vitro hematopoiesis, and the 3B5 clone which is a non-supporter. The 5G3 clone 

supports production of ‘L-DC’ from hematopoietic progenitors in a highly reproducible 

and contact-dependent manner similar to the parent line, STX3 (Periasamy and O'Neill, 

2013; Periasamy et al., 2009). Transcriptome analysis of 5G3 stroma has revealed high 

expression of genes including Sca-1, Vcam1, Pdgfrα/β and Cxcl12, which are associated 

with perivascular reticular cells described in the BM (O’Neill lab, data in preparation). 

In addition, 5G3 was shown to have osteogenic but not adipogenic differentiative 

capacity (O’Neill lab, data in preparation). This evidence raises the hypothesis that 

spleen contains a unique perivascular niche comprising mesenchymal stromal cells 

resembling osteoprogenitors that supports extramedullary hematopoiesis. 

 

The highly reproducible nature of DC production in splenic LTC and in co-

cultures involving splenic stroma, suggests that a potential equivalent process may exist 

in vivo. Already there is some evidence for an in vivo equivalent L-DC subset in spleen, 

which was originally termed ‘IVL-DC’ (Tan and O’Neill, 2010), this subset was 

recently more clearly defined and termed L-DC (Hey and O'Neill, 2016). However, the 

in vivo equivalent stromal supporter cell line has not yet been identified. Moreover, 

since DC production in splenic stromal co-cultures can be maintained for a long time, it 

seems likely that the progenitors which are maintained in cultures, are self-renewing. 

One hypothesis is that the splenic stromal cells maintain self-renewing progenitors 

through close contact. To test this hypothesis, various progenitor subsets from BM and 

spleen were sorted and tested for their capacity to seed 5G3 stroma with production of 

L-DC. 5G3 stromal co-cultures were established with MDP, CDP, ST-HSC or LT-HSC. 

Since no L-DC production was observed in co-cultures overlaid with MDP and CDP, it 

was evident that L-DC did not derive from the same progenitors which gave rise to cDC, 

pDC and monocytes (Petvises and O'Neill, 2014b). When the Flt3-c-Kit+Lin-Sca-1+ 

subset of LT-HSC from BM, and the Flt3+c-Kit+Lin-Sca-1+ subset of ST-HSC were 
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overlaid on 5G3 stroma, L-DC production was however supported (Petvises and O'Neill, 

2014b; Hinton et al., 2011). In some co-cultures, contact between non-adherent cells 

and stroma was prevented using a Transwell membrane (Periasamy et al., 2013a). L-DC 

production occurred for up to 35 days from overlaid HSC, but only in co-cultures where 

overlaid cells maintained contact with 5G3 stroma (Periasamy et al., 2013a). The 

development of L-DC is therefore dependent on the interaction between primitive HSC 

and the competent 5G3 stroma. The progenitor of L-DC therefore appears to be a subset 

of HSC, some cells of which express Flt3 and resemble ST-HSC in BM, or the less 

primitive multipotent progenitors (MPP) (Petvises and O'Neill, 2014b; Periasamy et al., 

2013a).  

 

Indeed, it has become clear that L-DC progenitors in vivo reflect HSC 

endogenous to spleen, and that the process of L-DC development reflects 

extramedullary hematopoiesis.  L-DC progenitors first appear in murine spleen at E18.5, 

while progenitors of cDC appear after 4 days (Petvises and O'Neill, 2014a). This raises 

the possibility that hematopoietic progenitors in spleen are laid down during ontogeny, 

and that hematopoiesis in spleen giving rise to differentiation of dendritic-like L-DC 

occurs as an active process, independent of inflammatory signalling. One model is that 

the splenic stromal microenvironment supports the restricted differentiation of 

endogenous progenitors to give antigen presenting cells unique to the spleen 

microenvironment. Indeed, studies to date on the in vivo tissue distribution of cells 

equivalent to L-DC, suggest that L-DC are a novel subset limited in distribution to 

spleen (Tan et al., 2011). Such a model does not discount the possibility that spleen can 

also act as a site for extramedullary hematopoiesis under inflammatory conditions. 

Whether the same stromal microenvironment contributes to both processes remains an 

unanswered question. 

 

While it is known that hematopoiesis can be driven by inflammation in vivo 

(Nagai et al., 2006), it is important to consider whether in vitro hematopoiesis in 5G3 

co-cultures involves the same mechanism. This laboratory has studied the role of toll-

like receptor signalling in the production of L-DC in in vitro co-cultures over 5G3 

stroma. Toll-like receptor binding of pathogen components triggers an inflammatory 

response. Co-cultures established with BM progenitors derived from mutant mice that 

lack the adapter proteins MyD88 and TRIF which bind toll-like receptors, were found to 

be producers of L-DC, suggesting that L-DC production occurs independently of toll-
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like receptor signalling (Periasamy et al., 2013a). L-DC production therefore appears to 

reflect an active process of steady-state extramedullary hematopoiesis dependent on 

primitive HSC endogenous to spleen.  

 

1.9 SIGNIFICANCE  

 

While spleen has been traditionally viewed as an organ of immunity, recent 

evidence sheds light on its involvement in hematopoiesis (Yamamoto et al., 2016; Inra 

et al., 2015; Miwa et al., 2013; Johns and Christopher, 2012; O'Neill et al., 2011; Kim, 

2010; Kiel et al., 2005). In this thesis, we have advanced the existence of niches for 

hematopoiesis in spleen, comprising a perivascular reticular cell type that supports 

extramedullary hematopoiesis from primitive HSC. Previous evidence in mice and 

humans suggests that perivascular reticular cells reflect mesenchymal stem/progenitor 

cells located in close proximity with endothelial cells associated with the vasculature. 

Since the perivascular cells in BM which constitute the HSC niche surround the 

sinusoids, it is quite possible that a similar cell type exists in spleen, particularly in the 

red pulp region, where copious numbers of sinusoids are found. Moreover, 

transcriptome analysis of spleen-derived 5G3 stroma has revealed a close genetic 

resemblance between 5G3 stroma and perivascular cells in the BM (data in preparation). 

Evidence for the osteogenic nature of 5G3 cells (O’Neill lab, data in preparation) is also 

consistent with this finding, suggesting the presence of mesenchymal osteoprogenitors 

in spleen with ability to support in vitro hematopoiesis.  

 

The possibility that spleen contains perivascular cells which act as niches for 

hematopoiesis is not without precedence. Perivascular reticular cells present in the red 

pulp of spleen could provide a niche for maintenance of HSC in the steady-state. 

Furthermore, restricted hematopoiesis leading to development of only L-DC raises the 

possibility that the spleen microenvironment may support the production of tissue-

specific antigen presenting cells. Their location in red pulp could reflect a specific role 

in monitoring blood-borne antigens and interacting with migrating lymphoid cells.  

  

The lack of understanding of spleen as a hematopoietic organ has limited 

clinical application to date. A history of work from this lab has however considered 

spleen as a site for extramedullary hematopoiesis, with potential for reengineering 

niches to increase hematopoietic cell production. For example, if these unique stromal 
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cells could be isolated and used to expand HSC in vitro, or provided as an ectopic niche 

in vivo for the same purpose, then the potential exists to enhance hematopoiesis during 

HSC transplantation. Regeneration or expansion of these niches could represent future 

therapy for patients undergoing myeloablative treatment, involution of lymphoid tissue 

with ageing or HSC transplantation.  

 

1.10 HYPOTHESIS 

 

The spleen has capacity to support extramedullary hematopoiesis, especially at 

times of stress, infection and drug treatment (Massberg et al., 2007; Wolber et al., 2002). 

Here we hypothesise that spleen contains a unique perivascular niche, comprising 

stromal cells of mesenchymal lineage, which support extramedullary hematopoiesis.  

 

1.11 AIMS OF THE THESIS 

 

1. To characterise and demonstrate the role of 5G3 in hematopoietic support 

2. To identify the stromal cell type in spleen which supports hematopoiesis 

3. To characterise and localise HSC niches in spleen 

4. To establish ectopic niches in mouse models using stromal cell lines and isolated 

splenic stromal subsets 
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2 MATERIALS AND METHODS 

 

2.1 Animals 

 

Specific pathogen-free C57BL/6J (H-2Kb) mice aged between 4 and 8 weeks, or 

between 6 and 8 days, and NOD/SCID (H-2Kd) mice aged between 6 and 9 weeks, were 

obtained from the John Curtin School of Medical Research (JCSMR: Canberra, 

Australia). Mice were housed and handled according to protocols approved by the 

Animal Experimentation Ethics Committee at the Australian National University (ANU: 

Canberra, Australia). 

 

2.2 Cell culture 

 

Cells were cultured in Dulbecco’s Modified Eagle Medium (DMEM) 

supplemented with 4g/L D-glucose, 6mg/L folic acid, 36mg/L L-asparagine, 116mg/L 

L-arganine HCL, 10% heat inactivated fetal calf serum (JRH Biosciences: Lenexa, 

Kansas, USA), 10mM Hepes (JRH Biosciences), 2mM L-glutamine (JRH Biosciences), 

100 U/mL penicillin (JCSMR), 100µg/mL streptomycin (JCSMR) and 5x10-5M 2-

mercaptoethanol (BDH Ltd: Poole, England), (sDMEM). Cultures were maintained in 5% 

CO2 in air, with 95% humidity at 37oC.  

 

2.3 Stromal cell lines 

 

The establishment of the STX3 splenic stromal line has been previously 

described (Ni and O'Neill, 1999; Ni and O'Neill, 1997). STX3 was derived from a LTC 

of murine spleen of B10.A(2R) mice which had ceased to produce DC over time due to 

loss of hematopoietic cells.  In order to maintain the STX3 line, stromal cells were 

scraped from the surface of the flask and transferred into a new flask. 

 

The derivation of the splenic stromal clones, 5G3, 10C9, 7G10 and 3B5, has 

been previously described (Despars and O'Neill, 2006a). These lines were cloned from 

STX3 splenic stroma. Frozen stocks of these cell lines were established from stromal 

clones which had undergone 2 to 3 passages after cloning and were then stored in liquid 

nitrogen. In order to establish stroma, each vial of frozen 5G3, 7G10 or 3B5 cells was 

defrosted rapidly in a 37oC water bath for 1 minute and then resuspended in 13mL 
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sDMEM. Cells were washed twice with 5mL sDMEM, with sedimentation between 

washes using an Allegra 6R centrifuge (300g, 4oC for 5 minutes) (Beckman Coulter: 

Gladesville, NSW, Australia). Cells were then seeded at 5x105 cells/mL into a 25cm2 

tissue culture flask. After 24 hours, the flask of cells was then passaged after scraping 

into two 25cm2 flasks with plating at 3x105 cells/mL per flask.  If necessary, a second 

cell passage was then performed after 48 hours. To freeze down cells, stromal cells 

were harvested by trypsinization at 80-90% confluency. Cells were washed with 

phosphate buffered saline (PBS) twice prior to trypsinization to completely remove 

culture medium which would otherwise reduce the efficiency of the trypsinization 

process. 0.25% (m/v) Trypsin-ethylenediaminetetraacetic acid [0.02% (m/v) EDTA] 

(Sigma-Aldrich: Castle Hill, NSW, Australia) was added at 37oC. Trypsinization was 

carried out for 1 minute, and the process halted by addition of 5mL sDMEM. Harvested 

cells were washed twice with sDMEM and sedimented between washes by 

centrifugation (300g, 4oC, 5 minutes). Cell number and viability were estimated using 

trypan blue (0.4%/saline) (Gibco BRL: Grand Island, New York, USA). Viable cells 

were counted using a haemocytometer. Cells were resuspended to a final concentration 

of 5x106 cells/mL in ice-cold freezing medium comprising sDMEM supplemented with 

10% FCS and 10% dimethyl sulfoxide. Cells were aliquoted (1mL per vial) before 

placement on a cooling rack above liquid nitrogen for slow freezing. Completely frozen 

vials were stored in liquid nitrogen.    

 

2.4 Long-term cultures 

 

Long-term cultures were established from 5-day-old C57BL/6J spleens which 

were dissociated as described in Section 2.5. Cells of a single spleen were resuspended 

in sDMEM and seeded into a 75cm2 tissue culture flask. Flasks were left undisturbed 

for 10 days at 37ºC in 5% CO2 in air with 97% humidity. Medium change was carried 

out 10 days after culture establishment by removal of liquid containing non-adherent 

cells and centrifugation at 300g, 4oC for 5 minutes to pellet non-adherent cells. The cell 

pellet was resuspended in fresh medium and returned to cultures. Thereafter, LTC were 

maintained by exchange of half volume of medium every 3-4 days.  
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2.5 Isolation of cells from tissues 

 

Bone marrow cells were isolated from the femur and tibia of C57BL/6J adult 

mice by flushing the bone cavity with DMEM using a syringe equipped with a 26G 

needle. Cells were dissociated by pressing through a fine mesh sieve. After 

centrifugation (1200rpm, 4oC, 10 minutes), cells were resuspended in 5mL red blood 

cell (RBC) lysis buffer [140mM NH4Cl, 17mM Tris Base, pH 7.5] for 5 minutes before 

centrifugation. Cells were then washed twice in sDMEM before resuspension in 1mL 

sDMEM for cell counting as described in Section 2.3.  

 

 For isolation of splenocytes, dissected spleen was pressed through a fine mesh 

sieve. Cells were resuspended into 1mL sDMEM and treated with RBC lysis buffer, 

washed and counted as described for BM cells. 

 

2.6 Lineage depletion of BM  

 

 Bone marrow cells were isolated as described in Section 2.5 and depleted of 

known lineage (Lin)+ cells using a lineage depletion kit containing a cocktail of lineage-

specific biotinylated antibodies (Miltenyi Biotec: North Ryde, NSW, Australia). This 

cocktail contained antibodies specific for CD5, CD45R, CD11b, Ly6C/G, 7-4 and Ter-

119 (Lineage depletion kit: Miltenyi Biotec) for depletion of all mature hematopoietic 

cells including B cells, T cells, monocytes/macrophages, neutrophils and granulocytes. 

Briefly, BM cells were washed twice in 10mL magnetic activated cell sorting (MACS) 

buffer [2mM EDTA/0.5% bovine serum albumin (BSA) in PBS] by centrifugation 

(300g, 4oC, 5 minutes) prior to antibody labelling of cells. The cell pellet was 

resuspended in 40µL of MACS buffer along with 10µl of biotin-conjugated antibody 

cocktail per 107 cells and incubated for 10 minutes on ice. MACS buffer (30µL per 107 

cells) and anti-biotin microbeads (20µl per 107 cells) were then added to cell 

suspensions and further incubated for 15 minutes on ice. Cells were then washed with 

4mL of MACS buffer (300g, 4oC, 5 minutes) and resuspended in 500µL of the same 

buffer before loading on to MACS columns (Miltenyi Biotec) previously pre-washed 

with 500µL of MACS labelling buffer for medium size (MS) columns, or 3 mL for 

large size (LS) columns. Columns were washed thrice with 500µL of MACS buffer for 

MS, or 3 mL for LS columns. The collected effluent contained hematopoietic 

progenitors.  
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2.7 Isolation of splenic stromal cells 

 

 Murine adult or neonatal spleens were dissociated between two sterile 

microscopic slides before filtering through a 70µm cell strainer. The non-suspendable 

stromal fraction was collected in a tube containing 2mL collagenase IV extraction 

buffer [(2% heat inactivated fetal calf serum, 1 mg/mL collagenase IV (Sigma-Aldrich: 

Castle Hill, NSW, Australia) and 40µg/mL DNaseI (Sigma-Aldrich: Castle Hill, NSW, 

Australia) in RPMI] and incubated for 20 minutes at 37oC with rotation.  Two mL 

collagenase D extraction buffer [2% heat inactivated fetal calf serum, 1 mg/mL 

collagenase D (Roche Applied Science: North Ryde, NSW, Australia) and 40µg/mL 

DNaseI in RPMI] was added prior to another 20-minute incubation at 37oC with 

rotation. An additional 2mL of collagenase D extraction buffer was added and the cell 

suspension incubated for a further 20 minutes at 37oC with rotation. The activity of 

collagenase was halted by addition of 60µL of 500mM EDTA to give a final 

concentration of 5mM. Digested spleens were washed twice with 5mL sDMEM (300g, 

4oC, 5 minutes) and viable cell count determined using trypan blue staining as described 

in Section 2.3. The cell pellet was resuspended in 1mL sDMEM for antibody staining, 

flow cytometric analysis and cell sorting. 

 

2.8 Sorted stromal cultures  

   

Stromal cells sorted by flow cytometry were cultured (5% CO2 in air with 95% 

humidity at 37oC) in a 6-well plate containing sDMEM for 28 days or until about 90% 

confluent. Cells were passaged from 6-well plates into a 25cm2 flask and maintained 

until 90% confluency was obtained. Cells underwent a second passage from 25cm2 into 

75cm2 flasks. Cells in the 75cm2 flasks were either analysed for cell surface marker 

expression using flow cytometry, or tested for hematopoietic support capacity in co-

culture assays.   

 

2.9 Stromal co-culture assays 

  

Lin- BM cells were prepared as described in Sections 2.5 and 2.6 and overlaid 

for co-culture above a near-confluent 5G3 stromal layer or sorted stromal cells plated at 

a concentration of 104 cells/mL in 5mL of sDMEM. In some experiments, sorted LT-

HSC (Lin-Sca-1+c-Kit+Flt3-CD150+) and MPP (Lin-Sca-1+c-Kit+Flt3+CD150-) were 
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used as overlaid. Co-cultures were monitored weekly over a period of 4-6 weeks for 

production of hematopoietic cells through microscopy and flow cytometric analysis of 

cells produced.  

  

Several potential inhibitors were tested through addition to co-cultures. Imatinib 

(10µM, 1.0µM and 0.1µM) and Plerixafor (1.0µM, 0.5µM and 0.25µM) (Sapphire 

Bioscience: Waterloo, NSW, Australia) were added directly into stromal co-cultures 

twice weekly for 42 days. The γ-secretase indirect Notch inhibitor DAPT (10µM, 

1.0µM, and 0.1µM) (Sigma-Aldrich: Castle Hill, NSW, Australia) was added into 

stromal co-cultures twice weekly for 28 days. In some experiments, inhibitors were 

added only for the first two weeks and the last two weeks of a 6-week co-culture.  Non-

adherent cells were collected every 7 days by aspiration and replacement of medium. 

Non-adherent cells were sedimented (300g, 4oC, 5 minutes) and resuspended in 

Fluorescence-activated cell sorting (FACS) buffer (1% FSC, 0.1% sodium azide in 

sDMEM) for flow cytometric analysis of cell surface marker expression. 

 

2.10 Flow Cytometry 

 

2.10.1 Antibodies 

 

Antibodies used for cell staining were purchased as affinity purified conjugates 

of either fluorochrome or biotin, along with isotype control antibodies and secondary 

fluoresceinated conjugates. These are listed in Tables 2.1 and 2.2. All antibodies were 

titrated before use on splenocytes or BM cells to determine the concentration required to 

give minimum saturation binding.  

 

2.10.2 Antibody staining of cells 

  

Both multicolour and single colour staining protocols were utilised. For single 

colour staining, 5x105 - 1x106 cells were sedimented into the wells of a 96-well 

polystyrene microtitre plate (Corning: New York, USA) by centrifugation (1300 rpm, 4 

oC, 5 minutes) using an Allegra 6R centrifuge equipped with microtitre plate carriers 

(Beckman Coulter: Gladesville, NSW, Australia). Supernatant was discarded and cells 

resuspended in 25µL anti-CD16/32 (FcBlock) (Biolegend: San Diego, CA, USA) at 

5µg/mL with incubation on ice for 15 minutes. The plate was centrifuged (1300 rpm, 



Table 2.1A List of primary antibody conjugates and isotype controls used in flow 
cytometry   

Specificity Conjugationa Clone of 
origin 

Isotype Final 
Concentration 

(µg/mL) 

Source b 

CD3ε Alexa488 145-2C11 Armenian 
Hamster IgG 

2.5 1 

CD3ε Biotin 145-2C11 Armenian 
Hamster IgG 

1.25 1 

CD3ε Brilliant Violet 
421 

145-2C11 Armenian 
Hamster IgG 

2 1 

CD8α PE 53-6.7 Rat IgG2a, K 0.5 1 
CD11b PE-Cy7 M1/70 RatIgG2b,K 0.2 1 
CD11b Biotin M1/70 RatIgG2b,K 0.5 2 
CD11c APC N418 Hamster IgG 0.8 1 
CD11c Biotin N418 HamsterIgG1, λ 1 2 
CD19 PE 6D5 Rat IgG2a, K 1 1 
CD19 Biotin 6D5 Rat IgG2a, K 0.5 1 
CD29 PE HMβ1-1 Armenian 

Hamster IgG 
2 1 

CD29 Biotin HMβ1-1 Armenian 
Hamster IgG 

2.5 1 

CD31 PE 390 Rat IgG2a, K 0.5 1 
CD31 Alexa488 390 Rat IgG2a, K 2.5 1 
CD31 Biotin 390 Rat IgG2a, K 2.5 1 
CD41 Alexa488 MWReg30 Rat IgG1, K 1.25 1 

CD45.2 Pacific Blue 104 Mouse (SJL) 
IgG2a 

2.5 1 

CD45.2 Biotin 104 Mouse (SJL) 
IgG2a 

2.5 1 

CD48 Alexa488 HM48-1 Armenian 
Hamster IgG 

1.25 1 

CD51 PE RMV-7 Rat IgG1, K 0.5 1 
CD51 Biotin RMV-7 Rat IgG1, K 2.5 1 
CD54 PE YN1/1.7.4 Rat IgG2b, K 0.2 1 

CD105 PE MJ7/18 Rat IgG2a, K 2 1 
CD105 Alexa488 MJ7/18 Rat IgG2a, K 10 1 
CD140a PE APA5 Rat IgG2a, K 2 1 
CD140b APC APA5 Rat IgG2a, K 4 1 
CD146 FITC ME-9F1 Rat IgG2a, K 1.25 1 
CD150 PE TC15-12F12.2 Rat IgG2a, K 1 1 
B220 PE RA3-6B2 Rat IgG2a, K 0.5 1 
c-Kit PE-Cy7 2B8 RatIgG2b, K 1 1 

ER-TR7 FITC sc-73355 Rat IgG2a, K 10 3 
Flt3 APC A2F10 Rat IgG2a, K 2 1 

F4/80 Biotin Cl: A3-1 Rat IgG2b, K 1.25 1 
F4/80 Brilliant Violet 

421 
BM8 Rat IgG2a, K 2 2 

Gr-1 (Ly6G) Biotin RM6-8C5 Rat IgG2b, K 1.25 2 
H-2KK Alexa647 36-7-5 Mouse (A.TL) 

IgG2a, K 
2.5 1 

Ly6G PE IA8 Rat IgG2a, K 1 1 
MAdCAM1 Alexa488 MECA-367 Rat IgG2a, K 5 1 
MHC-I (H-

2Kb) 
Biotin AF6-88.5 Mouse (BALB/c) 

IgG2a, K 
1.25 1 

MHC-I (H-
2Kk) 

Biotin 36-7-5 Mouse IgG2a 1.25 1 

MHC-II (IAb) Alexa488 AF6-120.1 Mouse IgG2a, K 1.25 1 



MHC-II (IAb) Biotin 25-9-17 Mouse IgG2a, K 1.25 1 
NK1.1 Biotin PK136 Mouse IgG2a 0.5 2 

Podoplanin 
(gp38) 

PE 8.1.1 Syrian Hamster 
IgG 

0.5 1 

Podoplannin 
(gp38) 

Alexa488 8.1.1 Syrian Hamster 
IgG 

5 1 

Sca-1 
(Ly6A/E) 

Pacific Blue D7 Rat IgG2a, K 2.5 1 

Sca-1 
(Ly6A/E) 

APC D7 Rat IgG2a, K 1 2 

Ter119 Biotin TER119 Rat IgG2b, K 1 2 
Thy1.2 APC-Cy7 30-H12 Rat IgG2b, K 2 1 
Thy1.2 Biotin 30-H12 Rat IgG2b, K 0.5 1 

VCAM1 Alexa488 429 
(MVCAM.A) 

Rat IgG2a, K 2.5 1 

 

Table 2.1B List of secondary detection conjugates used in flow cytometry 

Specificity Conjugationa Final 
Concentration 

(µg/mL) 

Source b 

Streptavidin APC 0.5 1 
Streptavidin FITC 5 2 
Streptavidin PE-Cy7 1 1 
Streptavidin PE 0.2 1 
Streptavidin Alexa780 0.2 1 
Streptavidin APC-Cy7 0.2 1 

 
a  APC, allophycocyanin; Alexa780, Alexafluor 780; APC-Cy7 allophycocyanin-Cy7; Alexa488, 
Alexafluor 488; FITC, fluorescein isothiocyanate; PE, phycoerythrin; PE-Cy7, phycoerythrin-Cy7  
 
b 1: Biolegend (San Diego,CA,USA), 2: eBioscience (Parkville, VIC, Australia), 3: Santa Cruz 
Biotechnology (Dallas, TX, USA) 
 

 

 

 

 

 

 

 

 

 

 

 



Table 2.2A List of primary antibody conjugates and isotype controls used in 
immunohistochemistry 

Specificity Conjugationa Clone of 
origin 

Isotype Final 
Conc. 

