Endoplasmic reticulum stress does not contribute to steatohepatitis in obese and insulin resistant high-fat diet fed foz/foz mice

Vanessa Legry, Derrick M Van Rooyen, Barbara Lambert, Christine Sempoux, Laurence Poekes, Regina Español-Suñer, Olivier Molendi-Coste, Yves Horsmans, Geoffrey C Farrell, Isabelle A Leclercq

1Laboratory of Hepato-Gastroenterology, Institut de Recherche Expérimentale et Clinique, Université catholique de Louvain (UCL), Brussels, Belgium
2Liver Research Group, ANU Medical School at The Canberra Hospital, Garran, ACT, Australia
3Pathology Department, St-Luc University Hospital, Université catholique de Louvain (UCL), Brussels, Belgium

Keywords: endoplasmic reticulum stress, non-alcoholic fatty liver disease, insulin resistance, apoptosis, inflammation

Short title: Endoplasmic reticulum stress in steatohepatitis

Number tables and Figures: 3 tables, 4 figures

Address for correspondence:
Correspondence should be addressed to Professor Isabelle Leclercq
Laboratoire d’Hépato-Gastro-Entérologie, Institut de Recherche Expérimentale et Clinique
Université catholique de Louvain
Avenue Mounier, 52 Box B1.52.01, B-1200 Brussels, Belgium
Phone : +32 2 764 52 73
Fax : +32 2 764 53 46
E-mail : isabelle.leclercq@uclouvain.be

List of Abbreviations:
Acc-1: acetyl-CoA carboxylase 1
Alms1: Alström syndrome 1
ALT: alanine transaminase
Atf4: activating transcription factor-4
Atf6: activating transcription factor-6
Bim: Bcl2-interacting mediator of cell death
BW: body weight
Chop: C/EBP homologous protein
Edem: ERAD enhancing mannosidase-like protein
eIF2α: eukaryotic initiation factor α
ER: endoplasmic reticulum
ERAD: ER-associated protein degradation
Fasn: fatty acid synthase
Gadd34: growth arrest DNA damage-34
Grp78: glucose regulated protein, 78 kDa
HFD: high-fat diet
Hsp90: heat shock protein 90
IR: insulin receptor
IRE1α: inositol-requiring-1α
JNK: c-jun N-terminal kinase
MCD: methionine- and choline- deficient
NAFLD: non-alcoholic fatty liver disease
NASH: non-alcoholic steatohepatitis
ND: normal diet
Nqo1: NAD(P)H dehydrogenase, quinone 1
PBA: phenyl-butyric acid
Pemt: phosphatidylethanolamine N-methyltransferase
PERK: protein kinase double-stranded RNA-dependent-like ER kinase
RT-qPCR: real time quantitative polymerase chain reaction
Scd-1: stearoyl-Coenzyme A desaturase 1
Srebp1c: sterol regulatory element binding protein-1c
Trib3: tribbles homolog 3
TUDCA: tauro-ursodeoxycholic acid
UPR: unfolded protein response
Xbp1: X-box binding protein 1
Abstract

Non-alcoholic fatty liver (steatosis) and steatohepatitis (NASH) are hepatic complications of metabolic syndrome. Endoplasmic reticulum (ER) stress is proposed as a crucial disease mechanism in obese and insulin resistant animals (such as ob/ob mice) with simple steatosis but its role in NASH remains controversial. We therefore evaluated the role of ER stress as a disease mechanism in foz/foz mice, which develop both the metabolic and the histological features that mimic human NASH.

We explored ER stress markers in the liver of foz/foz mice in response to high-fat diet (HFD) after several time points. We then evaluated the effect of treatment with ER stress inducer tunicamycin, or conversely with ER protectant tauro-ursodeoxycholic acid (TUDCA) on the metabolic and hepatic features.

Foz/foz mice are obese, glucose intolerant and develop NASH characterized by steatosis, inflammation, balloononed hepatocytes and apoptosis from 6 weeks of HFD feeding. This was not associated with activation of the upstream unfolded protein response (phospho-eIF2α, IRE1α activity, spliced Xbp1). Activation of JNK and up-regulation of Atf4 and Chop transcripts were however compatible with a "pathologic" response to ER stress. We tested it by intervention experiments. Induction of chronic ER stress failed to worsen obesity, glucose intolerance and NASH pathology in HFD-fed foz/foz mice. In addition, ER protectant TUDCA, although reducing steatosis, failed to improve glucose intolerance, hepatic inflammation and apoptosis in HFD-fed foz/foz mice.

These results show that signals driving hepatic inflammation, apoptosis and insulin resistance are independent of ER stress in obese, diabetic mice with steatohepatitis.
Introduction

Easy access to food in our modern societies has led to decreased physical activity and over-eating which dramatically increase the risks of obesity-related type 2 diabetes, cardiovascular and non-alcoholic fatty liver diseases (NAFLD). These conditions each have insulin resistance as a common denominator. In this metabolic context, several factors, among which hyperglycaemia, hyperinsulinemia, adipose inflammation and deregulated adipokine production pattern, digestive and gut-derived factors act to perturb liver lipid homeostasis leading to liver lipid accumulation [16;33]. In some patients, in addition to steatosis, hepatocellular injury and chronic inflammation develop, resulting in a progressive fibrotic disease termed non-alcoholic steatohepatitis (NASH).

The high protein synthesis capacity of hepatocytes requires a well-developed endoplasmic reticulum (ER). Various stress conditions, amongst which nutrient overload, oxidative stress, hypoxia or amino acid and glucose deprivation affect ER homeostasis and protein folding capacity. ER stress triggers the unfolded protein response (UPR) elements of which converge to increase folding capacity through chaperone production and reduction of protein loading through enhancing ER-associated protein degradation (ERAD) and attenuation of translation [27], thereby decreasing ER contrains. At a homeostatic state, the chaperone glucose-regulated protein 78 (Grp78/BiP) binds and blocks the activation of 3 ER trans-membrane proteins, i.e. inositol-requiring-1α (IRE1α), protein kinase double-stranded RNA-dependent-like ER kinase (PERK) and activating transcription factor-6 (Atf6) [9]. When misfolded or unfolded proteins accumulate in the ER, Grp78 releases those 3 sensors, leading to their activation. IRE1α, an endoribonuclease, splices X-box binding protein 1 (Xbp1) which stimulates the expression of Grp78 and ERAD enhancing mannosidase-like protein (Edem). PERK, via phosphorylation of eukaryotic translation initiation factor-2α subunit (eIF2α), globally inhibits protein translation. Active Atf6 translocates to the nucleus and enhances the transcription of genes encoding protein chaperones Grp78 and heat shock protein 90 (Hsp90/Grp94).

In addition to its primarily cytoprotective response, UPR has collateral side effects by inducing apoptosis, inflammation, insulin resistance and fat accumulation. Because of these deleterious consequences, it has been suggested that ER stress may participate to the development and propagation of NASH [3]. The ER stress pathologic response includes: enhanced expression and nuclear translocation of pro-apoptotic C/EBP homologous protein (Chop), induced mainly by PERK-dependent up-regulation of Atf4 transcription factor [29] but also by Atf6 and IRE1α pathways; PERK-and IRE1α-mediated induction of pro-inflammatory nuclear factor-xB; IRE1α-dependent activation of the c-Jun N-terminal kinase (JNK) which in turn impairs insulin signalling and can lead to apoptosis; PERK and Grp78-mediated activation of sterol regulatory element binding protein-1c (Srebp1c), the master regulator of de novo lipogenic program. In this way, the pathways activated during the response to ER stress could integrate lipid dysbiosynthesis, insulin resistance, inflammation and cell death in relation to excess cellular nutrient. It is therefore logical that ER stress has been envisaged as a pivotal pathogenic mechanism in NASH [3].

