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ABSTRACT 

Although controlled/living radical polymerization processes have significantly facilitated the 

synthesis of well-defined narrow polydispersity polymers with specific functionalities, a detailed 

and systematic knowledge of the thermal stability of the products – highly important for most 

industrial processes – is not available. Linear polystyrene (PS) carrying a trithiocarbonate mid-

chain functionality (thus emulating the structure of the Z-group approach via reversible addition 

fragmentation chain transfer (RAFT) based macromolecular architectures) with various chain 

lengths (20 kDa ≤ Mn,SEC ≤ 150 kDa, 1.27 ≤ Đ = Mw/Mn ≤ 1.72) and end-chain functionality were 

synthesized via RAFT polymerization. The thermal stability behaviour of the polymers was 

studied at temperatures ranging from 100 °C to 200 °C for up to 504 days (3 weeks). The 

thermally treated polymers were analyzed via size exclusion chromatography (SEC) to obtain the 

dependence of the polymer molecular weight distribution on time at a specific temperature under 
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air or inert atmospheres. Cleavage rate coefficients of the mid-chain functional polymers in inert 

atmosphere were deduced as a function of temperature, resulting in activation parameters for two 

disparate Mn starting materials (Ea = 115±4 kJ⋅mol-1, A = 0.85⋅109±1⋅109 s-1, Mn,SEC = 21 kDa and 

Ea = 116 ±4 kJ⋅mol-1, A = 6.24⋅109±1⋅109 s-1, Mn,SEC = 102 kDa). Interestingly, the degradation 

proceeds significantly faster with increasing chain length, an observation possibly associated 

with entropic effects. The degradation mechanism was in-detail explored via SEC-ESI-MS for 

acrylate based polymers and theoretical calculations suggesting a Chugaev-type cleavage 

process. Processing of the RAFT polymers via small scale extrusion as well as a rheological 

assessment at variable temperatures allowed for the first time a correlation of the processing 

conditions with the thermal degradation properties of the polystyrenes and polyacrylates in the 

melt. 

 

INTRODUCTION 

 During the past decades, the academic use of controlled/living radical polymerization 

(CLRP) techniques for the synthesis of well-defined narrow polydispersity polymers has rapidly 

increased due to the variety of applicable monomers and the more tolerant experimental 

conditions than living ionic polymerization routes.1 However, the increasing use of CLRP 

methods for the design of complex macromolecular architectures requires detailed knowledge 

regarding the thermal and mechanical stability of the resulting polymeric materials under 

industrially relevant processing conditions to foster further use of these new synthetic 

possibilities.2 

 The transition metal mediated controlled/living radical polymerization process such as 

atom transfer radical polymerization (ATRP),3-6 the nitroxide-mediated radical polymerization 
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(NMP),7,8 and reversible addition fragmentation chain transfer (RAFT) polymerization,9-12 are 

currently the most applied CRLP processes. Especially the RAFT polymerization has been 

proven to be highly versatile and efficient (e.g. various type of monomer, halogenated solvent, 

etc), allowing for fine control over variable molecular architectures as well as the molecular 

weight and polydispersity of the prepared synthetic polymers, while being highly tolerant to 

functional monomers under non-demanding reaction conditions with respect to e.g. solvent, 

functional groups and temperature.13 Importantly, the RAFT process proceeds under identical 

polymerization conditions as conventional free radical polymerization, in which a conventional 

chain transfer agent is substituted by a RAFT agent. The adaptation of the RAFT process to large 

scale polymer production thus requires very little change from established industrial setups.14,15 

 To generate complex macromolecular architectures via the RAFT process, there are two 

principal approaches: attachment of the RAFT agent’s Z-group or leaving R-group to a central 

linking core (see Scheme S1 in the SI section).16 The Z-group design is typically preferred over 

the R-group approach, as it avoids the formation of higher-order coupling products. In the Z-

group approach, the RAFT agent is covalently attached to the structural framework of the core 

and thus the core never carries radical functions excluding the possibility of core-core ligations.16 

In contrast – in ATRP and NMP – the core carries the radical species by default and thus core–

core coupling reactions occur, which can only be minimized by carefully selecting the reaction 

conditions (e.g. low conversions, low radical fluxes or the use of rapidly propagating 

monomer).17 As a consequence, the design of complex macromolecular architectures 

preferentially proceeds via the Z-group approach, as it provides the ability to synthesize highly 

pure and well-defined polymers up to high monomer-to-polymer conversions without cross 

coupling products.17 However, a potential disadvantage of the Z-group approach is the fact that 
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all chains are tethered to the central core via a thiocarbonylthio linkage, which is a potentially 

weak connection when processing Z-group based RAFT designed polymers. 

 Thiocarbonylthio compounds play a central role in RAFT processes and macromolecular 

architecture design.18,19 Although the synthesis of RAFT polymers as well as polymers with 

variable conjugation units with varied topology has been widely employed,20-24 there is no 

systematic knowledge regarding the stability of the generated polymers with regard to their 

thiocarbonylthio functionality at elevated temperatures under polymer processing conditions. 

One of the most important aspects for processing and the use of polymers on an industrial scale 

is the knowledge of their stability in the melt under extrusion conditions and the associated 

typical shear rates and temperatures.25,26 

 In the present study, we carefully investigate the stability of linear RAFT polystyrene and 

polyacrylate melts that carry a mid-chain thiocarbonylthio function emulating a Z-group linkage 

under thermal and mechanical stress with the aim of developing an encompassing mechanistic, 

kinetic and rheological image of the degradation process. Well-defined linear polystyrenes (PS) 

carrying a trithiocarbonate functionality in the middle of the polymer chain with various chain 

lengths (20 kDa ≤ Mn,SEC ≤ 150 kDa, 1.27 ≤ Đ ≤ 1.72) have thus been prepared. In addition – and 

for comparison and as reference – a polymer featuring a trithiocarbonate end group 

(Mn,SEC = 139.2 kDa; Đ = 1.68) as well as anionically prepared polystyrenes (Mn,SEC = 267 kDa; 

Đ = 1.11 and Mn,SEC = 70.9 kDa; Đ = 1.04) were employed. The thermal stability of RAFT-

functionalized polystyrenes was mainly studied at elevated temperatures and a detailed kinetic 

investigation of the degradation of the RAFT polymers was carried out at variable temperatures 

under an inert atmosphere as well as air. High-level ab initio molecular orbital theory 

calculations were undertaken to help interpret the experimental results. To explore the 
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mechanism of degradation associated with the mid-chain RAFT group, linear poly(n-

butylacrylate) (PnBA)27 with a mid-term position of the trithiocarbonyl functionality in the 

polymer chain as in the polystyrenes was synthesized via RAFT polymerization. The PnBA 

polymers were subjected to identical thermal degradation conditions as the polystyrenes prior to 

ESI-MS analysis. The choice of PnBA for this propose is based on its much better ionizability 

during ESI and the fact that trithiocarbonate mid-chain functional polymers can be prepared with 

similar ease as polystyrenes via the RAFT process. Finally, the prepared polymers were 

subjected to extrusion experiments and a rheological assessment to correlate the obtained kinetic 

data with actual processing conditions. Additionally, rheological assessments are very sensitive 

due to the approximately cubic dependence of the viscosity on molecular weight, η ~ Mn
3.4, as 

shown by reptation theory.28,32,33,53 Thus – for the first time – a systematic correlation between Z-

group architecture RAFT polymers, their chain length and the processing conditions is achieved. 
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Scheme 1. General strategy followed in the current study for understanding thermal and 

mechanical stability of RAFT polymer melts, carrying a trithiocarbonate moiety in the mid-chain 

position. 

