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CHAPTER I

INTRODUCTION

This thesis is a contribution to the theory of economic policy
under certainty, viewed in. abstract rather than specific terms. Concern
is not for particular applications, such as the debate over monetarism
and fiscalisml, but for theoretical principles. = More precisely, the
thesis is built around the two fundamental issues of existence and design.
By existence is meant the primary ability to stabilise a given economic
system; by design, the techniques employed to construct a stabilising
policy once existence is assured. This thesis contends, firstly, that
the question of existence has been ignored in the theory of dynamic
stabilisation; and secondly, that several aspects of dynamic design
theory yield profitably to further analysis.

Analysis of existence and design is undertaken by pairing each issue
with a specific concept. Thus to existence is applied the concept of
controllability; and to design, the concept of optimality. To explain
the relevance of these concepts and their effect on the structure of the
thesis, this introductory chapter divides into three sections. Section
1.1 defines the existence and design problems to be investigated and
briefly relates them to received economic theory. Section 1.2 formally
states the policy framework within which these problems will be
investigated. To provide a starting point for subsequent analysis, a
concise and selective review of the theory of linear optimal design is
provided for this framework. Section 1.3 then presents a synopsis of
later chapters.

1.1 PROBLEM STATEMENT
As a unifying device, Howard's concept of the problem space may be

applied to the theory of economic policy to delineate the problems to be

analysed. According to Howard, three dichotomies are basic to any

1 Cf. the critique by Fand.



decision problem, those defining whether the problem is:

static or dynamic,

deterministic or probabilistic.

(ii) wuni-dimensional or multi-dimensional, and

The combinations produced by these dichotomies are clarified by Figure

1.1, reproduced from Howard [p.212].

to the theory of economic policy is immediate;

The relevance of (i) and

(1ii)

4)

(2)

Many

Dimensional Complexity
Few

(6)

(8)

8% o (3)

M)

(5)

(7)

Degree of Uncertainty

Probabilistic
Deterministic

Figure 1.1
Problem Space

Y

(ii) categorises the

dimensional complexity of the policy problem, in the present context

referring to the number of instruments and targets appearing in the

reduced form of the policy model.

Each of the eight corners of the problem space of Figure 1.1

corresponds to a particular set of problems in the theory of economic

policy.

Corner (1) refers to static deterministic models involving a



single target and single instrument; the prime example being the
aggregative demand model used for Keynesian gap analysis. Corner (2)
generalises this simple policy problem to a multi-dimensional context.
The seminal work here is by Tinbergen [1963, 1966] who first provided
necessary and sufficient conditions for existence of a solution to the
general static policy problem. These two corners comprise the static
theory of policy under certainty; the results of which are firmly
entrenched in economics, as évidenced by the representative analyses of

Bent Hansen, Nevile, and Peacock & Shaw.

Remaining in a deterministic framework, Phillips [1954, 1957]
demonstrated convincingly the necessity of explicitly accounting for
the dynamics of economic systems in formulating policy. This analysis,
conducted with a dynamic single-target single-instrument model and
therefore referring to corner (3), initiated the study of classical
stabilisation policy, also contributed to by Allen [1960, 1968] and
Tustin. In a first step towards corner (4), Bergstrom [chap. 6]
subsequently developed classical stabilisation policies for multi-
dimensional models of cyclical growth. Fox, Sengupta & Thorbecke, in
a separate direction, investigated the concept of optimal stabilisation
as a generalisation of classical stabilisation, both in a uni-dimensional

framework - corner (3) - and in a multi-dimensional framework - corner

(4).

These deterministic corners (1) to (4) constitute the domain of
investigation of this thesis: the dichotomy (iii) being suppressed,
with problems of uncertainty ignored. It is readily agreed that a
theory of stochastic policy is the ultimate objective of research work
such as this thesis., Important contributions to the excluded corners
(5) to (8), representing progress towards this goal, are the certainty
equivalence principle in the time domain, as used by Fox, Sengupta &
Thorbecke, Holt, and Theil, and the Wiener-Hopf technique in the
frequency domain, as used by Phillips [1958] and Whittle [chap. 10].
But before attempting to achieve this generality, it appears desirable
to remove a fundamental gap in the theory of policy concerning dynamic
existence and to consolidate the theory of classical and optimal design.
The issues to be analysed are better comprehended without the
complications of uncertainty, and the major conclusions lose little by

this simplification.



The four deterministic corners fall naturally into the static
pair (1), (2) and the dynamic pair (3), (4). Regarding this division,
the idea of existence is prominent in the static theory; and the idea
of design, prominent in the dynamic theory. The static bias towards
existence is explained both by the simplicity of the static design
problem and by the logical precedence of existence over design. Thus,
provided a certain instrument coefficient matrix is invertible (existence),
appropriate policy is obtained simply by inversion (design). Once
existence is ascertained, design is therefore trivial. In contrast,
there is no concept of dynamic existence but there are two well-defined
design concepts: classical and optimal. The reasons for this are
partly contextual and partly historical. Contextually, design of both
classical and optimal stabilisation policy has generally referred to a
uni-dimensional single-target single-instrument model; and the problems
of existence and design have therefore been resolved simultaneously by
exhibiting a specific policy. Historically, Phillips' application of
classical control techniques to dynamic stabilisation policy preceded
any analysis of existence in control theory; and this therefore provided

an inbuilt bias towards design.

Although an implicit treatment of existence suffices in low-
dimensional models, it is unsatisfactory in the general multi-dimensional
model. Dimensionality precludes general theoretical analysis of policy
and necessitates numerical analysis. It is then preferable to determine
existence explicitly rather than on an ad hoc basis for each particular
numerical application. More importantly, it is desirable to be able
to define the general characteristics of a policy model that promote or

prevent effective stabilisation.

Existence of a policy solution to the multi-dimensional problem of
dynamic stabilisation is therefore a major issue analysed in this thesis,
The remaining issues pertain to design theory. As noted, dynamic design
theory divides into classical and optimal design; and it is natural
therefore to contrast and compare these two approaches. Before this
evaluation is undertaken, examination reveals a paradox underpinning the
theory of optimal stabilisation. This paradox - that optimality and
stability are conflicting policy attributes - has been stated by Fox,
Sengupta & Thorbecke. The paradox is shown to be false. To define

the consequences of optimality, and to relate optimal policy to classical



policy, optimal policies are then derived for a simple uni-dimensional
model. The dimensional simplicity of this analysis is balanced by an
analysis of the numerical problems created by dimension in a general
multi-dimensional model of optimal stabilisation,

To summarise, the major aims of this thesis are fourfold:

(1) to resolve the problem of dynamic existence,

(2) to defend and explore the concept of policy

optimisation,

(3) to integrate classical and optimal design techniques,

and
(4) to confront the problem of multi-dimensional design.
These aims are now given a little more flesh and substance in section
1.2, which specifies the policy framework within which the existence
and design of stabilisation policy will be investigated.

1.2 POLICY FRAMEWORK

Four elements taken together comprise the problem of dynamic

stabilisatioh studied in this thesis:
(1) a system to be stabilised,
(ii) a set of available instruments,
(iii) a stabilisation objective, and
(iv) a measure of system performance.

In particular, the stabilisation problem will be specified formally a52

Throughout the thesis, xT denotes x transpose; and X > 0 (X > 0)
signifies that the nxn matrix X is positive semidefinite (definite).



T T T T
MIN W = %2 (T)Fz(T) + 4 J [z" (£)Vz(t)+u (t)Ru(t)]dt (1)
u(t) 0 .
subject to
z(t) = Az(t) + Bu(t), z(0)=zo#0, z(T) free, (2)

T fixed; u(t), t e [0,T], unconstrained,

(3)
F, v>0, R>0, F, V, R symmetric,
with dimensions given by
z: nxl; A, V, F: nxn; wu: kxl; R: kxk; B: nxk. 4

The linear constant differential system (2) depicts the dynamic
behaviour of the system to be stabilised, corresponding to (i) above.
In this representation, the dynamic targets z(t) are assumed to exhibit
first-order dynamics determined linearly by the levels of the targets.
z(t) and instruments u(t). The instruments, the element (ii) above,
are assumed piecewise continuous and freely adjustable. A policy
problem is created by assigning a stabilisation objective to this system.
For the system (2), the stabilisation objective (iii) is stipulated as
z(t) = u(t) =0, t >T >0, where T is the stabilisation horizon. When
the dynamic motion of (2) ceases and this objective is satisfied, a
desired static equilibrium is presumed to obtain., The question of
existence occurs naturally at this point. Can the system (i) be
stabilised with the available instruments (ii) to achieve the desired
objective (iii)? Given a precise statement of this existence question,
the concept of controllability will later be shown to lead to conditions

necessary and sufficient for policy existence.

Assuming that a policy solution does exist, the major practical
question of design must be tackled. To facilitate the logical design
of policy, a measure (iv) of system performancé under control is
specified and a policy giving best performance chosen. Thus for the
system (2), a policy u(t) is to be chosen to minimise the integral (1),
over the stabilisation horizon T, of a quadratic form in the target and

instrument vectors. Since the integrand of (1) is of the form



J(z-z,u-u), where J is a quadratic scalar function and z = u = 0, the
stabilisation objective (iii) is therefore embedded in the performance-
measure (iv) so that deviations from the desired static equilibrium are
penalised quadratically. The weighting matrix V ekpresses the relative
weights attaching to target deviations; and the weighting matrix R, the
relative weights attaching to instrument deviations. Additionally,
since target behaviour is to be determined by instrument manipulation,
the relation of V to R specifies the target-instrument tradeoff, the
relative weighting of target equilibration against instrument
equilibration., The remaining term in (1), zT(T)Fz(T), penalises
deviations of the terminal target from the desired equilibrium; and

is included, when T is finite, to give greater flexibility in controlling

endpoint behaviour.

Traditionally the specification (1) to (3) is termed a fixed-time,
free endpoint optimal»regulatorz. Although there are several other
possible formulations of the design problem of optimal stabilisation,
this particular formulation serves most conveniently for analysis of the
design issues to be considered. Chapter VII does, however, consider
some of the alternatives. Formal solution of this dynamic optimisation
problem may be achieved using methods of varying degrees of generality,
ranging from the classical calculus of variations to the maximum
principle of Pontryagin et al. The brief review that follows, based
mainly on Athans & Falb [chap.9], is of the theory of linear optimal
control and is directed solely towards the construction or synthesis of
the optimal policy solution to this regulator problem. To supplement
this review, Kalman. [1963a] provides a perspective of the historical
development of optimal control theory; while Falb presents a

comprehensive analysis of existence, necessity and sufficiency.

According to Kalman [1963a, p.310],

"The theory of optimal control, under the assumption that
the equations of motion are known exactly and the state can be
measured instantaneously, may be regarded as a generalisation
of the problem of Lagrange in the calculus of variations:
minimization of an integral subject to side conditions, which
may be ordinary or differential equations."

For this reason, the modern solution of the regulator problem (1) to

3 Athans & Falb provide a detailed rationale [pp.750-6] for this

regulator formulation.



(3) may be usefully approached from the classical calculus of
variations. Consider, after Sage [pp.56-9], a nonlinear dynamic

system operating over the fixed interval [to, tf]:
= £(z,u,t),  z(t )=z, (5)

and determine the control u(t) to minimise

’tf te ‘
= ¢(z(t), t)lt + Jt ¢(z(t), u(t), t) dt. (6)
o o ‘ »

This formulation subsumes the regulator problem as a particular case
of the vector functions f, ¢. Adjoining the constraint (S5), the

equivalent minimisation problem is:

te te T
MIN W = ¢(Z,t)[t + Jt (¢(z,u,t) + p (t){f(z,u,t)-21dt, (7)
u(t) o 70

where p(t) is a costate vector of the same dimension as the state vector

z(t). Here, the definition of the Hamiltonian function

0(z,u,t) + pl.£(z,u,t) (8)

H(z,u,p,t)

is essential to the modern solution. Applying (8) to (7) supplies

t
MIN W = ¢(z, t)l £

t
+ th(H(Z:u:P:t) 'PTi)dt, (9)
u(t) o o

which, after integration, is

t t
MINW = (6(z,)-p'2)| T+ thCH(z,u,p,t) + pla)dt. (10)
u(t) o o} ’

Now the first variation of W is

t
ow=[62' (32 - p)IlF f Flo" @+ ) + @by ae. )
)
First order conditions for a minimum of the functional W require SW to

vanish identically for arbitrary variations 8z, Su, so that

H
== 0, | (12)



p=-o2, (2 = 35, from (5), (8), (13)
T .9¢ to
Sz [52 -pl=0, t= {tf' (14)

Without regard to existence and uniqueness, these three necessary
conditions heuristically define the modern solution structure. The
stationarity condition (12) indicates that minimisation of the functional
(6) requires a stationary solution of the Hamiltonian function (8).

This is a problem to which the traditional static optimisation apparatus
may be applied. Simultaneously,‘the original dynamic.state constraint
and the additional dynamic costate constraint, as given in (13), are to

be satisfied V t € [to, tf]. These differential equations are equivalent
to the classical Euler-Lagrange necessary conditions for a minimum of W.
As for any differential system, boundary conditions must be available if
~a unique solution is to exist: these are .provided by the third necessary
condition (14), and are referred to as the transversality conditions for
the problem, Now by (2) the terminal endpoint z(T) is free, so that

the variation 6z (T) is arbitrary; hence satisfaction of the

transversality condition requires

30
sz - P (15)

The original minimisation problem therefore reduces to the problem

of obtaining solutions to the differential system
Z ==, p=-= (16)
with split boundary conditions

z(to) = 2z

o Pt = 36/0z(ty), (17)

where the control u(t) and costate p(t) are linked through the

stationarity condition oH/9u = 0.

It is the solution of this boundary value problem that
particularly distinguishes the modern theory from the classical theory.
Specialising to the optimal regulator model (1) to (3), the Hamiltonian

becomes



10

H = %2Vz + LuRu + pT(Az+Bu), (18)

and the differential system (16) is therefore

%§-= 2 = Az + Bu
p
) (19)
oH _ , _ T
“xy = b = -Vz - A'p.
\
Using (15), the transversality condition is
8 [z (T)Fz(T)] = p(T) <=> Fz(T) = p(T 20
aZ(T) [22 Z( = P ) = Z( ) - p( )) ( )
and the remaining necessary condition, 9H/ou = 0, implies
Ru + Blp = 0 <=> u(t) = -R 1BTp(t). (21)

Substitution of this relation between the control and costate into the

differential system (19) produces the two-point boundary value problem

————r i ———

comparable to (16) and (17).

Prior to solving (22), two implicit assumptions need attention:
that 9H/du = 0 produces a minimum of the Hamiltonian, and that this
minimum corresponds to a minimum of the performance funcfional'w. The
second-order condition for a minimum of the Hamiltonian (18) with respect
to u(t) is that 32H/3u2 = R be positive definite, and this is satisfied
by an assumption in (3). In classical terms, the second-order conditions
for minimising W require the second variation of W to be a nonnegative
definite form. Since this second variation is expressible in terms of
the Hamiltonian, the second order conditions become, following Athans
& Falb [pp.269-70],
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9°H )
2 i
92 i ou 0z
----------- q---=------| 2 0, F3> 0, ‘ (23)
1
5 SH.T | 5%H
(— )" —
du 9z i ou

For the regulator problem, these.conditions.are satisfied by the
assumptions on F, V, and R in (3).

Returning to (22), observe that the differential system is. linear,
with boundary conditions split equally between the origin and termination
of control. Suppose the transition matrix for this system, of order
2nx2n, is ®(t,0) such that

-------------------- . (24)

1]
1
1
1
[}
}
}
I
!
i
1
1
§
_—— e ————

Now the initial costate p(0@) is unknown, so consider.the positive

translation
. —_ R : — —_
z(T) @11(T,t) i @12(T,t) z(t)
------------ R e e e e T N EETEET T IR (25)
p(T)=Fz(T) 2, (T,1t) ‘ 2,,(T,t) p(t)

solution of which for p(t) provides the relation

p(t) = K(t)z(t),
(26)

K(t)

‘ -1
'[F©12(T't)'¢22 (T't)] [Fcbll(T"t) —¢21(T't)] >
where the indicated inverse is known to exist.
At the solution level, the costate is therefore related to the state

by means of the time-varying function K(t). At the lower level of the

differential system (22), this relation is manifested as
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s At -mrheT 2
--------- S GREEEt SEEEEEEEETTEy | PEEEETY 27
Kz+Kt v AT Kz
reducing to
[K + KA + ATk - KBR™YBTK + V]z(t) = 0 Vt ¢ [0,T]. (28)

Now from (27), z(t) is the solution of the differential equation

2(t) = [A - BR!

BK(t)]z(t), z(0)=z_. (29)
For arbitrary initial conditions z(0), and for z(t) satisfying (29),
K(t) must therefore satisfy the nonlinear (Riccati) differential
equation

K(t) = -K(t)A - ATK(t) + K(t)BR™*BTK(t) - v, K(T)=F, (30)

with the boundary condition deriving from (20) and (26). Athans §&

Falb then show that a solution K(t) of (30) exists, is symmetric positive
definite for t e [0,T), and symmetric positive semidefinite for t=T;

and that a solution to the optimal regulator problem therefore exists

as a consequence, [pp.764-6].

Following this brief review, oriented solely towards exhibiting
the optimal solutions in useable form, the solution theory applicable
to the optimal stabilisation models considered in this thesis is
collected in two theorems. Theorem 1.1, based on. equations (21), (26),"
(29), and (30), specifies the solution structure of the optimal
regulator when the stabilisation horizon is finite; theorem 1.2
indicates the appropriate modifications for an infinite stabilisation

horizon.
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Theorem 1.1
For the finite horizon regulator model as defined,

(i) an optimal control exists, is unique, and is given
by

u(t) = -RIBTk(t)z (1), (31)
where

(ii) the nxn symmetric positive-definite matrix K(t) is the

unique solution of the matrix Riccati equation

k= - ka- ATk + kBR7IBTK - v, K(T)=F, (32)

and

(iii) the optimal state vector is the unique solution of - the

linear time-varying differential system

2(t) = [A - BRUBTK () ]2(0), 2(0)=z,. (33)

Theorem 1.2

If, in theorem 1.1, T = « and the dynamic system (2) is
controllable, then the results of that theorem are valid provided

lim K(t)

Tooo is the

the substitution K(t) = K is made, where K =

constant nxn symmetric, positive definite matrix solution of the

algebraic equation

- kA - ATk + kBR7IBTR - v = 0. (34)
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1.3 SYNOPSIS

The six central chapters divide into three groups: chapter II-
studies the effect of dimension on the design of optimal stabilisation
policy; chapters III and IV analyse the problem of the existence of
stabilisation policy; and chapters V, VI, and VII explore the theory
of optimal stabilisation policy, abstracting from dimensional
complications. '

Implementation of the optimal solutions just reviewed is only
possible on a numerical basis for the general multi-dimensional
regulator model. But straightforward numerical application of
theorems 1.1 and 1.2 proves unworkable, Chapter II investigates the
reasons for this, the primary objective being the development of
computational routines for the finite horizon and infinite horizon
regulator models. This chapter utilises current computational research
in the control literature, and contributes to this work through provision
of a transformation to handle complex arithmetic due to oscillatory modes
in the optimal solutions. The two principal results are the generation
of workable computational procedures; and the acquisition of a deeper
theoretical understanding of the regulator solution structure. After
this general analysis of the multi-dimensional optimal design problem,
the third group of chapters is justifiably able to specialise to the
uni-dimensional design problem, making full use of the theoretical

content of chapter II.

Chapters III and IV formulate and solve the problem of dynamic
existence analogous to the static problem solved by Tinbergen. ' Solution
of this problem relies on the concept of dynamic controllability developed
in modern control theory, especially in the writings of Kalman. This
concept is shown to provide a dynamic rank criterion necessary and
sufficient for existence. Except for a special case of the target-
instrument dimensions, for which static and dynamic existence criteria
coincide, the dynamic criterion is not susceptible to immediate economic
interpretation. Both chapter III and chapter IV therefore attempt to
develop economic motivation for the criterion. Chapter III provides
alternative conditions that are sufficient for satisfaction of the rank

criterion, while chapter IV provides conditions that are necessary as
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well as sufficient. Dynamic existence is shown to involve two factors:
the determination of the minimal number of instruments required for
stabilisation, and specification of necessary and sufficient conditions
to be satisfied by such a minimal set. As a result, these two chapters
place dynamic policy-making on the same footing as static policy-making,

allowing existence to be demonstrated prior to design.

Turning to the optimal design of stabilisation policy, chapter V
considers the impossibility theorem enunciated by Fox, Sengupta §&
Thorbecke: that optimal stabilisation policies are destabilising and
suboptimal policies, stabilising. Were this theorem valid, further
progress in designing optimal stabilisation policy would be prevented.
But the theorem is clearly invalid, contradicting the general theory
of the optimal regulator. Although this impossibility theorem has had
no impact on the theory of economic policy, careful study of its
derivation permits not only a precise refutation but also an increased
understanding of the optimal design technique. Ironically, this
refutation implies the proposition that optimal policies are stabilising
and suboptimal policies, destabilising; thus standing the impossibility

theorem on its head.

Continuing the analysis of design, optimal stabilisation with a
lagged instrument is the specific topic of chapter VI. This problem
was first analysed by Phillips [1954] using classical design theory.

A closer look at the rationale for control lag suggests some ambiguity

in its traditional formulation; and this is discussed initially. The
lagged stabilisation problem proposed by Phillips is then considered

in an optimal context. Two types of optimal policy are derived: policy
that passively adjusts to the dynamic effects of control lag, and policy
that actively modifies these effects. This distinction emphasises the
flexibility of optimisation as a design technique and clarifies the
functions that optimal feedback assumes. Apart from the intrinsic
interest of the results, comparison of the optimal policies with the
well-known classical policies for similar models reveals a qualitative

correspondence that is almost, but not quite, complete.

Chapter VII covers a miscellany of design issues, welded together
as an analysis of the degrees of freedom characterising specification

of the optimal stabilisation problem - an analysis more enumerative than
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exhaustive. Optimality, as an attribute of policy, must always be
qualified as optimality with respect to a given criterion: yet many
criteria appear reasonable for a given stabilisation problem.  This

subjective aspect of optimality cannot be entirely removed but inroads

can be made by developing the consequences of alternative specifications.

Three particular issues analysed in this chapter are the possible role
of the control weighting matrix as a surrogate for explicit control
constraints; the role of terminal target weighting as a surrogate. for
fixed target endpoints; and the effects of alternative disturbance
classes on regulator design. The outcome.of this last analysis is that

the gap between classical and optimal design techniques is closed.

Finally, chapter VIII states the major conclusions and likely

extensions of this present study.




CHAPTER II

LINEAR OPTIMAL STABILISATION:
A COMPUTATIONAL ALGORITHM

The central objective of this chapter is the development of an
efficient computational procedure for the general regulator model
defined in chapter I. Optimisation techniques inevitably highlight
computational problems because of one specific characteristic: each
dynamic state variable is assigned a costate variable, doubling the
dynamic-order of the solution space. Although, given linearity,
there are compensations for this doubling, analysis of the.computability
of solutions is therefore imperative. Concern for computation has
not featured significantly in dynamic: stabilisation theory, mainly
because of use of the single-target, single-instrument model for

dynamic analysis,

Despite the completeness of theoretical solutions to the general
regulator problem computational theory is still being developed in the
current control literature. To provide a coherent computational
procedure, it has been necessary to integrate some of this work; and,
at one point, to extend it. Section 2.1 describes a naive
computational procedure, placing the computational problem for the
regulator in perspective. The naive procedure is subject to severe
limitations and the reasons for this are outlined. A preliminary
refinement of this procedure is undertaken in section 2.2, providing
additional understanding of the solution structure of the regulator
model. Section 2.3 presents the basic building block of the final
algorithm. This building block, the negative exponential procedure,
consolidates the work of O'Donnell, and Vaughan. Defined over the
complex field, this algorithm is unnecessarily extravagant in its core
storage requirements; section 2.4 therefore develops a more economical
version. Finally, section 2.5 summarises the computing procedﬁre and

indicates problems requiring further research.
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2,1 A NAIVE COMPUTATIONAL PROCEDURE

The transition from general theoretical solution to general
numerical solution is never straightforward. To illustrate the
transitional problems associated with optimal regulators the following

Bergstrom regulator model, derived in Appendix IIa (pp. 201-4 below),
is used:

T
MINW = ¥k { [zTVz + ZKng + ﬂgz]“ dt + %zT(T)Fz(T)
g .

0.

subject to 1)
t = Az + bg, z(0)=zo#0, z(T) free,

T fixed; g(t), te[0,T], unconstrained,
where z(t) is a 4xl1 state vector, and g(t) is the control variable.
In theoretical discussions below, the specification (1) will frequently

be assumed to be of general state dimension n.

Formal solution of this optimisation problem proceeds in the

manner described in chapter I. Define the Hamiltonian function
H E,%ZTVZ + Kng + %ﬂg2>+ pTAz + prg, (2)

where p(t) is the costate vector. Then the minimising control is

E%.: 0 <=> g= -ﬂ—l(KTZ + pr). (3)
Evaluation of the canonical equations % = 3H/3p, p = -d9H/3z with use of

(3) provides the canonical system1

Because the Hamiltonian function H of (2) is not referred to again;
and because, by definition 2.1 below, the coefficient matrix (4)
belongs to the class of Hamiltonian matrices, it is convenient to
use H to also denote this matrix.
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X = Hx,
I T ]
A-.bf_i _b_b A
m ' m :
H= |-c-ooomm-e- . , x = |---], (4)
T ' T
KK ! bk |T
- -V i -(A - o ) P

z(0) = Zy p(T) = Fz(T).

If this canonical system, of order 8x8 for the Bergstrom regulator,
has the transition matrix ¢(t,0) such that, taking advantage of the
constancy of H, .

I R
2(8) || 0 (0) | 0,8 | | 2(0)

------ g o [ e (5)
p(t) 2,,(8) | 0p(0) | | p(O)

I I — —

then, from (l1.26 ), the state and costate are related by

p(t) = K(8)z(t), ~ (6)
where

K(t) = -[Fo,,(T-t) - @22(T-t)j’1[F¢11(T-t) - 0, (T-1)], %)
and

2(t) = [0, (8) + &, ()K(O)] 2(0). (&)

And from (3), the optimal control is
g(t) = -1+ bTK(E)] z(D). 9
Inspection of equations (7), (8), and (9) shows that the 8x8

transition matrix ®(t) is a prerequisite for any solution of the

Bergstrom regulator. Here the computability of solutions emerges as
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a separate and major problem. For instance, there is no general
formula for extracting eigenvalues for systems of order 4 or greater;
even apart from the difficulties of manipulating all except low order
systems. Thus, in general, theoretical solutions are obtainable for
one-state regulator models for T € « (see chapter V below) and for two-.
state regulator models for T = » (see chapter VI below). Otherwise,
numerical solutjons are necessary: as is the case for this Bergstrom
regulator.

The naive computational prqceddfevnow to be presented computes the
transition matrix

o(t) = &t (10)

as the solution of the matrix differential system
¢(t) = Ho(t), @(0)=I, (11)

where the 2nx2n constant matrix H is the coefficient matrix of (4) with
n=4, or its general equivalent. Zadeh & Desoer [pp.300-10] describe

a computationally oriented Laplace transform method for generating

¢(t) that is used as the basis of the naive procedure. Their method
is therefore summarised verbatim, apart from the simplifying assumption
that the eigenvalues of the canchical system (4) are distinct. There
is no theoretical presumption for multiple. eigenvalues; should they:
occur, they can be replaced by simple eigenvalues, according to an.
approximation theorem due to Bellman [p.199].

The Laplace transform of the linear time-invariant differential
system (11) is

o(¢) = [s1 - H]™ Vs £ B, (12)

where E(H) is the set of eigenvalues of H. The Zadeh—Desoer.procedure2

recursively generates this matrix inverse - lemma 2,1, theorem 2.1 -

Relevant proofs offered by Zadeh § Desoer are collected in
Appendix IIb, pp.205-8 below.
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proceeding then to the inverse Laplace transform - theorem 2.2,
Lemma 2.1 (Zadeh & Desoer)
[sI - H] 7! - B(s) (13)
where d(s) is the characteristic equation

d(s) = |sI-H|= s?Ma 52771

1 *ooovd, g std, 7 (14)
and B(s) is the adjoint matrix
_ 5 .2n-1.. 2n-2 ,
B(s)= Bys“" T +B,s *+..04By  (S+By | (15)

for Bj a constant 2nx2n matrix Vv j =.1, ..., n.

Theorem 2.1 (Zadeh & Desoer)

The scalar coefficients of the characteristic polynomial
d(s) and the matrix coefficients of the matrix polynomial B(s)
are generated recursively by

B, =1, d, = -tr(H),

I, d, = -4tr(B,H),

- . = 1
B,y = BH+d I, 4 o = - ytr(B, H),

(16)

Theorem 2.2 (Zadeh § Desoer)

Let H be a constant 2nx2n matrix over the complex field,
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possessing distinct eigenvalues. Then:
2n R
-1 B(s) k
[sI - H] " = = I —— (17)
as) ~ o G
2n
z Rk =1, (18)
k=1
2n ALt
et =2 Re <, , (19)
k=1
2n

where d(s) =;E ) (s-Ak), and Rk are the constant 2nx2n residue

matrices at the eigenvalues Ake EH), k=1,...,2n,

Theorem 2.2 resolves the Laplace transform of (13) into the matrix
partial fraction expansion (17), the transition matrix (10) following
as the inverse Laplace transform (1§).- After partitioning ¢(t), the
Riccati solution (17) is available, and subsequently the state (8) and.
control solution (9). This naive approach will be termed the

transition matrix procedure (TMP).

TMP possesses severe limjtations when applied, for example, to the
Bergstrom regulator. Accurate computation appears conditioned by two
factors: the length of the stabilisation horizon T, and the maximum
eigenvalue modulus of E(H). For the product of these two factors.
above a certain limit, TMP returns nonsense results. Thus for likely
parameter values, the upper limit on T ranges between two to six unit
periods . of supply lag. Given a supply lag of three months, this at
best confines the stabilisation horizon to one and a half years: a
severe limitation, even apart from the thwarted desire to investigate

asymptotic behaviour. (T=«),

Upon investigation, a theoretical rationale for this irregular

behaviour is found in Kalman's first law of computation [1966, p.25]:

"Optimal control computations deal with blocks of numbers,
The computations are meaningful only when the ratio of the
largest to the smallest number in each data block.is kept
; within preassigned limits."
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Kalman's argument is the following. Given a finite precision

machine arithmetic of (d) significant decimal places, full information
may be recovered from a comparison between any two of the 4n2'e1ements
of ®(t) only if the condition '

max | Qijl

R(@, t) = =~ < 104 (20)
min @i.
ij J

is satisfied. Now ¢(t) is similar to the diagonal matrix I':
Wlo(tW = T(t), T = diag(8,, ...,8,), (21)
where W is a right eigenvector matrix, and the Gi, i=1,...,2n, are

the distinct_eigenvalues of o(t). Hence condition (20) may be

approximated, given (21), by the eigenvalue range of ¢(t):

max | |
R(®,t) 3 e . (22)
min Gi
1

But &(t) = exp(Ht) implies T'(t) = exp(Alt) such that

A = diag(Ay, ...00,0), (23)
with the ki as eigenvalues of H, and Gi = exp Ait. Therefore, the
approximation (22) may be rewritten in terms of the eigenvalues of H

as

. max
R(®,t) = exp { ij

Ai - Aj ‘t} = exp {r(H).t}, (24)

~where

_ max
r(H) = Y

Ai - Aj |, (25)

Thus the tomputability of the transition matrix depends firstly,

on the maximum eigenvalue spread r(H) of the canonical matrix H; and
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secondly, on the stabilisation interval,t e [0, T], over which the
transition matrix is required. In other words, from (20), (24), the

Kalman constraint
r(H).T < d log 10 (26)
must be met if TMP is to generate valid numerical. results,

The process of precision loss consequent upon violation of - (26)
may be illustrated with the Bergstrom regulator. For parameter values

(see Appendix IIc, p.242 below) producing the. eigenvalues
+ 5.2763, + ,53535, *+ ,26298, % ,15783, (27)

and for an horizon T=10 unit periods, the state equation (8) was
computed, using TMP, for 101 discrete values of t,te [0, 10],

separated by the intervals .01xT. Values for the four state variables -
consumption (c), investment (i), income (y), stocks (s) - expressed as
deviations, are abstracted in Table 2.1.

Beginning from the specified initial conditions at time t=0, all
four state variables behave regularly for t < 6, but subsequently

exhibit increasingly irregular behaviour. The problem occurs in the

calculation of the state transition matrix
M(t) = Qll(t) + élz(t)K(O). (28)

Numerically, K(0) and,@lz(t=6) are given by




TABLE 2.1
BERGSTROM SIMULATIONS WITH NAIVE PROCEDURE

t c i y S
0 75 .25 1. .5
5.0 .093 -.442° .064 .309
.1 .090 -.433" .064 .304
.2 .088 -.424 .066 .300
.3 .085 -.416 .066: .296
4 .083 -.409 - .067 .292
5 .081 -.402 .068 .289
6.0 .073. -.346 .101 .278
.1 ,075 -.400 .052- .264
2 .059 -.005 234 .251
.3 .080 -.110 .424 .245
7.0 .427 3.406 2.297 -.508
2 .596 32.500 1.250 -1.469
.4 1.875 54.250 39.250 -3.125
.6 2.531 47.000  113.500 -12.250
.8 -8.250 476,000 464.000- -32.500
8.0 29,250 1120.000 792.000 -183.500
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18 1012 —42 101~ 20 101 13 10t3
.48 101° .10 10*° -.81 10** .36 10%
f120) = 36 1085 g6 10%* .62 101* .27 1014
521082 1210t ss 10%® -39 10%3
- (29)
3746 5751 -.6529  -.1723
| .5751 1.098 -1.419 -.2991
K(0) =
-.6529  -1.419 2,229 3702
-.1723 -.2991 .3702 085

As Kalman's computational léw argues, precision loss relates not to the .
absolute size of the elements of @12(6) - maximum size for floating-point
representation in-the IBM 360/50 is approximately 7x1075 - but to the
relative sizes of the elements involved in the additive and
multiplicative operations in (28). To compare two floating-point
numbers of differing mégnitude, whether for addition,orrmultiplicatibn,
the exponent of the smaller is increased to equality with the larger,
while the mantissa is adjusted to compensate. Thus comparison of the
(1,1) elements of @12 and K(0) in (29) requires

.18x10%2, .0 ... 03746x10%2. (30)
\.____",_.J

12 places

With finite precision arithmetic, only the (d) most significant decimal
places of the mantissa resulting from the comparison in (30) are
retained. If d £ 12, then information on the smaller number is
completely lost. This is the reason for the relative nature of the
criterion (20) - a minimal condition for retention of information. For
the relative magnitudes shown.in (29), precision loss commences in the

operation lexK(O), producing the irregularity observed in Table 2.1.
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First attempts to implement optimal regulator solutions
numerically fail because information is coded in numbers whose relative
magnitudes are too dispersed for accurate machine computation. In
terms of Kalman's constraint (26), since d is fixed, disparate numerical
comparisons can only be avoided by adjusting the range function r(H) or
the time interval T. This is the basic task of section 2.3, TMP is
jettisoned as a.result but lemma 2.1 and theorem 2.1 are retained for
calculation of the characteristic equatibn d(s). Before the modified
procedure is developed,'section 2.2 considers the relevance of these.
two results to the solution structure of the regulator.

2.2 ASPECTS OF REGULATOR' STRUCTURE

Lemma 2.1 and theorem 2.1 of the Zadeh-Desoer algorithm provide
the characteristic equation for any 2nx2n constant matrix, The.
structure of the optimal regulator permits, however, certain
simplifications. Thus  (16) implies that the coefficients dj’ Bj’ are
constructed from operations on successively higher powers of the
canonical matrix H:

Bl =1
d1 = -tr(H)
B, =H+ dll

1.2
d, = —-ftr(H +d1H)

2
o0 0 ! (31)
k-1 k-2
Bk = H +d1H "+dk-2H+dk-II
_ 1 k k-1
L dk —,—Etr(H +d1 +...+dk_2H+dk_1H),

Now from (4), and in general,

tr(H) = 0, (32)

Examination of (31) suggests that an analysis of tr(Hk), k=2,...,2n,
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might prove fruitful in further simplifying (31). Lemma 2.3 justifies

this

intuition, using the following definition and lemma provided both’

by Kalman & Englar [p.196] and by O'Donnell [p.584].