On the other hand, the evidence that ER stress mediates as opposed to accompanies development of fatty liver disease and transition to NASH is fragmentary. In the liver of leptin-deficient ob/ob mice, ER stress is evident and has been related to lipogenesis and hepatic insulin resistance [12;23]. However, ER stress does not necessarily accompany fatty liver disease in different genetic or diet-induced rodent models [38]. In humans, Puri et al. showed that, among the UPR markers, only phospho-eIF2α was increased in both NAFLD and NASH patients while the spliced form of XBP1 protein, found in controls and NAFLD, was low in NASH patients [25]. Gregor et al. showed that gastric bypass reduced phospho-eIF2α and Grp78 levels in liver and adipose tissue from obese patients, but data in liver were derived from only 4 liver biopsies [8]. Finally, Kumashiro et al. showed that in liver biopsies from 37 obese patients, ER stress markers correlated poorly with NAFLD-associated hepatic insulin resistance [13]. In summary, although several studies point to the UPR and...
initiation of some ER stress signalling pathways in human and experimental NAFLD, mechanistic evidence that ER stress activates key pathogenic pathways in NASH is lacking.

We have used a metabolic syndrome model for NASH to clarify the operation and mechanistic significance of ER stress. Postnatally, Alms1 mutant (foz/foz) mice lose hypothalamic neuronal cilia, location of key appetite sensing receptors, causing hyperphagic obesity with hyperleptinemia, hypoadiponectinemia and steatosis [11]. When fed a high fat diet, foz/foz mice rapidly develop obesity-related metabolic syndrome [2] and liver injury that recapitulates all the features of NASH: steatosis, liver inflammation, hepatocellular injury including ballooning and apoptotic cell death as well as progressive fibrosis [1]. We first measured expression of UPR and ER stress response proteins at various time points upon HFD feeding. In order to interrogate a causal relationship between ER stress response and liver pathology, we then performed interventions designed firstly to induce ER stress by a known mechanism (tunicamycin), and secondly to abrogate ER stress with the ER chaperone, tauro-ursodeoxycholic acid (TUDCA). Our data seriously challenge the notion that ER stress promotes the development of either the metabolic phenotype or steatohepatitis pathology in mice whose adipokine responses to obesity are the same as humans.

Material and methods

Animals and diets

Male foz/foz (Alms1 mutant) NOD.B10 mice were bred and maintained in a 12-h light/dark cycle in the animal facility of Université catholique de Louvain (Brussels, Belgium). After weaning, mice were fed a standard rodent chow diet (ND) containing 2.83 kcal/g (16% fat, 54% carbohydrate, 30% protein, 0.001% cholesterol [wt/wt]; A03 from SAFE-diets, France) or a high-fat diet (HFD) which contains 5.24 kcal/g (60% fat, 20% carbohydrate, 20% protein, 0.03% cholesterol; D12492 from Research Diets, USA). Female WT and foz/foz mice were bred in the animal facility of ANU Medical School at The Canberra Hospital (Garran, ACT, Australia). All experiments were performed with approval of the local University Animal Welfare Committee.

Treatments

Male foz/foz mice were fed the ND or HFD for 3 days (5 mice per group), 6 weeks (≥ 5 mice per group) or 16 weeks (3 mice per group). Female WT and foz/foz mice were fed chow or HFD for 12 or 24 weeks (n=6 per group).

Tunicamycin (T7765 from Sigma) was dissolved at 200 μg/mL in 4.0% DMSO/10 mM Tris pH 8.0 [28]. Ten week-old male foz/foz mice under ND received an intraperitoneal (IP) injection of 1.0 mg/kg BW or an equivalent volume of diluent (6 mice per group) and were sacrificed 6 hours after treatment for the acute tunicamycin treatment. For chronic ER stress activation, another group of foz/foz mice were fed HFD for 5 weeks. After one week HFD feeding, an Alzet minipump (model 1004) loaded with tunicamycin or diluent was implanted in the inter scapulae subcutaneous tissue (5 per group) such as to obtain a continuous release of the product (10 ng/kg BW/day [17]) during 4 weeks. Mice were kept under HFD for the duration of treatment.

To inhibit ER stress, chemical chaperones were administered in a therapeutic setting. After 4 weeks HFD feeding in male foz/foz mice, treatment was initiated and repeated twice daily for 14 days. HFD was maintained during treatment. Ob/ob mice (7 week-old; Janvier, France) were used as a positive control and treated in parallel (same dose and simultaneously) with foz/foz mice. As chemical chaperones, we used 4-phenyl butyrate (PBA) in one hand and tauro-ursodeoxycholic acid (TUDCA) on the other. PBA was administered to mice (4 per group) by IP injection (water as vehicle) at the doses of 250 or 500 mg/kg twice a day (9 am and 6 pm, 0.5 or 1 g/kg BW/d).

Tauro-ursodeoxycholic acid (TUDCA) was administered to mice by IP injection (water as vehicle) at a dose of 250 mg/kg twice a day (9 am and 6 pm, 500 mg/kg BW/d). TUDCA treatment decreased food intake both in ob/ob and HFD-fed foz/foz mice (~7.6 kcal/day for both strains, p<0.001, n=3-4 per
Therefore, to clearly dissociate the effects of TUDCA from those due to decreased energy intake, mice were paired according to their body weight and glycaemia, and each control was pair-fed the same amount of food as that eaten by the corresponding TUDCA-treated mouse the day before (6-7 per group). Please see supplementary experimental procedures.

Data analyses

Data are presented as means ± standard deviation (SD). Quantitative variables deviating from normal distribution were log-transformed. Differences between groups were analysed using the Student’s t-test. Paired tests were performed between TUDCA-treated mice and their respective pair-fed controls. P values <0.05 were considered as statistically significant.

Results

High-fat diet-fed foz/foz mice develop metabolic and hepatic phenotypes similar to those encountered in human NASH

As previously reported, 6 weeks HFD induces obesity, adiposity and hepatomegaly in male foz/foz mice (Table 1). This was associated with fasting hyperglycaemia and pronounced glucose intolerance (Table 1, Figure 1 A). At this stage, liver histology showed macrovesicular steatosis with fat droplets present in more than 70% of hepatocytes (grade 3) (Figure 1 B). Biochemical analyses confirmed a 6-fold increase in hepatic lipids in HFD- versus ND-fed foz/foz mice (Table 1). Inflammatory foci were scattered through the parenchyma and hepatic F4/80 and CD68 transcript levels were significantly increased signifying macrophage activation (Figure 1 B & C). Ballooned hepatocytes were readily observed, as was hepatocellular apoptosis, indicated by the presence of apoptotic bodies and of M30-immunopositive hepatocytes (Figure 1 D). Elevated serum ALT level confirmed liver injury (Table 2). Thus, livers of HFD-fed foz/foz mice conform to all the criteria for a diagnosis of NASH. As reported elsewhere, upon continuation of HFD for longer period, severe fibrosing NASH will develop [1;15].

