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CHAPTER I

INTRODUCTION

This thesis is a contribution to the theory of economic policy 
under certainty, viewed in abstract rather than specific terms. Concern 
is not for particular applications, such as the debate over monetarism 
and fiscalism\ but for theoretical principles. More precisely, the 
thesis is built around the two fundamental issues of existence and design. 
By existence is meant the primary ability to stabilise a given economic 
system; by design, the techniques employed to construct a stabilising 
policy once existence is assured. This thesis contends, firstly, that 
the question of existence has been ignored in the theory of dynamic 
stabilisation; and secondly, that several aspects of dynamic design 
theory yield profitably to further analysis.

Analysis of existence and design is undertaken by pairing each issue 
with a specific concept. Thus to existence is applied the concept of 
controllability; and to design, the concept of optimality. To explain 
the relevance of these concepts and their effect on the structure of the 
thesis, this introductory chapter divides into three sections. Section 
1.1 defines the existence and design problems to be investigated and 
briefly relates them to received economic theory. Section 1,2 formally 
states the policy framework within which these problems will be 
investigated. To provide a starting point for subsequent analysis, a 
concise and selective review of the theory of linear optimal design is 
provided for this framework. Section 1.3 then presents a synopsis of 
later chapters.

1.1 PROBLEM STATEMENT

As a unifying device, Howard's concept of the problem space may be 
applied to the theory of economic policy to delineate the problems to be 
analysed. According to Howard, three dichotomies are basic to any

1 Cf. the critique by Fand.
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decision problem, those defining whether the problem is:

(i) static or dynamic,
(ii) uni-dimensional or multi-dimensional, and
(iii) deterministic or probabilistic.

The combinations produced by these dichotomies are clarified by Figure 
1.1, reproduced from Howard [p.212]. The relevance of (1) and (iii)

Degree of Uncertainty
Probabilistig
Deterministic<----------------

Figure 1.1 
Problem Space

to the theory of economic policy is immediate; (ii) categorises the 
dimensional complexity of the policy problem, in the present context 
referring to the number of instruments and targets appearing in the 
reduced form of the policy model.

Each of the eight corners of the problem space of Figure 1.1 
corresponds to a particular set of problems in the theory of economic 
policy. Corner (1) refers to static deterministic models involving a
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single target and single instrument; the prime example being the 
aggregative demand model used for Keynesian gap analysis« Corner (2) 
generalises this simple policy problem to a multi-dimensional context»
The seminal work here is by Tinbergen [1963, 1966] who first provided 
necessary and sufficient conditions for existence of a solution to the 
general static policy problem« These two corners comprise the static 
theory of policy under certainty; the results of which are firmly 
entrenched in economics, as evidenced by the representative analyse^ of 
Bent Hansen, Nevile, and Peacock § Shaw.

Remaining in a deterministic framework, Phillips [1954, 1957] 
demonstrated convincingly the necessity of explicitly accounting for 
the dynamics of economic systems in formulating policy. This analysis, 
conducted with a dynamic single-target single-instrument model and 
therefore referring to corner (3), initiated the study of classical 
stabilisation policy, also contributed to by Allen [1960, 1968] and 
Tustin. In a first step towards corner (4), Bergstrom [chap. 6] 
subsequently developed classical stabilisation policies for multi­
dimensional models of cyclical growth. Fox, Sengupta § Thorbecke, in 
a separate direction, investigated the concept of optimal stabilisation 
as a generalisation of classical stabilisation, both in a uni-dimensional 
framework - corner (3) - and in a multi-dimensional framework - corner 
(4).

These deterministic corners (1) to (4) constitute the domain of 
investigation of this thesis: the dichotomy (iii) being suppressed,
with problems of uncertainty ignored» It is readily agreed that a 
theory of stochastic policy is the ultimate objective of research work 
such as this thesis. Important contributions to the excluded corners 
(5) to (8), representing progress towards this goal, are the certainty 
equivalence principle in the time domain, as used by Fox, Sengupta § 
Thorbecke, Holt, and Theil, and the Wiener-Hopf technique in the 
frequency domain, as used by Phillips [1958] and Whittle [chap. 10]„
But before attempting to achieve this generality, it appears desirable 
to remove a fundamental gap in the theory of policy concerning dynamic 
existence and to consolidate the theory of classical and optimal design. 
The issues to be analysed are better comprehended without the 
complications of uncertainty, and the major conclusions lose little by 
this simplification.
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The four deterministic corners fall naturally into the static 
pair (1), (2) and the dynamic pair (3), (4). Regarding this division, 
the idea of existence is prominent in the static theory; and the idea 
of design, prominent in the dynamic theory» The static bias towards 
existence is explained both by the simplicity of the static design 
problem and by the logical precedence of existence over design. Thus, 
provided a certain instrument coefficient matrix is invertible (existence), 
appropriate policy is obtained simply by inversion (design). Once 
existence is ascertained, design is therefore trivial. In contrast, 
there is no concept of dynamic existence but there are two well-defined 
design concepts: classical and optimal. The reasons for this are
partly contextual and partly historical. Contextually, design of both
classical and optimal stabilisation policy has generally referred to a 
uni-dimensional single-target single-instrument model; and the problems 
of existence and design have therefore been resolved simultaneously by 
exhibiting a specific policy. Historically, Phillips' application of 
classical control techniques to dynamic stabilisation policy preceded 
any analysis of existence in control theory; and this therefore provided 
an inbuilt bias towards design.

Although an implicit treatment of existence suffices in low­
dimensional models, it is unsatisfactory in the general multi-dimensional 
model. Dimensionality precludes general theoretical analysis of policy 
and necessitates numerical analysis. It is then preferable to determine 
existence explicitly rather than on an ad hoc basis for each particular 
numerical application. More importantly, it is desirable to be able 
to define the general characteristics of a policy model that promote or 
prevent effective stabilisation.

Existence of a policy solution to the multi-dimensional problem of 
dynamic stabilisation is therefore a major issue analysed in this thesis. 
The remaining issues pertain to design theory. As noted, dynamic design 
theory divides into classical and optimal design; and it is natural 
therefore to contrast and compare these two approaches. Before this 
evaluation is undertaken, examination reveals a paradox underpinning the 
theory of optimal stabilisation. This paradox - that optimality and 
stability are conflicting policy attributes - has been stated by Fox, 
Sengupta $ Thorbecke» The paradox is shown to be false. To define 
the consequences of optimality, and to relate optimal policy to classical
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policy, optimal policies are then derived for a simple uni-dimensional 
model. The dimensional simplicity of this analysis is balanced by an 
analysis of the numerical problems created by dimension in a general 
multi-dimensional model of optimal stabilisation,

To summarise, the major aims of this thesis are fourfold:

(1) to resolve the problem of dynamic existence,

(2) to defend and explore the concept of policy 
optimisation,

(3) to integrate classical and optimal design techniques, 
and

(4) to confront the problem of multi-dimensional design.

These aims are now given a little more flesh and substance in section 
1.2, which specifies the policy framework within which the existence 
and design of stabilisation policy will be investigated.

1.2 POLICY FRAMEWORK

Four elements taken together comprise the problem of dynamic 
stabilisation studied in this thesis:

(i) a system to be stabilised,

(ii) a set of available instruments,

(iii) a stabilisation objective, and

(iv) a measure of system performance.

In particular, the stabilisation problem will be specified formally as

TThroughout the thesis, x denotes x transpose; and X  ̂0 (X > 0) 
signifies that the nxn matrix X is positive semidefinite (definite),

2
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MIN W = 
u(t)

^ z^ (T) Fz (T) + % | [z^(t)Vz(t)+u^(t)Ru(t)]dt 
;0 (1)

subject to

z(t) = Az(t) + Bu(t), z(0)=z ^0, z(T) free, (2)

T fixed; u(t) , t e [0,T], unconstrained,
(3)

F, V > 0, R > 0, F, V, R symmetric,

with dimensions given by

z: nxl; A, V, F: nxn; u: kxl; R: kxk; B: nxk. (4)

The linear constant differential system (2) depicts the dynamic 
behaviour of the system to be stabilised, corresponding to (i) above.
In this representation, the dynamic targets z(t) are assumed to exhibit 
first-order dynamics determined linearly by the levels of the targets 
z(t) and instruments u(t). The instruments, the element (li) above, 
are assumed piecewise continuous and freely adjustable. A policy 
problem is created by assigning a stabilisation objective to this system. 
For the system (2), the stabilisation objective (iii) is stipulated as 
z(t) = u(t) = 0, t ^ T > 0, where T is the stabilisation horizon. When 
the dynamic motion of (2) ceases and this objective is satisfied, a 
desired static equilibrium is presumed to obtain. The question of
existence occurs naturally at this point. Can the system (i) be 
stabilised with the available instruments (ii) to achieve the desired 
objective (iii)? Given a precise statement of this existence question, 
the concept of controllability will later be shown to lead to conditions 
necessary and sufficient for policy existence.

Assuming that a policy solution does exist, the major practical 
question of design must be tackled. To facilitate the logical design 
of policy, a measure (iv) of system performance under control is 
specified and a policy giving best performance chosen. Thus for the 
system (2), a policy u(t) is to be chosen to minimise the integral (1), 
over the stabilisation horizon T, of a quadratic form in the target and 
instrument vectors. Since the integrand of (1) is of the form
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J(z-z,u-u), where J is a quadratic scalar function and z = u = 0, the
stabilisation objective (iii) is therefore embedded in the performance
measure (iv) so that deviations from the desired static equilibrium are
penalised quadratically. The weighting matrix V expresses the relative
weights attaching to target deviations; and the weighting matrix R, the
relative weights attaching to instrument deviations. Additionally,
since target behaviour is to be determined by instrument manipulation,
the relation of V to R specifies the target-instrument tradeoff, the
relative weighting of target equilibration against instrument

Tequilibration. The remaining term in (1), z (T)Fz(T), penalises 
deviations of the terminal target from the desired equilibrium; and 
is included, when T is finite, to give greater flexibility in controlling 
endpoint behaviour.

Traditionally the specification (1) to (3) is termed a fixed-time,
3free endpoint optimal regulator . Although there are several other 

possible formulations of the design problem of optimal stabilisation, 
this particular formulation serves most conveniently for analysis of the 
design issues to be considered. Chapter VII does, however, consider 
some of the alternatives. Formal solution of this dynamic optimisation 
problem may be achieved using methods of varying degrees of generality, 
ranging from the classical calculus of variations to the maximum 
principle of Pontryagin et_ al_, The brief review that follows, based 
mainly on Äthans $ Falb [chap.9], is of the theory of linear optimal 
control and is directed solely towards the construction or synthesis of 
the optimal policy solution to this regulator problem. To supplement 
this review, Kalman [1963a] provides a perspective of the historical 
development of optimal control theory; while Falb presents a 
comprehensive analysis of existence, necessity and sufficiency.

According to Kalman [1963a, p .310],

"The theory of optimal control, under the assumption that 
the equations of motion are known exactly and the state can be 
measured instantaneously, may be regarded as a generalisation 
of the problem of Lagrange in the calculus of variations: 
minimization of an integral subject to side conditions, which 
may be ordinary or differential equations."

For this reason, the modern solution of the regulator problem (1) to

3 Äthans § Falb provide a detailed rationale [pp.750-6] for this 
regulator formulation.
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(3) may be usefully approached from the classical calculus of 
variations. Consider, after Sage [pp 56-9], a nonlinear dynamic 
system operating over the fixed interval [t , t^]:

z = f(z,u,t), z(tQ)=zo , (5)

and determine the control u(t) to minimise

W = <J>(z(t) , t) I tf + 4>(z Ct) , u(t) , t) dt (6)

This formulation subsumes the regulator problem as a particular case 
of the vector functions f, <j>. Adjoining the constraint (5), the 
equivalent minimisation problem is:

MIN W = <f>(z,t) \ t  

u(t) <
tf (Cj)(z,u,t) + pT(t){f (z,u,t)-z})dt, (7)

o

where p(t) is a costate vector of the same dimension as the state vector 
z(t). Here, the definition of the Hamiltonian function

H(z,u,p,t) = <|>(z,u,t) + P .f(z,u,t) (8)

is essential to the modern solution. Applying (8) to (7) supplies

MIN W = <j) (z , t) I ' 
u(t) t<

rt
tf (H(z,u,p,t)-p1 z)dt, 

o
(9)

which, after integration, is

T N I tfMIN W = (<|>(z,t)-p z) I + t (H(z,u,p,t) + p z) dt. 
u(t) o J o

(10)

Now the first variation of W is

_  rx Tr9(}> ^("f ufrp T,3H . T.3H,-. .6\v = [6z ( ^  - p)]|t + t [6z + p) + 6u (-̂ -)] dt. (11)
o  ̂ o

ft

First order conditions for a minimum of the functional W require 6W to 
vanish identically for arbitrary variations 6z, 6u, so that

M - o
3u " U ’ (12)
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. 9H 9H ,, rc.P = - Ö7 > (z = from (5), (8)), (13)

«zT [|| - p] ■ o, t - (t°. (14)

Without regard to existence and uniqueness, these three necessary 
conditions heuristically define the modern solution structure. The 
stationarity condition (12) indicates that minimisation of the functional 
(6) requires a stationary solution of the Hamiltonian function (8).
This is a problem to which the traditional static optimisation apparatus 
may be applied. Simultaneously, the original dynamic state constraint 
and the additional dynamic costate constraint, as given in (13), are to 
be satisfied V t e [t , t^]. These differential equations are equivalent 
to the classical Euler-Lagrange necessary conditions for a minimum of W.
As for any differential system, boundary conditions must be available if 
a unique solution is to exist: these are provided by the third necessary
condition (14) , and are referred to as the transversality conditions for 
the problem. Now by (2) the terminal endpoint z(T) is free, so that 
the variation 6z(T) is arbitrary; hence satisfaction of the 
transversality condition requires

(15)

The original minimisation problem therefore reduces to the problem 
of obtaining solutions to the differential system

9H
9p ’

9HP = ' 3P
with split boundary conditions

(16)

z(tQ) = ZQ , p(tf) = 3<t>/3z(t£), (17)

where the control u(t) and costate p(t) are linked through the 
stationarity condition 9H/9u = 0.

It is the solution of this boundary value problem that 
particularly distinguishes the modern theory from the classical theory. 
Specialising to the optimal regulator model (1) to (3), the Hamiltonian 
becomes
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H = J^z^Vz + J^u^Ru + pT (Az+Bu), (18)

and the differential system (16) is therefore

3p t = Az + Bu
(19)

9H . .. .T_  = p = _Vz - A p

Using (15) , the transversality condition is

3^  ftzT (T)F:(T)] = p(T) <=> Fz(T)=p(T), (20)

and the remaining necessary condition, 9H/9u = 0, implies

Ru + BTp = 0 <=> u(t) = -R_1BTp(t). (21)

Substitution of this relation between the control and costate into the 
differential system (19) produces the two-point boundary value problem

z(t)
1i - I TA * -BR Bii

z(t)

p(t) u 1 > H P(t)

z (0)=zq 

p(T)=Fz(T)

(22)
comparable to (16) and (17)»

Prior to solving (22), two implicit assumptions need attention:
that 9H/9u = 0 produces a minimum of the Hamiltonian, and that this
minimum corresponds to a minimum of the performance functional W, The
second-order condition for a minimum of the Hamiltonian (18) with respect 

2 2to u(t) is that 9 H/9u“ = R be positive definite, and this is satisfied 
by an assumption in (3), In classical terms, the second-order conditions 
for minimising W require the second variation of W to be a nonnegative 
definite form. Since this second variation is expressible in terms of 
the Hamiltonian, the second order conditions become, following Athans 
§ Falb [pp.269-70] ,
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d2n 5 9H
9z2 3u 3z

—

(JL M)t
9u 3z

d2H

3u2

(23)

For the regulator problem, these conditions are satisfied by the 
assumptions on F, V, and R in (3).

Returning to (22), observe that the differential system is linear, 
with boundary conditions split equally between the origin and termination 
of control. Suppose the transition matrix for this system, of order 
2nx2n, is 4>(t,0) such that

z(t) * u (t,o) ®12(t,0) z(0)

P(t) * 2 1 Ct,o) '»2 2 (t,0J p(0)

(24)

Now the initial costate p(0) is unknown, so consider the positive 
translation

2 (T) *u (T,t) z(t)

P (T)=Fz (T) *21(T,t) ® 2 2 (T»t) P(t)

(25)

solution of which for p(t) provides the relation 

' p(t) = K(t)z(t) ,
(26)

K(t) = -[F$12(T-t^-$22(T-t)]‘1[F$11(T-t)-$21(T-t)], 

where the indicated inverse is known to exist,

At the solution level, the costate is therefore related to the state 
by means of the time-varying function K(t). At the lower level of the 
differential system (22) , this relation is manifested as
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Kz + K t

reduc ing  to

[K + KA + ATK - KBR_1BTK + V] z ( t )  = 0  V t e  [0 ,TJ . (28)

Now from (27) ,  z ( t )  i s  the  s o l u t i o n  o f  th e  d i f f e r e n t i a l  e qua t ion

£ ( t )  = [A - BR~1B1K ( t ) ] z ( t ) , z(0)=z . (29)

For a r b i t r a r y  i n i t i a l  c o n d i t i o n s  z ( 0 ) ,  and f o r  z ( t )  s a t i s f y i n g  (29) ,

K(t) must t h e r e f o r e  s a t i s f y  the  n o n l i n e a r  ( R i c c a t i )  d i f f e r e n t i a l  

equa t ion

K(t)  = -K(t)A - A1K(t)  + K(t)BR"1Br K(t) - V, K(T)=F, (30)

with  the  boundary c o n d i t i o n  d e r i v i n g  from (20) and (26) .  Athans 6

Falb then  show t h a t  a s o l u t i o n  K(t)  o f  (30) e x i s t s ,  i s  symmetric p o s i t i v e  

d e f i n i t e  f o r  t  e [ 0 ,T ) ,  and symmetric p o s i t i v e  s e m i d e f i n i t e  f o r  t=T; 

and t h a t  a s o l u t i o n  t o  th e  op timal r e g u l a t o r  problem t h e r e f o r e  e x i s t s  

as a consequence,  [ p p . 764-6] ,

Following t h i s  b r i e f  rev ie w ,  o r i e n t e d  s o l e l y  towards e x h i b i t i n g  

the  op timal s o l u t i o n s  in  u s e a b le  form, the  s o l u t i o n  th e o ry  a p p l i c a b l e  

to  the  optimal s t a b i l i s a t i o n  models c o n s id e r e d  in  t h i s  t h e s i s  i s  

c o l l e c t e d  in  two theorems.  Theorem 1 . 1 ,  based  on e q u a t io n s  (21 ) ,  (26) ,  

(29) , and (30) , s p e c i f i e s  the  s o l u t i o n  s t r u c t u r e  o f  the  optimal  

r e g u l a t o r  when the  s t a b i l i s a t i o n  h o r iz o n  i s  f i n i t e ;  theorem 1.2 

i n d i c a t e s  the  a p p r o p r i a t e  m o d i f i c a t i o n s  f o r  an i n f i n i t e  s t a b i l i s a t i o n  

h o r izo n .
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Theorem 1.1

For the finite horizon regulator model as defined,

(i) an optimal control exists, is unique, and is given 
by

u(t) = -R-1BTK(t)z(t), (31)

where

(ii) the nxn symmetric positive-definite matrix K(t) is the 
unique solution of the matrix Riccati equation

K = - KA - ATK + KBR_1BTK - V, K(T)=F, (32)

and

(iii) the optimal state vector is the unique solution of the 
linear time-varying differential system

z(t) = [A - BR_1BTK(t)]z(t), z(0)=z . (33)

Theorem 1.2

If, in theorem 1.1, T = °° and the dynamic system (2) is 
controllable, then the results of that theorem are valid provided

the substitution K(t) = K is made, where K = ^  is the

constant nxn symmetric, positive definite matrix solution of the 
algebraic equation

- KA - ATK + KBR_1BTK - V = 0. (34)
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1.3 SYNOPSIS

The six central chapters divide into three groups: chapter II
studies the effect of dimension on the design of optimal stabilisation 
policy; chapters III and IV analyse the problem of the existence of 
stabilisation policy; and chapters V, VI, and VII explore the theory 
of optimal stabilisation policy, abstracting from dimensional 
complications.

Implementation of the optimal solutions just reviewed is only 
possible on a numerical basis for the general multi-dimensional 
regulator model. But straightforward numerical application of 
theorems 1.1 and 1.2 proves unworkable. Chapter II investigates the 
reasons for this, the primary objective being the development of 
computational routines for the finite horizon and infinite horizon 
regulator models. This chapter utilises current computational research 
in the control literature, and contributes to this work through provision 
of a transformation to handle complex arithmetic due to oscillatory modes 
in the optimal solutions. The two principal results are the generation 
of workable computational procedures; and the acquisition of a deeper 
theoretical understanding of the regulator solution structure. After 
this general analysis of the multi-dimensional optimal design problem, 
the third group of chapters is justifiably able to specialise to the 
uni-dimensional design problem, making full use of the theoretical 
content of chapter II.

Chapters III and IV formulate and solve the problem of dynamic 
existence analogous to the static problem solved by Tinbergen. Solution 
of this problem relies on the concept of dynamic controllability developed 
in modern control theory, especially in the writings of Kalman. This 
concept is shown to provide a dynamic rank criterion necessary and 
sufficient for existence. Except for a special case of the target- 
instrument dimensions, for which static and dynamic existence criteria 
coincide, the dynamic criterion is not susceptible to immediate economic 
interpretation. Both chapter III and chapter IV therefore attempt to 
develop economic motivation for the criterion. Chapter III provides 
alternative conditions that are sufficient for satisfaction of the rank 
criterion, while chapter IV provides conditions that are necessary as
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well as sufficient. Dynamic existence is shown to involve two factors: 
the determination of the minimal number of instruments required for 
stabilisation, and specification of necessary and sufficient conditions 
to be satisfied by such a minimal set. As a result, these two chapters 
place dynamic policy-making on the same footing as static policy-making, 
allowing existence to be demonstrated prior to design.

Turning to the optimal design of stabilisation policy, chapter V 
considers the impossibility theorem enunciated by Fox, Sengupta § 
Thorbecke: that optimal stabilisation policies are destabilising and
suboptimal policies, stabilising. Were this theorem valid, further 
progress in designing optimal stabilisation policy would be prevented.
But the theorem is clearly invalid, contradicting the general theory 
of the optimal regulator. Although this impossibility theorem has had 
no impact on the theory of economic policy, careful study of its 
derivation permits not only a precise refutation but also an increased 
understanding of the optimal design technique. Ironically, this 
refutation implies the proposition that optimal policies are stabilising 
and suboptimal policies, destabilising; thus standing the impossibility 
theorem on its head.

Continuing the analysis of design, optimal stabilisation with a 
lagged instrument is the specific topic of chapter VI. This problem 
was first analysed by Phillips [1954] using classical design theory.
A closer look at the rationale for control lag suggests some ambiguity 
in its traditional formulation; and this is discussed initially. The 
lagged stabilisation problem proposed by Phillips is then considered 
in an optimal context. Two types of optimal policy are derived: policy
that passively adjusts to the dynamic effects of control lag, and policy 
that actively modifies these effects. This distinction emphasises the 
flexibility of optimisation as a design technique and clarifies the 
functions that optimal feedback assumes. Apart from the intrinsic 
interest of the results, comparison of the optimal policies with the 
well-known classical policies for similar models reveals a qualitative 
correspondence that is almost, but not quite, complete.

Chapter VII covers a miscellany of design issues, welded together 
as an analysis of the degrees of freedom characterising specification 
of the optimal stabilisation problem - an analysis more enumerative than
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exhaustive. Optimality, as an attribute of policy, must always be 
qualified as optimality with respect to a given criterion: yet many
criteria appear reasonable for a given stabilisation problem. This 
subjective aspect of optimality cannot be entirely removed but inroads 
can be made by developing the consequences of alternative specifications. 
Three particular issues analysed in this chapter are the possible role 
of the control weighting matrix as a surrogate for explicit control 
constraints; the role of terminal target weighting as a surrogate for 
fixed target endpoints; and the effects of alternative disturbance 
classes on regulator design. The outcome of this last analysis is that 
the gap between classical and optimal design techniques is closed.

Finally, chapter VIII states the major conclusions and likely 
extensions of this present study.



CHAPTER II

LINEAR OPTIMAL STABILISATION: 
A COMPUTATIONAL ALGORITHM

The central objective of this chapter is the development of an 
efficient computational procedure for the general regulator model 
defined in chapter I. Optimisation techniques inevitably highlight 
computational problems because of one specific characteristic: each
dynamic state variable is assigned a costate variable, doubling the 
dynamic order of the solution space. Although, given linearity, 
there are compensations for this doubling, analysis of the computability 
of solutions is therefore imperative. Concern for computation has 
not featured significantly in dynamic stabilisation theory, mainly 
because of use of the single-target, single-instrument model for 
dynamic analysis.

Despite the completeness of theoretical solutions to the general 
regulator problem computational theory is still being developed in the 
current control literature. To provide a coherent computational 
procedure, it has been necessary to integrate some of this work; and, 
at one point, to extend it. Section 2.1 describes a naive 
computational procedure, placing the computational problem for the 
regulator in perspective. The naive procedure is subject to severe 
limitations and the reasons for this are outlined. A preliminary 
refinement of this procedure is undertaken in section 2.2, providing 
additional understanding of the solution structure of the regulator 
model. Section 2.3 presents the basic building block of the final 
algorithm. This building block, the negative exponential procedure, 
consolidates the work of O'Donnell, and Vaughan. Defined over the 
complex field, this algorithm is unnecessarily extravagant in its core 
storage requirements; section 2.4 therefore develops a more economical 
version. Finally, section 2.5 summarises the computing procedure and 
indicates problems requiring further research.
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2.1 A NAIVE COMPUTATIONAL PROCEDURE

The transition from general theoretical solution to general 
numerical solution is never straightforward. To illustrate the 
transitional problems associated with optimal regulators the following 
Bergstrom regulator model, derived in Appendix H a  (pp. 201-4 below), 
is used:

MIN W 
g

fT
[zTVz + 2KTzg + TTg2 ] dt + ^zT(T)Fz(T)

Jo
subj ect to CD

z = Az + bg, z(0)=zq 0̂, z(T) free,

T fixed; g(t), te[0,T], unconstrained,

where z(t) is a 4x1 state vector, and g(t) is the control variable.
In theoretical discussions below, the specification (1) will frequently 
be assumed to be of general state dimension n.

Formal solution of this optimisation problem proceeds in the 
manner described in chapter I. Define the Hamiltonian function

T T 2 T TH = *sz Vz + k zg + iyrrg + p Az + p bg, (2)

where p(t) is the costate vector. Then the minimising control is

9H n - 1 , 1 , T ■. ( •z'. _  = 0 <=> g = -Ti (k z + b p) . (3) og

Evaluation of the canonical equations z = 9H/9p, p = -9H/9z with use of 
(3) provides the canonical system

Because the Hamiltonian function H of (2) is not referred to again; 
and because, by definition 2.1 below, the coefficient matrix (4) 
belongs to the class of Hamiltonian matrices, it is convenient to 
use H to also denote this matrix.
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x = Hx,

, T
A - bK7T_ _ _ _ _ _ _ _ _ j

T
_ bbTT

T
KK . vTT

_ _ _ _ _ _ _ _ _ _

-(A - —  )TTT

(4)

z (0) = zo , p(T) = Fz(T).

If this canonical system, of order 8x8 for the Bergstrom regulator, 
has the transition matrix $(t,0) such that, taking advantage of the 
constancy of H,

~
z(t) *!!«« z (0)

p(t) $2 1 ^ $22 (‘t') P (0)
(5)

then, from (1. 26 ), the state and costate are related by 

p(t) = K(t)z(t), (6)

where

K(t) = -[F$12(T-t) - 022(T-t)]'1[Ff11(T-t) - 4>21(T-t)], (7)

and

z(t) = [fn (t) + $12(t)K(0)] z(0) . (8)

And from (3), the optimal control is

g(t) = - t t_ 1 [ k T  + bTK(t)] z (t) . (9)

Inspection of equations (7), (8), and (9) shows that the 8x8 
transition matrix $(t) is a prerequisite for any solution of the 
Bergstrom regulator. Here the computability of solutions emerges as
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a separate and major problem. For instance, there is no general 
formula for extracting eigenvalues for systems of order 4 or greater; 
even apart from the difficulties of manipulating all except low order 
systems. Thus, in general, theoretical solutions are obtainable for 
one-state regulator models for T < «> (see chapter V below) and for two- 
state regulator models for T = °° (see chapter VI below). Otherwise, 
numerical solutions are necessary: as is the case for this Bergstrom
regulator.

The naive computational procedure now to be presented computes the 
transition matrix

*00 = eHt, (10)

as the solution of the matrix differential system

$>(t) = H$(t) , 3>(0) = I, (11)

where the 2nx2n constant matrix H is the coefficient matrix of (4) with 
n=4, or its general equivalent. Zadeh 5 Desoer [pp.300-10] describe 
a computationally oriented Laplace transform method for generating 
$(t) that is used as the basis of the naive procedure. Their method 
is therefore summarised verbatim, apart from the simplifying assumption 
that the eigenvalues of the canonical system (4) are distinct. There 
is no theoretical presumption for multiple eigenvalues; should they 
occur, they can be replaced by simple eigenvalues, according to an 
approximation theorem due to Bellman [p.199].

The Laplace transform of the linear time-invariant differential 
system (11) is

*(S) = [si - H]'1 V s tE(H) , (12)

2where E(H) is the set of eigenvalues of H. The Zadeh-Desoer procedure 
recursively generates this matrix inverse - lemma 2.1, theorem 2.1 -

2 Relevant proofs offered by Zadeh § Desoer are collected in 
Appendix lib, pp.205-8 below.
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proceeding then to the inverse Laplace transform - theorem 2.2.

Lemma 2.1 (Zadeh § Desoer)

[si - HJ -1 _ B (s)
d(s) • (13)

where d(s) is the characteristic equation

d(s) = I sI-H I = s2n+d1 s2n_1 + . . .+d0 -s+d-1 1 1 2n-l 2n (14)

and B(s) is the adjoint matrix

B(s) = B s2n’1+B0s2n 2+...+B0 .s + B0 , 1 2 2n-l 2n* (15)

for B_. a constant 2nx2n matrix V j = 1, ..., n,

Theorem 2.1 (Zadeh § Desoer)

The scalar coefficients of the characteristic polynomial 
d(s) and the matrix coefficients of the matrix polynomial B(s) 
are generated recursively by

B1 = 1 * dl = 'tr(H)»

S2 = BH+dl, d2 = -Sjtr(B2H)

L 1 = B, H+d. I, d, , = - — r-tr(B, -H) , k+1 k k * k+1 k+1 v k+1 * (16)

d2n = - 2 ^ r(B2nH)

B0 = B0 H+d0 I = 0 2n+l 2n 2n

Theorem 2.2 (Zadeh § Desoer)

Let H be a constant 2nx2n matrix over the complex field,
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possessing distinct eigenvalues. Then:

(17)

2n
(18)

2n
(19)

k=l

2n
where d(s) = II (s-A. ) , and R, are the constant 2nx2n residue 

k=l k k
matrices at the eigenvalues A^e E(H), k = l,...,2n.

Theorem 2.2 resolves the Laplace transform of (13) into the matrix 
partial fraction expansion (17), the transition matrix (10) following 
as the inverse Laplace transform (19). After partitioning $(t), the 
Riccati solution (17) is available, and subsequently the state (8) and 
control solution (9). This naive approach will be termed the 
transition matrix procedure (TMP).

TMP possesses severe limitations when applied, for example, to the 
Bergstrom regulator. Accurate computation appears conditioned by two 
factors: the length of the stabilisation horizon T, and the maximum
eigenvalue modulus of E(H). For the product of these two factors 
above a certain limit, TMP returns nonsense results. Thus for likely 
parameter values, the upper limit on T ranges between two to six unit 
periods of supply lag. Given a supply lag of three months, this at 
best confines the stabilisation horizon to one and a half years: a 
severe limitation, even apart from the thwarted desire to investigate 
asymptotic behaviour (T=°°).

Upon investigation, a theoretical rationale for this irregular 
behaviour is found in Kalman’s first law of computation [1966, p.25]:

"Optimal control computations deal with blocks of numbers.
The computations are meaningful only when the ratio of the
largest to the smallest number in each data block is kept
within preassigned limits,"
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Kalman's argument is the following. Given a finite precision
machine arithmetic of (d) significant decimal places, full information

2may be recovered from a comparison between any two of the 4n elements 
of $(t) only if the condition

R(®, t)
max
ij

$>. .

min
ij

$>. . ij
(2Ö)

is satisfied. Now $(t) is similar to the diagonal matrix F:

w ' h ( t ) w  = r e t ) ,  r  = d i a g e s ^  ...,«2nn (21)

where W is a right eigenvector matrix, and the 6^, i = l,...,2n, are 
the distinct eigenvalues of $(t). Hence condition (20) may be 
approximated, given (21), by the eigenvalue range of $(t):

R($,t) =
max

min
(22)

But $(t) = exp(Ht) implies T(t) = exp(A^t) such that

W_1HW = A 1,Aj = diagfAj, ... .X^), (23)

with the A^ as eigenvalues of H, and 6^ = exp A^t. Therefore, the 
approximation (22) may be rewritten in terms of the eigenvalues of H 
as

n r As a. ̂  ( rmaxR($,t) = exp { i . t} exp (r(H).t}, (24)

where

r(H) max
ij

A A.
3

(25)

Thus the computability of the transition matrix depends firstly, 
on the maximum eigenvalue spread r(H) of the canonical matrix H; and
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secondly, on the stabilisation interval,t e [0, T] , over which the 
transition matrix is required. In other words, from (20), (24), the 
Kalman constraint

must be met if TMP is to generate valid numerical results.

The process of precision loss consequent upon violation of (26) 
may be illustrated with the Bergstrom regulator. For parameter values 
(see Appendix lie, p.242 below) producing the eigenvalues

and for an horizon T=10 unit periods, the state equation (8) was 
computed, using TMP, for 101 discrete values of t , t e  [0, 10], 
separated by the intervals .OlxT. Values for the four state variables - 
consumption (c), investment (i), income (y), stocks (s) - expressed as 
deviations, are abstracted in Table 2.1.

Beginning from the specified initial conditions at time t=0, all 
four state variables behave regularly for t < 6, but subsequently 
exhibit increasingly irregular behaviour. The problem occurs in the 
calculation of the state transition matrix

r(H).T < d log 10 (26)

± 5.2763, ± .53535, ± .26298, ± .15783, (27)

M(t) = $n (t) + $12 (t) K (0) . (28)

Numerically, K(0) and $^2 (t=6) are given by



TABLE 2.1
BERGSTROM SIMULATIONS WITH NAIVE PROCEDURE

t c i y s

0 . .75 .25 1. .5

5.0 .093 -.442 .064 .309
.1 .090 -.433 .064 .304
.2 .088 -.424 . 066 .300
.3 .085 -.416 .066 .296
.4 .083 -.409 .067 .292
.5 .081 -.402 .068 .289

6.0 .073 -.346 .101 .278
.1 .075 -.400 .052 .264
.2 .059 -.005 .234 .251
.3 .080 -.110 .424 .245

7.0 .427 3.406 2.297 -.508
.2 .596 32.500 1.250 -1.469
.4 1.875 54.250 39.250 -3.125
.6 2.531 47,000 113.500 -12.250
.8 -8.250 476,000 464.000 -32.500

8.0 29.250 1120.000 792.000 -183.500
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*12<6>

K(0) =

12.18 10 13- .42  1010 13- .29  10 13.13 10
13.48 10 .10  i o 15 14-.81  10 14.36 10
13.36 10 14- .86  10 14- .62  10 14.27 10
12-.52  101 14.12 10 13.88 101 13-.39  10l

.3746 .5751 -.6529 -.1723

.5751 1.098 - 1.419 -.2991

-.6529 - 1.419 2.229 .3702

-.1723 -.2991 .3702 .085

( 29)

As Kalman’s computational law argues, precision loss relates not to the
absolute size of the elements of (6) - maximum size for floating-point

75representation in the IBM 360/50 is approximately 7x10 - but to the
relative sizes of the elements involved in the additive and 
multiplicative operations in (28) . To compare two floating-point 
numbers of differing magnitude, whether for addition or multiplication, 
the exponent of the smaller is increased to equality with the larger, 
while the mantissa is adjusted to compensate. Thus comparison of the 
(1,1) elements of  ̂ anĉ  K(0) in (29) requires

.18xl012, .0 ... 03746xl012. (30)
^----v— >

12 places

With finite precision arithmetic, only the (d) most significant decimal 
places of the mantissa resulting from the comparison in (30) are 
retained. If d $ 12, then information on the smaller number is 
completely lost. This is the reason for the relative nature of the 
criterion (20) - a minimal condition for retention of information. For 
the relative magnitudes shown in (29), precision loss commences in the 
operation $1?xK(0), producing the irregularity observed in Table 2.1.
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First attempts to implement optimal regulator solutions 
numerically fail because information is coded in numbers whose relative 
magnitudes are too dispersed for accurate machine computation. In 
terms of Kalman’s constraint (26), since d is fixed, disparate numerical 
comparisons can only be avoided by adjusting the range function r(H) or 
the time interval T. This is the basic task of section 2.3. TMP is 
jettisoned as a result but lemma 2.1 and theorem 2.1 are retained for 
calculation of the characteristic equation d(s). Before the modified 
procedure is developed, section 2.2 considers the relevance of these 
two results to the solution structure of the regulator.