Thus

Definition 2.1 (Kalman & Englar, O'Donnell)

An even-dimensional 2nx2n matrix H is said to be Hamiltonian
if

H=JHJ, (33)

where J is- the 2nx2n matrix

1
0 i -I
J = |--m-- e (34)
I + 0
n !
]
such that
%= 1, gV = .3 =3%, (35)

Lemma 2.2 (Kalman § Englar, O'Donnell)

The canonical matrix H of the regulatér model is

Hamiltonian.

the matrix H of (4) satisfies (33), and H is therefore Hamiltonian.
Lemma 2.3

For the 2nx2n Hamiltonian matrix H,
tr) = 0 vV k odd, k=1,3, ...,2n-1. (36)
(i) H=JHJ
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H? = gulagnty = - gl ... (35)
uS = -gn?Taonty = gu®Ty "
nt = gedTaonTs = - oty "

(1) B o pRZmk-DT,

=  H = 1)KL
(ii) tr@ES) = DX leraTyy
= D ler @Tan

-1 %er <

"

- tr HT) v k odd.

Hence the lemma.

The numerical significance of lemma 2.3 is expressed in corollary 2.1;

its theoretical significance, in corollary 2.2. Thus:

Corollary 2.1

The coefficients dj’ j=1,...,2n, of the characteristic
polynomial d(s) of the Hamiltonian matrix H vanish V j odd,
j = 1,00.’2n_10

proof
(1) d; = - te(H) =0 ... (32)
d, = -Lerd+d H%+d. H) = 0 32), 1 2.3, (i
3 = ﬁgtr( +d H7+d, ) = ...(32), lemma 2.3, (1).

(ii) From (31),sassume

K .
o] Iy = -
d = Etr(§=ldk_jH ) =0, d=1, k odd. (37)
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k .
Define D, = ¥ d .HJ, such that
J

k ‘21 k-j
Dk = [Dk_1+dk_1].H, ... (16), (31).
Therefore
d . = - 2 tr, .) (37)
k+2 k+2 k+2 Tt
= - tr([D, .+d, .].H)
k+2 k+1l “k+1-°°
o L tr([Do+d, ].H2+d H)
- k+2 k “k?° k+1
= - tr, .HY (37), (32) (38)
) K’ s - s .
2 k j+2
(iii) tr(D,.H°) = tr (z d, .H'"%), by definition of D, 4
k 3=1 k-3 k.

Hence V k odd,
either (2) j odd; k-3 even, j+2 odd,
or (b) j even, k-j odd, j+2 even,
j=1,...,k. Thus dk_jtr(Hj+2) =0V3=1,...k,

by lemma 2.3 if (a); and by (37) if (b). From (38),

and the corollary follows by induction.

Corollary 2.2 (Hamiltonian Saddle Point)

- The eigenvalues of the Hamiltonian matrix of optimal. regulator -
models are distributed symmetrically about the complex axis in the

complex plane.
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Eroof

From (14), the Hamiltonian characteristic equation is

2n .
d(s) L d.s . d =1,
j=o0

n .

L dys?(079), (39)
; J

J=0

by corollary 2.1. Because (39) is even-powered in s, the root sjv
implies the root -sj. For real sj, the corollary is immediate.
For complex sj, the conjugate property and evenness imply the pairs
(sj, -s}) and (sgf -sj), also satisfying the corollary.

In summary, this section presents specific properties of the optimal.
regulator model that not only simplify computation with the Zadeh-Desoer
characteristic equation algorithm but also clarify the theoretical
solution structure. The knowledge that the canonical matrix H is
Hamiltonian and that its characteristic equation therefore exists as a
purely even-powered polynomial considerably simplifies (31). To the
original statement (16) of the characteristic equation algorithm

d, = - Ltr (HB,) Bo=3 o il 4 -1
k="K K)o T S R
k=1,...,2n, (40)
is added
d, =0 Vk odd. (41)

Corollary 2.1 also implies that the computational disadvantage with
respect to doubling of order suffered by optimal stabilisation models,
when compared with classical stabilisation models, is partially
alleviated. Thus (39) allows the system eigenvalues to be computed
from

n-i
vitd, s =

Rt

n
d =% d,.
(v) o 2

(42)

I+
<
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Although optimal stabilisation policies double the order n of the
uncontrolled system (whereas classical policies increment order,
according to the type of policy used), the characteristic equation
(42) retains an effective order n. That this is half the optimal
order 2n reflects the symmetry property of corollary 2.2 - a

compensation provided by linearity.

With this theoretical appreciation of the Hamiltonian eigenvalue
structure, section 2.3 now returns to the development of a computational

procedure satisfying Kalman's constraint.
2.3 THE NEGATIVE EXPONENTIAL PROCEDURE"

At first sight, the precision loss described in section 2.1 may

be avoided by rescaling the magnitudes of the matrices @11 and @12 in
th# state -transition matrix (8), (28). Thus, since the Hamiltonian

system is linear and constant, consider the following iterative form
of (8):

z(t) = [¢11(£-T) + ¢, (t-T)K(D) ]z (D),

or
z(t+e) = [&,,(e) + & ,(e)K(1)]2 (D). (43)
The step size,
e=t-1=T/N, (44)

can be chosen so that the Kalman constraint is met by ¢11 and ®12,
where N is the number of discrete computing points used to approximate
the continuous solutions over the specified horizon T. Yet:the
precision problem cannot be suppressed. The Riccati solution K(t) is
now variable; and if computed by (7) the same form of precision loss
occurs for T-t large, te[0, T]. Use of (43) therefore requires a
satisfactory computational procedure for the Riccati solution. Recent
work by O'Donnell and Vaughan reformulates the Riccati solution (7) so

that it satisfies Kalman's constraint. The task of this section is to
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summarise these results; and of the following section, to present a

modification more economical in its core storage requirements.

Refinement of the naive Riccati procedure (7) proceeds in two
steps. The first step, due to O'Donnell, characterises the
eigenstructure of the Hamiltonian system; the second step, due to

Vaughan, then restructures the naive procedure,

On the assumption of distinct eigenvalues for the Hamiltonian
system, (23) defines a similarity transform of H in which Al is the
diagonal matrix of eigenvalues. The Hamiltonian transition matrix

®(t) is therefore given by

o(t) = et = we L Wl ‘ (45)

Now from corollary 2.2, A1 possesses the saddle point structure

A0
Al = (----- b e . A = diag (Al, ,..,An), (46)
0 ! A
for Ai, i=1,...,n, distinct but not necessarily real. Because of

this saddle point structure, the eigenvector matrix W of (45) is of a

particular class called simplectic:

Definition 2.2 (Kalman & Englar, O'Donnell)

An even-dimensional matrix W is simplectic if
WaW=J, or -JWJ =Wl (47)

0'Donnell [p.586] uses this simplectic property to construct the left
eigenvector matrix W_1 directly from W, avoiding the need for inversion.
His results are summarised in the following theorem (for proof of which

see Appendix IIb, pp.208-10 below).

Theorem 2.3 (0'Donnell)

If a Hamiltonian matrix of order 2nx2n has eigenvalues
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ikj, j=1,...,n, assumed nonzero and distinct over the complex

field, then there exists a simplectic eigenvector matrix W such

that
]
-1 A0 °
W "HW = Al = f-m--- Lo, A = diag (Xl"°°“’k ), (48)
0 ! A - n
]
where
T T + T
R P R R PIRELY
W= Jeeeee- ettt , W= feeenee foe—-- . (49)
W, ! W T ! T
|y 22 o1 My

e 9 0

Using the Hamiltonian eigenstructure defined by theorem 2.3,
Vaughan demonstrates that the Riccati solution matrix K(t)‘cantbe
obtained without loss of information for any horizon T g «,  His:
negative exponential procedure devised for this purpose is condensed
into theorem 2043.

Theorem 2.4 (Vaughan)

For the optimal regulator with T < «, the matrix Riccati

equation associated with the Hamiltonian system is-computable in

the form

K(t) = [y +W,,Q(T-1)] [W +W Q(r-6)] 7Y, - (s0)
QT-t) = e'A(T_'t)Re'A(T't), (51)
R = - [Wy,-K(T)W )17 [W,, -K(TIW,, ]. (52)

To perceive the advantage that the negative exponential procedure

(NEP) possesses over TMP; observe that the Hamiltonian transition matrix

Section 2.4 below presents a proof of a modified version of
theorem 2.4; Vaughan's proof of this theorem is therefore omitted
from Appendix IIb. '
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®(t) of (45) may be partitioned, after using theorem 2.3, as

-At. T At, T At T -At. T
Wipe Wop - Wipe Wy 0 Wype Wy - Wppe oWy,
YOS T P S R . (53)
-At, T At. T | At T -At, T
Wyp®  Wop = Wppe Wy v Wype Wy - Wye W

To simplify, suppose the Riccati endpoint is K(T)

F = 0, so that (7)
becomes, using (53), |

K(t) = - 03, (T-1)8,, (T-t),
- N (T-1), T -A(T-1), T
= -[Wy5e W117%o® ]
X[W, o -A(T- t)wgz e A1) W, .

which is the TMP version of the Riccati solution. Exercising this

endpoint assumption in theorem 2.4 yields the NEP version

W emMTE L, AT,

K(t) = [Wy; - Wyye 22%p1@

W e MT Ly AA(T-)y-1

X[Wpy - Wppe 22"21° (%)

Performance of (54) and (55) may be. compared for large T-t, after

first establishing the asymptotic limit K = 1im K(t). For large T-t,
the exponential functions, exp (-A(T-t)), decay rapidly: hence, for

the TMP version (54),

K = lin (W0 A(T-t), T T [ . A(T £),T T
T-rco
-T, -A(T-t) A(T t) T
= lim [W W, W ]
Tt 11° 22228
TT -1
= WpWop = WyyWiys (56)

since K(t) is symmetric. The same result follows from (55).
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Although both approaches are asymptotically equivalent, their
computational requirements differ markedly for finite T. The TMP
version (54) grows exponentially with T while the NEP version (55)
decays exponentially with T, Further, the asymptotic solution
matrices Wips Wy of (56) occur muitiplicatiVely with respect to the
exponential functions in TMP, but additively in NEP. Thus in (56),
each of the products.

A(T-t),T ACT-t),.T
e LTE ® "1

(57)
suffers precision loss for T-t sufficiently large; the resulting loss
of asymptotic information producing numerical inaccuracy when the TMP
version (54) is used. On the other hand, the NEP version (55), with
its decaying exponentials, has all information coded in comparable
magnitudes, retaining full information about the asymptotic solution

as T,

For computation of the Riccati solution required in (43), NEP
provides a numerically stable solution procedure sétisfying Kalman's
constraint. But as formulated in theofem 2.4, NEP is not explicitly
concerned with computational problems engendered by complex
eigenvalues and eigenvectors. Section 2.4 therefore proposés a

transformation for handling complex arithmetic when it occurs,
2.4 REGULATOR COMPUTATION WITH COMPLEX ARITHMETIC

Allowance for complex eigenvalues and eigenvectors isvobligatory;
the probability of their occurrence increasing with the state dimension
of the system. Yet:the negative exponential procedure péys no regard
to the additional core storage requirements necessitated by complex
arithmetic relative to real arithmetic. Taking»the polar cases of
real eigenvalues only and complex eigenvalues only, the complex case
doubles storage requirements. For large order systems, this is likely
to be prohibitive. It is worthwhile, therefore, to attempt the
reformulation of NEP to economise on core storage in the face of

complex arithmetic.

For a Hamiltonian matrix H possessing real and complex
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eigenvalues, define
n=2c+r7r, (58)

where r is the number of real positive eigenvalues, and ¢ is the

number of positive real part-conjugate eigenvalue pairs. The diagonal

matrix A1 of (48) is then partitionable as

(59)

The even-dimensioned diagonal matrix T contains complex eigenvalues
with positive real parts, stored in conjugate pairs; and I contains

real positive eigenvalues., From Ogata [pp.143-5], the transformation

* _l_
P2 =M, P2M2, (60)
where
o+ju 0 1 -J
I' = ) M = lﬁ 3 (61)
2 0 o-jw 2 1 j '
provides the real matrix
- o w
T, = . (62)
2 -W )

Information on the real part of conjugate eigenvalue pairs is retained
in the diagonal elements but information on the imaginary part is now
stored in the offdiagonal elements. Applying this pairwise

transformation to Al in (59),

A = vha 63
1=V Y (63)
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where
:
An E 0 M2c M2 _ 0
Von = |- r___‘ N bk s My = ‘. - (64)
0 Ay 0, 0 M2
Hence
— —_—
]
“Xocl Q
""" i
% 1 -Zrl : !
el BT )
| P Xaer
1
0 i Zr
in which, from (60),
- —
- 0
o, W
1 71
U 9
-1
Xpo = MTTM), = (66)
0. W
o oS
: c ¢
0
%*
Since both X, I are real matrices, Al in (63) is also real.
Using the similarity transformation (48) in (63) supplies
A* -1, -1 -1
1° V °(W "HW)V = P "HP; P = WV, (67)

The operation of the block diagonal, complex-valued matrix V in post-
multiplying the complex-valued eigenvector matrix W generates a
transformed eigenvector matrix P with real elements, in which eigenvector
information is stored in a single column (real eigenvalues) or in two
adjacent columns (complex eigenvalues). Thus equation (67) specifies

the spectral form of H in real-valued quantities; and is obtained by a.



simple transformation of the complex-valued form (48).
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With this transformation, theorem 2.3 on the spectral form of H,

and theorem 2.4 on the negative exponential Riccati procedure may be

restated as follows:

Theorem 2.5

Given the Hamiltonian matrix H, with eigenvalues assumed

nonzero and distinct, then there exists a similarity transformation

of the spectral form W~

-1 *
P» HP = Al -
where

WllA
| P
W21A
and
A"pT
_1 2
P = locceecm
* T
-A P2
L__

O

e amad - -—

1

£

Ny

.
P

HW =,A1 such that

Y ——‘
[ o; ] 0
-W. 0.
il
hN (68)
n-r+l
0 A
n
=1, ..., C j n = 2c+r,
0
-3
] , (69)
V1
.
I—_—.‘
. 0
9
o-1 1 oo
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proof

Equations (68) and (69) follow immediately from equations
(61), (64), and (67), To establish (70) - the analogue of
O'Dbnnell's result for W'l, given in (49) - observe that by the
definition (47) of a simplectic matrix

wl= _wTs, (71)

Using the transformation P = WV of (67) in (71) implies

Pl o v lavTyels. L (72)

But from the definition of 'V in (64),

Hence (72) is written

pt - v artyy, (74)
in which
T i
&%
Al 0 (MTM)ZI: 0
* T, . -1 o * T, -1 ¢
LA ) R B A = (AA)Th = e [ .
n i * 0 | I
0 1 A FoTr
: n ]
(75)

The expression for P'1 in (70) follows. from (74), using the
% .
definitions of J, V in (34), (75). - And from (61),

T - ‘ =
0" = sl | ]=2 . (76)
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establishing, from (75), the second result in (70).‘

Theorem 2.6

The matrix Riccati solution K(t) is computable in the real-.

valued form

* -
K(8) = [P, +P,pQ (T-0)] [P 3P Q" (1-0)] 77, (77)
where
* * * *
Q (T-t) = e—[\ (T—t)R e-A (T-t)’ (78)
R = - [Py-K(MP 170 [Py k(TP 1. (79)
proof
The following proof imitates Vaughan. By (4), (67),
x(t) = PECt)P 1x(0), | (80)
with, from (63), (65),
— . S
At et i o *
E(t) = 1" = |-menna- s » A= - (81)
bt
0 1e

*
Given the block diagonality of.Al, application of the Laplace
transform method yields (see Appendix IIb, p.210 below),

R R, + N ‘_t .
)\ t Tolt cos4w1t sin mlt 0
n-r+l e -
0 +5in wlt cos wlt
eiZt I eiXt ~
= . s =
- W + '
0 e n *0 t| cos w.t *sin w_t
L 1 ¢l c c
0 +sin w_ t cos w. t
c c:

(825
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Now define the backward transformation

z(t) P11 g Pl2 u(t)

x(t) = Pr(t) <=> |------ = |-----4 R e | s , (83)
p(t) Par ¢t Paz || v

T = T-t; r=[ uT vT]T

Thus

x(T) = PE(T-t)P'lx(t), (84)

obtained from (80), may be written

" u(®) ST 0 || u
r(t) = E - (1)7(0) <=> |-mmem- S P e aoel I e
v(T) 0 i e—A T v(0)
(85)
Combining (83) and (85),
x(t) = PETL(1)x(0), | (86)
implying for t=T, =0,
7 z(T) P11 i Pip || ul0)
x(T) = Pr(0) <=> [---=-- = fe---- i ----------- . (87)
p(T) Pa1 g P22 || v(o)

Use of the costate-state relation p(T) = K(T)z(T) in (87) supplies
*

v(0) = R u(0), (88)

for R* defined in (79). Hence from (85) and (88),

v(n) = Q (Du(1), (89)

for Q*(T—t) defined in (78). Finally, use of p(t) = K(t)z(t) and
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(89) in (88) provides the Riccati solution (77).

This section therefore effects a pairwise similarity transformation
of conjugate eigenvalues and eigenvectors,wheneverfthese occur in
O'Donnell's specification, theorem 2.3, of the spectral form of the.
Hamiltonian system; and in Vaughan's negative exponential procedure,
theorem 2.4, for computing the Riccati solution. As a result, both
the Riccati solution and the Hamiltonian transition matrix may be
computed utilising the same storage for comﬁlex as for real arithmetic.
Further, in calculating the Hamiltonian transition matrix, the ’
transformed left.eigenvector matrix P'lﬁis available as (70), avoiding

the need for direct inversion of P.
2.5 STATEMENT OF COMPUTATIONAL PROCEDURE

Previous sections have indicated various problems confronting
attempts to compute solutions to the optimal regulator. Are there
procedures -available which allow accurate computation of finite
trajectories subject to the Kalman constraint? How are storage-
requirements to be minimised in large order systems for which complex
arithmetic is likely? What complications, if any, are avoided by aﬁ‘
infinite horizon assumption? Certain answers to these questions are
now collected in an integrated account of the computational algorithm

so far developed in this chapter.

Two sets of routines. derive from the previous theoretical
developments: a finite,horizoh program and an infinite horizon
program. Fortran IV coding for each is attached and briefly discussed
in Appendix IIc (pp.212-60 below). Basically, both programs link five

sequential steps:

(1) system specification,
(i1)  eigen analysis,
(iii) Riccati solution,
‘(iv)  state solution, and

(v) control solution.

Step (i) specifies two types of information: horizon
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information and structural information. The first refers to the value
of T to which simulations are to be computed, and to the number of steps
N in (44). The second refers to a pumerical specification of the
matrix and vector coefficients of a particular regulator model: for
the Bergstrom regulator (1), a numerical set {A, b, z(0), V, «, T}.

Step (ii) then computes the eigenvalues and eigenvectors of the
Hamiltonian differential system derived from the optimisation analysis.
The eigenvalues are found from the Hamiltonian characteristic equation,
constructe& from equaﬁions (39) to (42). The rightAeigenvector matrix
P of (69) is subsequently computed using a slightly modified version of
IGVECS, developed by Blackburn & Vaughan4. In the attached coding, the
left eigenvector matrix,P_l'is obtained by direct inversion; in large

order systems, the expression (70) would be used.

For the finite horizon routine, step (iii) obtains the Riccati
solution using equations . (77), (78), aﬁd (79) of theorem 2.6,  The
asymptotic case is dealt with below. The optimal state soiution -
step (iv) - is found with the aid of (43):

z(t+e) = [01,(e) + @), (e)K()]2 (1), (43).

in which the Hamiltonian transition matrix partitions @11, @12 are

derived from the appropriate partitions of

Ht

d(t) = ¢ = PE(t)P‘l, (90)

obtained from (80). Using E(t) defined in (81), and P™! defined in

(70), the Hamiltonian transition matrix is

& | N I IV S S
1 1 1
1 \ o ! )
Rt S = |eemees e | Bt | fommnee :
E : e x4k T
l -
b — — | Iy S ' — —
(91)-

4 The McDonnell-Douglas Co generously provided a copy of the Blackburn-

Vaughan report.
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Hence the two partitions are

* *
_ Ae,*T Ae T
¢, = Pjje ™ TA Py, - Proet TA P,
N T Ae * T 42
_ o he SN
@12(8) = Plle A P12 + P12e A Pll'

Since @11(8), @12(€),’and K(t) are now scaled in commensurate terms,
(43) provides a computationally stable method for computing the finite-
horizon state solution. -And with z(t+€) and K(t) available, the
finite-horizon control solution - step (v) - follews immediately from
9, or its general equivalent.

Nothing specific has yet been said concerning the asymptotic .
program. - With an infinite horizon, O'Donnell [pp.582-3] shows . that
considerable simplification ensues. In demonstration, the Hamiltonian

system X = Hx may be partitioned as

————— -1, (93)

[}
1
[}
1
i
|
!
1
1
1
——e—g—————

and the relation p(t) = K(t)z(t) of (6) applied to the first vector
differential equation to provide the state dynamics

2(t) = [H); + HK(t)]z(t). ‘ (94)

}

For T = », K = 1im K(t) is, from (77), and by analogy to (56),

T->c0
= . -1
K = 1lim K(t) = P P._. : (95)
Torco 21 11
Thus (94) is
ey o -1 -

Now the modified spectral form of H, (68), implies
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1 1 ]
11§ 12 11 1 12 11 |
HP = PA <=>{-~m=- SRl B EEEh Ammmoo = f---e- -
a1 1Mo || Par i P22 P21 1
(97)
‘reducing to
_ -_. [~ * ) &
f11P11*M2P21 1 FiaPiahoPa: Pt Pt
-------------- T IR EREREE SRS N (98)
1 * *
Ba1P11%Hp2P 01 1 HpyPra*HhoPo; Paph b Pl

Comparing (96) and (98), the state equation (96) may be expressed in
terms of the (1,1) partition of (98) as

5(t) = -PllA*Piiz(t), 2(0)=z,, o (99)

with stable solution

*
B Nt -1 |
z(t) = Ppye7" “P112(0), ~(100)

Thus the asymptotic solution is embedded in the finite horizon

solution. The asymptotic eigenvalues are the stable, finite horizon

*
eigenvalues -A ; the asymptotic eigenvectors are the upper partition
T .
11!
stable eigenvalues. Computationally, the asymptotic Riccati solution

of the finite horizon eigenvectors, [P PIZ]T, corresponding to the
(95) and the asymptotic state solution (100) are considerably simpler

than their finite horizon counterparts.

Appendix IIc contains (p.246 below) an illustrative simulation of
the Bergstrom regulator for the same parameter values generating Table
2.1 above. Comparison of these two sets of results reveals that the

irregularity due to precision loss has been removed. Further,

satisfactory results have been obtained with horizons of 40 unit periods;

and larger horizons may be used by appropriate selection of the step
size (44).

This chapter therefore presents a computational algorithm for the
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optimal regulator that overcomes the precision loss problem and
circumvents core storage problems associated with complei arithmetic.
Additional research is still required to test the algorithm for
efficiency and speed in high order systems. Although the original
intention was to pursue these computational problems in depth, prior
theoretical problems exist in the theory of stabilisation policy; and
the rest of the thesis is devoted to these problems.  But the analysis
of this chapter remains relevant to this later work: there is an
important and valuable feedback between computation and theory that
will emerge in the sequel.



CHAPTER III

A DYNAMIC GENERALISATION OF TINBERGEN'S THEOREM

A review of the corpus of economic theory broadly referred to as
the theory of economic policy, and represented by the work of Tinbergen,
Bent Hansen, and Fox, Sengupta & Thorbecke (FST), permits several
assertions. Firstly, the static theory of quantitative economic-
policy is well defined. Secondly, there is full awareness, following
Phillips [1954, 1957], of the importance of the dynamics of policy-
making. Thirdly, a significant body of knowledge,exists:relating to
the design of dynamic policy - Phillips, Allen, and FST. But fourthly,
there are no dynamic results comparable to Tinbergen's static analysis
of the relation between instruments and targets. This last assertion

begets, in part exploration and part answer, this present chapter.

Accompanying these assertions is a distinction between existence.
and design. = Existence refers to the fundamental question of
stabilisation: is it possible to design at least one policy to achieve
the stated policy objectives? Design refers to the practical question

of method: given existence, how are policies actually designed?

Statically, the problems of existence and design were first.
considered by Tinbergen [1963]; and have subsequently been elaborated
as part of the conventional wisdom. Yet this has not been balanced
by an analogous treatment dynamically. Phillips [1954] squarely
confronts the dynamic design problem but treats the problem of existence
implicitly. Applying classical control techniques to low dimension
models, he demonstrates that stable dynamic policies can be constructed
with these design methods.  Existence is tied to design in that a
suitably designed classical policy must satisfy a stability criterion
such as Routh-Hurwitz. To overcome this ad hoc treatment of each
model, FST sought to extend .the theory of design by utilising dynamic
optimisation techniques. Again, no specific attention is paid to the
existence question. Further, their contribution to the design problem

is an impossibility theorem which argues that if policy-makers use a
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quadratic performance ordering to obtain an optimal policy, then that
policy is necessarily unstable. If true, this impossibility theorem
denies the existence of dynamic policies that are simultaneously stable
and optimal. Chapter V establishes, however, that the theorem is
invalid, and that it is certainly possible to design optimal policies
with satisfactory properties.

Thus the state.of the art dynamically is that there exist two
design methods - classical and optimal - neither of which specifically
considers the fundamental question of whether a given economic system
can be stabilised. This lack of explicit concern is not critical when
these design methods are applied to the traditional single-target,
single-instrument models of dynamic stabilisation. Existence, for these
models is a transpafént question., But progression to the general
multi-target, multi-instrument model necessitates explicit analysis of

the possibility of design.

Faced with this lack of a criterion for dynamic existence.
comparable to the static criterion, Culbertson, for example, conjectures
[pp.392-5] that the utility of Tinbergen's static analysis is
questionable since this analysis is apparently irrelevant.to the more
realistic problem of dynamic stabilisation. The major objective of
this chapter is to investigate this policy problem of dynamic existence;
and to provide, as a corollary, a dynamic generalisation of Tinbergen's:

theorem.

Section 3.1 begins by positing a vector stabilisation model and
defining conditions under which it partitions into two problems, one
static, the other dynamic. To achieve this, a brief review .of the
static theory of existence-is necessary. Section 3.2 generalises the
analysis of section 3.1 through an explicit consideration of the
possible combinations of the dimensions of the static and dynamic
target and instrument vectors. As a result, two classes of vector
stabilisation model are defined: square policy systems and
rectangular policy systems. Statement of the dynamic existence
problem in a format similar to the static existence problem leads
section 3.3 to a recognition of the economic significance of the
concept of dynamic controllability. Annexed from modern control

theory, this concept provides a dynamic rank criterion to complement
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Tinbergen's static criterion: indeed, for square policy systems, this
dynamic criterion collapses to the static criterion. Section 3.4
specialises the dynamic criterion to rectangular policy systems; in
these systems, the results obtained have no static counterparts. Phase-
analyses of simple policy systems are subsequently presented in section
3.5, clarifying the ideas of controllability and noncontrollability.
Finally, section 3.6 summarises and concludes.

3.1 STATIC CONTROLLABILITY AND EQUILIBRIUM PARTITIONING

Suppose that a given economic system is modelled by the vector
differential equation

. * * *

X(t) = TAX(t) + TBU(t) + D, X(0)=X_, (1)
with dimensions

X, D¢+ Nx1, T, A: NxN, U: Kxl, B : NxK. (2)

The vectors X, U, and.D*are respectively the target, instrument and
autonomous expenditure vectors., The matrices A*, B* describe the
static economic structure: A* will be defined as the static structural
matrix and B* as the static control matrix. The nonsingular matrix

I' is a diagonal matrix of adjustment speeds reflecting the dynamic.v

process superimposed on the underlying static structure,

As a description of the stabilisation problem, equation (1) contains
several implicit assumptions, two of which may be mentioned immediately.
Firstly, the economic structure is assumed fixed, an assumption captured
by the time-invariant matrices A*, B*; r. Qualitative policy, as
defined by Tinbergen [1963, pp.2-3] and FST [p.20], is ignored; the
stabilisation problem being to specify quantitative policy for a system
with known and fixed structure. A form of qualitative change could
be incorporated by specifying A*, B*, I' as time-varying matrices A*(t),
B*(t), I'(t). Such a change complicates but does not invalidate the
results of this chapter. Yet a particular time-varying specification
of these matrices necessitates provision of an economic theory of
structural evolution and is therefore avoided in this preliminary

analysis.
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Secondly, the description (1) abstracts from economic growth, both
explicitly and implicitly. Explicitly, autonomous expenditures, a
traditional if now an insufficient collage of growth factors, are
represented by a constant vector D*. In terms of the solution of (1),
this constancy generates a fixed rather than a moving economic
equilibrium.  Implicitly, the absence of growth is reflected in the
type of variable and of functional relation appearing in the
specification X(t) = PA*X(t) of the uncontrolled system. Thus the
appearance of positive eigenvalues in FA* will be interpreted as a.
manifestation of instability rather than of growth,

This chapter therefore investigates the shortrun policy problem
of stabilisation in a nongrowing, nonevolving economy. Specifically,
given the representation (1) and its assumptions, can conditions be
provided to establish whether this system may be stabilised? To
relate this problem both to the traditional static theory of economic-
policy and to the observed lack of dynamic theory, it is convenient to
assume what it is ultimately desired to show. Thus suppose momentarily

that a dynamic control vector U(t) can be designed so that the motion

of (1) eventually ceases. The system's static equilibrium behaviour.
is then
* * * .
AX+BU+D =0, (T nonsingular). (3)

Additionally, suppose that there is a desired static target vector X
attainable with the static control vector U, again assuming such a

control to exist. Then this desired solution (X, U) must satisfy (3),

AX+BU+D =0. 4)

In moving from (1) to (4), two existence assumptions have been
made: that both static and dynamic policies can be designed. In the
theory of economic policy, the first assumption has been well explored,
while the second has been totally ignored. A brief summary of static
existence theory will therefore suffice to establish ‘its relevance to

the pending development of a. corresponding dynamic theory.

Two basic approaches to the static problem exist, depending on.

whether, following Tinbergen [1966, Chap. 3], targets are fixed or
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flexible., If the policy-maker independently specifies a desired
target vector X and asks for the appropriate U such that (X, U) satisfy
(4), then a fixed-target model of static stabilisation has been
formulated. The conditions for which such a solution pair exists
constitute the cornerstone of the static theory of economic policy.
Writing the fixed-target model as

B'D = R, R = - (A*X + D*), (5)

. .
suppose that the NxK static control matrix B has rank'M, implying
that

M < min (N, K). | (6)

Linear equation theory then provides the following two theorems (as

~stated for example by Lancaster [pp.248-9]):

Theorem 3.1 (strong existence)

*
A solution to the system B U = R exists V'R if and only
*
if (iff) B has full row rank: 1i.e.

M=NcgK. | (7)

Theorem 3.2 (strong uniqueness)

* :
A unique solution to the system B U = R exists y R iff

*
B is full rank square: i.e.

M=N-= K. (8)

These theorems are termed 'strong' because they are satisfied not for
one possible target vector but for all possible target vectors. Here
R is loosely referred to as the target vector but is strictly, by (5),

a linear function of the target vector X.

With respect to the numerical relation of instruments to targets,




53

it will be assumed that K < N. No attention is given to an economy
with a surfeit of instruments: concern is with a balanced endowment .
(K=N) or a sparse endowment (K<N). Removal of K > N in no way alters
the conclusions of the chapter.

These two theorems are the basis for Tinbergen's classic
proposition that the number of instruments K be at least equal to the
number of targets N, [1963, chap. 4]. Given the exclusion of K > N,
and in order to parallel the dynamic criterion to be presented in '
section 3.3, Tinbergen's results on the,ekistence of a solution to the

static fixed-target model may be reformulated as:
Theorem 3.3 (static controllability)

* * *
The static economic system A X + BU + D = 0 is statically
controllable iff the control coefficient matrix is .full-rank

square: 1i.e.

* . *
p(B ) =N, B : NxN. ’ (9)

From theorem 3.3, economies sparsely endowed with instruments
(K<N) are statically noncontrollable; a solution does not exist for
the fixed-target problem for every X. And it is here that the flexible-
target model is‘relevant'to the static existence problem. Tinbergen
has argued that fixed static targets derive from an implicit preference
function. Recovery of this function affords one method for removing
an impasse due to static noncontrollability. Thus following Bent
Hansen [pp.23-7], although the model BD =R with K < N is
noncontrollable, a solution generally exists to the constrained static

optimisation problem

.
MAX W(R) subject to B U = R, ' (10)
> subject ;

where W is a preference ordering of the elements of the target vector

R. First-order conditions for (10) are

M _o, (kx1), | | (11)
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so that this flexible-target model automatically adjusts to the.
availability of instruments. Its sole function is to resolve the
policy dilemma of controlling a statically noncontrollable model. A
second best or constrained solution (X, U) is obtained by positing

tradeoffs among the targets.

Irrespective of whether (X, U) is obtained from a,fiXed-target
model (5) or a flexible-target model (10), this solutign pair must.
satisfy (3), as in (4). Comparison of the actual_dynémic‘system (1)
and this desired static 'solution (4) allows, after premultiplying (4
by I', the dynamic disequilibrium description

x(t) = TA'x(t) + TB u(t), x(0)=x_#0, (12)
in terms of the deviation vectors
x(t) = X(t) - X, u(t) = u(t) - 0. ' (13)

This procedure of subtracting the desired equilibrium behaviour from
the actual dynamic behaviour partitions the total stabilisation
problem into a static problem (4) and a dynamic problem (12); and is

identified as the equilibrium partition.

To avoid misunderstanding, it is stressed that the only requirement
placed on the desired equilibrium solution (from which deviations are
measured) is that it be a solution of (4). This allows for the,use»of
either global optima or constrained optima as reference targets levels
for the equilibrium partition. If the economic.system is statically
controllable, then provided a dynamic policy can be designed, targets
will settle at those levels representing a global optimum of the
implicit preference function. Otherwise, targets can only equilibrate
to levels representing a constrained optimum of that function.  Static
stabilisation is concerned with the specification of appropriate levels
of targets and instruments; dynamic-stabilisation, with adjustment
paths. Solution of the dynamic problem will force the system to
equilibrate to a given equilibrium position; the task of the static

solution is to define the preferred equilibrium,

Tinbergen's theorem, summarised in theorem 3.3, is a'pair of
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conditions: numerical equation of instruments and targets is
insufficient, the control matrix B* must also possess full row rank.
Thus, even though N=K, the static system (3) or (5) may be
noncontrollable because p(B*).< N. For subsequent analysis, these

static possibilities are normalised as follows.

Proposition 3.1

* * *
For the static policy system A X+B U+D =0, either
* .
(i) p(B )=N or (ii) the system is equivalent to

* * * ‘
A'X +BU +D =0, (14)
where

* *
Bj: NxK, Uj: Kxl, p(B)=K < N. (15)
proof

If (i) does not hold, then p(B*) < N, Suppose p(B*) = N-1,
then one of the N columns.of B* is a linear combination of the
other N-1 columns:. Hence assume without loss of generality that
the first column of B* is a linear combination of the next i-1

columns. Then

U1
* * * . % * .
BU = [a2b2+ °+aibi b2 . bN] : s (16)
UN
* o, .th *
where bj is the j~ column of B . Hence
U2+oc2U1
* * * * M *
BU = [b2 b bi+1 bN] Ui+diU1 = B1U1' 17)
i+l
UN
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*
This process of reduction continues until p(B1)=K <N.

Proposition 3.1 simply removes dependent instruments from the
statement of the dynamic.stabilisation problem. The derivation of
the equilibrium partition (12) remains valid except that the condition
b(B*)=K, K < N, is always implied in. the sequel. The subscript, as
in (15), is also omitted: the dimension and rank of’B* will be clear

in context.