High-fat diet does not induce obvious ER stress in foz/foz mice

Compared to their ND-fed controls, we found no molecular signature of UPR in 6 week HFD-fed foz/foz livers: there was no increased phosphorylation of eIF2α or IRE1α upregulation, no splicing of Xbp1 and no increased expression of chaperones Grp78 and Hsp90 or upregulation of Edem (Figure 2 A-C). Also the expression of genes involved in de novo lipogenesis and phospholipid synthesis (Pemt) were not induced or rather reduced (Fasn, Scd-1) (Figure 2 D). This particularly contrasted with the ob/ob model which presented activation of the UPR and enhanced lipogenic genes expression, as already reported by others [12;23] (Supplementary Figure 1).

When activation of the UPR fails to restore homeostasis, the pro-apoptotic and pro-inflammatory pathways mentioned in the introduction prevail. As previously reported [14;35], JNK phosphorylation increased in HFD-fed foz/foz mouse livers compared to ND-fed counterparts (Figure 2 E). Further, Atf4 and Chop mRNA expression were significantly increased (Figure 2 F). However, nuclear Chop protein was not detectable (Figure 2 G) and only pro-apoptotic Bim was up-regulated but no other Chop targets such as Gadd34 or Trib3. This highly suggests that Chop does not mediate apoptosis in this model.

UPR activation was also investigated at different time points of HFD feeding. A short term HFD feeding (3 days) did not induce UPR in male foz/foz mice (Supplementary Figure 2 A-C). Also, UPR was not evidenced in foz/foz mice fed HFD for 16 weeks, which present a more advanced stage of steatohepatitis (Supplementary Figure 2 A-B-D). Finally, in female foz/foz mice which also develop NASH [15], there was also no up-regulation of Grp78 or nuclear Chop expression after 12 or 24 weeks of HFD feeding (Supplementary Figure 2 E-G).

IL 02/07/2014 11:35:28
Treatment with ER stress inducer does not aggravate metabolic and hepatic phenotype of HFD-fed foz/foz mice

Because of the theoretical concern that unidentified functions of Alms1 in the liver could alter a biological response such as ER stress, we sought to confirm that a known inducer of ER stress operated as anticipated in this line. Tunicamycin inhibits protein glycosylation leading to the accumulation of unfolded proteins in the ER lumen. As shown in Supplementary Figure 3, acute tunicamycin co-ordinately induced PERK-dependant eIF2α phosphorylation and Atf4/Chop expression and nuclear translocation, IRE1α expression and splicing of Xbp1, expression of chaperones and protein degradation machinery. However tunicamycin did not induce JNK phosphorylation in livers of foz/foz mice.

We then assessed whether prolonged ER stress activation would enhance metabolic disturbances and promote NASH in HFD-fed foz/foz mice. We therefore implanted tunicamycin-filled minipumps into HFD-fed foz/foz mice. Compared to vehicle-treated HFD-fed foz/foz controls, 4 weeks of tunicamycin infusion induced a UPR assessed by a significant increase in hepatic Grp78 and Hsp90 expression and in JNK phosphorylation (Figure 3 A-C). This was associated with decreased AKT phosphorylation on the threonine residue (Supplementary Figure 4 B). Despite this negative effect on insulin signalling pathway, chronic tunicamycin infusion did not further increase plasma glucose and c-peptide levels or glucose intolerance (Table 2 & Figure 3 E) in HFD-fed foz/foz mice. Similarly, it did not aggravate liver pathology. Thus, serum ALT levels and hepatic lipid content were similar in tunicamycin-treated and control HFD-fed foz/foz mice (Table 2). On histological examination (Figure 3 F and H), the degree of steatosis (52 ± 22% versus 32 ± 16% of fatty hepatocytes), the number of ballooned hepatocytes (1.8 ± 1.5 versus 1.3 ± 1.1 per high power field (20X), p=0.57) and the number of M30 positive hepatocytes (4.49 versus 2.73 per high power field, p=0.07) were not significantly different in tunicamycin- and PBS-treated HFD-fed foz/foz mice. Tunicamycin may have reduced the extent of inflammation, as reflected by the lower number of inflammatory foci compared to PBS-treated HFD-fed foz/foz mice (0.9 ± 0.6 versus 2 ± 0.7 per field (10X), p=0.003) with no significant change in F4/80 and CD68 mRNA expression (Figure 3 G).

The ER stress chaperone, tauro-ursodeoxycholic acid does not improve glucose tolerance or liver injury in HFD-fed foz/foz mice.

If ER stress always plays a role in the metabolic abnormalities of unhealthy obesity or in the pathogenesis of steatohepatitis, administration of agents that are known to abrogate an ER stress response should, at least partly, mitigate against these effects. Others have shown that the chemical chaperones 4-phenyl butyrate (PBA) and tauro-ursodeoxycholic acid (TUDCA) counteract ER stress and improve glucose homeostasis and steatosis in ob/ob mice [24]. We therefore examined the effects of these ER protectants in HFD-fed foz/foz mice and we used ob/ob mice as a positive control to validate the treatments. Foz/foz mice received PBA or TUDCA treatment during the last 2 weeks of a 6-week HFD feeding protocol. The chemical chaperone PBA which protected ob/ob mice against ER stress (data not shown) was highly toxic to foz/foz mice so that the mortality, which exceeded 70%, precluded interpretation. We then used TUDCA and observed that it reduced food intake (-7.6 kcal/day for both strains, p<0.001). Thus, we used pair-fed mice as controls to strictly dissociate any pharmacological effects of TUDCA from those attributable to decreased nutrient load. As expected, TUDCA treatment to ob/ob mice significantly improved steatosis and glucose homeostasis, and decreased the expression of UPR markers (Supplementary Figure 5). In HFD-fed foz/foz mice, the effect of TUDCA on ER homeostasis was confirmed by the decrease in eIF2α phosphorylation and IRE1α protein levels (Figure 4 A). This was associated with a further decrease in the expression of lipogenic genes (Figure 4 C) as well as Nqo1, a marker of oxidative stress (2-fold decrease, p=0.04).

However, TUDCA treatment had no significant effect on JNK phosphorylation or on the expression of Chop and the target genes that were enhanced in HFD foz/foz livers (Figure 4 A & B).

At the physiological level, TUDCA treatment failed to decrease hyperglycaemia, serum c-peptide levels or to improve glucose tolerance and hepatic insulin signalling in HFD-fed foz/foz mice (Table 3, Figure 4 D and Supplementary Figure 3). TUDCA did reduce the severity of hepatic steatosis.
histologically, and this effect was confirmed by a significant reduction in total hepatic lipid content (Table 3). However, TUDCA failed to reduce the number of inflammatory foci or the activation of Kupffer cells in the liver of HFD-fed foz/foz mice (Figure 4 E-F). Besides, ballooned hepatocytes were still readily observed in TUDCA-treated foz/foz livers and there was no improvement in M30 cytokeratin fragmentation immunostaining (Figure 4 G). We interpret these results as indicating that ER protectant, despite decreasing steatosis, does not improve glucose homeostasis, unlike in ob/ob mice, or the kind of liver injury that comprises transition to steatohepatitis in HFD-fed foz/foz mice.

Discussion

Perturbation in the normal function of the endoplasmic reticulum triggers a signalling network that coordinates adaptive, inflammatory and apoptotic responses. There is accumulating evidence implicating prolonged ER stress in the development and progression of many diseases, in particular in obesity-associated insulin resistance and NAFLD. A link between activation of the UPR and hepatic insulin resistance and steatosis has been demonstrated in ob/ob mice [12;23;24]. Increased eIF2α expression has been reported in human NASH livers [25], but with no evidence of aggravation in NASH livers compared to those with simple steatosis. Mice mutated for the ER secretory pathway protein, Sec61alpha1, develop hepatic steatosis, progressive liver injury with fibrosis when challenged with a HFD but intervention studies alleviating ER stress to test for causality were not reported [18].