(µg/ml) 

Source b 

CD3ε APC 145-2C11 Armenian 
Hamster IgG 

4 1 

CD3ε Biotin 145-2C11 Armenian 
Hamster IgG 

5 1 

CD11b Biotin M1/70 RatIgG2b,K 5 2 
CD11c Biotin N418 HamsterIgG1, λ 5 1 
CD19 Biotin 6D5 Rat IgG2a, K 5 1 
CD29 PE HMβ1-1 Armenian 

Hamster IgG 
2 1 

CD31 Alexa647 390 Rat IgG2a, K 5 1 
CD41 Alexa488 MWReg30 Rat IgG1, K 1.25 1 

CD45.2 Pacific Blue 104 Mouse (SJL) 
IgG2a 

2.5 1 

CD45.2 Biotin 104 Mouse (SJL) 
IgG2a 

2.5 1 

CD48 Alexa488 HM48-1 Armenian 
Hamster IgG 

5 1 

CD51 PE RMV-7 Rat IgG1, K 2 1 
CD54 PE YN1/1.7.4 Rat IgG2b, K 2 1 

CD105 PE MJ7/18 Rat IgG2a, K 2 1 
CD105 Alexa488 MJ7/18 Rat IgG2a, K 10 1 
CD140a PE APA5 Rat IgG2a, K 2 1 
CD140b APC APA5 Rat IgG2a, K 4 1 
CD146 FITC ME-9F1 Rat IgG2a, K 1.25 1 
CD150 Purified TC15-12F12.2 Rat IgG2a 5 1 
B220 PE RA3-6B2 Rat IgG2a, K 2 1 
c-Kit PE-Cy7 2B8 RatIgG2b, K 1 1 
Flt3 APC A2F10 Rat IgG2a, K 2 1 

F4/80 Alexa488 BM8 Rat IgG2a 5 1 
F4/80 Brilliant 

Violet 421 
BM8 Rat IgG2a, K 2 2 

Gr-1 (Ly6G) Biotin RM6-8C5 Rat IgG2b, K 5 2 
H-2KK Alexa647 36-7-5 Mouse (A.TL) 

IgG2a, K 
5 1 

MAdCAM1 Alexa488 MECA-367 Rat IgG2a, K 5 1 
MHC-II (IAb) Alexa488 AF6-120.1 Mouse IgG2a, K 1.25 1 
MHC-II (IAb) Biotin 25-9-17 Mouse IgG2a, K 5 1 

NK1.1 Biotin PK136 Mouse IgG2a 5 2 
Podoplanin 

(gp38) 
PE 8.1.1 Syrian Hamster 

IgG 
5 1 

Sca-1 (Ly6A/E) APC D7 Rat IgG2a, K 2 2 
Ter119 Biotin TER119 Rat IgG2b, K 5 2 
Thy1.2 Alexa647 30-H12 Rat IgG2b, K 5 1 

VCAM1 Alexa488 429 
(MVCAM.A) 

Rat IgG2a, K 2.5 1 

 

 

 

 



Table 2.2B List of secondary detection conjugates used in immunohistochemistry 

Host  Specificity Conjugationa Final 
Concentration 

(µg/mL) 

Source b 

Goat Anti mouse IgG Alexa594 5 1 
Goat Anti mouse IgG Alexa647 5 1 

- Streptavidin Alexa488 5 1 
 
a  APC, allophycocyanin; Alexa647, Alexafluor647; Alexa780, Alexafluor 780; APC-Cy7 
allophycocyanin-Cy7; Alexa488, Alexafluor 488; FITC, fluorescein isothiocyanate; Alexa594, 
Alexafluor 594; PE, phycoerythrin; PE-Cy7, phycoerythrin-Cy7  
 
b 1: Biolegend (San Diego,CA,USA), 2: eBioscience (Parkville, VIC, Australia) 
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4oC, 5 minutes) and the supernatant discarded. Cells were then resuspended in 25µl of 

diluted primary antibody and incubated on ice for 25 minutes. Cells were washed twice 

with 150µl/106 cells FACS buffer with centrifugation (1300rpm, 4oC, 5 minutes) 

between each wash. Where necessary, 25µL of diluted secondary antibody or conjugate 

was added to each well and cells incubated on ice for 25 minutes. Cells were then 

washed again using the washing procedure described above before resuspension in 50µl 

FACS buffer and transfer to FACS cluster tubes (Corning) for analysis.  

  

For multicolour staining, a similar procedure was adopted, except that the 

primary antibody staining step involved up to five different primary antibodies.  Where 

necessary, propidium iodide (PI: 1µg/mL) was added for dead cell discrimination on the 

flow cytometer. 

 

2.10.3 Flow cytometric analysis of cell surface marker expression  

  

Cells labelled with fluorochrome-labelled antibodies specific for markers of 

interest in single and multicolour staining formats were analysed flow cytometrically 

using an LSRII flow cytometer (Becton Dickinson: Franklin Lakes, New Jersey, USA). 

Voltage parameters and event counts were preset using FACSDIVA software (Becton 

Dickson). For multicolour analysis, compensation was carried out manually using single 

colour controls to prevent fluorescence emission of one fluorochrome leaking into 

another detection channel. Isotype control antibodies were used to determine the 

background binding of each specific antibody used and to set gates for delineation of 

positively stained cells. Live cells were discriminated from dead cells by exclusion of 

propidium iodide (PI). Analysis of data was performed using FACSDiva and Flow Jo 

software (Tristar: Phoenix, Arizona, USA). For each sample, 5x104 - 1x106 cells were 

analysed and data presented as histogram plots or bivariate plots of side scatter (SSC), 

fluorescence or forward scatter (FSC). Both percent positive cells and median 

fluorescence intensity (MFI) were calculated using Flow Jo software (Tristar). Median 

fluorescence intensity shift (MFIS) was calculated as the net change in marker 

expression obtained by subtracting MFI for isotype controls from MFI of the specific 

antibody.  
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2.10.4 Cell sorting 

 

Fluorescence-activated cell sorting was used to sort cell subsets based on marker 

expression. Hematopoietic progenitors were prepared as described in Section 2.6. HSC 

(Lin-Sca-1+c-Kit+Flt3-CD150+) and MPP (Lin-Sca-1+c-Kit+Flt3+CD150-) were sorted in 

accordance with the procedure described by Petvises and O’Neill (2014b). Collagenase 

isolated splenic stromal cells were prepared as described in Section 2.7 and stained with 

antibodies as described in Section 2.10.2. Sorting was performed on a BD FACSAria™ 

II cell sorter (Becton Dickinson).  

 

2.10.5 Detection of apoptotic and necrotic cells  

  

The annexin V-FITC apoptosis detection kit (Sigma-Aldrich) was used to detect 

early apoptotic and necrotic cells. Stromal cells, either as in vitro grown 5G3 or 3B5, or 

ex vivo isolated splenic stroma, were collected as described in Sections 2.3 and 2.7, 

respectively. Cells were washed twice with PBS and sedimented (300g, 4oC, 5 minutes) 

between washes. Supernatant was discarded and cells resuspended in binding buffer 

[10mM HEPES/NaOH, 140mM NaCl, 2.5mM CaCl2] to a concentration of 1x106 

cells/mL. 500µL of the cell suspension was then transferred to an Eppendorf tube. 

Annexin V-FITC (0.5µg/mL) and PI (1µg/mL) were added and incubated in the dark at 

room temperature for 10 minutes before transfer to FACS cluster tubes for flow 

cytometric analysis.  

  

Annexin V and PI staining of cells was detected using the LSRII flow cytometer 

(Becton Dickinson). Annexin V and PI staining was used to detect necrotic cells as PI+ 

annexin V+ cells, early apoptotic cells as PI- annexin V+, and live cells as PI- annexin V-. 

 

2.11 Immunofluorescence microscopy 

  

Whole C57BL/6J adult or neonatal murine spleen was embedded in Tissue-Tek 

OCTTM compound [10.24% polyvinyl alcohol, 4.26% polyethylene glycol, 85.50% non-

reactive ingredient]. Sections of 10µm thickness were then prepared using a Reichert-

Jung 2800 Frigocut cryostat (Reichert-Jung: Depew, New York, USA). Spleen sections 

were then fixed in acetone for 15 minutes at 4oC and air dried for an hour before storage 
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at -80oC. Frozen slides were left to thaw at room temperature before staining for 

immunofluorescence microscopy.  

 

For antibody staining, tissue sections were first blocked with 10% heat 

inactivated fetal calf serum in PBS for 45 minutes at room temperature to prevent non-

specific binding of antibodies. Sections were then stained with fluorochrome-labelled 

primary antibodies specific to antigens of interest for 45 minutes at room temperature. 

Slides were then washed thrice by immersion in three consecutive chambers containing 

PBS for 5 minutes each. Secondary antibodies were used to stain sections where 

necessary (for 45 minutes) and washed again as above. Nuclear DNA was stained with 

4, 6-diamidino-2-phenylindole (DAPI; Sigma-Aldrich) for 5 minutes and washed thrice 

with PBS as above to delineate individual cell nuclei. Stained sections were examined 

using a Leica TCS SP5 Confocal microscope (Leica Microsystems: North Ryde, NSW, 

Australia). 

 

2.12 Graft preparation 

 

Isopore membrane/collagen sponge method: In vitro grown stromal cells were 

harvested by trypsinization and filtered through a 70µm cell strainer to obtain a single 

cell suspension. Cell count and viability were determined using trypan blue exclusion as 

described in Section 2.3. About 1x104 - 1x106 cells per graft were sedimented (300g, 

4oC, 5 minutes) and resuspended in 20µL sDMEM per graft using a P20 pipette tip. The 

opening of the pipette tip was sealed using Parafilm before centrifugation (300g, 4oC, 

10 minutes). The cell pellet formed in the pipette was carefully released on to an isopore 

membrane/collagen sponge construct soaked with 400µL sDMEM. The isopore 

membrane/collagen sponge construct was placed in one well of the 6-well plate. The 

rest of the wells were filled with PBS to keep the graft moist during incubation at 37oC 

(5% CO2 in air with 95% humidity).  

Matrigel method: In vitro grown stromal cells were harvested and filtered as 

described above. Sorted ex vivo or in vitro grown stromal cells were pelleted and 

resuspend in 10-20µL Matrigel (Corning: New York, USA, Matrigel® Matrix, standard 

formulation, 8-12mg/mL protein concentration). Matrigel-cell mix was withdrawn into 

1-10µL. Wiretrol capillary micropipettes (Drummond: Broomall, PA, USA), and 

allowed for gel solidification at room temperature before injection.  
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2.13 Ectopic grafting 

 

 Prior to the grafting procedure, mice were anaesthetized with 3.5% isofluorane 

in oxygen. A small skin incision of 20-25mm was made in the region of the left kidney 

using a pair of scissors and ring tweezers. The left kidney was exteriorized by 

application of pressure on both sides of the abdomen. In order to introduce the cell 

pellet which had been incubated overnight into the kidney subcapsular space, a 2-4mm 

incision was carefully made in the kidney capsule using curved fine forceps. To open 

the kidney subcapsular space between the capsule and the underlying parenchyma, the 

fine tip of the curved fine forceps was carefully slid between the layers. The graft was 

implanted into the space formed under the kidney capsule with a pair of curved fine 

forceps. For introduction of Matrigel into the subcapsular space, a 1-2mm incision was 

carefully made in the kidney capsule, using the tip of curved fine forceps. A Wiretrol 

capillary micropipette containing Matrigel-cell mix was carefully inserted into that 

incision site. Small left-right movements were gently made while inserting the Wiretrol, 

in order to open the kidney subcapsular space. Once within the kidney subcapsular 

space, the content (2-3µL per kidney) of the Wiretrol was slowly released. Care was 

taken to ensure that kidney was kept moist during surgery by wetting with PBS. Upon 

completion, the kidney was returned into the body cavity. Sutures and skin staples were 

used to close the incision wounds.  

 

2.14 Graft analysis  

 

Grafts were carefully dissected out from the renal capsule at either 2 or 4 weeks 

after grafting. The graft was cut into smaller pieces before treatment with collagenase 

tissue were stained with fluorochrome-conjugated antibodies and analysed by flow 

cytometry. This procedure was described in Section 2.10. 

 

2.15 Statistical analysis 

 

Data are presented as mean ± standard error (SE) for sample size n ≥ 2. Where a 

normal distribution could be assumed, the Student’s t-test was used to assess 

significance (p ≤ 0.05) using Prism 5.0 software (GraphPad Software, San Diego, 

California, USA). 



 

	

CHAPTER THREE 

SPLENIC STROMA SUPPORTS IN VITRO 

HEMATOPOIESIS 
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3.1 INTRODUCTION 

 

Mesenchymal stem cells (MSC) in the BM are multipotent stromal cells, first 

characterised in BM as non-hematopoietic cells which adhere to plastic and have 

trilineage differentiation potential to give osteogenic, chondrogenic and adipogenic cells 

(Dominici et al., 2006). In addition, they express the CD105, Thy1.2 and STRO-1 cell 

surface markers and not hematopoietic markers. The MSC population in BM has been 

identified as nestin+ cells in contrast with MSC in association with large blood vessels 

which do not express nestin (Mendez-Ferrer et al., 2010). In addition to the MSC 

population, two other stromal cell subsets have been identified in BM. These include 

CAR cells (Omatsu et al., 2010; Sugiyama et al., 2006), and LepR+ stromal cells, which 

are also described as perivascular reticular cells (Ding et al., 2012). These have now 

been detected in both humans and mice (Corselli et al., 2013; Ding et al., 2012; 

Sugiyama et al., 2006). 

 

 Multiple molecular interactions occur between HSC and the stromal niche 

environment in BM, many of which are essential triggers for hematopoiesis. Knowledge 

of these molecular interactions is still incomplete, although some receptor-ligand 

signalling events have been defined. These include SCF/c-KIT, CXCL12/CXCR4, and 

Notch signalling (Corselli et al., 2013; Ding et al., 2012; Ogawa et al., 1991; Leary et al., 

1992). Both SCF and CXCL12 are produced by perivascular reticular cells in BM and 

are important for HSC maintenance (Ding et al., 2012; Sugiyama et al., 2006). The role 

of Notch in hematopoiesis is inconclusive, although in one study, inhibition of Notch in 

co-cultures of CD146+ perivascular cells and human HSC resulted in decreased 

numbers of HSC and increased B cell development, suggesting a role for Notch in 

maintaining HSC, so preventing their differentiation (Corselli et al., 2013). The 

mechanism of Notch signalling involves the binding of Notch receptors (NOTCH1-4 in 

mammals) to their ligands, DELTA (DLL1, DLL3 and DLL4) and JAGGED (JAG1 and 

JAG2) (Pajcini et al., 2011). Two successive ligand-induced proteolytic events occur as 

a result of ligand-receptor binding (Pajcini et al., 2011). Firstly, the extracellular domain 

of the Notch receptor is cleaved by ADAM10, a metalloprotease. Secondly, the 

transmembrane domain is then cleaved by γ-secretase, releasing the Notch intracellular 

domain which then translocates into the nucleus to activate specific genes (Pajcini et al., 

2011).  
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This laboratory previously reported a murine splenic stromal cell line 5G3 which 

supports in vitro hematopoiesis (Periasamy et al., 2009). Similar stromal cell lines have 

also been isolated from humans (Petvises et al, in preparation). The 5G3 clonal line was 

shown to support production of ‘L-DC’ in vitro in the absence of added growth factors 

and cytokines (Periasamy et al., 2009). Another splenic stromal cell line, named 3B5, is 

a non-supporter of in vitro hematopoiesis. Recent results from O’Neill Lab 

(unpublished) indicate that 5G3 and 3B5 splenic stroma do not resemble endothelial 

cells or fibroblastic cells in terms of gene expression, but do have a mesenchymal 

stem/progenitor phenotype since cells can undergo osteogenesis under mineralization 

conditions (O’Neill, unpublished data). These cell lines were therefore investigated 

further for marker expression to determine their lineage origin. Flow cytometry and 

specific antibody staining has been used to investigate cell surface marker expression on 

5G3 and 3B5 stroma. Cell surface phenotype can be informative for interpretation of 

lineage origin, and for phenotypic comparison with other described stromal cells 

populations.  

  

 This chapter also investigates the hematopoietic support capacity of the splenic 

stromal line 5G3 in terms of signals which control hematopoiesis, in particular the 

production of myeloid cells including L-DC as well as progenitor cells. The identity of 

5G3 and 3B5 as perivascular reticular cells in BM is confirmed, and stromal 

interactions with HSC involving c-Kit and Notch, but not CXCR4 are shown to be 

important in regulating in vitro hematopoiesis.  
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3.2 RESULTS 

 

3.2.1 Phenotypic characterisation of splenic stromal lines 

  

Frozen stocks of 5G3 and 3B5 stroma were used to establish stromal cultures. 

Cells were passaged twice before harvesting at near confluence by trypinisation. 

Harvested cells were then incubated with propidium iodide (PI) and Annexin V to 

differentiate necrotic, early apoptotic and viable cells as shown by the gating protocol in 

Figure 3.1C. In order to characterise the lineage origin of 5G3 and 3B5 stroma, 

harvested cells were stained with fluorochrome-conjugated antibodies specific for cell 

surface markers of MSC, CAR cells, endothelial cells and cells of hematopoietic lineage. 

Antibody-labelled cells were analysed flow cytometrically to determine median 

fluorescence intensity (MFI) as shift in fluorescence intensity above background for 

each marker. A profile of cell surface marker expression for 5G3 and 3B5 stroma was 

generated estimating MFI of marker expression for multiple stainings (Table 3.1).  

  

 Both 5G3 and 3B5 stroma were shown to have a close phenotypic resemblance 

with mesenchymal stem/progenitor cells and CAR cells (Table 3.1). Both stroma 

expressed CD105, CD29, Sca-1 and Thy1 in common with MSC. They also expressed 

VCAM1, CD51 and CD140a, which are markers of perivascular reticular cells. They 

also stained for gp38, which is a known marker of fibroblastic reticular cells and 

lymphatic endothelial cells. Significantly higher expression of VCAM1, CD140a, Sca-1 

and Thy1.2 was seen for 5G3 over 3B5 (Table 3.1). 5G3 and 3B5 expressed no markers 

of hematopoietic cells including CD11b (myeloid cells) (Springer et al., 1979), CD11c 

(dendritic cells), F4/80 (red pulp macrophages) (Austyn and Gordon, 1981), Ly6G 

(neutrophils) (Fleming et al., 1993), B220 (B cells) (Gerberick et al., 2002), CD48 

(lymphoid cells) (McArdel et al., 2016), CD150 (HSC), MHC II (antigen presenting 

cells) (Harding and Unanue, 1990), CD45.2 (all hematopoietic cells) (Cupedo et al., 

2004) and CD3 (T cells) (Clevers et al., 1988). These markers were all shown to be 

expressed by subsets of spleen cells used as controls (data not shown). 5G3 and 3B5 do 

not reflect endothelial cells in that do not express CD31 or CD54. 

 

 

 

 



Table 3.1 Summary of cell surface makers and their localisation on different cell types 
 
Cell surface marker Cell specificity* MFI** MFI** 
Marker name 
 

 5G3 3B5 

Mesenchymal stem cells  
CD105 MSC, MRC, RPF (Oh and Kwon  

2010) 
493 ± 80.9  464 ± 140  

CD29 MSC, FRC, RPF (Mueller and 
Germain  2009; Oh and Kwon  
2010)  

2070 ± 243  2520 ± 450  

Sca-1† MSC, CAR cells (Oh and Kwon  
2010; Nagasawa et al.  2011) 

3160 ± 579  279 ± 83.3  

Thy1.2† MSC, fibroblastic cells, T cells  
(Garg et al.  2013; Nagasawa et al.  
2011; Dominici et al.  2006; 
Spangrude et al.  1988) 

6730 ± 457  2640 ± 446  

CXCL12-Abundant Reticular cells  
CD51 CAR cells (Nagasawa et al.  2011) 294 ± 51.0  299 ± 94.5  
VCAM1† MSC, FRC, CAR cells, MRC (Oh 

and Kwon  2010; Mueller and 
Germain  2009; Nagasawa et al.  
2011) 

448 ± 47.3  179 ± 29.5   

CD140a† CAR cells, FRC, RPF (Mueller and 
Germain  2009; Nagasawa et al.  
2011) 

403 ± 160 123 ± 48.9 

  



Endothelial cells 
CD54 FRC, MRC, LEC, RPF (Mueller 

and Germain  2009) 
9 7 

CD31 LEC (Mueller and Germain  2009) 13 13 
gp38† FRC, LEC (Mueller and Germain  

2009) 
6720 ± 839 4110± 814 

Lineage-specific Haematopoietic markers 
CD3 T cells (Clevers et al.  1988)  0 0 
B220 B cells (Gerberick et al.  2002) 2 4 
CD150 Hematopoietic stem cells (Kiel et 

al.  2005) 
2 0 

CD48 All hematopoietic cells except 
Neutrophils (McArdel et al.  2016) 

6 1 

CD11b Myeloid cells (Springer et al.  
1979) 

1 0 

MHC II Antigen presenting cells, B cells, 
Thymic epithelial cells  

71 28 

F4/80 Macrophages (Austyn and Gordon  
1981)  

0 1 

CD11c Dendritic cells (Sadhu et al.  2007) 0 2 
Ly6G Neutrophils (Fleming et al.  1993)  5 6 
CD45.2 Hematopoietic cells (Cupedo et al.  

2004) 
36 36 

                      
† These markers were expressed at significantly higher levels in 5G3 over 3B5  
*MSC, mesenchymal stem cells; CAR, CXCL-12 abundant reticular cells; FRC, fibroblastic reticular cells; MRC, marginal reticular cells; 
LEC, lymphatic endothelial cells; RPF, red-pulp fibroblasts.  
** Median fluorescent intensity was found by subtracting median fluorescence intensity (MFI) for control antibodies from that of specific 
antibodies. Data are shown as mean ± SE, n=4 in all cases except for CD140a where n=3. 
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3.2.2 5G3 stroma supports myeloid cell production 

 

The hematopoietic support capacity of 5G3 stroma was demonstrated by overlay 

of lineage depleted BM cells on to near-confluent stroma and co-culture over time 

(Figure 3.1A). This process was described originally by Periasamy et al. (2009). Non-

adherent cells were collected from the supernatant of co-cultures and stained with 

fluorochrome-conjugated antibodies specific for CD11b, CD11c, MHC-II and F4/80 for 

flow cytometric analysis and identification of myeloid cell types produced. On the basis 

of cell surface marker staining, L-DC were gated as CD11bhiCD11cloF4/80+MHC-II- 

cells, progenitors as CD11b-CD11c-F4/80-MHC-II-, cDC-like cells as 

CD11b+CD11c+F4/80-MHC-II+ cells and immature myeloid cells as CD11b+CD11c-

F4/80-MHC-II- (Figure 3.1A).  A diagrammatic representation of cells produced in 

stromal co-cultures overlaid with Lin- BM is shown in Figure 3.1B.    

 

After 14 days, L-DC reflected 61.3% of cells, with cDC-like cells (13.2%) and 

myeloid cells (12.3%) as minor populations. A distinct population of L-DC was evident 

by 21 days, representing 92.6% of cells, with minor populations of myeloid cells (4.2%) 

and progenitors (10.4%) (Figure 3.1A). cDC-like cells and myeloid cells are produced 

only transiently from precursors present in Lin- BM (Periasamy et al., 2009).  

 

3.2.3 Role of 5G3 in signalling hematopoiesis 

 

3.2.3.1 Imatinib, but not Plerixafor, inhibits CD11bhi production  

 

 Previously, gene profiling using Affymetrix genechips (this laboratory) revealed 

expression of Scf and Cxcl12 genes by 5G3 stroma, which was also confirmed by qPCR 

(Periasamy and O’Neill, unpublished data). These genes encode the soluble factors SCF 

and CXCL12, known to be expressed by perivascular cells in BM, which are directly 

involved in the maintenance of HSC (Ding et al., 2012; Sugiyama et al., 2006). In order 

to investigate a possible role for SCF and CXCL12 in myeloid cell production in 

stromal co-cultures, Imatinib, a selective tyrosine kinase inhibitor of the c-Kit receptor 

for SCF and Plerixafor, an antagonist inhibitor of the CXCR4 receptor for CXCL12 

were titrated into co-cultures established with Lin- BM cells. Inhibitors were replenished 

bi-weekly over 42 days as described in Section 2.9. Non-adherent cells were collected 

from cultures every 7 days, stained for CD11b, CD11c, MHC-II and F4/80, and 



Figure 3.1 Characterisation of cells produced in stromal co-cultures. (A) Co-cultures were established by overlay of lineage depleted bone marrow 

cells over confluent 5G3 stroma. Production of non-adherent cells was evident at 14 and 21 day above a monolayer. Non-adherent cells were collected 

from the supernatant of co-cultures and stained with fluorochrome-conjugated antibodies specific for CD11b, CD11c, MHC-II and F4/80. Stained cells 

were analysed flow-cytometrically to delineate the subset type of cells produced. Propidium iodide (PI; 1µg/mL) was added to discriminate live (PI-) 

from dead cells and large cells were gated using forward scatter (FSC) versus side scatter (SSC) analysis (not shown). Stained cells were analysed 

flow-cytometrically to delineate cell types produced. On the basis of cell surface marker staining, L-DC were gated as CD11b+CD11c+F4/80+MHC-II- 

cells, progenitors as CD11b-CD11c-F4/80-MHC-II- cells, cDC-like cells as CD11b+CD11c+F4/80-MHC-II-+ and myeloid cells as CD11b+CD11c-F4/80-

MHC-II- cells. A Co-culture representative of one experiment is shown. (B) Diagrammatic representation of cell types produced in stromal co-cultures 

comprising Lin- bone marrow overlaid on 5G3 stroma. (C) 5G3 and 3B5 stromal cells were harvested by trypinisation at near confluence, stained with 

Annexin V and PI to distinguish cells based on viability. Based on the uptake of Annexin V and PI, live cells were gated as Annexin V-PI- (Q4), 

apoptotic cells as Annexin V+PI (Q1)-, and necrotic cells as Annexin V+/-PI+ (Q2 & Q3), respectively. Gated cells were then plotted as overlays of cell 

populations distributed on a side scatter (SSC) plot versus forward scatter (FSC). This distribution allows the live population of 5G3 and 3B5 to be 

gated on FSC and SSC parameters in all future experiments.  
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analysed using flow-cytometry to delineate CD11c+CD11bhi cells. In some co-cultures, 

an exclusion period between 14 to 28 days after co-culture establishment was included 

to determine if cell production would resume after a period of inhibition, questioning 

whether progenitors were still maintained and able to differentiate. 

 

 Flow cytometric analysis of cells produced in co-cultures treated with Plerixafor 

gave continuous cell production in all treated co-cultures compared with control co-

cultures across a wide concentration range (1.0µM, 0.5µM and 0.25µM). Reduction in 

cell production was minor, and the effect of Plerixafor was not distinctive or significant. 

The removal of drug after 14 days of co-culture had no noticeable effect on cell 

production. This suggested that CXCL12 binding to CXCR4 was not essential for 

myelopoiesis in stromal co-cultures. In contrast, addition of Imatinib at concentrations 

of 10µM and 0.1µM, noticeably reduced the production of cells in stromal co-cultures. 