2.2 ASPECTS OF REGULATOR STRUCTURE

Lemma 2.1 and theorem 2.1 of the Zadeh-Desoer algorithm provide 
the characteristic equation for any 2nx2n constant matrix. The 
structure of the optimal regulator permits, however, certain 
simplifications. Thus (16) implies that the coefficients d^, B^, are 
constructed from operations on successively higher powers of the 
canonical matrix H:

d̂  = -tr(H)

B2 = H + d p  

1 2d2 = ~tr(H +d}H)

(31)

B. = Hk_1+d1Hk"2+...+d1 0H+d, ..I k 1 k-2 k-1

d. = -^tr(Hk+d1Hk_1 + .. .+d. 0H+d. .H). k k 1 k-2 k-1

Now from (4), and in general,

tr(H) = 0. (32)

Examination of (31) suggests that an analysis of tr(H ), k = 2,...,2n,
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might prove fruitful in further simplifying (31). Lemma 2.3 justifies 
this intuition, using the following definition and lemma provided both 
by Kalman § Englar [p.196] and by O'Donnell [p.584].

Definition 2.1 (Kalman § Englar, O'Donnell)

An even-dimensional 2nx2n matrix H is said to be Hamiltonian 
if

H = JHTJ, (33)

where J is the 2nx2n matrix

J  =

such that

2 T -1J = -I, J = -J = J .

(34)

(35)

Lemma 2.2 (Kalman § Englar, O'Donnell)

The canonical matrix H of the regulator model is 
Hamiltonian.

Thus the matrix H of (4) satisfies (33), and H is therefore Hamiltonian. 

Lemma 2.3

For the 2nx2n Hamiltonian matrix H, 

tr(H^) = 0 V k odd, k = 1,3, ...,2n-l. (36)

proof

T= JH J(i) H
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2 T T 2TH = JH JJH J = - JH J ...(35)

3 2T T 3TH = -JH JJH J = JH J H

H4 = JH3TJJHTJ = - JH41J It

(ii) Hk_1 = (-l)k'2JH!‘k'1'>TJ

=> Hk = (-l)k_1JHkTJ

(iii) k k-1 kTtr(H j = (-1)K tr(JHK1J)

k _ 1 kT= (-1)K itr(HK1JJ)

= (-1) tr(H ) 

kT= - t r ( H  ) v k  odd. 

Hence the lemma.

The numerical significance of lemma 2.3 is expressed in corollary 2.1; 
its theoretical significance, in corollary 2.2. Thus:

Corollary 2.1

The coefficients d^, j = l,...,2n, of the characteristic 
polynomial d(s) of the Hamiltonian matrix H vanish V j odd, 
j = 1,...,2n-l.

proof

(i) d1 = - tr(H) = 0 

d3 = -Itr(H3+d1H2+d2H) = 0

(ii) From (31), assume
k

dk = - ±tr(E dk H3) = 0, dQ=l, k odd. 
j=l * J

...(32)

... (32), lemma 2.3, (i).

(37)
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Define D.k
k
Z
j = 1

such that

Dk = [Dk-l+dk-l] 'H> ...(16), (31).

Therefore

dk+2 • kT2 tr(IW  -C 37J

' ik
- kTI t r ^ Dk+dkl-H2+dk+l «

- ^ j  tr(Dk .H2), ...(37), (32). (38)

(iii) tr(Dk<H 2) = tr (Z d^ .H^+2), by definition of D^i
5=1 ' J

Hence V k odd,

either (a) j odd; k'-j even, j+2 odd, 

or (b) j even, k-j odd, j+2 even, 

j = 1,...,k. Thus d tr(Hj+2) = 0 V j = l,...,k, 

by lemma 2.3 if (a); and by (37) if (b) . From (38),

dk+2 = ° ’

and the corollary follows by induction,

Corollary 2.2 (Hamiltonian Saddle Point)

The eigenvalues of the Hamiltonian matrix of optimal regulator 

models are distributed symmetrically about the complex axis in the 
complex plane.
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proof

From (14), the Hamiltonian characteristic equation is

2n 9-. 4
d(s) = E d . s J , d = 1,1 ? o *

= 2 d s2(n'j), (39)
j=0 J

by corollary 2.1. Because (39) is even-powered in s, the root s
For real s^, the corollary is immediate.implies the root -s ̂ .

For complex s^, the conjugate property and evenness imply the pairs 
(Sj, -s?) and (sj, -s^), also satisfying the corollary.

In summary, this section presents specific properties of the optimal 
regulator model that not only simplify computation with the Zadeh-Desoer 
characteristic equation algorithm but also clarify the theoretical 
solution structure. The knowledge that the canonical matrix H is 
Hamiltonian and that its characteristic equation therefore exists as a 
purely even-powered polynomial considerably simplifies (31). To the 
original statement (16) of the characteristic equation algorithm

dk = - Itr (HBk), Bk = Z A _ ^ - \  dQ = 1,
J=1 J

k = 1,...,2n, (40)

is added

d, = 0 V k odd. k (41)

Corollary 2.1 also implies that the computational disadvantage with 
respect to doubling of order suffered by optimal stabilisation models, 
when compared with classical stabilisation models, is partially 
alleviated. Thus (39) allows the system eigenvalues to be computed 
from

d (v)
n
Z
j=oVn-j s = ± v . (42)



32

Although optimal stabilisation policies double the order n of the 
uncontrolled system (whereas classical policies increment order, 
according to the type of policy used), the characteristic equation 
(42) retains an effective order n. That this is half the optimal 
order 2n reflects the symmetry property of corollary 2,2 - a 
compensation provided by linearity.

With this theoretical appreciation of the Hamiltonian eigenvalue 
structure, section 2,3 now returns to the development of a computational 
procedure satisfying Kalman’s constraint.

2.3 THE NEGATIVE EXPONENTIAL PROCEDURE

At first sight, the precision loss described in section 2.1 may 
be avoided by rescaling the magnitudes of the matrices $ and i-n 
the state transition matrix (8), (28). Thus, since the Hamiltonian 
system is linear and constant, consider the following iterative form 
of (8):

Z(t) = O n (t-T) + $12(t-T)K(t) ]z(t) ,

or

z(x+e) = [$11(e) + $12(e)K(x)]z(T) . (43)

The step size,

£ = t - t = T/N, (44)

can be chosen so that the Kalman constraint is met by and § ^2 * 
where N is the number of discrete computing points used to approximate 
the continuous solutions over the specified horizon T. Yet the 
precision problem cannot be suppressed. The Riccati solution K(x) is 
now variable; and if computed by (7) the same form of precision loss 
occurs for T-t large, te[0, T]. Use of (43) therefore requires a 
satisfactory computational procedure for the Riccati solution. Recent 
work by O'Donnell and Vaughan reformulates the Riccati solution (7) so 
that it satisfies Kalman's constraint. The task of this section is to
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summarise these results; and of the following section, to present a 
modification more economical in its core storage requirements»

Refinement of the naive Riccati procedure (7) proceeds in two 
steps» The first step, due to O'Donnell, characterises the 
eigenstructure of the Hamiltonian system; the second step, due to 
Vaughan, then restructures the naive procedure.

On the assumption of distinct eigenvalues for the Hamiltonian 
system, (23) defines a similarity transform of H in which is the 
diagonal matrix of eigenvalues. The Hamiltonian transition matrix 
$(t) is therefore given by

Ht A it i
$(t) = e = We W . (45)

Now from corollary 2.2, A^ possesses the saddle point structure

A1 A = diag (A1, ...,Xn) , (46)

for A^, i = l,...,n, distinct but not necessarily real. Because of 
this saddle point structure, the eigenvector matrix W of (45) is of a 
particular class called simplectic:

Definition 2.2 (Kalman § Englar, O'Donnell)

An even-dimensional matrix W is simplectic if 

WTJW = J, or -JWTJ = W"1. (47)

O'Donnell [p.586] uses this simplectic property to construct the left 
eigenvector matrix W * directly from W, avoiding the need for inversion. 
His results are summarised in the following theorem (for proof of which 
see Appendix lib, pp.208-10 below).

Theorem 2.3 (O'Donnell)

If a Hamiltonian matrix of order 2nx2n has eigenvalues
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±Äj, j = assumed nonzero and distinct over the complex 
field, then there exists a simplectic eigenvector matrix W such 
that

A ^ diag (Aj, ,, o sAn) , (48)

where

W"1HW = A,
-A

Using the Hamiltonian eigenstrueture defined by theorem 2.3, 
Vaughan demonstrates that the Riccati solution matrix K (t) can be 
obtained without loss of information for any horizon T $ His
negative exponential procedure devised for this purpose is condensed

3
into theorem 2 „4 .

Theorem 204 (Vaughan)

For the optimal regulator with T < the matrix Riccati 
equation associated with the Hamiltonian system is computable in
the form

K(t) = [W21*W22Q(T-tj] [Wn *W12Q(T-t)]'1 > (50)

Q(T-t) - e~A(T~tJRe"A(T"t), (51)

R -  - [W22-K(T)W12]'1 [W21-K(T)Wn ]. (52)

To perceive the advantage that the negative exponential procedure 
(NEP) possesses over TMP, observe that the Hamiltonian transition matrix

Section 2.4 below presents a proof of a modified version of 
theorem 2 „4; Vaughan's proof of this theorem is therefore omitted 
from Appendix lib.
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4>(t) of (45) may be partitioned, after using theorem 2.3, as

*(t)

-At„.T At. ,T J .. At, ,T .. -At, ,T<D 
1

«—( I|

W 22 W126 W21 ! W 126 W 11 
i

- w n e w i2

21e -AtwT22 - W ê 'tW^ 22 21

r
! ,tI At.J 
! W 22e W 11

_ yj e~^vi^ 
21 12

(53)

To simplify, suppose the Riccati endpoint is K(T) = F « 0, so that (7) 
becomes, using (53),

K(t) = - $‘^(T-t)$21(T-t),

X[W21e-A(T-t)wT2-W22eA(T-t)W^1], (54)

which is the TMP version of the Riccati solution. Exercising this 
endpoint assumption in theorem 2.4 yields the NEP version

K(t) = [W21 - W22e'A(T't)W2^W21e'A(T't)]

xtwu  - "12«'i(T‘t)»;l»2i«‘A(T't)]'1. (55)

Performance of (54) and (55) may be compared for large T-t, after
first establishing the asymptotic limit K = lim K(t). For large T-t,

T-*oo
the exponential functions, exp (-A(T-t)), decay rapidly: hence, for
the TMP version (54),

K = lim
T-̂ oo

ruI-T -A(T-t),.-lu, A(T-t)urT 
lim [W^e W22W22e W21-*

-T T -1W W = W W . 1 1 2 1  21 11 * (56)
since K(t) is symmetric. The same result follows from (55),
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Although both approaches are asymptotically equivalent, their 
computational requirements differ markedly for finite T. The TMP 
version (54) grows exponentially with T while the NEP version (55) 
decays exponentially with T„ Further, the asymptotic solution 
matrices of (56) occur multiplicatively with respect to the
exponential functions in TMP, but additively in NEP. Thus in (56), 
each of the products

eA(T-t) eA(T-t) (57)

suffers precision loss for T-t sufficiently large; the resulting loss 
of asymptotic information producing numerical inaccuracy when the TMP 
version (54) is used. On the other hand, the NEP version (55), with 
its decaying exponentials, has all information coded in comparable 
magnitudes, retaining full information about the asymptotic solution 
as T-*».

For computation of the Riccati solution required in (43) , NEP 
provides a numerically stable solution procedure satisfying Kalman's 
constraint. But as formulated in theorem 2.4, NEP is not explicitly 
concerned with computational problems engendered by complex 
eigenvalues and eigenvectors. Section 2.4 therefore proposes a 
transformation for handling complex arithmetic when it occurs.

2.4 REGULATOR COMPUTATION WITH COMPLEX ARITHMETIC

Allowance for complex eigenvalues and eigenvectors is obligatory; 
the probability of their occurrence increasing with the state dimension 
of the system. Yet the negative exponential procedure pays no regard 
to the additional core storage requirements necessitated by complex 
arithmetic relative to real arithmetic. Taking the polar cases of 
real eigenvalues only and complex eigenvalues only, the complex case 
doubles storage requirements. For large order systems, this is likely 
to be prohibitive. It is worthwhile, therefore, to attempt the 
reformulation of NEP to economise on core storage in the face of 
complex arithmetic.

For a Hamiltonian matrix H possessing real and complex
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eigenvalues, define

n = 2c + r, (58)

where r is the number of real positive eigenvalues, and c is the 
number of positive real part conjugate eigenvalue pairs. The diagonal 
matrix A of (48) is then partitionable as

The even-dimensioned diagonal matrix T contains complex eigenvalues 
with positive real parts, stored in conjugate pairs; and £ contains 
real positive eigenvalues. From Ogata [pp.143-5], the transformation

*
M2l f 2M2

where

(60)

r2

0+j 00 0

0 a- jto

provides the real matrix

* a

-00

CO

a

(61)

(62)

Information on the real part of conjugate eigenvalue pairs is retained 
in the diagonal elements but information on the imaginary part is now 
stored in the offdiagonal elements. Applying this pairwise 
transformation to A in (59),

A* = V”1A1V> (63)
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where

. a . • M2c (64)

0 ' M2

Hence

-X2c
•E .ri

I V »  II “2c »
. E

(65)

in which, from (60),

"2 c (M_1rM)

°i “i 
-w i a i

ö 0Üc c -03 a c c

(66)

Since both X, E are real matrices, in (63) is also real

Using the similarity transformation (48) in (63) supplies

A* = V 1 (W”1HW)V = P-1HP; P = WV. (67)

The operation of the block diagonal, complex-valued matrix V in post- 
multiplying the complex-valued eigenvector matrix W generates a 
transformed eigenvector matrix P with real elements, in which eigenvector 
information is stored in a single column (real eigenvalues) or in two 
adjacent columns (complex eigenvalues)» Thus equation (67) specifies 
the spectral form of H in real-valued quantities; and is obtained by a
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simple transformation of the complex-valued form (48).

With this transformation, theorem 2.3 on the spectral form of H, 
and theorem 2.4 on the negative exponential Riccati procedure may be 
restated as follows:

Theorem 2.5

Given the Hamiltonian matrix H, with eigenvalues assumed 
nonzero and distinct, then there exists a similarity transformation 
of the spectral form W ^HW = Â  such that

-1 *P HP = Ay =
-A °i “i -go. ö»l l

(68)
n-r+1*

s
A

where

i =  1, c ; n =  2c+r,

wn A

w 21a

Wi2&

w 22a
, A.

r rt r

(69)

and

V-1

* T1
A P 22

* T* 
■A P21

-A  PL
* T

A Pil

1 0 
0 -1

! iI rI

(70)
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proof

Equations (68) and (69) follow immediately from equations 
(61), (64), and (67). To establish (70) - the analogue of 
O'Donnell’s result for W 1 , given in (49) - observe that by the 
definition (47) of a simplectic matrix

_1 tW = -JW J (71)

Using the transformation P = WV of (67) in (71) implies

-1 -1 -T TP = -(V JV )P J. (72)

But from the definition of V in (64),

r
ro

I__

a -t i 0 0 i  -a -t
JV'T =

1 
1

t—
1 

1 1 1
__

__
1 _

.
1 1

O
 

1
L 

1 1

_0 i a -t_
s 1 V'TJ , (73)

Hence (72) is written

-1 * TP = V (-JP J), (74)

in which

* T -1V 2n = ev'vD n 
---1 T -1 CA A)

T -1(m am )2*

(75)

The expression for P * in (70) follows from (74) , using the 
definitions of J, V in (34), (75). And from (61),

-1

( M ^ r 1

— . —

l l 1 -j 1 0
h

OJII

-j j 1 j

rH1

o

h J —  —

(76)
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establishing, from (75), the second result in (70).

Theorem 2.6

The matrix Riccati solution K(t) is computable in the real­
valued form

K(t) = [P21+P22Q*(T-t)] tp1v+PX2Q*(T't)]'1. (77)

where

Q*(T-t) = e’A T̂'t)R*e"A (78)

R* = - [P22-K(T)P12]_1 [P21-K(T)Pu ]. (79)

proof

The following proof imitates Vaughan. By (4), (67),

x(t) = PE(t)P_1x(0), (80)

with, from (63), (65),

*

E(t) = eAlT

*
-A t

*
A t

, A. 0
L --- - (81)

Given the block diagonality of h  , application of the Laplace 
transform method yields (see Appendix lib, p.210 below),

±Zte =

±A , tn-r+1e 0

. ± X t
n n0 e

±Xt, e

±a^t cos a) t ±sin cô t
+ sin oon t cos an t 1 1

±a t c cos co t ±sin w t c c
+sin a) t cos co t c c

(82)
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Now define the backward transformation

z(t)
1

P 1 Pii ; 12 u (t)
X /—\ r+ II H3 H <•—
\

v _J A II V — ii —

P(t) p 1 p21 ! 22 v (t)

rp . r T T-.TT = T-t; r = [ u v ] . 

Thus

(83)

x(T) = PE(T-t)P_1x(t),

obtained from (80), may be written

(84)

r(x) = E 1(T)r(0) <=>
u (t)

v (t)

*
A Te 0 u(0)

0
*

-A Te v (0)

Combining (83) and (85), 

x(t) = PE‘1(T)r(0i, 

implying for t=T, t=0,

x(T) = Pr(0) <=>

(85)

(86)

2 (T) p ! p11 ! 12 i
u(0)

P(T) P21 ! p22 i v(0)
(87)

Use of the costate-state relation p(T) = K(T)z(T) in (87) supplies

v (0) = R u(0),

for R defined in (79). Hence from (85) and (88),

(88)

v (t) = Q (t)u (t), (89)

for Q (T-t) defined in (78). Finally, use of p(t) = K(t)z(t) and
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(89) in (88) provides the Riccati solution (77).

This section therefore effects a pairwise similarity transformation 
of conjugate eigenvalues and eigenvectors whenever these occur in 
O ’Donnell's specification, theorem 2.3, of the spectral form of the 
Hamiltonian system; and in Vaughan's negative exponential procedure, 
theorem 2.4, for computing the Riccati solution. As a result, both 
the Riccati solution and the Hamiltonian transition matrix may be 
computed utilising the same storage for complex as for real arithmetic. 
Further, in calculating the Hamiltonian transition matrix, the 
transformed left eigenvector matrix P * is available as (70), avoiding 
the need for direct inversion of P.

2.5 STATEMENT OF COMPUTATIONAL PROCEDURE

Previous sections have indicated various problems confronting 
attempts to compute solutions to the optimal regulator. Are there 
procedures available which allow accurate computation of finite 
trajectories subject to the Kalman constraint? How are storage 
requirements to be minimised in large order systems for which complex 
arithmetic is likely? What complications, if any, are avoided by an 
infinite horizon assumption? Certain answers to these questions are 
now collected in an integrated account of the computational algorithm 
so far developed in this chapter.

Two sets of routines derive from the previous theoretical 
developments: a finite horizon program and an infinite horizon
program. Fortran IV coding for each is attached and briefly discussed 
in Appendix lie (pp.212-60 below). Basically, both programs link five 
sequential steps:

(i) system specification,
(ii) eigen analysis,

(iii) Riccati solution,
(iv) state solution, and
(v) control solution.

Step (i) specifies two types of information: horizon



44

information and structural information. The first refers to the value 
of T to which simulations are to be computed, and to the number of steps 
N in (44)o The second refers to a numerical specification of the 
matrix and vector coefficients of a particular regulator model: for
the Bergstrom regulator (1), a numerical set {A, b, z(0), V, k, tt} .
Step (ii) then computes the eigenvalues and eigenvectors of the 
Hamiltonian differential system derived from the optimisation analysis. 
The eigenvalues are found from the Hamiltonian characteristic equation, 
constructed from equations (39) to (42). The right eigenvector matrix 
P of (69) is subsequently computed using a slightly modified version of

4IGVEC5, developed by Blackburn § Vaughan . In the attached coding, the 
left eigenvector matrix P 1 is obtained by direct inversion; in large 
order systems, the expression (70) would be used.

For the finite horizon routine, step (iii) obtains the Riccati 
solution using equations (77), (78), and (79) of theorem 2.6. The 
asymptotic case is dealt with below. The optimal state solution - 
step (iv) - is found with the aid of (43):

z(x+e) = [$n (e) + $12(e)K(t)]z (t ) , (43)

in which the Hamiltonian transition matrix partitions are
derived from the appropriate partitions of

$(t) = eHt = PE(t)P_1, (90)

obtained from (80). Using E(t) defined in (81), and P * defined in 
(70), the Hamiltonian transition matrix is

*n (t) * 1 2 ™ P11 P12
*

-A t e
0

* T 
A P22 

—

* T
-A P12

*21 ̂ *22(t) P21 P22 0
*

A te
* T 

-A P 21 A  P I l

(9D-

4 The McDonnell-Douglas Co generously provided a copy of the Blackburn- 
Vaughan report.
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Hence the two partitions are

*1 1 ^  ■ Plle'A ^ 2 2  - P12eAEA‘P21-
*  *_A p * T A r * T

*12<e> = -Plle A P12 + P12e A pir
(92)

Since $^(e), and K(x) are now scaled in commensurate terms,
(43) provides a computationally stable method for computing the finite- 
horizon state solution. And with z(x+e) and K(x) available, the 
finite-horizon control solution - step (v) - follows immediately from 
(9), or its general equivalent.

Nothing specific has yet been said concerning the asymptotic 
program. With an infinite horizon, O ’Donnell [pp.582-3] shows that 
considerable simplification ensues. In demonstration, the Hamiltonian 
system x = Hx may be partitioned as

(93)

and the relation p(t) = K(t)z(t) of (6) applied to the first vector 
differential equation to provide the state dynamics

z(t) = [Hn  + H 12K(t)]z(t). (94)

)

For T = °°, K = lim K(t) is, from (77), and by analogy to (56),
T-X»

K = lim K(t) = P P'\. (95)
T-*x> c 1 1 i

Thus (94) is

z(t) = [Hnpn + H i2p21]pi}z(t), te[0,°°]. (96)

Now the modified spectral form of H, (68), implies



46

HP =
*

P A ^ < = >

H

H

12

22

P

P

11

21
4-

P

P

12

22

*
-A IIII

4-
I
I
I
I

0

A

(97)

reducing to

H P +H P ' 1111 12 21 ' i i
H11P12+H12P22

* | * 
-P A ' P A 11 ; 12

i
i

H P +H P ' 21 11 22 21 • i H21P12+H22P22

i* i *
-P A • P A 21 ' 22 i

(98)

Comparing (96) and (98) , the state equation (96) may be expressed in 
terms of the (1,1) partition of (98) as

i(t) = -Pn A*P^z(t), z(0)=z o , (99)

with stable solution

*

z(t) = Pn e'A tpj11z(0). (100)

Thus the asymptotic solution is embedded in the finite horizon
solution. The asymptotic eigenvalues are the stable, finite horizon 

*
eigenvalues -A ; the asymptotic eigenvectors are the upper partition 
of the finite horizon eigenvectors, [P | P ^] > corresponding to the 
stable eigenvalues. Computationally, the asymptotic Riccati solution 
(95) and the asymptotic state solution (100) are considerably simpler 
than their finite horizon counterparts.

Appendix lie contains (p.246 below) an illustrative simulation of 
the Bergstrom regulator for the same parameter values generating Table 
2.1 above. Comparison of these two sets of results reveals that the 
irregularity due to precision loss has been removed. Further, 
satisfactory results have been obtained with horizons of 40 unit periods; 
and larger horizons may be used by appropriate selection of the step 
size (44).

This chapter therefore presents a computational algorithm for the
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optimal regulator that overcomes the precision loss problem and 
circumvents core storage problems associated with complex arithmetic. 
Additional research is still required to test the algorithm for 
efficiency and speed in high order systems. Although the original 
intention was to pursue these computational problems in depth, prior 
theoretical problems exist in the theory of stabilisation policy; and 
the rest of the thesis is devoted to these problems. But the analysis 
of this chapter remains relevant to this later work: there is an
important and valuable feedback between computation and theory that 
will emerge in the sequel.



CHAPTER III

A DYNAMIC GENERALISATION OF TINBERGEN'S THEOREM

A review of the corpus of economic theory broadly referred to as 
the theory of economic policy, and represented by the work of Tinbergen, 
Bent Hansen, and Fox, Sengupta § Thorbecke (FST), permits several 
assertions. Firstly, the static theory of quantitative economic 
policy is well defined. Secondly, there is full awareness, following 
Phillips [1954, 1957], of the importance of the dynamics of policy­
making. Thirdly, a significant body of knowledge exists relating to 
the design of dynamic policy - Phillips, Allen, and FST. But fourthly, 
there are no dynamic results comparable to Tinbergen's static analysis 
of the relation between instruments and targets. This last assertion 
begets, in part exploration and part answer, this present chapter.

Accompanying these assertions is a distinction between existence 
and design. Existence refers to the fundamental question of 
stabilisation: is it possible to design at least one policy to achieve
the stated policy objectives? Design refers to the practical question 
of method: given existence, how are policies actually designed?

Statically, the problems of existence and design were first 
considered by Tinbergen [1963]; and have subsequently been elaborated 
as part of the conventional wisdom. Yet this has not been balanced 
by an analogous treatment dynamically. Phillips [1954] squarely 
confronts the dynamic design problem but treats the problem of existence 
implicitly. Applying classical control techniques to low dimension 
models, he demonstrates that stable dynamic policies can be constructed 
with these design methods. Existence is tied to design in that a 
suitably designed classical policy must satisfy a stability criterion 
such as Routh-Hurwitz. To overcome this ad hoc treatment of each 
model, FST sought to extend the theory of design by utilising dynamic 
optimisation techniques. Again, no specific attention is paid to the 
existence question. Further, their contribution to the design problem 
is an impossibility theorem which argues that if policy-makers use a
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quadratic performance ordering to obtain an optimal policy, then that 
policy is necessarily unstable. If true, this impossibility theorem 
denies the existence of dynamic policies that are simultaneously stable 
and optimal. Chapter V establishes, however, that the theorem is 
invalid, and that it is certainly possible to design optimal policies 
with satisfactory properties.

Thus the state of the art dynamically is that there exist two 
design methods - classical and optimal - neither of which specifically 
considers the fundamental question of whether a given economic system 
can be stabilised. This lack of explicit concern is not critical when 
these design methods are applied to the traditional single-target, 
single-instrument models of dynamic stabilisation. Existence for these 
models is a transparent question. But progression to the general 
multi-target, multi-instrument model necessitates explicit analysis of 
the possibility of design.

Faced with this lack of a criterion for dynamic existence 
comparable to the static criterion, Culbertson, for example, conjectures 
[pp.392-5] that the utility of Tinbergen's static analysis is 
questionable since this analysis is apparently irrelevant to the more 
realistic problem of dynamic stabilisation. The major objective of 
this chapter is to investigate this policy problem of dynamic existence; 
and to provide, as a corollary, a dynamic generalisation of Tinbergen's 
theorem.

Section 3.1 begins by positing a vector stabilisation model and 
defining conditions under which it partitions into two problems, one 
static, the other dynamic. To achieve this, a brief review of the 
static theory of existence is necessary. Section 3.2 generalises the 
analysis of section 3.1 through an explicit consideration of the 
possible combinations of the dimensions of the static and dynamic 
target and instrument vectors. As a result, two classes of vector 
stabilisation model are defined: square policy systems and
rectangular policy systems. Statement of the dynamic existence 
problem in a format similar to the static existence problem leads 
section 3.3 to a recognition of the economic significance of the 
concept of dynamic controllability. Annexed from modern control 
theory, this concept provides a dynamic rank criterion to complement
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Tinbergen’s static criterion: indeed, for square policy systems, this
dynamic criterion collapses to the static criterion. Section 3.4 
specialises the dynamic criterion to rectangular policy systems; in 
these systems, the results obtained have no static counterparts. Phase 
analyses of simple policy systems are subsequently presented in section 
3.5, clarifying the ideas of controllability and noncontrollability. 
Finally, section 3.6 summarises and concludes.

3.1 STATIC CONTROLLABILITY AND EQUILIBRIUM PARTITIONING

Suppose that a given economic system is modelled by the vector 
differential equation

X(t) = TA*X(t) + rB*U(t) + TD*, X(0)=X (1)

with dimensions

X, D : Nxl, T, A : NxN, U: Kxl, B : NxK. (2)

*
The vectors X, U, and D are respectively the target, instrument and

* *
autonomous expenditure vectors. The matrices A , B describe the

*
static economic structure: A will be defined as the static structural

*
matrix and B as the static control matrix. The nonsingular matrix 
T is a diagonal matrix of adjustment speeds reflecting the dynamic 
process superimposed on the underlying static structure.

As a description of the stabilisation problem, equation (1) contains
several implicit assumptions, two of which may be mentioned immediately.
Firstly, the economic structure is assumed fixed, an assumption captured

* *
by the time-invariant matrices A , B , T. Qualitative policy, as
defined by Tinbergen [1963, pp.2-3] and FST [p.20], is ignored; the
stabilisation problem being to specify quantitative policy for a system
with known and fixed structure. A form of qualitative change could

* * * 
be incorporated by specifying A , B , T as time-varying matrices A (t),
*
B (t), r(t). Such a change complicates but does not invalidate the 
results of this chapter. Yet a particular time-varying specification 
of these matrices necessitates provision of an economic theory of 
structural evolution and is therefore avoided in this preliminary 
analysis.
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Secondly, the description (1) abstracts from economic growth, both
explicitly and implicitly. Explicitly, autonomous expenditures, a
traditional if now an insufficient collage of growth factors, are

*
represented by a constant vector D . In terms of the solution of (1), 
this constancy generates a fixed rather than a moving economic 
equilibrium. Implicitly, the absence of growth is reflected in the 
type of variable and of functional relation appearing in the

o *

specification X(t) = TA X(t) of the uncontrolled system. Thus the
*

appearance of positive eigenvalues in TA will be interpreted as a 
manifestation of instability rather than of growth.

This chapter therefore investigates the shortrun policy problem 
of stabilisation in a nongrowing, nonevolving economy. Specifically, 
given the representation (1) and its assumptions, can conditions be 
provided to establish whether this system may be stabilised? To 
relate this problem both to the traditional static theory of economic 
policy and to the observed lack of dynamic theory, it is convenient to 
assume what it is ultimately desired to show. Thus suppose momentarily 
that a dynamic control vector U(t) can be designed so that the motion 
of (1) eventually ceases. The system’s static equilibrium behaviour 
is then

ic ie
A X + B U + D = 0 ,  (T nonsingular). (3)

Additionally, suppose that there is a desired static target vector X 
attainable with the static control vector Ü, again assuming such a 
control to exist. Then this desired solution (X, Ö) must satisfy (3),

it % £
A X + B Ö  + D =0, (4)

In moving from (1) to (4), two existence assumptions have been 
made: that both static and dynamic policies can be designed. In the
theory of economic policy, the first assumption has been well explored, 
while the second has been totally ignored. A brief summary of static 
existence theory will therefore suffice to establish its relevance to 
the pending development of a corresponding dynamic theory.

Two basic approaches to the static problem exist, depending on 
whether, following Tinbergen [1966, Chap. 3], targets are fixed or
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flexible. If the policy-maker independently specifies a desired 
target vector X and asks for the appropriate 0 such that (X, 0) satisfy 
(4), then a fixed-target model of static stabilisation has been 
formulated. The conditions for which such a solution pair exists 
constitute the cornerstone of the static theory of economic policy, 
Writing the fixed-target model as

B*0 = R, R e - (A*X + D*), (5)

■k

suppose that the NxK static control matrix B has rank M, implying 
that

M < min (N, K). (6)

Linear equation theory then provides the following two theorems (as 
stated for example by Lancaster [pp.248-9]):

Theorem 3.1 (strong existence)

*
A solution to the system B U = R exists y R if and only 

if (iff) B has full row rank: i.e.

M = N <? K. (7)

Theorem 3.2 (strong uniqueness)

*
A unique solution to the system B U = R exists y R iff

*
B is full rank square: i.e.

M = N = K. (8)

These theorems are termed 'strong' because they are satisfied not for 
one possible target vector but for all possible target vectors. Here 
R is loosely referred to as the target vector but is strictly, by (5), 
a linear function of the target vector X.

With respect to the numerical relation of instruments to targets,
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it will be assumed that K <: N. No attention is given to an economy 
with a surfeit of instruments: concern is with a balanced endowment
(K=N) or a sparse endowment (K<N). Removal of K > N in no way alters 
the conclusions of the chapter»

These two theorems are the basis for Tinbergen's classic 
proposition that the number of instruments K be at least equal to the 
number of targets N, [1963, chap. 4]. Given the exclusion of K > N, 
and in order to parallel the dynamic criterion to be presented in 
section 3.3, Tinbergen's results on the existence of a solution to the 
static fixed-target model may be reformulated as:

Theorem 3,3 (static controllability)

* 1 * *
The static economic system A X + B U + D  = 0 is statically 

controllable iff the control coefficient matrix is full-rank 
square: i.e.

p(B*) = N, B*: NxN. (9)

From theorem 3.3, economies sparsely endowed with instruments
(K<N) are statically noncontrollable; a solution does not exist for
the fixed-target problem for every X. And it is here that the flexible-
target model is relevant to the static existence problem. Tinbergen
has argued that fixed static targets derive from an implicit preference
function. Recovery of this function affords one method for removing
an impasse due to static noncontrollability. Thus following Bent

* _Hansen [pp.23-7], although the model B Ö = R with K < N is 
noncontrollable, a solution generally exists to the constrained static 
optimisation problem

MAX W(R) subject to B U - R, (10)
U

where W is a preference ordering of the elements of the target vector 
R. First-order conditions for (10) are

fjj = o, (Kxl), (11)
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so that this flexible-target model automatically adjusts to the 
availability of instruments. Its sole function is to resolve the 
policy dilemma of controlling a statically noncontrollable model. A 
second best or constrained solution (X, Ö) is obtained by positing 
tradeoffs among the targets.

Irrespective of whether (X, Ö) is obtained from a fixed-target 
model (5) or a flexible-target model (10), this solution pair must 
satisfy (3), as in (4). Comparison of the actual dynamic system (1) 
and this desired static solution (4) allows, after premultiplying (4) 
by F, the dynamic disequilibrium description

x(t) = TA*x(t) + TB*u(t), x (0)=x q^0, (12)

in terms of the deviation vectors

x(t) E X(t) - X, u(t) E U(t) - D. (13)

This procedure of subtracting the desired equilibrium behaviour from 
the actual dynamic behaviour partitions the total stabilisation 
problem into a static problem (4) and a dynamic problem (12); and is 
identified as the equilibrium partition.

To avoid misunderstanding, it is stressed that the only requirement 
placed on the desired equilibrium solution (from which deviations are 
measured) is that it be a solution of (4). This allows for the use of 
either global optima or constrained optima as reference targets levels 
for the equilibrium partition. If the economic-system is statically 
controllable, then provided a dynamic policy can be designed, targets 
will settle at those levels representing a global optimum of the 
implicit preference function. Otherwise, targets can only equilibrate 
to levels representing a constrained optimum of that function. Static 
stabilisation is concerned with the specification of appropriate levels 
of targets and instruments; dynamic stabilisation, with adjustment 
paths. Solution of the dynamic problem will force the system to 
equilibrate to a given equilibrium position; the task of the static 
solution is to define the preferred equilibrium.

Tinbergen's theorem, summarised in theorem 3.3, is a pair of
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conditions: numerical equation of instruments and targets is
■k

insufficient, the control matrix B must also possess full row rank. 
Thus, even though N=K, the static system (3) or (5) may be

■k
noncontrol 1able because p(B ) < N. For subsequent analysis, these 
static possibilities are normalised as follows.

Proposition 3.1

* * *
For the static policy system A X+B U+D =0, either 

*
(i) p(B )=N or (ii) the system is equivalent to

A*X + B*U1 + D* = 0, (14)

where

* k
B : NxK, U1 : Kxl, p(B )=K < N.

proof

(15)

k k
If (i) does not hold, then p(B ) < N. Suppose p(B ) = N-l,

*
then one of the N columns of B is a linear combination of the
other N-l columns. Hence assume without loss of generality that

*
the first column of B is a linear combination of the next i-1 
columns. Then

B U « o'+ot̂ b̂  b^ . .. b.̂ ]

* th *where b. is the j column of B . Hence 
1

U2+“2U1
■k * * * *

B U = [b0 ..ob. b. ...b ]L 2 l l + l NJ U.+a.Ul l 1
Ui + 1

*

- Biur

(16)

(17)
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*
This process of reduction continues until p(B^)=K < N.

Proposition 3.1 simply removes dependent instruments from the
statement of the dynamic stabilisation problem. The derivation of
the equilibrium partition (12) remains valid except that the condition 

*
p(B )=K, K < N, is always implied in the sequel. The subscript, as

*
in (15), is also omitted: the dimension and rank of B will be clear
in context.

Derivation of the equilibrium partition requires that the chosen 
equilibrium be attainable; that with respect to (12) a dynamic policy 
u(t) can be designed to drive x(t) to zero. Thus if K=N, dynamic 
existence for a statically controllable system is to be investigated 
in the context of (12); if K < N, dynamic existence for a statically 
noncontrollable system. These are the basic questions to be 
considered in this chapter. But before establishing necessary and 
sufficient conditions for which dynamic design is possible, section 
3.2 removes an unnecessary assumption concealed in (12).

3.2 VARIABLE TARGET AND INSTRUMENT DIMENSIONS

Implicit in the analysis of the previous section, leading from 
the static description (1) to the dynamic description (12) , is the 
assumption that the static and dynamic reduced forms are of the same 
dimensions. Thus the target vectors x(t), X(t) are both of dimension 
Nxl, and the instrument vectors u(t), U(t) are both of dimension Kxl,
K £ N. This dimensional equivalence need not be true for either 
instruments or targets.

Fewer instruments may be used dynamically than are statically
available. Instruments are only optionally dynamic; if they do vary
dynamically, it is because of a deliberate policy decision. To avoid
prejudging the dynamic existence question, it is therefore desirable
to permit the possibility that some, but not all, instruments u^(t),
j £ 1,...,K, are zero. That is, some instruments may be left at their
desired static levels while the remaining instruments are varied
dynamically. Now the effect of u.(t) = 0 is to filter out the control

* th  ̂ *coefficient vector b^ , the j column of B . Hence if any u_. (t) are
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identically zero V t, the dimensions (K, k) of (U, u) must be such 
that

K ^ k. (18)

Since the existence of a dynamic control implies a static control but 
not conversely, the case k > K is excluded. The case K > k is defined 
as reduced stabilisation; and rigorous conditions validating this 
possibility are presented in chapter IV following. At this stage,
(18) asserts that the instrument vectors U, u need not possess identical 
dimensions.