To interrogate the participation of ER stress and UPR to obesity-associated liver injury, we used HFD-fed foz/foz mice which exhibit, in addition to steatosis, hepatic inflammation and hepatocellular injury that evolve with time into fully established NASH with typical perisinusoidal fibrosis [1;15]. If indeed a pathologic ER stress response develops, we reasoned that chemical induction of ER stress would worsen insulin resistance and apoptotic cell death. Conversely, ER protectants would have an opposite protective effect. Strikingly, tunicamycin-induced ER stress failed to significantly aggravate the metabolic and hepatic phenotype of HFD-fed foz/foz mice. Moreover, TUDCA, an ER protectant, despite decreasing steatosis, did not improve glucose homeostasis or liver injury in HFD-fed foz/foz mice. None of these findings provide support for the operation of ER stress in the pathophysiology and cellular pathology of insulin resistance-related steatohepatitis.

Among ER stress response markers, we found no signature of an adaptive response converging to reduce ER protein overload. Increased Atf4 and Chop transcripts and activation of JNK seen in HFD-fed foz/foz livers may be interpreted as part of an ER stress response. However, the causal relationship between those signalling events and UPR is not established in the absence of upstream activation of ER-transmembrane proteins. Further, disturbed ER homeostasis and UPR are not a unique mechanism converging to activate these factors. LPS, NO or oxidative stress [21;22] as well as DNA damage (chop is also known as Gadd153 -growth arrest and DNA damage inducible gene [6;30]) are potent stimuli for Chop up-regulation. Further analyses are needed to unravel the signals that up-regulate Chop expression in foz/foz mice. Importantly, increased Chop transcript, as it is not associated with increased nuclear translocation of the protein, is most likely irrelevant for inducing apoptosis in HFD-fed foz/foz livers.

The currently accepted model for JNK activation by free fatty acids involves ER stress through IRE1α [34]. Contradicting this paradigm, Sharma et al. showed that fatty acid-induced JNK activation was not inhibited in the absence of IRE1α and that fatty acid-induced cell death in hepatocytes was independent of IRE1α [31]. Therefore, the fact that JNK activation was observed in HFD-fed foz/foz
mice in the absence of IRE1α activation can readily be explained by the direct effects of lipotoxicity from accumulated free fatty acids [20] as well as free cholesterol (Gan and Van Rooyen 2013; unpublished data) rather than as part of a pathologic response to ER stress.

Despite the evident absence of ER stress in HFD-fed foz/foz mice, TUDCA treatment did reduce steatosis severity. In another genetic model of obesity, Yang et al. suggested that TUDCA improved hepatic steatosis by reducing oxidative stress [38]. Nqo1, a marker of oxidative stress, and several key lipogenic genes were decreased in TUDCA-treated foz/foz mice, supporting a role of oxidative stress in the anti-steatotic effect of TUDCA. Furthermore, TUDCA, which is a hydrophilic bile acid, stimulates the synthesis and biliary secretion of phosphatidylcholine [19]. An increased fraction of hepatic free fatty acid may thus exit the liver as phospholipids and not participate to triglyceride synthesis, contributing to reduced steatosis.

As our results in foz/foz mice differ from those previously reported by elegant experimentation in other models, we consider that at least some of the earlier findings could be model-specific, many being in animals lacking leptin (ob/ob mice) [24] or a functional leptin receptor (db/db mice) [26]. To establish this we performed similar studies in ob/ob mice and were able to confirm the previously reported, adaptive response to ER stress in ob/ob livers and a beneficial effect of ER-protectants on steatosis and glucose homeostasis. Xu et al also reported differential effects of an ER protectant on glucose homeostasis in different models of type 2 diabetes: while PBA normalized hyperglycaemia in ob/ob mice, it had no glucose-lowering effect in Goto-Kakizaki rats and had no preventive or therapeutic effects on insulin resistance and hyperglycaemia in mice treated with hydrocortisone [37]. Therefore, the operation of ER stress could be related to the mechanisms causing metabolic alterations. Fu et al. demonstrated in ob/ob mice that lipogenesis, by altering the composition of ER membranes, causes the dysfunction of ER-anchored proteins and in particular that of the calcium pump SERCA resulting in modification of calcium fluxes impacting on protein folding capacity [7]. De novo lipogenesis is a prominent mechanism for steatosis in leptin-deficient mice [4;32]. This is not the case in obese humans with NAFLD [5], in which less than 30% of total hepatic lipid arises from hepatic lipogenesis, nor is it the case in foz/foz livers, in which steatosis results from increased delivery of fatty acid to the liver and altered lipid partitioning [14;15]; the latter finding is very similar to that observed by lipid turnover studies in humans [5].

In our study, TUDCA treatment did not have benefice on NASH progression. A similar observation was also reported by Henkel et al. applying TUDCA treatment in mice with MCD-induced steatohepatitis [10]. Noteworthy, the unconjugated form of this bile acid (UDCA) investigated for many years in the treatment for NASH is ineffective and cannot be recommended for NASH treatment [36]. Other non-UDCA bile acids, regulating metabolism by binding to the nuclear hormone receptor farnesoid X receptor and to a transmembrane bile acid receptor, TGR5, may deserve more attention.

In conclusion, this study shows that ER stress is not a feature associated with insulin resistance and steatohepatitis in the foz/foz model and that altering or protecting ER functions has no effect on insulin resistance and liver disease propagation. Data from earlier models may be model-specific. Since the progressive liver disease of the HFD-fed foz/foz mice, including hepatocellular injury with ballooning, apoptosis, inflammation and later accompanied with pericellular fibrosis, is more relevant to human NAFLD and NASH than is leptin-deficiency in ob/ob mice, convincing evidence gained from clinical studies would be required to provide support to the therapeutic effect of ER stress modifiers in human NASH.

Clinical Perspectives
Earlier studies have shown that counteracting ER stress using chemical chaperones such as TUDCA had a therapeutic benefit in obese and insulin resistant mouse models that develop simple steatosis. Using a unique model that develops the progressive liver disease in the metabolic context as seen in human NASH, we show that ER stress does not contribute to the pathogenesis of NASH and that TUDCA fails to alleviate glucose intolerance and hepatic inflammation and apoptosis, thus limiting the therapeutic potential of chemical chaperones to treat NASH.

Acknowledgements
The authors wish to thank Noémi Van Hul (UCL, Brussels Belgium), Sophie Lotersztajn INSERM U1149, Paris, France), and Peter L Jansen (University of Maastricht, The Netherlands) for their suggestions that enrich this manuscript.

Funding
The work was supported by grants from the D.G. Higher Education and Scientific Research of the French Community of Belgium, the Fund for Scientific Medical Research (Belgium), Australian National Health and Medical Research Council project grant 418101, and unrestricted research grants from AstraZeneca Belgium, Janssens Pharmaceutica Belgium, and Roche Belgium. IL is a FRS-FNRS research associate.