Derivation of the equilibrium partition requires that the chosen
equilibrium be attainable; that with respect to,(12) a dynamic policy
u(t) can be designed to drive x(t) to zero. Thus if K=N, dynamic
existence for a statically controllable system is to be investigated
in the context of (12); if K < N, dynamic existence for a.statically
noncontrollable system. These are the basic questions to be
considered in this chapter. But before establishing necessary and
sufficient conditions for which dynamic design is possible, section

3.2 removes an unnecessary assumption concealed in (12).
3.2 VARIABLE TARGET AND INSTRUMENT DIMENSIONS

Implicit in the analysis of the previous section, leading from
the static description (1) to the dynamic description (12), is the
assumption that the static and dynamic reduced forms are of the same.
dimensions. Thus the target vectors x(t), X(t) are both of dimension
Nx1, and the instrument vectors u(t), U(t) are both of dimension Kx1,
K ¢ N.  This dimensional equivalence need not be true for either

instruments or targets.

Fewer instruments may be used dynamically than are statically
available. Instruments are only optionally dynamic; if they do vary
dynamically, it is because of a deliberate policy decision. To avoid
prejudging the dynamic existence question, it is therefore desirable
to permit the possibility that some, but not all, instruments uj(t),
jel,...,K, are zero. That is, some instruments may be left at their
desired static levels while the remaining instruments are varied
dynamically. Now the effect of u,(t) = 0 is to filter out.the control

* . *
coefficient vector bj’ the jth column of B . Hence if any‘uj(t) are
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identically zero v t, the dimensions (K, k) of (U, u) must be such
that '

K > k. ' (18)

Since the existence of a dynamic control implies a static control but
not conversely, the case k > K is excluded. The case K > k is defined
as reduced stabilisation; and rigorous conditions validating this
possibility are presented in.chapter IV following. At this stage,

(18) asserts that the instrument vectors U, u need not possess identical
dimensions.

Equivalence of the target vector dimensions depends on the
assumption in (1) that the dynamics of the given economic system are
of the first order. But it is likely that realistic lag structures
will produce higher order dynamics, destroying this equivalence.
Since the ideas involved here are relevant to later chapters as well as
to the historical development of dynamic stabilisation theory, they are

now considered in.some detail.

The vehicle traditionally used for analysis of dynamic-
stabilisation policy - for example, by Phillips [1954, 1957], Allen
[1960, 1968] - may be termed the scalar policy model. Statically,
this»model relates a single target to a single instrument; dynamically,
it extends this relation, by various lag and response assumptions, to
an nth order differential equation in the target, with the instrument
as forcing function. The basic idea of variable target dimensions
is that this differential equation can be -transformed to a system of
n first order differential equations, in which the nxl vector of
dynamic variables is defined as the dynamic target vector. Since the.
static reduced form is a scalar equation, the static and dynamic reduced

forms therefore differ in their target dimensions.

For illustration, suppose that a macroeconomic system is given

by
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y(t) = Fe(t)

e(t) = g(t) + i(t) + c(t) 4, (19)
i(t) = Ly(t)

c(t) = Ly(t),

and schematically by Figure 3.1.

L
c
c(t)
g(t) N c(t) sl F y(t)
N
i(t)
L, N
1
Figure 3.1

A Scalar Policy System

The variables in (19) are the target y(t), the instrument g(t), and

.~ the feedback variables c(t), i(t), functionally related to the target.
‘The variable e(t) is the sum of the instrument and these feedbacks.

F, Lc’ and Li are assumed to be linear operators. It is also assumed
that (19) represents a system to which the equilibrium partition has

been applied so that exogenous variables are removed.
Particular specifications of the linear operators determine the

dynamic dimension acquired by (19)1. From that equation, target and

instrument are related by

y(t) = [T_-}fLi——-_—ﬁ:]g(t). (20

The scalar policy models of chapters V and VI below are specific
examples of the system (19).
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Hence for the specification

F=1, L =aD, L =8, D= d/dt, (21)

equation (20) is the first-order differential equation
y(t) = (/o) (1-B)y(t) - (1/a)g(t). , (22)
Or if the forward operator F is the,nth'order exponential lag operator
AR

F e (D+>\)n ’ @

with L, Ly defined in (21), then:(20) becomes

[FhoL Ly () = g(t), (24)
equivalent to the nth order differential equation

n n-1; _

D (t) + & D"Ty(£) + ... + 8 y(t) = b g(t). (25)

The coefficients a;, i=0,..,,n-1, and_b0 are determined from (24).
A similar representation to (25) results if the control input g(t) can

only be applied with an exponential lag.

Specification of the feedback operators Lc’ Li as lag operators

has .an additional effect. Thus suppose
B P o
F=1, L, = L L, = , p+q = n. (26)
(D+p)P (D+0) 4
Then the system (20) is
-1 -1 -1 _ -1
[(L;L) "-FL_"-FL."]y(t) = (L;L)) "Fg(t), (27)

which simplifies, using (26), to

Dy (e) + 2 Dy () 4 ...+ 2y (D)

-1

= anng(t) + ...+ b g(t). (28)
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Lag specifications in the feedback loops of Figure 3.1 therefore

induce input dynamics as well as output dynamics.

Depending on dynamic operator specifications, equations (22), (25),

and (28) are thus alternative versions of the general scalar policy

model. All, however, possess the static solution
y(@) =0, g(=) =0, (29)
provided the controlled system is stable. To subsume these versions

in a single . equation, replace the input dynamics of (28) by
g(t) = b D'g(t) + ... +'b g(t), (30)

as suggested by Kalman, Ho § Narendra [p.202]. Here g(t) is a
solution of the differential equation (30) with forcing function g(t)
and given initial conditions. Given this device, there is no loss of
generality in considering the differential equation

Dny(t) + an_an-ly(t) + ... F aoy(t) = bog(t), (31)

for appropriate bo, g(t), as the dynamic reduced form of the scalar

policy model.

What relevance does (31) have to variable target dimensions? To

answer this question, consider the canonical transformation

Dy (e) =z, (1), i=1,...,n, (32)
applied to (31) to give
2.(t) = 2., (0), i=1,...,n-1,
(33)
; _ pn _ _ _
zn(t) = Dy(t) = an_lzn(t) ces aozl(t) + bog(t).
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In matrix form, this system of n first-order equations is

z = Az + bg,
010 ———- 0 z,
0010 0 z.
b~ >~ ‘ . 2
T N B T O (34)
1 ~ \\\ S 0 5 = . o, = . .
| _\\
Omm S0
% T T ] R

Equations (31) and (34) are therefore equivalent representations of
the scalar policy model. The first is the classical input-output

representation; the second is the modern state space representationz.

Now equations (22), (25), and (28) correspond to particular values
of n, the dimension of the state vector z in (34). Although from the
classical viewpoint there is one target y(t) possessing nth order
dynamics, it is convenient to regard each cpﬁponent-of the state vector
as a dynamic target variable, for reasons made clear in the following
section. If n is defined as the number of dynamic targets, and if N

is the number of static targets, then for the scalar policy model
n 3 N(= 1). , (35)

Hence static and dynamic reduced forms need not possess identical

target dimensions.

The general stabilisation problem will realistically involve the
attainment of multiple targets using multiple instruments - the vector
stabilisation problem of (1). Similar arguments with respect to
variable target dimensions apply immediately to this model. Therefore,
using the earlier assumption N > K, and equations (18) and (35), this
analysis of variable target and instrument dimensions implies the

integer ordering

2 For further analysis of these two approaches see, for example,

Athans § Falb [pp.173-90] and Ogata [chap. 4].



62

n>N2>K=2k (36)

on the numbers of dynamic targets (n), static targets (N), static -
instruments (K), and dynamic instruments (k). Given the nesting of

(36), if the dynamic.dimensions coincide (n=k), then

n=N=K-=k. ’ (37)

To summarise, the variable target and instrument dimensions (36)
arise because dynamic targets are not necessarily static targets, and
because static instruments are not necessarily dynamic instruments.
Consequently, the dynamic stabilisation model (12) may be respecified
as: ”

x(t) = Ax(t) + Bu(t), p(B)=k, (38)
with dimensions

x: nxl, u: kxl, A: nxn, B: nxk. (39)
Both A and B subsume an nxn adjustment speed matrix T.

Two general cases of (38) are important for subsequent analysis.
If k=n, then by (37), the original disequilibrium specification (12)
re-emerges, after invoking the rank assumption of proposition 3.1 to
give .

o(B) =p(B) =K=k=n=N (40)

Dynamic systems (38) satisfying (40) will be defined as square policy
systems. If k < n, then systems (38) satisfying

o(B") = k < n, | (41)

will be defined as rectangular policy systems: dynamically there are
fewer instruments than targets. Rectangular systems occur not only
because of static noncontrollability but also because of target and/or

instrument variation; all three cases being characterised by k < n.
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The following section presents the general existence criterion
for the dynamic system (38), for both square and rectangular systems;
and specialises it to square policy systems. Section 3.4 then

considers its application in rectangular policy systems.
3.3 DYNAMIC CONTROLLABILITY IN SQUARE POLICY SYSTEMS

Section 3.1 partitioned the stabilisation problem into two
problems and interpreted the central result -of the static theory of
economic policy as providing necessary and sufficient conditions for
static controllability. This prompts inquiry as to the existence-
and form of corresponding results for the dynamic stabilisation problem.
Is there a concept of dynamic controllability; and if so, what form
does it take?

When evaluating Tinbergen's contribution to the theory of economic
policy, Culbertson argues [p.394] that the Tinbergen framework:

"...,has to do with equilibrium values. The framework does
not appear to have any clear application to dynamic-analysis,
in which each variable has not a one-dimensional fixed value
but a time pattern of behaviour...'".

Thus Culbertson conjectures that there are no dynamic results comparable
to those of static controllability; or that Tinbergen's.static results
may lack relevance dynamically. This thebretical asymmetxry is
undesirable given the importance, as shown by Phillips [1954], of the
dynamics of stabilisation, Clarification of the dynamic problem is.

therefore a first step towards removal of this asymmetry.
The object of analysis is the dynamic system
%(t) = Ax(t)+ Bu(t), x(0)=x #0, p(B)=k < n, (42)

Now if Tinbergen's analysis is to be vindicated dynamically, a logical:
procedure is to pose the dynamic problem in a fixed-target format
similar to the static problem. Thus given the dynamic system (42),
does there exist a control policy u(t) which drives the system from

an initial position x(0)#0 to a terminal position x(T)=0 over some

fixed control period T? If this terminal position can be achieved
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and maintained, the specified static equilibrium results. The primary
difference between the dynamic and static fixed-target models is that

explicit recognition of the dynamics of adjustment necessitates explicit:
recognition of the period of adjustment.

Equation (42) has the general solution

) t
x(t) = ¢(t,0)x(0) + J ¢ (t,T)Bu(t)dT, (43)
0
where ®(t,0) is the transition matrix given by, for a linear constant.
System,

o(t,0) = Mt | o 44)

At time t=T, the desired solution for (43) is x(T)=0, implying with use.
of (44) that

T At
- J e Bu(t) dt = x(0). (45)
0 .
Equation (45) is a fixed-target model of dynamic stabilisation
analogous to the static model (5). The dynamic target vector x(0) is
that discrepancy between the initial position and the static
equilibrium to be removed by dynamic policy action;. and the integral-
on the left of (45) defines the dynamic policy structure in which the
available,iqstruments u(t) are embedded.

What are the requirements for the existence of a control policy
u(t) satisfying (45)°? Is it possible, with the given instruments,
to move. the economic system dynamically from the given initial state.
to the desired terminal state? This fundamental question of dynamic
existence has been ignored by both the classical and the optimal
schools. It is here, and not for the first times, that the discipline
of control theory can make a basic contribution to the theory of
economic policy. During the last decade, Kalman [1959, 1961, 1963a,
1963b] and Kalman, Ho & Narendra have developed the concept.of dynamic

controllability to a stage where it is immediately applicable to this

5 Cf. Phillips' application [1954] of classical control techniques

to the dynamic design problem.
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policy problem.

Linear constant systems of the form (42) are dynamically
controllable if it is possible to find a control u(t) which, in
specified finite time T, will transfer the system between any two
arbitrary states, x(0) and x(T)., For x(0)#0 and x(T)=0, this"
definition accords with the statement of dynamic stabilisation as a
fixed-target problem. Now necessary and sufficient conditions for
dynamic controllability are given by (see Appendix III, pp.261-3 below):

Theorem 3.4 (dynamic controllability)

The continuous-time linear constant system
X(t) = Ax(t)+Bu(t) is dynamically controllable iff the
composite nxnk matrix

Q=[B AB ... A%y (46)

possesses full row rank, i.e.

p(Q = n. 47)

As demonstrated in Appendix III, theorem 3.4 is obtained by
converting the integral equations of (45) into a set of algebraic

equations
QB = x(0), (nxnk.nkxl=nx1), (48)

to which theorem 3.1 is immediately applicable. The matrix Q and the
vector B are the dynamic analogues of B* and U in (5). Whereas B* is
the static control coefficient matrix, Q is a composite function of the
dynamic. control matrix B and the dynamic structural matrix A; and
whereas U is simply the vector of static instruments, B is a vector
whose elements are functions both of the instruments and of certain
linearly independent time functions. Just as theorem 3.3 provides
necessary and sufficient conditions for static controllability for all.
possible static targets, so too theorem 3.4 provides necessary and

sufficient conditions for dynamic controllability for all possible
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dynamic targets, or for all possible initial conditions.

It is therefore clear from (5), (48) that Tinbergen's static.
approach, at the very least, carries over to the problem of dynamic\'
stabilisation. Further, if the equilibrium partition derives from a
statically controllable systen, so that - (40) is satisfied, a striking
result emerges. For then the controllability matrik.Q comprises n

blocks‘AJ_lB, j=1,...,n, A° = I, each of dimension nxn:

Qg = [B AB ... An_lB], (nxn2). | (49)

The - dynamic rank cri;erion of theorem 3;4 requires-thatip(Qs)=n; or,
from Ferrar [p.94], that at least one nxn minor of (49) is nonzero.
From inspection of (49), an immediate sufficient condition for dynamic-
controllability is therefore.

o(B) = p(TB) = p(B'). : (50)

Hence statically controllable systems are invariably dynamically
controllable. This result preserves unchanged Tinbergen's static
theorem in a dynamic context; and is an appropriat; denial of
Culbertson's conjecture that Tinbergen's static analysis has 'no clear

application to dynamic analysis'.

Before examining theorem 3.4 for the case k < n, an equivalent
but intuitively more acceptable criterion is availab1e4. Assuming
that the structural matrix A possesses n distinct eigenvalues, there
exists a nonsingular eigenvector matrix P such that the transformation

x(t) = Pz(t) (51)

reduces (42) to

5(t) = Az(t) + Bu(t), | (52)

See Kalman, Ho & Narendra [pp.201-4]; and for exposition,
Elgerd [pp.67-117].
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~

where A, B are given by

. -1
dlagCAl, ,,o,kn) = P "AP,

-
i

(53)

plp,  aeE(A),

o>
il

and E(A) is the set of n distinct eigenvalues of A, Since A is the
diagonal matrix of eigenvalues, the motion ii(t) of the variable zi(t)
is uncoupled from the variables zj(t), j#i. To control each variable
zi(t), it is necessary and sufficient that each equation of (52)
contains at least one control variable uj(t) with a nonzero coefficient.

For suppose the ith'equation is

2,(t) = Az, (1), zi(0)=§i’ ' (54)

with solution

Ait_
zi(t)é e z,. (55)

Then the ith variable is uncontrollable: for Ai > 0, zi(t) diverges
uncontrollably; and for Xi < 0, converges uncontrollably. In eithexr
case, it cannot be forced to a desired terminal value Ei(T). Dynamic
controllability therefore requires that the matrix ﬁ = P_lB contains

nonvanishing rows. This will be termed the coupling criterion.

Equations (54) and (55) illustrate that dynamic controllability
is defined without reference to system stability. If a system is
dynamically controllable, then a control can always be devised,
irrespective of the stability of the uncontrolled system. If, however,
a system is dynamically noncontrollable, stability is then important.
From the coupling criterion, dynamic noncontrollability means that
certain (transformed) states are not accessible to the given
instruments. If these states are unstable, target performance as a
function of these states worsens progressively with the length of the
stabilisation horizon, irrespective of any control action. If these
states are stable, target performance as a function of these states
improves progressively with the length of the stabilisation horizon,

owing to their decay.
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Dynamic noncontrollability in an economic system would indicate
structural areas insulated both directly and indirectly from policy.
In principle, this is overcome by developing, if possible, additional
control forces appropriate to the control 'gaps' in the system.
Policy intransigence, therefore, in the large-scale complex system of-
a modern economy may be a consequence of economic structure rather than
or as well aé of data availability and lack of expertise, resources,

and accurate system modelling.

To summarise results to this point, the theory of economic policy
provides the Tinbergen theorem of static controllability but no
comparable dynamic theorem. Indeed, Culbertson conjectures that such
a dynamic theorem might not exist. By applying the concept of
controllability to the problem of dynamic stabilisation, it is shown
that a comparable theorem does exist. As a result, either of two
equivalent criteria - the rank and coupling criteria - may be used to
ascertain existence of a solution to the dynamic problem, This
question of existence logically precedes that of design. And when
the rank criterion is applied to a disequilibrium system derived from
a statically controllable model, Tinbergen's static theorem generalises

to provide a dynamic existence criterion for square policy systems.

Section 3.4 now considers the interpretation of theorem 3.4 in

rectangular policy systems.
3.4 DYNAMIC CONTROLLABILITY IN RECTANGULAR POLICY SYSTEMS

Section 3.1 argued that, independently of whether static
equilibrium represents a global or constrained optimum of the static
preference function, the total stabilisation problem may be. ‘
partitioned into a static problem and a dynamic problem, with theorem
3.4 of the previous section providing necessary and sufficient .
conditions for existence of a policy solution to the dynamic. problem.
The type of static solution does, however, affect the conclusions drawn
from application of this theorem; as do variations in target and
instrument dimensions. Thus section 3.3 specialised the rank criterion
of theorem 3.4 to square policy systems; in this section, theorem

3.4 is specialised to rectangular policy systems.
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From (38) and (41), rectangular policy systems are defined by
x(t) = Ax(t) + Bu(t), B: nxk, po(B)=k < n, (56)

for which the controllability matrix (46) is

Qu=[B AB ... A"'B], Qg mxnk, k<n. (57)

A simple condition like (50) on the existence of an nxn minor in (57)
is no longer evident. Dynamic controllability is now dependent on
both the control matrix B and the structural matrix A. But neithef
policy-makers not policy-designers will be enlightened by the role of
rank (QR) as arbiter of the &ynamic controllability of their particulai
economic system. This section therefore attempts to expose the
operation of this criterion in terms of properties of the structural
and control matricés, To facilitate this task, the distinctness
assumption on the eigenvalues of the structural matrix A will be
retaineds° The derivation and interpretation of a sufficient
condition for dynamic controllability in rectangular policy systems

will be given; analysis of necessity is.deferred to chapter IV.

Interpretation of the rank criterion may be broached by taking

the simplest case first. Thus for k=1, consider the scalar policy
system
x(t) = Ax(t) + bu(t), b: nxl1, (58)

with square controllability matrix
n-1
Q =1[b Ab ... AT'D], (nxn) . (59)

Is the system (58) controllable with a single instrument; and if so,

under what conditions?

From the discussion of the coupling criterion in section 3.3,

This assumption is previously used (i) as a means of simplifying
the proof of theorem 3.4; and (ii) as a sufficient condition for
the existence of a diagonalising transformation of the structural
matrix when defining the coupling criterion.
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p(Q)#n iff

p@) #n, Q =T[b b ..A"], (60)

where, by similarity transformation of (58),
A = diag(h),...,A ) = P7lAP, (61)

Now the matrices AJ, by the distinctness assumption, are independent
YV j, so that the only admissible cause of singularity of Qs is a
But from (61), this

is orthogonal to b; or,

vanishing element (or elements) in the vector g;
requires that the corresponding row of P71
since P"1 is a normalised left eigenvector matrix for the structural
matrix, that b is a linear combination of no more than n-1 of the

eigenvectors of A, For example, if

b = Q1P * -eet0 1P 15 qi constants, : (62)
then

N R T

b=P"b=[o 0 ... a 01, (63)
and the nth element of g vanishes. A necessary and sufficient

condition for dynamic controllability in the scalar policy system (58)

may therefore be stated as

v
b#I a.p., v < n-1, (64)
i=1

For v = 1, (64) may be rewritten as
Ab # )b, AeE(A), (65)

a requirement that the control coefficient vector b is not an

eigenvector of the structural matrix A,

Returning to the general rectangular problem (56), and writing

the controllability matrix (57) in expanded form as

_ n-1 n-1
Qg = [b1°'° b, Ab, ... Ab ... A b1 Y\ bk]’ k<n, (66)
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displays the existence of k scalar systems of the form (58) with
associated controllability matrices (59). Hence, by (64), an

immediate sufficient condition for dynamic controllability in

rectangular policy systems is

V. :
J .
bj # §=1aijpi’ vj < n-1, jel,...,k, (67)

satisfied for some j.

It can be shown immediately that violation of (65) V j = 1,...,k
is sufficient for dynamic noncontrollability. That is, suppose.each
control vector bj is, apart from a possible scalar multiple, an
eigenvector pj of A, so that vj =1V j=1,...,k in (67). Using the
transformed controllability matrix

Q= [B AB ... A 18], B =rp's, (68)

assume without loss of generality that the k columns of B and the first.

k rows of P_1 are biorthogonal. Then, ignoring possible scalar factors,

I J
~ -1 kxk N xk
B=P B= |-memmmmen- , MB = |-commem-- , (69)
0n-kxk n-kxk
so that
1 1 1 n-1
Texk E Akxk E ) E Akxk
! ] t
= |-memmme- R T ittt e . (70)
LI A A
n-kxk ! n-kxk ! ! n-kxk

Under the assumption that each control vector bj is an eigenvector of
- A, the largest nonzero minor in QR is thus of dimension k < n, implying
noncontrollability for any number of instruments. In the general case

in which (67) is violated Vj =.1,...,k so that

o

v
J .

b. =% a,.p:, j = 1,...,k, 1 <v, <n-1, 71

iTr iP50 I 3 (71)
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the rectangular policy system (56) is noncontrollable with respect
to any single instrument but the question of controllability when
several instruments are jointly used remains open. This question will

be examined in chapter IV.

Since the eigenvector condition (64) or (67) has no counterpart
in the static theory of economic polfcy, the remaining part of this
section seeks an interpretation6 of this condition. Equation (45)
specifying the dynamic instrument-target structure is a convenient

starting point. Taking k=1, and using (53) to provide

e At o peAtp-l (72)
equation (45) may be written
T nt -1 -1
- J e P “bu(t) dt = P "x(0), (73)
0

Now solutions of the linear constant differential system X = Ax will
consist of linear combinations of the n exponential modes exp {kjt},
j=1,...,n, AcE(A). Therefore, solutions of X = Ax+Bu, and hence of
(73), will also consist of linear combinations of these modes, provided
the feedback principle is used in designing the controller u(t) and
provided no constraints are placed on the instruments. Thus,
postulating the smooth controller

n ALt

u(t) = - I vy.e 7, (74)
j=1

where the coefficients y. have yet to be determined, and taking

P; (pgl) as the jth column (row) of P (P—l), equation (73) is

6 The following analysis is suggested by the mode analysis

presented by Zadeh & Desoer [pp.311-26].
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ALt -ALt At
T |e ! o [l @tey fje te ™I
{ oAt _iv Lot
o |o e | Gy 7b) | | Tn
-1
(py»x(0))
= . . (75)
-1 °
(p,, »x(0)) |
After manipulation, (75) becomes
— — At =Xt At -t —
3 1" " 1° "n [ -
(pll’b) 0 Tl e e ees € e Yy
) {[ dt} | .
-1 0 Y
0 (pn ,b) e-knte-klt e-Ante-Ant i n—
— —
-1
(py »x(0)) |
= . , (76)
_1'
(p,, »x(0))
or
B'G y = x'(0), (nxn.nxn.nxl=nx1), 77

with the appropriate identifications.

The problem of dynamic controllability is .whether or not.there
exists a solution for y, the vector of open-loop coefficients.

Applying theorem (3.1) to (77), such a solution exists iff
p(B'G) = p(B') = p(G) = n. (78)
From Zadeh & Desoer [pp.497-8], a necessary and sufficient condition

for p(G)=n is that exp {—Alt}, coe, EXP {-Ant} are linearly independent
functions of t; and this is guaranteed by the distinctness assumption



74

on the eigenvalues. A necessary and sufficient condition for

p(B')=n is
(thl,b) £0Vj=1,...n. | (79)

With respect to (79), any nxl vector x has a representation

n
X =1 lajpj in the eigenvector basis, with the aj as components along
J:

P; in that basis. Hence x = Pa implies o = P_lx, so that oy =

(pgl,x), with x therefore given by

T
X=X (p. »X)p:. (80)
j=1 J J <
For x = b in (80), (79) requires that no component of b in the

eigenvector basis vanishes. But if
v
b=2 o.p., v < n-1, (81)
i

as given in (64), then at least one such component must vanish., Thus
the control coefficient vector b must not be confined to a proper
subspace, of dimension n-1 or less, of the state space if dynamic
controllability is to hold. For then, in the words of Kalman, Ho &
Narendra [p.203], '"the effect of control eventually reaches every

state',

Although the eigenvector condition (67) is, in general, only
sufficient for dynamic controllability, it is, by (64), both necessary
and sufficient when only one instrument is available, In the following
section, the notion of dynamic controllability and the significance of
this eigenvector condition are therefore considered geometrically in

simple scalar policy models.
3.5 PHASE ANALYSIS OF CONTROLLABILITY

Further insight into the dynamic controllability criterion may
be obtained by considering a dynamic system with two target variables
and a single control variable, the control variable appearing in only

one of the state equations: 1i.e,
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X = Ax + bu, x(0)#0,
41 312 0

A = s b = (82)
35 35, b, >0

This model could, for example, represent the venerable problem of
internal and external balance, treated not in terms of static
equilibrium but in terms of disequilibrium dynamics. The dynamic
policy problem is whether or not the static equilibrium implicit in

(82) is attainable with the single instrument available dynamically.

By theorem 3.4, the sysfem (82) can be forced to the equilibrium
point x = 0 in finite time iff

0 a12b2
P(Q =2, Q=[b Ab] = . (83)
by 2320
Hence Q is singular if aj, = 0 and/or b2 = 0. The system (82) is

therefore dynamically noncontrollable if the first target X is
disconnected from the second target Xx, and thus from the instrument,

or if the instrument itself is unavailable,

Now suppose. (83) is satisfied, and that the structural matrix A
has the unstable sign pattern

A: o (84)

Then the policy system (82), (84) may be represented geometrically by
the phase diagram of Figure 3.2:
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IIT.

Figure 3.2
An Unstable Controllable System

The locus Xz = 0 is a parametric function of the instrument u(t), and
is shown for u(t)=0. Thus the designated origin (e) is the desired
static equilibrium point for the system, For initial conditions
x(0)#0 g{ven by (a), suppose that the system, left to its own devices
dynamically, would follow the trajectory (ac), reflecting the assumed
instability (84). But since the system satisfies (83), and is
controllable, it must therefore be possible to force the system from
point (a) to point (e) in finite time. Figure 3.3 presents one.
construction of a trajectory accomplishing this transfer - the

trajectory (abe) shown in Figure 3,2.

At the control origin t=0, the instrument is set at a constant
level such that region I in Figure 3.3a is contracted eastwards,
relocating (a) in region IV, If control persisted at this level, the
system would diverge along the trajectory (ab); but at some time
t=t' corresponding to (b), control is reset as shown in Figure 3.3b.
Region I is expanded sufficiently not only to recapture the system

trajectory but also to steer it through the equilibrium point (e) at
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X, [a]
G—_ll
II
N e H x
<1V L \ 1
ITI .
x1=0 x2-0
[b]
X
2 I
II
—
< \ v *1
x1=0 \\\
IIT L.) 5(2=0
Figure 3.3
Construction of a Controlled Path
time t=T. This analysis is intended in a qualitative sense only.

For b2 > 0, the implied controller is the piecewise constant function

of Figure 3.4:
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u(t)

g

o+
L 3

Figure 3.4

Piecewise Constant Controller

The illustrated control magnitudes and the timing of the policy switch
at t' are merely assumed to determine the trajectory (abe) of Figure
3.2, but some such controller can be shown to exist, For expositional
simplicity, a piecewise constant controller is chosen .instead of a

smoothly continuous controller, without prejudging the design question.

Controllability, as a system property, permits the policy-maker
to modify the system dynamics so as to lure the resultant trajectory
to the equilibrium point - irrespective of whether the system is
naturally stable or naturally unstable. Yet if the controlled
trajectory arrives at the equilibrium point (e) in finite time, it does:
so by directly hitting rather than asymptotically approaching (e).
Once control lapses at the horizon t=T, this creates the problem of
holding the system at or near equilibrium for t > T. With natural.
stability, this problem is unimportant; but with natural instability,

further policy action is imperative to aveid subsequent divergence.

Following this analysis of controllability, consider now the
significance of noncontrollability. Provided the single instrument

is available (bz#O), the system (82) is noncontrollable iff a,,=0, so

12

that the dynamic variable x, is severed both directly (b1=0) and

1
indirectly (a12=0) from control. As a result, the structural matrix

A is lower triangular with eigenvalues
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AT oagp Ay = 8y (85)
such thét
Ab = Ab, Vb, #0, o (86)

Therefore, in this rectangular policy system, noncontrollability
implies, by (86), violation of the eigenvector condition (65). The
control coefficient vector b is an eigenvector of the structural matrix

A corresponding to the eigenvalue AZ = 255-

Imposing, for example, the stable sign pattern

A: s (87)

the significance of this violation may be analysed in terms of Figure

3.5, No matter how the instrument is varied, shifting the iz =0

IV X

[

2

III

X1=0

Figure 3.5
A Stable Noncontrollable. System

locus up or down cannot force the system trajectory - whether (abe) or

(ace) - to actually cross.the vertical axis, the locus il = 0,
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Depending on initial conditions, system response is confined to the
right-hand or left-hand vertical planes of the state space. Hence no
trajectory can be made to hit the equilibrium point (e) in finite time.
Although speeds of adjustment may allow the system to be within a small
prescribed distance of equilibrium in finite time, equilibrium istbnly
attainable in infinite time. But .because dissatisfaction with
adjustment speeds is a primary rationale for active stabilisation,
absence of controllability in naturally stable systems leaves no room
for complacency.

These simple geometrical examples illustrate some of the basic
aspects of the controllability concept. Controllability is not a’
function of natural stability (which is determined purely by the
structural matrix), but is a function of.the target-instrument structure.
(determined by the control matrix as well as the structural«matrik).
Natural stability properties are, however? relevant at the cessation of
control. Noncontrallability represents the inability of the instrument
to force the pair of targets to behave aibitrarily, the effect of the

instrument being restricted by violation of the eigenvector condition.
3.6 CONCLUSIONS AND QUALIFICATIONS

To summarise, this chapter begins by defining the notion of an
equilibrium partition in the total stabilisation problem. This
partition, derived from global or constrained optima of a static
preference function, separates the twin problems of static and dynamic™
stabilisation. It is argued that an asymmetry exists between the
theoretical analyses of each'problem:“dynamically there is no criterion
énalogous to the static Tinbergen criterion. And such criteria are
essential to validate the equilibrium partition. Given Culbertson's.
conjecture, which is sceptical about the dynamic applicability of
Tinbergen's analysis, this asymmetry is even more provocative. The
control concept of dynamic controllability is therefore shown to remove
this asymmetry, validating the spirit and the letter of Tinbergen's

approach and refuting Culbertson's conjecture.

In square policy systems, Tinbergen's static controllability
theorem retains its full force; if a square system is statically

controllable then it is also dynamically controllable, and conversely.
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This result is independent of the assumption of distinct eigenvalueé
for the structural matrix, and is therefore completely general. That
both static and dynamic controllability of square systems depend on the.
rank of the control matrix is an apt refutation of the Culbertson 4

conjecture.,

Results for rectangular policy systems are neither as general nor
as immediate in interpretation. Because of the distinctness assumption
on the eigenvalues of the structural matrix, the eigenvector condition
(67) is not necessarily valid if multiple eigenvalues occur. In.
practice, if not in theory, Bellman's approximation theorem [p.199]
disposes of this problem. Geometrical interpretation of the
eigenvector condition has been provided for a scalar policy system in
which the instrument is an eigenvector of the structural matrix. That
dynamic controllability is the failure of instruments to affect all

dynamic targets is obvious in this simple example.

Upon dissection, the rank criterion therefore yields sufficient
conditionglfor dynamic controllability of the two classes of
stabilisation model identified. If the stabilisation model is square,
the rank criterion is equivalent to Tinbergen's static criterion; if
the stabilisation model is rectangular, the rank criterion is equivalent
to the eigenvector condition. Progression from the statics to the
dynamics of stabilisation not only introduces a new dynamic condition -
the eigenvector condition - but also retains the old static condition -

the Tinbergen theorem.

Historically, lack of concern for dynamic existence is explained
by use of the scalar policy model for investigations df dynamic
stabilisation. That a single target with nth order dynamics is
controllable with .a single instrument is so intuitively o?vious as to
suppress explicit analysis of existence. Generalising the
stabilisation problem to a multi;target, multi-instrument framework
creates such a need. With respect to the scalar policy model, Kalman,
Ho & Narendra [p.202] demonstrate that these models are invariably
dynamically controllable. Thus, from (34), the controllability

matrix Q is
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O—- ===~ —01
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Q = : ) Ve P P /—al-ll-ao N (88)
0~ R '
Ve g < 4 '

17 -a7 -af+a’ iy

o 1 o7 7
which is nonsingular V aj. The scalar policy model is therefore well-

behaved, precluding the possibility of noncontrollability and verifying

the intuitive treatment of existence. -

If an economic. system is-dynamically‘controllable, then, because
the rank criterion is independent of the stabilisation horizon, it is
possible, as indicated by Kalman [1959, p.108], to transfer the system
between arbitrarily specified states as quickly as desired. But:the
shorter the stabilisation horizon, the greater is the necessary
expenditure of stabilisation resources. This necessitates, in practice,
the.reéognition of a lower value to the stabilisation horizon below
which economically excessive resource flows are required from the
public sector. Such constraints on the instruments.clearly reduce the
degrees of freedom associated with dynamic controllability.
Alternatively, given.a‘fixed stabilisation horizon and known control
‘constraints, an equivalent problem is to define the region of
controllability - for which see Athans & Falb [pp.197-200] and Lee &
Markus [pp.68-80]. This second type of formulation is relevant, for

instance, to a study of the efficacy of interest rate policy. -

Chapter IV extends this analysis of controllability in two
directions. Firstly, the assumption of distinct eigenvalues is
relaxed; and secondly, the concept of reduced stabilisation is

investigated,



CHAPTER IV

CONTROLLABILITY CRITERIA FOR STABILISATION POLICY

This chapter continues the development of chapfer-III. Concern
is for the underlying structure.of the stabilisation problem rather
than for methods of solution. Existence, not design, is the theme.
Because the concept of dynamic controllability is new to the theory of
policy, this chapter is directed not only to an economic interpretation
of the concept but also to an accessible exposition of the supporting
theory,

Chapter III analysed the rank criterion for controllability on the
assumption of~distinct<eigenva1ues for the structural matrix.
Relaxation of this distinctness assumption .facilitates theoretical
analysis of two topics left open by that chapter. The first topic.
refers to-interpretation of the rank criterion in rectangular policy
systems. Necessary and sufficient conditions are stated in section
3.4 for satisfaction of this criterion in scalar policy systems; while
a sufficient condition is stated for rectangﬁlar systems. Necessity
is still to be investigated when more than one instrument is used
simultaneously. The. second topic refers to the asserted existence,
in section 3.2, of reduced models of stabilisation. Conditions under

which reduction is available are still to be stipulated.

