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We present a supervised machine learning approach for markerless estimation of human full-body kine-
matics for a cyclist from an unconstrained colour image. This approach is motivated by the limitations of
existing marker-based approaches restricted by infrastructure, environmental conditions, and obtrusive
markers. By using a discriminatively learned mixture-of-parts model, we construct a probabilistic tree
representation to model the configuration and appearance of human body joints. During the learning
stage, a Structured Support Vector Machine (SSVM) learns body parts appearance and spatial relations.
In the testing stage, the learned models are employed to recover body pose via searching in a test image
over a pyramid structure. We focus on the movement modality of cycling to demonstrate the efficacy of
our approach. In natura estimation of cycling kinematics using images is challenging because of human
interaction with a bicycle causing frequent occlusions. We make no assumptions in relation to the kine-
matic constraints of the model, nor the appearance of the scene. Our technique finds multiple quality
hypotheses for the pose. We evaluate the precision of our method on two new datasets using loss func-
tions. Our method achieves a score of 91.1 and 69.3 on mean Probability of Correct Keypoint (PCK) mea-
sure and 88.7 and 66.1 on the Average Precision of Keypoints (APK) measure for the frontal and sagittal
datasets respectively. We conclude that our method opens new vistas to robust user-interaction free esti-
mation of full body kinematics, a prerequisite to motion analysis.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Motivation - Deficiencies of marker based mocap

Characterizing the non-linear behaviour of human motion
enhances the understanding of neuromuscular coordination pat-
terns and dysfunction. Using inverse dynamics or dynamic optimi-
sation, resultant compressive and shear loads and muscle
contributions to segment and joint accelerations can be estimated
based on the measured kinetics, inertial properties and skeletal
kinematics. Obtaining skeletal kinematics is currently limited
mostly to marker-basedmotion capture systems. This is unsatisfac-
tory because the approach is constrained by expansive laboratory
infrastructure with camera array, control of lighting and environ-
mental conditions, and the obtrusive use of markers requiring pal-
pation. Inherent to the use of surface mounted markers are output
errors caused by a critical reliance on a strong assumption of rigid
linkage skeletal system and ignoring surface deformation (Challis,
1995; Hatze, 2002; Cappozzo et al., 2005). In particular, the effect
of Soft Tissue Artefacts (STA) causing movement impediment has
received extensive attention in the literature (Leardini et al.,
2005; Cutti et al., 2005; Riemer et al., 2008; Camomilla et
al., 2009; Andersen et al., 2010; Peters et al., 2010; Rosario et al.,
2012; Li et al., 2012; Miranda et al., 2013; Grimpampi et
al., 2014; Camomilla et al., 2015), as has the precision of anatomical
landmark determination (Lu and O’connor, 1999; Della Croce et al.,
2005; Taylor et al., 2005; Ehrig et al., 2006; Taylor et al., 2010). Con-
sequently, the development of evidence-based decision support
tools for diagnosis and treatment is inhibited. Hence, the develop-
ment of a markerless solution for acquisition of full body kinemat-
ics has attracted significant research efforts.

1.2. Previous work

1.2.1. Kinematics estimation from images
Estimation of the full body human kinematics from monocular

images remains an open problem. The difficulties stem from
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background clutter, scene illumination and the weak local appear-
ance support, which is further hindered by out-of-plane motion
and severe occlusions caused by the motion of the articulated body
(Gupta et al., 2008). Since 2D intensity images remain the most
readily obtainable for capture of unrestricted motion in-natura,
feature tracking via direct manual digitization has formed the most
common form of analysis. Krosshaug and Bahr (2005) recon-
structed motion kinematics from uncalibrated images using man-
ual annotation of anatomical landmark locations that was
matched across camera views and applied to a subject-specific
scaled anatomical model with joint constraints. Likewise, Sanders
et al. (2016) have shown high repeatability of manual 3D marker
trajectories digitised from multi view swimming images.
Magalhaes et al. (2013) attempted to automatically track surface
mounted markers underwater using optical flow with limited suc-
cess. Using textured clothing to replace surface mounted markers
approach Lerasle et al. (1997) tracked low level image features of
a cycling leg using a Kalman filter. Similarly, Sandau et al. (2014)
used a texture enhanced clothing aided by background subtraction
to achieve point correspondences for surface reconstruction in a
calibrated multi-view camera setup. They fitted an articulated
model to the 3D surface reconstruction using a patch matching
technique, which enforces local photometric consistency and glo-
bal visibility constraints.
1.2.2. Computer vision and machine learning approaches
In generative approaches, pose estimation is formulated as an