By 14 days, cultures treated with 10µM Imatinib showed cell production at 10-20% of 

control levels (Figure 3.2). This suggests that Imatinib acts to slow cell development, at 

the level of progenitors, perhaps inhibiting self-renewal, maintenance or survival. This 

effect was not reversed through a period of drug withdrawal. However, drug effects 

were biphasic, such that a concentration of 1.0µM had no overall effect on production 

of CD11c+CD11bhi cells, while treatment with 0.1µM gave a partial effect (Figure 3.2). 

Such a concentration effect suggests that more than one cell type may be a target for the 

drug. When 1.0µM Imatinib treatment was suspended across 14-28 days of treatment, 

an increase in CD11c+CD11bhi cell production was seen compared with cultures where 

drug treatment was continued. One explanation for this could be that c-Kit is not only 

expressed by progenitors but also by downstream progeny eg. dendritic cell precursors. 

The effect of blocking c-Kit on downstream cells could alter their development, perhaps 

by making them more responsive to other differentiation factors produced by 5G3, for 

example macrophage colony stimulating factor (M-CSF) (Periasamy, unpublished data), 

which could induce proliferation of myeloid precursors. One would then argue that the 

inhibition seen at 0.1µM is due to a partial effect on progenitors or precursors and 

perhaps no secondary effect on downstream progeny cells as proposed above.  

 

 

 

 



Figure 3.2 Imatinib is an effective inhibitor of in vitro hematopoiesis. Co-cultures of Lin- bone marrow overlaid on 5G3 stroma were established for 

42 days. Imatinib, an inhibitor of c-Kit, and Plerixafor which blocks CXCR4 binding CXCL12, were added from Day 0 at several concentrations to 

assess their effects on cell production. Inhibitors were replaced twice weekly at medium change. Non-adherent cells were collected every 7 days from 

14 days of co-culture, stained with fluorochrome-conjugated antibodies specific for CD11b, CD11c, MHC II and CD8α, and cells analysed flow 

cytometrically. Stained cells were incubated with propidium iodide (PI) (1 µg/ml) for gating live (PI-) cells and, large live cells (FSChi) were gated on 

the basis of a side scatter (SSC) and forward scatter (FSC) data (not shown). Isotype control antibodies were used to set gates. %CD11c+CD11bhi cells 

amongst the total live cell population was calculated for: (A) Imatinib treatment at 10.0µM, 1.0µM and 0.1µM, with an exclusion period across 14 to 

28 days when inhibitors were not replenished (shaded area); (B) Continuous Imatinib treatment at 10.0µM, 1.0µM and 0.1µM; (C) Plerixafor treatment 

at 1.0µM, 0.5µM and 0.25µM with an exclusion period across 14 to 28 days when inhibitors were not replenished (shaded area); (D) Continuous 

Plerixafor treatment at 1.0µM, 0.5µM and 0.25µM. Cells did not stain for MHC-II or CD8α (data not shown). Control cultures contained no added 

inhibitors.
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3.2.3.2 Effect of the Notch inhibitor, DAPT, on cell production in stromal co-

cultures 

 

 Previous experiments from this laboratory showed that hematopoiesis in 5G3 

co-cultures is stroma contact-dependent, although the controlling receptor-ligand 

interactions have not been identified (Periasamy et al., 2013a). Previously, the Notch 

and Wnt pathways have been identified as important in the maintenance of HSC 

(Benveniste et al., 2014; Corselli et al., 2013; Duncan et al., 2005). Recently, Corselli et 

al. (2013) used DAPT at a concentration of 10.0!M to investigate the role of Notch 

activation in the maintenance of HSC by CD146+ perivascular reticular cells. The role 

of Notch signalling in in vitro hematopoiesis was therefore investigated here, using the 

same loss-of-function approach. The γ-secretase indirect Notch inhibitor, DAPT, was 

used to abolish Notch signalling and to assess the effect on cell production in 5G3 co-

cultures.  

 

 DAPT was added into co-cultures of lineage-depleted BM cells over 5G3 stroma 

with bi-weekly addition for 28 days. To ascertain the optimum concentration of DAPT, 

co-culture assays were compared with addition of 0.1!M, 1.0!M and 10.0!M of DAPT. 

Non-adherent cells were harvested every 7 days and analysed flow-cytometrically to 

assess cell production and effectiveness of inhibition. L-DC were gated as 

CD11b+CD11c+F4/80+MHC-II- cells, progenitors as CD11b-CD11c-F4/80-MHC-II-, 

cDC-like cells as CD11c+F4/80-MHC-II-+ and immature myeloid cells as 

CD11b+CD11c+F4/80-MHC-II-.  

 

 The number of L-DC and progenitor cells produced was consistently higher in 

co-cultures treated with DAPT at 10.0!M. At this concentration, addition of DAPT 

noticeably enhanced the production of L-DC and progenitors. Production of L-DC 

peaked at day 14 and progenitor numbers peaked at day 21 (Figure 3.3A). The number 

of cDC-like cells progressively decreased to near zero by day 14. The myeloid cell 

population decreased to near zero levels by 14 days with a late increase by 28 days. 

Notch may be an important regulator of HSC quiescence, so that inhibition leads to both 

increased self-renewal of HSC and their direct differentiation to give L-DC as shown by 

Petvises and O’Neill (2014b). Notch would not seem to have any effect on precursors of 

myeloid or cDC-like cells. Conclusions based on changes in absolute cell number were 

also supported by proportional changes in cell type (Figure 3.3B) 



	
Figure 3.3 Effect of Notch inhibitors on in vitro hematopoiesis  

Lin- bone marrow was co-cultured over 5G3 stroma for a period of 28 days. DAPT, a γ-secretase (Notch) inhibitor, was added twice weekly to cultures 

at medium change using concentrations of 10.0!M, 1.0!M and 0.1!M. Controls were given DMSO diluent only (0.0!M DAPT) or nothing (NIL). 

Non-adherent cells were collected every 7 days and stained with fluorochrome-conjugated antibodies specific for CD11b, CD11c, MHC-II and F4/80. 

Prior to flow cytometry, cells were incubated with propidium iodide (PI) (1!g/ml) for gating live (PI-) cells, and large live cells (FSChi) were then 

gated on side scatter (SSC) versus forward scatter (FSC) (data not shown). Fluorescence minus one controls were used to set gates. (A) The production 

of L-DC (CD11bhiCD11cloMHC-II-F4/80+), progenitors (CD11b-CD11c-MHC-II-F4/80-), myeloid cells (CD11b+CD11c-MHC-II-F4/80-) and cDC-like 

cells (CD11b+CD11c+MHC-II+F4/80-) was calculated over a period of 28 days. (B) The proportional representation of L-DC, progenitors, myeloid 

cells and cDC-like cells amongst non-adherent cells collected from co-cultures was also calculated.  

 

 







CHAPTER 3 

	 33	

3.2.3.3 Notch signalling is required for in vitro maintenance of HSC and MPP 

 

 Lineage-depleted BM contains low numbers of HSC and MPP which are known 

progenitors of L-DC (Petvises and O’Neill, 2014). As a further test that Notch 

signalling drives hematopoiesis in co-cultures, purified HSC or MPP were used to 

establish co-cultures. Purified HSC and MPP were sorted from BM and used to prepare 

co-cultures for DAPT inhibition. As previously, DAPT was added into co-cultures bi-

weekly for 21 days and non-adherent cells harvested from cultures every 7 days. 

Control cultures contained either no inhibitors, or DMSO diluent alone. Flow-cytometry 

was used to assess the effectiveness of inhibition. Co-cultures established with HSC and 

MPP produce only L-DC and progenitors (Petvises and O'Neill, 2014b). L-DC were 

gated as CD11b+CD11c+F4/80+MHC-II- cells and progenitors as CD11b-CD11c-F4/80-

MHC-II- cells respectively. 

 

 Flow cytometric analysis revealed significantly higher production of L-DC in 

MPP co-cultures supplemented with 10.0!M DAPT compared with control co-cultures, 

DAPT inhibition of Notch leads to increased differentiation of MPP to give L-DC 

(Figure 3.4). This is in agreement with an explanation for enhanced differentiation of 

progenitors as a result of inhibition of Notch signalling. Notch, along with Wnt 

signalling is necessary to maintain HSC and MPP in an undifferentiated state (Duncan 

et al., 2005). An increase in L-DC and progenitor production was also noted in HSC co-

cultures, although this increase was not statistically significant. The observed increase 

in L-DC production in MPP co-cultures suggests that Notch signalling is required for 

maintenance of MPP. However, differentiation in MPP following Notch inhibition 

results in only L-DC production with no increase in progenitors.  

 

 

 

 

 

 

 

 

 

 



	

Figure 3.4 The specific effect of Notch inhibition on hematopoiesis in vitro 

LT-HSC (Lin-Sca-1+c-Kit+Flt3-CD150+) and MPP (Lin-Sca-1+c-Kit+Flt3+CD150-) were 

sorted from murine bone marrow and co-cultured above 5G3 stroma for a period of 21 

days. Co-cultures were supplemented twice weekly with DAPT a γ-secretase inhibitor 

and also an indirect inhibitor of Notch (10µM) in DMSO diluent, DMSO diluent alone, 

or nothing (NIL). Non-adherent cells were collected after 21 days and stained with 

fluorochrome-conjugated antibodies specific for CD11b, CD11c, MHC-II and F4/80 to 

delineate subsets produced. Prior to flow cytometry, cells were incubated with 

propidium iodide (PI) (1!g/ml) for gating live (PI) cells. Large cells (FSChi) were gated 

on a side scatter (SSC) versus forward scatter (FSC) plot (data not shown). 

Fluorescence minus one (FMO) controls were used to set gates. Significant differences 

(p ≤ 0.05) in cell production in DAPT treated co-cultures (10µM) compared with 

diluent controls is shown by *. (A) The proportional representation of L-DC 

(CD11bhiCD11cloMHC-II-F4/80+) and progenitors (CD11b-CD11c-MHC-II-F4/80-) was 

calculated. (B) The absolute number of L-DC (CD11bhiCD11cloMHC-II-F4/80+) and 

progenitors (CD11b-CD11c-MHC-II-F4/80-) was calculated. Data reflect mean ± SE of 

replicate experiments prepared from three separate cell sorts.   
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3.2.4 DISCUSSION 

 

 Previously, this laboratory uncovered a splenic stromal cell line derived from a 

long-term neonatal splenic culture, named 5G3, which supports in vitro hematopoiesis 

(Periasamy et al., 2009). Transcriptome analysis of 5G3 has revealed expression of 

many genes specific to perivascular reticular cells in BM (data in preparation), raising 

the possibility of a unique perivascular niche in spleen which supports extramedullary 

hematopoiesis. Current understanding of extramedullary hematopoiesis in spleen is 

incomplete and this extends to both characterisation of stromal cell niches which 

support hematopoiesis, and the nature and number of hematopoietic stem/progenitor 

cells which colonise these niches. 

  

 The work presented in this chapter investigates 5G3 and 3B5 as stromal line 

models for HSC niches in spleen. It provides clear evidence of the lineage origin of 5G3 

and 3B5 stromal cell lines through immunophenotyping. These stromal cell lines clearly 

express mesenchymal cell markers like CD105, Thy1.2 and CD140a, and lack 

expression of lineage-specific hematopoietic and endothelial markers. The phenotype of 

5G3 and 3B5 closely matches that of CAR cells and MSC (Sugiyama et al., 2006), 

suggesting a common mesenchymal lineage. Consistent with this result is unpublished 

evidence from the O’Neill lab describing the osteogenic potential of 5G3 stromal cells, 

following culture under mineralisation conditions, and revealed by Alizarin Red S 

staining of cells. This was also confirmed by measuring alkaline phosphatase 

production and expression of genes related to osteogenesis (unpublished data). In 

addition, 5G3 stroma shares many markers commonly expressed by other splenic 

stromal cell types. These include CD29, VCAM1 and CD140a, which are found on the 

surface of fibroblastic reticular cells, marginal reticular cells and red pulp fibroblasts 

(Mueller and Germain, 2009). This redundancy could be due to the sharing of a 

common ancestry with several spleen stromal cell types. 

 

 It is worth noting that while the phenotype of cultured cells might differ from 

that of their in vivo counterparts, the phenotype as a whole, and taken in context, 

provides important information. However, caution has to be applied in extrapolating 

information obtained with in vitro grown cells into the in vivo cell counterpart. As 

commonly noted in the literature, cell subsets that are not defined by a unique marker 

are often characterised by a combination of less specific markers (Wetzig et al., 2013; 
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Lindner et al., 2010). Therefore, the phenotypic characterisation of 5G3 stroma provides 

a good reference for further characterisation of an equivalent stromal cell population in 

spleen which supports hematopoiesis. 

 

Restricted in vitro hematopoiesis was demonstrated in this study using a co-

culture system involving 5G3 stroma. It was shown that dendritic-like cells, termed ‘L-

DC’, were produced as early as day 14 after co-cultures were established from 

progenitors in the lineage-depleted BM population. L-DC are large cells found to be 

highly endocytic with the ability to activate CD8+ T cells, but not CD4+ T cells, through 

cross presentation of antigen (Periasamy et al., 2013a; Tan et al., 2011). The functional 

capacity of 5G3 in supporting restricted in vitro hematopoiesis is consistent with 

previously published evidence. In particular, Periasamy et al. (2013) reported that the in 

vitro hematopoiesis support mediated by 5G3 stroma is cell contact-dependent, although 

the exact molecular mechanism has not been elucidated (Periasamy et al., 2013a). In an 

attempt to have a clearer understanding of the molecular interactions involved, 

inhibition assays were attempted here. Previously, it was found that in vitro production 

of L-DC was dependent on FMS-like tyrosine kinase-3 (Flt3) but independent of 

macrophage colony-stimulating factor receptor (M-CSFR) signalling (Petvises and 

O'Neill, 2014b). Here an important role for SCF and Notch signalling but not CXCL12 

is defined. 

 

SCF and CXCL12 are highly expressed by 5G3 stroma, so the importance of 

these signalling molecules was investigated. Inhibitors Imatinib and Plerixafor were 

used to disrupt the receptor-ligand interactions occurring in stromal co-cultures. 

Specifically, Imatinib blocks SCF/c-KIT interaction by binding to the c-KIT receptor, 

and Plerixafor interacts with the CXCR4 receptor to disrupt the CXCL12/CXCR4 

interaction. Disruption of the SCF/c-KIT interaction, but not the CXCL12/CXCR4 

interaction, resulted in decreased in vitro cell production, suggesting a role of SCF in 

co-cultures in vitro. Indeed, the effect of Imatinib mirrors the in vitro inhibitory effect 

reported previously for CD34+ stem/progenitor cells, where Imatinib caused a 

significant reduction in production of CD34+ cells (Bartolovic et al., 2004). The 

biphasic concentration effect noted in our study is thought to relate to a possible 

counter-inhibitory effect on more mature precursors as well as on progenitors. Proof of 

this theory, however, will require further experimental investigation.  
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Notch signalling was also considered to be a potential regulatory mechanism 

controlling in vitro hematopoiesis. The distinct enhancing effect of the γ-secretase 

Notch inhibitor, DAPT, was noted for cell production in co-cultures overlaid with 

lineage-depleted BM cells, suggesting that Notch signalling could be an important 

regulator of HSC quiescence. While no significant effect was found in co-cultures 

overlaid with HSC, this study showed a distinctive enhancing effect on cell production 

in co-cultures overlaid with MPP. This could suggest that Notch signalling may be 

required for maintenance of MPP rather than HSC. This phenomenon has also been 

reported by other groups (Corselli et al., 2013; Varnum-Finney et al., 2011). In a study 

using a gain-of-function approach, it was reported that the addition of Notch ligand 

inhibited myeloid cell differentiation (Varnum-Finney et al., 2011). One explanation for 

the lack of significant effect on HSC co-cultures could be due to signalling redundancy 

in in vitro system, such that 5G3 stroma provides an array of signalling molecules, 

which HSC can respond to. In contrast, MPP may have a more restricted signalling 

repertoire and be largely dependent on Notch signalling for maintenance. Therefore, 

blocking Notch signalling could have a profound effect on L-DC production.  

 

This chapter has investigated the first stromal co-culture using the well 

characterised 5G3 stromal cell line which demonstrates restricted hematopoiesis in vitro. 

Earlier studies from this laboratory characterised this system as an in vitro system 

supporting dendritic cell development. Indeed, with recent identification of the 

dendritic-like ‘L-DC’ in vivo (Hey et al., 2015), the co-culture system is now thought to 

reflect a normal spleen microenvironment that physiologically mimics the splenic 

environment in vivo. Here, we have extended the application of this splenic stromal co-

culture system to investigate molecular signals driving hematopoiesis in vitro. These 

show results reflective of similar HSC niches described in BM. Future work could entail 

assessment of other factors to enhance understanding of hematopoiesis in vitro. In 

addition, 5G3 stroma represents a valuable cell line, which should allow further 

characterisation of splenic stromal niches for hematopoiesis.  
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4.1 INTRODUCTION 

  

 Stroma is a supporting cellular network comprising non-hematopoietic cells of 

mesenchymal lineage. It forms the basement layer in tissue and contributes to organ 

architecture. Previously, stromal cells were thought to play only a supporting role in the 

three-dimensional structure of an organ (Roozendaal and Mebius, 2011). In the case of 

spleen, they organise tissue into different regions including red pulp, white pulp and 

marginal zone. However, in recent years, stromal cells have been found essential in 

supporting organ function (Roozendaal and Mebius, 2011; Mueller and Germain, 2009). 

For instance, splenic fibroblastic reticular cells assist in regulating immune responses 

through secretion of chemokines like CCL19 and CCL21 (Luther et al., 2000). To date, 

several distinct stromal subsets have been clearly described in spleen, including gp38+ 

fibroblastic reticular cells, MadCAM1+ marginal reticular cells, CD35+ follicular 

dendritic cells, CD105+ red pulp fibroblasts and CD31+ vascular endothelial cells (den 

Haan et al., 2012; Mueller and Germain, 2009).  

 

 While extensive studies have been carried out to investigate the function of 

splenic stroma in immune regulation (Malhotra et al., 2013), there have been limited 

studies addressing hematopoietic support capacity. This could be a reflection of the 

perception that extramedullary hematopoiesis in spleen is only associated with stress or 

disease, and that spleen does not apparently support steady-state hematopoiesis (Johns 

and Christopher, 2012; Kim, 2010). While a role for spleen in hematopoiesis has been 

clearly defined in mice, but is less clear for humans, a role for spleen in hematopoiesis 

offers tremendous clinical potential. The substantial knowledge of BM hematopoiesis 

can be easily redirected to the study of hematopoiesis in spleen. One of the challenges 

facing the identification of splenic stroma is the lack of specific cell surface markers. 

The classification of many splenic stromal subsets has been extrapolated from the 

phenotype of cells found in lymph nodes. There is therefore a need to perform an in-

depth analysis of splenic stroma, and to identify specific markers for spleen. 

 

 Using phenotypic information on 5G3 described in Chapter 3, stromal cells in 

spleen have been analysed in order to identify the in vivo equivalent stromal cell subset 

through phenotype analysis, cell fractionation, cell growth and testing of hematopoietic 

support capacity in vitro. This study identifies markers that define stromal subsets 

which grow in vitro and form stromal monolayers resembling 5G3 in phenotype. It also 



CHAPTER 4 

	 38	

identifies those stromal subsets which support hematopoiesis, and represent candidate 

niche elements in spleen. Identification of these cells in spleen will lead to studies to 

localise stromal cells within splenic compartments, and to question which stromal cell 

types reside in close proximity to HSC, myeloid cells or other hematopoietic cells, thus 

reflecting the presence of niches for hematopoiesis in steady-state spleen. 
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4.2  RESULTS 

 

4.2.1  Optimisation of procedures to isolate splenic stromal cells 

  

 Splenic stromal cells were isolated, using methodology dependent on 

collagenase, and developed and tested by Dr Jonathan Tan (Bond University). 

Collagenase treatment is generally harsh on cells leading to cell death. If treatment kills 

cells selectively, then isolated splenic stroma may poorly represent the in vivo stromal 

cell population. In order to counteract this problem, the incubation time for collagenase 

treatment was optimised for highest cell recovery.  

 

 Adult and neonatal murine spleens were prepared by mashing tissue between 

two microscopic slides and then filtering the cell suspension through a cell strainer to 

remove most hematopoietic cells and red blood cells. The isolated stromal tissue lump 

was then incubated with collagenase for 60 min, during which time live cell counting 

was performed at 20 min intervals using trypan blue exclusion to detect live cells. The 

optimum incubation time was found to be 40 minutes for adult spleen and at least 60 

minutes for neonatal spleen (Figure 4.1). The maximum number of viable cells 

recovered from collagenase treated stroma isolated from one adult murine spleen was 

(2.09±0.22)x107 cells after 40 minutes incubation (Figure 4.1). For 10 neonatal spleens, 

this number was (1.89±0.49)x107 cells.  

 

4.2.2  Composition of splenic stroma 

  

 In order to investigate the cellular composition of splenic stroma, dissociated 

stromal cells were fractionated using flow cytometry on the basis of cell surface 

markers to enrich or deplete cells expressing a particular marker(s). The initial choice of 

cell surface markers was based on the phenotype of the control 5G3 stromal cell line, as 

well as the phenotype of mesenchymal lineage cells (Chapter 3). A high proportion of 

splenic stromal cells (90.35±4.05%) analysed by flow cytometry was found to express 

CD29, also known as integrin beta-1 (Table 4.1). CD29 is a widely expressed integrin 

on splenic stroma and this marker was considered important in further stromal cell 

characterisation. In contrast, markers like Sca-1, CD31, gp38, CD140a, CD51, ER-TR7, 

Thy1.2, CD146, MadCAM1 and VCAM1 were expressed by minority populations of 

stromal cells (1-3%) (Table 4.1). CD105+ cells represented ~13% of stromal cells in 



Figure 4.1 Viable cell recovery after collagenase treatment of splenic stroma. An adult or 10 neonatal murine spleens were mechanically teased 

apart, filtered through a wire mesh grid to separate stroma from leukocytes and red cells, and the remaining stromal fraction treated with a combination 

of collagenase IV and collagenase D for different times up to 60 minutes. Viable cells recovered were counted using trypan blue exclusion at 20 minute 

intervals. Data shown reflect mean ±SE of three replicate experiments. 

 
 

  

 

 

 

 

 

 

 

 

 

 

 

 

 





Table 4.1 Proportion of cells in stromal fractions 
 
Spleen fraction* % cells† Spleen fraction* % cells† 

CD29- 9.65 ± 4.05 CD29+ 90.35 ± 4.05 

Sca-1- 98.43 ± 0.50 Sca-1+ 1.57 ± 0.50 

CD31- 99.15  CD31+ 0.85  

gp38- 99.01 ± 0.32 gp38+ 0.99 ± 0.32 

CD105- 86.93 ± 1.26 CD105+ 13.07 ± 1.26 

CD140a- 98.24 ± 0.67 CD140a+ 1.76 ± 0.67 

CD51- 97.79 CD51+ 2.21 

ER-TR7- 98.48 ± 0.40 ER-TR7+ 0.60 ± 0.53 

Thy1.2- 99.82± 0.19 Thy1.2+ 0.19± 0.19 

CD146- 98.67 ± 0.36 CD146+ 1.33 ± 0.36 

MAdCAM1- 99.65 ± 0.06 MAdCAM1+ 0.35 ± 0.06 

VCAM1- 97.28 VCAM1+ 2.72 
 
*Stromal cells were isolated from neonatal murine spleen using collagenase 
treatment. Cells were labelled with fluorochrome-conjugated antibodies, and flow 
cytometry used to separate marker positive and marker negative fractions for 
quantification.  
 
†Data are presented as mean ± SE (n=3) for replicated data except for CD29+/-, 
ERTR7+/- and Thy1.2+/- where mean ± SE (n=2). Data represent a single experiment.  
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spleen. Due to the small size of different subsets, splenic stromal cell characterisation 

was considered challenging, requiring investigation and isolation of rare stromal cells 

expressing markers of interest.  

   

Our approach to analysis was to increase the number of spleens used in the 

experiment and to couple analysis of the enriched marker positive subset with analysis 

of the marker depleted subset. One option was to expand stromal subsets through in 

vitro culture, testing their independent growth capacity and aiming to expand the 

number of cells. This involved growing stromal cells in sDMEM with twice weekly 

medium change. This procedure also allowed assessment of the growth capacity of 

stromal fractions where cells were grown under controlled and constant conditions over 

28 days. Assessment was made on whether the stromal cell fraction survived and 

proliferated in culture, as well as the phenotype of the stromal cells that grew out after 

28 days.  

 

 The growth data shows that only fractions enriched for, but not depleted of 

CD29, gp38, CD105, Thy1.2 and CD140a, were able to reach confluent growth by 28 

days (Tables 4.2A & 4.2B). This suggests that these markers, which are also reflective 

of mesenchymal cells, might be important markers of stromal cells that can replicate in 

culture. Interestingly, only fractions depleted of, but not enriched for CD31 and 

VCAM1 resulted in confluent growth by 28 days suggesting that endothelial cells do 

not survive the in vitro growth conditions. (Tables 4.2A & 4.2B). Cell surface markers 

including Sca-1, CD51 and ER-TR7 do not seem to be critical markers for growth 

capacity because fractions enriched for, or depleted of these markers, were equally able 

to attain confluent growth (Tables 4.2A & 4.2B).  

 

 Cells which grew out of 28-day cultures established from growth-competent 

stromal fractions were also mesenchymal in terms of cell surface phenotype (Tables 

4.2A and 4.2B). For all stromal fractions tested for growth, cells growing after 28 days 

of culture expressed Sca-1 (50-80% of cells), with most expressing Thy1, CD51 and 

gp38 (50-80%), but with some cultures showing <50% expression of the latter markers. 

The expression of CD105 was variable, with some cultures showing no expression. 

CD140a expression was weak to negative, with only 0-10% of cells expressing this 

marker. None of the cultures showed expression of the fibroblastic marker ER-TR7.   