Equivalence of the target vector dimensions depends on the 
assumption in (1) that the dynamics of the given economic system are 
of the first order. But it is likely that realistic lag structures 
will produce higher order dynamics, destroying this equivalence.
Since the ideas involved here are relevant to later chapters as well as 
to the historical development of dynamic stabilisation theory, they are 
now considered in some detail.

The vehicle traditionally used for analysis of dynamic
stabilisation policy - for example, by Phillips [1954, 1957], Allen
[1960, 1968] - may be termed the scalar policy model. Statically,
this model relates a single target to a single instrument; dynamically,
it extends this relation, by various lag and response assumptions, to 

t han n order differential equation in the target, with the instrument 
as forcing function. The basic idea of variable target dimensions 
is that this differential equation can be transformed to a system of 
n first order differential equations, in which the nxl vector of 
dynamic variables is defined as the dynamic target vector. Since the 
static reduced form is a scalar equation, the static and dynamic reduced 
forms therefore differ in their target dimensions.

For illustration, suppose that a macroeconomic system is given 
by
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y(t) = Fe(t)

e(t) = g(t) + i (t) + c(t) (19)

i(t) = Liy(t) 

c(t) = Lcy(t),

and schematically by Figure 3.1.

Figure 3.1
A Scalar Policy System

The variables in (19) are the target y(t), the instrument g(t), and 
the feedback variables c(t), i(t), functionally related to the target. 
The variable e(t) is the sum of the instrument and these feedbacks.
F, L̂ , and are assumed to be linear operators. It is also assumed 
that (19) represents a system to which the equilibrium partition has 
been applied so that exogenous variables are removed.

Particular specifications of the linear operators determine the 
dynamic dimension acquired by (19)^. From that equation, target and 
instrument are related by

y(t) = [i-fT .~~fl lgtt) • C20)1 C

1 The scalar policy models of chapters V and VI below are specific 
examples of the system (19).
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Hence for the specification

F = 1, L = cxD, Lc = 3, D E  d/dt, (21)

equation (20) is the first-order differential equation

y(t) = (1/a)(l-3)y(t) - (l/a)g(t). (22)

thOr if the forward operator F is the n order exponential lag operator

F = —  , (23)
(D+A)n

with L , L. defined in (21), then (20) becomes

[F“1-Li-Lc]y(tD = g(t), (24)

thequivalent to the n order differential equation

Dny(t) + an_1Dn '1y(t) + ... + aQy(t) = bQg(t). (25)

The coefficients a^ , i=o,...,n-l, and bQ are determined from (24).
A similar representation to (25) results if the control input g(t) can 
only be applied with an exponential lag.

Specification of the feedback operators L , as lag operators 
has an additional effect, Thus suppose

DP ^
F = 1, L = -2---- , L = ------ , p+q = n. (26)

(D+p)P c (D+a)q

Then the system (20) is

[(LiLc)‘1-FL'1-FL/]y(t) = (L.Lp^Fgd) , (27)

which simplifies, using (26), to

Dny(t) + an_1Dn"1y(t) + ... + aQy(t)

= bnDng(t) + ... + bQg(t)• (28)
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Lag specifications in the feedback loops of Figure 3.1 therefore 
induce input dynamics as well as output dynamics.

Depending on dynamic operator specifications, equations (22), (25), 
and (28) are thus alternative versions of the general scalar policy 
model. All, however, possess the static solution

y(°°) = 0, g(°°) = 0, (29)

provided the controlled system is stable. To subsume these versions 
in a single equation, replace the input dynamics of (28) by

g(t) = bnDng(t) + ... + bQg(t), (30)

as suggested by Kalman, Ho § Narendra [p.202]. Here g(t) is a 
solution of the differential equation (30) with forcing function g(t) 
and given initial conditions. Given this device, there is no loss of 
generality in considering the differential equation

Dny(t) + an_1Dn_1y(t) + ... + aQy(t) = bQg(t), (31)

for appropriate b^, g(t), as the dynamic reduced form of the scalar 
policy model.

What relevance does (31) have to variable target dimensions? To 
answer this question, consider the canonical transformation

D1'V(t) = zi(t), i = l,...,n, (32)

applied to (31) to give

z.(t) = z,+1(t), i = 1,...,n-l,

*n (t) = Dny(t) = -an_1zn(t) - ... - aozx(t) + bQg(t).
(33)



61

In matrix form, this system of n first-order equations is 

z = Az + bg,

0 1 0 --------------- 0 0 Z1
0 0 1 0 N 0 1 \  N
1 s  s  ^  ^  .
1 ^  N  'S .
* N  N  ^  _ ‘ , b  =

0

b  , z =
Z2

i ^  ^  ^  o

0 "  " V  1
-a --------------- -a . 1

0

zo n-1 n

(34)

Equations (31) and (34) are therefore equivalent representations of 
the scalar policy model. The first is the classical input-output

2representation; the second is the modern state space representation .

Now equations (22) , (25) , and (28) correspond to particular values
of n, the dimension of the state vector z in (34). Although from the

thclassical viewpoint there is one target y(t) possessing n order 
dynamics, it is convenient to regard each component of the state vector 
as a dynamic target variable, for reasons made clear in the following 
section. If n is defined as the number of dynamic targets, and if N 
is the number of static targets, then for the scalar policy model

n :> N(= 1) . (35)

Hence static and dynamic reduced forms need not possess identical 
target dimensions.

The general stabilisation problem will realistically involve the 
attainment of multiple targets using multiple instruments - the vector 
stabilisation problem of (1). Similar arguments with respect to 
variable target dimensions apply immediately to this model. Therefore, 
using the earlier assumption N > K, and equations (18) and (35) , this 
analysis of variable target and instrument dimensions implies the 
integer ordering

2 For further analysis of these two approaches see, for example, 
Äthans § Falb [pp.173-90] and Ogata [chap. 4],
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n  ̂N  ̂K  ̂k (36)

on the numbers of dynamic targets (n), static targets (N), static 
instruments (K), and dynamic instruments (k). Given the nesting of 
(36), if the dynamic dimensions coincide (n=k), then

n = N = K = k. (37)

To summarise, the variable target and instrument dimensions (36) 
arise because dynamic targets are not necessarily static targets, and 
because static instruments are not necessarily dynamic instruments. 
Consequently, the dynamic stabilisation model (12) may be respecified 
as

x(t) = Ax(t) + Bu(t), p(B)=k, (38)

with dimensions

x: nxl, u: kxl, A: nxn, B: nxk. (39)

Both A and B subsume an nxn adjustment speed matrix T.

Two general cases of (38) are important for subsequent analysis. 
If k=n, then by (37), the original disequilibrium specification (12) 
re-emerges, after invoking the rank assumption of proposition 3.1 to 
give

p(B ) = p(B) = K = k = n = N .  (40)

Dynamic systems (38) satisfying (40) will be defined as square policy 
systems. If k < n, then systems (38) satisfying

P(B*) = k < n, (41)

will be defined as rectangular policy systems: dynamically there are
fewer instruments than targets. Rectangular systems occur not only 
because of static noncontrollability but also because of target and/or 
instrument variation; all three cases being characterised by k < n.
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The following section presents the general existence criterion 
for the dynamic system (38), for both square and rectangular systems; 
and specialises it to square policy systems. Section 3.4 then 
considers its application in rectangular policy systems.

3.3 DYNAMIC CONTROLLABILITY IN SQUARE POLICY SYSTEMS

Section 3.1 partitioned the stabilisation problem into two 
problems and interpreted the central result of the static theory of 
economic policy as providing necessary and sufficient conditions for 
static controllability. This prompts inquiry as to the existence 
and form of corresponding results for the dynamic stabilisation problem. 
Is there a concept of dynamic controllability; and if so, what form 
does it take?

When evaluating Tinbergen's contribution to the theory of economic 
policy, Culbertson argues [p.394] that the Tinbergen framework

"...has to do with equilibrium values. The framework does 
not appear to have any clear application to dynamic analysis, 
in which each variable has not a one-dimensional fixed value 
but a time pattern of behaviour...".

Thus Culbertson conjectures that there are no dynamic results comparable 
to those of static controllability; or that Tinbergen's static results 
may lack relevance dynamically. This theoretical asymmetry is 
undesirable given the importance, as shown by Phillips [1954], of the 
dynamics of stabilisation. Clarification of the dynamic problem is 
therefore a first step towards removal of this asymmetry.

The object of analysis is the dynamic system

x(t) = Ax(t)+ Bu(t), x (0)=xq^0, p(B)=k < n. (42)

Now if Tinbergen's analysis is to be vindicated dynamically, a logical 
procedure is to pose the dynamic problem in a fixed-target format 
similar to the static problem. Thus given the dynamic system (42), 
does there exist a control policy u(t) which drives the system from 
an initial position x(0)^0 to a terminal position x(T)=0 over some 
fixed control period T? If this terminal position can be achieved
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and maintained, the specified static equilibrium results. The primary 
difference between the dynamic and static fixed-target models is that 
explicit recognition of the dynamics of adjustment necessitates explicit 
recognition of the period of adjustment.

Equation (42) has the general solution

rt
x(t) = $(t,0)x(0) + $(t,x)Bu(x)dx, (43)

J0

where $(t,0) is the transition matrix given by, for a linear constant 
system,

$(t,0) = eAt. (44)

At time t=T, the desired solution for (43) is x(T)=0, implying with use 
of (44) that

fTe TBu (t ) dx = x(0). (45)
Jo

Equation (45) is a fixed-target model of dynamic stabilisation 
analogous to the static model (5). The dynamic target vector x(0) is 
that discrepancy between the initial position and the static 
equilibrium to be removed by dynamic policy action; and the integral 
on the left of (45) defines the dynamic policy structure in which the 
available instruments u(x) are embedded.

What are the requirements for the existence of a control policy 
u(x) satisfying (45)? Is it possible, with the given instruments, 
to move the economic system dynamically from the given initial state 
to the desired terminal state? This fundamental question of dynamic 
existence has been ignored by both the classical and the optimal

3
schools. It is here, and not for the first time , that the discipline 
of control theory can make a basic contribution to the theory of 
economic policy. During the last decade, Kalman [1959, 1961, 1963a, 
1963b] and Kalman, Ho § Narendra have developed the concept of dynamic 
controllability to a stage where it is immediately applicable to this

3 Cf. Phillips' application [1954] of classical control techniques 
to the dynamic design problem.
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policy problem.

Linear constant systems of the form (42) are dynamically 
controllable if it is possible to find a control u(t) which, in 
specified finite time T, will transfer the system between any two 
arbitrary states, x(0) and x(T). For x(0)^0 and x(T)=0, this 
definition accords with the statement of dynamic stabilisation as a 
fixed-target problem. Now necessary and sufficient conditions for 
dynamic controllability are given by (see Appendix III, pp„261-3 below)

Theorem 5.4 (dynamic controllability)

The continuous-time linear constant system 
x(t) = Ax(t)+Bu(t) is dynamically controllable iff the 
composite nxnk matrix

Q = [B AB ... An_1B] (46)

possesses full row rank, i.e.

PCQ) = n. (47)

As demonstrated in Appendix III, theorem 3.4 is obtained by 
converting the integral equations of (45) into a set of algebraic 
equations

Q3 = x(0), (nxnk.nkxl=nxl), (48)

to which theorem 3.1 is immediately applicable. The matrix Q and the
* _  *

vector 3 are the dynamic analogues of B and U in (5). Whereas B is 
the static control coefficient matrix, Q is a composite function of the 
dynamic control matrix B and the dynamic structural matrix A; and 
whereas 0 is simply the vector of static instruments, 3 is a vector 
whose elements are functions both of the instruments and of certain 
linearly independent time functions. Just as theorem 3.3 provides 
necessary and sufficient conditions for static controllability for all 
possible static targets, so too theorem 3.4 provides necessary and 
sufficient conditions for dynamic controllability for all possible
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dynamic targets, or for all possible initial conditions»

It is therefore clear from (5), (48) that Tinbergen's static 
approach, at the very least, carries over to the problem of dynamic 
stabilisation. Further, if the equilibrium partition derives from a 
statically controllable system, so that (40) is satisfied, a striking 
result emerges. For then the controllability matrix Q comprises n 
blocks *B, j*l,...,n, A° = I, each of dimension nxn:

Qs = [B AB ... An-1B], (nxn2). (49)

The dynamic rank criterion of theorem 3.4 requires that p(Qg)=n; or, 
from Ferrar [p.94], that at least one nxn minor of (49) is nonzero. 
From inspection of (49), an immediate sufficient condition for dynamic 
controllability is therefore

P(B) = p(TB*) = p(B*)„ (50)

Hence statically controllable systems are invariably dynamically 
controllable. This result preserves unchanged Tinbergen's static

r

theorem in a dynamic context; and is an appropriate denial of 
Culbertson's conjecture that Tinbergen's static analysis has 'no clear 
application to dynamic analysis'.

Before examining theorem 3.4 for the case k < n, an equivalent 
but intuitively more acceptable criterion is available^. Assuming 
that the structural matrix A possesses n distinct eigenvalues, there 
exists a nonsingular eigenvector matrix P such that the transformation

x(t) = Pz(t) (51)

reduces (42) to

z(t) = Az(t) + Bu(t), (52)

4 See Kalman, Ho § Narendra [pp.201-4]; and for exposition, 
Elgerd [pp.67-117].
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A

where A, B are given by

A = diagfXj, ...,Xn) = P_1AP, 

B = P_1B, AeE(A),
(53)

and E(A) is the set of n distinct eigenvalues of A, Since A is the 
diagonal matrix of eigenvalues, the motion (t) of the variable z^ (t)
is uncoupled from the variables z. (t) , j^i. To control each variable
z^(t), it is necessary and sufficient that each equation of (52)
contains at least one control variable u.(t) with a nonzero coefficient

th ^For suppose the i equation is

zi (t) = Aiz.(t), 2.(0) = ̂ ,  (54)

with solution

A. t_
zi (t)= e 1 £.. (55)

thThen the i variable is uncontrollable: for A^ > 0, z^(t) diverges
uncontrollably; and for A^ < 0, converges uncontrol1ably„ In either
case, it cannot be forced to a desired terminal value z.(T)„ Dynamic

~ 1-1controllability therefore requires that the matrix B = P B contains 
nonvanishing rows. This will be termed the coupling criterion.,

Equations (54) and (55) illustrate that dynamic controllability 
is defined without reference to system stability. If a system is 
dynamically controllable, then a control can always be devised, 
irrespective of the stability of the uncontrolled system. If, however, 
a system is dynamically noncontro1lable, stability is then important. 
From the coupling criterion, dynamic noncontrollability means that 
certain (transformed) states are not accessible to the given 
instruments. If these states are unstable, target performance as a 
function of these states worsens progressively with the length of the 
stabilisation horizon, irrespective of any control action. If these 
states are stable, target performance as a function of these states 
improves progressively with the length of the stabilisation horizon, 
owing to their decay.
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Dynamic noncontrollability in an economic system would indicate 
structural areas insulated both directly and indirectly from policy.
In principle, this is overcome by developing, if possible, additional 
control forces appropriate to the control 'gaps' in the system.
Policy intransigence, therefore, in the large-scale complex system of 
a modern economy may be a consequence of economic structure rather than 
or as well as of data availability and lack of expertise, resources, 
and accurate system modelling.

To summarise results to this point, the theory of economic policy 
provides the Tinbergen theorem of static controllability but no 
comparable dynamic theorem, Indeed, Culbertson conjectures that such 
a dynamic theorem might not exist. By applying the concept of 
controllability to the problem of dynamic stabilisation, it is shown 
that a comparable theorem does exist. As a result, either of two 
equivalent criteria - the rank and coupling criteria - may be used to 
ascertain existence of a solution to the dynamic problem. This 
question of existence logically precedes that of design. And when 
the rank criterion is applied to a disequilibrium system derived from 
a statically controllable model, Tinbergen's static theorem generalises 
to provide a dynamic existence criterion for square policy systems.

Section 3.4 now considers the interpretation of theorem 3.4 in 
rectangular policy systems,

3.4 DYNAMIC CONTROLLABILITY IN RECTANGULAR POLICY SYSTEMS

Section 3.1 argued that, independently of whether static 
equilibrium represents a global or constrained optimum of the static 
preference function, the total stabilisation problem may be 
partitioned into a static problem and a dynamic problem, with theorem
3.4 of the previous section providing necessary and sufficient 
conditions for existence of a policy solution to the dynamic problem.
The type of static solution does, however, affect the conclusions drawn 
from application of this theorem; as do variations in target and 
instrument dimensions. Thus section 3,3 specialised the rank criterion 
of theorem 3,4 to square policy systems; in this section, theorem
3.4 is specialised to rectangular policy systems.
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From (38) and (41) , rectangular policy systems are defined by

x(t) = Ax(t) + Bu(t), B: nxk, p(B)=k < n, (56)

for which the controllability matrix (46) is

= [B AB . An B̂] , Q^: nxnk, k < n, (57)

A simple condition like (50) on the existence of an nxn minor in (57) 
is no longer evident» Dynamic controllability is now dependent on 
both the control matrix B and the structural matrix A„ But neither 
policy-makers not policy-designers will be enlightened by the role of 
rank (QR) as arbiter of the dynamic controllability of their particular 
economic system» This section therefore attempts to expose the 
operation of this criterion in terms of properties of the structural 
and control matrices» To facilitate this task, the distinctness 
assumption on the eigenvalues of the structural matrix A will be 
retained^» The derivation and interpretation of a sufficient 
condition for dynamic controllability in rectangular policy systems 
will be given; analysis of necessity is deferred to chapter IV.

Interpretation of the rank criterion may be broached by taking 
the simplest case first» Thus for k=l, consider the scalar policy 
system

x(t) = Ax(t) + bu(t), b: nxl, (58)

with square controllability matrix

Qs = [b Ab ... An 1b], (nxn). (59)

Is the system (58) controllable with a single instrument; and if so, 
under what conditions?

From the discussion of the coupling criterion in section 3.3,

This assumption is previously used (i) as a means of simplifying 
the proof of theorem 3.4; and (ii) as a sufficient condition for 
the existence of a diagonalising transformation of the structural 
matrix when defining the coupling criterion.,
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p(Qs)/n iff

PCQS) t n, Qs = [b Ab ...An_1b], (60)

where, by similarity transformation of (58),

b = P"V A = diag(A1,...,An) = P_1AP„ (61)

Now the matrices , by the distinctness assumption, are independent
A

V j, so that the only admissible cause of singularity of Q is a
A

vanishing element (or elements) in the vector b. But from (61), this 
requires that the corresponding row of P 1 is orthogonal to b; or, 
since P * is a normalised left eigenvector matrix for the structural 
matrix, that b is a linear combination of no more than n-1 of the 
eigenvectors of A. For example, if

b = a,p, + ...+a ,p ,, a. constants, (62)lrl n-lrn-l l

then

b = P_1b = [ax a2 ... an_1 0]T , (63)

th Aand the n element of b vanishes. A necessary and sufficient 
condition for dynamic controllability in the scalar policy system (58) 
may therefore be stated as

v
b ? £ aiPi, v $ n-1. (64)

i=l

For v = 1, (64) may be rewritten as

Ab t Ab, AeE(A), (65)

a requirement that the control coefficient vector b is not an 
eigenvector of the structural matrix A.

Returning to the general rectangular problem (56), and writing 
the controllability matrix (57) in expanded form as

x ••• Abk ... An'1b1 ...An l bk], k<n,Qr = tbr - ‘ bk Ab (66)
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displays the existence of k scalar systems of the form (58) with 

associated controllability matrices (59)„ Hence, by (64), an 

immediate sufficient condition for dynamic controllability in 

rectangular policy systems is

v .j
b f Z ou.p. , v < n-1 , j e l,...,k, (67)J i=l 1 J

satisfied for some j „

It can be shown immediately that violation of (65) V j = 1,... ,k 
is sufficient for dynamic noncontrollability, That is, suppose each 
control vector b^ is, apart from a possible scalar multiple, an

eigenvector p^ of A, so that v\ 
transformed controllability matrix

I V  j = 1,... ,k in (67). Using the

[B AB AnlB], ~ -1 B = P B, (68)

assume without loss of generality that the k columns of B and the first 
k rows of P 1 are biorthogonal„ Then, ignoring possible scalar factors,

-1B = P B =
kxk

n-kxk
A JB =

n-kxk

(69)

so that

‘kxk Akxk
L ____ _______

An_1kxk
_________

^n-kxk ^n-kxk ^n-kxk

(70)

Under the assumption that each control vector b^ is an eigenvector of 
A, the largest nonzero minor in QR is thus of dimension k < n, implying 

noncontrollability for any number of instruments. In the general case 

in which (67) is violated V j = l,.o,,k so that

.... ,1=1 iJ J
b > 
J

1 < Vj $ n - 1 , (71)
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the rectangular policy system (56) is noncontrollable with respect 
to any single instrument but the question of controllability when 
several instruments are jointly used remains open. This question will 
be examined in chapter IV.

Since the eigenvector condition (64) or (67) has no counterpart 
in the static theory of economic policy, the remaining part of this 
section seeks an interpretation^ of this condition. Equation (45) 
specifying the dynamic instrument-target structure is a convenient 
starting point. Taking k=l, and using (53) to provide

-At Pe'AtP_1 (72)

equation (45) may be written

r T
e AtP ^bu(t) dt = P *x(0) (73)

Now solutions of the linear constant differential system x = Ax will 
consist of linear combinations of the n exponential modes exp {X^t}, 
j = l,...,n, XcE(A). Therefore, solutions of x = Ax+Bu, and hence of 
(73), will also consist of linear combinations of these modes, provided 
the feedback principle is used in designing the controller u(t) and 
provided no constraints are placed on the instruments. Thus, 
postulating the smooth controller

u(t)
n - X . t

- E y.e 3

j=l 1 (74)

where the coefficients Yj have yet to be determined, and taking 
Pj (Pj^) as the jtA column (row) of P (P 1), equation (73) is

The following analysis is suggested by the mode analysis 
presented by Zadeh $ Desoer [pp.311-26].
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fT
{

'o e
-A

0

t
n

Cp~1 ,b )

G’n1 *b)

' V -A t  
n

Y„
} d t

( p ^ , x ( 0 ) )  

(p~1»X (0))

(75)

A f t e r  m a n i p u l a t i o n ,  (75)  becomes

or

( p j h b )  0

{
fT

- A i t  - A t  
e e

- A . t  -A t  1 n, e e

d t )

0 (p L,b ) 0 -A t  - A . t -A t  -A tr n n 1e e n n. e e —  —

( P^ 1 >x (0) )

( p " 1 , x ( 0 ) )

(76)

B'G 

w i t h  t h e

Y = x ' ( 0 ) ,  (nxn„nxn,nxl=nxl) ,

ap p rop r ia te  i d e n t i f i c a t i o n s .

(77)

The p r o b l e m  o f  d y n am ic  c o n t r o l l a b i l i t y  i s  w h e t h e r  o r  n o t  t h e r e  

e x i s t s  a  s o l u t i o n  f o r  y ,  t h e  v e c t o r  o f  o p e n - l o o p  c o e f f i c i e n t s .  

A p p l y i n g  t h e o r e m  (3 „ 1 )  t o  ( 7 7 ) ,  s u c h  a  s o l u t i o n  e x i s t s  i f f

p (B 'G )  -  p ( B 1) = p(G) = n . (78)

From Zadeh § D e s o e r  [ p p - 4 9 7 - 8 ] ,  a n e c e s s a r y  an d  s u f f i c i e n t  c o n d i t i o n  

f o r  p (G )=n  i s  t h a t  exp { - A ^ t } ,  „ o . ,  exp {-An t }  a r e  l i n e a r l y  i n d e p e n d e n t  

f u n c t i o n s  o f  t ;  an d  t h i s  i s  g u a r a n t e e d  by t h e  d i s t i n c t n e s s  a s s u m p t i o n
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on the eigenvalues, A necessary and sufficient condition for 
p(B’)=n is

Cpj1 ,bj i 0 V j - (79)

With respect to (79) , any nxl vector x has a representation 
n

x = Z a,p„ in the eigenvector basis, with the a. as components along •j = 1 1 J ' J
-1Pj in that basis. Hence x = Pa implies a = P x, so that ol =

(Pj\x), with x therefore given by

n -1x = E (p. ,x)p . (80)
j = l J -1

For x E b in (80), (79) requires that no component of b in the 
eigenvector basis vanishes. But if

v
b = Z a.p, v < n-1, (81)

i = l 1 1

as given in (64), then at least one such component must vanish. Thus 
the control coefficient vector b must not be confined to a proper 
subspace, of dimension n-1 or less, of the state space if dynamic 
controllability is to hold. For then, in the words of Kalman, Ho § 
Narendra [p.203], "the effect of control eventually reaches every 
state".

Although the eigenvector condition (67) is, in general, only 
sufficient for dynamic controllability, it is, by (64), both necessary 
and sufficient when only one instrument is available. In the following 
section, the notion of dynamic controllability and the significance of 
this eigenvector condition are therefore considered geometrically in 
simple scalar policy models.

3,5 PHASE ANALYSIS OF CONTROLLABILITY

Further insight into the dynamic controllability criterion may 
be obtained by considering a dynamic system with two target variables 
and a single control variable, the control variable appearing in only 
one of the state equations: i.e.
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x = Ax + bu, x(0)/0,

— — - ----

an al2 0
A =

a„„ a„„
, b = oA

i
X

21 22 2

This model could, for example, represent the venerable problem of 
internal and external balance, treated not in terms of static 
equilibrium but in terms of disequilibrium dynamics. The dynamic 
policy problem is whether or not the static equilibrium implicit in 
(82) is attainable with the single instrument available dynamically.

By theorem 3„4, the system (82) can be forced to the equilibrium 
point x = 0 in finite time iff

P(Q) - 2, Q = [b Ab] =
al2b2

a22b2
(83)

Hence Q is singular if a ^  = 0 and/or b,? = 0. The system (82) is 
therefore dynamically noncontrollable if the first target x^ is 
disconnected from the second target x^ and thus from the instrument, 
or if the instrument itself is unavailable.

Now suppose (83) is satisfied, and that the structural matrix A 
has the unstable sign pattern

A: (84)

Then the policy system (82), (84) may be represented geometrically by 
the phase diagram of Figure 3,2:
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Figure 3.2
An Unstable Controllable System

The locus = 0 is a parametric function of the instrument u(t), and 
is shown for u(t)=0. Thus the designated origin (e) is the desired 
static equilibrium point for the system. For initial conditions 
x(0)^0 given by (a), suppose that the system, left to its own devices 
dynamically, would follow the trajectory (ac), reflecting the assumed 
instability (84). But since the system satisfies (83), and is 
controllable, it must therefore be possible to force the system from 
point (a) to point (e) in finite time. Figure 3.3 presents one 
construction of a trajectory accomplishing this transfer - the 
trajectory (abe) shown in Figure 3.2.

At the control origin t=0, the instrument is set at a constant 
level such that region I in Figure 3.3a is contracted eastwards, 
relocating (a) in region IV. If control persisted at this level, the 
system would diverge along the trajectory (ab); but at some time 
t=t' corresponding to (b), control is reset as shown in Figure 3.3b. 
Region I is expanded sufficiently not only to recapture the system 
trajectory but also to steer it through the equilibrium point (e) at
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x =0

x, =0

Figure 3.3
Construction of a Controlled Path

time t=To This analysis is intended in a qualitative sense only.
For >0, the implied controller is the piecewise constant function 
of Figure 3„4:
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1
u(t)

0 T *t

y
Figure 3.4

Piecewise Constant Controller

The illustrated control magnitudes and the timing of the policy switch 
at t' are merely assumed to determine the trajectory (abe) of Figure 
3,2, but some such controller can be shown to exist. For expositional 
simplicity, a piecewise constant controller is chosen instead of a 
smoothly continuous controller, without prejudging the design question.

Controllability, as a system property, permits the policy-maker 
to modify the system dynamics so as to lure the resultant trajectory 
to the equilibrium point - irrespective of whether the system is 
naturally stable or naturally unstable. Yet if the controlled 
trajectory arrives at the equilibrium point (e) in finite time, it does 
so by directly hitting rather than asymptotically approaching (e).
Once control lapses at the horizon t=T, this creates the problem of 
holding the system at or near equilibrium for t > T. With natural 
stability, this problem is unimportant; but with natural instability, 
further policy action is imperative to avoid subsequent divergence.

Following this analysis of controllability, consider now the 
significance of noncontrollability. Provided the single instrument 
is available (b^^O), the system (82) is noncontrollable iff a^2=0 , so 
that the dynamic variable x̂  is severed both directly (b^=0) and 
indirectly (a^=0) from control. As a result, the structural matrix 
A is lower triangular with eigenvalues
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“ 1 = al 1, A2 a22 * (-85')

such that

Ab = X2b, V b2 i Oo (86)

Therefore, in this rectangular policy system, noncontrollability 
implies, by (86), violation of the eigenvector condition (65). The 
control coefficient vector b is an eigenvector of the structural matrix 
A corresponding to the eigenvalue = a ^ •

Imposing, for example, the stable sign pattern

A: (87)

the significance of this violation may be analysed in terms of Figure
No matter how the instrument is varied, shifting the x9 = 0

Figure 3.5
A Stable Noncontrollable System

locus up or down cannot force the system trajectory - whether (abe) or 
(ace) - to actually cross the vertical axis, the locus x^ = 0.
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Depending on initial conditions, system response is confined to the 
right-hand or left-hand vertical planes of the state space. Hence no 
trajectory can be made to hit the equilibrium point (e) in finite time. 
Although speeds of adjustment may allow the system to be within a small 
prescribed distance of equilibrium in finite time, equilibrium is only 
attainable in infinite time. But because dissatisfaction with 
adjustment speeds is a primary rationale for active stabilisation, 
absence of controllability in naturally stable systems leaves no room 
for complacency.

These simple geometrical examples illustrate some of the basic 
aspects of the controllability concept. Controllability is not a 
function of natural stability (which is determined purely by the 
structural matrix), but is a function of the target-instrument structure 
(determined by the control matrix as well as the structural matrix). 
Natural stability properties are, however, relevant at the cessation of 
control. Noncontrollability represents the inability of the instrument 
to force the pair of targets to behave arbitrarily, the effect of the 
instrument being restricted by violation of the eigenvector condition.

3.6 CONCLUSIONS AND QUALIFICATIONS

To summarise, this chapter begins by defining the notion of an 
equilibrium partition in the total stabilisation problem. This 
partition, derived from global or constrained optima of a static 
preference function, separates the twin problems of static and dynamic 
stabilisation. It is argued that an asymmetry exists between the 
theoretical analyses of each problem: dynamically there is no criterion
analogous to the static Tinbergen criterion. And such criteria are 
essential to validate the equilibrium partition. Given Culbertson's 
conjecture, which is sceptical about the dynamic applicability of 
Tinbergen's analysis, this asymmetry is even more provocative. The 
control concept of dynamic controllability is therefore shown to remove 
this asymmetry, validating the spirit and the letter of Tinbergen's 
approach and refuting Culbertson's conjecture.

In square policy systems, Tinbergen's static controllability 
theorem retains its full force; if a square system is statically 
controllable then it is also dynamically controllable, and conversely.
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This result is independent of the assumption of distinct eigenvalues 
for the structural matrix, and is therefore completely general«, That 
both static and dynamic controllability of square systems depend on the 
rank of the control matrix is an apt refutation of the Culbertson 
conj ecture.

Results for rectangular policy systems are neither as general nor 
as immediate in interpretation. Because of the distinctness assumption 
on the eigenvalues of the structural matrix, the eigenvector condition 
(67) is not necessarily valid if multiple eigenvalues occur. In 
practice, if not in theory, Bellman's approximation theorem [p.199] 
disposes of this problem. Geometrical interpretation of the 
eigenvector condition has been provided for a scalar policy system in 
which the instrument is an eigenvector of the structural matrix. That 
dynamic controllability is the failure of instruments to affect all 
dynamic targets is obvious in this simple example.

Upon dissection, the rank criterion therefore yields sufficient 
conditions for dynamic controllability of the two classes of 
stabilisation model identified. If the stabilisation model is square, 
the rank criterion is equivalent to Tinbergen's static criterion; if 
the stabilisation model is rectangular, the rank criterion is equivalent 
to the eigenvector condition. Progression from the statics to the 
dynamics of stabilisation not only introduces a new dynamic condition - 
the eigenvector condition - but also retains the old static condition - 
the Tinbergen theorem.

Historically, lack of concern for dynamic existence is explained
by use of the scalar policy model for investigations of dynamic

thstabilisation. That a single target with n order dynamics is 
controllable with a single instrument is so intuitively obvious as to 
suppress explicit analysis of existence. Generalising the 
stabilisation problem to a multi-target, multi-instrument framework 
creates such a need. With respect to the scalar policy model, Kalman, 
Ho § Narendra [p„202] demonstrate that these models are invariably 
dynamically controllable. Thus, from (34), the controllability 
matrix Q is
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— 0 1 
/
-a/

0'

-a, +a✓ 1 I o
/  x '

/  < 2  1-a -a. + a --- io 1 o

(88)

which is nonsingular V a^. The scalar policy model is therefore well- 
behaved, precluding the possibility of noncontrollability and verifying 
the intuitive treatment of existence.

If an economic system is dynamically controllable, then, because 
the rank criterion is independent of the stabilisation horizon, it is 
possible, as indicated by Kalman [1959, p.108], to transfer the system 
between arbitrarily specified states as quickly as desired. But the 
shorter the stabilisation horizon, the greater is the necessary 
expenditure of stabilisation resources. This necessitates, in practice, 
the recognition of a lower value to the stabilisation horizon below 
which economically excessive resource flows are required from the 
public sector. Such constraints on the instruments clearly reduce the 
degrees of freedom associated with dynamic controllability.
Alternatively, given a fixed stabilisation horizon and known control 
constraints, an equivalent problem is to define the region of 
controllability - for which see Äthans § Falb [pp,197-200] and Lee § 
Markus [pp.68-80]. This second type of formulation is relevant, for 
instance, to a study of the efficacy of interest rate policy.

Chapter IV extends this analysis of controllability in two 
directions. Firstly, the assumption of distinct eigenvalues is 
relaxed; and secondly, the concept of reduced stabilisation is 
investigated.



CHAPTER IV

CONTROLLABILITY CRITERIA FOR STABILISATION POLICY

This chapter continues the development of chapter III. Concern 
is for the underlying structure of the stabilisation problem rather 
than for methods of solution. Existence, not design, is the theme. 
Because the concept of dynamic controllability is new to the theory of 
policy, this chapter is directed not only to an economic interpretation 
of the concept but also to an accessible exposition of the supporting 
theory.

Chapter III analysed the rank criterion for controllability on the 
assumption of distinct eigenvalues for the structural matrix.
Relaxation of this distinctness assumption facilitates theoretical 
analysis of two topics left open by that chapter. The first topic 
refers to interpretation of the rank criterion in rectangular policy 
systems. Necessary and sufficient conditions are stated in section 
3.4 for satisfaction of this criterion in scalar policy systems; while 
a sufficient condition is stated for rectangular systems. Necessity 
is still to be investigated when more than one instrument is used 
simultaneously. The. second topic refers to the asserted existence, 
in section 3.2, of reduced models of stabilisation. Conditions under 
which reduction is available are still to be stipulated.

Both topics are investigated in this chapter after relaxing the 
distinctness assumption. Allowance for multiple eigenvalues permits 
a broader statement of results, and compels a deeper understanding of 
the controllability concept. Dissection of the rank criterion as it 
applies to rectangular policy systems is undertaken in two steps, 
separated by an analysis of reduced stabilisation. Section 4.1 
investigates the effect of multiple eigenvalues on the rank criterion, 
and then justifies an equivalent coupling criterion for scalar policy 
systems. Section 4.2 pauses to apply this coupling criterion to the 
derivation of necessary and sufficient conditions for reduced 
stabilisation. Section 4.3 returns to the analysis of dynamic



84

controllability in rectangular policy systems. A coupling criterion 
is presented that unifies interpretation of the rank criterion in both 
square and rectangular policy systems. Finally, section 4.4 summarises 
the conclusions of the chapter.

4.1 THE STRUCTURAL MATRIX UNRESTRICTED

Once multiple eigenvalues are admitted, the rank criterion for 
dynamic controllability is a function of the degree of the minimal 
polynomial rather than of the characteristic polynomial of the 
structural matrix. To define the significance of the minimal 
polynomial, the Jordan canonical form of A is presented and related to 
the minimal polynomial. Dynamic controllability is then shown to be 
affected by the Jordan chains of A - a concept illustrated with a simple 
example. Following these preliminaries, controllability is considered 
for scalar policy models in which there are no restrictions on the 
structural matrix. A rationale for a general result due to Kalman,
Ho & Narendra is given, paving the way for the analysis of reduced 
stabilisation in section 4.2 and of general controllability in section 
4.3.

4.1.1 Similarity transforms of A

Relaxing the assumption of distinct eigenvalues in the statement 
and proof of theorem 3.4, the general controllability criterion becomes

p(Q) = p[B AB ... AP 1B] = n, (nxpk), (1)

where p is the degree of the minimal polynomial of A. Following 
Ogata [pp.385-6], p is introduced into the rank criterion (1) by noting 
that equation (2) of Appendix III Cp• 261 below) may be written

-Ate
p-i i

= l a. (r) A , 
i-0

(2)

and by then tracing this change through the Appendix. To investigate 
controllability when multiple eigenvalues occur, it is therefore 
necessary to assess the role of the minimal polynomial.

The distinctness assumption used in chapter III is a sufficient



85

condition for the existence of n linearly independent eigenvectors for 
A; existence of these eigenvectors, in turn, is necessary and 
sufficient for existence of a similarity transformation of A to the 
diagonal eigenvalue matrix A:

P'XAP = A, A = diagCAj, ...,An), AeE(A), (3)

where P is a nonsingular eigenvector matrix. Although multiple 
eigenvalues generally prevent A from being similar to a diagonal 
matrix A, A is always similar to a matrix A in Jordan canonical form. 
Following Noble, the possibilities are represented in Figure 4.1.