Both topics are investigated in this chapter after relaxing the
distinctness assumption. Allowance for multipie eigenvalues permits
a broader statement of results, and compels a deeper understanding of
the controllability concept. Dissection of the rank criterion as it
applies to rectangular policy systems is undertaken in two steps,
separated by an amalysis of reduced stabilisation. Section 4.1
investigates the effect of multiple eigenvalues on .the rank criterion,
and then justifies an equivalent coupling criterion for scalar policy
systems, Section 4.2 pauses to apply this coupling criferion to the
derivation of necessary and sufficient conditions for reduced

stabilisation, Section 4.3 returns to the analysis of dynamic
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controllability in rectangularvpolicy systems. A coupling criterion
is presented that unifies interpretation of the rank criterion in both
square and rectangular policy systems. Finally, section 4.4 summarises

the conclusions of the chapter.
4.1 THE STRUCTURAL MATRIX UNRESTRICTED

Once multiple .eigenvalues are admitted, the rank criterion for
dynamic cdntrollability is .a function of the degree .of the minimal
polynomial rather than of the characteristic polynomial of the
structural matrix. To define the significance of the minimal
polynomial, the Jordan canonical form of A is presented and related to
the minimal polynomial. Dynamic controllability is then shown to be
affected by the Jordan chains of A - a concept illustrated with a simple.
example. Following these preliminaries, controllability is considered
for scalar policy models in which there are no restrictions on the
structural matrix. A rationale for a general result due to Kalman,

Ho & Narendra is given, paving the way for the analysis of reduced.
stabilisation in section 4.2 and of general controllability in section
4,3,

4.1.1 Similarity transforms of A

Relaxing the assumption .of distinct eigenvalues in the statement
and proof of theorem 3.4, the general controllability criterion becomes

0(Q) = p[B AB ... APl

B] = n, (nxpk), ‘ 1)
where p is the degree of the minimal polynomial of A.  Following
Ogata [pp.385-6], p is introduced into the rank criterion (1) by noting
that equation (2) of Appendix III (p. 261 below) may be written
ar P-1 -
AT 2 1 o, ()AL, 2)
. i

i=0
and by then tracing this change through the Appendix. To investigate
controllability when multiple eigenvalues occur, it is therefore’

necessary to assess the role of the minimal polynomial. .

The distinctness assumption used in chapter III is a sufficient
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condition for the existence of n linearly independent eigenvectors for
A; existence of these eigenvecters, in turn, is necessary and
sufficient for existence of a similarity transformation of A to the
diagonal eigenvalue matrix A:

P lap = 4, A = diag(\[, ..., ), ASE(A), (3)

where P is a nonsingular eigenvector matrix. Although multiple.
eigenvalues generally prevent A from being similar to a diagonal
matrix A, A is always similar to a matrix A in Jordan canonical form.

Following Noble, the possibilities are represented in. Figure 4.1.

Similarity
Transforms
of A
n . Less than n
independent independent .
eigenvectors eigenvectors
A A
Diagonal Jordan Canonical
Form
Distinct Multiple Multiple
Eigenvalues Eigenvalues Eigenvalues
[1] [11] [111]
Figure 4.1

Similarity Transforms of Structural Matrix



Thus the matrix A is either in diagonal form or in Jordan canonical
form [pp.345-65]. The distinctness assumption therefore induces
the transformation (I). If no such restriction is placed on the
structural matrix, then the transformations (II) and (III),

corresponding to multiple eigenvalues, must be considered.

4.1.2 Jordan canonical form of A

86

Are systems represented by these two transformations controllable?

This question may be answered after first considering the Jordan

canonical form associated with (III). The following theorem, which

consolidates the analysis given by Noble [chap.ll], characterises this

canonical form:

Theorem 4.1 (Jordan Canonical Form)

Given a general square matrix A of order n, there exists

a nonsingular generalised eigenvector matrix P such that

J1 01\7\- - - q
0 J |
- ~
P lAP = N 2 ~ = A,
I N
0- - - -0 J
T
where

(i) the matrices Ji’ i=1,...,r are Jordan blocks defined
by

(4)
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A 1 0- - --0

1 AN |
N 1

0 >\1 1 \\ )

:\\ N \\ <Y

= N ~ . .
Ji | ~ N o« N R 0 s dim (Ji) 2 1; (5)
| \\ \\ "1
| N N
0 ------ -0 A

(ii) the eigenvalue kivmay occur in different Jordan blocks;

(iii) the number T, of such blocks corresponding to Ai is
equal to the number of independent eigenvectors associated with
Ai;

(iv) the order‘pi of the largest Jordan block with a
specific Ai on its diagonal defines Ai as an-eigenvalue-of index
p;; |

(v) the eigenvalue)\i occurs on the diagonal of A in (4)

a number of times equal to its multiplicity n.; and

(vi) simple eigenvalues-ki occur in one and only one
Jordan block, of ordér 1, with n, =p. = 1.

The relationship between the Jordan canonical form (4) and the

minimal polynomial of the structural matrix A is given by the following
theoremlz

Theorem 4,2

Given the nxn structural matrix A with s distinct eigenvalues,

Al’ ooq,ks, s-< n. Then the characteristic polynomial of A is
n n, :
x(z) = (z-Al) e (z-As) , (6)

where n, is the multiplicity of A, ; and the minimal polynomial

1 c£., e.g., Noble [pp.370-2].
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of A is
P Pg
V() = (z-2) © .. (2R S, (7)
where,pi is the index of Ai, The degree of x(z) is

s
n=23% n., (8)
i .

S .

P=2 p;, (9
i=1l

where

n, > p, 1= 1,...,5, s £ n. ' (10)

Thus the degree p of the minimal polynomial is the sum of the eigenvalue
indices p;; or, by (iv) of theorem 4.1, the sum of the orde‘rs‘pi of

the 'largest Jordan.block J.1 associated with each eigenvalue Aif

4.1.3 Jordan chains and controllability

Dynamic controllability is linked to the minimal polynomial of A
through the concept of a Jordan chainz. A multiple eigenvalue'ki, of
multiplicity n., and index P;>» occurs in a Jordan chain iff it appears -
in one and only one Jordan block on the diagonal of A in (4); the
unit superdiagonal of this Jordan block (5) constituting the chain.

By (iv) and (v) of theorem 4.1, Ai occurs in such a Jordan chain iff

n; = p;- (11

To illustrate the relevance of this concept, the scalar policy

system X = Ax+bu is, using k=1 in (1), controllable iff

L)

p(Q) = [b Ab .., AP n, (nxp) . (12)

2 Cf., e.g., Ogata [pp.249-50].
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By theorem 3.1, a necessary condition for (12) is n=p, or equality of

the degrees of the characteristic and minimal polynomials. From (8),
(9), n=p iff

S S

§=1ni = §=1pi <=> n, = pi Vi =,1,f..,s, (13)
by (10). If scalar policy systems with multiple eigenvalues.are to be

dynamically controllable, (11) and (13) imply the necessary conditidn!
that every distinct. eigenvalue xi, i=1,...,s, s ¢ n, is linked in a

Jordan chain or occurs in one and only one Jordan block.

Interpretation of the Jordan chain condition (13) will therefore-
aid understanding of the effect of relaxing the distinctness assumption.

Consider a second-order scalar system,

2, (t) 2y (8) | b

1]
=
+

u(t) (14)
22(t) zz(t) b2

assumed to possess -a 2-fold eigenvalue and to be a}ready in Jordan

canonical form. Then A can . assume one of two forms:
A, = , A, = . (15)

If A = A, the Jordan chain associated with A is unbroken; if A = A2,

1 >
the chain is broken. Solutions of (14) for the second case are given
by '
zl(t) At zl(O) b1 )
= e + u(t) 2 (16)
zz(t) 22(0) b2
where
- ¢t
u(t) = J e u(t)dr. . : (17)
0 .
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Imposing the desired terminal solution z(T)=0 in (16) therefore
requires that

zl(O) b
= -e u(T). (18)
22(0) b

Thus with a broken Jordan chain, the scalar policy system (14) is
dynamically controllable iff the initial condition vector z(0) and the
control coefficient vector b are collinear - a restrictive‘condition
only met accidentally. If, however, the Jordan chain is unbroken so
that A = Al’ then p(Q) = p[b Alb] = 2, and the system is dynamically
controllable.

4.1.4 General scalar controllability

Using the foregoing analysis, a coupling criterion equivalent to
the rank criterion (1) for k=1 is presented. For the scalar policy

system X = Ax + bu, consider, following (3.45), the explicit solution

T .
x(0) = - J e Atbu(t)de, (19)
0
for the endpoint x(T)=0. For an unrestricted structural matrix A,

the transition matrix is, from (4),
= Pe" P 7, (20)

where A is the Jordan canonical form of A. To obtain a simple evaluation
of (20), suppose that all eigenvalues of A are linked in Jordan chains.
Then the matrix exponential (20), using Ogata [pp.152-5,308-9], may be
evaluated as

A S pisyviel, (21)

where



Hence, from (21) and (22),

-At t.-1
[

e At o = py is(-typt,

so that (19) is
_1 T
P "x(0) = - J f(t)u(t)det,
0

where

£t) = v is(ee)plp, (nx1).

Postulating the smooth.controller

u(t) = fT(t).y, (Ixn.nx1),

(24) is written -
-1
P "x(0) = G(T).v,

where G(T) is the nxn matrix

T T
G(T) = - J £(t)£) (t)dt.
0

ALt
e 1 I 0 Sn (t) 0
n1 1
(¥ = At > S(t)':
s
e~ 1 S (t)
0 ns 0 ns
n.-1
J 1t 2 t
~ N2l ~_ (n.-1)!
N AN 1
NN
AN
s () = NG D \\tz , i=1,
\ 1 \ N —ZT
N AN - s <n
N Dt
0 ~ 1

vee)S,
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(22)

(23)

(24)

(25)

(26)

(27)

(28)
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Now there exists a unique solution for y in (27), and the system

is controllable, iff G(T) in (28) is nonsingular.

By a result given

by Zadeh & Desoer [p.497], a matrix of the form (28) is nonsingular iff

the n elements of f(t) in (25) are linearly independent functions of

time over the interval [0, T],

may be written

£(t) =

where b is partitioned compatibly with yls

For g

= P~

1

1

(t).

b, and using (22), f(t)

Nt = =
e S b
n 1.1
1|, :
bl:n
4 2
_)\t '~
e sl (P
n_ ..
S .
s.ng|

(29)

Therefore the

elements of f(t) are linearly independent iff the elements of

exp {-th}s;%gj- are linearly independent'V j = 1,...

J
again,

[ ©

n.-1— -
()3 ] 8
(-1 j.1
o
AN
N \~E? )
N 21
N AN
N Et n
b.
N j.n
T

,S. Using (22)

(30)

Evaluating (30) readily shows that the elements of fn () are linearly

independent functions of t iff

bj.n° 7 0.

J

J

(31)
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Hence if (31) is satisfied V j = 1,...,s, then G(T) in (28) is

nonsingular and the scalar system (19) is dynamically controllable.

Condition (31) and the assumption, prior to (21), that all
eigenvalues are linked in Jordan chains illustrate the basis of the
following theorem due to Kalman, Ho § Narendra [p.204]:

Theorem 4.3 (Kalman, Ho & Narendra)

The scalar policy system %X = Ax + bu is dynamically
controllable iff

vi=1l,...,5, s< n, (32)

Condition (32a) refers to the eigenvalues of the structural matrix;
condition (32b), to the eigenvectors. The eigenvalue condition is.

the Jordan chain condition (13), Since ni=Pi=l Vi=1,...,n for
distinct eigenvalues, the distinctness assumption of chapter III
automatically ensures satisfaction of (32a). The eigenvector condition
requires that each .element of b = P-lb corresponding to the last row

of each of the (s) Jordan blocks of A must be nonzero. This is the
eigenvector condition of section 3.4, except that it applies to only

S < n.elements when multiple eigenvalues occur.

Thus, with respect to Figure 4.1, only the transformations (I)
and (III) permit dynamic controllability in.scalar policy systems,
The class (II) invariably violate the. Jordan chain condition, with at
least one eigenvalue occurring in more than one Jordan block. For
scalar systems belonging to class (I), only those satisfying the
eigenvector condition (32b) for s=n are controllable; and for those
belonging to class (III), only those satisfying both.the conditions
(32) are.controllable.

Although the effect of relaxing the distinctness assumption is
so far considered just for scalar policy systems, theorem 4.3 is

adequate for investigating the reduced stabilisation concept. Section
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4.2 therefore undertakes this investigation, deferring consideration

of nonscalar policy systems to section 4.3.
4,2 CRITERIA FOR REDUCED STABILISATION
Section 3.2 presented an ordering
n->N3>K3>3k (3.36)

on the numbers of static and dynamic targets and instruments, asserting
that the inequality K > k arises because of deliberate reduction in the.
usage of instruments dynamically. This section examines such a
reduction in the instrument vector: in particular, conditions:for which
reduction is feasible are obtained, and the economic sighificance of

the concept is elaborated.

4.2,1 Regular and reduced stabilisation

The ranking K > k on the dimensions of the static and dynamic,
instrument vectors defines two categories of dynamic stabilisation:
regular (k=K) and reduced (k < K). WithAregular stabilisation, the
dynamic policy mix contains every instrumént available statically;
with reduced stabilisation, fewer instruments are used dynamically than
are statically available. Reduced stabilisation is a concept novel
to the theory of economic policy. Previous work3 on dynamic
stabilisation policy has focussed entirely on the problems of regular
stabilisation. Again, this is principally a consequence of the scalar
policy model: with a single instrument, the possibility of reduction
is clearly absent. The notion of reducing the number of dynamic
instruments is itself contrary to the thinking engendered by the static
Tinbergen rule, which emphasises the need for more rather than fewer
instruments. If the concept is of value, it is therefore necessary
(i) to present conditions under which it is possible to design a reduced
policy mix and (ii) to demonstrate the utility of the concept as a

policy option. These two requirements are now considered.

Reduction, as defined, is a qualitative, not a quantitative

For example, Phillips [1954, 1957], Allen [1960, 1968], FST, and
Bergstrom.
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concept. There are k instruments available and it is desired to
select only r of these; the restriction r < k implying freedom

within the range 1 < r < k. To unify analysis of these possibilities,
a device used by Kalman, Ho & Narendra [p,204] and Lee § Markus [p.86]
is employed. Consider the regular stabilisation model

% = Ax + Bu, u(t)< RK, (33)

and assume that it is dynamically controllable., Define the kxl

column vector (c) such that
% = Ax + (Ba)u(t), (IS R, u(t) = cu(t). (34)

Then the system (33) is scalar controllable in terms of (34) iff the
two conditions of theorem 4,3 are satisfied. Hence the Jordan chain
condition n=p must be satisfied; and certain elements of the column

vector P 1Bc must be nonzero.

A system (33) satisfying theorem 4.3 in terms of (34) will be
said to be reducibly controllable. Depending on the constant vector,
c, two types of reduced controllability can be identified. If ¢ is
one .of the column vectors Ej of the kxk unit matrix Ik’ then u(t) =
uj(t) and Bc = bj’ jel,...,k, In this case, the process of reduction
is to ask whether one of the original k instruments is sufficient for
dynamic stabilisation. Such systems will be defined to be reducibly

scalar controllable (RSC).

If, however, c # uej, vVj=1,...,k, o constant, there is
necessarily more than one nonzero element in c. Given that u(t) =
cu(t), then uj(t) = cju(t) for at least two values of j, j €.1,...,k.
In this case, more than one of the original instruments are to be used
for dynamic stabilisation, each instrument being determined as a
constant function of the scalar controller u(t). Such systems will

be defined to be reducibly multiple.controllable (RMC).

Reduced systems are therefore.to be distinguished by the number
of original instruments ultimately employed in implementing the scalar
controller u(t). For RSC systems, only one instrument is required;

for RMC systems, more than one and possibly all of the original
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instruments are necessary. But for either class of system, the design
problem itself is simplified: it is only necessary to design a scalar
controller u(t), the dimension of the control space being reduced from
k to unity.

These two types of reduced system do not exhaust all the
possibilities for designing reduced systems. Thus if a regular system
is reducibly scalar controllable with respect to each of its k

instruments, then there exist r' additional reduced systems,

k k

r' =% ()’ (35)
j=2

obtained from combinations of these individual instruments, But RSC

and RMC systems are of basic importancefin characterising the options

of maximum reduction.

4,2,2 Examples of reduced controllability

Concepts of scalar and multiple .controllability may be illustrated

in the context of a square policy model containing two targets and two

instruments. Consider the scalar policy model
z1 A 1 z1 Bl
= ’ + N H, ) (36)
z, 0 A z, 62
in which
g = plgc, B: 2x2, c: 2x1. (37)

By theorem 4.3, this scalar system is controllable iff
B, # 0, (38)

since the Jordan chain condition n=p=2 is satisfied by the structural
matrix of (36).

The role of this eigenvector condition differentiates the two
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classes of reduced system identified above. Provided ¢ is not a unit
vector, its elements can always Ee chosen so that (38) is satisfied.
But if c is a unit vector, then 62 # 0 must be a structural property
of the given system. Thus RMC systems exist if the Jordan chain
condition is satisfied; RSC systems exist only if the eigenvector
condition is satisfied as well. The more stringent option of using
one rather than both of the available instruments necessitates.

satisfaction of more stringent requirements.

Assuming the stable sign pattern
A: - (39)

for the structural matrix of (36), the phase diagram associated with-

this system is given by Figure 4.2, The loci are shown for u =0, so
that (e) represents the desired equilibrium point.  Given the assumed
dynamics, and initial conditions corresponding to point (a), asymptotic

behaviour will be described by a trajectory similar to (ae).

The significant aspect of Figure 4.2 is that the horizontal locus
i2 = 0 separates the top half-plane from the bottom half-plane in the
sense that no trajectory can. cross that locus. Therefore, if the
instrument u(t) appears only in the first equation of (36) so that
51 #0, 52 = 0, no parallgl shifting of the locus il = .0, achieved
through a policy u(t), can induce the system to hit the equilibrium
point (e) in finite time4. But if the instrument u(t) appears in the
second equation of (36) so that él =0, %2 # 0, then vertical shifting
of the locus 22 = 0 in response to control can induce the system to hit
the equilibrium point (e). The composite path (abe) of Figure 4.3
supports this assertion. If Figure 4.3 describes an RSC system, the
ability to construct the path (abe) is a structural characteristic -of
the system; if it describes an RMC system, this ability is then a
discretionary option in the sense that the eigenvector condition Bz,# 0

can always be satisfied by appropriate selection of the vector c.

4 Cf. the analysis accompanying Figure 3.5 in section 3.5 above.
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Figure 4.2

Controllability with a Double Eigenvalue

Now suppose that the Jordan chain condition is violated for the

system (36), providing

z1 A 0 zy Bl
= + K. (40)
z, 0 by Z, 82

Assuming the stable sign pattern
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Construction of a Controlled Path
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A: ' ' (41)

the phase behaviour of (40) is given by Figure 4.4.

2
' a
Z2
22=0 R
51
< i 1
,Zl
IIIL-> - . (__‘TII
il=0
Figure 4.4

Noncontrollability with a Double Eigenvalue

For u(t) = 0, the asymptotic solution of (40), given (41), is the
linear trajectory (ae), with gradient determined by the initial
conditions (a). If either El = 0 or Ez = 0, so that the instrument
is confined to just one of the state equations, the separation
argument noted with respect to Figure 4.2 is also applicable to
Figure 4.4. Because either possibility violates the eigenvector

condition, the system is therefore noncontrollable. But suppose
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él #0, éz # 0, satisfying this condition. Now although the Jordan
chain condition remains violated, the type of reduction used in (40)
affects the controllability or otherwise of the system. Thus if a
controller u(t) # 0 can produce the new loci z!, zé, the system
possesses a linear asymptotic trajectory (aec) allowing the desired
equilibrium to be achieved in finite time. As equations. (14) through
(18) demonstrate, the trajectory (aec) requires collinearity of the
initial condition vector z(0)=a and the control coefficient vector

B. While collinearity is an arbitrary property of reduced scalar

- systems (for which the elements of E are fixed), it is a discretionary

property of reduced multiple systems. Thus
B = 0z(0), o constant <=> P—ch = 0z(0), (42)
and a unique choice of ¢ always exists y z(0) provided p(B) = n = 2.

In square policy systems, reduced multiple controllability is
possible, even if the qudan chain condition is broken, provided the
multiple controller is constructed using k=n instruments; with p(B) =
n. In rectangular policy systems, the Jordan chain condition remains

binding because a solution for c exists iff
p(B; z(0)) = p(B) = Kk, (43)

and this cannot be universally guaranteed. In square policy systems,
reduced multiple. controllability invariably exists while reduced h
scalar controllability need not. In rectangular systems, the Jordan
chain condition is necessary and sufficient for reduced multiple
controllability; but must be accompanied by the eigenvector condition

to ensure reduced scalar controllability.

4.2.3 Economic significance of reduced stabilisation

Given that an economic model is regularly controllable, the
primary importance of reduced stabilisation is captured by the
following appeal: can the problem of designing and implementing a
dynamic controller be simplified? Although the target and instrument

dimensions n and k have no qualitative effect on policy design, the
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quantitative problems of computation, illustrated in chapter II,
increase more than quadratically with these dimensions.  Regular
controllability defines whether an economic system can be dynamically
stabilised at all; reduced controllability, whether the task can be
simplifed.

Two types of reduction are defined: scalar reduction and
multiple reduction. Scalar reduced controllers involve the use of
only one of the original instruments. - Multiple reduced controllers
still involve the design of only one dynamic controller, but this is
implemented by setting several, or all, of the original instruments
proportional to it. In either case, the regular problem of
designing k independent dynamic policies is reduced to the problem

of designing one independent policy.

Assuming a reduced system exists and has been selected, the
following balancing principle applies to the design of stabilisation
policy: statically, it is necessary to specify K instruments each
with feedbacks to N targets; whereas dynamically, it is necessary
to specify only one instrument with feedbacks to n targets. This -
reduction in the dimension of the control space compensates for the
design characteristic that, statically, only proportional feedback
is employed; whereas dynamically, integral, proportional, derivative,
and higher-order feedbacks are required. Loosely translated, the
balancing principle is therefore: use a larger number of instruments
in the simple static context, and a smaller number of instruments in

the complex dynamic context.

As a cost of design simplification, there exists a concurrent
choice problem. If there are several reduced systems, is there a
unique choice of system? Thus suppose that there is a regular
system with two instruments, generating two scalar reduced systems
and one multiple reduced system. Which system will be preferred for
dynamic policy-making? If the benefit of reduction is simplification
of the policy design problem, it is probable that there is a resulting
cost in terms of either deteriorated performance or increased resource

expenditure, as measured against the regular system, This choice
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problem may be formalised by appropriate definition of all benefits
and costs but there do not appear to be simple a priori economic
rules for guiding such a choice.

Simultaneous existence of scalar and multiple reduction creates
yet.another choice problem: criteria for preferring one type of
reduction to the other are not apparent. For example, it may be.
easier to meet implicit control magnitude constraints using multiple.
reduction rather than the more stringent scalar reduction, but this-
is only conjectural. If‘multipie reduction is used, it is then
necessary to provide criteria for selection of the elements of the

discretionary vector c.

Significant questions remain to be explored before the role of
reduced stabilisation is fully understood. These, however, are not
pursued further here; and section 4.3 now resumes the analysis of

the rank criterion in nonscalar policy systems.
4.3 UNIFIED CONTROLLABILITY CRITERIA

Although the rank criterion (1) provides a fully general
statement of necessary and sufficient conditions for dynamic
controllability, it is, in that form, devoid of intuitive appeal.
Both chapter III and this present chapter have atiempted,.therefore,
to discern the basis for this criterion. After defining two general
classes of policy system - square and rectangular - chapter III
demonstrates that Tinbergen's theorem generalises dynamically to
square policy systems; and then uses the distinctness assumption
to isolate the role of the eigenvector condition in rectangular
policy systems. Section 4.1 relaxes this distinctness assumption
and provides a rationale for theorem 4.3. This theorem, applicable
to scalar policy models, characterises the rank criterion in terms

of the Jordan chain and eigenvector conditions.

Analysis of the rank criterion is still required for the general

case when a regular controller using more than one instrument is to
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be designed. Thus if the nxpk controllability matrix Q of (1) is to

possess full row rank n, a necessary condition is clearly
k > n/p. (44)

Suppose that the Jordan chain condition is violated, with p < n. Then

(44) implies

l1<kgn for n>p>x1l. (45)
With p < n, rectangular policy systems are not reducibly controllable:
does there exist a set of k > 1 instruments for which these systems

are regularly controllable? If so, under what conditions?

4.3.1 A general coupling criterion

Investigation of this problem leads to an alternative
characterisation of the rank criterion valid for all pairings of the
dimensions k and n. For the rectangular policy system %X = Ax+Bu, B:
nxk, equation (19) becomes
T A

e
0

x(0) = - J CBu(t)dt. (46)

Since. the Jordan chain condition is not necessarily satisfied, the
expression (23) for the transition man:rixv.e_At is not necessarily:
valid either. To allow for multiple Jordan blocks associated with a
given eigenvalue, define the integér (nioj) such that n., the

multiplicity of Ai, is given by

T.
1

n. =% (n,.3j), i=1,...,8, s <n, (47)
i - i , :

J=1 .
where (ni.j) defines the dimension of the jth Jordan block, j =1,
P S associated with‘ith eigenvalue Ai’ i=1,...,s; and where.
the integer T, is the number of such Jordan blocks corresponding to
any Aio Hence the matrix definitions (22) become, for j = 1,;..,r.,

i
i=1,...,s, s £n,



{ S(t) =

Sn.,j(t) =

0
n1,1
At
e 1 I
nl.rl
As’é s
© In .1
S
At
e s I
- n.r
S S
() 0
Sn .rl(t)
Sn .1(t)
S
Sn L (t)
S S
(n..j-1)
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1
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Thus

e At = pylgot)pl, | (49)

and (46) may be written

-1 T oler i 2 A1 |
P "x(0) = - J,{W S(-t)} Bu(t)dt, B =P "B. . (50)
0 ‘ :
Partition B such that5
B B
n, nj 1
B = . » B = s (51)
J
B B
n n,.r, :
7 _nxk | 7 __njxk
and construct the matrices
B(n..1
A( 3 )
B(nj.2)
Bj = . s j=1,...,8, s¢<n, - (52)
B(n,.r.)
) J:__rjxk

where B(nj.i), i= 1,...,rj, is the last row of each block ofrBn in

J
(51). Then Appendix IV (pp.264-7 below) establishes the following
result: |

A

The subscript x in B, denotes row dimension.
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Theorem 4.4

The linear constant system X = Ax+Bu, uCZZRk, l1<kgnm,

p(B) = k, is dynamically controllable iff
o(Q = p[B AB ... APTIB] =n, (nxpk), (53)
or iff

p(ﬁl) =T e p(ﬁs) =T s €. (54)

s’

4,3.2 Some particular cases of Theorem 4.4

Equations (53) and (54) are equivalent characterisations of
dynamic controllability, valid for all linear constant” systems. In
applying the rank criteria of (54), a distinction can be made between
systems in which the Jordan. chain condition is satisfied and systems
in which it is violated. Consider, therefore, the following

particular cases.

(1) n=p

If the Jofdan chain condition is satisfied, then, by (13),

n, = p; Vi=1l,...,5, s £n; and two subcases are possible:

(ia) n, =p, = 1vi=1,...,s=n

This case corresponds to n distinct eigenvalues and

represents the transformations. (I) of Figure 4.1. By theorem 4.1,

(ia) implies T = ... =T 0= 1, and since ny = ...0= ns=n=1’ the
criteria of (54) require each row of B = P "B to possess'rank of
unity - to possess at least one nonzero element. Thus

p(B)) =1, ..., p(B) =1, (55)

which is the coupling criterion of section 3.3.
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(ib) n, = p, 21vi=1,,..,s<n

This case corresponds to multiple eigenvalues possessing
unbroken Jordan chains, and belongs to the transformations (III) of
Figure 4.1.  Again, Ty = oo =T = 1, but (54) requires that only

a particular s < n rows possess unity rank:
p(Bl) =1, ooy p(Bs) = 1. (56)

Scalar controllability for systems satisfying (i) fherefore
requires, given (54), (55), and (56), that one column of B =‘P'1B
has s < n nonzero elements, the positions of these nonzero elements

being significant. This is the basis of theorem 4.3.

(ii) n>p

Two particular subcases will suffice to illustrate operation of

the criteria (54) when the Jordan chain condition is violated.

(iia) p =1

This case corresponds to an n-fold eigenvalue A whose Jordan.
chain vanishes completely. Hence r, =n, and s = 1. From (51) and.

1
(52), this implies B = B = P_lB, so that (54) requires
mp q

~

p(B)) = p(B) = p(B) = n. ~ (57)

Thus n instruments are necessary for stabilisation, as is clear from
A

explicit solution of X = Ax + Bu for x(T)=0.

(iib) n, > 1, p; = l1vi=1,...,s<n

This case is the general representation of the transformations

(IT) of Figure 4.1. There exist s < n eigenvalues Ai of multiplicity

n; 3> 1 and index p; = 1, so that r, = n, s Tg = M, Hence (54)
requires
p(ﬁl) =1, ceds p(ﬁs) = n. (58)

This particular result is stated by Kalman [1963b, p.171] who also
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refers to a then unpublished result apparently analogous to theorem

4.4, Neither the result nor further reference to it have been

sighted in the control literature. Additionally, both theorem 4.4

~and (58) contradict the corollary on dynamic controllability given

by Kalman, Ho & Narendra [p.204] for k. > 1: their condition (b') should
be strengthened by a rank requirement on the distribution of nonzero
elements, as given here in theorem 4.4,

4,3.3 Joint controllability

To clarify the question of dynamic existence, chapter III separated
the problems of static and dynamic stabilisation. Now theorems 3.3
and 4.4 provide necessary and sufficient conditions for static -and
dynamic existence; and it is therefore natural to ask for necessary and
sufficient conditions under which linear stabilisation models. are
simultaneously statically and dynamically controllable - or jointly

controllable, Theorem 4.5 specifies these conditions.
Theorem 4.5

Given the linear constant dynamic system X = Ax + Bu, A: nxn,
* % % % *
B: nxk, p(B) = k; and associated static system 0 = AX + B U + D,
* * '
A : NxN, B : NxK, where n > N > K > k. Then these. systems are

jointly controllable iff

either

*
p(B) =p(B) =n=N=K=k, (59)
_O_I‘_

*
p(B ) =N =K, (60)
and
p(Bl) =T, ooy p(BS) =T, s < n. (61)

Minimum instrument requirements for dynamic stabilisation are
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thus set by

r,=max r;, i=1,...,5, sg<n. , (62)

Just as K=N instruments are required for static controllability, so

k = T, instruments are required for dynamic controllability; and just
as the control matrix for these static instruments must satisfy
Tinbergen's rank condition, so, too, certain blocks of the (transformed)
control matrix for these dynamic instruments must satisfy the rank
criteria (54). Information on the eigenvalues of the structural
matrix - on the sequence of Jordan chains of A - is codified in

T, i=1,...,s; and information on the eigenvectors of the structural.
matrix is codified in p(ﬁi), i=1,...,s. Since these rank conditions
fefer to the row rank of matrices constructed directly from the rows of
B = P-lB, and since r,<n in general, the sufficiency of p(B) = n for

dynamic controllability, noted in chapter III, is therefore explained.
4.4 CONCLUSIONS

Theorem 4.4 provides an equivalent statement to theorem 3.4 and
finalises the analysis of dynamic controllability in linear
stabilisation models. The necessary and sufficient conditions of these
theorems apply to any model of regular stabilisation, whether rectangular
or square. The rank criterion of theorem 3.3 refers to the system
X = Ax + Bu; to interpret this criterion, the system is transformed.to
the spectral form |

2 =MAz+Bu, x= P-lz, B =P "B, (63)

from which .the rank conditions of theorem 4.4 are derived.

These criteria for dynamic controllability define two attributes
of a dynamic stabilisation model necessary and sufficient for existence
of a dynamic policy: the minimum number of instruments required and
the conditions a minimal set must satisfy. Thus the maximum number
T, of Jordan blocks, or independent eigenvectors, associated with any
eigenvalue in A, the Jordan canonical form of A, specifies the minimum
number of instruments necessary for dynamic stabilisation. Only if

the number of instruments available - the column dimension k of the
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control matrix B or g - 1s greater than this minimum can a regular
controller u(t) be designed. This counting condition, k 2 Ty is “
determined purely by the eigenvalue structure of the structural matrix.
The structural and control matrices interact, however, to specify a
further condition on these igstruments. Assuming sufficient
instruments exist, and that B in (63) is partitioned conformably with
the Jordan blocks of A, a matrix B is constructed from the last row of
each such block of B, This matrix B is also row-partitioned into
blocks, each block being associated with -one and only one distinct:
eigenvalue. The second condition for dynamic controllability is that

each such block possess full row rank,

Thus necessary and sufficient conditions enabling design of
regular stabilisation policy are fully developed. The possibility

of reducing the number of dynamic instruments to compensate for the

complexity of the dynamic design problem is also explored. Criteria
for reduction are implicit in theorem 4.4, The extent of reduction is
constrained by the minimal instrument requirement. When the Jordan

chain condition is.satisfied, maximum reduction is possible; since,

T, = 1, the system is then controllable with only one 'instrument',
where instrument is qualified to allow for multiple as well as scalar
reduction. An exception to this rule occurs in square policy systems,
for which multiple reduction is available independently of the Jordan
chain condition. If the Jordan chain condition is violated, then,
provided k > T, the system is controllable with more than one
instrument but less than all instruments. These statements assume
that the row rank criteria derived from the appropriate matrix

construction B are satisfied.

Reduced stabilisation appears to be.a significant aspect of a
generalised theory of economic policy; its importance flowing from
the matching of dimensional simplicity against design complexity. If
policy-makers are to learn how to implement optimal dynamic policy,
such learning is facilitated by a literal reduction in the dimensions
of the stabilisation problem. The reduced controllability conditions
specify those well-behaved systems for which simplification is possible.
But two major problems are raised by reduction: (i) the empirical
incidence of well-behaved systems; and (ii) the criteria to be applied

in selecting a reduced system. Neither is considered further in this
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thesis.

The joint controllability conditions of theorem 4.5 emphasise
that two causes of persistent policy problems exist; the first being
static noncontrollability, the second, dynamic.noncontrollability:
The problems of static noncontrollability have been thoroughly analysed
in the theory of economic policy. This present analysis therefore
focusses attention on the simultaneous problem of dynamic.existence.
It is shown that in square policy systems both.the static and the
dynamic existence problems are resolved in.one fell swoop. In
rectangular policy systems, the rank criteria (54) refer essentially
to the eigenvector condition, first described in chapter III. As an
agent of dynamic.noncontrollability, the significance of this condition
can only be accurately evaluated empirically, But theoretically,
there seems to be no economic rationale for violation of this condition

to be an intrinsic property of economic structure.

Dynamic. controllability is clearly relevant to the practical"
design of stabilisation policy using econometric models. Even after
the problems of modelling are overcome, it is still necessary to confirm
controllability before policy design is attempted. Noncontrollability
would pose the question as to whether it is induced by the estimation
~process or by the underlying economic. structure; some test would then
need to be devised to discriminate between these two possibilities.

The partitioning of large-scale econometric models also requires
consideration of the controllability properties of the submodels so
obtained. Controllability must be investigated explicitly in all

policy models, whether theoretical or practical.

Chapters III and IV consider dynamic controllability only with
respect to linear constant. continuous-time models, but the concept is
not restricted to these models., Controllability criteria are also
available for linear time-varying models and for linear discrete-time
models, as given, for example, in Kalman [1961] and Ogata [pp.370-436].
For nonlinear systems, considered by Lee & Markus [pp.364-93], the

global criteria of linear systems are replaced by local criteria.

Chapters III and IV therefore combine to remove. the hiatus

concerning dynamic existence observed in the theory of economic policy.
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Consequently, chapters V, VI, and VII move from the controllability
concept in existence theory to the optimality concept in design
theory. To commence, chapter V investigates an alleged conflict

between optimality and stability.