 

EXPERIMENTAL SECTION 
 
All manipulations of air-sensitive materials were performed under the rigorous exclusion of 

oxygen and moisture in Schlenk-type glassware on a dual manifold Schlenk line interfaced to a 

high vacuum line (10-5 bar). 

 

Materials  

Styrene (99% extra pure, Acros) and n-butylacrylate (99% extra pure, Acros) were destabilized 

by passing through a basic alumina column and stored at -19 °C. 2,2’-Azobis(2-

methylpropionitrile) (AIBN, Sigma-Aldrich) was recrystallized twice from methanol (MeOH, 

VWR) and stored at -19 °C. Toluene (extra dry over molecular sieve, 99.85%, Acros) was used 

as received. 2-((dodecylsulfanyl)carbonothioyl)sulfanyl propanoic acid (DoPAT) and dibenzyl 
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trithiocarbonate (DBTTC) were obtained from Orica Pty Ltd., Melbourne, Australia as a 

donation. The two linear polystyrene homopolymers (4a, Mn,SEC = 267 kDa, Đ =1.11 and 4b, 

Mn,SEC = 70.3 kDa, Đ =1.04 ) were prepared via anionic polymerization and serve as reference 

materials. 

 

Instrumentation 

Size Exclusion Chromatography  

Size Exclusion Chromatography (SEC) measurements were performed on a Polymer 

Laboratories PL-SEC 50 Plus Integrated System, comprising an autosampler, a PLgel 5 µm 

bead-size guard column (50×7.5 mm) followed by three PLgel 5 µm Mixed-C and one PLgel 3 

µm Mixed-E columns (300×7.5 mm) and a differential refractive index (DRI) detector using 

tetrahydrofuran (THF) as the eluent at 40 °C with a flow rate of 1 mL min-1. The SEC system 

was calibrated using both linear polystyrene standards ranging from 160 to 6⋅106 g mol-1. 

Calculation of the molecular weight proceeded via the Mark-Houwink (MH) parameters for 

polystyrene (PS)29 in THF at 30°C, i.e. K = 14.1⋅10–5 dL g–1, α = 0.70. For poly(n-butyl 

acrylate)30 the corresponding MH parameters were employed K = 12.2⋅10–5 dL g–1, α = 0.70. 

 

Size-Exclusion-Chromatography Electrospray Ionization-Mass Spectrometry (SEC-ESI-

MS) 

Mass spectra were recorded on a LXQ mass spectrometer (ThermoFisher Scientific) equipped 

with an atmospheric pressure ionization source operating in the nebulizer-assisted electrospray 

mode. The instrument was calibrated in the m/z range 195–1822 using a standard containing 

caffeine, Met-Arg-Phe-Ala acetate (MRFA) and a mixture of fluorinated phosphazenes 
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(Ultramark 1621, all from Aldrich). A constant spray voltage of 4.5 kV and a dimensionless 

sweep gas flow rate of 2 (approx. 3 L min-1) and a dimensionless sheath gas flow rate of 12 

(approx. 1 L min-1) were applied. The capillary voltage, the tube lens offset voltage and the 

capillary temperature were set to 60 V, 110 V and 275 °C respectively. The solvent was a 3 : 2 

v/v mixture of THF : methanol with a polymer concentration of 0.2 mg mL-1. The instrumental 

resolution of the employed experimental set-up is ± 0.1 Da. 

 For SEC-ESI-MS the LXQ was coupled to a Series 1200 HPLC system (Agilent) that 

consisted of a solvent degasser (G1322A), a binary pump (G1312A) and a high performance 

autosampler (G1367B), followed by a thermostatted column compartment (G1316A). Separation 

was performed on two mixed bed SEC columns (Polymer Laboratories, Mesopore 250 × 4.6 

mm, particle dia. 3 µm) with pre-column (Mesopore 50 × 4.6 µm) operating at 30 oC. THF at a 

flow rate of 0.3 mL min-1 was used as the eluent. The mass spectrometer was coupled to the 

column in parallel to an DRI detector (G1362A with SS420 ×  A/D) in a setup described 

previously.31 A 0.27 µL min-1 aliquot of the eluent was directed through the RI detector and 

30 mL min-1 infused into the electrospray source after postcolumn addition of a 0.1 mM solution 

of sodium iodide in methanol at 20 µL min-1 by a micro-flow HPLC syringe pump (Teledyne 

ISCO, Model 100DM). The polymer solutions with a concentration of 2 mg mL-1 were injected 

into the HPLC system. 

  



9 
 

Rheometry 

The rheological characterization of the melt polymers was carried out under nitrogen atmosphere 

using on an ARES classic strain-controlled rotational rheometer equipped with and 1KFRTN1 

torque transducer from TA Instruments. Small amplitude oscillatory shear (SAOS) 

measurements were conducted in the linear regime using a parallel plate geometry (13 mm, gap 

≈ 1 mm) in the temperature range from 160 °C to 200 °C and the frequency range from 

𝜔/2𝜋   =   0.01 Hz to 15 Hz at each temperature. To determine the linear viscoelastic region,32,33 

strain sweep experiments were performed before the frequency sweep tests via variable 

amplitude oscillatory shear. The instrument was equipped with two transducers covering the 

torque range from 2×10-6 to 0.2 Nm. A nitrogen atmosphere was kept during the heating using a 

forced convection oven from ambient temperature to test conditions. All dynamic measurements 

were carried out within the linear response domain adjusting the strain amplitude accordingly. 

The viscoelastic properties of the polymers (the storage modulus G′ and the loss modulus G′′) 

were measured in small-amplitude oscillatory shear flow as a function of time at variable 

temperatures and additionally under variable strain amplitude with a constant frequency 

(𝜔 2𝜋   =   1  𝐻𝑧), respectively. 

 

Extrusion 

A Haake Minilab (Thermo Scientific) extruder was used to extrude the polymer samples. This 

extruder is especially developed for the compounding of small volume samples starting from 5 g. 