Distinct
Eigenvalues

Multiple
Eigenvalues

Multiple
Eigenvalues

independent
eigenvectors

Less than n 
independent 
eigenvectors

Diagonal Jordan Canonical 
Form

Similarity 
Transforms 

of A

in [in [in]
Figure 4.1

Similarity Transforms of Structural Matrix
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Thus th e  m a t r ix  A i s  e i t h e r  i n  d ia gona l  form o r  in  Jo rdan  canon ica l  

form [ p p , 345-65] .  The d i s t i n c t n e s s  assumption  t h e r e f o r e  induces  

th e  t r a n s f o r m a t i o n  ( I ) . I f  no such r e s t r i c t i o n  i s  p la c e d  on the  

s t r u c t u r a l  m a t r i x ,  then  the  t r a n s f o r m a t i o n s  ( I I )  and ( I I I ) ,  

co r re s p o n d in g  t o  m u l t i p l e  e i g e n v a lu e s ,  must be c o n s id e re d .

4 . 1 . 2  Jo rd an  c a n o n ica l  form o f  A

Are systems r e p r e s e n t e d  by th e se  two t r a n s f o r m a t i o n s  c o n t r o l l a b l e ?  

This q u e s t i o n  may be answered a f t e r  f i r s t  c o n s id e r in g  th e  Jo rdan  

c a n o n i c a l  form a s s o c i a t e d  w i th  ( I I I ) .  The fo l low ing  theorem,  which 

c o n s o l i d a t e s  the  a n a l y s i s  g iven  by Noble [ c h a p . 11] ,  c h a r a c t e r i s e s  t h i s  

c a n o n i c a l  form:

Theorem 4.1 ( Jordan  Canonical  Form)

Given a g e n e r a l  squa re  m a t r ix  A o f  o rd e r  n ,  t h e r e  e x i s t s

a n o n s in g u l a r  g e n e r a l i s e d  e ig e n v e c t o r  m a t r ix  P such t h a t

J 1 0

0
= A ( 4)

0

0 0 J r

where

( i )  th e  m a t r i c e s  J ^ ,  i = l , . . . , r  a r e  Jo rdan  b locks  d e f in e d

by
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J.i

X

0------0\ I
N I

1 '
- v . . V s
X \

\

s0 
' 1
- X.

dim (J^) ^ 1; (5)

(ii) the eigenvalue X^ may occur in different Jordan blocks;

the number r^ of such blocks corresponding to X^ is 
the number of independent eigenvectors associated with

(iv) 
specific

Pi;

(v) the eigenvalue X^ occurs on the diagonal of A in (4) 
a number of times equal to its multiplicity n^; and

(vi) simple eigenvalues X^ occur in one and only one 
Jordan block, of order 1, with n^ = p^ = 1.

the order p^ of the largest Jordan block with a 
X on its diagonal defines X^ as an eigenvalue of index

(iii) 
equal to

V

The relationship between the Jordan canonical form (4) and the 
minimal polynomial of the structural matrix A is given by the following 
theorem*:

Theorem 4.2

Given the nxn structural matrix A with s distinct eigenvalues, 
X^, o„„,Xs , s < n. Then the characteristic polynomial of A is

n n
X(z) = (z-Xj) 1 ooo (z-Xg) S , (6)

where n^ is the multiplicity of X^; and the minimal polynomial

1 Cfo, e^g., Noble [ppo370-2].
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of A is

Pi
\ p ( z )  =  ( z - x p

ps
... ( z - y  s, (7)

where p^ is the index of X The degree of x(z) Is

s
n = £ n. , 

i = i 1
(8)

and of iJj(z) is 
s

P = £ p. , (9)
i=l

where

ni ^ pi i = 1,... ,s, s $ n. (10)

Thus the degree p of the minimal polynomial is the sum of the eigenvalue 
indices p^; or, by (iv) of theorem 4.1, the sum of the orders p^ of 
the largest Jordan block associated with each eigenvalue X

4.1.3 Jordan chains and controllability

Dynamic controllability is linked to the minimal polynomial of A
2through the concept of a Jordan chain . A multiple eigenvalue X ^, of 

multiplicity n^, and index p , occurs in a Jordan chain iff it appears 
in one and only one Jordan block on the diagonal of A in (4); the 
unit superdiagonal of this Jordan block (5) constituting the chain.
By (iv) and (v) of theorem 4.1, X . occurs in such a Jordan chain iff

ni = p -  (11)

To illustrate the relevance of this concept, the scalar policy 
system x = Ax+bu is, using k=l in (1), controllable iff

p(Qs) = [b Ab ... AP_1b] = n, (nxp). (12)

2 Cf., e.g., Ogata [pp.249-50],
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By theorem 3.1, a necessary condition for (12) is n=p, or equality of 
the degrees of the characteristic and minimal polynomials. From (8), 
(9), n=p iff

s s
E n. = Z p, <=> n. = p. V i = (13)

i 1 o i X X Xi=l i=l

by (10). If scalar policy systems with multiple eigenvalues are to be 
dynamically controllable, (11) and (13) imply the necessary condition 
that every distinct eigenvalue A^> i=l,...,s, s $ n, is linked in a 
Jordan chain or occurs in one and only one Jordan block.

Interpretation of the Jordan chain condition (13) will therefore 
aid understanding of the effect of relaxing the distinctness assumption. 
Consider a second-order scalar system,

(t) zx(t)
= A

i2(t) z2 (t)

+ (14)

assumed to possess a 2-fold eigenvalue and to be already in Jordan 
canonical form. Then A can assume one of two forms:

(15)

If A = Aj, the Jordan chain associated with A is unbroken; if A = k̂ , 
the chain is broken. Solutions of (14) for the second case are given 

by

zx(t)

z2 (t)

zx (0)

z2(0)
(16)

where

(t-T)U(t) u(x)dT. (17)
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Imposing the desired terminal solution z(T)=0 in (16) therefore 
requires that

ZjCO)
-AT b i

= - e
z2(0) b2

ü(T). (18)

Thus with a broken Jordan chain, the scalar policy system (14) is 
dynamically controllable iff the initial condition vector z(0) and the 
control coefficient vector b are collinear - a restrictive condition 
only met accidentally. If, however, the Jordan chain is unbroken so 
that A E Aj, then p(Q) = p[b J A^b] = 2, and the system is dynamically 
controllable.

4.1.4 General scalar controllability

Using the foregoing analysis, a coupling criterion equivalent to 
the rank criterion (1) for k=l is presented. For the scalar policy 
system x = Ax + bu, consider, following (3.45), the explicit solution

x (0) = e Atbu(t)dt,
>*0

(19)

for the endpoint x(T)=0. For an unrestricted structural matrix A, 
the transition matrix is, from (4),

eAt = PeAtP_1 (20)

where A is the Jordan canonical form of A. To obtain a simple evaluation 
of (20), suppose that all eigenvalues of A are linked in Jordan chains. 
Then the matrix exponential (20), using Ogata [pp.152-5,308-9], may be 
evaluated as

At -1e = P{S (t)T}P , (21)

where
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V Te Ini 0 0
-6 II

0

A t
S  Te Ins

, S(t) =

n ' Sn W0 s

i = 1,. . . ,s, 

s £ n.

(22)

Hence, from (21) and (22),

e'At = [eAt]”1 = PV"1S(-t)P"1, (23)

so that (19) is

P Xx(0) = fTf(t)u(t)dt, (24)

where

f (t) E 'P"1S(-t)P"1b, (nxl) .

Postulating the smooth controller

u(t) = f^(t).y, (lxn.nxl),

(24) is written

P_1x(0) = G(T).y , 

where G(T) is the nxn matrix

G(T) = f(t)fT (t)dt.
J0

(25)

(26)

(27)

(28)
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Now there exists a unique solution for y in (27), and the system 
is controllable, iff G(T) in (28) is nonsingular. By a result given 
by Zadeh § Desoer [p.497], a matrix of the form (28) is nonsingular iff 

the n elements of f(t) in (25) are linearly independent functions of
~ _ i

time over the interval [0, T ] . For b = P b, and using (22), f(t) 
may be written

f(t)

" _i
e S

n i

- A t  .
e 3 S'1 ns

1.1

l.n,

s . 1
s

s ,n

e S
n l 1. 1

b. :1 .n1J

e Sns
s. 1

s
s .n

(29)

/S - 1 - 1where b is partitioned compatibly with T S (t) . Therefore the

elements of f(t) are linearly independent iff the elements of
exp {-A.t}S b, are linearly independent V j = l,...,s. Using (22)J nj ]•
again,

- A . t _ - A . t
f (t) = e  ̂ S b. = e  ̂n . n. j .

J J

—  0 n.-l
i -t i s  t-t).\  2!\ "• (n -1)1
\ V \ J

\ \
x t 2
21

\ \

\
\  \\ -t

\

\

b . j.n

(30)

Evaluating (30) readily shows that the elements of f are linearly

independent functions of t iff **

J .n t 0. (31)
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Hence if (31) is satisfied V j = l,.,„,s, then G(T) in (28) is 
nonsingular and the scalar system (19) is dynamically controllable.

Condition (31) and the assumption, prior to (21), that all 
eigenvalues are linked in Jordan chains illustrate the basis of the 
following theorem due to Kalman, Ho § Narendra [p„204]:

Theorem 4.3 (Kalman, Ho § Narendra)

The scalar policy system x = Ax + bu is dynamically 
controllable iff

(a) n = p <=> n̂  = p .,
V J = 1, • • • ,s, s $  n. (32)

(b) b. / 0.jcn,J

Condition (32a) refers to the eigenvalues of the structural matrix;
condition (32b), to the eigenvectors. The eigenvalue condition is
the Jordan chain condition (13), Since n^=p^=l V i = l,.„.,n for
distinct eigenvalues, the distinctness assumption of chapter III
automatically ensures satisfaction of (32a), The eigenvector condition

~ -1requires that each element of b = P b corresponding to the last row 
of each of the (s) Jordan blocks of A must be nonzero. This is the 
eigenvector condition of section 3,4, except that it applies to only 
s < n elements when multiple eigenvalues occur.

Thus, with respect to Figure 4.1, only the transformations (I) 
and (III) permit dynamic controllability in scalar policy systems.
The class (II) invariably violate the Jordan chain condition, with at 
least one eigenvalue occurring in more than one Jordan block. For 
scalar systems belonging to class (I), only those satisfying the 
eigenvector condition (32b) for s=n are controllable; and for those 
belonging to class (III), only those satisfying both the conditions 
(32) are controllable.

Although the effect of relaxing the distinctness assumption is 
so far considered just for scalar policy systems, theorem 4.3 is 
adequate for investigating the reduced stabilisation concept, Section
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4,2 therefore undertakes this investigation, deferring consideration 
of nonscalar policy systems to section 4.3.

4.2 CRITERIA FOR REDUCED STABILISATION

Section 3.2 presented an ordering

n  ̂N > K  ̂k (3.36)

on the numbers of static and dynamic targets and instruments, asserting 
that the inequality K > k arises because of deliberate reduction in the 
usage of instruments dynamically. This section examines such a 
reduction in the instrument vector: in particular, conditions for which
reduction is feasible are obtained, and the economic significance of 
the concept is elaborated.

4.2.1 Regular and reduced stabilisation

The ranking K H  on the dimensions of the static and dynamic 
instrument vectors defines two categories of dynamic stabilisation: 
regular (k=K) and reduced (k < K). With regular stabilisation, the 
dynamic policy mix contains every instrument available statically; 
with reduced stabilisation, fewer instruments are used dynamically than 
are statically available. Reduced stabilisation is a concept novel

3to the theory of economic policy. Previous work on dynamic 
stabilisation policy has focussed entirely on the problems of regular 
stabilisation. Again, this is principally a consequence of the scalar 
policy model: with a single instrument, the possibility of reduction
is clearly absent. The notion of reducing the number of dynamic 
instruments is itself contrary to the thinking engendered by the static 
Tinbergen rule, which emphasises the need for more rather than fewer 
instruments. If the concept is of value, it is therefore necessary 
(i) to present conditions under which it is possible to design a reduced 
policy mix and (ii) to demonstrate the utility of the concept as a 
policy option. These two requirements are now considered.

Reduction, as defined, is a qualitative, not a quantitative

3 For example, Phillips [1954, 1957], Allen [1960, 1968], FST, and 
Bergstrom.
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concept. There are k instruments available and it is desired to 
select only r of these; the restriction r < k implying freedom 
within the range 1 $ r < k. To unify analysis of these possibilities, 
a device used by Kalman, Ho § Narendra [p.204J and Lee § Markus [p.86] 
is employed. Consider the regular stabilisation model

x = Ax + Bu, u(t)CI Rk, (33)

and assume that it is dynamically controllable. Define the kxl 
column vector (c) such that

x = Ax + (Bc)y(t), y(t)CT R*, u(t) = cy(t) . (34)

Then the system (33) is scalar controllable in terms of (34) iff the 
two conditions of theorem 4.3 are satisfied. Hence the Jordan chain 
condition n-p must be satisfied; and certain elements of the column 
vector P *Bc must be nonzero.

A system (33) satisfying theorem 4.3 in terms of (34) will be
said to be reducibly controllable. Depending on the constant vector,
c, two types of reduced controllability can be identified. If c is
one of the column vectors e. of the kxk unit matrix I. , then y(t) =J k
Uj(t) and Be = bj, j e 1,...,k. In this case, the process of reduction 
is to ask whether one of the original k instruments is sufficient for 
dynamic stabilisation. Such systems will be defined to be reducibly 
scalar controllable (RSC),

If, however, c j- ae^, V j = l,...,k, a constant, there is 
necessarily more than one nonzero element in c. Given that u(t) = 
cy(t), then û  (t) = c^y(t) for at least two values of j, j e l,...,k„ 
In this case, more than one of the original instruments are to be used 
for dynamic stabilisation, each instrument being determined as a 
constant function of the scalar controller y(t). Such systems will 
be defined to be reducibly multiple controllable (RMC).

Reduced systems are therefore to be distinguished by the number 
of original instruments ultimately employed in implementing the scalar 
controller y(t). For RSC systems, only one instrument is required; 
for RMC systems, more than one and possibly all of the original
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instruments are necessary, But for either class of system, the design 
problem itself is simplified: it is only necessary to design a scalar 
controller y(t), the dimension of the control space being reduced from 
k to unity.

These two types of reduced system do not exhaust all the 
possibilities for designing reduced systems. Thus if a regular system 
is reducibly scalar controllable with respect to each of its k 
instruments, then there exist r' additional reduced systems,

r'
k-1
E
J*2
A (35)

obtained from combinations of these individual instruments. But RSC 
and RMC systems are of basic importance in characterising the options 
of maximum reduction,

4,2,2 Examples of reduced controllability

Concepts of scalar and multiple controllability may be illustrated 
in the context of a square policy model containing two targets and two 
instruments. Consider the scalar policy model

(36)

in which

3 = P_1Bc, B: 2x2, c: 2x1, (37)

By theorem 4,3, this scalar system is controllable iff

ß2 i 0, (38)

since the Jordan chain condition n-p=2 is satisfied by the structural 
matrix of (56)„

The role of this eigenvector condition differentiates the two
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classes of reduced system identified above. Provided c is not a unit 
vector, its elements can always be chosen so that (38) is satisfied. 
But if c is a unit vector, then 82 i 0 must be a structural property 
of the given system. Thus RMC systems exist if the Jordan chain 
condition is satisfied; RSC systems exist only if the eigenvector 
condition is satisfied as well. The more stringent option of using 
one rather than both of the available instruments necessitates 
satisfaction of more stringent requirements.

Assuming the stable sign pattern

A: (39)

for the structural matrix of (36), the phase diagram associated with 
this system is given by Figure 4.2. The loci are shown for y = 0, so 
that (e) represents the desired equilibrium point. Given the assumed 
dynamics, and initial conditions corresponding to point (a), asymptotic 
behaviour will be described by a trajectory similar to (ae).

The significant aspect of Figure 4.2 is that the horizontal locus 
= 0 separates the top half-plane from the bottom half-plane in the 

sense that no trajectory can cross that locus. Therefore, if the 
instrument y(t) appears only in the first equation of (36) so that
/N /S

8  ̂ / 0, 82 = 0, no parallel shifting of the locus z^ = 0, achieved 
through a policy y(t), can induce the system to hit the equilibrium 
point (e) in finite time^. But if the instrument y(t) appears in the

/s  /'v

second equation of (36) so that 8-l = 0, 82 t °> then vertical shifting 
of the locus z^ = 0 in response to control can induce the system to hit 
the equilibrium point (e). The composite path (abe) of Figure 4.3 
supports this assertion. If Figure 4.3 describes an RSC system, the 
ability to construct the path (abe) is a structural characteristic of 
the system; if it describes an RMC system, this ability is then a

/s

discretionary option in the sense that the eigenvector condition 82 t 0 
can always be satisfied by appropriate selection of the vector c.

4 Cf. the analysis accompanying Figure 3.5 in section 3.5 above.
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Figure 4„2
Controllability with a Double Eigenvalue

Now suppose that the Jordan chain condition is violated for the 
system (36), providing

(40)

Assuming the stable sign pattern



99

[a]

[b]

Figure 4,3
Construction of a Controlled Path
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A: (41)

the phase behaviour of (40) is given by Figure 4.4.

Figure 4.4
Noncontrollability with a Double Eigenvalue

For y(t) = 0, the asymptotic solution of (40), given (41), is the
linear trajectory (ae), with gradient determined by the initial

/\ /\

conditions (a). If either 3^ = 0 or ^  = 0, so that the instrument 
is confined to just one of the state equations, the separation 
argument noted with respect to Figure 4.2 is also applicable to 
Figure 4.4. Because either possibility violates the eigenvector 
condition, the system is therefore noncontrollable. But suppose
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3̂  4 0, 32 i 0, satisfying this condition. Now although the Jordan 
chain condition remains violated, the type of reduction used in (40) 
affects the controllability or otherwise of the system., Thus if a 
controller y(t) i 0 can produce the new loci zj, z£, the system 
possesses a linear asymptotic trajectory (aec) allowing the desired 
equilibrium to be achieved in finite time. As equations (14) through 
(18) demonstrate, the trajectory (aec) requires col linearity of the 
initial condition vector z(0)=a and the control coefficient vector 
3. While collinearity is an arbitrary property of reduced scalar

A

systems (for which the elements of 3 are fixed), it is a discretionary 
property of reduced multiple systems. Thus

~ - 13 = az(0), a constant <=> P Be = az(0), (42)

and a unique choice of c always exists v z(0) provided p(B) = n = 2,

In square policy systems, reduced multiple controllability is 
possible, even if the Jordan chain condition is broken, provided the 
multiple controller is constructed using k=n instruments, with p(B) = 
n. In rectangular policy systems, the Jordan chain condition remains 
binding because a solution for c exists iff

P(B I z(0)) = p(B) = k, (43)

and this cannot be universally guaranteed. In square policy systems, 
reduced multiple controllability invariably exists while reduced 
scalar controllability need not. In rectangular systems, the Jordan 
chain condition is necessary and sufficient for reduced multiple 
controllability; but must be accompanied by the eigenvector condition 
to ensure reduced scalar controllability.

4.2.3 Economic significance of reduced stabilisation

Given that an economic model is regularly controllable, the 
primary importance of reduced stabilisation is captured by the 
following appeal: can the problem of designing and implementing a
dynamic controller be simplified? Although the target and instrument 
dimensions n and k have no qualitative effect on policy design, the
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quantitative problems of computation, illustrated in chapter II, 
increase more than quadratically with these dimensions» Regular 
controllability defines whether an economic system can be dynamically 
stabilised at all; reduced controllability, whether the task can be 
simplifed,

Two types of reduction are defined: scalar reduction and
multiple reduction0 Scalar reduced controllers involve the use of 
only one of the original instruments« Multiple reduced controllers 
still involve the design of only one dynamic controller, but this is 
implemented by setting several, or all, of the original instruments 
proportional to it« In either case, the regular problem of 
designing k independent dynamic policies is reduced to the problem 
of designing one independent policy«

Assuming a reduced system exists and has been selected, the 
following balancing principle applies to the design of stabilisation 
policy: statically, it is necessary to specify K instruments each
with feedbacks to N targets; whereas dynamically, it is necessary 
to specify only one instrument with feedbacks to n targets« This 
reduction in the dimension of the control space compensates for the 
design characteristic that, statically, only proportional feedback 
is employed; whereas dynamically, integral, proportional, derivative, 
and higher-order feedbacks are required« Loosely translated, the 
balancing principle is therefore: use a larger number of instruments
in the simple static context, and a smaller number of instruments in 
the complex dynamic context«

As a cost of design simplification, there exists a concurrent 
choice problem« If there are several reduced systems, is there a 
unique choice of system? Thus suppose that there is a regular 
system with two instruments, generating two scalar reduced systems 
and one multiple reduced system« Which system will be preferred for 
dynamic policy-making? If the benefit of reduction is simplification 
of the policy design problem, it is probable that there is a resulting 
cost in terms of either deteriorated performance or increased resource 
expenditure, as measured against the regular system« This choice
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and costs but there do not appear to be simple a priori economic 
rules for guiding such a choice«
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Simultaneous existence of scalar and multiple reduction creates 
yet another choice problem: criteria for preferring one type of
reduction to the other are not apparent. For example, it may be 
easier to meet implicit control magnitude constraints using multiple 
reduction rather than the more stringent scalar reduction, but this 
is only conjectural. If multiple reduction is used, it is then 
necessary to provide criteria for selection of the elements of the 
discretionary vector c.

Significant questions remain to be explored before the role of 
reduced stabilisation is fully understood. These, however, are not 
pursued further here; and section 4.3 now resumes the analysis of 
the rank criterion in nonscalar policy systems.

4.3 UNIFIED CONTROLLABILITY CRITERIA

Although the rank criterion (1) provides a fully general 
statement of necessary and sufficient conditions for dynamic 
controllability, it is, in that form, devoid of intuitive appeal.
Both chapter III and this present chapter have attempted, therefore, 
to discern the basis for this criterion. After defining two general 
classes of policy system - square and rectangular - chapter III 
demonstrates that Tinbergen's theorem generalises dynamically to 
square policy systems; and then uses the distinctness assumption 
to isolate the role of the eigenvector condition in rectangular 
policy systems. Section 4.1 relaxes this distinctness assumption 
and provides a rationale for theorem 4.3. This theorem, applicable 
to scalar policy models, characterises the rank criterion in terms 
of the Jordan chain and eigenvector conditions.

Analysis of the rank criterion is still required for the general 
case when a regular controller using more than one instrument is to
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be designed, Thus if the nxpk controllability matrix Q of (1) is to 
possess full row rank n, a necessary condition is clearly

k * n/p, (44)

Suppose that the Jordan chain condition is violated, with p < n„ Then 
(44) implies

1 < k £ n for n > p > 1. (45)

With p < n, rectangular policy systems are not reducibly controllable: 
does there exist a set of k > 1 instruments for which these systems 
are regularly controllable? If so, under what conditions?

4o3„l A general coupling criterion

Investigation of this problem leads to an alternative 
characterisation of the rank criterion valid for all pairings of the 
dimensions k and n. For the rectangular policy system x = Ax+Bu, B: 
nxk, equation (19) becomes

x(0) = Bu(t)dt. (46)

Since the Jordan chain condition is not necessarily satisfied, the
_

expression (23) for the transition matrix e is not necessarily 
valid either. To allow for multiple Jordan blocks associated with a 
given eigenvalue, define the integer (n^,j) such that n^, the 
multiplicity of X^, is given by

r.l
ni = l (ru o j), i = l,..,,s, s £ n, (47)

j = l
thwhere (n.„j) defines the dimension of the j Jordan block, j = 1,

-*•

o.<,,r^, associated with i eigenvalue X^, i = l,..„,s; and where 
the integer r^ is the number of such Jordan blocks corresponding to 
any X^» Hence the matrix definitions (22) become, for j = l,...,r^, 
i = 1,... ,s, s $ n,
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Thus

-At -1 -1e A = PT AS(-t)P , (49)

and (46) may be written 

rT 

0
P_1x(0) {T_1S(-t)} Bu(t)dt, B = P_1B. (50)

Partition B such that*

A

B
nl

A

B . n. . 1 
J

* , B =n.
J •

Bns nxk

A

Bn. .r. 
3 J n .xk J

(51)

and construct the matrices

B . 
J

B(n .1)

B(V 2)

B(n. .r.) J J r . xk J

j = 1,...,s, s $ n, (52)

where B(n..i), i = l,...,r., is the last row of each block of B in 
J J nj

(51). Then Appendix IV (pp.264-7 below) establishes the following
result:

The subscript x in B^ denotes row dimension.5



Theorem 4=4

The linear constant system x = Ax+Bu, u d R , l < k < ; n ,  
pCB) = k, is dynamically controllable iff

p(Q) = p[B AB ... A? B̂j = n, (nxpk) , (53)

or iff

P(B1D = rx, ..., p(Bg) = rs> s $ n. (54)

4.3.2 Some particular cases of Theorem 4,4

Equations (53) and (54) are equivalent characterisations of 
dynamic controllability, valid for all linear constant* systems„ In 
applying the rank criteria of (54), a distinction can be made between 
systems in which the Jordan chain condition is satisfied and systems 
in which it is violated. Consider, therefore, the following 
particular cases.

(i) n = p

If the Jordan chain condition is satisfied, then, by (13), 
ni = Pi V i = l,...,s, s ^ n; and two subcases are possible:

(ia) n^ = p^ = 1 V i = l,...,s=n

This case corresponds to n distinct eigenvalues and
represents the transformations (I) of Figure 4.1. By theorem 4.1,
(ia) implies r = ... = r =1, and since n. = ... = n _ =1, the 1 n  ̂ i  ̂ s—n
criteria of (54) require each row of B = P B to possess rank of 
unity - to possess at least one nonzero element. Thus

P(Bj) =1, .... p(Bn) = 1, (55)

which is the coupling criterion of section 3.3.



108

(lb) = p  ̂ 1 V i = 1,»„», s < n

This case corresponds to multiple eigenvalues possessing 
unbroken Jordan chains, and belongs to the transformations (III) of 
Figure 4.1. Again, r̂  = „»» = rg = 1, but (54) requires that only 
a particular s < n rows possess unity rank:

P(BX) = 1, P(BS) = 1» (56)

Scalar controllability for systems satisfying (i) therefore
~ -1requires, given (54), (55), and (56), that one column of B = P B 

has s $ n nonzero elements, the positions of these nonzero elements 
being significant» This is the basis of theorem 4»3.

(ii) n > p

Two particular subcases will suffice to illustrate operation of 
the criteria (54) when the Jordan chain condition is violated»

(iia) p = 1

This case corresponds to an n-fold eigenvalue A whose Jordan
chain vanishes completely» Hence r = n, and s = 1. From (51) and

-1 1(52), this implies B = B = P B, so that (54) requires

A

p(Bp = p (B) = p (B) = n. (57)

Thus n instruments are necessary for stabilisation, as is clear from
/\

explicit solution of x = Ax + Bu for x(T)=0,

(lib) n. ^ 1, p. = 1 V i = l,»».,s < n

This case is the general representation of the transformations
(II) of Figure 4,1» There exist s < n eigenvalues A^ of multiplicity
n. > 1 and index p. = 1, so that r, = n., ..., r = n » Hence (54)1 ri 1 1 s s
requires

p(B1) = nx, » o o, p(Bs) = ng. (58)

This particular result is stated by Kalman [1963b, p»171] who also
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refers to a then unpublished result apparently analogous to theorem 
4,4, Neither the result nor further reference to it have been 
sighted in the control literature. Additionally, both theorem 4,4 
and (58) contradict the corollary on dynamic controllability given 
by Kalman, Ho § Narendra [p,204] for k > 1: their condition (b') should 
be strengthened by a rank requirement on the distribution of nonzero 
elements, as given here in theorem 4,4,

4,3.3 Joint controllability

To clarify the question of dynamic existence, chapter III separated 
the problems of static and dynamic stabilisation. Now theorems 3.3 
and 4.4 provide necessary and sufficient conditions for static and 
dynamic existence; and it is therefore natural to ask for necessary and 
sufficient conditions under which linear stabilisation models are 
simultaneously statically and dynamically controllable - or jointly 
controllable. Theorem 4.5 specifies these conditions.

Theorem 4.5

Given the linear constant dynamic system x = Ax + Bu, A: nxn,
* * * * *

B: nxk, p(B) = k; and associated static system 0 = A X  + B U  + D ,  
* *

A : NxN, B : NxK, where n ^ N ^ K ^ k. Then these systems are
jointly controllable iff

either

*
p(B ) = p(B) = n = N = K = k (59)

or

*
p(B ) = N = K (60)

and

P(B]_) = P(Bg) = rg , s $ n. (61)

Minimum instrument requirements for dynamic stabilisation are
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thus set by

r = max r a  ̂> i 1,.. ., s , s < n. (62)

Just as K=N instruments are required for static controllability, so
k = r^ instruments are required for dynamic controllability; and just
as the control matrix for these static instruments must satisfy
Tinbergen's rank condition, so, too, certain blocks of the (transformed)
control matrix for these dynamic instruments must satisfy the rank
criteria (54). Information on the eigenvalues of the structural
matrix - on the sequence of Jordan chains of A - is codified in
r^, i = l,...,s; and information on the eigenvectors of the structural
matrix is codified in p(B^), i = l,...,s. Since these rank conditions
refer to the row rank of matrices constructed directly from the rows of 
*  -1B = P B, and since r^ < n in general, the sufficiency of p(B) = n for 
dynamic controllability, noted in chapter III, is therefore explained.

Theorem 4.4 provides an equivalent statement to theorem 3.4 and 
finalises the analysis of dynamic controllability in linear 
stabilisation models. The necessary and sufficient conditions of these 
theorems apply to any model of regular stabilisation, whether rectangular 
or square. The rank criterion of theorem 3.3 refers to the system 
x = Ax + Bu; to interpret this criterion, the system is transformed to 
the spectral form

from which the rank conditions of theorem 4.4 are derived.

These criteria for dynamic controllability define two attributes 
of a dynamic stabilisation model necessary and sufficient for existence 
of a dynamic policy: the minimum number of instruments required and
the conditions a minimal set must satisfy. Thus the maximum number 
r^ of Jordan blocks, or independent eigenvectors, associated with any 
eigenvalue in A, the Jordan canonical form of A, specifies the minimum 
number of instruments necessary for dynamic stabilisation. Only if 
the number of instruments available - the column dimension k of the

4.4 CONCLUSIONS

z = Az + Bu ~ -1 B = P B (63)
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control matrix B or B - is greater than this minimum can a regular 
controller u(t) be designed. This counting condition, k 2 r , is 
determined purely by the eigenvalue structure of the structural matrix. 
The structural and control matrices interact, however, to specify a 
further condition on these instruments. Assuming sufficient 
instruments exist, and that B in (63) is partitioned conformably with
the Jordan blocks of A, a matrix B is constructed from the last row of

/\

each such block of B, This matrix B is also row-partitioned into 
blocks, each block being associated with one and only one distinct 
eigenvalue. The second condition for dynamic controllability is that 
each such block possess full row rank.

Thus necessary and sufficient conditions enabling design of 
regular stabilisation policy are fully developed. The possibility 
of reducing the number of dynamic instruments to compensate for the 
complexity of the dynamic design problem is also explored. Criteria 
for reduction are implicit in theorem 4.4. The extent of reduction is 
constrained by the minimal instrument requirement. When the Jordan 
chain condition is satisfied, maximum reduction is possible; since 
r^ = 1, the system is then controllable with only one 'instrument*, 
where instrument is qualified to allow for multiple as well as scalar 
reduction. An exception to this rule occurs in square policy systems, 
for which multiple reduction is available independently of the Jordan 
chain condition. If the Jordan chain condition is violated, then, 
provided k > r , the system is controllable with more than one 
instrument but less than all instruments. These statements assume 
that the row rank criteria derived from the appropriate matrix 
construction B are satisfied,

Reduced stabilisation appears to be a significant aspect of a 
generalised theory of economic policy; its importance flowing from 
the matching of dimensional simplicity against design complexity. If 
policy-makers are to learn how to implement optimal dynamic policy, 
such learning is facilitated by a literal reduction in the dimensions 
of the stabilisation problem. The reduced controllability conditions 
specify those well-behaved systems for which simplification is possible. 
But two major problems are raised by reduction: (i) the empirical
incidence of well-behaved systems; and (ii) the criteria to be applied 
in selecting a reduced system. Neither is considered further in this
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thesis c

The joint controllability conditions of theorem 4.5 emphasise 
that two causes of persistent policy problems exist; the first being 
static noncontrollability, the second, dynamic noncontrollability.
The problems of static noncontrollability have been thoroughly analysed 
in the theory of economic policy. This present analysis therefore 
focusses attention on the simultaneous problem of dynamic existence.
It is shown that in square policy systems both the static and the 
dynamic existence problems are resolved in one fell swoop. In 
rectangular policy systems, the rank criteria (54) refer essentially 
to the eigenvector condition, first described in chapter III. As an 
agent of dynamic noncontrollability, the significance of this condition 
can only be accurately evaluated empirically. But theoretically, 
there seems to be no economic rationale for violation of this condition 
to be an intrinsic property of economic structure.

Dynamic controllability is clearly relevant to the practical 
design of stabilisation policy using econometric models. Even after 
the problems of modelling are overcome, it is still necessary to confirm 
controllability before policy design is attempted. Noncontrollability 
would pose the question as to whether it is induced by the estimation 
process or by the underlying economic structure; some test would then 
need to be devised to discriminate between these two possibilities.
The partitioning of large-scale econometric models also requires 
consideration of the controllability properties of the submodels so 
obtained. Controllability must be investigated explicitly in all 
policy models, whether theoretical or practical.

Chapters III and IV consider dynamic controllability only with 
respect to linear constant continuous-time models, but the concept is 
not restricted to these models. Controllability criteria are also 
available for linear time-varying models and for linear discrete-time 
models, as given, for example, in Kalman [1961] and Ogata [pp.370-436]„ 
For nonlinear systems, considered by Lee 6 Markus [pp.364-93], the 
global criteria of linear systems are replaced by local criteria.

Chapters III and IV therefore combine to remove the hiatus 
concerning dynamic existence observed in the theory of economic policy.
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Consequently, chapters V, VI, and VII move from the controllability 
concept in existence theory to the optimality concept in design 
theory,, To commence, chapter V investigates an alleged conflict 
between optimality and stability.



CHAPTER V

A PARADOX IN THE THEORY OF OPTIMAL STABILISATION1

Phillips [1954] applied the classical techniques of control 
engineering to the problem of synthesising dynamic stabilisation 
policies„ Given the dual objective of control over both the dynamic 
adjustment path and the comparative static equilibrium level of a target 
variable, Phillips proposed inter alia a combination of proportional, 
derivative, and integral feedbacks for effective stabilisation. A 
drawback of this classical approach, however, is its inability to 
provide a general method for specifying the simultaneous values of 
these feedbacks. Fox, Sengupta § Thorbecke (FST) subsequently used 
the calculus of variations to generalise Phillips' approach. By 
assigning quadratic preferences to the policy-maker and formulating 
the control problem as one of dynamic optimisation, a unique set of 
feedback parameters could, in principle, be derived through a direct 
search for an optimum solution.

Now the application of dynamic optimisation techniques is a 
significant step in the evolution of stabilisation theory. Yet the 
policies proposed by FST exhibit some puzzling features. Their 
proposition that optimal policies necessitate unstable target solutions 
particularly excites comment. The necessarily stable policies 
prescribed by Phillips are to be replaced by 'optimal' policies which 
render the model unstable and thwart the very purpose behind their 
design - the achievement of economic stability. This paradox is surely 
of considerable importance for policy-making but has attracted little 
attention as an impossibility theorem for optimal design.

If true, a conflict between optimality and stability is a telling 
addition to Baumol's 'theorems for skeptics', a set of negative policy

1 This chapter is to be published, under the same title, by The 
Review of Economic Studies,
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prescriptions defining what policy-makers cannot do; and including 
the second best theorem, and the Phillips proposition relating the 
dynamic sensitivity of economic systems to the timing and magnitude of 
policy. The lot of policy-makers is already onerous and all potential 
additions to Baumöl's list warrant keen investigation before acceptance. 
This chapter contends optimistically that the FST paradox cannot 
withstand close scrutiny - that there is no impossibility theorem for 
the design of optimal stabilisation policy. Certainly, correct 
analysis still implies an addition to Baumol's list, but it is less 
stringent than that asserted by FST.

The argument supporting this contention proceeds in four stages.
In section 5.1, the optimal Phillips model used by FST is described and 
correct solutions are provided using necessary conditions from the 
theory of linear optimal control. This leads to a consideration of 
the alleged stability-optimality conflict in section 5.2. There it is 
shown that the paradox is untenable but with little perception of the 
logic whereby the conflict is avoided. Accordingly, section 5.3 
examines the phase portrait of the optimal system, clarifying the basis 
of the paradox. If true, the FST paradox applies to all regulator 
formulations, whatever their dimensions. Section 5.4 therefore refutes 
the paradox at the general level. Section 5.5 concludes, and briefly 
relates the underlying problem to the areas of growth theory, production 
theory, and filter design.

5.1 AN OPTIMAL PHILLIPS MODEL

FST employ the Phillips mutliplier-accelerator model, as exposited 
in Allen [1960, 1968], to represent the dynamics of an economic system 
for which an optimal stabilisation policy is to be designed. This 
model is the pair of equations

y'(t) = (l-s)y(t) + vy(t) + g(t), se(0,l), v > 0, (1)

y(t) = a(y' (t) - y(t)), y(0)=yQ^0. (2)

Equation (1) is the Harrodian demand relation specifying current demand 
y' as the sum of private sector demand ((l-s)y+vy) and public sector 
demand g; with private sector demand consisting of consumption demand
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(l-s)y and induced investment demand vy. Equation (2) represents the 
dynamic adjustment mechanism of supply y to demand y ’, taking the form 
of a first-order exponential distributed lag, as defined by Allen 
[1960,pp,23-5]. Current excess demand (y'-y) is assumed met by a 
reduction in inventories; producers react by increasing the rate of 
production y by a proportion a of this reduction. Provided a < °°, 
producers do not match all inventory movements immediately, but 
accomplish instead a 63 percent response during the period of the mean 
supply lag, y E 1/a.