optimisation problem whose objective function is a discrepancy
between a parametric prior body model and the input observation
(Baak et al., 2013; Fastovets et al., 2013; Salzmann et al., 2007 (for
review, see Yang et al. (2014))). This approach, however, suffers
from local minima and solution multiplicity due to its often highly
non-convex nature. For instance, Corazza et al. (2006) fitted prior
articulated model to a 3D surface visual hull reconstruction using
patch matching with high accuracy. They used body part segmen-
tation and least-squares optimisation to identify the location of
joint centres under the assumption of rigid links connected by
pivot joints (Corazza et al., 2007) and to estimate the centre of
mass (Corazza and Andriacchi, 2009). The same method was mod-
ified to use adaptive Gaussian mixture models to enhance back-
ground subtraction for the pose estimation in a water
environment (Ceseracciu et al., 2011). Notably, the visual hull
approach tends to overestimate the volume of the subject and fails
to reconstruct cavities in the subject’s surface. Whilst less obtru-
sive than marker-based methods, the method critically relies on
background subtraction and a constrained capture space. This
requires considerable control over lighting and environmental con-
ditions, and remains unsuitable for estimation of kinematics in
realistic natural environments.

In contrast, discriminative approaches seek a mapping from
image observation space to a set of body pose parameters space,
from which the kinematics can be estimated (Agarwal and
Triggs, 2006). The pictorial structures framework uses a probabilis-
tic graphmodel to model the appearance and configuration of body
parts. Pose estimation can then be formulated as a statistical infer-
ence problem, where the model parameters are learned from train-
ing examples using maximum likelihood estimation (Felzenszwalb
and Huttenlocher, 2005). This powerful framework allows for effi-
cient inference and captures large variations in posture and
appearance. The inter-part relative deformation term makes this
framework invariant to some global transformation. Additionally,
the overall decision is made with no assumptions being made
about the initial location of parts. For these reasons, the approach
has been popular for simultaneous human detection and pose esti-
mation tasks (Andriluka et al., 2009; Eichner et al., 2012; Sun et al.,
2012; Pishchulin et al., 2013; Yang and Ramanan, 2013; Cherian
et al., 2014).

1.2.3. Deformable part-based methods
Variants of the approach have been proven to outperform single

object templates in detecting humans in images. In Felzenszwalb
and Huttenlocher (2005) a discriminatively trained, multiscale
Deformable Parts Model (DPM) approach is introduced for pedes-
trian detection. The DPM model consists of a coarse root filter, a
mixture of body parts filters, and part deformation relative to the
root model to represent a person. The models are trained offline
on a positive and negative image set using Support Vector Machi-
nes (SVM). In inference, the learned model is used for object search
in a new image over a pyramid of image features, for instance, an
appearance representation based on Histogram of Oriented Gradi-
ents (HOG) features (Dalal and Triggs, 2005). An object proposal is
calculated from a unary data term representing the scores of each
appearance filter at their respective locations and a deformation
cost that depends on the position of each part with respect to
the root.

Recently, approaches that use Convolutional Neural Networks
(CNNs) have outperformed pictorial structures in pose estimation
tasks (Chu et al., 2016; Chen and Yuille, 2014). However, CNNs
require prohibitively large datasets for training, or risk overfitting
a model to the data. Consequently, the approach also requires
extensive computing resources and training time. Furthermore,
due to its intractable nature, a CNN remains largely a ’black box’
approach, which provides little insight or intuition to its perfor-
mance. These limitations justify our decision to adopt the pictorial
structures framework.

2. Method

2.1. Problem scope and contributions

Motivated by the limitations of existing approaches, we address in this paper
the problem of estimating full-body kinematics from challenging monocular images
that contain severe occlusions in unconstrained environments. We opt for a dis-
criminative part-based approach that requires an offline learning of a model that
recovers pose estimates from observable image metrics. To demonstrate the effi-
cacy of our approach, we focus our experiments on the movement modality of
cycling. Our motivation stems from the observation that this movement modality
is especially challenging due to the human interaction with an object (i.e. the bicy-
cle), which induces severe occlusions, the similarity of the posture in the frontal
plane to normal human gait, and the severely occluded sagittal plane posture, for
which a pose estimation method was not found in the literature. We use images
captured in natural environment and a variety of resolutions. Importantly, We
make no assumptions about the anthropometric proportions nor the kinematic con-
straints of the human model, nor the appearance of the scene. Our technique finds
multiple good hypotheses for the human posture rather than just a single best solu-
tion. This is advantageous for cases where imprecision in the model may result in
the desired match not being the one with the minimum energy.