The instrument was operated in counter rotating mode, the required extrusion time (10 min as a 

typical mean residence distribution time) for the mixture could be readily controlled at 200 °C. 
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At the end of the test, the re-circulation was stopped by opening the bypass valve and extruding 

the sample as a rod. 

 

General procedure of RAFT polymerization of styrene with DBTTC 

Linear polystyrene (PS) carrying a RAFT-functionality (trithiocarbonate) in the middle of the 

polymer chain with various chain lengths were prepared via the following procedure: styrene (20 

mL), toluene (20 mL) and dibenzyl trithiocarbonate (DBTTC) were dissolved in toluene in a 100 

mL Schlenk tube and the reaction mixture was degassed by three freeze-pump-thaw cycles and 

left under argon. The reaction was performed at 110 °C for variable time intervals (see Table 1, 

e.g. 24 h). The polymerizations were stopped by cooling the reaction flask with liquid nitrogen. 

The individual concentrations of the RAFT agent as well as the resulting polymer molecular 

weight properties can be found in Table 1. 

 

General procedure of RAFT polymerization of styrene with DoPAT 

Linear polystyrene (PS) carrying a RAFT-functionality (trithiocarbonate) at the terminus of the 

polymer was prepared by the following procedure: styrene (20 mL), toluene (20 mL) and 2-

((dodecylsulfanyl)carbonothioyl)sulfanyl propanoic acid (DoPAT) (0.28 mmol L-1) were 

dissolved in toluene in a 100 mL Schlenk tube and the reaction mixture was degassed by several 

freeze-pump-thaw cycles and left under argon. The reaction was performed at 110 °C for 24 h. 

The polymerization was stopped by cooling the reaction vessel with liquid nitrogen. 
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General procedure of RAFT polymerization of n-butylacrylate with DBTTC 

Linear n-butylacrylate (PnBA) carrying a RAFT-functionality (trithiocarbonate) in the middle of 

the polymer was prepared by the following procedure: n-butylacrylate (4.62 mol L-1), toluene (5 

mL), AIBN (6.2 mmol L-1) and DBTTC (31.2 mmol L-1) were dissolved in a 100 mL Schlenk 

tube and the reaction mixture was degassed by three freeze-pump-thaw cycles and left under 

argon. The reaction was performed at 60 °C for 24 h. The polymerization was stopped by 

cooling the reaction flask with liquid nitrogen. 

 

Scheme 2. Synthetic strategy for the preparation of the linear polystyrenes and polyacrylates 

employed in the present study carrying a trithiocarbonate functionality in a mid-chain and 

terminal position. 
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Thermal Treatment 

Thermal treatment of the polymers in air atmosphere were carried out in an isothermal oven set 

to 100 °C, 120 °C, 140 °C, 160 °C, 180 °C and 200 °C (±1 °C) where the polymer samples (5 

mg) were kept for 24 h in open vials under air. 10 mL Schlenk tubes for degradation under inert 

atmosphere were dried with a heat gun and cooled under argon. The polymer samples (each ca. 5 

mg) were added into the Schlenk tube and evacuated for 60 min and left under argon. 

Subsequently, the thermal degradation of the samples under inert atmosphere was carried out in 

an oil bath at the above noted temperatures for 24 h. The kinetic studies were conducted at 

variable temperatures both in air and in inert atmospheres, with the polymer samples being 

removed periodically at pre-set time intervals. 

 
Theoretical Procedures 

Quantum chemical calculations were carried out with Gaussian 09.34 Geometry optimizations 

and frequency calculations were carried out using M06-2X35,36 and Pople’s basis set the 6-

31G(d,p)37-39 level of theory and conformations were also fully searched at this level. M06-2X, a 

modern functional that is designed to model dispersion correctly, was chosen on the basis of its 

good performance across broader test sets of organic reactions.35 Free energies in the gas-phase 

were calculated using the standard textbook formulae for the statistical thermodynamics of an 

ideal gas under the harmonic oscillator – rigid rotor approximation. Rate coefficients were 

calculated using the transition state theory in conjunction with Eckart tunnelling corrections.40 

Further details are provided in the electronic Supporting Information section. 
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RESULTS AND DISCUSSION  
 
 RAFT polymerization of styrenes and acrylates is an ideal candidate for use in industrial 

applications within the controlled/living radical polymerization family due to its non-demanding 

reaction conditions, the frequent use of these monomers in industry and the similarity to 

conventional free radical polymerization processes. It is necessary to understand the stability of 

RAFT-made polymers under both thermal and mechanical stress to eventually allow RAFT 

polymers to be processed. Thus, trithiocarbonate mid-chain functional linear polystyrenes 

(emulating a Z-group design)16 have been prepared via RAFT polymerization with various chain 

lengths. In addition – for post-degradation SEC-ESI-MS analysis – one poly(n-butylacrylate) 

with a trithiocarbonate mid-chain function has been prepared. The resulting molecular weight 

distributions are depicted in Figure 1 and the relevant reaction conditions are collated in Table 1. 

 



14 
 

Figure 1. SEC traces of trithiocarbonate mid-functional linear polymers employed in the 

degradation and extrusion experiment prior to stress: 1a (Mn,SEC = 21 kDa, Đ = 1.34), 1b (Mn,SEC 

= 51.3 kDa, Đ = 1.27), 1c (Mn,SEC = 101.9 kDa, Đ = 1.35), 1d (Mn,SEC = 151.7 kDa, Đ = 1.72), 2 

(Mn,SEC = 139.2 kDa, Đ = 1.68), 3 (Mn,SEC = 2.7 kDa, Đ = 1.33).  

 

Table 1. Reaction conditions employed for the preparation of the initial polymers via the RAFT 

process as well as their molecular weight characteristics. 

Polymer [CTA]0
a (mM) Monomer Reaction time (h) Mn

b(kDa) Đ 

1a 2.2 styrene 8 21 1.34 
1b 2.2 styrene 24 51.3  1.27 

1c 1.1 styrene 48 101.9  1.35 

1d 0.28 styrene 26 141.7 1.72 

2 0.28 Styrene 24 139.2  1.68 

3 23.4 n-butyl acrylate 0.4 2.7  1.33 
4a - Styrene - 267 1.11 

4b - Styrene - 70.9 1.04 
aDBTTC or DoPAT were used for the preparation mid-chain functional and end-chain functional 
polymers, respectively. 
bDetermined via DRI detection SEC using linear PS standards. 
 
 
 The stability of polymers is usually studied in inert atmospheres; however, stability in an 

oxygen environment is also important for real life processing conditions. Therefore, the thermal 

stability of trithiocarbonate mid-chain functional polystyrenes, trithiocarbonate end-chain 

functional polystyrenes and non-functional polystyrenes has been studied in both air and inert 

nitrogen atmospheres via time-dependent size exclusion chromatography. Specifically, samples 

of each type of polymer exposed to 200 °C in air atmosphere have been regularly removed from 

the high temperature environment and subjected to SEC analysis. Inspection of Figure 2 clearly 
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indicates a decrease in the number average molecular weights, Mn, of all polymers at 200 °C. 