The variables y, y', and g are assumed measured as deviations from 
static levels defining a desired equilibrium position. The target, 
output y, and instrument, government demand g, are thus related by

y(t) = -swy(t) + wg(t), y(0)=yQ, w E / 0. (3)

The stabilisation problem posed by this Phillips model results from the 
free or natural behaviour of the uncontrolled system

y(t) = -swy(t), y(0)=yo, (4)

with explicit solution

y(t) -swt= y e o (5)

Since the marginal propensity to save is strictly positive, asymptotic 
stability depends on the sign of the definitional parameter

w 5 ^  , Yl5 l/a. (6)

If w is positive (negative), the uncontrolled system is naturally stable 
(naturally unstable). In economic terms, the system (3) is naturally 
stable if the mean supply lag y^ is greater than the accelerator 
coefficient v.

In the naturally unstable case (w < 0), the necessity for dynamic 
stabilisation is obvious - the system diverges uniformly. For the 
naturally stable case (w > 0), the stability factor (y -v > 0) is
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inversely related to the rate of convergence swt Thus the policy­
maker may be assumed to desire a faster rate of convergence when faced 
with a sufficiently large value of this factor,

Following the analysis of dynamic controllability in chapters III 
and IV, the basic ability to stabilise the system must also be 
demonstrated. The solution of (3) is

y(t) -swte y, + w
ft

e-SW(t“T)g(T) dx.
J0

(7)

Suppose that y = y(T) is the desired value of output at time t=T. Is 
it possible, with the instrument g(t), to transfer the system from its 
initial position yQ to the terminal position y(T) in time T? From (7), 
it is necessary and sufficient that there exists a control g(x),Te[0, T] , 
such that

r T
-s w(T-t) f . , rrr. -swTe g(t) dx = y(T) - e y

J0
(B)

Consider the open-loop controller,

g(t) ße-SWT (9)

Then (8) is satisfied if ß is chosen as

R - yffleswT - y co) . y(0) - y(Q) 
P " wT wT (10)

/\

and this is always possible. The initial condition y(0) is that for 
which, given the desired endpoint, no control would be necessary. Hence 
ß is a direct function of the difference between the 'desired' and actual 
starting points, and an inverse function of the fixed finite time 
available to achieve the desired endpoint. Since = °°> the
controller (9) illustrates the principle that controllability involves a 
tradeoff between time and control energy. Stabilisation policy must 
adjust explicitly to this tradeoff to avoid violation of control 
constraints, a design aspect considered in chapter VII.

FST [pp„ 217-9] tackle the problem of selecting a specific control
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policy for (3) by assuming a quadratic preference functional of the 
form

MIN W = 
g(t)

2̂
fT

[ y 2 Ct)

'0
+ ^g2 (t)]dt, (f> > 0. (1 1)

This criterion - the optimal regulator - requires that disequilibrium 
income y be kept near its desired value of zero without excessive 
deviation of control expenditure from its desired value, also zero.
The strictly positive parameter cf) measures the relative importance of 
the two performance cost elements: the greater cj), the greater the cost
of using the control g to force y to equilibrium. The parameter T 
defines the length of the stabilisation period. It is assumed fixed 
and may be either finite or infinite: in particular, FST assume T is
finite [pp0218,371]. Their optimal stabilisation problem is therefore 
written2

MIN W = % 
g(t)

fT 2[y  ( t )

- 0
+ 4>g2 (t)]dt, <f> > 0,

subj ect to

'I y(t) = -swy(t) + wg(t), se(0,1), w^O, 

I y (0 )  = y Q; y(T) free; T fixed,

! g(tj, te[0,T], unconstrained»

(12)

FST are actually ambiguous about the target endpoint y(T): is it fixed
or free? To proceed, a free endpoint is taken but it is later argued 
that their paradox is also invalid for the fixed endpoint assumption.

This dynamic optimisation problem is a simple example of a

This specification differs from that of FST in minor details 
[p»219, (8o60.2)]: the performance criterion is not time-averaged;
the discount function is omitted; and autonomous demand expenditures 
are removed by the disequilibrium specification, For simplicity, 
their performance weights are taken in the ratio form 4> =
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fixed-time, free endpoint optimal regulator, and solutions are readily 
found with the aid of linear optimal control theory » Thus defining 
the Hamiltonian

2 2H(y,g,p) - h y  + h $ g + p(-swy+wg), (13)

where p(t) is the costate variable, the canonical system (y = 9H/3p; 
p = -9H/3y), after using the minimising control

= o <=> g = -<J> Xwp, (14)d &

is written

-1 2y -sw -4 w y y(0)=yo

p -1 sw p P(T)=0

Here the costate boundary condition p(T)=0 derives from the 
transversality condition» Optimal solutions for the instrument g
and target y are then given by

g = -<J> Lwky, (16)

y = -(sw + (p ~ 1w2k)y, y(0)=yQ, (17)

where from the canonical system (15) the costate is given by

p = ky, (18)

with k the positive solution of the Riccati differential equation

k = 4 -1w2k2 + 2swk - 1, k (T)=0. (19)

From Appendix V (pp.268-9 below), solutions for k and y are: 

k(t) <t>w~1 (9-sj {1 - e-2w9
L + -2we(T-t)

9+s
0 =(s2^ ' 1)!5, te[0,T],

(20)

3 FST use the classical calculus of variations but greater clarity of 
solution structure may be obtained with the modern theory»
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(21)

Given these instrument, feedback, and target solutions (g, k, y) , 
the conflict between optimality and stability alleged by FST is now 
investigated.

The stabilisation paradox of FST receives a concise statement in 
their theorem [p 0378j for a regulator model of order 2n, where n is the 
order of a dynamic equality constraint akin to (3)„ Thus:

"Theorem 2 (Optimality Theorem)
If there exists a control vector u=u(t) which satisfies equation 
(,) of the multisector Phillips model and also optimises the 
performance integral equation (,) in a nondegenerate way, i.e. 
the Euler-Lagrange equations („) are nondegenerate, then the 
optimal control system has the property that if u is a 
characteristic root of the system, -u is also a ° characteristic 
root of the system,, In particular, if the root u^ has a nonzero 
real part and the initial condition x(t) at t=0 is quite 
arbitrarily fixed, the optimal control vector u=u(t) is necessarily 
unstable,"

Without commenting as yet on the validity of this theorem for the 
general order 2n, its validity for the Phillips regulator, in which 
n~l, will be investigated,,

The characteristic equation of (15) implies the validity of the 
statement of the theorem: the eigenvalues ±w0 are real, of given
modulus but opposite sign. However, the underlined stability 
proposition derived from this statement is invalid. Referring to the 
optimal solutions (16), (20), (21),

5 „2 THE ALLEGED STABILITY-OPTIMALITY CONFLICT

f y - y(t; T, w, s, <J>, yQ)
te[0,T]. (22)

g = g (t ; T, w, s, 4>, yQ)

For a finite horizon T, equations (22) are also finite, and the FST
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paradox cannot occur. But in the proof of their ’Optimality Theorem', 
FST consider the limit {t-*»} of analogues of these solutions. Now 
since t is defined on the stabilisation interval [0, T], their limiting 
procedure is only justifiable if preceded by the limiting process
r . 4
IT-*»}, which provides

lim y(t) = y*(t) = y(0)e w0t,T-K»
te [0,°°]. (23)

lim g(t) = g*(t) = - (9-s)y* (t),
T-x»

And these infinite horizon solutions are clearly asymptotically stable

lim y*(t) = 0, lim g*(t) = 0. (24)
•£-K>0 t

There appears to be no basis, therefore, to the stability 
proposition contained in the FST ’Optimality Theorem'. Yet after

T-KX)
applying the correct limiting process { .j,} » The optimal solutions
provided by FST [pp.224, 379] are indeed unstable, apparently justifying 
their paradox. This contradiction of (24) occurs because FST fail to 
recognise the need for a definite endpoint assumption. This need 
follows immediately from the classical calculus of variations.
Adjoining the dynamic equality constraint (3) to the criterion 
functional (11) via the costate p(t), and using the Hamiltonian defined 
in (13), obtain, after Sage [pp.56-7], the equivalent problem

rTMIN W = [H(y,g,p) - p.y]dt. (25)
g

Or, after integration by parts,

T
MIN W = -p.y + 
g 0

(T [H(y,g,p) + p.y] dt. 
. o

Now the first variation of the functional W may be written 

5W = -p.6y + [(t̂ t + p)6y + 7^<5g] dt°

(26)

(27)

4 This asymptotic procedure is justified by Kalman's existence 
theorem for linear optimal control theory [1959].
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And since a necessary condition for a minimum for W is that 6W vanishes 
identically, a set of necessary conditions follows:

3H
3g = 0 (28)

m
W ‘ "p-

(29)

p(t)6y(t) = 0, t = {°. (30)

Conditions (28) and (29) are together equivalent to the Euler- 
Lagrange necessary conditions used by FST. Condition (30) provides the

I
associated transversality condition. For a fixed endpoint y(T), 6y(T) = 
0 satisfies (30); and for a free endpoint 6y(T) is arbitrary, implying 
p(T)=0 to satisfy (30). Now FST apply the Euler-Lagrange conditions 
(28), (29) to the optimisation problem (12) to obtain

y = -swy + wg, y(0)=yQ (31)

g = 4)_1wy + swg, (32)

as necessary conditions for optimality. Equation (31) is simply the 
constraint provided by the system dynamics (3), while (32) is the 
optimal specification of the controller dynamics to match these system 
dynamics. FST reduce this pair of equations to the second order 
differential equation

y - w V y  = 0 ,  0 = (s 2+4)”1)J$ , (33)

with general solution

y(t) r w0t r -w0t C ^ e  + C ^ e (34)

It is here that the analysis of FST fails. One of the boundary 
conditions y(T)=0 or p(T)=0, satisfying the transversality condition 
(30), is mandatory for solution of the optimal stabilisation problem 
with a finite horizon T. But FST, having omitted this transversality 
condition, must arbitrarily specify a second boundary condition to
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accompany the initial target condition y(0)^0 in solving (34). This 
allows the horizon parameter T to disappear from the optimal target 
solution (21) , or prevents it from appearing in (34), so that the limits 
it-*»}, { .j,} are, for FST, indistinguishable. Although (21) contains
the unstable mode, exp (w0t), its effect is nullified by the explicit 
appearance of the horizon parameter (2T-t > 0 V te[0,T]). To remove 
T is to render the optimal target unstable, falsely generating the 
paradox.

Correct specification of finite horizon regulators determines not 
only the optimal policy dynamics to accompany the given target dynamics, 
but also the terminal condition - either on the target or the instrument - 
to accompany the initial condition on the target. Whether the regulator 
is fixed endpoint or free endpoint, the horizon parameter T will be 
explicitly incorporated in the optimal finite horizon solutions, 
disallowing the paradox as an asymptotic proposition.

Given correct solutions to the Phillips regulator, it is therefore 
argued that (i) the finite horizon regulator is necessarily stable 
despite the appearance of a saddle point ±w0; and that (ii) the infinite 
horizon regulator is necessarily stable following the disappearance of 
this saddle point. Although the FST paradox has been exposed, the 
cause of confusion - in particular, the process by which the potentially 
unstable dynamics are filtered out of the asymptotic regulator - is 
better understood in terms of the phase portrait of the optimal system.

5.3 SADDLE POINT OF THE PHILLIPS REGULATOR

To visualise the elements of the FST paradox geometrically, the 
phase portrait of the optimal system is constructed, integrating finite 
and infinite horizons, free and fixed endpoints, and natural stability 
and instability in a single diagram. The Hamiltonian system (15) may 
be written

x = Hx = WAW ^x, x(0)=xo

-1 2-sw -cj> w y -w0 0
, X = , A =

-1 sw p 1
CDO___1

(35)
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Here A is the diagonal matrix of eigenvalues, and W is a right 
eigenvector matrix found from solutions of

[H ± w01jW_ = 0 ,  W = (W W ). 
+

One such solution matrix is

(36)

w(0+s)

1

-1
w(0-s)

(37)

for which the first column W is associated with the stable eigenvalue 
-w0. Now following Hurewicz [pp.70-86],

f = Ar, r(0)=rQ , r = W ^x, (38)

is a similarity transformation of (35) in which the axes r^, r^ are the 
asymptotes of the saddle point ±w0o Equations for these asymptotes in 
the x-plane are therefore given by

= 0,

or by

y+ = -w(0-s)p; y_ = w(0+s)p.

And from (35), the equations

oII■X <=> y = -(w/s(J))p

p = 0 <=> y = swp,

W ^x = 0 <=>

-1
w(0-s)

-1
w(0+s)

-1
(39)

(40)

(41)

specify trajectory turning points with respect to y and p. Combining 
these results, the saddle point of the Phillips regulator is drawn in
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Figure 5.1:

z y =w(0+s)p

-w(0-s)p

Figure 5.1
Saddle Point of Phillips Regulator (w > 0)

Figure 5.1 assumes that the Phillips model is naturally stable 
(w > 0). For completeness, natural instability is now allowed for, after 
which the paradox will be considered for both cases. Given that the 
saddle point exists V w  ̂ 0, natural instability (w < 0) reverses the 
sign of all gradients in Figure 5.1. As a first step, the revised 
saddle point is therefore the image of Figure 5.1 in the vertical axis 
y. But natural instability also switches the eigenvalue signs; as a 
second step, the direction of movement along trajectories must be 
reversed. With these changes, both cases (w < 0) may be unified in a 
single figure after specifying a particular initial target error - say 
yQ > 0, an inflationary demand gap. Then since p = ky, and k is positive 
irrespective of w, the first quadrant of Figure 5.1, w > 0, may be 
juxtaposed with the first quadrant of a revised saddle point, w < 0, to
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give Figure 5.2, for w < 0, T  ̂ yQ > 0:

P(T)=0

Figure 5.2
Phillips Regulator Trajectories (w < 0)

Identifying the infinite horizon solution for the naturally stable 
case first, observe that from (18), (40),

"k "k "k k

y = p /k = w(6+s)p = y te[0,°°], (42)

where k = lim k(t) is evaluated from (20). Hence the stable asymptote
T-x»

y_ defines the optimal trajectory for the infinite horizon regulator
with w > 0; and it is readily shown that y+ - w(0-s)p, w = |w|, is the
analogue for w < 0. The optimal asymptotic motions of the Phillips

*
regulator therefore begin from the phases {p (0), y(0)}, w £ 0, and 
proceed along the stable asymptotes to the equilibrium point (0,0).
The FST paradox is clearly invalid in the infinite horizon case.

If the optimal finite horizon trajectories are to satisfy the 
saddle point dynamics of Figure 5.2 subject to the boundary conditions
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y(0)=yQ> p(T)=0, they are necessarily those suboptimal asymptotic 
trajectories commencing from the initial manifold y-y Q > truncating at 
the terminal manifold p(T)=0, and therefore lying everywhere above the 
optimal asymptotic trajectories (y , y_̂ ) . The finite horizon 
assumption generates a terminal condition, the transversality condition, 
to express that assumption, and constrains further movement along 
trajectories that would be unstable under an infinite horizon assumption» 
And this succinctly illustrates the basis of the FST paradox. By 
overlooking the transversality condition and suppressing the horizon 
parameter, FST incorrectly define asymptotic stability in terms of an 
infinite traverse along an unstable curvilinear trajectory rather than 
in terms of a continuous shift of this trajectory towards the stable 
linear asymptotes.

Nor can the FST paradox be construed as referring to the behaviour 
of the correct optimal solutions shown in Figure 5.2. In naturally, 
stable systems, the target and instrument converge monotonically for 
any stabilisation horizon, contrary to the paradox. Admittedly this 
is not true for naturally unstable systems: the finite horizon
solutions all cross the locus y = 0, after which target performance 
deteriorates as t -*■ T. The reason for this behaviour is that the 
control force applied to the system diminishes to zero as the instrument 
seeks to meet the terminal condition p(T)=g(T)=0; and the natural 
behaviour of the system therefore gains ascendancy over the controlled 
behaviour, With natural stability the target continues to converge; 
but with natural instability it starts to diverge, as signified by the 
locus y = 0. This defect of the free endpoint regulator may be 
overcome by using terminal target weighting^, The addition of a 
quadratic term fy (T) , f £ 0, to the performance functional (11) 
modifies the transversality condition to p(T) = fy(T). Selection of 
the terminal weight f, now the gradient of the terminal manifold, at 
least equal to the gradient of y = 0 then inhibits this endpoint 
deterioration. The FST paradox is therefore in no way applicable to 
the finite horizon regulator with a free endpoint.

The effect of the alternative endpoint specification, a fixed 
endpoint, may be briefly mentioned. The fixed endpoint y(T)=0 replaces

5 Cf. Äthans § Falb [p.574], and chapter VII below.
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the terminal condition p(T)=0 of the free endpoint regulator. This 
does not affect the dynamic saddle point structure, so that the two 
regulators are differentiated by boundary conditions only. Now from 
(35), the solution of the Hamiltonian system is

y(t)
,, At-l

y(0)
= We W

p(t) P(0)
(43)

which, using (37), becomes

w0t -w0t

y(t)

P(t)

2cj)0

w(0+s) w(0-s) e

-W0t W0t -w0t- e
2,fl2 2.W (0 -S )

-w0t w0t - e

w0t
w(0+s) w(0-s)

y (0)

p (o)

(44)
These solutions (w > 0) apply to either endpoint regulator but are 
subject to different boundary conditions. Thus use of the fixed 
endpoint y(T)=0 in the first equation of (44) provides, for t=T,

, -2w0T1 e____
p(0) _ w(0+s) + w(0-s)
y (0) . -2w0T' 1 - e

+

1

0+s
0-s
- e

- 2w0T -e
-2w0T

*
•} k , (45)

•k

where k = l/w(0+s), from (42), Hence

p(0) P (0)
lim ---- = ------  = k , (46)

y(0) y(0)
T-X»

and

p(0) ^ p (0) V t e [0,°°] . (47)

Regarding Figure 5,2, the trajectories lying underneath the optimal 
asymptotic trajectory y , commencing from the initial manifold y=y(0) 
and truncating at the terminal manifold y(T)=0, are the finite horizon 
solutions of the naturally stable fixed endpoint regulator. By a
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similar argument for w < 0, the trajectories lying underneath y+ are 
the naturally unstable fixed endpoint solutions. The previous 
analysis is unaffected by this switch in boundary conditions; and 
the FST paradox is therefore finally subdued - at least in the Phillips 
regulator.

5.4 THE GENERALISED SADDLE POINT

FST also assert their paradox to hold for a regulator model of 
general dimension [pp.370-9]. At this level, the theoretical analysis 
of chapter II provides a concise refutation. Thus for the Hamiltonian 
system (for a finite horizon T):

x = Hx, x = [ zT pT ]T , H: 2nx2n, (48)

the associated spectral form is, by equation (2,48),

WA1W'1x,
-A

0

0
, A = diag(Ax ...,An) , (49)

A AeE(H).

If r W _1x, then

r = A^r, (50)

is the generalised saddle point for the regulator model. Solving (50) 
and partitioning:

r1 (t) -Ate
______

1
o

1
r—\OV—

/H

i 
*

r2 (t)

1
o Ate r2 (0)

(51)

To refute the FST paradox, it is necessary to demonstrate that the 
optimal transformed solution is asymptotically stable in the sense
T-Hdo

1.^1° This is possible if, and only if, the unstable exponential 
matrix in (51) disappears from the infinite horizon solution. Since 
the influence of the horizon parameter T is exerted through the initial
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costate vector p(0), this suggests the hypothesis that, for T = °°,

 ̂ 1  ̂ k

r (0) = W x (0) => r2 (0) = 0, (52)

ensuring removal of the unstable eigenvalues. Now by equation (2,49), 
(52) is equivalent to

*
r1 (0) • wT i 22 ! 1

T-W12 2(0)

r> ) - I .  i
TW11

*
p (0)

(53)

Therefore,

r*(°) = - W^z(0) - W ^ p * ( 0 )

= 0 iff p* CO) = (W21W'j)Tz(0). (54)

But, from (2.56),

(W21W11)T = (W21W22} = K* = lim K(t)P-KX)

so that

r*(0) = 0 iff p* (0) = K*z(0).

(55)

(56)

The refutation is immediate . If, for an infinite horizon, the
* * *

optimal policy is instituted, then p (0) = K z(0), so that ^(0) = 0.
The optimal asymptotic solution of the general regulator model is 
therefore stable, in agreement with (2,100) and contrary to the paradox,

In a recent article, Smith considers the stability of a first- 
order infinite horizon model of the Phillips type. When 
confronted with the saddle point property, he argues heuristically 
[p.8] that the system can only converge if the initial condition 
on the unstable component is set to zero. For T = 00, this is 
correct, but conceals the logic of the regulator structure as 
developed here in the text.
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5 . 5 CONCLUSIONS

To recapitulate, FST apply the classical calculus of variations 
to the dynamic optimisation of a generalised Phillips model, proposing 
[p.379] that:

"We have thus far obtained a very broad economic result, 
e.go, if we consider real roots (or roots having nonzero 
real parts) to be reasonable on a priori grounds, the optimum 
policy vector .„. is not stable because it is optimum ... 
and the nonoptimal [classical] policy vector .. is stable 
because it is not optimum! It appears that stability and 
optimality are two competitive characteristics of a desirable 
policy of stabilisation in a generalized Phillips model

Such a result would constitute an important contribution to Baumöl's 
list of 'theorems for skeptics' were it not rejected by the preceding 
analysis. FST correctly observe the saddle point property of the 
Phillips regulator but then infer incorrect stability properties from 
'optimal solutions' obtained with inappropriate boundary conditions.

It is correct to assert that the optimal asymptotic path is
*

unstable in the sense that if p (0) is the optimal initial costate,
the selection of any other p(0) will cause the system to diverge from

★
the optimal path. According as p(0) £ p (0), the policy-maker will
ultimately realise (and sooner rather than later, given the dominance
of the positive eigenvalue) that he is pursuing a suboptimal, unstable

*
policy. If, for example, p(0) > p (0), realisation should occur when 
the costate starts increasing after the suboptimal trajectory crosses 
£ = 0; with a second warning occurring as the target deviation 
becomes negative after crossing y = 0. Depending on the reasons for 
this initial discrepancy between the actual and optimal policies, the 
policy-maker should be able to converge iteratively to the optimal path 
by inaugurating a series of suboptimal policies. It is this sensitivity 
to the initial policy specification, rather than the FST paradox, that 
rightly belongs to Baumöl's list of negative policy prescriptions. In 
asymptotic regulator systems, the target is unstable with respect to all 
suboptimal controls but stable with respect to the optimal control: a
proposition Kurz [pp.158-166] has shown to also have relevance to 
neoclassical growth theory.
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As the analysis here and of Kurz makes clear, the central problem 
is related to the mathematics of dynamic optimisation, and is not 
peculiar to optimal stabilisation policy» Its emergence in yet another 
guise is therefore not surprising» Samuelson [1968] investigates the 
stability properties of a discrete-time analogue of the regulator» To 
quote from his introduction:

".»».The present paper shows that the characteristic roots 
associated with the stationary-equilibrium points of a discrete- 
time dynamic programming model must always come in reciprocal 
pairs. Since damped stability requires that no characteristic 
root exceed unity in absolute value, the present theorem rules 
out all possibility of damped stability in such models»"

If by 'discrete-time dynamic programming model' Samuelson means, for 
instance, the type of decision model developed by Holt et_ al_, then a 
study of their work [pp.92-101] reveals that the authors explicitly 
confront the reciprocal root property but reject the immediate 
implication of instability. In similar fashion to the FST paradox, 
Samuelson's firm proscription of stability should be interpreted as 
referring to perturbations of the optimal solution rather than to the 
optimal solution itself.

A much earlier article by Simon on the design of optimal linear 
filters correctly states [p„440] the problem bedevilling FST. After 
noting the saddle point property, Simon concludes

"»».it appears that straight-forward application of the calculus 
of variations to the filter design problem leads to the 
prescription of an unstable filter, and hence is not practicable 
..»[This] is related to the fact that the Euler equations give 
only a necessary and not a sufficient condition for a minimum.
Hence it does not follow that a path ... that satisfies [the 
Euler equations] will thereby minimize [the performance functional]. 
The specification of appropriate initial and terminal conditions 
[is necessary] to guarantee a bona fide minimum».."»

This chapter demonstrates that it is precisely the straightforward 
application of the calculus of variations without appropriate initial 
and terminal conditions that promotes the spurious conflict between 
optimality and stability alleged by FST.

Chapters VI and VII utilise the Phillips regulator, correctly
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s p e c i f i e d ,  as a context  fo r  i n v e s t i g a t i n g  some bas ic  i s su es  in  the 
theory o f  optimal s t a b i l i s a t i o n »  Thus chap te r  VI, immediately 

fo llowing,  cons iders  the  e f f e c t  o f  con t ro l  lag on the design of optimal 
s t a b i l i s a t i o n  p o l icy  f o r  the  P h i l l i p s  model; and chap te r  VII analyses  

c e r t a i n  degrees o f  freedom a v a i l a b le  in the  s p e c i f i c a t i o n  of the 
optimal P h i l l i p s  regu la to r»



CHAPTER VI

OPTIMAL STABILISATION WITH A LAGGED INSTRUMENT

A central feature of Phillips' seminal work [1954, 1957] is the 
explicit treatment of control lags; and it is the principal objective 
of this chapter to consider the effects of control lag on the design 
of linear optimal stabilisation policy.

Before proceeding with this task, the concept of control lag, as 
employed by Phillips and exposited by Allen [1960, p.269], [1968, p.352], 
requires clarification. The definition used by Phillips appears to 
allow several interpretations; section 6.1 therefore attempts to specify 
the concept precisely in terms of the inside, intermediate, and outside 
lag concepts. Section 6.2 then examines the technical implications of 
policy lag for the optimal Phillips regulator of chapter V. To 
facilitate acquisition of general rather than numerical solutions, use 
is made of an infinite horizon assumption, which also accords with the 
implicit horizon assumption used by Phillips. The effect of the 
control lag on the magnitude and the timing of the optimal controller 
is subsequently studied in section 6.3.

To this point, the effects of policy lag are passively allowed for 
in designing an optimal controller - no attempt is made to actively 
modify these effects. But the introduction of policy lag causes concern 
for the relation between optimal policy and the incidence of oscillation. 
Section 6.4 therefore isolates conditions for the emergence and the 
prevention of policy-induced oscillations. Finally, the arguments and 
conclusions of the chapter are summarised in section 6.5.

6.1 CONTROL LAGS AND POLICY DESIGN

Phillips [1954, p.294] defines the concept of policy lag as 
follows:*

1 Underlining added.
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"...The amount by which aggregate demand would be changed as 
a direct result of the stabilisation policy ... if the policy 
were to operate without time lag will be called the potential 
policy demand, and the amount by which aggregate demand is in 
fact changed at any time as a direct result of the policy 
will be called the actual policy demand ...

The actual policy demand will usually be different from 
the potential policy demand, owing to the time required for 
observing changes in the (target) error, adjusting the 
correcting action accordingly and for the changes in the 
correcting action to produce their full effects

Writing in 1948 on the desirability of automatic as opposed to 
discretionary stabilisation policy, Friedman [ppo344-77] divided the 
total lag between an unpredicted disturbance and offsetting policy 
into three separate lags: a recognition lag, a decision lag, and an
effect lag. It is clear from the underlined rationale for the policy 
lag, that Phillips regards it as the sum of these three lags»

Following the analyses of the lags operative in monetary and 
fiscal policy by Kareken § Solow and Ando $ Brown, the total policy 
lag in any stabilising action, whether monetary or fiscal, is now 
customarily defined as the sum of the inside, intermediate, and outside 
lags« The inside lag is the interval of time between the need for 
and implementation of policy; and is the sum of the recognition 
(observation) lag and the decision (administrative) lag« The 
recognition lag is due to the inevitable delay in statistically 
monitoring economic performance and hence in realising that a 
stabilisation problem does exist. The decision lag measures the 
time required to select appropriate policy action, to obtain 
administrative approval for it, and to construct the bureaucratic 
machinery for its implementation. The intermediate lag stems from 
the relation between proximate and ultimate instruments - a distinction 
defined in Rowan [p.8]. Policy action is taken by adjusting proximate 
instruments, those instruments directly controlled by the policy-maker, 
in order to affect ultimate instruments, those instruments not directly 
controlled by the policy-maker. In turn, these ultimate instruments 
affect the designated targets. A typical monetary policy example of 
this chain is the link between banking sector reserves, the money 
supply, and aggregate demand. A similar chain in fiscal policy is 
not as obvious, although it is possible to regard the central policy 
decision as the proximate instrument, the actual appearance of policy
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demand as the ultimate instrument, with the difference arising from 
an implementation or bureaucratic lag. Since ultimate instruments 
intermediate between proximate instruments and specified targets, the 
lag between movements in proximate and ultimate instruments is defined 
as the intermediate lag. The outside lag is the lag between movement 
of targets in response to movement of ultimate instruments.

What is the relevance of these three lags to the policy lag 
concept employed by Phillips? Consider the schematic representation 
in Figure 6.1. An unpredicted disturbance occurs at point A in time,

unpredicted effect on induced policy
disturbance target action of effect

observed ultimate observed
inst.

target
affected

action 
taken via 
proximate 
inst.

target 
affected 
by policy

further
action
taken

'Y •Y sK

A B C D E F G H

Observ. Dec. 
Lag Lag

INSIDE LAG

Observ. Dec. 
Lag Lag

OUTSIDE
LAG INSIDE LAG

DISTURBANCE
LAG

INTERMEDIATE
LAG

Figure 6.1
Dynamic Lag Sequence in Stabilisation Policy

with the effect on the target variable first appearing at point B. 
Because of the observation lag BG, this effect is not observed by the 
policy-maker until point C. During the period CD of the decision lag, 
an appropriate policy is specified and approved; action then being 
instituted via the proximate instrument at point D. Such action 
subsequently induces movement in the ultimate instrument at point E, 
which affects the target at point F. But, again because of the
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observation lag, the policy effect on the target is not observed until
I

point G, at which stage new action is decided for point H. It is this 
dynamic lag sequence that Phillips wishes to model prior to designing 
a stabilisation policy.

Applying rational decision techniques in this framework, whether 
classical or optimal, requires recognition of several factors. First, 
the need for stabilisation policy is assumed to arise from a single 
unpredicted disturbance (although the policy designed must allow for 
further such disturbances). Second, during the period CD of the first 
decision lag, a policy is designed with a specific horizon in mind. 
Point D then becomes the control origin (t=0) . The stabilisation 
objective is to offset, over the defined horizon, the effects of the 
single disturbance on the target variable. Third, since the 
stabilisation policy is designed in a single step CD in response to a 
single disturbance, the second decision lag GH is irrelevant to the 
stabilisation problem. Thus the crux of the stabilisation problem is 
to model the lag sequence represented in Figure 6.2:

target observed induced change target target
action taken via in ultimate affected observed
proximate inst. inst. by policy

INTERMEDIATE OUTSIDE INSIDE
LAG LAG LAG

f '/ «■ f  * f

C D  E F G

Cycle repeated continuously 

according to prespecified policy

Figure 6.2
Lags and Policy Design

Here the inside lag FG is purely an observation lag. Since the 
stabilisation problem will be posed in the continuous domain, it is 
assumed following Phillips [1957,p.267] "that the regulating authorities 
are able to make continuous adjustments in the strength of the correcting
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action they take". Hence the inside and intermediate lags, provided 
they exist, operate at every point of time over the stabilisation 
period [0 ,*>].

To model the lags of Figure 6.2 in the single-target, single- 
instrument Phillips model, consider equations (1) to (4) below:

y = -swy + i

* ag D+a ^ ’

*
g = K(D)y ,

* ny = D+n y

< = >

a > 0,

y, n > 0

D+sw CD

(2)

(3)

(4)

Equation (1) is the first-order Phillips model, now relating the target
*

y(t) to the ultimate instrument g (t): the operator w/(D+sw) is
therefore the outside lag operator. Equation (2) stipulates that the

■*

ultimate instrument g (t) responds in lagged fashion to the proximate 
instrument g(t), so that a/(D+a) models the intermediate lag dynamics. 
Because of the inside observation lag and the likely occurrence of 
further unknown disturbances, the policy-maker cannot use the current
target y(t) as feedback but must use the currently observed target
*

y (t), as stated in (3). The operator K(D), designed by the policy­
maker in the period (CD) of the decision lag, is a polynomial in the 
differential operator D=d/dt, reflecting the knowledge that linear 
stabilisation policy, in the absence of step disturbances, will be 2constructed from proportional, derivative, and higher-order feedbacks .
Equation (4) specifies the lag between the currently observed target 
*

y (t) and the current target value y(t): the operator n/(D+n) thus
being the inside lag operator. The block diagram associated with these 
equations is given in Figure 6.3.

2 If step rather than impulse disturbances occur, integral feedback 
is also necessary - see Phillips [1954] and chapter VII below.
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I unknown 
I disturbance

outside
lag

intermediate
lag

inside lagfeedback

D+sw

Figure 6.3
Lags in a Single-Target Single-Instrument Model

Returning to Phillips' definition of policy lag, potential policy
demand is said to differ from actual policy demand because of (i)
observation lag, (li) decision lag, and (iii) effect lag; or because
of the inside lag and the outside lag. Reconciling this interpretation
with Figure 6.3 produces several difficulties. Since the intermediate
lag is justifiably ignored initially, being part of the system dynamics

*
rather than the policy dynamics, g(t) and g (t) are identical, and 
measure actual policy demand. What then is potential policy demand?

3
If potential policy demand is a dynamic concept , both it and actual 
policy demand share the outside lag in common (focussing on the causal 
rather than the feedback link from instrument to target); whereas 
according to Phillips this lag is one of the two factors differentiating

Phillips intends it as such [1957, p.267]: "For a given correction
lag the problem reduces to that of finding the most suitable way 
of relating the potential policy demand to the error in 
production"„
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these two policy demands. If this is a mere oversight, so that the 
two concepts differ only because of the inside lag, potential policy 
demand still remains to be identified in terms of Figure 6.3,

Now equations (1) and (2) without intermediate lag reduce to 

y = -swy + wg <=> y = g,  (5)

while equations (3) and (4) may be redefined to

g = n
D + q g, (6)

and

g - K(D)y. (7)

A
These equations are diagrammed as Figure 6,4. The variable g,

I unknown 
I disturbance

outside lag

inside lag feedback

D + sw

Figure 6.4
Potential and Actual Policy Demands
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defined as potential policy demand, is chosen as a function of current 
target feedback y, with actual policy demand g exercised as a function

A A

of past g because of the inside lag. Potential policy demand g is a 
purely definitional and unobservable variable, serving to emphasise the 
conceptual effects of introducing control lag- Thus the segment to 
the right of the dotted line in Figure 6.4 is clearly a schematic 
representation of the design problem without control lag (the Phillips 
model of chapter V); the segment to the left representing the 
introduction of such a lag. If there were no control lag (that is,

A

inside lag), the variable g would generate the observed policy; and 
this appears to be the sense of Phillips’ definition of potential 
policy demand, quoted above. Ambiguity occurs because, without control 
lag, both actual and potential policy demands are identical; but with 
control lag, potential policy demand is designed in full recognition of 
this lag and cannot be interpreted therefore as that policy appropriate 
for a no-lag context.

Given these qualifications, the system (5), (6), and (7) depicted 
in Figure 6.4 is taken as the representation of the Phillips multiplier- 
accelerator model with control lag. Now considering the equivalent 
representation of Figure 6.3, after removing the intermediate lag, it 
is tempting to formulate the design problem as follows. Assuming the 
inside and outside lag structures to be modelled accurately, why not
invert the inside lag operator, converting currently observed target

*
values y into actual target values y, thus overcoming the observation 
lag? This would provide the design problem of Figure 6.5; which is 
the first-order Phillips model, and therefore a simpler design problem, 
The underlying assumption, however, is that it is necessary to design 
a controller that is optimal with respect to the sequence of ongoing 
and unpredictable disturbances. To invert the inside lag after one 
such disturbance, in order to construct y(t) as the feedback signal, 
is to assume that no further disturbances occur over the stabilisation 
period. This contradicts the purpose of designing what is essentially 
an automatic stabilising mechanism: although nothing can be done to
offset the unknown impulses as they originate, policy is to operate 
continuously against their propagation.
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y(t)

g(t)

Figure 6.5
Design Problem with Inside Lag Inversion

One final comment must be made concerning the specification of 
the policy lag as a distributed lag function of the first-order 
exponential type. The justification for a distributed lag in the 
adjustment of supply to demand, given by Phillips [1954, p.291], 
reasonably relies on the aggregation of large numbers of individual 
responses to produce a smooth aggregate response distribution. This 
justification does not appear relevant to the inside lag in policy­
making. A possible rationale is that the first-order exponential lag 
is simply a convenient approximation to a pure time delay and avoids
the use of mixed difference-differential equations. A reasonable

thapproximation to pure delay can be obtained with an n order 
exponential lag for n sufficiently large - Tustin [p.47] - and taking 
n=l is a compromise for dimensional simplicity. Since Phillips does 
consider more realistic lag specifications [1957, pp.269-72], this 
argument will be adopted in the following. Although this is a dubious 
compromise between simplicity and accuracy, the previous interpretation 
of Figure 6.4 does not allow the alternative hypothesis that a first- 
order control lag is a behavioural description of policy reaction to a 
discrepancy between actual and potential policy demands, as Phillips 
argues [1954, p,294].
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6.2 PHILLIPS REGULATOR WITH CONTROL LAG

Taking equations (5) to (7) as the specification of the Phillips 
multiplier-accelerator model with a lagged instrument, the following 
stabilisation problem may be considered. Supposing the policy-maker 
to have deterministic knowledge of the economic system apart from the 
impulse disturbances, what effect does the policy lag have (i) on the 
design of stabilisation policy, on the structure of K(D); and (ii) on 
the performance of the stabilised target y(t)? These comparative 
questions are to be answered with reference to policy design and target 
performance in the Phillips regulator of the previous chapter.