CHAPTER V

A PARADOX IN THE THEORY OF OPTIMAL‘STABILISATION1

Phillips [1954] applied the classical techniques of control -
engineering to the problem of synthesising dynamic stabilisation
policies, Given the dual objective of control over both the dynamic.
gdjustmeht path and the comparative static eqdilibrium level of a. target.

variable, Phillips proposed inter alia a combination of proportional,

derivative, and integral feedbacks for effective .stabilisation. A
drawback of this classical approach, however, is its inability to
provide a general method for specifying the simultaneous values of.
these feedbacks. Fox, Sengupta & Thorbecke (FST) subsequently used
the calculus of variations to generalise Phillips' approach. By
assigning quadratic preferences to the policy-maker and formulating
the control problem as one of dynamic optimisation, a unique set of -
feedback parameters could, in principle, be derived through a direct

search for an optimum solution.

Now the application of dynamic optimisation techniques is a
significant step in the evolution of stabilisation theory. Yet  the
policies proposed by FST exhibit some puzzling features. Their
proposition that optimal policies necessitate unstable target solutions
particularly excites comment. The necessarily stable policies
prescribed by Phillips are to be replaced by 'optimal' policies which
render the model unstable and thwart the very purpose behind their
“design - the achievement of economic stability. This paradox is surely
of considerable importance for policy-making but has attracted little

attention as an impossibility theorem for optimal design.

If true, a conflict between optimality and stability is a telling

addition to Baumol's 'theorems for skeptics', a set of negative policy

This chapter is to be published, under the same title, by The
Review of Economic Studies.
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prescriptions defining what policy-makers cannot do; and including

the second best theorem, and the Phillips proposition relating the
dynamic sensitivity of economic systems to"thé timing and magnitude of
policy. The lot of policy-makers is already onerous and all potential
additions to Baumol's list warrant keen investigation before acceptance.
This chapter contends optimistically that the FST paradox cannot
withstand close scrutiny - that there is no impossibility theorem for
’the;design of optimal stabilisation policy. ‘Certainly, correct |
analysis still implies an addition to Baumol's list, but it is less
stringent than that asserted by FST,

The argument supporting this contention proceeds in four stages.
In section 5.1, the optimal Phillips model used by FST is described and
correct .solutions are provided using necessary conditions from the
theory of linear optimal control:  This leads to a consideration of
the alleged stability-optimality conflict in section 5.2, There it is
shown that the paradox is untenable but with little perception of the
logic whereby the conflict is avoided. Accordingly, section 5.3
examines the phase portrait of the optimal system, clarifying the basis
of the paradox. If true, the FST paradox applies to all regulator
formulations, whatever their dimensions. Section 5.4 therefore'refutes
the paradox at the general level. Section 5.5 concludes, and briefly
relates the underlying problem to the areas of growth theory, production
theory, and filter design.

5.1 AN OPTIMAL PHILLIPS MODEL

FST employ the Phillips mutliplier-accelerator model, as exposited
in Allen [1960, 1968], to represent the dynamics of an economic system
for which an optimal stabilisation policy is to be designed. This

model is the pair of equations
y'(t) = (1-s)y(t) + vy(t) + g(t), se(0,1), v >0, (1)
y(£) = o(y'(t) - y(8)),  y(0)=y #o0. (2)
Equation (1) is the Harrodian demand relation specifying current demand

y' as the sum of private sector demand ((1-s)y+vy) and public sector

demand g; with private sector demand consisting of consumption demand
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(1-s)y and induced investment demand vy. Equation (2) represénts the
dynamic adjustment mechanism of supply y to demand y', taking the form
of a first-order exponential distributed lag, as defined by Allen
[1960,pp.23-5]. Current excess demand (y'-y) is assumed met by a
reduction in inventories; producers react by increasing the rate of
production y by a proportion o of this reduction. Provided g < o,
producérs dg_not match ‘all inventory‘movements.immediately,,but
accomplish instead a 63 percent response during the period of the mean
supply lag, y1 = 1/0.

The variables y, y', and g are assumed measured as deviations from
static levels defining a desired equilibrium position. The target,

output.y, and instrument, government demand g, are thus related by
y(t) = -swy(t) + wg(t), y(0)=y,, W= o= #0, (3)

The stabilisation problem posed by this Phillips model results from the

free or natural behaviour of the uncontrolled system

y(t) = -swy(t), y(0)=y, 4

with explicit solution
-swt
y(t) = ye o' (%)

Since the marginal propensity to save is strictly pdsitive, asymptotic

stability depends on the sign of the definitional parameter

1
yl-v

W=

.y, = 1/0. . (6

If w is positive (negative), the uncontrolled system is naturally stable
(naturally unstable). In economic terms, the system (3) is naturally
stable if the mean supply lag Yy is greater than the accelerator

coefficient v.

In the naturally unstable case (w < 0), the necessity for dynamic
stabilisation is obvious - the system diverges uniformly. For the

naturally stable case (w > 0), the stability factor (yl—v > 0) is
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inversely related to the rate of convergence sw. Thus the policy-
maker may be assumed to desire a faster rate of convergence when faced

with a sufficiently large value of this factor.

Following the analysis of dynamic controllability in chapfers III
and IV, the basic ability to stabilise the system must also be

demonstrated. The solution of (3) is
t
y(e) = ey J e g (n) ar. ()
: 0

Suppose that y = y(T) is the desiredvvalue of output at time t=T. = Is

it possible, with the instrument g(t), to transfer tﬁe»system from its
initial position Yo to the terminal position y(T) in time T? . From (7),
it is necessary and sufficient that there exists a control g(t),te[0, T],
such that

T
0
‘Consider the open-loop controller,
-SWT
g(t) = g™, (9)
Then (8) is satisfied if B is chosen as
swT ~
g=yMe — -y(©) _y(0 - y(O) (10)
wT wT ? .
and this is always possible. The initial condition ?(0) is that for
which, given the desired endpoint, no control would be necessary. Hence

B is a direct function of the difference between the 'desired' and actual

starting points, and an inverse function of the fixed finite time
lim B
T>o

controller (9) illustrates the principle that controllability involves .a

available to achieve the desired endpoint. Since = «, the

tradeoff between time and control energy. Stabilisation policy must
adjust explicitly to this tradeoff to avoid violation of control

constraints, a design aspect considered in chapter VII,

FST [pp. 217-9] tackle the problem of selecting a specific control
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policy for (3) by assuming a quadratic preference functional of the
form

MIN W = T2 2
=% | [y"(t) + ¢g"(t)]1dt, ¢ > 0. (11)
g(t) )0

This criterion - the optimal regulator - reQuires that disequilibrium
income y be kept near its desired value of zero without excessive
deviation of control expenditure from its desired value, also zero.

The strictly positive parameter ¢ measures the relative importance of
the two perférmance cost.elements: the greater ¢, the greater the cost
of using the control g to force y to equilibrium. The parameter T
defines the length of the stabilisation period. It is assumed fixed
and may be either finite or infinite: in particular, FST assume T is

finite [pp.218,371]. Their optimal stabilisation problem is therefore.
written2

, T 2 2
MIN W = »zJ Y2 ) + 6g?(0)]de, ¢ > 0,
g(t) 0
subject to
1 y(t) = -swy(t) + wg(t), se(0,1), w#O, - (12)
y(0) = Yo y(T) free; T fixed,
. g(t), te[0,T], unconstrained.

FST are actually ambiguous about the target endpoint y(T): 1is it fixed
or free? To proceed, a free endpoint is taken but it is later argued

that their paradox is also invalid for the fixed endpoint assumption.

This dynamic optimisation problem is a simple example of a

This specification differs from that of FST in minor details

[p.219, (8.60.2)]: the performance criterion is not time-averaged;
the discount function is omitted; and autonomous demand expenditures
are removed by the disequilibrium specification. For simplicity,
their performance weights are taken in the ratio form ¢ = az/al.
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fixed-time, free endpoint optimal regulator, and solutions are readily
found with the aid of linear optimal control theofys. Thus defining
the Hamiltonian

H(y,g,p) = %yz +-%¢g2 + p(-swy+wg), | (13)

where p(t) is the costate variable, the canonical system (y = 9H/3p;

p = -0H/9dy), after using the minimising control
%g.= 0 <=> g = '¢-1WPa (14)

is written

y -sW - "w y y(0)=y,
= , - (15)
P -1 SW P p(T)=0

Here the costate boundary condition p(T)=0 derives from the
transversality condition., Optimal solutions for the instrument g

and target y are then given by

-3 " Lwky, (16)

oQ
i}

<
i}

-1 2
~(sw o+ 9T, y(0)=y,, (17)
where from the canonical system (15) the costate is given by

p = ky, (18)

with k the positive solution of the Riccati differential equation
k=6 twok® + 2swk - 1, k(T)=0. (19)

From Appendix V (pp.268-9 below), solutions for k and y are:

-1 -2wd (T-t) "
_%w "(6-s) {1 - e } PV
k(t) = ] g-s _-2we (T-t) > 8 =(s +¢ )5, tE[O:T]:
" ors © (20)

3 FST use the classical calculus of variations .but greater clarity of

solution structure may be obtained with the modern theory.
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WOt | (g_g)e WO (2T-1)

-2wlT

(6+s)e”
(6+s) + (6-s)e

1, te[0,T]. (21)

y(t) = y(0) {

Given these instrument, feedback, and target solutions (g, k, y),
the conflict between optimality and stability alleged by FST is now

investigated.
5.2 THE ALLEGED STABILITY-OPTIMALITY CONFLICT

The stabilisation paradox of FST receives.a concise statement in
their theorem [p.378] for a regulator model of order 2n, where n is the
order of a dynamic. equality constraint akin to (3). Thus:

"Theorem 2 (Optimality Theorem)

If there exists a control vector u=u(t) which satisfies equation
(.) of the multisector Phillips model and also optimises.the
performance integral equation (.) in a nondegenerate way, i.e.

the Euler-Lagrange equations (.) are nondegenerate, then the
optimal control system has the property that if u, is a
characteristic root of the system, -u_is also a ~ characteristic
root of the system, In particular, °if the root u_has a nonzero
real part and the initial condition x(t) at t=0 is ~ quite
arbitrarily fixed, the optimal control vector u=u(t) is mecessarily

unstable."

Without commenting as yet on the validity of this theorem for the
general order 2n, its validity for the Phillips regulator, in which

n=1, will be investigated.

The characteristic equation of (15) implies the validity of the
statement of the theorem: the eigenvalues *wb are real, of given
modulus but opposite sign. However, the underlined stability
proposition derived from this statement is invalid. Referring to the
optimal solutions (16), (20), (21),

y = y(t; T’ w) SJ d>, yo)
te[0,T]. (22)

g=g(t; T,w,s, ¢,y)

For a finite horizon T, equations (22) are also finite, and the FST
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paradox cannot occur, But in the proof of their 'Optimality Theorem',
FST consider the limit {t»=} of analogues of these solutions. Now
since t is defined on the stabilisation interval [0, T], their limiting
procedure is only justifiable if preceded by the limiting process
{T»»}, which provides4

(1im y(t) = y*(t) = Y(O)e-wet»
Toroo

4 te[0,=]. ' (23)
lim g(t) = g*(t) = -(6-s)y*(t),
Tro0

And these infinite horizon solutions are clearly asymptotically stable

lim y*(t) = 0, lim g*(t) = 0. (24)

to -0

There appears to be no basis, therefore, to the stability

proposition contained in the FST 'Optimality Theorem'. Yet after
T
T
provided by FST [pp.224, 379] are indeed unstable, apparently justifying

their paradox. This contradiction of (24) occurs because FST fail to

applying the correct limiting process {__ .} , the optimal solutions

recognise the need for a definite endpoint assumption. This need
follows immediately from the classical calculus of variations.
Adjoining the dynamic equality constraint (3) to the criterion
functional (11) via the costate p(t), and using the Hamiltonian defined

in (13), obtain, after Sage [pp.56-7], the equivalent problem

T
MIN W = J [H(y,g,p) - p.yldt. (25)
g 0

Or, after integration by parts,

T T
MIN W = 'PeYl + J [H(y,g,p) + p.y] dt. (26)
g 0 0 ‘

Now the first variation of the functional W may be written

T T
oH oH
W = -p.§ ‘ — T —05 dt. 27
p.Sy ) + Jo [(By + p)Sy + 5g g] (27)

This asymptotic procedure is justified by Kalman's existence
theorem for linear optimal control theory [1959].
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And since a necessary condition for a minimum for W is that 8W vanishes
identically, a set of necessary conditions follows:

oH _

e 0 (28)

oH , oH _ .,

3y = b Fel ) (29)

0

P()Sy(t) = 0, t={. (30)

Conditions (28) and (29) are together equivalent.to the Euler-
Lagrange necessary conditions used by FST. Condition (30) provides the
associated trénsversality condition. For a fixed endpoint y(T), Sy(T)=

0 satisfies (30); and for a free endpoint Sy(T) is arbitrary, implying
p(T)=0 to satisfy (30). Now FST apply the Euler-Lagrange conditions
(28), (29) to the optimisation problem (12) to obtain

y = -swy +wg, y(0)=y, (31)

. -1

g =0 "wy + swg, , (32)
as necessary conditions for optimality. Equation (31) is simply the

]
constraint provided by the system dynamics (3), while (32) is the
optimal specification of the controller dynamics to match these system
dynamics.  FST reduce this pair of equations to the second order

differential equation

-1%
y - woly =0, o= (st (33)
with general solution
y(t) = Clewet + Cze-wet. (34)

It is here that the analysis of FST fails. One of the boundary
conditions y(T)=0 or p(T)=0, satisfying the transversality condition
(30), is mandatory for solution of the optimal stabilisation problem
with a finite horizon T. But FST, having omitted this transversality

condition, must arbitrarily specify a second boundary condition to
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accompany the initial target.condition y(0)#0 in solving (34). This:
allows the horizon parameter T to disappear from the optimal target

solution (21), or prevents it from appearing in (34), so that the limits

Tooo
{tre}, {0

the unstable mode, exp (wét), its effect is nullified by the explicit
appearance of the horizon parameter (2T-t > 0 V te[0,T]). To remove

} are, for FST, indistinguishable. Although (21) contains -

T is to render the optimal target unstable, falsely generating the
paradox.

Correct specification of finite horizon regulators determines not
only the optimal policy dynamics to accompany the given target,dynamics,
but -also the terminal condition - eithef on the target or the instrument -
to accompany the initial condition on the target. Whether the regulator
is fixed endpoint or free endpoint, the horizon parameter T will be.
explicitly incorporated in the optimalﬁfinite.horizon solutions,

disallowing the paradox as an asymptotic proposition.

Given correct solutions to the Phillips regulator, it is therefore
argued that (i) the finite horizon regulator is necessarily stable
despite the appearance of a saddle point *w6; and that (ii) the infinite
horizon regulator is necessarily stable following the disappearance of
this sﬁddle point.  Although the FST paradox has been exposed, the
cause of confusion - in particular, the process by which the potentially
unstable dynamics are filtered out of the asymptotic regulator - is

better understood in terms of the phase portrait of the optimal system.
5.3 SADDLE POINT OF THE PHILLIPS REGULATOR

To visualise the elements of the FST paradox geometrically, the
phase portrait of the optimal system is constructed, integrating finite
and infinite horizons, free and fixed endpoints, and natural stability
and instability in a single diagram. The Hamiltonian system (15) may
be written

Bee
]

Hx = WAw'lx, x(0) =X

-SwW -¢-1w2 y -wo 0

H = | , x = JA = . (35)



124

Here A is the diagonal matrix of eigenvalues, and W is a right.

eigenvector matrix found from solutions of

[H+weIlW_=0, W= (W_W). : (36)

o+

One such solution matrix is

W= | BNCY

1 -1
w(0+s) w(B-s)

for which the first column W_ is associated with the stable eigenvalue

-wd.  Now following Hurewicz [pp.70-86],
t = Ar, r(0)=r_, T = W_lx, (38)
is a similarity transformation of (35) in which the axes T, T, are the

asymptotes of the saddle point tw6. Equations for these asymptotes in

the x-plane are therefore given by

— ™ -
-1
N wE-s)  r |l Y
W'x =0 <=> =0, (39)
__:l_. 1
w(0+s) p
or by
Y, = -w(B-s)p; y_ = w(6+s)p. (40)
And from (35), the equations
y=0 <=> y=-Wsdp
(41)
p=0 <=> y=swp,
specify trajectory turning points with respect to y and p. Combining

these results, the saddle point of ‘the Phillips regulator is drawn in
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Figure 5.1:
y(t)

y_=w(8+s)p
\
\

%‘/

\
\
\

—

p(t)

Figure 5.1 .
Saddle Point of Phillips Regulator (w > 0)

Figure 5.1 assumes that the Phillips model is naturally stable
(w > 0). For completeness, natural instability is now allowed for, after
which the paradox will be considered for both cases. Given that the
saddle point exists V w # 0, natural instability (w < 0) reverses the
sign of all gradients in Figure 5.1. As a first step, the revised
saddle point is therefore the image of Figure 5.1 in the vertical axis
y. But natural instability also switches the eigenvalue signs; as a
second step, the direction of movement along trajectories must be
reversed. With these changes, both cases (w 2 0) may be unified in a
single figure after specifying a particular initial target error - say
Yo > 0, an inflationary demand gap. Then since p = ky,vand k is positive
irrespective of w, the first quadrant of Figure 5.1, w > 0, may be

juxtaposed with the first quadrant of a revised saddle point, w < 0, to
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give Figure 5.2, for w2 0, T o, y, > O:

y(t)

\ Y =w(6+s)p

\ 7
\ 7
y,=w(B-s)p \ //b Vv
e S — LA — —— —y=y(0)
N . 7 /
N X ‘ /
N -\ /| /
| <N _
| N ~N / | ‘//.//’/.p =0
| \\ AN //’/t I \
| \ \ L&~ | y(T)=0
P*(0) e (0,0) P*(0) |59 p(t)
p(T)=0
Figure 5.2

Phillips Regulator Trajectories (w 2 0)

Identifying the infinite horizon solution for the naturally stable
case first, observe that from (18), (40),

*

y = P*/k* = wte+5)p* =y_ te[0,*], (42)

where k* = 1im k(t) is evaluated from (20). Hence the stable asymptote
y_ defines tﬁzmoptimal trajectory for the infinite horizon regulator
with w > 0; and it is readily shown that Y, = w(b-s)p, w = |w|, is the
analogue for w < 0. The optimal asymptotic motions of the Phillips
regulator therefore begin from the phases{p*(O), y(O)},-w 2 0, and
proceed along the stable asymptotes to the equilibrium point (0,0).

The FST paradox is clearly invalid in the infinite horizon case.

If the optimal finite horizon trajectories are to satisfy the

saddle point dynamics of Figure 5.2 subject to the boundary conditions
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y(0)=yo, p(T)=0, they are necessarily those suboptimal asymptotic
trajectories commencing from the initial manifold,y=yo, truncating at
the terminal manifold p(T)=0, and therefore lying everywhere above the
optimal asymptotié trajectoriesv(y;, y+). The finite horizon
assumption generates a terminal condition, the transversality condition,
to express that assumption, and constrains further movement along

- trajectories that would be unstable under an infinite horizon assumption.
And this succinctly illustrates the basis of the FST paradox. By
overlooking the transversality condition and suppréssing the horizon.
parameter, FST ihcorrectly define asymptotic stability in terms of an
infinite traverse along an unstable curvilinear trajectory rather than
in terms of a continuous shift of this trajectory towards the stable

linear asymptotes,

Nor can the FST paradox be construed as. referring to the behaviour
of the correct optimal solutions shown in Figure 5.2. In naturally,f
stable systems, the target and instrument converge monotonically fof}
any stabilisation horizon, contrary to the paradox. Admittedly this
is not -true for naturally unstable systems: the finite horizon
solutions all cross the locus y =.0, after which target performance
deteriorates as t + T. The reason for this behaviour is that the
control force applied to the system diminishes to zero as the instrument
seeks to meet the terminal condition p(T)=g(T)=0; and the natural
behaviour of the system therefore gains ascendancy over the controlled
behaviour. With natural stability the target continues to converge;
but with natural instability it.starts to diverge, as signified by the
locus y =.0. This defect of the free endpoint regulator may be
overcome by using terminal target weightings. The addition of a
quadratic term fyz(T), f > 0, to the performance functional (11)
modifies the transversality condition to p(T) = fy(T). Selection of
the terminal weight f, now the gradient of the terminal manifold, at
least equal to the gradient of y = 0 then inhibits this endpoint
deterioration. The FST paradox is therefore in no way applicable to

the finite horizon regulator with a free endpoint.

The effect of the alternative endpoint specification, a fixed

endpoint, may be.briefly mentioned. The fixed endpoint y(T)=0 replaces

> Cf. Athans & Falb [p.574], and chapter VII below,
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the terminal condition p(T)=0 of the free endpoint regulator. This.
does not affect the dynamic saddle point structure, so that the two
regulators are differentiated by boundary conditions only. Now from

(35), the solution of the Hamiltonian system is

y () y (0)
= weltyl , (43)
p(t) p(0)
which, using (37), becomes
] Mot . e WOt oWOt Wbt
y(t) | w(B+s)  w(B-s) y (0)
W
299 -wot woht -wbt wot
e - e e . €
p(t) wz(ez_sz) w(b+s)  w(8-s) p(0)
L — | - —_—

(44)
These solutions (w > 0) apply to either endpoint regulator but are
subject to different boundary conditions. Thus use of the fixed

endpoint y(T)=0 in the first equation of (44) provides, for t=T,

-2woT
e

1., 1+ Q:Ee—FZWGT
p(0) _ w(B+s) w(B-s) -1 B-s } k* 45)
y (0) 1 - e-2w6T 1 - e_zweT s

where k* = 1/w(B+s), from (42). Hence

p(0) p*(O) *
= = k

lim =, (46)
y(0)  y(0)
T—rco
and
p(0) 2 p (0) Vtel0,]. (47)

Regarding Figure 5.2, the trajectories lying underneath the optimal
asymptotic trajectory y , commencing from the initial manifold y=y (0)
and truncating at the terminal manifold y(T)=0, are the finite horizon

solutions of the naturally stable fixed endpoint regulator. By a
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similar argument for w < 0, the trajectories lying underneath y, are
the naturally unstable fixed endpoint solutions. The previous
analysis is unaffected by this switch in boundary conditions; and

the FST paradox is therefore finally subdued - at least in the Phillips
regulator.

5.4 THE GENERALISED SADDLE POINT

FST also assert their paradox to hold for a regulator model of
general dimension [pp.370-9]. At this level, the theoretical analysis
of chapter II provides a concise refutation., Thus for the Hamiltonian
system (for a finite horizon T):

X = Hx, x=[ zT pT ]T, H: 2nx2n, (48)

the associated spectral form is, by equation (2.48),

_ -A 0 _
-1 ! .
X = WAIW X, A1 = fme=me-- E ------ , A= dlag(kl. .,An), (49)
o ! A AeE(H).
|
-1

If r = W "x, then

T = AT, ' (50)
is the generalised saddle point for the regulator model. Solving (50)

and partitioning:

_______ = ommmmm e e ], (51)

To refute the FST paradox, it is necessary to demonstrate that the

optimal transformed solution is asymptotically stable in the sense
(o
t>T
matrix in (51) disappears from the infinite horizon solution. Since

}. This is possible if, and only if, the unstable exponential

the influence of the horizon parameter T is exerted through the initial
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costate vector p(0), this suggests the hypothesis that, for T = e,

* _1*
r (0) = W "x

ensuring removal of the unstable eigenvalues,

(0)

(52) is equivalent . to

Therefore,

r (0)

But, from (2.56),
-1.T
(21%11)
so that

r;(O) =0

The refutation is

optimal policy is

-1
(Wp1W25)

iff

immediate6.

*
instituted, then p (0)

>

*
T

T T %

*
K

p*(O)

(0) =0,

0 iff p (0) = (wzlwii)Tz(O).

(52)

Now by equation (2.49),

z(0)
------- (53)
p*(O)
(54)
= 1im K(t)
in_ (55)
K 2(0). (56)

If, for an infinite horizon, the

* *
K z(0), so that rz(O) = 0.

The optimal asymptotic solution of the general regulator model is

therefore stable, in agreement with (2.100) and contrary to the paradox.

6

-In a recent article, Smith considers. the stability of a first-

order infinite horizon model of the Phillips type.

When

confronted with the saddle point property, he argues heuristically
[p.8] that the system can only converge if the initial condition

on the unstable component is set to zero.

For T = «, this is

correct, but conceals the logic of the regulator structure as
developed here in the text.
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5.5 CONCLUSIONS

To recapitulate, FST apply the classical calculus of variations

to the dynamic optimisation of a generalised Phillips model, propesing
[p.379] that:

'"We have thus far obtained a very broad economic result,
e.g., if we consider real roots. (or roots having nonzero

real parts) to be reasonable on a priori grounds, the optimum
policy vector ... is not stable because it is optimum. ...

and the nonoptimal [classical] policy vector .. is stable
because it is not optimum! It appears that stability -and
optimality are two competltlve characteristics of a desirable
policy of stabilisation in a generalized Phillips model ....".

Such a result would constitute an important contribution to Baumol's
list of 'theorems for skeptics' were it notrejected by the;precéding
analysis. FST correctly observe the saddle point property of the
Phillips regulator but then infer incorrect stability properties from

'optimal solutions' obtained with inappropriate boundary conditions.

It is correct to assert that the optimal asymptotic path is
unstable in the sense that,if»p*(O) is the optimal initial costate,
the selection of any other p(0) will cause the system to diverge from
the optimal path. According as p(0) 2 p (O), the policy-maker will
ultimately realise (and sooner rather than later, given the dominance
of the positive eigenvalue) that he is pursuing a suboptimal, unstable
policy. If, for example, p(O) > p*(O), realisatiqn should occur when
the costate starts increasing after the suboptimal trajectory crosses
p = 0; with a second warning occurring as the targét deviation
becomes negative after crossing y =.0. Depending on the reasons for
this initial discrepancy between the actual and optimal policies, the
policy-maker should be able to converge iteratively to the optimal path
by inaugurating a series of suboptimal.policies. It is this sensitivity
to the initial policy specification, rather fhan the FST paradox, that.
rightly belongs to Baumol's list of negative policy prescriptions. In
asymptotic regulator systems, the target is unstable with respect to all:
suboptimal controls but stable with respect to the optimal control: a
proposition Kurz. [pp.158-166] has shown.to also have relevance to
neoclassical growth theory.
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As the analysis here and of Kurz makes clear, the central problém
is related to the mathematics of dynamic optimisation, and is not
peculiar to optimal stabilisation policy. Its emergence in yet another
guise is therefore not surprising. Samuelson [1968] investigates the
stability properties of a discrete-time analogue of the regulator. To
quote from his introduction:

"....The present paper shows that the characteristic roots
associated with the stationary-equilibrium points of a discrete-
time dynamic programming model must always come in reciprocal-
pairs.  Since damped stability requires that no characteristic
root exceed unity in absolute value, the present theorem rules
out all possibility of damped stability in such models,"

If by 'discrete-time dynamic programming model' Samuelson means, for
instance, the type of decision model developed by Holt et al, then a
study of their work [pp.92-101] reveals that the authors explicitly
confront the reciprocal root property but reject the immediate
implication of instability. In similar fashion to the FST paradox,
Samuelson's firm proscription of stability should be interpreted as
referring to perturbations of the optimal solution rather than to the

optimal. solution itself.

A much earlier article by Simon on the design of optimal linear
filters correctly states [p.440] the problem bedevilling FST. After

noting the saddle point property, Simon concludes

"...it appears that straight-forward application of the calculus -
of variations to the filter design problem leads to the
prescription of an unstable filter, and hence is not practicable
...[This] is related to the fact that the Euler equations give

only a necessary and not a sufficient condition for a minimum.

Hence it does not follow that a path ... that satisfies [the

Euler equations] will thereby minimize [the performance functional].
The specification of appropriate initial and terminal conditions

[is necessary] to guarantee a bona fide minimum...'.

This chapter demonstrates that it is precisely the straightforward
application of the calculus of variations without appropriate initial
and terminal conditions that promotes the spurious conflict between

optimality and stability alleged by FST.

Chapters VI and VII utilise the Phillips regulator, correctly
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specified, as a context for investigating some basic issues in the
theory of optimal stabilisation. Thus chapter VI, immediately
following, considers the effect .of control lag on the design of optimal
stabilisation policy for the Phillips model; and chapter VII analyses
certain degrees of freedom available in the specification of the

optimal Phillips regulator,



CHAPTER VI

OPTIMAL STABILISATION WITH A LAGGED INSTRUMENT

A central feature of Phillips' seminal work [1954, 1957] is the
explicit treatment of control lags; and it is the principal objective
of this chapter to considervthe effects of control lag on the design
of linear optimal stabilisétion policy.

Before proceediné with this task, the concept of control lag, as
employed by Phillips and exposited by Allen [1960, p.269], [1968, p.352],
requires clarification. The definition used by Phillips appears to
allow several interpretations; section 6.1 therefore attempts to specify
the concept precisely in terms of the inside, intermediate, and outside
lag concepts. Section 6.2 then examines the technical implications of
policy lag for the optimal Phillips regulator of chapter V. To
facilitate acquisition of general rather than numerical solutions, use
is made of an infinite horizon assumption, which also accords with the
implicit. horizon assumption used by Phillips. The effect of the
control lag on the magnitude and the timing of the optimal controller

is subsequently studied in section 6.3.

To this point, the effects of ﬁolicy lag are passively allgwed for
in designing an optimal controller - no attempt is made to actively
modify these effects. But the introduction of policy lag causes concern
for the relation between optimal policy and the incidence of oscillation.
Section 6.4 therefore isolates conditions for the emergence and the
prevention of policy-induced oscillations. Finally, the arguments and

conclusions of the chapter are summarised in section 6.5.
6.1 CONTROL LAGS AND POLICY DESIGN

Phillips [1954, p.294] defines the concept of policy lag as
follows:1

Underlining added.
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"...The amount by which aggregate demand would be changed as
a direct result of the stabilisation policy ... if the policy
were to operate without time lag will be called the potential
policy demand, and the amount: by which aggregate demand is in
fact changed at any time as a direct result of the policy
will be called the actual policy demand ...

The actual policy demand will usually be different from
the potential policy demand, owing to the time required for
observing changes in the (target) error, adjusting the
correcting action accordingly and for the changes in the
correcting action to produce their full effects ...".

Writing in 1948 on the desirability of automatic as opposed to
discretionary stabilisation policy, Friedman [pp.344-77] divided the
total lag between an unpredicted disturbance and offsetting policy
into three separate lags: a recognition lag, a decision lag, and an
effect lag. It is clear from the underlined rationale for the policy

lag, that Phillips regards it as the sum of these.three lags.

Following the analyses of the lags operative in monetary and
fiscal policy by Kareken & Solow and Ando & Brown, the total policy
lag in any stabilising action, whether monetary or fiscal, is now
customarily defined as the sum of the inside, intermediate,; and outside
lags. The inside lag is the interval of time between the need for
and implementation of policy; and is the sum of the recognition
(observation) lag and the decision (administrative) lag. The
recognition lag is due to the inevitable delay in statistically
monitoring economic. performance and hence in realising that a
stabilisation problem does exist. The decision lag measures the
time required to select apﬁropriate policy action, to obtain
administrative approval for it, and to construct the bureaucratic
machinery for its implementation. The intermediate lag stems from
the relation between proximate and ultimate instruments - a distinction
defined in Rowan [p.8]. Policy action is taken by adjusting proximate
instruments, those instruments directly controlled by the policy-maker,
in order to affect ultimate instruments, those instruments not directly
controlled by the policy-maker. In turn, these ultimate instruments
affect the designated targets. A typical monetary policy example of
this chain is the link between banking sector reserves, the money
supply, and aggregate demand. A similar chain in fiscal policy is
not as obvious, although it is possible to regard the central policy

decision as the proximate instrument, the actual appearance of policy
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demand as. the ultimate instrument, with the difference arising from
an implementation or bureaucratic lag., Since ultimate instruments
intermediate between proximate instruments and specified targets, the
lag between movements in proximate and ultimate instruments is defined
as the intermediate lag, The outside lag is the lag between movement
of targets in response to movement of ultimate instruments.

What is the releﬁance of these three lags to the policy lag
concept employed by Phillips? Consider the schematic representation
in Figure 6.1, An unpredicted disturbance occurs at point A in time,

unpredicted effect on induced policy
disturbance target action of effect
observed ultimate observed
inst,
~ target action target further
affected taken via affected action
proximate by policy taken
inst,
A B C D E F G H
Observ. Dec, Observ. Dec.
Lag Lag Lag Lag
QUTSIDE
INSIDE LAG LAG INSIDE LAG
DISTURBANCE INTERMEDIATE
LAG LAG .
Figure 6.1

Dynamic Lag Sequence in Stabilisation Policy

with the effect an the target variable first. appearing at point B.
Because of the observation lag BC, this effect is not observed by the
policy-maker until point C, During the period CD of the decision lag,
an appropriate policy is specified and apprbved; action then being
instituted via the proximate instrument at point D.  Such action
subsequently induces movement in the ultimate instrument at point E,

which affects the target at point F, But, again because of the
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observation lag, the policy effect on the target is not observed until
1

point G, at which stage new action is decided for point H. It is this

dynamic lag sequence that Phillips wishes to model prior to designing

a stabilisation policy.

Applying rational decision techniques in this framework, whether
classical or optimal, requires recognition of several factors. First,
the need for stabilisation policy is assumed to arise from a single.
unpredicted disturbance (although the policy designed must allow for
further such disturbances). Second, during the period CD of the first
decision lag, a policy is designed with a specific horizon in mind.
Point D then becomes the control origin (t=0). The stabilisation
objective is to offset, over the defined horizon, the effects of the
single disturbance on the target variable. Third, since the
stabilisation policy is designed in a single step CD in response to a
single disturbance, the second decision lag GH is irrelevant to the
stabilisation problem. Thus the crux of the stabilisation problem is

to model the lag sequence represented in Figure 6.2:

target observed induced change target. target.
action taken via in ultimate affected observed
proximate inst. inst. by policy
INTERMEDIATE OUTSIDE INSIDE
LAG LAG LAG
4
C D E F G

Cycle repeated continuously

according to prespecified policy

Figure 6.2
Lags and Policy Design

Here the inside lag FG is purely an observation lag. Since the
stabilisation problem will be posed in the continuous domain, it is
assumed following Phillips [1957,p.267] "that the regulating authorities

are able to make continuous adjustments in the strength of the correcting
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action they take'. Hence the inside and intermediate lags, provided
they exist, operate at every point of time over the stabilisation
period [0,=].

To model the lags of Figure 6.2 in the single-target, single-

instrument Phillips model, consider equations (1) to (4) below:

3 * w * '

Y = ~swy + wg <=> y = m g R (1)
*

g =gz & 00, | (2)

* .

g = KDy , (3)
* n

y = -ﬁ:ﬁ- Y, n > 0. (4)

Equation (1) is the first-order Phillips model, now relating the target.
y(t) to the ultimate instrument g*(t): the operator w/(D+sw) is
therefore the outside lag operator. Equation (2) stipulates that the
ultimate instrument g*(t) responds in lagged fashion to the proximate
instrument g(t), so that a/(D+a) models the intermediate lag dynamics.
Because of the inside observation lag and the likely occurrence of
further unknown disturbances, the policy-maker cannot use the current
target y(t) as feedback but must use the currently observed target
y*(t), as stated in (3). The operator K(D), designed by the policy-
maker in the period (CD) of the decision lag, is .a polynomial in the
differential operator D=d/dt, reflecting the knowledge that linear
stabilisation policy, in the absence of step disturbances, will be
constructed from proportional, derivative, and higher-order feedbacksz,
Equation (4) specifies the lag between the currently observed target
y*(t) and the current target value y(t): the operator n/(D+n) thus
being the inside lag operator. The block diagram associated with these

equations is given in Figure 6.3,

2 If step rather than impulse disturbances occur, integral feedback

is also necessary - see Phillips [1954] and chapter VII below.
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unknown
|disturbance
I
L.
o % w
D+o g (t) D+sw y (t)
intermediate outside
lag lag
g(t)
feedback inside‘lag
K(D) o y*(t) n <
. Dar

Figure 6.3

Lags in a Single-Target Single-Instrument Model

Returning to Phillips' definition of policy lag, potentiél policy
demand is said to differ from actual policy demand because of (i)
observation lag, (ii) decision lag, and (iii) effect lag; or because
of the inside lag and the outside lag. Reconciling this interpretation
with Figure 6.3 produces several difficulties. Since the intermediate
lag is justifiably ignored initially, being part of the system dynamics
rather than the policy dynamics, g(t) and g*(t) are identical, and
measure actual policy demand. What then is potential policy demand?
If potential policy demand is a dynamic concepts, both it and actual
policy demand share the outside lag in common (focussing on the causal
rather than the feedback link from instrument to target); whereas

according to Phillips this lag is one of the two factors differentiating

Phillips intends it as such [1957, p.267]: "For a given correction
lag the problem reduces to that of finding the most suitable way

of relating the potential policy demand to the error in
production'.
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these two policy demands. If this is a mere oversight, so that the
two concepts differ only because of the inside lag, potential policy
demand still remains to be identified in terms of Figure 6.3.