The overall shape of the curves indicates that the molecular weight of the polymers significantly 

decrease as a function of time including for anionic polystyrene. The degradation behavior of the 

polymers in air displayed no dependence neither on the nature of the functional groups within 

them nor the synthetic route, as anionic polystyrene degrades in a similar way. In addition to the 

data displayed in Figure 2, the polymers have been kept at various temperatures for 24 h before 

SEC analysis (refer to Figure S1 and Figure S2 in the SI section). However, no degradation can 

be observed below 120 °C. At temperatures exceeding 120 °C, the polymer is above the glass 

transition temperature (Tg), starts to melt and its solid-state characteristics are lost. Above the Tg, 

the chain mobility and diffusion (oxygen, polymer etc.) is significantly enhanced, possibly 

allowing for accelerated degradation. Several mechanisms have been proposed in the literature 

for degradation of polystyrenes in air, where chain scission yields radical species.41 When 

oxygen reacts with the newly formed radicals, a reactive peroxy radical intermediate can form, 

accelerating the radical driven chain scissions. Thus, the oxygen content is extremely relevant for 

the thermal degradation of the polymers under air at elevated temperatures.42-44 However, under 

conditions where oxygen is present, the subtle difference in chain architecture – mid-chain vs. 

end chain functional RAFT polymers – are of minor importance. 
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Figure 2. Decrease of the number average molecular weight, Mn, of trithiocarbonate mid-

functional polystyrene (1d), trithiocarbonate end-functional polystyrene (2), and non-functional 

polystyrene (4a, prepared via anionic polymerization) at 200 °C as a function of time in an air 

atmosphere. For the full molecular weight distributions associated with the displayed averages 

refer to Figure S3 in the SI section. 

 

 Since extrusion is typically conducted at high temperate and high pressure (e.g. 300 bar), 

the oxygen content is substantially reduced. Thus, we subsequently turned our attention to 

investigate the polymer stability under an inert atmosphere to determine the effect of the chain 

transfer agents position on the stability behavior of the polymers. Initially, the three 

trithiocarbonate mid-chain functional polymers (1b, 1c, 1d) featuring different molecular 

weights have been kept at various temperature for 24 h in an inert atmosphere. Subsequently, the 
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number average molecular weights, Mn, of the polymers have been determined via SEC, 

indicating that the thermal degradation becomes prominent close to 140 °C if kept for 24 h and is 

completed between 180 °C and 200 °C (refer to to Figure 3). Inspection of Figure 3 indicates that 

only the RAFT mid-chain functional polymers (1b, c, d) degrade with increasing temperature – 

to approximately half their initial Mn – at 200 °C within 24 h. In contrast, the trithiocarbonate 

end-chain functional linear polymer (2) and anionic linear polystyrene (4a) – while being treated 

identically – display basically no degradation, thus indicating that the mid-chain functional 

position of the trithiocarbonate unit is critical for the polystyrenes' stability. Such an observation 

becomes especially important when recalling that these polystyrenes resemble the principle 

design of Z-group approach prepared star and comb macromolecules. Furthermore, reductions in 

molecular weight of trithiocarbonate mid-chain functional polystyrenes (1c and 1d) both under 

air and inert atmosphere during thermal treatment are depicted in Figure S4 in the SI section. 
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Figure 3. Number average molecular weight, Mn, of trithiocarbonate mid-functional polystyrene 

(1b, 1c, 1d), trithiocarbonate end-functional polystyrene (2), and non-functional polystyrene (4b, 

prepared via anionic polymerization) kept at variable temperatures for 24 h in an argon 

atmosphere. The full molecular weight distributions for one sample polymer (1c) and polymer 

(2) can be found in Figure S5 and Figure S6 in the SI section, respectively. 

 

 In a subsequent step, the stability of the trithiocarbonate functional polymers was 

quantified by determining the degradation kinetics and activation energy of the thermal 

decomposition process. Such a kinetic analysis assists probing the degradation mechanism as 

well as predicting the thermal stability as a function of time of the polystyrenes in an extrusion 

processes. The kinetic degradation studies under inert atmosphere were carried out employing 

two chain lengths of the mid-chain functional RAFT polymers (1a and 1c see Table 1). The 
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kinetics of the decomposition are investigated under isothermal conditions in the melt at different 

temperatures with the polymers being kept at various temperatures at for pre-set time intervals. 

SEC was applied to determine the degradation kinetics of the mid-functional RAFT polymers by 

monitoring the number average molecular weight after each time intervals. The molecular weight 

of the polymers is plotted vs. reaction time at different temperatures as depicted in Figure 4. 

Degradation rate coefficients, kd, are obtained by fitting the Mn(t) data to eq. (1) (see below for a 

detailed description of fitting process). As evident from Figure 4, both polymers show increased 

degradation rates with increasing temperature. 
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Figure 4. Number average molecular weight, Mn, as a function of time at variable temperatures 

for the degradation of trithiocarbonate mid-chain functional polystyrenes featuring different 

initial molecular weights (polymer 1c, Mn,SEC = 102 kDa; Đ = 1.35, at the top, A) and 1a, 

Mn,SEC = 21 kDa; Đ = 1.34, at the bottom, B), see Table 1). The depicted lines represent 
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exponential decay fits according to eq. 1 to deduce the first order rate coefficient for degradation. 

Exemplary, the full molecular weight distribution evolution is depicted for degradation at 200 °C 

for both polymers in Figure S7 and S8 in the SI section. 

 

 To allow for an optimum comparability of the SEC data, all SEC analysis was conducted 

on the same day for each degradation temperature. A discussion of the error associated with the 

SEC experiments can be found below. Inspection of Figure 4A – where the degradation of the 

high molecular weight sample is monitored – indicate that at 200 °C almost a halving of the 

initial Mn is observed within 8 h or a 10% reduction within 3 minutes. A long term test exposing 

1c to 160 °C for up to 504 h (3 weeks) also indicated a close to halving of the molecular weight 

(Mn,SEC
160 °C, 504 h

 = 49.6 kDa, Đ = 1.48, refer to Figure S9). For polymer 1a, (Mn,SEC
160 °C, 504 h

 = 

15.4 kDa, Đ = 1.45, refer to Figure S10) a similar trend is observed as for 1c, however, the 

molecular weight decrease is not as pronounced, an observation which is underpinned by the 

long term (3 weeks) degradation that at 160 °C, too (refer to Figure S10). 