The first question arising from the introduction of policy lag is 
whether the property of dynamic controllability is altered. Now the 
lagged policy model may be written^

0

or
(8)

x(t) = TAx(t) + Tbg(t). (9)

In this state formulation, A is the static structural matrix, b is the 
instrument coefficient vector, and T is the diagonal matrix of adjustment 
speeds. This system is dynamically controllable iff, from (3.47),

p(Q) = p[ Tb (TA)(Tb) ] = 2. (10)

Since jQ| = ±wq , the lagged policy model is invariably controllable, 
provided only that the matrix of adjustment speeds is nonsingular; and 
this is satisfied by definition. Policy lag does not therefore affect 
the property of dynamic controllability.

Where two signs occur, the top sign refers to a naturally stable 
system (w > 0); the bottom sign, to a naturally unstable system 
(w < 0). Hence w = |w| throughout this chapter. This explicit 
treatment is of interest in the sequel.
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Solution of the stabilisation problem with the state
/\

representation (8) will determine the instantaneous policy g(t) as a 
function of the state, here the current levels of the target y(t) and 
the lagged policy variable g(t)„ But g(t) is determined through the

/s
lag operator (6) as a function of past levels of g(t), so that current 
stabilisation policy will be determined by feedbacks from the current 
target and past policy. It is convenient, however, to consider 
stabilisation policy as being determined from target feedback alone, 
as follows. The system (8) of two first-order differential equations 
reduces to one second-order equation

y(t) + (n±sw)y(t) ± qswy(t) = ±nwg(t). (li)

Applying from (3,32) the canonical transformation,

y(t) = zx(t)

y(t) = z2(t) = Ct),

to (11) provides the alternative state representation:

(12)

z:(t)

+risw - (n±sw)

z1 (t)

z2(t)
g(t). (13)

±nw

T THence the state vector z = [z^(t) z2(t)] = [y y] implies that the
stabilisation feedback K(D) will be specified as a function of the 
current level and rate of change of the target.

Coming to the provision of a performance functional for this 
stabilisation problem, equation (7) and Figure 6.4 focus attention on

A

the target y(t) and potential policy demand g(t); so that this 
functional is taken as

MIN W
/s
g

r T
[y2(t) + 4>g2(t)] dt, <p > o. (14)

The minimisation of target deviations subject to the constraint that
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instantaneous stabilisation expenditure is not excessive seeks to 
ensure, via the lag operator, that lagged or actual stabilisation 
expenditure is also not excessive. Expressing this performance 
criterion in terms of the state vector z(t) of (13), the optimal 
stabilisation problem for the Phillips model with lagged instrument 
may be summarised as:

Model II

rT
MIN W = ^ [zT (t)Vz(t) + c|)g2 (t)] dt, <j> > 0,g Jo
subj ect to

z(t) = Az(t) + bg(t), z(0) = zq, z(T) free

A
T fixed, g(t) unconstrained,

where

1 0 0 1
II

> > II

0 0 +nsw - (n±sw)

0 y(t)
b = , z(t) =

±nw y(t)

(15)

(16)

(17)

Model II is a two-state analogue of the fixed time free endpoint 
regulator (Model I) considered in the previous chapter; and its 
solution follows in the same manner. Evaluating the canonical 
equations z(t) = 9H/9p, p(t) =-9H/9z, from the Hamiltonian

H(z,p,g) = ^zTVz + hQg2 + pT (Az+bg), (19)

where the instrument and costate are connected by

„ I T
- ^ - = 0  <=> g(t) = -<j) b p(t), (20)
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provides the canonical system

! T
4(t) a ! bb

A i “
i

P(t)
1 

, 
i 

< 
1 1 1 1 1

1 
1 

’h
 :

1 
’

In the parameters of the model

~  -

z(t) z(0) = z 0

P(t)
)

p(T)=0

(A, b, V, 40, this system is

zCt)

P(t)

0 1 i ° 0
i 2 2

+nsw -(n±sw); o
i

q w
4)

-l

i
0 I 0 

1
±qsw

0 0 ! _1 q±sw

z(t)

p(t)

(21)

(22)

Solutions for the optimal target and instrument are obtained by 
formulating the second-order matrix Riccati equation; just as the 
first-order Riccati equation (5.20) was derived for model I. 
Computational difficulties immediately obtrude because this Riccati 
solution requires the 4x4 transition matrix of (22) for all finite 
stabilisation horizons0 To avoid these difficulties and to conform 
to the assumption used by Phillips, an infinite horizon will be assumed.,

The canonical system (22) for the finite horizon model does contain 
some interesting qualitative information. The incidence of zero 
elements in the Hamiltonian matrix of (22) enables the characteristic 
equation, |AI-H!=0, to be found with relative ease as

X(A) = A - (r) +s w )A + n w (s +4) ). (23)

That X(A) is even-powered in (A) complies with corollary 2.1, which 
states that all characteristic equations associated with optimal 
regulator models are purely even-powered, Hence

r 2 2 2 2  2 2 2  -1X(6) = 6 - (n +s w )6 + n w (s +4> )

- A =  ±  & h

,, , 2 2 2, . . r, 2 2 2 , 2 , 2 2, 2 o = h(r) + s w ) ± Jg[(n +s w ) -4ri w (s +4) )] .

(24)
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Thus if the roots 6 are (i) real, they are necessarily positive, and 
the eigenvalues A are therefore real and symmetric on the real line; 
and (ii) complex, then the eigenvalues A are also complex and symmetric 
with respect to the real and complex axes. In either case, corollary 
2.2, the saddle point property of optimal eigenvalues, is illustrated. 
As observed with respect to the FST paradox only the negative 
eigenvalues of (23) survive in the asymptotic model.

Asymptotic solutions (T=°°) for model II are determined as follows. 
From theorem 1.1, the Hamiltonian system (22) satisfies the matrix 
Riccati equation

T
K = - K(t)A - ATK(t) + K(t)^- K(t) * v > (25)

with boundary condition K(T)=0 determined from the transversality 
condition. Theorem 1.2 then asserts that the real, symmetric, 
positive definite solution of the matrix equation (K=0):

T
- KA - ATK + Ä  K - V = 0 (26)

specifies the optimal feedback coefficients for the asymptotic 
controller. Utilising this solution and the state-costate relation 
p(t)=Kz(t) in equations (16) and (20) subsequently generates the 
asymptotic control and state solutions

g(t) = -0"XbTKz(t), (27)

z(t) = [A - K]z(t), z (0) = z0 » (28)

The Riccati solution is significantly implanted in the solution 
structure. In the present two-state model, K is a symmetric matrix 
defined by

K =
ko

(29)

Using this definition (and the model specification) in equations (27)
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and (28) supplies

g(t) = i(j)"1nw[k1(±) k2 (±)]z(t),

z(t) = GjjZCt), z(0)=zq

G „  = (A- ^ TK) 2 2 2 2 n w . f . . n w 1+nsw--- ^-k1, -(n±sw)~^— k2

(30)

(31)

Thus only the pair (k^, k2) of (29) are required; not the triple 
(kQ , k , k9) . From Appendix Via (pp.270-2 below), these two solutions 
are:

6 + s
1 = “31(p qw

y - (n±sw)
2 = ,-l 2 2 cp q w

6 =

, 2 2 2 ,Y = (q +s w +2qw0)

(32)

Hence the optimal control (30) is:

g(t) = +[ 0 + s,
Y (q±sw)

qw ]z(t), (33)

and the optimal closed-loop matrix of (31) is:

GII (34)

With G so defined, an explicit solution of the 2x2 differential 
system (31) is all that is required to completely specify general 
solutions«, This solution may be readily found but does not contribute 
to the following analysis, and is not therefore presented.
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6.3 INSTANTANEOUS AND LAGGED CONTROLLER STRUCTURES

Given these optimal solutions to model II, this present section 
investigates (i) the structure of the optimal controller and its 
relation to that of model I; and (ii) the relation holding between the 
instantaneous and lagged controllers.

The instantaneous controller (33) may be written more revealingly 
as

g(t) = + ~  [h(±) + m(±)D]y(t), (35)

where

h(±) = nw(9 + s) > 0,
(36)

m(±) = Y - (n ± sw) > 0.

The differential effects of natural stability properties may be noted 
immediately. From (35), naturally stable systems employ negative 
feedback; naturally unstable systems, positive feedback. From (36), 
the levels of feedback are higher for naturally unstable systems. But 
although the optimal controllers differ in sign and magnitude, they 
both generate, by (34), identical closed-loop state dynamics. Natural 
instability simply requires more controller effort to produce the same 
target response.

The optimal instantaneous controller (35) consists of two 
components - proportional feedback and derivative feedback - as 
illustrated in Figure 6.6. To develop the logic of the defining 
coefficients h and m, it is necessary to consider the stability 
properties of both the pre-optimal and the optimal structures. For 
effective dynamic stabilisation, the controller, whatever the method 
of its design, must be directly related to the stability properties of 
the stabilisation model. Thus suppose that the policy-maker, in a 
travesty of Phillips' classic dictums, is content to pursue a dynamic 
policy of constant expenditure. Then information on the stability of
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D+sw

Figure 6„6
Phillips Regulator with Lagged Controller

A

this pre-optimal system, given by (13) for g = g, i.e.,

z(t) = Az(t) - bi, (37)

is contained in the characteristic equation

v2 - (trA)v + |A| = 0, (38)

possessing the eigenvalues

= + sw, v2 = - n* (39)

A constant-expenditure policy has no effect on the location of 
eigenvalues and is ineffectual as a dynamic policy. What this 
limiting case serves to underline is the pure separation of the 
stability properties of the pre-optimal system between the natural 
dynamics (+sw), the outside lag, and the control lag dynamics (-p), 
the inside lag. Since p > 0, the inside lag does not make a 
naturally stable system unstable or a naturally unstable system even 
more unstable. Thus the considerations justifying the necessity for
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c o n t r o l  in  the  f i r s t - o r d e r  model a re  a l s o  r e l e v a n t  to  th e  second- 

o r d e r  model,, The s i g n i f i c a n c e  o f  the  i n s i d e  lag d e r i v e s  from the  

i n t r o d u c t i o n  o f  an a d d i t i o n a l  mode o f  dynamic response» Although 

the  p r e - o p t i m a l  system can neve r  be o s c i l l a t o r y  (39 ) ,  th e  optimal 

system can be: a problem r e c e i v i n g  a t t e n t i o n  i n  th e  fo l low ing  s e c t i o n .

Moving from t h i s  s i t u a t i o n  o f  complete impotence to  th e  optimal  

s i t u a t i o n  g iven  in  (34 ) ,  op timal s t a b i l i t y  p r o p e r t i e s  a re  summarised 

i n  the  c h a r a c t e r i s t i c  e q u a t io n

V - ( t rG TT)v + GI I 0 ,

with  e ig en v a lu e s '

(40)

= -%Y ± ^ ( y 2-4r)w0)^2. (41)

Because y and 9 a re  fu n c t i o n s  o f  (J) *, the  l o c a t i o n  o f  e ig e n v a lu e s  i s  

d i r e c t l y  c o n t r o l l a b l e  - a l o g i c a l  p r e r e q u i s i t e  f o r  dynamic s t a b i l i s a t i o n .

Comparison o f  th e  two c o n t r o l  s t r u c t u r e s  v i a  t h e i r  c h a r a c t e r i s t i c  

e q u a t io n s  (38 ) ,  (40) e s t a b l i s h e s

j m(±) = t r ( A  - Gn ) = - (n±sw) + y

(42)

h(±) = |Gj j | - IAI = qw0 + qsw.

Apart  from a c o n s t a n t  f a c t o r  1/nw, the  op timal p r o p o r t i o n a l  feedback 

c o e f f i c i e n t  h(±) i s  de te rmined  as th e  d i f f e r e n c e  between the  optimal  

and th e  p r e - o p t i m a l  e ig e n v a lu e  p r o d u c t s ;  and th e  op timal d e r i v a t i v e  

feedback  c o e f f i c i e n t  m(±) i s  de te rmined  as th e  d i f f e r e n c e  between the  

p r e - o p t i m a l  and th e  op timal e ig e n v a lu e  sums. P r o p o r t i o n a l  feedback 

o p e r a t e s  on the  d e t e r m in a n t ,  and d e r i v a t i v e  feedback  o p e r a t e s  on the  

t r a c e ,  o f  th e  system m a t r ix  G ^ . This  u n d e r s t a n d i n g  o f  feedback 

d e s ig n  w i l l  be used i n  th e  fo l l o w in g  s e c t i o n  to  d e s ig n  p o l i c y  to  

combat o s c i l l a t i o n s .

5 The a s s e r t i o n  above t h a t  th e  n e g a t iv e  e ig e n v a lu e s  (24) a re  the 
asym pto t ic  e ig e n v a lu e s  (41) may be v e r i f i e d .
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Writing the optimal controller (35) as

g(t) = + [h (±) + m(±)D]y(t), 

h = h/qw = 0 + s; m = m/qw,
(43)

the lagged stabilisation model returns an optimal controller which 
includes a proportional feedback (h) identical with that of the 
unlagged modelt Thus the emergence of derivative feedback is 
entirely the product of the inside lag. From equations (32), (36), 
(43), the distribution of parameters between the two feedback 
coefficients is

A A j A /\ A

h = h(s, $ j; m = m(s, w, q, h) . (44)

There is, therefore, a very specific task orientation in the optimal 
controller: which accords with the dynamic separation noted in (39).
The derivative feedback is explicitly moulded to the dynamic structure 
of the policy lag, with

(l+sfwl + 2«ijs - i ; ! “
lim ra(±) = lim ---- 2--------------------- = 0. (45)
n~K» q-*» vv

As the policy lag shortens and finally vanishes, the role of derivative 
feedback decreases and vanishes also. Alternatively, the faster the 
policy speed of response (q) , the smaller is the required level of 
derivative feedback.

In summary, the logic of the optimal instantaneous controller is 
that (i) the proportional feedback of the first-order model is retained 
to control the outside lag dynamics; and (ii) a derivative feedback is 
applied to cater for the inside lag dynamics. Coordination of these 
two feedbacks is achieved through the appearance of the performance 
parameter <J> 1 in each. That the second-order model tends to the first- 
order model as the policy speed of reaction becomes infinite is of 
relevance to the analysis of dynamic adjustment mechanisms given by

6 See the naturally stable controller (5.23),
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Sargan, and exposited by Bergstrom [pp.107-12], and Newman [pp.18-21]. 
But this is a separate topic and is pursued no further in this thesis.

The optimisation analysis generates an instantaneous controller 
g(t) that is implemented, and therefore observed, as the lagged 
controller g(t). The block diagram of this lagged controller appears 
in Figure 6.7, How does the lag operator r]/(D+ri) affect g(t)? The 
answer to this question is provided by the solution of the differential 
equation

(D+n)g(t) = ng(t), (46)

A
obtained from (7). Now from (43), the instantaneous controller g(t) 
may be written (taking only the naturally stable case):

g(t) = - m(x + D)y(t) m

= - -̂(6 + D)y(t) , e = pm, 6 = h/m.
(47)

D+sw

Figure 6.7
Lagged Controller Structure for Phillips Regulator

Hence the optimal lagged controller is the solution g(t) of



154

(D+n)g(t) = - e(6+D)y(t). (48)

Since the target variable y(t) is the component z (t) of the linear 
constant system (31), (34), y(t) will possess a solution of the form

y (t) = aeaty(0) + beßty(0), (49)

where a, 3 are the optimal eigenvalues (41) , and where a,b are 
coefficients determined from the initial conditions. Thus

y(t) = aaeaty(0) + 3be^ty(0), (50)

and the differential equation (48) becomes

(D+n)g = -£[(6+a)aeaty(0)+(6+3)be^ty(0)] (51)

A particular solution to (51) is

(n+3) (52)

and the complete solution is, for given initial condition g(0),

g(t) = (1 - e~nt)S + e"ntg(0). (53)

Merely to simplify interpretation of (53), suppose that y(0)=0, 
so that

y (t) = aeaty(0)

g(t) = - — (6+a)y(t) (54)

6+a f.,.
- e ---y (t)n+or n+ag(t).

Given the inside lag, the initial condition g(0) hinges on whether the 
system was being stabilised prior to the implementation of an optimal 
policy. If so, some nonzero g(0) will exist; otherwise g(0) may be

7 See, for example, Allen [1960, pp.725-33].
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assumed zero. Taking the second case, again for simplicity, the 
explicit relation between the optimal instantaneous control (which 
optimises with respect to given inside and outside lags) and the 
optimal lagged control is

gCt) = (I - e'nt) J_£(t). (55)

Thus the lagged control is obtained from the instantaneous 
control via a damping factor (1-e rit) and an amplitude factor n/Ol+a). 
The damping factor is the cumulative form of the first-order exponential 
lag; and approaches unity with increasing time. For example, if 
1/n = 1, this damping factor is „63 by the end of the first unit period; 
and for t > 2/rj, g(t) may be approximated by

g ( t ) 4 ^ ( t ) .  (56)

Since the optimal system is stable, the optimal speed of response (a) 
is negative; and this amplitude factor may also be negative. In this 
case, after an initial adjustment period in which the damping factor 
works itself out, the lagged policy would appear as a linear function 
of the instantaneous policy, of the same phase but opposite sign. Note

A

that lim g(t) = g(t), as required.
rj-K»

6.4 THE POLICY-CYCLE NEXUS

The limited amplitude fluctuations generally characterising the 
postwar performance of the developed economies have been the result of 
policy-makers accepting an increasingly sophisticated stabilisation 
function. As A.H. Hansen remarks, stabilisation policy has so modified 
dynamic behaviour that "The rocking chair doesn't rock in quite the old 
familiar way", [1964, p.609j. Yet this achievement itself fosters a 
problem of fine-tuning: to what extent have these postwar cycles been 
induced by stabilisation policy? Thus Heller et_ £l_ argue [p.16]:

" In trying to maintain their economies in this position [of 
full employment], governments have relatively narrow room for 
manoeuvre between ... an unacceptably low level of employment 
and ... a pressure of demand that creates an inflationary strain 
on resources ... [To] operate within this 'narrow band' requires 
skill, foresight and flexibility. Governments have, to a large 
extent, succeeded in subduing or overcoming the rhythmic
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fluctuations which used to be called the ’trade cycle', ...
But mistakes in policy can easily set up a new sort of 
oscillation in the economy, and large countries which make 
them may still cause serious problems for their smaller 
neighbours,"

This present section is concerned, in the theoretical context of the 
optimal Phillips model, with operating in this narrow band without 
inducing oscillations attributable to policy.

Designing stable policy is not therefore sufficient; it is also 
necessary to ensure that such policy does not impart a cyclical 
movement to the target. Consequently, two subgoals of the stabilisation 
objective must be recognised. The first, which has been stressed so 
far, is the attainment of desired rates of convergence in targetg
variables through the control of dynamic speeds of adjustment . The 
second is the prevention of policy-induced oscillation. Given these 
two subgoals, the stabilisation problem is, to use Mundell's terminology 
[pp.313-317] , a problem not only of stability but also of hyperstability.

Of the set of all dynamic systems of general order (n), the first- 
order system is pathological in the sense that oscillatory behaviour 
is precluded. With a classical controller (and still assuming impulse 
disturbances), such systems remain first-order systems and are 
nonoscillatory; and with an optimal controller, the saddle point 
property also necessitates nonoscillatory behaviour. Thus in first- 
order models, the efficacy of dynamic control is directly manifested in 
the rate of target convergence: in model I for example, the optimal
speed of response (w0) clearly exceeds the natural speed of response 
(sw). Optimal solutions to the lagged Phillips model, model II, do 
however permit either damped oscillatory or exponentially damped 
responses. Which type of response actually occurs is governed by the 
influence of cf>  ̂ on the location of the optimal eigenvalues. This 
influence is now investigated as a preliminary to the discretionary 
control of oscillations.

To establish the conditions demarcating damped oscillatory from 
exponentially damped responses, consider the following analysis of the

8 Horizon and endpoint considerations are facets of this subgoal.
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time-form of response. The inequality conditions on the discriminant 
of the optimal characteristic equation (40):

A = tr2Gn  - 4 |G I = Y2 - 4r)w0 J 0, (57)

define real and complex eigenvalues respectively - or noncyclical and 
cyclical responses. After simplification,

A = w2Q(p),
(58)

Q(p) = p2 - 20p + s2, p = n/w > 0.
V.

The polynomial Q(p) possesses a minimum at p = 0 of -<j) \  and roots at 
- hp = 0 ± (J) . Complex eigenvalues occur if Q(p) < 0, or if

0 - (p~̂  < — < 0 + f ' " 2 . (59)w

The restriction (59) is more conveniently written

s  ̂sw < s 
e-Htf'"2 11 e-<p'h

<=> (60)

LB < —  < UB,0

where the lower and upper boundaries have the following properties:

r (LB) < 0,

lim (LB) = 1,
(jT^O

(UB) > 0; 
3<j>

lim (UB) = 1.
(61)
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Figure 6.8 graphs the oscillatory condition (60) as a function of the

— \p actual

Figure 6,8
Response Regions for Lagged Phillips Regulator

control parameter cj) 1. With an increasing level of control, there is 
an ever-widening range of values of the ratio i p =  sw/q for which 
oscillatory target response occurs, as indicated by region (0). In 
the lagged Phillips model, the probability of oscillatory response 
therefore varies directly with the level of stabilisation» If 
oscillatory outcomes are undesirable, this is a perverse result for 
policy-making»

Figure 6»8 suggests a first method for designing a hyperstable 
controller. The quotient ip = sw/n is the ratio of the natural speed 
of response to the policy speed of response (or the ratio of the inside 
lag to the outside lag). Suppose the parameters of model II are such 
that ip has the value appropriate to point X in region (0), implying 
target oscillation. A sufficient increase (decrease) in policy speed 
of response would relocate ip in region (L) , (U) - provided (p  ̂ is not 
too large. Variation in policy speed of response is therefore being 
suggested as a design tool for avoiding policy-induced cycles. But 
further thought indicates that it is not a useful option, for two 
reasons. Firstly, given the institutional and informational
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d i f f i c u l t i e s  i n h e r e n t  in  a t t e m p t s  t o  reduce  th e  p o l i c y  l a g ,  the  b r u n t  

of  ad ju s tm en t  would have to  f a l l  on i n c r e a s e s  i n  t h i s  lag  - the  o p t i o n  

i s  t h e r e f o r e  asym m etr ic . Secondly ,  i n c r e a s i n g  the  p o l i c y  lag  means 

t h a t  n o n o s c i 1l a t o r y  t a r g e t  b eh av io u r  can only be ach ieved  a t  the  

expense of  f u r t h e r  d e l a y in g  p o l i c y  ac t ion»

Yet i f  t h i s  o p t i o n  o f  moving X v e r t i c a l l y  ou t  o f  r e g io n  (0) i s  

u n s a t i s f a c t o r y ,  so a l s o  i s  the  a l t e r n a t i v e  o f  moving i t  h o r i z o n t a l l y  

ou t  o f  t h i s  reg ion» Since  <J> 1 i s  the  s t r e n g t h  o f  c o n t r o l  p a r a m e te r ,  

any r e d u c t i o n  i n  i t  compromises th e  r a t e  o f  convergence  to  e q u i l i b r i u m ,  

Thus u n le s s  t h e  i n s i d e  and o u t s i d e  la gs  a r e  f o r t u i t o u s l y  matched,  so 

t h a t  ijj remains o u t s i d e  r e g io n  (0) f o r  a l l  a d m is s ib le  va lu e s  o f  <J> *, the  

problem o f  o s c i l l a t o r y  t a r g e t  b ehav iou r  p e r s i s t s .  This  leads  t o  a 

r e p h r a s i n g  o f  the  h y p e r s t a b l e  d es ig n  problem. Is  i t  p o s s i b l e  to  

compensate f o r  th e  occu r ren c e  and le n g th  o f  t h e  i n s i d e  la g  so t h a t  th e  

op t im al  r e sponse  i s  neve r  o s c i l l a t o r y ,  whatever  th e  le n g th  o f  t h e  o u t s i d e  

lag?  R e j e c t i n g  p o l i c y  lag  v a r i a t i o n  and performance  pa ram e te r  v a r i a t i o n  

as t o o l s  f o r  com batt ing  p o l i c y - i n d u c e d  c y c l e s ,  can an op timal feedback  

c o n t r o l l e r  be des igned  to  ensure  n o n c y c l i c a l  r esponse?

Coming to  c l o s e r  g r i p s  w i th  t h i s  d e s ign  problem, observe  t h a t  t h e  

z (0) = zo

1 y = (q2+s2w2+2nw0)^, (62)

-Y 6 = ( s 2+ c f ) 'V ,

i s  s t a b l e  and w i l l  t h e r e f o r e  be r e p r e s e n t e d  by a p o i n t  in  th e  f i r s t  

q u ad ran t  o f  F igure  6 . 9 ,  c o n s t r u c t e d  from th e  c h a r a c t e r i s t i c  e q u a t io n  

(40 ) .  Design o f  a h y p e r s t a b l e  c o n t r o l l e r  r e q u i r e s  t h a t  the  op t im a l  

re sponse  (62) be s h i f t e d  from p o i n t  A in  the  c y c l i c a l l y  damped r e g io n  

to  some p o i n t  above t h e  boundary curve  t r  G = 4 | G | . Although the  

arrows in  F igure  6 .9  sugges t  s e v e r a l  ways o f  ac h i e v in g  t h i s  t r a n s f e r ,  

a l l  a re  combinations  o f  two b a s i c  p o s s i b i l i t i e s .  R eca l l  from (42) t h a t  

p r o p o r t i o n a l  feedback h(±) o p e r a t e s  on th e  d e t e rm in a n t  o f  and t h a t

op timal system

2 ( t )  = Gn z ( t ) ,

-nw0
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B Exponentially Damped

Cyclically Damped

Saddle
Points

Cyclically Explosive

Exponentially Explosive

Figure 6.9
Stability and the Policy Design Problem

derivative feedback m(±) operates on the trace of G^. Horizontal 
movements from point A will therefore require variation in proportional 
feedback; and vertical movements, variation in derivative feedback.

Variation in proportional feedback results from variation in the 
weighting of the ratio g/y in the performance functional, as expressed 
by <J> 1. But this has just been rejected as a means of avoiding 
oscillations; therefore, consider the alternative, the use of derivative 
feedback. In the performance functional (15), the state weighting 
matrix V attaches a zero weight to the state variable Z2(t)=y(t), 
expressing no concern about the speed at which the target y(t) adjusts 
under control. Since this rate of adjustment is related to oscillatory 
response behaviour, an additional term is now incorporated in the 
performance functional:

min w = ^ [y2(t) + y2y2(t) + 4>g2(t)]dt, (63)g Jo
u  ̂ o, <J> > 0.

That is, the problem of hyperstability will be attacked with target
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derivative weighting, where y enters (63) quadratically for 
convenience in later interpretation.

This optimal stabilisation problem may then be expressed in form 
analogous to Model II as:

Model III

(°°
MIN W = ^ [zT (t)Vz(t) + 4>g2 (t)] dt, 4) > 0, 
g J0

subject to

2(t) = A z (t) + bg(t), z (0)=zq,

where

1 0 0 1

CM 
1

0 1

, A =
+qsw - (n±sw)

0 y(t)
b = , z(t) =

±riw y(t)

(64)

(65)

(66)

Comparison of models II and III reveals that the only effect of
derivative weighting is the appearance of the performance parameter

2y on the diagonal of the state weighting matrix V. Since V is the 
constant term of the matrix Riccati equation (26), it is necessary to 
rederive the Riccati parameters k^, Appendix VIb (p.273 below)
demonstrates that the equational results of model II may be retained if 
the definitional parameter y is redefined as follows:

y = (n + s w + 2r)w0 + <j> t) w y ) . (67)

The degree of discretionary control over oscillatory outcomes may 
now be inferred from the familiar study of the optimal characteristic
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e q u a t io n .  Modifying (40 ) ,  t h i s  e q u a t io n  i s  

2v + yv + qw0 = 0,  (68)

wi th  d i s c r i m i n a n t

A(ri) = (1 + <f> ^w^y^)r^ - (2w0)ri + s 2w2 „ (69)

The po lynomia l  A(p) p o s s e s s e s

( i )  a minimum o f  ŵ 4> ^(s^w^y^ - 1)

a t  — = w . , * 1 2 21+4) w y
and

( i i ) r o o t s  — w
e ± [4> (1-s  w y ) ] 2,

- 1 2  2 1 + 4> w y

2 2 2These two f a c t o r s  imply t h a t  f o r  a l l  y > 1 /s  w , th e  po lynomia l  

A(n) i s  p o s i t i v e ,  so t h a t  th e  op timal e ig en v a lu e s  o f  model I I I  a r e  

r e a l .  Thus th e  c o n d i t i o n  f o r  n o n o s c i l l a t o r y  re sponse  i s

y (70)

p r o v id i n g  a s imple r u l e  f o r  p r e v e n t i n g  c y c l i c a l  p o l i c y :  choose the

t a r g e t  d e r i v a t i v e  weight  to  be g r e a t e r  than  the  o u t s i d e  l a g .  When 

th e  system s t r u c t u r e  i s  such t h a t  ip l i e s  o u t s i d e  r e g io n  (0) i n  F igu re  

6c8,  no cy c le s  o c c u r ,  and th e  a p p r o p r i a t e  va lue  f o r  th e  t a r g e t  

d e r i v a t i v e  weight  i s  z e ro .  But once ip i s  s h i f t e d  i n t o  t h a t  r e g i o n ,  

f o r  example by i n c r e a s i n g  the  s t r e n g t h  o f  s t a b i l i s a t i o n  p o l i c y ,  th e  

va lu e  g iven  in  (70) i s  th e n  a p p r o p r i a t e . To summarise :

y = 0 V t r 2 G > 4 1 G| <=> 4 ) _ 1  < 4) ' 1 ,

y > ~  v t r 2 G $ 4 1 GI <=> 4 ) " 1 :> J ' 1 ,

(71)

1 -1where <J> i s  t h a t  va lue  o f  4) Tot which ip f i r s t  e n t e r s  r e g i o n  (0) * 

Because th e  problem o f  h y p e r s t a b i l i t y  i s  b i n a r y  - i n  the  sense  t h a t  

th e  optimal r e sponse  i s  e i t h e r  o s c i l l a t o r y  o r  n o n o s c i 1l a t o r y  - the  

d e c i s i o n  r u l e  (71) i s  a l s o  b inary*
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Analogously to (35), the optimal instantaneous controller 
associated with model III is

^ -
g(t) = + [ h(±) + m(±)D ]y(t),

. h(±) = 0 J s (72)

i(±) = j - (n±SW)nw

Whereas the level of proportional feedback h(±) is unchanged, the level 
of derivative feedback is a function now of two performance parameters,
(J) \  y. Referring to Figure 6„9, the use of target derivative weighting 
for hyperstable design corresponds to the movement from A to B, since 
only the trace (-y) of is affected by y. Concern for control- 
induced oscillation expressed at the derivative level of preferences 
manifests itself appropriately in derivative feedback„ In terms of 
Figure 6.8, a comparison of the discriminants (58) and (69) demonstrates 
that target derivative weighting changes the boundary curves LB and UB 
so that X is no longer in region (0)„

Once target derivative weighting becomes necessary, systems can be 
ranked according to the additional derivative feedback required to 
prevent oscillations: from (70), the greater the natural speed of
response, or the shorter the outside lag, the smaller is the additional 
feedback. Again, this penalises policy-making in an a priori likely 
situation - that of a sluggish economy slowly converging to equilibrium. 
In such an economy, a relatively high level is necessary not only of 
stabilisation action ({> * but also of auxiliary derivative feedback u°

6.5 THE EFFECTS OF CONTROL LAG

Model II illustrates that the penalty for a lagging policy response 
is an increase in complexity of the optimal controller. This 
proposition is valid for more realistic forms of policy lag. The 
increase in dynamic order from model I to model II is solely the 
product of control lag; the optimal controller for model II therefore 
retains the proportional feedback of model I but accompanies it with a 
new derivative feedback, shown to vanish with the policy lag. Policy 
lag results in policy complexity.
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Policy lag also engenders the possibility of cyclical response 
as the result of increased dynamic order. Although policy lag is not 
the only cause of increased order, model II abstracts from other sources, 
such as increasing complexity in the outside lag structure, and explores 
the unique relation between policy lag and the cycle. Symbolically, 
as ip = sw/n 1, the greater is the probability of policy-induced 
cycles. The more closely matched are the inside and outside lags, the 
greater the tendency for oscillations.

These conclusions provoke attempts to sever the policy-cycle nexus. 
Three such approaches are considered: (i) policy lag variation, (ii)
performance parameter variation, and (iii) target derivative weighting. 
Policy lag variation is a doubtful tool because of institutional 
inflexibility in the downward direction and convergence speed tradeoff 
in the upward direction. Performance parameter variation, requiring 
a reduction in <J> , also compromises the general stabilisation objective
by limiting the strength with which policy may be applied. Target 
derivative weighting provides a simple rule: once oscillations appear,
select the magnitude of the target derivative weight at least equal to 
the length of the outside lag. This does not mean that target 
derivative weighting is costless. Since the trace of the closed-loop 
matrix increases with the determinant remaining constant, one system 
eigenvalue increases and the other decreases, while their product 
remains constant. One mode now decays more rapidly; the other, less 
rapidly.

Analysis of the hyperstable design problem is readily unified in 
terms of the optimal state dynamics. Thus Figure 6.10 plots the loci 
z(t)=0 for models II and III, where the optimal closed-loop matrices in 
z = Gz are given by

0 i 0 1
= n —* i n A

-nw9 -Y -T]W0 -Y

and for which )G^^| = | ^ |  = |g |. Since both matrices are sign 
stable, the state space for each system is globally stable, as 
required of linear stabilisation policies. The directional vectors
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VIII

2 trG

2 trG

Figure 6.10
Hyperstable Design with a Lagged Instrument

are evaluated from (73) and apply to each model (regions III and VII 
switching dynamics between models)„ Both models share the 2^=0 locus 
on the Zj axis.

The vertical axis z^=0 is the full employment locus: regions to
the right (I-IV) involve demand inflation; regions to the left (V-VIII), 
unemployment. Suppose that an optimal stabilisation policy for model 
II is applied at time t=0, with initial conditions in region I - both the 
target error and its rate of change being positive. If target behaviour 
is to be oscillatory, the optimal response must follow a trajectory 
similar to (a), in which there is at least one sign change in y(t) - 
from regions IV to V, VIII to I, with possible repetitions. Thus the
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problem of hyperstability is to confine the optimal response entirely 
to the vertical half-plane in which the initial condition occurs; or 
to ensure that the optimal trajectory does not cross the full employment 
locus.

Beginning from region I, it is only in region IV that the dynamics 
of model II permit any movement towards the equilibrium point (0,0) ,
But as path (a) depicts, there is no guarantee that the system will 
actually equilibrate within region IV„ The crux of designing a 
hyperstable controller is to convert this region into a trap such that 
any trajectory entering it is captured and forced to equilibrate.
Target derivative weighting creates this trap by swivelling the locus 
2^=0 anticlockwise through a radians. In model III, region III then 
belongs, in terms of its dynamics, to region IV, rather than to region 
II, as in model II. The size of the trap is thereby expanded to a 
point where it is always sprung. This is shown by considering the 
factor producing the rotation a, Target derivative weighting introduces 
the parameter (y) into the trace of and since the determinant of
Gjjj is independent of y by (73), the negative slope of the z 0 locus 
is directly lessened by increasing the trace. The optimal angle of

2 I Irotation is then determined by finding y such that tr G ̂ ̂ ̂ > 4|Gjjj! =
41GjjI, This being the necessary and sufficient condition, from Figure 
6.9, to inhibit target oscillation.

The performance difference between models II and III, between paths 
(a) and (a) in Figure 6.10, aptly illustrates the maxim that "optimal" 
performance is only as good as the stabilisation objectives actually 
incorporated in the performance functional, If hyperstability is an 
objective, this objective must be explicitly defined in the performance 
functional: otherwise its attainment is a random matter of system
structure.

Figure 6.10 has been drawn on the assumption that the current level 
of stabilisation 4> * combines with the outside and inside lag dynamics 
to permit cyclical target behaviour. In this case, region IV is not a 
natural trap,. If, however, the combined lag dynamics are such that 
target behaviour is nonoscillatory for all admissible <J> then region 
IV is a natural trap, and a=0„ For some (f> \  the trap will exist 
naturally, for other 0  ̂ it will not, and this is the reason for the



167

binary, on-off nature of the target derivative rule. As a means of 
combatting cyclical fluctuations, Smith also suggests [pp,12-13] 
inclusion of the target derivative in the performance functional but 
with a unity weight. This unnecessarily restricts the flexibility 
of the optimisation analysis, precluding derivation of a binary decision 
rule comparable to (71)0

In defining the power of dynamic feedback for the design of 
stabilisation policy, Phillips [1954] stressed inter alia the role of 
proportional and derivative feedbacks. Now optimal stabilisation 
policies for the second-order Phillips models - models II and III - 
generate optimal controllers using these feedbacks. Therefore, 
although the design methods differ, classical and optimal control 
techniques lead to structurally equivalent controllers. Further, 
referring to Figure 6.10, the slopes of the 4 *0 l°ci are determined, 
loosely speaking, by the ratio of proportional feedback to derivative 
feedback. In turn, this ratio is positively related to the strength 
of control parameter <j) 1 and negatively related to the target derivative 
parameter p. And the binary role of p corresponds precisely to the 
need defined by Phillips [1957, p.276] that "it is usually necessary to 
include an element of derivative correction in a stabilisation policy 
if regulation is to be satisfactory".