Now -equations (1) and (2) without intermediate lag reduce to

y = -swy +wg  <=>  y=siog, (5)

while equations (3) and (4) may be redefined to

- n ..n 2
and
g = K(D)y. (7
These equations are diagrammed as Figure 6.4. The variable §,
|
| unknown
|disturbance
g(t) W oy
D+sw

outside lag

inside lag feedback
o t
B g(t) K(D) <

Figure 6.4
Potential and Actual Policy Demands
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defined as potential policy demand, is chosen as a function of current
target feedback y, with actual policy demand g exercised as a function
of past § because of the inside lag. Potential policy demand § is a
purely definitional and unobservable variable, serving to emphasise the
conceptual effects of introducing control lag. Thus the segment to
the right of the dotted line in Figure 6.4 is clearly a schematic
representation of the design problem without control lag (the Phillips
model of chapter V); the segment to the left representing the
introduction of such a lag. If there were no control lag (that is,
inside lag), the variable E would generate the observed policy; and
this appears to be the sense of Phillips' definition of potential
policy demand, quoted above. Ambiguity occurs because, without ‘control
lag, both actual and potential policy demands are identical; but with
control lag, potential policy demand is designed in full recognition of
this 1ag and cannot be interpreted therefore as that policy appropriate-

for a no-lag context.

Given these qualifications, the system (5), (6), and (7) depicted -
in Figure 6.4Vis taken as the representation of the Phillips multiplier-
accelerator model with control lag. Now considering the equivalent
representation of Figure 6.3, after removing the intermediate lag, it =
is tempting to formulate the design problem as follows. Assuming the
inside and outside lag structures to be modelled accurately, why not
invert the inside lag operator, converting currently observed target.
values y* into actual target values y, thus overcoming the observation
lag? This would provide the design problem of Figure 6.5; which is
the first-order Phillips model, and therefore a simpler design problem.
The underlying assumption, however, is that it is necessary to design
a controller that is optimal with respect to the sequence of ongoing
and unpredictable disturbances. To invert the inside lag-after one
such disturbance, in order to construct y(t) as the feedback signal,
is to assume that no further disturbances occur over the stabilisation
period. This contradicts the purpose of designing what is essentially
an automatic stabilising mechanism: although nothing can be done to
offset the unknown impulses as they originate, policy is to operate

continuously against their propagation.



142

W y(t)

g(t)

KD) <

Figure 6.5
Design Problem with Inside Lag Inversion

One final comment must be made concerning the specification of
the policy lag as a distributed lag function of the first-order
exponential type. The justification for a distributed lag in the
adjustment of supply to demand, given by Phillips [1954, p.291],
reasonably relies on the aggregation of large numbers of individual
responses to produce a smooth aggregate response distribution. This
justification does not appear relevant to the inside lag in policY—
making. A possible rationale is that the first-order exponential lag
is simply a convenient appfoximation to a pure time delay and avoids
the use of mixed difference-differential equations. A reasonable
approximation to pure delay can be obtained with an nth order
exponential lag for n sufficiently large - Tustin [p.47] - and taking
n=1 is a compromise for dimensional simplicity. Since Phillips does.
consider more realistic lag specifications [1957, pp.269-72], this
argument .will be adopted in the following. Although this is a dubious
compromise between simplicity and accuracy, the previous interpretation
of Figure 6.4 does not allow the alternative hypothesis that a first-
~ order control lag is a behavioural description of policy reaction to a
discrepancy between actual and potential policy demands, as Phillips
argues [1954, p.294].
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6.2 PHILLIPS REGULATOR WITH CONTROL LAG

Taking equations. (5) to (7) as the specification of the Phillips
multiplier-accelerator model with a lagged instrument, the following
stabilisation problem may be considered. Supposing the policy-maker
to have deterministic knowledge of the economic system apart from the
impulse disturbances, what effect does the policy lag have (i) on the
design of stabilisation policy, on the structure of K(D); and (ii) on
the performance of the stabilised target y(t)? These comparative
questions are to be answered with reference to policy design and target

performance in the Phillips regulator of the previous chapter.

The first question arising from the introduction of policy lag is
whether the property of dynamic controllability is altered. Now the
lagged policy model may be»written4

y tw 0 -S 1 y tw 0 0
= + ga
g 0 n 0 -1 g 0 n 1
(8)
or
X(t) = TAx(t) + Ibg(t). (9)

In this state formulation, A is the static structural matrix, b is the
instrument coefficient vector, and I' is the diagonal matrix of adjustment

speeds. This system is dynamically controllable iff, from (3.47),

P(Q =p[Tb (TAITD) ] = 2. (10)
Since |Q| = iwnz, the lagged policy model is invariably controllable,
provided only that the matrix of adjustment speeds is nonsingular; and
this is satisfied by definition. Policy lag does not therefore affect

the property of dynamic controllability.

Where two signs occur, the top sign refers to a naturally stable
system (w > 0); the bottom sign, to a naturally unstable system
(w < 0). Hence w = |w| throughout this chapter. This explicit
treatment is of interest in the sequel.
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Solution of the stabilisation problem with the state
representation (8) will determine thé instantaneous policy g(t) as a
function of the state, here the current levels of the target y(t) and
the lagged policy variable g(t). But g(t) is determined through the
lag operator (6) as a function of past levels of g(t), so that current
stabilisatidn policy wili be determined by feedbacks from the current.
targeifand past policy. It is convenient, however, to consider
stabilisation policy as being determined from target feedback alone,

as follows. The system (8) of two first-order differential equations
reduces to one second-order equation

F(E) + (nEsw)Y(t) £ nswy(t) = tnwg(t). (11)

Applying from (3.32) the canonical transformation,

y(t) = 2, (t)
: (12)
J(E) = 2,(8) = &, (¥),
to (11) provides the alternative state representation:
zl(t) 0 1 zl(t) 0 A
= + g(t) . (13)
izft) +NSwW - (ntsw) zz(t) nw

Hence the state vector z = [zl(t) zz(t)]T = [y Y]T implies that the
stabilisation feedback K(D) will be specified as a function of the-

current level and rate of change of the target.

Coming to the provision of a performance functional for this
stabilisation problem, equation (7) and Figure 6.4 focus attention on:

the target y(t) and potential policy demand g(t); so that this

functional is taken as

T 2 ~2
MIN W = % J [y (t) + ¢g~(t)] dt, ¢ > 0. (14)
g 0

The minimisation of target deviations subject to the constraint that
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instantaneous stabilisation expenditure is not excessive seeks to
ensure, via the lag opérator, that lagged or actual stabilisation
expenditure is also not excessive. Expressing this performance:
criterion in terms of the state vector z(t) of (13), the optimal
stabilisation problem for the Phillips model with lagged instrument
may be summarised as:

" Model II
T 1 ~2
M= | [T ot 0)] ae, 6> 0, (15)
g 0
subject to
2(t) = Az(t) + bg(t), z(0)=z, z(T) free (16)
T fixed, g(t) unconstrained, (17)
where
1 0 0 1
)
V = > A =
0 0 nsw  -(nxsw)
4 (18)
0 y(t)
b= , z(t) =
‘ W | y(t)
e S

Model II is a two-state analogue of the fixed time free endpoint
regulator (Model I) considered in the previous chapter; and its
solution follows in the same manner. Evaluating the canonical
equations 2(t) = oH/9p, p(t) =-oH/9z, from the Hamiltonian

Tvz + %08 + p! (Az+bg), (19)

H(z,p,8) = %2

where the instrument and costate are connected by

Woo <> g = -o7w'p(0), (20)
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provides the canonical system

R _
5 (t) A bRy 2(0)=z
Lo
------ S (RO JHI | [ D EE— (21)
b || v A | e p(T)=0

_ 0 1 10 N
2(t) | : 2 1]zt
+NSW - (ntsw)! 0 -
------ S SR S | (R (22)
B (L) -1 0 i 0 tnsw p(t)
- - 0 0 E -1 ntsw | T

Solutions for the optimal target and instrument are obtained by
formulating the second-order ﬁgirix Riccati equation; just as the
first-order Riccati equation (5.20) was derived for model I.
Computational difficulties immediately obtrude because this Riccati
soluﬁion requires the 4x4 transition matrix of (22) for all finite
stabilisation horizons. To avoid these difficulties and to conform

to the assumption used by Phillips, an infinite horizon will be assumed.

The canonical system (22) for the finite horizon model does contain
some interesting qualitative information. The incidence of zero
elements in the Hamiltonian matrix of (22) enables the characteristic
equation, |AI-H|=0, to be found with relative ease as

X = A% - PP+ ndwlsteeT Y. (23)

That X(A) is even-powered in (A) complies with corollary 2.1, which
states that all characteristic equations associated with optimal
regulator models are purely even-powered. Hence

2

[x@® = 6° - (n%+s%®)6 + nful(sP+o™h

{n=2ts? (24)

2 1
5(2es?w?) £ B[(n%+s2w?) -anPwd(s2+e 1R

(o]
[t}
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Thus if the roots § are (i) real, they are necessarily positive, and
the eigenvalues A are therefore real and symmetric on the real line;
and (ii) complex, then the eigenvalues A are also complex and symmetric
with respect to the real and complex axes. In either case, corollary
2.2, the saddle point property of optimal eigenvalues, is illustrated.
As observed with respect to the FST paradox only the negative -

eigenvalues of (23) survive in the asymptotic model.

Asymptotic solutions (T=®) for model II are determined as follows.
From theorem 1.1, the Hamiltonian system (22) satisfies the matrix
Riccati equation

T
K= - KA - ATK(E) +.K(t)%? K(t) - V, (25)

with boundary condition K(T)=0 determined from the transversality
condition, Theorem 1.2 then asserts that the real, symmetric,

positive definite solution of the matrix equation (K=0) :

T
- RA - ATR K%? K-Vv=o0 (26)

specifies the optimal feedback coefficients for the asymptotic
controller. Utilising this solution and the state-costate relation
p(t)=Kz(t) in equations (16) and (20) subsequently generates the

asymptotic control and state solutions

g(t) = -6 b Rz(t), (27)
bb_
2(t) = [A - TF'K]Z(t)’ z(0)=z. (28)

The Riccati solution is significantly implanted in the solution

structure. In the present two-state model, K is a symmetric matrix
defined by
_ ko o k1
K = ' . (29)
k1 k2

Using this definition (and the model specification) in equations (27)
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and (28) supplies

g(t)

S ik () ky(0)]z (1), (30)

2(t) = G2(),  2(0)=z,

. - 0 ) (31)
bb - |
6y = AR =1 2,2 22 |
L +NSW - ﬂ—$—k1, -(nisw)-n&;——-k2

Thus only the pair (kl’ k2) of (29) are required; not the triple
k., kl’ kz). From Appendix VIa (pp.270-2 below), these two solutions
are: '

( 0+ s 1
kj = —— 6 = (sZ+¢™1)%;
¢ nw
| (32)
Y - (ntsw) 1
ky = —5>5—, Y = (n2+52w2+2nw9)2-
-1.2 2
¢ nw
\
Hence the optimal control (30) is:
Y - (ntsw)
Bt) = [ 6% s, ——1z(1), (33)
and the optimal closed-loop matrix GII of (31) is:
0 1
G = (34)
-nwo =Y

With G so defined, an explicit solution of the 2x2 differential
system (31) is all that is required to completely specify general
solutions. This solution may be readily found but does not contribute

to the following analysis, and is not therefore presented.
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6.3 INSTANTANEOUS AND LAGGED CONTROLLER STRUCTURES

Given these optimal solutions to model II, this present section

" investigates (i) the structure of the optimal controller and its
relation to that of model I; and (ii) the relation holding between the
instantaneous and lagged controllers.

The instantaneous controller (33) may be written more. revealingly

as
86 = ¥ & [h() + m(»)DIy (), - )
where
h() = nw(6 +s) >0,
(36)
m(x) =y - (nxsw) >0,

The differential effects of natural stability properties may be noted
immediately. From (35), naturally stable syétems employ negative
feedback; naturally unstable systems, positive feedback. From (36),
the levels of feedback are higher for naturally unstable systems. But
although the optimal controllers differ in sign and magnitude, they
both generate, by (34), identical closed-loop state dynamics. Natural
instability simply requires more controller effort to produce the same
target response.

The optimal instantaneous controller (35) consists of two
components - proportional feedback and derivative feedback - as
illustrated in Figure 6.6. To develop the logic of the defining
coefficients h and m, it is necessary to consider the stability
properties of both the pre-optimal and the optimal structures. For
effective dynamic stabilisation, the controller, whatever the method
of its design, must be directly related to the stability properties of
the stabilisation model. Thus suppose that the policy-maker, in a
travesty of Phillips' classic dictums, is content.to pursue a dynamic.

policy of constant expenditure. Then information on the stability of
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n g(t) W y(t)
Den D+sw
g(t)
h(2)
ns) <
Figure 6.6

Phillips Regulator with Lagged Controller

this pre-optimal system, given.by (13) for ; =g, i.e.,

z(t) = Az(t) + bg, | (37)
is éontained in the characteristic equation

v? - (trA)v + |A].= 0, | (38)
possessing the eigenvalues

V) = FsW, Vv, = -, (39)

A constant-expenditure policy has no effect on the location of
eigenvalues and is ineffectual as a dynamic policy. What this
limiting case serves to underline is the pure separation of the
stability properties of the pre-optimal system between the natural
dynamics (+sw), the outside lag, and the control lag dynamics (-n),
the inside lag. Since n > 0, the inside lag does not make a
naturally stable system unstable or a naturally unstable system even

more unstable. Thus the considerations justifying the necessity for



151

control in the first-order model are also relevant to the second-
order model. The significance of the inside lag derives from the
introduction of an additional mode of dynamic response. Although
the pre-optimal system can never be oscillatory (39), the optimal.

system can be: a problem receiving attention in the following section.

Moving from this situation of complete impotence to the optimal
situation given in (34), optimal stability properties are summarised

in the characteristic equation
w2 - (trG, v + |G| =0 - (40)
: 11 IT ’
with eigenvalues5

L .
v, = -yt by -4nwe) L, (41)

Because Y and 6 are functions of ¢-1, the location of eigenvalues is

directly controllable - a logical prerequisite for dynamic stabilisation.

Comparison of the two control structures via their characteristic
equations (38), (40) establishes

m(t) = tr(A - G

[}
it

1) = -(nEsw) +y
(42)

nwé + nsw.

[h(2) = |G| - Al

Apart from a constant factor 1/nw, the optimal proportional feedback
coefficient h(¥) is determined as the difference between the optimal
and the pre-optimal eigenvalue products; and the optimal derivative
feedback coefficient m(£) is determined as the difference between the
pre-optimal and the optimal eigenvalue sums. Proportional feedback
operates on the determinant, and derivative feedback operates -on the

trace, of the system matrix G This understanding of feedback

I1°
design will be used in the following section to design policy to

combat oscillations.

> The assertion above that the negative eigenvalues (24) are the

asymptotic eigenvalues (41) may be verified.
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Writing the optimal controller (35) as

2(t) = & [h(z) + n()DIy(t),
) ) (43)
h=h/mw=26%s; m=m/nw,

the lagged stabilisation model returns an optimal controller which
includes a proportional-feedback-(ﬁ) identical with that of the |
unlagged modelé,v Thus the emergence of derivative feedback is
entirely the product of the inside lag. From equations' (32), (36),
(43), the distribution of parameters between the two feedback
coefficients is

"~ N el

h = h(s, ¢71); m = m(s, w, n, h). (44)

There is, therefore, a very specific task orientation in the optimal
controller: which accords with the dynamic separation noted in (39).
The derivative feedback is explicitly moulded to the dynamic structure

of the policy lag, with

52w2 wbl - SW
(1+ 5 + 2'—n‘2 -1+ F—
lim m(+) = lim ——02D » — = 0. (45)
oo nree \

As the policy lag shortens and finally vanishes, the role of derivative
feedback decreases and vanishes also. Alternatively, the faster the
policy speed of response (n), the smaller is the required level of

derivative feedback.

In summary, the logic .of the optimal instantaneous controller is
that (i) the proportional feedback of the first-order model is retained
to control the outside lag dynamics; and (ii) a derivative feedbick is
applied to cater for the inside lag dynamics. Coordination of these
two feedbacks is achieved through the appearance of the performance
parameter ¢"1 in each. That the second-order model tends to the first-
order model as the policy speed of reaction becomes infinite is of

relevance to the analysis of dynamic adjustment mechanisms given. by

See the naturally stable controller (5.23).
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Sargan, and exposited by Bergstrom [pp.107-12], and Newman [pp.18-21].

But this is a separate topic and is pursued no further in this thesis.,

The optimisation analysis generates an instantaneous controller
g(t) that is implemented, and therefore observed, as the lagged
controller g(t). The block diagram of this lagged controller appears
in Figure 6.7. How does the lag operator n/(D+n) affect g(t)? The
answer to this question is provided by the solution of the~differentia1»
equation |

(D+n)g(t) = ng(t), : - (46)

obtained from (7). Now from (43), the instantaneous controller g(t)

may be written (taking only the naturally_stable case):

~

g(t) = - m(E + D)y(t)
m
(47)
- - EE e Dy, £ =, 8 = A/
, y(t)
D+sw
g(t)
* (h+mD) -

Lagged Controller Structure for Phillips Regulator

Hence the optimal lagged controller is the solution g(t) of
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(D+n)g(t) = - e(8+D)y(t). (48)

Since the target variable y(t) is the component zl(t) of the linear
constant system (31), (34), y(t) will possess a solution of the form

y(t) = ae®ty(0) + befty(0), (49)

where o, B are the optimal eigenvalues (41), and where a,b are

coefficients determined from the initial conditions. Thus
y(t) = aae™y(0) + Bbe®y(0), (50)

and the differential equation (48) becomes.

(D+n)g = -el(8+a)ae®ty (0)+(5+8)bePTy (031, (51)
A particular solution to (51) is7
o (8ve) ot . (8+B), Bt
S = E{We y (0) Ik y(0)}, (52)

and the complete solution is, for given initial condition g(0),
-nt -nt
g(t) = (1 - e")s + e Mg(0). (53)

Merely to simplify interpretation of (53), suppose that y(0)=0,

so that
(y(t) = ae®y(0)
] 8(8) = - (6+a)y (1) (54)
(s = —e-f]:—Zy(t) - g,

Given the inside lag, the initial condition g(0) hinges on whether the
system was being stabilised prior to the implementation of an optimal

policy. If so, some nonzero g(0) will exist; otherwise g(0) may be

4 See, for example, Allen [1960, pp.725-33].
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assumed zero. Taking the second case, again for simplicity, the
explicit relation between the optimal instantaneous control (which
optimises with respect to given inside and outside lags) and the.

optimal lagged control is -

g®) = - gy, - (55)
Thus the lagged control is obtained from the instantaneous:

control via a damping factor (lee'nt) and . an amplitude factorjn/(n+a).

The damping factor is the cumulative form of the first-orderﬁexponential

lag; and approaches unity with increasing time. For example, if

1/n le,jthié damping factor is .63 by the end of the first unit period;

and for t > 2/n, g(t) may be apﬁroximated by

g(t) # F58(0). | (56)
Since the optimal system is stable, the optimal speed of response (a)
is negative; and this amplitude factor may also be negative. In this
case, after an initial adjustment period in which the damping factor
works itself out, the lagged policy would appear as a linear function
of the instantaneous policy, of the same phase but opposité sign. Note.
that 1lim g(t) =;§(t), as required.

n—)'OO

6.4 THE POLICY-CYCLE NEXUS

The limited amplitude fluctuations generally characterising the
postwar performance of the developed economies have been the result of
policy-makers accepting an increasingly .sophisticated stabilisation
function. As A.H. Hansen remarks, stabilisation policy has so modified
dynamic behaviour that "The rocking chair doesn't rock in quite the old.
familiar way", [1964, p.609]. Yet this achievement itself fosters a
problem of fine-tuning: to what extent have these postwar cycles been

induced by stabilisation policy?  Thus Heller g}_glﬁargue [p.16]:

" In trying to maintain their economies in this position [of

full employment], governments have relatively narrow room for
manoeuvre between.... an unacceptably low level of employment

and ... a pressure of demand that creates an inflationary strain
on resources ... [To] operate within this 'narrow band' requires
skill, foresight and flexibility. Governments have, to a large.
extent, succeeded in subduing or overcoming the rhythmic
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fluctuations which used to be called the 'trade cycle'. ...
But mistakes in policy can easily set up a new sort of
oscillation in the economy, and large countries which make
them may still cause serious problems for their smaller
neighbours."

This present section is concerned, in the theoretical -context of the
optimal Phillips model, with operating in this narrow band without

inducing oscillations attributable to policy.

Designing stable policy is not therefore éufficient; it is also
necessary to ensure that such policy does not impart a cyclical
movement to the target. Consequently, two subgoals of the stabilisation
objective must be recognised. The first, which has been stressed'so
far, is the attainment of desired rates of convergence in target
variables through the control of dynamic speeds.of.adjustmentS. The
second is the prevention of policy-induced oscillation. Given these.
two subgoals, the stabilisation problem is, to use Mundell's terminology

[pp.313-317], a problem not only of stability but also of hyperstability.

Of the set of all dynamic systems of general order. (n), the first-
order system is pathological in the sense that oscillatory behaviour
is precluded. With a classical controller (and still assuming impulse
disturbances), such systems remain first-order systems .and are
nonoscillatory; and with an optimal controller, the saddle point
property also necessitates nonoscillatory behaviour. Thus in first-
order models, the efficacy of dynamic control is directly manifested in
the rate of target convergence: in model I for example, the~optima1
speed of response (w8) clearly exceeds the natural speed of response
(sw). Optimal solutions to the lagged Phillips model, model II, do
however permit either damped oscillatory or exponentially damped
responses, Which type of response actually occurs is governed by the
influence of ¢_1 on the location of the optimal eigenvalues. This
influence is now investigated as a preliminary to the discretionary

control of oscillations.

To establish the conditions demarcating damped oscillatory from

exponentially damped responses, consider the following analysis of the

Horizon and endpoint considerations are facets of this subgoal.
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time-form of response. The inequality conditions on the discriminant
of the optimal characteristic equation (40):

2

A = trG = v% - 4w 2 0, (57)

IS 4|G11|
define real and complex eigenvalues respectively - or noncyclical and

cyclical responses. After simplification,

A = w2Q(p),
(58)

2 20p + 52, p=n/w>0.

Qlp) =p
The polynomial Q(p) possesses a minimum at p = 6 of —¢-1, and roots at

p=26=¢% ¢-1. Complex eigenvalues occur if Q(p) < 0, or if

1 1
- -

B -¢ < 3-< B+ ¢ °. ' (59)

The restriction (59) is more conveniently written

<=> ~ (60)

where the lower and upper boundaries have the following properties:

[ % 9
——:T'(LB) <0, -—:T'(UB) > 03

3¢ 3
(61)

lim (LB) = 1, lim (UB) = 1.
¢_1+0 d)_l—*O
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Figure 6.8 graphs the oscillatory condition (60) as a function of the

SW
V=
UB
y=1
—Y actual
I
w
|
I
: 1
0 ¢—1 q)
Figure 6.8
Response Regions for Lagged Phillips Regulator
control parameter ¢-1. With. an increasing level of control, there is

an ever-widening range of values of the ratio y= sw/n for which
oscillatory target response occurs, as indicated by region (0). In
the lagged Phillips model, the probability of oscillatory response
therefore varies directly with the level of stabilisation. If
oscillatory outcomes are undesirable, this is a perverse result for

policy-making.

Figure 6.8 suggests a first method for designing a hyperstable
controller. The quotient Y = sw/n is the ratio of the natural speed
of response to the policy speed of response (or the ratio of the inside
lag to the outside lag). Suppose the parameters of model II are such
that § has the value appropriate to point X in region (0), implying
target oscillation. A sufficient increase (decrease) in policy speed
of response would relocate Yy in region (L), (U) - provided,cb—1 is not
too large. Variation in policy speed of reSponse is therefore being
suggested as a design tool for avoiding policy-induced cyctles. But
further thought indicates that it is-hot a useful option, for two

reasons. Firstly, given the institutional and informational
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difficulties inherent in attempts to reduce. the policy lag, the brunt
of adjustment would have to fall on increases in this lag - the option
is-therefore asymmetric. Secondly, increasing the policy lag means
that nonoscillatory target behaviour can only be achieved at.the

expense of further delaying policy action.

Yet if this option of moving X vertically out of region (0) is
unsatisfactory, so also is the alternative of moving it horizontally
out.of this region. Since ¢-1 is th strength of control parameter,
any reduction in it compromises the rate of convergence to equilibrium.
Thus unless the inside and outside lags are fortuitously matched, so
that ‘{ remains outside region (0) for all admissible values of ¢-1, the -
problem of oscillatory target behaviour persists. This leads to a
rephrasing of the hyperstable design problem, Is it possible to
compensate for the occurrence and length of the inside lag so that the
optimal response is never oscillatory, whatever the length of the outside
lag? Rejecting policy lag variation and performance parameter variation
as -tools for combatting policy-induced cycles, can an optimal feedback

controller be designed to ensure noncyclical response?

Coming to closer grips with this design problem, observe that -the

optimal system

’

2(t) = G z(t), z(O):zo

1
(n2+s2w+2nue) 2, (62)

o
—

<
]

(s2+7H%,

-nwo -y e

is stable and will therefore be represented by a point in the first
quadrant of Figure 6.9, constructed from the characteristic equation
(40). Design of a hyperstable controller réquires that the optimal
response . (62) be shifted from point A in the cyclically damped region

to some point above the boundary curve trzG = 4|G|. Although the
arrows in Figure 6.9 suggest several ways of achieving this transfer,
all are combinations of‘two basic possibilities. Recall from (42) that.

proportional feedback h(t) operates on the determinant of GII and that
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Figure 6.9
Stability and the Policy Design Problem
derivative feedback m(*) operates on the trace of GII‘ Horizontal

movements from point A will therefore require variation in proportional

feedback; and vertical movements, variation in derivative feedback.

Variation in proportional feedback results from variation in the
weighting of the ratio g/y in the performance functional, as expressed
by ¢_1. But this has just been rejected as a means.of avoiding
oscillations; therefore, consider the alternative, the use of derivative
feedback. In the performance functional (15), the state weighting
matrix V attaches a zero weight to the state variable‘zz(t)=?(t){
expressing no concern about the speed at which the target y(t) adjusts
under control. Since this rate of adjustment is related to oscillatory
response behaviour, an additional term is now incorporated in the
performance functional:

i ow s [ DA i - e me (63)
g 0

w20, ¢>0,

That is, the problem of hyperstability will be attacked with target.
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derivative weighting, where pu enters (63) quadratically for

convenience in later interpretation.

This optimal stabilisation problem may . then be-eXpressed in form
analogous to Model II as:

Model III
MIN W = J [2'(0)vz(t) + 02%(0)] dt, ¢ > o, (64)
g 0
subject to
2(t) = Az(t) + bg(t), 2(0)=z_, (65)
where
1 0 0 1
(v = , A=
0o u2 nsw - (ntsw)
, (66)
0 -y (t)
L b = 3 Z(t) =
nw y(t)

Comparison of models II and III reveals that the only effect of
derivative weighting is the appearance of the performance parameter
uz on the diagonal of the state weighting matrix V. Since V is the
constant term of the matrix Riccati equation (26), it is necessary to
9 Appendix VIb (p.273 below)

demonstrates that the equational results of model II may be retained if

rederive the Riccati parameters kl’ k

the definitional parameter y is redefined as follows:

A - 1
Y= %+ sAP 2o + o InADE, (67)

The degree of discretionary control over oscillatory outcomes may

now be inferred from the familiar study of the optimal characteristic
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equation. Modifying (40), this equation is
2 ~
VS o+ yv + nwb = 0, , ) (68)

with discriminant

A = (1 + ¢ WhAn? - we)n + s (69)

The polynomial A(n) possesses

(1) a minimum of w2¢‘;(szw2u2 - 1)
n 0
at — = —5 ; and
w 1+4 1W2u2
-1 2.2 2..%
.. : n_©6=[¢ (Q-swudl™
(ii) To0ots i 177

1+4¢ "why
-, 2 2 2 .
These two factors imply that for all p® > 1/s"w”, the polynomial
A(n) is positive, so that the optimal eigenvalues of model III are
real. Thus the condition for nonoscillatory response is

1 .
u > g'w) (70)

providing a simple,rule for preventing cyclical policy: choose. the
target derivative weight to be greater than the outside lag. When
the system structure is such that y liesroutside region (0) in Figure.
6.8, no cyclés occur, and thé,appropriate value for the target

derivative weight is zero. But once { is shifted into that -region,
for example by increasing the strength of stabilisation policy, the

value given in (70) is then appropriate. To summarise :

W=0Vtr: G> 4|6] <= ¢ t<o

(71)
U >L vir? g g 4|6l <
sw

1

A\
©
AN
©-
-

where a—l'is that value of ¢'1 for which ¢ first enters region (0).
Because the problem of hyperstability is binary - in the sense that
the optimal response is either oscillatory or nonoscillatory - the

decision rule (71) is also binary.
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Analogously to (35), the optimal instantaneous controller

associated with model III is

,

g(t) = & [ h(®) + A®OD 1y (),

| h() =67s (72)
- _ Y - (n£sw)

( m(E) = —

Whereas the level of proportional feedback ﬁ(i) is unchanged, the level
of derivative feedback is a function now of two performance parameters,
¢—1, U.  Referring to Figure 6.9, the use of target derivative weighting
for hyperstable design corresponds to the movement from A to B, since-
only the trace (-;) of GII is affected by u. Concern for control-
induced oscillation expressed at the derivative level of preferences
manifests itself appropriately in derivative feedback. In terms of
Figure 6.8, a comparison of the discriminants (58) and (69) demonstrates
that target derivative weighting changes the boundary curves LB and UB

so that X is no longer in region (0).

Once target derivative weighting becomes necessary, systems can be
ranked according to the additional derivative feedback required to
prevent oscillations: from (70), the greater the natural speed of
response, or the shorter the outside lag, the smaller is the additional
feedback. Again, this penalises policy-making in an a priori likely
situation - that of a sluggish economy slowly converging to equilibrium.
In such an economy, a relatively high level is necessary not only of

stabilisation action ¢~1 but also of auxiliary derivative feedback u.
6.5 THE EFFECTS OF CONTROL LAG

Model II illustrates that the penalty for a lagging policy response
is an increase in complexity of the optimal controller. This
proposition is valid for more realistic forms of policy lag. The
increase in dynamic order from model I to model II is solely the
product of control lag; the optimal controller for model II therefore
retains the proportional feedback of model I but accompanies it with a
new derivative feedback, shown to vanish with the policy lag. Policy

lag results in policy complexity.
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Policy lag also engenders the possibility of cyclical response
as the result of increased dynamic order. Although policy lag is not
the only cause of increased order, model II abstracts from other sources,
such as increasing complexity in the outside lag structure, and ekplores.
the unique relation between policy lag and the cycle. Symbolically,
as Y = sw/n > 1, the greater is the probability of policy-induced
cycles. The more closely matched are the inside and outside lags, the

greater the tendency for oscillations.

These conclusions.provoke attempts to sever the policy-cycle nexus.
Three such approaches are considered: (i) policy lag variation, (ii)
performance parameter variation, and (iiij target derivative weighting,
Policy lag variation is a doubtful tool because of institutional
inflexibility in the downward direction and convergence speed.tradeoff.
in the upward direction. Performance parameter variation, requiring
a reduction in ¢—1, also compromises the general stabilisation objective
by limiting the strength with which policy may be applied. Target
derivative weighting provides a simple rule: once oscillations appear,
select the magnitude of the target derivative weight at least equal to
the length of the outside lag. This does not mean that target
derivative weighting is costless. Since the trace of the closed-loop
matrix increases with the determinant remaining constant, one system
eigenvalue increases and the other decreases, while their product
remains constant. One mode now decays more rapidly; the other, less

rapidly.

Analysis of the hyperstable design problem is readily unified in
terms of the optimal state dynamics. Thus Figure 6.10 plots the loci
2(t)=0 for models II and III, where the optimal closed-loop matrices in

z = Gz are given by

0 1 0 1
Grp = > Gprpp = ~ | (73)
-Twé Y -nwo -y |

and for which |GII| = |6 = |G]. Since both matrices are sign

1
stable, the state space for each system is globally stable, as

required of linear stabilisation policies. The directional vectors
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Figure 6.10
Hyperstable Design with a Lagged Instrument

“are evaluated from (73) and apply to each model (regions III and VII
switching dynamics between models). Both models share the 2.=0 locus

1

on the z1 axis,

The vertical axis zl=0 is the full employment locus: vregions to
the right (I-IV) involve demand inflation; regions to the left (V-VIII),
unemployment.  Suppose that an optimal stabilisation policy for model

IT is applied at time t=0, with initial conditions in region I - both the
target error and its rate of change being positive. If target behaviour
is to be oscillatory, the optimal response must follow a trajectory
similar to (a), in which there is at least one sign change in y(t) -

from regions IV to V, VIII to I, with possible repetitions. Thus the



166

. problem of hyperstability is to confine the optimal response entirely
to the vertical half-plane in which the initial condition occurs; or

to ensure that the optimal trajectory does not cross the full employment
locus,

Beginning from region I, it is only in region IV that the dynamics
of model IT permit any movement towards the equilibrium point (0,0).
But -as path (a) depicts, there is no guarantee that the system will
actually equilibrate within région IV. The crux of designing a
hyperstable controller is to convert this region into a trap such that
any trajectory entering it is captured and forced to equilibrate.
Target derivative weighting creates this trap by swivelling the locus
' 22=Oyanticlockwise through o radians. In model III, region III then
belongs, in terms of its dynamics, to region IV, rather than to region
II; as in model II. The size of the trap is thereby expanded to a
point where it is always sprung. This is shown by considering the
‘factor producing the rotation a. Target derivative weighting introduces

the parameter (u) into the trace of G , and since the determinant of

I11
GIII is independent of u by (73), the negative slope of the i2=0 locus -
is directly lessened by increasing the trace. The optimal angle of

> =
I1I 4|GIII|
4|GII|, this being the necessary and sufficient condition, from Figure

rotation is then determined by finding W such that_trzG
6.9, to inhibit target oscillation.

The performance difference between models II and III, between paths
(a)vand (;) in Figure 6.10, aptly illustrates the maxim that "optimal"
performance is only as good as the stabilisation objectives actually
incorporated in the performance functional. If hyperstability is an
objective, this objective must be explicitly defined in the performance
functional: otherwise its attainment is a random matter of system

structure.

Figure 6510 has been drawn on the assumption that the current level
of stabilisation ¢_1 combines with the outside and inside lag dynamics
to permit cyclical target behaviour. In this case, region IV is not a
natural trap. If, however, the combined lag dynamics are such that
target behaviour is nonoscillatory for all admissible ¢-1, then region
IV is a natural trap, and a=0, For some ¢—1, the trap will exist

naturally, for other ¢-l it will not, and this is the reason for the
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binary, on-off nature of the target derivative rule. As a means of
combatting cyclical fluctuations, Smith also suggests [pp.12-13]
inclusion of the target derivative in the performance functional but
with a unity weight. This unnecessarily restricts the flexibility

of the optimisation analysis, precluding derivation of a binary decision
rule comparable to (71).