 The rate coefficients, kd, (refer to Table 2) for the thermal degradation of the 

corresponding polymers were determined using the eq. (1), where Mn
0 is the molecular increment 

added to Mn∞ at t = 0 corresponding to the initial molecular weight of Mn
0 + Mn∞, t is the time the 

polymer use exposed to each temperature, Mn(t) is the observed molar mass after heating for time 

t and M∞ is the molar mass of the polymer at infinite time. Equation 1 was fitted – not forcing the 

fit through any data point (including the starting Mn value) as all data points are beset with an 

identical SEC error – to the data in Figures 4a and b. The kinetic analysis thus demonstrates that 

the degradation process can be described by first order kinetics suggesting that a unimolecular 
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scission reaction may be operational. For a further exploration of the reaction mechanism, the 

reader is referred to the later discussed SEC-ESI-MS analysis.  

                                                    𝑀!(𝑡) = 𝑀!
!𝑒!!!! +  𝑀!

�                                                 (eq. 1) 

 

Table 2. Rate coefficient data for the thermal degradation of the polymer 1a and 1c as well as the 

parameters obtained from equation eq. 2. 

T / °C ln (kd/ s-1) (1a) Mn
0 (1a) Mn∞ (1a) ln (kd/ s-1) (1c) Mn

0 (1c) Mn∞ (1c) 

140 -12.45 5.3 15.8 -11.56 32.8 65.1 

160 -10.78 5.1 15.9 -9.86 30.3 65.3 

180 -9.24 4.0 16.7 -8.51 46.8 54.8 

200 -8.24 4.9 16.1 -7.23 43.4 58.15 

200* -7.98 4.2 16.8 -6.89 48.72 52.62 

Note: The units of M0 and M∞ are kDa. *Repeat run. 
 

Subsequently, kd(T) was employed to construct Arrhenius plots for each molecular weight (refer 

to Figure 5). Activation energies, Ea, for the thermal degradation of polymer 1a and 1c were 

deduced from the slopes of the Arrhenius plots according to eq. (2), where R is the gas constant 

(8.314 J mol-1 K-1), T is the temperature in Kelvin and A is the frequency prefactor. 

                                                              𝑘 𝑇 = 𝐴𝑒!
!!
!"                                                           (eq. 2) 

By plotting ln kd against 1/T, the slope and intercept provides –E/R and ln (A), respectively. The 

Arrhenius analysis indicates that the activation energy does not show significant differences for 

different chain length mid-chain the trithiocarbonate functional polymers (115 kJ⋅mol-1 for 1a 

and 116 kJ⋅mol-1 for 1c) within experimental error in inert atmosphere. The error in for each data 
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point can be estimated by repeat experiments of the degradation of polymer 1a and 1c at given 

temperatures, e.g. 200 °C (see Figure S11 and S12 in the SI section). The main component of the 

error is associated with the SEC analysis, which typically features uncertainties close to ± 20%. 

This expectation is confirmed by inspecting the repeat runs depicted in Figure S11 and S10 in the 

SI section. The first order analysis of the repeat runs yields for 1a at 200 °C the rate coefficient 

of ln (kd/s-1)200°C = -7.98, while for 1c ln (kd/s-1)200°C = -6.89 are observed. Thus, the experimental 

error translates into an approximate error of ln kd of close to ± 0.2 logarithmic units. The error is 

reflected in the error bars in Figure 5 (Arrhenius plots) and results in an error for Ea of close to 4 

kJ mol-1. 
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Figure 5. Arrhenius plots for the degradation of RAFT based polystyrenes of two initial 

molecular weights featuring a trithiocarbonate mid-chain functionality in an inert atmosphere. 

The error bars are deduced from repeat experiments (for details refer to the text). 

 

 Further inspection of Figure 5 reveals that – while the activation energy is quite similar 

identical for both chain length – a significant difference (factor 7.3) is observed in the pre-

exponential factor. Interestingly, the higher molecular weight polymer 1c (which thus features 

longer chain segments on either side of the trithiocarbonyl functionality) degrades faster than 

polymer 1a, having shorter chain length. While such an observation may seem surprising at first, 

it is not without precedent. Guimard et al. reported an entropic effect on the chain scission 

reaction in Diels-Alder systems, which are – while not fully identical with the present case – 

similar in that different chain length blocks were investigated in retro Diels-Alder reactions.45 In 

that work it was shown that a large component of the chain length effects on the entropy arose in 

the translational and rotational components which are dominated by the mass and geometries of 

the polymer chains rather than the specific nature of the chemical reaction taking place between 

them, and hence should be equally applicable to the present reactions. On a practical level, it is 

important to recognize that the longer the chain length, the less thermal stress should be applied 

to the polymer system during processing to avoid degradation. 

 While the SEC analysis provides an indication that the trithiocarbonate functional 

polymers are cleaved by mid-chain scission at the trithiocarbonate function at elevated 

temperature, a more detailed molecular proof is required of the reaction mechanism. The thermal 

decomposition of trithiocarbonate mid-chain functional polymer – on the example of poly(n-

butyl acrylate) – was thus investigated in the melt. Acrylate based trithiocarbonate polymers with 
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low molecular weight have been chosen for the chemical analysis of the degraded material, since 

the polyacrylates can be readily analyzed via SEC-ESI-MS. The reason for not subjecting 

polystyrenes to an alternative matrix-assisted laser desorption/ionization (MALDI) analysis is 

based on the observation that RAFT polymers – which readily absorb UV irradiation via their 

thiocarbonyl thio function – tend to strongly fragment upon UV-laser irradiation during the 

MALDI processes. Unfortunately, the polystyrenes do not lend themselves to ESI-MS analysis 

due to their very poor ionizability. Initially the structural integrity before degradation of the 

polyacrylate 3 was established via ESI-MS analysis. A zoom mass spectrum of a repeat unit for a 

detailed assignment of all detected species is shown in Figure S13 in the SI section. The 

experimental and theoretical m/z have been summarized in Table S1 for all detected species. 

Inspection of Figure S13 underpins that the main product is the polymer 3, occurring as well in 

both double and triple charged states. 

 Subsequently, the chemical reactions occurring both under air and inert atmosphere 

during the thermal treatment of polymer 3 have been thoroughly investigated via SEC-ESI-MS. 

Polymer 3 was kept at 200 °C for 24 h both under air and inert atmosphere before SEC-ESI-MS 

analyses. The SEC-ESI-MS spectra of the corresponding samples were recorded to determine the 

products of the thermal degradation processes under ambient atmosphere (refer to Figure 6). In 

assigning these new species formed via thermal treatment in air, our attention focused on the 

reactivity of the trithiocarbonate mid-chain functionality and its reactions. As depicted in Figure 

6a, the vinyl terminated species 3a are formed as products of the thermal treatment. The addition 

of oxygen to the new vinyl terminated polymer 3a to form an epoxide is a well known reaction 

that proceeds readily at elevated temperatures in polymeric acrylic systems.41 The formation of 

the double bond of polymer 3a and the resulting epoxide 3b – a product which commonly occurs 
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when macromonomers are exposed to elevated temperatures in air41 – was confirmed via the 

respective peak assignments (refer to Table 3 and Figure 6a). In addition to the formation of the 

main products 3a and 3b, some minor degradation products are formed, which result from follow 

on degradation processes and possible side chain scissions. However, due to the limited signal to 

noise ratio in the mass spectroscopy data, these have not been further assigned. Instead we 

focused our attention on degradation processes under an inert atmosphere, where much clearer 

species formation is observed (refer to Figure 6b).  