 



Table 4.2A Phenotype of marker-positive stromal fractions after culture 
 

 

 
‡ Stromal cells were isolated from murine spleen using collagenase treatment and cells stained with antibodies specific for 
CD45.2 to separate out the hematopoietic cells and either CD29, Sca-1, CD31, gp38, CD105, CD140a, CD51, ER-TR7, 
Thy1.2, CD146 or MAdCAM1. Separate sorting experiments were conducted, and number of cells plated shown by mean ± 
SE (n). Sorted cell subsets were cultured in sDMEM for 28 days before dissociation of cells and staining to identify marker 
expression. 
# 5x104 cells was considered minimal to achieve growth, but in some cases, lower numbers were also found to be productive.  
† Cell growth: confluent by 10 days (**), confluent by 28 days (*), no confluence (-), cells died (X). 
§ Cells were trypsinised and stained with antibodies to determine phenotype. +++, >80% cells expressing; ++, 50-80%; +, 10-
50%; -, < 10%.  
 

Cell fractions‡ Cell number plated# Growth† Phenotype of 28 day stroma§ 
   Sca1 gp38 CD51 CD105 ERTR7 CD140a Thy1.2 
CD29+ (1.6±0.3).106 (n=2) ** +++ +++ +++ +++ - + +++ 
Sca-1+ (1.7±1.3).104 (n=3) * +++ ++ +++ + - - +++ 
CD31+ 9.6.103 -        
gp38+ (1.1±0.4).104 (n=5) * +++ +++ ++ ++ - ++ ++ 
CD105+ (2.8±4.3).104 (n=5) * +++ +++ ++ +++ - + ++ 
CD140a+ (2.2±1.4).104 (n=5) * ++ +++ ++ - - - ++ 
CD51+ 1.08.104 * +++ +++ +++ + - + +++ 
ER-TR7+ (1.6±0.5).104 (n=2) * +++ ++ +++ - - - +++ 
Thy1.2 + (1.4±1.0).104 (n=3) * ++ + + + - ++ +++ 
CD146+ (2.0±0.8).104 (n=4) -        
MadCAM1+ (3.4±2.4).103 (n=3) -        
VCAM1+ 1.6.104 -        



Table 4.2B Phenotype of marker-negative stromal fractions after culture 
 
Cell fractions‡

 Cell number plated# Growth† Phenotype of 28 day stroma§ 
   Sca-1 gp38 CD51 CD105 ERTR7 CD140a Thy1.2 
CD29- (1.6±0.7).105 (n=2) X        
Sca-1- (1.6±0.9).106 (n=3) * +++ ++ +++ + - - ++ 
CD31- 8.30.105  ** ++ + +++ - - + + 
gp38- (1.7±0.4).106 (n=5) -        
CD105- (1.5±0.2).106 (n=5) -        
CD140a- (1.9±0.3).106 (n=5) -        
CD51- 8.3.105 * +++ +++ +++ ++ - - +++ 
ER-TR7- (1.3±7.5).106 (n=2) * +++ +++ ++ +++ - - - 
Thy1.2 - (1.18±1.2).106 (n=3) X        
CD146- (1.81±0.4).106 (n=4) -        
MAdCAM1- (1.41±0.7).106 (n=3) -        
VCAM1- 6.8.105 * +++ +++ +++ +++ - - +++ 
 
‡ Stromal cells were isolated from murine spleen using collagenase treatment and stained with antibodies specific for CD45.2 to 
separate out hematopoietic cells and either CD29, Sca-1, CD31, gp38, CD105, CD140a, CD51, ER-TR7, Thy1.2, CD146 or 
MAdCAM1. Separate sorting experiments were conducted, and number of cells plated shown by mean ± SE (n). Sorted cell 
subsets were cultured in sDMEM for 28 days before dissociation of cells and staining to identify marker expression. 
# 5x104 cells considered minimal to achieve growth, but in some cases, lower numbers were also found to be productive.  
† Cell growth: confluent by 10 days (**), confluent by 28 days (*), no confluence (-), cells died (X). 
§ Cells were trypsinised and stained with antibodies to determine phenotype. +++, >80% cells expressing; ++, 50-80%; +, 10-50%; 
-, < 10%.  
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 These data need to be interpreted with caution, taking into consideration the 

artificial conditions of growth which can moderate or enhance expression of markers, 

leading to false phenotypic assignment. Similar consideration must be applied to the 

5G3 and 3B5 stromal cell lines described in Chapter 3, although it is important to note 

the similarity between the phenotypes of those cell lines, and the cell types which grow 

out of stromal cultures prepared by many different fractionation regimes. The data 

indicate that a small number of variant lines of distinct mesenchymal type can be 

cultured, noting variability particularly in expression of CD105 and CD140a.  

 

4.2.3  Microscopic examination of cultured stromal fractions 

 

 In general, stromal cell monolayers were heterogeneous showing a mix of 

spindle-shaped fibroblastic cells and cuboidal cells possibly reflecting endothelial cells. 

The extent of confluency also varied even after 28 days of culture. Depletion of cells 

expressing VCAM1 or CD31 from splenic stroma led to confluent growth of spindle-

shaped stromal cells, while subsets of VCAM1+ and CD31+ cells would not grow 

independently (Figures 4.2 and 4.3). Enrichment of CD29+, CD140a+, CD105+, gp38+, 

CD51+ and to a lesser extent Thy1.2+ cells, gave confluent, extensive stroma comprising 

largely spindle-shaped cells (Figure 4.3). These were reflective of mesenchymal cells. 

Depletion of cells expressing CD51 or Sca-1 still gave a sparse, heterogeneous stroma, 

suggesting that the remaining stromal populations were largely mesenchymal (Figure 

4.2). Similarly, enrichment for Sca-1+ cells gave a very mixed population of cuboidal 

and spindle-shaped cells, consistent with CD29 as a marker of ~90% of stromal cells in 

spleen (Table 4.1) (Figure 4.3). The extensive heterogeneity within the CD29+ fraction 

was revealed by culturing CD29 expressing cells as three independent subcultures (A, B 

and C) for 28 days. Stromal cells in each of A, B and C subcultures showed very 

different growth rates and morphologies (Figure 4.4). A reflects spindle-shaped cells, B 

sparse cuboidal cells, and C a confluent mixture of cell types.  

 

 ER-TR7 is a marker of fibroblasts and the ER-TR7+ population was an active 

grower (Figure 4.3). Following depletion of ER-TR7+ cells, a network of spindle-

shaped cells remained however, confirming the extensive in vitro growth capacity of the 

mesenchymal cell fractions in spleen.   

 

 



Figure 4.2 Morphology of spleen stromal cells. Stromal cells were isolated from murine spleen using collagenase treatment, stained with antibodies 

and sorted by flow cytometry. Stromal fractions were cultured in sDMEM, and photographed after 28 days using a camera attached to an inverted 

phase microscope. Cultured cells represent stromal fractions depleted of cells expressing (A) VCAM1, (B) CD51, (C) CD31, (D) Sca-1 and (E) 

ERTR7. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Figure 4.3 Morphology of splenic stromal fractions. Stromal cells were isolated from murine spleen using collagenase treatment, stained with 

antibodies to identify specific subsets, and cells sorted using a flow cytometer. Stromal cells were cultured in sDMEM, and photographed after 28 days 

using a camera attached to an inverted phase microscope. Stromal fractions tested for in vitro growth were sorted on the basis of a single marker. (A) 

CD29, (B) Sca-1, (C) CD140a, (D) CD105, (E) gp38, (F) ERTR7, (G) CD51 and (H) Thy1.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 







Figure 4.4 Morphology of passaged CD29+ stroma. Stromal cells were isolated from murine spleen using collagenase treatment, stained with 

antibodies to select specific subsets, and cells sorted using a flow cytometer. Stromal cells were cultured in sDMEM, and photographed after 28 days 

using a camera attached to an inverted phase microscope. The CD29+ stromal fraction was passaged to give three different cultures, and each tested for 

in vitro growth. These are labeled A, B and C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





CHAPTER 4 

	 42	

4.2.4  Characterisation of stroma on the basis of 2 or 3 markers 

 

 Since CD29+ cells reflected 90% of stroma, subfractions of those cells were 

compared for growth based on expression of the mesenchymal markers CD105, Sca-1 

and the gp38 marker of fibroblastic reticular cells. In general, stromal fractions that 

expressed either CD29 or gp38 grew well (Table 4.3). Microscopic examination of 

stromal cells growing after 28 days showed outgrowth of all CD29+ fractions: with 

CD29+gp38- cells forming sparse, spindle-shaped cells, CD29+CD105+ cells growing 

well but showing heterogeneity with both spindle-shaped and cuboidal cells present; 

CD29+CD105- cells, showing sparse spindle-shaped cells; and CD29+gp38+Sca-1- cells 

showing poor growth of predominately spindle-shaped cells (Figure 4.5).  

 

 Again, the phenotype of stromal cells which grew out of 28 day cultures was 

consistently found to be Sca-1+gp38+Thy1.2+CD29+CD51+, with some variability in 

expression of CD105 and CD140a (Table 4.3), as seen previously for stroma 

fractionated on the basis of one marker (Tables 4.1A and 4.2B). One explanation for 

this outcome is that one or a small number of mesenchymal subsets exist in spleen 

which are readily cultured in vitro. These are identifiable as a CD29+Sca-

1+Thy1+CD51+gp38+ population. Sorting cell fractions on the basis of one or more of 

these markers will enrich for the presence of in vitro growing cells, and with time in 

culture, these particular cells grow out preferentially.   

 

4.2.5  Assessment of hematopoietic support capacity of stromal fractions 

  

 To assess the capacity of stromal cell fractions to support hematopoiesis, 

confluent monolayers were grown for 28 days and used to establish co-cultures by 

overlay of lineage-depleted BM cells isolated from CD45-allotype distinct mice. The 

production of cells including progenitors, myeloid cells and dendritic cells was 

measured at 21 days after co-culture establishment as described in Chapter 3. Analysis 

involved harvest of non-adherent cells from culture and staining with a range of 

fluorescence-conjugated antibodies. Progenitors were identified as the CD11b-CD11c- 

subset, myeloid cells as CD11b+CD11c-F4/80-MHC-II-, L-DC as 

CD11b+CD11c+F4/80+MHC-II- cells and cDC-like cells as CD11b+CD11c+F4/80+/-

MHC-II+. Prior to flow cytometry, cells were stained with propidium iodide to 

discriminate live cells (PI-) for analysis. Large cells were then gated based on forward 



Table 4.3 Phenotype of stromal subsets after culture  
 
Cell fractions‡

 Cell number plated# Growth† Phenotype of 28 day stroma§ 
   Sca-1 gp38 CD51 CD105 CD29 ERTR7 CD140a Thy1.2 
CD29-CD105- 2.2.105 -         
CD29+CD105+ 8.2.105 * +++ +++ + - ++ - + +++ 
CD29+CD105- 9.6.104 * +++ +++ ++ - +++ - - +++ 
CD105-gp38- 9.7.108 -         
CD105+gp38- 1.4.105 -         
CD29+gp38+ 1.74.103 -         
CD29+gp38- 3.0.105 * +++ +++ + + +++ - + +++ 
CD29-gp38- 4.4.104 -         
CD29+gp38+Sca-1+ 2.2.105 * +++ +++ +++ ++ +++ - ++ +++ 
CD29+gp38+Sca-1- 5.6.104 * +++ +++ +++ +++ +++ - + +++ 
CD29+Sca-1+CD105+ 2.0.104 -         
CD29+Sca-1+CD105- 1.0.103 -         

 
‡ Stromal cells were isolated from murine spleen using collagenase treatment and stained with antibodies specific for CD45.2 to separate out the 
hematopoietic cells and antibodies specific for either CD29, Sca-1, CD31, gp38, CD105, CD140a, CD51, ER-TR7, Thy1.2, CD146 or 
MAdCAM1. Sorted subsets were cultured in sDMEM for 28 days before dissociation of cells and staining to identify marker expression. 
# 5x104 cells was considered minimal to achieve growth, but in some cases, lower numbers were also found to be productive.  
† Cell growth: confluent by 10 days (**), confluent by 28 days (*), no confluence (-), cells died (X). 
§ Cells were trypsinised and stained with antibodies to determine phenotype. +++, >80% cells expressing; ++, 50-80%; +, 10-50%; -, < 10%.  
 



Figure 4.5 Morphology of defined stromal splenic fractions. Stromal cells were isolated from murine spleen using collagenase treatment, stained 

with multiple antibodies to select specific subsets, and cells sorted using a flow cytometer. Stromal cells were cultured in sDMEM, and photographed 

after 28 days using a camera attached to an inverted phase microscope. Stromal fractions tested for in vitro growth included (A) CD29+gp38-, (B) 

CD29+CD105+, (C) CD29+CD105-, and (D) CD29+gp38+Sca-1-. 
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scatter versus side scatter analysis. Live large cells were identified as CD45.2, and then 

analysed for their CD11b and CD11c expression in the first instance. 

 

 Initial studies involved stromal cell fractions separated on the basis of a single 

marker. Analysis revealed a population of L-DC in most tested co-cultures by 21 days 

after co-culture establishment, although the proportion of L-DC varied considerably 

amongst the different stroma tested. Multiple experiments were performed to test 

various stromal fractions always using 5G3 as a co-culture control. Most co-cultures 

established were low cell producers in comparison with 5G3 (Figure 4.6), and these 

included co-cultures established with the stromal fractions of CD105+, CD51+, gp38+, 

Sca-1+, Thy1.2+, ER-TR7+, CD29+, CD140a+, as well as VCAM1-, CD51-, ER-TR7-, 

Sca-1- and CD31-. As expected, co-cultures containing CD29+ cells passaged from A, B 

and C wells exhibited different hematopoietic support capacity, which further supported 

the heterogeneity noted previously within this fraction (Figure 4.4). Some selected co-

cultures were replicated, but most replicated co-cultures exhibited variation in their 

capacity to support hematopoiesis (Figure 4.6). The hematopoietic support ability of a 

culture is ultimately dependent on the outgrowth of a particular stromal population, so 

that over a period of time, heterogeneous stromal populations could give variable results.  

 

 However, all stroma did produce some hematopoietic cells, with most at levels 

much lower than 5G3. These, however, contained cells representative of 5G3 co-

cultures, with production of L-DC, progenitors and myeloid cells, although no cDC-like 

cells. One outlier was the CD29+A stroma which grew very well (Figure 4.4) and gave 

equal production of cells as did 5G3 in EXPT 7 (Figure 4.6). Some stromal subsets 

isolated on the basis of two or more markers including CD29, also gave cell production 

equivalent to 5G3. These included CD29+gp38+Sca-1+ and CD29+gp38+Sca-1- subsets 

in EXPT 7 (Figure 4.6). Notably, the CD45-CD31- mesenchymal subset was also a poor 

supporter of hematopoiesis, despite enrichment of mesenchymal cells (Figure 4.6). All 

of these data reinforce the importance of a mesenchymal cell type, but one representing 

a rare subset amongst the whole mesenchymal cell population.  

 

4.2.6  Fine definition of stromal subsets in spleen 

  

 On the basis of knowledge of marker expression on splenic stromal cell subsets 

which could be cultured in vitro, splenic stroma was characterised more fully using five 



Figure 4.6 In vitro hematopoietic support capacity of stromal cell fractions. Stromal cells of different marker phenotype were sorted and cultured 

for 28 days until confluent. Lin- BM was then overlaid above stroma. Non-adherent cells were collected after 21 days and stained with antibodies to 

CD11b, CD11c, MHC-II and F4/80 to delineate myeloid/dendritic cell production. Flow cytometric analysis was used to identify subsets of progenitors 

(CD11b-CD11c-), myeloid cells (CD11b+CD11c-F4/80-MHC-II-), L-DC (CD11b+CD11c+F4/80+MHC-II-) and cDC-like cells (CD11b+/-CD11c+F4/80-

MHC-II+) amongst non-adherent cells produced in co-cultures. Nine individual self-controlled experiments were conducted, each comparing cell 

production by a specific stromal fraction in comparison with 5G3. The yield of cells varied with each co-culture, and this was evident by differences in 

cell production in 5G3 co-cultures. Both total number of cells produced, and proportional representation of subsets, is shown for each experiment. P9 

and P10 reflect subsets identified in Figure 4.7. 
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cell surface markers to delineate subsets amongst the total ex vivo splenic stromal cell 

population. The panel of markers comprised Thy1.2, Sca-1, CD105, CD51 and CD140a, 

informed by the 5G3 phenotype, as well as data collected on the growth and 

hematopoietic support function of stromal fractions. Splenic stromal cells were prepared 

from 6-day old murine neonatal spleens using collagenase treatment, and cells stained 

with fluorochrome-conjugated antibodies specific for CD45.2, Thy1.2, Sca-1, CD105, 

CD51 and CD140a.  

 

 Flow cytometric analysis of live cells revealed a subset of non-hematopoietic 

(CD45.2-) stromal cells, which was investigated further for expression of markers of 

interest. Further analysis of this subset showed three distinct populations based on level 

of Sca-1 expression (Figure 4.7). Three populations were distinguished as Sca-1hi, Sca-

1lo and Sca-1- cells (Figure 4.7). These subsets were subsequently analysed for Thy1.2, 

CD105, CD51 and CD140a expression (Figure 4.7). The subset of Sca-1hi was found to 

contain a population of Thy1.2-CD105+CD51loCD140a- cells (P8), while the subset of 

Sca-1lo contained three populations including Thy1.2+CD105+CD51+CD140a+ cells (P9), 

Thy1.2-CD105+CD51loCD140alo cells (P10), and Thy1.2-CD105-CD51+CD140alo cells 

(P11) (Figure 4.7). The Sca-1- subset was found to contain three populations of 

Thy1.2+CD105loCD51+CD140alo cells (P12), Thy1.2-CD105+CD51+CD140a- cells (P13), 

and Thy1.2-CD105-CD51-CD140a- cells (P14) (Figure 4.7). Over 3 replicate 

experiments, the proportional representation of these subsets amongst splenic culture 

was measured. P10 was the most predominant cell type, although all were 

representative of < 1% of stromal cells in spleen (Table 4.4).  

 

 Stromal subsets P8, P9, P10 and P11 expressed markers consistent with 5G3 and 

cell types defined previously, and so were sorted from collagenase treated neonatal 

spleen for further study following expansion in culture. Only P9 and P10 proved 

competent to produce confluent stromal monolayers after 28 days in culture. While 

these cells grew, they expressed a Sca-1+gp38+CD29+Thy1.2+ phenotype, but did not 

express CD105 or CD140a (Table 4.5). These subsets were later tested for their 

hematopoietic support capacity in co-culture assays involving overlay of Lin- BM cells. 

P9 and P10 gave high total cell production after 21 days of co-culture (Figure 4.7). 

While P9 and P10 were high cell producers, they produced less than 50% of L-DC in 

cultures, due to a higher production of myeloid cells (Figure 4.6).  

 



Figure 4.7 Full definition of stromal subsets in spleen. Stromal cells were isolated from murine spleen using collagenase treatment and cells stained 

with antibodies specific for CD45.2, Sca-1, Thy1.2, CD105, CD51 and CD140a. Prior to flow cytometry, cells were incubated with propidium iodide 

(PI) (1µg/ml) for gating live (PI-) cells using PI versus SSC analysis. Singlets were then selected on the basis of FSC-H and FSC-A staining. Cells were 

then gated on the basis of FSC to eliminate red blood cells. Multicolour analysis was then used to detect subsets amongst the CD45.2- population of 

non-hematopoietic stromal cells. Fluorescence minus one (FMO) controls were used to delineate specific antibody binding, and to set gates.  Numbers 

in quadrants, or by circle gates, represent % specific binding of cells. Subsets identified as P8. P9, P10 and P11 reflect cells expressing marker profiles 

of interest.  
 

 

 

 

 

 

 

 

 

 

 

 





Table 4.4 Representation of specific subsets amongst the spleen stromal fraction 
 
 Subset  Designation* % cells† 

Sca-1hiThy1.2-CD105+CD51loCD140a- P8 0.17 ± 0.068 

Sca-1loThy1.2loCD105+CD51+CD140a+ P9 0.06 ± 0.021 

Sca-1loThy1.2-CD105+CD51loCD140alo P10 0.52 ± 0.190 

Sca-1loThy1.2-CD105-CD51+CD140alo P11 0.04 ± 0.006 

Sca-1-Thy1.2loCD105loCD51+CD140alo P12 0.03 ± 0.007 

Sca-1-Thy1.2-CD105+CD51+CD140alo P13 0.06 ± 0.017 
 
† % cells amongst stromal the fraction of neonatal (6D) spleen isolated by 
collagenase digestion, and then delineated through flow cytometric gating of 
CD45- cells. Data reflect mean ± SE (n=3).  
 
*Subset designation is shown in Figure 4.7.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 4.5 Phenotype of cells cultured out of stromal subsets  
 

Subset Cell number 
plated* Phenotype of 28 day stroma§ 

P8 (2.8 ± 0.5).104 
(n=5) No growth 

P9 (7.6 ± 1.5).103 

(n=5) Sca-1+gp38+CD51loCD105-CD29+ER-TR7-CD140a-Thy1.2+ 

P10 (9.8 ± 1.6).103 

(n=5) Sca-1+gp38+CD51-CD105-CD29+ER-TR7-CD140a-Thy1.2+ 

P11 (1.3 ± 9.6).102 

(n=5) No growth 

 
§Cells were trypsinised and stained with antibodies to determine phenotype. 
 
*Subset designation is shown in Figure 4.7.  
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4.2.7  Stromal co-cultures appear to maintain Lin-c-Kit+ progenitors  

 

 To determine if stromal co-cultures maintain Lin-c-Kit+ progenitors, co-cultures 

established for at least 35 days were trypsinised for cell harvest to ensure isolation of 

any stem cell/progenitors adherent to stroma. Harvested cells were stained with 

fluorescence-conjugated antibodies specific for lineage markers (CD3, CD19, CD11b, 

CD11c, MHC-II, Gr-1, NK1.1 and Ter-119), CD45.2, Sca-1 and c-Kit to delineate 

stem/progenitor cell populations. Flow cytometry revealed a small population of Lin-c-

Kit+ progenitors in CD45- and CD140a+ stromal co-cultures but not in 5G3 co-cultures 

(Figure 4.8). One explanation could be that the 5G3 stroma is more efficient than 

CD140a+ and CD45- stroma in promoting rapid differentiation of progenitors to L-DC 

so that very few are detectable following cell isolation and analysis. A similar 

explanation could also explain the lower production of L-DC in CD140a+ and CD45+ 

stromal co-cultures if the maintenance of progenitors is more efficient giving lower 

differentiation to L-DC (Figure 4.8).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 4.8 Attempts to identify progenitors in co-cultures. Co-cultures were prepared as described in Figure 3.4, and analysed for the presence of 

hematopoietic progenitors after 35 days. Cultures were first trypsinised for cell harvest to ensure isolation of any progenitors adherent to stroma. 

Harvested cells were stained with fluorescence-conjugated antibodies specific for lineage (Lin) and CD45.2, as well as c-Kit and Sca-1, to delineate 

progenitor cell populations. Fluorescence minus one (FMO) controls were used to set gates. 5G3 stroma was used as a control (A), and compared with 

the CD45- (B) and CD140a+ (C) stromal fractions used to establish co-cultures.  

 



A

B

C



CHAPTER 4 

	 46	

4.3  DISCUSSION 

 

 This study represents the first comprehensive characterisation of splenic stroma 

as a hematopoietic niche. Traditionally, the spleen is viewed as an immune organ which 

also supports erythropoiesis and turnover of red blood cells (Cesta, 2006; Mebius and 

Kraal, 2005). However the spleen also plays an active role in extramedullary 

hematopoiesis during times of stress, infection and inflammation (Yamamoto et al., 

2016; Johns and Christopher, 2012; Cesta, 2006). In this study, we have studied steady-

state spleen and used a reductionist approach in order to better understand the 

composition of splenic stroma, its heterogeneity and its ability to support hematopoiesis. 

By using fluorescent-activated cell sorting, fractionation of collagenase treated splenic 

stroma was initially carried out using single markers, followed subsequently by two or 

more markers to improve the fractionation procedure. The ability of fractionated 

stromal cells to grow in culture was then assessed, and hematopoietic support capacity 

evaluated using Lin- BM as an overlay. In addition to characterising the capacity of 

splenic stroma to support hematopoiesis, this study aimed to investigate the marker 

phenotype of stromal subsets which can grow and support in vitro hematopoiesis.  

 

 The ability of fractionated stromal cells to grow and expand to form a monolayer 

was regarded as a necessary step, although a bottleneck in the in vitro characterisation 

of stromal cell capacity to support hematopoiesis. It is widely understood that growing 

fresh, untransformed mammalian cells in culture is time-consuming and difficult 

(Despars and O'Neill, 2006a; Smith, 2005). Moreover, the isolation and sorting process 

to obtain cell fractions could also be selectively traumatic to some cell subsets. In order 

to ensure the reliability of the growth assay, the use of collagenase in cell isolation was 

optimised for highest cell recovery. In addition, stromal cells were cultured in sDMEM 

under uniform growth conditions to promote optimal cell growth.  

 

Plastic adherence has been used as a criterion for isolation of MSC and has also 

been used by others to evaluate the growth capacity of fractionated stromal cells 

(Lindner et al., 2010). Growth of cells in vitro on plastic has been used here for isolation 

of splenic stromal subsets in this study. Since the hypothesis is that the spleen contains 

perivascular reticular cells of mesenchymal lineage which support hematopoiesis, 

preliminary evaluation of plastic adherence and cell growth was undertaken using 

multiple splenic stromal fractions. Our results confirm that the splenic stromal 
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population is highly heterogeneous, evidenced by mixed cellular morphology in 

adherent cultures, as opposed to a uniform cuboidal morphology of cells of the cloned 

5G3 stromal line. The majority of splenic stromal cells express CD29 which is one of 

the cell surface markers used to isolate and characterise MSC (Lindner et al., 2010). 

Since CD29 is widely expressed by stromal cells in spleen, it was not unexpected to 

find a range of cells exhibiting different morphology within the CD29+ stromal subset. 

It should however be noted that morphological examination of growing cell isolates 

provides only limited information on cell type, and is in the main a demonstration of the 

degree of heterogeneity within a growing cell population.  