In defining the power of dynamic feedback for the design of
stabilisation policy, Phillips [1954] stressed inter alia the role of
proportional and derivative feedbacks. Now optimal stabilisation
policies for the second-order Phillips models - models II and III -
generate optimal controllers using these feedbacks. Therefore,
although the design methods differ, classical and optimal controi
techniques lead to structurally equivalent controllers. Further,

referring to Figure 6.10, the slopes of the %,=0 loci are determined,

loosely speaking, by the ratio of proportionai feedback to derivative
feedback. In turn, this ratio is positively related to the strength
of control parameter ¢-1 and negatively related to the target derivative
parameter Uu. And the binary role of y corresponds precisely to the
need defined by Phillips [1957, p.276] that '"it is usually necessary to
include an element of derivative correction in a stabilisation policy

if regulation is to be satisfactory'.

Chapter VI therefore reveals a close formal correspondence between
the old and the new. The same principles underlie classical and optimal
design; qualitatively similar controllers are designed for the same
model. Yet the correspondence is not complete. Phillips [1954] also
proposed the use of integral feedback for dynamic stabilisation. So
far, this type of feedback has not been proposed for optimal'
stabilisation policy. One of the tasks of chapter VII is to examine

this discrepancy.



CHAPTER VII

DEGREES OF FREEDOM IN THE STABILISATION PROBLEM

Even after specifying a quadraiiC‘criterion functional with
linear dynamics as equality constraint, several degrees of freedom still
remain before the optimisation model is fully specified. The - procedure
adopted, in this thesis has been to select a particular configuration of
these degrees of freedom, for reasons relating partly to mathematical
simplicity and partly to historically-imposed initial conditions: Thus
the computational algorithm dévelobedﬁin chapter II relies on the
convenient linearity of the Hamiltonian system;:'and the FST paradox,
refuted in chapter V, requires a cértain configuration for its

enunciation.

The configuration chosen fathers the autonomous, fixed-time, free
endpoint regulator possessing a linear, autonomous, homogenous, dynamic
equality constraint. The task of this present chapter is to develop
the motivation for, and some of the consequences of, the choices embodied

in this'configuration.
7.1 DEGREES OF FREEDOM

Degrees of freedom exist with respect to the following aspects of

the stabilisation problem

1) time dependence of coefficient. structures,
(ii) the stabilisation horizon,

(ii1) dynamic instrument usage,

(iv) control constraints,
(v) terminal objectives, and

(vi) nature of disequilibrating disturbances.

Item (i) refers to a decision on the temporal behaviour of system
dynamics and preference structure: on whether these evolve or remain
constant over time. Section 3.1 -argues for constancy as an initial.

simplification avoiding analysis of evolutionary or nonautonomous’
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dynamics. For stabilisation policy viewed as a shortrun problem, the
constancy assumption is reasonable; but in the longrun is questionable.
The~assumpfion of a constant preference structure over lengthy horizons.
ignores the éustomary economic device of time discounting.'. The effects
of discounting on optimisation are discussed by Arrow; while Kurz
[pp.160-66] provides an analysis of discounting applicable to the
regulator model. Because there is no substantial literature devoted
to controllability, optimality and computability in stabilisation
theory; the limitations of this constancy assumption have been accepted
throughout this thesis. Its removal awaits the development of optimal
models .of cyclical growth, comparable to the classical models of Phillips
>[1961], Bergstrom [chaps. 5, 6], and Allen [1968, chap. 26].

Item (ii) defines whether the stabilisation horizon is to be

determined optimally or is preset by the policy-maker. In the first
case, the stabilisation horizon is free; in the second, fixed. A
fixed horizon assumption is used throughout this thesis. A possible

rationale is provided, at least in the finite horizon regulator, by the
fixed and finite electoral life of democratic governments. These
governments may be expected to maximise their probability of re-election
by using stabilisation policy to promote a favourable economic climate
immediately prior to an election. Design of such stabilisation policy
is therefore undertaken with a fixed horizon measuring remaining
electoral life. Another possibility is a fixed horizon corresponding
to the budget period; and yet another, some form of intermediate

planning, with or without revision.

None of these justifications is applicable to the infinite horizon
assumption. This assumption, when used, is used either to simplify the
endpoint complications of the finite horizon regulator or to accord
with the assumption used in classical stabilisation theory. The
simplicity of asymptotic solutions relative to finite horizon solutions
is vaiuable.both theoretically and computationally. Theoretically, an
infinite horizon assumption provides optimal controllers that are time-
invariant. Thus in Figure 5.2 (p.126 above), the finite horizon
trajectories are approximately linear except towards the terminal
manifold; and the longer the horizon, the later this linearity
disappears. A numerical illustration of this phenomenon is provided

by Athans & Falb [p.779]. Removal of this endpoint behaviour does not
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affect the qualitative conclusions drawn about optimal stabilisation
policy but considerably facilitates solution and analysis.
Computationally, both the resultant time-invariance and dimensional -
reduction afford considerable savings, as noted with respect to the
algorithm of chapter II. More will be said concerning finite and

infinite horizon assumptions in section 7.3 below.

An interesting economic problem may emerge from the shortrun
policy manipulation alluded to above. To sketch the problem briefly,
suppose that the given economic system is dynamically controllable,
and that the government desires a specified target vector transferred
from a current.position to a desired position by a fixed date. Suppose
further that a controller minimising control energy, that is,

T
MINW =% J uTRu dt, is designed to achieve the required transfer.
u 0 '

Then plotting minimum control energy as a function of the horizon T, it

i :
] I
n T
T T2
Figure 7.1

Minimum Control Energy

is possiblel, depending on the precise system dynamics, that this

relation is similar to that of Figure 7.1.

Figure 7.1 depicts the tradeoff between the time (T) taken to

1 Cf. Athans & Falb [pp.466-74].
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achieve the stated stabilisation objectives and the required control
energy (W). For T < T', a small increase in the stipulated horizon.
permits a much larger decrease in control energy; while for T > T", a
significant decrease in control energy is only achievable with a very
large increase in the horizon. '~ Thus if the stabilisation horizon is
fixed by electoral considerations as Tl’ it is clear that the same
objectives could be achieved a little later with a significant cost
decrease. And by setting the stabilisation horizon at T'" rather than
T2, the same objectives could be achieved considerably faster with a

small increase in control expenditure.

If economic dynamics generate a tradeoff cémparable to Figure 7.1,
questions must be raised about the social cost of stabilisation policies
determined by electoral considerations: such policies may be too hasty
and too extravagant or too tardy and too parsimonious. Either case is
undesirable, given the alternatives. Nor is the possibility dependent
on the minimum energy'é§sumption. This merely selects a particular
controller: all other controllers will necessarily exhibit a similar
tradeoff. Such behaviour is an empirical question that may be worth

investigation.

Item (iii) concerns the option of reduced versus regular

stabilisation. Necessary and sufficient conditions for existence of
reduced models are proposed in section 4.2. -But no criteria are
presented for selecting a particular reduced system. Reduced

stabilisation appears to be an important policy option but its full

significance must await. further research.

Item (iv) refers to the presence or absence of explicit constraints
on the available instruments. Explicit control constraints generate
bang-bang controllers for which control operates for some or all of the
time on the boundary of the constraint set. Lack of explicit
constraints produces the smoothly-continuous controller, for which
control is assumed to operate in the interior of some implicit constraint
set. The smooth controller is the simpler principle, both
theoretically and numerically. It is used in the development of the
computational algorithm of chapter II; in the analysis of
controllability in chapters III and IV; and in the optimal stabilisation

models of chapters V and VI, While it is desirable in some formulations
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of the stabilisation problem to impose explicit control constraints,
this possibility is not treated in this thesisz. Section 7.2, -
however, investigates the way in which an unconstrained regulator model

can act as a surrogate for an explicitly constrained regulator.

Item (v) summarises the choice to be made with respect to terminal
or endpoint objectives: is the terminal target vector to be‘fiied or
free?  The necessary conditions for optimality accommodate either
choice but, again for simplicity, the free en&point assumption has
generally been used; although fixed endpoint solutioné,té the Phillips
regulator are briefly identified in chapter V, ' A strong case may be
made for regarding the stabilisation problem as a fixed endpoint
problem: as formulated, for instance, in the investigation of
controllability in chapter III. Where there does exist specific
concern for the targetuendpoint; section 7.3 propdses that terminal
target weighting is a reasonable alternative to the fixed endpoint .
assumption, while still retaining the simplicity of the free endpoint .
assumption.

Finally, item (vi) defines-a choice about the nature of the.
disturbances assumed t6 perturb economic equilibrium. Two classes of
disturbance are conveniently recognisedf transient and persistent.
Transient disturbances are impulse disturbances assumed to have occurred
and vanished’prior to the implementation of policy to counteract their
effects. These effects are therefore.captured in the initial
conditions, representing displacement from static equilibrium.
Persistent disturbances are those disturbances - such as ramp, step,
sinusoidal -and exponential disturbances - whose effects are maintained
and cannot be captured in the initial conditions but must be explicitly
introduced intovthe‘model's formulation. To this point, the thesis
has employed the transient assumption. Section 7.4 therefore
investigates the significance of the persistent assumption for the
particular class of step disturbances. This leads to the complete

unification of classical and optimal stabilisation theory.

2 A recent paper by Turnovsky illustrates each controller type in

an optimal regulator model of a 'single market.
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7.2 DYNAMIC CONSTRAINT INTERNALISATION

The explicit introduction of time into the analysis of.
stabilisation introduces elements which are exclusively dynamic. One
such element is the temporal distribution of“cohtrol resources over
the stabilisation period. Statically, control resources are.
disbursed at a constant rate; dynamically, the stipulation, . for
example, of a fixed quantity of resources available for stabilisation
over a given horizon in no way constrains the temporal patférn of
usage. If there exist flow constraints on the instruments that must -
be satisfied at every point of time, the problem therefore arises of
ensuring their satisfaction. Whether or not this is possible without
explicit introduction of these constraints is now considered in the
simplified context of the Phillips regulator.

Flow constraints are typically a saturation or magnitude
constraint

u < u(t) < u, uéu, v te [0,T], (1)

positing upper and lower bounds on the level of allowable control
usage at every point of time during the control period. For
stabilisation models obtained under the equilibrium partition, the

saturation constraint
-u < u(t) < u, u, u >0, (2)

would normally be assumed: that is, actual control U(t) is permitted
to deviate positively or negatively from its desired equilibrium level
U, within the band (-u, u).

Two basic approaches to optimal dynamic stabilisation may be.
defined by the manner in which such control constraints are incorporated.
In the first approach, the saturation constraint (2) is explicitly

introduced into the optimal formulation:

T
MINW = [ J(x) dt
u(t) 0 (3)

subject to x = f(x,u), XC0)=XO, Iu(t)l <u,
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where, for simplicity, the constraint band is assumed symmetric. In
the second approach, the saturation constraint is implicitly introduced
via the criterion functional:

’

T
MIN W = J J(x,u) dt, J, J._ >0,

subject to x = f(x,u), x(0)=x6.

These two classes of model are differentiated according as the control.
constraint is external (3) or internal (4). In (4), the conditions

J, > 0, J,, >0 act as a proxy for lu(t)| € 0 in (3), with performance
cost increasing at an increasing rate with u(t). Examination of
whether or not the proxy is sufficient, or can be made so, is therefore
of interest. |

The possibility of internalising a magnitude constraint will now
be demonstrated in the context of the Phillips regulator of chapter V.

Specifically, consider the optimisation problem

’

I - 2
MINW = % | [y“(t) + ¢g"(t)] dt, ¢ > 0,
‘ g(t) | 0 (5)
subject to y = - swy + wg, y(0)=y0, y(T) free.

\

Suppose the policy-maker specifies the control magnitude constraint
lg(t)]| < g« vVt € [0,T]. (6)
Then given the performance integrand,
o2 2 ,
J' = ay (t) + Bg (t): a, B > 0’ (7)

which may be written3

T
Since optimality with respect to the criterion 0J' dt is

preserved up to the linear transformation p J' + o, for p,
0 constants.



175

J=a7l = Y2y + 08t (t), ¢ = B/a, (8
select a particular ¢ = ¢, such that4

o' = 1/max y2(t) = 1/y

' . | (9)

8" = 1/max g(t) = l/gf~

* * ' ,
How do the weights o , B ensure satisfaction of the constraint.

(6)? Suppose that the maximum deviation of income y from its desired
level of zero is

J_YL‘E);_XL <Y => |y*| o= YY‘ . (10)

Y

The control constraint (6) also implies

IG(E)-GI < 8 => lg.| = G, | (11)

G

and it is necessary, given the static income identity, that
G=¢Y, 0 <e<1l1. - (12)
Hence, from (8) through (12),

bt = /8 = (/v = e/, (13)

where to summarise

(14)

™

]
= jen

(o]

1

:
(o]

1
(]

=<

]

8

o

"
[:;

The parameter € defines the optimum size of the public sector
with respect to full employment income. It varies between the limits
0 < € <1, loosely from the invisible hand tobsocialism, and may be
termed the Hayek parameter. Although this parameter is predetermined

as a structural characteristic of the dynamic stabilisation problem,

Following a suggestion by Bryson & Ho [p.149].
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1-€ must be assumed large enough to validate the multiplier-accelerator
model. The parameter & may be labelled the Keynes parameter; it
specifies the maximum dynamic variation in public sector size for
stabilisation purposes. If the macro-adjustment process of an economy
with given Hayek parameter is either unstable, or unduly slow though
stable, or unduly cyclical“buthtable, the public sector must modify
the system response. The magnitude of the Keynes parameter indicates
the scope available . in a given economic system for such dynamic.
remedial action.

According to the Keynes parameter, the size of the public sector
is dynamically variable within the limits '

(1-8)G < G(t) < (1+8)G
<=> (15)
-6 ¢ 6-G < &G,
so that
lg(t)| < 8e¥ (16)
is the allowable range of variation in the dynamic control variable

~g(t). And from (10), the range of variation in the dynamic target.
variable y(t) is

lye)| < Y. (17)

Now from (5.23), the optimal target and instrument solutions, for an

infinite horizon, are

y (1) = y(0)e ™9t

(18)

I

* * 2 -1.4
1g (8) = -(6-s)y (t), 6 = (s"+p )*
Hence (16) is satisfied if, using (17) and (18),

lg ()] = (8-5) |y ()] < (8-s)¥¥ s 6e¥, (19)
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or if,
(52+¢‘1)% -s < Sg/y = ¢;% (20)
And a sufficient,condition for this is
ol = et | | (21)

From (18), the maximum income deviation is always the initijal
disequilibrium y(0). Given an estimate, therefore, of the. maximum
such target error, y, = max y(0), that the Phillips regulator is.
expected to face, the particular value ¢;; of the performahée,parameter
¢—1 specifies an upper bound to the .strength of control parameter.

For a\ll-cb"l satisfying (21), the explicit control constfaint_(é)'is
satisfied. This attempt to internalise the magnitude constraint
within the structure of the Phillips regulator therefore produces a
simple rule: the maximum value of the strength of control parameter
is equal to the square of the ratio of the product of the Keynes and

Hayek parameters to the maximum target error.

Since. the magnitude constraint refers to the absolute value of.
|g(t)| and since ¢_1 determines the ratio |g/y|, ¢;1 is larger, and
control easier, when disturbances generate relatively small target
errors. Similarly, the greater the. static and dynamic intrusion of
the public sector into economic activity, as expressed in the product
de, the greater is ¢;1. The Hayek parameter € will be determined by:
decisions based on the optimum allocation of resources and is therefore"
external to the stabilisation problem (excluding the problem of"
intergoal conflict). The Keynes parameter § is the essence of the
control constraint (6), (11). If a magnitude constraint is relevant
in. formulating the stabilisation problem for the Phillips model, the
factors determining § must be defined and substantiated. This will
not be attempted here. It may be noted that the size of § will
condition the efficacy of controllers irrespective of the design
technique, raising yet another empirical question: how binding are

such constraints on the strength with which control can be applied?

The simplicity of (21) for the Phillips regulator is lost in

higher-order models: performance parameters proliferate as target and
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instrument priorities are established. Extension of the principle

behind (9) is, however, immediate.
7.3 TERMINAL WEIGHTING OR FIXED ENDPOINTS?

Another aspect of the degrees of freedom associated with
specification of the stabilisation problem is the treatment of the
terminal target vector.  For example, chapter V identified a knockoff
syndrome in the behaviour of the naturally unstable Phillips regulator,
the target starting to diverge at some point near the finite horizon
T. Now there are two methods available for correcting this behaviour.
The first is terminal target weighting, Briefly.mentioned in chapter
V; the second is conversion to a fixed endpoint specification,
constraininguthevtargét‘to.achievenauspecific value at t=T. For a
finite horizon, a choice therefore arises between fixed endpoint
regulators and terminal weighting regulators. Observing that the
knockoff syndrome is merely an illustrative context for this- choice,
this present section uses the naturally unstable Phillips regulator to

define some of the dimensions of this choice problem.

'Fixed endpoint solutions for the Phillips regulator are identified
in section 5.3 above. Turning therefore.to terminal weighting, the

optimal free endpoint Phillips regulator problem, equation (5.12),

becomes
2 T 2 2
MIN W = %fy"(T) + %J [y"(t) + ¢g"(t)] dt, ¢, £>0, (22)
g(t) 0
subject to
Yy = -SWy + wg, y(0)=yo#0, y(T) free. (23)

Introducing the endpoint term into (5.27), the transversality condition

for this terminal weighting regulator is

[p(t) - fy(©)16y(8) = 0, =17, (24)

where (5.30) is a particular case (£=0) of (24). For a free endpoint,
(24) is satisfied by
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p(T) = £y(T), : (25)
and the corresponding Riccati boundary condition is thus
k(T) = £, (26)
Revising Appendix V (pp.268-9 below) to allow for £ > 0, w < 0,.

the Riccati solution for the naturally unstable Phillips regulator with
terminal weighting is =

C . 8-5_-2wB(T-t)

. O+s * ;

k(t) = { Y}k, w= |w|, > (27)

C + e—2w8 (T-t)
where
0-s+0 TwE . 1
C = ——m—, k = 1lim k(t) = ¢w ~(B+s),
-1 T

6+s-¢ “wf

) (28)

(52+¢-1)%.

D
1}

\

Three special cases of this Riccati solution are of interest,
% .
corresponding to f=0, f=k , and f=«». From (28),

,

f =0 => C=%i§-’
{f=%" = cta=o, (29)

\

so that these three cases are.

1 - e-2w6(T-t)

oo ) k*, (30)
/£=0 ] 4 Bts -2wB(T-t)
B-s°

K(E) g = K | (31)
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L, Bo5.-2wH(T-t)
O+s * :
k(t) e = 1 , Pk (32)
1 _.e-ZWG(T-t)

In each case, k(T)=f, as required by (26). - The bracketed terms of

(30) and (32) are approximately reciprocal, and it is readily shown
that

k(t)/f=0 < k("’)/f=k"‘ < k(t)/f=m" (33)

Since the Hamiltonian saddle point (*w0) is invariant with respect
to f, and since the terminal manifold may be written '

y(T) = p(T)/k(T) = £ 1p(T), (34)

Figure 7.2 follows from the naturally unstable portion of Figure 5.2
(p.126 above). Commencing with.f=0, increased endpoint weighting
rotates the terminal manifold (34) clockwise; from p(T)=0 for £=0,
to y(T)=0 for f=c, Now the ranking (33) holds for t=0 in particular,
so that initial phases are also shifted rightwards on the initial
manifold y=y(0). This rightward shift of initial and terminal
conditions therefore implies rightward shifts, as f increases, of any
trajectory corresponding to a given T. For the free endpoint zero
terminal weighting trajectory AB, an illustrative progression is shown
as CD; EF, ..., GH, corresponding to f values of grad_1 (y=0),

k*, eeey @ Thus the locus BDFH describes the endpoint behaviour of
a particular finite horizon sblution-of the Phillips ferminal weighting
regulator (w < 0) for increasing terminal weights f. As the endpoint
phase transcribes this locus, the Phillips regulator tends to discard
its free endpoint character and to acquire a fixed endpoint character.
In the limit, for f=«, the free endpoint and fixed endpoint solutions
coincide.. To illustrate, the optimal target solution for w < 0 and
f > 0 is, by analogy to (5.21),

(6-s+o " twe)e MOt 4 (6+s-¢_1wf)e-we(2T;t)

y(t) = y(0) {

. (35)

: (e—s+¢-1wf) + (e+s-¢-lwf)e'2weT
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y(t)

|
1
|
|
|
|
|
l

p(T) I f=co

(0,0) p*(0)|w<0 p(t)
p(T)lf=k*

Figure 7.2
Phillips Regulator with Terminal Weighting (w < 0)

Hence

lizmy(T) -0, (36)

as required by the trajectory GH of Figure 7.2.

Thus the free endpoint solution f=0 occurs at one.end of the
locus BDFH; the fixed endpoint solution, at the other. For a
significant part of the stabilisation horizon, the trajectories AB,
CD, EF, ..., GH are linear. The rightward shift due to increasing
terminal weighting therefore results in higher but approximately
constant levels of feedback. This constancy is destroyed by endpoint
adjustments to the locus BDFH. At the endpoint,
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either (i) p(T)=0, y(T)>0, |
or (ii) p(T)>0, y(T)>0, _ (37)
or (iii) p(T)>0, y(T)=0,

Since the target and costate never vanish simultaneously, full static
equilibrium is not attainable under either regulator specification -
fixed endpoint or free endpoint - with a finite horizon. The choice
of a particular terminal weight f, fe[0,»], is therefore a matter of

preference concerning the target-instrument tradeoffs.

Riécati terminal weighting, f=k*, acts, as does the infinite
horizon assumption, to filter out the positive eigenvalue by appropfiate,
adjustment df the initial costate p(0). The trajectory EF therefore
coincides with the asymptotic trajectory for the entire finite horizon
T; and may be interpreted as the balanced stabilisation path, both
target and instrument equilibrating at the same rate V te[0, T].

Now the cardinal difference between finite horizon and infinite horizon
regulators is thatvcontrollers for T < = are time-varying whereas
controllers for T = o« areAconstant, For this reason alone, the
asymptotic algorithm of chapter IT is considerably simpler than the
finite algorithm.  Given practical problems of di&ension and
computation, it is therefore tempting to argue that, even though the
stabilisation problem may best be conceived of as a finite horizon
problem, the simplicity ensuing from the asymptotic aésumption is too
valuable to relinquish. The balanced path EF suggests another
possibility. If, in the general regulator formulation, the terminal
weighting matrix is made identical to the asymptotic Riccati matrix,
finite horizon solutions will possess'constant;feedback controllers;
avoiding the disadvantage of time-varying controllers but refaining
the logic.of the finite horizon context. In this case, the free

endpoint regulator may be preferred to the fixed endpoint regulator.

It follows from (27) that

I8

. A
lim k(t) =k .
Toreo /£30 , (38)

By equation (5.14), g = + ¢"1wp, w = |w|, so that the costate
variable is a direct proxy for the instrument variable in the
single-target, single-instrument Phillips regulator.
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And using the limiting procedure of equation (2.56) for F#0, the
general asymptotic Riccati solution K can also readily be shown to be
independent of F, the terminal weighting matrix. That is, as the
stabilisation horizon is lengthened, terminal weighting becomes.
increasingly irrelevant; and is totally so for T = «, Taking £=0

to symbdlise the pure free endpoint regulator and f = = to symbolise
the fixed endpoint regulator, (38) argues that the endpoint assumption
itself becomes asymptotically irrelevant. This is a logical result
because the asymptotic trajectory achieves the desired equilibrium
position (0, 0); and this corresponds to the intersection of all free.
endpoint (£f20) and fixed endpoint manifolds,

Analysis of the degrees of freedom relating to endpoint
specification in the stabilisation problem does not permit a definitive
choice of formulation on a priori grounds. It does, however, clarify
the basis upon which a subjective choice can be made. In particular,
fixed endpoints are just one possibility in the spectrum of possible
endpoints under terminal weighting; while Riccati endpoint weighting
is the unique method for constructing time-invariant, finite horizon

controllers.
7.4 OPTIMAL CONTROLLERS WITH INTEGRAL FEEDBACK

An examination of the models of chapters V and VI establishes
that the optimal controllers so far considered utilise proportional and
first- and higher-order derivative feedbacks: there is a direct
matching of controller dynamics to system dynamics. Thus if the state
vector is of dimension 2, and consists of the target variable and its
rate of change, as in models II and III, the optimal controller will
comprise a proportional and a derivative feedback to match, Now one
of the prime weapons used by Phillips [1954] in designing dynamic-
stabilisation policy is integral feedback; yet the optimal models
just referred to make no use of this feedback type. They utilise
information on the current state of the system (proportional feedback),
and information on the future state through its current rate of change
(derivative feedback), but do not accumulate information on past. state

behaviour (integral feedback).

Why does this disparity exist between classical and optimal
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controllers? . Does the use .of the optimal regulator hypothesis imply,
because of this neglect, an unnecessary depletion of the weapons
available to the policy-maker? This section provides answers to these
questions. It will be shown that the issue turns both on the type of
disturbance that the regulator is designed to counter and on the

informational constraints placed on knowledge of these disturbances.

Under the equilibrium partition, the Phillips multiplier-accelerator
model

Y(t) = -swY(t) + wG(t) + wA, w#0, se(0,1), (39)

has been written

y = -swy + wg, y(0)=y #0, (40)

where

g(t) = G(t) - G, y(t) =Y(r) - Y, (41)

and where the static equilibrium pair (G, Y) is determined from

solution of
0 =-sY +G + A. (42)

Optimal stabilisation policies have -been designed for this model by
minimising a quadratic performance functional to which (40) is adjoined
as a dynamic equality constraint. The need for policy is assumed to
arise through a transient fluctuation in autonomous demand disturbing
the static equilibrium (42); the effect of this disturbance, subsequent
to its disappearance, being captured in.the initial condition y(0)#0.

The classical approach to stabilisation policy, as developed by.
Phillips [1954, 1957] and Allen [1960, 1968], introduces an additional
element into the policy problem.  Suppose that the autonomous demand
disturbance persists rather than disappears. In particular, suppose
that autonomous demand increases at time t=0 by an amount C, disturbing

an established equilibrium (42), and consider the design problem
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given by6

Y = -swy + wg + wC, y (0)=0. (43)

Noting that the classical approach invariably assumes. an infinite

horizon, the design objective is then posed as
y(t==) = 0, y(t=w) = 0 <=> Y(t==) = Y, (44)

Given the system dynamics (43) and the objectives (44), Phillips (1954]
shows that integral feedback is

(i) necessary and sufficient for the removal of any
persistent inflationary or deflationary gap; but

(ii) neither necessary nor necessarily sufficient to

modify the dynamic stability properties of a given system,

To illustrate (i), observe that if the policy-maker remains inert,
so that g(t) = 0 Vt > 0, the equilibrium solution of (43) for assumed
natural stability (w > 0) is

y(®) = C/s > 0. (45)

The continuing disturbance C causes an inflationary gap whose
magnitude is determined by the static multiplier result (45). Neither
proportional feedback, derivative feedback, nor higher order derivative

feedbacks can remove this gap; but if the integral feedback
rt
g(t) = - i I y(t) dT, 1i>0, (46)
0

is applied to (43), then
y(t) + swy(t) + wiy(t) = 0, (w > 0), 47)

which possesses the desired equilibrium, y(«) = 0.

6 Cf., for example, Allen [1960, pp.69-74].
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Integral feedback has not been required when designing optimal
policies for (40) because no constant disturbances appear in that
equation, Even if a constant step disturbance is observed, one
policy option is to offset the disturbance statically for as long as
it persists, and to simultaneously implement a dynamic policy to
counteract any disequilibrium dynamics following its appearance. In
this case, the system dynamics are

y = -swy + wg, y(0)#0,
(48)
g(t) = G(t) - G + C,

- This option is therefore consistent with equation (40), after
redefining g(t).

Whether ongoing disturbances are to be treated as a dynamic problem
(43) or a static problem (48) creates yet another choice problem, What
criteria exist for preferring one.approach to the other? A basic
distinction can be made between step disturbances that persist for a
long time, and those that are more.than transient but less than
permanent. The first represent an enduring shift in the underlying
static equilibrium while the second are closer to transient disturbances
of the given equilibrium. It can then be argued that static offsetting
is appropriate for the longer-run step disturbance and that integral

feedback is appropriate for the shorter-run disturbance.

This dichotemy is based on the expected‘frequéncy with which these
two types of disturbance occur. Thus the persistent demand disturbance
can be measured and offset through static policy; and since such
disturbances are likely to be infrequent, this measurement process need
not strain policy resources. On the other hand, the temporary demand
disturbance is likely to be of much greater frequency; and it is:
therefore desirable to obviate the need for measurement. And for this
purpose, the dynamic option of integral feedback is necessary. Thus,
as Phillips argues, [1954, p.297]:

'""Is it clear that with an integral stabilisation policy the
final equilibrium position, if it exists, will be one in which
the error is completely eliminated, since so long as even the
smallest error persists the cumulated error or time integral
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of the error must be continuously increasing, and with it
the magnitude of the correcting action, so that equilibrium
is possible only when the error is zero.'"

An integral policy (46) applied to (43), and evaluated at the
equilibrium (44), provides.

0
ge=) = - i |y ot = c. (49)
0
Policy is activated in.terms of the measurable target error y(t) and
not in terms of the disturbance C; and continues until this disturbance-
is completely offset.

If the practical utility of integral feedback for an economy
subject to numerous small step disturbances is accepted, the utility
of stabilisation policies designed with the regulator hypothesis must
be reconsidered. The technique is adequate for impulse disturbances
and for longrun demand shifts; its adequacy in response to step

disturbances is now investigated.

Define the variables x(t), v(t) such that.

x(t) = g(t)y +C, X =g =.v. (50)
Then the system dynamics (43) may be written

y = -swy +wx, y(0)=0,

(51)
X =v,
or
. % *
z=Az +bv,
J - 52
-sw W 0 y (52)
% *
i A = , b = , 2 =
0 0 1 X

In this state formulation, the control variable v(t) = g(t) is the
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of the error must be continuously increasing, and with it
the magnitude of the correcting action, so that equilibrium
is possible only when the error .is -zero."

An integral policy (46) applied to (43), and evaluated at the
equilibrium (44), provides.
o]
glt=w) = - i J y(t) dt = C. 49
0

Policy is activated in terms of the measurable target error y(t) and

not in terms of the disturbance C; and continues until this disturbance

is completely offset.

If the practical utility of integral feedback for an economy
subject to numerous small step disturbances is accepted, the utility
of stabilisation policies designed with the regulator hypothesis must
be reconsidered. The technique is adequate for impulse disturbances
and for longrun demand shifts; its adequacy in response to step

disturbances is now investigated.

Define the variables x(t), v(t) such that.

x(t) = g(t) +C, Xx=g=v. (50)
Then the system dynamics (43) may be written

y = -swy +wx, y(0)=0,

(51)
X =V,
or
¢ * *
z=Az+bv,
J - 52
-sw W 0 y (52)
* *
A = , b = , Z =
\
0 0 1 X

In this state formulation, the control variable v(t) = g(t) is the
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model. Thus if y = Ay + bx is in the canonical form of the scalar

policy model (3.34), the step disturbance state formulation becomes

y A y 0
----- = femmmemmee o Sl BN PR RV (56)
X 0 X 1
or
* * . .
z2=Az+byv, (57)
where, from (3.34),
O IN0-o- - 0 0
| N ! 0
| NN ONO
= | , b = . . (58
nxn 0 _ _ _SNo0N1 nxl 0 )
-2, . a1
Now (56) is dynamically controllable iff
% * % % x n *
P@) =plb Ab ... (A)] = s, (59)

*
where Q is the n+1lxn+l controllability matrix. But from (56), and

using the canonical structure (58),

] ] [} 1 | —I 1
1 ] 1 L} I ]
0! b i Ab i A% | LA 0f Q
. . : | | :
Q = | e b ——— bmmm——— Amm - ——— . = A e o
11 0 1 0 + 0 i | 0 | 0
1 1 ] ] 1 |
: (60)
where Q is the controllability matrix for y = Ay + bx. = Hence-
*
p(Q) = n+l iff p(Q =n, (61)

and p(Q) = n is guaranteed by (3.88). By a theorem of Lee & Markus
[p.90], every scalar controllable system y = Ay + bx can be written in
the canonical form (58). Hence, by_(@l), dynamic controllability with

respect to impulse disturbances is ‘necessary and sufficient for dynamic
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controllability with respect to step disturbances.

Thus the system (52) is dynamically controllable provided that
the first-order Phillips model is dynamically controllable; or
provided w#0. Returning to the optimisation problem (53), and
following, for example, the solution procedure of section 6.2, the

optimal controller v(t) is

v(t) = y'z(t), v = -¢ Rbx, o (62)
where
_ ko k1
R o= , (63)
kg k,

is the positive definite symmetric solution of

* T- _ * —b*b*T— *
(A)K‘\'KA - “6-—K+V =.0, (64)

From (62), the optimal controller is therefore
V(t) = -0 (kY + kyx), (65)

To express this controller independently of the unknown disturbance.

C, contained in x, use is made of the system dynamics (51), to give
-1,
X =w (y + swy). (66)
Thus (65) is
-1 -1, .
v(t) = - 9 {(k1+sk2)y + W k2y }. (67)

Substitution of (67) into (55) then provides:

t
g(t) = g(0) + gy(0) - aJ y(t)dt - By(t), (68)
0
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where

o = ¢‘1(k1+sk2), B = ¢ - (69)

Apart from the initial conditions, the optimal controller (68) fgr
the-Phillips step-regulator comprises constant proportional and integral
feedback from the target y(t). To the optimalrproportional=feedback;
of the Phillips impulse-regulator of chapter V is 'added an optimal. -
integral feedback specifically designed to counteract step disturbances.
Nor, as required, is there need to measure these disturbances: the
controller (68) is independent of C.

With the introduction of optimal integral feedback, the
correspondence between classical and optimal policies for the Phillips
multiplier-accelerator model is complete. Proportional, integral and -
derivative feedbacks may occur with either type of design procedure.
The tradeoff between static error removal and the incidence of
oscillations observed by Phillips to characterise integral feedback
will apply equally to the optimal controller (68). Thus there will
exist a functional relation between the Riccati coefficients kl, k2
demarcating damped oscillatory from exponentially damped responses;
the relation between cycles and policy being susceptible to the

analysis conducted in. chapter VI.

Whether or not integral feedback actually occurs in optimal
controllers depends therefore on two factors: firstly, whether step
disturbances do or do not occur; and secondly, whether step
disturbances, if occurring, are treated as a static or dynamic design
problem. Although freedom exists with respect to this design choice,
this section argues that integral feedback, by avoiding the need for
explicit measurement, is preferable when shortrun step disturbances

perturb the system with any frequency.
7.5 CONCLUSIONS

Selection of a particular configuration of the degrees of freedom
in regulator specifications of the stabilisation problem must therefore
be accompanied by an analysis and appreciation of the costs of that
choice. This is clearly stated by Zadeh [p.59]:
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""One of the most serious wcaknesses of the current theories

of optimal control is that they are predicatedon the assumption
that the performance of a system [S] can be measured by a single
number ... The trouble with this concept of optimality is that,
in general, there is more than one consideration that enters
into the assessment of performance of S and in most cases

these considerations cannot be subsumed under a single scalar-
valued criterion, In such cases, a system S may be superior

to a system S' in some respects and inferior to S' in others,
and the class of systems is not completely ordered."

Zadeh suggests a two-stage design process: (i) determine the set of

noninferior systems, and (ii) select one system from this set according
to explicit, if subjective, criteria. Alternatively, Waltz proposes
an hierarchical procedure in which a primary criterion is optimised;

a secondary criterion then being optimised to compromise the primary.

objective within prescribed tolerances; and so on sequentially.

But ‘whether the scalar-valued approach, the vector-valued approach,
or the hierarchical approach is'used, the problem remains of adequately
specifying all relevant objectives, their priorities, and the
sensitivity of design to changes.in these priorities. Research in-
two directions will contribute to understanding of these issues.
Empirically, the. increasing use of econometric models for analysis of
dynamic control will generate a sharper definition of objectives and
of the opportunity costs of alternative specifications. Theoretically,
an attempt should be made to embed as many of the degrees of freedom
as possible within a general specification of the control problem so
that the effects of alternative>choiges may also be assessed
theoretically. = The optimal regulator model offers no simple panacea
for the practical design of stabilisation policy until these

specification problems are resolved.



CHAPTER VIII

CONCLUSIONS

This final chapter presents the major conclusions.of the thesis

together with appropriate qualifications and possible extensiens.