 

Under inert atmosphere, the mechanism of the decomposition is mainly via β-elimination of the 

trithiocarbonate groups. The most important pathway is the β-elimination of thiocarbonylthio 

compounds possessing a β-hydrogen, leading to the formation unsaturated species (3a or 3a') and 

the corresponding acid (3c). When there is a hydrogen in β-position to the thiocarbonylthio 

moiety, the decomposition can proceed via a Chugaev-type elimination process.46-50 The possible 

mechanism proposed for the decomposition of polymer 3 is depicted in Scheme 3 (under an inert 

atmosphere). 
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Figure 6. ESI-MS spectra of the thermally treated (200°C, 24 h) trithiocarbonate mid-functional 

PnBA (3) under an air (A) and a nitrogen atmosphere (B).  
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Scheme 3. Proposed mechanism (shown on the example of a dimer species) for the thermal 

degradation of the trithiocarbonate functional polymers. The proposed Chugaev elimination is 

supported by the observation of species 3a' (structurally identical to species 3a observed in the 

degradation under air), and additionally by the generation of the acid 3c (see Table 3 for the peak 

assignments). 

 

Table 3. Assignment of the observed species in the SEC-ESI-MS spectra of the polyacrylate 3 

after thermal treatment under air and in anitrogen atmospheres at 200 °C for 24 h. 

Species  m/ztheo (Da)  m/zexp (Da)  Δm/z  

[3 (n = 7) + Na]+  1209.60  1209.39  0.21  

[3a (n = 7) + Na]+  1137.71  1137.96  0.25  

[3b (n = 7) + Na]+  1153.70  1153.13  0.57  

[3a' (n = 10) + Na]+  1521.96  1521.96  0.00  

[3c (n = 9) + H]+  1481.82  1481.75  0.07  
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Theoretical Study of the Reaction Mechanism 

To further study the mechanism, ab initio molecular orbital calculations were conducted on small 

representative models of the acrylate and styrene trithioesters as shown in Scheme 4. It should be 

noted that the reactant has to undergo a conformational change prior to reaction and this is taken 

into account in the calculations by basing the barrier on the overall energy difference between 

the global minimum conformation of the reactant and transition structure. The rate coefficient for 

this reaction was calculated over the experimental temperature range of 413-473 K in the gas 

phase. The Arrhenius model was subsequently fitted to the rate data to estimate an effective 

barrier and frequency factor for the reaction. Corrections for quantum-mechanical tunneling were 

included in the rate coefficients but were relatively small at this temperature (ca. a factor of 1.4) 

and the Arrhenius plot was reasonably linear, consistent with experiment. The Arrhenius 

parameters obtained over this range are 170 kJ mol–1 and 1.9⋅1015 s-1 for the styrene trithioester, 

and 167 kJ mol–1 and 1.2⋅1012 s-1 for the methyl acrylate system. The results obtained are in good 

qualitative agreement with a previous study of this reaction in a model xanthate-based system,51 

but understandably show significant differences to the polymeric styrene system of the current 

work, due to the chain length (and to a lesser extent medium) effects on the entropy of reaction.45 

Thus, for the short chain model, the reaction of styrene trithiocarbonate is endergonic by 14 kJ 

mol–1 at 413 K, decreasing to just 2 kJ mol–1 at 473 K. For higher chain lengths, as in the 

polymeric system, the greater entropic driving force lowers the ‘debonding’ temperature at 

which the forward reaction dominates over the reverse reaction.45 Nonetheless, it is likely that 

even in the polymeric system this reverse reaction is affecting the apparent rate coefficient at 

lower temperatures, leading the observed rate coefficient to have a lower frequency factor and 
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barrier compared with the small model reaction. Further details of the calculations are provided 

in the SI section. 

 
 
Scheme 4. Model reaction studied via ab-initio quantum chemical calculations 
 

 In a subsequent step, we proceeded to investigate the melt rheological and extrusion 

behavior of the synthesized polystyrenes. The polymers may undergo degradation caused by 

temperature in the presence of an inert atmosphere as well as additional mechanical stresses 

during processing. The following section first details the results from the (shear) rheology 

experiments. The oscillatory experiments include dynamic time sweep measurements and 

frequency sweep tests on pre-degraded and virgin polymers to probe the effects of temperature 

and strain on the degradation behavior of the mid-chain trithiocarbonate functional polymers. 

The rheological parameters storage and loss modulus (G' (𝜔, 𝛾!) and G' (𝜔, 𝛾!)) in the linear and 

non-linear regime are sensitive to structural changes within the polymer architectures.32,52 

Furthermore, rheological properties can be monitored continuously (e.g. several seconds) and 

therefore have a substantially smaller time resolution as the preparation of the samples. 

Additionally, one sample can be monitored throughout the degradation process. Oscillatory time 

sweep assessments of the polystyrene melts carrying trithiocarbonate groups in mid-chain 

position were additionally studied at different temperatures range from 160 °C to 200 °C as well 

as various strain amplitudes range from 𝛾! =   0.01  to 𝛾! =   0.2 at 180 °C.  

 Initially, the molecular stability of polymer 1c (trithiocarbonate mid-chain functional 

polymer) and 4b (anionically prepared non-functional polystyrene) was investigated and 
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compared at 180 °C and at a frequency of 𝜔/2𝜋 =  1 Hz and 𝛾! =   0.1  strain. The storage (G') 

and loss (G") modulus of polymer 1c and the non-functional polystyrene are depicted in Figure 

7. Inspection of Figure 7 indicates that the storage and loss modulus of polymer 1c decrease with 

increasing time at elevated temperatures in the linear regime, whereas the same rheological 

parameters for non-functional polystyrene do not vary under the same conditions. Furthermore, 

the ratio G"/G', which is called tangent tan (δ), is high (≫  1) for liquid-like materials. Examples 

of tan (δ) as a function of degradation time for polystyrene 1c and 4a are depicted in Figure S14 

in the SI section. After applying both thermal and mechanical stress via the above experiment, 

SEC analysis revealed that the molecular weight distributions of polymer 1c has experienced a 

change in molecular weight (from 102 kDa to 59.3 kDa), while the number average molecular 

weight, Mn, of 4b (70.3 kDa) stayed constant (refer to Figure S15 and S16 in the SI section). The 