Chapter VI therefore reveals a close formal correspondence between 
the old and the new. The same principles underlie classical and optimal 
design; qualitatively similar controllers are designed for the same 
model. Yet the correspondence is not complete,, Phillips [1954] also 
proposed the use of integral feedback for dynamic stabi1isation„ So 
far, this type of feedback has not been proposed for optimal 
stabilisation policy. One of the tasks of chapter VII is to examine 
this discrepancy.



CHAPTER VII

DEGREES OF FREEDOM IN THE STABILISATION PROBLEM

Even after specifying a quadratic criterion functional with 
linear dynamics as equality constraint, several degrees of freedom still 
remain before the optimisation model is fully specified. The procedure 
adopted in this thesis has been to select a particular configuration of 
these degrees of freedom, for reasons relating partly to mathematical 
simplicity and partly to historically-imposed initial conditions. Thus 
the computational algorithm developed in chapter II relies on the 
convenient linearity of the Hamiltonian system; and the FST paradox, 
refuted in chapter V, requires a certain configuration for its 
enunciation.

The configuration chosen fathers the autonomous, fixed-time, free 
endpoint regulator possessing a linear, autonomous, homogenous, dynamic 
equality constraint. The task of this present chapter is to develop 
the motivation for, and some of the consequences of, the choices embodied 
in this configuration.

7.1 DEGREES OF FREEDOM

Degrees of freedom exist with respect to the following aspects of 
the stabilisation problem

fi) time dependence of coefficient structures,
(ii) the stabilisation horizon,
(iii) dynamic instrument usage,
(iv) control constraints,
(v) terminal objectives, and
(vi) nature of disequilibrating disturbances.

Item (i) refers to a decision on the temporal behaviour of system 
dynamics and preference structure: on whether these evolve or remain
constant over time. Section 3.1 argues for constancy as an initial 
simplification avoiding analysis of evolutionary or nonautonomous
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dynamics. For stabilisation policy viewed as a shortrun problem, the 
constancy assumption is reasonable; but in the longrun is questionable. 
The assumption of a constant preference structure over lengthy horizons 
ignores the customary economic device of time discounting. The effects 
of discounting on optimisation are discussed by Arrow; while Kurz 
[pp.160-66] provides an analysis of discounting applicable to the 
regulator model. Because there is no substantial literature devoted 
to controllability, optimality and computability in stabilisation 
theory, the limitations of this constancy assumption have been accepted 
throughout this thesis. Its removal awaits the development of optimal 
models of cyclical growth, comparable to the classical models of Phillips 
[1961], Bergstrom [chaps. 5, 6], and Allen [1968, chap. 20].

Item (ii) defines whether the stabilisation horizon is to be 
determined optimally or is preset by the policy-maker. In the first 
case, the stabilisation horizon is free; in the second, fixed. A 
fixed horizon assumption is used throughout this thesis. A possible 
rationale is provided, at least in the finite horizon regulator, by the 
fixed and finite electoral life of democratic governments. These 
governments may be expected to maximise their probability of re-election 
by using stabilisation policy to promote a favourable economic climate 
immediately prior to an election. Design of such stabilisation policy 
is therefore undertaken with a fixed horizon measuring remaining 
electoral life. Another possibility is a fixed horizon corresponding 
to the budget period; and yet another, some form of intermediate 
planning, with or without revision.

None of these justifications is applicable to the infinite horizon 
assumption. This assumption, when used, is used either to simplify the 
endpoint complications of the finite horizon regulator or to accord 
with the assumption used in classical stabilisation theory. The 
simplicity of asymptotic solutions relative to finite horizon solutions 
is valuable both theoretically and computationally. Theoretically, an 
infinite horizon assumption provides optimal controllers that are time- 
invariant. Thus in Figure 5.2 (p.126 above), the finite horizon 
trajectories are approximately linear except towards the terminal 
manifold; and the longer the horizon, the later this linearity 
disappears. A numerical illustration of this phenomenon is provided 
by Äthans § Falb [p.779]. Removal of this endpoint behaviour does not



170

affect the qualitative conclusions drawn about optimal stabilisation 
policy but considerably facilitates solution and analysis. 
Computationally, both the resultant time-invariance and dimensional 
reduction afford considerable savings, as noted with respect to the 
algorithm of chapter II. More will be said concerning finite and 
infinite horizon assumptions in section 7,3 below.

An interesting economic problem may emerge from the shortrun 
policy manipulation alluded to above. To sketch the problem briefly, 
suppose that the given economic system is dynamically controllable, 
and that the government desires a specified target vector transferred 
from a current position to a desired position by a fixed date. Suppose 
further that a controller minimising control energy, that is, 

rT TMIN W = % u Ru dt, is designed to achieve the required transfer, 
u Jo

Then plotting minimum control energy as a function of the horizon T, it

Figure 7,1
Minimum Control Energy

is possible"*-, depending on the precise system dynamics, that this 
relation is similar to that of Figure 7.1.

Figure 7.1 depicts the tradeoff between the time (T) taken to

1 Cf„ Äthans § Falb [pp.466-74].
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achieve the stated stabilisation objectives and the required control 
energy (W). For T < T', a small increase in the stipulated horizon 
permits a much larger decrease in control energy; while for T > T", a 
significant decrease in control energy is only achievable with a very 
large increase in the horizon. Thus if the stabilisation horizon is 
fixed by electoral considerations as T^, it is clear that the same 
objectives could be achieved a little later with a significant cost 
decrease. And by setting the stabilisation horizon at T" rather than 
T2> the same objectives could be achieved considerably faster with a 
small increase in control expenditure.

If economic dynamics generate a tradeoff comparable to Figure 7.1, 
questions must be raised about the social cost of stabilisation policies 
determined by electoral considerations: such policies may be too hasty
and too extravagant or too tardy and too parsimonious. Either case is 
undesirable, given the alternatives. Nor is the possibility dependent 
on the minimum energy assumption. This merely selects a particular 
controller: all other controllers will necessarily exhibit a similar
tradeoff. Such behaviour is an empirical question that may be worth 
investigation.

Item (iii) concerns the option of reduced versus regular 
stabilisation. Necessary and sufficient conditions for existence of 
reduced models are proposed in section 4.2. But no criteria are 
presented for selecting a particular reduced system. Reduced 
stabilisation appears to be an important policy option but its full 
significance must await further research.

Item (iv) refers to the presence or absence of explicit constraints 
on the available instruments. Explicit control constraints generate 
bang-bang controllers for which control operates for some or all of the 
time on the boundary of the constraint set. Lack of explicit 
constraints produces the smoothly-continuous controller, for which 
control is assumed to operate in the interior of some implicit constraint 
set. The smooth controller is the simpler principle, both 
theoretically and numerically. It is used in the development of the 
computational algorithm of chapter II; in the analysis of 
controllability in chapters III and IV; and in the optimal stabilisation 
models of chapters V and VI. While it is desirable in some formulations
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of the stabilisation problem to impose explicit control constraints,
2this possibility is not treated in this thesis . Section 7.2, 

however, investigates the way in which an unconstrained regulator model 
can act as a surrogate for an explicitly constrained regulator.

Item (v) summarises the choice to be made with respect to terminal 
or endpoint objectives: is the terminal target vector to be fixed or
free? The necessary conditions for optimality accommodate either 
choice but, again for simplicity, the free endpoint assumption has 
generally been used; although fixed endpoint solutions to the Phillips 
regulator are briefly identified in chapter V. A strong case may be 
made for regarding the stabilisation problem as a fixed endpoint 
problem: as formulated, for instance, in the investigation of
controllability in chapter III. Where there does exist specific 
concern for the target endpoint, section 7.3 proposes that terminal 
target weighting is a reasonable alternative to the fixed endpoint 
assumption, while still retaining the simplicity of the free endpoint 
assumption.

Finally, item (vi) defines a choice about the nature of the 
disturbances assumed to perturb economic equilibrium. Two classes of 
disturbance are conveniently recognised: transient and persistent.
Transient disturbances are impulse disturbances assumed to have occurred 
and vanished prior to the implementation of policy to counteract their 
effects. These effects are therefore captured in the initial 
conditions, representing displacement from static equilibrium.
Persistent disturbances are those disturbances - such as ramp, step, 
sinusoidal and exponential disturbances - whose effects are maintained 
and cannot be captured in the initial conditions but must be explicitly 
introduced into the model’s formulation. To this point, the thesis 
has employed the transient assumption. Section 7.4 therefore 
investigates the significance of the persistent assumption for the 
particular class of step disturbances. This leads to the complete 
unification of classical and optimal stabilisation theory.

2 A recent paper by Turnovsky illustrates each controller type in 
an optimal regulator model of a single market.
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7,2 DYNAMIC CONSTRAINT INTERNALISATION

The explicit introduction of time into the analysis of 
stabilisation introduces elements which are exclusively dynamic. One 
such element is the temporal distribution of control resources over 
the stabilisation period. Statically, control resources are 
disbursed at a constant rate; dynamically, the stipulation, for 
example, of a fixed quantity of resources available for stabilisation 
over a given horizon in no way constrains the temporal pattern of 
usage. If there exist flow constraints on the instruments that must 
be satisfied at every point of time, the problem therefore arises of 
ensuring their satisfaction. Whether or not this is possible without 
explicit introduction of these constraints is now considered in the 
simplified context of the Phillips regulator.

Flow constraints are typically a saturation or magnitude 
constraint

u $ u(t) £ u, u / u, V t e [0,T], (1)

positing upper and lower bounds on the level of allowable control 
usage at every point of time during the control period. For 
stabilisation models obtained under the equilibrium partition, the 
saturation constraint

-u  ̂ u(t)  ̂ u, u, ü > 0, (2)

would normally be assumed: that is, actual control U(t) is permitted 
to deviate positively or negatively from its desired equilibrium level 
Ö, within the band (-u, u).

Two basic approaches to optimal dynamic stabilisation may be 
defined by the manner in which such control constraints are incorporated. 
In the first approach, the saturation constraint (2) is explicitly 
introduced into the optimal formulation:

fTMIN W = J(x) dt 
u (t) Jo

subject to x = f(x,u), x (0)=xq, |u(t)| < u,

(3)
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where, for simplicity, the constraint band is assumed symmetric. In 
the second approach, the saturation constraint is implicitly introduced 
via the criterion functional:

MIN W 
u(t)

fTJ(x,u) dt, J , J > 0, _ u uu

subject to x = f(x,u), x(0)=x .

(4)

These two classes of model are differentiated according as the control 
constraint is external (3) or internal (4). In (4), the conditions 

> 0, J > 0 act as a proxy for |u(t)| $ u in (3), with performance 
cost increasing at an increasing rate with u(t). Examination of 
whether or not the proxy is sufficient, or can be made so, is therefore 
of interest.

The possibility of internalising a magnitude constraint will now 
be demonstrated in the context of the Phillips regulator of chapter V. 
Specifically, consider the optimisation problem

r

MIN W = %
g(t)

subject to y = - swy + wg, y(0)=yQ , y(T) free.

Suppose the policy-maker specifies the control magnitude constraint

I g (t) I $ g* V t e [0 ,T] . (6)

[y2 (t) + 4g2 (t)] dt, 4 > 0,
(5)

Then given the performance integrand,

J ’ = ay2 (t) + 3g2 (t), a, 3 > 0, (7)

3
which may be written

Since optimality with respect to the criterion
preserved up to the linear transformation p J' 
a constants.

fTJ ’J o
+ ö,

dt is 
for p,
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J = a_1J' = y2 (tJ + cj>g2 (t), (p = 3/a, (8)

select a particular <f> such that

* 2 2 a = 1/max y (t) = 1/y*

B = 1/max g2 (t) = 1/g2.
(9)

* *
How do the weights a , 3 ensure satisfaction of the constraint 

(6)? Suppose that the maximum deviation of income y from its desired 
level of zero is

-L l W  .I?..L $ y => |y*| = yY.
Y

The control constraint (6) also implies

S « => |g,| = 62,
G

and it is necessary, given the static income identity, that 

G = e Y , 0 < e < 1.

Hence, from (8) through (12),

(pi1 = a /3 = (g*/y*)2 = (6e/y)2,

(10)

(11)

(12)

(13)

where to summarise

G r IG-GI IY-YIe = —  , 6 = max J— -— L , y = max J— -— L . (14)
Y G Y

The parameter £ defines the optimum size of the public sector 
with respect to full employment income. It varies between the limits 
0 < £ < 1, loosely from the invisible hand to socialism, and may be 
termed the Hayek parameter. Although this parameter is predetermined 
as a structural characteristic of the dynamic stabilisation problem,

4 Following a suggestion by Bryson § Ho [p.149].
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1-e must be assumed large enough to validate the multiplier-accelerator 
model. The parameter 6 may be labelled the Keynes parameter; it 
specifies the maximum dynamic variation in public sector size for 
stabilisation purposes. If the macro-adjustment process of an economy 
with given Hayek parameter is either unstable, or unduly slow though 
stable, or unduly cyclical but stable, the public sector must modify 
the system response. The magnitude of the Keynes parameter indicates 
the scope available in a given economic system for such dynamic 
remedial action.

According to the Keynes parameter, the size of the public sector 
is dynamically variable within the limits

(1-6)G <: G(t) £ (1+6) G
<=> (15)

-6G $ G - G $ 6G,

is the allowable range of variation in the dynamic control variable 
g(t). And from (10), the range of variation in the dynamic target 
variable y(t) is

Now from (5,23), the optimal target and instrument solutions, for an 
infinite horizon, are

so that

Ig (t) I * 6eY (16)

|y (t)I $ yY. (17)

(18)
g (t) = - (0-s)y (t), 6 = (s2+0"1)^.

Hence (16) is satisfied if, using (17) and (18),

g (t)I = (e-s)|y (t)I s (e-s)yY s SeY, (19)
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or if,

(s2*#'1)*5 - s S Se/Y X fjf(20)

And a sufficient condition for this is

41" 1 S f * 1 = (6e/ y ) ? (21)

From (18), the maximum income deviation is always the initial 
disequilibrium y(0). Given an estimate, therefore, of the maximum 
such target error, y* = max y(0), that the Phillips regulator is 
expected to face, the particular value <f>** of the performance parameter 
(f> * specifies an upper bound to the strength of control parameter.
For all <J> 1 satisfying (21), the explicit control constraint (6) is 
satisfied. This attempt to internalise the magnitude constraint 
within the structure of the Phillips regulator therefore produces a 
simple rule: the maximum value of the strength of control parameter
is equal to the square of the ratio of the product of the Keynes and 
Hayek parameters to the maximum target error.

Since the magnitude constraint refers to the absolute value of 
I g(t) I and since <J> * determines the ratio | g/y | , 4)*'*’ is larger, and 
control easier, when disturbances generate relatively small target 
errors. Similarly, the greater the static and dynamic intrusion of 
the public sector into economic activity, as expressed in the product 
6e, the greater is The Hayek parameter e will be determined by
decisions based on the optimum allocation of resources and is therefore 
external to the stabilisation problem (excluding the problem of 
intergoal conflict). The Keynes parameter 6 is the essence of the 
control constraint (6), (11). If a magnitude constraint is relevant 
in formulating the stabilisation problem for the Phillips model, the 
factors determining 6 must be defined and substantiated. This will 
not be attempted here. It may be noted that the size of 6 will 
condition the efficacy of controllers irrespective of the design 
technique, raising yet another empirical question: how binding are
such constraints on the strength with which control can be applied?

The simplicity of (21) for the Phillips regulator is lost in 
higher-order models: performance parameters proliferate as target and
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instrument priorities are established. Extension of the principle 
behind (9) is, however, immediate.

7c 3 TERMINAL WEIGHTING OR FIXED ENDPOINTS?

Another aspect of the degrees of freedom associated with 
specification of the stabilisation problem is the treatment of the 
terminal target vector. For example, chapter V identified a knockoff 
syndrome in the behaviour of the naturally unstable Phillips regulator, 
the target starting to diverge at some point near the finite horizon 
T. Now there are two methods available for correcting this behaviour. 
The first is terminal target weighting, briefly mentioned in chapter 
V; the second is conversion to a fixed endpoint specification, 
constraining the target to achieve a specific value at t=T. For a 
finite horizon, a choice therefore arises between fixed endpoint 
regulators and terminal weighting regulators. Observing that the 
knockoff syndrome is merely an illustrative context for this choice, 
this present section uses the naturally unstable Phillips regulator to 
define some of the dimensions of this choice problem.

Fixed endpoint solutions for the Phillips regulator are identified 
in section 5.3 above. Turning therefore to terminal weighting, the 
optimal free endpoint Phillips regulator problem, equation (5.12), 
becomes

T
MIN W = *sfy2(T) + h[y2 (t) + <)>g2(t)] dt, f > 0, (22)
g(t) >0

subj ect to

y = -swy + wg, y(0)=yQ^0, y(T) free. (23)

Introducing the endpoint term into (5.27), the transversality condition 
for this terminal weighting regulator is

[p(t) - fy(t)]6y(t) =0, t = {£, (24)

where (5.30) is a particular case (f=0) of (24). For a free endpoint, 
(24) is satisfied by
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P(T) = fy(T), (25)

and the corresponding Riccati boundary condition is thus

k(T) = f. (26)

Revising Appendix V (pp.268-9 below) to allow for f > 0, w < 0, 
the Riccati solution for the naturally unstable Phillips regulator with 
terminal weighting is

n 0-s -2w6(T-t)
' 9 ^  *

k(t) = {--------------- -} k , w = IwI , (27)
C + e“2w0(T-t)

where

C =
0-s+cf) *wf

0+S-0 *wf
k = lim k(t) = (J>w-1(0+s),

T-x»

0 = (s2+(j)_1)̂ .

(28)

Three special cases of this Riccati solution are of interest,*
corresponding to f=0, f=k , and f=<». From (28),

f = AIIO r 0-s
c = e+J*

Hi II *
k => c "1 = 0, /—\ 

cnCN

f = AII8 C = -1,

so that these three cases are

j . e-2w6(T-t)
k(t)/f_0 = {---------------- } k\ (30)

/r 0+s -2w6(T-t)+ ê s6
k(t)/£=k* = k \ (31)
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+ 0 + s
0-s -2w0(T-t)

(32)

In each case, k(T)=f, as required by (26). The bracketed terms of 
(30) and (32) are approximately reciprocal, and it is readily shown 
that

Since the Hamiltonian saddle point (±w0) is invariant with respect 
to f, and since the terminal manifold may be written

Figure 7.2 follows from the naturally unstable portion of Figure 5.2 
(p.126 above). Commencing with f=0, increased endpoint weighting 
rotates the terminal manifold (34) clockwise; from p(T)=0 for f=0, 
to y(T)=0 for f=°°. Now the ranking (33) holds for t=0 in particular, 
so that initial phases are also shifted rightwards on the initial 
manifold y=y(0). This rightward shift of initial and terminal 
conditions therefore implies rightward shifts, as f increases, of any 
trajectory corresponding to a given T. For the free endpoint zero 
terminal weighting trajectory AB, an illustrative progression is shown 
as CD, EF, ..., GH, corresponding to f values of grad 1 (y=0),
k , ..., oo. Thus the locus BDFH describes the endpoint behaviour of 
a particular finite horizon solution of the Phillips terminal weighting 
regulator (w < 0) for increasing terminal weights f. As the endpoint 
phase transcribes this locus, the Phillips regulator tends to discard 
its free endpoint character and to acquire a fixed endpoint character. 
In the limit, for f=°°, the free endpoint and fixed endpoint solutions 
coincide. To illustrate, the optimal target solution for w < 0 and 
f > 0 is, by analogy to (5.21),

(33)

y(T) = pm/kcn = f'Vi), (34)

*

(0-s+<J> *wf)e W®t + (0+s-<(> 1wf)e -w6(2T-t)

(0-s+cj) xwf) + (0+s-<|> ^wf)e
y(t) = y(0) { }. (35)
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y=|w|(0-s)p

y - y(0)

Figure 7.2
Phillips Regulator with Terminal Weighting (w < 0)

Hence

Ufl y m  = o, (36)

as required by the trajectory GH of Figure 7.2.

Thus the free endpoint solution f=0 occurs at one end of the 
locus BDFH; the fixed endpoint solution, at the other. For a 
significant part of the stabilisation horizon, the trajectories AB,
CD, EF, ..., GH are linear. The rightward shift due to increasing 
terminal weighting therefore results in higher but approximately 
constant levels of feedback. This constancy is destroyed by endpoint 
adjustments to the locus BDFH. At the endpoint,
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either (i) p(T)=0, y(T)>0,
or (ii) p(T)>0, y(T)>0, (37)
or (iii) p(T)>0, y(T)=0.

Since the target and costate never vanish simultaneously, full static 
equilibrium is not attainable under either regulator specification - 
fixed endpoint or free endpoint - with a finite horizon. The choice 
of a particular terminal weight f, fe[0,°°], is therefore a matter of 
preference concerning the target-instrument tradeoff^.

Riccati terminal weighting, f=k*, acts, as does the infinite 
horizon assumption, to filter out the positive eigenvalue by appropriate 
adjustment of the initial costate p(0). The trajectory EF therefore 
coincides with the asymptotic trajectory for the entire finite horizon 
T; and may be interpreted as the balanced stabilisation path, both 
target and instrument equilibrating at the same rate V te[0, T].
Now the cardinal difference between finite horizon and infinite horizon 
regulators is that controllers for T < 00 are time-varying whereas 
controllers for T = °° are constant. For this reason alone, the 
asymptotic algorithm of chapter II is considerably simpler than the 
finite algorithm. Given practical problems of dimension and 
computation, it is therefore tempting to argue that, even though the 
stabilisation problem may best be conceived of as a finite horizon 
problem, the simplicity ensuing from the asymptotic assumption is too 
valuable to relinquish. The balanced path EF suggests another 
possibility. If, in the general regulator formulation, the terminal 
weighting matrix is made identical to the asymptotic Riccati matrix, 
finite horizon solutions will possess constant feedback controllers; 
avoiding the disadvantage of time-varying controllers but retaining 
the logic of the finite horizon context. In this case, the free 
endpoint regulator may be preferred to the fixed endpoint regulator.

It follows from (27) that

limj(t)/fs0 = k*. (38)

By equation (5.14), g = + (j) wp, w = |w|, so that the costate 
variable is a direct proxy for the instrument variable in the 
single-target, single-instrument Phillips regulator.
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And using the limiting procedure of equation (2.56) for F/0, the 
general asymptotic Riccati solution K can also readily be shown to be 
independent of F, the terminal weighting matrix. That is, as the 
stabilisation horizon is lengthened, terminal weighting becomes 
increasingly irrelevant; and is totally so for T = ». Taking f=0 
to symbolise the pure free endpoint regulator and f = » to symbolise 
the fixed endpoint regulator, (38) argues that the endpoint assumption 
itself becomes asymptotically irrelevant. This is a logical result 
because the asymptotic trajectory achieves the desired equilibrium 
position (0, 0); and this corresponds to the intersection of all free 
endpoint (f^O) and fixed endpoint manifolds.

Analysis of the degrees of freedom relating to endpoint 
specification in the stabilisation problem does not permit a definitive 
choice of formulation on a priori grounds. It does, however, clarify
the basis upon which a subjective choice can be made. In particular, 
fixed endpoints are just one possibility in the spectrum of possible 
endpoints under terminal weighting; while Riccati endpoint weighting 
is the unique method for constructing time-invariant, finite horizon 
controllers.

7.4 OPTIMAL CONTROLLERS WITH INTEGRAL FEEDBACK

An examination of the models of chapters V and VI establishes 
that the optimal controllers so far considered utilise proportional and 
first- and higher-order derivative feedbacks: there is a direct
matching of controller dynamics to system dynamics. Thus if the state 
vector is of dimension 2, and consists of the target variable and its 
rate of change, as in models II and III, the optimal controller will 
comprise a proportional and a derivative feedback to match. Now one 
of the prime weapons used by Phillips [1954] in designing dynamic 
stabilisation policy is integral feedback; yet the optimal models 
just referred to make no use of this feedback type. They utilise 
information on the current state of the system (proportional feedback), 
and information on the future state through its current rate of change 
(derivative feedback), but do not accumulate information on past state 
behaviour (integral feedback).

Why does this disparity exist between classical and optimal
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Controllers? Does the use of the optimal regulator hypothesis imply, 
because of this neglect, an unnecessary depletion of the weapons 
available to the policy-maker? This section provides answers to these 
questions. It will be shown that the issue turns both on the type of 
disturbance that the regulator is designed to counter and on the 
informational constraints placed on knowledge of these disturbances.

Under the equilibrium partition, the Phillips multiplier-accelerator
model

Y (t) = -swY(t) + wG(t) + wA, w^O, se(0,l), (39)

has been written

y = -swy + wg, y(0)=yQ^0, (40)

where

g(t) = G(t) - G, y(t) E Y(t) - Y, (41)

and where the static equilibrium pair (G, Y) is determined from 
solution of

0 = -sY + G + A. (42)

Optimal stabilisation policies have been designed for this model by 
minimising a quadratic performance functional to which (40) is adjoined 
as a dynamic equality constraint. The need for policy is assumed to 
arise through a transient fluctuation in autonomous demand disturbing 
the static equilibrium (42); the effect of this disturbance, subsequent 
to its disappearance, being captured in the initial condition y(0)^0.

The classical approach to stabilisation policy, as developed by 
Phillips [1954, 1957] and Allen [1960, 1968], introduces an additional 
element into the policy problem. Suppose that the autonomous demand 
disturbance persists rather than disappears. In particular, suppose 
that autonomous demand increases at time t=0 by an amount C, disturbing 
an established equilibrium (42), and consider the design problem
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given by6

y = -swy + wg + wC, y(0)=0. (43)

Noting that the classical approach invariably assumes an infinite 
horizon, the design objective is then posed as

Given the system dynamics (43) and the objectives (44), Phillips (1954] 
shows that integral feedback is

(i) necessary and sufficient for the removal of any 
persistent inflationary or deflationary gap; but

(ii) neither necessary nor necessarily sufficient to 
modify the dynamic stability properties of a given system.

To illustrate (i), observe that if the policy-maker remains inert, 
so that g(t) = 0 V t > 0, the equilibrium solution of (43) for assumed 
natural stability (w > 0) is

The continuing disturbance C causes an inflationary gap whose 
magnitude is determined by the static multiplier result (45). Neither 
proportional feedback, derivative feedback, nor higher order derivative 
feedbacks can remove this gap; but if the integral feedback

y(t=oo) = o, y(t=°°) = 0 <=> Y (t=°°) = Y. (44)

y(°°) = C/s > 0. (45)

r t
g(t) = - i y(t ) dx, i > 0,

j0
(46)

is applied to (43), then

y(t) + swy(t) + wiy(t) = 0, (w > 0), (47)

which possesses the desired equilibrium, y(°°) = 0.

6 Cf., for example, Allen [1960, pp.69-74].



186

Integral feedback has not been required when designing optimal 
policies for (40) because no constant disturbances appear in that 
equation. Even if a constant step disturbance is observed, one 
policy option is to offset the disturbance statically for as long as 
it persists, and to simultaneously implement a dynamic policy to 
counteract any disequilibrium dynamics following its appearance. In 
this case, the system dynamics are

' y = -swy + wg, y(0)^0, •
(48)

g(t) = G(t) - G + C.

This option is therefore consistent with equation (40), after 
redefining g(t).

Whether ongoing disturbances are to be treated as a dynamic problem 
(43) or a static problem (48) creates yet another choice problem. What 
criteria exist for preferring one approach to the other? A basic 
distinction can be made between step disturbances that persist for a 
long time, and those that are more than transient but less than 
permanent. The first represent an enduring shift in the underlying 
static equilibrium while the second are closer to transient disturbances 
of the given equilibrium. It can then be argued that static offsetting 
is appropriate for the longer-run step disturbance and that integral 
feedback is appropriate for the shorter-run disturbance.

This dichotomy is based on the expected frequency with which these 
two types of disturbance occur. Thus the persistent demand disturbance 
can be measured and offset through static policy; and since such 
disturbances are likely to be infrequent, this measurement process need 
not strain policy resources. On the other hand, the temporary demand 
disturbance is likely to be of much greater frequency; and it is 
therefore desirable to obviate the need for measurement. And for this 
purpose, the dynamic option of integral feedback is necessary. Thus, 
as Phillips argues, [1954, p.297]:

"Is it clear that with an integral stabilisation policy the 
final equilibrium position, if it exists, will be one in which 
the error is completely eliminated, since so long as even the 
smallest error persists the cumulated error or time integral



of the error must be continuously increasing, and with it 
the magnitude of the correcting action, so that equilibrium 
is possible only when the error is zero."
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An integral policy (46) applied to (43), and evaluated at the 
equilibrium (44), provides

g(t-») y(t) dt = C (49)

Policy is activated in terms of the measurable target error y(t) and 
not in terms of the disturbance C; and continues until this disturbance 
is completely offset.

If the practical utility of integral feedback for an economy 
subject to numerous small step disturbances is accepted, the utility 
of stabilisation policies designed with the regulator hypothesis must 
be reconsidered. The technique is adequate for impulse disturbances 
and for longrun demand shifts; its adequacy in response to step 
disturbances is now investigated.

Define the variables x(t), v(t) such that

x(t) = g(t) + C, x = g = v. (50)

Then the system dynamics (43) may be written 

y = -swy + wx, y(0)=0,
(51)

x = v,

or

f * *
z = A z + b v,

. -- — ~  — — -
“ SW w 0 y* *

A = , b = , z =k, 0 0 1 X
_ — — — —

(52)

In this state formulation, the control variable v(t) = g(t) is the
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An integral policy (46) applied to (43), and evaluated at the 
equilibrium (44), provides

g ( t - 0°) = i y(t) dt = C.Jo (49)

Policy is activated in terms of the measurable target error y(t) and 
not in terms of the disturbance C; and continues until this disturbance 
is completely offset.

If the practical utility of integral feedback for an economy 
subject to numerous small step disturbances is accepted, the utility 
of stabilisation policies designed with the regulator hypothesis must 
be reconsidered. The technique is adequate for impulse disturbances 
and for longrun demand shifts; its adequacy in response to step 
disturbances is now investigated.

Define the variables x(t), v(t) such that

x(t) = g(t) + C, x = g = V» (50)

Then the system dynamics (43) may be written 

y = -swy + wx, y(0)=0, 

x = v,
(51)

or

, * * 
z = A z + b v,

— ~ — — — — -
-sw W 0 y* *

A = , b = , z =
0 0 1 X

___ —

(52)

In this state formulation, the control variable v(t) = g(t) is the



model. Thus if y = Ay + bx is in the canonical form of the scalar 
policy model (3.34), the step disturbance state formulation becomes
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or

* *
z = A z + b v,

where, from (3.34),

Anxn

X
\

0 ____
\ X

X \
X  v1 1/ o

. 0III\0
V 1
-an-1

nxl

Now (56) is dynamically controllable iff

(56)

(57)

(58)

p(Q*) = p[b* A*b* ... (A*)nb*] = n+1, (59)

★
where Q is the n+lxn+1 controllability matrix. But from (56), and 
using the canonical structure (58),

t-H1c<

—

-1
JO

CM<

---------
H

&<

—

JOo O'

. 
- 

i
o

i i i i i
! ; 0 ; 0 ; 0 ; .. . ; 0 1 ! 0

(60)
where Q is the controllability matrix for y = Ay + bx. Hence

p(Q ) = n+1 iff p(Q) = n, (61)

and p(Q) = n is guaranteed by (3.88). By a theorem of Lee 6 Markus 
[p.90], every scalar controllable system y = Ay + bx can be written in 
the canonical form (58). Hence, by (61), dynamic controllability with 
respect to impulse disturbances is necessary and sufficient for dynamic
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c o n t r o l l a b i l i t y  with  r e s p e c t  to  s t e p  d i s t u r b a n c e s .

Thus the  system (52) i s  dynam ica l ly  c o n t r o l l a b l e  p rov ided  t h a t  

th e  f i r s t - o r d e r  P h i l l i p s  model i s  dynamical ly  c o n t r o l l a b l e ;  or  

p rov ided  wf-0«, Re turn ing  to  th e  o p t i m i s a t i o n  problem (53 ) ,  and 

fo l l o w i n g ,  f o r  example,  the  s o l u t i o n  p rocedure  o f  s e c t i o n  6 . 2 ,  th e  

op timal c o n t r o l l e r  v ( t )  i s

To express  t h i s  c o n t r o l l e r  in d e p e n d e n t ly  o f  th e  unknown d i s t u r b a n c e  

C, c o n ta in e d  i n  x,  use  i s  made o f  the  system dynamics (51 ) ,  t o  g ive

v ( t )  = y ^  z ( t )  , Y = -c|> 1Kb*, C62)

where

k k 1o
K = (63)

k 1 k 2

i s  the  p o s i t i v e  d e f i n i t e  symmetric s o l u t i o n  o f

* T- - * -b b - *(A ) K + KA - K——̂— K + V = 0.
*  •*rj i

(64)

From (62) ,  the  op t imal  c o n t r o l l e r  i s  t h e r e f o r e

(65)

-1
(y + swy)o ( 66 )x = w

Thus (65) i s

_ 1 _ i
v ( t )  = - 0> { ( k 1+sk2)y  + w k 2y }. (67)

S u b s t i t u t i o n  o f  (67) i n t o  (55) then  p rov ides

g ( t )  = g(0) + ß y (0) - aj y ( t ) d r  - ß y ( t ) ,
; 0

( 6 8 )
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where

- 1  - 1  _  i
ot = 4> (k 1 + s k 2) , ß = <j> w k 2 „ (69)

Apart  from the  i n i t i a l  c o n d i t i o n s ,  the  optimal c o n t r o l l e r  (68) f o r  

th e  P h i l l i p s  s t e p - r e g u l a t o r  comprises c o n s t a n t  p r o p o r t i o n a l  and i n t e g r a l  

feedback from the  t a r g e t  y ( t ) .  To the  op timal p r o p o r t i o n a l  feedback  

o f  th e  P h i l l i p s  i m p u l s e - r e g u l a t o r  o f  c h a p t e r  V i s  added an op t im a l  

i n t e g r a l  feedback s p e c i f i c a l l y  des igned  to  c o u n t e r a c t  s t e p  d i s t u r b a n c e s .  

Nor, as r e q u i r e d ,  i s  t h e r e  need to  measure th e s e  d i s t u r b a n c e s :  t h e

c o n t r o l l e r  (68) i s  in dependen t  o f  C.

With the  i n t r o d u c t i o n  o f  op timal i n t e g r a l  f eedback ,  the  

cor respondence  between c l a s s i c a l  and optimal p o l i c i e s  f o r  the  P h i l l i p s  

m u l t i p l i e r - a c c e l e r a t o r  model i s  comple te .  P r o p o r t i o n a l ,  i n t e g r a l  and 

d e r i v a t i v e  feedbacks  may occur  w i th  e i t h e r  type o f  des ign  p ro c e d u re .

The t r a d e o f f  between s t a t i c  e r r o r  removal and th e  in c id e n c e  o f  

o s c i l l a t i o n s  observed by P h i l l i p s  to  c h a r a c t e r i s e  i n t e g r a l  feedback  

w i l l  apply  e q u a l ly  t o  the  op timal c o n t r o l l e r  (68) .  Thus t h e r e  w i l l  

e x i s t  a f u n c t i o n a l  r e l a t i o n  between th e  R i c c a t i  c o e f f i c i e n t s  k^ ,  k 2 

demarca ting  damped o s c i l l a t o r y  from e x p o n e n t i a l l y  damped r e s p o n s e s ;  

the  r e l a t i o n  between c y c l e s  and p o l i c y  be ing  s u s c e p t i b l e  to  the  

a n a l y s i s  conducted in  c h a p t e r  VI.

Whether o r  n o t  i n t e g r a l  feedback a c t u a l l y  occurs  i n  optimal 

c o n t r o l l e r s  depends t h e r e f o r e  on two f a c t o r s :  f i r s t l y ,  whether  s t e p

d i s t u r b a n c e s  do o r  do no t  occu r ;  and seco n d ly ,  whether  s t e p  

d i s t u r b a n c e s ,  i f  o c c u r r i n g ,  a re  t r e a t e d  as a s t a t i c  or  dynamic d es ig n  

problem. Although freedom e x i s t s  w i th  r e s p e c t  to  t h i s  des ign  c h o i c e ,  

t h i s  s e c t i o n  argues  t h a t  i n t e g r a l  f eedback ,  by avo id ing  the  need f o r  

e x p l i c i t  measurement,  i s  p r e f e r a b l e  when s h o r t r u n  s t e p  d i s t u r b a n c e s  

p e r t u r b  the  system w i th  any f requency .

7.5 CONCLUSIONS

S e l e c t i o n  o f  a p a r t i c u l a r  c o n f i g u r a t i o n  o f  the  degrees  o f  freedom 

in  r e g u l a t o r  s p e c i f i c a t i o n s  o f  the  s t a b i l i s a t i o n  problem must t h e r e f o r e  

be accompanied by an a n a l y s i s  and a p p r e c i a t i o n  o f  the  c o s t s  of  t h a t  

ch o ice .  This  i s  c l e a r l y  s t a t e d  by Zadeh [p .5 9 ] :
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"One of the most serious weaknesses of the current theories 
of optimal control is that they are predicated on the assumption 
that the performance of a system [S] can be measured by a single 
number »„. The trouble with this concept of optimality is that, 
in general, there is more than one consideration that enters 
into the assessment of performance of S and in most cases 
these considerations cannot be subsumed under a single scalar- 
valued criterion» In such cases, a system S may be superior 
to a system S ’ in some respects and inferior to S ’ in others, 
and the class of systems is not completely ordered,,"

Zadeh suggests a two-stage design process: (i) determine the set of
noninferior systems, and (ii) select one system from this set according 
to explicit, if subjective, criteria» Alternatively, Waltz proposes 
an hierarchical procedure in which a primary criterion is optimised; 
a secondary criterion then being optimised to compromise the primary 
objective within prescribed tolerances; and so on sequentially»

But whether the scalar-valued approach, the vector-valued approach, 
or the hierarchical approach is used, the problem remains of adequately 
specifying all relevant objectives, their priorities, and the 
sensitivity of design to changes in these priorities» Research in 
two directions will contribute to understanding of these issues» 
Empirically, the increasing use of econometric models for analysis of 
dynamic control will generate a sharper definition of objectives and 
of the opportunity costs of alternative specifications» Theoretically, 
an attempt should be made to embed as many of the degrees of freedom 
as possible within a general specification of the control problem so 
that the effects of alternative choices may also be assessed 
theoretically» The optimal regulator model offers no simple panacea 
for the practical design of stabilisation policy until these 
specification problems are resolved»



CHAPTER VIII

CONCLUSIONS

This final chapter presents the major conclusions of the thesis 
together with appropriate qualifications and possible extensions.