Reference List

Figure legends

Figure 1: High-fat diet-fed foz/foz mice present all the metabolic and histologic features of human NASH

(A) Curves of glycaemia during intra-peritoneal glucose tolerance test and area under the glucose curves (AUC) in foz/foz mice fed normal diet (ND-plain forms) or high-fat diet (HFD-open forms) during 6 weeks. (B) Haematoxylin and eosin staining of liver sections showing steatosis in HFD-fed foz/foz mice compared to ND (original magnification X10). Higher magnification figures (X20) highlight ballooned hepatocytes (arrows, a), mitosis (b), nuclear glycogen inclusion (c), apoptotic body (d) and inflammatory infiltrates (e) in HFD foz/foz livers. (C) F4/80 and CD68 mRNA levels assessed by reverse transcription and real time PCR on whole liver RNA. (D) Immunohistochemistry using antibody against cleaved cytokeratin 18 (M30) demonstrating apoptotic hepatocytes in HFD foz/foz livers (original magnification X20). *p<0.05

Figure 2: Adaptive and pathologic ER stress responses in foz/foz mice

RNA and total proteins were extracted from livers of normal diet (ND or plain bars) or high-fat diet-fed foz/foz mice (HFD or open bars) to evaluate (A) eIF2α phosphorylation (parts of the same immunoblot) and IRE1α protein levels by western blot (left panel) and quantification (right panel); (B) Xbp1 splicing by reverse transcription PCR (products loaded on agarose gel; spliced=147 bp, unspliced=173 bp; T, positive control with tunicamycin); (C) expression of target genes of adaptive UPR by RT-qPCR; (D) expression of lipogenic genes measured by RT-qPCR; (E) phosphorylation of JNK by western blot (parts of the same immunoblot) and quantification; (F) expression of target genes of pathologic ER stress response by RT-qPCR; (G) nuclear Chop protein level assessed by western blot. *
p<0.05

Figure 3: Chronic activation of ER stress does not worsen foz/foz phenotype

(A) Quantification of eIF2α and JNK phosphorylation and IRE1α protein levels assessed by western blot, (B) expression of adaptive and pathologic ER stress response target genes assessed by RT-qPCR, (C) Xbp1 splicing, (D) expression of lipogenic genes measured by RT-qPCR, (E) IP glucose tolerance test (area under the curves p=0.15), (F) Haematoxylin and eosin staining of liver sections (10X magnification), (G) expression of F4/80 and CD68 mRNA assessed by RT-qPCR and (H) quantification of apoptotic cells stained using M30 antibody for cleaved cytokeratin 18 in 5 weeks HFD-fed foz/foz mice treated for 4 weeks with tunicamycin (TUN or hatched bars) or not (CTL or open bars). *p<0.05

Figure 4: TUDCA decreases UPR and steatosis but fails to reduce JNK and Chop and to improve glucose intolerance, hepatic insulin signalling, inflammation and apoptosis in HFD-fed foz/foz mice

RNA and total proteins were extracted from whole livers of 6 week HFD-fed foz/foz mice that received TUDCA IP injections for the last 2 weeks (TUDCA or dotted bars) and pair-fed controls (pair-fed or open bars). (A) Quantification of eIF2α and JNK phosphorylation and IRE1α protein levels assessed by western blot. (B) Expression of adaptive and pathologic ER stress response target genes assessed by RT-qPCR. (C) Expression of lipogenic genes measured by RT-qPCR. (D) IP glucose tolerance test (area under the curves p=0.92). (E) Haematoxylin and eosin staining (left panels) and F4/80 immunohistochemistry (right panels) of the liver sections (10X magnification). (F) Expression of F4/80 and CD68 assessed by RT-qPCR. (G) Quantification of apoptotic cells stained using M30 antibody for cleaved cytokeratin 18. *p<0.05
Table 1: Metabolic parameters in foz/foz mice fed normal diet (ND) or high-fat diet (HFD) for 6 weeks after weaning

<table>
<thead>
<tr>
<th></th>
<th>ND</th>
<th>HFD</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Body weight (g)</td>
<td>22.5 ± 1.9</td>
<td>48.7 ± 2.6</td>
<td>2.10⁻¹⁰</td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>1.31 ± 0.19</td>
<td>2.64 ± 0.42</td>
<td>3.10⁻⁶</td>
</tr>
<tr>
<td>Liver/body (%)</td>
<td>5.81 ± 0.51</td>
<td>5.40 ± 0.65</td>
<td>0.22</td>
</tr>
<tr>
<td>Hepatic lipid content (mg/100mg tissue)</td>
<td>7.36 ± 3.68</td>
<td>43.08 ± 13.82</td>
<td>9.10⁻⁵</td>
</tr>
<tr>
<td>Epididymal adipose tissue weight (g)</td>
<td>0.32 ± 0.13</td>
<td>2.71 ± 0.31</td>
<td>2.10⁻¹⁰</td>
</tr>
<tr>
<td>Epididymal adipose tissue/body (%)</td>
<td>1.41 ± 0.55</td>
<td>5.60 ± 0.81</td>
<td>2.10⁻⁷</td>
</tr>
<tr>
<td>Fasting glycaemia (mg/dL)</td>
<td>148 ± 21</td>
<td>229 ± 9</td>
<td>0.03</td>
</tr>
<tr>
<td>Insulin C-peptide (pM)</td>
<td>1652 ± 1079</td>
<td>2552 ± 1529</td>
<td>0.15</td>
</tr>
<tr>
<td>Alanine aminotransferase (IU/L)</td>
<td>50.3 ± 6.9</td>
<td>108.0 ± 55.2</td>
<td>0.02</td>
</tr>
<tr>
<td>Total caloric intake (kcal/day)</td>
<td>8.33 ± 0.58</td>
<td>17.85 ± 2.98</td>
<td>0.0002</td>
</tr>
<tr>
<td>Caloric intake from fat (kcal/day)</td>
<td>1.33 ± 0.09</td>
<td>10.71 ± 1.79</td>
<td>0.00002</td>
</tr>
</tbody>
</table>
Table 2: Metabolic parameters in high-fat diet-fed foz/foz mice treated or not with tunicamycin in a chronic setting

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Control</th>
<th>Tunicamycin</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Body weight (g)</td>
<td>38.0 ± 3.9</td>
<td>36.0 ± 5.22</td>
<td>0.30</td>
</tr>
<tr>
<td>Body weight gain (g)</td>
<td>+ 17.7 ± 3.0</td>
<td>+ 19.2 ± 2.4</td>
<td>0.41</td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>2.24 ± 0.52</td>
<td>2.33 ± 0.50</td>
<td>0.79</td>
</tr>
<tr>
<td>Hepatic lipid content (mg/100mg tissue)</td>
<td>38.52 ± 10.73</td>
<td>28.88 ± 10.01</td>
<td>0.18</td>
</tr>
<tr>
<td>Epididymal adipose tissue weight (g)</td>
<td>2.01 ± 0.43</td>
<td>2.40 ± 0.59</td>
<td>0.28</td>
</tr>
<tr>
<td>Fasting glycaemia (mg/dL)</td>
<td>224 ± 49</td>
<td>239 ± 73</td>
<td>0.71</td>
</tr>
<tr>
<td>Insulin C-peptide (pM)</td>
<td>1345 ± 178</td>
<td>1464 ± 554</td>
<td>0.67</td>
</tr>
<tr>
<td>Alanine aminotransferase (IU/L)</td>
<td>106.0 ± 28.3</td>
<td>120.3 ± 40.4</td>
<td>0.67</td>
</tr>
</tbody>
</table>
Table 3: Metabolic parameters in high-fat diet-fed foz/foz mice treated or not with TUDCA