2.2. Method overview

In this section we introduce our framework for the estimation of a cyclist’s pos-
ture from unconstrained images. Given a monocular image with one or more
cyclists, we aim to simultaneously detect and estimate the cyclists’ posture charac-
terised by the joints’ spatial locations and limbs’ orientations in the image. Our
method learns disparate appearance and geometry models of a cyclist offline, and
estimates the human posture in a new image. Specifically, our work builds on the
deformable mixture of parts framework of Yang and Ramanan (2013) and Desai
and Ramanan (2012), who used local part mixtures that capture spatial relations
between parts and local appearance. We provide a diagrammatic overview of our
learning and inference frameworks in Figs. 1 and 2 respectively.

2.3. Mixture of parts human model

We model the human body as a collection of the body’s articulations (joints)
whose spatial location is represented as a point in the 2D plane, and local appear-
ance filters. We model the articulations as ball-and-socket joints expressed in Joint
Coordinate System (JCS) following Wu et al. (2002, 2005). We express a human
model as a tree-structured undirected graph G ¼ ðV ; EÞ, where the vertices



Fig. 1. An overall learning framework of the flexible mixture of parts approach applied to a cycling model. Appearance and spatial relations features are extracted from both
positive (object is present) and negative (object is not present) images to train an object model.

Fig. 2. An overall inference framework of the flexible mixture of parts approach. Sub windows are extracted from a new image at multiple resolutions using a sliding window
scheme. A probabilistic object hypothesis is tested against the appearance and geometry models for each sub window resulting in a likelihood score. Finally, a non maxima
suppression is applied to overlapping object proposals.

1 Appendix A provides further interpretation and generalisation of the parts
deformation cost.
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V ¼ v1; . . . ;vnf g correspond to n body joints, and an edge ðv i; v jÞ 2 E for each pair of
connected body joints v i and v j corresponding to the body’s segments (Fig. 3). An
instance of a full body in the image I is given by a configuration of body parts

L ¼ l1; . . . ; lnf g 2 Rn�2, where li ¼ ðxi; yiÞ denotes the location of part v i .

2.3.1. Appearance model
We represent the appearance of body joint v i by a concatenated HOG (Dalal and

Triggs, 2005) feature vector /ðI; liÞ 2 R5�5�32. HOG is an edge orientation histogram
based feature descriptor, which we compute on a dense grid of uniformly spaced
cells over an image patch of size 32� 32 pixels centred at li . In training, we learn
a full body appearance model W ¼ w1; . . . ;wnf g where wi 2 R800 is the template
feature vector for body joint v i (see a part visualisation in Fig. 5 and a full body
visualisation in Fig. 4a).

2.3.2. Spatial relations model
To encode the spatial relations between adjacent joints, we represent the spatial

relations for an edge ðv i;v jÞ by a quadratic deformation vector

wðli; ljÞ ¼ ½dx; dy;dx2;dy2�T from the relative position of the connected joints v i
and v j . This term is often interpreted as a negative spring energy resulting from
pulling body part j from a relative position with respect to body part i
(Felzenszwalb and Huttenlocher, 2005).1 In training, we learn the spatial relations
model wij 2 R4 for each edge ðv i ;v jÞ. This parameter can be viewed as indicating
the spring’s position at equilibrium and rigidity. It also encodes implicit relations to
distal parts through connected edges.

Thus, a score S associated with a particular configuration of body parts in an
image I is a function of the parts’ appearance and deformation and can be written as

SðI; LÞ ¼
Xn
i¼1

miðI; liÞ þ
X

ðv i ;v j Þ2E
dijðli; ljÞ ð1Þ

where miðI; liÞ ¼ hwi;/ðI; liÞi is a unary scalar term measuring the appearance
discrepancy for each part v i at location li in the image I with the local template
wi 2 R800, and is based on convolving the image I with a family of underlying linear
local templates W , and h�; �i is the inner product operator. Similarly,



Fig. 3. Tree structured graph models of a cyclist in frontal (a) and sagittal (b) views. Note that for the frontal view the model is an acyclical approximation of a natural
representation that links the two hip nodes with a pelvic edge. The approximation simplifies the graph model and enables exact inference.