SEC results thus indicate that the trithiocarbonate mid-chain functional polymer was also 

degraded under these conditions, clearly detected by rheology. Moreover, the frequency sweep 

tests were performed at the strain of 𝛾! = 10% over a frequency range from 0.01 Hz to 15 Hz 

before and after the above mentioned thermal treatment of the 1c and 4b, which are depicted in 

Figure 8A and Figure 8B, respectively. Inspection of the Figure 8A and 8B indicate that 

frequency of the crossing G' and G" for polystyrene 1c shifted from 4.5 Hz to 12.4 Hz after the 

thermal treatment, whereas the crossing frequencies for anionic polystyrene (4b) were similar 

within the accuracy of the experiment (±10%). 
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Figure 7. Comparison of the storage (G') and loss modulus (G") as a function of time at 180 °C 

for polystyrene melts 1c and 4a at an frequency of 𝜔/2𝜋 =   1 Hz and 𝛾! =   0.1  strain amplitude 

under nitrogen atmosphere. 
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Figure 8. Comparison of the crossing point of the G' and G" of the trithiocarbonate mid-chain 

functional polystyrene (1c, above, A) and of the anionic polystyrene (4b, below, B) before and 

after the thermal treatment for 8 h at 180 °C under nitrogen atmosphere. 
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 It is now interesting to compare the observed reduction in molecular weight with the one 

predicted for 1c for the same time period via eq. (1). This prediction leads to an expectation of 

Mn,SEC
 8h,180 °C = 55.1 kDa in conjunction with rate coefficient data collected in Table 2. The 

resulting Mn value after 8 h of thermal stress as well as combined thermal and mechanical stress 

in the linear regime result in approximately the same molecular weight within experimental 

error, i.e. 55.1 kDa vs. 59.3k Da, respectively. Thus, it is safe to conclude that the additional 

mechanical stress did not result in major additional degradation of the polymeric material at 

180 °C and 𝛾! =   0.1 strain amplitude. Subsequently, the melt rheological behavior of polymer 

1c has been examined by dynamic time sweep tests at various amplitudes of strain in order to 

continuously assess the effect of the strain amplitude on the thermal degradation in the melt state. 

Figure 9 shows that G′(!)  is a function of time for different strain amplitudes, indicating that a 

reduction in G′(!)   occurs for each strain amplitude approximately at the same rate. The 

molecular weights of the polymers after the dynamic time sweep tests were analyzed via SEC, 

indicating that no additional affect of the strain amplitude on the degradation of the RAFT-based 

polymer exists (see Figure S16 in the SI section, Mn
 8h,180 °C, 1% strain = 59.8 kDa, Mn

 8h,180 °C, 10% strain 

59.3 kDa, Mn
 8h,180 °C, 1% strain = 60.7 kDa) up to limit of 𝛾! =   0.2 at 180 °C for close to 8 h. 
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Figure 9. Comparison of the storage (G') and loss modulus (G") at 180 °C for polystyrene 1c at 

mechanical excitation at a frequency of 𝜔/  2𝜋 =   1 Hz in nitrogen atmosphere under variable 

strain amplitudes. The tan (δ) of these measurements can be found in Figure S17 in the SI 

section. 

 

 Furthermore, dynamic time sweep tests have been carried out at various elevated 

temperatures with a constant frequency (𝜔/2𝜋   =   1 Hz) and a constant strain amplitude 

(𝛾!   =   0.1) to investigate the additional effects of the mechanical stress on the decomposition of 

the trithiocarbonate functional group compared to pure thermal degradation. Once again, the 

molecular weight of the samples after rheological assessment have been measured by SEC (refer 

to Figure 10). The molecular weight of polymer 1c decreases from 102 kDa to 76.2 kDa at 
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160 °C under exclusive thermal degradation (refer to Figure 4a), whereas the Mn of the polymer 

decrease to 68.1 kDa in the additional presence of mechanical stress at a strain amplitude 

(𝛾! = 0.1), suggesting there may be a minor effect of additional stress on the degradation. 

However, there is no additional effect of mechanical stress for temperatures exceeding 160°C 

(refer to Figure 10). 

 

Figure 10. Comparison of number average molecular weights of polymer 1c at mechanical 

excitation at a frequency of 𝜔/2𝜋 =   1 Hz in nitrogen atmosphere with a constant strain 

amplitude (𝛾! =   0.1) at 180 °C. SEC traces were taken after 8 h of mechanical shear. 

 

 In a next step, the absolute value of the complex viscosities as a function of frequency at 

a temperature of 180 °C before and after the dynamic time sweep test for the polymer 1c and the 
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anionic polystyrene 4b are displayed in Figure 11. The dynamic viscosity before the dynamic 

time sweep measurement is close to 6400 Pa⋅s for the polymer 1c, while it is strongly reduced to 

2400 Pa⋅s after the measurement for the 180 °C, thus demonstrating that the viscosity was 

significantly lower (appr. a factor 2.7) for polymer 1c after the dynamic time sweep 

measurement due to degradation and reduction of molecular weight occurring during the 

mechanical measurement of the material. The anionic polystyrene 4b displays an almost constant 

viscosity before and after the dynamic time sweep measurement. For a linear, monodisperse, 

homopolymer melt the Cox-Merz rule 𝜂∗ 𝜔 =   𝜂 𝛾  can be assumed.32,53 Moreover, the 

plateau viscosity is directly related to the molecular weight of the polymer. For polystyrene 

below the critical molecular weight Mc (≈ 3Me; Me ca. 18 kDa for polystyrene) the viscosity 

scales linear with Mn. For Mn larger than Mc the reptation theory describes the behavior and leads 

to a η0 ~ Mn
3.4 power dependence. The viscosity of the pre-degraded polymer 1c is lower than 

the non-functional polystyrene (4b) and non-degraded polymer 1c, correlated with a decrease in 

molecular weight of 1c due to the applied temperature of 180 °C.  
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Figure 11. Comparison of the frequency depended absolute value of the complex viscosity of the 

trithiocarbonate functional polymer 1c and non-functional polystyrene 4b before and after 

dynamic time-sweep measurements (dts). The time evolution of the measurement are depicted in 

Figure 7. 