 

 While cell morphological examination alone was not definitive, it has been used 

here in combination with cell phenotype, growth capacity and hematopoietic support 

capacity. Stromal cell growth analysis has revealed that stromal fractions depleted of 

cells expressing CD29, gp38, CD105, Thy1.2 or CD140a failed to establish monolayers 

in culture. These cell surface markers are therefore important markers of cells which 

show capacity for in vitro adherence and growth. In addition, these markers also reflect 

the phenotype that defines MSC, consistent with the hypothesis that a mesenchymal cell 

present in spleen forms a niche for hematopoiesis in vitro. Notably, stromal cells that 

grow out of 28-day cultures consistently show a Sca-1+gp38+Thy1.2+CD29+CD51+ 

phenotype with some variability in expression of CD105 and CD140a. This phenotype 

is indicative of cells of mesenchymal lineage, present in spleen, and readily expanded in 

vitro. Caution should be exercised with regard to marker expression since culturing 

conditions can lead to changes in surface maker expression on cells (Pevsner-Fischer et 

al., 2011).  

 

  In Chapter 3, a co-culture assay involving overlay of Lin- BM cells above 5G3 

stroma was extensively described. Here, we use a similar strategy to test the 

hematopoietic support capacity of cultured stromal fractions and defined splenic stromal 

subsets. It was found that most established stroma support the production of 

hematopoietic cells equivalent to those produced in control 5G3 co-cultures, although 

cell production levels were much lower and more variable than found in 5G3 co-

cultures. An exception would be the specifically defined stromal subsets, P9 and P10.  

 

Heterogeneity of splenic stroma appears to contribute to variability in 

hematopoietic support capacity. This would be consistent with a model whereby 
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specific cells, perhaps defined by the P9 and P10 subsets identified here, have the best 

hematopoietic support function, while others have weaker or different capacity. Indeed, 

variability in hematopoietic support noted in this study parallels that seen amongst 

clonal cell line derivatives of the original parental STX3 splenic stroma (Periasamy et 

al., 2009; Despars and O'Neill, 2006a). In that study, it was found that cloned stromal 

lines including 2A8, 5G3 and 10C9 were good, although variable supporters, whereas 

3B5 was a non-supporter, despite having originated from the same parental STX3 

stromal line (Periasamy et al., 2009).  

 

Taken together, this chapter has found the Sca-1+gp38+Thy1.2+CD29+CD51+ 

cell phenotype to be defining of stroma which grow in vitro and support hematopoiesis. 

However, cells with this phenotype did not support cell production to the level achieved 

with 5G3 stroma. It is likely that 5G3 has been selected by continuous culture over time 

for enhanced in vitro growth capacity and perhaps for in vitro hematopoietic support 

capacity. Since the markers, which define the stromal subset are not specific, 

heterogeneity is still expected within the Sca-1+gp38+Thy1.2+CD29+CD51+ cell subset. 

These markers will be used in the next chapter to delineate the stromal population using 

immunohistochemistry of spleen sections, to determine stroma which co-localise with 

HSC so forming a niche for HSC maintenance.  

 

Importantly, analyses of growth capacity of stromal cells indicated the 

importance of CD140a and CD105 as markers defining of subsets with in vitro growth 

and hematopoietic support capacity. However, these are also elusive markers which 

show variability and sometimes weak expression, so may not be reliable markers of 

important cells of interest. Based on these findings, CD140a and CD105 markers will 

also be used to localise HSC niches in the next chapter. While expression of CD140a 

and CD105 varied on stroma that grew in vitro, we cannot ignore the possibility that 

expression of these markers is subject to growth conditions. Variability in 

hematopoietic support noted within replicates of the same stromal co-cultures was also 

noticed and could also be caused by variability in the Lin- BM population used as 

overlay cells. Different preparations of these cells could contain different numbers of 

progenitors which could add to variability in the co-culture responses seen. Therefore, 

future work will entail testing the hematopoietic support capacity of clonal isolates of 

stromal cells using highly purified sorted HSC/MPP cell populations as described 

previously for the 5G3 cell line (Chapter 3). In addition, it will be possible to support in 
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vitro studies with in vivo tests of stromal cell function. Stromal cell types can be 

transplanted in vivo under the kidney capsule, so forming ectopic niches which support 

the growth and development of hematopoietic cells, providing an ectopic splenic niche 

environment. This would be an ultimate test of the capacity of the stromal subset to act 

as a niche for HSC.   

 

  



 

	

CHAPTER FIVE 

IDENTIFICATION OF HSC STROMAL NICHES IN 

SPLEEN 
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5.1 INTRODUCTION 

 

HSC niches refer to a microenvironment comprising non-hematopoietic cells 

which interact with HSC via juxtacrine and paracrine signalling to regulate their self-

renewal and differentiation as well as their proliferation and quiescence (Boulais and 

Frenette, 2015). In the BM, known HSC niches reflect endosteal, vascular and 

perivascular microenvironments, involving osteoblasts, endothelial cells and 

perivascular reticular cells (Ugarte and Forsberg, 2013; Ding et al., 2012; Mendez-

Ferrer et al., 2010; Sugiyama et al., 2006; Kiel et al., 2005; Nilsson et al., 2005; Calvi et 

al., 2003). The main cell subsets of the perivascular niche in the BM have been 

described as nestin+ mesenchymal stem cells, LepR+ stromal cells and CAR cells (Ding 

and Morrison, 2013; Ding et al., 2012; Mendez-Ferrer et al., 2010; Sugiyama et al., 

2006). These stromal subsets have been shown by immunofluorescence imaging to be 

localised adjacent to arterioles/sinusoids (Ding and Morrison, 2013; Ding et al., 2012; 

Mendez-Ferrer et al., 2010) and to lie in close proximity with HSC (Ding et al., 2012; 

Mendez-Ferrer et al., 2010; Sugiyama et al., 2006).   

 

While HSC niches in BM have been extensively studied, limited knowledge is 

available on niches for HSC in spleen. Previous studies in this laboratory have 

determined that a stromal cell derivative of a murine, neonatal splenic long-term culture, 

termed 5G3, supports restricted in vitro hematopoiesis (Periasamy and O'Neill, 2013; 

Periasamy et al., 2013a; Periasamy et al., 2009). In addition, stromal fractions isolated 

from neonatal spleens were shown in Chapter 4 to support in vitro hematopoiesis when 

overlaid with lineage-negative BM cells, albeit at lower levels than achieved with the 

5G3 stromal cell line. In murine spleen undergoing extramedullary hematopoiesis, HSC 

were localised in close contact with sinusoids in the red pulp region (Inra et al., 2015; 

Kiel et al., 2005). Recently, Inra et al. (2015) reported the existence of a perisinusoidal 

niche in murine spleen comprising Tcf21+ stromal cells and endothelial cells supporting 

extramedullary hematopoiesis. The gene profile and phenotype of 5G3 stroma reflects a 

mesenchymal cell expressing genes common to perivascular reticular cells like Cxcl12, 

Scf, Pdgfrb, Pdgfra, Endoglin (also known as CD105), Itagv (Integrin alpha V, also 

known as CD51), Sca-1 and Thy1.2, so that it may overlap with Tcf21+ cells described 

by Inra et al (2015), as mesenchymal cells which form the perisinusoidal niche in the 

red pulp region of spleen. All data to date support the possibility that the spleen might 

contain HSC niches, similar to that of the BM whereby HSC are supported by both 
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mesenchymal perivascular cells and endothelial cells in sinusoids. Whether the same 

niches support HSC under steady-state conditions and under physiological stress 

leading to extramedullary hematopoiseis, is not yet known.   

 

 In this chapter, immunofluorescence imaging has been used to localise HSC in 

spleen and to determine their spatial relationship with known stromal cell types. 

Investigation was carried out to compare spleens of 4-6 week old and 6-day old 

C57BL/6J mice. Models for extramedullary hematopoiesis were also studied since these 

are associated with higher numbers of HSC and HSC niches in spleen. Pregnant 

C57BL/6J mice (E18.5) were analysed (Nakada et al, 2014) along with Fms-like 

tyrosine kinase (Flt)-3 ligand (Flt3L) treated C57BL/6J mice. The latter treatment is 

known to mobilise HSC into blood and spleen (Robinson et al., 2000; Neipp et al., 1998; 

Brasel et al., 1996).  

 

Spleen sections were stained with markers which define stoma in different 

regions of spleen, including CD29, a marker of mesenchymal cells (also hematopoietic 

cells) in spleen (Mueller and Germain, 2009; Oh and Kwon, 2010), CD105 which 

marks angiogenic vasculature, marginal reticular cells and red pulp fibroblasts in spleen  

(Tan and Watanabe, 2014; Duff et al., 2003), CD31 which identifies mature endothelial 

cells in both the red and white pulp regions of spleen (Mueller and Germain, 2009; 

Newman, 1997), and gp38 which identifies lymphatic endothelial cells in the lymph 

node, fibroblastic reticular cells (Mueller and Germain, 2009; Farr et al., 1992), and 

follicular dendritic cells in spleen (Mueller and Germain, 2009; Yu et al., 2007). Further 

markers were used to identify cells resembling perivascular reticular cells or CAR cells. 

These included CD140a/b which identifies fibroblastic reticular cells, red pulp 

fibroblasts, CAR cells and MSC (Mueller and Germain  2009; Nagasawa et al.  2011), 

CD51 which identifies CAR cells (Nagasawa et al., 2011), as well as Thy1 which 

identifies T cells and MSC (Garg et al., 2013; Nagasawa et al., 2011; Dominici et al., 

2006; Spangrude et al., 1988). By using a combination of markers for stromal and 

hematopoietic cell types, it has been possible to localise different stromal cell subtypes 

in relation to hematopoietic stem/progenitor cells.  
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5.2 RESULTS 

 

5.2.1 Delineation of splenic regions using regional markers 

  

 The architecture of the spleen is uniquely arranged in a way that best reflects its 

functional capacity in erythropoiesis and immunity. In order to visualise specific 

regions of the spleen, frozen sections were prepared using a cryostat and stained with 

antibodies specific for markers known to be expressed by specific stromal subsets of 

spleen (Mueller and Germain, 2009). Three main regions can be delineated including B 

cell follicles, T cell zones and red pulp regions, using antibodies specific for the B220, 

CD3 and F4/80 markers, respectively.  

 

 Staining for the B220 marker on B cells revealed distinct B cell follicles in both 

adult and neonatal sections (Figure 5.1), where activated B cells undergo clonal 

expansion resulting in isotype switching and somatic hypermutation (Mebius and Kraal, 

2005). Dense staining indicates that B cells are in abundance in these follicles (Figure 

5.1). Multiple T cell zones in adult and neonatal sections revealed by CD3 staining, also 

showed dense staining, indicative of T cell-rich regions (Figure 5.1). In these sites, 

naïve T cells are activated on encounter with specific antigens presented by dendritic 

cells with subsequent differentiation into effector T cells (Mebius and Kraal, 2005). 

Multicolour staining showed T cell zones in close proximity with B cell follicles in both 

adult and neonatal spleen sections (Figure 5.1). This close proximity increases the 

possibility of naïve B cells encountering their specific effector T cells. 

 

A comparison of architecture of neonatal and adult spleen revealed differences 

in architecture, notable by smaller regions of T and B cells in neonatal spleen. The B 

cell follicles and T cell zones appeared larger and more developed in adult than in 

neonatal spleen (Figure 5.1). Moreover, the red pulp region of neonatal spleen appeared 

more extensive than that of adult spleen, reflected by the distribution of F4/80+ 

macrophages although less dense in terms of myeloid cell numbers (Figure 5.1). While 

the red pulp region contains a substantial fraction of red pulp macrophages, it also 

contains other cell types including plasma cells, dendritic cells and red blood cells 

(Cesta, 2006; Mebius and Kraal, 2005). Ter-119, a marker found almost exclusively on 

red blood cells, could also be used as an alternative red pulp region marker to F4/80 

(Ikuta et al., 1990). In sum, neonatal spleen has a similar but distinct architecture to 



Figure 5.1 Architecture of adult and neonatal spleen. Acetone-fixed frozen sections were stained with specific fluorochrome-conjugated 

antibodies. Images representative of 3 mice are shown: Adult and neonatal spleens showing T cell zones (T) (CD3-blue), B cell follicles (B) 

(B220-red), central arteriole (CA) and red pulp macrophages (RP) (F4/80-green) at low magnification (scale bar: 250µm). 
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adult spleen, reflected in lower numbers of hematopoietic cells arranged within an 

extensive red pulp matrix.  

 

5.2.2 Identification of different stromal cell subtypes within spleens 

  

 The spleen contains large numbers of non-hematopoietic stromal cells. To 

localise the different stromal cell types in adult and neonatal spleens, antibodies specific 

for the cell surface markers CD29, CD31, CD105, gp38, Thy1.2, CD140a/b and CD51 

were used initially. Staining for the CD29 marker showed continuous distribution of 

stromal cells in the red pulp of both adult pregnant and neonatal spleens, albeit more 

densely in adults than neonatal spleens (Figure 5.2A). The distribution of CD29+ cells in 

adult and neonatal spleen is consistent with evidence that CD29-expressing stromal 

cells are distributed in the red pulp. Some CD29+ expressing cells reflecting the 

fibroblastic reticular cells of white pulp (den Haan et al., 2012) were also detected in 

both adult pregnant and neonatal spleens (Figure 5.2A).  

 

 The CD31 marker identifies sinusoidal and vascular endothelial cells which line 

capillaries, arteries and venous sinuses in red pulp, marginal sinuses in the marginal 

zone on the edge of the white pulp, and central arterioles in the white pulp of spleen. 

Adult spleen sections stained with antibody to CD31 marker, revealed extensive 

distribution of CD31+ cells (Figure 5.2C). Co-staining CD31 with F4/80 confirmed the 

presence of CD31+ cells in the red pulp, white pulp around central arterioles, and in the 

marginal zone of adult and neonatal spleens (Figure 5.2C). However, CD31+ cells 

appeared more densely in the red pulp of adult than neonatal spleens, suggesting more 

developed vasculature than in neonatal spleens, although this was well formed ahead of 

hematopoietic cells in neonatal spleens indicated by F4/80 staining.  

 

Spleen Sections stained with antibody to CD105, a marker of angiogenic 

vasculature, marginal reticular cells and red pulp fibroblasts, showed a similar staining 

pattern as did CD31 in both adult and neonatal spleens (Figure 5.2B). However, staining 

with antibody to CD105 predominated over F4/80 staining in red pulp of neonatal than 

adult spleens, consistent with early formation of CD105+ stromal cells in neonates ahead 

of full hematopoiesis (Tan and Watanabe, 2014). Localisation of gp38+ cells was 

restricted to the white pulp in adult spleens (Figure 5.2D). These gp38+ cells are likely 

to be fibroblastic reticular cells in T cell zones and follicular dendritic cells in the B cell 



Figure 5.2 Stromal cell distribution in adult pregnant and neonatal spleens. Acetone-

fixed frozen sections of adult pregnant (E18.5) and neonatal spleen were stained with 

specific fluorochrome-conjugated antibodies. Images representative of 3 mice are shown: 

(A) CD29-expressing cells (red) distributed extensively in the red pulp (RP), but not the 

white pulp (WP) region of spleens (scale bar: 250µm). (B) CD105-expressing stromal cells 

(green) widely distributed in spleens. F4/80 staining marks the myeloid cells throughout the 

red pulp region (scale bar: 250µm). (C) CD31-expressing endothelium (green) localised in 

both RP and WP of spleen (scale bar: 250µm). (D) gp38-expressing cells restricted to the 

WP regions of adult pregnant spleen (E18.5), but in both the WP and RP regions of 

neonatal spleen (scale bar: 250µm). (E) Thy1.2-expressing cells largely restricted to the T 

cell zones in WP of both pregnant adult and neonatal spleens (scale bar: 250µm).  
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follicles, as previously reported (Mueller and Germain, 2009). In contrast, gp38+ cells 

were widely distributed in the neonatal spleens in both the red and white pulp regions, 

suggesting quite distinct stromal architecture in neonates in relation to adult spleen. 

Staining for Thy1.2 revealed restricted distribution of T cells, mainly in the white pulp 

regions of adult and neonatal spleens. While Thy1.2 has been reported to be a Pan-T 

cell marker, several other cell types including HSC, mesenchymal stem cells and 

fibroblastic cells are also known to express this marker (Garg et al., 2013; Nagasawa et 

al., 2011; Dominici et al., 2006; Spangrude et al., 1988). These cells are rare however, 

and it was not possible to distinguish them using immunohistochemical staining of 

frozen sections. More specific methods of cell identification will be needed to test for 

the presence of these cell types. Unfortunately, staining for CD140a/b and CD51 on 

spleen sections was unsuccessful despite multiple attempts made. The antibodies used 

were of APA5 clone from Biolegend (San Diego, CA, USA) which are probably not 

capable of detecting markers following fixation of tissue.  

 

5.2.3 Optimisation of staining for delineation of HSC in spleens 

  

 While Sca-1 and c-Kit, along with lineage markers have been routinely used in 

flow cytometry to delineate BM HSC, a report by Morita and colleagues (2011) has 

now confirmed that BM HSC are phenotypically similar to splenic HSC. Therefore, 

antibodies to Sca-1 and c-Kit were used initially to delineate splenic HSC on sections, 

along with the F4/80 marker of myeloid cells to delineate red pulp through detection of 

red pulp macrophages. Adult spleen sections stained with antibody for Sca-1, c-Kit and 

F4/80 showed minimum staining for Sca-1+c-Kit+ cells with Sca-1+ cells reflective of 

activated lymphocytes present in white pulp, but very few c-Kit+ cells overall (Figure 

5.3C). This is not unexpected since adult murine spleen is known to harbour very low 

levels of Sca-1+c-Kit+ HSC under steady-state or normal physiological conditions (Dor 

et al., 2006; Wolber et al., 2002). HSC staining was also tested on neonatal spleen 

sections (Figure 5.3A). Extensive distribution of c-Kit+ cells was detected in the red 

pulp of neonatal spleen, with many of these cells expressing Sca1. This suggested the 

presence of HSC in the red pulp of neonatal spleen. Small numbers of c-Kit+ cells were 

also found in the white pulp, but these could reflect dendritic cells, since some dendritic 

cell subsets are known to express c-Kit+ (Pulendran et al., 1997) (Figure 5.3A). This 

confirmed that the antibody for c-Kit cell surface marker was working. Co-staining of 

Sca-1+c-Kit+ cells was confirmed by high power microscopy, although a distinct 



Figure 5.3 Staining for HSC in spleen. Acetone-fixed frozen sections were stained with specific fluorochrome-conjugated antibodies for 

Sca-1 (blue), c-Kit (red), and F4/80 (green). Cells were localised in relation to red pulp (RP) and white pulp (WP) using F4/80 staining of 

myeloid cells in RP. Representative images are shown for: (A) C57BL/6J neonatal spleen at low magnification (scale bar: 250µm). (B) 

C57BL/6J neonatal spleen at high magnification (scale bar: 50µm). (C) C57BL/6J adult spleen (scale bar: 250µm). Images representative of 

2 mice are shown.  
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population of c-Kit+ cells was also detected (Figure 5.3B). Flow cytometry confirmed 

the presence of Lin-Sca-1+c-Kit+ cells in neonatal spleen, although Lin-c-Kit+, or Lin-

Sca-1+c-Kit+ cells, were not visibly present in normal adult spleen using 

immunofluorescent staining of spleen sections (Table 5.4; Figure 5.3C and Figure 5.7).  

  

 One consideration with section staining is that rare cells may not be detectable 

due to the bluntness of the technique and the fact that only a slice of spleen can be 

stained for study. To increase the possibility of detecting HSC in spleen, mobilisation of 

HSC from BM into blood and spleen was induced by treating mice with Flt3L. This 

factor was previously shown to expand and mobilise hematopoietic progenitors in BM 

and spleen when administered to mice (Robinson et al., 2000; Brasel et al., 1996). In 

this study, mice were given an inoculum of B16-Flt3L melanoma cells which secrete 

Flt3L (Mora et al., 2003). After 7 days mice were sacrificed for analysis of HSC present 

in spleen. Two staining protocols were used to detect HSC in spleen. Staining for 

detection of Lin-Sca-1+c-Kit+ cells reflects the total but heterogeneous population of 

HSC (Ogawa et al., 1991; Spangrude et al., 1988). Staining for detection of Lin-

CD150+CD41-CD48- cells is an alternative procedure which is more specific for 

primitive or long-term HSC, but which also detects a heterogeneous population (Kiel et 

al., 2005).  

 

Small numbers of both subsets of HSC could be detected in treated and 

untreated mice (Figure 5.4). In control mice, the number of HSC detected by the two 

stainings was approximately the same (Tables 5.1 and 5.2). However, in mobilised mice, 

the number of Lin-Sca-1+c-Kit+ HSC increased by ~8-fold, the number of Lin-

CD150+CD41-CD48- HSC decreased by ~10-fold (Tables 5.1 and 5.2; Figures 5.4). An 

explanation for these disparate results could lie in the different cell types detected by the 

different staining protocols used. Primitive LT-HSC were more enriched amongst the 

Lin-CD150+CD41-CD48- compartment than the Lin-Sca-1+c-Kit+ subset, such that 

mobilisation of hematopoietic stem/progenitors, rather than primitive long-term 

reconstituting HSC, would occur into spleens of Flt3L treated mice. Section staining of 

spleens from mobilised mice using antibodies to Sca-1 and c-Kit confirmed co-staining 

of these two markers on some spleen cells in mobilised mouse spleen although not in 

control mice (Figure 5.5A). Lineage staining in Figure 5.5B confirmed that the c-Kit 

expressing cells did not express lineage markers also consistent with the hypothesis that 

HSC have localised into spleen on mobilisation.  



Table 5.1 Impact of Flt3L treatment on HSC numbers in spleen 
 

Mice  Cell subset ‡ 
% cells 
amongst 

Lin- spleen 

Absolute 
cell number 

Control 
C57BL/6J HSC (Lin-Sca-1+c-Kit+) 1.38 4140 

Flt3L-treated 
C57BL/6J† HSC (Lin-Sca-1+c-Kit+) 4.63 32410 

 

† Adult mice were given B16-Flt3L expressing cells subcutaneously at 
7 days prior to isolation of spleen.  
‡ Lin- splenocytes were prepared and stained with antibodies to 
identify HSC through gating to detect Lin- cells expressing Sca-1 and 
c-Kit (Figure 5.4A). Data reflect one experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5.2 Impact of Flt3L treatment on numbers of primitive HSC in spleen 
 

Mice Cell subset ‡ 
% cells 
amongst 

Lin- spleen 

Absolute 
cell number 

Control 
C57BL/6J HSC (Lin-CD150+CD41-CD48-) 0.96 2880 

Flt3L-treated 
C57BL/6J† HSC (Lin-CD150+CD41-CD48-) 0.034 238 

 

† Adult mice were given B16-Flt3L expressing cells subcutaneously at 7 days 
prior to isolation of spleen.  
‡ Lin- splenocytes were prepared and stained with antibodies to identify HSC 
through gating to detect Lin- cells expressing Sca-1 and c-Kit. LT-HSC were 
then delineated through differential expression of CD150 and Flt3, followed  
by staining to ensure cells did not express CD41 and CD48 (Figure 5.4A). 
Data reflect a single experiment. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table 5.4 Changes in HSC numbers in spleen during ontogeny 
 

C57BL/6J 
mice Cell subset ‡ 

% cells 
amongst 

Lin- spleen 

Absolute 
cell number 

Pregnant 
adult 

(E18.5) 

HSC 
(Lin- Sca-1+c-Kit+ CD150+Flt3-

CD41-CD48-) 
0.123 4.06x104 

Neonatal 
(6 days) 

HSC 
(Lin- Sca-1+c-Kit+ CD150+Flt3-

CD41-CD48-) 
0.244 7.32x103 

Adult (4-6 
weeks)  

HSC 
(Lin- Sca-1+c-Kit+ CD150+Flt3-

CD41-CD48-) 
0.014 4.09x103 

 
‡ Lin- splenocytes were prepared and stained with antibodies to identify HSC 
through gating to detect Lin- cells expressing Sca-1 and c-Kit, followed by 
differential expression of CD150 and Flt3, and absence of expression of CD41 
and CD48 (Kiel et al., 2005) (Figure 5.7). Data reflect one experiment. 
 
 



Figure 5.4 Flow cytometric detection of Lin-Sca-1+c-Kit+ and Lin-CD150+CD41-CD48- HSC in spleens of Flt3L mobilised mice. 

Spleen cells from B16Flt3L-treated C57BL/6J adult spleen (a) and untreated controls (b) were prepared for antibody staining by mechanical 

dissociation, filtering single cells to remove stroma and lysis of red blood cells. Lineage depletion then employed the magnetic-activated cell 

separation procedure to obtain a population of cells enriched for hematopoietic progenitors. The resultant cell suspension was labelled with 

antibodies specific for lineage (CD11c, CD11b, MHC-II, Gr-1, CD19, CD3, NK1.1 and Ter119) markers, Sca-1, c-Kit, Flt3, CD150, CD41 

and CD48 to detect the (A) Lin-Sca-1+c-Kit+ (LSK) and Lin-CD150+CD41-CD48- HSC fractions. (B) Extensive analysis on LT-HSC (Lin-

Sca-1+c-Kit+Flt3-CD150+CD48-), ST-HSC (Lin-Sca-1+c-Kit+Flt3-CD150-CD48-), MPP2 (Lin-Sca-1+c-Kit+Flt3-CD150+CD48+) and MPP3 

(Lin-Sca-1+c-Kit+Flt3-CD150-CD48+) fractions was also made.  

 

 

 

 

 

 

 

 







Figure 5.5 Identification of Sca-1+c-Kit+ HSC in mobilised adult spleen. Acetone-fixed frozen sections of spleens collected from Flt3L-

treated mice were stained with specific fluorochrome-conjugated antibodies to detect HSC. Representative images are shown for: (A) Sca-1+ 

and c-Kit+ staining showing some costaining (pink) (scale bar: 50µm), (B) lineage+ and c-Kit+ staining showing no costaining cells (scale bar: 

25µm). Results are representative of two animals studied.   

 

 

 

 

 

 

 

 

 

 

 





Figure 5.6 Identification of CD150+CD41/48- HSC in mobilised adult spleen. Acetone-fixed frozen sections of spleens collected from 

Flt3L-treated mice, and control C57BL/6J mice, for staining with fluorochrome-conjugated antibodies specific for CD150 (blue), CD41 (red) 

and CD48 (red) in order to detect HSC delineated as CD150+CD41/48- cells (blue staining). Representative images of 2 animals are shown 

for: (A) C57BL/6J adult, and (B) Flt3L-treated C57BL/6J adult spleen. (scale bar: 100µm). 