Fig. 4. (a) A visualisation of the learnt full body frontal cyclist model, where parts’ appearance models characterised by HOG (Dalal and Triggs, 2005) filters and their relative
spatial location relative to a root filter. Since our model also learns co-occurrence probabilities for part mixture components, the displayed model shows one example of such
co-occurrence. In inference, a feature representation of a new image (b) is computed at multiple image resolutions. (c) shows an example feature representation of the image
at one resolution level. The feature vector is then convolved with each of the learnt appearance model parts’ filters (a) to yield a local response.
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dijðli; ljÞ ¼ hwij;wðli; ljÞi is a pairwise scalar term measuring the deformation cost for a
given pair of connected parts, that is of part v i at location li and part v j at location lj .
A low negative dij score indicates that a body part’s location and orientation with
respect to its parent (proximal body segment) is close to the learnt prior spatial rela-
tions model. For clarity, the terms are summarised as follows:

� wi 2 R800 is the learnt HOG feature appearance template for joint v i

� /ðI; liÞ 2 R800 is the concatenated HOG feature descriptor of a 32� 32 pixels
sized patch of image I centred at li

� miðI; liÞ ¼ hwi;/ðI; liÞi is a scalar measuring how well the feature at the image
patch centred at li matches the template of v i

� wij 2 R4 is the learnt spatial deformation model of joint v j with respect to its
parent v i

� wðli; ljÞ 2 R4 is the spatial deformation between two points li and lj in the image
I

� dijðli; ljÞ ¼ hwij;wðli; ljÞi is a scalar measuring how well the deformation between
two points in the image match the learnt deformation model for joints vu and v j

2.3.3. Mixture of parts
Notwithstanding the activity-specific application, the appearance of body parts

is highly variable. For instance, an appearance patch for the first metatarsopha-
langeal (1stMTP) joint looks different at the top-dead-centre of the cycling stroke
than at the bottom-dead-centre. Likewise, the helmet and the hand position varies
between a road cyclist, a sprint track cyclist and a mountain bike rider. Therefore, to
encode a richer family of appearances for each body part, we model the appearance
of each body joint v i by a mixture of templates, instead of a single fixed appearance
template. We write ti 2 1; . . . ; Tf g for a latent variable denoting an appearance mix-
ture component for part v i , and model the appearance of each body joint v i by a
mixture Ui ¼ /i1; . . . ;/iTf g 2 R800�T , where /itðI; liÞ is a feature vector component
ti centred at li following Desai and Ramanan (2012). An assignment of mixtures
for a full body model can then be denoted by t ¼ t1; . . . ; tnf g. In training, we learn
a unary term biðtiÞ that supports a particular mixture component assignment for
the body joint v i (see a visualisation in Fig. 5).

2.3.4. Co-occurrence model
Our intuition is that support for a part’s particular mixture component assign-

ment depends somewhat on the full-body pose. That is, two joints connected by a
rigid limb are likely to present consistent pairing of appearance representations
based on the limb’s global orientation, for example the elbow and shoulder joints
connected by the upper arm when elevated versus externally rotated. To capture
the dependency of global pose on local appearance variations, we also learn a pair-
wise term bijðti; t jÞ that supports a particular mixture components co-assignment
for the body joints v i and v j .

We write zi ¼ ðli; tiÞ 2 R3 for the pixel location and mixture component for part
v i . We can then write the full score S associated with a particular configuration of
body parts in an image I as

SðI; zÞ ¼
Xn
i¼1

miðI; ziÞ þ
X

ðv i ;v j Þ2E
dijðzi; zjÞ ð2Þ

where

MiðI; ziÞ ¼ hwiðtiÞ;/ðI; liÞi þ biðtiÞ

dijðzi; zjÞ ¼ hwijðti; t jÞ;wðli; ljÞi þ bijðti; t jÞ

The pairwise term bijðti; t jÞ favours consistent co-occurence of mixture components

for the corresponding parts v i and v j , such that a positive bijðti; t jÞ score reflects con-
sistent pose assignments, and a negative score reflects the alternative. Thus, an
instance of a human in the image I indicates which mixture component from each
body joint is used and its relative location.



Fig. 5. Each joint is modelled by 6 possible templates learnt during the training phase and represent alternative HOG filter appearance representations of an image patch of
size 32� 32 pixels centred at the joint. The filters capture variance in part appearance due to small changes in view point, background, shape, illumination and texture (e.g.
changes induced by the pedalling cycle). Above is a visualisation of the filter mixtures for the right shoulder (top) and left 1stMTP joint (bottom) in the frontal view.
Predictably, in cycling the appearance variability at the foot is higher than at the shoulder. A particular full body model has one mixture component for each joint, for instance
the second component for the shoulder and the fifth component for the 1stMTP.
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2.4. Inference

Our goal is to detect and estimate the posture of a cyclist from test images. In
inference, we produce candidate pose proposals by using a sliding window detec-
tion scheme over an image pyramid. The optimal match of a model to an image
is found by maximising (2) over z

CðzÞ ¼ max
z

Xn
i¼1

miðziÞ þ
X

ðv i ;v j Þ2E
dijðzi; zjÞ

0
@

1
A: ð3Þ

Conveniently, the tree graph structure leads to an efficient and tractable inference
such as sampling or belief propagation. We use our models to compute the score
for each part v i , at every pixel location of image I, and for all appearance mixture
components ti , which includes messages from the children nodes of v i by

siðziÞ ¼ miðI; ziÞ þ ri ð4Þ

where ri is the sum of messages passed by the children of v i . We provide a score
heatmap visualisation for a representative part v i for all its mixture components ti

in Fig. 6. A message from a child part to its parent computes the best location and
mixture component for the child part.