<table>
<thead>
<tr>
<th>n</th>
<th>pairfed control</th>
<th>TUDCA</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>7</td>
<td>6</td>
<td>p value</td>
</tr>
<tr>
<td>Body weight (g)</td>
<td>36.9 ± 4.6</td>
<td>36.0 ± 5.22</td>
<td>0.77</td>
</tr>
<tr>
<td>Liver weight (g)</td>
<td>1.68 ± 0.26</td>
<td>1.43 ± 0.09</td>
<td>0.046</td>
</tr>
<tr>
<td>Liver/body (%)</td>
<td>4.54 ± 0.27</td>
<td>4.02 ± 0.42</td>
<td>0.031</td>
</tr>
<tr>
<td>Hepatic lipid content (mg/100mg tissue)</td>
<td>20.6 ± 4.5</td>
<td>13.2 ± 3.3</td>
<td>0.006</td>
</tr>
<tr>
<td>Epididymal adipose tissue weight (g)</td>
<td>2.13 ± 0.50</td>
<td>1.82 ± 0.53</td>
<td>0.30</td>
</tr>
<tr>
<td>Fasting glycaemia (mg/dL)</td>
<td>201 ± 41</td>
<td>171 ± 35</td>
<td>0.21</td>
</tr>
<tr>
<td>Insulin C-peptide (pM)</td>
<td>634 ± 278</td>
<td>558 ± 101</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Summary statement

Unlike in mice developing simple steatosis, endoplasmic reticulum stress does not contribute to the pathogenesis of insulin resistance and steatohepatitis in high-fat diet-fed foz/foz mice, which develop the progressive liver disease in the metabolic context seen in human non-alcoholic steatohepatitis.

Author contribution

V Legry: conception and design of the study, generation, analysis and interpretation of data, and writing the manuscript; DM Van Rooyen: design of the study, generation and analysis of data; B Lambert: generation and collection of data; C Sempoux: histological analyses and data interpretation; L Poekes: generation and collection of data; R Español-Suñer: generation and collection of data and revision of the manuscript; O Molendi-Coste: generation and collection of data; Y Horsmans: interpretation of data, and revision the manuscript; GC Farrell: conception and design of the study, and revision of the manuscript; IA Leclercq: conception, design and supervision of the study, and writing the manuscript.
Figure 1

A

Blood glucose (mg/dl) vs. time after glucose injection (min)

- ND
- HFD

AUC IPGTT (mg/ml*min)

B

Immunohistochemistry images:
- ND
- HFD

C

Relative mRNA expression:
- ND
- HFD

D

Histological section
Figure 2

A

\[
\begin{array}{c|c|c}
& ND & HFD \\
\hline
p-eIF2 & & \\
eIF2 & & \\
IRE1\alpha & & \\
\beta\text{-actin} & & \\
\end{array}
\]

B

\[
\begin{array}{c|c|c}
& T & ND \\
\hline
uXBP1 & & \\
sXBP1 & & \\
\end{array}
\]

C

\[
\begin{array}{c|c|c|c|c}
& Grp78 & Hsp90 & Edem \\
\hline
\text{relative mRNA expression} & 1.0 & 1.0 & 1.0 \\
\end{array}
\]

D

\[
\begin{array}{c|c|c|c|c|c}
& Srebp1 & Fasn & Acc-1 & Scd-1 & Pemt \\
\hline
\text{relative mRNA expression} & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
\end{array}
\]

E

\[
\begin{array}{c|c|c}
& ND & HFD \\
\hline
p-JNK & & \\
JNK & & \\
\end{array}
\]

F

\[
\begin{array}{c|c|c|c|c|c}
& Atf4 & Chop & Gadd34 & Trib3 & Bim \\
\hline
\text{relative mRNA expression} & 1.0 & 1.0 & 1.0 & 1.0 & 1.0 \\
\end{array}
\]

G

\[
\begin{array}{c|c|c}
& ND & HFD \\
\hline
Chop & & \\
\beta\text{-actin} & & \\
\end{array}
\]
Figure 3

A

B

C

D

E

F

G

H

relative quantification

relative mRNA expression

TUN

CTL

T

relative mRNA expression

Blood glucose (mg/dl)

time after glucose injection (min)

sXBP1

uXBP1

Srebp1c Fasn Acc-1 Scd-1

relative mRNA expression

F4/80 CD68

M30 cytokeratin fragmentation

CTL TUN

Grp78 Hsp90 Edem Atf4 Chop Gadd34 Trib3 Bim

p-eIF2 p-JNK IRE1α

CTL TUN

0.0 0.5 1.0 1.5 2.0 2.5
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0 30 60 90 120 150 180

F4/80 CD68

CTL TUN

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0 30 60 90 120 150 180
Figure 4

A

Relative quantification

p-eIF2 p-JNK IRE1α

B

Relative mRNA expression

Grp78 Hsp90 Edem

C

Relative mRNA expression

Srebp1c Fasn Acc-1 Scd-1 Pemt

D

Blood glucose (mg/dl) time after glucose injection (min)

E

H&E F4/80 IHC

paired TUDCA

F

Relative mRNA expression

F4/80 CD68

G

M30 cytokeratin fragmentation

0 2 4 6 8 10

0 2 4 6 8 10 12 14 16 18

0 30 60 90 120 150 180

0 30 60 90 120 150 180
Supplementary material

Material and methods

Animals and treatment
Six week-old male ob/ob mice and their lean (ob+/+) littermates were purchased from Janvier (France), fed chow and maintained in the animal facility of Université catholique de Louvain (Brussels, Belgium) for 3 weeks. Treatment was initiated after 1 week acclimation. At the time of sacrifice, anesthetized (ketamine/xylazine) mice received 5 U insulin (Actrapid, Novo Nordisk, Bagsvaerd, Denmark) or an equal volume of PBS into the portal vein to analyse the intrahepatic response to insulin. The liver was removed 1 min after the injection, and epididymal adipose tissue were dissected and weighed. Portions of tissue were immersed in formalin 4% for histology; the remaining tissue was snap frozen in liquid nitrogen and kept at -80°C until analyses.

Histology and immunohistochemistry
Formalin-fixed, paraffin-embedded sections were used for histological evaluation with haematoxylin and eosin (H&E) staining. Steatosis was estimated by counting the number of fatty hepatocytes in relation to the total number of hepatocytes and expressed as percentage of steatosis. Quantification has been performed on minimum 8 fields (objective 10X, magnification 100X). Tissue sections underwent antigen retrieval (sodium citrate) and antibody labelling. F4/80 was detected using a primary rat anti-mouse F4/80 monoclonal antibody (1/200, Serotec, Oxford, UK), a rabbit anti-rat immunoglobulin (1/200, Dako, Glostrup, Denmark) and then a goat anti-rabbit streptavidin horseradish peroxidase conjugated antibody (En Vision, Dako). Cleaved cytokeratine 18 (M30 epitope) was detected using a primary mouse antibody (1/100, Roche) and the MOM kit according to the manufacturer recommendations (Dako). The peroxidase activity was revealed with diaminobenzidine and slides were counterstained with haematoxylin. Quantification was performed in a minimum of 5 random 20X-power fields per section.

Glucose homeostasis assessment
Blood was retrieved from the tail vein on 4-hours fasted mice and used to measure glucose (Accu-chek Aviva; Roche) and C-peptide plasma concentration using an enzyme immunoassay (ALPCO, USA). To evaluate glucose tolerance, glucose (1 g/kg body weight) was injected IP after a fasting period of 4 hours, and glucose levels were monitored in tail blood at 0, 15, 30, 60, 90, 120 and 180 min after the injection. Glucose tolerance test was performed 2 days prior to sacrifice, or after 12 days of TUDCA, PBA or vehicle treatment.