 

 

 

 

 

 

 

 

 

 

 





Figure 5.7 Flow cytometric detection of Lin- Sca-1+c-Kit+CD150+Flt3-CD41-CD48- primitive HSC in spleen. Spleens were collected 

from C57BL/6J mice, either normal adults, neonatals or pregnant adults, and cells mechanically separated, filtered to obtain a stroma-free 

single cell suspension and exposed to red blood cell lysis. Cells were then subjected to a magnetic-activated cell separation procedure to 

deplete lineage cells which was then labelled with antibodies specific for lineage (CD11c, CD11b, MHC-II, Gr-1, CD19, CD3, NK1.1 and 

Ter119) markers, Sca-1, c-Kit, CD150, Flt3, CD41 and CD48 to detect primitive (or longterm reconstituting) HSC as a Lin-Sca-1+c-

Kit+CD150+Flt3-CD41-CD48- subset. (A) Adult pregnant (E18.5) spleen, (B) Neonatal 6-day spleen, and (C) Adult spleen.  
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 In order to determine the types of hematopoietic stem/progenitors which were 

increased within the Lin-Sca-1+c-Kit+ subset in Flt3L-treated mice, a comprehensive 

analysis of defined progenitors including LT-HSC, ST-HSC, MPP2 and MPP3 cell 

subsets within the Lin-Sca-1+c-Kit+ subset was performed in treated and untreated mice 

(Table 5.3; Figure 5.4B). Antibody staining to delineate ST-HSC and subsets amongst 

MPP have been defined previously (Pietras et al., 2015; Oguro et al., 2013). ST-HSC 

differs from their LT-HSC counterpart by having a short-term reconstituting capability, 

while MPP is known to have limited self-renewing ability. MPP are currently described 

as MPP2, MPP3 and MPP4 based on phenotypic and functional characterisation (Pietras 

et al., 2015; Oguro et al., 2013). MPP2 and MPP3 are known to have myeloid-biased 

outputs whereas MPP4 is largely lymphoid-biased (Pietras et al., 2015; Oguro et al., 

2013). Analysis of Lin-Sca-1+c-Kit+ cells in experimental mice revealed that numbers of 

LT-HSC and ST-HSC decreased by ~5-fold and ~1.3-fold respectively in treated 

compared with untreated mice. Conversely, the numbers of MPP2 and MPP3 increased 

~6-fold and ~16-fold in treated over untreated mice (Table 5.3; Figure 5.4B). These 

results confirmed that Flt3L induced mobilisation of BM progenitors was selectively 

directed at increasing the number of MPP3 which entered spleen, with smaller increases 

in MPP2 numbers. In contrast, LT-HSC numbers in spleen decreased while ST-HSC 

remained the same. These results are very distinctive, and caution on the need to 

investigate the specific effects of mobilisation on the movement of different 

stem/progenitor cell types moving out of BM and entering blood and spleen.  

 

 Delineation of HSC was also carried out using a second panel of markers 

including CD150, CD41, CD48 and lineage markers applied to spleen sections. By 

comparison with spleens of normal adult mice which showed clear evidence of 

CD150+CD41/48- cells (Figure 5.6A), Flt3L treated adult spleen failed to reveal any 

CD150+CD41-CD48- HSC (Figure 5.6B). Most cells detected in both normal adults and 

Flt3L treated adult spleens were CD150+CD41+/CD48+ reflecting mature hematopoietic 

cells (Figure 5.6). This result is consistent with the flow cytometry data shown in Figure 

5.4, which showed lower numbers of Lin-CD150+CD41-CD48- HSC in Flt3L treated 

than normal adult spleens (Table 5.2; Figure 5.4). Since spleens of pregnant (E18.5) 

mice have been reported to harbour higher numbers of HSC than age-matched controls 

(Nakada et al., 2014), these animals were compared for the presence of Lin-

CD150+CD41-CD48- HSC. Sections were stained with antibodies for CD150, CD41, 

CD48 and lineage markers. This study revealed the presence of rare CD150+CD41-



Table 5.3 Impact of Flt3L treatment on numbers of HSC and MPP in spleen 
 

Mice Cell subset ‡ 
% cells 
amongst 

Lin- spleen 

Absolute 
cell number 

Control 
C57BL/6J 

LT-HSC  
(Lin-Sca-1+c-Kit+Flt3-CD150+CD48-) 0.23 699 

ST-HSC  
(Lin-Sca-1+c-Kit+Flt3-CD150-CD48-) 0.40 1164 

MPP2 
(Lin-Sca-1+c-Kit+Flt3-CD150+CD48+) 0.03 78 

MPP3 
(Lin-Sca-1+c-Kit+Flt3-CD150-CD48+) 0.62 1863 

Flt3L-treated 
C57BL/6J† 

LT-HSC  
(Lin-Sca-1+c-Kit+Flt3-CD150+CD48-) 0.02 140 

ST-HSC  
(Lin-Sca-1+c-Kit+Flt3-CD150-CD48-) 0.12 840 

MPP2 
(Lin-Sca-1+c-Kit+Flt3-CD150+CD48+) 0.07 518 

MPP3 
(Lin-Sca-1+c-Kit+Flt3-CD150-CD48+) 4.38 30660 

 

† Adult mice were given B16-Flt3L expressing cells subcutaneously at 7 days prior to 
isolation of spleen.  
‡ Lin- splenocytes were prepared and stained with antibodies to identify HSC through 
gating to detect Lin- cells expressing Sca-1 and c-Kit. LT-HSC were then delineated 
through differential expression of CD150, Flt3 and CD41/48 (Figure 5.4B). Data 
reflect a single experiment. 
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CD48- HSC present in the red pulp of adult pregnant mouse spleen (Figure 5.8). 

Pregnant mice therefore provide an alternate model for detection of HSC in spleen over 

Flt3L mobilisation, which can be used to localise more primitive CD150+CD41-CD48- 

HSC within the red pulp region (Figure 5.8).  

 

Further flow cytometry also confirmed the presence of rare primitive LT-HSC in 

spleens of pregnant mice in higher numbers than were detected in either neonatal mice 

or normal adult control mice. This study involved multicolour staining for detection of 

the rare primitive Lin-Sca-1+c-Kit+CD150+Flt3-CD41-CD48- HSC subset described 

recently (Shin et al., 2014). Initial studies have indicated ~10-fold increase in the size of 

this population over normal adult spleen, and ~5-fold increase in neonatal spleen over 

adult spleen (Table 5.4; Figure 5.7). While it has been possible to replicate section 

staining in multiple animals, flow cytometry results are indicative of only one 

experiment and further replication is needed to confirm the numbers reported here. The 

fact that the same result can be confirmed, however, using two different staining 

methods, is important.  

 

5.2.4 Localisation of HSC within the spleen architecture 

 

 In Figures 5.3 and 5.5, we showed evidence that HSC could be detected amongst 

dissociated spleen cells of neonatal mice, Flt3L mobilised mice and pregnant mice using 

antibodies commonly used in flow cytometry. We also showed in Figure 5.7 that 

primitive HSC could be detected in spleen cell suspensions as a Lin-Sca-1+c-

Kit+CD150+Flt3-CD41-CD48- subset of cells. It has also been possible to identify HSC 

in sections of adult normal and pregnant mice (Figures 5.6 and 5.8). In order to localise 

HSC in spleen in relation to splenic architecture and stromal cell types, a series of 

section staining experiments were conducted. When a stroma-specific antibody was 

combined with antibodies that delineate HSC, it was possible to show that HSC localise 

in the red pulp region of spleen. Antibody to F4/80, which delineates red pulp 

macrophages, was commonly used to delineate the red pulp region and could be clearly 

seen in red pulp of spleens of pregnant mice (Figure 5.8). In addition, HSC were found 

to lie in close proximity with F4/80+ red pulp macrophages (Figure 5.8). It is also likely 

that the subset of F4/80+ red pulp macrophage overlaps with the VCAM1+ red pulp 

macrophages described by Dutta and colleagues (2015), which retain HSC in spleen via 

VCAM1 (Dutta et al., 2015). The models of neonatal and adult pregnant mice were 



Figure 5.8 HSC are localised in the red pulp of pregnant (E18.5) spleens. Acetone-fixed frozen spleen sections from adult pregnant 

(E18.5) mice were stained with fluorochrome-conjugated antibodies specific to CD150 (blue), CD41 (red), CD48 (red), Lineage (red), CD3 

(green) and F4/80 (yellow). In A) red pulp (RP), T cell zones (T), and B cell follicles (B) are identified. In B) white pulp (WP) and red pulp 

(RP) are identified. HSC (Lin-CD150+CD41-CD48-) are identified as blue cells by white arrows in the RP. Images representative of 3 mice 

are shown at: (A) lower magnification (scale bar: 250µm), (B) higher magnification (scale bar: 50µm).  
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found most useful in these studies since they have the highest number of HSC within 

spleen. 

 

 We next asked whether HSC associate with spleen stromal cell types bearing 

markers identified in Chapter 4 (Figures 5.1 and 5.2). In a series of experiments, 

sections of spleen from both neonatal and adult pregnant mice were stained with a 

cocktail of antibodies to detect HSC as Lin-CD150+CD41-CD48- cells, along with an 

antibody specific for different stromal cell types. These included CD31 specific for 

endothelial cells, CD105 specific for angiogenic vasculature, marginal reticular cells 

and red pulp fibroblasts, gp38 specific for fibroblastic reticular cells in T cell zones and 

follicular dendritic cells in the B cell follicles, and Thy1.2 specific for T cells and also 

mesenchymal stem/progenitor cells. HSC detectable in the red pulp regions of both 

neonatal and pregnant mouse spleen did not co-localise with CD31+ cells, suggesting no 

close association of HSC with sinusoidal endothelial cells (Figures 5.9 and 5.10). 

Antibody to CD105 was used to detect red pulp fibroblasts, marginal reticular cells and 

angiogenic endothelial cells in neonatal spleens. Cells which stained for this marker had 

no association with HSC, in line with evidence obtained for CD31 staining cells (Figure 

5.11). In further studies, gp38+ stromal cells were identified in the red pulp region of 

neonatal but not pregnant mouse spleens (Figure 5.12 and 5.13). In these studies, some 

but not all HSC in neonatal mice appeared to associate with gp38+ (% association: 32.50 

± 22.98) or Lin+ cells (Figure 5.12). In contrast, HSC in pregnant spleens appeared to 

associate with F4/80+ myeloid cells or Lin+ cells in the red pulp of spleen, in the 

presence of far fewer gp38+ cells (Figure 5.13). A final study involved Thy1.2 staining 

of cells in red pulp of pregnant mouse spleen. This revealed that some HSC were in 

close alignment with Thy1.2 staining mesenchymal cells (% association: 26.17 ± 15.11), 

as well as F4/80 and Lin staining cells (Figure 5.14). Thy1.2 staining would be 

consistent with the presence of mesenchymal perisinusoidal cells providing a niche in 

spleen supportive of HSC as reported by others (Inra et al., 2015). 

 

 

 

 

 

 

 



Figure 5.9 HSC in the red pulp of neonatal spleen are not associated with sinusoids. Acetone-fixed frozen neonatal spleen sections were 

stained with fluorochrome-conjugated antibodies specific to CD150 (blue), CD41 (red), CD48 (red), Lineage (red), CD31 (green), and F4/80 

(yellow), to delineate red pulp (RP), white pulp (WP) and central arteriole (CA) in A). In B) HSC (arrows: Lin-CD150+CD41-CD48-: blue) 

were found to be localised independently of sinusoids (CD31+: green) and myeloid cells (F4/80+: yellow) in the red pulp region of neonatal 

spleen. Representative images of 3 mice are shown at: (A) lower magnification (scale bar: 250µm), (B) higher magnification (scale bar: 

50µm).  

 

 

 

 

 

 

 

 

 





Figure 5.10 Localisation of HSC in relation to sinusoidal endothelial cells in spleens of pregnant (E18.5) mice. Frozen sections of 

spleen from pregnant (E18.5) mice were fixed with acetone and stained with fluorochrome-conjugated antibodies to CD150 (blue), CD41 

(red), CD48 (red), Lineage (red), CD31 (green), and F4/80 (yellow). Images representative of 2 mice are shown. In A) red pulp (RP) and 

white pulp (WP) regions are delineated (scale bar: 250µm). In B) HSC (Lin-CD150+CD41-CD48-) were localised in RP but not in association 

with CD31 staining (green) sinusoidal endothelial cells (scale bar: 50µm).  

 

 

 

 

 

 

 

 

 

 





Figure 5.11 HSC in neonatal spleen do not associate with red pulp fibroblasts. Neonatal spleen sections were fixed with acetone and 

stained with fluorochrome-conjugated antibodies to CD150 (blue), CD41 (red), CD48 (red), Lineage (red), CD105 (green), and F4/80 

(yellow). Representative images of 2 mice are shown in: (A) where central arteriole (CA), red pulp (RP), and white pulp (WP) regions were 

delineated (scale bar: 250µm). In (B) HSC (Lin-CD150+CD41-CD48-: blue) were localised in RP independent of CD105+ (green) cells (scale 

bar: 50µm).  

 

 

 

 

 

 

 

 

 

 





Figure 5.12 Localisation of HSC in relation to gp38-expressing stromal cells in neonatal spleen. Frozen neonatal spleen sections were 

fixed with acetone and stained with fluorochrome-conjugated antibodies to CD150 (blue), CD41 (red), CD48 (red), Lineage (red), gp38 

(green), and F4/80 (yellow). In A) red pulp (RP) and white pulp (WP) regions were delineated (scale bar: 250µm. In B) HSC (Lin-

CD150+CD41-CD48-: blue) were localised in RP, some in close proximity with gp38+ (green) cells (scale bar: 25µm). Images representative 

of 3 mice are shown.  

 

 

 

 

 

 

 

 

 

 





Figure 5.13 Localisation of HSC in relation to gp38-expressing stromal cells in pregnant (E18.5) spleen. Frozen sections from spleens 

of pregnant (E18.5) mice were fixed with acetone and stained with fluorochrome-conjugated antibodies to CD150 (blue), CD41 (red), CD48 

(red), Lineage (red), gp38 (green) and F4/80 (yellow). In A) red pulp (RP) and white pulp (WP) regions are delineated. Gp38+ fibroblastic 

reticular cells (FRC) were localised in the white pulp (scale bar: 250µm). In B) HSC (Lin-CD150+CD41-CD48-: blue) were localised in red 

pulp in association with F4/80+ or Lin+ cells (scale bar: 25µm). In C) FRC (green) but not HSC (blue) were localised in white pulp (scale bar: 

25µm). Images representative of 3 mice are shown.  

 

 

 

 

 

 

 

 

 





Figure 5.14 Localisation of HSC in relation to Thy1.2-expressing stromal cells in pregnant (E18.5) spleens. Frozen spleens of adult 

pregnant (E18.5) mice were fixed with acetone and stained with fluorochrome-conjugated antibodies to CD150 (blue), CD41 (red), CD48 

(red), Lineage (red), Thy1.2 (green), and F4/80 (yellow). In A) red pulp (RP) and white pulp (WP) regions are delineated. Discrete white 

pulp regions stained with Thy1.2 reflect T cell zones. (scale bar: 250µm). In B) HSC (Lin-CD150+CD41-CD48-) were localised in red pulp, 

with only some of those cells in association with Thy1.2+ (green) stromal cells. (scale bar: 25µm). Images representative of 3 mice are shown.  
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5.3 DISCUSSION 

 

While the concept of a HSC niche was developed a few decades ago, it has only 

been technological advances in the recent past which have permitted experimental 

investigation at the level of single cell identification and interaction. Indeed, these 

studies have uncovered multiple niche elements in BM and described possible interplay 

between distinct cell types. Unfortunately, investigation into HSC niches in spleen is 

only in its infancy, and made more difficult because of the rarity of HSC in that organ, 

resulting in very limited information available. In this chapter, information on the 

phenotypic characteristics of 5G3 stroma developed in Chapter 3, as well as cell surface 

markers of ex vivo stroma identified in Chapter 4, have been combined for investigation 

of niches for HSC in spleen. 

 

Previous studies have shown that the adult spleen contains a very small 

population of HSC capable of long-term hematopoietic reconstitution (Tan and O’Neill, 

2010; Wolber et al., 2002). HSC in spleen were also found to be phenotypically and 

functionally similar to HSC in the BM (Morita et al., 2011). However, since HSC exist 

in far lower number in adult spleen than that in BM (Morita et al., 2011), it has been 

extremely challenging to detect HSC in steady-state adult spleen using 

immunofluorescence imaging. We therefore decided to turn our attention to further 

models where the numbers of HSC is increased above normal adult levels in order to 

perfect techniques and staining methods for HSC detection. These models included 6-

day old neonatal mice, pregnant (E18.5) mice and Flt3L-mobilised mice. There are two 

main reasons for the choice of the neonatal spleen model. Firstly, it is known that the 

spleen harbours high numbers of HSC until 2 weeks of age (Christensen et al., 2004; 

Wolber et al., 2002). Secondly, stroma-dependent splenic LTC were most readily 

established from 6-day old spleens, producing L-DC which develop in vitro directly 

from LT-HSC (Petvises and O'Neill, 2014b). The choice to also use the pregnant adult 

spleen model was based on a recent report showing that pregnant spleen contains more 

HSC than non-pregnant adult spleen, consistent with a need for increased erythropoiesis 

and myelopoiesis during pregnancy (Inra et al., 2015). In addition, the documented 

effect of Flt3L on HSC mobilisation from BM to peripheral blood and spleen (Robinson 

et al., 2000; Neipp et al., 1998; Brasel et al., 1996) has been the main reason for the 

choice of Flt3L mobilisation model.  
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In this study, success was achieved in localising Lin-CD150+CD41-CD48- HSC 

within the red pulp of neonatal spleen using section staining, even though cells were 

present in low numbers. Data collected here therefore parallel a recent report showing 

that HSC in spleen can be readily detected following stress-induced induction of 

extramedullary hematopoiesis (Inra et al., 2015). In that report, Inra and coworkers 

induced extramedullary hematopoiesis in spleen using combined administration of 

cyclophosphamide and G-CSF, a procedure which results in increased numbers of HSC 

migrating into spleen (Inra et al., 2015; Kiel et al., 2005; Wright et al., 2001; Morrison 

et al., 1997). In that study, immunofluorescence imaging was used effectively to 

localise HSC within spleen red pulp. That same group also showed that extramedullary 

hematopoiesis was prominent in spleens of pregnant mice (Nakada et al., 2014). 

Consistent with their findings, we have shown that the number of Lin-CD150+CD41-

CD48- HSC in pregnant adult mice is ~10-fold greater than in non-pregnant adult spleen 

(Table 5.4), with the majority of these cells present in the red pulp region (Figure 5.8). 

These results are consistent with increased erythropoiesis and myelopoiesis occurring in 

spleen during pregnancy dependent on an increased supply of hematopoietic 

stem/progenitor cells present in that organ (Inra et al., 2015; Nakada et al., 2014).  

 

A detailed comparison amongst of several models used for splenic 

hematopoiesis has revealed that pregnant adult mice model are superior to 6-day old 

neonatal and Flt3L mobilised adult models mice in terms of number of Lin-

CD150+CD41-CD48- HSC in spleen. The exact mechanisms leading to these differences 

are not known and will be a complex problem to sort out. During development, 

hematopoiesis in neonatal spleen progressively decreases to a steady-state level as the 

BM takes over as the main hematopoietic organ. In the case of Flt3L-mobilised mice, 

Flt3L treatment led to a specific increase in the number of MPP3, myeloid-biased MPP 

present in spleen (Table 5.3; Figure 5.4B). Another important question is whether 

differentiation of HSC to MPP occurs prior to mobilisation or within the splenic 

microenvironment. There are many questions yet to be addressed in relation to the entry, 

or development of HSC within spleen. However, that issue is not the main focus of this 

chapter. The study here was focused on localising HSC in spleen and with them the 

HSC niches which support hematopoiesis in that organ.  

 

This study has gone some way towards identifying the stromal cells which are 

associated with HSC forming niches within spleen. Multiple cell surface markers 
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including CD31, gp38, CD105 and Thy1.2 were used in this study. Some markers of 

interest could not be used since available antibodies were not suitable for 

immunofluorescent staining of fixed sections. In particular, it was not possible to use 

CD140a/b for immunofluorescence staining of spleen sections, a marker which has been 

associated previously with perivascular reticular cells in BM (Zhou et al., 2014). 

Amongst those markers tested successfully, no association with HSC was observed for 

CD31 and CD105 staining cells in either neonatal or pregnant spleens (Figures 5.9, 5.10 

and 5.11). Neonatal spleens showed a predominance of gp38+ stromal cells in red pulp 

and some HSC appeared to associate with these stromal cells (Figure 5.12). This finding 

was not repeated for adult pregnant spleen where fewer gp38+ cells were detected, and 

very few HSC appeared to co-localise with these cells (Figure 5.13). Thy1.2 staining 

stromal cells did however lie in close proximity with some HSC in pregnant spleens 

(Figure 5.14), consistent with a niche involving mesenchymal, perhaps perisinusoidal 

reticular cells, as described previously by others (Inra et al., 2015).  

 

It was also noted that some HSC were associated with hematopoietic cells. It is 

possible that hematopoietic cells can act to maintain HSC within the splenic red pulp 

microenvironment. Splenic macrophages may promote HSC maintenance in spleen, 

consistent with the role of CD169+ macrophages in HSC maintenance in BM (Chow et 

al., 2011). Indeed, Dutta and coworkers (2015) recently reported that macrophages 

retain HSC in spleen through VCAM1 interaction, and that reduction of VCAM1 

expression leads to egression of HSC into the circulation (Dutta et al., 2015). Previously 

it was shown that splenic stroma could promote differentiation of HSC from BM into 

regulatory DC (Tang et al., 2006). Regulatory DC themselves promote the generation of 

regulatory T cells. Recently, FoxP3 regulatory T cells were reported to provide an 

immune privileged site for HSC niches in BM (Fujisaki et al., 2011). However in this 

study no CD3 staining T cells were detected in the red pulp (Figure 5.1). 

 

Although direct contact of HSC with stromal cells is in keeping with a niche 

model for hematopoiesis, it is still possible that stromal cells could act in a paracrine 

fashion. We are therefore unable to conclusively interpret the hematopoietic support 

role of stromal cells which were not in direct contact with HSC without using  

conditional knock out mice to undertake a complete study. A splenic niche involving 

Tcf21+ mesenchymal and endothelial cells has been recently reported (Inra et al., 2015). 

While Tcf21+ cells were shown to express CD140a/b, we were unable to get good 
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staining of CD140a/b+ cells in spleen sections and could not therefore do a direct test of 

these earlier findings. However, it would be valuable to know if Tcf21+ cells also 

express gp38 and Thy1.2 since our staining has shown co-localisation of HSC with 

these stromal cells. It would also be interesting to speculate that HSC niches present in 

spleen might change during ontogeny, which would explain the presence of a niche 

comprising gp38+ stromal cells in neonatal but not adult, or adult pregnant spleen, based 

on their association with HSC.  

 

Interestingly, distinct architectural differences were also noted between adult 

and neonatal spleens in this study. The more developed white pulp region of adult 

spleen compared with neonatal spleen is consistent with earlier findings that white pulp 

of murine spleen is poorly organised at birth, and that extensive cellular organisation 

occurs after birth (Kuper et al., 2016; Golub and Cumano, 2013). This greatly contrasts 

with human spleen which is apparently fully developed at birth (Steiniger et al., 2007). 

To this end, we have shown that HSC localise in the red pulp region of neonatal and 

pregnant spleens. While only gp38+ stromal cells were found to associate with HSC in 

neonatal spleens, there appear to be different mesenchymal stromal cell types which 

form HSC niches in adult spleen. The possibility that endothelial and vascular cells may 

contribute in a paracrine fashion to aid in the regulation of splenic extramedullary 

hematopoiesis also needs to be considered. Current research methodology might not be 

able to adequately address this possibility.  
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6.1 INTRODUCTION 

 

The subcapsular space of the kidney is a commonly used site for ectopic tissue 

transplantation in rodents since it offers a highly vascularised environment and a large 

accessible space for transplantation of cells. This environment also permits angiogenesis 

of grafted tissue, necessary for long-term graft survival. Subcapsular kidney grafting has 

been successfully used to investigate repopulation of hematopoietic cells and 

progenitors following transplantation of adult and neonatal spleen capsular tissue 

(Shatry and Levy, 2004). This technique was also used recently to demonstrate that the 

regeneration of splenic tissue from neonatal spleen capsule tissue requires lymphotoxin 

signalling from stromal cells (Tan and Watanabe, 2014). Methodologies described in 

these two studies were used as a reference for current work involving transplantation of 

splenic stromal cells with a view to the development of ectopic spleen tissue.  

 

This chapter utilises subcapsular kidney grafting to investigate whether defined 

ex vivo splenic stromal subsets and cloned stromal cell lines can form ectopic HSC 

niches in vivo. One of the biggest challenges with transplantation of freshly sorted 

splenic stromal subsets is the low cell number available. In order to optimise the 

transplantation outcome, sorted or cultured cells are often mixed with Matrigel, an 

extracellular matrix comprising laminin, enactin and collagen IV extracted from 

Englebreth-Holm-Swarm tumours in mice (Hughes et al., 2010; Kleinman et al., 1982; 

Orkin et al., 1977). Matrigel is commonly used to support cultures of stem cells and has 

been shown to maintain the self-renewal and pluripotency of stem cells in culture 

(Hughes et al., 2010).   

 

Chapter 3 of this thesis described stromal cell lines derived from a splenic long-

term culture, STX3. The 5G3, but not 3B5, clonal line, was shown to support in vitro 

hematopoiesis (Periasamy et al., 2009). The difference in hematopoietic support 

capacity between 5G3 and 3B5 stroma has provided this laboratory with a means to 

further investigate the molecular signals which drive in vitro hematopoiesis. An 

important question is therefore whether these two stromal cell lines could exhibit 

hematopoietic support capacity in vivo. Similar protocols have also been used to assess 

the capacity of the defined splenic stromal subsets P8, P9, P10 and P11 described in 

Chapter 4, since at least P9 and P10 were shown to support in vitro hematopoiesis. 