Upon arrival of all messages at the root node, its score represents the optimal
pose at its location. Retaining the indices of the best scoring part proposal, it is then
possible to track back to find the location and mixture of each body part that is opti-
mal for the pose. The principle that underpins this approach is that a collection of
weak classifiers, collectively creates a strong class classifier. We retain the q best-
scoring candidate cyclist poses using a threshold and apply non maxima suppres-
sion to prune overlapping proposals and, for each, select the one with top cyclist
score. This enable the retention of multiple instances of cyclists in the image (Fig. 7).

2.5. Learning

We adopt the supervised learning paradigm of Kumar et al. (2009) and train a
part based detector for the human (cyclist) using manually annotated positive
examples of joint locations and negative examples. We separately trained classifiers
for the frontal and saggital view on 141 and 144 sagittal images of cyclists, respec-
tively, whose pose was manually annotated for each of our models’ body joint key-
points (see Fig. 3). Our negative set contains 1217 images of people but not cyclists,
and background scenery images.

The learning problem can be cast as obtaining a weight vector
c ¼ ðwi;wi;j; bi; bi;jÞ and scalar bias n, such that the learnt model parameters are able
to discriminate between positive and negative examples in terms of their energy
value. Learning the most discriminative model parameters is equivalent to solving
the optimisation problem

ðcH; nHÞ ¼ arg min
c;nP0

1
2
kck2 þ C

X
n

nn

 !
ð5Þ

such that

c � /ðIn; znÞ P 1� nn8n 2 positive images;

c � /ðIn; zÞ 6 �1þ nn8z;8n 2 negative images:

where the k � k operator represents the standard l2-norm, n the number of images,
and C P 0 is a constant, which specifies the trade-off between accuracy and regular-
isation of the weights vector. The constraints ensure that positive samples score bet-
ter than 1, and the negative samples score less than �1, violations of which are
penalised by the objective function using the slack variables nn .
Whilst convex, this learning problem cannot be solved efficiently due to the
number of constraints. Kumar et al. (2009) have reduced this problem to an equiv-
alent problem with a polynomial number of constraints, from which an optimal
solution can be reached. Known as a structural SVM, this learning problem has
many efficient solvers. We use the dual-coordinate-descent quadratic programming
solver of Yang and Ramanan (2013) (see visualisation in Fig. 4a).

2.5.1. Part mixture components determination
We assume that the appearance of a body joint depends on its position relative

to its parent (proximal body segment) in E. Therefore, we can use this relative posi-
tion as criterion to cluster the part’s appearance instances in our training data into
consistent relative orientation. We define the mixture label for a part based on clus-
ter membership achieved via K-means with K ¼ T .

2.6. Implementation

We represent the human pose using a tree-structured graph with 26 nodes
comprised of 18 and 14 keypoint nodes representing joints and 8 and 12 secondary
mid-limb nodes for the frontal and sagittal models respectively, with the base of the
neck at joint C7 as its root and the limbs and head as its extremities (Fig. 1). We jus-
tify supplementing the number of joint keypoints by secondary mid-limb nodes by
the experiments of Yang and Ramanan (2013), who showed that 26 nodes provide a
good trade-off of performance vs. computation. In the sagittal case, we consider the
base, top, front and rear edges of the bicycle helmet as key points to enable helmet
orientation characterisation relative to the cyclist’s trunk for future analysis.

A sagittal view of a cyclist presents severe occlusion of most or all of the limbs
on the far side. Thus, it presents a large and significant view change that the frame-
work of Yang and Ramanan (2013), who impose a fixed number of keypoint nodes
to model small changes in foreshortening, is unable to handle. Instead, in agreement
with Felzenszwalb and Huttenlocher (2005) we handle the severe occlusions
induced by these rotations by explicitly encoding out-of-plane rotations by using
a separate model with a different number of keypoint nodes for each view.

3. Results

To evaluate the performance of our pose estimation method, we
apply our method to a set of challenging test images comprised of
frontal and sagittal views of human cycling in unconstrained envi-
ronment. In this section we report on both qualitative and quanti-
tative results.

3.1. Quantitative results

We conducted experiments on new task-specific datasets con-
taining 141 frontal and 144 sagittal images of cyclists, whose pose
was manually annotated for each of our models’ body joint key-
points. The datasets contain images that have been either taken
by the authors, downloaded from on-line repositories with a
licence search criteria set to creative common (Flickr), labelled
for reuse (Google Images), or provided by the University of Wash-
ington’s windtunnel.