Lipid and protein analyses
Total liver lipids were extracted with methanol and chloroform and quantified using the vanillin phosphoric acid reaction [1]. To analyse the ER stress response, proteins from liver homogenates (100 µg) were assayed by western blotting using the antibodies and conditions listed in Supplementary Table 1. Immunoreactivity was detected with a horseradish peroxidase-conjugated secondary antibody and enhanced chemiluminescence reagents (Western Lightning Chemiluminescence Reagent Plus; Perkin Elmer). One membrane was sequentially probed with the antibodies against the total protein, the phospho-protein, and GAPDH or beta-actin to control for protein loading. The quantification of immunoreactive proteins was obtained by densitometry using the Gel DocTM XR System 170–8,170 device and software (Bio-Rad). The levels of immunoreactivity relative to the invariant control are reported as arbitrary densitometry units. Phosphorylation was estimated by calculating the ratio of phospho-protein divided by the total form of the protein.

RNA extraction, reverse transcription and real time quantitative PCR (RT-qPCR)
Total RNA was extracted from frozen liver using TRIpure Isolation Reagent (Roche Diagnostics Belgium, Vilvoorde, Belgium). cDNA was synthesized from 1 µg RNA using random primers and M-MLV RT (Invitrogen, Merelbeke, Belgium). Real-time PCR analysis was performed as described previously [1]. Primer pairs for transcripts of interest were designed using the Primer Express design software (Applied Biosystems, Belgium) and are listed in Supplementary Table 2. RPL19 mRNA was chosen as an invariant standard. All experimental tissues and standard curve samples were run in duplicate in a 96-well reaction plate (MicroAmp Optical; Applied Biosystems). Results are expressed as fold expression relative to expression in the control group using the ΔΔCt method [1].

Supplementary Figure legends

Supplementary Figure 1: Comparison of ER stress response between foz/foz and ob/ob models
RNA and total proteins were extracted from whole livers of 9 week-old ob/ob mice (pale grey bars), their lean littermates (white bars) and foz/foz mice fed normal diet (foz+ND or dark grey bars) or high-fat diet (foz+HFD or hatched bars) for 6 weeks. (A) Quantification of eIF2α phosphorylation and IRE1α protein expression assessed by western blot. (B) Expression of UPR target genes assessed by RT-qPCR. (C) Expression of lipogenic genes measured by RT-qPCR. * p<0.05 ob/ob vs. lean. † p<0.05 foz+HFD vs. ob/ob. ¥ p<0.05 foz+HFD vs. foz+ND

Supplementary Figure 2: ER-stress response in male (A-D) and female (E-G) foz/foz mice at different time points of HFD feeding
RNA and total proteins were extracted from livers of male foz/foz mice after 3 days and 16 weeks of HFD to evaluate (A) eIF2α phosphorylation by western blot, (B) Xbp1 splicing, (C-D) expression of UPR target genes by RT-qPCR. (E) Grp78 protein, (F) Chop mRNA and (G) nuclear protein expression at 12 and 24 weeks in female WT and foz/foz mice fed chow or HFD. * p <0.05, vs diet-matched control. #p<0.05, vs genotype-matched control.

Supplementary Figure 3: ER-stress response induced by tunicamycin in foz/foz mice
ND-fed foz/foz mice were treated with tunicamycin 1.0 mg/kg BW, IP (Tun, hatched bars) or vehicle (ND, plain bars) and the liver analysed 6 hours later. (A) eIF2α phosphorylation and IRE1α protein levels assessed by western blot (left panel) and quantification (right panel); (B) XBP1 splicing; (C) expression of target genes of adaptive UPR by RT-qPCR; (D) phosphorylation of JNK and nuclear Chop protein level assessed by western blot; (E) expression of pro-apoptotic UPR target genes measured by RT-qPCR. *p<0.05

Supplementary Figure 4: Hepatic insulin signaling in foz/foz mice
Insulin sensitivity was evaluated by phosphorylation of signalling intermediates (p-IR on Tyr1162/1163, p-AKT on Ser473 and on Thr308) upon insulin stimulus as determined by western blot in (A) foz/foz mice fed ND or HFD for 6 weeks, (B) 5 weeks HFD-fed foz/foz mice treated for 4 weeks with tunicamycin (TUN) or not (CTL) and (C) 6 week HFD-fed foz/foz mice that received TUDCA IP injections for the last 2 weeks (+TUDCA) and pair-fed HFD controls (-TUDCA).

Supplementary Figure 5: Side by side comparison of TUDCA effect in ob/ob and foz/foz models
4 week HFD-fed foz/foz mice and chow-fed ob/ob mice received simultaneously TUDCA IP injections during 2 weeks (TUDCA or dotted bars). Pair-fed controls (pair-fed or open bars) received PBS IP injections. RNA and total proteins were extracted from whole livers. (A) Quantification of eIF2α and JNK phosphorylation and IRE1α protein expression assessed by western blot. (B) Expression of UPR target genes assessed by RT-qPCR. (C) Expression of lipogenic genes measured by RT-qPCR. (D) IP glucose tolerance test (area under the curves p=0.92 for foz/foz mice TUDCA vs. pair-fed; p=0.05 for
ob/ob mice TUDCA vs. pair-fed). (E) Haematoxylin and eosin staining of the liver sections (10X magnification). *p<0.05 TUDCA vs. respective pair-fed controls
Supplementary Table 1: List of the antibodies used in western blotting

<table>
<thead>
<tr>
<th>Protein</th>
<th>Epitope</th>
<th># Antibody</th>
<th>Isotype</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>eIF2α</td>
<td></td>
<td>9722</td>
<td>rabbit</td>
<td>Cell Signalling</td>
</tr>
<tr>
<td>p-eIF2α</td>
<td>Ser 51</td>
<td>3398</td>
<td>rabbit</td>
<td>Cell Signalling</td>
</tr>
<tr>
<td>IRE1α</td>
<td>His963</td>
<td>3294</td>
<td>rabbit</td>
<td>Cell Signalling</td>
</tr>
<tr>
<td>JNK/SAPK</td>
<td>sc-571</td>
<td></td>
<td>rabbit</td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>p-JNK/SAPK</td>
<td>Thr183/Tyr185</td>
<td>4668</td>
<td>rabbit</td>
<td>Cell Signalling</td>
</tr>
<tr>
<td>GAPDH</td>
<td></td>
<td>2118</td>
<td>rabbit</td>
<td>Cell Signalling</td>
</tr>
<tr>
<td>β-actin</td>
<td>A5441</td>
<td></td>
<td>mouse</td>
<td>Sigma</td>
</tr>
<tr>
<td>Akt</td>
<td>610861</td>
<td></td>
<td>mouse</td>
<td>BD Transduction Laboratories</td>
</tr>
<tr>
<td>p-Akt</td>
<td>Ser473</td>
<td>4060</td>
<td>rabbit</td>
<td>Cell Signalling</td>
</tr>
<tr>
<td>p-Akt</td>
<td>Thr308</td>
<td>2965</td>
<td>rabbit</td>
<td>Cell Signalling</td>
</tr>
<tr>
<td>IR</td>
<td>sc-711</td>
<td></td>
<td>rabbit</td>
<td>Santa Cruz</td>
</tr>
<tr>
<td>p-IR</td>
<td>Tyr1162/1163</td>
<td>sc-25103</td>
<td>rabbit</td>
<td>Santa Cruz</td>
</tr>
</tbody>
</table>
Supplementary Table 2: List of the primers used in PCR