More recently, this laboratory described the in vivo counterpart of L-DC in both murine 
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and human spleen (Petvises et al., 2016; Hey et al., 2015). This finding adds 

physiological relevance to in vitro cultures for hematopoiesis. Since L-DC were 

originally described as the main myeloid cell produced in splenic stromal co-cultures in 

vitro (Periasamy et al., 2009; Ni and O'Neill, 1997), it is therefore, of interest to know 

whether the splenic stromal subsets and cloned stromal cell lines also support the 

development of L-DC in stromal cell grafts following their transplantation in vivo. 
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6.2 RESULTS 

 

6.2.1 Subcapsular grafting of splenic stroma in kidney  

  

 The kidney subcapsular grafting procedure published by Tan and Watanabe 

(2014) and Shatry and Levy (2004) was adapted for this study. In an initial study to test 

the functionality of this technique for investigation of stromal fractions, 3-day old 

neonatal spleen capsule was prepared in accordance with the procedure used by Tan and 

Watanabe (2014). In most cases, one spleen capsule was grafted into the kidney 

subcapsular space, allowed to grow for 4 weeks, and then dissected out for dissociation 

of cells, followed by antibody staining and flow cytometry to detect subsets present in 

grafts. The grafting of splenic capsules into the kidney subcapsular space of C57BL/6J 

mice gave a success rate of 33% (Table 6.1). Successive grafted tissue showed the 

infiltration of T and B cells (Figure 6.1), suggesting success with the technique, albeit 

low success rate in graft uptake.  

 

 Further experiments tested the grafting technique on immunodeficient 

NOD/SCID mice as host mice. Grafting with spleen capsules into the kidney 

subcapsular space of NOD/SCID mice gave a success rate of 33% (Table 6.1). Replicate 

grafts showed the presence of myeloid cells based on cell staining for CD11b and 

CD11c (Figure 6.2). These included myelomonocytic cells (CD11b+CD11c-) and 

dendritic cells (CD11b+/-CD11c+). T cells were delineated as CD3+ cells and B cells as 

CD19+ cells (Figure 6.2). No macrophages were detectable indicated by an absence of 

F4/80 staining.  

 

In order to test whether it was possible to engraft isolated fractionated stromal 

cells, in a separate experiment 5x104 to 1x106 capsular cells from spleen were 

dissociated with collagenase, mixed with Matrigel and grafted into NOD/SCID or 

C57BL/6J mice. Unfortunately, no successful grafts were recovered at 28 days after 

grafting isolated stroma (Table 6.1). Based on a series of grafting experiments, it was 

determined that grafting untreated spleen capsule was more successful than grafting 

dissociated capsular stromal cells. Mixing cells with Matrigel did not improve graft 

outcomes.  

 

 



Table 6.1 Grafting success using neonatal spleen 
 

Grafted cells No. of hosts Successful grafts Success rate (%) 

Whole spleen capsule 
 

3‡ 
 1 33 

5x105- 1x106 

capsular cells 4‡ 0 0 

Whole spleen capsule 
 

3† 
 

1 33 

5x104 

capsular cells 2† 0 0 

 
 

* Grafts were derived from 3-day old C57BL/6J spleen, either as a tissue fragment or as 
collagenase-digested capsular cells.  
‡ Host mice were adult C57BL/6J (CD45.2. H-2Kb), which had been splenectomised. 
† Host mice were adult NOD/SCID (CD45.1. H-2Kd), which had been splenectomised. 

 
 
 
 



Figure 6.1 Procedure for grafting into the subcapsular space of kidney. (A) Graft preparation, grafting procedure and graft tissue analysis. Three-

day old spleens were crushed and capsular tissue isolated for transplantation into the renal subcapsular space of 6-week-old C57BL/6J mice. In some 

experiments, capsular tissue was dissociated with collagenase digestion and single cells prepared for transplantation by mixing with Matrigel. Grafted 

tissues were dissected from kidney at 4 weeks after transplantation, and cells dissociated and filtered through a 100-!m cell strainer to give a single cell 

suspension. Cells were then stained with antibodies specific for CD3, CD19 and CD45. CD45-expressing cells were gated for further analysis 

including expression of CD3 and CD19, to detect T and B cells as shown here (B). 

 

 

 

 

 

 

 

 

 

 

 

 

 





Figure 6.2 Composition of tissue forming from 3-day old spleen capsular graft. Capsular tissue was prepared by mechanical dissociation of spleen, 

followed by transplantation into the renal subcapsular space of 6-week-old NOD/SCID mice. Grafted tissues were dissected out after 4 weeks, and 

cells dissociated for staining with antibodies for CD11b, CD11c, CD3, CD19 and F4/80. Live singlets were gated, and staining with CD11b and 

CD11c used to divide subsets for further analysis of expression of the CD19 and CD3 lymphoid markers. One capsule transplanted under the kidney 

capsule of a single mouse was analysed. 
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6.2.2 Formation of ectopic grafts following transplantation of 5G3 stroma 

  

Using the same methodology, 5G3 stroma was tested for its ability to form 

ectopic splenic tissue in vivo following transplantation into the subcapsular space of the 

kidney of immunodeficient NOD/SCID mice. Generally, 1 or 2 grafts were surgically 

placed under an individual kidney capsule of multiple mice. Two supporting matrices 

were used for grafting: an isopore membrane/collagen sponge construct and a Matrigel 

matrix. Some mice were splenectomised ahead of grafting to test if splenectomised mice 

would give improved graft formation. In most cases, tissue forming in the graft space 

was isolated and cells dissociated for flow cytometry at 4 weeks after grafting. In one 

particular experiment, three distinct grafts established with varying cell numbers (5x104, 

5x105 or 1x106) were used for analysis of grafted tissue at 1 to 3 weeks after grafting.  

 

 Due to the low overall graft success rate (3%), it was not possible to assess 

effectiveness of grafting matrix, cell number, importance of splenectomy, or time past 

grafting, on the overall success of tissue formation using 5G3 stromal cells as a graft 

(Table 6.2). Success was however obtained with one mouse given three separate grafts. 

Flow cytometric analysis of these grafts showed two distinct subsets of CD11b+ myeloid 

cells present in the graft (Figure 6.3A). One subset of cells reflected CD11chi dendritic 

cells, while the other was a CD11clo subset. These cells also expressed CD19 or both 

CD19 and CD3 (Figure 6.3A and 6.3B). Cells from the CD11b+CD11chi subset 

uniformly showed F4/80 staining. In contrast, F4/80 staining was present on <10% cells 

of cells of the CD11b+CD11clo subset (Figures 6.3A and 6.3B). The expression of CD3 

and CD19 cell surface markers on cells of CD11b+CD11c+ phenotype was unusual and 

suggested the possibility of an aberrant cell type forming in 5G3 stromal grafts (Figure 

6.3A). In these experiments, control C57BL/6J mice showed the expected T and B 

lymphoid cells in spleen which are absent in the NOD/SCID hosts, which instead 

contained mainly CD11b+ myeloid cells (Figure 6.2A).  

 

6.2.3 Myelopoiesis is supported within 3B5 stromal grafts  

  

A similar grafting procedure was carried out using 3B5 stromal cells grafted into 

NOD/SCID mice. However, in addition to analysis of cells in grafts by flow cytometry, 

some grafted tissue was isolated whole and frozen for immunohistochemistry. Grafting 

of 3B5 stroma was very successful, yielding an overall success rate of 73% (Table 6.2). 



Table 6.2 Success in grafting stromal cell lines 
 

Grafted 
cells No. of cells grafted No. of hosts Successful grafts Success rate (%) 

3B5 
 

1x106 § 19 13 68 
1x106: 1x106  † 2 2 100 
5x104: 5x105 †   2  11 50 

5G3 

1x106 § 24 (4‡) 1 4 
1x106  4 0 0 

1x106: 1x106  † 3  01 0 
5x104: 5x105  † 1  02 0 
5x104: 5x105  † 1  03 0 

10C9 1x106 5 3 60 
STX3 1x106 5 0 0 
7G10 1x106 5 0 0 

 
Stromal cell lines derived from B10.A(2R) mouse spleen (CD45.2, H-2Kk) were grafted under 
the kidney capsule of adult NOD/SCID (CD45.1, H-2Kd) mice. In most cases, cells were mixed 
with Matrigel ahead of transplant. 

 
§ These cells were grown overnight on a collagen sponge as a matrix for grafting, instead of 
mixing in Matrigel.  
‡ These mice were splenectomised ahead of grafting.  
† Two separate grafts were placed on the same kidney.  

1 Graft was analysed 3 weeks after transplantation, instead of the usual 4 weeks.  
2 Graft was analysed at 1 week. 
3 Graft was analysed at 2 weeks. 

 
 



Figure 6.3 Limited success with 5G3 stromal cell grafting. A 5G3 stromal cell pellet was prepared by trypsinising cells in culture flasks and 

pelleting them onto a collagen sponge followed by overnight culture. The construct was then carefully transplanted into the renal subcapsular space of 

6-week-old NOD/SCID mice. Tissues which formed in the graft space were dissected out at 4 weeks and dissociated for staining cells with antibodies 

specific for CD11b, CD11c, CD3, CD19 and F4/80. Live singlets were gated, and staining with CD11b and CD11c used to divide subsets for further 

analysis of expression of the CD19 and CD3 lymphoid markers. Three individual grafts transplanted into a single mouse were analysed, and cell 

composition compared with splenic leukocytes from adult C57BL/6J and NOD/SCID mice. (A) Analysis of myeloid and lymphoid cell subsets. (B) 

Further analysis of two distinct subsets of cells in terms of myeloid and lymphoid markers. 
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A comparison of the success rate between different experiments indicated that a graft 

cell number of 1x106, with analysis at 4 weeks after grafting, was optimal for 3B5 

stroma. Different supporting matrices were not found to have any noticeable effect on 

the success of 3B5 grafting. Flow cytometry identified a consistent range of 

hematopoietic cells within all 3B5 grafts based on staining for CD11b, CD11c, F4/80, 

CD3 and CD19 (Figure 6.4, Table 6.3). Notably, grafts contained myeloid (CD11b+) 

and dendritic cells (CD11c+), but lacked lymphoid cells (CD19+/CD3+) (Figure 6.4A). 

A majority (34%) population of dendritic-like cells was present in all grafts. These cells 

have a phenotype of CD11b+CD11cloF4/80+, which is reflective of L-DC (Table 6.3; 

Figure 6.4A and 6.4B). Monocytes/macrophages were identified as CD11b+CD11c-

F4/80+ cells, and made up 12% of the total cell population (Table 6.3). Minor 

populations of cDC-like cells as CD11b-/+CD11c+F4/80+ cells and plasmacytoid DC as 

CD11b-CD11c+F4/80- cells were also detected. No T cells (CD3+) and B (CD19+) cells 

were detected in the grafts (Table 6.3; Figure 6.4A and 6.4B).  

  

Further analysis investigated the localisation of hematopoietic cells within 3B5 

graft tissue. Frozen sections were made and fixed with acetone before staining with 

antibodies specific for markers of myeloid (CD11b) and dendritic (CD11c) cells. 

Antibody to H-2Kk was included to identify 3B5 stromal cells in relation to host 

NOD/SCID cells which express H-2Kd. Section staining of 3B5 grafted tissue revealed 

mature myeloid (CD11b+) and dendritic cells (CD11c+) scattered within the tissue 

(Figure 6.5). Moreover, hematopoietic cells were found to be closely aligned with 3B5 

stromal cells within the grafted tissue (Figure 6.5). Mature host hematopoietic cells in 

grafts could have either directly infiltrated the graft, or arose by differentiation from 

host hematopoietic stem/progenitor cells that had infiltrated the graft. In order to 

address the source of hematopoiesis, flow cytometry and immunohistochemistry were 

used to identify any hematopoietic stem/progenitor cells within grafts. These cells were 

detected by staining for lineage-negative (Lin-) cells which express Sca-1 and c-Kit 

(LSK cells), which also express CD150 but not Flt3. This phenotype has been described 

previously as reflective of LT-HSC in mouse BM (Shin et al., 2014). The LSK 

CD150+Flt3- subset, which is highly enriched for LT-HSC, was detected within two 

separate 3B5 grafts (Figure 6.6). In addition, immunohistochemical staining for Lin-

CD150+CD41-CD48- HSC on 3B5 graft sections using immunohistochemistry has 

confirmed the presence of HSC amongst other mature hematopoietic cells in the graft 

(Figure 6.7). These results introduce the possibility that mature hematopoietic cells may 



Figure 6.4 Ectopic 3B5 stromal grafts support hematopoiesis. Grafts of 3B5 stromal cells were prepared and transplanted as described in Figure 6.1 

using NOD/SCID mice as hosts. These were dissected from the kidney of NOD/SCID recipient mice at 4 weeks after transplantation, and cells 

dissociated for staining with antibodies specific for CD11b, CD11c, CD3, CD19 and F4/80. Live singlets were gated, and CD11b and CD11c myeloid 

cell staining used to divide subsets for further analysis of expression of the lymphoid markers CD19 and CD3. Three individual grafts transplanted 

under the kidney capsule of a single mouse were analysed, and cell composition compared with spleen cells from adult C57BL/6J and NOD/SCID 

mice. (A) Expression of lymphoid markers on subsets differing in expression of CD11b and CD11c. (B) Further analysis of two distinct subsets of cells 

in terms of myeloid and lymphoid markers. 

 

 

 

 

 

 

 

 

 

 

 

 

 







Table 6.3 Representation of hematopoietic cells within 3B5 grafts  
 

Subset identified* Predicted cell type 
% cells within 

dissociated 
graft** (n=9) 

CD11b-CD11c-F4/80-CD3+CD19- T cell 0.02 ± 0.01 
CD11b-CD11c-F4/80-CD3-CD19+ B cell 0.00 ± 0.00 

CD11b+CD11cloF4/80+CD3-

CD19- L-DC 34.41 ± 8.14 

CD11b+CD11c-F4/80+CD3-

CD19- Monocyte/macrophage 12.45 ± 4.15 

CD11b-CD11c+F4/80-CD3-CD19- Plasmacytoid DC  2.95 ± 0.98 
CD11b-CD11c+F4/80+CD3-

CD19- CD8+ cDC  1.36 ± 0.45 

CD11b+CD11chiF4/80+CD3-

CD19- CD8- cDC  3.21 ± 1.07 

 

3B5 stromal cells were grown on a collagen sponge and transplanted under the 
kidney capsule of NOD/SCID (CD45.1) mice. Grafts were dissected out after 4 
weeks and cells dissociated for analysis by antibody staining and flow cytometry.  
* Subsets are identified by expressed markers only.  
** The remainder of cells in the graft reflect hematopoietic precursors and non-
hematopoietic (stromal) cells as verified in Figure 6.6.  
	



Figure 6.5 Localisation of myeloid cells within 3B5 grafts. 3B5 stromal cells were grown on a collagen sponge ahead of transplantation under the 

kidney capsule of NOD/SCID (CD45.1) mice. Graft tissues were dissected out after 4 weeks and frozen sections made for immunohistochemistry. 

Antibodies specific for CD11b and CD11c were used to detect hematopoietic cells, and antibodies to H-2Kk were used to detect 3B5 stromal cells. (A) 

Lower magnification. Bar represents 250µM. (B) Higher magnification. Bar represents 25µM. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Figure 6.6 Identification of hematopoietic stem cells within 3B5 ectopic stromal grafts. Two separate grafts were prepared as described in Figure 

6.1 were dissected from the kidney of NOD/SCID recipient mice at 4 weeks after transplantation and cells dissociated to distinguish hematopoietic 

cells of NOD/SCID host origin (CD45.1) from non-hematopoietic cells (CD45-) (including 3B5 stromal cells). Hematopoietic progenitors were then 

identified as lineage-negative (Lin-) cells, with further staining for c-Kit, Sca-1, CD150 but not Flt3 to identify LT-HSC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





Figure 6.7 Localisation of HSC within 3B5 stromal grafts. Trypsinised and dissociated 3B5 stromal cells were grown on a collagen sponge ahead of 

transplantation under the kidney capsule of 3 NOD/SCID (CD45.1) mice. Graft tissues were dissected out after 4 weeks and frozen sections made for 

immunohistochemistry. Antibodies to lineage markers, CD150, CD41 and CD48 were used to detect HSC as Lin-CD150+CD41-/CD48- cells within 

3B5 grafts. Bar represents 25µM. 
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have differentiated from HSC which had become localised within 3B5 grafts. It does 

not, however rule out concurrent infiltration of mature cells. The Lin-CD150+CD41- 

phenotype also detects putative HSC with long-term reconstituting capacity.  

  

Cells of the 10C9 splenic stromal line were also transplanted into the 

subcapsular space of the kidney in immunodeficient NOD/SCID mice, using a similar 

grafting procedure as used for 5G3 and 3B5 stroma. The success rate for 10C9 stromal 

cell grafting was 60% when 106 cells were transplanted (Table 6.2). Three successive 

grafts obtained from three individual mice were analysed at 4 weeks after grafting. Flow 

cytometric analysis identified clear subsets of CD11b+CD11cloF4/80+ cells which did 

not express CD3 or CD19, and which reflect L-DC in each of 3 grafts (Figure 6.8A and 

Figure 6.8B). In addition, another subset, which did not express the lineage markers 

CD11b, CD11c, F4/80, CD3 and CD19, was also detected. This subset could reflect 

hematopoietic stem/progenitor cells or indeed, 10C9 stromal cells. This result on a 

second cell line confirms the utility of splenic stroma in formation of ectopic spleen 

tissues.  

 

6.2.4 Sorted splenic stromal fractions did not engraft 

    

 The defined splenic stromal subsets, P8, P9, P10 and P11 (Chapter 4), were 

chosen for transplantation on the basis of their phenotype and close resemblance with 

5G3/3B5 stromal cells. To investigate whether these specific splenic stromal subsets 

could form ectopic grafts following transplantation into the subcapsular space of the 

kidney, cells were freshly sorted, mixed with Matrigel and introduced into the 

subcapsular space of the kidney capsule using a Wiretrol micropipette. Grafted tissue 

was isolated at 4 weeks and dissociated for flow cytometry.  

 

 Overall, grafting of freshly sorted, defined splenic cell stromal subsets was 

unsuccessful (Table 6.4). This was unrelated to host mouse strains, since three different 

hosts were tested. Low cell number was not the cause for graft failure, since a subset of 

CD45- cells reflecting the complete stromal fraction from C57BL/6J spleen (CD45.2) 

was sorted, mixed with Matrigel and transplanted in high cell number (7x106 cells). At 

4 weeks, the CD45- stromal fraction did not form ectopic grafts despite high numbers of 

grafted cells (Table 6.4). Grafting success achieved with in vitro grown stromal cell 

lines begs the question of whether in vitro grown cells which are to some extent 



Figure 6.8 Identification of hematopoietic cells in 10C9 ectopic stromal grafts. Grafts prepared as described in Figure 6.1 were dissected from the 

kidney of NOD/SCID recipient mice 4 weeks after transplantation and cells dissociated for staining with antibodies specific for CD11b, CD11c, CD3, 

CD19 and F4/80. Live singlets were gated, and CD11b and CD11c myeloid cell staining used to divide subsets for analysis of expression of the 

lymphoid markers CD19 and CD3. Three individual grafts transplanted under the kidney capsule of a single mouse were analysed, and compared with 

spleen cells isolated from adult C57BL/6J and NOD/SCID mice. (A) Expression of lymphoid markers on subsets differing in expression of CD11b and 

CD11c. (B) Further analysis of two distinct subsets of cells in terms of myeloid and lymphoid markers. 

 

 

 







Table 6.4: Outcome of grafting experiments using splenic stromal subsets 
 

Grafted cell subset # No. of  cells 
grafted † Success rate (%) # No. of hosts 

CD45- 7x106 *  0 2 
CD140a+ 7x104 * 0 2 
CD140a- 7x104 *  0 1 

Sca-1loThy1.2-CD105-CD51+CD140alo (P8) 
8.74x102 * 0 1‡ 
3.80x102 ^  0 1 
1.76x103 § 0 1 

Sca-1loThy1.2loCD105+CD51+CD140a+ (P9) 
2.2x104 * 0 1‡ 
1.67x103 ^ 0 1 
1x103 § 0 1 

Sca-1loThy1.2-CD105+CD51loCD140alo (P10) 
4.6x104 * 0 1‡ 
1x104 ^ 0 1 
5.11x103 § 0 1 

Sca-1hiThy1.2-CD105+CD51loCD140a- (P11) 7.4x104 * 0 1‡ 
	

# Stromal cell fractions were sorted from C57BL/6J mouse spleen (CD45.2, H-2Kb) and grown in culture for 4 
weeks before grafting under the kidney capsule of adult mice.	
† Two separate grafts were placed on the same kidney. In most cases, cells were mixed with Matrigel ahead of 
transplantation. Grafts were analysed after 4 weeks. 
* Host mice were C57BL/6J (CD45.2, H-2Kb).  
§ Host mice were B6.SJL (CD45.1, H-2Kb). 
^ Host mice were C57BL6J Nzeg-enhanced GFP (CD45.2, H-2Kb).    
‡ These mice were splenectomised ahead of grafting.  
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transformed, are needed for successful grafting. To test this proposition further, stromal 

cells were sorted and grown in culture for 4 weeks before transplantation into the 

kidney subcapsular space. Examination of the grafted kidneys after 4 weeks showed that 

even cultured fresh cells gave no formation of grafts (Table 6.5).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 



Table 6.5 Success of grafts involving splenic stromal subsets 
  

Sorted spleen subset* No. of cells 
grafted § 

No. of hosts No. successful 
grafts  

Success rate (%) 

Thy1.2+ # 5x105-1x106 1 
 

0 0 

CD29+gp38+Sca-1+ 1 0 0 

Sca-1loThy1.2loCD105+CD51+CD140a+(P9) † 2 0 0 

 
* Stromal cell subsets sorted from C57BL6/J mouse spleen (CD45.2, H-2Kb) were grafted under the kidney capsule of adult 
C57BL6/J mouse (CD45.2, H-2Kb).  
# Sorted CD45- cells were cultured for 4 weeks ahead of resorting. Isolated CD45-Thy1.2+ cells were grown for a further 2 weeks 
prior to grafting into the kidney subcapsular space of adult C57BL6/J mouse (CD45.2, H-2Kb). 
† Cells were grown in culture for 4 weeks prior to grafting into the subcapsular space of kidney in adult C57BL/6J mouse 
§ Cells were grown overnight on a collagen sponge as a matrix for grafting, instead of mixing in Matrigel.  
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6.3 DISCUSSION 

 

Previous chapters demonstrated the role of splenic stroma in supporting 

restricted hematopoiesis in vitro. Here, we investigate the ability of cloned splenic 

stromal cell lines to form ectopic hematopoietic niches in vivo using a subcapsular 

kidney grafting technique to implant stromal cells. Earlier studies utilising this 

technique showed that enlargement of lymphoid follicles within neonatal spleen capsule 

grafts continued for up to 4 weeks post-transplant (Tan and Watanabe, 2014), while no 

grafts could be recovered at 8 weeks (Tan and O'Neill, 2010). Consistent with that study, 

we were able to recover tissue showing the presence of T and B cells at 4 weeks post-

transplantation suggesting that grafted tissue could be maintained within the kidney 

subcapsular space for a period of at least 4 weeks. Four weeks post-transplantation was 

therefore used as a reference time point for graft examination and analysis of stromal 

grafts, although analyses at 1 and 3 weeks were also performed to assess grafting 

outcomes.  

 

The overall success rate for grafting stromal cells into the subcapsular kidney 

region was low despite attempts to optimise grafting matrix, cell number, the need for 

splenectomy and time point for analysis. Uniformly, grafting of stromal cell lines was 

more successful than ex vivo isolated splenic stromal cell subsets. This is likely due to 

the transformed nature of cultured stromal cell lines, which may increase the 

proliferative potential of cells. The 5G3 stromal line was found to support in vivo 

production of unusual CD11b+CD11chiCD3+CD19+ and CD11b+CD11cloCD19+ cells. 

While the exact identity of these cells will require further investigation, 

CD11b+CD11cloCD19+ and CD11b+CD11chiCD3+CD19+ cells reflect B-1 lineage B 

cells (Ghosn et al., 2008) and atypical T cells (Lin et al., 2003), respectively. 

Interestingly, one study reported expression of myeloid markers CD11b, CD11c and 

F4/80 on CD8+ T cells following an acute viral infection (Lin et al., 2003). The 

expression of CD19 and CD3 by myeloid lineage cells can also occur with oncogenic 

transformation (Walter et al., 2010; Kita et al., 1992). This therefore raises another 

possibility that 5G3 stroma supports maintenance of cancer stem cells in vivo. This 

could result in production of leukemic cells with a mixed lineage phenotype commonly 

seen with acute myeloblastic leukemia (Walter et al., 2010; Kita et al., 1992). To this 

end however, it is noted that the superior capacity of 5G3 to support in vitro 
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hematopoiesis was not reflected by its ability to engraft and support hematopoiesis in 

vivo. 

 

Notably, the 3B5 and 10C9 stromal lines were found to grow as grafts which 

became infiltrated with hematopoietic cells in vivo with clear evidence of 

CD11b+CD11cloF4/80+ L-DC-like cells within grafts. This finding was surprising since 

3B5 stroma is a low or non-supporter of L-DC production in vitro, supporting instead 

the transient development of myeloid cells. Although lymphoid cells were not detected 

in 3B5-grafted tissue, cells resembling macrophages/monocytes, cDC, pDC and 

myeloid cells were found to be present, suggesting that 3B5 stroma creates a niche 

which supports myelopoiesis leading to a range of mature myeloid cells. Indeed, it is 

possible that these cells developed from BM derived HSC, which had infiltrated the 

graft, were maintained within the graft, and then differentiated. It is also equally 

possible that HSC preferentially differentiate to give L-DC when influenced by 

microenvironment created by 3B5 stroma. Preferential differentiation of HSC into L-

DC could account for the high proportion of L-DC over other myeloid cells found 

within the graft. This is consistent with the previously published evidence that L-DC 

develop directly from HSC and MPP in stromal co-cultures in vitro (Petvises and 

O'Neill, 2014b).   