To train our models, we have split the datasets into a standard
60%, 20% and 20% for model learning, cross-validation and test sets
respectively. Our negative set contains 1217 images comprised of



Fig. 6. In inference, a feature representation of a new image is convolved with the learnt model’s mixture parts appearance filters. The computation yields a local response as
part appearance scores represented as heatmaps for the ankle body part for each mixture component (example from one indicative pyramid level). A hot colour represents
high score/low discrepancy signal with respect to the body part appearance mixture component model. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. Our method yields pose estimation from a monocular image of a cyclist in the frontal and sagittal views and is robust to changes in scene, illumination and can yield
multiple instances in an image.
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the positive and negative training images from the INRIA Person
(Dalal and Triggs, 2005) and Parse (Ramanan, 2007) datasets. In
both datasets, the positive training images contain images of peo-
ple with images of cyclists removed, whilst the negative sets con-
tain mostly background scenery images. Using images that contain
people in our negative set ensures that our cyclist model discrim-
inates well between people in normal gait and cyclists for our
specific task.

We measure the pose prediction of our method using loss
functions, the Probability of Correct Keypoint (PCK) and Average
Precision of Keypoints (APK) (Yang and Ramanan, 2013). A predic-
tion is considered correct if it resides within a small distance from
the annotated ‘ground truth’ point. For a given part at the anno-

tated location i�, the loss for prediction î is defined by

4pði�; îÞ ¼ I ki� � îk > a maxðh;wÞ
� �

; ð6Þ

where I is the indicator function, and h and w are the vertical and
horizontal distances respectively, and a is a detection region thresh-
old parameter. The results are presented in Table 1.



Table 1
Probability of Correct Keypoint (PCK) and Average Precision of Keypoints (APK)
results.

Dataset Mean PCK Mean APK

Frontal view 91.1 88.7
Sagittal view 69.3 66.1
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3.2. Qualitative results

In contrast to the test images datasets, which contain images of
a single cyclist with no other human objects in the scene, here we
aim to qualitatively investigate the performance of our methods on
unannotated images that contain multiple cyclists, severe
occlusions and additional objects and humans in the scene (see
results in Fig. 8). Whilst our approach is robust to small changes
in orientation, view point and scale of the human object in images,
the pictorial structure framework assumes that all body parts have
a fixed scale. Hence, it may suffer local failure in such images that
present cases where certain body parts experience severe fore-
shortening effect due to change in view point, where the problem
becomes ill-posed. Fig. 9 presents such cases.

4. Discussion

The presented results demonstrate the utility of estimating
human kinematics via a fully supervised learning approach to
reconstruction of human posture from unconstrained images as
an alternative to marker-based motion capture. Our method is
underpinned by a spatial relations model and parts’ appearance
Fig. 8. Qualitative results in the frontal (top) and sagittal (bottom) planes. The discrimi
scene but not in a riding position in (a), presence of people in (a) and (c), and robustne

Fig. 9. Examples of local failures; (a) shows local failure at the wrists due to part unlear
unlearnt part appearance (barefoot). (c) shows failure at the legs due to hip occlusion. (d)
the second cyclist’s ankle.
and co-occurrence models. Therefore, like other markerless
approaches it does not suffer from the deficiencies of marker-
based system. For instance, our method is not constrained to an
expensive laboratory setting with controlled lighting, reflectance
and other environmental conditions, nor does it have any direct
sensitivity to STA. likewise, it does not suffer the inter-trial and
inter-tester repeatability and reliability of direct digitisation
approaches (Krosshaug and Bahr, 2005; Sanders et al., 2016).

For our task, we applied the flexible mixture of parts method
(Yang and Ramanan, 2013) to the estimation of cyclists’ posture
and achieved robust results with a task-specific trained classifier.
It is, however, impossible to design a discriminative classifier for
the general case because of the high variability in the appearance
of human ambulation. The performance of the approach critically
relies on time consuming and costly process and the availability
of a large quantity of training samples. Further, the generalisation
of the approach can only be achieved through the addition of ade-
quate training samples, as its adaptability to unseen body postures
is low, as typically manifested by poor performance were occlu-
sions exist. Thus, to adapt our method to a different movement
modality, a task-specific classifier needs to be trained on an appro-
priate training set.