<table>
<thead>
<tr>
<th>Gene</th>
<th>RefSeq</th>
<th>Forward primer</th>
<th>Reverse primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acc-1</td>
<td>NM_133360</td>
<td>TGTCCGCACTGACTGTAACCA</td>
<td>TGCTCCGCACAGATTCTTCA</td>
</tr>
<tr>
<td>Atf4</td>
<td>NM_009716.2</td>
<td>CTCAGACAGTGGAACCCAAATTGG</td>
<td>GGCACACTGCTGGACTTTTATT</td>
</tr>
<tr>
<td>Bim</td>
<td>NM_207680</td>
<td>AGGAGGGTGTTTGAATGATT</td>
<td>ACCAGACGGAAGATAAAGCGTAA</td>
</tr>
<tr>
<td>CD68</td>
<td>NM_009853</td>
<td>TCGGGCCCTCCTGTGTG</td>
<td>TCTTCTCTGTCTTGAGGCTAT</td>
</tr>
<tr>
<td>Chop</td>
<td>NM_007837.3</td>
<td>AGGAGGCCGGGCGCAAACCA</td>
<td>TCTGAGAGCGGAGGCTTT</td>
</tr>
<tr>
<td>Edem</td>
<td>NM_138677</td>
<td>GATCCCCCTATTCCTCGGTT</td>
<td>GTTGCTCCGCAAGTTCCAG</td>
</tr>
<tr>
<td>Fasn</td>
<td>NM_007988</td>
<td>GATCCTGGGAACGGAACACGAT</td>
<td>AGAGACGTGTCACCTCGGACTT</td>
</tr>
<tr>
<td>F4/80</td>
<td>NM_010130</td>
<td>GATGAATTCCCGTGTTGGT</td>
<td>ACATCAGTGTCCAGGAGACACA</td>
</tr>
<tr>
<td>Gadd34</td>
<td>NM_008654.2</td>
<td>TGGTCCAGCTGAAGATGAAGAG</td>
<td>GGAAGCAGCAGAAAGCTTTG</td>
</tr>
<tr>
<td>Grp78</td>
<td>NM_022310.2</td>
<td>AGCCATCCCGTGCCATAA</td>
<td>GGACAGCGGCAGCAGTT</td>
</tr>
<tr>
<td>Hsp90</td>
<td>NM_011631</td>
<td>TGTTGTGCCAGGACTGAGTCTC</td>
<td>GCAATTTATGTTGCTAGAGTCTCA</td>
</tr>
<tr>
<td>Nqo1</td>
<td>NM_008706</td>
<td>CAATCAGCTTGGTACATGCA</td>
<td>GCCAGTACAATCAGGCTCTTC</td>
</tr>
<tr>
<td>Pemt</td>
<td>NM_008819</td>
<td>GCCGCTGTGATCACATTG</td>
<td>TCCCATCCTGCTACCACATT</td>
</tr>
<tr>
<td>Rpl19</td>
<td>NM_009078</td>
<td>GAAGGTCAAAGGGAATGTGTTCA</td>
<td>GCTTTGCTCTCCCTAGCTTG</td>
</tr>
<tr>
<td>Scd-1</td>
<td>NM_009127</td>
<td>CCAGAATGACGTGTACAATGAG</td>
<td>GCCGCTGTCTGGTACAGCTTGG</td>
</tr>
<tr>
<td>Srebp1</td>
<td>NM_011480</td>
<td>CTGGCATTGAAGCATTGCCCAAC</td>
<td>GCCACATAGATCCTGCGACTGT</td>
</tr>
<tr>
<td>Trib3</td>
<td>NM_175093</td>
<td>TGCTTGGCGGAGCTCAGA</td>
<td>CCCAGCTTGCTCCCTACAGTT</td>
</tr>
<tr>
<td>Xbp1*</td>
<td>NM_013842.2</td>
<td>ACAGCGGTGGGAGTGGGACAC</td>
<td>CCATGGGAGATGGTCTTGGG</td>
</tr>
</tbody>
</table>

*PCR product loaded on a 3% agarose gel (spliced=147bp; unspliced=173bp)
Supplementary Figure 1

A

![Graph A](image)

B

![Graph B](image)

C

![Graph C](image)
Supplementary Figure 2

A 3 days 16 weeks
 ND HFD ND HFD
 p-eIF2
 eIF2
 actin

B 3 days 16 weeks
 ND HFD ND HFD
 uXBP1
 sXBP1

C UPR target genes after 3 days of diet

D UPR target genes after 16 weeks of diet

E

F

G
Supplementary Figure 4

A

<table>
<thead>
<tr>
<th></th>
<th>ND</th>
<th>HFD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- - + +</td>
<td>- - + +</td>
</tr>
<tr>
<td></td>
<td>insulin</td>
<td>insulin</td>
</tr>
<tr>
<td></td>
<td>p-AKT Thr</td>
<td>p-AKT Thr</td>
</tr>
<tr>
<td></td>
<td>p-AKT Ser</td>
<td>p-AKT Ser</td>
</tr>
<tr>
<td></td>
<td>AKT</td>
<td>AKT</td>
</tr>
<tr>
<td></td>
<td>β-actin</td>
<td>β-actin</td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th></th>
<th>CTL</th>
<th>TUN</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- + + +</td>
<td>- + + +</td>
</tr>
<tr>
<td></td>
<td>insulin</td>
<td>insulin</td>
</tr>
<tr>
<td></td>
<td>p-AKT-Thr</td>
<td>p-AKT-Thr</td>
</tr>
<tr>
<td></td>
<td>p-AKT-Ser</td>
<td>p-AKT-Ser</td>
</tr>
<tr>
<td></td>
<td>AKT</td>
<td>AKT</td>
</tr>
<tr>
<td></td>
<td>β-actin</td>
<td>β-actin</td>
</tr>
</tbody>
</table>

C

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>TUDCA</th>
<th>insuln</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- + - +</td>
<td>- - + +</td>
<td>TUDCA</td>
</tr>
<tr>
<td></td>
<td>p-AKT-Thr</td>
<td>p-AKT-Thr</td>
<td>TUDCA</td>
</tr>
<tr>
<td></td>
<td>p-AKT-Ser</td>
<td>p-AKT-Ser</td>
<td>insuln</td>
</tr>
<tr>
<td></td>
<td>AKT</td>
<td>AKT</td>
<td>insuln</td>
</tr>
<tr>
<td></td>
<td>β-actin</td>
<td>β-actin</td>
<td>insuln</td>
</tr>
</tbody>
</table>
Supplementary Figure 5

A

B

C

D

E

H&E

pairfed

TUDCA

ob/ob

foz/foz

H&E

ob/ob

foz/foz

relative mRNA expression

p-eIF2/eIF2

IRE1a

p-JNK/JNK

Grp78

Hsp90

Edem

Atf4

Chop

Gadd34

Trib3

Bim

Srebp1c

Fasn

Acc-1

Scd-1

Pemt

Grp78

Hsp90

Edem

Atf4

Chop

Gadd34

Trib3

Bim

Srebp1c

Fasn

Acc-1

Scd-1

Pemt

IRE1α

p-JNK

glycaemia (mg/dl)

time after glucose injection (min)

relative mRNA expression

ob/ob pairfed

ob/ob TUDCA

foz/foz pairfed

foz/foz TUDCA

ob/ob

foz/foz

ob/ob

foz/foz

Supplementary Figure 5