Once the Keynesian premise of government intervention for purposes 
of economic stabilisation is accepted dynamically as well as statically, 
conditions for which dynamic intervention is effective must be defined. 
Attention then shifts from the natural stability properties of an 
economic system to its controlled stability properties - or to 
controllability. Controllability is shown to unify the analysis of 
policy existence. Statically, the fundamental existence proposition 
is Tinbergen’s rule that there exist as many independent static 
instruments as there are independent static targets. This thesis 
provides a companion rule for dynamic existence: either there exist as
many independent dynamic instruments as there are independent dynamic 
targets; or there exist fewer dynamic instruments than dynamic targets, 
each instrument being independent of all other instruments and all 
targets in a fashion defined precisely in theorem 4.4. Dynamic 
existence need no longer be treated in an intuitive ad hoc manner, but 
should be tested for in all policy models as an indispensable preliminary 
to policy design.

That the static and dynamic problems of existence are distinct 
problems is stressed. Static controllability determines the equilibrium 
position to which the controlled economic system tends to settle in the 
absence of disturbances; dynamic controllability specifies the policy 
ability to regulate the economic system to this particular equilibrium 
in the presence of disturbances. This distinction is important when 
considering the implications of reduced stabilisation, a policy option 
arising if the minimal number of dynamic instruments necessary and 
sufficient for stabilisation is less than the actual number of 
instruments available. Surprisingly, if an economic system is 
dynamically controllable, it will generally be reducibly controllable
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with just one instrument, provided a certain structural condition - 
the Jordan chain condition - is satisfied» If the separate functions 
of static and dynamic controllability are not recognised, the ability 
to stabilise the system dynamically with a single instrument appears 
to contradict the necessity of using many instruments to stabilise it 
statically» The processes of static and dynamic stabilisation occur 
simultaneously; to use just one instrument for dynamic stabilisation 
means not that Tinbergen’s static rule is irrelevant but that only one 
of these necessary static instruments need vary dynamically, thus 
simplifying the complexity of the dynamic design problem»

This static-dynamic dichotomy is also important at the design 
level» Dynamically, the optimal regulator hypothesis is used to design 
policy to stabilise the system around the preferred static equilibrium; 
with the optimal controllers thereby constructed belonging to the class 
of either automatic or discretionary stabilisers, as discussed, for 
example, by Pack» Little is said in the thesis concerning the 
determination of the optimal static equilibrium, beyond noting that the 
flexible targets approach is a device to select an attainable static 
equilibrium in the absence of static controllability. Yet this approach 
is not the only manifestation of the optimality concept in the static 
literature: a second variant extends the preference ordering to the
static instruments, thus assigning them target status» For example,
Holt presents an optimal Keynesian multiplier model in which the target 
level of the instrument, government expenditure, is defined [p..23] "by 
the need for governmental services not considering the requirements of 
economic stabilization and growth"» Static optimisation in this case 
refers to the tradeoff between the allocation and stabilisation goals, 
the type of mtergoal conflict resolved by Musgrave in terms of his 
multiple budgets theory, Although, in examining the dynamic problems 
of existence and design, the thesis assumes that these static problems 
are settled, these points emphasise that both controllability and 
optimality serve different functions statically and dynamically»

Dynamic controllability is analysed in this thesis in the context 
of a linear dynamic model of a nongrowing economy» An immediate avenue 
for further research is the role of controllability in cyclical growth 
models, as presented for example by Phillips [1961] and Bergstrom» 
Nonlinear dynamics, when occurring in these models, will confine



195

controllability to a local rather than global relevance. The 
controllability criteria presented also ignore the effects of possible 
control constraints; investigation of these represents another 
theoretical extension,, In practice, it will be necessary to develop 
a theory of stochastic controllability applicable to econometric control 
models. The concept of reduction must also be investigated further.
To rationalise the choice of a reduced system, a measure of the degree 
of controllability possessed by a given system seems useful. Kalman,
Ho § Narendra explore this problem in terms of the minimum control 
energy necessary to send a given state to zero; while Kalman 
[1969, p.39] suggests, for linear constant systems, the absolute values 
of the nxn determinants of the controllability matrix. Development of 
these ideas may ultimately provide policy-makers with guide-lines for 
selecting the best mix to comprise a minimal set of dynamic instruments.

Resolution of the dynamic existence problem allows full attention 
to focus on the design problem. Two approaches to the design of 
dynamic stabilisation policy are recognised: classical and optimal.
The optimal approach is ostensibly a powerful generalisation of the 
classical approach; yet examination of the first major analysis of 
optimal stabilisation policy implies that the technique is still-born - 
for according to Fox, Sengupta § Thorbecke, optimal policies are 
destabilising. It is shown that the relevant contribution to the 
theory of optimal design is not this impossibility theorem but a 
sensitivity theorem stating that suboptimal policies are destabilising. 
Implementation requires precision, but optimal policies may certainly 
be designed*.

Turning to theoretical investigation of the properties of optimal 
stabilisation policies, optimal design with a lagged instrument is 
considered specifically. The concept of policy lag, as defined by 
Phillips, appears ambiguous. In reconciliation, it is argued that the 
distinction between potential and actual policy demands is a distinction 
between unobservable and observable variables, serving to identify the 
effect of inside lag. The nature of the lagged design problem is then

The history of the paradox is perplexing; Sengupta, in a subsequent 
paper, accepts that optimal design is possible but without reference 
to, or renunciation of, the paradox.
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developed, Although inside lag is not destabilising, it tends to 
induce cycles the more closely it matches in length the outside lag 
and the more strongly policy is applied. To inhibit these cycles, 
the target derivative is weighted in the performance functional, and 
it is demonstrated that choice of the weighting parameter greater than 
the length of the outside lag is sufficient to prevent cyclical 
fluctuations,

These conclusions are specific to the model employed and cannot 
be generalised. But the primary importance of this simplified analysis 
derives from the understanding gained of the structure of the optimal 
controller. When compared with a classical controller, the two 
controllers are seen to possess a common structure involving 
proportional and derivative feedbacks. And from the analysis of 
target derivative weighting, one of the roles of derivative feedback 
in the optimal controller is to dampen oscillations, a prime function 
of derivative feedback in classical stabilisation policies. Classical 
controllers also usually contain integral feedback but this is not so 
for the customary optimal controller. Again, the two design approaches 
may be reconciled after recognising that optimal policy is optimal not 
only with respect to a given criterion but also with respect to a given 
class of disturbances. Optimal controllers are commonly designed to 
counter impulse disturbances whereas classical controllers are 
traditionally designed to counter step disturbances. By including 
step disturbances in the formulation of the optimal design problem, 
integral feedback is shown to occur naturally in the optimal controller.

Appearance of integral feedback in any controller, classical or 
optimal, retiects a prior decision about the appropriate treatment of 
step disturbances. These may be treated as either a static or a 
dynamic problem. If treated statically, these disturbances must be 
measured exactly and offset in full by an opposite movement in static 
instruments; if treated dynamically, these disturbances need not be 
measured but are ultimately offset in full. The choice between the 
two approaches rests, therefore, on the tradeoff between design 
complexity and informational requirements. The static procedure is 
simpler to design but requires precise disturbance measurement; the 
dynamic procedure is more complicated to design but avoids the need 
for measurement. Where step disturbances occur with any frequency,



197

the use of integral feedback appears preferable,

Mundell’s principle of effective market classification [chap. 14] 
also utilises integral feedback (although not explicitly identified as 
such) to compensate for measurement difficulties, Mundell proposes 
that even though a system is statically controllable, the static 
structure may be incompletely known, precluding policy design by direct 
inversion. By specifying the rate of change of the instrument vector 
as a linear function of the level of the target deviation vector (that 
is, an integral feedback policy), where the linear relation is chosen 
so that the policy solution is stable and uses only known structural 
information, equilibrium can only be achieved if the target deviation 
is zero, as desired. This principle of effective market classification 
is a dynamic procedure for solving a static design problem; and 
therefore differs from the classical and optimal techniques which refer 
to the problem of dynamic design.

Thus it is demonstrated that classical and optimal stabilisation, 
as design methods, are fully reconciled; for an illustrative low order 
model, qualitatively similar controllers will be designed under each 
method. Optimal stabilisation is, however, more general than classical 
stabilisation which employs only proportional, integral, and derivative 
feedbacks. In the general regulator model, feedback is a function of 
state so that, depending on the state definition, any order of derivative 
feedback may occur in optimal controllers. The price of this generality, 
of matching control dynamics precisely to system dynamics, is that the 
state is internal to the system and generally unobservable. To institute 
feedback as a function of state, it is therefore necessary to observe or 
reconstruct the state from knowledge of the system and of the observable 
inputs and outputs. Kalman’s Principle of Duality - Kalman [1961], Sage 
[chap. 11] - reveals that this problem of state observation is the 
mathematical dual of the problem of policy optimisation. Practical 
application of optimal design techniques will require explicit 
consideration of state reconstruction.

As a generalisation of classical design, optimal design makes 
explicit both the design criteria and their relative importance. Since 
optimality is defined expressly with respect to a given criterion, the 
onus rests with the analyst to ensure not only that all desired policy
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objectives are adequately incorporated in the criterion but also that 
no concealed objectives are included. This problem of appropriately 
specifying and balancing objectives is the problem of degrees of 
freedom in performance specification; and considerable work remains 
to be done in defining policy options in this respect. Further insight 
may be gained by analysing optimal design as a frequency domain as well 
as time domain problem, along the lines suggested by Kalman [1964] and 
Brockett.

Dimensionality is an aspect of dynamic policy design that has not 
received sufficient attention in the theory of economic policy, This 
thesis therefore presents a preliminary exploration of computational 
problems associated with optimal stabilisation. Separate routines 
are derived for the finite horizon and infinite horizon regulator models. 
The preliminary nature of this work is stressed; extensions are 
necessary in at least three directions. Firstly, a particular 
computational approach is adopted without attempting to justify it as 
the best approach. The procedure therefore needs to be related to the 
family of available procedures - considered, for example, by Bryson §
Ho [chap. 7] and Falb [pp. 142-60] - and evaluated comparatively. 
Secondly, the procedure needs to be applied to stabilisation models that 
are essentially numerical without being unduly complex; in this way, 
an appreciation of applied problems can be obtained and the effects of 
increasing dimensional complexity can be assessed. Thirdly, the 
computational effects of introducing constraints on the state and control 
spaces need to be considered concurrently with their theoretical 
introduction. The problem of computation in implementing dynamic 
stabilisation policy is involved, substantial, and unavoidable.

Looking at dimensionality from a theoretical viewpoint, Peacock 
§ Shaw [p,141] have emphasised the inadequacy of scalar policy models 
for investigation of what is realistically a multi-dimensional design 
problem. This criticism is supported in this thesis with respect to 
both existence and design. The scalar policy model, traditionally 
used for analyses of dynamic stabilisation, suppresses concern for 
existence, and also precludes the possibility of reduction, a multi­
dimensional option. So far as design is concerned, the simplest case 
of the scalar policy model, the first-order model, is deficient in 
several respects: the range of possible dynamic behaviour is limited by
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the real saddle point requirement., thus inhibiting the problem of 
hyperstability; the precision loss problem, caused by comparison of 
nxn matrix blocks, cannot occur because n = 1; and there is no problem 
of establishing relative target and instrument tradeoffs. For these 
reasons alone, the effects of dimension must be carefully studied when 
attempting to generalise theoretical results obtained from low-order 
models.

Two extensions of the optimality concept in a multi-dimensional 
framework appear to have particular significance for economic policy: 
control by aggregation and hierarchical control. Aoki has proposed 
that large-scale dynamic systems be controlled by aggregating their 
relations according to certain criteria, and considering the optimal 
design problem for the aggregated system of reduced state dimension. 
Aggregated control has clear economic relevance and, since Aoki 
explicitly uses the aggregation concept developed by economists, 
incentive exists for pursuing this topic further. Recently, Mesarovic 
et_ aj_ have developed the notion of hierarchical optimal control. The 
economic significance of hierarchical control has already been 
established by Tinbergen’s analysis [1954] of centralised and 
decentralised policy-making; and is confirmed by such topical issues 
as coordination of Federal-State policy-making and policy harmonisation 
in customs unions. Integration of the mathematical and economic 
theory is therefore a natural progression.

To conclude, controllability and optimality, the conceptual 
expressions for existence and design used to structure this thesis, are 
united in a basic manner by Kalman [1969, p.49] who states that

"The possibility of constructing an arbitrarily good control
law is limited only by the controllability properties of the
plant."

In other words, the deeper significance of controllability is that it 
is not necessary that the economic system be naturally well-behaved; 
optimal behaviour can be induced artificially by feedback, provided the 
controllable model is an accurate representation of the real economic 
system. Yet for economists, if not for engineers, the proviso of 
accurate system modelling is a serious constraint. Phillips 
[1968, p.164] strongly emphasises that the economic control problem 
is a problem of simultaneous estimation and control, or of adaptive
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control; but, according to Kalman [1969, p.51],

"The theory of adaptive systems is much talked about, but 
very little has been accomplished,,"

This, then, is the challenge for economists. On the one hand, 
the magnificent promise of arbitrary adjustment of economic systems 
to promote stability, locally if not globally; on the other hand, 
the sobering prospect of accurate system estimation as a precondition. 
Whether this promise will be realised is presently one of the 
imponderables; but it is yet too soon for pessimism.



APPENDIX H a

AN OPTIMAL BERGSTROM REGULATOR

Bergstrom presents [pp,35-8] a Keynesian model of the goods 
market in an open economy, characterised by dynamic adjustment 
mechanisms on both the demand side and the supply side. Using 
the definitions

*
C E (1-s)(Y-T) + A, 0 < s < 1, A constant, (a.l)

E E C + I + G + X , (a.2)

P E Y + M, (a.3)

*
where C , E, and P denote desired consumption, aggregate demand, and
aggregate supply respectively, Bergstrom's model is

a *C = C , a > 0,D+a D E d/dt, (a.4)

1 = p+~T v D Y > V >T > 0, (a.5)

DY = y (S*-S) - ADS, y,A > 0, (a.6)

DS - P - E, (a. 7)

*
S = eE + F, e > 0, F constant, (a.8)

M = mE, 0 < m < 1, (a,9)

T = kY - B, 0 < k < 1, B > 0, (a,10)

X constant, (a.11)

G to be specified. (a.12)
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The variables of the model are:

C = aggregate 
1 E 
G E
X E »
YE
M E  "
S E "
*

S E "
T E "

consumption
investment
government expenditure 
exports
domestic supply 
imports 
inventories 
desired inventories 
taxation.

For the economics of this specification, see Bergstrom [chap. 3].

Equations (ad) to (a. 12) yield the dynamic reduced form

Z(t) = AZ(t) + bG(t) + d, Z(0)=Z , (a.13)

where

' A *

-a 0
yvr y(vr-l) 

r r
- (1-m) - (1-m)

aw
-yvX
-X
1

0
-yvy
-y
o

w = (l-s)(l-k) , 
r = X(l-m)+ye,

0 a(l-s)B+aA C(t)
avr > d = yvrX+yvyF , Z(t) = I(t)

r rX+yF Y(t)
-(1-m) - (l-m)X set)

(a.14)
Hence there are four state variables and one control variable.

Associated with (a.13) is a desired static equilibrium 

0 = AZ + bG + d, (a.15)

determined by principles considered in chapter III below. Subtraction
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of (ao15J from (a013) provides the dynamic disequilibrium system

2(t) = Az(t) + bg (t), z(0) = zq 0̂,

where

Z(t) e z(t) - 2 s

g(t) S G(t) - G.

C(t)-C E c(t) 
I(t)-I 5 i(t) 
Y(t)-Y E y (t) 
S(t)-S E s (t)

(a.16)

(a.17)

A regulator formulation to illustrate computational problems may 
be obtained by specifying a criterion functional for the dynamic 
system (a,16). Thus, taking the traditional targets of internal and 
external balance, and assuming Y in (a.17) is full employment income,

y = 0,

B - X - M = 0 <-> b = M - M = m(c+i+g) = 0,
(a.18)

are used as dynamic stabilisation objectives. Incorporating these 
objectives in a quadratic criterion functional then gives

, T

W = hI [y2(t) + 9b2 (t) + 0g2 (t)] dt, 0 ü 0, <f> > 0, (a.19)
-’0

where 0 and 4) weight the costs of external target deviation and dynamic 
control relative to each other and to the internal target.

Using the expression for b in (a.18), and recasting (a.19) as a 
quadratic form in the state vector z(t), an optimal Bergstrom 
regulator is given by:
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T
MIN W = ^ [z1 (t)Vz(t)+2Krz(t)g(t)+7Tg2(t)]dt
g(t) j0

+ Hz (T)Fz(T)

1 subject to

z = Az + bg, z (0)=zq  ̂ 0, z(T) free, (a.20)

T fixed, g(t), t e [0, T], unconstrained,

where

Gm2 0m2 0 0 0m2

CD 3 NJ 0m2 0 0 0m2K =
0 0 1 0 0
0 0 0 0 0

) + 0m2 >

h 0 0 0
0 f2 0 0
0 0 f3 0
0 0 0 f4

The parameters f. ^ 0 of the terminal weighting matrix F are terminal 
weights on the state variables z^(T).

Chapter II uses this Bergstrom regulator to demonstrate certain 
problems occurring in the development of a general computational 
algorithm for the regulator. Although no numerical applications to 
linear optimal stabilisation are presented in this thesis, the 
Bergstrom regulator is indicative of a numerical approach. The 
conceptual problems of the regulator specification are amplified in 
subsequent chapters.



APPENDIX lib

SUPPORTING PROOFS FOR COMPUTATIONAL ALGORITHM

The proofs of Lemma 2.1 and Theorem 2.1 are reproduced from Zadeh 
§ Desoer [pp.302-5]. Theorem 2.2 is not used in the final computational 

algorithm and its proof is therefore omitted.

Lemma 2.1

Since B(s) is the adjoint of [si - H] and d(s) = |sI - H | , the 

(i,k)-element of [si - H] 1 is M, .(s)/d(s), where M ^ ( s )  is the 
cofactor of the (k,i) element of [si - H ] . Therefore, M ^ ( s )  is of 

degree 2n-l at most in s. If B^+  ̂ is the matrix whose (i,k) element 

is the coefficient of s^n 1  ̂in M ^ ( s ) ,  j = 0, 1, 2n-l, then the
lemma follows.

The proof of Theorem 2.1 requires the following corollary.

Corollary

d2n-l
2n
E H - tr B(s)I n v ' s = 0 (b. 1)

where H , . is the cofactor of element h . . of H.li li

proof

Equation (2.14) implies

lim ^  {d(s)} = d2n l = lim y 1 si - H|. (b. 2)

By differentiation of the determinant and evaluation of the 

limit,

2n
d2n- 1 (b. 3)
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But from (2.15),

B(s), = B => tr B(s), n = tr B0 .Is=0 2n Is=0 2n

Now B2n(i,k) is the matrix of cofactors of ML ̂ (s) 
-H. Hence

(b. 4)

n or °f s=0

tr B(0) = tr B2n = - E H..
1 =  1

2n-l

from (b.3).

(b.5)

Theorem 2.1

From (2.13) ,

d(s)I = B(s) [si - H], (b.6)

or, from (2.14) and (2,15),

r 2n , 2n- l , , lT
[s +dlS +"'"+d2n-lS+d2nl1

= s2nB1+s2n'1[B2-B1H]+s2n'2[B3-B2H]+ ...

+stB2n-B2n-lHJ-B2nH- (b‘7)

Equating matrix coefficients in (b.7):

Bi - 1

B2 = B H + dxI

Bk.i = BkH + dkI

B

0

= B2n 2n-l

= B_ H + 2n

H + d

I.

2n-1I

(b. 8)
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This result establishes the first set of (2»16).

The scalar coefficients d. remain to be determined 
an arbitrary complex number. Then

d(s+a) = I (s+a)I - Hj,

with Taylor expansion

2 2n s
d(s+o) = d(a) + sd'(o) + + ••• + XH)id J

Since

lira ^  {d(s+a)} = d'(a) = d2n_j, 
s->0

then

d'(a) = tr B(a) <~> d'(s) = tr B(s),

by change of variable, and given the corollary above,
(bo 12) from (2,14) and (2.15) provides

V 11 v a  k - 1  r 2 n ' 1 B  B  „  , , -  ,l kd2n-ks = trts 6l+---+sB2n-l+B2n]> do = U k-o

Equating scalar coefficients: 

tr Bj = 2n 

tr B2 = (2n-l)d^

tr Bk+1 = (2n-k)dk

tr B- - 0.2n

Let a be 

(b, 9)

(a). (b,10)

(b.11)

(b.12) 

Evaluating

(b. 13)

(b.14)

And from the trace of the matrix equations (b.8),
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tr = 2n

tr = tr B^H + 2nd^

tr B^+i = tr B^H + 2nd^ (b.15)

tr B0 = tr Br  .H + 2nd0 . 2n 2n-l 2n-l

0 = tr B0 H + 2nd0 .2n 2n

The second set of (2.16) follows from solution of (b.14) and (b.15), 
using B = I from (b.8).

Theorem 2.3

To establish that W of (2.49) is simplectic, O'Donnell (i) 
exhibits the structure of W 1 implied by the Hamiltonian saddle point 
and (ii) demonstrates that W satisfies definition 2.2.

(i) Suppose that -A, A are eigenvalues of the Hamiltonian matrix 
H with right eigenvectors a, 8. Then

HB = Aß => JHrJ8 = A3, by (2.33),

so that

H]J8 = -AJB => (JB)rH = -A(JB)T . (b. 16)

And

THa - -Aa => JH Ja = -Aa, 

so that

HTJa = AJa => (Ja)TH = A(Ja)T . (b.17)

Hence (b.16) and (b.17) imply that J3 and Ja are left eigenvectors
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corresponding to -A, A.

In order that the left eigenvector matrix be the inverse of the 
right eigenvector matrix, biorthogonal normalisation is necessary. 
Now

(J3)Ta = 1, (Ja)*3 = 1 (b.18)

are, given (2.33), inconsistent. But by (b.16), (-J3) is also a left 
eigenvector of H corresponding to -A, permitting

(-J3)Ta = 1, (Ja)T3 = 1 (b.19)

as consistent normalising relations. Hence the right eigenvector 
matrix W associated with H has the structure

w = r w * 2n L 1 ' V

i—1 ii sT i—* •• 2nxn » W2 = [ßl •''• 2nxn *

(b.20)

and the normalised left eigenvector matrix W  ̂has the structure

w-; - t-jw2 ; jw/

t-jej ••• -Jen : joj . Ja ] n

( b .21)

(ii) From (b.21) and the definition of J,

w“1 = [-jw2 j jŵ jr

Tw‘j

T■w| j

But

(b. 22)

TJW J
-I T•V

TwJj

(b.23)
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Hence from (b„22), (b.23),

-JWrj = W"1 (b.24)

and W is simplectic by (2.47) „ Performing the indicated multiplication 
of the lefthand side of (b.24) yields equation (2.49) for W * in terms 
of transposed partitions of W.

Equation (2.82)

Using the Laplace transform method (cf. (2.12) and lemma 2.1) 
to evaluate E(t),

* -1
[ s I -A J

[si + X] -1

[si + I] -1

[si - X] -1

[si - Z] -1

(b.25)

Because of the block diagonality of (b.25), E(t) is then given by

E (t) =«C_1[s I-A"]* -1

•C 1[sI+X]‘1 0

X   ̂[sI+Z] ^

X"1 [ s l - x ] ' 1

0 X ' ^ s i - z ] “1

where X  1 is the inverse Laplace transform operator.

Since ±Z are, by (2.59), scalar diagonal matrices,

(b.26)

p-1 r X “ V i -1 ± Z tX  [si + Z] = e (b.27)

directly. Now, using (2.66),
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jC 1 [si + X]"1 = *£"1

s+â ±00̂

S s+â

fs+o ±00
(b,28)

+ 00 S +0

- 2 2A. = (s + a.) + oo. . j = 1 , .... c.
J J 1

The second part of equation (2.82) follows after evaluation of the 
inverse Laplace transform in (b.28).
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CODING FOR COMPUTATIONAL ALGORITHMS

Fable II„1 depicts the basic structure of the computational 
programs derived from chapter II„ Finite horizon regulator solutions 
are obtained using the sequence MAIN, [1], [2], [3], [4A], and [5], 
together with dependent subroutines« Infinite horizon regulator 
solutions use the same sequence with [4A] replaced by [4B]«

Routines belonging to columns A and B are either program control 
or input/output routines, and are therefore specified with maximum 
dimensions« Routines belonging to columns C to E are task-oriented 
and are written with variable dimensions, the exceptions being the 
output routines 0UTPUT, R0UT, TEST, ATEST» Column E contains routines 
performing standard tasks of matrix manipulation required at various 
points.

Coding for the finite horizon program is given on pp» 214-41 below, 
with the maximum dimensions and input/output routines appropriate for 
the Bergstrom regulator of Appendix Ila. Output for a single run is 
attached on pp. 242-9» The subroutine GRAPH, written to handle large 
quantities of output graphically, is model-dependent and not included 
here» Also not shown are the double precision IBM library subroutines, 
DPRQD and MINV.

Member routines of [4B], necessary for the infinite horizon program, 
and not appearing already in column D, are shown on pp» 250-4 below» 
Output for a single run, with the same system configuration as the finite 
horizon run, follows on pp» 255-60»
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TABLE II.l

STRUCTURE OF REGULATOR PROGRAMS

A B O D E

—  [1 ]— P ARAMS

— [2]— AFORM

— [3]-PASSl-

MAIN

■EIGVAL-
~  CHAREQ 

R00TS 
EIGSRT 

L  R0UT

— [4A]— PASS2- FINITE

“ VECGET 
‘-EIGVEC 

FEEDC0 
0UTPUT 
TEST 

■ PARTP 
RICC0N 
TRANEX 
TIMATS 
C0SR0G 

— STAC0N

— [5]— GRAPH

L- [4BJ— PASS2------- AT0TIC

-VECGET 
'-EIGVEC 

FEEDC0 
0UTPUT 

- ATEST 
PARASP 
C0ST 
EXMAT 
STATE 

- S T E E R

MATEQO

VMULT

TRACE

MSAVE

MULTM

MATADD
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APPENDIX III

PROOF Of THEOREM 3,4

The proof of theorem 3„4 follows a proof given by Ogata [pp.385-7], 
simplified by the assumption that the structural matrix A has n distinct 
eigenvalues. For supplementary material, see also Kalman, Ho § 
Narendra, Äthans § Falb [pp,200-20j, and Zadeh § Desoer [pp„495-514].

It is necessary to demonstrate that a solution u (t) exists 
satisfying equation (3,45): i te,

x (0) = e A Bu(T)dTe
'0

Now

(1)

e-At
n-i
£ a,(t)A1, 
i=0

where

(2)

-1
OCq (t ) 1 Xj Xj ... a""1 A t

e

0 ss 0 0 o
• 0 A T

a (t ) 1 A A2 ... A11’1 nen-1 n n n

(3)

The reasoning leading to (2) encompasses two concepts: (i) that a
convergent infinite matrix series (such as the matrix exponential) of 
an nxn matrix A with distinct eigenvalues can be expressed as a 
polynomial in A of degree n-1; and (ii) that this polynomial can be 
given a unique representation by means of the Sylvester-Lagrange 
interpolation formula. See Ogata [pp,257-60, 317] and Zadeh § Desoer 
[pp.607-9],

The result (2) is used to convert (1) into a set of algebraic
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equations, to which theorem 3„1 is applied to define necessary and 
sufficient conditions for existence. Thus

n-1 T 
x(0) = - Z

i=o
o u (t )A Bu(x)dT (4)

But

u (t )
Ük

Z u.(T)e.,
J J (5)

where is the jth column of the unit matrix.

Therefore (4) becomes

n-1 k i,x(0) = - Z Z {a.(t )u .(T)dx} A B., 
i=o j = l 1 J J

(6)

thwhere B. = Be. is the j column of B 
J J J

To simplify the algebraic expression (6), define the scalar time 
functions

3ij
fTa.(x)u.(x)dx, 
JO J

n-1 . k
x (0) = Z A1 {Z 3. B. } o 

i=o j=l

(7)

(8)

The bracketed expression in (8) is

k
Z 3- ■ B . =
j-i 1J 3

il
>i2 =tB! B2 V (9)
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n-1
x(0) = Z A 1Bßi = Bßo + ABß. 

i~o
+An ‘iBßn-1

=* [B AB ... An ':Bj (10)

Or

Qß = x(0), (nxnk„nkxl - nxl), (11)

where Q is the controllability matrix (3,46), and ß is the nkxl vector 
on the right of (10).

Hence a transfer between x(0)^0 and x(T)=0 is possible iff the 
linear algebraic system (11) possesses a solution vector B. And from 
theorem 3.1, a necessary and sufficient condition for this is that Q 
possess row rank (n), as stated in (3.47).



APPENDIX IV

PROOF OF THEOREM 4.4

Commencing from equation (4.50), postulate the smooth controller

u(t) = FT (t)y,

such that

(kxn.nxl), (1)

P_1x(0) -  ( F( t)FT (t)dt}y, (2)

where

F(t) E T^SC-tJB, B E P"1B. (3)

Then necessary and sufficient conditions for which the integral term 
in (2) is nonsingular are necessary and sufficient conditions for 
dynamic controllability of x ~ Ax + Bu.

Now

F FT 
nl nl

F(t)F\Ct)

F F n n. s 1

s
n = E n., s $ n, (4)

i = l 1

where from (3) and (4.48), (4.51):
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Fn
~A, tle Bn

-V= e

A

,xB , 1 n» . 1l
n. . 1 rowsi

n ,r. rowsl l

i » 1, . s. k columns (5)

Consider a particular case of in (5), corresponding to the group 
of Jordan blocks:

(6)

where

nL = 5, t ̂ = 3, pt = 2,

n,o1 = 2, n„o2=2? n „ „ 3 = 1l l l

(7)

Then for k = 2, (5) becomes
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F c -  e ru =5
• V

1 - t  j

. 0 1 J
bl l  b 12 j

1 b21 b 22 '

>

j
1 - t  1

t  ^  \

b 7, b , _ I31 32 1
/v  / \ L

0 1 b . b ̂ 41 42 J I

f )
> ✓ > /v  s

b b
1 I 51 52

l J l J

l 2 rows

2 rows

1 row

( 8)

Hence,

2 columns

np * 2 A. o t

V s - «  1

5 u  ( f ) ^ i2  Ĉ J

A

b21 b22

S3 1 ^ ä 3 2 Ct)

cr
 >

b42
A

bS 1 b52

b21 63 1 Ct^ b41 ! b511

1 2 ^ b22 63 2 ^
A ! /s

b , 0 : b co 42 i 52

( 9)

6. . ( t )  = b . . - t b r . , v . 
i j  i J  ( i + l j j

C ons ider  the  r  xk m a t r ix
l

b21 b22

b41 b42

bSl b52
3x2

( 10)

+A. t
formed from the  l a s t  rows o f  each p a r t i t i o n  o f  e F i n  ( 5 ) ,  f o r

-1the p a r t i c u l a r  case  (8)«, S ince  B = P Bs and p(B) = k ,  r ^ - k  rows o f

B. can be w r i t t e n  as l i n e a r  combinations  o f  the  remain ing  k row s , But 
- 1 TB̂  occurs  i n  the  p ro d u c t  F F , as i n  ( 9 ) ,  which must t h e r e f o r e  c o n t a i n

i i
r ^ -k  l i n e a r l y  dependent  rows,  u n l e s s
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P(V  = r i (id

Condition (11) is therefore necessary for nonsingularity of the product 
(4) and (9). It is also sufficient: if, in (9), the constant elements 
of 6 ^  (t) vanish, satisfaction of (11) ensures that rows containing the 
terms 6 ^  (t) are linearly independent.

Regarding (4), if (11) is not satisfied for some i, the n^xn matrix

F F n. n,l 1
TF F n, n i s

s
Z i 
i = l

(12)

must contain linearly dependent rows. Hence

p(Bi) = ri , i = 1, s, s $ n, (13)

are necessary and sufficient conditions for nonsingularity of T TF(t)F (t)dt in (2), and therefore for dynamic controllability.,0



APPENDIX V

RICCATI AND TARGET SOLUTIONS FOR PHILLIPS REGULATOR

From Murphy [p„229,(60)J, if

k = a~k + a.k + a , 2 1 o CD
then

k - k = (k-k^) Cexp (a2(k -k2)t} (2)

where k^, k2 are the distinct roots of the quadratic

a0k + a,k + a - 0 2 1 o (3)

Apply the boundary condition k(T)=0 to obtain

C = (k1/k?)exp - {a2(ki-k2)T} (4)

Solving (2) for k, and using (4);

k(t)
k^-k.exp{-a2(k1-k2)(T-t)}
1 - (k x 7k 2) exp { - a k^- k 2) (T-1) } (5)

From the text equation (So 19),

a_ = cb 1w2: a, ~ 2sw: a = -12 r * 1 o (6)

Hence

‘1/2 ,-l(J) w
± 0-s n , 2 , - l ^ h  

, 6 = (s +4 ) (7)

The Riccati solution (5=20) follows readily from (5) and (7)

The differential equation (5=17) in the target has the solution
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-1 2 ^y(t) = -y(0)exp i~(swt + <J> w | k(T)dt)},
' o

(8)

so that

CK (t )cLt f' A(l-DeB j 
o l+CDeBT

dT, (9)

is required, where from (5.20),

A = (j)w_1 (0-s) ; D = e’BT; B = 2w0; C = U+s (10)

Now

u r 1F(e )dt = g- F(z) , Btdz, z ~ e z (11)

Hence (9) becomes 

Bt
A |e 1 - Dz

1 ~ B J z(1+CDz)

n
(I (l+C) D-i 
z " 1 + CDz d

= [| logz - log (1+CDz)) ®

. - 2But log z - Bt , and A(1+C)/BC = 4>w , so that

(12)

j n ± -2, ,1+CDe \I - At - 4)w log (-Y7c5---) (13)

Applying (13) to (8), and using the identity k=exp (log k),

y(t) = y(0) exp { - ( s w + ^ w ^ t } (14)

The solution (5,21) follows after substitution for A,B,C,Da



APPENDIX Via

SOLUTION OF ASYMPTOTIC RICCATI EQUATION

From (6o26) the solution matrix K of

T
-KA - ATK + K”  K = V, 

is required, where from (6„18) and (6„29):

k ki 0 10 1

ki k2

, A =
+nsw - (>±sw)

0  0  

2 2 , v =

1 0

0 n 14 0 0

Equations (a.l), (a 2) yield:

(a.l)

(a.2)

0 1n2w^k^±2nswki, inswk^-k + (ri±sw')k̂  +0 ^n^w^k^k^

. . r + .-12 2.. (j)'1n2w2k^+2(n±sw)k0±nswk2-ko+-Cn±sw)k1+4) n w 2k 2 2

(a.3) 
Or

fiPV f 1 2 ^ k o* k l* k 2 ’)
=

1 0
f1 2Ck0* k 1 > k2̂ f 2 2 Ck i> k 2^ 0 0

(a.4)

with the solution sequence f ̂ ^^^2 2̂ "̂ i2 a ai^e<̂ the rea  ̂positive
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d e f i n i t e  c o n d i t i o n s  on K:

k . k~ > 0o ’ 2

k k« > k 20 2 1

k , k. o ’ • 1» k 2

S o lu t i o n  of. f j jC k ^ )  = 1 p ro v id e s

(+s) ± e
1 A ' 1

<J> r i w

where

2 -1 ise = (s +<J> ) 2.

(The b r a c k e t e d  term (±s) r e f e r s  to  th e  s t a b i l i t y  c o n d i t i o n s  w 

term ±0 to  th e  two s o l u t i o n s  o f  th e  q u a d r a t i c . ) *

S o lu t i o n  of  ^ 2 2 ^ 1 »  k2 =  0 p ro v id es

k —2

- (n±sw) ± [ (n±sw) 2+2c|) ^p2w2k . ] ^  
2 2

9 n w

Having r ega rd  to  c o n d i t i o n s  ( a , 5 ) ,

k2 > 0 as k^ > 0

Hence

0 + s

1" yr~9 p w
> 0 ,

y - (p±sw)

‘2 = , - l  2 2 9 p w
> 0

where

y = [ (p±sw) 2+2c|) 1p 2w2k 1]"2 = (p2 +s2w2 + 2pw0) 2

( a . 5)

( a . 6)

( a . 7) 

> 0,  the

( a . 8)

(a.  9)

( a . 10) 

( a . 11)

( a . 12)
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The solution for kQ is only required to show that the positive 
definite conditions (a,5) are satisfied» The solutions (a»10) and 
(a, 11) can be shown to satisfy (a^).



APPENDIX VIb

RICCATI SOLUTION WITH TARGET DERIVATIVE WEIGHTING

The state weighting matrix with y / 0 is

V = Cb, 1)

2A new solution for obtained from f22(kj, = U > is thus required;
that is, using (a.3) of Appendix Via, of

cf> *r|2w2k2 + 2(q±sw)k2 - (2k1+y2) =0, (b.2)

Hence the term (2k ) in (a.8) and (a.12) of Appendix Via must be 2 1accompanied by y , so that (a.11) and (a.12) become

A

Y - (n±sw)
k2 = ~ rr— ---- > 0, (b.3)

4> pw

where
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