With respect to our specific cycling task, the coupling of the
human and object reduces the search space of likely poses repre-
sented by the spatial relations between parts in our model as a
result, for instance, of the predictable position of the hands on the
handlebars and feet on the pedals. This may be viewed as an advan-
tage of our task of choice when compared to unconstrained activity
such as running. On the other hand, the human-object interaction,
in fact, complicates the search for a body part’s appearance. This is
native power of the classifier is demonstrated by rejection of cyclist present in the
ss to small changes in object’s view (b, f, g) and orientation (d, e).

ned spatial location. (b) shows failure at the ankle of the cyclist on the right due to
shows failure at the left ankle of the lead cyclist due to part appearance similarity of
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due to increased incidence of body part occlusions and appearance
similarity or ambiguity. Therefore, a trade-off exists between
improved spatial relations and less discriminative appearance.
Since the apriori location of the human is unknown in a new image,
the search space for parts’ appearance is an image pyramid over the
entire input image. Hence, overall it is less challenging to estimate
the pose in running than when a human-object interaction exist.
Normal gait and running have been addressed often previously
(Eichner et al., 2009, 2012; Andriluka et al., 2009, 2014, and others).
Typically, these approaches are aided by segmentation and back-
ground modelling algorithms that separate the human (fore-
ground) and background scene prior to pose estimation by
reducing the image search space to the foreground alone. We avoid
pre processing steps, and directly estimate the pose from the parts’
appearance and spatial relations simultaneously.

This is consistent with our aforestated motivation, which stems
from the observation that the cycling is particularly challenging
due to the human interaction with the bicycle, which induces sev-
ere occlusions, the similarity of the posture in the frontal plane to
normal human gait, which presents a discrimination challenge, and
the severely occluded sagittal plane posture, for which a pose esti-
mation method was not found in the literature. In follow-up work
that is outside the scope of this paper, we will investigate whether
modelling the human-object interaction explicitly improves the
pose estimation.

A principal limitation of the pictorial structures framework is
that exact inference is only possible with tree structured graph
model. However, in certain situations, such as temporal and occlu-
sion models, it is advantageous to have non-tree models. Kiefel and
Gehler (2014) used a binary random variable to model occlusions
at every possible location, scale and orientation and graph topol-
ogy that is not restricted to a tree structure, with modest improved
performance. Cherian et al. (2014) generated pose candidates in
each time frame by enforcing temporal constancy between
instances of a tree model. They decomposed the body parts to gen-
erate temporally smoothed body part sequences, followed by re-
composition of the body pose. A non-tree extension to our work
that models occlusions and allows for temporal constancy to be
enforced would make the approach very attractive for a variety
of applications.

Despite significant progress, accurate inference remains an
extremely challenging problem principally due to occlusions and
self-occlusions in the image. Consequently, in our framework, we
model the human body only for the visible body parts for each
view. This results in separate models for the frontal and sagittal
views. The challenge is further compounded by inter-object inter-
action, such as the interaction between a cyclist and the bicycle.
Therefore, a natural extension to our approach would exploit
advances in modelling the human-object interaction within the
framework. Moreover, in this work we avoided imposing explicit
kinematic constraints on the pose proposals. Introducing such con-
straints will significantly reduce the search space of probable poses
and improve the accuracy.

We note that whilst manual annotation of point location
remains the standard ground truth for performance evaluation of
pose estimation techniques in the computer vision domain, a
higher level of accuracy is often expected in the biomechanics
domain. The reason stems from error propagation with subsequent
calculations and double differentiation required for inverse
dynamics optimisation. The accuracy required is commonly
achieved through the obtrusive use of surface mounted reflective
markers. Nevertheless, our choice to validate our model estimation
against manual annotation is justified since the use of reflective
markers would contaminate the model in learning and the image
data in inference. It will result in appearance models that are tuned
for the presence of a marker in the image patch. Consequently,
performance evaluation would be grossly overestimated. Further-
more, marker-based systems require control of scene, lighting
and environmental conditions, which would unfairly penalise our
method.

The estimation of pose using our method can be used for the
reconstruction of the human body’s geometry. Using our cycling
task as an example, the geometric shape of the cyclist can be used
to enhance the understanding of the relationship between a
cyclist’s posture and aerodynamic drag. The task then becomes a
problem of extracting the cyclist’s shape from the background in
an image in a segmentation pipeline. Thus, the extracted skeletal
pose can be used as a necessary prior foreground seed for segmen-
tation techniques such as graph cuts (Boykov et al., 2001; Veksler,
2008), and the exterior to a convex hull that contains all part
patches as its background seed.
5. Conclusion