Once the Keynesian premise of governmént intervention for purposes.
of economic stabilisation is accepted dynamically as well as statically,
conditions for which dynamic intervention is effective must be defined.
Attention then shifts from the natural stability properties of an
economic system to its controlled stability properties - or to
controllability., - Controllability is shown to unify the analysis of
policy existence. Statically, the fundamental existence proposition
is Tinbergen's rule that there exist as many independent static
instruments as there are independent static targets. This thesis
provides a companion rule for dynamic existence: either there exist as
many independent dynamic instruments as there are independent dynamic.
targets; or there exist fewer dynamic instruments than dynamic targets,
each instrument being independent of all other instruments and all
targets in a fashion defined precisely in theorem 4.4. Dynamic
existence need no longer be treated in an intuitive ad hoc manner, but
should be tested for in all policy models as an indispensable preliminary

to policy design.

That the static and dynamic problems of existence are distinct
problems is stressed. Static controllability determines the equilibrium
position to which the controlled economic system tends to settle in the
absence of disturbances; dynamic controllability specifies the policy
ability to regulate the economic system to this particular equilibrium
in the presence of disturbances. This distinction is important,when
considering the implications of reduced stabilisation, a policy option
arising if the minimal number of dynamic instruments necessary and
sufficient for stabilisation is less than the actual number of:
instruments available. Surprisingly, if an economic system is

dynamically controllable, it will generally be reducibly controllable
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with just one instrument, provided a certain structural condition -
the Jordan chain condition - is satisfied. If the separate functions
of static and dynamic controllability are not recognised, the ability
to stabilise the system dynamically with a single instrument appears
to contradict the necessity of using many instruments to stabilise it
statically. The processes of static and dynamic stabilisation occur
simultaneously; to use just one instrument for dynamic stabilisation
means not that Tinbergen's static rule is irrelevant but -that only one
of these necessary static instruments need.vary dynamically, thus

simplifying the complexity of the dynamic design problem.

This static-dynamic dichotomy is also important at the design
level. Dynamically, the optimal regulator hypothesis is used to design
policy to stabilise the system around the preferred static equilibrium;
with the optimal controllers thereby constructed belonging to the class
of either automatic or discretionary stabilisers, as discussed, for
example, by Pack. Little is said in the thesis concerning the
determination of the optimal static equilibrium, beyond noting that the
flexible targets approach'is a device to select an attainable static
equilibrium in the absenée of static controllability. Yet this approach
is not the only manifestation of the optimality concept in the static
literature: d second variant extends-the preference ordering to the
static instruments, thus assigning them target status. For example,
Holt presents an optimal Keynesian multiplier modél in which the target
level of the instrument, government expenditure, is defined [p.23] "by
the need for governmental services not considering the requirements of
economic stabilization and growth'. Static optimisation in this case
refers to the tradeoff between the allocation and stabilisation goals,
the type of intergoal conflict resolved by Musgrave in terms of his
multiple budgets theory. Although, in examining the dynamic problems
of existence and design, the thesis assumes that these static problems
are settled, these points emphasise that both controllability and

optimality serve different functions statically and dynamically.

Dynamic controllability is analysed in this thesis in the context
of a linear dynamic model of a nongrowing economy. An immediate avenue
for further research is the role of controllability in cyclical growth
models, as presented for example by Phillips [1961] and Bergstrom.

Nonlinear dynamics, when occurring in these models, will confine
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controllability to a local rather than global relevance. The
controllability criteria presented also ignore. the effects of possible
control constraints; investigation of these represents another
theoretical extension. In practice, it will be necessary to develop

a theory of stochastic controllability applicable to econometric control
models. The concept of reduction must also be investigated further.
To rationalise the choice of a reduced system, a measure of the degree
of controllability possessed by a given system seems useful. Kalman;
Ho & Narendra explore this problem in terms of the minimum control
energy necessary to send a given state to zero; while Kalman

[1969, p.39] suggests, for linear constant systems, the absolufe values:
of the nxn determinants of the controllability matrix. Development of
these ideas may ultimately provide policy-makers with guide-lines for

selecting the best mix to comprise a minimal set of dynamic instruments.

Resolution of the dynamic existence problem allows full attention
to focus on the design problem. Two approaches to the design of
dynamic stabilisation policy are recognised: classical and optimal.
The optimal approach is ostensibly a powerful generalisation of the
classical approach; yet examination of the first major analysis of
optimal stabilisation policy implies that the technique is still-born -
for according to Fox, Sengupta & Thorbecke, optimal policies are
destabilising. It is shown that the relevant contribution to the
theory of optimal design is not this impossibility theorem but a
sensitivity theorem stating that suboptimal policies are destabilising.
Implementation requires precision, but optimal policies may certainly

be designedl.

Turning to theoretical investigation of the properties of optimal
stabilisation policies, optimal design with a lagged instrument is
considered specifically. The concept of policy lag, as defined by
Phillips, appears ambiguous. In reconciliation, it is argued that the
distinction between potential and actual policy demands is a distinction
between unobservable and observable variables, serving to identify the

effect of inside lag. The nature of the lagged design problem is then

1 The history of the paradox is perplexing: Sengupta, in a subsequent

paper, accepts that optimal design is possible but without reference
to, or renunciation of, the paradox.



196

developed. Although inside lag is not destabilising, it tends to
induce cycles the more closely it matches in length the outside lag
and the more.strongly policy is applied. To inhibit these cycles,
the target derivative is weighted in the performance functional, and
it is demonstrated that choice of the weighting parameter greater than
the length of the outside lag is sufficient to prevent cyclical
fluctuations,

These conclusions are specific to the model employed and cannot
be generalised. But the primary importance of this simplified analysis
derives from the understanding gained of the structure of the optimal
controller. When compared with a classical controller, the two
controllers are seen to possess a common structure involving
proportional and derivative feedbacks. And from the analysis of
target derivative weighting, one of the roles of derivative feedback
in the optimal controller is to dampen oscillations, a prime function
of derivative feedback in classical stabilisation policies. Classical
controllers also usually contain integral feedback but this is not so
for the customary optimal controller. Again, the two design approaches
may be reconciled after recognising that optimal policy is optimal not
only with respect to a given criterion but also with respect to a given
class of disturbances. Optimal controllers are commonly designed to
counter impulse disturbances whereas classical controllers are
traditionally designed to counter step disturbances. By including
step disturbances in the formulation of the optimal design problem,

integral feedback is shown to occur naturally in the optimal controller.

Appearance of integral feedback in any controller, classical or
optimal, reflects a prior decision about the appropriate treatment of
step disturbances. These may be treated as either a static or a
dynamic problem. If treated statically, these disturbances must be
measured exactly and offset in full by an opposite movement in static
instruments; if treated dynamically, these disturbances need not be
measured but are ultimately offset in full, The choice between the
two approaches rests, therefore, on the tradeoff between deéign
complexity and informational requirements. The static procedure is
simpler to design but requires precise disturbance measurement; the
dynamic procedure is more complicated to design but avoids .the need

for measurement. Where step disturbances occur with any frequency,
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the use of integral feedback appears preferable.

Mundell's principle of effective market classification [chap. 14]
also utilises integral feedback (although not explicitly identified as
such) to compensate for measurement difficulties. Mundell proposes
that even though a system is statically controllable, the static
structure may be incompletely known, precluding policy design by direct
inversion, By specifying the rate of change of the instrument vector
as a linear function of the leVel of the target deviation vector (that
is, an integral feedback policy), where the linear relation is chosen
so that the policy solution is stable and uses only known structural
information, equilibrium can only be achieved if the target deviation
is .zero, as desired. This principle of effective market classification
is a dynamic procedure for solving a static design problem; and
therefore differs from the classical and optimal techniques which refer

to the problem of dynamic design.

Thus it is demonstrated that classical and optimal stabilisation,
as design methods, are fully reconciled; for an illustrative low order
model, qualitatively similar controllers will be designed under each
method. Optimal stabilisation is, however, more general than classical
stabilisation which employs only proportional,; integral, and derivative
feedbacks. In the general regulator model, feedback is a function of
state so that, depending on the state definition, any order of derivative
feedback may occur in optimal controllers, The price of this generality,
of matching control dynamics precisely to system dynamics, is that the
state is internal to the system and generally unobservéble. To institute
feedback as a function of state, it is therefore necessary to observe or
reconstruct the state from knowledge of the system and of the observable
inputs and outputs. Kalman's Principle of Duality - Kalman [1961], Sage
[chap. 11] - reveals that this problem of state observation is the
mathematical dual of the problem of policy optimisation. Practical
application of optimal design techniques will require explicit

consideration of state reconstruction.

As a generalisation of classical design, optimal design makes
explicit both the -design criteria and their relative importance. Since
optimality is defined expressly with respect to a given criterion, the

onus rests with the analyst to ensure not only that all desired policy
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objectives are adequately incorporated in the criterion but also that

no concealed objectives are included. - This problem of appropriately
specifying and balancing objectives is the problem of degrees of

freedom in performance specification; and considerable work remains

to be done in defining policy options in this respect. Further insight.
may be gained by analysing optimal design as a frequency domain as well
as time domain problem, along the lines suggested by Kalman [1964] and
Brockett.

Dimensionality is an aspect of dynamic policy design that has not
received sufficient attention in the theory of economic policy:.  This
thesis therefore presents a preliminary exploration of computational
problems associated with optimal stabilisation. Separate routines
are derived for the finite horizon and iﬁfinite horizon regulator models.
The preliminary nature of this work is stressed; extensions are
necessary in at least three directions. Firstly, a particular
computational approach is adopted without attempting to justify it as
the best approach. The procedure therefore needs to be related to the
family of available procedures - considered, for example, by Bryson §

Ho [chap. 7] and Falb [pp. 142-60] - and evaluated comparatively,
Secondly, the procedure needs to be applied to stabilisation models that
are essentially numerical without being unduly complex; in this way,

an appreciation of applied problems can be obtained and the effects of
increasing dimensional compléxity can be assessed., Thirdly, the
computational effects of introducing constraints on the state and control
spaces need to be considered concurrently with their theoretical
introduction. The problem of computation in implementing dynamic

stabilisation policy is involved, substantial, and unavoidable.

Looking at dimensionality from a theoretical viewpoint, Peacock
& Shaw [p.141] have emphasised the inadequacy of scalar policy models
for investigation of what is realistically a multi-dimensional design
problem. This criticism is supported in this thesis with respect to
both existence and design. The scalar policy model, traditionally
used for analyses of dynamic stabjlisation, suppresses concern for
existence, and also precludes the possibility of reduction, a multi-
dimensional_option. So far as design is concerned, the simplest case
of the scaiér policy model, the first-order model, is deficient in

several respects: the range of possible dynamic behaviour is limited by
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the real saddle point requirement, thus inhibiting the problem of
hyperstability; the precision loss problem, caused by comparison of
nxn matrix blocks, cannot occur because n = 1; and there is no problem
of establishing relative target and instrument tradeoffs. For these
reasons alone, the effects of dimension must be carefully studied when
attempting to generalise theoretical results obtained from low-order
models.

Two extensions of the optimality concept in a multi-dimensional -
framework appear to have particular significance for econoqic policy:
control by aggregation and hierarchical control. Aoki has proposed
that large-scale dynamic systems be controlled by aggregating their
relations according to certain criteria, and considering the optimal
design problem for the aggregated system of reduced state dimension.
Aggregated control has clear economic relevance and, since Aoki
explicitly uses the aggregation concept developed by economists,
incentive exists for pursuing this topic further., Recently, Mesarovic -
et al have developed the notion of hierarchical optimal control. The:
economic significance of hierarchical control has already been
established by Tinbergen's analysis [1954] of centralised and
decentralised policy-making; and is confirmed by such topical issues
as coordination of Federal-State policy-making and policy harmonisation
in customs unions. Integration of the mathematical and economic

theory is therefore a natural progression.

To conclude, controllability and optimality, the conceptual
expressions for existence and design used to structure this thesis, are
united in a basic manner by Kalman [1969, p.49] who states that

"The possibility of constructing an arbitrarily good control

law is limited only by the controllability properties of the

plant."

In other words, the deeper significance of controllability is that ‘it
is not necessary that the economic system be naturally well-behaved;
optimal behaviour ¢an be induced artificially by feedback, provided the
controllable model is an accurate representation of the real economic
system. fet for economists, if not for engineers, the proviso of
accurate sygtem médelling is a serious constraint. Phillips

[1968, p.164] strongly emphasises that the economic control problem

is a problem of simultaneous estimation and control, or of adaptive
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control; but, according to Kalman [1969, p.51],

"The theory of adaptive systems is much talked about, but

very little has been accomplished."

This, then, is the challenge for economists. On the one hand,
the magnificent promise of arbitrary adjustment of economic systems
to promote stability, locally if not globally; on the other hand,
the sobering prospect of accurate system estimation .as a precondition.
Whether this promise will be realised is presently one of the

imponderables; but it is yet too soon for pessimism.



APPENDIX Ila

“AN OPTIMAL BERGSTROM REGULATOR

Bergstrom presents. [pp.35-8] a Keynesian model of the goods:
market in an open economy, characterised by dynamic adjustment
mechanisms on both the demand side and the supply side. Using

the definitions .

* .
C = (1-s)(Y-T) + A, 0<s <1, A constant, (a.l)
E=C+1I+G+X, (a.2)
P=Y + M, (a.3)

%*
where C , E, and P denote desired consumption, aggregate demand, and

aggregate supply respectively, Bergstrom's model is

C = 'D%[ ¢, a>0, D= d/dt:, (a.4)
I= %—\7 vDY, v,y > 0, | | (a.5)
DY =.p(s*"-5) - ADS‘, WA >0, (a.6)
DS = P - E, (a.7)
S* = eE + F, e > 0, F constant, ) (a.8)
M=mE, 0<m<1, (a.9)
T=%kYy-B, 0<k<1, B>0, (a.10)
X constant, : (a.11)

G to be specified. (a.12)



The variables

aggregate

e i
- -

*

1
=

- N 2 < X O +=H O
i

=

of the model are:

consumption

investment

government expenditure
exports

domestic supply
imports t

inventories

desired inventories
taxation.
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For the economics of this specification, see Bergstrom [chap. 3].

Equations. (a.1) to (a.12) yield the dynamic reduced form

2(t) = AZ(t) +

]

where

b = ovr
T
-1

bG(t) +d,  2(0)=Z,

0 oW 0
y(ve-1)  -yvA  -yvu
T -A -u
-m) -(1-m) 1 0
= — D
0 (1-s)B+oA
, d = yvrX+YvuF
rX+uF
-m) -(1-m)X

L]

Z(t) =

— —

(a.13)

(1-s) (1-k),
A(1-m)+pe,

C(t)
I(t)
Y(t)
S(t)

(a.14)

Hence there are four state variables and one control variable.

Associated with (a.13) is a desired static equilibrium

0=AZ + bG + d,

determined by principles considered in chapter III below.

(a.15)

Subtraction
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of (a.15) from (a.13) provides the dynamic disequilibrium system

2(t) = Az(t) + bg(t), 2(0)=ZO#0, (a.16)
where
C(t)-C = c(?S_W
C2(t) = 2(t) - 2 = I(t)-? = i(t) )
| Y(£)-Y = y(t) | (a.17)
) S(t)-5 = s(t)
g(t) = G(t) - G..

A regulator formulation to illustrate computational problems may
be obtained by specifying a criterion functional for the dynamic
system (a.16). Thus, taking the traditional targets of internal and

external balance, and assuming Y in (a.17) is full employment income,

y =0,
(a.18)
B=X-M=0<=>b=M-M=m(c+ti+tg) = 0,
are used as dynamic stabilisation objectives. Incorporating these
objectives in a quadratic criterion functional then gives
T 2. 2 2
W= [ [y“(t) + ob"(t) + ¢g"(t)] dt, © >0, ¢ > O, (a.19)
0

where 0 and ¢ weight the costs of external target deviation and dynamic

control relative to each other and to the internal target,

Using the expression for b in (a.18), and recasting (a.l9) as a
quadratic form in the state vector z(t), an optimal Bergstrom

regulator is given by:
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( T 1 T 2

MINW =4 J [z (t)Vz(t)+2k z(t)g(t)+mg“ (t) ]dt
g(t) 0 T

+ %2 (T)Fz(T)

) subject to

z = Az + bg, z(0)=z0#.0, z(T) free, (a.20)

| T fixed, g(t), t e [0, T], unconstrained,

where
sz em2 0 0 (— 6m2
] 2 2 : 2
V = fm Bm 0 0 , K = 6m ,
0 1 0
0 0- 0
2
i MT=¢ + O6m, (a.2l)
fl 0 0 0
F o= 0 f2 0 0
. 0 0 f3 0
0 0 0 f4

The parameters fi 2 0 of the terminal weighting matrix F are terminal

weights on the state variables Zi(T)‘

Chapter II uses this Bergstrom regulator to demonstrate certain
problems occurring in the development of a general computational .
algorithm for the regulator. Although no numerical applications to
linear optimal stabilisation are presented in this thesis, the
Bergstrom regulator is indicative of a numerical approach. .The
conceptual problems of the regulator specification are amplified in.

subsequent chapters.



APPENDIX IIb

SUPPORTING PROOFS FOR COMPUTATIONAL ALGORITHM

The proofs of Lemma 2,1 and Theorem 2.1 are reproduced from Zadeh
& Desoer [pp.302-5]. Theorem 2.2 is not used in the final computational

algorithm and its proof is therefore omitted.
Lemma 2.1

Since B(s) is the adjoint of [sI - H] and d(s) = |sI - H|, the
(i,k)-element of [sI - H]_1 is M, (s)/d(s), where M , (s) is the
cofactor of the (k,i) element of [sI - H]. Therefore, Mkigs) is of
degree 2n-1 at most in s. ;f Bj+1 is the matrix whose (i,k) element
is the coefficient of ™ +7in M(s), 3 =0,1, ..., 2n-1, then the

lemma follows.

LR

The proof of Theorem 2.1 requires the following corollary.

Corollarz
2n .
rdzn—l = - §=1H11 = tr B(S)IS=O, (b.1)

where Hii is the cofactor of element hii of H.

Eroof

Equation (2.14) implies

. d . d
lim 3= {d(s)} = d, , = lim a§‘|51 - HJ. (b.2)
s>0 s>0

By differentiation of the determinant and evaluation of the

limit,

d = - L H... (b.3)
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But from (2.15),

n = tr B(s)|S=0 = tr B

B(s)ls:O = B, (b.4)

2n’

Now B2n(1,k) is the matrix of cofactors of Mki(s)|s=0 or of
-H. Hence

tr B(0)

]
t
L]
o

1]

1

[ae}
X

n
[aW)

(b.5)

from (b.3).

Theorem 2.1
From (2.13),
d(s)I = B(s) [sI - H], (b.6)
or, from (2.14) and (2.15),

[52n+d s2n-1+

1 “"+d2n—15+d2n]1

_ 2n, __2n-1 2n-2
=s Bl+s [BZ—BIH]+5 [BS—BZH]+ .

+s[B, H]-B,,_H. (b.7)

n Bon-1

Equating matrix coefficients in (b.7):

lo~]
1]
=~}
jant
+
o
-
-

B ., =BH+d]I (b.8)
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This result establishes the first set of (2.16).

The scalar coefficients dj remain to be determined. Let ¢ be

an arbitrary complex number, Then
d(s+o) = |(s+0)I - H|, (b.9)
with Taylor expansion

d(s+0) = d(0) + sd' (o) + -s-za"(e) RS a6y, ®.10)
= ( 21 909 m)l A .

Since
. d
l;m a;_{d(s+o)} = d'(0) = dpr 1o (b.11)
s+0 :
then
d'(0) = tr B(o) <=> d'(s) = tr B(s), (b.12)

by change of variable, and given the corollary above. Evaluating
(b.12) from (2.14) and (2.15) provides.

Zﬁ k-1 2n-1

§=okd2n_ks = trs B1+"'+SBZn—1+B2n]’ do =1, (b.13)
Equating scalar coefficients:

tr B1 = 2n

tr B, = (2n=1)d1

tr Bk+1 = (2n-k)dk (b.14)

tr B2n = 0,

And from the trace of the matrix equations (b,8),
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tr B .2n

tr B

2 tr BlH.+ 2nd1

tr Bk+1 = tr BkH‘+ 2ndk (b.15)

0 =1tr B, H+ 2nd
n

2 2n’

The second set of (2.16) follows from solution of (b.14) and (b.15),
using Bi = I from (b,8).

Theorem 2.3

To establish that W of (2.49) is simplectic, O'Donnell (i)
exhibits the structure of W—l'implied by the Hamiltonian saddle point
and (ii) demonstrates that W satisfies definition 2.2.

(i) Suppose that -\, A are eigenvalues of the Hamiltonian matrix
H with right eigenvectors o, B. Then

HE = AB => JH'JB = AB, by (2.33),
so that

HJR = -AJB => (@R)TH = -A(R) . (b.16)
And

Ho = -Ac => JHTJa = -)\0,
so that

HJa = Mo => (Ja) H = A(@a) ™. (b.17)

Hence (b.16) and (b.17) imply that JB and Jo are left eigenvectors
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corresponding to -A, A.

In order that the left eigenvector matrix be the inverse of the
right eigenvector matrix, biorthogonal normalisation is necessary.
Now

ue)Ta = 1, (o)'B =1 (b.18)

are, given (2.33), inconsistent, But by (b.16), (-JB) is also a left
eigenvector of H corresponding to -A, permitting

T =1, @oT=1 (b.19)

as consistent normalising relations. Hence the right eigenvector

matrix W associated with H has the structure

(b.20)

1" O‘n] 2nxn °’

Wy = [8) . B]

n° 2nxn’

and the normalised left eigenvector matrix W_1 has the structure

-1 T
W= [-JW, oI, ]
(b.21)
- o T
-.[—JB1 cee JBn ; Jal ce Jan] .
(ii) From (b.21) and the definition of J,
Wig
-1 - T 2
W~ = [—JW2 ! JWl] = |emmmmo- . (b.22)
T .
__WIJ
But
0 i -1 ' g |
T [}
IW'JT = |------ IR | U J = |--eme- . (b.23)
! T T
Iioo || W WyJ
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Hence from (b.22), (b.23),

SaWty = ol (b.24)

and W is simplectic by (2.47). Performing the indicated multiplication
of the lefthand side of (b.24) yields equation (2.49) for W1 in terms
of transposed partitions of W.

Equation (2.82)

Using the Laplace transform methed (cf. (2.12) and lemma 2.1)
to evaluate E(t), '

[sI + 'X]'1 0

.. -1 | [sI + 2]_l
[s1-8717" = . (.25)

[sI - x]'1

| 0 [sI - Z]-l .

Because of the block diagonality of (b.25), E(t) is then given by

Ll sTax] 0
' 1 v -1 t»cv-'l[sI+Z]_1
E(t) =L [sI-A]77 = 1 -1 s
L [s1-X]
0 L1s1-2771
(b.26)
where«C_1 is the inverse Laplace transform operator.
Since *I are, by (2.59), scalar diagonal matrices,
J:-l[sI + Z]-l = eiZt (b.27)

directly. Now, using (2.66),
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}. s+cr1 iwl 0
A
1 lwl 5;01
.C’l[sI_ ¥ )(]'1 =eC-l ‘ s
S+0 )
. ‘ (b.28)
] 0 B, |rw, s¥o
L AJ = (s + cj)2 + wjz, j=1, ..., ¢

The second part of equation (2.82) follows after evaluation of the

inverse Laplace transform in (b.28).
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CODING FOR COMPUTATIONAL ALGORITHMS

Table II.1 depicts the basic structure of the computational
programs derived from chapter II. Finite horizon regulator solutions
are obtained using the sequence MAIN, [1], [2], [3], [4A], and [5],
together with dependent subroutines. Infinite horizon regulator

solutions use the same sequence with [4A] replaced by [4B].

Routines belonging to columns A and B are either program control
or input/output routines, and are therefore specified with maximum
dimensions. Routines belonging to columns C to E are task-oriented
and are written with variable dimensions, the exceptions being the
output routines @UTPUT, RPUT, TEST, ATEST. Column E contains routines
performing standard tasks of matrix manipulation required at various

points.,

Coding for the finite horizon program is given on pp. 214-41 below,
with the maximum dimensions and input/output routines appropriate for
the Bergstrom regulator of Appendix IIa. Output for a single rum is
attached on pp. 242-9. The subroutine GRAPH, written to handle large
quantities of output graphically; is model-dependent and not included
here.  Also not shown are the double precision IBM library subroutines,
DPRQD and MINV.

Member routines of [4B], necessary for the infinite horizon program,
and not appearing already in column D, are shown on pp. 250-4 below.
Output for a single run, with the same system configuration as the finite

horizon run, follows on pp. 255-60.



TABLE II.1

STRUCTURE OF REGULATOR PROGRAMS

213

— [1J—PARAMS

—{ 2}—AFORM

+—[3]-PASS

MAIN

—{5]~GRAPH

L [4B]-PASS2

—[4A]—PASS2———

e AT@PTIC

EIGVAL

FINITE

CHAREQ
ROPTS
EIGSRT
RPUT

— VECGET
L-EIGVEC
FEEDC@
-@UTPUT
TEST
PARTP
RICC@N
TRANEX
TIMATS

CASRAG
L—STAC(DN

— VECGET
EIGVEC
FEEDCY
@UTPUT
ATEST

PARASP
C@ST .
EXMAT
STATE

. STEER

MATEQO
VMULT
TRACE
MSAVE
MULTM

MATADD
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APPENDIX III

PROOF OF THEOREM 3.4

The proof of theorem 3.4 follows a proof given by Ogata [pp.385-7],
simplified by the assumption that the structural matrix A has n distinct
eigenvalues. For supplementary material, see also Kalman, Ho &
Narendra, Athans & Falb [pp.200-20], and Zadeh § Desoer [pp.495-514].

It is necessary to demonstrate that a solution u(t) exists
satisfying equation (3.45): 1i.e.

x(0) = - JTe—ATBu(T)dT? (1)
0 |
Now
AT 2'1ai(T)Ai, @
i=0
where
— e —— -1 —
0 (1) N Tt 6*1T~1
° = | . : . (3)
o, (D) 1o A2 Lot o

The reasoning leading to (2) encompasses two concepts: (i) that a.
convergent infinite matrix series (such as the matrix exponential) of
an nxn matrix A with distinct eigenvalues can be expressed as a
polynomial in A of degree n-1; and (ii) that this polynomial can be
given a unique representation by means of the Sylvester-Lagrange.
interpolation formula. See Ogata [pp.257-60, 317] and Zadeh & Desoer
[pp.607-9],

The result (2) is used to convert (1) into a set of algebraic
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‘equations, to which theorem 3.1 is applied to define necessary and

sufficient conditions for existence. Thus

n-1 (T .
x(0) = - J ui(T)Alau(r)dT, (4)
i=0o /0 ~ .
But
| Lo I x
u(t) = 0. . = I u,(te,, | (5

1|ty | 3= ?
where sj is the jth column of the unit matrix.

Therefore (4) becomes -

n .
x(0) = - {ai(T)uj(T)dT} AlBj, (6)
i

where Bj = Bej is the jth column of B,

To simplify the algebraic expression (6), define the scalar time

functions
T
Bij = - Joai(T)uj(T)dTa - 7
n-1 i k.
. x(0) =3 A' {Z 8, B} (8)
i=o  j=1 1)

The bracketed expression in (8) is

BiL
k Bio | _
g_ Biij = [B; B, ... B,] . = B.B,. (9)
j=1

Bix
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n-1 . :
. _ 1 - n-1_
oo X(0) = § A BBi = BBo + ABB1 + ... A Banl
i=0
B ]
Bo
- [BAB ... AMlg] | , (10)
Bn-l'
Or
QB = x(0), (nxnk.nkxl = .nx1), (1

where Q is the controllability matrix (3.46), and B is the,nkkl vector
on the right of (10).

Hence a transfer between x(0)#0 and x(T)=0 is possible iff the
linear algebraic system (11) possesses a solution vector B. And. from
theorem 3.1, a necessary and sufficient condition for this - is that Q.

possess row rank (n), as stated in (3.47).



APPENDIX IV

PROOF OF THEOREM 4.4

Commencing from equation (4.50), postulate the smooth controller

u(t) = FT(t)y, (kxn.nx1),
such thati

plx(0) = - {EF(t)FT(t)dt}Y,
where

F(t) = v ls(-t)B, B = plp

(1)

(2)

(3)

Then necessary and sufficient conditions for which the integral term

in. (2) is nonsingular are necessary and sufficient conditions for

dynamic controllability of x = Ax + Bu.

Now

T
n

8 3

F(OF () = | .

where from (3) and (4.48), (4.51):

(4)
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-1 ~
Sn.,len'.l ni'l TOWS .
-Ait 17 “A.t |mmemEeeee e R aeea
F =e “S "B =e * :
n n. n
i ii
-1 ~
xB n..r. rows
LVRE PR (P i°71
i=1, ..., s. k columns (5)

Consider a particular case of Fﬁ in (5), corresponding to the group
of Jordan blocks: :

- 1
]
Ai 1 E 0
i (. ! ﬂ
0 Ai: Jl: 0
————————— o o o o - ik ekttt |
| ! o
7 = 1A 1 - b, ,
n. i ! (R R
1 i 0 At :J
R - 0 173
! | —
]
0 :| >‘1
| (6)
where
n, = 5, T, = 3, p; = 2,
(7)

Then for k =.2, (5) becomes
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N\ f 3
11 12
~ ~ » 2 TOWS
L0 1 JUby by
___________ e e |4
At 1 -t bgy by L
F _ = e A ~ 2 TOWS (8)
ni~5 L 0 1 J L b41 b42 J
[ 1 ] L bs; Py 1 row
)
2 columns
Hence,
A i ~N N
1108 Gy (E) I 815 () by 185 (8 By 2 By
~ ~ ey I‘ ~ ll\
L] [}
b )2 8128 bzzf S35(t) by, ibsz
V) S S R
FSFT =g 1 S51(t) 85,(1)
5
byr Py (9)
b51 b52
éij(t) = bij - tb(i+1)jo
Consider the rixk matrix
b21 b22
By = by Py , (10)
b51 b52
— — 3x2
+Ait
formed from the last rows of each partition of e 'Fn in (5), for

~ i
the particular case (8). Since B = P_lB, and p(B) = k, ri-k rows of

Bi can be written as linear combinations of the remaining k rows. But

Ei occurs in the product Fn FE , as in (9), which must therefore contain
i1
ri—k linearly dependent rows; unless
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p(B,) = T . -(11)
Condition (11) is therefore necessary for nonsingularity of the product
(4) and (9). It is also sufficient: if, in (9), the constant elements
°anij(t) vanish, satisfaction of (11) ensures that rows containing the .

termsxéij(t) are linearly indépendent.,

Regarding (4), if (11) is not satisfied for some i, the nixn matrix

| e . . \ ——— s ) ‘
FT H { F FT , n =.2 n,, (12)
n. n, ; 9 i n. n R 1
i1, { 1 s i=1
1 1
must contain linearly dependent rows. Hence
p(ﬁi) =r, i=1,...,5s, sgn, (13)

’ a¥e necessary and sufficient conditions, for nonsingulafity of
JOF(t)FT(t)dt in (2), and therefore for dynamic controllability.



APPENDIX 'V

RICCATI AND TARGET SOLUTIONS FOR PHILLIPS REGULATOR

From Murphy [p.229,(60)], if
k = azk2 +ak+a, - (1)
o

then

k - k; = (k-k,) Cexp {az(kl-kz)t} (2)
where kl,‘k2 are the distinct roots. of the duadratic-

a2k2 +ak+a =0. (3)
Apply the boundary condition k(T)=0 to obtain

C = (kl/kz)exp - {a2(k1—k2)T}° 4
Solving (2) for k, and using (4);

kl—klexp{-az(kl—kz)(T—t)}
. (5)
T~k 7k, expl-a, (K -K,) (T-£))

k(t) =
From the text equation (5.19),

a, = o w; a, = 2sw; a = -1. ’ (6)

1

Hence

K. . = 8= (sf+ehyE, 7

The Riccati solution (5.20) follows readily from (5) and (7).

The differential equation (5.17) in the target has the solution
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, ¢ )
y(t) = -y(0)exp {-(swt + o7l J k(t)dt)l, (8)
)
so that
t Bt
[ k(t)dr = J'té'(l—-D-e—ﬁ—)' dt, (9)
Jo o 1+CDe ,
is required, where from (5.20),
A =v¢w-1(6-s); D =Te—BT; B =2wd; C =.%:§-. ' (10)
+S
Now
t eBT
J F(ePTydr = %_J B(z) g5, 2 = P, (11)
» z
0. 1
Hence (9) becomes .
eBT»
A 1 -Dz
I :’E'Il z (1+CDz) dz
eBT
_A 1 (1+C)D
- §'J1 {E-— 1 +CDZ} dz
(12)
Bt
= A _A(1+0) e
= [B logz - —gF 10g(1+CDz)]1
But log z = BT, and A(1+C)/BC = ¢w_2, so that
Bt
B -2 1+CDe
I=At - ¢ow “log (T;EE——"af (13)
Applying (13) to (8), and using the identity k=exp (log k),
Bt
y(t) = y(0) Trgpe— exp {-(swrd W AIL}. (14)

The solution (5.21) follows after substitution for A,B,C,D,



'APPENDIX VIa

SOLUTION OF ASYMPTOTIC RICCATI EQUATION

From (6.26) the solution matrix K of

is required, where from (6.18) and (6.29):

[ — R
k k 0 1
- o 1
K = s A =
k1 k2 +NsW - (nxsw)
0 d_j 1 0
bb' _ v -
§ = W22 | =
0 0 0
¢

Equations (a.l), (a.2) yield:

-12 2.2 . _ . -12 2
¢ nNw kliZnswkl, _nswk2 ko+(n_sw)k1+¢ nw klk2

¢'1n2w2k§+2(ntsw)k2

inswkz—ko+(nisw)k1+¢'1n2w2klk2,\ ok 2
' 1

Or

£11(ky) £12(kgs ks K5) 1 0

£, 0gs kps ky) £)5 0k s k) 0 0

with the solution sequence f11+f22+f1

(a.1)

(a.2)

(a.3)

, (a.if

23 aided by the real positive
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definite conditions on K:

ko >kt (2.5)
k 5 k k2 real.

o’ *1°

Solution of f,,(k;) = 1 pro#idés

Gyt e - T . o
k L= —-_——-——-— ,‘ ’ (3.6).
1 ¢ ;nw
where
o= (sZThR,  @n

(The Bracketed'termi(#s) refers to the stability:conditions w_z 0, the

term +0 to the two solutions of the-quadratiq.).
_Solution of f22(k1f kz) = OlprOV}dgs.

e . !
-(ntsw) [(nisw)2+2¢ 1n.2w2k ]/2 8
ky = S e B " (a-8)
9 nw

Having regard to conditions (a;S),

k2 20 asﬂklbz.O. : ' | (a.9)
Hence
6+ s
k, = >0 (a.10)
-1 ’ ‘ .
1 6w .
Y - (n£sw) (a.11)
k. =2 —mmrm—o—— >0 . (a.1l1
2 -1.2 2 ’ :
¢ ln W
where

- 1 - L
Y = [(nisw)2+2¢ 1nzwzkl]2 = (n2+szw2+2nw6)2,v- - (a.12)
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The solution for ko is only required to show that the positive
definite conditions (a.5) are satisfied. The solutions (a.10) and

(a.11) can be shown to satisfy (a.5).



APPENDIX VIb

RICCATI SOLUTION WITH TARGET DERIVATIVE WEIGHTING

The state weighting matrix with u # 0 is

<
1]

(b.1)

A new solution for kz, obtained from fzz(kl, kz) = uz, is thus required;
that is, using (a.3) of Appendix VIa, of

¢'1n2w2k§'+ 2(nzsw)k, - (2k1+u2) = 0, , (b.2)

Hence the term (2k1) in (a.8) and (a.12) of Appendix VIa must be

accompanied by uz, so that (a.l1l) and (a.l2) become

Y - (nEsw)
kz = -—_—1——— > 0, (b.3)
¢ nw

where

2 2

~ - 1
S e 2+ s22 v 2we + o InAADY

YO (b.4)
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