 

Recently, this laboratory identified an in vivo equivalent L-DC as a subset of 

CD11bhiCD11cloMHC-II-CD43+Ly6C-Ly6G-Siglec-F- cells based on morphological and 

phenotypic analysis of myeloid subsets in spleen (Hey et al., 2015). Development of L-

DC was found to be distinct from that of cDC and monocytes, having a separate lineage 

origin (Hey et al., 2015). In addition, the distinct gene expression profile of L-DC 

distinguishes it from CD8+ cDC and CD8- cDC (Hey and O'Neill, 2016; Hey et al., 

2015). On the basis of cell surface phenotype, L-DC-like cells obtained from the 3B5-

grafted tissue resemble L-DC described in vivo (Hey and O'Neill, 2016). It will however 

be important to investigate cells growing in stromal grafts more fully in terms of their 

relationship with L-DC found in spleen. One way to do this would be to analyse gene 

expression of L-DC-like cells derived from 3B5 grafts and to compare them with in vivo 

isolated L-DC. In addition, since 3B5 stroma is not an in vitro supporter of 

hematopoiesis, one needs to question whether it is able to support myelopoiesis in vitro. 

Ultimately, it will be important to determine the molecular signals which drive 

hematopoiesis in vivo.  
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This chapter has presented a study which demonstrates in vivo hematopoietic 

support from stromal cell lines growing under the kidney capsule. While it has been 

possible to engraft splenic stromal cell lines, it has not been possible to form graft tissue 

from sorted ex vivo splenic stromal cells in the kidney subcapsular space. Specifically, 

3B5 stromal cells represent a niche which maintains hematopoietic stem/progenitor 

cells. It would be of interest to know if these hematopoietic stem/progenitor cells could 

provide long-term reconstitution in irradiated mice by performing serial transplantation. 

The property of 3B5 in supporting hematopoiesis in vivo is different to its in vitro 

capacity, and is also restricted to myelopoiesis. This result opens the interesting 

possibility that splenic stromal niches have distinct hematopoietic potential which opens 

many questions in terms of the immune function and hematopoietic capacity of spleen.  
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7.1 CONCLUDING DISCUSSION  

 

Early investigations in this laboratory focused on understanding the splenic 

microenvironment for hematopoiesis. LTC established from 6-8 days old neonatal 

spleens were found to support the development of an immature dendritic-like cell 

named ‘LTC-DC’ (Ni and O'Neill, 1999; Ni and O'Neill, 1998). Subsequent studies 

cloned the STX3 parent stroma derived from one LTC to give stromal cell lines 

including 5G3, 3B5 and 10C9 under study here (Despars and O'Neill, 2006a). Co-

cultures involving 5G3 stroma overlaid with lineage-negative BM cells were able to 

support the production of immature dendritic-like cells similar to LTC-DC, and 

therefore named ‘L-DC’ (Periasamy and O'Neill, 2013; Periasamy et al., 2009). 

Interestingly, it was found that 5G3 and 10C9, but not 3B5 stroma were able to support 

this type of restricted in vitro hematopoiesis (Periasamy et al., 2009). The fact that 

splenic LTC and co-cultures could maintain DC production for an extended period 

reflects the presence of self-renewing progenitors. Indeed, other investigators in this 

laboratory have shown that L-DC develop directly from overlaid HSC and MPP in 5G3 

stromal co-cultures, which also suggests that HSC are maintained within the in vitro 

stromal environment (Petvises and O'Neill, 2014b). While HSC or MPP in these co-

cultures have not been phenotypically delineated, long-term reconstitution studies in 

mice using cells from LTC have verify their presence (Tan and O’Neill, 2010; Tan and 

O'Neill, 2010).  

 

HSC represent one of the most well studied adult stem cells. In fact, research 

into HSC biology and their use in allogeneic BM transplantation has been ongoing for 

the last fifty years. Despite a long history of research in this area, the regulation of self-

renewal of HSC and their differentiation, as well as quiescence and proliferation of 

HSC, remains incomplete. While research into HSC biology has been almost entirely 

conducted in the BM, the spleen has recently gained attention in regenerative medicine 

as a potential substitute for BM as a hematopoietic organ. Our laboratory offers a 

valuable in vitro splenic LTC, and 5G3 stromal cell model, for the in vitro study of 

hematopoiesis in spleen. In addition, the differential hematopoietic support of the two 

stromal cell lines, 5G3 and 3B5, provides a unique channel for identifying factors which 

support hematopoiesis.  
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In this thesis, the field has been advanced by characterising the splenic stromal 

population in an attempt to delineate in vivo 5G3 equivalent stromal cells which support 

hematopoiesis. In addition, localisation of HSC and its niches in spleen has been 

conducted using immunofluorescence imaging. Assessment of hematopoietic support in 

vivo has involved ectopic grafting of stromal subsets into the subcapsular space of 

kidney in mice. Finally, molecular interactions between stroma and non-adherent 

hematopoietic cells in co-cultures have been investigated using inhibitors which were 

added directly into established co-cultures.   

 

In summary, Chapter 3 describes extensively the 5G3 splenic stromal co-culture 

system which was modelled on LTC. This system supports restricted in vitro 

hematopoiesis, leading to continuous production of a dendritic-like subset called L-DC, 

while maintaining progenitors for a long period of time. The lineage origin of 5G3 and 

3B5 stroma based on their cell surface phenotype was assessed in Chapter 3. Both 

stroma express CD105, CD29, Sca-1, Thy1.2, CD51 and CD140a markers and do not 

express any hematopoietic or endothelial markers, consistent with a mesenchymal 

origin. 5G3 and 3B5 stroma express many markers which are also expressed by 

fibroblastic reticular cells, marginal reticular cells, red pulp fibroblasts and follicular 

dendritic cells, consistent with a common ancestry from a mesenchymal lineage. In 

Chapter 3, addition of specific signalling pathway inhibitors to in vitro stromal co-

cultures involving lineage-depleted BM over 5G3 stroma, was used to identify the 

important role of SCF but not CXCL12 in supporting in vitro hematopoiesis. In similar 

experiments the DAPT inhibitor of Notch signalling was used to identify a role for 

Notch signalling in the development of L-DC from MPP added into co-cultures over 

5G3 stroma in vitro.  

 

In Chapter 4, attempts were made to isolate a 5G3 equivalent stromal cell 

population in spleen. It was found that the stromal population in spleen is heterogeneous, 

and this contributed to variability in hematopoietic support capacity of isolated stromal 

fractions observed in initial co-culture assays. Several cell surface markers including 

Sca-1, gp38, Thy1.2, CD140a and CD105 were found to be important markers for 

stromal cells which could be established and grown in vitro. In addition, the cells which 

grew in these in vitro cultures consistently showed the phenotype of Sca-

1+gp38+Thy1.2+CD29+CD51+ cells. This phenotype also appeared to define stroma 

which support hematopoiesis.  In vitro culturing of mesenchymal stromal cells in spleen 
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appears to select the transformed 5G3-like cells which have enhanced in vitro growth 

and also show selective hematopoietic support capacity.  

 

 The stromal architecture of spleen was investigated in Chapter 5 with the aim of 

identifying stromal regions reflective of HSC niches. Adult and neonatal spleens were 

compared initially, and it was found that T and B cell zones in 6-day old neonatal spleen 

were not fully developed while adult murine spleen had well-developed T and B cell 

zones necessary for immune function. Neonatal spleen showed more F4/80+ 

macrophages and a larger area of red pulp than did adult spleen. One explanation for 

this finding is that F4/80+ macrophages arise by hematopoiesis from HSC within fetal 

spleens which drive macrophage development by inhibiting lymphoid commitment 

(Bertrand et al., 2006). HSC were readily localised in the red pulp of both neonatal and 

pregnant adult spleens. The association of HSC with hematopoietic F4/80+ macrophages 

and Thy1.2+ stromal cells was characterised. In addition, gp38+ stromal cells were found 

to associate with HSC but only in neonatal spleen, which suggests that HSC niches in 

spleen might vary during different stages of development.  

  

 In Chapter 6, kidney subcapsular grafting was employed to study the 

hematopoietic support capacity of stromal cell subsets of interest identified in Chapter 4. 

While in vitro grown stromal cell lines proved successful in forming graft tissue within 

the subcapsular space of the kidney, no sorted subsets of splenic stromal cells were 

found to successfully form graft tissue. It was found that grafted 3B5 stroma supported 

myelopoiesis with production of cells including L-DC, macrophages, monocytes, DC 

and myeloid cells in vivo. This contrasts with in vitro data which shows that 3B5 is a 

non-supporter of long-term hematopoiesis leading to L-DC production, although it does 

transiently produce myeloid cells. In contrast, 5G3, which is a supporter of in vitro 

hematopoiesis and L-DC production, did not support in vivo development of L-DC. 

Instead, it was found to support production of unusual CD11b+CD11cloCD19+ and 

CD11b+CD11chiCD3+ cells, which reflect B-1 cells (Ghosn et al., 2008) and atypical T 

cells (Lin et al., 2003), respectively. It is also possible however that these cells reflect 

oncogenic myeloid cells of acute myeloblastic leukemia (Walter et al., 2010; Kita et al., 

1992). Indeed, the hematopoietic support capacity of the 5G3 and 3B5 cell lines may be 

enhanced in an in vivo environment, so that 3B5 now functions in terms of full support 

for L-DC and myeloid cell production not previously seen in vitro. In contrast, 5G3 
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which is a very effective in vitro supporter may show enhanced signalling of HSC in 

vivo leading to oncogenesis. This model would need to be tested however.  
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7.2 AN IN VITRO MODEL FOR HEMATOPOIESIS 

 

The 5G3 stromal co-culture represents a valuable model for studying 

hematopoiesis and particularly L-DC production. One notable feature of this robust and 

highly reproducible stromal co-culture system lies on its technical simplicity such that 

the study of molecular factors, important for in vitro hematopoiesis, can be easily 

assessed using inhibitors which block receptor-ligand interactions in specific signalling 

pathways. Indeed, previous studies in this laboratory have successfully used inhibitors 

for Flt3L and M-CSFR in co-cultures to show that development of L-DC occurred 

independently of the factors which support development of cDC (Petvises and O'Neill, 

2014b). Likewise, work here has also used the inhibitors Plerixafor and Imatinib to 

investigate the role of CXCL12/CXCR4 and SCF/c-Kit interactions in in vitro 

hematopoiesis. Both interactions have been implicated in the maintenance of HSC in the 

BM (Ding and Morrison, 2013; Ding et al., 2012; Mendez-Ferrer et al., 2010; Omatsu et 

al., 2010; Sugiyama et al., 2006). In particular, it was recently shown that conditional 

deletion of Cxcl12 from endothelial cells and perivascular stromal cells in BM caused a 

reduction in HSC frequency (Ding and Morrison, 2013). That same group has also 

demonstrated depletion of HSC in mice with conditional deletion of Scf from 

endothelial and LepR-expressing perivascular cells (Ding et al., 2012). While 

CXCL12/CXCR4 signalling did not appear to be important in our study, SCF/c-Kit 

interaction was found to be essential for L-DC development in co-cultures of HSC over 

5G3 stroma. It is worthy to note that since most of the earlier studies involving 

conditional deletion of Cxcl12 and Scf were carried out in BM, there is a possibility that 

splenic hematopoiesis might be regulated slightly differently, although a recent study 

reported that induced splenic extramedullary hematopoiesis requires both SCF produced 

by both endothelial cells and Tcf21+ stromal cells, and CXCL12 produced by Tcf21+ 

stromal cells (Inra et al., 2015). One explanation could be that the in vitro stromal 

environment reflects the native steady-state hematopoietic environment rather than 

stroma amplified due to physiological stress leading to increased numbers of HSC 

niches for support of extramedullary hematopoiesis. It is also important to consider that 

our study on CXCL12/CXCR4 signalling was performed with a more heterogeneous 

lineage-depleted cell population rather than purely isolated HSC.  

 

One critical question relevant to the study of in vitro hematopoiesis, is whether 

the stromal co-culture system maintains a pool of self-renewing progenitors. It was 
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shown in an earlier study that L-DC progenitors are enriched within the Lin-c-Kit+ 

subset of spleen and maintained for at least 5 weeks in co-culture (Petvises and O'Neill, 

2014b; Periasamy et al., 2013b; Tan et al., 2010). This is consistent with the data 

obtained in our present study, investigating the presence of Lin-c-Kit+ progenitors in 

stromal co-cultures that had been established with CD45- and CD140a+ stroma for at 

least 5 weeks (Chapter 4). Previous investigations also confirmed that L-DC progenitors 

are distinct from progenitors of DC and macrophages, since L-DC develop directly from 

LT-HSC and MPP, but not from MDP or CDP (Petvises and O'Neill, 2014b). Consistent 

with those findings, are results obtained here involving HSC/MPP co-cultures treated 

with the γ-secretase Notch inhibitor, DAPT (Chapter 3). Indeed, production of L-DC 

was increased in cultures with added Notch inhibitor. This Notch inhibitor could be an 

important regulator of MPP maintenance. Several groups have reported similar findings 

on the role of Notch in the maintenance of HSC/MPP (Wang et al., 2015; Benveniste et 

al., 2014; Corselli et al., 2013; Varnum-Finney et al., 2011). Previously, Benveniste et 

al. (2014) showed that Notch signalling is required for in vitro maintenance of the 

CD90low HSC subset. Accelerated differentiation of CD90low HSC to CD45RAint and 

CD45RAhi cells was observed when Notch signalling was abrogated (Benveniste et al., 

2014). 

 

While in vitro hematopoietic studies using splenic stromal lines may not fully or 

truly reflect the hematopoietic process occurring in vivo in spleen, successful in vivo 

characterisation of L-DC and its progenitors would suggest that in vitro studies may be 

of great value. Recently, our laboratory identified the in vivo equivalent of L-DC as 

CD11bhiCD11cloMHC-II-CD43loCD115-Siglec-F-CX3CR1loLy6C-Ly6G- cells in spleen. 

These cells do not activate CD4+ T cells (Hey and O'Neill, 2016; Hey et al., 2015), but 

they do, however, activate CD8+ T cells by cross-presentation, reflecting similar 

functional capacity as in vitro produced L-DC (Hey and O'Neill, 2016). L-DC in vivo 

appear to be distinct from other conventional DC types and macrophages/monocytes 

based on gene expression profiling (Hey and O'Neill, 2016), suggesting a novel type of 

dendritic-like cell in spleen. Data from in vivo kidney subcapsular space grafting 

experiments have also revealed the presence of L-DC-like cells accumulating within 

grafted tissues (Chapter 6). Taken together, it is likely that the presence of L-DC within 

the context of a steady-state spleen is of biological relevance and not an artefact or 

product of in vitro culture procedures.  
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This study also showed that 5G3 and 3B5 support the in vitro growth of 

different cell types within the kidney subcapsular space. In particular, while 5G3 stroma 

supports L-DC formation in vitro, this is not the case in vivo. Similar discrepancy is 

noted for 3B5 stroma which supported accumulation of multiple hematopoietic cell 

types including L-DC within grafts, despite its classification as a non-supporter of L-

DC in vitro. Such discrepancies highlight the complexity of the in vivo environment, 

where cells are subjected to numerous cues and signals for their development. While the 

in vitro model of a single cloned stromal cell type could recapitulate a specific 

signalling repertoire, it is unlikely to represent exactly the complex in vivo environment. 

This outcome emphasizes how it is important to couple each in vitro study with an in 

vivo one in terms of seeking physiological relevance. With regard to 5G3 and 3B5 

kidney subcapsular grafting experiments, it will of interest to investigate the specific 

cues and signals which 5G3 and 3B5 stroma receive within the kidney subcapsular 

space that leads to discrepancies between in vivo and in vitro data.  
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7.3 SPLENIC STROMA SUPPORTS RESTRICTED HEMATOPOIESIS 

 

It is increasingly evident that the stromal cell population in spleen performs a 

diverse range of tasks in addition to having a structural role. Splenic stroma has been 

shown to support production of macrophages (Bertrand et al., 2006) and regulatory 

dendritic cells (Tang et al., 2006). Moreover, our laboratory has shown that splenic 

stroma can support production of dendritic-like cells, termed ‘L-DC’ over an extended 

period of time. Progress to date has led to the identification of several main stromal cell 

types in spleen. These include fibroblastic reticular cells, marginal reticular cells, 

follicular dendritic cells, red pulp fibroblasts and vascular endothelial cells (den Haan et 

al., 2012; Mueller and Germain, 2009). Each of these stromal subsets performs a 

specific set of tasks including lymphocyte migration, B cell homeostasis, chemokine 

production, attraction of macrophages and plasma cells and removal of aged red blood 

cells (Malhotra et al., 2013; Mueller and Germain, 2009). An important unanswered 

question has been which splenic stromal cell type has capacity to support hematopoiesis, 

particularly under steady-state conditions.  

 

 The study described here contributes to a better understanding of splenic stromal 

composition, as well as the potential of splenic stroma to support in vitro hematopoiesis. 

Since the 5G3 stromal cell line represents a valuable model for in vitro hematopoiesis, it 

has been important to characterise an in vivo equivalent subset of this cell line. However, 

splenic stroma characterisation is not without challenges. In fact, one of the biggest 

challenges is the lack of delineating markers. Previous research into lymph node stroma 

has provided some information (Chang and Turley, 2015; Malhotra et al., 2013; 

Malhotra et al., 2012). Here, we have used a step-wise reductionist approach to either 

deplete or enrich stromal cells expressing one or two cell surface markers. This 

experiment aimed to determine markers important for stromal growth and 

hematopoietic support capacity. A battery of cell surface markers including Sca-1, gp38, 

Thy1.2, CD140a and CD105 was found to be important for stromal cell establishment 

and in vitro growth. It is also worth noting that the proportion of cells expressing these 

markers is very low, reflecting stromal cells which are rare and infrequent.  

 

One of the most important findings revealed by this study is the heterogeneity 

within the splenic stromal population which grows in vitro. It appears that heterogeneity 

can impact hematopoietic support capacity and this was shown for clonal cell lines 
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derived from parental STX3 splenic stroma (Despars and O'Neill, 2006a). 

Heterogeneity in stromal composition could also be due to culture conditions since it is 

known that MSC exhibit altered cell surface expression profile when cultured 

extensively in vitro (Le Blanc et al., 2007). However, it can be disputed that the 

heterogeneity within the stromal population reflects diversity in terms of stromal cell 

types. 

 

Since 5G3 is an in vitro hematopoietic supporter while 3B5 is a non-supporter, 

an analysis of differential gene/protein expression between these two cell lines could 

identify molecules which determine hematopoietic support capacity. Indeed, the two 

cell surface markers Thy1.2 and CD140a were found to be upregulated in 5G3 over 3B5. 

A recent report of the involvement of Thy1.2 in the self-renewal and differentiation of 

MSC begs the question of whether it has a similar functional role in 5G3 stroma 

(Maleki et al., 2014; Moraes et al., 2016). Upregulation of the CD140a cell surface 

protein, a tyrosine kinase receptor which binds platelet-derived growth factor (PDGF) to 

initiate signalling (Heldin and Westermark, 1999), suggests that this protein may be 

important for hematopoiesis. It has been reported that CD140a expression on 

mesenchymal cells is low in vivo, although expression increases drastically in culture or 

during inflammation (Andrae et al., 2008; Heldin and Westermark, 1999). While it is 

unclear if CD140a plays a functional role in hematopoiesis, it will be important to 

investigate it further since it is also recognised as an important marker of perivascular 

cells in BM and spleen (Inra et al., 2015). In order to better understand the role of 

Thy1.2 and CD140a in hematopoiesis, knockout mice could be utilised.  

 

In recognising the limitations of in vitro studies, we have analysed the function 

of stromal cells in vivo by grafting sorted splenic stromal cells and in vitro grown 

splenic cell lines into the mouse kidney subcapsular space in order to study their 

development and hematopoietic support capacity in vivo. The inability to graft freshly 

isolated stromal cells form spleen may suggest that mature stromal cells have no or low 

replication capacity and that grafting may depend on the isolation and transplantation of 

stromal progenitors to initiate ectopic niche formation. These may or may not be present 

in spleen, and may derive from another source such as BM or blood. The reason why 

stromal cell lines can be grafted could therefore be due to their induced replicative 

capacity due to in vitro transformation. The alternative explanation is that the kidney 

subcapsular space lacks specific signals required for these sorted splenic stromal cells to 
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expand and form grafts. BM mesenchymal progenitors, have been shown to 

successfully induce ectopic niche formation under the kidney capsule in a recent report 

(Hu et al., 2016). To this end, it will be interesting to know if freshly sorted splenic 

stromal subsets can form grafts within the kidney subcapsular space in animals in which 

extramedullary hematopoiesis has been induced perhaps through bleeding or pregnancy. 

This will determine whether inflammation induced due to physiological stress is an 

important requirement for formation of ectopic niches by splenic stromal cells.  
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7.4 STEM CELL NICHES IN SPLEEN  

 

A stem cell niche by definition is a microenvironment which supports the self-

renewal, maintenance and differentiation of stem cells. For the last few decades, the 

concept of a stem cell niche was mainly hypothetical, without strong experimental 

evidence. This has, however, changed since technological advances have led to many 

approaches to experimentation. While most work has been dedicated to characterising 

HSC niches in BM, splenic niches which support extramedullary hematopoiesis remain 

largely uncharacterised despite the recognition of spleen as a common site for 

hematopoiesis. This thesis has improved current understanding of stromal niches in 

spleen by investigating the stromal subsets present in murine spleen and the localisation 

of HSC with respect to splenic architecture and stromal cell subsets distributed in spleen.  

 

The thesis provides extensive evidence justifying the presence of a stromal HSC 

niche in spleen. For example, we have identified HSC in close association with Thy1.2+ 

cells within the red pulp of the pregnant spleens. The gp38+ stromal subset is also 

associated with some HSC in neonatal spleen although not in adult or pregnant spleen. 

Our present data suggests potential for niches to change with age and hematopoietic 

requirements. Other cell types, like endothelial cells expressing CD31 and CD105, did 

not show any association with HSC. However, one limitation of this type of study is the 

inability to identify stromal cells which can act on HSC in a paracrine fashion without 

direct contact, perhaps by producing factors like CXCL12 and SCF (Ding and Morrison, 

2013; Ding et al., 2012). Indeed, it was demonstrated recently that Tcf21+ cells and 

endothelial cells support splenic extramedullary hematopoiesis as niche elements 

through production of SCF and CXCL12 (Inra et al., 2015). It will be of interest to 

know if the splenic stromal lines and subsets identified here represent these cells.  

 

Evidence presented here that stromal cell lines can form ectopic niches 

supporting HSC and leading to the development of L-DC and other myeloid cell types, 

adds physiological relevance to the in vitro studies reported previously. An important 

remaining consideration is whether in vitro grown and transformed stromal lines 

support the formation of cancer stem cells from HSC or MPP. Such a model would 

enhance the engraftment outcome of the transplanted cells, and in the case of the 5G3 

stromal line, may lead to the formation of aberrant cell types reflective of leukemic stem 

cells as reported for acute myeloblastic leukemia (Walter et al., 2010; Kita et al., 1992).  
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While the main role of spleen is immunity, its role in erythropoiesis and 

recycling of aged red blood cells have been well documented (Mebius and Kraal, 2005). 

Throughout ontogeny, spleen can also adopt the role of a hematopoietic organ under 

conditions of stress and inflammation (Johns and Christopher, 2012). During 

embryogenesis, the spleen and liver assume a major role in hematopoiesis (Wolber et al., 

2002). In adults, spleen takes the place of BM as the primary hematopoietic organ 

during BM pathogenesis (Yamamoto et al., 2016). One would argue that this dynamic 

role for spleen relies on its ability to quickly expand its stromal cell populations. Indeed, 

rare stromal cells which support hematopoiesis may be laid down during fetal life as 

progenitors and remain dormant in spleen until required. Another hypothesis would be 

that rare MSC are maintained in spleen and can be quickly differentiated to give stromal 

cells at times of stress. Since most studies rely on models of hematopoiesis in spleen 

which involve induced extramedullary hematopoiesis (Inra et al., 2015; Miwa et al., 

2013; Kiel et al., 2005), it is possible that hematopoietic supporting cell types 

implicated in these models differ from those naturally occurring in steady-state spleen. 

One possible investigation could involve cell-tracing experiments, looking at splenic 

MSC, or the in vivo 5G3 equivalent stromal cells as Sca-

1+gp38+Thy1.2+CD29+CD51+CD140a+/-CD105+/- cells during steady-state conditions 

and after induced physiological stress leading to increased hematopoiesis in spleen.  
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7.5 CONCLUSION 

 

The spleen is now well recognised as an important organ for extramedullary 

hematopoiesis in the steady-state, and also under physiological stress including 

pregnancy, acute inflammation, excessive bleeding and drug treatment (Yamamoto et 

al., 2016; Inra et al., 2015; Miwa et al., 2013; Johns and Christopher, 2012; O'Neill et 

al., 2011; Kim, 2010; Kiel et al., 2005). In this thesis, we have advanced the concept of 

niches for hematopoiesis in spleen. Stromal cells with the phenotype of Sca-

1+gp38+Thy1.2+CD29+CD51+ appear to be important for in vitro hematopoiesis. Their 

phenotype reflects cells of mesenchymal lineage, consistent with our primary 

hypothesis that HSC niches involve at least perivascular reticular cells resembling the 

stromal line models of 5G3 and 3B5. Stromal cells expressing gp38 or Thy1.2 also 

appear to be associated with some HSC is spleen identified through section staining, 

although this association is restricted to neonatal spleen in the case of gp38+ stromal 

cells. Restricted hematopoiesis giving rise to L-DC and myeloid cells was replicated in 

vivo following grafting of splenic stromal cell lines including 5G3, 3B5 and 10C9. 

While L-DC production was clearly shown to occur within 3B5 and 10C9 grafts, 5G3 

was difficult to engraft and then formed niches which appeared to support 

hematopoietic cells with a transformed phenotype.   

 

The recognition of spleen as an important site for extramedullary hematopoiesis 

represents a significant advance for the area of regenerative medicine and 

transplantation. Clearly identified stromal progenitors and stromal cell subsets could be 

harvested for the purpose of reengineering niches in order to increase hematopoietic cell 

production either through expansion of HSC in vitro using co-cultures, or in vivo 

through formation of ectopic or artificial niches engrafted ahead of HSC transplantation. 

Patients undergoing myeloablative treatment, involution of lymphoid tissue with ageing, 

or HSC transplantation could stand to benefit from novel therapies based on knowledge 

of spleen and its role in hematopoiesis.  
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