 Finally, polymer processing provides a mean to shape and to manufacture plastic 

materials products from polymer resins or powder. This is generally achieved using extrusion or 

injection molding processes to form the desired shape of the end product. To mimic the extrusion 

process of the trithiocarbonate mid-chain functional polymer 1c and 1d, a 10 minute residence 

time in the extrusion barrel – to remain consistent with the mixing average residence time 

typically given in extrusion – and was followed by extrusion. However, feeding of polymer 1c 

and 1d took close to 10 minutes, therefore the total residence time is more than 10 minutes at 

200 °C. The change in molar mass after extrusion can provide a measure for the combined 
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thermal and mechanical degradation. Again, the molecular weight reduction observed during 

extrusion can be compared to the reduction in molecular weight observed in pure thermal 

degradation experiments described by eq. (1) for polymer 1c. During the entire experiment the 

polymers were exposed to 200 °C for 20 minutes (see above). The resulting Mn based on eq. (1) 

reads 65.7 kDa (using the kinetic rate coefficients provided in Table 2). The number average 

molecular weight of polymer 1c and 1d after extrusion was determined via size exclusion 

chromatography to assess the change in molecular weight (refer to Figure 12). The relative 

values for the number average molecular weight based on SEC before/after extrusion were found 

102 vs. 65 kDa and 151 vs. 109 kDa (corresponding to a 36% and 27% decrease) for polymers 

1c and 1d, respectively.54 Comparing the number average molecular weight obtained for 1c via 

eq. (1) with the value obtained for the same polymer after extrusion, it appears that the extrusion 

process had no additional effect on the degradation behavior than thermal stress alone. 

Considering all results obtained in the present study, one can conclude that extrusion times for 

trithiocarbonate mid-chain functional polystyrenes such as (1c) need to be kept below 3 minutes 

at 200 °C to achieve only a limited (10%) reduction in molecular weight as can be calculated by 

employing eq. (1). It is important to note that the trithiocarbonate end-chain functional linear 

polymer (2) and anionic linear polystyrene (4a) also display 6% and 12% reduction in molecular 

weight after the extrusion at 200°C after 20 min (Table 4a and 4b, see below). Thus, the 

degradation extent under extrusion conditions can be estimated using kinetic data obtained via 

heat treatment in inert atmospheres. 
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Figure 12. Comparison of the molecular weight distribution of the trithiocarbonate mid-chain 

functional polymer (1c, left side with a and 1d, right side with b) before and after extrusion at 

200 °C with total residence time of 20 min. 

 

CONCLUSIONS 
 
 The behavior under thermal stress of trithiocarbonate mid-chain functional linear RAFT 

polystyrene and polyacrylates – emulating a Z-group approach macromolecular architecture – 

with various chain lengths was investigated in the presence of air as well as in inert atmosphere 

at elevated temperatures ranging from 100 °C to 200 °C. The thermally challenged RAFT 

polymers (under an inert atmosphere) were analyzed by size exclusion chromatography as a 

function of their exposure time to elevated temperatures. The molar mass of the trithiocarbonate 

mid-chain functional polymers decreased following first order kinetics at elevated temperatures, 

whereas there was no observable alteration in the molecular weight of trithiocarbonate end-

functional polystyrene under the same conditions. First order rate coefficients for the 

trithiocarbonate mid-chain functional polystyrene 1a and 1c under inert atmosphere (Ea = 

115±4 kJ⋅mol-1, A = 0.85⋅109±1⋅109 s-1, Mn,SEC = 21 kDa and Ea = 116 ±4 kJ⋅mol-1, 
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A = 6.24⋅109±1⋅109 s-1, Mn,SEC = 102 kDa) for the thermal degradation were determined from the 

time dependant evolution of the number average molecular weight. Interestingly, the degradation 

rate was found to be a function of the polymer chain length, which is potentially attributable to 

an entropic effect. The decomposition mechanism of the mid-chain functional RAFT polymers 

possessing an β-hydrogen most likely proceeds according to a Chugaev-type elimination. 

Further, rheological experiments indicate that there is no additional effect of the degradation on 

the thiocarbonylthio functionality under mechanical stress at elevated temperatures under inert 

atmosphere up to 𝛾!   =   0.1. The trithiocarbonate mid-chain functional polymers placed under 

mechanical stress showed a similar degradation behavior with respect to their molecular weight 

as function of time under inert atmosphere. In addition, SEC traces recorded after extrusion for 

20 minutes under inert atmosphere demonstrated that the number average molecular weight of 

the thiocarbonylthio mid-chain functional polymers decrease between 27% and 36% at elevated 

temperatures close to 200 °C, depending on the polymer chain length and that – also during 

extrusion – mechanical stress does not lead to elevated degradation rates. The present work not 

only provides fundamental knowledge on the thermal decomposition mechanisms and kinetics 

for trithiocarbonate mid-chain functional polymers in the melt for the first time, but additionally 

suggest that Z-group designed materials can be processed via melt extrusion at elevated 

temperature provided the extrusion times are in average below 3 minutes at 200 °C or 22 minutes 

at 180 °C leading to an acceptable 10% of cleaved chains. Acceptable degradation rates during 

processing can – on the basis of the herein provided kinetic data eq. (1) – be predetermined. An 

overview guide to the degradation profiles of the studied polymers is provided in Tables 4 below. 
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Table 4a. Overview guide to trithiocarbonate containing and anionically prepared functional 

polymer degradation. The second and third columns give the time for 10% reduction in 

molecular weight, Mn, at 200 °C at various conditions with different functionality. The fourth 

column gives the Mn reduction after 20 minutes during extrusion at 200 °C. 

Functionality Air Inert Extrusion 

Mid-chain 90 min. (1d) 3 min. (1c) 36 % (1c) 

End-chain 48 min. (1c) > 5 h (1c) 6 %  (2) 

Anionic 15 min. (4a) > 5 h (4b) 12 % (4a) 

 

Table 4b. Final values of Mn  reached at long reaction time (24 h) for all investigated polymer 

samples at 200 °C in air and inert atmosphere environments. 

Functionality Air Inert 

Mid-chain Mn (t = 0) = 102 kDa, (1c) 

Mn (t = 24 h) = 9 kDa 

Mn (t = 0) = 102 kDa, (1c) 

Mn (t = 24 h) = 53 kDa 

End-chain Mn (t = 0) = 140 kDa, (2) 

Mn (t = 24 h) = 7 kDa 

Mn (t = 0) = 140 kDa, (2) 

Mn (t = 24 h) = 128 kDa 

Anionic Mn (t = 0) = 267 kDa, (4a) 

Mn (t = 24 h) = 7 kDa 

Mn (t = 0) = 71 kDa, (4b) 

 Mn (t = 24 h) = 55 kDa 
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ASSOCIATED CONTENT 

Supporting Information. Further analytical data of the corresponding polymers such as a 

depiction of the RAFT R- vs Z-group design, molecular weight decrease as a function of 

temperature for 24 h under air for polymer species 1a,b,c,d, comparison of the average number 

molecular weight evolution as a function of time for polymer 1c,d under air and an inert 

atmosphere at 200°C, full SEC traces of polymers 1a,c and 2 after variable times under thermal 

stress, repeat experiments for the deduction of the experimental error reported in Figure 5, 

molecular weight evolution for long term degradation experiments (3 weeks), supporting SEC 

data for the rheological experiments, supporting data for the quantum-mechanical calculations as 

well as additional SEC-ESI-MS spectra. This material is available free of charge via the Internet 

at http://pubs.acs.org. 
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