In this paper, we investigated the challenging problem of mark-
erless estimation of a human full body kinematics from monocular
images. We proposed a discriminative part-based approach that
develops a probabilistic prior model based on learned measure-
ments. In learning, a structured SVM solver learns spatial relations
of skeletal segment orientation and co-occurrence relation
between parts appearance. In inference, the model detects the
human in the image and recovers pose estimates. We applied our
approach to images of cyclists captured in natural environment
with no assumptions in relation to kinematic constraints, nor the
appearance of the scene. Our technique finds multiple good
hypotheses for the human pose rather than just a single best solu-
tion. This is advantageous for cases where imprecision in the
model resulting in the desired match not being the one with the
minimum energy. Our method yields a robust user-interaction-
free approach for estimation of full body kinematics, which serves
as a crucial evidence base pre-requisite to motion analysis. Based
on skeletal kinematics, joint forces, torques, power and efficiency
of motion can then be determined. Furthermore, our pose estimate
can be viewed as a necessary first step in a segmentation pipeline
aimed at characterising the geometry of human motion.
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Appendix A. Part Spatial Relation and Deformation Cost

In Section 2.3, we represent the spatial relations between adja-
cent body parts (joints) by a quadratic deformation vector

wðli; ljÞ ¼ ½dx; dy; dx2; dy2�T from the relative position of the con-
nected joints v i at li and v j at lj , such that dx ¼ xi � xj and
dy ¼ yi � yj, consistent with Yang and Ramanan (2013) and others.
We mention that this term can be interpreted as a negative spring
energy resulting from pulling joint j from a relative position with
respect to joint i. For clarity, in this section we provide context
and alternate interpretations of this force. In order to avoid nota-
tional clutter, we omit the subscript ij for the remainder of this sec-
tion, where the interpretation is obvious.
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Consider a multivariate Gaussian distribution over the set of rel-
ative positions of the adjacent joints ðv i;v jÞ in our training data,
where l ¼ ðlx;lyÞ is the mean of the distribution. We wish to
impose a penalty over a relative joint location hypothesis that
deviates from the mean of the distribution. Consequently, a body
part location hypothesis would favour a relative location proposal
that is in agreement with the learnt prior spatial relations model.
Thus, we define a spring force that represents the distance of the
test point from the distribution’s centre of mass, which we define
by

dijðli; ljÞ ¼ Aðdx� lxÞ2 þ Bðdy� lyÞ2 ð7Þ
where, A and B are arbitrary real-valued constants. This can be
expanded to

dijðli; ljÞ ¼ Adx2 þ Bdy2 � 2Alxdx� 2Blydyþ ðAl2
x þ Bl2

yÞ: ð8Þ
The last term does not depend on li or lj and can be replaced with a
constant F. After rearrangement the force can be written as the
inner product of two vectors plus a constant F

dijðli; ljÞ ¼ hðdx; dy; dx2; dy2Þ; ð�2Alx;�2Bly;A; BÞi þ F

¼ hðdx; dy; dx2; dy2Þ;wijÞi;
ð9Þ

where only the first vector depends on the proposed body part loca-
tions li or lj and therefore corresponds to our deformation vector
wðli; ljÞ, and wij is the vector of weight coefficients to be learnt. Eq.
(8) can also be viewed as a special case of the general canonical
form of an arbitrarily oriented ellipse

Adx2 þ Bdy2 þ Cdxdyþ Ddxþ Edyþ F ¼ 0;

where C ¼ 0. Therefore, a generalisation of our approach may repre-

sent the deformation cost by wIðli; ljÞ ¼ ½dx;dy; dxy;dx2;dy2�T 2 R5

with the addition of a cross dimension term dxy.
More generally, an arbitrarily oriented ellipsoid in Rn, centred at

l satisfies

ðl� lÞTSðl� lÞ ¼ 1;

where S is a positive definite matrix and l and l are vectors. After
substitution we get

dx dy 1½ � S �Sl
�lTS �lTSl

� � dx

dy

1

2
64

3
75 ¼ 0

dx dy 1½ �
A C=2 D=2

C=2 B E=2
D=2 E=2 1

2
64

3
75

dx

dy

1

2
64

3
75 ¼ 0;

ð10Þ

where the five upper triangular elements of the symmetric matrix
here correspond to the five elements of ðA;B;C;D; EÞ.

For a probability distribution we can define a dissimilarity mea-
sure between two random vectors l and l of the same distribution
as

Dðl;lÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl� lÞS�1ððl� lÞ

q
;

where S is the covariance matrix. In our application, this distance,
the Mahalanobis distance, represents the distance of the test point
l from the distribution’s centre of mass l. The eigenvectors of S
define the principal axes of the ellipsoid and the eigenvalues of S
are the reciprocals of the squares of the semi-axes. This representa-
tion also provides an elegant link to Principal Component Analysis
(PCA). Indeed, this is the form of the deformation cost that was used
in early pictorial structures work (e.g. Felzenszwalb and
Huttenlocher, 2005).
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